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Introduction              1 

1 Introduction 
 
1.1 The Cytoskeleton 

Cells have to organise themselves in space and interact mechanically with their 

environment. They have to be correctly shaped, physically robust, properly structured 

internally and should retain their ability to move or change their shape. For all these cellular 

processes, cells depend on a remarkable system of filaments called the cytoskeleton. Three 

major cytoskeletal filamentous networks are present in eukaryotic cells, the actin 

microfilaments, intermediate filaments and microtubules. Microfilaments are fibers typically 

7-9 nm of diameter whereas microtubules have a diameter of 24 nm. Intermediate filaments 

have a diameter of 10 nm which is in between the other two filaments and hence the name. 

Together all these filamentous networks provide, not only a dynamic skeleton for the cells, 

but they are also involved in organelle transport, organelle and cell-fate-determinant 

positioning, cell polarity development, mitosis, cytokinesis, secretion and the formation of 

cell extensions, and the maintenance of cell integrity. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Actin filaments are two-stranded helical polymers of the

protein actin. These flexible structures of about 8 nm in

diameter are arranged in bundles and gel-like networks

throughout the cell. The highest density of the actin

filaments is found at the cell cortex, underneath the plasma

membrane. 

 

Microtubules are cylindrical tubes, composed of the

monomer tubulin. They have a diameter of 25 nm and are

stiffer than the actin filaments. Mostly these structures have

its origin at the centrosome. 

 

 

 

Intermediate filaments are rope like structures with a

diameter of 10 nm. They are composed of various

polypeptides. One of the filaments is present in the nuclear

lamina. Others are localized throughout the cytoplasm, and

contribute to the mechanical resistance of the cell.  

 

Figure 1.1: The three different filament types of the cytoskeleton, each shown in an elelectron micrograph, a 

schematic drawing and the distribution in an epithelial cell. Figure is taken from Alberts et al., 1994. 
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1.2  The Actin Cytoskeleton 
The major constituent of the microfilament is actin, and together with several actin-

binding and associated proteins, it constitutes the actin cytoskeleton (Stossel, 1993). Some 

single cell eukaryotes like yeasts have a single gene for actin (Winsor and Schiebel, 1997), 

whereas many multicellular organisms contain multiple actin genes. Humans for example 

have six actin genes encoding various isoforms of the protein (Kedes et al., 1985), and plants 

such us Arabidopsis has 10 (Meagher et al., 1999). The six known actin isoforms in 

mammalian cells are two sarcomeric muscle actins (alpha-skeletal and alpha-cardiac), two 

smooth muscle actins (alpha and gamma), and 2 nonmuscle, cytoskeletal actins (beta and 

gamma). Actin is highly conserved throughout the evolution and is the most abundant 

intracellular protein in a eukaryotic cell. The recent discovery of MreB protein as a 

homologue of actin in bacteria changed the conventional theory that prokaryotes do not have 

actin (van den Ent et al., 2001). Actin is a protein consisting of 375 amino acids with a 

molecular mass of about 43 kDa. Actin exists either in a globular monomeric (G-actin) or in a 

filamentous polymeric form (F-actin). Each actin molecule can bind to ATP, which is 

hydrolyzed to ADP after incorporation of the actin molecule into the polymer. Polymers 

assemble spontaneously via noncovalent interactions between the monomeric subunits and are 

highly dynamic structures with subunit turnover at both ends. Energy is not required but 

contributes to the polymerization, as shown by the observation that ATP-bound actin 

polymerizes faster than ADP-bound actin (Engel et al., 1977). The rate-limiting step in actin 

polymerization is nucleation, the assembly of the first subunits to generate a new filament. 

Actin filaments are structurally polarized, and the kinetics of polymerization at each end is 

different. The plus (barbed) end grows more quickly than does the minus (pointed) end. Actin 

is predominantly present in the cytoplasm and recently confirmed to be present also in the 

nucleus (Olave et al., 2002). 

 The actin cytoskeleton is directly involved in cell locomotion (Welch et al., 1997), 

cytokinesis (Fishkind and Wang, 1995), cell-cell and cell-substratum interactions (Wehrle-

Haller and Imhof, 2002; Yamada and Geiger, 1997), vesicular and organelle transport (Kubler 

and Riezman, 1993; Langford, 1995), establishment and maintenance of cell morphology 

(Matsudaira, 1994) and the localization of signaling particles and mRNA (Bassell and Singer, 

1997). All these functions of actin filaments are modulated and assisted by actin-binding 

proteins. 

 

 

 



Introduction              3 

1.3  Actin binding proteins 
  The association of the actin–binding proteins with actin is necessary for modulating 

the behavior and organization of the actin cytoskeleton. More than 162 distinct and separate 

actin-binding proteins have been identified excluding the synonyms and isoforms (dos 

Remedios et al., 2003) and they can be grouped into 48 classes (Kreis and Vale, 1999; Pollard 

and Cooper, 1986). These include monomer binding proteins [profilin (Ampe et al., 1988), 

cofilin (Abe et al., 1990)], barbed end capping proteins [capZ (Barron-Casella et al., 1995)], 

barbed end capping/severing proteins [gelsolin (Kwiatkowski et al., 1986),villin (Pringault et 

al., 1986)], lateral binding proteins [calponin (Strasser et al., 1993), tropomyosin (Lees-Miller 

and Helfman, 1991)], Cross linking proteins [α-actinin (Youssoufian et al., 1990), Spectrin 

(Winkelmann and Forget, 1993), dystrophin (Koenig et al., 1988),] membrane associated 

actin binding proteins [Synapsins or protein 4.1; (Sudhof, 1990)] and motor proteins such as 

myosins. 

Profilin is a small actin-binding 

protein (12-19 kDa) originally 

identified as an actin 

sequestering protein that can 

inhibit actin filament growing. 

Profilins appear to be 

multifunctional. They regulate 

actin polymerization, act as 

adaptor proteins, and possibly 

link transmembrane signaling to 

the actin cytoskeleton (Theriot 

and Mitchison, 1993). Cofilin is 

a widely distributed intracellular 

actin-modulating protein that binds and depolymerises filamentous actin and inhibits the 

polymerisation of monomeric G-actin in a pH-dependent manner (Kuhn et al., 2000). 

Capping protein (capZ) is a heterodimeric actin-binding protein found in all eukaryotic cells 

and it binds to the barbed ends of actin filaments and nucleates polymerisation of actin 

(Schafer and Cooper, 1995). Gelsolin is best known for its involvement in dynamic changes 

in the actin cytoskeleton during a variety of forms of cell motility. Gelsolin severs assembled 

actin filaments in two, and caps the fast-growing plus end of a free or newly severed filament 

(Kwiatkowski, 1999). Calponin is a 33 kDa protein binding to actin and calmodulin and found 

 
Figure 1.2: Actin binding proteins. Specific functions of actin-binding proteins

are shown with a diagram of how each protein may interact with F-actin.

(Ayscough, 1998) 
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predominantly in smooth muscle and thought to be involved in the regulation or modulation 

of contraction (Strasser et al., 1993). Tropomyosin, in connection with the troponin complex 

regulates the interaction of F-actin and myosin (Farah and Reinach, 1995). Synapsin I is a 

neuronal phosphoprotein associated with the membranes of small synaptic vesicles and 

thought to regulate synaptogenesis and neurotransmitter release from adult nerve terminals 

(Ryan et al., 1996). 

The organization of the actin cytoskeleton must be tightly regulated both temporally and 

spatially to perform all its biological functions. Rho-like GTPases are key regulators in 

signaling pathways that link extracellular growth signals or intracellular stimuli to the 

assembly and organization of the actin cytoskeleton (Hall, 1994). 
 

1.4  Actin-binding proteins of α-actinin superfamily 
At the leading margins of moving or spreading cells, actin filaments are organized into 

two principal structures, bundles and meshworks. Actin bundles are parallel arrays of closely 

packed actin filaments that stiffen membrane projections like filopodia, microvilli and 

stereocilia. An actin meshwork is a criss-crossed array of actin filaments forming the 

lamellipodia. When laminated to the cytoplasmic face of the plasma membrane, an actin 

meshwork forms a two-dimensional elastic sheet that stiffens the cell membrane, anchors 

integral membrane proteins and supports the shape of the cells. Actin cross-linking proteins 

characterized by a pair of actin-binding sites form actin bundles and meshworks. The α-

actinin superfamily is the largest of the F-actin cross-linking protein families. Proteins in this 

family share an actin-binding domain homologous to the ABD of α-actinin (Matsudaira, 

1994). The family includes spectrins, fimbrin/plastins, dystrophins, gelation factor from 

Dictyostelium and filamin subfamilies (Hartwig, 1995). The globular actin-binding domain is 

contained in the first 250 amino acids at the N-terminus of all the members of the family and 

may be composed of more than one subdomain (Puius et al., 1998). The actin-binding domain 

(ABD) found close to the N-terminus in all members of the α-actinin superfamily consists of 

two calponin-homology domains (Korenbaum and Rivero, 2002). The calponin homology 

(CH) domain is a protein module of about 100 residues that was first identified at the N-

terminus of calponin, an actin-binding protein playing a major regulatory role in muscle 

contraction (Strasser et al., 1993). Proteins of the α-actinin superfamily utilize a double 

calponin homology domain to arrange the actin filaments in bundles and meshworks and link 

them to the plasma membrane (Matsudaira, 1994). Fimbrins are the simplest of the family and 

are modular proteins consisting of a calmodulin like calcium binding domain at the N-
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terminus followed by a pair of α-actinin like actin binding domains (Lin et al., 1994). Filamin 

or actin-binding protein-280 (ABP-280) is a 280 kDa protein that cross-links actin filaments 

into orthogonal networks in the cortical cytoplasm and participates in the anchoring of 

membrane proteins to the actin cytoskeleton (Gorlin et al., 1990). Filamin and its homologues 

have an ABD at its N-terminus separated from a C-terminal dimerization domain by several 

immunoglobulin fold containing repetitive elements (Fucini et al., 1999). The third sub-

family in the α-actinin superfamily consists of proteins like α-actinin, spectrin and 

dystrophin. The distinguishing feature of the subfamily is a repeated triple stranded α−helical 

motif (Yan et al., 1993) called the spectrin repeat. The presence of spectrin repeats in the rod 

domain classifies these proteins into the spectrin family. The structure of the ABD in 

dystrophin and utrophin has been solved, revealing a bundle of α-helices arranged in an 

extended head-to-tail dimer (Keep et al., 1999; Norwood et al., 2000). α-Actinin dimerises to 

cross-link actin filaments and spectrin forms a tetramer of (αβ)2 type (Viel, 1999). Even 

though the ABD of dystrophin also has been proposed to form a dimer by x-ray 

crystallographic studies (Norwood et al., 2000), the spectrin repeats in dystrophin do not form 

a dimer at least in-vitro (Chan and Kunkel, 1997). 

In myofibrillar cells, α-actinin constitutes a major component of Z-disks in striated 

muscle and of the functionally analogous dense bodies and dense plaques in smooth muscle. 

In nonmuscle cells, it is distributed along microfilament bundles and is thought to mediate 

their attachment to the membrane at adherens-type junctions (Blanchard et al., 1989). 

Spectrin, first identified as supporting the plasma membrane of erythrocytes, is now found to 

be in association with other intracellular membranes (De Matteis and Morrow, 2000). 

Dystrophin and utrophin are identified as proteins involved in Duchenne/Becker muscular 

dystrophies and associate with the plasma membrane of muscle and neuronal tissues. 

Dystrophin is a 427 kDa protein which binds to cytoskeletal F-actin and to dystroglycan, a 

transmembrane protein associated with plasma membrane multimolecular complex. 

Dystroglycan in turn binds to laminin-2 in the overlaying lamina. Thus dystrophin is a part of 

a complex that links the cytoskeleton to the extracellular matrix (Sunada and Campbell, 

1995). Although utrophin is very similar in sequence to dystrophin and possesses many of the 

protein-binding properties ascribed to dystrophin, it is confined to the subsynaptic membrane 

at the neuromuscular junction (Blake et al., 1996). 

Another family of large proteins exists with an α-actinin like ABD domain at the N-

terminal end and followed by several repeating domains, which are called the plakins. Plakins 

are cytolinker proteins that associate with cytoskeletal elements and junctional complexes. 
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The plakin family consists of desmoplakin (Smith and Fuchs, 1998), plectin (Rezniczek et al., 

1998), bullous pemphigoid antigen 1 [BPAG1 (Leung et al., 1999)], and microtubule–actin 

crosslinking factor [MACF/ACF7 (Karakesisoglou et al., 2000)]. This family of proteins is 

defined by the presence of a plakin domain and/or a plakin repeat domain. In addition to these 

two domains, plakins also harbor other domains that are common in some but not all 

members: the actin-binding domain (ABD), coiled-coil rod, spectrin-repeat-containing rod 

and microtubule-binding domain. Many plakins are expressed in tissues that experience 

mechanical stress, such as epithelia and muscle, where they play a vital role in maintaining 

tissue integrity by crosslinking cytoskeletal filaments and anchoring them to membrane 

complexes. The proteins in the spectrin family and plakin family can be classified together as 

spectraplakin family (Roper et al., 2002) composed of both the spectrin and plakin 

superfamilies. These superfamilies consist of proteins that contribute to the linkage between 

the plasma membrane and the cytoskeleton. Spectrin superfamily members bind and cross-

link actin filaments and attach them to membrane receptors. Members of the plakin 

superfamily were first identified as components of desmosomes and hemidesmosomes, 

connecting the adhesion receptors to intermediate filaments, but they also can cross-link 

different cytoskeletal elements.  

 

 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 1.3: The spectrin protein superfamily. The figure depicted is a selection of members of the spectrin 

family of proteins, comparing human and fly orthologues for each member, and in the case of spectraplakins 

showing both mammalian genes (MACF1 and BPAG1). Taken from Roper et al., 2002. 
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1.5  Diseases related to actin-binding proteins 

Members of the α-actinin superfamily are also involved in the pathogenesis of diseases. 

The most famous disease associated with actin-binding proteins may be Duchenne and Becker 

muscular dystrophy (DMD & BMD). It is a X-linked degenerative disorder of muscle 

affecting 1 in 3500 live born males (Gospe et al., 1989). Patients with DMD have mutations 

in the gene encoding dystrophin. Dystrophin is thought to serve as a link from the actin-based 

cytoskeleton of the muscle cell through the plasma membrane to the extracellular matrix 

(Sunada and Campbell, 1995). In dystrophic muscle, where this linkage is disrupted, muscle 

fibers develop normally, but get easily damaged and degenerate (Menke and Jockusch, 1995). 

Regeneration is insufficient and successive rounds of degeneration lead to a gradual 

replacement of muscle by connective tissue. 

Spectrin, the predominant component of the membrane skeleton of the red blood cell, is 

essential in determining the properties of the membrane including its shape and deformability. 

Mutations in the spectrin gene cause elliptocytosis and hereditary pyropoikilocytosis resulting 

in diminished elasticity or destabilization of the erythocyte skeleton (Delaunay, 2002; 

Goodman et al., 1982)  

Plectin is a widely expressed high molecular weight protein that is involved in 

cytoskeleton-membrane attachment in epithelial cells, muscle, and other tissues. Mutations in 

the gene encoding plectin (PLEC1) have been implicated in the pathogenesis of an autosomal 

recessive variant of epidermolysis bullosa simplex and is associated with cutaneous blistering 

starting in the neonatal period and muscular dystrophy in later life (McLean et al., 1996). 

BPAG1 is a component of the basement membrane of the skin. BPAG1 is the major 

autoantigenic determinant of autoimmune sera of patients with blistering disease bullous 

pemphigoid (Stanley et al., 1988). Targeted removal of the BPAG1 gene in mice results in 

severe dystonia and sensory nerve degeneration (Guo et al., 1995). Dystonin, is a neural 

isoform of BPGA1 and deletion of dystonin causes a hereditary neurodegenerative disorder 

called dystonia musculorum (dt) leading to a sensory ataxia in mice (Brown et al., 1995). In 

the dt mice degenerating sensory neurons show abnormal accumulations of IFs and 

disorganized MTs in the axons. Animals that survive longer develop less motor neuron 

degeneration resulting in sensory neuropathy (Dalpe et al., 1998).  
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1.6 The Nuclear Lamina 

The nuclear lamina is a mesh of intermediate filaments that mainly underlies the inner 

aspect of the inner nuclear membrane and also extends into the nuclear interior (Stuurman et 

al., 1998). The nuclear lamin filaments are made up of monomeric subunits, which each 

comprise a central coiled-coil, helical rod domain flanked by globular domains on the C-

terminus and N-terminus. They can form parallel dimers and subsequently undergo 

polymerization to form the filamentous network of the nuclear lamina. In humans, there are 

three genes encoding the lamins, LMNA, LMNB1 and LMNB2. There are two major A-type 

lamin proteins (lamin A and C) and two major B-type lamins. All vertebrate cells express at 

least one B-type lamin, whereas the A-type lamins are developmentally regulated and 

expressed primarily in differentiated cells (Goldman et al., 2002). The locality of the nuclear 

lamins have implicated them in a wide range of nuclear functions such as nuclear growth, 

maintenance of nuclear shape, 

DNA replication, chromatin 

organisation, RNA splicing, cell 

differentiation, apoptosis and cell-

cycle-dependent control of nuclear 

architecture (Moir et al., 2000; 

Zastrow et al., 2004).  

 

1.7  Nuclear envelope 
  The most prominent feature 

of the nuclear envelope is a pair of 

inner and outer nuclear membranes 

(INM and ONM resp.) with a 

perinuclear space in between them. 

These two membranes are 

periodically interrupted by nuclear 

pore complexes (NPCs), which are 

large macromolecular assemblies 

that form aqueous gated channels 

across the nuclear envelope and 

mediate the transport of macromolecules. The

endoplasmic reticulum. The INM is enriched w

Figure 1.4:
binding int
The outer a
in cross-sec
Twelve inn
mammalian
proteins nur
double-span
proteins em
1 isoforms.
the A-type 
are helical
Transcriptio
chromatin. 
protein GC
complex an

 

 
 A schematic view of inner nuclear membrane proteins and their
eractions with the nuclear lamina and nucleoplasmic components.
nd inner nuclear membranes (ONM and INM, respectively) are shown
tion, with a nuclear pore complex spanning the two membranes.
er nuclear membrane proteins have been characterized in the

 nuclear envelope. These include: the multi-spanning membrane
im, lamin B receptor (LBR), ring-finger-binding protein (RFBP); the
ning membrane protein MAN1; and the single-spanning membrane
erin, lamina-associated protein 2 (LAP-2) isoforms (a, b, g) and LAP-
 Interactions occur between the inner nuclear membrane proteins and
lamins (shown in blue) and B-type lamins (shown in orange), which
 filamentous proteins of the nuclear lamina and nucleoplasm.
nal regulators, cross-link inner nuclear membrane proteins and
These include: the retinoblastoma protein pRB; the ‘germ-cell-less’
L; the transcription factor E2F; and RNA polymerase, RNA splicing
d DP protein. Taken from Maidment and Ellis, 2002 
 ONM is continuous with the peripheral rough 

ith a distinctive set of membrane proteins and 



Introduction              9 

maintains close associations with the underlying lamina (Burke and Stewart, 2002). So far at 

least 20 inner nuclear membrane proteins were described and most of them with the exception 

of nurim interact with nuclear lamins (Rolls et al., 1999). The inner nuclear membrane 

proteins include two related families: the LAP-1 family, comprising LAP-1 A, B and C 

isoforms; and the LAP-2 family, comprising LAP-2 b, g, d and e isoforms (Dechat et al., 

2000). LAP-2 has a fifth family member, LAP-2a, which is a soluble nucleoplasmic protein. 

In addition, there are two related, but distinct, nuclear membrane proteins: emerin (Bione et 

al., 1994) and MAN1 (Lin et al., 2000). The LAP families and emerin both contain single 

transmembrane domains at their C-terminus, whereas MAN1 possesses two such domains. 

These proteins are orientated in the inner nuclear membrane with their N-termini projecting 

into the nucleoplasm (known as type II orientation). All the LAP-2 isoforms, emerin and 

MAN1 share a homologous N-terminal domain, referred to as the ‘LEM domain’ (for LAP–

emerin–MAN) (Lin et al., 2000) which confers the ability to bind to ‘barrier to auto-

integration factor’ (BAF), a DNA-bridging protein of unknown function (Haraguchi et al., 

2001). Three unrelated multi-membrane-spanning proteins have also been identified: nurim, 

lamin B receptor (LBR) and a hormonally regulated atypical P-type ATPase termed ring-

finger binding protein (RFBP) (Mansharamani et al., 2001; Rolls et al., 1999; Worman et al., 

1990). 

 

1.8  The nuclear lamina and inherited disease 
The inherited human diseases associated with nuclear lamina components are called 

laminopathies. Laminopathies are a group of inherited diseases that arise through mutations in 

genes that code for A type lamins and lamina-associated proteins. The first report of such an 

association between the NE and disease was Emery–Dreifuss muscular dystrophy (EDMD) 

which arises with mutations in the X-linked gene STA (Bione et al., 1994). EDMD is the 

third most common X-linked form of muscular dystrophy (after Duchenne and Becker) and is 

usually characterized by contractions in the Achilles and elbow tendons, a rigid spine, with 

muscle weakness during early childhood. Abnormal heart rhythms, heart block and 

cardiomyopathy leading to cardiac arrest also arise (Emery, 1989). The STA gene encodes the 

nuclear protein emerin, a 29 kDa type-2 integral membrane protein that traverses the INM 

through its carboxy-terminal domain. 

In the last few years a number of mutations has been identified in the LMNA gene, the 

gene coding for lamin A/C, resulting in several diseases affecting different tissues (reviewed 

in (Mounkes et al., 2003a). Figure 1.5 shows the identified mutations and the locations in the 
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lamin A/C gene. Three of these diseases affect striated muscle: autosomal dominant and 

recessive forms of Emery–Dreifuss muscular dystrophy (AR and AD-EDMD) (Bonne et al., 

1999), autosomal dominant limb-girdle muscular dystrophy with a cardiac conduction 

disturbances (LGMD1B) (Muchir et al., 2000) and an autosomal dominant form of dilated 

cardiomyopathy with conduction defect (DCM-CD) (Fatkin et al., 1999). The fourth 

specifically involves the adipose tissue: autosomal dominant familial partial lipodystrophy 

(FPLD) (Cao and Hegele, 2000). The fifth, an autosomal recessive form of axonal neuropathy 

(AR-CMT2) (De Sandre-Giovannoli et al., 2002), specifically affects the peripheral nervous 

tissue. The sixth is an autosomal recessive disorder affecting adipose and bone tissues: 

mandibuloacral dysplasia (MAD) (Novelli et al., 2002). The autosomal dominant form of 

Hutchinson–Gilford progeria syndrome (HGPS) is the seventh (De Sandre-Giovannoli et al., 

2003). This list is not exhaustive and novel mutations in lamin A/C gene are being identified. 
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observations that fibroblasts from patients with lamin A/C mutations and transfected cells 

expressing the mutant proteins often have severe abnormalities in nuclear morphology and 

that fibroblasts from individuals with FPLD are susceptible to damage by heat shock (Ostlund 

et al., 2001; Raharjo et al., 2001). 

