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Abstract.— Disordered elastic systems are studied in the quantum, classical, and dynamic

regime in the present thesis. The thesis consists of two main parts:

In the first part we study the low temperature phase diagram of one-dimensional weakly

disordered quantum systems like charge or spin density waves and Luttinger liquids by a

full finite temperature renormalization group (RG) calculation. In the classical region, for

vanishing quantum fluctuations those results are supplemented by an exact solution of the

model in the case of strong disorder, described by the ground state and the correlation

function. Furthermore, by a mapping of the problem onto a Burgers equation with noise, in

the case of weak disorder, we can derive an expression for the correlation length. At zero

temperature we reproduce the (quantum) phase transition between a pinned (localized) and

an unpinned (delocalized) phase for weak and strong quantum fluctuations, respectively, as

found previously by Fukuyama [Fuk84] or Giamarchi and Schulz [GS88].

At finite temperatures the localization transition is suppressed: the random potential is wiped

out by thermal fluctuations on length scales larger than the thermal de Broglie wave length

of the phason excitations. The existence of a zero temperature transition is reflected in

a rich cross-over phase diagram determined by the correlation functions. In particular we

find four different scaling regions: a classical disordered, a quantum disordered, a quantum

critical, and a thermal region. The results can be transferred directly to the discussion of the

influence of disorder in superfluids. Finally we extend the RG calculation to the treatment of

a commensurate lattice potential, and for the case of density waves we discuss the influence

of quantum phase-slips, which might lead to a new scenario for the unpinning (delocalization)

transition at zero temperature.

Additionally, we analyze the current noise in a classical one-dimensional charge density wave

system in the weak pinning regime by solving the overdamped equation of motion numerically.

At low temperatures and just above the zero temperature depinning threshold, the power

spectrum of the current noise reveals the existence of 1/f or flicker noise. Our results are

in agreement with experimental measurements in quasi-one-dimensional charge density wave

systems.

In part two, we examine the viscous motion of an interface driven by a periodically oscillat-

ing external field in a random medium. The velocity exhibits a smeared depinning transition

showing a pronounced hysteresis, which is absent in the adiabatic case. Its width is deter-

mined by a new length scale, introduced by the frequency of the external drive and – in the

low frequency regime – by the critical exponents of the zero frequency depinning transition.

Scaling arguments and an approximate renormalization group treatment predict a power law

behavior of the velocity as a function of frequency and field amplitude at the dc depin-

ning threshold, which is confirmed numerically. Thermal fluctuations lead to an additional
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smearing of the transition. If the amplitude of the external driving force is smaller than the

depinning field, the motion of the interface by avalanches has to be taken into account in

order to describe the velocity hysteresis.

To check the validity of our model with respect to experimental results, we calculate the

complex susceptibilities using an adiabatic and non-adiabatic approach numerically for finite

systems and compare it to measurements of the superferromagnetic granular multilayer sys-

tem [Co80Fe20(1.4nm)/Al2O3(3nm)]10 and find that the model of an ac driven interface in

a disordered environment can describe the main features of the experimental results.

Additionally, the influence of a strong surface potential on the critical depinning of an elastic

system, driven in a random medium is considered. If the surface potential prevents depin-

ning completely, the curvature of the displacement profile at zero temperature exhibits a

pronounced rhombic hysteresis curve with width of two times the (bulk) depinning field.

The hysteresis disappears at non-zero temperatures if the driving force is changed adiabati-

cally. If the surface depinns by the applied force or thermal creep, the curvature is reduced

with increasing velocity. The results apply, e.g., to driven magnetic domain walls, flux-line

lattices, and charge-density waves.

As addendum we examine low dimensional interacting, but clean Bose systems at low temper-

atures. The interaction leads to scattering events of the over-condensate particles for which

we calculate the scattering times using Fermi’s golden rule. With that we derive the thermal

conductivity and the related weak localization corrections. This is done for short and long-

range interactions. Since d-dimensional Bose systems can be mapped to (d+1)-dimensional

vortex-line systems, the results for long-range interactions may lead to a stiffening of the

vortex lattice.
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A Introduction

1 Disordered elastic systems

In contrast to ideal (infinite) model systems, which are often used in condensed matter

physics, the consideration of inhomogeneities leads (in most cases) to drastic changes and

to new fascinating properties of the systems – not only from the theoretical point of view.

For example, charge density waves without randomly distributed inhomogeneities would be

ideal (”Fröhlich”) superconductors, whereas type-II superconductors would show finite resis-

tivity. In general the presence of random impurities creates an energy landscape with many

metastable states and the determination of a global ground state becomes highly non-trivial.

A huge variety of physical systems with random inhomogeneities can be described by elastic

theories in a disordered environment. However, one can distinguish two main classes of

models: elastic manifold models and so-called periodic media. In the first class one can

include domain walls of magnetically or structurally ordered systems with impurities [You99]

or isolated flux- and dislocation lines. The second class of systems is periodic, examples are

density waves [Grü94b, Grü88, Grü94a], Wigner crystals in random environment, flux-line

lattices [BFG+94, NS00], and so forth. Theses systems are subject of detailed investigations

since the early 1970s. An additional way to characterize those systems, is to use a dimensional

criterium: All these systems can be considered as D-dimensional objects embedded in a d-

dimensional physical system, e.g., for a single flux line D would be one or D = d − 1 for

domain walls, and for (most) periodic media D = d.

So far we have mentioned only random inhomogeneities, but one should note that there are

also non-random ones, e.g., introduced by surfaces or periodic potentials. However, in this

section we focus on the random situation, but come back to this point later on.

Therefore, we will briefly describe the main equilibrium properties of elastic objects in random

media and illustrate it by some specific examples. An overview of the possible situations,

controlled by the parameters for thermal (T ) and quantum fluctuations (K) as well as for

an external driving force (h), is shown in Fig. A.1. In the plane spanned by the K and

the T -axis we have the equilibrium phases of the system. For h 6= 0 we are in the non-

equilibrium situation (which is discussed in section 3): Without quantum fluctuations there



2 Introduction

is a depinning transition at h = hc for T = 0 or the system shows classical creep motion at

finite temperatures, even below hc. At zero temperature also quantum fluctuations lead to

creep motion.

T, thermal 

fluctuations

K, quantum fluctuations

h, driving force

Tc

Kc

hc

classical creep

equilibrium phases

quantum

creep localization, d=1
critical

depinning

Figure A.1: Different regions in the parameter space of thermal T and quantum fluctuations

K and external driving force h. At h = 0 we have the equilibrium phases. With external

driving force we find for K = 0 and T = 0 the depinning transition at hc, whereas for

quantum or thermal fluctuations creep motion occurs even below hc.

Let us write down a general Hamiltonian for a D-dimensional elastic object in a d = (D +1)
dimensional system, i.e., for a manifold, described by a displacement operator ẑ(x, t) with

in general N = d−D components (here N = 1) with quenched disorder potential VR:

Ĥ =
1
2

∫
dDx

{
aP̂ 2 + c(∇xẑ(x, t))2 + VR(x, ẑ)− hẑ

}
, (A1.1)

where P̂ is the conjugated momentum operator to ẑ, h the external driving force, and x
the internal coordinates of the manifold. The elastic constant c is in general a temperature

dependent tensor which can be non-local. In the thesis we consider only the case of a local

(temperature dependent) function. Note, that this model describes only oriented elastic

manifolds with single valued z, i.e., the manifold has no overhangs. A sketch of a manifold

with D = 1 in a random environment is shown in Fig. A.2.

To be a bit more specific, we consider the two most important examples in the context of

the present work:

(i) domain walls in magnets: domain walls can be described by the manifold Hamiltonian

(A1.1), i.e., D = d − 1. The interface separates, e.g., two ferromagnetically ordered
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Figure A.2: Sketch of a one-dimensional in-

terface in a random medium. The small

arrows at the impurities visualize the di-

rection of the local pinning forces. The

thick arrows show the restoring elastic

forces. The interface has an internal coor-

dinate x and is described by its displace-

ment z(x) from an initial plane.

x

z

z(x) elastic

forces

impurities

domains with different directions of the magnetization. The random forces can emerge,

e.g., from fluctuations of the exchange coupling between the spins (random-bond

disorder, cf. appendix E2.3) which couple to the domain wall or from frozen magnetic

impurities (random-field disorder). The external driving force is directly proportional

to the applied magnetic field.

(ii) charge density waves: In the case of charge density waves the displacement function z

has to be replaced by a phase field ϕ and the system dimension is the same as for the

elastic object; D = d. The impurity potential is periodic in ϕ and can be described

by a random phase at each impurity position, which is correlated in ϕ-direction. The

external driving force is given by the electric field applied to the system.

From the general expression, given in (A1.1), one can already obtain some basic features, if

one goes over to an averaged free energy for an elastic object of linear size L, which is in

appropriate units approximately given by (h = 0)

F ∼ LD−2z2 − V LD/2 − T −
(

K

z

)2

L−D

= LD−2

[
z2 − V L

4−D
2 − TL2−D −

(
KL1−D

z

)2
]

,

where K is a parameter controlling the quantum fluctuations, V the averaged disorder

potential, and T the temperature (z is the averaged displacement of the object). Note, that

we have used the standard commutation relation for ẑ and P̂ to derive the last term on the

right-hand side. Following Imry and Ma [IkM75] one can see from the last line, that there

are some important values for D at which the physics of the system changes: For D 6 4 the

disorder term V becomes more important on larger length scales, i.e., disorder is relevant
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in most realistic systems; For D 6 2 thermal fluctuation are important and for D 6 1 also

quantum fluctuations have to be taken into account. An important length scale which can

be derived directly from this expression by equating the first term, resulting from the elastic

part, and the second, disorder term, is the length scale LP on which the disorder balances

the curvature forces, i.e., for D < 4 disorder will win on larger scales than LP . In the context

of flux-line lattices LP is called Larkin, for random magnets Imry-Ma, and for charge-density

waves Fukuyama-Lee length.

Therefore, perturbative methods break down on length scales larger than LP and one has to

apply renormalization group techniques to obtain the statistical properties of these systems:

In three dimensional systems, the low temperature phase of these objects is determined

by a zero temperature disorder fixed point resulting in quasi-long-range order and glassy

dynamics (for recent reviews and further references, see e.g. [BFG+94, NS00, BN04]). In

two dimensions one has to distinguish between periodic media and manifolds. For the first

class, this fixed point is extended to a fixed line which terminates at the glass transition

temperature [CO82, VF84]. For random manifolds disorder is always relevant. In both cases

the T -axis is a line of fixed points.

Since the first part of the thesis focuses on one-dimensional systems, we provide a more

detailed overview of the one-dimensional case in the following section.

2 The one-dimensional case: charge density waves and

Luttinger Liquids

The physics in one dimension is quite different from that in higher dimensions if interactions

between particles are taken into account. In a recent book by Giamarchi the one-dimensional

world is investigated in great detail [Gia03]. Therefore we will only briefly address the one-

dimensional physics related to the systems under consideration in this thesis: charge or spin

density waves (CDWs/SDWs) and the Tomonaga-Luttinger liquid (as usual in literature, we

also drop the first name and call it only Luttinger liquid henceforth). In the quantum regime,

both systems can be described by the same elastic model, essentially (there are important

difference, though). For an extensive review of density waves, we refer to the book by

Grüner [Grü94b].

Since we are especially interested in the low temperature behavior of CDWs, also quan-

tum fluctuations have to be taken into account. Disorder and quantum fluctuations in

one-dimensional CDWs (or Luttinger liquids) at zero temperature have been considered pre-

viously (see, e.g., [Fuk84, GS87, GS88, Sch93]) and an unpinning (delocalization) transition
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as a function of the strength of quantum fluctuations was found. In Fig. A.1 this transition is

found on the K-axis at Kc. Finite temperature effects were partially incorporated by truncat-

ing the renormalization group (RG) flow at the de Broglie wave length of the phason excita-

tions [GS88]. However, for a complete study of the thermal to quantum crossover, quantum

and thermal fluctuations have to be considered on an equal footing [CHN88, CHN89], which

is the main aim of chapter B.

Experimentally, quasi–1D behavior can be seen in real materials, e.g., in whiskers [BDP+93],

hairlike single crystal fibers like NbSe3, with a transverse extension smaller than the correla-

tion length or in chain like crystals with weak interchain coupling. In the latter case there is a

large crossover length scale up to which 1D behavior can be observed [Grü94b, Grü88, BM99].

The results, which we obtain in the language of CDWs or SDWs, have a large number of

further applications in disordered quantum systems: they relate, e.g., to the (Anderson)

localization transition of Luttinger liquids [Fuk84, GS88], superfluids [BD84, FG88, RD96,

ZGvOZ97], tunnel junction chains [Kor89], and Josephson coupled chains of these systems,

if the coupling is treated in mean-field theory [Fuk84].

Apart from the random inhomogeneities, also the influence of periodic potentials has a

powerful effect on the low temperature behavior of these system, namely the appearance

of a lock-in or Mott transition at zero temperature. The case of a commensurate lattice

potential in charge density waves is discussed in chapter B. If the quantum fluctuations are

weak, the CDW phase can lock in one of the minima of the periodic potential, leading to a

localization of the system which is lifted by increasing quantum fluctuations.

Furthermore topological defects can play an important role. We examine a mechanism for

so-called phase-slips in density waves, which create jumps in the phase field by multiples

of 2π. This is motivated by the fact, that the phase is related to the phase of the order

parameter of density waves, which remains unchanged under this phase-slippage process.

At zero temperature the consideration of that effect leads also to another phase transition

between a phase where this effect is negligible, if the quantum fluctuations are weak, and a

phase for strong quantum fluctuations, where phase-slips become important.

At this point, some important remarks are in order. The Luttinger liquid (LL) model is

used to describe interaction fermions in one dimension. In contrast to higher dimensions,

excitations are collective (since one cannot move a single electron without affecting the others

in 1D) and cannot be described by excitations of (nearly free) fermionic quasi-particles, i.e.,

Fermi liquid theory breaks down in one-dimension. The LL model is derived by bosonizing the

linearized fermionic Hamiltonition [Voi94, Gia03]. Therefore, there is an important difference

between the CDW phase and the bosonic field in the LL model, and the above mentioned
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phase-slips in CDWs cannot be interpreted in the same way in the LL language. Another

important assumption in our treatment of density waves is, that charge and spin can be

treated separately, i.e., without coupling of spin and charge degrees of freedom.

3 Driven elastic systems

Now we go over to the non-equilibrium situation, i.e., h > 0 (cf. Fig. A.1) and restrict

ourselves to the classical region (K = 0). The driven viscous motion and collective pinning

phenomena of interfaces in a medium with random pinning forces is one of the paradigms

of condensed matter physics (for reviews see, e.g., [Fis98, Kar98, SDM01, BN04]). If the

system is driven adiabatically - which means the system is always in a steady state even if the

driving force is changed - with a constant force, the mean velocity of the elastic object shows

a depinning transition at zero temperature [NSTL92, NF93, NF92a, Fis83, LNST97, EK94,

CDW01, DWC02] or creep motion at finite temperatures [IV87, Nat87, NSV90a, LFC+98].

If the driving force is much larger then the depinning force hc, disorder becomes irrelevant

and the system flows as in the case without disorder, i.e., the velocity is proportional to the

external force. The regions of different velocity behaviors in this dc-case are shown in Fig.

A.3).

h

v

hc

depinning regime

flow regime

creep

regime T > 0

T = 0

Figure A.3: Velocity of an adiabatically dc-driven interface at zero and finite temperatures

as function of a dc driving force h. One can identify different regimes: (i) at T = 0 the

depinning regime near the depinning force hc, (ii) at finite temperature the creep regime

at low driving forces, and (iii) the the flow regime for high driving forces. (Graphic taken

from Ref. [BN04])
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In the end of chapter B, we consider the case of a dc driven one-dimensional charge-density

wave and study the fluctuations (noise) of the velocity, which is proportional to the current

in the system. The noise in any system is characterized in terms of the shape of its spectral

power density S(f), which can be measured directly in experiments. If S(f) ∼ f−γ and

γ ≈ 1, then such a noise is referred to as 1/f or flicker noise. Its existence has attracted the

attention of researchers from various branches of the natural sciences for many years. As

for physical systems, 1/f noise has been observed as fluctuations in the currents of diodes,

vacuum tubes, and transistors, the resistance of carbon microphones, metallic thin films, and

semiconductors [Vos79, Hoo76], the magnetization in spin glasses [RKM+86] and in many

other systems. However, motivated by experimental evidence of flicker noise in driven charge

density waves, we analyze the spectrum of the related elastic model and can reproduce the

experimental findings.

Other examples where the consideration of an external force is important, are domain wall mo-

tion of a magnetically or structurally ordered systems with impurities [You99] or when an in-

terface between two immiscible fluids is pushed through a porous medium [REDG89]. Closely

related problems are the motion of a vortex line in an impure superconductor [BFG+94,

NS00], or of a dislocation line in a solid [IV87]. More recently, the motion of interfaces

in magnets, subject to an external ac force, changing adiabatically in time, has been stud-

ied [LNP99, NPV01a].

Up to now we have only considered the adiabatic case. The second main part, chapter C, of

this thesis is, however, devoted to the non-adiabatic ac motion of driven interfaces or domain

walls. An overview of the behavior of these systems in case of oscillating driving forces is

shown in Fig. A.4.

With finite frequency of the external driving force the (adiabatic) depinning transition is

smeared and disappears completely above a pinning frequency ωP . A main feature of the

non-adiabatic driving is the appearance of a velocity hysteresis, which is studied in chapter

C.

In order to make a connection to experiments on driven domain walls in magnetic systems,

we examine the complex ac susceptibilities obtained from the interface model. Since exper-

imental systems are finite, we also take this effect into account, leading to a saturation of

the magnetization. Using a numerical approach, the experimental results can be explained

with the model.

In the last part of chapter C we study also non-random inhomogeneities - additionally to the

disorder -, namely the influence of surface potentials on the dynamics of disordered elastic

systems. Surface barriers are known to be relevant in many cases mentioned above, e.g.,
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T, thermal fluct.

ω, frequency

h, driving force

Tc

ωc

hc

non-adiabatic motion:

avalanches & hysteresis

critical

depinning

thermal creep

equilibrium

phases

Figure A.4: Different regions in the parameter space of temperature T , external driving

force amplitude h and frequency ω. Additional to the non-equilibrium regions shown

in Fig. A.1, the frequency of the external driving force is another parameter, smearing

the depinning transition, which disappears completely above a threshold frequency ωc.

Additional non-adiabatic phenomena like avalanches are important.

in superconductors they prevent the penetration of new flux lines into the probe [FZR+98].

In CDWs normal electrons have to be converted into those condensed in the CDW at the

contacts by a phase–slip mechanism which is essentially a nucleation process [BKR+00,

RMAE92]. The motion of domain walls may be hindered by a variation of the width of

the sample such that position of minimal width are preferred etc. Experimental [MT86b]

and numerical [MT86a] studies of CDWs with contact effects revealed hysteretic behavior

of the polarization, which is related to the curvature of the parabolic displacement profile.

We study the behavior of this curvature and focus on the hysteretic behavior, which is in

agreement with the experiments.
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B Influence of thermal and quantum

fluctuations in one-dimensional

disordered systems

1 Introduction

In this chapter we study mainly the equilibrium properties of one-dimensional disordered

systems in the quantum regime at low temperature. Only in the last part we go over to the

dynamics. We will use mostly the terminology of charge density waves, which is essential for

the last three sections of this chapter.

The chapter is organized as follows: In section 2 we give a detailed introduction to our

model and the notation used in this chapter. We also briefly discuss the influence of Coulomb

interaction on the properties of the system. In section 3 the influence of disorder is studied in

detail. Using an anisotropic momentum shell renormalization group calculation, in which the

full Matsubara sum over frequencies is performed, we obtain flow equations for the effective

strength of the disorder, thermal and quantum fluctuations (i.e., the interaction strength in

the case of Luttinger liquids). These are discussed first in the case of zero temperature and

are in agreement with previously obtained results [Fuk84, GS88]. At finite temperatures the

disorder is always renormalized to zero. In the classical limit two more methods are applied:

(i) at low temperatures and strong disorder the ground state of the model is calculated

exactly. (ii) For weak disorder and strong thermal fluctuations a second RG calculation is

applied which is based on the mapping onto a Burgers equation with noise. The main result

of this chapter is the calculation of the low temperature quantum crossover diagram for

one-dimensional CDWs. Using all these findings, the complete phase diagram, including

the crossover regions, of the system is studied in section 4 with help of the density-density

correlation function. In the following section 5 we discuss briefly the application of the results

to superfluids by using the mapping to CDWs.

The influence of a commensurate lattice potential on a free density wave is considered in

section 6. The full finite temperature renormalization group flow equation for this sine-
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Gordon type model are derived and resulting phase diagram is discussed. Furthermore a

qualitative picture of the combined effect of disorder and a commensurate lattice potential

at zero temperature is presented in section 7, including the phase diagram.

In section 8 we present a possible mechanism for quantum phase-slips. The model which

describes these processes can be written, like in the commensurate lattice potential case, as

a sine-Gordon type model, with the important difference, that it is written in terms of a dual

phase with respect to the density wave phase. The motivation to consider phase-slip is, that

the phase field which describes the systems can be considered as the phase of the density

wave order parameter. At zero temperature the consideration of those leads also to a new

scenario for the unpinning (delocalization) transition, which is considered in section 9.

In the final section 10 of this chapter, we go over to the study of transport properties of

CDWs in the classical creep regime. Especially we focus on the analysis of the current noise,

which we compare to experimental results. The noise is studied in a classical one-dimensional

charge density wave system in the weak pinning regime by solving the overdamped equation

of motion numerically. At low temperatures and just above the zero temperature depinning

threshold, the power spectrum of the current noise S(f) is found to scale with frequency

f as S(f) ∼ f−γ , where γ ≈ 1, suggesting the existence of flicker noise. Our result is in

agreement with experimental findings for quasi-one-dimensional charge density wave systems.

In the appendix to this chapter (E1) we present the calculation of the renormalization group

flow equations and the derivation of the correlation function in the strong and weak pinning

limit in some detail. Also a list of all symbols used in this chapter with corresponding

references in the thesis is summarized at the end of this appendix.

2 Model

2.1 Charge and spin density

In this section we derive the effective Hamiltonian which will be the starting point for our

further treatment. The strategy of the calculation is therefore separated into two steps. In

the first step the system is treated in a mean-field-(MF) type approximation applied to a

microscopic Hamiltonian. This leaves us with a slowly varying complex order parameter field

for which we derive an effective Hamiltonian. The second step involves the consideration of

the fluctuations of this order parameter.

Now we briefly summarize the result of the mean-field calculation. For a detailed review we

refer to the book [Grü94b]: Well below the mean-field condensation temperature TMF
c of the

CDW, the underlying lattice will be periodically distorted with a period λ which is related to
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the Fermi wave vector kF by λ = π/kF . This distortion of the lattice leads to the formation

of a gap in the dispersion relation at k = ±kF which is (in one dimension) proportional to

the amplitude of the lattice modulation. For small displacements (which are typically smaller

than 1% of the interatomic spacing [Tho96]), the increase of the elastic energy is smaller

than the gain of electronic energy due to the formation of the gap and hence an instability

is favored. The period of the CDW depends on the band filling factor (via kF = π/λ) and is

in general at arbitrary band filling incommensurate with the undistorted lattice (with lattice

constant a). Different situations are shown in Fig. B.1.

b)

a)

c)

d)

Figure B.1: Sketch of the electron density (solid line) and the atom positions (filled cir-

cles) for: a) a one-dimensional metal, b) CDW at half filling, c) quarter filling and d)

incommensurate, near third filling.

In (quasi-)one–dimensional systems [Grü94a] also SDWs can be found, but in contrast to

CDWs they arise due to electron–electron and not to electron–phonon interaction. A SDW

can be considered to consist of two CDWs, one for spin–up and another for spin–down

electrons (see, e.g., Fig. 5 in [Grü94a]). Therefore the spatial modulation of SDWs is

characterized by a wave vector Q = 2kF , as for CDWs.

The charge or spin density ρ(x, t) can be written in the form [Grü94a, EG86, WE97]

ρ(x, t) = (1 + Q−1∂xϕ(x, t))[ρ0 + ρ1 cos(pϕ(x, t) + pQx)] (B2.1)

where ρ0 = Qf(T )/π and ρ1 = 2|∆|/(πgvF ). g is the dimensionless electron-phonon

coupling constant and vF the Fermi velocity. ρ1 is proportional to |∆|, the CDW gap or the

amplitude of the complex (mean field) order parameter

∆(x, t) = |∆(x, t)|eıϕ(x,t). (B2.2)
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f is the condensate density (Y = 1 − f is the so-called Yoshida function) related to |∆|
by [EG86, WE97]

f(T ) =
πT

~
∑
ωn

(|∆|/~)2
(ω2

n + (|∆|/~)2)3/2
, ωn = 2πnT/~. (B2.3)

From this expression one finds that f(T ) approaches 1 for T → 0 (by integration) and

f(T ) ' 2(1 − T/TMF
c ) ∼ |∆|2 for T → TMF

c . TMF
c denotes the mean-field transition

temperature. For quasi one–dimensional systems ρ1 has an additional factor ζ−2 (the inverse

area perpendicular to the chain).

Note, that (B2.1) is correct for arbitrary band filling and, to be more precisely, is the particle

density of the charge or spin carrying particles. Since 4kF modulations of SDWs or CDWs

are also possible [TS01], we introduce the factor p in the argument of the modulating cosine

function, i.e., for CDWs and SDWs p is usually 1, but can also be 2 or greater.

In (B2.1) we omitted higher harmonics proportional to cos (np(ϕ(x, t) + Qx)) with n ∈
{2, 3, . . .}, since these more strongly oscillating terms give close to the zero temperature

transition only small contributions in the renormalization process, compared to the leading

n = 1 contribution. They will therefore be neglected throughout this chapter. Note, that p

is the integer describing the ground ’oscillation’. The particle current density j follows from

(B2.2) as j = −ρ0ϕ̇/Q.

2.2 Hamiltonian

In the following we use a minimal model for the low energy, long wave length excitations of

the condensed charge density wave. Since fluctuations in the amplitude |∆| are suppressed,

because they are massive, we take only fluctuations of the phase ϕ (cf. eq. B2.2) into

account. Clearly, such an approach breaks down sufficiently close to the mean-field transition

temperature TMF
c . Neglecting fluctuations in |∆|, the Hamiltonian for our model is given by

Ĥ = Ĥ0 + Ĥu + Ĥw + Ĥ$ (B2.4)
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with

Ĥ0 ≡
L∫

0

dx
c

2

[(v

c

)2
P̂ 2 + (∂xϕ̂)2

]
, (B2.4a)

Ĥu ≡
L∫

0

dxU(x)ρ(x) , U(x) =
Nimp∑

i=1

Uiδ(x− xi) , (B2.4b)

Ĥw ≡ −
L∫

0

dxW cos
(
qϕ̂(x)

)
, (B2.4c)

Ĥ$ ≡ W̃

L∫

0

dx cos
( q̃π

~

∫ x

dyP̂ (y)
)

. (B2.4d)

Ĥ0 describes the phason excitations of the CDW, where c = ~vF
2π f(T ) denotes the elastic

constant. v = vF /
√

1 + (2|∆|/~ωpQ)2/(gf) is the effective velocity of the phason exci-

tations with ωpQ the phonon frequency. For CDWs (2|∆|/~ωpQ)2/(gf) À 1 is typically

fulfilled and hence quantum fluctuations are weak.

P̂ is the momentum operator, corresponding to the phase ϕ̂, with the standard commutation

relation [P̂ (x), ϕ̂(x′)] = ~
i δ(x− x′)

Ĥu results from the effects of impurities with random potential strength Ui and positions

xi. The potential strength is characterized by Ui = 0 and UiUj ≡ U2
impδi,j , and includes a

forward and a backward scattering term proportional to ρ0 and ρ1, respectively. The disorder

average of the impurity potential U(x) follows then to be given by U(x) = 0 and

U(x)U(y) =
U2

imp

limp
δ(x− y) . (B2.5)

We will further assume, that the mean impurity distance limp = L/Nimp is large compared

with the wave length of the CDW and, in most parts of the chapter, that the disorder is

weak, i.e.,

1 ¿ limpQ ¿ cQ/(Uimpρ1). (B2.6)

In this case the Fukuyama–Lee length [FL78]

LFL =

(
c
√

limp

Uimpρ1p2

)2/3

(B2.7)

is large compared to the mean impurity distance limp.
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The third term in (B2.4), Hw, includes the influence of a harmonic lattice potential. This

term will be discussed section 6 in greater detail.

And the last term (B2.4d) describes the influence of quantum phase-slips by ϕ = ±q̃π. A

detailed consideration of this term can be found in section 8.

Our model (B2.4) includes the five dimensionless parameters

t = T/πΛc , (B2.8a)

K = ~v/πc , (B2.8b)

u2 =
(Uimpρ1)2

Λ3πc2limp
, (B2.8c)

w = W/πcΛ2 , (B2.8d)

$ = W̃/πcΛ2 , (B2.8e)

which measure the strength of the thermal (t), quantum (K) and disorder fluctuations (u),

the periodic potential (w) and the probability of phase-slips ($), respectively. Λ = π/a is a

momentum cut-off. Note, that for non interacting electrons, i.e., v = vF , K takes the value

2 (and not 1 as in the usual Luttinger liquid notation). The classical region of the model is

given by K ¿ t which can be rewritten as the condition, that the thermal de Broglie wave

length

λT = ~βv = K/(tΛ) (B2.9)

of the phason excitations is small compared to a.

At T = 0, K-values of the order 10−2 to 10−1 and 1, have been discussed for CDWs and

SDWs, respectively [Grü94b, Mak95]. It has to be noted however, that the the expressions

relating c and v to the microscopic (mean-field-like) theory lead to the conclusion that K

and t diverge by approaching TMF
c , whereas the ratio K/t remains finite.

2.3 Coulomb Interaction

We could also add a Coulomb interaction term to our model (B2.4) which can be written as

Ĥc =
1
2

∫
dx

∫
dx′ρ̂(x)Vc(x− x′)ρ̂(x′) , (B2.10)

where Vc is the Coulomb potential. In all dimensions the unscreened potential has the form

e2/r, in the sense that we are dealing with quasi-one-dimensional systems embedded in a

3D space. If we assume, that the quasi one-dimensional system has the finite width ζ, Vc
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can be written as [MG95, Sch93]

V 0
c (x) =

e2

√
x2 + ζ2

=
1
L

∑

k

eıkxV 0
c (k) with (B2.11)

V 0
c (k) = 2e2K0(|ζk|) , (B2.12)

where K0 is a modified Bessel function of second kind with K0(x) ≈ − ln(x) for x ¿ 1.

In general the Coulomb potential is screened and can be written as [AA85]

Vc(k, ω) =
V 0

c (k)
1 + V 0

c (k)Π(k, ω) ,
(B2.13)

with the momentum and frequency dependent polarization operator, defined by Π(k, ω) =
〈ρ(0, 0)ρ(k, ω)〉.
If we only consider the static case ω = 0 we can distinguish two limiting cases: First, if

the typical range λeff of the screened Coulomb potential Vc is much smaller than the mean

electron distance, the potential can be assumed to be a delta distribution and Hc can be

approximated by

Ĥc ≈ ~χ
2

∫
dx

(
f(T )

π
∂xϕ(x)

)2

+ . . . , (B2.14)

with χ = 1
~

∫
dxVc(x). The cos-terms (. . .) from the density can be neglected due to strong

fluctuations. Therefore the Coulomb interaction gives only an additional contribution to the

elastic constant of the initial model: c = ~vF
2π f + ~χ

π2 . For χ > 0 the Coulomb interaction

is repulsive, which leads to an increase of c and therefore a decrease of the dimensionless

parameter K, i.e., the quantum fluctuations will be reduced by replusive Coulomb interaction.

In the case χ < 0 (attraction), K will be increased. Keeping this consideration in mind, we

will not further include Ĥc in the model explicitly.

In the other case – with weak screening – Vc(k) ≈ V 0
c (k) shows the dispersion given in

(B2.12) and in general, the details of the k-dependence are not only up to the transverse

extension ζ of the quasi one-dimensional system under consideration but also to the screening

length [BD84, FG88, ZGvOZ97, MG95].

However, the logarithmic k-dependence will only weakly affect our RG-analysis, but may

suppress phase transitions, as discussed later in section 3.2.

Coulomb interaction is also important if one considers multi-channel systems [LF78, Gia03]

or the effect of the non–condensated normal electrons.
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3 Renormalization group treatment of disorder

3.1 Flow equations

In order to determine the phase diagram we adopt a standard Wilson-type renormalization

group calculation, which starts from a path integral formulation of the partition function

corresponding to the Hamiltonian (B2.4). We begin with the renormalization of the disorder

term and set w = 0 and $ = 0 in the following. The system is transformed into a transla-

tional invariant problem using the replica method, in which the disorder averaged free energy

is calculated, using

F = −T lnTre−S/~ ≡ −T lim
n→0

1
n

(
Tre−S

(n)/~ − 1
)

, (B3.1)

which defines the replicated action S(n). S(n) is given by

S(n) =
∑
α,ν

∫

τ

{
L0,αδαν +

1
2~

∫

τ ′
Hu[ϕα(τ)]Hu[ϕν(τ ′)]

}
, (B3.2)

where L0 is the Lagrangian corresponding to Ĥ0,
∫
τ ≡

∫ ~β
0 dτ and α, ν are replica indices.

