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Abstract
This dissertation addresses vehicle-based approaches to traffic flow modelling.
Having regard to the inherent dynamic nature of traffic, the investigations are
mainly focused on the question, how this is captured by different model classes.
In the first part, the dynamics of a microscopic car-following model (SKM), pre-
sented in [113], is studied by means of computer simulations and analytical cal-
culations. A classification of the model’s behaviour is given with respect to the
stability of high-flow states and the outflow from jam. The effects of anticipa-
tory driving on the model’s dynamics is explored, yielding results valid in general
for this model class. In the second part, a new approach is introduced based on
queueing theory. It can be regarded as a microscopic implementation of a state-
dependent queueing model, using coupled queues where the service rates addi-
tionally depend on the conditions downstream. The concept is shown to repro-
duce the dynamics of free flow and wide-moving jams. This is demonstrated by
comparison with the SKM and real world measurements. An analytical treatment
is given as well. The phenomena of boundary induced phase transitions is further
addressed, giving the complete phase diagrams of both models. Finally, the ap-
plication of the queueing approach within simulation-based traffic assignment is
demonstrated in regard to environmental impact modelling.

Kurzzusammenfassung
In dieser Arbeit werden fahrzeugbasierte Verkehrsflussmodelle behandelt. Ange-
sichts der dynamischen Natur von Straßenverkehr steht dabei der Aspekt im Vor-
dergrund, wie diese in unterschiedlichen Modellansätzen wiedergegeben wird. Im
ersten Teil der Arbeit wird die Dynamik eines mikroskopischen Fahrzeugfolge-
modells (SKM) [113] mit Hilfe von analytischen Methoden und Simulationen un-
tersucht. Das Modellverhalten wird anhand der Stabilität der Hochflusszustände
und des Flusses aus dem Stau klassifiziert. Der Einfluss von Antizipation auf die
Modelleigenschaften wird anhand eines erweiterten SKM untersucht. Die Resul-
tate sind auf andere Fahrzeugfolgemodelle übertragbar. Im zweiten Teil wird ein
neuer Modellansatz eingeführt. Dieser kann als mikroskopische Implementierung
eines zustandsabhängigen Warteschlangenmodells betrachtet werden. In diesem
sind aufeinanderfolgende Warteschlangen miteinander derart gekoppelt, dass ih-
re Bedienzeiten vom Zustand beider Warteschlangen abhängen. Dieser Ansatz
erlaubt die Modellierung von rückwärtslaufenden Staus, wie durch eine analyti-
sche Behandlung des Modells sowie durch Simulationsvergleiche mit dem SKM
und Realdaten gezeigt wird. Zusätzlich wird in der Arbeit das Phänomen randin-
duzierter Phasenübergänge behandelt und die Phasendiagramme beider Modelle
werden abgeleitet. Die Arbeit schließt mit der Einbettung des Warteschlangen-
modells in die Methode der simulationsbasierten dynamischen Verkehrsumlegung
und zeigt die praktische Anwendbarkeit des Modelles anhand der Untersuchung
verkehrsbedingter Umweltbelastungen.
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Chapter
1

Introduction

It is a fact that daily traffic volumes continuously increase. And the situation
will not change in regard to the predicted growth of transportation of goods and
business traffic. Todays traffic volumes already virtually exceed the existing road
infrastructure, in particular in conurbations. The resulting bottlenecks lead to con-
gestion which is not only affecting the people wasting their time standing inside
a jam. Congested road networks do, moreover, cause economic costs and have
a strong impact on humans and environment. Due to financial and spatial re-
strictions, the possibilities of a further increase of road infrastructure are limited.
Therefore, strategies are necessary which allow for a more efficient use of existing
capacities by redistribution of traffic streams and demand.

The instruments of intelligent transportation systems (ITS) aim at an optimal
redistribution of traffic demand by providing information about the traffic condi-
tions inside a network, and active traffic control, besides other objectives. To this
end, simulation models of traffic flow play an important role in order to obtain
a net-wide description of the traffic state, based on local measurements, and to
allow for the prediction of the future state, at least in short-term. Moreover, such
models can be used for the testing and evaluation of ITS measures before they
are implemented in practice. An important methodical framework in this context
is given by dynamic traffic assignment (DTA) (see section 4.3). DTA predicts
route choice, network flows, link travel times and route travel costs on a given
transportation network with a given travel demand. Again, models of traffic flow
can be seen as one principle component of DTA.

These models have to meet the requirement that the dynamic properties of
traffic streams and bottlenecks are modelled properly, in order to obtain a valid
representation of the traffic patterns which result from the given demand. If indi-
vidual information about routes or the control of individual traffic behaviour by
means of ITS measures are addressed, a modelling based on vehicles is favourable.
The same is true for the modelling of environmental impacts of traffic streams, be-
cause the amount of emitted pollutants by cars depends not only on mean traffic
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volumes but depends moreover strongly on dynamic effects as congestion and
single vehicular dynamics.

That is the point where this work starts. Within a collaboration with meteorol-
ogists [164] a model chain was to be built up which is able to compute the impact
situation in respect of air pollution taking into account the impacts of street traffic
(see appendix B). Starting the project, it was intended to use a sequence of mod-
els in order to compute emission inventories of traffic flow in the following way:
In a first step, the route choice of a given traffic demand is computed by means
of DTA, using a computationally very efficient model based on queueing theory
[59, 60]. In a second step, the individual trips computed in the DTA step are sim-
ulated by means of a microscopic car-following model (SKM,[112, 113]) which
yields a dynamic description of traffic situations appropriate for the computation
of emission inventories.

Using the described procedure, difficulties arise from the fact, that the calibra-
tion of model parameters has not to be done only for the two models themselves,
which is already a tedious task. Moreover, the representation of dynamic bottle-
necks and congested periods has to be captured similar in both models. This is
in particular important, if oversaturated network flows occur, which is frequently
the case for the network1 under consideration. Otherwise, gridlocking can lead to
incompatibilities between the two models, to name just a main problem which has
been encountered.

Therefore, it is not very far fetched to try the computation of emissions within
the DTA, skipping the second step. However, investigations of the simple queue-
ing approach in use have shown, that an appropriated description of traffic dy-
namics is not given, i.e., there is no backward propagation of jams and through-
puts at bottlenecks tend to be too high. These findings are also true for many
approaches used in traffic flow modelling based on traditional queueing theory
(see appendix A).

The main objective of this work is, in consequence of the above findings, the
introduction of a vehicle-based model of traffic flow by means of queueing theory,
which is able to describe the dynamics of traffic states on a detailed level without
sacrificing computational efficiency needed in DTA.

Besides, the discussion strongly focuses on the investigation of dynamic prop-
erties of microscopic models, due to their importance not only for application pur-
poses. It is a challenging task to understand the dynamics of traffic which can be
seen as complex system of many interacting particles driven far from equilibrium.
Within this context, there are many open questions related to the understanding
of the basic mechanisms that are responsible for traffic flow breakdown. In order
to explore where the models in use nowadays fail in their description and which

1The main road network of the city of Cologne including the highway ring enclosing the city.
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properties are essential in regard to the reproduction of empirical findings, it is
important to well understand their inner working. This can obviously not done in
general in this work. Therefore, only some of the given aspects are addressed for
the microscopic car-following model SKM and the queueing approach introduced
here.

This work is organised as follows:

Chapter 2 gives the definition of the microscopic car-following model SKM, be-
sides a short review of microscopic model approaches and empirical findings. Its
dynamic properties are discussed in detail. The SKM is extended in respect to an-
ticipatory driving and the consequences of this extension in regard of the model’s
dynamics are investigated. The chapter closes with investigations of boundary in-
duced phase transitions within both model variants.

In chapter 3, the application of traditional queueing theory to traffic flow is dis-
cussed focusing on their ability to capture the dynamics of traffic streams. A new
approach is presented which can be regarded as a microscopic implementation of
state-dependent queueing systems, using coupled queues where the service rates
additionally depend on the conditions downstream. Its properties are investigated
in great detail, including the comparison with the SKM and the computation of
vehicular emissions.

The modelling of network flows within the new approach are studied in chap-
ter 4. The role of the model within DTA is further discussed before results of
environmental impact modelling are presented which stem from the collaboration
described above.

The main results of this work are summarised in chapter 5.
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Chapter
2

Microscopic Car-Following Models

2.1 Microscopic models of traffic flow

Researchers from widely varying disciplines, such as transportation engineering,
civil engineering and physics, have utilised different techniques to study traffic
interaction and movement. This wide interest originates from the necessity to
understand the nature of traffic streams in order to allow a more efficient use of
existing road capacities. Besides this practical point of view it is a challenging
task to understand the complex dynamics of traffic which can be seen as a complex
system of many interacting particles driven far from equilibrium.

This work focuses on microscopic models of traffic flow. It is therefore nec-
essary to introduce the most important terms and properties of traffic flow before
starting the discussion of specific models.

2.1.1 Empirical properties of traffic flow

Numerous empirical data of highway traffic have been obtained, which demon-
strate the existence of qualitatively different dynamic states (or phases). It is
still under discussion, how many states exist in traffic flow and how the mea-
surements have to be interpreted. Many researchers tend to believe that three
dynamic phases, distinct from each other, are observed on highways: free flow,
traffic jam and synchronised traffic [76, 91, 108]. The last two traffic states are
frequently referred to as congested flow. In the measurements one finds moreover
that the complexity in traffic flow is related to certain transitions between the basi-
cally different types of traffic [90, 101]. The following description of traffic states
partially follows [103].

Typical quantities used to characterise traffic states are

- the density ρ, which gives the number of cars in a certain section of a road,

- the velocity v and
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Figure 2.1 Flow-density relations (top) and time-series of the velocity
(bottom) measured on highways in Germany. The figures are taken from
[108] and slightly modified [178]. The arrows indicate the direction of
time. Left: Wide moving jam. Right: Synchronised flow.

- the flow q, which gives the number of cars that pass a cross-section during
a specific time slice. The maximum possible flow at a specific cross-section
is also referred to as capacity of the cross-section.

These quantities are usually measured at detector loops by means of time aver-
ages. Note that the velocity and the flow can be measured at a cross-section (i.e.,
locally), whereas the density is a spatial quantity which has to be approximated
(e.g., the hydrodynamical relation 〈ρ〉 = 〈q〉〈1/v〉 can be used if stationary flow
is assumed). The representation of the measured flow versus the density is called
flow-density relation or fundamental diagram (FDR), see figure 2.1.

In the regime of free flow all vehicles can move according to their individual
maximum velocity and interactions between vehicles occur rarely. The average
velocity of this state is, therefore, quite large. Free-flow states are found at low
densities in the FDR. They form the low-density branch and the flow grows more
or less linear with the density.

If the density grows up to a critical value, the free-flow state becomes unstable
and breaks down to congested flow. Note that nothing will be said here about the
mechanism of breakdown. In the regime of congested flow the velocities are rather
small. In figure 2.1 one can clearly see that in the congested state two different
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Figure 2.2 Distribution of the time-headways measured on highways in
Germany for the free flow (left) and synchronised flow (right). The figures
are taken from [108].

types of behaviour can be distinguished.
In traffic jams (or wide moving jams) vehicles form compact structures which

possess two fronts separated by a region of negligible velocity and flow. The width
of these structures is much larger than its fronts at the upstream and downstream
ends where the speed of vehicles changes sharply. The structures move against
the direction of traffic flow, i.e., upstream. One finds a line with negative slope in
the FDR, i.e., the flow decreases with increasing density. This line is called high-
density branch of the FDR. The intersection of this branch with the low-density
branch gives the outflow from jam. The size of this flow is an intrinsic property of
jams and this flow is stable [100]. Besides this, jams can be characterised by the
propagation velocity of the downstream front and their density.

In synchronised traffic the velocity is considerably smaller than in free flow
but the flow can still have large values, see figure 2.1.

The name of this phase stems from the observation that the time-series of
measurements on different lanes are highly correlated. However, this is also true
for wide moving jams. The German expression ’zähfließender Verkehr’ is more
suited to describe the situation. In the FDR one observes irregular patterns, i.e.,
there is no functional relationship between density and flow as for the other two
traffic states.

The relation between ρ and q in the FDR can be used to give a helpful measure
in order to identify the three traffic states in time-series of loop detector data. If
one addresses the cross-correlation c(ρ, q) between flow and density, c ≈ 1, 0,−1
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holds for free flow, synchronised flow and wide moving jams, respectively[140].
In figure 2.1 one can see a region ρf ≤ ρ ≤ ρc in which the free flow and

congested flow coexist (cf. also figure 2.5). For densities ρ < ρf laminar traffic
flow is always stable, whereas traffic is always found in the congested state for
ρ > ρc. In the intermediate density regime traffic can be in one of the two states.
The states on the free-flow branch in this density regime are also called high-
flow states. Disturbances of these states can lead to a breakdown onto the high-
density branch. In most observations one finds that the system can only recover
back to the low-density branch passing the density ρf . This is called hysteresis
which typically occurs in connection with phase transitions of first order. Note
that figure 2.1 gives an example of a differing behaviour (see also discussion on
p. 38). Further note that the flow qf at density ρf equals the outflow from jam
which is smaller than the maximum flow qc = q(ρc). The finding qf < qc is
referred to as capacity drop in literature.

The measures discussed so far are quantities averaged over time. A more de-
tailed characterisation of traffic states can be obtained by means of microscopic
measurements from single-vehicle data [108]. One important microscopic vari-
able is the time-headway between two consecutive cars. The time-headway τh is
given by the time which elapses between two vehicles passing a detector. If one
assumes a constant velocity v of the vehicles, τh v equals the (spatial) headway or
gap g between the vehicles. Figure 2.2 shows typical time-headway distributions
found in free and synchronised flow. In the free flow, the distributions within dif-
ferent density regimes show a maximum which is independent of density. Note the
existence of very short time-headways. In contrast, the distributions in synchro-
nised flow have a maximum that is much broader and less pronounced. Its position
depends significantly on the density. For further details see [103, 106, 108].

2.1.2 Microscopic model approaches

In principle, there exist two different approaches to model traffic flow: micro-
scopic and macroscopic ones. Whereas in microscopic models different vehicles
and their velocities (or further state variables) can be distinguished, in macro-
scopic models only aggregated variables as density, velocity and flow are consid-
ered.

Macroscopic models are usually based on methods found in hydrodynamics
and gas-kinetic models of physics. They widely use partial differential equations
to describe the relation between the aggregated quantities. Models of that kind are
not addressed in this work. A comprehensive overview can be found in [73, 74].

In contrast, the movement of individual vehicles along a road is modelled in
great detail in microscopic approaches. The interaction between two consecutive
cars is considered explicitly. Since in these models cars follow each other the
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term car-following model is often used. A short categorisation of microscopic
car-following models is given in the sequel. Extensive reviews of microscopic
models can be found in [33, 134] and references therein.

Differential equations

If one assumes that the motion of a vehicle v is governed exclusively by the vehicle
in front and further that the following car adopts the velocity of its predecessor
ṽ (in order to avoid collisions), the dynamic can be described by means of an
ordinary differential equation [146],

dv(t)

dt
=

ṽ(t)− v(t)

τ
, (2.1)

with τ being a relaxation time. However, no cluster effects can be modelled by
(2.1). This drawback can be overcome by the introduction of a finite reaction time
∆t which leads to the description as delayed differential equation [28],

dv(t)

dt
=

ṽ(t)− v(t)

τ

∣

∣

∣

∣

t−∆t

. (2.2)

The delay takes into account that a driver does not react instantaneously to the
actions of her predecessor. Many such models have been proposed in the fifties,
an overview is given in [21].

Newer approaches as the widely used optimal-velocity model [9, 11] and the
intelligent-driver model [172, 173] also belong to this class of models.

Cellular automata

Cellular automata are dynamic models in which space, time and state variables
are discrete. Discrete space consists of a regular grid of cells of length ∆x where
each cell can either be empty or occupied by a vehicle. Besides its position on
the grid the state of each vehicle is determined by its velocity. The velocity is
an integer number and gives the number of cells that the vehicle can jump per
time step. Before a car is moved, its current velocity is determined respecting
the position of its predecessor to guarantee collision-free motion. All cells are
updated in discrete time steps ∆t. Due to the exclusive local interaction between
vehicles, cellular automata approaches are well suited for large-scale simulations
of traffic networks.

The first model of that class, which was proposed in the context of modelling
traffic flow, is the well-known Nagel-Schreckenberg model (NaSch) [133]. It is
a stochastic model that incorporates imperfections of driving using a noise term
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pbrake in the update rules:

1. Acceleration: v(t + ∆t) ← min{vmax, v(t) + 1}

2. Deceleration: v(t + ∆t) ← min{v(t + ∆t), g}

3.Randomisation: v(t + ∆t) ← max{v(t + ∆t)− 1, 0}

with probability pbrake

4. Motion: x(t + ∆t) ← x(t) + v(t + ∆t)

g is the distance to the vehicle in front (measured in cells), vmax the maximum
velocity (discretised in units of ∆x/∆t). A parallel update scheme is used, i.e.,
steps 1 through 3 are executed for each vehicle before all cars are together moved.
Despite its simplicity, the model reproduces empirical FDR and spontaneous clus-
tering quite well.

Further extensions of the model have been proposed to obtain better agreement
to empirical findings. The NaSch model with velocity-dependent randomisation
(VDR) discriminates different levels of noise which depend on the current ve-
locity of a vehicle [14]. If the randomisation is chosen such that the escape of
vehicles from a jam is delayed, metastable states (which are strongly connected
to the existence of a capacity drop and hysteresis, see p. 19) and phase separation
between jams and free flowing vehicles exist. The delayed escape from a jam is
also called slow-to-start.

If further interactions among vehicles are taken into account, such as anticipa-
tion (cf. section 2.3) and an increased interaction horizon, even empirical single-
vehicle data can be reproduced with cellular automata models. Long ranged inter-
actions can be introduced by means of a brake light if drivers inside the interaction
horizon react on brakings of the leading vehicle. The brake light version of the
NaSch model (BL) was first introduced in [104, 105].

A detailed discussion about the dynamic properties and the behaviour with
respect to empirical findings of different variants of cellular automata based on
the NaSch model can be found in [103, 106].

Coupled maps

In models which belong to the class of coupled maps, time is discrete (∆t) and
the dynamics of the model is represented by discrete transformations (map). In
models of traffic flow the maps depend on the state variables of the vehicles. In
contrast to cellular automata, the state variables do not have to be discrete. If
only interactions between two consecutive cars are taken into account the typical
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structure of such models is

vν
t+∆t = mapν(g

ν
t , vν

t , ṽt)

xν
t+∆t = vν

t+∆t + xν
t ∆t. (2.3)

Depending on the update scheme, the velocity of each car ν is updated according
to its map in a first step. The calculated velocity is then used to move the vehi-
cle to its new position. The microscopic car-following models which are further
discussed in this chapter belong to this model class.

2.2 Car-following model by Krauß (SKM)

The following discussion focuses on a specific car-following model which is re-
ferred to as SKM. On the one hand certain aspects of its dynamics are investigated
as well as the effects of anticipatory driving and open boundary conditions.The
findings of different model classes, as given in the original work, is revisited in
light of recent results. On the other hand this model will be used as a reference
during the later discussion of approaches to traffic modelling based on queueing
theory.

2.2.1 Dynamical equations

The SKM [112, 113, 114] is based on an approach by Gipps [62] and considers
the braking distance of individual cars. Its connection to the NaSch model is
investigated in [115].

Starting with the assumption of safe driving, an update scheme can be formu-
lated as coupled map. In the SKM the state variables, i.e., space and velocity, are
continuous. In order to formulate the model’s equations three basic assumptions
have been made, namely,

- that the vehicles travel without colliding,

- that the vehicles do not travel faster than a maximum velocity vmax, and

- that the acceleration a and the deceleration b of a vehicle are bounded.

A safety conditions can be derived given the assumption of collision-free driv-
ing. Assume one car (driver-vehicle unit) with velocity v is following another car
(driving with velocity ṽ) within a distance g. Here, g is the free space between
vehicles, i.e., the distance between the cars at positions x, x̃ minus the cars’ length
lcar. Safety, i.e., collision-free motion is guaranteed if

d(v) + τv ≤ d(ṽ) + g (2.4)
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holds, with d(v) being the braking distance needed to stop when driving with
velocity v and τ a finite reaction time. When braking with constant deceleration
b > 0, resp. −b ≤ dv/dt, the braking distance is given by d(v) = v2/(2b).
Equation (2.4) then leads to

vsafe(ṽ, g) = −bτ +
√

b2τ 2 + ṽ2 + 2bg. (2.5)

In order to complete the definition of the model’s dynamics it is assumed that
each car moves at the highest velocity compatible with the assumptions. Within
each time step ∆t each car is updated after calculating its vsafe according to the
following scheme,

vdes = min{vt + a∆t, vsafe, vmax}

vt+∆t = max{vdes − ηεa, 0} (2.6)

xt+∆t = xt + vt+∆t∆t.

The update (2.6) is done in parallel, i.e., after the velocity update of all cars they
are all moved at once. The random fluctuation of strength ηεa is introduced to
mimic deviations from the optimal driving strategy given by vsafe. η is a random
number uniformly distributed in the interval [0, 1] and the parameter ε determines
the fluctuation strength in units of a. Microscopic jam nuclei are generated mainly
from this noise. Once generated, they can evolve into macroscopic jams indepen-
dent of noise. Therefore, with ε = 0 the jammed phase vanishes and the rich
structure of the model’s dynamics disappears (cf. slow-to-start behaviour of the
SKM, p. 15).

It should be noted that the formulation of vsafe in (2.5) differs from that given
in [113] 1. The reason is primarily due to the calculation of the update scheme
(2.6) becoming more simple. However, its structure meant, we could not find a
analytical proof for collision-free driving (as it is possible for the original formu-
lation). But extensive simulations with τ ≥ ∆t neither gave the merest hint of
collisions nor was a crucial difference in the model’s dynamics found. The con-
dition τ ≥ ∆t means that safe driving is possible, if the “true” reaction time, i.e.,
one time step, is smaller or equal to the reaction time each driver assumes.

2.2.2 Characteristics of the model

Macroscopic properties

In order to investigate the properties of traffic flow models one frequently uses
periodic boundary conditions, i.e., a one-lane loop. Figure 2.3 shows a typical

1In the original work vsafe = ṽ + 2b(g − ṽ)/(v + ṽ + 2bτ) is used.
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Figure 2.3 Left: FDR of the SKM with periodic boundary conditions.
At each global density the loop is initialised homogeneously with 1000
cars. Density and flow are measured locally (virtual detector) after the
system becomes stationary. Right: Probability of (ρloc, qloc). The proba-
bility distribution is computed by averaging over simulations at different
global densities. Measurements are taken in the stationary state only.

FDR of the SKM. The figure is generated using a periodic system which is ini-
tialised homogeneously at different densities. At each global density the update
scheme (2.6) is iterated for 50000 time steps. In order to analyse the results, the
first half of each simulation is discarded to let transients die out and the system
reach a stationary state. In the steady state mean density 〈ρ〉, mean velocity 〈v〉
and flow 〈q〉 are measured at a fixed location using 60 s intervals for sampling
(virtual detector). The local density for a car n passing the detector is defined as

ρloc = 1/(gn + lcar). (2.7)

The parameters used are

a = 2 m/s2 b = 8 m/s2 vmax = 35 m/s
ε = 1 lcar = 7 m τ = ∆t = 1 s.

(2.8)

These parameters are closely related to the real world. Note that the parameter
−b has the meaning of a lower bound for the braking ability of cars which hardly
occurs in the simulations. Typically, the deceleration of the cars has values around
−1.6 m/s2.

With respect to these parameters, jam formation (wide moving jams) and high-
flow states exist in the SKM as can be seen in figure 2.3 2. The existence of the
capacity drop indicates slow-to-start behaviour. Note that there is no explicit

2Due to the local measurement the high-flow states cannot be seen so clearly as in the case of
global measurements (cf. figure2.18).
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Figure 2.4 Time headway distribution of the SKM under free-flow con-
ditions (left) and in the congested state (right). The parameters used are
given by (2.8).

rule introducing this effect. It results from the asymmetry in the randomisation
process for low speeds. This is due to the fact that negative gaps and velocities
are not allowed in the model. Since the stability of jams is directly related to the
fact that the outflow from a jam is smaller than the maximum possible flow [97],
macroscopic jams can be observed in the SKM.

In the closed system the congested state coexists with the free-flow state for
densities ρ ≥ ρf (ρf ≈ 20km−1 in figure 2.3). Already at this point of the discus-
sion it is clearly stated that the SKM only possesses two states of traffic, namely
free flow and wide moving jams. Time-series at a fixed density in the regime of
coexistence alternately display free-flow and congested states. Intermediate points
in figure 2.3 stem from sampling periods in which a jam front crosses the virtual
detector. The existence of solely two states can also be seen from the distribution
of local densities and flows (see figure 2.3).

Time-headway distribution

Several empirical studies have analysed single-vehicle data from counting loops
[10, 108, 110, 140, 170]. Such measurements provide information about the mi-
croscopic structure of traffic streams. The investigation of the corresponding ob-
servable in stochastic traffic flow models can, therefore, justify their quality.

The time-headway is the microscopic analogue of the inverse flow. In real data,
it is simply determined by the time difference τh = tν−1−tν between the different
times t two cars pass an observer. As the SKM has a time step of ∆t = 1 s, a
different approach has to be used to measure the time-headway. This is done by
using the relation

τh = g/v. (2.9)
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The closed loop still serves as the computer experimental setup. It is initialised
at different densities and the time-headway distribution is measured after an ap-
propriate relaxation time (≈ 30000 time steps). The parameters used are given by
(2.8).

In figure 2.4 the time-headway distribution of the free-flow phase at different
global densities is presented. Empirical investigations show (cf. figure 2.2) that in
the free flow extremely small time-headways exist (τmin

h ≈ 0.2 s). Moreover, the
maximum of the distributions, and its shape at short time-headways are indepen-
dent of the density [108, 140, 170].

Figure 2.4 shows that the SKM is not able to reproduce such small temporal
headways in the free-flow phase. There exists a sharp cut-off at τh ≈ ∆t = 1 s,
i.e., the model’s dynamics leads to vt+∆t ≤ gt. The maximum of the distribu-
tions is located at τh ≈ 1.3 s. In the free flow one finds 〈v〉 ≈ 34 m/s which
corresponds to 〈g〉 ≈ 41.5 m.

The time-headway distributions in the congested state are almost independent
of the density. The exponential decay of the distribution results from the fact
that for large headways cars can be regarded as virtually independent from each
other, implying a Poissonian distribution. Unlike reality the peak is fixed and not
as broad. Their maximum is also located at τh ≈ 1.3 s, which is close to real
world measurements. Since the maximum of the distributions is independent of
the global density in the SKM, one can conclude that the model owns a fix point
in its dynamics.

Optimal velocity curve

Neglecting fluctuations, the optimal velocity curve (OVC) of the SKM can be an-
alytically derived. The OVC gives the relation between velocity and headway and
is helpful in order to characterise the microscopic structure of the traffic phases
[108, 140, 170].

The OVC of the SKM results from its safety condition (2.5), i.e.,

vsafe = −bτ +
√

b2τ 2 + ṽ2 + 2bg = ṽ. (2.10)

Equation (2.10) is solved by ṽ = g/τ , therefore, the OVC of the SKM reads

V SK
opt (ρ) = min

{

1

τ

(

1

ρ
−

1

ρmax

)

, vmax

}

. (2.11)

From (2.11) it follows that τ sk
h ≡ τ for the deterministic case (ε = 0). The

OVC confirms the previous result. Time-headways smaller than ∆t cannot be
modelled by the SKM as τ ≥ ∆t is required due to safety constraints. As fluctu-
ations lead to 〈v〉 < vmax, τSK

h ≥ τ holds in general.
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Figure 2.5 Left: Sketch of a FDR with high-flow states. ρf , ρj are the
densities in the outflow region of a jam and inside a jam, respectively. The
high-flow branch of the FDR becomes unstable above density ρc.
Right: The model classes of the SKM in the (ā, b̄)-plane and v̄ = 3,
¯lcar = 1, ε = 1 as given in [113].

Model classes

The SKM has been designed to reproduce the empirical findings in traffic jams.
These are [90, 92, 100]:

- Traffic jams can even develop and exist in the absence of any obstacle.

- The outflow from jams is stable and not maximal.

- The outflow from jams and the velocity of the downstream front do not
depend on the inflow conditions.

- There is a density regime with non-unique FDR (cf. ρf ≤ ρ ≤ ρc in fig-
ure 2.5). Depending on the initial conditions either high-flow states are
displayed by the model or states which belong to the high-density branch.

- The transition between free flow and congestion is a phase transition of first
order [101].

These properties are displayed by the model for a certain range of parameters but
the SKM shows an even richer behaviour.

In [113] three classes of qualitatively different behaviour are found depending
on the parameters a and b. Note that parameters given in the plots are dimension-
less (as well as in the discussion if appropriate), i.e., length and time are rescaled
by means of lcar = 7.5m and ∆t = 1s, respectively. Rescaled parameters are
indicated by use of ·̄. This is primarily done in order to faciliated a comparison
with the original diagrams.
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Class I (macroscopic phase separation)

The limit of low acceleration and low deceleration (b̄ � 1, ā/b̄ ≈ 1) be-
longs to this class where jam formation is modelled correctly within the
meaning of the properties given above. The FDR shows a capacity drop and
a jam nuclei can, therefore, evolve into a macroscopic jam (given that the
outflow from a jam is stable). For the same reason the growing of jams is
quasi-deterministic in this model class and the jamming transition is a phase
transition of first order.

Class II (spontaneous structure formation)

In the limit of high deceleration (b̄ → ∞) there exist a separation into re-
gions of high and low densities. However, these structures do not grow to
arbitrary size and the jamming transition is no phase transition. The FDR
does not show a capacity drop. The dynamics has much in common with
the NaSch model.

Class III (no structure formation at all)

In the limit of high acceleration (ā → v̄max, b̄ ≈ 1) there is no structure
formation at all in the model’s dynamics.

With respect to the full parameter plane (ā, b̄) the model classes3 are given in
[113] as shown in figure 2.5. There, the parameters vmax, lcar and ε were fixed to
22.5 m/s, 7.5 m and 1, respectively. In order to characterise the behaviour, three
quantities are of importance, namely the densities ρf , ρc and ρj (cf. figure 2.5).

In Class III models, ∆ρ = ρj − ρf ≈ 0 holds, whereas ∆ρ > ρthresh holds for
Classes I and II. ρthresh is a constant considerably larger than zero. Following the
reasoning in [113] the Class I and Class II models can be distinguished by means
of the existence of high-flow states, i.e., ρc > ρf . Moreover, it is assumed that
these states are truly metastable, i.e., that they vanish in the thermodynamic limit
of infinite system size.

As long as the capacity drop exists for a specific pair of parameters (ā, b̄),
macroscopic jams occur in the model. It is then found in the SKM that the out-
flow of jam is stable. With respect to the transition between Class I and Class II,
it is assumed in [113] that the vanishing of metastable states goes along with an
unstable outflow. In that case, the propability to find stopped vehicles at densities
ρf becomes unequal to zero. Indeed, this criterion is used to deduce the boundary
in the (ā, b̄)-plane between Class I and Class II models. Note that, if these argu-
ments were right, the dynamics of Classes I and II would correspond the VDR and
NaSch, respectively. However, investigations in [131] show that the existence of

3The term classes refers to the definitions listed above in the following.
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Figure 2.6 Left: In order to identify parameters (ā, b̄) for which the
SKM displays structre (∆ρ̄ = ρ̄j − ρ̄f ≥ 0.1) a loop with 5000 cars
is used. The other paramters are fixed to v̄ = 3, ¯lcar = 1 and ε = 1.
Measurments are made for 104 time steps after relaxation of the system for
3 · 104 time steps at density ρsim. Right: Line in the (ā, b̄)-plane between
models without structure and models which display structre formation.

high-flow states and the stability of the outflow from jam are independent proper-
ties of stochastic microscopic traffic flow models.

It was doubtful that the dynamics of the SKM in Class I behaves similarly
to the VDR and investigations on the stability of the high-flow states showed a
different behaviour than that expected. Accordingly, the model classes as given in
[113] are revisited in the following.

First of all, the border in the (ā, b̄)-plane between models with and without
structure formation is determined again (border to structure). To this end, the
same setup as in the original work is used.

Scanning the (ā, b̄)-plane, the density ρsim is identified in an iterative process.
At this density the system possesses the same number of cars in the free-flow and
the congested state. Initial conditions had a homogeneous state in which all cars
have the same distance, g(0) = 1/ρ− lcar and v(0) = min{g, vmax}.

The ratio of jammed cars to free-flowing cars is measured after an appropri-
ate relaxation time by means of the following criterion: A car is considered to be
jammed, if more than half of the n neighbours (including the car itself, n = 5 in
the following) have a velocity below vmax/2. This threshold is reasonable with
respect to the bimodal distributions of the velocities and the gaps which are found
in systems with a global density where the free-flow state coexists with the con-
gested state. As shown in [85] this criterion is still applicable in the case of a
non-vanishing overlap between the two maxima of these distributions.

Finally, in the system initialised with ρsim, the densities ρf and ρj are deter-
mined by averaging there out the gaps in front of free-flowing and jammed cars,
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to determine P0 is described in the text. Right: The lines in the (ā, b̄)-plane
with ∆ρ̄ = 0.1, P0 = 0 and P0 = 0.001.

respectively. Figure 2.6 shows the findings which are in complete agreement with
the original ones. In order to distinguish models with structure formation from
those without, ∆ρ̄ = 0.1 is used. Additionally, the border of structure is extra-
polated to b̄ → ∞ using cuts along b̄ = [1, 1.2, ..., 2, 4, ..., 20,∞]. In the case
b̄→∞, the safety conditions (2.5) reduces to the well-known condition from the
NaSch model,

lim
b→∞

(

−bτ +
√

b2τ 2 + ṽ2 + 2bg
)

= g/τ. (2.12)

At values b̄ > 20 the function is parallel to the b̄-axis with ā ≈ 1.64. It is
clear that there is a bound for the acceleration beyond the system always stays
homogeneous. If ā is no longer small with respect to v̄max, almost all perturbations
can heal out in one time step given the high acceleration possible [85].

However, it was not possible to reproduce the transition line between Class I
and Class II models as given in [113]. The original work states that the probability
P0 of finding stopped cars (v = 0) in the state ρf is only non-vanishing for Class II
models (see arguments above). Using P0 < 0.001 as criterion, the transition line
between the two model classes was determined as shown in figure 2.5.

