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Introduction

Motivation

A natural generalization of the multivariate normal (or �Gaussian�) distribution function is
given by the broad class of elliptical distributions. These were introduced by Kelker (1970)
and well investigated by Cambanis, Huang, and Simons (1981) and by Fang, Kotz, and
Ng (1990). Every d-dimensional elliptical random vector X can be represented by X =d
µ +RΛU (k), where µ ∈ IRd, Λ ∈ IRd×k, U (k) is a k-dimensional random vector uniformly
distributed on the unit hypersphere, and R is a nonnegative random variable independent of
U (k). The distribution function of R constitutes the particular elliptical distribution family
of X and is called the �generating distribution function�. Suppose that the generating variate
R belongs to the maximum domain of attraction of the Fréchet distribution (Embrechts,
Klüppelberg, and Mikosch, 2003, Section 3.3.1), i.e. FR = λ (x) · x−α for all x > 0, where
α > 0 and λ is a slowly varying function (Resnick, 1987, p. 13). The parameter α is
called the �tail index� of the generating distribution function FR which corresponds also to
the tail index of the regularly varying random vector X (Hult and Lindskog, 2002). Hence
the class of multivariate elliptical distributions allows for heavy tails though it remains the
simple linear dependence structure known from the normal distribution family. In addition
to the normal distribution function many other well-known and widely used multivariate
distribution functions are elliptical too, e.g. the t-distribution (Fang, Kotz, and Ng, 1990, p.
32), the symmetric generalized hyperbolic distribution (Barndorff-Nielsen, Kent, and Søren-
sen, 1982), the sub-Gaussian α-stable distribution (Rachev and Mittnik, 2000, p. 437).

Elliptical distributions inherit a lot of nice Gaussian properties. This is because the charac-
teristic function of the multivariate centered normal distribution, i.e. t 7→ exp (−1/2 · t0Σt)
is simply weakened to t 7→ ϕ (t0Σt). Here ϕ : IR+ → IR (called the �characteristic generator�)
is an arbitrary function only guaranteeing that t 7→ ϕ (t0Σt) is a characteristic function.
Any affinely transformed elliptical random vector is also elliptical. Furthermore, any mar-
ginal distribution function of an elliptical random vector is elliptically contoured, too. This
holds even for the conditional distribution functions (Kelker, 1970). Moreover, the density
function of an elliptical distribution can be simply derived from the density function of R
provided it is absolutely continuous.

From a practical point of view elliptical distributions are attractive in particular for the
modeling of Þnancial data. The theory of portfolio optimization developed by Markowitz
(1952) and continued by Tobin (1958), Sharpe (1963, 1964) and Lintner (1965) is the basis
of modern portfolio risk management. It relies on the Gaussian distribution hypothesis and
its quintessence is that the portfolio diversiÞcation effect depends essentially on the covari-
ance matrix, i.e. the linear dependence structure of the portfolio components. Generally,
this information is not sufficient for elliptically contoured distributions (Embrechts, McNeil,
and Straumann, 2002). The risk of extreme simultaneous losses, i.e. the �asymptotic de-
pendence� is not only determined by the correlation coefficient but also by the tail index
of the multivariate elliptical distribution (Schmidt, 2002). Asymptotic dependence usually
is quantiÞed by the tail dependence coefficient (Joe, 1993). Loosely speaking, this is the
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probability that the realization of a random variable is extremely negative (or positive)
under the condition that the realization of another random variable is extremely negative
(or positive), too. If an elliptical random vector is regularly varying, i.e. if the generating
distribution function belongs to the maximum domain of attraction of the Fréchet distribu-
tion then the tail dependence coefficient of each bivariate marginal distribution is positive,
provided that the linear dependence of the two random components is not perfectly neg-
ative. To seek a contrast, the generating distribution function of the multivariate normal
distribution belongs to the maximum domain of attraction of the Gumbel distribution (Em-
brechts, Klüppelberg, and Mikosch, 2003, Section 3.3.3), i.e. the Gaussian distribution is
not heavy tailed and the tail dependence coefficient of its bivariate marginal distributions
corresponds to zero. Many authors show that the Gaussian distribution hypothesis cannot
be justiÞed for Þnancial data, see Eberlein and Keller (1995), Fama (1965), and Mandelbrot
(1963) concerning univariate Þnancial time series, and Frahm, Junker, and Szimayer (2003)
as well as Junker and May (2002) regarding the dependence structure of multivariate time
series. Hence elliptical distributions are an acceptable alternative retaining the workability
of the normal distribution, for the most part.

The covariance matrix of an elliptically distributed random vector X corresponds to the
dispersion matrix Σ := ΛΛ0 up to a scaling constant, i.e. V ar (X) = E

¡
R2
¢
/k ·Σ provided

the second moment of R is Þnite (Cambanis, Huang, and Simons, 1981). But estimating
the covariance matrix of elliptical random vectors via the method of moments, especially
the correlation matrix by Pearson�s correlation coefficient is dangerous when the underlying
distribution is not normal (Lindskog, 2000). This is because Pearson�s correlation coefficient
is very sensitive to outliers and the smaller the distribution�s tail index, i.e. the heavier the
tails the larger the estimator�s variance. Indeed, there are a lot of robust techniques to
insulate from the �bad inßuence� of outliers (see, e.g., Huber, 1981 and Visuri, 2001, pp.
31-51). But there may be �bad� and �good� outliers. Bad outliers are caused by sampling
errors due to the measurement process whereas good outliers are data caused by true ex-
tremal events. The simplest approach is to eliminate every outlier and to apply the sample
covariance matrix on the residual data. But from the viewpoint of extreme value theory this
has the annoying effect of neglecting useful information contained in extremal realizations.
In particular, estimating the tail index is impossible without outliers.

In this work the class of elliptical distributions is generalized to allow for asymmetry. All the
ordinary components of elliptical distributions, i.e. the generating variate R, the location
vector µ and the dispersion matrix Σ remain for this new class of �generalized elliptical
distributions�. It is shown that the class of generalized elliptical distributions contains the
class of skew-elliptical distributions (Branco and Dey, 2001). The basic properties of genera-
lized elliptical distributions are derived and compared with those of elliptical distributions.
The second aim of the thesis is to develop a robust estimator for the dispersion matrix Σ
yet recognizing all the available data. This is called the �spectral estimator�. It is shown
that the spectral estimator is an ML-estimator. Nevertheless it is robust within the class of
generalized elliptical distributions since it requires only the assumption that the generating
variate has no atom at 0. Hence it is not disturbed neither by asymmetries nor by outliers
and all the available data points can be used for estimation purposes. Given the estimates
of location and dispersion the empirical generating distribution function can be extracted
preserving the outliers. This can be used for tail index estimation regarding R, for instance.
Further, it is shown that the spectral estimator corresponds to the M-estimator for elliptical
distributions developed by Tyler (1983, 1987a). In contrast to the more general M-approach
used by Tyler (1987a) the spectral estimator can be derived on the basis of maximum-
likelihood theory (Tyler, 1987b). Hence, desired properties like, e.g., asymptotic normality,
consistency, and asymptotic efficiency follow in a straightforward manner.

A further goal of this thesis is to discuss the impact of high-dimensional (Þnancial) data on
statistical inference. Statistical theory usually presumes a constant number of dimensions
or at least n/d→∞. The quantity q := n/d can be interpreted as �average sample size per
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dimension� or as �effective sample size�. Unfortunately, large sample properties of covariance
matrix estimates which are based on the central limit theorem fail if q is small even if n is
large. There is a branch of statistical physics called �random matrix theory� dealing with
this case of �high-dimensional data�. Random matrix theory is mainly concerned with the
distribution of eigenvalues of randomly generated matrices. An important result is that if
one assumes independent and identically distributed matrix elements the distribution of the
eigenvalues converges to a speciÞed law which does not depend on the distribution of the
matrix elements but primarily on q. Since the sample covariance matrix is a random matrix
the results of random matrix theory can be applied in the case of normally distributed data.
For data which is not normally but generalized elliptically distributed the results of random
matrix theory are no longer applicable if one uses the sample covariance matrix. But it is
shown that this vacancy can be Þlled easily by using the spectral estimator instead.

Possible applications are discussed in the context of modern portfolio theory and principal
component analysis. More precisely, the spectral estimator can be used for portfolio opti-
mization to obtain robust portfolio weights estimates. Further, it is shown how the �driving�
risk factors of stock prices can be identiÞed, robustly. This depends essentially on the accu-
racy of the estimates of eigenvectors and eigenvalues of the dispersion matrix which belongs
to the Þeld of random matrix theory mentioned above. Therefore, some classical results
of random matrix theory are given and it is shown how generalized elliptical distributions,
random matrices, and the spectral estimator are related to each other.

Structure of the Thesis

The thesis is divided into two parts, a theoretical part (�Theory�) and a practical part (�Ap-
plications�). The theoretical part begins with the traditional class of elliptically symmetric
distributions. Apart from the deÞnition and characterization of elliptical distributions their
basic properties will be derived. The corresponding theorems (and their proofs) have a
strong relationship to the theory of generalized elliptical distributions treated in Chapter 3.

The second chapter is about extreme value theory. Classical results from univariate extreme
value theory as well as relatively new insights from multivariate extreme value theory are
examined. This involves the theory of �copulas�. Copulas are extremely useful for the
analysis of complex dependence structures. They can be used also to describe the concept
of asymptotic dependence. This will be done with a special emphasis on �meta-elliptical�
distributions which are discussed in Chapter 2. The chapter completes with some conclusions
concerning covariance matrix estimation drawn from the consideration of extreme values.

In the third chapter the class of generalized elliptical distributions is introduced. This is
motivated by empirical Þndings on Þnancial markets. Particularly, we aim at robust covari-
ance matrix estimation under the stylized facts of asymmetry and heavy tails. Further, the
basic properties of generalized elliptical distributions are derived and compared with those
of elliptically symmetric distributions. The chapter closes with the modeling of generalized
elliptical distributions.

The fourth chapter focuses on the robust estimation of the dispersion matrix and the lo-
cation vector of generalized elliptical distributions. The �spectral density� of a multivariate
normally distributed random vector projected to the unit hypersphere is derived and sub-
sequently used for constructing a completely robust covariance matrix estimator for genera-
lized elliptical distributions, namely the spectral estimator. Since the spectral estimator
emerges as an M-estimator some basics of the M-estimation approach are presented and the
corresponding Þxed-point solution for the spectral estimator is derived. Also its positive
deÞniteness, existency and uniqueness will be discussed. Furthermore, it is shown that the
componentwise sample median is an appropriate estimator for the location vector in the
context of angularly symmetric generalized elliptical distributions.
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The last chapter of the Þrst part concentrates on the statistical properties of the spectral
estimator. Since the spectral estimator is not only an M-estimator but also an ML-estimator
standard methods of maximum-likelihood theory are applied to derive its Fisher information.
Furthermore, its consistency, asymptotic efficiency and normality are proved. At last the
asymptotic covariance matrix of the spectral estimator in the case of Σ = σ2Id is derived in
a closed form and compared with the asymptotic covariance matrix of the sample covariance
matrix.

The second part of the thesis begins with some stylized facts of empirical Þnance. The
results of the spectral estimator are demonstrated on an S&P 500 data set consisting of the
current 500 stocks and ranging from 1980-01-02 to 2003-11-26. Since Þnancial markets are
characterized by a large number of risk factors the typical difficulties occuring with high-
dimensional data sets are discussed. Some examples are constructed to show that the central
limit theorem lose its effect if the effective sample size q is small even if n is very large.

Chapter 7 deals with applications in Þnance. The main results of modern portfolio theory
are derived with an emphasis on portfolio optimization. It is shown how the key Þgures of
portfolio risk management, namely the asset�s �Betas� can be estimated, robustly. This is
explained in terms of principal component analysis.

The last chapter of the second part can be interpreted as a brief introduction to random
matrix theory. Starting from Wigner�s semi-circle law for symmetric random matrices we
turn to a similar result for random projection matrices known as the Marÿcenko-Pastur
law. The relationships between the Marÿcenko-Pastur law, the generating variate, and the
spectral estimator are pointed out. It is shown how the Marÿcenko-Pastur law can be used for
separating �signal� from �noise�, i.e. detecting the main principal components or the �driving
risk factors� of Þnancial markets. The spectral estimator emerges as a robust alternative to
the sample covariance matrix not only in the case of n/d →∞ but also for n/d → q <∞,
i.e. in the context of high-dimensional data.

Mathematical Notation and Abbreviations

Throughout the thesis I will deal only with real (random) scalars, vectors, and matrices
unless otherwise noted. Vectors are supposed to be columns. Zero scalars, zero vectors as
well as zero matrices are denoted by 0 whenever the dimension is clear. The d-dimensional
identity matrix is always represented by Id (I1 ≡ 1). If x is a scalar then |x| is its absolute
value. If A is a set then |A| denotes its cardinality. k·k is an arbitrary vector norm on
IRd whereas k·k2 denotes the Euclidean norm. If A is a matrix and x ∈ IR\ {0} then A/x
is deÞned as x−1A. The transpose of a matrix A is denoted by A0. The inverse A−1 of
a rectangular matrix A generally corresponds to the Moore-Penrose inverse (the �pseudo-
inverse�) which is deÞned as (see, e.g., Schönfeld, 1971, p. 294)

A−1 := (A0A)−1A0,

where
(A0A)−1 := OD−1O0.

Here ODO0 is the spectral decomposition of A0A, i.e. O is an orthonormal square matrix
and D is a diagonal matrix containing the eigenvalues of A0A. Further, D−1 is a diagonal
matrix reciprocal to all positive main diagonal elements of D whereas all zero elements of D
are retained unchanged.

Sometimes we will need to calculate the absolute value of the �determinant� of a rectangular
matrix A ∈ IRd×k (e.g. the determinant of a rectangular Jacobian). For this case we deÞne

|det (A)| :=
kY
i=1

p
Dii ,
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where Dii is the i-th diagonal element of D (i = 1, . . . , k). If r (A) = k this quantity can
be interpreted as the volume of the trapezoid generated by the column vectors of A. Note
that both the pseudo-inverse and the absolute pseudo-determinant are generalizations of the
corresponding non-pseudo functions.

In the following every positive (semi-)deÞnite matrix is supposed to be symmetric. Let
A ∈ IRd×d be a positive semideÞnite matrix with r (A) = r. The matrix A always has an
LDL0-decomposition, i.e.

A = LDL0,

where L is a lower triangular matrix and D is a diagonal matrix where the Þrst r main
diagonal entries are positive and the residual entries correspond to zero. Thus we can
represent A as

A =
³
L
√
D
´³
L
√
D
´0
,

where
√
D is diagonal, too, containing the roots of the main diagonal entries of D. Let

C ∈ IRd×r be the rectangular matrix of the Þrst r columns of L
√
D. Thus A = CC 0 and C

is called the �generalized Cholesky root� of A.

Further, a �measurable� function is always ment to be Lebesgue measurable. An �increasing�
or �decreasing� function is always supposed to be monotonic but not necessarily in the strict
sense. The term �independence� always means stochastic independence unless otherwise
noted. The sample realizations of n independent copies of X are denoted by the matrix

Sn :=
£
x·1 x·2 · · · x·n

¤
=


x11 x12 · · · x1n

x21
. . .

...
...

. . .
...

xd1 · · · · · · xdn

 .
Hence a �sample� is always supposed to contain independent and identically distributed data.

A random vector which corresponds to a real number (almost surely) as well as its corre-
sponding distribution function is called �degenerate�. The variance of a random vector X
corresponds to its covariance matrix, i.e.

V ar (X) := E
¡
(X −E (X)) (X −E (X))0

¢
.

The distribution function (�cumulative density function�) of a random quantity is abbreviated
by �c.d.f.� (even if it is not absolutely continuous) whereas its (probability) density function is
labeled by �p.d.f.�. The abbreviation �i.i.d.� means �independent and identically distributed�
whereas �a.s.� stands for �almost surely�. Lists of further notations and abbreviations can
be found at the end of the thesis.
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Chapter 1

Elliptically Symmetric
Distributions

The class of elliptically symmetric distributions has been well investigated by Cambanis,
Huang, and Simons (1981), Fang, Kotz, and Ng (1990), and Kelker (1970). In the following
this class of distributions will be simply called �elliptical distributions� without the additional
attribute �symmetric� whenever there is no much fear of confusion. The theory of elliptical
distributions is the starting point for the deÞnition and analysis of generalized elliptical
distributions. This chapter examines the basic properties of elliptical distributions.

1.1 DeÞnition and Characterization

DeÞnition 1 (Spherical distribution) Let X be a d-dimensional random vector. X is
said to be �spherically distributed� (or simply �spherical�) if and only if X =d OX for every
d-dimensional orthonormal matrix O.

Spherical distributions and the corresponding random vectors sometimes are also called �ra-
dial� (Kelker, 1970) or �isotropic� (Bingham and Kiesel, 2002). According to the deÞnition
above the class of spherical distributions corresponds to the class of rotationally symmet-
ric distributions. Let U (d) be uniformly distributed on the unit hypersphere with d − 1
topological dimensions,

Sd−1 :=
©
x ∈ IRd : kxk2 = 1

ª
,

where S := S1. Then every d-dimensional random vector X which can be represented as
X =d RU (d), where R is a nonnegative random variable stochastically independent of U (d),
is rotationally symmetric and thus spherical. The remaining question is if a spherical random
vector X is necessarily representable by RU (d).
Let t ∈ IRd and ] (t,X) be the angle between t and a d-dimensional spherical random vector
X. Since t0X = kXk2 · ktk2 · cos (] (t,X)) the characteristic function of X corresponds to

t 7−→ ϕX (t) := E (exp (it
0X)) = E (exp (i · kXk2 · ktk2 · cos (] (t,X)))) .

Using the law of total expectations we Þnd that

t 7−→ ϕX (t) =

∞Z
0

E (exp (i · r ktk2 cos (] (t,X)))) dFkXk2 (r)

=

∞Z
0

ϕcos(](t,X)) (r ktk2) dFkXk2 (r) ,

3
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where ϕcos(](t,X)) is the characteristic function of cos (] (t,X)) and FkXk2 is the c.d.f. of
the Euclidean norm kXk2.
Due to the rotational symmetry of X the stochastic equality

cos (] (t,X)) d= cos
³
]
³
v,U (d)

´´
d
= v0U (d)

holds for every v ∈ Sd−1 and U (d) being uniformly distributed on Sd−1. Hence

s 7−→ ϕcos(](t,X)) (s) = ϕv0U(d) (s) = E
³
exp

³
isv0U (d)

´´
= E

³
exp

³
i (sv)

0
U (d)

´´
= ϕU(d) (sv)

for any arbitrary v ∈ Sd−1 where ϕU(d) is the characteristic function of U (d). Thus

ϕcos(](t,X)) (r ktk2) = ϕU(d)

µ
r ktk2 ·

t

ktk2

¶
= ϕU(d) (rt) = ϕrU(d) (t) ,

for any r ≥ 0 since t/ ktk2 ∈ Sd−1. So we obtain

t 7−→ ϕX (t) =

∞Z
0

ϕrU(d) (t) dFkXk2 (r) , t ∈ IRd.

The right hand side of this equation corresponds to the characteristic function of a random
vector RU (d), where R is a nonnegative random variable having the same distribution as
kXk2 and being independent of U (d). Thus every spherical random vector X is necessarily
representable by X =d RU (d). We call R the �generating random variable� or �generating
variate� of X (Schmidt, 2002).

Example 1 (Generating variate of X ∼ Nd (0, Id)) Let X ∼ Nd (0, Id) be represented
by X =d RU (d). Since

χ2d
d
= X 0X d

= R2U (d)0U (d) a.s.= R2,

the generating variate of X corresponds to
p
χ2d .

Now consider the characteristic function ϕU(d) of U (d). We know that ϕU(d) (sv) does
not depend on the point v (provided v ∈ Sd−1) but only on s ∈ IR. Moreover, since
ϕU(d) ((−s) v) = ϕU(d) (s (−v)) and −v ∈ Sd−1 the considered quantity even does not de-
pend on the sign of s but only on its absolute value |s| or its square s2, alternatively. So we
can Þnd a function φU(d) such that ϕU(d) (sv) = φU(d)

¡
s2
¢
for every s ∈ IR. Since

ϕU(d) (t) = ϕU(d)

µ
ktk2 ·

t

ktk2

¶
= φU(d)

³
ktk22

´
= φU(d) (t0t) , t ∈ IRd,

and thus ϕrU(d) (t) = φU(d)

¡
r2t0t

¢
we obtain

t 7−→ ϕX (t) =

∞Z
0

φU(d)

¡
r2t0t

¢
dFR (r) , t ∈ IRd,

for the characteristic function of X.

The characteristic function t 7→ φU(d) (t0t) depends only on d. To emphasize this we deÞne
Ωd := φU(d) (Schoenberg, 1938). Hence, ϕX can be represented through

s 7−→ φX (s) =

∞Z
0

Ωd
¡
r2s
¢
dFR (r) , s ≥ 0. (1.1)
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See Fang, Kotz, and Ng (1990, p. 70) for an analytic expression of Ωd. Since t 7→ ϕX (t) =
φX (t

0t) the function φX is called the �characteristic generator� of X. Note that φX is always
real valued due to the rotational symmetry of U (d) (Schmidt, 2002).

Example 2 (Characteristic generator of X ∼ Nd (0, Id)) Since the characteristic func-
tion of an univariate standard normally distributed random variable corresponds to t 7→
exp

¡
−t2/2

¢
(see, e.g., Fisz, 1989, p. 136) and the components of X ∼ Nd (0, Id) are mutu-

ally independent the characteristic function of X corresponds to

t = (t1, . . . , td) 7−→
dY
i=1

exp

µ
− t

2
i

2

¶
= exp

µ
− t

0t
2

¶
.

Thus the characteristic generator of X is s 7→ φX (s) = exp (−s/2).

Of course, every function φ of the form (1.1) is a characteristic generator. Conversely, every
characteristic generator can be represented by Eq. 1.1. This theorem belongs to Schoenberg
(1938). Note that the characteristic generator contains all information about the generating
variate R.

Proposition 1 Let X be a k-dimensional spherically distributed random vector with cha-
racteristic generator φX . Further, let Λ ∈ IRd×k be an arbitrary matrix and µ ∈ IRd. Then
the characteristic function ϕY of Y := µ+ ΛX corresponds to

t 7−→ ϕY (t) = exp (it
0µ) · φX (t0Σt) , t ∈ IRd,

where Σ := ΛΛ0.

Proof. The characteristic function of Y corresponds to

t 7−→ ϕY (t) = E (exp (it
0 (µ+ ΛX))) = exp (it0µ) · ϕX (Λ0t)

= exp (it0µ) · φX
³
(Λ0t)0 (Λ0t)

´
= exp (it0µ) · φX (t0Σt) .

This is the basis for the classical deÞnition of elliptical distributions (cf. Cambanis, Huang,
and Simons, 1981) given below.

DeÞnition 2 (Elliptical distribution) Let X be a d-dimensional random vector. X is
said to be �elliptically distributed� (or simply �elliptical�) if and only if there exist a vector
µ ∈ IRd, a positive semideÞnite matrix Σ ∈ IRd×d, and a function φ : IR+ → IR such that
the characteristic function t 7→ ϕX−µ (t) of X − µ corresponds to t 7→ φ (t0Σt), t ∈ IRd.

If a d-dimensional random vector X is elliptically distributed with the parameters speciÞed
in DeÞnition 2 we write �X ∼ Ed (µ,Σ, φ)�. Hence, a random vector Y ∼ Ed (0, Id, φ) is
spherically distributed. Due to Proposition 1 every affinely transformed spherical random
vector is elliptically distributed. The following stochastic representation theorem shows that
the converse is true if the transformation matrix has full rank.

Theorem 2 (Cambanis, Huang, and Simons, 1981) X ∼ Ed (µ,Σ, φ) with r (Σ) = k
if and only if

X
d
= µ+RΛU (k),

where U (k) is a k-dimensional random vector uniformly distributed on Sk−1, R is a non-
negative random variable being stochastically independent of U (k), µ ∈ IRd, and Λ ∈ IRd×k
with r(Λ) = k.
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Proof. The �if� follows immediately from Proposition 1. For the �only if� please recognize
that every positive semideÞnite matrix Σ ∈ IRd×d with r (Σ) = k has a root Λ ∈ IRd×k such
that ΛΛ0 = Σ. Hence, we may deÞne the random vector

Y := Λ−1 (X − µ)

by using the pseudo-inverse Λ−1 ∈ IRk×d of Λ. Note that Λ−1Λ = Ik as well as Λ0Λ0−1 = Ik.
Thus the characteristic function of Y corresponds to

t 7−→ ϕY (t) = ϕX−µ
³¡
Λ−1

¢0
t
´
= φ

¡
t0Λ−1ΣΛ0−1t

¢
= φ

¡
t0Λ−1 (ΛΛ0)Λ0−1t

¢
= φ (t0t) , t ∈ IRk,

and so Y is spherically distributed with characteristic generator φ and can be represented
by RU (k), stochastically. Hence µ+ ΛY =d µ+RΛU (k) ∼ Ed (µ,Σ, φ).

Due to the transformation matrix Λ the spherical random vector U (k) produces elliptically
contoured density surfaces, whereas the generating random variable R determines the dis-
tribution�s shape, in particular the tailedness of the distribution. Further, µ determines the
location of the random vector X.

The stochastic representation of an elliptically distributed random vector is usually more
convenient for practical purposes than its characteristic representation. Especially, due to
the stochastic representation we see that elliptical random vectors can be easily simulated.
Let X ∼ Nk (0, Ik), i.e. X =d

p
χ2k U

(k). Then

X

||X||2
d
=

p
χ2k U

(k)

||
p
χ2k U

(k)||2
a.s.
=

U (k)

||U (k)||2
a.s.
= U (k).

Hence the random vector U (k) can be simulated simply by dividing a standard normally
distributed random vector by its length. Indeed, for simulating R its c.d.f. must be known
(at least approximately).

The matrix Σ is called the �dispersion matrix� or �scatter matrix� of X. So every ellipti-
cal distribution belongs to a location-scale-family (Kelker, 1970) deÞned by an underlying
spherical �standard� distribution. For d = 1 the class of elliptical distributions coincides with
the class of univariate symmetric distributions (Cambanis, Huang, and Simons, 1981).

Example 3 (Multivariate normal distribution) Let µ ∈ IRd and Λ ∈ IRd×k such that
Σ := ΛΛ0 ∈ IRd×d is positive deÞnite. The random vector X ∼ Nd (µ,Σ) is elliptically
distributed since X is representable as

X
d
= µ+

q
χ2k ΛU

(k)

(see, e.g., Hult and Lindskog, 2002). The underlying spherical standard distribution is the
standard normal (see Example 1). Further, since s 7→ exp (−s/2) is the characteristic
generator for the class of normal distributions (see Example 2) the characteristic function
of X − µ corresponds to t 7→ ϕX−µ (t) = exp (−t0Σt/2), t ∈ IRd.

Note that the generating variate of an elliptical location-scale family may vary under d. We
will come back to this point in Section 1.2.3 and in Section 1.2.5. Nevertheless, the index
�d� on the generating variate is omitted for sake of simplicity as long as no confusion is in
sight.

Example 4 (Multivariate t-distribution) Consider the random vector

Y
d
=

Xq
χ2ν
ν

, ν ∈ IN,
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where X ∼ Nd (0, Id) with χ2ν and X being independent. Then Y is said to be �multivariate
t-distributed with ν degrees of freedom� (Fang, Kotz, and Ng, 1990, p. 32 and Peracchi,
2001, p. 87). X can be represented by

p
χ2d U

(d) (see Example 1), where U , χ2d and χ
2
ν are

mutually independent. So Y can be represented by

Y
d
=

p
χ2dq
χ2ν
ν

· U (d) =

s
d · χ

2
d/d

χ2ν/ν
· U (d) d

=
p
d · Fd,ν · U (d),

where Fd,ν is an F -distributed random variable with d and ν degrees of freedom and inde-
pendent of U (d). Further, p

χ2dq
χ2ν
ν

d−→
q
χ2d , ν −→∞,

as a consequence of χ2ν/ν
a.s.→ 1 due to the strong law of large numbers. Thus Y d→ Nd (0, Id)

for ν →∞. Note that the random vector µ+
p
d · Fd,ν ΛU (d) has a multivariate t-distribu-

tion with location vector µ and dispersion matrix Σ = ΛΛ0 provided Λ has full rank (see,
e.g., Hult and Lindskog, 2002).

In the following we will generally allow for Σ being positive semideÞnite also in the context
of multivariate normal and t-distributions. Especially for the t-distribution the number ν
of degrees of freedom is not required anymore to be an integer but a positive real number.
The corresponding d-variate t-distribution will be denoted by td (µ,Σ, ν).

It is somewhat surprising that the dispersion of an elliptically distributed random vector is
uniquely determined by the matrix Σ, i.e. the particular matrix decomposition Λ is irrelevant
even though Λ determines the support of ΛU (d). Consider the elliptical surface generated
by a nonsingular matrix A, i.e.

EA =
©
Au : u ∈ Sd−1

ª
,

and let Σ := AA0. Now focus an arbitrary point x0 = Au0 of the surface and let B be
a nonsingular matrix satisfying BB0 = Σ, too. Suppose there is a point v0 such that
Bv0 = Au0 = x0. Then v0 = B−1Au0 and

kv0k2 =
°°B−1Au0°°2 =q(B−1Au0)0B−1Au0 =qu00A0 (B−1)0B−1Au0

=
p
u00A0Σ−1Au0 =

p
u00A0A0−1A−1Au0 =

p
u00u0 = ku0k2 = 1.

Thus, any point x = Au ∈ EA can be represented by a linear transformation B of a point
v on the unit sphere surface Sd−1 (not necessarily v = u), i.e. EA ⊂ EB. Conversely, if
y0 = Bv0 is an element of the elliptical surface EB generated by B then y0 is also an element
of EA because (by the same token) there is always a point u0 ∈ Sd−1 such that Au0 = y0.
Hence EA corresponds to EB, that is the linear transformations A and B generate the same
elliptical surfaces. Since U (d) is uniformly distributed on Sd−1 and the generating variate
R does not depend on U (d) the random vectors AU and BU have the same support.

1.2 Basic Properties

1.2.1 Density Functions

A nice property of an elliptical distribution function is the fact that its multivariate density
function may be expressed via the density function of the generating variate, provided this
is absolutely continuous. In the following and throughout the thesis density functions are
allowed to be deÞned not only on IRd but on certain lower dimensional linear subspaces and
manifolds of IRd.
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Theorem 3 Let X ∼ Ed (µ,Σ, φ) where µ ∈ IRd and Σ ∈ Rd×d is positive semideÞnite with
r (Σ) = k. Then X can be represented stochastically by X =d µ +RΛU (k) with ΛΛ0 = Σ
according to Theorem 2. Further, let the c.d.f. of R be absolutely continuous and SΛ be the
linear subspace of IRd spanned by Λ. Then the p.d.f. of X is given by

x 7−→ fX (x) = |det(Λ)|−1 · gR
¡
(x− µ)0Σ−1 (x− µ)

¢
, x ∈ SΛ\ {µ} ,

where

t 7−→ gR (t) :=
Γ
¡
k
2

¢
2πk/2

·
√
t
−(k−1) · fR

³√
t
´
, t > 0,

and fR is the p.d.f. of R.

Proof. Since the c.d.f. of R is absolutely continuous the joint p.d.f. of R and U (k) exists
and corresponds to

(r, u) 7−→ f(R,U(k)) (r, u) =
Γ
¡
k
2

¢
2πk/2

· fR (r) , r > 0, u ∈ Sk−1,

where fR is the density function of R. Note that Γ
¡
k
2

¢
/
¡
2πk/2

¢
corresponds to the uniform

density on the unit hypersphere Sk−1. To get the density of RU (k) =: Y we deÞne the
transformation h : ]0,∞[×Sk−1 → IRk\ {0} , (r, u) 7→ ru =: y. Note that h is injective and
the p.d.f. of Y is given by

y 7−→ fY (y) = f(R,U(k))
¡
h−1 (y)

¢
· |Jh|−1 , y 6= 0,

where Jh is the Jacobian determinant of ∂ ru/∂ (r, u)
0. Let

Sk−1r :=
©
x ∈ IRk : kxk2 = r > 0

ª
be the hypersphere with radius r. Since the partial derivative ∂ ru/∂r has unit length and
is orthogonal to each tangent plane ∂ ru/∂u0 on Sk−1r which has only k − 1 topological
dimensions, the absolute value of the Jacobian determinant of ∂ ru/∂ (r, u)0 is given by

|Jh| = det
µ·

1 00

0 rIk−1

¸¶
= rk−1 = kykk−12 , y 6= 0.

Further, h−1 (y) = (kyk2 , y/ kyk2) and so the p.d.f. of Y corresponds to

y 7−→ fY (y) = f(R,U(k)) (kyk2 , y/ kyk2) · kyk
−(k−1)
2

=
Γ
¡
k
2

¢
2πk/2

· kyk−(k−1)2 · fR (kyk2) , y 6= 0,

where u = y/ kyk2. Now we deÞne the transformation q : IRk\ {0} → SΛ\ {µ} , y 7→
µ + Λy =: x. Note that since Λ−1Λ = Ik the transformation q is injective. The absolute
value of the Jacobian determinant of ∂(µ+Λy)/∂y0 corresponds to |Jq| = |det(Λ)|, and thus
the p.d.f. of X =d µ+ ΛY = µ+RΛU (k) is given by

x 7−→ fX (x) = fY
¡
q−1 (x)

¢
· |Jq|−1

= fY
¡
Λ−1 (x− µ)

¢
· |det(Λ)|−1, x ∈ SΛ\ {µ} .

Hence the p.d.f. of X becomes

x 7−→ fX (x) = |det(Λ)|−1 ·
Γ
¡
k
2

¢
2πk/2

· ||Λ−1 (x− µ) ||−(k−1)2 · fR
¡
||Λ−1 (x− µ) ||2

¢
,
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with x ∈ SΛ\ {µ}. Since

||Λ−1 (x− µ) ||2 =
q
(x− µ)0 Λ0−1Λ−1 (x− µ),

and per deÞnition

Λ0−1Λ−1 =
³
(ΛΛ0)−1 Λ

´³
(ΛΛ0)−1 Λ

´0
=
¡
Σ−1Λ

¢ ¡
Σ−1Λ

¢0
= Σ−1ΣΣ−1 = Σ−1,

we obtain the formula given in Theorem 3.

The function gR is called �density generator� or �p.d.f. generator� (Fang, Kotz, and Ng, 1990,
p. 35) of X (or of FX , respectively). Note that the density contours produced by the density
generator corresponds to elliptical surfaces. For this reason elliptical distributions are often
referred to as �elliptically contoured� distributions (Cambanis, Huang, and Simons, 1981).

The following corollary corresponds to the classical theorem for elliptically contoured density
functions providing a nonsingular dispersion matrix (see, e.g., Fang, Kotz, and Ng, 1990, p.
46).

Corollary 4 Let X ∼ Ed (µ,Σ, φ) where µ ∈ IRd and Σ ∈ IRd×d is positive deÞnite. Then
X can be represented stochastically by X =d µ+RΛU (d) with ΛΛ0 = Σ according to Theorem
2. Further, let the c.d.f. of R be absolutely continuous. Then the p.d.f. of X is given by

x 7−→ fX (x) =
p
det (Σ−1) · gR

¡
(x− µ)0Σ−1 (x− µ)

¢
, x 6= µ,

where

t 7−→ gR (t) :=
Γ
¡
d
2

¢
2πd/2

·
√
t
−(d−1) · fR

³√
t
´
, t > 0,

and fR is the p.d.f. of R.

Proof. The corollary follows immediately from Theorem 3 after substituting k by d and
considering that

|det(Λ)|−1 =
p
det(Λ)·det(Λ0)

−1
=
p
det (Σ)

−1
=
p
det(Σ−1),

since Λ is nonsingular.

Given the p.d.f. fR of the generating variate one can simply calculate the density generator
of the corresponding elliptical distribution.

Example 5 (Density generator of X ∼ Nd (0, Id)) The p.d.f. of χ2d corresponds to

x 7−→ f (x) =
x
d
2−1 · e−x

2

2d/2 · Γ
¡
d
2

¢ , x ≥ 0,

(cf., e.g., Peracchi, 2001, p. 81). Thus the p.d.f. of R :=
p
χ2d is given by

r 7−→ fR (r) = 2r · f
¡
r2
¢
,

and the density generator of X =d
p
χ2d U

(d) equals to

t 7−→ g√
χ2d
(t) =

Γ
¡
d
2

¢
2πd/2

·
√
t
−(d−1) · 2

√
t · f (t) = 1

(2π)
d/2

· exp
µ
− t
2

¶
,

which corresponds to the generator of the multivariate normal distribution.
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Conversely, given a density generator gR one may derive the corresponding density function
fR by

r 7−→ fR (r) =
2πd/2

Γ
¡
d
2

¢ · rd−1 · gR ¡r2¢ .
Example 6 (fR of X ∼ td (µ,Σ, ν)) The density function of a multivariate t-distribution
corresponds to

x 7−→ fX (x) =
Γ
¡
d+ν
2

¢
Γ
¡
ν
2

¢ ·
s
det (Σ−1)

(νπ)d
·
µ
1 +

(x− µ)0 Σ−1 (x− µ)
ν

¶−d+ν
2

,

where ν > 0 and Σ is assumed to be positive deÞnite (see, e.g., Peracchi, 2001, p. 87). So
the density generator of X is

t 7−→ gR (t) =
Γ
¡
d+ν
2

¢
Γ
¡
ν
2

¢ · 1

(νπ)d/2
·
µ
1 +

t

ν

¶− d+ν
2

.

