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Zusammenfassung

Seit Jahrzehnten wird intensiv daran gearbeitet, sogenannte Spingläser (z.B. die
Legierungen CuMn oder AuFe) besser zu verstehen. Sie lassen sich bisher theoretisch
nur unzureichend beschreiben. Man ist auf die Interpretation numerischer Ergebnisse
angewiesen, um in der Literatur vorgeschlagene Theorien testen zu können. Wir
betrachten Spingläser im Isingmodell, in dem die Spins (magnetische Dipole) genau
zwei Einstellungsmöglichkeiten besitzen.

Uns interessieren die Zustände tiefster Temperaturen, bei denen die Spins ungeord-
net ‘einfrieren’. Das Bestimmen eines Zustandes minimaler Energie, eines Grundzu-
standes, läßt sich auf die Berechnung eines maximalen Schnittes in einem Graphen
überführen. Das Maximum Schnitt Problem ist ein prominentes NP-schweres Prob-
lem aus der kombinatorischen Optimierung. Maximale Schnitte können mit einem
Branch and Cut Algorithmus exakt bestimmt werden.

Die vorliegende Arbeit ist interdisziplinär angelegt zwischen kombinatorischer Opti-
mierung und theoretischer Physik. Im ersten Teil wird das Maximum Schnitt Prob-
lem und ein Branch and Cut Algorithmus zur Lösung von Instanzen vernünftiger
Grösse vorgestellt. Es werden verschiedene Ansätze vorgestellt, wie dieser Algorith-
mus für Instanzen, die von Ising Spingläsern stammen, verbessert werden kann.

Im zweiten Teil der Arbeit studieren wir die Physik von Spingläsern. Wir stellen
zuerst den Stand der Forschung dar. Danach geben wir Ergebnisse für sogenannte
Bethe Spingläser an. Zuletzt studieren wir die Natur von Spingläsern im kurzreich-
weitigen dreidimensionalen Gitter. Erstere Resultate sind in einer Kooperation mit
Dr. M. Palassini und PD Dr. A.K. Hartmann entstanden, letztere in Zusammenar-
beit mit Dr. M. Palassini und Prof. A. Peter Young.
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Abstract

In the last decades, much research has focused on a better understanding of so-
called spin glasses (e.g., the alloys CuMn and AuFe.) Spin glasses are not yet fully
understood. In order to be able to test the different theories that have been proposed
for the nature of spin glasses we have to analyze numerically generated data. We
consider spin glasses in the Ising model, where the spins (magnetic dipoles) have
exactly two possibilities for aligning themselves.

We are interested in the low-temperature states of the system, in which the spins
are ‘frozen’ and disordered. Determining a state of minimum energy, a ground state,
amounts to calculating a maximum cut in a graph. The max-cut problem is a promi-
nent NP-hard problem from combinatorial optimization. Maximum cuts can be
determined exactly with a branch–and–cut algorithm.

This thesis consists of two parts. In the first part we introduce the max-cut problem
and a branch–and–cut algorithm for solving reasonably sized problems. We present
several approaches for improving its performance for Ising spin-glass instances.

In the second part of this work, we study the physics of spin glasses. We first discuss
what is known in the literature. Then we present results for Bethe spin glasses.
Finally we study the nature of short-range three-dimensional spin glasses. Results
of the former were obtained in collaboration with M. Palassini and A.K. Hartmann,
results of the latter in cooperation with M. Palassini and A.Peter Young.
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Introduction

Interactions between physicists and computer scientists are steadily growing, and
improvements in one field stimulate new developments in the other. With methods
coming from physics, e.g., the simulated annealing or the cavity method, new algo-
rithms can be designed for solving several problems occurring in computer science
or in applied mathematics. On the other hand, several problems arising in statisti-
cal physics can be mapped on combinatorial optimization problems. With the help
of solution algorithms we can gain a deeper insight into the characteristics of the
problems.

Traditional representatives for problems of this kind are spin glasses. ‘Real’ spin
glasses are, for example, the alloys CuMn or AuFe, where manganese (Mn) or iron
(Fe) is brought as impurities into copper (Cu) or gold (Au), respectively. In the
1970s it became obvious that these materials show surprising behaviour at low tem-
peratures in laboratory experiments, e.g., when brought into an oscillating magnetic
field. It was soon clear that the type of magnetism present in spin glasses was differ-
ent to what was known before. Since then, many new theoretical approaches have
been designed to understand their physics. Still there are some challenging open
problems.

In the ‘classical’ spin glasses AuFe or CuMn, the spins (magnetic dipoles) of the
impurities produce a magnetic polarization of the host metal conduction electrons
which is ferromagnetic at some distances and antiferromagnetic at others. This mag-
netic polarization produces local magnetic fields. A different impurity spin tries to
align itself according to the local fields. As the impurities are randomly scattered in
the host, some interactions are ferromagnetic and some are antiferromagnetic.

What makes a spin glass different to paramagnets or ferromagnets? For constituting
a spin glass, two basic ingredients are necessary: randomness (e.g., in the position of
the impurities) and competing interactions. Competing interactions means that no
spin configuration is uniquely favoured by all interactions, which is called frustration.
At low temperatures the spins freeze. Spin glasses inherit a certain ordering that is
however different from the spatial ordering present in ferro- or antiferromagnets.

Randomness has become an important ingredient in modern physics. Furthermore,
spin glass has become a fundamental form of magnetism. Some of the new concepts
and ideas, once introduced for spin glasses, are now successfully applied to other
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problems as well. At present, there are still some unsolved problems making spin
glasses an active and important field of research.

It turned out that some real spin glasses can be treated in the so-called Ising model,
in which the spins can only point in two directions, ‘up’ or ‘down’. The high tem-
perature of a spin glass is paramagnetic. However, at low temperatures the spins are
frozen and disordered. We are mainly concerned with ground states of spin glasses,
i.e., states that attain the global minimum of the energy associated with the system.
As the ground states also influence the low-lying excited states, they are important.
Additionally, knowledge about ground states and the application of a ‘stimulus’ (i.e.,
a slight increase of the ground-state energy) can give new insights into spin-glass
physics.

As we do not have a closed-form function whose evaluation yields a ground-state
spin configuration, we have to use a numerical algorithm. A naive approach would
be to enumerate all configurations and to take one with minimal energy as a ground
state. However, the number of possible configurations grows exponentially fast and
already becomes computationally too demanding for small systems. Therefore this
approach is not feasible in practical computations.

However, a close connection between Ising spin glasses and combinatorial optimiza-
tion exists. The problem of determining a ground state of an Ising spin glass is
equivalent to the prominent max-cut problem from combinatorial optimization.

In combinatorial optimization we are concerned with problems of the following form.
Let N = {1, . . . , n} and consider a finite collection of subsets, say {S1, S2, . . . , Sm}.
For each subset we are given an objective function value, f(Sk), and the problem
is either to maximize or minimize f(Sk). Combinatorial optimization problems are,
for example, the shortest path problem, the maximum flow problem, the well-known
travelling salesman problem and many others.

In the first part of this thesis we will be concerned with the max-cut problem from
combinatorial optimization. We are given a weighted graph G = (V,E). The cut
δ(W ) associated with a node set W ⊆ V is defined as the set of edges having
exactly one endpoint in W . The weight of a cut is the sum of the weights of the
cut edges. The max-cut problem is to find a cut of G with maximum weight. On
general graphs this is a ‘hard’ both in theory and in practice. In fact, the max-
cut problem was one of the first seven problems for which a proof of their NP-
hardness could be given. It is widely believed that this means that we will not be
able to design a solution algorithm whose running time is bounded by a polynomial
in the size of the input. Therefore, in practice we have to study algorithms with
exponential running time. Those negative results of course raise interest in designing
and implementing algorithms that can solve in practice ‘medium sized’ problems,
however if not in polynomial time, then at least within reasonable computation time.
In the eighties so-called branch–and–cut techniques were introduced for the solution
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of hard combinatorial optimization problems. This technique is successfully applied
to many hard problems.

This thesis consists of two parts. The first part is devoted to the study of the max-
cut problem. Here we pay special attention to max-cut problems that are defined on
regular grid graphs in two and three dimensions. We first summarize the state of the
art in the research on the max-cut problem in Chapter 1. We establish the connection
between max-cut and the problem of determining ground states of Ising spin glasses.
Then we introduce the branch–and–cut approach for solving hard max-cut instances.
Subsequently, we summarize what is known about the structure of the cut polytope,
which is the convex hull of the cut vectors. During the run of the branch–and–cut
algorithm, we have to generate and optimize over progressively better approxima-
tions (relaxations) of the cut polytope. In Chapter 2 we first experimentally show
that the cycle relaxation gives a good approximation of the cut polytope in practice.
Then we show how we can generate and solve the cycle relaxation for sparse Ising
spin glass instances. We introduce a new facet, the 4-neighbour facet for the cut
polytope in Section 2.4. In the subsequent section we generate tighter approxima-
tions of the cut polytope by using a lift-and-project approach proposed by Jünger,
Reinelt and Rinaldi. Finally, we show how good cuts can be generated within the
branch–and–cut framework.

In Chapter 3 we devise a branch-cut&price algorithm for solving spin glass instances
defined on the one-dimensional Ising chain. The model consists of a fully connected
graph where all spins are connected with each other. However, the coupling strengths
fall off with a positive power of the spin distance. We can additionally improve the
quality of the relaxations of the cut polytope. Both the pricing and the better
relaxations yield a considerable speedup.

In the second part of the thesis we study the physics of spin glasess. First we start
with the historic developments and give an introduction into spin-glass physics in
Chapter 5. Then we argue that a heuristic algorithm should fail with higher proba-
bility in case the energy landscape of an instance is ‘complicated’. There are obvious
advantages of an exact method for determining ground states over heuristic meth-
ods that are not able to guarantee that true ground states are determined. With
heuristic methods, we always introduce a certain bias in the measured data, which
is positive, e.g., when determining the ground-state energy. Two spin configurations
with almost the same energy might be very different in configuration. Therefore it
is not clear how accurate the heuristic data is and whether useful insight into the
structure of the ground-state spin configurations can be gained.

In Chapter 6 we study the ground-state properties of so-called Bethe lattices by ana-
lyzing the exact data generated by branch–and–cut. For the spin-glass/ferromagnet
phase transition we determine the transition point and study the behavior of the
branch–and–cut algorithm in the vicinity of the phase transition. Results are ob-
tained in collaboration with Matteo Palassini and Alexander K. Hartmann. In Chap-
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ter 7 we study the nature of the low-lying excitations in the three-dimensional spin
glass which summarizes the results obtained in cooperation with Matteo Palassini
and A. Peter Young. Finally, we give a summary of this thesis and mention prospec-
tives for further research in the Conclusions.
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Chapter 1

The Max-Cut Problem

The max-cut problem has been a topic of intensive research. It is a ‘classical’ com-
binatorial optimization problem and one of the first that could be proven to be
NP-hard on arbitrary graphs. Most people believe this means that the running time
of any of its solution algorithms depends exponentially on the size of the input, in
the worst-case. Another reason for the interest in the max-cut problem comes from
the fact that it is equivalent to quadratic 0/1 programming. Furthermore, it was
the first problem for which approximation guarantees could be given with meth-
ods from positive semidefinite optimization. Finally, exact ground states of Ising
spin glasses can be computed by calculating maximum cuts. In this introductory
chapter we summarize the most important facts known about the max-cut problem.
After defining the problem we establish the connection between the determination
of maximum cuts and the calculation of ground states of Ising spin glasses. Then
we explain the basic concepts of a branch–and–cut algorithm that is used to calcu-
late maximum cuts. Finally, we summarize in Section 1.3 what is known about the
polyhedral description of the cut polytope.

1.1 The Max-Cut Problem and Ground States of

Spin Glasses

In the max-cut problem we are given a graph G = (V,E) with edge weights cij ∈ R
for all edges e ∈ E. Let W ⊂ V be a (possibly empty) subset of nodes. The cut
δ(W ) is defined as the set of edges having exactly one endpoint in W . In formulas,
for W ⊂ V the cut is defined as

δ(W ) = {(i, j) ∈ E | i ∈ W, j ∈ V \W}. (1.1)

7
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The weight of δ(W ) is sum of the weights of the edges in the cut,
∑

e∈δ(W ) ce. The
max-cut problem is to find a cut of G with maximum weight. For a detailed book
on the max-cut problem that covers many theoretical aspects, see [30].

Despite the NP-hardness of the general max-cut problem, there are some classes
of graphs for which it is polynomially solvable, i.e., for which it can be solved in a
number of elementary steps that is polynomially bounded by the number of bits
needed to store the input data. The max-cut problem is polynomially solvable for
graphs that are not contractable to K5 (the complete graph on five nodes) [8]. This
class of graphs include planar graphs. It is polynomially solvable for weakly bipartite
graphs and graphs with non-positive edge weights. It is interesting to notice that
max-cut is already NP-hard for almost planar graphs [8], i.e., graphs where only
one node has to be removed to obtain a planar graph.

Goemans and Williamson [41] presented a 0.878-approximation algorithm for the
maximum cut problem, i.e., an algorithm with running time bounded by a polyno-
mial in the input size that provably delivers a solution of at least 0.878 times the
optimum value of a maximum cut. However, the bad news is that under the assump-
tion P 6= NP there is no polynomial algorithm that provably delivers a solution of
at least 98% of the optimum value of a maximum cut [14].

Next we describe the connection between the determination of ground states of
Ising spin glasses and the max-cut problem. For an introduction into the field of
spin glasses and the Ising model used here, we refer to Chapter 5 and the references
therein. Let a spin glass consist of n spins. Spins i and j might be coupled with
coupling strength Jij. Usuall, the couplings are either Gaussian distributed following
the probability distribution P (J) with

P (J) =
1√
2π

exp(−J2/2). (1.2)

or have value {±J}, with 50% negative values. We study an Ising model in which
the spin variable Si for spin i is one dimensional and can take only the two values +1
or −1. An external magnetic field of strength h might be present. The Hamiltonian
of a system with spin configuration ω = (S1, . . . , Sn) is

H(ω) = −
∑
(ij)

JijSiSj − h

n∑
i=1

Si, (1.3)

where the sum
∑

(ij) runs over the coupled spins. We identify the spins with the

node set V = {1, . . . , n} of a graph G = (V,E). Two nodes i and j are connected
by an edge e ∈ E if and only if spin i and j are coupled by a nonzero coupling
strength Jij. For modelling the external field, we introduce a new node “0” for the
field having spin S0. Node 0 is connected via an edge (0, i) to all other spins i ∈ V .
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We let the graph G0 = (V0, E0) consist of the nodes and edges of G together with the
field node 0 and the field edges (0, i). By setting the field couplings J0i as J0i = h,
we can write (1.3) as

H(ω) = −
∑

(ij)∈E0

JijSiSj. (1.4)

A spin configuration ω corresponds to a partition of the nodes V = V +
0 ∪V −

0 , where
V +

0 := {i ∈ V0 | Si = +1} and V −
0 = {i ∈ V0 | Si = −1}. We split the sum in the

right hand side of (1.4) as

H(ω) = −
∑

(i,j)∈E0, i, j both in V +
0 or in V −0

Jij +
∑

(i,j)∈E0, i ∈ V +
0 , j ∈ V −0

Jij

We add to both sides of the equation the sum of all couplings in the graph which is
a constant and end up with

H(ω) +
∑

(ij)∈E0

Jij = 2
∑

(ij)∈δ(V +)

Jij.

Therefore, we have expressed the energy function in terms of cuts in G. We set
the weight of edge (i, j) ∈ E as cij := −Jij. Hence, minimizing the Hamiltonian
is equivalent to maximizing the weight of the cut in the graph G0 over all possible
sets V + ⊆ V . We conclude that determining ground states of Ising spin glasses can
be determined by calculating maximum cuts in the graph associated with the spin
glass system.

As an example, we show in Figure 1.1 an instance on a 3 × 3 grid with periodic
boundary conditions, ±J interactions and no external field. Figure 1.1(a) shows the
instance of the max-cut problem. The solid lines have edge weight 1 (i.e., the coupling
strength in the spin-glass instance is −1), the dashed lines weight −1. Figure 1.1(b)
shows an optimum solution. The dash-dotted lines correspond to the cut edges.

Therefore, determining ground states of Ising spin glasses is NP-hard. However,
polynomially solvable cases exist. For example, the two-dimensional Ising spin glass
on a lattice with nearest-neighbor interactions, free boundary conditions and no
magnetic field amounts to solving a max-cut problem in a planar graph which is
polynomially solvable. Fast programs exist in practice [103]. The two-dimensional
Ising spin glass with periodic boundary conditions, no external magnetic field and
±J interactions [109] is a polynomial problem. More generally, it remains polynomial
if the genus of the graph is bounded by a constant and the sizes of the integral edge
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(a) A 3 × 3 instance. The
solid lines have weight 1, the
dashed lines weight −1.

(b) An optimal solution.
The dash-dotted lines cor-
respond to the cut edges.

Figure 1.1: Example for a 3× 3 instance.

weights are bounded in absolute value by a polynomial in the size of the graph [39].
For (unbounded) Gaussian distributed couplings the question is still open. As soon
as an external field is present, the problem becomes NP-hard for all kinds of spin
interactions [7]. Furthermore, the Ising spin glass in three dimensional grids is NP-
hard [7]. In this thesis we will mainly be concerned with hard instances of the max-
cut problem. In the following section we explain the framework of a branch–and–cut
algorithm that can be used for determining optimum solutions of hard instances.

1.2 How to Calculate Maximum Cuts: a Frame-

work

A branch–and–cut–algorithm for max-cut was started by Michael Jünger, Gerhard
Reinelt, and Giovanni Rinaldi. Over the years, there have been several coworkers,
Caterina De Simone, Martin Diehl, and Petra Mutzel. At present it is implemented
using the C++ library ABACUS [2] that provides a branch–and–cut framework.
The running time of the branch–and–cut algorithm for max-cut depends exponen-
tially on the size of the input, in the worst case. As explained above, we cannot
expect to do better than that for the hard instances that are of interest here. How-
ever, we will see later that with a branch–and–cut approach medium sized problems
can be solved within reasonable time in practice. For a recent survey we refer to
[76].

The framework of the branch–and–cut algorithm is as follows. For an instance, we
always maintain an upper (ub) and a lower bound (lb) for the optimum solution
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obj
(ub)

(lb)

iteration

Figure 1.2: Iterative improvement of upper and lower bounds in a branch–and–cut
algorithm.

value of the maximum cut. Iteratively we improve upper and lower bounds until they
coincide at the optimum solution value or are tight enough for proving optimality,
see Figure 1.2. The existence of the upper bound marks the difference between an
approximate and an exact solution method, and we explain the determination of the
upper bounds (ub) in more detail.

Let δ(W ) be the cut associated with node set W ⊆ V . The incidence vector χδ(W ) ∈
Rm is defined by

χδ(W )
e =

{
1 if e ∈ δ(W ),
0 otherwise.

Let the cut polytope PC(G) be defined as the convex hull of all incidence vectors of
cuts in G, i.e.,

PC(G) = conv{χδ(W ) | δ(W ) is a cut in G}. (1.5)

The smallest interesting example consists of a graph that is a triangle, see Figure
1.3.

1 2

3

Figure 1.3: A graph consisting of a triangle.
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The set of characteristic cut vectors for the graph in Figure 1.3 is
 0

0
0

 ,

 0
1
1

 ,

 1
0
1

 ,

 1
1
0

 , (1.6)

where we order the coordinates as (x12, x23, x13).

In Figure 1.41 we show the cut polytope PC(K3), i.e., the convex hull of the cut
vectors (1.6) for the triangle graph of Figure 1.3.

Figure 1.4: The cut polytope Pcyc(K3) in the cube [0, 1]3.

Coming back to the general case, as the cut vectors are 0-1 vectors, the vertices
of PC(G) are exactly the incidence vectors of cuts in G. Hence, we can solve the
maximum cut problem by solving the optimization problem

(MC) max cTx (1.7)

x ∈ PC(G)

Unfortunately, we don’t know how to input ‘x ∈ PC(G)’ efficiently into a computer
program, when PC(G) is defined as the convex hull of a set of points. However, from
theorems by Minkowski and Weyl we know that there exists a matrix A and a vector
b with

PC(G) = {x | Ax ≤ b}. (1.8)

In theory, by applying the Fourier-Motzkin algorithm we could transform the repre-
sentation (1.5) to representation (1.8). However, for practical problems the number
of needed inequalities is too large to be generated explicitely. Additionally, Karp
and Papadimitrou [59] showed that no computationally tractable complete linear

1Thanks to Constantin Hellweg and Ramin Sahamie for generating this figure.
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description of an NP-complete combinatorial optimization problem can be found,
unless P = co-NP, which seems to be unlikely.

Despite these negative results, we can make use of partial linear descriptions of a
polytope within the branch–and–cut approach. We informally summarize its basic
concepts. We need a partial description P of PC(G) with the properties that the
latter is contained in P and that the inequality system AP x ≤ bP describing P is
known and can be generated ‘fast’, i.e., in polynomial time. By optimizing over the
superset P instead over PC(G) we obtain an upper bound (ub) on the value of the
maximum cut. Optimizing over P amounts to solving a linear program (lp) which
is in general of the form

max cTx

AP x ≤ bP

x ≥ 0

Fast algorithms for solving linear programs exist, e.g., the simplex method.

Within the branch–and–cut approach, we start with some partial description P of
PC(G). Iteratively we improve P . A lower bound (lb) on the optimum value of the
maximum cut can be obtained using any heuristic generating a cut in a graph. In
case upper and lower bounds coincide or the upper bound solution vector represents
a cut, we can stop and return an optimum solution. However, it is possible that we
neither can generate an optimum solution nor a better description P ⊇ PC(G). In
this case we branch. In a branching step we select a variable xij for (i, j) ∈ E that
is neither zero nor one in the upper bound solution vector and generate two sub
problems in one of which xij is set to 0, and in the other to 1. Through subsequent
branching steps, a tree of sub problems (the branch–and–cut tree) emerges. We call
a sub problem a node of the tree. The outline of the branch–and–cut framework is
summarized in Algorithm 1.
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Algorithm: branch–and–cut-framework

1 start with some P ⊇ PC(G)
2 solve (ub) = cx? = max{cx | x ∈ P}
3 (lb): value of a cut found heuristically
4 if (ub) = (lb) or x? is a cut then

stop
5 else

find a better description P of PC(G)
go back to 2

6 if no better description can be found then
branch: select a variable xij with x?

ij 6∈ {0; 1}
generate two sub problems in one of which xij is set to 0
and in the other to 1.

Algorithm 1: Framework of a branch–and–cut algorithm for max-cut.

In the following section we describe how we can generate partial descriptions P ⊇
PC(G).

1.3 Known Facets of the Cut Polytope

We start with a definition on valid inequalities, faces and facets of a polytope.

Definition 1.1 (Validity, Faces, Facets). (i) Given a polytope P = {x | Ax ≤
b}, an inequality ax ≤ a0 is called a valid inequality, if ax̄ ≤ a0 for all feasible
solutions x̄ ∈ P .

(ii) If ax ≤ a0 is valid and the intersection of the affine subspace H = {x | ax ≤ 0}
with the polytope P is both not empty and not equal to P , H ∪ P is called a
face of P.

(iii) Let the dimension of P be d. The faces of maximum dimension of P , namely
d−1, are called facets of P . If P ∪{x | ax = a0} is a facet of P , the inequality
ax ≤ a0 is called facet defining inequality for P .

Hence, for showing that ax ≤ a0 is a facet of P , it is enough to determine d affinely
independent incidence vectors x1, . . . , xd at which the inequality is tight, i.e., axi = a0

for i = 1, . . . , d.

In the following we explain how we can determine partial descriptions of the cut
polytope in step 5 of the branch–and–cut Algorithm 1. These partial descriptions
are called relaxations. To be more specific, let the cut polytope of a graph G be
contained in some polytope P . Then the problem
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(MCR) max cTx (1.9)

x ∈ P

is called a relaxation of the max-cut problem (1.7). We sometimes also call P itself
a relaxation.

The basic idea in determining progressingly tighter relaxations of PC(G) is as follows.
We start by generating some ‘easy’ relaxation P (e.g., the unit hypercube [0 . . . 1]|E|.)
Let the optimum solution of (MCR) be cTx?. We test whether x? satisfies inequalities
that are known to be valid for PC(G). In case we can generate a valid inequality that
is violated by x?, we can add it to the description of P . By adding this inequality to
P we ‘cut off’ x? from it, and these inequalities are sometimes called cutting planes.
The resulting polytope will be a ‘tighter’ relaxation of PC(G) than P was and hence
improve the upper bound. We also say we separate x? from the cut polytope. The
corresponding problem is called the separation problem. As we usually don’t know
how to solve the separation problem for valid inequalities of any kind, we study it
for each class of inequalities separately. Before we introduce classes of inequalities
valid for the cut polytope, we formally define the separation problem in Definition
1.2.

Definition 1.2 (Separation Problem). Given a class of valid inequalities for
PC(G) and a vector x? ∈ Rm, either prove that x? satisfies all inequalities of this
class, or return an inequality violated by x?.

An algorithm that solves the separation problem is called exact separation algorithm.
Unfortunately, such an algorithm is often not known for a class of valid inequalities
or it can be shown that solving the separation problem is an NP-hard problem.
In this case we have to use a heuristic separation algorithm. Heuristic separation
algorithms may find violated inequalities, but maybe not all.

Next we introduce classes of inequalities that are valid or facet defining for the cut
polytope. Given a graph G = (V,E), an incidence vector χ of a cut obviously has
to satisfy

0 ≤ xe ≤ 1 ∀e ∈ E (1.10)

Barahona and Mahjoub proved the following lemma.

Lemma 1.3 (Barahona and Mahjoub [13]). The ‘trivial’ inequality (1.10) de-
fines a facet of the cut polytope PC(G) if and only if e does not belong to a triangle.

A proof of this lemma can be found in [13].

A class that is more interesting than the trivial inequalities are the cycle inequalities.
An edge set C = {(v0, v1), (v1, v2), . . . , (vk−1, v0)} ⊆ E is called a cycle (of length
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k) in the graph G = (V,E). Let C ⊆ E be a cycle and e be an edge that does not
belong to C. We say e is a chord of C if it joins two nodes of C. A cycle C is called
chordless if it does not contain a chord. The cycle inequalities are drawn from an
easy observation:

Observation 1.4. A cut and a cycle can only have an even number of common
edges.

Barahona and Mahjoub proved the following results on the cycle inequalities.

Lemma 1.5 (Barahona and Mahjoub [13]). Let C ⊆ E be a cycle in G = (V,E)
and F ⊆ C a subset of cycle edges of odd cardinality. Then the cycle inequality∑

e∈F

xe −
∑

e∈C\F
xe ≤ |F | − 1 (1.11)

is valid for the cut polytope PC(G). In case C is chordless, (1.11) is facet definining
for PC(G).

As the cycle inequalities play an important role in the computation of exact ground
states we give a proof of Lemma 1.5.

Proof. The validity of (1.11) is easy to see. Let an arbitrary cut χ ∈ Rm and an
arbitrary cycle inequality be given. In case there exists an edge e ∈ F with χe = 0,
(1.11) is obviously satisfied. Otherwise it is χe = 1 for all e ∈ F . As |F | odd, we
know from Observation 1.4 that for at least one other edge in C \ F it has to be
χe = 1, too. Thus, (1.11) is satisfied. We postpone the facet defining property until
Section 2.5 where we will prove it as an application for the lift-project approach.

Let C have a chord f . f partitions C into two paths P1, P2 such that Ci := Pi∪̇{f}
are cycles for i = 1, 2. It is not hard to see that any cycle inequality defined on C
can be written as the sum of two appropriately chosen cycle inequalities, one defined
on C1, the other on C2. Hence, cycle inequalities defined on cycles with a chord are
not facet defining.

The triangle inequalities
xij + xik + xjk≤ 2
xij − xik − xjk≤ 0

−xij + xik − xjk≤ 0
−xij − xik + xjk≤ 0

(1.12)

for a triangle i, j, k in G are a special case of the cycle inequalities for
|C| = 3 and define facets of PC(G). (This is easy to see as the inequali-
ties are tight at the affinely independent incidence vectors T (xij, xik, xjk, . . .) =
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{T (0, 1, 1, . . .),T (1, 0, 1, . . .),T (1, 1, 0)}.) The cycle polytope of Kp, where Kp is the
complete graph on p nodes, consists of all 4

(
p
3

)
triangle inequalities.

Together with Lemma 1.5 and the observation that 0/1-vectors satisfying the cycle
inequalities are incidence vectors of cuts, we get an integer linear programming
formulation of the max-cut problem.

(MC) max{cT x | x(F )− x(C \ F ) ≤ |F | − 1 for each F ⊆ C, |F | odd ,
for each cycle C in G,

0 ≤ xe ≤ 1 for each e ∈ E,
xe integer for each e ∈ E}

(1.13)

For making use of the cycle inequalities within branch–and–cut we have to solve the
separation problem for the cycle inequalities. We formulate it as follows.

