
Sequential Matching Problem

Inaugural-Dissertation
zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von
Sureshan Karichery

aus Perumbala

2004

Berichterstatter: Prof. Dr. Rainer Schrader
Prof. Dr. Michael Jünger

Tag der mündlichen prüfung: 24. May 2004

Kurzzusammenfassung

Wir stellen das Sequential Matching Problem (SMP) vor. Das SMP beschreibt
die Suche einer Folge maximaler Matchings zu einer Folge von gegebenen bi-
partiten Graphen, die die Anzahl der gemeinsamen Kanten aufeinanderfolgender
Matchings maximiert. Eine Anwendungsbeispiel ist das Problem, Arbeitern über
einen gewissen Zeitraum Jobs zuzuweisen und dabei die Jobwechsel zu minimieren.
Wir analysieren verschiedene algorithmische Techniken für dieses NP-vollständige
Problem. Dabei betrachten wir eine Formulierung als gemischt ganzzahliges Prob-
lem(MIP) mit einer sehr großer Zahl von Variablen. Diese Problem lösen wir
mit einem Branch&Price-Verfahren, d.h einer Kombination eines Branch&Bound-
Verfahrens mit einem Column-Generation-Ansatz. Hierbei verwenden wir zur Spal-
tenerzeugung implizites Pricing von Nichtbasisvariablen. Wir erläutern, die aus
den verwendeten Branching-Regeln entstehenden Subprobleme, und gehen auf die
Implementierung und die numerischen Ergebnisse ein. Schließlich analysieren wir
den Spezialfall des SMP mit zwei bipartiten Graphen. Auch dieses Problem ist
NP-vollständig. Wir stellen eine Heuristik vor, die Anzahl der gemeinsamen Kan-
ten in den Matchings schrittweise vergrößert.

Abstract

We present sequential matching problem (SMP) as the problem of finding max-
imum matchings in a sequence of bipartite graphs, with a strategy of making a
maximum number of common edges in two consecutive matchings. One applica-
tion of SMP is the problem of assigning workers to jobs in different time shifts
with a goal of minimizing total number of unnecessary switches between jobs. We
analyze various algorithmic techniques for this NP-complete problem. We also
analyze the Mixed Integer Programming (MIP) problem formulation with a huge
number of variables and their solution by the branch and price method, a column
generation scheme with branch and bound, of implicit pricing of nonbasic vari-
ables to generate new columns. We then discuss special branching rules, pricing
problems, implementation issues, and computational results. Finally we analyze a
simpler version of SMP with only two bipartite graphs which is still NP-complete,
and an algorithm to augment the common edges in the maximum matchings.

iii

iv

Acknowledgements

I would like to thank Prof. Dr. Rainer Schrader and Dr. Christoph Moll, my
supervisors, for their many suggestions and constant support during this research.

It is a great pleasure to acknowledge the financial assistance I have received from
Siemens AG. I am particularly pleased to thank Dr. Johannes Nierwetberg and
Dr. Michael Hofmeister for their generous help.

With regards to my colleagues at the Corporate Technology, Software Engineering
6 (CT SE 6), it was a great pleasure and an utmost privilege to work in a group
of so many talented individuals who shared their knowledge so freely. I had the
pleasure of meeting the group at the Zentrum für Angewandte Informatik, Köln
(ZAIK). They are wonderful people and the discussions with them were fruitful.
Thanks to everyone.

I just would like to thank particularly, Dr. Peter Stadelmeyer, Dr. Mark Ziegel-
mann, Dr. Tamás Lukovszki: my office mates during the period of this research,
and Mr. Krishna K Bhuwalka: for proof-reading this document. I would like to
extend my gratitude to all my friends for their support and encouragement. Fi-
nally, a special thanks to friends of sports munich, because they asked me to do
so.

Sureshan Karichery
24 May 2004

v

vi

Table of Contents

Acknowledgements v

Table of Contents vii

Introduction 1

1 The basics 3
1.1 Introduction . 3
1.2 Graphs, bipartite graphs, matchings and network flows 3

1.2.1 Definitions . 3
1.2.2 Basic results and algorithms 5
1.2.3 Integer programming modelling and matching polytope . . . 7
1.2.4 Applications . 9

1.3 Computational complexity . 9
1.3.1 Definitions and results . 9
1.3.2 Solving NP-complete problems 13

2 Problem description 15
2.1 International mail distribution centre 15

2.1.1 Functioning of international mail 16
2.1.2 Office of Exchange . 16
2.1.3 Optimization problems inside the office of exchange 18

2.2 The problem description . 20
2.2.1 Mathematical modelling . 20

3 Sequential matching problem 25
3.1 Sequential matching problem . 25
3.2 Complexity . 26

3.2.1 Vector representations . 29
3.3 A greedy approach . 30
3.4 A randomized algorithm . 32

3.4.1 Simplified model . 33

vii

3.4.2 The concept . 33
3.4.3 The algorithm . 33
3.4.4 Finding an allowed edge . 35

4 A branch and price approach 37
4.1 Introduction . 37
4.2 Formulations . 39

4.2.1 MIP formulation of the sequential matching problem 39
4.2.2 An extensive reformulation 42

4.3 Methodology outline . 44
4.3.1 The restricted master program 45
4.3.2 Column generation . 45
4.3.3 Pricing problem . 46
4.3.4 MIP formulation of pricing problem 46
4.3.5 As shortest path problem 47
4.3.6 Initial basis of the restricted master program 49
4.3.7 Integer solution . 50
4.3.8 Ryan and Foster branching scheme 51

4.4 Solution methods for pricing problems 53
4.5 Conclusion . 60

5 Implementing branch and price method 61
5.1 Introduction . 61
5.2 ABACUS- A Branch And CUt System 62

5.2.1 The Master . 63
5.2.2 The Subproblem . 63
5.2.3 The Constraints and Variables 63

5.3 Sequential Matching Problem: Implementation details 64
5.3.1 Restricted Master Problem 64
5.3.2 Subproblem Solution and Column Management 65
5.3.3 Column Pool . 65
5.3.4 Implementation . 66
5.3.5 The class for master problem: SMP 66
5.3.6 The class for subproblem: SUBSMP 68
5.3.7 The class for variables: SMPVAR 69
5.3.8 The class for constraints: SETPARCON 70
5.3.9 The class for problem instance: SMPINSTANCE 70
5.3.10 The branching rules: The classes BRANCHRULE RF and BRANCHRULE SMP 70
5.3.11 The pricing problems: SPP 71
5.3.12 Problem generation . 72

5.4 Computational results . 74

viii

5.5 Conclusion . 75

6 2-Graph Problem 77

6.1 Introduction . 77

6.2 Problem definition . 77

6.3 Complexity analysis . 78

6.4 Solution method . 82

6.5 Augmenting cycle method . 83

6.5.1 The Floyd-Warshall negative cycle algorithm 87

6.5.2 Complexity . 89

6.5.3 Data structures and implementation issues 89

6.5.4 Computational results . 91

6.5.5 Comparison with optimum solution 91

6.6 Generalization of ACM for S(Gc, τ) 96

6.7 Conclusion . 96

Appendix A 97

Input file formats . 97

Appendix B 105

Augmenting cycle method: Implementation details 105

Appendix C 111

Matching and randomized algorithm implementation 111

Bibiliography 116

ix

————————————————–

x

Introduction

Modern mail services use mail processing centres as distribution centres to consol-
idate and redistribute mail. These centres collect regional mail (usually delivered
by trucks), sort it and send it on to other centres (usually operated by flights
for international mail service). Conversely, mail coming in from other centres by
flights is sorted and distributed to regional or local centres. The international mail
operations are carried out at the centre called the office of exchange. The main
function of an office of exchange is the processing and distribution of international
mail within the country. With the goal of fiscal self-sufficiency, a program has been
embarked upon to modernize, and in some cases radically alter the way it manages
and processes the mail. Automation has been targeted for its processing systems
to become ever more cost effective and efficient by replacing manual processing
with mechanized solutions. This means reading, sorting, and then sequencing each
mail in the order in which it will be delivered by the carrier with only a minimum
of manual labor and time.

The operations of the office of exchange involve an interconnected web of compo-
nents which require detailed analysis. The main aspects of a model are production
planning, forecasting and simulation of the production progress within the office
of exchange. Therefore the most interesting facts are throughput, processing time,
staffing, buffer capacities and the splitting and merging of mail streams. An im-
portant part of planning consists of scheduling of rotation of the work force.

This work is inspired by the personnel planning of an international mail centre
where the processing and distribution of international mail is undertaken. We fo-
cus on one particular aspect of the personnel scheduling problem, defined as the
sequential matching problem. This thesis will mainly concentrate at the most gen-
eral approach to the sequential matching problem. We analyze the mathematical
properties and algorithmic methods for this problem. Firstly, in Chapter 1 we
give a formal definition and basics of bipartite graphs, matching problem including
some basic results and a brief discussion about computational complexity. The

1

Introduction

second chapter presents the aim and motivation of the study in addition to the
problem. In Chapter 3 we present the NP-completeness proof of the problem,
and a solution approach by randomized algorithm. In Chapter 4 we deals with the
branch and price approach for the mixed integer programming formulation of the
problem. The data structure and implementation issues are discussed in Chapter 5.
Finally we conclude with a simpler version of the problem, the 2-graph sequential
matching problem which is still NP-complete and an augmenting cycle heuristic
discussed. The three appendices deal with file input formats, general graph data
structures, and implementing matching algorithms.

2

Chapter 1

The basics

1.1 Introduction

We first introduce some notation and terminology about graphs, bipartite graphs,
and matchings. Next, we show some classic results about the bipartite graphs
and give a classic algorithm for solving bipartite matching problem. Even though
we concentrate on sequential matching problems in bipartite graphs, this chapter
summarizes other types of graph matching too. A brief introduction about com-
putational complexity is also presented in the following sections. The complexity
of the different graph matching problems are also analyzed. The references for this
chapter are [1], [2] and [3].

1.2 Graphs, bipartite graphs, matchings and net-

work flows

1.2.1 Definitions

A graph is a mathematical abstraction that is useful for solving many kinds of
problems. A graph G = (V, E) in its basic form is composed of vertices and edges.
V is the set of vertices (also called nodes or points) and E = V × V is the set of
edges (also known as arcs or lines) of graph G. The order (or size) of G is defined
as the number of its vertices and it is represented as | V |. The number of edges
represented as | E |. If two vertices in G, say u, v ∈ V, are connected by an edge
e ∈ E, it is denoted as e = (u, v) and the two vertices are said to be adjacent
or neighbors. For a vertex v, the degree of v, deg(v), is equal to the number of
neighbors of v. Edges are said to be undirected when they have no direction, and a

3

Chapter 1. The basics

graph G containing only such types of graphs is called undirected. When all edges
have directions and therefore (u, v) and (v, u) can be distinguished, the graph is
said to be directed. A graph is considered as weighed if there exist a real valued
function W : E → R. A graph G′ = (V ′, E ′) is a subgraph of G = (V, E) if V ′ ⊆ V
and E ′ ⊆ E.

A path between any two vertices v1, vn ∈ V is a non-empty sequence of n different
vertices {v1, v2, . . . , vn} where (vi−1, vi) ∈ E, for i = 1, 2, . . . , n. The shortest path
between v1, vn is a path between v1 and v2 with least number of edges. If G is
weighed graph then the shortest path is analogues to the path with minimum total
weight of edges. A cycle is a path (v1, v1). A graph G is said to be acyclic when
there are no cycles. A graph is connected if there is a path from any vertex to any
other vertex. A disconnected graph consists of several connected components which
are maximal connected subgraphs. Two vertices are in the same component if and
only if there exist a path between them.

A matching in a graph G = (V, E) is a subset M of the edges E such that no two
edges in M share a common end vertex. Alternatively the edges M are such that,
for each vertex v ∈ V at most one edge in M is incident to v. We say that a vertex
is matched if an edge in M is incident to v. A maximum cardinality matching
is matching with a maximum number of edges. i.e., A maximum matching is a
matching M such that for any other matching M ′, |M |≥|M ′ |. A perfect matching
is one where all vertices are matched. The cardinality of a perfect matching is
| V | /2. An edge of a graph is called allowed if it occurs in at least one maximum
matching.

A bipartite graph G(L1, R1, E) is a graph whose vertices can be partitioned into
two non empty sets L1 and R1, and all edges go between L1 and R1. An alternative
way of thinking about it is coloring (such that no two adjacent colors are the same)
the vertices in L1 with one color and those in R1 with another color. Then adjacent
vertices would then have different colors. A non-empty graph is bipartite if and
only if its chromatic number (the minimum number of colors that can be used) is
2. A maximal weight matchings is matching in weighed graph G with maximum
weight. A node cover is a set of nodes N ′ of G such that every edge of G has
at least one node in N ′. An edge cover is a subset of edges such that all vertices
are covered by these edges. A matching in a bipartite graph G(L1, R1, E) assigns
vertices of L1 to vertices of R1.

A weighted, directed graph N = (V, E) with two specially marked nodes, the
source, s, and the sink, t, and a capacity function, c, that maps node pairs to real
numbers, c : V ×V −→ R+, such that c(u, v) > 0) if e = (u, v) ∈ E and c(u, v) = 0

4

Chapter 1. The basics

if there is no edge between u and v. A flow on N is a real-valued function f on
vertex pairs that satisfies the following properties.

1. Skew symmetry : f(u, v) = −f(v, u)

2. Capacity constraint : f(u, v) ≤ c(u, v)

3. Flow conservation: For every vertex u except s and t,
∑

v f(u, v) = 0

Maximum flow problem for a capacitated network is to find the flow configuration
that maximizes total amount of flow from a source to a target. The value of the
flow | f |, defined as

∑
vf(s, v).

A detailed description of graphs, bipartite graphs, and network flows is available
in [1], [2].

1.2.2 Basic results and algorithms

This section is a review of the literature on bipartite graph matching. The prob-
lem of finding matchings and node covers are in opposite sense of each other. A
matching covers the nodes of G with edges such that each node is covered by at
most one edge. A node cover covers the edges of G by nodes such that each edge is
covered by at least one node. The maximum cardinality of a matching is at most
the minimum cardinality of a node cover, (i.e.), the maximum number of edges in
a matching of G is always less than or equal to the minimum number of nodes in
a node cover of G. In a bipartite graph the maximum cardinality of a matching is
same as the minimum cardinality of a node cover, so Theorem 1.2.1 follows.

The cardinality of the smallest (minimum) node cover is called the node cover
number, denoted by µ(G). The cardinality of the largest (maximum) matchings
called the matching number and denoted by υ(G). The cardinality of the smallest
(minimum) edge cover number and denoted by ρ(G).

Theorem 1.2.1 (König). If G is bipartite then µ(G) = υ(G).

Finding a node cover or finding a matching in a bipartite graph are considered as
relatively simple problems. The computation of matchings in bipartite graphs are
easier than finding matchings in general graphs because of the simpler structure of
bipartite graphs.

5

Chapter 1. The basics

An efficient algorithm for finding maximal matchings is based on constructing
augmenting paths in graphs. Let M be a matching in a bipartite graph G. A
path P = (v0, v1, . . . , vn) is called M -augmenting if n is odd and vi ∈ M for each
i = 1, 2, . . . , n; but v0, vt /∈M .

Theorem 1.2.2 (Berge). A matching M in a bipartite graph G is maximum if
and only if G does not contain any M-augmenting path.

Given a matching M in a graph G, by the definition of an augmenting path P ,
it consists of edges where every odd-numbered edge (including the first and last
edge) is not in M , while every even-numbered edge is in M . Also, the first and
last vertices must not be already in M . By deleting the even-numbered edges of P
from M and replacing them with the odd-numbered edges of P , we enlarge the size
of the matching by one edge. As per Theorem 1.2.2 we can construct maximum-
cardinality matchings by searching for augmenting paths and stopping when none
exist. The problem is now simplified to check the existence of an M -augmenting
path with respect to a given matching M , and to find one if exists.

In case of a bipartite graph G = (L, R, E), with n vertices and m edges to find a
M -augmenting path, for a given matching M we do as follows [4]. In the algorithm
the symbol ‘\’ denote the set-minus.

Algorithm 1 Finding augmenting path

Orient each e = (u, w) such that (u ∈ L, v ∈ R) to obtain a directed graph D as
follows.
if e ∈M then

orient e as (w, u)
end if
if e /∈M then

orient e as (u, w)
end if
Let L′ := L \M and R′

1 := R \M
Determine if there exists a directed path from L′1 to R′

1 (directed path ⇐⇒
M -augmenting path in G)

This method1 of finding maximal matching has a running time complexity of
O(nm/2). We can improve the running complexity of bipartite matching prob-
lem by reducing it as a special case of the maximum flow problem. By this we can
solve the bipartite graph matching problem efficiently by use of any algorithm that
solves the max-flow problem.

1The implementation details of this algorithm in Appendix C

6

Chapter 1. The basics

Given any bipartite graph G = (L1, R1, E), we construct a directed network NG =
(U,A) where U = V ∪ {s, t} (here s and t source and target nodes) and A is set of
edges consisting of three categories.

1. The edges (s, v) for all v ∈ L1

2. The edges (u, t) for all u ∈ R1

3. The edges e = (v, u) for all e ∈ E

The edge (v, u) has the direction from v to u. Any integral maximum flow in NG

from s to t gives a maximum matching in G. The running time complexity of this
method is O(

√
nm). The best algorithm for maximum bipartite matching, due to

Hopcroft and Karp [5] and has a worst case running time complexity of O(
√

nm).
The method is by repeatedly finding the shortest augmenting paths instead of
using network flow is especially better for sparse graph. For dense graphs, the best
algorithm is by Alt, Blum, Mehlhorn, and Paul [6] having a worstcase bound of
O(n1.5

√
m/ log n).

The actual comparison of the algorithm when solving bipartite matching problems
in practice depends on the structure of the graph and number of input classes.
Some experimental results for the different bipartite matching algorithms for both
sequential and parallel cases are compared on the papers [7], [8].

1.2.3 Integer programming modelling and matching poly-
tope

For a given bipartite graph G = (L1, R1, E) such that V = L1 ∪ R1, we define a
binary variable xe, for each e ∈ E. Let δ(v) denote the set of edges incident from
the node v. The problem of finding a maximum matching in G can be formulated
as in Fig. 1.1. The validity of the formulation can be easily shown such that a
solution to 1.1 gives maximal matching to G.

For a given set of vectors S = {ri : ri ∈ Rn, i = 1, 2, . . . , N} the convex hull
(polytope), conv(S) of S is defined as {

∑N
i=1 λiri : λi ∈ R+,

∑N
i=1 λi = 1}.

Let G = (V, E) is any graph with a matching M . We define a vector

7

Chapter 1. The basics

Max
∑
e∈E

xe (1.2.1)

subject to ∑
e∈δ(v)

xe ≤ 1, xe ∈ {0, 1},∀v ∈ V (1.2.2)

Figure 1.1: Integer programming formulation of bipartite graph matching problem

XM = (Xe
M : for all e ∈ E), such that

Xe
M =

{
1, e ∈M ;

0, otherwise.
(1.2.3)

Let M be the convex hull of all vectors corresponding to matchings. (i.e.),
M = conv{XM : XM is a matching} and the resulting relaxation of the integral
constraints 1.2.2,

P = {xe : xe ∈ R+,∀e ∈ E,
∑

e∈δ(v)

xe ≤ 1,∀v ∈ V }

Theorem 1.2.3. If G is bipartite, then P =M.

A unimodular matrix is a real square matrix with determinant 1. A matrix A is
totally unimodular if every square submatrix has determinant 0, 1, or -1.

Theorem 1.2.4. Let A be totally unimodular and b an integer vector. Then ver-
tices of polytope P = {x : Ax ≤ b} are integer vectors.

Theorem 1.2.5. If G is bipartite, then the constraint matrix is totally unimodular.

Theorems 1.2.4 and 1.2.5 implies that a linear programming solution to 1.1 is an
integer solution. More details can be found in [9].

8

Chapter 1. The basics

1.2.4 Applications

Graphs have been proved as an effective way of representing objects, general knowl-
edge, or information. Matching problems arise in several areas of automatic data
processing, including analysis of images, artificial intelligence, and the solution of
scheduling problems. In case of bipartite matching, most of them arise from the
area of manpower scheduling or from personnel assignment problems. Other ap-
plications are from pattern matching or similar one to one assignments problems.
A typical application of bipartite graph matching problem is as follows.

Suppose we have a set of workers and a set of machines with the information as to
which worker can handle which machines. The task is to assign workers to machines
in such a way that as many machines as possible are operated by a worker that can
handle it. The set of workers and set of machines can be modelled as two kinds of
nodes in the bipartite graph. The edges of our bipartite graph are defined by the
abilities. A maximum cardinality matching gives a solution such that one worker
can be assigned to at most one machine and we can assign at most one worker to
one machine.

1.3 Computational complexity

The purpose of this section is to give an insight into how difficult the problem may
be to solve. The search for fundamental distinctions in the tractability of problems
constitute the area known as computational complexity theory. In other words
complexity theory is part of the theory of computation dealing with the resources
required during computation to solve a given problem. The most common resources
are time (how many steps does it take to solve a problem) and space (how much
memory does it take to solve a problem). The runtime or space requirements of
an algorithm are expressed as a function of the problem size. The problem size
measures the size, in some sense, of the input to the algorithm. Most of complexity
theory deals with decision problems, because it is often considered that an arbitrary
problem can always be reduced to a decision problem. The reference for this section
is [3].

1.3.1 Definitions and results

An instance of a problem is specified by assigning numerical values, called data
to the problem parameters. For example consider a mixed integer programming
problem which is written generically as

Max {cx + hy : Ax + Gy ≤ b, x ∈ Zp
+, y ∈ Rn

+}

9

Chapter 1. The basics

The dimension of these matrices are as follows: c is 1×p, h is 1×n, A is m×p, G is
m×n and b is m×1, where m is any positive integer, p and n are any nonnegative
integers with p + n ≤ 1. In the case of mixed integer programming the data
that specifies an instance are integers m, n and p as well as the integral matrices
c, h, b, A and G with appropriate dimension. A problem consist of an infinite
number of instances. The class of polynomially solvable problems, P contains all
sets in which membership may be decided by an algorithm whose running time is
bounded by a polynomial. The main theme of computational complexity is the
inherent difference between problem known to be in P and others for which no
polynomial time algorithm is known. A feasibility problem X is a pair (D, F)
with F ⊆ D, where the elements of D is a finite binary strings. D is called set
of instances, and F is called set of feasible instances. Given an instance d ∈ D,
we want to determine whether d ∈ F . Given d ∈ D the answer is yes or no. Let
X1 = (D1, F1), X2 = (D2, F2) be two feasibility problems and there exist a function
g : D1 → D2 such that for every d ∈ D1 we have g(d) ∈ F2 if and only if d ∈ F1. If
the function g is computable in time that is polynomial in the length of encoding
of d, then X1 is said to be polynomially transformable to X2.

Theorem 1.3.1. If X1 is polynomially transformable to X2 and X2 ∈ P then
X1 ∈ P.