After some algebra we Þnd

r 7−→ fR (r) =
2πd/2

Γ
¡
d
2

¢ · rd−1 · gR ¡r2¢
=
2r

d
·

Γ
¡
d+ν
2

¢
Γ
¡
d
2

¢
· Γ
¡
ν
2

¢ ·µd
ν

¶ d
2

·
µ
r2

d

¶ d
2−1

·
µ
1 +

d

ν
· r

2

d

¶−d+ν
2

=
2r

d
· fF

µ
r2

d

¶
,

where fF represents the p.d.f. of an Fd,ν-distributed random vector (see, e.g., Peracchi,
2001, p. 85). But r 7→ 2r/d · fF

¡
r2/d

¢
is just the p.d.f. of the random variable

p
d · Fd,ν

(see Example 4).

1.2.2 Symmetry

There are several deÞnitions of symmetry of multivariate distributions and random vectors.
I am going to concentrate on four basic symmetries which are �rotational�, �permutational�,
�radial�, and �angular� symmetry. For a more advanced discussion of symmetry of distribution
functions see, e.g., Fang, Kotz, and Ng (1990, pp. 1-10).

Rotational symmetry was already mentioned by DeÞnition 1. A weaker form of symmetry
is called �permutational symmetry� or �exchangeability� (Fang, Kotz, and Ng, 1990, p. 5).
That is a d-dimensional random vector X satisfying

X
d
= PX,

for every d-dimensional permutation matrix P. Every rotationally symmetric random vector
is also permutationally symmetric because every P is orthonormal, but the converse is not
true. Exchangeability is equivalent to FX (x) = FX (πx) for all permutations πx of the
vector (x1, . . . , xd).

Example 7 (Exchangeability of independent random components) Every random
vector X with mutually independent and identically distributed components X1 . . . ,Xd is
permutationally symmetric, since FX =

Qd
i=1 Fi and F1 = . . . = Fd.
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Example 8 (Exchangeability of equicorrelated elliptical components) Consider a
d-dimensional elliptical random vector X with zero location, i.e. µ = 0 and equicovariance
structure, i.e.

Σ =


b a · · · a
a b a
...

. . .
...

a a · · · b

 ,
where −b/ (d− 1) < a < b. Now,

PX d
= P

³
RΛU (d)

´
= RPΛU (d),

where ΛΛ0 = Σ. Thus, the dispersion matrix of PX corresponds to PΛΛ0P 0 = PΣP 0 = Σ.
So X and PX have the same distribution, i.e. X is permutationally symmetric.

A d-dimensional random vector X is called �radially symmetric� or simply �symmetric (about
c ∈ IRd)� (Fisz, 1989) if

X − c d
= − (X − c) .

Of course, if X is rotationally symmetric then it is also symmetric about 0 since the matrix
−Id is orthonormal and X =d −IdX = −X. From Theorem 3 we see that the density
function of an elliptical distribution function FX is symmetric with respect to its location,
i.e.

fX (µ+ x) = fX (µ− x) , ∀ x ∈ IRd,
provided FX is absolutely continuous. That is X is radially symmetric about µ. But even
if there is no density function an elliptical distribution is always radially symmetric about
µ, since

− (X − µ) d= −RΛU (d) = RΛ(−U (d)) d= RΛU (d) d
= X − µ.

Another kind of symmetry is given by the property

X − c
||X − c||2

d
= − X − c

||X − c||2
.

Now, X is called �angularly symmetric (about c ∈ IRd)� (Liu, 1988). If X is radially sym-
metric it is also angularly symmetric provided X has no atom at its center c. The concept of
angular symmetry will play a prominent role in the construction of a robust location vector
estimator for generalized elliptical distributions (see Section 4.3).

Hence, spherical distributions are rotationally, permutationally, radially, and (provided
R >a.s. 0) angularly symmetric. In contrast, elliptical distributions generally are only radi-
ally and if R >a.s. 0 also angularly symmetric. If the elliptical distribution has zero location
and equicovariance structure then it is also permutationally symmetric.

1.2.3 Moments

The mean vector of a d-dimensional elliptical random vector X corresponds to

E (X) = E
³
µ+RΛU (k)

´
= µ+ ΛE (R) ·E

³
U (k)

´
,

since R and U (k) are supposed to be independent. Here we assume that E (R) is Þnite.
Since E

¡
U (k)

¢
= 0 we obtain E (X) = µ.

The covariance matrix of X is

V ar (X) = E

µ³
RΛU (k)

´³
RΛU (k)

´0¶
= E

¡
R2
¢
· ΛE

³
U (k)U (k)0

´
Λ0,
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provided E
¡
R2
¢
is Þnite. Since

p
χ2k U

(k) ∼ Nk (0, Ik) and therefore

Ik = E

Ãµq
χ2k U

(k)

¶µq
χ2k U

(k)

¶0!
= E

¡
χ2k
¢
· E
³
U (k)U (k)0

´
= k ·E

³
U (k)U (k)0

´
,

we obtain E
¡
U (k)U (k)0

¢
= Ik/k and thus

V ar (X) =
E
¡
R2
¢

k
· Σ.

Note that k is not necessarily the rank of Σ or the dimension of X but the number of compo-
nents of U (k). Further, the dispersion matrix generally does not coincide with the covariance
matrix. The normal distribution is an exceptional case because E

¡
R2
¢
= E

¡
χ2k
¢
= k and

thus V ar (X) = Σ. Nevertheless, by multiplying R with
p
k/E (R2) we can always Þnd

a representation such that V ar (X) = Σ (cf. Bingham and Kiesel, 2002 and Hult and
Lindskog, 2002).

It was mentioned in Section 1.1 that the generating distribution function of an elliptical
location-scale family usually depends on its dimension d. Suppose the spherical random
vector which is underlying to a location-scale family has the stochastic representation

X(d) d
= R(d)U (d), ∀ d ∈ IN,

where U (d) is uniformly distributed on Sd−1 and R(d) is a generating variate such that X(d)

has always the characteristic function t 7→ φ (t0t). That is to say the characteristic generator
φ is supposed to be independent of d. Then the characteristic function of the marginal
c.d.f. of an arbitrary component of X(d) is always (i.e. for d = 1, . . .) given by s 7→ φ

¡
s2
¢

where s ∈ IR. Hence, the marginal distribution functions and their existing moments do not
depend on d. Consequently, the second moment of R(d) must be proportional to d provided
it is Þnite.

Example 9 (The 2nd moment of R(d) for the normal distribution) Since the gene-
rating variate of X(d) ∼ Nd (0, Id) corresponds to

p
χ2d (see Example 1) we obtain

E
³
(R(d))2

´
= E

¡
χ2d
¢
= d.

The following theorem emerges as very useful for calculating the asymptotic covariances of
covariance matrix estimators of (generalized) elliptical distributions treated in the chapters
below.

Theorem 5 (Dickey and Chen, 1985) Let X = (X1, . . . ,Xd) be a spherically distributed
random vector with stochastic representationRU (d). Its mixed moment of order (m1, . . . ,md)
corresponds to

E

Ã
dY
i=1

Xmi
i

!
=
E (Rm)¡
d
2

¢(m/2) · dY
i=1

mi!

2mi
¡
mi

2

¢
!
,

where m :=
Pd
i=1mi and every m1, . . . ,md is supposed to be an even nonnegative integer.

Here (·)(k) is the �rising factorial�, i.e. (x)(k) := x · (x+ 1) · · · · · (x+ k − 1) for k ∈ IN and
(x)(0) := 1. If at least one of the mi�s is odd then the mixed moment vanishes.

Proof. Fang, Kotz, and Ng (1990), p. 73.
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1.2.4 Affine Transformations and Marginal Distributions

Let a ∈ IRk and A ∈ IRk×d. Consider the transformed random vector

Y = a+AX,

where X d
= µ+RΛU (m) with Λ ∈ IRd×m. So we obtain

Y
d
= a+A

³
µ+RΛU (m)

´
= (a+Aµ) +RAΛU (m).

Hence, every affinely transformed and particularly every linearly combined elliptical random
vector is elliptical, too. An interesting fact is that the generating variates of affinely trans-
formed random vectors always remain constant. Thus affinely transformed random vectors
not only are elliptical but even closed under the corresponding location-scale family. We
say that Y is of the �same type�. Note that the characteristic function of Y − (a+Aµ)
corresponds to t 7→ φX (t

0AΣA0t) where Σ := ΛΛ0 (Hult and Lindskog, 2002).

Let Pk ∈ {0, 1}k×d (k ≤ d) be a �permutation and deletion� matrix, i.e. Pk has only binary
entries of 0�s and 1�s and PkP 0k = Ik. So the transformation PkX =: Y permutes and
deletes certain components of X such that Y is a k-dimensional random vector containing
the remaining components of X and having a (multivariate) marginal distribution with
respect to the joint distribution of X. According to the assertions above

Y
d
= Pk (µ+RΛU) = Pkµ+RPkΛU,

i.e. Y is of the same type as X. Moreover, the characteristic function of Y −Pkµ corresponds
to t 7→ φX (t

0PkΣP 0kt). So both the location vector Pkµ and the dispersion matrix PkΣP 0k
of Y exactly consist of the remaining entries of µ and Σ (Hult and Lindskog, 2002).

1.2.5 Conditional Distributions

The following theorems on the conditional distributions of spherical and elliptical random
vectors belong to Kelker (1970) and Cambanis, Huang, and Simons (1981). The corres-
ponding theorems for generalized elliptical distributions in Chapter 3 will heavily rely on
the following derivations.

From now on the notation of a �conditional random vector� Y | X = x is frequently used.
This is a standard notation in multivariate statistics (see, e.g., Bilodeau and Brenner, 1999,
Section 5.5 and Fang, Kotz, and Ng, 1990, Section 2.4). The quantity Y | X = x is simply
a random vector possessing the c.d.f. of Y under the condition X = x.

Theorem 6 Let X d
= RU (d) ∼ Ed (0, Id, φ) and X = (X1,X2) where X1 is a k-dimensional

sub-vector of X. Provided the conditional random vector X2 | X1 = x1 exists it is also
spherically distributed and can be represented stochastically by

X2 | (X1 = x1) d= R∗U (d−k),

where U (d−k) is uniformly distributed on Sd−k−1 and the generating variate is given by

R∗ = R
p
1− β |

³
R
p
β U (k) = x1

´
. (1.2)

Here U (k) is uniformly distributed on Sk−1 and β ∼ Beta
¡
k
2 ,

d−k
2

¢
where R, β, U (k), and

U (d−k) are supposed to be mutually independent.



CHAPTER 1. ELLIPTICALLY SYMMETRIC DISTRIBUTIONS 14

Proof. Let

U (d) =

"
U
(d)
1

U
(d)
2

#
:=

 kZ1k2
kZk2 ·

Z1
kZ1k2

kZ2k2
kZk2 ·

Z2
kZ2k2

 = " √
β · U (k)

√
1− β · U (d−k)

#
, (1.3)

where Z = (Z1, Z2) ∼ Nd (0, Id), and

U (k) :=
Z1
kZ1k2

, U (d−k) :=
Z2
kZ2k2

,
p
β :=

kZ1k2
kZk2

.

Consider the random vector

X = (X1,X2)
d
=

"
R
√
β U (k)

R
√
1− β U (d−k)

#
,

where the random quantities R, β, U (k), and U (d−k) are mutually independent and β ∼
Beta

¡
k
2 ,

d−k
2

¢
(Cambanis, Huang, and Simons, 1981).

Theorem 7 Let X ∼ Ed (µ,Σ, φ) where µ = (µ1, µ2) ∈ IRd and the matrix Σ ∈ IRd×d is
positive semideÞnite with r (Σ) = r. Then X can be represented stochastically by X =d
µ+RCU (r) according to Theorem 2, where

C =

·
C11 0
C21 C22

¸
∈ IRd×r

is the generalized Cholesky root of Σ with sub-matrices C11 ∈ IRk×k, C21 ∈ IR(d−k)×k, and
C22 ∈ IR(d−k)×(r−k), respectively. Further, let X = (X1,X2) where X1 is a k-dimensional
(k < r) sub-vector of X. Provided the conditional random vector X2 | X1 = x1 exists it is
also elliptically distributed and can be represented stochastically by

X2 | (X1 = x1) d= µ∗ +R∗C22U (r−k),

where U (r−k) is uniformly distributed on Sr−k−1 and the generating variate is given by

R∗ = R
p
1− β |

³
R
p
β U (k) = C−111 (x1 − µ1)

´
,

whereas the location vector corresponds to

µ∗ = µ2 + C21C
−1
11 (x1 − µ1) .

Here U (k) is uniformly distributed on Sk−1 and β ∼ Beta
¡
k
2 ,

r−k
2

¢
where R, β, U (k), and

U (r−k) are supposed to be mutually independent.

Proof. Let U (r) be deÞned as in the proof of Theorem 6 where d is substituted by r.
Further, consider

X = (X1,X2)
d
=

"
µ1 + C11RU

(r)
1

µ2 + C21RU
(r)
1 + C22RU (r)2

#

=

"
µ1 + C11R

√
β U (k)

µ2 + C21R
√
β U (k) + C22R

√
1− β U (r−k)

#
.

Under the condition X1 = x1 the random vector R
√
β U (k) degenerates to R

√
β U (k) =

C−111 (x1 − µ1). That is

µ∗ := µ2 + C21R
p
β U (k) = C21C

−1
11 (x1 − µ1)
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and the generating variate of X2 | (X1 = x1) is given by R
√
1− β under the speciÞed

condition.

The following corollary shows that the conditional distribution can be expressed in terms
of the components of Σ without the need of its generalized Cholesky root (see Cambanis,
Huang, and Simons, 1981 as well as Fang, Kotz, and Ng, 1990, p. 45).

Corollary 8 Let X ∼ Ed (µ,Σ, φ) where µ = (µ1, µ2) ∈ IRd and the matrix Σ ∈ IRd×d is
positive semideÞnite with r (Σ) = r. Then X can be represented stochastically by X =d
µ+RΛU (r) with Λ ∈ IRd×r according to Theorem 2. Let

Σ = ΛΛ0 =
·
Σ11 Σ12
Σ21 Σ22

¸
∈ IRd×d

with sub-matrices Σ11 ∈ IRk×k, Σ21 ∈ IR(d−k)×k, Σ12 ∈ IRk×(d−k), and Σ22 ∈ IR(d−k)×(d−k),
respectively. Further, let X = (X1,X2) where X1 is a k-dimensional (k < r) sub-vector of
X. Suppose that the conditional random vector X2 | X1 = x1 exists. Then X2 | (X1 = x1) ∼
Ed−k (µ∗,Σ∗, φ∗) where

µ∗ = µ2 +Σ21Σ
−1
11 (x1 − µ1) ,

Σ∗ = Σ22 −Σ21Σ−111 Σ12,

and φ∗ corresponds to the characteristic generator of R∗U (r−k) with

R∗ = R
p
1− β | R

p
β U (k) = C−111 (x1 − µ1) .

Here C11 is the Cholesky root of Σ11, U (k) is uniformly distributed on Sk−1 and β ∼
Beta

¡
k
2 ,

r−k
2

¢
where R, β, U (k), and U (r−k) are supposed to be mutually independent.

Proof. Consider Theorem 7 and note that

C21C
−1
11 = (C21C

0
11)
¡
C 0−111 C

−1
11

¢
= Σ21Σ

−1
11 ,

and thus
µ∗ = µ2 + C21C

−1
11 (x1 − µ1) = µ2 +Σ21Σ−111 (x1 − µ1) .

Further, C11C011 = Σ11 and

Σ∗ = C22C
0
22 = C21C

0
21 + C22C

0
22 − C21C 021

= (C21C
0
21 + C22C

0
22)− (C21C 011)

¡
C0−111 C

−1
11

¢
(C11C

0
21)

= Σ22 −Σ21Σ−111 Σ12.

1.3 Additional Properties

1.3.1 Summation Stability

The sum of independent elliptically distributed random vectors X1, . . . ,Xn with the same
dispersion matrix Σ is elliptical, too (Hult and Lindskog, 2002). This is because the cha-
racteristic function of

Pn
i=1Xi − µ where µ :=

Pn
i=1 µi corresponds to

t 7−→ E

Ã
exp

Ã
it0

nX
i=1

(Xi − µi)
!!

=
nY
i=1

E (exp (it0 (Xi − µi))) =
nY
i=1

φXi−µi (t
0Σt) .
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Especially the sum of i.i.d. elliptical random vectors is closed in the sense that it does not
leave the class of elliptical distributions. But that does not mean that the sum is of the
same type, i.e. it usually does not belong to the location-scale family of its addends. This is
only given for the class of multivariate �(summation-)stable� distributions (Embrechts, Klüp-
pelberg, and Mikosch, 2003, pp. 522-526, Rachev and Mittnik, 2000, Section 7.1). Here the
preÞx �summation� is usually ignored.

Every elliptical random vector X with characteristic function

t 7−→ ϕsub (t ;α) = exp (it
0µ) · exp

Ã
−
µ
1

2
· t0Σt

¶α/2!
, 0 < α ≤ 2,

is stable. If α ∈ ]0, 2[ then X is called �sub-Gaussian α-stable�. The parameter α is called
�characteristic exponent� or �index of stability� of X (Mikosch, 2003, p. 45). For α = 2
we obtain the multivariate Gaussian distribution whereas for α = 1 the random vector X
is multivariate (non-isotropic) Cauchy-distributed (Embrechts, Klüppelberg, and Mikosch,
2003, p. 72).

The following theorem states that under some weak conditions even the sum of a series of
dependent elliptical random vectors is elliptical, too.

Theorem 9 (Hult and Lindskog, 2001) Let X1 and X2 be two d-dimensional elliptically
distributed random vectors with stochastic representation

X1
d
= µ1 +R1ΛU

(k)
1

and
X2

d
= µ2 +R2ΛU

(k)
2 ,

respectively. Here (R1,R2), U
(k)
1 and U (k)2 are mutually independent whereas R1 and R2

may depend on each other. Then X1+X2 is also elliptically distributed with location vector
µ1 + µ2 and dispersion matrix Σ = ΛΛ

0.

Proof. Hult and Lindskog, 2002.

This closure property is very useful for time series analysis when assuming a sequence
R1,R2, . . . of dependent (e.g. heteroscedastic) generating variates. This point will be ad-
dressed in Section 7.1.2.

1.3.2 InÞnite Divisibility

In the preceding section it was shown that the sum of independent elliptical random vectors
is elliptical, too, provided every component has the same dispersion matrix Σ. For the
modeling of Þnancial time series some authors (see, e.g., Bingham and Kiesel, 2002 and
Eberlein and Keller, 1995) demand also the property of �inÞnite divisibility�.

In empirical Þnance usually one investigates the �log-price process� of several assets, i.e.
Yt := (logPt)t∈ S where S is an arbitrary index set and Pt represents the price vector of the
considered assets at time t. Let S = IR+ with Y0 =a.s. 1 and consider the log-price vector
Y1 =: Y at time t = 1 (w.l.o.g.). Now, one may assume that Y can always be �decomposed
stochastically� by an arbitrary number of i.i.d. increments (namely the asset�s �log-returns�),
i.e.

Y
d
=

nX
t=1

X
(n)
t/n, ∀ n ∈ IN.

Note that the c.d.f. of each addend depends essentially on n. This property is known as
�inÞnite divisibility� (Bingham and Kiesel, 2002, Eberlein and Hammerstein, 2003, and Em-
brechts, Klüppelberg, and Mikosch, 2003, p. 81). It can be interpreted as the assumption
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that the dynamics of stock prices results from continuously evolving but independent infor-
mations over time. This is of particular interest for the modeling of Þnancial time series by
Lévy processes (Barndorff-Nielsen and Shephard, 2001).

An elliptical random vector Y (and its corresponding distribution function) is inÞnitely divi-
sible if for every n ∈ IN there exists a random vector X(n) such that ϕY = ϕ

n
X(n) . Indeed,

there are some inÞnitely divisible elliptical distributions. For instance, both the Gaussian
and the sub-Gaussian α-stable distributions belong to the class of inÞnitely divisible distri-
butions (Embrechts, Klüppelberg, and Mikosch, 2003, p. 81). This is because for 0 < α ≤ 2
the sub-Gaussian α-stable characteristic generator satisÞes

s 7−→ φsub (s ;α) = exp

Ã
−
µ
1

2
· s
¶α/2!

=

Ã
exp

Ã
−
µ
1

2
· s

n2/α

¶α/2!!n
= φnsub

³ s

n2/α
;α
´
,

i.e. each sub-Gaussian α-stable random vector with location vector µ and dispersion matrix
Σ can be divided into an arbitrary number of �smaller� sub-Gaussian α-stable random vectors
with location vector µ/n and dispersion matrix Σ/n2/α. For t := 1/n one obtains µ (t) = µt
and

√
Σ (t) =

√
Σ t1/α, i.e. location is proportional to time but

√
Σ (t) ∝ t1/α. Indeed,

short-term Þnancial data often seem to have a �scaling exponent� of 1/α > 0.5, i.e. the
normal distribution hypothesis becomes less appropriate the higher the frequency of the
data (Bouchaud, Cont, and Potters, 1998, Breymann, Dias, and Embrechts, 2003).

1.3.3 Self-decomposability

Suppose that (Xt) is a simple autoregressive process, i.e.

Xt = ρXt−1 + εt, t = 1, 2, . . . ,

where each εt is white noise independent of Xt−1. If (Xt) is stationary (i.e. |ρ| < 1) then

Xt
d
= Xt+1

d
= ρXt + εt+1, t = 1, 2, . . . .

If a random vector X can be represented stochastically by

X
d
= ρX + ε(ρ), ∀ ρ ∈ ]0, 1[ ,

where ε(ρ) is independent of X then it is called �self-decomposable� (Barndorff-Nielsen and
Shephard, 2003, Section 1.2.2). Hence, a random vector X is self-decomposable if its cha-
racteristic function satisÞes the property t 7→ ϕX (t) = ϕX (ρt)ϕ

(ρ) (t), ∀ ρ ∈ ]0, 1[, where
ϕ(ρ) denotes the characteristic function of ε(ρ) which is considered as white noise. Note that
ϕ(ρ) depends essentially on the parameter ρ. The larger ρ the smaller the contribution of
the white noise and vice versa. Any self-decomposable law is inÞnitely divisible (Barndorff-
Nielsen and Shephard, 2003, p. 13).

Now, consider again the characteristic generator of the sub-Gaussian α-stable distribution.
Since for every s ≥ 0,

φsub (s ;α) = exp

Ã
−
µ
ρ2

2
· s
¶α/2!

· exp
Ãµ

ρ2

2
· s
¶α/2

−
µ
1

2
· s
¶α/2!

= φsub
¡
ρ2s ;α

¢
· exp

Ã
(ρα − 1) ·

µ
1

2
· s
¶α/2!
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= φsub
¡
ρ2s ;α

¢
· exp

−Ã(1− ρα)2/α
2

· s
!α/2

= φsub
¡
ρ2s ;α

¢
· φsub

³
(1− ρα)2/α s ;α

´
,

any sub-Gaussian α-stable random vector is self-decomposable. More precisely, if X is sub-
Gaussian α-stable with dispersion matrix Σ then

X
d
= ρX + (1− ρα)1/α ε, ∀ ρ ∈ ]0, 1[ ,

where the white noise ε(ρ) = (1− ρα)1/α ε is also sub-Gaussian α-stable possessing the same
dispersion matrix as X.

Not only the Gaussian and sub-Gaussian α-stable distributions are self-decomposable (and
thus inÞnitely divisible) but also the family of symmetric generalized hyperbolic distributions
(Barndorff-Nielsen, Kent, and Sørensen, 1982, Bingham and Kiesel, 2002). This particular
elliptical distribution family is extremely useful for the modeling of Þnancial data and will
be discussed in more detail in Section 3.1.



Chapter 2

Extreme Values and
Dependence Structures

This chapter concentrates on univariate and multivariate extremes with special focus on el-
liptical distributions. For a more comprehensive treatment of extreme value theory see, e.g.,
Bingham, Goldie, and Teugels, 1987, Coles, 2001, Embrechts, Klüppelberg, and Mikosch,
2003, Mikosch, 1999, and Resnick, 1987.

2.1 Univariate Extremes

The probability distribution of extremal events is a priori of main interest for insurance and
Þnance. Extreme value theory (EVT) is a special topic of probability theory and has become
standard in risk theory and management (see, e.g., Embrechts, Klüppelberg, and Mikosch,
2003). In insurance it has been used e.g. to calculate the potential severity of losses caused
by natural disasters like earthquakes, hurricanes, ßoods, etc. (Haan, 1990, McNeil, 1997,
McNeil and Saladin, 2000, Resnick, 1997, as well as Rootzén and Tajvidi, 1997). Calculating
the value-at-risk of asset portfolios on high conÞdence-levels has retained as a typical Þnance
application of the theory of extreme values (Danielsson and Vries, 2000, Frahm, 1999, and
Këllezi and Gilli, 2003).

The fundamental theorem of Fisher-Tippett (Embrechts, Klüppelberg, and Mikosch, 1997,
p. 121 in connection with p. 152) preludes the transition from classical statistics to EVT.

Theorem 10 (Fisher and Tippett, 1928) Let X1, . . . ,Xn (n = 1, 2, . . .) be sequences of
i.i.d. random variables and Mn := max {X1, . . . ,Xn} the corresponding sample maximum.
If there exist norming constants an > 0, bn ∈ IR and a non-degenerate c.d.f. H such that

Mn − bn
an

d−→ H, n −→∞,

then there exist parameters σ > 0 and µ, ξ ∈ IR such that

H (x) = Hξ

µ
x− µ
σ

¶
=


exp

³
−
¡
1 + ξ · x−µσ

¢− 1
ξ

´
, ξ 6= 0,

exp
¡
− exp

¡
−x−µ

σ

¢¢
, ξ = 0,

with support

IDGEV
ξ,σ,µ ≡


x > µ− σ

ξ , ξ > 0,

x ∈ IR, ξ = 0,

x < µ− σ
ξ , ξ < 0.

19
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The limit law H is referred to as �generalized extreme value distribution� (GEV).

Proof. Resnick, 1997, pp. 9-10, using the Jenkinson-von-Mises representation of the ex-
treme value distributions (Embrechts, Klüppelberg, and Mikosch, 1997, p. 152).

The limit theorem of Fisher-Tippett can be interpreted as a �sample-maxima analogue� to
the classical central limit theorem which is based on sample sums (Embrechts, Klüppelberg,
and Mikosch, 1997, p. 120). But rather than the probabilistic property of a sum of i.i.d.
variables the stochastic behavior of the maximum plays the key role when investigating the
tail of a distribution.

DeÞnition 3 (MDA) The c.d.f. F of X (or roughly speaking the random variable X)
belongs to the maximum domain of attraction (MDA) of the GEV Hξ if the conditions of
the Fisher-Tippett theorem hold for F (for X). We write F ∈MDA(Hξ) or X ∈MDA(Hξ),
respectively.

The parameter ξ is constant under affine transformations so that both the scale parameter
σ and the location parameter µ can be neglected.

Theorem 11 (Tail behavior of MDA(H0)) Let F be a c.d.f. with right endpoint xF ≤ ∞
and F := 1−F its survival function. F ∈MDA(H0) if and only if a constant v < xF exists,
such that

F (x) = γ (x) · exp

− xZ
v

1

f (t)
dt

 , v < x < xF ,

where γ is a measurable function with γ (x)→ γ > 0, x%xF , and f is a positive, absolutely
continuous function with f 0 (x)→ 0, x%xF .

Proof. Resnick (1987), Proposition 1.4 and Corollary 1.7.

Theorem 11 implies that every tail of a distribution F ∈ MDA(H0) with xF = ∞ may be
approximated by the exponential law

F (x) ≈ γ (v) · exp
µ
−x− v
f (v)

¶
, ∀ x > v,

provided v is a sufficiently high threshold. We say that the distribution F is �light-�, �thin-�,
or �exponential-tailed�. This is given e.g. for the normal-, lognormal-, exponential-, and the
gamma-distribution. The following theorem can be found in Embrechts, Klüppelberg, and
Mikosch (2003, p. 131).

Theorem 12 (Tail behavior of MDA(Hξ>0)) F ∈MDA(Hξ>0) if and only if

F (x) = λ (x) · x− 1
ξ , x > 0,

where λ is a slowly varying function, i.e. λ is a measurable function IR+→ IR+ satisfying

λ (tx)

λ (x)
−→ 1, x −→∞, ∀ t > 0.

Proof. Embrechts, Klüppelberg, and Mikosch, 2003, pp. 131-132.

In the following α := 1/ξ is called the �tail index� of F . For ξ = 0 we deÞne α = ∞. A
measurable function f : IR+ → IR+ with

f (tx)

f (x)
−→ t−α, x −→∞, ∀ t > 0,
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is called �regularly varying (at ∞) with tail index α ≥ 0� (Mikosch, 1999, p. 7). Note that
a slowly varying function is regularly varying with tail index α = 0.

A survival function F is regularly varying if and only if F ∈ MDA(Hξ>0) (Resnick, 1987,
p. 13). Thus a regularly varying survival function exhibits a power law, that is to say

F (x) ≈ λ (v) · x− 1
ξ = λ (v) · x−α, ξ, α > 0, ∀ x > v > 0,

for a suffiently high threshold v. Now the c.d.f. F is said to be �heavy-�, �fat-�, or �power-
tailed�. This is the case e.g. for the Pareto-, Burr-, loggamma-, Cauchy-, and Student�s
t-distribution. Clearly a power tail converges slower to zero than an exponential tail and
therefore this class is of special interest to risk theory.

A random variable X is said to be regularly varying with tail index α > 0 if both X ∈
MDA

¡
H1/α

¢
and −X ∈ MDA

¡
H1/α

¢
(Mikosch, 2003, p. 23). Then the tail index α has a

nice property: X has no Þnite moment of orders larger than α. Conversely, for α =∞ every
moment exists and is Þnite. Hence the smaller the tail index the bigger the weight of the
tail. Therewith both ξ and α are well suited to characterize the tailedness of the underlying
distribution (Embrechts, Klüppelberg, and Mikosch, 1997, p. 152):

ξ > 0 ⇔ 0 < α <∞ : Fréchet class,

ξ = 0 ⇔ α =∞ : Gumbel class,

ξ < 0 ⇔ −∞ < α < 0 : Weibull class.

DeÞnition 4 (GPD) The distribution function

Gξ

µ
x− µ
σ

¶
=

 1−
¡
1 + ξ · x−µσ

¢− 1
ξ , ξ 6= 0,

1− exp
¡
−x−µ

σ

¢
, ξ = 0,

σ > 0,

with support

IDGPD
ξ,µ,σ ≡

 x ≥ µ, ξ ≥ 0,

µ ≤ x < µ− σ
ξ , ξ < 0,

is referred to as �generalized Pareto distribution� (GPD).

The second crucial theorem of EVT is the following one.

Theorem 13 (Pickands, 1975) F ∈ MDA(Hξ∈IR) if and only if a positive function σ
exists with

lim
v%xF

sup
0≤y<xF−v

¯̄̄̄
F v→ (y)−Gξ

µ
y

σ (v)

¶¯̄̄̄
= 0,

where
F v→ (y) := P (X − v ≤ y | X > v) .

Proof. Embrechts, Klüppelberg, and Mikosch, 2003, pp. 165-166.

The c.d.f. F v→ is referred to as �excess distribution (over the threshold v)�. Thus the GPD
is the limit distribution of an arbitrary excess distribution F v→ provided its threshold v is
sufficiently high. Theorem 13 implies that the excess distribution depends asymptotically
only on two parameters, a scale parameter σ and a shape parameter ξ, respectively. The scale
parameter is determined by the selected threshold whereas the shape parameter is constant
through all thresholds because it only depends on the MDA of F . So the probability of
extremal events may be quantiÞed without knowing the underlying distribution family and
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the corresponding parameters may be estimated in a semi-parametric fashion allowing for
heavy tails.

The advantage of non-parametric methods is that no information about the distribution law
is required and unbiased estimates can be attained. That is to say the resulting estimates
are robust regarding an error in the interpretation of the true law. The trade off is large
variance of the estimates. If the true law were known clearly the corresponding parametric
approach would be more efficient. But biased estimates appear if the predicted distribution
law is wrong, i.e. parametric methods bear an awkward model risk. With semi-parametric
methods one can take advantage of the particular attributes of both, the parametric and
the non-parametric approaches. So EVT is a proper compromise between bias (parametric
methods) and variance (non-parametric methods) provided the intention to quantify the
probability of extremal events.

Several empirical studies (see, e.g., Haan, 1990, McNeil, 1997, and Rootzén and Tajvidi,
1997) in the context of insurance show that loss distributions belong signiÞcantly to the
Fréchet class. So classical loss distributions like gamma and lognormal are not suitable for
modeling extreme losses. There is also a huge number of empirical studies showing that
log-returns of Þnancial assets usually are heavy tailed, too (see, e.g., Eberlein and Keller,
1995, Embrechts, Klüppelberg, and Mikosch, 2003, Section 7.6, Fama, 1965, Mandelbrot,
1963, and Mikosch, 2003, Chapter 1). From our point of view we are interested in the
class of distributions which can be properly applied for modeling the generating variate of
elliptically distributed log-returns. Especially it is worth to know the consequences regarding
the dependence structure of elliptical distributions.

2.2 Multivariate Extremes and Copulas

In the preceding section regularly varying random variables were discussed. The concept of
regular variation can be extended to the multivariate case. The following deÞnitions can be
found in Hult and Lindskog (2002), Mikosch (1999), Resnick (1987), and Schmidt (2003a).

DeÞnition 5 (Multivariate regular variation) A random vector X is said to be �re-
gularly varying� with tail index α ≥ 0 if there exists a random vector S distributed on the
unit hypersphere Sd−1k·k such that for any t > 0 and any Borel-set B ⊂ Sd−1k·k ,

P
³
kXk > tx, X

kXk ∈ B
´

P (kXk > x)
v−→ PS (B) · t−α, x −→∞. (2.1)

Here k·k denotes an arbitrary norm on IRd and

Sd−1k·k :=
©
x ∈ IRd : kxk = 1

ª
.

Further, PS (B) := P (S ∈ B) and v symbolizes vague convergence (Resnick, 1987, p. 140).
The probability measure PS is called the �spectral measure� of X.

Vague convergence is equivalent to the usual convergence given some additional (but rela-
tively weak) topological conditions for the considered Borel-sets (cf. Mikosch, 1999, p. 31
and 2003, p. 25, Resnick, 1987, p. 140, Hult and Lindskog, 2002, and Schmidt, 2003a, p.
28). The deÞnition of multivariate regular variation indeed covers also the univariate case.
Apart from (2.1) there are other equivalent deÞnitions of multivariate regular variation (cf.
Mikosch, 1999, p. 32). Note that the choice of the norm k·k does not matter because if a
random vector is regularly varying with respect to a speciÞc norm then it is also regularly
varying with respect to any other norm (Hult and Lindskog, 2002). But the spectral measure
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PS indeed depends on the choice of the norm. Also, even if the norm is Þxed the spectral
measure may depend on the tail index α.

If B = Sd−1k·k then

P (kXk > tx)
P (kXk > x) −→ t−α, x −→∞, ∀ t > 0.

That is to say a regularly varying random vector X exhibits a power tail in the sense of the
corresponding vector norm. If t = 1 then

P

µ
X

kXk ∈ B | kXk > x
¶

v−→ PS (B) , x −→∞.

Hence the �direction� of X under its excess distribution, i.e. X/ kXk under the condition
kXk > x (x large), is distributed according to its spectral measure, approximately. Note that
both the spectral measure and the power law are linked multiplicatively in Eq. 2.1. Thus if
X is regularly varying the two events �direction of X� and �length of X� are asymptotically
independent.

The following theorem is concerned with the regular variation of elliptically distributed
random vectors.

Theorem 14 (Hult and Lindskog, 2001) Let X d
= µ + RΛU (d) ∼ Ed (µ,Σ, φ) where

Σ = ΛΛ0 is positive deÞnite. Further, let FR be the generating distribution function of X.
Then FR ∈MDA(Hξ>0) if and only if X is regularly varying with tail index α = 1/ξ > 0.

Proof. Consider Σ = [σij ] and deÞne σi :=
√
σii for all i = 1, . . . , d. Due to the positive

deÞniteness of Σ it is easy to show that σ2i > 0, i = 1, . . . , d and also |σij | 6= σiσj , i.e.¯̄
ρij
¯̄
< 1 for any i and j with i 6= j. As stated by Theorem 4.3 of Hult and Lindskog (2002)

this is sufficient for the assertion above.