Definition 1.6 (Separation Problem for the Cycle Inequalities). Given x? ∈
Rm with 0 ≤ x?

e ≤ 1 for all edges e ∈ E, decide whether x? satisfies all cycle
inequalities. If not, return an inequality (1.11) violated by x?.

Barahona and Mahjoub also proved in [13] that this separation problem can be
solved in polynomial time. To this end, we make use of the fact that we can rewrite
a cycle inequality (1.11) as ∑

e∈C\F
xe +

∑
e∈F

(1− xe) ≥ 1. (1.14)

We generate a graph H that consists of two copies of the graph G, G′ = (V ′, E ′)
and G′′ = (V ′′, E ′′), together with some additional edges. u′ ∈ V ′, u′′ ∈ V ′′ denote
the two copies of a node u ∈ V . Let H = (V ′ ∪ V ′′, E ′ ∪ E ′′ ∪ E ′′′) = (V H , EH). In
addition to the edges (u′, v′) ∈ E ′ and (u′′, v′′) ∈ E ′′ present in the two copies G′

and G′′, there are extra edges in EH . For each edge (u, v) ∈ E, the two edges (u′, v′′)
and (u′′, v′) are in EH . The weight of (u′, v′) ∈ E ′ and (u′′, v′′) ∈ E ′′ is chosen as x?

uv,
while the weight of (u′, v′′), (u′′, v′) ∈ E ′′′ is set to 1− x?

uv. In Figure 1.5 we show a
graph consisting of a triangle and the corresponding graph H.

The separation procedure works as follows. For each pair of nodes u′, u′′ ∈ W we cal-
culate a shortest path in H. We choose the edge weights as defined above. According
to the definition of H, such a path contains an odd number of edges of E ′′′. It corre-
sponds to a closed walk in G that contains u. Thus, the minimum of over all nodes u
of G of these shortest paths gives the minimum value of

∑
e∈C\F xe +

∑
e∈F (1−xe),

the left hand side of (1.14). If the shortest of these (u′, u′′)-paths in H has length at
least 1, all cycle inequalities are satisfied. Otherwise, a shortest path of length less
than 1 corresponds to a violated cycle inequality.

Shortest paths can efficiently be computed in polynomial time. Thus, the separation
problem for the cycle inequalities is polynomially solvable. Furthermore, a special



18 CHAPTER 1. THE MAX-CUT PROBLEM

i j

k

(a) A graph consisting of a tri-
angle i, j, k.

i′

j′

k′

i′′

j′′

k′′

(b) The corresponding graph H.
The bold edges (u′, v′), (u′′, v′′)
have weights xuv, the dashed edges
(u′, v′′) and (u′′, v′) have weights
1.0− xuv

Figure 1.5: Separation of the cycle inequalities.

case of the famous result of Grötschel, Lovász and Schrijver [43] says that we can
optimize over a relaxation within polynomial time if and only if we can solve the
corresponding separation problem in polynomial time. Let the cycle polytope Pcyc(G)
consist of the vectors in Rn satisfying all cycle inequalities,

Pcyc(G) = {x ∈ RE | x(F )− x(C \ F ) ≤ |F | − 1 for each F ⊆ C, |F | odd ,
for each cycle C in G,

0 ≤ xe ≤ 1 for each e ∈ E}.
(1.15)

We deduce that we can solve within polynomial time the problem

(MCcyc) max cTx (1.16)

x ∈ Pcyc (1.17)

It is interesting to ask how ‘tight’ the cycle relaxation is for the cut polytope. If
theory is concerned, one answer is given in the next lemma. In practice, the cycle
relaxation is a ‘tight’ relaxation for Ising spin-glass instances, see Section 2.2.

Lemma 1.7 ([8]). The cycle polytope Pcyc(G) of a graph G = (V,E) is equal to the
cut polytope PC(G) if and only if G does not have any K5-minor.
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Seymour proved the above result for the cut cone. Barahona and Mahjoub proved
Lemma 1.7. As we can optimize over the cycle polytope in polynomial time, we have
as a corollary:

Lemma 1.8. The maximum cut problem can be solved in polynomial time for the
class of graphs with no K5-minor.

Kuratowski’s theorem says that planar graphs are exactly the graphs that do not
contain K5- and K3,3-minors, where K3,3 is the complete bipartite graph consisting
of three nodes in each shore. Thus, the maximum cut problem can be solved in
polynomial time for planar graphs.

Despite the fact that cycle inequalities can be generated in polynomial time, it turns
out in practice that the exact separation routine needs much CPU time. (In Chapter
2 we will explain how the cycle relaxation can be generated fast for Ising spin-glass
instances.) Thus, it is favorable to include heuristic separation routines. Already in
the first version of the max-cut algorithm for spin-glass instances, heuristics were
used for generating violated cycle inequalities [10]. When heuristically separating
cycle inequalities, we sometimes encounter the following problem: We are given a
cycle C and x? ∈ Rm to be separated. We want to determine a cycle inequality
(1.11) on C that is maximally violated by x?. Let the violation v be defined as

v =
∑
e∈F

x?
e −

∑
e∈C\F

x?
e − |F |+ 1.

We want to solve the problem

max v = max
F⊆C,|F | odd

∑
e∈F

(x?
e − 1)−

∑
e∈C\F

x?
e (1.18)

We solve (1.18) algorithmically. An edge e in F contributes an amount x?
e−1 to the

violation v. An edge e in the set C \ F contributes x?
e to v. We can solve problem

(1.18) in O(|C|) time by assigning an edge e to F in case c̃e := 2x?
e − 1 > 0 and

to C \ F otherwise. After having assigned each cycle edge to either F or C \ F ,
we might end up with a set F having even cardinality. Then we have to either
delete the edge from F with minimum c̃e or to insert to F the edge from C \F with
maximum c̃e, whichever is better. In function best ineq on given cycle we summarize
the procedure. In Chapter 2.2.2 we will use this algorithm.
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Algorithm: best ineq on given cycle

F := ∅
for all edges e in C do

c̃e = 2x?
e − 1

if c̃e > 0 then
F = F ∪ {e}

if |F | even then
determine e1 ∈ C \ F with maximum c̃e

determine e2 ∈ F with minimum c̃e

if |c̃e1 | < |c̃e2 | then
F = F ∪ {e}

else
F = F \ {e}

Algorithm 2: best ineq on given cycle generates the best (with regard to violation)
inequality on a given cycle.

Next we introduce the bicycle-wheel inequality. To this end, let a graph G consist
of a cycle of length p and two nodes adjacent to each other and to every node of
the cycle. Then G is called a bicycle p-wheel. Barahona and Mahjoub proved the
following lemma.

Lemma 1.9 (Barahona and Mahjoub [13]). Let (W,B) be a bicycle (2k + 1)-
wheel, k ≥ 1, contained in G. Then the inequality

x(B) ≤ 2(2k + 1) (1.19)

defines a facet of the cut polytope PC(G).

See Figure 1.6(a) for a bicycle 5-wheel together with a cut of maximum cardinality
satisfying the inequality with equality. Gerards [40] has shown that the class of
bicycle wheel inequalities can be separated in polynomial time by an algorithm
similar to the cycle separation procedure with different choice of the edge weights.

Another well-known class of facets for the cut polytope are the clique-inequalities,
with complete graphs Kp on p nodes as support.

Lemma 1.10 (Barahona and Mahjoub [13]). Let Kp = (W,Ep) be a complete
subgraph of order p of G. Then the Kp-inequality

x(Ep) ≤
⌈p

2

⌉⌊p

2

⌋
(1.20)

is valid for PC(G). (1.20) defines a facet of the cut polytope PC(G) if and only if p
is odd.
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(a) Bicycle 2(k + 1)-wheel
with k = 2. A cut of max-
imum cardinality cuts all
“spoke” edges.

(b) K5. The dash-dotted
edges correspond to a cut
of maximum cardinality.

Figure 1.6: Valid inequalities for the cut polytope.

The separation of Kp-inequalities is NP-hard which is obvious as also the determi-
nation of a clique of maximum size in a graph is NP-hard. In Section 2.5 we will use
the bicycle wheel and the clique inequalities inside the branch–and–cut framework
within a lift-project approach.

The so-called parachute inequalities were introduced by Deza and Laurent in [29].
Further results on them can be found in [30]. The parachute inequality is defined on
an odd number of points denoted as {k, k − 1, k − 2, . . . , 1, 0, 1′, 2′, . . . , (k − 1)′, k′}.
By defining the path P as P = (k, k− 1, . . . , 1, 1′, . . . , (k− 1)′, k′), we can formulate
the parachute inequality as

(Par2k+1)x =
∑
i,j∈P

xij −
∑

1≤i≤k−1

(x0i + x0i′ + xki + xk′i)− xkk′ ≤ 0 (1.21)

In Figure 1.7 we show the support graph of the parachute inequality on seven points.
Inequality (Par7)x ≤ 0 has coefficient +1 on the solid edges and −1 on the dashed
edges.

We call path P the parachute, the edges between different non neighboring nodes in
P the support edges, node ‘0’ the jumper, edges between the jumper and the nodes
along the parachute jumper edges. For k even, the parachute inequality is not even
valid for the cut cone. Consider, e.g., the cut δ({1, 3, . . . , k− 1}∪ {2′, 4′, . . . k′}). All
2k − 1 edges along the parachute are cut edges, but only k − 1 jumper edges and
k − 1 support edges are cut edges. Thus, we have 2k − 1− (k − 1)− (k − 1) 6≤ 0.

However, for odd k, inequality (Par)2k+1 is valid and facet defining and we can
formulate the following theorem.
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0

1

2

3

1′

2′

3′

Figure 1.7: The parachute inequality on 7 nodes. Coefficients on solid edges are 1,
on dashed edges −1 in (Par7)x ≤ 0.

Theorem 1.11. The parachute inequality (1.21) (Par2k+1)x ≤ 0 is valid and facet
defining for odd k ∈ N, k ≥ 3.

Another interesting class of inequalities are defined on circulants.

Definition 1.12. A circulant C(n, r) is a graph consisting of n nodes 1, . . . , n and
the edges (i, i + 1), (i, i + r) for all nodes i = 1, . . . , n with the indices taken modulo
n.

Figure 1.8: The circulant C(9, 2).

In Figure 1.8 we show the circulant C(9, 2).

Poljak and Turzik (1992) presented an O(r log2 n) algorithm for computing a maxi-
mum cut in a circulant graph C(n, r). The authors introduced the class of circulant
inequalities for the cut polytope and showed their validity and the conditions under
which they are facet defining.
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Theorem 1.13 ([118]). Let n = kr + 1 with k, r ≥ 2 be even integers. Then the
circulant inequality

∑
ij∈C(n,r)

xij ≤ 2n− k − r (1.22)

defines a facet of the cut polytope.

The authors note that already the separation of the circulant inequalities for circu-
lants C(n, 2) is NP-hard. In practical computations we separate circulant inequal-
ities using a heuristic. In Section 3 we use a heuristic separation of for spin glasses
defined on the one-dimensional Ising chain model.

The last class of inequalities that we want to present here are the hypermetric
inequalities [30].

Lemma 1.14. Let b = (b1, . . . , bn) an integral vector that satisfies
∑n

i=1 bi = 1.
Then the inequality ∑

1≤i<j≤n

bibjxij ≤ 0 (1.23)

is valid for PC(G).

Some hypermetric inequalities are facets, e.g., the triangle inequalities are special
cases of the hypermetric inequalities. Separating the hypermetric inequalities is an
NP-hard problem and we separate them using heuristics.

All facet defining inequalities of the cut polytope could only be determined for
small sizes and are compiled in the SMAPO library [114]. The complete description
is known up to PC(K7). Much is known about the polyhedral structure of the cut
polytope of dense or complete graphs. Structures like bicycle-wheels, cliques etc.
are not present in d-dimensional Ising spin-glass instances. However, in Section 2.5
we will use the facets known for the complete graph for sparse spin-glass instances
within a lift-project approach.

In the last paragraph of this section we introduce the switching map for incidence
vectors of cuts. See [30] for the details on the switching operation. This operation
will be helpful in subsequent chapters. The set of cuts in a graph G is closed under
taking symmetric differences. This means that the symmetric difference of the cuts
D ∈ D and D′ ∈ D in G, denoted by D 4D′ (i.e., the set of edges that belong to
one of the two cuts but not to both) is a cut in G. We can formulate this property
in algebraic terms as follows. Let χD and χD′ be the characteristic vectors of D and
D′, respectively. Then the map

sD : RE −→ RE (1.24)
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is called switching along the cut D and is defined by

sD(χD′)|e =

{
χD′

e if e /∈ D,
1− χD′

e if e ∈ D.
(1.25)

With (1.25) we map the characteristic vector of a cut D′ in G into the charac-
teristic vector of another cut in G. Whenever we generate an inequality valid for
the cut polytope we can switch it along an appropriate cut and obtain another
valid inequality. In formulas, if ax ≤ a0 is valid for PC(G) and D a cut in G, then∑

e6∈D aexe−
∑

e∈D xe ≤ a0−
∑

e∈D ae is the corresponding valid inequality switched
along the cut D. Dimensionality of the faces is preserved by switching, i.e., switching
a facet of PC(G) yields another facet of PC(G).

One application of the switching map is as follows. Assume we have generated a
valid inequality ax ≤ a0 violated by x? by the amount v > 0, i.e. ax? = a0 + v
within the branch–and–cut framework. We want to add the violated inequality to
the current polytope P and obtain a tighter relaxation of PC(G) and a better upper
bound. We assume that the bigger the violation v is, the better the improvement in
the bound is. So we aim at determining an optimum switching that maximizes v.
To this end, we have to solve the optimization problem

max v = max
W⊆V

∑
e∈δ(W )

ae(1− x?
e) +

∑
e6∈δ(W )

aex
?
e. (1.26)

We write (1.26) as

max
∑

e∈E ae(1− x?
e)xe +

∑
e∈E aex

?
e(1− xe)

x ∈ PC(G)
(1.27)

which is a max-cut problem on the support of the inequality under consideration.
(1.27) is equal to

max
∑

e∈E ae(1− 2x?
e)xe

x ∈ PC(G)
(1.28)

We know how to solve the max-cut problem (1.28) exactly. However, in practical
computations it does not pay off to determine a maximum cut on the support of
an inequality only for determining one maximally violated inequality. Hence, we
restrict ourselves to determining a ‘good’ switching yielding fast a ‘well’ (maybe not
optimally) violated inequality. We do this with a so-called GRASP heuristic (Greedy
Randomized Adaptive Search Procedure.) GRASP heuristics are fast and usually
give better results in practice than simple greedy algorithms, see e.g. [33]. The key
idea in these heuristics is as follows: In a greedy algorithm we take in each step the
locally best choice. In a grasp heuristic instead, we generate the k best choices and
randomly take one of them. For solving our problem (1.28) we color the nodes, say
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red and black. We start with all nodes colored red and cut value zero. The score
of each node is the amount the cut changes when changing its color. As long as we
can improve the cut, we determine the k nodes with maximum score. We choose
randomly one of them, say node i, and change the color of i from red to black or
vice versa. We summarize the procedure in Algorithm 3.

Algorithm: good switching

color all nodes red
for all nodes i ∈ V do

determine score(i) =
∑

(i,u)∈E(1− 2x?
iu)aiu

while cut can be improved do
from the k nodes with best scores determine a node i randomly
change color of i
update scores

Algorithm 3: Generating a ‘good’ switching with a GRASP heuristic for improving
the violation of an inequality.
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Chapter 2

Branch–and–Cut for Sparse
Max-Cut Instances

During the run of the branch–and–cut algorithm we generate and solve tighter and
tighter relaxations of the max-cut problem until we can prove optimality of a known
cut. It is important for the performance of branch–and–cut that the chosen relax-
ation can be generated ‘fast’ in practice and that it yields a ‘tight’ approximation
of the cut polytope, four our class of instances. In this chapter we study what kind
of relaxation gives the best results within a branch–and–cut framework and how it
can be solved.

In the first section we experimentally compare different relaxations for the max-
cut problem, finding that the cycle relaxation gives the best results for spin-glass
instances. Then we explain how we can heuristically generate the cycle relaxation
fast for regular grid graphs and give experimental results. Subsequently, we show
that the overall performance of branch–and–cut is better when the cycle relaxation
is solved by the traditional simplex method than by subgradient- or interior point
methods. Next we tighten the cycle relaxation by adding inequalities beyond the
cycles. Finally, we study the question how good cuts can be generated.

2.1 Choosing a Relaxation for Max-Cut

Within branch–and–cut, different choices for relaxing the integer programming for-
mulation (1.13) of the max-cut problem are possible. We might want to use a linear
relaxation based on the cycle polytope. This cycle relaxation can be determined
efficiently both in theory and in practice, see the polynomial separation routine
explained in Section 1.3. For spin-glass instances, the cycle relaxation is a ‘tight’
approximation of the cut polytope, and usually the optimum over the cycle poly-
tope is only a few percents away from the optimum cut value. Another possible

27
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relaxation based on positive semidefinite optimization is of quadratic nature. While
Miguel Anjos was doing a Post Doc at our institute in Cologne, we studied the
power of positive semidefinite optimization for spin glasses. Results presented in the
corresponding section are joint work with him. The motivation for using positive
semidefinite optimization lies in the fact that the optimum over the quadratic relax-
ation is known to be at most 14% away from the value of a maximum cut in case the
edge weights are nonnegative. No quality guarantee is known for linear relaxations.
So it is an interesting question whether we can strengthen the relaxation by using
positive semidefinite optimization. In the following section, we compare the cycle
relaxation with the quadratic relaxation. We find that the quadratic relaxation has
only limited power for spin glasses making the linear our relaxation of choice.

First we introduce the quadratic relaxation. Let a weighted graph G = (V,E) with
weight cij ∈ R for edge (i, j) ∈ E be given. For a node set W ⊂ V , let v ∈ {±1}|V |
with

vi =

{
1 if i ∈ W,

−1 otherwise.

Then the cut δ(W ) corresponds to the edges (i, j) ∈ E for which vivj = −1. The
Laplace matrix L of a graph G is defined as Lij = −cij for (i, j) ∈ E, Lii =∑

j:(i,j)∈E cij for i = 1, . . . , n, and Lij = 0 otherwise. The max-cut problem can be
formulated as the quadratic problem

(MC) zMC = 1
4
max vT Lv

v ∈ {−1, 1}|V |.

We notice that vT Lv = L • (vvT ), where we define for two matrices A,B A • B :=∑
ij aijbij. It is not hard to see that the matrices of the form aaT , with a ∈ {−1, 1}|V |,

are exactly the positive semidefinite matrices X (denoted as X º 0) of rank one
having entry 1 along the main diagonal. The basic positive semidefinite (SDP) re-
laxation (MCSDP) of max-cut is obtained by dropping the rank-one condition:

(MCSDP) zSDP =
1

4
max L •X

Xii = 1 ∀ i = 1, . . . , |V |
X º 0

In 1994 Goemans and Williamson [41] showed that it is possible to give a quality
guarantee of the relaxation (MCSDP). If all edge weights are nonnegative, the op-
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timum solution zSDP of (MCSDP) is at most 14% away from the optimum value of
the maximum cut. If negative edge weights are present, it is

zMC − C− ≥ 0.878(zSDP − C−),

where C− =
∑

(i,j)∈E,cij<0 cij is the sum of the negative edge weights in G. For a ±J

Ising spin glass, the sum of the negative weights is approximately − |E|
2

. We have

zSDP / 1.14zMC + 0.07|E|.

In the same paper [41] Goemans and Williamson also derived a randomized ap-
proximation algorithm based on positive semidefinite optimization with the same
approximation guarantee. This means the algorithm yields a cut that is at most
14% away from the optimum solution. The algorithm can be derandomized. This
result was the first to show that it is possible to derive an algorithm with an ap-
proximation guarantee for a hard problem like max-cut with the use of positive
semidefinite optimization. Since then, much research has focused on the latter.

We experimentally determine the quality of the basic SDP relaxation (MCSDP)
by comparing it with optimizing over the cycle polytope (cycle relaxation). For
estimating the power of the positive semidefinite relaxation for spin-glass instances,
we also compute a relaxation of max-cut that is intermediate between the linear
and the quadratic one. For an arbitrary instance, we add to the basic relaxation
(MCSDP) all cycle inequalities that are necessary for defining a point in the cycle
polytope. We call the intermediate relaxation SDP & cycles. Positive semidefinite
problems can be solved exactly through the NEOS Server for Optimization [96].

In Table 2.1 we give some results on the optimum value of the different re-
laxations for three-dimensional ±1 distributed instances in the naming conven-
tion s<dim><linearsize>_<random seed>. In practice, the optimum solution of
(MCSDP) lies roughly 13% above the optimum of the cyle relaxation which is a
considerable amount.

Instance zcyc zSDP zSDP&cyc

s6 111 190.985 215.915 190.983
s8 111 470.736 532.048 470.672

s10 111 912.268 1030.237 912.265

Table 2.1: Comparison of the cycle relaxation bound zcyc, the basic SDP bound zSDP

and the bound zSDP&cyc derived through the intermediate relaxation SDP & cycles.

The bounds zcyc and zSDP&cyc, reported in the first and third column respectively, are
almost equal. In the SDP & cycles relaxation the set of feasible solutions consists of
the intersection of the cycle polytope with the cone of positive semidefinite matrices.



30 CHAPTER 2. BRANCH–AND–CUT FOR SPARSE MAX-CUT INSTANCES

From the numbers in Table 2.1 we conclude that performing this intersection has
almost no effect on the quality of the cycle relaxation bound and does not strengthen
it significantly.

In Table 2.2, we report the running times needed for determining the results in Table
2.1 in seconds. The cycle relaxation is computed on a 296 MHz SUN workstation. The
NEOS server only reports the needed real time making a running time comparison
difficult. Whereas the determination of the basic SDP relaxation is quite fast, the
running times for solving the SDP & cycles relaxation are higher than solving the
cycle relaxation. (We take into account that probably the NEOS machines are faster
than the machine we used.)

Instance CPU zcyc time zSDP time zSDP&cyc

t3pm6 111 33 25 124
t3pm8 111 620 2040 2542

t3pm10 111 3323 1177 5466

Table 2.2: Running times for determining the bounds in Table 2.1.

The running times for solving the quadratic relaxation SDP & cycles is not better
than for solving the linear relaxation. Additionally the improvement in the bound
introduced by positive semidefiniteness is only marginal. We conclude that we cannot
improve the cycle relaxation by using positive semidefinite optimization. Hence, it
is best to generate a linear relaxation of the max-cut problem inside the branch–
and–cut framework. In the following section we show how this can be done fast for
regular grid graphs.
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2.2 Generating the Cycle Relaxation

For convenience, we repeat the formulation of the cycle inequalities from Chapter
1. Let C be a chordless cycle in the graph G = (V,E) and F ⊆ C an odd subset of
edges in C. Then the cycle inequality∑

e∈F

xe −
∑

e∈⊆C\F
xe ≤ |F | − 1

is a facet of the cut polytope PC(G), see Lemma 1.5. A polynomial separation
routine for cycle inequalities exist (see Chapter 1). However, in practical spin-glass
computations calling the exact separation routine needs much CPU time. We are
interested in fast heuristics generating promising chordless violated cycles in regular
grids. We call a cycle simple if a node occurs only once in the cycle and start with
two observations.

Lemma 2.1. Let d ∈ N and G be a d-dimensional regular grid with L1×L2×· · ·×Ld

sites and either free or periodic boundary conditions. Let each Li be an even number.
If C is a simple cycle in G, then C has even length.

In a grid with L1 × L2 × · · · × Ld sites and at least one Li being odd, cycles of odd
length exist, for example the long torus cycles consisting of the edges along an (odd)
row in the grid. In Figure 2.1 we show a long torus cycle in a 5× 2 grid.

Observation 2.2. The only cycles of odd length occur in a finite grid with L1 ×
L2 × · · · × Ld sites and periodic boundaries, if at least one of the Li is odd.

Figure 2.1: A long torus 5-cycle in a 5× 2 grid. Solid edges are cycle edges, dashed
edges are grid edges that do not belong to the cycle.

Proof of Lemma 2.1. Let C = (u1, u2, . . . , ul) be a simple cycle in G. We first assume
that G has free boundaries. Let us start at a node in C and proceed along the cycle
edges. When proceeding along an edge e = (ui, ui+1) ∈ C, we move from the k-th site
in a dimension j to the (k + 1)-th (or (k − 1)-th) site in this dimension. For closing
the cycle, there must exist another edge in C that moves us from the (k + 1)-th site
in dimension j back to the k-th site (or from the (k − 1)-th to the k-th site). By
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repeatedly applying this argument, C has even length. If G has periodic boundary
conditions in a dimension j, then for an edge e = (ui, ui+1) ∈ C either the argument
above applies. Otherwise, we find Lj − 1 cycle edges moving us from the (i + 1)-th
site in dimension j to the (i + 2)-th site (or from the i-th site to (i − 1)-th site),
from the (i + 2)-th site to the (i + 3)-th site etc. until we reach again the i-th site in
dimension j. Together with edge e we have to move along Lj edges which is even.
By repeatedly applying the arguments, C has even length.

For the application to spin glasses, we restrict ourselves to chordless simple cycles
occuring in two- and three-dimensional regular grids. It will come out in the following
section that small chordless cycles play an important role in practice. In Figures 2.2
and 2.3 we display representatives of the chordless cycles of size less than or equal
to ten that are present in two- and three-dimensional grids. We consider long torus
cycles or extensions of it later. Solid lines represent cycle edges, dashed edges are
grid edges included as guide for the eyes. The smallest possible chordless cycles
of length four correspond to the grid plaquettes, see Figure 2.2(a). The chordless
six-cycles are layouted along the elementary cubes in a three-dimensional grid, see
Figure 2.2(b). In a two-dimensional grid we do not have chordless six-cycles. The
chordless cycles of size eight are displayed in Figure 2.3(a). In Figure 2.3(b) we show
chordless cycles consisting of ten edges. We show the cycles modulo symmetry.

(a) The representa-
tive of a chordless
four-cycle in a two-
dimensional grid

(b) The representative
of a chordless six-cycle
in a three-dimensional
grid

Figure 2.2: Chordless four- and six-cycles occurring in two- and three-dimensional
grids.

Now let for a two- or three-dimensional grid G with L0 × L1 or L0 × L1 × L2 sites
at least one Li be odd. Let L?

i be the smallest of those. Then the shortest chordless
cycles of odd length are the long torus cycles consisting of L?

i edges. There are also
chordless cycles consisting of L?

i +k edges, k even, that extend long torus cycles, see
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(a) The representative of
a chordless eight-cycle in
the grid.

(b) The representative of a chordless 10-
cycle in the grid

Figure 2.3: Chordless eight- and 10-cycles.

Figure 2.4, where we show a representative of a long torus cycle of size seven in a
L = 5× 2 grid. We call those chordless cycles extended long torus cycles. In Section
2.2.2 we examine extended long torus cycle inequalities in more detail.

Figure 2.4: An extended long torus 7-cycle.

2.2.1 Practical Relevance of Small Chordless Cycles

We ask the question which chordless cycles are important in practice. To this end,
we consider small grid sizes and determine the cycle polytope by only calling the
exact cycle separation routine. We restrict the algorithm to generating chordless
cycles only. For each sample, we let the branch–and–cut algorithm output the last
linear program generated in the optimization process. (The instances don’t have to
branch. So with the analyzed linear programs optimality of a known solution can be
proven.)

We consider 50 randomly generated two-dimensional grids of quadratic size L × L
with L = 11, having ±J distribution and 50% negative couplings. Considering
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a grid of odd length scale in all direction is advantageous because we can easily
differentiate between long torus cycles and extensions of it and the small chordless
cycles displayed in Figures 2.2 and 2.3.

|C| occurrence in %
4 46.7± 0.4
8 3.5± 0.1

10 1.9± 0.1
11 2.2± 0.1
12 1.5± 0.1
13 8.8± 0.3
14 1.0± 0.1
15 8.0± 0.3
16 0.9± 0.3
17 5.6± 0.2
18 0.8± 0.09
19 3.4± 0.1
20 0.7± 0.08
21 2.3± 0.1
22 3.8± 0.1
23 1.5± 0.1
24 1.7± 0.1
25 0.7± 0.08
26 1.1± 0.1
27 0.56± 0.08
28 0.59± 0.08
29 0.39± 0.08
30 0.54± 0.08
31 0.24± 0.08
32 0.46± 0.08
33 0.63± 0.08
34 0.21± 0.08
35 0.28± 0.08

36 ≤ l ≤ 58 0.65± 0.08

Table 2.3: Occurrence of chordless cycles of different sizes |C| in a two-dimensional
grid of size L = 11× 11, ±J distribution and 50% negative interactions, optimized
using the exact cycle separation.