In order to reinvestigate the transition line between Classes I and II three dif-
ferent setups are used:

a) For each pair (ā, b̄) a system is initialised with the homogeneous state at den-
sity ρf . ρf is the density in the free flow measured in the simulations to
determine ∆ρ. Two different setups for the loop are used, namely, a fixed
length (2000 lcar) and a fixed number of cars (1000). Both setups give the
same results. After relaxation of 104 time steps, P0 is measured over 106

time steps. Note that this is the method used in [113].
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b) For each pair (ā, b̄) the complete FDR of the closed system is generated. The
density ρf is determined by the intersection of the low-density and the high-
density branch. Again, the homogeneous state with density ρf is relaxed for
104 time steps and P0 is subsequently measured over 106 time steps.

c) An infinitely large mega-jam (g(0) = 0, v(0) = 0) is fixed at the left bound-
ary of an open system. The system has a fixed length of LS = 104 m.
Due to the slow-to-start behaviour, the probability to have stopped cars is
non-vanishing at the downstream front of the mega-jam. Therefore, P0 is
measured 10 m away from that front. Again, the system is simulated for 106

time steps and each value P0 is the average of five simulations. This method
is similar to the setup used in [131] to investigate the interface dynamics.

The findings for the outflow from the mega-jam are shown in figure 2.7. It is
worth noting this was also found in the other two setups, namely, that P0 decreases
steeply with decreasing ā. The line below P0 vanishes is almost a parallel to the
ā-axis with ā ≈ 0.8, independent of the parameter b̄. This differs significantly
from figure 2.5. Moreover, below that line, high-flow states always exist in the
SKM.

In figure 2.8 four FDR are shown for pairs of (ā, b̄) which all belong to Class II
and should, therefore, not display high-flow states. Additionally, the time to break-
down tb is given for these sets of parameters. This concept has been introduced in
[88, 131] in order to investigate the stability of high-flow states and needs further
explanation.

The time to breakdown tb(ρ) gives the number of time steps needed to ob-
serve a stopped car in a system that has been initialised in the homogeneous state
at density ρ. If the high-flow states are metastable, the time to breakdown de-
creases with increasing system size4 and it increases with decreasing density. The
transition from homogeneous flow to the congested state is in that case very simi-
lar to the gas-liquid transition.

However, for the SKM a different behaviour is found in the parameter range
presented above. There, the high-flow states are stable. Stable high-flow means
that the strong, intrinsic fluctuations of the model are insufficient to cause a transi-
tion into the congested regime (possible explanations of this phenomena are given
in [131]). Indeed, that is what is found here. For example, for (ā, b̄) = (0.4, 1.0)
the breakdown time grows three orders of magnitude from ρ = 27 km−1 to
ρ = 26 km−1, and from ρ = 22 km−1 up to ρ = 26 km−1 both branches are
stable within 106 time steps (see figure 2.8). For (ā, b̄) = (0.4,∞) there is still
a rapid growth in the breakdown time but there is no longer a divergence. From
this, one can conclude that there is a transition from stable high-flow states to
metastability with increasing braking capability b̄.

4In the limit LS →∞ metastable high-flow states vanish.
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Figure 2.8 FDR and breakdown time for different sets of parameters
(ā, b̄), the other parameters are equal to figure 2.5. Each loop is initialised
homogeneously with 5000 cars. The FDR is measured globally after an
appropriate relaxation time. The breakdown times are means over 10 reali-
sations, each lasting for 106 time steps.

With respect to the stability of the homogeneous state one would expect the
following dependencies:

a) a = const., increasing b

With increasing b the safe velocity increases and converges to vsafe = g/τ ,
cf. (2.12). For high b the braking capability is bounded by vmax. The mean
deceleration of the cars increases. Therefore, with increasing b the high-
flow states become more unstable.

b) b = const., increasing a

It is self-evident that the stability of high-flow states decreases with increas-
ing a, due to the fact that the number of interactions needed to stop a car is
∝ vmax/(εa) and fluctuations in the model’s dynamics are ∝ a.

These assertions can be clearly found in figure 2.7 and figure 2.8. Note that the
strong dependence of P0 on a is also visible in the corresponding plot in [113]
(not shown).
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Of further note is that the initialisation of the system with a homogeneous
state in a different way, namely, g(0) = 1/ρ− lcar and v(0) = 0, leads to reduced
breakdown times and a strong increase in its variance. This is due to the slow-to-
start behaviour of the model’s dynamics. In the case of b̄ → ∞ high-flow states
are no longer found. Moreover, once stopped cars exist in a loop at global density
ρf , the number of stopped vehicles will in general not reach zero again. This may
explain why in [113] no capacity drop was found for Class II models and there was
a non-vanishing probability to find stopped cars within this regime of parameters.

In light of these findings and [88, 131], it can be said that the picture given in
[113] was incomplete. The new findings for the model, namely ∆ρ and P0, are
presented in figure 2.7. Within a certain parameter range, the SKM exhibits stable
high-flow states. Their stability decreases with increasing a and b. However,
breakdown times are still quite high where noise levels a are low. Especially, the
distinction of Class I and Class II models based on the existence of metastable
states is not possible below a certain value for a. The transition line where the
stable high-flow states change to become truly metastable did not reveal itself here
in detail. Given that the different phases are obtained by variations of continuous
parameters, the determination of this transition line is computationally expensive
and, due to the fast growth of the breakdown time in a small interval of densities,
good numerical results are difficult to obtain. The computations of P0 suggest that
for all parameter sets (a, b) with ∆ρ̄ ≥ 0.1 and v̄ = 3, ε = 1 the outflow from
jam is stable in the SKM. With increasing a its stability decreases. This was also
found in [131] where specific sets of parameters were investigated with a huge
amount of computational power. Within those parameter ranges where there is an
observable capacity drop, the SKM displays a real phase transition of first order,
from free flow to congestion.

In the following, only sets of parameters will be used where the SKM displays
true macroscopic phases. For these parameters the dynamics of the SKM really
differs from the VDR model, because the latter shows truly metastable high-flow
states and an unstable outflow from jam [131].

2.3 Investigations of anticipatory driving

In the model described above, each car accounts only for the car in front of it in
order to deduce its optimal driving strategy. That assumption is obviously unre-
alistic, particularly in dense traffic situations. In fact, drivers try to avoid strong
accelerations and abrupt braking by considering the future movement of all cars
within their interaction horizon. For example, a driver who approaches the end
of a queue of cars, reduces her speed significantly before fully braking becomes
necessary in order to avoid a crash. This is also true for situations where traffic is
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Figure 2.9 Representation of the variables v, g, ṽ, g̃, v̂. All cars are con-
sidered to have equal length lcar.

still flowing. The drivers try to estimate the velocity of preceding cars for future
times in order to determine their driving strategy. This behavioural component of
driving is called “anticipatory driving” in literature.

Anticipation has been successfully introduced as a major component of cel-
lular automata approaches, in order to obtain more consistency with microscopic
observables such as time-headways or follow-the-leader behaviour, and to model
synchronised states of traffic [86, 104]. It is obvious that the anticipation of future
movement leads to an increase in streets’ capacities by reducing the safe time-
headways between consecutive cars. Furthermore, the free flow-phase is stabilised
by a decrease of speed variance. It can be said, therefore, that this mechanism is
necessary if real world traffic data is to be reproduced [103]. An understanding
of the effects anticipation has on the dynamics of traffic flow is, therefore, essen-
tial to obtain more realistic models of traffic, as well as to investigate the use of
automated driving systems.

In [119] the effects of several anticipation schemes have been investigated
with respect to cellular automaton models of traffic flow. The results obtained
were in agreement with the findings in [52], namely, that anticipation enables
the formation of stable platoons of cars and leads to an increase in the capacity
depending on the strength of anticipation.

In order to get a better understanding of the changes in the model’s dynamics
as a consequence of anticipatory driving, this strategy is introduced into the SKM
via next-nearest-neighbour interactions. The effects of this driving strategy are
explored by simulation, as well as by analytical calculations. Leaping ahead, it is
said that, by virtue of anticipation, the system organises the headways of the cars
in an alternating structure which allows for the small time-headways observed in
reality. As will become clear from the following discussion, most of the results
found should be at work in other models too (cf. [103, 119]).

2.3.1 SKM with anticipation (SKA)

In order to bring anticipation into the model the update scheme is modified by
an intermediate step: Each driver predicts the worst-case strategy vanti her prede-
cessor will choose in the next time step. Assuming there is a car in front of the
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predecessor within a distance g̃ driving with velocity v̂ (see figure 2.9), then

vanti = max{ṽdes − εa, 0} (2.13)

with

ṽdes = min{ṽ + a, ṽsafe(v̂, g̃), vmax}. (2.14)

The calculated vanti is then used in order to determine the safe velocity. Therefore,
the safety condition (2.4) is restated on the assumption that the leading car chooses
ṽt+∆t ≥ vanti as its driving strategy,

d(v) + τv + γc(v, ṽ) ≤ d(vanti) + vantiτ + g. (2.15)

The function γc(v, ṽ) has been introduced to take account of “unexpected” fluc-
tuations in the predecessor’s driving behaviour. Then, the new expression (2.15)
leads to a new expression of the safe velocity,

vsafe = − bτ

+
√

b2τ 2 + v2
anti + 2b(g + vantiτ − γc(v, ṽ)). (2.16)

In the following,

γc(v, ṽ) = min{vanti τ, gc} (2.17)

is chosen where gc is constant. In that, g + vanti − γc(v, ṽ) can be interpreted as
an effective gap geff, where (2.17) forces geff ≥ g. The idea of the effective gap is
similar to the cellular automaton model in [104] (BL). The major difference is that
in the modified SKM anticipation enters the model by velocity and the effective
gap (cf. equation (2.16)), whereas in the BL it enters the model solely via the latter.

As well as the new definition of vsafe, the update scheme (2.6) is used. The
modified SKM is referred to as SKA in the following.

2.3.2 The role of anticipation

In the following, the SKA is compared with the original model by means of com-
puter simulations. For this purpose the same fixed set of parameters is used that
was previously used in section 2.2,

a = 2 m/s2 b = 8 m/s2 vmax = 35 m/s
ε = 1 gc = 1 m lcar = 7 m.

(2.18)

τ = ∆t = 1s is chosen again as time scale. Given these parameters, the formation
of jams (wide moving jams), and stable high-flow states exist in the corresponding
SKM (cf. section 2.2).
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Figure 2.10 Left: FDR of the SKA with periodic boundary condi-
tions. At each density the loop is initialised homogeneously with 1000
cars. Density and flow are measured locally (virtual detector) after the
system becomes stationary. Right: Sequence of measurements at fixed
density ρ = 35km−1. In that density regime the free-flow state and the
congested state coexist.

Macroscopic properties

Firstly, the model’s behaviour is compared to the SKM with respect to the macro-
scopic observables density and flow, as well as with the observable states of traffic.
For this purpose, periodic boundary conditions are used again, and the observables
are measured by a virtual detector after relaxation of the system. As sampling, in-
tervals of 60s are used.

Comparing the FDR of the SKA (see figure 2.10) with the SKM, they both
display high-flow states and a capacity drop at intermediate densities. The effec-
tive slow-to-start behaviour of the SKM is, therefore, not changed by introducing
next-nearest-neighbour interactions. Moreover, the “optimised” driving strategy
leads, in fact, to a stabilisation of the high-flow branch towards higher densities,
as stated above.

As already seen for the SKM, the congested state coexists with the free-flow
state for densities ρ ≥ 20km−1 in the closed system. Time-series of a virtual de-
tector at a fixed density in that regime, therefore, alternately display free-flow and
congested states (see figure 2.10). At densities where the homogeneous free-flow
state is unstable, small clusters of cars are generated due to intrinsic fluctuations.
Eventually, the number of jams decreases until only one jam remains (see fig-
ure 2.11). Recalling the argumentation in [113], the jamming transition in the
SKA is a phase transition and one finds a phase-separated system at equilibrium
using periodic boundary conditions.

The next comparison undertaken between the models pertains to the classifi-
cation of stochastic traffic flow models as given in [131] (cf. discussion in sec-
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Figure 2.11 Space-time diagram for a typical evolution of the SKA.
Each car is coloured by its current velocity in units m/s. Initially, there
are a lot of small jams (left) that coagulate into a double jam state (right).
However, when waiting for a very long time, only one wide moving jam
remains.

tion 2.2.2). In figure 2.12 the time to breakdown is plotted against the system’s
density. For each simulation run a system with 5000 cars was initialised homoge-
neously. The values presented are means of 20 realisations per density. Simula-
tions were stopped after 106 time steps, if the initial state did not break down. As
can be seen, the time to breakdown diverges at ρc ≈ 31km−1, i.e., homogeneous
states corresponding to ρ < ρc are absolutely stable. These states represent the
high-flow branch (see figure 2.10) and, therefore, the SKA owns the same type of
stability as the SKM does.

The observations presented so far show that the SKA possesses a stable high-
flow branch, similar to the SKM, and allows for higher flows compared to the
latter model. Microscopically, this is due to smaller time-headways which nev-
ertheless permit safe driving. With respect to the velocity, its standard deviation
is an indicator of the efficiency in traffic flow. High standard deviations of the
speed indicate that drivers experience frequent speed changes which in turn lead
to an increased probability of traffic breakdown [119]. In figure 2.12 the standard
deviation of the speed for different values of gc is shown.

Compared to measurements the anticipatory driving strategy leads to unreal-
istic high, attainable flows (with respect to non-automated driving). This is also a
known feature for some extensions of the NaSch model [106]. Even though such
states only appear for special initial conditions, i.e., highly ordered, homogeneous
configurations, modifications are necessary to apply it to reasonable applications.
However, it remains a different question whether these flows can be attained in
a realistic setting with macroscopic disturbances arising from lane-changing, on-
and off-ramps, etc.. Further, by introducing diversified driver behaviour, this may
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Figure 2.12 Left: The average time to breakdown tb for the SKA.
Right: Standard deviation of speed against the system’s density for the
SKM and SKA (using different values for gc).

lower the maximum flow to realistic values. For example, this may be done using
a distribution p(τ) for the parameter τ , so each driver has her individual τ drawn
from that distribution. Another way of doing this would be to increase gc.

Apart from these unrealistic high flows, it can be concluded that the overall
macroscopic properties of the SKA under periodic boundary conditions (i.e., the
FDR, the spontaneous jam formation and the existence of compact jams) are sim-
ilar to the corresponding SKM.

Time-headway distribution

After the macroscopic comparison of the SKA with the SKM its microscopic
structure is investigated. The closed loop still serves as the computer experimental
setup to analyse time-headways (2.9). It is initialised at different densities and the
time-headway distribution is measured after transients died out. In figure 2.13 the
time-headway distribution of the free flow phase at different densities is presented
together with the distributions of the congested phase.

With respect to the free flow phase, the SKA shows a different structure than
the SKM (cf. figure 2.4). The peaks of the distributions are much broader and
headways noticeably smaller than 1s exist, as in empirical observations. The fig-
ure also shows that the distributions at short time-headways are independent of
the density. However, the broadness of the peaks is not found in real world ob-
servations. The occurrence of short time-headways stems from the introduction
of the velocity anticipation. Drivers can optimise their gap to the leading vehicle,
since they have an idea about its future behaviour. Smaller gaps at v ≈ vmax than
in the SKM are, therefore, possible.

Moreover, the broadness of the peaks indicates that in the SKA a range of
headways to the car in front can be taken by cars driving at v ≈ vmax, i.e.,
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Figure 2.13 Time-headway distribution for the SKA under free-flow
conditions (left) and in the congested state (right). Headways smaller than
1s at high densities stem from the free-flow state (their share decreases
with increasing density).

the fixed-point in the car-following dynamics is not such strong as in the SKM.
With increasing density the peak in the distribution becomes more and more pro-
nounced and shifts towards smaller time-headways. The position of the peak cor-
responds to the mean gap, given by the initial conditions, 〈g〉 = 1 / ρ − lcar.
Moving towards higher densities along the free-flow branch of the FDR, the pos-
sible range of gaps between cars decreases.

Comparing the time-headway distributions of the congested state, these are
almost independent of the density, as in the SKM. In addition to the appearance of
τh ≤ 1s, these also agree quantitatively. The occurrence of small time-headways
is due to the experimental setup. In the closed loop the system is separated into
two phases, one wide moving jam and a region of free-flow (see figure 2.11). As
demonstrated before, time-headways smaller than 1 s can be found in the free-
flow phase. Therefore, cars that are not in the congested state generate these
time-headways. Given that the number of cars in the free-flow phase decreases
with increasing density the weight of small time-headways also reduces. From
this, one can conclude that with respect to the dynamics inside jams, both models
behave similarly.

Optimal velocity curve

The OVC of the SKA confirms the latter finding. The OVC is derived from the
condition

v̂ = vsafe = (2.19)

− bτ +
√

b2τ 2 + v2
anti + 2b(g + vantiτ − γc),
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Figure 2.14 Left: The simulations performed with the stochastic ver-
sion of the SKA and for different values of gc are in qualitative agreement
with (2.30). Right: Minimal gap found in simulations of the loop, taking
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with

vanti = −bτ +
√

b2τ 2 + v̂2 + 2bg̃. (2.20)

With respect to (2.17) two cases have to be distinguished.
In the case of vanti > gc, i.e., γc = gc, equation (2.19) is solved by

v̂τ = (g + g̃ − gc) and the OVC reads

V f
opt(ρ) = min

{

2

τ

(

1

ρ
−

1

ρmax
−

gc

2

)

, vmax

}

, vanti > gc. (2.21)

If vanti < gc, i.e., γc = vanti τ , the known expression of the SKM (2.11) follows,

V j
opt(ρ) = V SK

opt , vanti < gc. (2.22)

2.3.3 Follow-the-leader behaviour

Finally, the differences in the follow-the-leader behaviour between the two models
is investigated. For this purpose, a chain of 1000 cars is used that follows the
first car whose speed is fixed to V ≤ vmax. The system is initialised by all cars
standing (g(0) = v(0) = 0). The lead car accelerates until the constant velocity
V is reached. Measurements commence if x ≥ 10000 · V holds for the last car of
the chain. It can be assumed that the system then reached a stationary state.
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Before presenting the simulation results, this set-up is analysed more closely.
To this end, only the case of deterministic motion is regarded. Thus, all speeds
can be eliminated to yield an update equation exclusively for the gaps. In order
to keep the equations concise, the following notation is adopted: If a quantity
is labelled with a prime ′, it means the following time step t + ∆t. Otherwise,
quantities are taken at the current time step t. For the same reason, τ = 1 is used
in the following.

Assuming a lead car driving at constant speed v0 = V , the behaviour of the
SKM is then determined by the equations

v′ = v = −b +
√

b2 + V 2 + 2bg

g′ = g = g + V − v′ (2.23)

Equation (2.23) has a fixed-point at v∗ = V and g∗ = V . Since this result can be
extended to the full chain of cars, it follows that

gn+1 = gn. (2.24)

The lower index denotes the position n of a car in the chain.
The result explains the independence of the peak in the time–headway dis-

tribution at low densities (cf. figure 2.4). Moreover, it can be concluded that the
intrinsic fluctuations of the SKM are not able to allow the dynamics to escape from
the fixed-point. It is worth saying that the robustness of the fixed-point in contin-
uous car-following models is hard to overcome in general which causes problems
with regard to modelling the synchronised state.

As next, the same situation is investigated for the SKA. Again, the lead car
drives constantly with v0 = V , which is also vanti for the first following car.
Having regard to the deterministic case, that car then drives with v∗

1 = V and with
constant headway g∗

1 = gc. This is because

v′
1 = −b +

√

(b + V )2 + 2b(g1 − gc) (2.25)

and

g′
1 = g1 + V − v′

1, (2.26)

whose fixed-point g′
1 = g1 ≡ g∗

1 is just gc.
For the second car this procedure can be carried out to give

g′
2 = b + V + g2 −

√

b2 + V 2 + 2bg2, (2.27)

where the stationary state of the first car v∗
1 = V and g∗

1 = gc has been assumed.
This equation has a simple fixed-point, namely g∗

2 = V . Obviously, v∗
2 = V holds

likewise.
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Figure 2.15 Typical time-series of the gaps between two consecutive
cars in the follow-the-leader behaviour of the SKA. The leading cars drives
at V = 15ms−1. The mean gap 〈g〉 = (gn+gn+1)/2 hardly varies, because
the two cars share a common gap ∝ 1/ρ. The two gaps between three
consecutive cars are anti-correlated.

For the third car the computation leads to

g′
3 = b + V + g3

−
√

b2 − 2bgc + V 2 + 2bg2 + 2bg3, (2.28)

and g∗
3 = gc, v

∗
3 = V . Expressed generally, the latter equation reads

g′
n+1 = b + V + gn+1

−
√

b2 − 2bgc + V 2 + 2bgn + 2bgn+1, (2.29)

resulting in the following expression for the stationary state g ′
n = gn, vn = V :

gn+1 = −gn + gc + V. (2.30)

The result (2.30) shows that the gaps of the n–th and (n+1)–th car are asymptoti-
cally anti-correlated. In figure 2.14 time-series gn vs. gn+1 are shown for different
values of gc. With increasing gc, the corresponding straight line moves away from
the origin, thereby causing the corresponding flow to decrease.

The result helps understand the plateau structure found in the time-headway
distribution of the SKA at low densities (cf. figure 2.13). With respect to (2.30),
the two time-headways of three consecutive cars equal the bounds of the interval
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[gc/V, 1]. In the simulation, the lower bound of the interval scarcely occurs due
to fluctuations. These fluctuations are not able to drive the system away from
the fixed-point, comparably to the SKM. However, in the SKA, three consecutive
cars share a common gap given by the mean density, but the share between gn

and gn+1 is not fixed. Fluctuations allow two cars to exchange their role in the
common structure, i.e., if a cars approaches the car in front, its car behind will
enlarge the headway and vice versa. This leads to characteristic oscillations in the
time-series of the gaps as shown in figure 2.15.

Before correlations of observables in the models are investigated in more de-
tail, the role of gc is further explained. With respect to equation (2.30) one may
ask why the anti-correlation does not lead to states with g < 0.

Assume that a car n + 1 has closed in on its predecessor n. Recalling (2.29),
the gap gn+1 develops as

g′
n+1 = b + V + gn+1

−
√

b2 − 2bgc + V 2 + 2bgn + 2bgn+1.

Setting gn+1 = g and gn ≈ V , the following approximation of g ′
n+1 holds,

g′
n+1 = b + V + g −

√

(b + V )2(1 +
2b

(V + b)2
(g − gc)

≈ b + V + g − |b + V |

(

1−
b

(V + b)2
(g − gc)

)

=

(

1−
b

V + b

)

g +
b

V + b
gc. (2.31)

Equation (2.31) shows that once gn = V = const, g tends to become zero. But,
this decrease is finally stopped at gc. A car that starts with g < gc is drawn
towards gc, which is the fixed-point. Having regard to fluctuations, safe driving
can, therefore, not be assured setting gc = 0. If one determines the minimal gap
that occurs in simulations of the model, depending on the fluctuations’ strength
ε and gc, this becomes more clear. It can clearly be seen in figure 2.14 that the
minimal gap increases with increasing gc. The dependence on ε is not as explicit.
This results from the fact that ε enters twice into the model’s equations. On the
one hand, it acts similar to the ε in the SKM (cf. equation (2.6)), on the other hand
it is also used to determine vanti. With respect to the collision-free motion in the
SKA, a minimal g∗

c can, therefore, always be found for a specific set of parameters
which guarantees safe driving, if gc ≥ g∗

c is chosen. However, g∗
c cannot be given

analytically. It has to be determined by means of numerical simulations.
Finally, a closer look at the correlation functions between the gaps and the

velocities completes the discussion of the effects on the system state due to an-
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Figure 2.16 Correlation functions c1(g, g) (left) and c0(g, v) (right) for
the follow–the-leader setup in the SKA. The value for each car is indicated
by the colour. The cars are sorted along the y-axis with increasing car
number n.

ticipation. The correlation function of two arbitrary observables ξ and χ at car n,
n + ∆n, respectively, used in the following is given by

c∆n(ξn, χn+∆n) =
〈(ξn − 〈ξn〉)(χn+∆n − 〈χn+∆n〉)〉

σn
ξ σn+∆n

χ

(2.32)

In (2.32) σn
ξ stands for the standard deviation of the observable ξ taken at car n.

In figure 2.16 the correlation functions c1(g, g) and c0(g, v) are shown. In
contrast to the SKM5 there exist a platoon of cars behind the leading car in the
SKA which displays a strong anti-correlation between two consecutive gaps, cf.
equation (2.30). Note that this structure is even not destroyed if the lead car drives
with velocities fluctuating symmetrically around around 〈vleader〉. In the regime
of strong anti-correlation, c0(g, v) ≈ 0 is found, i.e., a car is free to choose a
gap g independently of the velocity of the car in front. Therefore, this state is
reminiscent of synchronised flow [90, 91, 92]. However, further exploration of
the simulated data shows that the velocity only displays fluctuations of strength
a/2 around the mean speed 〈vleader〉. Thus, anticipation alone cannot generate
synchronised states.

2.4 Open boundary conditions

The investigation of periodic boundary conditions (PBC) is valuable in order
to understand the bulk properties of a dynamic model. However, in the context
of street traffic one obviously deals with open systems, e.g., a segment of street

5 c1(g, g) ≈ 1. The same holds for c0(g, v).
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between two ramps or two intersections. There it is the present travel demand
which determines the in- and outflow of such a segment, as well as the flows may
be restricted by traffic lights or speed limits. In contrast to closed systems the
density of the segment is no longer conserved. Therefore, the understanding of
the effects open boundaries have on the model’s dynamics is essential with regard
to real world applications of traffic flow models.

2.4.1 Boundary induced phase transitions

Moreover, physics teaches us that dynamic systems can display boundary induced
phase transitions under open boundary conditions (OBC) [116]. With respect
to this phenomena the class of driven lattice gases (DLG) plays an important
role [116, 158]. In these models a lattice is connected to particle reservoirs at
its boundaries and the particles have a preferred direction of motion. The NaSch
model and its variants can be seen as special realisations of driven lattice gases,
as well as the SKM (however, having continuous state variables).

One famous example is the so-called total asymmetric simple exclusion pro-
cess (TASEP) which has been studied extensively, so that even exact results exist
[45, 53, 61, 150, 159]. In this model particles enter the system (left boundary)
with a probability α and leave the system (right boundary) with probability β.
Particles then move site by site (from left to right) with a transition rate p and are
subjected to hard-core repulsion, i.e., a particle can only jump into a free site. Its
FDR displays one maximum (as the NaSch) and an unique relation between den-
sity and flow. With respect to PBC, there is only one phase to be observed. Using
OBC, however, the model shows a surprisingly rich phase diagram depending on
the inflow and outflow rates.

In principle, one can distinguish between three different phases. Namely, the
low-density phase, the high-density phase and the maximum current phase [150],
which are separated by phase transitions. In the first two phases, the flow in the
system qsys is only dominated by the inflow rate α and outflow rate β, respectively,
whereas the limiting factor on the flow is the bulk rate p in the latter phase. The
representation of these phases within the (α, β)-plane is called phase diagram.

There exists a rather general, phenomenological theory of boundary induced
phase transitions for models with unique FDR [4, 67, 109, 148] which allows
the phases in the open system to be predicted considering the FDR of the closed
system. Applying this theory, the flow Q in the open system is related to the FDR
q(ρ) of the periodic system by an extremal principle

Q = maxρ∈[ρβ ,ρα] q(ρ) for ρα > ρβ,

Q = minρ∈[ρα,ρβ ] q(ρ) for ρα < ρβ.
(2.33)
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ρα and ρβ are effective densities at the left and right boundary, respectively. They
are closely related to the flow rates α and β. The principle implies that two mod-
els with different microscopic dynamics but unique FDR always have the same
phase diagram for OBC. Therefore, the phase diagram of the NaSch model is
qualitatively the same as the one of the TASEP [147, 156].

In contrast, traffic flow shows branched FDR, i.e., within a certain regime of
densities the homogeneous flow can coexist with the congested state. It is on the
one hand interesting to verify whether the extremal principle (2.33) is still valid
for such systems. On the other hand, it is worth understanding whether open
boundaries give rise to phases which are not bulk phases (PBC) or whether the
order of transitions between phases changes due to OBC.

One class of models with non-unique FDR is given by the VDR. In [5] a VDR
model with vmax = 1 is investigated. It displays metastable high-flow states. Due
to its simplicity, an analytical description of the phases is possible. In principle,
one finds the same phases as in the TASEP, but the microscopic structure of the
phases is different. For finite system sizes LS , there is a maximum current phase
which vanishes in the limit LS → ∞. The findings concur with the extremal
principle.

VDR models with vmax > 1 are investigated in [13, 167]. The phase diagram
of these models shows the free-flow and jammed phase together with a phase of
high flow which corresponds to the maximum current phase. However, as for
vmax = 1 the microscopic structure of the jammed phase differs from the TASEP.
The model reveals a special structure which can be characterised as striped pat-
terns. This structure seems to be generic for DLG with metastability. In [13],
these structures are investigated in great detail. The system states of the open sys-
tem can all be explained by means of the microscopic structures. Note that for the
models with branched FDR all system states of the periodic system can be related
to the open system. In this sense, the extremal current principle is fulfilled also.
Additionally, there exist states of high flow which cannot be related to the FDR
of the periodic system. The corresponding high-flow phase is dominated by one
large jam alternating with periods of free flow. The latter periods give rise to the
overall high flow. The observed effect in the high-flow phase can be traced back
to the metastability of the models leading to local cluster effects [98]. A more de-
tailed explanation can be found in [13]. Note that the systems investigated in [13]
are short (500 cells) and the stochastic component in the movement of the cars
is relatively weak. This explains why the effects of metastability can be readily
observed. In the thermodynamic limit the high-flow states would vanish and the
phase diagram (and phases) of the NaSch and VDR would be equal.

Before presenting the results for the SKM with OBC some further aspects are
given why these investigations are important in order to obtain a better under-
standing of the models [178]. Since real world measurements are always made in
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open systems, they are important for the calibration and validation of traffic flow
models. Moreover, the understanding of the relation between the microscopic dy-
namics and phases in presence of OBC may help to establish the connection of
the microscopic description with the macroscopic by FDR. As mentioned before,
there is still an ongoing discussion about the number of phases that may exist
in traffic [24, 41, 76, 93]. With respect to OBC and microscopic models, it can
even be seen as open question whether the observed features are bulk properties
or boundary induced. A similar statement can be made for the transitions between
phases. For example, the assumption that the hysteresis loop can only be run
through in one direction is challenged by the findings in [174, 187]. In light of
OBC it seems natural to assume that the hysteresis loop can be cycled in both di-
rections. Moreover, there is much evidence [140, 147] that non-equilibrium phase
transitions occur in traffic flow on highways which are triggered by capacity re-
strained states in the vicinity of on- and off-ramps. So, there may well be different
phases and phase transitions but they may as well be generated by the boundaries
and not by the bulk dynamics. The details of the bulk dynamics may solely be
able to change the order of the phase transitions observed for OBC [178].

2.4.2 SKM with open boundaries

In the following discussion, the SKM is investigated by means of numerical sim-
ulations, using OBC. The parameters chosen are,

a = 2 m/s2 b = 8 m/s2 vmax = 35 m/s
ε = 1 lcar = 7 m τ = ∆t = 1 s,

(2.34)

i.e., stable, high-flow states exist in the periodic system and the model displays
macroscopic phases. The FDR of the periodic system is given in figure 2.18. For
the parameters the outflow from jam and maximum flow are (ρf , qf ) = (15 km−1,
1834 h−1) and (ρc, qc) = (20 km−1, 2445 h−1), respectively. As will become
clear, the findings of the metastable VDR [13] can be transferred to this case.
However, as may be expected, the high-flow phase in regard to OBC is noticeably
more stable. Transitions between the phases are also considered and compared to
the SKA in section 2.4.3.

The SKM has already been investigated in the open system [137, 138] and, in
principle, the expected behaviour was evidenced. Three phases, namely free-flow,
jam and high-flow phase, were found and the system states were in agreement with
the extremal principle (2.33). However, the high-flow phase was only be observed
where there was no restriction imposed upon the outflow of the system. There-
fore, the transition to the high-flow phase could not be investigated numerically.
Moreover, an artificial phase diagram was found for one of the insertion strate-
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is Qβ(β) where τβ = 1.2 s and lβ = 9.77 m are obtained by fitting (2.35).

gies used in [138]. Two problems were encountered due to the applied boundary
conditions:

- The use of the standard insertion rule (insert a car with probability α, if
the first ’site’ is not occupied) does not allow all states along the high-flow
branch of the FDR to be reached. In fact, the inflow significantly decreased
with increasing α for α > 0.6 and was even lower than the outflow from
jam (overfeeding).

- If the outflow is modelled by blocking the exit with probability β, strong
perturbations are introduced into the system at its exit. This leads to the
problem that the high-flow phase is destroyed as soon as the probability of
having a block is unequal to zero. Note that this strategy is appropriate for
models of NaSch type because the braking ability in these models is not
bounded.

It is known from [32, 31, 81] that special boundary conditions can have a large in-
fluence on the phase diagram, possibly even leading to a violation of the extremal
principle.

In order to confirm the findings in [138], and to clarify the transitions between
the phases, new boundary rules are established. As usual, cars enter the system at
the left boundary and move to the right, where there is the exit of the open system.

Left boundary (entry)

The choice of the input strategy is crucial in order to permit an investigation of the
entire spectrum of possible system states. As seen earlier, the use of the standard
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insertion rule leads to overfeeding and the high-flow states immediately break
down. Because several time steps are needed to reach vmax again, flows that ex-
ceed the outflow from jam are scarcely reached. An appropriate rule, therefore,
has to be able to mimic the highly ordered high-flow states, at least for undisturbed
right boundaries. In these states 〈g〉 & 〈v〉 and 〈v〉 = vmax − a/2.

The method used to generate homogeneous states at the left boundary is sim-
ilar to the method used in [13]. A short segment of length Lα ≥ vmax∆t + lcar
is linked to the entry and its state is updated in each time step of the simulation.
In the first step it is flushed completely, i.e., if there is a car inside the segment,
it is removed from it. In the second step, a new car is inserted into the segment
with probability α and initial velocity vmax. Its position is calculated according to
the position of the first car in the open system. The position of the inserted car
is chosen such that the gap is at least gmin = vmax and the distance to the open
system is minimal.

Therefore, with open right boundaries, the inflow Qα to the system increases
linearly with α until it snaps off for flows above the outflow from jam qf . This
is due to a slight overfeeding because for the stochastic model 〈g〉 > 〈v〉 holds.
After the inflow reaches a maximum, one finds a plateau which is determined
either by the restricted outflow from the system or by the overfeeding effect. For
the given parameter set, Qα is shown in figure 2.17. Qα = qf for αf = 0.53 and
the maximum flow qc is reached at αc = 0.83 with an open right boundary.
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Right boundary (exit)

The outflow from the open system is determined by the right boundary. Instead
of using a block, a segment of Lβ = 0.1 L linked to the right boundary. In
order to change the outflow, a restriction is imposed on the velocity by setting
vβ = βvmax. After a short relaxation time this affects the outflow from the sys-
tem. For the deterministic case, the relation is determined by (2.11) leading to
Qβ = vβ/(τvβ + lcar). In the stochastic case this becomes, in principle,

Qβ =
〈vβ〉

τβ〈vβ〉+ lβ
where

〈vβ〉 = βvmax − a/2, (2.35)

because [113] 〈g〉 = τβ〈v〉 + lβ with τβ > τ , lβ > lcar. As long as the possible
outflow does not exceed the inflow into the system, this rule, therefore, allows a
continuous scaling of the outflow. Note that this boundary condition is closely
related to the effects one finds at on- and off-ramps.