Hence, the choice of the generating variate R determines essentially the extremal behavior
of the corresponding elliptical random vector. Due to DeÞnition 5 the radial part (kXk) of
a regularly varying elliptical random vector X is asymptotically independent of its angular
part (X/ kXk) under the condition that the radial part has an extreme outcome. Hence
there is a sort of dependence between the components of X which cannot be explained only
by linear dependence. This sort of dependence is referred to as �extremal� or �asymptotic�
dependence.

Note that the components of a random vectorX ∼ Ed (µ,Σ, φ) are stochastically independent
if and only ifX has a multivariate normal distribution and its correlation matrix corresponds
to the identity matrix (Fang, Kotz, and Ng, 1990, p. 106). Hence, even if a random vector
is spherically distributed and not regularly varying another sort of nonlinear dependence is
given, anyway.

Example 10 (Nonlinear dependence of U ∼ S) Suppose U = (U1, U2) is uniformly dis-
tributed on the unit circle. Then

U2
a.s.
= ±

q
1− U21 ,

i.e. U2 depends strongly on U1.

Now, the question is if there exists a multivariate analogue to the Fisher-Tippett theorem
in the univariate case. More precisely, is it possible to extend the concept of maximum
domains of attraction to the multi-dimensional setting?
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DeÞnition 6 (Multivariate domain of attraction) Let X·1, . . . ,X·n (n = 1, 2, . . .) be
sequences of i.i.d. random vectors with common c.d.f. F andMin := max {Xi1, . . . ,Xin} the
corresponding sample maximum of the i-th component. The c.d.f. F (or roughly speaking the
corresponding random vector X) is said to be �in the domain of attraction of a multivariate
extreme value distribution H� if there exist norming constants ain > 0, bin ∈ IR (i = 1, . . . , d)
and H has non-degenerate margins such that

Mn − bn
an

d−→ H, n −→∞,

where (Mn − bn) /an corresponds to the random vector [(Min − bin) /ain].

For the deÞnition see, e.g., Resnick (1987, p. 263). Since the componentwise maxima are
invariant under strictly increasing transformations it is allowed to choose alternative repre-
sentations of the marginal distribution functions. Coles (2001), for instance, refers to the
bivariate case and assumes that each component of X has a standard Fréchet distribution,
i.e. Fi (xi) = exp (−1/xi), xi > 0, i = 1, . . . , d (Coles, 2001, p. 144). This is convenient for
his consecutive analysis of extremes.

Theorem 15 (Schmidt, 2003) Let X d
= µ + RΛU (d) ∼ Ed (µ,Σ, φ) where Σ = ΛΛ0 is

positive deÞnite. Further, let FR be the generating distribution function of X. If FR ∈
MDA(Hξ>0) then X is in the domain of attraction of a multivariate extreme value distri-
bution.

Proof. Schmidt (2003a).

Resnick (1987, p. 281) states that every regularly varying random vector is in the domain
of attraction of an extreme value distribution H with

x 7−→ H (x) = exp
³
−υ

³
[−∞, x]

´´
,

where x = (x1, . . . , xd) ∈ IRd and [−∞, x] is the complement set of [−∞, x1]×· · ·× [−∞, xd],
x1, . . . , xd > 0. Hence Theorem 15 follows also by Theorem 14. Here, υ is a measure (called
�exponent measure�) with the following property:

υ

µ½
x ∈ IRd \ {0} : kxk > r, x

kxk ∈ B
¾¶

= PS (B) · r−α, r > 0,

for any Borel-set B ⊂ Sd−1k·k (cf. Resnick, 1987, p. 281 and Schmidt, 2003a). For elliptical
distributions the spectral measure PS depends on the dispersion matrix. Hult and Lindskog
(2002) give an analytic expression for bivariate elliptical distributions. Unfortunately, the
exponent measure cannot be more speciÞed for arbitrary regularly varying random vectors.
Thus a closed form representation of the extreme value distribution as in the univariate case
does not exist in the multivariate context.

For a better understanding of elliptical random vectors we have to take a closer look on
their dependence structures. This can be done by the theory of copulas (Joe, 1997, Drouet
Mari and Kotz, 2001, and Nelsen, 1999). An axiomatic deÞnition of copulas can be found
in Nelsen (1999, Section 2.2 and 2.10), for instance. According to this deÞnition a copula is
a d-variate distribution function

C : [0, 1]d → [0, 1] .

Owing to our interest in copula families we have to study copulas generated by speciÞc
classes of distributions as follows:
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DeÞnition 7 (Copula of a random vector X) Let X = (X1, . . . ,Xd) be a random vec-
tor with multivariate c.d.f. F and continuous margins F1, ..., Fd. The copula of X (or of
the c.d.f. F , respectively) is the multivariate c.d.f. C of the random vector

U := (F1 (X1) , . . . , Fd (Xd)) .

Due to the continuity of the margins F1, ..., Fd every random variable Fi (Xi) = Ui is stan-
dard uniformly distributed, i.e. Ui ∼ U (0, 1). Thus the copula of a continuous random
vector X has uniform margins and

C (u1, . . . , ud) = F (F
←
1 (u1) , . . . , F

←
d (ud)) , ∀ u = (u1, . . . , ud) ∈ ]0, 1[d (2.2)

holds, where

F←i (ui) := inf {x : Fi (x) ≥ ui} , ui ∈ ]0, 1[ , i = 1, ..., d

are the marginal quantile functions.

Theorem 16 (Sklar, 1959) Let F be a d-variate c.d.f. with margins F1, ..., Fd. Then
there exists a copula C such that

x 7−→ F (x) = C (F1 (x1) , . . . , Fd (xd)) , ∀ x = (x1, . . . , xd) ∈ IR
d
, (2.3)

where IR := IR ∪ {−∞,∞}. If all margins F1, ..., Fd are continuous then C is unique.
Otherwise C is uniquely determined on the Cartesian product of the ranges of F1, ..., Fd.
Conversely, if C is a copula and F1, ..., Fd are some univariate distribution functions then
F given by Eq. 2.3 is a d-variate c.d.f. with marginal distribution functions F1, ..., Fd.

Proof. Nelsen, 1999, p. 41 and the corresponding references.

That is to say by the �marginal mapping� only the dependence structure, i.e. the copula is
extracted from F . This can be used for �coupling� with another set of arbitrary marginal
distribution functions in order to obtain a new multivariate c.d.f. but with the same depen-
dence structure. This is the matter why we speak about a �copula� (Nelsen, 1999, p. 2 and
p. 15).

In general the multivariate c.d.f. F contains parameters that do not affect the copula of
F , and other parameters affects the copula and possibly the margins. The latter type of
parameters are called �copula parameters�. Let θ be a parameter vector (θ1, ..., θm) ∈ IRm
and F (· ; θ) a continuous multivariate c.d.f. with copula C (· ; θ). Let IC ⊂ I = {1, ...,m}
be an index-set that contains all i for which at least one u ∈ ]0, 1[d exists, such that

∂C (u; θ)

∂θi
6= 0.

So IC contains all copula parameter indices.

Lemma 17 Suppose a distribution family is generated by a d-variate c.d.f. F ∗ (· ; θ0) with
continuous margins F ∗1 (· ; θ0) , ..., F ∗d (· ; θ0) and d continuous and strictly increasing mar-
ginal transformations h1 (· ; θ1) , ..., hd (· ; θd), where the parameters θ1, ..., θd may be some
real-valued vectors:

F (x1, ..., xd; θ) = F
∗ (h1 (x1; θ1) , ..., hd (xd; θd) ; θ0) , (2.4)

with
θ = (θ0, θ1, ..., θd) .

Then only the vector θ0 contains copula parameters.
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Proof. The lemma follows from the fact that any copula is invariant under continuous
and strictly increasing transformations h1 (· ; θ1) , ..., hd (· ; θd). Thus also the parameters
θ1, ..., θd cannot affect the copula.

So the parameters θ1, ..., θd are canceled down through copula separation and only θ0 re-
mains. We call the c.d.f. F ∗ (· ; θ0) the �underlying distribution� of the corresponding copula
C (· ; θ0). In particular, the copula of an elliptical distribution function will be called �ellip-
tical copula�.

Let h1, . . . , hd be some continuous and strictly increasing functions. If Y ∼ F , where F
is a multivariate elliptical c.d.f., then x 7→ G (x) := F (h1 (x1) , . . . , hd (xd)) is the mul-
tivariate c.d.f. of the random vector X :=

¡
h−11 (Y1) , . . . , h

−1
d (Yd)

¢
. This can be used

for modeling new distribution functions based on the class of elliptical distributions. Con-
versely, ifX is arbitrarily distributed, nevertheless one possibly Þnds some strictly increasing
functions h1, . . . , hd such that the random vector h (X) := (h1 (X1) , . . . , hd (Xd)) is ellipti-
cally distributed with multivariate c.d.f. F . Then the multivariate c.d.f. of X is given by
x 7→ G (x) = F (h (x)). This can be used for pre-processing, i.e. estimation techniques for
elliptical distributions can be applied on the transformed data h (x1) , h (x2) , . . . , h (xn) of
a sample x1, x2, . . . , xn so as to obtain bF and thus bG = bF ◦ h.
Suppose that both the marginal distribution functions G1, . . . , Gd of X and the marginal
distribution functions F1, . . . , Fd of Y are continuous and strictly increasing. Further suppose
that the copula C of X is generated by Y , i.e.

P (G1 (X1) ≤ u1, . . . , Gd (Xd) ≤ ud) = P (F1 (Y1) ≤ u1, . . . , Fd (Yd) ≤ ud)

for all u = (u1, . . . , ud) ∈ ]0, 1[d. According to Eq. 2.2 we obtain

C (u) = G (G←1 (u1) , . . . , G
←
d (ud)) ,

i.e.
C (G1 (x1) , . . . ,Gd (xd)) = G (G

←
1 (G1 (x1)) , . . . , G

←
d (Gd (xd))) = G (x) .

Since

x 7→ G (x) = C (G1 (x1) , . . . , Gd (xd))

= P (G1 (X1) ≤ G1 (x1) , . . . ,Gd (Xd) ≤ Gd (xd))
= P (F1 (Y1) ≤ G1 (x1) , . . . , Fd (Yd) ≤ Gd (xd))
= P (Y1 ≤ F←1 (G1 (x1)) , . . . , Yd ≤ F←d (Gd (xd)))

= F (F←1 (G1 (x1)) , . . . , F
←
d (Gd (xd))) ,

the corresponding transformations h1, . . . , hd are given by hi = F←i ◦Gi, i = 1, . . . , d.

DeÞnition 8 (Meta-elliptical distribution) A random vector X = (X1, . . . ,Xd) (or its
corresponding multivariate c.d.f. G) is said to be �meta-elliptically distributed� if the copula
of X is elliptical, i.e. if there exists a random vector Y ∼ Ed (µ,Σ, φ) with c.d.f. F such
that

P (G1 (X1) ≤ u1, . . . , Gd (Xd) ≤ ud) = P (F1 (Y1) ≤ u1, . . . , Fd (Yd) ≤ ud) ,

for all u ∈ [0, 1]d. This is denoted by X ∼MEd (µ,Σ, φ).

A treatment on meta-elliptical distributions can be found in Abdous, Genest, and Rémillard
(2004) as well as in Fang, Fang, and Kotz (2002). See also Embrechts, Frey, and McNeil
(2004, pp. 89-90) for a discussion of meta-Gaussian and meta-t-distributions. Hence, es-
timation procedures for elliptical distributions can be applied even if the observed data is
not elliptically but meta-elliptically distributed provided the transformations h1, . . . , hd are
known.
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2.3 Asymptotic Dependence of Meta-elliptical Distri-
butions

In the following section some common properties of the dependence structures of meta-
elliptically distributed random vectors are examined with special focus on asymptotic de-
pendence. Even though the following statements concerning measures for asymptotic de-
pendence refer to elliptically distributed random vectors the results can be easily extended
to the class of meta-elliptical distributions. This is because the considered measures act
only on the copula and thus it is sufficient to provide elliptical copulas, i.e. meta-elliptical
distributions.

2.3.1 Bivariate Asymptotic Dependence

Affine marginal transformations are often applied for constructing distribution families, more
precisely location-scale-families. The location-scale-family generated by the multivariate
distribution F ∗ contains all distributions

(x1, ..., xd) 7−→ F (x1, ..., xd; θ) = F
∗
µ
x1 − µ1
σ1

, ...,
xd − µd
σd

; θ0

¶
,

with given parameter vector θ0, variable location parameters µ1, ..., µd and scale parameters
σ1, ..., σd. So this distribution family is generated by affine marginal transformations and
the location and scale parameters are not copula parameters according to Lemma 17.

Let us turn towards the dependence structure in F (· ; θ). Kendall�s τ is an appropriate
dependence measure for bivariate monotonic dependence.

DeÞnition 9 (Kendall�s τ) Let the bivariate random vector ( �X, �Y ) be an independent
copy of (X,Y ). Kendall�s τ of X and Y is deÞned as

τ (X,Y ) := P
³³
�X −X

´³
�Y − Y

´
> 0

´
− P

³³
�X −X

´³
�Y − Y

´
< 0

´
.

Kendall�s τ is a rank correlation, so

τ (X,Y ) = τ (FX (X) , FY (Y ))

holds, i.e. it is completely determined by the copula of (X,Y ) and thus it depends only on
the copula parameters of the c.d.f. of (X,Y ).

Now let

Σ =

 σ11 · · · σ1d
...

. . .
...

σd1 · · · σdd

 , σ :=


σ1 0 · · · 0

0 σ2
...

...
. . .

...
0 · · · · · · σd

 , ρ :=

 ρ11 · · · ρ1d
...

. . .
...

ρd1 · · · ρdd

 ,
with

σi :=
√
σii, i = 1, ..., d,

and
ρij :=

σij
σiσj

, i, j = 1, ..., d,

so that Σ = σρσ and ϕ (· ;µ,Σ, ϑ) ≡ ϕ (· ;µ, σ, ρ, ϑ). A d-dimensional elliptical random
vector with characteristic function ϕ (· ;µ, σ, ρ, ϑ) is denoted by X ∼ Ed (µ, σ, ρ, φ (· ;ϑ)).
Especially, the d-variate t-distribution (cf. Example 4) with ν degrees of freedom will be
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denoted by td (µ, σ, ρ, ν) and the d-variate sub-Gaussian α-stable distribution (cf. Section
1.3.1) is symbolized by N sub

d (µ, σ, ρ, α). Note that ρ is only the correlation matrix of X if
E
¡
R2
¢
< ∞ (cf. Section 1.2.3). Therefore ρ will be called �pseudo-correlation matrix� (cf.

Lindskog, 2000).

With the reparametrization above we obtain the equation Λ = σ
√
ρ, where

√
ρ ∈ IRd×d with√

ρ
√
ρ 0 = ρ, and thus

X
d
= µ+ σR√ρU (d).

Hence for studying the copulas of elliptical random vectors it is sufficient to analyze

X∗ := R√ρU (d),

or the corresponding characteristic generator φ (· ; 0, Id, ρ, ϑ).

Example 11 (Sub-Gaussian α-stable copula) The density function of the random vec-
tor X ∼ N sub

d (0, Id, ρ, α), i.e. the �standard density� of a sub-Gaussian α-stable random
vector, can be obtained through multivariate Fourier-transformation (Frahm, Junker, and
Szimayer, 2003) and corresponds to

f∗α,ρ (x) =
1

(2π)
d
·
Z
IRd

ϕsub (t ; 0, Id, ρ, α) · exp (−it0x) dt

=
1

(2π)d
·
Z
IRd

exp

Ã
−
µ
1

2
· t0ρt

¶α/2!
· cos (t0x) dt, 0 < α ≤ 2.

The copula generated by a d-variate sub-Gaussian α-stable distribution is

Cα (u1, . . . , ud) = F
∗
α,ρ (F

∗←
α (u1) , . . . , F

∗←
α (ud)) ,

where F ∗α,ρ is the multivariate standard distribution function

F ∗α,ρ (x) :=
Z

]−∞,x]

f∗α,ρ (s) ds, s ∈ IRd,

with ]−∞, x] := ]−∞, x1]×· · ·× ]−∞, xd], and F ∗←α is the inverse of the univariate standard
distribution function

F ∗α (x) :=

xZ
−∞

f∗α,1 (s) ds, s ∈ IR.

For continuous elliptical distributions there is a straight link between Kendall�s τ and the
matrix ρ (Lindskog, McNeil, and Schmock, 2003):

Theorem 18 (Lindskog, McNeil and Schmock, 2001) Let X ∼ Ed (µ, σ, ρ, φ), having
continuous and non-degenerate components. For any two components of X, Xi and Xj,
Kendall�s τ corresponds to

τ (Xi,Xj) =
2

π
· arcsin

¡
ρij
¢
. (2.5)

Proof. Lindskog, McNeil, and Schmock, 2003.

That is to say Kendall�s τ depends only on ρ and neither the characteristic generator nor
location and scale affect the rank correlation. This is due to the linear dependence structure
of elliptical distributions. Note also that Kendall�s τ remains the same if X is not elliptically
distributed but meta-elliptically distributed with the same copula parameter ρ.
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In addition to bivariate monotonic dependence, which is measured by rank correlation,
Þnancial data usually is likely to exhibit bivariate lower asymptotic dependence (Frahm,
Junker, and Schmidt, 2003 and Junker and May, 2002), that is to say a relatively large
probability of extreme simultaneous losses.

DeÞnition 10 (Tail dependence coefficient) Let C be the copula of (X,Y ), whereas FX
is the marginal c.d.f. of X and FY is the marginal c.d.f. of Y , respectively. The lower tail
dependence coefficient of X and Y is deÞned as

λL (X,Y ) := lim
t& 0

P (FY (Y ) ≤ t | FX (X) ≤ t) = lim
t& 0

C (t, t)

t
, (2.6)

whereas the upper tail dependence coefficient of X and Y is deÞned as

λU (X,Y ) := lim
t% 1

P (FY (Y ) > t | FX (X) > t) = lim
t% 1

1− 2t+ C (t, t)
1− t ,

provided the corresponding limits exist. If λL (X,Y ) > 0 or λU (X,Y ) > 0 the random
vector (X,Y ) (or the corresponding random components X and Y ) is said to be �lower tail
dependent� or �upper tail dependent�, respectively.

Loosely speaking, this is the probability that the realization of a random variable is ex-
tremely negative (or positive) under the condition that the realization of another random
variable is extremely negative (or positive), too. Note that in the elliptical framework the
lower tail dependence coefficient equals to the upper tail dependence coefficient due to the
radial symmetry. Since asymptotic dependence is deÞned by means of the copula, beside
Kendall�s τ also λL and λU depend only on the copula parameters. Coherently, a depen-
dence measure which is frequently used for any kind of distributions (like, e.g., Pearson�s
correlation coefficient) should be invariant under marginal transformations. Unfortunately,
the correlation coefficient does not have this property. An interesting investigation of possi-
ble mistakes due to ignoring this fact can be found in Embrechts, McNeil, and Straumann
(2002).

Note that a sub-Gaussian α-stable random vector with α < 2 is regularly varying with tail
index α (Mikosch 2003, p. 45). Further, a multivariate t-distributed random vector with ν
degrees of freedom (ν > 0) is regularly varying with tail index ν (Mikosch 2003, p. 26). The
following theorem connects the tail index with the tail dependence coefficient of elliptical
distributions:

Theorem 19 (Schmidt, 2002) Let X ∼ Ed (µ,Σ, φ) be regularly varying with tail index
α > 0 and Σ = σ

√
ρ a positive deÞnite dispersion matrix where σ and ρ are deÞned as

described in Section 2.3.1. Then every pair of components of X, say Xi and Xj, is tail
dependent and the tail dependence coefficient corresponds to

λ
¡
Xi,Xj ;α, ρij

¢
=

R f(ρij)
0

sα√
s2−1 dsR 1

0
sα√
s2−1 ds

, f
¡
ρij
¢
=

r
1 + ρij
2

. (2.7)

Proof. Schmidt, 2002.

So the tail dependence coefficient is only a function ρ α7−→ λ whereas the tail index α of the
elliptical random vector results from its speciÞc characteristic generator. Given the matrix ρ
the tail dependence is a function α

ρ7−→ λ, and due to Theorem 18 also the relation α τ7−→ λ
holds for a given matrix of Kendall�s τ .

Note that the regular variation and thus the tail index come from the joint distribution
function, whereas the tail dependence concerns particularly the copula. By Sklar�s theorem
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(see Theorem 16) it is possible to construct new multivariate distributions with arbitrary
margins, providing a speciÞc copula. Especially this is done by constructing meta-elliptical
distributions. In this case α is generally no longer the tail index of the new distributions
but still a copula parameter.

Substituting the integration variable s in Eq. 2.7 by cos (v) leads to the following equiva-
lent representation of the tail dependence coefficient of two elliptically distributed random
variables Xi and Xj (this is observed by Hult and Lindskog, 2002, see Frahm, Junker, and
Szimayer, 2003 for the details):

λ
¡
Xi,Xj ;α, ρij

¢
=

R π/2
g(ρij)

cosα (v) dvR π/2
0

cosα (v) dv
, g

¡
ρij
¢
= arccos

Ãr
1 + ρij
2

!
.

Due to relation (2.5) ρij can be substituted by sin
¡
τ ij · π2

¢
so that

λ (Xi,Xj ;α, τ ij) =

R π/2
h(τij)

cosα (v) dvR π/2
0

cosα (v) dv
, h (τ ij) =

π

2

µ
1− τ ij
2

¶
. (2.8)

Thus for the limiting case α = 0 the tail dependence coefficient is an affine function of
Kendall�s τ :

lim
α& 0

λ (Xi,Xj ;α, τ ij) =
1 + τ ij
2

. (2.9)

Since the tail index α of an elliptical random vector is given by the generating random
variable R, the tail dependence coefficient λij of each bivariate combination (Xi,Xj) is
uniquely determined by τ ij . Thus modeling the tail dependence structure of elliptical copulas
especially for higher dimensions is strongly restricted by the set

{(λ, τ) ∈ [0, 1]× [−1, 1] : λ = λ (α, τ)}

given the tail index parameter α.

The tail dependence coefficient of a bivariate t-distributed random vector (X,Y ) with ν
degrees of freedom corresponds to

λ = 2 · t̄ν+1
µ√

ν + 1 ·
r
1− ρ
1 + ρ

¶
(2.10)

= 2 · t̄ν+1

Ã
√
ν + 1 ·

s
1− sin

¡
τ · π2

¢
1 + sin

¡
τ · π2

¢! , ν > 0,

where t̄ν+1 is the survival function of Student�s univariate t-distribution with ν + 1 degrees
of freedom (cf. Embrechts, McNeil, and Straumann, 2002).

Since Eq. 2.10 holds for all ν > 0, where ν corresponds to the tail index α of X and Y , and
Theorem 19 states that the tail dependence coefficient of two elliptically distributed random
variables depends only on ρij and α, Eq. 2.7 can be replaced by

λij = 2 · t̄α+1

Ã
√
α+ 1 ·

s
1− ρij
1 + ρij

!
(2.11)

= 2 · t̄α+1

Ã
√
α+ 1 ·

s
1− sin

¡
τ ij · π2

¢
1 + sin

¡
τ ij · π2

¢! , α > 0.

Student�s t-distribution is a default routine in statistics software and is tabulated in many
textbooks (see, e.g., Johnson, Kotz, and Balakrishnan, 1995). So it is more convenient to
use Eq. 2.11 rather than Eq. 2.7 for practical purposes.
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In the following Þgure the upper-bound of the tail dependence coefficient as a function of ρ
for any elliptical copula allowing for α > 0 is plotted. The range of possible tail dependence
in the special case α < 2, which holds for the sub-Gaussian α-stable copula, is marked
explicitly.

Figure 2.1 Tail dependence barriers for elliptical copulas as a function of ρ. The range of
possible tail dependence for α < 2 is marked dark-grey.

An empirical investigation (Junker, 2002) of several stocks from the German and the US
market shows that the lower tail dependence ranges from 0 to 0.35, whereas Kendall�s τ
takes values in between 0 to 0.4, approximately. With Formula 2.8 we can plot the tail
dependence barriers as a function of Kendall�s τ .

Figure 2.2 Tail dependence barriers for elliptical copulas as a function of τ . The range of
possible tail dependence for α < 2 is marked dark-grey.

Note that for α = ∞ (i.e. if the corresponding random vector is not regularly varying)
the tail dependence coefficient equals to 0 (except the comonotone case ρij = 1) whereas
for the limit case α = 0 the tail dependence coefficient is an affine function of τ , as stated
by Eq. 2.9. Hence the sub-Gaussian α-stable copula restricts the scope of possible tail
dependence too much. The dependence structure generated by the sub-Gaussian α-stable
distribution is not suitable for modeling Þnancial risk because the provided range of λ
has only a small intersection with the empirical results. Arguments against the α-stable
hypothesis for Þnancial data can also be found in the univariate case (Mikosch, 2003, p. 5).

2.3.2 Multivariate Asymptotic Dependence

The previous section dealt with the concept of bivariate asymptotic dependence. A natural
generalization of the tail dependence coefficient to the multivariate case is given by

λL (I) := lim
t& 0

P

^
i∈ I

(Fi (Xi) ≤ t) |
^
j∈J

(Fj (Xj) ≤ t)

 ,
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and

λU (I) := lim
t% 1

P

^
i∈ I

(Fi (Xi) > t) |
^
j∈J

(Fj (Xj) > t)

 ,
where I∪J = {1, ..., d}, I∩J = ∅, and

V
denotes the logical conjunction. But the remaining

question is how to partition the index-set {1, ..., d}. Since the tail dependence coefficient
always depends on a certain partition the generalization of bivariate asymptotic dependence
to the multivariate case is not obvious. Hence, an alternative deÞnition of multivariate
asymptotic dependence is attempted.

DeÞnition 11 (Extremal dependence coefficient) Let X be a d-dimensional random
vector with c.d.f. F and marginal distribution functions F1, ..., Fd. Furthermore, let Fmin :=
min {F1 (X1) , ..., Fd (Xd)} and Fmax := max {F1 (X1) , ..., Fd (Xd)}. The lower extremal
dependence coefficient of X is deÞned as

εL := lim
t& 0

P (Fmax ≤ t | Fmin ≤ t) ,

whereas the upper extremal dependence coefficient of X is deÞned as

εU := lim
t% 1

P (Fmin > t | Fmax > t) ,

provided the corresponding limits exist.

Thus the lower extremal dependence coefficient can be interpreted as the probability that the
best performer of X is �attracted� by the worst one provided this one has an extremely bad
performance. This interpretation holds vice versa regarding the upper extremal dependence
coefficient.

Note that this aspect of multivariate extremes does not correspond to the classical one by
taking the componentwise maxima into consideration (cf. DeÞnition 6). Usually, classical
methods of extreme value theory can be applied even if the margins of a multivariate time
series stem from completely different periods (Coles, 2001, p. 143). So the classical approach
does not necessarily account for the probability of simultaneous extremes but only for the
dependence structure of marginal extremes. That is to say there is no information about
the concomitance of extremal events. But from our perception it seems to be worth to study
the probability distribution of extremes which occur simultaneously.

Equation

P (Fmax ≤ t | Fmin ≤ t) =
P (Fmin ≤ t, Fmax ≤ t)

P (Fmin ≤ t)
=

P (F1 (X1) ≤ t, ..., Fd (Xd) ≤ t)
1− P (F1 (X1) > t, ..., Fd (Xd) > t)

holds for the lower case and

P (Fmin > t | Fmax > t) =
P (Fmin > t, Fmax > t)

P (Fmax > t)
=

P (F1 (X1) > t, ..., Fd (Xd) > t)

1− P (F1 (X1) ≤ t, ..., Fd (Xd) ≤ t)

holds for the upper case, respectively. Thus

εL = lim
t& 0

P (F1 (X1) ≤ t, ..., Fd (Xd) ≤ t)
1− P (F1 (X1) > t, ..., Fd (Xd) > t)

= lim
t& 0

C (t, ..., t)

1− eC (1− t, ..., 1− t) ,
and

εU = lim
t% 1

P (F1 (X1) > t, ..., Fd (Xd) > t)

1− P (F1 (X1) ≤ t, ..., Fd (Xd) ≤ t)
= lim
t% 1

eC (1− t, ..., 1− t)
1− C (t, ..., t) ,
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where C is the copula of X and eC is the survival copula corresponding to C (cf., e.g., Junker,
2003, p. 27), i.e.

u 7−→ eC (u) := X
I⊂M

(−1)|I| · C
³
(1− u1)111∈I , ..., (1− ud)11d∈I

´
, (2.12)

where u = (u1, . . . , ud) ∈ [0, 1]d and M := {1, . . . , d}. Note that the (multivariate) survival
function of C is deÞned as u 7→ C (u) := eC (1− u) and is not a copula. Also C 6= 1− C.
Let C be a symmetric copula in the sense that C (u) = eC (u) for all u ∈ [0, 1]

d. Then
εL = εU , since

εL = lim
t& 0

C (t · 1)
1− eC ((1− t) · 1) = lim

t% 1

C ((1− t) · 1)
1− eC (t · 1) = lim

t% 1

eC ((1− t) · 1)
1− C (t · 1) = εU .

Thus, for elliptical distributions the lower extremal dependence coefficient equals to the
upper extremal dependence coefficient.

If the dependence between the components of a random vector X is perfectly positive (not
necessarily in a linear manner) X is said to be �comonotonic�.

DeÞnition 12 (Comonotonicity) Two random variablesX and Y are said to be �comono-
tonic� if there exist a random variable Z and two strictly increasing functions f : IR → IR
and g : IR → IR such that X a.s.

= f (Z) and Y a.s.
= g (Z). Further, a d-dimensional ran-

dom vector X = (X1, . . . ,Xd) is said to be comonotonic if there exist a random variable Z
and d strictly increasing functions fi : IR → IR, i = 1, . . . , d, such that Xi

a.s.
= fi (Z) for

i = 1, . . . , d.

If X and Y are comonotonic and f and g are continuous then X a.s.
= f

¡
g−1 (Y )

¢
, i.e. X is

a strictly increasing function of Y (a.s.) and vice versa.

Proposition 20 If a random vector is comonotonic then both the lower extremal dependence
coefficient and the upper extremal dependence coefficient correspond to 1.

Proof. If a random vector X is comonotonic then obviously its copula corresponds to
the �minimum copula� ∧d : u 7→ min {u1, ..., ud}. ∧d is called the �Fréchet-Hoeffding upper
bound� (Nelsen, 1999, p. 9). Note that ∧d = �∧d and thus the lower extremal dependence
coefficient of X corresponds to

εL = lim
t& 0

∧d (t · 1)
1− �∧d ((1− t) · 1)

= lim
t& 0

t

1− (1− t) = lim
t& 0

t

t
= 1,

Analogously, for the upper extremal dependence we obtain

εU = lim
t% 1

�∧d ((1− t) · 1)
1−∧d (t · 1)

= lim
t% 1

1− t
1− t = 1.

Proposition 21 If the components of a random vector are mutually independent then both
the lower extremal dependence coefficient and the upper extremal dependence coefficient cor-
respond to 0.

Proof. It is obvious that the copula of a random vector X with independent components
X1, ...,Xd corresponds to the �product copula� Πd : u 7→ u1 · . . . · ud and also Πd = eΠd.
Applying l�Hospital�s rule we obtain for the lower extremal dependence coefficient

εL = lim
t& 0

Πd (t · 1)
1− eΠd ((1− t) · 1) = lim

t& 0

td

1− (1− t)d
= lim

t& 0

td−1

(1− t)d−1
= 0.
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The upper extremal dependence coefficient becomes also

εU = lim
t% 1

eΠd ((1− t) · 1)
1−Πd (t · 1)

= lim
t% 1

(1− t)d

1− td = lim
t% 1

(1− t)d−1

td−1
= 0.

Note that within the class of elliptical distributions this holds only for normally distributed
random vectors whose correlation matrix correspond to the identity matrix.

If two random variables depends on each other in a perfectly negative manner then they are
said to be �countermonotonic�.

DeÞnition 13 (Countermonotonicity) Two random variables X and Y are said to be
�countermonotonic� if there exist a random variable Z, a strictly increasing function f : IR→
IR, and a strictly decreasing function g : IR→ IR such that X a.s.

= f (Z) and Y a.s.
= g (Z).

The copula of two countermonotonic random variables X and Y corresponds to W : u 7→
max {u1 + u2 − 1, 0}. This is called the �Fréchet-Hoeffding lower bound� (Nelsen, 1999, p.
9).

Proposition 22 If two random variables are countermonotic then both the lower extremal
dependence coefficient and the upper extremal dependence coefficient correspond to 0.

Proof. Note that W = fW and

W (1− t, 1− t) = max {2 (1− t)− 1, 0} = max {1− 2t, 0} .

Once again applying l�Hospital�s rule the lower extremal dependence of X and Y becomes

εL = lim
t& 0

W (t, t)

1−fW (1− t, 1− t)
= lim
t& 0

max {2t− 1, 0}
1−max {1− 2t, 0} =

0

2
= 0,

whereas the upper extremal dependence corresponds to

εU = lim
t% 1

fW (1− t, 1− t)
1−W (t, t)

= lim
t% 1

max {1− 2t, 0}
1−max {2t− 1, 0} =

0

−2 = 0.

Proposition 23 Let λL and λU be the tail dependence coefficients of a pair of random
variables. Further, let εL and εU be the corresponding extremal dependence coefficients.
Then

εL =
λL

2− λL
and

εU =
λU

2− λU
.

Proof. Consider

εL = lim
t& 0

C (t, t)

1− eC (1− t, 1− t) = lim
t& 0

C (t, t)

2t− C (t, t)

= lim
t& 0

C (t, t) /t

(2t− C (t, t)) /t = lim
t& 0

C (t, t) /t

2− C (t, t) /t ,
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and note that

λL = lim
t& 0

C (t, t)

t
.

Similarly

εU = lim
t% 1

eC (1− t, 1− t)
1− C (t, t) = lim

t% 1

1− 2t+ C (t, t)
1− C (t, t) = lim

t% 1

1− 2t+ C (t, t)
2 (1− t)− (1− 2t+ C (t, t))

= lim
t% 1

(1− 2t+ C (t, t)) / (1− t)
(2 (1− t)− (1− 2t+ C (t, t))) / (1− t) = lim

t% 1

(1− 2t+ C (t, t)) / (1− t)
2− (1− 2t+ C (t, t)) / (1− t) ,

and note that

λU = lim
t% 1

1− 2t+ C (t, t)
1− t .

Hence the extremal dependence coefficient is a convex function of the tail dependence coeffi-
cient. Given a small (upper/lower) tail dependence coefficient λ the (upper/lower) extremal
dependence coefficient ε is approximatively λ/2.

Proposition 24 Let εL (X) be the lower extremal dependence coefficient of a d-dimensional
random vector X and X be an arbitrary (d− 1)-dimensional sub-vector of X. Then

εL
¡
X
¢
≥ εL (X) .

The same holds concerning the upper extremal dependence coefficient, i.e.

εU
¡
X
¢
≥ εU (X) .

Proof. Let F (d)min be the minimum of the mapped components of X, i.e. the minimum of
F1 (X1) , . . . , Fd (Xd) and F

(d−1)
min be the minimum of the mapped components of X, respec-

tively. Analogously, deÞne F (d)max and F
(d−1)
max . Since

P
³
F (d)max ≤ t | F

(d)
min ≤ t

´
=
P
³
F
(d)
min ≤ t, F

(d)
max ≤ t

´
P
³
F
(d)
min ≤ t

´ =
P
³
F
(d)
max ≤ t

´
P
³
F
(d)
min ≤ t

´ ,
but

P
³
F (d−1)max ≤ t

´
≥ P

³
F (d)max ≤ t

´
,

and
P
³
F
(d−1)
min ≤ t

´
≤ P

³
F
(d)
min ≤ t

´
,

inevitably

P
³
F (d−1)max ≤ t | F (d−1)min ≤ t

´
=

P
³
F
(d−1)
max ≤ t

´
P
³
F
(d−1)
min ≤ t

´
≥

P
³
F
(d)
max ≤ t

´
P
³
F
(d)
min ≤ t

´ = P ³F (d)max ≤ t | F
(d)
min ≤ t

´
.

Since P (F (d)max ≤ t | F (d)min ≤ t) is a lower bound of P (F (d−1)max ≤ t | F (d−1)min ≤ t), the lower
extremal dependence coefficient of X is also bounded by the lower extremal dependence
coefficient of X. The same argument holds for the upper extremal dependence coefficients.
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So if one removes a random component of X then the remaining random vector generally
exhibits higher risk of extremes. Conversely, if one adds a random component to a given ran-
dom vector then the new random vector has lower risk of extremes which can be interpreted
as diversiÞcation effect.

Corollary 25 Let X = (X1, . . . ,Xd) be a random vector with lower extremal dependence
coefficient εL > 0. Then each lower tail dependence coefficient λL (Xi,Xj) of two arbitrary
components Xi and Xj of X is positive. Similarly, if εU > 0 then λU (Xi,Xj) > 0 for
arbitrary components Xi and Xj.

Proof. Since εL (X) is a lower bound for εL (Xi,Xj) also εL (Xi,Xj) must be positive and
due to Proposition 23 this holds also for the lower tail dependence coefficient λL (Xi,Xj).
The same argument holds for the upper tail dependence coefficients.

