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1 Abstract

In this work a perturbative realization of particle conserving continuous unitary transformations is
applied to study the energies and the spectral properties of quasi one-dimensional quantum anti-
ferromagnets. The systems considered are defined on a lattice and they allow for a perturbative
decomposition. The unperturbed part is chosen to be a fully dimerized state. The groundstate is a
product-state of singlets and the excitation spectrum is equidistant. The related energy quantum
is called a triplon becaues it has total spin one. The continous unitary transformation leads to an
effective triplon-conserving Hamiltonian and effective, experimentally relevant observables.

The effective operators are obtained in a high-order series expansion in the perturbation parame-
ters. All calculations are performed on finite clusters in real space and yield exact results in the
thermodynamic limit due to the linked cluster theorem.

The results are exact in the given order. In order to improve the representation of the results
extrapolation techniques are used. A detailed description of extrapolation tools like standard Padé
and dlogPadé extrapolation, optimized perturbation theory and the use of internal parameters is
given.

The dimerized and frustrated spin-chain is analysed first. At zero frustration, a detailed investigation
of the spectral weights shows that even in the limit of vanishing dimerization, the one-dimensional
Heisenberg model, almost the total spectral weight is situated in the two-triplon sector. So, besides
spinons, triplons may be used as elementary excitations for the one-dimensional Heisenberg model.
The case of strong frustration is not yet settled.

An extensive review of one- and two-triplon spectral densities at large and intermediate value of the
dimerization for various values of the frustration is presented. The findings are compared with field
theoretical results. In addition, the Raman response and the infrared absorption are investigated.
Second, the antiferromagnetic two-leg Heisenberg ladder plus additional four-spin interaction is
investigated. The transformation starts from the limit of isolated rung dimers. The excitations
are rung-triplons. The relative energies of one-triplon states, the two-triplon bound states and the
multi-triplon continua are given for various couplings. Optical observables are discussed in detail.
The extent of the rung-singlet phase is calculated in the whole parameter space. It is shown that
the experimental realizations of two-leg ladder systems are always situated in the rung-singlet phase.
In the experimentally relevant regime, most of the spectral weight is captured by the one- and the
two-triplon sector, but also three- and four-triplon contributions become sizable.

The current understanding of the spectroscopic signatures of magnetic excitations in cuprate lad-
ders measured with inelastic neutron scattering, Raman spectroscopy and infrared absorption is
presented. The results obtained are compared with experimental findings. The first experimental
evidence of a triplon-triplon bound state in a ladder system is found.
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2 Introduction

2.1 High-temperature superconductors

The history of high-temperature superconductivity starts in 1986 when Bednorz and Miiller dis-
covered a superconducting transition in Las_xBaxCuOy4 [1]. In contrast to conventional supercon-
ductors which can be understood by the theory of Bardeen, Cooper and Schrieffer [2] based on
phonon mediated pairing and transition temperatures below 30 K, the family of cuprate supercon-
ductors display a variety of anomalous properties and rather high transition temperatures up to 133
K [3, 4]. The pairing mechanism and the unconventional normal properties of the cuprate materials
are still under intensive debate. This introductory chapter cannot provide a complete discussion of
the cuprate problem. It gives a rather general framework and establishes connections between the
topics discussed in this thesis and some open questions in the field of high-temperature cuprate
superconductors.

A schematic phase diagram of cuprate superconductors is displayed in Fig. 2.1. At low temperatures
and zero doping, an antiferromagnetic phase is realized (green area). The antiferromagnet (AF)
is destroyed at low hole concentrations (x < 0.03). The red area corresponds to the supercon-
ducting phase, the so-called superconducting dome (SC). The superconducting phase is realized
at zero temperature between x = 0.05 and x =~ 0.25. The carrier concentration with maximal
transition temperature is defined as optimal doping. Lower carrier concentration defines the un-
derdoped region and larger doping levels the overdoped regime. The normal state is divided into
pseudo-gap (PG), non-Fermi liquid (NFL) and Fermi liquid (FL) regime. For doping levels when
antiferromagnetism has disappeared and superconductivity has not been realized, various forms of
local or incommensurate magnetism survives. The dynamical properties at intermediate levels are
those of a spin glass (SG) [5].

In 1987, Anderson identified some key ingredients for a theory of cuprate superconductors [6].
The most important structural unit is believed to be the two-dimensional copper-oxide planes such
that couplings between the planes are weak. This is illustrated in the left panel of Fig. 2.2 for the
case of Las_,Sr,CuQO4. The undoped parent compound of this family of cuprate superconductors
is LaoCuQy. It contains one hole per site which is located in the 3d-shell. The hole occupies the
3d,2_,2 orbital and a local magnetic moment with total spin S = 1/2 and g-factor of about 2. The
properties of the undoped cuprates, which mainly result from superexchange interactions via the
oxygen p-orbitals, are discussed in the next section.

Substituting La3* by Sr?* injects additional holes in the copper-oxide planes which are mainly lo-
cated at the oxygen-ion. The relevant orbitals of the copper and oxygen ions are illustrated in
the right panel of Fig. 2.2. Therefore the cuprates should be described by a three-band Hubbard
model [7—9]. However, it is commonly accepted that the essential physics of the cuprates is cap-
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Fig. 2.1: Schematic phase diagram of high-temperature superconductors depending on temperature T
and carrier concentration x. The green area displays the antiferromagnetic phase and the red area the
so-called superconducting dome. The carrier concentration with maximal critical temperature T, for the
superconducting phase is called optimal doping. Less doping is referred to as the underdoped regime and
higher doping as the overdoped regime. The normal state phases are divided into the pseudo-gap regime
(PG), the non-Fermi liquid (NFL) phase and a Fermi liquid at high doping levels. The dashed lines stand
for crossovers, not for phase transitions.

tured by an effective one-band Hubbard model as suggested early by Anderson [6]. The reason
is the existence of the Zhang-Rice singlet band [10] as the first electron removal state. Here the
system is considered as a Mott-Hubbard system with the Zhang-Rice singlet band playing the role
of the lower Hubbard band and Cu-derived band as the upper Hubbard band.

The one-band Hubbard model contains a single kinetic energy term proportional to the nearest-
neighbor hopping amplitude t and a Hubbard U originating from the Coulomb interaction. The
Hubbard Hamiltonian reads

H=-t Z (C’-TUCJ'U + hC) + UZ Nt Njy . (211)

<ij>,0 i

Here C,-Ta (cis) creates (annihilates) an electron or hole on site / with spin o, < ij > corresponds
to nearest-neighbor pairs, and nj, = c,.‘:,c,-a is the number operator. In the strong coupling limit
(U >> t) the doubly occupied states can be projected out [12]. In this way the one-band and the
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Fig. 2.2: (Left panel) Crystal structure of Las_xSroCuOg4 [11]. Small dark circles denote copper sites, small
light circles denote oxygen sites and larger circles correspond to La/Sr. The key structural unit are the
CuO, planes. (Right panel) Orbital structure of the copper-oxide planes. The oxygen sites are p,-orbitals
and the copper sites d-orbitals.

three-band Hubbard-model simplify in leading order in t/U to the t — J Hamiltonian

H=—t Y (&Lgo+hc)+J) (S;-SJ-— n;nf) . (2.1.2)

<ij>,o0 <ij>

The operator &, = Cis(1 — nj_s) excludes double occupancy and J = 4t2/U denotes the antifer-
romagnetic exchange coupling constant. S; denote S = 1/2 spin operators.

At half-filling (x = 0, i.e. one electron per Cu site in a 3d,2_,> orbital), the t — J Hamiltonian
is equivalent to the two-dimensional Heisenberg model. Here the antiferromagnetic state results
from the fact that the electron gain energy by virtual hopping to neighboring sites which is only
possible for antiparallel alignment due to Pauli's principle [13]. Away from half-filling, the t — J
model describes a so-called doped antiferromagnet, i.e. a system of interacting spins and mobile
holes.

The cuprate superconductors are therefore often considered as doped antiferromagnets [5]. One
major complication of the problem is the destruction of the long-range ordered antiferromagnet
by doping resulting in a spin-liquid state. It is generically believed that many unsual properties of
cuprate superconductors are related to the interplay between holes and magnetic fluctuations of
the spin-liquid state. The standard BCS theory [2] is not the appropriate foundation for the physics
of cuprate superconductors.

This has led to the development-of various different theories for the description of high-temperature
superconductors. Among them there are the resonating valence bond (RVB) state and related
spin-charge separation pictures [6, 14—26], inhomogeneities like stripes [5,27—41] or the concept of
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Fig. 2.3: One-magnon dispersion along high-symmetry directions in the 2D Brillouin zone obtained by
spin-wave theory in Ref. [67] (solid line). The triangles are the experimental results of Coldea et al. [57]
for LaaCuOg4 at 10K.

quantum criticality [42-50].

It can be concluded from the discussion of the last paragraphs that the nature of the magnetic
fluctuations and their interactions with the hole carriers in the two-dimensional copper-oxide planes
is one of the central issues in the field of high-temperature superconductivity. Nevertheless, also
the role of phonons in the pairing mechanism of cuprate superconductors is still under discus-
sion [51,52]. At this point, the focus is laid on the magnetic excitations ignoring phonons and
the fermionic degrees of freedom in order to establish three different connections to the physics
described in the following chapters:

i) The spectral properties of magnetic excitations in the undoped compounds are discussed. This is
related to Chapt. 8 which discusses spectral properties of cuprate ladder systems displaying similar
physical properties. ii) The nature of the magnetic excitations in the quantum spin liquid realized for
the doped quantum antiferromagnet is described. This is connected to the discussion of fractional
and integer excitations of spin-chains in Chapt. 6. iii) The occurrence of inhomogeneity in cuprate
superconductors like the formation of one-dimensional stripe-structures is discussed. In this way
one-dimensional quantum magnetism is relevant for the physics of cuprate superconductors.

2.1.1 Undoped cuprates

The undoped cuprates like LaoCuQ4 and SroCuO»,Cl, are considered usually as realizations of the
two-dimensional spin 1/2 Heisenberg model [53]. Effects like intra-layer coupling, anisotropies in
spin-space, Dzyaloshinski-Moriya interactions and spin-orbit coupling are present in these materials
but usually of minor importance [54].

The presence of long-range ordered antiferromagnetism below the Néel temperature was estab-
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lished by neutron scattering experiments [54]. One observes well-defined dispersing peaks [55, 56]
which are identified as magnons which are the elementary excitations of a Néel-ordered state. In
recent years a complete magnon dispersion was measured [57]. The antiferromagnetic correla-
tion length diverges exponentially for decreasing temperatures which indicates long-range order
at T = 0 [54,58,59]. These experimental results agree with the field theoretical analysis of the
two-dimensional Heisenberg model in terms of the non-linear ¢ model [42] and of spin-wave ap-
proaches [60]. Summarizing these points, the low-energy magnetic excitations of the undoped
cuprates are identified with renormalized magnons [53].

It turned out that the two-dimensional Heisenberg model does not capture the full physics of
the low-energy magnetic excitations [57]. The Hamiltonian has to be extended by the so-called
ring-exchange term which consists of four-spin interactions. It is the dominant correction to the
nearest-neighbor Heisenberg model [61-66]. In this way the complete magnon dispersion can be
understood in terms of spin-wave theory [67] (see Fig. 2.3).

In contrast to the obviously well-understood low-energy one-magnon properties, the high-energy
spin excitations show several anomalies not captured by the standard spin-wave techniques. This
is most clearly seen in optical probes like Raman spectroscopy [69, 70] and infrared absorption [71—
73]. Typical results for both experiments are shown in Fig. 2.4. The optical spectra show similar
results. There is a low-energy peak usually referred to as a two-magnon peak. The position of this
peak is in agreement with spin-wave theory [73, 74]. The width and also the high-energy spectral
weight cannot be explained in terms of standard spin-wave theory [73, 74]. In addition, the one-
magnon part of the inelastic neutron scattering experiments only accounts for about 50% of the
total spectral weight [75-77].

Altogether, one can conclude that quantum fluctuations are strong in these compounds, i.e. on
the one hand a more sophisticated spin-wave theory has to be done treating magnon-magnon in-
teractions and multi-magnon contributions properly or on the other hand, a theory not based on
the Néel state has to be constructed which implies to introduce new kinds of excitations. The
nature of the incoherent high-energy excitations is currently under strong debate [22, 77-79].

In Chapt. 8 these questions are discussed for cuprate ladders. Cuprate ladders show similar spec-
troscopical properties concerning optical experiments. The two-leg ladder is the archetype model
for a resonating valence bond state. It is gapped and has shortrange spin-spin correlations. It
is seen that the quantitative treatment of two-particle interactions and multi-particle continua is
essential to understand the full physics of the high-energy excitations and their spectral weight.

2.1.2 Doped Mott insulators

The problem of doped two-dimensional antiferromagnets with holes has two complementary as-
pects. On the one hand it is important to understand the effect of the antiferromagnetical corre-
lations on the charge carriers and on the other hand it is crucial to investigate the influence of the
holes on the antiferromagnetic state itself. Here only magnetic phases and their excitations are
discussed.

Experimentally it can be seen clearly that the antiferromagnet is destroyed by doping resulting in a
magnetically paramagnetic state. Having in mind that spin fluctuations may be important for the
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Fig. 2.4: (Left panel) Polarized Raman spectra at 30 K from Ref. [69]. The upper left corresponds to
the undoped La,CuQ4. It displays the typical two-magnon peak with additional spectral weight at high
frequencies. (Right panel) Optical conductivity o(w) of YBCOg at 4 and 300 K taken from Ref. [73].
The spectra display a low-energy two-magnon peak plus significant additional spectral weight at higher
frequencies.

pairing mechanism of cuprate superconductors, it is therefore decisive to study the nature of the
magnetic excitations in the doped regime. As the long-range order is absent, it is expected that
the excitations are different in nature compared to magnons reflecting the local correlations of the
system [6, 80]. The system has become a spin-liquid.

Therefore doping tunes the long-range ordered Néel ordered state into a quantum disordered para-
magnetic state. Some principal issues of this transition can be explained in terms of quantum
criticality [80]. The quantum critical point separates the antiferromagnetically ordered phase from
a quantum disordered phase. Above the critical point the quantum critical regime is located. The
principal setting is illustrated in the left panel of Fig. 2.5. One possible quantum disordered phase
is a valence bond solid. In such a state, neighboring states form singlets, resulting in an ordered
pattern of valence bonds. This phase breaks translational symmetry and displays a finite spin
gap [81]. A second class of quantum paramagnetic states are valence bond liquids which do not
break translational symmetry [81]. A sketch of the Néel-ordered state and a valence bond solid is
given in the right panel of Fig. 2.5.

The nature of the elementary excitations in the disordered phases and the connection between
the different excitations in the different phases is important. Fractional and integer excitations are
discussed for the quantum disordered phase [6,80]. The integer excitation is identified with an
elementary triplet excitation (or triplon [82]). It has total spin one and exists with three different
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Fig. 2.5: (Left panel) Generic crossover phase diagram near a quantum critical point. The variable g
denotes a tuning parameter, e.g. hole doping, and T is the temperature of the system. The quantum
critical point is denoted by g.. There is an ordered phase, a quantum critical regime and a quantum
disordered phase. (Right panel) (A) The magnetic Néel ground state on the square lattice. The spins
fluctuate quantum-mechanically in the ground state, but they have an ordered nonzero magnetic moment,
which is oriented along the direction shown. (B) A valence bond solid quantum paramagnet. The spins
are paired in singlet valence bonds, which resonate among the different ways the spins can be paired.
The valence bonds crystalize so that the pattern of bonds shown has a larger weight in the ground state
wavefunction than its symmetry-related partners. The right figure is taken from Ref. [81].

flavours. In terms of the valence bond solid it can be viualized as the excitation of a local singlet
to a local triplet plus a polarization cloud. In the triplon language the ordered state corresponds to
a condensation of two triplon flavours. This condensate represent the magnon excitations of the
ordered phase. A possible fractional nature of the elementary excitations of the quantum disordered
phase is also under strong debate [6, 22]. Here the decay of the electron into a spinon and holon
pair is assumed. The spinon carries the spin 1/2 and it can be excited only in pairs. Recently,
a new kind of deconfined quantum critical point is discussed for the order-to-disorder transition
in two-dimensional cuprate systems [81]. It is argued that the triplon in the quantum disordered
phase fractionalizes at the quantum critical point which results in new properties of the quantum
critical regime.

The necessity to introduce fractional excitations in the description of cuprate superconductors
is an open issue. In Chapt. 6 one-dimensional spin-chains are analysed with respect to these
questions. One-dimensional quantum antiferromagnets are commonly known to have fractional
spinon excitations [83]. Therefore they are important systems to study the relationship between
the spinon and the triplon picture. Interestingly, it is found that both excitations can be viewed as
elementary excitations of these systems [82].
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2.1.3 Inhomogeneity

Next the aspect of inhomogeneity in cuprates is briefly discussed. Here the term “inhomogeneity”
is equivalent to a static or dynamic order in a sense that hole-rich and hole-poor regions are formed
in the considered system. A static order corresponds to an ordered phase like the longranged or-
dered Néel state and a dynamic order corresponds to a quantum disordered phase in the proximity
of a quantum critical point such that strong dynamic fluctuations are present. At the moment
mostly quasi one-dimensional inhomogeneity is discussed, the so-called stripe phase [5, 32, 84-88].
But also two-dimensional checkerboard inhomogeneity is discussed [27, 89] which is seen in recent
surface-sensitive scanning tunneling microscopy investigations [90]. In this introduction, the focus
is laid on stripe structures.

The best way to detect such stripe-ordered or fluctuating stripes is to measuring the appropriate
magnetic dynamical structure factor. Indeed, x-ray and neutron scattering studies have provided
the best evidence of ordered and fluctuating stripe phases [32, 88, 91, 92]. The existence of stripe
order manifests itself in superstructure satellites around Qar [5, 93] which is the antiferromagnetic
wave vector. Precursors of incommensurate Bragg peaks are dispersion minima at incommen-
surate positions in the Brillouin zone. These low-energy incommensurate peaks are measured in
La; 6—xNdg.4SryCuOy4 [94-96], Las_,Ba,CuOy4 [97], Las_xSryCuOy4 [96, 98—-102], LayCuOy,s [109]
and recently in YBayCu3QOg4s [110-115]. Therefore the low-energy incommensurate peaks are a
universal feature of cuprate superconductors?.

A second feature strongly discussed in the field of cuprate superconductors is the so-called reso-
nance peak which appears in the superconducting phase at the antiferromagnetic wave vector Qas
at finite energies (e.g. 41 meV in optimally doped YBay;CuzO7_s) [117-124]. An S=1 collective
mode identified with the resonance peak in the superconducting phase is a prominent feature of
many different theoretical scenarios. Its interpretation ranges from a particle-hole bound state (see
Refs. in [124, 125]) to a particle-particle bound state in SO(5) theory [40, 126-128].

The last two points are the most striking features of the magnetic excitation spectrum in the super-
conducting phase located at low energies. Very recently an experimental progress has been made in
preparing large single crystals [115, 129] which implies the possibility of investigating the magnetic
excitation spectrum also at energies above and below the resonance mode. The experimental result
is shown in Fig. 2.6 for the stripe-ordered compound La; g75Bag.105 CuO4 [129] and for underdoped
superconducting YBayCuzOg ¢ [115].

Interestingly, the magnetic excitation spectra of the stripe-ordered compound and the supercon-
ducting compound look very similar. Three generic features can be extracted: i) at low energies
there are four incommensurate satellites around the antiferromagnetic wave vector, ii) the satellites
merge at intermediate energies into the resonance mode located at Qar and iii) the excitation spec-
tra above the resonance mode is rotated by 45° compared to the square formed by the low-energy
satellite peaks. These experimental findings suggest a common physical origin of the observed
structures.

The choice of the microscopic model is straightforward for the stripe-ordered phase. Indeed, an

INote that there are also explanations of the incommensurability observed by neutron scattering experiments based

on Fermi surface nesting [103-108].
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Fig. 2.6: (Left panel) Constant-energy slices through the experimentally measured magnetic structure factor
from stripe-ordered Laj g75Bag.12sCuO4 taken from Ref. [129]. The intensity is measured at T = 12K (>
Tc) within a single antiferromagnetic zone (magnetic Brillioun zone is rotated by 45°). The data show
incommensurate peaks at low energies forming a square, a resonance peak at 44 meV and a diamond shape
structure at higher energies. (Right panel) Images of the spherical magnetic scattering in underdoped
YBa>2Cu3zOp6 at T = 10K from Ref. [115]. Note that this data is not rotated by 45°. Analogous structures
to the stripe-ordered compounds are found: incommensurate peaks at low energy, a resonance peak at 34
meV and a 45°-rotated (compared to the low-energy peaks) intensity pattern at high energies.

effectice magnetic model consisting of coupled two-leg ladders is able to capture all observed exper-
imental structures on a quantitative level [130, 131]. Qualitatively similar results were also obtained
by a coupled dimer calculation [132], a spin wave approach [116, 133] and a recent study using
time-dependent Gutzwiller approximation for the one-band Hubbard model [134].

The stunning similarities between the magnetic excitations of a stripe-ordered and a supercon-
ducting cuprate compound on the one hand and the quantitative description of these data based
on coupled one-dimensional spin systems on the other hand, establish the importance of one-
dimensional quantum magnetism in cuprate superconductors. In this thesis dynamical correlations

for one-dimensional spin systems are calculated which can serve as a starting point for the descrip-
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tion of anisotropic two-dimensional systems.

2.2 Continuous unitary transformations

Here a brief general discussion of the method chosen in this theis is given before entering the detailed
investigations in the next chapters. In this work the method of continuous unitary transformation
is used which was independently proposed by Wegner [135] and Gtazek and Wilson [136, 137] in
1994. Ref. [138] is referred to as an introductory paper and Ref. [139] as a recent review about
the method.

The main idea of the method is to find an optimal description of the considered quantum many-body
system by choosing an appropriate basis. Changing the basis is equivalent to a unitary transforma-
tion. Famous examples of unitary transformations are the bosonic Bogoliubov transformation or
the fermionic transformation leading to the BCS wave function. These two transformations work
in the case of bilinear Hamiltonians. They are often used in mean-field treatments. The method
of continuous unitary transformations extends this concept beyond bilinear Hamiltonians.

The unitary transformation is performed in a continuous fashion, i.e. a continuous parameter / is
introduced such that / = 0 refers to the initially given system and / = oo corresponds to the finally
effective system which corresponds to an easier physical picture. The transformation can be set up
such that processes at larger energy are treated before those at lower energies. This renormalizing
property is similar to Wilson's renormalization group approach [140].

Let U be the unitary transformation which diagonalizes the Hamiltonian H and H(/) = UT(/)HU(/).
Then this unitary transformation is equivalent to performing an infinite sequence of unitary trans-
forms e="(4/ with the antihermitian generator

n(l) = -Ut(HaU(l) . (2.2.1)
This results in the so-called flow equation
OH(1) = [n(1), H(N)] (2.2.2)

which defines the change of the Hamiltonian during the flow. Clearly, the choice of the antihermitian
generator is the crucial point of the method. At the moment, mainly two different generators are
in used. First, the originally generator proposed by Wegner [135] reads

n"(1) = [Ha(1), Hna(N] = [Ha(1), H(1)] (2.2.3)

where Hy denotes the diagonal part and H,4 the non-diagonal part of the Hamiltonian. Second, a
quasi-particle conserving generator is in use [141-145]. Let Q be the operator counting the number

MKU a

of elementary excitations and choose the matrix elements of 7 S

My = sgn(ai(l) — q(1)) Hi (1) (2.2.4)

in the eigenbasis of Q, then the final Hamiltonian satisfies [Q, H(oo)] = 0, i.e. the number of
elementary excitations is a conserved quantity after the transformation. In addition, it is found
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that the latter generator sorts the eigenvalues in ascending order of the particle number of the
corresponding eigen vectors [141, 143]. This can be proven for finite-dimensional Hilbert spaces.

MKU nhew terms

The commutator [n(/), H(I)] produces generically for both generators W and n
not contained in the original Hamiltonian. In this way a proliferating number of new terms are
generated so that the flow equations are an infinitesimal set of coupled differential equations. For
most practical purposes, one has to truncate at some point. One obtains a closed set of equations
which can be solved in order to recieve the effective system. Therefore the truncation is essential
to capture the relevant physics in the effective system.

The method has been applied to various systems mostly in condensed matter physics. The resulting
flow equations are solved in an analytical way (usually in some perturbative treatment in first order)
or numerically. Among these systems studied there are impurity models [146—154], dissipative sys-
tems [155, 156], electron-phonon coupling [157-159], two-dimensional Hubbard model [160-164],
one-dimensional fermionic [165, 166] and bosonic systems [167,168]. Truncation schemes vary
from perturbative arguments, Hartee-Fock decoupling, locality to consideration on the structure of
operators. These applications correspond to a renormalized realization of the continuous unitary
transformations.

In addition, the continuous unitary transformations can be also realized perturbatively to high orders
in the perturbation parameters. This can be either done for Wegner's [144, 169, 170] or the particle
conserving generator [143,171,172]. Here the Hamiltonian H and the antihermitian generator n
are expanded in a series to some order such that the resulting coupled equations can be solved.
In contrast to the renormalizing continuous unitary transformation, the choice of the truncation
scheme is straightforward. All terms in a given order are taken into account so that no truncation
error is made in the obtained perturbative order.

In this work the perturbative realization of particle conserving continuous unitary transformation
is applied to low-dimensional quantum antiferromagnets. It is shown that the perturbative real-
ization of the continuous unitary transformation is an efficient tool to calculate the energy and
the spectral properties of gapped spin liquids. The perturbative treatment is performed about a
totally dimerized state. Then the ground state is the product-state of singlets on the dimers and
the excitations are local triplets. Assuming that the ground state and the elementary excitations
of the non-interacting system are continuously connected to the ground state and the excitations
of the full system, the elementary excitations of the interacting system are elementary triplets or
triplons [82]. Triplons can be visualized as local triplets plus a magnetic polarization cloud. The
resulting effective Hamiltonian after the continuous unitary transformation is blockdiagonal in the
number of triplons, i.e. the number of triplons is a conserved quantity.

The property of triplon conservation gives a rather intuitive picture of the physics of the system.
The ground state is the triplon vacuum and the excitations of the system are the triplons. The
blockdiagonality of the effective Hamiltonian also implies that the ground state energy can be
computed by the zero-triplon block, the one-triplon dispersion by the one-triplon block, and the
n-triplon energies by the n-triplon block. In this sense the complex many-body problem has reduced
to a few-body problem.

In analogy to the Hamiltonian, the same continuous unitary transformation has to be applied to
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the observables in order to study the spectral properties of the system. The effective observables
do not conserve the number of triplons but they can be classified by the number of excitations
they inject or annihilate in the system. This property enables the independent computation of the
n-triplon contribution to the spectral weight and to the spectral density.

The reduction of the system to a few-body problem is true if the chosen quasi-particle picture is
appropriate for the system under study, i.e. if only a few number of excitations are sufficient to
capture the physics of the system. The quality of the quasi-particle picture can be investigated by
analyzing the n-triplon spectral weights. If most of the spectral weight is in the channels with a
small triplon number, one would call the quasi-particle picture appropriate. If the spectral weight
is distributed equally over a large number of triplon channels, one would call the quasi-particle
inappropriate.

The effective Hamiltonian describes the system finally by interacting quasi-particles, i.e. the n-
triplon block comprises triplon-triplon interactions2. In this thesis the zero-, one- and two-triplon
properties are studied. Therefore also the two-triplon interaction has to be treated.

The quasi-particles introduced by the particle conserving continuous unitary transformations can be
viewed as an extension of the idea of Landau's Fermi liquid-like quasi-particles [173, 174]. Here the
low-energy properties of many-body systems are described by effectively non-interacting particles
such that the bare interactions present in the original system renormalize the one-particle proper-
ties. The quasi-particles obtained in this thesis do interact. But the resulting interacting problem
can be solved because only a small number of quasi-particles are necessary to describe the physics
of the considered systems. In this way it should be possible to describe the physics of a large class
of many-body systems.

In the next chapter the perturbative particle conserving continuous unitary transformation is de-
scribed in detail. Chapt. 4 deals with the calculation of spectral densities for the effective operators.
Chapt. 5 give an overview about possible extrapolation technique. Chapt. 6, Chapt. 7 and Chapt.
8 applies the method to spin-chain and two-leg ladder systems. Chapt. 9 summarizes the findings
of this work and gives a brief outlook.

2Note that not only two-triplon interactions are present. In general, the n-triplon block contains all possible multi-

triplon interactions of n triplons.



21

3 Perturbative CUT

For many-particle systems defined on lattices the global structure of effective Hamiltonians and
observables obtained by means of a suitable basis transformation are investigated. Transformations
are studied which lead to effective Hamiltonians conserving the number of excitations. The same
transformations must be used to obtain effective observables. The analysis of the structure shows
that effective operators give rise to a simple and intuitive perspective on the initial problem. The
systematic calculation of n-particle irreducible quantities becomes possible constituting a significant
progress. Details how to implement the approach perturbatively for a large class of systems are
presented.

3.1 Introduction

Effective models are at the very center of theoretical physics since they allow to focus on the
essential physics of a problem without being distracted by unnecessary complexity. Hence it is
very important to dispose of systematic means to derive effective models. In this chapter the
mathematical structure of a certain kind of effective models is presented, namely effective models
where the elementary excitations above the ground state can be viewed as particles above a complex
vacuum. This type of view is very common in low-temperature physics. Many experiments can be
understood on the basis of this picture.

In this chapter, the global structure of the Hamiltonian and of the observables will be elucidated
if the model is transformed to a model which conserves the number of particles. Such a mapping
is often possible and renders the subsequent calculation of physical quantities much easier. The
determination of the effective Hamiltonian is facilitated by the decomposition into n-particle irre-
ducible parts. A classification is set up for strong-coupling situations at zero temperature, i.e. no
weak-coupling limit is needed and no non-interacting fermions or bosons are required. Generically,
this thesis deals with hard-core bosons relevant for quantum spin systems.

The necessity for the decomposition into n-particle irreducible parts has arisen in perturbative
calculations of the effective Hamiltonians because only the n-particle irreducible interactions are
independent of the system size. The second main point of this chapter is the perturbative compu-
tation of effective Hamiltonians and observables. Such computations are a standard technique for
ground state energies (O-particle terms) and dispersion relations (1-particle terms), see Ref. [175]
and references therein. But the possibility to compute multi-particle contributions has only recently
been realized [142,176,177] and continues to be exploited intensively. The key ingredient is to
define a similarity transformation on the operator level (see below).

A promising alternative route, which which will be only sketched in this article, consists in the
non-perturbative, renormalizing realization of the transformation of the initial model to the effective
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model which conserved the number of particles. Examples of this approach are realized already in
fermionic models [165, 166, 178].

3.1.1 Starting point

The Models considered are defined on a lattice . At each site of the lattice the system can be
in a number d of states spanning the local Hilbert space. Let us assume that d is finite. The
dynamics of the system is governed by a Hamiltonian H acting in the tensor-product space of
the local Hilbert spaces. For simplicity one does not consider antisymmetric, fermionic situations
although this is also possible. The focus is on physical systems which can be described in terms of
hard-core bosons.

The Hamiltonian H is assumed to be of finite range. This means that it is composed of local
operators h, acting on a finite number of sites in the vicinity of the site v.

H=> h,. (3.1.1)

vel

One further assumes, that H can be split as
H(x) = Ho + xV , (3.1.2)

so that the spectrum of Hp is simple (see below) and that the system does not undergo a phase
transition from x = 0 to the range of values of final interest. These requirements do not necessarily
imply that x has to be small. But it is helpful if this is the case.

The ground state of Hg and its eigen states and eigen energies shall be known. The latter will
be viewed as elementary excitations from which the whole spectrum can be built. It is assumed
that the elementary excitations above the ground state can be viewed as (quasi-)particles above
the vacuum. For simplicity, the prefix ‘quasi-' will be dropped. Henceforth, it is understood that
‘particle’ is a synonym for elementary excitation.

It is assumed that the physical picture sketched for H(x = 0) = Hy is linked continuously to the
range 0 < x < x. where x. is the critical value at which a phase transition occurs. At the critical
value x. the picture breaks down and cannot be used beyond x = x.. Generically, a mode of H(x)
will become soft at x..

Furthermore, the particles for x = 0 shall be local in the sense that a site can be assigned to
each of them. Let Q be the operator that counts the number of particles.

As a concrete example, the reader may think of an antiferromagnetic Heisenberg model made up
from strongly coupled (coupling J) pairs of spins (‘dimers’) which are weakly coupled (coupling xJ)
among themselves, e.g. [143,176]. At x = 0, the ground state is the product state with singlets
on all dimers; the elementary excitations are local triplets. The number of these local triplets, i.e.
the number of dimers which are not in the singlet state, shall be given by the operator Q.

A considerable simplification of the problem can be achieved by mapping the initial problem H(x)
to an effective Hamiltonian Heg(x) in which the number of elementary excitations does not change.
That is the number of particles should be a conserved quantity. Then the computation of many
physical quantities is significantly simplified.
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In this thesis, the use of a continuous unitary transformation (CUT) [135, 141, 143,144] is
advocated in order to achieve a systematically controlled mapping of the kind described above
which leads to

[Herr, Q] =0, (3.1.3)

i.e. Hesr conserves the number of particles. Such an approach has three major advantages:

1. Conceptual clarity
Using a unitary transformation guarantees that no information of the orginial model is lost.
In particular, it is clear that the same transformation [135, 155, 179, 180] can be applied to
obtain the effective observables O.s from the original observables O.

2. Technical simplicity
To implement the unitary transformation in a continuous fashion only the computation of
commutators is required since the mapping is split into infinitesimal steps leading to a differ-

ential equation [135]
OeH = [n(¢), H(2)] (3.1.4)

where / € [0, 0o] is an auxiliary parameter parametrizing the continuous transformation with
starting point £ = 0 and end point £ = oco.

3. Good controllability
By an appropriate choice of the infinitesimal generator 1 of the transformation it can be de-
signed such that is preserves block-band diagonality [141, 143]. Moreover, it is renormalizing
in the sense that matrix elements between energetically very different states are transformed
more rapidly than those between energetically adjacent states [141, 165, 166].

Note, that the general structure of operators does not depend on the details of the method
by which the effective particle-conserving model is obtained. Also other methods than CUTs are
conceivable, e.g. orthogonal transformation are used [177, 181, 184].

In the present treatment the focus is laid on perturbative realizations of the CUTs. This approach
[143] was the first which realized the computation of bound states in higher orders [142, 176]. The
concept of a similarity transformation is indispensible for a conceptually clear computation of multi-
particle effects [177, 181].

3.1.2 Setup

In Sect. 3.2 the global structural aspects of effective operators are analysed. The basic prerequisite
will be Eq. 3.1.3. Furthermore, it is shown that the linked cluster property holds. Therefore the
effective operators which hold in the thermodynamic limit can be computed in finite systems.

Sect. 3.3 is a preparatory section in which the perturbative CUT for Hamilton operators of a
certain kind is constructed. Gapped low-dimensional spin models on lattices are among the models
which can be treated in this way.

Sect. 3.4 contains a detailed description of how the perturbative CUT can be extended to
transform general observables. Series expansions in x for the effective observables are obtained
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which allow to compute the experimentally relevant spectral functions. So the extension from
Hamiltonians to observables is an important one.
This chapter is summarized in Sect. 3.8.

3.2 The structure of effective operators

In this section, it is assumed that one is able to construct a mapping such that Hes fulfills Eq.
3.1.3. The eigen-states of the particle number operator Q serve as a basis for the Hilbert space
of the system. If the mapping is realized perturbatively, the matrix elements of Hesr and Oesr are
polynomials in x.

3.2.1 The effective Hamiltonian
3.2.1.1 Global structure

It is shown that Hes can be written as
Het = Ho+ Hi+Hy+ Hs + ..., (3.2.1)

where H,, is an n-particle irreducible operator, i.e. H, measures n-particle energies. Moreover, each
thermodynamic matrix element of any of the components H, can be obtained on finite clusters for
a given order in x if the original Hamiltonian is of finite range. The components H, can be defined
recursively in ascending order in n.

Eq. 3.2.1 comprises already a route to determine the properties of Hes in a sequence of ap-
proximate treatments. The very first step is to know the ground state energy which defines Hp.
The second level is to describe the dynamics of a single particle (elementary excitations) correctly
which is possible by knowing H;. The third level is reached if H, is included which contains the
information on the interaction of two particles. True three-particle interactions are contained in H;
and so on. From the generic experience in condensed matter theory, the three- and more particle
terms can very often be neglected. So the first three terms in Eq. 3.2.1 provide the systematically
controlled starting point of a broad class of problems.

First some notation is clarified. The following eigen-states of the particle number operator Q
are defined as

|0) ground state (particle vacuum)
[1) state with 1 particle on site /
|iyin) state with 2 particles on sites i; and iy

: (3.2.2)

i.e. Q0) = 0]0), Q|iy = 1|i) and Qlij) = 2|ij) and so on. These states span the global Hilbert
space £ of the physical system under study. Dealing with (hard-core) bosons |iikh) and |ixi1)
are identical states. This indistinguishability causes a certain ambiguity. This ambiguity can be
remedied for instance by assuming that coefficients depending on several indices iy /> . . . i, are even
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under permutation of any pair of these indices!. For simplicity, the ground state |0) is assumed to
be unique.

Let R be an arbitrary operator acting on £ and conserving the number of particles [R, Q] = 0.
By R|. one denotes the restricted operator acting on &, C € spanned by all states with exactly n
particles.

Now the operators H,, are defined

Ho = Eo]. (3.2.33)
Hi = > tiele (3.2.3b)
isj
Hy = thdxilizej'rlejzebeil (3.2.3C)
ii2;j1f2
H, = Z tjl...jnii,,...he}; e e}ne,-" o6y (3.2.3d)
i1..iniji..dn

where 1 is the identity operator. Note that these operators are defined on the full Hilbert space €.
Q)

The operators ¢;' are local operators that annihilate (create) particles at site i. They are bosonic
operators. Their definition can be tailored to include a hard-core repulsion between the particles
to account for the common situation that at maximum one of the particles may be present at
given site /. If the particles have additional internal quantum numbers, i.e. if there can be different
particles at each site, the indices / and j are substituted by multi-indices i and j. Note that the
operators are ordered such that the creation operators are all left from the annihilation operators.

The importance is discussed below.

As an example a situation is considered where one has three kinds of particles per site, but
that at maximum one of these particles can occupy a given site. Then each site corresponds to a
four-level system; the particles are hard-core bosons. Such a situation arises in antiferromagnetic
dimerized spin systems where each dimer represents a four-level system. The ground state is the
unique singlet while the three particles are given by the three-fold degenerate triplet states. In this
case one has the multi-indices i = (i, a), where i denotes the site and a takes for instance the
three values of the S% component a € {—1,0, 1}. In the local basis {|i,s), |/, —1).|i,0), |/, 1)},

1Another way to deal with the ambiguity would be to introduce a certain ordering among the indices. Then only

one representative of the two (or more) identical states needs to be kept [176, 179].
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where s denotes the singlet, the local creation operators e,.T'a are the 4 x 4-matrices

0000
1 000
o
el = , 3.2.4a
-l 0000 ( )
0 0 0O
0 0 0O
0 0 0O
t_
el = 3.2.4b
0 1 000 ( )
0 0 0O
0 0 00
0 0 0O
t_
el. = 3.2.4c
i 0 0 0O ( )
1 000

It is understood that the action at all other sites but / is the identity so that the operators in
(3.2.4) are defined on the whole Hilbert space. The annihilation operators e;, are given by the
hermitian conjugate matrices. All possible commutators can easily be computed within the matrix
representation. Finite matrix elements in the lower right 3 x 3 block can be viewed as combined
annihilation & creation processes: The matrix My g with all elements zero except the one at (o, 8)
corresponds to the process e,T,ae,ﬁ. A finite matrix element in the upper left 1 x 1 block, i.e. the
singlet-singlet channel, can be expressed in normal-ordered fashion as 14 — >, e}tae,.,a. In this way
the operators (3.2.4) and their hermitian conjugate define a complete algebra which in turn enables
one to classify contributions of the Hamiltonian according to the number of particles affected as
done in Egs. 3.2.1 and (3.2.3).

The decomposition (3.2.1) is physically very intuitive [171]. Yet the next important question is
whether and how the operators H, are unambiguously defined. This issue is addressed by noting
that H,|m vanishes for m < n. This follows directly from the normal-ordering of the creation and
annihilation operators in Eq. 3.2.3. Then one can proceed iteratively by requiring that Hes applied
to n particles corresponds to Hy + Hy + ... + H, (n arbitrary but fixed). Solving for H, yields the

recursions
Holo = Heslo (3.2.5a)
Hili = Hesrl1 — Holx (3.2.5b)
Hala = Hest|2 — Hol2 — Hil2 (3.2.5¢)
n—1
Huoln = Heff|n_ZHi|n . (3.2.5d)
i=0

Assuming that Hes is calculated beforehand one starts by evaluating Eg by means of the first
definition. The result entirely defines Hg. The restriction Ho| is then used in the second equation
to extract the t;;; of Hy and so on. Generally, H, is defined on the full many-particle Hilbert



3.2 The structure of effective operators 27

space, not only for n particles. But it is sufficient to know the action of H, on the subspace of
n particles to determine all its matrix elements in (3.2.3). It is the essential merit of the notation
in second quantization (3.2.3) that it provides the natural generalization of the action of a part
of the Hamiltonian on a finite number of particles to an arbitrary number of particles. Since Eq.
3.2.5d holds for any number of particles and since H,|, vanishes for m < n one obtains Eq. 3.2.1,
neglecting the precise definition of convergence which is beyond the scope of the present chapter.

In conventional many-body language, H, stands for the n-particle irreducible interaction. The
subtractions in Eq. 3.2.5 ensure that H, contains no reducible contributions, i.e. contributions
which really act only on a lower number of particles. It should be emphasized that the formalism
above does not require that a simple free fermionic or bosonic limit exists. It is possible to start
from any type of elementary particles counted by some operator Q.

Moreover, the formalism presented in this section does not depend on how Hg is obtained. It
does not matter whether a perturbative, a renormalizing procedure or a rigorously exact method
was used to obtain Hes.

3.2.1.2 Cluster additivity

Here the focus is laid on formal aspects of a perturbative approach [171] generalizing results
obtained previously for 0-particle properties [182] and for 1-particle properties [183]. The feature
that the Hamiltonian is of finite range on the lattice is exploited. Then the Egs. 3.2.5 can be
evaluated on finite subsystems (clusters, see below). Still, the thermodynamically relevant matrix
elements of the operators H, are obtained as will be shown in the following paragraphs.

To proceed further definitions are needed. A cluster C of the thermodynamic system is a finite
subset of sites of the system and their linking bonds. By R¢ one denotes an operator which acts
only on the Hilbert space £ of C. If C denotes the sites of the total system which are not included
in C, the restricted operator RC is lifted naturally to an operator R in the total Hilbert space
£=6°QEC by

R:=R®1C. (3.2.6)

Note that it is not possible to define a restricted operator R¢ from an arbitrary operator R acting
on & since R will in general not have the product structure (3.2.6).

Two clusters A and B are said to form a disconnected cluster C = AU B iff they do not have
any site in common AN B = 0 and there is no bond linking sites from A with sites from B.
Otherwise the clusters A and B are said to constitute together a linked cluster C = AU B. Given a
disconnected cluster C = AU B an operator RC is called cluster additive iff it can be decomposed
as

RCE=RA@154+1"@RE . (3.2.7)

With these definitions it is shown that Heg and H,, are cluster additive. But Hes|, is not! This
is another important reason to introduce the H,.

The cluster additivity of HS; is obvious since A and B are assumed to be disconnected. So they
can be viewed as physically independent systems. Hence

Her = Hir @ 1° + 17 ® Her . (3.2.8)
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Similarly, the operators HA and H2 are deduced from (3.2.5) which act on £ and £B, respectively.
Then it is straightforward to verify that the operators

HS = HA®18 + 1A @ HE (3.2.9)

fulfill the recursion (3.2.5) for the operators defined for the cluster C. Hence the operators Hes
and H, are indeed cluster additive.

It is instructive to see that Hesf|, is not cluster additive, contrary to what one might have thought.
Let us consider the tentative identity

Heitln = Héln ® 1° + 14 @ Hils . (3.2.10)

This equation cannot be true since on the left hand side the number of particles is fixed to n while
on the right hand side the number of particles to which the identities 14 and 18 are applied is not
fixed. So no cluster additivity is given for the Hef|n.

The fact that cluster additivity holds only for particular quantities was noted previously for
n = 1[183]. For n = 2, the subtraction procedure was first applied in the calculations in Ref. [142]
(though not given in detail). In Refs. [176, 177, 181, 184] the subtractions necessary to obtain the
irreducible 2-particle interaction were given in more detail. The general formalism presented in this
article shows on the operator level why such subtractions are necessary and where they come from.
Thereby, it is possible to extend the treatment to the general n-particle irreducible interaction.

The notation in terms of second quantization (3.2.3) renders the cluster additivity almost trivial.
This is so since the creation and annihilation operators are defined locally for a certain site. It is
understood that the other sites are not affected. Hence the same symbol e;f can be used independent
of the cluster in which the site / is embedded. In particular, one identifies automatically e;r'C with
e” @18 if i € A and with 1 ® €/® if i € B. Hence cluster additivity is reduced to trivial
statements of the kind that

HE = Y tiele (3.2.11a)
iJEA
HE = D tiele (3.2.11b)
i,jJEB
implies
HE = Y tiele (3.2.12a)
ijeC
= ) tuele + Y tuele (3.2.12b)
i JEA i.JEB
= H{@1B4+14g HE . (3.2.12¢)

In this sense, the notation in second quantization is the most natural way to think of cluster
additivity.

Following Gelfand and co-workers [175, 182, 183] one concludes that the cluster additive quan-
tities possess a cluster expansion. Hence all the irreducible matrix elements t;.; possess a cluster
expansion and can be computed on finite clusters.
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3.2.1.3 Computational aspects

Since Hsr conserves the number of particles, i.e. Eq. 3.1.3, its action is to shift existing particles.
The relevant matrix elements for a linked cluster A are denoted by

Es = (0|H%I0) (3.2.13a)
ay = (j|HG!) (3.2.13b)
A = (2| Hegelinio) (3.2.13c)

where the indices /,J,... may be multi-indices from now on. Put differently, Eé‘ is the matrix
element of HZlo, the a7}, are the matrix elements of Hf[1, the a7, ., . those of HZ|> and so on.

Ju2iii2
The number E§ is the ground state energy of cluster A. The recursive definitions (3.2.5) imply

t = af — Eg0ji (3.2.14a)
i = i — E6941 0 — G801

_5{24:&511"1 - tj’?;l‘zd_/éil - 6,_24”_1511’_2 - tﬁ;iléjziz (3.2.14b)
t i = Tapiinis — Ao — AL — Ag (3.2.14c)

where Ap comprises six terms resulting from Hp, A; comprises 18 terms resulting from H; and
Ao comprises 36 terms resulting from H,. The explicit formulae are given in the Appendix of
Ref. [171]. The recipe in deriving the above equations is straightforward. For a given n-particle
process {in} — {im} (m € {1,...,n}) one has to subtract all possible processes which move
less than n particles. Since the m-particle processes with m < n have been computed before the
procedure is recursive. Note that all coefficients must be computed for the same cluster.

The cluster additivity or, equivalently, the existence of a cluster expansion can be exploited to
compute the irreducible matrix elements on finite clusters given that the Hamiltonian is of finite
range. There are two strategies to do so.

The first strategy is to choose a cluster large enough to perform the intended computation
without finite-size effects. This strategy works particularly well if the dimensionality of the problem
is low. Let us assume for simplicity that the Hamiltonian links only nearest-neighbour sites. Aiming
at a given matrix element, for instance tﬁjz;h,-z,

large enough cluster C; contains all possible subcluster Cs with two properties: (i) they have k or

which shall be computed in a given order k, the

less bonds, (ii) they link the concerned sites ji, jo, i1, i among themselves?. Clearly, C; depends
on the order k. But it depends also on the sites ji, o, i1, io under study so that the notation
C,(k)({jl,jz, i1, b }) is appropriate. Note, that the order of the sites does not matter. If some sites

?Depending on the details of the interaction on the bonds it may be sufficient to consider smaller clusters than
mentioned in the main text, for instance a pure nearest-neighbour spin exchange reduces the range of virtual
excursions. Frustration is another mechanism which reduces the range of the effective processes, see e.g. the
Shastry-Sutherland model [176, 185, 191].
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are omitted the constraints for the subclusters C are diminished since less sites must be linked.
This implies in particular C,(k)({jl,jz, i1, hb}) C C,(k)({jl, i1}). Hence there can be a cluster A which
contains C,(k)({_jl,jg, i1, Ir}) but does not contain C,(k)({jl, i1 }) so that the hopping matrix element
tA . tA
J1idi J1j2:1 2
intermediate steps in the calculations (3.2.14) can display finite-size effects although the final result
does not. In Refs, [142,143,176, 179] this strategy was used.

The second strategy is to compute, for a given order k, the net contributions of all clusters C

is not the thermodynamic one, but the interaction is without finite-size correction. So

with m < k bonds which link the sites under study. The advantage of this approach is that only
smaller clusters need to be treated (< k bonds). The price to pay is an overhead in determining
the net contribution. This requires to deduct from the total contribution of C the contributions of
all subcluster of C with less bonds which link the points under study. This must be done in order
to avoid double counting. More details on this strategy can be found in Ref. [175].

For Hamiltonians with relatively simple topology, the second strategy is more powerful. For more
complicated Hamiltonians, however, the task to implement the overhead without flaw can quickly
become impracticable while the first strategy can still be used, at least up to a certain order of the
perturbation.

3.2.2 Effective observables

An effective Hamiltonian conserving the number of particles is useful to determine characteristic
energies of the considered systems. But it is not sufficient to determine physical quantities which
require more knowledge than the eigen-energies of the system. In particular, one is interested in
the determination of dynamic correlations such as (O(t)O(0)). Then the mapping of the original
Hamiltonian H to the effective Hamiltonian He must be extended to a mapping of the original
observable O to the effective observables Q.. Here it is assumed that this has been achieved
by an appropriate unitary transformation, for instance in a continuous fashion as described in the
introduction.