Using (B2.5) and consequently neglecting higher harmonics (2pQ-modes) one finds

Hu[ϕα(τ)]Hu[ϕν(τ ′)] =
U2

impρ
2
1

2limp

L∫

0

dx

{
cos p

(
ϕα(x, τ)− ϕν(x, τ ′)

)
+

+
2ρ2

0

Q2ρ2
1

∂xϕα(x, τ)∂xϕν(x, τ ′)

}
. (B3.3)

Together with (B3.2) one obtains the following form

S(n)

~
=

1
2πK

∑
α,ν

LΛ∫

0

dx

K/t∫

0

dτ

{[
(∂xϕα)2 + (∂τϕα)2

]
δαν −

1
2K

K/t∫

0

dτ ′
[
u2 cos p

(
ϕα(x, τ)− ϕν(x, τ ′)

)
+ σ∂xϕα(x, τ)∂xϕν(x, τ ′)

]}
,(B3.4)

with σ = 2u2(ρ0Λ/ρ1Q)2.

Note, that we introduced dimensionless spatial and imaginary time variables,

Λx → x ,

Λvτ → τ ,



B3 Renormalization group treatment of disorder 17

which will be used throughout chapter B - beginning here. Furthermore all lengths (e.g.

correlation lengths, λT , LFL, limp, and L), wave vectors (e.g. k, kF , and Q) and Matsubara

frequencies are dimensionless accordingly, from now on. Additionally we rescale the elastic

constant

Λc → c ,

for convenience to avoid the appearance of Λ.

Figure B.2: Momentum ”shell” in the space

of (discrete) Matsubara frequencies (ωn)

and momenta (k). Only modes of the

phase ϕ in the stripe 1/b ≤ |k| ≤ 1 with

b = 1 + 0+ are integrate in one RG step.

ωn=2πnt/K

kΛ=1

δΛ=dl

n=2

n=1

Integrating over the high momentum modes of ϕ(x, τ) in a momentum shell of infinitesimal

width 1/b ≤ |k| ≤ 1 with the rescaling parameter b = 1 + 0+, but arbitrary frequencies

(see Fig. B.2) and rescaling x → x′ = x/b, τ → τ ′ = τ/b, we obtain the following

renormalization group flow equations (up to one loop):

dt

dl
= t , (B3.5a)

dK

dl
= −1

2
p4u2KB0

(
p2K,

K

2t

)
coth

K

2t
, (B3.5b)

du2

dl
=

[
3− p2K

2
coth

K

2t

]
u2 , (B3.5c)

dσ

dl
= σ , (B3.5d)

where dl = ln b. For some more details on the RG calculation we relegate to appendix

E1.1 where we have written the RG-flow also for dimensions |d − 1| ¿ 1. The complete

calculations can be found in [Gla03]. Note, that the renormalization group equation for

terms in the replica Hamiltonian which follow from higher order harmonics in the charge

density look similar to those presented in (B3.5c) with p replaced by np, n > 1, integer.

Therefore these terms are negligible close to the quantum phase transition considered below.

One should keep in mind though, that in the region where K ¿ 1 at zero temperature, also
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those higher harmonics become relevant. But since this is also the parameter range where

we leave the weak pinning regime, the RG breaks down anyways.

For legibility we have introduced the following functions:

Bi(ν, y) =

y∫

0

dτ

∞∫

0

dx
gi(τ, x)
Υ(τ, x)

cosh (y − τ)
cosh y

, (B3.6)

Υ(τ, x) =
[
1 +

( y

π

)2
(

cosh
πx

y
− cos

πτ

y

)]ν/4

, (B3.7)

with

g0(τ, x) = δ(x)τ2 .

Note, that B0(p2K, K
2t ) → 0 for K → 0 (see Fig. E.1 in appendix E1.1).

Ku K

u

t

*

Figure B.3: Typical flow diagram for w = $ = 0 in the three dimensional parameter space

of K, u and t, proportional to the strength of quantum, disorder and thermal fluctuations,

respectively.

The strength of the thermal fluctuations t is only rescaled, since there is no non-trivial renor-

malization of t (i.e., of the elastic constant c) because of a statistical tilt symmetry [SVBO88].

Note, that (B3.4) is written in rescaled dimensionless parameters and the different renormal-

ization of the kinetic and elastic term is reflected in the different renormalization of v and

c, i.e., K and t, respectively.

From the flow equation for u2 (B3.5c) one directly sees that, depending on the sign of the

prefactor, the behavior changes from increase for small t and K to decrease for high K or t.
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There is no first order RG correction to σ and the change of σ with length scale is simply

given by rescaling, see (B3.5d). The two-loop contribution to σ is much more involved than

the one-loop contributions for the other flow equations and gives no qualitatively different

result for the flow of σ. As seen from (B3.5d), the forward scattering amplitude always

increases as σ0e
l on larger length scales and is therefore not well controlled in the RG sense.

But, since the flow of σ does not feed back into the other flow equations it has only minor

relevance for our considerations. And indeed, we can get rid of the forward scattering term

f/πU(x)∂ϕ
∂x by introducing the field ϕ̂b(x) by [SVBO88]

ϕ̂(x) = ϕ̂b(x)− ϕf (x) , ϕf (x) =
∫ x

0
dyc(y) , (B3.8)

where c(x) ≡ U(x)f
πcΛ , with c(x) = 0 and c(x)c(x′) = π

2 σδ(x − x′). This can easily be

verified by inserting this decomposition of ϕ̂(x) into the initial Hamiltonian (B2.4) written

in dimensionless units, and using (B2.5) and the definition of σ for deriving the averages

of c(x). Note, that x is dimensionless. The typical flow described by the flow equations

(B3.5a) to (B3.5c) is shown in Fig. B.3, obtained by a numerical solution.

symbol here Giamarchi and Schulz Haldane

ϕ, ĵ
√

2φ,
√

2/π∂τφ θ − πρ0x, π−1θ̇

P̂ ~Π/
√

2 − ~π∇ϕ

K 2Kρ

√
vj/vN

v uρ
√

vjvN

c
~uρ

2πKρ
~vN/π

p 1 2

Table BI: Notation guide. Symbols used in this chapter compared to the notation in

Ref. [GS88] by Giamarchi and Schulz (charge operators) and Ref. [Hal81] by Haldane.

3.2 Zero temperature - a review

The special case t = 0 was previously considered, e.g., in [GS88, GS87] (for a better com-

parison see the notation guide listed in table BI).

The flow equations for K and u at zero temperature read:

dK

dl
= −1

2
p4u2KB0(p2K,∞) , (B3.9a)

du2

dl
=

[
3− p2K

2

]
u2 , (B3.9b)
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with

B0(ν,∞) =

∞∫

0

dτ τ2e−τ
[
1 + τ2/2

]−ν/4
. (B3.10)

The corresponding flow equation for K obtained in [GS88] deviates slightly from (B3.9a),

which can be traced back to the different RG procedures. In [GS88] the authors performed

the RG at strictly zero temperature and used a symmetric, circular shape of the ”momentum–

shell”, i.e., treated the model as, effectively, isotropic in the 1+1-dimensional space-time.

This procedure may be a good approximation at zero temperature, but if one considerers

finite temperatures this does not hold anymore, since the extension in τ -direction is now

finite. As a result, there is a region π/L < |k| < π/λT where fluctuations are mainly one-

dimensional and purely thermal. This region was disregarded in previous treatments. As

we will see, fluctuations from this region have an important influence on the overall phase

diagram.

The critical behavior is, however, the same: there is a Kosterlitz-Thouless (KT) transition at

the phase boundary Ku between a disorder dominated, pinned and a free, unpinned phase

which terminates in the fixed point K∗
u = 6/p2. One can derive an implicit equation for Ku

by combining (B3.9a) and (B3.9b) to a differential equation

du2

dK
=

1
p2ηK

(K −K∗
u) , (B3.11)

which has the solution

u2(K)− u2
0 =

K∗
u

p2η

(
K −K0

K∗
u

− ln
K

K0

)
, (B3.12)

where u0 and K0 denote the bare values of the disorder and quantum fluctuation, respectively,

and η ≡ B0(p2K∗
u,∞). Then, Ku is implicitly given by

u2(Ku) =
K∗

u

p2η

(
Ku −K∗

u

K∗
u

− ln
Ku

K∗
u

)
, (B3.13)

where the initial condition u2(K0 = K∗
u) = u2

0 = 0 is used. The KT-flow equations at K∗
u

can be recovered by defining

2γ ≡ p2K

2
− 3 ,

2χ2 ≡ 3
2
p4ηu2

with |γ| ¿ 1. This yields

dγ

dl
= −χ2 , (B3.14a)

dχ2

dl
= −2γχ2 , (B3.14b)
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which are exactly the flow equations obtained by Kosterlitz and Thouless [KT73].

Ku K

u

*

d=1

u

K

d>1
u

K

d<1

Figure B.4: Schematic zero temperature phase diagram in d = 1 and close to d = 1 dimen-

sions (see text). u and K denote the strength of the disorder and quantum fluctuations,

respectively.

Under the assumption, that a small deviation from the dimension d = 1 changes only

the naive scaling dimensions of the fields, our results can be extended also to d = 1 + ε

dimensions (For details see appendix E1.1). The zero temperature phase diagram is modified

and illustrated in Fig. B.4. For ε < 0 the fixed point at (K = K∗
u, u = 0) is shifted to

positive u-values (see left inset of Fig. B.4), whereas for ε > 0, K and u always flow to the

strong pinning fixed point (at K = 0 and u → ∞; right inset), i.e., quantum fluctuations

are too weak to renormalize the random potential to zero. The zero temperature transition

disappears therefore for d > 1, since the fixed point lies in the unphysical u < 0 region

of the K-u parameter space. This can easily be verified by using the rescaling of K given

in eq. (E1.12c) of appendix E1.1 which results in the flow equation (E1.16). In general

this discussion applies to the localization transition as well as to the Mott transition (see

discussion of the the lattice potential in section 6). Note, that the flow for d 6= 1 is

qualitatively different from that discussed in Ref. [Her98], because the model for superfluids

in this paper [eq. (7) therein] is dual to our model. Since this mapping can only be done in

strictly one dimension, one has to go back to the initial Hamiltonian for superfluids [Hal81]

to obtain the rescaling in d = 1 + ε.

If one includes the effect of Coulomb interaction in d = 1 dimension, phase fluctuations of

the free phase field increase only as (T=0)

〈
(ϕ(x, 0)− ϕ(0, 0))2

〉 ∼ K ln1/2 |x|. (B3.15)



22 Influence of thermal and quantum fluctuations in one-dimensional disordered systems

As a result, phase fluctuations are too weak to suppress the disorder even for large values of

K and the system is always in the pinned phase. The phase diagram is therefore similar to

that in d > 1 dimensions.

In the pinned phase the parameters K and u flow into the classical, strong disorder region:

K → 0, u →∞.

Integration of the flow equations gives for small initial disorder and K ¿ K∗
u an effective

correlation or localization length

ξu ≈ L
(1−K/K∗

u)−1

FL , (B3.16)

at which u becomes of the order unity. This can be extracted from (B3.9b), neglecting the

flow of K.

A better approximation of ξu, which takes also the flow of K into account, can be obtained

by replacing u2 in the flow equation for K (B3.9a) by the expression given in (B3.12). We

still use the approximation, that K deviates not much from the bare value K0 which is the

case, as long as u2
0l ¿ 1. Then, the solution for K(l) is given by

K(l) ≈ K0

(
1− p4

2
u2

0ηl

)
, (B3.17)

which yields a solution of (B3.9b):

ln
u2(l)
u2

0

≈
(

3− p2

2
K0

)
l +

p6

8
ηK0u

2
0l

2 . (B3.18)

With u2(ln(ξu)) ≈ 1, the correlation length ξu is defined by

0 = lnu2
0 +

(
3− p2

2
K0

)

︸ ︷︷ ︸
≡a

ln(ξu) +
p6

8
ηK0u

2
0︸ ︷︷ ︸

≡b

(ln(ξu))2 , (B3.19)

which yields

ln(ξu) =

√
a2 − 4b lnu2

0 − a

2b

≈ − ln u2
0

3− p2K0

2

− p6

8
ηK0u

2
0

(lnu2
0)

2

(
3− p2K0

2

)3 , (B3.20)

where the first term of the right-hand side gives the result (B3.16).

Close to the transition line, ξu shows KT behavior. For K ≥ Ku, ξu diverges and C(x, τ) ∼
K(l = ln |z|) ln |z| where |z| = √

x2 + τ2 (cf. section 4).
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3.3 Strong pinning limit: Exact ground state

For large values of u our flow equations break down. Qualitatively the flow is towards large

u and small K. We can, however, find the asymptotic behavior in this phase by solving the

initial model in the strong pinning limit exactly. To find this solution we will assume strong

pinning centers and weak thermal fluctuations:

Uimp →∞ and c/(p2limp) À T. (B3.21)

To treat this case, we go back to the initial Hamiltonian (B2.4) (with W = W̃ ≡ 0 and

the kinetic term also vanishes because of K → 0). For strong disorder it is convenient to

integrate out the phase field ϕ(x) at all points which are not affected by the impurities.

Then the effective Hamiltonian takes the form [Fei80]

Heff =
N∑

i=1

{
c

2
(ϕi+1 − ϕi)2

xi+1 − xi
+ Uiρ(xi)

}
, ϕi ≡ ϕ(xi) . (B3.22)

Under condition (B3.21), ϕi only takes values obeying

p(ϕi + Qxi) = 2πni + π with ni ∈ Z integer (B3.23)

which minimizes the backward scattering term. Defining hi and εi by

ni+1 − ni ≡ hi +
[
pQlimp

2π

]
, xi+1 − xi ≡ limp + εi (B3.24)

with 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN+1 ≤ L, the effective Hamiltonian can be rewritten as

Heff =
c

2p2

∑

i

(2π)2
(
hi − pQεi

2π − γ
)2

limp + εi
. (B3.25)

Here [x] denotes the closest integer to x (Gaussian brackets):

[x] = m for x ∈
]
m− 1

2
, m +

1
2

]
,m ∈ Z (B3.26)

and

γ ≡ pQlimp

2π
−

[
pQlimp

2π

]
, (B3.27)

such that |γ| ≤ 1
2 .

Because thermal fluctuations are small compared to the elastic energy, see (B3.21), (hi −
pQεi
2π − γ) takes on its minimal value, which is given by

h0
i =

[
pQεi

2π
+ γ

]
. (B3.28)
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This defines the exact ground state of the classical model: If we use (B3.24) one finds for

the optimal value of the ni’s

n0
i+1 = n0

i +
[
pQ

2π
(εi + limp)

]
,

which leads, using (B3.23), to the exact classical ground state

ϕ0
i =

1
p


2π



n0

1 +
∑

j<i

[
pQ

2π
(εj + limp)

]

 + π


−Qxi , (B3.29)

where n0
1 has an arbitrary integer value (see Fig. B.5).

ix2x
x

ϕ i=ϕ�(xi)

2π

1x

n1 =2
0

n1 =1
0

Figure B.5: Ground states in the strong pinning regime characterized by the integer num-

ber n0
1. The wavy lines show an excitation from one ground state forming an instanton

configuration which could be a mechanism for quantum tunnelling transport at low tem-

peratures [NGD03, MNR04].

3.4 Finite temperature and crossover diagram

At finite temperatures thermal fluctuations wipe out the random potential, which leads to the

pinning of the CDW at t = 0 and K < Ku. Thus, there is no phase transition anymore and

the system is always in its delocalized phase, even if the disorder may still play a significant

role on intermediate length scales.

In the special case K → 0 the flow equation (B3.5c) reduces to du2

dl =
[
3 − p2t

]
u2 with

solution

u2(l) = u2
0e

3l−p2t0(el−1) . (B3.30)

If we write t = t0e
l, we may express l by t and hence, we may write u2 as t-dependent

function:

u2(t) = u2
0(t/t0)3e−p2(t−t0) , (B3.31)
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which is plotted in Fig. B.3 in the t-u plane.

One sees that the flow of the disorder has a maximum at t = 3/p2 or l = ln(3/(p2t0)),
if t0 < 3/p2. For finite K, the RG flow of u in the region K < Ku first increases and

then decreases. The region of increase in the K-t plane is implicitly defined by Mu ≡{
(K, t)|K∗

u ≥ K coth K
2t ≥ 0

}
, i.e., the positions of the maxima of u2[K, t] are located on

the boundary of Mu defined by K∗
u = K coth K

2t .

The correlation length ξ can be found approximately by integrating the flow equations until

the maximum of u(l) and t(l)/(1 + K(l)) is of the order one (see discussion in section 4).

This can be done in full generality only numerically (see Fig. B.6).
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disordered

quantum

critical

quantum

disordered

thermal

*

Figure B.6: The low temperature crossover diagram of a one-dimensional CDW. t and K are

proportional to the temperature and the strength of quantum fluctuations, respectively.

The amount of disorder corresponds to a reduced temperature tu ≈ 0.1. In the classical

and quantum disordered region, respectively, essentially the t = 0 behavior is seen. The

straight dashed line separating them corresponds to λT ≈ 1, i.e., K ≈ t, where λT is the

de Broglie wave length. In the quantum critical region, the correlation length is given by

λT . Pinning (localization) occurs only for t = 0,K < K∗
u.

It is however possible to discuss several special cases analytically. The zero temperature

correlation length can still be observed as long as this is smaller than the thermal de Broglie

wave length λT which can be rewritten for K not too close to Ku as t . tK ≈ Kt
(1−K/Ku)−1

u

with tu ≈ L−1
FL , where we defined tK via ξu ≡ K

tK
, analogously to the definition of λT , and

used (B3.16). We call this domain the quantum disordered region.

For K ≥ Ku the correlation length ξ is given by λT which is larger than given by purely

thermal fluctuations. For scales smaller than λT , the phase correlation function still increases

as ∼ ln |z| with a continuously varying coefficient Keff(u0), as will be discussed in detail in
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the next section. In this sense one observes quantum critical behavior in that region, despite

of the fact, that the correlation length is now finite for all values of K [CHN88, CHN89].

In the classical disordered region tK < t < tu the correlation length is roughly given by LFL

as follows from previous studies [Fei80, VF84] or by solving u2(ln(ξ)) ' 1 using (B3.30) for

small t0 yielding ξ ≈ u
−2/3
0 e−p2t0 ≈ u

−2/3
0 = LFL(πp4)1/3. Note, that tK ≈ K for small K.

In the remaining region t & tu, the thermal region, we apply the mapping onto the Burgers

equation (see section 4). In this case the RG-procedure applied to this equation becomes

trivial, since there is only a contribution from a single momentum shell and one finds for the

correlation length ξ−1 ≈ π
2 f(T )t[1 + 1/2[tu/(πp2t)]3]Λ.

The phase diagram depicted in Fig. B.6 is the result of the numerical integration of our flow

equations and shows indeed the various crossovers discussed before.

In the high temperature region (t À K) the flow equations can be solved explicitly. For

u2(l) we get the same result as given in (B3.30) and the flow equation for K reduces to

dK

dl
= −p4

2
u2 K4

(2t)3
, (B3.32)

where we used B0(p2K, K
2t → 0) = (K/2t)4. The solution of this equation is given by

K(l) =
[
K−3

0 +
3p4u2

0

16t30
ep2t0Ei(p2t0, p

2t0e
l)

]−1/3

, (B3.33)

with the incomplete exponential integral function Ei(a, b) defined by

Ei(a, b) ≡
∫ b

a
dt e−t/t .

One observes that K(l) saturates very quickly at a value K(∞) < K0.

4 Correlation functions

In this section we discuss the density-density and the phase correlation functions in more

detail and summarize all correlation lengths in the various regimes – partly already used in

the last two sections.

The (full) density-density correlation function is defined as

S(x, τ) ≡ 〈ρ(x, τ)ρ(0, 0)〉 , (B4.1)

where ρ(x, τ) is given in (B2.1). In the following we restrict our considerations to the

(charge) density wave order part of S, which is the term proportional to ρ2
1, i.e.

S1(x, τ) = ρ2
1 〈cos p(ϕ(x, τ) + Qx) cos pϕ(0, 0)〉 , (B4.2)



B4 Correlation functions 27

which defines the type of order of the density wave: If it decays algebraically we have quasi

long–range order (QLRO), an exponential decay over a correlation length ξ corresponds to

short–range order (SRO). The omitted parts of S decay faster than S1 [GS89].

S1 can be rewritten as

S1(x, τ) =
ρ2
1

4

(
eıpQx

〈
eıp(ϕ(x,τ)−ϕ(0,0))

〉
+ e−ıpQx

〈
e−ıp(ϕ(x,τ)−ϕ(0,0))

〉)
, (B4.3)

and using a gaussian approximation for the averages, which can be indeed exact in lowest

order perturbation theory [DW03], we obtain

S1(x, τ) ' ρ2
1 cos(pQx)e−

p2

2 〈(ϕ(x,τ)−ϕ(0,0))2〉 . (B4.4)

From now on we focus on the phase correlation function

C(x, τ) ≡ 〈
(ϕ(x, τ)− ϕ(0, 0))2

〉
, (B4.5)

and discuss it in various limits. Combining (B4.4) and (B4.5) we can extract a correlation

length from the relation

ξ−1 = lim
x→∞

p2

2x
C(x, 0) . (B4.6)

An overview of all different correlation lengths is shown in table BII.

4.1 Disorder-free case

We start with the most simple case u = 0. Then, the correlation function in dimensionless

units follows directly from the action S0 written in momentum space:

C0(x, τ) =
2πt

L

∑

k,n

1− eı(kx+ωnτ)

ω2
n + k2

, (B4.7)

with Matsubara frequencies ωn = 2πn/λT and momenta k = km = 2πm/L.

The sums over n and k (i.e., m) can be performed approximately for sufficiently large x and

τ and one obtains [Sac99]

C0(x, τ) ' K

2
ln

(
1 +

(
λT

2π

)2 [
cosh

(
2πx

λT

)
− cos

(
2πτ

λT

)])
. (B4.8)

The behavior of this function is considered in the following cases:

(i) At zero temperature (λT →∞) (B4.8) reduces to

C0(x, τ) ' K

2
ln

(
1
2

[
x2 + τ2

]
+ 1

)
, (B4.9)
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i.e., the correlation function has a logarithmic dependency on x and τ and leads to an

algebraic decay of S1, i.e., the system shows QLRO.

(ii) At finite temperatures we can distinguish between length scales smaller and larger than

λT .

In the first case x ¿ λT and τ ¿ λT the cosh and cos term can be expanded to second

order in the arguments and one gets the same logarithmic function as in the zero temperature

case. In the opposite case x À λT , which is the usual case at high temperatures, the cosh
term can be approximated by the exponential function and one finds a linear dependency on

x:

C0(x) ≈ πtx = Tx/c =⇒ ξ =
2

p2πt
≡ ξT , (B4.10)

i.e., S1 decays exponentially (SRO) over a characteristic length ξ ∼ t−1. The same result is

obtained for the limit K → 0 at a fixed, finite temperature.

Note, that with this result we have neglected the algebraic decay for small x < λT . Therefore

a better interpolation formula for the correlation length is ξ ≈ 2
p2 (ξT + λT ), which takes the

slow decay for small x into account. In terms of the length-scale dependent t(l) this rewrites

to

t(l = ln(ξ)) = K + 1 , (B4.11)

i.e., the correlation length is reached, if t(l)/(1 + K) is of order one.

λ  /π
T

L

τ

x Figure B.7: Topology of the 1+1 dimensional system

at finite temperature. Due to periodic boundary

conditions in imaginary time direction the system

has a cylinder topology with perimeter of the ther-

mal de Broglie wave length λT .

The change from QLRO on small length scales x < ξ to SRO on large length scales becomes

clear if one considers the cylindric topology of the system in space-time at finite temperatures:

As soon as one reaches length scales of the order of the perimeter of the cylinder, which is

λT (see Fig. B.7), starting from small scales, the system changes from two-dimensional to

effectively one-dimensional behavior.
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4.2 Finite disorder

If u is finite, the action of the system has a forward and a backward scattering part. With

the decomposition (B3.8), the phase correlation function divides into two parts:

C(x, τ) = Cb(x, τ) + Cf (x) (B4.12)

and has therefore always a contribution Cf (x) ∼ |x|/ξf with ξ−1
f ∼ σ(l = ln |x|), i.e., the

density wave order has always an exponentially decaying contribution and we can define

S1(x, τ) ≡ fρ(x)e−
p2

2
Cb(x,τ) , (B4.13)

with fρ(x) = ρ2
1 cos(pQx)e−

p2π
4
|x|/ξf . However, since Cf (x) is not τ -dependent, it will not

influence the dynamical properties of the system. Therefore all further remarks about phase

correlations refer to Cb(x, τ) and consequently we will drop the subscript b in the following.

Again we examine the T = 0 and finite temperature cases:

(i) At zero temperature we have to distinguish between three K-regimes: For K > Ku the

disorder becomes irrelevant under the RG flow and we can use the zero temperature,

disorder free result for the correlation function with the pre-factor K replaced by an

effective quantity Keff(l = ln z) on a length scale z =
√

x2 + τ2, defined by the flow

equation for K. This effective K saturates on large scales at a fixed point value

Keff(u0), which may be seen in Fig. B.3. Therefore we have QLRO in this K region.

For 0 < K < Ku we integrate the flow of u until it reaches a value of order one,

starting at small u0, which defines the localization length ξu (see section 3.2), i.e., the

correlation function behaves like C(x, τ) ∼ |x|/ξu, i.e., we have an additional (to Cf )

exponentially decaying contribution to S1.

The third case, K = 0, is discussed in the next section.

(ii) At finite temperatures the parameter K saturates at an effective value Keff(u0) on

large length scales. Therefore the correlation function for small disorder is given by

(B4.8) with K replaced by K(l = ln z).

In the region Mu of the K-t plane (see section 3.4), u still increases and we can

find an effective correlation length by comparing the length scales on which u(l) or

t(l)/[1+K(l)] become of order one. Then, the correlation length is the smaller length

of these two.

For K = 0, high temperatures, but weak disorder we adopt an alternative method

by mapping the (classical) one-dimensional problem onto the Burgers equation with
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noise [HHF85]. With this approach one can derive an effective correlation length given

by

ξ−1
B ≈ ξ−1

T

(
1 +

1
2

[
ξT

2LFL

]3
)

(B4.14)

where ξT ¿ LFL, which changes the prefactor of the free correlation function at high

temperatures (B4.10). The full calculation for this result can be found in appendix

E1.3.

4.3 Strong disorder

In the last region K = 0 for T ¿ c/(p2limp) we come back to the strong pinning case,

discussed in section 3.3 before, and calculate the pair correlation function exactly. Taking

into account that the hi’s are independent on different lattice sites, i.e., hihj ∝ δij , the

(discrete) phase correlation function is given by

〈
(ϕn+1 − ϕ1)

2
〉

=
4π2

p2

〈(
hi − pQεi

2π
− γ

)2
〉
· n

=
4π2

p2

(
pQεi

2π
+ γ −

[
pQεi

2π
+ γ

])2

n ,

where we used (B3.28) for the second equality. For evaluating the disorder average in this

expression, one has to take into account the order statistics of the impurity distances εi. In

the thermodynamic limit the probability density function for the εi’s can be rewritten as

p(εi) ≈
l−1
imp

e
e−l−1

impεi , −limp ≤ εi < ∞ . (B4.15)

A complete derivation of this expression can be found in [Gla03].

Then, the correlation function can be explicitly written as

〈
(ϕn+1 − ϕ1)

2
〉

=
4π2

p2

∫ ∞

0
dx e−x

( x

2α
−

[ x

2α

])2
n , (B4.16)

where we introduced the parameter α ≡ π
pQlimp

and substituted x = l−1
impεi + 1. This integral

can be evaluated exactly, which leads to the following exact expression for the pair correlation

function at zero temperature, written in a continuum version:

C(x, τ) =
2π

pα

(
1− α

sinhα

)
|Qx| ≡ 2x

p2ξ
, α =

π

pQlimp
. (B4.17)

A more detailed derivation of this result is given in appendix E1.2.
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Finally, we want to give an interpolating expression for C(x, τ) from T = 0 to high temper-

atures T À c/(limpp
2) starting with the result (B4.17). In the latter case we may neglect

the discreteness of hi and hence

〈
(ϕn+1 − ϕ1)

2
〉

≈ 4π2

p2limp

(
− ∂

∂λ1
ln

(∫
dh e−

P
i λih2

))
|x|

=
T

c
|x| = πt|x| , (B4.18)

with λi = 2π2c
Tp2(limp+εi)

.

A plausible interpolation formula is then given by

〈
(ϕ(x)− ϕ(0))2

〉
≈

(
2Q2limp

(
1− α

sinh(α)

)
+

T

c

)
|x| , (B4.19)

and for limp À Q−1, i.e., α ¿ 1:

〈
(ϕ(x)− ϕ(0))2

〉
≈

(
π2

3p2
l−1
imp −

7π4

180p4

l−3
imp

Q2
+

T

c

)
|x| . (B4.20)

Hence the correlation length acquires the form

ξ−1
sp ≈ p2Q2limp

(
1− α

sinh(α)

)
+ ξ−1

T . (B4.21)

Note, that limpQ ≥ 1, i.e., α ≤ π/p and ξT À limp. An approximate crossover to the weak

pinning limit follows by choosing limp ≈ LFL.

length description eq.

ξB weak pinning/high temp. length (B4.14)

ξf forward scattering length (B4.12)

ξsp strong pinning length (B4.21)

ξT high temp./disorder free length (B4.10)

ξu disorder localization length (B3.16)

ξw lattice pot. correlation length sec. 6

Table BII: Overview of the dimensionless correlation lengths.
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5 Application to superfluids

Next, we consider the application of the results obtained so far to a one-dimensional Bose

fluid. Its density operator is given by eq. (B2.1) if we identify Qf/π = ρ0 = ρ1 (p = 2):

ρSF =
f

π
∂xϕ + ρ0(1 + cos(2(ϕ + Qx))) + . . . (B5.1)

∂xϕ is conjugate to the phase θ of the Bose field operator [Hal81]. Keeping our definitions

of K, t, and u; v denotes now the phase velocity of the sound waves with v =
√

κ/(ρ0m)
and the elastic constant is c = κ/(πρ0)2, where κ is the compressibility per unit length (see

also table BI).

With the replacements

K → K−1

t → t/K2

p = 2 ,

(B3.4) describes the action of the 1D-superfluid in a random potential. The correlation

functions for the superfluid can be obtained correspondingly from this replacements. To

avoid confusions we write down the full action in this case explicitly:

SSF

~
=

K

2π

∑

α,β

L∫

0

dx

K/t∫

0

dτ

{[
(∂xϕα)2 + (∂τϕα)2

]
δαβ − (B5.2)

K

2

K/t∫

0

dτ ′
[
u2 cos 2

(
ϕα(x, τ)− ϕβ(x, τ ′)

)
+ σ∂xϕα(x, τ)∂xϕβ(x, τ ′)

]}
.

Hence the RG-equations follow from (B3.5a) to (B3.5d) with the above given replacements:

dt

dl
=

[
1 +

16u2

K2
B0

(
4/K,

K

2t

)
coth

K

2t

]
t , (B5.3a)

dK

dl
=

8u2

K
B0

(
4/K,

K

2t

)
coth

K

2t
, (B5.3b)

du2

dl
=

[
3− 2

K
coth

K

2t

]
u2 , (B5.3c)

dσ

dl
= σ . (B5.3d)
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I.e., the transition between the superfluid and the localized phase occurs at K∗
u = 2/3 [GS88].

Thermal fluctuations again suppress the disorder and destroy the the superfluid localization

transition in 1D.

6 Influence of a commensurate lattice potential

If the wave length λ of the CDW modulation is commensurate with the period a (= π, due

to dimensionless units) of the underlying lattice such that nλ = qa with integers n and q,

the umklapp term −2π(w/K) cos(qϕ) appears in the Hamiltonian [Grü94b]. Therefore we

switch on the lattice potential w 6= 0 now. In this section we consider the case u = 0 and

$ = 0, which leads to the sine-Gordon type model:

SLP

~
=

L∫

0

dx

K/t∫

0

dτ

[
1

2πK

{
(∂xϕ)2 + (∂τϕ)2

}− w

K
cos(qϕ)

]
. (B6.1)

The model has q degenerate classical ground states given by ϕm = 2πm/q with m =
0, ..., q− 1. Performing a calculation analogous to the one above (but with u = $ = 0) the

RG-flow equations read

dK

dl
=

π

2
q4w2B2

(
q2K,

K

2t

)
coth

K

2t
, (B6.2a)

dt

dl
=

[
1 +

π

2
q4w2B1

(
q2K,

K

2t

)
coth

K

2t

]
t, (B6.2b)

dw

dl
=

[
2− q2

4
K coth

K

2t

]
w, (B6.2c)

where B1,2 are given in (B3.6) with

g1 = 2x2 cosx ,

g2 = (x2 + τ2) cos x .

Plots of the functions B1 and B2 can be found at the end of appendix E1.1. A plot of the

numerical solution of (B6.2a) to (B6.2c) is shown in Fig. B.8.