On average, for an 11 × 11 grid the analyzed linear program consists of 187 ± 21
inequalities. In Table 2.3 we report the occurrence of cycles of different sizes |C| in
percent. The occuring cycles are short, cycles containing more than 2L edges are not
relevant. The four-cycles occur most often (46.728± 0.4%). The second most often
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occurring cycles are cycles of size 13, 15 and 17. From the last section we know that
the support of these inequalities are extended long torus cycles.

We see the same qualitative behavior when studying grid size 15 × 15. The four-
cycles occur most often (46.949± 0.5%). Also important are the inequalities of size
L + 2 and L + 4 that are extended long torus cycle inequalities. Together they form
13.571± 0.4% of the occurring inequalities.

We now study 50 randomly chosen instances of three-dimensional grids with sizes
L = 3, 4, 5 with ±J distribution. As the numbers for L = 3, 4 are analogous to the
numbers for L = 5, we restrict ourselves to L = 5. For three-dimensional grids of size
L = 5 a sample contains on average 310.58±29 inequalities per lp. For a statistics of
50 instances with ±J distribution, the four-cycles on a plaquette occur most often
(49.314± 0.4%). Long-torus cycles and extended long-torus cycles occur frequently
(19.57 ± 0.2% for cycles of size 5, 7, 9). The generated violated cycles are short, no
cycle contains more than 25 edges, i.e., all cycles contain less than 6.67 ± 0.2% of
the grid edges.

In our tests each variable usually occurs at least once in an lp. Additionally, when-
ever negative edge weights induce a frustrated plaquette (i.e., an elementary square
of four edges with an odd number of negative interactions) in the grid, the corre-
sponding cycle inequalities occur in the cyclic description. This result is independent
of the dimension, the grid size and the percentage of negative couplings. An intu-
itive explanation is as follows. Assume we are given a frustrated plaquette as in
Figure 2.5 and we want to maximize x12 + x23 + x13 − x34 under the constraint
that the solution vector x is contained in some relaxation of the cut polytope. An
optimal solution tries setting variables x12x23, x13 to a value near one and x34 to
a value near zero. Therefore, the corresponding probably violated cycle inequality
x12 + x13 + x24 − x34 ≤ 2 is added to the problem formulation. We conclude that
negative weighted edges occur with a minus in the inequality. Even in non-frustrated
cycles the negative weighted edges more likely occur with a minus in the correspond-
ing cycle inequality than with a plus. In Table 2.2.1 we report the percentages of
minus-edges and plus-edges in non frustrated and frustrated cycles, for 50×50 grids.

1 2

3 4

+

++

−

Figure 2.5: A frustrated plaquette.
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# of −1 # of +1
non frustrated cycles 89.97± 0.03 10.03± 0.004
frustrated cycles 99.57± 0.02 0.430± 0.001

Table 2.4: Occurrence of −1 and +1 as coefficients in the cycle inequalities, for non
frustrated cycles and for frustrated cycles in L = 50× 50 grids.

From these numbers, we can deduce a strategy for heuristically generating violated
cycle inequalities in the separation procedure. We should first test cycle inequalities
for violation that are defined on chordless cycles of small length and then proceed
to bigger cycles.

Algorithm: generate cycle relaxation

1 generate frustrated violated four-cycles defined on the plaquettes
2 generate non frustrated violated four-cycles
3 generate frustrated violated six-cycles defined on the elementary cubes
4 generate non frustrated violated six-cycles defined on the elementary cubes
5 generate violated long-torus and extended long-torus cycles
6 generate more general violated cycle inequalities
7 if no inequality can be generated in steps 1 to 6 then

separate cycle inequalities exactly

Algorithm 4: generate cycle relaxation for fast generation of the cycle relaxation
in regular grids.

Steps 1. to step 4. can be done by enumeration. In the subsequent section 2.2.2 we
present a heuristic for the long-torus and extended long-torus cycles that have to
be generated in step 5. Step 6 can be done by either calling the forest routine or
the random cycles routine explained in Section 2.2.3. The exact cycle separation is
done as explained after Definition 1.6.

2.2.2 Generating Extended Long Torus Cycle Inequalities

For step 5 of the cycle separation in Algorithm 4 of the last section, we give a
heuristic that generates ‘promising’ extended long torus cycle inequalities. We re-
strict ourselves to generating (extended) long torus cycle inequalities of size L,L+2
and L + 4, as the numbers in the tables above report that extended long torus
cycle inequalities of bigger sizes do not occur frequently. The separation routine
we describe generates extended long torus cycles along a row in a grid with peri-
odic boundaries. Taking the grid symmetry into account, we analogously generate
extended long torus cycle inequalities column- and inter-layerwise.

Assume we are given x? to be separated. For a row i, we first generate the long
torus cycle CL along row i. CL has length L. Let the nodes on CL be j, j + 1, j +
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2, . . . , j +L− 1, j. We determine the best (with regard to violation) cycle inequality
defined on CL by calling Procedure 2 best ineq on given cycle. We try improving its
violation by extending CL to an extended long torus cycle CL+2 of length L + 2 as
can be seen in Figure 2.6. In order to do this, we choose three neighboring nodes, say
k, k + 1, k + 2 from row i− 1. (Indices are always taken modulo the number of rows
and the number of grid sites in a row, respectively). k, k + 1, k + 2, together with
|CL| − 1 appropriately chosen nodes from CL form a chordless extended long torus
cycle of length L + 2. The nodes k, k + 1, k + 2 are chosen such that the resulting
cycle inequality has the highest violation. Let the extended long torus cycle CL+2

be of the form j, j + 1, . . . , j + r, k, k + 1, k + 2, j + r + 2, . . . , j + L − 1, j. We
now test whether we can improve the violation of the best inequality defined on
CL+2 by extending the path k, k + 1, k + 2 to the left and to the right to a path
. . . k− 1, k, k +1, k +2, k +3, . . .. We keep on extending the nodes to the right (left)
as long as less than L− 1 nodes are affected in row i− 1 and as long as doing this
improves the violation of an inequality defined on CL+2.

This procedure is indicated by the arrows in Figure 2.6. Assume we end up with
an extended long torus cycle CL+2 that contains the nodes k − t, . . . , k, k + 1, k +
2, . . . , k+s from row i−1. We try improving the violation of the best cycle inequality
on CL+2 further by expanding CL+2 to a cycle of size L + 4 by letting expand the
cycle along three rows as indicated in Figure 2.7. We do this analogously to the
generation of a cycle of size L + 2. As we want to generate chordless cycles, we only
have to consider replacing the nodes k − t . . . , k + s by the corresponding nodes in
row i− 2. We summarize the heurisic expand long torus cycles below.

Algorithm: expand long torus cycles

for each row i in the grid do
generate long torus cycle C along row i
generate best extended long torus cycle inequality of size L + 2
generate best extended long torus cycle inequality of size L + 4
if best cycle inequality is violated then

add inequality to the problem formulation

Algorithm 5: Expand long torus cycles generates extended long torus cycles in a
regular grid.

In the following we give experimental results for three-dimensional grids of ±J or
Gaussian distribution. We report the random seeds of the instances, the numbers
of linear programs solved and the CPU time with (denoted by (1)) and without
(denoted by (2)) calling the heuristic for generating extended long torus cycles. For
(2), we generate the cycle polytope as in Algorithm 4. For (1) we do it analogously
but skip the generation of the extended long torus cycles. We report numbers for 53

grids and ±J distributed instances and 63 grids for Gaussian distributed instances.
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Figure 2.6: Generating an extended long torus cycle of size L + 2, having started
from a long torus cycle.

Figure 2.7: Generating an extended long torus cycle of size L + 4, having started
from an extended long torus cycle of size L + 2.

The number of linear programs usually reduces if the extended long torus cycles
routine is called. The runnning time reduces slightly with the new heuristic.

2.2.3 Generating More General Violated Cycle Inequalities

In spin-glass computations it is not sufficient to generate small cycles. Being able to
generate some long violated cycles seems to be important in order to improve the
upper bound. We do this in step 6 of the cycle separation Algorithm 4. We generate
longer violated cycles in the forest heuristic and the exact cycle separation only
called on a random fraction of the nodes.

As the forest heuristic is already introduced elsewhere [10], we only briefly summarize
it. Let G = (V,E) be given and x? the point to be separated. We determine a
maximum weight spanning tree T = (VT , ET ) with VT = V,ET ⊆ E, where the edge
weights are chosen as |x?

e − 1
2
|. By inserting a non-tree edge e = (i, j) to T , exactly

one cycle evolves. This fundamental cycle consists of the union of e and the unique
path from i to j in the tree. We set F = {e ∈ C | x?

e > 1
2
}. In case |F | is odd and the

corresponding cycle inequality is violated by x?, we add it to the constraint buffer.

Another possibility of generating general violated cycle inequalities exist. As ex-
plained in Chapter 1.3, the exact cycle separation routine works as follows: We
create two copies of the original graph G that contain for each node i ∈ V the two
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instance lps(1) lps(2) cpu(1) cpu(2)
1000 152 123 42.81 37.35
1001 55 53 19.01 16.50
1002 151 160 47.03 47.00
1003 42 57 13.73 18.02
1004 73 94 22.00 26.86
1005 34 33 10.91 11.36
1006 31 27 11.73 11.03
1007 207 220 62.96 66.76
1008 43 40 14.75 13.95
1009 125 122 35.33 33.90

Table 2.5: Performance of the algorithm without (denoted by (1)) and with (denoted
by (2)) calling the heuristic extended long torus cycles for grids of size 6× 6× 6 and
Gaussian distributed couplings.

instance lps(1) lps(2) cpu(1) cpu(2)
1000 87 65 13.77 10.88
1001 189 147 32.97 24.13
1002 43 117 10.04 21.29
1003 25 10 5.70 3.02
1004 19 20 4.40 4.73
1005 133 120 21.88 19.16
1006 17 16 4.07 4.13
1007 25 12 4.33 3.12
1008 15 13 3.72 3.42
1009 52 15 9.76 4.17

Table 2.6: Performance of the algorithm without (denoted by (1)) and with (denoted
by (2)) calling heuristic extended long torus cycles for grids of size 5×5×5 and ±J
couplings.
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copies i′ and i′′. For each pair of nodes i′ and i′′ we solve a shortest path from i′ to
i′′ in the doubled graph. The exact separation needs much CPU time in practice.
Nevertheless, we can improve the cycle bound by choosing pairs i′, i′′ randomly. We
only determine the shortest paths between the chosen pairs. We do this for a fraction
1
k

of the nodes.

2.2.4 Experimental Results

Finally, we give experimental results for the performance of branch–and–cut when
the cycle relaxation is either generated heuristically or exactly. The heuristic cycle
bound well approximates the exact bound. For two-dimensional instances up to size
100 × 100 branch–and–cut with the heuristic cycle separation virtually never has
to branch. This means that the cycle polytope is a very tight relaxation for the
cut polytope in two dimensions. Furthermore, the heuristic cycle bound is a good
approximation of the exact cycle bound. This is intuitive as we generate the violated
small chordless cycles first and general violated cycles subsequently as suggested
by the statistical tests we reported in Table 2.3. In Table 2.7 we show the CPU
time for two-dimensional Ising spin-glass instances with Gaussian distribution. We
compare the branch–and–cut algorithm with the exact cycle separation routine only
(denoted as (1)) with the algorithm in which the heuristics are included. The runs
are performed on a 440MHz Ultra Sparc. It is immediate that the running times
are considerably faster with the heuristic than with the exact cycle bound. We have
analogous characteristics for three-dimensional instances. (However, the cycle bound
is not as good as in two-dimensions. This is intuitive: The cut polytope coincides
with the cycle polytope for planar graphs. The more edges we insert that destroy
planarity, the worse the cycle bound is.)

seed CPU(1) CPU(2)
1000 3944.37 24.85
1001 5419.40 71.37
1002 4464.46 43.98
1003 2493.35 22.87
1004 4541.33 27.10

Table 2.7: Performance of branch–and–cut when the exact cycle separation is used
(denoted as (1)) or when the heuristic cycle separation is included (denoted as (2))
for two-dimensional instances of size 40× 40 with Gaussian distribution.

As a conclusion of the previous sections we note that a good performance is archieved
if the cycle relaxation is generated heuristically by Algorithm 4 and solved by the
simplex algorithm.
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2.3 Solving the Cycle Relaxation

In the section above we studied the question how the cycle relaxation can be gener-
ated. In this section we study the question how to solve it. In practice, the simplex
algorithm is very fast. We let the primal simplex algorithm solve the very first linear
program in the branch–and–cut algorithm. In subsequent iterations, we add con-
straints to the linear program and resolve it. After having added constraints to an
lp the former optimal basis is not primal feasible any more, but remains dual feasible
as the optimality conditions are still satisfied. Starting from this basis we can apply
the dual simplex algorithm which is much faster than starting from scratch with the
primal simplex algorithm.

Recently, Barahona et al. suggested to replace the traditional simplex solver inside
a branch–and–cut framework by the so-called volume algorithm [9], [12], an ap-
proximate solver for linear programs. In [12] the running times of a simplex based
branch–and–cut code are compared with a volume based branch–and–cut code for
Ising spin glass and Steiner tree problems. The published running times for two-
dimensional ±J spin-glass instances and two-dimensional Gaussian instances with
a magnetic field are much better with the volume algorithm than with IBM’s OSL
dual simplex algorithm. These results motivated us to study the behavior of the vol-
ume algorithm in more detail. In the following we introduce the volume algorithm
and show computational results. It turns out that the volume algorithm is rather
slow when used as a standalone lp solver. Furthermore, replacing the simplex algo-
rithm by the volume algorithm inside branch–and–cut does not seem to improve its
performance in most cases.

The volume algorithm as introduced in [9] is a subgradient method for generating
an approximate solution of the linear program (P )

min cT x

(P ) Ax ≥ b

0 ≤ x ≤ 1.

No convergence proof is known for its original version. However, later it could be
shown that a modified version converges [5].

Let the Lagrangean function for the dual multipliers π be

L(π) = min
x

(c− πA)x + πb (2.1)

0 ≤ x ≤ 1

The volume algorithm aims at maximizing L(π). For all π ≥ 0, L(π) is a relaxation
of the problem (P ), thus gives a lower bound on the optimum solution of the latter.
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The maximum L(π?) of the Lagrangean is equal to the optimum solution value of
(P ), if for π? and the corresponding x?, π?(b− Ax?) = 0 is satisfied.

Algorithm: volume algorithm [9]

t = 1
choose π̄ ≥ 0, solve (2.1) with π = π̄
let solution be x̄, z̄ = L(π̄), set x0 = x̄
while t ≤ tmax do

heuristically choose an appropriate stepsize s
compute vt = b− Ax̄, π′ = π̄ + svt

set πt
i := max(0, π′i)

solve (2.1) with π = πt; let the solution be xt, zt = L(πt)
update x̄ = αxt + (1− α)x̄, with 0 ≤ α ≤ 1 chosen such that Ax̄− b is
minimal
if zt > z̄ then

π → πt, z̄ → zt

t = t + 1

Algorithm 6: The volume algorithm.

The optimum solution values of the primal problem (P ) correspond to the volumes
below the active faces of the corresponding dual problem. Within the algorithm, x̄ is
chosen in order to heuristically approximate these volumes. This is where the name
‘volume algorithm’ comes from. For the details, see [9].

We first study the performance of the volume algorithm as a standalone approxi-
mate solver for linear programs. Then we compare the behavior of branch–and–cut
for max-cut both with the simplex and with the volume algorithm. We want to point
out that the authors themselves have not claimed that the volume algorithm per-
forms well as a standalone lp solver. However, studying its power standalone helps
understanding its characteristic behavior.

For the tests, we use IBM’s programs. We use the programs from the COIN-OR open
source project [27]. Among others, COIN-OR contains the volume algorithm and
Bcp, a branch–and–cut framework that has an interface both to OSL and the volume
algorithm. With COIN comes also a program bcps2 solving max-cut instances using
Bcp with OSL or Bcp with volume. Special functions are included for solving two-
dimensional Ising spin-glass instances.

We compare the volume algorithm with an interior point solver that is run without
performing a crossover to a basic solution. Comparable to the volume algorithm, such
an algorithm determines an approximate solution ‘near’ an optimal face. We stop the
volume algorithm (as default in bcps2) if either the default convergence tolerance
is reached or if a maximum of 2000 steps is performed. As interior point solver,
we choose CPLEX’s barrier algorithm (version 7.1) baropt. We test convergence
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tolerances of 10−6% (as default for baropt) and 2% (default for volume) for both
the volume and the baropt algorithm. The runs were performed on a 1400 Mhz
AMD Athlon.

We optimize a linear function over the cycle polytope Pcyc(G) of a graph G, i.e., we
solve

max cT x

(MCcyc) x ∈ Pcyc(G)

In Table 2.8 we show running times in seconds for instances of (MCcyc) with the
underlying graph G being complete. The edge weights are chosen from either a
Gaussian distribution or from {±J}, with 50% negative weights. The format of the
name of an instance is c<nnodes>_<random seed>.

instance baropt 2% vol 2% baropt 10−6% vol 10−6%
c30_555 0.52 3 0.63 3
c50_555 5.08 22 6.00 99
c70_555 21.12 98 29.04 675? (0.4%)
c90_555 74.39 213 109.72 5636? (0.04%)

Table 2.8: Running time in seconds for different lp solvers when optimizing over the
cycle polytope of a complete graph.

Instances marked with a ? stopped with having performed the maximum number of
iterations. In parenthesis we then give the quality of the approximation in percent.
For a convergence guarantee of 2%, the interior point solver baropt is roughly a
factor of four faster than the volume algorithm. From the last column in Table 2.8
we see that for graphs having more than 60 nodes, the volume algorithm cannot
approximate the optimum solution of (MCcyc) better than within ∼ 10−2%, and the
algorithm stops after considerable running time having performed the maximum
number of steps without having reached the required guarantee. In contrast, baropt
solves the linear programs fast within a guarantee of 10−6%. The results for Gaussian
distributed instances are comparable to the numbers in Table 2.8.

Next, we study the performance for linear programs appearing in spin glass ground
state computations. We study instances defined on two-dimensional grids with peri-
odic boundary conditions. Our code mc is based on the ABACUS [2] branch–and–cut
framework. We let mc for max-cut output the 10th linear program it generates. (The
choice of the 10th lp is arbitrary.) We solve the lp from scratch with the volume
algorithm, baropt, CPLEX’s primal simplex solver primopt and its dual simplex
solver tranopt.
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The linear programs have around 2700 rows. In Figure 2.8, we show on a logarithmic
scale the running time as a function of the grid size for the different solvers. We show
results for ±J distributed instances. (As before, the results for Gaussian instances
are comparable and skipped.) Compared to the solvers included in CPLEX, we
find long running times for the volume algorithm which are roughly a factor of 20
slower than with CPLEX’s solvers. The volume algorithm typically approximates
the optimal solution within 2%; usually not better. This quality is not very powerful
compared to the default convergence tolerance of 10−6% in baropt.
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Figure 2.8: Running times of different lp solvers for linear programs arising in spin-
glass ground-state computations.

As a conclusion, we notice that it does not pay off to use the volume algorithm as
a standalone solver for solving linear programs. Both the running times are much
higher and the approximation guarantee is worse than with CPLEX’s lp solvers.

In the following we study the performance of different lp solvers within branch–and–
cut. The max-cut solver contained in the COIN-OR project is based on the branch–
and–cut library Bcp that optimizes over the cycle polytope. It can be compiled
to either use OSL or to mainly use the volume algorithm for solving the linear
programs. In the latter case, the arising lps are solved by the volume algorithm.
However, the lp is solved exactly by the dual simplex algorithm before branching
takes place. So a correct upper bound on the max-cut value is stored and used for



2.3. SOLVING THE CYCLE RELAXATION 45

possible fathoming of sub problems. IBM’s max-cut code contains some heuristics
for solving spin-glasses. The four-cycles are enumerated and the forest heuristic is
included, see Section 2.2. There are some additional primal randomized heuristics
flipping up to four spins simultaneously.

For two-dimensional Gaussian Ising spin-glass instances, the running times for bcps2
with volume and bcps2 with OSL are roughly comparable. However, for ±J dis-
tributed instances the running times are much better for bcps2 with volume than
for bcps2 with OSL’s simplex algorithm, see Table 2.9. Runs were performed on a
1400 MHz AMD Athlon. Because of the long running time, we only did small sizes
for bcps2 with OSL.

instance bcps2 & volume bcps2 & OSL
t30pm_555 3.16 > 1800.69
t30pm_666 4.11 284.73
t40pm_555 7.50 > 4897.88
t40pm_666 24.50 not done
t50pm_555 75.51 not done
t50pm_666 65.39 not done

Table 2.9: Comparison of the performance of bcps2 with OSL and with bcps2 with
volume for two-dimensional ±J distributed spin-glass instances.

The different behavior between Gaussian distributed and ±J instances is surprising.
For understanding it, we first notice that the volume algorithm probably does not
generate an (optimal) vertex as the simplex algorithm does, but a solution ‘near’
a (maybe optimal) face of the current polytope. Intuitively it is clear that in the
subsequent round of separation the generated cutting planes will cut ‘deeper’ than
when just a vertex is cut off. (Therefore, both for Gaussian and ±J distributed
instances we need fewer rounds of separation if the volume instead of the simplex
algorithm is used inside branch–and–cut. However, for the Gaussian case, the smaller
number of iterations does not result in a better overall performance.)

An important reason for the better overall performance of the volume algorithm
for ±J instances is due to the better primal solutions, i.e., the best known cuts,
that can be generated. We explain this in the following. We will show in Section 2.6
that good cuts can be generated by appropriate rounding the fractional solutions
generated by the lp solvers. As will also be explained in Section 2.6, for 2d ± J
instances the knowledge of a good cut helps reducing the running time, whereas for
Gaussian distributed instances the knowledge of a good (or optimum) cut does not
have a considerable effect on the performance.

Usually, the development of the primal solutions inside the branch–and–cut frame-
work with the volume algorithm is much better than their development inside
branch–and–cut with the simplex algorithm. For backing up this claim, we define the
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gap g as the difference of the optimal cut zMC and the best known cut z0 generated
in the first round of iteration, divided by zMC:

g =
zMC − z0

zMC

. (2.2)

In Table 2.10 we show numbers for the gap in percent for two-dimensional ±J
instances. We denote the gap as gV for z0 generated from the volume solution and
as gOSL for z0 generated from the simplex algorithm.

instance gV % gOSL%
t30pm_555 6.00 34.07
t40pm_555 2.90 36.25
t50pm_555 0.81 31.26
t60pm_555 2.94 44.08

Table 2.10: The gap in percent defined as in (2.2) for some randomly chosen two-
dimensional ±J instances.

We find that the cut generated with branch–and–cut and volume is within 6% of the
optimum, whereas the cut generated with branch–and–cut and simplex is more than
30% away from the optimal cut value. We find comparable numbers for the Gaussian
case. Therefore, having a better primal solution at hand early in the optimization
process is a main reason for the good performance of the volume algorithm inside
branch–and–cut for two-dimensional ±J spin-glass instances.

We find the same phenomenon (fewer rounds of separation, better cuts) if we use
CPLEX’s barrier solver in our b&c framework ABACUS. However, mc needs longer
running time when the dual simplex method is replaced by the barrier solver and
so we use the dual simplex algorithm.

It is also interesting to compare the performance of mc and bcps2 for two-dimensional
Ising spin-glass instances. For each system size, we run two different samples on a
1400 Mhz AMD Athlon. For two-dimensional ±J instances, the running times are
roughly comparable, as can be seen in Figure 2.9. For Gaussian distributed instances,
mc performs better than bcps2, as shown in Figure 2.10. In Table 2.11 we show the
running times in seconds for the eight ±J instances that were used in [12]. For these
instances bcps2 performs better than mc. However, for the two randomly chosen
instances of size 80× 80 from Figure 2.9 above, the running times for bcps2 and mc

are comparable. We conclude that we have roughly comparable running times for
bcp2 and mc for two-dimensional spin-glass instances.

bcps2 does not contain special separation routines for three-dimensional grids, but
we can treat a three-dimensional instance as a general sparse graph. For eight tested
instances of size 33 to 63 bcps2 with simplex is even a factor of two faster than bcps2

with volume. We show the running times for randomly chosen instances for bcps2
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instance bcps2 & volume mc

L_70_1 226 242
L_70_2 45 109
L_70_3 186 332
L_70_4 545 1858
L_70_5 496 1216
L_70_6 319 4397
L_70_7 148 321
L_70_8 255 1052

Table 2.11: Comparison of running times for bcps2 with the volume algorithm and
mc for the eight instances mentioned in [12].
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Figure 2.9: Comparison of the running times for two-dimensional ±J-distributed
weights of size L×L for our mc-code and the bcps2-code with the volume algorithm.
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Figure 2.10: Comparison of the running times for two-dimensional Gaussian dis-
tributed weights of size L× L for our mc-code and the bcps2 code with the volume
algorithm.
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and mc in three dimensions in Table 2.12. The naming convention is t_<linear

dimension><g/pm>_<random seed>. The mc code is faster than the bcps2 code
(both with simplex and volume). We notice that the mc code contains special sepa-
ration routines for three-dimensional spin-glasses, so we should not take this com-
parison too seriously.

instance bcps2 & volume mc

t5g_555 21.26 0.63
t5g_666 13.51 0.40
t6g_555 138.35 2.70
t6g_666 980.54 65.71
t5pm_555 101.41 3.75
t5pm_666 52.39 1.23
t6pm_555 320.15 15.68
t6pm_666 2066.29 79.72

Table 2.12: Comparison of running times for bcps2 and mc for three-dimensional
Gaussian and ±J-distributed instances.

As a conclusion, we notice that the volume algorithm inside branch–and–cut only
performs well in special cases, e.g., the two-dimensional ±J spin glass. The per-
formance of the volume algorithm inside a branch–and–cut framework is problem
specific and it is not clear beforehand how it performs for other combinatorial opti-
mization problems or even for different distributions of the weights.



50 CHAPTER 2. BRANCH–AND–CUT FOR SPARSE MAX-CUT INSTANCES

2.4 The 4-Neighbour Graph Facet

In [118] the authors presented the circulant inequality (1.22) and mentioned that it
would be interesting to know facet defining inequalities on the ‘true’ circulants that
we call k-neighbour graph. Let the edge set Ek of a k-neighbour graph Hk = (V k, Ek)
for all nodes i consist of (i, i + 1), . . . , (i, i + k). Indices are always taken modulo
|V k|. In this section we introduce a new facet of the cut polytope that is defined on
4-neighbour graphs H4 = (V 4, E4).

Lemma 2.3. Let r ≥ 4 be an even number and n = 3r + 1 or n = 3r − 1. Let
H4 = (V 4, E4) with |V 4| = n be a 4-neighbour subgraph of a graph G = (V,E).
Then the inequality ∑

e∈E4

xe ≤ 3n− r − 1 (2.3)

is valid and facet defining for PC(G).

Proof. We first show validity of (2.3). To this end, we show that (2.3) is satisfied for
a cut of maximum cardinality in a 4-neighbour subgraph. Let us first consider an
infinitely long 4-neighbour chain in which for each node i the edges (i, i+1), . . . , (i, i+
4) exist, see Figure 2.11.

Figure 2.11: A part of an infinitely long 4-neighbour chain.

We determine a cut of maximum cardinality on finite substrings of length n, however
n →∞. We first study ‘regular’ solutions, i.e., solutions in which l nodes are in W ,
the following l nodes are not in W , the subsequent are in W , etc. A solution with
l > 5 can easily be improved, and so we consider l ≤ 5. Solutions with l = 1, 2 do
not cut ∼ 2n edges. For l = 3, ∼ 4

3
n edges are not in the cut, and for l = 4, ∼ 3

2
n

edges are not in the cut. For l = 5, ∼ 2n edges are not cut. Therefore, an optimum
regular solution (with regular as defined above) is obtained for l = 3. In Figure 2.12
we show such a solution on a part of the chain. White nodes are in W , black nodes
are in its complement. We only show the edges that are not in the cut δ(W ).

What about solutions that do not have this regular structure? We show in the
following that they cannot be better than the regular solution with node packages
of length l = 3. Suppose we have a substring with an assignment of colors to the
nodes that is not regular, together with a copy of it on on the string on which the
solution is regular with l = 3. We compare the solutions on the two strings.
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Figure 2.12: Optimum solution on the 4-neighbour chain. White nodes are in W ,
black nodes are in its complement. Displayed are only the edges that are not in the
cut δ(W ).

In order to do this, we assume we have a node package of length p, p ≤ 5 within the
not regular solution. We consider these p nodes plus additionally at least the four
nearest neighbours at each end of the node package. (Nodes that are further away
are not connected to a node in the package.) As we only have to study p ≤ 5, we
consider 13 nodes. Without loss of generality let the color of the p nodes be white.
As the node package has exactly p nodes, the color of the nearest neighbours at
both ends of the package is black. The color of the second, third, fourth nearest
neighbours at both ends is not yet defined. We show this situation for p = 5 in
Figure 2.13.