There is a technique called polynomial reduction, that appears to be more general
than polynomial transformation for establishing that one problem can be solved in
polynomial time given that another can. We say that X1 is polynomial reducible
to X2 if there is an algorithm for X1 that uses an algorithm for X2 as a subroutine
and runs in polynomial time under the assumption that each call of the subroutine
takes unit time. Note that transformation is a special case of reduction in which
subroutine is used only once.

Theorem 1.3.2. If X1 is polynomially reducible to X2 and X2 ∈ P then X1 ∈ P

Given a feasibility problem X = (D, F), for each instance d ∈ F we define cer-
tificate of feasibility Qd as the information that can be used to check feasibility in
polynomial time.

A nondeterministic algorithm for a feasibility problem consists of two stages. The
input to the algorithm is d ∈ D. The first stage is a guessing stage. Here we guess
a binary string Q which is then passed on to the second stage. The second stage
is called checking stage, is an algorithm that works with the pair (d,Q) and may
provide the output that d ∈ F . The two properties required are:

10

Chapter 1. The basics

1. d ∈ F , there is a certificate Qd such that when a pair (d,Qd) is given to the
checking stage, the algorithm gives the answer that d ∈ F .

2. d /∈ F and there is no output for any Qd. Hence whenever there is a output,
d ∈ F .

We measure the work done by a nondeterministic algorithm only in the checking
stage and only when the checking stage is given a d ∈ D and a certificate of
feasibility. We say that, a nondeterministic algorithm is polynomial if for each
d ∈ F the running time in checking stage is a polynomial function of the length
of the encoding of d for some Qd for which it replies that d ∈ F . This mean that
when d ∈ F , there is a short(polynomial) proof of feasibility.

The class of feasibility problem such that for each instance with d ∈ F the answer
d ∈ F is obtained in polynomial time by some nondeterministic algorithm is called
NP .

Most important to note that is NP contain hardest problems too. By this we mean
that there is a subset of NP called NP-complete denoted by NPC, such that if
there exist X ∈ NPC ∪ P , then every problem in NP is in P i.e., P = NPC.

Theorem 1.3.3. If X is NP-complete then P = NP, if and only if X ∈ P.

Theorem 1.3.4. If X1 is NP-complete and X1 is polynomially reducible to a NP
complete X2 then X2 is NP-complete.

So a decision problem X1 is NP-complete if it is in NP and if every other problem
in NP is reducible to it by polynomial-time algorithm which transforms instances
of X1 into instances of X2, such that the two instances have the same truth values.
As a consequence, if we had a polynomial time algorithm for X2, we could solve all
NP problems in polynomial time. So to prove an NP-completeness of a problem
we usually deduced from known problem which is already NP- complete.

A boolean expression (boolean formula) is composed of boolean variables, or their
negations (NOT, symbolically ¬), logical conjunction (AND, symbolically ∧), log-
ical disjunction (OR, symbolically ∨) and parentheses for grouping. A literal in
a boolean expression is an occurrence of a variable or its negation. The boolean
satisfiability problem (SAT) is a decision problem Φ of boolean expression to decide
if there is some assignment to the variables in Φ such that it is true or not. i.e.
The question is, for given the expression, is there some assignment of true and false
values to the variables that will make the entire expression true. The satisfiability
problem, was the first problem in NP shown to be NP-complete.

11

Chapter 1. The basics

Theorem 1.3.5. The satisfiability problem is NP-complete.

A boolean expression is considered to be in conjunctive normal form (CNF) if and
only if it is a single conjunction of disjunctions. Each of these disjunctions are
called a clause.

For n variables, a collection m of disjunctive clauses of at most k literals, where a
literal is a variable or a negated variable, where k is a constant, is called a k-SAT
problem. When k = 3, we called it as 3-SAT problem. i.e. 3-SAT is conjunctive
normal form, in which every clause has exactly three distinct literals. An instance φ
of 3-SAT with n clauses C1, C2, . . . , Cn, with p boolean variables α1, α1, α3, . . . , αp

is as follows,

φ = C1 ∧ C2 ∧ . . . ∧ Cn (1.3.1)

such that each clause being

Ci = (αi1 ∨ αi2 ∨ αi3) (1.3.2)

where αij’s being either boolean variables or negations.

Theorem 1.3.6. 3- SAT is NP-complete.

Every SAT problem can be transformed to 3-SAT problem. Since k-SAT (the
general case) reduces to 3-SAT, and 3-SAT is known to be NP-complete, it can be
used to prove that other problems are also NP-complete.

Although defined theoretically, many of these classes have practical implications.
The class P is a very good approximation to the class of problems which can be
solved quickly in practice, and if a problem is in P then we can prove a polynomial
worst case time bound, and conversely if the polynomial time bounds, we can prove
are usually small enough that the corresponding algorithms really are practical.
It is believed (but so far no proof is available) that NP-complete problems do
not have polynomial-time algorithms and therefore are intractable. (i.e.), It is
generally believed that NPC 6= NP . If a problem is proved NP-complete, it is an
evidence that the problems can’t be solved quickly. This strongly suggests that no
polynomial time algorithm exist for problems in NPC. Some of the problems are
assumed have higher complexity than some of the NP-complete problems.

12

Chapter 1. The basics

1.3.2 Solving NP-complete problems

At present, all known algorithms for NP-complete problems require time which
is exponential in the problem size. It is unknown whether there are any faster
algorithms. Given a NP-complete problem, what should we do? May be some
algorithm performance is acceptable for small input sizes, or we can use the time
limit, such that terminate the algorithm after a time limit. Use approximate
algorithms for optimization problems to find a good solution, but not necessary
the best (optimum) solution. Therefore, in order to solve an NP-complete problem
for any non-trivial problem size, one of the following approaches is used:

• Approximation algorithm: An algorithm which quickly finds a subopti-
mum solution which is within a certain (known) range of the optimum one.
Not all NP-complete problems have good approximation algorithms, and for
some problems finding a good approximation algorithm is enough to solve
the problem itself.

• Probabilistic algorithm: An algorithm which provably yields good aver-
age runtime behavior for a given distribution of the problem instancesideally,
one that assigns low probability to hard inputs.

• Special cases: An algorithm which is provably fast if the problem instances
belong to a certain special case.

• Heuristic algorithm: An algorithm which works reasonably well on many
cases, but for which there is no proof that it is always fast, and give the
optimum solution.

13

Chapter 1. The basics

14

Chapter 2

Problem description

Shift work is a fact of the modern society. Many critical services such as power,
water, medical, police, and transportation are needed around the clock. Other than
such essential services, shift work is needed for enterprises where a continuous flow
of input and the production of certain goods are also needed around the clock.
As a result, many workplaces operate twenty four hours a day. We discuss a
constrained personnel assignment problem of dealing with the shift work schedule
inside an international mail processing centre. In first part of the chapter we give a
brief introduction of an international mail processing centre and the optimization
problems arising from the its logistic design. Later in the chapter we discuss a
mathematical formulation for the shiftwork assignment problem and the nature of
this more general approach. Before discussing the details of the original problem
we briefly summarizethe design and functions of a mail distributing centre. Finally
we introduce the concept of sequential matching problem as a typical application
of the personnel assignment problem in different time shifts.

2.1 International mail distribution centre

The motivation of this work was the personnel planning problem which arises
from the optimization problems in the distribution logistics of an international
mail distribution centre. Mail centres are the locations where mail collected from
specific postcode areas is concentrated for processing and onward despatch to the
next node in a mail network. The scope of the original project is to design the
operation of foreign mail processing to achieve lower operating costs and ensure

15

Chapter 2. Problem description

the quality of service. Before discussing the details of original problem we briefly
summarize the design and functionalities of a mail distributing centre, and the
dependent optimization problems.

2.1.1 Functioning of international mail

In this section we briefly explain how an international mail delivery system func-
tions. The various kinds of international letters, packages or parcels are collected
from different post offices or other authorized collection points around the country.
This mail will be picked up by carriers on regular schedules on each work day and
transported to the international mail processing centre or office of exchange (OE).
The mail collected is processed (by sorting it according to the size, destination,
and priority) inside the office of exchange. The processed mail is despatched from
the office of exchange to foreign destination ports by air, road or sea. In the case
of import operations the office of exchange plays a similar role after receiving in-
ternational mail from different foreign sources. From the office of exchange the
imported mail is sorted and will be transported to one of the local mail centres
and to its final destination. Fig. 2.1 shows an illustration.

2.1.2 Office of Exchange

As described in the above section, the office of exchange is the point in the network
where all international mail processing is done, and plays an important role in mail
distribution system by assisting and facilitating the operation. We mainly discuss
the export function of the office of exchange. Export mail shall arrive at the office
of exchange in a number of distinct input streams. After processing, export mail
shall leave the office of exchange in a number of distinct output streams. Basically
the office of exchange consists of four work areas arrival, special services, sorting
and despatch.

• Arrival Section: Where the export mail arrives from mail centres, direct
from customers via the post office network etc.

• Special Services: Customs processing or other clerical services.

• Sorting Area: In this section the items are sorted according to despatch
requirements. The sorting is done manually and using machines.

• Despatch Section: This section handles the sorted mail to different desti-
nations. From the despatch section mail shall be carried to any international
gateway such as an airport, port, railway station or by vehicle.

16

Chapter 2. Problem description

Source

Office

of

Exchang

e

Target

Figure 2.1: An illustration: The functioning of the export mail service

17

Chapter 2. Problem description

An office of exchange also consists of many material handling systems, mail process-
ing equipment, containers, storage and staging area and personnel with particular
qualifications to perform manual services.

2.1.3 Optimization problems inside the office of exchange

The size and the complex functionalities of the office of exchange lead to an abun-
dance of optimization problems. The office of exchange can be seen as a high-
volume factory to be a connected network of workstations at which assigned work-
ers process ”work” that flows at certain rates through the workstation. The work
may even change in the factory at any workstation according to any time-of-day
profile. Workers in general are cross-trained, may work part time or full time shifts,
may start work only at a designated shift starting times and may change job assign-
ment in mid shift. One objective is to schedule the workers (and correspondingly,
the work flow) in a manner that minimizes labor costs subject to variety of service
level, contractual and physical constraints and predictions of workloads or service
level-related measures.

The implementation of the decisions to manage and control the office of exchange,
by providing the following facilities such as:

• Planning

• Scheduling

• Monitoring

Optimization problems inside the office of exchange can be categorized mainly as
a forecasting model and as a personnel planning problem. Other than these, a
simulation model allows a planning scenario to be performed to cover changes to
inputs and outputs such as mail specifications, and arrival and departure schedules
for the vehicles.

The forecasting model

The arrival pattern of the mail over the course of the day is highly predictable. The
forecasting model is the basic tool, employed by both planning and monitoring, for

18

Chapter 2. Problem description

extrapolations and predictions of workloads or service level-related measures. Also,
it provides details of vehicle arrival profiles, container and stream volumes associ-
ated with actual streams arriving at the office of exchange. The model represents
the major processes in, and more relevant for decision-making.

Personnel planning

Personnel planning mainly deals with the assignment of the employees to jobs in
such a way so as to use the manpower satisfying the various constraints. Like other
types of resource planning for materials, machines and vehicles, human resources
planning also involves a unique set of requirements. The personnel planning process
faces problems and issues that are extremely time consuming and cost intensive. To
utilize the capacity and efficiency of the office of exchange to the full extent, a shift
planning method is used to distribute the human resources quickly and efficiently.
Shift work usually means regularly scheduled work outside of the normal daytime
working hours. We can schedule and create working hours for the employees in a
flexible manner to cover the requirements. Shift planning provides the perfect view
for every conceivable planning scenario, by creating time data for any number of
employees at the same time, as well as for one or more days, weeks or even months.
Shift times, shift location, selection and number of required employees are assigned
so that personnel capacity is utilized to its maximum effect. One important part of
the personnel planning is the assignment of workers to jobs in different shifts, when
details of personnel requirements with their qualifications profile and designated
daily shift schedules and requirement assignments are available.

We start with following assumptions,

• All working areas (arrival, sorting, and despatch) are considered as a single
area.

• Personnel are cross trained, able to do different jobs.

• Each item of work is represented as a work place (we use the word job with
the same meaning).

• The working day is divided into different shifts.

• Breaks are allowed inside a shift.

Working hours for each classified job shall be designated, and clearly stated at the
time of planning. Each employee shall be assigned to one or more work shifts, and

19

Chapter 2. Problem description

some work areas may require employees in a periodic basis. Such a requirement
shall also be indicated at the time of the start of a shift or in the event an employee
being assigned to a new job within the work area. We concentrate on a general
problem arising from scheduling of employees to various work shifts. This general-
ized problem formulation is presented to address objectives covering cross-training
of workers, ensuring adequate levels of assignments and maximizing the efficiency
of the assignment.

2.2 The problem description

We have specified a set of jobs with their start-end timings, a set of workers with
certain job qualifications, and their working time schedules. The typical task is to
assign workers to jobs each time to fulfill the requirements. The first constraint
is from the fact that the assignment is possible only if a qualified worker is avail-
able at the time. Since the availability of workers and jobs changes from time to
time a reassignment is needed on occurrence of any of the events such as a change
in worker availability or job. It is possible that changes in jobs may happen for
a worker in this reassignment even if the worker is available before the reassign-
ment. A second constraint arises from the global minimization of the unnecessary
switchings of workers between workplaces. The whole problem can be described
as solving assignment problems in many discrete time intervals by fulfilling all
the requirements and globally minimizing the number of changes between jobs for
workers.

2.2.1 Mathematical modelling

In this section we describe a mathematical model for the personal scheduling prob-
lem with the described requirements. Let W = {W1, W2, . . . ,Wm} denotes the set
of all workers, J = {J1, J2, . . . , Jn}, denotes the set of jobs. We say a work day
starts from time 0 to T.

Let ai : [0,T]→ {0, 1} is the availability function for the worker Wi.

i.e., for every Wi ∈ W , we define,

ai(t) =

{
1 if worker Wi is available at time t;

0 otherwise.
(2.2.1)

20

Chapter 2. Problem description

For each worker Wi ∈ W , ai provides a binary vector representing the availability
profile. Similarly we define bj : [0,T]→ {0, 1} for the job Jj, if it has to be done
at t.

i.e., for every Jj ∈ J , we define,

bj(t) =

{
1 if the job Jj is has to be done at time t;

0 otherwise.
(2.2.2)

We define ability function c :W ×J → {0, 1}, such that,

c(Wi, Jj) =

{
1 if the worker Wi is able to do the job Jj ;

0 otherwise.
(2.2.3)

The problem of assignment of a worker Wi ∈ W at any t ∈ [0,T] can be identified
as mapping mi from set of workers. we define a function, mi(t) : [0,T]→ {0}∪J
such that,

mi(t) =

{
Jj if the worker Wi ∈ W is assigned to the job Jj ∈ J at t ;

0 otherwise.
(2.2.4)

A worker Wi can be assigned to a job Jj at time t only if he is available at t and
able to do the job Jj,

i.e.

mi(t) = Jj if ai(t) = 1, bj(t) = 1, and c(Wi, Jj) = 1 (2.2.5)

Assuming that there is a sufficient number of workers to fulfill the jobs and no
worker is idle at time t, then mi can take the values depending on the following
conditions,

∀ Wi ∈ W , mi(t) = 0 if ai(t) = 0 (2.2.6)

∃ Wi ∈ W , mi(t) = Jj if and only if bj(t) = 1 (2.2.7)

We define the number of switches for a worker Wi ∈ W as the number of jumps in
the assignment function mi. (i.e.), The total number of switches can be evaluated

21

Chapter 2. Problem description

using the function d :W → Z+ such that,

d(Wi) = max
ε>0

 ∑
t,t+ε∈[0,T]

diff (mi(t + ε),mi(t))

 (2.2.8)

where for any a and b,

diff (a, b) =

{
1 a 6= b,

0 a = b.
(2.2.9)

The problem of assigning workers to jobs in a work day [0,T] in an efficient way
can be described as identifying the function mi for each Wi ∈ W , by minimizing∑

Wi∈W d(Wi).

We defined the whole process in the continuous time interval [0,T], while it is
sufficient and more reasonable to consider the discrete time points in [0,T] when
there is a change in the values for ai(t) or bi(t). This leads to the definition of an
event as a change in availability of a worker, or a job. For a work day, which starts
from time 0 to T, we define binary function e→ {0, 1}, such that

e(t) =

{
1 an event happening at t;

0 otherwise.
(2.2.10)

It is reasonable to consider from a practical point of view that the set of t ∈ [0,T]
such that e(t) = 1 is finite. So we can find a time discretization T set of all points
where e = 1. The time discretization T = {0, t1, t2, . . . , tτ = T} such that, for
each t ∈ T some events are happening. Now we define an idle time interval, t as
[t− 1, t) such that ai(t

′) and bj(t
′) are constants for every t ∈ [t− 1, t), Wi ∈ W ,

Jj ∈ J . Let T denote a set of τ such intervals,

T = {t|t is an idle time interval[t− 1, t) such that t ∈ T− {0}}

The possible assignments of workers to workplace at a particular time interval t
can be represented as a bipartite graph Gt, for every t ∈ T . Let Gt = (Lt, Rt, Et)
be the bipartite graph representation, where Lt ∈ W is the set of workers available
at time interval t and Rt ∈ W is the set of jobs to do at time interval t. The edge
set Et represents the abilities of workers at t to do the jobs. The node and edges
of the bipartite graph Gt can be represented using the functions ai, bj, and c as
follows.

22

Chapter 2. Problem description

Lt = {Wi ∈ W : ai(t) = 1, for t in time interval t},
Rt = {Jj ∈ J : bj(t) = 1, for t in time interval t},
Et = {eij = (Wi, Ji) : Wi ∈ Lt, Ji ∈ J , and c(Wi, Ji) = 1}.

The identification of the function mi in the time interval t = [t − 1, t], the as-
signment of workers to jobs can be formulated as a classical bipartite matching
problem in Gt. For t we need to solve a matching problem corresponding to the
bipartite graph Gt. (i.e.), Finding maximum cardinality matching1 The problem

of minimizing total number of switches between the assignments, the evaluation
of

∑
Wi∈W d(Wi), is equivalent to the problem of global maximization of common

edges between matchings Mt and Mt+1.

Let
dt = Number of different edges between Mt and Mt+1

i.e.
dt =| (Mt ∪Mt+1)− (Mt ∩Mt+1) |

for t = 1, 2, . . . , τ − 1

The objective is to find feasible matchings in each of the bipartite graphs so as to
minimize the shifts between the matchings.

i.e.

Min
τ−1∑
t=1

dt

The whole problem can be stated as follows,

Find maximum matchings {Mt : t = 1, 2, . . . , τ} in {Gt : t = 1, 2, . . . , τ} such that∑τ−1
t=1 dt is minimum.

1The problem can be more generalized by considering a pt, the minimum number of assignment
needed at the particular time interval. Then we say a matching Mt is feasible if | Mt |≥ pt. If
pt = mt for some t, where mt is the matching number (the cardinality of maximum matching of
Gt) then problem is reduced to find the maximum matchings in each Gt.

23

Chapter 2. Problem description

24

Chapter 3

Sequential matching problem

In this thesis we present a problem that has not been dealt with in literature in
the past, the sequential matching problem as described in Section 2.2.1. In the first
part of this chapter we repeat the definition of the problem and discuss the nature
of a general mathematical problem that arises from the formulation. Later on in
the chapter we look as to how complex the problem is to solve and how a greedy
algorithm behaves. Finally we also discuss a heuristic algorithm-based randomized
scheme.

For a given bipartite graph Gt = (Lt, Rt, Et) the term workers is represented by
the nodes in the left node set Lt and the terms work places or jobs are represented
by the right node set Rt. Abilities of a worker to do a job are the synonym for the
edges and Et represents the collection of corresponding edges.

3.1 Sequential matching problem

Let V, W be the set of nodes and E be the set of edges of a bipartite graph
G(V, W, E). Define Gc = {Gt = (Lt, Rt, Et) : t = 1, 2, . . . , τ} as a finite sequence
of bipartite graphs where Lt ⊆ V , Rt ⊆ W and Et ⊆ E for each t = 1, 2, . . . , τ .

25

Chapter 3. Sequential matching problem

Notice that each Gt is a subgraph of G. For any given matching Mt in Gt define,1

dt =

{
|Mt+1 ⊕Mt | for t = 1, 2, . . . τ − 1;

0 t = τ
(3.1.1)

i.e., dt denote the number of different edges in two consecutive matchings. For
a given finite sequence of positive integers pt, we define a constrained matching
problem of finding matchings Mt in Gt with at least pt number of edges, such that∑τ−1

t=1 dt is minimum.

The objective is to find feasible matchings in each bipartite graph that minimize
the switchings of the edges between the matchings.

Min
τ−1∑
t=1

dt

Let mt be the matching number (cardinality of the maximum matching) of the
bipartite graph Gt. If we consider mt instead of pt the problem is reduced to finding
the maximum matchings in each graph Gt, such that total changes between edges
in matchings is minimum.

Formally we define the sequential matching problem (SMP) on a finite sequence
of graphs Gc = {Gt : t = 1, 2, . . . , τ} as the problem of finding finite sequence
of matchings Mc = {Mt : t = 1, 2, . . . , τ} where Mt is maximum in Gt such that∑τ−1

t=1 dt is minimum.

We use the notation S(Gc, τ) for the problem where Gc and τ are as described.

3.2 Complexity

The purpose of this section is to gain insight into the difficulty of the problem.
We give an NP-completeness proof for the problem. For a defined finite sequence
of bipartite graphs Gc = {Gt : t = 1, 2, . . . , τ}, the sequential matching problem
S(Gc, τ) is to find the finite sequence of matchings Mc = {M1, M2, . . . ,Mτ} that
minimizes different edges. For a given integer k we define the sequential matching
decision problem as follows,
Sequential matching decision problem: Given a finite sequence of bipartite
graphs Gc and an integer k is there a finite sequence of matchings Mc such that∑τ−1

t=1 dt ≤ k ?

1For any two sets A and B we define the symmetric operator ⊕, as A⊕B = (A∪B)\ (A∩B),
where \ denotes the set minus.

26

Chapter 3. Sequential matching problem

Theorem 3.2.1. Sequential matching problem is NP-complete

Proof. We reduce 3-SAT to SMP in two steps. Given an instance φ of 3-SAT, we
first construct a finite sequence of bipartite graphs Gc that have matchings Mc

with | Mc |≤ (2τ − 2) if and only if φ is satisfiable. We are given an instance φ
of 3-SAT with τ clauses C1, C2, . . . , Cτ , with p boolean variables α1, α1, α3, . . . , αp

such that each clause is Ct = (αt1, αt2, αt3) with the αt1’s being either boolean
variables or negations thereof. Now we construct the sequence of graphs Gc =
{Gt : Gt = (V, W, Et), t = 1, 2, . . . , τ}. For each clause Ct the construction of the
bipartite graph Gt = (V, W, Et) is as follows:

V = {vT
αj

, vF
αj

, vc, for j = 1, 2, . . . , p} (3.2.1)

W = {wcodd
, wceven , wαj

, for j = 1, 2, . . . , p} (3.2.2)

Et = E ′ ∪ E ′
t (3.2.3)

where

E ′ = {{vT
αj

, wαj
}, {vF

αj
, wαj
}, for all j = 1, 2, . . . , p} (3.2.4)

E ′
t =

{
{vc, wceven}, {vαtj

, wcodd
} if t is odd,

{vc, wcodd
}, {vαtj

, wceven} otherwise.
(3.2.5)

where

vαtj
=

{
vT

αj
if αj is literal in clause Ct,

vF
αj

if ¬αj is literal in clause Ct.
(3.2.6)

An example for four variables is depicted in Fig. 3.1. Say α1, α2, α3, α4 are the
variables. An instance φ = C1 ∧ C2 ∧ C3 where,

C1 = (α1 ∨ ¬α2 ∨ ¬α3) (3.2.7)

C2 = (¬α1 ∨ α2 ∨ ¬α4) (3.2.8)

C3 = (¬α2 ∨ ¬α3 ∨ α4) (3.2.9)

We prove that a matching sequence Mc exists, with at least 2τ − 2 changes if and
only if there is a truth assignment for a 3-SAT instance.