At zero temperature (B6.2a) and (B6.2c) reduce to

dK

dl
=

π

2
q4w2B2

(
q2K,∞

)
, (B6.3a)

dw

dl
=

[
2− q2

4
K

]
w, (B6.3b)
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Kw K

w

t

Figure B.8: Typical flow diagram for the disorder free model in the three dimensional para-

meter space of K, w and t. w denotes the strength of the commensurate lattice potential.

and we find, that the lattice potential becomes relevant (i.e., w grows) for K < Kw, where

Kw is implicitly defined by

w2(Kw) =
K∗2

w

2πq2η̃

(
Kw

K∗
w

− 1
)2

, (B6.4)

which follows from
dw

dK
= − 4

q4πη̃w

(
1− K

K∗
w

)
, (B6.5)

where we used (B6.3a) and (B6.3b) and the initial condition w(K∗
w ≡ 8/q2) = w0 = 0;

η̃ = −B2

(
q2K∗

w,∞
)

(≈ 0.4, for q = 1).

In this region the periodic potential stabilizes true long-range order of the CDW: the phase

is everywhere close to one of the q classical ground states ϕm. The depinning transition

from the lattice for K ↗ Kw is again of KT type. The correlation length ξw in the low-K

ordered phase is defined by w(ln ξw) ≈ 1 and diverges at Kw − 0 [BD84, FG88, ZGvOZ97].

This can be seen by considerations analogous to the disordered case. Defining

γ = 2
K

K∗
w

− 2 ,

χ2 =
π

8
q6η̃w2

(note that η̃ > 0) leads for |γ| ¿ 1, i.e., close to K∗
w, to the KT equations (B3.14a) and

(B3.14b).
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At finite temperatures we find a similar scenario as in the case where we considered the

influence of the disorder: w first increases in a region in the K–t plane which is defined by

Mw ≡
{
(K, t)|K∗

w ≥ K coth K
2t ≥ 0

}
, i.e., when the right-hand side of (B6.2c) is positive,

but then decreases and flows into the region of large t and small w. Thus the periodic

potential becomes irrelevant at finite temperatures. This can be understood as follows: at

finite t the 1D quantum sine-Gordon model can be mapped on the Coulomb gas model on

a torus of perimeter λT since periodic boundary conditions apply now in the τ -direction.

Whereas the entropy of two opposite charges increases for separation L À λT as ln(LλT ),
their action increases linearly with L. Thus, the charges remain bound. The one-dimensional

Coulomb gas has indeed only an insulating phase [Len61].

7 Disorder and lattice potential

In this section we consider the combined influence of the disorder and the umklapp term at

zero temperature. Although the RG calculation breaks down for K < max(Ku,Kw), the

disorder

pinned

u0

Kw Ku K

unpinned

* *

p/q<   3 /2

disorder

pinned

u0

Ku Kw K

unpinned

* *

p/q>  3 /2

Figure B.9: Qualitative zero temperature phase diagram for a system with commensurate

lattice potential and small disorder. One has to distinguish two cases: (i) K∗
w < K∗

u

(or p/q <
√

3/2) and (ii) K∗
w < K∗

u (or p/q >
√

3/2). The phase boundaries can be

estimated by Imry-Ma arguments (see text).

common influence of both the random and the commensurate potential can be estimated by

combining the results obtained so far with Imry-Ma arguments [IkM75]. We distinguish the

following cases:

(i) Case: K > max(Ku,Kw). Both disorder and the umklapp term become irrelevant

and the system is asymptotically free. The order is of quasi-long-range type.

(ii) Case: Ku < K < Kw (i.e. p >
√

3
2 q). This is the region where in the absence of the

umklapp term the disorder would still become irrelevant. The umklapp term favors
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phase values ϕm = 2πm/q, m = 0, ..., q − 1, equally. We consider now the stability

of one of these phases, say with m = 0, with respect to the formation of domains

with m 6= 0 due to the disorder. Since the disorder is completely correlated in the

τ -direction, it is clear that these domains - if they exist - are stripe-like with an infinite

extension in this direction.

In the presence of weak disorder the free energy density of this stripe domain state is

given by

fdomain = (qw1/2L−1
x − uL−1/2

x ) , (B7.1)

where Lx denotes the extension of these domains. qw1/2 is the surface tension of the

domain wall. Minimizing fdomain leads to Lx ' q2w/u2. To determine whether the

disorder or the lattice potential dominate in the considered K region, we study the

behavior of Lx on larger length scales by using the flow equations

Lx(l) ∝ weff(l)
u2

eff(l)
≈ ξ−2w(l)

ξ−3u2(l)
= ξ

w(l)
u2(l)

, (B7.2)

where ln ξ = l. The effective parameters follow from the unrescaled flow equations

which are expressed by the renormalized and rescaled quantities as given in (B7.2). At

the correlation length ξw, where the renormalization stops (w ≈ 1), Lx behaves like

Lx(ln ξw) ≡ ξu = const× ξw

u2(ln ξw)
(B7.3)

and therefore ξu > ξw. We conclude that even though the disorder in the absence of

the periodic potential is irrelevant for K > Ku, the decay of u is stopped due to the

suppression of the ϕ fluctuations which in turn are due to w, and the ordered state

ϕ = ϕm = 2πm/q state is destroyed on the scale ξu by arbitrarily weak disorder. In

the space direction the system decomposes into domains of extension ξu. Note, that

there are still long-range correlations in the τ -direction since the disorder is frozen. For

these reasons we expect only two phases, a free phase for K > Kw and a pinned phase

for K < Kw (see right diagram in Fig. B.9).

(iii) Case: Kw < K < Ku (i.e. p <
√

3
2 q) or K < min(Ku,Kw). In this case the above

considerations suggest that the disorder dominates the lattice potential even more, and

we again expect only two phases (see Fig. B.9).

To conclude, for K < max(Ku,Kw) disorder turns out to be always relevant with ξu ≈
ξw/u2(ln ξw).
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8 Phase-Slips

So far the phase field was considered to be single valued. Since the order parameter (B2.2)

of the CDW is complex, its phase is given however only up to multiples of 2π. Taking into

account also fluctuations in its amplitude |∆| the phase may change indeed by multiples of 2π

by orbiting a zero of the amplitude. (Throughout this section we always assume p = 1). In

two or three dimensional space phase vortices correspond to dislocations in the CDW lattice.

It is well known that these dislocation play an important role in the conversion mechanism

of normal electrons into those condensed in the CDW [BM91]. In strictly one-dimensional

systems, such vortices may occur in space-time and correspond to quantum phase-slips. For a

quantum phase-slip the contour integral (contour C) of the phase field around the space-time

vortex: ∮

C
dϕ =

∮

C

(
∂ϕ

∂x
dx +

∂ϕ

∂τ
dτ

)
= q̃π, (B8.1)

is non-zero. If we rewrite π−1 ∂ϕ
∂x = ρ(x, τ) and π−1 ∂ϕ

∂τ = −j̃(x, τ) , we get from (B8.1)

∮

C
(ρdx− jdτ) = −

∫∫
dxdτ

(
∂j̃

∂x
+

∂ρ

∂τ

)
= q̃. (B8.2)

Going over to real time t = −ıτ and current j(x, t) = ıj̃(x, τ) we find from (B8.2) that

the continuity equation describing the flow of charges in the condensate is violated. There

is an extra term ρ̇ext which describes the creation and annihilation of electron pairs in the

condensate. Thus we rewrite the continuity equation in the form

ρ̇ext + ρ̇(x, t) + ∂xj(x, t) = 0 (B8.3)

with
∫∫

dxdt ρ̇ext = q̃: at the position of a space-time vortex (q̃ = 2), two electrons of the

reservoir of normal electrons are transferred to the condensate where they form a bound pair

(and vice versa).

We propose a model for these space-time vortices which is described by the last term in

(B2.4) (with q̃ = 2). Here we discuss its influence under equilibrium conditions. This

operator superposes two translations of ϕ by ±q̃π left from x, i.e., it changes coherently the

phase by ±q̃π in a macroscopic region. For vanishing disorder the model can be mapped on

the sine-Gordon Hamiltonian for a field θ by using the canonical transformation P̂ = − ~π∂xθ̂

and − ~π∂xϕ̂ = Π̂ (and with K replaced by K−1), which leads to the action:

S
~

=
K

2π

LΛ∫

0

dx

K/t∫

0

dτ

{
(∂xθ)2 + (∂τθ)2 +

2π$

K2
cos(q̃θ)

}
. (B8.4)
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Note, that the forward scattering term due to disorder would not influence the phase–

slips if present. This can be seen as follows: The forward scattering term from (B2.4),∫
dxU(x)∂xϕ/π, is rewritten to an action

Sf ∝
∫

dx

~β∫

0

dτ U(x)∂τθ(x, τ)

=
∫

dxU(x)[θ(x, ~β)− θ(x, 0)]−
∫

dx

~β∫

0

dτ [∂τU(x)]θ(x, τ) = 0 , (B8.5)

i.e., there is no coupling of the disorder to the phase–slips. A more general argument is, to

rewrite the action in the ϕ-field to the form ∝ ∫
dz(∇zϕ(z)−A(z))2 with z = (x, τ) and

calculate Qv = curlzA(z) which is the ”charge” of the frozen vortices, see Ref. [NSKL95].

If Qv = 0 then there is no coupling to the forward scattering term, which is true in our case

with A(z) = (U(x)/π, 0).

To see the connection of the sine-Gordon model (B8.4) to space-time vortices, one rewrites

the action of interacting vortices as a classical 2D Coulomb gas model. For illustration we

show this for a single space–time vortex at (xV , τV ) (dimensionless units), which is introduced

”by hand” in the free model (H0) in the following way: The vortex-free phase variable ϕ is

replaced by a new phase φ = ϕ̄ + ϕ, where ϕ is the vortex free part and ϕ̄ is defined by

q̃π ≡
∮

C
dϕ̄ , (B8.6)

where C is a contour around the vortex in x-τ -space. The phase ϕ̄ is then extended to a

holomorphic function Φ ≡ ϕ̄ + ıϕ̄′ and the above equation is rewritten to

∫∫
dx dτ ρV (x, τ) =

∮ (
∂ϕ̄

∂x
dx +

∂ϕ̄

∂τ
dτ

)

=
∮ (

∂ϕ̄′

∂τ
dx− ∂ϕ̄′

∂x
dτ

)

= −
∫∫

dx dτ (∂2
xϕ̄′ + ∂2

τ ϕ̄′)

with ρV (x, τ) = q̃πδ(x−xV )δ(τ −τV ). This leads to (∂2
x +∂2

τ )ϕ̄ = −ρV (x, τ) with solution

ϕ̄(z) = −q̃π ln(z − zV ) , (B8.7)

where we used again the Cauchy-Riemann differential equations and z =
√

x2 + τ2.

I.e. we have shown that space-time vortices in 1 + 1 dimensions can be described by a 2D

(classical) Coulomb gas model.
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Now, the Coulomb gas model can be subsequently mapped to the sine–Gordon model [JKKN77].

Note, that in order to make contact with reference [JKKN77] one has to replace in this ref-

erence y0 → −$/(2K), K → q̃2/(4πK) and φ → 2K/q̃θ to recover (B8.4).

The initial value $0 of $ is proportional to the fugacity $0 ≈ e−Score/~ of the space-time

vortices which may be not negligible close to TMF
c , where the action Score of the vortex core

is small. To calculate the core action, one has to allow fluctuations δ of the amplitude of

the complex order parameter. Therefore we write

∆MF(x, t) = (|∆|+ δ(x, t))eıϕ(x,t) , (B8.8)

and the action for δ, which follows from the Ginzburg–Landau free energy for the full order

parameter (B8.8), is given by [Grü94b]

Sδ/~ =
1
~

L∫

0

dx

~β∫

0

dτ

{
− α

2
δ2 +

c

2|∆|2 (∂xδ)2 +
c

2v2|∆|2 (∂τδ)2
}

, (B8.9)

with α = f(T )/(~vF ). Note, that (B8.9) is written in dimensionfull units for a better

illustration. From this action one can derive a typical length scale Lδ and time scale τδ of

the vortex core on which δ ≈ −|∆|, i.e., the order parameter vanishes:

Lδ =
√

c

α|∆|2 , (B8.10a)

τδ =
√

c

αv2|∆|2 , (B8.10b)

or in rescaled dimensionless units Lδ = τδ =
√

c/αΛ/|∆|. The vortex core action is then

approximately given by S0 (the gaussian part of (B3.4)) evaluated for the area Lδ · τδ in

x-τ -space with a phase change of ±q̃π:

Score ≈ ~ q̃2π

K
∼ q̃2|α||∆|2Lδτδ . (B8.11)

Performing a calculation analogous to the one for the commensurate lattice potential, dis-

cussed in the previous section, (now with u = 0 and w = 0) the RG-flow equations read

dK

dl
= −π

2
q̃4$2

K3
B2

( q̃2

K
,
K

2t

)
coth

K

2t
, (B8.12a)

dt

dl
=

[
1− π

2
q̃4$2

K4
B1

( q̃2

K
,
K

2t

)
coth

K

2t

]
t, (B8.12b)

d$

dl
=

[
2− q̃2

4K
coth

K

2t

]
$, (B8.12c)
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Figure B.10: Typical flow diagram for the disorder free model in the three dimensional

parameter space of K, $, and t.

where B1,2 are given in (B3.6) with

g1 = 2τ2 cosx ,

g2 = (x2 + τ2) cos x .

Plots of the functions B1 and B2 can be found at the end of appendix 1.1. Equations

(B8.12a) to (B8.12c) can again only be solved numerically and a typical solution is shown

in Fig. B.10.

At zero temperature (B8.12a) and (B8.12c) reduce to

dK

dl
= −π

2
q̃4$2

K3
B2

( q̃2

K
,∞

)
, (B8.13a)

d$

dl
=

[
2− q̃2

4K

]
$, (B8.13b)

and we find, that for u = 0 quantum phase-slips become relevant (i.e., $ grows) for K >

K$, where K$ is implicitly defined by

$2(K$) =
K∗

$

q̃2πη̃

(
K∗

$

3
(K∗3

$ −K3
$)− 1

4
(K∗4

$ −K4
$)

)
, (B8.14)

which follows from
d$

dK
=

4K3

q̃4πη̃$

(
1− K∗

$

K

)
, (B8.15)

where we used (B8.13a) and (B8.13b) and the initial condition $(K∗
$ ≡ q̃2/8) = 0 (q̃ = 2

for CDWs); η̃ = −B2

(
q̃2

K∗
$

,∞
)
. In this region vortices destroy the quasi-long-range order
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of the CDW; C(x, τ) ∼ |z|/ξ$. The transition is again of KT type with a correlation length

ξ$ (defined by $(ln ξ$) ≈ 1) diverging at K ↘ K$ [BD84, FG88, RD96, ZGvOZ97].

Again this can be seen by the same considerations as in the lattice potential case in defining

γ = q̃2

8K − 1 and χ2 = (8/q̃)4πη̃$2 (note that η̃ > 0) which leads for |γ| ¿ 1 to the KT

equations (B3.14a) and (B3.14b).

Since the flow equations are exactly the same as for for the commensurate lattice potential

[(B6.2a) to (B6.2c)] if one replaces

K → K−1 , (B8.16a)

t → t/K2 , (B8.16b)

w → $/K2 , (B8.16c)

q → q̃ , (B8.16d)

one obtains qualitatively the same behavior as in that case: ϕ first increases in a K–t

region given by M$ ≡ {
(K, t)|1/K∗

$ ≥ 1
K coth K

2t ≥ 0
}
, i.e., when the right-hand side of

(B8.12c) is positive, but then decreases and flows into the region of large t and small $.

Thus quantum phase-slips become irrelevant at finite temperatures, which can be understood

in the same way as the lattice potential case, since we have shown that space-time vortices

can be described by a Coulomb gas model [Len61].

Important to mention is, that the proposed phase-slip mechanism is only well founded for

density waves, since the phase can be understood as the phase of an order parameter, and

because these systems are coupled to a bath of non-condensed electrons. Therefore it is

questionable if this mechanism can also be used in the Luttinger liquid theory.

The links between the Luttinger liquid model and our phase-slip picture, which can be

interpreted as vortices in a XY-model, can also be found in [Gia03].

9 Disorder and phase-slips

It is now interesting to consider the combined influence of disorder and phase-slips. In doing

this we write an approximate expression for the action of a single vortex in a region of linear

extension L as

Svortex − Score

~
= (

q̃2

4K
− 2) lnL− ueff(L)

K
L3/2 , (B9.1)

where the first part comes from the flow equation for $ with $(l) ≈ e−Svortex(l)/~ and

Svortex(0) = Score and the second part from the averaged backward scattering term.
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ueff(L) denotes (up to a constant) the renormalized but unrescaled disorder strength. For

very low K(< Ku, Kϕ) where ueff(L) ≈ u0 the disorder always favors vortices on the scale

of the effective Fukuyama-Lee length ξdis. These vortices will be pinned in space by the

disorder. On the other hand, for very large values of K(> Ku,K$) phase vortices are not

influenced by the disorder, since ueff(L) is renormalized to zero. In the remaining region we

have to distinguish the cases K∗
u ≷ K∗

$. For K∗
$ < K < K∗

u (i.e., q̃p < 4
√

3) and u0 = 0
the phase correlations are lost on the scale of the KT correlation length ξw of the vortex

unbinding transition. Not too close to this transition ξ$Λ ≈ e(Score/2~)(1−K∗
$/K)−1

holds.

Switching on the disorder, u will be renormalized by the strong phase fluctuation which leads

to an exponential decay of ueff(L) ∼ u0e
−const×L/ξ$ such that disorder is irrelevant for the

vortex gas as long as ξ$ . ξu. We expect that the relation ξ$ ≈ ξu, i.e., the length scale

on which both perturbations are of the same order, determines the position of the phase

boundary between a pinned low K phase where vortices are favored by the disorder, and

an unpinned high K phase, where vortices are induced by quantum fluctuations. This line

terminates in K∗
$ for u0 → 0 (see Fig. B.11).

pinned

u0

K$ Ku K

qp<4   3

phase

slips pinned phase

slips

u0

Ku K

qp>4   3

K$

unpinned

?

* * * *

~ ~

Figure B.11: T = 0 phase diagram for a CDW with quantum phase-slips. If q̃p < 4
√

3
there is a single transition between a low-K pinned and a high-K unpinned phase. In both

phases the correlation length is finite. If q̃p > 4
√

3 these two phases are separated by

a third phase in which phase-slips are suppressed and C(x, τ) ∼ ln |z|. Both transitions

disappear at finite t.

If Score is large, ξ$ will be large as well and ξ$ ≈ ξu will be reached only for K ≈ K∗
u. For

moderate values of Score the unpinning transition may be lowered considerably by quantum

phase-slips. In the opposite case K∗
u < K < K∗

$ (i.e., q̃p > 4
√

3) phase fluctuations

renormalize weak disorder to zero such that vortices are still suppressed until K reaches K$,

where vortex unbinding occurs. In this case two sharp phase transitions have to be expected.
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10 Thermal creep and 1/f noise in quasi-1D charge density

waves

In this section we go over to the non-equilibrium situation and study the dynamic properties

of realistic charge density wave systems at low temperatures driven by a constant external

field. As already mentioned in the introductory chapter, we are especially interested in the

noise spectrum, which was measured experimentally.

1/fγ noise in CDW systems [Grü88] has been studied mainly in NbSe3 and TaS3 mate-

rials [Kog96]. The first experiment was done for a bulk NbSe3 sample by Richard et

al. [RMPR82] who found γ ∼ 0.8. Studying transport properties of the quasi-one-dimensional

CDW material TaS3 at low temperatures, Zaitsev–Zotov [ZZ93] observed that slightly above

the depinning threshold of the driving electric field, the exponent γ for the current noise

is approximately given by γ ≈ 1.2. Furthermore, the frequency range for observing this

behavior gets wider as the external field increases.

It should be noted, that a phenomenological model based on fluctuations of the pinning force

due to deformations of the sliding condensate was proposed to explain the broad band 1/f

noise in CDW systems [BSRK85]. However, neither theoretical nor numerical estimation of

γ has been provided so far.

Therefore the subject of this section is the computation of γ from first principles with the help

of a one-dimensional classical model for CDWs [Gor77]. The current was obtained through

numerical simulation of the overdamped equation of motion. The 1/f scaling is evaluated

using the so-called Wavelet Transform Modulus Maxima (WTMM) method [ABM95]. The

exponent γ was found to depend on T . At low temperatures (T ≤ 0.1), in agreement with

the experiments [ZZ93], we obtain γ ≈ 1.2 in the crossover regime and if we increase T the

exponent γ drops. The ”exact” 1/f -noise is observed at T ≈ 0.3 where γ becomes 1. This

interesting result is indicative of the possible occurrence of 1/f noise. At high temperatures

γ takes on the white noise value 0.

Notably, the observed γ ≈ 1 is not related to the second order depinning transition behavior

at T = 0. Due to the asymptotic uniqueness of the sliding state [Mid92], this critical point

dynamics scenario leads to the ‘trivial’ exponent γ ≈ 2 [NF92b, Fis98]. Additionally, the

observed ‘flicker’ noise behavior γ ≈ 1 gains on its scaling range with increased distance to

the critical point of the second order depinning transition.

Based on unusual current–voltage characteristics [ZZ93, ZZ94, ZZRM97a, ZZRM97b], Zaitsev-

Zotov suggested that at low temperatures, quantum creep dynamics may play an important

role and proposed the crossover from classical to quantum creep regime as an alternative ex-



44 Influence of thermal and quantum fluctuations in one-dimensional disordered systems

planation for the experimental results. The strength of the quantum fluctuations in 1D CDW

systems can be estimated by the dimensionless parameter K [defined in (B2.8b)] which is

proportional to
√

m∗/m, where m∗ is the effective band mass. As already mentioned before,

this quantity is of the order 10−2 to 10−1 [Mak95, Grü88], indicating irrelevance (to 1/f

noise) of quantum effects at low temperatures. Furthermore, our simulation results on the

creep dynamics [GKL01] also suggest, in comparison to experiments, that quantum fluctua-

tions do not have any visible effect with respect to the strength of the driving forces under

consideration (see also discussion in [Han88, Kis88]). On the other hand, due to the small

parameter K, the core action of phase-slips in the bulk is large (Score ∝ 1/K, see section

8) and hence the probability of phase-slips which is proportional to e−Score becomes very

small. It decreases even more under the renormalization group transformation discussed in

the previous sections, such that we can neglect aslo phase-slips in our simulations. Therefore

we will use the one-dimensional classical model without phase-slips (and lattice potential)

to study the current noise in CDW systems.

10.1 Equation of motion

The classical Hamiltonian follows directly from the full quantum mechanical one (B2.4) in

the limit K → 0 or ~v/c → 0. Including an additional term due to the external driving force

E, given by

HE =

L∫

0

dx (Ex) · (∂xϕ(x)) , (B10.1)

leads to

H =

L∫

0

dx

{
c

2

(
∂

∂x
ϕ

)2

−
∑

i

Uiδ(x− xi)× ρ1 cos
(
Qx + ϕ(x)

)
+ Ex∂xϕ(x)

}
,

(B10.2)

with the elastic constant c, as defined in section 2.2. Ui and xi denote the strength and the

position of the impurity potential acting on the CDW, respectively, and E is the external

electric field or driving force.

Our numerical studies are done in the weak pinning limit, i.e. again, when the Fukuyama–Lee

length LFL (B2.7) is large compared to the mean impurity distance limp. Therefore we will

restrict ourselves in the following to the case LFL À limp À Q−1, in which the classical

Hamiltonian (B10.2) can be approximated by a random field XY–model:

H =
∫

dx

{
c

2

(
∂

∂x
ϕ

)2

− V cos
(
ϕ− α(x)

) − Eϕ(x)

}
. (B10.3)
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Here α(x) is a random phase with zero average and ei
(
α(x)−α(x′)

)
= limpδ(x − x′), where

the overbar denotes the averaging over disorder realizations. V is defined by (Uiρ1)(Ujρ1) ≡
V 2δij (Ui = 0). The equation of motion of the (overdamped) CDW is given by a Langevin

equation
∂ϕ

∂t
= −γ

δH
δϕ

+ η(x, t) , (B10.4)

where γ is a kinetic coefficient and η(x, t) a Gaussian thermal noise characterized by
〈
η
〉

= 0
and

〈
η(x, t) η(x′, t′)

〉
= 2Tγ δ(x− x′) δ(t− t′).

The length scale LFL sets an energy scale T ∗ =
(
c V 2

)1/3 = c L−1
FL . We will rescale time

by LFL/γT ∗, temperature by T ∗, and the external field E by E∗, where E∗ = T ∗/LFL is of

the order of the T = 0 depinning threshold field Ec. In the following, E denotes the rescaled

and dimensionless quantity. Using these replacements, the discrete and rescaled version of

the equation of motion (B10.4) reads as follows [GKL01]

∆ϕi

∆t
= (ϕi+1 − 2ϕi + ϕi−1) + sin(ϕi − αi) + E + η(i, t) , i = 1 . . . N , (B10.5)

where N is the discrete system size.

Solving this discretized equation, one can find the time dependent current jcdw(t) which is

defined as [GKL01]

jcdw(t) =
〈

∂ϕ(x, t)
∂t

〉

x

, (B10.6)

where 〈...〉x denotes the average over positions.

10.2 Simulation and creep dynamics

Recently, we have studied the creep dynamics of one-dimensional classical CDWs at low

temperatures [GKL01], based on model (B10.2). In the weak pinning regime, the creep

current is

jcdw(E) ∼ T exp(−T0/T ) sinh
κE

T
, (B10.7)

where T0 and κ are parameters [GKL01]. As one sees, the dependency of the creep velocity

on the electric field is described by an analytic function, contrary to higher dimensional

systems [Nat90]. The results of the simulations in that paper seem to be in agreement with

the experiment by Zaitsev–Zotov [ZZ93] on the temperature dependency of the current at

low T (see Fig. 2 in Ref. [ZZ93]), but the suggested field dependency of type

ln (jcdw(E)) ∼ −E0

E
or (B10.8a)

ln (jcdw(E)) ∼ −Ẽ2
0

E2
(B10.8b)
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were not explored on the basis of our simulation results nor was the current noise spectrum.
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Figure B.12: Dependency of jcdw on the external field E in double logarithmic representation

for various values of temperature. The numerical results are averaged over Ns = 50
samples. For high T and high E linear behavior is recovered and for low T and E the

creep regime can be found. At zero temperature one would recover the depinning transition

at ln (Ec) ≈ −1.52 [GKL01].

Fig. B.12 gives an overview of the field dependencies of the CDW current jcdw at different

temperatures in a log-log plot. At high T one finds linear behavior because the system gains

much thermal energy, and the pinning by impurities becomes irrelevant. As the temperature

is lowered the nonlinear regime appears instead of the Ohmic one. Our result is comparable

with experimental data presented in Fig. 1 of Refs. [ZZ93] and [ZZRM97b] except for very

low fields and low temperatures.

Fig. B.13 (left) shows ln(jcdw) versus E−2 at low temperatures. The fit by a straight

line which is valid up to E−2 ∼ 20 confirms the nonlinear behavior (B10.8b) and is in fair

agreement with the experiments [ZZ93, ZZRM97b]. Fig. B.13 (right) shows the same data,

but plotted versus E−1, partly in agreement with the experiment (see the inset in Fig. 3 of

Ref. [ZZ93]) in the crossover region, where the linear dependency (B10.8a) can be fitted,

but not for very low driving forces, where the creep law in the weak pinning case (B10.7)

applies. Note, that in both plots the current diverges for high E, i.e., x → 0, as − ln(x)
(flow regime).
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Figure B.13: Left: ln(jcdw) versus E−2 for low temperatures. The results are averaged over

50 samples. For very low external fields our creep formula (B10.7) can be fitted up to

E = Ec ' 0.22. In the crossover regime to linear behavior, the CDW current can be fitted

by the quadratic (B10.8b) behavior suggested in [ZZ93] (linear fit). Right: The same as

on the left, but ln(jcdw) is plotted versus E−1. The result agrees for medium E with data

shown in the inset of Fig. 3 in Ref. [ZZ93], i.e., one can fit the linear behavior (B10.8a).

Due to this result, it is now reasonable to compare the experimentally obtained power spec-

trum of the CDW current in the crossover region [ZZ93] to our numerical calculated one.

Following Ref. [GKL01], the equation of motion (B10.4) is integrated by a modified Runge–

Kutta algorithm suitable for stochastic systems with periodic boundary conditions.

Throughout this section, we use a system size of N = 5000 and average the results over

typically Ns = 1000 disorder realizations. Larger system sizes do not change the results

substantially.

Fig. B.14 shows the typical time evolution of jcdw(t) for E = Ec ' 0.22 [GKL01] (left

panel) and E = 0.3 (right panel) at temperature T = 0.1. One can see that the current

exhibits strong fluctuations. The time averaged values are 〈jcdw〉 = 0.008 ± 0.003 and

〈jcdw〉 = 0.112 ± 0.006 for E = Ec and E = 0.3, respectively. The spike structure is also

seen, but less pronounced compared to the experimental data [ZZ93]. Nevertheless, the

patterns for the two values of E look similar.

Zaitsev–Zotov studied [ZZ93] the current noise spectrum for applied electric fields with

averaged driving current 〈I〉 ≥ 220pA. Using Fig. 1 from Ref. [ZZ93] one can see that the

threshold electric field in these experiments is Ec ≈ 35V/cm and the averaged currents of

〈I〉 = 220pA and 〈I〉 = 2.4nA at T = 2.4K correspond to electric fields E ≈ 40V/cm and

E ≈ 50V/cm, respectively, i.e., the electric fields used, are greater than the threshold field.

Therefore we will restrict our spectrum analysis to E ≥ Ec.
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Figure B.14: Typical time dependence of the CDW current for E = Ec ' 0.22 (left

panel) and E = 0.3 (right panel) at T = 0.1 for one disorder realization. The time and

disorder averaged values of jcdw(t) are shown next to the curves (〈jcdw〉) for which we took

N = 5000 and averaged the results over 1000 and 500 samples for E = Ec and E = 0.3,

respectively. An initial (dimensionless) time interval of length ≈ 2000 is discarded, such

that the system is in an almost (see section 10.3) steady state at time 0.

10.3 Analysis of the power spectrum

Usually the exponent of the power spectrum can be calculated numerically from a time series

(here the current) by a discrete Fourier transformation. This naive approach works well in

the case of stationary time series, i.e., when the mean current is constant. In the case of non-

stationary behavior of the CDW current, as in our simulations (see Fig. B.15), the standard

Fourier transformation is not suitable for determining the exponent γ and one therefore should

employ more sophisticated methods. We have chosen a wavelet transformation in particular

the Wavelet Transform Modulus Maxima (WTMM) method [ABM95, JMA94] due to its

superior properties in non-parametric scaling exponent estimation [BA02] in the presence of

polynomial non-stationarities. In particular, attempts to reduce the non-stationary behavior

of the current by discarding an initial time interval (as done for the calculation of 〈jcdw〉, see

Fig. B.14) cannot generally guarantee that the steady state is reached, since the relaxation

time to a steady state can be very long (see the remark in Ref. [MF93]). The results from

the Fourier transform are discussed to some extend at the end of this section.

This non-stationarity manifests itself in a low frequency non-linear bias of the CDW current

and is precisely the reason why we used the wavelet transformation. The WTMM method

has the ability to evaluate the scaling exponent correctly even in the presence of a polynomial
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Figure B.15: In this plot the initial simulation time interval of the CDW current for E = 0.35
is shown. The non-stationarity manifests itself in a low frequency non-linear bias of the

CDW current. This effect is precisely the reason why we used a more sophisticated

method to evaluate the scaling exponent. In particular, attempts to reduce the non-

stationary behavior of the current by discarding an initial time interval, as shown here,

cannot guarantee that the resulting spectral exponent γ is not influenced by it.

trend of the time series, as can be seen in Fig. B.15.

The ability of the wavelet transform to provide unbiased scaling estimates of non-stationary

signals is due to the property of orthogonality to polynomials up to the degree n of the base

functions, of the so-called analyzing wavelets ψ with m ‘vanishing moments’:

∫ +∞

−∞
xn ψ(x) dx = 0 ∀n, 0 ≤ n < m .

The transform is defined as the inner product of the function f(x) and the dilated and

translated wavelet ψ(x):

(Wf)(s, b) =
1
s

∫
dx f(x) ψ(

x− b

s
) , (B10.9)

where s, b ∈ R and s > 0 for the continuous version, which among other properties en-

sures local blindness to the polynomial bias. Indeed, the wavelet transform decomposes the

signal into scale (and thus frequency) dependent components (scale and position localized

wavelets), comparable to frequency localized sines and cosines based Fourier decomposition,

but with additional position localization. This localization in both space and frequency, to-

gether with the wavelet’s orthogonality to polynomial bias, makes it possible to access even
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weak scaling behavior of singularities h(x0), otherwise masked by the stronger polynomial

components:

f(x)x0 = c0 + c1(x− x0) + · · ·+ cn(x− x0)m + C|x− x0|h(x0) ,

where the function f is represented through its Taylor expansion around x = x0.

