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Abstract

In this work we investigate structure and evolution of regulatory sequences.
The regulation of a gene depends on the binding of transcription factors to
specific sites located in the regulatory region of the gene. The generation of
these binding sites and of cooperativity between them are essential building
blocks in the evolution of complex regulatory networks. We study a theoret-
ical model for the sequence evolution of binding sites, which includes point
mutations, selection, and genetic drift. Using empirically grounded fitness
landscapes, we demonstrate the possibility of selective sweeps generating a
new binding site for a given transcription factor.

We develop a code based on position weight matrices to detect transcription
factor binding sites. In parallel we use other scoring schemes for compar-
ison. We search computationally for coregulated genes at an inter-species
(human), and intra-species (human and mouse) level. This part of the thesis
was carried out in collaboration with Prof. Nikolaus Rajewsky at NYU.
Knowing that HIV-1 promoter is mutating fast, we also tried to determine
its transcription factor binding site structure in order to detect possible sites
for which there is no experimental evidence. In doing so, we detected all well
known binding sites, and discovered a novel site whose role is to be checked
experimentally.

Using the HIV-1 regulatory sequences, we have constructed a consistent phy-
logeny. Furthermore we observed many point mutations but few indels. Long
branches of the tree are seen to correspond to emergence of new subtypes.
We have carried out a differential analysis of mutations along the branches
of the tree for the subsequence containing putative binding sites and the
background. This study has shown an enhanced rate of substitutions per
nucleotide for the site regions along the inter-subtype branches of the phy-
logeny consistent with positive selection for changes within the binding sites.
Reasonable gauge of selective versus random mutations ratio is presented.
We predict the fitness of different subtypes in specific well defined environ-
ments from their sequence. The relationship between the fitness and the
binding probability for individual factors is quantified. This part of the the-
sis was carried out in close collaboration with Professor Nikolaus Rajewsky.

Zusammenfassung

Gegenstand dieser Arbeit ist die Untersuchung der Struktur und Evolu-
tion genetischer regulatorischer Sequenzen. Die Regulierung eines Gens ist
abhangig von der Bindung von Transkriptionsfaktoren an spezifische



Bindungsstellen in regulatorischen Regionen der Gene. Die Entstehung solcher
Bindungsstellen sowie kooperative Effekte zwischen Thnen sind die grundle-
genden Komponenten der Evolution komplexer regulatorischer Netzwerke.
Wir untersuchen ein theoretisches Modell fiir die Evolution der Sequenzen
von Bindungsstellen, das punktweise Mutationen, Selektion und genetis-
che Drift beinhaltet. Unter verwendung von Fitness-Landschaften, die auf
empirischen Daten basieren demonstrieren wir, dafl selektive sweeps neue
Bindungsstellen fiir einen gegebenen Transkriptionsfaktor generieren kénnen.
Dieser Teil der Arbeit wurde in Zusammenarbeit mit Professor Nikolaus Ra-
jewsky an der New York University durchgefiihrt.

Wir entwickeln einen Algorithmus, der auf positionsabhingigen Gewichts-
matrizen basiert, um Bindungsstellen fiir Transkriptionsfaktoren zu identi-
fizieren. Parallel dazu verwenden wir andere Bewertungsschemata zu Ver-
gleichszwecken. Wir fithren eine rechnergestiitze Suche nach korregulierten
Genen sowohl auf Inter- (Mensch) als auch Intra-Spezies Ebene (Mensch und
Maus) durch.

Es ist bekannt, dafl der HIV-1 Promoter schnell mutiert. Deshalb versuchen
wir, die Sktruktur der Transkriptionsfaktor-Bindungsstellen zu bestimmen,
mit dem Ziel, mogliche Bindungsstellen zu identifizieren, fiir die noch keine
experimentellen Hinweise bekannt sind. Die Aufklarung dieser Struktur fiihrt
nicht nur zum Auffinden aller bisher bekannten Bindungsstellen, sondern
liefert Hinweise auf eine neue Bindungsstelle, nach der nun experimentell
gesucht wird.

Unter Verwendung regulatorischer HIV-1 Sequenzen konstruieren wir einen
konsistenten phylogenetischen Stammbaum. Wir beobachten hier eine grosse
Anzahl von Punktmutationen, aber wenige insertions und deletions. Lange
Zweige des phylogenetischen Stammbaums werden als Entstehung neuer Sub-
typen gesehen. Wir fithren eine differentielle Analyse der Mutationen ent-
lang des Stammbaums durch, und zwar sowohl fiir solche Teilsequenzen, die
mogliche Bindungsstellen enthalten, als auch fiir den Hintergrund. Diese
Studie hat eine erhohte Rate von Substitutionen pro Nukleotid fiir die Regio-
nen entlang der Inter-Subtyp Zweige der Phylogenie gezeigt, was konsistent
ist mit positiver Selektion fiir Anderungen innerhalb der Bindungsstellen.
Eine plausible Abschiatzung des Verhéltnisses von selektiven zu zufilligen
Mutationen wird prasentiert.

Innerhalb von definierten Umgebungen sagen wir die Fitness verschiedener
Subtypen anhand der Sequenz vorher. Das Verhatnis zwischen Fitness und
der Bindungswahrscheinlichkeit wird fiir einzelne Faktoren quantifiziert. Dieser
Teil der Arbeit wurde in Zusammenarbeit mit Professor Nikolaus Rajewsky
erstellt.



Chapter 1

Preface



“What is life?” is the title of Schrédinger’s book [2], a physicist’s book
on biology. Physicists have played an important role in life science research
ever since, trying to answer major questions on the origin of life and its de-
velopment.

It is well known that species adapt to their environment in order to sur-
vive [3]. This adjustment occurs via internal changes resulting in improved
phenotype (an organism’s body with all its characteristics). A physicist, Max
Delbriick was one of the first [4,5] to distinguish between random and non
random variations. During the 1940’s, Delbriick and Luria performed exper-
iments with the bacterium E. coli and viruses infecting bacteria - phages.
They conjectured that changes to phage resistence are rare and occur spon-
taneously.

Some ten years later, the physicist Francis Crick wrote a letter to Delbriick
informing him about his work with James Watson, on the discovery of a
double-helix molecule - the famous DNA. They also proposed that DNA
could specify characteristics of an organism. Soon it became clear that inner
changes bringing about phenotype adaptation, turned out to be mutations
within the DNA molecule [6].

DNA or ’the book of life’ is universal, it encodes the organism’s building in-
structions in humans, animals, plants, bacteria and viruses, thus representing
its genome. With the advance of technology, it became possible to identify
all letters in the 'book of life’ in human, mouse, fly, worm, rice etc ( [97-99]).
Projects of 'writing down’ the sequence of letters in different species are tak-
ing place with an immense enthusiasm. Still, we are ignorant about many
parts of the sequence forming the DNA. The challenge is to decipher the
‘text’ in the book. What is known is that there are coding and noncoding
text. Coding text describes how proteins, building blocks of all organisms,
must be produced. Proteins can be divided into a constitutive and a regu-
latory group. While constitutive proteins build up an organism, regulatory
proteins (also known as Transcription Factors) play ’guardians’ that con-
trol how much of the protein should be produced. Noncoding text is still a
mystery. Some parts of it are responsible for controlling protein production,
and these 'chapters’ in the ’book of life’ are known as regulatory sequences
or promoters. They contain certain words (letter motifs), known as Tran-
scription Factor Binding Sites (TFBS) that bind Transcription Factors (TF).
Once TFs are bound to corresponding binding sites, a gene gets expressed
and protein production starts. This preparatory process of TFs attaching to
TFBSs is called transcription initiation (see Fig 1.1). After that, a portion of
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CHAPTER 1. PREFACE

unexpressed gene

|\

TFBS backgr ound

| EXPressed gene

Figure 1.1: Transcription initiation

DNA is transcribed (in a process of transcription) and the transcript is then
transformed into a protein (in a process called translation) (see Fig. 2.2).

In our study of the evolution of genetic networks, we want to gauge mu-
tational events by using powerful concepts of statistical physics and bioinfor-
matics.

In the chapter 2, we try to generalize and quantify empirical evidence on tran-
scriptional regulation via general statistical methods. We show how thermo-
dynamic concepts may be applied to TF-TFBS interactions. Thermodynam-
ics of a single and several TFBSs is discussed, together with bioinformatical
approaches for specific TFBS motif detection. We try to link the binding en-
ergy of a TFBS to a bioinformatical analog, motif score, and discuss possible
interpretations of fitness in terms of energy.

In chapter 3, we investigate how the regulation of a gene depends on the
binding of transcription factors to specific sites located in the regulatory re-
gion of the gene. The generation of these binding sites and cooperativity
between them are essential building blocks in the evolution of complex regu-
latory networks. We study a theoretical model for the sequence evolution of
binding sites driven by point mutations.

The approach is based on biophysical models for the binding of tran-
scription factors to DNA. Hence we derive empirically grounded fitness land-
scapes, which enter a population genetics model including mutations, genetic
drift, and selection.

We show that the selection for factor binding generically leads to specific
correlations between nucleotide frequencies at different positions of a binding
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site. We demonstrate the possibility of rapid adaptive evolution generating
a new binding site for a given transcription factor by point mutations. Ex-
perimental tests of this picture involving the statistics of polymorphisms and
phylogenies of sites are discussed.

In chapter 4, we give a detailed description of three different methods for
TFBS detection. After studying the sequence evolution of binding sites by
point mutations, we want to focus on TFBS detection on real-life sequences
from human and mouse. By performing comparative sequence analysis in
search for TFBS motifs, we want to predict coregulated genes within human
based on promoter sequence similarity between human and mouse. For this
purpose we use a well known gene in vertrebates, the TNF-a gene, playing
an important role in the immune system.

In chapters 5,6,7,8, equipped with general conjectures on transcriptional reg-
ulation and fitness on one side, and practical bioinformatical tools for genomic
sequence analysis on the other side, we try to understand evolutionary mech-
anisms in the HIV-1 promoter. Using the HIV promoter sequences, we have
constructed a consistent phylogeny, detecting many substitutions but few in-
sertions or deletions. The phylogenetic tree connects HIV-1 promoters based
on their sequence similarity. More similar sequences are closer, and less sim-
ilar sequences are further apart i.e. tree branches linking them are longer.
Long branches of the tree are seen to correspond to the emergence of new
subtypes. We have identified bioinformatically a number of TF binding sites.
We have carried out a differential analysis of mutations along the branches
of the tree for the sequence part containing putative binding sites and the
background sequence. The distribution of mutations per base (summed over
all branches) follows an approximate Poisson distribution, consistent with
the concept of an approximately random evolution of the background. The
regions containing binding sites are not significantly conserved. Rather, we
find an enhanced rate of substitutions per base for the site regions along the
inter-subtype branches of the phylogeny, consistent with positive selection
for change on the binding sites. This finding is also consistent with the em-
pirical data pointing at significant fitness differences in specific environment
between constructs differing in the promoter sequence.
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Chapter 2

Introduction to genomic
sequence analysis
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2.1. GENE EXPRESSION

C

GC

Figure 2.1: DNA double helix

2.1 Gene Expression

The responsibility of ensuring the transmission of the traits of an eukaryote
individual through generations is taken up by the nucleus of the organism’s
cell, which contains the Deoxyribonucleic acid or DNA. [6,94] DNA is also
present in prokaryotes that do not possess the nucleus, and carries out the
same task, transmission of the genetic information heritage. In some cases,
like in some types of viruses, the genetic information is encoded by RNA.
One way or the other, total description of an organism’s build up is
written in each cell, with the four letter alphabet (A, C, G, T for
DNA or A, C, G, U for RNA).

Precisely, the alphabet is given by bases that are grouped as Purines
and Pyridines. The Purines are represented by Adenine and Guanine (A,G),
while the Pyridines include Cytosine and Thymine (C,T). As, Cs, Gs and
Ts are attached to sugar phosphate molecules, which are the building blocks
of the DNA backbone. Each strand is a helix, wound around each other,
in an opposite direction. As always pair with Ts, and Gs with Cs, forming
a hydrogen bond, holding the two strands to make the double helix. The
nature of bonding between the bases results in two complementary strands
wound opposite to each other. The order of the bases codes the genetic
build up of an organism. It specifies its cells’ function and the way
of communication with the environment.

13
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2.2 Transcription and Translation of a Gene

In order to survive, a cell needs proteins, that play the role of molecular
machines.

e Proteins are made up of amino-acids. A protein is a line of amino-acids,
like a ”string of beads”.

e Amino-acids are lined up into a protein in ” protein factory”- organelles
(cellular ”organs”) called ribosomes. There are 20 different amino-
acids.

e Since each ”string” (protein) has its own combination of ”beads” (amino-
acids), the question arises:
In which order should amino-acids be strung together?

Gene expression is a two-stage process, involving transcription and trans-
lation, by which proteins are produced [87,94|. Transcription is the initial
step where genetic information in the DNA is copied to a single-stranded
molecule mRNA (messenger RNA). It is carried out in the following manner:

1. The DNA helix un-twists a portion of its length which contains the
information for a protein that is needed. Protein regulators turn on
a gene i.e. a gene gets expressed. There are different levels of ”being
turned on”, and these are called expression levels.

2. RNA polymerase ("a sack of letters A, G,U,C”) , with the help of
regulators, attaches to one DNA strand.

3. For each letter on the DNA strand, RNA polymerase will donate a let-
ter, in the antiparallel way: for A it will give U, for G—C etc. These let-
ters from ”the sack” will lign up into a strand, called m(essenger) RNA.

This new single-stranded molecule mRNA is the carrier of information which
is required in ribosomes. Once it is finished, it will leave the nucleus and
make its way into the ”protein factory”.

14



2.2. TRANSCRIPTION AND TRANSLATION OF A GENE

Transcri ption:
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Figure 2.2: Transcription and Translation
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CTEL TE2 ’—'
..ATGCF...@AT...G%AA...A ...... A

_ transcription
TATA- box start site

Figure 2.3: Transcription Initiation

... ACGTACGIC. . . DNA hel i x
... TGCATGCAG . .

... ACGUACGEUC. . . MRNA

- Thr-Tyr - Val - protein

Figure 2.4: Transcribed mRNA goes to ribosomes

Note the second step: *with the help of regulators ’. Transcriptional

regulation takes place in the sequence, which is located upstream (in front
of) of the protein coding DNA and is called promoter region. The promoter
region contains several short subsequences (also known as motifs) that bind
regulatory proteins called transcription factors (TFs) . Depending on which
motifs (or transcription factor binding sites TFBSs) are occupied (see Fig.
2.3) the gene can be turned on i.e. expressed.

2.3 The Evolution of Transcriptional Regula-
tion

Understanding transcriptional regulation is one of the most challenging tasks

of genome analysis. It comprises different fields of science, resulting in an

exciting interplay of biophysics, bioinformatics, evolutionary and molecular
biology.

16



2.3. THE EVOLUTION OF TRANSCRIPTIONAL REGULATION

The process of gene transcription is controlled by a complex machinery of
TFs. A cell must respond to extra and intra-cellular signals correctly, in
order to function properly. These responses are in the form of protein levels
produced, which are under tight control of transcriptional regulation. Recent
reviews [59] have argued that transcriptional regulation plays an important
role in evolution. Empirical evidence show that the complexity of differ-
ent organisms relies heavily on regulatory reorganization and development.
Although number of genes in higher organisms also increases, quantitative
difference can not account for immense difference in complexity. Fruit fly is
estimated of having about 13000 genes, nematode (a worm) has about 18000
genes, mouse about 30000 and human is said to have about 35000 genes, ac-
cording to the Human Genome Project. Still rice indica [96] has more genes
than humans. Also, if we compare mouse and human [97-99], a comparable
number of genes cannot explain the differences between these two species.

It turned out that changes in gene expression play a crucial role in
genotype-phenotype relationship in all organisms. Many regulatory
genes are common for different species, which raises a question: where do
distinct features come from? Since studies have shown that there are strong
correlations between gene expression and anatomy, it seems that reorgani-
zation of complex TF interactions leads to formation of different organisms
(since TF's themselves are proteins, thus being encoded by genes, we can re-
gard this TF interplay as a genetic network). For instance, domestication
of maize is partially due to changes in the promoter region of a gene encoding
a protein called teosinte-branched [49]. Another example is the HIV-1 virus:
one of its subtypes’ increased aggressiveness is due to changes in the pro-
moter [56,57] i.e. gain in an additional binding site motif for the TF called
NFkB.

Loss or gain of TFBSs happens due to mutations. Mutations can affect a
single base, in which case they are called point mutations, or sequence seg-
ments, known as segmental mutations. We are concerned with point muta-
tions, since they seem to be the major cause of promoter sequence alteration.
Point mutations can occur in different ways: as substitutions (replacement
of one base by another), as deletions (deletion of one or more bases) and as
insertions (insertion of one or more bases) [82].

Mutations may or may not affect the organism’s phenotype, which in turn
may influence the individual’s ability to survive or reproduce. This capability
of survival and reproduction is measured by the fitness of a genotype. Now,
fitness may be improved by a mutation (like a TFBS gain), and these are

17
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advantageous mutations. On the other hand, fitness may be reduced due to a
mutation (like a TFBS loss), and such mutations are denoted as deleterious.

A basic mechanism of the evolution of DNA sequences is comprised of
point mutations during evolutionary time [82, 87].
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2.4. INFORMATION INTEGRATION

2.4 Information Integration

Not all of the genes in a eukaryotic cell are expressed at any given time
point. Eukaryotic genomes comprise 102 — 10* genes, and only some genes
are expressed at certain time point, therefore controlling this differential
gene expression demands an extraordinary complex set of specific interac-
tions among transcription factors. It includes processes like transcriptional
initiation, mRNA and protein stability, intracellular trafficking etc. For ev-
ery eukaryotic gene encoding relevant information, transcriptional intitation
appears to be one of the primary determinant, if not the only one, of the
overall gene expression profile.

All proteins that regulate transcription directly or indirectly influence the fre-
quency with which the RNA polymerase complex assembles onto the basal
promoter. Genes encoding transcription factors possess some of the most
complex expression profiles, while those of constitutive ones are much sim-
pler [59].

At its most fundamental level, the function of a promoter is to integrate
information about the state of the cell, and to alter the rate of transcriptional
initiation of a single gene according to the cell’s needs. The inputs that a
promoter integrates are diverse, eventually reaching the promoter in the form
of TFs, that bind certain sequence motifs (TFBSs) of the DNA strand almost
always in front of a gene, altering rates of transcriptional initiation.

2.5 Thermodynamics of Transcription Factor
Binding

A TFBS is 10-15 bases long in procaryotes, and [=5-8 bases long in eukaryotes
(@ = (a1, as,...aq;)) . Experiments have revealed that TF-binding to TFBS is
specific, thus it can be quantified via specific binding energies [14], [20], [17],
[103]:

!

E(@) =) €ais (2.1)

i=1

The energy matrix has been determined from single-base substitution exper-
iments on TFs:
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1 2 |
A €A1 €42 - . . €4y
C €Eca €2 - - - €Cy
G €é1 €@2 - - - €qy
T €T1 €T,2 N s A

A few points could be generalized:
1. Positions ¢=1,2,...1 contribute independently to FE,.
2. There is typically one preferred base a*; at each position .
3. Mismatch energies €,, ; — €,+,; are typically in the range 1-3 kg7

4. The energy difference between optimal specific and unspecific binding
is approx. 15 kgT.

The authors of ref. [19] introduced a two-state approximation for individual
base energy contributions to the specific energy:
€a;i — €a*;0 = 6 CLZ',’L: ?é a:bl: (22)
€aii — €arii = 0,04,0 =074, 1
which leads to
E(d) = E* + de (2.3)

where d stands for the number of mismatches between @ and @x, so called
Hamming distance. If the optimal binding site looks like TTTTCC, motif
1 CTTTCC (d = 1) will have lower energy than the motif 2 CTAACC
(d = 3), thus binding the TF much better. The model is known in physics
as the Potts model.

Given the energies, we would like to determine the corresponding probabili-
ties. For that purpose, we write the likelihood of a state «

_E,
L, = exp (kBT) ) (2.4)

the partition function

—E
Z = = 2.5
;exp ( BT) ’ (2:5)
and arrive at the probability of state a:
—Eq

kT
ol 2.6
p 7 ( )
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2.5. THERMODYNAMICS OF TRANSCRIPTION FACTOR BINDING

0.8 1

0.6

P(d) |

0.2+ ,

o 2 4 6 8 10
Figure 2.5: Probability for specific binding

It turns out that the probability for a specific binding is a Fermi function
of the (specific binding) energy (see figure 2.5).

The Fermi step appears for a threshold energy, which depends on the
rest of the sequence, whether it is random or it offers many motifs of the
TEFBS-type under investigation. Therefore, an efficiency criterion must be
introduced, that the TF will bind an optimal binding site with a finite prob-
ability. Thanks to genome sequencing, we know that the length N (number
of bases) of the viral genome is of the order 103, that of bacteria 10° and of
humans 10°. Using the efficiency criterion, we can estimate the energy shift
between optimal and unspecific binding (Ey) [103]:

—BE* —BE
exp( kiT ) > Nexp( kiTO>

) (2.7)
BB o g N
kT
_BE* —B(E*
exp (L) > lexp (M)
kT kT (2.8)
€
LS
kgT — Ogl

The first condition refers to the background (rest of the DNA sequence)
and estimates the minimal length of a TFBS. The second condition refers to
mutations of an optimally binding TFBS. So far, we focused on thermody-
namics of a single TFBS. Yet, promoters contain several binding sites, and
a collection of these sites is called a module.
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A module is defined as a cluster of binding sites that influences the total
transcription profile. A single module typically contains about 6 to 15 bases
and binds 4 to 8 different TFs.

Deletion of a single module eliminates a specific aspect of the expression
profile without disrupting the remainder. Also, predictable artificial expres-
sion profiles can be obtained by experimentally combining modules from
different promoters [15], [59].

Thermodynamics of several TFBSs must be taken into account if we want
to describe real-life transcription initiation.

In a cell, there are n = 10% of different TF floating around. If we observe
specific binding probability as a function of Hamming distance d, we see that
it has a sigmoid form [17], [103], with a threshold p which divides binding
sites into two groups, functional and disfunctional.

The threshold value follows from the condition:

pe
— 1 2.9
nexp FnT (2.9)
yielding:
kT
p=-""logn (2.10)
€

Knowing that the assembly of TFs bound to their corresponding TFBS
results in transcription, and therefore in enhanced levels of gene expression,
we can try to estimate expression levels as a function of the logarithm of the
number of TFs n (see figure 2.6):

log Nithreshold = ki% (211)

Even within experimentally well-studied promoters, we should assume
that some binding sites remain uncharacterized. Yet, a few generalizations
can be made, such as TFBS typically comprise a minority of the bases within
a promoter region. Bases that do not fall into TF binding motifs are generally
assumed to be nonfunctional with respect to transcription and are denoted
as background.