 

1.9 Role of Actin-binding proteins in nuclear positioning 

Nuclear migration and positioning are essential for the movement of pronuclei during 

fertilization, normal mitotic and meiotic cell division and various morphogenetic processes 

during metazoan development. Disruption of nuclear migration in the cell bodies of the 

developing cerebral cortex lead to the human neurodevelopmental disease lissencephaly 

(Lambert de Rouvroit and Goffinet, 2001). Until recently nuclear positioning and migration 

were thought to be controlled and maintained only by microtubules and microtubule motors 

alone (Reinsch and Gonczy, 1998). The recent discovery of D. discoideum interaptin provided 

the first example of an actin-binding protein as a potential linker that could directly tether the 

nucleus to the actin cytoskeleton (Rivero et al., 1998). In Caenorhabditis elegans, the novel 

actin binding protein ANC-1 together with Unc-84 has been shown to be important in the 

nuclear anchorage in syncytial cells. Mutations in ANC-1 or Unc-84 lead to a nuclear 

anchorage defective phenotype where the nuclei float freely within the cytoplasm (Starr and 

Han, 2002). The mammalian protein NUANCE (Zhen et al., 2002) is a giant actin binding 

protein with an N-terminal ABD and a C-terminal klarsicht like transmembrane domain 

shown to be localized to the nuclear envelope. NUANCE, syne-1 (a C-terminal homologue of 

NUANCE, Apel et al., 2000) and Drosophila MSP-300 are orthologues of ANC-1 which all 

together form a group of actin-binding proteins speculated to have a role in nuclear 

positioning. All these proteins have similar domain architecture with an N-terminal ABD 

followed by several spectrin like repeats and a C-terminal transmembrane domain. The ABD 

domain can bind to the actin filaments and C-terminal transmembrane domain can tether the 

protein to the nuclear envelope, thus forming a bridge connecting the nucleus to the actin 

cytoskeleton (Starr and Han, 2003).  It has been shown that protein 4.1 is essential for proper 

assembly of functional nuclei in vitro in Xenopus egg extracts and identified the spectrin-actin 

binding domain (SABD) as one of the 4.1 domains critical for this process (Krauss et al., 

2002). Protein 4.1, a multifunctional structural protein, acts as an adaptor in mature red cell 

membrane skeletons linking spectrin-actin complexes to plasma membrane-associated 

proteins. 
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1.10 Aim of the study 
NUANCE (Nucleus and ActiN Connecting Element) is a recently identified giant human 

protein that shows a similar domain architecture as ANC-1 and MSP-300 (Rosenberg-Hasson 

et al., 1996). The functional actin-binding domain (ABD) found at the N-terminus of 

NUANCE directly links the cytoplasmic actin cytoskeleton to the outer nuclear membrane 

(Zhen et al., 2002). A number of proteins have been identified and partially characterized in 

higher eukaryotes known as syne-1, myne-1 and nesprins-1 (Apel et al., 2000; Mislow et al., 

2002b; Zhang et al., 2001) which share strong homology against the C-terminal 

transmembrane domain of NUANCE. We have identified previously a 165 kDa protein called 

Enaptin-165 that displays strong homology to the N-terminal ABD of NUANCE (Braune, 

2001). Enaptin-165 and syne-1 were present in the same human chromosome at a distance of 

about 500 kb. Our first aim was to examine whether Enaptin-165 and syne-1 are part of a 

larger protein of the size of NUANCE. Our studies included RT-PCR, characterization of the 

genomic locus, which codes for Enaptin-165 and syne-1 in order to recover and assemble the 

full-length Enaptin cDNA. To characterize the cell biology of Enaptin protein further we 

generated antibodies against the C- and N-terminus of Enaptin. Those tools would enable us 

to characterize the subcellular localization and the tissue distribution of Enaptin. Our studies 

included experiments to dissect and define functional domains of the C-terminal half of 

Enaptin. Syne-1 has been shown previously to interact with lamin A/C and emerin (Mislow et 

al., 2002a), which are the proteins of nuclear lamina known to be involved in various 

laminopathies. We wanted therefore to find out whether the localization of Enaptin depends 

on lamin A/C and emerin and whether the localization of Enaptin is also affected in various 

laminopathies. To investigate the potential link of Enaptin to muscular dystrophies and to get 

further insight in to the function of this protein, a knockout strategy was initiated. 
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2 Materials and methods 
 
2.1 Materials 
15 ml tubes, type 2095    Falcon 

50 ml tubes, type 2070    Falcon 

Corex tube, 15 ml, 50 ml       Corex 

Coverslips (glass), Ø12 mm, Ø18 mm, Ø55 mm    Assistant  

Cryotubes, 1 ml       Nunc 

Electroporation cuvette, 2 mm electrode gap    Bio-Rad  

Eppendorf tubes, 1.5 ml and 2 ml    Sarstedt 

Hybridization tubes      Hybaid 

3MM filters       Whatmann 

Micropipette tips        Greiner  

Micropipette, 1-20 µl, 10-200 µl, 100-1,000 µl   Gilson  

Multi-channel pipette       Finnigan 

Needles (sterile), 18G, 27G       Terumo, Microlance  

Nitrocellulose, type BA85     Schleicher and Schüll 

Nylon membrane, Biodyne      PALL 

Filter, sterile 0.45 µm and 0.2 µm    Gelman Science 

Parafilm         American Nat Can  

Pasteur pipette, 145 mm, 230 mm       Volac 

Petri dish (35 mm, 60 mm, 100 mm)     Falcon  

Petri dish (90 mm)        Greiner  

Plastic cuvettes      Greiner 

Plastic pipettes (sterile), 1 ml, 2 ml, 5 ml, 10 ml, 25 ml   Greiner  

PVDF membrane      Millipore 

Quartz cuvettes Infrasil     Hellma 

Saran wrap        Dow 

Superdex75 PC3.2/30      Pharmacia Biotech 

Tissue culture dishes, 6 wells, 24 wells, 96 wells    Nunc  

Tissue culture flasks, 25 cm², 75 cm², 175 cm²             Nunc  

Whatman 3MM filter paper       Whatman  

X-ray film X-omat AR-5     Kodak 
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2.2 Instruments 
Blotting chamber Trans-Blot SD    Bio-Rad 

Biotech fresco       Heraeus Instruments 

Centrifuges (microcentrifuges):  

        Centrifuge 5417 C      Eppendorf  

        Centrifuge       Sigma B Braun   

        Cold centrifuge Biofuge fresco      Heraeus Instruments  

Centrifuges (table-top, cooling, low speed):  

        Centrifuge CS-6R       Beckman  

        Centrifuge RT7       Sorvall  

        Centrifuge Allegra 21R       Beckman  

Centrifuges (cooling, high speed):  

        Beckman Avanti J25       Beckman  

        Sorvall RC 5C plus       Sorvall  

Centrifuge-rotors:  

        JA-10         Beckman  

        JA-25.50        Beckman  

        SLA-1500       Sorvall  

        SLA-3000        Sorvall  

        SS-34         Sorvall  

Crosslinker UVC 500      Hoefer 

Freezer (-80 °C)        Nunc  

Freezer (-20 °C)        Siemens, Liebherr  

Electrophoresis power supply, Power-pac-200, -300   Bio-Rad  

Electroporation unit Gene-Pulser       Bio-Rad 

Gel-documentation unit       MWG-Biotech 

Heating blocks: type DIGI-Block JR    neoLab 

Hybridisation oven      Hybaid  

Incubator Lab-Therm      Kühner 

Ice machine          Ziegra  

Incubators:  

         CO2-incubator, BBD 6220, BB 6220    Heraeus  

         CO2 -incubator       WTC Binder Biotran  

         Incubator, microbiological      Heraeus  
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Incubator with shaker Lab-Therm                  Kuehner  

Lab-shaker       Kühner  

Laminar flow, Hera Safe (HS 12)      Heraeus  

Magnetic stirrer, MR 3001 K      Heidolph 

Microscopes:  

         Light microscope, DMIL     Leica  

         Fluorescence microscope, DMR     Leica  

         Fluorescence microscope, 1X70     Olympus  

         Confocal laser scanning microscope, DM/IRBE   Leica  

         Stereomicroscope, SZ4045TR      Olympus  

Oven, conventional        Heraeus  

PCR-thermocycler      MWG-Biotech 

pH-meter 766       Knick 

Pump system Biologic Workstation    Bio-Rad  

Refrigerator       Liebherr  

Semi-dry blot apparatus, Trans-Blot SD     Bio-Rad 

Shaker 3015       GFL  

Spectral photometer type Ultraspec 2000   Pharmacia Biotech 

Speed-vac concentrator, DNA 110     Savant 

Type thermomixer                          Eppendorf  

Ultracentrifuge Optima TLX     Beckmann 

UV-Monitor TFS-35 M     Faust 

UV-transilluminator      MWG-Biotech 

Vortex REAX top      Heidolph    

Water bath        GFL 

 
2.3 Enzymes, inhibitors and antibodies 
 
2.3.1 Enzymes for molecular biology 

Calf Intestinal Alkaline Phosphatase (CIAP)               Roche 

DNase I (Desoxyribonuclease)    Sigma 

Lysozyme        Sigma 

M-MLV reverse transcriptase     Promega 

RevertAid™ First Strand cDNA Synthesis Kit     Fermentas 

Restriction endonucleases     Life Technologies, 
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        New England Biolabs, 

        Amersham Biosciences 

Ribonuclease A      Sigma 

T4-DNA-ligase      Life Technologies 

Taq-DNA-polymerase      Roche 

Advantage Taq polymerase     Clontech 

Pfu polymerase      Invitrogen  

SP6 and T3 RNA polymerase     Roche 

2.3.2 Antibodies 

primary antibodies: 

mouse-anti-skeletal (Fast) myosin    Sigma 

mouse-anti-lamin A/C      CHEMICON 

mouse-anti-emerin      NOVO Castra 

mouse-anti-β−tubulin (WA3)     Gift of U.Euteneuer (München) 

mouse-monoclonal anti-NUANCE K49-260-1  Unpublished 

mouse-monoclonal anti-NUANCE K20-478-4  (Zhen et al., 2002) 

guinea pig anti-nesprin antibody    Gift of H. Herrmann (Heidelburg) 

secondary antibodies: 

goat-anti-mouse-IgG, peroxidase-conjugated   Sigma 

goat-anti-rabbit-IgG, peroxidase-conjugated   Sigma 

goat-anti-mouse-IgG, Cy3-conjugated   Sigma 

goat-anti-mouse-IgG, Cy5-conjugated   Sigma 

goat-anti-mouse-IgG, alkaline phosphatase conjugated Sigma 

goat-anti-mouse-IgG, Alexa 488 conjugated   Molecular Probes 

goat-anti-rabbit-IgG,Alexa 568 conjugated   Molecular Probes 

goat-anti-rabbit-IgG, FITC conjugated   Sigma 

goat-anti-guinea pig-IgG, FITC conjugated   Sigma 

biotinylated anti-rabbit IgG     Vector Laboratories 

TRITC- Phalloidin      Sigma 

2.3.3 Inhibitors 

Benzamidine       Sigma 

DEPC (Diethylpyrocarbonate)    Sigma 

PMSF (Phenylmethylsulfonylfluoride)   Sigma 
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Ribonuclease-inhibitor (RNAsin)    Promega 

Complete Inhibitor-Cocktail     Roche 

2.3.4 Antibiotics 

Ampicillin       Grünenthal 

Geneticin (G418)      Life Technologies  

Kanamycin       Biochrom 

Penicillin/streptomycin     Biochrom 

2.4 Reagents 
Acrylamide       National Diagnostics 

Agarose (electrophoresis grade)    Life Technologies 

Acetone        Riedel-de-Haen 

Bacto-Agar, Bacto-Peptone, Bacto-Tryptone   Difco 

BSA (bovine serum albumin)     Roth 

Chloroform       Riedel-de-Haen 

Calcium chloride      Sigma 

CNBr-activated sepharose 4B     Amersham Bioscience  

Coomassie-brilliant-blue R 250    Serva 

p-cumaric acid       Fluka 

DAPI        Sigma 

DMEM (Dulbecco´s Modified Eagle´s Medium)  Sigma 

Ham’s F10 nutrient medium      Biochorm 

DMF (dimethylformamide)     Riedel-de Haen 

DMSO (dimethyl sulfoxide)     Merck 

DTT (1,4-dithiothreitol)     Gerbu 

EDTA ([ethylenedinitrilo]tetraacetic acid)   Merck 

EGTA (ethylene-bis(oxyethylenenitrilo)tetraacetic acid) Sigma 

Ethanol          Riedel-de-Haen 

Ethidium bromide       Sigma 

FCS (fetal calf serum)      Biochrom, 

Fish gelatine       Sigma 

Formamide       Merck 

Formaldehyde       Sigma 

GST beads        Amersham Bioscience 

Glycine       Degussa 
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IPTG (isopropyl β-D-thiogalactopyranoside)   Sigma 

Isopropanol       Merck 

β-mercaptoethanol      Sigma 

Methanol       Riedel-de-Haen 

Methylbenzoate      Fluka 

Mineral oil       Pharmacia 

Minimum Essential Medium     Gibco 

MOPS ([morpholino]propanesulfonic acid)   Gerbu 

Ni-NTA-agarose      Qiagen 

Paraformaldehyde      Sigma 

RNase A       Sigma 

SDS (sodium dodecylsulfate)     Serva 

Sodium azide       Merck 

TEMED (tetramethylethylenediamine)   Merck 

Tris (hydroxymethyl)aminomethane    Sigma 

Triton X-100 (t-octylphenoxypolyethoxyethanol)  Merck 

X-Gal(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) Roth 

Xylol        Fluka 

Radionucleotides 

α-32P-deoxyadenosine-5‘-triphosphate (10 mCi/ml) Amersham 

α-32P-deoxycytosine-5‘-triphosphate (10 mCi/ml)  Amersham 

α-32P Uridine 5'Triphosphate (10 mCi/ml)   Amersham 

Reagents not listed above were purchased from Clontech, Fluka, Merck, Roth, Serva, Sigma, 

Promega and Riedel-de-Haen. 

2.5 Kits 
Nucleobond PC 500      Macherey-Nagel 

NucleoSpin Extract 2 in 1     Macherey-Nagel 

NucleoSpin Plus      Macherey-Nagel 

RNeasy midi kit      Qiagen 

pGEM-T Easy Cloning Kit      Promega 

Zero Blunt TOPO PCR Cloning Kit    Invitrogen 

EndoFree Plasmid Maxi kit     Qiagen 

Stratagene Prime-It II random primer labeling kit  Stratagene 
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Multiple Tissue Expression Array    Clontech 

Human Brain, cerebellum Poly A+ RNA   Clontech 

RevertAid First Strand cDNA Synthesis Kit   MBI Fermentas 

TRIzol reagent      Invitrogen 

TOPO TA cloning kit      Invitrogen 

Zero Blunt TOPO PCR cloning kit    Invitrogen 

VECTOR M.O.M. immunodetection kit   Vectror Laboratoties 

 

2.6 Bacterial host strains 

E. coli DH5α  

E. coli XL1Blue 

2.6.1 Media for E. coli culture 

LB medium, pH 7.4 (Sambrook and Russell, 2001)  

   10 g bacto-tryptone  

   5 g yeast extract  

   10 g NaCl  

   adjust to pH 7.4 with 1 N NaOH  

  add H2O to make 1 liter    

For LB agar plates, 0.9% (w/v) agar was added to the LB medium and the medium was then  

autoclaved. For antibiotic selection of E. coli transformants, 50 mg/l ampicillin, kanamycin or  

chloramphenicol was added to the autoclaved medium after cooling it to approximately 50ºC.  

For blue/white selection of E. coli transformants, 10 µl 0.1 M IPTG and 30 µl X-gal solution  

(2% in dimethylformamide) was spread per 90 mm plate and the plate was incubated at 37ºC  

for at least 30 min before using.  

SOC medium, pH 7.0 (Sambrook and Russell, 2001) 

20 g bacto-tryptone, 5 g yeast extract, 10 mM NaCl, 2.5 mM KCl. Dissolve in 900 ml 

deionised H2O, adjust to pH 7.0 with 1 N NaOH. The medium was autoclaved, cooled to 

approx. 50ºC and then the following solutions, which were separately sterilized by filtration 

(glucose) or autoclaving, were added: 10 mM MgCl2.6 H2O, 10 mM MgSO4.7 H2O.  

20 mM glucose, add H2O to make 1 liter.   

 

2.7 Eukaryotic cells 

C3H/10T1/2 mouse fibroblasts 

N2A mouse neuroblastoma cell line 
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COS-7 monkey SV40 transformed kidney cell line 

C2F3 mouse myoblasts 

MB50 human myoblast primary cell line 

Skin fibroblast cells of patients suffering from Emery-Dreifuss muscular dystrophy (a gift 

from Prof. Dr. Manfred Wehnert, Ernst-Moritz-Arndt Universität Greifswald) 

Lamin A/C -/- mouse fibroblasts and wild type fibroblasts (Brian Burke, Department of 

Anatomy and Cell Biology, University of Florida ,Sullivan et al., 1999).  

2.7.1 Media for cell culture 

COS7 (monkey kidney fibroblasts)- DMEM high glucose-500 ml, 10% FBS, 2 mM 

glutamine, penicillin/streptomycine 

MB50 (human myoblasts)- DMEM low glucose-250 ml, Nutrient F10 medium –250 ml, 20% 

FBS, 2 mM glutamine, penicillin/streptomycine, basic fibroblast growth factor (bFGF). 

Differentiation medium for MB50 

DMEM low glucose-250 ml, Nutrient F10 medium -250 ml, 2% horse serum, 2 mM 

glutamine, penicillin/streptomycine 

Human primary fibroblasts 

Minimum Essential Medium (Gibco) 500ml, 10%FBS, penicillin/streptomycine, nonessential 

amino acids (6 ml), Bicarbonate (Gibco)(7.5%), glutamine. 

Neuroblastoma cells (N2A) 

DMEM low glucose 500ml, 10% FBS, nonessential amino acids, 2 mM glutamine, 

penicillin/streptomycine. 

10T1/2 mouse fibroblasts 

DMEM low glucose-500 ml, 10% FBS, 2 mM glutamine, penicillin/streptomycine 

 

2.8 Vectors 
pGEM-T Easy  Promega 

pCR-Blunt II-TOPO  Invitrogen  

pCR-2.1 TOPO     Invitrogen 

pEGFP-C2     Clontech 

pBluescript     Stratagene 

pGEX4T1     Amersham  

2.9 Oligonucleotides 

Oligonucleotides for PCR (polymerase chain reaction) were purchased from Sigma, MWG-

Biotech AG (Ebersberg), Roth GmbH (Karlsruhe, Germany and Metabion (Martinsried). 
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2.9.1 Oligonucleotides used for amplifying the full length cDNA of Enaptin 

 All primers are given in the 5’ to 3’ direction. 

PCR321/94a   

 AW297921 fw2 CGTTCGCTCGCTTCGCCTTGCT 

 AK051543 rv  CTGCACTCTTGTGGACAGCCCAGGTPCR 321/94/b 

  

 AW297921 fw2 CGTTCGCTCGCTTCGCCTTGCT 

 AK051543 rv  CTGCACTCTTGTGGACAGCCCAGGT 

PCR 363   

 AW297921 fw2 CGTTCGCTCGCTTCGCCTTGCT 

 AK051543 rv  CTGCACTCTTGTGGACAGCCCAGGT 

PCR 360   

 AI713682 fw  GCCTTGGAAACTTCGTCATCT 

 AI473752 rv  CCAGGCTCTCCAACTCAGCTG   

PCR391   

 BI33827 fw2  GAGAATTCATGAAAATGGAGTTTCTCGAACTGAAG 

 AK056122 rv2 CATGTGAATCGCATCCGTCATCCAG 

PCR250   

 AK056122 fw  CAGCAATCGCCTCTATGATCTGCCAGC 

 KIAA1262 rv  GCTTCCAGGTGGACAGCTGTACTCTCTGC 

PCR 404   

 Syne1B fw1  CAGATGACTTGACCCAGTTGAGCCTGCTG 

 Trans rv  GTGTATCTGAGCATGGGGTGGAATGAC 

2.9.2 Knockout target vector primers 

 5probe fw  CCACCAAACTTACAAATTAAGGTGAC 

 5probre rv  CAGCCAACATGTAACCAAATTCATC 

 3armprobe fw  CTCACTGCACACTCCTACACTC 

 3armprobe rv  GAGTTCCCCTTGGTCTTAGCAATC 

 

 5arm-SalI fw  CGGGTCGACCTTCTCTGAGTGACCTTGAC 

 5arm-EcorV rv CCCGATATCGAAGGTACGTTTCTGTACAATCTC 

 3arm-NotI fw  CATCGGCCGGACTCCCTAATGTGAACCTAAC 

 3arm-SacII rv  GTCCAGTAACGTATCTCTGTCGTGGCGCCTAC 
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2.9.3 Primers for making GFP-dominant negative constructs for Enaptin  

GFPDN Construct   

 GFPDN fw  GTGAATTCCAGTTTAATTCTGACCTCAAC 

 GFPDN rv  GTGTCGACTTCAGAGTGGAGGAGGACCG 

GFP-Trans   

 GFPDNfw2  CGAATTCAAGGATCTTGAGAAGTTAC 

 GFPDN rv  GTGTCGACTTCAGAGTGGAGGAGGACCG 

2.9.4 Primers for GST-specII fusion protein  

 Spec fw BamHI CAGGATCCGTGGCAGCAGTTTAACTCAG 

 Spec rv EcoRI  GTGAATTCCCTTGATATGACGACTGACCTC 

2.9.5 Primers of probes used for northern blotting  

ABD probe  

ABD-EcoRI fw GGGGAATTCCAGAAACGTACCTTCAC 

ABD-SalI rv  CAGTGTCGACAAACTGGGCCACGTAAG 

2.9.6 Primers for C-terminal syne-1 probe for multiple tissue expression array 

Syne 1Bfw  CAGATGACTTGACCCAGTTGAGCCTGCTG 

Syne 1Brv  GGAGATGCTGCCACCGGTCGTTGAC 

 

2.10 Construction of vectors 
2.10.1 Cloning of cDNA fragments 

In order to amplify the cDNA fragments, RT-PCR reactions were done on human 

cerebellum poly A+ RNA (Clontech, Germany) using degenerate primers. Enaptin cDNA 

fragments were amplified using the first strand cDNA produced by the RT reactions as 

template using an Advantage cDNA polymerase mix (Clontech) according to the 

manufacturers instructions. The primers used for the amplification were given above. The 

amplified fragments such as PCR321/94a, PCR321/94b, PCR363, PCR360, PCR391, 

PCR250 and PCR404 were cloned in the plasmid vector pGEM-T Easy (Promega) and 

sequenced first with vector primers and then with specific primers corresponding to the 

sequence obtained. 

2.10.2 Generation of C-terminal Enaptin-GFP fusions 

GFP-DN Enaptin 

The required Enaptin DNA fragment corresponding to aa 8396-8749 of human 

Enaptin was amplified with GFPDN fw and GFPDN rv primers from an image clone, 

containing the mouse Enaptin C-terminus (BC054456). The PCR fragment was cloned into 
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the plasmid vector TOPO TA (Invitrogen) and sequenced. The DNA fragment was retrieved 

from the TOPO vector using EcoRI and SalI and ligated into pEGFPC2 vector (Clontech). 

The GFPDN construct was sequenced to confirm the cloning direction. 

GFP-Trans Enaptin 

The Enaptin DNA fragment corresponding to aa 8611-8749 of human Enaptin was 

amplified by PCR with the GFPDNfw2 (EcoRI)/ GFPDN rv (SalI) set of primers using the 

BC054456 image clone and cloned into pGEM-T Easy. The construct was digested with 

EcoRI and SalI and the Enaptin-Trans fragment was ligated into pEGFPC2 vector. 