??????

Figure 2.13: Considering a node package of p = 5 nodes together with four nodes
at each end of the package. The color of the nodes with a question mark is not yet
assigned.

It is enough to show for all values of p that no matter how we assign colors to the
yet uncolored nodes, the resulting cut on the 13 node string does not cut more edges
than the regular l = 3 solution.

For the the regular l = 3 solution on the 13 nodes, three qualitatively different
possibilities for assigning colors exist. We show them in Figure 2.14.

Figure 2.14: Three qualitatively different regular l = 3 solutions exist on a 13 node
substring. Edges are only shown if they are not cut.

Two of the solutions in Figure 2.14 cut 27 edges, the other cuts 28 of them. Therefore,
we show for the not regular solution that there exists no different assignment of colors
to the yet uncolored nodes around the node package of p nodes such that more than
27 edges are in the cut. In fact, we checked this is true for all values p ≤ 5 by brute
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force enumeration of all possible assignments of colors to the uncolored nodes. We
conclude that the regular l = 3 solution is optimum on the chain.

We now consider a 4-neighbour graph of n = 3r nodes with r ≥ 6 an even number.
By analogous arguments as above we conclude that an optimum solution is obtained
by the regular l = 3 solution.

For n = 3r + 1 (n = 3r − 1 respectively) it is not possible to always assign every
three nodes a different color. However, by applying similar arguments as the ones
above we obtain a solution with maximum cardinality by the ‘regular’ solution on
r − 1 packages of three nodes each and one package consisting of four (two) nodes
instead of three.

The corresponding cuts of maximum cardinality satisfy inequality (2.3) with equality
and we have shown validity of (2.3). (Our considerations are for n ≥ 16 nodes.
However, n = 11, 13 can be treated separately.)

For inequality (2.3) being facet defining, we consider the case that H4 is a 4-
neighbour subgraph with n = 3r − 1 nodes. The case n = 3r + 1 is analogous.
There exist n different cuts δ(W ) of maximum cardinality. Each of them consists
of a series of three nodes that are in W , three nodes that are not in W , etc., and
one node package consists of only two nodes. We show that these incidence vectors
χ1, . . . χn are affinely independent. So we have to show that the equality system

n∑
i=1

αi = 0 (2.4)

n∑
i=1

αiχ
i = 0 (2.5)

has the unique solution α1, . . . , αn = 0.

How do χ1, . . . χn look like? Let us consider a node u that is connected to the
subsequent four nodes in H4. Five qualitatively different possibilities for u exist that
we display in Figures 2.15 and 2.16. Either u is the first or second or third node of
the three nodes in a package, and the following package also consists of three nodes.
The other two possibilities occur when u is the second or the third node in a package
and the subsequent package is the one package of two nodes. Next to the figures,
we show the corresponding 4-tuples ordered as T(χu,u+1, χu,u+2, χu,u+3, χu,u+4) that
appear in the incidence vectors.

An incidence vector χi consists of the 4-tuples from Figure 2.15
0
0
1
1

 ,


0
1
1
1

 ,


1
1
1
0

 (2.6)



2.4. THE 4-NEIGHBOUR GRAPH FACET 53


0
0
1
1



u

(a)


0
1
1
1



u

(b)


1
1
1
0


u

(c)

Figure 2.15: Three of the five building blocks of the incidence vectors χi.


0
1
1
0



u

(a)


1
1
0
0



u

(b)

Figure 2.16: Two of the five building blocks of the incidence vectors χi.

repeatedly appearing one after the other, with the number of repetitions depending
on the size of n. Once in each χi the tupels


0
1
1
0

 ,


1
1
0
0

 (2.7)

occur, see Figure 2.16(b). We observe that each 4-tupel has 1 as the third entry ex-
cept T(1, 1, 0, 0). The latter is of special interest. For one incidence vector it appears
as the first 4-tupel that builds the 0/1 vector. For another vector it appears as the
second, the third, etc., the n-th tupel.

We consider every third row of the coefficient matrix of the equality system (2.5).
Exactly one zero appears in each of these rows, and all other entries are one. The
zero appears exactly once as the first, second, third, etc., n-th entry. Thus, by
extracting every third row in (2.4) and possibly reordering the extracted rows, we
get an equality system
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
0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0




α1

α2
...

αn

 =


0
0
...
0

 (2.8)

The equality system (2.8) together with the equality
∑n

i=1 αi = 0 has the unique
solution α1, . . . , αn = 0. Thus, the incidence vectors χ1, . . . , χn are affinely indepen-
dent which completes the proof.

We notice that for a 4-neighbour subgraph with 3r, r ≥ 4 even, nodes the analogous
inequality

∑
e∈E4 xe ≤ 3n−r is valid but not facet defining for PC(G). Furthermore,

for a 3-neighbour subgraph H3 = (V 3, E3) the corresponding inequality would be∑
e∈E3 xe ≤ 2n. This inequality is also valid but is the sum of n appropriately chosen

cycle inequalities and therefore not facet defining. We notice that it is possible to
extend the above idea to k-neighbour graphs with k = 5 and that we can devise an
analoguous facet for the 5-neighbor graph. Separating the 4-/5-neighbor inequalities
is NP-hard. For H6, the regular l = 5-solution is not the optimum with respect to
cardinality. The smallest counterexample consists of a 5-neighbor graph on 51 nodes.
The regular l = 5 solution cuts 186 edges, whereas the maximum cardinality cut
cuts 192 edges.

In Chapter 3 we study spin-glasses in the one-dimensional Ising chain model. For
this model, k-neighbour subgraphs are important structures for the algorithm and
we will use a heuristic separation of the 4-neighbour facets there.
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2.5 Separating Inequalities Outside the Template

Paradigm

2.5.1 Projecting and Lifting

The cut polytope is well-studied for dense or complete graphs. For sparse graphs,
taking the cycle polytope as relaxation of the cut polytope gives already good re-
sults. The cycle polytope can be generated fast. It is an interesting question how
to strengthen the cycle relaxation by adding further inequalities beyond the cycle
inequalities.

Jünger, Reinelt and Rinaldi [55] give a lift–and–project procedure as follows. For
an edge (s, t) in a graph G = (V,E) we denote by S the set of nodes that are
neighbors of s but not of t, by T the nodes that are neighbors of t but not of s and
by N the set of nodes that are neighbors of both s and t, see Figure 2.17(a) for an
example. By shrinking an edge (s, t) in a graph G = (V,E) we end up with a graph
G = (V ,E). We do this as follows. We combine the nodes s ∈ V and t ∈ V to a
supernode st ∈ V . An edge (u, v) ∈ E with u ∈ {s, t} and v ∈ S or v ∈ T becomes
(st, v) ∈ E, multiple edges with one endpoint in N are deleted as shown in Figure
2.17(b). Nodes and edges unaffected by this procedure remain unchanged in G. A

point x? ∈ R|E| to be separated is projected to x̄ ∈ R|E|.
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(a) Original graph.
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(b) Shrunken graph.

Figure 2.17: Shrinking an edge (s, t). S and T are the sets of nodes that are only
neighbors of s or t, respectively. N is the set of common neighbors.

Assume we have generated a valid inequality ax ≤ a0 for the cut polytope PC(G)

of the shrunken graph that is violated by x ∈ R|E|. We lift ax ≤ a0 to an inequality
a′x′ ≤ a0 valid for the cut polytope of the original graph G by applying the lifting
procedure introduced in the following definition.
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Definition 2.4 (Lifting and unshrinking procedure). Wlog. we denote the sets
S, T such that ∑

v∈T

|avt| ≤
∑
v∈S

|asv|.

We lift an inequality ax ≤ a0 defined on the shrunken graph G = (V ,E) to an
inequality a′x′ ≤ a0 defined on the lifted graph G = (V,E) by setting

• a′sv = avst ∀ v ∈ S

• a′vt = astv ∀ v ∈ T

• a′st = −∑
v∈T |avst|

• a′sn = astn ∀ n ∈ N

• a′nt = 0 ∀ n ∈ N

The next theorem states that by applying the lifting procedure 2.4 validity is main-
tained.

Theorem 2.5 (Jünger, Reinelt and Rinaldi [55]). Let ax ≤ a0 be valid for
PC(G). Then the lifted inequality a′x′ ≤ a0 is valid for PC(G).

Proof. Let us suppose there exists W ⊆ V with a′(δ(W )) > a0. i.e., the inequality
is not valid. Then edge (s, t) has to be in the cut δ(W ). Let wlog s ∈ W, t 6∈ W and
set Wt = W ∪ {t}. It is

a′(δ(Wt)) = a(δ(Wt)) ≤ a0,

as ax ≤ a0 is valid for PC(G). On the other hand, we have a′(δ(Wt)) = a′(δ(W∪{t})),
which is

a′(δ(W ∪ {t})) = a′(δ(W ))− a′st −
∑

v∈T∩W

a′vt +
∑

v∈T∩V \W
a′vt

= a′(δ(W )) +
∑
v∈T

|a′vt| −
∑

v∈T∩W

a′vt +
∑

v∈T∩V \W
a′vt

≥ a′(δ(W ′)) > a0

and we have a contradiction. Thus, the lifting procedure from Definition 2.4 preserves
validity.

Suppose we generate an inequality valid for PC(G) that is violated by x̄ ∈ R|E|. We
want to make sure that the lifted inequality is also violated by the corresponding
point x? ∈ R|E|. As formulated in the next Observation 2.6, this is achieved if we
only shrink edges (s, t) with x?

st = 0 or x?
st = 1.



2.5. INEQUALITIES OUTSIDE THE TEMPLATE PARADIGM 57

Observation 2.6. Let a graph G = (V,E) and a point x? ∈ R|E| be given. Let G be
obtained by shrinking an edge (s, t) ∈ E with the property x?

st = 0 or x?
st = 1. Project

x? ∈ R|E| to x ∈ RE. Let x violate an inequality ax ≤ a0 by v > 0, i.e., ax̄ = a0 + v.
Then x? violates the lifted inequality a′x ≤ a0 also by v.

Proof. If x?
st = 1 we switch the vector x? as

x?
i =

{
x?

i e 6∈ δ(s)

1− x?
e e ∈ δ(s)

and only have to consider the case x?
st = 0. It is a′x? = ax?+a′stx

? = ax? = a0+v.

Under certain circumstances, the lifted inequality is facet defining.

Theorem 2.7 (Jünger, Reinelt and Rinaldi [55]). Let ax ≤ a0 be valid for
PC(G). Let the inequality a′x ≤ a0 be obtained through the lifting procedure defined
in Definition 2.4. a′x ≤ a0 is facet defining if the following conditions are satisfied:

(i) ax ≤ a0 is facet defining for PC(G) and

(ii) there exists a node set W ⊂ V with st ∈ W and a(δ(W )) = a0. Furthermore,
it is

(a) astv ≥ 0 ∀ v ∈ T ∩W

(b) astv ≤ 0 ∀ v ∈ T ∩ V \W

(c)
∑

w∈W avw =
∑

w∈V \W avw ∀ v ∈ N .

Proof. Let ax ≤ a0 be a facet for PC(G) of dimension |E| − 1. Then there exist
|E| affinely independent incidence vectors of cuts satisfying ax ≤ a0 with equality.
Let the incidence vectors be χδ(Wi) with Wi ⊆ V and wlog st ∈ Wi. By setting
W ′

i = Wi \ {st} ∪ {s} the |E| incidence vectors χδ(W ′
i ) are affinely independent.

Furthermore, it is

a′(δ(W ′)) = a(δ(W )) + a′st +
∑

v∈T∩W

astv +
∑

v∈N∩W

astv −
∑

v∈T∩V \W
astv

= a(δ(W )) + a′st +
∑
v∈T

|astv|
= a0

and by zero-lifting the inequality on the edges (t, n), n ∈ N , a′x ≤ a0 is a facet.

As an application of the above Lemma 2.7, we show the yet missing part of the proof
1.5 that cycle inequalities are facet definining.
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Cycle Inequalities are Facets. Let C be a cycle consisting of n edges and let x(F )−
x(C \ F ) ≤ |F | − 1 be an arbitrary cycle inequality defined on C. Let C consist of
the edges c1, c2, . . . , cn. We shrink c1, . . . cn−3 by applying the shrinking procedure
as in Figure 2.17. After n − 3 shrinking steps the cycle is a triangle C̃ = c̃1, c̃2, c̃3.
Consider a triangle facet (1.12) on C̃. We unshrink the graph again by undoing the
shrinking steps in reverse order. Simultaneously we lift the triangle inequality by
applying procedure 2.5. The resulting inequality on C in the unshrunken graph is
again a cycle inequality. We show that a lifting step preserves the facet property. To
this end we have to show the existence of the node set W with the property (iia),
(iib) and (iic). For each node set W (iic) is satisfied as for all nodes n ∈ N it is
anu = 0 for u ∈ V . We observe that exactly one coefficient astv for v ∈ T has value
1 or −1; all other coefficients are zero. In both cases it is not hard to generate a
node set W that satisfies (2.9) and (2.10) such that the cycle inequality is tight at
δ(W ). Therefore, the cycle inequality that is obtained by lifting a triangle inequality
is a facet in the original graph. We can obtain all cycle inequalities on a cycle by
switching it along an appropriately chosen cut. Switching preserves the dimension
of a face. We conclude that cycle inequalities are facets.

We can make use of the project–and–lift procedure within our separation procedure.
We start with a weighted graph G = (V,E) and x? ∈ R|E| to be separated. As
long as there is an edge e = (u, v) in G with xe = 0 or xe = 1, we switch x
along the cut δ(v) in case xe = 1 and shrink edge e as explained above. After
having applied all possible shrinking steps, we end up with a graph G = (V ,E)
and a point x ∈ R|E|. We generate inequalities valid for PC(G) that are violated by
x. By simultaneously unshrinking the graph and lifting the generated inequalities
we reconstruct the original graph again and add the generated inequalities to our
problem description.

Suppose we have applied the shrinking procedure and the resulting graph G is not
complete, i.e., there exist nodes i, j ∈ V such that (i, j) 6∈ E. We want to add the
artificial edge e = (i, j) with weight zero to the edges in G and do the separation
procedure for the completed graph G

e
. Then we want to remove the artificial edges

again and lift the violated inequalities. Several questions arise:

1. How can we extend x ∈ R|E| to a point xe ∈ R|E|+1 to be separated?

2. In case a generated inequality valid for the completed graph G
e

has nonzero
coefficient ae, how do we get rid of the coefficient ae when we delete the artificial
edges again?

Jünger, Reinelt and Rinaldi answered both questions [55]. We first answer 2. Let e
be an artificial edge and ∑

i6=e

aixi + aexe ≤ a0 (2.9)



2.5. INEQUALITIES OUTSIDE THE TEMPLATE PARADIGM 59

with |ae| 6= 0 be an inequality valid for PC(G
e
). If we know another valid inequality

with ∑
i6=e

bixi − aexe ≤ b0 (2.10)

then summing up (2.9) and (2.10) yields
∑

i6=e(ai+bi)xi ≤ a0+b0, and the coefficient
of the artificial edge cancels. We choose the inequality (2.10) as follows.

Let i, j ∈ V with (i, j) 6∈ E and suppose we want to add the artificial edge (i, j) to
the graph. It will become clear in the following that we can safely do this if we are
given a cycle C in G with i, j ∈ C and the additional requirement that there is a
cycle inequality

∑
e∈F xe −

∑
e∈C\F xe ≤ |F | − 1 defined on C that is tight at x.

Inserting edge e = (i, j) makes C a chordal cycle consisting of two cycles C1 =
u1, . . . , uk, i, j and C2 = v1, . . . , vr, i, j, see Figure 2.18. Either C1 or C2 contains an
odd number of edges from F , without loss of generality C1.

����

�
�
�
�

C C1 2

i

j

C

Figure 2.18: Schematic picture of the cycles C1 and C2.

We denote Fi = {e ∈ E | e ∈ Ci, e ∈ F}. We consider the cycle inequalities on C1

and C2

∑
e∈F1

xe −
∑

e∈C1\F1

xe − xij ≤ |F1| (2.11)

∑
e∈F2

xe + xij −
∑

e∈C2\F2

xe ≤ |F2|+ 1 (2.12)

In case we encounter the artificial edge (i, j) with a positive (negative) coefficient
in an inequality, we can add an appropriate positive multiple of inequality (2.11)
((2.12), respectively) to it and the coefficient of the artificial edge cancels. Thus we
have answered question 2.

For answering 1., we extend x to xe such that the two cycle inequalities (2.11) and
(2.12) are both tight at xe. By this choice, we archieve the following. Suppose xe

violates the inequality (2.9) by v > 0. After having added an appropriate multiple
of either (2.11) or (2.12), x also violates the projected inequality by v.
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For the details, we denote the two paths P1, P2 as P1 = u1, . . . , uk and P2 =
v1, . . . , vr. Inserting x in the tight cycle inequality on C and rewriting it yields

∑
e∈F

(1− xe) +
∑

e∈C\F
xe = 1. (2.13)

Thus, if e is part of the odd set, it contributes 1− xe to the left hand side of (2.13),
otherwise it contributes x. We define

x1 =
∑

e∈P1,e∈F1

(1− xe) +
∑

e∈P1,e∈C1\F1

xe

x2 =
∑

e∈P2,e∈F2

(1− xe) +
∑

e∈P2,e∈C2\F2

xe

It is x1 + x2 = 1, and xi denotes the contribution of the path Pi to the left hand
side of the cycle inequality.

We extend x to xe by setting xe = x2. Then both cycle inequalities (2.11) and
(2.12) are tight at xe. (For C1, (i, j) is in the odd set and thus contributes 1− x2 to
the inequality.) In the following section we explain how we do the lift–and–project
procedure in practice.

2.5.2 Separation Procedure with Lift–and–Project

We setup the separation procedure as follows. In order to keep the program flexible,
we add in each round of separation at most s inequalities to the problem formula-
tion. (For three-dimensional spin-glass instances s = 300 is a good choice.) We start
by generating the cycle polytope. If we find less than s violated cycle inequalities
we call the lift-project procedure. We shrink and complete the sparse input graph.
In the shrunken and completed graph G

c
we expect to find violated bicycle-wheel

inequalities. We separate them with the polynomial separation routine explained in
Chapter 1 and add the generated violated inequalities to the problem formulation.
It turns out in practice that the shrunken and completed graph is dense but by far
not complete. In order to be able to use the knowledge on the cut polytope for com-
plete graphs, we determine big complete subgraphs (cliques) in G

c
and later lift the

inequalities generated on these cliques. As the problem of determining a maximum
clique in a graph is an NP-hard problem we use a heuristic. It is advantageous to
generate the cliques such that each node in the shrunken graph is part of at least
one clique.

Suppose we have identified a clique Kk = (Vk, Ek) on k nodes in the shrunken and

completed graph G
c
. Let xc ∈ R(k

2) the point to be separated that is projected on the
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clique edges. For our range of instance sizes, the cliques usually are of a size k ≤ 20.
How can we apply a separation procedure on these small cliques? Facets of the cut
polytope for complete graphs Kk with k ≤ 9 are compiled in the SMAPO-library
[114] modulo permutation of the nodes and modulo switching, i.e., each inequality
mentioned there occurs in the description once for each node permutation and for
each possible switching along a cut. Additionally, for each inequality the number of
roots, i.e., the number of cut vectors that is contained in it, is computed. PC(K5) is
described by 56 facets, where 40 facets are at a vertex. The facets are either triangle
(1.12) or clique inequalities (1.20). In addition to the triangle facets and the clique
facets on the six K5-subgraphs contained in K6, PC(K6) contains a hypermetric
inequality. PC(K6) contains 368 facets, and 210 facets are at one vertex. The facial
description of the cut polytope is completely known up to k ≤ 7, [42] and contained
in SMAPO. PC(K7) is described by 11 classes of facets. In total these are 116764
facets For K8, the description of PC(K8) contained in SMAPO is conjectured to be
complete. It consists of 147 classes of inequalities yielding 217093472 facets in total.
49604520 facets are at a vertex. We see that the problem becomes highly degenerate.
The description of PC(K9) in SMAPO is possibly complete and contains at least
164506 classes yielding 12246651158320 facets in total. The number of facets that
are needed to describe the cut polytope PC(Kk) grows very fast with k.

We setup the separation procedure on a subgraph Kk as follows. For k = 5 we just
check whether the clique inequality (or a switched version of it) is violated. We
assume that an inequality with many roots is stronger than an inequality with a
small number of roots, so for 6 ≤ k ≤ 9 we first sort the inequalities in PC(Kk) with
regard to the number of roots. As long as there is space in the constraint buffer,
we do the following steps. For an inequality contained in the SMAPO-description
we have to determine a node permutation and a switching optimizing the violation
of the resulting inequality. For k = 6, the number of facets is small enough that
testing all node permutations is fast. For k > 6 instead, it is described in [25]
that determining the best node permutation with regard to the violation reduces
to solving a quadratic assignment problem (QAP). The QAP is a hard problem,
both in theory and in practice. We use the GRASP heuristic presented in [25] for
determining a good node permutation that we summarize now. For an inequality, we
sort both its coefficients ai and the entries of vector xc in decreasing order. From the
d largest products as1t1x

c
i1j1

, . . . , asdtdx
c
idjd

in sorted order we choose randomly one
of them, say asltlx

c
iljl

, and initialize a list L of assignments as L = {(sl, il), (tl, jl)}.
We find the assignments for the other nodes step by step. In each step we setup a
heap. For all possible assignments (e, f) we insert (e, f) into the heap with a score
that reflects the contribution to the left hand side of the inequality in case e would
be assigned to f . The score of (e, f) is thus

∑
(q,r)∈L xc

fraqe + xc
rfaeq. We randomly

choose an assignment from the p entries with highest score in the heap and insert it
into the list of assignments L. After having constructed the assignment in L we can
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apply a local search procedure that tests whether the assignment can be improved
by permuting any two assigned pairs.

Determining a switching that maximises the violation of the inequality reduces to
a max-cut problem on Kk, see Chapter 1. For the determined node permutation
we determine a good switched inequality heuristically by applying Algorithm 3 from
Chapter 1. In case the resulting inequality is violated by xc we store it. In case the size
of the clique is bigger than 9, we first heuristically separate hypermetric inequalities
on Kk. Then we check whether a (switched) clique inequality on k nodes is violated
on Kk. Subsequently we make use of the inequalities compiled in SMAPO, where
we take as input complete subgraphs Kl with l ≤ 9. We summarize the procedure
in the algorithms below.

Algorithm: lift-project separation

shrink edges e with x?
e = 0 or x?

e = 1
complete the graph by adding artificial edges
end up with G

c

separate bicycle-wheel inequalities in G
c

construct-cliques in G
c

foreach clique Kk do
separate(Kk)
zero-lift inequalities on Kk to inequalities on G

c

delete artificial edges again
unshrink graph and lift inequalities

Algorithm 7: Separation procedure based on lift-project.

With K1,...,l we denote the clique consisting of the nodes 1, . . . , l. The function
separate(Kk) then is formulated in Algorithm 8.

Algorithm: separate(Kk)

if k > 9 then
heuristically separate hypermetric inequalities
separate clique inequality on Kk

SMAPO(K1,...,9)
SMAPO(Kk−8,...,k)

else
SMAPO(Kk)

Algorithm 8: Separation routine for small complete graphs Kk.

The algorithm SMAPO using the SMAPO library is outlined below.

Finally, we summarize the GRASP heuristic construct-cliques for generating cliques.
We sort the nodes with regard to their degress in descending order. We start with a
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Algorithm: SMAPO(Kk)

if k > 6 then
sort inequalities in PC(Kk) wrt. number of roots
foreach inequality i in sorted order do

determine good node permutation with GRASP heuristic
for this permutation determine good switching with Algorithm 3
if ineq. violated then

add inequality to constraint buffer
if k = 6 then

sort inequalities in PC(Kk) wrt. number of roots
foreach inequality i in sorted order do

foreach node permutation do
determine good switching with Algorithm 3
if ineq. violated then

add inequality to constraint buffer

if k = 5 then
check clique inequality on K5 for violation

Algorithm 9: Separation routine using the inequalities contained in the SMAPO
library.

triangle that has the maxium sum of node degrees among all triangles. Node by node
we increase the size of the clique. In each step we generate the extension candidates,
i.e., the non-clique nodes that are connected to all nodes in the clique. We choose
randomly a node from the five candidates with highest degrees and add it to the
clique. If we cannot extend the size of the clique any further we check whether a
one-node-exchange of a node in the clique with a node not in it yields a clique of
bigger size. We stop if we cannot increase the size of the clique any further.
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2.5.3 Computational Results

We are mainly interested in the results for three-dimensional spin-glass instances.
We call the nodes in the shrunken graph active nodes and the edges active edges.
We show results for Ising spin-glass instances of size 53, 63 with ±J distribution and
of size 73 with Gaussian distribution. We choose periodic boundaries. We consider
10 randomly chosen instances per size. First we study the shrunken graph. During
the run of the algorithm, the generated shrunken graphs get denser. This is intuitive
as we expect to find more ‘already decided’ edges on which the lp solution vectors
attain value zero or one. Furthermore, we expect to find more tight cycle inequalities
in the graph completion at a later stage of the algorithm than at the beginning. For
the ±J instances of size 53 on average we have 93±1 active edges and a graph density
of ∼ 30%. (161± 1 active edges and a density of ∼ 27% for 73 Gaussian instances.)
For both classes of instances, roughly 80% of the present edges are artificial and are
added in the graph completion process.

In the shrunken and completed graphs cliques are generated. In practice, both for
±J and Gaussian instances the average clique size increases only slightly during the
run of the algorithm, but the number of found cliques grows. This is intuitive as
the shrunken graphs get denser. However, the effect is not strong enough to result
in cliques of significantively bigger size. On average, for ±J distributed instances
the cliques have size 10.8 ± 0.3. On average, 29 ± 1 cliques are generated. (For the
Gaussian instances of size 73 we generate 52.5±0.1 cliques of average size 11.41±0.03.
In case we only shrink the graph and skip the graph completion procedure the graph
does not contain big enough cliques for being able to separate enough interesting
inequalities.

After shrinking and completing graph we separate the bicycle-wheel inequalities. In
Table 2.13 we report the average number of violated inequalities generated in each
round of separation.

We skip the numbers for separating PC(K6) and PC(K7) with the SMAPO inequali-
ties as those heuristics are only called if the cliques have fewer than eight nodes. The
numbers for the Gaussian distributed instances are comparable and skipped here.
In Table 2.14 we report the average violation of the inequalities for the Gaussian
distributed instances of size 73. Numbers for ±J instances are comparable.

bicycle wheels hypermetrics big cliques PC(K1,...,8) PC(Kk−7,...,k)
11± 1 0.39± 0.04 0.4± 0.03 15± 1 23± 2

Table 2.13: Number of generated inequalities per round of separation for the ±J
instances of size 53.

The average violation of the inequalities generated in the SMAPO separation is
bigger the bigger k is and is smallest for PC(K6). The violation of inequalities gener-
ated in PC(K1,...,8) and PC(Kk−7,...,k) is comparable as expected. The violation of the
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PC(K6) PC(K7) PC(K1,...,8) PC(Kk−7,...,k) bicycle-wheels
0.023± 0.001 0.036± 0.002 0.066± 0.005 0.061± 0.001 0.057± 0.007

Table 2.14: Average violation of the generated inequalities for 73 Gaussian instances.

bicycle-wheel inequalities is comparable to that of PC(K1,...,8). From the numbers in
2.14 we see no clear quality difference between the SMAPO and the bicycle-wheel
inequalities. We conclude that we do find violated inequalities within the lift-project
approach.

We now compare the behavior of branch–and–cut with and without the lift-project
procedure. For both Gaussian and ±J distributed instances, the upper bounds im-
prove through the lift-project procedure. Furthermore, branching is delayed as ex-
pected. However, the improvement in the bound is worse than the improvement we
would archieve through branching. Usually, branching at a variable is better than
tightening the cycle relaxation by adding the inequalities obtained through lift–and–
project. In Figures 2.19 and 2.20 we show the development of the lower and local
upper bounds during the run of the algorithm for two examples with ±J distribution
and size 53. The development of the bounds is comparable for Gaussian instances.
In Figure 2.21 we show an example for an instance of size 73.
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Figure 2.19: Example for the development of the lower and local upper bounds for
two three-dimensional ±J spin-glass instances of size 53.

In Tables 2.15 and 2.16 we show the average number of linear problems and the
number of sub problems solved. We compare the runs with and without lift–and–
project. The number of sub problems is reduced when lift–and–project is included.
The number of linear problems increases as branching is delayed and more rounds
of separation are done in a sub problem. However, the running time increases sig-
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Figure 2.20: Another example for the development of the lower and local upper
bounds for two three-dimensional ±J spin-glass instances of size 53.
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Figure 2.21: Example for the development of the lower and local upper bounds for
a three-dimensional Gaussian spin-glass instances of size 73.
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nificantly when lift–and–project is included. Especially the graph completion step
of the algorithm takes long.