Most binding sites can tolerate at least one, and often more, specific base
substitutions and still bind the same TFs. All sequences that are reported to
bind a particular TF with much higher specificity than random DNA
are often described by a position weight matrix (PWM).

Sequence comparisons (or the average sequence of multiple binding sites
of the same TF), yield a so called consensus sequence that captures most of
the weight matrix. PWMs are constructed from count matrices, that simply
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2.5. THERMODYNAMICS OF TRANSCRIPTION FACTOR BINDING

o o
) ©
T T
| |

Expression level
T
|

o
N
T
|

0 \ ‘ \ ‘ \ ‘ \ ‘
4 6 8 10
log n

Figure 2.6: Expression level

count how many bases were detected at each position of a TFBS for all trials.

T
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Here is an example where at the first position, out of 40 experiments, an A
was detected all 40 times, at the second position an A was found 35 times, a
C twice, etc.

Matrices of this sort can be found in the TRANSFAC Database at
http://www.gene-regulation.com/ and they are starting point for bioinfor-
matical detection of binding sites on DNA strand.

In order to detect a TFBS signal, we need a Null-model for comparison.
Therefore, a Markov model for background sequences is introduced:

Po(al, as, ...CLN) = Hpo(ak), ap = A, C, G, T, (212)
k
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where py(az) is background frequency of letter a at k* position.
On the other hand, the Markov model for a TFBS is of the form

Q(ab a2, ---al) = HQ(a'k)a ap = Aa Ca G, T’ (213)
k

where ¢(ay) is frequency of letter a at position k, obtained from count ma-
trices for a particular TF .

Of course, the probability model for a TFBS is different from the background
distribution. The difference between P, and @ is of exponential form:

Q(a) = Po(a) exp(S(a)), (2.14)

where S(a) is score matrix s,, » which looks very much like an energy. The
score of a motif is given by the sum of individual base scores [58], [103], [104]:

!
S(@) = sar k). (2.15)
k=1

The question arises what is the correct interpretation of the score S(a).
Is it related to the fitness under a population genetics model? Although the
score resembles an energy, is its connection to the concept of energy straight-
forward? We will try to answer some of these questions in the following
chapters.

There is no general framework for promoter evolution, due to the lack
of a reading frame, the low density of functionally important bases, and the
ability of many binding sites to operate in a position-independent manner.
It seems that the background located between binding sites should be free
to vary.

Assumed that the background mutates with neutral evolutionary rates,
two bases (say a and b) are replaced by each other with rates that are linked
to the stationary distribution (Fig 2.7):

Palta—b = Pbolbv—a (216)

Or in other words, a detailed balance condition is fulfilled in nature [103].
The rates {i} and equilibrium distributions {p} are very well known. For
example, it is a well known fact that different parts of the genome mutate
according to different rates. Basically, neutral evolution is a random process,
a process evolving without any selection.

As opposed to the background, TFBS are expected to mutate under selection
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“a- >b

a ™~ b
l-‘lb->a

Figure 2.7: Detailed balance rates

pressure in order to preserve their functionality. Fitness F' is defined as the
growth rate of a subpopulation M; compared to the rest of the population

dM;
dt
therefore it is proportional to the population size M, F' ~ log M, and it is a
function of a state a, F'(a@), where @ describes a sequence of genomic bases
(A, C, G, T). According to Kimura-Ohta theory [41], a state @ will transform

into a state b and vice versa, with a substitution rate u 3, obeying detailed
balance.

FM; = (2.17)

1 — exp [-4(F(b) — F(a))]
1 — exp[—4M (F(5) - F(@))]
The formula has a clear interpretation: the mutation rate of an event
that results in a fitness advantage will be higher than pu. The enhancement
factor % is 1 if there is no fitness difference AF = 0. There is an obvious
scaling variable contained in the above formula: 4MAF. Fitness difference

between the final and initial state is scaled. Now, the stationary distribution
can be computed from the equilibrium condition:

M

a—b Md‘—)l_; (2'18)

Qa)uz ;= QB)uz s (2.19)
yielding deviation from the background distribution:
Q(a@) = po(a@) exp(—4MF(d)) (2.20)
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So, how is bioinformatical score related to fitness? Since fitness depends
on the quality of genetic material, we can make an assumption that score
S(@) is directly related to the fitness advantage [103], [104], recalling eq.
2.14.

S(d) =4MF(a) (2.21)

On the other hand, fitness can be regarded in evolutionary theory as energy
in mechanics [38]. Fitness is defined as a nonnegative quantity, furthermore
up to an additive constant, therefore we can construct a fitness landscape,
in which evolutionary processes take place, very much like some energy land-
scape. The space where our sequences reside has its own metrics, called
Hamming distance. The difference would be that sequences tend to climb
up the fitness hills, while physical bodies tend to roll down into the energy
landscape valleys.

Understanding the dynamic link between genotype and phenotype is still
a central challenge in evolutionary biology. Phenotypic evolution is governed
heavily by transcriptional regulation [16]. It seems that promoters are more
’evolvable’ than coding regions. As it can be seen in TNF-a promoter, there
is evidence that natural selection acts on regulatory sequences from cases
of obvious evolutionary conservation among distantly related species. The
naive approach would be that new structures require formation of
new genes, while the more sophisticated view is that new structures
are built by reorganizing the interactions among existing genes. Al-
though it is believed that mutations within promoter regions constitute the
most 'relevant’ source of genetic variation, the fraction of TFBS changes ver-
sus background within regulatory sequences, is not known, even to a rough
approximation. Estimating this ratio represents an important challenge in
molecular evolution.
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CHAPTER 3. ON THE EVOLUTION OF GENE REGULATION

The results of this part were obtained in collaboration with Johannes
Berg and published in ref. [103].

3.1 Introduction to Quasispecies

In the early 1950’s Miller conducted experiments [90] showing that organic
substances, such as amino acids and nucleotides (DNA letters), could emerge
spontaneously from the nitrogen-hydrogen-carbon soup when electric dis-
charges were pumped in. These conditions are thought to represent a realis-
tic picture of the atmosphere on Earth just before life occurred.

Newly formed short molecular chains are believed to be capable of polymer-
izing, giving RNA and DNA strands. It is assumed that these polymers
started evolving under two ’forces’, called Darwinian selection and random
mutation. An attempt to describe a process of this kind mathematically
was introduced by [89]. The idea is that at the beginning there is a pool
of n sequences of length L, which we denote as the set {o* = (%1, ...,0%1)}
( [91]). Assuming that n, L > 1 and that the sequences reproduce at a
rate F(o%). The reproduction rate F(o*) is maximal for the ’best’ sequence,
so called, master sequence 0™. The closer some sequence o (in terms of
letter-structure) to the master sequence ¢™, the higher its reproduction rate,
also called fitness. Thus, we can say that F(o*) depends on o*’s Hamming
distance relative to 0™. The pool of {o*} is described by a time-dependent,
frequency distribution P(c*). Its evolution is described by the Schroedinger
equation for the population state

0,P = HP (3.1)

where F(o%) is a scalar potential. Random mutations are captured by the
kinetic term in the Hamiltonian H ( [91]).

The quasispecies theory [89] is widely applicable to a population of sequences
that undergo mutations and frequency-dependent selection ( [92]). In the
case of a four-letter alphabet {A,C, G, T(U)}, the letter strings are called
genotypes, playing the star role in the dynamics of a viral population.

3.2 Adaptive evolution of transcription fac-
tor binding sites

The expression of a gene is controlled by other genes expressed at the same
time and by external signals, a process called gene regulation [51]. Due to the
combinatorial complexity of regulation, a large number of functional tasks
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can be performed by a limited number of genes. Differences in gene regulation
are believed to be a major source of diversity in higher eukaryotes.

To a large extent, gene regulation is the control of transcription. It is
accomplished by a number of regulatory proteins called transcription factors
that bind to specific sites on DNA. These binding sites contain about 10 — 15
base pairs relevant for binding and are mostly located in the cis-regulatory
promoter region of a gene. A cis-regulatory region in FE. coli is about 300 base
pairs long and contains a few transcription factor binding sites [11]. There
may be two or more sites for the same factor in one promoter region. At
the same time, the sequences of binding sites are fuzzy, that is, different sites
for the same factor differ by about 20 — 30 percent of the bases relevant for
binding [11]. This makes the identification of sites a difficult bioinformatics
problem [12-14]. Frequently, the simultaneous binding at two nearby sites is
energetically favoured. This so-called binding cooperativity can be related to
various functions. In a genetic switch such as the famous page lambda switch
in Escherichia coli [52], it produces a sharp increase of the expression level at
a certain threshold concentration of a transcription factor. A pair of sites for
two different kinds of factors with cooperative binding can be a simple module
for signal integration, leading to the expression of the downstream gene only
when both kinds of factors are present simultaneously [51]. These examples
are discussed in more detail below. Regulation in higher eukaryotes shares
these features but is vastly more complicated [33]. A promoter region is
typically a few thousand base pairs long and contains many different binding
sites with often complex interactions. At the same time, individual sites
are shorter, with about 5-8 relevant base pairs. The sites are sometimes
organized in modules interspersed between regions containing no sites. In
many known cases, the expression of a gene depends on the simultaneous
presence of several factors. Well-studied examples of regulatory networks in
eukaryotes include the sea urchin Strongylocentrotus purpuratussea [15] and
the early developmental genes in Drosophila [16].

The sequence statistics of binding sites has been addressed in two recent
theoretical studies [17,18]. Based on an empirical model of sequence-factor in-
teraction [19,20], a fitness landscape for binding site sequences is constructed
(see the discussion in the next section). The resulting mutation-selection
equilibrium is analysed using a mean-field quasispecies approach [21]. This
approach, which neglects the effects of genetic drift, is applicable in very
large populations. In both studies [17, 18], fuzziness is attributed to muta-
tional entropy as a possible reason: the single or few sequence states with
optimal binding of the transcription factor can be outweighed by the vastly
higher number of sub-optimal states at some mutational distance from the
optimal binding sequence. This effect is similar to the fuzziness of amino
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acid sequences in proteins discussed in [22].

From an evolutionary perspective, explaining the molecular program-
ming of regulatory networks presents a striking problem. The diversification
of higher eukaryotes, in particular, requires the efficient generation and al-
teration of regulatory binding interactions. One likely mode of evolution is
gene duplications with subsequent complementary losses of function in both
copies [23,24]. However, the differentiation of regulation should also require
complementary processes that generate new functions of genes as a response
to specific demands. This task must be accomplished mainly by sequence evo-
lution of regulatory DNA. There are examples of highly conserved regulatory
sequences with a conserved function but binding sites can also appear, disap-
pear, or alter their sequence even between relatively closely related species;
see, e.g., refs. [25-29]. This turnover of binding sites has been argued to
follow an approximate molecular clock in Drosophila [30]. The transcription
factors themselves are known to remain more conserved, especially if they
are involved in the regulation of more than one gene.

The modes of regulatory sequence evolution and their relative importance
remain largely to be explored. Contributions may arise from point mutations,
slippage processes [31], and larger rearrangements of promoter regions [32].
The latter processes may lead to the shuffling of entire modules of binding
sites between different genes. In this chapter, we are more interested in
the local sequence evolution within a module, which has been argued to
contribute most of the promoter sequence difference between species [49]. It
is also the most promising starting point for a quantitative analysis of binding
site evolution. We study a theoretical model that takes into account point
mutations, selection, and genetic drift. The form of selection is inferred from
the biophysics of the binding interactions between transcription factors and
DNA.

We derive the stationary distribution of binding sites under selection,
which shows specific correlations between nucleotide frequencies at different
positions in a binding site. The non-stationary solutions of the model de-
scribe efficient adaptive pathways for the molecular evolution of regulatory
networks by point mutations. This efficiency can be quantified in terms of
the length of the binding motif, and the length of the promoter region, and
the fitness landscape for factor binding, which is amenable to quite explicit
modeling.

With the parameters found in natural systems, our model predicts that
a new binding site for a given transcription factor can be generated by a fast
series of adaptive substitutions, even if the expression of the corresponding
gene bears even a modest fitness advantage. The evolutionary time required
for site formation in response to a newly arising selection pressure is esti-
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mated in terms of the characteristic time scales of mutations, selection, and
drift. For Drosophila, it may be as short as 10° years even for moderate
selection pressures. However, this pathway is found to depend crucially on
the presence of selection. It would be too slow under neutral evolution, in
contrast to the results of [33], see also the recent discussion in [8]. Coopera-
tive interactions between binding sites can evolve adaptively on similar time
scales, as we show for the two simple examples alluded to above, the genetic
switch and the signal integration module. These results are discussed at the
end of the chapter with particular emphasis on possible experimental tests.

3.3 Factor Binding and Selection

The binding energy (measured in units of kgT") between a transcription fac-
tor and its binding site is, to a good approximation, the sum of independent
contributions from a small number of important positions of the binding site
sequence, E/kgT = >>'_ &, with £ ~ 10 — 15 [34,35,37]. The individual
contributions ¢; depend on the position 7 and on the nucleotide a; at that po-
sition. There is typically one particular nucleotide a; preferred for binding;
the sequence (aj,...,a;) is called the target sequence. The target sequence
can be inferred as the consensus sequence of a sufficiently large number of
equivalent sites. The so-called energy matriz €;(a) has been determined ex-
perimentally for some factors from in witro measurements of the binding
affinity for each single-nucleotide mutant of the target sequence. Typical
values for the loss in binding energy are 1-3 kg1 per single-nucleotide mis-
match away from the target sequence. In this chapter, we use the further
approximation ¢; = € if a; = a; and € = 0 otherwise, the so-called two-state
model [19]. The binding energy of any sequence (ai,...,as) is then, up to
an irrelevant constant, simply given by its Hamming distance r to the target
sequence: F/kgT = er. (The Hamming distance is defined as the number of
positions with a mismatch a; # a;.)

It is important to note the status of this “minimal model” of binding
energies for the discussion in this chapter. Both approximations underlying
the model can be violated. Even though typical mismatch energies are of
the same order of magnitude, there can be considerable differences between
different substitutions at one position and between different nucleotide posi-
tions. Moreover, deviations from the approximate additivity of binding en-
ergies for the single nucleotide positions have also been observed. However,
these complications do not affect the order-of-magnitude estimates for adap-
tive sequence evolution. As it will become clear, the efficiency of binding site
formation depends only on the qualitative shape of the fitness landscapes de-
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rived below. In these landscapes, the regime of weakly-binding sequences and
of strongly-binding sequences are separated by only a few single nucleotide
substitutions. The relative magnitude of the fitness increase of these sub-
stitutions does not matter in first approximation. Indeed, inhomogeneities
in the values of the ¢;(a) tend to reduce the number of crucial steps in the
adaptive process and thereby to further increase its speed.

Within the two-state model, the binding probability of the factor in ther-
modynamic equilibrium is

B 1
~ Ttexple(r—p)]

p (3.2)

Here € is the binding energy per nucleotide mismatch and €p is the chemical
potential measuring the factor concentration. Both parameters are expressed
in units of kg7 and hence dimensionless. Appropriate values for typical bind-
ing sites have been discussed extensively in refs. [17,20]. It is found that e
should take values around 2, which is consistent with the measurements for
known transcription factors mentioned above [34,35,37]. The chemical po-
tential depends on the number of transcription factors present in the cell, on
the binding probability to background sites elsewhere in the genome (which
have a sequence similar to the target sequence by chance), and on the func-
tional sites in the in the genome other than the binding site in question that
may compete for the same protein. Binding to background sites does not
significantly reduce the binding to a specific functional site [20]. This leads
to values p =~ (logny)/e ~ 2 — 4, given observed factor numbers n; of about
50 — 5000 [20]. Binding to other copies of the same functional sequence be-
comes only relevant at low factor concentrations and high number of copies,
when sites compete for factors.

A fitness landscape quantifies the fitness F(aq, ..., a,) of each sequence
state at the binding site. Fitness differences arise due to different expression
levels of the regulated gene, and these in turn depend on the binding of the
transcription factors. Following the conceptual framework of ref. [17], we
assume that the environment of the regulated gene can be described by a
number of cellular states (labelled by the index «) with different transcrip-
tion factor concentrations, i.e., with different chemical potentials p®. These
cellular states can be thought of as different stages within a cell cycle. In
each state, the fitness depends on the expression level of the regulated gene in
a specific way. This expression level is determined by the binding probability
p® of the transcription factor. Assuming that both dependencies are linear
(this is not crucial) and that the cellular states contribute additively to the
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overall fitness F', we obtain
F = Z s*p~. (3.3)

Here the selection coefficient s“ is defined as the fitness difference (due to
different expression of the downstream gene) between the cases of complete
factor binding and no binding in the state a. Such fitness differences can
now be measured directly in viral systems [57]. Inserting (3.2), the fitness
becomes a function of the Hamming distance r only.

In a simple case, there are just two relevant cellular states. The on state
favours expression of the gene, the off state disfavours it. It is then natural to
assume selection coefficients of similar magnitude; here we take for simplicity
s = 5" = —s°f > (0. We then obtain a crater landscape,

F(r)

1+ exple(r — pom)] 14 exple(r — p°ff)]’

(3.4)

with a high-fitness rim between p°® and p°® flanked by two sigmoid thresh-
olds; see fig. 3.7 (a). The generic features of this fitness landscape are easy to
interpret: the two-state selection assumed here favors intermediate binding
strength (i.e., intermediate Hamming distances ) where binding occurs and
the gene is expressed in the on state but not in the off state. Sequences with
large Hamming distance r > p,, can bind the factor neither in the on nor
in the off state, while sequences with r < pog lead to binding in the on and
the off state. Both cases lead to misregulation of the downstream gene, and
hence to a lower fitness.

An even simpler fitness landscape is obtained if only the on state con-
tributes significantly to selection, i.e., if s = s°® > 0 and s°® = 0. The crater
landscape then reduces to the mesa landscape discussed in [17,39],

S
 Ttexple(r —pm)]

F(r) (3.5)
which has a high-fitness plateau of radius p and one sigmoid threshold; see
fig. 3.7 (b). In this case, all sequences with sufficiently small Hamming
distance to the target sequence (r < p°") have a high fitness.

In both cases, the parameters of the binding model have a simple geo-
metric interpretation: e gives the slope and the p* give the positions of the
sigmoid thresholds in the fitness landscape. Egs. (3.4) and (3.5) are again to
be understood as minimal models of fitness landscapes for binding sites, rep-
resenting target sequence selection for a given level of binding (p°f < r < p°")
and for sufficiently strong binding (r < p°"), respectively. Despite its sim-
plicity, this type of selection model based on biophysical binding affinities is
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nontrivial from a population-genetic viewpoint since it leads to generic cor-
relations between frequencies of nucleotides a; and a; within a site, see the
Results section below. We will also study generalized models with correla-
tions between two sites generated by cooperative binding. On the other hand,
these models neglect the context dependence of the binding process through
cofactors and chromatin structure. However, they are a good starting point
for order-of magnitude estimates of the adaptive evolution of binding sites.

3.4 Mutations, Selections, and Genetic Drift

The rates of nucleotide point mutation show a great variation, ranging from
p ~ 10~* per site and generation for RNA viruses to values several orders of
magnitude lower in eukaryotes, e.g., u ~ 2x107% in Drosophila [40]. (Here we
model mutation as a single-parameter Markov process; we do not distinguish
between transitions and transversions.) The evolution of a sufficiently large
population under mutation and selection can be described in terms of the
average fraction of the population with a given binding sequence. This so-
called mean-field approach neglects the fluctuations due to finite population
size (genetic drift). It leads to the so-called quasispecies theory [21]. For a
population of sequences at a single binding site, the quasispecies population
equation can be written for the fraction n(r,t) of individuals at Hamming
distance r from the target sequence at time t. Along with a generalisation
for two binding sites, it has been analysed in detail in ref. [17]. For the mesa
landscape, the stationary solution mge(r) has been found exactly [39]. It
depends only on the ratio s/u and describes a stable polymorphic population,
i.e., several sequence states coexist. The mean-field approach is valid as long
as the stochastic reproductive fluctuations are leveled out by mutations. This
requires absolute population numbers Nngg(r) > 1/u for all relevant r, a
stringent condition on the total population size V.

This chapter is concerned with a different regime of population dynamics,
as described by the Kimura-Ohta theory for finite populations evolving by
stochastic fluctuations (genetic drift) and selection [9,36,41]. According to
this theory, a new mutant with a fitness difference AF' relative to the pre-
existing allele could spread to fixation in the population. This is a stochastic
process, whose rate constant is given by

1 —exp(—2AF)
1 — exp(—2NAF)

u = uN (3.6)

in a diffusion approximation valid for AF < 1 [42]. Here N is the effec-
tive population size (with an additional factor 2 for diploid populations).
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Eq. (3.6) has three well-known regimes. For substantially deleterious mu-
tations (NAF < — 1), substitutions are exponentially suppressed. Nearly
neutral substitutions (N|AF| < 1) occur at a rate u &~ p approximately
equal to the rate of mutations in an individual. For substantially beneficial
mutations (NAF > 1), the substitution rate is enhanced, with v ~ 2uNAF
for NAF > 1.

In this picture, a population has a monomorphic majority for most of the
time and occasional coexistence of two sequence states while a substitution
is going on. The time of coexistence is T' ~ N for nearly neutral and 7" ~
1/AF for strongly beneficial substitutions. The picture is thus self-consistent
for Tu < 1, i.e., for uN < 1. Asymptotically, it describes monomorphic
populations moving through sequence space with hopping rates u.

Introducing an ensemble of independent populations, this stochastic evo-
lution takes the form of a Master equation. For a single binding site, we
obtain

%P(r, t) =
(c—=1)(l—r+1)u—1,P(r—1,t)+
(r+1)upy1,P(r+1,t) —
[rure—1+ (¢ = 1)(€ = 1)ty ] P(r, 1) (3.7)

Here P(r,t) denotes the probability of finding a population at Hamming dis-
tance r from the target sequence, and u,, is given by (3.6) with AF =
F(r") — F(r). The combinatorial coefficients arise since a sequence at Ham-
ming distance r can mutate in (¢ — 1)(¢ — r) different ways that increase
r, and in r ways that decrease r, where ¢ = 4 is the number of different
nucleotides. The stationary distribution is

Byt (1) ~ exp[S(r) + 2N F(r)]. (3-8)

Here S(r) = log[(4)(c — 1)"/c] is the mutational entropy (the log fraction of
sequence states with Hamming distance r) [39] and we have used the exact
result U, 1,/ Upry1 = e2V"DAF To derive (3.8), we then simply approxi-
mated N — 1 by N. The form of Py, (r) reflects the selection pressure, i.e.,
the scale s of fitness differences in the landscape F(r). For neutral evolution
(2sN = 0), the stationary distribution

Pias(r) ~ Y exp[S(r)] (3.9)

is obtained from a flat distribution over all sequence states. For moderate
selection (25N ~ 1), Pyt (r) results from a nontrivial balance of stochasticity
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and selection. For strong selection (2sN > 1), Pya:(r) takes appreciable
values only at points of near-maximal fitness, where F(r)> F.c — 1/2sN.
In this regime, the dynamics of a population consists of beneficial mutations
only, i.e., the system moves uphill on its fitness landscape.