But what is the �driving factor� of the extremal dependence of elliptical distributions? For
the sake of simplicity we are going to focus on the multivariate t-distribution.

Lemma 26 Let X = (X1, . . . ,Xd) ∼ td (0, Id, ρ, ν) with ν > 0 degrees of freedom and ρ
be positive deÞnite. Let Xi be the (d− 1)-dimensional sub-vector of X without the i-th
component. Further, let

ρ =


1 · · · ρ1i · · · ρ1d
...

. . .
...

...
ρi1 · · · 1 · · · ρid
...

...
. . .

...
ρd1 · · · ρdi · · · 1

 ,

and let ρi be the sub-matrix of ρ without the i-th row and the i-th column, whereas γi
corresponds to the i-th row of ρ without the i-th element ρii = 1. Then

Xi | (Xi = x) ∼ td−1

Ã
γix,

r
ν + x2

ν + 1
· Id−1, ρi, ν + 1

!
,

where ρi := ρi − γiγ0i.
Proof. It is known (Bilodeau and Brenner, 1999, p. 239 in connection with p. 63) that if
X = (X1,X2) ∼ td (µ,Σ, ν) where X1 is a k-dimensional sub-vector of X and

µ =

·
µ1
µ2

¸
, Σ =

·
Σ11 Σ12
Σ21 Σ22

¸
,

then
X2 | (X1 = x1) ∼ td−k (µ∗, h (x1) · Σ∗, ν + k) ,

where

µ∗ = µ2 +Σ21Σ
−1
11 (x1 − µ1) ,

Σ∗ = Σ22 −Σ21Σ−111 Σ12,

and

h (x1) =
ν + (x1 − µ1)

0
Σ−111 (x1 − µ1)

ν + k
.

Regarding Xi we may assume w.l.o.g. that i = 1. Then the lemma follows immediately after
setting k = 1, µ = 0, Σ11 = 1, Σ12 = Σ021 = γ1, and Σ22 = ρ1.
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Theorem 27 Let X ∼ td (µ, σ, ρ, ν) with ν > 0 degress of freedom and positive deÞnite
dispersion matrix Σ = σ

√
ρ where σ and ρ are deÞned as described in Section 2.3.1. Then

both the lower and the upper extremal dependence coefficients of X correspond to

ε =

Pd
i=1 td−1,ν+1

¡
−
√
ν + 1 ·√ρi−1 (1− γi)

¢Pd
i=1 td−1,ν+1

¡√
ν + 1 ·√ρi−1 (1− γi)

¢ ,
where td−1,ν+1 denotes the c.d.f. of the (d− 1)-variate t-distribution with ν + 1 degrees of
freedom, γi and ρi are deÞned as in Lemma 26, and

√
ρi is such that

√
ρi
√
ρi
0 = ρi.

Proof. The lower and the upper extremal dependence coefficients coincide due to the radial
symmetry of X and also C = eC. So taking the lower extremal dependence coefficient, for
instance, leads to

ε = lim
t& 0

C (t, ..., t)

1− eC (1− t, ..., 1− t) = lim
t& 0

C (t, ..., t)

1− C (1− t, ..., 1− t) .

Since ε depends only on the copula of X we may consider a standardized version of X, say
X∗ = (X∗

1 , . . . ,X
∗
d) (cf. Section 2.3.1). Then we obtain

ε = lim
t& 0

P (F ∗ (X∗
1 ) ≤ t, ..., F ∗ (X∗

d) ≤ t)
1− P (F ∗ (X∗

1 ) ≤ 1− t, ..., F ∗ (X∗
d) ≤ 1− t)

= lim
x&−∞

P (X∗
1 ≤ x, . . . ,X∗

d ≤ x)
1− P (X∗

1 ≤ −x, . . . ,X∗
d ≤ −x)

,

where F ∗ is a standardized marginal c.d.f. of X. Applying l�Hospital�s rule we Þnd

ε = lim
x&−∞

dP (X∗
1 ≤ x, . . . ,X∗

d ≤ x) /dx
dP (X∗

1 ≤ −x, . . . ,X∗
d ≤ −x) /dx

= lim
x&−∞

Pd
i=1 ∂P (X

∗
1 ≤ x, . . . ,X∗

i ≤ x, . . . ,X∗
d ≤ x) /∂xiPd

i=1 ∂P (X
∗
1 ≤ −x, . . . ,X∗

i ≤ −x, . . . ,X∗
d ≤ −x) /∂xi

.

Note that ∂P (X∗
1 ≤ x, . . . ,X∗

i ≤ x, . . . ,X∗
d ≤ x) /∂xi corresponds to

fX∗
i
(x) · P

³
X
∗
i ≤ x · 1 | X∗

i = x
´
,

where X
∗
i is the (d− 1)-dimensional sub-vector of X∗ without the i-th component and fX∗

i

is the (standard) density function of X∗
i . From Lemma 26 we know that

X
∗
i | (X∗

i = x) ∼ td−1

Ã
γix,

r
ν + x2

ν + 1
· Id−1, ρi, ν + 1

!
.

Thus

ε = lim
x&−∞

fX∗
i
(x) ·

Pd
i=1 td−1,ν+1

³
x ·
q

ν+1
ν+x2 ·

√
ρi
−1 (1− γi)

´
fX∗

i
(−x) ·

Pd
i=1 td−1,ν+1

³
−x ·

q
ν+1
ν+x2 ·

√
ρi
−1 (1− γi)

´ .
Note that fX∗

i
is symmetric, so fX∗

i
(x) and fX∗

i
(−x) are canceled down. Hence,

ε =

Pd
i=1 td−1,ν+1

¡
−
√
ν + 1 ·√ρi−1 (1− γi)

¢Pd
i=1 td−1,ν+1

¡√
ν + 1 ·√ρi−1 (1− γi)

¢ .

In the following Þgure the extremal dependence coefficient of the multivariate t-distribution
is plotted for different dimensions and degrees of freedom by assuming an equicorrelation
structure.
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Figure 2.3 Extremal dependence coefficient of the multivariate t-distribution for d = 2
(dotted lines) and d = 3 (solid lines) where ν = 1 (black lines), ν = 2 (blue lines), and ν = 5
(red lines).

Hence also the extremal dependence of a multivariate t-distributed random vector X is
determined essentially by its number ν of degrees of freedom. Note that the multivariate
normal distribution (ν =∞) has no extremal dependence. The smaller ν the larger ε (given
a certain dispersion of X), i.e. the probability that each component of X is attracted by the
outperformer. Since ν corresponds to the tail index of X or equivalently of its generating
variate it may be expected that the extremal dependence coefficient of any elliptical random
vector is mainly determined by its tail index. Moreover, following the arguments given in
Section 2.3.1 concerning the tail dependence coefficient it is obvious that the extremal de-
pendence coefficient of any other elliptical distribution can be computed also by the formula
given in Theorem 27. This is part of a forthcoming work.

2.4 Covariance Matrix Estimation in the Presence of
Extreme Values

In the previous section it was pointed out that the tail index of the generating variate of
an elliptical random vector bears the essential information about the probability of extreme
outcomes. If the realizations ofR are known then standard methods of EVT (cf. Coles, 2001
and Embrechts, Klüppelberg, and Mikosch, 2003) can be used for estimating the tail index.
For instance, this can be done simply by Þtting a GPD to the empirical excess distribution
over a sufficiently high threshold (cf. Theorem 13).

Suppose X d
= µ + RΛU (k) ∼ Ed (µ,Σ, φ) where µ and the positive deÞnite matrix Σ are

known. Then R is given by

R a.s.
= ||RU (d)||2

d
= ||Λ−1 (X − µ) ||2.

This is equivalent to the Mahalanobis distance of X from its center µ because

||Λ−1 (X − µ) ||2 =
q
(Λ−1 (X − µ))0 (Λ−1 (X − µ)) =

q
(X − µ)0Σ−1 (X − µ).

But if µ and Σ are unknown then the corresponding parameters must be replaced by some
estimates bµ and bΣ, respectively. The resulting random variable

�R =
q
(X − bµ)0 bΣ−1 (X − bµ)
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is only an estimate ofR. Thus even the realizations ofR are unknown and must be estimated
before applying extreme value statistics. Other nonparametric methods like, e.g., kernel
density estimation can be used (Schmidt, 2003b, pp. 159-160) if not (only) the tail behavior
of R is of interest but (also) its entire distribution.

It is well-known that the sample covariance matrix corresponds both to the moment esti-
mator and to the ML-estimator for the dispersion matrix of normally distributed data. But
note that for any other elliptical distribution family the dispersion matrix usually does not
correspond to the covariance matrix (cf. Section 1.2.3). So the dispersion matrix is also
referred to as �pseudo-covariance matrix� or �scatter matrix� (Visuri, 2001, p. 39).

There exist many applications like, e.g., principal component analysis, canonical correlation
analysis, linear discriminant analysis, and multivariate regression for which the dispersion
matrix is demanded only up to a scaling constant (cf. Oja, 2003). Further, by Tobin�s
Two-fund Separation Theorem (Tobin, 1958) the optimal portfolio of risky assets does not
depend on the scale of the covariance matrix and this holds also in the context of random
matrix theory (cf. Part II of this thesis). If σ :=

p
tr (Σ) /d is deÞned as the �scale� of Σ then

the �shape matrix� is obtained by Σ/σ2 (Oja, 2003). The trace of the shape matrix (and the
sum of its eigenvalues) corresponds to the dimension of Σ. Alternatively, the normalization
could be done also by the determinant of Σ or simply by its upper left element. We will
come back to the latter point in Section 4.2.1.

If R is regularly varying with tail index α > 0 then the survival function of σR is regularly
varying with the same tail index. Hence, also for tail index estimation it is sufficient to
observe R merely up to scale. In the following it is presumed that the statistician�s goal
is to estimate the shape matrix of an elliptical random vector or only the corresponding
(pseudo-)correlation matrix. In the case of shape matrix estimation we will loosely speak
about �covariance matrix estimation�, anyway. Note that the shape matrix generally has
more structural information than the corresponding pseudo-correlation matrix because the
shape matrix preserves the variances of each component (up to scale).

Estimating the shape matrix via the sample covariance matrix, especially the correlation
matrix by Pearson�s correlation coefficient is dangerous when the underlying distribution is
not normal (Lindskog, 2000 and Oja, 2003). This is because Pearson�s correlation coefficient
is very sensitive to outliers. Especially, if the data stem from a regularly varying random
vector the smaller the tail index, i.e. the heavier the tails the larger the estimator�s variance.

Figure 2.4 True dispersion matrix (upper left) and sample covariance matrices of samples
drawn from a multivariate t-distribution with ν = ∞ (i.e. the normal distribution, upper
right), ν = 5 (lower left), and ν = 2 (lower right) degrees of freedom.
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In Figure 2.4 we see sample covariance matrices with sample size 500 drawn from a centered
multivariate t-distribution with 100 dimensions where the true dispersion matrix is given by
the upper left image. Every cell corresponds to a matrix element. The blue colored cells
represent small numbers whereas the red colored cells stand for large numbers. The true
dispersion matrix as well as every covariance matrix estimate is normalized by Σ11 = 1. For
correlation matrices a similar result is obtained which can be seen in Figure 2.5.

Figure 2.5 True pseudo-correlation matrix (upper left) and sample correlation matrices of
samples drawn from a multivariate t-distribution with ν =∞ (i.e. the normal distribution,
upper right), ν = 5 (lower left), and ν = 2 (lower right) degrees of freedom.

Hence the tail index by itself determines the quality of the data which is used for its esti-
mation. Consequently, one has to rely on robust covariance estimators. Indeed, there are
a lot of robust techniques to insulate from the �bad inßuence� of outliers (cf. Visuri, 2001,
pp. 31-51 and the subsequent references). But there may be �bad� and �good� outliers. Bad
outliers are caused by sampling errors due to the measurement process whereas good outliers
are data caused by true extremal events. The aim is to preserve good outliers particularly
from the perspective of EVT.

For a nice overview of robust covariance matrix estimation see, e.g., Visuri (2001, Chapter
3). The simplest approach is to eliminate outliers (which is called �trimming�) and to apply
the sample covariance matrix on the residual data (Gnanadesikan and Kettenring, 1972 and
Lindskog, 2000). From the viewpoint of extreme value theory this has the annoying effect of
neglecting useful information contained in extremes. In particular, estimating the tail index
is impossible without outliers.

Instead of detecting outliers to eliminate them one may specify another more subtle �penalty�
or �weight� function applying to extreme realizations. This is done by the M-estimation
approach (Maronna, 1976). M-estimation can be interpreted as a generalization of the ML-
estimation approach (Oja, 2003). Indeed, the �weight� used implicitly by ML-estimation
results from the density function of the generating variate. If one knows the true model
the weights are clear otherwise they must be chosen in a more or less arbitrary manner.
Nevertheless, Maronna (1976) and Huber (1981) considered criteria for existency, unique-
ness, consistency, and asymptotic normality of M-estimators. But it has to be pointed out
that the theoretical conditions particularly for asymptotic normality and consistency are not
trivial (Visuri, 2001, p. 40). Further, the robustness of an M-estimator depends on how far
the chosen weight function deviates from the optimal weight function which is given by the
corresponding ML-estimator (Oja, 2003). The more nonparametric the weight function, i.e.
the more compatible with alternative laws the more robust the resulting M-estimator.
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Another kind of robust estimators are given by some geometrical methods invented by
Rousseeuw (1985) called the �minimum volume ellipsoid� (MVE-)estimator and the �mini-
mum covariance determinant� (MCD-)estimator. The MVE-estimator minimizes the volume
of an ellipsoid encompassing a certain number of data points (usually more than half of the
sample). Similarly, the MCD-estimator minimizes the covariance determinant (which is the
squared volume of the trapezoid generated by the columns of the transformation matrix
Λ). These estimators are popular and has been investigated by a number of authors (cf.
Peña and Prieto, 2001). MVE- and MCD-estimators can attain very high contamination
breakdown points dependent of the number of considered data (Lopuhaä and Rousseeuw,
1991). But there is a trade-off between variance and breakdown point. If the number of
the considered data is small the estimator indeed has a high breakdown point but also large
variance. Moreover, these kind of estimators become computationally expensive in higher
dimensions because of the fact that the minimization algorithm acts on a nonconvex and
nondifferentiable function created by the empirical data points (Peña and Prieto, 2001).
For this case numerical approximations have to be used to obtain reasonable computational
times (Rousseeuw and Driessen, 1999).

An extension of Rousseeuw�s MVE-estimator is given by the class of S-estimators (Lopuhaä,
1989). Similarly to the MVE-estimator one tries to minimize the volume of an ellipsoid but
under the constraint that a number of weighted data points are considered. If the weight
function reduces to an indicator function then the MVE-estimator occurs as a special case.

For determining the �outlyingness� of a data point without the need of multivariate methods
one may consider the orthogonal projections of the data onto each direction s ∈ Sd−1.
Then the outlyingness or say alternatively the �depth� (Mosler, 2003) of the data point is
determined by the direction which maximizes the distance of this data point relative to
the others. For the purpose of comparison the data points must be standardized on each
direction. Since the projected data are univariate this can be simply done by robust standard
estimators for univariate location and scale (Visuri, 2001, p. 44). After knowing the depth
of each data point one may deÞne a robust covariance matrix estimator as an M-estimator
where the weight of each data point is a function of its depth. This approach was invented
by Stahel (1981) and Donoho (1982). Unfortunately, this method is not appropriate for
high-dimensional problems, too (Peña and Prieto, 2001 and Visuri, 2001, p. 44).

Some estimators try to solve the curse of dimensions by estimating each element of the shape
matrix, separately. This is nothing else but considering each projection of the data onto their
bivariate subspaces. As a drawback positive deÞniteness cannot be guaranteed. So one has
to transform the original estimate to the �next possible� positive deÞnite alternative, i.e. a
matrix which is close to the original one (Lindskog, 2000). This is done, for instance, by
a spectral decomposition of the original matrix and replacing its (hopefully few) negative
eigenvalues by small positive ones.

Of course, every covariance matrix estimator can be used for estimating the pseudo-correla-
tion matrix, too. But it was mentioned before that the covariance matrix has more structural
information than the corresponding correlation matrix. So if one is interested only in the
correlation structure why burden the estimator with needless tasks? A more efficient way of
robust correlation matrix estimation in the context of elliptical distributions is described by
Lindskog, McNeil, and Schmock (2003). This is simply done by inverting Eq. 2.5 in order to
obtain ρij = sin (τ ij · π/2) for each pair of random components. Then a robust estimator of
ρij is given by �ρij = sin (�τ ij · π/2) where �τ ij is the sample analogue of Kendall�s τ . This is
given by �τ ij = (c− d) / (c+ d) where c is the number of concordant pairs of the realizations
of Xi and Xj and d is the complementary number of discordant pairs (Lindskog, 2000). Note
that this estimator depends only on the rank correlation of the data. Hence it is invariant
under strictly increasing transformations and thus more robust than Pearson�s correlation
coefficient. But it is not positive deÞnite for the reasons mentioned above.





Chapter 3

Generalized Elliptical
Distributions

In the following chapter the class of generalized elliptical distributions will be introduced.
First, some motivation is given. Then, corresponding to the Þrst chapter of this thesis
the basic properties of the class of generalized elliptical distributions are derived. The
chapter will close by examining some techniques for the construction of generalized elliptical
distributions.

3.1 Motivation

Financial data usually neither are light tailed nor symmetrically distributed in the sense of
radial symmetry (cf. Section 1.2.2). This holds both for the univariate case (Eberlein and
Keller, 1995, Fama, 1965, Mandelbrot, 1963, Mikosch, 2003, Chapter 1) as well as for the
multivariate case (Breymann, Dias, and Embrechts, 2003, Costinot, Roncalli, and Teïletche,
2000, Junker, 2002, Junker and May, 2002).
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Figure 3.1 GARCH(1, 1)-residuals of daily log-returns of NASDAQ and S&P 500 from
1993-01-01 to 2000-06-30 (right hand). QQ-plot of the S&P 500 residuals only (left hand).

But elliptical distributions are radially symmetric. So the question is how to model radial
asymmetry without loosing to much of the basic properties of elliptical distributions (cf.
Section 1.2). On the one hand one should aim for parsimony regarding the parametrization

43
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of a model for multivariate asymmetry especially in the high-dimensional case. On the other
hand all the ordinary components of elliptical distributions, i.e. the generating variate R,
the location vector µ and the dispersion matrix Σ (which contains the linear dependence of
each pair of components) should remain for the new class of asymmetric distributions.

DeÞnition 14 (Elliptical variance-mean mixture) A d-dimensional random vector X
is called �elliptical variance-mean mixture� if it can be represented by

X
d
= µ+Rβ +

√
RY,

where µ ∈ IRd, β ∈ IRd, Y ∼ Ed (0,Σ, φ), Σ ∈ IRd×d is positive deÞnite, and R is a
nonnegative random variable being independent of Y . If β = 0 then X is an �elliptical
variance mixture�.

Since
X | (R = r) d= µ+ rβ +

√
r Y,

the c.d.f. of X is given as a mixture of X | R = r with mixing distribution r 7→ FR (r).
This is artiÞcially denoted by

x 7−→ FX (x) =

∞Z
0

Ed (µ+ rβ, rΣ, φ) dFR (r) .

The vector β is not a location vector but determines the skewness of the elliptical variance-
mean mixture. Elliptical variance mixtures of course are elliptically distributed.

Example 12 (Generalized hyperbolic distribution) If Y ∼ Nd (0,Σ) then X belongs
to the class of �normal variance-mean mixtures� (Barndorff-Nielsen, Kent, and Sørensen,
1982). Additionally, suppose R has a generalized inverse Gaussian distribution, i.e. its
density function corresponds to

r 7−→ fR (r) =

³p
κ/δ

´λ
2Kλ

³√
κδ
´ · rλ−1 · expµ−1

2
·
¡
κr + δr−1

¢¶
, r > 0, (3.1)

where Kλ is the modiÞed Bessel function of the third kind with index λ (Prause, 1999, p. 3
and Appendix B) and the parameter space corresponds to

κ > 0, δ ≥ 0, λ > 0,

κ > 0, δ > 0, λ = 0,

κ ≥ 0, δ > 0, λ < 0.

Then X is said to be �generalized hyperbolic distributed� (Barndorff-Nielsen, Kent, and
Sørensen, 1982). The cases κ = 0 and δ = 0 are to be interpreted as κ& 0 and δ& 0,
respectively. Note that the density of a generalized inverse Gaussian distribution can be
interpreted as a mixture of power and exponential laws. This is often referred to as �semi-
heavy� tails (Barndorff-Nielsen and Shephard, 2003, p. 164). For λ < 0, κ = 0 and by
deÞning ν := −2λ we obtain

(x/δ)λ

2Kλ (x)
−→ (2/δ)λ

Γ (−λ) =
δν/2

2ν/2Γ
¡
ν
2

¢ , x& 0.
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Then (3.1) becomes

r 7−→ fR (r) =
1

2ν/2Γ
¡
ν
2

¢ · δ ν2 ·µ1
r

¶ ν
2+1

· exp
µ
−1
2
· δ ·

µ
1

r

¶¶

=
1

2ν/2Γ
¡
ν
2

¢ · 1

δ−1
·
µ
1

δ−1
· 1
r

¶ ν
2−1

· exp
µ
−1
2
·
µ
1

δ−1
· 1
r

¶¶
· 1
r2
.

This is the density function of the reciprocal of χ2ν/δ. Hence, by setting δ = ν and the
skewness parameter β = 0 we obtain the multivariate t-distribution with ν degrees of freedom
(cf. Example 4) as a special case of a generalized hyperbolic distribution. Similarly, many
other distributions are representable as generalized hyperbolic distributions. A nice overview
is given in Prause (1999, Section 1.1).

Hence, the generalized inverse Gaussian distribution is complex and because of the possibility
of combining power and exponential tails an attractive candidate for modeling the generating
variate. Additionally, in Section 1.3 it was mentioned that the class of symmetric generalized
hyperbolic distributions is inÞnitely divisible and self-decomposable.

DeÞnition 15 (Elliptical location-scale mixture) A d-dimensional random vector X
is called �elliptical location-scale mixture� if it can be represented by

X
d
= µ+RY,

where µ ∈ IRd, Y ∼ Ed (β,Σ, φ), β ∈ IRd, Σ ∈ IRd×d is positive deÞnite, and R is a
nonnegative random variable being independent of Y . If β = 0 then X is an �elliptical scale
mixture�.

Now, the c.d.f. of X can be represented by

x 7−→ FX (x) =

∞Z
0

Ed
¡
µ+ rβ, r2Σ, φ

¢
dFR (r) .

If Y ∼ Nd (β,Σ) we may call X a �normal location-scale mixture�. Neither normal variance-
mean mixtures nor normal location-scale mixtures are elliptically distributed if β 6= 0.
Nevertheless, both classes are characterized by the ordinary components of elliptical random
vectors. Only the additional parameter vector β determines the skewness, i.e. the radial
asymmetry.

Another way for incorporating skewness into the elliptical framework is given by the tech-
nique of �hidden truncation� (Arnold and Beaver, 2002).

DeÞnition 16 (Skew-elliptical distribution) Let (Y0, Y ) ∼ Ed+1 (µ∗,Σ∗, φ) where µ ∈
IRd, µ∗ := (0, µ), β ∈ IRd, Σ ∈ IRd×d, and

Σ∗ :=
·
1 β0

β Σ

¸
.

Then the d-dimensional random vector X := Y |Y0 > 0 is said to be �skew-elliptically distri-
buted� (Branco and Dey, 2001) which is denoted by X ∼ SEd (µ, β,Σ, φ).

Again β serves as a skewness parameter. If φ corresponds to the characteristic generator
of the normal distribution then X is called �multivariate skew-normally distributed� (Az-
zalini and Dalla Valle, 1996). A nice overview on the literature concerning skew-elliptical
distributions can be found in Azzalini (2003).
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For the modeling of multivariate asymmetric distributions one should guarantee the existence
of a robust covariance matrix estimator. This is the quintessence of the previous chapter.
More precisely, a robust covariance matrix estimator should not depend on R. The main
idea of this thesis is as follows: Let X be a d-dimensional elliptical location-scale mixture
X =d µ+RY with generating variate R >a.s. 0 and Y =d β+QΛU (d) where Q >a.s. 0, too.
Further, let the location vector µ be known and the dispersion matrix Σ = ΛΛ0 be positive
deÞnite. The random vector

V :=
X − µ
||X − µ||2

d
=

RY
||RY ||2

a.s.
=

Y

||Y ||2
, Y ∼ Ed (β,Σ, φ) ,

does not depend on R but only on β, Σ, and φ. Moreover,

V
d
=

Y

||Y ||2
d
=

β +QΛU (d)
||β +QΛU (d)||2

a.s.
=

β/Q+ ΛU (d)
||β/Q+ ΛU (d)||2

.

Note that V is supported by Sd−1 and that the density function ψd (· ; γ,Λ) of the random
vector

γ + ΛU (d)

||γ + ΛU (d)||2
, (3.2)

exists for all γ ∈ IRd. Similarly to the spectral measure (cf. Section 2.2) ψd is a �spectral
density function� acting on the unit hypersphere. Now, also the density function of V exists
and corresponds to

v 7−→ �ψ (v) =

∞Z
0

ψd

µ
v ;
β

q
,Λ

¶
dFQ (q) , v ∈ Sd−1.

This can be used for a maximum-likelihood estimation of β and Σ. It is to be pointed out that
this estimation procedure is robust against the generating distribution function FR (provided
it has no atom at zero) and it works even ifR would depend on Y becauseR is canceled down
anyway. The remaining problem is that it is necessary to specify not the �mixing distribution�
FR but the �mixed distribution� Ed, i.e. the corresponding elliptical distribution family of
the location-scale mixture. Indeed for the most interesting case Y ∼ Nd (β,Σ) an analytic
expression of the density function of V is derived in Section 4.2.1.

So this approach is not completely robust. But note that the underlying elliptical distribution
family must be speciÞed only if β 6= 0 since otherwise

V
d
=

Y

||Y ||2
d
=

QΛU (d)
||QΛU (d)||2

a.s.
=

ΛU (d)

||ΛU (d)||2
.

Now the random vector V even does not depend on Q. So it is plausible to deÞne the class of
multivariate asymmetric distributions according to the stochastic representation of elliptical
random vectors but allowing the generating variate R to depend on the unit random vector
U (d). This extended class of elliptical distributions allows both for asymmetry and for robust
covariance matrix estimation.

3.2 DeÞnition

DeÞnition 17 (Generalized elliptical distribution) The d-dimensional random vector
X is said to be �generalized elliptically distributed� if and only if

X
d
= µ+RΛU (k),

where U (k) is a k-dimensional random vector uniformly distributed on Sk−1, R is a random
variable, µ ∈ IRd, and Λ ∈ IRd×k.
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In contrast to elliptical distributions the generating variateRmay become negative and even
it may depend stochastically on the direction determined by U (k). Hence the dependence
structure of R and U (k) constitutes the multivariate c.d.f. of X, essentially. In particular,
X has not to be radially symmetric anymore, and its covariance matrix is not necessarily
equal to E

¡
R2
¢
/k · Σ. Moreover, µ does not correspond to the vector of expected values,

generally. Unfortunately, the assertions made in Section 2.3 concerning the asymptotic
dependence of meta-elliptical distributions are no longer valid for the class of generalized
elliptical distributions because the copula of a generalized elliptical random vector needs not
to be elliptical, anymore.

In Section 1.1 it was mentioned that the dispersion of an elliptically distributed random vec-
tor is uniquely determined via the matrix Σ = ΛΛ0, i.e. the particular matrix decomposition
is irrelevant. Due to the possible dependence between R and U (k) this is not true for gene-
ralized elliptical distributions and the transformation matrix Λ must be speciÞed explicitly.
Note that in the deÞnition above it is not presumed that Λ has full rank. Nevertheless, if
R ≥a.s. 0 and R and U (k) are stochastically independent then (due to Proposition 1) X is
elliptically symmetric distributed. Conversely, if a random vector X is elliptically symmetric
distributed then (due to Theorem 2) X is always representable as in DeÞnition 17, with R
and U (k) being independent. Hence the class of generalized elliptical distributions includes
the class of elliptical distributions.

Of course, the class of elliptically symmetric distributions forms an intersection of both the
class of meta-elliptical and generalized elliptical distributions. But how far meta-elliptical
distributions can be represented by generalized elliptical (and vice versa) is not obvious.
Fortunately, it can be shown that the class of generalized elliptical distributions contains
the class of skew-elliptical distributions.

Theorem 28 If X ∼ SEd (µ, β,Σ, φ) then X is generalized elliptically distributed with lo-
cation vector µ and dispersion matrix Σ.

Proof. Per deÞnition X may be represented by Y |Y0 > 0, where·
Y0
Y

¸
d
=

·
0
µ

¸
+R ·

s·
1 β0

β Σ

¸
U (d+1)

Let φ be the characteristic generator of RU (d+1) where U (d+1) is uniformly distributed on
Sd and R is a nonnegative random variable being stochastically independent of U (d+1).
Consider the root s·

1 β0

β Σ

¸
=

·
1 0

β
p
Σ− ββ0

¸
.

Further, let the generating variate R∗ be deÞned as

R∗ =
(

R, U
(d+1)
1 > 0,

−R, U
(d+1)
1 ≤ 0.

Now, X can be represented by

X
d
= µ+R∗ ·

h
β
p
Σ− ββ0

i
· U (d+1).

Hence the dispersion matrix of X corresponds to Σ.

A d-dimensional generalized elliptically distributed random vector X can be simulated after
specifying a location vector µ ∈ IRd, a transformation matrix Λ ∈ IRd×k, and the conditional
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distribution functions r 7→ FR|U(k)=u (r) := P
¡
R ≤ r |U (k) = u

¢
for every u ∈ Sk−1. Using

the conditional quantile function

p 7−→ F←R|U(k)=u (p) := inf
©
r : FR|U(k)=u (r) ≥ p

ª
, 0 < p < 1,

the random vector X results from

X := µ+ F←R|U(k)=�U(k) (Z)Λ �U
(k),

where �U (k) is uniformly distributed on Sk−1 and can be simulated as described in Section
1.1. Further, Z ∼ U (0, 1) and stochastically independent of �U (k).

3.3 Basic Properties

In Section 1.2.4 it was shown that affinely transformed elliptical random vectors are also
elliptical and even that the generating variate of the transformed random vector remains
constant. This is because the generating variate is not bothered by the transformation
and the same argument holds even if R probably takes values in IR or if it depends on
the unit random vector. So generalized elliptical distributions are also closed under affine
transformations and marginalizations.

Since generalized elliptical distributions are made to allow for asymmetries consequently
they do not satisfy any of the symmetry properties described in Section 1.2.2, generally.
But for the quite general case R >a.s. 0 indeed they are angularly symmetric. This is
because

X − µ
||X − µ||2

d
=

RΛU (k)
||RΛU (k)||2

a.s.
=

ΛU (k)

||ΛU (k)||2
neither depends on the particular c.d.f. of R nor on the dependence structure of R and
U (k). Since the random vector ΛU (k)/||ΛU (k)||2 is radially symmetric the same holds for
(X − µ) / kX − µk2, i.e. X is angularly symmetric about µ.

In the following it will be shown that generalized elliptical distributions fortunately are
similar to elliptically symmetric distributions also concerning their density functions and
conditional distributions.

Theorem 29 Let X d
= µ+RΛU (k) with Σ := ΛΛ0 be a d-dimensional generalized elliptically

distributed random vector where µ ∈ IRd and Λ ∈ IRd×k with r(Λ) = k. Further, let the joint
c.d.f. of R and U (k) be absolutely continuous and SΛ be the linear subspace of IRd spanned
by Λ. Then the p.d.f. of X is given by

x 7−→ fX (x) = |det(Λ)|−1 · gR
¡
(x− µ)0Σ−1 (x− µ) ;u

¢
, x ∈ SΛ\ {µ} ,

where

u :=
Λ−1 (x− µ)q

(x− µ)0Σ−1 (x− µ)
,

t 7−→ gR (t ;u) :=
Γ
¡
k
2

¢
2πk/2

·
√
t
−(k−1) ·

³
fR|U(k)=−u

³
−
√
t
´
+ fR|U(k)=u

³√
t
´´
, t > 0,

and fR|U(k)=u is the conditional p.d.f. of R under U (k) = u ∈ Sk−1.

Proof. Since the joint c.d.f. of R and U (k) is absolutely continuous the joint p.d.f. (r, u) 7→
f(R,U(k)) (r, u) exists. Consider the conditional density function of R, i.e.

r 7−→ fR|U(k)=u (r) :=
f(R,U(k)) (r, u)

fU(k) (u)
,
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where fU(k) (u) = Γ
¡
k
2

¢
/(2πk/2) is the uniform density on the unit hypersphere Sk−1. Thus

the joint p.d.f. of R and U (k) corresponds to

(r, u) 7−→ f(R,U(k)) (r, u) =
Γ
¡
k
2

¢
2πk/2

· fR|U(k)=u (r) .

We deÞne a similar transformation as in the proof of Theorem 3, i.e. h : IR\ {0} × Sk−1 →
IRk\ {0} , (r, u) 7→ ru =: y. But now h is no longer injective since r = kyk2 and u = y/ kyk2
lead to the same result as r = − kyk2 and u = −y/ kyk2. So let

h← (y) := (kyk2 , y/ kyk2) .

Hence the p.d.f. of Y is given by

y 7−→ fY (y) =
³
f(R,U(k)) (−h

← (y)) + f(R,U(k)) (h
← (y))

´
· |Jh|−1 ,

=
Γ
¡
k
2

¢
2πk/2

· kyk−(k−1)2 ·
¡
fR|U(k)=−u (− kyk2) + fR|U(k)=u (kyk2)

¢
, y 6= 0,

where u = y/ kyk2. Analogously to the proof of Theorem 3 we obtain the formula given in
Theorem 29.

Corollary 30 Let X d
= µ+RΛU (d) with Σ := ΛΛ0 be a d-dimensional generalized elliptically

distributed random vector where µ ∈ IRd and Λ ∈ IRd×d has full rank. Further, let the joint
c.d.f. of R and U (d) be absolutely continuous. Then the p.d.f. of X is given by

x 7−→ fX (x) =
p
det (Σ−1) · gR

¡
(x− µ)0Σ−1 (x− µ) ;u

¢
, x 6= µ,

where

u :=
Λ−1 (x− µ)q

(x− µ)0Σ−1 (x− µ)
,

t 7−→ gR (t ;u) :=
Γ
¡
d
2

¢
2πd/2

·
√
t
−(d−1) ·

³
fR|U(k)=−u

³
−
√
t
´
+ fR|U(k)=u

³√
t
´´
, t > 0,

and fR|U(d)=u is the conditional p.d.f. of R under U (d) = u ∈ Sd−1.

Proof. See the proof of Corollary 4.

Theorem 31 Let X d
= RU (d) be a d-dimensional generalized elliptically distributed random

vector and X = (X1,X2) where X1 is a k-dimensional sub-vector of X. Provided the
conditional random vector X2 | X1 = x1 exists it is also generalized elliptically distributed
and can be represented stochastically by

X2 | (X1 = x1) d= R∗U (d−k),

where U (d−k) is uniformly distributed on Sd−k−1 and the generating variate is given by

R∗ = R
p
1− β |

³
R
p
β U (k) = x1

´
.

Here U (k) is uniformly distributed on Sk−1 and β ∼ Beta
¡
k
2 ,

d−k
2

¢
where β, U (k), and U (d−k)

are supposed to be mutually independent. Further, R may depend on U (d) which is given by

U (d) =
³p

β · U (k),
p
1− β · U (d−k)

´
.

Proof. Consider the proof of Theorem 6 but note that R is no longer independent of β,
U (k), and U (d−k), generally.
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Theorem 32 Let X d
= µ + RΛU (r) be a d-dimensional generalized elliptically distributed

random vector where µ = (µ1, µ2) ∈ IRd, Λ ∈ IRd×r with r (Λ) = r and Σ := ΛΛ0. Let

C =

·
C11 0
C21 C22

¸
∈ IRd×r

be the generalized Cholesky root of Σ with sub-matrices C11 ∈ IRk×k, C21 ∈ IR(d−k)×k, and
C22 ∈ IR(d−k)×(r−k), respectively. Further, let X = (X1,X2) where X1 is a k-dimensional
(k < r) sub-vector of X and let

RΛ |
³
U (r) = u

´
:= R |

³
U (r) = Λ−1Cu

´
,

for all u ∈ Sr−1. Provided the conditional random vector X2 | X1 = x1 exists it is also
generalized elliptically distributed and can be represented stochastically by

X2 | (X1 = x) d= µ∗ +R∗ΛC22U (r−k),

where U (r−k) is uniformly distributed on Sr−k−1 and the generating variate is given by

R∗Λ = RΛ
p
1− β |

³
RΛ
p
β U (k) = C−111 (x1 − µ1)

´
,

whereas the location vector corresponds to

µ∗ = µ2 + C21C
−1
11 (x1 − µ1) .