3.2.2.1 Global structure

The structure of the observables can be described best by using the notation of second quantization.
Thereby it can be denoted clearly how many particles are involved. The most important difference
compared to the Hamiltonian is that there is no particle conservation. Generically an observable
creates and annihilates excitations, i.e. particles. Hence one defines the operators

Odni= (3.2.15)
Z Wiy i giine-in e}; e eJLd e,-" s e,l.
--ini 1" Jn+d
The local operators e; have been described after Eq. 3.2.3. Again they shall appear normal-ordered,
i.e. all creation operators are sorted to the left of the annihilation operators. The first index d
indicates how many particles are created (d > 0) or annihilated (d < 0) by application of Q4 .
The second index n > 0 denotes how many particles have to be present before the operator O4,,

becomes active. The result of Q4 , acting on a state with less than n particles is zero.
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In analogy to Eq. 3.2.1 the effective observables can be decomposed into partial observables like
o0
Ot =D Y Odn. (3.2.16)
n=0 d>-—n

The additional feature in comparison to Eq. 3.2.1 is the sum over d. Tab. 3.1 sketches the structure
of the terms appearing in the partial observables Oy ,

ldi/n=>] o | 1 | 2 3
-3 0 0 eee
-2 0 ee efeece
-1 0 e efee efefeee
0 1 efe efefee efefefeee
ef efefe efefefee efefefeteece
2 efet | efefete | etefefetee | efefetefetece

Table 3.1: List of terms appearing in the partial observables O4 , which form together the effective observ-
able O according to Eq. 3.2.16. No prefactors or indices are given for clarity.

It is assumed that Oef is computed by some technique, for instance by a continuous unitary
transformation. Then the partial observables can be determined recursively by

Odoloso+d = Oeffloso+d (3.2.17a)
Odilisi+d = Oesrlim14d — Odolisit+d (3.2.17b)
Od2lo24d = Oeffloso+d — Odolos2+d — Od,1l25244

n—1
Od,nln—>n+d = Oeffln—m+d - Z 0d,i|n—>n+d . (3217C)

i=0

Here |,—n+q denotes the restriction of an operator to act on the n-particle subspace &, (domain)
and to yield states in the (n+d)-particle subspace &,+4 (co-domain). The recursion is set-up in
analogy to (3.2.5). It is again used that an operator Q4 , effectively vanishes if it is applied to less
than n particles. Barring possible problems of convergence, the validity of the recursion (3.2.17)
for all d and n implies the decomposition (3.2.16).

As for the Hamiltonian the partial observables O4 , can be viewed as the n-particle irreducible part
of the particular observable. The notation in second quantization elegantly resolves the question
how the observables act on clusters as was explained in the section 3.2.1.2. Hence the definition
(3.2.15) ensures cluster additivity and there exist cluster expansions for the partial observables. So
they can be computed on finite clusters.

If dynamical correlations at zero temperature T = 0 shall be described, the observables are applied
to the ground state |0) which is the particle vacuum [166]. Then only the partial observables O4
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with d > 0 matter. According to (3.2.17a) no corrections are necessary, i.e. the structure of the
relevant part of the effective observable is given by

OLi® =000+ 010+ 020+ 030+... . (3.2.18)

This structure has been used so far in a number of investigations of spectral weights [82, 186] and
spectral densities [179, 180, 187]. It turned out that it is indeed sufficient to consider a restricted
number of particles [82, 179, 180]. But the question how many particles are required to describe
a certain physical quantity sufficiently well depends on the considered model, on the chosen basis
(What is called a particle?) and on the quantity under study.

At finite temperatures a certain number of particles will already be present in the system due to
thermal fluctuations. Then the action of the partial observables Q4 , with n > 1 will come into
play as well. This constitutes an interesting route to extend the applicability of effective models to
finite temperatures, even though they were derived in the first place at zero temperature.

3.2.2.2 Computational aspects

The recursive equations for matrix elements which can be derived from (3.2.17) are very similar to
those obtained for the Hamiltonian (3.2.14). This is illustrated for the matrix elements of Oy ,.
Let the bare matrix elements on a cluster A be

v o= (j1O%l0) (3.2.19a)
Vi = (ke O%li) (3.2.19b)

From (3.2.17) one obtains the irreducible elements as

A (3.2.20a)
WJ'I1412:I' = Y]ﬁ2;i_wlféj2i_V|GA6jli (3.2.20b)

As for the irreducible interactions the strategy is straightforward. One has to subtract from the
reducible n-particle matrix elements v* the contributions which come from the m-particle irreducible
matrix elements w” with m < n. With this strategy also other irreducible matrix elements can be
determined in a straightforward manner.

So far all considerations were general in the sense that it did not matter how the mapping is
achieved. Next the focus is led on the actual perturbative evaluation of the matrix elements on finite
clusters. For simplicity, it is assumed as before that the perturbative part of the Hamiltonian links
only nearest-neighbour sites. One can consider for instance WJ-AU-Z;,-. Assuming that the observable
O is also local, i.e. acts on a certain site only, or is a sum of such terms. If the observable is a sum
of local terms then the transformation of each term separately and subsequent summation yields
the result. So without loss of generality O is considered to affect only site p. Then one has to
compute the matrix elements for clusters linking the four sites ji, jo, 1, p. If O itself is a product of
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operators affecting several sites p; then the observable O itself links these sites p;. Apart from this
difference to the matrix elements of the effective Hamiltonian, one may copy the remaining steps
from there:

There are again the two strategies. Either the calculation in order k is performed on a cluster
C, large enough so that all subclusters of k bonds linking the relevant sites Jji, jo, /, p are comprised
in C; [179, 180, 188,189]. Or one has to add the net contributions of all different clusters with
k or less bonds which link the relevant sites ji, jo, i, p [187]. In either way the results for spectral
densities can be obtained.

3.3 Transformation of the Hamiltonian

So far no particular property of the transformation providing the effective operators Hesr and Oesr
was assumed. The only prerequisites were the existence of a counting operator Q, which counts the
number of elementary excitations, i.e. particles, and the conservation of this number of particles
by Hesr: [Herr, Q] = 0.

Here a particular transformation is specified leading to [Hesr, Q] = 0. This section is a very
brief summary of Ref. [143] which is necessary to present the ideas and to fix the notation for the
subsequent section dealing with the transformation yielding the effective observables.

For simplicity one restricts the considered systems in the following way: The problem can be
formulated as perturbation problem as in Eq. 3.1.2 with the properties

(A) The unperturbed part Ho has an equidistant spectrum bounded from below. The difference
between two successive levels is the energy of a particle, i.e. @ = Hp.

(B) There is a number N 5 N > 0 such that the perturbing part V can be split as V = Z,’:':_N Th
where T, increments (or decrements, if n < 0) the number of particles by n: [Q, T,] = nT,,.

Condition (A) allows to introduce the particularly simple and intuitive choice @ = Hp. Note that
the restrictions of (A) are not too serious in practice since very often the deviations from an
equidistant spectrum can be put into the perturbation V. Conditions (A) and (B) together imply
that the starting Hamiltonian H has a block-band-diagonal structure as depicted in Fig. 3.1. The
perturbation V' connects states of different particle numbers only if the difference is a finite number
< N. Note that very many problems in physics display this property, for a discussion of interacting
fermions see Ref. [165, 166]. So far, most applications consider N =1 [176, 190] and N = 2 [82,
142-144,179, 180, 188, 189, 191, 192], but calculations for higher N are also possible [193-195].

The flow equation (3.1.4) is solved for the Hamiltonian (3.1.2) obeying the conditions (A) and
(B) perturbatively, that means up to a certain order in the expansion parameter x. The ansatz
used is

H(x;£) = Ho + ixk > F:m)T(m), (3.3.1)

k=1 |m|=k

with unknown real functions F(£; m) for which the flow equation (3.1.4) yields non-linear recursive
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differential equations [143]. The notation comprises

m = (my,my,ms,..., myg) with (3.3.2a)

m € {0,4£1,42,..., £N} (3.3.2b)

ml = k (3.3.2¢)

T(m) = ToTmTms T, (3.3.2d)
k

M(m) = > m;. (3.3.2¢)
i=1

The second sum in ansatz (3.3.1) runs over all indices m of length |m| = k. Thereby, H(x;£)
includes all possible virtual excitation processes T(m) in a given order x¥ multiplied by the weight
F(¢; m).

The optimum choice for the infinitesimal generator 1 of the unitary transformation reads

n(x; £) = ixk Z sgn (M(m)) F(&; m)T(m). (3.3.3)

k=1 |m|=k

In the eigen-basis {|n)} of Q, i.e. Q|n) = n|n), the matrix elements of the generator n read
Mij(x;€) =sgn(Q; — Q) Hi j(x; £) , (3.3.4)

with the convention sgn(0) = 0. This choice keeps the flowing Hamiltonian block-band diagonal
also at intermediate values of £ [141,143]. For £ — oo the generator (3.3.4) eliminates all parts
of H(x; £) changing the number of particles so that [Hes, @] = 0 with Hesr := H(£ = o).

For the functions F(£; m) a set of coupled differential equations is determined by inserting Egs.
3.3.1 and 3.3.3 in the flow equation (3.1.4) and comparing coefficients. The differential equations
are recursive [143]. The functions F of order k + 1, i.e. F(¢; m) with |[m| = k 4+ 1, are determined
by the functions F of order k. The initial conditions are F(0; m) =1 for |[m| =1 and F(0;m) =0
for |[m| > 1. The functions are sums of monomials with structure (p/q)¢' exp(—2uf), where
p. q, i, (u > 0) are integers. This allows to implement a computer-aided iterative algorithm for the
computation of the functions F [143].

The following symmetry relations hold

F(&;m) = F(&(=mu, ..., —my)) (3.3.52)

F&:m) = F(—mq,...,—mg))(—1)m+1 (3.3.5b)

Relation (3.3.5a) reflects the hermitecity of the Hamiltonian. The block-band diagonality for all £
implies

F(&;m)=0 for |[M(m)|>N. (3.3.6)

In the limit £ — oo the coefficients C(m) := F(oo; m) are obtained. They are available in paper
form [143, 190] and electronically [196]. The effective Hamiltonian is given by the general form

Har() = o+ 366 3 Cm)T(m) (3.3.7)

k=1 |ml=k
M(m)=0
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where M(m) = 0 reflects the conservation of the number of particles. The action of Hes can
be viewed as a weighted sum of particle-number conserving virtual excitation processes each of
which is encoded in a monomial T(m). One has to emphasize that the effective Hamiltonian Hes
with known coefficients C(m) can be used straightforwardly in all perturbative problems that meet
conditions (A) and (B).

Fig. 3.1: Block-band diagonal Hamilton matrix for N = 1 in the eigen-basis {|n)} of the operator Q which
counts the number of particles. The unperturbed Hamiltonian H(x = Q) = Hy and the effective Hamiltonian
Hesr have matrix elements in the dark areas only: [Hes, Q] = 0. For non-degenerate ground state Hoo is a
1 x 1 matrix. The dimension of Hp, grows roughly like L"” with system size L. The perturbation V can lead
to overlap matrices indicated as light boxes. The empty boxes contain vanishing matrix elements only.

3.4 Transformation of observables

To calculate physical quantities which do not depend only on the eigen-energies the relevant ob-

servables must also be known. The conceptual simplicity of unitary transformations implies that

the observables must be subject to the same unitary transformation as the Hamiltonian. In this

section it is described how the perturbative CUT method can be extended to serve this purpose.
Consider the observable O. It is mapped according to the flow equation

80(x; £)
oL

where the same generator n(x; £), given in Eq. 3.3.3, as in Eq. 3.1.4 is to be used to generate the

= [n(x;£), O(x; 4)] , (3.4.1)

transformation. In analogy to Eq. 3.3.1 one employs the ansatz

o k+1
00 =Y xY">" G(t: m; )O(m;: i), (3.4.2)
k=0  i=1|m|=k

where the G(¢; m; i) are real-valued functions for which the flow equation (3.4.1) yields recursive
differential equations. The operator products O(m; i) are given by

Om; i) =Tmy T OTp o+ Ty (3.4.3)
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where the notation of the Egs. (3.3.2) is used. Note that G(4; m; i) does not depend on 0. The
integer i denotes the position in O(m, i) at which the operator O is inserted in the sequence
of the T,,. The starting condition is O(x;0) = O(x) and the final result is found at £ = oc:
Oefi(x) 1= O(x; 00).
Inserting the ansatz (3.4.3) for O(x;£) and the generator n(x; £) from (3.3.3) into the flow

equation (3.4.1) yields

© k1 g . .

kz::OX mz::k; 270 (& m: NO(m; i)

kao+1

i i x’““‘zz Z F(&; m"\G(&;m";i) x
ki=1 ka=0 1=k i=1

xsgn(M(m')) [T(m'), O(m"; )] . (3.4.4)

The functions F(£; m) are known from the calculations described in the previous section 3.3 per-
taining to the transformation of the Hamiltonian. The sums denoted by expressions of the type
|m| = k run over all multi-indices m of length k.

Comparing coefficients in Eq. 3.4.4 yields a set of recursive differential equations for the functions
G(¢; m, i). To ease the comparison of coefficients one splits a specific m with k fixed in two parts
as defined by /

m=(m,m,), (3.4.5)

with |m,| =i —1 and |m,| = k — i + 1 such that the splitting reflects the structure of O(m; i) in
Eq. 3.4.3. Then the explicit recursions can be denoted by

0 .
a—ZG(l, m; I) =

> san(M(m,))F(&; m,)G(& (my, m,); i — |m,))

my=(mg.mp)
ma#0

= Y sgn(M(m,))F (& mp)G(&; (my, m,); i) . (3.4.6)

mp=(my.mp)
mp#0

The recursive nature of these equations becomes apparent by observing that the summations
m; = (m,, m,) and m, = (m,, m,) are performed over all non-trivial breakups of m, and m,. For
instance, the restriction m, = (my, mo, ..., mj_1)=(m,, m,) with m, # 0 means, that one has to

sum over the breakups

m, = (m) and m,=(my,..., mi—1)
m, = (my, mp) and m,=(ms,..., mi_y)
m,=(my,my,..., mi—1) and mp,=() . (3.4.7)

This implies that the G(£; m; i) appearing on the right side of Eq. 3.4.6 are of order kK — 1 or less.
Once they are known the function on the left hand side of order k can be computed. By iteration,
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all functions can be determined. The initial conditions follow from O(x; £ = 0) = O and read

G(0;m;1) = 1for|m =0 (3.4.8a)
G(O;m;i) = Ofor|m>0. (3.4.8b)

By iteration of (3.4.6), all functions can be determined.

Two examples are briefly discussed to illustrate how the Egs. 3.4.6 work. It is assumed that
N = 2. All zero order functions G(4; (), 1) are equal to 1. Since there is no breakup of (), as would
be required by the sums on the right hand side of Egs. 3.4.6, the right hand sides vanish identically,
whence G(4; (); 1) = 1 for all values of £.

The first order function G(¢; (1);2) is given by

SGE(L)2) = san[M()]F(E (1) 6(():1)

my

= et.1, (3.4.9)

where F(£; (1)) = e~* is taken from Eq. 15 in Ref. [143]. With the initial condition G(0; (1);2) =0
from (3.4.8) the differential equation (3.4.9) yields

G (1);2)=1—¢"' 1 (3.4.10)

As a second example a second order function is considered where one can use the above result
0

37 G(;(—=2,1);3) =

sgn [M((=2, 1)) F(& (=2.1))6(¢: (). 1)

+sgn [M((-2))] F(£ (=2))G(£:(1).2) (3.4.11a)
=—(e¥*-ef) 1-e* (1-¢Y (3.4.11b)
=et_e2, (3.4.11¢)

Again the functions F are taken from Eq. 15 in Ref. [143]. Integrating the result (3.4.11c) using
the initial condition (3.4.8) leads to
Gl (-2,1);3)=—et+Je 2 +1—3 = z. (3.4.12)
—00
This kind of calculation carries forward to higher orders. The functions G — like the functions F
— are sums of simple monomials (p/q)¢’ exp(—2ut), where p, g, i, (u > 0) are integers. Thus the
integrations are always straightforward

Y , '
/Ode’e” = UM (3.4.13a)

£ . il i .
i —2p Dl 1 o Pj
/ de'e'e = o | e > (3.4.13b)
0 e
and can easily be implemented in a computer-algebraic programme. The remaining implementation

follows very much the same line as described previously for the functions F [143].
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In analogy to Egs. (3.3.5) for F two symmetry relations hold for G. With m = (mq, ..., mg)
they read

GU;m; i) = GU(—my,...,.—m);k—i+2) (3.4.14a)
GU;m i) = G (—my,..., —my); i)(—1)ml (3.4.14b)

as can be shown by induction. The first symmetry (3.4.14a) holds if O is hermitian. Unfortunately,
there is no equivalence to Eq. 3.3.6 so that a possible initial block-band structure in O(x;0) is
generically lost in the course of the transformation, i.e. for £ > 0.

In the limit £ — oo the coefficients C(m; i) := G(oo; m; i) € Q are obtained as rational numbers.
So one retrieves finally

[eS) k+1
Oer(x) = Y_x* Y3 C(m: )O(m; i) (3.4.15)
k=0  i=1|m|=k

similar to Eq. 3.3.7. The coefficients C(m; i) are available electronically [196]. Note that Qe is
not a particle-conserving quantity as is obvious from the fact that the sum over |m| is not restricted
to M(m) = 0. In order to see the net effect of Oe(x) on the number of particles explicitly it is
helpful to split the bare operator accordingly O = Z,':":_N, T!, where T} increments (or decrements,
if n < 0) the number of particles by n: [Q, T}] = nT}.

The difference between the bare initial observable @ and the representation (3.4.15) must be
viewed as vertex correction which comes into play since the bare initial excitations are not the true
eigen-excitations of the interacting system. It is stressed that the formalism presented introduces
the notions of n-particle irreducibility, vertex correction and so on without starting from the limit
of non-interacting conventional particles such as bosons or fermions.

3.5 Effective lattice

In this section an effective lattice [ is introduced on which the effective operators act. The
reason behind it is mainly that the language one uses for the spin sytems has dimers as basic
building blocks and no longer the underlying spins which act on the initial lattice I. The same
reasoning holds also true for more general applications. The effective lattice is illustrated on the
level of the Hamiltonian for a dimerized chain which will be later discussed in detail in the first
application chapter. The effective lattice is the same for the Hamiltonian and the observables.
The dimerized spin chain is depicted in Fig. 3.2

2N

H = JOZ(1+5(—1)")S,-S,-+1

i=1
N N
=Hp+xV = JZ SQJ'SQJ'+1 + XJZ Sstzj_l (3.5.1)
Jj=1 Jj=1

where J = Jo(1 4+ 8) and x = (1 —§)/(1 4+ &). The summation index i counts the sites in the
original lattice I, depicted as small black circles in Fig. 3.2, while j counts the number of dimers,
i.e. the sites of the effective lattice I, depicted as big grey circles. The ground state of system
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of isolated dimers, i.e. Hp, is given by singlets on all dimers. An elementary excitation of Hgp is a
single triplet on one of the dimers which means it sits on two neighbourings (strong bonds) sites
of the initial lattice I or on one site in the effective lattice .. The effective lattice represents
therefore the connection of the basic building blocks defined by the unperturbed Hamiltonian Hy.
It is easily verified that H matches the conditions (A) and (B) for using the perturbative realization
of the particle conserving continuous unitary transformations.

The effective Hamiltonian Hes conserves the number of triplets. The important point is that Hef
engenders a hopping of these triplets from dimer to dimer and also the interaction is a dimer-dimer
interaction, i.e. from site to site in the effective lattice . In other words, it suffices to study the
action of Hesr on [esr, which comprises only half of the number of sites of the original lattice I.
From now on it is understood that the action of Hef is evaluated on the corresponding effective
lattice.

The same conclusion can be made for the effective observables Ocf. The reason is that the
unperturbed observable is expressed in similar operators T’ as the unperturbed Hamiltonian Hj.
Additionally, one uses the same generator for the observables as for the Hamiltonian. It follows
that the action of O on some initial state, e.g. the ground state |0 >, generates only effective
particles which can be classified by the sites of the effective lattice .. The latter point will be
used in the following chapters.

1+d 1-5

eff

Fig. 3.2: A simple example to illustrate the difference between the original lattice I, on which the original
model is defined, and the effective lattice . Small black circles corresponds to spins of the initial lattice
I". Two sites connected by a thick solid black line denote a dimer. Big grey circles are the sites of the
effective lattice e and correspond to dimers in the original model. The action of the effective operators
Hesr and Qe is restricted to the effective lattice [esr.

3.6 Choice of the cluster

In this section general considerations are made how to choose the appropriate cluster size for
a given perturbation order for the various quantities of interest in order to obtain results in the
thermodynamic limit. The amplitudes for a n-triplon quantity are in general cluster dependent
and one has to substract contributions from triplon sectors with smaller triplon numbers. The
latter points will be illustrated for the zero-, one- and two-triplon sector and also for the effective
observables.
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Fig. 3.3: A periodically closed cluster of ten sites. Hes to third order connects at maximum four neighbouring
sites by activated bonds (see text). The connected rungs are printed in grey.

3.6.1 Hamiltonian
3.6.1.1 Zero triplon: Hy

Let |0) denote the triplon vacuum. This is the state where all sites in [ are occupied by singlets.
Clearly, |0) is the ground state of H(x = 0) = Hp. The one-triplon gap separates the corresponding
ground state energy from the first excited level. In Ref. [166] it was shown on general grounds that
the particle vacuum |0) remains the ground state of Hes for finite x unless a phase transition occurs
(e.g. a mode softening at some critical value x.). Since He conserves the number of triplons one
concludes that (0|Hesr(0 < x < x)|0) is the ground state energy. The point x = x. is in general a
singular point where a phase transition occurs.

Since the action of Hp on |0) coincides with the action of Hes on this state (see Ref. [171]),
every order of the ground state energy per site € can be calculated in the thermodynamic limit on
a finite minimum cluster by

€0 = (0|Herr|0)/(2N) , (3.6.1)

where N is the number of sites used in the minimum cluster.

The minimum cluster is now specified. At first, it is clear that one needs a closed segment of
the effective lattice. This ensures that there are no end sites, which are linked to the cluster by
one inter-site bond only. They would not contribute the same amount of energy as the fully linked
rungs in the middle of the cluster. Fig. 3.3 shows a cluster of a generic one-dimensional spin-system
which has been closed to a ring.

Heg connects usually a maximum of /4 1 sites on a finite cluster of N sites in /t" order. In other
words: A maximum of / bonds between neighbouring sites can be activated in I*" order. A bond v
is said to be activated, if a part of Hes, i.€., the specific local operator 7,(v) in T, = >, Ta(v) of
Hes, has acted on the two sites connected by v.

The linked cluster theorem states that only those processes induced by the T, of Hesr contribute
to the ground state energy (and all other extensive quantities), in which all activated bonds are
linked. Processes involving disconnected active-bond distributions cannot contribute. The basic
argument is sketched in Fig. 3.4. This means in our case, that a cluster of / + 1 sites is sufficient
to calculate the /™ order contribution avoiding wrap-arounds.

Minimum number of sites to calculate
the I*" order contribution to &g in the
thermodynamic limit

=/+1. (3.6.2)
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Fig. 3.4: A closed segment of six sites. Sites are depicted by circles and (active) bonds between sites by
(thick) solid lines. In a process of order / = 3 a maximum of 3 bonds can be active. On a closed cluster of
N = 6 there are 6 possibilities to arrange linked bonds (top row). One clearly sees that this number grows
linearly in N. The given example of 3 disconnected active bonds (bottom row) has 12 possibilities, which
would lead to a super-extensive contribution oc N? to the extensive quantity under study. Thus they do not
contribute.

Once the minimum cluster is specified it is straight forward to calculate €g.

3.6.1.2 One triplon: H;

One defines |/) to denote the eigen state of Hy with one triplon on site i of I and singlets on
all other sites. The magnetic quantum number m of the triplon at site / is of no importance in
the following considerations, since Hes usually conserves m and the total spin S. Thus it is not
denoted explicitly.

Since Her(x) conserves the number of triplons the action of Hes(x) on the state |/} is a hopping
of the triplon. One defines the hopping coefficients

a5y(x) = (il Hesr (x)Lj) - (3.6.3)

The superscript cl indicates that the hopping coefficient might depend on the cluster on which it
was calculated.
The hopping coefficients t;.; of the irreducible one-particle operator H; read (see Egs.9 in Ref.
[171])
ti; = (i|Hlj) = (ilHetr — Holj) = &% — E§di, . (3.6.4)

Since H; is a cluster additive, i.e., an extensive, operator, the coefficients t;;; can be calculated for
the infinite system on finite clusters up to some finite order. This is the reason why the superscript
cl is dropped from t;;;. The cluster ground state energy E§' must be calculated on the same cluster
as the “raw” hopping coefficients a)?l,-.

For each order of the coefficient t;;; there exists a minimum cluster which must contain the two
rungs i and j. To classify the size of the minimum cluster one studies how far the triplon motion
extends in a given order /. Only processes, which take place on linked clusters of active bonds
(see previous section), contribute to the extensive thermodynamic hopping coefficients t;.;. The
minimum cluster must be a linked cluster, which contains the rungs i and j.
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Fig. 3.5: Processes of Hesr that lead to a motion of the initial triplon on rung i. Active bonds are depicted
by thick lines. All processes that contribute to thermodynamic extensive hopping coefficients take place
on linked clusters of active bonds. Part a) shows a second order process moving the initial triplon by two
sites. Part b) is a process of order n + 2 moving the triplon by n + 2 sites.

The action of a single Ty operator (first order process) on |i) is to shift the triplon by one.
Somewhat more intricate is the case of the operator T, acting on |i/). In any operator-product
T(m) an operator T, is always accompanied by a destruction operator T_,. The operator T,
creates two triplons on neighbouring sites (triplon-pair) if both of them are occupied by singlets.
Suppose that T, is immediately followed by the T_, operator. Then there can be a hopping of the
initial triplon by two rungs, if the triplon-pair was created in the immediate vicinity of the triplon
at site / to produce a three-triplon state. The situation is depicted in Fig. 3.5a. This is a second
order process. It moves the triplon by two rungs. One could go on like this (... T_2T>T_»T3) or
one could start to build up a linked chain by iterative application of T, operators, say, to the right
of the triplon at site / and then destroy the chain from the left (e.g. T_2T_2T>T>). All these
processes lead to a maximum motion of the initial triplon by / rungs in /" order. The creation of a
triplon-pair not connected to the initial triplon on site / does not lead to any motion of the latter
unless there is a sufficient number of Ty operators moving the triplon at site / towards the isolated
triplon-pair until they form a state with three adjacent triplons as depicted in Fig. 3.5b. This also
leads to a maximum motion of the initial triplon by / sites in /*" order.

All possible combinations of the T,, Tg and T_, operators that can appear in a T(m)-product of
Hessr can now be viewed as a product of the processes discussed. So one concludes

maximum motion of one triplon under the action

of Hegr in 12 order = I sites . (3.6.5)

Therefore, the minimum cluster to calculate the hopping coefficient t;; in order / in the thermo-
dynamic limit must contain the two sites / and j, which must not be further apart than / sites.
Additionally the minimum cluster must contain all / bonds that can be activated in all processes



3.6 Choice of the cluster 43

i
d A |
;i
i
S S e
a|;|+1
i
OO0
a|;|+2
i
ai;i+3 ®
i
a @

iji+4

Fig. 3.6: All possible hopping coefficients that can be calculated in 4™ order. Again, active bonds are
depicted by thick lines. All processes that have to be considered take place on linked clusters. The initial
(final) triplon positions are depicted by a filled circle (cross). They are contained in the minimum cluster
(cl), which is defined by all active bonds for each coefficient. The exclamation mark next to the af}; cluster is
a reminder that one has to subtract the cluster energy ES to get the cluster independent hopping coefficient
tii = to, c.f. Eq. 3.6.4

moving the triplon from rung / to rung j. Fig. 3.6 illustrates the situation for all coefficients that
can be calculated in fourth order.

3.6.1.3 Two triplons: H,

One defines the states |/, j), denoting the eigen state of H, with triplon 1 on site /, triplon 2 on
site j and singlets on all other sites. Two triplons together can form an S = 0 singlet, an S =1
triplet or an S = 2 quintuplet bound state. Tab. 3.2 summarizes these nine states sorted by their
total spin S and magnetic quantum number m.

By construction Heg conserves the total spin S and the magnetic quantum number m. Therefore
it is convenient to work in the basis given in Tab. 3.2. This table defines the states |i, /)>™ by the
linear combinations in the third column.

Again, due to triplon conservation the action of Hesr on the state |/, ) is to shift the triplons to
site /' and site j' conserving also S and m. Nothing else is possible. In analogy to Eq. 3.6.3 of the
preceding section one defines the interaction coefficients

asi(x) = SGi.jIHer (XK, 1)° . (3.6.6)

The coefficients depend on the total spin S but not on the magnetic quantum number m. Hence
the m-index is dropped here and in the following.
The exchange parity is determined by the total spin S

i 0)* = (1%L i)° . (3.6.7)

This means that the description can be restricted to those states |/, j) for which i < j.
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m |S, m >, O triplon
0 |s,s >

m |S, m >, 1 triplon
1 s, t1 >

0 |s, t0 >

-1 |s,t71 >

3

|S, m >, 2 triplon
[t t1 >
1/V2(|th, t0 > +|t0, t1 >)
0 | 1/v6([t71 t1 > +2[t° 1% > +[t!, t71 >)

-1 1/V2(|t71, t0 > +|t0, t71 >)
-2 [t=1 71 >
1/V2(|t 0 > —|t0, t1 >)
0 1/V2(|t t7 > |ttt >)
-1 1/V2(|t0 t71 > — |t 1, 0 >)

Ol P FINDNDNNMNDMNMNMOOIFE R~ ROl
N

0 | 1/V3(|t% t0 > —|t1, t7t > —|t7L, 111 >)

Table 3.2: The |S, m > states. The notation is a short form of the tensor product state of any two sites
situated somewhere in [

Making use of the above the irreducible two-triplon interaction coefficients t,-ik, follow from

tga = i, j|Halk, Y5 = (i, j|Hetr — Hi — Holk, 1)°
=a; 5 — E§6ixdj

—t5 050 — t50ik — t0u(—1)° — £58.(—1)° . (3.6.8)

analogous to Eq. 9 in Ref. [171]. Again, Eg' and the one-triplon hopping coefficients tf; must be
calculated on the same cluster as the “raw” two-triplon coefficients af.,,. The cluster hopping
coefficients tjc;', are needed only in the intermediate steps of the calculation of the irreducible
interaction coefficients.

There will be no tij;«; or tjj.xk since it is not possible to have two triplons on one rung at the
same time. This constraint can be viewed as a hardcore repulsion interaction.

The construction of the minimum cluster needed to calculate the t;j,, in the thermodynamic
limit follows the same line of argumentation as in the one-particle section. Generally, the cluster
must be large enough to encompass all possible processes in order /. The minimum cluster has
to include all linked bonds that can be activated in any possible interaction process of length /
which leads to state |/, /') if one starts with state |i,/). Obviously the sites /, j, i and j' must
be contained in the minimum cluster and they must be connected by active bonds. All interaction
coefficients of order / can be calculated on a cluster containing / + 1 rungs.

For particular systems there may be symmetries, e.g., spin rotation invariance, or other par-
ticularities, e.g., nearest-neighbour exchange coupling only, which prevent certain processes from



3.6 Choice of the cluster 45

"o

o —0 0 0 0 °

Fig. 3.7: General situation for a local observable acting on site ry of the effective lattice. Black filled circles
denote sites being in a singlet configuration. Here one triplon is created out of the triplon vacuum two
sites left from ro. The triplon is marked as a filled grey circle.

generating non-vanishing coefficients. This will be described and used later in the application
chapters.

3.6.2 Observables

The consideration concerning the cluster size for the observables are very similar to the previously
described case for the Hamiltonian. This can be seen in the formal structure of the effective
observable (Eq. 3.4.15). The new part one has to account for is the creation (or annihilation) of
triplons. In this work only T = 0 properties are calculated. One therefore has not to perform any
substractions in the n-triplon sector of contributions with less triplons.

A locally acting observable is considered which creates triplons out of the triplon vacuum at a fixed
site rp in the system (see Fig. 3.7). In this thesis the maximum number of triplons which can
be created (annihilated) by an local operator is restricted to N = 2. In the following the case of
N = 1 is considered, i.e. the monomials for the effective Hamiltonian and the effective observables
consists only of {To; Tx1} and {T§; Ti,}. The generalizations of the obtained conclusions are
straightforward.

First, one-triplon configurations are considered in (/ — 1)t order in the perturbation operator x,
i.e. there are (/ — 1) operations from the Hamiltonian and one operation from the observable. The
total number of operations is therefore /. One needs one operator to create the triplon, i.e. there
are | — 1 operations left. The linked cluster theorem then states that only processes contribute to
the local observable in which all activated bonds are linked. It follows that only states occur where
the triplon is connected by active bonds with the site ry. In the latter subsection it is argued that
maximum motion of one triplon is / sites in /™" order. One can conclude that all one-triplon states
being created by the local observable are located in an intervall of length 2/ — 2 centered around rp.
All possible one-triplon states are shown in Fig. 3.8 for | = 4. Note that there are often additional
symmetries like the inversion about rp. Then one has to compute less amplitudes. This will be
explained in detail in the application chapters.

It is clear that there are no operations left for the extreme states (the triplon at the maximum
distance left/right from site ry). For these cases the minimum cluster to get the correct amplitude
in the thermodynamic limit is equal to the cluster which includes the triplon site and the site ry of
the local observable. In all other cases operations are left in a given order which represent virtual
fluctuations around the considered configurations, i.e. virtual hopping, interaction or creation
(annihilation) processes. Here the minimum cluster has to include all bonds that can be activated
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Fig. 3.8: All possible one-triplon states in third order in perturbation parameter x created by a local
observables acting on site ro. Black filled circles denote singlets and grey filled circles denote triplons.

in all processes creating the triplon at some site r by the local observable at site ry. This is
illustrated in Fig. 3.9 for | = 4.

The case of creating two triplons can be treated similarly. In /*" order one needs two operations
to create two triplons (remember N = 1), e.g. twice the operator T; would give two connected
triplons. This means there are only | — 2 operations left. The linked cluster theorem imposes that
only clusters contribute consisting of active bonds containing the sites of the two triplons and the
site of the local observable ry. The minimal cluster to get the correct amplitude for two triplons is
therefore smaller than in the one-triplon case. This is illustrated for the fourth order case in Fig.
3.10.

The latter considerations are generalized easily to more than two triplons. The number of operations
to get the triplons excited plus connecting the triplons is growing and therefore the number of
reachable states is reduced. Addditionally, the size of the minimal clusters is getting smaller. In
the previous example, four-triplon states consist of four triplons on neighboring sites including site
ro because for the creation of four triplons one already needs four operations. Consequently, the
creation of five triplons is not possible in fourth order.

The case of N > 1 is done in the same manner as N = 1. In the application chapter the cases
N =1 and N = 2 are studied. Any characteristics of the N = 2 case (compared to N = 1) will be
point out in the application chapters. Note that the size of the chosen clusters can be tested by
enlarging the cluster. The result should not change on the larger cluster.
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Fig. 3.9: Minimal clusters for all possible one-triplon states in third order in the perturbation parameter x

created by a local observables acting on site ro. Black filled circles denote singlets and grey filled circles
denote triplons.
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Fig. 3.10: Minimal clusters for all possible two-triplon states in third order in the perturbation parameter
x created by a local observables acting on site ro. Black filled circles denote singlets and grey filled circles
denote triplons.

3.7 Translational invariance

In Sect. 3.3 an effective Hamiltonian is derived which is block diagonal (to the calculated order)
with respect to the number of particles. A sketch of the situation is shown in Fig. 3.11. The repre-
sentation of the Hamiltonian can be simplified, if the system under inspection exhibits translational
symmetry. In this case it is useful to switch to a momentum basis. This will be the case for all
models to be studied in this work. In the first subsection this will be elaborated for the one- and
two-particle block of the effective Hamiltonian Hess. The structure of the corresponding one- and
two-particle matrices of Oesr is inspected in the second subsection. In addition, also multi-particle



48 Perturbative CUT

matrices for O are discussed focusing on the case of three particles. The results will be used in
the application Chapt. 6 and Chapt. 7.

With respect to these appplications the quasi-particles for each site of . are assumed to be
triplets t’, where i € {—1,0,1} denotes the z-component, defined above a singlet (s) ground
state (triplet-vacuum). The sites of [ are equivalent to dimers as illustrated in the last section.
Triplons are defined as the elementary triplets on the dimers. All quantities throughout this work
will refer to the triplon as elementary particle.

3.7.1 Hamiltonian

The effective Hamiltonian Hes is considered to be invariant under translations of the effective
lattice Mefr. A one-triplon state is denoted by |r) where r refers to the state of one triplon at site
r of I and all other sites being a singlet. For the case of two triplons the states |r, r')>™ are
introduced with one triplon at site r and the other at site r’. Here S is the total spin and m is the
SZ component of the two-triplon state. It is assmumed that the Hamiltonian conserves total spin
and the total S?-component of the spin. All models which will be studied in this work will have
these additional symmetries. In Tab.3.2 all states |S, m) that can be constructed for zero, one and
two triplons are sumarized.

In the following the structure of the one- and two-triplon sector in the momentum basis will be
investigated in detail. The particular simplicity of the obtained expressions is mainly due to triplon
conserving property of He.

3.7.1.1 One-triplon sector

From the thermodynamic cluster-independent hopping coefficients the one-triplon energies are con-
structed. The Fourier-transformed are defined as states

k) = ﬁ el (3.7.1)

N is the total number of sites in . Calculating the action of H; on these states yields

Imax
1 ,
Hilk) = 77 Y e tylr + d) (3.7.2a)
r,d=—Imax
I
1 'max i
= = e k=t 1r) (3.7.2b)
\/Nr:dzz_lmax
Imax
=Y ek Y ey (3.7.2¢)
= VN &
— " Imax .I
1K)

Making use of the inversion symmetry ty = t_4 yields the real one-triplon dispersion

Imax

w(k; x) = (k|H1(x)|k) = to +2 ) _ tacos(dk) , (3.7.3)

d=1

where Inhax is the maximum order of the perturbation series.
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3.7.1.2 Two-triplon sector

Due to the translational invariance the momentum k is a good quantum number in the one-
triplon sector and the diagonal matrix elements of the Fourier transformed states |k) are the eigen
energies w(k). With two triplons present only the total momentum K is a good quantum number.
The relative momentum g is not conserved and generally leads to the formation of a two-triplon
continuum.

To make use of the conserved total momentum one turns to a new basis. As a first step the
center-of-mass coordinates are used, i.e., |i,j)° — |r,r + d)° = (=1)%|r + d, r)°, with r = i and
d =j —i. The restriction i < j (see text below Eq. 3.6.7) translates to d > 0. A suitable origin is
chosen, say k = 0, and the matrix element is renamed

td:rar = <I’, r+ d/|H2|O, d) = <f,j|H2|k, /) = tijiki (3.7.4)
with d =/, r=1i and r + d' = . From Eq. 3.6.8 one obtains

S S,cl cl cl cl
tar,ar = dgia — E0O0.r0d,r+d — tro0d,r+d — tg,rrao.r

— t8 1 arba,r(—1)° — tg,80,r+ar (—1)° (3.7.5)

in the new basis. This is equivalent to the equations emerging from considering the special cases

trow = dg0q — to_a—0da(ts+EY) (3.7.6a)
tig-aa = a3g-ga — ti-a —Od.a(t§ + E) (3.7.6b)
tgmaa = ggg — tCg-a(-1)° (3.7.6¢)
tiga = 2ggq — tira(—1)° . (3.7.6d)

Otherwise the interaction coefficients t3.. , and aj., , are identical.
As a second step the states |r, r+d)° are Fourier transformed with respect to the center-of-mass
variable (r + d/2)

1 .
|K, d)S — - Z e/K(r+d/2)|r' r+ d)S
VN 4
1 .
— (_1)5_ ZelK(r+d/2)|r +d, r)S
VN 4

r—>£—d (_1)5% Z eiK(r—d/2)|r, r— d)S
= (-1)°|K, —d)*®, (3.7.7)

where K is the conserved total momentum in the Brillouin zone and N is the number of sites in
lesr. For fixed K and S the relative distance d > 0 between two triplons is the only remaining
quantum number one has to keep track of.

To obtain the complete two-triplon excitation energies one has to calculate the action of

Hesr — Ho = H1 + Ho (3.7.8)
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on the two-triplon states |K, d). The two addends on the right hand site are considered separately
in the following.
The operator H; can move one of the two triplons at maximum. A short calculation yields

Hi|K, d)° =
Imax

1 :
—= > KTIDN "t (Ir+ 0, r+d)° +|r.r + d — n)®)
\/N r n=-Imax

n#£d

Imax
Z tn(eiKn/Z + e—iKn/Z) %

n=—Imax

n#d

1 .
X — E :elK(r+(d—n)/2) r.r+d—n S
VN < | )

/

|K,:1r—n)
Imax
=2 Y} t,cos (Kg) [sgn(d — m]° |K, |d — n|)S . (3.7.9)
n=—Imax
n#£d

Here the previously calculated matrix-elements t, = t_, (inversion symmetry) are used. Since d is
restricted to d > 0 the sgn-function enters the result by Eq. 3.7.7. For fixed K, H; now appears
as a semi-infinite band matrix in the remaining quantum number d. Independent of the size of the
initial distance d > 0 between the two triplons, H; will produce states where the distances between
the triplons are incremented or decremented by /.« at maximum. If the initial distance d is larger
than /,ax, Hi continues to produce the same matrix elements on and on for all d > /., i.€.
the matrix representing H; in the chosen basis for fixed K is semi-infinite with a repeated pattern
in the tail. The head of Hy, i.e., the /. X Imax block between states with d < /.., contains
matrix elements with a somewhat more complicated structure. Here the matrix element between
the starting distance d and the final distance d' is a sum of the direct process d — d’, where one
of the triplons has hopped n rungs to the right (n > 0) or to the left (n < 0) with d —n=d' > 0,
and the indirect process with d — n = —d’ < 0. The situation is sketched in Fig. 3.11. The matrix
H1 comprises the full thermodynamic one-triplon dynamics in the two-triplon sector for the given
order Inax.
The situation is more complex for Hs. In a first step one finds

Hy|K, d)° =

1 iK(r+d/2) 3 NS
—Ze tamalt + 0, r+n+d)° =
VN <

max{n+d’,d—n}
<max

D tainaeKCTHENR K ') (3.7.10)

max{n+d’.d—n}
<lmax

with the two integers n € Z and d' € N as summation indices. The positive distances d and d’
must be smaller or equal to /fnax, Since a maximum of /..« linked bonds can be produced in this

order and all four triplons sites (the two initial sites and the two final sites) must be contained in
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the resulting linked cluster. The tg., o are the matrix elements of H, defined in Eq. 3.7.5. The
last equality follows from substituting the summation-index r — r + n.
To simplify the expression further inversion symmetry is used. One has

tapar = (", " + d'|Halr, r + d) (3.7.11)

with r' = r" — r. The thermodynamic interaction coefficient ty. o is associated with a fixed con-
stellation of initial and final triplon pairs. A configuration CON is defined by the set of four positions
given by these two pairs CON = {r, r+d, r", r" +d'}. Let s denote the middle of this configuration
s = (max(CON) — min(CON))/2. Reflecting a configuration about s and interchanging the triplon
positions in both initial and final triplon pairs gives

ta:r g = <I’”, "+ d’|H2|r, r+ d>
=(2s—r"—d', 2s —r"|Hs|2s —r —d,2s —r)

= tod—d_r - (3.7.12)

Possible minus signs cancel since they appear twice. One can now split the sum over n in Eq.
3.7.10 in three parts, n > (d — d")/2, n < (d — d")/2 and n = (d — d')/2. The second sum is
indexed back to n > (d — d')/2 by making use of }_,_.a, =}, aj-n where j := (d — d')/2

Ha|K, d)S = Z [td;n,d’ e/ K(=mH(d=d)/2)| ¢ ¢\S

max{n+d’ ,d—n}</max
n>(d—d')/2€Z

+td;d—d'—n,d" eiK("_(d_d’)/2)|K' dl)S]

S
+ E ta:(d—ary 2.0 |K, d')
max{n+d’,d—n}<Imax
n=(d—d')/2€7

=2 Y tanacos|K(n—(d—d)/2)]K d')°
max{n+d',d—n}<Imax
n>(d—d')/2€Z

+ Z ta(d—ary 2,0 K. d')> . (3.7.13)

max{n+d’,d—n}<Imax
n—(d—d')/2€Z

In contrast to H; the matrix representing Hs is of finite dimension due to the finite range of the
contributing processes (finite maximum order) expressed by the restrictions of the sums appearing
in Eq. 3.7.13. Fig. 3.11 sketches the situation.

Finally, the sum of the two matrixes H; and H> with respect to basis (3.7.7) comprises the com-
plete two-triplon dynamics. At large distances the two-triplon dynamics is governed by independent
one-triplon hopping. At smaller distances an additional two-particle interaction occurs given by
ta.r,r cONnecting the state |r, r + d') with state |0, d). The sum H; + H, gives the combined effect
of one-triplon hopping and two-triplon interaction.

It is important to note in which sense the used approach treats processes of a certain range.
Taking the perturbation expansion up to order /.« allows to calculate the irreducible two-particle
interaction up to a distance / between the two particles correctly within order /nax. No processes
involving larger distances appear. But the part of the two-particle sector that can be described by
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Fig. 3.11: The left part of the figure schematically shows the matrix representation of H; and H, in the
two-triplon {|K, d)} basis (3.7.7). The matrix Hi has elements in the whole grey area, while H> has
elements in the dark grey area only. Hs, is a finite %, x [  matrix and H; a semi-infinite band matrix
with width 2/7..,, see Egs. (3.7.9) and (3.7.13) for further information. The sum of H: and H, represents
Hesr in the two-triplon sector to the given orders. The right part shows the initial vector |Init) = Oes|0)
as calculated in Sect. 3.7.2 for the two-triplon sector. |Init) is a vector of dimension /9, in the {|K, d)}
basis. The Green's function G (Eq. 4.1.2) is calculated by tridiagonalization, more information in Sect. 4.
For K and x fixed, the elements of the matrix and the vector reduce to real numbers.

one-particle dynamics alone is taken into account for all distances between the two particles and
describes hopping processes of range < /.« correctly within order /..

3.7.2 Observable

The effective operators O can be decomposed in a sum of cluster-additive operators Oy ,, see
Eq. 3.2.16, for which the linked cluster theorem can be used. Here d indicates how many particles
are created (d > 0) or destroyed (d < 0) by Q4. The subindex n > 0 indicates the minimum
number of particles that must be present for O4 , to have a non zero action. The action of the
operator Oy, On a state containing less than n particles is zero.

To be more specific, let O be a locally acting observable injecting triplons at a specific site r of
lerr. Then the effective observable reads

Ot (r)|0) = O o(r)|0)

d>0
Imax
=cloy+ Y clr+n)+
N=—Imax
+ > Gamlrtnrta)y 4. (3.7.14)

n,n'
[nl+n" | <hmax

The restriction |n| 4 |n'| < Inax for the third sum reflects the fact that the two triplons, after being
injected, cannot undergo more site-to-site hops in total than the maximum order /pax.

Once the coefficients ¢ are calculated the spectral weights /Iy are accessible, which are contained
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in the different triplon-sectors characterized by the number N of triplons injected

(0[O—_n,0(r)On,(r)|0)
..... r + ny|Owo(r)[0)?

In

I
g
=
+

>

n,..., ny
= Z |Cns..... nN|2- (3.7.15)
n,...,nng

If the total weight /it Of the operator is also known, for instance via the sum rule
Lot = (0]O?|0) — (0|O]0)? ; (3.7.16)

the relative weights of the individual particle sectors /n/lwot can be calculated. They serve as an
important criterion to judge the applicability of the approach presented here. If most of the weight
can be found in sectors of low quasi-particle number and sectors of higher triplon number can be
safely neglected the approach will work fine. The chosen triplons constitute a suitable basis to
describe the system. This argument will be used in the application chapters to argue that the
triplon is a well-suited particle to describe generically one-dimensional spin systems. It will be found
that most of the spectral weight is captured by one and two triplons [82].

So far local observables O(r) were considered. A real experiment, however, couples to the system
in a global fashion. Due to translational invariance the injected particles (here triplons) have a total
momentum K. Thus one defines the global observables in momentum space representations

0 (K)10) = 3 0u.n(K)I0)

d>0
1 X
= Z ﬁ Z e'r0,0(r)|0) (3.7.17)
p>0 r=1

where N is the number of sites of the effective lattice. The one- and two-triplon sectors can be
investigated separately. In the one-triplon sector one has (here K is the one-triplon momentum k)

Imax—1

N
O10(I0) = —= 3¢ 3 alr+n)
r=1

n=1—Imax
— Z c e—ikni Z eikr|r>
= n
n VN r
=" cae k) . (3.7.18)
n

The same definition is used for |k} as introduced in Sect. 3.7.1. Due to inversion symmetry ¢, = c_p
holds. Thus Eq. 3.7.18 simplifies to

Jmax—1

(klO1,0(K)[0) = Ak =co+2 ) cacos(kn) . (3.7.19)

n=1
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Somewhat more complex is the two-triplon sector

N
1 .
020(K)|0) = NG E elkr E Comlr+n,r+n)
r=1

n,n'

_ Z ¢ n+de—iK(n+d/2)i Z eK+d/2) | p 4 g)
r

n,d \/N

— Z Cn n+de_iK(n+d/2)|K, d)
n,d

= AxdlK.d) (3.7.20)
d

where one defines the relative distance d = n’ — n between the two injected triplons. The definition
of |K, d) is taken from Sect. 3.7.1. Again, inversion symmetry, here ¢, = (—1)5c_, _n, can be
used to obtain real results for the coefficients Ak 4. The variable S € {0, 1,2}, which is a good
quantum number, denotes the total spin of the injected triplon pair.

The action of O from the ground state into the two-triplon space produces the states |K, d)
with 0 < d < Ihax in order Ihax. Thus, for fixed K, the action of Q. may be visualized as a vector
in the remaining quantum number d of which the first I,.x entries are the Ak 4 of Eq. 3.7.20. All
other entries are zero. This vector, labeled initial vector [Init) for reasons given in Ch. 4, is depicted
in Fig. 3.11 together with the matrix representing Hes for fixed K in the two-triplon sector.