The Master equation (3.7) and the mean-field quasispecies equation thus
describe opposite asymptotic regimes, uN < 1 and uN > 1, of the evolu-
tionary dynamics. Effective population sizes show a large variation, from val-
ues of order 10° in viral systems to N ~ 10% in Drosophila and N ~ 10* — 103
in vertebrates. (These numbers bear some uncertainty; one reason is that N
varies across the genome [43].) We conclude that the mean-field quasispecies
is well suited for viral systems, while eukaryotes clearly show a stochastic
dynamics of substitutions.

3.5 Results and Discussion

3.5.1 Stationary distributions and nucleotide frequency
correlations

In the previous sections, we have expressed the fitness landscape and the
resulting population distributions as a function of the Hamming distance
r because it is a convenient parameterization of the binding energy in the
two-state model. In order to compare this approach to standard population
genetics, it is useful to recast eq. (3.8) for the elementary sequence states
(a1,...,a),

Pou(r)="DY_ Paulor,...,a), (3.10)

(a1y.-may)|r

where the sum runs over all sequence states at fixed r. At neutrality, the
distribution over sequence states factorizes in the single nucleotide positions,

I
Potar (@1, -, ) ZHVO(%‘)- (3.11)
i=1

In the specific case of the two-state model, vy(a;) is simply a flat distribution
over nucleotides but it is obvious how this form can be generalized to arbitrary
nucleotide frequencies.
According to eq. (3.8), the stationary distribution under selection takes
the form
Pstar (a1, - - -, 1) = Poyi(an, ..., a;) exp[2NF(r)]. (3.12)

The salient point is that F'(r) is generically a strongly nonlinear function of r
due to the sigmoid dependence of the binding probability on r. An analogous

36



3.5. RESULTS AND DISCUSSION

statement holds beyond the two-state approximation for the dependence of
F on the binding energy E. Hence, even if P, (a1,...,q) factorizes in the
single nucleotide positions, Psgat(ay,...,a;) does not. The selection intro-
duces specific correlations between the nucleotides: the fitness differences
and, hence, the nucleotide frequencies at one position ¢ depend on all other
[ — 1 positions in the motif.

3.5.2 Adaptive generation of a binding site

We now apply the dynamics (3.7) to the problem of adaptively generating
a binding site in response to a newly arising selection pressure. We study
a case of strong selection (sN = 100) in the crater fitness landscape (3.4)
with parameters £ = 10, € = 2, p°® = 3, p°T = 1 (implying that the factor
concentrations differ by a factor of 50), and a case of moderate selection
(sN = 7) in the mesa landscape with parameters £ = 10, ¢ = 1, p = 3.6.
(The mesa type may be most appropriate for factors with multiple binding
sites such as the CRP repressor in E. coli, where binding to an individual site
is negligible in the off state.) The fitness landscapes for both cases are shown
in fig. 3.7 (a,b) in units of the selection pressure s. Substantially beneficial
mutations occur only on their sigmoid slopes, i.e., in narrow ranges of . The
upper boundary of this region is given by r; = p°" +log[sN (e — 1)]/¢, which
takes typical values ry = 5 — 7. In fig. 3.7 (¢,d), we show a sample history of
adaptive substitutions from r = 5 to lower values of r, which are close to the
point rma, of maximal fitness. The statistics of this adaptation is governed
by the ensemble P(r,t); the average 7(¢) and the standard deviation dr(t)
appear also in fig. 3.7 (c,d). In the case of strong selection, the expected
time of the adaptive process is readily estimated in terms of the uphill rates
in (3.7),

Ts

1 1
L=g% 2 7Fe-D-F0) (3:13)

T=Tmax+1

and takes values of a few times 1/su/N. We emphasize again that this simple
form depends only on the qualitative form of the fitness landscape, namely,
that weakly and strongly binding sequence states are separated only by few
point mutations. The conclusions are thus largely independent of the details
of the fitness landscape, which justifies using the two-state approximation.
Can such a selective process actually happen? This depends on the
initial state of the promoter region in question before the selection pres-
sure for a new site sets in. The region is approximated as an ensemble of
Ly = L — ¢+ 1 candidate sites undergoing independent neutral evolution,
i.e., the simultaneous updating of /¢ sites by one mutation is replaced by
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independent mutations. The length of the promoter region is denoted by
L. At stationarity, the Hamming distance at a random site then follows
the distribution Pyt (r) ~ exp[S(r)] shown as empty bars in fig. 3.7 (e,f).
The minimal distance 7., in the entire region is given by the distribution
P(r) = QL. (r) — QL (r+1), where Qgar (1) = > rrsr Petat(r') is the cumula-
tive distribution for a single site. P(r) is found to be strongly peaked, taking
appreciable values only in the range 7, (¢, L) & 1 around its average. We
assume selective evolution sets in as soon as at least one site has a Hamming
distance r < rg. This is likely to happen spontaneously if 75> (4, L),
leading to a joint condition on ¢, L, and rs. For 73 <Tmm (¢, L) — 1, there is a

~

neutral waiting time before the onset of adaptation. Its expectation value

1 st (rs + 1)

T, =~
O WLy (rs 4 1) Pyae(rs + 1)

(3.14)

is calculated in the appendix. It is generically much larger than the adapta-
tion time T}, rendering the effective generation of a new site less feasible.

The stationary distribution Pyas(7) under selection is given by (3.8) and
shown as filled bars in fig. 3.7 (e,f). For strong selection, it is peaked at the
point 7., of maximal fitness. For moderate selection, it takes appreciable
values for r = 0 — 4: the binding site sequences are fuzzy. Assuming that the
CRP sites at different positions in the genome of E. coli have to a certain
extent evolved independently, we can fit Py, (r) with their distance distri-
bution (data taken from [17]). At the values of € and p°® chosen, the two
distributions fit well, see fig.3.7 (f). This finding is discussed in more detail
below.

3.5.3 Adaptation of Binding Cooperativity

The cooperative binding of transcription factors involves protein-protein in-
teractions which may be specific to the DNA substrate. These interactions
often do not require conformational changes of either protein involved and
depend only on few specific contact points. They result in a modest en-
ergy gain of order 3 — 4kgT [51]. Hence, it is a reasonable simplifica-
tion to study the adaptive adjustment of binding affinities using a sim-
ple generalisation of the two-state binding model. We define the energies
E,/kgT = ery and E,/kgT = ery for the binding of a single factor and
Epair/ kT = €[r1 + 15 — 2(7/£)(£ — 7)] for the simultaneous binding of both
factors. The cooperativity gain is assumed to result from mutations at /
positions in the DNA sequences of the factors, which encode the amino acids
at the protein-protein contact points. These mutations define a Hamming
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distance 7 = 0, ... ,57 from the target sequence for optimal protein-protein
binding, and gve/g is the binding energy per nucleotide. Here we use the
values € = 2, £ = 6 and 7 = 1 but the qualitative patterns shown below are
rather robust.

The resulting equilibrium probabilities for the four thermodynamic states
(——) (both factors unbound), (+—) and (—+) (one factor bound), and (++)
(both factors bound) are

q——,

g+ =q _exp[—e(ry — p1)], (3.15)
gy =q__ eXp[—E(Tz - /’32)],

G+ = q—— exp[—€(r1 + 12 — p1 — p2 — 27)],

with the normalisation ¢__ + g¢y— + ¢_+ + g1+ = 1. The scaled chemical
potentials p; and p, are independent variables if the two sites bind to different
kinds of factors and are equal if they bind to the same kind. As before, the
binding probabilities determine expression levels and, therefore, the fitness.
Here we study only pairs of sites contributing additively to the expression
level in each cellular state, where we have

F=30s"ad a2 +20,). (3.16)

(67

Other important cases include activator-repressor site pairs such as the fa-
mous lac operon [53], where the transcription-factor induced expression level
is proportional to ¢, _. The stochastic dynamics of substitutions is straight-
forward to generalise; it leads to a Master equation like (3.7) for the joint
distribution P(rq,79,7,t). This higher-dimensional equation can again be
solved exactly for its steady state

Pitat (11,79, 7) ~ exp[S(r1) + S(r2) + S(F) + 2N F(ry, 19, 7). (3.17)

Here we discuss two simple examples of fitness landscapes where binding
cooperativity evolves by adaptation to specific functional demands. A genetic
switch with a sharp expression threshold is favoured in a system with a single
transcription factor having similar concentrations in its on and off cellular
state. As can be seen from eq. (3.15), cooperative binding can sharpen
the response of the binding probability to variations in factor concentration,
giy ~ 1/[1 +exp(—2ep+ ...)] versus p ~ 1/[1 + exp(—ep + ...)] as given
by (3.2) for individual binding. Figs. 3.7 (a,c) show the fitness landscape
F(ri,79,7) obtained from (3.15) and (3.16) for p™ = 2.5, p°T = 1.5, and
s = s = —s°. A simple signal integration module responds to two different
factors in four different cellular states, (on, on), (on, off), (off, on), (off, off).
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Individually weak but cooperative binding leads to expression of the gene
only if both factors are present simultaneously. This case is favoured by a
fitness function of the form (3.16) with selection coefficients s = —s°foff
—gonoff — _goffon — gonon /9~ The resulting fitness landscape F(ry,79,7) is
shown in figs. 3.7 (b,d) for chemical potentials p°* = 3, p° = 1 (for each
factor).

In both cases, a pair of sites with weaker individual binding (r, ro = 3—4)
and cooperativity (7 = 1) is seen to have a higher fitness than an optimal
pair (r; = ro = 2) without cooperativity, as expected. Adaptive pathways
712(t) and () for strong selection (sN = 100) are shown in fig. 3.7 (e,f).
Typical adaptation times Ty are again a few times 1/(suN). A closer look
reveals that this fast adaptation sometimes leads to a metastable local fitness
maximum with some degree of cooperativity. Compensatory mutations (see
below) are then required to reach the global maximum, a process that may
be considerably slower. The fuzziness 671 »(t) and 6-(¢) observed in fig. 3.7
(e,f) decays on the larger time scale of compensatory mutations, reflecting
the presence of such metastable states.

3.6 Conclusions

Transcription factors and their binding sites emerge as a suitable starting
point for quantitative studies of gene regulation. Binding site sequences
are short and their sequence space is simple. Moreover, the link between
sequence, binding affinity, and fitness is experimentally accessible. For a
single site, the simplest examples are of the mesa [17] or of the crater type,
see fig. 3.7 (a,b). Landscapes for a pair of sites with cooperative binding
interactions are of a similar kind as shown in fig. 3.7 (a-d). They can be
used to predict the outcome of specific single-site mutation experiments to a
certain extent.

Fast adaptation may generate or eliminate a new binding site

Despite this simplicity, the evolutionary dynamics of binding sites is far from
trivial, since it is governed, in the generic case, by the interplay of three evo-
lutionary forces: selection, mutation, and genetic drift. Here we have focused
on the dynamical regime appropriate for eukaryotes, where the evolution can
be approximated as a stochastic process of substitutions. We find the pos-
sibility of selective pathways generating a new site in response to a newly
arising selection pressure, starting from a neutrally evolved initial state and
progressing by point substitutions. Such a selective formation takes roughly

40



3.6. CONCLUSIONS

T ~ Ar/(2suN) generations, where Ar is the number of adaptive substitu-
tions required. This number is given by the Hamming distance between the
onset of selection and the point of optimal fitness, Ar = r; — 7y, and takes
values 2 — 3 for typical fitness landscapes; see fig. 1(a,b). For Drosophila
melanogaster, with = 2 x 107 [40] and N = 10, the resulting 7} is of the
order of 10® generations or 10° years even for sites with a relatively small
selection coefficient s = 1073. Such selective processes are faster than neu-
tral evolution by a factor of about 1000 and would allow for independent
generation of sites even after the split from its closest relative Drosophila
simulans about 2.5 x 10® years ago. Notice that new sites are more readily
generated in large populations. As discussed above, generating a new site
may also require a neutral waiting time 7 until at least one candidate site
in the promoter region of the gene in question reaches the threshold distance
rs from the target sequence, where selection sets in. For site formation to
be efficient, however, selection must be able to set in spontaneously, i.e., Tj
must not greatly exceed the adaptive time 7. This places a bound on the
relevant length ¢ of the binding motif that can readily form in a promoter re-
gion of length L. Given L ~ 300, for example, a motif with £ =8 and r; = 3
could still allow for spontaneous adaptive site formation. (For longer motifs,
corresponding to groups of sites with fixed relative distance, this pathway
would require promoter regions of much larger L.) A more general case has
recently been treated numerically in [8], where the dependence of the neutral
waiting time on the G/C ratio of the initial sequence has been investigated.
One may speculate that this adaptive dynamics is indeed one of the factors
influencing the length of regulatory modules in higher eukaryotes.

Clearly, the present model also allows for pathways of negative selection
leading to the elimination of spurious binding sites in regulatory or non-
regulatory DNA where the binding has an adverse fitness effect. This is
important since under neutral evolution, candidate sites with a distance of
at most r; from the target sequence occur frequently on a genome-wide scale.
A recent study has indeed found evidence for such negative selection from
the underrepresentation of binding site motifs over the entire genome [50].

Binding sites under selection have nucleotide frequency correla-
tions

We have shown that under stationary selection the frequencies of nucleotides
at any two positions of the binding sequence are correlated. For the two-state
model, the correlations are the same for any pair of positions 7 # 7 and can be
computed exactly from the joint distribution (3.12). We emphasize that these
correlations refer to an ensemble of independently evolving (monomorphic)

41



CHAPTER 3. ON THE EVOLUTION OF GENE REGULATION

populations and are not to be confused with linkage disequilibria within one
population. This finding limits the accuracy of bioinformatic weight matrices,
which are often assumed to factorize in the nucleotide positions even in the
presence of selection.

Experimental tests: Binding site polymorphisms and phylogenies

The predictions of our model lend themselves to a number of experimen-
tal tests. In the dynamical regime appropriate for eukaryotes (uN < 1),
populations should be monomorphic at most positions of their binding site
sequences and polymorphic at a few. On the other hand, the quasispecies
model discussed in refs. [17,18] (which assumes pN > 1) may be most ap-
propriate in viral systems. The intermediate regime uN ~ 1 with frequent
polymorphisms and genetic drift could be realized in some bacterial systems
and presents a challenge for theory. Thus it would be very interesting to
compare the statistics of single-nucleotide polymorphisms at binding sites in
eukaryotes, bacteria, and viruses. Polymorphism data are expected to con-
tain evidence for adaptive evolution. However, statistical tests of selection
must be modified for promoter sequences [46,50]. A recent study uses data
on binding sites in three yeast species and deduces the rates of sequence
evolution [10].

A complementary source of information are phylogenies of binding sites.
Trees with functional differences between branches contain information on
the generation of new sites or of interactions between sites and on the time
scales involved. In a tree for a conserved site or group of sites with sufficiently
long branches, the fuzziness of the sequences observed on different branches is
given by the ensemble Py,; introduced above. For strong selection, Py, lives
on the quasi-neutral network of sequence states with maximal fitness, where
two neighbouring sequence states are linked by neutral mutations or by pairs
of compensatory mutations at two different positions. In the crater landscape
for a single site, this quasi-neutral network consists of all sequences with a
fixed distance 7 = rp,x from the target sequence; see fig. 3.7 (a). Beyond the
two-state approximation for binding energies, it will be smaller since only
some of the positions are energetically equivalent. For a group of sites, how-
ever, quasi-neutral networks can be larger since compensatory mutations can
also take place at positions on different sites as shown in fig. 3.7 (d) for the
example of a signal integration module. This is consistent with experimental
evidence that the sequence divergence between Drosophila melanogaster and
Drosophila pseudoobscura involves compensatory mutations and stabilising
selection between different binding sites [47].

For weaker selection, site fuzziness increases further since Py,; extends
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beyond the sequence states of maximal fitness and is influenced by muta-
tional entropy. As shown in fig. 3.7 (f), one can explain in this way the
observed fuzziness in CRP sites of E. coli. It would then reflect different
evolutionary histories of independent populations, rather than sampling in
one polymorphic population as in the quasispecies picture of refs. [17,18].
(In a mean-field quasispecies, appreciable fuzziness occurs only for selection
coefficients s ~ p, minute in other than viral systems.) However, the data
are also compatible with strong selection if the selection coefficients s*, and
hence the value of ry., vary between different genes. Clearly, comparing
Pyoy with the distribution of sites in a single genome requires the assump-
tion that the evolutionary histories of sites at different positions are at least
to some extent independent. Future data of orthologous sites in a sufficient
number of species will be more informative. Thus, further experimental ev-
idence is needed to clarify the role of mutational entropy in the observed
fuzziness.

Evolvability of binding sites

The present work was aimed at obtaining some insight into the molecular
mechanisms and constraints underlying the dynamics of complex regulatory
networks, thereby quantifying the notion of their evolvability. The program-
ming of binding sites and of cooperative interactions between them is found to
provide efficient modes of adaptive evolution whose tempo can be quantified
for the case of point mutations. The formation of complicated signal integra-
tion patterns and of multi-factor interactions in higher eukaryotes, however,
requires generalizing our arguments in two ways. There are further modes
of sequence evolution such as slippage events, insertions and deletions, large
scale relocation of promoter regions, and recombination. Our ongoing work
is aimed at quantifying their relative importance in terms of substitution
rates. Moreover, there are also more general fitness landscapes describing,
e.g., binding sites interacting via the expression level of the regulated gene
(such as activator-repressor site pairs) and the coupled evolution of binding
sites in different genes. The rapid evolution of networks hinges upon the
existence of adaptive pathways for these formative steps with a character-
istic time scale Ts ~ 1/(suN) much smaller than Ty ~ 1/pu, the time scale
of neutral evolution. The presence of these two time scales has a further
interesting consequence. If the selection pressure on an existing site ceases,
that site will disappear on the larger time scale Tj. It is possible, therefore,
that large existing networks have accumulated a considerable number of re-
dundant regulatory interactions acquired by selection in their past. This may
be one factor contributing to their robustness against perturbations.
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3.7 Methods - Neutral evolution of binding
sites

To estimate the average neutral waiting time 7j, we study the mutation
dynamics in the restricted range r = r, + 1, ..., ¢, allowing mutations from
rs + 1 to ry; but suppressing mutations from r, back to r; + 1. We evaluate
the time-dependent solution P(r,t) of the Master equation (3.7) with the
initial condition P(r,0) = Pyas(r), and the resulting cumulative probability
Q) = > sy, 41 P(r,t). The current across the lower boundary, J(t) =
wu(rs+1)P(rs+1,t) = —dQ/dt, determines the waiting time for a single site,

T, = /oo dtt J(t) = /oo dt Q(t). (3.18)

This is formally solved by expanding in eigenfunctions of the mutation op-
erator.

In the case relevant here, the system remains close to equilibrium since
the boundary current is much smaller than typical currents for r > r,.
Hence, P(r,t) & Pyt (r) exp(—At) with A = J(0)/Q(0) = p(rs + 1) Psar (rs +
1)/Qstas(rs + 1). We conclude that the waiting time for a single site is posi-
tive with probability Qstat(7s + 1), following a distribution ~ exp(—At), and
0 otherwise. The resulting expectation value is Ty = Qsggat(7s + 1)/A. For
L, independent sites, the distribution of positive waiting times is still ex-
ponential, and Ty is given by an expression of the form (3.18) with a total
boundary current J(t, L) = dQ%t(t)/dt. This yields Ty = QL (rs +1)/Li A
as given by (3.14). The average waiting time (in units of 1/u) becomes large
for values of r, in the tail of the distribution P(r), where Q4L (rs + 1) ~ 1.
This is the case for 75 <Tmm (¢, L) — 1.
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Fig. 3.7 Fitness landscapes and adaptive evolution for a single binding site. Strong
selection (sN = 100, left column), moderate selection (sN = 6.8, right column).
(a) Crater landscape (eq. 3.4) and (b) Mesa landscape (eq. 3.5), as a function of
the Hamming distance r from the target sequence (within the approximation of
the two-state model). (c,d) Adaptive dynamics as a function of time ¢ measured in
units of 1/2suN: Single history r(¢) (dashed lines), ensemble average 7(t) (thick
solid lines) and width given by the standard deviation curves 7(t) £ 467 (¢) (thin solid
lines). (e,f) Stationary ensembles Pyt () of binding site sequences with selection
(filled bars) and for neutral evolution (empty bars). Histogram of Hamming dis-
tances of CRP site sequences in E. coli from their consensus sequence (diamonds,
from [17]).
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Fig. 3.7 Fitness landscapes and adaptive evolution for a pair of sites with cooper-
ative binding. Genetic switch (left column), signal integration module (right col-
umn). (a,b) Fitness landscape F(r1,72) without cooperativity (y = 0). (c,d) Fit-
ness landscape F'(r1,72) with cooperativity (7 = 1). Next-nearest neighbour states
(r1,79) and (r] = r1 £ 1,7, = ro £ 1) of similar fitness are linked by compen-
4@tory mutations if the intermediate states (ry,75) and (r},r2) have lower fitness.
(e,f) Adaptive dynamics: ensemble averages 71 (t) = 7T2(t) and 7(¢) (thick lines),
ensemble width given by 71(¢) £ d71(¢) (same for 7o) and 7(t) £ dy(¢) (thin lines);
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The results of this part were obtained in collaboration with Prof. Nikolaus
Rajewsky (New York University) and Prof. Anne Goldfeld (Harvard Medical
School).

4.1 Gene Coregulation

So far, many promoters have been located experimentally. What is known is
that a particular set of TF's binding TFBS in a promoter, forms an enhanceo-
some which determines how many transcripts per second will be produced. In
short, enhanceosomes are machines that use an input concentrations of TFs,
do the mathematics, and as an output yield the rate of transcription [7,29].
The logic of regulatory sequences is still unknown and the question if there
is a code controlling how TFBS are organized is still to be answered.

Cells know how to select the right cocktail of genes to express and produce
TFs relevant for a tissue [59,87]. It turns out that the function of genes
is mainly transcriptional regulation (via TF production) over constitutive-
protein production. TFs bind to motifs in a promoter, thus turning on
transcription at the transcription start site (TSS). Not the whole of the
transcribed sequence is translated. The region between the TSS and the
translation start site is called 5’'UTR (five prime untranslated region).

We assume that ” similar “ promoters control coregulated genes. If different
genes are controlled by promoters containing same binding sites (in the first
approximation, regardless of synteny or number of binding sites), they are
likely to be expressed simultaneously, or at least in some correlated fashion.