# lps # subs
nolift 77± 24 5± 2 20± 6
lift–and–project 352± 188 3± 2 1121± 673

Table 2.15: Average number of linear problems, sub problems and CPU times for
±J distributed instances for size 53.

# lps # subs
nolift 145± 56 7± 4 138± 55
lift–and–project 545± 296 3.4± 1.6 9573± 5799

Table 2.16: Average number of linear problems, sub problems and CPU times for
Gaussian distributed instances of size 73.

Whereas the number of sub problems can be significantively reduced by the lifting
procedure, the needed CPU time increases strongly. The main reason for the long
running time is that the graph completion by adding artificial edges takes long. Here
we do a modification of the exact cycle separation from which we already know that
it takes long from Section 2.2.4. It would certainly be possible to reduce the run-
ning time of the lift-project procedure, e.g., by doing a heuristic graph completion.
However, as the improvement in the upper bound is not very strong, we assume
that it would be hard to make the overall performance of the program with the
lift–and–project approach competitive.
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2.5.4 Lifted Clique Inequalities

In this section we apply the lift–and–project idea for a class of inequalities, the
clique inequalities, in a more direct way than described in Section 2.5 above. We are
mainly interested in max-cut problems on three-dimensional grid graphs. The cut
polytope PC(G) coincides with the cycle polytope Pcyc(G) in case the graph G has
no K5-minor. (A graph H is a minor of G if it obtained from G by a sequence of
edge deletions and contractions.) We expect interesting inequalities from a subgraph
of a three-dimensional grid having a K5-minor. The smallest such subgraph (modulo
symmetry) is displayed in Figure 2.22. Black nodes are present in K5, white nodes
are artificial. We call this graph G1 = (V1, E1).

The cut polytope of K5 consists of the triangle inequalities (forming the cycle poly-
tope) together with all possible switchings of the clique inequality

∑
e∈K5

xe ≤ 6
on the clique K5. We apply the lifting and unshrinking procedure from Definition
2.4 starting from the clique inequality on K5, unshrinking the graph and lifting the
clique inequality until we end up with G1 and a corresponding lifted clique inequality.

(a) Only edges of the
subgraph G1 are shown.

(b) The subgraph G1 from
Figure 2.22(b) embedded in
the grid.

Figure 2.22: The smallest subgraph G1 in a three-dimensional grid having a K5-
minor. Black nodes are present in K5, white nodes are artificial. Dashed nodes and
edges are not part of the subgraph.

Definition 2.8. We call an inequality lifted clique inequality if it is obtained from
a clique inequality by the lifting procedure of Definition 2.4.

Lemma 2.9. The inequality ∑
e∈E1

±xe ≤ 10, (2.14)
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where the signs can be read off from Figure 2.23, is a lifted clique inequality valid
for PC(G1) obtained from lifting

∑
e∈K5

xe ≤ 6. Furthermore, (2.14) is a facet of the
cut polytope PC(G1).

Figure 2.23: A lifted clique inequality on G1. Solid edges have coefficient +1, dashed
edges −1.

Theoretically, we can determine the facial description of a polytope from its incidence
vertices e.g., by Fourier-Motzkin elimination which is a finite procedure. Practically
efficient implementations exist yielding the facial description of ‘small’ polytopes,
e.g., the program PORTA [107]. This program has exponential running time and
determining the facial description of PC(G1) takes too long to be solved by PORTA.
However, let us consider the smaller graph G2 = (V2, E2) shown in Figure 2.24. We
can prove the following result for the cut polytope PC(G2).

Lemma 2.10. Let the graph G2 = (V2, E2) be the graph displayed in Figure 2.24.
The inequality ∑

e∈E2,e6∈{e1,e2}
xe − xe1 − xe2 ≤ 10, (2.15)

with the edges e1, e2 shown in Figure 2.24, is a lifted clique inequality. (2.15) is a
facet of the cut polytope PC(G2).

Proof. We apply the lifting procedure from Definition 2.4 starting from the clique
inequality

∑
e∈K5

xe ≤ 6 on K5 as in Figure 2.25(a).

We set N = ∅, S = {s1, s2, s3} and T = {t1} and lift the clique inequality to∑
e,e6=(s,t)

xe − xst ≤ 6

The graph after one step of unshrinking is displayed in Figure 2.25(b).



70 CHAPTER 2. BRANCH–AND–CUT FOR SPARSE MAX-CUT INSTANCES

e1

e2

Figure 2.24: The subgraph G2 = (V2, E2) embedded in a three-dimensional grid
having a K5-minor plus some additional edges along the grid diagonals not present
in the grid. Black nodes are present in K5, white nodes are artificial. Grid edges are
not shown.

st

t1
s1

s2

s3

(a) Complete graph K5.

s t

(b) Graph after one un-
shrink step.

Figure 2.25: Unshrinking K5.

By analogous appropriate unshrink steps of the graph, simultaneous liftings and
switchings along appropriate cuts, we end up with inequality (2.15).

Proof of Lemma 2.9. Follows from the proof of Lemma 2.10 together with four times
applying appropriate liftings of inequality (2.15).

Furthermore, we can show by Fourier-Motzkin eliminination the following result on
PC(G2).

Lemma 2.11. The cut polytope PC(G2) consists of the cycle inequalities together
with all switchings of the lifted clique inequality (2.15).
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We conjecture that the cut polytope PC(G1) consists of the cycle polytope together
with the lifted clique inequality.

Conjecture 2.12. The cut polytope PC(G1) consists of the cycle inequalities
together with all switchings of the lifted clique inequality obtained from lifting∑

e∈K5
xe ≤ 6.

We implement the separation of lifted clique inequalities in three-dimensional spin-
glass instances as follows. We scan through the grid and check whether violated lifted
clique inequalities exist on the grid structures G1. However, in practice the lifted
inequalities are not strong for spin-glass instances. In case we start with separating
cycle inequalities first, we almost never find violated lifted clique facets subsequently.
We occasionally find a violated lifted clique if we start separating them early in the
optimization process. However, the improvement in the bound is marginal.

In order to find out about the strength of the lifted clique inequalities we also gen-
erated optimum (with regard to violation) switchings of lifted clique inequalities
by solving the corresponding integer program exactly. We tried instances of sizes
43, 53, 63. For example, by doing this for a 53 ± J spin-glass the number of lin-
ear problems reduces from 257 to 235 when lifted clique inequalities are separated
and switched by a cut maximising the violation of the resulting inequality. (As can
expected, the running time goes up considerably when determining optimum switch-
ings. For our example, it increases from 40 seconds to 50 minutes). Thus we do not
separate these inequalities within the branch–and–cut framework.
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2.6 Primal Heuristics

Whereas in the last sections we were concerned with generating tight approximations
of the cut polytope, we explain in this section how we can generate good primal
solutions, i.e. good cuts within a branch–and–cut framework.

A graph G = (V,E) is called k-regular if the degree of all nodes equals k. We can
prove the following lemma on the value of a cut in a k-regular graph.

Lemma 2.13. Let G = (V,E) be a k-regular graph with k ∈ N and let the edge
weights be chosen as {−t, t} with t ∈ N. Let k or t be an even number. Then for any
W ⊆ V , the cut δ(W ) has even value.

Proof. Let a node set W and the cut δ(W ) with value zcut be given. We start from

W̃ := ∅ and possibly add node after node to W̃ until we have W̃ = W . Thus, we
execute the algorithm

W̃ = ∅
z̃cut = 0
for all nodes v ∈ V do

if v ∈ W then
W̃ = W̃ ∪ {v}
z̃cut = z̃cut + ∆z̃cut

W = W̃
zcut = z̃cut

We prove that ∆z̃cut is even in each update step. Assume v ∈ W in the loop. Then
the change of the cut value is ∆z̃cut = k1t−k2t, where k1 denotes the number of edges
entering the cut and k2 the number of edges leaving it when setting W̃ = W̃ ∪ {v}.
As k1 + k2 = k, we have

∆z̃cut = (2k1 − k)t,

which is even.

In particular, for two- and three-dimensional grids with ±J distribution, the maxi-
mum cut has even value. We can make use of this fact during the run of the branch–
and–cut algorithm. Whenever the distance between the best known cut and the
local upper bound is smaller than 2, we can fathom the node. Therefore, for ±J dis-
tributed instances knowing a good (or even optimum) cut early in the computation
process helps reducing the running time.

We do not want to consider the upper and lower bound computations separately.
Instead, we want to generate good cuts by making use of the optimum solution x? of
the current linear programming relaxation determining the upper bound. In a later
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part of the optimization process, hopefully x? is ‘not too far away’ from a good (or
optimum) cut x′, and we want to obtain x′ from x? by appropriate rounding of the
latter. Obviously, coefficientwise rounding the entries in x? is unlikely to yield a cut.
However, we formulate an observation.

Observation 2.14. A cut in a graph G = (V,E) is determined by its values on a
spanning tree T = (V,ET ), with ET ⊆ E.

Therefore, we can generate a cut by determining a spanning tree T in the graph G
and rounding the x?-values on the tree to the nearest integer. Then we determine
the resulting cut values on the non-tree edges. We assume that the resulting cut
is best if we include in T the edges that are ‘nearly decided’ by the lp solution
vector, i.e., edges e with x?

e ≈ 0 or x?
e ≈ 1. To this end, we determine a maximum

weight spanning tree, with edge weight chosen as |x?
e − 1

2
| for e ∈ E. Finally, we

can improve the resulting cut x′ through a local search procedure, e.g., a one-node
exchange heuristic. This algorithm is already used in the branch–and–cut program.
It is described in detail elsewhere [10] and gives good results. We summarize it in
the following.

Algorithm: tree heuristic

determine a maximum weight spanning tree T in G, where for edge e ∈ E the
edge weight is chosen as we = |x?

e − 1
2
|

round the x?-values on the tree edges to the nearest integer
determine the resulting cut x′

Algorithm 10: Tree heuristic for generating good cuts.

If we use Kruskal’s algorithm for determining a maximum weight spanning tree,
tree heuristic runs in O(m log n) time. In order to estimate the quality of the above
procedure for ±1 distributed instances, we experimentally compare maximum cuts
with the cuts generated by tree heuristic. Comparing the solutions in the beginning
of the optimization process is not useful. Instead, we take the heuristic solution
generated in the iteration i in which the upper bound falls the first time below
zcut + 2. If we know an optimum cut, we can prove its optimality in iteration i.

Surprisingly, the number of tree edges in which the optimum and heuristic solutions
differ is small. As an example, for three-dimensional instances of size 63, 215 edges
are in the tree. For 50 randomly chosen instances with ±J distribution and periodic
boundaries, tree heuristic chooses only 15± 3 (∼ 6.98± 0.01%) wrong values on the
tree. The tree edges on which the optimum and heuristic solutions differ are usually
single edges or very short paths. In Figure 2.6 we show a typical example for the
wrong decisions tree heuristic takes on the tree generated by Algorithm 10 for a
three-dimensional 63 instance. We aim at improving the heuristic cuts by correcting
the errors in the decisions tree heuristic took. We can do this in different ways.
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Figure 2.26: Typical example for the difference between the optimum solution and
the heuristic solution for a 63 spin-glass instance. Shown are only the tree edges in
which optimum und heuristic solutions differ.

One possibility is as follows. For the cut x′ output by tree heuristic, we check for
each not yet fixed tree edge whether we can improve the cut by flipping x′e to 1−x′e.
Already fixed edges do not have to be taken into account. We experimentally find
that the reduced cost of a tree edge gives a good measure whether flipping its cut
value improves the solution. An edge e with x′e = 0 (x′e = 1) and highly positive
(negative) reduced cost is likely to improve the solution when it is flipped to 1 (0).
Thus, we first sort the tree edges with regard to their reduced cost and take first the
promising edges into consideration. We find that it is enough to check the first |V |

2

tree edges in sorted order. We summarize the procedure in algorithm subtree flip.

Algorithm: subtree flip

call tree heuristic
sort the tree edges with regard to the reduced cost
for first V

2
edges e ∈ T in sorted order do

if the flip x′e := 1− x′e yields better cut then
update cut

else
flip back

Algorithm 11: Subtree flip for generating better cuts.

The running time of subtree flip depends on how fast the cut update is. As flipping
the cut on a tree edge might force many other non-tree edges to also change its
cut value, we calculate the new cut from scratch. This costs O(m) time. Thus,
alltogether the running time of subtree flip is O(nm).

We next show some running times for branch–and–cut including subtree flip. For 50
randomly chosen three-dimensional ±J distributed instances of size L = 63, run on a
440 Mhz Sun Ultra Sparc, we get the running times in seconds shown in Table 2.17.
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For a comparison, we also show the running times for the same instances run with
tree heuristic. When calling subtree flip the number of lps (subs) and the running
time of branch–and–cut can be reduced.

# lps # subs CPU
tree heuristic 562± 234 23± 8 234± 102
subtree flip 315± 127 13± 4 167± 69

Table 2.17: Comparison of the performance of the branch–and–cut algorithm with
tree heuristic and subtree flip respectively, for 50 randomly chosen three-dimensional
±J distributed spin-glass instances of size 63.

In a statistics of instances, there are samples where upper and lower bounds converge
equally well and samples for which the known cut is poor. For these instances,
subtree flip can help reducing the running time. However, there are also samples
in which the upper bound does not converge and for which subtree flip won’t help.
We consider for the samples from Table 2.17 the five instances with worst lower
bound, i.e., the five instances in which the optimum solution is found latest in the
optimization process. We report the number of linear programs, the number of sub
problems and the running times in Table 2.18 when branch–and–cut is run with
tree heuristic (denoted as (1)) or subtree flip (denoted as (2)), respectively. For the
instances in Table 2.18 the running time is roughly halved when subtree flip is called.

seed lps(1) lps(2) subs(1) subs(2) CPU(1) CPU(2)
1054 341 164 21 11 131.07 81.07
1067 678 110 47 9 260.02 55.30
1070 30 12 1 1 12.79 5.59
1072 144 51 7 3 52.79 27.79
1081 406 223 11 7 154.66 123.98

Table 2.18: Comparison of branch–and–cut with tree heuristic (1) and subtree flip
(2) for the instances with the worst known cut from the statistics of Table 2.17.

Another possibility of correcting the decisions tree heuristic takes consists of formu-
lating the problem of determining tree edges to be flipped as a linear constraint.
Let |V | = n, x′ the incidence vector of the cut generated by tree heuristic and T
the determined spanning tree. Assume without loss of generality that x′e = 1 for all
edges on the tree (this can always be obtained by appropriate switching.) Let k ∈ N.

We formulate the restrictions

1. ‘The values on exactly k tree edges should change’ as
∑

e∈T xe = n− 1− k.

2. ‘The values on at least k tree edges should change’ as
∑

e∈T xe ≤ n− 1− k.
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3. ‘The values on at most k tree edges should change’ as
∑

e∈T xe ≥ n− 1− k.

We add a constraint of the form 1., 2. or 3. to the current linear program and solve
it. From its (possibly fractional) optimum solution we derive a cut as tree heuristic
does and check whether it improves the lower bound. We get the best results for
constraints of the form 1., and we restrict ourselves to this case. As for each k
the procedure requires the solution of a linear program (done with the dual simplex
algorithm) which is time consuming, we have to restrict the computations to a small
number of different k. For 50 instances of size 63 with ±J distribution we count
the number of cut improvements for different values of k. We show the results as a
histogram in Figure 2.27. Most improvements occur for small k. This is also intuitive:
We expect that the optimum solution of the lp with the additional constraint will
have more fractional values for bigger k than for small k. Then tree heuristic might
make additional mistakes. For studying the power of the procedure, we only consider
0 ≤ k ≤ 7.
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Figure 2.27: Histogram of the probability distribution for the cut improvement for
different values of k for constraints of the form 1. We computed a statistics of 50
samples of size 63.

Following Fischetti and Lodi [37] who formulate branching rules in the same flavor
as the heuristic we propose here, we call our cut generating heuristic local branching.
We compare the strength of subtree flip and local branching. For three-dimensional
instances of size 63 we show for 10 randomly chosen instances in Table 2.19 the num-
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ber of the lps that have to be solved until an optimum is found by tree heuristic (de-
noted as (1)), subtree flip (denoted as (2)) and local branching (denoted as (3)). We
find that subtree flip usually finds an optimum solution earlier than local branching.
However, both heuristics find the optimum earlier than the old heuristic tree change.
subtree flip is considerably faster than local branching.

seed # lps(1) # lps(2) # lps(3)
1010 89 14 52
1011 16 14 23
1012 21 11 15
1013 170 23 31
1014 78 25 29
1015 81 13 36
1016 1251 131 551
1017 30 14 28
1018 30 29 20
1019 193 14 40

Table 2.19: Number of lps that have to be solved before an optimum solution can be
generated by tree heuristic (1), subtree flip (2) and local branching (3) for instances
of size 63.

We conclude that for three-dimensional ±J distributed instances, subtree flip is well
suited for generating good cuts, whereas local branching is not only weaker but also
needs more CPU time. We tested constraints of form 1.– 3. as branching rules within
the branch–and–cut algorithm. However, the performance is worse than taking the
most fractional variable as branching variable.

Usually two-dimensional distributed instances perform somewhat better if sub-
tree flip is not called. In order to improve the performance for two-dimensional
spin-glass instances, we implement a faster heuristic fast flip that works as follows.
Starting from cut x′ output by tree heuristic, we sort the nodes with regard to their
tree level in descending order. (The tree level of a node u is the length of the unique
path from u to the root of T .) Starting from the nodes with higest level, the leaves,
we flip for each node u in sorted order the value of the tree edge (u, father(u)). If
this procedure improves the best known cut we update the lower bound accordingly.
If not, we leave (u, father(u)) flipped and proceed to the next node in sorted order.
One after the other we flip all tree edges and check for cut improvements until we
encounter the root. As we don’t flip the tree edges back, up to |width(T )| edges
might be flipped simultaneously. However, the cut update is fast. As flipping a tree
edge (u, father(u)) only affects the edges adjacent to u, we only have to scan once
through the adjacency list of u for the cut update which is fast. The running time
of fast flip is O(m log n + n2).
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Algorithm: fast flip

call tree heuristic
sort the tree edges in decending order with regard to their tree level
for nodes u ∈ V in sorted order do

e := (u, father(u))
x′e := 1− x′e
if resulting cut is better then

update of cut

Algorithm 12: Fast flip for generating good cuts fast.

instance # lps(1) # lps(2) CPU(1) CPU(2)
1390 31076 904 6395.8 197.92
1391 9554 9553 2785.97 2867.72
1392 3741 1775 1241.65 502.65
1393 7839 5493 2333.38 1676.14
1394 759 758 232.56 210.5
1395 1764 1484 656.42 537.43
1396 2042 1061 570.17 270.74

Table 2.20: Number of lps and CPU time for branch–and–cut with tree heuristic
and fast flip respectively, for seven randomly chosen two-dimensional ±J distributed
spin-glass instances of size 70× 70.

In Table 2.20 we give the number of linear programs and the CPU time in sec-
onds for seven randomly chosen ±J instances of size 702 for branch–and–cut with
tree heuristic (denoted as (1)) and fast flip (denoted as (2)). For 200 randomly cho-
sen instances, the average number of lps reduces from 1677± 488 to 1204± 217 and
the CPU time from 166± 40 to 135± 22 seconds, when tree heuristic is extended to
fast flip. Results for sizes 502 and 602 are comparable. The development of the primal
bound is better with fast flip than with tree heuristic. As a conclusion of this section
we note that we generate improved cuts by calling fast flip for two-dimensional spin
glasses and subtree flip for three-dimensional Ising spin-glass instances.



Chapter 3

Branch–Cut& Price for the
One-Dimensional Ising Chain

In this chapter we extend the branch–and–cut algorithm to a branch–cut&price
algorithm for computing ground states of one-dimensional Ising chain instances. The
model is fully connected. However, the interactions fall off with a nonnegative power
σ of the spin distance. This work is motivated by the studies of H.G. Katzgraber and
A.P. Young [63],[64]. In [63], the authors point out that the one-dimensional Ising
chain model inherits several features making the study of its physical properties
interesting. Firstly, large system sizes L can be studied that can be larger than
the treatable system sizes for short-range models. Secondly, depending on how the
parameter σ is chosen, the model either is an infinite-range Sherrington-Kirckpatrick
(SK) model or a short-range model. Thus, only by varying one parameter, models
with significantively different physical characteristics can be studied.

With respect to our algorithm, we have an additional motivation for studying this
model, apart from its interesting physics. We can exploit its characteristics and ob-
tain a considerable algorithmic speedup. In the following we introduce the model.
Then we present the algorithmic details and show experimental results for the per-
formance of the algorithm.

3.1 Model

The one-dimensional Ising chain model was already studied by Bray et al.[22] and
Fisher and Huse [35]. It was rediscovered in 2002 by H. Katzgraber and A.P.
Young,[63]. Following [63], we let the model consist of L spins lying equally spaced
on a cycle of perimeter L, see Figure 3.1. We use a cycle instead of a chain for
installing periodic boundary conditions. All spins i, j are connected with each other
by a coupling strength Jij.

79
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Figure 3.1: One-dimensional Ising chain model. The model is fully connected; not
all bonds are shown.

The Hamiltonian H is of the usual form

H = −
∑
i,j

JijSiSj. (3.1)

The sum is over all pairs of spins on the cycle. The coupling Jij between spins i and
j is given by

Jij = c(σ)
εij

rσ
ij

, (3.2)

where εij is chosen according to a Gaussian distribution with zero mean and variance
one. c(σ) is a constant and rij denotes the distance of i and j on the chain. c(σ) is
chosen so that the mean-field transition temperature TMF

c is equal to TMF
c = 1.

The distance of spin i and j on the chain is rij = 2R sin(α
2
), as can be seen in Figure

3.1. R is the radius of the cycle and α the angle between i and j. We can reformulate

rij =
L

π
sin

(π | i− j |
L

)
. (3.3)

For small nonnegative σ, Jij ≈ εij, and the model is the fully connected Sherrington-
Kirckpatrick model. For σ chosen suitably big, the long-range couplings become
unimportant and the problem is a short-range model.

3.2 Pricing

Following Chapter 1.1, we can transform the problem of determining an exact ground
state of a one-dimensional Ising spin-glass instance to a max-cut problem on the
corresponding interaction graph. Let us consider the max-cut problem for an instance
coming from the one-dimensional Ising chain. The underlying graph is complete, and
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for a system with L = 100 spins and σ = 3.0 the default version of the branch–and–
cut algorithm needs roughly 7h cpu time on average on a 400 Mhz Athlon processor.
In case we wanted to generate a reasonable ground-state statistics, we could go up
to roughly this size. In [63] the authors use their parallel tempering Monte Carlo
method for generating heuristic ground states of system sizes up to L = 256 and
0.1 ≤ σ ≤ 1.0. With the default version of branch–and–cut, generating a statistics
for this range of system sizes would probably not be possible within reasonable time.

As the couplings fall off with a nonnegative power of the spin distance, we may
assume that for big enough σ the long-range couplings between two spins that are
‘far apart’ from each other won’t affect the ground state. Hence, we may temporarily
neglect the long-range edges with ‘weak’ couplings, as long as we make sure that
the computations are correct at termination. As the running time of the algorithm
basically scales with the number of edges, we expect a speed-up. In the following
we explain the extension of the branch–and–cut algorithm to a branch–cut&price
algorithm. The details about general pricing algorithms with ABACUS can be found
in [56].

For solving an instance of the one-dimensional Ising chain, we start doing branch–
and–cut. However, for the upper bound computations we work on a graph G =
(V,E) consisting of all nodes (spin sites) but only of a suitable subset of the edges.
We add and delete edges (corresponding to the variables) dynamically during the
optimization process. We refer to the edges in the current graph G as active edges
and to the other edges as nonactive edges. Assume we have solved the current
branch-and-bound node, having an lp solution vector at hand that is optimum for
the relaxation defined on G. The lp solution is an upper bound on the max-cut
value on G (maybe the bound is only locally valid in case variables are already set
in the current sub problem). However, it is not clear whether the lp solution is also
a (local) upper bound on the max-cut value for the original problem. Hence, before
we fathom the node, we do a check as follows: For a nonactive edge e with variable
xe(= 0), we compute its reduced cost (see formula (4.1)) that determines the rate
of change of the objective function when xe changes from zero to a nonzero value.
If all nonactive variables have nonpositive reduced cost, the (local) bound on the
max-cut problem defined on G is also an upper bound for the complete problem,
and we can fathom the node. We say all nonactive variables price out correctly. In
case we do find a nonactive variable with positive reduced cost, it is possible that
including it into the problem formulation yields a better solution than we have at
hand. Therefore, a variable with positive reduced cost is added to the sparse problem
formulation and the new lp is solved. For reoptimizing the lp, we apply the primal
simplex algorithm as the current solution is primal feasible. The corresponding edge
is inserted in G. Figure 3.2 shows the flowchart of the branch-cut&price algorithm.
With lub we denote a (local) upper bound generated in a sub problem. gub denotes
the globally valid global upper bound. lb denotes the lower bound, i.e., the value of
the best known cut.
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Figure 3.2: Flowchart of the branch-cut& price algorithm.
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Within a pricing algorithm, variables must be added if indicated by the reduced cost
or if the linear program turns out to be infeasible. We have explained the former
above. The latter might occur under the following circumstances: As fixed and set
variables are removed from the linear program, some inequality only involving fixed
and set variables could have a void left hand side but could be violated. In case
there exists a nonactive variable with nonpositive coefficient, the violation might
be removed by adding a nonactive variable to the problem formulation. However,
this case does not occur for our max-cut computations. We separate inequalities
defined on the current support graph. When a variable xe is added to the problem
formulation, we zero-lift the inequalities present, i.e., the coefficients of e in the
current set of inequalities are all set to zero.

Different possibilities exist for generating the sparse input graph G:

1. G consists of an r-neighbour graph, i.e., the set E contains the edges (i, i +
1), (i, i + 2), . . . , (i, i + r) for all nodes i. Indices are taken modulo |V | and r is
suitably chosen.

2. G consists of the k% edges with highest weights, measured in absolute value.

In our tests, choice 2. performs best. For σ = 3.0 it is best to set k = 20. Other
values for k or option 1. with various values for parameter r are slower.

In Table 3.1 we show the number of lps solved (# lps) and CPU times in seconds,
averaged over ten randomly chosen instances, for different sizes L and σ = 3.0, with
and without pricing respectively, run for the same set of instances. We denote with
(1) the branch–and–cut algorithm without pricing and with (2) the branch-cut&price
algorithm. For (1), the branch–and–cut algorithm operates on the complete problem
formulation. We have not attempted to run instances of size bigger than L = 100
without pricing. The runs were performed on a 440 Mhz Sun Ultra Sparc. From
the numbers is it obvious that the running times are considerably improved when
pricing is included. Whereas a problem with L = 100 spins might already be a
hard problem for branch–and–cut, we can solve systems with L = 280 spins with
branch-cut&price within reasonable time. The number of linear programs seems not
to be as strongly correlated with the CPU time as for branch–and–cut results. (For
comparison, see Chapter 6, where we find that the number of lps can be used as a
performance measure for branch–and–cut.) However, after having generated more
data (not shown here) it became clear that this phenomenon is due to too small
statistics.

3.3 Cutting Planes

Within the branch-cut&price algorithm for the one-dimensional Ising chain, we can
improve the separation procedure resulting in a tighter approximation of the cut
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L # lps(1) # lps(2) CPU(1) CPU(2)
40 516± 102 552± 24 63± 18 6± 1
60 2481± 207 1178± 29 782± 105 47± 5

100 23474± 5357 2464± 145 20040± 1639 426± 55
200 2706± 76 2395± 78
280 2187± 97 5161± 275

Table 3.1: Performance of branch–and–cut (denoted as (1)) and of branch-cut&price
(denoted as (2)), averaged over ten randomly chosen instances of different sizes L
and σ = 3.0.

polytope. As explained in the pricing step above, we start with a sparse input graph
G = (V,E). We expect that an r-nearest neighbour graph is a subgraph of G. Let
r be taken maximum, i.e., G does not contain an (r + 1)-neighbour graph. (This is
clear if G is constructed by option 1. Otherwise, when G contains the edges with
highest absolute weights (option 2.), we also expect an r-neighbour graph to be a
subgraph of G because of the choice of the weights.)

In Figure 3.3 we show an example for an input graph G consisting of 9 nodes that
contains a 3-neighbour subgraph.

Figure 3.3: Example for an input graph G with 9 nodes and a 3-neighbour subgraph.

An r-nearest neighbour graph with n nodes, r ≥ 2, has n
(

r
2

)
triangles that can be

enumerated in O(nr2) time. The corresponding triangle inequalities (1.12) can be
checked for violation. In case the triangle separation cannot generate enough vio-
lated inequalities, we call the forest heuristic for generating general violated cycle
inequalities. If we cannot find enough violated inequalities, we call the odd cycle sep-
aration routine randomly for a fraction 1

n
of the nodes. If the current graph has an

r-nearest neighbour subgraph with r at least 2, violated circulant and parachute in-
equalities (for the definition of these inequalities, see Chapter 1.3) might be present.
Separating circulant inequalities is NP-hard. We explain a heuristic separation for
the circulant inequalities that runs in polynomial time.