The dependency (2.35) is displayed in figure 2.17 together with measurements
of Qβ. At low densities small deviations from (2.35) are found due to the slow-to-
start behaviour. If the inflow exceeds qf , the system’s flow is lower than that given
by (2.35) if βf > 0.42. In this case, the reduction of velocity at the exit affects
the high-flow states. However, this perturbation is not strong enough to lead to
an overall breakdown in the system because of the stability of these states. Note
that for the open system (β & 0.95) and maximum inflow, flows complying with
(2.35) are reached again.

Open system

Using the rules given above, an open system of length LS = 104 m is simulated,
screening the (α, β)-plane with step-size 0.01. The system is always relaxed for
2 · 105 time steps before the measurements start. After that time, all simulated
systems became stationary, which can easily be checked: In the stationary state,
the inflow and the outflow of the system are equal. Presented quantities are time
averages over 2 · 104 time steps. The in- and outflow are measured immediately
at the entry and the exit, respectively. The corresponding densities and speeds at
the boundaries of the system are measured within a 100 m segment. Mean densi-
ties ρsys and speeds vsys in the middle of the system are measured within a 200 m
segment. Now, the most relevant results of these simulations are presented. Note-
worthy is that the dependency of the in- and outflow are non-linear with respect
to α and β.

In figure 2.18 the macroscopic system states measured in the open system are
compared to the FDR of the periodic system. One finds that the extremal principle
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Figure 2.19 Top: System density of the open system. Note that the axis
of α and β were interchanged for better presentation. Bottom: System
velocity of the open system.

(2.33) is also fulfilled for the SKM. The complete FDR of the periodic system can
be traced back to the open system. In order to obtain the complete high-density
branch, one has to choose a proper inflow, i.e., equal to the outflow from jam
(α = 0.53). Moreover, one finds high-flow states that do not exist in the closed
system. For parameters (α, β) where these states are found, at least one of the
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border densities is inside the interval ρf ≤ ρα,β ≤ ρc, i.e., the flow q(ρα,β) is not
well defined with respect to the periodic system. The microscopic structure of
these high-flow states explains how flows greater than those within the periodic
system are reached (see below).

Before deriving the phase diagram of the SKM from the simulation results, the
definition of the high-flow phase, as used in the following, is given. Frequently,
one uses this term for system states where qsys > qf . In that case, the high-flow
phase simply spans a rectangle in the phase diagram. For the given parameters,
this would be the plane represented by α ≥ αf = 0.53, β ≥ βf = 0.42. However,
using an order parameter to determine the transitions between the phases, slightly
different border lines defining the high-flow phase are found. The reasons for
this will become clear, but for the moment just note that there are also states
with q < qf which do not exist in the periodic system. It is observed that a
transition to the high-flow phase always occurs (by means of an appropriate order
parameter), if system states are obtained which do not have a counterpart in the
periodic system. Only these states are, therefore, regarded as states of the high-
flow phase in the following.

Figure 2.19 shows the density and velocity measured in the middle of the
system. Three regions are clearly distinguishable. The region in which density
and velocity are high resp. low, corresponds to the jammed phase. In the free-
flow phase the density is low and the velocity is given by vf ≈ vmax−a/2. Lastly,
there is a region where the density is slightly greater than in the free-flow phase.
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Here the velocity is also high, but lower than vf . The latter region is the high-flow
phase.

Along lines of constant α ≤ 0.53, one observes a non-vanishing jump ∆ρ
whose size decreases with increasing α. For specific values of α, the system
density on β is displayed in figure 2.20, together with the size ∆ρ. The jump
∆ρ → 0 for β → β∗ = 0.38. If ∆ρ is used as an order parameter, the phase
transition from the free-flow phase to the jammed phase is identified to be of first
order [55].

For α ≥ αf , the system density over β is continuous but displays a jump in
its derivative indicating a phase transition of second order [55], cf. figure 2.20.
A fully automated determination of the transition points (α, β) is complicated by
the present fluctuations of the densities in the high-flow phase and would require
further numerical efforts. The transitions lines defining the high-flow phase which
are given in the phase diagram, figure 2.20, were, therefore, determined ”by eye”.
With regard to the displayed profiles of ρsys(β) and α = const, the discontinuity
in the derivative of ρsys is clearly visible. The same is true for the corresponding
profiles of ρsys(α) and β = const.

In order to attenuate the lack of mathematical rigour, the results were checked
again, using the velocity vsys, cf. figure 2.19. The profiles of the velocity with
constant α were processed as follows. Firstly, the profiles were smoothed because
a fit to a functional relation was otherwise impossible due to the fluctuations in the
data points. To this end, the weighted sum of each data point and its neighbours
was calculated. After, the derivative of each profile, dv/dβ, was computed and
fitted against functions of the type (βc − β)γ . The value βc gives the transition
point. The values for βc, which resulted from the fitting procedure, compare to
the values determined before, i.e., the ones plotted in figure 2.20. For the critical
exponent, γ ≈ 0.5 was found. The profiles with β = const were processed in the
same way, and the results confirmed the earlier findings for the transition line.

An alternative representation of the phase diagram is obtained, using the in-
flow Qα and outflow Qβ instead of α and β. The transformation of the above
results can be done using the inverse of Qα(β = 1) and Qβ(α = 0.83) from fig-
ure 2.17. Recall that these flow depend on α and β in a non-linar way. Using this
representation, it can be seen that the system always displays flows which that can
be maintained by both boundaries.

With respect to the microscopic structure of the phases (shown in figure 2.21)
the findings concur with [13].

Inside the free-flow phase either no perturbations exist at the system’s exit or
small micro-jams are generated there. However, since the inflow into these jams
is smaller than their outflow, they dissolve immediately (not shown).

In the jammed phase there are several jams inside the system which are gen-
erated by perturbations at the right boundary. While travelling backward through
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Figure 2.21 Top: Space-time diagrams inside the jammed phase. Left:
(α, β) = (0.4, 0.2) (Jam-I). Right: (α, β) = (1.0, 0.2) (Jam-II).
Bottom: Space-time diagrams inside the high-flow phase. Left: (α, β) =
(0.8, 0.5). Right: (α, β) = (0.9, 0.9).

the system, they do not grow considerably because their outflow equals their in-
flow as this is feeded by another jam. Note that the merging of two subsequent
jams is also possible if they were generated close to each other. According to
the definitions given in [13] it is possible to distinguish the behaviour inside the
jammed phase on the following basis: The jams either all dissolve before reach-
ing the entry or restart growing close to it. In [13] this is termed as Jam-I phase
and Jam-II phase, respectively. Given that compact jam clusters alternate with
free-flow regions in these two phases, their microscopic structure is referred to as
striped pattern.

An example of a Jam-I phase is given in figure 2.21 with (α, β) = (0.4, 0.2).
In this case, if a jam is closest to the entry, its outflow exceeds the inflow at its
upstream front provided by the left boundary. The jam dissolves mostly before
the left boundary is reached.

In the Jam-II phase, e.g., (α, β) = (1.0, 0.2), the exact opposite occurs. In-
flows into the system are greater than the outflow from jam and, therefore, a jam
closest to the entry even grows. When the jam reaches the entry, the insertion of



46 Chapter 2 Microscopic Car-Following Models

new cars is suppressed until the jam has dissolved. The findings show that the
striped structure should be present in all models that display phase separation in
the periodic system.

In the high-flow phase it is also possible to distinguish between two different
behaviours.

The first type of behaviour is given in the case where the outflow is almost
unrestricted, e.g., (α, β) = (0.9, 0.9). Thus, no perturbations are introduced at
the system’s exit. If α exceeds αf , small perturbations can exist in the vicinity
of the left boundary due to overfeeding effect, however, healing out very quickly.
Most of the time the flow in the system is, therefore, not affected at all, i.e., the
high-flow states inserted at the left boundary reach the exit.

If the right boundary affects the flow, e.g., (α, β) = (0.8, 0.5), the striped
structure is found again. However, in the case of the high-flow phase, the system
is mainly dominated by one single large jam. Periods of unrestricted high flow
alternate with periods where the flow is determined by the outflow from jam. If
the system size is small enough, the time periods of high flow have an integral
part in the overall system flow, cf. [13].

To complete the discussion, a short comment is made with respect to appli-
cations of the preceding findings to real world traffic. The influence of OBC on
the system state show that controlling in- and outflows can have an effect on op-
timising traffic streams. An example of flow optimisation by inflow control is
provided by the famous experiments at the Lincoln and Holland Tunnels in New
York [64, 79]. Other than the reduction of fluctuations, the effect ramp metering
has on flow stabilisation can also be discussed in light of boundary induced phase
transitions.

2.4.3 SKA with open boundaries

The investigations performed for the SKM with OBC are repeated for the model
with anticipation. Concise results are presented because the findings are the same
as those for the model without anticipation. This again shows that anticipation
only gives rise to more stable high flows and allows for shorter time-headways,
whereas the overall dynamic nature of the model remains unchanged. Using OBC,
the same phases as in the SKM are found and the order of phase transitions also
remains unchanged. The same is true for the microscopic structure of the phases.

The same methods and the same set of parameters used for the SKM were used
for the simulations. Additionally, gc is fixed to 1 m. It is evident from figure 2.22
that the maximum flow of the periodic system (qc = 3653 h−1 at ρc = 30 km−1)
is not reached in the open system. This is due to the special structure of the high-
flow states (cf. section 2.3), which is not mimicked by the insertion strategy. The
outflow from jam (qf = 2107 h−1 at ρf = 17 km−1 in the periodic system) is
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Figure 2.22 Top: In- and outflow of the system (SKA). Left: Inflow Qα

for different conditions at the exit of the system. Flows that exceed qf are
found for α > 0.6, β > 0.31. Right: Outflow Qβ for different inflows. If
β > 0.53, the inflow is no longer affected by the right boundary.
Bottom: Extremal principle and phase diagram (SKA). Left: Comparison
of the states found in the periodic and the open system. All states of the
periodic FDR can be related to the open system. Right: Phase diagram of
the SKA. The solid and dashed lines represent phase transitions of first and
second order, respectively. For β > 0.53, only the free-flow phase exists
in the open system.

found for αf = 0.6 (β = 1) and, accordingly, βf = 0.31 (α = 1). The value of βf

is lower than for the SKM which indicates that the right boundary has a weaker
impact on the system here. This is related to the fact that the drivers anticipate the
velocity of their predecessors. Moreover, for β > 0.53, the right boundary has
no further influence on the system. This is because the inflow does not reach all
possible states along the high-flow branch of the FDR. Note that, due to the fact
that two consecutive cars share a common gap in this model, equation (2.35) is
not valid here.

Figure 2.22 also compares the states of the open system to the states of the
periodic one. It is found that the extremal principle is fulfilled for the SKA. More-
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over, the phase diagram of the SKA is given (β > 0.53 not shown. For these
values only the free-flow phase is present). The transition lines between the dif-
ferent phases are determined using the same methods as before. For the critical
exponent of the transition from jammed to high-flow one obtains again γ ≈ 0.5
(using the velocity profiles).

2.5 Conclusion

The discussion in this chapter focused on the dynamic properties of a specific mi-
croscopic car-following model, the SKM. The investigations of the macroscopic
states together with their time-headway distributions and optimal velocity curve
complete the discussion of the model as given in [113].

The model displays different classes of dynamic behaviour depending on the
parameters chosen. With regard to model classes where structure formation is
found, the classification is reviewed in light of recent findings [131]. In contrast
to traffic flow models based on cellular automata, the SKM possesses high-flow
states which are stable against intrinsic fluctuations of the model. It is shown that
there is a transition to metastable high-flow states, if the braking ability grows
to infinity. However, in contrast to the assumptions of the original work [113],
high-flow states are always observed, if the strength of fluctuations is not too high
(ā ≤ 0.8 for the parameter sets investigated in section 2.2.2). For all (investigated)
parameter sets which belong to the class of models with structure formation a
stable outflow from jam is found.

Anticipation is shown to be an important component in microscopic car-fol-
lowing models in order to obtain more consistency with empirical findings. This
driving strategy is introduced into the SKM using next-nearest-neighbour inter-
actions. The effects in regard to the model’s dynamics are investigated in great
detail, by simulations as well as by analytical calculations. It is found that antici-
pation leads to a stabilisation of the flow in dense traffic and is responsible for the
occurrence of very small time-headways, as found in reality, whereas the other
dynamic properties remain unchanged. It is shown that the mechanism behind
works by coupling three cars together. As a consequence, they share their two
respective headways which become anti-correlated. Because the given arguments
are rather general, this mechanism is present in any traffic flow model that works
with anticipation.

The presence of fixed-points in the dynamics of both models is further ex-
plored. These fixed-points are shown to be rather stable, therefore, considerable
changes in the dynamic equations of the models are necessary, in order to allow
the modelling of synchronised flow.
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Other than the investigations of periodic boundary conditions, the phase dia-
gram of both models is investigated in open systems. It is shown that the models
with stable high-flow states, fulfill an extremal principle [109, 148], which relates
the properties of the periodic system with the open system in a very general way.
Besides the free-flow and jammed phase, a high-flow phase occurs. The micro-
scopic structures which are found within the phases are similar to the ones which
are found in empirical observations [76, 93, 173]. The introduction of appropriate
boundary conditions further allows the investigation of the transition between the
phases. It is shown that the transition between the free-flow and jammed phase is
of first order, whereas the transitions into the high-flow phase are of second order.
Together with the findings in [13], it can be concluded that the presented phase
diagrams and the microscopic structure of the phases are generic for microscopic
car-following models which exhibit a branched flow-density relation and phase
separation.
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Chapter
3

Mesoscopic Modelling Based On
Queueing Theory

3.1 Traffic flow modelling by queueing approaches

Microscopic car-following models certainly allow for the detailed representation
of individual driving behaviour within simulation [52, 105, 172, 182]. For exam-
ple, the drivers’ assumptions about safe driving enter straightforwardly into the
model’s formulation as seen in chapter 2.

For many applications, such a detailed view of driving dynamics has to be
weighted against computational efficiency, or is even not needed. For example,
as pointed out in [59, 60], in regard to the simulation-based solution of the traf-
fic assignment problem, an approach is favourable, which is based on individual
vehicles and models the car-following behaviour solely on a coarse level. Such
models are called mesoscopic, because of their intermediate position between mi-
croscopic and macroscopic approaches. Model approaches where individual cars
are moved according to mean densities on street segments, as in DYNEMO [160],
or queueing models [2, 35, 59, 72, 84, 127, 175] where vehicles or traffic volumes
are moved without modelling the dynamics inside the segments, can be regarded
as typical examples for mesoscopic traffic flow models.

From the perspective of queueing theory, the links of a network (i.e., a part of
a road which starts and ends at an intersection resp. a node) are represented as a
queue or a sequence of queues. Cars that enter a queue have to wait at least for
the free-flow travel time, necessary to pass the correspondent distance, before they
are allowed to leave it. The transmission of a car to the next queue on its path is
further affected by the queueing discipline, the capacity and the storage capacity
of the link. Note that terms frequently used in the context of queueing theory are
introduced in appendix A.

The following discussion starts with the presentation of different queueing
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models in the context of traffic flow modelling, found in literature. This discussion
focuses on the applicability of these models in regard to the computation of travel
times and environmental impacts of traffic within the frame of dynamic traffic
assignment (DTA). This framework is further described in section 4.3, but for the
discussion of the models just note that the following requirements are desirable
for a mesoscopic traffic flow model, having regard to the applications addressed
in this work:

- The model should display traffic states distinct from each other. In this
respect, the existence of two traffic phases, namely free flow and congested
traffic, is already sufficient for many applications in urban networks.

- In particular, traffic inhomogeneities should be modelled properly, e.g., traf-
fic jams should move backwards.

- Modelling should be based on individual car-driver units in order to allow
the tracking of vehicles on their individual routes and the representation of
different vehicle classes.

- In order to reach the high computational performance, needed for simula-
tion-based traffic assignment, the movement of the vehicles should be based
on preferably large spatial units.

- Macroscopic properties of the flow, as the FDR, should result from the mi-
croscopic properties of the model.

- The model should allow the computation of the dynamics of traffic streams
with preferably high temporal resolution, needed to determine environmen-
tal impacts.

It is further pointed out, why most approaches of queueing theory fail in regard to
the above requirements. A new approach is, therefore, introduced in section 3.2,
which is mainly motivated by microscopic traffic flow modelling. Its dynam-
ics and properties are discussed in detail, including comparisons to the SKM.
Whereas the discussion of the new approach is focused on periodic systems in
this chapter, network flows and applications to environmental impact modelling
are addressed in chapter 4.

3.1.1 Stationary, state-dependent and transient queues

The framework of classical queueing theory is introduced in appendix A and its
application to traffic flow modelling is discussed in the following. Note in ad-
vance that, although the modelling of processes in queueing theory is motivated
microscopically, system’s properties are described taking a macroscopic perspec-
tive. To put it differently, the description of traffic flow using classical (stationary)
queueing theory [65, 121] focuses rather on the connection of FDR with relevant
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characteristics of traffic systems [71, 72, 175] than on the details of individual car
motion. Nevertheless, it is worthy to understand, where these approaches can be
used resp. where they fail, in regard to the modelling of traffic flow, because of
their sound theoretical foundation.

In terms of queueing theory, each link of a street network is regarded as a
service device operating at a certain service rate which corresponds to the capac-
ity of the link, i.e., maximum throughput in [veh./h] which can be maintained.
Queues of cars, i.e., congestion,occur in the system, whenever the current demand
exceeds the capacity of a service. In consequence, vehicles queue up in front of
the service device, and experience additional waiting times before being served.
The total time a vehicle spends on a link, therefore, equals the sum of the waiting
time due to congestion and the service time. Queueing theory then permits the
calculation of waiting times and queue lengths which result from the service and
arrival rates, the degree of saturation and the queueing discipline (cf. appendix A).

Steady-state solution of a M/G/1-queue

In the following, the basic procedure describing traffic flow by queueing theory
is demonstrated. For simplicity, solely the case of stationary flow is considered.
The discussion follows [71], where traffic flow is described in terms of a M/G/1
queueing model, using first-in-first-out queueing discipline (FIFO).

Assume that the road is divided into pieces of length 1/ρmax (≈ 8 m), with
ρmax being the density inside jams. Each of these pieces is regarded as a queue. A
car driving under free-flow conditions, passes the queue within the time
1/(ρmax vmax), and the corresponding service rate, i.e., the flow, is µ = ρmax vmax.
Moreover, if the traffic density is given by ρ, cars arrive at the queue with the
arrival rate λ = ρ vmax.

However, the service may as well be busy when a car arrives at the queue.
Thus, queueing occurs leading to additional waiting times. It can easily be argued
that the resulting waiting time is independent from the description of the queueing
process, given stationarity [71, 72]. To be more precise, it does not change the
result whether one either assumes that cars are batched immediately in front of
the service (i.e., a queue can hold more than one car), or if the queue spatially
extends backwards. Thus, a description as queue with unlimited storage capacity
is appropriate.

In order to proceed, further assumptions about the arrival of vehicles and the
service are necessary. If it is assumed that the interarrival times are exponentially
distributed with mean 1/λ, and, furthermore, that the service times are gener-
ally distributed with mean 1/µ and standard deviation σ, traffic is described by
means of a M/G/1 queue. In this case, the Pollaczek-Khintchine formula (A.11)
holds, which relates the mean queue length 〈QL〉 and the degree of saturation
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ηq = ρ/ρmax (also called utilisation),

〈QL〉 = ηq +
η2

q + λ2σ2

2(1− ηq)
. (3.1)

Combining this result with Little’s formula for the waiting time, W = 〈QL〉/λ,
yields

W =
1

vmax ρmax

+
(ρ/ρmax)

2 + v2
max ρ2 σ2

2vmax ρ(1− ρ/ρmax)
. (3.2)

Thus, the mean speed of the system, v = 1/(ρmax W ), reads

v(ρ) =
2vmax(ρmax − ρ)

2ρmax + ρ(β2 − 1)
, (3.3)

with β = σvmaxρmax. Equation (3.3) implies that, due to queueing, the maximum
speed vmax cannot be maintained but is reduced according to the derived speed-
density relation. This result does not only hold for the queue of length 1/ρmax, but
for the entire road. This is valid, because the density ρ has to pertain to the speed
given by (3.3) everywhere in the system given stationarity. Note that this further
implies that perturbations spread instantaneously over the entire system.

Further note that equation (3.3) means that the travel time ttr on a link solely
depends on its density ρ. The resulting function corresponds to the functional type
Davidson proposed [44],

ttr = t0tr

(

1 + c
q

qmax − q

)

= t0tr

(

1 + c
ηq

1− ηq

)

, (3.4)

where t0tr, q and qmax are the free-flow travel time, the current flow on the link
and the capacity, respectively. The parameter c has to be estimated from field
measurements. Equation (3.4) is derived from a M/M/1 queueing model, which
results from (3.3) and β → 1. The travel time (3.4) diverges as q → qmax resp.
ηq → 1, whereas this is not found in reality. Moreover, for all flow levels below
capacity, two corresponding travel time values are found due to the existence of
different traffic states [132].

State-dependent queues

Observations of street traffic show that the vehicles’ speed on a road segment is
strongly influenced by the the current density. Therefore, it is natural to give up
the assumption of fixed service rates, i.e., the assumption of a constant speed for
the vehicles travelling the queue. If a function for the service rate is used which
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depends on the number of cars on the link, the terminology of state-dependent
queueing theory is addressed. Most approaches found in literature assume sta-
tionary traffic conditions (in order to allow analytical investigations). For exam-
ple, traffic flow is described by means of a state-dependent G/G/1 queue in [175].
A more comprehensive description in terms of M/G/N/N queues is given in [84].
The details of the model and its application to describe traffic systems is given
in detail in appendix A. For the current discussion, the following remarks are
noteworthy:

The consideration of a decreasing service rate due to an increasing utilisation
of a queue aims to improve the drawbacks of approaches presented before. But,
the state-dependent description also leads to a travel time functions solely de-
pending on the density inside the queue. If such travel time functions are used to
implement the microscopic counterpart of state-dependent queueing models (see
p. 56), this does not yield an appropriate dynamics of jams, however. Besides
this major drawback, it is stated in [84] that already the computation of small net-
works using state-dependent queues needs enormous computational efforts with
respect to computation times. Thus, the simulation of large street networks, as
addressed in this work, is beyond the scope of these approaches. Finally note that,
in order to construct such models, assumptions about traffic flow, as the speed
density relation v(ρ), are necessary, whereas this work aims an description where
macroscopic characteristics of traffic result from the microscopic dynamics of the
model.

Consideration of non-stationarity

The descriptions of traffic flow given above all assume stationarity. However, in
regard to the dynamic nature of traffic, the dependence on time has to be consid-
ered. This is pointed out more clearly in [183]. For example, it is known from
measurements that traffic demand can exceed capacities for a finite time inter-
val. In approaches which assume stationarity, however, queue lengths and delays
grow to infinity in that case, cf. equation (3.4). Another drawback stems from the
fact that the duration of peak periods, encountered in practice, is usually not long
enough for the queues to settle down to a stationary state.

One possible way to deal with these problems is an approach, which switches
continuously from the stationary description to a deterministic one, with increas-
ing utilisation. In appendix A it is shown that a deterministic description of the
queueing process is appropriate if the system reaches the regime of oversatura-
tion. In the TRANSYT model [183] (and references therein) this is implemented
by means of sheared delay formulae. The model can be used to predict queues
and delays of road traffic at individual junctions and small areas of traffic control,
however, a treatment of large networks seems to be difficult within this approach.
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Besides, there is also a framework for the description of non-stationary queue-
ing systems [65], called transient queues. In [72] this is related to traffic systems
using transient M/M/1 queueing systems. The resulting expression for the ve-
locity in the system can not be given in closed form. Similar to (3.3) it is given
by

v(ρ, t) =
1/ρmax

w(ρ, t, i)
, (3.5)

where w(ρ, t, i) is the mean waiting time per vehicle. This waiting time has to be
calculated by numerical integration, and depends on the system’s density ρ, the
initial queue length i, and time t. The initial queue length is supposed to include
all the relevant history of the system and t is the time that has elapsed since then.
Besides the additional time dependence, resulting travel times are still functions
solely depending on the density inside the queue [72]. Moreover, the need for
numerical integration only allows for the efficient treatment of single links.

Transformation into a microscopic queueing model

The focus of the presented works is clearly on the description of uninterrupted
traffic flow and its embedding into the general concepts of queueing theory. These
approaches are valuable and successfully used in order to describe single road
links or single intersections in regard to the estimation of performance measures
under different traffic conditions, see [84, 175] e.g.. However, for the purpose of
microscopic modelling of net-wide traffic, these approaches have shortcomings
which are mainly related with the absence of different traffic states in a rigour
sense. This is further demonstrated now.

The implications of the above results, with respect to microscopic modelling,
can be investigated by means of an implementation of simple queueing networks
in the following fashion:

A road link of length LS is regarded. It is divided into a sequence of queues,
each with spatial length L. The single queues, which compose the link, will fre-
quently be referred to as segment in this work. Each segment possesses the same
maximum storage capacity, N = L ρmax. A travel time is assigned to each car
which enters a segment. This travel time may either be constant or depends on
the the current density inside the segment. Moreover, the movement of the cars
from segment to segment obeys FIFO. For simplicity, periodic boundary condi-
tions are used, and the system is initialised by one dense traffic jam of NS cars,
i.e., the global system density is ρglo = NS/LS . It is known from the discussion
in chapter 2 that the initialised jam, eventually, either dissolves for ρglo < ρf or
moves backward through the system, if the global density is above ρf . If the travel
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time functions, resulting from queueing theory were right, similar behaviour is ex-
pected for the implemented microscopic counterpart of queueing systems, at least
for stationary conditions (which are given for the periodic system after a sufficient
relaxation time elapsed).

Several functional dependencies for the travel time were applied, but even
non-linear travel time functions, as

ttr(ρ) ∝ 1 +
1

1− ρ/ρmax
, (3.6)

with ρ being the density inside the segment which is entered by the car, were
not able to generate backward moving jams. Either the jams dissolved, even for
ρglo > ρf , or their downstream front stayed fixed at the position where it was
initialised.

The reason for this behaviour stems from the fact that, even if a queue is
considerably crowded, its dynamics does not differ from an almost empty one.
Therefore, there is no distinction between the free-flow state and the congested
one. Furthermore, the finding of jam fronts staying at a fixed position indicates
that in queueing approaches all queued cars instantaneously take over a place
which is opened downstream by a car leaving the jam.

The findings do not change if travel time functions are used that, additionally,
depend on the density ρ̃ of the segment in front, i.e., ttr = ttr(ρ, ρ̃). These func-
tions were generated in the following way: A SKM is modelled on a loop and
parameters were chosen as in (2.8), therefore, stable jams exist. This system was
simulated at different densities and the travel time function ttr = ttr(ρ, ρ̃) was
sampled by using a virtual fragmentation of the system into spatial intervals of
L = 100 m. Using this travel time function in the implementation of a micro-
scopic queueing model, as given above, backward moving jams were not found.
In parts, the initialised jams were even not stable at all.

Figure 3.1 shows the distribution of travel times from the above experiment for
different traffic situations. The travel times are narrowly peaked around L/vmax

inside the pure free flow, because the cars do not mutually influence their motion.
If cars are considered that approach the upstream front of a jam, the distribution
of travel times becomes broader and its mean slightly shifts towards greater travel
times. This finding reflects that cars already start to slow down if a queue of
standing cars is approached from behind. With regard to congested conditions
one can clearly see that the distribution of travel times in the outflow region of a
jam considerably differs from the one found inside a jam. Both distributions are
rather broad compared to the case of free-flow, i.e., the standard deviation and the
mean value have the same order of magnitude. Note that the observed broadness
of the distributions also stems from the fluctuations present in the car-following
model. Two things can be concluded in regard to congested conditions:
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Figure 3.1 Distribution of travel times in the SKM for different traffic
situations, obtained as described in the text. The loop is divided into virtual
segments of length L = 100 m and n, ñ are the number of cars inside
the segment entered by the car and the following segment, respectively.
Left: For n, ñ < 3, all cars are in the free-flow state, whereas n, ñ < 4
also includes cars approaching the upstream front of a jam. Right: For
n, ñ > 11, cars are inside a jam (P (ttr) is scaled by factor 10). The other
distribution belongs to cars that escape from a jam, i.e., the outflow region
of a jam is covered. Note also the scaling of the x-axis in comparison to
the figure on the left.

- The travel time (per unit length) inside the jam is distinct from that inside
the outflow region of a jam.

- The travel time depends strongly on the system’s history. This may even
include the conditions several segments upstream resp. downstream of the
segment under consideration.

These results can be seen as a possible explanation for the finding that it is not
possible to capture the dynamics by means of a travel time function, solely depen-
dent on the densities ρ and ρ̃. This conclusion is further supported by the findings
in [167]. In this work, travel time functions of different microscopic car-following
models have been investigated for open systems. It was not possible to find a rela-
tion between travel time and density which is valid for the complete density range,
i.e., different traffic conditions.

In order to model backward propagating jams, it is, therefore, necessary to
account for the strongly reduced flows inside a jam together with the reduced out-
flow from jam. For systems where traffic flow is modelled by queues, this requires
a connection between the dynamics of subsequent queues. It is the author’s point
of view that the shortcomings in most models, representing traffic flow in terms
of queueing theory, can be found in the simplification that there is no coupling
between the dynamics of queues.
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The discussion on traditional queueing approaches is closed with a short re-
mark on spill back. Spill back is different from what was termed backward prop-
agation of jams before. If a network of queues with finite storage capacity is con-
sidered, there may occur situations in which a queue becomes completely crowded
because its inflow exceeds its outflow. Only in this case there exists an interaction
with queues connected to its upstream end, because no cars can leave the latter
ones as long as the queue remains completely blocked. In this sense, conges-
tion can spread backwards over the network which is called spill back. However,
this congested network state either starts to dissolve simultaneously at different
queues (that is the case, if the capacity of a queue is lower than the capacities of
the queues downstream). Or the downstream front of the congested network state
stays fixed at the queue where spill back started and dissolution proceeds from
upstream. In reality, however, jams dissolve from their downstream end.

3.1.2 Approaches based on the continuity equation

The two models, presented in the following, partially use the terminology of
queueing theory. Their dynamics is, however, derived on the basis of the con-
tinuity equation . This equation simply states conservation of vehicles within a
given section of the road. The state variables of the two approaches, i.e., density
ρ(x, t) and flow q(x, t), are macroscopic which makes these models unsuitable for
the vehicle-based approach to DTA. Nevertheless, they include important aspects
which also play a prominent role in the new approach presented in section 3.2.
As will become clear, the approaches account for the dependence of flows on the
downstream traffic conditions and the fact that the speeds of density perturbations
in free flow and congestion differ from each other.

Cell-Transmission Model (CTM)

The aim of the queueing model presented in [35, 36] is a description of net-wide
traffic flows in order to evaluate travel times needed in DTA. The approach is
based on the macroscopic description of kinematic waves on traffic highway, i.e.,
the description in terms of the famous model of Lighthill and Whitham [123] and
Richards [153] (LWR). This model was one of the first macroscopic traffic flow
models and many later works in this area are based on it. Its dynamics is described
in terms of partial differential equations,

0 =
∂ρ(x, t)

∂t
+

dq(ρ)

dρ

∂ρ(x, t)

∂x
,

dq(ρ)

dρ
= v + ρ

dv(ρ)

dρ
. (3.7)
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Figure 3.2 Diagrams are taken from [38] in a modified form.
Left: Graphical representation of equations (3.8),(3.9). Dots represent the
centre of a cell, the crosses symbolise the evaluation of transmitted flows
between two neighbouring cells. Shown is the situation for ` = 2.
Right: Triangular FDR (3.10) which determines the sending (S) and re-
ceiving (R) flow in equation (3.9).

Equation (3.7) results from the continuity equation ∂tρ + ∂x(vρ) = 0 by inserting
the equilibrium flow-density relation q(ρ). It describes the propagation of nonlin-
ear kinematic waves with speed dq/dρ.

Based on the works of Newell [141], the differential equations of kinematic
theory are approximated by a set of difference equations for the flow. In these, the
current state of the system is updated in discrete time steps of size ∆t. The road
is divided into cells1 of length L. Usually, L = vmax ∆t is chosen (see below). In
each time step the inflow to a cell, i.e., the transmitted flow, is calculated depend-
ing on the conditions inside its neighbouring cells and its own state. That is where
the name Cell-Transmission Model comes from.

If the centre of a cell is denoted by x, and ρ(t, x) is the average density esti-
mated for this cell at time t, conservation of vehicles requires

ρ(x, t + ∆t) = ρ(x, t)−
∆t

L

[

q`

(

x +
L

2
, t +

∆t

2

)

− q`

(

x−
L

2
, t +

∆t

2

)]

.(3.8)

In (3.8) the flows q` are evaluated at the upstream and downstream border of each
cell, see figure 3.2. They are determined by

q`

(

x +
L

2
, t +

∆t

2

)

= min {S [ρ(x, t)] , R [ρ(x + L, t− `∆t)]} , (3.9)

where S and R are the sending and receiving flow, respectively. The flows S and
R are given according to an unimodal flow-density relation q(ρ) which is an input

1simply another name for a segment
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of the model. In figure 3.2, S and R are pictured for a linear FDR. In that case, S
and R can be described by just a few parameters, namely, vmax, qmax and vjam. The
latter parameter gives the slope of the high-density branch. With these parameters,
the unimodal FDR reads

q(ρ) = min {vmax ρ, qmax, vjam(ρmax − ρ)} 0 ≤ ρ ≤ ρmax. (3.10)

The parameter ` is called the lag of the model. In the original formulation, as
given in [35], it is set to ` = 0, i.e., the flows S, R are evaluated at the same time.
In that case, maximum accuracy of the approximative update scheme is obtained
for the choice [38]

∆t = L/ |q(ρ) |max . (3.11)

| q(ρ) |max is the maximum of the two wave speeds in the given FDR. In traffic
streams the free-flow speed | vmax | is usually larger than the speed of density
waves |vjam |. Thus, for the linear case | q(ρ) |max= vmax. This result was already
used above with respect to the choice of L. The meaning of (3.11) is that pertur-
bations cannot cross several cells within one time step. Thus, it is ensured that the
flow between two cells is exclusively given by their sending and receiving flows.