Here U (k) is uniformly distributed on Sk−1 and β ∼ Beta
¡
k
2 ,

r−k
2

¢
where β, U (k), and U (r−k)

are supposed to be mutually independent. Further, RΛ may depend on U (d) which is given
by

U (d) =
³p

β · U (k),
p
1− β · U (d−k)

´
.

Proof. Note that µ+RΛU (r) 6=d µ+RCU (r) if R depends on U (r). But consider

X
d
= µ+RΛU (r) = µ+RΛΛ−1ΛU (r).

Since
ΛΛ−1 = (ΛΛ0)

¡
Λ0−1Λ−1

¢
= ΣΣ−1 = (CC 0)

¡
C0−1C−1

¢
= CC−1,

(cf. the proof of Theorem 3) we obtain the stochastic representation

X
d
= µ+RCC−1ΛU (r) = µ+RCU (r)Λ

where U (r)Λ := C−1ΛU (r). Note that U (r)Λ is also uniformly distributed on Sr−1 since¡
C−1Λ

¢ ¡
C−1Λ

¢0
= C−1ΣC 0−1 = C−1CC0C 0−1 = Ir,

i.e. (C−1Λ)−1 = (C−1Λ)0 and thus (C−1Λ)0(C−1Λ) = Ir, too. So the transformation C−1Λ
only rotates the random vector U (r). Thus we may replace U (r)Λ by U (r) if we deÞne

RΛ |
³
U (r) = u

´
:= R |

³
U (r) = Λ−1Cu

´
such that

X
d
= µ+RΛCU (r).

With this representation we are able to follow the arguments in the proofs of Theorem 7
and Theorem 31 in order to obtain the formulas given in Theorem 32.
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3.4 Models

In the following a feasible method for the modeling of asymmetric generalized elliptical
distributions will be developed. Let v1, . . . , vm ∈ Sd−1 be some Þxed �reference vectors�
on the unit hypersphere. Assume that the conditional c.d.f. of R is a function of some
�distances� δ (u, v1) , . . . , δ (u, vm) between u and the reference vectors v1, . . . , vm, i.e.

r 7−→ FR|U=u (r) = H (r, δ (u, v1) , . . . , δ (u, vm)) ,

where H (·, δ1, . . . , δm) is a c.d.f. for all (δ1, . . . , δm) ∈ [0, 1]m.
For an adequate deÞnition of the reference vectors v1, . . . , vm we may diagonalize the disper-
sion matrix Σ ∈ IRd×d, i.e. Σ = ODO0, where O is the orthonormal basis of the eigenvectors
and D is the diagonal matrix of the eigenvalues of Σ. Hence we obtain the diagonal root
Λ = O

√
D of Σ. Here

√
D is a diagonal matrix containing the square roots of the main

diagonal entries of D. DeÞne Y :=
√
DRU (d) such that X =d µ + OY . We can interpret

the components of Y = (Y1, . . . , Yd) as uncorrelated �risk factors� of X. We will come back
to this idea in Section 7.2. The variance of each factor is determined by the corresponding
eigenvalue whereas its direction is determined by the associated eigenvector. Note that if
w is an eigenvector of Σ then w can be substituted by its negative conjugate −w. Now we
deÞne both the eigenvectors v+1 , . . . , v

+
d and their negative conjugates v

−
1 , . . . , v

−
d as reference

vectors.

The next goal is to attain an adequate deÞnition of the distance between two vectors on the
unit hypersphere.

Theorem 33 Let the d-dimensional random vector U (d) be uniformly distributed on the unit
hypersphere. The c.d.f. of the angle ]

¡
U (d), v

¢
between U (d) and a given reference vector

v ∈ Sd−1 corresponds to

a 7−→ P
³
]
³
U (d), v

´
≤ a

´
=
1

2
+
1

2
· sgn

³
a− π

2

´
· FBeta

µ
cos2 (a) ;

1

2
,
d− 1
2

¶
,

where a ∈ [0, π], d > 1, and ] (·, v) := arccos (h·, vi).

Proof. Since U (d) = (U
(d)
1 , . . . , U

(d)
d ) is uniformly distributed on Sd−1 it can be assumed

w.l.o.g. that v = (−1, 0, . . . , 0). Thus ]
¡
U (d), v

¢
= arccos(


U (d), v

®
) = arccos(−U (d)1 ) =

π − arccos(U (d)1 ) and

P
³
]
³
U (d), v

´
≤ a

´
= P

³
U
(d)
1 ≤ cos (π − a)

´
= P

³
U
(d)
1 ≤ − cos (a)

´
.

The p.d.f. of U (d)1 corresponds to (Fang, Kotz, and Ng, 1990, p. 73)

u 7−→ f (u) =
Γ
¡
d
2

¢
Γ
¡
1
2

¢
Γ
¡
d−1
2

¢ · ¡1− u2¢ d−12 −1
, −1 < u < 1,

If 0 ≤ a < π/2, after substituting u by −
√
t we get

P
³
U
(d)
1 ≤ − cos (a)

´
=

− cos(a)Z
−1

f (u) du =

cos2(a)Z
1

f
³
−
√
t
´
·
µ
−1
2

¶
· t 12−1 dt

=
1

2
·

1Z
cos2(a)

f
³
−
√
t
´
· t 12−1 dt

=
1

2
·
µ
1− FBeta

µ
cos2 (a) ;

1

2
,
d− 1
2

¶¶
.
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Similarly, if π/2 ≤ a ≤ π we set u =
√
t so that

P
³
U
(d)
1 ≤ − cos (a)

´
=

1

2
+

− cos(a)Z
0

f (u) du =
1

2
+

cos2(a)Z
0

f
³√
t
´
· 1
2
· t 12−1 dt

=
1

2
+
1

2
· FBeta

µ
cos2 (a) ;

1

2
,
d− 1
2

¶
.

Now we deÞne

δ (u, v) := P
³
]
³
U (d), v

´
≤ ] (u, v)

´
=

1

2
− 1
2
· sgn (hu, vi) · FBeta

µ
hu, vi2 ; 1

2
,
d− 1
2

¶
, u, v ∈ Sd−1,

and propose it as a distance measure taking the number of dimensions adequately into
consideration. Note that δ (u, v) is the area of the spherical cap on Sd−1 spanned by u
and v divided by the surface area of Sd−1. For d = 2 the distance δ (u, v) becomes simply
arccos hu, vi /π. So one can interpret δ as a probabilistic generalization of the radian measure
for d dimensions. But consider that if d > 2, δ is not a metric since there always exist some
u, v, w ∈ Sd−1 such that δ (u, v) + δ (v, w) ¤ δ (u,w). This is because δ is a convex function
of the angle between u and v provided ] (u, v) < π/2.
A surprising relationship between the tail dependence coefficient λ of regularly varying
elliptical random pairs and their tail index α is stated as follows.

Corollary 34 Let X ∼ Ed (µ,Σ, φ) be regularly varying with tail index α ∈ IN and Σ = σ
√
ρ

be a positive deÞnite dispersion matrix where σ and ρ are deÞned as described in Section
2.3.1. Then the tail dependence coefficient of two arbitrary components of X corresponds to

λij = 2 · P
Ã
]
³
U (α+2), v

´
≤ arccos

Ãr
1− ρij
2

!!
, ρij ∈ [−1, 1] ,

where U (α+2) is uniformly distributed on the unit hypersphere Sα+1.

Proof. Consider Student�s univariate t-distribution with ν degrees of freedom, i.e.

x 7−→ tν (x) =

xZ
−∞

Γ
¡
ν+1
2

¢
Γ
¡
1
2

¢
Γ
¡
ν
2

¢ · 1√
ν
·
µ
1 +

t2

ν

¶− ν+1
2

dt, ν ∈ IN.

Substituting t by −
r
ν
³
(1− s)−1 − 1

´
(0 ≤ s < 1) leads to

tν (x) =

lν(x)Z
1

Γ
¡
ν+1
2

¢
Γ
¡
1
2

¢
Γ
¡
ν
2

¢ · 1√
ν
· (1− s)

ν+1
2 ·

µ
−1
2

¶
·
r

ν

(1− s)−1 − 1
· (1− s)−2 ds

=
1

2
·

1Z
lν(x)

Γ
¡
ν+1
2

¢
Γ
¡
1
2

¢
Γ
¡
ν
2

¢ · s 12−1 · (1− s) ν2−1 ds
=

1

2
· FBeta

µ
lν (x) ;

1

2
,
ν

2

¶
= P

³
]
³
U (ν+1), v

´
≤ arccos

³p
lν (x)

´´
,



CHAPTER 3. GENERALIZED ELLIPTICAL DISTRIBUTIONS 53

where

lν (x) := 1−
1

1 + x2

ν

=
x2

x2 + ν
, x ≤ 0.

Further, the tail dependence coefficient (cf. Eq. 2.11) corresponds to

λij = 2 · t̄α+1 (z) = 2 · tα+1 (−z) = 2 · P
³
]
³
U (α+2), v

´
≤ arccos

³p
lα+1 (−z)

´´
,

where

z :=
√
α+ 1 ·

s
1− ρij
1 + ρij

, ρij ∈ ]−1, 1] ,

such that

lα+1 (−z) =
(α+ 1) · 1−ρij1+ρij

(α+ 1) · 1−ρij1+ρij
+ α+ 1

=
1− ρij
2

.

Note that in the limiting case ρij = −1 the tail dependence coefficient always corresponds
to 0 due to the countermonotonicity of Xi and Xj .

A nice geometrical interpretation of the previous corollary is as follows. Consider the limiting
case α = 0 so that U (α+2) is distributed on the unit circle S. Then the tail dependence
coefficient corresponds to the probability that the angle between U (2) and an arbitrary point
v ∈ S lies either within the cap

Cρ (v) :=

(
u ∈ S : ] (u, v) ≤ arccos

Ãr
1− ρ
2

!)

or within the �opposite cap� Cρ (−v). Note that for all α ∈ IN ∪ {0} this is given with
probability 1 if ρ = 1 (i.e. the two caps merges to the unit sphere and λ = 1) whereas
with probability 0 if ρ = −1 (i.e. the two caps degenerate to poles and λ = 0). But for all
ρ ∈ ]−1, 1[ the tail dependence coefficient depends essentially on the number of topological
dimensions α+ 1 (cf. Figure 2.1).

Now, with the deÞnitions above we can give some examples of generalized elliptical distri-
butions.

Example 13 (Conditional scale distribution) Let Σ = ΛΛ0 be positive deÞnite and the
conditional c.d.f. of R be r 7→ P

¡
R ≤ r |U (d) = u

¢
= P (γ (u) · R∗ ≤ r), where the scale

function γ is given by

u 7−→ γ (u) = γ0 +
dX
i=1

αi

µ
δ

µ
Λu

||Λu||2
, v+i

¶¶ϑi
+

dX
i=1

βi

µ
δ

µ
Λu

||Λu||2
, v−i

¶¶θi
,

with γ0 > 0, α1, . . . , αd, β1, . . . , βd ≥ 0, ϑ1, . . . , ϑd, θ1, . . . , θd > 0. Further, R∗ is a positive
random variable possessing a p.d.f. and being stochastically independent of U (d). Hence
r 7→ fR|U(d)=u (r) = fR∗ (r/γ (u)) /γ (u) and due to Corollary 30 the multivariate p.d.f. of
the random vector X is given by

x 7−→ fX (x) =
p
det(Σ−1) · σ−d (x) · gR∗

µ
(x− µ)0Σ−1 (x− µ)

σ2 (x)

¶
, x 6= µ,

where gR∗ is the density generator corresponding to R∗, and σ (x) is the conditional scaling
factor, i.e.

σ (x) := γ
¡
Λ−1 (x− µ)

¢
.

Note that for the degenerate case α1, . . . , αd, β1, . . . , βd = 0 the resulting distribution becomes
elliptical.
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Example 14 (Generalized t-distribution) Consider Example 6 and let the conditional
c.d.f. of R be r 7→ P (R ≤ r | U (d) = u

¢
= P

¡
R2/d ≤ r2/d |U (d) = u

¢
= Fd,γ(u)

¡
r2/d

¢
,

where γ is the scaling function deÞned in Example 13. Similarly to the p.d.f. of the multi-
variate t-distribution the p.d.f. of X is given by

x 7−→ fX (x) =
Γ
³
d+ν(x)

2

´
Γ
³
ν(x)
2

´ ·
s
det(Σ−1)

(ν (x) · π)d
·
µ
1 +

(x− µ)0Σ−1 (x− µ)
ν (x)

¶− d+ν(x)
2

,

where x 6= µ and ν (x) ≡ σ (x). For the degenerate case α1, . . . , αd, β1, . . . , βd = 0 we obtain
the d-variate t-distribution with location µ, dispersion matrix Σ and γ0 degrees of freedom.
Moreover, for γ0 →∞ the d-variate normal distribution Nd (µ,Σ) appears.

In Figure 3.2 we see some density contour lines of Example 13 (left hand) and of Example
14 (right hand) where d = 2, µ = 0 , Σ11 = Σ22 = 1, and Σ12 = Σ21 = 0.5. The density
generator of Example 13 corresponds to the density generator of the bivariate t-distribution
with 100 degrees of freedom. For each example there is only one reference vector, more
precisely v+1 = (cos (π/4) , sin (π/4)) for Example 13 and v−1 = (− cos (π/4) ,− sin (π/4))
for Example 14. The parameters are γ0 = 1, α1 = 0.25, and ϑ1 = 1, as well as γ0 = 2,
β1 = 98, and θ1 = 2, respectively. The residual parameters are set to zero, i.e. β1 = 0 in
Example 13 and α1 = 0 in Example 14, and especially α2 = β2 = 0 in both examples. The
dashed contour lines symbolize the density of the bivariate t-distribution with 100 degress of
freedom with the location and dispersion given above. This corresponds to the degenerate
cases α1 = 0 (Example 13) and φ0 = 100, β1 = 0 (Example 14).
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Figure 3.2 Density contours of Example 13 (left hand) and of Example 14 (right hand).
The degenerate cases are represented by the dashed contour lines.

The next Þgure shows once again the joint distribution of the random noise of the NASDAQ
and S&P 500 log-returns from 1993-01-01 to 2000-06-30 (see the right hand of Figure 3.1).
On the right hand of Figure 3.3 we see a simulated distribution of GARCH(1, 1)-residuals on
the basis of the generalized elliptical distribution function deÞned in Example 14 where the
pseudo-correlation coefficient corresponds to 0.78 and the location vector equals to 0. The
reference vector is v−1 = (− cos (π/4) ,− sin (π/4)) and the parameters are given by γ0 = 4,
β1 = 1000, and θ1 = 3. Further, the residual parameters are set to zero.
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Figure 3.3 Joint distribution of NASDAQ and S&P 500 GARCH(1, 1)-residuals (left hand)
and simulated generalized t-distributed data (right hand). The density contours of the
corresponding generalized t-distribution are marked green.

Obviously, both asymmetry and heavy tails of Þnancial data can be reproduced satisfactorily
by an appropriate generalized elliptical distribution function.





Chapter 4

Robust Estimation

Now we come to the estimation procedures for generalized elliptically distributed random
vectors motivated in Section 3.1. A robust estimator for the dispersion matrix Σ is derived
presuming that the latter is positive deÞnite. If the location vector µ is known the dispersion
matrix can be estimated only provided P (R = 0) = 0. If µ is unknown it is shown that the
parameters µ and Σ may be estimated properly provided the data is angularly symmetric.

4.1 Basics of M-estimation

Let the random vector X d
= µ+RΛU (d) be elliptically symmetric distributed with positive

deÞnite dispersion matrix Σ and absolutely continuous generating variate R. Then the
density function of X (cf. Corollary 4) corresponds to

x 7−→ fX (x) =
p
det (Σ−1) · gR

¡
(x− µ)0Σ−1 (x− µ)

¢
, x 6= µ,

=
p
det (Σ−1) · gR (z) , z > 0,

where z := (x− µ)0Σ−1 (x− µ). Now, let z 7→ hR (z) := − log (gR (z)), z > 0. Then the
log-density function of X corresponds to

x 7−→ log (fX (x)) =
1

2
· log det

¡
Σ−1

¢
− hR (z) , z > 0.

By applying matrix derivatives we obtain

∂ log (fX (x))

∂Σ−1
=
1

2
· (2Σ− diag (Σ))− dhR (z)

dz
· (2z0 − diag (z0)) , (4.1)

where
z0 := (x− µ) (x− µ)0 ,

and
∂ log (fX (x))

∂µ
= 2 · dhR (z)

dz
· Σ−1 (x− µ) ,

respectively. Note that not only Σ but Σ−1 is symmetric, too. This is the reason for the
diag�s within Eq. 4.1.

The ML-estimator for Σ is given by the root of

nX
j=1

∂ log (fX (x·j))
∂Σ−1

= 0,

57
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i.e. by the Þxed-point equation

bΣ = 1

n
·
nX
j=1

2h0R (zj) · z0j =
1

n
·
nX
j=1

2h0R
³
(x·j − �µ)0 bΣ−1 (x·j − �µ)´ · (x·j − �µ) (x·j − �µ)0 ,

where gR is supposed to be differentiable and h0R (zj) := dhR (zj) /dzj , j = 1, . . . , n. Further,
the ML-estimator for µ is given by the root of

nX
j=1

∂ log (fX (x·j))
∂µ

= 0,

i.e. by

�µ =

Pn
j=1 2h

0
R (zj) · x·jPn

j=1 2h
0
R (zj)

=

Pn
j=1 2h

0
R
³
(x·j − �µ)0 bΣ−1 (x·j − �µ)´ · x·jPn

j=1 2h
0
R
³
(x·j − �µ)0 bΣ−1 (x·j − �µ)´ .

Example 15 (ML-estimators if X ∼ Nd (µ,Σ)) Suppose that X ∼ Nd (µ,Σ). Since the
density generator of the class of normal distributions is given by z 7→ (2π)

−d/2 · exp (−z/2)
we obtain z 7→ hR (z) ∝ z/2 and thus z 7→ h0R (z) = 1/2 for every z > 0. Hence the
ML-estimator for Σ simply corresponds to the sample covariance matrix

bΣ = 1

n
·
nX
j=1

(x·j − �µ) (x·j − �µ)0 ,

whereas the ML-estimator for µ is given by the sample mean vector �µ = 1
n ·
Pn

j=1 x·j .

Let u·j :=
p
�Σ
−1
(x·j − �µ) /

√
zj , j = 1, . . . , n. Now, the ML-estimation approach described

above can be represented compactly by

nX
j=1

2
√
zj h

0
R (zj) · u·j = 0,

1

n
·
nX
j=1

2zjh
0
R (zj) · u·ju0·j = Id.

Here, the terms 2
√
zj h

0
R (zj) and 2zjh

0
R (zj) can be interpreted as some weights applying

to the squared Mahalanobis distances zj . By taking other suitable weight functions (cf.
Maronna, 1976 and Huber, 1981), say w1 for estimating the location vector and w2 for
estimating the dispersion matrix, and solving the system of equations

nX
j=1

w1 (zj) · u·j = 0,
1

n
·
nX
j=1

w2 (zj) · u·ju0·j = Id,

one leaves the framework of maximum-likelihood estimation and gets to the domain of
�maximum-likelihood-type� (M-)estimation (Oja, 2003).

4.2 Dispersion Matrix Estimation

4.2.1 Spectral Density Approach

DeÞnition 18 (Unit random vector) Let Λ ∈ IRd×k with det(ΛΛ0 ) 6= 0 and U (k) be
uniformly distributed on the unit hypersphere Sk−1. The random vector

S :=
ΛU (k)

||ΛU (k)||2
(4.2)

is called the �unit random vector generated by Λ�.
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Let X be a d-dimensional generalized elliptically distributed random vector where the loca-
tion vector µ is assumed to be known. Further, let the transformation matrix Λ be deÞned
as in DeÞnition 18 and suppose that the generating variate R is positive (a.s.). In Section
3.3 it was already mentioned that

X − µ
||X − µ||2

d
=

RΛU (k)
||RΛU (k)||2

a.s.
=

ΛU (k)

||ΛU (k)||2
= S, (4.3)

neither depends on the particular c.d.f. of R nor on the dependence structure of R and
U (k). Thus S is invariant under the choice of R.

Theorem 35 The spectral density function of the unit random vector generated by Λ ∈
IRd×k corresponds to

s 7−→ ψ (s) =
Γ
¡
d
2

¢
2πd/2

·
p
det(Σ−1) ·

√
s0Σ−1s

−d
, ∀ s ∈ Sd−1, (4.4)

where Σ := ΛΛ0.

Proof. Due to the invariance property described above it can be assumed w.l.o.g. that

X
d
=
q
χ2k ΛU

(k) ∼ Nd (0,Σ)

(cf. Example 3). The p.d.f. of X under the condition kXk2 = r > 0 is

x 7−→ fr (x) := c
−1
r · fX (x) , x ∈ Sd−1r ,

where fX is the Gaussian p.d.f. of X and cr :=
R
Sd−1r

fX (x) dx. To obtain the spectral
density of

S
d
=

X

||X||2
, X ∼ Nk (0,Σ) ,

we deÞne the transformation h : IRd\ {0} → Sd−1, x 7→ x/ kxk2 =: s. Further, let ψr be
deÞned as the p.d.f. of the random vector h (X) = X/ kXk2 under the condition kXk2 =
r > 0, i.e.

s 7−→ ψr (s) = fr
¡
h−1 (s)

¢
· |Jh−1 | = c−1r · fX (rs) · |Jh−1 | , s ∈ Sd−1.

Here Jh−1 is the Jacobian determinant of ∂h−1/∂s0 for a given radius r, i.e.

|Jh−1 | =
¯̄̄̄
det

µ
∂ rs

∂s0

¶¯̄̄̄
.

Since the tangent plane on the hypersphere Sd−1r has only d − 1 dimensions (cf. the Proof
of Theorem 3) we obtain

|Jh−1 | = det (rId−1) = rd−1.
Now the p.d.f. of S is given by

s 7−→ ψ (s) =

∞Z
0

ψr (s) · cr dr =
∞Z
0

fX (rs) · rd−1 dr

=

∞Z
0

s
det(Σ−1)

(2π)d
· exp

µ
−1
2
· (rs)0Σ−1 (rs)

¶
· rd−1 dr.
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Substituting r by
p
2t/s0Σ−1s leads to

s 7−→ ψ (s) =

∞Z
0

s
det(Σ−1)

(2π)d
· exp (−t)

√
2t
d−2√

s0Σ−1s
−d
dt

=

p
det(Σ−1)
√
2
d√
π
d
·
√
2
d−2 ·

√
s0Σ−1s

−d
·
∞Z
0

exp (−t) · t d2−1 dt

=

p
det(Σ−1)
2πd/2

·
√
s0Σ−1s

−d
· Γ
µ
d

2

¶
, s ∈ Sd−1.

Note that if Σ = Id then ψ (s) = Γ (d/2) /
¡
2πd/2

¢
for every s ∈ Sd−1. Thus the unit random

vector generated by Id is uniformly distributed on Sd−1 and 2πd/2/Γ (d/2) is the surface area
of Sd−1. Further, the spectral density function ψ is invariant under the scale transformation
Σ 7→ σΣ, σ > 0, since q

det((σΣ)
−1
) = σ−

d
2

p
det(Σ−1)

and q
s0 (σΣ)−1 s

−d
= σ

d
2

√
s0Σ−1s

−d
.

The distribution represented by ψ is called �angular central Gaussian distribution� (Kent
and Tyler, 1988, Tyler 1987b). If S belongs to the unit circle the same distribution albeit
given by polar coordinates arises as a special case of the so called �offset normal distribution�
(Mardia, 1972, Section 3.4.7).

Proposition 36 The unit random vector generated by Λ is generalized elliptically distri-
buted.

Proof. By deÞning µ := 0 and R := ||ΛU (k)||−12 the unit random vector can be represented
by S =d µ+RΛU (k).

Note that even though the distribution of S does not depend on the particular matrix
decomposition Σ = ΛΛ0 this is not satisÞed for generalized elliptical distributions (cf. Section
3.2), generally.

The spectral density of the projection of a multivariate normally distributed random vector
can be derived even if µ 6= 0 (cf. Section 3.1). But we need the following lemma before.

Lemma 37 Let a ∈ IR, b > 0, and x > 0. Then
∞Z
0

exp
¡
−
¡
at+ bt2

¢¢
tx−1 dt =

b−
x
2

2
· Γ
³x
2

´
· 1F1

µ
a2

4b
;
x

2
,
1

2

¶

−ab
−x+1

2

2
· Γ
µ
x+ 1

2

¶
· 1F1

µ
a2

4b
;
x+ 1

2
,
3

2

¶
,

where z 7→ 1F1 (z ;α, β) is the conßuent hypergeometric function (Hassani, 1999, p. 420)

z 7−→ 1F1 (z ;α, β) :=
Γ (β)

Γ (α)
·
∞X
k=0

Γ (α+ k)

Γ (β + k) · Γ (k + 1) · z
k.
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Proof. Let

J (a, b) :=

∞Z
0

exp
¡
−
¡
at+ bt2

¢¢
tx−1 dt, a ∈ IR, b > 0.

After substituting t by s/
√
b we obtain J (a, b) = b−x/2 · J

³
a/
√
b, 1
´
. Hence it suffices to

consider the integral

J (c, 1) =

∞Z
0

exp
¡
−ct− t2

¢
tx−1 dt, c ∈ IR,

where c = a/
√
b. Note that by Taylor expansion e−ct =

P∞
k=0 (−ct)

k
/k! and, after substi-

tuting t =
√
s,

∞Z
0

e−t
2

ty dt =
1

2
·
∞Z
0

e−ss
y+1
2 −1 ds =

Γ
¡
y+1
2

¢
2

.

Thus

J (c, 1) =

∞Z
0

e−cte−t
2

tx−1 dt =

∞Z
0

∞X
k=0

(−ct)k

k!
· e−t2tx−1 dt.

Using Lebesgue�s Dominated Convergence Theorem we get

J (c, 1) =
∞X
k=0

(−c)k

k!

∞Z
0

e−t
2

tx+k−1 dt =
∞X
k=0

(−c)k

k!

Γ
¡
x+k
2

¢
2

=
1

2
·

 ∞X
k=0,2,...

ck

k!
· Γ
µ
x+ k

2

¶
−

∞X
k=1,3,...

ck

k!
· Γ
µ
x+ k

2

¶ .
Note that

∞X
k=0,2,...

ck

k!
· Γ
µ
x+ k

2

¶
= Γ

³x
2

´
+
c2

2!
· Γ
³x
2

´
· x
2
+
c4

4!
· Γ
³x
2

´
· x
2
·
³x
2
+ 1
´
+ . . .

= Γ
³x
2

´Ã
1 +

x
2
2!
4

· c
2

4
+

x
2 ·
¡
x
2 + 1

¢
4!
42

·
µ
c2

4

¶2
+ . . .

!

= Γ
³x
2

´Ã
1 +

x
2

1
2 · 1!

· c
2

4
+

x
2 ·
¡
x
2 + 1

¢
1
2 ·

3
2 · 2!

·
µ
c2

4

¶2
+ . . .

!

= Γ
³x
2

´
·
∞X
k=0

¡
x
2

¢(k)¡
1
2

¢(k)
k!
·
µ
c2

4

¶k
= Γ

³x
2

´
· 1F1

µ
c2

4
;
x

2
,
1

2

¶
.

A similar argument holds for the odd part of J (c, 1). Hence we obtain

J (c, 1) =
1

2
·
µ
Γ
³x
2

´
· 1F1

µ
c2

4
;
x

2
,
1

2

¶
− c

2
· Γ
µ
x+ 1

2

¶
· 1F1

µ
c2

4
;
x+ 1

2
,
3

2

¶¶
,

and after inserting c = a/
√
b and multiplying by b−x/2 the formula given in the Lemma.

Theorem 38 Consider the random vector X ∼ Nd (µ,Σ) where µ ∈ IRd and Σ = ΛΛ0 is
positive deÞnite. The spectral density function of

S =
X

kXk2
,
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corresponds to

s 7−→ �ψ (s) = exp

µ
−1
2
· µ0Σ−1µ

¶
· ω (s) · ψ (s) , s ∈ Sd−1,

where ψ is the spectral density function of the unit random vector generated by Λ (cf. The-
orem 35) and

ω (s) := ω1 (s) + 2 ·
Γ
¡
d+1
2

¢
Γ
¡
d
2

¢ · ω2 (s) ,

with

ω1 (s) := 1F1

µ
z ;
d

2
,
1

2

¶
,

ω2 (s) :=
√
z · 1F1

µ
z ;
d+ 1

2
,
3

2

¶
,

and

z :=
1

2
·
¡
s0Σ−1µ

¢2
s0Σ−1s

.

Proof. Consider the proof of Theorem 35. By applying the change of variable formula once
again we obtain

s 7−→ �ψ (s) =

∞Z
0

ψr (s) · cr dr =
∞Z
0

fX (rs) · rd−1 dr

=

∞Z
0

s
det(Σ−1)

(2π)d
· exp

µ
−1
2
· (rs− µ)0Σ−1 (rs− µ)

¶
· rd−1 dr.

=

s
det(Σ−1)

(2π)d
· exp

µ
−1
2
· µ0Σ−1µ

¶

·
∞Z
0

exp

µ
s0Σ−1µ · r − s

0Σ−1s
2

· r2
¶
· rd−1 dr.

Setting a = −s0Σ−1µ, b = s0Σ−1s/2, x = d, and applying Lemma 37 for the integral leads
to the formula given in Theorem 38.

The function ω in Theorem 38 determines the skewness of �ψ. Of course, if µ = 0 then
ω (s) = 1 and �ψ (s) = ψ (s), ∀ s ∈ Sd−1, i.e. we obtain the radially symmetric density
function from Theorem 35. Even though ω looks a little obscure it can be shown that both
functions z 7→ ω1 (z) and z 7→ ω2 (z) solve the so called �conßuent hypergeometric differential
equation� (Hassani, 1999, p. 420)

z · ∂
2ωi
∂z2

+

µ
1

2
− z
¶
· ∂ωi
∂z

− d
2
· ωi = 0, i = 1, 2,

and thus also the linear combination z 7→ ω (z) is a solution of this differential equation.
Indeed, �ψ may be interesting for some theoretical reasons but for the subsequent derivation
of a robust covariance matrix estimator in the context of generalized elliptical distributions
only ψ will be used.
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At Þrst, it is assumed that the location vector µ is known. Motivated by the discussion in
Section 3.1 and by Theorem 35 we may estimate the dispersion matrix Σ ∈ IRd×d of X up
to a scaling constant by maximizing the log-likelihood function

Pn
j=1 logψ (s·j), i.e.

bΣ := arg max
�Σ∈M

n · log det(�Σ−1)− d ·
nX
j=1

log
³
s0·j �Σ

−1s·j
´
, (4.5)

where
s·j :=

x·j − µ
||x·j − µ||2

, j = 1, ..., n, (4.6)

and M represents the set of all positive deÞnite matrices with dimension d. Since the log-
likelihood function given by (4.5) is invariant under scale transformations of �Σ an additional
constraint must be embedded to get an unique solution of the maximum-likelihood problem.
A simple running constraint is given by �Σ11 = 1. Alternative constraints are given by Þxing
the trace or the determinant of �Σ (cf. Section 2.4).

Note that if R is not restricted to be positive but only R 6=a.s. 0, then

X − µ
||X − µ||2

d
=

RΛU (k)
||RΛU (k)||2

a.s.
= ± ΛU (k)

||ΛU (k)||2
= ±S, (4.7)

where ± := sgn (R). The random vector ±S does not depend on the absolute value of
R. But the sign of R still remains and this may depend on U (k), anymore. So R cannot
be cancelled down �without a trace� and thus ±S is not angularly symmetric, generally.
Particularly, the density function of ±S usually does not correspond to ψ. Nevertheless,
since ψ is a symmetric density function the sign of ±S does not matter at all, i.e. the ML-
estimation approach considered above works even if the data is not angularly symmetric.
This is given by skew-elliptically distributed data, for instance.

Even though this is a true ML-procedure there is no need for information about the gene-
rating distribution function. In particular, the estimator does not depend on the Þniteness
and even not on the existence of the moments of X. This is due to the separation of the
radial and the angular part of X caused by relation (4.7). Note that the dispersion matrix Σ
is estimated only up to an unknown scaling constant. Nevertheless, the pseudo-correlation
matrix can be estimated robustly by

�ρ :=

·
�σij
�σi�σj

¸
, (4.8)

where �σi :=
√
�σii (i = 1, . . . , d). We call both bΣ and bρ �spectral estimators�, respectively.

4.2.2 Fixed-point Representation

Even though a unit random vector generated by Λ is not elliptical its spectral density
function ψ can be represented by

s 7−→ ψ (s) =
p
det(Σ−1) · g

¡
s0Σ−1s

¢
, ∀ s ∈ Sd−1,

where

z 7−→ g (z) :=
Γ
¡
d
2

¢
2πd/2

·
√
z
−d
.

The same argument as described above leads further to

z 7−→ h (z) := − log (g (z)) ∝ d

2
· log (z) , z > 0,
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and h0 (z) = d/2 · z−1. Hence the weight function for estimating the dispersion matrix
becomes z 7→ w2 (z) = 2zh

0 (z) = d. Now, the spectral estimator corresponds to the root of

bΣ = d

n
·
nX
j=1

s·js0·j
s0·jbΣ−1s·j . (4.9)

Note that due to (4.6) we simply obtain

bΣ = d

n
·
nX
j=1

(x·j − µ) (x·j − µ)0

(x·j − µ)0 bΣ−1 (x·j − µ) (4.10)

for the spectral estimator. This is a Þxed-point solution of the maximum-likelihood problem
given by (4.5). Note that we Þx bΣ by the additional constraint bΣ11 = 1 for the purpose of
uniqueness.

It is somewhat surprising that even though the spectral estimator can be represented by
means of the original data x·1, . . . , x·n instead of the projected data s·1, . . . , s·n it is com-
pletely independent of the generating distribution function. The �trick� is to Þnd a proper
weight function (see Section 4.1) such that the information about the generating variate is
completely eliminated. This is exactly given by the weight function zj 7→ w2 (zj) = d.

The estimator given by Eq. 4.10 was already proposed by Tyler (1983, 1987a). Tyler (1987a)
derives the corresponding estimator as an M-estimator. More precisely, he considers the so
called �Huber-type� weight function

z 7−→ wHuber (z) :=

(
az, z ≤ r2,
ar2, z > r2,

for a Þxed number r > 0. The number a is determined such that (cf. Tyler, 1987a)

E
¡
wHuber

¡
χ2d
¢¢
= d.

Tyler (1987a) notes that
wHuber (z) −→ d, r& 0.

for every z > 0. Hence the weight function of the spectral estimator is a limiting form of
the Huber-type weight function. Actually, Tyler�s estimator is not only an M-estimator on
the original sample but even more an ML-estimator on the sample of elliptically distributed
data which are projected to the unit hypersphere. This is also observed by Tyler (1987b).
But it must be pointed out that the statement holds not only for the traditional class
of elliptically symmetric distributions but even more for the extended class of generalized
elliptical distributions.

4.2.3 Existence and Uniqueness

Regarding Eq. 4.10 we see that the spectral estimator bΣ is a Þxed point or, provided bΣ
is not Þxed (for instance by bΣ11 = 1), rather a �Þxed line�. Therefore, a very simple and
effective iterative algorithm for Þnding bΣ is given by �Σ(i+1) = f(�Σ(i)), i = 0, 1, 2, . . . , N ,
where

f
³
�Σ(i)

´
:=
d

n
·
nX
j=1

(x·j − µ) (x·j − µ)0

(x·j − µ)0 �Σ(i)−1 (x·j − µ)
,

and N is a large number. For the initial estimate one may choose �Σ(0) = Id.

During the iteration any additional requirement such as �Σ(i)11 = 1 has not to be considered.
For applying the results of maximum-likelihood theory it is sufficient to do the normalizationbΣ = �Σ/�Σ11 merely at the end of N iterations.
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Proposition 39 Let the d-dimensional random vector X d
= µ + RΛU (d) be generalized

elliptically distributed with P (R = 0) = 0 and positive deÞnite dispersion matrix Σ = ΛΛ0.
Further, suppose that the location vector µ is known. If n > d the spectral estimator which
is obtained numerically after a Þnite number of iterations is positive deÞnite (a.s.) provided
its initial estimate is positive deÞnite, too.

Proof. Let X1, . . . ,Xn be n independent copies of X where n > d. Then

nX
j=1

(Xj − µ) (Xj − µ)0

is positive deÞnite (a.s.). Thus
Pn
j=1 (x·j − µ) (x·j − µ)

0 is positive deÞnite, too. Further,
the quantity wj := d/ (x·j − µ)0 �Σ−1 (x·j − µ) must be positive if �Σ is positive deÞnite. Thus

f
³
�Σ
´
=
1

n
·
nX
j=1

¡√
wj (x·j − µ)

¢ ¡√
wj (x·j − µ)

¢0
is positive deÞnite, too. By complete induction we conclude that the spectral estimator
obtained numerically after a Þnite number of iterations is always positive deÞnite provided
the initial estimate is positive deÞnite, too.