In the generic multifractal formulation of the WTMM formalism [ABM95], the moments q

of the measure, distributed on the WTMM tree, are taken to obtain the dependency of the

scaling function τ(q) on the moments q:

Z(s, q) ∼ sτ(q),

where Z(s, q) is the partition function of the q-th moment of the measure distributed over

the wavelet transform maxima at the scale s considered:

Z(s, q) =
∑

Ω(s)

(Wfωi(s))q , (B10.10)

with Ω(s) = {ωi(s)} being the set of maxima ωi(s) at the scale s of the continuous wavelet

transform Wf(s, t) of the function f(t), in our case the CDW current: f(t) = jcdw(t). The

working scale of the wavelet s is inversely proportional to the (Fourier) frequency f ∼ 1/s

and the continuous wavelet used, is the second derivative of the Gaussian curve (Mexican

hat).

In particular, scaling analysis with WTMM is capable of revealing the modal exponent h(q =
0) for which the spectrum reaches its maximum value; this h(q = 0) corresponds to the Hurst

exponent H in the case of monofractal noise. This exponent is directly linked to the power

spectrum exponent of the (stationary) fluctuations of the analyzed signal by γ = 2H + 1,

where γ is the spectral exponent and H the Hurst exponent.

In Fig. B.16, the modal scaling exponent has been obtained by a linear fit over an appropriate

scaling range from a suitably defined, weighted measure M(s) for the WTMM:

h(q = 0) =
dτ(q)
dq

∣∣∣∣
q=0

= lim
s→0

M(s)
log(s)

(B10.11)

with

M(s) =

∑
Ω(s) log(Wfωi(s))

Z(s, 0)
, (B10.12)

for three electric field values E = 0.25, 0.3, and 0.35, averaged over Ns = 1000 disorder re-

alizations. Consistent with the experimental findings [ZZ93], the flicker noise region becomes
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Figure B.16: Left: M(s) versus ln s for the CDW current jcdw(t) averaged over Ns = 1000
disorder realizations and for three values of the external electric field: E = 0.25, 0.3

and 0.35 which are higher than Ec ≈ 0.22. The temperature is fixed to T = 0.1. The

dotted straight lines denote the reference slope corresponding to γ = 1.2. The dashed line

has the slope −0.5, which corresponds to the flat power spectrum of white noise γ = 0.

Right: The same, but for T = 0.3. The dotted lines denote the reference slope H = 0
corresponding to γ = 1.0. Again, the dashed line corresponds to white noise.

narrower with decreasing E. More importantly, we obtain γ ≈ 1.2 for low temperatures as

observed in experiments [ZZ93]. An asymptotic transition to the scaling regime, character-

istic to uncorrelated behavior (white noise, i.e., γ = 0) can be clearly identified for all the

values of E shown (see dashed line in Fig. B.16).

Fig. B.16 (right) shows M(s) versus ln s for jcdw(t) for three values of the external electric

field E = 0.25, 0.3 and 0.35 and T = 0.3. Our fitting gives γ = 1, which is important

from the point of view of the exact definition of 1/f -noise. In Fig. B.17, we provide the

dependence of the exponent γ on temperature. Note the convergence towards γ = 1.2 as

the temperature (and the averaged current) approaches 0. The exponent γ decays quickly

with temperature and we have the uncorrelated noise value γ = 0 at high T .

Additionally, multifractal analysis can reveal possible non-linearity of h(q) with respect to

moments q. The WTMM tree lends itself very well to defining the partition function based

multifractal analysis [ABM95].

A non-linear dependency of the scaling exponent τ(q) on the moments q is the hallmark

of multifractality, while linearity corresponds to the monofractal character of the analyzed

process.

Multifractal analysis has been performed over the range of moments −3 ≤ q ≤ 5. Fig.
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force E = 0.35.

B.18 shows a linear relationship of τ(q) on q, discovered for the CDW current, indicating

the monofractal character of the 1/fγ CDW noise. Additionally, the exponent γ = 1.2 has

been revealed through the linear dependency τ(q) = hq with H = h = 0.1 and γ = 2H + 1.

The exponent h, which in the general, multifractal case is a function of q relates to, and can

be derived from, the slope of the τ(q) spectrum: h(q) = dτ/dq. The derivative dτ(q)/dq is

thus constant for our CDW current and therefore hcdw(q) = h(q = 0) and is equal to the

Hurst exponent H of the CDW current.

The primary question remaining is that of the origins of 1/f noise in the CDW system. In

our opinion, the disorder causes the rugged energy landscape (similar to the spin glass case)

leading to a wide spectrum of relaxation times. The average over such a spectrum would give
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rise to the flicker noise. Our results shown in Fig. B.17 support this point of view. Namely,

at low temperatures the roughness of the energy landscape becomes more important and

consequently the flicker-like regime appears. Another qualitative scenario [Mil02] for the

appearance of the flicker noise in our system is that the CDW may be viewed as a single

particle in a quasi-periodic potential with troughs of variable depths. Such a simplified

model closely resembles the “many-pendula” model of the self-organized criticality [BTW87]

in which the 1/f noise should occur.
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Figure B.19: The dependence of the the scaling exponent evaluated with the direct Fourier

transform (line) exhibits a transition from white noise to brown noise with temperature

approaching 0. The exponent evaluated using WTMM with two vanishing moments (blind

to local linear trends) converges towards H = 0.1 corresponding to a spectral exponent

γ = 1.2 (see Fig. B.17).

In Fig. B.19 (dots) the dependence of the exponent γ on temperature is shown. Note the

convergence towards γ = 1.2 as the temperature (and the averaged current) approaches 0.

The exponent γ decays quickly with temperature and we see the uncorrelated noise value

γ = 0 at high T .

For comparison, the direct evaluation of the exponent of the power spectrum, using a fast

Fourier transformation, produces an inaccurate exponent due to the non-stationarity of the

CDW current; see straight line in Fig. B.19. This confirms the fact that the issue of non-

stationarity of the CDW current is of critical importance to the exponent evaluation. The

property of local ”blindness” to polynomial trends of the wavelet transformation has the

ability to evaluate the scaling exponent even in the non-stationary situation correctly.
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11 Conclusion and summary

To conclude we have shown, that in one-dimensional charge and spin density waves, Luttinger

liquids and suprafluids, quantum phase transitions between a disordered (or locked-in) phase

and an asymptotically free phase at zero temperature are destroyed by thermal fluctuations,

leaving behind a rich crossover behavior. This was demonstrated by using a full finite tem-

perature renormalization group (RG) calculation. The crossover regions were characterized

by the behavior of the phase pair correlation functions. For vanishing quantum fluctuations

our calculation was improved by an exact solution in the case of strong disorder and by a

mapping onto the Burgers equation with noise in the case of weak disorder, respectively.

Both methods gave an exponential decay of density correlations.

We have also briefly discussed, that the inclusions of Coulomb interaction may destroy the

unpinning (localization) transition at zero temperature.

The finite temperature calculation, used in this chapter, is also suited for treating the low

frequency, low temperature behavior of dynamical properties which may depend crucially on

the ratio ω/T , e.g., the frequency dependent electric conductivity. This will be postponed

to a forthcoming publication.

The combined effect of disorder and the lattice potential on the zero temperature phase

diagram, i.e., the competition between unpinning (Anderson) and lock-in (Mott) transition,

is still controversially discussed [Sha90, GDO01] and cannot be explained by the RG-results

presented here, since both perturbations become relevant for small K. However, using Imry-

Ma arguments one finds, that as soon as K is below one of the two critical values (for

the unpinning and lock-in transition) the disorder dominates the lattice potential and only

two phases exist. This is in contrast to the proposed existence of a so-called intermediate

Mott-Glass phase [GDO01].

Since the phase field can be interpreted as the phase of an order parameter in the case

of density waves, we have discussed a possible mechanism for phase-slip processes in these

systems. We find at zero temperature for high K a phase where phase-slip become relevant.

However, thermal fluctuations again destroy this phase, which is clear, since the model is

essentially the same as for the commensurate lattice potential. At zero temperature in the

presence of disorder, quantum phase-slips in CDWs lead to additional phase transitions and

shift the unpinning transition in CDWs to smaller K-values.

In the last section, we have studied the current noise in CDWs, using the classical one-

dimensional Fukuyama-Lee model and a wavelet analysis of the current, obtained from the

appropriate equation of motion. We have reproduced the experimental results on the current

noise spectrum of a quasi one-dimensional TaS3 sample. Our simulations support the exis-
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tence of 1/f -noise in this system. To the best of our knowledge, this is the first evidence of

1/f scaling obtained from first principle based simulation in a physical (i.e., CDW) system.
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C AC dynamics and surface pinning in

driven random elastic systems

1 Introduction

In this second main chapter of the thesis we study the non-adiabatic dynamics of interfaces

or domain walls in a random environment. In particular we are interested in the case of a

periodic driving force and the influence of surface potentials in the case of driven charge

density waves.

Our first aim is to develop a description of pinning phenomena in an ac-field with finite

frequency in the weak pinning limit, which is done in sections 2 and 3. As a main result

we find that the zero temperature depinning transition is smeared and shows a pronounced

velocity hysteresis. The latter has to be distinguished from the hysteresis of the magnetiza-

tion which persists also in the adiabatic case [LNP99, NPV01a]. The transition disappears

completely above a threshold frequency ωP , related to the strength of disorder. For smaller

frequencies a trace of the critical depinning can still be observed in the frequency dependency

of the velocity which shows a power law behavior. We also briefly discuss the influence of

thermal fluctuations. If the amplitude of the oscillating driving force is smaller than the zero

temperature and frequency depinning threshold hP , also the influence of avalanche motion

of the interface has to be taken into account, if the frequency is sufficiently low (section 4).

In section 5 we compare the results of our model to experimental measurements on granular

superferromagnetic materials. We calculate the complex susceptibilities numerically, espe-

cially for finite systems, based on the equation of motion for an interface and discuss the

properties of the resulting Cole-Cole representation in contrast to the measured one. We

find that the experimental system can be well described by our model.

It was a tacit assumption of these investigations that the motion of the elastic system is not

hindered by effects from surfaces or internal grain boundaries. Surface barriers are however

known to be relevant in most physical systems mentioned in chapter A. In superconductors

they prevent the penetration of new flux lines into the probe [FZR+98]. In CDWs normal

electrons have to be converted into those condensed in the CDW by a phase–slip mechanism
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which is essentially a nucleation process [BKR+00, RMAE92]. The motion of domain walls

may be hindered by a variation of the width of the sample, such that positions of minimal

width are preferred etc. Experimental [MT86b] and numerical [MT86a] studies of CDWs

with contact effects revealed hysteretic behavior of the polarization.

Therefore the second aim is to consider the effect of a strong surface pinning potential in

addition to the weak bulk random pinning, discussed in section 6. It turns out that, starting

from a flat interface, at T = 0 and increasing the driving force h to h > hP the mean

curvature C of the averaged (parabolic) displacement profile behaves as C(h) ∝ (h − hP ).
In more general situations C(h, t) exhibits a pronounced hysteretic behavior. At non–zero

temperatures C(h, t) increases with time and asymptotically reaches its behavior of the pure

system C(h) ∝ h. We further determine the reduction of the curvature in the case that

the surface is depinned due to a sufficiently large driving force or due to thermally activated

processes at the surface. The latter also mimic phase-slip processes in CDWs.

2 Model and zero frequency critical depinning

We focus on a simple realization of the problem, the motion of a D–dimensional interface

profile z(x, t) obeying the following equation of motion1 [Fei83]

1
γ

∂z

∂t
= Γ∇2z + h0 cosω0t + g(x, z) . (C2.1)

γ and Γ denote the mobility and the stiffness constant of the interface, respectively, and

h(t) = h0 sinω0t is the ac driving force. This equation of motion follows, as discussed in

section 10 of chapter B, from 1
γ

∂z
∂t = − δH

δz with the Hamiltonian

H =
∫

dDx

{
Γ
2

(∇z)2 − h · ϕ + V (x, z)
}

, (C2.2)

where V (x, z) denotes the random potential given by

V (x, z) = −
z∫

0

dz̃ g(x, z̃) . (C2.3)

The random force g(x, z) is assumed to be Gaussian distributed around zero (〈g〉d = 0) and

〈g(x, z)g(x′, z′)〉d = δD(x− x′)∆0(z − z′), where 〈. . . 〉d denotes the random average. We

further assume ∆0(z) = ∆0(−z) to be a monotonically decreasing function of z for z > 0

1We neglected an inertia term ρ ∂2z
∂t2

which is justified as long as γω0ρ ¿ 1. A velocity hysteresis due to

inertial effects has been considered by J.M. Schwarz and D.S. Fisher [SF01].
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which decays to zero over a finite distance l. Under these conditions the relation between

applied force h(t) and the average velocity
〈
ż
〉

= v in the steady state shows the inversion

symmetry h → −h, v → −v (cf. Fig. C.1). We therefore restrict ourselves to the region

h > 0 in the further discussion.

In [NSTL92, NF93, LNST97] eq. (C2.1) was considered in the adiabatic limit ω0 → 0. In

this case the interface undergoes a second order depinning transition at h = hP , where the

velocity v vanishes as a power law v ∼ (h0 − hP )β for h0 ↘ hP , β ≤ 1 (see Fig. C.1).

At h = hp the interface is self–similar with a roughness exponent ζ, 0 ≤ ζ < 1, and the

dynamics is superdiffusive with a dynamical exponent z, 1 ≤ z ≤ 2. The critical exponents

were calculated up to order ε = 4−D in [NSTL92, NF93] and recently to order ε2 in [CDW01].

They are related by the scaling laws β = ν(z − ζ) and ν = 1/(2 − ζ) [NSTL92], where ν

denotes the correlation length exponent: ξ0 ∼ (h0− hP )−ν . For h0 ↗ hP the divergence of

ξ0 is related to the increasing size of avalanches.

3 AC dynamics above the depinning threshold

In the case of an ac-drive the behavior of the system is governed by the two dimensionless

quantities h0/hP and ω0/ωP , where ωP = γhP /l. In this section we mainly focus on the case

0 < ω0 ¿ ωP and h0 > hP since this is the region where universality is expected to hold.

As illustrated by the numerical solution of eq. (C2.1) for D = 1 at finite frequencies ω0, the

sharp depinning transition is replaced by a velocity hysteresis, which has clockwise rotation:

the velocity reaches zero at h(t) = ±hc for decreasing and increasing field, respectively (see

Fig. C.1). For h0 À hP a second weak hysteresis is found in the region h > hc ≈ hP which

has anticlockwise rotation2.

3.1 Mean field solution

Before solving the full problem, it is instructive to consider the mean field version of the

equation of motion [Fis86]

1
γ̃

∂z

∂t
= Γ̃ [z0(t)− z(t)] + h(t) + g̃(z) (C3.1)

with z0(t) = 〈z(t)〉d, 〈g̃(z)〉d = 0, and 〈g̃(z) g̃(z′)〉d = ∆̃(z − z′), i.e., compared to the full

equation of motion (C2.1), the laplacian of the interface profile is replaced by z0(t)− z(t).
For weak pinning potentials, perturbation theory can be applied. In lowest non–trivial order

2A similar hysteresis loop has seen experimentally in type-II superconductors, see, e.g., [MWA+98]



C3 AC dynamics above the depinning threshold 59

-0.4

-0.2

0

0.2

0.4

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

v
(t

)

h(t)

h0=0.8, ω=0.3

h0=hP, ω=0.3

ω=0.0

hPhc

-hP

vc

Figure C.1: Numerical solution of eq. (C2.1) for a 1D interface in the dc (solid line) and ac

case (dotted line) for ω = ω0/ωP = 0.3 and h0 > hP ≈ 0.27. x is discretized in N = 1000
sites and g is random in [−0.5, 0.5]. The solution is averaged over typically 100 disorder

(g) configurations. The arrows show the direction of the hysteresis: for |h(t)| < hp it is

clockwise and for |h(t)| > hp anticlockwise. The dashed line shows the hysteresis in the

case h0 ≈ hP .

in g one obtains for the mean velocity (a short derivation of this expression can be found in

appendix E2.1)

ż0(t)
γ̃

= h(t) +
∫ ∞

0
dt′γ̃e−Γ̃γ̃t′∆̃′

(∫ t

t−t′
ż0(t′′)dt′′

)
. (C3.2)

In the case of a dc-drive h(t) ≡ h0 one finds the depinning threshold h̃p,± for h0 ≶ 0,

respectively, from the condition Γ̃h̃p,± ≡ − lim
ε→0

∆̃′(±ε). Thus, the force correlator has

to have a cusp singularity to produce a finite threshold. A reasonable ansatz for ∆̃(z) is

∆̃(z) = Γ̃h̃P le−|z|/l, but the results do not depend very much on the details of the function

∆̃(z).

To treat the case of an ac-drive it is convenient to go over to dimensionless quantities

τ = Γ̃γ̃t, x(τ) = Γ̃z(t)/h̃P , and x(τ, τ ′) ≡ x(τ)− x(τ − τ ′), from which we get

ẋ(τ) = H sinΩτ −
∫ ∞

0
dτ ′e−τ ′−|x(τ,τ ′)|/λ sgnx(τ, τ ′). (C3.3)
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Figure C.2: These plots show the numerical integration of the mean-field solution (C3.3).

(a) and (b) are phase space trajectories for H = 2.5 and a low (a) or a high (b) frequency

with λ = 1. Graphs (a) and (c) show erratic behavior in the region |H(τ)| . 1, i.e., where

the approximation for (C3.2) breaks down. The resulting velocity hysteresis curves are

shown in (d) and (e). Due to the erratic behavior no hysteretic behavior can be observed

at low frequencies.

with the dimensionless parameters H = h0/h̃P , λ = lΓ̃/h̃P , and Ω = ω0/(γ̃Γ̃). As shown

in Fig. C.2, eq. (C3.2) has erratic solutions in the region of small velocities if Ω ¿ 1 and

λ ≥ 1. The erratic behavior disappears for high frequencies Ω À 1 and can be traced back

to the sgn term in ∆̃′(z), which leads to rapidly changing force contributions in the small

velocity region. This approach also fails to reproduce the features of the velocity hysteresis

(see plots (d) and (e) in Fig. C.2). Therefore we have to employ more sophisticated methods

to explain the hysteretic behavior of the velocity.
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3.2 Scaling considerations

First we consider the relevant length scales of the problem, beginning with the case ω0 = 0.

Comparison of the curvature and the random force term on the right-hand side of (C2.1)

shows, that weak random forces accumulate only on the Larkin scale LP ≈
[
(lΓ)2/∆0(0)

]1/(4−D)

to a value comparable to the curvature force. On scales L < LP the curvature force density

ΓlL−2 is larger than the pinning force density, the interface is essentially flat and hence

there is no pinning. For L > LP pinning force densities exceed the curvature forces, the

interface becomes rough and adapts to the spatial distribution of pinning forces. The largest

pinning force density then results from L ≈ LP from which one estimates the depinning

threshold hP ≈ lΓL−2
P . For L À LP perturbation theory breaks down. The renormalization

group calculation performed in [NSTL92, NF93, LNST97, EK94, CDW01] results in a scale

dependent mobility and renormalized pinning forces.

A finite (external) frequency ω0 of the driving force acts as an infrared cutoff for the

propagation of perturbations, resulting from the local action of pinning centers on the

interface. As follows from (C2.1) [with γ → γ (L/LP )2−z for L > LP [NSTL92], i.e.,

(LP /L)2−z /γω0 = ΓL−2] these perturbations can propagate up to a length scale 3

L = Lω ≡ LP

(
γΓ

ω0L2
P

)1/z

= LP

(
ωP

ω0

)1/z

. (C3.4)

(i) In the case Lω < LP , i.e., ω0 > ωP = γΓL−2
P = γhP /l, z has to be replaced by 2

which means that γ remains unchanged. During one cycle of the ac drive, perturbations

resulting from local pinning centers affect the interface configuration only up to scale

Lω, such that the resulting curvature force is always larger than the pinning force –

there is no pinning anymore and the velocity hysteresis disappears. Random pinning

forces result merely in a slow down of the interface velocity but in no true pinning.

(ii) In the opposite case Lω > LP , i.e., ω0 < ωP , the pinning forces can compensate

the curvature forces at length scales larger than LP . As a result of the adaption of

the interface to the disorder, pinning forces are renormalized. This renormalization is

truncated at Lω.

In the following we will argue, that, contrary to the adiabatic limit ω0 → 0, there is

no depinning transition if ω0 > 0. Indeed, a necessary condition for the existence of

a sharp transition in the adiabatic case was the requirement, that the fluctuations of

the depinning threshold in a correlated volume δhP ≈ hP (LP /ξ0)(D+ζ)/2 are smaller

3The consideration of higher harmonics in the interface motion results in the existence of additional length

scales Lnω which are however of the same scale as Lω.
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than (h− hP ), i.e., (D + ζ)ν ≥ 2 [NSTL92]. For ω0 > 0 the correlated volume has a

maximal size Lω and hence the fluctuations δhP are given by

δhP

hP
≈

(
LP

Lω

)(D+ζ)/2

=
(

ω0

ωP

)(D+ζ)/(2z)

. (C3.5)
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Figure C.3: Schematic frequency-field diagram for the depinning in an ac external field (with

h0 > hP ): For 0 < ω0 ¿ ωP the depinning transition is smeared, but traces of the ω0 = 0
transition are seen in the frequency dependency of the velocity at h = hP . This feature

disappears for ω0 À ωP .

Thus, different parts of the interface see different depinning thresholds – the depinning

transition is smeared. δhP has to be considered as a lower bound for this smearing. A full

understanding of the velocity hysteresis requires the consideration of the coupling between the

different Lω–segments of the interface, which we will do further below. When approaching

the depinning transition from sufficiently large fields, h0 À hP (ω0 ¿ ωP ), one first observes

the critical behavior of the adiabatic case as long as ξ0 ¿ Lω. The equality ξ0 ≈ Lω defines

a field hco signaling a cross-over to an inner critical region where singularities are truncated

by Lω. Note that hco − hP = hP (ω0/ωP )1/(νz) ≥ δhP (cf. Fig. C.3). It is then obvious to

make the following scaling Ansatz for the mean interface velocity (h0 > hP , vP = ωP l)

v (h(t)) ≈ vP

(
ω0

ωP

) β
νz

φ±

[(
h

hP
− 1

)(
ωP

ω0

) 1
νz

]
. (C3.6)

Here the subscript ± refers to the cases of ḣ ≷ 0, respectively, and φ±[x → ∞] ∼ xβ (for

h−hP À hP the classical exponent β = 1 applies). For |x| ¿ 1, φ± approaches a constant

c±. The function φ− changes sign at a critical value hc(ω0) ≈ hP (1− c−(ω0/ωP )1/(νz)).



C3 AC dynamics above the depinning threshold 63

zi

gi(zi)
`

Figure C.4: Numerical realization of the disorder for a fixed position xi. The values of g are

chosen randomly in an interval [−0.5, 0.5] at discrete z positions with distance l = 0.1.

Between these discrete z-positions, g is interpolated linearly, resulting in a gaussian disorder

correlator with variance l, shown in Fig. C.5.
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Figure C.5: Numerical calculated disorder (g)-correlator for g ∈ [−0.5, 0.5] and l = 0.1.

To check the validity of (C3.6) we integrate (C2.1) numerically. For this, the x–coordinate

is discretized with a lattice constant α and the simulation time is measured in units of a time

τ0 (the dimensionless lattice Laplacian for D = 1 is given by ∇2ϕi = ϕi+1 +ϕi−1−2ϕi and

accordingly in higher dimensions, with lattice sites i = 0, . . . , L). α and τ0 are chosen such

that τ0γΓ
α2 = 1 and the dimensionless stochastic forces τ0γg(x, ϕ) ∈ [−1/2, 1/2] (see Figs.

C.4 and C.5). The dimensionless driving force is τ0γh.

The numerical solution in D = 1, 2 and 3 is in good agreement with the scaling Ansatz

(C3.6) as shown in Fig. C.6.

3.3 Renormalized perturbation theory

To consider the coupling between different Lω-segments, we treat model (C2.1) in perturba-

tion theory. After going over to a co–moving frame, one obtains in lowest non–trivial order
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Figure C.6: Numerical results for v(hP ), using eq. (C2.1), as a function of ω = ω0/ωP . a)

D = 1: The dashed line shows the prediction of eq. (C3.6) with β/νz = 0.17, in good

agreement with the value 0.19 found in [CDW01]. b) D = 2: The numerically found

exponent is 0.40 and from 2nd order (ε = 4 − D)-RG: 0.46 c) D = 3: β/νz = 0.52
(num.) and 0.79 from theory.

in g the following equation for the velocity v = ż0(t), with z0(t) ≡ 〈z(x, t)〉x [Fei83]:

1
γ

v(t) = h(t) +
∫ ∞

0
dt′

∫

p

〈
g̃′p

(
z0(t)

)
g̃−p

(
z0(t− t′)

)〉
d
γe−Γγp2t′

≡ h(t) + r0(t). (C3.7)

Here
∫
p =

∫ dDp
(2π)D and g̃p(z) =

∫
dDx eipxg(x, z). Replacing the pair correlator of the

random forces by ∆0(z0(t, t′)) where z0(t, t′) =
∫ t
t−t′ dt′′ v(t′′) we get

r0(t) ∼
∫ ∞

0
dt′(1 + ωP t′)−D/2∆′

0

(
z(t, t′)

)
, (C3.8)



C3 AC dynamics above the depinning threshold 65

which results in corrections to the driving force and to the mobility which are in general non–

local in time. If we assume that ∆0(z) is an analytic function of its argument, it is easy to

show that for ω0 À ωP , r0(t) is of the order (ωP /ω0)2 and hence small (see appendix E2.2).

In this parameter region the pinning potential merely slows down the motion of the wall in

agreement with the result of our scaling considerations. In the opposite case, ω0 ¿ ωP ,

perturbation theory breaks down. To treat this frequency region, it is instructive to consider

first the case of a dc-drive, h(t) ≡ h0, where the velocity is constant and hence z(t, t′) = vt′.
The t′–integral in (C3.8) leads to a correction of the mobility which diverges as (l/v)(4−D)/2

for v → 0 and D < 4. This divergence can be removed by a renormalization group treatment

developed in [NSTL92, NF93, LNST97] (summarized in appendix E2.3). As a result of the

elimination of the Fourier components zp′ with |p| < |p′| < L−1
P from eq. (C2.1), γ and

∆0(z) are replaced there by the renormalized quantities

γ(p) ' γ(pLP )−2+z , (C3.9a)

∆p(z) ≈ K−1
D (Γl/Lζ

P )2p4−D−2ζ∆∗ (
z(pLP )ζ/l)

)
. (C3.9b)

∆∗(x) exhibits a cusp-like singularity at x = 0 which develops on scales larger than LP . In

particular, ∆∗(x) ≈ 1 − √ε− 2ζ|x| + (ε − ζ)x2/6 + O(|x|3) for |x| ¿ 1 [NSTL92, NF93,

LNST97] and ∆∗e−∆∗ = e−1−x2/6 for x À 1 [Fis86]. The renormalized disorder correlator

is shown in Fig. E.5 in appendix E2.3.

In this way one generates a renormalized equation of motion which serves as starting point

for a convergent perturbative expansion. The replacements (C3.9a), (C3.9b) are valid for

momenta ξ−1 < p < L−1
P where ξ denotes the correlation length ξ0 of the zero frequency

depinning transition. In the spirit of the renormalization group treatment, fluctuations on

scales larger than ξ can be neglected since they are uncorrelated. To get the lowest order

corrections in the convergent expansion, one has to replace the bare quantities by the renor-

malized ones in eq. (C3.7). This leads in the limit v → 0 to r0 = hP ∆∗′(0+)/(2−ζ) ≡ −h̃P

which is the RG result for the threshold value h̃P . Replacing γ by γ(ξ−1) on the left-hand

side of eq. (C3.7), one obtains the correct result for the critical behavior of the velocity:

v ≈ γ(ξ/LP )2−z(h− h̃P ) ≈ vP

[
(h− h̃P )/h̃P

]β
.

In the case of an ac-drive the velocity v(t) is periodic with 2π/ω0. In each cycle of h(t)
the velocity goes through a region of small values, in which perturbation theory gives a

contribution to γ−1 proportional to
(
l/v(t)

) 4−D
2 as long as the period is large compared to

l/v(t). The cutoff tc of the t′–integration is given by the approximate relation t−1
c ≈ ω0 +

v(t)/l. These contributions are still large at ω0, v(t) → 0. This breakdown of perturbation

theory can be overcome by using the RG results discussed above on intermediate length scales
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as in the dc case. Such a procedure is justified for momenta in the range L−1
P > |p| À ξ−1,

where ξ is now the minimum of ξ0 and Lω. At these scales the interface is still at criticality.

Since ξ0 depends via h(t) on time and eq. (C3.7) includes retardation effects, a time

dependent cutoff complicates the problem. Therefore we will restrict our consideration to

the inner critical region where ξ ≈ Lω; i.e., |hP − h| < hP (ω0/ωP )1/νz. The renormalized

effective equation of motion follows from (C3.7) with the replacements (C3.9a) and (C3.9b)4:

v(t)
γ(L−1

ω )
= h(t)+hP ωP

∫ ∞

0
dt′

∫ 1

L̃−1
ω

dp̃p̃1+z−ζe−ωP p̃zt′∆∗′
(∫ t

t−t′
dt′′v(t′′)p̃ζ/l

)
, (C3.10)

with L̃ω = (ωP /ω0)1/z and p̃ = pLP . Using this form of the equation of motion, we can

explain the hysteresis appearing for |h| < hP (cf. Fig. C.1) more detailed. First we consider

ḣ < 0: At hc the sign of the velocity changes although the driving force is still positive.

This can be understood as follows: until time t = tc, with h(tc) = hc, the velocity was

positive during half a period, hence the argument of the ∆∗′ function is positive. Therefore

the second term of the right-hand side of eq. (C3.10) is negative and cancels the positive

driving force. Furthermore it is clear from this statement that hc decreases with increasing

amplitude h0, which can also be seen in Fig. C.1.

z(x,h=h
1>0)

z(
x
,0

<h
<h

1
)

h<hP

L
V

Figure C.7: Illustration of the

process at hc: A piece of the

interface stopped to move in

the (positive) h-direction at a

driving force h1 (solid line).

Since we consider the case ḣ <

0 the elastic forces can flatten

out the interface at a later time

(dashed line) resulting in a neg-

ative (local) velocity.

4We neglect here contributions from momenta larger then L−1
P which are expected to have a small effect if

ω0 ¿ ωP .



C3 AC dynamics above the depinning threshold 67

Physically the fact that the velocity becomes negative below hP , even though the driving

force is still positive (if ḣ < 0), can be seen in the following way: Since we are below hP ,

some pieces of the interface are already pinned, while others can still move, because the local

depinning field can be lower than the global one and we are considering the non-adiabatic

regime. At hc the following mechanism becomes dominant: Consider a piece of size L of

the interface which has certain protrusion in z-direction which stopped to grow at a certain

field value h(t1) = h1 < hP (see solid line in Fig. C.7). Since ḣ < 0, the field is smaller

at a later time and the elastic forces then can shrink the protrusion, because they favor a

flat interface, which results in a local negative velocity and therefore below hc to a global

negative velocity of the interface (see also illustration in Fig. C.7).

To solve eq. (C3.10) analytically, we consider a parameter region where the argument of

∆∗′(x) is small compared to unity; i.e., ∆∗′(x) ≈ ∆∗′(0+) sgn(
∫ t
t−t′ dt′′v(t′′)). One can

show a posteriori that this condition is satisfied if h0 = O(hP ). With this approximation

the momentum integral in (C3.10) can be calculated, and we get (for details see appendix

E2.4):

v(t)
γL̃2−z

ω

≈ h(t)− h̃P

νz

[
S(t, ωP )− L̃

− 1
ν

ω S(t, ω0)
]

. (C3.11)

Here S(t, ω) ≡ ∫∞
0 dτ τ−δΓ̃δ(τ) sgn z0(t, τ/ω), δ = 1/(νz)+1, and Γ̃δ(τ) ≡ Γδ(0)−Γδ(τ),

where Γδ(τ) =
∫∞
τ dt tδ−1e−t. z0(t, τ/ω) changes its sign at t = t0 + nπ/ω0, n ∈ Z. The

dominating part to S(t, ω) comes from τ < O(1). To solve this integral equation for h ≥ 0
and ω0 ¿ ωP , we note, that the sign of z0(t, τ/ωP ) is always positive for τ < 1 and hence

S(t, ωP ) ≈ νz. For t . tc also z0(t, τ/ω0) > 0 for the dominating small τ region of the

τ -integration in S(t, ω0). This leads to φ−(x) ≈ c−+x, c− ≈ S(tc, ω0)/νz. By decreasing t,

S(t, ω0) is diminished since regions with negative z0(t, τ/ω0) contribute increasingly, which

in turn explains the second weak hysteresis observed in Fig. C.1 [MWA+98]. Next we

consider the region t & tc, i.e., h < hc, v < 0. By increasing t, S(t, ω0) is reduced

with respect to S(tc, ω0) which leads to a positive curvature of v(h) for ḣ < 0. Although

that region is beyond the scope of our RG calculation, since retardation effects require

to consider the avalanche motion in the region h < hc, it is then tempting to conclude

|v(h = 0, ḣ < 0)| = O(ω0/ωP )β/νz. For large negative values of h, v(h) has to reach again

the result of the adiabatic limit. Together with the inversion symmetry this explains the

inner hysteresis.