For convencience, we repeat again Theorem 1.13: A circulant C(n, r) is a graph
consisting of n nodes 1, . . . , n and the edges (i, i + 1), (i, i + r) for all nodes i =
1, . . . , n, with indices taken modulo n. If n = kr + 1 with k, r ≥ 2 even, then
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∑
ij∈C(n,r)

xij ≤ 2n− k − r (3.4)

is a facet of the cut polytope.

Let the support of a circulant inequality C(n, r) consist of an outer circle consisting
of the nodes i, i+1, . . . , i−1, i and of inner edges of the form (i, i+r). Node indices are
always taken modulo |V |. The outer circle in a circulant inequality has odd length.
Hence, we check whether by starting from a specific first node we find a cycle in the
graph G of a given odd length l.1 If we succeed, we test for all possible choices of r
and k with l = kr + 1 and k, r even, whether all inner edges (u, u + r) are present
in G. In case an inner edge is missing, we proceed to the next tuple k, r. In case we
can generate the support C(l, r) of a circulant inequality for specific values l, r, k we
either immediately test whether

∑
e∈C(l,r) xe ≤ n− k − r is a violated inequality, or

we improve its violation by switching the inequality along an appropriate cut. The
outline of the resulting heuristic separate circulants1d is as follows:

Algorithm: separate circulants1d

l = (|V | odd )? |V | : |V | − 1
while we can generate a cycle of length l, starting from node 1 do

for all even divisors r of l − 1 do
if k = l−1

r
even then

if circulant edges (i, i + r) are present for all i on C then
if switching then

call good switching
if corresponding (switched) circulant inequality on C(l, r) violated
then

push it into the constraint buffer

l− = 2;

Algorithm 13: Heuristic separation of the circulant inequalities in r-neighbour
graphs.

In practical computations, calling the circulant inequality separation routine does
not pay off. If we don’t do the switching step, we usually find violated circulant in-
equalities only in the very first iterations. Those found inequalities only marginally
improve the upper bound. In case we do the switching, we succeed in finding some vi-
olated inequalities also later in the optimization process. However, these inequalities
do not improve the upper bound significantively. Additionally, the needed overall
cpu time is higher than if we don’t call the circulant inequality separation routine.

1Restricting ourselves to cycles in which a specific node is contained might seem restrictive.
However, it turns out that the circulant inequalities are not strong for our class of problems, so we
decided that implementing a more general routine would not pay off.
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We conclude that the circulant facets are not very strong for our class of instances.
Hence, for calculating ground states of one-dimensional Ising chain instances we
don’t separate the circulant inequalities.

Because of the structure of the input graph in the one-dimensional Ising chain,
we expect 4-neighbour graphs introduced in Section 2.4 to be present. We have
implemented a heuristic separation of the 4-neighbour facets. We briefly summarize
how it works. We build up a 4-neighbour graph H4 = (V 4, E4) as follows. We add
node after node to the graph and label the nodes in increasing order. We always
maintain a list of the last four nodes u1, . . . , u4 that we have inserted in V 4. We
inserted u4 last. For all neighbours u of u4 we check whether u is adjacent to u1, u2, u3.
If this is true, u is a candidate for insertion into V 4 after u4. We determine the
contribution to the left hand side of the 4-neighbour inequality when u is inserted in
V 4. This is the amount

∑4
i=1 x?

ui. We choose a random number that is smaller than
the number of candidates and a small natural number max that we fixed before.
We insert the t-th best candidate where we rank the candidates with regard to their
contribution to the left hand side of the inequality. In case we end up with a 4-
neighbour graph we possibly have to correct the number of nodes n = |V 4| such
that n = 3r ± 1, r ≥ 4 even, by adding or deleting nodes from H4 whichever is
possible.

In practice, we do find 4-neighbour graphs. However, the same phenomenon as in
the separation of the circulant inequalities occurs. The found 4-neighbour facets
are usually not violated. In practical computations for one-dimensional Ising chain
instances we hence do not separate the 4-neighbour facets.

Separating the parachute inequality is an NP-hard problem. We want to heuris-
tically separate parachute inequalities in a graph G that contains an r-neighbour
graph as a subgraph. For an r-neighbour graph with r ≥ 5, G contains the sup-
port of parachute inequalities as shown in Figure 3.4(a). The parachute consists of
nodes i, i + 1, i + 2 . . . , i + s that are neighbours in the cycle. In case r ≥ 6, we
also have parachute inequalities where the jumper node is i + l and the parachute
is i, . . . , i + l − 1, i + l + 1, . . . , i + s + 1, see Figure 3.4(b).

We do an enumeration heuristic for separating parachute inequalities in an r-
neighbour graph. We only consider parachutes of the form displayed in Figures 3.4.
s is the size of the parachute. For each node i, we start with s = 6. Starting at a node i
in the chain, we check whether i together with the subsequent nodes i+1, . . . , i+s−1
on the cycle form a parachute. If an edge is missing, we proceed to the subsequent
node and start the procedure again. Otherwise, i, . . . i + s − 1 forms a parachute
and we search for inequalities of the type shown in Figure 3.4(a). We proceed along
the cycle in clock-wise and anti-clockwise directions and test whether the nodes
i+ s−1+k or i−k′ with k, k′ > 0 can serve as a jumper, i.e., whether all necessary
jumper line edges are present in G. In case we encounter a missing jumper line, we
stop increasing k or k′, respectively. Subsequently we check whether we can gen-
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(a) Parachute inequalities contained in
an r-neighbour graph with r ≥ 5

(b) Parachute inequalities contained
in an r-neighbour graph with r ≥ 5

Figure 3.4: Example for parachute inequalities present in an r-neighbour graph.
Dashed edges have coefficient −1, solid lines coefficient 1 in Par7x ≤ 0. In the
heuristic separation, we search for ‘jumpers’ in the direction of the arrows.

erate violated parachute inequalities of the form displayed in Figure 3.4(b). Nodes
i, i + 1, . . . , i + l − 1, i + l + 1, i + s form the parachute, and the jumper is node
i+ l. In case we find a violated parachute inequality, we can improve its violation by
switching it along an appropriate cut. Violated inequalities are added to the linear
program. In case we have found the support of at least one parachute inequality of
size s, we increase the size from s to s + 2 and restart searching for parachutes of
the increased size, starting again from node i. In case we don’t find the support of
a parachute inequality of a given size, we proceed to the next node in the chain.

In Table 3.2 we show the number of linear programs solved and the needed CPU time
for five randomly chosen instances of size L = 100 and σ = 3.0. We show the num-
bers for branch-cut&price without separating the parachute inequalities (denoted
as (1)), for branch-cut&price with the parachutes separated but without switching
them along an appropriate cut (denoted as (2)) and with switching them along an
appropriate cut (denoted as (3)). In practice it is fastest to do branch-cut&price
with separating the parachute inequalities with option (2), i.e., skipping the switch-
ing routine. It turns out that separating the parachute inequalities improves the
upper bound resulting in a smaller running time. However, the speedup is not very
strong.



88 CHAPTER 3. B&C&PRICE FOR THE ONE-DIMENSIONAL ISING CHAIN

seed # lps(1) # lps(2) lps(3) CPU(1) CPU(2) CPU(3)
1000 2264 2098 2143 307.50 294.94 404.92
1001 2392 2647 2536 398.11 483.95 444.28
1002 2191 2183 2229 361.82 361.54 375.67
1003 3676 3682 3723 894.38 880.50 880.98
1004 2108 2017 2011 290.75 275.34 275.70

Table 3.2: Performance of branch-cut&price without separating parachutes (denoted
as (1)), for branch-cut&price with the parachutes separated but without switching
(denoted as (2)) and with switching them along an appropriate cut (denoted as (3)).

In the next algorithm we summarize the separation routine for the one-dimensional
Ising chain model.

Algorithm: isingchain separation

separateTriangles
separateForest
separateOddCyclesRand
separateParachutes

Algorithm 14: Separation routine for the one-dimensional Ising chain.

In [63] the authors report that parallel tempering is less efficient in finding the
ground state for bigger σ. They studied system sizes L ≤ 256 for σ ≤ 1.0 and L ≤ 64
for σ ≥ 1.5. In this case, parallel tempering needs longer to relax an inconvenient
configuration, [60]. Instead, with respect to branch–and–cut we expect pricing to
be more effective for bigger σ. For small σ we have to work on the fully connected
graph and cannot exploit sparse graph techniques as explained above. We have
generated a small sampling of ten instances per system size L and smaller values
of σ, σ = {1.0, 2.0}. We report the number of the linear and sub problems and the
needed cpu time in seconds. The instances are run on a 440 MHz Sun Ultra Sparc.
In Table 3.4 the results are for σ = 1.0, in Table 3.3 for σ = 2.0. The treatable
system sizes are considerably smaller for smaller σ than the sizes reported in Table
3.1.
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L # lps # subs cpu(s)
20 187± 31 11± 8 0.7± 0.3
40 748± 52 18± 9 13± 3
60 2696± 222 298± 71 300± 40
80 6480± 440 767± 60 2543± 268

Table 3.3: Average running times with branch-cut&price for σ = 2.0.

L # lps # subs cpu
20 246± 55 18± 12 1.1± 0.5
40 5252± 363 468± 49 396± 32
60 23213± 2820 1278± 290 10621± 1280

Table 3.4: Average running times with branch-cut&price for σ = 1.0.

As a conclusion we notice that for big enough σ the branch-cut&price algorithm per-
forms well for instances defined on the one-dimensional Ising chain making it possible
to study significantively larger sizes than with the branch–and–cut algorithm.
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Chapter 4

Appendix: Reduced Cost within
Branch–And–Cut

The reduced cost of a variable plays an important role within the branch–and–cut
algorithm. It is possible to fix some variables to the value they have attained by
redued cost fixing. In the following we explain the reduced cost and the fixing. Let
us consider a primal linear program of the form

max ctx

(P ) Ax = b

x ≥ 0

Suppose that rank(A) = m, which means that the redundant inequalities are re-
moved from the lp. Let the constraint matrix A be A = (A1, . . . , Am), where ai

denotes the i-th column of A. As rank = m, there exists an m×m nonsingular sub
matrix AB = (AB1 , . . . , ABm). Let B = {B1, . . . , Bm} and N = {1, . . . , n} \ B. By
possibly reordering of the columns of A we can rewrite A = (AB, AN). We call the
nonsingular matrix AB a basis of A.

We rewrite the equality constraints Ax = b in the form ABxB + ANxN = b, where
x = (xB, xN). Then a possible solution to Ax = b is given by (xB, xN) = (A−1

B b, 0).
We call a solution of this form a basic solution of Ax = b. xB are the basic variables,
xN the nonbasic variables. If A−1

B b ≥ 0, then (xB, xN) is called a primal feasible
basis.

Given a basis AB, it is convenient to write problem (P ) in the form

max cBA−1
B b + max(cN − cBA−1

B AN)xN

(PB) xB + A−1
B ANxN = A−1

B b

(xB, xN) ≥ 0
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With the notation AN = A−1
B b, b = A−1

B b and cN = cN − cBA−1
B AN we write problem

(PB) as

max cBb + max cNxN

(PB) xB + ANxN = b

(xB, xN) ≥ 0

We call

cN = cN − cBAN (4.1)

the reduced cost of the nonbasic variables. We see from the formula above that a
primal feasible solution is optimum if cN ≤ 0. So if we have for a specific basis
matrix AB a primal feasible solution (xB, xN) at hand with the reduced cost of the
nonbasic variables being nonpositive, then the feasible solution is optimum. We also
see from the formulation (PB) above that the reduced cost of a variable xi gives the
rate of change of the objective function if xi changes its value from zero to a nonzero
value.

Let x? be an solution vector optimized over the current relaxation inside the branch–
and–cut framework. Let z? = cTx? be the value of the upper bound and zp be the
value of the best known cut. Let for a nonbasic variable x?

e = 0 (the case x?
e = 1 is

analogous). In case x? was set to one instead of zero, the solution value would change
to z? + ce, where ce is the reduced cost of x?

e. Therefore, we can fix the variable x?
e

to its value zero if z? + ce ≤ zp.
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Spin-Glass Physics
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Chapter 5

Introduction to Spin-Glass Physics

In this chapter we give a short introduction to the physics of spin glasses. We restrict
ourselves to some important facts relevant for understanding the subsequent chapters
of this thesis. Furthermore, we only go as much into detail as is needed for this work.
For detailed introductions into spin-glass physics nice surveys and books exist, e.g.,
[82], [122], [19], [93] and [34].

5.1 ‘Real’ Spin Glasses

Historically, the first types of spin glasses that have been studied consist of noble
magnetic host metals in which magnetic transition metal impurities occupy sites
randomly. For the hosts, for example copper (Cu) or gold (Au) can be used, and
as impurities e.g., manganese (Mn), iron (Fe) or gadolinium (Gd). ‘Classical’ spin
glasses are the alloys Cu1−xMnx or Au1−xFex, where x specifies the concentration
of the impurities. Spin glasses usually have x < 0.1. Also many other combinations
of elements constituing a spin glass can be found in nature and produced in the
laboratory.

As a first picture for understanding what happens in the ‘classical’ spin glass we note
that the spins (magnetic dipoles) of the impurities produce a magnetic polarization
of the host metal conduction electrons that is ferromagnetic at some distances and
antiferromagnetic at others. Other impurity spins then feel the local magnetic field
that is produced by the polarized conduction electrons and try aligning themselves
accordingly. As the impurities are randomly scattered in the host, some interac-
tions are ferromagnetic and some are antiferromagnetic. To be more specific, in the
classical spin glasses the interaction J(r) between two impurities of distance r is of
RKKY-type (named after Ruderman, Kittel, Kasuya, and Yosida) according to

J(r) ∝ cos(Br)

Cr3
, (5.1)
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with constants B,C. Hence, the coupling strengths fall off with 1
r3 and oscillate

between ferro- and antiferromagnetic nature.

Research on spin glasses started developing rapidly in the 1970s when surprising
results were found in spin-glass experiments. E.g., the susceptibility of CuMn and
AuFe, when brought into a small oscillating magnetic field, shows a sharp cusp at a
specific temperature. The susceptibility χ is defined as

χ =
δM

δh
. (5.2)

h is the external magnetic field and M the magnetisation induced by it. In Figure
5.1 we show results from [23], where Au1−xFex with 1 ≤ x ≤ 0.08 is brought in
a magnetic field of 5 Gauss strength and frequency 50 ≤ ω ≤ 155 Hz. In each
curve a sharp cusp is visible that increases in magnitude and in temperature for
increasing concentration of the impurities. Especially the cusp and the decrease
of the susceptibility when lowering the temperature are surprising and need to be
understood.

Figure 5.1: Susceptibility of AuFe for 0.01 ≤ x ≤ 0.08. From Canella and Mydosh
[23].

For the specific heat instead, no surprising behavior has been found at small temper-
atures. (The specific heat is the amount of energy per unit mass that is required for
raising the temperature by one degree.) A diverging specific heat would mean that
the energy fluctuations in the system diverge which is not the case in spin glasses.

The high temperature behavior of a spin glass is paramagnetic. The spins rotate
randomly and independently from each other. The physically interesting behavior
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takes place at low temperatures T . When T is decreased, some of the independent
spins combine into correlated clusters that can rotate as a whole. A well defined
temperature Tf exists where the spin-glass phase sets in. As we approach T → Tf ,
the temperature disorder is removed and the spins start interacting with each other
over a long range. However, neutron-scattering experiments reveal that no structural
long-range order of the spins as in ferro- or antiferromagnets is present. Whereas
the average magnetisation vanishes, a local spontaneous magnetisation exists. This
nonvanishing local magnetisation causes the decrease of the susceptibility at low
temperatures. At T = 0 the system is in its ground state, i.e., the energy of the
system is minimum and the spins are rigidly frozen and disordered. Evidence for the
freezing is gained by using the Mössbauer effect. This effect consists of recoil-less
absorption and emission of gamma rays from some ‘Mössbauer nuclei’. For example,
57Fe is such a nucleus. The local magnetic field induced by the electron spins splits
the nuclear spin into ground state and excited states. Gamma rays are emitted when
a transition from an excited state to a ground state takes place. The decay processes
have an intrincic lifetime of ∼ 10−7s. In case the so-called hyperfine spectrum of the
Mössbauer nucleus can be measured, the electron spins are frozen on a time-scale
longer than this.

5.2 The Ising Model for Spin Glasses

Two basic ingredients seem to be necessary for constituting a spin glass: randomness
and competing interactions. There either is randomness in the position of the spins
(site randomness) or in the couplings (bond randomness). Competing interactions
means that no spin configuration is uniquely favoured by all interactions, which is
called frustration.

In 1975, Edwards and Anderson [31] proposed the prominent and still widely used
model for spin glasses, the Edwards-Anderson (EA) model. A spin is located on each
site of a hypercubic lattice in d dimensions. Interactions between nearest neighbor
spins are chosen according to a Gaussian distribution

P (Jij) =
1√
2πδ

exp

(−(Jij − µ)2

2δ2

)
, (5.3)

where δ is its variance and µ its mean. (Instead of a Gaussian distribution, often
also ±J couplings are used with 50% negative interactions.) If a coupling between
two spins is chosen once, it keeps its value. Hence, we call the disorder quenched.
(In contrast, a system in which the Jij’s fluctuate on a similar time scale as the
spins would be called annealed.) In the following we will be concerned with Ising
spins which means that the spins are represented by vectors that either point ‘up’
or ‘down’. We study the standard Hamiltonian
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H = −
∑
i,j

JijSiSj − h
∑

i

Si, (5.4)

where h is the strength of an external magnetic field and the variable Si ∈ {±1}
represents spin i. A positive coupling is ferromagnetic, a negative coupling antifer-
romagnetic. This model inherits the necessary ingredients randomness and compe-
tition. An example for a frustrated Ising spin system can be seen in Figure 5.2. Four
spins sit in the corners of a square. One interaction is negative, three are positive.
No matter how the spins align, one bond cannot be satisfied. We say the square in
Figure 5.2 is frustrated.

+

++

-

Figure 5.2: Example for a frustrated square.

It has long been a question of debate at what temperature Tf the transition to the
spin glass phase takes place in the EA-model. Now it is widely believed that there
is no ordering for any T > 0 in two dimensions for the Gaussian model, and the
transition takes place at Tf = 0. For the ±J model, the issue is less clear. In three-
dimensional spin glasses most people believe that Tf > 0, which is supported by

several numerical simulations. Estimates for
Tf

J
range from 0.88 to 1.2 for the ±J

model, and 0.88 to 1.02 for the Gaussian case, see e.g., p. 18 from [66].

Until now, the nature of the spin glass phase is not fully understood. In order to be
able to present what possibly is its nature, we first have to undertake a detour to
mean-field models in which each spin is coupled with each other regardless of the
distance. Those models can be treated theoretically, and we will study them in the
next section. Finally, we come back to short-range models in Section 5.2.2.

5.2.1 Mean-Field Solution

A big step in understanding spin glasses was undertaken by Sherrington and Kir-
ckpatrick. In 1975 they proposed [111] that the correct mean-field model for spin
glasses consists of a spin system in which all spins are connected with each other.
The couplings are chosen from a Gaussian distribution regardless of the distance of
the spins. We call this model the SK-model. This model seems quite unphysical, and
a short-range model would be more realistic for spin glasses occurring in nature.
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However, by studying the long-range model we gain useful insights into the nature
of the spin-glass state. Usually, after a mean-field theory has been established, nec-
essary corrections due to short-range interactions, additional correlations etc. can
be added later for treating ‘real’ systems.

In random systems two kinds of averages have to be performed: a thermal average
〈·〉T that has to be carried out for each sample. Additionally, we have to average
over the disorder [·] which is a ‘configurational average’.

In order to understand the physics of the system, we want to determine its average
free energy [〈F 〉T ]. To this end, we study the partition function defined as

Z =
∑

i

exp
−Hi

kBT
, (5.5)

where kB is the Boltzmann constant. The free energy F is basically determined by
the logarithm of the partition function Z,

F = −kBT ln Z. (5.6)

For determining the average [〈F 〉T ], we would have to average lnZ over the distribu-
tion of the couplings which is difficult. Instead, Sherrington and Kirckpatrick used
the following replica ansatz. They made use of the equality

ln Z = lim
n→0

[
1

n
(Zn − 1)

]
(5.7)

as follows: Instead of studying the logarithm of the partition function, they studied
the n-th power of Z. The average [〈Zn〉T ] can be carried out for integer n. The
picture behind this ansatz is to view the n-th power of the partition function as
representing n (identical) replicas of the original system. After having performed
the averages, the (unmathematical) limit n → 0 is calculated.

Sherrington and Kirckpatrick established a magnetic phase diagram that can be seen
in Figure 5.3. Different possibilities exist for traversing through it. When lowering
the temperature, we can either pass from the paramagnetic phase to the spin-glass
phase or start from the paramagnetic phase, cross the ferromagnetic phase and
pass to the spin-glass phase. We call this solution the SK-solution or the replica
symmetric solution, as the replicas are all treated equal.

The resulting expressions for the susceptibility show a cusp at a specific temperature,
consistent with the experiment. However, Sherrington and Kirckpatrick already rec-
ognized that in their solution the entropy of the system becomes negative at T = 0
which is unphysical. Moreover, de Almeida and Thouless showed 1978 [4] that the
SK solution is unstable at low temperatures, both in the spin glass and in the fer-
romagnetic phase. They determined a stability line (the AT-line) in the h − kBT
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Figure 5.3: Magnetic phase diagram obtained in the replica symmetric ansatz for
the SK-model.

plane. In Figure 5.4 we display the AT line together with the regions of stability
and instability.
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Figure 5.4: The AT line below which the SK-solution is unstable in the h − kBT
plane.

It took until 1979 that Giorgio Parisi presented a solution that is believed to be
correct for the SK-model. He also applied the replica ansatz. However, his key idea
is not to consider the replicas of the system indistinguishable but to break the
symmetry of the replicas in a very specific way. The resulting solution is at least
marginally stable. We call the Parisi ansatz the replica symmetry breaking (RSB)
solution. The physical meaning of RSB is the following. At low temperatures the
energy landscape is complicated. There exist many states resembling each other in
all possible degrees, which means they can also be arbitrarily different from each
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other. For comparing two different configurations {Sα
i }, {Sβ

i }, we consider the spin
overlap q that is defined as

q =
1

N

∑
i

Sα
i Sβ

i , (5.8)

where N is the number of spins in the system. If the two configurations are equal
we obtain q = 1, whereas q ≈ 0 if they only coincide in half of the spins. Because of
the Gaussian distribution of the couplings, the ground state is unique. However, by
also taking into consideration low lying excited states, the distribution P ([q]) of the
overlap q contains a large peak and a long tail down to q = 0. The peak reflects the
overlap with the states in the same energy valley, whereas the long tail comes from
the overlap with the configurations in different valleys.

(In real spin glasses, we measure an entity qt analogous to q that considers the spin
fluctuations over the time t,

qt = [〈Si(t0)Si(t0 + t)〉T ], (5.9)

where t0 denotes a specific time. For T = 0 the spins will remain frozen for all t
yielding q = 1, whereas q = 0 for T → Tf . The order parameter qt, in the limits
limt→∞ and limN→∞, was introduced by Edwards and Anderson.)

Whereas mathematicians might dislike the procedure of taking a limit n → 0 with
n being a natural number, the RSB solution is believed to be the correct mean-
field solution of the SK-model. Meanwhile, the replica ansatz has been successfully
applied to other problems in statistical mechanics and even optimization problems.
(As an example for the latter, see [49]). Recently, Guerra [44] presented lower bounds
on the Parisi solution avoiding replicas. Talagrand [116] claims to have proven the
full Parisi solution.

5.2.2 Spin Glass State for Short-Range Models

Let us now come back to the more ‘realistic’ EA model in d dimensions in which
only nearest-neighbor interactions are considered.

One of the major challenges in spin-glass research consists in settling the question
what theory correctly describes the nature of the spin-glass phase in short-range
models. Different models have been proposed in the literature.

Motivated by studies of McMillan [85] and Bray and Moore [21], Fisher and Huse
proposed the droplet scaling model (DS) [36] which is a phenomenological scaling
approach for understanding the spin-glass phase. The assumption is made that the
ground state strongly influences the whole spin-glass phase. A ‘droplet’ is the lowest
energy excitation of length scale L around a particular spin site i, see Figure 5.5 for
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a schematic picture. It is assumed that droplet excitations are the dominant low-
lying excitations in the spin-glass phase, and that flipping a droplet of length scale
L needs an energy of order Lθ. Furthermore, the droplets have a surface of fractal
dimension, ds, smaller than the space dimension d. Hence, droplet excitations are
not space-filling. Several numerical studies have convincingly shown that in two
dimensions θ ∼ −0.28 for Gaussian distributed couplings. Thus, as θ is negative in
two dimensions, the low-lying excitations can be created on longer and longer length
scales destroying the spin-glass phase for any T > 0. This result is consistent with
what we know about spin glasses. Numerical studies, in which the excitations are
generated e.g., by changing the boundary conditions from periodic to antiperiodic or
vice versa, show that θ ∼ 0.2 in three dimensions, e.g., [47], so spin-glass ordering is
present. In this model, the distribution of the overlap q is a delta function as only one
state (and its global flip) exists. (We note that for finite systems, the distribution of
overlaps always has finite width, and the delta function is only found for N →∞.)

L
i

gs

gs

flipped

Figure 5.5: Schematic picture of a droplet. The spins that are part of the droplet
are flipped compared to the ground state.

It is not clear whether the droplet ansatz is correct for the EA-model. Instead,
it is possible that Parisis RSB-solution is not only an artefact of the infinite-range
couplings but remains valid for short-range models. We review the phenomenological
picture of RSB. In contrast to DS, in the RSB picture the energy of flipping a cluster
of length scale L remains of order O(1), even if L grows infinitely big. The surface
ds of the excitations is space-filling, i.e. ds = d.

Recently, Krzkala and Martin [72] and Palassini and Young [100] have argued that an
intermediate picture between droplet scaling and RSB is correct. In this TNT picture
(‘trivial-nontrivial’), the energy of the low-lying excitations does not increase with
the size of the excitation, as proposed by the RSB-solution. However, the surface of
the excitations are not space-filling as suggested in the droplet scenario. In addition
to the exponent θ that measures the growth of the energy of an excited cluster
when the boundary conditions are changed, we need a new exponent θ′ that might
be different from θ. In this scenario, the energy of clusters that are excited within
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the system scale with Lθ′ , where the boundaries are fixed. Obviously, in the droplet
picture it is θ = θ′. In [72] and [100] an exponent θ′ compatible with zero was found.

Different studies have found consistency with different models, e.g., [47], [108] and
[80]. However, until now none of the projects could rule out the possibility of a
crossover to a different model at larger sizes than those studied. Hence, the nature
of the spin-glass state remains an interesting field for further research.

5.2.3 How ‘Realistic’ is the Ising Model for Spin Glasses?

We might ask under which circumstances the simplificiation of studying one-
dimensional Ising spins is a ‘good’ approximation. A possible answer is that there
exist spin-glass systems that are of ‘ideal’ Ising nature, e.g., Rb2Cu1−xCoxF4. In
this lattice a fraction of the Rb2CuF4 compounds is replaced by Rb2CoF4. These
spin glasses show a strong magnetic anistropy which means that the impurity spins
prefer one direction for aligning. As the spins are constrained in one dimension, they
can be represented as Ising spins. (We note that the classical spin glasses Cu1−xMnx

or Au1−xFex mentioned earlier are Heisenberg systems without a strong anisotroy.
Here it is more realistic to consider the spins as three-dimensional vectors.) Further-
more, the system Rb2Cu1−xCoxF4 is an ‘ideal’ two-dimensional spin glass. Here the
spins are separated by a large distance along one axis; in the other two dimensions
a simple square lattice of strongly interacting moments is found. Also ‘good’ three-
dimensional spin glasses exist, e.g., the system Fe0.5Mn0.5TiO3 (with Tf ∼ 22 K).
In one compound we have a random substitution of Fe and Mn spins situated in a
hexagonal lattice. As a summary we note that there exist spin-glass systems that
can be treated nicely as Ising spin glasses in two or three dimensions.

In the next section we argue why we need exact ground states for Ising spin glasses.
Subsequently, in Chapter 6 we study the feromagnet- spin glass transition for z-
regular graphs or so-called Bethe lattice and relate it to the performance of the
branch–and–cut algorithm. The latter results were obtained in a cooperation with
Matteo Palassini and Alexander K. Hartmann and are already published in [77].
Finally, in Chapter 7 we give results obtained in a cooperation with Matteo Palassini
and A. Peter Young that are published in [101]. In this cooperation, we study the
nature of the spin-glass state for three-dimensional Ising spin-glasses.