3.8 Chapter summary

In this chapter an approach is presented to calculate energies and observables for quantum multi-
particle systems defined on lattices. The chapter has two main parts. In the first part (Sect. 3.2),
the existence of a mapping of the original problem to an effective one is assumed in which the
number of elementary excitations, the so-called (quasi-)particles, is conserved. The general struc-
ture of the effective Hamiltonians and the observables is analysed. It is found that a classification
of the various contributions in terms of the number of particles concerned is most advantageous.
To this end a notation in second quantization is introduced which does not, however, require
non-interacting fermions or bosons. Generically, hard-core bosons are dealt with in this thesis.

The formulation in second quantization is found to be particularly intuitive. It provides the
irreducible quantities in a natural way on the operator level. They display cluster additivity. One
has to emphasize that the definition of irreducible operators is not a trivial task if a strong-coupling
situation is considered as was done in the present chapter. No limit of non-interacting bosons or
fermions is assumed. Since the definition of irreducible operators is completely general it allows to
compute the n-particle contribution for arbitrary n.

The irreducible interactions and vertex corrections possess a cluster expansion so that they can
be computed on finite clusters provided that the Hamiltonian is of finite range. This property is
the basis for the real-space treatment of many spin systems.

In the second part (Sects. 3.3 and 3.4), an actual mapping is described which provides effective
operators. The mapping is based on continuous unitary transformations. In this thesis the focus
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is laid on the perturbatively construction of the mapping. In Sect. 3.3, the treatment of the
Hamiltonian is given. The computation of the effective Hamiltonian requires the solution of a
set of recursive non-linear differential equations. For the perturbative set-up under study these
equations can be solved in full generality, i.e. no particular details of the model need to be known.

In Sect. 3.4, the calculational steps to compute effective observables are given. Again, recursive
differential equations have to be solved. But they are linear since the transformation of the Hamil-
tonian is known. For the perturbative set-up under study also the equations for the observables
can be solved in full generality, i.e. no particular details of the model need to be known.

The above approach will be used in the following chapters to compute spectral functions, i.e. dy-
namical correlations, for low-dimensional quantum spin systems, namely a dimerized and frustrated

spin-chain and a two-leg ladder with additional four-spin interaction.
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4 Spectral densities for effective operators

In the last chapter, the determination of an effective Hamiltonian Hes and effective observables
Oesr Obtained by a particle conserving continuous unitary transformation has been described. These
can be directly use to study energetical properties or spectral weights. In this chapter the problem
of calculating T = 0 spectral densities from these effective operators is tackled. Spectral den-
sities provide informations on the density of excitations and on the dynamical correlations in the
considered system. The dynamical correlation are directly measurable in scattering experiments
and therefore of great importance. After a general introduction, the calculation of one- and two-
particle specral densities is explained in detail. Translational invariance of Hesr and Oesr is assumed
throughout the chapter. This symmetry is present in all applications to be discussed in the later
chapters.

4.1 General considerations

For some given observable O the T = 0 momentum and energy resolved spectral density / is given
by
1
I(k,w) = —;|mG‘f’+(k, w), (4.1.1)

where G9*(k, w) is the retarded zero temperature Green's function

Gt (k,w) = <o ‘(I)*(k)w A0 i AR I.0+(9(k)‘ 0>. (4.1.2)

The ground state of the system is denoted by |0). The ground state energy Eq is substracted in
order to account for the fact that an actual experiment can measure energy-differences from the
ground state only.

The physics contained in spectral densities consists of three parts. The observable O(k) creates
excitations with total momentum k from the vacuum |0) with some probability depending on the
considered observable. Every observable/measurement opens therefore a special window on the
system or equally on the Hamiltonian H. The spectral density is proportional to the energy and
momentum resolved intensity of scattering experiments. The second and third part is contained in
the Hamiltonian H. There is single particle motion and two-particle or multi-particle interaction.
The interplay of dynamics, interaction and matrix elements defines the physical structure of spectral
densities. Spectral densities contain therefore a lot of information about the system and about the
measurement.

The next important step is to use the particle number to classify the spectral density of the effective
system. In the following it will be shown that the spectral density for the effective model separates
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into a sum over all particle channels
leff(k' w) = Z In,eff(ky w)- (413)
n

This can be seen by inserting UfU in the equation for /(k, w):

1
w— [H(k) — Eo] + i0+

1 ~
w — [Hesr(k) — Eg] + i0F Oeff(k)‘ O>

1
— [H (k) — Eo] + i0+

ler(k, w) = —%Im<O‘UTUOT(k)UfU

1 | ~ T

;{—%Im <6 6>}, (4.1.4)

where [0) = U|0) is the transformed ground state. The latter step is a direct consequence of

05 (k)

0% (k)

block-diagonality of Hes. Therefore one can calculate the contributions of the individual particle
sectors separately. In each block the complex many body problem reduces to a few-body problem.
In the following the one- and two-particle spectral densities are discussed in detail. A generalization
to more particles is straightforward. It will be given after the discussion of the latter cases.

4.1.1 One-particle spectral density

In the case of a translational invariance system the calculation of the spectral density in the one-
particle channel is particularly simple. Using Dirac's identity
1 P
X —Xo £i0F
where P denotes Cauchy's principle value, one finds
Rkw) = (004 (k6w — Hig)O0)eff(Kk)|0)
= A (kl§(w — Her) k)
= AP0 (w — w(k)). (4.1.6)

L imd(x = ), (4.1.5)
-

The one-particle dispersion w(k) and the one-particle amplitude A are readily given by Egs. 3.7.3
and 3.7.19, respectively. At each point (k, w(k)) the corresponding weight is given by the square of
the modulus of Ax which is a polynomial in x. The result is thus obtained by assigning a §-function
with corresponding weight |Ax|? to each point (k, w(k)).

4.1.2 Two-particle spectral density

The evaluation of the two-particle spectral density is done by tridiagonalization. This leads to the
continued fraction expression ( [199-201], for overviews see Refs. [202, 203])

2,0
leff

- =——Im
w—al—ﬁ w—al—ﬁ

Ly | QO MOEWI0) | 1| OF AP |, o
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The amplitudes Ay 4 are given by Eq. 3.7.20. The repeated application of Hesf — Ho = Hy + H>
on the initial two-particle momentum state |Init) = |f,) = 0%2(k)|0) enables the calculation of the
coefficients a; and b?. Setting the states |fo(0) to zero the recursion

|f;7+1> = (Hl + H2)|fn> - anlfn> - b5|fn—1> (4-1-8)

generates a set of orthogonal states, if the coefficients are defined according to

<fn|(H1 + H2)|fn> _ <fn+1|fn+1> -

2
A AT SR O R (AT A

(4.1.9)

In the generated {|f,)}-basis Hes is a tridiagonal matrix, where the a; are the diagonal elements
and the b; are the elements on the second diagonal. All other matrix elements are zero [204].
Fig. 3.11 illustrates the procedure for the two-particle sector. For fixed momentum k the relative
distance d between the two particles is the only remaining quantum number. In this basis H; + H>
is represented as a matrix (left side). Its matrix elements are polynomials in the perturbation pa-
rameter x. This matrix has to be applied to the vector |fp) = |Init) (right side), whose components
Ax.q are also polynomials in x for fixed k.

The pure two-particle interaction Hs is a finite matrix of dimension dnmayx in this basis. The interac-
tion mixes only the first dax components in the states |f,). In contrast to this, H; is a semi-infinite
band matrix generating finite components in the state f,;1 for larger d where there have been zeros
in the previous state |f,). The range of non-zero components in |f,) grows with each application of
H;. The width of the band matrix depends of the maximal order of the perturbation. The amount
of non-zero components in |f,) additionally generated in each application is correlated with the
width of H; and on the size of the off-diagonal elements.

4.1.3 N-particle spectral density

The generalization to calculate the spectral density for more than two particles is straightforward.
For N particles one has to consider the conserved total momentum k and (n— 1) relative distances
between the particles. Then, for fixed k, Hesr and |Init) are represented by a matrix and a vector,
but their appearance becomes more complicated for increasing number of particles. The effective
Hamiltonian consists of N parts: Hesf = H1 + H> 4+ ... + Hy. It might be a good approximation
for many physical systems to approximate the N-particle effective Hamiltonian by the contributions
of small particle number, namely H; and H>. This approximation means to restrict the physical
processes of N particles to one-particle dynamics and two-particle interactions.

4.1.4 Limitations

The chosen method to evaluate the effective spectral densities introduces no quantitative finite
size effects. The problem of calculating the spectral density for a given N-particle effective Hamil-
tonian and observable comprises the quantum numbers k and the relative distances d; between the
particles. In the two-particle sector one has two quantum numbers, the total momentum k and
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the relative distance d between the two particles. The calculations are in the thermodynamic limit.
The only limitation which enters the calculation is the range of the relative distances d;.

The main error for d; is caused by the finiteness of the perturbative processes treated in the calcula-
tions. The true many-particle interactions are accounted for, only if all involved particles are within
a certain distance to each other. This approximation is controlled, since one generically observes a
rather sharp drop of the interaction matrix elements with increasing distances. Especially gapped
system which are tackled in this work are well suited due to the finite correlation lengths. Diffi-
culties arises if the correlations drop slowly with increasing distances. This point will be discussed
in more detail in the case of the dimerized and frustrated spin-chain where the limit of vanishing
dimerization is accompanied by a diverging correlation length.

Anothyer error for d is introduced by truncating the continued fraction expansion of the effective
Green's function. However, allowing 10* distances as in the one-dimensional spin-systems con-
sidered here should guarantee, that this additional error is very small in comparison to the error
introduced by truncating the perturbative expansion.

The finiteness of the continued fraction can be partly compensated by suitable terminations as
will be discussed in the next section for the two-particle sector of generic one-dimensional gapped
systems.

4.2 Terminators for one-dimensional gapped systems

The outcome of the tridiagonalization procedure discussed in the last section is a finite continued
fraction. The effective Green's function has poles at the zeros of the denominator. The effective
spectral density of a truncated continued fraction is therefore a collection of §-peaks representing
the true spectral density which consists generically of continua and single states like bound states. A
slight broadening of / via w — w+i§ (small §) in G will transform the §-peaks into lorentzians. This
process is illustrated in Fig. 4.1. Truncation of the continued fraction introduces therefore a finite
resolution. The use of a finite broadening will be often helpful in comparing theoretical calculated
spectral densities with experimental data. Here the finite broadening can be used to mimic the finite
resolution of the experiment or the amount of disorder or various scattering processes not included
in the considered model Hamiltonian H. However, theoretically the aim is a perfect resolution of
/(k,w) as a smooth function by introducing proper terminators of the continued fraction. To this
end, the one-dimensionality of the considered model can be exploited.

The main ingredient for a proper termination of the continued fraction is the fact that the (upper)
lower band edges (e, b) €;b of the two-particle continuum can be calculated directly from the one-
particle dispersion w(k) for fixed momentum k. All energies of the two-particle continuum are

wa(k, q) = [wl (g+q> + w1 (g —q)], (4.2.1)

where g € [—m, w] denotes the relative momentum of the two particles. The determination of the

seized by

band edges is therefore equivalent to the determination of the global maximum and minimum of
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wa(k, q)

€w(k) = maXgq (w2(k, q))
en(k) = ming(wa(k, q)). (4.2.2)

For fixed k the upper and lower band edges €,, and €, give the values to which the continued
fraction coefficients a; and b; should converge for i — co. One finds [202]

3 _ €Eupt€p
< 2
b = @_ (4.2.3)

The next point is to include the knowledge that the system is gapped. The elementary excitations
are massive and show quadratic behavior at the dispersion extrema. One concludes that the
one-particle dispersion wy (k) is two-fold continuously differentiable. Obviously w2 (k, g) has this
property, too. It follows that the density of states of the one-dimensional system shows square
root singularities at the band edges. The two particles, giving rise to the continuum of states,
are assumed to be asymptotically free. In conclusion, a square root termination for the continued
fraction is appropriate: all listed properties lead to a convergent behavior of a; and b? [202, 203]
with

aco + O(1/%)
boo + O(1/i%) (4.2.4)

aj

bi

and it is well justified to assume a; and b; to be constant beyond a certain fraction depth /.
Hence one defines the following terminators

1 .
PR p— (w — 3m + M) , below continuum
202,
1 . _ .
T = a5 (w — 8o — /\/5) , Within continuum
202,
1 .
T = o (w — 3o — \/—D) , above continuum, (4.2.5)
o0

where
D =4b? — (w— ax)?. (4.2.6)

The choice of signs in the terminators is a consequence of the asymptotic behavior of Green's
functions, namely G(w) — 1/w for large w and that one aims at the retarded Green's function.
The b,-2 calculated last in Eq. 4.1.7 is multiplied by the appropriate terminator depending on the
energy range of interest. Taking the imaginary part of the resulting expression for the case within
the continuum yields the continuous part of the spectral density / in the thermodynamic limit. The
continuum is displayed very precisely

For illustration, an elliptic spectral density

I(w) = 27rlb2 VAP — (@ =2y, (4.2.7)
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is depicted as solid black curve in Fig. 4.1. The corresponding Green’s function can be expressed

as ) .
_ - , 428
g((.U) W—a— b2 S w_a_bQTi(w) ( )
with
Tiw) = (W) = 515 (v —a— iVaAP —(w—2)) (4.2.9)
' 2b2 o
Extracting the imaginary part of G one ends with /(w) = —2ImG(w). This simple example illustrates

how the terminator 7; for the continued fraction within a continuum is used. The resulting spectral
density is the black line in Fig. 4.1. For systems which are more complicated the coefficients a;
and b; are functions of / which asymptotically converges to constants for large i. In these cases
one calculates as many coefficients as possible and multiplies the terminator to the last obtained
b,

In the case of bound states the effective Green's function can be written for fixed total momentum
k

(0102 0% 10)

w — f(w)

where the function f(w) is a real-valued function (compare terminations 7, and 7,). The position

Gar(w) = (4.2.10)

of possible bound states is given by the zeros of g(w) = w — f(w). Let wp be the energy of a
bound state or equivalently a zero of the function g(w). Then one can expand the function g(w)
in w — wo to first order and obtains for the effective Green's function
(010¢;" 0% [0)
(w—wo)(1—20,f(w))

Gar(w) = (4.2.11)
Using Dirac’s identity and implying G to be a retarded Green's function, one concludes for the
effective spectral density

(010" OZ10)

1
legt (W) |wrwy = —;Imggf(w) -1 B, f(wo)

d(w — wo)- (4.2.12)

Bound states therefore show up as d-functions in the spectral density. The spectral weight of a
bound state is given by

oomna = 8w (G (@) ™) lu=wo, (4.2.13)

which is easy to calculate one the Green's function G is evaluated.

4.3 Chapter summary

In this chapter it is illustrated how to calculate spectral densities from an effective Hamiltonian
and an effective observable. The property of particle conservation of the effective model enables
one to calculate the spectral density for each particle sector separately. Assuming that most of the
spectral weight is distributed in the particle sectors with small particle number, the determination
of the spectral density of a complex many-body system is reduced to the evaluation of few-body
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Fig. 4.1: An elliptic spectral density /(w) is considered as an example to illustrate the difference between
terminated continued fraction and a continued fraction of finite depth with an additional broadening. The
parameters used are a = 4 and b = 1. The true spectral density is the solid black curve, for which the
use of a square-root terminator in the corresponding effective Green's function is illustrated. The vertical
lines indicate the §-functions which appear, if the continued fraction expansion of the Green's function was
terminated at some finite depth N (here N = 7). The grey curve is the spectral density which results from
a terminated Green's function by introducing a broadening by w — w + i§ (here § = 0.1).

spectral densities only.

Assuming translational invariance the one-particle spectral density can be calculated straightfor-
wardly from the results of the preceding chapter, namely the one-particle dispersion and the one-
particle momentum resolved spectral weights. The case of two-particle spectral weights is tackled
with the continuous fraction technique. The technical details of the approach are explained in
detail. The extension to more than two particles is described briefly. There is no principal problem
associated with this generalization.

In this work the focus is set on one-dimensional gapped systems. The special properties of these
systems are used to construct appropriate terminators allowing to go beyond the truncation at
some finite depth of the continued fraction.

It must be stressed that Hes and O are determined in the thermodynamic limit and that also
the use of the continuous fraction technique does not induce any finite size error. It is argued that
the finiteness of the continued fraction introduces errors for the quantum number d only which are
usually small for the cases considered in this thesis.

The procedure described is mainly restricted by errors arising from the finiteness of the maximum
perturbation order. This is no problem for small values of the perturbation. Then even the plain
series of the calculated processes converges and the correlation length is very small. In actual
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applications, however, one is often interested in the case of larger perturbation parameters. Then
one has to distinguish two cases. On the one hand the correlation length increases so much that
processes are important which are not included in the calculation. In this situation the described
approach is not useful anymore. A possible alternative is the use of renormalizing continuous unitary
transformation. Especially a formulation in momentum space is able to treat in principle processes
of infinite range. On the other hand, if only the plain series of the calculated processes are not
valid, but the correlation length is not larger than the range of processes kept, then the use of
extrapolation techniques is important. This problem is addressed in the next chapter.
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5 Extrapolation

In this chapter a variety of extrapolation techniques is described. As discussed in the previous
chapters, the outcome of the perturbative treatment of the continuous unitary transformations
is a series expansion up to high order for several physical quantities. For small parameters, the
truncated series is a valid approximation. It is clear that for larger parameters the truncated series
diverges. In order to obtain reliable results for higher values one has to use extrapolation tech-
niques. The first part of this chapter discusses the standard extrapolation tools like Padé- and
dlogPadé-extrapolation. The inclusion of additional information and the determination of singu-
larities and their exponents are also described. A review article about these standard tools was
written by Guttmann [205]. The second part provides information about optimised perturbation
theory (OPT) [172]. The last part describes a different sort of extrapolation tool. Here the system
is no longer expressed in terms of external variables but in terms of an internal parameter of the
considered system. This improves the convergence of the obtained series [207-211]. Note that it
is also possible to combine the technique of internal parameters with Padé extrapolation procedures.

5.1 Padé-extrapolation

The basic idea of Padé extrapolation is to consider the obtained plain series as a Taylor expansion
of an unknown rational function. The order of the plain series is therefore considered to be the
number of coefficients of a Taylor expansion of the unknown rational function. Consider a general

plain series
Max

F(x) :Zanx”:ao+alx+agx2... (5.1.1)
n>0
where Max is the order of the series and a; is the real coefficient of the i-th order term. The
P[L/M]e Padé extrapolant of F(x) is defined as

Pi(x) _ po+Pix+...+pixt
Qu(x) — qo+ qix+...+guxM’

PIL/M]f = (5.1.2)

where p; and g; are real coefficients. Here one requires that a Taylor expansion 7 of P[L/M]¢
up to order Max is equal to F(x). In the following a Taylor expansion 7 about x = x; of some
function f(x) up to order Max is denoted by

T, - (5.1.3)

This condition leads to a system of linear equations which determine the coefficients p; and g;.
The sum of L and M must be equal to Max. The extrapolation is considered to work in an interval
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I if several extrapolants P[L/M]g give very similar results in /. It is important to exclude those
extrapolants which show zeros in the denominator in the interval I or zeros which lie close to / in
the complex plane. If such poles do not represent valid physical behavior they are called spurious.
The corresponding extrapolant is called defective.

It is easy to see that one can control the large x behaviour by the use of Padé extrapolants. The
P[L/M] Padé behaves like x:=M for large x. Detailed information about the limit x — oo, which
is often known for physical systems, can therefore be built in the extrapolation. The Padé extrap-
olation is also applicable if the quantity of interest undergoes a sign change, i.e. sign changes do
not restrict the use of Padé extrapolation.

5.2 DlogPadé-extrapolation

The dlogPadé extrapolation can be used for quantities of definite sign like energies and spectral
weights. It is usually the most powerful and reliable extrapolation scheme. Consider a general plain
series which is normalized in the sense ap = 1

Max
F(x):Zanx"=1+alx+azxz---- (5.2.1)
n>0
The dlogPadé extrapolation is a Padé extrapolation on the logarithmic derivative of F(x)
d F'(x) PL(x)
—InF = = P[L/M = . 522
ax (x) F(x) [L/M]inF Qu(x) ( )

P (x) and Qum(x) are again polynomials of order L and M. The sum of L and M must be equal

to Max — 1 because one information is lost due to the derivative in the numerator of Eq. (5.2.2).
The dP[L/M]g extrapolant can also be viewed as the solution of the differential equation

Qu(x)dF(x) = PL(x)F(x) . (5.2.3)

It is sometimes called differential extrapolant due to the latter property. The dP[L/M]g extrapolant
of F is therefore

dP[L/M]£(x) = exp ( OX g;((x): ,)) dx’) . (5.2.4)

The extrapolation is very sensitive to real poles on the positive real axis and complex poles which
are closed to the positive real axis of the rational function P./Qum. The poles can be of physical
origin if the quantity of interest vanishes like the gap of a physical system at a phase transition
point. But the poles can also be spurious and one better rejects the extrapolant. In the case of a
physical pole at xp it is possible to calculate the dominant power-law behaviour |x — xp|® near xo.
For x close to xg one has

dP[L/M](x) x exp (/:

[0

g dx’) =exp (a[In|x' — xlly) = |x — xo|*. (5.2.5)

The exponent a is defined as the residuum of P, /Qum at x = xg
P[_ (X)

L Qm(x) (52:6)

a =

X=Xp
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The latter property is the main reason to use dlogPadé extrapolation.

5.2.1 Biased dlogPadé extrapolation

It is often the case that one has additional information about the function F(x), e.g. phase
transition points, exponents at a phase transition or the asymptotic behaviour for x approaching
infinity. Assuming a phase transition at point xp with an exponent ¢, the additional information is
added on the level of the logarithmic derivative. A function G(x) is defined as

G(x) = (di; In F(x)) (x — xp) + AxMax (5.2.7)

where the constant A is used to incorporate the exponent o in the extrapolant. The next step is
to make a Padé extrapolation P[L/M)]s for G. The constant A is determined by the condition

PIL/M]glx=x(A) =a (5.2.8)

because one wants to have dP[L/M]s = exp(fy
[L/M] dlogPadé extrapolant of F is defined as

2odx") = [x — xo|* at x = xo. The biased

x"—xq

(5.2.9)

dP[L/M]r = exp </OX de) .

X' — Xp

In order to include the asymptotic behaviour of a series F(x) it is useful to apply an Euler
transformation to the logarithmic derivative of F. Assuming the asymptotic behaviour x* for
X — 00, one adds an additional term to the logarithmic derivative of F

G(x) = (d% In F(x)) + AxMax (5.2.10)

where A is a constant which has to be determined in order to include the asymptotic behaviour.
The Euler transformation is defined as

Max

G(x) = G(u) =S ahu" with x=—
0

1—u

(5.2.11)

which transforms G(x) in a series G(u) and x € [0, oo in u € [0, 1]. Similar to the inclusion of the
exponent above one determines A through the equation

PIL/M] & |u=1 = (5.2.12)

where P[L/M] ¢ is the [L/M] Padé extrapolant of G and u = 1 corresponds to x = co. The
1-u

additional factor 1 — u originates from the transformation of dx — 1/(1 — u)?du. The second

factor 1 — v is included explicitly in the final biased dlogPadé expression

5 P[L/Mlg du) |

5.2.13
T ( )

BdP[L/M]g = exp (/0
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5.3 Optimised perturbation theory

Optimised perturbation theory (OPT) is based on the principle of minimal sensitity [206]. The
basic idea is to find an optimum way of splitting the Hamiltonian in an unperturbed part and a
perturbing part. Starting from the usual beginning of a perturbational approach

H(x) = Ho + xV (5.3.1)
where x is the expansion parameter, an additional parameter a is introduced which controls the
splitting of H

H(x;a) = (1+a)Ho+xV —aHo (5.3.2)

= (1+a)H(%:3) (5.3.3)

A(%;3) = Ho+X(V + 3Ho). (5.3.4)

Here X is equal to x/(1 + a) and & is equal to —a/x. X is considered to be the new expansion
parameter. The transformed Hamiltonian H(x; a) is identical to the Hamiltonian H(x). However,
the truncated series of any eigen-energy Eirunc(X; @) of H(x; a) will depend on a. Since Epunc(x; @)
should not depend on the unphysical parameter a one can impose the criterion of minimal sensitivity
to determine a in an optimum way

6aEtrunc(X; a)|a:aopt- (535)

In general the convergence of Eiwunc(X; aopt) is enhanced compared to the plain series Eirunc(x). In
some cases, the OPT series can be convergent even if the original series diverges, e.g. the standard
series expansion of the ground state energy of a harmonic oszillator perturbed by a quartic potential
diverges [212] while the series obtained by OPT converges [206].

In the following the specific application of OPT is decribed. Rewriting the Hamiltonian

F(%; 3) = Ho + X(V + 3Ho) = (1 + 3%) [Ho+ 155)?4 (5.3.6)

one obtains the corresponding eigenvalues £(X; &) by a simple substitution x — %/(1+ %) in E(x)

E(%;5) = (1 + a%)E (ﬁ) : (5.3.7)

Therefore, if a truncated series Etrunc(x) has been calculated from Heg then one obtains Eipync(X; @)
by re-expansion in the small parameter X up to the same order in which one had obtained Eiunc(x).
In the end a final re-substitution X = x/(1+ a) and 4 = —a/x is done.
In order to do all the above described steps in one an auxiliary variable A is introduced. The Taylor
expansion in X can be replaced by an expansion in A

lii(a and 3= —;.

The final result Etrunc(X; dopt) is then obtained by doing first a Taylor expansion T~ of Egrync(X; @)

(5.3.8)

X =

about A = 0 and then setting A = 1 at the end of the calculation

B 2e) = | T{ (14 30 = M) el ;o7 . (5.3.9)
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Therefore, no new calculations have to be done. The parameter a,: is determined by the criterion
of minimal sensitivity.

It is also clear from the above discussion that any other quantity A:unc Obtained from an effective
observable can be optimised in an analogous way

Atrunc(x; @) = {T [Ammc(ﬁ)] }A:1;a:aopt . (5.3.10)

Here no prefactor (1 4+ a(1 — X)) occurs because A is not measured in units of energy in contrast
to E.

The criterion of minimal sensitivity imposes additional structural information on agp:. It can be
shown [172] that one can always write

dopt = QloptX. (5.3.11)

Let Fiunc(X; @) be the truncated series expansion of the quantity for which the optimum ot is to
be found. In the following F could be an energy E or some observable A. A function g(u,v) is

introduced

vE u/v) for energies,
g(u,v) = (/) d (5.3.12)
Atrunc(u/v)  for observables.

in order to compactify the notation. The derivative of g with respect to v is denoted by f(u, v) =
8v9(u, v). The problem of determining aop: reduces to

{Tlaag(xx, 14+a(l- A))] }
A=0/7 \=1

{TPQK1+41_MX1_M4 } . (5.3.13)
A=0

A=0

0= 6aFtrunc(X; a)

For the following argument it is important to see that
n—1

=MHA" 4+ (1 - A)T[f(kx, 1+ a(1- A))] ,  (5.3.14)
A=0

n

‘Tfo1+aﬂ—ADﬂ—0M]
A=0

holds, where f,, denotes the nt" coefficient in the Taylor expansion of f with respect to A
1
fn = m(ax)”f(kx, 14 a(1—N). (5.3.15)

The second term of the right hand side of Eq. 5.3.14 vanishes for A = 1. In addition, the structure
in Eq. 5.3.15 is such, that in each derivative with respect to X either an x or an a is obtained as
internal derivative of the chain rule. Thus, one obtains

6aFtrunc(X; a) =1 (5316)

to be a homogeneous polynomial in the variables x and a. In an n" order expansion the criterion

of minimal sensitivity reads

n
— iy, n—i
a=agt — § Fia'x

i=0

0= aa":'trunc(X; a) , (5317)

a=agpt
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which clearly shows agpe = QtoptX.

The OPT procedure can be used for all physical quantities obtained by the continous unitary
transformation. There is no need for further calculation. The OPT-results are obtained by simple
substitutions and re-expansions of the plain results.

The OPT can be also applied in a slightly different form. It is assumed that an optimal ogpt
exists and that it depends mainly on the model and on the order of the expansion. It is then fixed
by simultaneously optimising some simpler quantities, e.g. the one-particle gap or bound state
energies, which can be determined by reliable dlogPadé extrapolants or different methods.
Additionally, the OPT procedure is linear. Denoting the OPT procedure as O[] such that

f(x; aopt) = O[f (x)] (5.3.18)

is the optimised series obtained from the plain series f(x). Then

(] [Z a,-f,-(x)

holds, where all series are of the same order. Therefore the OPT procedure can be applied in real

=Y a30[fi(x)] (5.3.19)

or in momentum space giving exactly the same results.

It is important to note that OPT does not yield the best approximation one can obtain for a specific
quantity. But it is an easy way to approximate in a physically controlled fashion a large number
of quantities in one step. Additionally there are no unphysical singularities possible, i.e. the OPT
approach is robust.

5.4 Internal parameters

Generically, the various physical quantities in a given system depend in a complicated way on the
external control parameters. Expanding the quantities under study in terms of one of the external
control parameters, let us say x, yields the bare, truncated series which can only rarely be directly
used to compute the quantities. This is so since singularities induced by phase transitions easily spoil
the convergence of the series. For instance, a correlation length diverges and the corresponding
energy gap closes rendering an expansion about the gapped phase difficult.

If the convergence of the series is deteriorated due to an incipient phase transition it is reasonable
to assume that all quantities in the particular system behave in a similar fashion. If this is so one
may proceed in two separate steps: (i) one extrapolates an internal parameter which may serve
as a measure of the distance to the phase transition as reliably as possible. Thereby, a reliable
mapping between the external x and the internal parameter is established. (ii) One expresses
all other quantities as functions of the internal parameter. According to the above argument the
latter dependencies are expected to be much simpler, i.e. they are much less singular. The canonical
candidate for the internal parameter measuring the distance to a phase transition or, more generally,
to some singular situation is the energy gap A. It is inversely proportional to the correlation length &
which plays the role of the internal control parameter in standard renormalization group treatments.
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The one-particle gap A(x) can usually be extrapolated very reliably using dlogPadé-extrapolants
or extrapolation schemes to be described at the end of this section. In this extrapolation one can
exploit additional properties of the gap such as its positivity and its asymptotic behavior for x — oco.
In this way, very reliable extrapolations are possible so that step (i) can usually be successfully solved.
In general a magnetic system depends on various magnetic exchange coupling J; where i € 0...n.
The one-particle gap is denoted by

_ A(xy, X0, ..., Xn)

NGO ENNC N A N :

(5.4.1)

where one measures the gap in units of one magnetic coupling coupling (here Jy) and introduces
relative magnetic couplings x; = J;/Jo. For step (ii) one defines

Alxy, ..., Xxn) Alxy, . .., Xn)
GX)=G(x1,...,xp) =1— =1-——— 5.4.2
()= 600, w) = 1= o (7 i) > (5:42)
where one assumes that A(x; = 0,x = 0,...,x, = 0) = Jo. In order to extrapolate only in one
single parameter, e.g. x1, one introduces ri_; = x;/xy for i € 2, ..., n. They will be kept constant
during the extrapolation in x;. Then one has
Glx) =1 A(x1, nx1, ..., rax1) (5.4.3)
X = — 4.
' 27:0 Ji

In units of >, J; the gap is unity at x; = 0 and it goes to zero on x; — oo. So G(xi) varies
monotonically between 0 and 1 when x; is increased from 0 to oo. Since one has G « x; for small
X1 any expansion in x; can be rewritten as expansion in G of the same order as the series in x;, yet
with other coefficients! This is done by inverting Eq. 5.4.3, thus completing the second step.
The succesful use of the above scheme depends on the behaviour of the one-particle gap A con-
cerning the external parameters x;. In the following chapters spin-chain and spin-ladder system
are examined which show generically different functional behaviour of A as shown in Fig.5.1. The
spin-chain system shows a phase transition at x = 1. The one-particle gap vanishes with some
power-law behaviour, i.e. it changes drastically for small variation in x. In contrast to the spin-
chain, the spin-ladder system becomes critical only for x — oo showing a slowly varying behaviour.
It is found that the reformulation of the obtained series in terms of the internal parameter has not
a large effect on the convergence of the spin-chain system while the convergence of the spin-ladder
system is enhanced tremendeously. In the spin-chain non-analytical dependencies of physical quan-
tities on the one-triplon gap might influence the extrapolation procedure.

As discussed above the use of internal parameters requires reliable extrapolation schemes for G(x).
In the following an advanced extrapolation procedure for the one-particle gap A is described [209].
Here the one-particle gap A is determined through an extrapolation of the derivative of A. One
obtains a differential equation in A for which the solutions represent a reliable extrapolation for
the one-particle gap A depending on the external parameters x;. It is also possible to determine
phase transition points, i.e. points where the one-particle gap vanishes for a given set of external
parameters. This method will be used in a later chapter to calculate the phase diagram of the
rung-singlet phase for a S = 1/2 two-leg spin ladder with four-spin interaction [209].



5.4 Internal parameters

71

AX)I,

Fig. 5.1: The generic behaviour for the one-particle gap A(x) depending on the external parameter x is

shown for a spin-chain (solid line) and a spin-ladder (dashed line).

First the derivative of A(x;) = (E:A(f(ﬁ is considered

dA(x) _  dG
dX1 h dX1 ’

Substituting x; = x1(G) in Eq. 5.4.4 one obtains

dG

i = P(G) ,

(5.4.4)

(5.4.5)

where P(G) is the truncated series in G. Note that even the convergence of the truncated series
P(G) is often better than the convergence of the truncated series A'(x;) in x; [208]. Because the
gap is a monotonic decreasing function for r; =const one can use dlogPadé extrapolants for P(G)

since —dG/dx; is non-negative. Integrating Eq. 5.4.5 yields

Go dG X0
| r@= [ @u=r

(5.4.6)
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Therefore, integrating the left hand side to Go = 1, i.e. A =0, provides the phase transition point
[X0, rixo, . . ., raxo] for a given set of r;. For any Gy € [0, 1] the gap is A(Xp, r1Xg, ..., rmXo)/Jo =
(14 x0)(1 — Gp). In this way, A(xq, ..., x,) is obtained.

Note that one of the advantages of the use of internal variables is the possibility to apply standard
Padé and dlogPadé techniques to the transformed quantities depending on the internal parameters.
On the other hand one has to admit that this scheme does not work for all considered physical
systems. The different behaviours are caused by the different analytic structure of the one-particle
gap in physical systems, e.g. spin chain or spin ladder systems. In the spin-chain non-analytical
dependencies may influence the reliability of the extrapolation.

5.5 Chapter summary

In this chapter a variety of extrapolation tools has been introduced. These tools are necessary
in order to enlarge the region of convergence of the truncated series which are obtained by the
continous unitary transformation. The first two sections described the standard Padé and dlogPadé
extrapolation. The dlogPadé extrapolation is usually much more reliable but its use is restricted to
quantities with definite sign. The extrapolation of energies or spectral weights can therefore be done
much better in comparison to the extrapolation of transition amplitudes which may change their
sign. In the middle and the last part of this chapter a different way of extrapolation is presented,
namely the OPT procedure and the use of internal parameters. The OPT is an easy-to-apply
extrapolation scheme which optimises the unperturbed starting point by the criterion of minimal
sensitivity. In the last part the concept of internal parameters is introduced. The basic idea is to
express all quantities obtained as a series of some external parameter as a series of an internal
parameter. This is usually the one-particle gap which is also proportional to the inverse of the
correlation length. The physics in terms of the internal parameter is expected to be smoother and
thus the obtained series to converge better. In order to get back to the external parameter it is
necessary to have a reliable extrapolation of the one-particle gap. At the end of this chapter a
method to calculate the one-particle gap by solving a high order differential equation for the one-
particle gap is introduced. This method combines high order series expansion and renormalization
group ideas.

In the following chapters a variety of spin-chain and spin-ladder systems are studied. Generically
the method of internal parameters is used. For signed quantities like energies and spectral weights
additional dlog-Padé extrapolants are applied. For all other quantities like transition amplitudes the
truncated series or additional Padé extrapolation techniques are used.
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6 Dimerized and frustrated spin-chain

One-dimensional quantum spin systems have attracted considerable attention over the last decades
because most of the interesting and fascinating features observed in these systems are pure quan-
tum effects due to the low dimension. The dimerized and frustrated spin-chain is one generic
system to be studied in this context.

In this chapter perturbative particle-conserving continuous unitary transformations is used to study
the energetic and spectral properties of the dimerized and frustrated spin-chain. The starting point
of the calculation is the limit of isolated dimers. One obtains an effective model at T = 0 up to
high order in the perturbation where every order is exact in the thermodynamic limit. The one- and
two-particle energies and the spectral densities are discussed as well as the multi-particle spectral
weights (up to four particles).

There is a large amount of literature on this model which uses a variety of methods. Among these
there are Bethe-Ansatz methods, DMRG or bosonization which are very powerful techniques in
one dimension. In contrast to the large amount of results for the energetic properties, results for
dynamical correlations are very rare due to the more complex nature of these quantities. In gapped
spin liquids, investigations of dynamical correlations are only accessible with exact diagonalization
and complete exact diagonalization which have no high resolution in energy and momentum.

The quantitative determination of spectral densities even for large dimerization gives new insights
in one-dimensional quantum spin-systems. It is an important achievement to calculate dynamical
correlations for various observables in a quantitative manner. The obtained results are directly
relevant for experiments like inelastic neutron scattering, Raman scattering or optical absorp-
tion. There is a large number of quasi one-dimensional compounds which can be successfully
described by the dimerized and frustrated Heisenberg model, e.g., spin-Peierls compounds like
CuGeO3 [213-216], (VO),P207 [217] or organic compounds like Cus(CsHioN2)2Cly [218] and
(Cu(NO3),-2.5D,0) [219, 220]. But also undimerized cuprate chain compounds like KCuF35 [221],
Sr,CuO3 [222] and SrCuO, [223].

The physical most interesting case is the limit of vanishing dimerization. The conventional de-
scription is in terms of fractional excitations, so called spinons carrying S = 1/2. This limit is of
course the most difficult situation to address starting from disconnected dimers. Nevertheless it is
possible for quantities with definite sign like energies or spectral weights to study the case of zero
dimerization using the extrapolation tools described in Chapt. 5. By analyzing the spectral weights
it is shown that a description in terms of triplons carrying S = 1 exists even in the limit of vanishing
dimerization. This result offers a new route in the description of low-dimensional undoped and
doped quantum spin systems. It is a central outcome of this thesis.

In the following the model and its phase diagram is introduced in detail. Methodical aspects for the
dimerized and frustrated spin-chain are described next. A discussion of the spectral weights follows
which sets the base line of the triplon picture. In the last part of this chapter various results for
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energies and spectral densities are shown for large and intermediate dimerization.

6.1 Model

The dimerized and frustrated spin-chain investigated is a model in one dimension with spins carrying
S = 1/2 and interacting via nearest and next-nearest antiferromagnetic exchange couplings. The
dimerization is considered as a given additional alternation of the nearest neighbour coupling. The
Hamiltonian for the dimerized and frustrated S = 1/2 spin-chain reads

H=1Jo> [(148(~1)") SiSis1 + 20SiSit2] . (6.1.1)

1

where § € [—1, 1] parameterizes the dimerization and ag > 0 is the relative frustration between
next-nearest neighbor spins as shown in Fig. 6.1. the coupling Jy is the energy scale of the model.
In the following the interval for § is reduced to [0, 1] because of the invariance of the Hamiltonian
under the simultaneous transformation /i — i+1 and § — —§. Physically this symmetry corresponds
to the interchange of strong and weak bonds which does not change the physics of the system.

The phase diagram and the energetic properties of the dimerized and frustrated spin-chain are

Fig. 6.1: Sketch of the dimerized and frustrated S = 1/2 chain.

described next. This includes a detailed discussion of the nature of the elementary excitations. In
a subsequent step the spectral properties of the model are presented.

6.1.1 Phase diagram and excitations

The dimerized and frustrated spin-chain exhibits very interesting intrinsic physics. The phase
diagram of the model is shown in Fig. 6.2. Basically one has to distinguish between the case
of finite and zero dimerization. Most of the work concerning this model has been done for the
undimerized case. The most studied situation is the case of zero frustration (a = 0) and zero
dimerization (§ = 0), i.e. the one-dimensional Heisenberg model. At this point the model is exactly
solvable by Bethe Ansatz methods [224-228]. One obtains the ground state and the excited
states exactly [83,229]. In addition, it is possible to determine the thermodynamics of the system
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Fig. 6.2: Phase diagram of the dimerized and frustrated Heisenberg chain depending on frustration ao and
dimerization §. The system is always in a gapped regime except for the interval oo € [0, atg,c] at zero
dimerization. The dashed line marks the Shastry-Sutherland line where the ground state is known exactly.

exactly [230].
The one-dimensional Heisenberg model is a gapless and critical system. For |i —j| — oo, the
correlation functions decay algebraically

(SiS)) o« (=1)"/)i—j| (6.1.2)
((SiSi+1)(§;8j+1)) o« (=1)™/ji—j| . (6.1.3)

Here multiplicative logarithmic corrections are omitted. The results of Eq. 6.1.2 are supported by
findings of bosonization [231,232] and conformal field theory [234,235]. The total spin of the
ground state is zero. The system is physically situated right at the border between a RVB-state
and a Néel-state. The sublattice magnetization is zero and the wave function of the ground state
has locally a strong singlet character. These are characteristics of an RVB-state. On the other
hand, the system is gapless and exhibits quasi-long-range antiferromagnetic correlations which is
typical for a Néel-ordered state.

The focus of interest is the nature of the elementary excitations. The first result on the excitations
was obtained by Cloizeaux and Pearson in 1962 [229]. They found a spin one excitation with a
dispersion relation

1 .
ecp(k) = 57r|sm kl, —-w<k<g®m . (6.1.4)

Later it became clear that the situation is more delicate. It was found that the true excitation
spectrum has to be labeled by two quantum numbers rather than just the one used above [83, 236—
238]. Consequently, the elementary excitations have to form a continuum. This leads to the
interpretation by Fadeev and Takhtajan [83] that the elementary excitation of the one-dimensional
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b)

Fig. 6.3: Visualization of a spinon in a Néel-type ordering (a) and in an RVB-like state (b).

Heisenberg model are fractional excitations carrying spin 1/2 which are asymptotically free. Later,
these particles were named spinons by P. W. Anderson in the context of antiferromagnetism in
two dimensions [6]. An illustration of a spinon can be given in the Néel picture and as well as
in a RVB-like description. Assuming a Néel-type ordering as visualized in Fig. 6.3a, the spinon
can be imagined as a domain wall between two Néel-ordered domains with opposite sublattice
magnetization. Even more appealing is the illustration in an RVB-like structure shown in Fig. 6.3b.
The filled blocks represent local singlet configurations and the single spin represents the excited
spinon. In this picture the total spin 1/2 of one spinon can be clearly seen. Of course, both
illustrations are only simplified sketches of the complicated true ground state.

The spinons have a dispersion relation

1
e(k) = §7rsin k, 0<kgT . (6.1.5)

They can be created only in pairs because the total spin of the system is fixed to be either integer
or half-integer. The excitation spectrum of the one-dimensional Heisenberg model is therefore
composed of 2n-spinon continua with n € {1,2,...}. The support of the two-spinon continuum
w(k) is shown in Fig. 6.4.

As will be discussed in more detail later in Sect. 6.3, the outcome of the Bethe ansatz is the
existence of two quantum numbers in the excitation energies which means there is a continuum of
energies for fixed total momentum rather than only one energy. This implies that the elementary
excitations cannot be created as single excitations. The interpretation in terms of fractional exci-
tations is the natural consequence, but it will be argued and motivated later that this description is
not unique and there there exist an other representation which does not rely on fractionality [82].
At § = 0 there are two regimes for finite frustration. For ag < ag,, the ground state is in the same
universality class as the uniform Heisenberg chain. The excitations are massless and the standard
description is in terms of unconfined spinons carrying total spin S = 1/2 [83,229]. At ag = ao.c
there is a transition to a spontaneously dimerized phase [216,239-241]. The ground state is two-
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Fig. 6.4: Support of the two-spinon continuum for the one-dimensional Heisenberg model.

fold degenerate and the excitations are massive spinons for acg > ao.. The value of the critical
frustration ag . = 0.241167 depends on the physics at short distances and is only accessible by
numerical techniques [216, 239-241], i.e. it is a non-universal parameter. At the Majumdar-Ghosh
point (ag = 0.5) the ground state is known exactly [242—-244].

Haldane has shown that for any finite dimerization § the spinons become confined [245]. The
confinement of spinons for finite dimerization is illustrated in Fig. 6.5. Without dimerization the
two spinons indicated are asymptotically free, i.e. there is no force between the spinons at large
distances. At finite dimerization one dimerization pattern is energetically favored while the other
pattern is disfavored. The favored pattern exists left of the left spinon and right of the right spinon.
Consequently, the state becomes energetically more and more disfavored for larger distances be-
tween the spinons. Equivalently, there is an attractive potential between the spinons which increases
monotonically for larger distances. Thus the two spinons are confined.

The spectrum is always gapped [245, 246, 248] and the excitations can be viewed as bound states
of two spinons [249-252]. These bound states form three triplet states and a singlet state. The
triplet states are lower in energy compared to the singlet state. The energy difference between
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b)

Fig. 6.5: lllustration of the confinement of spinons at finite dimerization. Filled circles correspond to spin
positions. Thick solid black lines displays a strong exchange coupling and thin solid black lines a weak
exchange coupling. Filled blue dimers denote singlet states on strong bonds and grey dimers are singlets
on weak bonds. (a) The figure illustrates the excitation of two spinons (black arrows) on strong bonds.
(b-c) The left spinon moves to the left and creates singlets on weak bonds. The latter are energetically
disfavored and a confining force is build between the two spinon excitations (see also [263]).

the triplet energy and the ground state energy defines the energy gap A. These low-lying bound
states represent the elementary excitations of the dimerized state. These low-lying triplets are
called triplons or elementary triplets [82].

The interaction between the spinons is not exhausted by the confinement and there remains a
triplon-triplon interaction which can lead to two-triplon bound states with total spin S = 0 and
S =1 lying below the two-triplon continuum or anti-bound states with total spin S = 2 lying above
the two-triplon continuum [177, 181, 246, 251, 254, 255, 257-259].

One way of studying the low-energy physics of the dimerized and frustrated spin-chain at very small
dimerization is the use of continuum field theories. In one dimension it is possible to map the spin
model either on a fermionic or a bosonic field theory.

First, the main results of fermionic field theories are presented. A Jordan-Wigner transforma-
tion [260] is used to transform the spin model to a fermionic model. Concentrating on low-energy
excitations, it is reasonable to focus on the dispersion and on the interaction at the Fermi points
ke = £m/2 and to neglect all other other momentum dependencies. One obtains an effective local
model in real space [245, 251]

H = / [_;VS (1/’15%—@5%) + mo(Piw + Phvn) +200%[ Y1 iy | dx,  (6.1.6)

—0o0
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which is called the massive Thirring-model. Here 1)y,, are fermionic fields originating from the
two Fermi points, and vs is the Fermi velocity. It is exactly equal to /2 for the one-dimensional
Heisenberg model as can be seen from Eq. 6.1.5. For ag < ., vs is renormalized which can
be determined by numerical calculations [255]. The bare fermionic mass mg is proportional to
the dimerization §. The value of the bare interaction go is not known. But similar to the later
discussed bosonic field theories, the interaction parameter can be determined by restoring the
rotational invariance of the spin-system. The massive Thirring model can be solved exactly by
Bethe ansatz methods [256]. The main results are the renormalization of the fermionic mass

tan(my)
m = m 6.1.7
r(y — 1) exp(A(1 — 7)) (61.7)
. T 90
_ - _% 1.
with o' % and cotpu > (6.1.8)

where A is the ultraviolet cut-off of the rapidities. The energies and the momenta of the bound
states lying below the continuum with the same particle number as the ground state are

E = 2msin(na)cosh(yas) (6.1.9)
P = 2msin(na)sinh(yas) (6.1.10)
with a= g (g . 1) - ne{1,2,3,...,[1/(2a)]}. (6.1.11)

The inclusion of spin-rotational symmetry in the solution of the fermionic model demands a state
with E = m at P = 0 that completes the missing S, = 0 state of the S = 1-multiplet. This
condition leads to a = /6 which implies u = 37/4, v = 2/3 and go = 2. Using these results
one concludes for the renormalized mass m o m§/3 and AE oc §*/3 where AE is the change of the
ground state energy due to the dimerization. Additionally, for & = 7 /6 there exists a bound state
with S, = 0 at E = 2msin(2a) = v/3m. This bound state must be a singlet because there are no
degenerate states with S, # 0 for this energy, i.e. for the weakly dimerized spin-chain one expects
a singlet bound state at k € {0, 7} with the energy v/3A.

The latter results can also be obtained by bosonization [261, 262]. The idea of bosonization is to
consider the superposition of particle-hole pairs to be elementary. This is well defined if the fermionic
dispersion is linear In order to bosonize the dimerized and frustrated spin-chain, the first step is
again a Jordan-Wigner transformation [260]. Next one switches to a continuum description, i.e.
one focuses on the neighborhood of the two Fermi points. The dispersion relation of the fermions
are linearized at these points and extended to +oo0. Fermions at the left fermi point are called 9,
and fermions at the right Fermi point 5.

Bosonic fields ¢(x) and M(x) are introduced [232, 233]

660 = X 2oio) + pa(plesw (—alpl/2— ipx) ~NTE (6.112)
p#0

0 = 13 [e) +pa(p)exp(alpl/2— ipx) + 7 (6.1.13)
p#£0

Here L is the length of the chain, p; /> are the Fourier components of the particle density operator of
the left/right fermions an N = Ny + N, and J = Ny — No. ¢(x) and M(x) depend on the continuous
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space variable x. The local fermionic problem of the one-dimensional Heisenberg model, can be

written as

hets [ (K(wﬂ)2 +2 ¢>)2) dx (6.1.14)
21 J_1 )2 K ' o

vs is the fermi velocity and K is the interaction parameter. The bosonic fiels ¢ and 1 are conjugated

fields

[p(x), N(x)] = i6(x — y). (6.1.15)
The value of the interaction parameter K is determined to be 1/2 by imposing the spin rotational
symmetry on the bosonic model analogue to the fermionic field theory. The Hamiltonian (6.1.14)
is a model of free bosons with a linear dispersion.
The frustration term in the spin-model creates umklapp processes in the fermionic model which
lead to an additional term in the bosonized version of the system

L/2
Hy=D dx cos(4¢), (6.1.16)
—L/2

which corresponds to an interaction between the bosons. The total system H + Hy stays gapless
for K = 1/2. The operator Hy is a marginal operator. From numerical studies one knows that a
gap opens for ag > a. and one concludes D « (ap — o) [248, 257, 264, 265]. There Hy becomes
relevant. The umklapp processes are marginal relevant for ag > a. and marginally irrelevant for
oo < Oc.