The positive deÞniteness of the initial estimate can be ensured simply by �Σ(0) = Id or by
taking the sample covariance matrix as an initial estimate. Of course, the fact that the
spectral estimator obtained after a Þnite number of numerical iterations is always positive
deÞnite does not guarantee that the theoretical solution to the Þxed-point equation is positive
deÞnite, too. But Tyler (1987a) states that a positive deÞnite Þxed point almost surely exists
and is unique (up to a scaling constant) if n > d (d− 1) and, additionally, the sample is drawn
from a continuous distribution which is not necessarily generalized elliptical. Clearly the
continuity condition is superßuous if one presumes that the data is generalized elliptically
distributed with positive deÞnite dispersion matrix and without an atom at µ. This is
because the spectral estimator can be written in terms of the data projected to the unit
hypersphere (cf. Eq. 4.9) and this is always continuously distributed if the dispersion matrix
is positive deÞnite. It should be pointed out that n > d (d− 1) is a sufficient condition for
the existency of the spectral estimator. Fortunately, in practice the spectral estimator exists
in most cases when n is already slightly larger than d.

Since the standard conditions for the existence of M-estimators (Maronna, 1976 and Huber,
1981, Chapter 8) do not apply on Tyler�s estimator he rather gives a constructive proof. That
is to say both existency and uniqueness are established via an iterative algorithm similar to
the method discussed above. Nevertheless, if one needs the existence and uniqueness of the
spectral estimator only for proving its asymptotic properties (given a constant number of
dimensions) like, e.g., consistency then obviously the critical sample size does not matter.

Tyler (1987a) also derives several properties of the spectral estimator like, e.g., the asymp-
totic normality and strong consistency. But this is not straightforward since due to the
limiting behavior of Huber�s weight function some standard results of M-estimation the-
ory (Huber, 1981) cannot be applied. In Chapter 5 it is shown that the desired statistical
properties, i.e. consistency, asymptotic efficiency and normality can be derived on the basis
of standard maximum-likelihood theory, instead.

Now we may compare the spectral estimators on the simulated data described in Section
2.4 with the sample covariance matrix (cf. Figure 2.4) and the sample correlation matrix
(cf. Figure 2.5).
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Figure 4.1 True dispersion matrix (upper left) and spectral estimator of samples drawn
from a multivariate t-distribution with ν = ∞ (i.e. the normal distribution, upper right),
ν = 5 (lower left), and ν = 2 (lower right) degrees of freedom.

Figure 4.2 True pseudo-correlation matrix (upper left) and spectral estimator of samples
drawn from a multivariate t-distribution with ν = ∞ (i.e. the normal distribution, upper
right), ν = 5 (lower left), and ν = 2 (lower right) degrees of freedom.

4.3 Location Vector Estimation

Now, let the location vector µ be unknown. Hence, it must be substituted in Eq. 4.10 by
an adequate estimate bµ, i.e.

bΣ = d

n
·
nX
j=1

(x·j − �µ) (x·j − �µ)0

(x·j − �µ)0 bΣ−1 (x·j − �µ) . (4.11)

Unfortunately, the location vector µ cannot be estimated robustly by the spectral density
approach presented in Section 4.2.1. This is because ifX is generalized elliptically distributed
then the distribution of the random vector

X − θ
||X − θ||2

d
=

(µ− θ) +RΛU (k)
|| (µ− θ) +RΛU (k)||2
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is no longer unaffected by R. Even if R is independent of U (k) one has to specify the
distribution of R for calculating the p.d.f. of (X − θ) / kX − θk2 (see Eq. 3.2 and Theorem
38).

Let x∗i1, . . . , x
∗
in be a permutation of the observations xi1, . . . , xin such that x

∗
i1 ≤ . . . ≤ x∗in,

i = 1, . . . , d. Further, let x∗·j be the j-th column vector of the matrix S
∗
n :=

£
x∗ij
¤
. The

componentwise sample median is deÞned as

bx0.5,n := ( 1
2 ·
¡
x∗·,0.5·n + x∗·,0.5·n+1

¢
, n even,

x∗·,0.5·(n+1), n odd.

In the following the affix �componentwise� will be dropped for the sake of simplicity.

Let �µ be an arbitrary estimator for µ like, e.g., the sample mean or the sample median.
Then �µ may be adopted in order to estimate �Σ by using Eq. 4.11. If n > d (2d− 1) then
the spectral estimate �Σ both exists and is unique provided those observations where x·j = �µ
are skipped in Eq. 4.11 (Tyler, 1987a). If �µ→a.s. µ (n→∞) then �Σ→p Σ as n→∞. But
note that the sample mean is not consistent since E (X) 6= µ, generally (see Section 3.2). In
the following it is shown that the sample median is an appropriate robust alternative to the
sample mean provided the data is angularly symmetric.

DeÞnition 19 (Strict median) Let F←i be the i-th marginal quantile function (cf. DeÞ-
nition 7) of an arbitrary d-dimensional random vector X (i = 1, . . . , d). The median of X
is deÞned as the vector

x0.5 :=

·
1

2
·
¡
F←i

¡
0.5−

¢
+ F←i

¡
0.5+

¢¢¸
.

If F←i (0.5−) = F←i (0.5+) for all i = 1, . . . , d, then we say that X has a �strict median�.

Proposition 40 Let the d-dimensional random vector X be generalized elliptically distri-
buted with location vector µ. If X is angularly symmetric possessing a strict median then
x0.5 = µ.

Proof. Since the median of X is supposed to be strict it is sufficient to show that

P (Xi − µi ≤ 0) ≥ 0.5 ≥ P (Xi − µi < 0) , i = 1, . . . , d.

Due to the angular symmetry of X,

P (Xi − µi ≤ 0) = P

µ
Xi − µi
||X − µ||2

≤ 0
¶
= P

µ
− Xi − µi
||X − µ||2

≤ 0
¶

= 1− P
µ
Xi − µi
||X − µ||2

< 0

¶
= 1− P (Xi − µi < 0) , i = 1, . . . , d,

i.e. the assertion holds.

Proposition 40 implies that if X is angularly symmetric then its location vector may be
properly estimated by the sample median. Since the median of X is supposed to be strict
the sample median converges strongly to the theoretical one (Pestman, 1998, p. 320), i.e.bx0.5,n →a.s. x0.5 = µ (n→∞).
Alternatively, the location vector may be estimated robustly by

nX
j=1

x·j − �µq
(x·j − �µ)0 bΣ−1 (x·j − �µ) = 0,
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i.e. by the Þxed-point equation

�µ =

Pn
j=1 x·j/

q
(x·j − �µ)0 bΣ−1 (x·j − �µ)Pn

j=1 1/
q
(x·j − �µ)0 bΣ−1 (x·j − �µ) . (4.12)

This is suggested by Tyler (1987a) and indeed �µ corresponds to the M-estimator obtained
by taking the constant weight function already discussed in Section 4.2.2. Obviously, this
estimation procedure is reasonable if the data is angularly symmetric. If the estimates �µ and
�Σ are calculated simultaneously by the Þxed-point equations 4.11 and 4.12 their existency
is not easy to show (Tyler, 1987a). Nevertheless, the latter approach for estimating the
location vector has been found to be useful and reliable in practice.



Chapter 5

Statistical Properties of the
Spectral Estimator

In the following the statistical properties of the spectral estimator are examined by applying
classical maximum-likelihood theory. We consider a sample of i.i.d. realizations. For the
sake of simplicity it is assumed that the location vector µ is known.

5.1 Information Matrix

Note that every d-dimensional generalized elliptical random vector can be represented by

X
d
= µ+RΛU (k) = µ+ cR

µ
Λ

c

¶
U (k) = µ+ �R�ΛU (k),

where �R := cR, �Λ := Λ/c, and c := kΛ1·k2 is the Euclidean norm of the Þrst row of Λ.
Clearly, if Λ1· 6= 0 then kΛ1·k2 > 0. Hence, the normalized dispersion matrix �Σ := �Λ�Λ0 has
the property �Σ11 = 1 which is used for Þxing the spectral estimator (cf. Section 4.2). But
since the spectral estimator is invariant under scale transformations the latter property is
without restriction of any kind.

The following derivation focuses on the log-likelihood of the unit random vector S. But
actually only ±S is observable. Nevertheless, due to the radial symmetry of the spec-
tral density function ψ we may proceed on the assumption that each realization of S is
known (cf. Section 4.2.1). To obtain the Fisher information matrix we have to calculate
∂ log (ψ (S)) /∂Σ rather than ∂ log (ψ (S)) /∂Σ−1 (cf. Section 4.1). Unfortunately, notation
becomes cumbersome once matrix derivatives and especially higher moments of them (i.e.
expected tensors) are involved. For the purpose of keeping the transparency as high as
possible let

vec (bA) , A ∈ IRd×d,
be the vector of the lower triangular part of A without its upper left element, i.e.

vec (bA) :=
¡
A22, A33, . . . , Add, A21, A32, . . . , Ad,(d−1), A31, . . . , Ad1

¢
.

Proposition 41 Let the d-dimensional random vector X d
= µ + RΛU (d) be generalized

elliptically distributed with P (R = 0) = 0 and positive deÞnite dispersion matrix Σ = ΛΛ0.
Further, let

S :=
X − µ
||X − µ||2

69
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be the unit random vector generated by Λ and let

ξ := vec

µ¹
∂ logψ (S ;Σ)

∂Σ

¶
denote the score of the sample element S with respect to Σ. It has the following distribution

ξ
d
= vec

µ¹¡
d · ZZ0 −Σ−1

¢
− 1
2
· diag

¡
d · ZZ0 −Σ−1

¢¶
,

where Z := �Λ0−1U (d) with �Λ := Λ/ kΛ1·k2. Further, E (ξ) = 0 and the elementary informa-
tion matrix of the spectral estimator

J := E
¡
ξξ0
¢

is Þnite and nonsingular.

Proof. We are searching for

∂ logψ (S ;Σ)

∂Σ
=

Ã
∂ vec

¡
Σ−1

¢0
∂Σ

!Ã
Id ⊗

∂
¡
1
2 · log det

¡
Σ−1

¢
− d

2 · log
¡
S0Σ−1S

¢¢
∂ vec (Σ−1)

!
.

Since the spectral density is invariant under scale transformations of Σ = ΛΛ0 we may
assume Σ11 = 1 w.l.o.g. such that kΛ1·k2 = 1, too. Note that

∂Σ−1

∂Σ
= −

¡
Id ⊗Σ−1

¢ ∂Σ
∂Σ

¡
Id ⊗Σ−1

¢
,

which has the effect that every ∂Σ/∂Σij (i, j = 1, . . . , d) is multiplied by Σ−1 from the left
and from the right, i.e.

∂Σ−1

∂Σ
=

·
∂Σ−1

∂Σij

¸
=

·
−Σ−1 · ∂Σ

∂Σij
· Σ−1

¸
.

Let A,B and Σ be symmetric elements of IRd×d. After a little thought we obtain the relation"
vec

µ
−A · ∂Σ

∂Σij
·A
¶0#

·
µ
Id ⊗ vec

µ
1

2
·B
¶¶

= −ABA− 1
2
· diag (−ABA) .

Therefore

∂ logψ (S ;Σ)

∂Σ
= −Σ−1

µ
Σ− d · SS0

S0Σ−1S

¶
Σ−1

−1
2
· diag

µ
−Σ−1

µ
Σ− d · SS0

S0Σ−1S

¶
Σ−1

¶
=

µ
d · Σ−1 · SS0

S0Σ−1S
· Σ−1 −Σ−1

¶
−1
2
· diag

µ
d · Σ−1 · SS0

S0Σ−1S
· Σ−1 −Σ−1

¶
.

Hence

S0Σ−1S d
=

µ
ΛU (d)

||ΛU (d)||2

¶0
(Λ0)−1 Λ−1

µ
ΛU (d)

||ΛU (d)||2

¶
=

U (d)0U (d)¡
ΛU (d)

¢0 ¡
ΛU (d)

¢ = 1¡
ΛU (d)

¢0 ¡
ΛU (d)

¢ ,
and also

SS0 d=
µ
ΛU (d)

||ΛU (d)||2

¶µ
ΛU (d)

||ΛU (d)||2

¶0
=

ΛU (d)U (d)0Λ0¡
ΛU (d)

¢0 ¡
ΛU (d)

¢ ,
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such that
SS0

S0Σ−1S
d
= ΛU (d)U (d)0Λ0.

Note that due to the positive deÞniteness of Σ the quantity S0Σ−1S never becomes 0.
Furthermore,

d · Σ−1 · SS0

S0Σ−1S
· Σ−1 d

= d · Λ0−1U (d)U (d)0Λ−1 d
= d · ZZ 0,

where Z := Λ0−1U (d). Thus the score of each sample element with respect to Σ equals to¡
d · ZZ0 −Σ−1

¢
− 1
2
· diag

¡
d · ZZ 0 −Σ−1

¢
,

in distribution. Note that only the upper left element exceptionally equals to 0. This is
supressed for notional convenience. Since

E (Z) = 0,

and

V ar (Z) = E (ZZ0) = Λ0−1V ar (U)Λ−1 =
Σ−1

d
,

we conclude E (∂ logψ (S ;Σ) /∂Σ) = 0. Further, the elementary information is given by the
covariance matrix of the lower triangular elements of

d ·
µ
ZZ 0 − 1

2
· diag (ZZ0)

¶
,

but without the upper left element. Obviously, the elementary information is Þnite because
Z is bounded. Note that the number of parameters of the spectral estimator corresponds to
m :=

¡
d+1
2

¢
− 1. Because Λ is supposed to have full rank the support of the random vector

vec (bZZ 0 ) has also m dimensions and so the elementary information is nonsingular.

Lemma 42 Let the d-dimensional random vector X d
= µ+RΛU (d) be generalized elliptically

distributed with P (R = 0) = 0 and positive deÞnite dispersion matrix Σ = ΛΛ0 with Σ11 = 1
(w.l.o.g.). Further, let X1, . . . ,Xn (n = 1, 2, . . .) be sequences of independent copies of X
and let ξn be the sample score. Then

ξn/
√
n −→ Nm (0,J ) , n −→∞,

where m :=
¡
d+1
2

¢
− 1 and J is the elementary information matrix of the spectral estimator

given by Proposition 41.

Proof. Schönfeld, 1971, p. 316.

Corollary 43 Let the d-dimensional random vector X d
= µ + R (σId)U (d) be generalized

elliptically distributed with P (R = 0) = 0 and σ > 0. Then the elementary information
matrix of the spectral estimator corresponds to

J0 ≡ [J0,ij ] :=



1
2 ·

d−1
d+2 , i = j = 1, . . . , d− 1,

− 1
2 ·

1
d+2 , i, j = 1, . . . , d− 1, i 6= j,

d
d+2 , i = j = d, . . . ,

¡
d+1
2

¢
− 1,

0, else.
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Proof. We have to calculate the covariances between the elements of

vec

µ¹
d ·
µ
U (d)U (d)0 − 1

2
· diag

³
U (d)U (d)0

´¶¶
,

which can be done by using

Cov
³
U
(d)
i U

(d)
j , U

(d)
k U

(d)
l

´
= E

³
U
(d)
i U

(d)
j U

(d)
k U

(d)
l

´
−E

³
U
(d)
i U

(d)
j

´
·E
³
U
(d)
k U

(d)
l

´
,

for i, j, k, l = 1, . . . , d and applying Theorem 5, extensively.

Note that the elementary information of the spectral estimator depends essentially on the
number of dimensions. Surprisingly, the information increases with the number of dimen-
sions. This fact leads to remarkable properties of the spectral estimator in higher dimensions
which were partially investigated by Dümbgen (1998). Some new results in the context of
random matrix theory are presented in Chapter 8.

By using the same argument as in the proof of Proposition 41 we obtain the elementary
information of the sample covariance matrix if X ∼ Nd (0, Id) simply by the covariance
matrix of the elements of

∂ log f (X ;Σ)

∂Σ
d
= XX 0 − 1

2
· diag (XX 0) .

Here f denotes the Gaussian density function. The elementary information matrix is given
by

I00 ≡
£
I 00,ij

¤
:=


1
2 , i = j = 1, . . . , d,

1, i = j = d+ 1, . . . ,
¡
d+1
2

¢
,

0, else,

which can be easily veriÞed. Let I0 be the elementary information matrix of the sample
covariance matrix after deleting the Þrst column and the Þrst row of I 00 for the purpose of
comparison. Then obviously

J0 −→ I0, d −→∞.
Hence the elementary information of the spectral estimator providing only a generalized
elliptical random vector with Σ = σ2Id converges to the elementary information of the
sample covariance matrix providing X ∼ Nd (0, Id).
In the convergence above the number of dimensions and not the sample size grows to inÞnity.
But here one has to be very careful. For applying classical maximum-likelihood theory we
must at least guarantee that n/d→∞ as n→∞ and d→∞, i.e. d = o (n). The quantity
q := n/d can be interpreted as �average sample size per dimension� or as �effective sample
size�.

Dümbgen (1998) shows that under the conditions of Corollary 43 the condition number γ,
i.e. the ratio between the largest and the smallest eigenvalue of Tyler�s M-estimator (i.e.
the spectral estimator) has the property

γ = 1 +
4
√
q
+ oP

µ
1
√
q

¶
= 1 +OP

µ
1
√
q

¶
.

Note that γ is a random variable and q →∞ implies n→∞ but d = o (n). Now, the same
convergence holds also for the sample covariance matrix providing a standard normally
distributed random vector with uncorrelated (i.e. independent) components (Dümbgen,
1998). Because the results of maximum-likelihood theory are particularly based on the
central limit theorem many large sample properties of covariance matrix estimates fail if the
effective sample size q is small even if n is large. A more detailed discussion of this sort of
�high-dimensional problems� follows in Part II of this thesis.
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5.2 Consistency and Asymptotic Efficiency

The subsequent proofs rely on standard maximum-likelihood theory as given, e.g., by Schön-
feld (1971, Appendix D). For the following it is convenient to decompose the parameter �Σ
(see Eq. 4.5) by its Cholesky root, i.e. �Σ = CC 0, where C is a lower triangular matrix.
Note that �Σ is required to be positive deÞnite. Thus C is nonsingular, i.e. there are no zero
elements on the main diagonal of C. Changing the sign of an arbitrary column vector of
C does not make any difference regarding CC0 = �Σ. Thus, by convention, C is required to
have only positive elements on its main diagonal. It is well-known that any positive deÞnite
matrix �Σ has a full rank Cholesky decomposition. Conversely, any lower triangular matrix
C with positive main diagonal elements leads to a positive deÞnite matrix CC 0 = �Σ. Thus
�Σ may be represented properly by its Cholesky root.

Theorem 44 (Consistency) Let the d-dimensional random vector X d
= µ + RΛU (d) be

generalized elliptically distributed with P (R = 0) = 0 and positive deÞnite dispersion matrix
Σ = ΛΛ0 with Σ11 = 1 (w.l.o.g.). Further, let X1, . . . ,Xn (n = 1, 2, . . .) be sequences
of independent copies of X and let bΣn be the corresponding spectral estimator. Then the
spectral estimator is weakly consistent, i.e.

bΣn p−→ Σ, n −→∞.

Proof. For any positive deÞnite dispersion matrix Σ it can be shown that

1. the parameter space is an open interval of the Euclidean space;

2. the log-likelihood function is continuously differentiable (with respect to each parame-
ter of the dispersion matrix) up to the third derivative;

3. the Þrst, second, and the third partial derivatives of the log-likelihood function can be
obtained under the integral sign;

4. further, the third partial derivatives have Þnite expectations;

5. the elementary information matrix is Þnite and nonsingular;

6. the root of the log-likelihood equation always exists and is unique.

ad 1. Consider the Cholesky decomposition �Σ = CC0. The lower triangular part of C ∈
IRd×d stems from an open interval of the

¡
d+1
2

¢
-dimensional Euclidean space since the

main diagonal entries of C are required to be positive. Moreover, since we Þx �Σ11 = 1,
i.e. C11 = 1 the parameter space is an open interval of the Euclidean space with¡
d+1
2

¢
− 1 dimensions.

ad 2. By virtue of Proposition 41 we see that not only the Þrst but also the second and the
third derivatives of the log-likelihood function exist and are continuous for any given
observation.

ad 3. The Þrst derivative of the log-likelihood function is given by the elementary score
derived in the proof of Proposition 41. We see that the score depends essentially on
the product of each two components of an observation. Thus it is continuous with
respect to each observation and one easily may Þnd continuous (and thus integrable)
upper bounds for the absolute values of the partial derivatives so that the Dominated
Convergence Theorem holds. Moreover, the second and third derivatives do not depend
on the observations at all and the Dominated Convergence Theorem holds, too.

ad 4. Because the third derivatives are not random their expectations are trivially Þnite.
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ad 5. The Þniteness and regularity of the elementary information matrix was shown already
in Proposition 41.

ad 6. The spectral estimator, i.e. the root of the log-likelihood equation exists and is unique
if n > d (d− 1) (Tyler, 1987a). Hence existence and uniqueness is guaranteed, asymp-
totically.

Theorem 45 (Asymptotic efficiency) Let the conditions of Theorem 44 be fulÞlled. Then
the spectral estimator is asymptotically efficient in the sense of Rao (1962) and

√
n ·
³
vec

³jbΣn´− vec (bΣ)´ d−→ Nm
¡
0,J−1¢ , n −→∞,

where m :=
¡
d+1
2

¢
− 1 and J is the elementary information matrix given in Proposition 41.

Proof. Due to the conditions stated in the proof of Theorem 44 the spectral estimator is
asymptotically efficient (Rao, 1962), i.e.

plim
n→∞

√
n ·
³³
vec

³jbΣn´− vec (bΣ)´− J−1ξn/n
´
= 0,

where ξn is the sample score. Further, due to Lemma 42, ξn/
√
n → Nm (0,J ) and thus√

n · J−1ξn/n→ Nm
¡
0,J−1¢.

It must be pointed out that the asymptotic efficiency of the spectral estimator does only
hold for generalized elliptically distributed data which is projected to the unit hypersphere.
Once the original data is used for estimation of course a parametric maximum-likelihood
approach is �more� efficient provided the true model is known. For instance, if one knows
that the data are multivariate normally distributed the asymptotic (co-)variance can be
reduced by using the sample covariance matrix. This is due to the fact that the original
data contains not only angular but also radial information which can be utilized if the true
model is known. For a nice discussion of the interplay between robustness and efficiency of
covariance matrix M-estimators see Oja (2003).

Hence the spectral estimator is a completely robust alternative if nothing is known except
that the data is generalized elliptically distributed. Under this assumption fortunately not
only weak consistency but also strong consistency can be established.

Theorem 46 (Strong consistency) Let the conditions of Theorem 44 be fulÞlled. Then
the spectral estimator is strongly consistent, i.e.

bΣn a.s.−→ Σ, n −→∞.

Proof. Tyler (1987a) proves the strong consistency under the assumption that the sample
stems from an arbitrary continuous multivariate distribution. Then Σ is to be interpreted
as the solution of the Þxed-point equation

Σ = d ·E
µ

XX 0

X 0Σ−1X

¶
,

rather than as a dispersion matrix. But in the case of generalized elliptical distributions Σ
corresponds to the dispersion matrix. Recall that the spectral estimator can be represented
by the projected data (cf. Eq. 4.9), i.e.

bΣ = d

n
·
nX
j=1

SS0

S0bΣ−1S ,
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where

S =
X − µ
||X − µ||2

,

which is also generalized elliptically distributed (cf. Proposition 36). Due to the positive
deÞniteness of Σ the random vector S has a continuous distribution given by the spectral
density function ψ.

Of course, the weak consistency follows immediately by the strong consistency. But the
former one can be proved straightforward using classical maximum-likelihood theory whereas
the latter one is non-trivial.

5.3 Asymptotic Covariance Matrix

In Section 5.1 it was shown that the elementary information matrix of the spectral estima-
tor providing only a generalized elliptical random vector with Σ = σ2Id converges to the
elementary information matrix of the sample covariance matrix given X ∼ Nd (0, Id). Since
the convergence refers to d → ∞ it is not clear whether J0 → I0 implies J−1

0 → I−10 , i.e.
if not only the information matrices but also the asymptotic covariance matrices converge.
This is an inverse problem and thus it is appropriate to calculate J−1

0 , explicitly.

Lemma 47 Let M ∈ IRn×n be of the form

M =


1 a · · · a

a 1
...

...
. . .

...
a · · · · · · 1

 ,
where a 6= −1/ (n− 1) and a 6= 1. Then the inverse of M corresponds to

M−1 =


x y · · · y

y x
...

...
. . .

...
y · · · · · · x

 , (5.1)

where

x =
1 + (n− 2) · a

1 + (n− 2) · a− (n− 1) · a2 ,

and
y = − a

1 + (n− 2) · a− (n− 1) · a2 .

Proof. Assume that M−1 has the form (5.1) with x, y ∈ IR. Necessarily MM−1 = In, i.e.

x+ (n− 1) · ay = 1,

ax+ (1 + (n− 2) · a) · y = 0.

This is a system of linear equations with the solutions x and y given in the lemma.

Proposition 48 Let the d-dimensional random vector X d
= µ+R (σId)U (d) be generalized

elliptically distributed with P (R = 0) = 0 and σ > 0. Then the asymptotic covariance
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matrix of the spectral estimator corresponds to

J−1
0 ≡

£
J−1
0,ij

¤
:=



4 · d+2d , i = j = 1, . . . , d− 1,

2 · d+2d , i, j = 1, . . . , d− 1, i 6= j,
d+2
d , i = j = d, . . . ,

¡
d+1
2

¢
− 1,

0, else.

Proof. Due to Corollary 43 we know that the information matrix corresponds to

J0 =




b a · · · a

a b
...

...
. . .

...
a · · · · · · b

 0

0 cI(d2)

 =:
·
A 0
0 B

¸
,

where

a = −1
2
· 1

d+ 2
, b =

1

2
· d− 1
d+ 2

, c =
d

d+ 2
,

with A ∈ IR(d−1)×(d−1) and B ∈ IR(
d
2)×(d2). The inverse of B is simply

B−1 =
1

c
· I(d2) =

d+ 2

d
· I(d2).

Consider the matrix

M∗ := 2 · d+ 2
d− 1 ·A =


1 − 1

d−1 · · · − 1
d−1

− 1
d−1 1

...
...

. . .
...

− 1
d−1 · · · · · · 1

 .
For the inverse of M∗ apply Lemma 47 so as to obtain

M∗−1 =
d− 1
d

·


2 1 · · · 1

1 2
...

...
. . .

...
1 · · · · · · 2

 ,
and thus

A−1 =
d+ 2

d
·


4 2 · · · 2

2 4
...

...
. . .

...
2 · · · · · · 4

 .
Now bringing A−1 and B−1 together leads to the asymptotic covariance matrix given in the
proposition.

In contrast, it is easy to verify that the asymptotic covariance matrix of the sample covariance
matrix corresponds to

I−10 ≡
£
I−10,ij

¤
=


2, i = j = 1, . . . , d− 1,

1, i = j = d, . . . ,
¡
d+1
2

¢
− 1,

0, else,

(5.2)
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provided X ∼ Nd
¡
µ, σ2Id

¢
. Hence,

J−1
0 9 I−10 , d −→∞,

since the asymptotic variances of the main diagonal entries of the spectral estimator equal
to 4 (and not to 2). Further, an interesting fact is that the asymptotic covariances of the
main diagonal entries of the spectral estimator equal to 2 and do not vanish as d→∞. Only
concerning the asymptotic covariances of the off diagonal elements the spectral estimator
behaves like the sample covariance matrix.

Tyler (1987a) gives a representation of the asymptotic covariance matrix of the spectral esti-
mator with arbitrary (but positive deÞnite) dispersion matrix Σ. But it should be mentioned
that Tyler derives the asymptotic covariance matrix of

vec

Ã
d ·

bΣ
tr(Σ−1bΣ)

!

and not of vec(bΣ) or its relevant elements, i.e. only the one contained in a triangular part
of bΣ. Hence the considered asymptotic covariance matrix is not positive deÞnite and cannot
be compared directly with the results given in Proposition 48.

Further, Tyler (1983) compares the asymptotic variances of several M-estimators for dif-
ferent elliptical populations and dimensions. He also refers to a Monte Carlo simulation
study of robust covariance matrix estimators done by Devlin, Gnanadesikan, and Ketten-
ring (1981) which can be used for comparing the Þnite sample properties rather than the
large sample behavior. Kent and Tyler (1988) adopt the spectral estimator for the para-
meters of a wrapped Cauchy distribution. Further, in Tyler (1987b) the spectral estimator
is demonstrated on testing for uniformity and circularity. Dümbgen and Tyler (2004) show
that under very general distributional assumptions the contamination breakdown point of
the spectral estimator corresponds to 1/d. Further properties of the spectral estimator are
examined by Maronna and Yohai (1990) and by Adrover (1998).
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Chapter 6

Motivation

�Certain people Þnd it intellectually stimulating that, even-
tually, there is a formula which explains a difficult procedure
such as the pricing of an option very much in the same way
as Newton�s law gives a quantitative description of gravita-
tion.�

(T. Mikosch, 2003)

6.1 Empirical Evidence of Extremes

Financial data usually exhibit similar properties which are called �stylized facts�, i.e. heavy
tails, extremal dependence, distributional asymmetry, volatility clustering, etc.; especially if
the log-price changes (called the �log-returns�) of stocks, stock indices, and foreign exchange
rates are considered (see, e.g., Eberlein and Keller, 1995, Embrechts, Klüppelberg, and
Mikosch, 2003, Section 7.6, Fama, 1965, Mandelbrot, 1963, Mikosch, 2003, Chapter 1).
Enumerating all the empirical studies on this topic would go beyond the scope of this
preamble.
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Figure 6.1 Empirical survival function of the generating variate of S&P 500 daily log-
returns on a log-log-scale for the sample period 1980-01-02 to 2003-11-26 (left hand) and
corresponding Hill-plot for the largest 1000 data points (right hand).

On the left hand of Figure 6.1 we see the empirical survival function (on a log-log-scale) of
the generating variate of the daily log-returns of the current 285 S&P 500 stocks which had
an IPO date before 1980-01-02. The sample period ranges from 1980-01-02 to 2003-11-26.
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The generating variate is estimated according to the method described in Section 2.4 where
the spectral estimator is used as covariance matrix estimator. We see that the decay is
linear on the log-log-scale. This corresponds to the regular variation property of Þnancial
data described in Section 2.1, i.e.

F (x) ≈ λ · x−α ⇒ logF (x) ≈ log λ− α · log x, ∀ x > v > 0,

for a sufficiently high threshold v. Remarkably, we Þnd two different slopes given by the
dashed red line and the dashed blue line, respectively. The right hand side of Figure 6.1 shows
the corresponding two different Hill estimates (Embrechts, Klüppelberg, and Mikosch, 2003,
p. 330) of the tail index α. The dashed blue line corresponds to the tail index estimated by
the 68 largest extremes whereas the dashed red line seems to indicate a �long-run tail index�
and corresponds to the usual size observed for daily log-returns. This indicates that there
may be a sort of �mixture of tail indices� in the S&P 500. An investigation of time-varying
tail indices of the German DAX can be found in Wagner (2003). Wagner (2004) proposes
a model of time-varying tail indices not only for stock returns but also for daily changes of
government bond yield spreads.

This thesis concentrates on the extremal behavior of log-returns and their asymmetry. This
was shown also in Section 3.1 for the NASDAQ and S&P 500. Further evidence against the
Gaussian distribution hypothesis concerning the dependence structure of single stocks can
be found in Junker (2002) and Junker and May (2002) whereas the dependence structures
between foreign stock markets are investigated in Costinot, Roncalli, and Teïletche, 2000.
In Section 2.4 the negative impact of extremal events on covariance matrix estimation was
discussed. Moreover, Section 2.3.2 dealt with simultaneous extremes which are characteristic
for Þnancial markets. In the following Þgure we see the total numbers of S&P 500 stocks
whose absolute values of daily log-returns exceeded 10% for each trading day during 1980-
01-02 to 2003-11-26. Actually, on the 19th October 1987 (i.e. the �Black Monday�) there
occurred 239 extremes. This is suppressed for the sake of transparency.
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Figure 6.2 Number of extremes in the S&P 500 index during 1980-01-02 to 2003-11-26.

The latter Þgure shows the concomitance of extremes. If extremes would occur independently
then the number of extremal events (no matter if losses or proÞts) should be small and all
but constant over time. Obviously, this is not the case. In contrast we see the October
crash of 1987 and several extremes which occur permanently since the beginning of the bear
market in the middle of 2000.

The next Þgure serves to exemplify the effect of simultaneous extremes in more detail. We
compare General Motors and Hilton to point out that simultaneous extremes even may occur
if the linear dependence between two assets is rather small because of completely different
lines of business.
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Figure 6.3 Daily prices of General Motors (blue line) and Hilton (green line) from 1986-01-
01 to 1988-12-30 (left hand) and the corresponding log-returns (right hand). The red point
corresponds to the October crash, 1987.

For a profound discussion of dependence structures on Þnancial markets see Breymann, Dias,
and Embrechts (2003), Junker (2003), and Schmidt (2003b).

Financial markets are characterized not only by the presence of extreme losses but also by
a tremendous amount of Þnancial instruments and risk factors like, e.g., shares, options,
futures, foreign exchanges rates, interest rates, etc. Hence one of the main goals of this work
is to develop an estimation procedure both suitable for the analysis of high-dimensional data
and robust against extreme price ßuctuations.

6.2 On the Curse of Dimensions

Consider a d-dimensional random vector U which is uniformly distributed on the unit hy-
percube [0, 1]d and let U·1, . . . , U·n be a sequence of independent copies of U . Hence, the
expected number of data points of an arbitrary component Ui of U lying in an interval of
length π, i.e.

0 ≤ a < Ui ≤ a+ π ≤ 1
equals to nπ and is independent of d. But the expected number of data points lying within
a sub-cube of [0, 1]d with length π ∈ ]0, 1[ corresponds to nπd.
Let the length of a sub-cube for which the expected number of realizations corresponds to
1 be denoted by �π := n−1/d. The smaller �π the more dense the data. If one does not know
the true law of U and tries to estimate its joint distribution function with a given accuracy
�π then the minimum sample size corresponds to n = �π−d. Hence the sample size has to
increase exponentially with the number of dimensions to prevent a loss of accuracy. This is
usually called the �curse of dimensions�.

In Section 5.1 the special role of the effective sample size q = n/d was prementioned.
Consider the following problem. Let X be a d-dimensional t-distributed random vector
with 3 degrees of freedom, i.e. X ∼ td (0, Id, 3) (see Example 4). Since its generating
variate corresponds to

p
d · Fd,3 the variance of each component of X equals to V ar (Xi) =

E (d · Fd,3) /d = 3/ (3− 2) = 3. Note that the components of X are uncorrelated. Now,
let Y := X/

√
3 and Y·1, . . . , Y·n be a sequence of independent copies of Y . Due to the

multivariate central limit theorem (see, e.g., Hayashi, 2000, p. 96) we expect

Zn :=
1√
n
·
nX
j=1

Y·j
d−→ N (0, Id) , n −→∞,
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and consequently the sum of the squared components of Zn should be χ2d-distributed, asymp-
totically.

The subsequent Þgures show histograms of Zn for n = 100 and different numbers of dimen-
sion. The density function of the corresponding χ2d -law is represented by the green line.
Obviously, the Þnite sample property of Z100 depends essentially on d, i.e. the smaller the
number of dimensions the better the central limit theorem works.
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Figure 6.4 Histograms of Z100 for different numbers of dimension. The corresponding
χ2d -law is represented by the green line.

In the next Þgure consider Zn for a sample size of n = 1000. Remarkably, even for this large
sample size the central limit theorem does not apply in the case of d = 1000 (upper left).
This is the same as for the left picture of Figure 6.4. The smaller d, i.e. the larger q = n/d
the better the Þt of the corresponding χ2d -law. For q ≥ 100 we see that the central limit
theorem makes an impact.
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Figure 6.5 Histograms of Z1000 for different numbers of dimension. The corresponding
χ2d -law is represented by the green line.

The next Þgure shows the same effect even for the sample size of n = 10000. For d = 1000
the central limit theorem does not apply again due to the small effective sample size q = 10.
But if q →∞ the central limit theorem holds as before.
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Figure 6.6 Histograms of Z10000 for different numbers of dimension. The corresponding
χ2d -law is represented by the green line.

It is somewhat surprising that the Þnite sample property of Zn depends on the number of
dimensions even though every component of Zn, i.e. Zin, i = 1, . . . , d, is asymptotically
normal distributed where its Þnite sample property a priori does not depend on d. Further
on, the components of Zn are uncorrelated, not only asymptotically but even in the Þnite
samples. But for all that the random vector Zn is not normally distributed, approximately,
for small q. This is because normality of the margins do not imply joint normality. Moreover,
uncorrelated normally distributed random components are not necessarily independent. In
practical situations this may be a typical source of misunderstandings (Embrechts, McNeil,
and Straumann, 2002).

With the help of copulas one may easily construct distribution functions with normal margins
and uncorrelated components (cf. Section 2.2). For instance, let the multivariate c.d.f. be
deÞned by

x 7−→ F (x) = C (Φ (x1) , . . . ,Φ (xd)) ,

where Φ is the univariate standard normal c.d.f. and C is the copula of a spherical distri-
bution. Note that due to the copula also the components of X ∼ F are uncorrelated.
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Figure 6.7 Density contours of bivariate distribution functions with standard normal mar-
gins but t2 (0, I2, ν)-copulas. The degrees of freedom are ν = 5 (left hand) and ν = 1 (right
hand).

