Vergleichende und funktionelle Studien
zur Evolution der dorsoventralen Musterbildung
bei Insekten

I n a u g u r a l – D i s s e r t a t i o n
zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von

Patrick Kalscheuer
aus Köln

(Köln, 2004)
1. Berichterstatter: Prof. Dr. Siegfried Roth
2. Berichterstatter: Prof. Dr. Diethard Tautz
Datum der mündlichen Prüfung: 16.02.2005
Danksagung

Die vorliegende Arbeit wurde am Institut für Entwicklungsbiologie der Universität zu Köln unter der Anleitung von Herrn Prof. Dr. Siegfried Roth durchgeführt. Ihm möchte ich besonders für die Bereitstellung dieses Projektes, die Betreuung und die ständige Diskussionsbereitschaft danken.

Bei Herrn Prof. Dr. Diethard Tautz bedanke ich mich für die Übernahme des Zweitgutachtens.

Claudia Wunderlich danke ich für die kritische Durchsicht des Manuskripts, mehrere gute Cocktailrezepte und Brownies, sowie dem ein oder anderen Beitrag zu meinem Insektenkasten.

Thanks also to Sajith Dass for the lessons on the origin of human life and culture (“Once, back in India...”), lots of discussions and many tough football matches.

Den weiteren Gruppenmitgliedern Conny Mikulski, Bhupendra Shravage, Martin Technau und Maurijn van der Zee möchte ich für die ständige Diskussionsbereitschaft, mehrere „Happy Hours“ und die stets nette Laboratmosphäre danken. Ellen Veit, Maria Langen und Oliver Karst sei zudem gedankt für die technische Unterstützung.

Den ehemaligen Mitgliedern des Labors, insbesondere den „Kellerkindern“ Abidin Basal und Oliver Stockhammer, ein Dankeschön für die angenehme und oft witzige Laboratmosphäre und für den harten Snood-Wettkampf.

Mein besonderer Dank gilt Heike, nicht nur fürs Korrekturlesen, sondern auch für Ihre Geduld und ihr Verständnis, sowie ihre Ruhe und Unterstützung, besonders in den letzten Monaten.

Besonders möchte ich mich bei meinen Eltern für ihre ständige Unterstützung bedanken.
1 EINLEITUNG .. 1

1.1 Das Langkeim- und Kurzkeim-Konzept .. 2
1.2 Spezifizierung der dorsoventralen Achse bei Drosophila melanogaster 4
 1.2.1 Initialisierung der dorsoventralen Achse bei Drosophila .. 4
 1.2.2 Etablierung der dorsoventralen Achse des Drosophila-Embryos 7
1.3 Die Zielgene des Dorsal-Gradienten ... 9
1.4 Die Funktion der Toll-Dorsal Kaskade in der Immunabwehr .. 11
1.5 Sequenzvergleich der Proteine der Dorsal-Gruppe in verschiedenen Insektenarten 14
1.6 Zielsetzung der Arbeit .. 18

2 MATERIAL UND METHODEN ... 20

2.1 Haltung und Aufzucht von Tribolium castaneum .. 20
2.2 Präparation von Anopheles- und Tribolium-Ovarien ... 20
2.3 Molekularbiologische Arbeiten .. 21
 2.3.1 Bakterienstämme und Vektoren ... 21
 2.3.2 Häufig verwendete Chemikalien .. 21
 2.3.3 Oligonukleotide .. 23
 2.3.4 Enzyme ... 23
 2.3.5 Verwendete Antikörper .. 24
 2.3.6 DNA-Präparationen .. 24
 2.3.6.1 Plasmid-Minipräparation ... 24
 2.3.6.2 Plasmid-Midipräparation .. 24
 2.3.7 Schneiden von DNA mit Restriktionsendonukleasen ... 25
 2.3.7.1 Schneiden von DNA zur Isolierung von DNA-Fragmenten 25
 2.3.8 Größenseparation von DNA-Fragmenten durch Auftrennung in Agarosegelen 25
 2.3.9 Isolierung von DNA-Fragmenten ... 26
 2.3.9.1 Präparative Gelelektrophorese .. 26
 2.3.10 Phenol/Chloroform-Extraktion ... 26
 2.3.11 Ethanolfällung ... 27
 2.3.12 Dephosphorylierung von 5'-Enden ... 27
 2.3.13 Ligation .. 27
 2.3.14 Konzentrationsbestimmung von DNA .. 28
 2.3.15 Polymerase-Kettenreaktion (PCR) ... 28
 2.3.15.1 PCR-Reaktion .. 29
 2.3.16 Herstellung von Digoxigenin-markierten RNA-Sonden ... 30
 2.3.17 Synthese doppelsträngiger RNA (dsRNA) ... 31
 2.3.18 Herstellung transformationskompetenter E.coli Bakterien 31
3 ERGEBNISSE .. 41