The dimerization § leads to an similarly structured term as the frustration in the bosonized Hamil-
tonian

L/2
Hp = —68/ cos(2¢)dx. (6.1.17)
—L1/2

The essential difference is the value of the angle. This term is relevant and leads to a finite energy
gap even for infinitesimal dimerization §. B is a non-universal constant.
The bosonized version of the dimerized and frustrated spin-chain therefore reads

_ v °° 2 -1 2
Her = 27(/_00 [K(wﬂ) +K (8Xd>)]dx

+/ [6B cos(29) + D cos(49)] dx, (6.1.18)

which is a double sine-Gordon model which is not exactly solvable. The term originating from
the frustation is often omitted due to his marginality. But this is exact only at critical frustration
ac [264,265]. For a # ac, this term decreases to zero for § — 0 but only logarithmically which
means very slowly. Then one is left with a simple sine-Gordon model which is exactly solvable.
For the single sine-Gordon model one obtains similar to the fermionic theory the energy gap A o §2/3
[266, 267] and the energy of bound states [268—271]

A, = 2Asin(nmB/2) (6.1.19)
with ne{l,23,....1/8} (6.1.20)

where for a general cosine term cos(v¢) one has

K2

B= S K2 (6.1.21)
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In the case of dimerization one has v = 2, and one again recovers a singlet bound state with energy
V/3A equivalent to the result of the fermionic field theory.

In order to study the dimerized phase it is natural to switch from a description in terms of spinons
to a triplonic description. A description in terms of triplons is clearly valid for any finite value
of the dimerization. It is reasonable to start a triplonic treatment in the limit of isolated dimers
(6 =1,00 =0).

A qualitative understanding of the model can be obtained in a first order calculation. In order to
apply a perturbative treatment Eq. 6.1.1 is transformed into

H/J = Z [S2iS2i+1 4+ AS2iS2i—1 + AaSiSisa] . (6.1.22)
where
J = Jo(1+)
a = 1"‘%6 : (6.1.23)

For A\ = 0 one obtains a local Hamiltonian which has an equidistant spectrum that is bounded from
below [251]. In zeroth order in A the excitations are local triplets on isolated dimers. There is no
dispersion and no interaction. In first order in X the triplet is able to hop with an amplitude t; from
one dimer to the neighbouring dimer. At the same time, triplets on neighbouring dimers interact
with an amplitude ws,,, depending on the total spin Siot of the two triplets. The total spin can be
zero, one or two. The corresponding matrix elements are

b= —%(1—204) (6.1.24)
w = —%(1—1—204) (6.1.25)
w = —%(1+2a) (6.1.26)
wy = %(1+2a). (6.1.27)

One recognizes that the interaction w» corresponds to a repulsion between two parallel spins while
wp and wy represent attractive interactions which are strongest for antiparallel spins. This reflects
the antiferromagnetic character of the system.

Generically frustration lowers the amount of mobility of the considered particle. The same can be
seen in the equation for t;. On the other hand the interactions between the triplons are enhanced
by the frustration. Calculating the binding energy between the triplons [251] for the different values
of the total spin, one obtains a singlet bound state which exists for all momenta, a triplet bound
state existing only in a region near k = /2 and a quintuplet anti-bound state existing in the
whole Brillouin zone. So even the first order calculation gives generic features of the dimerized and
frustrated spin-chain.

In the recent years there was an ongoing activity in extending this first order calculation to a series
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expansion up to high order in A. The used methods are linked cluster expansion and the perturbative
realization of the particle conserving continuous unitary transformations to be described here. The
calculation of one-triplon energies was first done by Gelfand [183] using the linked cluster expansion
and later by Knetter and Uhrig introducing the perturbative continuous unitary transformations for
quantum spin systems [143].

For the calculation of bound states at least two-triplon energies are needed. Zheng et al. [184]
managed to calculate two-triplon energies including a detailed study of two-triplon bound states
for the dimerized and frustrated spin-chain using linked cluster expansion techniques. One of the
main new features obtained in these studies is the fact that there are more than only one bound
state for every spin channel compared to the above first order calculation. These bound states exist
at high energies and cannot be treated in field theoretical models which are only valid at low energies.

6.1.2 Spectral properties

The calculation of dynamical quantities is a much more difficult task. In the limit of zero dimer-
ization many facts are known. Usually it is very hard to determine correlation functions by Bethe
ansatz. But in 1997, Karbach et al were able to obtain the exact expression for the two-spinon
contribution S2 to the dynamical structure factor S(q, w), the spectral density for two spinons
with total (S = 1) [272]. The result is shown in Fig. 6.6.

The two-spinon continuum accounts for 72.89% of the total intensity in S(g,w). The remaining
27.11% of the total intensity of the dynamical structure factor is distributed in the 2n-multi-spinon
continua (n € {2,3,4,...}). The exact structure and spectral weight of these contributions are
not fully known at the moment (see Refs. [273-276]).

The two-spinon continuum displays a very interesting behavior at the band edges. S vanishes in
a square-root cusp at the upper band edge for all momenta g

52 (q,w) '« vy —w, (6.1.28)

where wy denotes the energy at the upper band edge. The intensity at the lower band edge diverges.
One finds a square-root divergence for g # w and a stronger infrared divergence for g =

w W 1
52sp(q’w)|q¢ﬂ_ = “\/ﬁ (6.1.29)
1 1
S2P(q w)|ger TF o —4/In=, 6.1.30
(9 w)la= x —y/In~ (6.1.30)

where w corresponds to the energy at the lower band edge. Considering the case of the spectral
density for total (S = 0), or leaving the case of zero frustration and zero dimerization, it is no
longer possible to calculate spectral properties using Bethe ansatz.

As discussed above it is possible to map the dimerized and frustrated spin-chain to an effective
low-energy bosonic model, the double sine-Gordon model. Ignoring the marginal operator resulting
from the frustration, one is left with a single sine-Gordon model. The validity of this step is dis-
cussed in more detail later. The spectral properties of the single sine-Gordon are known, i.e. the
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S, 2(q,00)

Fig. 6.6: Exact two-spinon dynamical structure factor S*P obtained by Bethe ansatz [272]. The shaded
region represents the support of the two-spinon continuum as shown in Fig. 6.4. The two-spinon dynamical
structure factor displays a singularity at the lower band edge which is cutted in the figure.

shape of the lower band edge near k = 0 or k = 7 [252].

The energy of the different breather states (depending on the total spin) plays a crucial role con-
cerning the shape of the lower band edge. At infinitely small but finite dimerization the system is
always gapped. The lower band edge of the two-triplon continuum (at k = 7) is therefore equal to
two twice the one-triplon gap A. Recalling that the triplet bound state corresponding to S, = 0 is
fixed to A in order to restore the spin rotational symmetry of the spin-model, the second (S = 1)-
breather has a energy of 2A (as can be seen in Eq. 6.1.19 with n = 3), i.e. it is degenerate with
the lower band edge. In contrast to the S = 1 case, the first singlet-breather has an energy of
V3A. Therefore, this state lies below the continuum and has a finite binding energy. These two
cases are sketched in Fig. 6.7(a-b).

One finds that a degeneracy between a breather state and the lower band edge leads to a square-
root divergence of the spectral density. This corresponds to a somehow fine-tuned situation which
is believed to be protected by spin rotational symmetry. This is true in the limit of extremely small
energies. In contrast, the generic case of a bound state lying below the continuum leads to a
square-root cusp, i.e. zero intensity at the lower band edge (see Fig. 6.7(a-b)).

The latter observation is also found by a first order calculation about the limit of isolated dimers
[251]. It can be shown that the generic situation in this limit corresponds to a vanishing intensity at
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b)

3

27

Fig. 6.7: Sketch of the spectral density at the lower band edge at k = m for the single sine-Gordon
model with K = 1/2 with total spin one (a) and total spin zero (b). Case (a): The triplet bound state
corresponding to S; = 0 is fixed to A in order to restore the spin rotational symmetry of the spin-model.
The second S = 1-breather is degenerate with the lower band edge producing a square-root divergence.
Case (b): One breather is below the continuum. The lower band edge displays a square-root cusp.

the lower and the upper band edges. Physically this behavior is related to the hardcore constraint
on the triplonic interaction, i.e. the hardcore constraint induces a triplon-triplon interaction leading
to a square-root cusp instead of a divergence as in the density of states of free bosons.

In the following a triplon-conserving continuous unitary transformation is used to investigate the
energetic and especially the spectral properties of the dimerized and frustrated spin-chain. The
transformation will be implemented in a perturbative manner up to high order in the perturbation
starting from the limit of isolated dimers as explained above. One-triplon and two-triplon contri-
butions to the spectral density for total spin one and total spin zero are presented for all momenta
and energies at strong and intermediate dimerization including the influence of frustration. The
focus is laid on two-triplon bound states and on the shape of the two-triplon continuum.

The concept of the triplon as an elementary excitation of the system even in the limit of zero
dimerization is introduced and discussed in an investigation of the multi-triplon spectral weights.
The outcome of the latter analysis is the dominance of the two-triplon spectral weight even at
zero dimerization. This leads to a detailed discussion of the connection between the two-triplon
contribution at intermediate dimerization and the undimerized case comparing the results obtained
by continuous unitary transformations with the above stated results obtained by other methods.

6.2 Method

A continuous unitary transformation [135] is used to map the Hamiltonian H to an effective Hamil-
tonian Hegr which conserves the number of triplons on the strong bonds, i.e. [Ho, Heff] = O where
Ho := H|x=0 [143,171]. As shown in Chapt. 3, the perturbative realization of this transformation
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relies on two prerequisites. Assuming the initially given Hamiltonian H can be formulated as a
pertubative problem
H = Hq + xV, (6.2.1)

two conditions on the Hamiltonian H are required:

A. The unperturbed Hamiltonian Hy must have an equidistant spectrum bounded from below. The
difference between two adjacent levels is called an energy quantum.

B. There is a number N/ 3 N > 0 such that the perturbing Hamiltonian V' can be written as
V = Z,’Y:_N T, where T, increments (decrements, if n < 0) the number of energy quanta
by n.

It is now shown that the initially Hamiltonian (Eq. 6.1.1) fulfills these requirements. For this
purpose Eq. 6.1.1 is reformulated according to
HX)
J
with A = (1—0)/(1+9) and J = Jo(1+9) analogue to Eq. 6.1.22. Herong = 2 ; S2iS2i+1 denotes
strong intradimer coupling and Hweak = D ; [S2iS2i—1 + aS;S;2] denotes weak interdimer coupling.

= Hstrong 1+ AHweak; (6.2.2)

The coupling J is assumed to be antiferromagnetic and set to one henceforth. The limit of isolated
strong bonds (§ = 1) is the limit for which the perturbative treatment is controlled.

The ground state of the unperturbed part Hsrong is the product state of singlets on the strong
bonds. A first excited state is a strong bond excited to a triplet. There are 3L/2 such elementary
triplet excitations if L is the number of spins because there are three SZ?-values for a triplet. The
next energetically higher state is given by two triplets and so on. The operator Hsrong counts the
number of triplets and therefore condition (A) is fulfilled.

Due to the latter property Hsirong is identified with Q, i.e. the elementary excitations of the un-
perturbed part (triplets on strong bonds) serve as quasi-particles in the following treatment of the
dimerized and frustrated spin-chain. These excitations are called triplons. These “triplons” shall
be the elementary excitations of the system. They have total spin S = 1 and appear with three
different flavours (z-components -1,0,1). The triplon should not be confounded with a magnon
which has only two flavours AS, = +1 and is the elementary excitation of an ordered magnet in
contrast to the triplon whose construction originates from the spin liquid picture.

The system consists locally of four states {s, t71,t% t'}. It is therfore also possible to define
local operators t' in second quantization which obey bosonic commutation relations [, #] = §; ;.
Due to the fact that there can only be one excitation on one dimer, there is an additional constraint
on the bosonic operators §78 + >, £/ = 1. These bosons are then called hardcore bosons [253].

As soon as the interaction between strong bonds A # 0 is turned on, the local triplons become
dressed. The central idea of the particle conserving CUT is to map the initial problem onto an
effective Hamiltonian for which the simple triplon-states, originally defined for the unperturbed part,
can be used to calculate all energetic properties of the system.
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The action of the perturbing part Hyeak On the triplon states is analyzed next in order to check
condition (B).
The first step is to classify the change of the triplon-number in the various local processes of
Hamiltonian Eq. 6.1.22. Let |n) denote a n-triplon state, i.e. Hgrong|n) = n|n). The perturbing
part is then written as

n=2

Hyesk = Y Tn (6.2.3)
n=-2

where the subscript n denotes the change of the triplet number T;|n) o |n + /). In order to

determine the operators T, one has to calculate the local expectation values (X;, Xj| Hweak|Xi, Xj)

for x;,x; € {s,t71,t% t'}. As can be seen in Eq. 6.1.22, the Hamiltonian for the dimerized and

frustrated spin-chain contains only nearest-neighbour dimer-dimer processes (nearest neighbour and

next-nearest neighbour spin processes). All matrix elements of interest can be expressed as

(Xi—1Xi| Hweak |Xi—1X;) (6.2.4)

The maximum change in the number of local triplets is therefore restricted to n = 2 in Eq. 6.2.3,
simply because there are only processes which connect at maximum two dimers.

First the nearest-neighbour spin-products S»;S»;+1 originating from the dimerization are investi-
gated. The spin-product can be written locally

$2iSoic1 =T 24+ T-1+To+Ti+T2 . (6.2.5)

The subscript of T denotes again the change in the number of triplets. In Tab. 6.1 the action
of T on the states {s, t 1, t% t'} are listed for the nearest-neighbour spin-product S,;S,i1. All
remaining matrix elements can be calculated by using the relation Th = T_n. It is physically con-
venient to split To = T¢ + T¢?. Processes in 75 correspond to triplon hopping and processes in T
describe triplon-triplon interactions. 7x; and 7L, represent the creation (annihilation) of one or
two triplons in the system.

In order to include the spin-product induced by the frustration it is not necessary to calculate all
matrix elements anew. One can rather deduce the matrix elements by considering the symmetry of
the spin states, i.e. one knows that a triplet is symmetric under exchange of spins while a singlet
is antisymmetric under spin exchange

Pjlt)i; = [t)ji (6.2.6)
Pilsyj = —Is)ji- (6.2.7)
Here P;; is the operator for the exchange of the spins on sites i and j. {|t);j, |s)ij} are triplet/singlet

states on sites i/j. One can therefore decompose the frustration in an analogous manner to the
above treatment of the dimerization

2
aS,-S,-+2 = Z 7_:(. (628)

n=-—2
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| 47§ |
‘ |t0,d:1’5> N —s, to,:t1> ‘
| 413 |
|t0, tO.:tl) - |t0,:|:1' tO)
|t:t1,t:':1> — |t0,t0> _ |t:t1,t:F1>
[0, t0) - |t t71) + 71, t1)
| 4T; |
s, t1), |t1, s) - [t1, t0) — |0, t1)
|s, t9), 1%, s) - [th, t=h) —[t7h th)
s, t71), |t7L,s)  — [t9, t71) — [t71, £0)
| 4T; |
| s, s) - ) =0, 0 + [t ¢ |

Table 6.1: Action of the local operators 7;.

It is now possible to determine the 7,* from the above given 7, by spin exchange symmetry. This
is illustrated for the state |s, t) denoting a singlet on sites 0/1 and a triplet on sites 2/3

x (SoSQ + 5153) |S, t) = (SOSQ|S, t) + 51$3|5, t))
= a(—S1Sy|s, t) + S1Sals, t))

=0
Therefore one finds for the 7,%
TS5 = —2aTw
1 =0
To? = —2aTh
T = 2a7F, . (6.2.9)
The operators T,, can then be written as
t-1
Teo = Y (1-20)Tio
i=0
£—1
T = Y Ta
i=0
£-1
To = Y [A-20)7¢+(1+22)7¢] (6.2.10)
i=0

Physically the effect of the frustration is a decrease of the hopping amplitude and an increase
in the interaction amplitude [251]. Additionally, the frustration enhances the pair creation and
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annihilation of the triplons. These findings correspond to the first order results described in Sect,
6.1. Condition (B) is therefore fulfilled.

6.2.1 Perturbative CUT

The perturbative CUT is formulated by introducing an auxiliary flow parameter / € [0, 00[. The
CUT gives rise to the flow equation
AH(\; 1)
ol
which controls the flow of the Hamiltonian in the transformation process. The starting Hamiltonian
is fixed to be H(A;/ = 0) = H(\) and the effective Hamiltonian is defined as Herr(A) = H(A; | =

00).

= [n(x: 1), H(A ], (6.2.11)

As discussed in Chapt. 3, the choice for the infinitesimal unitary generator  which conserves the
number of triplons during the flow is

Nij(N 1) =sgn(Qi — Q) Hi (X 1) . (6.2.12)

Here m;; and H;; are matrix elements in the eigen basis {|m)} of Q@ = Hstrong. In the limit
| = oo the generator (6.2.12) eliminates all parts of H(\; /) changing the number of triplons, i.e.
[Hesr, Hstrong] = 0. The vanishing commutator expresses the fact that the effective Hamiltonian
Hess is block-diagonal with respect to the number of triplons.

A perturbative realization of the transformation yields the effective Hamiltonian as an operator
series expansion [143]

oo
Het(A) = Hatrong + 3. Y. C(m)Tp . (6.2.13)
k=1|m|=k,M(m)=0
Here m is a vector of dimension |m| = k of which the components are elements of {£N, +(N —
1),..., +1, 0}. In the case of the dimerized and frustrated spin-chain N = 2 holds. The operator
products T, are monomials T, = Ty T, ... Tm,, With Tp,, as given in Eq. 6.2.3. The perturbative
order of a given process is k. The conservation of the triplon number is reflected by the condition
that the sum of the indices vanishes for every process (M(m) :=Y; m; = 0).
The effective Hamiltonian is calculated up to order 10 in A for the zero-, one- and two-triplon
sector. Therefore processes up to a range =~ 20 spins are captured by the calculation. A linked
cluster expansion yield results up to order 23 in A for the zero- and one-triplon sector [186]. In the
two-triplon sector order 7 in A for the singlet states and order 11 in A for the triplet and quintet
states has been computed for the dimerized chain. On the disordered line a = 1/2, order 19 in A
for two-triplon singlet, triplet and quintet states has been evaluated [184].

6.2.2 Observables

In this part the evaluation of the effective observables for the dimerized and frustrated spin-chain are
described. The effective observables are calculated up to order 7 in the one-, two- and three-triplon
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sector. The four-triplon sector is calculated up to order 6. Note that in the case of frustration
a = 1/2, the so-called Majumdar-Gosh point, the decomposition of the Hamiltonian in terms of
the operators T, is rather simple. Ty, and 7§ vanish and one is only left with T4; and Té’. The
effective observables are determined up to order 10 in the one-, two- and three-triplon sector and up
to order 9 in the four-triplon sector for this case. One distinguishes between observables creating a
state with total spin one and those creating states with total spin zero. A linked cluster caluclation
yields results for the unfrustrated case up to order 13 in A for the one-triplon sector and up to
order 12 in X for the two-triplon sector [282].

6.2.2.1 S=1
The physical observable for S = 1 excitations which is studied in this work is locally
o) =S =TS+ T35 + 1571, (6.2.14)

where r denotes a site of the chain. In the following L and R denote the left and the right site on
a strong bond, cf. Fig. 6.8. The decomposition for the 7'5=1 is given in Tab. 6.2 for O5=! = §7
and O5=! = SZ.

- g —

Fig. 6.8: Sketch of the local observable for S = 1 excitations. Bold lines denote strong bonds and thin
lines weak bonds. The observable is the left (L) or the right (R) spin of a strong bond.

One-triplon Sector

In the one-triplon channel the action of the full observable O=1|,, on the ground state is decom-
posed for fixed one-triplon momentum k by writing

O |1 |0) = ASy (K) k), (6.2.15)
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| O =St 0% =S
276/,521 27;)’/,5:1
[t~ - —[t71) [t~ - —[t71)
|th) - |th) ) - |th)
27’1'1,521 27-1'1,521
|s) - |t°) |s) - —[%)
[t°) — |s) [t°) — —|s)

Table 6.2: Action of the local operators 7} for the observables 057! = S7 (left panel) and ©5=! = S%
(right panel).

where the amplitudes A7} are given by
1 L —ik(2I+1) R —ik(2/—1
— are 2) +af'e 2 ]
sl
]

YT A 1
= 2/2/23, sin (k(2/+ 2)) )

Al =
(6.2.16)

The sum runs over all dimers /. The coefficient at is the amplitude for the creation of one triplon
at site / by S7. The amplitudes of S do not need to be calculated separately because one can
use the inversion symmetry of the chain. The latter gives a,R = —aﬁ,. The basic unit length a/2 is
the distance between two neighboring sites. In the figures momenta between 0 and 1 are given in
units of w/(a/2). So the comparison of our results to the conventional notation for undimerized
chains using the distance a’ = a/2 between two neighboring spins as unit length is simplified.

Two-triplon Sector

In the two-triplon channel one decomposes the action of the full observable ©O°=1|,,,, on the ground
state for fixed two-triplon momentum k

O |owp|0) = Y ASe (K, )|k, d). (6.2.17)
d
Here d denotes the relative distance between the two triplons and
_ , . 1
Aea (k. d) = —/2i Z ari3g sin (k(2/ +5+ d)) : (6.2.18)

The sum runs over all strong bonds / and a,L;fjl

is the amplitude for the creation of two triplons
on dimers / and / 4+ d by S7. Here it is convenient to use a mixed representation in which the
center-of-mass coordinate is Fourier transformed and the relative coordinate is dealt with in real
space. The action of S does not need to be calculated. The inversion symmetry of the chain

R,S=1 L,S=1

gives the relation a,;74" = —a_;2;_;. The basic unit length a/2 is again the distance between

two neighboring sites.



6.2 Method 91

6.2.2.2 S=0
The physical observable RS=9 for S = 0 excitations locally reads
0’ = Oicin + PO NN, (6.2.19)

i.e., it is a sum over nearest neighbor (NN) and next-nearest neighbor coupling (NNN). The co-
efficient B is a measure for the relative strength between the two couplings. It depends on the
underlying microscopic physics and will not be discussed in this work. As illustrated in Fig. 6.9
these observables are given by

Olii,(l)\lN = (1+7)So,.So,r + (1 —)So,rS1.L (6.2.20)
for nearest neighbor (NN) coupling and
Opeinn = SoS1L + SorS1r (6.2.21)

for next-nearest neighbor (NNN) coupling where v is proportional to the dimerization §. OI?)?,ONN is
a sum over couplings on weak and strong bonds. In this work the discussion is restricted to the case

-1/2; 112, 32!

-----

#
~

Fig. 6.9: Sketch of the local observables for S=0 excitations. O5y° is a sum of couplings on strong bonds
(thick lines) and weak bonds (thin line). ORNY couples next-nearest-neighbor spins.

of nearest-neighbor coupling on the weak bonds and on the next-nearest-neighbor coupling. This
choice is motivated by the relevance of various observables for Raman spectroscopy and infrared
absorption in the limit of vanishing dimerization. Raman spectroscopy measures excitations with
total momentum zero while infrared absorption is governed by the response at large momenta [277,
278].

Locally one has

On(r) = S;1Srir=T0" + TN + TN + 7NN 4 N (6.22a)
ONNN(r) = 8,111, +SrrRSri1,p = TNNN 4 T/INN | JUNNN 4 iNNN 4 NNN (6 20b)

The action of the operators 7'NN and 7'NNN s listed in Tab. 6.3 and Tab. 6.4.
The action of the full observable on the ground state is decomposed again for fixed total momen-
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‘ (OS=O0.NN
47BI,NN
101 5) - —|s, t0+1)
|t0, t0,2|:1> - |t0':|:1, t0>
|tﬁ:1' t:F1> - |t0, t0> _ |t:t1, t:F1>
[0, t9) - [t1, =1y — |71, 1)
47—11,NN
s, t1), |t s) - [t1, t0) — |tO, t1)
s, t9), [0, s) - [t1, =1y — |71, 1)
[s, t71), |t71, 5) — [t0, t71) — |71, t0)
47-2—I,NN
|s, s) — [t1, 1) — |0, t0) + |71, £1)

Table 6.3: Action of the local operators 7;’ for the observable ONN.

tum k in the two-triplon sector according to

NN Neak(K)[0) = Z A2trp nN,weak (K. d)|k. d) (6.2.23a)
ORmn(k)I0) = ZAM nn(k, d)lk, d) (6.2.23b)

where
AT\ nweak (ko d) = V2 NN cos (k(2/ + d)) (6.2.24a)

I
A2trp nan(k d) = (6.2.24b)
\/EZ a,L",ﬁNdN cos (k(2/+1/2+d)) .
I

Here d is the distance between the two triplons, a‘,",’fj‘ijN is the amplitude for the creation of two

triplons on the dimers / and / + d by SorS1,L. and a}y" is the amplitude for the creation of two

triplons on the dimers / and / + d by Sg | S1,.. In analogy to the S = 1 case, it is not necessary
to calculate a,Ff,'EZ'N because it can be determined by a,R,ﬁZ'N aL,N'\i,N , which is a consequence of
the inversion symmetry of the chain. The basic unit length a/2 is again the distance between two
neighboring sites. The momentum is measured in units of 7/(a/2).

First, the symmetries of the two observables are discussed. ORy%cax POSSesses a reflection sym-
metry about k = /2 for the same reasons as the Hamiltonian. For any mode at momentum k
which is created by OFR%eax there is also an identical mode at k +m which is created. In addition,
each mode at k is degenerate with the reflected mode at —k. Therefore, the whole spectral density
will be symmetric about k = /2. This symmetry is absent for ONNN For ONNN the spectral weight

is mainly concentrated at small and intermediate momenta while it vanishes exactly at k = w. The
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‘ (S=0.NNN
47BI,NNN
|t0'i1, S) N |S, tO,:t:1>
|t0, tO,:i:l) — |t0’il, t0>
|l':|:1, t:l:l) — |t:tl, t:tl>
|tily t:|:1> — |t0, t0> _ |til, t:|:1>
[t°, ) — [th, 71y — [t th)
47—11,NNN
Is, t1) — —[tt ) +[t°, 1)
[t!, s) — [t1, t0) — |tO, t1)
Is. t%) - =t ) e )
[0, s) - [t1, =1y — |71, t1)
s, t71) - —[¢0, 71y + |71, £0)
[t~ s) — [t0, t=1) — |71, t0)
47;I,NNN
|s, s) - —|tt, 7y + [0, t0) — |71, 1)

Table 6.4: Action of the local operators 7}’ for the observable ONNN.

latter follows from the fact that at k = m the observable creates an odd state with respect to
reflection about the axis 1/2 (see Fig. 6.9) while a singlet made from two triplets is always an even
state with respect to particle exchange.

6.2.3 Extrapolation

In the following spectral weights and spectral densities of the dimerized and frustrated spin-chain
are analyzed. The spectral weights are positive. They are local in real space, i.e. they correspond
to the frequency and momentum integrated spectral densities. The positivity makes it possible to
analyze the spectral weights in the complete parameter range down to vanishing dimerization using
dlog-Padé extrapolants as described in Sect. 5.2. The explicit extrapolations are discussed in the
next section.

Concerning the extrapolation, the case of the spectral densities is more complicated. Here one
can observe that longer range processes become more and more important when reducing the
dimerization. It follows that no extrapolation is possible in this situation. One therefore has to
restrict the analysis of the full spectral density to large and intermediate values of the dimerization.
The following extrapolation technique is used which is explained in detail in Sect. 5.4 [208, 209].
After fixing the frustration a to the desired value the plain series in A is converted into a series
in 1 — A invoking the one-triplon gap. The one-triplon gap is the natural internal energy scale of
the problem. Since in this work the interest is only in strong and intermediate dimerization, no
further extrapolation techniques like standard Padé extrapolants are used. There is no uncertainty
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in the obtained spectral densities for strong dimerization A = 0.3. The uncertainty is about 2%
for intermediate dimerization (A = 0.6). In order to investigate the cases of weak or vanishing
dimerization it would be important to use further extrapolation tools and to treat processes with
longer or infinite range explicitly.

6.3 Spectral weights

In this section, it is investigated to which extent a triplon-based description is possible by comput-
ing spectral weights of multi-triplon contributions for the dimerized and frustrated spin-chain. Two
scenarios are conceivable for § — 0:

(i) The spectral weight is distributed rather evenly over the multi-triplon channels implying that
the weight of a particular channel is small and that a large number of channels must be taken
into account, see the discussion in Ref. [251]. This scenario would make an approach in terms of
triplons difficult and hence inappropriate.

(i) The spectral weight is found mainly in the channels with a small number of triplons, implying
that a triplon approach is very useful and appropriate because spectral properties can be computed
from the dynamics of a small number of excitations in a small number of channels.

The discussion is split in two. First, the focus is laid on the case of vanishing frustration, i.e.
& = 0 corresponds to the isotropic one-dimensional Heisenberg model. Here the extrapolations of
the spectral weights are safer than in the frustrated case. Second, results for S =1and S =0
excitations are presented. In the case of finite frustration the extrapolation becomes very compli-
cated. Here most attention is concentrated on the case a = 0.5 where it is possible to determine
higher orders of the perturbation expansion due to the above mentioned simpler structure of the
Hamiltonian. The findings and implications of the analysis of the spectral weights are summarized
in an intermediate conclusion at the end of this section.

6.3.1 The dimerized chain (o = 0)

The most interesting case to study is the case of S = 1 excitations because S7 is the most basic
observable. In this situtation there is a one-triplon contribution for all § # 0. It is therefore possible
to investigate the decrease of spectral weight in the one-triplon sector and at the same time the
evolution of the multi-triplon channels. In the case of S = 0 excitations, there is no one-triplon
sector because at least two triplons are needed to create an excitation with total spin zero.

6.3.1.1 S=1

In the following arguments are listed which favor scenario (i) or (ii) for the dimerized spin-chain
approaching the limit § — 0.
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Scenario (i) A field theoretic description gives some indications for this scenario. Using abelian
bosonization [82, 232,250, 252, 279, 280] the low-lying states of an anisotropic spin-chain are de-
scribed by the Hamiltonian Eq. 6.1.14. The interaction parameter K is K = 1 for the XY-model,
equivalent to free fermions, and K = 1/2 for the isotropic case. A local operator is

S7 o~ (2m) 7o P()) + A(—1Y cos(24())) (6.3.1)

where the lattice constant is unity, and A a non-universal constant. The undimerized Hamiltonian
(Eq. 6.1.22 for a = 0) corresponds essentially to free bosons (6.1.14). A finite dimerization is
accounted for by an additional term proportional to 6ff°oo cos(29(x))dx leading to a sine-Gordon
model (see also the model introduced in Sect. 6.1). For K < 2 the system is massive with a gap
A o §1/(=K) (= §2/3 for the isotropic chain). A single bosonic mode of (6.1.14) is created by

b} = 1/v/2 ($(k)/Ni — iNefi(K)) (6.3.2)

where Ny = /mK/|k|. The quantities with tilde are the Fourier transforms of the real-space
fields. The excited state SJ-Z|O) is expanded in states of various number of bosons with focus on
the vicinity of momentum 7 where most of the weight in the dynamic structure factor is found:
S7 o< cos(29(j)). The coefficients of one- and two-boson states are

cx = {0]|bxcos(29)|0) = (0|[bx, cos(2d)]|0) (6.3.3)
Cka = (0lbkbg cos(29)[0) = (0|[bilbq, cos(20)]1|0) - (6.3.4)

By making use of
[bk, 20 ()] = V K/|k|v/ 2w/ L exp(ikj) (6.3.5)

where the momenta are discretized by introducing a finite system size L to ensure normalizability.
This yields ¢k = 0 and

Chq I’Ifllq 2 exp (i(k + q)j) AK (6.3.6)

3

where (sin(2®)) = 0 and (cos(2®)) oc AX is used. So the total weight W7 in the one-boson
channel vanishes for A =+ 0. The total weight W3 in the two-boson channel is

2
W# X:k'q|cqu|2 ox AZK IVIkI.VIqI)A |,:‘(dedq
x  A%KIn(A)?
o« §2K/C=K) |n(6)? (6.3.7)

in leading order in In(§). Generally, all channels with an odd number of bosons carry no weight (at
momentum 7) whereas channels with 2n bosons behave like

W2, o §2K/C=K) In(8)?" . (6.3.8)

whence one can conclude that any single channel becomes unimportant on § — 0. Only the
consideration of an infinite number allows to treat the case vanishing dimerization correctly. This
appears to be sound evidence for scenario (i).
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Scenario (ii) The main argument for scenario (ii) is an explicit calculation of spectral weights for
the first triplon channels. First, however, the general validity of the previous argument is discussed
by four basic considerations.

(a) Considering free fermions (K = 1) it is known that the operator S7 = n; — 1/2 excites
a particle-hole continuum at all wave-vectors. So the dynamic correlations of this operator are
exhaustively described by two elementary excitations, a particle and a hole, independent of the
dimerization §.

(b) Considering the isotropic spin-chain (K = 1/2) it was shown that 72.89 % of the total
weight (sum over all wave vectors) of the dynamic structure factor is described by the two-spinon
continuum [272].

(c) It is undisputed that the dimerized isotropic spin-chain displays a single-mode peak with finite
spectral weight at all wave vectors as long as § # 0 [251, 252].

(d) By construction, the bosonic modes of the field theory (6.3.2) exist at small momenta
k =~ 0 [232,280,281]. The dynamics at momenta close to 7 is captured by the superposition of
an infinite number of these modes as becomes evident from Eq. 6.3.1 and from Eq. 6.3.8.

The above arguments prove that there can be several, rather different looking descriptions for
the same physics. One may not conclude from the validity of a particular description, e.g. in terms
of a multitude of modes, that another description, e.g. in terms of only a few modes, is not valid.
This is an absolutely crucial observation for the interpretation and comparison of different results.

In the following the spectral weight will be analyzed explicitly. The total weight /ior = 22":0 Inis
given by the sum rule /ot = (RTR) = ((57)?) = 1/4 which serves as sensitive check for the validity
of the results. In the following the relative weights /,, el = I,/ ltot = 41, are discussed.

dlogPadé || a) Zero Ao | b) Yla=xr, | €) YIr=1
[4, 2] 0.32524
[3. 3] 1.02503 0.36798 | 0.32891
[2, 4] 1.09817 0.58184 | 0.34110
[1,5] 1.09817 0.58184 | 0.31457
[0, 6] 0.31458

Table 6.5: Relative weight /1 e of the one-triplon channel. a) position of the singularity from unbiased
extrapolants; b) exponent at the unbiased positions; c) exponents in the biased extrapolants. (blanks:
extrapolants without singularity).

For isolated dimers (A = 0), the total spectral weight lies in the one-triplon channel /1, = 1.
As X increases /1, decreases and the weight is transferred to the multi-triplon sectors. In Tab.
6.5, the results for unbiased dlogPadé extrapolants indicate a singularity at A =~ 1. From the
physics of the Hamiltonian (6.1.22 for a = 0) it is known that the singularity is located at A =1
where the system becomes critical. Thus it is advised to investigate extrapolants biased to display
the singularity at unity: /; o< (1 — A)Y (last column in Tab. 6.5). The exponent is found to be
v = 0.325+ 0.016. which leads one to conjecture that it takes exactly the value vy = 1/3. More
generally, it is presumed that any single mode, which vanishes due to mixing with a continuum with
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square-root singularities at the band edges, loses its weight like /mode x VAw, where Aw is the
distance of the mode to the band edge of the continuum. The weight in the continuum is assumed
to be constant.

This presumption is supported by considering a generic resolvent /(w) = 1/(w — a — X(w)) with
Y (w) = [w + vw? —4]/2 for w < —2. Such a resolvent appears for instance in the dynamics
of two hard-core particles hopping from site to site in one dimension at given total momentum
[251]. The constant a allows to tune a nearest-neighbor interaction (a < 0: attraction, a > 0O:
repulsion) whereas ¥ (w) incorporates the kinetic energy of the relative motion. For a < —1 a
bound state emerges from the continuum. It is separated from the continuum by the energy
Aw = —(2+ a+ 1/a). Its weight /node is

1

/ = 3.
mode (1 — 8“,2(—2 — A(JJ)) (6 3 9)
The derivative of X(—2 — Aw) is given as
1 w
(6,5()) v ‘
2 o2 —
w=—(2+Aw) 2Vw 4 w=—2+A)w
1 1 24+ Aw
2 VA4Aw + (Aw)?
The latter implies for /oqge in the limit Aw — 0
Ihode X VAW . (6.3.10)

For dimerized spin-chains, the single triplon mode is separated from the continuum by an energy
Aw of the order of the energy gap A [251]. Using /noge o v/Aw for each total momentum and
integrating then over all momenta to obtain the local weights one finds that the single mode looses
its weight as v/A o §1/3 [266] which agrees excellently with the extrapolations.

dlogPadé || a) Zero Ao | b) Yala=x, | €) Y2la=1 | d) l2rel
[5, 0] * 1.0618
[4,1] * 0.9818
3,2] —0.7601 | 0.9976
[2, 3] 0.9908 —0.7323 —0.7603 *
[1,4] * 0.9895

Table 6.6: Relative weight /5 of the two-triplon channel. a) position of the singularity from unbiased
extrapolants for dx/are; b) exponent at the unbiased positions; c) exponents in the biased extrapolants;
d) Ilarel|a=1 integrated from the biased (position A = 1 and exponent —2/3) extrapolants (extrapolants
without singularity: blanks; with spurious poles: stars).

Fig. 6.10 shows the final results for /1 e, [2.rel and /3,e; the tiny four- and more triplon contri-
butions are neglected. The sum rule is excellently fulfilled to within & 0.003 for all values of A
supporting the above analysis.



98 Dimerized and frustrated spin-chain
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Fig. 6.10: Relative spectral weights /n rei(A) of the dynamic structure factor in the dimerized chain. Depicted
are biased extrapolants with singularity at A = 1 and exponent 1/3 for /1 e ([4,2], black solid line); exponent
—2/3 in the derivative of /ore ([3,2], dashed line) and similarly for 1000 - /3re ([2,2], dashed-dotted line).
The grey line is the sum 3°3_; I rel-

In the two-triplon channel, there is no indication for a zero of /I, at A = 1. On the contrary, Padé
extrapolants indicate significant weight at criticality. The weight in the two-triplon channel is the
weight transferred from the one-triplon channel minus the weight transferred further to channels
with three and more triplons. Hence it is natural to assume the existence of a singularity with
exponent 1/3 in /. But if this singularity is not linked to a zero, dlogPadé extrapolants cannot
detect it. Hence the derivative 8,/, is investigated which should be governed by a divergence
with exponent -2/3. Indeed, Padé (not shown) and dlogPadé extrapolants (see Tab. 6.6) indicate
a singularity at A & 1. Extrapolants biased to a singularity of 8x/> at A = 1 yield exponents
Y2 &~ —0.76. The corresponding value of /5, found from integrating 85/ is 1.25. Since this
value overestimates the sum rule by at least 25%, one concludes that the exponent v ~ —0.76
is too large in absolute value. Thus, the extrapolants are biased to the expected behavior 85/ o
(1—>\)_2/3. In the last column of Tab. 6.6 the ensuing values for /5 . are given. Quite unexpectedly,
the results conclusively point to a spectral weight very close to unity! Since diagonal extrapolants
usually yield the most reliable results one retains the value /5, =~ 0.998, keeping a possible error
of a few percent in mind.

The sum rule corroborates the above result strongly. Padé and unbiased dlogPadé extrapolants
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consistently show that /3. is not larger than about 3 - 10~* which agrees perfectly with the
value close to unity for I5.. The inclusion of a singularity does not enhance /3. The biased
extrapolants for 8, /3 (position A = 1 and exponent —2/3) also yield only a contribution of about
2-107* ([2,2]). Finally, the Padé and dlogPadé extrapolants for the four-triplon contribution /4 re
consistently indicate values well below 10=*. The biased approximant for 8, /4 (position A = 1 and
exponent —2/3) even yield values below 1075, Therefore, one concludes that the contributions of
channels with four and more triplons can be safely neglected.

Fig. 6.10 shows the final results for /1 rel, I2,rel @and I3,e; the tiny four- and more triplon contri-
butions are neglected. The sum rule is excellently fulfilled to within & 0.003 for all values of A
supporting the above analysis.

In conclusion, it is found that even the dynamic structure factor of the critical uniform spin-
chain can be described to about 99% by taking only the two-triplon contribution. This shows that
scenario (ii) is correct for spin-chains with vanishing frustration.

This result is confirmed by a recent work of Hamer and coworkers [187,282]. They calculate
the one- and two-triplon spectral weight up to order 13/12 using a linked cluster expansion. The
one-triplon weight vanishes with (1 — X\)%/3 approaching A = 1 consistent with the above findings.
In addition, the two-triplon weight accounts for 99.8% of the spectral weight at A = 1 which is
almost exactly the value obtained by the continuous unitary transformations [82]. Note that the
two-triplon spectral weight even accounts for 90% of the total spectral weight even if no singularity
at A = 1 is included. They find an exponent of n & —0.6 for d/>/d\ instead of = —2/3. This is
explained by the influence of logarithmic corrections.

Hamer and coworkers also analyzed the momentum distribution of the spectral weights [282]. They
find that the one-triplon weight vanishes in the limit A — 1 for all momenta except in the limit
k — 0. But at k — 0 the dynamical structure factor vanishes itself. The two-triplon spectral
weights are more subtle. They clearly dominate at large and intermediate momenta where most of
the spectral weight is located, but they only play a subdominant role for small momenta where the
total weight itself is small.

6.3.1.2 S=0

In this part the same analysis as in the last section is done for the case of spectral weights for
excitations with spin zero. The first quantity to focus on is the total intensity /iot. The direct
extrapolation of /it turns out to be very complicated because the extrapolants show poles in the
denominator which lie close to the critical point A = 1. But in contrast to the extrapolation in
the last section, in most cases there are two poles near A = 1. The same features appear when
analyzing the first derivative of /io;. But the total intensity can be determined from the ground

state energy Eq

3 1d

hot(N) = o5 — 2 L Eo(3) - (%Eom) . (6:3.11)

The ground state energy Eq is known up to order 10 by continuous unitary transformations and up
to order 15 by linked cluster expansions. Therefore the total intensity /iot is known up to order 14
since it depends on the first derivative of Eg. The appearance of two poles in the extrapolation of
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the total intensity can be understood from the structure of Eq. 6.3.11 and the asymptotic behavior
of the ground state energy. /i constitutes of two structural different terms. From the fact that
two different singularities are present at the same time it is therefore plausible that the extrapolation
of Iyt is complicated. In the following the total intensity is computed not directly but indirectly
from an extrapolation of the ground state energy.

The extrapolation of the ground state energy is simpler because the asymptotic behavior of Eg is
simpler [266, 267]. The asymptotic behavior of the ground state energy for small dimerization is

Eo(A) = Eoo + Eo1(1 = A) + Eoa(1—N)5 (6.3.12)

i.e. also the ground state energy is a sum of two different asymptotic terms. In order to separate
out a single singularity the derivatives of Ey are investigated. The first and the second derivative

of Eq are
d 4 1
anO\) = —Eo1-— gEo,z (1—=2)3
d? 4 _2

The determination of dEg/d\ is therefore similar to the determination of /5 in the case of S =1
excitations in the last section as far as the singularities are concerned. d?Eq/d\? shows asymp-
totically a power-law behavior 83Eq o (1 — A)? (with yg = —2/3). In analogy to the latter case
the second derivative d2Ey/d\? is extrapolated and then integrated in order to obtain the total
intensity /iot.

dlogPadé || a) Zero Ao | b) Yela=x, | ©) Vela=1 | ) LE2ln=1 | €) hotlr—1
[10, 2] 1.0029 | —0.5483 | —0.5301 | —0.4424 | 0.2130
[8, 4] 1.0024 | —0.5447 | —0.5269 | —0.4416 | 0.2130
[6, 6] 1.0039 | —05539 | —0.5259 | —0.4414 | 0.2134
[5.7] 1.0051 | —05589 | —0.5211 | —0.4404 | 0.2138
[4, 8] 1.0056 | —0.5604 | —0.5252 | —0.4412 | 0.2135
3, 9] 1.0022 | —0.5438 | —0.5231 | —0.4407 | 0.2136

Table 6.7: Second derivative (d?/d\?)E, of the ground state energy. a) position of the singularity from
unbiased extrapolants; b) exponent at the unbiased positions; c) exponents in the biased extrapolants. d)
Value of the first derivative (d/d\)Eq at A = 1. e) Value of the total intensity /ot at A = 1.

The results for d?Ey/d\? are summarized in Tab. 6.7. The extrapolants show clear singularities
at Ao close to A = 1. The exponents are approximately v ~ —0.55. Extrapolants biased to a
singularity of d>Eq/dA? at A = 1 yield exponents v ~ —0.52. The determined exponent —0.52
is qualitatively close to the desired value of 2/3 so it is reasonable to try to fix the exponent to be
2/3 in the extrapolation. Unfortunately the inclusion of the exact exponent fails due to spurious
poles in the denominator of the extrapolants. This can be understood by a recent DMRG study
finding large logarithmic corrections and an effective exponent g ~ —0.55 [283]
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It is possible to check the quality of the extrapolants not biased to vg = 2/3 (using v &~ —0.52)
by comparing to the value for dEg/dX at A = 1 to the one exactly known from Bethe ansatz
d Eq 1

S EoNh=r= 7 =7 —In2~ 04431 . (6.3.14)

The results for this value obtained by integrating the not biased extrapolants (ye ~ —0.52) are
given in Tab. 6.7 d). The values differ only in the third digit. The exact total intensity as obtained
by inserting Eq. 6.3.14 in Eq. 6.3.11 is

lotlx=1 = In2 — (IN2)? ~ —0.2127 . (6.3.15)

The corresponding results for this value is shown in column e) of Tab. 6.7. It can be concluded
that the extrapolation of /i is well justified up to A = 1. The difference to the exact results for
the undimerized case is determined to be about 10~3 in absolute scale. The discrepancy between
the extrapolated and the exact exponent can be explained by large logarithmic corrections which
are usually strong in this system [267,293]. The resulting total intensity is shown in Fig. 6.12 as
the grey solid line.

In the following the extrapolation of the two-triplon spectral weight is discussed. Similar to the
case of the total intensity the direct extrapolation of /5 is rather complicated. The reason is the
same as in the case before. The structure of the singularities will be the same for I> and liet. It is
therefore reasonable to argue that /> depends on a function E(X) in the same way as /it depends
on dEg/d\. One defines

3 1
h(N) =z = 5EQ) - (E()* (6.3.16)
Inverting this equation gives
1 1
]EQ == —Z + Z - Ig . (6317)

In analogy to dEgp/dX the first derivative 8,E, will be extrapolated having in mind that the sin-
gularities of dEp/d\ and E, are the same. The quantity 85E, is known up to order 6. DlogPadé
extrapolation gives no sign for a singularity at A = 1 which may be due to the low order available.
In a next step the extrapolants can be forced to have a singularity at A = 1. Determining the corre-
sponding exponent -ys yields no clear picture. In a last step it is reasonable to bias the extrapolants
to have the same exponent g &~ —0.523 as the first derivative of the ground state energy. It is
found that this stabilizes the extrapolation which can be viewed as support for this extrapolation
scheme. The results for the latter extrapolants are summarized in Tab. 6.8. It can be concluded
that the two-triplon spectral weight governs more than 90% of the total spectral weight even at
A = 1. The resulting two-triplon intensity is shown in Fig. 6.12 as the black solid line.

In the last part of this section the three- and four-triplon contributions to the spectral weight are
discussed. Guided by the previous paragraphs the functions

1 /1
E3/4 = —Z + Z - I3/4 (6318)

are defined. Unfortunately E3 is governed by a sign change at small A prohibiting an analysis in
terms of dlogPadé extrapolants. /3 is therefore extrapolated directly without having the opportunity
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dlogPadé | a) Ea[x=1 | b) la|a=1 | C) loreilra=1 = la]x=1/ltot|r=1
[4.2] || —0.45859 | 0.2065 0.9709
[3. 3] —0.47596 0.1989 0.9351
[2,4] —0.47442 0.1996 0.9384

Table 6.8: Results for two-triplon spectral weight /> at A = 1. a) Value of E»| at A = 1; b) Value of the
two-triplon spectral weight at A = 1. ¢) Value of the relative two-triplon intensity /o rel = l2/ /ot at A = 1.

to include the same singularities as in the latter cases. The results of various dlogPadé extrapolants
are shown in Fig. 6.11. Note that the absolute scale is much smaller than in the case of the two-
triplon spectral weight. In addition, a clear tendency can be seen that the three-triplon spectral
weight is reduced more and more approaching A = 1. It can be concluded that the three-triplon
spectral weight is very small.

The four-triplon contribution to the spectral weight is determines indirectly over the function E,
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Fig. 6.11: DlogPadé extrapolants for three-triplon spectral weights /3()\) for S = 0. Solid black line denotes
a [4, 0]-dlogPadé, long dashed line a [3, 1]-dlogPadé and dot-dashed line a [2, 2]-dlogPadé.

similar to the two-triplon case, i.e. the function E,4 is biased to have the same singularity as the
function dEy/dX which determined the total intensity. The results at A = 1 are summarized in
Tab. 6.9. It can be clearly seen that the four-triplon contribution is very small, i.e. about 10~ of
the total intensity. The resulting four-triplon intensity is shown in Fig. 6.12 as the dashed black
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line.

The overall picture for the spectral weights with total spin zero for the unfrustrated case is depicted

dlogPadé || a) E4la=1 | b) lala=1 | €) larella=1 = lalr=1/ltot|r=1
[4,0] 0.24997 | 0.0000298 0.000140
[3.1] 0.24999 | 0.0000064 0.000030
[2,2] 0.24998 | 0.0000180 0.000084

Table 6.9: Results for two-triplon spectral weight /4 at A = 1. a) Value of Es4| at A = 1; b) Value of the
four-triplon spectral weight at A = 1. ¢) Value of the relative two-triplon intensity Rls = la/lor at A = 1.

in Fig. 6.12. The two-triplon contribution dominates the physics for all values of the dimerization

including the case of the zero dimerization (A = 1). These findings are in agreement with the

results for the S = 1 spectral weights analyzed in the last section.
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Fig. 6.12: Spectral weights Iy(M\) for S = 0. The dashed black line displays /> (biased [4,2] dlogPadé
used), the long dashed line shows /3 ([2,2] dlogPadé used) and the dot-dashed line corresponds to /4 ([2,2]
dlogPadé used). The grey solid line is the total intensity /tot.
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6.3.2 Finite frustration

In this section the influence of frustration on the spectral weights is discussed. It will turn out
that the extrapolation is even harder than in the unfrustrated case. The discussion is therefore
restricted to spectral weights of excitations with total spin one.