5.3 Why We Need Exact Ground States

Many researchers interested in Ising spin glasses use different heuristic methods for
calculating ground states, including genetic algorithms and Monte Carlo simulations.
Those heuristics are not exact meaning that it is not clear whether the generated
low energy states are true ground states or not.
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We expect that an implementation of a genetic algorithm or a Monte Carlo method
is able to find an exact ground state in a ‘not complicated’ energy landscape, see
Figure 5.6.

configuration space

E

Figure 5.6: Sketch of an ‘easy’ energy landscape.

The problem of determining an exact ground state gets more difficult in a ‘more
complicated’ landscape in which there are many sub optimal states with energy
only slightly above the ground state that are separated from each other by high
energy barriers as we have in spin glasses, see Figure 5.7.

configuration space

E

Figure 5.7: Sketch of a ‘more complicated’ energy landscape.

Recently, it has become popular to analyze numerically generated data on correlation
functions like spin overlap, link overlap etc. We refer to Chapter 7 for the definitions
and a possible application of these entities. It is clear that a heuristic algorithm
introduces a bias in the correlation function data.
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In the following we give a measure for the complicatedness of the energy landscape of
a sample allowing us to distinguish between samples that can ‘easily’ or only ‘hardly’
be solved by an easy simulated annealing method. For Gaussian distributed spin-
glass instances, different levels of ‘complicatedness’ exist, and we qualitatively show
that the not complicated samples can be well solved by an easy simulated annealing
method. However, there is a small percentage of complicated samples that cannot
be solved. The complicatedness of a sample is an underlying reason for a sample to
be easily or hardly solved by SA.

There is no obvious immediate measure for the complicatedness of an energy land-
scape. We measure it indirectly as follows. For an instance, we determine an exact
ground state, apply a specific perturbation to the couplings and determine a ground
state of the perturbed system. Intuitively, we call a landscape complicated if the spin
configurations of the unperturbed and perturbed ground states are ‘very’ different.
Otherwise the energy landscape is uncomplicated as the perturbation only slightly
changes the ground state.

To be more specific, we apply the bulk ε-perturbation of Palassini and Young, [102]
(see also Chapter 7). Let m be the number of couplings and ε > 0 small. For an
instance, we determine an exact ground state S0

i and perturb all couplings. If two
spins i, j that are coupled by a nonzero coupling strength Jij point parallel in the
ground state, we substract the amount ε

m
from Jij, otherwise we add ε

m
to it. By

applying this perturbation to all couplings we ease a change in the ground state. It
is easy to see that in the perturbed system the energy of the former ground state
increases by ε, whereas the energy of the other states increases by an amount smaller
than ε.

We determine a ground state Sε
i of the perturbed system and compare the two

ground states by measuring the absolute value of the spin overlap

|q|0,ε =
1

N

∣∣∣ N∑
i=1

S0
i S

ε
i

∣∣∣,
where N is the number of spins. |q|0,ε represents the fraction of spins in which the
unperturbed and perturbed ground states coincide (up to the global spin flip).

Definition 5.1. For 0 < α < 0.5 we say a sample with |q|0,ε > 1.0 − α is α-
uncomplicated whereas a sample with |q|0,ε < α is α-complicated.

Our notion of complicatedness depends on the perturbation parameter ε and takes on
different values for different perturbations. However, the results remain qualitatively
the same for different perturbations.

With respect to branch–and–cut, we found in the project [101] (see Chapter 7) that
computing a ground state of a complicated sample (by using the complicatedness
definition above) takes considerably longer to be computed than an uncomplicated
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sample. The main reason for the longer running times is that the reduced–cost–fixing
is less efficient for complicated than for uncomplicated samples.

Coming back to our problem, we have implemented a straight forward simulated
annealing method for calculating ground states of spin glasses. We start with a
temperature T and decrease it iteratively. For each temperature, we choose both
single spins and spins adjacent at the same edge and flip it whenever it decreases the
system energy or according to the Boltzmann weight. We summarize the procedure
in the following.

Algorithm: simulated annealing (SA)

T = 200;
maxtimes = 50;
for t = 0; t < maxtimes; t++ do

while T ≥ 0 do
for i = 0; i < N; i++ do

possibly flip a randomly chosen single spin
for e = 0; e < m; e++ do

possibly flip spins adjacent to a randomly chosen edge
T− = 1;

Algorithm 15: An easy simulated annealing (EA) algorithm.

In the block ‘possibly flip a randomly chosen single spin’ we randomly choose a spin
s and flip it if this decreases the system energy; otherwise we flip s with probability
∼ exp(−∆H

T
), where ∆H is the amount of change in the system energy when s flips.

Analogously, in block ‘possibly flip spins adjacent to a randomly chosen edge’ we
choose an edge e = (i, j) randomly and flip i and j simultaneously if it decreases
the system energy. Otherwise, we flip i and j according to the Boltzmann weight.

We consider 1924 two-dimensional spin-glass instances of size L = 102 with periodic
boundaries. We choose Gaussian distributed couplings in order to have a unique
ground state making overlap discussions useful. We first study the complicatedness
of the energy landscapes. To this end, we determine an exact ground state with
branch–and–cut, apply the bulk perturbation and solve the perturbed system by
branch–and–cut. We determine the complicatedness of a sample by calculating the
spin overlap |q|0,ε between the unperturbed and perturbed systems. Inspired by the
project [101], we choose the perturbations ε = { τ

2
, τ, 2τ} with τ =

√
6. (In that work,

for comparison of the perturbation’s size within different spin-glass models, τ is
chosen as the mean-field transition temperature τ =

√
z, where z is the connectivity

of a node. Continuing in this flavor, we would choose τ =
√

4. However, we keep
τ =

√
6 and will see next that this range of perturbations is reasonable.)
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For perturbation ε = τ
4

the exact ground state changes for 43% of the instances. For
ε = 2τ it changes for 97% of the samples. Hence, in our range of perturbations the
ground state of most instances changes.

In Table 5.1 we show the distribution of the complicatedness of the energy landscape
for perturbation 2τ . We group the samples according to their complicatedness. We
consider intervals with |q|0,ε ∈ [0..0.2], ]0.2..0.4], ]0.4..0.6], ]0.6..0.8], ]0.8..1.0]. In Ta-
ble 5.1 we show the numbers for ε = 2τ . We see from the table that 23.39% of the
samples are 0.2-complicated whereas 18.60% of the samples are not-0.2-complicated.

||q|O 2τ ∈ % samples
[0..0.2] 23.39

]0.2..0.4] 21.93
]0.4..0.6] 20.69
]0.6..0.8] 15.39
]0.8..1.0] 18.60

Table 5.1: Number of samples with different overlaps |q|0 2τ between the unperturbed
and the perturbed ground state. The perturbation is chosen as ε = 2τ .

As expected, for smaller perturbation values the number of not complicated samples
is higher and the number of complicated samples is smaller than for ε = 2τ .

For the same samples, we determine low-energy states with SA and test whether
there is a correlation between the quality of the approximate solution and the com-
plicatedness of the energy landscape.The SA procedure needs roughly four minutes
on average per sample on a 1400MHz Athlon computer. For ε = 0, SA generates an
exact ground state for 25.5% of the samples.

In order to quantify the quality of the heuristic solution, we determine the absolute
value of the spin overlap |q|SA between the exact solution generated by branch–and–
cut and the heuristic solution generated by SA. Clearly, if the overlap |q|SA equals
1, the heuristic succeeded in generating the exact solution. A small overlap value
|q|SA ≈ 0 indicates that the approximate SA-solution is poor.

For 71.72% of the samples, SA succeeds in generating a solution that has an overlap
of at least 0.8 with the exact solution, for 4.37% it generates a solution with overlap
less than or equal to 0.2 with the exact solution. For the numbers in Table 5.2, we
group the statistics into samples having overlap |q|SA with the exact solution in the
intervals [0..0.2], ]0.2..0.4], ]0.4..0.6], ]0.6..0.8], or ]0.8..1.0], respectively.

Next, we study the strength of SA for different levels of complicatedness. It is in-
teresting to ask whether there is a correlation of the complicatedness of the energy
landscape |q|0,ε with the quality of the SA solution, |q|SA, for a perturbation ε. We
expect that for samples with complicated landscape the SA solution has a smaller
overlap with the exact solution than for uncomplicated ones.
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|q|SA ∈ % samples
[0..0.2] 4.37

]0.2..0.4] 5.15
]0.4..0.6] 6.76
]0.6..0.8] 12.00
]0.8..1.0] 71.72

Table 5.2: Percent of samples having overlap |q|SA of the exact with the SA solution.

Our main interest is in the samples for which SA is able to generate a state SSA

‘close to’ the ground state. We say a state is ‘close to’ the ground state if it coincides
with it in at least β ∗ 100% spins, i.e., if

|q|SA ≥ β,

where β ∈ [0 . . . 1].

For different levels of complicatedness of the energy landscape, we study the proba-
bility that simulated annealing is able to generate a state close to the ground state.
We chose β = 0.8 and checked that the results remain qualitatively comparable
(but less clear) for various β between 0.6 and 0.9. In Figure 5.8 we show a histogram
for the probabilities that SA finds a state close to the ground state for different
levels of complication of the energy landscape. We choose perturbation ε = 2τ .
The rightmost column corresponds to the samples with a 0.2-uncomplicated energy
landscape. Here the unperturbed and perturbed ground states coincide in at least
80% of the spins. In this case, the SA algorithm finds a state close to the ground
state with high probability (∼ 90% for 2τ). The leftmost column corresponds to
the 0.2-complicated samples where the unperturbed and perturbed ground states
coincide in at most 20% of the spins. Here, states close to the ground state are less
likely to be generated by SA (∼ 60% for 2τ). We have comparable results for the
other perturbations and different α-values.

As a conclusion, we have seen that an easy simulated annealing method is more
likely to generate a solution close to the ground state for samples with uncomplicated
energy landscapes than for complicated ones. The complicatedness of a sample is an
underlying reason for a sample to be easily or hardly solved by SA. The heuristic
algorithms used in the literature are much more advanced than our SA avoiding some
of the pitfalls. Many people using approximate solvers state they ‘almost always’
find the true ground state, and that the error due to sometimes missing the exact
ground state is smaller than the statistical errors. However, the used method might
introduce a bias in the sense that the generated solution for complicated samples
are less likely to be exact.
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Figure 5.8: Histogram of the probability that SA finds a state close to the ground
state for different levels of complication of the energy landscape. A state is close to
the ground state if its spin overlap with the ground state is at least 0.8. We group
the results in intervals of size 0.2 and show the results for ε = 2τ .
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Chapter 6

Ground-State of the Bethe Lattice
Spin Glass and the Performance of
Branch–And–Cut

The results of this chapter stem from a cooperation with Matteo Palassini and
Alexander K. Hartmann. They are already published in [77]. We study Ising spin-
glass instances defined on random z-regular graphs, i.e., instances in which each
spin ist connected to exactly z spins. The couplings are chosen from a Gaussian
distribution with mean µ and variance one. We study the energy and the magneti-
sation for different values of µ and locate the spin glass/ferromagnetic transition at
µ = 0.77±0.02 for z = 4 and at µ = 0.56±0.02 for z = 6. Furthermore, we study the
performance of the current implementation of the branch–and–cut algorithm across
the phase transition. We find that the running time undergoes a sharp change con-
sistent with polynomial dependence on the system size deep in the ferromagnetic
phase and a superpolynomial dependence in the spin-glass phase.

We motivate our study and introduce the model in the next section. In Section 6.2,
we present the results for the ground-state energy and the magnetisation. In Section
6.3, we study the performance of the branch–and–cut algorithm.

For several decision or optimization problems easy/hard thresholds analogous to
phase transitions have been observed in random instances. The most prominent
are the satisfiability problem (SAT ) [88, 89], vertex cover [120] (VC ), and number
partitioning [81]. An interesting question is how phase transitions of the system affect
the performance of the solution algorithms, following the observation [24] that the
‘typical’, i.e., median, running time undergoes a sharp change in the vicinity of the
phase transition. For example, in 3SAT and in VC, the typical running time of exact
backtracking algorithms changes [26, 121] from a polynomial dependence on the
input size (in the ”solvable” region) to exponential dependence (in the ”unsolvable”
region).

111
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We want to study the typical running time of the algorithm accros the zero-
temperature spin glass/ferromagnet phase transition that occurs when varying the
mean value of the Gaussian distributed couplings. To our knowledge, the perfor-
mance of branch–and–cut for this model has not been investigated in detail before
(see, however [113], [50] and [101]). Furthermore, there is a physical motivation for
this project. Unlike in other optimization problems like 3SAT or VC, averaging over
random instances is physically motivated and arises naturally in spin-glass compu-
tations. The only other study that we are aware of in which the performance of a
combinatorial algorithm is studied around a ‘physical’ phase transition is the study
of Middleton [87] for the random-field Ising model. Here the typical running time of
the matching algorithm is investigated, which however is polynomially solvable. We
note that we have to keep in mind that by studying the running time of one special
implementation of one solution algorithm, we cannot necessarily draw conclusions
about the “hardness” of the problem itself.

Another motivation is to study the ground-state properties of the Ising model with
fixed connectivity. Recently these so-called Bethe lattices have gained a renewed
interest, [83, 84, 105, 17]. We compute the ground-state energy and magnetisation
which yields a useful tests for the theory.

6.1 Model and Methods

We investigate Ising spin glasses on random z-regular graphs G = (V,E) with N
spins that lie on the nodes V . Spins i and j might be coupled by a coupling strength
Jij that is drawn from a Gaussian distribution with mean µ

P (J) =
1√
2π

exp[−(J − µ)2/2]. (6.1)

Each spin is connected to exactly z spins. We study the standard Hamiltonian

H = −
∑

(i,j)∈E

JijSiSj. (6.2)

This model provides a convenient realization of a Bethe lattice [83]. As in those
graphs the typical size of a loop is of order log(N), small loops are rare. There-
fore we have a local tree-like structure, and the mean-field approximation is exact.
The Viana-Bray model [119] is related to the model studied here. In the Viana-
Bray model the connectivity is a Poisson variable with finite mean. These diluted
models represent a better approximation to finite-dimensional spin glasses than the
infinitely-connected Sherrington-Kirkpatrick model.

It is well known that replica symmetry is broken both in the Bethe lattice and the
Viana-Bray model, [119, 92, 117]. However, until recently solutions could be derived
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only in some cases. Mézard and Parisi introduced [83, 84] a population dynamics
algorithm based on the “cavity method” and determined a numerical solution at the
level of one step of replica symmetry breaking. They explicitely give results for the
Bethe lattice spin glass with ±J distribution, but not for the Gaussian distributed
spin glass studied here. Previous numerical studies of this model can be found in
Refs. [73, 17, 6]. For a complete discussion of the Bethe lattice spin glass, see Ref. [83]
and references therein.

Determining a ground state of the Hamiltonian (6.2) is a hard problem. Heuristic
algorithms recently used include simulated annealing [65], “multicanonical” simu-
lation [15], genetic algorithms [97, 100], extremal optimization [17], a hierarchical
renormalization-group based approach [53], and the cluster-exact approximation al-
gorithm [46]. In the following we present the results we derived with the branch–
and–cut algorithm. As the exact algorithm is deterministic, the running time to find
the ground state is a well defined quantity.

In the publication [77], we also derived the energy and the magnetisation with
the Bethe-Peierls (BP) approximation which is equivalent to the replica symmetric
solution, using the population dynamics approach proposed by Mézard and Parisi
in [84]. For the BP approximation we only show the results here and refer to the
publication [77] for their derivation. The replica symmetric solution is wrong for our
model. In [83] an algorithm is presented that solves the problem at the level of one
step of replica symmetry breaking. We have not attempted to doing this as we would
need significant computing time. Furthermore, in the following it will turn out that
the BP approximation gives sufficiently accurate results for our purposes.

6.2 Results for Energy and Magnetisation

We study Ising spin-glass instances on z-regular graphs, with z = 4 and z = 6. A
sample (or an instance) is generated by first building up a random regular graph
with the method proposed in [115]. Then the couplings Jij taken from distribution
(6.1) are assigned to the edges.

We investigate graph sizes up to N = 400 for z = 4 and µ ≤ 0.9, and up to N = 200
for z = 6 and µ ≤ 0.7. For larger values of µ, we consider sizes up to N = 1280.
The running times for the smallest systems are less than a second, while the longest
computations take at most one day on a typical workstation. As we cannot use
the heuristics speeding up the computations for the Edwards Anderson model, we
cannot go to as big sizes as for regular grids.

We average the results over many samples. The largest number of samples are consid-
ered in the region of the phase transition, where the fluctuations of the magnetisation
is larger. Near the transition, for sizes N ≤ 240 (z = 4) and N ≤ 160 (z = 6) we
compute around 5000 samples for each value of µ; for N = 400 (z = 4) and N = 200
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(z = 6), around 500 samples for each value of µ. For sizes larger than these, we
compute up to 280 samples for each µ. For the analysis of the ground-state energy
and magnetization, we consider only sizes up to N = 400 (z = 4) and N = 200
(z = 6), since for larger sizes the statistical error is quite large. In the analysis of
running times we include all sizes.

6.2.1 Ground-State Energy

In Figure 6.1 we show the average ground-state energy E(µ,N) divided by zN , as
a function of µ for the two connectivity values z = 4, 6 and different sizes. The
symbols correspond to the branch–and–cut data, the lines to the replica symmetric
solution obtained with the population dynamics approach. For µ big enough, the
system is basically ferromagnetic, and the ground-state energy depends linearly on
µ, as visible in the figure. For small µ frustration becomes important and the curves
bend down. As E(0, N) scales as

√
z, not as z, the two curves diverge for small µ.

The branch–and–cut data and the replica symmetric solution agree well.

Figure 6.1: Average ground-state energy, divided by the number of spins, N , and
the connectivity, z, as a function of µ. The symbols show the branch–and–cut data.
The statistical errors are smaller than the symbol sizes. The lines represent the
numerical solution of the BP recursion and are obtained by connecting points spaced
by ∆µ = 0.005 (∆µ = 0.001 near the transition). The statistical error is comparable
to the line thickness.
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Figure 6.2: Ground-state energy as a function of the size, N , for z = 4 and µ = 0, 0.7
and 0.8. The lines show the best fits with E/N = e∞ + bN−2/3. The N = ∞ data
displays the BP solution.
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For extrapolating the the ground-state energy to infinitely big systems, we fit a
function E/N = e∞+bN−2/3 to the data. From Figure 6.2 we see that the corrections
due to finitely big systems are well described by a N−2/3 behavior for small µ.
(However, we could also reasonably fit an N−ω term with ω between 0.6 and 1.)
Boettcher [17] has studied the Bethe lattice with a heuristic algorithm and also
found an N−2/3 correction to fit the data well. Mézard found in Ref. [83] an exponent
of ω = 0.767(8) at T = 0.8 for the ±J distribution and z = 6, which is close to
2/3. Palassini [98] found the value ω = 0.62 ± 0.05, compatible with 2/3 for the
Viana-Bray model with an average of 6 neighbors. The data was generated with a
heuristic.

For µ = 0 we obtain e∞ = −1.38 ± 0.04 (z = 4) and e∞ = −1.72 ± 0.02 (z = 6),
where the errors take into account the uncertainty on the correction exponent ω.
For the replica symmetric solution we find eBP = −1.351 ± 0.002 (z = 4) and
eBP = −1.737± 0.002 (z = 6).

It is also interesting to compare this with the ground state energy per spin found
in two [45] and three dimensions [97] (which have coordination number z = 4 and
z = 6, respectively) with Gaussian couplings and µ = 0, which is e∞ = −1.31453(3)
and e∞ = −1.7003(1) respectively.

We see in Figure 6.2 that the energy e∞ for infinitely big system sizes, extrapolated
from the branch–and–cut data, is close to the result for the replica symmetric solu-
tion eBP . For sufficiently large µ the replica symmetric solution is exact, therefore
the good agreement can be expected. However, the agreement is still good in the
spin glass phase in which replica symmetry is broken. We conclude that the correc-
tions due to replica symmetry breaking are quantitatively small on the energy, less
than 1%.

6.2.2 Ground-State Magnetization

In this section we study the average ground-state magnetisation m = [M ]J , which
is defined as M = 1

N

∑
i Si. [. . .]J denotes the sample average. We show in Figures

6.3 and 6.4 the magnetisation as a function of µ for different system sizes N , both
for connectivity values z = 4 and z = 6. The lines represent the N = ∞ result in
the replica symmetric solution.

For small µ the magnetization vanishes as 1/
√

N . For large µ, the branch–and–cut
data agrees with the BP result within the error bars. The critical point at which the
phase transition occurs is characterized by the vanishing of the magnetisation. From
the vanishing of the BP magnetisation we get the critical µ at µc = 0.742 ± 0.005
(z = 4) and µc = 0.546± 0.005 (z = 6).
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The critical mean µc can also be determined by studying the so-called Binder cu-
mulant [18]

g(µ) =
1

2

(
3− [M4]

[M2]2

)
, (6.3)

where [· · · ] is the “time” average when used in the context of the population dynam-
ics approach. This cumulant can be used because in the limit N →∞ it is g(µ) = 0
for µ < µc and g(µ) = 1 for µ > µc.

We get from the largest population size

µBP
c = 0.743± 0.005 (z = 4)

µBP
c = 0.547± 0.005 (z = 6)

These values agree with the above estimate from the average magnetization. We
verified that the expected scaling mBP = a(µ − µc)

β for µ ' µc, is satisfied with
the mean-field exponent β = 1/2 and a ' 0.23 for these values for µc. Klein et
al. [68] solved the BP recursion in the region of µc with the mean random field
approximation (MRF). Their results µMRF

c = 0.775 (z = 4) and µMRF
c = 0.587

(z = 6) (obtained after rescaling their value by an appropriate normalization factor√
z) are slightly larger than our result µBP

c .

By replacing the time average by the sample average in Eq.(6.3), we can estimate µc

from the finite-size branch–and–cut data. We will see later from the scaling of the
Binder cumulant that the curves for g(µ,N) as a function of µ for various N must
cross at the critical point µ = µc.

We plot in Figure 6.5 the Binder cumulant in the region of the intersection point.
We obtain

µc = 0.77± 0.02 (z = 4)

µc = 0.56± 0.02 (z = 6).

The branch–and–cut value agrees with µBP
c within the error bars. With the same

reasoning as above we conclude that also for the magnetization replica symmetry
breaking corrections are small. They cause a shift of µc of less than 3−4%. Effects due
to replica symmetry breaking are expected to increase with z. In the Sherrington-
Kirkpatrick model (which is the z →∞ limit of the present model), corrections shift
µc from 1.25 to 1. Our numerical estimate of µc is slightly larger than µBP

c which
could be a statistical fluctuation or a finite size effect.

For µ ' µc, the Binder cumulant is expected to satisfy a finite-size scaling relation
[106] as follows:

g(µ,N) = g̃(N1/(duν)(µ− µc)) (6.4)

where du is the upper critical dimension, i.e., the dimension above which the mean
field solution is exact. It is du = 6 for the Ising spin glass. So g(µ = µc, N) = g̃(0),
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Figure 6.3: Average ground-state magnetization m as a function of the mean µ of
the Gaussian distribution for z = 4. The symbols represent the branch–and–cut
data for various system sizes N . The statistical errors, not shown, are smaller than
the symbol sizes. The line represents the numerical BP recursion.
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Figure 6.4: Same as Figure 6.3 but for z = 6.

and the curves for g(µ,N) in Figure 6.5 as a function of µ for various N have to
cross at µc.

(The scaling behavior can be understood as follows. In the EA model, near the phase
transition the only existing length scales are the linear size L and the correlation
length ξ. The number of spins N is N = Ld and the scaling of the correlation length
is ξ ∝ (µ−µc)

−ν . The Binder cumulant g is dimension less, so g is a function g(L
ξ
) =

g̃(N1/(dcν)(µ−µc)). We know that the mean field solution is exact in dimensions equal
to or bigger than the critical dimension dc. In our model the mean field solution is
exact. The scaling law follows by taking our model as if it was a regular graph in
d = dc dimensions.)

In Figure 6.6 we show the scaling of the Binder cumulant for the branch–and–cut
data. The plot shows g(µ,N) as a function of N1/(duν)(µ − µc) with the mean-field
exponent ν = 1/2. We see that the data collapses into a single curve near (µ−µc) = 0.
We observe that finite-size scaling is well satisfied in our range of sizes.

We show in Figure 6.7 scaling plots for the average magnetization
m(µ,N) = [M ]J . Its scaling is

m(µ,N) = N−β/(duν)m̃(N1/(duν)(µ− µc)) , (6.5)

with the mean field exponent β = 1/2. The data show a good data collapse for
µ ≤ µc.



120 CHAPTER 6. BETHE LATTICE

Figure 6.5: Binder cumulant as a function of the mean of the disorder distribution,
µ for various sizes. On the left panel we show the connectivity z = 4, the right shows
the results for z = 6.
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Figure 6.6: Scaling of the Binder cumulant. The symbols for each panel are the same
as the corresponding panels in Figure 6.5.

6.3 Performance of Branch–and–Cut

The max-cut problem remains NP-hard for the class of z-regular graphs. Hence, we
only know solution algorithms with exponential worst-case running time. In practical
computations, the running time of an algorithm can vary much from one instance
of the problem to another. In case we are determining ground-states of the Bethe
lattice in the ferromagnetic region, the ‘worst case’ might very rarely occur, the
algorithm might be ‘fast’ and the notion of worst-case running time might be a very
coarse measure in practice. Therefore recent work focuses on the average running
time of solution algorithms. We can determine the average running time in practise
by determining the average over the running times of random instances drawn from
some probability distribution. As the median is less affected by rare samples with
huge running times, we analyse the median of the running time and call it the
typical running time. We would like to stress that the worst-case complexity is an
algorithmic independent feature of the problem itself whereas the average or typical
running time is dependent on the solution algorithm and can even vary between
different implementations of the same algorithm.

In the following we study the running time as a function of the mean µ of the
Gaussian distribution. We expect that if we choose µ big enough, the instance is
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Figure 6.7: Scaling plot for the ground-state magnetization. The symbols for each
panel are the same as those of Figure 6.5. We have significant corrections to scaling
for µ > µc.
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‘easy’ and the algorithm will be ‘fast’; the typical running time will be ‘high’ for
‘small’ µ in the spin-glass phase. In the following we ask whether we see a sharp
transition in the running time and, if so, whether the transition takes place in the
vicinity of the spin glass/ferromagnet phase transition.

As branch–and–cut is basically branch–and–bound with cutting planes, we also did
some experiments with a pure branch–and–bound algorithm [51, 69], which how-
ever can only deal with much smaller system sizes. We found that the running
time behaves in a qualitatively similar but less clear way to branch–and–cut, in the
accessible range of sizes.

As a measure for the running time, we might use the CPU time. However, we used
different machines making the CPU time not suitable. Furthermore, it is hard to
separate out the influence of size-dependent hardware effects on the CPU time. Small
problems will be faster because they can be fully stored in the cache. Therefore we
don’t use the CPU time as performance measure. Instead, we use the number of
linear problems solved, nlps, as a measure of the running time [77]. The number of
linear problems is strongly correlated with the CPU time. However, we note that
the time needed for solving a linear program increases with the system size, and
thus the number of linear problems underestimates the running time. (In Chapter 7
we quantify this behavior for the EA model.)

In Figure 6.8 we show the median running time as a function of µ for z = 4, 6 and
different system sizes. The algorithm is fast in the ferromagnetic phase, whereas the
running time increases significantly in the spin-glass phase. Within the spin-glass
phase it is approximately constant. The effect gets stronger for bigger system sizes.
This behavior suggests a sharp discontinuity in the N → ∞ limit around µ ≈ 0.8
(z = 4) and µ ≈ 0.6 (z = 6), which is close to the spin glass/ferromagnetic transition
µc.

In Figure 6.9 we see that deep in the ferromagnetic phase the data is consistent with
a polynomial dependence of the running time on N . In contrast, for smaller values
of µ, the curves are bending upwards, indicating that the running time increases
faster than any polynomial. This is also visible for µ = 0.8 (z = 4) and for µ = 0.6
(z = 6, not shown). From this data it seems that the change in the typical running
time of the branch–and–cut algorithm occurs at a value of µ larger than µc for the
tested distribution of instances. It has been observed before that the phase transition
and the change of the running time do not necessarily coincide, e.g., for a simple
backtracking algorithm solving vertex cover [121].

We have tried an exponential fit for the data in Figure 6.9 of the form nlps(N) ∼
exp(bN c). For µ = 0, we find b = 0.026(9), c = 0.87(5) for z = 4, and b = 0.007(3)
and c = 1.24(8) for z = 6. As there is a considerable scatter around the fitting
region (and we obviously expect c to be smaller than 1), we cannot conclude that
the running time is exponential. Nevertheless, the data strongly suggests that in the
spin-glass phase the typical running time is superpolynomial.