First, if there is a truth assignment, we prove that M1, M2, . . . ,Mτ exist with 2
changes between two consecutive graphs, and so in total 2τ − 2 changes. Suppose
there is a truth assignment to the variables which satisfies all of the clauses such
that each of the clause Ct has at least one literal αtj′ with a true value. Say αj′ is
the variable corresponding to the true literal in Ct (i.e. αtj′ is either αj′ or ¬αj′).
Now describe a matching Mt in Gt, for t = 1, 2, . . . , τ as follows

27

Chapter 3. Sequential matching problem

vc • v
′

codd
•

v
′

ceven
•

v
T

α1
•

v
F

α1
•

v
T

α2
•

v
F

α2
•

v
T

α3
•

v
F

α3
•

v
T

α4
•

v
F

α4
•

wα1•

wα2•

wα3•

wα4•

vc • v
′

codd
•

v
′

ceven
•

v
T

α1
•

v
F

α1
•

v
T

α2
•

v
F

α2
•

v
T

α3
•

v
F

α3
•

v
T

α4
•

v
F

α4
•

wα1•

wα2•

wα3•

wα4•

vc • v
′

codd
•

v
′

ceven
•

v
T

α1
•

v
F

α1
•

v
T

α2
•

v
F

α2
•

v
T

α3
•

v
F

α3
•

v
T

α4
•

v
F

α4
•

wα1•

wα2•

wα3•

wα4•

Figure 3.1: Bipartite graphs reduced from φ

• If t is odd,

– Match the node with label node wceven to vc

– if αtj′ = αj′

∗ Match the node with label wcodd
to vT

αj′

– else if αtj′ = ¬αj′

∗ Match the node with label wcodd
to vF

αj′

• If t is even,

– Match the node wcodd
to vc

– if αtj′ = αj
′

∗ Match the node with label wceven to vT
αj′

– else if αtj′ = ¬αj′

∗ Match the node with label wceven to vF
αj′

• For all j = 1, 2, . . . , p

28

Chapter 3. Sequential matching problem

– if αj is true

∗ Match the node with label wαj
to vF

αj

– else if αj is false

∗ Match the node with label wαj
to vT

αj

It is easy to notice that each of the matchings are maximum (since all nodes
W are matched), and the number of changes between Mt and Mt+1 is two, for
t = 1, 2, . . . , τ − 1. The total number of changes is 2τ − 2. To prove that Mc

is with minimum changes, it is sufficient to show that the total changes in any
maximum matchings are at least 2τ−2. This is true because, from the construction
of bipartite graphs, the edges incident with wceven and wcodd

are totally different in
two consecutive graphs. So at least 2 changes in edges are needed to get maximum
matchings, in two consecutive graphs. This implies minimum total changes are at
least 2τ − 2, because there are τ − 1 consecutive pairs of bipartite graphs.

Conversely assuming that maximum matchings with 2τ − 2 changes exist. Since
all the matchings are maximum, each node in W is matched for every graph. By
the construction each of the wαj

can match to either vT
αj

or vF
αj

. We can find a
truth assignment for an instance of 3-SAT, as follows,

• If wαj
is matched to vT

αj
take αj is false.

• Else wαj
is matched to vF

αj
take αj is true.

Since the minimum number of changes is 2τ − 2, changes can only happen in
matching edges of wcodd

or wceven . If t is even, there would be at least one free
node, say vT

αj′
(or vT

αj′
) for wceven such that αj′ (or ¬αj′) is true. If t is odd the free

node would be for wceven .

3.2.1 Vector representations

For a given bipartite graph G = (L, R, E), let Gc = {Gt : t = 1, 2, . . . , τ} be the
finite sequence of bipartite graphs such that each Gt = (Lt, Rt, Et) is a subgraph
of G. Say the cardinality of E is m, we define a one to one onto mapping f : E →
{1, 2, . . . ,m} such that an ej edge represented by an edge number f(ej).

Assuming f is a linear sequence such that f(ej) = j for all ej ∈ E. For any subset
of edges E ′ ⊆ E the characteristic vector of E ′, xE′ ∈ {0, 1}m is such that the jth

29

Chapter 3. Sequential matching problem

component xE′
j of xE′

is as follows.

xE′

j =

{
1, ej ∈ E ′;

0, otherwise.
(3.2.10)

We can define an equivalent definition for the sequential matching problem S(Gc, τ)
with Gc = {Gt : t = 1, 2, . . . , τ} such that Gt = (Lt, Rt, Et) as in Section 3.1. Let
xEt denote the characteristic vector of the edge set Et.

Let xMt be the characteristic vector of the edge set of Mt. We formulate an
equivalent form for S(Gc, τ)using the vector notations. If “·” denotes the dot
product of the vectors then (xMt · xMt+1) is the number of edges common in the
intersection of Mt and Mt+1.

Dt =
τ−1∑
t=1

(xMt+1 · xMt) (3.2.11)

We give two different integer programming formulations for the problem in Chap-
ter 4.

3.3 A greedy approach

Some algorithms utilized to solve assignment problems comprise a series of steps,
with a set of alternative choices available at each step. A greedy algorithm opts
for the choice that looks best at any decision point. The idea being that at any
such point, this locally optimum choice might lead to a good solution. Greedy
algorithms are generally very fast, but do not always lead to a globally optimum
solution.

The idea behind our greedy method is to find the solution for the problem as
follows. We start with a feasible matching for the first graph, and find feasible
matchings in each consecutive step with minimum possible changes in assignment.
In the upcoming section we consider the problem of finding a maximum matching
rather than matchings with fixed minimum cardinality.
Initial step (t := 1): Start with a maximum matching M1 on the Bipartite graph
G1. (t + 1)th step : If Mt is a maximum matching on a bipartite graph Gt then

30

Chapter 3. Sequential matching problem

find a maximum matching Mt+1 on Gt+1 such that

dt =| (Mt ∪Mt+1)− (Mt ∩Mt+1) |

is minimum.

In the (t + 1)th step of the greedy method we need to find a maximum matching
in Gt+1 with maximum edges of Mt. This can be done by finding a maximum
weighted perfect matching [10] on a weighted bipartite graph formed by adding
extra weights to edges of Gt+1 which are already in Mt. Generally a globally
optimum solution to the problem may be obtained by making a locally optimum
(greedy) choice. Thus, at any step, the choice made by a greedy algorithm may
depend on choices made up to that point, but not upon future choices or on the
solutions to subproblems. Therefore, a greedy strategy proceeds in one direction
making a greedy choice at each step, iteratively reducing each problem instance to
a smaller one. The quality of greedy solution also depends on the initial choice for
the matching in G1.

The greedy algorithm described here does not always yield an optimum solution,
even with a good initial choice. The reason is that the choice at each step is
independent of solutions to the future subproblem. We construct a counter example
to claim that this greedy method need not give an optimum solution.

Consider three bipartite graphs G1, G2, and G3 as shown in Fig. 3.2. The problem
is to find perfect matching in each bipartite graph with minimum changes in edges.
Consider the matchings in 3.3 as the output of the above greedy method for the

x •

y •

z •

a•

b•

c•

x •

y •

z •

a•

b•

c•

x •

y •

z •

a•

b•

c•

Figure 3.2: Bipartite graphs in 3 different intervals

problem in the bitartrate graphs G1, G2, and G3. Now let us examine how the
algorithm outputs this solution. The algorithm starts with the only maximum
matching of the first bipartite graph G1. The next step of the algorithm is to
find a matching in second bipartite graph with minimum number of changes with
respect to the matching of first bipartite graph. It is easy to see that in second
bipartite graph there are two perfect matchings where one has two different edges

31

Chapter 3. Sequential matching problem

compared to the only matching of the first graph, and other has three. Naturally
the greedy algorithm chooses the matching with two changes because of its local
optima strategy. Same as above, the algorithm finds a perfect matching in third
bipartite graph with additional two changes with respect to matching in second
bipartite graph such that the total number of changes are four. It is easy to see

x •

y •

z •

a•

b•

c•

x •

y •

z •

a•

b•

c•

x •

y •

z •

a•

b•

c•

Figure 3.3: A Greedy Solution for the problem in Fig.3.2

that the optimum solution for the sequential matching problem in G1, G2, and G3

is not by the above greedy method, but the matchings as in 3.4 with only three
changes in total. The previous example shows that the greedy algorithm does not
always provide an optimum solution to the problem, which motivates the search for
a better algorithm. In the following section a randomized algorithm is discussed.

3.4 A randomized algorithm

Any algorithm that makes some random (or pseudorandom) choices is called a ran-
domized algorithm. In this section we present an incremental randomized algorithm
for the sequential matching problem with simpler assumptions. A randomized al-
gorithm makes arbitrary choices during its execution. Here, the algorithm uses
some results on finding an allowed edge with the concept of a random adjacency
matrix.

x •

y •

z •

a•

b•

c•

x •

y •

z •

a•

b•

c•

x •

y •

z •

a•

b•

c•

Figure 3.4: Optimum Solution for the problem in Fig.3.2

32

Chapter 3. Sequential matching problem

3.4.1 Simplified model

We simplify the problem by assuming that perfect matching exists in each of the
bipartite graphs. Now the problem reduces to finding a perfect matching in each
bipartite graph which minimizes the total number changes. Alternately,

find perfect matchings M1, M2, . . . ,Mτ in bipartite graphs G1, G2, . . . , Gτ such that∑τ−1
t=1 dt is minimum, where dt =|Mt ⊕Mt+1 |.

Without loss of generality we can assume that the problem in section 2.2.1, of find-
ing maximum cardinality matchings in bipartite graphs can be reduced to a prob-
lem of finding perfect matchings, if the matching number mt = min(| Lt |, | Lt |).
This can be done by adding additional nodes to Lt or Rt (such that | Lt |=| Rt |),
and connecting those added nodes to all nodes of the opposite vertex group in the
bipartite graph.

3.4.2 The concept

The idea behind the algorithm is simple. To find perfect matchings with minimum
changes, we look for matchings with maximum common edges. For this purpose
we compute the possible edge-intersections between a set of consecutive bipartite
graphs and find matchings which contain a maximum number of intersected edges.
One important fact to note is that the addition of all intersected edges is not
possible even if they are feasible to be in the matching. This is because some of
them are not allowed by mean, they prohibit convergence of the local solution (a
collection of edges) to a perfect matching.

3.4.3 The algorithm

Let τ > 0 and j < τ be positive integers. We define the index set Stj as τ − t
consecutive integers starting with j + 1 as follows,

Stj = {j + 1, j + 2, . . . , j + (τ − t)} (3.4.1)

Note the cardinality, | Stj |= τ − t. Let It be the set of graphs generated by
edge-intersection of bipartite graphs whose indices lie in Stj. Define,

It = {Ntj | Ntj =
⋂

k∈Stj

Gk j = 1, 2, 3, . . . , t} (3.4.2)

33

Chapter 3. Sequential matching problem

for t = 0, 1, 2, . . . , τ − 1.

Also, note that | It |= t + 1. With these assumption we define the method as in
algorithm 2.

Algorithm 2 The randomized algorithm of edge-intersection method

EdgeIntersectionMethod for Gc

input:A finite sequence of bipartite graphs Gc = {Gt : t = 1, 2, . . . , τ}
for t := 0 to τ − 1 do

Mt := ∅
end for
for t := 0 to τ − 1 do

if It 6= ∅ then
G′

k := Gk

for Ntj ∈ It do
for k ∈ Stj do

-Find a vertex v ∈ G′
k of degree 1 if one exists

-If such vertex does’nt exist, go to for next k ∈ Stj

-Let e = (v, w) be the edge such that degree(v) = 1 or degree(w) = 1,
then add e to Mk

-Delete vertices v and w (and thus edges too) from G′
k

G′
k := G′

k − {v, w}
end for
-Choose an edge e randomly from Ntj, such that e ∈ G′

k

if e is allowed in each G′
k, then add e to each Mk

-Delete end vertices of e (and so edges also) from each Gk.
-Delete e from Ntj

end for
end if

end for
for t := 1 to τ do

Find the maximum matching with existing edges from Mt

end for
return Mc

It is easy to observe that the above algorithm gives maximum matchings Mt for
Gt, for t = 1, 2, 3, . . . , τ . Assuming that all of the bipartite graphs have perfect
matchings. Notice that all of the edges for which at least one end vertex has degree
one should be in all perfect matchings. The other edges added to matchings are
allowed edges, in reduced subgraphs respectively (a subgraph formed after deletion
of matched nodes). By definition of allowed edges a perfect matching exists in each

34

Chapter 3. Sequential matching problem

reduced subgraph even after deletion.

3.4.4 Finding an allowed edge

Recall that an edge of a graph is called allowed if it occurs in at least one maximum
cardinality matching.2 The complexity of checking whether an edge is allowed or
not can take as much effort as finding a maximum matching. A method of finding
whether an edge, say e, is allowed or not in a graph G = (V, E) is as follows,

• Let’s say e = (v, w) such that v, w ∈ V .

• Remove all those edges incident with v, w other than e from G. Let G′ be
the resultant graph.

• Solve the maximum matching problems for G and G′

• If the cardinality of maximum matchings in G and G′ are equal, it implies
that e is an allowed edge. Else it is not

The algorithm described in the previous section frequently need to check for an
allowed edge. The following parts of this section describe a randomized method
for finding allowed edges.

Tutte, [11] gave a good characterization of graphs that have perfect matchings.
One of Tutte’s innovations was to introduce the skew symmetric adjacency matrix
B of the graph G, defined as follows: Associate each edge eij of G with a distinct
variable xij. Then B = B(xij) is a | V | × | V | matrix whose entries are given by

Bij =


xij if i > j and ij ∈ E,

−xij if i < j and ij ∈ E,

0 otherwise.

(3.4.3)

Tutte observed that G has a perfect matching if and only if the determinant of
B(xij), det(B(xij)), is not identical to zero; here, det(B(xij)) is a polynomial in
the variables xij. Lovasz [12] used this observation to give an efficient randomized
algorithm for the perfect matching decision problem. Choose a prime number
q = | V |O(1), and substitute each variable xij in B by an independent random

2A brief discussion and general definition of an allowed subset are set out in Chapter 6.

35

Chapter 3. Sequential matching problem

number drawn from 1, 2, . . . , q − 1. Compute the determinant of the resulting
random matrix B over the field of integers modulo q. With high probability (i.e.,
probability ≥ 1 − 1/O(| V |)), det(B) = 0 mod q if and only if det(B(xij)) is not
identical to zero if and only if G has a perfect matching [13]. This algorithm has
two especially attractive features: it is simple, solving the decision problem by
executing one “matrix operation”, and is efficient, running in sequential time.

A Monte Carlo algorithm (a randomized algorithm that may produce incorrect
results, but with bounded error probability) for finding the set of allowed edges of
an arbitrary graph is described in [14]. The method for finding the set of allowed
edges first constructs the Gallai-Edmonds decomposition using the randomized
algorithm.

If G has a perfect matching we apply the following result of Rabin and Vazirani [14]
to find (with high probability) the allowed edges.

Lemma 3.4.1. (Rabin and Vazirani). Let G be a graph with a perfect matching,
and let B be a random skew symmetric adjacency matrix of G. If det(B) = 0, then
for each index i, 1 ≤ i ≤ n, there is an index j, 1 ≤ j ≤ n, such that Bij 6= 0 and
(B−1)ji 6= 0; moreover, for each pair i, j satisfying this condition, the corresponding
edge vivj is in some perfect matching of G.

Theorem 3.4.2. With probability at least 1−(1/nΘ(1)), the set of allowed edges of a
graph can be computed in sequential time O(M(n)), and in parallel time O((logn)2)
using O(M(n)) processors.

The implementation details of this randomized edge intersection method is de-
scribed in Appendix C.

36

Chapter 4

A branch and price approach

4.1 Introduction 1

Column generation is a powerful tool for solving large scale linear programming
problems. Such linear programming may arise when the columns in the prob-
lem are not known in advance and a complete enumeration of all columns is not
an option, or the problem is rewritten using Dantzig- Wolfe decomposition (the
columns correspond to all extreme points of a certain constraint set) [18] [16]. Col-
umn generation is a natural choice in several applications, such as the well known
cutting stock problem, vehicle routing and crew scheduling. In this chapter we de-
scribe a column generation approach that dynamically generates columns and also
provides tighter relaxations of the underlying mixed integer optimization problem
representation of the sequential matching problem.

If a linear program contains too many variables to be solved explicitly, then we
initialize the linear program with a small subset of variables and compute an opti-
mum solution of that linear program. Afterwards, we check whether the addition
of a variable, which is not in the current linear program, might improve the LP
solution. According to linear programming theory this can be done by the com-
putation of the reduced costs of the variables. In a linear program of the form
min {cᵀx|Ax ≤ b : x ≥ 0} a variable with positive reduced cost can improve the
solution2. If no variables have positive reduced costs, then the current optimum

1Some of the general discussion about the branch and price method is from the references [15],
[16], [17].

2ᵀ to denote the matrix transpose.

37

Chapter 4. A branch and price approach

solution also solves the original problem. The computation of the reduced costs
is also called pricing. If a variable does not price out correctly, we add it to the
linear program, re-optimize, and iterate.

In cutting plane algorithms optimum solutions are found by generating cutting
planes and by adding cuts to LP relaxation. As in the case of a cutting plane
algorithm, an explicit list of constraints is not required, we do not need an explicit
list of variables in a column generation algorithm. We require only a method for
generating variables of the original problem that do not price out correctly. Given
a class of variables of a linear optimization problem, and the values of the dual
variables of a basic solution, either prove that all variables of this class price out
correctly or find a nonbasic variable of this class that does not price out correctly.

An algorithm that solves the general pricing problem is called an exact pricing
algorithm, while a heuristic pricing algorithm may find a variable that does not
price out correctly, but if it fails, it is not guaranteed that all variables of the class
price out correctly. Also, the pricing problem can be formulated as an optimization
problem. In this case, that variable among the variables which do not price out
correctly with lowest (negative) reduced cost should be found.

The most widely used method for solving integer programs is branch and bound.
Subproblems are created by restricting the range of the integer variables. Branch
and price method is essentially a branch and bound combined with column gener-
ation. This method is used to solve integer programs where there are too many
variables to represent the problem explicitly. Thus only the active set of variables
are maintained and columns are generated as needed during the solution of the lin-
ear program. Column generation techniques are problem specific and can interact
with branching decisions. The master problem discussed here is a set partitioning
type while the pricing problem can be formulated as a constrained shortest path
problem.

Before introducing the column generation algorithm for the Sequential Matching
Problem, we formulate the problem as a Mixed Integer Programming (MIP) prob-
lem and then extensively reformulate it into a set partitioning type one, which
could be more relevant from the branch and price point of view. In the next sec-
tion we analyze the problem, and formulate the pricing problem as a set of shortest
path problems. The branching scheme selected for the branch and price, conver-
gence of the algorithm and the complexity of the pricing problem are discussed in
the following sections.

38

Chapter 4. A branch and price approach

4.2 Formulations

Integer programs and their associated linear relaxations encountered in applications
almost always exhibit a great deal of structure. Various formulations are possible
for a problem but the quality depends on the structure of the problem and ease of
solving it. Computationally this also underlines the importance for strictly integral
optimization techniques, as opposed to faster running real valued formulations
suitable for linear programming treatment.

A traditional way of analyzing thequality of a formulation is by polytope inclu-
sion. Most integer programming algorithms require an upper bound on the value
of the objective function, and the efficiency of the algorithm is very dependent on
the sharpness of the bound. An upper bound is determined by solving the linear
programming relaxation. But for a column generation algorithm the best formula-
tion is when a significantly large number of columns is compared with rows in the
constraint matrix.

Firstly we introduce a “compact” MIP formulation for the sequential matching
problem. In the following section we reformulate the problem into a set parti-
tioning type one. These optimization models have certain claims to optimality,
although computational constraints and the solution method decide the quality of
the formulations.

4.2.1 MIP formulation of the sequential matching problem

A wide variety of problems encountered in many areas including personnel schedul-
ing problems can be formulated as mixed integer programming (MIP) models in
many different ways. The respective formulations influence the computational
behavior of exact solution methods. Our aim is to develop an MIP model repre-
sentation for the problem.

Consider the sequential matching problem defined in Section 3.1, S(Gc, τ), where τ
is the total number of bipartite graphs. A conventional way of integer formulation
for the maximum matching problem in a single bipartite graph Gt is described in
Section 1.2.3. The objective of that formulation is finding the maximum number
edges in the matchings and constraints to make sure that the resulting set of edges
forms a matching.

39

Chapter 4. A branch and price approach

If we know the matching number, mt for Gt the problem of finding maximum
matching with mt edges can be reduced to the integer solution of a set of constraints
as in Fig. 4.1 (we use the same notations as in Section 1.2.3).

∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
xe∈Et

xe ≥ mt

xe ∈ {0, 1}

Figure 4.1: An alternate formulation for the bipartite graph matching problem

We use this idea to develop a MIP formulation for the S(Gc, τ). In case of S(Gc, τ)
the problem is with more additional constraints.

We defined S(Gc, τ) as the graph theoretical problem motivated by the worker-
to-job assignment in different time shifts 2.2.1. In which the collection of workers
available at a time shift t is represented by the left node set Lt, and the jobs to be
done at t is represented by the right node set Rt in the graph Gt, where the edges
Et are the abilities in this particular time shift.

We return to the notion of worker, job, abilities, and time shifts, because a linear
programming formulation is more meaningful. Later in the column generation
formulation (Section 4.3.2) it is more obvious, since each column in the binary
constraint matrix represents the life line of a worker (i.e. a possible schedule for
a particular worker in all time shifts). In Theorem 4.2 we prove the equivalence of
the formulations. We proceed as follows.

Let J = {1, 2, . . . , n} denote the set of job indices, W = {1, 2, . . . ,m} the set of
worker indices and T = {0, 1, 2, . . . , τ} the time discretization such that,

T = {t|t is a time shift starts from t− 1 ends at t, for t ∈ T− {0}}

and Et is the collection of possible assignments at time shift t (i.e. edges in the
bipartite graph Gt at t).