In order to improve the approximation quality of the CTM (in regard to the
LWR model), it is advantageous to evaluate the sending and receiving flows at
different time steps [38], if | vmax |�| vjam | (as given in traffic streams). It is
shown in [38] that ` 6= 0 requires

` ≈ 0.5

[

L

∆t |vjam |
− 1

]

(3.12)

in order to achieve maximum accuracy (because of ` ∈ N, next nearest integer is
chosen in simulations). Condition (3.12) states that a perturbation originating in
cell x at time t can only influence the transmitted flow after having reached the
upstream border of that cell. The corresponding lag, obviously, depends on the
cell’s length L and the backward wave speed vjam.

The effect of a lag, ` 6= 0, is demonstrated by means of a simulation of a com-
pact jam inside a loop. The loop consists of 100 cells, each 100 m long. The cho-
sen parameters are ρmax = 140 km−1, vjam = −15 km/h and vmax = 120 km/h.
According to (3.11) ∆t = 3 s is used. The same temporal discretisation is used
for the lagged CTM, leading to ` = 3 according to (3.12).

Figure 3.3 shows the dissolution of the initialised jam over time. In the long
run the jam dissolves in both models, however, this happens considerably faster in
the CTM. Recalling that the models are approximations of the LWR, the simula-
tion results demonstrate that the lagged CTM yields an enhanced accuracy in this
respect. Analytically this is shown in [38].
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Figure 3.3 Simulation of a single jam on the loop with the CTM (` = 0)
and lagged CTM with ` = 3. ∆ρ is a measure for the difference between
the maximum and minimum density per cell, found in the simulated sys-
tem. For the CTM this quantity decreases considerably faster than for the
lagged CTM, which indicates that jam motion is more stable in the latter
one.

The fact that jams always dissolve in the cell-transmission approaches is
meaningless for the applicableness of the model in real world simulations, be-
cause this happens on very large time scales. For example, comparisons between
measured data and the simulations of the corresponding situation are made in [22],
using the CTM with ` = 0. Fairly good agreement was achieved and the error
made by the CTM was comparable to the one made by microscopic car-following
models.

Due to the macroscopic approach the CTM is not suitable for the vehicle-
based simulations addressed in this work, although the model performs very well
in respect to traffic dynamics as well as computational efficiency. Even origin-
destination relationships can be simulated by the CTM using turning probabilities
[36, 118]. However, in order to track individual drivers and their routes, a repre-
sentation of discrete car-driver-units is necessary. Unfortunately, the model only
works as intended if the transmitted flows (3.9) are numerically represented by
real numbers. The attempt of a direct transfer of the CTM into a modified cell-
transmission update scheme, describing the motion of discrete vehicles, did not
yield stable, backward propagating jams.

Section-based queueing-theoretical model

In [75] a queueing model is proposed that tries to avoid the discretisation of links
into small segments in order to yield numerical efficiency. The dynamics of cars
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is modelled on sections. A section may start/end at intersections or on- and off-
ramps, which is then identical to what was called link before. However, a link
may also be divided into several sections if there exist spatial inhomogeneities,
as changes in the number of lanes or a gradient. This is done because such in-
homogeneities usually trigger traffic congestion [77, 101]. For each section the
continuity equation implies

qi+1
a (t) = qi

d(t) + qi
r(t). (3.13)

qa, qd and qr are the flows that arrive at the upstream end of a section, depart from
its downstream end, and enter or leave the system due to on- and off-ramps, re-
spectively. The latter flow is either externally given or specified in terms of turning
probabilities. Sections are numbered in ascending order, i.e., the downstream end
of section i equals the upstream end of section i + 1. Note the similarity to the
CTM.

In order to determine the flows at the common border of two consecutive sec-
tions a discrete update scheme is formulated with step size ∆t. Since the complete
model [75] needs quite a few assumptions and equations, only the principles are
illustrated in the following.

In each time step qi
d is determined depending on the traffic conditions of the

sections i and i + 1. To this end, a state variable s is assigned to each section
which can either be free, partially congested (there is a queue of cars which length
is smaller than the length of the section) or completely congested. The state of a
section is determined according to the current queue length on the section (which
is tracked during the update procedure) and the in- and outflows of previous time
steps. Three cases have to be distinguished in order to compute qi

d:

i) If the upstream section i is free and the downstream one i + 1 is not in the
partially congested state, qi

d(t) is given by qi
a(t−Li/vi

max). Given the length
Li of the section, Li/vi

max just gives the travel time a car needs to cross the
section in free-flow conditions.

ii) If the downstream section i+1 is completely congested, qi
d(t) is determined

by the outflow from the downstream section at time t−Li/(τh ρmax). If τh is
the average time headway, this condition states that a perturbation at the exit
of the downstream section needs a finite time to reach its upstream border.

iii) In all other cases the departure flow is mainly given by outflow from jam.

The consideration of different propagation velocities of perturbations within free
and congested regions, together with the analytical treatment of the jam fronts,
leads to a numerically robust update scheme. The model approach is able to de-
scribe the hysteretic breakdown of traffic flow and to reproduce typical congestion
patterns [75].
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3.1.3 Vehicle-based queueing approaches

The modelling of the movement of single vehicles plays an important role in
the context of DTA and ITS (Intelligent Transportation Systems), because the
tracking of individual drivers in the network is necessary for certain applications.
Compared to microscopic car-following models, queueing-theoretical based ap-
proaches allow for a noticeable increase of numerical efficiency. If important
aspects of traffic flow are included the latter methods are favourable to the above
applications, especially in regard to online-implementations.

The concept of space-time queues

In [8, 126, 127] a link-based queueing model with discrete vehicle movement is
introduced. It solely calculates the points in time where a vehicle crosses a node on
its path through the network. The movement of cars is deterministic. Congestion
occurs due to conflicts of vehicle trajectories which can arise at crossings and the
merging or diverging of cars at ramps.

Each link is characterised by its maximum velocity vi
max, length Li and maxi-

mum storage capacity N i = Li/lcar. The entry time tν and exit time tνexit of each
vehicle ν at a link are given by

tν = max

{

tν−1 + τh +
lcar
vi
max

, tν−N i

exit + N iτh

}

and

tνexit = max

{

tν +
Li

vi
max

, tν−1
exit + τh +

lcar
vi
max

}

. (3.14)

Equation (3.14) is derived from a simple car-following relationship which yields
a triangular flow-density relationship. It assures that there is a minimum time sep-
aration τh between vehicles, and that the effective vehicle length lcar is respected.
Within the model delays propagate with a finite speed which is reached due to the
coupling between the entry and exit times of consecutive cars. Recall that delays
are propagated upstream instantaneously in standard queueing models. The model
displays stable jams. This can basically be traced back to the second term in the
expression for the entry time tν of equation (3.14). The jams propagate backwards
with speed lcar/τh.

Simple implementation of capacity constraints

A simple stochastic microscopic queueing model meeting capacity constraints can
be implemented in the following way:

A link i is spatially characterised by its length Li and storage capacity N i.
Its dynamic properties are given by the free-flow speed vi

max and the maximum
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Figure 3.4 Left: Global FDR of the simple queueing approach FAST-
LANE. Right: Space-time plot a the system initialised with one traffic
jam.

capacity qi
max at its downstream end. If a car enters a link at time t, a leaving

time t + Li/vi
max, which corresponds to the free-flow travel time, is assigned to it.

The state of each link is updated in discrete time steps ∆t. Vehicles are kept in a
priority queue, in order to process only such cars for which the intended leaving
time is already elapsed. FIFO is used as queueing discipline.

In each time step a certain number of cars, whose waiting time in the queue
exceeds the calculated travel time, is passed to an outgoing queue. The number
of cars that can leave a link during the time interval, given by ∆t, is constrained
by the link’s capacity and the storage capacity of the next link. The capacity is
modelled as random variable with mean qi

max because in reality the outflow of a
link fluctuates over time. If more cars than the link capacity arrive, a queue starts
to build which may spill backwards through the network. To put it differently, due
to the capacity restraints and finite storage capacities of the links, the service rate
of an upstream server is influenced by a full queue downstream.

The model was introduced in [59, 60], and is implemented in the traffic sim-
ulation tool FASTLANE (FAst Simulator for Traffic in LArge NEtworks) [185] in
order to solve the DTA problem by simulation. One of its major features is its
computational efficiency (see also [27]) which allows the computation of traffic
flows in large networks, still being microscopic and dynamic. Its input is a set of
drivers with specific trips, i.e., individual departure times and known routes, and
calculates the travel times for all drivers using the network simultaneously.

In [59] the model was compared to microscopic car-following models for a
bottleneck situation with excellent results. For the same situation its adaptability
in respect to the computation of vehicular emissions was investigated in [51]. It
was found that a detailed emulation of the dynamic effects at the bottleneck (i.e.,
during the buildup of the queue) is necessary in order to achieve high accuracy.
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A good approximation in comparison of the SKM was achieved by subdividing
the link in front of the bottleneck into several segments. However, it turned out
in further investigations that the test used in [51, 59] succeeded because of the
very special situation used for the comparison: a two-lane road with a one-lane
bottleneck at its end which is the queueing scenario per se.

Figure 3.4 illustrates the shortcomings of the simple queueing model FAST-
LANE. To obtain the FDR the model is simulated on a closed loop, composed
of identical segments with Li = 100 m. The system is initialised with one dense
traffic jam at different global densities. As one can see in the figure, the speed
of backward travelling jam waves is not modelled properly. Therefore, there is
no high-density branch with negative slope present in the fundamental diagram.
Jams do not run backwards but stick at the position where they were created. The
reason for this is that a vehicle leaving the queue at its downstream end opens up
a new space at the upstream end without any lag (cf. section 3.1.1).

3.2 General approach based on time-headways
(µ-Queue)

In the previous section a detailed review of approaches to traffic flow modelling
is given, all based, in principle, on queueing theory. The discussion focused on
their abilities with regard to the requirements given at the beginning of the chapter,
namely,

- the modelling of traffic states distinct from each other.

- the distinction of individual car-driver-units.

- the usage of a preferably efficient implementation, i.e., based on large spa-
tial units and time steps.

It can be concluded from the above discussion of the models that it is necessary to
account for service rates depending explicitly on the conditions of queues down-
stream, in addition to the dependence on the state inside the queue. Moreover, it
became clear that a major drawback is related to the fact that a perturbation emerg-
ing at the downstream end of a queue reaches its upstream end instantaneously. In
contrast, it is observed that the velocity of perturbations is finite in traffic flow and
depends strongly on the traffic state. A proper approach, therefore, has to consider
the lag between the emergence of a perturbation and its arrival at the upstream end
of a queue.

The macroscopic models [35, 75] as well as the microscopic one [126] account
for these effects using different approaches, however, the principles behind are
similar and basic. They, therefore, play as well an important role within the new
approach introduced in the following, although it is derived through a completely
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Figure 3.5 Sketch of two consecutive segments and their parameters. A
waiting time τ i

s is imposed at the exit of each segment which depends on
the state of both segments.

different line of thought. For the sake of completeness, note that similar ideas
have also been put forward by a number of researchers, cf. [117] and references
therein, which use a macroscopic framework (so called Markovian traffic flow
models), and [142].

3.2.1 Dynamical equations

In the following model each link of length Llink is divided into a sequence of
segments i = 0, 1, .., I . Each segment possesses a finite length Li, such that
∑I

i=0 Li = Llink (see also figure 3.5). Upon entering a segment i at time tν , any
car ν gets assigned a proposed leaving time

tνmin = tν + ttr(n
i, Li, vi

max, . . . ). (3.15)

vi
max is the maximum speed on the segment (resp. the link), and ttr(·) is the travel

time which in general depends on the number of cars already inside the segment
ni. However, as observed in [60], the detailed form of the travel time function
seems to be not very important as long as the flow constraints are modelled prop-
erly. Therefore,

ttr = Li/vi
max (3.16)

is used, independent of ni.
When the time tνmin is elapsed, the car ν can be transmitted into the next seg-

ment (or link of its path), provided

- some capacity constraint is obeyed at the downstream end of the segment.

- there is enough space on the destination segment i + 1.

If ni+1 denotes the current number of cars inside the destination segment and N i+1

its storage capacity, the latter condition means ni+1 < N i+1. The storage capacity
is calculated by

N i = bρi
max Li N i

lanesc, (3.17)
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with N i
lanes, ρi

max being the number of lanes in the segment and the maximum
density, respectively. For a one lane road and a homogeneous fleet of cars with
length lν = lcar, the relation N i = bLi/lcarc holds.

In addition to the constraint that there has to be at least one site free in the
destination segment, cars have to obey flow constraints in order to get a reasonable
model for traffic flow. Let Qi

s be the the maximum flow which the segment i can
sustain given a specific traffic situation s. This capacity can be represented in
terms of time-headway τ i

s between two cars. Since the flow is q = 1/τh, this
capacity constraint is written down as an additional waiting time

τ i
s = 1/Qi

s, (3.18)

Thus, τ i
s denotes the waiting time between the car ν − 1 and the car ν under

consideration. If car ν − 1 left the segment i at tν−1
exit , then car ν is not allowed to

leave that segment earlier than time t ≥ tν−1
exit + τ i

s (see figure 3.5).
In order to complete the model τ i

s has to be defined. In FASTLANE (cf. sec-
tion 3.1.3) this parameter is chosen to be constant (apart from fluctuations). As
seen before, the downstream front of a jam stays fixed in that case. The right strat-
egy to include a finite speed of perturbations can be motivated in the following
way: Suppose the first car of an otherwise full segment i + 1 leaves this segment
at a certain time. In reality the free site or hole (in physical parlance) generated
in this way needs a certain time to reach the upstream segment. A car that tries
to enter from upstream has to wait until the hole reached it. The corresponding
waiting time is proportional to the number of cars inside the the segment where
the hole was generated. In consequence, it is straightforward to assume

τ i
s ∝ ni+1. (3.19)

This effect plays a prominent role if the two adjacent segments are in the congested
state.

A simple approach for τ i
s , which incorporates this idea, is given by the equa-

tions

τ i
s =

{

max {τff , ni+1τjf} if ni > ni+1

max {τff , ni+1τjj} if ni ≤ ni+1,
(3.20)

where τff , τjf , τjj are model parameters (see below). They can be regarded as
state-dependent service rates. Equation (3.20) is able to generate stable backward
propagating jams in the periodic system and, furthermore, describes properly sim-
ple traffic situations in open systems [22]. However, problems occur with respect
to the realisation of high inflows with OBC. Therefore, a more general form is
used in the following.
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Figure 3.6 Function f(ni+1, tjj), equation (3.22), that determines the
waiting time for the transition between two congested segments. Dashed:
τjj = τjf . Solid: τjj as given in (3.24).

To this end, the behaviour of the waiting time τ i
s is determined by a function

depending on the states of the two neighbouring segments i and i + 1. In order
to distinguish between free flow (f) and congestion (j) a parameter ni

jam is intro-
duced, and a segment i is called to be jammed if ni ≥ ni

jam. In consequence,
a general version of the queueing model has four additional parameters, besides
ni

jam, that describe the waiting time function τ i
s . The parameters are named quite

descriptive τff , τfj, τjf , and τjj, where the indices denote the state of the upstream
and downstream segment, respectively. The equation for τ i

s then reads

τ i
s =















τff if ni < ni
jam and ni+1 < ni+1

jam

τfj if ni < ni
jam and ni+1 ≥ ni+1

jam

τjf if ni ≥ ni
jam and ni+1 < ni+1

jam

f(ni+1, τjj) if ni ≥ ni
jam and ni+1 ≥ ni+1

jam .

(3.21)

In principle, the function f(ni+1, τjj) reflects (3.19) and is further specified by a
linear relationship,

f(ni+1, τjj) = m ni+1 + b. (3.22)

For simplicity, m = τjj is chosen and the axis intercept b is fixed to

b = N i+1 (τjf − τjj) , (3.23)

i.e., f(N i+1) ≡ N i+1 τjf (see figure 3.6). Depending on the choice of τjj different
model behaviours are obtained.
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Given τjj = τjf , the function simply yields f = τjf n
i+1. Investigations show

that the model displays stable jams if τjf > τff . The mechanism behind will be dis-
cussed below but leaping ahead, due to equation (3.23), τjf determines the velocity
of jams.

If τjj 6= τjf , the ratio of the two parameters determines the flow of quasi-
homogeneous states at intermediate densities, not changing the mechanism of
jams in the model. The choice

τjj =
N − 1

N − njam

τjf (3.24)

leads to f(njam) = τjf . It is worth saying that the straight line given by f becomes
steeper, i.e., flows increase at intermediate densities if τjj increases. The choice
m = 1/τjj would have been more intuitive but is numerically unfavourable. Equa-
tion (3.24) is an upper bound for τjj in respect to reasonable traffic flow behaviour.

In principle, the function τ i
s can be made more complicated by taking care of

the system’s history. For example, at the end of a large jam, the jam occupies only
part of a segment. In this case, the relation τfj = τff applies approximately. If the
inflow into this segment is smaller than its outflow this may no longer be valid,
because the jam front may finally travel backward within the segment. However,
this happens rarely. So, to keep this model simple, this effect will be ignored.

Note that it may play a role if the segments in use become fairly long. In that
case it may happen for specific traffic situations, that a microscopic simulation
would yield a substructure, e.g., with a jam in the middle of a segment. This is not
modelled by this approach. In order to capture this, the concept of moving waiting
queues has to be introduced. Macroscopically, this has been done in the models
invented in [94, 95]. It would be an interesting task to transform that into the
microscopic approach suggested here. However, segment lengths of several 100 m
are used in other (macroscopic) models as well and can, therefore, be assumed to
be fairly uncritical.

Furthermore, testing the model with real data shows that it seems to be suffi-
cient for most purposes to work with just two parameters, τff = τfj and τjf = τjj.
Nevertheless, it is hypothesised that a microscopic queueing model with this four
parameters can be used to mimic any of the microscopic simulation models cur-
rently under discussion (cf. section 2.1) with only slight adaptations of the param-
eters. This does not include, however, models that claim to describe synchronised
flow [91, 96, 105].

The model will be referred to as µ-Queue (microscopic queueing model) in
this work. In order to distinguish the number of virtual parameters, the following
notation is used:
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µ1-Queue njam = N . The only parameter is τff and the model is
a deterministic version of FASTLANEif a parallel update
scheme is used.

µ2-Queue τfj = τff and τjj = τjf . Besides njam, the parameters are τff

and τjf .
µ3-Queue τfj = τff , the other three τxx are parameters.
µ4-Queue All τxx are parameters.

Frequently, µ-Queue will only refer to the variants of the model which display
backward propagating jam wave, i.e., excluding µ1-Queue. The meaning should
be clear from the context.

3.2.2 Implementation of the model

In the following, the properties of the µ-Queue model are investigated. Due to the
fact that the waiting times of each queue not only depend on its own state but also
on the conditions downstream, the model cannot be treated with the analytical
results of queueing theory [65]. Therefore, discussion is in parts done by means
of computer simulation. For this purpose, periodic boundary conditions are used
in this chapter. Open boundary conditions and street networks are discussed in the
following one.

In order to get started, a one-lane loop of fixed length LS is used which is
divided into a sequence of I segments, all with equal length L. Moreover, because
only one type of vehicle is used, the storage capacity N and maximum velocity
vmax are as well fixed constants. The segments are implemented using FIFO as
queueing discipline.

Initial conditions

Three different initial conditions are used in the following, namely,

homogeneous system , i.e., each segment contains the same number of cars nhom

at the beginning of the simulation. The cars are positioned with equal spac-
ings. The homogeneous state will be preserved, depending on the update
procedure, because the model is formulated in a deterministic way. The
total number of cars in the system NS equals I · nhom.

quasi-homogeneous system , i.e., all segments are initialised randomly with ei-
ther nhom−1, nhom or nhom +1 cars. Thus, the global density equals the one
in the homogeneous case, but the occupancy of the segments may change
during the simulation.

congested system , i.e., one or two compact jams with NS cars are put on the
system.
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Update procedure

After the initialisation of the system, the state of the segments is updated either in
discrete time steps of size ∆t or event-driven. The conditions which have to be
met for a car to be able to leave a segment are the same in all update procedures.
A car ν is allowed to pass the downstream end of a segment at time t, if

t ≥ max
{

tνmin, t
ν−1
exit + τ i

s

}

and

ni+1 < N i+1 (3.25)

hold.
In the case of discrete time steps, the following three update schemes have to

be distinguished:

parallel update The update is divided into two sub-steps. In the first one, it is
determined for all segments if there is a car to leave it, according to (3.25).
If there is a leaving car, a new time-headway τ i

s , equation (3.21), is assigned
to the segment. In the second sub-step, all cars leaving a segment are moved
to the next one. Due to the splitting each segment has to be touched twice
per update.

sequential update In the sequential update, each segment has only to be touched
once. The segments are processed in a fixed order and the complete update
is done in one, i.e., the checking for condition (3.25), the movement and the
assignment of τ i

s . However, the sequence of processing the segments has an
influence on the development of a given traffic state and unmeant situations
may arise.

shuffled update The procedure equals the sequential update, but the sequence of
processing the segments is shuffled in each time step.

Since the values for realistic parameters τxx are of order seconds, the temporal
discretisation has to be chosen smaller than 1 s (in general ≈ 0.1 s). For such
small time steps, the shuffled and parallel update yield similar results and proper-
ties of the model. This was explicitly checked for the µ-Queue model by means
of simulations. However, with respect to the simulation of large networks over
a long time period (e.g., a day-to-day simulation) such small time steps sacrify
numerical efficiency of the queueing approach. Recall that each link has to be
updated at least once per time step. Moreover, the smaller the time steps are, the
more gridlocking (see p. 127) becomes a problem. In contrast, a high temporal
resolution is necessary with respect to emission modelling (cf. appendix B).

An event-driven update leads to a noticeable increase of numerical efficiency.
Instead of using time steps explicitly, the temporal process is modelled as a se-
quence of events which take place at real-valued points in time. The leaving pro-
cess of a car can be associated with an event. Because of FIFO conditions, only
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Figure 3.7 Performance of the event-driven update scheme over the
system’s density for different initial conditions. Left: Mean percentage of
cars processed in each step of the update scheme. Right: Mean temporal
increment ∆t per step measured over the full simulation period.

the cars at the downstream ends of the segments have to be considered. They can
be stored efficiently using a priority queue which gives back the current event. In
appendix C the implementation of this idea is given as source code.

In order to test the computational performance of the event-driven scheme, a
system consisting of 100 segments is initialised at different densities using differ-
ent initial conditions. The µ2-Queue model is used with τff = 1.4 s and τjf = 2.0 s.
Figure 3.7 shows the advantages of the event-driven implementation. For (quasi-)
homogeneous initial conditions the mean temporal increment per step is around
1 s or even larger for most densities. Although this increment is considerably
smaller for congested initial conditions, only 2% of the cars have to be updated
in each step. Therefore, the performance is better compared to schemes using
discrete time steps.

The different implementations were investigated with respect to their abilities
to describe jam waves. For all schemes comparable behaviour was found. For
certain sets of parameters (e.g., µ3-Queue with τjj given by (3.24) and τjf = 2 s) it
was found that the event-driven update does not display stable jams for all initial-
isations with one jam whereas this was the case for the schemes base on discrete
time steps. In regard to the µ-Queue model the discretisation of time leads to a
stabilisation of the jam front, because leaving times are in consequence as well
discretised.

Since the event-driven update is advantageous for network simulations and no
time step, appropriate to the parameters, has to be chosen, this update scheme
is exclusively used in the following. Note, however, that the conclusions on the
model’s dynamics are as well valid for the parallel and shuffled update schemes
(given that an appropriate temporal discretisation is chosen).
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Measurements

In contrast to car-following models, the velocity of cars can not be measured at any
point in time in the queueing approach but only at the moments where a car leaves
a segment. This means, velocities as well as densities can only be determined with
respect to a segment.

The only quantities that are given at each point in time are the number of cars
that passed a segment during a specific time interval and their respective travel
times. The number of cars that passed a segment can be used in a very descriptive
way to visualise and compare data from multiple counting stations and to derive
dynamic quantities about traffic flow. For this purpose, so called synchronised
cumulative counts (or N-curves) are frequently used, see, e.g., [26, 34, 130].

At the downstream end of each segment, the cumulative number of vehicles
Nc(t) that passed the segment is collected and the corresponding figure is the
N-curve. If the counts at different segments (or stations) are initialised with the
passage of a reference vehicle they become synchronised. In this case, the vehicle
trip times are given by the horizontal separation between two curves, and vehic-
ular accumulation by the vertical separation. The slope of the N-curve gives the
average flow at a station. Thus, N-curves are used to define the measurements in
the queueing system, cf. figure 3.8.

Local measurements are done with respect to a segment using the N-curves
Nup

c (t) and Ndown
c (t) at the upstream and downstream end of it, respectively. If
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the sampling is done for intervals of size ∆ts the mean number of cars is given by

〈n(t′)〉 =
1

∆ts

∫ t′+∆ts

z=t′

(

Ndown
c (z)−Nup

c (z)
)

dz, (3.26)

and the mean travel time (upon entering the segment) yields

〈ttr(t
′)〉 =

1

nν

∑

{ν:tν∈[t′,t′+∆ts]}

tνtr. (3.27)

In (3.27) nν is the number of cars that passed the upstream end of the segment
during the time interval [t′, t′ + ∆ts]. The dynamic quantities are calculated by
means of

〈ρloc(t
′)〉 =

〈n(t′)〉

L
,

〈vloc(t
′)〉 =

〈qloc(t
′)〉

〈ρloc(t′)〉
and

〈qloc(t
′)〉 =

1

∆ts

[

Ndown
c (t′ + ∆ts)−Ndown

c (t′)
]

. (3.28)

Note that there may be intervals where no car can enter a segment due to complete
congestion. In that case, the mean travel time, equation (3.27), is not defined.
Given FIFO queueing discipline, the missing data points can be added such that

t′ + ttr(t
′) ≤ (t′ + ∆ts) + ttr(t

′ + ∆ts) (3.29)

holds. It is worth saying that the sampling interval ∆ts has to be increased with
increasing segment lengths. Furthermore note that the velocity is not determined
by means of the average travel time, because this quantity is a sample over several
sampling intervals, in contrast to the density and flow.

In the periodic system, also global measurements are used which are defined
by

〈ρglo〉 =
NS

LS

,

〈vglo〉 =
〈qglo〉

〈ρglo〉
and

〈qglo〉 =
1

tend − tstart
[Nc(tend)−Nc(tstart)] (3.30)

over the simulation period [tstart, tend].
Note that there exist also methods which only use cumulative counts at discrete

points in time in order to compute the dynamic quantities, see, e.g., [42, 43, 136,
145].
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Figure 3.9 Global FDR of the µ3-Queue model with homogeneous ini-
tial conditions. The common parameters are τff = τfj = 1.4 s, τjf = 2 s,
vmax = 19.6 m/s. Left: Besides the parameter njam, the parameters
L = 98 m, τjf = τjj and N = 14 are the same for both systems. The
maximum flow qmax and the flow at ρglo ≈ ρmax are given by (3.31) and
(3.35), respectively. The high-density branch can be described by qhb, as
given by (3.34). Right: High density branch of three different parameter
sets. The common parameters are L = 196 m, N = 28 and njam = 8. For
P1, P2 and P3, the parameter τjj is τjj = 2,2.4 and 2.7 s , respectively.

3.2.3 Deterministic waiting times

The model is formulated in a deterministic way. Therefore, traffic jams are as
well described deterministically and no spontaneous jam formation takes place.
In the following, the stable traffic states of the model and their dependence on the
parameters is discussed as well as a description of moving jams in the model is
given. The discussion is done in most parts for the µ3-Queue variant of the model
but the arguments given also hold for the other ones (except for the µ1-Queue
which does not display backward travelling jam waves).

The homogeneous state

In order to discuss the homogeneous states of the µ-Queue model, a periodic
system with I = 100 segments is used. Each system is initialised homogeneously
at different densities. Before measurements are made, each initialisation is relaxed
for 50000 s. Figure 3.9 shows the resulting FDR for different parameter sets. In
contrast to the µ1-Queue model2, two branches, a low-density and a high-density
branch, can clearly be distinguished.

The low-density branch is completely determined by the parameters τff , vmax

and njam. The maximum velocity defines the slope of that branch, and τff gives
2Recall that this model is closely related with FASTLANE
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in principle the maximum flow possible. However, depending on njam this max-
imum flow may not be reached. For initial conditions inside the density interval
(njam−1)/L ≤ ρglo ≤ njam/L, there exist inhomogeneities in the system because
the segments can be either in the free state or the congested one. Due to the model
formulation, equation (3.21), this can lead to the formation of short jams as can
be seen in figure 3.103. In consequence, the maximum flow that can be reached
by the system is given by

qmax = min

{

1

τff
,
(njam − 1) vmax

L

}

. (3.31)

The high-density branch, ρglo ≥ njam/L, can also be described analytically. The
flow on that branch is mainly given by the waiting times τs at the downstream end
of each segment, and independent of vmax. The latter is due to the fact that the free-
flow travel time is considerably lower than the travel time in the congested state.
Since τs is ∝ 〈n〉 in the congested state and each car has 〈n〉 cars in front when
entering a segment, the travel time is a quadratic function of the density. More
precisely, due to the event-driven update procedure, a car that leaves a segment
will find either n or n− 1 cars on the target segment (n = ρglo L). Therefore, the
mean waiting time yields f(n − 0.5, τjj), see (3.22). For the travel time in each
segment, therefore,

thb
tr (ρglo) = ahb ρ2

glo + bhb ρglo (3.32)

holds, with

ahb = τjj L
2

bhb = [N(τjf − τjj)− 0.5 τjj] L. (3.33)

In (3.32) the units of ρglo and thb
tr are [1/m] and [s], respectively. The flow of the

congested homogeneous system then yields

qhom
hb (ρglo) =

ρglo L

thb
tr

. (3.34)

Note that (3.32) is not true in case of a system that contains compact jams.
It is observed in figure 3.9 that the flow only vanishes exactly for ρglo = ρmax.

This stems from the fact that even though most segment may be completely filled
with cars for most part of the sampling interval, there are still open spots in the

3Note that this effect is more pronounced within the event-driven update scheme compared to
the parallel update. In the latter, the discrete time step leads to a synchronisation of the vehicles’
movement.
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Figure 3.10 Space-time plot of the µ-Queue model with homogeneous
initial conditions. The plots show the last 10000 s of the simulation.
The parameters are L = 98 m τff = τfj = 1.4 s, τjf = τjj = 2 s,
vmax = 19.6m/s, N = 14 and njam = 4. Left: ρglo = 30km−1. Right:
ρglo = 90km−1.

system. Therefore, a car still moves, if there is at least one place left in the desti-
nation segment. This flow is hence given by

1

qρmax

= τjj(N − 1) + N(τjf − τjj), (3.35)

cf. equation (3.22).

The congested state

As intended, the µ-Queue model possesses stable jams moving backwards through
the system. Figure 3.11 presents the fundamental diagram of a µ-Queue system
which is initialised with one jam at different global densities. As one can see,
this jam is not stable for densities lower than (njam− 1)/L and the system relaxes
into the free-flow regime. However, for densities higher than (njam − 1)/L, one
clearly observes two states that are alternately measured by the virtual detector.
The space-time plot of the system shows that these measurements correspond to a
jam that moves backwards through the system. Moreover, one observes a capacity
drop in the global FDR. The model’s properties will be explored in more detail
now with respect to jamming and the mechanism which stabilises the congested
state.

The jams found in the model are compact , i.e., n ≈ N holds for segments
that are inside the congested region of the system. Their behaviour is described
quantitatively in the sequel, starting with the velocity of the backward-moving
downstream front of the jam. Having regard to the model’s formulation this front
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Figure 3.11 µ2-Queue model with L = 98 m τff = 1.4 s, τjf = 2 s,
vmax = 19.6 m/s, N = 14 and njam = 4. The system consists of 100
segments and is initialised with one jam. Left: Global FDR and local
measurements for a system initialised with 600 vehicles. The sampling
interval is ∆ts = 60 s. Right: The corresponding space-time plot shows
the last 10000 s of the simulation.

is given by means of segments and its velocity can be expressed by

vjam = −
L

τesc

. (3.36)

τesc is the time, a completely filled segment needs to flush. Obviously, this time
can be expressed by the waiting times τ ν assigned to each car ν,

τesc =
N

∑

ν=1

τ ν with τ ν ∈ τs, (3.37)

assuming that inside a jam segments are filled to their maximum storage capacity.
Given τesc, it is straightforward to calculated the number of vehicles found in

the congested state according under stationary conditions. Since the escape time
τesc determines the outflow from jam, this can be written as

qout =
〈nj〉

τesc

≈
N

τesc

. (3.38)

〈nj〉 denotes the mean number of cars in a congested segment. The flow into the
jam is written as

qin =
vmax

〈h〉
(3.39)

where 〈h〉 is the mean spatial headway between cars moving freely.
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Let Nf , Nj be the total number of cars in free flow and congested state, re-
spectively. Then, NS = Nf + Nj is the total number of cars in the system, and
ρglo = NS/LS is the global density in a loop of length LS . Assuming that there is
only one compact jam of length Lj in the system, the following equation for 〈h〉
holds,

〈h〉 =
1

Nf

(LS − Lj)− lcar. (3.40)

lcar is the length of a car. In the stationary state qin = qout, therefore, equating
(3.38) with (3.39) yields

heq =
vmax

N
τesc (3.41)

for the spatial headway in the stationary state. Together with (3.40) this leads to

heq (NS −Nj) = −lcar (NS −Nj) + LS − Lj, (3.42)

thus, the number of cars inside the jam yields

Nj = LS

(

1 +
L

N heq

)

ρglo −
LS

heq

. (3.43)

Besides the dependence on the segment’s parameters, the number of cars in the
congested state is solely a function of the system density and system length. In
consequence, the density ρcrit, which gives the minimal global density where sta-
ble jams are found, is solely depending on the parameters of the µ-Queue model
(i.e., independent of the system length). It is given by

ρcrit =
1

heq (1 + L/(N heq))
. (3.44)

Note that ρcrit → ρmax for τesc → 0 as one expects. Because the escape time τesc

can scarcely be measured in a direct way, equation (3.44) is used instead for fur-
ther numerical investigations. To this end, jams of different length are initialised
in a periodic system which consists of 100 segments. The µ2-Queue and µ3-Queue
model with L = 98 m, N = 14, njam = 5 and vmax = 19.6 m/s are used. For
varying parameters (τff , τjf) and (τff , τjf , τjj), respectively, each initialised system
is simulated for trel = 100000 s and it is determined in sequel whether the jam
dissolved or not. As criterion, ρcrit is defined to be the lowest density where there
remain at least three consecutive segments with n(trel) = N . The corresponding
escape time τ ∗

esc is calculated by (3.44).
The dependence of τ ∗

esc on the parameters τff , τjf and τjj is shown in figure 3.12.
One can clearly distinguish between two regimes displaying stable resp. unstable
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Figure 3.12 Escape time from jams versus τff and τjf . The model
shows two distinct regimes with a sharp change in the behaviour. The line
τff = τjf is marked by the contour line. Left: µ2-Queue model. Stable
jams always exist for τjf ≥ τff . Right: µ3-Queue model with τjj given by
(3.24).

jams. As one expects, τ ∗
esc increases with increasing τjf . Moreover, stable con-

gested states in principle require τff ≤ τjf which reminds on the slow-to-start
behaviour known from microscopic car-following models, cf. section 2.2. Note
that the values τ ∗

esc 6= 0 for τff < τjf stem from the fact that the function f(n),
equation (3.22), possesses a discontinuity (njam − 1) τjf which is large compared
to τff . Backward propagating clusters of cars are, therefore, still stable, however,
the propagation speed is unrealistically high. For application purposes, these pa-
rameter sets do not yield reasonable models for traffic flow.