To show that this result holds in higher dimensions we have solved the equation of motion

also for D = 2 (with discrete interface size 10002) and D = 3 (size 1003) numerically. The

resulting velocity hysteresis for h0 > hP are plotted in Fig. C.8. One sees that the double

hysteresis persists in higher dimensions and that the influence of the disorder becomes smaller
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Figure C.8: Velocity hysteresis curves for D = 1, 2, 3. The equation of motion (C2.1) was

solved numerically for interface sizes 5000, 10002 and 1003, respectively.

(e.g., hP decreases).

3.4 Thermal fluctuations

Next we briefly consider the influence of thermal fluctuations on the force - velocity relation,

restricting ourselves to the low temperature region T ¿ TP = Γl2LD
P , TP is a typical pinning

energy. (i) In the adiabatic limit and for |h0 − hP | ¿ hP , the velocity obeys the scaling

relation v(h, T ) = (h− hP )βψ
[
(h− hP )θ/T

]
where θ is a new exponent which depends on

the shape of the potential at the scale LP [Mid92]. For ω0 > 0 one can extend the scaling

relation (C3.6) to a second scaling field h−hP
hP

(
TP
T

)1/θ
and one finds in particular for h ≈ hP

v(hP , T ) ≈ vP

(
ω0

ωP

) β
νz

φ̃±

[(
T

TP

) 1
θ
(

ωP

ω0

) 1
νz

]
, (C3.12)

with φ̃±[x → ∞] ∼ xβ and φ̃±[x → 0] ∼ c̃±. The thermal smearing of the zero frequency

depinning transition is still seen at finite ω0, as long as ω0 < ωT (hP ) ≈ ωP

(
T
TP

)νz/θ
. On
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the other hand for small fields, h ¿ hP , the domain wall shows creep behavior

v(h, T ) ≈ vP e
−TP

T

�
hP
h

�µ

, µ =
2ζ̃ + D − 2

2− ζ̃
,

where ζ̃ denoted the equilibrium roughness exponent [IV87]. (ii) It was shown in [NPV01a],

that the creep law is valid also at finite frequencies as long as

ω0 ¿ ωT (h) ≈ ωP e
−TP

T

�
hP
h

�µ

, h ¿ hP .

For ω0 > ωT (h) and h0 ¿ hP thermal effects are inessential. Thus, in the region ω0 ¿
ωT (h) (Fig. C.3) the force - velocity relation is that of the adiabatic case at finite tempera-

ture.

4 Dynamics below the threshold

Up to now we focused on the case h0 > hP . In this section we briefly discuss the non-

adiabatic motion of the system in the case, when the amplitude of the driving force is

smaller than the zero temperature depinning threshold.

In Fig. C.9 the numerical solution of the equation of motion (C2.1) is shown in form of the

velocity hysteresis for D = 1. Note, that all hysteresis loops are cycled through in clockwise

direction. In plot (a) the frequency is well below the pinning frequency ωP (ω0/ωP = 0.01).

If the amplitude is not too low one sees a pronounced ”bump” in the velocity hysteresis curve

when the driving force reaches its maximum or minimum value for increasing or decreasing

field, respectively, which is related to the appearance of avalanches in the system [see also

(d) in Fig. C.9]. This effect becomes weaker if the amplitude is lowered at fixed frequency

or disappears completely for very high frequencies [see (b) and (c) in Fig. C.9]. For high

frequencies one also sees that the hysteresis loop gets a phase-shift of π/2 compared to the

low frequency loop and becomes narrower with increasing frequency and finally goes over to

v(t) = γh(t) for ω0 →∞.

In order to understand this process physically, we can start with the case of a dc-drive in the

non-adiabatic regime.

4.1 Constant driving force

First, we consider the case ω0 = 0 and T = 0. In the adiabatic case, this is the pinned

region and therefore simply v ≡ 0.
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Figure C.9: Velocity hysteresis loops below threshold for D = 1. Hysteresis loops for very

low (a) (ω = 0.01) and high frequencies (b) (ω = 5.0 and ω = 20.0). For each frequency

the amplitude was chosen such that h0/hP ≈ 2/3 and h0/hP ≈ 1/3. (c) For h0 = 0.1
and (d) for h0 = 0.2, both at frequencies ω = 0.01, 0.1, 1.0.

Here, we start with an arbitrary equilibrium configuration of the interface without an applied

driving force. At time t = 0 a constant driving force h0 < hP is switched on and the interface

moves to a new (pinned) equilibrium position by avalanche processes.

The numerically found time dependence of the averaged velocity for a one-dimensional in-

terface is shown in Fig. C.10.

Empirically, the decay of the mean interface velocity can be fitted by

v(t) ≈ h0e
−
√

t/t0(hp−h0) ,

if h0 is not too close to hP . This form is reasonable in the sense, that it decays with time and

the typical decay time increases if one comes closer to the depinning field. In the simulation

of the one-dimensional interface the parameters are: hP ≈ 0.27 and t0 ≈ 0.1.

For a complete theoretical explanation, one has to know the statistics for the avalanches,
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Figure C.10: Time dependence of the interface velocity for different dc-driving forces if one

starts at time 0 with an arbitrary equilibrium interface configuration for h = 0. The fitted

behavior is v(t) ≈ h0e
−
√

t/t0(hp−h0) with hP ≈ 0.27 and t0 ≈ 0.1.

i.e., the probability to create an avalanche of a certain size at a given time, which also takes

into account the history of the system. This task is still open and a forthcoming project.

4.2 (Linear) increasing driving force

Now we go over to the case of an increasing driving force. From the full numerical solution

in the steady state, shown in Fig. C.9, we see, that the contribution of avalanches also

increases with increasing driving force if h > 0. Again, we start with an equilibrium interface

configuration without driving force, but now increase the driving force from 0 at times t ≤ 0
to h0 at a certain time t0 > 0. In Fig. C.11 the resulting velocities for h(t) = h0 sin(π/2·t/t0)
and h(t) = h0t/t0 for a one-dimensional interface are shown (with h0 = 0.15 and t0 = 50).

One sees, that the velocity increases in the case of a linear increasing field until we stop the

increase at time t = t0, on the other hand we find that in the case of a sinusoidal increasing

field, the velocity already decays even before the maximal value h0 is reached [Fig. C.11

(left)], which can be seen even better in a plot v vs. h [Fig. C.11 (right)]. Qualitatively this

behavior fits very well with the avalanche region of the steady state velocity hysteresis [Fig.

C.9 (a)], if one neglects the initial virgin curve, observed in Fig. C.11.
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Figure C.11: Left: Time dependence of the interface velocity for linear and sinusoidal

increasing driving force. Right: v(t) vs. h(t). In both cases h0 = 0.15 and t0 = 50. The

velocities are averaged over 10000 disorder realizations.

4.3 AC driving

After the observations of the previous two section, we can now try to get a complete physical

picture of the non-adiabatic effects below the depinning threshold.

In the ac-case, we can identify different regions in the h0 – ω0 space below hP , shown in

Fig. C.12, which extents the picture for h0 > hP shown in Fig. C.3.

The different regions can be characterized as follows:

(i) asymptotically free motion for ω0/ωP À 1: For very high frequencies the motion of the

interface is essentially free in a local minimum of the pinning potential. The frequency

is so high, that the time for propagation in one direction is too small to ”climb up” the

energy barriers. For ω0 →∞ the velocity is given by v(t) = γh(t). See also discussion

in section 3.2.

(ii) frequency creep motion without avalanches for ωa(h0) < ω0 < ωP : The time ta which

is needed to perform a typical avalanche sets another frequency scale ωa(h) and can

be estimated as

taωP ≈ (La/LP )z ≈ (hp/h)z/(2−ζ) , (C4.1)

where La ≈ Lp(hp/h)1/(2−ζ) is the typical avalanche size [NPV01a]. This means

that for ta > 1/ω0 avalanches cannot develop and therefore do not contribute to

the motion of the interface. The crossover to the avalanche region is given by the

frequency ωa(h) ≈ ωP (h/hp)νz.



C4 Dynamics below the threshold 73

h0

ω0

hP

asymptotic free

motion

cr
ee

p 
m

ot
io

n
avalanches

ωa(h0)

ωP

Figure C.12: Regions in h0 - ω0 space. Above ωP the motion of the interface is essentially

free, since it only moves in one minimum of the pinning potential. Below ωP one finds

a region where disorder is relevant, but the frequency is too high to allow for avalanches

(frequency creep motion). Below a frequency ωa(h0) one can identify a region where the

motion is dominated by avalanches.

Therefore the motion for ωa < ω0 < ωP can be seen as motion in an energy minimum

of the pinning potential, where the interface can ”follow” the driving force (mechanical

motion). This means that the velocity becomes zero as soon as the driving force

becomes maximal, resulting in an elliptical velocity hysteresis. We can assume that

the velocity semi-axis of this ellipse scales as v(h = 0) ∼ γh0(ω0/ωP )κ. In Fig.

C.13 the maximum velocity (which is given by vmax ≈ v(h = 0) in the region under

consideration) is plotted versus the amplitude [left, cf. also scaling ansatz in (C3.6)]

and frequency (right) showing, that κ is approximately 1.

Using this information, a reasonable interpolation formula to the asymptotically free

regime is given by

v(t) ≈ γh0

(
ω0/ωP

ω0/ωP + 1

)κ

sin
(

ω0t +
π

2
1

(ω0/ωP )α + 1

)
, (C4.2)

where κ ≈ 1.

A plot of this function is shown in Fig. C.14 and can be compared to the simulation

result for D = 1 plotted in Fig. C.9 (b) and (c).
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Figure C.13: Left: h0-dependency of the maximum velocity for low h0 and various ω. The

marks show the data from the simulation yielding a linear fit with slope 1. Right: ω-

dependency of the maximum velocity for various h0. The simulation data can also be

fitted linearly with slope κ = 0.95. Both plots are in the frequency creep region, although

one already sees the effects of avalanches for ’high’ h0 and low frequencies in the left plot.

v(t) has the following properties:

(a) For ω0 →∞ the prefactor of the sine-function becomes just γh0 and the phase-

shift in the argument becomes zero, i.e., v(t) ≈ γh(t)

(b) For ω0 → 0 the prefactor becomes γh0(ω/ω2)κ and the phaseshift π/2, which

describes the elliptical velocity hysteresis and gives the scaling for the velocity

semi-axis.

(c) Is zero for ω0 = 0, since this is the pinning regime.

The velocity for h(t) = 0 is then given by

v[h(t) = 0] ≈ γh0

(
ω0/ωP

ω0/ωP + 1

)κ

sin
(

π

2
1

(ω0/ωP )α + 1

)
(C4.3)

Simulation results and fits to this expression are shown in Fig. C.15, yielding κ ≈ 0.94
and α ≈ 1.15, and therefore confirming (C4.3) very well.

(iii) non-adiabatic avalanche motion for ω < ωa: We consider the case h > 0: If h

increases, one can expect the same behavior of the velocity as described in section

4.2 (except the virgin curve, which has to be replaced by an interpolation to the

elliptical part for h < 0). After the driving force reached its maximum, the motion
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Figure C.14: Plot of eq. (C4.2) for h0 = 0.1 and various frequencies (κ = α = 1).
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values for κ and α obtained from the log-log fit. Right: log-log plot with linear fits for

low (slope κ ≈ 0.94) and high (slope −α ≈ −1.15) frequencies.

for ḣ < 0 of the interface can be described by the mechanical motion observed in the

case ωa < ω0 < ωP , i.e., only the elliptical part of the velocity hysteresis is developed.

Together with the inversion symmetry this qualitative picture is in good agreement

with the simulation results, shown in Fig. C.9 (a).

We now have a qualitative physical picture of the effects below the depinning threshold.
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However, for a complete theoretical description one needs an understanding of the statistics

of non-adiabatic avalanches, as already mentioned.
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5 Susceptibilities of finite systems: A numerical study for

granular superferromagnetic CoFe/Al2O3

In this section we present numerical studies of the complex ac magnetic susceptibilities, mo-

tivated by recent experiments on the superferromagnetic (SFM) system [Co80Fe20(1.4 nm)/

Al2O3(3 nm)]10 [KPB+01, CSK+02] being a realization of a densely packed ensemble of

ferromagnetically (FM) interacting nanoparticles (see Fig. C.16).

Figure C.16: Picture taken from Ref. [KPB+01]: (a) Schematic cross section of a discon-

tinuous metal-insulator multilayer system (DMIM) consisting of substrate, Al2O3 layers

of thickness 3 nm and CoFe layers of thickness t forming quasispherical nanoparticles,

and (b) transmission top view electron micrograph of a CoFe(t = 1.3nm)/Al2O3(3nm)
bilayer, where dark circles indicate CoFe nanoparticles embedded into gray-scaled Al2O3.

While individual single-domain FM nanoparticles exhibit superparamagnetic (SPM) behav-

ior [Née49, Bro63, DFT97, GP00], very different kinds of phenomena can be observed in

interacting ensembles, depending on the type and strength of interactions. Dipolar interac-

tions become relevant up to a temperature of approx. 100K, since the magnetic moment

is of the order 5000µB, while the particle distances are of the order 1–10nm. The complex

ac susceptibility, χ′ − ıχ′′, reveals that the dynamical magnetic behavior can be explained

within the concept of domain wall motion in an impure ferromagnet [CSK+02, PCS+04a].

That means, the granular system behaves like a thin FM film, only with the difference, that

the atomic moments are to be replaced by ’super-moments’ of the individual particles. This

arises from the Cole-Cole plot, χ′′ versus χ′ [CC41]. Hence we will focus on the Cole-Cole

representation and compare it to that found experimentally.
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5.1 Complex ac susceptibilities and Cole-Cole representation

Magnetic systems exhibiting relaxational phenomena can be characterized by the complex

ac susceptibility. The time dependent complex ac susceptibility is defined as

M(t) = χ̃(t)H(t) , (C5.1)

with the complex external ac-field H(t) = −ıh0e
ıω0t, [h(t) = <(H(t))], and the complex

magnetization M(t). In this section we study the time independent term of the Fourier series

for χ̃(t)

χ̃n =
1
T

T∫

0

dt χ̃(t)eıΩnt , (C5.2)

with Ωn = 2πn/T and T = 2π/ω0 = 1/f , namely:

χ ≡ χ′ − ıχ′′ = χ̃0 =
1
T

T∫

0

dt χ̃(t) . (C5.3)

This defines the real and imaginary part of χ, χ′ and χ′′, respectively, as follows

χ′(ω0) =
1

h0T

T∫

0

dtM(t) sin(ω0t) (C5.4a)

χ′′(ω0) = − 1
h0T

T∫

0

dtM(t) cos(ω0t) . (C5.4b)

Or equivalently - if we define χ̃(t) = dM(t)
dH(t) = Ṁ(t)

(
dH
dt

)−1
:

χ′(ω0) =
1

2πh0

T∫

0

dt Ṁ(t) cos(ω0t) (C5.5a)

χ′′(ω0) =
1

2πh0

T∫

0

dt Ṁ(t) sin(ω0t) , (C5.5b)

where Ṁ(t) ∝ v(t), the (mean) domain wall velocity, which is a function of the external

field h and temperature T .

One way of presenting the data for the complex susceptibility is the Cole-Cole or Argand

representation. The imaginary part is plotted against the real part of the susceptibility,
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χ′′ versus χ′ [CC41, Jon83]. It can serve as a fingerprint to distinguish different mag-

netic systems by their dynamic response. E.g., a monodisperse, i.e., all particle have the

same volume V , non-interacting ensemble of SPM particles has exactly one relaxation time,

τ = τ0 exp(KV/kBT ) [Née49, Bro63], where K is an anisotropy constant, and will display a

semicircle with the center on the χ′-axis. This can easily be derived from an analytic expres-

sion for the ac susceptibility for a monodisperse SPM ensemble with a random distribution

of the anisotropy axis directions [ADJ+97]: The authors of this paper derive the following

expression for the real and imaginary part of the susceptibility

χ′(ω0) = µ0
M2

s

3K

[
1 +

KV

kBT

1
1 + (ω0τ)2

]
,

χ′′(ω0) = µ0
M2

s

3
V

kBT

ω0τ

1 + (ω0τ)2
,

where Ms is the saturation of maximum magnetization.

Defining α ≡ µ0M
2
s /3K and σ ≡ KV/kBT and eliminating ω0 one gets

χ′′ =

√(ασ

2

)2
−

(
χ′ − α(2 + σ)

2

)2

, (C5.6)

which describes a circle with the radius r = ασ/2 and center at (α(2 + σ)/2;0) in the

Cole-Cole plane.

In the case of a particle size distribution and hence a distribution of relaxation times the Cole-

Cole semicircle is expected to be shifted downward [Jon83]. Extremely high poly-dispersivity

is found in spin glass systems, where the distribution of relaxation times is expected to

become infinitely broad [Myd93]. Fig. C.17 shows an experimentally obtained Cole-Cole plot

for the system [Co80Fe20(0.9 nm)/ Al2O3(3 nm)]10 at different temperatures, T = 50, 55

and 60 K [PSB+03], which gives a hint to the multi-dispersivity of the sample.

5.2 Numerical methods

We study the complex ac-susceptibility in two different approaches: an adiabatic approach,

based on the velocity of interfaces for dc-driving and a non-adiabatic, approach based on

the full equation of motion (C2.1), which both will be explained in detail in the following

sections.
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Figure C.17: Experimentally obtained Cole-Cole plot for the system

[CoFe(0.9 nm)/Al2O3(3 nm)]10 at three different temperatures, T = 50, 55 and

60 K (Ref. [PSB+03]).

5.2.1 Adiabatic approach

For the first approach, we use the expression for the mean domain-wall velocity in the

adiabatic dc-driving regime, given in Ref. [NPV01b], which interpolates between the creep

regime and sliding motion,

v(h0, T ) =

{
γh0F (x, y) for h0 6= 0,
0 for h0 = 0,

(C5.7)

where x = h0/hp, y = Tp/T , with the driving force h0, depinning field hP (at T = 0) and

a typical pinning energy TP , γ the mobility coefficient, and

F (x, y) =
Θ(1− x)

1 + (yx−µ)β/θ
exp

[
yx−µ(1− x)θ

]
(C5.8)

+Θ(x− 1)

[
1

1 + (yx−µ)β/θ
+

(
1− 1

x

)β
]

.

Here Θ(x) is the step function and µ, β, and θ the relevant critical exponents [NPV01b].

The dynamics of the domain wall is determined by the equation of motion

ż = v(h(t)) , (C5.9)

where z is the mean displacement from a flat starting configuration of the interface with

0 ≤ z ≤ Lz and Lz being the length of the sample in z-direction. Compared to the

experiment this would be a in-plane direction of the sample. Hence the magnetization is
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M(t) = Ms

(
2z(t)
Lz

− 1
)
∈ [−Ms,Ms] , (C5.10)

where Ms is the maximal magnetization of the system.

5.2.2 Non-adiabatic approach

Since equation (C5.7) was obtained for an adiabatically changing field, it can only be used

as an approximation, if the frequency is sufficiently small, ω0 ¿ ωT (H) (see section 3.2, Fig.

C.3). One should also note, that the above approach does not hold at T = 0 and h0 < hP ,

since the velocity v, and therefore χ would be zero below hP . But we found, that for ω0 > 0
the depinning transition is smeared out and hence v 6= 0.

In order to include the non-adiabatic effects (e.g., the hysteresis of the velocity), one has to

start with the underlying equation of motion (C2.1), sometimes also referred to as Edwards-

Wilkinson equation [EW82]. Here we study the experimentally relevant case D = 2.

Note, that eq. (C2.1) is written for zero temperature. For finite temperatures an additional

thermal noise term η(x, t) has to be added to the right-hand side of (C2.1). On the other

hand, the relaxation times for the domain-wall creep at low temperatures are very long

(À ω−1
0 ) and we consider only finite (not exponentially low) frequencies, such that we can

concentrate on the zero temperature equation of motion, since we have shown that thermal

effects are not essential if the frequencies are not too low (section 3.4).

In this section we will focus on the numerical solution of this equation for finite (Lz < ∞)

systems. In this case, the interface will hit the boundary of the system for low enough

frequencies, such that the magnetization will saturate (−Ms ≤ M ≤ Ms). Therefore we

introduce the critical frequency ωc or fc, which depends on Lz (defined by Lω ≈ Lz, i.e.,

ωc ≈ ωP (LP /Lz)z), above which the system behaves like an infinite system, i.e., the interface

does not reach the system boundary since Lω < Lz, and below which the magnetization

saturates (Lz > Lω).

For the numerical integration of (C2.1) we use the same discretization and disorder realization

as introduced in section 3.2. In the next section we compare the results from both approaches

to the experimental measurements. Note, that we use ”real” frequencies f , instead of angular

frequencies ω0 in the following.

5.3 Comparison to the experiment

Fig. C.18 shows an example of a magnetization hysteresis loops from simulations within

approach 5.2.1 at T/Tp = 1.5 and h0/hp = 1.5, at different frequencies f = 0.001 (a), 0.01
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Figure C.18: M/Ms vs. h curves from simulations of a domain-wall in the adiabatic regime

with T/Tp = 1.5, h0/hP = 1.5, γ = 1.0, µ = 0.24, θ = 0.83, and β = 0.66 at different

frequencies f = 0.001 (a), 0.01 (b), 0.1 (c), and 1.0 (d).

(b), 0.1 (c), and 1.0 (d) (in dimensionless units, see 3.2). The values for the parameters

and critical exponents are taken from the literature, i.e., γ = 1.0, µ = 0.24 [LFC+97],

θ = 0.83 [NSV90b] and β = 0.66 [RHL+99]5. With increasing frequency the hysteresis

loop broadens until it becomes elliptically shaped above f = 0.1, loosing also its inflection

symmetry. Similar results are found in experiments [CSK+02, RFMLDB02].

The ac-susceptibility of such hysteresis cycles can be calculated from equations (C5.4a) and

(C5.4b). In Fig. C.19 the obtained data is shown for a specific set of values, T/Tp = 0.5
and h0/hp = 0.8. In (a) one finds the real and imaginary part of the ac susceptibility, χ′ and

5Note, that the selection of values does not have a significant influence on the behavior under consideration

here, especially the qualitative picture does not change.
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Figure C.19: (a) ac susceptibility, χ′ and χ′′ vs. ac frequency, f , at T/Tp = 0.5, h0/hp =
0.8 for γ = 1.0, µ = 0.24, θ = 0.83, and β = 0.66. (b) Same data, but plotted in the

Cole-Cole representation, χ′′ vs. χ′. The solid line represents a least square-fit of the low-

frequency data to a circle. The arrow shows in the direction of increasing frequencies.

χ′′, as function of the ac frequency. The real part shows an order-parameter like behavior

with non-zero value below fc ' 0.02, and vanishing value above fc and the imaginary part

has a peak around fc.

In the Cole-Cole plot this transition appears as a sharp change of the slope and curvature. At

low frequencies, f < fc one observes a quarter-circle with center on the χ′ axis [Fig. C.19 (b)].

This corresponds well to the experimental result [CSK+02, PCS+04a] shown in Fig. C.20 and

suggests the existence of one effective relaxation time in the system. However, for f > fc

only a vertical line can be observed. This result differs from that found in experiment,

where the high-frequency part is characterized by a convex shape and finite positive slope.

This discrepancy is related to the breakdown of this simple adiabatic approach in the high

frequency regime.

By comparison of the susceptibility data to the corresponding hysteresis loops, one finds,

that f = fc marks the transition between loops saturating at high fields (low-f) and those,

which do not saturate (high-f). In the second case, the domain wall is always in motion

throughout the entire field cycle. The real part is then zero, whereas the imaginary part has

a 1/f dependence [Fig. C.19 (a)], which was also suggested in Ref. [CSK+02]. Note, that

for any velocity function v = v(H) with v(H) = −v(−H) and without velocity hysteresis

it follows, that χ′ = 0 and χ′′ ∝ 1/f . This can easily be seen from Eqs. (C5.5a), (C5.5b),
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Figure C.20: Experimental Cole-Cole plot taken from Ref. [CSK+02] showing χ′′ vs. χ′

obtained on the SFM granular system [CoFe(1.4nm)/Al2O3(2nm)]10.

and Ṁ ∝ v. It means, that no linear part can be found in the Cole-Cole plot by considering

only the adiabatic motion of one domain wall.

To improve the model, one has to employ a more realistic description of the domain wall by

using the above introduced approach 5.2.2, which we are going to discuss now.

In Fig. C.21 the results for the magnetization hysteresis of a domain wall from eq. C2.1 for

h0 = 0.5 are shown (hp ≈ 0.27). The plots (a) to (c) show hysteresis loops for different

frequencies in the case, when the domain wall never touches the sample boundary. At low

frequencies one finds a symmetric loop with respect to the M axis (a) similar to the result

shown above in Fig. C.18(d). This symmetry is lost upon increasing the frequency [(b)

and (c)] and the loop becomes tilted. This tilting is responsible for a non-vanishing real

part of the ac susceptibility and cannot be observed in the adiabatic approach 5.2.1. The

tilting corresponds to the appearance of the velocity hysteresis. That means, there exists no

functional relationship between the velocity and the field anymore, as it is the case in the

adiabatic regime.

The resulting susceptibilities are plotted in Fig. C.22. In (a) and (b) the real and imaginary

part vs. lg(f) and the corresponding Cole-Cole plot, respectively, are shown for an infinite
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Figure C.21: M vs. h curves from simulations of the equation of motion (C2.1) with

h0 = 0.5 and different frequencies, ω = 0.01 (a), 0.5 (b), and 3.0 (c), where the domain

wall does not touch the boundaries. (d) shows the magnetization curve for ω = 0.01 with

the domain wall touching the boundary, including the virgin curve.

system (Lz → ∞), when the domain wall never touches the boundary. In (c) and (d) the

same plots are shown for a finite system (Lz = 8.0). While the low-frequency parts resemble

those from approach 5.2.1, the high-frequency part shows a completely different behavior.

For χ′ → 0 we find in the Cole-Cole plot (inset in Fig. C.22 (d)) a convex shaped curve

similar as in the experiment (Fig. C.20). One can expect that χ goes to 0 with ω0 → ∞,

since the velocity hysteresis disappears for ω0 → ∞. Obviously the more realistic second

model is capable to describe the behavior found experimentally. However, two drawbacks

still exist. First, the Cole-Cole plot from the simulation shows a rather steep and narrow

increasing part compared to the experiment. Second, we cannot retrieve the saturating part

for maximum frequencies, where the imaginary part becomes constant, which was suggested

in [CSK+02] (see Fig. C.20, inset).

There are several ways to improve the model for a better description of the experimental

situation, e.g.:

• We have simulated only one domain wall. More realistic would be a multi-domain
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Figure C.22: Real and Imaginary part of the ac susceptibility vs. frequency, calculated

with the equation of motion (C2.1) for only high frequencies (a) and a wide frequency

spectrum (c). All simulations were performed with h0 = 0.5. Plots (b) and (d) are the

Cole-Cole plots corresponding to the data shown in (a) and (c), respectively. The inset in

(d) shows the high frequency behavior in more detail. Again the arrows show in direction

of increasing frequencies.

model with many (isolated) domains of different sizes. In this case each domain would

have another fc, such that the rather sharp drop of χ′ at fc for one domain would

be smeared out, leading to a more realistic scenario of the Cole-Cole plot for high

frequencies.

• Additional to this multi-domain model, one could take interactions of the domain

walls into account. Unfortunately this requires mayor modifications of the equation of

motion (C2.1), e.g., inclusion of ”overhangs”, which cannot be described in terms of

the displacement field z.

• Inclusion of thermal noise in the equation of motion (C2.1) might decrease χ′′ at low

frequencies faster, leading to an expansion of the convex high-f region compared to

the low-f region.
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It would be interesting to study the effect of those modifications, which we will postpone to

a future work.
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6 Displacement profile of charge density waves and domain

walls at critical depinning

In this section we consider the effect of strong surface potentials on the motion of an

interface in a random medium. As already mentioned, we are especially interested in the

case of charge density waves, since these surface potentials are important for the conversion

process of normal electrons to the condensed CDW ones.

6.1 Model for surface potentials

Therefore we switch back to the CDW notation and replace the displacement function z by

the CDW phase field ϕ (which is D dimensional in this section). The model is however the

same as presented in eq. (C2.2), but in order to include the surface potential the (random)

potential (C2.3) has to be modified to

V (x, ϕ) = −
ϕ∫

0

dϕ′g(x, ϕ′)[1− ρ(x)] +
Γ
a2

Vs(ϕ)ρ(x) , (C6.1)

which includes the random force g in the bulk and a surface contribution Vs. The factor

(1 − ρ(x)) is essentially 1 in the bulk and drops to zero in the vicinity (a ¿ L) of x1 = 0
and x1 = L (see illustration in Fig. C.23), e.g.,

ρ(x) = e−x1/a + e(x1−L)/a , (C6.2)

where the surface potential Vs(ϕ) is assumed to act, which favors the values of ϕ(0,x⊥)
and ϕ(L,x⊥) at 2πZ.

Again, the random force g(x, ϕ) is assumed to be Gaussian distributed with 〈g〉d = 0 and

〈g(x, ϕ)g(x′, ϕ′)〉d = δ(D)(x − x′)∆0(ϕ − ϕ′). As already discussed, ∆0(ϕ) = ∆0(−ϕ) is

an analytical monotonically decreasing function of ϕ for domain walls, which decays to zero

over a finite distance l. For CDWs g ∝ sin(ϕ− α(x)) with a random phase α(x) ∈ [0, 2π[
and therefore ∆0(ϕ) is periodic with ∆0(ϕ) = ∆0(ϕ + 2πZ) (cf. appendix E2.3).

The details of the interaction between the elastic system and the surface depend on the

specific system under consideration. Here, we will restrict ourselves to a periodic surface

potential which has applications in type-II superconductors and may also serve as a first step

for the treatment of conversion phenomena in CDWs.

The equation of motion is also the same as (C2.1) with appropriate boundary conditions

for ϕ(0,x⊥) and ϕ(L,x⊥). Thermal fluctuations are included as in the equation of motion

(B10.4). Important to note is, that we study the equation of motion in the adiabatic situation
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Figure C.23: Illustration of the potential, including a surface portion which acts in the

vicinity a ¿ L of the surface and the random pinning forces in the bulk.

with driving force h = h0 in contrast to the non-adiabatic ac-motion studied in the previous

sections.

In the well known case Vs ≡ 0 [NSTL92, NF92a, NF93, EK94, CDW01, DWC02], i.e., when

the system undergoes the depinning transition at a critical value hP of the external driving

force at zero temperature, the average displacement profile is macroscopically flat. At non–

zero temperatures the depinning transition is smeared out and goes over into a creep motion

for h0 ¿ hP [IV87].

Here we will consider the opposite case where a strong surface potential Vs, obeying

max {V ′
s} À hP a2/Γ, slows down or completely prevents the motion of the elastic ob-

ject. We study the history-dependent curvature C(h, t) of the parabolic displacement profile.

The steady state solution for the average phase is given by

ϕ0 ≡
〈
ϕ
〉

= vt +
Cs(h)

2
(L− x1)x1 . (C6.3)

where Cs(h) = Cs(h, t →∞) is the saturation value of the curvature.

6.2 Infinite surface barriers

We begin with the case Vs →∞, where the depinning transition is suppressed. To determine

C(h, t) we first apply perturbation theory. Using the decomposition ϕ(x) = ϕ0(x) + ϕ1(x)
with 〈ϕ1(x)〉d = 0 in the equation of motion and expanding g(x, ϕ0 + ϕ1) to linear order in

ϕ1, we get after averaging over the disorder

1
γ

ϕ̇0 = −ΓC(t) + h + 〈gϕ(x, ϕ0(x, t))ϕ1(x, t)〉d , (C6.4)
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where gϕ(x, ϕ) ≡ ∂
∂ϕg(x, ϕ). Calculating ϕ1 also to first order of g we get from (C6.3)

and (C6.4) Cs = C0 = h/Γ since ∆′
0(0) = 0, i.e., there seems to be no influence of the

disorder. Here, the situation is completely analogous to that at the conventional depinning

transition [NSTL92]. However, as we know from critical depinning, this is the situation below

the Larkin scale LP .

Next we discuss renormalized perturbation theory starting from a situation where Cs = 0. As

long as h ≤ hP , the elastic object is pinned and boundary pinning does not matter, hence

C(h, t) = 0. At h = hP the elastic object is in the same critical state as at the depinning

transition. Therefore we can use the results of the renormalization group calculation from

section 3.3 in this case. As a result γ and ∆0(z) are replaced there by the renormalized, mo-

mentum p dependent quantities γ(p) and ∆p(z), respectively, given in (C3.9a) and (C3.9b).