2.10.3 Cloning of GST-SpecII 

To construct GST-SpecII, the cDNA fragment of Enaptin corresponding to the last 

two spectrin repeats corresponding to aa 8394-8608 of human Enaptin was amplified from the 

PCR404 plasmid using primers SpecfwBamHI and SpecrvEcoRI and cloned into TOPO2.1-

TA vector (Invitrogen). The SpecII fragment was retrieved from TOPO2.1-TA using EcoRI 

and ligated into pGFPC2. BamHI site could not be used due to a frame shift mutation. The 

cloning direction and sequence were confirmed by sequencing. 

2.10.4 Probes for northern blot analysis 

CPG2 Probe 

Enaptin-165 was cloned into pGEM-T Easy with the 3’ side located towards the SP6 

promotor. This construct was digested with HindIII at position 3646 in the cDNA of Enaptin-

165 (Padmakumar, 2004) for generating a digestion site with a 5’overhang. The in-vitro 

transcription was done using SP6 RNA polymerase (Roche) according to the manufacturer’s 

instructions. The transcription will produce antisence RNA fragment of 650 bases 

corresponding to nucleotides 3646-4296 in the Enaptin-165 cDNA. The base numbers are 

counted from the starting codon. 

ABD probe 

The ABD probe corresponds to nucleotides 517 to 1287 of the Enaptin-165 cDNA and 

was amplified using primers ABD-EcoRI fw and ABD SalI rv. This PCR fragment was 

purified and digested with EcoRI and SalI and ligated into EcoRI/SalI digested pGEM.T easy 

vector. The in-vitro transcription was done using SP6 RNA polymerase (Roche).  

Probes for multiple tissue expression (MTE) array analysis. 

N-terminal ABD probe 

A probe corresponding to nucleotides 318–951 of the human Enaptin cDNA for 

performing an MTE array analysis was generated by EcoRI digestion of human EST clone 

1650727 (AI031971).  
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C-terminal syne-1 probe 

A cDNA fragment corresponding to nucleotides 23398– 23832 was amplified using 

syne-1 fw and syne-1 rv as primers using PCR404 as template. The PCR product was purified 

from the gel and used to probe the multiple tissue expression arrays.  

 
2.11 Buffers and other solutions 

Buffers and solutions not listed below are described in the methods section. 

PBS (pH 7.2):     10x NCP-buffer (pH 8.0): 

10 mM KCl      100 mM Tris/HCl 

10 mM NaCl      1.5 M NaCl 

16 mM Na2HPO4     5 ml Tween 20 

32 mM KH2PO4     2.0 g sodium azide 

10x MOPS (pH 7.0/ pH 8.0):   PBG (pH 7.4): 

20 mM MOPS     0.5% BSA 

50 mM sodium acetate   0.045% fish gelatine 

1 mM EDTA  in 1x PBS 

20x SSC                            TE-Puffer (pH 8.0): 

3 M NaCl  10 mM Tris/HCl (pH 8.0) 
0.3 M sodium citrate                1 mM EDTA (pH 8.0, adjusted with NaOH) 

autoclaved 

 
2.12 Computer programs 

GCG software package (Wisconsin package) and the BLAST (NCBI) program were 

used for the alignment analysis of cDNA sequences. Protein sequences were aligned using the 

programs ClustalW, BioEdit and TreeView (available from EMBL, www.ebi.ac.uk). For 

prediction of motif and pattern searches several tools available in the ExPaSY server 

(www.expasy.ch) were used. Annealing temperatures of primers were calculated with the 

program “Primer Calculator” available in the Internet (www.gensetoligos.com). 

 
2.13 Molecular biological methods 
 
2.13.1 Plasmid-DNA isolation from E. coli by alkaline lysis miniprep 
 

With this DNA isolation method, plasmid DNA was prepared from small amounts of 

bacterial cultures. Bacteria were lysed by treatment with a solution containing sodium 

dodecylsulfate (1% SDS) and 0.5 M NaOH (SDS denatures bacterial proteins and NaOH 
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denatures chromosomal and plasmid DNA). The mixture was neutralized with 3M potassium 

acetate, causing the plasmid DNA to re-anneal rapidly. Most of the chromosomal DNA and 

bacterial proteins precipitate, as does SDS forming a complex with the potassium, and are 

removed by centrifugation. The re-annealed plasmid DNA from the supernatant was 

concentrated by ethanol precipitation. 

2.13.2 Plasmid-DNA isolation with a kit from Macherey-Nagel 

The NucleoSpin kit is designed for the rapid, small-scale preparation of highly pure 

plasmid DNA (minipreps) and allows a purification of up to 40 µg per preparation of plasmid 

DNA. The principle of this plasmid-DNA purification kit is based on the alkaline lysis 

miniprep. Plasmid DNA was eluted under low ionic strength conditions with a slightly alkali 

buffer. For higher amounts of plasmid DNA, the Nucleobond AX kit from Machery-Nagel 

was used. The plasmid DNA was used for sequencing and transfection of eukaryotic cells. 

The protocols were followed as described in the manufacturer’s manual. 

2.13.3 DNA agarose gel electrophoresis  

10x DNA-loading buffer:  50x Tris acetate buffer (1000 ml) (pH 8.5) 

40% sucrose, 0.5% SDS  242.2 g Tris0.25% bromophenol blue, in TE (pH 8.0) 

     57.5 ml acetic acid 

     100 ml of 0.5 M EDTA (pH 8.0, adjusted with NaOH) 

Agarose gel electrophoresis was performed to analyze the length of DNA fragments 

after restriction enzyme digests and polymerase chain reactions (PCR), as well as for the 

purification of PCR products and DNA fragments. DNA fragments of different molecular 

weight show different electrophoretic mobility in an agarose gel matrix. Optimal separation 

results were obtained using 0.5-2% gels in TAE buffer at 10 V/cm. Horizontal gel 

electrophoresis apparatus of different sizes were used. Before loading the gel, the DNA 

sample was mixed with 1/10 volume of the 10x DNA-loading buffer. For visualization of the 

DNA fragments under UV-light, agarose gels were stained with 0.1 µg/ml ethidium bromide. 

In order to define the size of the DNA fragments, DNA molecular standard markers were also 

loaded onto the gel. 

2.13.4 Isolation of total RNA from mouse tissue with TRIzol reagent  

Working with RNA always requires special precautions inorder to prevent degradation 

by ubiquitous RNases, e.g. wearing gloves and using RNase-free water and material. TRIzol 

reagent is a mono-phasic solution of phenol and guanidine isothiocyanate and is used to 

isolate RNA by a single-step method (Chomczynski and Sacchi, 1987). The tissue is 

homogenized in liquid nitrogen and the powder is added to TRIzol reagent (1 g/10 ml). 
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Incubation is done for 5 minutes at room temperature and 0.2 ml of chloroform/ml of TRIzol 

is added. The tubes are shaken vigorously by hand for 15 seconds and incubation was at 15 to 

30°C for 2 to 3 minutes. The samples are centrifuged at no more than 12,000 × g for 15 

minutes at 2 to 8°C. Following centrifugation, the mixture separates into a lower red, phenol-

chloroform phase, an interphase, and a colorless upper aqueous phase. The RNA remains 

exclusively in the aqueous phase. The aqueous phase is transferred to a fresh tube. The RNA 

is precipitated from the aqueous phase by mixing with isopropyl alcohol (0.5 ml of isopropyl 

alcohol per 1 ml of TRIzol Reagent. The samples are incubated at 15 to 30°C for 10 minutes 

and centrifuged at no more than 12,000 × g for 10 minutes at 2 to 8°C.  The supernatant was 

decanted and the RNA pellet washed once with 70% ethanol, dried and re-dissolved in 

RNAse free water. 

 

2.13.5 RNA agarose gel electrophoresis and northern blotting (Lehrach et al., 1977) 

10X FA gel buffer (pH 8.0) 

200 mM 3-[N-morpholino] 

propanesulphonic acid (MOPS) 

50 mM sodium acetate  

10 mM EDTA 

the pH was adjusted with NaOH. 

 

5X RNA loading dye 

16 µl saturated bromophenol blue 

80 µl 500 mM EDTA, pH 8.0 

720 µl 37% formaldehyde 

2 ml 100% glycerol 

3084 µl formamide 

4 ml 10x FA buffer 

The running buffer was identical as above (10x FA gel buffer) but the pH was adjusted to   

pH 7.0.  

The 0.7% agarose gels were made under RNase free conditions (0.7% agarose, 148 ml 

DEPC water, 20 ml 10X FA buffer, 32 ml 36% formaldehyde). After washing the gels with 

water, the RNA was transferred onto a zeta probe membrane (BioRad) overnight using the set 

up similar to the one for Southern blotting, but using 50 mM NaOH to reduce the hydrolysis 

of RNA. The next day the membrane was washed in 2x SSC, briefly air-dried and the RNA 

was UV-cross linked to the membrane. 

2.13.6 Labeling of DNA probes 

DNA probes used for radioactive labelling were obtained either by purification of 

PCR fragments or digestion from plasmids. Stratagene random labelling kit was used for the 

labelling reaction according to the manufacturer’s protocol. Unincorporated nucleotides were 

separated by applying the probe to a Sephadex G-50-column. Before using, labelled probes 

were denatured at 100°C for 5 minutes. 
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2.13.7 Generation of Riboprobes 

1. Isolation of pure plasmids 

a. The plasmid DNA used for making riboprobes should be devoid of any RNAse 

contamination. So the plasmid DNA preparation was treated with Proteinase K 

(100µg/ml) in 10X proteinase buffer [100mM, TrisHCL(pH 8.0) 50 mM EDTA/ 500 mM 

NaCl] and 0.1 volume of 5% SDS 

b. The reaction mix is incubated for 1hr and DNA is extracted with phenol:chloroform. 

c. The DNA was resuspended in RNAse free TE (pH 7.6). 

2. Digestion of plasmids 

Around 10 µg of DNA was digested with an enzyme producing a 5’ overhang. After the 

digestion the plasmid is purified using phenol:cholororm extraction and dissolved in 

RNAse free water at a concentration of 0.2 µg/ml. 

3.   Transcription reaction 

For the transcription reaction, 8 µl of plasmid (1.6 µg) is used in a total reaction volume of 

20 µl. 10X SP6 polymerase buffer (10 µl), ribonucleotide triphosphates rNTPs except 

rUTP (2 µl), SP6 RNA polymerase (2 µl), RNAsin (RNAse inhibitor) 40U, and α-32P-

UTP were added and the reaction mix was incubated for 90 minutes at 37oC. After the 

transcription reaction, the SP6 polymerase was inactivated at 65 oC by incubating for 10 

minutes. 1  µl of DNAse was added and incubated for 15 minutes to degrade the DNA 

template. The labelled RNA probes were separated by gel filtration using a Sephadex-50 

column. The RNA probes were used for hybridisation. 

2.13.8 Elution of DNA fragments from agarose gels 

Elution of DNA fragments from agarose gels was performed using the ‘NucleoSpin 

Extract 2 in 1’ kit from Macherey-Nagel. Bands of interest were cut out of the gel and the 

agarose melted at 50°C in a binding buffer. After several centrifugation steps with wash 

buffer, the DNA bound selectively to a silica membrane column and was eluted with a low 

salt solution. 

2.13.9 Measurement of DNA and RNA concentrations 

Concentrations of DNA and RNA were estimated by determining the absorbance at a 

wavelength of 260 nm. A ratio of OD260/OD280 >2 indicate negligible protein contaminations. 

Protein contaminations were estimated from absorbance at 280 nm.  
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2.13.10 Restriction digestion of DNA 

Digestion of DNA with restriction endonucleases was performed in buffer systems 

provided by the manufacturers at the recommended temperatures. 

2.13.11 Dephosphorylation of 5´-ends of linearized vectors 

10x CIAP-Puffer (pH 9.0) 

0.5 M Tris/HCl (pH 9.0) 

10 mM MgCl2 

1 mM ZnCl2 

10 mM spermidin 

In order to prevent linearized vectors from re-ligation, the 5’end phosphate groups 

were hydrolysed with calf intestinal alkaline phosphatase (CIAP) for 30 minutes at 37°C 

followed by heat inactivation at 70°C for 10 min. 

2.13.12 Creation of blund ends 

Due to the 3’ exonuclease activity of klenow enzyme, it is possible to transform 

overhanging 3’ ends of DNA (sticky ends) into blunt ends. After the reaction for 30 minutes 

at 37°C, heat inactivation for 10 minutes at 70°C was necessary. 

2.13.13 Ligation of vector and DNA fragments 

T4-DNA-ligase catalyzes the ligation of DNA fragments and vector DNA. 1U T4-

ligase was incubated with about 25 ng of DNA fragments overnight at 16°C. 

2.13.14 Polymerase chain reaction (PCR) 

PCR can be used for in vitro amplification of DNA fragments (Saiki et al., 1985). A 

double stranded DNA (dsDNA) serving as a template, two oligonucleotides (primers) 

complementary to the template DNA, deoxyribonucleotides and heat resistant Taq-DNA-

polymerase are required for this reaction. Primers may be designed having non-

complementary ends with sites for restriction enzymes.  The first step in PCR reactions is the 

denaturing of dsDNA at 94°C. Second, the reaction mix was incubated at different annealing 

temperatures, depending on the G/C content of the primers. Different programs provide an 

accurate calculation of the annealing temperature based on the nearest neighbours method and 

are freely available in the internet. The third step with a temperature of 72°C allows the 

elongation of the new strand of DNA by the Taq-DNA-polymerase. A PCR machine 

(thermocycler) can be programmed to regulate these different cycles automatically. A 

“standard program” is presented below: 

I. Initial denaturing: 94°C, 5 min 
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II. Cycles (25-35): 

    Denaturing (94°C, 15 sec.) 

    Annealing (60-68°C, 30 sec) 

    Elongation (72°C, 1-10min) 

III. Final elongation: 72°C, 10 min 

IV. Cooling to 4°C 

2.13.15 Transformation of E. coli cells with plasmid DNA 

LB-Medium:      SOC-Medium: 

10 g Bacto-Tryptone     20 g Bacto-Tryptone 

5 g yeast extracts     5 g yeast extract 

5 g NaCl                           0.5 g NaCl 
       20 mM Glucose 

For transformation of E. coli cells the heat shock method was used. DNA and 

competent cells were incubated for 15 minutes on ice and then for 45 seconds at 42°C. After 

cooling on ice for 2 minutes, the bacteria were incubated for 1 hour at 37°C in SOC-medium 

without any antibiotics. Finally, the bacteria were plated on agar plates containing selective 

antibiotics, and incubated overnight at 37°C. For further analysis single colonies were picked, 

inoculated and incubated for 12 hours in LB-medium on a shaker. From clones of interest 

glycerol stocks were made. For this, samples of E. coli cultures were mixed with an equal 

volume of 50% glycerol and frozen at -80°C. 

 

2.14 Protein methods and immunofluorescence  

2.14.1 Extraction of protein homogenate from mouse tissues and cell cultures 

For the characterization of the polyclonal antibodies and the detection of the 

endogenous Enaptin protein, homogenates from mouse tissues and cell cultures were 

extracted. For this, mice were sacrificed using dry ice. Dissected organs were briefly rinsed in 

ice-cold PBS buffer and frozen in liquid nitrogen. After homogenisation, the cell lysates were 

mixed with SDS-loading buffer boiled at 95°C for 5 minutes, the DNA was sheared using 1ml 

syringe and centrifugation was for 10 minutes at 15,000 rpm. For the COS-7 cells protein 

homogenates, a confluent 10 cm plate was trypsinised and cells were collected by 

centrifugation for 5 minutes at 1,000 rpm and resuspended in ice-cold PBS containing 

protease inhibitors. Afterwards the pellet samples were treated and processed as described 

above.  
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2.14.2 SDS-polyacrylamide-gel electrophoresis (SDS-PAGE) (Laemmli, 1970) 

5x SDS-loading buffer:   10x SDS-PAGE-running buffer: 

2.5 ml 1 M Tris/HCl, pH 6.8    0.25 M Tris 

4.0 ml 10% SDS     1.9 M glycine 

2.0 ml glycerol     1 % SDS 

1.0 ml 14.3 M β-mercaptoethanol 

200 µl 10 % bromophenol blue 

Molecular weight standard marker 

LMW-Marker (Pharmacia) (kDa): 94; 67; 43; 30; 24; 20.1; 14.4 

HMW-Marker (Pharmacia) (kDa): 220; 170; 116; 76; 53 

Precision plus protein standards    

Prestained marker (BioRad) (kDa)   : 250; 150; 100; 75; 50; 37; 25; 20; 15; 10  

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the 

discontinuous buffer system of Laemmli ( 1970). Discontinuous polyacrylamide gels (10-15% 

resolving gel, 5% stacking gel) were prepared using glass plates of 10 cm x 7.5 cm 

dimensions and spacers of 0.5 mm thickness. A 12-well comb was generally used for 

formation of the wells in the stacking gel. The composition of 12 resolving and 12 stacking 

gels is given in the table below.   

______________________________________________________________________________  
Components                                                      Resolving gel                               Stacking gel 

        10 %      12 %    15 %                                     5%  
____________________________________________________________________________ 
Acrylamide/Bisacrylamide (30:0.8) [ml]:     19.7       23.6     30                                         4.08  

1.5 M Tris/HCl, pH 8.8 [ml]:                        16          16        16                                         -  

0.5 M Tris/HCl, pH 6.8 [ml]:                         -            -          -                                             2.4  

10 % SDS [µl]:                                             590        590      590                                        240  

TEMED [µl]:                                                 23          23         23                                         20  

10 % APS [µl]:                                            240         240       240                                       360  

Deionised H2O [ml]:                                   23.5       19.6        13.2                                    17.16  

 ------------------------------------------------------------------------------------------------------------------- 

  

Samples were mixed with suitable volumes of SDS sample buffer, denatured by heating at 

95ºC for 5 min and loaded into the wells of the stacking gel. A molecular weight marker, 

which was run simultaneously on the same gel in an adjacent well, was used as a standard to 

establish the apparent molecular weights of proteins resolved on SDS-polyacrylamide gels. 

The molecular weight markers were prepared according to the manufacturer’s specifications. 
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After loading the samples onto the gel, electrophoresis was performed in 1x gel-running 

buffer at a constant voltage of 100-150 V until the bromophenol blue dye front had reached 

the bottom edge of the gel or had just run out of the gel. After the electrophoresis, the 

resolved proteins in the gel were either observed by coomassie blue staining or transferred to 

a nitrocellulose membrane.  

2.14.3 Gradient gel electrophoresis 

Gradient gels were used for visualising both high molecular weight proteins and low 

molecular weight proteins. Gradient gels were made with a gradient mixer and typically a gel 

with a gradient of 3%-15% acrylamide was made. The top of the gel had 3% of acrylamide 

whereas the bottom part 15% of acrylamide. The middle part of the gel had a gradient from 

3% till 15%. The gradient mixer was connected to a peristaltic pump, which delivered the 

solution into the gel-casting tray. 15% acrylamide was being added into the near well of the 

outlet from the mixer. 

Stock solutions for preparing Gradient gels 

----------------------------------------------------------------------------------------------------------------- 

100 ml stock solution 3% 6% 10% 12% 15% 4% Stacking Gel 

1.5M Tris/HCl, pH 8.8 25 ml 25 ml 25 ml 25 ml 25 ml - 

0.5% tris/HCl, pH 6.8 - - - - - 20 ml 

PAA (30%) 10 ml 20 ml 33.3 ml 40 ml 50 ml 13.3 ml 

SDS (10%) 1 ml 1 ml 1 ml 1 ml 1 ml 1 ml 

H2O 64 ml 54 ml 40.6 ml 34 ml 24 ml 65.6 ml 

----------------------------------------------------------------------------------------------------------------- 

Solutions required for individual gradient gels 

----------------------------------------------------------------------------------------------------------------- 

 Gradient gel solution per mixing well 1 gel Stacking gel 

Stock solution /Gel 4.5 ml 4.5 ml     9.0 ml 3.0 ml 

APS 10% 15 µl 15 µl 22 µl 30 µl 

TEMED 8 µl 8 µl 10 µl 16 µl 
----------------------------------------------------------------------------------------------------------------- 

2.14.4 Western blotting (Kyhse-Andersen, 1984) 

2.14.4.1 Protein transfer-semidry blotting method 

Buffer: 

Anode buffer (AP1):  300 mM Tris (pH 10.4) 

Anode buffer (AP2):  25 mM Tris (pH 10.4) 
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Cathode buffer (KP):  40 mM ε-aminocapron acid 

25 mM Tris/HCl (pH 9.4); all three buffers contain 10% methanol and 0.05% SDS 

Western blotting allows the transfer of proteins from a polyacrylamide gel onto a 

nitrocellulose membrane. In this work the semi-dry blotting method was used: One layer of 

Whatmann paper, soaked in AP1, was placed in the blotting chamber. Then two layers of 

Whatmann paper, nitrocellulose membrane and the gel, all soaked in AP2 were overlaid. 

Finally three layers of Whatmann paper soaked in KP-buffer were placed on top. The transfer 

was performed at 12 V for 30 minutes with a BioRad semidry blotting machine. Blotting 

efficiency was controlled with Ponceau S staining. 

2.14.4.2 Protein transfer wet-blot method (tank transfer) 

Wet blotting of proteins was performed using a hydrophobic PVDF (polyvinylidine 

fluoride) membrane (Millipore). The membrane is activated using methanol and the 

polyacrylamide gel is pre equilibrated with transfer buffer (72 g glycine and 15 g Tris 

dissolved in 5 L of water). The gel and the membrane were arranged in a pad of whatmann 

papers and kept in a tank with transfer buffer. The overnight transfer was done at 20V at 4°C. 

2.14.4.3 Coomassie blue staining 

Staining solution:    Destaining solution: 

0.1% Coomassie-brilliant-blue R 250  10% ethanol 

50% ethanol     7% acetic acid 

10% acetic acid 

Gels were stained for at least 15 minutes. Unbound Coomassie-blue was washed away with 

destaining solution. 

2.14.4.4 Ponceau S staining 

Staining solution: 

2 gr Ponceau S (Sigma) solubilized in 100 ml 3% Trichloroacetic acid 

Nitrocellulose membrane was incubated for 1 minute in Ponceau S and briefly washed with 

water. Bands of interest were marked and afterwards the membrane was destained in NCP. 

2.14.4.5 Immunolabeling and detection of proteins on nitrocellulose membrane 

Luminol: 

2 ml 1 M Tris/HCl (pH 8.5) 

200 µl (0.25 M in DMSO) 3-aminonaphthylhydrazide  

89 µl (0.1 M in DMSO) p-cumaric acid 

18 ml water 

6.1 µl 30% H2O2 
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After protein transfer, the nitrocellulose membranes (blots) were blocked with 5% 

milk powder in NCP for 1 hour. Blots were then incubated for one hour with primary 

antibodies. Before incubation (1hr) with the secondary peroxidase-conjugated antibody, the 

membrane was washed in NCP three times for 5 minutes. Unspecific bound antibodies were 

washed away with NCP for 20 minutes. Immunolabeling was visualized by adding the 

substrate (luminol) to the peroxidase-conjugated antibodies. This reaction was detected 

exposing the blots to an X-ray film for 5 sec to 30 min. 