As discussed in Sect. 6.1, the system undergoes a phase transition at critical frustration agc ~ 0.24
from a gapless phase for ap < g, to a gapped phase for ag > ag.. It is therefore reasonable
to expect that the results for vanishing frustration hold at least up to the critical frustration. The
main physical question is therefore whether the triplon picture even survives in the massive phase
at zero dimerization, which occurs at larger frustration.

The straightforward extension of the analysis for zero frustation is to take the extrapolants fora = 0
and to turn on the frustration. Here the focus is on the behavior of the two-triplon contribution to
the spectral weight at A = 1. In Fig. 6.13 the results for the relative spectral weight /5 rel[x=1()
at A = 1 are shown as a function of frustration. It can be seen clearly that the extrapolations
become quite involved. The dlogPadé extrapolants [1,4] and [4,1] are influenced by poles in the
denominator spoiling the extrapolation at some value of the frustration (a ~ 0.1 for [4,1] and
a ~ 0.4 for [1,4]). Generically, the results fit to the above expectations. The spectral weight of
two triplons stays on a high level for small values of a. The extrapolation in the massive phase is
complicated and the spectral weight in the two-triplon sector is reduced. It is of course hard to
make a definite conclusion from these results.

In order to strengthen the results, in the following the focus is laid on the Majumdar-Gosh point
(o = 0.5). Here the system is in the massive phase. The Hamiltonian simplifies and it is possible
to obtain higher order series for the spectral weights. It is expected that the qualitative behavior at
a = 1/2 applies everywhere in the phase of asymptotically free and massive spinons. The crucial
question is whether or not the triplon description breaks down.

6.3.2.1 Majumdar-Gosh point (o = 0.5)

At the Majumdar-Gosh point, i.e. ag = 1/2 and A = 1 in Eq. 6.1.1, the ground state is known
exactly as discussed in Sect. 6.1. The ground state is a short range resonating valence bond state
(RVB) which breaks translational symmetry. The system is always gapped and the usual description
is formulated in terms of massive spinons.

As before, the total spectral weight for A = 0 lies in the one-triplet channel. For finite X the
intensity in /1 e decreases and the spectral weight of the multi-triplon channels are finite. First
the spectral weight /; e for one-triplon creation will be analyzed. Note that it is not clear whether
/1 has a vanishing or a finite spectral weight in the limit A — 1. The one-triplon state with
momentum k = /2 is an exact eigenstate of the system. Therefore it is plausible that a finite
one-triplon spectral weight is present at A = 1 originating from one-triplon states with momen-
tum k =~ w/2. All extrapolation techniques clearly yield a singularity at A = 1 (see Tab. 6.10).
" is rather difficult. Standard
dlogPadé extrapolants yield M3 = 0.15 + 0.05. The result changes if one uses biased dlogPadé

However, the determination of the exponent YMa for /; o |1 — A|”
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Fig. 6.13: Two-triplon spectral weight /2 re|x=1(a) for S = 1 excitations at A = 1 as a function of frustration
a. The same biased dlogPadé extrapolation scheme is used as in the case of vanishing frustration.

extrapolants. One finds yM3 = 0.34 4- 0.005. One can conclude that the exponent is equal 1/3
which is consistent with earlier results [186]. However, one is not able to decide wether /; turns
to zero for A — 1 or stays at a finite but small value. As discussed below it is claimed that the
latter scenario is true. Using YM3 = 1/3 and extrapolating for the derivative d/; e/ dX teh value
I1,re1 = 0.14 is found. The resulting curve is shown as the black solid line in Fig. 6.14.

The direct extrapolation of /5 e is very complicated and yields no indications for a singularity at
A = 1 due to spurious poles in the extrapolation scheme. If one biases the extrapolation to have
the same exponent as /1 re1, i.€. dlarer/dX o |1 — A|72/3, one finds an improvement in the conver-
gence of the extrapolation schemes. These findings support the way of extrapolating /o el /2 rel
is determined to be 0.74 + 0.2. The dashed curve in Fig. 6.14 corresponds to dlogPadé[3,7] for
I5re1. The investigation of /3 el, larel, Isrel @and g e consistently shows that the spectral weight is
of orders of magnitude smaller than /1y and /o el

In Fig. 6.14 the spectral weights /1 rel, /2,rel and I3 are shown. Here /1 . rests at a finite spectral
weight for A = 1. Looking at the sum of the three spectral weights (see grey solid line), the sum
rule Y-, Inre = 1 is fulfilled almost perfectly using /1 rei|x=1 7 0 which is an indication to use this
extrapolation for /5.

The interpretation of the results in the limit of vanishing dimerization (A = 1) is the following. At
the Majumdar-Gosh point, the lowest excitation energy is equal 2Agpinon Where Agpinon is the mass
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dlogPadé | NS | yMal,_ns | 2
[7,2] 0.196
[6, 3] 0.903 |  0.093 0.181
[5, 4] 0.946 | 0.129
[4,5] 0.946 | 0.129 0.191

3, 6] 0.951 | 0.134
BdlogPadé | NS | yMai|x_ns | YMa[x=y

[7,3] 0.993 | 0.302 0.335
[6, 4] 0.969 | 0.207 0.337
[5, 5] 0.968 | 0.202 0.344
[4, 6] 0.968 | 0.202 0.344
3,7] 0971 | 0.214 0.335
2, 8] 1.008 | 0.377 0.336

Table 6.10: shows relevant results of the analysis of /1. at the Majumdar-Gosh point. The notation is
equivalent to Tab. 6.5.

of a single spinon. This energy is the lower edge of the two-spinon continuum. In the triplon-
picture the lowest excitation is the creation of a single triplon (/1 rel|a=1 7# 0) which has the energy
Atriplon = 2Aspinon. At higher energies at 2A¢ipion there is a two-triplon continuum. From the result
for I3, it follows that the triplon-triplon interaction becomes very long ranged in the limit A — 1
so that more and more bound states emerge out of the two-triplon continuum. At the point A =1
an infinite number of bound states exists which form a continuum in the range ]Atripion: 2Atripion|-

6.3.3 Intermediate conclusion

Since the unfrustrated spin-chain (§ = 0,a = 0) is the archetype of a gapless critical model de-
scribed by spinons one has to conclude that neither the occurrence of fractional excitations nor the
vanishing of the gap precludes the applicability of an approach in terms of integer triplons. For the
case of zero frustration even a larger part of the spectral weight is covered by two-triplon states
than is covered by two-spinon states (72.89%) [272]. This result calls for further investigations
of the relation between spinon and transformed triplon states. The latter does not mean that a
description in terms of spinons is wrong or bad but that the triplon and the spinon picture can both
be used to describe the physics.

The case of finite frustration is harder to analyze. Therefore the final conlcusions are harder to
pinpoint. There are strong indications that the above result also holds in the whole gapless phase
(o < apc)- No definite conclusion can be made in the phase of massive spinons (g > Qo).
But an analysis of the system at the Majumdar-Gosh point gives indications that the two-triplon
contribution to the spectral weight is also dominant in the massive phase. Physically, the main
problem of a triplon description in the phase of massive spinons are the implications on the triplon-
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Fig. 6.14: Spectral Weights for S = 1 excitations at the Majumdar-Gosh point. The black solid line denotes
the one-triplon spectral weight /1 e, the dashed line /5, and the dotted line /3 e. /3, is multiplied by a
factor 10. The grey line is the sum >, = 1..3/n el

triplon interaction. The two-spinon continuum has the lowest energy at 2Agpinon = Atriplon but
the two-triplon continuum has the lowest energy at 2Atriplon = 4Aspinon- 1 his implies that the
triplon-triplon interaction has to be a constant —Agipion in real space (at least at large distances)
in order to give an infinite number of bound states producing a two-triplon continuum which starts
at Atriplon = 2Aspinon.

In the following the one- and two-triplon contributions to the the momentum- and energy-resolved
spectral densities are discussed. Results are presented for large and intermediate dimerization.
Features of the zero dimerization case obtained by different methods (see Sect. 6.1) are com-
pared with the the two-triplon contribution at finite dimerization. Due to the above results the
two-triplon spectral density at finite dimerization has to evolve continuously into the two-triplon
spectral density at zero dimerization covering all essential physics of the system.

6.4 S=1 excitations

This part of the thesis contains results for the dynamical structure factor of the dimerized and
frustrated spin-chain. In the following results are shown for the one-triplon and the two-triplon
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Fig. 6.15: One-triplon dispersion w(k) (left panels) and one-triplon spectral weight /1(k) (right panels) for
A € {0.3;0.4;0.5;0.6}. The value for the frustration is &« = 0.0 in (a), @ = 0.25 in (b) and & = 0.5 in (c).

contribution to the spectral density. The one-triplon contribution contains most of the spectral
weight at strong and intermediate dimerization. In the limit of small dimerization it is strongly
reduced and becomes unimportant for zero dimerization. From the discussion of the last section it
is expected that the two-triplon contribution is the only relevant contribution in the limit of zero

dimerization.

A discussion of the one-triplon contribution to the dynamic susceptibility of a dimerized chain
without frustration can be found in a work by Miiller and Mikeska [284]. Recently Zheng et al.
published results for the one- and two-triplon contribution of a strongly dimerized spin chain without
frustration [187]. The results at zero frustration obtained in this work agree with the findings of

Zheng et al..

Here the generic features of the two-triplon contribution for various values of the dimerization
and of the frustration are extracted in order to gain insight in the evolution of these contributions
in the limit of vanishing dimerization. Therefore it is interesting to compare the obtained results
with results for the dynamical structure factor at zero dimerization.

At a = 0 an exact calculation of the two-spinon contribution to the dynamical structure factor
using Bethe-ansatz is possible [272]. The two-spinon contribution exhausts 72.89% of the total
spectral weight and it displays a singular divergent behavior at the lower edge of the two-spinon
continuum. At finite frustration only numerical results using exact diagonalization at finite temper-
atures including frustration are available [285]. In addition, there exist also results using Abelian
bosonization where the universal features of the dynamical structure factor at low energies for small
dimerization are extracted [252]. In the following the major features of these studies are identified

in our triplonic description at finite dimerization.
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6.4.1 One-triplon contribution

In Fig. 6.15 the results for the one-triplon dispersion w(k) (left panels) and for the one-triplon
spectral weight /1 (k) (right panels) are shown. Results for A € {0.3;0.4;0.5;0.6} and a = 0 (Fig.
6.15a), a = 0.25 (Fig. 6.15b) and a = 0.5 (Fig. 6.15c) are presented.

The case of vanishing frustration (a = 0) is discussed first. At A = 0 the system consists of
isolated dimers and the one-triplon dispersion is flat. Turning on X the triplon starts to hop from
dimer to dimer and it acquires a finite dispersion (Fig. 6.15a, left panel). The dispersion has minima
at k = 0 and k = 7 (in units of 1/(a/2)) which represent the one-triplon gap A. In the limit of zero
dimerization the one-triplon gap closes and it is expected that the one-triplon dispersion equals the
well known des Cloizeaux-Pearson [229] dispersion relation wcp(k) = 7/2|sin(k)|.

The one-triplon spectral weight /1(k) is shown in the right panel of Fig. 6.15a. The leading term
of 11(k) is proportional to sin?(k/2). It is called the dimer structure factor [284] (note again that
the momentum k is measured in units of 1/(a/2)). The one-triplon spectral weight is concentrated
at k = w. At finite dimerization the reduction of /; due to the inter-dimer exchange occurs mainly
for momenta k < 0.9m. The spectral weight increases in a small interval around kK = 7 for
increasing A [284]. For even smaller dimerizations the one-triplon spectral weight becomes more
concentrated about kK = m. Recall that the weight, integrated over momentum and frequency,
vanishes for vanishing dimerization.

In Fig. 6.15b the corresponding results for & = 0.25 are shown. The one-triplon dispersion
is similar in shape to the case of zero frustration. Due to the finite frustration the excitations
become more local and the triplon is less dispersive. The gap values are slightly larger and the
maximum values of the one-triplon dispersion are slightly lower at the same values of A\ than for
the unfrustrated case (Fig. 6.15a and Fig. 6.15b, left parts).

The one-triplon spectral weight at a = 0.25 differs from the one at a = 0 for momenta close
to k = m (Fig. 6.15b, right part). The spectral weight is reduced for all momenta at o = 0.25
on increasing A. But the reduction is smallest for k = m. In the limit of zero dimerization the
one-triplon spectral weight /1 (k) vanishes for all momenta.

The one-triplon dispersion w(k) for & = 0.5 is shown in the left part of Fig. 6.15¢. The dispersion
is highly reduced due to the increased locality of the triplon. At k = /2, the one-triplon state is
an eigen-state of the system [286, 287] and it has an energy J independent of A. It is an interesting
question whether there is a finite interval around /2 in which the triplon state retains a finite
weight in the limit A — 1. In the limit of zero dimerization the system remains in a gapped state
of asymptotically free spinons [239-241, 245, 246].

The one-triplon spectral weight /1 (k) for a = 0.5 is shown in the right part of Fig. 6.15c. The
spectral weight is reduced for increasing A for all momenta except for k = /2. Since the one-
triplon state at k = w/2 is an eigen-state independent of X its spectral weight is also constant [186].
In contrast to the previous cases, there is also a one-triplon contribution for zero dimerization, at
least for k = w/2, but most probably also in the vicinity of this momentum.
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6.4.2 Two-triplon contribution

In this section the two-triplon contribution to the dynamical structure factor is discussed. The two-
triplon contribution displays additional physics in comparison to the one-triplon part. The reason is
that besides the kinetic part of the excitations also the triplon-triplon interaction is important and
has to be included. An attractive interaction can lead to bound states of two triplons. Furthermore,
the total momentum of two triplons does not fix the state of the system. There is also a relative
momentum between the triplons which is not fixed. Thus there is a continuum of two-triplon
states for each given total momentum. In the following the spectral properties of the two-triplon
continuum and the two-triplon bound states are focused on.

In Figs. 6.16-6.19 the results for the two-triplon continua, the dispersions of the two-triplon
bound states and their spectral weights are shown.

The spectral density of the two-triplon continuum as function of frequency and momentum is
displayed in Fig. 6.16 and in Fig. 6.18. The spectrum for fixed momentum k is shifted by k in
y-direction in order to provide a three dimensional view on the spectral densities. The lower and
upper band edges are marked by solid grey lines. If there are any two-triplon bound states, their
dispersion is also displayed as a black line. The S = 1 two-triplon bound states are denoted as T,,
and the S = 0 two-triplon bound states are denoted as S, where the counting label n € {1,2,...}.

Detailed information about the bound states is given in Fig. 6.17 and in Fig. 6.19 which consists
of two parts for each parameter set. The left part shows an enlargement of the dispersion of the
bound state and the lower edge of the two-triplon continuum. In the right part the corresponding
spectral weight of the bound states is shown. The spectral weight is multiplied by the given factors
for clarity.

What are the general features of the obtained spectra? Due to the conservation of the total
SZ-component there is no spectral weight at zero momentum. The energies of the system possess
a reflection symmetry about k = /2 which is a consequence of the inversion symmetry k < —k
and of the coupling of the momenta k and k + w [251]. This symmetry can be clearly seen in the
bound state energies and in the lower and the upper band edges of the continuum. It does not
hold for the spectral weights [251].

In Fig. 6.16a the spectral density for A = 0.3 and a = 0.0 is shown. The spectral weight
is mostly concentrated at the lower band edge of the continuum. There are two bound states
centered about k = /2 emerging from the continuum at some finite momentum. The dispersions
and the spectral weights of the bound states are plotted in Fig. 6.17a. The points where the bound
states are leaving the continuum can also be discerned in the singular behavior at the lower band
edge of the continuum. The spectral weight is mainly concentrated in the first bound state T;.
The spectral weight of the second bound state 75 is highly reduced compared to T;.

The binding energy of the bound states has its maximum at k = /2. It vanishes quadratically
o (k — k.)? when the bound state enters the continuum [282]. Correspondingly their spectral
weight vanishes linearly o |k — k.| in accordance to the exemplary calculation provided in Ref. [82].
There it was shown for square root type continua that the binding energy as a function of an
external parameter vanishes quadratically while the spectral weight of the bound state vanishes
linearly. The external parameter was the attraction strength. In the present case it is the total
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dispersion of two-triplon bound states.
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the continuum.

momentum which controls the relative strength of the interaction and the kinetic energy.

Decreasing the dimerization to intermediate values (A = 0.6, see Figs. 6.18a and 6.19a), there are
no qualitative changes in the spectrum. The spectral weight is mainly concentrated at low energies.
The range of energies where the bound states exist is slightly enhanced while the binding energy is
slightly reduced. We expect that this tendency continues to lower values of the dimerization. For
exactly zero dimerization, but not for an arbitrarily small but finite one, the first bound state T;
coincides with the lower edge of the continuum leading to a square root divergence at the lower
edge of the continuum for all momenta. This expectation is strongly corroborated by the exact
results for the spectral densities in the sine-Gordon model [252,288]. The generic behavior is a
square root behavior at the band edges. Only if a breather becomes degenerate with the multi-
particle band edge the square root behavior switches to a square root divergence. Exactly the
same characteristic appears naturally in the triplonic description. Recall also that for the uniform
spin-chain at zero dimerization the square root divergence is well-known from the exact two-spinon
contribution to the dynamical structure factor [272].

In Figs. 6.16b and 6.16¢ the spectra for strong dimerization and finite frustrations = 0.25 and
a = 0.5 are shown. The corresponding information about the two-triplon bound states is plotted in
Figs. 6.17b and 6.17c. The frustration makes the excitations more local and less dispersive which
leads to a narrowing of the two-triplon continuum. At the same time the triplon-triplon interaction
is enhanced causing an increase of the binding energy of the bound states. It can be clearly seen
that for a = 0.25 the first bound state extends over a wide range in momentum space lying for
small and large momenta very close to the lower band edge inside the continuum while for o = 0.5
the bound state T; exists for all momenta well separated from the continuum.

Due to the existence of the bound states only in a finite interval of the momentum for both
values @ = 0 and a = 0.25 the qualitative distribution of their spectral weight is similar. This will
be true for all values of frustration between 0 and 0.25. The same holds for the bound state T»
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for a = 0.5. In contrast, the spectral weight of the first bound state T3, which is well separated
from the continuum for a = 0.5, has its maximum at k = 7.

The whole two-triplon contribution, i.e. the two-triplon bound states and the two-triplon contin-
uum, vanishes for k = /2 at a = 0.5. Here the one-triplon excitation is an exact eigen-state of
the spectrum and therefore comprises the total spectral weight [286, 287] (see also the preceeding
section).

Next the influence of the frustration on the shape of the two-triplon continuum is analyzed. In
the case of vanishing frustration the spectral weight is mainly distributed close to the lower band
edge for strong and intermediate dimerization. The spectral weight decreases monotonically for
higher energies. Turning on the frustration a shift of spectral weight towards higher energies is
observed. In the case of strong dimerization this tendency is weak (Figs. 6.16b and 6.16¢) while
for intermediate dimerization one observes a huge transfer of spectral weight (Figs. 6.18b and
6.18c). This transfer produces a non-monotonic shape for intermediate dimerization and a = 0.25
having a minimum of spectral weight inside the continuum (Fig. 6.18b). Increasing the frustration
(a0 = 0.5) shifts the minimum to the lower band edge. The spectral weight is mainly at the upper
band edge (Fig. 6.18c).

These observations are very similar to the results obtained by exact diagonalization at finite
temperatures for the dynamical structure factor of a homogeneous spin-chain including frustra-
tion [285]. There a decrease of spectral weight at k = 7 inside the continuum is observed on
increasing the frustration. This results in a high-energy maximum for large frustration and a mini-
mum inside the continuum, i.e., a trough-like shape. From this comparison one concludes that the
above findings represent the generic features which are probably also valid in the limit of vanishing
dimerization.

6.4.3 Comparison with field theory results

The first part of this section concentrates on the S = 1 breather and the corresponding behavior of
the lower band edge of the two-triplon continuum. In the second part a closer look at the energy of
the S = 0 breather and at the one-triplon gap is taken. Finally, the importance of marginal terms
(in the renormalization group sense) for the quantitative shape of spectral densities is discussed. A
detailed analysis of the S = 0 channel which contains also a discussion of the singlet two-triplon
bound states is presented in the next section.

The S = 1 response function displays a square root divergence oc (w — u)o)‘l/2 at the lower
band edge. Here the energy of the S = 1 breather wy, s—1 is exactly degenerate with the lower
band edge (wpr,s=1 = 2A). This is in agreement with what is found at a = 0.25, cf. Figs. 6.16b
and 6.18b. Without any frustration, however, a square root behavior o (w — wp)*/? is found , cf.
Figs. 6.16a and 6.18a. Hence one concludes that the sine-Gordon model does not exhaustively
describe the unfrustrated, dimerized spin-chain at strong and intermediate dimerization. But the
sine-Gordon model applies much better to the spin-chain at critical frustration where the higher
cosine-term cos(4®) vanishes. It is interesting to note that one finds a square root divergence for
a = ag, and not for ap =~ ag .

The conclusion about the applicability of the sine-Gordon model to the unfrustrated and dimerized
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spin-chain is in agreement with the results of the numerical investigation of the bound states [257].
It is known that the elementary excitations of the SU(2) symmetric sine-Gordon model consist of
soliton and antisoliton excitations and two breathers, which represent bound states, as well as a
breather which is degenerate with the lower band edge [245, 251, 289]. The lowest-lying breather
is degenerate with the soliton and antisoliton excitations and corresponds to the S = 0 triplet
state in spin language. This fixes the interaction parameter to K = 1/2. The second breather
is assigned to a spin singlet excitation, since there is no counter part in the soliton or antisoliton
sector. The ratio between the energy of the S = 0 breather wy, s=0 and the one-triplon gap A is
exactly v/3 at K = 1/2 [250, 251].

In Fig. 6.20 this ratio is shown for various values of A € {0.3;0.4;0.5; 0.6} versus the bare
frustration ag. Padé extrapolants are used for A = 0.6. It can be clearly seen that almost all points
(except for the case of strong dimerization A = 0.3) fall onto one curve. The values for ag . and
V/3 are included as solid lines. The point where these two lines cross lies on the calculated curve
and corresponds to the prediction of the SU(2) symmetric sine-Gordon model. In all other cases
(a0 # agc) the ratio wyrs—o/A differs from /3. This is due to corrections resulting from the
marginal term cos(4®). These calculations agree perfectly with previous numerical results [257].

The relative importance of the two cosine-terms in Eq. 6.1.18 at finite dimerization is a subtle
issue which is discussed in the following.

In the self-consistent harmonic approximation one replaces [290, 291] ® — ®jass + dsﬂuct where
only the fluctuation part is of operator character. The cosine-terms can then be approximated by

cos(nd) — (6.4.1)

exp(~(7 2)a ) cos(mna () (1~ )

where o(x) := (Pauct(x)2). This kind of approach corresponds to renormalization in first order. In
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the ground state (without solitons) one has ®¢ass = 0. In the ungapped phase the fluctuations
diverge, hence ¢ — oo. But in the gapped phase, the fluctuations are cut off at low energies so
that o = —(K/2)In(A/Ao) where A is the gap and Ay is proportional to the ultraviolet cutoff.

Since the square of the gap A? is proportional to the coefficient of &)(x)2 which one obtains from
the term § cos(2d) the self-consistency equation

A? « §exp(—20)
A o §YEK (6.4.2)

yielding the well-known result A o« §%/3 obtained first by Cross and Fisher [266]. Hence the total
contribution of this cosine-term is proportional to A2 or §*/3. The crucial point to note is that
the amplitude of the second cosine-term cos(4®) is of the same magnitude exp(—8c) oc A*K
which also yields A? or §*/3 for K = 1/2 [292]. Hence it follows from the self-consistent harmonic
approximation that even in the regime where the frustration is marginal for a < a. it influences
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the low-energy physics on the quantitative level.

Considering, however, the renormalization to second order the marginal term is reduced log-
arithmically, hence the name “marginally irrelevant” [252,293]. The flow is valid down to the
infrared cutoff which is the energy gap due to the dimerization here. Note that one is working in
the thermodynamic limit L = oo. Hence the suppression of the marginally irrelevant cosine term
compared to the relevant one is logarithmical in § and thus very slow. Hence it is possible that the
scales which are discussed in this chapter (§ down to 0.25) are still too large to see the emergence
of the physics of a pure sine-Gordon model with one cosine only. But it is at least puzzling that
no precursors of the convergence to the predictions of the pure sine-Gordon model can be seen.
The ratio of the energy gaps shown in Fig. 6.20 (or those obtained in Ref. [257]) appears almost
idependent of § as far as is investigated here.

Note that the vanishing of the cos(4®) term at the end of the flow of / is not identical to the
question whether this term is present at the beginning of the flow. It is presumed that this difference
explains the puzzling finding that the bare coefficient of the Umklapp term cos(4®) vanishes [245]
at ag = 1/6, that means relatively far from the quantum critical point ap = 0.241.

The results shown in Figs. 6.16-6.18(a-b) show that the square root divergence known from
the sine-Gordon model [252, 288] is changed to normal square root behavior. So the quantitative
changes of the low-energy Hamiltonian influence the shape of the spectral densities qualitatively.
Hence for spectral densities one must know whether the effective low-energy model is a (simple)
sine-Gordon model or a double sine-Gordon model with two cosine terms. The answer depends on
the energy scale considered, i.e. the value of §.

For strong frustration a = 0.5, cf. Figs. 6.16¢ and 6.18c, the physics is dominated by bound
states. Their number proliferates for decreasing dimerization [292,294]. At § = 0 there are
infinitely many bound states densely distributed between A and 2A. They form the continuum
which can be understood as two-spinon continuum [246,292,294]. The values of A for which
the spectral densities in Figs. 6.16c and 6.18c are displayed are still too small, i.e., too far in the
dimerized regime to see more than a small number of bound states. This was also observed by
Zheng et al. [184]. In a series expansion up to order A9 they found three singlet and three triplet
bound states.

The fact, that only a small number of bound states could be found so far, is attributed to the
limited range of the effective interaction. In the perturbative approaches for & = 0.5 an order
of A™ corresponds to a maximum range of [n/2]. So even calculations at n = 19 provide only
a potential of a small finite range which does not allow for many bound states. The alternative
presumption [184] that the lacking bound states are found in the channels with more than two
triplons would require that the spectral weight is passed to channels with more and more triplons.
No channel with only a finite number of bound states may retain a finite spectral weight at zero
dimerization since at zero dimerization only a continuum is found [246]. None of the above results
are in favor of the scenario that the missing bound states appear in the multi-triplon channels, so
that one can be convinced that the range of the interaction is the crucial point [247]. But the
precise description of the deconfinement transition for vanishing dimerization is still an open issue.
Future developments like self-similar realizations of the continuous unitary transformations will help
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to release this constraint on the range of the interaction [161, 171].

6.5 S=0 excitations

In this section the two-triplon contribution to the spectral density with total spin zero is discussed.
It is relevant for optical experiments. For S = 0 one needs at least two triplons which form a state
with vanishing total spin. For the case of isolated dimers (A = 0) the total spectral weight is in
the two-triplon contribution. At finite A, the spectral weight in the two-triplon channel is reduced
and spectral weight is also found in channels with more than two triplons.

In the limit of vanishing dimerization and for zero frustration it was shown in Subsect. 6.3.1.2 in

a similar analysis as for the dynamical structure factor that the two-triplon contribution possesses
almost the total spectral weight [82, 209]. The two-triplon contribution is therefore the only siz-
able contribution for the whole range of dimerizations for the unfrustrated case. In the presence
of frustration the analogous analysis is quantitatively more difficult as stated before. But again
there are indications (see Sect. 6.3) that only a small number of triplons dominates the spectral
properties. Therefore the leading two-triplon contribution for the S = 0 channel is investigated.
For the dimerizations treated in this work there is no doubt that the two-triplon contribution is
the only sizable term. The crucial point, however, is to which extent one can obtain the generic
features which govern also the limit of vanishing dimerization. All results obtained so far show that
the one- and two-triplon contributions indeed capture the relevant physics.
In the case of a uniform spin-chain without frustration the nearest neighbor Raman operator com-
mutes with the Hamiltonian and one obtains a vanishing Raman response. Therefore the next-
nearest-neighbor Raman operator is the leading contribution in terms of a Loudon-Fleury scatter-
ing theory [295, 296]. In contrast to the case of zero momentum, Ryn does not commute with
the Hamiltonian for finite momenta and it will be the most important contribution to the infrared
absorption. For simplicity, Ryn is not treated completely but only its weak-bond part. This is no
major restriction because one is interested in the generic properties of these quantities. In addition,
the weak-bond part dominates for strong dimerization.

The two observables Ryn and Rynn will be discussed separately. For a direct comparison with
experimental data one should take the sum over all contributing parts of RS=° to account for
possible interference effects. The necessary superposition, however, strongly depends on the details
of the system and cannot be discussed generally.

In Figs. 6.21-6.24 the spectral densities for R{\C,c. are shown and in Figs. 6.25-6.28 the cor-
responding densities for Ryyn. First, the results for the nearest neighbor (NN) coupling RRNOeax
are discussed passing then to the results for next-nearest-neighbor coupling RJN%. Finally, the
implications for Raman spectroscopy and infrared absorption will be assessed.

6.5.1 Case R3\C.cax

In Fig. 6.21a the spectral density for strong dimerization (A = 0.3) and vanishing frustration
is depicted. The corresponding information about the dispersion and the spectral weight of the
two-triplon bound states is shown in Fig. 6.22a. The same notation as in the section for S =1
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excitations is used. The spectrum is symmetric about kK = m/2 due to the inversion symmetry
k <> —k and RRN%eak (K + ) = R{NCueak(K) (see Sect. 6.2).

Two S = 0 two-triplon bound states S; and S, are found. In the total S = 0 channel the
triplon-triplon interaction is larger than it was in the total S = 1 channel. Therefore the binding
energy of the bound states is enhanced and the first bound state S; exists for all momenta in
contrast to the S = 1 case. In general, the S = 0 channel is dominated by the bound states which
carry most of the spectral weight. This statement applies also to the experimental relevance, see
below.

The dispersion of the two-triplon bound state S; is roughly sinusoidal having three extrema at
momenta k = {0; w/2; w}. The binding energy is largest for k = 7/2 while it becomes small near
momentum zero and w. The spectral weight of Sy is roughly proportional to the square root of
the binding energy similar the above used argument that the one-triplon spectral weight /; behaves
like 11 x v/w o §/2. The second singlet two-triplon bound state S exists only in a finite interval
about k = w/2. The spectral weight of S, vanishes at k = w/2 and possesses two maxima below
and above k = 7/2.

The spectral weight of the two-triplon continuum is concentrated at small frequencies. At small
and large momenta this effect is enhanced due to the vicinity of S;. Lowering the dimerization
one sees no qualitative changes in comparison to the case of strong dimerization (Fig. 6.23a and
Fig. 6.24a). So it is expected that the dispersion of the bound state S; is degenerate with the
lower band edge of the two-triplon continuum for A — 1 inducing a square root divergence. This
expectation is supported also by numerical results for the second breather [257].

For clarity, it is emphasized again that one must clearly distinguish the case of zero dimerization
and the case of small, but finite, dimerization. For zero dimerization bosonization predicts a 1/w
divergence at k = m which becomes (w — wp)~'/? close to k = m [245,266]. This has been
used for instance in the empirical calculation of Lorenzana and Eder [297]. For small, but finite,
dimerization the sine-Gordon model prediction of a square root behavior without divergence applies
to the critical frustration and in the region around this value. For other values of the frustration a
breather may coincide with the lower band edge implying a square root divergence.

In Figs. 6.21b-c the spectral density at finite frustration for strong dimerization is shown. At
a = 0.25 three bound states Si, So and S3; are found. The binding energy of S; increases
drastically when turning on the frustration, especially at small and large momenta. The spectral
weight increases in a similar fashion for these momenta. The third two-triplon bound state Ss
exists merely in a very small region about kK = 7/2. The binding energy and the spectral weight
are tiny. The spectral weight has a maximum at k = /2.

The two-triplon continuum for o = 0.25 does not show a lot of structure. This is a consequence
of the fact that at almost all momenta no bound state is close to the lower band edge of the
continuum. Upon decreasing the dimerization no qualitative changes are seen (see Fig. 6.23b).

At a = 0.5 two bound states are detected. The dispersion of S; becomes flatter which again
also holds for the spectral weight distribution. The biggest change can be seen in S,. This bound
state exists for almost all momenta in contrast to the cases a € {0;0.25}. In the regions close to
k = 0 and symmetrically close to kK = m, the bound state S, does not exist, but it can be thought
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to lie just above the lower band edge implying an almost divergent behavior of the two-triplon
continuum.

Smirnov [252, 288] showed that the corresponding spectral density of the sine-Gordon model
displays a square root behavior at the lower band edge. This applies to the S = 0 channel of the
frustrated spin-chain for a < ag . if the marginal term D cos(4®) of Eq. 6.1.18 is neglected. This
neglect is quantitatively justified for @ = ag . Indeed, the results for & = 0.25 clearly show a square
root behavior. As for the S = 1 case, one finds that the predictions of the sine-Gordon model
for the physics of the spin chain are verified for @ = ag. For other values, notably a = 0 and
a = 0.5, one finds square root divergences or strong tendencies towards square root divergences.
Again such divergent behavior results from the vicinity of bound states, here in the S = 0 sector.

6.5.2 Case R3S

In Figs. 6.25 and 6.27 the spectral densities of the observable Rgy$ for various values of the
dimerization and the frustration are shown. The information on the singlet two-triplon bound
states is plotted in Figs. 6.26 and 6.28. All considerations concerning the energetic properties of
the S = 0 channel are the same as for Ryy$ and need not be discussed again in this section.

The concentration is laid on the spectral differences between the two observables. The spectral
weight is suppressed for large momenta due to symmetry reasons. This can be clearly seen for
the two-triplon continuum and the spectral weight of the two-triplon bound states. Therefore only
momenta k € [0, w/2] carry significant spectral weight. In this region no qualitative differences to
the results for of R{NSeax are found.

The most important difference is a change of the spectral weight distribution of S;. At a =0
the spectral weight has a maximum at k = 7/2 which is similar to the case of R{N%ea Finite
frustration shifts the maximum to k = 0. Close to the critical frustration the spectral weight is
almost constant for k € [0,7/2]. At a = 0.5 the spectral weight is a monotonically decreasing
function (from k =0 to k = ).

6.5.3 Raman spectroscopy

The dominant observable for magnetic light scattering (Raman response) using the standard Fleury-
Loudon scattering theory [295, 296] is

Rraman = D (Riscun (1) + BRiacimn (1)) . (6.5.1)
i
where the sum runs over all spins. The Raman response is therefore the k = 0 contribution to
the spectral density which is discussed in the last section. Here it is focused on the case of next-
nearest-neighbor coupling which is the leading process in the case of a uniform Heisenberg chain
without frustration.

In Fig. 6.29 the Raman response for next-nearest coupling is shown at zero frustration (a), close
to critical frustration o = 0.25 (b) and for & = 0.5 (c¢). In each graph the spectrum is shown for
A € {0.3;0.4;0.5;0.6}. In these figures, a broadening of " = 0.01 is used and the spectra are
shifted in y-direction for clarity. The spectral densities for o = 0 are multiplied by 6.
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Fig. 6.21: Two-triplon spectral density /»(k,w) for Rﬁﬁfmeak with A = 0.3 and @ = 0.0 (3a), a = 0.25
(b) and a = 0.5 (c). Grey lines denote the lower and the upper edge of the continuum. The black lines
indicate the dispersion of two-triplon bound states.
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the continuum.

For the values of the dimerizations considered here, the spectra are dominated by the first S = 0
two-triplon bound state S;. This dominance is enhanced by the frustration. In Fig. 6.29a the case
of vanishing dimerization is shown. Due to the finite broadening and the small binding energy of the
bound state there is no separation of the two-triplon bound state and the two-triplon continuum.
An increase of X\ reduces the weight of the bound state and gives rise to a broad featureless
continuum.

In Fig. 6.29b and 6.29c the results for finite frustration are plotted. The binding energy of the
bound state S; is enhanced and one can clearly separate the contribution of the bound state S;
and of the continuum. The spectral weight of the two-triplon continuum is very small.

6.5.4 IR-absorption

In this section the results are applied to phonon-assisted infrared absorption of magnetic excita-
tions [277, 278]. This experimental technique allows to study the spin-spin correlation function by
measuring the optical conductivity. The direct absorption of two magnetic excitations is generically
not allowed due to inversion symmetry. However, this selection rule can be broken by simultaneously
exciting a phonon. The leading infrared-active magnetic absorption is a two-triplon-plus-phonon
process [277,278]. Due to the momentum of the excited phonon, the magnetic spectra /(k, w)
have to be integrated over all momenta weighted with a phonon-specific form factor.

The absorption spectra are sensitive to the S = 0 two-triplon bound states. Especially the
extrema yield prominent van-Hove singularities in the density of states which can be identified in
the experiment. In this way, the first experimental evidence for the two-triplon bound state in
cuprate spin ladder systems [298] was possible. One therefore expects interesting line shapes in
the optical absorption also for dimerized and frustrated spin-chain systems.
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The absorption coefficient is given by [297]
a(w) = aow!™(w — wp). (6.5.2)

Here ag is a constant depending on the material and wp is the phonon frequency. The phonon is
considered to be local and without dispersion (Einstein phonon). The function /'R is given by

I®(w) = 16m Y _sin*(k/2)I(k, w). (6.5.3)
k

The specific form factor given is valid strictly only for a uniform Heisenberg chain. It was successfully
used to explain the optical absorption in uniform cuprate spin-chains [297,299]. The same form
factor is also used for the dimerized and frustrated chain in order to explore the general features of
the optical conductivity and to compare the line shapes at finite dimerization with the line shapes
at zero dimerization. In a detailed analysis of experimental data one must analyze which phonons
are involved and which specific form factors matter.

In Fig. 6.30a-c and Fig. 6.31a-c the optical absorption a(w) for various values of the dimerization
and of the frustration is shown for RRNY and R{nG.eac: Here ap is set to one and wp is set to
zero. The spectra comprise a broadening of [ = 0.01 which is a reasonable value in the view of
experimental resolutions. In the insets the contribution of the two-triplon continuum without the
broadening is shown to highlight the shape of the continuum contributions and to distinguish it
from contributions of the bound states.

The phonon form factor favors large momenta while it reduces the contribution of small mo-
menta. Hence the discussion of the spectral densities implies that R§yCye.x is more relevant than
RSN for a(w). This can also be seen in the absolute heights of the spectra in Fig. 6.30 and Fig.
6.31. In addition, one expects that the nearest-neighbor coupling is stronger than the next-nearest
neighbor one because exchange processes of longer range will generically be less important.
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Fig. 6.26: Two-triplon bound states for Riny with A = 0.3 and a = 0.0 (a), @ = 0.25 (b) and a = 0.5
(c). The dispersion of the bound states is shown in the left panels. The spectral weights of the bound
states multiplied by the indicated factors is shown in the right panels. Grey lines denote the lower edge of

the continuum.

The starting point of the discussion is the case of R3R%.e.c- As stated above the first S = 0
two-triplon bound state S; carries most of the spectral weight for all momenta. Hence, it is of
crucial importance for the optical absorption. In Figs. 6.22 and 6.24, it is shown that the dispersion
Whound (k) of the bound state S; possesses three extrema at k € {0, w/2, w}. Therefore one obtains
three van-Hove singularities in /'"®(w). The spectral density is symmetric about k = 7/2 so that
two van-Hove singularities coincide and there are two peaks resulting from the bound state S; in
the optical conductivity. The weight of the minimum at k = 0 is suppressed by the phonon form
factor. This implies that the regions about k = w/2 and k = m dominate.

In Fig. 6.30a the optical absorption for a dimerized chain (A € {0.3,0.4,0.5,0.6}) without
frustration is depicted. The spectra are shifted in y-direction for clarity. The line shape is dominated
by a small peak at low energies, a sharp peak at intermediate energies and a broad structure at
high energies. The first two features are mainly produced by the above mentioned van-Hove
singularities resulting from the extrema of the bound state dispersion of S;. The second peak is
dominant because the spectral weight has a maximum at kK = /2, see Fig. 6.22a and 6.24a. For
increasing A this peak loses intensity while the first peak becomes more pronounced. The latter
effect is due to the increasing binding energy of S; at kK = .

For strong dimerization the feature at low energies, which is more like a shoulder than like a
peak, is an effect of the two-triplon continuum (inset Fig. 6.30a). The second bound state S is
of no greater relevance for the optical absorption because it has zero spectral weight for k = /2
which is the only extremum of the bound state dispersion. In addition, the binding energy is very
small without frustration and so is the corresponding spectral weight.

Lorenzana and Eder [297] calculated the two-spinon-plus-phonon contribution to the optical
absorption for a uniform Heisenberg chain. The line shape consists mainly of three parts: a concave
uprise at low energies which vanishes for zero frequency, a singularity at intermediate energies and a
convex tail for higher frequencies. It is very interesting to see that all these features have precursors
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continua.

at finite dimerization which are captured in the triplon picture.

In the limit of vanishing dimerization the system becomes gapless and the spectra therefore start
at zero energy. As long as there is some finite dimerization the bound state Sy exists and produces
the concave uprise at small energies and the singularity at intermediate energies resulting from the
maximum of the dispersion of Sy at k = w/2. It is expected that for vanishing dimerization (A = 1)
the dispersion of S; coincides with the lower band edge of the two-triplon continuum leading to
a square root divergence at the lower band edge for all momenta. Since the dispersions and the
band edges display an extremum at k = 7 /2 this divergence leads to the singularity discernible at
intermediate energies. The convex tail at the upper band edge is equally present even for strongly
dimerized chains, see inset in Fig. 6.30a. It is a consequence of the convex square root behavior
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Fig. 6.31: Optical absorption for RyyS with additional broadening is shown for a = 0 (a), a = 0.25 (b)
and o = 0.5 (c). In each picture, curves for A € {0.3;0.4;0.5; 0.6} are shown.

at the upper edge of the two-triplon continuum.

In Figs. 6.30b and 6.30c the optical absorption at finite frustration a = 0.25 and o = 0.5 for
the same values of the dimerization is shown. As discussed earlier, the frustration enhances the
triplon-triplon interaction and increases the binding energy of the two-triplon bound states. As can
be clearly seen in Figs. 6.22b-c and Figs. 6.24b-c, the spectral weight of S; at k = 7 increases
compared to the weight at k = 7/2. Therefore, the first peak in the optical absorption becomes
more and more prominent on increasing frustration. This leads to the most important features at
large frustration. At o = 0.5, the spectral weight of S, is also sizable. Besides the contribution
of the two-triplon continuum (inset of Fig. 6.30c) an additional peak appearing for decreasing
dimerization can be discerned. This peak originates from the dispersion of the bound state S,
which displays two energetically degenerate maxima.

The optical absorption for RJyd is plotted in Fig. 6.31. The main difference to the discussion of
the optical absorption produced by Rnn weak are the consequences of the different symmetries of the
observables. Rynn suppresses the spectral weight for large momenta. Thus the optical response



130 Dimerized and frustrated spin-chain

is weak due to the phonon form factor which stresses large momenta. In addition, the van-Hove
singularity resulting from k = w of S is suppressed completely so that only a weak shoulder can be
observed at low energies, independent of frustration and dimerization. At @ = 0.25 the additional
side structures are produced by the bound states S, and Ss.

6.6 Chapter summary

In this chapter results for the spectral weights and the spectral densities of the dimerized and
frustrated Heisenberg chain are presented. A perturbative realization of the continuous unitary
transformations is used starting from the limit of isolated dimers. By means of the transformations
an effective model is obtained which conserves the number of triplons.

The first part of the chapter deals with the analysis of the obtained spectral weights for S =1
and S = 0 excitations. It has been shown [82] that for unfrustrated chains a description in terms
of two triplons is sufficient even in the limit of zero dimerization. The triplon may also serve
as an elementary excitation of the uniform Heisenberg chain besides the well-established spinon
excitation. The situation at finite frustration is more subtle. Nevertheless indications are found
that the situation is similar also in this case.

The second part presents results for the one-triplon and the two-triplon contribution to the
spectral density for strong (A = 0.3) and intermediate (A = 0.6) dimerization and for various
values of the frustration (a = 0;0.25; 0.5) and for total spin one and zero.

In Sect. 6.4 of this chapter the dynamical structure factor is examined which is relevant for
inelastic neutron scattering experiments. The one-triplon contribution contains most of the spectral
weight at strong and intermediate dimerization. Results are provided for the one-triplon dispersion
w(k) and the k-resolved spectral weight /;(k). The one-triplon dispersion becomes larger on
lowering the dimerization while it becomes flatter on increasing the frustration. The spectral
weight /1(k) is mainly concentrated at k = 7. In the limit A — 1 the one-triplon contribution
vanishes except for a = 0.5 around k = /2.

Subsequently the two-triplon contribution to the dynamical structure factor is discussed. Results
are provided for the spectral density of the two-triplon continuum and for the dispersion and for
the spectral weight of the two-triplon bound states.

For the unfrustrated spin-chain, the spectral weight is concentrated at the lower band edge at
larger momenta. Two-triplon bound states only exist in a finite region about kK = /2. Increasing
the frustration leads to a shift of spectral weight to higher energies. At A = 0.6 and a = 0.5, the
spectral weight is shifted almost totally to the upper band edge at k = . This transfer of spectral
weight is also found for A = 1 by exact diagonalization at finite temperatures [285].

The behavior of the lower band edge changes strongly when varying of the frustration. Generically,
one finds a square root behavior of the lower band edge. It is a consequence of the hardcore
interaction between the triplons which makes it difficult for them to pass each other. In contrast
to this finding, a square root divergence is found at the lower band edge for « = 0.25. Here the
energy of a two-triplon bound state is degenerate (to the precision of our analysis of about 2% of
J) with the lower band edge of the two-triplon continuum.
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The latter finding is compared to the results obtained from field theory [252]. In contrast to the
above findings for the unfrustrated spin-chain, field theory predicts a square root divergence for the
lower band edge of the dynamical structure factor of the sine-Gordon model. Thus the commonly
used reduction of the spin-chain to a sine-Gordon model by neglecting the marginal operator cannot
be justified quantitatively for the values of dimerization considered here.

It is shown that in the self-consistent harmonic approximation (corresponding to renormalization
in first order) the marginal operator D cos(4®) is as important as the mass operator § cos(2%)
at any finite dimerization. Renormalization in second order, however, predicts a slow logarithmic
suppression of the marginal term [293] below critical frustration.

It is found that square root behavior represents the generic behavior of the spectral density of
the band edges. A square root divergence occurs if a two-triplon bound state is degenerate with
the lower band edge of the continuum. In the field theoretic language this degenerate bound state,
which has not yet emerged from the continuum, is the third breather. One finds the concomitant
square root divergence for a =~ ag ..

The applicability of the sine-Gordon model to the unfrustrated, but significantly dimerized spin-
chain is further questioned by the study of the excitation energies of the bound states. The ratio of
the excitation energies of the S = 0 two-triplon bound state and of the one-triplon gap is exactly
v/3 in the SU(2)-symmetric sine-Gordon model. This ratio is found only for g = o, in agreement
with a previous numerical study [257]. At present, one does not know why ag = ap  is required
to retrieve the field theory result for the second breather, but a = ayg, to retrieve the field theory
result for the third breather. It is expected that one has to go to very much lower values of the
dimerization, i.e. closer to A = 1, to retrieve the behavior of a pure sine-Gordon model. But
as long as the dimerization is not extremely small the marginal operator cannot be neglected for
a quantitative description. Thus, the effective low-energy model to be considered is the double
sine-Gordon model for which the SU(2) symmetry condition will be different from K = 1/2 and
hence also the ratios of the breather energies will differ from the ratios known for the sine-Gordon
model [289].

In Sect. 6.5, the spectral properties of the dimerized and frustrated spin-chain for excitations with
total spin zero are discussed which are relevant for optical experiments. Results for the two-triplon
contribution are presented which contains most of the spectral weight.

Two different observables are examined: a nearest-neighbor (NN) coupling on the weak bonds
RRNoweak and a next-nearest-neighbor (NNN) coupling R3RY. The observables obey different sym-
metries. The nearest-neighbor coupling possesses a reflection symmetry about k = 7/2. The
next-nearest-neighbor coupling does not have any reflection symmetry except for k = m where it
is odd so that no even S = 0 two-triplon state can be excited. The spectral densities for both
observables are dominated by the two-triplon bound state S; which contains most of the spectral
weight. This bound state exists for all momenta, independent of dimerization and frustration. The
binding energy increases when turning on the frustration.

The spectral weight of the two-triplon continuum is concentrated at the lower band edge for all
considered values of the dimerization and the frustration. For finite dimerization, the lower band
edge displays a square root behavior for & = 0.25 in accordance with the results of the sine-Gordon
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model. Divergences may occur only at exactly zero dimerization. The behavior changes similarly
to the S = 1 case if a two-triplon bound state is almost degenerate with the lower band edge of
the two-triplon continuum. Such a degeneracy appears in our data for a ~ 0 and for a =~ 0.5.

Finally, results for the Raman response and the infrared absorption are presented. Both exper-
iments are dominated by the bound state S; for the values of the dimerization considered. This
bound state produces two van-Hove singularities in the infrared absorption resulting from k = 7/2
and from k = w. The van-Hove singularity at lower energies becomes more important for larger
values of the frustration.

6.7 Chapter conclusion

It is shown that triplon-based conserving continuous unitary transformation are an effective tool
to calculate quantitatively spectral densities for the dimerized and frustrated spin-chain at strong
and intermediate dimerization. All relevant quantities can be calculated in this parameter regime.
Longer range processes become important for small dimerizations. Here the perturbative realization
of the continuous unitary transformation is not useful anymore.