Note, that for CDWs the dynamical exponent ζ is zero [NF93, NF92a]. The most important

feature of ∆p(ϕ) is, that ∆∗(ϕ) has a cusp–like singularity at the origin. The renormalized

equation for C(h, t →∞) is given by

ΓC(h, t) = h + hP,0ωP

∞∫

0

dt′
1∫

0

dp̃ × (C6.5)

×p̃1+z−ζe−ωP p̃zt′∆∗′
(
[−C(t) + C(t− t′)]

x1

2
(x1 − L)

)
,

where p̃ = pLP , ωP = γhP,0/l, and the approximate depinning force hP,0 = lΓL−2
P . After

having increased h adiabatically to a fixed value slightly larger than hP , C(h, t) saturates

for t → ∞ and hence the difference C(t) − C(t − t′) vanishes. As a result the argument

of ∆∗′ also vanishes and the right-hand side of (C6.5) becomes independent of x1. Since

C(t) > C(t− t′) the argument of ∆∗′ approaches zero from positive values. Thus we get for

the saturation value Cs(h)

Cs(h) =
h− hP

Γ
=

l

L2
P

h− hP

hP,0
, hP =

hP,0

2− ζ
∆∗′(0+) . (C6.6)

One can understand this result in the following way: Using the decomposition ϕ = ϕ0 + ϕ1

in the asymptotic region, where C(t) saturates, the equation of motion can be written as

1
γ

ϕ̇1 = Γ∇2ϕ1 + h− ΓC + g1(x, ϕ1) , (C6.7)

where g1(x, ϕ1) = g(x, ϕ0(x) + ϕ1(x)). g1(x, ϕ) and g(x, ϕ) have the same statistical

properties. According to (C6.7) the force acting on the field ϕ1 is now reduced by the

curvature force −ΓC. Therefore, the depinning of the ϕ1-field seems to occur at h ↗ h̃P =
hP + ΓCs. However, since the boundary conditions fix ϕ1(0) = ϕ1(L) = 0 and hence
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〈ϕ̇1〉 = 0 for all values of h, the system is always at its depinning transition, which implies

(C6.6). Starting from some h < hP and Cs = 0, Cs will stay at this value until h reaches hP .

For h > hP , Cs obeys (C6.6). The same argument can be used for negative forces h < 0.

Then we find for h < −hP : ΓCs(h) = h + hP = −(|h| − hP ) since ∆∗′(0−) = −∆∗′(0+).

A scaling argument supports the validity of eq. (C6.6) to all orders in g: Close to the Vs = 0
depinning transition the correlation length ξ diverges as ξ ≈ LP ((h− hP )/hP )−ν . For

L′ < ξ the roughness – the mean square displacement of a piece of linear size L′ of the elastic

object – scales as w2(L′) ≈ l2
(
L′/LP

)2ζ
[NSTL92, NF93, NF92a, EK94, CDW01, DWC02].

If we choose the system size L ≈ ξ we expect that the roughness scales as the height of the

parabolic ϕ−profile on the same scale, w(ξ) ≈ Cξ2, which is indeed fulfilled if we use the

scaling law ν = 1/(2− ζ)

C =
w(ξ)
ξ2

=
l

L2
P

(
h− hP

hP

)ν(2−ζ)

≈ h− hP

Γ
. (C6.8)

6.3 Hysteresis

Next we consider the case, that we increase h adiabatically from h . hP to a value hmax,

where C(h, t) reaches Cmax, and then decrease h again. In this case C(h, t) < C(h, t − t′)
and hence the argument of ∆∗′ becomes negative. Instead of (C6.6) we get from (C6.5)

ΓCmax ≡ hmax − hP = h + hP . (C6.9)

The effective force acting on the elastic object is now given by h − ΓCmax. While further

decreasing h, there is no change of C(h, t) until the effective force reaches the threshold

−hP = h − ΓCmax = h − (hmax − hP ). According to the last relation, this happens at

h = h̃max = hmax − 2hP . Analogous arguments can be used for reversing the fields from

ḣ < 0 to ḣ > 0. Thus Cs undergoes a hysteresis which consists of the two parallel segments

given by CsΓ = (h∓hP ) and two horizontal segments determined by Cmax = (hmax−hP )/Γ
and Cmin = (hmin + hP )/Γ, respectively. Indeed, similar hysteresis effects of the strain

have been observed in CDWs [MT86b, LOCT01]. Note, that in [MT86b] the polarization is

measured, which is proportional to Cs.

These findings are fully supported by numerical simulations, as shown in Fig. C.24 which

were done using the same discretization and dimensionless parameters as described in section

3.2.
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Figure C.24: Hysteresis of C(h) at T = 0 for an one-dimensional interface. The driving

force is first increased to hmax = 0.6 or hmax = 0.8, respectively, and then decreased

to −hP ≈ −0.27. The arrows show the direction of the hysteresis. The numerical

simulation was done for an interface with length L = 1000 and averaged over 300 disorder

configurations.

6.4 Curvature at finite temperature

Next we want to consider the problem of finite temperatures. Changing h only adiabatically

we may use equilibrium statistical mechanics. It is convenient to go over to the field ϕ̃(x) =
ϕ(x) + h

2Γx1(x1 − L). The Hamiltonian rewritten in ϕ̃ has the same statistical properties

as the initial one (C2.2), since VR(x, ϕ) = − ∫ ϕ
dϕ′g(x, ϕ′) is a random function of both

arguments. This can most easily seen by using the replica method [You99]. The disorder

averaged free enthalpy follows from the replica Hamiltonian

Hn =
Γ
2

n∑

a,b=1

∫

x

{
(∇ϕ̃a)2δa,b − Γ

T
R(ϕ̃a − ϕ̃b)

}
, (C6.10)

with 〈VR(x, ϕ)VR(x′, ϕ′)〉d = δ(D)(x − x′)R(ϕ − ϕ′). Apparently, the replica Hamiltonian

is the same as that following from (C2.2). It is worth to mention that this is true only

if the random potential VR(x, ϕ) is strictly uncorrelated in x-direction. The application of

surface barriers implies therefore C = h/Γ and
〈〈(ϕ̃(x)− ϕ̃(x′))2〉d

〉1/2 ' l (L/LP )ζ̃ where
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ζ̃ denotes the equilibrium roughness exponent corresponding to Hamiltonian (C6.10). Thus

the displacement profile is the same as in the pure case. For non–adiabatic changes of h,

traces of the T = 0 hysteresis are expected to be seen at non–zero temperatures (cf. Fig.

C.25).

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0 2 4 6 8 10

C
(t

)

t [107]

C(t) at T=2.0

C(t) at T=3.0

C(t) at T=3.5 C(t) at T=5.0

Figure C.25: Simulation–time resolved coefficient C(t) for a driving force of h = 0.2 at

various temperatures. The simulation was done for a system of discrete length L = 1000
and for one disorder configuration of CDW–type for each temperature (see text).

The numerical solution of the equation of motion with thermal noise at finite temperatures

and Vs = ∞ is in agreement with these analytical considerations. Fig. C.25 shows the

coefficient C(t) as it approaches its saturation value Cs = h/Γ with time. Strictly speaking,

we are not in a steady state, until C(t) has reached its saturation value and hence the phase

profile deviates slightly from the parabolic shape. In Fig. C.25, C(t) is calculated from the

parabolic least square fit to the profile. Note, that for low temperatures (T < 5.0 in the

simulation, where T is the dimensionless variance of the thermal noise) this approach is very

slow, noticeable by the occurring steps, triggered by avalanches, even at large times. For

high T (T = 5.0), one sees that C(t) fluctuates around the saturation value due to thermal

noise. Therefore the T = 0 hysteresis of C vanishes at finite temperatures.
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6.5 Critical Depinning

So far the surface potential was assumed to fix the value of ϕ at the surfaces x1 = 0 and

x1 = L. We will now assume that the surface potential is reduced, such that a macroscopic

motion of the elastic object is possible. To determine the mutual interaction between the

bulk and the surface we have to consider the effective equation of motion of the surface.

Denoting ϕ(0,x⊥) = ϕs(x⊥) the effective equation of motion of the surface field can be

written as (a is assumed to be of the order of the lattice spacing)

1
γ

ϕ̇s = ΓC L

2a
+ Γ∇2

⊥ϕs + h− Γ
a2

V ′
s (ϕs). (C6.11)

An analogous equation can be written for ϕ(L,x⊥). In (C6.11) we have replaced the force

resulting from the displacement in the bulk by the corresponding average force. In the steady

state ∇2
⊥ϕs = 0 and eq. (C6.11) has a depinning threshold hs,c À hP determined by

ΓC(hP,s)
L

2a
+ hP,s − Γ

a2
max

{
V ′

s (ϕ)
}

= 0 . (C6.12)

For h > hP,s À hP the macroscopic velocity is given by the steady state solution v = ϕ̇s

which follows from integrating (C6.11) with ∇2
⊥ϕs = 0. The corresponding solution

v(t) = vpΦ

(
ΓC(t)La

2 + ha2

ΓV ′
s,max

, t

)
(C6.13)

depends of course on the specific form of the surface potential, vp = γhP,0. Eq.(C6.13) has

to be combined with the effective equation for the bulk (h > hP ) [NSTL92]

(
v(t)
vp

)1/β

=
h− hP

hP,0
− C(t)L

2
P

l
, (C6.14)

which follows from (C3.9a) and (C6.6). Note, that we used the condition a ¿ LP such

that the surface potential does not change the bulk depinning threshold. Eqs. (C6.13) and

(C6.14) determine both the velocity and the curvature C as a function of the driving force. If

we increase h from h = 0 with C = 0, C remains zero until we reach hP . For hP < h < hP,s,

C obeys (C6.6). At hP,s the elastic object is depinned and with increasing velocity the

curvature is reduced compared to a non-moving object which is subject to the same force,

as follows from (C6.14). If the surface potential is periodic, also v(t) will be periodic and

the bulk depinning transition is slightly smeared out (as seen in section 3. We will assume

that this effect is weak. In principal it can be avoided by adding some randomness to the

surface potential.
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Figure C.26: Illustration of a nucleation droplet at the surface. The droplet consist of a

cylindrical piece (the cylinder axis is perpendicular to the x1 = 0 plane) in the surface

layer of height a and radius R and an attached semi-sphere with the same radius.

6.6 Nucleation and Creep

At finite but low temperatures the surface field may exhibit a creep motion even if h ¿ hP,s.

Creep proceeds via the formation of droplets at the surfaces x1 = 0 and x1 = L, where ϕ

is changed by 2π with respect to the bulk value of ϕ. The droplet consists of a cylindrical

piece (the cylinder axis is perpendicular to the plane defined by x1 = 0) in the surface layer

of height a and radius R and an attached semi-sphere with the same radius (shown in Fig.

C.26). The width of the droplet wall, confining the cylinder, is of the order a′ = a/
√

V ′′
s .

Keeping only the leading order terms we get for the energy of the droplet

Edp(R) = 2ΓRD−2

{√
V ′′

s + ln
R

a′
− πCRL− fR2/Γ

}
.

The critical droplet size Rc ¿ L follows by minimizing Edp(R) with respect to R as Rc ≈√
V ′′

s /(CL) or Rc = (CL)−1 in D = 3 or D = 2, respectively. In deriving Edp, we have

neglected the contribution from the disorder, which is correct as long as Rc < LP , i.e.,
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L À LP . The nucleation rate of droplets and hence the creep velocity is given by

vD=3

vp
= A exp

(
−B

V ′′
s Γ
CLT

)
,

vD=2

vp
= A′

(
CLa′√

V ′′
s

)B′Γ/T

, (C6.15)

which replaces (C6.13) in the case h ¿ hP,s and T > 0 (cf. [RMAE92]). The present

treatment is too crude to give the coefficients A, A′, B, and B′. Again, (C6.15) has to be

considered together with (C6.14) to determine C and v. In CDWs, where ϕ can be multi-

valued, nucleation processes also occur deep in the bulk [RMAE92]. The droplet energy then

does not contain a term ∼ h, leaving the relations (C6.15) essentially unchanged.

7 Conclusion and summary

To conclude, we have shown in the first part of this chapter, that the sharp depinning

transition of an interface driven by a dc-field is smeared, showing a pronounced velocity

hysteresis, if the external drive is oscillating. The size of the hysteresis is described by

the power laws in equations (C3.5) and (C3.6), which are supported by an approximate

renormalization group analysis and numerical simulations. With help of the renormalized

perturbation theory we could also explain the double hysteresis shape of the velocity in

the case, when the amplitude of the ac-field is larger than the zero temperature, adiabatic

depinning field (cf. eq. C3.11). Thermal fluctuations lead to an additional smearing (due

to thermal creep motion) of the depinning transition if the external frequency is sufficiently

low.

For amplitudes below the depinning field, also avalanche motion of the interface has to be

taken into account, leading to a pronounced ’bump’ in the velocity hysteresis which can

be explained by the increasing size (and number) of avalanches triggered with increasing

external field. In the frequency region, where avalanches do not play a role, we find an

interpolation function for the velocity, which explains the numerically found results.

To compare our model to experimental measurement, we studied two numerical approaches

based on a ”linear” interface depinning model. We compared the experimental and nu-

merical obtained complex susceptibilities in order to get a better understanding of the mag-

netic behavior found in the superferromagnetic granular multilayer system [Co80Fe20(1.4nm)/

Al2O3(3nm)]10.

In the first approach, we used the mean velocity of a domain wall in the adiabatic limit to

calculate the susceptibility. With this one can explain the monodisperse dynamic response

evident by a partial semicircle centered around the χ′ axis in the Cole-Cole representation.

However, it fails to describe the increasing convex part for higher frequencies. This behavior
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can be found by taking the full equation of motion into account, where an elastic inter-

face is driven in general non-adiabatically in a random medium. This model for an impure

ferromagnet is capable to describe the main features of the experimental results. We find

that the appearance of a velocity hysteresis is a crucial element in the dynamical response

of the superferromagnet. In addition the results confirm, that the above mentioned granular

system is neither a superparamagnetic nor a superspin glass system.

Finally, we have studied the influence of strong surface potentials to the adiabatic motion

of the interface in the last part of this chapter. Especially, we have analyzed the curvature

of the parabolic displacement profile. We have shown that surface pinning of impure elastic

systems lead to an onset of curvature C only above a threshold value hP of the random

force. In general, C exhibits a pronounced rhombic hysteresis if the external field is changed

adiabatically at zero temperature which disappears completely at finite temperatures. Since

this is only true in the adiabatic case and the temporal evolution of the curvature to the

value of the clean system can be exponentially slow for low temperatures, hysteretic behavior

could still be observed at finite temperatures in experiments. We have also shown that the

curvature can be reduced above the surface depinning transition or at finite temperatures,

when nucleation processes at the surface allow for creep motion.
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D Addendum: Thermal transport in

two-dimensional Bose-Einstein

condensates

In this chapter we present some results for the thermal transport in low dimensional Bose

gases at temperatures below the critical temperature: T ¿ Tc. The results are only periph-

eral related to the two previous main chapters of the thesis, since we studied interacting,

but clean Bose systems. Due to the interaction, the non-condensated bosons can scatter at

each other. For this process we calculate the scattering rate using Fermi’s golden rule which

is used to derive transport properties for different types of interaction. We also obtain the

weak localization correction to the thermal conductivity, related to the inter boson scatter-

ing, similar to the case of electrons scattered in a disordered system. In the conclusions it is

discussed, how the obtained results can be applied to elastic systems, especially to a vortex

line model.

1 Introduction

Interaction Bose gases are subject of intensive theoretical and experimental research, espe-

cially since the first experimental realization of Bose-Einstein condensates (BECs) in 1995

(for a short review see, e.g., Ref. [Ket99]).

In this chapter we concentrate on the two-dimensional (2D) case (see also [FGI93]). As it is

well known, an ideal Bose gas can only form a BEC at finite temperatures for d > 2. However,

including interactions in the 2D system, a transition to a superfluid state occurs [FH88].

The two-dimensional geometry can be realized, e.g., with a highly anisotropic external trap-

ping potential. The theory of trapped BECs is extensively discussed, e.g., in [DGPS99,

PHS00, ZNG99, Gra98, Das02]. Another possibility is to create films of various Bose gases,

e.g., by absorbing Helium on a surface substrate [SYF93, CTYC98, BCT99] or Hydrogen on

liquid 4He [SVY+98].

Here we consider the effect of interactions between non-condensated bosons (the so-called
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over-condensate) below the superfluid or BEC transition temperature Tc for two cases: (i)

for short-range (hard sphere) and (ii) long-range (Coulomb) interaction. As we will see, the

(Bogoliubov) energy spectrum of these quasi-particles changes its behavior from an almost

free, quadratic dispersion at high energies to a linear, acoustic phonon behavior in the case

of short-range interaction or a gapped plasmon dispersion for Coulomb interaction. The

crossover occurs at energies of the order of the chemical potential µ.

In analogy to disordered electron systems, where electrons scatter at impurities and quantum

interference leads to weak localization correction in the metallic (not localized) regime, the

different bosonic excitations give rise to scattering of free quasi-particles at phonons or

plasmons. Note, that the boson system is clean, i.e., the scattering mechanism is different

from that in the electronic case. The influence of additional disorder in the Bose system is

briefly discussed at the end of this chapter.

We calculate the related scattering rate, which is used to obtain an expression for the thermal

conductivity of the system. The almost free quasi-particles with µ ¿ εk ≈ T ¿ Tc are

scattered quasi-elastically at the low energy excitations (acoustical phonons or plasmons).

In order to have quasi-elastic scattering, the inelastic scattering or energy relaxation time τε

has to be larger than the quasi-particle scattering time τ0. We show that the latter depends

on temperature as T−1/2 and τε scales as T 1/2, i.e., the ratio τε/τ0 is much larger than 1
in the temperature region under consideration. It should be mentioned that the chemical

potential corresponds to the Debye energy in an electronic system and the BEC temperature

to the Fermi energy.

Since the transport or momentum relaxation time in the Bose gas is also of order of the

energy relaxation time and therefore larger than the scattering time, we can furthermore

calculate quantum or weak-localization correction to the thermal conductivity, which are due

to interference effects and show a logarithmic temperature dependence, in analogy with a

metallic system [AAK82, ABG+02, AGG85].

The case of long-range interactions could have a direct application in vortex systems, since

a d dimensional time dependent boson system can be mapped to a d + 1 dimensional vortex

system [Nel88] and therefore, the results for the Bose system can be applied to vortex arrays.

The study of the short-range interaction is more of academic, than of practical relevance,

since the interval of possible quasi-particle energies is, even for very weak interactions, too

small to result in an observable effect.
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2 Model

The model for interacting bosons in a clean two dimensional system is given by

Ĥ =
∫

V
d2r Ψ̂†(r)

[
− ~2

2m
∇2 − µ +

1
2

∫

V
d2r′ Ψ̂†(r′)U(r− r′)Ψ̂(r′)

]
Ψ̂(r) (D2.1)

≡ H0 +Hint ,

where U(r) is the interaction potential and µ the chemical potential.

We discuss two different realizations of the interaction U . First, short-range interaction

with U sr(r) = U0δ
2(r) which is a good model for uncharged bosons and second long-range

Coulomb interaction for charged particles. For the second model we have to take screening

effects into account, such that the interaction can be written as U lr(r) = U0/a2K0(|r|/a),
where K0 is the modified Bessel function of second kind or MacDonald function. K0 diverges

logarithmically for small arguments and vanishes exponentially for large arguments, which

reflects the screening. Since we are interested in the mapping of the two-dimensional Bose

system to a 3D vortex system, the long-range interaction is most interesting and relevant.

An important feature of K0 is the fact that the Fourier components U lr
k are finite for k = 01

and vanish as k−2 for k → ∞. Therefore the chemical potential for a weakly interacting

Bose gas, given by

µ ≈ nUk=0 , (D2.2)

is finite for both interaction realizations. Here n is the condensate density.

The full wave function Ψ̂ can be decomposed into two parts: Ψ̂ = ξ̂0 + ψ̂, where ξ̂0 describes

the condensate and ψ̂ the bosons which are not in the condensate, the over-condensate.

Since T ¿ Tc, almost all bosons are in the condensate and we can treat the condensate

wave function as a C-number ξ0 '
√

n. The remaining model for the over-condensate can

be diagonalized to Ĥ = Ĥ0 +
∑

k εkb̂
†
k b̂k using the Bogoliubov transformation (see, e.g.,

[Fet72])

ψ̂ (r) =
1√
V

∑

k

b̂kuke
ir·k − b̂†kv

∗
ke
−ir·k , (D2.3)

where uk and vk are coefficient functions and b̂†k, b̂k are boson creation and annihilation

operators, respectively, with
[
b̂q, b̂

†
k

]
= δq,k and

[
b̂
(†)
q , b̂

(†)
k

]
= 0. To obtain the functions uk

and vk one has to solve the Bogoliubov-de Gennes equations which can – for our model –

be simplified to (
uk

vk

)
= [f1(k)± f2(k)]

(
vk

uk

)
, (D2.4)

1
R∞
0

dx K0(x) = π/2
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with

f1(k) ≡ (Uk=0/Uk + 1) +
1

nUk
(ε0,k − µ) ,

f2(k) ≡ εk

nUk
, ε0,k =

~2k2

2m
,

where Uk are the Fourier components of U(r). For a detailed derivation, see appendix E3.1.

The solution for the eigen-energies εk follows from f2
1 (k) − f2

2 (k) = 1, and uk and vk are

given by (
uk

vk

)
=

(
f1(k)
f2(k)

± 1
)1/2

.

The solutions for the Bogoliubov energy spectra for the two interaction cases are given by

(εsr
k )2 = ε0,k(ε0,k + 2µ) and

(εlr
k)2 = ε2

0,k + ~2U0n/(ma2) .

For the short-range interaction the spectrum behaves as εsr
k ≈ ε0,k for |k| À qD = mv/~ [the

analogue to the Debye wave vector], i.e., we have almost free quasi-particles, and εsr
k ≈ ~|k|v

for |k| ¿ qD with velocity v =
√

µ/m, i.e., shows an acoustic phonon dispersion. In case

of the long-range interaction we also find the free spectrum for high energies of order T and

εlr
k shows the constant gapped behavior of plasmons for small wave vectors.

The solutions for the coefficient functions uk and vk are
(

uk

vk

)
=

(
ε0,k + µ

εk
± 1

)1/2

. (D2.5)

Since we have an almost free spectrum for both interactions for energies εk ≈ T À µ, we

see immediately that in this regime: uk ≈
√

2 and vk ≈ 0.

3 Scattering rates and thermal conductivity

Using this model and the results from the Bogoliubov transformation, we can now calculate

the scattering rate between the over-condensate particles. In general, the lifetime of a given

excitation (k) is determined by two processes:

(i) decay-coalescence (Beliaev): k ↔ k′ + q and

(ii) absorption-emission (Szepfalusy-Kondor [SK74]): k + q ↔ k′.

We are especially interested in these processes when k is a high-energy quasi-particle with

almost free spectrum ε0,k, which is the case for εk ≈ T À µ, and q is a low-energy
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(acoustic) phonon with linear spectrum in the case of a δ-interaction or a plasmon spectrum

for long-range Coulomb interaction. Thus, we are considering small angle scattering, where

the change of the momentum of the quasi-particles is small and the typical energy transfer

∆εk ≡ εk − εk−q is for both types of interaction ∆εk ≈ ~2q2

2m .

The scattering rate for quasi particles, resulting from these two processes can be calculated

using Fermi’s Golden Rule

1
τ0(k)

=
1
2

∑
q

[
Wk↔(k−q,q) + Wk+q↔(k,q)

]
, (D3.1)

with the scattering probability

Wk↔(k−q,q) =
2π

~
δ (εk − εk−q − εq)× (D3.2)

|〈nk, nk−q + 1, nq + 1|Hint|nk + 1〉|2 .

The states in the matrix elements are Fock states (all unchanged occupation numbers are

omitted) with

〈nk〉 =
1

eεk/T − 1
→

{
T/εk , εk ¿ T

1 , εk À T
. (D3.3)

In order to give a contribution to this scattering rate, we have to take third-order terms in

ψ̂ of the interaction part into account:

Hint =
√

n

2

∫
d2r ddr′ U(|r− r′|)× (D3.4)

(
ψ̂†(r′)ψ̂(r′)ψ̂(r) + ψ̂†(r)ψ̂(r′)ψ̂(r)

)
+ H.c.

Inserting the transformation (D2.3) into (D3.4) and using the standard definition of the

creation and annihilation operators b̂†k and b̂k, respectively, and the orthogonality of the

Fock states, results in the following expression for the matrix elements for U sr(r)

〈nk, nk−q + 1, nq + 1|Hint |nk + 1〉
= U0

√
n/V 2uk−quk(uq − vq)×

√
nq + 1

√
nk + 1

√
nk−q + 1 (D3.5)

where V is the volume. The second matrix element in (D3.1) for the absorption-emission

process is calculated analogously.

Using uk ≈
√

2 for the high energy quasi-particles and (D3.3), the scattering rate (D3.1)

gives
1

τ0 (k)
≈ 16

U2
0 nm2T

~5qD|k| ∝
√

T . (D3.6)
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As already mentioned in the introduction there exists a drawback with the short-range inter-

action: According to Fisher et al. [FH88] the critical temperature in 2D (the transition is of

Kosterlitz-Thouless type) behaves as Tc ∼ n/m ln[ln(na2)] or more precisely (see [KPS01]

and references therein)

T 2D
c ∼ ~2n

m
ln

ν

g
,

where g = U0m/~2
1+U0m/~2 ln 1

na2
and ν is a number (ν ≈ 380 according to Ref. [KPS01]). On the

other hand the chemical potential behalves as µ ∼ n/m log(na2). Thus the temperature

interval, where the scattering is effective, µ < T < Tc , can exist for weak interactions, but

is not wide enough to be observable. Since for the practically interesting case of vortices,

which is discussed in the following, the interaction is of long-range type, the T -interval is

reasonably wide.

In the case of a Coulomb potential U lr(r) the matrix elements are more involved, but if

we use again the approximation uk ≈
√

2 for quasi-particles and the fact, that the Fourier

components of the interaction potential vanish as∼ k−2 for large wave vectors, those simplify

to

〈nk, nk−q + 1, nq + 1|Hint |nk + 1〉
= 2Uq

√
n/V

√
nq(uq − vq) . (D3.7)

Together with the matrix elements, this leads to the scattering rate

1
τ0 (k)

≈ 8
U2

0 nm2T

π|k|~5

∫ ∞

0

(
Uq

U0

)2 q2dq

q4 + q4
0

∝
√

T , (D3.8)

where q4
0 ≡ 4U0mn(a~)−2. For a detailed derivation of the scattering rates in both interac-

tion case, see appendix E3.2.

Now we use those results to calculate the thermal conductivity of the system, which can be

written as (using the Boltzmann equation)

κ =
1
d

∫
dεεv2 (ε) τ0 (ε) ρ (ε)

∂n(ε, T )
∂T

, (D3.9)

where d is the spatial dimensionality, v(ε) the particle velocity, and ρ(ε) the density of states

(DOS). The distribution function n(ε, T ) (for T < Tc) follows the usual Bose statistics

(D3.3).

Using the square-root temperature dependence of the scattering time, ∂n(ε, T )/∂T =
ε(4T 2 sinh2(ε/2T ))−1, v2(T ) ∼ T/m, and that in 2D the DOS is independent of ε [i.e.,
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ρ ∼ m/~2], and neglecting numerical prefactors one obtains 2

κ ∼ T 2τ0(T ) ∝ T 5/2 . (D3.10)

To obtain the quantum corrections of the thermal conductivity (D3.9), which can be calcu-

lated analogous to the weak localization correction [LR85, BK94] of the electric conductivity,

we need to calculate the transport or momentum relaxation time for small angle scattering,

defined by

1
τtr(k)

=
1
2

∑
q

q2

k2

[
Wk↔(k−q,q) + Wk+q→k

] ∼ 1
T

√
T = T−1/2 ,

which gives for the correction

∆κ

κ
∼ −

∫ τtr

τ0

dt v
1

(Dt)d/2

∼ v ln(τtr/τ0)/D , d = 2 , (D3.11)

where D is the particle diffusion coefficient.

Here we have implicitly used, that the weak localization correction, which is valid for the

electric conductivity, can be applied to the thermal conductivity. The thermal conductivity

can be related to the electric one via the Wiedemann-Franz law (κ/σ = LT , where L is the

Lorenz number), which is valid if we are in the quasi-elastic scattering regime. To ensure

that we are in this regime, the energy relaxation (or inelastic scattering) time τε has to be

estimated, which is defined by

1
τε(k)

=
1
2

∑
q

[
Wk↔(k−q,q)

∆εk

T
+ Wk+q→k

∆εk+q

T

]
,

where W are the scattering probabilities given in (D3.2) and ∆εk is the energy difference of

the quasi particle energies. Since ∆εk ≈ ~2q2

2m , it follows directly: τε(T ) ∼ √
T where (D3.8)

is used. For particle energies µ ¿ T ¿ Tc this inelastic scattering is much larger than the

bare scattering time τ0(T ).

4 Conclusion and possible application

We have studied clean, but interacting two-dimensional Bose systems. For different types

of interactions, we have calculated the scattering rates for over-condensate particles using

Fermis golden rule. This rather simple approach was not used before to obtain this rate.

2
R∞
0

xn/ sinh2(x/a)dx = n!21−nζ(n)an+1 for n ∈ N>2
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Using this method, we could derive the thermal conductivity and the related weak localization

correction.

Since a d-dimensional (time dependent) boson system can be mapped to a d+1 dimensional

(classical) vortex system, see, e.g., Ref. [Nel88], the results for the Bose system can also be

applied to vortex arrays.

A possible application is given by the relation between the electric conductivity and the tilt

modulus of vortex systems, described by Balents et al. in [BS95]. In our case the electric

and thermal conductivity are related via the Wiedemann-Franz law, since we are in the

quasi-elastic scattering regime. The weak localization correction to the thermal conductivity

lead therefore also to a correction of the electric conductivity and finally of the vortex tilt

modulus. But this needs a careful analysis of the prerequisite for application of the electric

conductivity to the tilt response.

The influence of disorder in boson systems gives, among other effects, rise to corrections

of the transition temperature [LV02], the problem of boson localization [NV93], and the

superfluid-insulator transition. The presence of disorder leads in addition, to scattering at

impurities with an associated scattering time. One can expect two situation

(i) µ ¿ ~/τu ¿ Tc, where τu is the scattering rate due to disorder. In this case the local-

ization effects become relevant before the interaction with phonons becomes impor-

tant. Therefore corrections to transport coefficients due to over-condensate scattering

cannot be observed.

(ii) ~/τu ¿ µ ¿ Tc. In this case, localization effects do not become important before the

interaction kicks in and we can still use the results for the clean system.

But since this is beyond the scope of this chapter, a more detailed investigation could be a

future project.
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E Appendix

1 Appendix to chapter B

1.1 Renormalization of the disorder

We present a short overview of the used finite temperature anisotropic renormalization group

method in the case of the replicated disorder term. Starting point is the action (B3.4).

The phase field ϕ(x, τ) = t
KLΛ

∑
ωn

∑
|k|≤1 eı(ωnτ+kx)ϕk,ωn with the Matsubara frequencies

ωn = 2πnt/K and k = 2πm/(LΛ) (note that rescaled coordinates are used) is split in a slow

(|k| < b−1) and a fast mode part (b−1 ≤ |k| ≤ 1), where b = e−dl is a rescaling parameter

of order 1. Notice, that the ϕ≶ still have all Matsubara Fourier components.

In order to find the RG-corrections of the other parameters in the model, we follow Wil-

son [WK73] and expand
〈〈

e−S
(n)
u /~ − 1

〉〉
0,>

in small (u/K)2, with

S(n)
u

~
= − u2

4πK2

∑

α,β

∫∫
dτdτ ′

∫
dx R[ϕα(x, τ)− ϕβ(x, τ ′)] (E1.1)

where R[f ] ≡ cos(pf). 〈〈. . .〉〉0,> denotes the cumulative or connected average over the

fast modes in the ”momentum stripes” with the free gaussian model. The correction in first

order is given by

S(n)
u,1

~
=

〈〈
S(n)

u

~

〉〉

0,>

. (E1.2)

For calculating the cumulative average of the functional R, R is expanded in small ∆ϕ> ≡
ϕα,>(x, τ)− ϕβ,>(x, τ ′), e.g.

〈〈R[∆ϕ]〉〉0,> = −p2
(
R[∆ϕ<]

〈
ϕ2

α,>

〉
0,>

−R[∆ϕ<]
〈
ϕα,>(x, τ)ϕβ,>(x, τ ′)

〉
0,>

)
+O(∆ϕ4

>) . (E1.3)

The first term in (E1.3) gives a correction to the disorder parameter u and the second term

a correction to K. The free thermal average over the fast modes can be evaluated with the
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free propagator (k2 + ω2
n)−1 and using the formula

∞∑
n=−∞

cos(nx)
n2 + a2

=
π

|a|
cosh((π − x)a)

sinh(π|a|) , 0 ≤ x ≤ 2π

to treat the sum over the Matsubara frequencies yielding

〈
ϕα,>(x, τ)ϕβ,>(x, τ ′)

〉
0,>

=
K

2
cosh(K/2t− |∆τ |)

sinh(K/2t)
δα,β ln b , (E1.4)

with ∆τ ≡ τ − τ ′.