124 CHAPTER 6. BETHE LATTICE

0 0.5 1 1.5 2
µ

10
0

10
1

10
2

10
3

10
4

n lp
s

N=400
N=320
N=200
N=100
N=50

0 0.5 1 1.5 210
0

10
1

10
2

10
3

10
4

z=4

z=6

Figure 6.8: The median running time (measured in the number of linear problems
solved) as a function of µ for different system sizes N = 400, 320, 200, 100, 50 for
z = 4. The inset displays the running time for z = 6 and sizes N = 200, 140, 100, 50.
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Figure 6.9: The median running time (measured in the number of linear problems
solved) as a function of the number of spins N for different means of the Gaussian
distribution µ = 0,0.8,1, 1.2, 1.6 in a log-log plot. The straight lines represent power
laws c∗N ζ with ζ = 0.699 (z = 4, µ = 1.2), ζ = 0.677 (z = 4, µ = 1.6) and ζ = 0.709
(z = 6, µ = 1.6), respectively, showing that in the ferromagnetic phase the median
running time of our program is polynomial.
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In this project, we have shown that a solution algorithm for a standard problem from
physics, the Ising spin glass, exhibits an easy-hard transition near a “physical” phase
transition. We expect that phase transitions will have an effect on many solution
algorithms. We believe similar phenomena can occur in other well known physical
models.

In the following chapter we leave mean-field models and go over to studying the
nature of the spin-glass state in the three-dimensional Edwards Anderson model.



Chapter 7

Low Energy Excitations in Spin
Glasses

In this chapter we present results from a cooperation with Matteo Palassini and A.
Peter Young. The full paper is already published in [101]. As described in Chapter
5, the nature of the spin-glass state for short-range models is not yet fully under-
stood. In order to try to gain insight in its physics, we investigate the nature of
the low-energy, large-scale excitations in the three-dimensional Edwards-Anderson
model. We choose Gaussian distributed couplings and free boundary conditions and
determine ground states for system sizes up to 123 spins. We study the response
of the ground state to the bulk ε-perturbation introduced by Palassini and Young,
[100] and used earlier in Section 5.3. The branch–and–cut data are consistent with
a picture where the surface of the excitations is not space-filling, such as the droplet
or the “TNT” picture. When allowing for large finite size corrections, the data are
also consistent with a picture with space-filling surface, such as replica symmetry
breaking. Finally, we analyze the performance of the current implementation of the
branch–and–cut algorithm, finding a correlation between the running time and the
existence of large-scale, low-energy excitations.

7.0.1 Introduction

As introduced in Chapter 5, two main theories for the nature of the spin-glass state
have been proposed, the droplet theory and replica symmetry breaking. Recently,
Krzkala and Martin (KM) [72] and Palassini and Young (PY) [100] have argued in
favor of an intermediate scenario, the TNT picture (‘trivial-nontrivial’). The TNT
picture has been challenged (although in opposite senses) by Marinari and Parisi
[78] and by Middleton [86]. Subsequently, low temperature Monte Carlo simulations
[61] have found results consistent with the TNT scenario. The RSB, droplet, TNT

127
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and some other scenarios have been also studied by Newman and Stein [94, 95]. For
some recent related work, see Refs. [74, 91].

The work of KM and PY determined the ground state with and without a certain
perturbation (which was different in the two cases), designed such that the ground
state of the perturbed system is a large scale excitation of the original system. They
used heuristic algorithms, and argue that they do find the exact ground state in
most cases.

In the following we determine θ′ and ds from exact data. Our branch–and–cut code
can handle significantly larger sizes for free boundary conditions (bc) than for pe-
riodic bc, so we use free bc here. (This behavior is intuitive: The cycle polytope
coincides with the cut polytope for graphs without a K5-minor, e.g., for planar
graphs. The more edges we insert that ‘destroy planarity’, the worse the cycle poly-
tope approximates the cut polytope. So we expect a better performance for instances
with free than with periodic boundary conditions.) To our knowledge, the use of ex-
act optimization algorithms in three-dimensional spin glasses has been restricted
to smaller sizes than those studied here, and they were not used to investigate the
real-space structure of the low-energy excitations.

For summarizing our results, we first note that for free bc, unlike for periodic bc,
each scaling ansatz requires corrections to scaling. Making a natural assumption
that these corrections are small we find d − ds = 0.45 ± 0.02 and θ′ = 0.18 ± 0.03,
which is compatible with the droplet picture. However, if we allow for very large
corrections to scaling, we also cannot rule out the TNT or RSB pictures.

In the second part of the chapter we analyze the running time of the algorithm for
the EA model. We find an exponential dependence on the system size which can be
expected as we are studying an NP-hard problem. We find that the computations
take considerably longer for samples in which there is an excited state close in energy
to the ground state energy, yet ‘far away’ in Hamming distance,i.e., very different in
spin configuration. We are not aware of any previous quantitative measures of this
trend, which we expect to be common to other algorithms as well.

The rest of this chapter is organized as follows. In Section 7.1 we describe the pertur-
bation method. Our results for the nature of the large scale, low energy excitations
are given in Section 7.2. The performance of the algorithm is analyzed in Section 7.3.

7.1 Model And Methods

We study the standard Hamiltonian

H = −
∑
〈i,j〉

JijSiSj, (7.1)
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where N = L3 spins i with spin variables Si = ±1 occupy the sites of a simple
lattice in d = 3 dimensions with free boundaries. The couplings Jij are chosen from
a Gaussian distribution with zero mean and standard deviation one.

The bulk perturbation of PY is already explained in Section 5.3. By applying the
bulk perturbation, the total energy of the states changes by an amount of order
unity.

Let the exact ground state of an instance have configuration S
(0)
i . Then the link

overlap between the state “0” and any other state α is defined by

q
(0,α)
l =

1

Nb

∑
〈i,j〉

S
(0)
i S

(0)
j S

(α)
i S

(α)
j , (7.2)

in which the sum is over all the Nb nearest neighbor bonds.

We denote the ground state of the perturbed system by S̃
(0)
i , and indicate by ql and

q, with no indices, the link- and spin overlap between the new and old ground states
S

(0)
i and S̃

(0)
i , where q is defined by q = 1/N

∑
S

(0)
i S̃

(0)
i .

In the rest of the chapter we will restrict ourselves to q ≥ 0 without loss of informa-
tion.

In [102] and [101] the following scaling relations for the correlation functions link-
and spin overlap are obtained.

〈1− q〉 = Fq(εL
−µ) (7.3)

〈1− ql〉 = L−(d−ds)Fql
(εL−µ), (7.4)

where

µ ≡ θ′ + d− ds (7.5)

and 〈· · · 〉 is the average with respect to the random couplings. By measuring 〈1− q〉
and 〈1 − ql〉 we can then determine d − ds and θ′, and discriminate between the
various pictures for the spin-glass phase.

The asymptotic behavior for L À ε1/µ is [101]

〈1− q〉 ∼ εL−µ, (7.6)

〈1− ql〉 ∼ εL−µl , (7.7)

where

µl ≡ θ′ + 2(d− ds) . (7.8)

In the RSB picture, the excitations are space-filling, thus d − ds = θ′ = 0, and
therefore µ = µl = 0. The scaling relations in Eqs. (7.3), (7.4) reduce to

〈1− q〉 = Fq(ε) , 〈1− ql〉 = Fql
(ε) (RSB) , (7.9)
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and the asymptotic behavior for L →∞ is

〈1− q〉, 〈1− ql〉 ∼ ε (RSB). (7.10)

In the following we will also analyze just those samples in which the unperturbed
and perturbed ground states are very different, i.e., where q ≤ qmax, where qmax is a
threshold value. Denoting such restricted averages by 〈· · · 〉c, it is

〈1− ql〉c = L−(d−ds)F c
ql
(εL−µ). (7.11)

In [101] we argue that the asymptotic behavior at large L is

〈1− ql〉c ∼ L−(d−ds). (7.12)

In particular, in RSB this becomes

〈1− ql〉c ∼ const. (RSB) . (7.13)

Note that in both cases the asymptotic behavior is independent of ε.

When analyzing the numerical data, we must be aware that there are corrections to
finite-size scaling which occur when the treated system sizes L are not large enough.
These take the form of additive corrections to scaling relations such as Eqs. (7.3),
(7.4), and (7.11), whose amplitude is characterized by a correction to scaling expo-
nent ω. For example, including the leading correction, Eq. (7.11) becomes

〈1− ql〉c =
1

Ld−ds

{
F c

ql
(εL−µ) +

1

Lω
Gql

(εL−µ)

}
, (7.14)

and for εL−µ → 0, the asymptotic result corresponding to Eq. (7.12) is

〈1− ql〉c =
1

Ld−ds

(
a +

b

Lω

)
. (7.15)

For the RSB case, this goes over to

〈1− ql〉c = a +
b

Lω
, (7.16)

rather than Eq. (7.13).

Even when these corrections are negligible and the scaling form, such as Eq. (7.11), is
valid, the argument of the scaling function may not be sufficiently small for a simple
power law dependency of the data on system size, such as Eq. (7.12), to be valid. In
this regime, expanding the scaling function gives rise to further additive corrections
to the asymptotic behavior. For example, the leading correction to Eq. (7.12), coming
from expanding the F c

ql
in Eq. (7.11) to second order, will be

〈1− ql〉c =
1

Ld−ds

(
a + b

ε

Lµ

)
(7.17)

which goes over to 〈1− ql〉c = a + b ε in RSB. In general, both types of corrections
need to be borne in mind when fitting the data.
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L ε/τ = 1
4

ε/τ = 1
2

ε/τ = 1 ε/τ = 2 ε/τ = 4
4 50000 50000 50000 50000 50000
6 20000 20000 20000 20000 20000
8 15000 13467 13467 6000 6000

10 10000 7440 6000 4918 4000
12 5670 4202

Table 7.1: Number of independent realizations of the disorder (samples) used in the
computations.

7.2 Results for the Correlation Functions

We apply the bulk perturbation of PY to systems of size L = 4, 6, 8, 10, and 12.
For each size, we consider five values of the perturbation strength ε, namely ε/τ =
1
4
, 1

2
, 1, 2, and 4, where τ =

√
6 is the mean field transition temperature, except

for L = 12 for which only ε/τ = 1
4

and 1 are considered. We choose this value
of τ for being able to compare our results with those of PY for periodic bc. In
order to discriminate between the different pictures, it is important to have high
statistics. Table 7.1 reports the number of samples computed for each size. Note
that the number of samples necessary to achieve a given statistical error increases
as ε decreases, since the fraction of samples in which the S̃(0) 6= S(0) also decreases.

7.2.1 Box overlaps

In the paper [101] we first studied the nature of the spin glass phase by analyzing
the results for the spin- and link overlaps. Then we studied the box overlap. Here we
restrict ourselves to the results for the absolute value of the box overlap qB defined
as

qB =
1

Ld
B

∑
i

S
(0)
i S̃

(0)
i , (7.18)

where the sum runs over the sites contained in a central cubic box of fixed size
LB = 2. As the box overlap is measured away from the boundaries, it should have
smaller corrections to scaling and should be less sensitive to boundary conditions
than q and ql.

When a large-scale cluster of spins is flipped, for large L the probability that its
surface goes across the central box is proportional to the ratio of its surface area,
∼ Lds , to the volume, Ld. Therefore 1 − qB ∼ L−(d−ds) from which we obtain the
scaling laws

〈1− qB〉 = L−(d−ds)FqB
(ε/Lµ) (7.19)

〈1− qB〉c = L−(d−ds)F c
qB

(ε/Lµ) (7.20)
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where, as for the corresponding scaling functions for ql, FqB
(x) ∼ x and F c

qB
(x) ∼

const. for small x. Hence the asymptotic scaling for L →∞ is

〈1− qB〉 ∼ εL−µl (7.21)

〈1− qB〉c ∼ L−(d−ds) . (7.22)

In RSB, this reduces to 〈1− qB〉 ∼ ε and 〈1− qB〉c ∼ const.

(a) (b)

Figure 7.1: Box overlaps. (a) Logarithmic plot of the average box overlap, restricted
to samples such that q ≤ 0.4. The lower continuous line is a power-law fit for ε/τ = 4.
The dashed line is the fit with 〈1 − qB〉c = a + b/L + c/L2. (b) Scaling plot of the
box overlap according to Eq. (7.19). The continuous line is a polynomial fit of order
n = 6, which gives χ2/d.o.f = 0.63, and a goodness-of-fit parameter Q = 0.85. The
dashed line is the linear term of the polynomial fit, corresponding to the asymptotic
behavior for L →∞.

Figure 7.1(a) shows the restricted average 〈1−qB〉c, with qmax = 0.4, as a function of
L for two values of ε. The data are clearly decreasing with L and close to a straight
line on the logarithmic plot, consistent with the droplet or the TNT scenarios. The
exponent d − ds can be read off from the log-log plot Figure 7.1(a) as the slope of
the straight line. We obtain the estimate

d− ds = 0.48± 0.03. (7.23)

which is in agreement with the estimates d− ds = 0.44± 0.03 from 〈1− ql〉c, [101].

We observe that our data scale well, according to (7.19), see Figure 7.1(b), and we
obtain the best data collapse for µ = 0.62 ± 0.04. We find θ′ = 0.15 ± 0.7 which is
consistent with the droplet scaling picture.

Figure 7.2 shows the unrestricted average 〈1−qB〉multiplied by τ/ε, which asymptot-
ically should be independent of ε. The data show a small curvature and a significant
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Figure 7.2: Logarithmic plot of the average box overlap, multiplied by τ/ε in order
to highlight the deviation from the asymptotic behavior of Eq. (7.21) in which the
data for various ε should collapse on a single curve. The continuous lines represent
fits with the power-law 〈1−qB〉c = b/Lc excluding L = 4. The dashed lines represent
fits of the form 〈1− qB〉c = a + b/Lc.

ε dependence, indicating that for this quantity we are not yet in the asymptotic
region.

However, the data also fit the RSB picture well, if we allow large corrections to
scaling. Under the RSB assumption we thus estimate limL→∞〈1 − qB〉c = 0.25 ±
0.10. In this case, the good scaling behavior we observed would only be a finite-size
artifact, and would disappear at larger sizes.

It has turned out in [101] that the data for the box overlap can be fitted with
smaller corrections to scaling than the data for the (bulk) link overlap. A fit to the
generic scaling picture, with no corrections to scaling, gives results for the exponents
d−ds and µ in agreement with those from the bulk quantities q, ql analyzed in [101].
However, as with the bulk observables, assuming large corrections to scaling, the
data can also be fitted to the RSB picture.

In the paper [101] the data of PY was analyzed again from [102] and L ≤ 8 with
periodic boundaries, obtained with a hybrid genetic algorithm. By imposing that
corrections to scaling are less than the statistical errors of 1%, for periodic boundary
conditions we obtain θ′ ' 0. The data are compatible with the TNT picture and
show smaller corrections to scaling and deviations from the asymptotic scaling than
the exact data for free bc. We find that the surface of the excitations is smaller for
free bc than for periodic bc. For periodic bc, the domain wall has to “bend” to return
to the same point on the “top surface” as it had on the “bottom surface”. This may
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be the source of the extra surface area. In general, it is reasonable to expect that
there are some corrections to scaling which are larger for free bc, because these bc
have a free surface on which lie a fraction of sites which is quite substantial for
moderate sizes. For the same reason, the asymptotic behavior would set in for larger
L. Evidence that free bc have larger corrections was also found recently in Monte
Carlo simulations [62]. Then it is conceivable that the positive value of θ′ obtained
for free bc is also an effect of finite size corrections, and hence we cannot rule out a
crossover to the TNT picture for larger sizes.

For free boundary conditions we obtain θ′ = 0.19± 0.06, which fits well the droplet
picture (d − ds > 0, θ′ > 0). The results from analyzing the spin- and link overlap
and the box overlap are in agreement. By relaxing this requirement and allowing
larger corrections to scaling of order 10%, the data for free bc can be also fitted by a
scenario with θ′ ' 0. Therefore the data for free bc are also consistent with the TNT
picture provided moderate corrections to scaling are allowed, larger than those for
periodic bc. We have also provided direct evidence that indeed free bc have larger
corrections to scaling.

For both free and periodic bc, the data are also fitted well by the RSB picture
(d − ds = 0, θ′ = 0), but only if we allow very large corrections to scaling. In this
case, the good scaling behavior we observed for all the observable considered would
only be a finite size artifact, and would disappear at larger sizes. However, a droplet-
or TNT scenario is more “natural” for our data.

Therefore, by current standards, it is not possible to clarify the nature of the spin-
glass state by the work [101]. In order to do this, larger system sizes will be needed.
This concludes the first part of this chapter. In the next section, we will analyze the
performance of the branch–and–cut algorithm for the EA model.

7.3 Performance of Branch–And–Cut for the EA

Model

In this section we study the performance of the current implementation of our
branch–and–cut algorithm for the Edwards Anderson model. As the results for size
L = 12 are obtained with a faster version of the code, the running times for this size
cannot be compared with those for the smaller sizes. Hence, we will consider only
sizes up to L = 10 in this section.

In Chapter 6, in which we studied the performance of branch–and–cut for the Bethe
lattice, we already argued that it is useful to investigate experimentally the ‘typical’
running time needed for solving a max-cut instance, as the typical running time
might be different to the worst-case running time which depends exponentially on
the size of the system. The number of operations can vary significantly from one
instance to another, and investigating the typical performance might be helpful for
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identifying which parameters of the problem affect most the performance. De Simone
et al. [112] measured the average CPU time used by the branch–and–cut algorithm
to find the ground state of the two-dimensional ±J spin glass with periodic bc, up
to L = 70, showing that the average CPU time was approximated by a function
proportional to L6.

In the following we analyze the performance of the branch–and–cut algorithm for
the three-dimensional EA spin glass with free bc and Gaussian couplings. In Table
7.2, we summarize the average running time needed for calculating an unperturbed
ground state for different system sizes. Similarly as in the Bethe lattice project,
the CPU time is not a feasible performance measure because of hardly measurable
hardware effects and because of the fact that the computations were performed on
several different machines. As in Chapter 6, we take as performance measure np,
the number of linear problems solved. np is a well-defined and machine independent

Figure 7.3: Scatter plot of the CPU time to find the unperturbed ground state
(ε = 0) versus the corresponding number of linear programs solved (np). Each point
represents a randomly generated sample with L = 10. All the computations for this
set of samples were run on the same machine. The dashed line indicates a linear
behavior.

quantity. For three-dimensional EA spin-glass instances about 95% of the time is
spent in solving linear programs. Furthermore, for a fixed system size, np correlates
strongly, and almost linearly, with the CPU time. This is shown in Figure 7.3, which
plots the CPU time versus np for 1000 randomly generated samples with L = 10,
computed on the same machine. Note that since the size of the linear programs
is also growing with the system size, the CPU time per linear program increases
strongly with L: the average (resp. median) CPU time goes from 0.00770 (resp.
0.833) seconds for L = 4 to 0.833 (resp. 0.784) seconds for L = 10. Hence, np



136 CHAPTER 7. LOW ENERGY EXCITATIONS IN SPIN GLASSES

L mean CPU time per sample
4 0.065
6 0.662
8 10.11

10 338

Table 7.2: Mean CPU time per sample in seconds for the calculation of the unper-
turbed ground state, averaged also over different machines.

severely underestimate the rate at which the number of operations increases with
L. As we see in Figure 7.3, the distribution of np (and CPU times) is very broad,
extending over three orders of magnitude.

In order to identify which parameters of the problem, in addition to the size, af-
fect the performance, we ask whether np correlates with the physical observables
we measure. No significant correlation was observed with the ground-state energy.
Figure 7.4 plots 〈log10 np〉 for the unperturbed ground state (ε = 0) and L = 10
versus the overlap between this state and the perturbed ground state with ε/τ = 4.
(The perturbation method does not generate a uniform distribution of q, therefore
Figure 7.4 was produced by selecting 1000 samples from a random ensemble, such
that there is the same number of samples in each consecutive q interval of length
0.1 in the range q ∈ [−1, 1].) We observe a distinct correlation between np and q: for
small q, more linear programs are solved than for large q. The figure shows that the
typical number of linear programs is close to an order of magnitude larger if q ' 0
than if q ' 1. We observed a similar correlation for other values of ε as well, and
also between the CPU time and q. Again, the distribution of np is quite broad as
shown by the data for the standard deviation of 〈log10 np〉 in Figure 7.4.

In order to quantify how the correlation between np and q changes with the system
size, we show in Figure 7.4 the average and median of np as a function of Nb, as
well as the conditional averages of np restricted to samples with large (|q| ≥ 0.9)
and small (|q| ≤ 0.1) overlap. We take the number of bonds, Nb, as a measure of
the input size, since the branch–and–cut algorithm works on edge variables. First,
all measures show an approximately exponential increase with Nb, with corrections
for small Nb. Second, the difference between the conditional averages with small and
large q seems to increase with the system size, and is about one order of magnitude
for L = 10.

For understanding this behavior we note that we expect that samples with a small
|q| have a rougher “energy landscape” than samples with a big overlap, namely
there are states with an energy close to the ground-state energy, however with a
spin configuration very different from the ground state. It is then intuitively clear
why one would observe a correlation between q and the running time for a stochastic
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algorithm employing local search heuristics, such as simulated annealing, since when
the algorithm encounters one of these configurations with small overlap, it must
retrace its steps by a large amount.

However, for the branch–and–cut algorithm, a reason for the correlation between np

and q is less obvious, but some insight is provided by an analysis of “reduced cost
fixing” as explained in Chapter 4. The more variables that can be fixed during the
run of the algorithm, the faster the algorithm is in practice.

(a) (b)

Figure 7.4: (a) The circles are a plot of 〈log10 np〉, where np is the number of linear
programs solved to compute the unperturbed ground state S0, versus the overlap
between S(0) and the perturbed ground state S̃(0). The data is for ε/τ = 4 and
the samples were selected from a set of randomly generated samples with L = 10,
in such a way that the same number of samples is plotted for each consecutive q
interval of length 0.1, in order to sample equally all regions of q. The triangles show
the standard deviation, among samples, of log10 np as a function of q. (b) Average
np, median np, and conditional averages of np restricted to |q| ≤ 0.1 and to |q| ≥ 0.9,
as a function of Nb. The data for np are for L = 10 and ε = 0 (unperturbed ground
state), and q is the overlap between the ε = 0 and ε/τ = 4 ground states.

Since the samples with small overlap have “almost optimal” solutions with spin
configurations far away in Hamming distance from the ground state, only a smaller
number of variables can be fixed. Here we do not have the “correct” edge values
for fixing available until the end. As an example, we checked that for L = 10 and
ε = τ , for 100 randomly chosen samples with small overlap (|q| ≤ 0.1), in average
409 ± 39 of the 2700 edge variables could be fixed in the first sub problem, i.e.,
before branching takes place. In contrast, for 100 randomly chosen samples with
big overlap (|q| ≥ 0.9), 921 ± 34 of the edge variables could be fixed in the first
sub problem, about twice as many. Of course, the fewer variables that can be fixed
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in the first sub problem, the more overall branching is necessary, resulting in more
overall computational effort for samples with small overlap.

As a conclusion, we have shown that the performance of the algorithm is worse
when the energy landscape is ‘rough’, i.e., in case there exists a solution near the
ground-state energy that is very different in spin configuration.



Conclusion

The close connection between the max-cut problem from combinatorial optimization
and the determination of exact ground states of Ising spin glasses makes it an exciting
field of research. On one hand it is interesting to focus on the inclusion of advanced
optimization techniques for the improvement of the performance of the branch–and–
cut algorithm. On the other hand, analyzing exact ground-state data generated by
branch–and–cut makes it possible to draw conclusions on the physics of spin glasses
that are more reliable than those obtained by analyzing heuristically generated data.

In this thesis, we studied the problem of determining exact ground states of Ising
spin glasses. This problem can be mapped on the prominent max-cut problem. It is
NP-hard, and we use a branch–and–cut algorithm for determining exact solutions
for reasonably big system sizes. In the first part of the thesis we presented approaches
for speeding up the max-cut computations within the branch–and–cut framework.
To this end, we first summarized the state-of-the-art in the studies on the max-cut
problem. We then found that linear relaxations perform better than the quadratic
relaxation that can be solved by positive semidefinite optimization. We explained
how to generate the cycle polytope fast for spin-glass instances. Subsequently we
studied the question of how to solve the linear relaxations. We found that it is best
to solve them with the traditional simplex method instead of interior point meth-
ods or the volume algorithm recently introduced by Barahona et al. After having
focused on the cycle polytope, we asked ourselves how we can further strengthen
the max-cut relaxations by adding inequalities beyond the cycles. Whereas the cut
polytope is well-studied for dense and complete graphs, not much is known about
the cut polytope on sparse graphs, e.g. instances defined on regular grids. In or-
der to be able to use the knowledge for complete graphs, we applied a lift-project
approach for the generation of tighter relaxations by adding cutting planes outside
the template paradigm. We project to problem to a problem of smaller dimension.
The resulting graph is dense, and we can separate classes of inequalities known for
the complete graph. We can lift the generated facets to valid (under certain circum-
stances facet defining) inequalities for the cut polytope of the original sparse graph.
We introduced a new facet for the max-cut problem, the 4-neighbor facet. Sub-
squently we presented improved primal heuristics for generating good cuts within
the branch–and–cut framework. In the next chapter, we studied Ising spin-glasses on
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the one-dimensional chain. We extended the branch–and–cut approach to a branch-
cut&price algorithm that considerably speeds up the computations. Furthermore, it
is possible to generate tighter relaxations than the cycle polytope in this model.

In the second part of this thesis we studied the physics of spin glasses. We first
summarized the historical development. We started from the first surprising labo-
ratory experiments done with spin glasses that showed that at low temperatures a
random disorder of the magnetic moments is present. We then introduce the Ising
model that is still widely used for theoretical studies. We introduce the Sherrington-
Kirckpatrick model and summarize Parisi’s solution. We point out that the nature
of the spin-glass state is not yet fully understood for short-range models like the
Edward Anderson model. We present several models that are proposed in the liter-
ature.

In the subsequent chapter we presented results from a cooperation with M. Palassini
and A.K. Hartmann. In this cooperation we studied Ising spin-glass instances on z-
regular graphs, i.e., Bethe lattices. The couplings are Gaussian distributed with
mean µ. We determined the critical mean µc where the ferromagnetic/spin-glass
phase transition takes place. As the usual worst-case notion for the running time
gives us only a very coarse picture of the difficulty of determining ground states
of spin glasses, we studied the performance of branch–and–cut in more detail. We
analyzed the performance of the algorithm around the phase transition. We found
that deep in the ferromagnetic phase the data is consistent with a polynomial de-
pendence of the running time on the size of the input, whereas it seems to increase
faster than polynomial in the spin-glass phase. In the last chapter of the thesis, we
presented results from a cooperation with M. Palassini and A.P. Young. We stud-
ied the nature of the low-energy excitations in three-dimensional short-range spin
glasses with Gaussian distribution and free boundaries. We found that the data is
consistent with the droplet picture. However, we cannot rule out a crossover to a
different picture, e.g., replica symmetry breaking or the TNT picture for system
sizes bigger than those studied.

In order to clarify the nature of the spin-glass state beyond doubt, we need exact
ground-state data of three-dimensional lattices with bigger sizes than we can study
at present. Therefore, it is still an interesting problem how to further speed up the
ground-state computations such that we can treat bigger sizes. At present, further
improvements of the used relaxations yielding the upper bounds would be desirable.
One promising approach is projecting and lifting. At present, the improvements
in the upper bound through a lifting and projecting procedure are still too weak
for a significant improvement of the upper bound. Hence it remains as an open
problem whether different project- and lift approaches could help improving the
performance. A different question would be how to design a powerful branching rule
that branches on more than one variable. One approach in this flavor is the local
branching procedure the we explained in Section 2.6.
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It is also possible to study spin-glasses in external magnetic fields by branch–and–
cut, and one can also try to clarify the nature of the spin-glass state by studying
short-range models into an external magnetic field. Whereas the RSB picture pre-
dicts that the spin-glass phase can survive as long as the external magnetic field
is not too big, e.g. in the droplet scaling picture the spin-glass phase is destroyed
whenever a finite magnetic field is present.

It would be interesting to study one-dimensional Ising chain with the exact branch-
cut&price method. Whereas parallel tempering cannot go to very large sizes for
short-range models, this is possible with branch-cut&price. On the other hand,
branch-cut&price cannot go to large sizes for the long-range model, so these two
methods are complementary.

We believe it is very fruitful and stimulating to study a hard problem like spin
glasses by exact algorithmic methods. We hope that the branch–and–cut algorithm
for max-cut can further contribute to the understanding of its physics. Finally, we
believe that solution algorithms can be improved when more insight is gained into
the physics of the underlying problem.
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[32] M. Elf, M. Jünger, and G. Rinaldi, Report No. 2001.409, Angewandte Mathe-
matik und Informatik, Universität zu Köln, to appear in: Operations Research
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