2.14.5 Immunofluorescence 

 Cells were grown on coverslips kept on six well plates. Nicely spread cells are 

used for fixing. Two ways of fixing were used. In the first way, the cells are incubated with 

3% paraformaldehyde for 10 minutes at room temperature, washed 3 times with PBS and 

permeabilised with 0.5% Triton X-100 for 5 minutes. In the second method, the cells are fixed 

and permeabilised by incubating with cold methanol (-200C) for 10 minutes. The fixed cells 

were then washed with three times with PBS for 5 minutes followed by three times washing 

with PBG. After washing, the cells were incubated with the primary antibody for one hour. 

After one hour, the cells were washed 6 times with PBG for 5 minutes. After the washing step 

the cells were incubated with the secondary antibody, which has a fluorescent tag for one 

hour. The cells were then washed again with 3 times PBG and 3 times with PBS and 

embedded in slides using gelvatol. For the control, the first antibody was replaced by 

incubation with PBG followed by incubation with the secondary antibody. 

2.14.6 Small-scale GST fusion protein expression   

Small-scale expression of fusion proteins was performed to check and standardize the 

expression of various recombinant clones before proceeding to the large-scale expression and 

purification. Single colonies (5-10) of recombinant cells were picked and grown overnight in 

10 ml of LB medium containing ampicillin (100 µg/ml) at 37ºC and 250 rpm. 5 ml of the 

overnight grown culture were inoculated into 45 ml of fresh LB medium containing 

ampicillin (100 µg/ml). The culture was then allowed to grow at 37ºC till an OD of 0.5-0.6 

measured at 600 nm was obtained. Now the induction of expression was initiated by adding 

IPTG. In order to standardize the conditions of maximum expression of the fusion protein, 

induction was performed with varying concentrations of IPTG (0.1 mM, 0.5 mM and 1.0 mM 

final concentration) at two different temperature conditions (30ºC and 37ºC). Samples of 1 ml 

were withdrawn at different hours of induction (0 hr, 1 hr, 2 hr, 3 hr, 4 hr and 5 hr), the cells 

were pelleted and resuspended in 100 µl of 1x SDS sample buffer. The samples were 

denatured by heating at 95ºC for 5 min and 10 µl of each sample were resolved on a 12% 
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SDS-polyacrylamide gel.  

2.14.7 Purification of GST-fusion proteins 

To obtain large quantities of GST-fusion proteins, bacteria were grown in 1liter 

cultures. The protein expression was induced with 1mM IPTG for 4 hrs and the bacteria were 

collected by centrifugation at 5000 x g for 10 minutes. The pellet was resuspended in 20 ml 

ice cold PBS and sonicated in ice for 30 sec or till the color turns gray. 10% Triton X-100 was 

added to a final concentration of 1% and the lysed cells were centrifuged at 10,000 rpm for 5 

minutes at 40C. The supernatant was mixed with 1 ml of Glutathione Sepharose 4B slurry and 

incubated gently by shaking (200 rpm on a rotary shaker) at room temperature for 30 minutes. 

The beads were centrifuged down at 500 x g for 5 minutes and afterwards washed several 

times with ice cold PBS. The washes were discarded and to the sedimented matrix, 1 ml of 

elution buffer (10 mM reduced glutathione in 50 mM TrisHCl, pH 8.0) was added. The beads 

were mixed gently and incubated for 10 min to elute the bound material from the matrix and 

centrifuged down at 500 x g for 5 minutes at 40C. Elution steps were repeated two times more 

and the samples were analyzed by SDS-PAGE.  

2.14.8 Affinity purification of polyclonal antibodies by blot method 

TBS  : 8 g NaCl, 0.2 g KCl and 3 g Tris/HCl in 1 liter, pH 7.2 

Buffer I : 1% BSA, 0.05% Tween 20 in PBS 

Buffer II : 0.1 M glycin, 0.5 M NaCl, 0.5% Tween 20, pH 2.6  

  The recombinant protein, which was used to produce the polyclonal antibody, was 

analysed by SDS-PAGE and the gel was afterwards transferred to a PVDF membrane. The 

membrane was stained with Ponceau S to confirm the transfer efficiency and the blot 

corresponding to the recombinant protein was cut out. The blot was then destained with TBS. 

The portion of the blot where the recombinant protein was immobilized, was blocked by 

incubating the blot for 2 hours in buffer I. 1 volume of serum is diluted with 4 volumes of 

TBS and incubated with the stripes at 4˚C for 2 hours. The unbound antibody is washed with 

TBS 4x 5 minutes at 4˚C. After washing, the antibodies bound to the recombinant protein on 

the membrane stripes are eluted with buffer II, 1 ml, 2x, 1.5 minutes at 4˚C. The eluted 

antibody is neutralised with 100 µl of 1 M Tris (pH 8.0) immediately after elution. The 

antibody can be stabilised with 0.5% BSA. 

2.14.9 Affinity purification by the CNBr method 

The GST fusion protein GST-SpecII was purified as described above. Instead of 

eluting it from the beads using reduced glutatione, the GST bead pellet was resuspended in 1 

ml PBS and 40 U of thrombin were added to 0.5 ml of glutathione bead volume. Thombin 
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digestion will cut the GST fusion protein at a site in between the GST protein and the 

recombinant protein. Since the GST will stay bound  to the beads, it can be removed by 

centrifugation at 500 x g for 5 minutes while the recombinant protein remains in the 

supernatant. Thrombin digestion was done for 4-16 hrs at 22-25˚C. The eluted fraction was 

dialysed overnight against the coupling solution (0.1M NaHCO3 buffer at pH 8.3 containing 

0.5 M NaCl). 200 mg of cyanogen bromide activated Sepharose 4B (CNBr-activated 

Sepharose 4B, Amersham Bioscience) is resuspended for 15 min with cold 1 mM HCl to 

wash away all the additives. The beads were mixed with the coupling solution containing the 

ligand (SpecII) and incubated overnight at 4˚C on a rotator. This incubation step will enable 

the ligand (recombinant protein SpecII) to bind to the CNBr beads. The excess ligand was 

washed away with 5 ml coupling buffer. To block any active groups in the beads, they were 

incubated with 1 M glycine for 1-2 hr. The beads were washed 3 times with buffers having an 

alternate pH value. The buffers are 0.1 M acetate buffer pH 4.0 with 0.5 M NaCl and 0.1 M 

TrisHCl, pH 8.0 with 0.5 M NaCl. The beads were then packed into a column and then the 

anti-sera against Enaptin-specII were passed through it continuously overnight at 4°C using a 

peristaltic pump. The column was washed with PBS several times and the antibody specific to 

SpecII was eluted using 0.2M glycine at pH 2.8. The eluted antibody was immediately 

neutralised with NaHCO3 and the protein elution was measured with the spectrophotometer at 

280nm. 

2.14.10 Immunohistochemical staining of formalin-fixed paraffin-embedded sections 

Solutions 

Xylene 

Ethanol 

0.01 M Phosphate buffer saline (pH 7.4) 

Solution of 1% gelatine in PBS (PBG) 

10 mM Citric buffer, pH 6.0 

 The paraffin in the sections was removed by incubating the sections 3 times in xylene 

for 5 minutes. The sections were rehydrated in a series of incubations with 96% ethanol (2 

times, 5 minutes), 80% ethanol, 70% ethanol, 50% ethanol and 30% ethanol one minute each, 

and finally rinsed with water. The slides are washed with freshly prepared citrate buffer pH 

6.0 and boiled in a microwave at 300 Watts in the same buffer for 15 to 20 minutes. The 

sections are kept again in room temperature citrate buffer for about 20 minutes, rinsed in 

distilled water and then with PBS (3 times, 5 minutes). The sections were blocked for one 

hour using a PBG solution containing 5% horse serum. The sections are incubated with the 
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primary antibody for 24 hours at 4˚C. Slides were washed 3 times for 4 minutes. Afterwards 

the sections were incubated with a secondary antibody conjugated to a fluorescent tag for one 

hour at room temperature. The sections are washed again as before and mounted in 

Gelvatol/DABCO (Sigma). 

The staining of sections with the VECTOR MOM kit (VECTOR laboratories) was 

done according to the manufactures instructions. 

2.14.11 Microscopy 
Confocal images of immunolabelled specimens were obtained using the confocal laser 

scanning microscope TCS-SP (Leica) equipped with a 63x PL Fluotar 1.32 oil immersion 

objective. A 488-nm argon-ion laser for excitation of GFP fluorescence and a 568-nm 

krypton-ion laser for excitation of Cy3 or TRITC fluorescence were used. For simultaneous 

acquisition of GFP and Cy3 fluorescence, the green and red contributions to the emission 

signal were acquired separately using the appropriate wavelength settings for each 

photomultiplier. The images from green and red channels were independently attributed with 

colour codes and then superimposed using the accompanying software.  

 

2.15 Disruption of the cytoskeleton using various drugs 
Disruption of the actin cytoskeleton was done using Latrunculin B at a final 

concentration of 2.5 µM. The cells were treated with latrunculin B for different time 

limits,washed and fixed in 3% PFA. 

To disrupt the microtubule cytoskeleton, colchicin was dissolved in methanol and used 

at a concentration of 12.5 µM. Cells were treated with colchicin for 90 min and coverslips 

were fixed at different time points using methanol. 

 

2.16 Digitonin experiment 
For the permeabilization experiments with digitonin, fixed cells (3% 

paraformaldehyde) were washed in ice-cold PBS and afterwards treated with 40 µg/ml 

digitonin (Sigma) in PBS for 5 minutes on ice.  

 

2.17 Gene targeting protocols 
2.17.1 Target vector construction  

 The pBluescript II SK+ vector was used as the backbone for the target vector 

construction. The Neomycin cassette was taken out from the pGK-NEO plasmid using the 

EcoRV and SalI and subcloned into the pBluescript vector. The 5’arm-SalI fw and 5’arm-

 



Materials and methods  37 

EcorV rv primers were used to amplify the 5’Enaptin arm (2 kb) of the vector from IB-10 ES 

cell genomic DNA using the Pfu DNA polymerase (Invitrogen). The amplified fragment was 

first cloned into pCR BluntII TOPO vector (Invitrogen) and removed using EcoRI and SalI 

and ligated into the pBluescript-Neo plasmid. The 3’arm (5 kb) of the knockout plasmid was 

amplified with the 3arm-NotI fw and 3arm-SacII rv primers using the Pfu DNA polymerase 

and the ES cell genomic DNA as a template. The fragment was first ligated into the pCR 

BluntII TOPO vector. The 3’arm was cut out from pCR BluntII TOPO with NotI and SacII 

and ligated into the pBluescript-5’arm-Neo construct using the same enzyme sites. All the 

constructs were sequenced and cloning directions and sequences were verified. The size of the 

complete target vector was 11.7 kb. 

2.17.2 Probe generation 

5’probe (1032) 

The 305 bp 5’ external probe (1032) was generated by PCR. The genomic ES cell 

DNA was used as template and the 5’probe fw and 5’probe rv primers in combination with 

the Advantage Taq polymerase (Clontech). The PCR-fragment was cloned into pGEM.T 

Easy. The 5’ probe can be cut out with the EcoRI enzyme. 

3’probe (1031) 

The 3’ external 470 bp probe was amplified from ES cell genomic DNA using the 

3armprobe fw and 3armprobe rv set of primers. The PCR fragment was cloned into the 

pGEM.T Easy. The probe can be cut out from the plasmid using the EcoRI.  

2.17.3 Embryonic stem cell culture 

Media and materials 

MEF media  DMEM (4500 mg/l glucose) (Sigma):  500 ml 

FCS     :    50 ml 

L-glutamine    :       6 ml 

Non-essential amino acids  :       6 ml 

Pen/Strep    :        6 ml 

Pyruvate    :    6 ml 

 

ES cells media DMEM knockout (GIBCO)  :   500 ml 

   Knockout SR (GIBCO)  :     90 ml 

   L-glutamine    :        6 ml 

   Non-essential amino-acids  :        6 ml 

   Pen/Strep    :     10 ml 
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   Pyruvate    :       6 ml 

   ESGRO (Murine LIF, 107U/ml,  

Chemicon)    :            50 µl 

   β-mercaptoethanol (Sigma) :              6 µl 

    

Selection media   : ES cell media and 400 µg/ml of G418 

Freezing media   : ES cell media, 30% FCS and 20% DMSO 

Gelatin (2%) (Sigma)   : Final concentration 0.1% (w/v) in sterile PBS  

Mitomycin C  (Sigma)  : Mitomycin dissolved in sterile PBS (400 µg/ml) 

10X Trypsin (0.5%)(GIBCO)  : Used at 2x dilution 

Trypsin Inhibitor (Sigma) : Dissolved in sterile PBS at a concentration of 5mg/ml  

and used with 1:10 dilution with 2x trypsin 

2.17.4 MEF cell culture and Mitomycin treatment 

ES cells were grown on feeder cells called mouse embryonic fibroblasts (MEF), which 

are inactivated by the treatment with mitomycin C. MEFs are primary cells isolated from 

transgenic neomycin mouse which are resistant to G418 selection. MEFs were grown in 

normal cell culture plates for normal proliferation, but grown on 0.1% gelatin treated cell 

culture plates (NUNC) when we required to plate the ES cells on them. Once the MEFs were 

confluent, they were inactivated by the addition of 150µl of mitomycin C (400 µl/ml) for 2 

hours. Mitomycin will arrest the cell division, so there will not be any further growth of the 

cells. After 2hrs, cells were washed thoroughly with PBS to get rid of all the mitomycin C, 

trypsinised and plated into gelatin coated cell culture plates.  

2.17.8 ES cell culture 

ES cells are cultured normally on mitotically inactive embryonic feeder cells (MEF). 

MEF cells should be mitomycin C treated and plated on gelatinised plates, one day in advance 

of any ES cell manipulation. Confluent MEFs should be washed with PBS and supplied with 

ES cell media at least two hours before the plating of ES cells. Frozen ES cells were thawed 

quickly by placing a vial in a water bath at 370C and the content of the vial added to 10 ml ES 

media in a 15 ml falkon tube. The cells were centrifuged down at 500 rpm for 5 min and 

resuspended in ES cell medium and plated on feeder cells. ES cell medium should be changed 

every 24 hrs.  
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2.17.9 ES cell transfection 

For the transfection experiment 100 µg of the targeting vector was linearised by 

digestion with the SalI enzyme. The linearisation of the plasmid was confirmed on an agarose 

gel. The DNA was then extracted with phenol:chloroform (1:1) and then with chloroform 

alone. The DNA was precipitated with 96% ethanol, pelleted at 12,000 rpm for 10 min. The 

pellet was washed with 96% ethanol and with 76% ethanol. The air dried DNA was dissolved 

in millipore water at a concentration of 1 µg/µl. 

ES cells were cultured on a 10 cm plate and on the day of tranfection, the ES cell 

media were changed 2 hr prior to the transfection. After 2 hrs, the cells were washed with 

PBS and then 0.1% trypsin was added for 4 min till the cells detached from the plate. Cell 

clumps were disintegrated by slowly pipetting up and down several times and then 

centrifuged down at 500 x rpm in a Beckman CS 6R centrifuge. The cells were washed with 

PBS and resuspended in 350 µl of ES cell media and then transferred into a 4 mm transfection 

cuvette (BioRad). 50 µl of the target vector DNA was added, mixed properly and kept on ice 

for 10 minutes. The transfection was done at 250V and 500 µF and typically a time constant 

between 8-12 was obtained. Cells were again kept in ice for 5 min and then plated into 4 

mitomycin treated MEF 10 cm plates.  

2.17.10 Antibiotic selection and picking of ES cell clones 

  Selection of ES cells resistant to neomycin was started after 48 hrs of transfection. For 

IB10 ES cells, 350 µg/ml (total) of G418 was used for selection and for R1 cells we used 400 

µg/ml of G418. Usually on the third day the untransfected cells will start to die. The selection 

is continued for another 7 days when small ES cell colonies will start to appear. When the 

colonies grew large enough with firm boundaries, the colonies were picked using a 20 µl 

pipette under a light microscope with a 2.5X objective. On the day of picking, several 24 well 

plates plated with MEF were kept ready. Individual colonies were picked into a 96 well round 

bottom plate along with 7 µl medium and 50 µl of 2X trypsin was added and kept for 10 min 

at 370C. The trypsin was later neutralised with 20 µl of trypsin inhibitor and mixed with 50 µl 

of ES cell media. The cells were pipetted up and down several times slowly to break the cell 

clumps. The individual colonies were then plated on to the 24 well plate kept ready with 

feeder cells. 

2.17.11 Splitting and freezing ES cells 

When the cells in the 24 well plates were grown enough, they were trypsinised and 

resuspended in 500 µl medium. 250 µl of the resuspended cells were plated into another 24 

well feeder cell plate for growing the cells further for genomic DNA isolation and 250 µl 
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were pipetted into a cryotube, and the cells were frozen. 250 µl of ice-cold 2x ES cell freezing 

media were added to the cells and they were immediately transfered to the -800C freezer in a 

thermocool box. The cells kept for genomic DNA isolation were further grown and harvested 

when the plates became confluent. 

2.17.13 Genomic DNA isolation 

TNES   50 mM Tris (pH: 7.4) 

  100 mM EDTA (pH: 8.0) 

  400 mM NaCl 
   0.5% SDS 

6 M NaCl 

Proteinase K : 20 mg/ml  

 Trypsinised ES cells were mixed with 500 µl of TNES buffer and 10 µl of 20 mg/ml 

proteinase K solution and incubated at 55°C overnight in a shaking incubator. 150 µl of a 

saturated (5 M) NaCl solution was added the next day to salt out the proteins. The sample was 

centrifuged at high speed for 5 minutes in order to pellet the precipitated proteins. The 

genomic DNA in the supernatant was precipitated by 96% ethanol and the pellet was washed 

with 70% ethanol. The pellet was dried and the genomic DNA was resuspended in 50 µl of 10 

mM Tris/HCl, pH 7.4. 

2.17.14 Southern blotting (Southern, 1975) 

Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a 

membrane. After immobilization, the DNA was subjected to hybridization analysis to identify 

the bands containing DNA complementary to the radioactively labeled probe. In this work the 

alkaline transfer on a nylon membrane (Zeta-probe genomic GT tested membrane from Bio-

rad) was performed according to the manufacturer’s instructions. Genomic DNA from ES cell 

clones was digested with EcoRI and resolved in a 0.7% agarose in TAE buffer gel. DNA is 

depurinised by keeping the gel in 0.25 M HCl for 10 minutes, and then neutralised and 

denatured in 0.4 M NaOH for 10 minutes. For the transfer of the DNA to the membrane, it 

was kept on  top of two layers of Whatmann 3MM paper, having contact to a reservoir of 0.4 

M NaOH, which is used as the transfer buffer. After overlaying the gel with Zeta-probe GT 

Genomic Tested Blotting membrane that had been wetted with the transfer buffer, three wet 

Whatmann 3MM paper and a thick stack of paper towels were kept above the membrane 

without air bubbles. A weight of 200 gm was kept above it and the transfer was continued for 

about 18 hours. After washing the membrane in 2% SSC, it was air-dried and processed for 

hybridization. 
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2.17.15 Labeling of DNA probes and hybridization 

Prehybridisation solution  : 0.25 M sodium phosphate (pH 7.2) and 7% SDS 

and hybridization solution     

Wash buffer   : 20 mM sodium phosphate (pH7.2) and 5% or 1% SDS 

       0.5% sodium phosphate,pH 7.2 

Stock A   : 0.5 M NaH2PO4.H2O 

Stock B   : 0.5 M Na2HPO4.7H2O 

 316 ml of Stock A and 684 ml of Stock B are combined to make 0.5% sodium 

phosphate, pH 7.2 

 DNA probes used for radioactive labeling were obtained by removing the the 5’ probe 

and 3’ probe from the pGEM.T Easy vector with EcoRI. The insert of interest was extracted 

from the gel. About 25 ng DNA were mixed with 10 µl random hexanucleotide primers and 

then denatured by heating for 5 minutes at 92°C. To this solution, we added 5 µl α-32P-dATP 

(50 µCi) and 2 U Klenow-Enzyme and the reaction was incubated for 30 min at 37°C. 

Unincorporated nucleotides were separated from the probe by passing through a column 

packed with Sephadex G-50. Before hybridisation, labeled probes were denatured at 100°C 

for 5 minutes. The membrane was prehybridised with prehybridisation buffer for 30 minutes 

at 65°C. The labeled probes were added to the membrane in 10 ml of hybridisation buffer and 

hybridised overnight at 65°C. 
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3 Results 
3.1 Sequence analysis of Enaptin 
3.1.1 cDNA cloning of the longest isoform of Enaptin 

Enaptin was first identified as a protein consisting of 1431 amino acids (Enaptin-165, 

AAN03487) while searching for novel actin-binding proteins with an α-actinin type actin 

binding domain (Braune, 2001). The actin-binding domain of Enaptin-165 comprises two 

calponin homology domains at its N-terminal end followed by a coiled coil rod domain 

similar to the spectrin repeats found in the dystrophin protein. Enaptin-165 has around 30% 

homology with NUANCE, another novel giant actin binding protein of around 800 kDa, 

shown to be localising to the nuclear envelope (Zhen et al., 2002). NUANCE is located on the 

human chromosome 14q23 locus whereas Enaptin is mapped to human chromosome 6q25. In 

contrast to Enaptin-165, the C-terminal part of NUANCE contains a single transmembrane 

domain, which is necessary for proper nuclear membrane targeting. A protein called Syne-1 

(Apel et al., 2000) was identified downstream of the Enaptin-165 locus on chromosome 6, 

which displays strong sequence homology to the C-terminus of NUANCE. Considering that 

NUANCE is a giant 800 kDa protein and the fact that its N- and C-termini are homologous to 

the Enaptin and syne-1 proteins respectively, we speculated that the Enaptin-165 and Syne-1 

proteins may be shorter isoforms of a giant NUANCE-like protein, containing both an ABD 

and a transmembrane domain in a single protein. With this hypothesis in mind, we started to 

amplify and assemble the full-length Enaptin cDNA.  

We searched the EST database of human chromosome 6 and found out several EST 

clones and some assembled sets of open reading frames in this region. All the EST clones 

obtained were assembled using the gene assembly programme of the Wisconsin package. 

There were several large gaps between these assembled fragments. We designed therefore 

primers such that we could get overlapping fragments of the cDNA of Enaptin. Extensive 

searches for EST clones were done in the human chromosome region 6q24-25 (between 

152990K-152470K region) covering 500 kb. cDNA clones such as AK094094, AL13682, 

AB033088 (KIAA1262), and AK057959 were obtained from the searches which represent 

short open reading fragments possibly belonging to the long isorms of the Enaptin locus. 

Small EST clones such as AW297921, AB051543, AL713682, BF964526, BI033837, 

AK056122, BF376488 etc were also obtained in-between these fragments in the specified 

genomic region. Based on the available EST sequence information, we constructed several 

primers in order to generate overlapping cDNAs. The successful amplification of such PCR 

fragments would be an indication for a possible continuous open reading frame. 
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Figure 3.1: cDNA assembly of Enaptin. Schematic representation assembling a 27,669 bp human Enaptin 

cDNA from overlapping known Enaptin isoforms Nesprin-1a, Nesprin-1b, Myne-1, CPG2 and several other 

published sequences, RT- and RACE-PCR generated clones using human cerebellum mRNA as template. The 

location of a small mouse Enaptin N-terminal isoform, previously known as CPG2 and the newly characterised 

mouse Enaptin-165 is included. Horizontal thick lines represent overlapping PCR-fragments, cDNAs, and 

published Enaptin isoform sequences. The names and the positions (in nucleotides) along the assembled full 

length Enaptin cDNA are indicated. Thin horizontal lines indicate parts of clones where the sequence is not 

identical to the large Enaptin isoform. 