In order to find a good gaussian approximation for R, we perform a variational calculation

for a sine–Gordon model:

HSG = H0 +H1 ≡ H0 − µ

∫
ddr cos(ϕ(r)) , (E1.5)

where H0 is the gaussian part. We approximate H1 by

H̃1 =
∫

ddr
κ(r)
2

ϕ2(r) , (E1.6)

and define H̃ ≡ H0 + H̃1. To find the optimal function κ(r), the variational free energy 1

Fvar, with

FSG ≤ Fvar ≡ F̃ +
〈
HSG − H̃

〉
H̃

(E1.7)

is minimized with respect to κ:

0 =
δFvar

δκ(r̃)
= β

〈
HSG − H̃

〉
H̃

〈
ϕ2(r̃)

2

〉

H̃
− β

〈
(HSG − H̃)

ϕ2(r̃)
2

〉

H̃

=
β

2

∫
ddr 〈κ(r)− µ cos(ϕ(r))〉H̃

〈〈
ϕ2(r)ϕ2(r̃)

〉〉
H̃ . (E1.8)

For the last equality we took into account that the averages are gaussian such that we could

apply the Wick theorem. From (E1.8) we finally get

κ(r) = µ 〈cos(ϕ(r))〉H̃ = µ exp
(
−1

2
〈
ϕ2(r)

〉
H̃

)
. (E1.9)

For small disorder (E1.9) yields for R[∆ϕ<] the approximate expression

R[∆ϕ<] ' −p2

2
(∆ϕ<)2e−

p2

2 〈(∆ϕ<)2〉
0,< . (E1.10)

1The inequality for the variational free energy follows directly from 1 − 1
x
≤ ln(x) ≤ x − 1 for x > 0, if

one considers the expression K(ρ̂SG, ˆ̃ρ) ≡ Tr ˆ̃ρ(ln(ˆ̃ρ)− ln(ρ̂SG), where ρ̂ denotes the density matrix of the

system.
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The same result can be obtained in terms of an operator product expansion [KdO80] of

R[f ]. In order to get a RG correction to K a gradient expansion of (∆ϕ<)2 in (E1.10) in

small ∆τ is performed, which is justified by the exponential decay of the correlation function

(E1.4) on the integration interval such that higher orders in ∆τ do not contribute to the RG

correction: (∆ϕ<)2 ≈ (∂T ϕ<(x, T )∆τ)2 with T = (τ + τ ′)/2.

The pair correlation function in the argument of the exponential function in (E1.10) can be

approximated by the expression already shown in (B4.8), i.e.,

〈
(ϕ(x, τ)− ϕ(0, 0))2

〉
0
' K

2
ln

(
1 +

(
K

2πt

)2 [
cosh

(
2πtx

K

)
− cos

(
2πtτ

K

)])
.

(E1.11)

After integration of the fast modes of ϕ, one rescales the system to maintain the fluctuation

strength and the spatial density of the degrees of freedom (l = ln b):

x → x′ = xb−1 ,

τ → τ ′ = τb−z , T → T ′ = Tbz ,

ϕ → ϕ′ = ϕb−ζ ,

which leads to rescaled parameters. For our model these are given by (here in d dimensions)

c′ = cbd+z−2+2ζ , (E1.12a)

v′ = vbz−1 , (E1.12b)

K ′ = Kb1−d−2ζ , (E1.12c)

t′ = tb2−d−2ζ , (E1.12d)

u′ = ub2−d/2 , (E1.12e)

σ′ = σb2−d , (E1.12f)

w′ = wb2d . (E1.12g)

Due to the invariance of the system under a phase shift of 2nπ, ζ is zero for symmetry

reasons.

The RG contribution to the flow equation for u2 follows from the first term of (E1.3) and

(E1.4) with ∆τ = 0:

u′2 = u2

(
1− p2K

2
coth

K

2t
ln b

)
. (E1.13)

Together with (E1.12e) (d = 1) one gets

u′2 − u2

dl
=

(
3− p2K

2
coth

K

2t

)
u2 . (E1.14)
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The RG correction to K follows from the second term of (E1.3) with (E1.4) and (E1.10):

K ′ = K

(
1− p4

2
u2 coth

K

2t

K/(2t)∫

0

dτ τ2 cosh
(

K
2t − τ

)

cosh K
2t

×

e−
p2

2 〈(ϕ(0,τ)−ϕ(0,0))2〉
0
ln b

)
, (E1.15)

and the flow equation (for d = 1 + ε) follows from (E1.12c):

K ′ −K

dl
=

[
−ε− p4

2
u2 coth

K

2t
B0

(
p2K,

K

2t

)]
K (E1.16)

with B0 given in (B3.6), for which we used (E1.11).

B0(p2 K,K/2t), p=1

K
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Figure E.1: Function B0(p2K, K
2t ) plotted with respect to K for different temperatures.

The function B0 which appears in this flow equation is plotted in Fig. E.1.

For completeness we also plot the functions B1 and B2 in the relevant K-region for the

lattice unpinning transition [see eqs. (B6.2a) and (B6.2b) or (B8.12a) and (B8.12b)]. Note,

that for evaluating these functions at zero temperature, one has to execute the integrals at

finite temperature first and then take the limit t → 0.

1.2 Strong pinning

To calculate the phase correlation function in the strong pinning limit, it is necessary to

study the order statistics of the impurity distances εi = (xi − xi−1) − limp. Following

David [Dav70], we obtain for the probability density function (pdf) of the εi’s in the case
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Figure E.2: Function B1(q2K, K
2t ) and B2(q2K, K

2t ) plotted with respect to K for different

temperatures, written next to the graphs, and q = 1.

of uniformly distributed impurity positions 0 ≤ xi ≤ L : p(εi) = l−1
imp(1 − 1

L(εi + limp))N−1

with −limp ≤ εi ≤ L− limp. In the thermodynamic limit the pdf can be rewritten as

p(εi) ≈
l−1
imp

e
e−l−1

impεi , −limp ≤ εi < ∞ . (E1.17)

With this, one can calculate the n-th moment εn
i (for n > 1, εi = 0) as follows:

εn
i =

∫ ∞

−limp

l−1
imp

e
e−l−1

impεiεn
i dεi

=
l−1
imp

e
(−1)n ∂n

∂λn

∣∣∣∣
λ=l−1

imp

eλlimp

λ
. (E1.18)

Using ∂n

∂xn

∣∣
x=1

ex−1

x = (−1)nn!
(∑n

k=1
(−1)k

k! + 1
)

yields: εn
i = n!

cn

∑n
k=2

(−1)k

k! and for the

correlator εiεj = l2impδij .
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With this results we can derive the pair correlation function (B4.17). Therefore we calculate

the discrete version
〈
(ϕn − ϕ1)

2
〉

in the limit T → 0. With the definitions given below eq.

(B3.22), we can rewrite:

(ϕn − ϕ1)
2 =

4π2

p2

(
n−1∑

i=1

(
hi − pQεi

2π
− γ

))2

. (E1.19)

Using εi = hi = 0 and hihj ∝ δij leads to

〈
(ϕn+1 − ϕ1)

2
〉

=
4π2

p2

〈(
hi − pQεi

2π
− γ

)2
〉

︸ ︷︷ ︸
≡C̃

·n . (E1.20)

Because only the value
[

pQεi

2π + γ
]

for hi is taken into account for evaluation of the thermal

average, we get

C̃ =
(

pQεi

2π
+ γ −

[
pQεi

2π
+ γ

])2

=
∫ ∞

−limp

dεi

l−1
imp

e
e−l−1

impεi

(
pQεi

2π
+ γ −

[
pQεi

2π
+ γ

])2

.

If we substitute x = l−1
impεi + 1 and take into account that [x + n] = [x] + n for n ∈ Z, we

get

C̃ =
∫ ∞

0
dx e−x

( x

2α
−

[ x

2α

])2
(E1.21)

with the parameter α = π
pQlimp

. Now the quadratic term in the integral is expanded, which

leads to the following three (converging) integrals

I1 ≡ 1
4α2

∫ ∞

0
dx e−xx2 =

1
2α2

,

I2 ≡ − 1
α

∫ ∞

0
dx e−xx

[ x

2α

]
,

= − 1
α

∞∑

k=1

(2k+1)α∫

(2k−1)α

dx e−xx
[ x

2α

]
(E1.22)

I3 ≡
∫ ∞

0
dx e−x

[ x

2α

]2
,

=
∞∑

k=1

(2k+1)α∫

(2k−1)α

dx e−x
[ x

2α

]2
,
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with C̃ = I1 + I2 + I3. For (2k − 1)α ≤ x ≤ (2k + 1)α, k ∈ Z,
[

x
2α

]
= k, such that the

Gaussian brackets in the finite integrals in I2 and I3 can be replaced by k or k2, respectively:

I2 = − 1
α

∞∑

k=1

k

(2k+1)α∫

(2k−1)α

dx e−xx ,

I3 =
∞∑

k=1

k2

(2k+1)α∫

(2k−1)α

dx e−x . (E1.23)

The values of these two simple integrals are

(2k+1)α∫

(2k−1)α

dx e−xx = 2e−2kα((1 + 2kα) sinh(α)− α cosh(α)) ,

(2k+1)α∫

(2k−1)α

dx e−x = 2e−2kα sinh(α) .

The remaining sums in I2 and I3 are only derivatives of the geometric series which can be

easily evaluated.

The result is

C̃ =
1
2α

(
1
α
− 1

sinh(α)

)
(E1.24)

=
1
12
− 7

720
α2 +

31
30240

α4 +O(α6) ,

where the expansion is useful only if α is small, i.e., Qlimp À 1. If we would have neglected

the order statistics of the impurity distances we would get only the leading constant: C̃ =
1/12.

(E1.24) yields the presented expression for the pair correlation function (B4.17).

1.3 Correlation length in the classical region at finite temperature

In the weak pinning limit, 1 ¿ limpQ ¿ c/(Uimpρ1) or LFL À limp, the classical Hamiltonian

can be rewritten to a random-field XY-model

Hclass(L) =

L∫

0

dx

{
c

2
(∂xϕ(x)− σ̃)2 +

Uimpρ1

limp
cos[p(ϕ(x)− α(x))]

}
, (E1.25)
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where α(x) is a random phase with zero average and

eıp
(
α(x)−α(x′)

)
= limpδ(x− x′). (E1.26)

In the following we consider only the backward scattering term of the correlation function

Cb and therefore neglect the forward scattering term σ̃ = Uimpf/(cπlimp).

The goal is now to find an effective temperature, which replaces T in the correlation function

for the free case (B4.18). We start with a Burgers-like equation, which one gets after a

Cole-Hopf transformation from the transfer matrix equation, for the restricted free energy

F(x, ϕ) = −T lnZ(x, ϕ) with the partition function

Z(x, ϕ) ≡
ϕ(x)=ϕ∫

ϕ(0)

Dϕ e−H(x)/T .

The equation reads

∂F
∂x

=
T

2c

∂2F
∂ϕ2

− 1
2c

(
∂F
∂ϕ

)2

+
Uimpρ1

limp
cos[p(ϕ(x)− α(x))]

︸ ︷︷ ︸
U(x,ϕ)

. (E1.27)

Using the Fourier transform F(x, ϕ) =
∫

dk dω
(2π)2

eı(ωϕ−kx)F(k, ω) (analogous for U(x, ϕ)),
(E1.27) is rewritten as

−ıkF(k, ω) = −Tω2

2c F(k, ω) + U(k, ω)+ (E1.28)

1
2c

∫
dk′ dω′
(2π)2

ω′(ω − ω′)F(k − k′, ω − ω′)F(k′, ω′) ,

with

U(k, ω) =
πUimpρ1

limp

{
h+(k)δ(ω − p) + h−(k)δ(ω + p)

}
, (E1.29)

h±(k) ≡
∫

dx eı[kx∓pα(x)] .

Introduction the dimensionless quantities

g0(k, ω) =
1

πtω2/2− ık/Λ
, (E1.30)

ε =
Uimpρ1

limpΛ2c
, (E1.31)

u(k, ω) = (εΛc)−1U(k, ω) , (E1.32)
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and setting F(k, ω) ≡ cεg(k, ω)u(k, ω) we obtain the following, self-consistent equation for

the Green’s function g(k, ω):

g(k, ω)u(k, ω) = g0(k, ω)u(k, ω) +
ε

2
g0(k, ω)

∫
dk′ dω′

Λ(2π)2
ω′(ω − ω′)×

×g(k − k′, ω − ω′)g(k′, ω′)u(k − k′, ω − ω′)u(k′, ω′) (E1.33)

For ε < 1, i.e., for weak disorder, this equation is iterated to first non–vanishing order in ε

(one-loop approximation) and averaged over disorder. The disorder average u(k, ω)u(k′, ω′)
can be calculated using (E1.29) and (E1.26), which gives

u(k, ω)u(k′, ω′) = Λ2π2
{

h+(k)h−(k′)δ(ω − p)δ(ω′ + p) +

+h−(k)h+(k′)δ(ω + p)δ(ω′ − p)
}

= 2Λ2limpπ
3δ(k + k′)δ(ω + ω′) {δ(ω + p) + δ(ω − p)}

≡ 2δ(k + k′)δ(ω + ω′)D(ω, k) . (E1.34)

Therefore, we get for g in order ε2

g(k, ω) = g0(k, ω) + ε2g2
0(k, ω)

∫
dk′ dω′

Λ2(2π)4
(ω − ω′)ω′ω(−ω′)×

×g0(k′, ω′)g0(k − k′, ω − ω′)g0(−k′,−ω′)D(k′, ω′) . (E1.35)

g(k,ω)

u(k,ω) u(k,ω)

u(k-k',ω−ω')

u(k',ω')

g0(k,ω) g0(k,ω) g(k',ω')

g(k-k',ω−ω')

= +

(a)

= + 2

k,ω k,ω
k,ω

k',ω' -k',-ω'

k-k',ω−ω'

D(k',ω')

k,ω

(b)

Figure E.3: Diagrams for (a) eq. (E1.33) and (b) eq. (E1.35).

The diagrams visualizing eqs. (E1.33) and (E1.35) are depicted in figure E.3.
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For k = 0 (E1.35) reduces to

g(0, ω) = g0(0, ω)

[
1 + ε2

p2limp

8πtω

∫
dk′

1
(k′/Λ)2 + (πp2t/2)2

×

×
{

p− ω

πt(ω − p)2/2− ık′/Λ
− p + ω

πt(ω + p)2/2− ık′/Λ

} ]
. (E1.36)

Because we calculate the correlation length in the thermal regime (see figure B.6) with t & tu

the k′-integral in (E1.36) gives the biggest contribution to g at small ω. In this case the

k′-integral can be easily calculated which leads to

g(0, ω ¿ 1) ≈ g0(0, ω)
(

1− ε2
Λlimp

2π3p2t3

)
(E1.37)

or for the effective Temperature Teff

1
Teff

≈ 1
T

(
1− ε2

Λlimp

2π3p2t3

)
=

1
T

(
1− 1

2

(
tu

πp2t

)3
)

, (E1.38)

which yields for the correlation length

ξ−1 ≈ π

2
f(T )t

[
1 +

1
2

(
tu

πp2t

)3
]

Λ , (E1.39)

as written in the text. For high temperatures t À tu we recover the linear t dependency of

the free case.

A related calculation for directed polymers and interface growth can be found in [MHKZ89].

Note, that in this paper x plays the role of ϕ and t the role of x in the above calculation.

1.4 Symbol reference

Table EI: List of used quantities in chapter B

symbol quantity eq. ref.

a lattice constant

b = e−l rescaling parameter of order 1

Bi functions used in flow equations (B3.6)

c elastic constant (B2.4a)

C(x, τ), Cf , Cb phase correlation functions (B4.5), (B4.12)
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Table EI: (continued...)

symbol quantity eq. ref.

d spatial dimension

f(T ) condensate density (B2.4)

F free energy (B3.1)

g dimensionless electron-phonon coupling constant (B2.4)

gi functions used in Bi (B3.6)

gq electron-phonon coupling constants (B2.2)

hi integers (cf. strong pinning) (B3.24)

Ĥ, Ĥ0 Hamiltonian (complete and free) (B2.4)

k, kn wave vectors

kF Fermi wave vector

K, K(l), K0 dimensionless parameter for quantum fluctuations (B2.8b)

Ku, K∗
u K-values defining the separatrix/fixed point (B3.13)

of the disorder unpinning transition

Kw, K∗
w K-values defining the separatrix/fixed point (B6.4)

of the lattice unpinning transition

L system length (B2.4)

LFL Fukuyama-Lee or Larkin length (B2.7)

limp mean impurity distance (B2.5)

L0 free (gaussian) part of the Lagrangian (B3.2))

ni integers (cf. strong pinning) (B3.23)

Nimp number of impurities (B2.4b)

p commensurability used in the density (B2.1)

p(εi) probability density function of εi (B4.15)

P̂ momentum operator, conjugate to ϕ̂ (B2.4)

Q density wave vector (B2.1)

q commensurability used in the lattice potential (B2.4c)

S, S0 action (full and gaussian part) (B3.4)

S(n) replicated action (B3.2)

SSF,SLP action for superfluids and lattice potential (B5.2)

S, S1 density correlation functions (B4.1), (B4.2)
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Table EI: (continued...)

symbol quantity eq. ref.

T temperature

TMF
c mean-field condensation temperature

t, t(l), t0 parameter for thermal fluctuations (B2.8a)

tu = 1/(ΛLFL) crossover temperature from classical disordered

to thermal regime

tK temperature separating the thermal and

disordered regime

U(x) disorder potential (B2.4b)

Ui impurity potential (B2.4b)

Uimp mean impurity potential (B2.5)

u, u(l), u0 dimensionless parameter for disorder fluctuations (B2.8c)

vF Fermi velocity

v phason velocity (B2.4)

Vc(x) Coulomb potential (B2.10)

W lattice potential strength (B2.4c)

W̃ phase-slip probability (B2.4d)

w, w(l), w0 dimensionless parameter for lattice potential strength (B2.8d)

xi impurity positions (B2.4b)

z dimensionless distance in τ -x-space

α parameter used in the strong pinning limit (B4.17)

β inverse temperature

γ parameter for KT flow equations (B3.14a)

∆ order parameter (B2.2)

εi deviation from mean impurity distance (B3.24)

ζ transverse width of the quasi one-dimensional system

η, η̃ = B0(p2K∗
u,∞), = −B2(q2/K∗

w,∞), respectively

λ density wave length

λT de Broglie wave length (B2.9)

Λ momentum cutoff
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Table EI: (continued...)

symbol quantity eq. ref.

ξ, ξu, ξw, etc. correlation lengths table BII

$, $0, $(l) dimensionless parameter for phase-slip probability (B2.8e)

ρ(x), ρSF(x) charge/spin or superfluid density (B2.1), (B5.1)

ρ0 mean density (B2.1)

ρ1 density amplitude for harmonic part of ρ(x) (B2.1)

σ forward scattering amplitude (B3.4)

τ imaginary time coordinate

ϕ phase variable (B2.2)

χ parameter for KT flow equations (B3.14b)

Υ auxiliary function (B3.7)

ωn Matsubara frequencies

2 Appendix to chapter C

2.1 Mean-field equation of motion

In this appendix we briefly present the derivation of the solution of the mean-field equation

of motion.

The mean-field equation is obtained from the initial equation of motion (C2.1) by taking the

limit of infinite-range elastic interaction, i.e., all z(x, t) (for all x) couple to all other z(x′, t)
with the same strength, which is of order 1/N for a proper normalization (N is the number

of discrete segments in x-direction). This is equivalent to the limit D →∞.

The elastic forces can then be expressed in a form, that all z(x′, t) are uniformly coupled to

the mean interface position z0(t) = 〈〈z(x, t)〉x〉d instead of the nearest neighbor coupling

in (C2.1). Therefore the redundant spatial dependence of z and g can be dropped and one

obtains
1
γ̃

∂z

∂t
= Γ̃ [z0(t)− z(t)] + h(t) + g̃(z) . (E2.1)

The interface displacement z can be decomposed to z(t) = z0(t) + z(t) with 〈z(t)〉d = 0
and the equation of motion for z0(t) follows directly from (E2.1) after averaging over the

disorder:
1
γ̃

ż0(t) = h(t) + 〈g̃(z0(t) + z(t))〉d . (E2.2)
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Subtracting this from (E2.1) gives

(
1
γ̃

∂z(t)
∂t

+ Γ̃z(t)
)

= g̃(z0(t) + z(t))− 〈g̃(z0(t) + z(t))〉d . (E2.3)

The Greens function for this partial differential equation is given by

G0(t− t0) = γ̃Θ(t− t0)e−Γ̃γ̃(t−t0) with (E2.4)(
1
γ̃

∂

∂t
+ Γ̃

)
G0(t− t0) = δ(t− t0) .

Using this, the formal solution for z(t) can be written as

z(t) =

∞∫

−∞
dt′

[
h(t′) + g̃(z0(t′) + z(t′))− 1

γ̃
ż(t′)

]
G0(t− t′) . (E2.5)

Expanding g̃(z0 + z) in (small) z, iterating (E2.5) once and averaging over disorder one

obtains

1
γ̃

ż0(t) = h(t) +

∞∫

−∞
dt′G(t− t′)

〈
g̃′(z0(t))g̃(z0(t′))

〉
d

. (E2.6)

Using the disorder correlator and the expression for G0, given in (E2.4), (E2.6) can be

rewritten to

1
γ̃

ż0(t) = h(t) +

t∫

−∞
dt′∆′(z0(t)− z0(t′))γ̃e−Γ̃γ̃(t−t′) , (E2.7)

which can be transformed to (C3.2) by the shift t− t′ → t′.

2.2 Perturbation theory

For the solution of the initial equation of motion (C2.1) in perturbation theory, we go over

to a co-moving frame via z(x, t) = z0(t) + z(x, t) with z0(t) = 〈z(x, t)〉x and 〈z〉 = 0 and

define v(t) ≡ ż0(t).

With this, the equation of motion can be rewritten as

z(x, t) =
∫

dDx′
∫

dt′ G0(x− x′, t− t′)
{

h(t′)− v(t′)
γ

+ g(x′, z0(t′) + z(x′, t′))
}

(E2.8)

with the Greens function G0(x, t), defined by

(
1
γ

∂

∂t
− Γ∇2

)
G0(x− x0, t− t0) = δ(x− x0, t− t0) . (E2.9)
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Expanding g(x′, z0(t′)+z(x′, t′) in small z and iterating (E2.8) leads in lowest, non vanishing

order to

v(t) .= γh(t) + γ

〈
∂z0g(x, z0(t))

(∫
dDx′

∫
dt′ G0(x− x′, t− t′)g(x′, z0(t′))

)〉

= γh(t) +
∫ ∞

−∞
dt′G0(0, t− t′)∂z0∆(z0(t)− z0(t′)) , (E2.10)

with

G0(0, t) = Θ(t)
∫

Ω

dDp

(2π)D
e−Γγp2tγ , (E2.11)

where Ω =
{
p; |p| < Λ ≈ L−1

P

}
.

If one assumes, that ∆ does not depend one p, (E2.10) can be evaluated to

v(t)
γ

= h(t) +
γKD

2

∫
dt′∆′(z0(t, t′))(Γγt′)−D/2Γ̃D/2(L

−2
P Γγt′) (E2.12)

with z0(t, t′) ≡ z0(t) − z0(t − t′), KD = 21−Dπ−D/2Γ(D/2), and Γ̃x(y) ≡ Γ(x) − Γx(y),
where Γx(y), Γ(x) = Γx(0) are the incomplete and complete Gamma function, respectively.

With the approximation (1 + x)−α ≈ αx−αΓ̃α(x), the velocity is given by

v(t)
γ

≈ h(t) + h2
P γ

D

4

∫ ∞

0
dt′ (1 + ωP t′)−D/2 ∆∗′(z0(t, t′)/l)

l

≡ h(t) + r0(t) , (E2.13)

where we introduced ∆∗ by ∆(z) = K−1
D (Γl)2LD−4

P ∆∗(z/l) (cf. eq. (C3.7) and (C3.8)).

Next we want to analyze r0(t) for ∆∗(x) = e−x2
and for the free solution v0(t) = γh(t),

i.e.,

r0(t) = −h2
P γD

2l2

∫ ∞

0
dt′ (1 + ωP t′)−D/2z0(t, t′)e−(z0(t,t′)/l)2 . (E2.14)

Since perturbation theory works (best) for h(t) > hP , we calculate r0(t) at t = t1 ≡ π
2ω0

,

i.e., for h(t) = h0. Therefore it is z0(t1, t′) = γh0

ω0
sin(ω0t

′) and after substituting τ = ω0t
′

we get

r0(t1) = −
(

ωP

ω0

)2

h0
D

2

∫ ∞

0
dτ

(
1 +

ωP

ω0
τ

)−D/2

sin(τ)e
�

ωP
ω0

h0
hP

�2
sin2(τ)

, (E2.15)

where the sine function ensures the convergence of the integral. For ω0 À ωP the exponential

function can be neglected one has to estimate the value of an integral of form

Ia(b) ≡
∫ ∞

0
dx (1 + bx)−a sin(x) . (E2.16)
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It it easy to show that |Ia(b)| ≤ 2 for all a, b > 0:

Ia(b) =
∞∑

n=0

∫ (n+1)π

nπ
dx (1 + bx)−a sin(x)

︸ ︷︷ ︸
≷0 for even/odd n

≤
∞∑

n=0




(2n+1)π∫

2nπ

dx
sin(x)

(1 + b2nπ)a
−

2(n+1)π∫

(2n+1)π

dx
sin(x)

(1 + b2(n + 1)π)a




= 2
∞∑

n=0

(
(1 + 2πnb)−a − (1 + 2π(n + 1)b)−a

)

= 2(1 + 2π0b)−a = 2 .

In fact it is even |Ia(b)| ≤ 1, but the important result is that this integral is of order 1.

Therefore we have shown that r0 is of order
(

ωP
ω0

)2
.

2.3 Review of the RG for the disorder correlator

In this appendix we give a short overview and the main ideas of the renormalization of the

disorder correlator ∆(z) since it is a main ingredient of the calculations on chapter C. This

”review” is based on Refs. [LNST97, NSTL92].

The disorder correlator is defined by the random force g(x, z) with 〈g〉d = 0 by

〈g(x, z)g(0, 0)〉d = ∆‖(x)∆(z) . (E2.17)

The precise form of the correlation ∆‖(x) which extends over a length l‖ in the x-direction

is not of crucial importance. Throughout the thesis we used l‖ → 0, i.e., ∆‖(x) = δD(x).

However, the form of the symmetric function ∆(z) is very important. Therefore we should

distinguish between different situation for the random force g:

• random-field disorder: g could be a gaussian distributed force and the random force

correlator ∆(z) is a monotonically decreasing function of z and decays exponentially

over a length l.

• random-bond disorder: In this case g can be written as gradient of a random potential

VR, i.e., g ' −∂zVR(x, z), which is correlated over a length l, i.e., ∆(z) = −R′′(z),
where R(z) is the random potential correlator.

• charge density waves: g can be written as a periodic function: g(x, z) = g0 cos(z −
α(x)), with a random phase α(x). Therefore ∆(z) is also periodic with zero mean

value.
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(a) (b)

(c)

∆(z) ∆(z)

∆(z)

z

z

z

l-l
0

0

0

Figure E.4: Random force correlator ∆(z) for (a) random-field disorder, (b) random-bond

disorder, and (c) charge density waves

Illustrations of these three cases are shown in Fig. E.4.

As we have seen in the main introduction chapter, the critical dimension for the disorder is

4, above which curvature forces always win over the pinning forces. Below 4 dimensions, the

curvature forces cannot balance the random forces on scales larger than the Larkin length

LP , where the interface becomes rough.

So far we have used the perturbation theory in order to solve the equation of motion (C2.1),

but we have seen, that the perturbative corrections to the interface velocity diverge as v−
4−D

2

near the depinning transition at zero temperature when v → 0.

To overcome this divergency, one has to perform a functional RG procedure in D = 4 − ε

for the disorder correlator. Therefore we can represent ∆(z) as

∆(z) ≡
∞∑

n=0

(−1)n

(2n)!
z2nQ2n , (E2.18)

since ∆(z) is analytical function at z = 0. Q2n ≡
∫
k k2n∆k are called the moments of ∆(z),

and ∆k are the Fourier components of ∆(z). By differentiating (E2.18) one obtains formally
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the flow equation

∂∆(z)
∂ ln b

=
∞∑

n=0

(−z2
)n

(2n)!
b
∂Q2n

∂b
, (E2.19)

with the rescaling parameter b. A perturbative expansion of an appropriately chosen pa-

rameter (see eq. (42) in [LNST97]) gives the following renormalization prescription of the

moments Q2n in one-loop order:

b
∂Q2n

∂ ln b
=

KD

Γ2
bε

n∑

j=1

(
2n + 1

2j

)
Q2jQ2(n−j+1) , (E2.20)

with K−1
D = 2D−1πD/2Γ(D/2).

In order to get a functional RG equation, one has to express the right-hand side of (E2.19)

in term of ∆(z), using (E2.20), which results finally in

d∆(z)
d ln b

= −KD

Γ2
bε d2

dz2

[
1
2
∆2(z)−∆(z)∆(0)

]
. (E2.21)

Using this terminology, the flow equation for γ in first order in ε can be written as [NSTL92]

d ln γ

d ln b
= −KD

Γ2
Q2b

ε . (E2.22)

Note, that there is no renormalization of Γ in this order.

∆
∗(z)

z

`

Figure E.5: Renormalized disorder correlator showing a cusp-like shape.

The fixed point form of ∆(z) is discussed in the main text, which can be obtained from

(E2.21) with the ansatz

∆(y) = const.× L2ζ−ε∆̂(yL−ζ) (E2.23)

and ∆∗(y) = limL→∞ ∆̂(y). The constant is chosen such that ∆∗(0) = 1. The resulting

equation for ∆∗(y) is given by

(ε− 2ζ)∆∗(y) + ζy∆∗′(y)− (
∆∗′(y)

)2 −∆∗′′(y) (∆∗(y)− 1) = 0 . (E2.24)

The fixed point solution in the case of random-field disorder in shown in Fig. E.5.
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2.4 Renormalized perturbation theory

Now we combine the results from the perturbation theory shown in appendix 2.2 and the

results from the functional RG presented in 2.3 to overcome the breakdown of perturbation

theory.

Therefore one has to consider the momentum dependency of γ and ∆ given in (C3.9a) and

(C3.9b), respectively, and as a result the Greens function from the perturbation theory is

modified to

G0(0, t) = Θ(t)
∫

Ω

dDp

(2π)D
e−Γγ(|p|)p2tγ(|p|) , (E2.25)

with Ω =
{
p; ξ−1 < |p| < Λ ≈ L−1

P

}
, where ξ = min(ξ0, Lω).

Using this replacements in (E2.10) one gets the expression given in (C3.10) as follows

v(t)
γ(L−1

ω )
= h(t) +

∞∫

−∞
dt′ G0(0, t)(∆′

p)

= h(t) + K−1
D

(
Γl

Lζ
P

)2 ∞∫

0

dt′
∫

Ω

dDp

(2π)D
e−Γγ(|p|)p2tγ(|p|)p4−D−2ζ ×

× ∂

∂z(t, t′)
∆∗(z(t, t′)(pLp)ζ/l)

= h(t) +
γΓ2l

L4
P︸ ︷︷ ︸

=hP ωP

∞∫

0

dt′
1∫

L̃−1
ω

dp̃ p̃1+z+ζe−ωP p̃zt′∆∗(z(t, t′)p̃ζ/l) .