We define two types of binary decision variables xijt and yijt. The binary decision
variable xijt assumes the value of one if the worker i is assigned to the job j at t.
In other words the edge eij ∈ Mt for the problem S(Gc, τ). The binary decision
variable yijt (defined for t ∈ {2, 3, . . . , τ}) is one when the worker i is assigned to

40

Chapter 4. A branch and price approach

job j in two consecutive time intervals t−1 and t. The variable yijt = 1 only when
the edge eij is in both Mt and Mt+1. More precisely,

xijt =

{
1 if worker i is assigned to job j at time shift t;

0 otherwise.
(4.2.1)

and for t ∈ {2, 3, . . . , τ},

yijt =

{
1 if worker i is assigned job j at time shifts t− 1 and t;

0 otherwise.
(4.2.2)

An integer programming formulation for the problem of finding matchings (with
cardinality at least mt) with minimum changes in edges is as in Fig. 4.2. We
denote (i, j), whether the worker i is eligible to do the job j (the edge eij in the
graph formulation in Section 3.1). Solving this compact formulation integrally is
theoretically no different from solving any integer program.

Max
τ∑

t=2

∑
(i,j)∈(Et−1∩Et)

yijt (4.2.3)

subject to ∑
i:(i,j)∈Et

xijt ≤ 1 ∀j, ∀t (4.2.4)

∑
j:(i,j)∈Et

xijt ≤ 1 ∀i, ∀t (4.2.5)

∑
i,j:(i,j)∈Et

xijt ≥ mt ∀t (4.2.6)

xijt−1 ≥ yijt and (4.2.7)

xijt ≥ yijt (4.2.8)

∀i, j : (i, j) ∈ Et−1 ∩ Et for t = 2, 3, . . . , τ

xijt, yijt ∈ {0, 1} (4.2.9)

Figure 4.2: MIP formulation

Theorem 4.2.1. The optimum solution for the mixed integer programming prob-
lem in Fig. 4.2 gives an optimum solution for sequential matching problem in 3.1.

41

Chapter 4. A branch and price approach

Proof. The constraints 4.2.4 and 4.2.5 guarantee that a feasible solution brings out
matchings in each bipartite graph. Since for each i and j, at most one xijt can
assume a value of 1, which guarantees the degrees of the nodes in the corresponding
bipartite graph, representing i and j is less than or equal to 1. The constraint 4.2.6
guarantees the cardinality of matchings, since mt can be up to the matching number
(the number of edges in maximum matching) of the bipartite graph at time shift
t. The problem of minimizing changes in edges between matchings is equivalent to
the problem of maximizing common edges. In Fig. 4.2 the variables yijt represent
these common edges. So the objective function together with the constraints, 4.2.7
and 4.2.9 are to maximize common edges between two consecutive graphs.

4.2.2 An extensive reformulation

Our intention is how to reformulate an integer program in order to build an effi-
cient branch and price model. We propose an alternative master problem that can
be quite advantageous in this situation. In the previous section we have formu-
lated the problem in a compact way which explicitly reflects the structure and a
set of coupling constraints. This type of formulation naturally leads to a solution
by a decomposition process like that of Dantzig and Wolfe [18]. Decomposition of
integer programs is done by replacing a subsystem of the constraints by a refor-
mulation that possesses the integrality property. This problem can however also
be formulated in such an extensive way, other than the decomposition method by
enumeration of a subset of solutions. We make the point that this extensive for-
mulation is not only an ideal column generation scheme, but naturally gives rise
to branching rules for it.

In fact, we now formulate a master program for the sequential matching problem
in terms of “lifeline of a worker” as variables, (i.e.), each column corresponds to a
particular assignment pattern of workers during the time periods.

Let J = {1, 2, . . . , n} denote the set of job indices, W = {1, 2, . . . ,m} the set of
worker indices and T = {0, 1, 2, . . . , τ} be the time discretization such that,

T = {t|t is a time shift which starts from t− 1 and ends at t, for t ∈ T− {0}}

Define Ki = {1, 2, . . . , ki}, where ki corresponds to the total number of feasible
assignments for worker i during the time intervals in T . (i.e.), Assignments for a
worker i can be undertaken in ki different ways. Each of these assignments can be
encoded as a binary vector Ai

k with nτ entities, for each k = 1, 2, . . . , ki, as follows,

42

Chapter 4. A branch and price approach

The jt-th element of Ai
k is 1, if job j is assigned to worker i at time interval t.

Let A be the matrix with columns Ai
k for all i ∈ W , for all k ∈ Ki with

∑
i∈W ki

columns and nt rows. Define the set of columns of A as A = {Ai
k|i ∈ W , k ∈ Ki}.

We define a binary decision variable xik for each column Ai
k ∈ A, such that it

assumes the value of one if the schedule as in Ai
k is selected for worker i.

i.e.

xik =


1 if the assignment k ∈ Ki is selected for worker i,

i.e. colomn (Ai
k)

τ is selected

0 otherwise

(4.2.10)

Let X = (xik : for all i ∈ W , k ∈ Ki). A set partitioning type formulation for
the problem of finding matchings (with cardinality at least mt) with minimum
switchings is formulated as optimum selection of Ai

k which satisfies the feasibility
of assignment constraints. The cost cik of each column Ai

k is defined as the number
of changes in the assignments for the worker i as per the column Ai

k. This implies
if Ai

k = [ajt : ajt ∈ {0, 1}]ᵀ then cik =
∑

t∈T
∑

∈J (1− ajtajt+1).

To summarize, this model reads as follows:

Min
m∑

i=1

ki∑
k=1

cikxik (4.2.11)

subject to

AX = 1 (4.2.12)
ki∑

k=1

xik = 1 ∀i, (4.2.13)

xik ∈ {0, 1} (4.2.14)

Figure 4.3: A column-wise reformulation

Constraint matrix A is very sparse and appears as shown in Fig. 4.4

Theorem 4.2.2. An optimum solution of the linear program in Fig. 4.3 gives an
optimum solution for sequential matching problem too.

43

Chapter 4. A branch and price approach

A1
1 A2

1 . . . Ak1

1 A1
m A2

m . . . Akm

m

11
21
...

m1
.
.
.
.

1τ
2τ
...

mτ



0 0 . . . 0 1 0 . . . 0
1 0 . . . 1 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 0 0 0 . . . 1
.
.
.
.
0 0 . . . 0 0 0 . . . 0
1 0 . . . 1 0 1 . . . 1
...

... . . .
...

...
... . . .

...
0 0 . . . 0 1 0 . . . 0



Figure 4.4: Constraint matrix

Proof. Each Ai
k ∈ A, represents a feasible assignment for i, in each time shift t.

By constraint 4.2.13 only one of the columns can be chosen for each i. By the
definition of Ai

k a feasible solution for 4.3 results in maximum matchings in the
corresponding bipartite graphs. The objective function is to minimize the total
changes for each worker assignment, which is equivalent to minimizing the changes
between matchings in bipartite graphs.

4.3 Methodology outline

In the previous section we have introduced a different reformulation for the sequen-
tial matching problem. However, an explanation of how to practically handle the
resulting large models is still owing. Solving the linear master directly, (i.e.), by
means of the straightforward application of, say, the simplex method is definitively
out of reach. To begin with, recall that in the revised simplex method all data
required per iteration is calculated directly from the original data and this tableau
method which modifies the whole input data from iteration to iteration. What
is more, only the pricing step needs access to nonbasic columns of the coefficient
matrix when it comes to computing the reduced cost coefficients. Let the master
program under consideration have the form of the linear relaxation of the problem
in Section 4.3 which we denote by RMP (Relaxed Master Problem), with columns

44

Chapter 4. A branch and price approach

from the set A.

4.3.1 The restricted master program

We will work with a manageable subset of columns A1 ⊆ A, at the worst starting
with a set which contains only one primal feasible basis for RMP . Although
obtaining this initial set constitutes a problem in its own right, let us assume for
the moment that we are provided with such a column set. As in the literature,
the master program with columns omitted is called restricted. At all times, the
restricted master program represents all current problem information gathered from
subproblem solutions, (i.e.), a subset of columns of the coefficient matrix of a linear
program which proved to be useful to achieve progress in terms of the objective
function value. From a technical point of view, the purpose of the restricted master
program is twofold. Firstly, to combine columns/variables in an appropriate way in
order to obtain a primal feasible solution, and secondly, to provide dual multipliers
to be transferred to the subproblem in order to promisingly extend the current
information.

4.3.2 Column generation

Since in each iteration of the simplex method exactly one basic column is exchanged
for one nonbasic column, generation of columns to enter the basis is the idea behind
the column generation method. Its realization is as follows. Associated with a
primal optimum solution X∗ ∈ R|A1| to RMP is and U∗ is the corresponding
dual optimum solution. Note again, that the optimization to obtain this solution
is carried out having a (very small) subset of columns at hand but checking the
optimality of X∗ with respect to the full program requires testing nonnegativity of
all reduced cost coefficients. This amounts to solving the pricing subproblem,

Z∗ = min{cik − U∗ᵀaik : i ∈ W , k ∈ Ki} (4.3.1)

Primal methods, like column generation, maintain primal feasibility and work to-
wards dual feasibility. It is therefore only natural to monitor the dual solution in
the course of the algorithm. The dual point of view reveals a most valuable in-
sight into the algorithms functioning. The restricted master program is first solved
to obtain the optimum objective function value, and a second time with a differ-
ent objective function, maximizing the sum of auxiliary variables which bound the
dual variable values on the optimum face from below. We summarize the discussed
linear programming column generation algorithm as follows,

45

Chapter 4. A branch and price approach

1. Provide a feasible basis for restricted master program.

2. If a column Al ∈ A′ with negative reduced cost exists then go to step 3,
otherwise stop.

3. Add column Al to restricted master program, re-optimize.

4.3.3 Pricing problem

The pricing step in the simplex method is the task of pricing out the nonbasic vari-
ables, i.e., determining one with a negative reduced cost coefficient (minimization
assumed) which may enter the basis. In looking for such a column, we distinguish
although seemingly not customary in the literature between pricing schemes and
pricing rules, the former describing the set of nonbasic variables to consider, and
the latter referring to the criterion according to which a column is selected from
the chosen (sub)set. As a classical method of chosing from all columns the one
with most negative reduced cost coefficient is an example for such a scheme/rule
pair. In this sense, column generation is a pricing scheme for large scale linear
programs. To each standard pricing rule there exists a column generation sibling:
Instead of pricing out nonbasic variables by enumeration, e.g., the most negative
reduced cost as per equation 4.3.1. In general, using this particular pricing scheme
is obviously more costly than using standard pricing schemes. Despite the fact
that the former cannot compete with the latter in terms of computational effort,
its use is justified by extending the range of applicability of the simplex method to
problem sizes impracticable to standard implementations.

4.3.4 MIP formulation of pricing problem

An integer programming formulation for the generic pricing problem is presented
here. The main idea of the formulation is same as the MIP formulation for the
S(Gc, τ)) in Section 4.2.1. The column generation subproblem can be formulated
from the fact of minimizing the reduced cost as in Fig. 4.5.

The cost of the worker i for a particular schedule k is the number of total job
changes in all time intervals. By constraint 4.3.4 and 4.3.6 the variable yijt assumes
the value of 1 only when the worker i assigned to j in two consecutive time shifts.
Therefore for each i ∈ W , cik =

∑τ
t=2

∑
(i,j)∈(Et−1∩Et)

yijt represents the common

46

Chapter 4. A branch and price approach

Min τ −
τ∑

t=2

∑
(i,j)∈(Et−1(Et−1∩Et)

yijt −
τ∑

t=2

∑
(i,j)∈Et)

uijtxijt (4.3.2)

subject to ∑
j:(i,j)∈Et

xijt ≤ 1 ∀t (4.3.3)

xijt−1 ≥ yijt and (4.3.4)

xijt ≥ yijt (4.3.5)

∀j : (i, j) ∈ Et−1 ∩ Et for t = 2, 3, . . . , τ

xijt, yijt ∈ {0, 1} (4.3.6)

Figure 4.5: The MIP formulation of the pricing problem.

assignments. Therefore the cost of a worker i to assigned for a particular schedule
k is τ − cik, since τ is maximum number of changes possible.

4.3.5 As shortest path problem

We say that a directed network G = (N, A) with a specified source node s and
a specified sink node t is layered if we can partition its node set N into k layers
N1, N2, . . . , Nk so that N1 = {s}, Nk = {t}, and for every arc (i, j) ∈ A, nodes i
and j belong to adjacent layers (i.e., i ∈ Nl and j ∈ Nl+1 for some 1 ≤ l ≤ k − 1).
The problem to be solved is equivalent (Theorem 4.3.1) to determining workers
and the most economical way of assigning them using the available cost function.
For each i, this can be represented as an acyclic directed network as follows. For
each j ∈ J , t = 1, 2, . . . , τ − 1, a node njt is with weight ujt. The directed edges
from njt to nj′t+1 if (i, j) ∈ Et and (i, j′) ∈ Et+1, the weight of the edge is 1 if
j 6= j′ and 0 if j = j′. To convert the node weights to edge weight problem, we
can do any of the following,

1. By replacing njt by two nodes n1
jt and n2

jt, and joined by an edge with weight
of node njt(i.e. with ujt).

2. By adding the node weights to all edges incident from it. This is possible
since the graph is acyclic.

47

Chapter 4. A branch and price approach

By introducing a source and a target node, and connecting the source node to all
nodes nj1 and njτ to the target node, with 0-weighed edges we can transform the
problem to a single source single target shortest path problem. For example Fig. 4.7
represent the shortest path problem for the problem in Fig. 4.6. The notations in
the figure are self-explanatory, for example, the node ‘w1t3’ denotes the worker 1
at time shift 3, the node ‘j4t3’ denote the job 4 at shift 3, and the edge is between
them if the worker 1 is able to do the job 4 at time shift 3.

w1t1• j1t1•

j3t1•

j4t1•

w1t3• j1t2•

j2t2•

w1t3• j1t3•

j3t3•

j4t3•

j5t3•

Figure 4.6: Worker abilities in 3 different time intervals

A shortest path from source node to target node gives a solution to the minimum
reduced cost problem arising from the column generation method. Since the role
of the pricing subproblem is to provide a column that prices out profitably or to
prove that no such column exists, it is a good point to note that any column with
negative reduced cost, if any, contributes to this aim. In particular, in order to
keep the iteration going, there is no need to solve it exactly. With respect to
the ability to choose a different pricing rule it is not even mandatory to state the
pricing problem precisely the way we did. Besides the above elementary purpose
of a profitable column it is useful to consider its quality with respect to the overall
performance of the column generation approach.

Theorem 4.3.1. An optimum solution to the shortest path problem 4.3.5 gives
an optimum solution for the linear program in 4.3.2 too.

Proof. Firstly we prove any path from the source node to target node of 4.3.5 gives
a feasible solution to the linear program in 4.3.2. It is easy to see that any path of
the above type has at least one node from the set Nt = {njt : j ∈ J }, for all t, since
Nt forms a node cut set (A set of nodes of a graph which, if removed (or “cut”),
disconnects the graph). By taking the assignment of the worker i to job j at time
shift t, we get a feasible solution for the linear program. By the construction of
the problem in 4.3.5, the weights on the edges in the graph depend on both the
dual prices and number of changes, and a shortest path actually minimizes the

48

Chapter 4. A branch and price approach

j1t1

j3t1

j4t1

j1t2

j2t2

j1t3

j3t3

j4t3

j5t3

Target

source

0
0

0

0

0
0

0
0

0

1

1

1

1
1

1
1
1

1
1

1 1

Figure 4.7: Shortest Path Problem, for worker i

changes in assignment considering the dual prices. By taking minimum over all i,
it proceeds to an optimum solution of the linear program in 4.3.2.

4.3.6 Initial basis of the restricted master program

When we use the simplex method to solve the restricted master program an initial
basis is required. An initialization is possible by introduction of artificial variables,
one for each constraint of the restricted master program. Usage of these variables is
penalized via a large constant. The identity matrix corresponding to the artificial
columns constitutes a feasible basis matrix. The penalty cost ensures that artificial
variables are driven out of the basis. As soon as this happens, a feasible solution
to the original is found assuming that a feasible solution exists. We limit the
generation of columns that contribute to feasibility only, but whose cost may be
large to be of any value in an optimum solution. An alternative initial basis may
be produced by a primal heuristic, which is of course problem-specific. Here, in
the case of sequential matching problem we could start with a feasible solution for
extensive formulation which is obtained from the maximum matching problem of
respective bipartite graphs. We used the maximum matching algorithm described

49

Chapter 4. A branch and price approach

in Section 1.2.2. A greedy solution obtained by the method 3.3 is also tested
because of the better initial starting point.

4.3.7 Integer solution

Linear programming-based branch and bound is a basic algorithmic technique very
successful vert successful in practice as a method for solving mixed integer pro-
grams. Branch and bound is a divide and conquer approach trying to solve the
original problem by splitting it into smaller problems, denoted as subproblems,
for which upper and lower bounds are computed. The crucial part of a successful
branch and bound algorithm is the computation of upper bounds for these sub-
problems. A solution of the relaxed problem gives a lower bound (minimization
assumed) on the optimum objective function value of the problem it was derived
from. The tighter the relaxation, the better this bound will be. But a relaxation
is only useful if it can be treated at least practically efficiently by optimization
algorithms. An idea for an exact algorithm to obtain integer solutions is linear
programming relaxation at each node of the branch and bound tree via column
generation. This method is known as the branch and price method.

We introduce some terminology concerning upper bounds (derived from solving
relaxations) and lower bounds (obtained by finding feasible solutions). We call an
upper bound local if it is only valid for a subproblem and global if it is a bound
for the original problem. By solving a relaxation of the active problem, we obtain
a local lower bound for the objective function value of the original problem. If the
solution found for the relaxation happens to be feasible for the original problem
(in which case it is also an optimum solution of the subproblem) and has greater
objective function value than any feasible solution found so far, it is memorized and
the global upper bound for the objective function value is increased accordingly.

A branch and bound algorithm maintains a list of subproblems of the original
problem, which is initialized with the original problem itself. In each major itera-
tion step the algorithm selects a subproblem from this list, computes a local upper
bound for this subproblem, and tries to improve the global lower bound. If the
local upper bound does not exceed the global lower bound, the active subproblem
is fathomed, because its solution cannot be better than the best known feasible
solution. Otherwise, we check if the optimum solution of the relaxation of the
subproblem is a feasible solution of the original problem. In this case, we have
solved the subproblem and thus, it is fathomed. If the local upper bound exceeds
the global lower bound and no feasible solution was found for the active problem,
we perform a branching step by splitting the active subproblem into a collection of
new subproblems whose union of feasible solutions contains all feasible solutions

50

Chapter 4. A branch and price approach

of the active subproblem. The simplest branching strategy consists of defining two
new subproblems by changing the bounds of a variable.

Branching in a branch and bound environment pursues two aims: Detect integer
solutions and provide good bounds so as to attest solution quality. A valid branch-
ing rule divides, desirably partitions, the solution space in such a way that the
current fractional solution is excluded, integer solutions remain intact, and finite-
ness of the algorithm is ensured. Moreover, some general rules of thumb prove
useful, such as producing branches of possibly equal size, sometimes referred to as
balancing the tree. Also, important decisions should be made early in the tree.
In addition, a compatible branching rule is one which prevents columns that have
been branched on from being regenerated without a significant complication of
the pricing problem. To achieve these we give a branching scheme, based on the
following theorem. A first outline of the branch and price algorithm for SMP is
given in the flowchart in Fig. 4.8.

4.3.8 Ryan and Foster branching scheme

The RyanFoster rule has been used in several papers solving crew scheduling and
rostering problems, basically set partitioning type problems.

Theorem 4.3.2 (Branching Idea for Set Partitioning Problems, RYAN
& FOSTER). Given A ∈ {0, 1}m×|Q′| and a fractional basic solution to Aλ = 1
i.e., λ 6∈ {0, 1}m. Then r, s ∈ {1, . . . ,m} exist such that

0 <
∑
q∈Q′

arqasqλq < 1. (4.3.7)

When two such rows are identified, we obtain one branch in which these rows must
be covered by the same column, i.e.,∑

q∈Q′

arqasqλq = 1, (4.3.8)

and one branch in which they must be covered by two distinct columns, i.e.,∑
q∈Q′

arqasqλq = 0 (4.3.9)

Note, that this information can be easily transferred to and obeyed by the pricing
problem. The use of the above branching scheme changes the structure of the

51

Chapter 4. A branch and price approach

Figure 4.8: Flowchart of the branch and price algorithm for SMP
52

Chapter 4. A branch and price approach

pricing problems of the corresponding subproblems. In the following section we
discuss the nature of the pricing problem with two additional sets of constraints.
On the left branch subproblems, the pricing problem changes to generating columns
which cover the rows both r and s together. Let’s say that it is equivalent to find
a working schedule for worker i in such a way that both the jobs j′ at t′, and j′′ at
t′′ are assigned to i. On the right branch to make these rows r and s are covered
by distinct columns, we have to find a worker schedule such the either j′ at t′ or
j′′ at t′′ is assigned to worker i, but not both.

We can formulate the pricing problem more precisely using the above restriction.
There are 4 types of pricing problems for the subproblems of the corresponding
branching nodes.

§1 A shortest path problem, as explained in Section 4.2.12, without any addi-
tional constraints.

§2 A constrained shortest path problem on a graph (S, E) with node set S, and
edge set E, and has basic structure as in 4.2.12, with additional constraints.
Let L ⊆ S×S, and for each (r, s) ∈ L, problem is extended to find a shortest
path covering either both the nodes r and s or none of them.

§3 A constrained shortest path problem on a graph (S, E) with node set S, and
edge set E, and has basic structure as in 4.2.12, with additional constraints.
Let R ⊆ S×S, and for each (r, s) ∈ R, problem is extended to find a shortest
path covering either r or s, but not both.

§4 A constrained shortest path problem on a graph (S, E) with node set S,
and edge set E, and has basic structure as in 4.2.12, and having additional
constraints of the type both as in 2 and 3 . i.e. R,L ⊆ S × S, and for all
(r, s) ∈ R and (r′, s′) ∈ L and find a shortest path covering either r or s, but
not both, and covering both r, s or not both.

4.4 Solution methods for pricing problems

Traditional algorithm like Dijkstra [1] work for the shortest path problem without
additional constraints, even if the weights are nonnegative since the graph is acyclic.
But the so called reaching algorithm can solve the shortest path problem on an
m-edge graph in steps of O(m) for an acyclic digraph. This algorithm allows paths
such that edges traversed in the direction opposite to their orientation have a

53

Chapter 4. A branch and price approach

negative length. No other algorithm can have better complexity because any other
algorithm would have to at least examine every edge, which would itself take steps
O(m).

Definition 4.4.1. Let us label the nodes of a graph G = (V, E) by distinct numbers
from 1 through n and represent them by an array order (i.e., order(i) gives the
label of node i). We say that this labelling is topological ordering of nodes if
every arc joins a lower labeled node to a higher labeled node. (i.e.), for every arc
(i, j) ∈ E, order(i)<order(j).