Thus for a proper statistical analysis of multidimensional problems one should distinguish
the following asymptotics:

n→∞, d const.: classical asymptotics,

n→∞, d→∞, and n/d→∞: classical asymptotical results may hold anymore,

n→∞, d→∞, but n/d→ q <∞: non-classical asymptotics (random matrix theory).

The latter case belongs to the domain of random matrix theory which will be discussed in
Chapter 8.





Chapter 7

Applications in Finance

Now the methodology developed so far will be related to Þnancial applications like, e.g.,
portfolio optimization and Beta estimation. The particular properties of the spectral den-
sity approach are compared with the conventional approach which means using the sample
covariance matrix.

7.1 Modern Portfolio Theory

We start with modern portfolio theory (MPT) developed by Markowitz (1952) and continued
by Tobin (1958), Sharpe (1964) and Lintner (1965).

7.1.1 Portfolio Optimization

Consider a frictionless market with a constant number of d risky Þnancial assets having
elliptically distributed daily log-returns (Xit)t∈Z, i.e.

Xit := logPit − logPi,t−1, i = 1, . . . , d, ∀ t ∈ Z,

where Pit symbolizes the price of asset i at time t. Further, it is assumed that there exists a
riskless bond with a constant log-return (the �risk free interest rate�). The price of an asset
only vanishes when the corresponding company becomes bankrupt. This event is assumed
to be impossible, particularly because it would be an absorbing state. Thus the log-returns
are well-deÞned (a.s.).

Further, it is assumed that the vectors of log-returns (X·t, ∀ t ∈ Z) have Þnite cross moments
of second order and that the centered log-returns X·t − µ are ergodic stationary martingale
difference sequences (Hayashi, 2000, p. 104), i.e. E (X·t) = µ and particularly

E (X·t | X·,t−1,X·,t−2, . . .) a.s.= µ,

for each t ∈ Z. Ergodic stationarity (Hayashi, 2000, p. 101) refers to the property of
(X·t) to be stationary and, additionally, for any two bounded functions f : IRk → IR and
g : IRl → IR,

|E (f (X·t, . . . ,X·,t+k−1) g (X·,t+n, . . . ,X·,t+n+l−1))| −→
|E (f (X·t, . . . ,X·,t+k−1))| · |E (g (X·t, . . . ,X·,t+l−1))| , n −→∞.

Thus, two cut-outs of a (multivariate) ergodic time series become more uncorrelated the
larger the lag between each other. This is given for a stationary ARCH(1)-process (cf.
Hayashi, 2000, p. 106), for instance.
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Suppose that Σ is the positive deÞnite covariance matrix of X·t. Then

√
T ·
Ã
1

T

TX
t=1

X·t − µ
!

d−→ Nd (0,Σ) , T −→∞.

This is the central limit theorem for ergodic stationary martingale differences (Hayashi, 2000,
p. 106). Hence, given a sufficiently long target horizon, say at least one year (T ≈ 252), the
sum of log-returns is approximately normally distributed. Note that the sum of log-returnsPT

t=1Xit (i = 1, . . . , d) coincides with the log-return of investment i over the target period.
Thus one may justify the Gaussian distribution assumption regarding long-term log-returns
even under the relatively weak condition of ergodicity.

Unfortunately, for MPT we need to consider discretely compounded returns

Ri :=
PiT − Pi0
Pi0

, i = 1, . . . , d,

rather than log-returns. Commonly, also discretely compounded returns are assumed to be
multivariate normally distributed. But since asset prices cannot become negative there is
a �natural� inÞmum of −1 for discrete returns. Hence the Gaussian distribution hypothesis
can only serve as a kluge. But we will follow the classical argument of MPT for the sake of
simplicity.

The return of a portfolio w = (w0, w1, . . . , wd) is given by

RP :=
dX
i=0

wiRi,

where
Pd
i=0wi = 1 but the weights may become negative. Here R0 ≡ r ≥ 0 symbolizes

the risk free interest rate. Consequently, the expected portfolio return is given by µP :=Pd
i=0wiµi, where µi := E (Ri), i = 0, 1, . . . , d.

Suppose that each investor has an exponential utility function

x 7−→ u (x) = − exp (−γx) , γ > 0, (7.1)

where γ is an individual risk aversion parameter. Hence the expected utility is given by

E (u (RP )) = −E (exp (−γRP )) .

Consider that E (exp (−γRP )) is the moment generating function of RP at −γ, i.e.

E (u (RP )) = − exp
µ
−γ ·

µ
µP +

1

2
· (−γ) · σ2P

¶¶
,

where σ2P represents the portfolio variance. DeÞne the �certainty equivalent� ζ (RP ) by the
solution of the equation

u (ζ (RP )) = E (u (RP )) .

Hence the certainty equivalent corresponds to a riskless portfolio return which gives the
same (expected) utility as the risky return RP . We see that

ζ (RP ) = µP −
1

2
· γσ2P .

This is the well-known objective function of portfolio optimization (the �mean-variance utility
function�).
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Due to the budget constraint
Pd
i=0 wi = 1 we can substitute w0 by w0 = 1−

Pd
i=1wi. Thus

ζ (RP ) =

Ã
1−

dX
i=1

wi

!
· r +

dX
i=1

wiµi −
1

2
· γ ·

dX
i,j=1

wiwjCov (Ri, Rj)

= r +
dX
i=1

wi (µi − r)−
1

2
· γ ·

dX
i,j=1

wiwjCov (Ri, Rj) .

If we deÞne the �excess return� ∆µi := µi − r, i = 1, . . . , d, and the vector of stock weights
�w := (w1, . . . , wd) we obtain

ζ (RP ) = r + �w0∆µ− γ
2
· �w0Σ �w, (7.2)

where Σ symbolizes the covariance matrix of R = (R1, . . . , Rd). Thus, maximizing the mean
variance utility function is a simple quadratic optimization problem which has the solution
∆µ − γΣ �w = 0, i.e. �w = Σ−1∆µ/γ. Note that the sum of the components of �w generally
does not coincide with 1. Indeed, the sum of the stock weights depends essentially on the
investor�s individual risk aversion. But the optimal stock portfolio is always given by

ω :=
�w

10 �w
=

Σ−1∆µ
10Σ−1∆µ

, (7.3)

i.e. the optimal portfolio of risky assets does not depend on the particular risk aversion of
the investor, provided there is a money market (Tobin, 1958). This is known as �Tobin�s
(Two-fund) Separation Theorem�. Regard also that ω does not depend on the scale of Σ,
too. Hence, the optimal capital allocation can be estimated by

bω = bΣ−1 (bµ− r1)
10bΣ−1 (bµ− r1) , (7.4)

where bµ and bΣ may be some robust estimates of µ and Σ.
If µ1 = . . . = µd > r then the optimal solution is simply given by

ω0 :=
Σ−11
10Σ−11

. (7.5)

In that case maximizing the quadratic function (7.2) is equivalent to minimizing the portfolio
risk (which is given by �w0Σ �w) since the expected return of the stock portfolio is not affected
by changing the portfolio weights. Indeed, ω0 is the optimal solution if the investor per se
is not interested in portfolio optimization but risk minimization no matter if the expected
returns are equal or not. Thus ω0 is called �global minimum variance portfolio� (Kempf and
Memmel, 2002).

7.1.2 Portfolio Weights Estimation

Now it is assumed that the time series of log-returns (X·t) is not only ergodic stationary but
i.i.d. for the sake of simplicity. From now on we will reconsider continuously compounded
returns, i.e.

Ri :=
TX
t=1

Xit, i = 1, . . . , d,

where the target horizon T is assumed to be large. Suppose that the mean vector µ is known
and that the positive deÞnite matrix Σ is estimated by the sample covariance matrix. Thus
we can assume µ = 0 (w.l.o.g.).
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Since (X·t) is supposed to be i.i.d. the covariance matrix of R = (R1, . . . , Rd) corresponds
to

Σ = n · V ar (X·t) .
Thus Σ can be estimated directly by using the daily observations, i.e.

bΣ = n · dV ar (X·t) .
Suppose that bΣ is estimated via the sample covariance matrix. Note that it does not matter
if we insert bΣ or dV ar (X·t) in Eq. 7.4. So let bΣ = [�σij ] denote the estimated covariance
matrix on the daily basis and Σ = [σij ] be the corresponding true covariance matrix.

If the daily log-returns have Þnite fourth order cross moments then the sample covariance
matrix is asymptotically (matrix-valued) normally distributed. This is a direct consequence
of the central limit theorem. More precisely, each component of bΣ exhibits

√
n · (�σij − σij) d−→ N (0, V ar (XitXjt)) , n −→∞.

Here n is the sample size, i.e. the length of the observed time series (X·t) and not the target
horizon T . Further,

V ar (XitXjt) = E
¡
X2
itX

2
jt

¢
−E2 (XitXjt) = E

¡
X2
itX

2
jt

¢
− σ2ij ,

where σij := Cov (Xit,Xjt). We see that the asymptotic variance of each component of bΣ
depends essentially on the fourth order cross moments of the components of X·t. One can
interpret the term E

¡
X2
itX

2
jt

¢
as �cross kurtosis�.

Not only the asymptotic variances but also the asymptotic covariances depend particularly
on the kurtosis of the components of X·t since (Praag and Wesselman, 1989 and Tyler, 1983)

Cov (XitXjt,XktXlt) = (1 + κ) · (σikσjl + σilσjk) + κ · σijσkl,

where

κ :=
1

3
·
E
¡
X4
it

¢
E2 (X2

it)
− 1

is called �kurtosis parameter�. Note that the kurtosis parameter is the same for every i
because it does not depend on the scale of Xit. It is well-known that in the case of normality
κ = 0. A distribution with positive (or even inÞnite) κ is called �leptokurtic�. Particularly,
regularly varying distributions are leptokurtic.

Suppose for the sake of simplicity that X·t is spherically distributed, i.e. Σ = σ2Id. Since the
vector of optimal portfolio weights is invariant under scale transformations we may assume
w.l.o.g. that Σ = Id. From Theorem 5 we know that

E
¡
X4
it

¢
= E

µ³
RtU (d)it

´4¶
= E

¡
R4t
¢
·E
µ³
U
(d)
it

´4¶
=
3 ·E

¡
R4t
¢

d (d+ 2)
,

and

E
¡
X2
itX

2
jt

¢
= E

µ³
RtU

(d)
it

´2 ³
RtU (d)jt

´2¶
= E

¡
R4t
¢
·E
µ³
U
(d)
it

´2 ³
U
(d)
jt

´2¶
=
E
¡
R4t
¢

d (d+ 2)
,

for i 6= j. Note that E
¡
R2t
¢
= d since we assume that Σ represents the covariance matrix

(cf. Section 1.2.3).



CHAPTER 7. APPLICATIONS IN FINANCE 91

Example 16 (Asymptotic variances if X·t ∼ Nd (0, Id)) Let Rt =
p
χ2d , that is to say

X·t ∼ Nd (0, Id). Then

E
¡
R4
t

¢
= E

³¡
χ2d
¢2´

= V ar
¡
χ2d
¢
+ E2

¡
χ2d
¢
= 2d+ d2 = d (d+ 2) .

Hence E
¡
X4
it

¢
= 3, i.e. V ar

¡
X2
it

¢
= 3− 1 = 2, and V ar (XitXjt) = 1, i 6= j (see also Eq.

5.2).

Now, let X·t be multivariate t-distributed with covariance matrix Id and ν > 4 degrees of
freedom. Since the generating variate must satisfy E

¡
R2t
¢
= d for all ν we obtain

Rt =
r
ν − 2
ν

·
p
d · Fd,ν , ∀ ν > 4,

rather than
p
d · Fd,ν (cf. Example 4). Then

E
¡
R4t
¢
=

µ
ν − 2
ν

¶2
· d2 ·E

¡
F 2d,ν

¢
.

The second moment of Fd,ν corresponds to (cf. Johnson, Kotz, and Balakrishnan, 1995, p.
325)

E
¡
F 2d,ν

¢
=
³ν
d

´2
· d (d+ 2)

(ν − 2) (ν − 4) .

Hence
E
¡
R4
t

¢
= d (d+ 2) · ν − 2

ν − 4 ,

and E
¡
X4
it

¢
= 3 · (ν − 2) / (ν − 4), i.e.

V ar
¡
X2
it

¢
= 3 · ν − 2

ν − 4 − 1 = 2 ·
ν − 1
ν − 4 ,

as well as
V ar (XitXjt) =

ν − 2
ν − 4 , i 6= j.

Since it is assumed that the covariance matrix ofX·t corresponds to Id the kurtosis parameter
is simply given by

κ =
1

3
·E
¡
X4
it

¢
− 1 = ν − 2

ν − 4 − 1 =
2

ν − 4 , ν > 4.

Even though the true covariance matrix remains the same under the variation of ν both
the asymptotic variances of the main diagonal entries and the asymptotic variances of the
off diagonal entries of the sample covariance matrix depend essentially on ν. For ν → ∞
we see that the asymptotic variances tend to the values given for the normal distribution
hypothesis. But for ν & 4 the asymptotic variances tend to inÞnity and if 0 < ν ≤ 4 the
sample covariance matrix is no longer normally distributed, asymptotically.

In Section 5.3 (Proposition 48) it was shown that the asymptotic variance of the main
diagonal entries of the spectral estimator in the case of isotropy corresponds to 4 · (d+ 2) /d,
whereas the asymptotic variance of its off diagonal elements equals to (d+ 2) /d. Now, one
may ask when the sample covariance matrix is dominated (in a componentwise manner) by
the spectral estimator provided the data is multivariate t-distributed. Regarding the main
diagonal entries this is given by

4 · d+ 2
d

< 2 · ν − 1
ν − 4 ,
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i.e. if

ν < 4 + 3 · d

d+ 4
.

Concerning the off diagonal entries we obtain

d+ 2

d
<
ν − 2
ν − 4 ,

i.e. whenever if ν < 4+ d the variance of the off diagonal elements of the spectral estimator
is smaller, asymptotically.

Until now we have investigated the asymptotic variances of the covariance matrix estimators
using daily log-returns. Now we turn to the Þnite sample variances. Theoretically one
could draw on intraday data or even high-frequency data to estimate the covariance matrix.
Suppose that for each day there arem intraday observations available and denote the corres-
ponding time series by (Y·τ )τ=1,...,nm. Further on we assume that (Y·τ ) has i.i.d. innovations.
Consequently,

Y·τ
d
=
Rt√
m
· U (d)·t , (7.6)

since on the basis of the i.i.d. assumption the covariance matrix of Y·τ must correspond
to Σ/m. Let bΣY be the covariance matrix estimator applied on the high-frequency data
(Y·τ ). Then the covariance matrix of the daily log-returns can be estimated by mbΣY . The
asymptotic variance of mbΣY corresponds to m2 times the asymptotic variance of bΣY . But
due to (7.6) the asymptotic variance of bΣY corresponds to the asymptotic variance of bΣ
divided by m2, where bΣ is the covariance matrix estimator applied on the daily data. Thus
the asymptotic variance of bΣ equals to the asymptotic variance of mbΣY . But when using
intraday data we have not only n but nm data points. So actually the Þnite sample variance
of mbΣY is m times smaller than that of bΣ.
That is to say the higher the frequency of the available Þnancial data the better the results of
covariance matrix estimation. But that is only half the truth. Unfortunately, the components
of high-frequency Þnancial time series are usually not independent and even not stationary
(Breymann, Dias, and Embrechts, 2003). Furthermore several empirical studies show that
the tail index of Þnancial data depends strongly on the time horizon (see, e.g., Breymann,
Dias, and Embrechts, 2003, and Bouchaud, Cont, and Potters, 1998).

Theorem 9 states that the sum of elliptically distributed random vectors are elliptical, too,
if the unit random vectors of each addend are independent and the dispersion matrix is
constant. This holds even if the generating variates of the addends depend on each other.
Hence the stylized facts of high-frequency data could be covered by a time series of dependent
generating variates (Rτ ) where the tail index of each variate depends on its time horizon.
Now, in contrast to the sample covariance matrix the spectral estimator leads to robust
estimates because it does not depend on the generating variates but solely on the unit
random vectors. But these are assumed to be i.i.d., anymore. Especially, the spectral
estimator keeps its properties obtained by maximum-likelihood theory. Hence the spectral
estimator is proposed for high-frequency data in order to minimize the Þnite sample variance.

Now we come to the estimation of µ. Suppose for the sake of simplicity that µ is estimated
by the sample mean

bµ = 1

n

nX
t=1

X·t.

Following the same argument as for covariance matrix estimation we may use high-frequency
data to estimate the expected daily log-return. This is done by

mbµY = m ·
Ã
1

nm

nmX
τ=1

Y·τ

!
,
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which has an asymptotic variance of m2 · V ar (Y·τ ). The variance of Y·τ corresponds to
the variance of X·t divided by m. So the asymptotic variance of the sample mean of high-
frequency data is m times the asymptotic variance of bµ. But since there are m times more
high-frequency data points m is canceled down regarding the Þnite sample variance. We
conclude that in contrast to covariance matrix estimation it does not matter if we use high-
frequency data or not. In the same manner one may also use log-returns corresponding to
the target horizon of portfolio optimization, say one year.

On a target horizon of one year the average mean log-return of the S&P 500 stocks considered
so far correspond to 10%, approximately, whereas the average variance equals to 12%. Thus
the average volatility (i.e. the average standard deviation) of the S&P 500 log-returns
equals to 35%, approximately. Suppose for the sake of simplicity that the number N of
observed years is an integer. Obviously, the Þnite sample variance of bµ corresponds to
σ2/N . Approximately 95% of the mean estimates lie within the interval·

µ− 2 · σ√
N
,µ+ 2 · σ√

N

¸
=

·
0.1− 0.7√

N
, 0.1 +

0.7√
N

¸
.

So estimating µ accurately is practically impossible. Even if we have 50 years of data
approximately 5% of the estimated expected returns still lie outside the interval 0.1± 0.1.
We see that the main problem of portfolio optimization is given by expected return esti-
mation rather than by covariance matrix estimation. This is pointed out also by Chopra
and Ziemba (1993) and Kempf, Kreuzberg, and Memmel (2002). Using the sample median
instead of the sample mean or, alternatively, the estimator given by the Þxed-point solution
of Eq. 4.12 seems not to give essentially better results.

One way to overcome this problem is to make certain restrictions about the expected returns
like, e.g., allowing only for positive excess returns (Merton, 1980). Another way is to take
additional data into consideration like, e.g., fundamental data, expertise, etc. (Memmel,
2004, Section 4.2). A somewhat tricky alternative is to assume that the expected returns of
the risky assets are equal or that the investor is only interested in risk minimization. Then
µ has not to be estimated at all and the optimal portfolio weights are given by

�ω0 :=
bΣ−11
10bΣ−11 ,

according to Eq. 7.5. In that case robust covariance matrix estimators like the spectral
estimator lead to substantially better results than the sample covariance matrix estimator.

7.2 Principal Component Analysis

Now we presume that every investor on the market is risk averse according to the exponential
utility function given by (7.1). Thus the optimal capital allocation of each investor is given
by the corresponding formula (7.3). Within a market equilibrium per deÞnition demand
and supply must coincide. Hence the market portfolio ωM , i.e. the vector of relative market
capitalizations corresponds to the optimal portfolio of risky assets (Sharpe, 1964)

ωM = ω =
Σ−1∆µ
10Σ−1∆µ

.

Consider that

∆µM := ω0M∆µ =
∆µ0Σ−1∆µ
10Σ−1∆µ

is the excess return of the market portfolio whereas

σ2M := ω0MΣωM =
∆µ0Σ−1∆µ

(10Σ−1∆µ)2
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corresponds to the variance of the market portfolio return.

DeÞne

β :=
ΣωM
σ2M

=
∆µ

10Σ−1∆µ
·
¡
10Σ−1∆µ

¢2
∆µ0Σ−1∆µ

= ∆µ · 1
0Σ−1∆µ

∆µ0Σ−1∆µ
=

∆µ

∆µM
.

Then
∆µ = ∆µM · β. (7.7)

This is the fundamental equation of Sharpe�s capital asset pricing model called the �securities
market line�. Let R = (R1, . . . , Rd) be the vector of asset returns. Note that β is nothing else
but the vector of covariances between each asset return R1, . . . , Rd and the market return
RM := ω0MR, divided by σ

2
M . Thus Eq. 7.7 is more transparent in the form

µi = r + (µM − r) · βi, (7.8)

where

βi =
Cov (Ri, RM )

V ar (RM )
,

for i = 0, 1, . . . , d. If we deÞne αi := (1− βi) r = µi − βiµM and εi := Ri − (αi + βiRM ),
then

Ri = αi + βiRM + εi, (7.9)

with E (εi) = 0 and Cov (εi, RM ) = 0. This is a regression function which describes the
relationship between the asset returns and the market return where βi is the regression
coefficient of the i-th asset.

The regression function implies that every asset return consists mainly of two components,
a market risk component and a Þrm speciÞc, i.e. �idiosyncratic� component. The Þrm
speciÞc risk is neither correlated with the market return nor it is systematic in the sense
that it occurs with positive or negative expectation. One could interpret the market return
as a common macro-economic risk factor whereas the idiosyncratic component represents
the possibility that only a Þrm�s captive property goes bust. Note that the idiosyncratic
components ε1, . . . , εd may depend on each other.

So the return of an asset is particularly driven by its market sensitivity, i.e. its �Beta�.
The smaller the market sensitivity the smaller the expected return and vice cersa. This is
because the Beta speciÞes how far the corresponding asset can be used for the purpose of
portfolio diversiÞcation. The larger the Beta, i.e. the bigger the Þrm�s market exposure, the
worse its diversiÞcation effect. This is �compensated� by a larger expected return. Assets
with vanishing or even negative Beta must be rare because otherwise they would constitute
the market, i.e. their Beta would be positive which is a contradiction.

The Beta of an asset is of crucial importance for the pricing of corporates in practice. Since
Þnancial analysts usually try to forecast the future earnings of a company there must be
a reasonable basis on which the future pay-offs shall be discounted. According to Eq. 7.8
this is given by the Beta. Indeed, Eq. 7.9 can be used for estimating the Beta by standard
methods of multivariate analysis. This could be done for each asset separately. But since the
idiosyncratic risks may depend on each other this is not an efficient way. It is more reasonable
to estimate the Betas by linear regression with multiple equations (Hayashi, 2000, Chapter
4). Thus even though Eq. 7.9 is a short and sweet description of the relationship between
each asset and the market portfolio the interdependences between the assets are tacitly
shipped to the ε�s. But in fact there is no complexity or dimension reduction.

Instead of the market return RM one could assume that there exists another random variable
Y (and other noise variables ε1, . . . , εd) such that

Ri = αi + βiY + εi,
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holds for each asset where the noise variables ε1, . . . , εd are uncorrelated. This is known as
Sharpe�s single-index model (Sharpe, 1963). But for a better understanding of the interac-
tions between each asset a multi-index model

Ri = αi + βi1Y1 + . . .+ βikYk + εi, i = 1, . . . , d (7.10)

is more appropriate. Here we have k indices or �risk factors� which are assumed to be
uncorrelated, too. The Þrst index can be interpreted as a market index whereas the other
indices may represent segmental, sectoral, and regional risk factors. For the purpose of
dimension reduction k shall not be to large. Note that the components of Y = (Y1, . . . , Yk)
can always be standardized because of the affine structure of Eq. 7.10. Additionally, if we
replace αi by r then (7.10) is known from Ross� (1976) arbitrage pricing theory.

Analogously to the simple linear regression model (7.9) we may Þnd a reasonable model for
R similar to (7.10) but even allowing for correlated idiosyncratic risks. Since R ∼ Nd (µ,Σ)
(approximately),

R
d
= µ+O

√
D Y, (7.11)

where Y ∼ Nd (0, Id) and Σ = ODO0 is a spectral decomposition or �diagonalization� of
the covariance matrix Σ (cf. Section 3.4). Thus the main diagonal elements of D corres-
pond to the eigenvalues λ1, . . . , λd of Σ. We assume that the eigenvalues are given in a
descending order and that the Þrst k eigenvalues are large whereas the residual eigenvalues
are small. Hence the Þrst k elements of D represent the variances of the driving risk factors
contained in the �Þrst part� of Y , i.e. (Y1, . . . , Yk). Because the d − k residual risk factors
contained in (Yk+1, . . . , Yd) are supposed to have small variances they can be interpreted as
the components of the idiosyncratic risks of each asset, i.e.

εi :=
dX

j=k+1

p
λj OijYj , i = 1, . . . , d.

The elements of Y are called �principal components� of R (ChatÞeld and Collins, 2000,
Chapter 4). The direction of each principal component is given by the corresponding column
of O, i.e. by the associated eigenvector. Since O is orthonormal the distribution of the
principal components remains up to a rotation in IRd.

Now, regarding Eq. 7.10 the Betas are given by

βij :=
p
λj Oij ,

for i = 1, . . . , d and j = 1, . . . , k. Hence, we obtain the Beta estimates after the diagonaliza-
tion bΣ = �O �D �O0,
where bΣ is an estimate of the covariance matrix of R. Now the Betas can be estimated by

�β·j =
q
�λj �O·j , j = 1, . . . , k.

Because tr( �D) = tr(bΣ), the sum of the variances of Y1, . . . , Yd coincides with the sum of the
variances of R1, . . . , Rd. By dividing the sum of the Þrst k eigenvalues of bΣ, i.e. the Þrst
k elements of �D by the sum of all eigenvalues of bΣ or, equivalently, by its trace one may
quantify the relative contribution of the main principal components to the overall dispersion.
The considered quotient can be interpreted as the main principal components� �proportion of
the total variation� (ChatÞeld and Collins, 2000, p. 61). Further, each �β·j can be interpreted
as the direction of the j-th principal component. Note that the estimated Beta�s are given
only up to a scaling constant if Σ is estimated robustly. But that does not matter if one is
only interested in analyzing both the relative contribution and the direction of each principal
component.
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A nice feature of principal component analysis (PCA) is that after estimating O and D
one may extract the principal components easily by inverting Eq. 7.11 and substituting the
parameters by their corresponding estimates. Hence the latent variables (Y1, . . . , Yk) can be
represented by a weighted average of the asset returns, i.e. as stock indices. Indeed, the
larger the weight of a particular asset the more the considered risk factor is characterized
by the asset�s line of business. For instance, if the risk factor Yj is characterized mainly by
computer Þrms then it can be interpreted as the relative change of semiconductor prices.

The purpose of PCA is to reduce the complexity caused by the number of dimensions. This
can be done successfully only if there is indeed a number of principal components accountable
for the most part of the distribution. Additionally, the covariance matrix estimator which is
used for extracting the principal components should be robust against outliers. For example,
let the daily data be multivariate t-distributed with ν degrees of freedom and suppose that
d = 500 and n = 1000. The black lines in the following Þgure show the true proportion
of the total variation for a set of 500 eigenvalues. We see that the largest 20% of the
eigenvalues accounts for 80% of the overall variance. This constellation is known as �80/20
rule� or �Pareto�s principle�. The estimated eigenvalue proportions obtained by the sample
covariance matrix are represented by the red lines whereas the corresponding estimates based
on the spectral estimator are given by the green lines. Each line is an average over 100
concentration curves drawn from samples of the corresponding multivariate t-distribution.
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Figure 7.1 True proportion of the total variation (black line) and proportions obtained by
the sample covariance matrix (red lines) and by the spectral estimator (green lines). The
samples are drawn from a multivariate t-distribution with ν =∞ (upper left), ν = 10 (upper
right), ν = 5 (lower left), and ν = 2 (lower right) degrees of freedom.

The goal of PCA is to Þnd the true number of driving factors. If the data is normally
distributed (i.e. ν =∞) then both the spectral estimator and the sample covariance matrix
come to similar results concerning the number of main principal components. But the
smaller the tail index the more differences between the covariance matrix estimators occur.
An interesting fact is that the sample covariance matrix tends to underestimate the number
of driving factors if the data is regularly varying (i.e. ν <∞). This is due to the fact that
an extreme value is confused with a strong realization of a driving factor.

In the following Þgure we see the concentration curves obtained by the sample covariance
matrix (red line) and by the spectral estimator (green line) of the current 285 stocks of the
S&P 500 whose IPO date is before 1980-01-02.
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Figure 7.2 Eigenvalue proportions for 285 stocks of the S&P 500 for the sample period
1980-01-02 to 2003-11-26. Concentration curves obtained by the sample covariance matrix
(red line) and by the spectral estimator (green line).

In the simulated example of Figure 7.1 it is assumed that the small eigenvalues are equal.
This is equivalent to the assumption that the �small� principal components are spherically
distributed, i.e. that they contain no more information about the linear dependence struc-
ture of R. This is similar (but not equivalent) to the assumption that the noise variables
ε1, . . . , εd are uncorrelated. Of course, even if the true eigenvalues are equal the correspon-
ding estimates will not share this property. But it is important to know whether the residual
principal components have structural information or the differences between the estimates
are only caused by random noise. This is not an easy task (ChatÞeld and Collins, 2000, p.
65), especially if the data is not normally distributed and the number of dimensions is large
which is the issue of the next chapter.





Chapter 8

Random Matrix Theory

Not only in Þnance but also in physics one is sometimes concerned with data which is
not Gaussian. But typically the Gaussian distribution hypothesis is favored not only for
the sake of simplicity but particularly because this is often a reasonable assumption for
natural phenomena. But here one should act with caution. Especially when working with
high-dimensional data there may be some areas of application like, e.g., noise reduction,
Þltering and image restoration in image processing, image object and pattern recognition,
analysis of turbulent ßows in (magneto-)hydrodynamics, where the Gaussian distribution
hypothesis may lead to wrong conclusions. More than ever if methods of physics are applied
to economics then the �normality assumption� generally cannot be justiÞed if one is interes-
ted in short-term phenomena. This is due to the fact that socio-economic systems are highly
characterized by interacting individuals, information asymmetry, and overshooting.

More than 50 years ago the analysis of energy levels of complex nuclei led to a branch of
statistical physics called �random matrix theory� (RMT). In the meantime RMT emerged
rapidly and is used in different areas like, e.g., chaotic systems, elastodynamics of structural
materials, conductivity in disordered metals, and even for analyzing the distribution of the
zeros of Riemann�s zeta function (Mehta, 1991). For a historical review of RMT and its
applications see Forrester, Snaith, and Verbaarschot (2003). The standard reference to
RMT is Mehta (1991). A relatively new treatment of this topic is given by Hiai and Petz
(2000).

8.1 Limiting Distributions of Eigenvalues

8.1.1 Wigner�s Semi-circle Law

RMT is concerned with the distribution of eigenvalues and eigenvectors of randomly gene-
rated matrices. A random matrix is simply a matrix of random variables. We will consider
only symmetric random matrices. Thus the corresponding eigenvalues are always real. The
empirical distribution function of eigenvalues is deÞned as follows.

DeÞnition 20 (Empirical distribution function of eigenvalues) Let Sd ∈ IRd×d be a
symmetric random matrix with realized eigenvalues λ1, λ2, . . . , λd ∈ IR. Then the function

λ 7−→ cWd (λ) :=
1

d
·
dX
i=1

11λi≤λ

is called the �empirical distribution function of the eigenvalues� of Sd.

99
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Note that an eigenvalue of a random matrix in fact is random but per se not a random
variable since there is no single-valued mapping Sd 7→ λi (i ∈ {1, . . . , d}) but rather Sd 7→
λ (Sd) where λ (Sd) denotes the set of all eigenvalues of Sd. This can be simply Þxed by
assuming that the eigenvalues λ1, λ2, . . . , λd are sorted either in an increasing or decreasing
order.

Proposition 49 (Semi-circle law) Let Sd ≡ [Sij,d] ∈ IRd×d (d = 1, 2, . . .) be sequences of
symmetric random matrices with i.i.d. elements Sij,d. Further, let Sii,d ∼ G (i = 1, . . . , d)
and Sij,d ∼ F (i, j = 1, . . . , d, i 6= j) with E (Sij,d) = 0, i, j = 1, . . . , d. It is assumed that

E
¡
S2ii,d

¢
< ∞, i = 1, . . . , d,

E
¡
S4ij,d

¢
< ∞, i, j = 1, . . . , d, i 6= j,

and σ2 := E(S2ij,d) (i 6= j). Further, let cWd be the empirical distribution function of the

eigenvalues of Sd/(2
√
σ2d ). Then

cWd (λ)
p−→W (λ) , d −→∞,

for every λ ∈ IR where W is an absolutely continuous c.d.f. with density function

λ 7−→ w (λ) =

(
2
π ·
p
1− λ2, |λ| ≤ 1,

0, |λ| > 1.

Proof. Arnold (1967).

This theorem goes back to Wigner (1958) who proved E(cWd) → W (d→∞) rather than
the convergence in probability. Wigner required the existence and Þniteness of all moments
and even the symmetry of the random components. But Arnold (1967) showed that under
the weaker conditions above even the convergence in probability holds. Moreover, Arnold
(1967) states that actually cWd

a.s.−→ W as d → ∞ if the fourth moment of G and the sixth
moment of F are Þnite.
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Figure 8.1 Histogram of the eigenvalues of a symmetric matrix containing i.i.d. variables
which are uniformly distributed on [−0.5, 0.5] for d = 50 (left hand) and d = 500 (right
hand). Wigner�s semi-circle law is represented by the green line.

The semi-circle law is often represented (see, e.g., Bouchaud and Potters, 2000, p. 41) by

λ 7−→ w (λ) =
1

2πσ2
·
p
4σ2 − λ2, |λ| ≤ 2σ.

This is the limit law for the empirical distribution function of the eigenvalues of Sd/
√
d, i.e.

if the random matrix Sd is not normalized before.
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8.1.2 The Marÿcenko-Pastur Law

Now, consider the random matrix SdS0d/d. The eigenvalues of SdS
0
d are given by the squared

eigenvalues of Sd. Consequently, the limit law for the eigenvalues of SdS0d/d corresponds to
(cf. Bouchaud and Potters, 2000, p. 41)

λ 7−→ w(
√
λ )√
λ

=
1

2πσ2
·
r
4σ2 − λ
λ

, 0 < λ ≤ 4σ2.

Note that SdS0d/d can be interpreted as a sample covariance matrix where Sd is a sample
of d centered random vectors. Of course, the observations contained in Sd have a strange
dependence structure because Sd is supposed to be symmetric. But actually, one may
show that the same formula holds for the eigenvalues of sample covariance matrices of non-
symmetric but only square sample matrices Sd. More generally, if the sample size n exceeds
the number of dimensions d then

λ 7−→ q

2πσ2
·
p
(λmax − λ) (λ− λmin)

λ
, λmax,min = σ

2

µ
1± 1

√
q

¶2
(8.1)

is the limit law for the empirical distribution function of eigenvalues of the sample covariance
matrix bΣ = SnS

0
n/n as n → ∞, d → ∞ and n/d → q ≥ 1 where Sn ∈ IRd×n represents

a matrix of i.i.d. centered elements with Þnite variance σ2 (Yin, 1986). Now, the effective
sample size q comes into play. A nice feature is that the limit law holds also for 0 < q < 1
but with an additional atom at 0 with probability 1 − q (Bouchaud and Potters, 2000, p.
42, Marÿcenko and Pastur, 1967). Formula 8.1 is called the �Marÿcenko-Pastur law�.

The Marÿcenko-Pastur law can be used exploratively to analyze the eigenspectrum of high-
dimensional distributions. The key idea is that this can be done even if the sample size is
small compared to the number of dimensions whereas classical statistical analysis fails in
that case. Moreover, the eigenspectrum can be analyzed even if the number of data points
falls below the number of dimensions.
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Figure 8.2 Histograms of the eigenvalues of sample covariance matrices from samples with
independent and standardized uniformly distributed random elements where d = 500 and
n = 400 (i.e. q = 0.8, upper left), n = 500 (i.e. q = 1, upper right), n = 1000 (i.e. q = 2,
lower left), and n = 5000 (i.e. q = 10, lower right). The corresponding Marÿcenko-Pastur
laws are represented by the green lines.
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Up to now we have presumed that the random entries in Sn are centered and i.i.d. (see
Figure 8.2). But in the context of elliptically symmetric distributions this is given only for
the normal distribution. More precisely, if the random entries in Sn are i.i.d. standardized
Gaussian random variables then the random matrix SnS0n ∈ IRd×d corresponds to a d-
dimensional standard �white� Wishart matrix (Johnstone, 2001) with n degrees of freedom.
The term �white� refers to the fact that the components of each column of Sn are supposed to
be uncorrelated. If the random vectors contained in Sn are not Gaussian but only spherical
then the Marÿcenko-Pastur law is no longer valid for the eigenvalues of the sample covariance
matrix. This is illustrated by the Þgure below.
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Figure 8.3 Histograms of the eigenvalues of sample covariance matrices from samples of
standardized t500-distributed random vectors (n = 1000, i.e. q = 2) with uncorrelated
components and ν = ∞ (i.e. Gaussian random vectors, upper left), ν = 10 (upper right),
ν = 5 (lower left), and ν = 2 (lower right). In the latter case the largest eigenvalues even go
far beyond 20. This is suppressed for the sake of transparency. The Marÿcenko-Pastur law
is represented by the green lines.