4.2 Biology of TNF — «

A protein called human TUMOR NECROSIS FACTOR-«, from the family of
cytokines [88], induces apoptosis. Upon blood infection, TNF-« is produced,
which in turn stimulates many cell types to kill themselves, in particular cells
that line the blood vessels, thus causing circulatory failure or septic shock.
Human TNF-« promoter sequence is shown below [63,66]:
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>human-TNF-a-promoter
ATGCTTGTGTGTCCCCAACTTTCCAAATCCCCGCCCCC
GCGATGGAGAAGAAACCGAGACAGAAGGTGCAGGGCC
CACTACCGCTTCCTCCAGATGAGCTCATGGGTTTCTCC
ACCAAGGAAGTTTTCCGCTGGTTGAATGATTCTTTCCC
CGCCCTCCTCTCGCCCCAGGGACATATAAAGGCAGTTG
TTGGCACACCC

The TNF-« gene activation is one of the few examples in human and mouse,
where a detailed understanding of combinatorial transcriptional regulation
and specificity exists. Experiments have shown that different sets of tran-
scription factors bind to shared binding sites in the TNF — a promoter in
response to different stimuli [63, 64,66, 69]. Transcription of the TNF — «
requires specific sets of TFs and architectural proteins to form an active
higher-order complex called or enhanceosome. The Goldfeld lab investigated
different enhanceosomes, each being formed as a consequence of a distinct
stimulation.

stimulus | TF complex protein transcribed
Catt enhanceosomel | TNF — «
VITUS enhanceosome2 | TNF — «

TNF-a promoter comprise TFBS for the following TFs (see Fig. 4.1) :
1. CRE,
2. ETS,
3. NFAT,
4. SP1.

Upon Ca™* stimulation, only CRE and NFAT moleculues attach to the
promoter (see Fig. 4.2), while virus stimulation causes recruitment of ETS,
CRE, NFAT and SP1 (see Fig. 4.3).

Thus, activation of TNF-a gene transcription requires a unique combina-
tion of transcriptional activators and regulatory elements. In this fashion, a
single gene may be controlled in response to different extracellular stimuli.
Furthermore, the specificity of TNF-« transcriptional activation is achieved
through the assembly of stimulus-specific enhancer complexes and through
synergistic interactions among the distinct activators within these enhancer
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Figure 4.2: Ca™ stimulus-activated binding sites

complexes.

The table 4.1 clarifies synergy observed in experiments on viral stimulation.
If only one type of TFs is available, for example NFAT relative transcription
will be much lower than if NFAT binds the promoter at the same time as SP1.
If NFAT and SP1 both attach to their binding sites, relative transcription
will increase by a factor of 17. It will not simply be the sum of NFAT-alone
and SP1-alone relative transcriptions (here 4+18). This experiment, from
ref. [69] , is a beautiful example of TF synergy.

TF(s) relative transcription
NFAT 4

SP1 18

NFAT + SP1 70

CRE 2

CRE + NFAT 25

CRE + SP1 48

CRE + NFAT + SP1 | 720

Table 4.1: TF synergy from [69]
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Figure 4.3: Virus stimulus-activated binding sites

4.3 Conservation of Promoter Contents

It is believed that evolutionary conserved regions are most likely to be func-
tional [59]. On the other hand, regulation of genes, being combinatorial,
allows for different architecture of enhanceosomes ( loops, knots ... ). Yet,
TNF-a promoter lies right upstream from the gene. Its closeness and length
(200 bp) set limits to spacial organization of binding sites into enhanceo-
somes. Therefore we expect binding sites and their synteny to be conserved,
when we compare TN F' — « regulatory sequences at the cross-species level.
First, how can the degree to which two genomic sequences are similar be
quantified? A common ancestor, an ancestral sequence has evolved into
species-specific sequences via substitutions (point mutations) and indels (in-
sertions and deletions). Therefore, their dissimilarity is due to presence of
incorrect and missing bases. In order to see how much two different sequences
of lengths [, and [, overlap, they should be placed one over another according
to following rules:

e the original order of bases of the sequences must be unchanged,
e gaps may be inserted to either or to both sequences,

e the lengths of the sequences in the alignment must be equal.
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There are many different ways to align two sequences, and the question is
which alignment to choose, how to score the alignments [83-85]. In general a

scoring scheme is based on a (match)/(mismatch) score (D;;)/(—|D;|) and
a gap penalty g, 7 =1,...ly, j + 1, ...[o. For instance,
D;; = +1, match
D; ; = —1, mismatch (4.1)

g = —2,gap.

Using a scoring scheme, the /;x/o matrix is constructed. In the end, the score
of the alignment is the sum of individual scores for each base. But, the task is
to find the alignment which maximizes the score. Once an alignment-matrix-
path is chosen, computing the score is trivial (simple summing up), yet there
are many paths, and the best one should be picked out. The transfer-
matrix method (reinvented by computer scientists (Needleman-Wunsch) as
dynamic programming can solve the problem. The maximum score can
be computed, and this score represents similarity of two sequences. More
sophisticated algorithms have a gap extension penalty g. in addition to gap
(or gap open) penalty g,.

In general, there are three crucial steps in the dynamic programming algo-
rithm:

e Initialization.

e Matrix Fill.
e Traceback (Optimal Alignment).

If we need to compare more than two DNA strings, we must construct a
multiple alignment. Even for the low number of sequences, finding the best
multiple alignment is extremely time consuming. Therefore, fast heuristic
methods are exploited [84]. The most efficient method, so far, is the restric-
tion to aligning sequences pairwise and repetition of this procedure until all
sequences to be aligned are exhausted. One way to do this is an increment
approach, where two sequences are aligned, and then a third is added without
affecting the first-pair-alignment etc. Another way would be a divide-and-
conquer approach, where each sequence gets a partner, and their pair is then
aligned. The aligned pairs are combined into aligned groups, until a final
alignment is obtained.

The multiple alignment can be regarded as an evolutionary history of the se-
quences. The multiple alignment construction is equivalent to revealing the
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evolutionary relationships among the aligned sequences. If they align very
well, it is highly probable that they evolved recently from a common ances-
tor. Conversely, poorly aligned sequences are thought to have undergone a
more complex and longer evolutionary path.

In order to align our 16 vertebrate (see 4.4) TNF — « promoters, we use
a multiple alignment software ClustalW (http://www.ebi.ac.uk/clustalw/)
with default parameters. In general, the major shortcoming of ClustalW
program is the dependence of the final multiple alignment on the initial pair-
wise alignments, comprising the two most similar sequences. In order to
minimize errors, these two sequences should be as close as possible. In our
set. of sequences we do not encounter this problem since we have, among
other TNF-a promoters, the human and primate sequences, which are very
closely related.

Indeed, ClustalW yielded multiple alignment (see Fig. 4.4) which shows
that gaps do not fall into binding sites, as an evidence of TFBS conservation
[65,68]. Furthermore, the order of binding sites is conserved, too. It seems
that the specificity of the TFBSs is roughly conserved, if not completely, then
to a high degree.

4.4 Sequence Analysis of TNF-a promoter

In order to perform sequence analysis of the TNF-a promoter we focus on
three TFBS search methods: PWM (position weight matrix), AHAB and
SMASH. First, we give brief description of the three bioinformatical tools.

4.4.1 PWM

Experiments have shown that TFs can bind slightly different motifs, thus
tolerating, to some extent, variability of TFBSs. Gapless alignment of those
instances gives a count matrix fj; for a particular TF.

In general, if Q is a finite alphabet and |Q2| its cardinality
(19|=4, Q={A,C,G,T}), a PWM for a particular TF that binds motif of
length [, is an [x|Q2| matrix py; derived from the count matrix:

it
DPrj = N+4’

where k = 1,...[, 7 € Q and N is the total number of samples in the gapless
alignment [58, 76, 83].

(4.2)
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Figure 4.4: Multiple alignment of 16 vertrebate TNF-a promoters
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CHAPTER 4. SEARCH FOR CO-REGULATED GENES

Since pg; > 0 and Zj prj = 1, pi; represents a probabilistic description of
a motif. This procedure is commonly called regularization and the numbers
added to the count-matrix elements are called pseudocounts. Regularization,
in a way, makes up for finite-size effects i.e. finite number of samples used to
construct the count matrix. Here, we assume that, if 4 more samples were
available, there is an equal chance for each of the four bases to occur at each
position of the motif.

If too many pseudocounts are added when compared to real counts, motif
probabilistic profile would become distorted and the search method using
PWM would perform poorly.

Once probability matrices py; have been constructed, the position weight ma-
trices can be calculated. PWM elements are defined to be the log probability
of base occurrence. Since the search method should distinguish real TFBS
patterns from background, a null model must be introduced pyrgq. Thus,
PWM elements are given by

Wij = log&, (4.3)

DPokgd
representing log odds scores for each position k = 1,...0. If wy; > 0,
the observed base j is more likely under py; than it is under pyggq. At this
point we can mention another useful quality of pseudocounts. A count zero
may not be converted to logarithms, and addition of pseudocounts solves the
problem of singularities.

Score of a motif is the sum of individual position scores

l
k=1

While searching a sequence with PWM, we slide a window of length [ and
add [ logarithms to get a motif score. This is equivalent to multiplying the
probabilities of the bases at each motif position. For a sequence of length
L, there are L — [ 4+ 1 such windows, and their scores. In order to single
out putative TFBSs, we need to introduce a threshold score S; which will
separate significant from insignificant scores. We rated all window scores
for the TNF — « promoter and noticed a natural gap between ’good’ and
'bad’ values (see Fig. 4.5). ’Good’ means ’experimentally verified’. We used
this information to determine S;, for the purpose of searching TN F — a-like
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Natural gap in SP1 window scores
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Figure 4.5: Rated SP1 window scores in TNF-«

promoters.

4.4.2 AHAB

If we know which set of TF's influences expression of a gene, we can build a TF
motif-model for each TF on the basis of count matrices. As already described,
count matrices are directly related to probabilities to observe certain bases
at particular TFBSs. Each base position contributes to the free energy and
it seems that this contribution is independent. Thus, the probability of a
motif s to be a TFBS for some TF is:

l
Prob(s = TFBS) = [ [ ps = m(s|TF) (4.5)
k=1

Assume there are three different TFs {X,Y, Z} with position weight ma-
trices {Wx, Wy, W5} and we want to know what is an optimal probabilistic
tiling of a sequence s with TFBSs and background. Probability of one pos-
sible tiling T (or configuration) is given by:

P(T)= ][] prrm(sITF), (4.6)

TF=X,Y,Z
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CHAPTER 4. SEARCH FOR CO-REGULATED GENES

where prp is probability for attaching the TF to its motif and m is a measure
of how close is the motif to the TFBS consensus [55]. There has never been
reported that two TFs with overlapping TFBS bind simultaneously and the
above formula agrees with this, say, exclusion principle. Furthermore, if there
are multiple binding sites for the same TF, they are usually weak, another
experimental fact included in the mentioned formula. Therefore, AHAB takes
into account that quantity can make up for quality when multiple TFBS exist.

There are many possible configurations 7', each with likelihood P(T"). The
likelihood to observe s is then:

Z=> P(T), (4.7)

in the physics language, the partition function of the system. Z can be
computed recursively, using dynamic programming (transfer matrix method)
in a time proportional to the sequence length and the number of Wygs.
By trying out all parameters, the set {prr} which maximizes Z is chosen,
applying Mazimum Likelthood Method. Promoter score is:

Z
o= —log mer. (4.8)
Zbkgd
Precisely, the free energy of the system ¥ = —log Z is minimized:
oY
=0 4.9
oprF (4.9)

Finally, the probability P,(W|s) to observe the start of PWM of length
LTF is:
Z(l, k — 1)pTFm(s|WTF)Z(k + l, L)

P(W|s) = Z(1, 1) ;

(4.10)

where prp are from the converged set of probabilities {prr}.

4.4.3 SMASH

SMASH is an algorithm that can score sequences individually, as well as
estimate conserved non coding regions from pairwise (e.g. human/mouse)
sequence alignments and score them to detect putative TFBSs and back-
ground [54]. TFBS search is based on PWM method. In order to parse se-
quence pairs, SMASH takes as an input a set of TF weight matrices {Wrr}
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4.5. SEARCH FOR HUMAN/MOUSE TNF-a ORTHOLOGS

and the sequences to be scored. When compared to AHAB, SMASH’s ma-
jor difference is that the probability of a configuration 7' is computed via
uniformly chosen terms Crp instead of optimized parameters {prr}:

P(T) = | [ Crem(s|TF). (4.11)

The output comprises probabilities for each TF corresponding to {Wrr} to
bind at putative TFBSs in the sequence.

4.5 Search for human/mouse TNF-a Orthologs

Looking at the multiple alignment we can see that TNF-a promoters show
high similarity, supporting the assumption that they evolved from a com-
mon ancestor. Such genes are called orthologs. Our data set comprises mouse
cDNA sequences (cDNAs or complementary DNAs represent one-dimensional
information which codes for a protein. Upon mRNA extraction, with the help
of reverse transcriptase, a DNA copy (a cDNA) of the mRNA is created, and
stored in the ’library’.)

We start with MouSDB ¢DNA RIKEN set (= 19000 unique sequences,
assembled by Mihaela Zavolan, Rockefeller University) of sequences. Each
sequence is 50001 bases long, with an 5’UTR, start in the middle. (see Fig.
4.6) Next, we extract 2001-bases-long subsequences with the 5’UTR start
in the middle, i.e. the 5’UTR start flanked by 1000 bases on both sides.
By using PWM, we scored all the sequences and collected a set of those
sequences that contain CRE consensus "TGAGCTCA’ (& 1000 sequences).
Since TNF-a promoter contains a CRE TFBS in the middle, we decided to
focus on DNA strings of bases that also contain a CRE binding motif in the
center. Out of those CRE-containing sequences, we pulled out subsequences
of 300-base -length with the CRE start in the center. Introducing a simple
criterion that content-similar promoters will lead us to coregulated genes, we
scored (PWM) the latter sequences to see how many of them contain each of
the transcription factor binding sites (CRE, SP1,NFAT, ETS) and obtained
29 hits.

We repeat the same procedure starting with 2001-bp-long sequences cen-
tered around a letter 20 000 bases away from the UTR start, and detected
20 such CRE-keyed sequences.

Higher density of TNF-a-like sequences in the vicinity of the 5’UTR start,
motivated us to continue the search for human orthologs using the set of

29
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CRE-keyed mouse sequences.
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4.6 TNF-a Coregulated Genes in Humans

4.6.1 BLAST

So far, we looked for highly conserved substrings of bases (TFBS motifs)
by constructing alignments of entire sequences (TNF-a promoters), based
on a transfer-matrix application to computer science i.e. the Needleman-
Wunsch algorithm which constructs global alignments. Since we are after
TNF-a-similar regulatory sequences, we would like to align the human TNF-
a promoter (= 200 bases long) against substrings of the entire human genome
(~ 3x10? bases long) and detect putative TNF-« co-regulated genes’ promot-
ers. Therefore we need to construct local alignments. A local alignment of
two DNA strings is an alignment of any subsequence of the first and any
subsequence of the second DNA string. Local similarity is quantified as the
highest score yielded by any local alignment of the two sequences. The local
alignment algorithm is a modification of the Needleman-Wunsch procedure,

DiJ = max{Di_Lj_l + d(Z,]),

mangl(Di—z,j—gz)v

(4.12)
maty<i(Dij—y—g,)
¥
called the Smith-Waterman algorithm:
H;; =max{H;_1 -1+ h(s,J),
mazz<i(Hi—zj-g,),
mazy<i (Hij—y- gy) (4.13)

},

where h(Z,j) is the alignment score of the bases at positions j and j, g, is
the penalty for a gap of length z in the first sequence, and g, is the penalty
for a gap of length y in the second sequence.

It is implemented into the heuristic similarity-searching program : BLAST,
(83, 84].

BLAST anchors identical snippets of certain length (in BLAST termi-
nology this option is called 'word length’ denoted by ’-W’), i.e. number of
consecutive identities in order to detect a signal. For noncoding regions -W
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should be the lowest possible. For example, if two sequences are very similar,
but one has mutations every 7 bases, search with ~W 7’ will not yield any
signal at all. Identification of high-scoring word pairs leads to high-scoring
alignments. Thus, BLAST heuristics is efficient in aligning sequences in a
database (e.g. Human Genome) with a given query sequence to identify
those that are most similar to the query. Besides -W, there are other options
available to adjust similarity search to particular cases. For instance, chimp
and human have genomes which are identical up to 98%, while mouse and
human are known to be identical (in the DNA build-up, of course!) up to
70%. Meaning that, if we compare same-function sequences in mouse and
human, it does not make sense to increase stringency level above 70%.

Suppose we found a score R by BLAST-ing a query sequence against the
human genome. What is the probability to find R by chance, in other words,
how many matches to a random string of bases can be found with some
score Ry < R 7 The quantity E, the ’E-value’ of score R, for query length
l; and database length [, gives a good approximation of score distribution.
It is known that local ungapped scoring is Poisson distributed with mean
E(R) = Klyly exp(—AR):

Prob(Ry < R) = 1 — exp(—E(R)) (4.14)

giving extreme-value distribution (also known as Gumbel distribution).

4.6.2 Results

Our data set comprises a set of mouse sequences that have a CRE binding
motif in the middle and at least one of the other three TFBS, namely, ETS,
NFAT and SP1. After masking repeats, we search among them for putative
promoters (TNF-a-like, i.e. &~ 200 bases long and of similar content). Besides
TFEFBS probabilities, the AHAB scoring scheme yields scores for sequences as
a whole ¥, which we can call free energy. Therefore we begin with iden-
tifying those CRE-centered sequences that have best 60 scores. The score
distribution of 962 CRE-keyed mouse sequences is shown in figure 4.7.

Before, we scored the CRE-keyed sequences applying the PWM scoring
scheme which simply identifies motifs close to the consensus of corresponding
TFs, without taking into account overlapping of binding sites. 29 sequences
had at least one of all types of binding sites found in the TNF-a promoter.

We BLASTed well-scoring ( 60 obtained by AHAB and 29 by PWM
scheme) CRE-centered mouse sequences against human genome with param-
eters:
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AHAB 'Free Energy’ Distribution

frequency (W)

I
25 30

Figure 4.7: AHAB: Distribution of ¥ for 962 mouse CRE-centered sequences

-W7-elel1l5-r3-G3

i.e. word size (-W) 7, E-value (-¢) 107!, reward for base match (-r) 3
and cost to open gap (-G) 3.

This yielded ( in all but one case ) unique coordinates in the human
genome which match the mouse sequences.

Out of those human sequences that aligned well we picked out 10 best
AHAB-scored sequences, while we accepted all human sequences that aligned
well with mouse sequences obtained by PWM ( 14 sequences).

Here we present the 24 human sequences that may be coregulated with
the TNF-a. We searched them to identify binding sites with the following
consensus motifs, using four different scoring schemes: AHAB, SMASH ,
SMASH on human/mouse pairs of sequences and PWM (Figures 4.8, 4.9,
4.10, 4.11):

1. NFAT, brown;
2. CRE, red;
3. SP1, green;

4. ETS, blue;
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4.6. TNF-a COREGULATED GENES IN HUMANS

In total we ended up with 24 human sequences, whose annotation ( if
available at UCSC ) is given in table 4.6.2. These sequences ( labeled by
a corresponding mouse cDNA together with the position of its alignment in
the human genome ) sit in front of the genes described in the second column.

Description ’ chr#:start position-end position ’ refers to the location of a
human sequence in the Human Genome (version: April 2003) at:

http://genome.ucsc.edu/
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seq human description
1 s5¢c110809-matches-chr3:114746277-114745994 MAK3P; Molecular function:
N-acetyltransferase activity
(inferred from electronic annotation).
2 sc116439-matches-chr1:109396215-109395950 contains 1 SH3 domain:
Epidermal growth factor receptor
3 5c116877-matches-chr9:126941746-126942058 hypothetical
4 scl17576-matches-chr20:32918601-32918858 C20o0rf144, CTE4-HUMAN
Inhibits the interaction of APBA2 with
beta-amyloid precursor protein (APP),
and hence allows formation of beta-amyloid
5 scl17819-matches-chr20:63205873-63206141 predicted
6 5c118978-matches-chr4:152403723-152403391 nothing
7 scl2031-matches-chr17:9789642-9789461 GAS-T7;
may play a role in promoting maturation
and morphological differentiation
of cerebral neurons
8 5c122882-matches-chr19:59339888-59340229 hypothetical
9 scl2500-matches-chr17:40761180-40761516 EZH1-human
may be involved in the regulation of
gene transcription and chromatin structure
10 scl2739-matches-chrl17:78371307-78371597 predicted, yet
tissue: adenocarcinoma, colon
11 scl4423-matches-chr17:10684655-10684347 predicted
12 scl4877-matches-chr17:40894687-40894888 PSE3-HUMAN
Implicated in immunoproteasome assembly
and required for efficient antigen processing.
The PA28 activator complex enhances the generation
of class I binding peptides by altering the cleavage
pattern of the proteasome;
Synonym: Ki nuclear autoantigen
A strong candidate for the breast and ovarian cancer
susceptibility gene BRCAL1.
13 scl6l11l-matches-chrl14:76256526-76256796 BC017459, predicted, found in
Tissue: colon, adenocarcinoma
14 scl7533-matches-chr6:26187031-26186711 H2AL-HUMAN
Molecular function: DNA binding
15 scl4915-matches-chr17:43513868-43514168 predicted
16 scl4915-matches-chr17:63187743-63188044 predicted
17 scl776-matches-chrX:97935471-97935771 sushi-repeat containing protein , SRPUL :
biological process: oncogenesis
18 scl11629-matches-chr16:360876-360590 predicted
19 scl2738-matches-chr17:78332287-78332607 CBXS8- involved in maintaining
the transcriptionally repressive
state of genes; modifies chromatin
20 scl14246-matches-chr2:160927277-160927563 ITGB6-the gene organization
of the human beta 7 subunit
the common beta subunit of the
leukocyte integrins HML-1 and LPAM-1
21 scl14331-matches-chr2:178455289-178455578 predicted
22 5c122077-matches-chr7:155988313-155988653 hypothetical, sits in front of C7orf2
23 scl113686-matches-chr1:167340318-167340556 PMX-1 related to acute myeloid leukemia
MA17-HUMAN associated protein,
24 5c120768-matches-chr1:47014360-47014632 may play an important role in tumor biology

This result may be important for tumor/stress biology, but it also allows
us to study how regulatory control elements for the TNF-« coregulated genes

have evolved.