3.1 Oogenese ... 41
 3.1.1 Lokalisierung des Oozytenkerns während der Oogenese 41
 3.1.2 Isolierung von Pipe Homologen aus Anopheles gambiae und Tribolium castaneum 44
 3.1.3 Expression von Agpipe während der Oogenese 48
 3.1.4 Expression von Tcpipe während der Oogenese 50

3.2 Isolierung eines cactus-Gens aus Tribolium castaneum 51

3.3 Die Expression von Tccactus ... 53
 3.3.1 Expression während des Blastodermstadiums 53
 3.3.2 Expression während der Invagination des Keimstreifs 55
 3.3.3 Expression während der Keimstreifausstreckung 56
 3.3.4 Maternale Expression von Tccactus .. 59
 3.3.5 RNAi mit Tccactus .. 60

3.4 Funktionelle Analyse von Tcdorsal .. 61
 3.4.1 Defekte in der Morphologie von Tcdl RNAi Embryonen 61
 3.4.2 Die Wachstumszone in dorsalisier ten Embryonen 64
 3.4.3 Expression mesodermaler Gene ... 66
3.4.4 Expression von lateralen Markergenen ... 68
3.4.5 dpp und zen als Marker für extraembryonales Gewebe .. 70
3.4.6 Klärung des Zellschicksals in Tcdl RNAi Embryonen ... 71
3.4.7 Früh exprimierte Marker: Tc006A12 und hairy .. 73
3.4.8 Schwache Phänotypen .. 75

4 DISKUSSION .. 79
4.1 Frühe Schritte zur Achsenbildung während der Oogenese 79
4.2 Die Etablierung der Dorsoventral-Achse im frühen Tribolium Embryo 82
4.3 Späte Prozesse der dorsoventralen Musterbildung .. 85
4.4 Potentielle Zielgene von TcDorsal und deren Regulierung 86
4.5 Zur möglichen Funktion von Tccactus ... 89
4.6 Die Toll-Dorsal Kaskade in Tribolium .. 93

5 ZUSAMMENFASSUNG ... 96

6 ANHANG .. 98
6.1 Allgemeine Abkürzungen ... 98
6.2 Partielle cDNA Sequenz von Tcpipe und abgeleitete Proteinsequenz 99
6.3 Phylogenetischer Stammbaum der Pipe Proteine aus Insekten 100
6.4 Partielle cDNA Sequenz von Tccactus und abgeleitete Proteinsequenz 101

7 LITERATUR ... 102

ERKLÄRUNG .. 115

LEBENSLAUF ... 116
1 Einleitung

Der Mehlkäfer *Tribolium castaneum* eignet sich besonders zur vergleichenden Analyse der embryonalen Entwicklung, da er als Mitglied der Coleopteren nicht nur morphologisch weniger spezialisierte Merkmale aufweist, sondern auch im Vergleich zu den Dipteren einen abweichenden Modus der Embryonalentwicklung, als „Kurzkeimmodus“ bezeichnet, verfolgt (vgl. 1.1).

Da dieser Kurzkeimmodus offenbar unter niederer Insekten den vorherrschende Typus der Entwicklung darstellt und vermutlich die ursprüngliche Form der Entwicklung repräsentiert, eignet sich *Tribolium* als Mitglied der Coleopteren, in deren Arten sich sowohl Vertreter für Kurz- als auch für den Langkeimmodus finden sind, um nach grundlegenden Mechanismen der Entwicklung zu suchen, insbesondere, ob der von *Drosophila* abweichende Modus der Embryonalentwicklung Konsequenzen für die Spezifizierungsprozesse der Körperachsen hat.