The fact that τff ≤ τjf is necessary for stable jam propagation becomes more
obvious in case of the µ3-Queue model. If the maximum possible value for τjj is
chosen according to (3.24), there are no stable jams for τff > τjf .

For rather low values of τff one finds an unexpected behaviour, namely, some
kind of valley inside the (τff , τjf) plane. Note that this behaviour of the escape time
is explained by an observation done in the homogeneous system. If ρ ≈ njam/L
there are always segments completely filled. Because of the choice for τjj, the
short jams in the system may either be right stable or not. Thus, the probability
to find a “stable” jam by the automatic detection is not zero for these densities.
Indeed, the jams that were detected inside the observed valley are not compact
and ρcrit ≈ njam/L is found for the corresponding critical densities.

Besides the reduced outflow from jams, there is another property of the model
that is important in respect to stable jams. Inside a jam the flow is very low
due to the dependence of the additional waiting times on the number of cars in-
side segments downstream. This property was similarly observed in the SKM,
cf. figure 2.3. As long as the waiting times are considerably higher than the time
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a car needs to cross a free segment, the movement of the cars inside a jam is
completely governed by (3.21). In this case the assumption on the escape time,
equation (3.37), should hold.

In order to give a description of the mechanism that leads to stable jams in the
µ-Queue model, a system with one jam that occupies several segments is consid-
ered. Assume that the segment i + 1 marks the downstream end of the jam and
there is only one place left in that segment. Then, the waiting time imposed at
the border between segment i and i + 1 is approximately (N − 1) τjf . Since for
stable jams τff ≤ τjf is required, all cars in segment i + 1 can leave the segment
before another car will enter from segment i. Jams, therefore, move backward
segment by segment. If this picture is right, the escape time at the density where
jams become right stable yields

τ ∗
esc = (N − njam) τjf + τ0. (3.45)

Figure 3.13 shows τ ∗
esc for fixed τff = 1.4 s and different free-flow speeds. The

values of τ ∗
esc are determined by means of the critical density, equation (3.44),

using the simulation method described above. The straight line shown in the figure
is obtained by fitting all points of the curves τ ∗

esc inside the regime of stable jams.
Indeed, its slope is approximately 9 = (N − njam), cf. equation (3.45). The axis
intercept τ0 is independent of the free-flow speed but depends on τff (not shown),
however, the latter dependence is not very pronounced.

Unlike one may expect, τ0 � njamτff . This can be understood, recalling the
mechanism of the jam’s movement as given before. The finding that τ0 is smaller
than njamτff means, that the movement “segment by segment” does not have to
be given in a strict sense. In order to have stable jams it is already sufficient,
that the cars inside a jam are either transmitted into an almost full segment or an
almost free one. To put it differently, if τjf becomes to small with respect to τff the
information of the dissolving downstream front of the jam propagates backward
too fast and leads to an almost instantaneous dissolution of the jam4. If the jam
becomes unstable, the definition of escape time is obviously meaningless. That is
why τ ∗

esc drops sharply, as can be seen in figure 3.13.
Note that the propagation speed of jams is independent of vmax because the

same it true for τ0, which is a reasonable behaviour. The observation that the
stable regime by means of τjf deepens fits as well into the given picture of jams in
the µ-Queue model. The bigger vmax the better the assumption that the movement
inside jams is entirely governed by the waiting time τs holds.

For jams of considerable size, i.e., ρglo � ρcrit, the jams move in fact “segment

4Note the similarity to traditional queueing approaches.
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Figure 3.13 Escape time versus τjf for different free flow speeds at
τff = 1.4 s. The other parameters are L = 98 m, N = 14, njam = 5.
The model is the µ3-Queue with τjj given by (3.24). The dependence of
τ ∗
esc in the stable regime is independent of vmax but with increasing vmax,

the stable region by means of τjf deepens. The straight line is obtained
by a fit of the points that lie in the regime of stable jams and is given by
f(τjf) = 9.1 τjf + 1.36, cf. (3.45).

by segment”. The slope of the high-flow branch is, therefore, given by

vhb
jam = −

L

(N − 1) τjf
. (3.46)

Before further properties of the model are discussed, just note, that the model is
also able to show stable double-jam structures as have been found in real world
observations [99]. The stability of such structures implies that the characteristic
parameters of jams are robust which compares to empirical observations. In con-
trast to the simulations performed in [124] (using a LWR model) these structures
are absolutely stable in the µ-Queue model, see figure 3.14.

Dependence on segment length

In order to be able to use the model for network simulations in an adjustable
way, recall that each link of the network is decomposed into several segments.
Thus, one aims to use as few segments as possible having numerical efficiency in
mind. This means, segments should be as long as possible. However, in urban
networks there are considerably short segment lengths predetermined. Therefore,
the dependence of the model’s behaviour on the segment length is investigated in
the following.
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Figure 3.14 The µ-Queue model shows stable, double-jam structures.
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Figure 3.15 Left: FDR for systems with different segment lengths.
Right: Discrepancy between the difference in the measured flows of the
systems with L = 100 m and L = 200 m and the difference computed by
(3.47).

For this purpose a periodic system of fixed length, LS = 10 km, is used vary-
ing the length L of the segments. For each density one compact jam is initialised,
and the relaxation and measurements last for 50000 s each. The storage capacity is
computed by (3.17). The µ2-Queue model is used with τff = 1.4 s and τjf = 2.0 s.
The density ρjam = 40 km−1 is chosen in order fix the parameter njam for the dif-
ferent systems. For very short segment lengths this leads to such small values for
njam that the segments are always in the congested state. Therefore, njam is not
allowed to become smaller than 3.

Table 3.1 summarises the findings for the globally measured FDR which are
shown in figure 3.15. For all systems an excellent agreement between the slope
of the high-density branch and (3.46) is found. The finding of mean flows at a
specific density, distinct from each other, can as well be explained by the model’s
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L N njam vjam Eq. (3.46) q(ρmax) Eq. (3.35)
[m] [km/h] [km/h] [1/h] [1/h]
50 7 3 -14.95 -15 285 300
100 14 4 -13.75 -13.85 138.3 138.5
200 28 8 -13.12 -13.33 66.7 66.7
400 57 16 -12.96 -12.86 32.2 32.1
800 114 32 -12.95 -12.74 15.9 15.9

Table 3.1 Results for systems with different segment lengths. The cor-
responding flow-density relations are shown in figure 3.15. The agreement
between the measured values for vjam and q(ρmax) with the formulae de-
rived for the model’s behaviour is good.

properties. Since the flow at ρmax is given by (3.35), the high-density branch can
be described by

qhb(ρ) = −
L

(N − 1) τjf
ρ +

(N + 1)

(N − 1) τjf
. (3.47)

Equation (3.47) allows for the calculation of the expected difference for the flows
of systems with different segment lengths. This difference is compared to the
differences found in simulation in figure 3.15. At intermediate densities (ρ > ρcrit)
the agreement is fairly good. The oscillations stem from the fact, that the jam
lengths adjust by means of segments in the model. As one may expect from the
model properties, deviations from the approximation (3.47) increase for densities
in the vicinity of ρmax.

If N becomes small, i.e., just a few cars fit into a segment, the definition
of njam becomes meaningless. Simulation results advise that the segment length
should not be chosen shorten than L = 50 m. The model’s behaviour still remains
reasonable for short segments, however, due to the necessary lower bound intro-
duced for njam, the plateau (which is already visible for L = 50 m) deepens and
the high-flow branch becomes numerically unstable.

Note that, due to (3.46) and (3.35), which determine the high-flow branch in
principle, it is not possible to obtain a perfect agreement between the high-flow
branches of two models with different segment lengths. If this is addressed, a good
way is doing the adjustment by means of (3.46) only. In that case, the stability
of jams remains unaffected increasing the segment length, however, there will
remain discrepancy in the vicinity of ρmax.
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3.2.4 Remarks about waiting time distributions

The waiting times of the µ-Queue model (3.21) are deterministic. As a conse-
quence, there are no spontaneous transitions from laminar to congested flow and
vice versa under periodic boundary conditions. Moreover, the time-headway dis-
tributions of the model only show discrete peaks according to (3.21). Although the
model is able to describe traffic states in the free flow and congested flow regime,
it cannot be taken too serious from a pure microscopic perspective.

The following discussion gives an example, how waiting time distributions
can be introduced into the µ-Queue model in order to obtain a more reasonable
behaviour in respect to time-headways found in observations (cf. figure 2.2). This
is done using a specific set of parameters, although the principles hold in general.
The reason for this stems from the fact that appropriate parameters of the distribu-
tions used depend strongly on the parameters of the µ-Queue model. Moreover,
if the noise is introduced at the border of two consecutive segments, which is
certainly the favourable way in regard to the model’s implementation, the fluc-
tuation strength in the system becomes rather high. Because a simple way to
determine the distribution’s parameters in general from the system’s parameters
was not found, they have to be chosen carefully by means of simulations. Two dis-
tributions are used in order to introduce fluctuations into the model’s dynamics,
namely, a distribution for the free-flow velocities and one for the waiting times.

In traffic flow, cars do not drive all with the same maximum velocity. It is not
very far fetched to assume that the velocities are Gaussian distributed around the
speed limit given free-flow conditions. With respect to time-headways, however,
one observes that short headways are suppressed and there is an exponential tail.
An appropriate choice may be an Erlangian distribution whose density function is
given by

perl
(a,m)(x) =

xm−1 exp (−x/a)

(m− 1)! am
, 0 ≤ x ≤ ∞, a > 0, m ∈ N

>0. (3.48)

Its mean value is m a and its variance m a2. The parameter a can be regarded
as scale parameter and m as shape parameter. If m = 1, the Erlangian equals
an exponential distribution. If m → ∞, it becomes a symmetric distribution
narrowly peaked around m a. In the following, the parameter of the Erlangian are
a = τ i

s and m = 3 which yield the properties stated above in respect to time-
headway distributions observed in traffic flow. An easy implementation scheme
of this distribution is given in appendix C.

Figure 3.16 shows simulation results of a periodic system using the µ2-Queue
model. System parameters are L = 100 m, N = 14, njam = 5, vmax = 25 m/s,
τff = 1.1 s and τjf = 1.7 s. Free-flow speeds are Gaussian distributed with mean
vmax and σv = 5 m/s. Homogeneous and congested initial conditions are used.
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Figure 3.16 Top: FDR of the simulated system (left). On the right, the
time-headway distributions for different density regimes are shown.
Bottom: Space-time diagram of point A. The system was initialised by
one jam (left). Space-time diagram of point B. The system was initialised
with homogeneous conditions (right).

For all initial conditions with a global density in the low-density regime, free-flow
states are eventually found. If the global density is within the high-density regime,
there is eventually always a jam, independent from the initial conditions. This jam
moves backwards through the system and is stable. Space-time diagrams of the
two states found are shown in figure 3.16.

Instead of discrete values for the time-headways, as in the deterministic model,
distributions are obtained that look more realistic. Within the low-density regime
there exist very short headways. The distribution shows a sharp increase towards
its maximum located at τh = 1 s and an exponential tail for longer headways.
Note, however, that the time-headway distributions do not become broader with
increasing density. This is related with the mechanism of stable jams in the model
which is not changed due to the introduction of noise. Jams still move “segment by
segment” and, therefore, there always occur headways inside the interval [τff , τjf].
Since their share is considerably high, the maximum of the distribution stays fixed
at τh ≈ τff , solely the tail of the distribution becomes longer with increasing
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system’s density. Within the stochastic implementation of the µ-Queue model,
jams are no longer compact but show an internal structure, i.e., there are also
segments inside a jam with n < N .

It is emphasised that it is essential to use both distributions. If only the distri-
bution for the velocities is used, one obtains already broad time-headway distri-
butions instead of isolated peaks. But, time-headways smaller than τff are still not
present. On the other hand, if only the waiting times are computed by means of
the Erlangian, the skewness of the time-headway distribution vanishes, i.e., there
is no longer a sharp increase at short time-headways as present in figure 3.16.

3.2.5 Aspects of multi-lane traffic

So far, only single-lane traffic is considered. However, with respect to a com-
plete network-loading model, the effects of multi-lane traffic matter. Real traffic
consists of non-homogeneous fleets of vehicles, and faster cars are able to pass
slower ones. Highways, as well as arterials and main roads in urban networks,
usually possess several lanes. Therefore, it is important to treat multi-lane roads
in the queueing model. One difficulty in order to find simple rules modelling lane
changes arises from the fact, that the lane usage distribution differs for highways
and urban multi-lane roads [20, 29, 68, 122, 168].

Lane changes lead to the occurrence of strong correlations within velocity and
flow measurements between neighbouring lanes which are observed in synchro-
nised flow and wide moving jams [92, 140]. They, moreover, destabilise laminar
flow [134]. If there is a strong asymmetry in the lane usage, as on German high-
ways where overtaking on the right is prohibited, the lane-changing behaviour is
responsible for the observed lane usage inversion [122, 168] (see also figure 3.18).
It is still under discussion whether lane changes are just selecting rather than gen-
erating traffic states, or whether they give rise to states which just exist due to
multi-lane effects [108]. Without doubt, multi-lane driving behaviour leads to a
large variety of possible dynamical states [40] and plays an important role in the
correct interpretation of measurements.

There exist several extensions of single-lane models in regard to multi-lane
traffic which all depend strongly on the model’s concept. If roads are repre-
sented based on individual lanes, one usually uses lane-changing rules in order
to model lane usage, whereas the movement of densities or vehicles is still up-
dated by means of the single-lane dynamics.

To this end, lane-changing and passing probabilities are frequently used in
macroscopic traffic flow models [73, 129]. In microscopic car-following models
behavioural rules for the lane change are often used [63, 80, 107, 135]. The lane-
changing process is divided into two steps, namely, whether there is a reason
to change the lane (e.g., to pass a slower vehicle in front) and, if there is such
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Figure 3.17 Left: Flow-density relations of the µ2-Queue model with
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eters are transformed according to (3.49). Right: Platoon of cars for
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reason, whether the lane change is possible with respect to safety considerations
(e.g., not causing a collision). In order to avoid the implementation of such rules
within the flow simulation, another approach is provided by the displacement of
the determination of the lane usage into the route choice, i.e., each vehicle drives
along a pre-calculated route which specifies the path through the network together
with the lanes to use along that path [126, 127].

Multi-lane traffic without passing

It is favourable within the framework of the µ-Queue model to treat multi-lane
roads without changing the update procedure considerably. Although vehicles
pass each other in free flow as well as dense traffic, the average behaviour of
flow can be sufficiently described neglecting the passing of cars, given that the
maximum velocity is restricted by speed limits such that individual maximum ve-
locities of different vehicle types are of minor importance, cf. also figure 3.18.
For example, on a two-lane urban road, all vehicles are forced to drive approx-
imately 50 km/h (at least in Germany) and most lane changes result from the
followed route. Certainly, the different acceleration abilities of different vehicle
types do have an impact on the driving dynamics, but such effects are not repre-
sented within the queueing model.

In this case, the developed framework can be used, changing solely the param-
eters of the model. Once, the parameters are determined for the one-lane situation
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(indicated by ∗), the parameters for the situation with Nlanes lanes chosen by

N ← N∗ Nlanes,

njam ← n∗
jam Nlanes,

τxx ← τ ∗
xx/Nlanes, (3.49)

lead to the same flow-density relation normalised per lane. Moreover, the stability
of jams is not changed by this transformation. However, in regard to the event-
driven update scheme, the average time increment will decrease with increasing
number of lanes.

Figure 3.17 demonstrates this property of the model for a periodic system
with Nlanes = 1, 2, 3. The segment’s parameters for Nlanes = 1 are L = 100 m,
vmax = 36 m/s, njam = 5, N = 12. The µ2-Queue model is used with τff = 1.37 s
and τjf = 2.0 s. If one aims to account for the fact that the flows on a two-lane
highway are lower than twice the flows of the one-lane highway at a specific
density, the parameters can easily be adjusted according to (3.49).

Passing of slow vehicles

As long as the maximum velocities of different vehicle types do not play a role, the
averaged description without passing can be used. However, on highways without
speed limit, slow vehicles as lorries will be passed by faster driving passenger
cars.
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Without the possibility of passing, platoons of cars build behind slow vehicles.
Note that independent of the difference between the velocity of the leading car and
the maximum velocity of cars trapped behind it, no backward propagating jams
will arise in the µ-Queue model as long as the global density is in the free-flow
regime, cf. figure 3.17.

A possible way to incorporate the passing of vehicles into the model is pro-
vided by the representation of each lane individually and the introduction of lane-
changing rules. However, this would technically be quite difficult within the µ-
Queue framework, because every time a vehicle is moved, the state of all neigh-
bouring segments has to be considered. Therefore, a passing probability is intro-
duced here. Apart from that, a multi-lane road is modelled in the way described
before.

In order to get an idea how the passing probability should look like, the SKM
is used as reference model. Lane-changes are modelled according to [113]. The
update procedure of the SKM is amended by an additional set of rules which
determines for each car whether the lane is changed or not. This rule set is applied
before the speed update (2.6) is performed. A car will change its lane, if two
conditions are fulfilled, namely, the change is favourable and safe:

if [(favourable(i→ j)) or (rand < pchange)] and [safe(i→ j)]
then change(i→ j).

In the following, the upper index o indicates that the expression is evaluated at the
other lane, i.e., the lane a car may possibly change to. The expressions given in
the above conditions are then given by

congested = (vsafe < vthresh) and (vo
safe < vthresh)

favourable(right→ left) = (vsafe < vmax) and (not congested)
favourable(left→ right) = (vsafe ≥ vmax) and (vo

safe ≥ vmax)

Moreover, passing on the right is prohibited, if the lanes are not in the congested
state. For further details see [113].

Different two-lane systems with periodic boundary conditions and two vehicle
types are simulated. Each simulation is done with 2000 vehicles and the fraction
of slow vehicles is varied. The common parameters are a = 2 m/s2, b = 8 m/s2,
lcar = 7 m and ε = 1. The maximum velocity for fast vehicles is vmax = 37 m/s,
for slow ones either vmax = 34 m/s or vmax = 30 m/s. The parameters for
the lane-changing rules are vthresh = 11.5 m/s and pchange = 0.01. The mean
velocity each vehicle type is able to achieve traversing the entire system is used as
measurement.

Figure 3.19 shows the results. As can be seen, the fast vehicles are only able to
achieve higher mean velocities than the slow ones inside the low-density regime.
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Figure 3.19 Simulation of a two-lane loop with the SKM and lane-
changing. Plotted is the mean velocity of fast cars at different global den-
sities and different fractions of slow cars. cslow gives the mean velocity of
slow cars. Left: The maximum velocity of slow cars is vmax = 30 m/s.
Right: The maximum velocity of slow cars is vmax = 34 m/s.

Although there are still successful passings within the high-density regime, there
is no considerable difference between the mean velocity at densities ρ > ρf . More-
over, there are no high-flow states visible in figure 3.18 due to the de-stabilisation
of flows by lane changes. In the low-density regime the slow vehicles drive with
their maximum velocity, vmax − εa/2.

With respect to the fast vehicles multiple dependencies determine their mean
velocity. With increasing density their velocity decreases and approaches the ve-
locity of the slow vehicles. The density where the difference in the velocities van-
ishes depends on the fraction of slow vehicles as well as on the difference between
the respective maximum velocities. With increasing fraction of slow vehicles the
difference between the mean velocities decreases more rapidly.

In order to mimic the properties of the above findings by means of a passing
probability in the µ-Queue model, the following procedure is used. Each time
a vehicle is received by a segment, it is decided whether it passes the vehicle in
front, i.e., the passing probability is defined with respect to segments. It is already
clear at this point, that the parameters of such probability will strongly depend
on the parameters of a segment. Therefore, its calibration is in general a difficult
task.

Assume, a car ν with maximum velocity vν
max is driving behind a car ν − 1

with vν−1
max. The car ν is able to pass the car in front if the following conditions are

met:

1. The following car is able to drive faster than the car in front, i.e.,
vν
max > vν−1

max.

2. The time-headway between the two cars is small enough.
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3. A certain time interval elapsed since the last time where the car ν passed
another one.

If the above conditions are met, the car ν passes the car in front with a probability
depending on the density of the segment. If the segment is in the jammed state,
the passing probability is set to zero.

The conditions 2 and 3 need further elaboration. The second requirement is
necessary to decide whether a passing effort is carried out at the time the following
car enters the segment. Given vν

max > vν−1
max, the following condition for the differ-

ence between their exit times texit holds, due to to the dynamics of the µ-Queue
model,

∆texit ≡ tνexit − tν−1
exit ≥ L

(

1

vν
max

−
1

vν−1
max

)

+ τff ≡ f∆v + τff . (3.50)

If a fast car drives behind a slow one, it will more and more approach until equality
holds in (3.50). Because the movement of cars is deterministic, ∆texit will in
sequel not change as long as the traffic state persists. ∆texit < 0 means that the
fast car is able to reach the end of the segment before the slow one, if its motion
would not be hindered. If the difference in the maximum velocities is quite small,
however, ∆texit never becomes negative, as one can see in figure 3.20. In order to
allow the passing of the fast car anyhow, an interval for ∆texit is defined where a
passing attempt is carried out, namely, ∆texit ∈ [f∆v + τff , c∆v f∆v + τff ], where
c∆v is a parameter (see figure 3.20).

Before the third requirement is further explained, the passing probability is
given. It should depend on the density to assure that in the jammed state the
passing probability becomes zero. For simplicity, a linear function is used which
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Figure 3.21 Simulation of a two-lane loop with the µ2-Queue model
and passing. Plotted is the mean velocity of fast cars at different global
densities and different fractions of slow cars. cslow gives the mean velocity
of slow cars. Left: The maximum velocity of slow cars is vmax = 29 m/s.
Right: The maximum velocity of slow cars is vmax = 33 m/s.

depends on the number of cars on the segment n,

ppass = cp (−cm n + 1) . (3.51)

The parameters cm and cp are used in order to adjust the upper bound for the
density interval where passing can be carried out and the level of passing activity,
respectively. In the simulation, a random number η in the interval [0, 1] is drawn
from a uniform distribution, and the passing attempt is successful if η < ppass.

Already the conditions 1 and 2 together with (3.51) lead to a reasonable be-
haviour, namely, that the slow vehicles drive with their maximum velocity whereas
the velocity of the fast ones decreases with increasing density. However, the de-
pendence on the fraction of slow vehicles is not reproduced.

That is the reason why the third condition is introduced, namely, a certain
time interval has to be elapsed since the last passing of a car. If the last passing
happened at tlp, no further passing attempts are allowed until t > tlp+clp n. Again
clp is a parameter.

Figure 3.21 presents the results of the described procedure for passing within
the µ2-Queue model. The simulations are all done with 2000 vehicles on a two-
lane loop and the density and the fraction of slow vehicles are varied. The max-
imum velocity of fast cars is 36 m/s. The other parameters with respect to one
lane are L = 100 m, N = 12, njam = 5, τff = 1.4 s and τjf = 2.0 s. The adjust-
ment to two lanes is done by (3.49). The parameters for the passing algorithm are
c∆v = 0.9, cm = 0.2, cp = 0.5 and clp = 30 s.

The results compare quite good to the SKM (cf. figure 3.19). However, as
stated before, the multiple dependencies found in the SKM are not mimicked in
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all details by the µ-Queue model. For example, the dependency on the fraction
of slow vehicles is not as pronounced as in the reference system. If the difference
in the maximum velocities is quite small, the movement of slow vehicles is more
influenced as in the SKM. This is due to the dynamics of the µ-Queue model.
Each time a slow vehicle is passed, it is penalised by an additional waiting time,
since lanes are not treated separately as in the SKM.

The passing algorithm should therefore only be used with a small number of
vehicle types. However, for many applications it is already sufficient to discrimi-
nate between passenger cars and lorries.

3.3 Application: Modelling of vehicular emissions

The development of the µ-Queue model is motivated, besides other reasons, by
the computation of vehicular emissions in the framework of DTA. In the follow-
ing, it is demonstrated that the model is well suited to calculate environmental
impacts of traffic with high temporal and spatial resolution. As before, the SKM
is used as a reference model. Because the generation of air pollutants as well as
noise is strongly dependent on the vehicles’ velocities (beside other dependen-
cies), a detailed mapping of the dynamic situation is necessary on a microscopic
level. The presented benchmarks are, therefore, not only important with respect
to application purposes. They are, moreover, suited to investigate in how far the
developed model is able to catch the dynamics of traffic states distinct from each
other.

The transformation of the vehicles’ dynamics into vehicular emissions is done
by means of emission factors. The data source for these factors and the methods
used to connect them with the two models are described in detail in appendix B.
The appendix gives, moreover, further details with respect to the role of traffic
flow models in the context of air-quality management systems.

3.3.1 Single-lane loop

The following presents simulation results of a periodic system with one lane. The
different versions of the µ-Queue model are compared to simulation results of
the SKM. Moreover, a method is introduced which can be used to calibrate the
parameters of the queueing model.

The reference system

As experimental setup a loop is used which is always initialised by 1000 vehicles
standing bumper to bumper. In order to model different global densities the system
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Figure 3.22 Left: FDR of the reference system. The points indicate the
system states which are used to calibrate the parameters of the µ-Queue
model. Right: The derivative of the cumulative counts for a system with
ρglo = 60 km−1. It is used to determine the parameters for the calibration
process.

length LS is varied. The parameters for the SKM used are

a = 2 m/s2 b = 8 m/s2 vmax = 22 m/s
ε = 1 lcar = 7 m τ = ∆t = 1 s.

The corresponding FDR is shown in figure 3.22.

Calibration of parameters

Before simulation results of both models can be compared, the parameters of the
queueing model have to be calibrated with respect to the reference system. The
principle procedure can be described as follows [22]:

In a first step, one has to define certain measurements oi which can be observed
within the simulation. This can be, e.g., the flow which is observed at a specific
global density of the system. The measurements of the reference system, or

i, and
the ones of the system which is calibrated, oc

i , are used to define an error measure
by means of relative errors, i.e.,

err =
1

ni

ni
∑

i=1

| or
i − oc

i |

or
i

. (3.52)

In a second step, the model is simulated with a certain set of parameters, and an
algorithm is used to improve err by changing the set of parameters.

Since it is not possible for the queueing model to compute the Jacobi-matrix
with respect to the parameters analytically, a direct search approach, the so called
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Downhill-Simplex method [139] is used. This method does neither need to com-
pute
derivatives nor does it need an explicit analytical formulation of the system to
be optimised. A computer implementation is presented in [149]. The algorithm
starts with a simplex in the n-dimensional parameter space which is in sequel
transformed iteratively until a local minimum is found. Therefore, the procedure
should be started with different initial configurations.

Instead of using the global FDR as measurements for the error function (3.52),
the cumulative counts Nc are used here. One reason for this procedure is that they
can easily be measured in both models without the need to determine a sampling
interval in advance. Moreover, these functions contain information about the dy-
namics of both traffic states. The derivative of the cumulative counts according to
time t immediately gives the flows qf and qj in free flow and inside a jam, respec-
tively. Moreover, the temporal intervals tf and tj each of the two phases need to
pass the virtual detector are used, see figure 3.22. All these measures can easily
be detected in an automated way.

The four quantities are determined at two densities, ρ = 60, 100 km−1. In
order to deal with the stochastic nature of the SKM, averages over 30 simulation
runs are used. Table 3.2 summarises the resulting measures.

ρ qsk
f qsk

j tskf tskj
[km−1] [s−1] [s−1] [s] [s]

60 0.47± 0.003 0.089± 0.003 2047± 302 1452± 219
100 0.45± 0.006 0.083± 0.002 327± 21 1914± 106

Table 3.2 Measures of the reference system for the calibration process.

Results of the µ-Queue model

The method described before is used to determine optimal parameters for µ-Queue
model. In all simulations L is fixed to 100 m. For the µ2-Queue model, different
parameters for vmax, N and njam were tried. The best agreement was achieved for
vmax = 21 m/s. This fits surprisingly good to the free-flow speed of the SKM
which is 〈v〉 = vsk

max − εa/2. For N and njam the best agreement was found for
N = 12 and njam = 5, respectively. This corresponds to the measured density in-
side moving jams of the SKM which is 11.5 vehicles per 100 m. Therefore, these
parameters are as well used for the µ3-Queue and µ4-Queue during the calibration
process. Table 3.3 summarises the parameters resulting from the calibration.

With respect to the total error, there is no considerable difference between all
three model variants. For all systems, the agreement to the SKM is better for
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N njam vmax τff τfj τjf τjj

[m/s] [s] [s] [s] [s]

µ2-Queue 12 5 21 1.538 1.538 2.070 2.070
µ3-Queue 12 5 21 1.751 1.751 2.063 2.600
µ4-Queue 12 5 21 1.205 1.675 2.163 3.052

ρ qf qj tf tj err
[km−1] [s−1] [s−1] [s] [s]

µ2-Queue 60 0.472 0.053 2280 1500
0.005 0.401 0.114 0.033 0.138

100 0.465 0.053 436 1848
0.034 0.360 0.334 0.0345 0.191

µ3-Queue 60 0.481 0.052 2260 1420
0.023 0.415 0.104 0.022 0.141

100 0.481 0.054 420 1800
0.069 0.354 0.284 0.060 0.192

µ4-Queue 60 0.465 0.052 1989 1277
0.010 0.411 0.029 0.120 0.142

100 0.468 0.053 420 1860
0.041 0.356 0.284 0.028 0.177

Table 3.3 Results of the calibration process of the µ-Queue model. In
the upper part of the table the parameters are presented for which the best
agreement to the SKM was found. In the lower part the resulting measures
and the error corresponding to the SKM are given in detail.

ρ = 60 km−1 than for ρ = 100 km−1. This corresponds to the finding that the
main contribution to the error stems from the flow inside a jam. This flow is con-
siderably lower than in the corresponding SKM, which results from the difference
in the mechanisms of both models to stabilise jams. Since the contribution of
jams to the system’s dynamics increases with increasing density, the agreement
between both models decreases.

During the search process for an “optimal” parameter set one realises that the
error function does not possess very pronounced optima. This is due to the fact
that the parameter τjf plays a prominent role in regard of the model´s dynamics.
As seen before, the speed of jam waves is primarily determined by this parameter.
Thus, this parameter is almost the same within all three model variants. Once τjf

is fixed, the possible range for the other parameters is restricted (cf. discussion in
section 3.2), but within these ranges the parameters can be varied without causing
considerable changes in the error function.
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Figure 3.23 Top: Left: Relative difference of the total amount of emit-
ted HC and NOx in the µ2-Queue and µ4-Queue depending on the density
of the system. Right: Emission factors used for the calculations.
Bottom: Results of the µ2-Queue model. Left: Total amount of emitted
HC and NOx in the SKM (lines) and µ2-Queue model (points) at different
system densities. Right: Emission of HC over the simulation period at a
fixed piece of road of length 1 km.

In the case of the µ2-Queue model, τff has to be chosen such that stable jams
exist in the model. Moreover, the choice of τff is not allowed to affect the move-
ment of free-flowing vehicles in a way that the free-flow speed vmax can no longer
be reached. However, as long as these two criteria are met, the exact value of τff

is of minor importance.
For the µ3-Queue model, τjj is chosen independently of τjf . With increasing

τjj the flow at intermediate densities increases as well (cf. figure 3.6). Therefore,
it is possible to either increase τff and τjj, or to decrease both parameters without
changing the model’s behaviour considerably. Again, the criterion has to be met,
that the parameters guarantee stable jams.

A slight improvement can be achieved using the µ4-Queue model. Here, the
free flow and the approaching of the upstream jam front can be adjusted indepen-
dently of each other. As one may expect, τff < τfj.
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In the following the µ2-Queue and µ4-Queue are used to compare the compu-
tation of vehicular emissions to the SKM. Periodic systems at different densities
are simulated for this purpose. After the initialisation of the system, it is simu-
lated until stationarity is reached, and measurements are taken for a fixed temporal
interval in the sequel. For each density one run is performed with the queueing
model and several runs (30 at each density) are used for the SKM to get averaged
values.

The results are presented in figure 3.23. For demonstration purposes, the pol-
lutants hydrocarbons (HC) and nitrogen oxides (NOx) are chosen, due to their
different velocity dependence. Whereas the amount of emitted NOx per kilometre
increases with increasing velocity, HC behaves just the opposite. The dependence
of the total amount of the two pollutants on the density is the same for both mod-
els. A more detailed comparison is possible using the relative differences. Over
the full range of densities the amount of emitted HC compares better than the
amount of NOx. This is due to the fact, that the velocity dependence of NOx
is stronger than for HC, and therefore, deviations between the two models be-
come more visible. At high densities the relative error of NOx increases, since
the choice N = 12 (i.e., ρmax = 120 km−1) strictly limits the storage capacity
of a segment within the µ-Queue model whereas higher densities can partially be
reached within the SKM. Note that the calibration of the µ-Queue model is done
by means of two specific densities only, whereas the agreement between the two
models is fairly good over the full range of densities. This also holds with respect
to the temporal development of the emissions at a fixed location.

3.3.2 Multi-lane loop

The numeric experiment accomplished above is repeated for a periodic system
with two lanes and two different types of vehicles, namely, passenger cars and
lorries. Again, the SKM serves as reference system using the lane changing rules
introduced in section 3.2.5. Note that it is to be expected that the two models do
not compare as good as in the case of one lane (cf. discussion in the corresponding
section).

Different two-lane systems with periodic boundary conditions and two vehicle
types are simulated with the SKM in a first step. Each simulation is done with
2000 vehicles and the fraction of slow vehicles is varied. The common parameters
are a = 2 m/s2, b = 8 m/s2, lcar = 7 m and ε = 1. The maximum velocity for
fast vehicles is vmax = 37 m/s, for slow ones vmax = 30 m/s. The parameters for
the lane-changing rules are vthresh = 11.5 m/s and pchange = 0.01. At each time
step the current velocity of each car is transformed by means of emission factors.
For fast vehicles emission factors of passenger cars are used whereas emission
factors of lorries are used for the slow ones.
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Figure 3.24 Total amount of emissions in the free flow regime for the
µ2-Queue model on a two-lane loop with passing. The fraction of lorries
is varied from 0.05 to 0.4. The results of the SKM are inserted as sin-
gle points, the arrow indicates the direction of increasing fraction of slow
vehicles.