By relaxing the edges of a weighed directed acyclic graph according to a topological
sort of vertices, we can compute shortest paths from single source in O(m) time.
The algorithm starts by topological sorting of the directed acyclic graphs. If there
is a path from vertex u to vertex v, then u precedes v in the topological sort.
We make just one pass over the vertices in the topologically sorted order. As
each vertex is processed all the edges that leave the vertex are relaxed, because of
the special structure of the directed acyclic graph in Section 4.3.5 the topological
ordering can be done in quite an easy way, numbering continuously starting from
source node, the nodes jt, such that j ∈ sorted(J), t ∈ sorted(τ). It results in a
topological ordering since there is no edge between the nodes of the type j′t and
j′′t, and from jt to j′t′ for t > t′. In the following algorithm d(p) denotes the
distance from the source node to node p, d(p, q) denotes the distance from node p
to q.

Algorithm: Shortest Path 1 Topologically sort the vertices of G
2 Initialize source s, d(s) = 0, for all nodes p, d(p) = M where M is large
3 for each vertex u taken in topologically sorted order
4 do foreach vertex v ∈ Adj[u]
5 do d(u) = min(d(u), d(v) + cij)

The adjacent nodes of njt are of the form njt+1. Because of this special structure
of the problem we could simplify the above algorithm as in Algorithm 4. But
the pricing problem on the branching nodes become more complicated with the
additional constraints. An exact algorithm for these problems looks difficult. We
next analyze the complexity of this constrained pricing problem.

Theorem 4.4.1. The constraint shortest path problem in §2 is NP-complete.

Proof. We reduce 3-SAT to a shortest path problem with additional constraints as
in §2 (selection of exclusive nodes from pairs). Given an instance φ of 3-SAT, we

54

Chapter 4. A branch and price approach

Algorithm 3 Solving Shortest Path Problem

d(s)← 0
for t ∈ τ do

for j ∈ J do
if njt Exist then

if t > 0 then
d(njt)←M

else
d(njt)← 0

end if
end if

end for
end for
for t ∈ τ do

for j ∈ J do
if njt Exist and t not equal τ then

u = njt

for j′ ∈ J do
if nj′t+1 Exist then

if d(nj′t+1) > d(u) + d(u, nj′t) then
nj′t ← nj′

end if
end if

end for
end if

end for
end for

first construct a network which has a constrained shortest path if and only if φ is
satisfiable.

We are given an instance φ of 3-SAT with n clauses C1, C2, . . . , Cn, with p boolean
variables α1, α2, . . . , αp, such that each clause being Ci = (αik1 , αik2 , αik3), with the
αik’s being either boolean variables or negations thereof. Now constructing the
node set N of the graph as:

- Add a source node vs and a target node vt.

- For each variable αk adding three nodes vT
αk

, vF
αk

and, vαk
.

55

Chapter 4. A branch and price approach

- For each literal vαik
of Ci in φ add the node vαik

.

- Add additional nodes as vC1 , vC2 , . . . , vCn−1 for each clause C1, C2, . . . , Cn−1.

The edge set E is defined as follows

- The source node is connected to both the node vT
α1

and vF
α1

.

- For each k from 1 to p, add the edges connecting vT
αk

and vF
αk

to vαk
, and for each

k from 1 to p− 1 add the edges connecting from vαk
to vT

αk+1
and vF

αk+1
.

- Edges connecting vαp to the nodes correspond to the literals vα11 , vα12 and vα13of
C1.

- For each clause Ci for i = 1 to n− 1, edges connecting the nodes correspond to
the literals vαi1

, vαi2
and vαi3

are to vCi
, and for each variable index k from 1 to

p− 1 add edges connecting from vT
αk+1 to vαk

.

- Connect the nodes vαn1 , vαn2 and vαn3 to the target node vt.

Now L ∈ N ×N is defined as follows. For each variable αk, the pair (vT
αk

, vαk
)is in

L if αik is a negation of the variable αk in Ci, else the pair (vF
αk

, vαk
) is in L.

An example for four variables is depicted in Fig. 4.9. Say α1, α2, α3, α4 be the
variables. An instance Φ = C1 ∧ C2 ∧ C3 where,

C1 = (α1 ∨ ¬α2 ∨ ¬α3) (4.4.1)

C2 = (¬α1 ∨ α2 ∨ ¬α4) (4.4.2)

C3 = (¬α2 ∨ ¬α3 ∨ α4) (4.4.3)

The graph deduced from Φ has nodes vT
αk

, vF
αk

vαk
for k = 1 to 4, and vαik

, vCi
for

i = 1 to 3. The constraint set L = {(vT
α1

, vα21), (v
T
α2

, vα12), (v
T
α2

, vα32), (v
T
α3

, vα13),
(vT

α3
, vα33), (v

T
α4

, vα24), (v
F
α1

, vα11), (v
F
α2

, vα22), (v
F
α4

, vα34)}

We prove that a shortest path P exists from vs to vt, and only if there is a truth
assignment for a 3-SAT instance.

56

Chapter 4. A branch and price approach

Figure 4.9: The shortest path problem on graph which deduced from Φ

Firstly, if there is a truth assignment, we prove there is a shortest path of length
2(p + n) and satisfying the constraints. Suppose there is truth assignment to the
variables which satisfies all of the clauses. So each of the clause Ci has at least one
literal αik with true value. Let’s say αk is the variable corresponding to the true
literal in Ci (i.e. αij′ is either or ¬α′j). Now describe a path P from vs to vt as
follows.

P = (vs, v
X
α1

, vα1 , v
X
α2

vα2 , . . . , v
X
αp

, vαp , vα1k
, vC1 , vα1k

, vC1 , . . . , vαnk
, vt)

where

vX
αk

=

{
vT

αk
the variable αk is true in the truth assignment,

vF
αk

otherwise.
(4.4.4)

It is easy to claim that P is a shortest path, since every shortest path from vs to
vt has the length of 2(p + n), which is equal to the length of P . The path P also

57

Chapter 4. A branch and price approach

satisfies the condition that it passes through only one of those nodes in the pairs
of the constraint set, i.e. if the pair (vT

αk
, vαik

) ∈ L, then both the nodes can’t be
in the shortest path. This is true because if the node vT

αk
is in shortest path, which

happens only if the variable αk is true (by 4.4.5) and so αki = ¬αk is false. This
implies that the variable vαki

cannot be in the shortest path. The same is true for
the pairs of the type (vF

αk
, vαki

) ∈ L.

Conversely assuming that a shortest path P exists which satisfies the constraints.
By taking a truth assignment as follows,

αk =

{
false if the path P passes through vT

αk
,

true if the path P passes through vF
αk

,.
(4.4.5)

We claim that the above truth assignment satisfies the 3-SAT. Since the path
has length of 2(p + n) it has exactly one node from vαik

for each i. The literal
corresponds to the node αik (either αk or ¬αk) satisfies the truth assignment, since
if αik = αk then αk has to be true in the truth assignment. Since vαik

is in the
shortest path P , the node vF

αk
cannot be in P which implies αk is true.

Since the complexity of the pricing problem turns out to be NP-complete, we
look for new branching rules. Branching on individual variables is attractive since
its implementation is quite simple within the bounded-variable simplex algorithm
that is normally embedded in a MIP solver. However this type of branching can
create an embedded enumeration tree which can lead to excessive enumeration.
We propose another branching technique that has the potential to yield significant
computational improvements for the pricing problem.

This new branching rule can be deduced for the branch and price scheme, using
the following observation.

Lemma 4.4.2. If X∗ is a fractional solution for the LP in column generation form
then

either,

1. Two columns, say k1 and k2, exist which represent the different work schedules
for the same worker, and having a shared job J1

t and one different job J2
t+1. (In

another words, for a fractional solution, there exist two paths in corresponding
layered network formulation of the pricing problem, which shares a node and one
different one, which are in adjacent layers)

or,

58

Chapter 4. A branch and price approach

2. Two workers, say W1 and W2, exist, of different types and having a shared job
in a fixed time interval, and each of them has at least one different job.

Proof. Argument 1 is true since xk1 is fractional, at least one more fractional xk2

should exist because of partitioning constraint 4.2.12. Both of them represent
different work schedules for the same worker. The columns for the fractional xk1

and xk2 represent two paths in the graph in pricing problem. In this case if the
paths share a node then condition 1 holds. If neither of the two paths share a
node, i.e. if they are disjoint, the condition 2 follows. Since problems are of the
set partitioning type, a job exists at a particular time shift shared by two different
workers, and at least one different job.

From the above result we can deduce the branching scheme as follows.

If condition 1 is satisfied, it is easy to find the one node which is shared by the
paths and not sharing

• (1L) On the left branch (just like in Ryan and Foster), generate columns
which contain both the nodes of the type in 1.

• (1R) But on the right branch, generate columns with only one node among
them

If condition 2 is satisfied, the branching strategy changes slightly. Let’s say the
workers W1 and W2 share a job Jt

• (2L) On the left branch generate columns with W2 not assigned to Jt

• (2R) On the right branch W1 is not assigned to jt.

The proposed branching technique has the potential to yield significant compu-
tational improvement if better approximation algorithm can be developed for the
pricing problem on the branching nodes. Since some of the pricing problems on the
nodes of branching tree are still NP-complete. Branching on individual variables
is quite simple to implement, however this type of branching technique can lead to
excessive enumeration because of the unbalanced enumeration tree.

59

Chapter 4. A branch and price approach

4.5 Conclusion

In this chapter we proposed a branch and price procedure, a column generation
scheme with branch and bound for solving the sequential matching problem. We
have also discussed different MIP formulations for the sequential matching problem
S(Gc, τ). The formulation with a huge number of variables is used to develop
a column generation scheme. The pricing problem for the general case can be
formulated as a shortest path problem in a layered network and solved by an
algorithm of O(|E|). The special branching rules lead to NP-complete pricing
problems.

60

Chapter 5

Implementing branch and price
method

5.1 Introduction

In this chapter we describe in detail the implementation of our branch and price
approach to the sequential matching problem, making a few general remarks on
implementing column generation codes as we proceed. To begin with we briefly
explain the details of the implementation and consequently we analyze results
of the column generation implementation. We should emphasize that the code
described here is a research prototype, and not a production implementation. It
is first and foremost intended for ease of testing and evaluating the potential of
our approach. All experiments were performed on a 333 MHz Pentium II PC
with 128 MB core memory running Windows 2000. We used the CPLEX 6.5
and SOPLEX 1.0, the callable libraries to solve the linear and integer programs.
For ease of implementing the branch and price scheme we used ABACUS A
Branch And CUt System, a column generation framework. Compilation with
the Visual C++ 6.0, is invoked “Maximum Speed” optimization. The program
outputs different assignments for workers to workplaces in each time shift. We have
tested the code with the randomly generated data, as explained in Section 5.3.12.
Firstly we describe the design and architecture of ABACUS as in its Reference
Manual [19]. Next the implementation details of the branch and price approach
for the sequential matching problem, and the numerical results are presented in
the following section.

61

Chapter 5. Implementing branch and price method

5.2 ABACUS A Branch And Cut System1

In this section we explain briefly the architecture of ABACUS, and follow with the
details of the implementation and computational results. ABACUS - A Branch
And Cut, is a framework for the implementation of branch and bound algorithms
using linear programming relaxations that can be complemented with the dynamic
generation of columns or cutting planes (linear programming based branch and
bound algorithm). This system allows us to concentrate merely on the problem-
specific parts such as column generation, the cutting plane (for branch and cut) and
the different heuristic needed for column generation. Moreover, ABACUS provides
a variety of general algorithmic concepts, e.g., enumeration and branching strate-
gies, from which we can choose the best alternative for the application. Finally,
ABACUS provides many basic data structures and useful tools for the implemen-
tation of such algorithms. ABACUS has been designed in such a way that we can
use it both for general mixed integer optimization problems and for combinatorial
optimization problems. It unifies cutting plane and column generation within one
algorithm framework. Briefly ABACUS is a collection of abstract data structures
and algorithms which are met by object oriented programming as a collection of
C++ classes.

From the point of view of a user wishing to implement a linear programming-
based branch and bound-based algorithm, ABACUS provides a small system of
base classes from which the application specific classes can be derived. In virtual
functions ABACUS provides default implementations, which are redefined if re-
quired, e.g., the branching strategy. An application based on ABACUS can be
refined step by step. Then this branch and bound algorithm can be enhanced by
the dynamic generation variables, primal heuristics, or the implementation of new
branching or enumeration strategies. Default strategies are available for numerous
parts of the branch and bound algorithm, which can be controlled via a parameter
file. If none of the system strategies meets the requirements of the application, the
default strategy can simply be replaced by the redefinition of a virtual function in
a derived class.

The inheritance graph of ABACUS has been designed as a tree with a single ex-
ception where it uses multiple inheritance. The following sections give a survey of
the the most important application base classes of ABACUS from a column gener-
ation point of view. From these different classes we have derived the classes for the

1The contents of this section is extracted from the Reference Manual of ABACUS version
2.0. [19], [20]

62

Chapter 5. Implementing branch and price method

column generation implementation of SMP. Other important type of classes are
in the group of Pure Kernel which is usually invisible to users, deals mainly with
branch and bound algorithm, the solution of linear programs, and the management
of constraints and variables. This group covers classes that are required for the im-
plementation of the kernel of ABACUS but are usually of no direct importance for
the user of the framework. There are other classes providing basic data structures
and tools which can optionally be used for the implementation of an application.

The following application base classes are mainly involved in the derivation process
for the implementation for the SMP.

5.2.1 The Master

The class ABA MASTER is one of the central classes of the framework. It controls
the optimization process and stores global data structures for the optimization.
For each new application a class has to be derived from the class ABA MASTER. The
class ABA MASTER also provides default implementations of pools for the storage
of constraints and variables. Some virtual functions are also defined in this class
with different enumeration strategies which are required in a branch and bound
framework.

5.2.2 The Subproblem

The class ABA SUB represents a subproblem of the implicit enumeration, i.e., a node
of the branch and bound tree. The subproblem optimization is performed by the
solution of linear programming relaxations. Usually, most run time is spent within
the member functions of this class. Also, from the class SUB a new class has to
be derived for each new application. By redefining virtual functions in the derived
class problem specific algorithms such as cutting plane or column generation can
be embedded.

5.2.3 The Constraints and Variables

ABACUS provides some default concepts for the representation of constraints and
variables. However, it might still be necessary, for a new application, for special

63

Chapter 5. Implementing branch and price method

classes to have to be derived from the classes ABA CONSTRAINT and ABA VARIABLE,
which then implement application-specific methods and storage formats.

ABA_GLOBAL

ABA_ABACUSROOT

ABA_SUB
 ABA_CONVAR

ABA_MASTER
 ABA_MYSUB
 ABA_VARIABLE
 ABA_CONSTRAINT

ABA_MYMASTER
 ABA_MYVARIABLE
 ABA_MYCONSTRAINT

Figure 5.1: Problem specific classes in Abacus

5.3 Sequential Matching Problem: Implementa-

tion details

In this section we describe the details of the implementation of the branch and
price approach to the Sequential Matching Problem (SMP), which uses ABACUS.
In order to allow for easy testing of our code, we generated a file input/output
system. Outside the branch and price scheme, the whole project includes codes
including for the random generation of problem and the graph algorithms which
are needed for some cases of pricing problem solution. Most options are introduced
throughout the chapter, otherwise they are self-explanatory.

5.3.1 Restricted Master Problem

We introduced in Chapter 4 a column generation formulation of the sequential
matching problem, with variables as a possible lifeline of a worker. The objective
function we actually implemented in our column generation code is minimization

64

Chapter 5. Implementing branch and price method

of the total changes in jobs. i.e., for this particular objective, the cost coefficients
range in integers for some practical instances, because it is the number of changes
in jobs during a schedule. Note also, that the cost can simply be calculated by
straightforward addition. Section 4.3.2 in Chapter 4 outlines the master iteration
of our branch and price model which we present in more detail below. We always
initialize the restricted master program with an all artificial basis as a solution of
the initial matching problem and an identity matrix. This is the default initial
solution. This can be changed by redefining the program settings. The artificial
variable penalty M can be modified via −M . In the early stages of the algorithm,
this penalty cost strongly influences the dual variable values. Therefore, this value
should be carefully chosen. In our experience, very large penalties amplify the
aforementioned effect; too small penalties fail to penalize sufficiently.

5.3.2 Subproblem Solution and Column Management

The pricing subproblem is the most frequently executed essential component of
a column generation code. Each call should therefore be as effective as possible,
or in other words, the computation timeinvested should pay off to the greatest
possible extent. As explained as in Chapter 4 the pricing problem on the root
node is a shortest path problem. But the problem becomes more complicated with
additional branching strategy which is introduced in Chapter 4. This becomes
clear when we recall that it is neither mandatory to add a most profitable column
to the restricted master program nor are we restricted to adding only one column
at a time, while this is precisely what happens if the pricing problem is solved
exactly, in alternation with the re-optimization of the restricted master.

5.3.3 Column Pool

We manage our column pool and subproblem optimization in standard ways. The
generated columns with negative cost which are not added to the restricted master
program are not simply rejected, but are stored in a column pool, if the reduced cost
is significantly smaller. The size of the column pool can set to a predefined value.
This concept can be implemented using ABACUS. Before using other methods to
find columns to be entered we check whether the pool contains columns with sig-
nificantly lower value of reduced cost. These may become active in later iterations.
However, such columns are only added when in the same iteration at least one
negative reduced cost column is added from the column pool, since cycling may

65

Chapter 5. Implementing branch and price method

occur. We try to keep a pool of high quality. When no columns are delivered from
the pool we use the constraint shortest path algorithms to generate columns.

5.3.4 Implementation

In this section we discuss the details of the class structure and inheritance for
Sequential Matching Problem implementations, which are derived mostly from
ABACUS classes. We discus only the main important problem-specific classes
SMP, SUBSMP, SMPVAR, SETPARCON, SMPINSTANCE, BRANCHRULE RF, BRANCHRULE SMP

and SPP.

5.3.5 The class for master problem: SMP

The class SMP is the central class of the implementation. It is derived from the class
ABA MASTER. This class mainly deals with problem-specific variables and functions
for the master problem in the branch and price algorithm.

class SMP:public ABA_MASTER{
public:

SMP(const char* problemName);
virtual~SMP();
virtual ABA_SUB* firstSub();
virtual void output();
virtual void initializeParameters();
virtual int enumerationStrategy(ABA_SUB*s1,ABA_SUB*s2);

int nJobs()const;
int nWorkers()const;
int nTimeShifts()const;
int nAbleJobs(int worker, int shift)const;
int jobAtT(int worker, int shift, int jobindex)const;
int nMaxRows()const;
int nMaxConstraints;
int nChanges(int columnNumber);
int initMatch(int worker, int shift);

double firstMatchings(ABA_BUFFER<ABA_BUFFER<int>*> &matchings);
void updateBestSolution(double value,

66

Chapter 5. Implementing branch and price method

ABA_BUFFER<ABA_COLUMN*>&columns);
void genIntegerProgram(const char*fileName);
bool checkFarleysCriterion()const;
bool poolPricing()const;
bool stopAfterPoolPricing()const;
void countShortestPathProblem();
void newIntegerProgramCols(int nNewCols);
void newPoolPriceCols(int nNewCols);
void newSPPCols(int nNewCols);
void DisplayProblem();

private:
virtual void initializeOptimization();
int leftFirstSearch(ABA_SUB* s1,ABA_SUB* s2);
SMPINSTANCE* instance_;
ABA_BUFFER<ABA_COLUMN*>*bestColumns_;
bool showSolution_;
bool genIP_;
bool checkFarleysCriterion_;
bool poolPricing_;
bool stopAfterPoolPricing_;
int nShortestPathProblem_;
int nSPPCols_;
int nPoolPriceCols_;
SMP(const SMP&rhs);
const SMP&operator= (const SMP&rhs);

};

The class SMP derived from the class ABA MASTER has a constructor such as

SMP::SMP(const char* problemName):ABA MASTER(problemName,false,true,

ABA OPTSENSE::Min) {...}, where it initializes SMP as column generation, and
problem data is read. The arguments are explained as follows.

problemName, the name of the problem being solved.

cutting is false, since no cutting planes are generated.

pricing is true, since inactive variables are priced in, and the function ABA SUB::pricing

is redefined.

optSense, the sense of the optimization is ABA OPTSENSE::Min.

67

Chapter 5. Implementing branch and price method

In order to initialize the upper bound we apply the firstMatchings(...) a
matching algorithm for each graph and the solution as initial feasible solution to
RMP. The variables of this solution are enlarged by the variables induced by the
identity matrix, to make the linear programs feasible, even after some branching
steps. Otherwise, the pricing problem could not be solved. With this variable set
the variable pool and the first subproblem are initialized. The constraints are given
of the type of set partitioning. Since the method is branch and price, with column
generation, we do not require a cut pool, provided by ABACUS. As expected, our
computational experience shows that the pricing problem can be solved faster in
subproblems that do not have any side constraints as explained in Chapter 4.

5.3.6 The class for subproblem: SUBSMP

The class SUBSMP is managing the subproblem in the column generation method.
It is derived from the class ABA SUB. It mainly deals with subproblem-specific func-
tions and variables. New subproblems are generated according to the branching.
We embedded the branching rules within the mixed integer programming, but the
corresponding linear programming solved by CPLEX and SOPLEX. The current
implementation of the code first carries out a Ryan and Foster branching scheme,
the default branching rule. The SMP branching rule is also implemented, and the
corresponding pricing problem solution technique implemented.

class SUBSMP:public ABA_SUB {
public:

SUBSMP(ABA_MASTER* master,ABA_SUB* father,
ABA_BRANCHRULE* branchRule);

SUBSMP(ABA_MASTER* master);
virtual~SUBSMP();
virtual bool feasible();
virtual ABA_SUB *generateSon(ABA_BRANCHRULE* rule);
virtual int improve(double& primalValue);
virtual int pricing();
SMP* smp();
int branchingConstraints(int&con0,int&origCon0,

int&con1,int&origCon1);
int addToPoolAndBuffer(ABA_BUFFER<SMPVAR*>&newCols);
void printMatrix(ostream&out);
int tailSosCon(int i)const;
int headSosCon(int i)const;
int nSosCon()const;

68

Chapter 5. Implementing branch and price method

BRANCHRULE_RF* branchRule();
ABA_BUFFER<int> *remove;

private:
virtual void activate();
virtual void deactivate();
virtual ABA_LP::METHOD chooseLpMethod(int nVarRemoved,int nConRemoved,
int nVarAdded,int nConAdded);
virtual initMakeFeas(ABA_BUFFER<ABA_INFEASCON*>&infeasCons,

ABA_BUFFER<ABA_VARIABLE*>&newVars,
ABA_POOL<ABA_VARIABLE,ABA_CONSTRAINT>**pool);

virtual int generateBranchRules(ABA_BUFFER<ABA_BRANCHRULE*>&rules);
ABA_SET* conSets_;
ABA_ARRAY<bool> *removedCon_;
int nRemovedCon_;
ABA_ARRAY<int> *tailSosCon_;
ABA_ARRAY<int> *headSosCon_;
int nSosCon_;
ABA_ARRAY<bool>* inSosCon_;
SUBSMP(const SUBSMP&rhs);
const SUBSMP&operator= (const SUBSMP&rhs);

};

The stopping criterion for each subproblem is when there is no new column gener-
ated for the subproblems.