It is shown that only one or two triplons are necessary to capture the essential physics at significant
dimerization. In addition, an analysis of the spectral weight shows that even in the limit of vanishing
dimerization most of the spectral weight seems to remain in the one- and two-triplon channel.
Since undimerized spin-chains are the archetypes of models described by spinons it seems that
neither the occurrence of fractional excitations nor the vanishing of the gap (for a < a.) precludes
the applicability of an approach in terms of integer triplons. This calls for further investigations
of the relation between spinon and transformed triplon states. Since these results hold in spin-
chains, it is plausible hat a large class of low-dimensional quantum antiferromagnets is accessible
by calculations based on integer excitations.

Further strong support for this result is found in the analysis of the two-triplon spectral density. The
two-triplon spectral densities computed at finite dimerization displays well-developed precursors of
the results for the uniform chain based on spinons, e.g. the dynamical structure factor probing the
S =1 sector [272] or the optical absorption [297] probing the S = 0 sector.

In the case of finite frustration the extrapolations become hard to control in the limit of vanishing
dimerization but nevertheless indications are found that the two-triplon contribution is the dominant
contribution in the whole phase diagram of the dimerized and frustrated spin-chain. Especially the
gapped phase (ap > ag,) requires that the two-spinon continuum between A and 2A can be
described by a dense distribution of bound two-triplon states. For this to occur an infinite-range
effective interaction is necessary which is beyond the scope of the perturbative CUTs. But the
nice agreement between the shifts of spectral weight obtained by complete exact diagonalization
at finite temperatures [285] for the undimerized frustrated chain with the above results at finite
dimerization is taken as further indication that the triplon description can also be extended to the
undimerized frustrated chain.

The comparison of the results to those obtained by mapping the spin-chain to a sine-Gordon model
lead to a number of insights. Both approaches agree in that the generic singularity at the lower
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band edge is a square root, either a divergence or a zero. The divergence occurs if and only if
a bound state is degenerate with the band edge. It turns out that the predictions of the single
sine-Gordon model hold for critical frustration only which agrees with previous conclusions based
on numerical results [257]. The general spin-chain at significant dimerization requires to go beyond

the single sine-Gordon model.
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7 The antiferromagnetic two-leg ladder

In this chapter the energetic and especially the spectral properties of the antiferromagnetic two-leg
Heisenberg ladder are analyzed. The Heisenberg model on a two-leg ladder can be viewed as the
natural intermediate system between the one-dimensional Heisenberg model as studied in the last
chapter and the two-dimensional Heisenberg model on a square lattice.

The nature of the elementary excitations of the two-leg ladder system is a key issue in studying
this system. The two-leg ladder can be viewed either in a chain-like picture (two-coupled chains)
or in a rung-like picture (coupled rungs). The first approach usually favors a description in terms of
fractional spinons as elementary excitations while the latter approach offers a possible description in
terms of integer excitation, namely rung-triplons. In this chapter it will be shown that a description
in terms of rung-triplons is possible even if the coupling between the rungs is of the same order as
the coupling in the rungs.

In addition, there are a number of materials which are realizations of two-leg ladder systems. This
offers the possibility to directly compare the obtained spectral densities with experiments, namely
inelastic neutron scattering, Raman spectroscopy and infrared absorption.

It will be found that a quantitative understanding of the magnetic properties of experimentally
realized two-leg ladder systems is not possible in a pure Heisenberg model. One has to include
additional four-spin interactions in the model Hamiltonian. This extended two-leg ladder system
will be discussed in the subsequent chapter.

7.1 Model

In this section the nature of the ground state and the corresponding elementary excitations of
the antiferromagnetic two-leg Heisenberg ladder are presented [300, 304]. The Hamiltonian of the
two-leg Heisenberg ladder reads
H(JL,J”) = JJ_HJ_‘I'J”H” (7.1.1)
= Z [J1S1,iS2,i+J (S1,iS1,i+1 + S2,iS2,i41)] .
i
where i denotes the rung and 1, 2 the leg. This is illustrated in Fig. 7.1.

The two-leg ladder can be tackled starting from two different limits. On the one hand, the system
can be thought of as to consist of two weakly coupled chains (J; < J.) or, on the other hand, of
weakly interacting rungs (Jy < Ji). The latter approach was first to find evidence for a finite spin
gap in two-leg ladder systems [301-303], i.e. a finite energy is needed to create an excitation with
S=1.

In the case of isolated rungs (J; = 0), the ground state of the system is the product-state of
singlets on each rung. An excitation of the system corresponds to converting one singlet in one
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Fig. 7.1: lllustration of the antiferromagnetic two-leg Heisenberg system.

triplet. The energy for this process is exactly J,. Turning on a finite but small coupling Jj, a band
of S = 1 excitations with dispersion w(k) = Ji + Jj cos(k) is generated. These excitations will be
referred to as rung-triplons. The ground state remains in a phase dominated by rung-singlets. The
spin gap A is the minimum excitation energy, i.e. A = w(mw) = J. — J; in this limit. The two-leg
ladder is therefore a gapped system with a gap A of the order J, for small Jj.

In the other limit the two-leg ladder decouples into two isolated spin-chains. The starting point
of this limit is therefore a gapless and critical system as discussed in the last chapter. In analogy
to the transition of the gapless spin-chain to the gapful dimerized spin-chain, the coupling J, is
relevant and opens a gap of the order J, for any finite value of J, [304,305]. The spin-ladder
can be mapped via bosonization onto a free massive Thirring model (Eq. 6.1.6). There are to kind
of of excitations. A threefold degenerate excitation with mass A corresponding to one-triplon and
a excitation with mass & 3A corresponding to a singlet excitation [305]. The antiferromagnetic
two-leg ladder system is always in a spin-liquid state, in contrast to the one-dimensional and the
two-dimensional Heisenberg model.

7.2 Materials

In this section experimental realizations of two-leg ladder systems are introduced. The focus is
laid on the structure of these materials. The direct comparison between experimental data and
theoretical results will be done later in the application sections.

Realizations of two-leg ladders are recognized in CaV,Os [306], SrCu»03 [307, 308] and A14Cu24041
with A={Sr,Ca,La} [311, 312] compounds. The vanadium based compound CaV,Os is a quasi two-
dimensional layered material, where S = 1/2 V#* vanadium ions forming the sites of weakly coupled
two-leg ladders, a so-called trellis lattice. The spin gap is determined to be about 600 K [313, 314]
and magnetic susceptibility measurements predict a S = 1/2 Heisenberg model with weakly inter-
acting rungs (Jy ~ 0.1J1) [314, 315].

The other two compounds belong to the class of low-dimensional materials which are based on
copper-oxide structures. Therefore they are also interesting concerning the understanding of two-
dimensional copper-oxide planes which are the basic building blocks of the high-T .-superconductors.
Srp.4Ca13.6Cu24 041 is even superconducting under high pressure [308], enhancing in particular the
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Fig. 7.2: Schematic view of the two-leg ladder SrCu2Os projected on the ab plane. The Sr atoms are

located between the planes containing the Cu2O3 units.

interest in this class of compounds (see below).

SrCu,03 is the prototype of weakly coupled Cu,O3 spin-ladders. A schematic view of this com-
pound is shown in Fig. 7.2. The copper atoms are represented by d-orbitals. They couple via an
intermediate oxygen p-orbital by superexchange [13]. The interladder coupling is small because the
superexchange via a Cu-O-Cu path with a 90° bond angle has a smaller overlap than with a bond
angle of 180° [13, 309, 310]. The disadvantage of this system is that it has to be grown under high
pressure so that only small single crystals/polycrystals are available (e.g. [316]). The latter point
complicates scattering experiments on this compound. A detailed discussion of Raman scattering
results will be done later in Chapt. 8 [317].

The last class of compounds to be introduced are the so-called telephone number compounds
A14Cu2404; with A={Sr,Ca,La}. The main advantage of this system is the possibility to grow
large single crystals which renders inelastic neutron scattering and optical experiments possible.
A disadvantage is the complex structure of this system. It consists of two-leg Cu,O3 ladders as
described in the last paragraph, but also on the other hand of CuO, chains. Both structures are
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Fig. 7.3: Schematic view of the telephone number compound Sr14Cu24QO41. The left part shows a three-
dimensional view on the layered material. There are planes of ladder structures, chain structures and Sr
atoms. The basic ladder (Cu2QO3) and chain (CuO>) building blocks are shown on the right part.

oriented along the c-axis. These two structures are illustrated on the right hand side of Fig. 7.3.
It is instructive to write A14Cu24041 = (A2Cu203)7(CuO3)1p in order to stress both structures.
Ladders and chains form two-dimensional layers which are stacked in b-direction alternating with
Sr layers. This is shown in the left part of Fig. 7.3.
The magnetic couplings due to superexchange in the ladder structure are expected to be almost
isotropic. The distance between two copper atoms is roughly the same in rung and in leg direction.
Both superexchanges go via a 180° Cu-O-Cu bond. The coupling between two copper atoms on
neighboring ladders is weakly ferromagnetic. A typical magnetic coupling J is of the order of 1000
K which is similar to the two-dimensional cuprates. The nearest-neighbor exchange in the chains
is mediated via two symmetric Cu-O-Cu bonds with about 90° bonding angle leading to weakly
ferromagnetic exchange. A typical J in the chains is about one order of magnitude smaller than in
the ladders. The magnetic scattering events of chains and ladders occur therefore on two different
energy scales making it possible to study the physics of both structures separately in experiments.
Two members of this class of compounds, namely Sr14Cus404; and LagCagCuz404; are the fo-
cus in this work. The system Sr14Cu»404; is intrinsically doped with 6 holes per unit cell. Using
X-ray absorption spectroscopy, it is possible to conclude that there are on average 0.8 holes in the
ladders and 5.2 holes in the chains [318] which can be explained by a higher electronegativity in
the chains [319].
It is possible to substitute Sr’* by isovalent Ca®* or by La3* (and Y3*). The substitution by La3*
reduces the number of holes in the system. The limiting case of an undoped sample is the formal
compound LagCagCup40O41. Experimentally it is not possible to realize this limiting case. But there
exist realizations up to Las»CaggCu24041 Which can be viewed as almost undoped samples [298].
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Fig. 7.4: Possible dimerization pattern for the two-leg ladder: a) Dimerization on the rungs, b) meander-like

dimerization and ¢) symmetric dimerizations on the legs.

This will also be seen later in the application sections.

7.3 Method

This section presents the aspects concerning the method in the ladder case. As there are a lot of
similarities between the dimerized chain and the spin-ladder, this section will focus on the points
special for the ladder system.

In order to set up a triplon description of the system it is necessary to specify the dimerization
pattern. This was canonical in the case of the dimerized chain because there is only one way of
dimerization possible (up to an exchange of strong and weak bonds). In the ladder system there
are three different ways of dimerization pattern which are distinct from each other. These are
illustrated in Fig. 7.4. The first starting point is the already mentioned pattern with dimers on
the rungs of the ladder. The associated ground state is the rung-singlet phase and the excitations
are rung triplons. The other two starting points put the dimers in a symmetric and in a staggered
way on the legs of the ladder (case b/c in Fig. 7.4). Choice (a) is the only choice which does not
break a symmetry of the original model. The meander-like pattern is not continously connected to
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the rung-singlet phase. But it might be necessary to use the third configuration if the physics is
dominated by the legs of the ladder.

In the following the starting point of isolated rungs is used to set up the perturbative continuous
unitary transformation. The ladder Hamiltonian is reformulated according to

—H(X) = Hi + xH), (7.3.1)
Ji

with x = J;/J. as perturbation parameter, H; = H(1,0) and H = H(0,1). The exchange
coupling J, is antiferromagnetic and is set to unity henceforth. The limit of isolated rungs is the
limit for which the perturbative treatment is controlled.

The ground state of the unperturbed part H, is the product state with singlets on all rungs.
A first excited state is a single rung excited to a triplet. There are 3L/2 such elementary triplet
excitations if L is the number of spins. The energetically next higher state is given by two rung-
triplets and so on. The operator H; simply counts the number of rung-triplets.

For the rest of the discussion of the two-leg ladder Q is identified with H,, i.e., the elementary
excitations of the unperturbed part (rung-triplets) serve as (quasi-)particles in the treatment of the
ladder system. These excitations are called rung triplons [208]. In the following the prefix rung is
skipped and the excitations will be just called triplons. But one has always to keep in mind which
underlying topology is associated with the word triplon.

Now the action of the perturbing part H on the triplon-states is analyzed in analogy to the case
of the dimerized chain. Let |n) denote a state with n rungs excited to triplets (n-triplon state),
i.e., Hi|n) = n|n). Then

H” = T_o+4+To+ Ty, with (7.3.2)
Tiln) ~ |n+i) and
Toxa = Y Toz2(v), (7.33)
v

where v denotes pairs of adjacent rungs. The index v can also be viewed to count the bonds
connecting adjacent rungs. The action of the local operators 7o +2(v) on neighboring rungs is given
in Tab. 7.1. There are no Ty; in H) because the two-leg ladder conserves the parity concerning
the reflection about the centerline of the ladder.

7.3.1 Observables for the two-leg ladder

Next, the evaluation of the observables of interest in the ladder system is focused on. The ob-
servables differ from the chain system due to the different topology of the ladder. The four local
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Table 7.1: Action of the operators 7; as defined by Eq. 7.3.3 on product states of adjacent rungs. Singlets
are denoted by s and triplons by t where the superscript indicates the magnetic quantum number. The
remaining matrix elements can be found by using Th= T n

operators considered are

O'(r) = S1,52,=T (7.3.4a)

Ol(r) = SiSir1 (7.3.4b)
= %(7-—2+76+7'2+7'_”1+7'1”)

o(r) = sf, -5, =T +T7" (7.3.4¢)

oV(r) = 8§, +85,=T5", (7.3.4d)

where the decompositions are either given in Tab. 7.1 for the 7 or in Tab. 7.2 for the 7#, with
w € {LILIU,IV}. The index /| = 1,2 in Eq. 7.3.4b denotes the leg on which the observable
operates. The discussion is started with a simple but important symmetry property. Let P denote
the operator of reflection about the center-line of the ladder as depicted in Fig. 7.5. If |n) denotes

‘_ ............................... i [P I P —————. ’

Fig. 7.5: The operator P reflects about the depicted axis. A single rung-singlet (-triplon) has odd (even)
parity with respect to P. The action of P on the rung-singlet ground state is defined to be of even parity
P|0) = |0). If in |0) one singlet is substituted by a triplon one obtains the state |1) and P|1) = —|1).
Generally, one has P|n) = (—1)"|n).

a state with n rungs excited to triplons while all other rungs are in the singlet state one finds
Plny = (—=1)"|n), see caption of Fig. 7.5. The state |n) might be a linear combination of many
n-triplon states so no generality is lost in writing

Ocrr0) = In) . (7.3.5)

n>0
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Table 7.2: Action of the local operators 7 appearing in Egs. 7.3.4. The notation is the same as in Tab.
7.1.

The parity of the ladder observables introduced in Eqs. 7.3.4 with respect to P is clear from their
definition: O"' is odd while @' and O are even with respect to P, just as the symmetriezed
observable 0" = (O + 0Y)/2. These parities are conserved under the CUT so that P applied on
both sides of Eq. 7.3.5 yields

2n), Oefr even
OefF|0) — { En| > ff (736)

Zn|2n+ 1),  Oef 0odd

It is thus found that an even (odd) parity of Qs implies that O can inject an even (odd) number
of triplons into the system.

The coefficients ¢ in Eq. 3.7.14 have been calculated for the one- and two-triplon case on a
computer in a similar fashion as the coefficients t for the effective Hamiltonian. The implementation
of O acting on the ground state |0) follows the same line as described in detail for Heg in
Ref. [143]. The minimum clusters necessary for some fixed order arise from the same considerations
as in Sect. 3.6. Again, the coefficients c are rational numbers which are computed up to kpax = 10t
order for the observables in Eqgs. 7.3.4. This corresponds to processes which extend over up to ten
rungs.
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7.4 Spectral weights

In this section the spectral weights of the two-leg ladder are analyzed. As explained above there is
no phase transition except for x — oo, i.e. the extrapolation of the spectral weights should work
reliably in a broad range of x. On the other hand, it is clear that the physics involving the legs of
the ladder becomes more and more important for x > 1 meaning that more and more rung triplons
are needed to describe the system.

741 S=1

First, the spectral weights for excitations with total spin S = 1 are discussed. The local observable
considered is the symmetric combination of Eq. 7.3.4c and Eq. 7.3.4d

054 (r) = 5(0"() +OM(r)) (7.4.1)

This observable injects an odd and an even number of triplons in the system and it is therefore
predestinated for analysing the spectral weights. The spectral weights were calculated up to order
10 in the one- and two-triplon channel, up to order 9 in the three-triplon channel and up to order
10 in the four-triplon channel. The total spectral weight /i is equal to 1/4 for S = 1.

In Fig. 7.6 the relative spectral weights /nrel = /n/ltor are shown. In all extrapolants standard
dlogPadé is used. At x = 0, the total spectral weight is in the one-triplon channel. Turning on
X, the spectral weight in the one-triplon channel reduces but stays dominant in the whole range
up to x = 1.5. The two-triplon spectral weight grows faster than the other multi-triplon channels
for increasing x and contains 20% of the spectral weight for the isotropic ladder. The three-
triplon contribution stays small up to x =~ 1 and grows then very fast for larger x. Note that
the extrapolation for the three-triplon channel is not reliable anymore for x > 1. This can also
be seen at the sum rule which differs from 1 in the same way as the three-triplon spectral weight
shoots up. The extrapolations for the one- and two-triplon channels are very stable in this range.
The contribution of four triplons is at least one order of magnitude smaller than the three-triplon
contribution and therefore would not change the Fig. 7.6.

It can be concluded that the one- and two-triplon contribution capture the dominant part of the
total spectral weight for x < 1.5.

742 S=0

The local observable Ol in Eq. 7.3.4b is considered for the S = 0 case. Here the total spectral
weight /ot (x) can be obtained in analogy to the case of the dimerized chain from the ground state
energy per spin €o(x). Since 20k (x) = 8/0xHes(x) the sum rule can be expressed in terms of
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IN,rel(x)

Fig. 7.6: Relative weights for the S=1 operator (0" (r) + OV (r)) (Eq. 7.3.4c and Eq. 7.3.4d). The Iy
are calculated according to Eq. 3.7.15 up to and including order 10, 10 and 9 in x for N =1, 2 and 3
respectively. The total intensity /it is equal to 1/4.

the effective Hamiltonian, giving rise to

hot = Y In = (0]0°|0) — (0]0|0)°
N=0

_3 .y v (7.4.2)
16 2 2 o
with Y := 8¢p/0x. Therefore one can calculate the corresponding relative spectral weights Iy //iot
as functions of x by extrapolating y. Fig. 7.7 shows the resulting relative weights for the observable
Ol for the first four triplon sectors.
Since one cannot form an S = 0 object from a single rung-triplon there is no /; for this observable.
The contribution of /5. is of order 1073 leading to no visible changes in Fig. 7.7. Contributions of
higher triplon channels are expected to be even smaller. All relative weights add up to unity. As can
be seen in Fig. 7.7 the first four relative weights fulfill this requirement with great precision. For
x = 0 the singlet made from two isolated-rung triplons contains the full weight of the considered
operator. As x increases the triplons start to polarize their environment, the two-triplon weight
decreases and multi-triplon states gain weight.
From the results shown for the S = 1 and S = 0 cases it can be concluded that the rung triplon is
an excellent choice for a quasi-particle description in the ladder system. For x not too large most
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IN,reI(X)

Fig. 7.7: Relative weights for the S=0 operator S1;S1,i+1 (Eq. 7.3.4b). The Iy are calculated according to
Eq. 3.7.15 up to and including order 10, 8 and 7 in x for N =2, 3 and 4 respectively. The total intensity
lot has been extracted from the 14™ order result for the ground state energy per spin according to Eq.
3.7.16.

of the spectral weight is captured by a few triplons. Therefore calculations containing only a few
triplons suffice to explain most of the physics for x < 1.0.

7.5 Energy properties

In this section the energy properties of the two-leg ladder system are discussed. The focus is laid on
typical aspects which have the strongest influence on the one-triplon and the two-triplon spectral
properties and on the relative positions of multi-triplon continua to each other.

7.5.1 Ground state energy

The action of Hes on |0) was calculated up to 14" order on a cluster of 15 rungs to find the
ground state energy. The result is a 14" order polynomial in x. It is the exact energy of the
infinite system to the given order. The coefficients are fractions of integers and therefore free from
rounding errors. The series agree with the numerical results given by Zheng et al. [320].

The plain polynomial is depicted as dashed line in Fig. 7.8. The solid lines correspond to four differ-
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ent dlog-Padé extrapolants (see Chapt. 5) of this quantity and constitute a reliable extrapolation.
The truncated series result can be trusted up to x ~ 0.7.

various Dlog-Pades
-0.4 — —~— truncated series i

Fig. 7.8: Ground state energy per spin as function of x. The plain series result is depicted as dashed line.
Four different Dlog-Padé approximants ([7,6], [8,5], [5.8] and [6,7]) are shown as solid lines.

7.5.2 One-triplon dispersion

The effective Hamiltonian H is calculated in the one-triplon channel up to order 14 in x := 4/ L
Thereby the one-triplon dispersion w(k) = (k|Hest|k) — Eo is obtained. The one-triplon dispersion
has a global minimum for k = m, the one-triplon gap A(x). In Fig. 7.9 the truncated series for
A(x) is shown as a dashed line. The truncated series for A(x) and t,(x) is reliable up to x ~ 0.6.

The solid and dotted lines in Fig. 7.9 depict biased dlogPadé extrapolants (see Sect. 5.2) for the
one-triplon gap A(x)/J.. The bias used is that the one-triplon gap A when measured in the rung
coupling J, have to approach a constant for x — oo. The latter follows from the fact that the
one-triplon gap A/Jj scales as 1/x if two Heisenberg chains are coupled by a small J, [321, 345].
The extrapolation is very stable for the one-triplon gap. The one-triplon gap for the isotropic
ladder (x = 1) is A/J, ~ 0.504. Increasing the coupling to x > 1 only leads to a small additional
reduction of A/J,. A more detailed discussion of the one-triplon gap, especially of the asymptotics
x — oo, will be given in the next chapter.

The one-triplon disperion w(k)/J. is shown in Fig. 7.10. The truncated series is valid up to
x = 0.6 similar to the case of the one-triplon gap. For larger values of x additional extrapolation is
needed. The results depicted in Fig. 7.10 were obtained by using the method of internal parameters
as explained in Sect. 5.4. The black curves are the truncated series in the internal parameter without
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Fig. 7.9: One-triplon gap A(x) = w(m) depending on the parameter x. The dashed line shows the one-

triplon gap as obtained from the trunctated series. The other three curves show the biased dlogPadé
extrapolants [8,6], [7,7] and [6,8].

using any further extrapolation. The grey curves show results where an additional [11,2] dlogPadé
extrapolation is used. The small differences between the black and the grey curve for the isotropic
(x = 1) case demonstrate that even the truncated series in the internal parameter gives quantitative
results up to these values of x.

At x = 0 the system is completely local resulting in a flat dispersion w(k)/J1. = 1. The dispersion
is cosine-like for finite x < 0.6. For larger values of x the one-triplon dispersion shows a local
minimum at k = 0 shifting the global maximum away from k = 0 to k = w/2. This development
can be understood in two ways: in the limit of isolated chains and in the rung-triplon picture. The
dispersion of an isolated Heisenberg chain is symmetric about k = w/2 and it is gapless for k = 0
and k = 7 (see Chapt. 6). The dip at k = 0 of the one-triplon dispersion for the spin-ladder is
therefore a precursor of the spin-chain physics. On the other hand, the dip can be understood as
a consequence of the closeness of the three-triplon continuum. It will be shown in Subsect. 7.5.4
that the three-triplon continuum comes close to the one-triplon dispersion, especially at k = 0,
pushing the one-triplon dispersion downward.

The latter also explains that difficulties in the extrapolation of the one-triplon dispersion arise
mainly near k = 0 while the extrapolation for larger values of k is safe even for very large values
of x. The results shown in Fig. 7.10 are in quantitative agreement with other series expansion
results [322], exact diagonalization [323] and DMRG results [324].
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Fig. 7.10: One-triplon dispersion w(k) for different values of x € {0.0;0.2;0.4;0.6;0.8; 1.0; 1.2; 1.5; 2.0}.
The results were obtained by using the method of internal parameters as explained in Sect. 5.4. The black
curves are the truncated series in the internal parameter without any further extrapolation. The grey curves
show results where an additional [11,2] dlogPadé extrapolation is used. For the case of the isotropic ladder
x = 1 extrapolants for both extrapolation schemes are plotted showing that even the plain series gives
quantitative results for these values of x.

7.5.3 Two-triplon continuum and bound states

In this section the two-triplon energy properties are described. As illustrated for the one-triplon
dispersion one should distinguish between x < 0.6 where the physics of the spin-ladder is dominated
purely by rung physics and x > 0.6 where the crossover from ladder to chain physics begins. In the
following results for x = 0.5 and x = 1.0 are shown illustrating these two cases.

In analogy to the spin-chain case discussed in Chapt. 6, two triplons form a two-triplon continuum.
Additionally, two-triplon bound or antibound states are formed depending on the total spin of the
two triplons [177,179, 181,197,198, 251,298, 325]. In Fig. 7.11 the two-triplon continuum and
the two-triplon bound states are depicted for a) x = 0.5 and b) x = 1.0. Note that the total spin
S = 2 case where an antibound exists [177] is not discussed here.

The structures at x = 0.5 are quite featureless due to the cosine-form of the one-triplon disper-
sion (see Fig. 7.11a). The continuum has the largest width at kK = 0 and becomes monotonically
smaller for finite momentum reaching a very small width for k = w. At about k =0.4m,a S=1
and a S = 0 two-triplon bound state emerge from the continuum. The binding energy of the S =1
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Fig. 7.11: One-triplon and two-triplon energies of the two-leg ladder for x = 0.5 (a) and x =1 (b). The
thick solid black line denotes the one-triplon dispersion w(k). The grey solid lines correspond to the lower
and the upper edge of the two-triplon continuum. The dashed grey lines denote the S = 1 two-triplon
bound states and the long dashed grey lines correspond to the S = 0 two-triplon bound states.

bound state is smaller than the S = 0 bound state. The dispersion of the S = 1 bound state is
monotonic approaching k = 7 while the dispersion of the S = 0 bound state is almost flat showing
a maximum at about k ~ 0.6 and a mininum at kK = 7.

The situation at x = 1 shows more pronounced features (see Fig. 7.11b). The form of the two-
triplon continuum has changed due to the local minimum of the one-triplon dispersion at k = 0.
The minimum width of the continuum has shifted from k = 7 at x = 0.5 to k ~ 7/2. This results
in a change of the dispersion of the two-triplon bound states. Both bound states show a maximum
at k =~ w/2 and a minimum at k = w. The binding energy of the S = 1 bound state is small for
almost all k-values while the S = 0 bound state lies well below the two-triplon continuum and has
a fairly large dispersion.

7.5.4 Multi-triplon continua

This part presents information about the relative position of multi-triplon continua (three- and
four-triplon) to one- and two-triplon energies depending on the parameter x. This information is
extremely important for the interpretation of the results which will be shown in following sections.
In the spin-ladder, only channels with both odd or both even number of triplons are connected
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Fig. 7.12: Multi-triplon continua of the two-leg ladder for x = 0.5 are shown. One- and three-triplon
energies are shown in the left panel while two- and four-triplon energies are depicted in the right panel.
Left panel: the solid black line denotes the one-triplon dispersion w(k). The grey solid lines correspond
to the lower and the upper edge of the three-triplon continuum including binding effects. The dashed
grey lines denote the lower band edge of the three-triplon continuum neglecting binding effects. Right
panel: the solid black lines correspond to the lower and the upper edge of the two-triplon continuum. The
dashed black line corresponds to the two-triplon bound states. The solid grey lines denote the lower and
the upper band edge of the four-triplon continuum. The dashed grey line depicts the lower band edge of
the four-triplon continuum neglecting binding effects.

directly, i.e. the one- and three-triplon channel or the two- and four-triplon channel. It is clear
that for small values of x all triplon channels are energetically separated; the energy difference is of
order J;. It will turn out that this changes gradually upon increasing x. Note that a wrong order
of triplon channels, meaning the energy of more triplons is smaller than the energy of less triplons,
results in a breakdown of the particle conserving continuous unitary transformation as described
in this thesis [326]. Nevertheless it is even in these situations possible to find extrapolations of
the well defined perturbative series. The extrapolations neglect possible life-time effects due to
the decay in channels with higher triplon number. Such life-time effects are small as long as the
overlap between the continua is small because the spectral denisties for three and four triplons are
strongly suppressed at the band edges [327].

In Fig. 7.12 and Fig. 7.13 multi-triplon continua of the spin-ladder are depicted. In Fig. 7.12
results for x = 0.5 are shown while Fig. 7.13 presents the same data for the isotropic case x = 1.
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As discussed above, only channels with odd or even number of triplons are connected directly. It
was shown in Sect. 7.4 that only channels up to four triplons contain a sizable spectral weight.
Therefore it is important to study the relative position of the one-triplon dispersion and the three-
triplon continuum (left panels in Fig. 7.12 and in Fig. 7.13) and the relative position of the two-
and four-triplon continua (right panels in Fig. 7.12 and in Fig. 7.13).

It can be seen that the one-triplon dispersion is located below the three-triplon continuum for
x = 0.5 and x = 1.0. It is important to note that one has to include binding effects to calcuate
the lower band edge of the three-triplon continuum. One has to distinguish between the energy
of three independent triplons and the energy of two triplons forming a two-triplon bound state
plus the energy of one triplon. The grey dashed line in the left panels corresponds to the lower
band edge of three triplons neglecting the triplon-triplon interaction. The solid grey line in the
left panels takes binding effects into account. This means that one can lower the total energy of
three triplons near k =~ 0 by binding two triplons to one two-triplon bound state and combining
this particle with the one which is left over. Note that in principal multi-triplon interactions can
result in multi-triplon bound states which would change the picture. But it has been investigated
that the three-triplon interaction is weak for all parameters considered in this work [327]. It can
be expected that interaction with more than three triplons involved are even less important.

The minimal energy difference between both triplon channels is at k = 0. The lowest energy of
the three-triplon continuum is the sum of the S = 0 two-triplon bound state at kK = 7w and the
one-triplon gap A. This difference is lowered by increasing x due to the enhancement of triplon-
triplon interactions for growing x. The dip for x > 0.6 of the one-triplon dispersion at kK = 0 can
therefore be understood as a consequence of the closeness of the three-triplon continuum pushing
the one-triplon energy downward?.

The relative position of the two- and four-triplon continua is a more subtle issue. The solid black

lines denote the lower and upper band edge of the two-triplon continuum and the solid grey lines
depict the lower and upper band edge of the four-triplon continuum. Here again the effect of
binding is included in the calculation (combination of two two-triplon bound states to a four-triplon
state). The dashed grey lines denote the lower band edge of the four-triplon continuum neglecting
triplon-triplon interactions.
It can be seen that the four-triplon continuum lies (at least partially for x = 0.5) below the upper
edge of the two-triplon continuum, i.e. these two contibution intersect each other. A strict separa-
tion of energies due to the continuous unitary transformation is therefore not possible [326]. Nev-
ertheless it is possible to extrapolate the well defined plain series in this regime. The spectral weight
near the lower band edge of the four-triplon continuum increases slowly like /4(w) o w'®/? [327].
Therefore the error is expected to be very small. But at higher energies life-time effects may give
rise to more important deviations?.

IThe generator of the particle conserving continuous unitary transformation represents the states in increasing

order of Q. [141, 143].
2The intersection of the two- and four-triplon continuum is larger in the S = 0 case than in the S = 1 case due to

the larger binding energy of the S = 0 two-triplon bound state. Therefore life-time effects are expected to be

smaller in the S = 1 case.
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Fig. 7.13: Multi-triplon continua of the two-leg ladder for x = 1. One- and three-triplon energies are shown
in the left panell while two- and four-triplon energies are depicted in the right panel. The notation is the
same as in Fig. 7.12.

7.6 S = 1 excitations

This part shows results for the dynamical structure factor of the spin-ladder. In the following results
are shown for the one-triplon and the two-triplon contribution to the spectral density analogue to
the case of the dimerized and frustrated spin-chain (see Sect. 6.4). These two contributions are
the most relevant ones for the exchange couplings considered (see Sect. 7.4).

7.6.1 One-triplon contribution

The action of the full observable (9”'|1trp is decomposed in the one-triplon channel on the ground
state for fixed one-triplon momentum k by writing

Ollllltrplo> :A!I_I!rp(k)lk)l (761)

where the amplitudes A}, are given by

Al =ag+2) aj cos(kl) . (7.6.2)
>0
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Fig. 7.14: One-triplon spectral density /1(k) for ©"'. Dashed grey line corresponds to x = 0.25, dashed
black depicts x = 0.5, solid grey line represents x = 0.75 and solid black line denotes x = 1.0.

The sum runs over all rungs / > 0. The amplitudes a} correspond to the operator S5f,. The
amplitudes a7 of S5, do not need to be calculated separately because it can be determined by
using the inversion symmetry of the ladder plus the symmetry concerning the reflection about the
centerline of the ladder. One obtains a?> = —a} and a', = a} so that only amplitudes a} with
non-negative / have to be determined.

The one-triplon contribution to the dynamical structure factor is dominant for the couplings consid-
ered here for all momenta. The k-resolved spectral weight /1(k) is shown in Fig. 7.14 for x = 0.25,
x =05, x=0.75and x = 1. The result for x = 1 is in agreement with exact diagonalization
data [328].

At x = 0, the total spectral weight is in the one-triplon channel. Therefore the k-resolved spectral
weight for x = 0 is /1(k) = 1/4. Turning on x, the one-triplon spectral weight decreases for small
momenta while it increases for momenta near k = 7. In the next subsection it will be shown that
the two-triplon contribution of the dynamical structure factor vanishes at kK = 0. Therefore the
spectral weight of the one-triplon channel near this momentum is shifted mostly to the three-triplon
channel. It can be concluded from Fig. 7.14 that the spectral weight in the one-triplon channel is
concentrated about k = m for increasing x. This agrees with findings from bosonization where the
case of weakly interacting chains is studied. One finds a §-peak in the dynamical structure factor
in the surrounding of the momentum k = 7 corresponding to the excitation of one triplon [321].
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Fig. 7.15: Two-triplon spectral density /5(k,w) for O"V:(a) x = 0.5 and (b) x = 1.0. The grey solid lines
mark the lower and the upper edge of the two-triplon continuum. The black solid lines denote the two-
triplon bound states. The dark grey dashed line denotes the lower band edge of the four-triplon continuum.
In (b) an additional dark grey solid line is included which is a guide to the eye linking the midband square-root

singularities.

7.6.2 Two-triplon contribution

The two-triplon contribution to the dynamical structure factor represents the only sizable contri-
bution besides the one-triplon part discussed in the last subsection (see Sect. 7.4). Nevertheless
its overall spectral weight is quite small (/o < 0.3 for x < 1.5). Fortunately the two-triplon
contribution is protected by its parity. As discussed in Sect. 7.3, all contributions can be classified
concerning the parity P denoting the operator of reflection about the center-line of the ladder
as depicted in Fig. 7.5. Channels excited by O"' have odd parity and channels excited by O
have even parity as is seen from Eq. 7.3.6. The two-triplon contribution is therefore the dominant
contribution with even symmetry and so of possible experimental relevance inspite of its overall
spectral weight is small.

One decomposes the action of the full observable (’)'Vlgt,p in the two-triplon channel on the ground
state for fixed two-triplon momentum k

OV |aurpl0) = Y ASir (k, d) |k, ). (7.6.3)
d
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Fig. 7.16: The two-triplon S = 1 bound state energy and the spectral weight for x = 0.5 (upper panels)
and for x = 1.0 is shown (lower panels). Left panels: The solid grey line denotes the lower edge of the
two-triplon continuum and the solid black line depicts the dispersion of the S = 1 two-triplon bound state.
Right panels: The k-resolved spectral weight of the S = 1 two-triplon bound state is depicted.

Here d denotes the relative distance between the two triplons and
. d
Ao (k. d) = Z aj 14qSin (k(l + 5)) : (7.6.4)

The sum runs over all rungs / and af , 4 is the amplitude for the creation of two triplons on rungs
I 'and I + d by S%.

Here in analogy to the case of the dimerized and frustrated chain it is convenient to use a
mixed representation in which the center-of-mass coordinate is Fourier transformed and the relative
coordinate is dealt with in real space. The action of S5 does not need to be calculated. In analogy
to the one-triplon case the relations a7, , = a} .4 and aj ,, , = —a’,_, _, hold. These two relations
follow from inversion symmetry and the reflexion about the centerline of the two-leg ladder.

In Fig. 7.15 and Fig. 7.16 the results for the two-triplon contribution to the dynamical structure
factor are shown for x = 0.5 and x = 1.0. First the two-triplon continuum is described. The
lower and upper band edge of the two-triplon continuum is indicated in Fig. 7.15 as solid grey
lines. The spectral density shows square root behavior ~ /w near the band edge reflecting again
the hard-core property of the triplons. The spectral weight is distributed mainly close to the lower
band edge of the continuum for x = 0.5 and x = 1.0. So the distribution of spectral weight
shows already properties of the chains which was discussed in the last chapter. The latter point
is strengthened by the observation that a mid-band singularity occurs in both spectral densities
which can be interpreted as a precursor of the upper band edge of the two-spinon continuum for
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the isolated spin-chain. In Fig. 7.15b the dark grey line is a guide to the eye linking the midband
square-root singularities [179].

The dark dashed grey line in Fig. 7.15 signals the lower band-edge of the four-triplon continuum.
As discussed in Subsect. 7.5.4, the two-triplon and four-triplon continua intersect each other so
that life-time effects change the obtained extrapolated results. It is expected that these effects are
small in the S = 1 sector because the spectral weight is very small in the four-triplon sector (at
least up to x = 1). Nevertheless some effects can be expected for large momenta for the isotropic
case.

The dispersion of the § = 1 two-triplon bound state is depicted as a solid black line in Fig. 7.15
and in the left panels of Fig. 7.16. The spectral weight of the two-triplon bound state is depicted
in the right panels of Fig. 7.16. The emergence of the bound state from the continuum can also
be nicely seen in the singular behavior of the spectral density at the lower band edge. The spectral
weight of the bound state is largest for the largest binding energy. Therefore the maximum of the
spectral weight is shifted from k = m at x = 0.5 to k ~ 0.77 for x = 1.

7.7 S = 0 excitations

In this section the two-triplon contribution of the observables @' and ©" is discussed. The two-
triplon contribution is the leading and the most important contribution to the spectral density
with total spin zero in the coupling regime under study. The S = 0 case is relevant for optical
experiments like Raman spectroscopy and infrared absorption. This will be discussed in more detail
in the next chapter.

The action of the full observable O'|at, and O"|a, in the two-triplon channel on the ground
state is decomposed for fixed two-triplon momentum k

0"M2p|0) =~ Ay (k. )k, ). (7.7.1)
d
Here d denotes again the relative distance between the two triplons and
. d
A (k. d) =Y alf)l sin (k(/ + 5)) : (7.7.2)
I

The sum runs over all rungs / for O' and over all bonds on the leg for O"'. The amplitudes a)/}}
denote the creation of two triplons on rungs / and / + d.
In Fig. 7.17 and Fig. 7.18 the results for the two-triplon continuum are shown for x = 0.5 and
x = 1. The dispersion and the spectral weight of the S = 0 two-triplon bound state is depicted
for both values of x in Fig. 7.19. Spectral densities for x € {0.2,0.4,0.6,0.8} can be found in
Ref. [189].
The energy situation in the S = 0 case is very similar to the S = 1 case. The support of the
continuum is the same and there is also one S = 0 two-triplon bound state. The binding energy
of the bound state is larger compared to the case S = 1. But the spectral properties are different

in some respects.

The main difference occurs for small momenta where the two-triplon contribution in the S = 1 case



156 The antiferromagnetic two-leg ladder

1 063}
1.0 [ 1 o I
E os R = Y
x 77\! v i
0.6 '
0.4 gL
0.2
0.0 F } } ; } .
T 063
1.0 [ AN — 1
E 0.8 ) e ————
~ 06 AR =
0.2 —
00 2 1 " 1 " 1 ry 2
1.0 1.5 2.0 25 3.0 3.5
w([J
[ l]

Fig. 7.17: Two-triplon spectral density /,(k,w) for total spin zero at x = 0.5. The upper panel shows
results for observable @' and the lower panel depicts results for ©". The grey solid lines represents the lower
and the upper band edge of the two-triplon continuum. The black solid line denotes the S = 0 two-triplon
bound state. The dashed dark grey line marks the position of the lower band edge of the four-triplon
continuum.

is reduced by symmetry while a large continuum exists in the S = 0 channel. The k = 0 two-triplon
spectral density represents the leading contribution to the Raman response in spin-ladders [180].
The Raman line-shape is the same for ©' and ©" [180]. This can clearly be seen in Fig. 7.17 and
Fig. 7.18. It follows that the three-triplon contribution of O" has to vanish for k = 0. The Raman
operator has an even parity [295] so that it does only couple to spin observables with even parity.
Therefore the Raman response comprises only of channels with an even number of triplons.

The line shape at k = 0 is dominated by the two-triplon peak which becomes sharper upon increasing
x. In addition, a characteristic zero emerges for x > 0.6 inside the continuum producing a second
peak at higher energies clearly visible at x = 1 (see Fig. 7.18) [180, 188]. The dashed dark grey
line in Fig. 7.17 and Fig. 7.18 denotes the lower band edge of the four-triplon continuum. It can
be expected that the characteristic zero inside the band and the second peak at higher energies are
modified by life-time effects [326]. The implications for the experimental Raman line-shape will be
discussed in more detail in the next chapter.

The two observables @' and ©" show different spectral properties for finite momentum, especially
for large momenta near k = w. The spectral density of @' at k = 7 displays an almost anti-bound
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Fig. 7.18: Two-triplon spectral density /o(k, w) for total spin zero at x = 1.0. Results for observable @' is
shown in the upper panel and results for ©@" are depicted in the lower panel. The grey solid line represents
the lower and the upper band edge of the two-triplon continuum. The black solid line denotes the S = 0
two-triplon bound state. The dashed dark grey line marks the position of the lower band edge of the

four-triplon continuum.

state while the observable ©®" shows a broad hump centered in the middle of the band. The mid-
band square-root singularities present in the S = 1 case are also present for @' and for @'. Both
observables show sharp structures inside the continuum near k = /2 at high energies. It can be
expected that these structures are broadened due to life-time effects.

The distribution of spectral weight for the S = 0 two-triplon bound state is different for both
observables as can be nicely seen in the right panels of Fig. 7.19. The spectral weight of the bound
state at k = 7 vanishes for @' while it is maximal for @". This fact and the two extrema of the
dispersion of the two-triplon bound state at k = w/2 and k = 7 are crucial for the experimental
determination of the S = 0 two-triplon bound state in cuprate ladder systems by infrared absorption
[298]. The infrared absorption will be discussed in more detail in the next chapter. Note that the
intersection of the two-triplon continuum and the four-triplon continuum is not important for the
two-triplon bound state.
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Fig. 7.19: Two-triplon S = 0 bound state energy and spectral weight for x = 0.5 (upper panel) and x = 1.0
(lower panel). Left panels: The solid grey line denotes the lower edge of the two-triplon continuum and the
solid black line depicts the dispersion of the S = 0 two-triplon bound state. Right panels: The k-resolved
spectral weight of the S = 0 two-triplon bound state is shown as measured by @' (solid line) and by ©O"
(dashed line).

7.8 Chapter summary

This chapter deals with the energy and the spectral properties of the two-leg Heisenberg spin-ladder.
The perturbative continuous unitary transformation is implemented about the limit of vanishing leg
coupling. Therefore the basic quasi-particle is the rung-triplon.

It is shown that the leading channels, namely one- and two-triplon, contain most of the spectral
weight up to x & 1.5. Nevertheless three- and four-triplon channels contribute a sizable part to the
total spectral weight in comparison to the case of the dimerized and frustrated spin-chain discussed
in the last chapter. Hence the rung-triplon quasi-particle picture is less effective for J; > J1 but
still works and a leg-triplon picture might be more useful there.

Energy properties like the one-triplon dispersion, the bandedges of the two-triplon continuum and
the dispersion of the two-triplon bound states but also the position of the three- and four-triplon
continua are presented. The one-triplon dispersion changes from a cosine-like form at small cou-
pling to a shape including a characteristic dip feature at k = 0 for larger coupling signaling the
crossover to spin-chain physics. There are two two-triplon bound states, one with total S = 1
and one with S = 0. It has been shown that the one-triplon dispersion lies below the three-triplon
continuum while two- and four-triplon continua intersect already at small ratios of the exchange
couplings. As a consequence the results for the two-triplon properties in this regime neglect possible
life-time effects, namely the decay of two triplons into four triplons.
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One- and two-triplon spectral densities for total spin one and total spin zero are presented. The
dynamical structure factor is dominated by the leading one-triplon channel. The maximum of its
spectral weight is at k = m , where the one-triplon gap is located. It is shown that the subleading
two-triplon contribution is the leading contribution with even parity concerning the reflection about
the centerline of the ladder. Therefore it is protected due to its parity meaning that it is possibly
relevant for experiments inspite of its overall small spectral weight. Spectral densities with total
spin zero can be realized either by coupling to the rungs or to the legs of the ladder. It is shown that
the spectral properties are identical for zero momentum and therefore similar at small momenta.
But both observables differ essentially at large momenta, both in the line shape of the two-triplon
continuum and in the spectral weight distribution of the two-triplon bound state.
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8 The antiferromagnetic two-leg ladder
with four-spin interactions

In this chapter the antiferromagnetic two-leg ladder with additional four-spin interaction is dis-
cussed. It has become clear in the last years that the minimal magnetic model of cuprate systems
(ladders and planes) has to include four-spin interactions in order to obtain a quantitative descrip-
tion of the materials.

The size of the four-spin exchange in cuprate ladders is shown to be about 10% of the leading
nearest-neighbour Heisenberg exchange. It is demonstrated that the cuprate ladders remain in
the so-called rung-singlet phase. The major part of this chapter deals therefore with the spectral
properties of the rung-singlet phase.

The structure of the chapter is analoqous to the previous one. The concentration is laid on the
effect of the four-spin interactions on the spectral weights, the energy properties like the dispersion
of the two-triplon bound states and the band edges of the multi-triplon continua as well as the
spectral densities for total spin one and total spin zero. The last part of this chapter is concerned
with the description of magnetic properties of ladder systems as realized in the cuprates.

8.1 Model

Usually only Heisenberg-like exchanges are considered in the description of magnetic properties of
many-body systems. It has been realized early by Dirac [329] and later was introduced in condensed
matter physics by Thouless [330] that the general expression for the exchange Hamiltonian reads

oo

Hex =D dan(~1)P Pa, (8.1.1)
n=2 a,

where P,, denotes a spin permutation operator and the sum runs over all permutations a,, of n spins.
P., represents the parity of the permutation a,. Physically all these contributions correspond to
the exchange of n spins. The first term represents the usual two-particle exchange which is usually
the dominant contribution.
The importance of the exchangess with more than two particles was realized first in the description
of the magnetism of solid 3He [331]. Here the two-particle exchange is small and higher exchange
processes, especially the four-spin exchange, are even the dominant exchange processes.
The situation in cuprate systems is different compared to solid 3He. Here the dominant exchange
is the nearest-neighbor Heisenberg exchange. Nevertheless, it has turned out by the derivation of
effective low-energy Heisenberg models from realistic three-band [61, 332—-334] and one-band [63,
64, 326] Hubbard models that the four-spin ring exchange is the dominant correction to the usual
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Fig. 8.1: Illustration of the two-particle and the four-particle permutation operators P;j and P,

nearest-neighbour Heisenberg exchange. The value of the four-spin ring exchange obtained from
these studies is about 10% of the dominant Heisenberg exchange®.

The first clear experimental signature of the relevance of four-spin ring exchange in cuprate planes
was found by inelastic neutron scattering of LaCuy04 in 2001 [57]. It was found that the spin-wave
dispersion can only be explained by the inclusion of four-spin interactions [57, 67, 68, 74].

The first hint of four-spin interactions in cuprate ladders was found in 1999 by inelastic neutron
scattering [335-337]. The fitting of the experimentally measured one-triplon dispersion with the
standard Heisenberg model results in Jj;/J1. ~ 2 which seems unphysical considering the geometrical
structure of the cuprate ladders suggesting Jj ~ J1. The inclusion of four-spin interactions can
resolve this discrepancy. The ratio J;/J1 ~ 2 was later shown to be inconsistent with infrared
absorption [298] and Raman spectroscopy [180] which both favored an isotropic exchange Jj ~ J. .
The first quantitative determination of the exchange constants in cuprate ladders was possible by a
DMRG calculation analyzing infrared absorption data [324] which results in Jj/J; ~ 1.2 -1.3 and
additional four-spin interaction Joyc/Ji &~ 0.1 — 0.125. These parameters were further confirmed
by the description of Raman data of cuprate ladders [317, 338].

The Hamiltonian of the two-leg ladder with additional four-spin ring exchange term reads

HP = B PP+ B PP+ Hiy (8.1.2)
JP B
Heye = % Z (Pijkl"'Pijkll) .
<ijkl>

Here P, is the permutation operator of two-particles, i the rungs and 7 € {1, 2} the legs. The

INote that the absolute value of the four-spin interaction depends on the way this term is written in the Hamiltonian.

