Spiesshoefer, Jens ORCID: 0000-0001-8205-1749, Henke, Carolin, Herkenrath, Simon Dominik, Randerath, Winfried, Brix, Tobias, Goerliche, Dennis, Young, Peter and Boentert, Matthias (2019). Noninvasive Prediction of Twitch Transdiaphragmatic Pressure: Insights from Spirometry, Diaphragm Ultrasound, and Phrenic Nerve Stimulation Studies. Respiration, 98 (4). S. 301 - 312. BASEL: KARGER. ISSN 1423-0356

Full text not available from this repository.

Abstract

Background: Twitch transdiaphragmatic pressure (twPdi) following magnetic stimulation (MS) of the phrenic nerves is the gold standard for non-volitional assessment of diaphragm strength. Expiratory muscle function can be investigated using MS of the abdominal muscles and measurement of twitch gastric pressure (twPgas). Objectives: To investigate whether twitch pressures following MS of the phrenic and lower thoracic nerve roots can be predicted noninvasively by diaphragm ultrasound parameters and volitional tests of respiratory muscle strength. Methods: Sixty-three healthy subjects underwent standard spirometry, measurement of maximum inspiratory (PImax) and expiratory pressure (PEmax), and diaphragm ultrasound. TwPdi following cervical MS of the phrenic nerve roots and twPgas after lower thoracic MS (twPgas-Thor) were measured using esophageal and gastric balloon catheters inserted transnasally. Using surface electrodes, compound muscle action potentials (CMAP) were simultaneously recorded from the diaphragm or obliquus abdominis muscles, respectively. Results: Forced expiratory flow (FEF25-75) was significantly correlated with twPdi (r = 0.37; p = 0.003) and its components (twPgas and twitch esophageal pressure, twPes). Diaphragm excursion velocity during tidal breathing was correlated to twPes (r = 0.44; p = 0.02). No prediction of twitch pressures was possible from CMAP amplitude, forced vital capacity (FVC), or PImax. TwPgas-Thor was correlated with FEF25-75 (r = 0.46; p = 0.05) and diaphragm thickness at total lung capacity (r = 0.38; p = 0.04) but could not be predicted from CMAP amplitude, FVC, or PEmax. Conclusions: TwPdi and twPgas-Thor cannot be predicted from volitional measures of respiratory muscle strength, diaphragm and abdominal CMAP, or diaphragm ultrasound. Invasive recording of esophageal and gastric pressures following MS remains indispensable for objective assessment of respiratory muscle strength.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Spiesshoefer, JensUNSPECIFIEDorcid.org/0000-0001-8205-1749UNSPECIFIED
Henke, CarolinUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Herkenrath, Simon DominikUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Randerath, WinfriedUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Brix, TobiasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Goerliche, DennisUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Young, PeterUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Boentert, MatthiasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-132794
DOI: 10.1159/000501171
Journal or Publication Title: Respiration
Volume: 98
Number: 4
Page Range: S. 301 - 312
Date: 2019
Publisher: KARGER
Place of Publication: BASEL
ISSN: 1423-0356
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
CERVICAL MAGNETIC STIMULATION; RESPIRATORY MUSCLE FUNCTION; NASAL INSPIRATORY PRESSURE; MOUTH PRESSURE; SNIFF NASAL; REPRODUCIBILITY; CONDUCTION; STRENGTHMultiple languages
Respiratory SystemMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/13279

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item