If ∆∗′(x) depends only on the sign of x, the dependency on p̃ of ∆∗′ in (C3.10) can be

neglected and with

∫ 1

L̃−1
ω

dp̃ p̃1+z−ζe−ωP p̃zt′ =
1
z
(t′ωP )−δ

(
Γδ(t′ωP L̃−z

ω )− Γδ(t′ωP )
)

(E2.26)

and δ = 2+z−ζ
z = 1 + 1

νz one obtains

v(t)
γ(Lω−1)

= h(t) +
hP ωP

z

∫
dt′ (ωP t′)−δ

(
Γ̃δ(t′ωP )− Γ̃δ(t′ω0)

)
∆∗′(0+) sgn(z(t, t′)/l)

= h(t)− h̃P

νz

∫ ∞

0
dτ

[
S(τ, ωP )− L̃−1/ν

ω S(τ, ω0)
]

, (E2.27)

with S(τ, ω) ≡ τ−δΓ̃δ(τ) sgn(z(t, τ/ω).
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2.5 Symbol reference

Table EII: List of symbols used in chapter C

symbol quantity

a length scale for the surface potential

C, Cs curvature and its saturation value (t →∞)

D dimension of the interface

f frequency (ω0/(2π))

g(x, z) random force

H Hamiltonian

Hn replica Hamiltonian

h(t) driving force

h0 amplitude of the driving force

hP , h̃P (real) depinning threshold (≈ hP,0 = ΓlL−2
P )

and its RG value

hP,s surface depinning threshold

hc force at which the velocity becomes 0 in the

non-adiabatic velocity hysteresis loop

hc0 field at which Lω ≈ ξ0

KD = 21−Dπ−D/2/Γ(D/2)

L system size

Lω perturbation propagation length scale

LP Larkin length

l variance of the disorder correlator

M magnetization

Ms maximal magnetization

r0 perturbative correction to v

Rc critical droplet size

R(ϕ) random potential correlator

S(t, ω) =
∫∞
0 dτ τ−δΓ̃δ(τ) sgn z0(t, τ/ω), auxiliary function

tc ≈ (ω0 + v(t)/l)−1, time cutoff

T time for one ac cycle
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Table EII: (continued...)

symbol quantity

T temperature

TP =, typical temperature

v = 〈ż(x, t)〉x, (mean) velocity

vP = ωP l

V (x, z) potential (random VR & surface Vs)

z(x, t), z0(t) interface profile and its mean value

z dynamical critical exponent

α numerical length unit

α(x) random phase

β critical exponent for the velocity at depinning

∆(z), ∆0(z) random force correlators

∆∗ fixed point disorder correlator

ε = 4−D

ζ, ζ̃ roughness exponent

η thermal noise

θ scaling exponent

γ mobility constant

Γ stiffness constant

Γδ incomplete Γ-function

µ = 2ζ+D−2
2−ζ , exponent in dc interface velocity

µ0 magnetic permeability of vacuum 4π × 10−7Wb/(A m)

ν critical exponent for the correlation length

ξ, ξ0 correlation length

ρ(x) function defining the area where the surface potential acts

τ0 numerical time unit

φ± scaling function

ϕ (CDW) phase profile

ϕs phase field at the surface

ω0 external (angular) frequency of the driving force

χ, χ′, χ′′ complex susceptibility and its real and imaginary part
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Table EII: (continued...)

symbol quantity

ωP typical ”pinning” frequency

3 Appendix to chapter D

3.1 Bogoliubov transformation

In this appendix we derive the Bogoliubov-de Gennes equations for an interacting Bose system

and solve it in the case when there is no external potential. The full Hamiltonian of the

interacting Bose system (condensate and over-condensate), including an external trapping

potential is given by

Ĥ =
∫

V
ddr Ψ†(r)

[
− ~

2

2m
∇2 + Vex(r)− µ +

1
2

∫

V
ddr′Ψ†(r′)U(|r− r′|/a)Ψ(r′)

]
Ψ(r)

(E3.1)

with

Vex(r) =
m

2

d∑

i=1

ω2
i r

2
i . (E3.2)

Using the decomposition Ψ = ξ0 + ψ of the complete wave function (ξ0 is the condensate

wave function, ψ of the over-condensate) and using the Bogoliubov transformation

ψ (r) =
∑

k

b̂kuk (r)− b̂†kv
∗
k (r) , (E3.3a)

ψ† (r) =
∑

k

b̂†ku
∗
k (r)− b̂kvk (r) , (E3.3b)

the Hamiltonian can be rewritten as

Ĥ = Ĥ0 +
∑

k

εk b̂
†
kb̂k . (E3.4)

To obtain the functions uk(r) and vk(r) one has to solve the Bogoliubov-de Gennes equation



128 Appendix

∫

V
ddr′ U(|r− r′|/a)

[
|ξ0(r′, t)|2uk(r, t) + ξ∗0(r

′, t)ξ0(r, t)uk(r′, t)

−ξ0(r′, t)ξ0(r, t)vk(r′, t)
]

= ı~∂tuk(r, t)−
[
−~

2∇2

2m
− µ + Vex

]
uk(r, t) (E3.5a)

∫

V
ddr′ U(|r− r′|/a)

[
|ξ0(r′, t)|2vk(r, t) + ξ0(r′, t)ξ∗0(r, t)vk(r′, t)

−ξ∗0(r
′, t)ξ∗0(r, t)uk(r′, t)

]
= −ı~∂tvk(r, t)−

[
−~

2∇2

2m
− µ + Vex

]
vk(r, t)(E3.5b)

with the normalization condition

∫

V
ddr (uk(r)u∗k′(r)− vk(r)v∗k′(r)) = δk,k′ . (E3.6)

With ξ0 ≈
√

n and the ansatz

(
uk(r, t)
vk(r, t)

)
= e−ıεkt/~

(
uk(r)
vk(r)

)
these equations can be

simplified to

n

∫

V
ddr′ U(|r− r′|/a)

(
uk(r) + uk(r′)− vk(r′)
vk(r) + vk(r′)− uk(r′)

)

=
(
~2∇2

2m
+ µ− Vex ± εk

) (
uk(r)
vk(r)

)
. (E3.7)

For vanishing external potential Vex = 0 one can go over to Fourier representation:

U(r− r′) =
1√
V

∫
ddq eıq(r−r′)Uq ,

(
uk(r)
vk(r)

)
=

eıkr

√
V

(
uk

vk

)
(E3.8)

and one obtains:

n

∫
ddq Uq

(
ukδ

d(q) + (uk − vk)δd(k− q)
vkδ

d(q) + (vk − uk)δd(k− q)

)
=

(
−~

2k2

2m
+ µ± εk

)(
uk

vk

)
(E3.9)

and finally

nUk=0

(
uk

vk

)
+ nUk

(
uk − vk

vk − uk

)
=

(
−~

2k2

2m
+ µ± εk

) (
uk

vk

)

⇒
(

uk

vk

)
= [f1(k)± f2(k)]

(
vk

uk

)
(E3.10)
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with

f1(k) = (Uk=0/Uk + 1) +
1

nUk
(ε0,k − µ) , (E3.11)

f2(k) =
εk

nUk
, (E3.12)

ε0,k =
~2k2

2m
. (E3.13)

Note, that for Vex(r) 6= 0 this procedure fails.

From the last equation one finds immediately

f2
1 (k)− f2

2 (k) = 1 (E3.14)

which gives an equation for the Bogoliubov energies εk. The solution for uk and vk is given

by (
uk

vk

)
=

(
f1(k)
f2(k)

± 1
)1/2

. (E3.15)

Since the quantity wk ≡ (uk − vk)2 is important to calculate the scattering rates, it can be

written in terms of f1, f2 as

wk =
2

f2(k)
(f1(k)− 1) . (E3.16)

So far no assumptions about the interaction potential are made. The cases of a short-range

(delta) and for a long-range (Coulomb) potential are treated next.

3.1.1 Short-range potential

In the most simple case of a short-range potential given by

U(r) = U0δ(r) , (E3.17)

i.e., Uk = U0, one obtains

f1(k) = 2 +
1

nU0
(ε0,k − µ) , (E3.18)

f2(k) =
εk

nU0
, (E3.19)

and with µ ≈ U0n0,max (n0,max is the maximum condensate density ≈ |ξ0|2 for T ¿ Tc)

the solutions for εk, uk and vk are given by

ε2
k = ε0,k(ε0,k + 2µ) , (E3.20)(

uk

vk

)
=

(
ε0,k + µ

εk
± 1

)1/2

. (E3.21)

And for wk one finds easily: wk = 2ε0,k/εk.
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3.1.2 Coulomb potential

Next we consider a Coulomb potential in two dimensions, given by

U(r) = U0/a2 ln(|r|/a) (E3.22)

or in Fourier representation: Uk = −U0/k2. a is a scattering length ∼ U0m/~2. To avoid the

divergency at k = 0, one has to take screening effects into account, i.e., a better potential

is U(r) = U0/a2K0(|r|/a), where K0 is the modified Bessel function of second kind.

In lowest-order the potential has the form [FGI93]

Uk = −U0
k2

k4 + 8πU0nm/a2
. (E3.23)

However, if we just use µ ≈ nUk=0 and Uk = −U0/k2 for large k, we obtain the following

solutions

ε2
k = ε2

0,k +
~2U0n

ma2
, (E3.24a)

f1(k) = 1 + ε0,k/(nUk) , (E3.24b)

f2(k) = ε0,k/(nUk) , (E3.24c)

wk = 2ε0,k/εk . (E3.24d)

3.2 Scattering rates for short-range interaction

Scattering of Bogoliubov quasi-particles occurs in third order in the over-condensate opera-

tors. Using again the decomposition of Ψ into condensate and over-condensate part

Ψ = ξ0 + ψ, (ξ0 = ξ†0 =
√

n)

and expand the interaction Hamiltonian up to third order in ψ :

Ĥint =
1
2
U0

∫
dr

(
Ψ†

)2
Ψ2 =

1
2
U0

∫
dr

(
ξ0 + ψ†

)2
(ξ0 + ψ)2

=
1
2
U0

∫
dr

(
ξ2
0 + 2ξ0ψ

† + ψ†2
) (

ξ2
0 + 2ξ0ψ + ψ2

)

= U0

√
n

∫
dr

(
ψ†ψ2 +

(
ψ†

)2
ψ

)
= U0

√
n

∫
drψ†ψ2 + H.c.

where only 3rd order terms were taken into account in the last equality.

In general, the lifetime of a given excitation (k) is determined by two processes: decay-

coalescence

k ↔ k′ + q (E3.25)
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and absorption-emission

k + q ↔ k′. (E3.26)

Later on, we will be interested in process (E3.25) in when k is a high-energy quasi-particle

with almost free spectrum and q is a low-energy phonon (q) with linear spectrum.

Due to this two processes the scattering rate can be calculated using Fermi’s golden rule:

1
τ0(k)

=
2π

~
∑
q

1
2

[
|〈nk, nk−q + 1, nq + 1|Hint|nk + 1〉|2 δ (εk − εk−q − εq)

+ |〈nk+q, nk + 1, nq + 1|Hint|nk+q + 1〉|2 δ (εk + εq − εk+q)
]
. (E3.27)

(all unchanged occupation numbers are omitted in the states).

The matrix elements are calculated using the Bogoliubov transformation

ψ (r) =
∑

k

b̂kuk (r)− b̂†kv
∗
k (r) ,

where (
uk

vk

)
=

(
~2k2/2m + µ√

~2k2/2m (~2k2/2m + 2µ)
± 1

)1/2

.

Notice, that uk, vk are real (see last section 3.1).

And the Bogoliubov spectrum is given by

ε2
k =

~2k2

2m

(
~2k2

2m
+ 2µ

)
.

For 2µ À ~2k2

2m (phonons):

εq = ~|q|v ,

with the velocity v =
√

µ/m. We can define a ”Debye wave vector” by

qD ≡ mv

~
.

We also need the Bose factors

〈nk〉 =
1

eεk/T − 1
→

{
T/εk , εk ¿ T

1 , εk À T
.
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And the Bose operators and states are defined by the standard relations:
[
b̂q, b̂

†
k

]
= δq,k ,

[
b̂(†)
q , b̂

(†)
k

]
= 0 ,

b̂†k |. . . , nk, . . .〉 =
√

nk + 1 |. . . , nk + 1, . . .〉 ,

b̂k |. . . , nk > 0, . . .〉 =
√

nk |. . . , nk − 1, . . .〉 ,

〈. . . , 0, nk, 0, . . .| . . . , 0, n′k, 0, . . .
〉

= δnk,n′k
.

For (test-) particles (2µ ¿ εk = ~2k2

2m ≈ T ¿ Tc) one can use the following approximations:

vk ≈ 0 , uk ≈
√

2 .

Substituting Bogoliubov transforms into Ĥint, we get (U0 = w)

Ĥint =
U0
√

n

V 3/2

∫

V
dr

∑

k,k′,k′′

(
b̂†ku

∗
ke
−ikr − b̂kvke

ikr
)

(
b̂k′uk′e

ik′r − b̂†k′v
∗
k′e

−ik′r
) (

b̂k′′uk′′e
ik′′r − b̂†k′′v

∗
k′′e

−ik′′r
)

+ H.c.(E3.28)

= U0

√
n/V

∑

k,q

(
b̂†k b̂q b̂k−q

)
ukuquk−q

︸ ︷︷ ︸
1

−
(
b̂†k b̂q b̂

†
q−k

)
ukuqvq−k

︸ ︷︷ ︸
2

−
(
b̂†k b̂

†
q b̂k+q

)
ukvquk+q

︸ ︷︷ ︸
3

+
(
b̂†k b̂

†
q b̂
†
−k−q

)
ukvqv−k−q

︸ ︷︷ ︸
4

−
(
b̂k b̂q b̂−k−q

)
vkuqu−k−q

︸ ︷︷ ︸
5

+
(
b̂k b̂q b̂

†
k+q

)
vkuqvk+q

︸ ︷︷ ︸
6

+
(
b̂k b̂

†
q b̂q−k

)
vkvquq−k

︸ ︷︷ ︸
7

−
(
b̂k b̂

†
q b̂
†
k−q

)
vkvqvk−q

︸ ︷︷ ︸
8

+
(
b̂†k b̂

†
q b̂k+q

)
ukuquk+q

︸ ︷︷ ︸
9

−
(
b̂†k b̂

†
q b̂
†
−k−q

)
ukuqv−k−q

︸ ︷︷ ︸
10

−
(
b̂†k b̂q b̂k−q

)
ukvquk−q

︸ ︷︷ ︸
11

+
(
b̂†k b̂q b̂

†
q−k

)
ukvqvq−k

︸ ︷︷ ︸
12

−
(
b̂k b̂

†
q b̂q−k

)
vkuquq−k

︸ ︷︷ ︸
13

+
(
b̂k b̂

†
q b̂
†
k−q

)
vkuqvk−q

︸ ︷︷ ︸
14

+
(
b̂k b̂q b̂−k−q

)
vkvqu−k−q

︸ ︷︷ ︸
15

−
(
b̂k b̂q b̂

†
k+q

)
vkvqvk+q

︸ ︷︷ ︸
16

(E3.29)
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where
∫
V eikr = V δk,0 is used.

Now we can calculate the matrix element 〈nk, nk−q + 1, nq + 1|Hint |nk + 1〉 and use the

convention that k is a particle momentum henceforth.

For this matrix element the only relevant terms of the interaction Hamiltonian are: 2, 3, 8,

9, 12, 14 (which contain two creation and one annihilation operator).

In order to produce the ’bra’ state from the ’ket’ state, the annihilation and one creation

operator in these terms have to be particle operators, therefore — since vk = 0 — only the

terms 2, 3, and 9 ”survive” due to prefactors.

• Term 2 gives a contribution, if q̃− k̃ = q and q̃ = k:

−uk−qukvq

√
nq + 1

√
nk + 1

√
nk−q + 1

• Term 3 gives a contribution, if q̃ = q and k̃ + q̃ = k:

−uk−qvquk

√
nq + 1

√
nk + 1

√
nk−q + 1

• Term 9 gives a contribution, if k̃ + q̃ = k and k̃ = k or q = k̃:

2uk−ququk

√
nq + 1

√
nk + 1

√
nk−q + 1

(the momenta with tilde denote the momenta in the Hamiltonian.)

Therefore the matrix element is given by

〈nk, nk−q + 1, nq + 1|Hint |nk + 1〉
= U0

√
n/V 2uk−q̃uk(uq − vq)

√
nq + 1

√
nk + 1

√
nk−q + 1 . (E3.30)

For one test-particle with k À q and T À εq this reduces to

4U0

√
n/V (uq − vq)

√
nq . (E3.31)

It follows simply (since the result is real):

|〈nk, nk−q + 1, nq + 1|Hint |nk + 1〉|2 ≈ 16U2
0

n

V
(uq − vq)2nq .

The other matrix element follows from the above one, by substituting k → k + q, i.e., it

gives the same result for the probability in the golden rule.
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Using these results, the scattering rate is given by

1
τ0 (k)

≈ 16πU2
0

n

~V
∑
q

wqnq [δ(εk − εk−q − εq) + δ(εk + εq − εk+q)]

≈ 16πU2
0 n

T

~
1

(2π)d

∫
ddq wq/εq [δ(εk − εk−q − εq) + δ(εk + εq − εk+q)] (E3.32)

with

wq ≡ (uq − vq)2 =
√

2/m~|q|
(
~2q2

2m
+ 2µ

)−1/2

.

In the last step the factor nq is replaced by T/εq.

This can be simplified to

1
τ0 (k)

≈ 64π

(2π)d

U2
0 nmT

~3

∫
ddq

(
q2 + (2qD)2

)−1 [δ(εk − εk−q − εq) + δ(εk + εq − εk+q)] .

In two dimensions this can be written in polar coordinates as

1
τ0 (k)

≈ 16
π

U2
0 nmT

~3

∫
dq q

(
q2 + (2qD)2

)−1 ×
∫

dφ [δ(εk − εk−q − εq) + δ(εk + εq − εk+q)] .

• The first delta function (assumption k− q is a ”particle” wave vector) demands that

εk − εk−q − εq =
~2

m
|k|q cosφ− εq − ~

2q2

2m

is zero, which results in the condition for the angle φ: cosφ = 1
2|k|

(
q +

√
q2 + (2qD)2

)
.

Since the right-hand side of this inequality is greater than zero it has two solutions if it is

smaller than 1. In this case the φ-integral gives:

2m

~2|k|q

√
1−

[
1

2|k|
(
q +

√
q2 + (2qD)2

)]2

.

Since qD ¿ |k| the complete square-root factor can be neglected for the q-integration, which

can then be extended to ∞.

• The second delta function (assumption k− q is a ”particle” wave vector) demands that

εk + εq − εk+q = εq − ~
2q2

2m
− ~

2

m
|k|q cosφ

is zero which gives: cosφ = 1
2|k|

(√
q2 + (2qD)2 − q

)
≤ qD/|k| ¿ 1, which has always two

solutions and the φ-integral gives:

2m

~2|k|q

√
1−

[
1

2|k|
(√

q2 + (2qD)2 − q
)]2

.
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The second term under the square-root is always small and can be neglected in the q-integral.

Finally, one gets

1
τ0 (k)

≈ 16
π

U2
0 nmT

~3

∞∫

0

dq
4m

~2|k|
(
q2 + (2qD)2

)−1 = 16
U2

0 nm2T

~5qD|k| ∝
√

T .

3.3 Scattering for Coulomb interaction

The interaction Hamiltonian in third order of ψ is given by

Ĥint =
√

n

2

∫
d2r ddr′ U(|r− r′|) (E3.33)

(
ψ†(r′)ψ(r′)ψ(r) + ψ†(r)ψ(r′)ψ(r) + ψ†(r)ψ†(r′)ψ(r′) + ψ†(r)ψ†(r′)ψ(r)

)

and in Fourier representation:

Ĥint =
√

n

2V 2

∫
d2r ddr′ ddq

∑

k,k′,k′′
eıq(r−r′)Uq × (E3.34)

[
(b†ke

−ıkr′uk − bke
ıkr′vk)(bk′e

ık′r′uk′ − b†k′e
−ık′r′vk′)(bk′′e

ık′′ruk′′ − b†k′′e
−ık′′rvk′′) +

(b†ke
−ıkruk − bke

ıkrvk)(bk′e
ık′r′uk′ − b†k′e

−ık′r′vk′)(bk′′e
ık′′ruk′′ − b†k′′e

−ık′′rvk′′) +

(b†ke
−ıkruk − bke

ıkrvk)(b
†
k′e

−ık′r′uk′ − bk′e
ık′r′vk′)(bk′′e

ık′′r′uk′′ − b†k′′e
−ık′′r′vk′′) +

(b†ke
−ıkruk − bke

ıkrvk)(b
†
k′e

−ık′r′uk′ − bk′e
ık′r′vk′)(bk′′e

ık′′ruk′′ − b†k′′e
−ık′′rvk′′)

]
,

i.e., integrating over r and r′ gives two δ-functions and hence an additional Fourier factor

Uk — compared to the short-range case — appears in the momentum summation

Again, only terms of the form 2, 3, and 9 (as written for the short-range case) give contri-

butions to the matrix elements:

• Term 2 type terms give:

−(Uk̃−q̃ + Uq̃)/2uk̃−q̃uk̃vq̃

√
nq̃ + 1

√
nk̃ + 1

√
nk̃−q̃ + 1

• Term 3 type terms give:

−(Uk̃+q̃ + Uq̃)/2uk̃−q̃vq̃uk̃

√
nq̃ + 1

√
nk̃ + 1

√
nk̃−q̃ + 1

• Term 9 type terms give:

(Uk̃ + Uq̃)uk̃−q̃uq̃uk̃

√
nq̃ + 1

√
nk̃ + 1

√
nk̃−q̃ + 1
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Again, uk ≈
√

2 can be used for quasi particles and the occupation numbers for particle can

be set to 1. Since the Fourier components decay as k−2 for k → ∞ the Uk’s with particle

waves vectors can be neglected, hence
〈
nk̃, nk̃−q̃ + 1, nq̃ + 1

∣∣∣Hint

∣∣nk̃ + 1
〉

≈ 2Uq̃

√
n/V (uq̃ − vq̃)

√
nq̃ . (E3.35)

The scattering rate is then calculated analogous to the δ-interaction case, using the same

approximations for the angle integration, and one obtains

1
τ0 (k)

≈ 8
U2

0 nm2T

π|k|~5

∫ ∞

0

(
Uq

U0

)2 q2dq

q4 + q4
0

∝
√

T , (E3.36)

with q4
0 ≡ 4U0mn(a~)−2.

3.4 Influence of a trapping potential

Here, we briefly consider the influence of a trapping potential on the equations for uk and

vk. These can be rewritten as (for a δ-potential and µ ≈ U0|ξ0|2):

(D̂ + µ)uk(r)− µvk(r) = εkuk(r) , (E3.37)

(D̂ + µ)vk(r)− µuk(r) = −εkvk(r) . (E3.38)

Introducing fk(r) ≡ uk(r) + vk(r) and gk(r) ≡ uk(r)− vk(r) one gets

D̂fk(r) = εkgk(r) , (E3.39)

(D̂ + 2µ)gk(r) = εkfk(r) , (E3.40)

with the differential operator

D̂ ≡ − ~
2

2m
∇2 + Vex(r) =

∑

i

D̂i , D̂i = −~
2∂2

xi

2m
+

m

2
ω2

i x
2
i . (E3.41)

A solution in the Thomas-Fermi regime µ À ~ωi is given in [ÖST+97]. In order to see the

crossover to lower dimensions, one (for quasi-2D condensates) or two (for quasi-1D, cigar

shape condensates) trap frequencies have to go to ∞ such that the Thomas-Fermi result is

not applicable. The full solution – unfortunately very non-trivial – in the limit ω1 →∞ and

ω2 = ω3 = 0 (should) reduce to the 2D result of the previous section.

3.5 Symbol reference
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Table EIII: List of symbols used in chapter D

symbol definition

a scattering length

b̂k, b̂†k boson annihilation and creation operators

g = U0m/~2
1+U0m/~2 ln(na2)−1

Ĥ Hamiltonian

Ĥint interaction part of the Hamiltonian

K0 modified Bessel function of second kind

n boson concentration

nk occupation numbers

m boson mass

qD ”Debye wave vector”

q0 = (4U0nm(a~)−2)1/4

T temperature

Tc BEC transition temperature

U(r), Uk interaction potential and Fourier components

U0 interaction strength

uk, vk Bogoliubov functions

v =
√

µ/m phonon velocity

V volume

Vex(r) trapping potential

εk Bogoliubov spectrum

κ thermal conductivity

µ chemical potential

ν = 380

ρ,ρ0 DOS, for free particles

τ0(k) scatting time of over condensate particles

τε(k) energy relaxation time of over condensate particles

τtr(k) transport time of over condensate particles

Ψ complete wave function

ψ over-condensate wave function
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[LFC+97] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal. Phys.

Rev. Lett., 80:849, 1997.

[LFC+98] S. Lemerle, J. Ferre, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal. Phys.

Rev. Lett., 80:849, 1998.



142 Bibliography

[LNP99] Igor F. Lyuksyutov, Thomas Nattermann, and Valery Pokrovsky. Phys. Rev. B,

59:4260, 1999.

[LNST97] H. Leschhorn, T. Nattermann, S. Stepanow, and L.-H. Tang. Ann. Phys. (Leipzip),

6:1, 1997.

[LOCT01] S. G. Lemay, K. O’Neill, C. Cicak, and R. E. Thorne. Phys. Rev. B, 63:081102, 2001.

[LR85] Patrick A. Lee and T. V. Ramakrishnan. Rev. Mod. Phys., 57:287, 1985.

[LV02] A. V. Lopatin and V. M. Vinokur. Phys. Rev. Lett., 88:235503, 2002.

[Mak95] K. Maki. Phys. Lett. A, 202:313, 1995.

[MF93] A. Alan Middleton and Daniel S. Fisher. Phys. Rev. B, 47:3530, 1993.

[MG95] H. Maurey and T. Giamarchi. Phys. Rev. B, 51:10833, 1995.

[MHKZ89] Ernesto Medina, Terence Hwa, Mehran Kardar, and Yi-Cheng Zhang. Phys. Rev. A,

39:3053, 1989.

[Mid92] A. Alan Middleton. Phys. Rev. Lett., 68:670, 1992.

[Mil02] Edoardo Milotti. physics, 0:0204033, 2002.

[MNR04] Sergey V. Malinin, Thomas Nattermann, and Bernd Rosenow. cond-mat, 0:0403651,

2004.

[MT86a] H. Matsukawa and H. Takayama. Physica B, 143:80, 1986.

[MT86b] L. Mihaly and G. X. Tessema. Phys. Rev. B, 33:5858, 1986.

[MWA+98] V. Metlushko, U. Welp, I. Aranson, S. Scheidl, V. M. Vinokur, G. W. Crabtree, K. Ro-

gacki, and B. Dabrowski. cond-mat, 0:9804121, 1998.

[Myd93] J.A. Mydosh. Spin Glasses : An Experimental Introduction. Taylor and Francis,

London, 1993.

[Nat87] T. Nattermann. Europhys. Lett., 4:1241, 1987.

[Nat90] Thomas Nattermann. Phys. Rev. Lett., 64:2454, 1990.

[Née49] L. Néel. Ann. Geophys., 5:99, 1949.

[Nel88] David R. Nelson. Phys. Rev. Lett., 60:1973, 1988.

[NF92a] Onuttom Narayan and Daniel S. Fisher. Phys. Rev. Lett., 68:3615, 1992.

[NF92b] Onuttom Narayan and Daniel S. Fisher. Phys. Rev. B, 46:11520, 1992.

[NF93] Onuttom Narayan and Daniel S. Fisher. Phys. Rev. B, 48:7030, 1993.

[NGD03] Thomas Nattermann, Thierry Giamarchi, and Pierre Le Doussal. Phys. Rev. Lett.,

91:056603, 2003.

[NPV01a] T. Nattermann, V. Pokrovsky, and V. M. Vinokur. Phys. Rev. Lett., 87:197005, 2001.



Bibliography 143

[NPV01b] T. Nattermann, V. Pokrovsky, and V. M. Vinokur. Phys. Rev. Lett, 87:197005, 2001.

[NS00] Thomas Nattermann and Stefan Scheidl. Adv. Phys., 49:607, 2000.

[NSKL95] T. Nattermann, S. Scheidl, S.E. Korshunov, and M.S. Li. J. Phys. I (France), 5:565,

1995.

[NSTL92] T. Nattermann, S. Stepanow, L.-H. Tang, and H. Leschhorn. J. Phys. II (France),

2:1483, 1992.

[NSV90a] T. Nattermann, Y. Shapir, and I. Vilfan. Phys. Rev. B, 42:8577, 1990.

[NSV90b] T. Nattermann, Y. Shapir, and I. Vilfan. Phys. Rev. B, 42:8577, 1990.

[NV93] David R. Nelson and V. M. Vinokur. Phys. Rev. B, 48:13060, 1993.
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Zusammenfassung

In der vorliegenden Arbeit werden ungeordnete elastische Systeme im quanten- und klassischen

Regime, sowie deren dynamische Eigenschaften untersucht. Die Arbeit besteht aus zwei Hauptteilen:

Im ersten Teil untersuchen wir das Phasendiagramm von schwach ungeordneten Systemen bei tiefen

Temperaturen. Als Methode wird dabei ein Renormierungsgruppenverfahren benutzt, welches den

Einfluss von thermischen Fluktuationen voll mit berücksichtigt. Die Resultate können z.B. auf

Ladungsdichtewelllen oder Luttinger Flüssigkeiten angewendet werden. In der klassischen Region

des Phasendiagramms, d.h. dort, wo Quantenfluktuationen irrelevant sind, haben wir das Modell

für starke Unordung exakt gelöst und den Grundzustand sowie die Korrelationsfunktion gefunden.

Weiterhin haben wir für hohe Temperaturen (im klassischen Bereich) das Problem auf eine Burgers

Gleichung mit Unordnung abgebildet und so die Korrelationslänge bestimmt. Im Fall T = 0 konnten

wir den Phasenübergang zwischen einer gepinnten (oder lokalisierten) Phase bei schwachen Quan-

tenfluktuationen und einer nicht gepinnten (delokalisierten) Phase bei starken Quantenfluktuationen

reproduzierten, welcher schon von Fukuyama oder Giamarchi und Schulz untersucht worden ist.

Bei endlichen Temperaturen wird dieser Lokalisierungs-Phasenübergang unterdrückt, d.h., dass das

Unordungspotential durch thermische Fluktuationen ausgewaschen wird, sobald man auf Längenskalen

größer der thermischen de Broglie Wellenlänge ist. Die Residuen des Phasenübergangs werden dabei in

dem Zurückbleiben eines reichhaltigen Crossover-Diagramms widergespiegelt. In diesem Crossover-

Diagramm finden wir vier verschiedene Skalenbereiche: ein klassisch ungeordenten, einen quanten

ungeordneten, einen quantenkritischen und einen thermischen Bereich. Die Resultate können direkt

auf ungeordnete Supraflüssigkeiten angewendet werden. Anschließend wird das Renormierungsver-

fahren noch auf die Behandung eines kommensurablen Gitterpotentials, und im Falle von Ladungs-

dichtewellen auf den Einfluss von Quanten-phase-slips erweitert. Diese beiden Effekte führen zu einem

neuen Szenario für den Lokalisierungsübergang bei T = 0.

Zusätzlich analysieren wir das Rauschspektrum des Stromes in einem klassischen Ladungsdichtewellen-

system. Dazu lösen wir die überdämpfte Bewegungsgleichung numerisch. Bei tiefen Temperaturen,

gerade überhalb des Depinningübergangs, zeigt das Spektrum ein 1/f Verhalten, was auch Funkel-

rauschen (flicker noise) genannt wird. Die Resultate stimmen gut mit experimentellen Messungen an

quasi-eindimensionalen Ladungsdichtewellensystemen überein.

Im zweiten Teil untersuchen wir das Verhalten einer elastischen Interface, welche durch ein oszil-

lierendes externes Feld getrieben wird. Die mittlere Geschwindigkeit zeigt dabei ein hysteretisches

Verhalten, so dass der Depinningübergang im Fall der adiabatisch, mit konstantem Feld getriebenen
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Interface, aufgeweicht wird. Die Geschwindigkeitsausdehnung dieser Hysteresekurve wird dabei durch

eine neue Längenskala, welche durch die Frequenz des angelegten Feldes und - im Falle von kleinen

Frequenzen - von den kritischen Exponenten des Depinningüberganges festgelegt wird. Mit Hilfe von

Skalenargumenten und einer perturbativen Renormierungsgruppenanalyse leiten wir ein Potenzverhal-

ten der Geschwindigkeit, als Funktion der Amplitude und Frequenz her, welches numerisch bestätigt

wird. Thermische Fluktuationen führen zu einer zusätzlichen Aufweichung des Depinningverhaltens.

Wenn die Amplitude des externen Feldes kleiner als das Depinningfeld ist, muss bei der Bewegung des

Inferace auch das Auftreten von Lawinen mitberücksichtigt werden, um die Geschwindigkeitshysterese

zu erklären.

Um die Gültigkeit unseres Modells im Vergleich mit Experimenten zu überprüfen, bestimmen wir

die komplexe Suszeptibilität mit Hilfe eines adiabatischen und eines nicht-adiabatischen Zugangs

numerisch für endliche Systeme und vergleichen sie mit Messungen an dem superferromagnetis-

chen, granularen Vielschichtsystem [Co80Fe20(1.4nm)/Al2O3(3nm)]10. Als Resultat finden wir, dass

das Modell für oszillierend getriebene Domänenwände die Haupteigenschaften des Experimentes

beschreibt.

Im letzten Abschnitt dieses Teils untersuchen wir noch den Einfluss von starken Oberflächenpotentialen

auf die Bewegung von elastischen Systemen. Wenn das Oberflächenpotential das Depinning vollständig

verhindert, zeigt die Krümmung des ausgebildeten parabolischen Profils eine ausgeprägte rhombis-

che Hysterese, deren Breite zweimal dem Depinning Feld des Systems entspricht. Diese Hysterese

verschwindet bei endlichen Temperaturen, wenn die angelegt Kraft adiabatische geändert wird. Im

Falle eines Depinnings des Oberflächenpotentials durch die angelegte Kraft oder thermisches Kriechen

wird die Krümming des Profils mit steigender Geschwindigkeit verringert. Die Resultate können z.B.

auf getriebene magnetische Domänenwände, Flussliniengitter oder Ladungsdichtewellen angewendet

werden.

Als Zusatz studieren wir niedrigdimensionale wecheselwirkenden – aber, im Gegensatz zu den vorheri-

gen beiden Hauptteilen, saubere – Bose Systeme bei tiefen Temperaturen. Die Wechselwirkung

führt im allgemeinen zu Streuprozessen zwischen den Überkondensat-Teilchen, für welche wir die

Streuzeiten mit Hilfe von Fermis goldener Regel berechnen können. Damit kann dann die thermische

Leitfähigkeit und schwache Loklisierungskorrekturen bestimmt werden. Dieses wird für kurz- und

langreichweitige Wechselwirkungen getan. Da ein d-dimensionales Bose System auf ein (d + 1)-
dimensionales Vortexgitter abgebildet werden kann, können die Resultate z.B. zu einer Versteifung

des Flussliniengitters führen.
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