66




4.6. TNF-a COREGULATED GENES IN HUMANS

The identifier 7 # corresponds to mouse sequences in the FANTOM
RIKEN database at

http://fantom?2.gsc.riken.go.jp/db/search/

If you enter the ri identifier into the ID search engine, you will get the avail-
able information on the sequence you are interested in.
Those identifiers marked by a star are not annotated in the RIKEN set. They

can be found by submitting the identifier to the Mouse Genome Server:

http://genome.ucsc.edu/

seq | mouse sequence ri identifier

1 scl10809-matches-chr3:114746277-114745994 | 2600005K 24
2 scl16439-matches-chr1:109396215-109395950 | 9630046N21
3 scl16877-matches-chr9:126941746-126942058 | C630031E05
4 scl17576-matches-chr20:32918601-32918858 | 1700003F12
5 scl17819-matches-chr20:63205873-63206141 | 1810057D19
6 scl18978-matches-chr4:152403723-152403391 | D330001C05
7 scl2031-matches-chr17:9789642-9789461 9530092J08
8 scl22882-matches-chr19:59339888-59340229 | C730015N08
9 scl2500-matches-chr17:40761180-40761516 AB004817*
10 | scl2739-matches-chr17:78371307-78371597 BC018304*
11 scl4423-matches-chr17:10684655-10684347 D130028M21
12 | scl4877-matches-chr17:40894687-40894888 BC015255*
13 | scl6111-matches-chr14:76256526-76256796 2610005A10
14 | scl7533-matches-chr6:26187031-26186711 2610022J01
15 | scl4915-matches-chr17:43513868-43514168 D630048014
16 | scl4915-matches-chr17:63187743-63188044 D630048014
17 | scl776-matches-chrX:97935471-97935771 BC028307*
18 | scl11629-matches-chr16:360876-360590 1110015G04
19 | scl2738-matches-chr17:78332287-78332607 AF180370*
20 | scl14246-matches-chr2:160927277-160927563 | D830026H09
21 | scl14331-matches-chr2:178455289-178455578 | D030036L15
22 | scl22077-matches-chr7:155988313-155988653 | 4632411P08
23 | scl13686-matches-chrl:167340318-167340556 | C130069E24
24 | scl20768-matches-chr1:47014360-47014632 2010015F12
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Here, annotation of human sequences is shown. They can be searched for

by submitting their RefSeq to the Human Genome at:

http://genome.ucsc.edu/

In some cases RefSeq is not available.

seq | human sequence RefSeq

1 scl10809-matches-chr3:114746277-114745994 | NM-025146
2 scl16439-matches-chr1:109396215-109395950 | NM-024526
3 scl16877-matches-chr9:126941746-126942058

4 scl17576-matches-chr20:32918601-32918858 | NM-080825
5 scl17819-matches-chr20:63205873-63206141

6 scl18978-matches-chr4:152403723-152403391

7 scl2031-matches-chr17:9789642-9789461 NM-003644
8 scl22882-matches-chr19:59339888-59340229 | NM-144686
9 scl2500-matches-chr17:40761180-40761516 NM-001991
10 | scl2739-matches-chrl17:78371307-78371597

11 | scl4423-matches-chr17:10684655-10684347

12 | scl4877-matches-chr17:40894687-40894888 NM-005789
13 | scl6111-matches-chr14:76256526-76256796

14 | scl7533-matches-chr6:26187031-26186711 NM-003512
15 | scl4915-matches-chr17:43513868-43514168

16 | scl4915-matches-chrl17:63187743-63188044

17 | scl776-matches-chrX:97935471-97935771 NM-014467
18 | scl11629-matches-chrl16:360876-360590

19 | scl2738-matches-chr17:78332287-78332607 NM-020649
20 | scl14246-matches-chr2:160927277-160927563 | NM-000888
21 | scl14331-matches-chr2:178455289-178455578

22 | scl22077-matches-chr7:155988313-155988653 | NM-022458
23 | scl13686-matches-chr1:167340318-167340556 | NM-006902
24 | scl20768-matches-chr1:47014360-47014632

Our predictions remain to be checked experimentally. Wet lab results
will not just tell us if the twenty predicted genes are coregulated with the
TNF-a gene, but will clarify how successful our bioinformatical approaches
are. If we look at the Fig. 4.7 where the 'free energy’ distribution of about
1000 sequences is shown, we can see a Poisson-like shape. It seems that we
may indeed find analogs in sequence analysis to thermodynamic concepts like
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free energy. Thus, it is plausible to use (in physics a well-known method)
minimization of free energy in order to detect putative binding sequences.
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Promoter Evolution
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5.1. NEUTRAL VS ADAPTIVE MODEL OF PROMOTER EVOLUTION

5.1 Neutral vs Adaptive Model of Promoter
Evolution

One of the most prominent geneticists of the 20" century Theodosius Dobzh-
ansky said : ”Nothing in biology makes sense except in the light of
evolution”. Evolutionary changes not only enable organisms to survive
despite newly arising conditions, but they allow life to conquer new sur-
roundings, and to establish stronger control over old ones [1]. This striking
adaptedness of life to its environments is due to mutations in the genetic
material.

Kimura-Ohta’s neutral model [41,42] of molecular evolution supports the
notion that the rate of evolution at a base position is inversely related to
its functional relevance. Since TFBSs affect transcription, whereas back-
ground (nonTFBS-subsequences) should have no functional importance, it is
assumed that overall point mutation and indel frequencies in the background
are higher than in TFBSs. Furthermore, there is experimental evidence that
many binding sites operate in a position-independent manner which should
allow for unconstrained indel formation in the background. (Surprisingly, we
discovered that HIV-1 promoter sequences prefer substitutions to insertions
and deletions.) In short, sequences between binding sites should be free to
vary. The problem is that some base positions assumed to be background
may in fact be part of binding sites that have not yet been identified. Also,
some TFBS point mutations may be functionally tolerated, resulting in ei-
ther weak binders or in binding site turn over.

Not all binding sites are equally important for promoter function. Ex-
perimental comparisons usually reveal weak or almost no detectable influ-
ence of certain TFBSs (mostly a greater number), while some are literally
indispensable (only a few) for transcription activation. Therefore, essential
binding sites should evolve at a relatively lower rate. Binding sites with lower
transcription impact are often multiply-represented. Functionally redundant
sites belong to this category, too. In such cases, binding sites should mutate
faster than unique ones, unless these multiple TFBSs act synergistically or
have different functions [59]. On the other hand, neutral mutations should
take place in TFBSs, too. Since slightly different motifs can be bound by
the same TF, mutations resulting in sequence differences that do not alter
the transcription profile should be acceptable. Such neutral substitutions
causing silent changes will accumulate by drift. Non neutral mutations can
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affect transcription rates, which in turn could influence fitness. That is why
we might expect that specific variants with a fitness advantage are under
positive selection. It is still not clear to which extent mutational rates are
correlated with function. One possible scenario could be based on quantity
versus quality. Promoters containing multiple binding sites should evolve rel-
atively fast and vice versa. It might be that potential functional redundancy
allows for weaker constraints.

Taking into account all these issues, we would like to gauge the impact of
HIV-1 transcriptional regulation on its fitness. We want to use computational
TFBS-identification methods to search for well known and potentially novel
binding sites that may be involved in HIV-1 disease progression. Recovery
of known sites would encourage the use of our bioinformatical tools, and the
discovery of new binding sites would motivate experimentalists to check our
predictions in a wet lab. Another task is to predict if viruses with similar
make-up respond in similar disease dynamics. The assumption behind such
study is that functional TFBS are well conserved during HIV-1 evolution,
thus recurring in most of HIV-1 regulatory sequences. Our goal is to under-
stand the evolution of the transcriptional regulation of the HIV-1, and to
correlate the presence or absence of binding sites with infection dynamics.
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5.2 TFBS in HIV-1 LTR

The results of this part were obtained in collaboration with Prof. Nikolaus
Rajewsky (New York University) and Prof. Anne Goldfeld (Harvard Medical
School).

5.2.1 HIV-1 Virus

HIV-1 virus is a retrovirus, referring to the backward flow of the genetic
information i.e. DNA is synthesized using RNA as a template, which is
carried out by an retroviral enzyme called reverse transcriptase. The life
cycle of the HIV-1 virus includes the following steps (see figure 5.1):

1. Entry into a cell via proteins
that enable the virus to bind to cells;

2. Two single-stranded RNA genomes enter a cell;
Loss of envelope and of capsid;

3. The reverse transcriptase makes a cDNA strand
to form a DNA/RNA hybrid double helix;

4. The RNA strand is removed;
The reverse transcriptase (which can use either
DNA or RNA as a template) synthesizes a complementary
strand giving a DNA double helix;

5. This DNA double helix is inserted into a randomly selected
site in the host genome;

6. Activation of the HIV-1 transcription;
Transcription of the integrated viral DNA
by the host cell RNA polymerase;

7. The newly produced RNA molecules are then translated by the
host cell machinery to produce different proteins,
building blocks of the virus;

8. Assembly of building blocks and the RNA genome
into new virus particles; New progeny floating around;
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Figure 5.1: Life cycle of HIV-1. Description see text.

We are concerned with the step number 6 i.e. with transcriptional regulation
of the HIV-1 virus. Transcription is controlled by a single promoter called
LTR (for Long Terminal Repeats) [56,57,72]. LTR activates expression gen-
erating a 9-kb primary transcript that has the potential to encode all HIV-1
genes.

The crucial part is that the LTR sequence binds host TFs, playing a fifth
columnist, with lethal consequences. LTR contains DNA binding sites for
several cellular transcription factors (see Fig. 5.2 for AHAB scoring):

e NFkB
e SP1
e NFAT, AP1, ETS...
e TBP

Activation of the LTR by cellular TFs leads primarily to the generation
of short transcripts. Some complete transcripts, however, are generated and
allow the production of a viral protein, which then interacts with the TAR
element to enhance the levels of transcription of viral RNAs. The TAR el-
ement is a short subsequence of LTR. Its 30-31 bases fold to form a stable
stem-bulge-loop structure, necessary for the HIV-1 transcription (see Fig.
5.3 obtained by software MFOLD [77-79]).

As already mentioned, the HIV-1 virus packages two viral RNAs into
each particle. Thus, if cells are infected by more than one viral individ-
ual, RNAs from different viruses can be packaged subsequently into offspring
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Figure 5.2: HIV-1 clades AHAB scoring for standard TFs

particles, resulting in recombination occurring subsequently during reverse
transcription. Recombination provides a means of cleaning up the delete-
rious mutations from the viral genome. This mechanism seems to play an
important role in generating the multiple drug-resistance phenotypes that
occur during HIV-1 drug therapy.

5.2.2 TFBS Search in HIV-1 LTR

Patient samples. Sequences of HIV-1 U3 and TAR region of long terminal
repeats (LTR) from patients having a B, a C, an E and an E/B/C recom-
binant HIV-1 infection. Virus annotation: TH51, E clade from Thailand,
dual tropic, primary isolate; TH53, E clade from Thailand, T-tropic; TH64,
E clade from Thailand, M-tropic; KR25, E/B/C recombinant clade from
Cambodia, primary isolate, T-tropic; BAL, B clade from USA |, lab adapted,
M-tropic ; LAI, B clade from Europe, dual tropic; IN22, C clade from India,
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Figure 5.3: Stem-bulge-loop from CHO1 clade. Obtained by MFOLD.

primary isolate, M-tropic; IN17, C clade from India, dual tropic; CHO, C
clade from China, M-tropic. Patient samples were obtained by [100].

We used 68 TF weight matrices from the Transfac set and scored the se-
quences with AHAB and SMASH. Our bioinformatical search for binding
sites for 68 TF's produced putative sites for NFxkB, SP1, NFAT, GR, AP1,
MYB, E2F, ELK1, ATF6, with the criterion: at least one site in at least
one clade. This list contains all factors known to bind in the LTR and pre-
dicts only one additional factor Evi-1 (Evi-1 is annotated as ectopic viral
integration site 1 encoded factor). Interestingly, we see evidence for changes
in binding-site composition among clades with the exception of NFxB and
SP1 which are always present (and always in the same position). Detected

de = -5.3  CHOL_TAR

binding sites are shown in Figs. 5.2, 5.4 and 5.5.
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6.1 HIV-1 LTR Evolution

6.1.1 HIV-1 LTR Evolution

The HIV-1 core promoter (see Fig. 6.1), located in the long terminal repeat
(LTR), is one of the most conserved parts of the HIV-1 genome. There is
evidence that the major impact on HIV-1 replication is performed not by
the whole LTR, but its part in front of the transcription start site (its core
promoter). LTR region is about 500 bases long, while the core promoter rep-
resents some 160-base-long subsequence just upstream of the transcription
start site. High conservation points at functional importance for transcrip-

5 LTR H V-1 genes 3'LTR
l [ [ |

core TAR® -
[ [ [

H V-1 pronoter

Figure 6.1: Sketch of HIV-1 genome and close-up on promoter region

tion. HIV-1 transcription is controlled by various TFBSs, and this variability
is subtype-specific [56,57,73]. Up to date, at least nine subtypes are known
and they seem to be of different geographical origin. The interesting part
is that all subtypes require presence of SP1 and NFkB sites for basal and
induced transcription. Other TFBSs, such as NFAT, AP1, GR, ETS have
been detected, however, in a more irregular fashion than the essential sites.
Distinct disease progression has been reported for different subtypes and
it has been suggested that the reason for this behavior lies in the interac-
tion between the virus subtype-specific genotype and the host environment.
Experiments have shown that the core promoter composition has a strong
influence on the viral fitness. For example, a C subtype with a high NFxB
binding site load performs much better in NFxB rich environments than an E
subtype, with weaker NFxB content. It seems that a mutation can have both
positive and negative effect on fitness, depending on cellular environment in
which the virus resides. Therefore, we have to focus on subtype-specific anal-
ysis of the data set from our collaborators’ laboratory [100] in order to bring
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A C G T
1 2 1 32
0 3 0 33
0 4 0 32
0 3 0 1
1 33 0 2

Table 6.1: NFAT count matrix

A C G T
0 0 40 O
0 0 40 O
1 0 39 0
15 5 15 5
3 17 3 17
3 16 3 18
1 2 2 35
1 2 2 35

Table 6.2: NFxB count matrix

correct conclusions about the HIV-1 LTR evolutionary mechanisms.

Position Weight Matrices

We used frequency matrices from the Transfac database in order to construct
PWMs. Most of the matrices describe essential HIV-1 LTR TF motifs of
length > 10 positions. However, tails (i.e. left and right ends) are not
well conserved. Therefore we focus on matrix cores, in other words, sharply
defined part of the motif (see Tables 6.1,6.2,6.3). The NFAT-5-base consensus
has been suggested by [101].

6.1.2 Phylogeny

Already at the dawn of evolutionary biology, scientists have tried to assign
known organisms to correct positions in the ’tree of life’. Early classifications
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A C G T

8 103 1 0

2 102 5 3
10 0 83 19
0 110 2 O
0 112 0 O
1 93 1 17

Table 6.3: SP1 count matrix

were based on phenotypic features which, as we know today, cannot differen-
tiate organisms as precisely as their genetic content can do. Nowadays, with
the immense development of the genetic build up knowledge, evolutionary
trees are constructed based on sequence similarity, more precisely, on the
basis of a multiple sequence alignment [83-85].

Evolutionary relationship among sequences is usually shown by an evolu-
tionary tree, which is simply a two dimensional graph. If we are ignorant
of the oldest ancestry, sequences and their relationships are presented by an
unrooted tree. An unrooted tree does not specify the direction of descent,
still it shows how close pairs of sequences are. Fig. 6.2 is an example of an
unrooted tree. Sequences under investigation are placed at leaf nodes (outer
nodes) while their evolutionary connections are represented by branches and
ancestral nodes. Ancestral nodes are imaginary sequences, that are thought
to preceed real-life sequences in the course of time, and they can be con-
structed using different models (maximum likelihood, maximum parsimony
and distance method). Branch lengths between two nodes gauge the amount
of changes between the nodes.

The ultimate goal of phylogenetic analysis is to determine evolutionary
relationship among sequences, together with branch lengths. Phylogenetic
analysis is especially useful in following the alterations in rapidly changing
species, like viruses. Analysis of a virus promoter can reveal which TFBSs
are under selection.

First step of the phylogenetic analysis is the construction of a multiple se-
quence alignment. Each base position (column) is assumed to evolve in-
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/

node (I eaf)

br anch

node (ancestor)

Figure 6.2: An Unrooted Tree

dependently of others. Depending on the variability of sequences different
methods are used, but the maximum likelihood method is regarded as most
general, and may be used for any set of related sequences.

The Maximum Likelihood Method

The maximum likelihood method is a probabilistic approach in search for a
tree based on the variation among sequences from a data set [82,83]. Mu-
tations in each column of a multiple sequence alignment are considered in
order to construct a tree. Each tree has a certain likelihood which is com-
puted from the product of the mutation rates in each branch of the tree,
which in turn is the product of the substitution rate in each branch and the
branch length. The tree with the highest likelihood is then identified. Fig
6.3 depicts a maximum likelihood scenario for four sequences labeled 1, 2, 3,
4. Suppose we have aligned those four sequences and wish to estimate their
phylogenetic tree. There are three possible unrooted trees t = 1,2,3. We
focus on one of them. Then, we detect base changes along one column £ in
the alignment. Since we are interested in the evolutionary course of changes
we draw a rooted tree j with the root S. Each node has its own probability
D1, D2, D3, P4, Ps, P1,Prr- There are 64 combinations (4 bases can turn into 4
bases) for one column k, so that the probability of the ;% tree is:
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P; = ppo’ ps’pi?ps’ prprr’ (6.1)
The likelihood of the tree is then:

64
Ly =) P (6.2)
7j=1

This routine is repeated for all columns £ in the multiple alignment. Each
of the three t = 1,2, 3 possible unrooted trees is assigned a likelihood:

L= L (6.3)

and the tree with the highest value is chosen as the representative of evolu-
tionary relationships among the four sequences.

Bases of extinct ancestors (or simply ancestral node sequences) can be re-
constructed by fitting known sequences (1,2,3,4). The maximum likelihood
approach uses branch lengths and the substitution pattern for this purpose,
yielding ancestral sequences (I,II,S).

6.1.3 Alignments

Our data set comprises 20 LTR HIV-1 primary clades from the Goldfeld
Lab. Using ClustalW (with default parameters) we aligned all clades from
the Goldfeld data set. Multiple alignment of the sequences reveals that muta-
tional mechanism favors substitutions over indels. Based on the alignment of
the 20 sequences, we construct a maximume-likelihood phylogenetic tree. For
this purpose we use fastDNAml software [74,75], a program that starts with
an evolutionary model of sequence change that provides estimates of rates
of substitution of one base for another in a set of nucleic acid sequences. In
the end, the most likely tree given the data is then identified (see Fig. 6.14).
In order to gain better statistics we decided to reconstruct ancestral nodes
(artificially constructed sequences at internal nodes of the unrooted fastD-
NAml tree). We used software by Ziheng Yang PAML Phylogenetic Analysis
by Mazimum Likelihood [81]. Input includes HIV-1 LTR sequences and its
tree file. In this fashion we obtained 18 more sequences, which are labeled
as 'nodes’. We scored the enhanced set of 38 sequences in search for NFAT,
NFkB and SP1 binding sites (see Fig. 6.13). Detected motifs are marked in
the shown alignment (see Figs. 6.4 to 6.12).
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6.1.4 Phylogeny of HIV-1 promoter sequences

HIV-1 is a virus with many different subtypes, each subtype being prevalent
in a distinct part of the world. Goldfeld data set comprises sequences of HIV-
1 promoter and TAR region of long terminal repeats (LTR) from patients
having a B, a C, and an E HIV-1 infection.

Based on tree branch lengths and central position of the ”S” (root) node, we
could classify ancestral nodes into subtypes (See Fig. 6.14 and table 6.4).
Crucial branch is defined as a branch linking two subtypes.

6.1.5 Mutation Profile
Entropy

Information theory is closely connected to probabilistic modeling [85]. Given
a random variable ”X” with probabilities p(l;) for discrete set of K events
(here K=4i.e. I} = A,l; = C,l3 = G,ly = T) the Shannon entropy is defined
by:

H(X) = =3 " (i) logp() (6.4)

Since true distributions are usually not known exactly, entropies are cal-
culated from the frequencies of events. The entropy is maximized when all

events are equally probable P(l;) = % (Hpmaz = log K).

If we know for sure the outcome of a sample from the distribution i.e.
p(lx) = 1 for one k and the other p(l;) = 0,7 # k, the entropy is zero.

Relative Entropy

Relative entropy of two distributions p and ¢ is defined as:

Sulvle) = 32 p(ty1og (201 (65)

The relative entropy of two probability distributions measures in a way
the dissimilarity between them [86]. Relative entropy is sometimes called the
distance between the two distributions. However, since S,¢;(p||¢) is not equal
to Sre(q||p), this is not appropriate, since relative entropy does not satisfy a
basic requirement of a distance measure, S,¢(p||q) = Sre(q||p)-
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node | node | branch length
B1 B13 | 0.00389
B2 B13 | 0.00388
B13 B12 0.01372
B3 B12 0.00388
B12 B11 0.00000
B4 B11 0.00194
B11 B10 | 0.00194
B5 B10 | 0.00000
B10 | S 0.12313
E1l E12 0.00194
E2 E13 0.00000
E3 E13 0.00584
E13 E12 0.00389
E12 El1 0.00195
E4 E1l1 0.00000
E11 E10 0.01878
E5 E16 0.00390
E6 E16 0.00193
E16 E15 0.00985
E7 E15 0.01990
E15 E14 0.00180
E8 E17 | 0.00584
E9 E17 | 0.00784
E17 E14 0.01989
E14 E10 0.00511
Ei0 | S 0.17749
Cbl Cb12 | 0.00376
Cb2 Cb12 | 0.02184
Cb12 | Cbll | 0.01094
Cb3 Cb11l | 0.01312
Cb11 | Call | 0.31601
Cal Cal2 | 0.00592
Ca2 Cal2 | 0.00000
Cal2 | Call | 0.00844
Call | Cal0 | 0.00654
Ca3 Cal0 | 0.01255
Cal0 | S 0.14805

Table 6.4: ML-tree Branch Lengths

90



6.1. MUTATION ANALYSIS OF HIV-1 PROMOTER

node | node | branch length
Cb11 | Call | 0.31601

Cal0 | S 0.14805
B10 | S 0.12313
E10 | S 0.17749

Table 6.5: Crucial Branch Lengths

Position Activity and Entropy

In Fig. 6.15 (upper part) we display mutational activity of each position
in the enhanced data set (along the tree) i.e. number of mutations as a
function of position. Bars denote the core promoter. Lower part of Fig. 6.15
shows smoothed version of mutational activity. Here we slide a window of 10
positions, and compute the average number of mutations per window.

In Fig. 6.16 (upper) we display entropy of each position in the enhanced
data-set-alignment. The lower part of Fig. 6.16 shows smoothed version of
position entropy. As before, we slide a window of 10 positions, and compute
the average entropy per window.