As queueing model, the µ2-Queue version is used. which has already been
compared to the SKM with respect to passing. The parameters are chosen similar
to section 3.2.5, i.e., L = 100 m, N = 12, njam = 5, τff = 1.3 s and τjf = 2.0 s
(with respect to one lane). The maximum velocity for fast and slow vehicles is
vmax = 36 m/s resp. vmax = 29 m/s. The passing probability is parameterised
by c∆v = 0.9, cm = 0.2, cp = 0.5 and clp = 20 s.

The comparison is focused on the free-flow regime, since vehicles can, oth-
erwise, not realise their different maximum velocities. The results for the two
pollutants hydrocarbons (HC) and carbon monoxide (CO) are presented in fig-
ure 3.24. They are chosen, because they show a different behaviour with respect
to the composition of the vehicle fleet. The amount of HC increases with an in-
creased fraction of lorries whereas the amount of CO decreases.

The dependence on the fraction of slow vehicles is well reproduced by the
µ-Queue model. Also the dependence of the emission level on the density is
reproduced, however, it is not as pronounced as in the SKM. This compares to the
findings in section 3.2.5.

It can be concluded that the µ-Queue model is an appropriate approach to
model vehicle fleets on a qualitative level. However, discrepancies exist on a
quantitative level and deviations up to 50% are observed. For all simulations the
emission level is lower in the SKM compared to the µ-Queue model. This is due
to the fact that lane changes in the SKM force vehicles to slow down considerably,
especially if a slow vehicle occupies the lane in front of a fast vehicle. Moreover,
the explicit modelling of lane changes leads to stronger fluctuations in the veloc-
ities of the cars. In contrast, multi-lane traffic is modelled in an averaged way in
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the µ-Queue model. Since in the regime of high velocities the emission factors
strongly increase with the velocity, this leads to discrepancies between the two
models and the level of emissions is lower in the SKM.

Same results are found for simulations with high densities (not shown), how-
ever, the deviations from the reference system become smaller. This is related to
the fact, that velocity differences decrease in the congested state and passing is of
minor importance. The dependency of the emission level of different pollutants
on the fleet composition is as well reproduced for high densities. Note that the
latter even holds if the µ-Queue model is used without passing.

3.4 Conclusion

This chapter aimed to introduce a vehicle-based traffic flow model based on
queueing theory. To this end, a rather extensive review of known approaches in
this context is given, in a first step. This is done in order to understand, what mech-
anisms are needed to reach a detailed description of traffic dynamics, and what is
still missing. It is demonstrated that traditional approaches fail due to a missing
coupling of the dynamics between consecutive queues. In consequence, there is
no difference in the dynamics of the system in regard to free-flow and congested
traffic conditions. Moreover, density perturbations are propagated upstream with
infinite velocity and congested parts of such systems, therefore, dissolve from the
upstream end in contrast to the findings in real traffic.

The new model approach (µ-Queue model) uses coupled queueing segments
and is formulated based on time-headways between consecutive cars, i.e., taking
a microscopic perspective. The introduced waiting times at the end of a segment,
represented as FIFO queue, can be regarded as state-dependent service rates. In
contrast to traditional approaches, this dependence additionally accounts for the
conditions downstream of the segment. As a consequence, the speed of perturba-
tions is different in upstream and downstream direction, and the model allows for
the dynamic description of backward-propagating wide moving jams.

Numerical investigations demonstrate, that the µ-Queue model possesses two
different traffic states, homogeneous and congested flow. Within the determinis-
tic model’s formulation, there are no transitions between these states, given pe-
riodic boundary conditions. Introducing distributions for the waiting times and
velocities, transitions between the states occur, and it is even possible to obtain
a reasonable behaviour in regard to time-headway distributions observed in street
traffic.

The relation between the properties of the model’s states and its parameters is
explored and an analytical description of the flow-density relation is given within
the deterministic approach. The conditions necessary in order to obtain stable
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jams are identified and the mechanism of moving jams within the approach is
explained in detail.

Due to the exclusive local interactions within the introduced event-driven im-
plementation of the µ-Queue model, a very efficient update scheme is obtained
which allows for the simulation of large networks. In regard to applications, it is
further demonstrated that multi-lane traffic can as well be described. The ques-
tion of parameter calibration is further addressed, comparing the dynamics of the
µ-Queue model to the SKM. To summarise the results, the new approach is well
able to reproduce the dynamics of jams as well as the environmental impacts (by
means of computing the emission of primary air-pollutants) in regard to the mi-
croscopic car-following model, needing considerably less numerical efforts at the
same time.
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Chapter
4

Network Flows And Traffic
Assignment

4.1 Open boundary conditions

In the previous chapter, a new formalism of a microscopic queueing model was
introduced and its abilities with respect to the modelling of traffic dynamics were
investigated using periodic boundary conditions. It is shown that the µ-Queue
model possesses two traffic states, distinct from each other, and its dynamics
concurs very well with the dynamics of the more detailed car-following model
(SKM). Because the model is intended to be used in the network loading step
of traffic assignment, the investigation of the model’s abilities in regard to open
boundary conditions is a mandatory step.

As seen in the discussion of the SKM (section 2.4), open boundary conditions
do not change the bulk states of the model in principle but affect the state selection.
Depending on the effective inflow and outflow at the boundary, a certain traffic
state is stabilised. Because the theory of open boundaries can be formulated in a
rather general way, i.e., without taking into account the details of the particular
model’s dynamics resp. on a mesoscopic level [67, 109, 148], similar results are
expected within the µ-Queue model. That is indeed what is found. However, one
also finds effects that stem from the fact that in the deterministic version of the
model there is no intrinsic transition from laminar to congested flow. This point
is further discussed in the following.

4.1.1 Implementation of open boundaries

Before results of the µ-Queue model are discussed, a short description of the
implemented boundary conditions is given. Again, the parameters α and β are
used to control the inflow and outflow, respectively.
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In the SKM both rules, i.e., at the entry and the exit of the system, have a
stochastic nature. In the deterministic µ-Queue model, however, a stochastic im-
plementation of the rule at the entry makes no sense. Independent of the virtual
insertion of cars, the time-headways of the first segment in the system always
obey equation (3.21) and details of the implemented rule are evened out. There-
fore, a very simple rule is appropriate for the entry. Each time a car is inserted
into the system, a new car is created at the entry, and a time-headway of size 1/α
is assigned to it.

The outflow from the open system is determined by the right boundary. Two
strategies for the removal of cars from the system can be distinguished:

- The first strategy is similar to the one used for the SKM. A small system
with Nβ segments is linked to the open system. In order to change the
outflow, a velocity restriction is imposed given by vβ = vmax β.

- The second strategy uses a blockade at the right boundary which either lets
an arriving vehicle pass or not. The blockade is simply switched on with a
probability (1− β).

4.1.2 Phase diagram of the µ-Queue model

Simulations of the open system are made with the deterministic and stochastic
µ2-Queue model. The system consists of 100 segments, each of length
L = 100 m. The (α, β)-plane is screened with step size 0.02. Each system is
relaxed for 106 time steps before measurements start. After that time all systems
are in the stationary state where the inflow equals the outflow. Measurements are
averages over 106 time steps as well.

The parameters of the deterministic µ2-Queue model are vmax = 22, m/s,
N = 14, njam = 4, τff = 1.4 s and τjf = 2.0 s. The parameters for the stochastic
version of the model are vmax = 25, m/s, N = 14, njam = 5, τff = 1.1 s and
τjf = 1.7 s. Free-flow speeds are Gaussian distributed with mean vmax and σv =
5 m/s. For the distribution of the waiting times an Erlangian, equation (3.48), is
used with m = 3. Figure 4.1 summarises the results for both models, using the
second strategy to control the exit of the system.

The deterministic µ-Queue model completely reproduces the FDR of the pe-
riodic system. In contrast to the SKM (cf. section 2.4), states which lie on the
high-flow branch only exist for undisturbed right boundaries, i.e., β = 1. There-
fore, no high-flow phase is present in the phase diagram of the open system. The
phase diagram is only shown up to α = 0.65, because the maximum flow is
reached at this point. A further increase of α is, therefore, without effect. Due to
the insertion strategy, the inflow then simply equals the outflow from jam.

Additionally, one observes system states which do not lie on the high-flow
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Figure 4.1 Shown are the FDR, the density over the (α, β)-plane and
a space-time diagram within the high-density phase. The striped patterns
that were found in the SKM also exist in the µ2-Queue model. The right
boundary is implemented by a blockade which is turned on with probabil-
ity (1− β).
Left: Deterministic µ2-Queue model. The space-time diagram is done for
(α, β) = (0.5, 0.2).
Right: Stochastic version of the µ2-Queue model. The space-time dia-
gram is done for (α, β) = (0.6, 0.4).

branch of the periodic system (if initialised with a jam). These states correspond
to the FDR of the periodic system if homogeneous initial conditions are used. The
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observations are not in contradiction to the theory of open boundary conditions,
in particular, they do not contradict the extremal principle (2.33). They simply
show that the µ-Queue model possesses two different states, the laminar and the
congested one, and that there is no intrinsic mechanism which triggers a transition
between them. Therefore, there is a non-vanishing probability that the boundary
flows stabilise the homogeneous state. Noticeably, this is not an effect of the
deterministic insertion strategy but happens for specific values of β. This can
clearly be seen in the phase diagram. A possible explanation for this effect is that
for these values a synchronisation between the temporal headways inserted at the
entry and the headways generated at the exit occurs.

The findings are independent of the strategy chosen at the exit of the system.
The only difference is that one observes more states, which correspond to the pe-
riodic system with homogeneous initial conditions, if the exit is controlled by a
speed reduction. In that case, the influence of the right boundary is, therefore,
weaker than for the case of using a blockade at the exit. This can easily be un-
derstood. Just changing the maximum velocity at the exit does not necessarily
changes the time-headways between two consecutive vehicles. In combination
with the deterministic insertion strategy, homogeneous patterns in the system are
stabilised. In contrast, the usage of a random blockade truly changes the time-
headways between arriving cars.

In the case of the stochastic µ-Queue model, the observed behaviour is similar
to the deterministic µ-Queue model. As one may expect, system states vanish,
which correspond to the periodic system with homogeneous initial conditions.
There is no more high-flow branch, neither for the periodic nor for the open sys-
tem. This is due to the fact that the implementation of waiting time distributions
(cf. section 3.2.4) leads to rather strong fluctuations in the system. High-flow
states therefore break down immediately.

The phase diagrams of the open system are qualitatively the same for both
implementations. There exist two phases, distinct from each other. If the system’s
density is chosen as order parameter, one finds again that the phase transition
between the high-density and low-density phase is of first order (cf. section 2.4).
Even the particular microscopic structure, the striped pattern, is found in the high-
density phase. In the case of the deterministic µ-Queue model this structure is
very regular and each jam reaches the system’s entry. In contrast, the jams that
arise in the stochastic µ-Queue model either dissolve before reaching the entry or
grow along their way through the system until the entry is reached. This compares
well to the findings made in the SKM.

Recall, that the existence of boundary induced phase transitions is also found
in real traffic situations [140, 147], as well as the striped pattern is similar to
structures found in observations [76, 93, 173]. Therefore, the results demonstrate
that the µ-Queue model truly improves the modelling of traffic dynamics and the
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Figure 4.2 Sketch of an on-ramp (left) and an off-ramp (right). The
black rectangle symbolises the node of the network, the dashed lines the
segments which compose the link. At the on-ramp an additional time-
headway τ−

h is introduced in order to assure the maximum capacity of
the leaving link. At the off-ramp an additional storage segment (striped
rectangle) decouples the ramp from the main road.

influence by dynamic bottlenecks (as one finds at on- and off-ramps) compared
to traditional approaches by queueing theory. For example, the µ1-Queue model
shows a complete different behaviour with respect to dynamic bottlenecks. As
long as the inflow is lower than the current capacity of the exit, one obtains a low-
density phase. The system states lie on the free-flow branch of the corresponding
periodic system. Otherwise, if the inflow exceeds the capacity of the exit for a
certain period, a queue builds which stays fixed at the exit. The entry of the system
remains unaffected until the queue spreads over the complete system. However,
at the moment where the capacity restraint is removed the system recovers very
quickly and vehicles leave the queue with maximum flow. Therefore, traditional
queueing models tend to overestimate the throughput at bottlenecks.

4.1.3 Merges and diverges

Open boundaries play an important role in real traffic networks. Merges and di-
verges introduce stochastic boundary conditions (depending on the arriving and
leaving flows) which yield bottlenecks, i.e., capacity reductions. Traffic streams
are affected by passing the bottleneck and from a practical point of view, it is im-
portant to have models that are able to predict reliably the things that matter, i.e.,
bottleneck behaviour and queue dynamics [8, 39]. Therefore, it is shown in short,
how merges and diverges can technically be modelled in the queueing approach.
Moreover, the behaviour of the µ-Queue model is discussed qualitatively. Leaping
ahead, it is shown, that the µ-Queue model is able to reproduce the properties of
traffic streams at network nodes (including their dynamics) without major changes
in its implementation.

On-ramps

The simplest merge is given by on-ramps, i.e., a network node (intersection) with
indegree 2 and outdegree 1. Usually an on-ramp is composed of a main road and
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Figure 4.3 Simulation results of an on-ramp (figure 4.2) for different
flows q+, qr. Left: System states on the approaching main road. Measure-
ments are samples over 5 min. As long as the intersection’s capacity is not
exceeded, free-flow conditions are found. Otherwise, jams are created at
the intersection which move backward through the system. Right: In the
regime of congestion, the striped pattern is found again, which emerges at
the intersection. A traffic jam, which is generated downstream the inter-
section, simply travels through this pattern. The striped pattern recovers
immediately after the jam has passed the on-ramp.

a side road which is connected via the ramp. The leaving link may additionally
have a capacity different from the incoming ones. If its capacity is lower than the
capacity of an incoming link, it has to be assured that the flow into the leaving
link does no exceed its capacity.

Recall, that in the event-driven implementation of the µ-Queue model (cf. ap-
pendix C), waiting times are passed between two consecutive segments (i.e., the
last segment of an incoming link and the first segment of the leaving one in this
case). This is done in order to yield an efficient implementation of the model. Do-
ing so, the compliance with the capacity of the incoming links is always assured.
However, the incoming links do not have mutual information about their current
outflows. If the sum of their capacities exceeds the capacity of the leaving link
τ−
ff , this capacity may not be respected. Therefore, supplementary time-headways

τ−
h are introduced at the entry of each link, which yield τ−

h = τ−
ff . Additionally,

these headways are disturbed randomly in order to introduce capacity fluctua-
tions at network nodes. This is done by means of a Gaussian distributionN , i.e.,
τ−
h = τ−

ff +στN (0, 1). Note, that the headways at the entry of each link only affect
the incoming flows if their sum exceeds τ−

ff . The principle geometry is sketched
in figure 4.2. Further note, that the following results do not change in principle, if
deterministic values for τ−

h are used.

In order to demonstrate, that the behaviour of the on-ramp implementation
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Figure 4.4 Flow over time for the approaches of the on-ramp, q+ and
qr, and the leaving link q−. The demands are given by (4.1) (bottom).
Top left: µ1-Queue model. Top right: µ2-Queue model.

compares to reality, the open-boundary experiment is repeated. The main road is
implemented as a two-lane road without passing and its parameters are
vmax = 31, m/s, N = 14, njam = 5, τff = 1.6 s and τjf = 2.0 s. The ramp pos-
sesses one lane with parameters vmax = 22, m/s, N = 14, njam = 5, τff = 1.3 s
and τjf = 2.0 s. The inflows to both links, q+ and qr, are varied from zero up to
the corresponding maximum inflow.

There are two important causality regimes which should at least be reproduced
by the on-ramp [36]. Either the flow on both approaches is dictated by conditions
upstream, i.e., both approaches are flowing freely. Or, both approaches are con-
gested due to the intersection’s lack of capacity resp. to congestion downstream,
i.e., the flow on both approaches is dictated by conditions downstream. In the first
case density waves move forwards, whereas density waves move backwards in
the second case. Indeed, this behaviour is found for the on-ramp as one can see in
figure 4.3.

The generation and dissolution of queues as well as their interplay at the bot-
tleneck are essential in order to yield an usable network model. In reality flows
are usually time-dependent. Therefore, the behaviour of the µ-Queue model is
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discussed in short for time-dependent inflows. For this purpose a full day period
T is simulated and the inflows are parametrised as

q+(t) = 0.55− 0.45

(

cos
4πt

T
+ cos

6πt

T

)

qr(t) = 0.35− 0.45

(

cos
2πt

T
+ cos

4πt

t

)

. (4.1)

The results for the µ1-Queue and µ2-Queue model are shown in figure 4.4.
The dynamics of the µ1-Queue model is rather basic. At the moment where

there is a considerable flow at the on-ramp, the capacity of the main road breaks
down. A queue builds on both links approaching the intersection and the total
capacity of the leaving link is shared. During the formation and dissolution of the
queues at the intersection, the leaving flow is constant. The on-ramp strongly af-
fects the flow on the main road during the peak period. After the system recovered
during the period of lower inflows this behaviour is repeated.

In contrast, the µ2-Queue model covers more of the dynamics given by the in-
flows (4.1). Here, the inflows also share the capacity of the leaving link, however,
in a more subtle way. During the first peak period on the main road, the inflow
to the system from the on-ramp is suppressed to a lower level compared to the
µ1-Queue model. As well, the main road does not reach its maximum capacity.
During the period of lower demand, the system recovers and the flows correspond
to the dynamics of the inflows. The flow from the ramp equals the outflow from
jam during the following period, because the complete ramp is in the congested
state. The behaviour of the second peak period resembles the first one.

Note that the two models behave completely different with respect to the main
road and the ramp. In the µ1-Queue, the flow at the end of the simulation stems
from the demand which could not be served on the main road whereas it is just
the opposite in the µ2-Queue model. Further note that all drivers pass the system
at an earlier point in time in the µ1-Queue model. This results show once more
the flaw of traditional queueing approaches (as the µ1-Queue) with respect to traf-
fic simulation, namely, that information about the traffic state downstream is not
transferred upstream.

Finally note that the introduced concept of τ−
h is also important for the mod-

elling of crossings (network nodes resp. intersections with outdegree > 1). More-
over, it can be used to represent traffic lights. To this end, however, the τ−

h of
different leaving links have to be synchronised.

Off-ramps

The simplest diverge is given by off-ramps, i.e., a network node with indegree
1 and outdegree 2. As for the on-ramp, an off-ramp is usually composed of a
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main road and a side road which is connected via the ramp. A sketch is given in
figure 4.2.

The throughput at an off-ramp strongly depends on the directions which are
chosen by the passing vehicles. As long as the percentage of cars which leave the
main road is small, the traffic flow along the main road is not affected. However,
if this demand exceeds the capacity of the off-ramp, a queue starts to build. With
increasing number of queued vehicles at the off-ramp, there is a transition from
the regime of undisturbed flow on the main road to the regime of an effective bot-
tleneck which governs the movement of all vehicles approaching the intersection.

In principle, this behaviour is reproduced by the event-driven implementation
of the µ-Queue model. However, due to the strict FIFO queueing discipline on
each link, the influence of side roads at intersections is too strong. It is observed,
that the capacity of the main road is in general even adjusted to the lower ca-
pacity of the ramp before the storage capacity of the ramp is completely utilised.
Therefore, an additional storage segment is introduced in front of the off-ramp
with a vanishing travel time. At its downstream end this segment is coupled to
the off-ramp in the usual way. However, at its upstream end it does not transmit
time-headways according to the capacity of the ramp but τff of the main road.
Doing so, one reaches the effect, that the flow on the main road is only affected
by the off-ramp, if the storage capacity of the ramp is completely allocated. By
calibration of the storage capacity of the additional segment the point of transition
between undisturbed and affected flow on the main road can even be calibrated.
Note that the introduction of additional storage segments is also mandatory for
the implementation of crossings. Otherwise, the outgoing link with the smallest
capacity governs the throughput of all incoming links.

4.2 Comparison to real world measurements

In order to use the µ-Queue model as a component of traffic assignment, it is worth
to investigate the model’s abilities to reproduce dynamic situation which are found
in measurements. Moreover, the model’s parameter have to be determined such
that the properties of the network under discussion are recovered. For this purpose,
an appropriate procedure is the use of real world measurements (if available) in an
algorithm for the calibration of parameters. In principle, the approach is similar
to the calibration process used in section 3.3, which is repeated in short here: The
model is started with an initial set of parameters and the simulation results are
compared to the findings in the measurements. To this end an error function has
to be defined. In a second step an algorithm is used to improve the resulting error
by changing the parameter set. Again, the Downhill-Simplex method [139, 149]
is used here.
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Figure 4.5 Sketch of the two freeway sites which are used for the com-
parison to real world measurements. The figure is taken from [25].

For the comparison to measurements and the demonstration of the calibra-
tion procedure, observations from two freeway bottlenecks in and near Toronto,
Canada, are used. The two locations are illustrated in figure 4.5. The two sites
have been featured in previous studies of capacity [18, 25]. The detectors are
labelled in the figure. The detectors on Queen Elizabeth Way record counts, oc-
cupancies and time mean speeds in each lane over 30 s intervals. The detectors
on the Gardiner Expressway collect the same measurements over intervals of 20 s
duration.

4.2.1 Single-lane traffic

Because detectors are usually placed on major roads, there are hardly measure-
ments for single-lane traffic. Therefore, multi-lane traffic data is used which is
scaled down to a single lane. This is described in the following. The comparison
is done for two data sets (D1,D2) which were taken at the Gardiner Expressway
and the detectors 50 through 80 are used.

Detector 50 is used to fix the boundary conditions at the entry of the system.
The cumulative counts, which can easily be calculated by the given data sets, are
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added up over intervals of 2 min. In order to scale the inflow down to one lane,
the cumulative counts are simply divided by the number of lanes.

The right boundary is controlled by means of measured velocities (cf. the first
rule at the exit given in section 4.1). This is done for two reasons. The first one
is due to the data sets. During the evaluation of the cumulative counts, inconsis-
tencies are detected, namely, that the number of vehicles between two detectors
exceeds the maximum density during several periods. Recall that the difference
between the cumulative counts of two detectors gives the number of cars between
them (see p. 74). The second reason is due to the down-scaling of the inflow into
the system.

As input for the control of the right boundary either detector 70 (G1) or 80
(G2) are used. In the first case G1, detector 60 is used to determine the error done
by the simulation. In the second case G2, the error is averaged using detector 60
and 70. The error at each detector is given by

err =
1

ni

ni
∑

i=1

| vobs
i − vsim

i |

vobs
i

, (4.2)

with vobs
i , vsim

i being the velocities observed and simulated, respectively. ni is the
number of sample points which are taken on 2 min intervals.

The dynamic situation which is observed at Gardiner Expressway is rather
interesting. At this location, one frequently finds a dynamic bottleneck which is
located approximately one kilometre downstream of the on-ramp at detector 50,
see figure 4.6. Besides the fact that the road possesses a slight curve in vicinity of
the location where the bottleneck arises, there are no further disturbances of the
traffic stream [18]. The dynamic situation is similar for both data sets which are
used in the following. Note that the existence of the bottleneck is almost invisible
at detector 80.

The calibration process is done for the µ1-Queue and µ4-Queue model using
both data sets (D1, D2). The segment length is fixed to 100 m. The results are
presented in Table 4.1.

With respect to the µ1-Queue model one can clearly see that it is not able to
reproduce the dynamic situation at all. At the exit a queue start to grow and the
simulated velocity is virtually constant. The parameters adjust in a way, that the
mean velocity equals the measured velocity during the period of the breakdown.
This demonstrates once more, that the missing of backward travelling jam waves
in traditional queueing approaches leads to a wrong description of dynamic traffic
situations.

In contrast, the µ4-Queue model achieves very good agreement with the obser-
vations. Except for the (G2,D2) simulation, the overall calibration error is rather
small. As already noted before (see figure 4.6), the bottleneck of the system is
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Figure 4.6 Measured velocities at detector 50 through 80 on Gardiner
Expressway (D2). An active bottleneck exists between detector 60 and 70
which is almost invisible at detector 80. The dynamic situation in D1 is
similar, however, the breakdown at detector 80 is more pronounced.

N njam vmax τff τfj τjf τjj errcal errval

[m/s] [s] [s] [s] [s]

G1 D1 µ1 14 - 14.08 0.84 - - - 0.355 -
G1 D2 µ1 14 - 12.6 2.16 - - - 0.383 -

G1 D1 µ4 13 2 24.61 1.79 2.64 2.91 2.72 0.093 0.104
G1 D2 µ4 11 3 23.03 1.22 1.85 1.76 1.67 0.139 0.16

G2 D1 µ4 12 2 25.17 1.9 1.72 2.21 2.07 0.116 0.164
G2 D2 µ4 14 2 26.4 1.84 3.55 2.07 1.92 0.221 0.342

Table 4.1 Results of the calibration process of the two data sets (D1,D2)
on Gardiner Expressway. Either the exit is controlled by the velocities
measured at detector 70 (G1) or at detector 80 (G2). Besides the calibra-
tion error errcal also the validation error errval is given. The latter one
results, if the obtained parameter sets are mutually exchanged.

located upstream from detector 80. Therefore, the measurements taken there do
not contain the complete dynamic situation. Thus, it is not surprising that the error
is lower in G1 compared to G2. Figure 4.7 illustrates the resulting velocities over
time for the first data set (D1).

The resulting parameters further reflect that the simulated period is mainly
governed by congestion. Therefore, the values for njam are very small. Moreover,
the values determined for τjj are always smaller than τfj. According to the defini-
tion of the waiting times in congestion (3.22) this means that the flows inside jams
are rather small. This may also be connected with the finding that the µ-Queue
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Figure 4.7 Top: Simulation results with data set D1 for simulation
setup G1. One clearly sees, that the µ1-Queue model is not able to repro-
duce the dynamic situation at all (left). In contrast, the µ4-Queue model
compares very well to the observed traffic situation (right).
Bottom: Simulation results for the same data set and simulation setup G2
with the µ4-Queue model.

model is less sensible with respect to boundary conditions controlled by velocities
compared to a control by cumulative counts1.

Besides the error of the calibration step, the validation error is also given in
Table 4.1. This error results, if the parameter sets are mutually exchange, i.e., the
parameters found for the first data set are applied to the second one and vice versa.
It is clear that the validation error is higher than the calibration error. However,
it is still small enough here, in order to yield an appropriate description of the
dynamic situation. With respect to the calibration of different links in a network,
it should, therefore, be possible, to obtain parameter sets generally valid by means
of comparison to just a few traffic situations.
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N njam vmax τff τfj τjf τjj errcal errval

[m/s] [s] [s] [s] [s]

Q1 12 2 27.56 1.79 2.14 2.87 3.35 0.041 0.054
Q2 14 2 28.9 1.64 2.01 2.73 3.07 0.042 0.043

Table 4.2 Results of the calibration process with the two data sets on
Queen Elizabeth Way using the three lane version of the µ4-Queue model
without passing. Parameters are given with respect to one lane. Recall,
they have to be transformed by means of (3.49). The dynamic situations
of the two data sets are not such distinct from each other as in the case
of Gardiner Expressway. This explains, why the validation error is only
slightly higher than the calibration error.

4.2.2 Multi-lane traffic

Two data sets from Queen Elizabeth Way (Q1,Q2) are used to investigate the abil-
ities of the µ-Queue model with respect to multi-lane traffic. The location is il-
lustrated in figure 4.5. The entry of the simulated system is placed at detector 23,
the exit lies at detector 25. Again, cumulative counts are used to determine the
inflow to the system. The measured velocities at the exit are used to control right
boundary conditions. The error function (4.2) is evaluated at detector 24.

Again, good agreement is found. The parameters from the optimisation step
are given in Table 4.2. The µ4-Queue model is used with three lanes without
passing. Figure 4.8 shows the comparison between measured velocities at the
detectors 23, 24 and the simulated values. The velocities at station 24, which are
used for the calibration process, are reproduced very well.

The obtained results for single-lane traffic and multi-lane traffic are truly en-
couraging to use the queueing model in the framework of dynamic traffic assign-
ment, because it is quite able to reproduce dynamic situations found in real traffic.
Moreover, they underline the necessity of having backwards moving jam waves
included in the model’s dynamics in order to be a meaningful model for traffic
flow.

1This control of the exit compares to the random blockade used in section 4.1.
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Figure 4.8 Simulation results for the data set Q1. The measured veloci-
ties at the entry of the system are lower than the simulated ones. This may
be related to the existence of the on-ramp in the real world situation.

4.3 Dynamic Traffic Assignment

The continuous increase of traffic demand together with the limited possibility of
a further increase of road infrastructure forces the authorities to develop methods
which allow for a more efficient usage of existing road capacities. Besides other
objectives, the instruments of ITS (Intelligent Traffic System) focus on an optimal
distribution of traffic demand by providing information about the traffic conditions
in a network and introduction of certain ITS measures. Traffic assignment can be
seen as one principal component of ITS, since it allows the testing and evaluation
of ITS measures before they are implemented in practice [127]. Moreover, it can
be used for the prediction of traffic conditions in short-term (e.g., [177]). Further
examples for issues which can be addressed by traffic assignment can for example
be found in [3, 6, 184].

A traffic assignment model predicts route choice, network flows, link travel
times and route travel costs on a given transportation network with a given travel
demand. The latter one might either be static (e.g., reflecting the rush-hour period)
or dynamic. Due to its importance, there exist a wide variety of approaches to traf-
fic assignment which go along with conceptually different understandings about
it. Therefore, some short comments about the concept are made in the follow-
ing before the framework is presented, which uses the queueing model introduced
above.

4.3.1 Static vs. dynamic traffic assignment

A majority of approaches concerning traffic assignment tackle the problem from
a mathematical point of view using optimisation techniques. In principle, a model
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for traffic assignment consist of three parts: conservation of flow, route choice cri-
teria (usually user equilibrium or system optimum) and a model of flow behaviour
or propagation within individual links.

The models aim to compute the route choice in a traffic network which re-
sults from a given travel demand. The network is defined by means of a directed
graph G = (N ,A) with nodes N and arcs A. The travel demand is represented
as trips between nodes r, s ∈ N (which are called origin and destination nodes,
respectively). In order to define an objective function to be optimised, these mod-
els are based on an assumption of the route 2 choice. A widely used route choice
model is provided by Wardrop’s first principle [181]: All used routes (for a spe-
cific pair (r, s)) have equal costs and no unused route has a lower cost. The state,
which results from the optimisation assuming this principle, is referred to as user
equilibrium.

The simplest treatment of the problem is given by neglecting all temporal de-
pendencies, i.e., the travel demand and the arc flows are static. In this case, the
distribution of the travel demand over the network can, e.g., be described as con-
vex optimisation problem [17], which is solved numerically [57, 60, 176]:

min z(x) =
∑

a∈A

∫ xa

0

τa(x)dx (4.3)

subject to

∑

r,s

∑

p∈Prs

f rs
p δrs

a,p = xa ∀a
∑

p∈Prs

f rs
p = drs ∀r, s

f rs
p ≥ 0 ∀p, r, s.

(4.4)

The notation is taken from [60]. xa is the flow over arc a and τa(x) gives the
associated costs (usually travel times). Further, f rs

p is the flow on path p ∈ Prs,
where Prs is the set of all path from r to s. Finally, drs is the travel demand from
r to s, and the function δrs

a,p equals one or zero if arc a is part of path p or not,
respectively.

In order to have a unique solution (with respect to arc flows) in the optimisa-
tion problem, one usually chooses strictly monotonic increasing and strictly con-
vex link cost functions τa(x). For example, the travel time function (3.4) is of that
kind.

Due to the existence of efficient solution techniques, the static approach to traf-
fic assignment is widely used by civil engineers for planning purposes. However,
it is rather obvious, that the static description is not sufficient with respect to the

2 A route between r and s is simply a path in the network which starts at r and ends at s.
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inherent dynamic nature of traffic. Static approaches are neither able to describe
the situation in a congested network nor the exceeding of capacities during rush
hour. The assumption that the travel time on a link is a monotonically increasing
function of the link flow is, moreover, violated in practice. For all flow levels be-
low capacity there are two corresponding travel time values [132]. Another major
shortcoming stems from the fact that the flows on routes sharing a common arc
always interact. In reality drivers on different routes may use a link at different
times. These shortcomings matter in particular in regard to ITS applications.

Therefore, dynamic assignment models take time dependencies explicitly into
account. It is still possible to formulate an optimisation problem for the dynamic
case [151, 166], but the computation of solutions becomes infeasible for networks
of sizes that matter in practice [60]. The different approaches uses distinct meth-
ods to describe the problem and differ in the assumptions which are made to obtain
time-dependent cost functions on the links of the network [2, 23, 87, 143]. How-
ever, their focus is more on the mathematical description of route choice than on
a realistic description of traffic flow. Many of them address the question of the
existence and the uniqueness of a solution rather than the aspects of applicability
to real world problems.

4.3.2 Simulation-based traffic assignment

The approaches discussed above can be seen as models for route choice which
are enhanced by a very simple description on link flows by means of travel time
functions. However, due to the interactions of the individual drivers during their
travel through the network, the route choice and travel times are strongly coupled:
The route choice is based on travel times and the travel times result from the route
choice. Therefore, it is necessary to have a model for link flows which reproduces
the dynamic findings of traffic flow.

In order to improve the quality of the computed assignment of a given travel
demand, traffic flow simulation can be used. Either, a static assignment model is
enhanced by an appropriate description of traffic flow (e.g., [58, 157, 163]) or an
existing flow model is extended by a model for route choice (e.g., [54, 59, 171]).
The following focuses on the latter approach.

It is convenient to refer to two main components of a simulation-based traffic
assignment procedure, namely the route choice mechanism and the network load-
ing. The latter is the method used to represent the evolution of the traffic flow
over the links of the network once the route choice has been determined. The typ-
ical simulation approach is a systematic relaxation via a variant of the following
procedure [27]:
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1. Make some initial guess for the routes.

2. Execute all route plans simultaneously in a microscopic traffic simulation
(network loading).

3. Readjust some or all of the routes using the knowledge from the network
loading (route choice).

4. Restart with the second step until a certain criterion for the relaxation pro-
gress is met.

The assignment which results from the iterative relaxation procedure can be inter-
preted as imitating drivers’ adaption over time to changes in network topology or
control. The latter includes the implementation of ITS measures.

The procedure has much in common with the relaxation methods for static
assignment. Instead of using link cost functions, a network loading model per-
forms the task to determine the objective function. By doing so, one looses the
mathematical knowledge (e.g., about the existence and uniqueness of the solu-
tion). In the simulation-based assignment the convergence and the stability of the
algorithm can usually not be proven. However, one gains a realistic description
of traffic dynamics which is essential with respect to the usability in real world
applications.