5.3.7 The class for variables: SMPVAR

The variables are represented by the class SMPVAR which is derived from the ABA-
CUS class COLVAR, to redefine some virtual functions. A variable of the SMP is
valid if it satisfies all branching rules. Therefore, we redefine the function valid(

). We also redefine the virtual function redCost() for efficiency reasons.

class SMPVAR:public ABA_COLVAR { public:
SMPVAR(ABA_MASTER* master,bool dynamic,double obj,

int nnz,ABA_ARRAY<int>&support,ABA_ARRAY<double>&coeff);
SMPVAR(ABA_MASTER*master,bool dynamic,double obj,ABA_SPARVEC&vector);
......

};

69

Chapter 5. Implementing branch and price method

5.3.8 The class for constraints: SETPARCON

The class SETPARCON is for the representation of these set partitioning constraints
from the class NUMCON. The constraint matrix for the sequential matching problem
is defined through the variables. So each constraint has a unique representation
given by its number.

class SETPARCON:public ABA_NUMCON {
SETPARCON(ABA_MASTER*master,int id);
......

};

Other than special classes for the master, the subproblem, the variables, and the
constraints, we implemented problem-specific classes for the representation of an
instance of the sequential matching problem, for the solution of the constrained
shortest path problem in the pricing phase, and for the different branching rules
which we discussed as in Chapter 4, including Ryan and Foster.

5.3.9 The class for problem instance: SMPINSTANCE

SMPINSTANCE is the class to manage an instance of the problem. It is derived from
the class ABA ABACUSROOT. It mainly deals with the variables regarding an instance
of sequential matching problem. The class SMPINSTANCE has a constructor with a
filename as argument, from which the problem data is read.

class SMPINSTANCE:public
ABA_ABACUSROOT { public:

SMPINSTANCE(ABA_MASTER* master,const char* fileName);
.....

};

5.3.10 The branching rules: The classes BRANCHRULE RF and
BRANCHRULE SMP

We have implemented two kinds of branching rule as explained in Chapter 4. The
first one is, as described, the branching rule of Ryan and Foster for set partitioning

70

Chapter 5. Implementing branch and price method

problems. We derived the class BRANCHRULE RF from BRANCHRULE, an abstract base
class for all branching rules within the ABACUS framework. The most important
member function of this class is the function extract(), which defines a pure
virtual function of the base class BRANCHRULE. This function modifies a subproblem
according to the branching rule. It removes invalid variables and removes the
redundant constraint in the left subproblem. In the right subproblem the respective
constraint is added to the pricing problem.

The second branching rule, described is BRANCHRULE SMP is also derived from the
abstract base class BRANCHRULE.

5.3.11 The pricing problems: SPP

The root node pricing problem of the sequential matching problem is a layered
shortest path problem that can have additional side constraints. The class SPP

provides data structures and solution methods for the layered shortest path problem
that can have additional constraints derived from the different branching strategy.
This class contains different algorithms for the pricing problems in left and right
branches, by applying the different branching strategy. As per in Chapter 4 while
using Ryan and Foster method, the pricing problems on the branches turns up
to NP-Complete problems of finding shortest paths with restriction on the pairs
of nodes. We attempted to solve these problems using the heuristic algorithms
and found computationally inefficient problems become complex when going down
through the branching tree.

But when the new branching strategy as per Section 4.3.7 of Chapter 4 is used the
problem turns out to be less complicated. In this case the class SPP contain an
algorithm for solving this kind of special problems.

The Fig. 5.2 shows the important class inheritance of SMP.

We have many implementation specific classes, but a detailed description here is
superfluous.

71

Chapter 5. Implementing branch and price method

ABA_MASTER

SMP

ABA_SUB

SUBSMP

SMPINSTANCE

ABA_COLUMN

ABA_CONSTRAINTS

ABA_VARIABLES

SMP

 SMPVAR

 ABA_SET

 RFBRANCHRULE

SMPBRANCHRULE

ABA_COLVAR

SMPVAR

ABA_BRANCHRULE

SMPBRANCHRULE

ABA_NUMCON

SETPARCON
 RFBRANCHRULE

ABA_ABACUSROOT

SMPINSTANCE

Dependencies

Classes

Derivation

Figure 5.2: Class structures, derivation and dependencies in SMP

5.3.12 Problem generation

Let us conclude this section with a few methods to generate random problems
by using the random variables from common distributions. We use a standard
method of generating random variables on a distribution. Usually there is more
than one method to generate a pre-specified random variant. The relative merits of
different generation methods are compared based on their accuracy (theoretical and
numerical), execution speed, ease of implementation (coding effort and subroutine
support), portability, memory requirement, and interaction with variance reduction
techniques. Some random problems are generated using the following assumptions.

• The discrete time intervals are uniform during a day.

• The number of workers and jobs are fixed.

72

Chapter 5. Implementing branch and price method

• The number of jobs allowed/able to be done by a worker on a time shift is
normally distributed with a predefined mean and deviation.

• The jobs for a worker at a time shift are randomly selected (uniform dis-
tributed, without repetition).

A random, problem-generating algorithm is implemented separately, which can
output a problem instance with specific input parameters. For a given number
of workers and jobs, and assuming normally distributed jobs with mean µ and
standard deviation σ.

To generate a uniformly distributed random number between any two integers
lownumber and upnumber, we implemented a small routine
SMPRANDOM::urandom(int lownumber, int upnumber), which basically uses the
(int)rand(), a pseudo random number generating function (between 0 and RAND MAX)
provided by VC++ 6.0. To generate a non-repeating random sequence we provid a
subroutine void SMPRANDOM::randomseq(int lownumber, int endnumber, int

n, int* select). The idea of the algorithm is to generate indices from 1 to n
of an array A randomly, using SMPRANDOM::urandom(1, n), and output A[i]. We
iterate the process with A[i]← A[n], n← n−1 until all the numbers are generated.

The function int SMPRANDOM::nrandom(int max jobs, float mu, float sigma)

generates an identically distributed normal random numbers with mean mu and
variance sigma, and the maximum number of max jobs. The algorithm is based
on polar method to generate two identically-distributed normal random variables,
which we briefly describe below.

N(0, 1) - Normal distribution with mean 0 and standard deviation 1.

U(0, 1) - Uniform distribution from 0 to 1.

Algorithm 4 Generating two N(0, 1) random variables

STEP 1: Generate X1 and X2 two independently and uniformly-distributed
random numbers from U(0, 1).
STEP 2: Let Y1 = 2X1 − 1, Y2 = 2X2 − 1, S = Y 2

1 + Y 2
2

STEP 3: If S > 1, return to STEP 1
STEP 4: Generate 2 independent standard normal random numbers

Z1 =

√
−2 log(S)

S
Y1 Z2 =

√
−2 log(S)

S
Y2

73

Chapter 5. Implementing branch and price method

This algorithm does indeed produce two independently-distributed N(0, 1) random
variables Z1 and Z2. The polar coordinates (R, θ) of (Y1, Y2) such that R =

√
S

is uniformly distributed in U(0, 1) and θ = tan−1(V 2/V 1) is uniformly distributed
in U(0, 2π). By Box-Muller transformations,

X =
√
−2log(X1) cos(2πX2) (5.3.0)

and
Y =

√
−2log(X1) sin(2πX2) (5.3.0)

are independently and normal distributed random variables for X1, X2 are inde-
pendently distributed in U(0, 1), since

f(x, y) =
1√
2π

exp(−x2

2
)

1√
2π

exp(−y2

2
) (5.3.0)

such that

P(X ≤ x1, Y ≤ y1) =
1

2π

∫ x1

−∞

∫ y1

−∞
exp(−x2 + y2

2
)dxdy

=
1√
2π

∫ x1

−∞
exp(−x2

2
)dx

1√
2π

∫ y1

−∞
exp(−y2

2
)dy

For proof see Knuth [21].

Since R is independent of θ, by substituting back into the Box-Muller transforma-
tion, we get,

X =
√
−2 log(U)

Y1√
R

= Y1

√
−2log(R)

R
(5.3.-2)

and

Y =
√
−2 log(U)

Y2√
R

= Y2

√
−2log(R)

R
(5.3.-2)

On average, this method requires 4/π = 1.273 iterations [21].

5.4 Computational results

We report in this section computational results obtained with our column gener-
ation approach for sequential matching problem. All computational experiments

74

Chapter 5. Implementing branch and price method

Problem Size Constraints Columns Optimum Solution CPU Time(in sec)
(10,10,3) 40 120 10 2.594
(20,20,3) 80 420 8 5.277
(40,40,3) 160 1680 3 51.985
(60,60,3) 240 4860 5 301.333
(80,80,3) 320 5040 2 710.542

(100,100,3) 400 8500 3 1597.03

are performed on the randomly generated problem as described in the previous
section.. In all experiments a steepest edge dual simplex algorithm was used for
solving the LP relaxations. The solvers default branching scheme we implemented
is Ryan and Foster 4.3.8, and the solution of corresponding subproblems are solved
by mixed integer programming method (An exact solution method for the corre-
sponding constrained shortest path problem is still owing). The new branching
scheme using the Lemma 4.4.2 also implemented to get a faster solution.

We first performed computational experiments with various randomly generated
problem instances. The table in 5.4 gives some examples where the contents are
explained as,

• Problem Size: The triplet (nW,nJ,nT) represents the number of workers,
jobs, time shifts respectively.

• Constraints: The number of constraints in the final problem.

• Columns: The number of columns in the final problem.

• Optimum Solution: The optimum solution (the number of changes in final
matchings or the optimum assignments).

• CPU Time: The total run time for each of the instances.

5.5 Conclusion

We have presented many classes in the branch and price implementation for the
column generation formulation for the sequential matching problem. Computa-
tionally the method is effective for medium-size problem instances. To be able to

75

Chapter 5. Implementing branch and price method

solve larger instances, it is necessary to have better branching schemes and pricing
algorithms. Furthermore, the performance of the algorithm may be improved if
better pricing heuristics can be developed for the pricing problem in some of the
classes of subproblems. Also, the computational experiments indicate that solving
pricing problems is likely to be even more challenging.

76

Chapter 6

2-Graph Problem

6.1 Introduction

In this chapter we describe a simplified version of the sequential matching problem,
by considering only two bipartite graphs. The problem is to find the maximum
cardinality matchings in these two graphs with minimum changes in edges. It is
equivalent to maximum assignment of the workers to jobs in two different shifts
in such a way as to minimize the unnecessary changes. In the next sections we
analyze the problem, NP- completeness, an augmenting cycle algorithm with the
main idea of growing the common edges and conclude with some computational
results.

6.2 Problem definition

The sequential matching problem S(G, H) for two bipartite graphs G and H to
minimize the changes between the edges in the maximum cardinality matchings
can be defined as follows.

Definition: Given two bipartite graphs G = (L1, R1, E1), H = (L2, R2, E2) where
L1, R1, L2, R2 subsets of V , denote the node sets and E1, E2 ⊆ E denote the edge
sets. The problem S(G, H) is to find two maximum cardinality matchings M1 in
G and M2 in H such that, |M1 ∩M2 | is maximum.

77

Chapter 6. 2-Graph Problem

Definition: For any graph G = (V, E) we say a subset of edges A is allowed with
respect to G if a maximum cardinality matching M exists in G such that A ⊆M .
(i.e.), any subset A of M is called allowed in G with respect to M .

Property 6.2.1. The sequential matching problem S(G, H) for two bipartite graphs
in G and H, is a simpler case of the problem of finding a maximum cardinality edge
set A ⊆ E, such that A is allowed in both G and H with respect some maximum
matching M1 and M2 in respective matchings.

This is because the problem S(G,H) can be deduced from the problem of finding
the maximum cardinality Aint ⊆ E1 ∩ E2 such that Aint is allowed in both G and
H with respect some maximum cardinality matchings M1 and M2.

6.3 Complexity analysis

Instance: Two bipartite graphs G and H on a node set V . Let k be an integer.

Question: Are there two matchings g in G and h in H, such that

1. g and h are of maximum cardinality.

2. There are at least k common edges in g and h.

We show that an instance S(G, H) of sequential matching problem for two graphs
can be polynomially transformed to an instance of 3-SAT. We state the result as
Theorem 6.3.1.

Theorem 6.3.1. Sequential Matching Problem with 2 bipartite graphs is NP-
complete.

Proof. The reduction is from 3-SAT to sequential matching problem for two bipar-
tite graphs. Given an instance φ of 3-SAT, we first construct two bipartite graphs
G and H having maximum cardinality matchings g and h with at least k common
edges, if and only if φ is satisfiable.

We are given an instance φ of 3-SAT with k clauses C1, C2, . . . , Ck, with p boolean
variables α1, α1, α3, . . . , αp, such that each clause being Ci = (αi1, αi2, αi3), with

78

Chapter 6. 2-Graph Problem

the αij’s being either boolean variables or negations thereof. Now construct the
graphs G = (L1, R1, E1) and H = (L2, R2, E2) as follows: (L1, L2 represent left
node sets, R1, R2 represent the right node sets).

§1 For each literal we have an edge and two nodes in both graphs. Say for each i, the
literals αij represented by nodes v1

ij ∈ L1, w1
ij ∈ R1, v2

ij ∈ L2 and w2
ij ∈ R2, and

connecting them by edges e1
ij ∈ E1 and e2

ij ∈ E2.

§2 In graph G, for each variable we need to add edges to get a false/true switching
behavior for the literals belonging to a common variable. So for each literal of φ
such that it is non-negated variable αj we add the nodes {v1

i1j, v
1
i2j, . . . , v

1
iqj} to L1,

and {w1
i1j, w

1
i2j, . . . , w

1
iqj} ∈ R1,. Also the nodes {v1

i1j, v
1
i2j, . . . , v

1
irj} are added to

L1 and {w1
i1j, w

1
i2j, . . . , w

1
irj} to R1, to represent the literals of φ which are negated

variable ¬αj. By adding two new nodes v1
αj

to L1 and w1
αj

to R1, we introduce new

edges such that, {e1
i1j, e

1
i2j, . . . , e

1
iqj} ∈ E1 and {e1

i1j, e
1
i2j, . . . , e

1
irj} ∈ E1 as follows,

- Add edges eirj, connecting v1
i1j to w1

i2j, ei2j; connecting v1
i2j to w1

i3j etc. But
the edge eiqj connecting v1

iqj to w1
αj

.

- Add edge ei1j connecting v1
i1j to w1

αj
.

- Add edges ei2j, connecting w1
i1j to v1

i2j; ei3j connecting w1
i2j to v1

i3j etc. But

the edge eirj is connecting w1
irj to v1

αj
.

- Add edge eαj
connecting v1

αj
to w1

i1j

The construction for a non-negated variable αj is illustrated as in Fig. 6.1.

§3 In H for each clause Ci, add two nodes each in L2 and R2 and 6 edges to E2, such
a way that any maximum matching of subgraph induced by nodes of Ci contain
exactly one literal edge from E2. i.e., for each i, (for the clause Ci) adding the
nodes v2

ia, v
2
ib ∈ L2 and connecting to all the nodes w2

ij ∈ R2. Similarly add nodes
w2

ia, w
2
ib ∈ R2 and connecting to all the nodes v2

ij ∈ L2. Fig. 6.2 illustrates this
construction for the clause Ci.

We prove that maximum matchings g and h exist, with at least k common edges
if and only if there is a truth assignment for a 3-SAT instance.

79

Chapter 6. 2-Graph Problem

v
1

i1j •

v
1

i2j •

•

•

v
1

iqj •

vαj •

v
1

i1j •

v
1

i2j •

•

•

v
1

irj •

w
1

i1j•

w
1

i2j•

•

•

w
1

iqj•

wαj•

w
1

i1j•

w
1

i2j•

•

•

w
1

irj•

Figure 6.1: Subgraph of G induced by the variable αj

80

Chapter 6. 2-Graph Problem

v
2

ia
•

v
2

ib
•

w
2

ij1
•

w
2

ij2
•

w
2

ij3
•

w
2

ia
•

w
2

ib
•

w
2

ij1
•

w
2

ij2
•

w
2

ij3
•

Figure 6.2: Subgraph of H induced by the clause Ci

Assuming that maximum matchings g and h exist with at least k common edges,
we can find a truth assignment for the corresponding 3-SAT problem. Since both
matchings are maximum, notice that all the nodes in L1 have to be matched in
G (since the matching number G =| L1 |). By the construction, the common
edges possible are from e1

ij ∈ E1 and e2
ij ∈ E2, which represents the literals. That

matching h is maximum implies that, for each i there exists exactly one edge
of the form e2

ij′ is in h (the construction §1) for some variable α′j. Taking a truth
assignment for each α′j such that the literal corresponds the edge eij′ is true, satisfies
each of the clause Ci. By the construction of G it is clear that we can have such
a truth assignment, since a maximum matching in G cannot have both the edges
of the literal αj and ¬αj, since both these edges are incident with the same node.
This implies that such a truth assignment also satisfies the instance φ.

Conversely, suppose there is a truth assignment to the variables which satisfies
instance φ such that each of the clauses Ci has at least one literal αij′ with true
value. Let’s say αj′ is the variable corresponding to the true literal in Ci (i.e., αij′

is either αj′ or ¬αj′). Now describe a matching g in G such that it contains edges
e1

ij′ and a matching h in H such that e2
ij′ in h. Since both αj and α′j cannot be true

we can add edges to g such that it becomes a maximum matching in G. Since every
maximum matching of H contains exactly one edge from the edges representing
the clause Ci, surely h can also be extended to a maximum matching. So both g
and h have exactly k common edges.

81

Chapter 6. 2-Graph Problem

6.4 Solution method

In this section we are generating heuristic procedures to examine how the solution
can be better attained for this special case of the sequential matching problem
with two graphs. First we look at a weighted edge method by solving the maximum
weighted maximum cardinality matchings on weighted graphs. Let G and H be
the bipartite graphs, we construct two weighted bipartite graphs G′ and H ′ from G
and H such that they have an extra weight for the common edges. The idea of the
algorithm is to find maximum weighted maximum cardinality matchings M1, M2 in
weighted graphs G′ and H ′ respectively. The algorithm 5 describes the procedure
precisely.

Algorithm 5 Weighted edge method: Solving the 2-Graph problem

Find the edges which are common in both graphs.
Add an extra weight (say 1) to these edges in both graphs.
Solve maximum weighted maximum cardinality matching problem in both
graphs.

Even though the basic idea of the algorithm is to maximize common edges in the
graphs, the algorithm need not give an optimum solution for the problem. This
is because the same weighted common edges need not occur in both maximum
cardinality matchings simultaneously. The following counter example illustrates
this fact.

Consider two bipartite graphs G and H as shown in Fig.6.3. The problem is to find
maximum cardinality matching in each bipartite graphs with minimum changes in
edges. The common edges in both graphs are represented by the thick edges. Let

w •

x •

y •

z •

a•

b•

c•

d•

w •

x •

y •

z •

a•

b•

c•

d•

Figure 6.3: Bipartite graphs G and H

us examine the solution for this problem, as shown in Fig. 6.4, which is given by

82

Chapter 6. 2-Graph Problem

algorithm 5. Since in this method the attempt is made to maximize the number of
common edges locally in each bipartite graph, the algorithm results in matchings
which have the greatest number of weighted edges (thick edges). But it fails to
make these edges common in both matchings. So the edges in each matchings
are still different, not giving an optimum solution. Compare the solution with the
following optimum solution.

w •

x •

y •

z •

a•

b•

c•

d•

w •

x •

y •

z •

a•

b•

c•

d•

Figure 6.4: Matchings in G and H output by the algorithm 5

We can find an optimum solution for the problem with a single change in total,
as shown in Fig. 6.5. This shows that the algorithm does not give an optimum

w •

x •

y •

z •

a•

b•

c•

d•

w •

x •

y •

z •

a•

b•

c•

d•

Figure 6.5: Optimum matchings for G and H

solution in this problem, and motivates the search for a better method.

6.5 Augmenting cycle method

Definition 6.5.1 (Alternating Paths and Cycles). Let G = (V, E) be a graph,
We refer to a path P in the graph as an alternating path with respect to a matching

83

Chapter 6. 2-Graph Problem

M if every consecutive pair of arcs in the path contains one matched and one
unmatched arc. We refer to an alternating path as an even alternating path if it
contains an even number of arcs and an odd alternating path if it contains an odd
number of arcs.

Definition 6.5.2 (Alternating Cycle). An alternating cycle C with respect to
M is an alternating path that starts and ends with same node.

Note that for a bipartite graph, the alternating cycle is of even length.

Definition 6.5.3 (Augmenting Paths). We refer to an odd alternating path P
with respect to a matching M as an augmenting path if the first nodes in the path
are unmatched.

Let ⊕ denote the augment operator as defined in Chapter 1. i.e., for any two sets
A⊕B = (A ∪B)− (A ∩B).

Property 6.5.1. If G is a bipartite graph and C is an alternating cycle with respect
to a matching M, then a matching M ′ = M ⊕ C exists with the same cardinality
of M.

When M is a maximum cardinality matching and if an alternating cycle exists
as above, then another matching exists, which is again of maximum cardinality.
Using this property we sketch an algorithm which has basic steps as follows.

The algorithm starts with two bipartite graphs G and H, with maximum cardi-
nality matchings M1 in G, and M2 in H. The idea of the algorithm is to find a
better matching M ′

1 (or M ′
2) which has more common edges with respect to M2 (or

M1). This updating for M1 can be done by adding an extra weight to those edges
of G which exists in M2, and by finding a positive weighted alternating cycle C1

in G. A similar updating for M2 can be done by adding extra weight to the edges
of H that are in M1. This updating can be done in a special order, until there
is no improvement in the common edges. We implement the above idea into the
algorithm 6 by alternatively augmenting the common edges between the matchings
in G and H. For i = 1, 2 define Wi : Ei → R, the weight function from Ei to R
the set of real numbers. Also for any E ′

i ⊆ Ei, we defineWi(E
′
i) =

∑
ek∈E′

i
W(ek).

The initial input matchings play an important role in this algorithm. Supposing
we start with two disjoint matchings in non-disjoint graphs there is no further
improvement in the solution, unless we consider the zero weighted alternating
cycles. Therefore the results of the algorithm can be improved by starting with

84

Chapter 6. 2-Graph Problem

Algorithm 6 Augmenting Cycle Method (ACM): Solving the 2-Graph problem

AugmentingCycleMethod(G1, G2, M1, M2)
input: Bipartite graphs G1 = (V1, E1) and G2 = (V2, W2), with matchings M1

and M2.
i := 1,f1 := NOTFOUND, f2 := NOTFOUND

while f1 6= FOUND or f2 6= FOUND do
for ek ∈M3−i do

if ek ∈ Gi then
if ek /∈Mi then
Wi(ek) := 1

else
Wi(ek) := −1

end if
end if

end for
Ci := NegWeighedAlternatingCycle(Gi, Mi)
if Ci 6= ∅ then

Update Mi := Mi ⊕ Ci Comment: Augment |Mi ∩M3−i|
f1 := NOTFOUND , f2 := NOTFOUND

else
fi := FOUND

end if
i← 3− i

end while
output: Matchings M1 and M2

a good solution, probably an output given by algorithm 5. The run time of the
algorithms can be as bad as O(n4).