Im Laufe der letzten Jahre sind zudem wichtige molekulare und genetische Methoden etabliert worden, die es ermöglichen, die Entwicklung von *Tribolium* eingehend zu analysieren. Dazu gehören neben *in situ* Hybridisierung (Sommer und Tautz, 1993) die Erzeugung und Identifizierung transgener Tiere (Berghammer et al., 1999a, Lorenzen et al., 2003) und die Ausschaltung zygotischer wie maternaler Gene durch Injektion doppelsträngiger RNA (RNAi) in embryonalen, larvalen oder puppalen Stadien (Brown et al., 1999; Bucher et al.)

1.1 Das Langkeim- und Kurzkeim-Konzept

Im Gegensatz hierzu werden die meisten Segmente von vielen basalen Insekten nicht während dieses frühen Blastodermstadiums angelegt, sondern erst in späteren Stadien (Davies und Patel, 2002). Während der syncytiellen Phase wird im Gegensatz zum Langkeimmodus zunächst nur eine Keimanlage angelegt, die einige wenige anteriore Segmente umfasst. Die posterioren Segmente werden dagegen im Laufe der Embryonalentwicklung einzeln in einer zellulären Umgebung von einer Wachstumszone hervorgebracht, die sich im posterioren Bereich der Keimanlage bildet (Patel et al. 1994). Dies impliziert, dass zygotischen Genen bei der Achsenbildung in niederen Insekten wie Tribolium eine größere Funktion zukommt als in höheren Dipteren, wo die Hauptaspekte der Achsenspezifizierung aufgrund der syncytiellen Umgebung noch von diffusiblen maternalen Faktoren bewerkstelligt werden.

1.2 Spezifizierung der dorsoventralen Achse bei Drosophila melanogaster

Entscheidende Schritte zur Ausbildung einer dorsoventralen Achse des Embryos werden bereits während der Entwicklung der Eizelle realisiert (vgl. 1.2.1). Die hier erzeugte, generelle DV-Information wird in frühen Stadien der Embryonalentwicklung in eine genaue Unterteilung des Embryos anhand eines auf dieser Information basierenden Kerngradienten des Transkriptionsfaktors Dorsal in diskrete Regionen umgesetzt (siehe 1.2.2).

1.2.1 Initialisierung der dorsoventralen Achse bei Drosophila

Für beide Gurken-abhängige Signalprozesse ist die Bindung von Gurken an seinen Rezeptor, Torpedo/DER (*Drosophila* EGF Rezeptor), und die hieraus resultierende Aktivierung der nachgeschalteten intrazellulären Kaskade notwendig (Roth et al., 1995; Ray und Schüpbach, 1996, Peri et al., 1999). Diese Kaskade führt ebenfalls zur Modulierung des EGF-Signals, sowohl durch negative als auch positive Rückkopplungsmechanismen (Peri et al., 1999).
 Entscheidend für die Etablierung der dorsoventralen Achse des Embryos ist nun, die durch Aktivierung des EGF Receptors und der nachfolgenden Signalkaskade in den dorsalen Follikelzellen festgelegten Positionsinformationen an den sich entwickelnden Embryo weiterzugeben. Dies ist nicht trivial, da zum Zeitpunkt der Eiablage die Follikelzellen bereits degeneriert sind und somit keine direkte Übermittlung der DV-Information an den Embryo zu diesem späten Zeitpunkt möglich ist.

Pipe zeigt eine Sequenz-Ähnlichkeit zu Glucosaminoglycan modifizierenden Enzymen der Familie der Heparansulfat-2-O-Sulfotransferasen. Deshalb ist es wahrscheinlich, dass die Funktion von Pipe in der Modifikation von einem oder mehreren Bestandteilen der extrazellulären Matrix besteht. Das von Pipe modifizierte Molekül ist jedoch bislang nicht identifiziert worden. Es wird vermutet, dass die Modifizierung dieser unbekannten Komponente der extrazellulären Matrix die Bildung eines Komplexes an der Oberfläche des jungen Embryos initiiert, zu dem neben der aktivierten Protease Nudel unter anderem das Zymogen der Serinprotease Gastrulation defective (Gd) rekrutiert wird, das im Zuge dieser Komplexbildung durch einen nicht identifizierten Faktor aktiviert wird (Han et al., 2000). Dies stellt einen entscheidenden Schritt zur Festlegung der dorsoventralen Asymmetrie des Embryos dar, da
die Aktivität von Gd die ventrale Seite des Embryos definiert (DeLotto, 2001). Da Nudel wie erwähnt nicht notwendigerweise in den ventralen Follikelzellen benötigt wird, erscheint es wenig wahrscheinlich, dass Pipe Nudel selbst modifiziert (Nilson und Schüpbach, 1998). Ebenso können sowohl Nudel als auch Gd in Abwesenheit von *pipe* aktiviert werden, was vermuten lässt, das das Pipe Substrat einen nachgeschalteten Bestandteil der Proteasekaskade reguliert bzw. aktiviert (LeMosy et al., 1998; LeMosy et al., 2001)