We selected human cerebellum mRNA as template for RT-PCR for the cDNA 

generation because in a multiple tissue expression array used to investigate the mRNA 

expression pattern of Enaptin, we observed a high expression of Enaptin in cerebellum. We 

also considered the fact that the short form of Enaptin-165 was amplified from mouse brain 

cDNA. RT-PCRs were done using degenerate primers and gene specific primers. The quality 

of the cDNA obtained was verified using the housekeeper G3PDH gene specific primers. We 

tried to amplify long fragments of about 10 kb size, but were largely unsuccessful. Later, 

several primers were designed (listed in materials and methods) so that overlapping fragments 

were produced approximately of the size of 3 kb each, designated in the figure 3.1 as 

PCR363, PCR360, PCR391, PCR250, PCR321/94a, PCR321/94b. These fragments were 

assembled using the gene assembly programme of the Wisconsin package. All of these 

fragments were amplified using the Clontech cDNA amplification kit and cloned into the 

pGEmteasy vector (Promega) and sequenced first by using vector primers and later using 

specific primers from the obtained sequence. The full-length cDNA we assembled was 

27,669-bp in length (Submitted as AF535142). 
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3.1.2 Organisation of the Enaptin gene 

The human Enaptin gene is located in the chromosome 6q23.1-q25.3 region, spanning 

515 kbs and is encoded by 147 exons. A schematic representation of the intron and exon 

organisation of Enaptin is represented in Figure 3.2. 

 
Figure 3.2: Exon-intron organisation of the human Enaptin gene. Numbered vertical bars denote exons, lines 

represent introns. Predicted translational start codons of the various splice variants are denoted by horizontal 

arrows and labelled with their corresponding accession number.The diagram is drawn to scale. 

The intron exon sequence was determined by aligning the obtained cDNA sequence 

with the genomic sequence. Potential start codons of the various isoforms are shown as 

horizontal arrows. Vertical arrows represent possible stop codons in the splice variants. 

Accession numbers of the cDNAs are represented in the figure along with splicing of 

PCR363. 

 

3.1.3 Domain analysis of Enaptin 

The deduced amino acid sequence of the longest Enaptin cDNA open reading frame 

consists of 8749 amino acids (Fig. 3.3) with a calculated molecular weight of 1014 kDa and a 

theoretical pI of 5.37. The SMART programme (www.expasy.ch) analysis predicts 3 major 

structural domains in the Enaptin amino acid sequence, an N-terminal ABD, a C-terminal 

transmembrane domain and 50 spectrin repeats in the middle of the molecule. 
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Figure 3.3: Peptide sequence of human Enaptin. Green letters depict the CH1 and CH2 domains of the ABD, 

blue underlined letters indicate nuclear localisation signals (NLS), Red underlined letters show leucine zippers, 

yellow highlights the transmembrane region, ash highlighted amino acids indicate the CPG2 region and magenta 

a serine rich region.  

Enaptin has two calponin homology domains, CH1 and CH2, at its N-terminal end 

which form an actin-binding domain (ABD). The ABD of Enaptin has a high homology to the 

ABDs of NUANCE, utrophin, dystrophin, α-actinin and that of β-spectrin. Figure 3.4 shows 

an alignment of the ABDs of these proteins compaired to that of Enaptin using the ClustalX 
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programme. The ABD of Enaptin shares 48% identity to the ABD of NUANCE, 36% with 

utrophin, 38% with dystrophin, 34% with α-actinin and 38% with β-spectrin. Enaptin and 

NUANCE have a unique 44 amino acid stretch separating the two calponin homology 

omains (Figure 3.4) rich in serine residues. 

 

 

were

to dy

d

Figu

supe

32-27

32-25

separ

dystr

was f

ABD

align

ANC

mela

show

 

sing the Bioedit software. Identical amino acids were shaded black and similar amino acids 

 sha

t they are closer 

strophin and utrophin than other members of the α -actinin superfamily. 

 

re 3.4: Multiple sequence alignment of the actin-binding domains of various members of the α-actinin 

rfamily. The sequences of Enaptin (accession no. AAN03486, residues 27-292), NUANCE (NP_055995, 

6), human utrophin (P46939, 32-255), human dystrophin (AAA53189, 16-240), α-actinin-1 (AAH03576, 

2) and β-spectrin-1 (AAA60580, 55-276) are compared. A stretch of amino acids with several serines 

ates the CH1 and CH2 in Enaptin and NUANCE in contrast to the conventional type ABDs of utrophin, 

ophin, α-actinin and β -spectrin. The ClustalX programme was used to align the sequences, the alignment 

urther edited u

ded gray. 
In order to establish the evolutionary relationship between the ABD of Enaptin and the 

s of other sequence related proteins, a phylogram was generated using the ClustalX 

ment programme (Figure 3.5). The analysis included the ABD sequences of C. elegans 

-1, Enaptin, NUANCE, utrophin, dystrophin, ACF-7, α− actinin, β -spectrin, Drosophila 

nogaster MSP-300 and Dictyostelium discoideum interaptin. The phylogenetic analysis 

ed that Enaptin and NUANCE form a distinct group of proteins and tha
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Figure 3.5: Phylogenetic analysis of the ABDs of various α−actinin superfamily members. The 

analysis is made by the Treeview programme. Scale shows 10% divergence. 

Enaptin has a central helical rod domain in which several coiled coils can be predicted 

using the Multicoil algorithm (Fig. 3.6). The analysis predicts 30 coiled-coils, several coiled-

coils have a high probability of forming dimeric and trimeric stranded coiled coils. Around 50 

spectrin like repeats were predicted in the rod domain by the SMART programme. In addition 

to that, seven nuclear localization signals belonging to three different classes were predicted 

using the PSORT II Prediction programme (http://psort.nibb.ac.jp/form2.html). Two NLS 

predicted were of the pat4 pattern (amino acids 43-49, 4086-4089), another two are of the 

pat7 (amino acids 171-180, 3214-3218) and three were bipartite nuclear localisation signals 

(30-49, 7907-7921, 8122-8138). PSORT uses the following two rules to detect it: four residue 

pattern (called 'pat4') composed of four basic amino acids (K or R), or composed of three 

basic amino acids (K or R) and either H or P; the other (called 'pat7') is a pattern starting with 

P and followed within three residues by a basic segment containing three K/R residues out of 

four (Hicks and Raikhel, 1995). Two segments that are similar to leuzine zipper like repeats 

(2609-2630, 4754-4775) were also predicted using the 2ZIP programme (web based tool for 

predicting leuzine zippers). A serine rich region was also detected in between the last spectrin 

repeat and the transmembrane domains. 
 

 

http://psort.nibb.ac.jp/form2.html
http://2zip.molgen.mpg.de/index.html
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Figure 3.6: Structural features of Enaptin. The ABD is represented by an empty box; 50 spectrin repeats with 

considerable homology to dystrophin are shown as ovals; and the transmembrane domain is indicated by a black 

bar. The positions of nuclear localization signals and leucine zippers are indicated. Coiled-coil regions were 

predicted by the MultiCoil programme (Wolf et al., 1997). Blue and red lines mark the location of predicted 

dimeric or trimeric coiled-coils, respectively. 

 
The C-terminus of Enaptin displays high homology to NUANCE and to the 

Drosophila klarsicht protein (Mosley-Bishop et al., 1999). All these proteins harbor a stretch 

of conserved sequences, which include a 23 amino acids long leucine-rich region composed 

of hydrophobic amino acids (8694-8717). This stretch forms a transmembrane region and a 

highly conserved C-terminal tail (Figure 3.7). The general structure of the transmembrane 

domain classifies Enaptin as a type-II integral membrane protein (Kutay et al., 1993), which 

would contain a long cytoplasmic or nucleoplasmic domain with a C-terminal hydrophobic 

transmembrane domain (Figure 3.8). 
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ure 3.7: Enaptin and NUANCE contain a klarsicht like domain. The C-terminal amino acids of Enaptin 

AN03486), NUANCE (NP_055995), and D. melanogaster Klarsicht protein (NM_079149) were aligned 

ng the ClustalX alignment programme. Sequences were edited using the Bioedit software. Identical amino 

ds are highlighted with black and similar amino acids are shaded gray. Predicted regions in the sequences are 

wn as transmembrane region and C-terminal tail region.  
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ure 3.8: Prediction of a transmembrane domain at the C-terminal end of Enaptin. (A) A 

nsmembrane helix is predicted by a web based prediction tool SOSUI, (www.sosui.proteome. 

.tuat.ac.jp). A schematic representation of the putative transmembrane domain is shown. (B) Helical wheel 

gram showing the hydrophobic (black) and polar residues (blue) in the transmembrane helix. (C) 

drophathy plots of the C-terminus of Enaptin showing hydrophobic amino acids, which form the 

nsmembrane helix. 
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3.1.4 Isoforms of Enaptin 

Several isoforms of Enaptin were identified which are produced by alternative splicing 

of the Enaptin gene. These isoforms vary in their expression pattern, domain architecture and 

sizes. Figure 3.9 is a schematic diagram that summarises various known Enaptin isoforms. 

The longest isoform is termed Enaptin and is composed of 8749 amino acids harbouring both 

an N-terminal ABD and a C-terminal transmembrane domain, which are separated by several 

spectrin-repeats. A shorter isoform labelled as Enaptin–165 with a molecular mass of 165 kDa  

 

Figure 3.9: Schematic representation and predicted architecture of various isoforms generated by the

Enaptin locus based on sequence comparisons to known proteins. Names of various Enaptin isoforms,

their locations based on their sequence relative to the large Enaptin isoform, and their length in amino acids is

indicated. Various shapes indicate protein domains detected by SMART analysis. The N-terminal ABD is

indicated as a box, filled ovals indicate spectrin repeats and are numbered at the bottom. The C-terminal

transmembrane domain (also known as klarsicht domain, KLS) is denoted as a black vertical bar. Positions of

various nuclear localization signals and leucine zippers are indicated. 

contains also an ABD and a single spectrin repeat containing region. Another N-terminal 

isoform derived from the Enaptin locus is CPG2 (Nedivi et al., 1996), which lacks both an 

ABD and a transmembrane domain. Several C-terminal splicing forms named as nesprin-1α,  

nesprin-1β, myne-1, syne-1A, syne-1B (Zhang Q et al., 2001,Mislow et al., 2002b., 2002, 

Apel et al., 2000) contain the C-terminal transmembrane domain with varying numbers of 

spectrin like repeats and lack completely an ABD.  
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3.2 Examination of Enaptin’s tissue distribution by northern blot analysis 
3.2.1 Tissue distribution of Enaptin 

To analyse the transcription pattern of human Enaptin, a human multiple tissue 

expression array (MTE, Clontech) was hybridised with probes corresponding to the ABD 

(bases from 318–951 in AF535142) and to the C-terminus of Enaptin (23398–23832). The 

MTE array is a positively charged nylon membrane to which poly A+ RNAs from different 

human tissues and cancer cell lines have been immobilised in separate dots, along with 

several controls. The poly A+ RNAs were normalised to the mRNA expression levels of eight 

different ‘house keeping genes’. Table 1 gives the relative expression levels of Enaptin 

transcripts with both the probes in comparison with NUANCE (Zhen et al., 2002). 
 

Figure 3.10: Tissue distribution of the Enaptin transcripts using a human multiple tissue and cell line 

expression array. (A) Northern dot-blot hybridized against Enaptin’s ABD (nucleotides 318–951 of human 

Enaptin cDNA). (B) The same blot was stripped and probed against a C-terminal Enaptin probe (nucleotides 

23398–23832). The identification of the positions on the grid is given in Table 1.  

 

The signals obtained with both the C-terminal probe and N-terminal probe showed 

detectable levels of Enaptin in most of the tissues (Fig. 3.10). Interestingly, different patterns 

of expression were obtained using both the probes, which underline the existence of 

alternative splicing forms that display a different level of abundance in various tissues. 

Comparison of the expression patterns of Enaptin with NUANCE (Zhen et al., 2002) revealed 

that Enaptin dominates in brain, muscle, heart and pancreas while NUANCE is expressed 

preferentially in liver, salivary gland, uterus, prostate and lymphatic organs. Enaptin and 

NUANCE both have a high expression in kidney, stomach and placenta. Cerebellum shows 

relatively elevated expression in comparison with other parts of the brain.  
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Table 1.Tissue distribution of the Enaptin transcript using a human multiple tissue expression 
array. 

Expression level Position on the 
grida 

Tissue type 

Enaptin   ABD 
probe 

Enaptin  C         
terminal probe 

NUANCE 1  

Neurological     
whole brain + + tr 1A 
cerebral cortex ++ + tr 1B 
frontal lobe tr tr tr 1C 
parietal lobe tr tr + 1D 
occipital lobe + tr + 1E 
temporal lobe + tr + 1F 
paracentral gyrus of cerebral cortex  + tr tr 1G 
pons + + tr 1H 
cerebellum, left ++ +++ tr 2A 
cerebellum, right ++++ ++++ tr 2B 
corpus callosum ++ tr ++ 2C 
amygdala ++ tr tr 2D 
caudate nucleus ++ tr + 2E 
hippocampus + tr + 2F 
medulla oblongata tr tr + 2G 
putamen + ++ + 2H 
nucleus accumbens + tr tr 3B 
thalamus + tr + 3C 
Muscle and heart     
aorta + + + 4B 
heart +++++ ++ + 4A 
atrium, left +++ + + 4C 
atrium, right + tr + 4D 
ventricle, left ++ tr + 4E 
ventricle, right +++ tr ++ 4F 
interventricular septum ++++ ++ ++ 4G 
apex of the heart +++ + ++ 4H 
skeletal muscle ++++ tr + 7B 
Gastro-intestinal     
esophagus + tr tr 5A 
stomach ++++ ++ ++++ 5B 
duodenum +++ tr +++ 5C 
jejunum +++ + ++ 5D 
ileum + tr + 5E 
ileocecum tr tr ++ 5F 
appendix tr tr ++ 5G 
colon, ascending tr tr + 5H 
colon, transverse ++ tr + 6A 
colon, descending ++ + + 6B 
rectum + tr + 6C 
liver ++ tr ++++ 9A 
pancreas +++++ + + 9B 
salivary gland + tr +++ 9E 
Genito-urinary     
kidney ++++ ++++ +++++ 7A 
bladder + + + 8C 
uterus + + + 8D 
prostate + - ++++ 8E 
testis ++ + +++ 8F 
ovary tr - +++ 8G 
Lymphoid and hematopoetic     
spleen ++ +++ ++++ 7C 
thymus + tr + 7D 
lymph node + + +++ 7F 
bone morrow + + + 7G 
peripheral blood leukocyte tr tr ++++ 7E 
Pulmonary     
trachea + tr +++ 7H 
lung ++ + ++ 8A 
Other     
adrenal gland ++ tr ++ 9C 
thyroid gland ++ tr ++++ 9D 
mammary gland ++ tr ++ 9F 
Cell lines     
leukemia, HL-60 tr - tr 10A 
HeLa S3 tr - tr 10B 
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leukemia, K-562 tr - tr 10C 
leukemia, MOLT-4 tr - tr 10D 
Burkitt´s lymphoma, Raji tr - tr 10E 
Burkitt´s lymphoma, Daudi tr - ++ 10F 
colorectal adenocarcinoma, SW480 tr - + 10G 
lung carcinoma, A549 tr - tr 10H 
Fetal and placenta     
placenta ++++ tr ++++ 8B 
fetal brain tr ++ tr 11A 
fetal heart + tr + 11B 
fetal kidney + + ++++ 11C 
fetal liver ++ - + 11D 
fetal spleen + + + 11E 
fetal thymus + tr + 11F 
fetal lung + tr + 11G 
Control RNA     
yeast total RNA - -  12 A 
yeast tRNA - -  12 B 
E.coli rRNA + -  12 C 
E.coli DNA + -  12 D 
Poly r(A) - -  12 E 
human Cot-1 DNA + -  12 F 
human DNA 100ng ++ +  12 G 
human DNA 500ng +++++ +++++  12 H 
 
a Grid references to Fig. 3.10 
tr – traceable amounts 

1 Taken from reference (Zhen et al., 2002) 
 
 
3.2.2 Northern blot analysis of Enaptin 

In order to verify the results obtained from the MTE arrays and find out the various 

transcripts of Enaptin, northern blot analysis was performed using two different probes, one 

probe spanning the ABD region equivalent to nucleotides 1878-2557 of human Enaptin 

cDNA, and another one spanning the CPG2 region (nucleotides 4127-4768). Total RNA from 

mouse tissues such as brain, heart and skeletal muscle were isolated using the Trizol reagent 

(Invitrogen) according to the manufacturer's instructions. The RNA was separated in 0.7% 

formaldehyde agarose gels and blotted onto a zeta-probe membrane (Bio-Rad). For the 

hybridisation, riboprobes were generated from the corresponding fragments cloned insuitable 

vectors (see materials and methods). A transcript of >14 kb is observed consistently with both 

probes in the brain and skeletal muscle samples (Figure 3.11). An additional transcript of 5.5 

kb was detected only in brain with the ABD and the CPG2 probe. Smaller transcripts of this 

size could not be detected in the skeletal and cardiac muscle RNAs using the ABD probe. The 

CPG2 probe detects in addition to the 14 kb band a 10 kb band in brain, which is visible after 

prolonged exposure. A 6.5 kb band was consistently observed in both skeletal and cardiac 

muscle tissues with the CPG2 probe. Such transcripts could not be detected in the muscle 

tissues using the ABD probe. In our Northern blot analysis however, we were unable to detect 

the expected 27 kb transcript, which could be corresponding to the longest Enaptin isoform. 

This may be attributed to the technical difficulties or the absence of the particular transcript in 

the analysed tissues.               
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Figure 3.11: Northern blot analysis of
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RNA from brain, skeletal and cardiac muscle

tissues. The blots were hybridised against two

specific radiolabelled riboprobes designed against

the ABD (equivalent to nucleotides 1878–2557 of

human Enaptin cDNA) and CPG2 (equivalent to

nucleotides 4127–4768). Arrowheads indicate

major transcripts detected. 
 

3 Western blot analysis of Enaptin 
.1 Western blots with an ABD Enaptin antibody of different tissue lysates 

For investigation of Enaptin at the protein level, a polyclonal antibody was raised 

ainst the ABD of Enaptin in rabbits. A 6xHIS-ABD-enaptin construct (aa. 2-293) is 

pressed in PQE30 vector and the protein is purifed using a Ni-NTA column. The 

ombinant protein was used to immunize rabbits and the antiserum was tested for the 

ecificity of the antibody (Braune, 2001; Padmakumar, 2004). The antisera were later 

rified by affinity chromatography.  

The purified ABD Enaptin antibody was used for western blot analysis with various 

sue lysates. Mouse tissues were dissected and the protein lysates were prepared as 

scribed in Materials and methods. The proteins were resolved in a 5% polyacrylamide gel 

igure 3.12A) or 3%-15% gradient gel (Figure 3.12B) and blotted overnight onto a PVDF 

mbrane (Millipore) by wet blotting. The blots were blocked and incubated with purified 

aptin ABD antibody at the dilution of 1:1000. A secondary anti-rabbit antibody conjugated 

th peroxidase was used to make a chemiluminescence reaction. In all the tissues tested 

cept kidney, a protein of enormous size of approximately 400 kDa was detected, which may 

rrespond to the 14 kb band transcript that was detected in the northern blot analysis. In 

in, heart, kidney, stomach and small intestine a band of 270 kDa was also observed. In 

dition to that in brain, lung and kidney, a smaller 260 kDa band was detected. Only in the 

in sample we could detect a 165 kDa protein (Enaptin-165), which most probably 

rresponds to the 5.5 kb band detected in the northern blots. The detected proteins in the 

munoblot analysis were however significantly lower than the predicted 1000 kDa protein. 
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Further analysis will be needed to determine the domain organization of the Enaptin isoforms 

detected in our immunoblot assays.  
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igure 3.12: Western blot analysis of brain, muscle, lung, heart, stomach, kidney, small intestine and 

OS7 cell homogenates. The polyclonal Enaptin antibody directed against the ABD recognizes high molecular 

eight proteins (approximately 400 kDa) in all samples. Additional bands were detected in the brain sample, 

igrating as 165 and 260 kDa proteins (arrowheads). A, 5% SDS page. B, 3 %-15% gradient gel. 

 

.3.1 Expression and purification of GST-SpecII 

The data presented so far suggest that Enaptin is of enormous complexity and 

herefore, for a more accurate biochemical and cell biological characterization, additional 

eagents and tools were required. In order to study the function of the C-terminal isoforms of 

naptin in more detail, an antibody against the C-terminus of human Enaptin was generated. 

 GST fusion protein (GST-SpecII) was made comprising the last two-spectrin repeats (aa 

394-8608) of human Enaptin using the pGEX4T1 vector (Amersham Bioscience). The 

naptin fragment alone has a theoretical pI of 5.33 and a calculated molecular weight of 25.7 

Da. The molecular weight of the fusion protein was calculated as 51.7 kDa. The GST-SpecII 

lasmid was transformed into the DH5α E. coli strain and its expression was induced for 4 hrs 

ith 1mM IPTG. The bacteria were collected, lysed and the fusion protein was retrieved from 

he supernatant using GST beads (Figure 3.13). The recombinant protein migrates on SDS-

AGE with the expected size of 51 kDa. The beads with the GST-SpecII fusion protein were 
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washed and eluted by reduced glutathione and 
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send for the immunization of rabbit animals 

(Pineda Antikörper Services). 
Figure 3.13: Expression of GST-SpectII protein. The 

GST-SpectII plasmid was transformed into E. coli DH5α  

cells. Protein expression was induced by 1 mM IPTG for 

4 hrs. Cells were collected, lysed, centrifuged and the 

supernatant was treated with GST beads for 30 min at 

room temparature. The beads were collected by 

centrifugation. An aliquot from uninduced cells, induced 

cells, pellet, supernatant and GST beads bound to GST-

SpecII were resolved on a 12 % SDS polyacrylamide gel 

and stained with Coomassie blue. Arrowhead indicates 

the position of the recombinant protein. 

.2 Generation and purification of the Enaptin polyclonal antibody 

Rabbit serum after 90 days of immunization was tested for the specificity of the 

tibody produced. For the immunoblot analysis, we used the recombinant GST-SpectII, GST 

tein as a control, COS7 cell lysate transefected with the GFP-DN construct described in 

tion 3.8, which has the peptide sequence identical to the one used for antibody production, 

S7 lysate transfected with GFP alone and nontransfected COS7 cell lysate. The cell lysates 

d recombinant proteins were resolved on a 12% SDS polyacrylamide gel and blotted onto a 

rocellulose membrane and incubated with the rabbit serum (from the 90th day after 

munization) at a 1:1000 dilution (Figure 3.14 A). A secondary anti-rabbit antibody tagged 

th peroxidase was used and a chemiluminescence reaction was performed for detecting the 

teins. The antibody detected the 51 kDa GST-fusion protein along with the GST protein. 

e bands of lower sizes may be the degradation product of the GST-SpecII fusion protein. 

e specific detection of the 67 kDa GFP-DN fusion protein in the COS7 lysates confirmed 

 presence of antibodies specific for the SpecII polypeptide sequence in addition to 

tibodies that are directed against the GST protein. The antibody did not cross-react with any 

other protein, which is obvious from the absence of signals in the COS7 lysate and GFP 

ate lanes. The presence of the GFP fusion protein is confirmed with a monoclonal antibody 

 GFP in a similar blot (Figure 3.14 B). Since Enaptin and NUANCE display high 

mology to each other, we examined the crossreactivity of the serum (Figure 3.14 C) against 

ANCE. COS7 cells were transfected with a GFP-NUANCE fusion protein (GFP-
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dnNUANCE), which is homologous to the Enaptin region used for generating the antibodies. 