Now we address the subproblem of finding a negative alternate cycle in the bipartite
graph Gi = (Li, Ri, Ei) with respect to the matching Mi. The algorithm 7 output
a negative alternate cycle if one exists. In the following section we briefly discuss
the procedures in the algorithm.

If we look back at the construction of an alternating cycle we may notice that
one of the neighbours of a vertex vi ∈ Li in the cycle is always its matched node
in Ri. We can thus simplify the search technique by ignoring one level of nodes
(say right) and going directly from the left level of vertices to the new left level of
vertices. Obviously this corresponds to searching in a directed graph D = (Nd, Ed)
constructed from the Gi based on the matching Mi. For v1, v2 ∈ Nd, the edge

85

Chapter 6. 2-Graph Problem

Algorithm 7 Negative weighted alternating cycle in G w.r.t. M

NegWeighedAlternatingCycle(G, M)
input: A weighted bipartite graph G = (L, R, E) with a matching M .
D = (Nd, Ed), new empty directed weighted graph
for each matched node vi ∈ L in M do

Nd := Nd ∪ vi

end for
for each matched node vi ∈ L in M do

wi := match(vi)
for all neighbours vj ∈ L of wi do

new edge dij from vi to vj

W(dij) :=W(e(vi, wi)) +W(e(wi, vj))
E := E ∪ {dij}

end for
end for
cycle := FloydWarshallNegativeCycle(D)
altcycle :=∅
if cycle 6= ∅ then

for vi in cycle do
wi := match(vi)
altcycle := altcycle ∪{vi, wi}

end for
end if
return altcycle

e(v1, v2) ∈ Ed exists only if v2 is a neighbour of the matched node wi ∈ R of
v1. So the construction leads to a reduced-size directed graph with |Vi| nodes and
|Ei| − |Mi| edges. Also we distribute the weights of the edges to the new graph
such that, for an edge dij ∈ Ed W(dij) = W(e(vi, wi)) +W(e(wi, vj)). A negative
alternate cycle in Gi, if one exists, can be constructed from a negative cycle in
D. The issue of finding a negative cycle in D, if one exists, can be handled by
a modification of the Floyd-Warshall algorithm to find all pairs shortest path in
directed/undirected network. Floyd-Warshall algorithm (algorithm 8) to find all
pairs shortest paths is described in the next section and it is the modification to
find a negative cycle in weighted graph [1].

86

Chapter 6. 2-Graph Problem

6.5.1 The Floyd-Warshall negative cycle algorithm

In the Floyd-Warshall all pairs shortest path algorithm, for any pair of nodes
(vi, vj) we obtain a matrix of shortest path distance d[i, j] within O(n3) compu-
tations. It uses a dynamic-programming methodology and uses triple operations
cleverly. The algorithm is based on inductive arguments developed by an appli-
cation of a dynamic programming technique. Let dk[i, j] represent the length of
a shortest path from node vi and vj, subject to using the nodes v1, v2, . . . , vk−1 as
internal nodes.

Clearly dn+1[i, j] represents the actual shortest path distance from node vi to vj.
The Floyd-Warshall algorithm first computes d1[i, j] for all node pairs to vi, and
vj. Using the d1[i, j] then computes d2[i, j] for all node pairs i and j. It repeats this
process until we obtain dn+1[i, j] for all node pairs vi and vj when it terminates.
Given dk[i, j], the algorithm computes dk+1[i, j] using the following property.

Property 6.5.2. dk+1[i, j] = min{dk[i, j], dk[i, k] + dk[k, j].

This property is valid for the following reason. A shortest path that uses only
the nodes 1, 2, . . . , k as internal nodes either (1) does not pass though node k, in
which case dk+1[i, j] = dk[i, j] or, (2) does not pass through node k, in which case
dk+1[i, j] = dk[i, k] + dk[k, j]. Therefore dk+1[i, j] = min{dk[i, j], dk[i, k] + dk[k, j].

The algorithm uses predecessor indices, pred[i, j] for each node pair [vi, vj]. The
index pred[i, j] denotes the last node prior to node vj in the tentative shortest
path from node vi to node vj. The algorithm maintains the invariant property
that when d[i, j] is finite, the network contains a path from node vi to node vj of
length d[i, j]. Using the predecessor indices we can obtain this path say P from
node vk to vl as follows. We backtrack along the path P starting at node l. Then
g is the node prior to node l in P . Similarly h = pred[k, g] is the node prior to
node g in P , and so on. We repeat this process until we reach the node k.

Now we describe the Floyd Warshall algorithm as the method for detecting the
presence of a negative-weight cycle, and backtrack to find the negative cycle. In
the final output of the Floyd Warshall algorithm, all entries along the main matrix
should be 0. If any of them is negative, then that node is part of a negative weight
cycle, since there is a path from that node to itself with a negative weight. This
can be proved as follows.

We show that whenever the network contains a negative cycle, then during the
computation we will eventually satisfy the condition d[i, i] < 0 for some i. Suppose

87

Chapter 6. 2-Graph Problem

Algorithm 8 Floyd-Warshall: Negative Cycle Algorithm

FloydWarshallNegativeCycle(D)
input: Directed weighted graph D(N, E)
for all node pairs (vi, vj) ∈ E × E do

d[i, j] := 0
pred[i, j] := 0

end for
for all nodes vi ∈ E do

d[i, i] := 0
end for
for each edge eij ∈ E do

d[i, j] := cij

pred[i, j] := i
end for
cyclefound := false
for each k := 1 to n and not cyclefound do

for all node pairs (vi, vj) ∈ E × E do
if d[i, j] > f [i, k] + d[k, j] then

d[i, j] := d[i, k] + d[k, j]
pred[i, j] := pred[k, j]
if (d[i, i] < 0) then

cyclefound := true
k := i

end if
end if

end for
end for
comment: Backtracking the negative cycle using predecessor indices
C := ∅
if cyclefound then

l := pred[k, k]
C := {vk, vl}
while (vk 6= vl) do

l := pred[l, k]
C := C ∪ vl

end while
end if
return Ci

88

Chapter 6. 2-Graph Problem

that there is a negative weight cycle containing nodes v1, . . . , vi, where vi is the
highest number node. When we update the row for vi in the matrix, one of the
diagonal values for the nodes will definitely become negative. In other words, there
will be a way such that we can pivot on at least one node in the cycle, and get
back to the original starting point with a cost less than 0 (which was the cost
to remain at that node and thus minimum in the graph with no negative-weight
cycles). Also, one may perform the algorithm twice, using the output of the first
as the starting point for the second. If any of the cells are updated in the second
pass of the algorithm, then there must be a negative weight cycle, since a lower
cost will be obtained by going through that cycle multiple times, as determined by
the second pass of the algorithm.

In the Floyd-Warshall algorithm we detect the presence of a negative cycle simply
by checking the condition d[i, i] < 0 whenever we update d[i, i] for some node vi.
Using the predecessor graph maintained by the algorithm we can backtrack this
negative cycle.

6.5.2 Complexity

For the bipartite graph Gi = (Li, Ri, Ei) say n = min(|Li|, |Ri|). Then the directed
graph constructed has at most n nodes. The Floyd Warshall algorithm clearly per-
form n major iterations, one for each k and within each iteration, it performs O(1)
computations for each node pair. Consequently it runs in O(n3). The complexity
of negative weighted alternating cycle algorithm 7 is same as that of FloydWarshall
algorithm, because the construction of the directed graph is of O(|Ei|). We note
that a matching in Gi can have no more than n = min(|Li|, |Ri|) edges. So in the
algorithm AugCycleMethod the main iteration will run until there is no alternate
negative cycle in the matchings. Since each augmentation increases the cardinality
of matchings, we can have at most n stages. Since in each stage we need to find
a negative alternative cycle, the AugCycleMethod has a complexity of O(n4). In
the following section we briefly explain the details of the implementation of this
approach and consequently we analyze results.

6.5.3 Data structures and implementation issues

In this section we briefly describe the particulars of the implementations of aug-
menting cycle method (ACM). The implementation works with the two partitions

89

Chapter 6. 2-Graph Problem

Li and Ri of node sets for separate graphs. All graphs use the same initial matching
algorithm for maximum cardinality matchings.

It is first and foremost intended for the ease of testing and of evaluating the po-
tential of our approach. The program outputs maximum cardinality matchings
in each bipartite graph with a significantly higher number of common edges. We
have tested the code with the randomly generated graphs, as explained in Chap-
ter 5. They were designed to be representative of sequential matching problems
that might arise in practice.

As mentioned before, the graphs used to test the programs are variations of random
bipartite graphs. A detailed description of the random problem generation is given
in Chapter 5. In the graphs each vertex has an expected number of neighbors. The
actual number is obtained by simulating a Poisson random variable which in turn
approximates to the binomial random variable in a real random graph. The vertices
in Li and Ri are divided into n/2 vertices each. The neighbors for a vertex vi are
chosen randomly but uniquely from vertices Ri. This expected number of neighbors
which are generated randomly according to Poisson or normal distribution can be
modified with given options for changing parameters. The number of edges can
also vary using different seeds for the pseudorandom number generator (which
was random()). In all the generated graphs |Li| = |Ri|, and in the dense graph
resulting maximum matchings were always just below perfect. For the testing of
the augmenting cycle method we use the graphs perfect matchings. The class
RandomProblem contains the functions for generating random problems by this
method.

We make few general remarks about the data structures implemented to represent
the bipartite graphs. The two basic data structures for any graphs are adjacency
matrices and adjacency lists. Adjacency matrices require much space but can
represent better accessible entries. In the case of bipartite graphs the size of the
adjacency matrix reduces significantly, since the node sets are partitioned in such a
way that there are no edges for the nodes in the partition. So each row corresponds
to a vertex vj ∈ Li, and each column to a vertex wk ∈ Ri, with a nonzero entry in
M [j, k] if and only if vertex vj is adjacent to node wk. An alternate way, especially
for sparse bipartite graphs, is to represent an adjacency list. Adjacency lists are
typically used to represent the incidence structure of a graph. To do this each
vj ∈ Li we represent a list of nodes in Ri which are adjacent to vj. This method
saves memory but accessibility of edges reduces. In the class BipartiteGraph we
use both representations and one can be chosen as required.

Further characteristics of the experiments are as follows: At the end of each run the

90

Chapter 6. 2-Graph Problem

solution is checked for consistency and maximality. Run times were measured with
the system call clock() and using the clock t structure. As mentioned before,
the graphs used to test the programs are variations of random bipartite graphs
with dense/sparse amount of edges. Run times reported exclude input, checking,
and output time.

Some important classes in the implementation of the AugCycleMethod are de-
scribed in Appendix B.

6.5.4 Computational results

The computational experiments have been run with the randomly generated test
cases. The procedures are implemented with C++ language, compilation with the
Visual C++ 6.0 and the test runs are executed on a personal computer with 450
MHz Pentium II processor with 128 MB core memory running Windows 2000. All
the compilations are invoked “Maximum Speed” optimization. Firstly we tested
how the AugCycleMethod behaves. The procedure terminates when there are no
common edges between two consecutive graphs. Before analyzing these results, let
us stress the fact that the procedure we propose is heuristic.

The test is run for problem sizes (i.e., the number of nodes) 300. The results
given in table 6.6, 6.7 report the run times, operation counts, and growth rates
of common edges for different graphs. It can be seen from the Fig. 6.6 how the
AugCycleMethod increases the common edges, for an input of randomly generated
dense bipartite graphs of size 300 nodes. This can be explained by the fact that
the algorithm significantly increases the common edges between the matchings,
and the growth rate in common edges is uniform.

6.5.5 Comparison with optimum solution

The augmenting cycle algorithm doesn’t give an optimum solution always but a
comparatively better solution in a significantly lower run time. Table 6.5.5 and
Fig. 6.8 illustrate the comparison between the solution and run time obtained
by augmenting cycle algorithm and the optimum solution. The mixed integer
programming formulation of the sequential matching problem in Chapter 4, used
for finding the optimum solution by using mixed integer optimizer of CPLEX.

91

Chapter 6. 2-Graph Problem

Iteration Commonedges
0 23
40 64
60 73
80 104
100 125
140 165
180 205
190 215
199 222

0

20

40

60

80

100

120

140

160

180

200

220

240

0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200
 220
 240

Iteration

C
o

m
m

o
n

 e
d

g
e
s

Figure 6.6: The common edges incremented by the AugmetingCycleMethod

92

Chapter 6. 2-Graph Problem

Left Nodes Common edges Run time(in Sec)
10 7 0.01
50 38 0.23
100 94 3.21
150 143 14.26
200 191 44.22
250 242 116.52
300 282 240.78
350 337 496.59
400 387 903.18
450 442 1510.32

0

200

400

600

800

1000

1200

1400

1600

0
 40
 80
 120
 160
 200
 240
 280
 320
 360
 400
 440

Left Nodes

C
o

m
m

o
n

 e
d

g
e

s
 /

 R
u

n
n

in
g

 t
im

e

Common edges
 Running time

Figure 6.7: The common edges/run time versus the number of left nodes by the
AugmetingCycleMethod

93

Chapter 6. 2-Graph Problem

Left Nodes CE-ACM RT-ACM CE-CPLEX RT-CPLEX
10 5 0.02 5 0.51
20 14 0.06 20 0.24
40 94 0.34 40 1.68
60 44 0.79 58 4.73
80 73 2.09 80 24.54
100 93 4.69 100 76.97
120 107 8.00 118 154.41
140 134 14.36 140 434.15
160 156 21.05 159 730.23

0

100

200

300

400

500

600

700

0
 20
 40
 60
 80
 100
 120
 140
 160

Left Nodes

C
o

m
m

o
n

 e
d

g
e

s
 /

 R
u

n
n

in
g

 t
im

e

CE-ACM
 RT-ACM
 CE-CPLEX
 RT-CPLEX

Figure 6.8: The comparison with optimum solution and solution obtained by Aug-
metingCycleMethod

1

94

Chapter 6. 2-Graph Problem

Algorithm 9 Augmenting Cycle Method (ACM) for general problem S(Gc, τ).

AugmentingCycleMethod(S(Gc, τ), Mc, τ
′)

input: Bipartite graphs Gc, with matchings Mc.
for t := 1 to t := τ do

ft := NOTFOUND

end for
t := τ ′

while ft′ 6= FOUND for any t′ among 1 to τ do
if t = τ then

t := 1
end if
for ek ∈Mt+1 do

if ek ∈ Gt then
if ek /∈Mt then
Wt(ek) := 1

else
Wt(ek) := −1

end if
end if

end for
Ct := NegWeighedAlternatingCycle(Gt, Mt)
if Ct 6= ∅ then

Update Mt := Mt ⊕ Ct
ft′ := NOTFOUND ∀t′ from 1 to τ

else
ft := FOUND

end if
t← t + 1

end while
output: Matchings M1 and M2

95

Chapter 6. 2-Graph Problem

We performed computational experiments with various sized problem instances
(number of nodes), and comparison of the CPU time of the solution method. See
Section 6.5.2 to notice that the algorithm has a worst case complexity of O(n4).
The algorithm checked for randomly generated problem of left node size varies from
2 to 220. Fig. 6.7 illustrates the algorithm in the terms of run time complexity,
one can clearly notice that the run time increases significantly with the size of an
instance. Other computational results show that the algorithm runs faster for a
sparse bipartite graph, but obviously with fewer common edges.

6.6 Generalization of ACM for S(Gc, τ)

We can generalize the augmenting cycle method for the general sequential match-
ing problem, S(Gc, τ). The most important step to notice is the direction of
augmenting. In the 2-graph case we increase the common edge alternativelys in
both graphs. The generalized algorithm 9 augment the common edges between
consecutive matching cyclicly, with initial starting graph Gτ ′ , where Mc = {Mt :
t = 1, 2, . . . , τ} denotes a sequence of initial maximum matchings in Gc.

6.7 Conclusion

To conclude this chapter let us say a few words about solution methods that are
suggested to solve the problem. Preliminary computational results are promising
and indicate that good and feasible solutions may be found quickly with the proce-
dure. When the procedure is applied to the general sequential matching problem,
the solution mainly depends on the value of starting point τ ′, and the direction of
augmentation. We tried to tune the algorithm in different directions in the next
steps, but the default steps of the same direction produced the best results in many
cases.

96

Appendix A

Input file formats

To produce an efficient implementation we followed different data structures and
corresponding input file formats. The method is to standardize the method by
which information is retrieved from a file. This is done by creating a well-defined
data structure that contains easily searched information about the data, the graph
and then separating that information from the data, and storing it in the memory.

In the following section we illustrate different file formats, with an example of the
sequential matching problem arising from bipartite graphs in three time intervals.

w1 •

x1 •

y1 •

z1 •

a1•

b1•

c1•

d1•

w2 •

x2 •

y2 •

z2 •

a2•

b2•

c•

d•

w3 •

x3 •

y3 •

z3 •

a3•

b3•

c3•

d3•

Figure 9: A sequential matching problem with 3 bipartite graphs

97

Appendix A

SGR format

The native file format for representing graphs consists of several lines and each
entry is separated by a space. The ‘# ’ characters in the first column are ignored,
and can be used as comment lines. The first two non-comment entries contain the
number of nodes and number of edges. Consecutively the file has been divided
into a node section and edge section. In the node section each line contains the
letter n to indicate node and is followed by the name of the node. The nodes are
ordered and numbered according to their position in the node list of the graph. In
the edge section each line starts with an indictor letter e and is followed by the
names of the source the target edges. If the graph is weighted the weight of the
corresponding edges follows the target name.

A finite sequence of graphs can be represented using the above method by dis-
tinguishing them by special symbol ‘$’, and followed by the corresponding graph
number. We used the file extension SGR (Sequence of GRaphs) to represent the
text file of representing this sequence of graphs. One main advantage of this is
when the data is required for a special graph number, it is found by using the eas-
ily searched information of graph number which points to the data for the graph
itself. The benefits are that the data can be placed anywhere in the file. The SGR
file in the following example represents the problem in the Fig. 9.

#The text file SMPFORM.SGR

$0

8 9

#node format n name x y

#edge format e node1 node2 matched

n 0

n 1

n 2

n 3

n 4

n 5

n 6

n 7

e 0 5

e 0 4

e 1 7

e 1 6

e 1 5

e 2 5

e 3 5

e 3 4

e 3 7

$1

8 8

#node format n name x y

#edge format e node1 node2 matched

n 0

n 1

n 2

n 3

n 4

n 5

n 6

n 7

e 0 4

e 0 6

e 1 5

98

Appendix A

e 1 4

e 2 5

e 2 7

e 3 4

e 3 5

$2

8 7

#node format n name x y

#edge format e node1 node2 matched

n 0

n 1

n 2

n 3

n 4

n 5

n 6

n 7

e 0 4

e 0 6

e 1 7

e 1 4

e 2 6

e 3 5

e 3 4

CGP format

While observing the column generation formulation we can notice that the sequence
of graphs is viewed in a different way, and not like the adjacency list data structure
of native graph problems. Also, the data structures for the column generation
method are such that generating/adding the columns is made easy. So we used
a different problem file format for input of the problem to make implementation
more efficient.

A sequential matching problem can be also seen as a different point of view, as
in column generation formulation. The number of assignments for each worker,
and the assignments in each time shift, rather than considering the whole graph
at a particular time shift. In the CGP (Column Generation Problem) extension
file we represent the problem in such a way that the data structure can access the
problem more easily. The file is organized such that for each worker there is a
section representing the jobs that they are able to do in different time shifts, and
these sections are arranged in the same order as the worker indices. The first row
of a section is the total number, the second row in a section is for job indices for
the worker say, i, at time shift, t, is followed by the total job numbers. In each
section these rows are ordered in the time index. The CGP representation of the
graphical representation of a sequential matching problem in figure 9, is as follows.

#The text file smpform.cgp

4 4 3

#Worker 0

2

1 0

2

99

Appendix A

0 2

2

0 2

#Worker 1

3

3 2 1

2

1 0

2

3 0

#Worker 3

1

1

2

1 3

1

2

#Worker 4

3

1 0 3

2

0 1

2

1 0

MPS format

As another format we use the standard MPS format for the mixed integer pro-
gramming problem. The MPS format(developed originally by IBM) is a standard
file input for resolving a problem instance. For a detailed description of the repre-
sentation of an MIP instance in an MPS format see the CPLEX manual [22].

Every MPS file has at least the three sections:

1. ROWS

2. COLUMNS

3. RHS

The ROWS section lists the row names, starting with L means ¡ , E means =, ¿
represented by G, or not constrained represented by N. The COLUMNS section lists
each nonzero element of the matrix, preceded by the column name and row name
in which it appears. The RHS section lists the elements of the right-hand side. One
must also give a column name to the right-hand side. A BOUNDS section (optional)
allows one to supply simple upper and lower bounds on variables. A RANGES section
(optional) allows one to supply upper and lower limits on constraints. Consider a
graphical representation of a sequential matching problem as in Fig. 9, the following
text file smpform.mps represents the problem in .mps format. Note that the graphs

100

Appendix A

in the example have perfect matching and so the matching number of each graph
is four.

The mixed integer linear programming formulation of the problem as described in
Section 4.2.1 can be used to find an optimum solution using an MIP solver such as
CPLEX or SOPLEX. To construct the MIP instance for the corresponding SMP
instance we need to intersect the edge sets of two consecutive edge sets, since some
variables (yijt).