wird auf mindestens 2 Ebenen realisiert: Zum einen wird die Aktivität der extrazellulären Protease-Kaskade über die Funktion des Serpins 27A, eines Serin-Protease Inhibitors, vermutlich über die Regulierung der Aktivität der Easter Protease (Lygoxigakis et al., 2003) reguliert. Freies, aktives Easter findet sich nur in sehr geringen Mengen und wird sehr schnell in einen hoch molekularen Komplex umgesetzt, der einen Protease-Inhibitor enthält (Misra et al., 1998). Das Serpin 27A könnte dazu benötigt werden, die Aktivierung der Toll-Kaskade wirkungsvoll auf die ventrale Seite der Oozyte zu beschränken, wo die der Proteasekaskade durch die Funktion von Pipe verstärkt aktiviert wird. Dies führt zu einem positiven Aktivierungszyklus der Proteasen und einer Überwindung der inhibitorischen Wirkung von Serpin 27A (Lygoxigakis et al., 2003). So kann erst die Aktivität von Pipe die Aktivität der Proteasekaskade über einen Schwellenwert anheben, was notwendig ist um die Erzeugung des aktiven Spätzle Liganden auf ventrale Regionen zu beschränken.

Des weiteren existiert auch innerhalb des Embryos ein Rückkopplungsmechanismus, der die Aktivität der intrazellulären Pelle Kinase im Embryo reguliert (Towb et al., 2001, vgl. 1.2.2).

1.2.2 Etablierung der dorsoventralen Achse des Drosophila-Embryos

Kinase Domäne, über die Pelle im Anschluss an die, durch Toll Rezeptor Aktivierung vermittelte Bildung des membranständigen Toll-Tube-Pelle Proteinkomplexes, das ventralisierende Signal in der Zelle weiterleiten kann (Großhans et al., 1994; Edwards et al., 1997; Sun et al., 2002). Da Dorsal, Tube und Pelle direkt interagieren können, lässt sich vermuten, dass in Folge der Aktivierung Tube und Pelle das intrazelluläre Cactus-Dorsal Dimer ihrerseits zur Bildung eines Multi-Proteinkomplexes rekruitieren (Edwards et al., 1997; Towb et al., 1998). Im Anschluss an die Signal Weiterleitung führt die Phosphorylierung von Tube durch Pelle zu einer Ablösung von Pelle und zur Auflösung des membranständigen Komplexes (Towb et al., 1998, 2001). Dieser Prozess ist in Mutationen für Pelle, die die Kinase Domäne betreffen, beeinträchtigt.

Die Aktivierung der Pelle Kinase führt letztlich zur signalabhängigen Phosphorylierung von Cactus und zum Abbau des Cactus Proteins auf der ventralen Seite, da Cactus im Anschluss an die Phosphorylierung nicht mehr an Dorsal bindet (Belvin et al., 1995, Bergmann et al., 1996; Reach et al., 1996), und führt so zur Freisetzung des Dorsal Proteins, das im Anschluss seinerseits modifiziert wird und aufgrund seines Kernlokalisierungssignals in den Kern gelangen kann und dort diverse Zielgene reguliert (Roth et al., 1989; Steward, 1989; Drier et al., 1999, siehe auch 1.3). Die Auflösung des Toll/Tube/Pelle Komplexes ist vermutlich notwendig, um ein Andauern des Signals an den Cactus/Dorsal Komplex zu unterbinden und somit in sämtlichen Regionen des Embryos eine stabile Kernkonzentration von Dorsal zu gewährleisten (Towb et al., 2001).

Es scheint jedoch wenig wahrscheinlich, dass die Phosphorylierung von Cactus durch Pelle direkt erfolgt, da weder Pelle in vitro in der Lage ist, Cactus zu phosphorylieren, noch die aus Vertebraten bekannten IκB-Kinasen eine Ähnlichkeit zu Pelle aufweisen (Großhans et al., 1994; Karin, 1999). Andererseits jedoch konnte gezeigt werden, dass der Drosophila IκB-Kinase Komplex für die dorsoventrale Musterbildung nicht essentiell ist und statt dessen eine Funktion in der Immunabwehr ausübt (Silverman et al., 2000).