Hence it is obvious that the eigenspectrum generated by the sample covariance matrix can
lead to misinterpretations concerning the true dispersion matrix if the generating variate is
regularly varying and the tail index is small. This is due to the fact that the components of
spherical random vectors are uncorrelated but generally not independent (cf. Section 2.2).
It must be pointed out that the sample covariance matrix is not an appropriate tool not
only if the data is regularly varying but also if it is strongly asymmetric (cf. Section 3.2).

Instead of the sample covariance matrix alternatively the sample correlation matrix may be
considered for extracting the eigenspectrum. This has mainly two effects:

1. Under the elliptical distribution hypothesis every d-dimensional random vector can be
represented by (cf. Theorem 2)

X
d
= µ+ σ

√
ρRU (k),

where σ and
√
ρ are deÞned as described in Section 2.3.1. Suppose w.l.o.g. (cf.

Section 1.2.3) that E
¡
R2
¢
= k such that the main diagonal elements of σ represent

the standard deviations of X. Now consider the standardized random vector

Y := σ−1 (X − µ) d= √ρRU (k).
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Pearson�s correlation coefficient is an estimator for ρ, i.e. the dispersion matrix of Y .
By studying its eigenvalues one concentrates on the linear dependence structure of X
without considering location and scales. This is similar to the trade off between joint
distribution functions and copulas discussed in Section 2.2.

2. Provided µ and σ are known the components of Y have unit variance. Due to the law of
large numbers the main diagonal elements of the sample covariance matrix (of a sample
drawn from Y ) converge strongly to 1. That is to say the sample covariance matrix
behaves like the corresponding sample correlation matrix, asymptotically. Thus we
can substitute the sample covariance matrix by the sample correlation matrix. Since
the main diagonal elements of the sample correlation matrix always correspond to 1
there is no need to standardize the data and σ2 can immediately be set to 1 in the
Marÿcenko-Pastur law.

Let the dispersion matrix Σ be deÞned as

Σ := ODO0, (8.2)

whereO is an orthonormal random matrix and D is a diagonal matrix with entries 1, 2, . . . , d.
Obviously, Σ has a linear eigenspectrum given by the main diagonal elements of D but ran-
domly generated eigenvectors. The expected eigenspectrum of the corresponding pseudo-
correlation matrix is also linear. In the following Þgure we see the histogram of the eigen-
values of the sample correlation matrix from a sample (n = 1000) of standardized t500-
distributed random vectors with uncorrelated components and ν = 5 degrees of freedom.
For comparison we see also a histogram of the eigenvalues of the sample correlation matrix
from a sample of random vectors X ∼ Nd (0,Σ) where Σ is obtained by the diagonaliza-
tion considered above. Note that the true eigenspectrum of the former sample is constant
whereas the true eigenspectrum of the latter sample is linear.
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Figure 8.4 Histogram of the eigenvalues of the sample correlation matrix of standar-
dized t500-distributed random vectors with ν = 5 degrees of freedom (left hand). His-
togram of the eigenvalues of the sample correlation matrix of normally distributed random
vectors (middle). The true eigenspectrum of the former sample (right hand, blue line) and
the true eigenspectrum of the latter sample (right hand, red line).

It is difficult to distinguish between the eigenspectra of both samples. Moreover, in practice
one would actually suggest that the true eigenspectrum of the Þrst sample is wider than the
true eigenspectrum of the second sample. But in fact the latter eigenspectrum is uniformly
distributed on [0, 2] whereas the former one has Dirac mass at 1. We conclude that the sample
covariance matrix or, alternatively, the sample correlation matrix is not an appropriate tool
for applying the Marÿcenko-Pastur law provided the data are elliptically distributed or even
generalized elliptically distributed.

It is worth to stress that if the considered data is assumed to be power tailed in the context of
elliptical distributions, then the data necessarily depend on each other. Conversely, assuming
the data to be power tailed but independent contradicts the elliptical distribution hypothesis.
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The Marÿcenko-Pastur law as given originally in the paper of 1967 is much weaker than usu-
ally stated. The relationship between the Marÿcenko-Pastur law and spherical distributions
should be clariÞed in the following.

Theorem 50 (Marÿcenko and Pastur, 1967) Let U (d), U (d)1 , U
(d)
2 , . . . , U

(d)
n (n = 1, 2, . . .)

be sequences of independent random vectors uniformly distributed on the unit hypersphere
Sd−1. Further, let T , T1, T2, . . . , Tn (n = 1, 2, . . .) be sequences of i.i.d. random variables
where each variable is independent of the corresponding unit random vector. Consider the
random matrix

nX
i=1

Ti U (d)i U
(d)0
i ,

where its empirical distribution function of the eigenvalues is denoted by cWd. Then, as
n→∞, d→∞, n/d→ q <∞,

cWd (λ)
p−→ FMP (λ ; q) ,

at all points where FMP is continuous. FMP is a c.d.f. given by

λ 7−→ FMP (λ ; q) = lim
x→−∞ lim

y&0

1

π
·
λZ
x

Im (T (t+ iy; q)) dt. (8.3)

Here T (· ; q) is the Stieltjes transform of FMP (· ; q) which is given by the solution of the
equation

T (x ; q) = −
µ
x− q ·E

µ
T

1 + T (x ; q) · T

¶¶−1
on the region where Im (x) > 0. Further, the Stieltjes transform exists and is unique.

Proof. Marÿcenko and Pastur, 1967.

Hence the Marÿcenko-Pastur law allows for negative T , i.e. complex valued generating vari-
ates which is not covered by the traditional theory of elliptical distributions. If T ≥a.s. 0
then

√
T U (d) corresponds to a spherically distributed random vector. Of course, if the

generating variate
√
T is regularly varying its tail index makes an impact on the Stieltjes

transform. But Marÿcenko and Pastur (1967) state that the Stieltjes transform generally
cannot be given in a closed form. A loophole which turns out to be very useful for analyzing
the spectral estimator is given by the following corollary.

Corollary 51 Let the conditions of Theorem 50 be fulÞlled. Additionally, let T be a dege-
nerated random variable corresponding to σ2 > 0. Then λ 7→ FMP (λ ; q) = FDirMP (λ ; q) +
F LebMP (λ ; q) where the Dirac part is given by

λ 7−→ FDirMP (λ ; q) =

(
1− q, λ ≥ 0, 0 ≤ q < 1,
0, else,

and the Lebesgue part λ 7→ F LebMP (λ ; q) =
R λ
−∞ f

Leb
MP (x ; q) dx is determined by the density

function

λ 7−→ fLebMP (λ ; q) =

 1
2πσ2 ·

√
(λmax−λ)(λ−λmin)

λ , λmin ≤ λ ≤ λmax,
0, else,

where
λmin,max := σ

2 (1±√q)2 .
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Proof. The Stieltjes transform is given by the solution of

T (x ; q) = −
µ
x− q · σ2

1 + T (x; q) · σ2

¶−1
,

i.e. (cf. Marÿcenko and Pastur, 1967)

T (x ; q) = −(1− q) + |1− q|
2x

+
−x+ |1− q| · σ2 +

q
(x− qσ2 + σ2)2 − 4xσ2

2xσ2
. (8.4)

Now, the limit law FMP can be obtained by taking the derivative of (8.3) with respect to λ,
i.e.

lim
y&0

1

π
· Im (T (λ+ iy; q)) .

Note that the Þrst term of (8.4) vanishes for q ≥ 1. But if 0 ≤ q < 1 it becomes

−1− q
x

= − 1− q
λ+ iy

= − (1− q) · λ− iy
λ2 + y2

,

and its imaginary part corresponds to (1− q) · y/
¡
λ2 + y2

¢
. Further,

lim
y&0

1− q
π

· y

λ2 + y2
= (1− q) · δ (λ) ,

where δ denotes the delta function. The second term of (8.4) leads to the Lebesgue density
function

λ 7−→ fLebMP (λ ; q) =
1

2πσ2
·

q
4qσ4 − (λ− qσ2 − σ2)2

λ
,

¡
λ− qσ2 − σ2

¢2 ≤ 4qσ4.
Note that

4qσ4 −
¡
λ− qσ2 − σ2

¢2
=

¡
2
√
q σ2 + λ− qσ2 − σ2

¢ ¡
2
√
q σ2 − λ+ qσ2 + σ2

¢
=

³
λ− σ2 (1−√q)2

´³
σ2 (1 +

√
q)
2 − λ

´
.

Now, suppose that T a.s.
= 1 and consider the random matrix

bΣMP := d

n
·
nX
i=1

U
(d)
i U

(d)0
i ,

which will be called in the following �Marÿcenko-Pastur operator�. It is clear that bΣMP and
1

q
·
nX
i=1

U
(d)
i U

(d)0
i

are asymptotically equivalent for P -almost all realizations since n/d→ q.

The Marÿcenko-Pastur law already given by (8.1) is simply obtained by setting T a.s.
= σ2/q in

Corollary 51. Surprisingly, formula (8.1) was given for the eigenvalues of sample covariance
matrices of i.i.d. centered elements like, e.g., for normally distributed random variables
rather than for the Marÿcenko-Pastur operator. But due to the strong law of large numbers
χ2d/d

a.s.→ 1 holds and we obtain the asymptotic equivalence of the Marÿcenko-Pastur operator
and the random matrix

d

n
·
nX
i=1

χ2d,i
d
· U (d)i U

(d)0
i =

1

n
·
nX
i=1

³q
χ2d,i U

(d)
i

´³q
χ2d,i U

(d)
i

´0
,
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which is just the sample covariance matrix of multivariate standard normally distributed
random vectors with uncorrelated components.

Note that the Marÿcenko-Pastur law can always be used in the simple form with σ2 = 1 if
the trace of the covariance matrix estimator which is used for extracting the eigenvalues
corresponds (asymptotically) to the dimension of the data. This is a priori given for the
sample correlation matrix. Further, every other covariance matrix estimator can be simply
normalized such that the trace corresponds to its dimension (cf. Section 2.4). Another way
to obtain the same result is given by normalizing the estimated eigenvalues such that their
sum corresponds to their quantity.

Now, by virtue of the argument given in the Þrst part of this thesis one may expect that the
Marÿcenko-Pastur operator is a better choice than the sample covariance matrix for analyzing
the eigenspectra of generalized elliptically distributed data where U (d) is simply taken from
the projections to the unit hypersphere. Indeed, if the data are spherically distributed or
only generalized elliptically distributed with dispersion matrix σ2Id and positive generating
variate then applying the Marÿcenko-Pastur operator leads to the desired result. This holds
independent of the generating variate. But if the data has a linear dependence structure
then the Marÿcenko-Pastur operator is a biased estimator. This is illustrated in the following
Þgure.
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Figure 8.5 Mean off diagonal elements of the Marÿcenko-Pastur operator (red line) of 1000
independent, standardized, and equicorrelated t500-distributed random vectors with ν = 5.
The true correlation is given by the green line. For comparison the mean off diagonal
elements of Pearson�s correlation coefficient is represented by the blue dotted line.

This can be explained as follows. Consider that the sample covariance matrix corresponds to
the ML-estimator for normally distributed data. Applying the sample covariance matrix or
the sample correlation matrix, alternatively, means trying to Þt the Gaussian density to the
realized data. But if the data is not normally distributed this approach may lead to wrong
conclusions. Now, the Marÿcenko-Pastur operator is nothing else but the sample covariance
matrix (up to an additional multiplication with d) applied to the data projected to the unit
hypersphere. But this data a priori suggest that there are spherical rather than elliptical
density contours and thus a bias towards the identity matrix occurs. Thus we conclude
that the Marÿcenko-Pastur operator is not appropriate for estimating the linear dependence
structure of generalized elliptically distributed data.

In Part I we investigated the statistical properties of the spectral estimator. It was shown
that the spectral estimator is a robust alternative to the sample covariance matrix. Recall
(cf. Section 4.2.2) that the spectral estimator corresponds to the solution of the Þxed-point
equation bΣ = d

n
·
nX
j=1

s·js0·j
s0·jbΣ−1s·j ,

where s·j (j = 1, . . . , n) are the data points projected to the unit hypersphere. Due to
Theorem 46 the spectral estimator converges strongly to the true dispersion matrix Σ. That
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means (for P -almost all realizations)

nX
j=1

s·js0·j
s0·jbΣ−1s·j −→

nX
j=1

s·js0·j
s0·jΣ−1s·j

, n −→∞, d const.

Consequently, if Σ = Id (up to a scaling constant) then

nX
j=1

s·js0·j
s0·jbΣ−1s·j −→

nX
j=1

s·js0·j , n −→∞, d const.

Hence the spectral estimator and the Marÿcenko-Pastur operator are asymptotically equiva-
lent. If the strong convergence holds anymore for n→∞, d→∞, n/d→ q > 1 then

bΣ −→ 1

q
·
nX
j=1

s·js0·j , n→∞, d→∞, n/d→ q > 1,

for P -almost all realizations where bΣ exists. Recall that n > d is a necessary condition
whereas n > d (d− 1) is a sufficient condition for the existence of the spectral estimator (cf.
Section 4.2.3). Several numerical experiments indicate that indeed the latter convergence
holds. Hence the spectral estimator seems to be a robust alternative to the sample covariance
matrix not only in the case of classical asymptotics but also in the context of random matrix
theory.

Figure 8.6 can be compared directly with Figure 8.4. We see the histogram of the eigenvalues
of the spectral estimator for the pseudo-correlation matrix of standardized t500-distributed
random vectors with ν = 5 degrees of freedom on the upper left. Analogously, the histogram
of its eigenvalues for the normally distributed random vectors used in Figure 8.4 is plotted on
the upper right. Note that the true eigenspectrum of the former sample is given by the blue
line of the right hand side of Figure 8.4 whereas the true eigenspectrum of the latter sample
is given by the red line, respectively. On the lower left and the lower right of Figure 8.6
are the corresponding empirical eigenvalue distributions obtained by the Marÿcenko-Pastur
operator.
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Figure 8.6 Histogram of the eigenvalues obtained by the spectral estimator (upper part)
and by the Marÿcenko-Pastur operator (lower part). The data is the same as in Figure 8.4.

Hence the spectral estimator is proposed for a robust analysis of the eigenspectrum of high-
dimensional generalized elliptically distributed data.
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8.2 Separation of Signal and Noise

Let Σ = ODO0 ∈ IRd×d be the dispersion matrix of an elliptical random vector. Here O and
D are deÞned as in the previous section (Eq. 8.2). But now D shall be a diagonal matrix
containing a �bulk� of equally small eigenvalues and a few large (but not necessarily equal)
eigenvalues. For the sake of simplicity suppose

D =
·
cIk 0
0 bId−k

¸
,

where b, c > 0, c > b, and k/d small. The k large eigenvalues can be interpreted as variances
of the driving risk factors (cf. Section 7.2) of

X
d
= µ+O

√
DRU (d),

whereas the d − k small eigenvalues are the variances of the residual risk factors. Suppose
that one is interested in estimating the �signal�, i.e. the number and the amount of the large
eigenvalues. This is demonstrated in the following.

Assume that n = 1000, d = 500 (i.e. q = 2) and a sample consists of normally distributed
random vectors with dispersion matrix Σ = ODO0, where b = 1, c = 20, and k = 25. By
using the sample covariance matrix and normalizing the eigenvalues one obtains exemplarily
the eigenspectrum and histogram of eigenvalues given in Figure 8.7. Clearly, one may sepa-
rate the 25 largest eigenvalues from the bulk of small ones. The bulk is characterized by the
property that it falls below the Marÿcenko-Pastur upper bound. But this is not sufficient for
assuming that the small 475 eigenvalues are equal, i.e. that the bulk represents �noise�. In
almost the same manner the residual eigenvalues could be linearly increasing, for instance.
Testing the bulk for noise is simply done by Þtting the Marÿcenko-Pastur law to the residual
(but re-normalized) eigenvalues (Figure 8.8).
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Figure 8.7 Estimated eigenvalues on a log-scale (left-hand) and histogram with correspon-
ding Marÿcenko-Pastur law (right hand) for c = 20.
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Figure 8.8 Histogram of the bulk eigenvalues with the corresponding Marÿcenko-Pastur law
for c = 20.
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We see that the bulk of eigenvalues indeed are due to random noise and conclude that the
signal consists of 25 eigenvalues.

Now, consider c = 2, i.e. the signal is close to noise. In the next Þgure we see that now it is
impossible to distinguish between small and large eigenvalues only by the eigenspectrum.
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Figure 8.9 Estimated eigenvalues on a log-scale (left-hand) and histogram with correspon-
ding Marÿcenko-Pastur law (right hand) for c = 2.

But one may separate the eigenvalues which exceed the Marÿcenko-Pastur upper bound.
More precisely, one pitches on the largest eigenvalues, iteratively, until there are no more
which exceed the upper bound. But note that the residual eigenvalues must be permanently
re-normalized and that the upper bound depends in each iteration on the number of residual
eigenvalues. It is not sufficient to take a look only on the original plot, especially if there
are very large eigenvalues relative to the spectrum. At the end the residuum should be
compared with the Marÿcenko-Pastur law. This can be done by the following Þgure.
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Figure 8.10 Histogram of the bulk eigenvalues with the corresponding Marÿcenko-Pastur
law for c = 2.

The number of separated eigenvalues corresponds only to 14 (instead of 25). This is due to
the fact that signal (c = 2) and noise (b = 1) are close to each other.

Now consider the same experiment but with multivariate t-distributed data with ν = 5
degrees of freedom. Applying the iterative method again leads to 122 driving risk factors
and 378 residuals. Thus the signal is overestimated, tremendously, what is also indicated by
the relatively bad Þt of the Marÿcenko-Pastur law (right hand of Figure 8.11). This is due
to the effect of regular variation of the multivariate t-distribution. In contrast, applying the
spectral estimator for the purpose of signal-noise separation leads only to 15 driving risk
factors vs. 485 residuals (see Figure 8.12).
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Figure 8.11 Estimated eigenvalues on a log-scale (left-hand) and histogram with corres-
ponding Marÿcenko-Pastur law (middle) by using the sample covariance matrix for c = 2 and
t-distributed data. Histogram of the bulk eigenvalues after separation of signal and noise
(right hand).
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Figure 8.12 Estimated eigenvalues on a log-scale (left-hand) and histogram with corres-
ponding Marÿcenko-Pastur law (middle) by using the spectral estimator for c = 2 and t-
distributed data. Histogram of the bulk eigenvalues after separation of signal and noise
(right hand).

We conclude that the spectral estimator is a robust alternative to the sample covariance
matrix also for signal-noise separation leading to a better understanding of high-dimensional
linear dependence structures if the data are elliptically distributed and regularly varying.

8.3 Application to Econophysics

For applying MPT (cf. Section 7.1) or PCA (cf. Section 7.2) on high-dimensional Þnancial
data it is suggested to consider the eigenspectrum of the corresponding covariance matrix
estimate. This was done recently by many authors from physics (see, e.g., Amaral et al.,
2002, Bouchaud et al., 2000, Bouchaud and Potters, 2000, Section 2.7, Gebbie and Wilcox,
2004, Kondor, Pafka, and Potters, 2004, Malevergne and Sornette, 2002, and Utsugi, Ino,
and Oshikawa, 2003). In most cases the authors take the sample correlation matrix for
extracting the eigenspectra. In the previous section it was shown that this may lead to
misinterpretations provided the data is regularly varying and the tail index is small. This
is usually the case for Þnancial data as it was shown in Section 6.1.

In the following the S&P 500 data considered so far are used to compare the results of the
sample covariance matrix with those of the spectral estimator. Note that only the current
285 stocks whose IPO date is before 1980-01-02 are taken into account. The corresponding
portfolio (�S&P 285�) is normalized to 1 on the 1st January, 1980.
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Figure 8.13 Index of the �S&P 285� (green line) from 1980-01-02 to 2003-10-06. Largest
relative eigenvalue estimated with the spectral estimator (blue line) and with the sample
covariance matrix (dashed line) over 15 time intervals each containing 400 daily log-returns.

The largest relative eigenvalue can be interpreted as the part of the price movements which is
due to the common market risk. We see that the sample covariance matrix overestimates the
largest relative eigenvalue (i.e. the largest eigenvalue divided by the sum of all eigenvalues)
during the 5th period which contains the Black Monday. Generally, the largest eigenvalue
obtained by the sample covariance matrix lies above the corresponding result of the spectral
estimator except for the last period. Nevertheless, also the spectral estimator indicates
that the inßuence of the main principal component, i.e. the largest eigenvalue varies over
time. Therefore it is reasonable to cut off signal from noise for each period separately by
using the method discussed above. For the sake of convenience we concentrate on the 5th
(which contains the October crash 1987) and on the 9th (the smallest eigenvalue period)
time interval.
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Figure 8.14 Histogram of the small (�bulk�) eigenvalues (upper left) and of the large eigen-
values (upper right) within the 5th period obtained by the sample covariance matrix after
signal-noise separation. The same obtained by the spectral estimator is represented in the
lower part. The largest eigenvalues (upper right: 42.23, lower right: 22.85) are suppressed
for the sake of transparency.
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In the 5th period (see Figure 8.14) the spectral estimator detects 79 large eigenvalues and
206 small eigenvalues (the �bulk�). The sample covariance matrix leads to 97 vs. 188 eigen-
values. The left pictures of Figure 8.14 actually indicate that the random noise hypothesis
is justiÞable. This is not the case for the large eigenvalue part of the data, i.e. the signal
seems to be heterogenous.

In the 9th period (see Figure 8.15) the spectral estimator detects 156 large eigenvalues
and 129 residuals whereas the sample covariance matrix produces 272 �genuine eigenvalues�
and only 13 �noise driven eigenvalues�. Even though the spectral estimator has the ability
to separate signal from noise more precisely there is no much evidence that the bulk of
eigenvalues is purely noise driven. Note that the results of the sample covariance matrix are
defective and allow no conclusion.
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Figure 8.15 Histogram of the small (�bulk�) eigenvalues (upper left) and of the large eigen-
values (upper right) within the 9th period obtained by the sample covariance matrix after
signal-noise separation. The same obtained by the spectral estimator is represented in the
lower part.

Hence the validity of the �signal/noise model� discussed in Section 8.2 depends strongly on
the considered period. It seems as if the signal/noise paradigm is only justiÞable if the
market participants agree about the state of the market which is obviously the case when a
crash occurs. In a similar empirical study of the S&P 500 Amaral et al. (2002) Þnd only a
few driving risk factors (approximately 2% of the number of dimensions) using the sample
correlation matrix. They argue that the bulk of eigenvalues can be simply determined by the
set of eigenvalues lying within the Marÿcenko-Pastur bounds λmin and λmax already in the
original histogram. Indeed, all the empirical studies mentioned above show that Þnancial
data exhibit a few yet very large eigenvalues. In this context more than ever it is important
to re-normalize the bulk of eigenvalues before drawing any conclusion. This is a possible
reason for the different Þndings presented here.

After the investigations above in the context of Þnancial data it is summarized that

1. the spectral estimator generally leads to smaller estimates of the largest eigenvalue,

2. similarly, brings the driving risk factors into a sharper focus, but

3. even though the largest eigenvalue lies many times over the upper Marÿcenko-Pastur
bound as a contradiction to other empirical Þndings it cannot be conÞrmed that there
are only a few large but many small and equal eigenvalues.
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Nevertheless, it should be pointed out that for dimension reduction via PCA or similar
methods it is mainly important that the data can be described properly by a small number
of variables. Fortunately, this seems to hold for Þnancial data despite the question whether
the bulk of information is pure noise or not.





Summary

The thesis recalls the traditional theory of elliptically symmetric distributions. Their basic
properties are derived in detail and some important additional properties are mentioned.
Further, the thesis concentrates on the dependence structures of elliptical or even meta-
elliptical distributions using extreme value theory and copulas. Some recent results con-
cerning regular variation and bivariate asymptotic dependence of elliptical distributions are
presented.

For measuring multivariate asymptotic dependence a new measure called �extremal depen-
dence coefficient� is introduced and calculated explicitly for the multivariate t-distribution.
It is pointed out that the probability of simultaneous extremes depends essentially on the
heavyness of the tail of the generating distribution function. The tail index is an appropriate
measure for the heavyness of the tail. It is shown that for a proper estimation of the tail
index one should rely on robust covariance matrix estimation. Therefore, a compact over-
view of methods for robust covariance matrix estimation is given together with a discussion
of their pros and cons.

The traditional class of elliptically symmetric distributions is extended to a new class of
�generalized elliptical distributions� to allow for asymmetry. This is motivated by obser-
vations of Þnancial data. All the ordinary components of elliptical distributions, i.e. the
generating variate R, the location parameter µ and the dispersion matrix Σ remain. Par-
ticularly, it is proved that skew-elliptical distributions belong to the class of generalized
elliptical distributions. The basic properties of generalized elliptical distributions are de-
rived and compared with those of elliptically symmetric distributions. It is shown that the
essential properties of elliptical distributions hold also within the broader class of generalized
elliptical distributions and some models are presented.

Motivated by heavy tails and asymmetries observed in Þnancial data the thesis aims at the
construction of a robust covariance matrix estimator in the context of generalized elliptical
distributions. A �spectral density approach� is used for eliminating the generating variate.
It is shown that the �spectral estimator� is an ML-estimator provided the location vector is
known. Nevertheless, it is robust within the class of generalized elliptical distributions since
it requires only the assumption that the generating variate has no atom at 0.

The spectral estimator can be used for estimating the empirical generating distribution
function, robustly, but preserving the outliers. Thus it is suitable for tail index estimation.
By deriving a Þxed-point representation of the spectral estimator it is concluded that it
corresponds to an M-estimator developed 1983 by Tyler. But in contrast to the more general
M-approach used by Tyler (1987a) the spectral estimator is derived on the basis of classical
maximum-likelihood theory. Hence, desired properties like, e.g., consistency, asymptotic
efficiency and normality follow in a straightforward manner. Both the Fisher information
matrix and the asymptotic covariance matrix are derived under the null hypothesis Σ = σ2Id
and compared with the statistical properties of the sample covariance matrix in the case of
normally distributed data.

Not only caused by the empirical evidence of extremes but also due to the inferential prob-
lems occuring for high-dimensional data the performance of the spectral estimator is inves-
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tigated in the context of modern portfolio theory and principal component analysis. The
spectral estimator makes an impact especially for risk minimization and principal component
analysis when the data is sufficiently heavy tailed.

Further, methods of random matrix theory are discussed. These are suitable for analyzing
high-dimensional covariance matrix estimates, i.e. given a small sample size compared to
the number of dimensions. It is shown that classical results of random matrix theory fail
if the sample covariance matrix is used in the context of elliptically of even generalized
elliptically distributed and heavy tailed data. Substituting the sample covariance matrix by
the spectral estimator resolves the problem and the classical arguments of random matrix
theory remain valid.

The thesis has mainly three contributions listed as follows.

1. The class of elliptically symmetric distributions is generalized to allow for asymmetry
and its basic properties are derived,

2. a completely robust covariance matrix estimator is developed and its properties are
obtained by maximum-likelihood theory and further,

3. it is shown that the corresponding estimator is a canonical random matrix for applying
random matrix theory in the context of generalized elliptical distributions.



List of Abbreviations

a.s. almost surely

c.d.f. cumulative density function

e.g. exempli gratia (for example)

EVT extreme value theory

GED generalized extreme value distribution

GPD generalized Pareto distribution

i.e. id est (that is)

i.i.d. independent and identically distributed

MCD minimum covariance determinant

MDA maximum domain of attraction

MPT modern portfolio theory

MVE minimum volume ellipsoid

PCA principal component analysis

p.d.f. probability density function

RMT random matrix theory

w.l.o.g. without loss of generality
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List of Symbols

0 zero scalar, zero vector, or zero matrix (depending on
the context)

1 vector of ones, i.e. 1 := (1, . . . , 1)

11x∈M indicator function, i.e. 11x∈M :=

½
1, x ∈M,
0, x /∈M.

] (u, v) angle between u and v

k·k arbitrary vector norm on IRd

k·k2 Euclidean norm

∧d (·) d-variate minimum copula (cf. Section 2.3.2)

A⊗B Kronecker product, i.e. if A ∈ IRq×r and B ∈ IRs×t then
A⊗B ∈ IRqs×rt is the matrix obtained by multiplying
each element of A with B

A0 transpose of the matrix A

A−1 Moore-Penrose inverse of the rectangular matrix A (cf.
Section �Mathematical Notation�)

A/x if A is a matrix and x ∈ IR\ {0} then A/x := x−1A

Beta (α, β) Beta distribution with parameters α and β

C (·) copula, i.e. a d-variate distribution function
C : [0, 1]

d → [0, 1] (cf. Section 2.2)eC (·) survival copula corresponding to C (·) (cf. Section 2.3.2)

C (·) survival function of C (·), i.e. u 7→ C (u) := eC (1− u)
(cf. Section 2.3.2)

d number of dimensions

|det (A)| absolute pseudo-determinant of a rectangular matrix A
(cf. Section �Mathematical Notation�)

diag (A) diagonal part of a square matrix A, i.e. diag (A) is a dia-
gonal matrix containing the main diagonal elements of A

D diagonal matrix with nonnegative elements

Ed (µ,Σ, φ) d-variate elliptical distribution with location vector µ,
dispersion matrix Σ, and characteristic generator φ
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xn = o (yn) xn/yn → 0, n→∞

xn = O (yn) lim sup |xn/yn| <∞, n→∞

Xn = oP (yn) Xn/yn
p→ 0, n→∞

Xn = OP (yn) plim sup |Xn/yn| <∞, n→∞

f (a−) limit �from the left�, i.e. f (a−) := limx%a f (x)

f (a+) limit �from the right�, i.e. f (a+) := limx&a f (x)

Fi (·) marginal c.d.f. of the i-th random component of a
random vector

FX (·) c.d.f. of the random vector (or variable) X

F ∗ (·) standard c.d.f., only containing copula parameters (cf.
Section 2.3.1)

FR (·) generating distribution function (cf. Section 1.1)

FBeta (· ;α, β) c.d.f. of the Beta distribution with parameters α and β

FX (·) survival function of the random variable X, i.e.
FX := 1− FX

F← (·) quantile function, i.e. p 7→ F← (p) := inf {x : F (x) ≥ p},
p ∈ ]0, 1[

FX ∈MDA(Hξ) the c.d.f. FX belongs to the maximum domain of attrac-
tion of the GEV Hξ (cf. Section 2.1)

F ∈MDA(H0) the c.d.f. F belongs to the Gumbel class (cf. Section 2.1)

F ∈MDA(Hξ>0) the c.d.f. F belongs to the Frechet class (cf. Section 2.1)

Fmin minimum of mapped random components, i.e.
Fmin := min {F1 (X1) , ..., Fd (Xd)} (cf. Section 2.3.2)

Fmax maximum of mapped random components, i.e.
Fmax := max {F1 (X1) , ..., Fd (Xd)} (cf. Section 2.3.2)

1F1 (· ;α, β) conßuent hypergeometric function with parameters α
and β (cf. Section 4.2.1)

�F estimate of the c.d.f. F

gR (·) density generator (given by the generating variate R)
(cf. Section 1.2)

Id d-dimensional identity matrix

I0 elementary information matrix of X ∼ Nd (0, Id) after
deleting the Þrst column and the Þrst row (cf. Sec-
tion 5.1)

J elementary information matrix of a unit random vector
(cf. Section 5.1)

J0 elementary information matrix of a unit random vector
in the case Σ = σ2Id (cf. Section 5.1)

Kλ (·) modiÞed Bessel function of the third kind with index λ
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Mn sample maximum of a sequence of i.i.d. random variables
(or vectors) X1, . . . ,Xn

MEd (µ,Σ, φ) d-variate meta-elliptical distribution with underlying
elliptical distribution Ed (µ,Σ, φ) (cf. Section 2.2)

Nd (µ,Σ) d-variate normal distribution with location vector µ and
covariance matrix Σ

N sub
d (µ,Σ, α) d-variate sub-Gaussian α-stable distribution with loca-

tion vector µ, covariance matrix Σ, and tail index α

IN set of natural numbers

O orthonormal square matrix

PS (·) spectral measure (cf. Section 2.2)

q effective sample size of high-dimensional random
matrices, i.e. n→∞, d→∞, n/d→ q <∞

r (A) rank of the matrix A

R vector of returns (cf. Section 7.1)

RP portfolio return (cf. Section 7.1.1)

IR set of real numbers

IR+ IR+ := {x ∈ IR : x ≥ 0}

IR+ IR+ := {x ∈ IR : x > 0}

IR IR ∪ {−∞,∞}

R generating variate (cf. Section 1.1)

sgn (x) sign of x, i.e. sgn (x) :=

 1, x > 0,
0, x = 0,

−1, x < 0.

SEd (µ, β,Σ, φ) d-variate skew-elliptical distribution with skewness
parameter β (cf. Section 3.1)

S unit random vector (cf. Section 4.2.1)

Sn sample of n realizations (cf. Section �Mathematical
Notation�)

Sd−1 unit hypersphere with d− 1 topological dimensions (cf.
Section 1.1)

Sd−1r Hypersphere with radius r and d− 1 topological
dimensions (cf. Section 1.2.1)

S S := S1, i.e. the unit circle

SΛ linear subspace of IRd spanned by a full rank matrix
Λ ∈ IRd×k

tr (A) trace of the matrix A

td (µ,Σ, ν) d-variate t-distribution with location vector µ, disper-
sion matrix Σ, and ν > 0 degrees of freedom
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td,ν (·) c.d.f. of the d-variate t-distribution with ν degrees of
freedom

tν (·) c.d.f. of Student�s univariate t-distribution with ν
degrees of freedom

t̄ν (·) survival function of Student�s univariate t-distribution
with ν degrees of freedom

T target horizon (cf. Section 7.1.1)

U (d) random vector uniformly distributed on the unit
hypersphere Sd−1

U (0, 1) standard uniform distribution

u (·) utility function (cf. Section 7.1.1)

vec (A) vector which is obtained by stacking the columns of the
matrix A

vec (bA ) vector of the lower triangular part of A without its up-
per left element (cf. Section 5.1)

V ar (X) covariance matrix of the random vector X (cf. Section
�Mathematical Notation�)

w (·) weight function (cf. Section 4.1)

w portfolio (cf. Section 7.1.1)cWd (·) empirical distribution function of eigenvalues (cf.
Section 8.1.1)

|x| absolute value (if x is a scalar) or cardinality (if x is a
set)

x := y x is deÞned as y

x ∝ y x is proportional to y

(x)
(k) rising factorial, i.e. (x)(k) := x · (x+ 1) · · · · · (x+ k − 1)

for k ∈ IN and (x)(0) := 1

x0.5 median of a random vector X (cf. Section 4.3)

bx0.5 sample median (cf. Section 4.3)

xF right endpoint of the c.d.f. F

X ∈MDA(Hξ) the same as FX ∈MDA(Hξ)

Z set of integers

α tail index

β Beta distributed random variable (cf. Section 1.2.5 and
Section 3.3) or vector of asset Betas (cf. Section 7.2)

∆µ vector of excess returns (cf. Section 7.1.1)

∆µM excess return of the market portfolio (cf. Section 7.2)

δ (u, v) radian measure for u, v ∈ Sd−1 (cf. Section 3.4)
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ε vector of idiosyncratic risks (cf. Section 7.2)

εL, εU lower/upper extremal dependence coefficient (cf.
Section 2.3.2)

ζ (·) certainty equivalent (cf. Section 7.1.1)

θ parameter (scalar, vector, or matrix)

�θ estimate of the parameter θ

θ0, ϑ vector of copula parameters (cf. Section 2.2)

κ kurtosis parameter (cf. Section 7.1.2)

λL, λU lower/upper tail dependence coefficient (cf. Section
2.3.1)

λmin, λmax Marÿcenko-Pastur bounds (cf. Section 8.1.2)

µ location vector

bµ location vector estimator

µP expected portfolio return (cf. Section 7.1.1)

ν degrees of freedom of the t-distribution

ξ score of a sample element (i.e. the elementary score)
(cf. Section 5.1)

ξn sample score (cf. Section 5.1)

Πd (·) d-variate product copula (cf. Section 2.3.2)

ρ pseudo-correlation coefficient or pseudo-correlation
matrix (depending on the context)

σ2P portfolio variance (cf. Section 7.1.1)

σ2M variance of the market portfolio (cf. Section 7.2)

Σ dispersion matrix, i.e. a positive (semi-)deÞnite matrixbΣ dispersion matrix estimatorbΣMP Marÿcenko-Pastur operator (cf. Section 8.1.2)

τ Kendall�s τ (cf. Section 2.3.1)

φX (·) characteristic generator of X

ϕX (·) characteristic function of X

ψ (·) spectral density function (cf. Section 4.2.1)

�ψ (·) skewed spectral density function (cf. Section 4.2.1)

ω optimal portfolio (cf. Section 7.1.1)

ω0 global minimum variance portfolio (cf. Section 7.1.1)

ωM market portfolio (cf. Section 7.2)

Ωd (·) characteristic generator of the uniform distribution on
the unit hypersphere Sd−1
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