As shown in Figure 3.14 C, our SpecII antibody detects only the GFP-DN Enaptin fusion and 

thus proves the specificity of Enaptin-SpecII antibodies towards Enaptin.  
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e 3.14: Characterization of the C-terminus specific Enaptin antibody (Enaptin SpecII). Cell 

repared from COS7 cells expressing GFP-DN Enaptin, GFP, GFP-dnNUANCE and untranfected 

ST and GST-SpecII were purified from E. coli.  Purified proteins and cell lysates were resolved on 

lyacrylamide gel and transferred to a nitrocellulose membrane by semidry blotting. In (A), the blot 

 with serum from a rabbit after 90 days of immunization with GST-SpecII. A secondary anti rabbit 

gated with peroxidase was used against it and a chemiluminescence reaction was done to detect 

B) Control blot probed with a GFP specific monoclonal antibody to check the presence of GFP 

Specificity test of the Enaptin antibody. Lysates from cells expressing GFP-DN and GFP-

ere run on a 12% SDS page gel and immobilized on a membrane by semidry blotting. The blot is 

e SpecII polyclonal serum and later with an anti-rabbit peroxidase tagged secondary antibody. 

eveloped with a chemiluminescence reaction. Arrowheads indicate the GFP-DN protein and the 

-SpecII. 

e the polyclonal antisera detected also GST, we purified the antibody using 

matography. GST-SpecII was digested using thrombin, dialyzed and coupled to 

ted sepharose. Using this Enaptin- SpecII antibody, we could detect a protein of 

ly 400 kDa size (data not shown). The purified antibodies were used for 

rescence as well as immunohistological studies.  
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3.4 Subcellular localization of Enaptin using the SpecII antibody  
In order to investigate the subcellular localization of Enaptin, various cell lines were 

fixed in methanol and processed for indirect immunofluorescence. The Enaptin-SpecII 

antibody was used at a 1:50 dilution along with antibodies recognizing nuclear lamina 

proteins like lamin and emerin and images were taken using confocal microscopy. In primary 

human fibroblasts, a prominent Enaptin staining around the nucleus and in the nucleoplasm 

was observed (Figure 3.15). To examine the nuclear staining of Enaptin in more detail, we co-

stained the fibroblasts with lamin A/C (Figure 3.15 G) and emerin (Figure 3.15 C) specific 

antibodies, which are two inner nuclear membrane proteins. A clear co-localization of these 

proteins with Enaptin around the nuclear envelope was noticeable (arrow in panel B), 

suggesting that Enaptin is a component of the nuclear envelope. As mentioned earlier Enaptin 

is a rather complex gene that codes for various splicing variants. The nucleoplasmic staining 

(arrow head, panel F) which was visible in our immunofluorescence studies may be therefore 

attributed to various splicing forms lacking the C-terminal transmembrane domain. 

 
Figure 3.15: Enaptin localizes to the nuclear envelope in human fibroblasts. Human fibroblast cells were 

fixed with methanol and incubated with monoclonal antibodies for emerin or lamin A/C (Jol2) and the C-

terminal Enaptin-SpecII Abs. Secondary antibodies such as anti-mouse Cy3 and anti-rabbit FITC were used. 

Images were taken using the confocal microscope. The arrow indicates nuclear envelope staining and the 

arrowhead nucleoplasmic staining. 

While Enaptin is present at the nuclear membrane in human fibroblasts, the pattern of 

its distribution differs in various cell types. In Figure 3.16, Enaptin-SpecII staining of 

methanol fixed C3H/10T1/2 mouse fibroblasts, MB50 (undifferentiated myoblasts), N2A 

(undifferentiated neuroblastoma cells) are shown. In mouse fibroblasts, we observed a nuclear 

membrane staining in addition to a strong cytoplasmic staining. In undifferentiated myoblasts 
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however, the Enaptin protein is present in the nucleoplasm in addition to localization at the 

nuclear membrane. Neuroblastoma cells displayed a different staining pattern. We never 

observed a nuclear membrane staining; instead, a strong nucleoplasmic and cytoplasmic 

staining was observable. Until now, very little is known about the expression profile of the 

various Enaptin variants. However one can envision the presence of distinct isoforms in 

various tissues that differ in their domain architecture in order to accomplish and fulfill the 

structural and biological needs of each individual tissue. 
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igure 3.16: Subcellular localization of Enaptin in various cell types. C3H/10T1/2 cells (mouse fibroblasts), 

B50 (human primary myoblasts) and N2A (neuroblastoma cell line). Cells were fixed with methanol and 

tained with rabbit primary Enaptin-SpecII antibody and secondary anti-rabbit-FITC antibody. Images were 

btained using the confocal microscope. 

.5 Enaptin is a component of the outer nuclear membrane 
The nuclear envelope is composed of two membranes, the outer nuclear membrane, 

hich is continuous with the endoplasmatic reticulum, and the inner nuclear membrane. In 

rder to examine the exact topology of Enaptin at the nuclear envelope and to find out 

hether it is localized in the inner nuclear membrane or outer nuclear membrane, we 

erformed permeabilisation studies. Human fibroblast cells were permeabilized with 40 µg/ml 

igitonin for 5 minutes or with 0.5% Triton X-100 separately. Triton X-100 permeabilises 

oth the plasma membrane and also the nuclear membrane, while a short incubation with 

igitonin permeabilises only the plasma membrane and leaves the nuclear membrane intact. 

hus the entry of antibodies only to the cytoplasm and not to the nucleoplasm allows the 

dentification of cytoplasmic and outer nuclear membrane components. Human fibroblast 

ells were fixed with paraformaldehyde and treated with digitionin at different time intervals 

o optimize the permeabilisation conditions. For controlling the permeabilisation procedure, 
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we co-immunostained the cells with lamin A/C, which are intermediate filament proteins 

present close to inner nuclear membrane and also located in the inner aspect of the nucleus. 

After 5 minutes of digitonin treatment, we could observe strong nuclear envelope staining of 

the Enaptin antibody but no lamin A/C staining was observed (Figure 3.17 E-H). Triton X-

100 permeabilised cells however, displayed strong nuclear membrane staining of both Enaptin 

and lamin A/C (Figure 3.17 A-D). This experiment demonstrates that Enaptin is a structural 

component of the outer nuclear membrane. However a presence of Enaptin inside the nucleus 

cannot be ruled out. Further studies will be necessary including electron microscopy 

investigations to study the exact location of Enaptin. Interestingly, it has been reported that 

Nesprin, a C-terminal isoform of Enaptin is present in the inner nuclear membrane (Zhang et 

a.l, 2001) using the immunogold-labeling method. Taken together, Enaptin may therefore 

localize to both inner and outer nuclear membranes. 
 

 
Figure 3.17: Permeabilisation of fibroblast cells with Triton X-100 and digitonin. Human fibroblast cells 

were fixed with 3% paraformaldehyde and permeabilised with the detergents such as Triton X-100 and digitonin 

for 5 min. A-D show a Triton X-100 permeabilised cell and panels E-H show a cell after digitonin treatment. 

Images were taken by confocal microscopy. 

 
3.6 Nuclear membrane localization of Enaptin is not affected by drugs 

disrupting microfilament and microtubule cytoskeleton 
Since Enaptin is an actin binding protein with a functional ABD at its N-terminus 

(Braune, 2001), we wanted to investigate whether the localization of Enaptin in the nuclear 

envelope depends upon the actin cytoskeleton. To explore this aspect, we disrupted the actin 

cytoskeleton using latrunculin B, a microfilament-disrupting drug that binds to G-actin and 
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prevent its polymerization (Wakatsuki et al., 2001). Human fibroblast cells were treated with 

the drug at 2.5 µM concentration for 10 min, fixed with 3% PFA and permeabilised with 

Triton X-100 for 5 min. The polyclonal Enaptin–specII antibody was used for staining 

Enaptin followed by a FITC conjugated anti-rabbit secondary antibody. Phalloidin was used 

to visualize the F-actin cytoskeleton and DAPI to stain nuclei. We observed that even after the 

disruption of the actin cytoskeleton the nuclear envelope staining of Enaptin was retained 

which suggests that the nuclear envelope staining is not dependent upon an intact actin 

cytoskeleton (Figure 3.18). The shape of the nucleus is deformed after the treatment of 

latrunculin B (arrowheads in Figure 3.18 F). The interaction of Enaptin with nuclear lamina 

proteins and the presence of its C-terminal transmembrane domain may be sufficient for the 

proper nuclear envelope localization of Enaptin. 

 
Figure 3.18: Latrunculin treatment of human fibroblast cells. Panels A-D show untreated (control) human 

fibroblast cells and panels E-H, display cells after a 20 min treatment with latrunculin B (2.5 µm). Cells were 

fixed in 3% PFA and incubated with the Enaptin-SpecII antibody and anti-rabbit FITC conjugated secondary 

antibody. F-actin is stained with phalloidin coupled to TRITC. Nuclei are stained with DAPI. Images were 

prepared with confocal microscope. Arrows indicate the deformation in the shape of the nucleus. 

The C-terminus of Enaptin is highly homologous to the Drosophila melanogaster 

klarsicht protein (Figure 3.7). Since klarsicht is required for connecting the MTOC 

(MicroTubule Organizing Center) to the nucleus (Patterson et al., 2004) and also for vesicle 

transport along the microtubule network (Jackle and Jahn, 1998), we were interested to 

examine whether microtubules have a profound role in the localization of Enaptin. In order to 

address this question we disrupted the microtubule cytoskeleton using colchicin at 12.5 µM 

concentration. Cells were fixed with methanol after 45 minutes of colchicin treatment, 

 



Results  63 

followed by incubation with Enaptin-SpecII antibodies and anti-β-tubulin specific antibodies. 

In contrast to untreated cells (Figure 3.18 A-D), which display a nicely organized 

cytoskeleton (Figure 3.18 C), the colchicin treated cells (Figure 3.18 E-H) contain a disrupted 

microtubule cytoskeleton (Figure 3.18 G) where very few filaments can be seen in the 

cytoplasm. The nuclear Enaptin pattern however remained unaffected (Figure 3.18 F, H). 

 
Figure 3.19: Colchicin treatment of human fibroblast cells. Human fibroblast cells were treated with 

colchicin (12.5 µM) for 45 min and were fixed afterwards with methanol. The cover slips were incubated with 

the rabbit polyclonal Enaptin-SpecII antibody and anti-β-tubulin mouse monoclonal antibodies. Anti- rabbit-

FITC and anti-mouse-Cy3 were used as secondary antibodies. Images were prepared by confocal microscopy. 

 

3.7 Tissue expression of Enaptin 
From our northern blots, we concluded that Enaptin is present in most of the tissues 

which were examined however with varying levels of expression. Brain and skeletal muscle 

were actually two tissues where the highest level of expression for Enaptin were obtained. In 

order to gain more insight into the expression profile of Enaptin and to verify the data 

obtained from the northern and dot blot analysis we performed immunohistochemical studies 

on skeletal muscle and brain tissue sections. 

3.7.1 Expression of Enaptin in muscle 
From our northern and western blot analysis, we found that Enaptin is strongly 

expressed in skeletal muscle. So it was interesting to investigate the localization of Enaptin in 

skeletal muscle. Mutations in nuclear membrane proteins like lamin A/C and emerin were 

recently postulated to be involved in muscular dystrophies like EDMD (Bonne G et al., 
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1999). The exact pathological mechanisms of the muscular dystrophic phenotype caused by 

mutations in these ubiquitously expressed proteins are largely unknown (Hutchison et al., 

2001). It has been postulated that lamin A/C or emerin can interact with skeletal muscle 

specific isoforms of interacting proteins resulting in the skeletal muscle disease phenotypes. 

The interaction of Enaptin with lamin A/C and emerin and the homology of Enaptin to 

dystrophin make it thus a potential candidate to carry out such a function. Previously we have 

used an N-terminal antibody to Enaptin and observed a partial colocalisation of Enaptin with 

desmin (Padmakumar, 2004). Since Enaptin has many isoforms, their distribution may vary in 

different tissues and even in the same tissue. Therefore an investigation using the Enaptin-

SpecII antibodies, which detect the C-terminal isoforms, was very crucial. Frozen human 

muscle sections were obtained from the Uniklinik, Bonn, and from the Friedrich-Baur 

Institute of the LMU, Munich. An investigation regarding the NUANCE expression and 

distribution in skeletal muscle was also included in our studies. We used the N-terminus 

specific NUANCE monoclonal antibody (K20-478) for the staining. Microscopical analysis 

using the confocal microscope demonstrated that both Enaptin and NUANCE stained the 

nuclear membrane. In the case of Enaptin however, a sacroplasmic staining was also 

observed. This sarcoplasmic staining pattern was similar to data we obtained using the N-

terminal polyclonal Enaptin antibody. In contrast to Enaptin, NUANCE was found only in 

nuclei. 

 

Figure 3.20: Localisation of Enaptin in human muscle sections. Cryosections of human muscle were fixed

with 3% paraformaldehyde and permeabilised with 0.5% Trition X 100. (B) Enaptin is detected with the

Enaptin-SpecII antibody and the secondary FITC conjugated anti-rabbit antibody. Arrows shows the nuclear

membrane staining and arrowheads show the sacroplasmic staining. (C) The N-terminus specific monoclonal

Nuance antibody (K20-478) shows the presence of Nuance in nuclear membrane. A Cy3 conjugated anti-

mouse antibody is used as secondary antibody. The nucleus is stained with DAPI (A). (D) is a merged image.

Confocal microscopy was used to take the images. 
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3.7.2 Expression of Enaptin in cerebrum, cerebellum and hippocampus 

To investigate the localization of Enaptin in different parts of the brain, we used 

paraffin embedded sagittal sections from 20 days old mice. The sections were deparafinated 

with xylol and hydrated with varying percentage of ethanol, boiled in citrate buffer for  

 

Figure 3.21: Enaptin distribution in cerebrum, cerebellum and hippocampus. Sagittal sections of paraffin 

embedded 20 days old mouse brain were deparafinised and hydrated using xylol and varying percentage of

ethanol. The sections were incubated with the rabbit Enaptin-specII antibody and afterwards with FITC 

conjugated anti-rabbit secondary antibodies along with DAPI. For MBP detection, a rat MBP primary antibody

and a secondary anti-rat Cy5 antibody were used. Images were prepared by confocal microscopy. Figure A-D 

shows the cerebellum. In figure C, I represent the molecular layer, II represents the granular layer and the

arrowhead shows the purkinje cell layer. Figure E-G, Cerebral cortex. Figure H-J, hippocampal neurons (arrow).
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antigen retrieval, blocked and then incubated with the Enaptin-SpecII antibody. FITC labeled 

anti-rabbit secondary antibody was used along with DAPI. For detection of the myelin basic 

protein (MBP), which stains the myelinated axons, we used anti-MBP rat antibody and Cy5 

conjugated secondary antibody. In the case of cerebellum (A-D), strong staining of Enaptin 

was observed in the Purkinje cell layer, however a weak staining for Enaptin was also seen in 

the molecular and granular layers. In the cerebrum (E-G), Enaptin is distributed all over the 

cortex but seems to be accumulated around the nucleus and also in the cytoplasm. Strong 

expression for Enaptin could be also detected in the hippocampal neurons (H-J). 

3.7.3 Expression of Enaptin in the skin 

Skin is a stratified epithelium, were the epithelial cells undergo a dramatic 

differentiation process that results in a tough, water-impermeable outer covering that is 

constantly renewed. The epidermis is anchored to a basement membrane. Basal cells are 

mitotically active, but they loose this potential when they detach from the basement 

membrane and enter the outward path towards the skin surface. The layer of cells directly 

contacting the basement membrane, termed the basal layer, contains proliferating cells. 

During differentiation the epithelial  

 

Figure 3.22: Enaptin localization in the skin. Cryosections of human skin fibroblast were fixed in 3%

paraformaldehyde and permeabilised with 0.5% Triton X100. (B) Presence of Enaptin in the cytoplasm of

epidermal cells. The polyclonal Enaptin-specII is used as primary antibody and an anti-rabbit secondary

antibody conjugated with FITC. (C) Nuance distribution in the nuclear envelope as evidenced by staining with

mAb K20-478 directed against the Nuance N-terminus and an anti-mouse Cy3 labeled secondary antibody (D)

is a merge. The nucleus is stained with DAPI (A). Skin dermis and epidermis are labeled. The images were

obtained by confocal microscopy. E-G, a magnified image of the inset in figure B.  
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cells undergo apoptosis and loose their nuclei and become the dead layer of the epidermis, the 

stratum corneum (Alonso and Fuchs, 2003). Interestingly, in skin, lamin A/C are differentially 

expressed. In contrast to lamin C, which is present in all layers of the epidermis including the 

basal layer, lamin A is found only in suprabasal epithelial cells (Venables et al., 2001). Even 

though Enaptin is binding to a common region of lamin A and C (Mislow et al., 2002a), we 

could analyze whether there are any changes in Enaptin distribution if lamin A is absent. 

Therefore the analysis of the Enaptin pattern in a tissue where gene expression and the nuclei 

in their morphology undergo dramatic changes was very interesting. The questions were: Is 

Enaptin expressed in the epidermis? Do the levels of Enaptin change during keratinocyte 

differentiation? In order to address these questions we stained human skin cryosections 

(obtained from the Department of Dermatology, Uniklinik, Köln) with the Enaptin-SpecII 

antibodies (Figure 3.22). For comparing this pattern with NUANCE distribution, mAb K20-

478 was used. Our analysis showed that Enaptin was mainly in the cytoplasm and NUANCE 

was present in the nuclear membrane. This expression pattern is in agreement with the data 

obtained with the antibody recognizing Enaptin´s N-terminus (Padmakumar, 2004). In the 

epidermis, Enaptin appears to be enriched in the cytoplasm in the basal layer cells in 

comparison with the other epidermal cell layers.  
 

3.7.4 Expression of Enaptin in a 16-day-old mouse embryo 

To investigate the pattern of expression of Enaptin in mouse embryogenesis, we have 

used a sagittal paraffin section of a 16-day mouse embryo. Images were taken with a stereo 

microscope. Enaptin is present in several tissues and organs. Organs expressing Enaptin in 

elevated levels are the neopallial cortex, which is the precursor of cerebrum, the olfactory 

epithelium, tongue, heart, duodenum, lung and liver. 
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Figure 3.23: Enaptin expression in a mouse embryo at 16 day. A paraffin section of a mouse embryo at 

day 16 was deparaffinised using xylol and ethanol of varying percentage. Section was incubated with Enaptin-

SpecII antibody after quenching the peroxidase activity and blocking. It was then incubated with biotin

labelled anti-rabbit secondary antibody. Peroxidase is conjugated with an avidin-biotin system and DAB is 

used as the substrate for peroxidase. A shows the mouse embryo at day 16; B, neopallial cortex; C, tongue; D,

heart; E, duodenum. 
.7 Generation of GFP-fusion proteins containing the C-terminus of  

      Enaptin 
In the previous immunofluorescence experiments, we demonstrated that Enaptin 

ocalizes to the nuclear membrane in various cell lines. The fact that Enaptin has a 

ransmembrane domain at its C-terminus and the findings that the C-terminus of both Enaptin 

nd NUANCE are interacting with nuclear envelope proteins like lamin A/C, emerin, sun1 
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(Mislow et al., 2002; Libotte, 2004; Padmakumar, 2004), encouraged us to investigate the 

importance and function of Enaptin’s C-terminus for the nuclear membrane localization. Two 

green fluorescent protein (GFP) fusions of Enaptin, GFP-DN and GFP-Trans were made 

(Figure 3.24). One harbors the last two spectrin repeats of Enaptin including the tail region 

and the transmembrane domain (the mouse Enaptin sequence corresponds to amino acids 

8396-8749 of human Enaptin) and another one composed of only the tail region and the 

transmembrane domain. Previous studies with the highly homologous NUANCE protein have 

shown that such proteins display dominant negative effects, and displace the endogenous 

NUANCE protein from the nuclear membrane (Zhen et al., 2002). Therefore we wanted to 

examine the dominant negative effects of similar Enaptin GFP fusions. Since the C-terminal 

regions of Enaptin and NUANCE are highly similar (Figure 3.7), we postulated that those 

Enaptin proteins might affect the distribution of the endogenous NUANCE protein as well. 

The DNA fragments were amplified from a mouse image clone (BC054456) using primers 

with EcoRI and SalI restriction sites and cloned into the EGFPC2 vector. 

 
Figure 3.24: Schematic diagram of GFP fusions of Enaptin’s C-terminus. C-terminal segments of Enaptin 

were amplified from an image clone by PCR and cloned into EGFPC2. The oval represents GFP, hexagons 

represent spectrin repeats and the vertical blue bar stands for the transmembrane domain. The yellow oval 

depicts the perinuclear segment of Enaptin. The amino acid positions of Enaptin are given with regard to the start 

methionine in the longest isoform of Enaptin (AAN03486). TmNUANCE is a GFP fusion protein for human 

NUANCE (Libotte, 2004). 

3.8.1 C-terminal Enaptin GFP fusions localize to the nuclear membrane 

The plasmids coding for GFP-DN and GFP-Trans of Enaptin were transfected into 

C3H/10T1/2 cells and COS7 cells by electroporation. Cells were grown for 24 hours after 

transfection on cover slips and used for immunoflouresence studies using the anti-Enaptin-

SpecII antibody and for the detection of NUANCE mAb K49-260 which recognizes the C-

terminus.  
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Both Enaptin-GFP fusions were localized to the nuclear envelope (Figures 3.25, 3.26). 

In C3H/10T1/2, we observed a displacement of endogenous Enaptin from the nuclear 

envelope using the Enaptin-SpecII antibody, supporting the notion that these proteins can 

exert a dominant negative effect. Untransfected cells (arrowheads) displayed a nuclear 

staining of Enaptin. In COS7 cells expressing either GFP-DN or GFP-Trans Enaptin fusion 

 

Figure 3.25: The GFP-Trans protein behaves as a dominant negative protein and displaces the

endogenous Enaptin from the nuclear envelope.  C3H/10T1/2 mouse fibroblasts were transfected and fixed

with methanol. Enaptin-SpecII was used as primary antibody and anti-rabbit Alexa-568 secondary antibody.

Images were prepared by confocal microscopy. Arrows show transfected cells and arrowheads depict

untransfected cells.  
 
Figure 3.26: The GFP-C-terminal Enaptin fusion proteins can displace also NUANCE from the nuclear

membrane. The plasmids were transfected into COS7 cells and the cells were analysed after 24 hrs. Panels A-D

represent cells expressing GFP-DN and E-H show cells expressing the GFP-Trans protein. Arrows show

transfected cells and arrowheads show untransfected cells. For NUANCE, a mAb (K49-260) was used with an

anti-mouse Cy3 as secondary antibody. Images were made by confocal microscopy. 
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proteins we could also observe displacement of the endogenous NUANCE protein from the 

nuclear membrane (Figure 3.26, arrows). We also noted that, in transfected COS7 cells the 

NUANCE protein appears to be rapidly degraded, which is evident from the lack of staining 

from the cytoplasm or nucleoplasm. Further studies will be necessary including immunoblot 

analysis to verify this observation.   