Spikes denote borders of the core-promoter region (loaded with TFBS).

As we can see, analysis of HIV-1 LTRs without paying attention at
subtype-specificity cannot reveal much information on TFBS conservation.
On the contrary, entropy analysis of the multiple alignment of the whole
data set, points at the core promoter as the most variable part of the LTR
sequence. This is misleading, because the major mutational movement takes
place at subtype-subtype transitions. Within a subtype, the core promoter
is the most conserved part of the LTR.

Tree Analysis of Mutations

After extracting mutationally active positions in the sequences based on the
the PAML output file, we counted how many mutations occurred in each of
the TFBS and background. Thus we were able to determine average number
of mutations per 100 bases < x > for each TF, as well as mutation rate ratios
T:% along branches of the tree (see table 6.6). Assuming that back-
ground obeys mechanisms of neutral evolution, ratios r can give us a good

estimate of how selective mutations along particular branches are.
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NFAT NFkB SP1
Branch r+ Ar r+ Ar r+ Ar
B1-B13 0+/-0 0+/-0 0+/-0
B2-B13 *+/-0 *+/-0 *+/-0
B13-B12 24+/-15 |27+/-1.7[19+/-15
B3-B12 *+/-0 *+/-0 *+/-0
B12-B11 *+/-0 *+/-0 *+/-0
B4-B11 *4/-0 *+/-0 *4+/-0
B11-B10 *4+/-0 *+/-0 *+/-0
B5-B10 *4+/-0 *+/-0 *+/-0
B10-S 1.74+/-05]0.7+/-03 |06 +/- 0.3
E1-E12 *4+/-0 *4+/-0 *4+/-0
E2-E13 *4+/-0 *4+/-0 *+/-0
E3-E13 *+/-0 *+/-0 *+/-0
E13-E12 *+/-0 *+/-0 *+/-0
E12-E11 *4+/-0 *+/-0 *+/-0
E4-E11 *4+/-0 *+/-0 *+/-0
E11-E10 0+4/-0 0.5+/-0.5 | 0.7 +/- 0.6
E5-E16 6.0+/-45|40+/-37]0+/-0
E6-E16 *+/-0 *+/-0 *+/-0
E16-E15 4.0 +/-21[0+/-0 0+/-0
E7-E15 0.7+/-06|1.0+/-0.6 | 0+/-0
E15-E14 *+/-0 *+/-0 *+/-0
E8-E17 *4+/-0 *+/-0 *+/-0
E9-E17 2+/-15 |13+/-12]0+/-0
E17-E14 0+/-0 2.6 +/-1.21.0+/-0.7
E14-E10 *4/-0 *4+/-0 *4+/-0
E10-S 23+/-05(21+/-04|1.7+/-04
Cb1-Cb12 *4+/-0 *+/-0 *+/-0
Cb2-Cb12 0+/-0 20+/-11]29+/-1.3
Cb12-Cb11l | * +/-0 *+/-0 *+/-0
Cb3-Cb11 1.2+/-09|0+/-0 0+/-0
Cb11-Call | 1.7 +/- 0.3 | 2.7 +/- 04 | 3.6 +/- 0.5
Cal-Cal2 3.0+/-23]20+/-1.8{29+/-22
Ca2-Cal2 *+/-0 *4+/-0 *4+/-0
Cal2-Call | 3.0 +/-2.3|6.0+/-3.2]29 +/-22
Call-Cal0 | *+/-0 *+/-0 *+/-0
Ca3-Call 0+/-0 0+/-0 1.9+4/-1.5
Cal0-S 76+/-11|77+/-11|63+/-1.0
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NFAT NFkB SP1
Branch r+ Ar r+ Ar r+ Ar
Cb11-Call | 1.7 +/- 03 | 2.7 +/- 0.4 | 3.6 +/- 0.5
Calo-S 76 +/-11|77+/-11]6.3+/-1.0
B10-S 1.7+/-05|0.7+/-031] 0.6 +/-0.3
E10-S 234/-05 |21 +/-041.7+/-04

Table 6.7: Mutations on crucial branches

As we can see, significant values of ratios are along crucial branches,
connecting different subtypes (see table 6.7). The C subtype has evolved
into two subtypes, that we call Ca and Cb. At first glance, looking only at
the maximum likelihood tree, it appears that a similar movement takes place
in the B subtype, namely that it got split in two distinct subtypes. Careful
examination of mutation rate ratios made us conclude that we are dealing
with noise, and that there are no new subtypes emerging from the B clade.

Neutral Background

The mutations outside binding sites follow an overall molecular clock. The
figure shows the histogram of the mutations per base (summed over all
branches of the tree), which are approximately Poisson-distributed, with
<z >=0.6199.

The Poisson Distribution formula

(6.6)

<z >*
PO:exp(—<3:>)[ ° ]

z!

works for an infinite number of trials. Even if a set of events obeys Poisson
distribution P, it may show certain discrepancies (within error bars) due to
finite-size effects.
By drawing numbers from the Poisson distribution finite number of times,
we simulate finite size effects. In order to determine a significance test for
finite size effects we iterate this procedure N=1000 times So each sample

has a distribution Psgppe, and its relative entropy < sim

rel

Therefore,
Psam le(m)
o sample P Psam e 4 67
Spet (Psampie|| Po) Z ple( Po(2) (6.7)
and
< fgn(Psample| |PO Z S’rel sample||P0) (68)
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< S5 >—().1274 % 0.005. (6.9)

To answer the question how far is the data distribution from the exact
Poisson-distribution we compute relative entropy:

Srel(Pmeasured‘ ‘PO) = 0.1271. (610)

We conclude that background indeed has Poisson-distributed mutations (see
Fig. 6.17).
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Figure 6.3: Maximum Likelihood Tree Construction
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bal2 TGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
bald TGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
node21 TGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
laid TGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCCACCACA 60
node22 TGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
lai2 TGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
node23 TGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
lail TGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
node24 TGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACA 60
th516 TGGAAGGGCTAATTTACTCCAAGAAAAGACAAGAGATCCTTGATTTATGGGTCTATAACA 60
th515 TGGAAGGGCTAATTTACTCCAAGAAAAGACAAGAGATCCTTGACTTATGGGTCTACAACA 60
th513 TGGAAGGGCTAATTTACTCCAAGAAAAGACAAGAGATCCTTGACTTATGGGTCTACAACA 60
node29 TGGAAGGGCTAATTTACTCCAAGAAAAGACAAGAGATCCTTGACTTATGGGTCTACAACA 60
node28 TGGAAGGGCTAATTTACTCCAAGAAAAGACAAGAGATCCTTGATTTATGGGTCTATAACA 60
th511 TGGAAGGGCTAATTTACTCCAAGAAAAGACAAGAGATCCTTGATTTATGGGTCTATAACA 60
node27 TGGAAGGGCTAATTTACTCCAAGAAAAGACAAGAGATCCTTGATTTATGGGTCTATAACA 60
th645 TGGATGGGCTAATTTACTCCAAGAGAAGACAAGAGGTCCTTGACTTATGGGTCTATAATA 60
th644 TGGATGGGCTAATTTACTCCAAGAGAAGACAAGAGATCCTTGACTTATGGGTCTATAATA 60
node33 TGGATGGGCTAATTTACTCCAAGAGAAGACAAGAGATCCTTGACTTATGGGTCTATAATA 60
th534 TGGATGGGCTAATTTACTCCAAGAGAAGACGAGAGATCCTTGACTTATGGGTCTATAATA 60
node32 TGGATGGGCTAATTTACTCCAAGAGAAGACAAGAGATCCTTGACTTATGGGTCTATAATA 60
kr255 TGGATGGGCTAATTCACTCCAAGAGAAGACAAGACATCCTTGACTTATGGGTCTATAACA 60
kr251 TGGATGGGCTAATTCACTCCAAGAGAAGACAAGACATCCTTGACTTATGGGTCTATAACA 60
node31 TGGATGGGCTAATTCACTCCAAGAGAAGACAAGACATCCTTGACTTATGGGTCTATAACA 60
node30 TGGATGGGCTAATTTACTCCAAGAGAAGACAAGAGATCCTTGACTTATGGGTCTATAACA 60
node26 TGGAAGGGCTAATTTACTCCAAGAGAAGACAAGAGATCCTTGATTTATGGGTCTATAACA 60
in226 TGGAAGGGTTAATTTACTCCAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTACCACA 60
in225 TGGAAGGGTTAATTTACTCCAAGAAAAGACAAGAGATCCTTGATTTGTGGGTCTACCACA 60
node37 TGGAAGGGTTAATTTACTCCAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTACCACA 60
in222 TGGAAGGGTTAATTTACTCCAAGAAAAGGCAAGAGATCCTTGATTTATGGGTCTACCACA 60
node36 TGGAAGGGTTAATTTACTCCAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTACCACA 60
in175 TGGAAGGGTTAATTTACTCTAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCCATCACA 60
in172 TGGAAGGGTTAATTTACTCTAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTATCACA 60
node38 TGGAAGGGTTAATTTACTCTAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTATCACA 60
node35 TGGAAGGGTTAATTTACTCTAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTATCACA 60
chol TGGAAGGGTTAATTTACTCTAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTATCACA 60
node34 TGGAAGGGTTAATTTACTCTAAGAAAAGGCAAGAGATCCTTGATTTGTGGGTCTATCACA 60
node25 TGGAAGGGCTAATTTACTCCAAGAGAAGACAAGAGATCCTTGATTTGTGGGTCTATCACA 60

Rk okk kkkkk kkkk ok kokk ok kkk kkkolokkk ok kkk Rk kK K

Figure 6.4: Multiple alignment of HIV-1 promoters, partl
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bal2
bald
node21
laid
node22
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Figure 6.5: Multiple alignment of HIV-1 promoters, part2

CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGGTCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGGTCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGGTCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGGTCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGGTCAGATATCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGGTCAGATATCCACTGACCTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGACCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGACCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGACCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGACCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGACCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGACCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGACCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGACCAGGGATCAGATACCCACTATGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGACCAGGGATCAGATACCCACTATGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGACCAGGGATCAGATACCCACTATGTTT
CACAAGGCTTCTTCCCTGATTGGACATACCAGGGCCAGGGATCAGATTCCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATACCCACTGTGTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATATCCACTGTGTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGATCAGATATCCACTGTGTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATATCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATACCCACTGTGTTT
CACAAGGCTTCTTCCCTGATTGGACACACCAGGGCCAGGGATCAGATACCCACTGTGTTT
CACAAGGCTACTTCCCTGACTGGACACACCAGGACCAGGGGTCAGATACCCACTGACCTT
CACAAGGCTACTTCCCTGACTGGACACACCAGGACCAGGGGTCAGATACCCACTGACCTT
CACAAGGCTACTTCCCTGACTGGACACACCAGGACCAGGGGTCAGATACCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGGTCAGATACCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGGTCAGATACCCACTGACCTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGACCAGATTCCCACTGACTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGACCAGATTCCCACTGACTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGACCAGATTCCCACTGACTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGGTCAGATTCCCACTGACTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGGTCAGATTCCCACTGACTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGACCAGGGGTCAGATTCCCACTGACTTT
CACAAGGCTACTTCCCTGATTGGACACACCAGGGCCAGGGGTCAGATACCCACTGACTTT
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bal2 TGGATGGTGCTAACCAGTTGAGCCAGAGAAGATAGAAGAAGCCAATAAAGGAGAGAACAC 180
bald TGGATGGTGCTAACCAGTTGAGCCAGAGAAGATAGAAGAAGCCAATAAAGGAGAGAACAC 180
node21 TGGATGGTGCTAACCAGTTGAGCCAGAGAAGATAGAAGAAGCCAATAAAGGAGAGAACAC 180
laid TGGATAGTGCTAACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACAC 180
node22 TGGATGGTGCTAACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACAC 180
lai2 TGGATGGTGCTAACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACAC 180
node23 TGGATGGTGCTAACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACAC 180
lail TGGATGGTGCTAACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACAC 180
node24 TGGATGGTGCTAACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACAC 180
th516 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAG 180
th515 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAG 180
th513 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGGGGAGGACAACAAAGGAGAAAACAG 180
node29 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAG 180
node28 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAG 180
th511 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAG 180
node27 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAG 180
th645 TGGATGGTGCTTACCAGTTGACCCAAGTGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
th644 TGGATGGTGCTTACCAGTTGACCCAAGTGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
node33 TGGATGGTGCTTACCAGTTGACCCAAGTGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
th534 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
node32 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
kr255 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
kr251 TGGATGGTGCTTACCAGTTGACCCAGGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
node31 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
node30 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
node26 TGGATGGTGCTTACCAGTTGACCCAAGAGAAGTAGAGGAGGACAACAAAGGAGAAAACAA 180
in226 TGGGTGGTGCTTACCAGTTGACCCAAGTGAAGTAGAAGAGGCCAACAAAGGAGAAGACAA 180
in225 TGGGTGGTGCTTACCAGTTAACCCAAGTGAAGTAGAAGAGGCCAACAAAGGAGAAGACAA 180
node37 TGGGTGGTGCTTACCAGTTGACCCAAGTGAAGTAGAAGAGGCCAACAAAGGAGAAGACAA 180
in222 TGGGTGGTGTTAACCAGTTGACCCAAGTGAAGTAGAAGAGGCCAATAAAGGAGAAGACAA 180
node36 TGGGTGGTGCTTACCAGTTGACCCAAGTGAAGTAGAAGAGGCCAACAAAGGAGAAGACAA 180
in175 TGGGTGGTGCTTACCAGTTGACCCAAGGGAAGTAGAAGAGGCCAACGAAGGAGAAGACAA 180
in172 TGGGTGGTGCTTACCAGTTGACCCAAGGGAAGTAGAAGAGGCCAACGAAGGAGAAGACAA 180
node38 TGGGTGGTGCTTACCAGTTGACCCAAGGGAAGTAGAAGAGGCCAACGAAGGAGAAGACAA 180
node35 TGGGTGGTGCTTACCAGTTGACCCAAGGGAAGTAGAAGAGGCCAACGAAGGAGAAGACAA 180
chol TGGGTGGTGCTTACCAGTTGACCCAAGGGAAGTAGAAAAGGCCAACGAAGGAGAAGACAA 180
node34 TGGGTGGTGCTTACCAGTTGACCCAAGGGAAGTAGAAGAGGCCAACGAAGGAGAAGACAA 180
node25 TGGATGGTGCTTACCAGTTGACCCAAGTGAAGTAGAAGAGGCCAACAAAGGAGAAAACAA 180
Rk K Rk ok kokkkokkk K kkk ko okkk K ok ok kkkkkkk  okk
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Figure 6.6: Multiple alignment of HIV-1 promoters, part3
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bal2 CAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCTGAGAGAGAAGTGTTAGA 240
bald CAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCTGAGAGAGAAGTGTTAGA 240
node21 CAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCTGAGAGAGAAGTGTTAGA 240
laid CAGCTTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCTGAGAGAGAAGTGTTAGA 240
node22 CAGCTTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCTGAGAGAGAAGTGTTAGA 240
lai2 CAGCTTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCTGAGAGAGAAGTGTTAGA 240
node23 CAGCTTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCTGAGAGAGAAGTGTTAGA 240
lail CAGCTTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCTGAGAGAGAAGTGTTAGA 240
node24 CAGCTTGTTACACCCTGTGAGCCTGCATGGAATGGATGACCCTGAGAGAGAAGTGTTAGA 240
th516 CTGCCTGTTACACCCCATGAGTCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
th515 CTGCCTGTTACACCCCATGAGTCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
th513 CTGCCTGTTACACCCCATGAGTCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
node29 CTGCCTGTTACACCCCATGAGTCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
node28 CTGCCTGTTACACCCCATGAGTCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
th511 CTGCCTGTTACACCCCATGAGTCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
node27 CTGCCTGTTACACCCCATGAGTCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
th645 CTGCCTGTTACACCCCATGAGCCAGCATGGAATAGAGGACGTAGAAAGAGAAGTGCTGAT 240
th644 CTGCCTGTTACACCCCATGAGCCAGCATGGAATAGAGGACGTAGAAAGAGAAGTGCTGAT 240
node33 CTGCCTGTTACACCCCATGAGCCAGCATGGAATAGAGGACGTAGAAAGAGAAGTGCTGAT 240
th534 CTGCCTGTTACACCCCATGAGCCAGCATGGAATGGAGGATGAAGATAAAGAAGTGCTGAT 240
node32 CTGCCTGTTACACCCCATGAGCCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
kr255 CAGCCTGTTACATCCCATGAGCCAGCATGGGCTAGAGGACGCAGAAAGAGAAGTGCTGAT 240
kr251 CAGCCTGTTACATCCCAAGAGCCAGCATGGGCTAGAGGACGCAGAAAGAGAAGTGCTGAT 240
node31 CAGCCTGTTACATCCCATGAGCCAGCATGGGCTAGAGGACGCAGAAAGAGAAGTGCTGAT 240
node30 CTGCCTGTTACACCCCATGAGCCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
node26 CTGCCTGTTACACCCCATGAGCCAGCATGGAATAGAGGACGAAGAAAGAGAAGTGCTGAT 240
in226 CTGTTTGCTACACCCTGTGTGCCAGCTTGGAATGGAGGATGAACACAGAGAAGTCGTAAA 240
in225 CTGTTTGCTACACCCTGTGTGCCAGCTTGGAATGGAGGATGAACACAGAAAAGTTGTAAA 240
node37 CTGTTTGCTACACCCTGTGTGCCAGCTTGGAATGGAGGATGAACACAGAGAAGTCGTAAA 240
in222 CTGTTTGCTACACCCTGTATGCCAGCTTGGAATGGAGGATGAACACAGAGAAGTATTAAA 240
node36 CTGTTTGCTACACCCTGTGTGCCAGCTTGGAATGGAGGATGAACACAGAGAAGTATTAAA 240
in175 CTGTTTGCTACACCCTGTGTGCCAGCATGGAATGGAGGATGAACACAGAGAGGTATTAAA 240
in172 CTGTTTGCTACACCCTGTGTGCCAGCATGGAATGGAGGATGAACACAGAGAGGTATTAAA 240
node38 CTGTTTGCTACACCCTGTGTGCCAGCATGGAATGGAGGATGAACACAGAGAGGTATTAAA 240
node35 CTGTTTGCTACACCCTGTGTGCCAGCATGGAATGGAGGATGAACACAGAGAAGTATTAAA 240
chol CTGCTTGCTACACCCTGTGTGCCAGCATGGAATGGAGGATGATCACAGAGAAGTATTAAA 240
node34 CTGCTTGCTACACCCTGTGTGCCAGCATGGAATGGAGGATGATCACAGAGAAGTATTAAA 240
node25 CTGCTTGTTACACCCTGTGAGCCAGCATGGAATGGAGGACGATGAGAGAGAAGTGTTAAA 240
* ok Kk kkkk ok Kk Rk kkk ok Rk Rk * ok ok Kk kK ok
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Figure 6.7: Multiple alignment of HIV-1 promoters, part4
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bal2 GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTA 300
bald GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTA 300
node21 GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTA 300
laid4 GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTA 300
node22 GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTA 300
lai2 GTGGAGGTCTGACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTA 300
node23 GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTA 300
lail GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTA 300
node24 GTGGAGGTTTGACAGCCGCCTAGCATTTCATCACATGGCCCGAGAGCTGCATCCGGAGTA 300
th516 GTGGAAGTTTGACAATGCCCTAGCACGAAGACACATAGCCCGAGAACAACATCCAGAGTT 300
th515 GTGGAAGTTTGACAGTGCCCTAGCACGAAGACACATAGCCCGAGAACAACATCCAGAGTT 300
th513 GTGGAAGTTTGACAGTGCCCTAGCACGAAGACACATAGCCCGAGAACAACATCCAGAGTT 300
node29 GTGGAAGTTTGACAGTGCCCTAGCACGAAGACACATAGCCCGAGAACAACATCCAGAGTT 300
node28 GTGGAAGTTTGACAGTGCCCTAGCACGAAGACACATAGCCCGAGAACAACATCCAGAGTT 300
th511 GTGGAAGTTTGACAGTGCCCTAGCACGAAGACACATAGCCCGAGAACAACATCCAGAGTT 300
node27 GTGGAAGTTTGACAGTGCCCTAGCACGAAGACACATAGCCCGAGAACAACATCCAGAGTT 300
th645 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACCTAGCCCGAGAACTGCATCCAGAGTA 300
th644 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACCTAGCCCGAGAACTGCATCCAGAGTA 300
node33 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACCTAGCCCGAGAACTGCATCCAGAGTA 300
th534 GTGGAAGTTTGACAGTGCCCTAGCACGAGAACACATAGCCCGAGAACTGCGTCCAGAGTA 300
node32 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACATAGCCCGAGAACTGCATCCAGAGTA 300
kr255 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACATAGCCCGAGAACTGCATCCAGAGTA 300
kr251 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACATAGCCCGAGAACTGCATCCAGAGTA 300
node31 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACATAGCCCGAGAACTGCATCCAGAGTA 300
node30 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACATAGCCCGAGAACTGCATCCAGAGTA 300
node26 GTGGAAGTTTGACAGTGCCCTAGCACGAAAACACATAGCCCGAGAACTGCATCCAGAGTA 300
in226 GTGGAAGTTTGACATTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
in225 GTAGAAGTTTGACATTTAACTAGCACACAGACACATGGCCCGCAAGCTACATCCGGAGTT 300
node37 GTGGAAGTTTGACATTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
in222 GTGGAAGTTTGACAGTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
node36 GTGGAAGTTTGACAGTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
in175 GTGGAAGTTTGACAGTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
in172 GTGGAAGTTTGACAGTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
node38 GTGGAAGTTTGACAGTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
node35 GTGGAAGTTTGACAGTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
chol GCGGAAGTTTGACAGTCAACTAGCACACAGACACAGGGCCCGCGAACTACATCCGGAGTT 300
node34 GTGGAAGTTTGACAGTCAACTAGCACACAGACACATGGCCCGCGAGCTACATCCGGAGTT 300
node25 GTGGAAGTTTGACAGTCGCCTAGCACTTAAACACATGGCCCGAGAGCTGCATCCGGAGTA 300
K kk ok kokkkk koK dokk kkkkk ok kK kkk kokokk
| |
SP1 II