In the literature the value 20% is also often used which corresponds to the value discussed in this thesis.
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permutation operator of four particles is Pjjx (see Fig. 8.1) where < jjk/ > restricts the sum to
permutations of four spins on a plaquette. It is convenient to introduce spin-operators and rewrite
(8.1.2) as a Heisenberg model plus additional four-spin interactions

H=J, Z Si1Si2+ Jj Z Si+Sit1,r + Heye (8.1.3)

iT

where i denotes again the rungs and T € {1, 2} the legs, and

Heye = 2Jeyc Z [(S1,i81,i+1)(52,i82,i+1) + (51,iS2.,i))(S1,i+1S2,i+1) — (51,iS2,i+1)(S1,i+1S2.1)]
plaquettes

(8.1.4)
Both Hamiltonians (Eq. 8.1.2 and Eq. 8.1.3) are the same up to two-spin interactions along the
diagonal of the spin-ladder. It is known that these couplings are small (of the order 0.03J,) [333]
so that the discussion in the following is restricted to the Hamiltonian in Eq. 8.1.3. Note that both
expressions are in use in the literature. The relation between the exchange parameters of both
Hamiltonians reads

Jio= S+ R (8.1.5)
1

Jy = Jﬁ’+§ngc (8.1.6)

Joye = S5 - (8.1.7)

8.2 Method

In this part, the specific points of the method are discussed. In analogy to the previous chapter, the
starting point of isolated rungs is used to set up the perturbative continuous unitary transformation.
The ladder Hamiltonian plus additional four-spin interaction (Eq. 8.1.3) is reformulated according

to
H(x)

=H, + XHH + chchyc: (821)
Ji

with x = Jy/J1 and xeye = Jeye/J1 as perturbation parameters.
In the following the action of the additional term Hcyc on the triplon states is described. Hcyc can
be decomposed in

Hye = TH+T7°+T,°°, with (8.2.2)
TNy ~ |n+1i) and

Tk = Y TahW), (8.2.3)

v
where v denotes pairs of adjacent rungs. The action of the local operators 75?’;2(1/) on neighbouring
rungs is given in Table 8.1. Looking at Table 8.1, it is obvious that there are two additional matrix
elements, namely |s,s) — |s,s) and |s,t) — |s,t). These processes change only the local
energy of the rungs and do not change the state. Therefore they belong formally to H,. It is
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o |
|t0'il, 5> - |5' to'il)—%|t°'il, S)
|s, s) — 2ls.s)
|t0, til) — %|t0' til)
|t:t1, t:l:1> N %|ti1, t:tl)
|ti1, t¢1> N %|ti1, t;l)
[0, t0) — [t0, t0)
[ |
| Is.s) — OO [ e et |

Table 8.1: Action of the operators 7, as defined by Eq. 8.2.3 on product states of adjacent rungs.
Singlets are denoted by s and triplons by ¢ where the superscript indicates the magnetic quantum number.
The remaining matrix elements can be found by using 7,7"%¢ = T°.

convenient to introduce a local term H™" in the Hamiltonian in order to eliminate these matrix
elements. Defining

corr . __ 3 9
H®™ = Jeye Z (551,152,/' + E) (8.2.4)
and
H(x) = (JLHL = JoycH™) + JjH) + (JeycHeye + Jeyc H™) (8.2.5)
= (JLHL = JeycH®™) + JyH)| + Jeyc Aeye (8.2.6)

with I:Icyc = Hcye + H™" and the two above mentioned matrix elements vanish in Heye. The
corrected matrix elements of He,c decomposed in 755, (v), are presented in Tab. 8.2. The final
form of the Hamiltonian then reads

H XC C 7
I Hy + ’ Heye (8.2.7)
L

= (1- H
(1= 3xye) | Ho + 1 — 3Xeye

X
1 — 3Xeye

(1 = 3xeye) [Ho + RH|| + Zeye Heye]

where ¥ = x/(1 — 3Xye) and Xeye = Xeye/(1 — 3Xcye).  The perturbative continuous unitary
transformation is performed for the Hamiltonian (8.2.7). One obtains the truncated series in the
two expansion parameters X and X.yc. The effective Hamiltonian Hef is calculated in the one-triplon
sector up to order 11 and up to order 10 in the two-triplon sector.
The relevant observables are the same as in the previous chapter. The series obtained depend on
the two expansion parameters X and X.,c. The effective observables O are determined up to order
10 in both variables. Note that the series for the effective observables do not have the absolute
scaling factor (1 — 3xcyc)
X Xeye

effro o _ meff
(@) (X:XC)'C) =0 (]_ — 3chc' 1 — 3Xeye

) (8.2.8)

There are two reasons that the maximum order of the perturbative expansion including four-spin

interactions is reduced. Obviously, an expansion in two variables x and x.yc costs more computer



164 The antiferromagnetic two-leg ladder with four-spin interactions

| 275>
|t0,:i:1' S) — |5' tO,:I:l)
|ti1’ til) — 4|ti1' til)
[t£1 671 — 4|5, £F1)
[t0, £0) — 40, t0)
| 27 |
| Iss)  — SO+ e )+ e ) |

Table 8.2: Action of the operators 7~j°y° on product states of adjacent rungs. Singlets are denoted by s
and triplons by t where the superscript indicates the magnetic quantum number. The remaining matrix
elements can be found by using 7,/'¥¢ = 7.

memory. But additionally care must be taken in choosing the correct cluster size for the calculation.
In contrast to the applications in the previous chapters, the cluster size to calculate order k in the
thermodynamical limit correctly is not just k + 1. This is illustrated in Fig. 8.2 for a third order
process T_»TT> renormalizing the local hopping amplitude ty. Usually (as in the last two chapters)
the leftmost triplet does not need to be included in the calculation in order to obtain the correct
results in the thermodynamic limit because the overall amplitude is zero for processes including this
triplet. This is different in the case of finite four-spin interactions.

It follows that one has to use clusters of size 15 to calculate the one-triplon sector up to order 11
and the two-triplon sector to order 10. The same holds true for the cluster choice to compute the
effective observables.

8.3 Rung-singlet phase

This section is concerned with the so-called rung-singlet phase. It was discussed in the last chapter
that there is no phase transition for x,c = 0 except at x = oo, the case of two isolated spin-chains.
The ground state of the system is dominated by rung-singlets which is the origin of the name
rung-singlet phase. This phase is characterized by a finite rung-triplon gap. In the following the
discussion is restricted to the Hamiltonian (8.1.3). An analogous discussion for the Hamiltonian
(8.1.2) can be found in Ref. [209].

For a certain finite xyc, the rung-singlet phase is destabilized and breaks down at a finite value of
Xeyc depending on x. There are several new quantum phases possible [321, 339-343]. One obtains
a spontaneously dimerized phase where the dimers are located in a meander-like structure on the
legs (see Fig. 7.4), scalar and vector chirality phases, a phase of dominant collinear spin correla-
tions and a ferromagnetic phase [339]. However, real two-leg ladder cuprate systems are always in
the rung-singlet phase, but relatively close to the quantum phase transition to the spontaneously
dimerized phase [321]. Therefore, it is in important to understand the properties of this transition.
In the following the extension of the rung-singlet phase is calculated.
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Fig. 8.2: lllustration of the choice of cluster sizes for the two-leg ladder with four-spin interactions. Green
(grey) circles denote singlet rungs and blue (dark) circles denote excited triplets on the rungs. The first
extended cluster occurs in the depicted third order process T_2To T2 for an on-site hopping process to. In
a first step two triplets are created left from the initial triplet by T>. The second step is an interaction
process To linking all three triplets. In the last step the two triplets left are annihilated by 7_» resulting
in a renormalization of the local hopping term to. Note that the amplitude for this process in the two-leg
ladder without cyclic exchange is zero. Only for finite four-spin interaction the cluster has to be chosen as
indicated in order to obtain the correct results in the thermodynamic limit.

The standard approach to calculate a phase transition line with series expansions is to use
dlogPadé extrapolants on A(x, x.,c) as discussed in Sect. 5.2. Applying this approach to the
problem under study this yields reliable results only in a very small region about the exactly known
phase transition point [x = 1/5, x.,c = 1/5] (See grey square in Fig. 8.4). Generally, for x = x¢yc
the dispersion and the gap are known exactly [284]

w(k)/J. = 14 (2cos(k)—3)x (8.1a)
A(x,x)/J. = 1-5x. (8.1b)

The results extrapolated in x are reliable for x € [0.1, 0.3] where the gap closes linearly in x and
Xeye-

In the following, an advanced extrapolation techniques [207—209] is used in order to investigate
the rung-singlet phase for larger/lower values of x and x..c. The series expansion is expressed not
in external parameters like x and Xy, but in an internal energy, similar in spirit to an approach for
the Ising model [207]. The idea of internal parameters was introduced in a general form in Sect.

5.4. One defines
A(x, rx)

(1+x)J,

where r = xeye/X = Jeye/Jj will be kept constant for the extrapolation in x. The function G(x)

G(X)=1—-A(x)=1- (8.3.2)

behaves like G o x for x — 0 so that any expansion in x can be converted in an expansion in G.
Using the expansion for A(x) the inverse function x = x(G) is calculated as a series in G up to
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Fig. 8.3: Black lines show the dlogPadé extrapolants for dA/dx at G = 1 as a function of r = x¢yc/x. The
grey line is a fitted spline which follows the asymptotic behavior Eq. 8.3.8 with A = 0.41 and \' = 0.85
at small values of r and approximates the available dlogPadé results. The points marked by stars are set
by hand to guide the spline smoothly in the intermediate region. The extrapolation in Fig. 8.4 requires
actually only the values r S 0.5.

order 11 from Eq. 8.3.2. The quantity A = A/[(1 + x)J.] measures the gap in units of J; + J to
ensure empirically a monotonic behavior of A as function of x. Then the existence of the inverse
x(G) is assured. Next the derivative of A(x) is considered

dA(x)  dG
= T (8.3.3)
Substituting x = x(G) in Eq. 8.3.3 one obtains
dG
= P(G) , (8.3.4)

where P(G) is the truncated series of order 10 in G. Note that the empirical convergence of the
truncated series P(G) is significantly better than the convergence of the truncated series A’(x) in
x [208]. Because the gap is a monotonic decreasing function for r =const one can use dlogPadé
extrapolants for P(G) since —dG/dx is non-negative. Integrating Eq. 8.3.4 yields

Gy dG X0
—/0 m:/o dx=xp . (8.3.5)

Therefore, integrating the left hand side to Go = 1, i.e. A = 0, provides the phase transition point
[x0. rxo] for a given r. For any Go € [0, 1] the gap is A(xo, rx0)/JL = (1 + x0)(1 — Gp). In this way,
A(X, Xeyc) is obtained.

First, the behavior of the gap in the limit of small r and G = 1 is examined. This corresponds to
the situation of two spin-chains which are weakly coupled by the four-spin interaction. Bosonization
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Fig. 8.4: Extrapolated spin gaps for the Hamiltonian Eq. 8.1.3 in the [x, xcyc]-plane (see main text). The
grey line is the obtained phase transition line A = 0 and the grey square is the exactly known transition point
[x =1/5, xeye = 1/5]. The points marked by grey circles and error bars indicate the estimated accuracy of
the extrapolations. On the left side of the transition line the system is in the rung-singlet phase, on the

right side in the spontaneously dimerized phase.

results show that the only relevant operator is the four-spin leg-leg interaction [334]. The triplet

gap scales as
(8.3.6)

A =X — Neye
in leading order in J; and Jgc. Here X and )\’ are non-universal constants [321]. In our case one
3 and SU(2) symmetry which is described by the

has a critical theory with central charge ¢ = 3
k = 2 Wess-Zumino-Witten model [321, 344]. Rearranging Eq. 8.3.6 one obtains

A AXe—X
— = — 8.3.7
JH Xc X ( )

where x. = A\/(\'r) is the value of x where the gap vanishes for given r. Therefore, the derivative

of Aforsmall rat G=1,ie x=x,is given by

EG=1r)= —;ﬁ?\i . (8.3.8)

= —A&°/\ from Eq. 8.3.7. Exploiting

In the case of r — 0 A" = 0 is expected and A = —\/x2
= 0.4 £ 0.03 in very good agreement

A = —32/>\ in a biased dlogPadé approximant one finds \

with quantum Monte Carlo results Aguc = 0.41 &+ 0.01 from Ref. [345].
In Fig. 8.3 the solid line corresponds to the dlogPadé [7, 2] for Z/(G =1,r). Forr < 0.3 the

asymptotic formula (Eq. 8.3.8) is well reproduced by the extrapolant. A minute (not discernible)
offset at r = 0 occurs as a natural consequence of the dlogPadé extrapolation which describes a
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quantity of a given sign only. Using the value A = 0.4140.01 for the second non-universal constant
A’ the value
AN'=085+02. (8.3.9)

is deduced. If one performs the same analysis for the Hamiltonian Eq. 8.1.2 one obtains the same
result for A\’ [209]. This supports the validity of the analysis and agrees perfectly with Ref. [334]
in that the relevant term in the cyclic exchange is the leg-leg coupling so that both Hamiltonians
(Eq. 8.1.3 and Eq. 8.1.2) lead to the same result for large leg couplings and small cyclic exchange
couplings.

For larger values of r the interpolation between various extrapolants is used. The uncertainty
in the interpolation leads to the error bars in the subsequent extrapolations shown in Fig. 8.4.
The extrapolations are done for values r 5 0.5 by subtracting the interpolated values depicted
in Fig. 8.4 from the truncated series for Z’(G) so that one obtains the series of a function that
vanishes at G = 1. It is found that many in this way biased dlogPadé exrapolants yield reliable
results which supports the approach used to include the properties of the weakly coupled chains in
the extrapolations. Finally, the subtracted bias is re-added to arrive at the proper result (see also
Ref. [209]).

In the limit x — oo, one concludes from Eq. 8.3.7 that the transition line converges against the
asymptotic value

XYMt = X/N' ~ 0.52+£0.14 (8.3.10)
using the values for A and )\’ obtained above. This result holds again for both Hamiltonians
(Eq. 8.1.3 and Eq. 8.1.2) [209]. The value of x3¥™P* = 0.22 advocated in Ref. [334] cannot be
confirmed.

In Fig. 8.4 the extrapolated values of the spin gap of the Hamiltonian Eq. 8.1.3 in the [x, Xcyc]-
plane are presented. The black solid lines denote A(xp, xeyc) for a fixed xp as a function of xcyc.
These lines are shifted by xg in x-direction producing a quasi three-dimensional plot. The end-point
of a black line corresponds to A(x, xcyc) = 0 yielding the grey solid line which is the transition line
between the rung-singlet phase and the spontaneously dimerized phase. Biased extrapolants are
used in the range x € [0.3, oo[ for the transition line. In the range x € [0.1,0.3] the unbiased
extrapolations are safe due to the good convergence of the series near the exactly known transition
point (grey square). In the limit x — 0 even the truncated series gives quantitative results. Using
Eqg. 8.3.5, one finds in addition strong evidence for

Z—i x (1 —G)” (8.3.11)
at x = 0 where n = 0.3 £ 0.02. The transition point, i.e. A = 0, for x = 0 is found to be
[0,0.3 £ 0.002].

The smooth connection between the different extrapolations corroborates the reliability of the
results found in a wide region in the [x, xc,c]-plane. The phase diagram for Hamiltonian Eq. 8.1.2
can be found in Ref. [209]. It is very similar in shape compared to the one for Hamiltonian Eq. 8.1.3.

The exchange parameters discussed for cuprate ladders are x &~ 1.2 — 1.3 and xyc = 0.1. It is
evident by looking at Fig. 8.4 that the materials are located inside the rung-singlet phase. Therefore
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the rung-triplon remains the elementary excitation of the cuprate ladder systems. In the following,
the distribution of spectral weight in the various triplon sectors at finite four-spin interaction is
discussed.

8.4 Spectral weights

In contrast to the case xgc = 0, the rung-singlet phase is unstable for x — oo in presence of a finite
four-spin interaction as shown in the last section. Therefore it is therefore important to analyze
the behavior of the spectral weights. The focus is laid here on determining the spectral weights
for realistic values of the four-spin interaction. A full analysis of the spectral weights approaching
the phase transition is not done. The extrapolation for the spectral weights is performed by using
the gap as internal parameter (see Sect. 5.4) and extrapolating the gap as described in the last
section [208, 209]. Usually a standard [n, 2] dlogPadé or [n, 2] Padé is used for the series expressed
in the one-triplon gap.

8.4.1 S=1

First, the spectral weights for excitations with total spin one are discussed. The local observable
considered is the symmetric combination of Eq. 7.3.4c and Eq. 7.3.4d

054 (r) = 5(0"(1) + 0V () (8.4.1)

in analogy to the discussion of the pure spin-ladder in Sect. 7.4. The spectral weights were calcu-
lated up to order 10 in the one- and two-triplon channel, up to order 9 in the three-triplon channel
and up to order 10 in the four-triplon channel. The total spectral weight /it is equal to 1/4 for
S=1.

In Fig. 8.5 the relative spectral weights /,/ it are shown for xc,c = 0 (black solid lines), xeye = 0.05
(blue dashed lines) and x,c = 0.1 (green long-dashed lines) and N € {1,2,3}. In addition, the
sum of all plotted relativ weights /s, = (/1 + I> + 13)/ ot is depicted. Contributions with more
than three triplons have negligible weight in the parameter regime displayed.

The general trend is the reduction of the one-triplon weight by switching on the four-spin inter-
actions and an increase of the weights for two and three triplons. Extrapolating the one-triplon
spectral weight, one recognizes poles of the denominator near G = 1 indicating that the one-
triplon weight vanishes at the phase transition. Therefore a pole exactly for G = 1 os included.
The extrapolation used in the figure is a [7, 2] dlogPadé extrapolant. Note that the result for the
one-triplon spectral weight is almost independent of the bias at G = 1.

The two-triplon spectral weight is extrapolated by using a [5, 2] dlogPadé extrapolant. Here also
complex poles near G &~ 1 are seen. So a complete extrapolation requires to treat the derivative
of I in analogy to Sect. 6.3. Again, the results for the values do not depend on whether or not
the derivatived /5 is biased to G = 1. The analysis of /5 closer to the phase transition points in the
direction that it stays finite at about 25% at G = 1. So it seems that, contrary to the case of the
one-dimensional Heisenberg chain (see Sect. 6.3), the rung-triplon picture becomes very difficult
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Fig. 8.5: Relative weights for the S=1 operator (0" (r) + ©"(r)) (Eq. 7.3.4c and Eq. 7.3.4d). The In
are calculated according to Eq. 3.7.15 up to and including order 10, 10 and 9 in x for N =1, 2 and 3
respectively. The total intensity /:ot is equal to 1/4. Black solid lines corresponds to Xcye = 0, dashed blue
lines to xcyc = 0.05 and long dashed green lines t0 Xeye = 0.1. lsum = (/1 + I2 + /3)/ltot denotes the sum of
all plotted contributions.

at the phase transition tuned by the four-spin interactions.

The three-triplon sector is extrapolated by a [5, 0] dlogPadé extrapolant because other extrapolants
are spoiled by spurious poles. It can be expected that this results in an overshooting of the three-
triplon weight for larger values of x. The latter conclusion is strengthened by the observation that
the sum of all plotted relative weights overshoots in the same fashion as the three-triplon weight
increases for larger x. The extrapolations of the one- and two-triplon sector seem to be very stable
so that they are not responsible for the violation of the sum rule in the region of large x.

The dispersion is known exactly for x = x.,. (see Sect. 8.3). It follows that the rung-triplon picture
is realized perfectly for these parameters. The total spectral weight is in the one-triplon channel
and all other weights are zero. Note that this implies also that the relative one-triplon weight for
x = 0 but finite xcyc is not equal to one. Therefore the one-triplon spectral weight /; increases for
X < Xeye and decreases for x > x.yc as depicted in Fig. 8.52.

It can be concluded from Fig. 8.5 that for realistic values of the four-spin interaction the one- and
the two-triplon sector contain by far most of the spectral weight. Therefore the rung-triplon is a

2|t can be hardly seen in Fig. 8.5 because the deviation from /; = 1 at x = 0 are very small for these parameters

of the four-spin interaction.
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good choice for a quasi-particle description of the two-leg ladder with four-spin interaction.

8.4.2 S=0

The local observable Ol in Eq. 7.3.4b is considered for the S = 0 case in analogy to the pure
two-leg ladder discussed in Sect. 6.3. The total spectral weight /iot(x) can be obtained again
from the ground state energy per spin eo(x). All extrapolations of the spectral weights are done in
analogy to the last section using the method of internal parameters [208, 209].

In Fig. 8.6 the relative spectral weights /,/ltot are shown for xc,c = 0 (black solid lines), xeye = 0.05
(blue dashed lines) and xc = 0.1 (green long-dashed lines) and N € {2, 3,4}. In addition, the
sum Isym = (l2 + I3 + 14)/ lwor Of all plotted relative weights is depicted.

The extrapolation for the total intensity is done by a [8,2] Padé for the derivative of the ground
state energy. The two-triplon sector is extrapolated by a [7, 2] dlogPadé biased to have a pole at
G = 1. Again, complex poles can be detected near G = 1 which do not change the results depicted
in Fig. 8.6. The three- and four-triplon sectors are extrapolated by [8, 2] Padé extrapolants. The
sum rule is fulfilled in a quantitative manner for all values of xcyc shown in Fig. 8.6.

In analogy to the S = 1 case, the rung-triplon is realized in a perfect way for x = X, i.e. the
two-triplon weight is exactly one and all other spectral weights are zero for these parameters. The
two-triplon spectral weight for x < Xy is slightly smaller than one.

Similar to the S = 1 case, the leading sector, here /5, loses spectral weight upon switching on
Xeye While the triplon sectors with higher numbers of triplons gain spectral weight. The two-triplon
sector contains only about 50% of the spectral weight for realistic parameters, i.e. unlike to the
S = 1 case one can expect to have sizable contribution especially of three triplons in optical
experiments. In addition, the four-triplon sector also is sizable. Possible life-time effects (decay of
two triplons into four triplons) may become more important due to a finite four-spin interactions.

8.5 Energy properties

In this section the influence of the four-spin interactions on the energy properties is investigated.
The focus is laid on the one-triplon dispersion and on the two-triplon bound states. In addition,
the relative positions of multi-triplon continua for finite four-spin interaction are illustrated.

8.5.1 Ground state energy

The influence of the four-spin interaction on the ground state energy per spin €y/J1 is shown in
Fig. 8.7. The plain series is obtained up to order 11 in x and xc,c. The solid line corresponds to
the result already discussed in Sect. 7.5. All curves are extrapolated using the method of internal
parameters as explained above. An additional [8, 2] dlogPadé extrapolant is applied.

The ground state energy per spin €9/J) increases by turning on Xcyc.
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Fig. 8.6: Relative weights for the S=0 operator S1;51,i+1 (Eq. 7.3.4b). The Iy are calculated according to
Eq. 3.7.15 up to and including order 10, 8 and 7 in x for N =2, 3 and 4 respectively. The total intensity
lot has been extracted from the 11 order result for the ground state energy per spin according to Eq.
3.7.16. Black solid lines corresponds to xyc = 0, dashed blue lines to xcyc = 0.05 and long dashed green
lines to Xeye = 0.1. fsum = (/2 + I3 + 14)/ltor denotes the sum of all plotted contributions.

8.5.2 One-triplon dispersion

The one-triplon dispersion w(k) is obtained up to order 11 in x and xcyc. Therefore a first important
goal is to recover the results obtained from the series upt to order 14 for xcyc = 0. It turns out
that the extrapolation is very stable in the interval k € [0.4m, w] while the extrapolations are very
subtle around k = 0 (the dip region for larger x values). The latter follows from the fact that
the three-triplon continuum approaches to the one-triplon dispersion for these small k values as
discussed already in Sect. 7.5. The relative positions of the continua at finite x.yc will be shown
below.

In order to obtain a good extrapolation for the one-triplon dispersion near k = 0 for xcye = 0, it is
necessary to include additional information about the one-triplon dispersion. In the limit of x — oo
approaching separated spin-chains, it is clear that the one-triplon dispersion has to vanish at k =0
measured in Jj. The closing of a gap at k = 0 is signaled by poles in the complex plane near G = 1.
Therefore it is natural to include this knowledge for the extrapolation at k = 0. These poles are
also present at small but finite k. Therefore they are no physical poles because the one-triplon
dispersion for x — oo is not zero for these values of the momentum. In the following a biased
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Fig. 8.7: Ground state energy per spin €o/J. as function of x for xoyc = 0.0 (solid black line), Xcye = 0.05
(dashed blue line) and xyc = 0.1 (green long dashed line).

extrapolation is used in the whole region k € [0;0.17], i.e. a pole is included at G = 1. In the
region k € [0.4m; 7] a standard [5, 5] dlogPadé extrapolation is used. The results obtained in both
regions are connected by a spline interpolation using a Maple package. The same procedure is used
for finite four-spin interaction. Therefore one makes two possible systematic approximations. First,
for xeye = 0, the inclusion of a singularity at finite (but small) momentum induces an error which
results in a too low curvature of the dispersion near k = 0. Second, the inclusion of a singularity
also in the case of finite xcyc results in a pushing down of the dispersion near the phase transition.
It can be expected that both errors are small for the realistic values of x and xcc for cuprate ladders
as discussed in this chapter.

In Fig. 8.8 the result is shown for x = 0.5 (thin curves) and x = 1 (thick curves) for xeyc = 0.0
(solid black curves), xcyc = 0.05 (dashed blue curves) and x.,c = 0.1 (long-dashed green curves).
Note that the smoothness of the curves corroborates the extrapolation procedure. The main effect
of the four-spin interactions is a global shift of the one-triplon dispersions to lower energies. The
overall shape of the dispersion is almost unchanged. The gap is reduced considerably up to a factor
of 2 for x.yc = 0.1. This explains the importance of the four-spin interaction for a quantitative
description of cuprate ladders.
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Fig. 8.8: The one-triplon dispersion w(k)/J. is shown for x = 0.5 (thin curves) and x = 1 (thick curves)
for xeye = 0.0 (solid black curves), xcc = 0.05 (dashed blue curves) and xoc = 0.1 (long-dashed green
curves).

8.5.3 Two-triplon continuum and bound states

This subsection deals with the determination of energy properties of two triplons. Therefore one
needs the one-triplon hopping amplitudes t, and the two-triplon interaction amplitudes ty.n.qr as
discussed in Subsect. 3.7.1.

The one-triplon hopping amplitudes are determined in a straightforward way by Fourier trans-
forming the extrapolated one-triplon dispersion w(k) back to real space. The extrapolation of the
two-triplon interaction amplitudes is done in an analogous manner. First, the method of internal
parameters is used. Second, an additional extrapolation is applied to the matrix elements Wy.q(K)
for {d;d'} < 5 in momentum space. Note that these are the most local and therefore the most
important amplitudes. The extrapolation is done for discrete points in momentum space. The
extrapolated values are again connected by a spline interpolation and Fourier transformed back in
real space in order to obtain the amplitudes tg.p.qr.

The extrapolation of the two-triplon interaction amplitudes is quite complicated. This can be un-
derstood from the fact that the two-triplon continuum and the four-triplon continuum intersect
each other. It turns out that the extrapolation is more stable in the S = 1 case than inthe S =0
case. It follows that two triplons can decay into four triplons which results in poles of the extrap-
olants of the two-triplon interaction amplitudes (see discussion Subsect. 7.5.4). But the effect is
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Fig. 8.9: One-triplon and two-triplon energies of the two-leg ladder for x = 1 with x = 0.05 (a) and
Xeye = 0.1 (b) are shown. The thick solid black line denotes the one-triplon dispersion w(k). The grey
solid lines correspond to the lower and the upper edge of the two-triplon continuum. The dashed grey
lines denote the S = 1 two-triplon bound states and the long dashed grey lines corresponds to the S =0
two-triplon bound states.

stronger in the S = 0 channel because the four-triplon contribution is lower in energy and is of
larger size. The extrapolation is therefore more sensitive. In the S = 1 sector a [8,2] Padé is
applied for all amplitudes. In the S = 0 sector a [8, 2] Padé is applied in most cases. If there is no
extrapolation possible at all, the truncated series in the internal parameter is used.

The extrapolations are quantitative up to x < 1 in both spin channels. For x > 1, the extrapo-
lation in the S = 0 overestimates the two-triplon interaction. This results in too low energies of
the two-triplon bound state especially near k = /2. The results are only semi-quantitative. The
extrapolation in the S = 1 case is more stable and the results obtained should be valid also for
x~ 1.3.

The effect of the four-spin interaction on the two-triplon energies is illustrated in Fig. 8.9 for x =1
with Xeye = 0.05 (@) and x¢yc = 0.1 (b). Since the one-triplon dispersion is shifted to lower energies
due to Xy, also the two-triplon energies are shifted globally to lower energies. The shape of the
lower and the upper edge of the two-triplon continuum is almost unchanged because it is solely
determined from the shape of the one-triplon dispersion.

The most interesting effect of the four-spin interaction is on the binding energy of the two-triplon
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bound states (grey lines in Fig. 8.9). The four-spin interaction reduces the attractive interaction
between the triplons. Thus the binding energy of the bound states is reduced upon increasing Xcyc
(compare also to the case x.,c = 0 depicted in Fig. 7.11) [324]. This effect is present for total
spin zero and total spin one. But the effect is more drastic in the S = 1 case because the S =1
two-triplon bound state is only weakly bound for x,c = 0. As a consequence, the S = 1 two-triplon
bound state is absent for xo,c = 0.1. The disappearence of the S = 1 two-triplon bound state
has interesting effects on the spectral line-shape of the two-triplon contribution to the dynamical
structure factor which will be discussed in the next section.

8.5.4 Multi-triplon continua

Next the relative positions of the multi-triplon continua are investigated. Here the focus is laid on
the effect of the four-spin interaction for isotropic coupling x = 1. But the general trend is the
same for all values of x. The determination of the multi-triplon band edges in combination with
the multi-triplon spectral weights (see Sect. 8.4) is important to estimate possible life-time effects
neglected in the extrapolation procedure as discussed in Sect. 7.5.4. Note again that n-triplon
interactions with n > 2 are not included in the calculation since they are expected to be very
small [327].

In Fig. 8.10 the result for x = 1 and x¢,c = 0.1 is shown. This has to be compared with Fig.
7.13 depicting the same information for x = 1 and x¢,c = 0. In the left panel the relative position
of the one-triplon dispersion and of the three-triplon continuum is presented while the right panel
shows the relative position of two-triplon energies and of the four-triplon energies. Note that odd
and even triplon channels are not connected due to parity conservation (see Sect. 7.5.4).

The reduction of the one-triplon gap A by the four-spin interaction results generically in a closer
relative position of all multi-triplon continua. It can be seen in Fig. 8.10 that the lower band edge of
the three-triplon continuum is very close to the one-triplon dispersion for k € [0, 0.47] (left panel).
The value for the edge of the three-triplon continuum at k = 0 is the sum of the one-triplon
gap and the S = 0 two-triplon bound state energy at kK = w. The extrapolation for these two
energies is very safe. The determination of the one-triplon dispersion near k = 0 turned out to
be very complicated (see Sect. 8.5.2). The closeness of the three-triplon continua explains these
complications. Note that the true one-triplon dispersion is even slightly closer to the three-triplon
continuum (see systematic errors of the one-triplon dispersion discussed above).

The situation for two and four triplons is depicted in the right panel of Fig. 8.10. Both continua
intersect strongly for these parameters similar to the case of x = 1 and x.,c = 0. The intersection
of the two- and four-triplon continuum is larger in the S = 0 case than in the S = 1 case due
to the larger binding energy of the S = 0 two-triplon bound state. Therefore life-time effects are
expected to be smaller in the S = 1 case. Moreover, the total spectral weight in the four-triplon
channel with S = 1 is very small. Possible effects of the neglected processes are discussed later in
the sections dealing with spectral densities and the application to optical experiments.
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Fig. 8.10: Multi-triplon continua of the two-leg ladder for x = 1 and xoc = 0.1 are shown. One- and
three-triplon energies are depicted in the left panel while two- and four-triplon energies are plotted in the
right panel. Left panel: The solid black line denotes the one-triplon dispersion w(k). The grey solid lines
correspond to the lower and the upper edge of the three-triplon continuum including binding effects. The
dashed grey lines denote the lower band edge of the three-triplon continuum neglecting binding effects.
Right panel: The solid black lines correspond to the lower and the upper edge of the two-triplon continuum.
The dashed black line corresponds to the (S = 0) two-triplon bound state. The solid grey lines denote the
lower and the upper band edge of the four-triplon continuum. The dashed grey line depicts the lower band
edge of the four-triplon continuum neglecting binding effects.

8.6 S =1 excitations

This part deals with the dynamical structure factor of the two-leg ladder with four-spin interaction.
Results are shown for the one- and the two-triplon contribution which capture most of the spectral
weight (see Sect. 8.4).

8.6.1 One-triplon contribution

The most important contribution to the dynamical structure factor is the leading one-triplon con-
tribution. The k-resolved spectral weight for x,,c = 0 was discussed in Sect. 7.6. The spectral
weight is always accumulated around k = . Upon increasing x, the spectral weight decreases for
small momenta and concentrates more and more at k = 7 (see Fig. 7.14).
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Fig. 8.11: The one-triplon spectral density /1(k) for O"' at x = 1 is shown. The solid black line denotes
Xeye = 0.0, the dashed blue line xc,c = 0.05 and the long-dashed green line xcyc = 0.1.

The effect of the four-spin interaction on the one-triplon spectral weight is shown in Fig. 8.11
exemplified for x = 1 with x.,c = 0 (solid black line), xcyc = 0.05 (dashed blue line) and Xeyc = 0.1
(lond-dashed green line). All extrapolations were done using the method of internal parameters
plus additional [8, 2] Padé extrapolation. It can be seen clearly in Fig. 8.11 that the effect of xcyc
on the k-resolved one-triplon spectral weight is similar to the effect of x. The spectral weight is
reduced at small momenta but it increases around k = w. The findings suggest that the one-triplon
spectral weight near the phase transition to the meander-like dimerization is governed by only one
mode at k = m which has negligible spectral weight. Similar results were also found by exact
diagonalisation [328].

8.6.2 Two-triplon contribution

The two-triplon contribution to the dynamical structure factor is the leading contribution with even
parity as discussed in Sect. 7.6. Its total spectral weight slightly increases by turning on xcy. (see
Sect. 8.4). The generic relative spectral weight is about 20% to 30% of the leading one-triplon
contribution for realistic values of cuprate ladders.

In Fig. 8.12 the result for the two-triplon contribution to the dynamical structure factor is shown
for x =1 and x¢ye = 0 (@), Xeye = 0.05 (b) and x¢ye = 0.1 (c). It was already discussed in Sect.
8.5.3 that the four-spin interaction has a strong influence on the S = 1 two-triplon bound state
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Fig. 8.12: The two-triplon spectral density />(k,w) for ©"Y with x = 1.0 and xgc = 0.0 (@), Xge = 0.05
(b) and xe = 0.1 (c) is shown. The grey lines denote the lower and the upper edge of the two-triplon
continuum. The black lines indicate the dispersion of the S = 1 two-triplon bound state. The long-dashed
dark grey lines depict the lower edge of the S = 1 four-triplon continuum.
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Fig. 8.13: The two-triplon S = 1 bound state energy and the spectral weight for x = 1.0 and xeyc = 0.05
are shown. Left panel: The solid grey line denotes the lower edge of the two-triplon continuum and solid
blue (dark) line depicts the dispersion of the S = 1 two-triplon bound state. Right panel: The k-resolved
spectral weight of the S = 1 two-triplon bound state is plotted.

which gives rise to interesting changes of the line-shape of the two-triplon spectral density.

The dispersion of the S = 1 two-triplon bound state is denoted as a blue solid line in Fig. 8.12
and in the left panel of Figs. 7.16 and 8.13. In the right panel of the latter figures the k-resolved
spectral weight of the bound state is depicted. Upon turning on Xy, the binding energy and the
spectral weight of the bound state is reduced. At x.,c = 0.1, the S = 1 two-triplon bound state
has disappeared.

The reduction of the binding energy of the two-triplon bound state results in a sharpening of the
spectral density at the lower band edge. The effect is most drastic near k = w. At the point
where the bound state is degenerate with the lower edge of the two-triplon continuum, the spectral
density will display a square root singularity. This in analogy to the discussion of the dimerized and
frustrated spin-chain for certain values of the exchange couplings. At xc,c = 0.1, where the two-
triplon bound state has already dissolved in the two-triplon continuum, a signature of this divergence
can be seen in the sharp structures near the lower band edge of the two-triplon continuum. The
lower band edge of the S = 1 four-triplon continuum is shown as dark grey long dashed lines in Fig.
8.12. It can be seen that the overlap of the two-triplon and the four-triplon continuum increases
with increasing four-spin interaction. Nevertheless, possible life-time effects should be of minor
importance because most of the two-triplon spectral weight is below the lower band edge of the
four-triplon continuum. In addition, the spectral weight of the four-triplon continuum increases
only slowly like /4(w) o (Aw)'3/? at the lower band edge [327]. The distance to the band edge is
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measured by Aw.

8.7 S = 0 excitations

In this section two-triplon spectral densities with total spin zero are analyzed. The effect of the
four-spin interaction on the energy spectrum was already discussed in Sect. 8.5.3. In contrast to
the S = 1 case studied in the last section, the S = 0 two-triplon bound state is present also
for finite xgyc, at least in the range of parameters considered here. Therefore the impact of the
four-spin interaction on the line-shape of the two-triplon spectral density is less drastic than in the
S =1 case. In the following, first the complete two-triplon contribution is discussed focusing on
x = 1. The general trends are the same for other values of x as well. The second and the third
part deal with the two-triplon contribution to Raman spectroscopy and infrared absorption. In all
parts results are presented for observables ©' and O" (see Subsect. 7.3.1).

8.7.1 Two-triplon contribution

The two-triplon contribution contains most of the spectral weight in the S = 0 sector (see Sect.
8.4). Nevertheless the three- and four-tripon spectral weights are sizable for x > 1 and especially for
finite xcyc. The latter contributions have to be kept in mind in comparing the results to experimental
data and in estimating possible neglected life-time effects. Remember that the observable ©'
has only contributions with an even triplon number of triplons while the observable @' includes
contributions of odd and even triplon number.

In Fig. 8.14 results for x = 1 with xc,c = 0.05 (a) and Xeyc = 0.1 (b) are shown. The upper
panels depict the findings for @' and the lower panels give the results obtained for @', The effect
of the four-spin interaction can be judged by comparing Fig. 8.14 with Fig. 7.18, the case of x =1
with x¢c = 0. Detailed information about the S = 0 two-triplon bound state dispersion and its
k-resolved spectral weight can be found in Fig. 8.15 for finite x.yc and in Fig. 7.19 for x¢yc = 0.

The first effect to note is that the overall line-shape of the two-triplon spectral density is not
changed in the S = 0 case. In analogy to the situation in the S = 1 sector, there is a global shift
to lower energies at finite xcyc resulting from the change of the one-triplon dispersion.

Both observables yield the same line-shape for k = 0 and x.yc = 0 (see Sect. 7.7). This symmetry
at k = 0 is broken for finite x.yc. Nevertheless, the global line-shape of both observables is similar
for small momenta. A detailed discussion of the k = 0 contribution will be given in the next
subsection about Raman spectroscopy.

In analogy to the situation x.,c = 0, both observables differ for large momenta. The main effect
of the four-spin interaction besides the global shift of the spectrum is the lowering of the binding
energy of the bound state near k = w. The loss of binding energy can be seen clearly in Fig. 8.15.
The latter effect is accompanied by a reduction of spectral weight of the bound state near k ==
(see right panels of Fig. 8.15 and Fig. 7.19). The spectral weight is shifted to the two-triplon
continuum which becomes more pronounced for increasing Xcyc.

The dark long-dashed curve in Fig. 8.14 represents the lower band edge of the S = 0 four-triplon
continuum. The intersection of the two- and four-triplon continuum is larger in the S = 0 case
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Fig. 8.14: Two-triplon spectral density /»(k,w) with S =0 at x = 1.0 with Xeyc = 0.05 (a) and xeye = 0.1
(b) is shown. The upper panels correspond to @' and the lower panels to @". The grey lines denote the
lower and the upper edge of the two-triplon continuum. The black lines indicate the dispersion of the

S = 0 two-triplon bound state. Long-dashed dark grey lines depict the lower edge of the S = 1 four-triplon
continuum.
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Fig. 8.15: Two-triplon S = 0 bound state energy and spectral weight for x = 1.0 with xcyc = 0.05 (upper
panel) and x = 1.0 with x,c = 0.1 (lower panel) is shown. Left panels: The solid grey line denotes the lower
edge of the two-triplon continuum and the solid black line depicts the dispersion of the S = 0 two-triplon
bound state. Right panels: The k-resolved spectral weight of the S = 0 two-triplon bound state is plotted
as measured by ©' (solid line) and by ©" (dashed line).

than in the S = 1 case due to the larger binding energy of the S = 0 two-triplon bound state.
This overlap slightly enhanced by the four-spin interactions. Note that the two-triplon bound state
is located below the four-triplon continuum (for all momenta) so that no corrections due to life-
time effects are present for this part of the two-triplon contribution. In addition, the two-triplon
contribution displays only broad features for large momenta. Therefore life-time effects should
have only minor effects on this part of the spectrum. This is different for small momenta. Here
relatively sharp structures are present in the line-shape which will be affected by including possible
decays of two triplons into four triplons. The latter will be discussed in the next subsection.

8.7.2 Raman spectroscopy

This subsection deals with the two-triplon contribution to the Raman response. The observables
R (R'®9) for magnetic light scattering in rung-rung (leg-leg) polarization are the k = 0 part of
O' (0" [180, 295, 296, 338]

R = A5 (S1iS1is1+ S2S2i41) (8.12)

RUM = AF™Y"SSy; . (8.1b)
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The factors A'g‘g and A" depend on the underlying microscopic electronic model. It is beyond the
scope of the present work to compute them. Equally, no resonating Raman excitation processes
are considered. Results will be given in units of the factors [Ag9]? und [A}""9]2.

Channels with odd number of triplons are inaccessible by Raman scattering due to the invariance
of the two observables R'*9 and R™"9 with respect to reflection about the centerline of the ladder.
Thus only excitations with even number of triplons matter. Therefore the leading contributions to
the Raman response come from the 2-triplon and the 4-triplon sector.

In Fig. 8.16(a-c) and in Fig. 8.17(a-c), the result for the two-triplon contribution for both observ-
ables with x € {0.5;0.75;1.0; 1.25} and x¢yc € {0.0;0.05; 0.1} is shown. All curves are normalized
to 0.4[A3] and shifted by x in order to distinguish between the various curves. The line shape is
the same for x¢c = 0 as mentioned already in Sect. 7.7 (see also [347]) because the Hamiltonian
is a weighted sum of the two observables H = R™"9 + xR'®9 (for Aqg = 1). Thus the excited state
R™n9|0) equals —xR'®9|0) except for a component proportional to the ground state |0) which does
not matter at finite frequencies.

First the case x.,c = O is considered (Fig. 8.16a and Fig. 8.17a). The spread of the lines on
increasing x indicates clearly the increasing band width. For small x the Raman intensity shows a
strong resonance near the lower band edge [180]. This resonance is a consequence of the 2-triplet
attraction on neighboring sites [251, 348]. Since the kinetic energy of the relative motion of the
triplons increases for larger x the influence of the attraction decreases. Therefore, the resonance
is rapidly broadened and shifted to the center of the continuum. In view of the analyzis of the spin
gap [349] one should note that it is not possible to detect the onset of the 2-triplon, non-resonant
Raman continuum, i.e. twice the spin gap, reliably for x Z 0.4 because there is only little weight
at the lower band edge [180]. Furthermore, it is found that the non-resonant line shapes do not
depend much on the excited state R|0). The qualitative features depend more on the kinetics and
on the interaction than on the matrix elements.

In Figs. 8.16a and 8.17a for x > 0.6, a second peak is visible near the upper boundary of the
2-triplon continuum, becoming more pronounced on increasing x [180,338]. This feature is the
combined effect of 1-triplon kinetics, 2-triplon interaction and matrix elements. First, the occur-
rence of a dip in the 1-triplon dispersion w(k) at k = 0 leads to an additional van-Hove singularity
situated at 2w(0) providing additional spectral weight. Second, the additional spectral weight is
separated from the main peak by a double zero in the spectral density. This double zero stems from
a simple zero in the matrix elements implying that at a certain energy w the state R|0) is orthogonal
to the excited state |w). This intriguing phenomenon results from destructive interference between
several coupling contributions. It is found that the destructive interference is triggered by the
2-triplon interaction since it vanishes when the 2-triplon interaction is switched off by hand [188].
Hence the orthogonality is induced by the interaction. Indeed, an arbitrarily small amount of the
interaction suffices to induce at least a very narrow dip with the double zero at its bottom. One is
led to the conclusion that the large density of states provided by the additional van-Hove singularity
renders the system particularly susceptible to the interaction-induced orthogonality.

The latter point has to be confronted with possible life-time effects originating from the decay
of two-triplons into four-triplons as discussed already in the last Section [326]. The four-triplon
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Fig. 8.16: Two-triplon contribution to the Raman response is shown as measured by @' with (a) Xeye = 0,
(b) Xeye = 0.05 and (c) xeye = 0.1. All curves are normalized to 0.4[A3].
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Fig. 8.17: Two-triplon contribution to the Raman response is shown as measured by ©@" with (a) Xeyc = 0,
(b) Xeye = 0.05 and (¢) Xeye = 0.1. All curves are normalized to 0.4[A2].
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continuum intersects significantly with the two-triplon continuum. In addition, the four-triplon con-
tribution becomes sizable especially for x > 1 [180]. Therefore it is probable that the appearance
of the double zero in the Raman response is a consequence of the neglect of life-time effects. The
latter processes should produce a high energy shoulder rather than a zero plus second peak at high
frequencies.

Note that the results shown in this work differ from those in Ref. [180] for x > 1. In the older
work the optimized perturbation theory is used which is not reliable for x > 1. Here the method of
internal parameters is used as explained in the previous sections which gives more reliable results
(see also [338]).

The influence of the four-spin interaction is illustrated in Figs. 8.16b-c and 8.17b-c. The line shape
of R™"I and R'®9 for finite Xcye does not need to be the same anymore for xc,c > 0. It can be seen
clearly that the line-shape of R™"9 is almost unchanged by turning on x,c while the line-shape of
R'*9 does change. Nevertheless, the overall difference between the line-shapes in both polarizations
stays small for the parameters discussed in this chapter. The main effect of the four-spin interaction
besides the global shift to lower frequencies of all spectra is a sharpening of the two-triplon peak if
measured by R'9. In addition, an almost constant plateau is produced for freqencies smaller than
the two-triplon peak in this polarization.

8.7.3 IR-absorption

In this section the results obtained for the two-triplon spectral density are compared to phonon-
assisted infrared absorption of magnetic excitations similar to the discussion for the dimerized and
frustrated spin-chain in Sect. 6.5. The leading infrared-active magnetic absorption is a two-triplon-
plus-phonon processs [277, 278]. Note that also three- and four-triplon processes can give a sizable
contribution to the infrared absorption depending on the exchange couplings of the ladder (see Fig.
8.6).

The two-triplon spectral density />(k,w) has to be integrated over all momenta weighted with a
phonon-specific form factor |f,n(k)|? in order to obtain the two-triplon part of the infrared absforp-

tion I35
IR () =w / Akl (K) Lok, w) . (8.7.2)
0

The precise form of the phonon form factor |fyn(k)|*> depends on the specific phonon which is
involved in the process. It will be seen in the next section that in realistic cases often more than
one phonon is active. Different phonons have usually different form factors and so the superposition
of several contributions has to be considered. First, the general properties of /éFfrp are discussed for
the commonly used form factor

|fon(K)I? = sin*(k/2) . (8.7.3)

The latter corresponds to the stretching modes of the oxygen in the legs of cuprate ladders [351].
In Figs. 8.19 and 8.18, results are shown for rung and for leg polarization. The spectra comprise
an additional broadening of I = 0.02J,er, Which is reasonable in view of the comparison with
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Fig. 8.18: Two-triplon contribution to the infrared absorption /5, in leg polarization is shown as measured
by O" with (a) Xeye = 0, (b) Xeye = 0.05 and (c) xeye = 0.1 and a broadening of I = 0.02J,. |fm(k)|? =
sin*(k/2) is used as the phonon form factor. All curves are divided by 100.
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experiment. All curves are shifted by their x-value for clarity.

First the case xoc = 0 is discussed (Fig. 8.19a and Fig. 8.18a). Results are shown for x €
{0.5;0.75;1.0; 1.25}. The phonon form factor Eq. 8.7.3 strongly favors large momenta while
small momenta almost do not contribute to /g;rp. In leg polarization (Fig. 8.18a) three features are
present in the spectra: two peaks at lower energies and a broad hump at higher energies. At lower
energy the spectrum is dominated by the two-triplon S = 0 bound state which was predicted for
small values of x [350]. The bound state dispersion displays a maximum at k &~ 7/2 and a minimum
at k = m (see Sect. 8.5.3). Both give rise to van Hove singularities in the density of states which
cause peaks in ;¥ . The spectral weight of the bound state has a maximum at k = 7 for O"
(Fig. 8.15). The two-triplon contribution in leg polarization shows therefore two peaks originating
from the extrema of the dispersion of the two-triplon bound state. The intensity of the first peak
is larger. The peaks are more clearly seen for larger values of x because the difference between
maximum and minimum of the two-triplon bound state dispersion increases with increasing x. The
third broad peak originates from the two-triplon continuum. This phonon form factor focuses
mainly on the spectral density near k = . The spectral density of the two-triplon continuum is a
large hump for large momentum. Therefore it displays almost no structure for this phonon form
factor.

In rung polarization the three features are also present but the intensity is distributed differently
(see Fig. 8.19). Here the spectral weight of the two-triplon bound state has a minimum at k =
(Fig. 8.15). Therefore the first low-energy peak is only a low-energy shoulder which becomes
more pronounced for larger x values. The dominant peak results from the van Hove singularity at
k ~ m/2. The contribution of the two-triplon continuum is more important in this polarization.
The sharp structure at high energies is most probably an artefact of the extrapolation. Possible
life time effects will smear out this feature.

Next the influence of the four-spin interaction on the two-triplon contribution to the infrared
absorption is discussed (Fig. 8.19b-c and Fig. 8.18b-c). First, the largest effect is again a redshift
of the entire spectra due to the shift of the one-triplon dispersion to lower energies by turning on
Xeye- Second, the reduced attractive interaction introduced by Xy results in a lower binding energy
of the two-triplon bound state. Thus the distance of the first two low-energy peaks in the infrared
absorption spectra is reduced by a finite value of x.. In addition, spectral weight is shifted from
the two-triplon bound state to the two-triplon continuum.

The effect of different phonon form factors on I'2'§rp is shown in Fig. 8.20 for both polarizations with
x =1 and xeye = 0. The relevant form factors are |fon, (k)| = sin?(k/2)+1/2, |fon(k)|?> = sin?(k/2)
and |fon(k)|? = 1 [351]. In contrast to the case considered first, these form factors do not focus
entirely on large momenta around kK = w. So changing the form factor will result in a different
intensity distribution.

This can be seen clearly in the relative spectral weight of the first two peaks originating from the
two-triplon bound state. Changing the form factor from |f,,(k)|? = sin*(k/2) to |fn(k)|? = 1, the
spectral weight of the first peak is reduced while the spectral weight of the second peak increases.