The displacement of NUANCE prompted us to look for the localization of emerin in 

order to investigate whether the overexpression of the Enaptin GFP fusion proteins constructs 

has any influence on other inner nuclear membrane proteins. We have already found in our 

group that a C-terminal NUANCE GFP fusion construct (tmNUANCE Figure 3.24), which 

consists of only the transmembrane and the tail part, can displace emerin from the nuclear 

envelope (Libotte, 2004). In contrast, we could not see any such displacement of emerin in 

our GFP fusion constructs of Enaptin transfected cells (Figure 3.27). This may be due to the 

differences in the lengths of the Enaptin polypeptides used. The GFP-Trans construct of 

Enaptin has additional 86 amino acids upstream of the transmembrane domain in comparison 

to the NUANCE polypeptide, which harbors only the transmembrane domain and the C-

terminal tail (aa 6,852-6,883 of the human NUANCE). This region is highly conserved in 

NUANCE, Enaptin and klarsicht protein(Figure 3.7) and may possibly be important for the 

interaction of emerin with Enaptin and NUANCE.  

 

 

 
Figure 3.27: C-terminal Enaptin GFP fusions do not affect emerin. COS7 cells expressing GFP-DN (A-D)

and GFP-Trans (E-H) were fixed in methanol after 24 hours. Panels B and F display GFP transfected cells and

panels C and G show the nuclear localization of emerin in COS7 cells. Arrowheads highlight transfected cells.

Emerin was stained with a monoclonal emerin antibody, as a secondary antibody we used anti-mouse antibody

coupled to Cy3. Images were prepared by confocal microscopy. 
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3. 9 Lamin dependent localization of Enaptin 
3.9.1 Localization of Enaptin in Lamin A/C knockout cells 

Enaptin and NUANCE were shown to be interacting with lamin A/C and emerin 

(Mislow, 2002a). Therefore the localization of Enaptin in the nuclear envelope may be 

dependent on these proteins and correct localization of these proteins may be essential for 

Enaptin to stay in the membrane. In order to check this possibility, we have analyzed primary 

mouse fibroblasts derived from lamin A/C knockout mice (Figure 3.28). We detected Enaptin 

using a Nesprin-1 guinea pig antibody (see Figure 3.1). In wild type cells Enaptin and emerin 

were localized at the nuclear membrane with Enaptin also present in the cytosol and in the 

nuclear compartment. But in the lamin A/C -/- cells both the proteins were redistributed from 

the nuclear envelope. The lack of lamin A/C in the nuclear lamina also affects the shape of the 

nucleus. Emerin was still present to some extent in the nuclear envelope even though the 

majority of the protein diffused to the cytoplasm. Enaptin was completely displaced from the 

nuclear membrane and remained both in the cytoplasmic and nuclear compartment. 

 

 
Figure 3.28: Enaptin localization in lamin A/C-/- cells. Mouse primary fibroblast cells were fixed with 

methanol and incubated with Nesprin-1 guinea pig primary antibody and monoclonal emerin antibody. Anti-

guinea pig FITC antibody and Cy3 conjugated anti-mouse antibodies were used as secondary antibodies. Panels 

A and D show Enaptin and B and D show emerin. C and F are overlays. Images were taken with a laser confocal 

microscope. 
3.9.2 Dominant negative interference of Enaptin using a Xenopus lamin B construct 

The mislocalization of Enaptin in the lamin A/C-/- cells encouraged us to carry out 

further investigations concerning the lamin A/C dependent localization of Enaptin. The ability 
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of a mutated lamin B1 to displace lamin A/C has been demonstrated by Vaughan et al. 

(2001). This construct is a truncated Xenopus lamin B1, comprising amino acids 34-420. 

When transiently transfected, the GFP-lamin B∆2+ fusion protein aggregated and was found 

in nucleoplasmic granules (arrow in panel C, Figure 3.29) and both lamin A and lamin C were 

repoted to redistributed to these granules (Vaughan et al.,2001), thus inducing a dominant 

negative effect on lamin A/C. We investigated the distribution of Enaptin in C3H/10T1/2 cells 

where this particular mutated lamin B is overexpressed. Confocal images obtained showed a 

redistribution of Enaptin to nuclear granules of GFP-lamin B∆2+ (arrow in panal B, Figure 

3.29), similar to the reported redistribution of lamin A/C into nucleoplasmic granules. 

 

 
Figure 3.29: Localization of Enaptin in C3H/10T1/2 cells expressing a GFT-tagged lamin B mutant 

protein. (B) C3H/10T1/2 cells fixed in methanol and labelled with Enaptin-SpecII antibody with an Alexa 568 

anti-rabbit secondary antibody. (C) Cell expressing GFP-lamin B∆2+. (A) The nucleus is stained with DAPI. 

Images were obtained by confocal microscopy. Arrows indicate the protein clumps and arrowhead indicates the 

nuclear envelope localisation of Enaptin. 

 

3.9.3 Nuclear localisation of Enaptin in fibroblasts from laminopathy patients 

Redistribution of Enaptin from the nuclear envelope in lamin A/C-/- cells and GFP-

lamin B∆2+ transfected cells suggested that the localisation of Enaptin in the nuclear 

envelope might be lamin A/C dependent. Mutations in the LMNA gene, which encodes lamin 

A/C, cause several muscular dystrophies affecting different tissues, which are now classified 

as laminopathies. Particular mutations in the LMNA gene resulting in single amino acid 

substitutions lead to the autosomal dominant Emery-Dreifuss muscular dystrophy (AD 

EDMD) and Familial partial lipodystrophy (FLPD). Since the interacting region of lamin A/C 

with Enaptin was shown to be present in the rod domain of lamin A/C encompassing 

aminoacids 243-572 (Mislow et al., 2002, Libotte, 2004), it was interesting to investigate the 

localisation of Enaptin in mutated lamin A/C expressing cells. We obtained skin fibroblasts 

from patients affected with these diseases and analysed the localisation of Enaptin in 

comparison with control cells. We analysed cells with 3 mutations in lamin A/C, namely 
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R453W, R249Q, and R401C, which cause AD EDMD. We observed that Enaptin appears to 

be redistributed to the cytoplasm in the mutant cells in comparison with control cells, which 

did not have cytoplasmic staining.  

  
Figure 3.30: Enaptin distribution in fibroblasts obtained from patients with mutations in the lamin A/C 

gene. Cells were fixed in methanol and stained with Enaptin-SpecII followed by FITC conjugated anti-rabbit 

secondary antibody. Lamin A/C was detected with Jol2 antibody followed by anti-mouse Cy3 labeled secondary 

antibody. Nuclei were stained with DAPI and images were taken with a confocal microscope. 

 

3.10 Distribution of Enaptin during myoblast differentiation  

Nuclear lamina proteins such as lamin A were demonstrated to be reorganised during 

muscle differentiation (Muralikrishna et al., 2001). Also Favreau et al. (2004) showed that, 

when a mutant lamin A is expressed in C2C12 myoblast cells, it could inhibit the in-vitro 

differentiation of myoblasts. Our western blot and immunofluorescence analysis in skeletal 
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muscle showed that Enaptin was expressed in skeletal muscle and (Zhang et al., 2001) 

detected a C-terminal isoform of Enaptin (Nesprin-1α) while searching for vascular smooth 

muscle differentiation markers. Therefore we were interested to know the expression pattern 

of Enaptin during muscle differentiation. Primary human myoblasts (MB50) were serum 

starved for differentiation and fixed with methanol on different days after serum starvation. 

As a marker for myoblast differentiation, cells were also stained with antibodies against 

skeletal muscle myosin. Enaptin was detected with the Enaptin-SpecII antibodies in the 

undifferentiated cells as well as in the differentiated myotubes. During differentiation, 

myoblast cells fused to form multinucleated myotubes.  

 
 

Figure 3.31: Upregulation of Enaptin during myoblast differentiation. MB50 
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human myoblast cells were changed to a medium with 2% horse serum to induce 

differentiation. Enaptin was detected using an Enaptin-SpecII antibody and 

skeletal muscle myosin was detected using monoclonal antibody specific to 

myosin. Cells were fixed with methanol and images obtained with confocal 

microscopy. Differentiated cells formed multinucleated myotubes (E-I). 

Arrowhead points to a group of nuclei in a myotube. Panel I is a phase contrast 

icture of differentiated myoblasts. A-D, undifferentiated myoblasts. 

We observed that the cells, which formed the myotubes by fusing together, had a very 

ntense staining for Enaptin in the nuclear envelope when compared to undifferentiated cells. 

t appears that during differentiation the expression of Enaptin is upregulated implying a 

ossible role for Enaptin during muscle differentiation.  
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3.11 Generation of an Enaptin mouse mutant 
Gene targeted mice are powerful tool for studying the functional aspects of a protein 

and its link to human diseases. Enaptin is a novel protein with a proposed function in nuclear 

positioning as indicated from the data obtained for ANC-1, an orthologue of Enaptin in C. 

elegans (Starr, 2002). Mutations in ANC-1 cause a defect in nuclear positioning and 

anchorage. From the analysis of a Drosophila orthologue of Enaptin, MSP-300 (Rosenberg-

Hasson, 1996) it is known that the protein contributes to the integrity of the somatic and 

visceral muscles during periods of significant morphogenetic changes. A mutant of MSP-300 

has a defect in muscle development and is embryonic lethal. Enaptin is shown to interact with 

lamin A/C and emerin, two inner nuclear membrane proteins forming the nuclear lamina 

(Mislow et al, 2002a). Mutations in lamin A/C and emerin cause a novel group of human 

disease named as laminopathies (Worman, 2002). As it will be interesting to study whether 

Enaptin has any role in the pathogenesis of these diseases we decided to generate a mouse 

model in which the Enaptin gene is ablated. 

 

3.11.1 Analysis of the structure of the mouse Enaptin gene  
 

The Enaptin gene is located on mouse chromosome 10. Since Enaptin is a huge gene 

and has several known isoforms, it was not possible to make a strategy to knockout all the 

isoforms with a single targeting construct. Enaptin has an acting-binding domain at the N-

terminal end and since the actin-binding property of Enaptin may contribute significantly to 

its functions, we decided to target the isoforms containing the actin-binding domain. We had 

previously constructed the cDNA of Enaptin-165, a short isoform of Enaptin in mouse which 

has the ABD domain, we analysed the gene structure of the Enaptin-165 in detail. The 

analysis with mouse genomic sequence revealed that this Enaptin-165 has 32 exons and the 

starting codon ATG is located in the second exon. The exons and their intron boundaries are 

given in Table 3.3. We decided to target the 3rd exon by inserting a neomycin cassette in the 

middle of exon 3 so that the intron-exon transition is ablated and the transcription will come 

to an end. Since the first ATG is not ablated, the transcription will start but will come to a 

stop after the 3rd exon. The possible acceptor from exon 2, in case of a splicing to form an in-

frame protein, will be to exon 10. But such a spliced varient of Enaptin will be lacking the 

two calponin homology domains which may severely affect the functional actin-binding 

property of the translated protein. 
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Table 3.3: Intron-exon boundaries and sizes of introns and exons of the mouse enaptin-165 isoform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: Schematic representation of mouse Enaptin-165. Enaptin-165 has 32 exons and introns of 

varying sizes. The starting codon is located in the 2nd exon and a stop codon in the 32nd exon. The positions of  

the calponin homology domains (CH1 and CH2) are indicated. When targeted, a neomycin cassette will be 

inserted in exon 3 disrupting the transcription downstream. 

 

Prior to the generation of a targeting construct, 10 kb intronic sequences upstream and 

down stream of the exon 3 were tested against mouse genomic database to exclude the 

presence of any repetitive sequence or duplicated sequence. The analysis found no repetitive 

sequence in the intended part of vector generation. 
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3.11.2 Construction of the targeting vector (Enaptin KO) 
For the vector construction, genomic DNA was isolated from IB10 mouse embryonic 

stem cells of the SV126 strain. A schematic diagram of the target vector is given in Figure 

3.33. For the 5’arm, a 2 kb genomic fragment at the 5’ side of the 3rd exon including a short 

stretch of bases from the 3rd exon itself was amplified with primers which have restriction 

sites SalI and EcoRV, using a Pfu Turbo DNA polymerase and cloned into a Topo Blunt 

vector. A 1.8 kb EcoRV-NotI fragment containing the neomycin resistant cassette was cloned 

into pBluescript, which was used further as the vector backbone. The 5’arm was cloned into 

Neo-pBluescript using EcoRV and SalI with SalI to the 5’ side. The 3’ arm was designed 

avoiding a stretch of unknown sequence of approximately 1 kb (blue block in the figure) 

downstream of exon 3. The 3’ arm was amplified from the ES cell genomic DNA with 

primers carrying SacII and NotI restriction sites with SacII to the 3` side of the 3’ arm and 

cloned first into a TopoBlunt vector. The 3’ arm was retrieved from the TopoBlunt using NotI 

and SacII and ligated to the 5’arm-Neo-pBluescript. All the fragments were sequenced and 

the cloning directions were confirmed. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
 
 
 
 
 
 
 

 

 

igure 3.33: Schematic representation of the targeting vector and recombination events. 
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Figure 3.34: Southernblot of 

mouse genomic DNA for testing 

the genomic sequence and the 

probes. The mouse genomic DNA 

was digested with EcoRI, EcoRV, 

NotI and NdeI enzymes and 

resolved on a 0.7% agarose gel and 

blotted to Zetaprobe membrane. 

5’probe and 3’probe labeled with 32P 

were used for hybridisation. 

 
Two external probes were generated which could be used for the screening of clones 

nd also for checking the recombinant clones. These probes were tested for the genomic 

equence digestion pattern and for the specificity of the probes. Southern blotting after 

igestion of genomic DNA with different enzymes has given the expected pattern of bands. 

robes detected specifically single bands at the expected sizes. 

.11.3 ES cell transfection 

The target vector was linearised with SalI and 40 µg of purified plasmid DNA were 

ransfected into ES cells from both the IB-10 and R-1 lineage. The clones were selected using 

418 for a period of 8 days after transfection. Neomycin resistant clones were picked and 

rown in 24 well plates. One part of the cells was frozen and another part used for isolating 

enomic DNA. EcoRI was chosen for digesting the genomic DNA. The expected sizes of the 

signals with both wild type and 
recombinant DNA are given in the Table. 
 
Table 3.4 Sizes of wild type and knockout 

bands with 5’ and 3’probes when digested with 

EcoRI 
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3.11.4 Screening of recombinant clones 
We have done three ES cell transfections and more than 500 clones which showed 

resistance to neomycin were picked and analysed with Southern blotting. Preliminary 

screening was done with the 5’ probe and out of 500 clones, only two clones gave the 

recombinant band of 2.8 kb in addition to the wild type band of 11 kb.  
 
Figure 3.35: Possible recombinant clone 3089. 

Genomic DNA was isolated, digested with EcoRI 

and the fragments resolved in a 0.7% agarose gel. 

After blotting to Zeta probe membrane, 

hybridization was done with 32P labeled 3’and 5’ 

probes. 

 
 
 
 
 
 
 
 

 
Clones no 3089 and 3196 were selected and probed with the 3’ probe. Only clone no 

3089 has given an expected recombinant band of the size 6.7 kb with the 3’ probe. These 

clones have to be analyzed further for the recombination events with different enzymes and 

with the neomycin probe to exclude the random integration into other sites.
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4 Discussion 
4.1 Enaptin is a giant protein of the α-actinin superfamily 
 

Actin is one of the most conserved and ubiquitous proteins in nature. The actin 

cytoskeleton system is not only abundant but also highly complex and is considered to be 

very old in the evolutionary sense. Actin and all its associated proteins constitute more than 

25% of the total protein in nonmuscle cells and 60% in muscle cells. More than 48 different 

classes of actin-binding proteins were identified and categorized (Kreis and Vale, 1999). The 

α-actinin family of F-actin cross-linking proteins includes a range of molecules that share 

homologous actin-binding domains (Fabbrizio et al., 1993) allowing them to cross-link actin 

filaments by the formation of dimers or trimers. The family includes spectrins, 

fimbrins/plastins, dystrophins (Hammonds, 1987), gelation factor/ABP-120 from 

Dictyostelium (Noegel et al., 1989), and members of the filamin subfamily (Hartwig, 1995). 

The characteristic feature of this family of proteins is an N-terminal actin-binding domain 

(ABD), which is composed of two calponin homology domains. Calponin homology domains 

are actin-binding domains of around 100 residues in length, which were first characterised in 

calponin. Calponin is a protein that plays a major role in smooth muscle contraction (Strasser 

et al., 1993). 

 We have identified Enaptin while searching for novel actin-binding proteins of the α-

actinin type. Enaptin (greek; enapto: to attach) was initially identified as a 165 kDa protein 

containing a functional N-terminal ABD and a coiled-coil rod domain (Braune, 2001). Zhen 

et al. (2002) characterised a giant actin-binding protein called NUANCE that connects the 

nucleus to the actin cytoskeleton. With the cloning of Enaptin, a new member is added into 

this family of proteins, which may connect the nucleoskeleton and the actin cytoskeleton. The 

longest open reading frame (ORF) of Enaptin is even bigger than the ORF of NUANCE. 

Enaptin has 147 exons for its longest isoform whereas NUANCE has 116 identifiable exons. 

Enaptin has so far eight identified isoforms while five isoforms have been identified for 

NUANCE, suggesting a complex gene structure for these proteins. Sequence analysis showed 

that Enaptin has an N-terminal ABD followed by a long coiled-coil domain containing 50 

spectrin like repeats and a transmembrane domain at its C-terminus. Both proteins display a 

similarity to dystrophin (Blake et al., 1996), a large membrane associated protein expressed in 

muscle and brain and utrophin, which is present at the sarcolemma of skeletal muscle during 

fetal development. In our ABD domain phylogenetic tree analysis, Enaptin and NUANCE 

form a distinct sub-family. The ABDs of these two proteins are closer to dystrophin and 
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utrophin than other members of the α-actinin superfamily. The 44 amino acid long serine rich 

linker between the CH1 and CH2 domains found in Enaptin may provide more flexibility to 

the globular ABD domain as suggested for utrophin, where the extended conformation of the 

ABD gives more flexibility to the molecule (Keep et al., 1999). A recently identified brain 

protein, calmin (Takaishi et al., 2003), has also a similar stretch of amino acids between the 

calponin homology domains. 

 The rod domain of Enaptin contains 50 spectrin like repeats (SR), where the coiled-

coils are predicted. Spectrin repeats are typically 100 aa residues in length and in Enaptin, 

they are arranged as groups with several breaks in between them. These breaks may provide 

the molecule more flexibility by acting like a hinge (Figure 3.6). The long coiled-coils can 

form dimers or oligomers as had been demonstrated for spectrin and α-actinin (Chan and 

Kunkel, 1997; Puius et al., 1998). The dimerisation of two spectrin repeats at the C-terminus 

of Enaptin has been recently demonstrated (Mislow et al., 2002a). It is probable that out of 

the 50 spectrin repeat domains, there could be more self-interacting regions in Enaptin, 

forming dimers or oligomers. Such molecular interactions would provide structure and 

support for the protein itself. Spectrin repeats have been implicated additionally in cell 

membrane and organelle membrane interactions. First identified as the supporting 

infrastructure of the plasma membrane of erythrocytes, spectrin is now recognized as the most 

central player in a ubiquitous and complex linkage between membranes and the cytosol (De 

Matteis and Morrow, 2000). Overall, they are considered as scaffolding molecules, which 

organize and stabilize the cytoskeleton. Whether NUANCE and Enaptin are the nuclear 

scaffolders of the nuclear membrane needs to be seen.   

 

4.2 Enaptin is a nuclear membrane protein 
 Our immunofluorescence data from primary fibroblasts using the Enaptin-specII 

antibodies and our transfection studies with C-terminal Enaptin constructs demonstrated the 

presence of Enaptin at the nuclear envelope. Thus together with NUANCE, both form a novel 

group of α-actinin family actin-binding proteins, which localise to the nuclear envelope in 

higher eukaryotes. Enaptin has seven nuclear localisation signals (NLS) (Figure 3.3) 

distributed all over the protein, which could mediate the nuclear localisation of the protein. In 

order to study in more detail and identify the regions implicated, we performed a domain 

analysis of the highly conserved Enaptin C-terminus using various GFP fusion proteins. Our 

studies suggest that the C-terminal klarsicht like domain (Figure 3.7) is sufficient for the 

nuclear membrane localization of Enaptin which is evident from the proper nuclear membrane 
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localisation of our GFP constructs (Figure 3.21), which interestingly are lacking a nuclear 

localization signal. It could be possible that the anchoring of the C-terminal GFP constructs to 

the nuclear envelope is mediated by its interaction to other nuclear membrane proteins. 

Details of such interactions are emerging from work performed in the C. elegans field. UNC-

84 is an inner nuclear membrane protein in C. elegans, which has an important role in the 

nuclear migration and nuclear anchorage (Starr and Han, 2002). The presence of UNC-84 is 

necessary for the proper localization of ANC-1 (the worm orthologue of Enaptin/NUANCE) 

at the nuclear envelope. While the biochemical details of the ANC-1/UNC-84 interaction 

were not known, recently in our lab, we have shown that the conserved C-terminal tail 

domain of Enaptin is interacting directly both in vitro as well as in vivo with SUN-1 

(Padmakumar, 2004). SUN-1 is the mammalian homologue of C. elegans’s UNC-84. The 

highly conserved C-terminus of Enaptin displays strong homology to the klarsicht protein. 

Klarsicht in Drosophila (Mosley-Bishop et al., 1999) is required for nuclear migration of 

differentiating cells in the Drosophila eye. Along with klarsicht, Enaptin and NUANCE can 

be classified as type II integral membrane proteins (Kutay et al., 1993). The discrete NLS 

throughout the molecule may be necessary for the nuclear localisation of various isoforms 

lacking the transmembrane domain. In accordance with such a scenario, the Enaptin-165 

isoform, which lacks a transmembrane domain is found predominantly in the nucleoplasm in 

transfection studies carried out in COS7 cells (Padmakumar, 2004). 

Interestingly, beside the presence of Enaptin at the nuclear membrane we have 

observed a nucleoplasmic staining of Enaptin in myoblasts and neuroblastoma cells. Until 

now however, very little is known about the isoform diversity of Enaptin and it is not clear 

what domain architecture the various nucleoplasmic, nuclear envelope and cytoplasmic 

splicing forms has. Interestingly we have also demonstrated a nuclear membrane localisation 

for Enaptin with polyclonal antibodies designed against Enaptin’s ABD (Padmakumar et al., 

2004). So it could be inferred that a long isoform may exist with an ABD and transmembrane 

domain. The nucleoplasmic and cytoplasmic stainings suggest that splicing variants of 

Enaptin can exist which includes the last two spectrin repeats used for the antibody 

production, but lacking the transmembrane domain. Even though we could never detect such 

a splicing form from the sequence analysis, a Golgi localization of Enaptin has been reported 

with an antibody directed against a spectrin repeat domain in the middle region of Enaptin 

(Gough et al., 2003). Such an isoform is also postulated for NUANCE (Zhen et al., 2002). 