Network loading model

In principle, every traffic flow model can be used for the network loading step of
the simulation based traffic assignment, if traffic dynamics is reproduced on an
appropriate level. In particular, queue spillovers and distinct traffic states have
to be taken into account, since they have a considerable influence on the quality
of the resulting assignment [37, 111]. Moreover, depending on the level of dis-
aggregation of the travel demand, the modelling should be based on individual
car-driver units which are able to travel along their individual routes.

Therefore, the microscopic car-following model and the queueing approach
introduced in this work are both appropriate models in this context. Since the
relaxation process usually needs several iterations until a sufficient level of con-
vergence is reached, the network loading (as well as the route choice) should be
computationally fast. In this respect, the queueing approach is favourable com-
pared to the car-following model. In the latter one, each car has to be processed
several times during its movement along a link, whereas this has to be done only
once for each segment in the queueing approach. Computational studies show, that
the queueing model can gain a factor of 10 to 100 according to the real time ratio
compared to the car-following approach [27, 154]. Hence, the µ-Queue model is
used for the network loading step in the following.
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Note that the deterministic version of the µ-Queue model is used. The find-
ings for open boundary conditions show that the model displays boundary induced
phase transitions. Because in the network each intersection represents an open
boundary, traffic streams will cross, merge and diverge there, building the mech-
anism for congestion. Moreover, due to individual paths and trip startings in the
travel demand, the model will hardly be found in laminar flow conditions over the
full simulation period.

Route choice model

In the route choice step the information from the network loading step is used to
readjust the current route choices of the simulated drivers. There are many vari-
ations with respect to the route choice model (e.g., [12, 47, 60, 127, 171]). They
differ in the fraction of routes which are re-planned, in the number of routes known
to each driver, or the usage of a deterministic and a probabilistic route choice. The
procedure used in the following is introduced in [60]. Although a detailed descrip-
tion of the algorithm is not attempted here, the assumptions and properties of this
route choice model are presented briefly. The notation is taken from the original
publication [60]. It is based on individual trips, which are characterised by an
origin, a destination and a departure time.

For each trip (or driver) a set P of routes between the origin and destination is
known. A probability distribution p : P → R+ with

∑

r∈P p(r) = 1 is associated
with each trip. r is a specific route from the set P . Additionally, a learned or
perceived travel time ttr(r) is known for each r ∈ P . The set of routes can, e.g.,
be initialised by means of fastest paths computed in the empty network.

In the network loading step a specific route s is chosen from P according to p.
After the network loading, the route travel time from the simulation step tsim

tr (s)
and the time-dependent link travel times are known. These are used in order to
update the travel time known for each trip by application of

ttr(s) ← tsimtr (s)

ttr(r) ← βtdij
tr (r) + (1− β)ttr(r) ∀r ∈ P \ s. (4.5)

β is a parameter and tdij
tr (r) is the travel time of route r calculated from the time-

dependent link costs.
In a following step the route set P is possibly extended by a new route, if there

exist faster paths in the network than the ones contained inP . Finally, based on the
travel times (4.5), the different routes are compared with each other (introducing
an additional small noise) and the probability distribution of each trip is adjusted
such that

- the probability of choosing a route which has a low travel time increases.
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- the probability of choosing a route which has a high travel time decreases.

For further details the reader is referred to [59, 60].
The route choice model is a stochastic one, i.e., all noise of the simulation is

moved into the distribution of the routes. This leads to the fact that the algorithm
does not converge in a strict sense. A measure for convergence is therefore given
by means of the distribution of choice probabilities [89, 132]. If the system is
relaxed to a sufficient level, this distribution becomes stationary. An easy measure
to determine the relaxation level is provided by means of average route travel
times. The equilibrium which is achieved is called stochastic user equilibrium.

The route choice procedure should be used with route sets P which contain
more than one element. Otherwise it is known that the process tends to produce
oscillations in the route choices or becomes unstable [60].

Within the described procedure different routes for a specific origin-desti-
nation pair are evaluated according to their travel time. This is done by means
of fastest path which are computed using a time-dependent implementation of Di-
jkstra’s shortest path algorithm [46]. The basic version of the algorithm can easily
be extended to address particularities of road networks as turning restrictions, ad-
ditional waiting times at nodes etc. (e.g., [48, 69, 144]). Since in each iteration up
to several million paths have to be computed, it is important to use efficient im-
plementations of the algorithm [83, 186]. With respect to time-dependent fastest
path the sampled link travel times tlink

tr (sampled on intervals of size ∆t) from the
network loading step have to fulfill FIFO-conditions, i.e., for each link

t + tlink
tr (t) ≤ (t + ∆t) + tlink

tr (t + ∆t) (4.6)

has to be satisfied. In that case, the time-dependent implementation of Dijkstra’s
algorithm gives the optimal solution and possesses the complexity of the static
variant [1]. Since the queueing model fulfills FIFO, the same holds for the travel
times on the links.

4.4 Application: Environmental impact modelling

The following presents simulation results with respect to air pollution which are
obtained by means of the DTA framework introduced in the last section. Two
intentions are followed. On the one hand, the differences of the µ1-Queue and
µ4-Queue model are further discussed. On the other hand, an example is given for
the applicability of the framework.

This is done using both, results of the new model implementation as intro-
duced in this work and results of a collaborative work with meteorologists from
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the University of Cologne3. This collaboration was part of the Collaborative
Research Centre SFB419 [164] supported by the German Research Foundation
(DFG) which investigated environmental problems of industrialised regions. In
particular, the computation of emission inventories due to street traffic is an im-
portant part of an air-quality management system which was developed within this
project. Air pollutants from street traffic are of particular importance due to their
high contribution to the total emission level and their high temporal variability.
Strategies to reduce the local impact of pollution, therefore, have to include the
management of traffic streams. In order to investigate the effects of certain re-
duction measures, such a model system is able to support the decision process. A
sketch of the introduced model chain is given in figure B.1. In appendix B the role
of traffic flow modelling in the area of air-quality systems and the methodology to
map traffic dynamics to emissions is further presented.

The results of the previous sections show that the µ1-Queue model possesses
deficits with respect to the modelling of traffic dynamics. One, therefore, expects,
that the µ4-Queue model leads to better results with respect to emission modelling
(cf. section 3.3). Nevertheless, in order to give some examples on measures to
control traffic, FASTLANE4 is used here, presenting results from the collaborative
work within the SFB419 [164, 165]. During the project time, FASTLANE has
been the model of choice and a lot of efforts have been made to calibrate the
model chain using this model. Because the project ended in 2002 and several
people were involved, this cannot be repeated here. As long as comparisons are
made between a reference situation and a scenario computed with the same model,
the usage of FASTLANE should not be seriously erroneous.

4.4.1 Data sources

The project focused on the area of the city of Cologne. The data sources, which
were used in the project with respect to the traffic simulation, stem entirely from
the project “stadtinfoköln” [169] and were generated by the “Institut für Stadt-
bauwesen, RWTH Aachen”. The data set contains the main road network of the
city of Cologne including the highway ring which encloses the area of the city (cf.
figure 4.10). Besides the traffic which is generated by inhabitants, the highway
ring is a main traffic node in Germany with a high fraction of transit traffic. More-

3Institute for Geophysics and Meteorology, and Rhenish Institute for Environmental Research
(EURAD Project).

4Recall that FASTLANE can be regarded as the implementation of the µ1-Queue model using
a parallel update scheme and randomly fluctuating capacities. Because the time step used for the
simulations with FASTLANE was very small (∆t = 3 s), it behaves rather similar to the µ1-Queue
model. It is denoted in any case presented here, whether FASTLANE or the µ1-Queue model is
used.
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over, due to the high number of workplaces inside Cologne, there is also a high
fraction of commuter traffic which loads the road infrastructure.

The data about the network contains informations about the number of lanes,
speed limits, maximum capacity and a classification into road classes. For each
road class, flow-density relations are given, which are used to calibrate the param-
eters of the µ-Queue model resp. FASTLANE.

In order to compute traffic assignments, origin-destination relations (or origin-
destination matrices) are necessary. The sources of traffic described above have
to be included in these relations to obtain realistic traffic loads. Moreover, for the
project, which addressed simulations with a high temporal and spatial resolution,
these relations have to be highly disaggregated in space (i.e., the number of origin-
destination pairs with respect to network nodes has to be high) and time (i.e., the
relations have to be specified for temporal short intervals). These requirements are
met by the given data set. The methods used to obtain the relations are described
in detail in [155]. General approaches for the generation of time-dependent origin-
destination flows can, e.g., be found in [7, 16, 179].

The resulting data base consists origin-destination relations for each day of
week which give the number of trips between traffic zone. These traffic zones
are spatially fine grained. For each day, the relations are furthermore sliced in
intervals of one hour. For the purpose of the DTA model, the original relations
were further temporally disaggregated in order to obtain trips which are specified
by a starting time, a starting node and an ending node. The traffic load for each
day of week contains up to two million individual trips.

4.4.2 Experiences from the assignment step

Network representation

In regular, digital road maps are obtained from ordinary maps using algorithms
for image processing. Frequently, these algorithms come in trouble to resolve re-
lations between arcs and nodes at complex intersections. Many relations resulting
from the image processing have to be adjusted by hand (resp. in a half-automated
way) to obtain a meaningful representation for the simulation model.

The following case appears rather often: In the original network representa-
tion, road links are given as arcs between nodes, however, turning restrictions are
not specified. This leads to unwanted effects, especially at highway interchanges.
If the interchange is approached from a specific direction, there are always four
possibilities to change to a target direction, instead of one (which is the case in
reality). It is quite clear that, in consequence, a proper modelling of throughputs
at an interchange is not possible. This is also true for other kinds of intersections.
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For the case of the Cologne network, a complete revision of all relations be-
tween arcs and nodes would have been to time consuming. Therefore, only the
most important intersections were revised, including the complete highway ring.
Turning restrictions were introduced by means of node expansion (e.g., [48]).

Gridlocks

In reality there are mainly two peak periods for the traffic demand over the day,
namely, the morning peak when people are on their way to work and the evening
peak where traffic flows in reversed direction. During these periods, certain parts
of the network are usually in the regime of saturation, that is where congestion
occurs. In this regime, the network loading step is very sensible to the degree of
relaxation reached already resp. to the number of trips contained in the origin-
destination relations. This is due to the fact that spillovers past merges can lead
to gridlock on ring roads and on other parts of networks with closed loops (which
are frequent in urban traffic networks). For example, a slight increase in a feasible
origin-destination flow in such network can result in a situation where all traffic
remains stuck in the network [37].

In the case where gridlock occurs, the network loading step will not terminate,
if there is no mechanism to flush the complete network. This was introduced in
the DTA framework used in the project in the following way: If the number of cars
in the network exceeds a certain threshold, or there are still cars in the network at
the end of the simulated period, the storage capacities of all segments are set to
infinity. By this, the network loading step can be terminated in a proper way, i.e.,
travel times are known for all links in the network (which are, of course, very high
for the links which were locked).

Nevertheless, the travel times which are sampled after the gridlock occurred
in the network are in principle useless. With respect to the relaxation process,
one observes, that the point in time at which the network becomes locked shifts
to later times from iteration to iteration. However, the number of iterations can be
very high before a net-loading step is obtained without gridlock.

In order to decrease the number of iterations in the relaxation process, the
storage segments introduced in section 4.1.3 can be useful. The iteration process is
started with a rather high storage capacity of these segments. After a small number
of iteration steps (which has to be determined for the specific problem) the storage
capacity is decreased from iteration to iteration, step by step. By doing so, one
possibly even achieves that no gridlock occurs at all. In any case, it is achieved that
the drivers in the simulation learn alternative routes right from the beginning of
the relaxation process. This procedure was chosen in the project and it was found,
that the number of iterations could indeed be lowered considerably. Moreover,
one observes that the average number of cars in storage segments decreases very
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Figure 4.9 Illustration of the relaxation process. Plotted is the level of
relaxation (sum of all travel times) against the iteration steps. The line
gives the relaxation process of a workday (reference day). If the num-
ber of trips contained in the corresponding origin-destination relations is
increased by 5% the first iteration yields a level of relaxation which is in-
dicated by point 1. If the same relation is initialised recycling the routes
from the assignment of the reference day, the first iteration immediately
reaches point 2. If only the distribution of trip starting times is changed
and the routes are recycled, the first iteration reaches immediately point 3.

fast due to the readjustment of the routes.

Recycling of routes

In the project, many assignments had to be computed, namely, for different sce-
narios, and for each day of week within each scenario. Regarding traffic counts,
it is known, that traffic volumes and routes do not differ too much between work-
days [102]. If the fraction of commuter traffic is quite high, this sounds quite
natural. If the assignment of a workday has been computed, this can be used to
initialise the route choice for the assignment of other days. Figure 4.9 shows that
one can indeed save a considerable number of iterations by this procedure.

4.4.3 Results of the reference scenario

The following shows simulation results of the assignment of Monday, compar-
ing the µ1-Queue model resp. FASTLANE with the µ4-Queue model. Since the
information about the iteration process has not been stored in the project (where
FASTLANE was used) and different computer architectures were used, this can-
not be compared to the new model here. However, the new implementation of the
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Figure 4.10 Average daily traffic volumes computed for Monday with
FASTLANE. The four plots on the bottom show comparisons between
simulation results of FASTLANE resp. the µ4-Queue model and counts
from traffic detectors.
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Figure 4.11 Travel times of specific routes over daytime which result
from the µ1-Queue model and the µ4-Queue model. Left: Route along the
highway ring. Right: Route passing the inner city of Cologne.

model with the event-driven update scheme yields a real-time ratio around 100
(on an Intel XEON 900 MHz).

Figure 4.10 shows the resulting assignment of FASTLANE with respect to av-
erage traffic volumes on Monday. One clearly sees the strong load on the highway
ring and arterials roads. Comparison with traffic counts from detectors (which are
averages over several Mondays) show that the model is able to reproduce the time-
of-day dependent traffic loads with respect to its dynamic and volume. The results
for the µ4-Queue model are similar with respect to average traffic volumes. This
is partially due to the observation, that it is rather difficult to find reasonable path
alternatives different from the optimal path [132].

However, with respect to route travel times there are differences between both
approaches. In order to demonstrate this, the resulting assignment of the µ4-Queue
model is used. Given this route choice, the network loading step is repeated with
the µ1-Queue model and travel times along the routes are compared with each
other. The travel times for a route along the highway ring and a route passing
the inner city are shown in figure 4.11. Whereas the travel time function over
day is rather flat in the case of the µ1-Queue model, the µ4-Queue model shows
a considerable increase of the travel times within certain periods of the day. This
difference in the behaviour is due to the fact, that the µ1-Queue tends to overesti-
mate throughputs at bottlenecks and does not reproduce traffic dynamics in a right
way.

Note that computations were made for all weekdays without changing the pa-
rameters of the network. The results obtained at different days all compare well
with traffic counts, which shows that the parametrisation of the network used is
robust.

Figure 4.12 shows results with respect to the computation of air pollution. The
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Figure 4.12 Top: Emission inventories of NOx computed with the re-
sults of the assignment of Monday. On the right, the emission inventory of
FASTLANE is shown. On the left, the difference between the emissions
from the µ4-Queue model and FASTLANE are presented.
Middle/Bottom: Comparisons between the immissions (i.e., after the
computation using the complete model chain, figure B.1) stemming from
simulation and field-measurements. Results of FASTLANE are shown on
the left, the ones of the µ4-Queue model on the right. For further details
the reader is referred to [161].
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emission inventories are computed using FASTLANE and the µ4-Queue model.
The emission inventories of both models show a similar spatial structure which is
due to the relation between the amount of emitted pollutants and traffic volumes.
Recall that the assignments yielded similar results. With respect to the quantita-
tive emission level, differences are found , however, because the traffic dynamics
in both approaches is distinct from each other. Moreover, comparisons between
results of simulations with the complete model chain (figure B.1, i.e., after the
transport and transformation of the primary pollutants by chemical reactions) and
field-measurements are shown. Besides the emission inventory due to street traffic
further sources of air pollutants are included in the calculations.

The comparison shows that the variation over day is well reproduced although
there are still quantitative differences. Due to the complexity of the model chain it
is not possible to trace back deviations to a single model part. Investigations of the
model chain by means of sensibility studies however show, that without taking into
account the emissions of traffic results of that quality cannot be obtained [78, 161].

4.4.4 Remarks about scenario computations

The following results stem from the works within the SFB419 [165]. They are
all computed by means of FASTLANE5. Therefore, conclusions are only made
by means of comparisons between the different scenarios. The computations pre-
sented above serve as a reference. The following scenarios are used:

1. In order to keep traffic away from the inner city, the two bridges that cross
the river Rhine are closed for traffic. Moreover, the speed limit is lowered
by 20 km/h on all roads which are not highways.

2. Equals scenario 1, however, no speed limit reduction is applied.

3. Increase of traffic volumes by 15%.

4. The traffic demand equals scenario 3. Additionally, the highway ring around
Cologne is enlarged to have entirely three lanes per driving direction.

Figure 4.13 shows the total amount of emitted pollutants by traffic. In all sce-
narios, one observes an increase of the emission level, although this increase is
partially rather small.

Despite the fact, that a complete closing of the two bridges in the inner city of
Cologne is rather impractical6, Scenario 1 and 2 are made in order to investigate
the effect of measures to relocate traffic streams. Because drivers, which have to
cross the Rhine, are forced to take longer routes (note that the origin-destination
flows remain unchanged), the increase of total emission is unavoidable. However,

5Recall the connection to the µ1-Queue model.
6One could think about road-pricing to reduce their usage.
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Figure 4.13 Top: Total emission of hydrocarbons (HC), carbon monox-
ide (CO) and nitrogen oxides (NOx) for the different scenarios defined in
the text. Bottom: Comparison of the spatial distribution of emitted HC be-
tween scenario 1 and the reference. (++, +) means that the emission level
is decreased by (> 20%,≤ 20%) in scenario 1 compared to the reference.
(−−,−) means that the emission level is increased by (> 20%,≤ 20%)
in scenario 1 compared to the reference.

as figure 4.13 shows, the spatial distribution of primary pollutants changes. Since
in the inner city the number of people, which is exposed to the primary pollution,
is rather high, this redistribution may lead to local improvement of the situation.
However, in order to rate the impact situation, an integrated approach has to be
used, which relates the population density with the immission inventories [66].
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The results further show two problems in respect to the investigation of reduc-
tion scenarios. If relocation of traffic streams is addressed without changing the
origin-destination relation, it is clear that one only achieves a spatial redistribution
of emissions. However, traffic management strategies do have an impact on the
behaviour of people planning their mobility. In principle, models of DTA should
therefore be coupled to models which establish a connection to activity planning
behaviour (e.g., [82, 171]). This was not possible in the project presented here.

The other problem is related to the velocity dependence of emission factors
(cf. appendix B). With respect to scenario 1 and 2 one observes that in the first
scenario the amount of HC and CO is increased rather strong (due to the speed
reduction), whereas it is just the opposite for the second scenario. The message is,
that a certain measure may be positive with respect to one pollutant, but worsens
the situation with respect to another one. Note that these arguments are purely on
the level of emission inventories. The resulting impact after taking into account
the meteorology may show different results.

Finally, the findings with respect to scenario 3 and 4 should be commented in
short. Probably, one may expect that, due to the improved flow conditions on the
highway ring in scenario 4, emissions should be lowered. However, one observes
a further increase compared to scenario 3. The reason stems from an an effect
which can be observed rather often. Due to the improved traffic conditions on the
highway ring more drivers use it. Each of them reduces its individual travel time
and accepts longer routes by this.

4.5 Conclusion

Whereas there are no transitions between the states of the deterministic µ-Queue
model in periodic systems, phase transitions occur using open boundary condi-
tions. The complete phase diagram of the µ-Queue model is derived. Two phases
are found, namely, the low-density resp. the high-density phase, and the boundary
induced phase transition between them is of first order. A high-flow phase in the
sense of section 2.4 is not present in the model, however, high-flow states exist
for undisturbed flows at the right boundary. The microscopic structure of striped
patterns is retrieved, according with the ones found in the SKM. These findings
do not change if the stochastic version of the model is used.

The sensitivity of the model in regard to the implementation of boundary con-
ditions is discussed, leading to an appropriate representation of merges and di-
verges necessary for the simulation of street networks. It is shown that the model
behaves reasonable in the presence of dynamic bottlenecks. The focus on real
world applications is further complemented by the comparison to measurements
stemming from distinct traffic situations. The results show that the µ-Queue model
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is suitable in order to reproduce dynamic traffic situations and allows for the cali-
bration of the model’s parameters by means of observations.

The µ-Queue model is implemented as part of a simulation-based dynamic
traffic assignment, undertaking the task of the network loading step. This frame-
work is applied to simulate street traffic in the area of the city of Cologne. Besides
the discussion about practical aspects of the model’s application within this frame-
work, it is shown that the approach is well applicable to large-scale simulations
of several million individual trips, being numerically efficient. The differences
between the µ-Queue model and FASTLANE resp. µ1-Queue model are further
demonstrated, showing that the latter approach tends to overestimate throughputs
at bottlenecks and does not reproduce traffic dynamics properly.

Finally, examples of scenario computations in regard to environmental im-
pacts of street traffic on air-quality are given, however, by means of FASTLANE.
To this end, the presented framework is embedded into a model chain which ad-
ditionally includes further sources of emission and computes the transport and
transformation of air pollutants, due to chemical processes. The results show that
it is essential within such approach to include emission inventories of traffic which
have a high temporal and spatial resolution. Moreover, it becomes clear, that the
explicit modelling of traffic demand and integrated impact assessment, both not
included in the above model chain, is necessary in order to explore valuable mea-
sures aiming to improve the impact situation.
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Chapter
5

Summary

This work focuses on the investigation of vehicle-based models of traffic flow
motivated by its use within dynamic traffic assignment and the computation of
environmental impacts by street traffic. In particular, the abilities of different
approaches in regard to the inherent dynamic of traffic flow is addressed. The
following summarises the main results of this work, more detailed discussions are
presented at the end of each chapter.

In the first part of this work, the dynamics of an already known microscopic
car-following model (SKM,[112, 113]) is investigated. A classification of the
model’s behaviour in regard to the stability of high-flow states [131] is presented.
It is shown, that within the parameter regime where structure formation is ob-
served, the high-flow states are stable against intrinsic fluctuations of the model,
given that the braking ability does not become too high. Moreover, the outflow
from jam is shown to be stable within this parameter regime. The model is ex-
tended by an anticipatory driving strategy, and it is shown that this mechanism fur-
ther stabilises high-flow states and allows for very short time-headways as found
in observations. The inner working of this mechanism is explained by means of
numerical and analytical results. The investigations on open boundary conditions
show that the model fulfills an extremal principle [109, 148]. The complete phase
diagram of the SKM, including the extension by anticipation, is derived and the
nature of the phase transitions is investigated. It can be concluded that the occur-
rence of a high-flow phase and the present microscopic structures (striped pattern)
are generic for microscopic car-following models which exhibit a branched flow-
density relation and phase separation.

In the second part of this work, a new approach (µ-Queue model) based on
queueing theory is introduced. Within this approach coupled queues are used and
service rates are implemented by means of time-headways between cars. The
introduced waiting times can be regarded as state-dependent service rates which
account for the conditions downstream of the queue, in contrast to traditional ap-
proaches from queueing theory. It is shown that the new approach is, in con-
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sequence, able to describe the dynamics of backward-propagating wide moving
jams. The relation between the properties of the model’s states and its parameters
is explored and an analytical description of the flow-density relation is given. The
mechanism of moving jams is explained in detail. The introduced event-driven im-
plementation of the µ-Queue model yields a very efficient update scheme which
allows for its usage within the framework of simulation-based traffic assignment
in large networks.

Comparisons between the dynamics of the µ-Queue model and the SKM de-
monstrate that the new approach is well able to reproduce the dynamics of jams
as well as the environmental impacts by means of computing emissions, needing
considerably less numerical efforts compared to the SKM.

The investigations of open boundary conditions and the comparison to mea-
surements complete the discussion of the µ-Queue model. It is shown that even
the deterministic version of the model displays boundary induced phase transitions
between laminar and congested flow. The microscopic structure of the observed
phases concur with the ones found in the SKM. Moreover, the comparison to mea-
surements further demonstrate that even multi-lane traffic can approximately be
treated with this approach.

Finally, the application of the model in the context of the computation of envi-
ronmental impacts of street traffic is demonstrated. To this end, simulation results
of the network of Cologne are given. The properties of the µ-Queue model with
respect to traffic assignment is further discussed as well as examples for the com-
putation of scenarios aiming an improvement of the impact situation are given.
The results show that it is essential within the modelling of air quality to include
emission inventories of traffic which have a high temporal and spatial resolution.
It is demonstrated that the new approach is able to meet these requirements.



Appendix

A

Basic concepts of queueing theory

Queueing theory is a branch of operations research which explores the relation-
ships between the demand on a service system and the delays suffered by the users
of that system. On the one hand, one tries to simplify the description by disregard-
ing details that are considered superfluous. On the other hand, approximations are
used in order to transform incomplete data into mathematical quantities. In the
following the basic concepts are discussed in short, and important notations are
introduced. The discussion follows [65, 120].

In queueing theory, a service system is described as a queue together with a
service device. Customers, jobs or requests are assumed to arrive with a specific
arrival rate λ and they are processed with a certain service rate µ. If the
arrival rate exceeds the service rate for a certain period, delays occur and requests
experience an additional waiting time before being processed. Usually, there is
not infinite space but a restricted storage capacity in front of the service. One
distinguishes the queue and service capacity, which are the maximum number of
requests that solely fits into the queue and in both, service facility and queue,
respectively. In order to allow a mathematical description, assumptions about
the distribution of the service and arrival rate are made, as well as the storage
capacities are fixed to a specific value. The parameters of a queueing system are
specified by the Kendall notation A/B/m/K/P with

A interarrival time distribution,
B service time distribution,
m number of server,
K storage capacity of the system (default =∞) and
P customer population (default =∞).
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As distributions,

M Markovian (exponential),
Er Erlangian,
D deterministic or
G general distribution

are generally used.
In order to complete the system’s definition, one has to specify the queue-

ing discipline, i.e., the order of processing the request in the queue. Usually one
either uses FIFO or LIFO, i.e., first-in-first-out or last-in-first-out disciplines, re-
spectively.

Although one uses a simplified description and approximations by means of
the above distributions, closed form expressions for the expected waiting time W
or the number of requests QL (queue length) in the system can, in the majority of
cases, only be given for equilibrium conditions.

M/M/1-queue

Let pk be the probability to find k requests in the system. If requests arrive with
rate λ and are further processed with rate µ, the following balance equations hold
in statistical equilibrium,

λp0 = µp1

(λ + µ)pi = λ pi−1 + µ pi+1 i ≥ 1.
(A.1)

Adding these equations for different i yields

pi = (1− ηq)η
i
q i = 0, 1, 2, .., (A.2)

where ηq = λ/µ is the utilisation of the queue.
∑∞

i=0 pi = 1 is used in order to
derive (A.2).

The number of requests in the system then yields

〈QL〉 =

∞
∑

i=0

i pi =
ηq

1− ηq

, (A.3)

the average time spent in the system yields

〈W 〉 =
∞

∑

i=0

(

i + 1

µ

)

pi =
1

µ (1− ηq)
. (A.4)

As one can easily see,

〈QL〉 = λ 〈W 〉 (A.5)

holds. Equation (A.5) is known as Little’s formula which holds in general [65].
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M/G/1-queue

In the following, the average queue length is derived for service rates that are gen-
erally distributed with mean 1/µ and variance σ2. The derivation follows [120].

In the case of the M/M/1-queue, the system is completely described by the
number of users in the system, i.e., the knowledge about this number is sufficient
to describe the complete history of the system, as far as the future is concerned.
Therefore, one can immediately state that the probability of completing a service
within the next time interval ∆t is equal to µ ∆t, independent of the past. In
contrast, using a M/G/1-queues, this probability also depends on how long ago
the service began to the request that is currently receiving service.

There are several different approaches to describe the stationary state of a
M/G/1-queue. The simplest one uses the trick of focusing attention on certain
specific instants in time, so called epochs. At these instants the knowledge about
the number of requests in the system is sufficient in order to specify its current
state. An epoch is given by the instant ti at which the server completed the service
of a request i.

In order to proceed, three random variables are introduced, namely,

N the number of requests in the system instantaneously after
the instant ti−1,

R the number of new requests that arrive at the system during
the service time of the request i and

N ′ the number of request in the system instantaneously after ti.

For these variables

N ′ = N + R− 1 + δ (A.6)

with

δ =

{

0 if N > 0
1 if N = 0

(A.7)

holds. If f(s) is the probability distribution function for the service time S of the
requests, the expected values for R and R2 yield

〈R〉 =

∫ ∞

0

〈[R|s]〉f(s)ds

= λ 〈S〉 =
λ

µ
(A.8)

〈R2〉 =

∫ ∞

0

〈[R2|s]〉f(s)ds

= λ2 〈S2〉+ λ 〈S〉 = λ2

(

σ2 +
1

µ2

)

+
λ

µ
. (A.9)
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Squaring (A.6) and taking the expected value yields

2 〈N〉 〈1−R〉 = 〈R2〉 − 2 〈R〉+ 1 + 〈δ〉 〈2R− 1〉. (A.10)

Since in equilibrium 〈N ′〉 = 〈N〉 holds, 〈δ〉 = 1 − ηq the expected number of
requests in the system is

〈QL〉 = ηq −
η2

q + λ2σ2

2(1− ηq)
. (A.11)

Equation (A.11) is also known as Pollaczek-Khintchine formula which is used in
section 3.1.1.

Oversaturated queues

Obviously, the equations (A.3) and (A.11) become invalid in the case of oversatu-
rated queues, ηq → 1. In that case, a deterministic description of queueing can be
applied [183]. If one assumes that requests arrive and depart regularly with rates
λ resp. µ, the mean number of requests waiting for service is given by

QL(t) = Q0
L + (λ− µ) t = Q0

L + µ(ηq − 1) t, (A.12)

where Q0
L is the queue length at t = 0. The average waiting time W per request

for those, that arrived during the period (0, t), can be expressed as

W (t) =
1

λ t

∫ Q0

L
+λt

Q0

L

(

QL

µ
−

QL −Q0
L

λ

)

dQL

=
Q0

L

µ
+

t

2
(ηq − 1). (A.13)

State-dependent queues

Observations of street traffic show that the vehicles’ speed on a road segment is
strongly influenced by the the current density. To put this in terms of queueing
theory, the service rate is dependent on the utilisation of the queue. Therefore,
it is straightforward to give up the assumption of fixed service rates, using state-
dependent rates instead. The basic idea of state-dependent queues is demonstrated
using a traffic flow model, introduced in [84]. Traffic flow is described in terms of
M/G/N /N queues, i.e., the storage capacity of a queue is limited by N and there
are N service stations. Each vehicle, that arrives at the queue, is assigned to a free
service station whose service rate depends on the number of vehicles already in
the queue.
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Figure A.1 Flow versus λ for the linear model (A.14). The parameters
are L = 1600 m, vmax = 24 m/s. If the inflow λ exceeds a certain thresh-
old λ∗, the segment becomes completely blocked. Shown are the relations
for ρmax = 115 km−1 and a fictitious value ρmax = 240 km−1.

In order to construct the model for traffic flow, it is further necessary to as-
sume a relationship v(ρ) between the density and mean travel speeds. In [84]
a linear and an exponential model are assumed (parameters of the functions are
fitted according to empirical observations). For simplicity, only the linear model,

v(n) =
vmax

N
(1 + N − n) , (A.14)

is discussed. n and N are the current number of vehicles inside a road segment
and the storage capacity of the segment, respectively.

Each road segment is then modelled as a queue with N service channels. Ar-
rivals of vehicles are assumed to be independent of the state of the queue (rate λ),
whereas the service time follows a general distribution whose mean depends on
n. This dependency is given by f(n) = v(n)/vmax. For the state probabilities

pn =

[

(λ L/vmax)
n

n!f(n)f(n− 1) · · · f(2)f(1)

]

p0, (A.15)

holds, where p0 is given by
∑N

i=0 pn ≡ 1 [30]. Combining (A.14) and (A.15) the
probabilities pn yield

pn =

[

(λ L/vmax)
n

∏n

j=1 j
(

1+N−j

N

)

]

p0 (A.16)

and

p−1
0 = 1 +

N
∑

i=1

[

(λ L/vmax)
i

∏i

j=1 j
(

1+N−j

N

)

]

. (A.17)
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The state probabilities pn can be applied to calculate performance measures for the
queueing system, e.g., the balking probability pN and the throughput
q = λ [1− pN ] (see figure A.1).

In order to examine the performance of a network, each of its queues has
to be studied independently by the analytical equations (A.16) and (A.17). The
description of blocking, that occurs between queues, makes further model refine-
ments necessary. It is straightforward to implement a network (or a single link as
well) by simulating M/G/C/C state-dependent queues. However, as stated in [84],
this takes an excessive amount of CPU time even for a single queue.
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B

Computation of vehicular emissions

The need of air-quality management systems

Without doubt air quality can be seen to be one main indicator for the quality
of life in urban areas. Although several administrative attempts were made in
recent years to reduce the emission of air pollutants, the ongoing increase of en-
ergy consumption counteracts these steps. Besides industry and domestic log fire
emissions, one main polluter of air is street traffic. Granted, limits for specific
car emissions will be lowered due to legislation, but traffic still has an increas-
ing impact on the environment as a result of its rapid growth in daily volumes.
Politicians are forced to find solutions to this situation and, therefore, air-quality
management systems are building up in industrial conurbation areas.

The highly variable character of traffic emissions and the fact that many of
these emissions undergo chemical reaction processes during their journey through
the atmosphere, inhibits an exclusively observational quantification of emissions.
For that reason the effect of air pollutants can more profitably be estimated by
a combination of emission inventories, models of atmospheric dynamics and air
chemistry. These model systems have to integrate the information about different
originators of air pollutants and treat their movement and transformation on dif-
ferent scales. In the Collaborative Research Center SFB419 [164] supported by
the German Research Foundation (DFG) the µ1-Queue model resp. FASTLANE
was integrated into a model chain which is presented in figure B.1. The simula-
tion environment was focused to gain a high spatial and temporal resolution at a
local scale, i.e., the area of the city of Cologne, including the possibility to work
out the effects of possible reduction strategies by means of scenario computation.
The presentation of results from this project are out of the scope of this work.
Interested readers are referred to [49, 50, 125, 162, 165].
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Figure B.1 Components of an air-quality management system used in
[164]. Emission inventories at the local scale are calculated at high spatial
and temporal resolution. In particular, vehicular emissions are calculated
with the µ-Queue model.

The role of traffic flow models

As already stated above, traffic represents one of the largest sources of primary air
pollutants. In order to achieve an appropriate description of the impact situation,
emission inventories of vehicular emissions are indispensable [19, 128, 152]. For
this purpose simulation models determining the effects of street traffic on air pol-
lution are particularly valuable, since usually there are no emission measurements
covering a whole urban area. The same holds for dynamic information about the
traffic situation in the network. Knowing the travel demand however, either from
traffic counts or from statistical methods (e.g., [177] for the city of Cologne),
the computation of flows through individual links of the network are possible by
means of traffic assignment (cf. section 4.3).