Figure 6.8: Multiple alignment of HIV-1 promoters, part5
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bal2 CTTCAAGAACTGCTGATATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
bald CTTCAAGAACTGCTGATATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
node21 CTTCAAGAACTGCTGATATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
laid CTTCAAGAACTGCTGACATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
node22 CTTCAAGAACTGCTGACATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
lai2 CTTCAAGAACTGCTGACATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
node23 CTTCAAGAACTGCTGACATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
lail CTTCAAGAACTGCTGACATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
node24 CTTCAAGAACTGCTGACATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC 357
th516 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
th515 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
th513 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
node29 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
node28 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
th511 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
node27 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
th645 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
th644 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
node33 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
th534 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
node32 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
kr255 CTATAAAGACTGCTGACAAAGAAG---TTTCTGACTAGGACTT-CCGCTGGGGACTTTCC 356
kr251 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGATGGGGACTTTCC 356
node31 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
node30 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
node26 CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC 356
in226 TTACAAAGACTGCTGACACAGAAGGGACTTTCCACTGGGACTTTCCACTAGGGGCGTTCC 360
in225 TTACAAAGACTGCTGACACAGAAGGGACTTTCCGCTGGGACTTTCCACTAGGGGCGTTCC 360
node37 TTACAAAGACTGCTGACACAGAAGGGACTTTCCACTGGGACTTTCCACTAGGGGCGTTCC 360
in222 TTACAAAGACTGCTGACACAGAAGGGACTTTCCACTGGGACTTTCCACTAGGGGCGTTCC 360
node36 TTACAAAGACTGCTGACACAGAAGGGACTTTCCACTGGGACTTTCCACTAGGGGCGTTCC 360
in175 TTACAGAGACTGCTGACACAGAAGGGACTTTCCGCGGGGACTTTCCACT-GGGGCGTTCC 359
in172 TTACAAAGACTGCTGACACAGAAGGGACTTTCCGCGGGGACTTTCCACT-GGGGCGTTCT 359
node38 TTACAAAGACTGCTGACACAGAAGGGACTTTCCGCGGGGACTTTCCACT-GGGGCGTTCT 359
node35 TTACAAAGACTGCTGACACAGAAGGGACTTTCCGCGGGGACTTTCCACT-GGGGTGTTCT 359
chol TTACAAAGACTGCTGACACAGAAGGGACTTTCCGCGGGGACTTTCCACT-GGGGTGTTCT 359
node34 TTACAAAGACTGCTGACACAGAAGGGACTTTCCGCGGGGACTTTCCACT-GGGGTGTTCT 359
node25 CTACAAAGACTGCTGACATAGAAG---TTGCTACCAGGGACTTCCCGCTGGGGACTTTCC 357
Xk kkkkkkkk kK * wkokkkk Kk ok kkk kkk
| | | | | |
NFkB III NFkB IV NFkB V
[ [ [
[ [ [
NFAT IV NFAT V NFAT VI
| |
| |
| |
SP1 III

Figure 6.9: Multiple alignment of HIV-1 promoters, part6
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bal2 A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
bald A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
node21 A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
laid4 A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
node22 A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
lai2 A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
node23 A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
lail A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
node24 A-GGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG 416
th516 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG 416
th515 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG 416
th513 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG 416
node29 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG 416
node28 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG 416
th511 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG 416
node27 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG 416
th645 AAGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGATGCTGCATAAAAG 416
th644 AGGGGAGGTATGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGATGCTGCATAAAAG 416
node33 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGATGCTGCATAAAAG 416
th534 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGATGCTGCATAAAAG 416
node32 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGATGCTGCATAAAAG 416
kr255 AGGGGAGGTGTGGCCGGGGTGGAGTTGGGGAGTGGTTAACCCTCAGATGCTGCATAAAAG 416
kr251 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGTTAACCCTCAGATGCTGCATAAAAG 416
node31 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGTTAACCCTCAGATGCTGCATAAAAG 416
node30 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGATGCTGCATAAAAG 416
node26 AGGGGAGGTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGATGCTGCATAAAAG 416
in226 A--GGAGGGGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 417
in225 A--GGAGAAGTGGTCTGGGCGGGACTAGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 417
node37 A--GGAGGAGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 417
in222 A--GGAGGAGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGTTGCATATAAG 417
node36 A--GGAGGAGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGTTGCATATAAG 417
in175 A--GGAGGTGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 416
in172 A--GGAGGTGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 416
node38 A--GGAGGTGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 416
node35 A--GGAGGTGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 416
chol A--GGAGGTGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 416
node34 A--GGAGGTGTGGTCTGGGCGGGACTGGG-AGTGGTCAACCCTCAGATGCTGCATATAAG 416
node25 A-GGGAGGCGTGGCCTGGGCGGGGCTGGGGAGTGGCGAACCCTCAGATGCTGCATATAAG 416

Kokkbk Rk ok Rk Rk K Rk kbkk ok kkkbklok K kkobkokk kkok
| | | |

NFkB VI NFkB VII

| |

| |

| |

P1 IV SP1 V SP1 V.

0 — — —

Figure 6.10: Multiple alignment of HIV-1 promoters, part7
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bal2
bald
node21
laid
node22
lai2
node23
lail
node24
th516
th515
th513
node29
node28
th511
node27
th645
th644
node33
th534
node32
kr255
kr251
node31
node30
node26
in226
in225
node37
in222
node36
in175
in172
node38
node35s
chol
node34
node25

Figure 6.11: Multiple alignment of HIV-1 promoters, part8

CAGCTGCTTTTTGCCTGTGCTGGGTCTCTCTGGTTAGACCAGATTTGAGCCTGGGAGCTC
CAGCTGCTTTTTACCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCCGCTTCTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTCTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTCTCGCTTGTACTGGGTCTCTCCTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTCTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTCTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTCTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTCTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCCCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCCGCTTTTCGCTTGTACTGGGTCTCTCTTGTTAGACCAGGTC-GAGCCCGGGAGCTC
CAGCTGCTTTTCGCCTGTGCTGGGTCTCTCTTGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTGCTGGGTCTCTCTTGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTGCTGGGTCTCTCTTGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTTGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTGCTGGGTCTCTCTTGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTAGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTAGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTAGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTAGGTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTAGTCAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTAGTTAGACCAGATCTGAGCCTGGGAGCTC
CAGCTGCTTTTCGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTC
Rk kK K K kK * X kkkokk
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bal2 TCTGGCTAACTAGGGAACCCACTG- 500
bald TCTGGCTAGCTAGGGAACCCACTG- 500
node21 TCTGGCTAACTAGGGAACCCACTG- 500
laid4 TCTGGCTAACTAGGGAACCCACTG- 500
node22 TCTGGCTAACTAGGGAACCCACTG- 500
lai2 TCTGGCTAACTAGGGAACCCACTG- 500
node23 TCTGGCTAACTAGGGAACCCACTG- 500
lail TCTGGCTAACTAGGGAACCCACTG- 500
node24 TCTGGCTAACTAGGGAACCCACTG- 500
th516 TCTGGCTAGCAAGGGAACCCACTGC 500
th515 TCTGGCTAGCAAGGGAACCCACTGC 500
th513 TCTGGCTAGCAAGGGAACCCGCTGC 500
node29 TCTGGCTAGCAAGGGAACCCACTGC 500
node28 TCTGGCTAGCAAGGGAACCCACTGC 500
th511 TCTGGCTAGCAAGGGAACCCACTGC 500
node27 TCTGGCTAGCAAGGGAACCCACTGC 500
th645 TCTGGCTAGCAAGGGAACCCACTGC 500
th644 TCTGGCTAGCAAGGGAACCCACTGC 500
node33 TCTGGCTAGCAAGGGAACCCACTGC 500
th534 TCTGGCTAGCAAGGGAACCCACTGC 500
node32 TCTGGCTAGCAAGGGAACCCACTGC 500
kr255 TCTGGCTAGCAAGGGAACCCACTGC 500
kr251 TCTGGCTAGCAAGGGAACCCACTGC 500
node31 TCTGGCTAGCAAGGGAACCCACTGC 500
node30 TCTGGCTAGCAAGGGAACCCACTGC 500
node26 TCTGGCTAGCAAGGGAACCCACTGC 500
in226 TCCGGCTATCTAGGGAACCCACT-- 500
in225 TCTGGCTATCTAGGGAACCCACT-- 500
node37 TCTGGCTATCTAGGGAACCCACT-- 500
in222 TCTGGCTATCTAGGGAACCCACT-- 500
node36 TCTGGCTATCTAGGGAACCCACT-- 500
in175 TCTGGCTATCTAGGGAACCCACTG- 500
in172 TCTGGCTATCTAGGGAACCCACTG- 500
node38 TCTGGCTATCTAGGGAACCCACTG- 500
node35 TCTGGCTAACTAGGGAACCCACTG- 500
chol TCTGGCTAACTAGGGAACCCACTG- 500
node34 TCTGGCTAACTAGGGAACCCACTG- 500
node25 TCTGGCTAACTAGGGAACCCACTG- 500

Kk kkokokk ok kokkokkokkkk Kk

Figure 6.12: Multiple alignment of HIV-1 promoters, part9
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Figure 6.13: NFAT, NFkB and SP1 TFBS 105
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Figure 6.15: Position Activity of the alignment and smoothed activity of the
alignment
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Figure 6.16: Entropy of the alignment and smoothed entropy of the alignment
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Figure 6.17: Neutral Background
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7.1. EXPERIMENTAL CHECK OF TFBS

7.1 Experimental Check of TFBS

The Goldfeld Lab [102] determined TFBSs in the HIV-1 LTR sequences
we are investigating computaionally, using an experimental method called
DNAse I footprinting. The basic experimental kit includes a DNA strand,
a transcription factor and an enzyme. The DNA strand is assumed to have
the binding site motif for a transcription factor. Thus, the TF will wrap
around the DNA strand where this motif (or TFBS) is located. On the other
hand, an enzyme is capable of cutting the DNA strand into pieces. Yet, if
the DNA strand is protected by a protein like the TF being studied, the
enzyme will fail to cut it anywhere along the TFBS motif. The segment of
DNA shielded from enzyme digestion by a TF is called TF footprint. This
footprint is typically wider than the actual binding site [59] i.e. footprints
are typically 10-20 bases long, whereas TFBSs span 5 to 8 bases.

of %O&ﬁa(@

—_— —

\ 4

Figure 7.1: DNAse Footprinting Sketch

In Figures 7.2, 7.3, lower case letters indicate experimentally verified mo-
tifs. Computationally detected binding sites are marked with bars beneath
alignments. It looks as if computational tools are able to map the interactions
between TFs and the DNA.

Altogether, knowing that mathematical modeling of genomic sequences
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is in search of short-cuts for TFBS identification, we think that our compu-
tational tools fulfilled this task.
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ACTAggggcgttccAGgagaagtggtctgggegggactaggagtggt CAACCCTCAGATG
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w

CTTCAAGAACTGCTGATATCGAGC---TTGCTACAAGGGACTTTCcgctggggactttec
TTACAAAGACTGCTGACACAGAAGGGACTttccactgggactttccactaggggCGTTCC
CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCgctggggacttTCC
| | | | |
| | | | | |

NFAT IV NFAT V NFAT VI

ma

w

a-gggaggcgtGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG
A--GGAGAAGTGGTCTGGGCGGGACTAGG-AGTGGTCAACCCTCAGATGCTGCATATAAG
E TGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG

a

w

CTTCAAGAACTGCTGATATCGAGC---TTGCTAcaagggactttccgetggggactttee
TTACAAAGACTGCTGACACAGAagggactttccgetgggactttccactagGGGCGTTCC
CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCgctggggactttce
| | | | |
NFkB III NFkB IV NFkB V

ma

w

a-gggaGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATGCTGCATATAAG
A--GGAGAAGTGGTCTGGGCGGGACTAGG-AGTGGTCAACCCTCAGATGCTGCATATAAG
aggggaggTGTGGCCGGGGCGGAGTTGGGGAGTGGCTAACCCTCAGAAGCTGCATAAAAG
| | | |
NFkB VI NFkB VII

ma

w

CTTCAAGAACTGCTGATATCGAGC---TTGCTACAAGGGACTTTCCGCTGGGGACTTTCC
TTACAAAGACTGCTGACACAGAAGGGACTTTCCGCTGGGACTTTCCACTAGGgg cgttce
CTATAAAGACTGCTGACAAAGAAG---TTTCTAACTAGGACTT-CCGCTGGGGACTTTCC

ma

| |
| |
SP1 III

w

A-GGGAGGCGtggcctgggegggactggggagtGGCGAGCCCTCAGATGCTGCATATAAG
a--ggaGAAGTGgtC tagg-agtgg TCAGATGCTGCATATAAG
E tgtgg £ tggCTAACCCTCAGAAGCTGCATAAAAG

a

| |
| |
| |
SP1 IV

Figure 7.3: Experimental check of NFAT, NFxB and SP1 binding sites
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8.1 Binding Site - Fitness Relationship

The results of this part were obtained in collaboration with Prof. Nikolaus
Rajewsky (New York University) and Prof. Anne Goldfeld (Harvard Medical
School).

In order to gauge the number of mutations we want to determine scores
of individual binding sites for specific factors first, and then score differences
along branches, for the same transcription factors.

As a motif score (S;) we define the difference between the actual score
and the best-binder-score. The energy of a TFBS i is defined as its negative
score (.5;):

where 7 takes values: 1,2...n40,, and nges is the number of slots for a par-
ticular transcription factor. Here, nypar = ngp1 = 6 and nyprg = 7. The
maximum-likelihood tree has three subtrees which correspond to B, C and
E HIV-1 subtypes. All three subtrees have a common ancestor (S). S is the
grandfather, from which we start going down the subtree toward the leaves
when determining subtype of the father node subtype . Father subtype is
defined as subtype of daughters. Each slot ¢ is assigned an energy E;, and
for each sequence we calculate the total energy Fi, (last column).

Epoy = ZE (8.2)

Tables 9.1,9.4, 9.7 shows a very good subtype-specific classification on the
basis of total energy. If we look carefully at the subtype column and the
total energy column, we see a clear relationship for grouping nodes (HIV-1
promoter sequences) according to TFBS Ej,. This works as well for the
sequences from [57] shown in table .
The energy change of a TFBS ¢ is defined as the difference of its own and
its father’s energy:
D; = E; — E;/ather, (8.3)

Again, 1 takes values: 1,2...n4ts, Nsors-nUmMber of slots for a particular tran-
scription factor. Here, nyrar = ngp1 = 6 and nyprg = 7. Each slot i is
assigned an energy change D;, and for each sequence we calculate the total
energy change Dy, .

Dyor = ZiDi- (8.4)

In addition, we report compensations along branches. We sum up all posi-
tive energy differences, and all negative energy differences separately. As a
compensation we report the sum with smaller absolute value.

Tables 9.2,9.5, 9.8 show that majority of movements takes place on crucial
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subtype | SupT1 | SupT1(TNF) | SupT1(PHA) | MT2 | MT2(TNF) | MT2(PHA)
BA -0.1 0.03 0 -0.06 | -0.04 -0.06

BCa -0.05 -0.02 0.01 -0.03 | -0.03 -0.03

BCb -0.13 -0.08 -0.06 -0.09 | -0.09 -0.1

BD -0.02 0.04 0.09 -0.02 | 0 -0.01

BE -0.19 0.11 -0.06 -0.06 | -0.07 -0.07

BF 0.02 0.08 0.05 -0.05 | -0.03 -0.05

BG -0.05 0.05 0.01 -0.03 | -0.01 -0.03

Table 8.1: Fitness Differences from ref. [57]

branches connecting different subtypes (B10-S,E10-S,Cb11-Call,Cal0-
S).

In order to visualize the tables from appendix, we show average binding
site composition for B, C,, Cy and E (see Fig. 8.1). Scores are averaged over
all sequences in each subtype. These figures correspond to Tables 9.1,9.4,
9.7. Binding site composition is subtype-specific.

In Fig. 8.2 we display energy changes along crucial branches, where
majority of movements happen. The changes determine subtype-specificity.
Along branches within a subtype, changes are noise-like. The graphs visual-
ize Tables 9.2,9.5, 9.8. Emergence of subtypes is presented by energy
changes along crucial branches.

The authors of [57] performed replication studies with the set of A, B,
C, D, E, F, G subtype HIV-1 viruses in six different cellular environments.
Their study showed strong cellular environment effects on replication rates.
By conducting pairwise competition experiments between subtypes, they
demonstrated significant subtype-specific differences in the fitness values.
We reproduce TABLE3 from [57] to see fitness differences relative to sub-
type B. We include their A, D, F and G sequences into the Goldfeld data
set. Additional data comprise subtypes A, D, F and G, however, only the
core promoter. Therefore the additional tables display slots 4, 5 and 6 for
NFAT, slots 3, 4, 5, 6 and 7 for NF&B, slots 3, 4, 5 and 6 for SP1. In order
to construct equations describing fitness dependence on motif scores, we use
only core promoter slots from the Goldfeld data.

Analogously, we assign scores to multiple alignment slots for NFxB and
SP1. Then we report sums of scores in each node, for each TF, in Goldfeld
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subtype X | < Enpar > | < Enprg > | < Esp1 >
A 4.69 14.86 12.25

B 5.92 14.63 12.76

Ca 5.23 7.58 6.80

Chb 5.23 6.67 6.80

D 2.29 9.83 12.46

E 7.84 19.36 12.83

F 5.13 8.98 11.14

G 4.36 8.73 14.09

Table 8.2: Average transcription factor energies for each subtype.

full-length sequences 9.10. Again, we can see a partition according to sums
of energies for TFs separately, which coincides with experimental subtype
classification. Major movements take place on crucial branches.

8.2 Subtype Fitness Model

In the previous chapter we see that TFBS energy tables show subtype-specific
pattern, in agreement with experimental data. This finding encouraged us
to use the computed energies in order to model subtype fitness ®. For a
subtype X=A, B, C, D, E, F, G we determine average TF energy:

Izcvjl (Yo fetors BT .

X
< Erp >"= Ny

(8.5)

where TF=NFAT, NFxkB, SP1, and Nx is the number of X-subtype se-
quences.
We construct subtype fitness ®x (recall equation 3.3):

by = _ZTF frr < Erg >% (8.6)

We want to make use of data from our collaborators’ laboratory and that

of [57], attempting to predict fitness differences from the TFBS energies. The
fitness difference is given by:

Aq)Xl,Xz = (I)Xl - (DXz (87)

For the eight subtypes we determined average TF energies < Erp >:
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We arrive at 7 modeled fitness differences relative to subtype B:

AdPpa =1.23fnrar — 0.23fnrrs + 0.51 fsp1
A®pc, = 0.69fnpar + 7.05fnrFrp + 5.96 fsp1
A®pey, = 0.69fvpar + 7.96 fnprs + 5.96 fsp1
A®Ppp = 3.63fnpar +4.8fnrrB + 0.29fsp1 (8.8)
APpp = —1.92fypar — 473 fnrrp — 0.07 fsp1
Adpr = 0.79fnpar + 5.65fnrep + 1.62fsp1
A®pg = 1.56 fxpar + 5.90fnrre — 1.33 fsp1
On the other hand we have experimental fitness differences A® in Table
8.1.

Fitted coefficients fyrar, fyrrs, fspi and fitted fitness differences A®/#
are obtained from the best least-square fit of:

ACI):flA<E1>+f2A<E2>+f3A<E3>. (89)

Generalized fitting procedure includes k£ TFs labeled by A, e environ-
ments labeled by « and s subtype pairs labeled by 7. In our case, k=3 for
NFAT, NFxB and SP1, e=6 for SupT1, SupT1+TNF, SupT1+PHA, MT2,
MT2+TNF and MT2+PHA, and s=7 for BA, BCa, BCb, BD, BE, BF and
BG. According to [57], each cellular environment represents a different mix-
ture ( in biological language- nuclear pool) of TFs. A change in the environ-
ment TF composition can have a strong effect on the fitness of HIV-1.

If we denote fitness of a subtype j in environment o as ®; ,, the fitness differ-
ence of jrelative to an arbitrary chosen subtype with which all other subtypes
are compared (in our case 'B’) is given by:

A(I)Bj,a = (I)B,a - Qj,a (810)

Score of a TF A for a subtype jis denoted by < E} ; >. Thus, score difference
between j and B is:

A< E,\,Bj >=:< E)\,B > =< E)\,j > . (8.11)
We try a fit of the form:
A®io =) fral < Exi > +C, (8.12)
A
where i=1,2...s. To obtain the best fit, we first find in each environment the
best fit with given C; for:

(fras - Tr,a) (C1s -ey C5) (8.13)
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Subtype pair | A®/* | A®
BA -0.01 |0
BC, 0.01 0.01
BC, -0.06 | -0.06
BD 0.08 0.09
BE -0.09 | -0.06
BF 0.02 0.05
BG 0.01 0.01

Table 8.3: Fitted and experimental fitness differences in SupT1+PHA envi-
ronment

and ‘ ‘
(AD, /% . AD, S)(C, ..., C,). (8.14)

Fitting is performed using statistical software R which offers the [s fit() func-
tion for least-square fitting.
This allows us to compute the mean square deviation

o*(Cr, oy Cs) = 3 Y (AP I = AD; ) (8.15)

Then, we find the best optimal values (Cy, ..., Cs) by minimizing .

In doing so, we determined ¢2=0.075. This value corresponds to the
optimal set of C;: (-0.036,0.030,-0.038,0.002,-0.047,0.012,-0.035).

For the third environment SupT1(PHA) we got the best fit. The table
clarifies data points (see table 8.3 and Fig. 8.2) .

In order to quantify the correlation between the two variables (A®/% and
A®) we computed the Pearson correlation coefficient (8.16), a quantity which
takes values between -1 and +1:

I [

$ s
i=1 X Y

where z, y are the means of z and y, sx, sy are their standard deviations and
n is the number of (z,y) pairs [95].

Its sign indicates if two variables are positively (4) or negatively (-) asso-
ciated, while its absolute value gives a measure of the strength of correlation
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Subtype | ® ofit
E 1.10 | 1.04
Ch 1.07 | 1.09
A 1.02 | 1.01
B 1.01 | 1.01
C, 1.00 | 0.99
G 1.00 | 0.97
F 0.99 | 0.95
D 0.93 | 0.94

Table 8.4: Ranked fitted and experimental fitness in SupT1+PHA

of the two. To our delight, its value for A®/* and A® turns out to be 0.97!
Obviously, relative fitness ranking of HIV-1 in SupT1+PHA is almost per-
fectly conserved (see Table 8.4).

8.3 Concluding Remarks

We think that the above analysis has shown a very good agreement between
theory and experiment, especially for one of the environments under investi-
gation (SupT1 + PHA). We can conclude that NFAT, NFxB and SP1 play
a crucial role in determining HIV-1 fitness in the SupT1+PHA collection of
TFs. In our opinion, this is an important result, since it is little known about
the differences in the transcription factor composition between different cel-
lular environments. Although it is estimated that there are a few thousands
of TFs encoded by the human genome, it is still poorly understood when
and where the majority of these TFs are expressed [57,59], in plain English,
when and where are they floating around.