Membrane proteins like calmin and lamina-associated polypeptide-2 (LAP2) also have 

soluble splicing variants (Dechat et al., 2000; Ishisaki et al., 2001) lacking the transmembrane 
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domain. In the case of the LAP2 family of proteins, four isoforms (β,γ,δ,ε) exist with the 

transmembrane domain and LAP2α and LAPζ are isoforms without a transmembrane 

domain. LAP2β is a type II integral protein of the inner nuclear membrane, which binds to 

lamin B and the chromosomal protein BAF, and may link the nuclear membrane to the 

underlying lamina and provide docking sites for chromatin. LAP2α is a nonmembrane protein 

associated with the nucleoskeleton and may help to organize higher order chromatin structure 

by interacting with A-lamins and chromosomes.  

The localisation of Enaptin in other cellular compartments beside the nuclear 

membrane suggests that the protein may also have additional roles inside the cell besides its 

known actin-nuclear membrane tethering function. 

 The nuclear membrane is composed of two membranes, the outer nuclear membrane, 

which is continuous with the rough ER, and the inner nuclear membrane. Our observations 

from the immunofluorescence and transfection studies suggested the presence of Enaptin at 

the nuclear membrane. However the exact topology of Enaptin at the nuclear membrane still 

remains uncertain with the absence of immunogold labelling studies. Our digitonin 

experiments prove the presence of Enaptin at the outer nuclear membrane. NUANCE (Zhen et 

al., 2002) and Enaptin form a novel class of nuclear envelope proteins localizing to the outer 

nuclear membrane. Most nuclear membrane proteins characterized so far are positioned in the 

inner nuclear membrane like emerin (Bione et al., 1994), Man1 (Lin et al., 2000), LAP1 and 

LAP2 (Foisner and Gerace, 1993) etc. Nesprin 1α, a splicing variant of Enaptin, has been 

shown to be associated with the inner nuclear membrane using immunogold labelling (Zhang 

et al., 2001). Taken together, we presume that Enaptin is present in both inner and outer 

nuclear membranes. One scenario could be that the long Enaptin isoforms that contain an 

ABD are located at the outer nuclear membrane whereas the smaller C-terminal isoforms 

(Nesprin 1α, β) are located in the inner nuclear membrane. Both Enaptin variants are retained 

at the membrane due to their transmembrane domains and to the presence of the highly 

conserved C-terminal tail which locates into the lumen in between the two nuclear 

membranes, where it can interact with other inner nuclear membrane proteins.  

 Disruption of the F-actin cytoskeleton using latrunculin-B showed that the nuclear 

membrane localization of Enaptin remained undisturbed. The existence of Enaptin isoforms 

without the actin-binding domain and the usage of a C-terminus specific antibody in this 

experiment make it complicated to explain whether the full length Enaptin isoform still 

remains in the nuclear envelope. It is possible that the shorter isoforms, which can be detected 

with the C-terminal Enaptin-SpecII antibody, still remain in the nuclear membrane while the 
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longest one, which has the actin-binding domain, might have been affected by the 

depolymerisation of the actin cytoskeleton. However more experiments with cell lines, which 

express only the full length Enaptin transcript need to be done to address this issue. We have 

also observed a shrinkage of the nucleus upon latrunculin-B treatment, suggesting a role of 

the actin cytoskeleton in the maintenance of nuclear integrity which could be mediated 

through Enaptin and NUANCE.  

 

4.3 Expression and tissue distribution of Enaptin and its isoforms 
Enaptin is widely expressed according to our tissue expression array, but the level of 

expression varies in different tissues. The complementary expression of Enaptin and 

NUANCE probably hints to the functional importance of these proteins. Dystrophin and 

utrophin are homologous genes that are expressed apparently in a reciprocal manner and may 

be co-ordinately regulated (Blake et al., 1996). During embryonic development, utrophin is 

present in the sarcolemma and dystrophin replaces it in the adult skeletal muscle while 

utrophin is redistributed to the neuromuscular junction. At present little is known about the 

expression profile of Enaptin/NUANCE during mouse development. MSP-300, the 

Drosophila orthologue of Enaptin has been reported to be contributing to the integrity of the 

somatic and visceral muscle during embryonic muscle development (Rosenberg-Hasson et al., 

1996). Higher levels of Enaptin in tissues like neopallial cortex, muscles in the tongue and 

heart are evident in staining of 16-day mouse embryo. More studies have be conducted to find 

out the role of Enaptin/NUANCE during development.  

The Enaptin expression dominates in brain, muscle and heart whereas NUANCE is 

present there in trace amounts. Stainings of various tissue sections also hint the different 

subcellular localizations of Enaptin and NUANCE. In skeletal muscle, NUANCE 

preferentially stains the nucleur envelope while Enaptin stains both the nuclear membrane and 

the sarcolemma. Our ABD antibody gives only the sarcoplasmic staining, which partially 

colocalises with desmin (Padmakumar, 2004). Eventhough we have not done co-staining 

experiments with the Enaptin-specII antibody and with desmin antibodies, it appears that the 

sarcoplasmic staining may be along the Z discs. For a long time a candidate protein has been 

speculated, which can connect the nucleoplasm to the sarcolemma for explaining the 

phenotypes in laminopathies (Nikolova et al., 2004; Zhen et al., 2002). Our stainings may 

suggest that Enaptin could be an ideal candidate providing such tethering function. The strong 

signals in cerebellum and cerebrum in the expression array are in well agreement with the 

immunofluorescence data obtained. However, in both the cases Enaptin appears to be 
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enriched in the cytoplasmic part of the cell body rather than in the nuclear membrane. 

Interestingly, we also could not observe a nuclear membrane staining in the N2A 

neuroblastoma cells. A variety of transcripts of Enaptin were obtained in brain in our western 

and northern blots analysis. Those data suggest the presence of various Enaptin isoforms in 

the brain. Interestingly, an N-terminal isoform of Enaptin (CPG2) has been studied in relation 

to the plasticity in adult cortex and hippocampus (Nedivi et al., 1996). CPG2 has been found 

to be developmentally regulated in the rat brain and also found to be modulated in a light 

inducible manner. Taken together, the isoforms of Enaptin may have important functions in 

brain that could be different from the role the protein has in other tissues. Such a diversity in 

function is also attributed to dystrophin where the lack of it causes cognitive impairment in 

DMD brain (Lidov et al., 1990); (Blake and Kroger, 2000). Interestingly, a C-terminal 

isoform of Enaptin (Syne-1) was reported to be associated with the nucleus in the 

neuromuscular junctions where it may interact with the muscle specific tyrosine kinase 

(MuSK) (Apel et al., 2000). MuSK is demonstrated to have role in postsynaptic 

differentiation (Valenzuela et al., 1995). 

Northern blot analysis of brain RNA using probes against the ABD and the CPG2 regions 

of Enaptin showed three different species, >14, 5.5 and 10 kb, whereas RNA from skeletal 

muscle gave a band at around 6.5 and >14 kb using the CPG2 probe. The 14-kb band detected 

in northern blotting could give rise to the 400 kDa protein detected in brain, skeletal muscle, 

lung, stomach, small intestine and in COS7 cells, the 5.5-kb message to the 165 kDa protein 

and the 10-kb message to the 270 or 260 kDa protein in brain, heart and kidney homogenates. 

The detection of Enaptin transcripts in these tissues was consistent with our tissue expression 

array data. However, we failed to detect the full-length Enaptin of 1014 kDa in northern and 

western blot analysis probably due to technical limitations attributed to its gigantic size in 

conjunction with a low abundance. Alternatively, the giant Enaptin transcript may also be 

developmentally regulated or enriched in cell lines that have not been included in the present 

study. Spectrin repeats containing molecules are known to mediate membrane cytoskeletal 

interactions. The increased complexity of the brain as compared to muscle tissues may require 

various Enaptin isoforms that differ in their domain composition and function.  

 

4.4 Lamin dependent localization of Enaptin 
 The importance of the lamin A/C network in the proper anchoring of Enaptin to the 

nuclear membrane is evident from our experiments using lamin A/C -/- cells. Nuclear lamins 

are type V intermediate filaments and they form a network of filaments underlying the inner 
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nuclear membrane, providing shape and rigidity to the nucleus forming a molecular interface 

between the nuclear membrane and the chromatin (Stuurman et al., 1998). Several inner 

nuclear membrane proteins are thought to be interacting with lamin A/C (Zastrow et al., 

2004). The short isoform of Enaptin, nesprin 1-α , and NUANCE were shown to interact 

directly with lamin A/C in vitro as well in vivo (Mislow et al., 2002a; Libotte, 2004). Our 

results show that this interaction is essential for the retention of Enaptin in the nuclear 

membrane. Our transient tranfection studies in COS7 cells overexpressing the GFP-Trans 

fusion protein showed that, the protein can however localise properly to the nuclear 

membrane, even though it does not contain the demonstrated lamin A/C binding domains of 

Enaptin. The localisation of the Enaptin GFP-Trans fusion protein could be facilitated by the 

transmembrane domain and the interaction of the C-terminal tail region to other inner nuclear 

membrane proteins in the perinuclear space. As evident from Figure 3.23, emerin is also 

displaced in the lamin A/C -/- cells. It has been shown that UNC-84, a protein in the inner 

nuclear membrane, also depends upon lamin A/C for its localization (Lee et al., 2002). UNC-

84 has been postulated to interact with ANC-1, an orthologue of Enaptin in C. elegans (Starr 

and Han, 2003). The mammalian homologues of UNC-84 are the SUN proteins (Hodzic et al., 

2004) and recently they were shown to interact with the tail region of Enaptin in the 

perinuclear space (Padmakumar,2004). The mislocalisation of the SUN-1 proteins in the inner 

nuclear membrane of the lamin A/C-/- cells may eventually lead to the destabilisation and 

degradation of Enaptin from the nuclear membrane. Interestingly, interaction of Enaptin with 

lamin A/C was strong enough to redistribute the endogenous Enaptin protein to the mutated 

lamin-B GFP∆2+ nucleoplasmic granules (Figure 3.29) and emerin is retained in the 

endoplasmic reticulum of cells over-expressing these constructs (Ellis et al., 1997; Vaughan 

et al., 2001). It appears that many complex protein interactions may exist in the nuclear 

lamina and the strength of these interactions may vary according to the proteins involved. 

The dominant negative effect of Enaptin-GFP fusion protein on endogenous Enaptin 

and NUANCE suggests that the interaction partners or interaction sites of both these proteins 

are the same. These interaction sites may be limited in number and the over-expression of the 

small Enaptin-GFP dominant negative fusion proteins breaks the equilibrium of networking 

of these proteins by competitive binding to the interacting partners, causing the endogenous 

Enaptin or NUANCE to displace from the nuclear envelope. We could not observe any 

mislocalised NUANCE in the cytoplasmic or nuclear compartments and it appears that 

NUANCE gets degraded fast once it is displaced from the nuclear membrane. In comparison 

with the tmNUANCE-GFP fusion protein (Libotte, 2004), the Enaptin-GFP-Trans fusion 
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protein has an additional 86 amino acids (Figure 3.24). Previously we have demonstrated in 

our group (Libotte, 2004) that tmNUANCE can displace emerin from the nuclear envelope in 

contrast to the Enaptin-GFP-Trans fusion protein transfected cells, where emerin is properly 

localized in the nuclear envelope. Our observation with the Enaptin-GFP-Trans fusion protein 

suggests the importance of the 86 amino acids region between the last spectrin repeat and the 

transmembrane domain for the retention of emerin in the nuclear envelope. Mislow et al. 

(2002) showed that emerin is interacting with the last seven spectrin repeats before the 

transmembrane domain of nesprin-1α (C-terminal isoform of Enaptin). The emerin binding 

domain was suggested to be present throughout these spectrin repeats with increase in the 

binding affinity of emerin with increase in the number of spectrin repeats. Eventhough the 86 

amino acids region between the last spectrin repeat and transmembrane domain was not 

included in this study, our results suggest that these short stretch of amino acids could also 

contribute significantly towards the interaction of emerin to Enaptin.  

 

4.5 Enaptin and Laminopathies 
Laminopathies represent a group of human hereditary diseases that arises through 

mutations in genes encoding nuclear lamina components and lamina associated proteins 

(Mounkes et al., 2003). At least seven diseases were described that are caused by mutations in 

the LMNA gene (Ostlund and Worman, 2003). Our analysis of the fibroblast cells from 

patients having mutations in the LMNA gene showed a partial mislocalisation of Enaptin into 

the cytoplasm. All the three mutant cells analysed, having missense mutations in position 

R401C (Hanisch et al., 2002), R249Q (Ki et al., 2002), and R453W (Holt et al., 2003), were 

in the rod domain of lamin A/C where the putative nesprin-1α interaction site was mapped 

(Mislow et al., 2002a; Zastrow et al., 2004). The mislocalised Enaptin appears to be diffused 

in the cytoplasm which was never observed in the control cells. A homozygous missense 

mutation Y259X of LMNA causing type 1B limb-girdle muscular dystrophy (LGMD1B) is 

reported to have mislocalised emerin and nesprin1α (Muchir et al., 2003) in to the 

endoplasmic reticulum. The partial cytoplasmic redistribution of Enaptin may be the result of 

a less stable nuclear lamina formed by mutated lamin A/C proteins. 

 

4.6 Possible functions of Enaptin 
The cloning of D. discoideum interaptin provided the first example of a potential 

linker that could directly tether the nucleus to the actin cytoskeleton (Rivero et al., 1998). 

Until then, most of our knowledge regarding nuclear positioning was focused and based upon 
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the role of microtubule motors and the microtubules themselves (Reinsch and Gonczy, 1998). 

The role of the actin cytoskeleton in nuclear migration and positioning was unequivocally 

demonstrated in genetic studies in C. elegans. Mutations in ANC-1 (nuclear anchorage 

defective) resulted in irregular spacing and clumping of nuclei (Starr and Han, 2002). Similar 

to interaptin, ANC-1 is composed of an N-terminal actin-binding domain and a C-terminal 

transmembrane domain, which are separated in contrast to interaptin’s coiled-coil rod by 

spectrin repeats. ANC-1, together with Drosophila MSP-300 protein (Rosenberg-Hasson et 

al., 1996) and the mammalian syne-1, and NUANCE proteins (also known as nesprins) define 

a novel family of nuclear dystrophins that are related by sequence, domain composition and 

may be involved in nuclear architecture and organization.  

  Actin has often been observed in isolated nuclei and for a long time. This has been 

attributed to the cytoplasmic contamination or to the ability of actin to move freely between 

cytoplasm and nucleus (Olave et al., 2002). More recently this view has changed and 

functional roles for nuclear actin are emerging with the finding of actin-related proteins and of 

actin-associated proteins in the nucleus and of nuclear myosin (Pederson and Aebi, 2002). 

The identification of further nuclear ABD containing proteins underlines an active role of the 

actin nucleoskeleton in nuclear physiology. 

Our data show a profound enrichment of Enaptin at the nuclear envelope of 

differentiated myoblasts and may suggest a role for Enaptin in myoblast differentiation. It has 

been reported recently that a mutant form of lamin A could prevent the in-vitro differentiation 

of C2C12 myoblasts, underlining the importance of nuclear lamina and associated proteins in 

muscle differentiation and in pathogenesis of laminopathies (Favreau et al., 2004). We could 

not observe the intranuclear foci localisation or redistribution of Enaptin into the cytoplasm as 

has been suggested previously (Mislow et al., 2002b; Zhang et al., 2001). Instead, our 

observation was closer to the pattern observed for syne-1 at the nuclei in the neuromuscular 

junction (Apel et al., 2000). We could detect Enaptin at the nuclear envelope and nucleoplasm 

in the myoblasts and it appears to be enriched at the nuclear membrane during differentiation 

from myoblasts to myotubes. The nuclear lamina is thought to have regulatory role in gene 

expression during differentiation of myocytes and more work has to be done to clarify what 

kind of role Enaptin may have in such a scenario. 

Enaptin and NUANCE are not only related by sequence to each other but they also 

seem to have similar functions. While C. elegans and Drosophila have a single gene each, 

ANC-1 and MSP-300 respectively, mammalians have two genes Enaptin and NUANCE of 

similar nature. Why do mammals contain then two similar giant genes? One would assume 
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that this is a precaution of nature to preserve vital and important genes. It is however 

interesting to note that this is not a specifíc feature attributed only to NUANCE and Enaptin 

genes. The mammalian spectraplakin genes ACF7 and BPAG1 (Fuchs and Karakesisoglou, 

2001) or the dystrophin/utrophin genes (Deconinck et al., 1997) are such examples. 

Preliminary data however suggests that while NUANCE and Enaptin are similar in design, 

they harbour differences in regard not only to their expression pattern, but also to the isoform 

diversity and the subcellular distribution of their isoforms. 

Our studies using the embryonic stem cell technology could shed some light on the 

potential involvement of Enaptin in human neuromuscular diseases and also whether Enaptin 

and NUANCE correspond to the biological Atlas of the cell, holding up and keeping the 

nucleus (universe) in position. Revealing their function is still a great challenge since they are 

molecules of complex nature and the largest ones of the α-actinin super family. 
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5 Summary 
 

The α-actinin superfamily is the largest of the F-actin cross-linking protein families 

Members of this superfamily have an actin-binding domain (ABD) consisting of a pair of 

calponin homology domains. We have cloned and characterized a novel giant actin-binding 

protein called Enaptin, which belongs to this family. Together with NUANCE, Enaptin forms 

a group of giant proteins that associate with the F-actin cytoskeleton as well as the nuclear 

membrane. Enaptin is composed of an N-terminal α-actinin type ABD, followed by a long 

coiled-coil rod and a transmembrane domain at the C-terminus. We have cloned and 

assembled a cDNA for Enaptin and found that the longest open reading frame of Enaptin 

encompasses 27,669 bp and predicts a 1014 kDa protein. The human Enaptin gene located on 

6q23.1-25.3 spreads over 515 kb and gives rise to several splicing isoforms (Nesprin-1, 

Myne-1, Syne-1, CPG2). Northern blot analysis identified a >14 kb transcript and an 

additional transcript of 5.5 kb in brain. Using a polyclonal antibody against the ABD of 

Enaptin we detected a protein of approximately 400 kDa in tissues like brain and skeletal 

muscle. Further analysis showed that Enaptin is expressed in a wide range of tissues.  

Polyclonal antibodies generated against the C-terminus of Enaptin detected the protein 

at the nuclear envelope and in the cytosol of human fibroblasts. We showed that Enaptin is 

located in the outer nuclear membrane by selective permeabilisation of the plasma membrane 

with digitonin, furthermore its nuclear envelope localization was not affected by disruption of 

the actin cytoskeleton. Our studies also indicated that the nuclear envelope localization of 

Enaptin depended on lamin A/C. This is underlined by our findings in fibroblast cells from 

patients affected with laminopathies where we observed an altered distribution of Enaptin.  

With the N-terminal ABD domain and its C-terminal transmembrane domain, Enaptin 

has the potential to connect the nucleus to the actin cytoskeleton. Studies on Enaptin 

orthologues in lower eukaryotes proposed a role for these proteins in nuclear positioning and 

anchorage and in embryonic muscle development. Our myoblast differentiation studies 

showed an altered expression of Enaptin during differentiation. In order to reveal the 

functions of Enaptin and its link to human disease, we initiated a project for targeted 

disruption of Enaptin in the mouse. 
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5 Zusammenfassung 
 

Enaptin ist ein neues F-Aktin bindendes Protein, das wir bei einer Suche nach 

neuartigen Proteinen der α-Aktinin Familie im Genom von Maus und Mensch identifiziert 

haben. Enaptin besitzt eine α-Aktinin-ähnliche Aktinbindedomäne am Aminoterminus, die 

von einem langen helikalen Bereich mit mehreren Spektrindomänen gefolgt wird. Am C-

Terminus ist eine Transmembrandomäne lokalisiert, mit der Enaptin in der Kernmembran 

verankert werden kann. Zusammen mit NUANCE, das ebenfalls in unserer Gruppe 

beschrieben wurde, gehört Enaptin zu einer neuen Klasse von Proteinen, die potentiell das 

Aktinzytoskelett mit dem Zellkern verbinden.  

In dieser Arbeit wurde die cDNA von Enaptin assembliert. Der längste offene 

Leserahmen kodiert für eine 27.669 b lange mRNA und führt zu einem Protein von 1014 kDa. 

Das menschliche Enaptingen ist auf Chromosom 6 an der Position 6q23.1-25.3 lokalisiert und 

umfasst 515 kb. Für Enaptin sind die Spleissvarianten Nesprin-1, Myne-1, Syne-1 und CPG2 

beschrieben worden. In Northernblots konnten wir in Gehirn Transkripte von mehr als 14 kb 

und 5.5 kb nachweisen; ein polyklonaler Antikörper, der gegen die Aktinbindedomäne von 

Enaptin erzeugt wurde, erkennt ein Protein von 400 kDa in Gehirn und Skelettmuskel.  

Polyklonale Antikörper, die gegen die C-terminale Region von Enaptin gerichtet sind, färben 

in Immunfluoreszenzanalysen die Kernmembran in humanen Fibroblasten. Für diese 

Lokalisation ist der C-terminale Bereich verantwortlich. Die Lokalisation an der 

Kernmembran wird aber auch von LaminA/C beeinflusst, da die Enaptinverteilung in 

Fibroblasten von Patienten verändert ist, die an Laminopathien leiden.  

Basierend auf Befunden, die für Enaptin-ähnliche Proteine in niederen Eukaryonten 

erzielt wurden, nehmen wir an, dass Enaptin eine Rolle bei der Zellkernverankerung und/oder 

Zellkernpositionierung besitzt und an Kernwanderungsprozessen in der Entwicklung beteiligt 

sein kann. Mit Hilfe von Mausmutanten soll diese Frage geklärt werden. 
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ABBREVIATIONS 
 
 

ABD  Actin-Binding Domain 

AP  Alkaline phosphatase 

APS   Ammonium persulphate 

BSA   Bovine serum albumin 

CH  Calponin homology 

CNBr  Cyanogen Bromide 

DAPI  4',6-Diamidino-2-phenylindole 

DEPC  Diethylpyrocarbonate 

DMSO  Dimethylsulfoxide 

DNTP  Deoxyribonucleotide triphosphate 

DTT  1,4-dithiothreitol 

EDTA  Ethylenediaminetetraacetic acid 

EGTA   Ethyleneglycol-bis (2-amino-ethylene) N,N,N,N-tetraacetic acid 

FITC  Fluorescein-5-isothiocyanate  

GFP  Green Fluorescence Protein 

GST  Glutathione S-transferase 

HRP  Horse radish peroxidase 

HEPES  N-(2-hydroxyethyl) piperazine-N-2-ethanesulphonic acid 

IPTG   Iso-propylthio-galactopyranoside 

IgG  Immunoglobulin G 

Kb  Kilobase pairs 

kDa  KiloDalton 

MOPS   Morpholinopropanesulphonic acid 

Neo  Neomycin cassette 

mRNA  messenger ribonucleic acid 

mAb  Monoclonal Antibody 

NP-40    Nonylphenylpolyethyleneglycol 

OD  Optical density 

PFA  Paraformaldihyde 

PIPES   Piperazine-N,N.-bis(2-ethanesulphonic acid) 

PMSF   Phenylmethylsulphonylfluoride 

PAGE  Polyacrylamide gel electrophoresis 
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PVDF  Polyvinylidene fluoride 

rpm   Rotations per minute 

SDS  Sodium dodecyl sulphate 

TRITC  Tetramethylrhodamine β isothiocyanate 

TAE  Tris borate EDTA 

WT  Wild type allele 

X-gal  5-bromo-4-chloro-3-indolyl-D-galactopyranoside 
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