3Note that the experimental resolution is higher. The chosen I corresponds is a typical value for the infrared

absoprtion on spin ladders. Here the effect of a finite phonon dispersion or disorder in the compound is included.
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Fig. 8.20: The two-triplon contribution to the infrared absorption is shown as measured by ©'(a) and ©'"(b)
for x = 1 and xeye = 0 and various phonon form factors |f;, (k)|>. A broadening of I" = 0.02J, is used.

The line-shape of the third broad peak is changing from a plateau-like shape to a round shape for
the form factors not containing a constant part. The spectral weight of the two-triplon continuum
is concentrated for k € {0; w/2} almost constantly at the energy of the kK = 0 two-triplon peak.
This property produces the round shape in the infrared absorption. This is absent for |fn(k)|*> =
sin*(k/2) and |fn(k)[? = sin®(k/2).

The contribution in leg polarization is a sum of odd and even triplon channels. The analysis of
the spectral weights showed that a sizable contribution of the three-triplon channel to the infrared
absorption can be expected (see Sect. 8.4). A sizable contribution with odd symmetry in leg
polarization was already found with DMRG [324]. This can be almost completely identified with
the three-triplon contribution because the contribution of five triplons or more should be negligible.



192 The antiferromagnetic two-leg ladder with four-spin interactions

The three-triplon contribution (not shown here) is a broad hump with its spectral weight located at
the low-energy part of the three-triplon continuum due to the strong two-triplon interaction [327].
The contributions with odd parity are absent in rung polarization. Therefore the next correction is
the four-triplon contribution which can be expected to be a rather featureless and broad structure.
The two-triplon spectra presented should contain the essential physics in this energy range. Possible
discrepancies to the experimental data originate most probably from neglecting of life-time effects
and from related extrapolation uncertainties.

8.8 Cuprate Ladders

This section provides information about the current theoretical understanding of the spectroscopic
properties of magnetic excitations in cuprate two-leg ladder systems. The obtained theoretical
results presented so far are related to experiments.

The prototype of a two-leg cuprate ladder is the SrCu,O3 system. Unfortunately, no large single
crystals of this compound are available. There is only a Raman spectroscopy study [317] of this
material. Large single crystals can be grown of the telephone number compounds A14Cus4041 SO
that the majority of experimental data was collected for these compounds [298, 337, 349].

8.8.1 Undoped telephone number compound

The nominally undoped sample containing only Cu?t is LayCa14—xCu2sO41 with x = 6. Single-
phase crystals could only be synthesized for x < 5.2 [352]. Polarized x-ray absorption data [318]
show that at least for x > 2 the holes are located within the second structural unit of these
compounds, the CuQO» chains, so that the two-leg ladders can be considered as undoped for x > 2
[189, 298]. The exchange coupling in the CuO, chains is much weaker than in the ladders since it is
mediated via Cu-O-Cu bonds with an angle close to 90 °. Therefore the spectoscopic contribution
of the chains and of the ladders is separated energetically.

The need of four-spin interaction in the magnetic model arose in the simultaneous description of
inelastic neutron scattering data [337] and infrared absorption data [298]. The first quantitative
determination of the exchange couplings Ji, Jj and J. was performed in Ref. [324]. There the
one-triplon gap from inelastic neutron scattering data and the two low-energy peak energies of the
infrared absorption originating from the S = 0 two-triplon bound state (see last section) are used
to fix the three exchange constants to

J. = 11504+ 150cm™!
x = 12240.05
Xeye = 0.10540.015

In Fig. 8.21 the result for x = 1.25 and x.yc = 0.09 obtained by the continuous unitary transfor-
mation is displayed. The phonon form factors used are [324]

€ H k run - k
frd = 85|n4(§) and f"9 = 8$|n2(§) +4 . (8.8.1)
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Fig. 8.21: Comparison of the infrared absorption of Las»CaggCu240a41 (grey lines) at T =4 K with the two-
triplon contribution calculated by CUT (black lines) for J;/JL =1.25, Jeyc/J1 =0.09, J, = 1060 cm™?,

wi? = 570cm™, wi' = 620 cm™" and a finite broadening of " = 0.05J.. (Top panel) Polarization

parallel to the legs. The missing weight is mainly due to the sizeable three-triplon contribution. (Bottom
panel) Rung polarization. Here, the leading omitted correction is the small four-triplon part

Note that the exchange parameters are quite challenging for the extrapolation. Nevertheless a
semi-quantitative agreement can be reached. It seems that the extrapolation overestimates the
two-triplon interaction amplitudes for these parameters so that the spectral weight is shifted to
lower energies. In comparison to the DMRG results [324], the CUT is able to resolve the two
low-energy peaks better due to the smaller broadening. Clearly, a sizable contribution is missing in
leg polarization. The theoretical spectrum in Fig. 8.21 is scaled such that the spectral weight for
w < 3000cm~! is equal in experiment and theory. This part originates from the two-triplon bound
state. It contains in leg polarization about 45% of the total weight. The contribution of the two-
triplon continuum in this polarization contains about 25% of the total weight. The missing 30%
spectral weight can be identified with the three-triplon contribution [327]. This is in agreement
with the analysis of the spectral weights in Sect. 8.4 and with DMRG results [324]. In contrast,
the total spectral weight is already correct in rung polarization. Here the next correction is the
four-triplon contribution which is small.

A direct probe of the magnetic excitations is obtained by INS experiments. Especially the one-triplon
properties are accessible. Unfortunately, the only INS data published on this compound have only a
poor momentum resolution [337, 353] as shown in Fig. 8.22 (left panel). No decisive quantitative
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Fig. 8.22: (Left panel) Experimentally deduced one-triplon dispersion relation w(@) reduced to a single
Brillouin zone for the two-leg spin-ladder in LagCagCu24041 [353] obtained by inelastic neutron scattering.
Black curves represents theoretical results obtained by exact diagonalisation of 12 rungs (for details see
[353]). (Right panel) Calculated one-triplon contribution to the dynamical structur factor for x = 1.25
and xgyc = 0.09. An additional broadening of I = 0.05J, is used.

conclusion can be drawn from this experimental data concerning the exchange couplings. So a new
experimental INS study with high momentum resolution is desirable to study the full one-triplon
dispersion and the full one-triplon spectral weight. In addition, the study of two-triplon properties
with total spin one would come into reach in such an experiment.

The one-triplon contribution to the dynamical structure factor for x = 1.25 and xcyc = 0.09 is
shown in Fig. 8.22 (right panel) with a broadening of " = 0.05. The extrapolation is reliable in
this regime so that the results should be quantitatively correct. The intensity is concentrated at
the one-triplon gap A. It is reduced strongly at momenta far away from k = 7. It can be expected
that an additional structure occurs in experiment at k = 7 correponding to the lower-band edge of
the two-triplon continuum situated at w =~ 1.9J;. Note that the two-triplon bound state with total
spin one is absent in this parameter regime because Jq. is too large. The right panel represents a
clear theoretical prediction* which can guide future experimental work.

Raman spectroscopy is the third spectroscopic tool to analyze magnetic excitations. It probes S =0
excitations with momentum zero. The Raman observable couples to the even part concerning the
parity with respect to reflection at the centerline of the ladder as discussed in Sect. 8.7. The
Raman response consists therefore of a dominant two-triplon contribution plus a four-triplon part.
It was discussed in Sect. 8.7 that the line shape of both polarization is identical for x,,c = 0 in both
polarization. Differences are introduced by turning on the four-spin interactions. The result for
x = 1.25 and Xcyc = 0.09 is shown in Fig. 8.23 with a broadening of I" = 0.02. The experimental

“Note that the right panel of Fig. 8.22 displays only the one-triplon contribution to the dynamical structure factor.

The two-triplon contribution will give rise to additional high-energy features.
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Fig. 8.23: Comparison of the Raman response of LagCagCu240a41 (black lines) [349] with the two-triplon
contribution calculated by CUT (grey lines) for Jy/J. = 1.25, Jeyc/JL =0.09, J, = 1060cm™, and a
finite broadening of I = 0.02J,. (Top panel) Polarization parallel to the legs. (Bottom panel) Rung
polarization.

data display a similar line-shape in both polarizations. It is dominated by the two-triplon peak at
about 3000cm™! accompanied by a shoulder at the high energy side. At energies lower than the
two-triplon peak the spectra show a plateau with some additional small substructures which are
probably not of magnetic origin (see also discussion below on modulation effects). The position
and the width of the two-triplon peaks can be fairly well described by the theoretical curves. Note
that the exchange couplings used are optimized to fit all presented experimental data in order to
use only one set of parameters. So the Raman data is not fitted.

Theory and experiment differ at high energies. The theoretical two-triplon contribution displays
a zero in the spectrum and an additional high energy peak. Possible life-time effects are most
probably responsible for this difference. The latter is corroborated by the fact that the four-triplon
density of states is large in the region of the zero because the zero is located approximately at
twice the S = 0 two-triplon bound state energy at k = w. So it is expected that a decay of two
triplons into four triplons is especially large in this region and leads to a filling of the zero resulting
in a shoulder at high energy as seen in the experiment.

8.8.2 Structural modulations

Up to this point the spectroscopic properties of the telephone number compounds were explained
by an isolated two-leg ladder neglecting the presence of the CuO chains. Inspite of the fact that
a direct contribution of the spin-chains is small, an indirect influence of the chain subsystem can



196 The antiferromagnetic two-leg ladder with four-spin interactions

result in a sizable modulation of the magnetic exchange constants of the ladder. These modula-
tions can be caused by the differing periodicity of the chains and the ladders in one unit cell and
by a charge ordering of holes which also leads to a modulation of the exchange constants [338].
In this subsection a brief discussion is given how these modulation can affect the energy and the
spectral properties of the ladder. Here the focus is laid on the modulation which originates from
the different periodicities of chains and ladders.

There are ten sites of the chain and seven sites of the ladder in one unit cell. The presence of the
chains makes the rungs in the ladder inequivalent. Therefore seven inequivalent ladder rungs per
formula unit (f.u.) are present. Hence it is plausible to assume that the ladder is modulated. This
modulation is characterized by the wave vector Qs = 10/7 = 3/7 + 1 in reciprocal lattice units
(r.l.u.) of the ladder. In the magnetic subsystem of the spins on the Cu sites of the ladder, wave
vectors are only meaningful modulo unity so that Qs = 10/7 and Qs = 3/7 are equivalent (see
also Ref. [338]).

These modulations can be estimated from the modulated positions of the atoms at room temper-
ature [338] to be

3 1
J||,,- = J||[1 + 0.05 COS(27T?(I- + 5))] (8.8.2a)
Jii = Ji[1-0.10 sin(27r;i) +0.05 cos(27r§(i+3))] (8.8.2b)

with phase accuracy |Ai] 0.1% where i counts the leg- or the rung-bonds. The term with
2Qs = 6/7 denotes the second harmonic; overtones with amplitude $ 1% are omitted. The
amplitudes in Eq. 8.8.2 show that the induced modulation of the couplings is indeed sizeable.
The modulation can be included on the level of the effective model, i.e. after the continuous unitary
transformation [338]. This is no serious caveat since a microscopic calculation is not available. The
leading-order effect of Jj is to enable the triplon to hop from rung to rung by a nearest-neighbor
hopping element t; o« Jj and to induce a nearest-neighbor interaction w; o Jj. So the most
straightforward way to account for the modulation of J; as given in Eq. 8.8.2 and is to modulate
t; and wy,

trocwy o - [1+ Z agcos(2mQi) ] . (8.8.3)

Q=3/7,6/7

Here only the effect of a modulation of Jj is discussed in order to describe the general effects of
modulations on the spectral properties of two-leg ladders.
The main effect of the modulations is the opening of gaps in the one-triplon dispersion wherever
the wave vector Q links equal energies w(k) = w(k+Q) of the unmodulated ladder. Smaller gaps
open for higher-order processes, e.g. for w(k) = w(k+2Q). The energies at which gaps open
depend decisively on the wave vector of the modulation.
The resulting one-triplon dispersions including the modulations of the coupling given in Eq. 8.8.2
are shown in Fig. 8.25. The different modulation gaps are clearly visible. As there are no high
resolution INS data available at the moment, a direct observation of the effects of the modulations

5Fig. 8.24 shows the periodicity; the modulation phases of the couplings cannot be read off because (i) Cu sites in
the chains and ladders are not in line; (ii) each ladder is influenced by the four chains close by which are shifted

by different amounts; (iii) the important oxygens are not depicted. For details see Ref. [354].
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Fig. 8.24: Scheme of the superstructure along the chains and the ladders (c axis). 10 chain units (top
row) match 7 ladder units (bottom row) inducing a modulation in the ladders with wave vector Qs =
Cladder/ Cchain = 10/7 = 3/7+1 (in r.l.u. of the ladder) [354]. In Sr14Cu24O41 the charge order (CO)
implies an additional superstructure with Qco = 2/10 (in r.l.u. of the chain) [355-358], corresponding to
a periodicity of 5-Cchain. It is visualized (middle row) as two units of “spin-hole-spin-hole-hole” per 7 rungs
(grey squares denote the six holes per f.u.). This superstructure induces an additional modulation in the
ladder with Qco = Ciadder /(5 Cchain) = 2/7 (in r.l.u. of the ladder).
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Fig. 8.25: One-triplon dispersion w(k) for x = 1.25 with xoc = 0.09 including the effect of structural
modulations. Black lines correspond to modulated dispersions and grey lines to the unmodulated dispersions.
(Left panel) Structural modulation Qs = 6/7 of strength ag;7 = 5%. (Right panel) Structural modulation
Qs = 3/7 of strength a3/, = 10%.

at low temperatures is an open problem.

Next the influence of the modulation on optical experiments is discussed. Obviously, the modulation
gaps of the one-triplon dispersion are also present in the two-triplon channel. In addition, the same
effect occurs also for two-triplon energies, i.e. energy gaps open in the dispersion of the two-
triplon bound state for momenta connected by the modulation. The local two-triplon interaction
is modified.

The effect of the modulation on the two-triplon contribution to the Raman response is shown in
Fig. 8.26. Here both modulations are applied simultaneously. Since Raman scattering measures
excitations with total momentum kio:=0, the two-triplon response reflects the excitation of two
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Fig. 8.26: Comparison of the Raman response of LagCagCu240a41 (black lines) [349] with the calculated
two-triplon contribution for x = 1.25 with xgc = 0.09 and J, = 1100cm™! including the effect of a
modulation (grey lines). An additional broadening of I = 0.02 is used. A modulation Qs = 6/7 of
strength ag;7 = 5% and a modulation of Qs = 3/7 of strengh a3;; = 10% are applied simultaneously.
(Upper panel) rung polarization and (lower panel) leg polarization.

triplons with momenta ko = —k; and energies w(ky) = w(ko). Thus a gap in the one-triplon
dispersion at wy causes a corresponding feature in the Raman line at 2wy.

The most striking change in the Raman line shape is a new feature at about 1600 cm™1!

. Looking
at the one-triplon dispersions in Fig. 8.25, the only low-energy gap introduced by the modulations
is caused by the Qs = 6/7 modulation which causes a gap in the Raman response at two times
this energy. But there is an additional sharp peak inside this gap region where the width of the
peak is given by the broadening I'. A mid-gap two-triplon bound state is therefore found in the
Raman response which originates from the structural modulation Qs = 6/7. Indeed, additional
structures are also found in the experiment at about 1700cm~1 in both polarizations and in almost
all members of the telephone number compounds [349]. The structural modulation Qs = 3/7 only
influences the spectrum slightly at high energies.

The experimental relevance of the modulation on the infrared absorption in Lag»>CaggCus4041 is
rather small. This is due to the relatively broad spectra. A relatively large broadening has to be
used which washes out the introduced new structures. In addition, there are actually two different
phonons involved in every polarization [351] so that fine structures are averaged out.

Generically, the largest effect of the modulations is on the two low-energy peaks originating from
the two-triplon bound state. In analoqgy to the one-triplon dispersion, the modulations also induce
gaps in the dispersion of the two-triplon bound state and therefore new minima and maxima are
introduced which give rise to van Hove singularities in the density of states. Consequently, new
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Fig. 8.27: Comparison of the infrared absorption of Las2CaggCu24Oa1 (grey lines) at T =4 K with the
two-triplon contribution calculated by CUT (black lines) including the effect of structural modulations
Qs = 6/7 of strength ag;7 = 5% and Qs = 3/7 of strength a7 = 10% for Jj/JL=1.25, Jeyc/J1 =0.09,
Ji =1060cm™, wy? = 570cm™, wpi'd = 620 cm™*. Solid black line corresponds to a finite broadening
of I = 0.05J, and long dashed black line displays I = 0.02J,. (Top panel) Polarization parallel to the
legs. (Bottom panel) Rung polarization.

usually small peaks arise in the infrared absorption spectra.

In Fig. 8.27 the infrared absorption including the effect of structural modulations is displayed in

analogy to Fig. 8.21. Simultaneous modulations Qs = 6/7 of strength a7 = 5% and Qs = 3/7 of
strength a3/7 = 10% are used. The main effect at low energies is the appearance of an additional
but very small feature between the two peaks originating from the S = 0 two-triplon bound state.
The additional structure is a consequence of the Qs = 6/7 modulation opening a gap in the
dispersion of the bound state. It is almost invisible due to the additional broadening " = 0.05J,
being of the same size as ag/7 (solid black line). The principle effect can be seen for the long
dashed line depicting the case of 7 = 0.02J,. The Qs = 3/7 modulation affects mostly the high
energy part of the spectrum.
One can conclude that the effect of modulated exchange couplings in the ladder can be conveniently
studied by adding the modulation on the level of the effective system, i.e. after the continuous
unitary transformation. The modulation induced by the differing periodicity of chains and ladders in
the telephone number compounds give rise to small but physical interesting structures. Note that
the influence on the spectroscopic line shapes is small because the induced gaps open for energies
where the spectral weight is small. In contrast there are strong changes if a gap opens at energies
where the spectral weight is concentrated [338]. The latter can happen if the modulation has a
different wave vectors @, e.g. in the presence of charge order.
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8.8.3 SI‘CU203 and Sr14Cu24041

In this subsection the compounds SrCu,;O3 and Sr14Cuy4Q4; are discussed focusing especially on
the Raman response. SrCu,Os3 is an undoped two-leg spin-ladder while Sr14Cu2404;1 as a member
of the telephone-number compounds consists of ladders and chains. These two compounds show
different line shapes in Raman spectroscopy compared to the previously discussed LagCagCussO4;.
Therefore it is important to understand the origin of these differences in order to establish that the
results found for LagCagCu2404; are generic findings for two-leg ladders.

It was discussed above that the Raman line shape of a two-leg ladder should be almost the same in
both ladder polarizations. This was confirmed experimentally in the case of LagCagCu24041 [349].
In contrast to the latter case, the Raman line shapes in SrCuy;O3 and Sry4Cup404; of rung and
leg polarizations are very different [317, 349, 359]. One observes in both compounds a very sharp
intensive peak in leg-polarization and a relatively broad structure in rung polarization. This cannot
be explained within a purely magnetic model of a two-leg ladder.

At the moment there is no theory describing both compounds in an unified way. It was argued
in the Sr14Cu; 041 case that a charge ordering in the spin-chain material induces an additional
modulation in the ladders (Qco = 2/7) causing the sharp feature in experiment [338]. There are 6
holes per unit cell in Sr14Cu2404; which are assumed to order in the chains as displayed in Fig. 8.24.
The charge order gives rise to a modulation of the two-leg ladder which causes a sharp Raman
peak. Obviously this mechanism cannot be the explanation in the SrCuy O3 compound which only
consists of undoped spin-ladders. Nevertheless, in the meanwhile also a charge ordering directly in
the spin-ladders of Sr14Cuz4041 has been observed which should modulate the exchange couplings
in this material and influence also the spectral properties (see last subsection) [361-363]. The
origin and properties of the observed charge order is unclear at the moment.

The most striking observation by looking at the experimental data is the fact that the measured
Raman response for both materials depends strongly on the laser excitation energy pointing to a
resonating contribution to the Raman spectrum. Indeed, the Raman line-shape is similar in both
polarization when decreasing the laser frequency [317, 359]. It could be concluded that the Raman
spectra measured with low laser frequency represent the true non-resonant Raman response as
calculated in this work.

Infrared absorption of Sr14Cu24041 shows that the exchange couplings are a bit different from the
LagCagCuz4041 compound [360]. It is found that x ~ 1.35 — 1.4 and X, = 0.11 — 0.12. Clearly,
the theory presented is not valid in a quantitative manner in this parameter regime. Nevertheless it
can be concluded that the Raman response should show a sharper two-triplon peak as discussed in
Sect. 8.7. This is also found when looking at the above mentioned experimental data obtained by
using a low laser frequency [317, 359] compared to the Raman response of LagCagCup4041 [349].
The similar width of the two-triplon Raman peak in Sr14Cu2404; and SrCu>Os3 suggests that also
the exchange couplings are similar in both materials.
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8.9 Chapter summary

In this chapter the effect of four-spin interaction on the energy and the spectral properties of the
two-leg ladder is investigated focusing on the parameter regime relevant for the experimental re-
alizations of spin-ladders. The first part describes the origin and the importance of the four-spin
interactions for cuprate systems.

The perturbative CUT is performed about the limit of isolated rung dimers in analogy to the
Heisenberg ladder discussed in the last chapter. It is shown that the clusters needed to calculate
the various amplitudes in the thermodynamic limit are larger than in the pure Heisenberg case.
In addition, the expansion has to be performed in two perturbation parameters x = J;/J, and
Xeye = Jeye/J1 so that the maximum order that could be reached is smaller by three.

The extension of the rung-singlet phase is determined in the x — xcyc plane by applying the method
of internal parameters as introduced in Sect. 5.4 for the one-triplon gap [209]. The experimental
realizations of spin-ladders are always in the rung-singlet phase.

The destabilization of the rung-singlet phase by the four-spin interaction affects also the spectral
weights. It is found for total spin zero and total spin one that spectral weight is shifted from the
leading channels to channels with more triplons. It is to be expected that the spectral weight is
distributed over more and more channels upon approaching the phase transition line. Nevertheless,
the one- and two-triplon channel dominate the physics for realistic values of the couplings relevant
for cuprate ladders.

The main effect of the four-spin interaction is a global red shift of all energies. As a consequence,
all continua approach each other, especially the two- and the four-triplon continua overlap strongly.
This is also seen in severe extrapolation problems in the S = 0 channel. Here the four-triplon
contribution is located lower in energy and has a sizable weight so that possible life-time effects
can be expected. The results obtained are quantitative up to x & 1 in both spin channels. The
extrapolation in the S = 1 channel are rather straightforward. They are quantitative also for
1 < x < 1.5. For such values of x only semi-quantitative results can be obtained in the S = 0
channel.

The second sizable effect of the four-spin interaction is to lower the attractive two-triplon inter-
action. Thereby the binding energy of the two-triplon bound states is reduced upon turning on
Xeye and spectral weight is shifted from the bound state to the two-triplon continuum. The S =1
bound state disappears for realistic values of cuprate ladders due to this effect.

Therefore the spectral properties of the two-triplon continuum for total spin one changes drasti-
cally for finite four-spin interaction. The disappearance of the two-triplon bound state causes sharp
structures at the lower band edge of the two-triplon continuum. The overall shape of the S =0
spectral density is not changed by xcyc.

Results for the Raman response are shown for different values of x and x... The spectra are
dominated by the two-triplon peak which becomes sharper for increasing x. The Raman line shape
is identical for leg and rung polarization without four-spin terms. The Raman response displays
a zero in the spectrum for x > 0.7 accompanied by a second high energy peak. It is expected
that the high energy features are changed by life-time effects. The line-shape in rung polarization
is almost unchanged by the four-spin interaction while the two-triplon peak in leg polarization is
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sharpened by xcyc.

The infrared absorption spectrum is shown for various values of x and x.,. In addition, the effect
of various phonon form factors are demonstrated. The line shape of the infrared absorption displays
mainly three different peaks in both polarizations. The first two low-energy features originate from
the two extrema of the two-triplon bound state dispersion. The different intensities of the first two
peaks in both polarizations can be explained nicely by the different symmetries of the observables.
The third peak results from the two-triplon continuum.

The last part of the chapter provides information on the current status of the spectral properties of
magnetic excitations in cuprate ladders. It can be concluded that in the case of the undoped mem-
ber of the telephone-number compounds all available experimental data can be understood using a
unique set of exchange couplings. Experimentally, a high resolution INS study of this compound is
missing so that only the gap energy is reliably known for this compound.

The results obtained by the CUT can semi-quantitatively explain INS data, Raman response and
infrared absorption. A sizable three-triplon contribution is missing in leg polarization in the infrared
absorption. The two-triplon peak in the Raman response can be reproduced nicely. There are some
differences at high energies which are most probably caused by life time effects.

Besides the spectral properties of pure two-leg ladders, also the effect of modulations of the
magnetic exchange couplings are discussed which simulate the indirect influence of the spin-chain
subsystem on the ladders relevant for all members of the telephone-number compounds. The mod-
ulation considered have wave vectors Qs = 3/7 and Qs = 6/7. The modulations are included on
the level of the effective model. They induce small gaps in the one-triplon dispersion which could
be measured directly by inelastic neutron scattering. In addition, also the effect of the modulation
on optical experiments is investigated. It is shown that the structural modulations create a mid-gap
bound state in the Raman response which can be also identified in the experimental data. The
effect on the infrared absorption is rather small.

Although the influence of the modulation induced by the differing periodicity of chains and ladders
is small, generically modulations can have a strong effect on the spectroscopic line shape. The
latter corresponds to a situation where a modulation gap opens at an energy where the spectral
weight of the spectrum is concentrated.

The last part of the chapter deals with the compounds SrCusO3 and Sr14Cus404;1. It is concluded
that the large differences between rung and leg polarization as observed by Raman spectroscopy
cannot be explained in a purely magnetic model. Some suggestions are made for the origin of
these differencies and how they relate to the findings for LagCagCu24041. Therefore the previously
discussed findings for LagCagCup4041 can be viewed as generic for a two-leg ladder.
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9 Concluding summary

In this chapter the findings of this thesis are summarized. The discussion is divided into aspects
concerning the technical approach and into aspects concerning the application to chains and ladders.
The end of the chapter gives future perspectives and possible extensions are presented.

9.1 Methodical aspects

In this work, particle-conserving continuous unitary transformations are used to study the energies
and especially the spectral properties at zero temperatures of quasi one-dimensional quantum an-
tiferromagnets. The method is well-suited for gapped spin liquids defined on a lattice.
The initially given operators like the Hamiltonian or the observables are transformed to effective
operators in a continuous fashion. The initial Hamiltonian must allow for a perturbative decompo-
sition
H=Hy,+xV |, (9.1.1)
such that the unperturbed part Hg has an equidistant spectrum bounded from below. The perturbing
part V has to be decomposed into ladder operators T,
N
V= Z T.., with NeN and [Ho T, =nT, . (9.1.2)
n=—N

The quantized energy spectrum of Hy defines the quasi-particle description of the system. The
quasi-particles are renormalized by the transformation leading to dressed particles in the effective
model.
The transformation is realized in a perturbative manner such that the transformation is exact to
a certain order in x. The effective Hamiltonian Hess conserves the number of quasi-particles, i.e.
[Hefr, Ho]l = 0, hence the name particle-conserving continuous unitary transformation.
The latter property is crucial since it reduces the complex many-body problem to an effective
few-body problem. This allows the calculation of multi-particle properties of the to be studied
system [142,143]. A similar orthogonal transformation was constructed by Trebst and cowork-
ers [177].
The effective Hamiltonian and the effective observables decompose into n-particle irreducible oper-
ators, which are defined on the full Hilbert space of Hes. The problem splits into different sectors
uniquely characterized by the number of quasi-particles. The zero-particle irreducible part Hy mea-
sures the ground state energy, H; measures the one-particle dispersion, H, the true two-particle
interaction and so on. In this thesis the discussion is concentrated on H,<> usually representing
the physically most important parts of He.
Generally the effective observables O do not conserve the number of particles. Zero-temperature
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observables can be decomposed into irreducible parts injecting a definite number of particles in the
system. This allows the separate determination of n-particle contributions to the spectral density.
The way of decomposing the full Hamiltonian defines the choice of quasi-particles by which one
will describe the physical system. To which extent the chosen quasi-particle is suitable to describe
the physical system, can be studied by examining the n-particle spectral weights defined by the
decomposition of the effective observables. A quasi-particle description is well suited for the given
problem if most of the spectral weight remains in the particle-sectors with a small number of par-
ticles. Otherwise the spectral weight is distributed over multi-particle sectors, and an effective
multi-particle problem has to be solved to describe the physics of the system.

The effective operators are calculated on finite clusters yielding results in the thermodynamic limit
due to the linked-cluster theorem. The states are characterized by the number of quasi-particles
and the position of the particles on the lattice. Therefore the calculation is done in real space.
The effective operators are given by a high-order series expansion in the parameter x. Each pertur-
bative order represents virtual processes of the initially present particles. The obtained maximum
order is proportional to the maximum range of virtual processes depending on the range of the
initially given Hamiltonian. The resulting particle can be visualized as the local particle with a
dressing of virtual processes.

A successful use of the method described above requires that the correlations in the considered
physical system are not larger than the maximum range of processes one has included in the calcu-
lation. This is especially important in cases of critical systems exhibiting long-range correlations.
The use of extrapolation tools extends the parameter space in which reliable results can be found.
In this way an analysis of locally defined quantities like spectral weights is possible even in the limit
of a critical point. A variety of extrapolation tools are described. An effective extrapolation is found
by combining the use of internal parameters of the system with Padé and dlogPadé techniques.
The use of continued fraction techniques makes the calculation of spectral densities possible. In
this work the discussion is restricted to one- and two-particle spectral densities.

The decomposition of the Hamiltonian of a large class of low-dimensional quantum antiferromag-
nets can be obtained by starting from a totally dimerized state. Then the ground state is the
product-state of singlets. Excitations are local triplets with total spin one and magnetic quantum
numbers m = —1,0,1. The excitation spectrum is equidistant and the use of the perturbative
particle-conserving continuous unitary transformation is straightforward. The quasi-particles in this
context are named triplons [82] or elementary triplets corresponding to dressed triplet excitations.
They are hardcore-bosons since only one triplon can be excited on one dimer.

0.2 Chains

The first system studied is the dimerized and frustrated antiferromagnetic spin-chain. The start-
ing point is the totally dimerized state. This system shows a critical point at zero dimerization.
Therefore the regime of small or zero dimerization is the most challenging regime for the method.
The applicability of the chosen quasi-particle, the triplon, is analyzed by investigating the multi-
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triplon spectral weights. For zero frustration it is found that most of the spectral weight is in the
one- and two-triplon sector for all values of the dimerization including the case of vanishing dimer-
ization [82]. The case of strong frustration is more subtle. Some indications are found that the
triplon-picture is also applicable in this case. It can be concluded that the triplon is an appropriate
quasi-particle for describing the dimerized and frustrated spin-chain in a large parameter regime.
The analysis of spectral densities is restricted to large or intermediate values for the dimerization.
Quantitative results are obtained for all important spectral densities. Additionally, precursors of the
physics of the uniform chains are identified and described. One has the expection that everything
should work even down to § = 0.

The discussion of the spectral density is split into the case of total spin one and total spin zero.
The dynamical structure factor is dominated in the considered parameter regime by the one-triplon
contribution. The one-triplon dispersion increases for increasing dimerization and it is flattened for
increasing frustration. The spectral weight is concentrated at momentum k = 7.

The two-triplon contribution comprises two-triplon bound states and a two-triplon continuum. The
line shape at the lower band edge depends strongly on the location of the two-triplon bound states.
Generically, a v/w behavior is found at the band edges which is the consequence of the hardcore
property of the triplons. Here w denotes the energy of the two triplons near the band edges. In
contrast, a 1/+4/w diverging behavior is found if a two-triplon bound state is degenerate with the
band edge of the two-triplon continuum.

The spectral weight of the two-triplon continuum is concentrated at the lower band edge and near
k = m. The frustration shifts spectral weight to higher energies.

Two different observables are examined in the S = 0 case: a nearest-neighbour coupling on the
weak bonds and a next-nearest-neighbour coupling. The spectral density for both observables is
dominated by a strongly bound two-triplon state. Consequently, the same holds true for the Raman
response and the infrared absorption?

The comparison of the results with field-theoretical treatments mapping the spin-chain to a contin-
uum theory led to a number of insights. The dimerized and frustrated spin-chain is usually mapped
to a single sine-Gordon model. But it turns out that this reduction to a single sine-Gordon neglect-
ing marginal operators is not appropriate for the considered values of the dimerization. The physics
of the single sine-Gordon model will emerge only at much smaller values of the dimerization.

9.3 Ladders

The second physical system investigated are two-leg ladders. The analysis comprises the pure
Heisenberg ladder and the extended two-leg ladder including the next-leading four-spin interaction.
The starting point of the discussion is in both cases the limit of isolated rung dimers. Therefore
the elementary particle chosen in this context is the rung-triplon.

INote that in the unfrustrated case (o = 0) the two-triplon boundstate S; does not exists. Here one observes a

resonance at the lower band edge dominating the spectra.
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9.3.1 Two-leg Heisenberg ladder

The energy spectrum of pure Heisenberg ladders consists of the one-triplon dispersion, one two-
triplon bound state with total spin one and total spin zero and multi-triplon continua. In addition,
there is an anti-bound state with total spin two which is not discussed in this thesis.

The one-triplon dispersion is of cosine-shape for x < 0.7. The one-triplon gap is located at k = 7.
If x > 0.6, the one-triplon dispersion displays an additional local minimum at kK = 0. This can be
either understood from the limit x — oo which is the case of two isolated spin-chains or directly in
the triplon language. The dispersion of the spin-chain is gapless at k = 0 so that the dip in the
ladder can be interpreted as a precursor effect of the spin-chain physics. In the triplon language it is
shown that the dip corresponds to a level repulsion effect due to the approximity of the three-triplon
continuum.

The two-triplon contribution split into the two-triplon bound states and the two-triplon continuum.
The bound states emerge from the continuum at finite momentum. They have there maximum
binding energy at kK = . The binding energy of the S = 0 bound state is larger than the binding
energy of the S = 1 bound state.

Sectors of odd (even) number of triplons are only coupled among themselves due to the reflection
parity at the centerline of the ladder. The relative positions of one-/three- and two-/four-triplon
energies are given. At isotropic coupling, the one-triplon dispersion is lower than the three-triplon
continuum but they are very close for small momenta. The two-triplon and four-triplon continua
overlap strongly. The overlap in the S = 1 channel is smaller due to the smaller binding energy.
Multi-triplon spectral weights are analyzed in both spin channels. It turns out that most of the
spectral weight remains in the one- and two-triplon channel. But in contrast to the spin-chain case
the weight in the three- and four-triplon sector is getting sizable for x > 1.

The latter two points give rise to severe extrapolation problems especially for two-triplon ampli-
tudes. The extrapolations are performed by using the method of internal parameters plus additional
Padé and dlogPadé extrapolations. The overlap of two- and four-triplon continuum is reflected by
spurious poles in the extrapolation. Usually [n, 2]-Padé or [n, 2]-dlogPadé extrapolants are used
in order to avoid these poles. The extrapolation ignore possible life-time effects which reflect the
decay of two triplons into four triplons. The extrapolation is less complicated in the S = 1 sector
becaues the overlap is smaller. The extrapolation is quantitative up to x = 1 in both spin channels.
The extrapolation in the S = 1 sector is even reliable for larger coupling ratios.

The dynamical structure factor is dominated by the one-triplon contribution in the considered pa-
rameter range. The spectral weight is concentrated at k = w. The two-triplon spectral weight is
situated mostly in the two-triplon bound state. The spectral weight of the two-triplon continuum
is located mainly at the lower band edge near k = 7 reflecting already precursors of the spin-chain
physics.

There are two generic S = 0 observables, one couples to the rungs of the ladder and the second
to the legs of the ladder. The rung observable has even parity concerning the reflection at the
centerline of the ladder. Therefore it excites only an even number of triplons. The leg observable
possesses an even and an odd parity contribution.

Results for the most important two-triplon contributions are presented for both observables. At
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small momenta no two-triplon bound state is present. At k = 0, the leading two-triplon Raman
response, the spectrum is dominated by a two-triplon peak inside the two-triplon continuum. Note
that the line-shape is the same for both observables at kK = 0. At x > 0.6, a second peak at
high energies is formed split from the two-triplon peak by a zero in the spectrum. The zero is a
combined effect of the two-triplon interaction and the dip at kK = 0 in the one-triplon dispersion.
It is expected that life-time effects will modify the high-energy line shape producing a structure
resembling a shoulder.

The two-triplon contribution at larger momenta is dominated by the presence of the S = 0 two-
triplon bound state. The two observables display different spectral weight distribution at finite
momentum. Especially the spectral weight of the two-triplon bound state differs. The intensity in
leg polarization is maximal at k = m while it is strictly zero in rung polarization.

The latter gives rise to a definite signature of the two-triplon bound state in infrared absorption
measurements [298]. The two extrema of the two-triplon bound state result in two low-energy
peaks in the infrared absorption. Due to the different spectral weight distribution, the first peak is
larger as the second one in leg polarization while in rung polarization the second peak is dominant
and only a shoulder at lower energies is present. In addition, the infrared absorption displays a third
structure at high energies corresponding to the two-triplon continuum.

9.3.2 Heisenberg ladder with four-spin interaction

The Heisenberg ladder with additional four-spin interaction is investigated. It is known to be the
minimal model for cuprate ladder systems. It is shown that the inclusion of the four-spin interac-
tion requires larger clusters compared to the pure two-leg ladder in a given order. In addition, the
series expansion has to be performed with two perturbation parameters. Therefore the maximal
perturbation order reached is reduced.

The one-triplon gap is analyzed focusing on the stability of the rung-singlet phase. It is shown that
the one-triplon gap closes at finite x. for a given x. The extension of the rung-singlet phase in the
whole [x, xeye] —plane is calculated using a new extrapolation technique combining renormalization
ideas and series expansion [209]. Cuprate ladder systems are always in the rung-singlet phase.
The rung-triplon picture is destabilized by the four-spin interaction. This is also discernible in the
spectral weight distribution. Spectral weight is shifted from the leading one- and two-triplon chan-
nels to multi-triplon channels. It can be concluded that the rung-triplon picture breaks down at the
phase transition point.

The main effect of the four-spin interaction on the energy spectrum of the two-leg ladder is a red
shift of all energies. Consequently, all multi-triplon continua lie closer in energy. The extrapolation
is done in a analogy to the pure Heisenberg case. The second effect of the four-spin interaction
is the reduction of the attractive triplon-triplon interaction. Hence the binding energy of the two-
triplon bound states is therefore reduced. The S = 1 two-triplon bound state disappears already
at Xeye & 0.1 for x = 1 while the S = 0 two-triplon bound state is still present for these exchange
couplings due to the larger binding energy in this spin channel.

For finite xcyc, the one-triplon contribution to the dynamical structure factor is more concentrated
near k = m while the overall weight is reduced. There is a drastic change in the line-shape of
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the two-triplon contribution due to the disappearance of the S = 1 two-triplon bound state. The
spectral weight is mostly distributed at the lower band-edge of the two-triplon continuum. At the
point where the lower band-edge and the bound state are degenerate, a 1/+/w-like behavior is found
similar to the findings in the spin-chain case.

For finite Xy, the two-triplon contribution in the S = 0 channel is changed only quantitatively.
Spectral weight is shifted from the bound state to the two-triplon continuum which becomes more
pronounced.

The Raman response in leg and rung polarization is not equal for finite four-spin interaction. The
line-shape in rung-polarization is almost unchanged while the two-triplon peak is sharpened for
increasing Xy in leg polarization. Nevertheless, the overall line-shape remains similar in both po-
larizations for the exchange ratios discussed in this thesis.

The two-triplon contribution to the infrared absorption is analyzed in both polarization. The in-
fluence of different phonon form factors on the resulting infrared line-shape is presented. The
contribution of the two-triplon continuum becomes more pronounced for increasing x and increas-
iNg Xeyc-

The last part of the chapter compares the results obtained with experimental data for cuprate lad-
ders and gives an overview of the current understanding of magnetic excitations in these systems.
A quantitative analysis of infrared absorption data on Lag >CaggCu»4041 by T. Nunner and cowork-
ers [324] using DMRG gives J; = 1150 4 150cm~!, x = 1.22 4+ 0.05 and xcyc = 0.105 =+ 0.015.
This parameter set is very challenging for the perturbative realization of the continuous unitary
transformations. Nevertheless, it is shown that all experimental data including infrared absorp-
tion, Raman spectroscopy and inelastic neutron scattering data can be understood at least on the
semi-quantitative level. Unfortunately, there is no high-resolution inelastic neutron scattering data
available probing the one-triplon properties of the materials, for which a clear prediction is made in
this thesis.

The two-triplon Raman response shows differencies at higher energies of the spectrum. The exper-
iment shows the two-triplon peak with a high-energy shoulder. The theoretical curve displays an
additional second peak at high energies plus a zero in the spectral density between the two peaks.
It is concluded that the omitted life-time effects are strong in this energy region and that they will
lead to a washing out of the zero implying to a shoulder-like structure.

Comparing the theoretical infrared absorption spectra with the experimental data for Las.Cagg-
Cup4041, it is seen that the two-triplon interaction is overestimated by the extrapolation pushing
the spectrum and the specral weight to too low energies. But the overall agreement between exper-
iment and theory is good. A sizable three-triplon contribution is missing in leg-polarization [327].

It can be concluded from the developments over the last years in experiment and theory that there
are strong quantum fluctuations in cuprate two-leg ladders resulting in sizable high-energy spectral
weight in the infrared absorption and in the Raman response. Second, it is important to treat the
strong triplon-triplon interaction on a quantitative level. The similarities between the experimental
findings in cuprate ladders and cuprate planes point in the direction that the same physical ingre-
dients like two-particle interactions and multi-particle contributions have to be taken into account
to understand the magnetism in the cuprate planes.
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It is argued that in the telephone number compounds A;14,Cu; 041 there is an effect of the sec-
ond structural unit, the spin-chains, on the ladders resulting in modulations of the two-leg ladder
exchange couplings. This effect is treated theoretically on the level of the effective system, i.e.
after the transformation. The influence on one- and two-triplon properties is given for the realistic
exchange ratios of cuprate ladders. The main effect of the modulations is to open small gaps in the
one-triplon dispersion. The modulations could be directly measured by inelastic neutron scattering.
In addition, the influence on optical experiments is discussed. The effect on the infrared absorption
is rather weak due to the larger additional broadening and the presence of at least two phonon
contributions. In the Raman response, the modulations induces a mid-gap bound state which can
be also identified in the experimental data.

The influence of the modulation on the spectroscopic line shapes depends strongly on the wave
vector of the modulation. It is found that the effect of the modulation induced by the differing
periodicity of chains and ladders in the telephone number compounds is rather small. The latter
follows from the fact that the modulation gaps open at energies where the spectral weight is small.
If a modulation gap opens at an energy where the spectral weight is concentrated, a large effect
on the line shape is seen. This can happen if the wave vector of the modulation is different, e.g.
in the presence of charge order.

9.4 Perspectives

The last part is devoted to some perspectives concerning the methodical aspects and possible
extensions of the physical systems studied in this work. The method used here has two major
limitations: First, no long range processes can be treated with the perturbative realization of the
continuous unitary transformation. This is discussed in the spin-chain case approaching the critical
limit of vanishing dimerization. Second, the possibility of overlapping multi-particle energies give
rise to severe extrapolation problems as was observed in the investigation of two-leg ladder systems
for large coupling ratios [326].

To overcome the first problem, one has to switch from a perturbative realization to a renormaliz-
ing formulation of the continuous unitary transformation. A way of doing this is to truncate the
proliferating terms not occuring to their formal order of some expansion parameter but accordning
to their complexity and to solve the resulting differential equations using a Runge-Kutta algo-
rithm [138, 161, 165, 166]. The most challenging problem in this context is to find an appropriate
and controlled truncation scheme. Note that a major advantage of the perturbative realization is
the absence of any error in a given perturbation order.

The treatment of long range order processes can be done also by switching to momentum space
and solve the differential equations on a discretized momentum grid. Note that treating the usually
real space constraints of the participating particles is complicated in momentum space but can be
done exactly by changing the commutation relations.

The problems arising from overlapping continua is not healed in the renormalizing formulation.
In contrast, the solution of the differential equation diverges in this case and one is left without
physical result [326]. There are two cures: First, the physical processes connecting the continua
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are not important and one can omit these processes. Second, if the processes are important, one
does not attempt to eliminate these processes and deals with them afterwards by other techniques,
e.g. diagrammatic treatments [326].

Using these methodical extensions it should be possible to answer some of the open issues not
solved in this work. One major task is to study the relationship of the triplon and the spinon
picture in more detail approaching the limit of vanishing dimerization. Especially the case of the
massive but free spinons for a > a. is very fascinating. An improved understanding of fractional
and integer excitations in spin liquids should be also important for the study of undoped and doped
two-dimensional quantum antiferromagnets.

In the case of cuprate ladder systems, an almost complete understanding of the spectral properties
of magnetic excitations has been reached. Especially the necessity to include four-spin interaction
in the minimal magnetic model for these systems seems to be settled. The results obtained by the
perturbative continuous unitary transformations are affected by the overlapping continua so that
only semi-quantitative results are possible especially in the S = 0 case. Therefore a quantitative
treatment in the realistic coupling regime including possible life-time effects is an open issue and
should resolve the differencies in Raman spectroscopy and infrared absorption. The calculation of
the three-triplon contribution is another missing step in order to understand the infrared line shape
in a complete fashion. First results are available [327].

The treatment of modulations in the two-leg ladder on the level of the effective system is a promis-
ing example for using the effective system as the starting point for a calculation. The important
point is that once the effective system is given, a less demanding calculation can be easily put on
top. This was also done recently by considering coupled two-leg ladder systems to describe inelastic
neutron scattering data of striped ordered and superconducting cuprate superconductors [130, 131].
The crossover from one-dimensional to anisotropic two-dimensional physics comes into reach in
this way.

The similarity between the experimental findings in optical experiments for cuprate ladders and
cuprate planes suggests similar physical ingredients necessary to describe the two-dimensional case.
A calculation based on magnons which includes magnon-magnon interactions in a quantitative
manner and multi-magnon contributions might resolve the long-standing problem of large spectral
weights at high energies in undoped cuprate superconductors.

Therefore the use of continuous unitary transformations for the undoped and also for the doped
two-dimensional square lattice is a very exciting and promising route. Hopefully, the strong corre-
lations in these systems can be treated in this way, so that new insights in the physics of cuprate
superconductors can be gained.
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Zusammenfassung

In dieser Arbeit wird eine perturbative Realisierung Teilchenzahl erhaltender kontinuierlicher Trans-
formationen benutzt, um die energetischen und spektralen Eigenschaft quasi-eindimensionaler Quan-
tenantiferromagnete zu studieren. Die betrachteten Systeme sind auf einem Gitter definiert und
erlauben eine perturbative Behandlung. Es wird jeweils ein komplett dimerisierte Ausgangszustand
fiir die Transformation ausgewahlt. Der Grundzustand ist der Singulett-Produktzustand and das
Anregungsspektrum ist dquidistant. Das zugehorige Energiequant wird Triplon genannt. Die kon-
tinuierliche Transformation fiihrt zu einem effektiven Hamiltonoperator, der die Zahl der Triplonen
erhalt, und effektiven fiir das Experiment relevanten Observablen.

Die effektiven Operatoren liegen nach der Transformation als Reihenentwicklung in den Stérungs-
parametern vor. Alle Berechnungen werden auf endlichen Clustern im Ortsraum durchgefiihrt. Die
Resultate werden so im thermodynamischen Limes bestimmt, so dass auf Grund des linked-cluster
Theorems die Resultate fiir co-groBe Systeme gelten.

Die Ergebnisse sind exakt in der gegebenen Storungsordnung. Um eine verbesserte Darstellung der
Ergebnisse zu erhalten, werden Extrapolationstechniken angewendet. Eine detaillierte Beschrei-
bung verschiedener Extrapolationswerkzeuge wie Padé- und DlogPadé-Extrapolation, optimierte
Storungstheorie und die Benutzung interner Systemvariablen wird angegeben.

Die dimerisierte und frustrierte Kette wird zuerst besprochen. Die Analyse der spektralen Gewichte
bei verschwindender Frustration zeigt, dass sich fast das gesamte spektrale Gewichte im Grenzfall
verschwindender Dimerisierung im Zwei-Triplon Kanal befindet. Demnach kann das Triplon neben
dem Spinon auch als Elementaranregung des eindimensionalen Heisenberg-Modells benutzt werden.
Die Extrapolationen fiir die spektralen Gewichte bei endlicher Frustration sind schwieriger.

Ein vollstandiger Uberblick der Ein- und Zwei-Triplon Spektraldichten bei groBer und mittlerer
Dimerisierung wird angegeben. Die Ergebnisse werden mit feldtheoretischen Resultaten verglichen.
Weiterhin wird der Raman response und die optische Leitfahigkeit untersucht.

Die antiferromagnetische zweibeinige Leiter mit zusatzlicher Vier-Spin-Wechselwirkung wird als
Zweites untersucht. Die Transformation startet vom Fall isolierte Sprossen. Die Anregungen
sind Sprossen-Triplonen. Die Energien der Ein-Triplon-Zustande, der Zwei-Triplon gebundenen
Zustande sowie der Multi-Triplon Kontinua wird fiir diverse Kopplungsverhaltnisse angegeben. Op-
tische Observablen werden im Detail untersucht.

Das Ausdehnung der Sprossen-Singulett-Phase wird in der gesamten [x, X.,c]-Ebene berechnet. Es
wird gezeigt, dass sich die experimentellen Realisierungen zweibeiniger Leitern immer in dieser Phase
befinden. Das spektrale Gewicht befindet sich hauptsdchlich im Ein- und Zwei-Triplon Kanal fiir
die experimentell relevanten Kopplungsverhaltnisse. Das Gewicht im Drei- und Vier-Triplon Kanal
wird aber nennenswert grof3 .

Einen Uberblick iiber das aktuelle Verstindnis der spektroskopischer Befunde von magnetischen
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Anregungen in Kuprat-Leiter-Systemen wird angegeben. Die berechneten Ergebnisse werden mit
experimentellen Daten der inelastischen Neutronstreuung, Raman-Spektroskopie und optischer
Leitfahigkeit verglichen. Der erste experimentelle Nachweis eines Zwei-Triplon gebundenen Zu-

standes in zweibeinigen Leitern wird besprochen.
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