There may be different reasons why the fit is performing less successfully for
other environments (see Figures 8.3,8.4,8.5,8.6,8.7) . One possibility would
be that the total fitness is not a linear function of individual TF fitnesses, due
to synergistic interactions between TFs that are absent in SupT1+PHA, yet
present in other environments. Another possibility would be the existence of
additional TFBSs that we are not aware of. A third scenario could include
some interactions of certain TFs with the TAR sequence. Also, we could
imagine that subregions of the core promoter are weighted unequally.

Our main interest was to find the relationship between the fitness and
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the binding probability for individual transcription factors. We relied on the
experiments indicating that binding sites play a significant role for growth
rates in specific environments. Thus, we thought we should be able to pin-
point the genomic sequence origin of the fitness differences, which could be
verified by experiments. The last modeling step in this study, where we as-
sumed that transcription factor binding site scores contribute additively to
fitness, turned out to be very encouraging. By bringing together theory and
experiment, we were able to construct a model relating bioinformatical score
to fitness with good predictive power.

Understanding the genotype-phenotype relationship (here, genomic se-
quence relationship to fitness) is still a largely uncharted territory in genetics.
We believe that solutions to these problems will emerge from close interplay
between computational methods and experimental cross-checks.
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Figure 8.1: NFAT, NFkB and SP1 average score profiles
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sequence | slotl | slot2 | slot3 | slot4 | slotb | slot6 | Fy,
B1 1.89 | 3.53 | 4.57 | 592 |0 0 15.91
B2 1.89 | 3.53 | 4.57 | 592 |0 0 15.91
B13 1.89 | 3.53 | 4.57 | 592 |0 0 15.91
B3 1.89 | 3.53 | 595 | 592 |0 0 17.29
B12 1.89 | 3.53 | 595 | 592 |0 0 17.29
B4 1.89 | 3.53 | 595 | 592 |0 0 17.29
B11 1.89 | 3.53 | 595 [ 592 |0 0 17.29
B5 1.89 | 3.53 | 595 | 592 |0 0 17.29
B10 1.89 | 3.53 | 595 | 592 |0 0 17.29
E1l 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
E2 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
E3 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
E13 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
E12 1.89 | 541 | 4.57 [ 243 | 541 |0 19.71
E4 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
E1l1 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
E5 1.89 | 5.41 | 547 | 243 | 541 |0 20.61
E6 1.89 | 5.41 | 547 | 243 | 541 |0 20.61
E16 1.89 | 5.41 | 5.47 | 243 | 541 |0 20.61
E7 1.89 | 1.89 | 4.57 | 243 | 541 |0 16.19
E15 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
E8 1.89 | 3.3 | 4.57 | 243 | 541 |0 17.83
E9 1.89 | 3.3 | 4.57 | 243 | 541 |0 17.83
E17 1.89 | 3.3 | 4.57 | 243 | 541 |0 17.83
E14 1.89 | 541 | 4.57 [ 243 | 541 |0 19.71
E10 1.89 | 5.41 | 4.57 | 243 | 541 |0 19.71
Chl 1.89 | 5.41 | 547 |0 0 5.23 | 18
Ch2 1.89 | 5.41 | 547 |0 0 5.23 | 18
Cb12 1.89 | 5.41 | 547 |0 0 5.23 | 18
Ch3 1.89 | 541 | 547 | 0O 0 5.23 | 18
Cbl1 1.89 | 541 | 547 |0 0 5.23 | 18
Cal 1.89 | 1.89 | 1.89 | 0O 0 5.23 | 10.9
Ca2 1.89 | 1.89 | 1.89 |0 0 5.23 | 10.9
Cal2 1.89 | 1.89 | 1.89 | 0 0 5.23 | 10.9
Call 1.89 | 1.89 | 1.89 | 0O 0 5.23 | 10.9
Ca3 1.89 | 1.89 | 1.89 | 0 0 5.23 | 10.9
Cal0 1.89 | 1.89 | 1.89 | 0 0 5.23 | 10.9
S 1.89 | 5.41 | 547 [ 5.89 | 1.89 |0 20.55

Table 9.1: NFAT slots (Goldfeld data) in nodes
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branch slot1 | slot2 | slot3 | slot4 | slotb | slot6 | D;,; | comp
B1-B13 0.00 | 0.00 | 1.38 | 0.00 | 0.00 | 0.00 | 1.38 | 0.00
B2-B13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
B13-B12 0.00 | 0.00 | 1.38 | 0.00 | 0.00 | 0.00 | 1.38 | 0.00
B3-B12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
B12-Bl11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
B4-B11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
B11-B10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
B5-B10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
B10-S 0.00 | 1.88 | -0.48 | -0.03 | 1.89 | 0.00 | 3.26 | 0.51
E1-E12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E2-E13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
E3-E13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
E13-E12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
E12-E11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E4-E11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E11-E10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E5-E16 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E6-E16 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E16-E15 0.00 | 0.00 | -0.90 | 0.00 | 0.00 | 0.00 |-0.90 | 0.00
E7-E15 0.00 | 3.52 | 0.00 | 0.00 | 0.00 |0.00 |3.52 | 0.00
E15-E14 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
E8-E17 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E9-E17 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E17-E14 0.00 | 1.88 | 0.00 | 0.00 | 0.00 | 0.00 | 1.88 | 0.00
E14-E10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E10-S 0.00 | 0.00 | 0.90 | 3.46 | -3.52 | 0.00 | 0.84 | 3.52
Cb1-Cb12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
Cb2-Cb12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Cb12-Cbl1 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Cb3-Cbl11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Cb11-Call | 0.00 | -3.52 | -3.58 | 0.00 | 0.00 | 0.00 | -7.10 | 0.00
Cal-Cal2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
Ca2-Cal2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Cal2-Call 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Cal1-Cal0 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Ca3-Cal0 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Calo-S 0.00 | 3.52 | 3.58 | 5.89 | 1.89 | -5.23 | 9.65 | 5.23
S-S 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00

Table 9.2: NFAT slot energy difference in branches (Goldfeld data)
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sequence | slot4 | sloth | slot6 | Ejy
Al 4.69 |0 0 4.69
A2 4.69 |0 0 4.69
A3 469 |0 0 4.69
A4 4.69 |0 0 4.69
A5 4.69 |0 0 4.69
A6 4.69 |0 0 4.69
A7 4.69 |0 0 4.69
D1 1.89 | 0 0 1.89
D2 1.89 | 0 0 1.89
D3 1.89 | 0 0 1.89
D4 1.89 |0 0 1.89
D5 1.89 |0 0 1.89
D6 1.89 |0 3.58 | 5.47
D7 1.89 |0 0 1.89
D8 1.89 |0 0 1.89
D9 1.89 |0 0 1.89
F1 4.69 |0 0 4.69
F2 4.57 | 0 0 4.57
F3 4.57 |0 0 4.57
F4 4.69 |0 0 4.69
F5 4.69 |0 3.53 | 8.22
F6 457 |10 0 4.57
F7 4.57 |0 0 4.57
G1 4.69 |0 0 4.69
G2 4.69 |0 0 4.69
G3 4.03 |0 0 4.03
G4 4.69 |0 0 4.69
G5 4.69 |0 0 4.69
G6 4.03 |0 0 4.03
G7 403 |0 0 4.03
G8 4.03 |0 0 4.03

Table 9.3: NFAT scores slots from data from ref. [57]
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sequence | slotl | slot2 | slot3 | slot4 | sloth | slot6 | slot7 | Ey
B1 3 098 | 794 |0 0 3.69 |3 18.61
B2 3 098 | 794 |0 0 3.69 |3 18.61
B13 3 098 | 794 |0 0 3.69 |3 18.61
B3 3 794 1794 |0 0 3.69 |3 25.57
B12 3 794 1794 |0 0 3.69 | 3 25.57
B4 3 794 1794 |0 0 3.69 |3 25.57
B11 3 794 | 794 |0 0 3.69 |3 25.57
B5 3 794 1794 |0 0 3.69 |3 25.57
B10 3 794 1794 |0 0 3.69 |3 25.57
E1l 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E2 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E3 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E13 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E12 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E4 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
El1 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E5 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E6 3 794 | 8.38 | 3.6 0 3.69 | 3.69 | 30.3
E16 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E7 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E15 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E8 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E9 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E17 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
El4 3 7.94 | 838 | 3.6 0 3.69 | 3.69 | 30.3
E10 3 794 | 8.38 | 3.6 0 3.69 | 3.69 | 30.3
Chbl 3 794 | 0 0 0.98 | 098 |3 15.9
Ch2 3 794 |10 0 0.98 | 349 |3 18.41
Ch12 3 794 |10 0 098 |3 3 17.92
Ch3 3 794 |10 0 098 |3 3 17.92
Chl11 3 794 | 0 0 098 |3 3 17.92
Cal 3 794 | 0 0 0.98 | 3.6 3 18.52
Ca2 3 794 10 0 0.98 | 3.6 3 18.52
Cal2 3 794 | 0 0 0.98 | 3.6 3 18.52
Call 3 794 |0 0 0.98 | 3.6 3 18.52
Ca3 3 794 |10 0 0.98 | 3.6 3 18.52
Cal0 3 794 |10 0 0 3.6 3 17.54
S 3 7.94 | 74 0 0 3.69 |3 25.03

132

Table 9.4: NFxB slots (Goldfeld data) in nodes




branch slot1 | slot2 | slot3 | slot4 | slotb | slot6 | slot7 | Dy, | comp
B1-B13 0.00 | 6.96 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |6.96 | 0.00
B2-B13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
B13-B12 0.00 | 6.96 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |6.96 | 0.00
B3-B12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
B12-Bl11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
B4-B11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
B11-B10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00] 0.00
B5-B10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
B10-S 0.00 | 0.00 | 0.54 | 0.00 | 0.00 | 0.00 |0.00 | 0.54 | 0.00
E1-E12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E2-E13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 ]| 0.00
E3-E13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00] 0.00
E13-E12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E12-E11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E4-E11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E11-E10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E5-E16 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 | 0.00
E6-E16 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E16-E15 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E7-E15 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00] 0.00
E15-E14 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E8-E17 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E9-E17 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E17-E14 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
E14-E10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 | 0.00
E10-S 0.00 | 0.00 | 0.98 | 3.60 | 0.00 | 0.00 | 0.69 | 5.27 | 0.00
Cb1-Cb12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.02 |0.00 |2.02 | 0.00
Cbh2-Cb12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.49 |0.00 | 0.49 | 0.00
Cb12-Cb11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Chb3-Cbl1 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 ]| 0.00
Cb11-Call | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | 0.00 | 0.60 | 0.00
Cal-Cal2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
Ca2-Cal2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
Cal2-Call 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 | 0.00 | 0.00
Call-Cal0 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 |0.00 |0.98 ]| 0.00
Ca3-Cal0 0.00 | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 |0.00 |0.98 ]| 0.00
Calo0-S 0.00 | 0.00 | 7.40 | 0.00 | 0.00 | 0.09 |0.00 | 7.49 | 0.00
S-S 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 ]| 0.00

Table 9.5: NFxB slot energy difference in branches (Goldfeld data)
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sequence | slot3 | slot4 | slotb | slot6 | slot7 | E;y
Al 7.4 0 0 4.5 522 | 17.12
A2 7.4 3.71 | 0 1.5 5.22 | 17.83
A3 7.4 0 0 0 5.22 | 12.62
A4 7.4 0 0 1.5 5.22 | 14.12
A5 7.4 0 0 1.5 5.22 | 14.12
A6 7.4 0 0 1.5 5.22 | 14.12
AT 7.4 0 0 1.5 5.22 | 14.12
D1 4.5 0 0 3.71 |3 11.21
D2 4.5 0 0 3.71 |3 11.21
D3 1.5 0 0 3.71 |3 8.21
D4 1.5 0 0 3.71 |3 8.21
D5 4.5 0 0 3.54 |3 11.04
D6 3.6 0 0 248 | 3 9.08
D7 4.5 0 0 2.56 | 3 10.06
D8 1.5 0 0 3.71 | 3 8.21
D9 4.5 0 0 3.71 | 3 11.21
F1 248 | 0 0 248 | 3 7.96
F2 3.49 | 0 0 2.48 | 7.94 | 13.91
F3 2.48 | 0 0 248 | 3.6 8.56
F4 2.48 | 0 0 248 | 3 7.96
F5 2.48 | 0 0 248 | 3 7.96
F6 2.48 | 0 0 248 | 3.6 8.56
F7 2.48 |0 0 248 | 3 7.96
G1 1.5 0 0 3.71 | 3 8.21
G2 1.5 0 0 3.71 | 3.6 8.81
G3 1.5 0 0 3.71 | 3.6 8.81
G4 1.5 0 0 3.71 |3 8.21
GbH 1.5 0 0 3.71 | 3 8.21
G6 4.5 0 0 3.69 |3 11.19
G7 1.5 0 0 3.69 |3 8.19
G8 1.5 0 0 3.69 |3 8.19

Table 9.6: NFxB scores slots from data from ref. [57]




sequence | slotl | slot2 | slot3 | slot4 | sloth | slot6 | Fyy

B1 11.06 | 1.44 | 9.29 | 144 |0 2.03 | 25.26
B2 11.06 | 1.44 | 9.29 | 144 |0 2.03 | 25.26
B13 11.06 | 1.44 | 9.29 | 144 |0 2.03 | 25.26
B3 7.82 | 144 1929 [ 144 |0 2.03 | 22.02
B12 782 | 144 929 | 144 |0 2.03 | 22.02
B4 782 | 144 1929 | 144 |0 2.03 | 22.02
Bi11 7.82 | 144 1929 | 144 |0 2.03 | 22.02
B5 7.82 | 144 1929 | 144 |0 2.03 | 22.02
B10 7.82 | 144 1929 [ 144 |0 2.03 | 22.02
E1l 3.09 [ 103 [923 [1.44 |0 2.03 | 26.09
E2 3.09 103 923 |[1.44 |0 2.03 | 26.09
E3 144 | 10.3 |9.23 | 144 |0 2.03 | 24.44
E13 3.09 [ 103 923 [1.44 |0 2.03 | 26.09
E12 3.09 103 923 [1.44 |0 2.03 | 26.09
E4 3.09 [ 103 923 [1.44 |0 2.03 | 26.09
El1 3.09 | 103 923 [1.44 |0 2.03 | 26.09
E5 3.09 | 103 |9.23 | 144 |0 2.03 | 26.09
E6 3.09 | 103 |9.23 | 144 |0 2.03 | 26.09
E16 3.09 103 923 |[1.44 |0 2.03 | 26.09
E7 3.09 103 923 |[1.44 |0 2.03 | 26.09
E15 3.09 [ 103 923 [1.44 |0 2.03 | 26.09
ES8 3.09 | 103 |9.23 |1.44 |2.03 |2.03 |28.12
E9 3.09 | 103 |9.23 | 144 |0 2.03 | 26.09
E17 3.09 [ 103 923 [1.44 |0 2.03 | 26.09
E14 3.09 103 923 [1.44 |0 2.03 | 26.09
E10 3.09 [ 103 [9.23 [1.44 |0 2.03 | 26.09
Chbl 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Ch2 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Cb12 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Chb3 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Cbl11 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Cal 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Ca2 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Cal2 7.82 | 11.29 | 1.44 | 3.09 |0 2.03 | 25.67
Call 7.82 | 11.29 | 2.03 | 3.09 |0 2.03 | 26.26
Ca3 12.52 | 11.29 | 2.03 | 3.09 | 0 2.03 | 30.96
Cal0 7.82 | 11.29 | 2.03 | 3.09 |0 2.03 | 26.26
S 7.82 | 454 1929 | 144 |0 2.03 | 25.12

Table 9.7: SP1 slots (Goldfeld data) in nodes
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branch slotl | slot2 | slot3 | slot4 | slotb | slot6 | Dy,; | comp
B1-B13 -3.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |-3.24 | 0.00
B2-B13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
B13-B12 -3.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |-3.24 | 0.00
B3-B12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
B12-Bl11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 [0.00
B4-B11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 [0.00
B11-B10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
B5-B10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
B10-S 0.00 | 3.10 | 0.00 | 0.00 | 0.00 | 0.00 | 3.10 | 0.00
E1-E12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 |0.00
E2-E13 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E3-E13 1.65 | 0.00 | 0.00 | 0.00 | 0.00 |{0.00 |1.65 | 0.00
E13-E12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E12-E11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 [0.00
E4-E11 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
E11-E10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
E5-E16 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
E6-E16 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 [0.00
E16-E15 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E7-E15 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E15-E14 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
E8-E17 0.00 | 0.00 | 0.00 | 0.00 |-2.03 | 0.00 |-2.03 | 0.00
E9-E17 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
E17-E14 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
E14-E10 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 [0.00
E10-S 4.73 | -5.76 | 0.06 | 0.00 | 0.00 | 0.00 | -0.97 | -4.79
Cb1-Cb12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Cb2-Cb12 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
Cb12-Cb11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Ch3-Cbl1 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 [0.00
Cb11-Call | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00
Cal-Cal2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Ca2-Cal2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00 |0.00 [0.00
Cal2-Call 0.00 | 0.00 | 0.59 | 0.00 | 0.00 |0.00 |0.59 | 0.00
Call-Cal0 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |0.00
Ca3-Cal0 -4.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -4.70 | 0.00
Cal0-S 0.00 | -6.75|7.26 | -1.65 | 0.00 | 0.00 |-1.14 | -7.26
S-S 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Table 9.8: SP1 slot energy difference in branches (Goldfeld data)
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sequence | slot3 | slot4 | slotb | slot6 | Fi

Al 929 | 1.44 |0 1.44 | 12.17
A2 9.29 | 144 |0 1.44 | 12.17
A3 9.29 1203 |0 1.44 | 12.76
A4 929 | 1.44 |0 1.44 | 12.17
A5 929 | 1.44 |0 1.44 | 12.17
A6 929 | 1.44 |0 1.44 | 12.17
AT 929 | 1.44 |0 1.44 | 12.17
D1 9.29 1203 |0 1.44 | 12.76
D2 929 | 144 |0 1.44 | 12.17
D3 9.29 | 144 |0 1.44 | 12.17
D4 929 | 1.44 |0 1.44 | 12.17
D5 929 | 1.44 |0 1.44 | 12.17
D6 929 | 1.44 |2.03 | 1.44 | 14.2

D7 929 | 1.44 |0 1.44 | 12.17
D8 929 | 1.44 |0 1.44 | 12.17
D9 929 | 1.44 |0 1.44 | 12.17
F1 929 | 144 |0 1.44 | 12.17
F2 9.29 | 144 |0 1.44 | 12.17
F3 9.29 |0 0 1.44 | 10.73
F4 929 |0 0 1.44 | 10.73
F5 9.29 |0 0 1.44 | 10.73
F6 9.29 |0 0 1.44 | 10.73
F7 9.29 |0 0 1.44 | 10.73
Gl 929 | 1.44 |1.44 | 1.44 | 13.61
G2 929 | 1.44 | 144 |1.44 | 13.61
G3 929 |1.44 |1.44 |1.44 | 13.61
G4 929 | 1.44 | 144 |1.44 | 13.61
GbH 929 |1.44 |1.44 |1.44 | 13.61
G6 9.29 [5.29 | 1.44 | 1.44 | 17.46
G7 9.29 | 1.44 |1.44 | 1.44 | 13.61
G8 929 |1.44 (144 |1.44 | 13.61

Table 9.9: SP1 scores slots from data from ref. [57]
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sequence | > NFAT | Y NFkB | > SP1
B1 15.91 18.61 25.26
B2 15.91 18.61 25.26
B13 15.91 18.61 25.26
B3 17.29 25.57 22.02
B12 17.29 25.57 22.02
B4 17.29 25.57 22.02
B11 17.29 25.57 22.02
B5 17.29 25.57 22.02
B10 17.29 25.57 22.02
E1 19.71 30.3 26.09
E2 19.71 30.3 26.09
E3 19.71 30.3 24.44
E13 19.71 30.3 26.09
E12 19.71 30.3 26.09
E4 19.71 30.3 26.09
E11 19.71 30.3 26.09
E5 20.61 30.3 26.09
E6 20.61 30.3 26.09
E16 20.61 30.3 26.09
E7 16.19 30.3 26.09
E15 19.71 30.3 26.09
E8 17.83 30.3 28.12
E9 17.83 30.3 26.09
E17 17.83 30.3 26.09
E1l4 19.71 30.3 26.09
E10 19.71 30.3 26.09
Cbl 18 15.9 25.67
Ch2 18 18.41 25.67
Cb12 18 17.92 25.67
Cb3 18 17.92 25.67
Cbl11 18 17.92 25.67
Cal 10.9 18.52 25.67
Ca2 10.9 18.52 25.67
Cal2 10.9 18.52 25.67
Call 10.9 18.52 26.26
Ca3 10.9 18.52 30.96
Cal0 10.9 17.54 26.26
S 20.55 25.03 25.12

Table 9.10: TF score sums in Goldfeld data sequences
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branch > NFAT | > NFkB | Y SP1 | comp
B1-B13 1.38 6.96 -3.24 -3.24
B2-B13 0.00 0.00 0.00 0
B13-B12 1.38 6.96 -3.24 -3.24
B3-B12 0.00 0.00 0.00 0
B12-B11 0.00 0.00 0.00 0
B4-B11 0.00 0.00 0.00 0
B11-B10 0.00 0.00 0.00 0
B5-B10 0.00 0.00 0.00 0
B10-S 3.26 -0.54 3.10 -0.54
E1-E12 0.00 0.00 0.00 0
E2-E13 0.00 0.00 0.00 0
E3-E13 0.00 0.00 1.65 0
E13-E12 0.00 0.00 0.00 0
E12-E11 0.00 0.00 0.00 0
E4-E11 0.00 0.00 0.00 0
E11-E10 0.00 0.00 0.00 0
E5-E16 0.00 0.00 0.00 0
E6-E16 0.00 0.00 0.00 0
E16-E15 -0.90 0.00 0.00 0
E7-E15 3.52 0.00 0.00 0
E15-E14 0.00 0.00 0.00 0
E8-E17 0.00 0.00 -2.03 0
E9-E17 0.00 0.00 0.00 0
E17-E14 1.88 0.00 0.00 0
E14-E10 0.00 0.00 0.00 0
E10-S 0.84 -5.27 -0.97 0.84
Cb1-Cb12 0.00 2.02 0.00 0
Cb2-Cb12 0.00 -0.49 0.00 0
Cb12-Cb11 | 0.00 0.00 0.00 0
Cb3-Cbl11 0.00 0.00 0.00 0
Cb11-Call | -7.10 0.60 0.59 1.19
Cal-Cal2 0.00 0.00 0.00 0
Ca2-Cal2 0.00 0.00 0.00 0
Cal2-Call 0.00 0.00 0.59 0
Call-Cal0 0.00 -0.98 0.00 0
Ca3-Call 0.00 -0.98 -4.70 0
Calo-S 9.65 7.49 -1.14 -1.14
S-S 0.00 0.00 0.00 0

Table 9.11: Sums of branch score differences of all TFs (Goldfeld data)
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