It is a fact that the amount of emitted pollutants by traffic is not only dependent
on mean traffic loads but strongly dependent on dynamic effects like jamming and
single vehicular dynamics. In order to cover these strong temporal dependen-
cies the models of choice have to provide such dynamic information to be able
to serve as emission inventories for high resolution meteorological simulations.
Microsimulation models that work on the level of individual vehicles can fulfil
this requirement. For the µ-Queue model this has been demonstrated in [51] for a
special traffic situation and, in more general, in section 3.3. In addition, they are
suitable for scenario calculations to evaluate reduction strategies since changes
in infrastructure, traffic composition and demand or route choice behaviour are
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Figure B.2 Emission inventory for NOx during a typical workday
around the city of Cologne [50].

effortless to build in. An example for such an emission inventory, which was
computed in the SFB419, is given in figure B.2.

Mapping dynamic traffic states to vehicular emissions

The SKM and the µ-Queue model, presented in this work, simulate traffic streams
and one obtains dynamical informations as the vehicle speed. Note that this ob-
servable is quantified differently in the two models. In the SKM the velocity of
each car is known at each time step, whereas these are determined with respect to
segments in the latter case. In order to transform the velocities into the amount of
emitted pollutants, tables relating the two quantities are needed. These are called
emission factors ef.

Used data bases

The following description of the used data base follows partially [66].
The emissions of air pollutants for single vehicles depend on the vehicle char-

acteristics, the operation mode of the vehicle, the driving situation and the environ-
mental conditions at a given moment. The baseline data for the determination of
road vehicle emissions is generally gained by measuring the emission behaviour
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of a representative vehicle in a laboratory setting by simulating specific driving
conditions. These sets of measurements are usually aggregated either by estimat-
ing a functional relationship (e.g., the German recommendations for economic
assessment of road infrastructure investments (EWS) [56, 180]) or by clustering
the data into typical driving situations (e.g., the Workbook on Emission Factors
for Germany and Switzerland (HBEFA) [15, 70]).

The EWS has the advantage, that the full functional relationship on the vehi-
cle’s velocity v is given for a specific vehicle type veh and pollutant pol,

efpol,veh(v) =

{

(c0 + c1v
2 + c2/v) for v > 20km/h

min{cs, (c0 + c1v
2 + c2/v)} for v ≤ 20km/h,

(B.1)

with parameters c0, c1 and c2 for free flow and parameter cs for stop-and-go traffic.
The units of ef are [g/(km veh)]. These parameters are differentiated by vehicle
type and pollutant. A reduction factor is applied for each pollutant in order to
take account of advanced pollution reduction technologies. The total emission
of a specific pollutant is computed by summation over all vehicles and network
sections. However, with respect to simulations which are based on individual
trips, one has to know the vehicle types.

If the latter information is not known or modelled explicitly, the HBEFA pro-
vides a useful database. The emission factors are given for specific traffic situa-
tions, and an aggregation is provided which takes into account the composition of
the vehicle fleet with respect to a certain year. Moreover, if more information on
the fleet are available, the emission factors can be used on the level of emission
concepts or vehicle types (similar to the EWS). The emission factors are provided
for the warm operation mode, and additional surcharges due to temperature, cold
start and volatility emissions can be considered. With respect to scenario simula-
tions, it is of special interest that the development of the vehicle fleet is forecasted
until 2020.

The emission factors used in this work are based on the HBEFA. In the data
base, the emission factors are given for traffic situations which are characterised
by a mean speed (beside other dependencies). In order to obtain an effortless
mapping between the velocity and the amount of emission, the different traffic
situations are aggregated into bins of size 10 km/h. Figure B.3 shows the emis-
sion factors of three different pollutants, namely, hydrocarbons (HC), nitrogen
oxides (NOx) and carbon monoxide (CO). One can clearly see that the functional
behaviour is rather different for the distinct pollutants, and their amount strongly
depends on velocity.

Implementation aspects

The transformation of velocities into emissions is straightforward in the SKM. At
each time step, the current velocity of each vehicle is known. By multiplication
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Figure B.3 Emission factors for different kind of pollutants as discrete
function of velocity. As one can see, the amount of emission is strongly
dependent on the vehicle’s velocity. Moreover, the functional shape is
rather different for each pollutant.

of the velocity with the corresponding emission factor, one obtains the amount of
emission per time step. All one has to do, is to sum up the contributions of all
cars.

In the µ-Queue model, a slightly different procedure has to be used, because
velocities are only known per sampling interval and segment. In order to deter-
mine the emission factor, the mean velocity during a sampling interval according
to equation (3.28) is used. To account for the fact that cars may stay in a segment
for several sampling intervals, the entry and exit time for each car is additionally
sampled. The total duration of a stay in a segment is then distributed to the cor-
responding sampling intervals. The total emission per sampling interval inside a
segment is then given by the sum of all these contributions multiplied with the
corresponding emission factor.

The above procedure is appropriate, if all vehicles are treated as representing
the vehicle fleet. In the case, where distinct vehicle types are used, it is, further-
more, necessary to sample the mean velocity of each vehicle type. In that case,
equation (3.27) is evaluated separately for each vehicle type.
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Appendix
C

Event-driven update scheme

The following program shows the event-driven update scheme as used for the µ-
Queue model. The code has been simplified, but contains all methods necessary to
understand the principle procedure. The declaration of public methods is omitted.
The implementation is a one-lane system with periodic boundary conditions. The
system is initialised with one compact jam.

typedef unsigned int uint;
typedef double real;
enum State {Free,Jam,Full};
const real segment_length = 98.0; // [m]
const real segment_speed = 19.6; // [m/s]
const real segment_tauff = 1.4; // [s]
const real segment_taufj = 1.4; // [s]
const real segment_taujf = 2.0; // [s]
const real segment_taujj = 2.0; // [s]
const uint segment_njam = 4; //
const real car_length = 7.0; // [m]

template<class T>
T max(T& t1, T& t2)
{

if (t1 > t2)
return t1;

return t2;
};
class CarComp{
public:

bool operator() (Car* c1, Car* c2){
return (c1->get_tEvent()>c2->get_tEvent());

};
};

/***********************************************/
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class Car{
real get_tEvent() {return tEvent;};
uint get_id() {return id;};
Segment* at_segment() {return seg;};
void update_tEvent(real t) {tEvent = t;};
void update_segment(Segment* s) {seg=s;};

private:
uint id; // car ID
Segment* seg; // car at segment
real tEvent; // next event

};

Car::Car(uint _id, Segment* _seg, real _tEv)
: id(_id), seg(_seg), tEvent(_tEv){};

/***********************************************/

class Segment{
public:

State get_state() {return state;}
uint get_index() {return index;}
void set_tb(real t){t_block = t;};

private:
vector<Car*> cars;
State state;
real length, speed, tau_ff, tau_fj, tau_jf, tau_jj;
uint n_jam, capacity, index;
real t_block;

};

Segment::Segment(real _l,real _v, real _tff, real _tfj,
real _tjf, real _tjj, uint _njam, uint _index)

: length(_l), speed(_v), tau_ff(_tff), tau_fj(_tfj),
tau_jf(_tjf), tau_jj(_tjj), n_jam(_njam), index(_index)

{ state = Free;
capacity = static_cast<uint>(_l/car_length);
t_block = -1.0; };

inline bool
Segment::initialise(Car* c, real pos)
{

if (cars.size() < capacity){
real trt = (length-pos)/speed;
c->update_tEvent(trt);
cars.push_back(c);
if (cars.size() < n_jam)
state = Free;

else if (cars.size() < capacity)
state = Jam;
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else
state = Full;

return true;
}
return false;

}

inline Car*
Segment::send(Car* tc,Segment* next,real time)
{

if (time < t_block){
tc->update_tEvent(t_block);
return tc;

}
cars.pop_back();
if (cars.empty()){
state = Free;
t_block = max(time + tau_ff,t_block);
return NULL;

}
Car* lc = cars.back();
real tb = next->get_timeheadway(state);
t_block = max(t_block,time+tb);
lc->update_tEvent(max(lc->get_tEvent(),t_block));
if (cars.size() < n_jam)
state = Free;

else
state = Jam;

return lc;
};

inline Car*
Segment::receive(Car* tc, real time)
{

if (cars.empty()){
state = Free;
if (n_jam <= 1)

state = Jam;
real tleave = max(time+length/speed,t_block);
t_block = tleave;
tc->update_tEvent(tleave);
tc->update_segment(this);
cars.push_back(tc);
return tc;

}
else{
real tleave = time+length/speed;
tleave = max(cars[0]->get_tEvent()+tau_ff,tleave);
tc->update_tEvent(tleave);
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tc->update_segment(this);
cars.insert(cars.begin(),tc);
if (cars.size() < n_jam){
state = Free;

}
else if (cars.size() < capacity){
state = Jam;

}
else{
state = Full;

}
return NULL;

}
}

inline real
Segment::get_timeheadway(State predState)
{

if (predState != Free){
if (state == Free){
return tau_jf;

}
else{
real m = tau_jj;
real b = capacity * (tau_jf-m);
real zw = m * cars.size() + b;
return zw;

}
}
else{

if (state == Free){
return tau_ff;

}
else{
return tau_fj;

}
}

};

inline Car*
Segment::first_car()
{

if (cars.size() == 0)
return NULL;

uint lix = cars.size()-1;
return cars[lix];

}

/***********************************************/
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class Loop
{
private:

vector<Segment*> segment;
Loop* from;
Loop* to;
priority_queue<Car*,std::vector<Car*>,CarComp> cars;

};

Loop::Loop(uint _seg)
{

for (uint s=0; s<_seg;s++){
Segment* new_segment =

new Segment(segment_length,segment_speed,
segment_tauff,segment_taufj,
segment_taujf,segment_taujj,
segment_njam,s);

segment.push_back(new_segment);
}
from = this;
to = this;

};

inline uint
Loop::initialise(uint nCars)
{

real x = -car_length;
for (uint c = 0; c < nCars; c++){
x += car_length;
uint s = static_cast<uint>(x/segment_length);
real xi = x-s*segment_length;
Car* nc = new Car(c,segment[s],0);
segment[s]->initialise(nc,xi);

}
for (uint s = 0; s < segment.size(); s++){
Car* nc = segment[s]->first_car();
if (nc){

cars.push(nc);
}

}
return nCars;

};

inline real
Loop::simulate(real tMax)
{

Car* tz = cars.top();
real time = tz->get_tEvent();
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vector<Car*> process;
while (time < tMax){

while((cars.size() > 0) &&
(cars.top()->get_tEvent() <= time)){

process.push_back(cars.top());
cars.pop();

}
real next_to_leave = cars.top()->get_tEvent();
for (uint i = 0; i < process.size(); i++){
Segment* on_segment = process[i]->at_segment();
Segment* to_segment = next_segment(on_segment);
if (to_segment->get_state() != Full){

Car* insert_car = on_segment->send(process[i],
to_segment,
time);

if (insert_car){
cars.push(insert_car);

}
if (insert_car != process[i]){

insert_car = to_segment->receive(process[i],time);
if (insert_car){
cars.push(insert_car);

}
}

}
else{

process[i]->update_tEvent(next_to_leave);
cars.push(process[i]);

}
}
process.clear();
time = cars.top()->get_tEvent();

}
return time;

};

inline Segment*
Loop::next_segment(Segment* s)
{

uint on_index = s->get_index();
if (on_index < (segment.size()-1)){

on_index++;
return segment[on_index];

}
else{

return to->first_segment();
}

};
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inline Segment*
Loop::first_segment()
{

return segment[0];
};

/***********************************************/

int main()
{

uint maxNoCar = 600;
uint maxNoSeg = 100;
real maxTime = 50000.0;
Loop simulation(maxNoSeg);
simulation.initialise(maxNoCar);
real tstart = simulation.simulate(maxTime);
return 0;

}

Implementation of Erlangian distribution

Thanks to Peter Wagner.

real erlang(real a, int m) {
real x = 1.0;
real r = 0.0;
for (int k=1; k<=m; k++){
r = 0.0;
while ((r==0.0) || (r==1.0))

r = drand48();
x *= r;

}
return (-a*((real) log(x))/(1.0*m));

}
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Appendix
D

Glossary of Notation

Symbol Meaning See page
ITS intelligent transportation system 3

ρ density [vehicles/km] 7

v velocity [km/h] 7

q flow [vehicles/h] 8

FDR Flow-density relation, fundamental diagram 8

qf , ρf outflow from jam and corresponding density in the FDR 10

qc, ρc maximum flow and corresponding density in the FDR 10

τh time-headway [s] 10

g spatial headway [m] 10

ṽ the index ·̃ indicates quantities with respect to a vehicle in
front

11

∆t discrete time step of size ∆t 11

NaSch Nagel-Schreckenberg model 11

vmax free-flow resp. maximum velocity 12

VDR NaSch model with velocity dependent randomisation 12

BL Brake light version of the NaSch model 12

SKM Car-following model by Krauß 13

a maximum acceleration of a vehicle 13
b maximum deceleration of a vehicle 13
lcar length of a vehicle 13

τ reaction time 14
vsafe safe velocity 14

vdes desired velocity 14

ρloc the index ·loc indicates quantities which are measured locally 15
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OVC optimal velocity curve 17

ρ̄ dimensionless quantities are indicated by the index ·̄ 18

qj, ρj flow inside a jam and corresponding density in the FDR 19

∆ρ difference between the density in free and congested flow 19

ρsim density where the number of free-flowing vehicles equals the
number of congested ones

20

LS length of a periodic resp. an open system 22

tb time to breakdown 22
vanti expected resp. anticipated velocity 25

gc correction term in the effective gap 26

SKA SKM with anticipatory driving 26

V velocity of the lead car 31

PBC periodic boundary conditions 35

OBC open boundary conditions 36

DLG driven lattice gas 36

TASEP total asymmetric simple exclusion process 36

α insertion rate of an open system 36

β leaving rate of an open system 36

qsys the index ·sys indicates quantities which are measured inside
an open system

36

Q stationary flow in the open system 36

ρα,ρβ densities at the entry resp. exit of the open system 37

Lα length of the system linked to the entry of the open system 40

Qα inflow into the open system 40

αf ,αc insertion rate where the inflow equals the outflow from jam
resp. the maximum flow

40

Lβ length of the system linked to the exit of the open system 41

vβ speed limit of the system linked to the exit of the open system 41

Qβ outflow from the open system 41

βf leaving rate where the outflow equals the outflow from jam 41

DTA dynamic traffic assignment (DTA) 52

ttr travel time function 54
L spatial length of a segment 56

NS total number of cars inside a system 56

ρglo global density inside a system 56

CTM Cell-Transmission Model 59
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vjam velocity of a backward propagating jam fronts 61

i the index i indicates quantities with respect to a specific seg-
ment

63

tν point in time where a vehicle ν enters a segment 64

tνexit point in time where a vehicle ν leaves a segment 64

ν quantities with respect to a specific vehicle are indicated by
the index ν

64

tν minimum travel time of a car upon entering a segment 67

ni number of cars inside segment i 67

N i+1 storage capacity of segment i 67

N i
lanes number of lanes inside segment i 68

ni
jam if ni ≥ ni

jam, segment i is in the congested state 69

τxx state-dependent parameters of the waiting time function τ i
s 69

τ i
s waiting time function of segment i depending on the traffic

conditions s
69

µ-Queue microscopic queueing model 70

Nc cumulative counts resp. N-curve 74

qhb the index ·hb indicates quantities with respect to the high-flow
branch of the FDR

77

qρmax
flow in the µ-Queue model at ρglo ≈ ρmax 78

τesc escape time from jams 79

ρcrit critical density in regard to jam formation 80

c∆v defines the interval where passing attempts are carried out 93

ppass passing probability 94

err error function of the Downhill-Simplex method 96

τ−
h additional time-headways at links leaving an intersection 110

q− flow which leaves an intersection 111
q+ flow which approaches an intersection 111

qr ramp flow 111

λ arrival rate 139
µ service rate 139
W waiting time 140

QL number of requests resp. vehicles in a queue 140

ηq utilisation of a queue 140
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[103] W. Knospe. Synchronized traffic - Microscopic modeling and empirical
observations. Dissertation, Universität Duisburg, 2002.

[104] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Towards
a realistic microscopic description of highway traffic. J. Phys. A 33:L477–
485, 2000.

[105] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Human
behavior as origin of traffic phases. Phys. Rev. E 65:015101(R), 2002.

[106] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. CA-
models for traffic flow: How do they reproduce the reality. to be submitted,
2002.

[107] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. A re-
alistic two-lane traffic model for highway traffic. Journal of Physics A
35:3369–3388, 2002.

[108] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. Single-
vehicle data of highway traffic: Microscopic description of traffic phases.
Phys. Rev. E 65(056133), 2002.
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idence for a boundary-induced phase transition. J. Phys. A 34:L45–L52,
2001.
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Verkehrszuständen. In Tagungsbericht HEUREKA 02,Karlsruhe,
Forschungsgesellschaft für Strassen- und Verkehrswesen (FGSV), Köln,
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Deutsche Zusammenfassung

Ohne Zweifel ist auf unseren Straßen eine ständige Zunahme der Verkehrsmen-
gen zu beobachten. Und ein Ende dieser Entwicklung ist angesichts der progno-
stizierten Zunahme von Güter- und Geschäftsverkehr nicht absehbar. Bereits die
heutigen Verkehrsmengen übersteigen vielerorts die vorhandene Straßenkapazität,
insbesondere in Ballungsräumen. Die resultierenden Engpässe führen zu Staus.
Diese sind nicht nur ein Ärgernis für die direkt Betroffenen, sondern verstopf-
te Straßen führen zu volkswirtschaftlichen Kosten und beeinflussen Mensch und
Umwelt. Aufgrund finanzieller und platzmäßiger Beschränkungen lässt sich die-
ser Situation nicht allein durch einen weiteren Ausbau der Verkehrsinfrastruktur
begegnen. Vielmehr sind Strategien gefragt, die eine effizientere Nutzung existie-
render Kapazitäten erlauben, beispielweise durch die Umverteilung von Verkehrs-
strömen und die Beeinflussung des individuellen Mobilitätsverhaltens.
Die Instrumente intelligenter Transportsysteme (ITS) versuchen eine Umvertei-
lung von Verkehrsströmen unter anderem durch aktuelle Informationen über den
Netzzustand und aktive Steuerungsmaßnahmen zu erreichen. In diesem Zusam-
menhang spielen Simulationsmodelle des Straßenverkehrs eine wichtige Rolle,
um auf Basis lokaler Messungen eine netzweite Beschreibung des Verkehrszu-
standes zu erhalten. Solche Modelle erlauben es zudem, Maßnahmen, die im Rah-
men von ITS eingesetzt werden sollen, bereits im Vorfeld zu testen und hinsicht-
lich ihrer Wirksamkeit zu bewerten. Die dynamische Verkehrsumlegung (DTA)
bildet hierbei einen methodischen Rahmen, mit dem sich viele solcher Fragestel-
lungen betrachten lassen. DTA dient dazu, die Routenwahl, Netzflüsse und Reise-
zeiten einer gegebenen Verkehrsnachfrage in einem Verkehrsnetz zu bestimmen.
Auch hier spielen Verkehrsflussmodelle eine wichtige Rolle.
Modelle des Verkehrsflusses müssen insbesondere in der Lage sein, die dyna-
mischen Eigenschaften von Verkehr und von Engpässen richtig wiederzugeben.
Spielen für die Fragestellung Aspekte wie die individuelle Routenwahl und die
Beeinflussung individuellen Fahrverhaltens eine Rolle, ist darüber hinaus ein mi-
kroskopischer Modellansatz vorteilhaft. Das gilt insbesondere auch für die Be-
trachtung von Umweltwirkungen des Straßenverkehrs, da die Schadstoffemissio-
nen von Fahrzeugen nicht allein von mittleren Verkehrsmengen abhängen, son-
dern stark durch dynamische Erscheinungen wie Staus und die Einzelfahrzeugdy-
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namik bestimmt sind.
An diesem Punkt setzt die vorliegende Arbeit an. Im Rahmen einer Zusammenar-
beit mit Meteorologen der Universität zu Köln [164] sollte ein Modellkette aufge-
baut werden, mit der sich Luftbelastungen unter besonderer Berücksichtigung des
Straßenverkehrs berechnen lassen (s.a. Appendix B). Zu Beginn des Projekts war
geplant, die Berechnung der verkehrsbedingten Schadstoffkataster mit Hilfe einer
zweistufigen Modellkette folgendermaßen zu realisieren: Im ersten Schritt wird
das Routenwahlverhalten einer gegebenen Verkehrsnachfrage mit Hilfe von DTA
berechnet. Das dabei verwendete Verkehrsflussmodell basiert auf einem Warte-
schlangenansatz [59, 60]. In einem folgenden Schritt werden die Schadstoffka-
taster mit Hilfe eines sehr detaillierten mikroskopischen Fahrzeugfolgemodells
(SKM, [112, 113]) berechnet. Dies geschieht auf Basis der im vorherigen Schritt
berechneten Routen.
Das beschriebene Vorgehen bringt jedoch Schwierigkeiten mit sich. So ist es
nicht ausreichend, die Netzwerkparameter für jedes Modell isoliert an den rea-
len Gegebenheiten zu kalibrieren. Obwohl dies für sich genommen schon einen
erheblichen Aufwand darstellt, müssen vielmehr die Parameter beider Modelle
derart aufeinander abgestimmt sein, dass dynamische Engpässe und auftretende
Staus gleichartig in beiden Modellen abgebildet sind. Dies ist insbesondere für
Verkehrnachfragen nahe der Netzkapazität von Bedeutung. Ist dieser Abgleich
nicht erfüllt, führen beispielsweise gridlocks zu Inkompatibilitäten zwischen bei-
den Ansätzen.
Es ist in diesem Falle naheliegend, zu versuchen, die Emissionen des Ver-
kehrs direkt im Schritt der DTA zu berechnen, um den zweistufigen Modellie-
rungsansatz zu umgehen. Untersuchungen des in der DTA verwendeten ein-
fachen Warteschlangenmodells zeigen jedoch, dass die Dynamik von Verkehrs-
zuständen nicht hinreichend wiedergegeben wird. So existieren beispielswei-
se keine rücklaufenden Staus und die Flüsse an Engpässen werden tendenziell
überschätzt. Weitere Untersuchungen zeigen, dass diese Probleme praktisch in
allen Warteschlangenansätzen zur Modellierung von Verkehrsflüssen auftauchen,
die auf klassischer Warteschlangentheorie basieren (s.a. Appendix A).
Das vornehmliche Ziel der vorliegen Arbeit ist es, diese Probleme aufgreifend,
einen neuen Ansatz für die einzelfahrzeugbasierte Verkehrsflussmodellierung mit
Hilfe von Warteschlangenansätzen zu entwickeln (µ-Queue Modell). Dieser soll
in der Lage sein, die Dynamik verschiedener Verkehrszustände detailliert wie-
derzugeben ohne dabei die für DTA notwendige hohe numerische Effizienz zu
verlieren.
Neben dieser Zielsetzung steht in der Arbeit die Untersuchung dynamischer Ei-
genschaften mikroskopischer Verkehrsmodelle im Vordergrund. Diese sind nicht
nur aus Anwendungssicht von Bedeutung, sondern ihr Verständnis ist auch aus
physikalischer Sicht spannend, lässt sich Verkehr doch als komplexes System vie-
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ler wechselwirkender Teilchen im Ungleichgewicht auffassen. In diesem Zusam-
menhang gibt es viele offene Fragen, die mit dem Verständnis der Mechanismen
verknüpft sind, die für den Zusammenbruch von fließendem Verkehr verantwort-
lich sind. Um die Schwachstellen momentan verwendeter Modell zu verstehen
und die wesentlichen Modellbestandteile im Hinblick auf gemessene Daten zu
identifizieren, ist ein tiefes Verständnis der Dynamik solcher Modelle entschei-
dend. Einige dieser Fragen werden im Rahmen dieser Arbeit anhand des SKM
und des neu eingeführten Warteschlangenansatzes betrachtet.
Das mikroskopische Fahrzeugfolgemodell SKM steht hierbei im ersten Teil der
Arbeit (Kapitel 2) im Vordergrund. Diese Modell wurde bereits ausführlich in
[113] untersucht und die hier gemachten Untersuchungen stellen Ergänzungen
dar. Neben der Untersuchung der Verteilung von Zeitlücken und der optimal-
velocity-Kurve innerhalb des Modells beziehen sich diese auf die Modellklassen
des SKM, einer Modellerweiterung um antizipatives Fahren und das Verhalten
unter offenen Randbedingungen.
Innerhalb des SKM lassen sich verschiedene Modellklassen anhand des dynami-
schen Modellverhaltens unterscheiden. Im Parameterbereich, in dem das Modell
Strukturbildung zeigt, wird eine Neuklassifizierung des Modellverhalten anhand
neuerer Arbeiten zur Klassifikation stochastischer Verkehrsflussmodelle [88, 131]
vorgenommen. Im Gegensatz zu Modellen die auf Zellularautomaten beruhen,
besitzt das SKM Hochflusszustände, die stabil gegenüber modellimmanenten
Fluktuationen sind. Es wird zudem gezeigt, dass ein Übergang zu metastabi-
len Hochflusszuständen auftritt, wenn das Bremsvermögen im Modell gegen Un-
endlich läuft. Entgegen der Annahmen der Originalarbeit [113] existieren sol-
che Hochflusszustände immer, solange die Fluktuationsstärke nicht zu groß wird.
Für die übliche Parametrisierung ε = 1 der Fluktuationsstärke εa sind diese
Hochflusszustände praktisch im gesamten Parameterbereich mit Strukturbildung
existent. Unabhängig von der Stabilität der Hochflusszustände, findet man für alle
Parametrisierungen (mit ε = 1) mit Strukturbildung einen stabilen Ausfluss aus
dem Stau.
Antizipation stellt eine wichtige Modellkomponente mikroskopischer Fahr-
zeugfolgemodelle im Hinblick auf die Wiedergabe empirischer Messungen
dar. Diese Fahrstrategie wird hier in das SKM mittels Übernächste-Nachbar-
Wechselwirkung eingeführt. Die Auswirkungen dieser zusätzlichen Modellkom-
ponente auf die Dynamik des Modells wird mit Hilfe von Simulationen und ana-
lytischen Rechnungen untersucht. Es wird gezeigt, dass Antizipation zu einer Sta-
bilisierung der Flüsse in dichtem Verkehr führt und eine Abbildung der empirisch
gefundenen sehr kurzen Zeitlücken ermöglicht. Die übrigen Eigenschaften der
Modelldynamik bleiben dabei praktisch unverändert. Der dahinter liegende Me-
chanismus koppelt drei aufeinander folgende Fahrzeuge und die zwei zugehörigen
Zeitlücken sind dabei antikorreliert. Diese Ergebnisse lassen sich auch auf andere
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Fahrzeugfolgemodelle, die mit Antizipation arbeiten, übertragen. Die im Rah-
men dieser Betrachtungen durchgeführte Untersuchung der Fixpunkte des SKM
zeigt, dass diese sehr stabil sind. Infolge ist zu erwarten, dass eine deutliche Mo-
dellmodifikation notwendig ist, um mit diesem Modell synchronisierten Verkehr
abbilden zu können.
Die Untersuchung des SKM in beiden Modellvarianten unter offenen Randbedin-
gungen zeigt, dass dieses ein Extremalprinzip [109, 148] erfüllt. Dieses stellt in
sehr allgemeiner Weise eine Verbindung zwischen den Eigenschaften des periodi-
schen und offenen Systems her. Das SKM besitzt neben der Freifluss- und Stau-
phase eine Hochfluss-Phase. Die mikroskopische Struktur dieser Phasen hat große
Ähnlichkeit mit gemessenen Strukturen [76, 93, 173]. Es werden geeignete Rand-
bedingungen eingeführt, die zusätzlich eine Untersuchung der Phasenübergänge
ermöglichen. Es zeigt sich, dass der Übergang zwischen der Freifluss- und Stau-
phase erster Ordnung ist, die Übergänge in die Hochflussphase sind von zweiter
Ordnung. Für beide Modellvarianten wird das vollständige Phasendiagramm an-
gegeben. Die hier gemachten Ergebnisse lassen in Kombination mit [13] den
Schluss zu, dass das abgeleitete Phasendiagramm und die mikroskopische Struk-
tur der Phasen generisch für mikroskopische Fahrzeugfolgemodelle sind, die
Hochflusszustände und Phasenseparation zeigen.
Im zweiten Teil der Arbeit wird ein neuer Ansatz zur fahrzeugbasierten Model-
lierung von Verkehrsfluss mit Hilfe von Warteschlangen vorgestellt. In Kapitel 3
zeigt die ausführliche Untersuchung bestehender Ansätze zunächst, dass die feh-
lende Kopplung zwischen aufeinanderfolgenden Warteschlangen dazu führt, dass
verschiedene Verkehrszustände nicht existieren und Dichtefluktuationen mit un-
endlicher Geschwindigkeit stromaufwärts weitergegeben werden. Infolge dessen
lösen sich Staus im Gegensatz zur Realität in solchen Modellen von hinten auf.
In dem neuen Ansatz (µ-Queue Modell) wird diese Kopplung eingeführt und
die Fahrzeugbewegung von Warteschlange zu Warteschlange wird mit Hilfe von
Zeitlücken beschrieben, wobei mit dem FIFO-Prinzip gearbeitet wird. Die hier-
bei verwendeten Wartezeiten am Ende einer jeden Warteschlange können als zu-
standsabhängige Servicezeiten der Warteschlange aufgefasst werden. Im Gegen-
satz zu klassischen Ansätzen, berücksichtigt diese Servicezeit nicht nur den Zu-
stand innerhalb der Warteschlange selbst, sondern auch den Zustand ihres Nach-
folgers. Infolge ist die Ausbreitungsgeschwindigkeit von Dichtefluktuation in
Vorwärts- und Rückwärtsrichtung unterschiedlich und das Modell erlaubt die Ab-
bildung rückwärtslaufender Staus.
Numerische Untersuchungen des µ-Queue Modells zeigen, dass es zwei verschie-
dene Verkehrszustände besitzt, homogenen und gestauten Fluss. Die determini-
stische Formulierung des Modells zeigt keine Übergänge zwischen diesen beiden
Zuständen unter periodischen Randbedingungen. Werden jedoch Wartezeitvertei-
lungen und Geschwindigkeitsfluktuationen eingeführt, treten solche Übergänge
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auf und es lassen sich realitätsnahe Zeitlückenverteilungen simulieren.
Die Untersuchungen des Modellverhaltens stellen eine analytische Beschreibung
der Fluss-Dichte-Relation für das deterministische µ-Queue Modell her. Zudem
lassen sich Bedingungen an die Modellparamter herleiten, die stabile Staus erlau-
ben. Der dem Modell zugrunde liegende Mechanismus der Bewegung von Staus
wird ferner ausführlich untersucht und dargestellt.
Es wird eine ereignisorientierte Implementation des µ-Queue Modells präsentiert,
deren numerische Effizienz die Verwendung des Modells zur Simulation großer
Netzwerke erlaubt. Im Hinblick auf die Anwendung wird gezeigt, dass sich
der Modellansatz sowohl auf Mehrspurverkehr übertragen lässt, als auch, dass
die Modellierung von Schadstoffemissionen mit hoher räumlicher und zeitlicher
Auflösung möglich ist.
Die sich in Kapitel 4 anschließende Untersuchung des µ-Queue Modells un-
ter offenen Randbedingungen dient unter anderem der Vorbereitung von Netz-
werksimulationen im Rahmen von DTA. Im Fall offener Ränder werden Pha-
senübergänge sogar zwischen den Verkehrszuständen des Modells in der de-
terministischen Formulierung gefunden. Das komplette Phasendiagramm des
µ-Queue Modells, sowohl in der deterministischen als auch der stochastischen
Formulierung , wird abgeleitet. In beiden Fällen findet man Phasen, deren mikro-
skopische Struktur denen im SKM ähneln. Zudem erlauben die Untersuchungen
Rückschlüsse auf die Sensibilität des Modells hinsichtlich verschiedener Imple-
mentationen von Randbedingungen. Aus diesen lassen sich geeignete Elemente,
wie Auf- und Abfahrten ableiten, die für die Repräsentation realer Straßennetz-
werke verwendet werden können. Neben dieser theoretischen Betrachtung des
Modells, werden Vergleiche mit gemessenen Verkehrssituationen unter offenen
Randbedingungen durchgeführt. Hierbei wird eine sehr gute Übereinstimmung
zwischen den Daten und der Modelldynamik erzielt.
Die Arbeit schließt mit der Einbettung des neuen Warteschlangenansatzes in einen
simulationsbasierten Ansatz der DTA. Simulationen des Stadtgebietes von Köln
werden verwendet, um die praktische Anwendbarkeit des Modells zu demonstrie-
ren. Das Modell erlaubt die Berechnung des Routenwahlverhaltens von mehreren
Millionen Einzelfahrten in akzeptabler Rechenzeit. Neben dem Aspekt der Ver-
kehrsumlegung liegt der Schwerpunkt auf der Berechnung von Szenarien, die eine
Veränderung der Belastungssituation durch Luftschadstoffe zum Ziel haben. Da-
zu wird sich der zu Beginn angesprochenen Modellkette bedient. Die Ergebnisse
zeigen, dass das Modell in der Lage ist, Emissionskataster von hoher zeitlicher
und räumlicher Auflösung zu berechnen, wie sie für die meteorologischen Mo-
delle zur Beschreibung von Luftqualtität benötigt werden.
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interessanten Forschungsprojekten zu arbeiten,

Priv.-Doz. Dr. Andreas Schadschneider für die Übernahme des Korreferats, viele
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eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vor-
nehmen werde.

Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir
vorgelegte Dissertation ist von Prof. Dr. Rainer Schrader und Priv.-Doz. Dr.
Andreas Schadschneider betreut worden.

Teilpublikationen

N. Eissfeldt and R. Schrader, Calculation of street traffic emissions with a queue-
ing model, Journal of Computational Technologies, 7:5-15, 2002

N. Eissfeldt, M. Luberichs and F.-N. Sentuc, A breath of fresh air, Traffic Techno-
logy International, 76-80, Aug/Sep 2002

A. Namazi, N. Eissfeldt, P. Wagner and A. Schadschneider, Boundary-induced
phase transitions in a space-continuous traffic model with non-unique flow-density
relation, European Physical Journal B, 30:559-570, 2002

N. Eissfeldt and P. Wagner, Effects of anticipatory driving in a traffic flow model,
European Physical Journal B, 33:121-129, 2003.



190



Lebenslauf

Persönliche Daten

Name Nils Gustaf Eissfeldt
Adresse Sülzburgstraße 170, 50937 Köln
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