#The text file smpform.mps x_2_5_0 c_0 1 y_3_5_1 c_3_5_1n -1

NAME smpformulation x_2_5_0 c_2_5_0n 1 mark_3_5_1_X ’MARKER’ ’INTEND’

ROWS mark_2_5_0 ’MARKER’ ’INTORG’ x_0_4_2 c_0_2 1

N obj y_2_5_0 obj -1 c_2_5_0p -1 x_0_4_2 c_4_2 1

L c_0_0 y_2_5_0 c_2_5_0n -1 x_0_4_2 c_2 1

L c_1_0 mark_2_5_0_X ’MARKER’ ’INTEND’ x_0_4_2 c_0_4_1p 1

L c_2_0 x_3_5_0 c_3_0 1 x_0_6_2 c_0_2 1

L c_3_0 x_3_5_0 c_5_0 1 x_0_6_2 c_6_2 1

L c_4_0 x_3_5_0 c_0 1 x_0_6_2 c_2 1

L c_5_0 x_3_5_0 c_3_5_0n 1 x_0_6_2 c_0_6_1p 1

L c_6_0 mark_3_5_0 ’MARKER’ ’INTORG’ x_1_7_2 c_1_2 1

L c_7_0 y_3_5_0 obj -1 c_3_5_0p -1 x_1_7_2 c_7_2 1

G c_0 y_3_5_0 c_3_5_0n -1 x_1_7_2 c_2 1

G c_0_4_0p mark_3_5_0_X ’MARKER’ ’INTEND’ x_1_4_2 c_1_2 1

G c_0_4_0n x_3_4_0 c_3_0 1 x_1_4_2 c_4_2 1

G c_1_5_0p x_3_4_0 c_4_0 1 x_1_4_2 c_2 1

G c_1_5_0n x_3_4_0 c_0 1 x_1_4_2 c_1_4_1p 1

G c_2_5_0p x_3_4_0 c_3_4_0n 1 x_2_6_2 c_2_2 1

G c_2_5_0n mark_3_4_0 ’MARKER’ ’INTORG’ x_2_6_2 c_6_2 1

G c_3_5_0p y_3_4_0 obj -1 c_3_4_0p -1 x_2_6_2 c_2 1

G c_3_5_0n y_3_4_0 c_3_4_0n -1 x_3_5_2 c_3_2 1

G c_3_4_0p mark_3_4_0_X ’MARKER’ ’INTEND’ x_3_5_2 c_5_2 1

G c_3_4_0n x_3_7_0 c_3_0 1 x_3_5_2 c_2 1

L c_0_1 x_3_7_0 c_7_0 1 x_3_5_2 c_3_5_1p 1

L c_1_1 x_3_7_0 c_0 1 x_3_4_2 c_3_2 1

L c_2_1 x_0_4_1 c_0_1 1 x_3_4_2 c_4_2 1

L c_3_1 x_0_4_1 c_4_1 1 x_3_4_2 c_2 1

L c_4_1 x_0_4_1 c_1 1 x_3_4_2 c_3_4_1p 1

L c_5_1 x_0_4_1 c_0_4_0p 1 RHS

L c_6_1 x_0_4_1 c_0_4_1n 1 rhs c_0_0 1

L c_7_1 mark_0_4_1 ’MARKER’ ’INTORG’ rhs c_1_0 1

G c_1 y_0_4_1 obj -1 c_0_4_1p -1 rhs c_2_0 1

G c_0_4_1p y_0_4_1 c_0_4_1n -1 rhs c_3_0 1

G c_0_4_1n mark_0_4_1_X ’MARKER’ ’INTEND’ rhs c_4_0 1

G c_0_6_1p x_0_6_1 c_0_1 1 rhs c_5_0 1

G c_0_6_1n x_0_6_1 c_6_1 1 rhs c_6_0 1

G c_1_4_1p x_0_6_1 c_1 1 rhs c_7_0 1

G c_1_4_1n x_0_6_1 c_0_6_1n 1 rhs c_0 4

G c_3_4_1p mark_0_6_1 ’MARKER’ ’INTORG’ rhs c_0_4_0p 0

G c_3_4_1n y_0_6_1 obj -1 c_0_6_1p -1 rhs c_0_4_0n 0

G c_3_5_1p y_0_6_1 c_0_6_1n -1 rhs c_1_5_0p 0

G c_3_5_1n mark_0_6_1_X ’MARKER’ ’INTEND’ rhs c_1_5_0n 0

L c_0_2 x_1_5_1 c_1_1 1 rhs c_2_5_0p 0

L c_1_2 x_1_5_1 c_5_1 1 rhs c_2_5_0n 0

L c_2_2 x_1_5_1 c_1 1 rhs c_3_5_0p 0

L c_3_2 x_1_5_1 c_1_5_0p 1 rhs c_3_5_0n 0

L c_4_2 x_1_4_1 c_1_1 1 rhs c_3_4_0p 0

L c_5_2 x_1_4_1 c_4_1 1 rhs c_3_4_0n 0

L c_6_2 x_1_4_1 c_1 1 rhs c_0_1 1

L c_7_2 x_1_4_1 c_1_4_1n 1 rhs c_1_1 1

G c_2 mark_1_4_1 ’MARKER’ ’INTORG’ rhs c_2_1 1

COLUMNS y_1_4_1 obj -1 c_1_4_1p -1 rhs c_3_1 1

x_0_5_0 c_0_0 1 y_1_4_1 c_1_4_1n -1 rhs c_4_1 1

x_0_5_0 c_5_0 1 mark_1_4_1_X ’MARKER’ ’INTEND’ rhs c_5_1 1

x_0_5_0 c_0 1 x_2_5_1 c_2_1 1 rhs c_6_1 1

x_0_4_0 c_0_0 1 x_2_5_1 c_5_1 1 rhs c_7_1 1

x_0_4_0 c_4_0 1 x_2_5_1 c_1 1 rhs c_1 4

x_0_4_0 c_0 1 x_2_5_1 c_2_5_0p 1 rhs c_0_4_1p 0

x_0_4_0 c_0_4_0n 1 x_2_7_1 c_2_1 1 rhs c_0_4_1n 0

mark_0_4_0 ’MARKER’ ’INTORG’ x_2_7_1 c_7_1 1 rhs c_0_6_1p 0

y_0_4_0 obj -1 c_0_4_0p -1 x_2_7_1 c_1 1 rhs c_0_6_1n 0

y_0_4_0 c_0_4_0n -1 x_3_4_1 c_3_1 1 rhs c_1_4_1p 0

mark_0_4_0_X ’MARKER’ ’INTEND’ x_3_4_1 c_4_1 1 rhs c_1_4_1n 0

x_1_7_0 c_1_0 1 x_3_4_1 c_1 1 rhs c_3_4_1p 0

x_1_7_0 c_7_0 1 x_3_4_1 c_3_4_0p 1 rhs c_3_4_1n 0

101

Appendix A

x_1_7_0 c_0 1 x_3_4_1 c_3_4_1n 1 rhs c_3_5_1p 0

x_1_6_0 c_1_0 1 mark_3_4_1 ’MARKER’ ’INTORG’ rhs c_3_5_1n 0

x_1_6_0 c_6_0 1 y_3_4_1 obj -1 c_3_4_1p -1 rhs c_0_2 1

x_1_6_0 c_0 1 y_3_4_1 c_3_4_1n -1 rhs c_1_2 1

x_1_5_0 c_1_0 1 mark_3_4_1_X ’MARKER’ ’INTEND’ rhs c_2_2 1

x_1_5_0 c_5_0 1 x_3_5_1 c_3_1 1 rhs c_3_2 1

x_1_5_0 c_0 1 x_3_5_1 c_5_1 1 rhs c_4_2 1

x_1_5_0 c_1_5_0n 1 x_3_5_1 c_1 1 rhs c_5_2 1

mark_1_5_0 ’MARKER’ ’INTORG’ x_3_5_1 c_3_5_0p 1 rhs c_6_2 1

y_1_5_0 obj -1 c_1_5_0p -1 x_3_5_1 c_3_5_1n 1 rhs c_7_2 1

y_1_5_0 c_1_5_0n -1 -> mark_3_5_1 ’MARKER’ ’INTORG’ rhs c_2 4

y_3_5_1 obj -1 c_3_5_1p -1 -> ENDATA

The random problem implementation

We have implemented a code to generate a random problem using the rules of
Section 5.3.12. A dynamic link library is generated using the implementation
such that each algorithm implementation can easily access the random generation
classes. Also easy conversion to each file format is possible with a proper function
call. The following RandomProblem is the most important class for the random
problem generation.

class RandomProblem
{
private:

int nW, nJ, nT;
int mu, sigma;
bool onlypmatching;

int *nTotalAbleJobs;
int **nNumberOfAbleJobs;
int ***Ablejob;

int **nCommonJobs;
int ***CommonJob;

public:
RandomProblem(int nWorkers,int nJobs,int nTimeShifts, int dense);
void WritetoSGR(char* filename);
void WritetoCGP(char* filename);
void WritetoMPS(char* filename, int mn, bool integer);

void InterSection();
int URandom(int lownumber, int number);
int NRandom1(int number);
int PRandom(int number)

102

Appendix A

int NRandom2(int number);
int NRandom3(int number, int dense);

void RandomSeq(int vnumber, int selectednumber, int*&select);
int Sum(int*&iarray, int arraylength);
bool CheckPerfect1(int t);
float Rec_determinant(float *Mat, int Dimension);
~RandomProblem();

}

The constructor has the following arguments,

- nWorkers: Number of workers (or cardinality of left node sets).

- njobs: Number of jobs (or cardinality of right node sets).

- nTimeShifts: Number of time shifts (or total number of graphs).

- dense: The parameter controls the density the edges in the bipartite graphs.
It can be from 1 to 100, where 1 denotes the most dense graph, while larger
values outputs sparser graphs.

103

Appendix A

104

Appendix B

Augmenting cycle method: Implementation de-

tails

This appendix deals with the implementation issues of the augmenting cycle method
in Chapter 5. A brief discussion about implementing graph algorithms is given in
Section 6.5.3. Here we present various classes in the implementation, but only the
important ones.

The class Node

The class Node is usedto represent nodes of a general graph. The basic node
operations are implemented in this class.

class Node{
private:

char* cname;
int iname;
float weight;

public:
int index, label, number;
Node();
void Setcname(char* name);
void Setiname(int name);
char* Getcname();
int Getiname();
void init();
bool operator == (Node &rhs);
void Setweight(float w);

105

Appendix B

float Getweight();
~Node();

};

The class BEdge

The class BEdge is used to represent an edge of a graph. The basic edge operation
are implemented in this class.

class BEdge {
private:

Node source;
Node target;
int iname;
float weight;
bool matched;

public:
BEdge();
void InitBEdge(int name, float w, Node S, Node T);
void Setiname(int name);
void Setweight(float w);
void SetSource(Node& s);
void SetTarget(Node& t);
int Getiname();
float Getweight();
Node GetSource();
Node GetTarget();
void SetMatched(bool flag);
bool GetMatched();
bool operator == (BEdge &rhs);
~BEdge();

};

The class Directed Graph

The class Directed Graph is used to represent a directed graph. It constructs a
directed graph with a given bipartite graph and a matching. The modified Floyd
Warshall algorithm to find a negative cycle is implemented in this class. The
function outputs a negative cycle in the weighted graph if one exists. We used a
modification of the Floyd-Warshall algorithm to find the all pairs shortest path in
a directed/undirected network.

106

Appendix B

class DirectedGraph{
private:

int nodecount;
Node *node;
int edgecount;
BEdge *edge;

public:
DirectedGraph();
DirectedGraph(BGraph&B, BMatching&M);
bool FloydWarshallCycle(int& cyclestart, int&cyclelength,

int*& negcycle);
void DirectedGraphDisplay(int gn);
void DOutput(ostream&out, int gn);
~DirectedGraph();

};

The class BipariteGrpah

This is one of the main classes of the implementation used to represent a bipartite
graph. The edges are represented by adjacency list. The class also contains modules
for solving the maximum cardinality matching problem and other utility functions.

class BipartiteGraph {
protected:

int leftnodecount, rightnodecount, edgecount, maxmatchcount;
Node* leftnode;
Node* rightnode;
BEdge* edge;
BMatching M;

public:
BipartiteGraph();
BipartiteGraph(const char* infilename);
int LeftNodeCount();
int RightNodeCount();
int EdgeCount();
BEdge GetEdge(int edgeindex);
int GetEdgeIndex(int intname);
int CheckEdgeExist(BEdge&checkedge);
BMatching GetBMatching();
void WeightsUpdate1(BMatching&matching,int&commonedgecount);
void WeightsUpdate2(BMatching&matching1,BMatching&matching2,

107

Appendix B

int&commonedgecount);
Cycle FindCycle(int j);
void MatchingUpdate(int& cyclestart,

int &cl, int*& negcycle,ofstream&out);
void MatchImproved();
void BGraphDisplay(int num);
void GetNeighbours(Node& thisnode,bool left,

int neighbourscount,Node*&neighbour);
int CountNeighbours(Node& thisnode, bool left);
bool CheckEdgeExist(BEdge checkedge);
void Augument();//Augmenting with Cycle and Matching
Node GetNode(int i, bool left);
BEdge GetEdge2(int edgename);
int CommonEdgeCount(BipartiteGraph& target);
void SetMatching(BMatching&M1);
ostream&operator>>(ostream&out);
void Output(ostream&out,int num);
void MatchingSolve(int verbose);

};

The class BMatching

This class represents a matching in the bipartite graph. The edges are represented
by an adjacency list. The class also contains modules for solving the maximum
cardinality matching problem and other utility functions.

class BMatching {
private:

BEdge* matchedge;
int maxmatchcouNt;
bool matched;

public:
BMatching();
BMatching(BMatching& BM);
void CopyMatching(BMatching& BM);
void SetMatchNumber(int matchcount);
BEdge GetMatchBEdge(int matchindex);
void SetMatchBEdge(int matchindex,BEdge match);
void SetMaxmatchCount(int mmc);
int GetMaxmatchCount();
bool InsertEdge(BEdge&insedge);
void DiplayMatch(int gn);

108

Appendix B

bool EdgeExist(int edgeiname);
int CheckEdgeExist(BEdge&checkedge);
void SetMatchedgeWeight(int matchindex, float w);
bool DeleteEdge(BEdge deledge);
Node GetNeibhbour(Node s, bool left);
int GetNeighbour(int s, bool left);
void Output(ostream&out,int gn);
~BMatching();

};

The class AugCycleMethod

The class AugCycleMethod constructs an instance of the sequential matching prob-
lem. While initializing it solves the maximum cardinality matching problem in
the bipartite graphs to input initial matching. The initial matching algorithm is
the standard augmenting path algorithm. We tested with a faster algorithm using
the network model which is implemented using TURBO (See Appendix C, and
Section 1).

class AugCycleMethod {
private:

BGraph *G;
int commonedgecount;
ofstream output;

public:
AugCycleMethod();
void InitializeGraphs(char* arg1,int gn);
void SolveProblem(ofstream&output, int gn);
void Display(int gn);
void CommonEdgeCount(int count);
int GetCommonEdgeCount();
void SetCommonEdgeCount(int count);
void ConvertFromTurbo(const char* sourcefile,

const char* targetfile);
void FileReadFromSerialFile(const char* seriesfile,

int gindex, const char* outputfile);
~AugCycleMethod();

};

109

Appendix B

110

Appendix C

Matching and randomized algorithm implementa-

tion

This appendix deals with our implementation issues of a general matching al-
gorithms in 1.2.2 (network and augmenting), and the randomized algorithm in
Section 2.

Randomized Algorithm classes

We use TURBO: graph data structures and algorithms, for the implementation of
the randomized method in Chapter 3. We briefly present the important classes for
the implementation, but most options are self-explanatory.

The class MyNode

The class MyNode is derived from the TURBO class Hnode, to represent the nodes
of a bipartite graph.

class MyNode : public Hnode,
public obj_ind {

public:
int name;
int x;
int y;
static int MyNode::init_index();
inline MyNode() : name(0), x(0), y(0) {

111

Appendix C

}
}

The class MyEdge

The class MyEdge is derived from the TURBO classHedge, to represent the edges
of a bipartite graph.

class MyEdge : public Hedge { public:
int matched;
int selected;
int intersection;
color line_color ;
void print(char* = "");
inline MyEdge() : matched(0) {
}
bool compare(MyEdge b1); };

The class MyGraph

The class MyGraph is derived from the TurboGraph, where it is taken from the
template provided by TURBO.

typedef hgraph<MyNode,MyEdge> TurboGraph;

const class MyGraph : public TurboGraph { protected:
int* randommatrix;
float* randommatrix_inv;
int numberofnodes, determinant, new_numberofnodes;
int halfnodes;
int *degree;
public:

int *degree;
GeneralMatrix* Matrix;
int matched;
int* matchedname;
inline MyGraph(): TurboGraph(undirected){}
void initmatrix(int value);
void MakeRandomMatrix(int seed);
void AssignMatrix();

112

Appendix C

bool CheckMatched();
bool CheckDeleted(int i_ind, int j_ind);
Reduce_Degree(int st_vertex_name, int end_vertex_name)
void MatrixReduce(int i_ind, int j_ind);
void displaymatrix();
void InverseRandomMatrix();
void writematrix_file(const char* matrixfilename);
float Determinant();
bool allowed(int s, int t);
void MakeInterZero();
void Unselect();
void MatchOne();
void IntersectionMatch();

};

The other important subroutine is

void IntersectionOfGraphs(int start ind, int end ind)

which used to evaluate the intersection as bipartite graphs as in 3.4.3, with given
start ind and end ind.

Matching algorithm Implementation

Here we present two main classes from the augment matching algorithm for a
bipartite graph. The main idea of the algorithm is described in 1.

The class BGraph

The most important class of the method derived from BipartiteGraph, which is
described in the Appendix B.

class BGraph: public BipartiteGraph {
protected:

int NumberofWorkers, NumberofJobs;
Node *workers, *jobs;
bool *adj;
int *mate, *exposed;

public:

113

Appendix C

BGraph();
void initializefromfile(const char* infilename);
void initdisplay();
void MatchingSolve(int verbose);
void augument(int vertexnumber);
void resultdisplay();
void displaycurrentmatching(int itnumber);
~BGraph();

};

The class DirectedGraph

This class is for the construction of the directed graph, which arises in the sub-
problem of finding alternate paths in the augmenting method.

class DirectedGraph {
private:

int nodecount;
Node *node;
int edgecount;
BEdge *edge;

public:
DirectedGraph();
DirectedGraph(BGraph&B, BMatching&M);
void DirectedGraphDisplay(int gn);
void DOutput(ostream&out, int gn);
~DirectedGraph();

};

A faster method for the bipartite graph matching problem (ref. 1.2.2), has been
implemented using the network flow algorithm provided by TURBO.

114

Bibliography

[1] Ahuja R. K., Magnanti T. L., and Orlin J. B. Networks flows. Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

[2] K. Papadimitriou, C. H. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice Hall, Englewood Cliffs, New Jersey, 1982.

[3] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
John Wiley and sons, Chichester, 1988.

[4] E. de Klerk. Bipartite matchings.

[5] R. M Hopcroft, J. E. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 4:225–231, 1973.

[6] Alt H., Blum N., Mehlhorn K., and Paul M. Computing a maximum cardinal-
ity matching in a bipartite graph in time O(n1.5

√
m/ log n). Inform. Process.

Lett., 37:237–240, 1991.

[7] J. C. Setubal. New experimental results for bipartite matching. Technical
report, Relatóoorio Técnico DCC, 1992.

[8] W. Derigs, U. Meier. Implementing goldberg’s maxflow algorithm a computa-
tional investigation. Methods and Models of Operations Research, 33:383–403,
1989.

[9] A. Schrijver. Theory of Linear and Integer Programming. JohnWiley & Sons,
Chichester, 1986.

[10] M Lovász, L. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, Hun-
gary, 1986.

[11] T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107–
111, 1947.

115

Bibliography

[12] L Lovász. On determinants, matchings and random algorithms. Fundamentals
of Computation Theory, pages 565–574, 1979.

[13] J. Cheriyan. Randomized o(m(| v |)) algorithms for problems in matching
theory. SIAM J. Comput., 26:1635–1655, 1997.

[14] U. V. Rabin, M. O. Vazirani. An O(
√
| v | | e |) algorithm to find maximum

matching in general graphs through randomization. J. Algorithms, 10:105–
113, 1989.

[15] Lübbecke Marco. Engine scheduling by column generation. PhD thesis, Tech-
nischen Universität Braunschweig, Braunschweig, 2001.

[16] Barnhart C., Johnson E.L., Nemhauser G.L., Savelsbergh M.W.F., and Vance
P.H. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, May-June 1998.

[17] Chvátal. Linear Programming. W.H. Freeman and Company, New York, 1983.

[18] P. Dantzig, G. B. Wolfe. Decomposition principle for linear programs. Oper-
ations Research, 8:101111, 1960.

[19] Universität zu Köln, Köln. ABACUS A Branch And CUt System, Version
2.0, User’s Guide and Reference manual, 1996.

[20] S. Thienel. ABACUS A Branch And CUt System. PhD thesis, Universität zu
Köln, Köln, 1995.

[21] D. E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical
Algorithms, Third Edition. Addison-Wesley, Massachusetts, 1997.

[22] ILOG, Gentily Cedex. ILOG CPLEX 6.5 Reference Manual, 1999.

116

Lebenslauf

Persönliche Daten

Name: Sureshan Karichery

Adresse: Oberölkofenerstr. 4, 81671, München

Geburtsdatum: 25. Mai 1974

Geburtsort: Perumbala, Kerala, Indien

Familienstand: ledig

Staatsangehörigkeit: indisch

Ausbildung/Wehrdienst/Studium1

1980-90 SSLC Government High School Udma
1990-92 Pre-Degree Calicut University
1992-96 B.Sc. Mathematik Calicut University
1996-98 M.Sc. Mathematik Cochin University of Science and Technology
1999-01 M.Tech. in IMSC Indian Institute of Technology Madras
2000-01 M.Tech. Thesis Technische Universität Kaiserslautern/ITWM
2001-04 Doctorand Universität zu Köln/Siemens AG

1

SSLC: Secondary School Leaving Examination
B.Sc.: Bachelor of Science
M.Sc. Master of Science
M.Tech.: Master of Technology
IMSC: Industrial Mathematics and Scientific Computing
ITWM: Institut für Techno und Wirtschaftsmathematik

Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt,
die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
Arbeit− einschließlich Tabellen, Karten und Abbildungen−, die anderen Werken
im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung
kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder
Universität zur Prüfung vorgelegen hat; daß sie noch nicht veröffentlicht worden
ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsver-
fahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung
sind mir bekannt. Die von mir vorgelegte Dissertation ist von Professor Dr. R.
Schrader betreut worden.

	Acknowledgements
	Table of Contents
	Introduction
	The basics
	Introduction
	Graphs, bipartite graphs, matchings and network flows
	Definitions
	Basic results and algorithms
	Integer programming modelling and matching polytope
	Applications

	Computational complexity
	Definitions and results
	Solving NP-complete problems

	Problem description
	International mail distribution centre
	Functioning of international mail
	Office of Exchange
	Optimization problems inside the office of exchange

	The problem description
	Mathematical modelling

	Sequential matching problem
	Sequential matching problem
	Complexity
	Vector representations

	A greedy approach
	A randomized algorithm
	Simplified model
	The concept
	The algorithm
	Finding an allowed edge

	A branch and price approach
	Introduction
	Formulations
	MIP formulation of the sequential matching problem
	An extensive reformulation

	Methodology outline
	The restricted master program
	Column generation
	Pricing problem
	MIP formulation of pricing problem
	As shortest path problem
	 Initial basis of the restricted master program
	Integer solution
	Ryan and Foster branching scheme

	Solution methods for pricing problems
	Conclusion

	Implementing branch and price method
	Introduction
	ABACUS- A Branch And CUt System
	The Master
	The Subproblem
	The Constraints and Variables

	Sequential Matching Problem: Implementation details
	Restricted Master Problem
	Subproblem Solution and Column Management
	Column Pool
	Implementation
	The class for master problem: SMP
	The class for subproblem: SUBSMP
	The class for variables: SMPVAR
	The class for constraints: SETPARCON
	The class for problem instance: SMPINSTANCE
	The branching rules: The classes BRANCHRULE_RF and BRANCHRULE_SMP
	The pricing problems: SPP
	Problem generation

	Computational results
	Conclusion

	2-Graph Problem
	Introduction
	Problem definition
	Complexity analysis
	Solution method
	Augmenting cycle method
	The Floyd-Warshall negative cycle algorithm
	Complexity
	Data structures and implementation issues
	Computational results
	Comparison with optimum solution

	Generalization of ACM for S(Gc,)
	Conclusion

	Appendix A
	Input file formats

	Appendix B
	Augmenting cycle method: Implementation details

	Appendix C
	Matching and randomized algorithm implementation

	Bibiliography