Neben der Phosphorylierung von Cactus zur Freisetzung des Dorsal Proteins wird auch Dorsal selbst in Folge des ventralisierenden Signals modifiziert: Drier et al. (1999) konnten

Somit bildet sich in Antwort auf das ventralisierende Signal im frühen Drosophila-Embryo ein Gradient aus, mit maximalen Kernkonzentrationen in den am weitesten ventral gelegenen Blastodermkernen, abnehmender Kernkonzentration in lateralen Bereichen des Embryos, während Dorsal auf der dorsalen Seite als Folge seiner Komplexierung mit Cactus weiterhin im Cytoplasma gehalten wird.

1.3 Die Zielgene des Dorsal-Gradienten

in alle Kerne des Embryos, so erstreckt sich auch die *twist* Expression in laterale und dorsale Bereiche (Roth *et al.*, 1989).

Gleichzeitig wird in ventralen wie lateralen Regionen durch Dorsal die Expression der Gene zerküllt (zen), decapentaplegic (dpp) und twisted gastrulation reprimiert. Auf diese Weise wird die Expression dieser Gene auf die am weitesten dorsal gelegenen Kerne des Blastoderms eingeschränkt, die letztlich die Zellen des dorsalen, nicht-neurogenen Ektoderms und der Amnioserosa hervorbringen. Insbesondere konnte für den zen-Promoter gezeigt werden, dass er hochaffine Dorsal-Bindestellen enthält, die in weiten Bereichen des Embryos zur Reprimierung von zen auch durch niedrige Dorsal Kernkonzentrationen führen und die Expression auf die am weitesten dorsal gelegenen Regionen des Embryos eingrenzen (Cai et al., 1996). Für diese Reprimierung ist im Gegensatz zur Aktivierung lateraler und ventraler Gene die Funktion von Groucho als Co-Repressor notwendig (Stathopoulos und Levine, 2002a).

1.4 Die Funktion der Toll-Dorsal Kaskade in der Immunabwehr

In Drosophila führt eine bakterielle oder eine Pilzinfektion neben einer zellulären Abwehrreaktion zur Produktion einer Reihe antibakterieller oder antifungaler Peptide im
Fettkörper, dem funktionellen Analog zur Säugetiere (Übersicht: Anderson 2000, Brennan und Anderson, 2004). Diese Peptide übernehmen eine entscheidende Funktion in der Abwehr dieser Infektionsherde, da sie spezifisch gegen Pilzinfektionen (Drosomycin, Metchnikowin, Cecropin), gram-negative (Attacin, Cecropin, Drosocin, Dipterin) oder gram-positive Bakterien (Defensin, Metchnikowin) wirken (Meister et al., 1997).

In Folge einer Infektion lässt sich die Produktion des aktiven Toll-Liganden Spätzle nachweisen. Hierfür werden jedoch die Proteasen der Dorsoventral-Kaskade nicht benötigt, die Regulation der Spätzle-Produktion zeigt jedoch, dass auch hier Spätzle von Proteasen aktiviert wird (Williams et al., 1998; Levashina et al., 1999).

Analog zur Signalkaskade der dorsoventralen Musterbildung führt die Bindung von Spätzle an den Toll-Rezeptor zu dessen Aktivierung und zur Bildung eines intrazellulären Proteinkomplexes in der Umgebung des aktivierten Receptors, an dem neben Toll auch Tube, Pelle (bei Vertebraten IRAK), sowie das Adapterprotein dMyd88 beteiligt sind, was wiederum zur Weiterleitung des Signals über das Molekül dTraf (Drosophila TNF-receptor-associated factor; Liu et al., 1999) an den IkB-Kinase Komplex IKK führt (Chariot et al., 2002). Dieser Komplex besteht aus mehreren Untereinheiten (IKKa, β, γ sowie der Nf-kB induzierenden Kinase NIK) und phosphoryliert das in inaktiven Komplexen mit den Nf-kB

Auch die extrazelluläre Proteininkaskade über Gd, Snake und Easter, die in Drosophila ausschließlich für die dorsoventrale Musterbildung, nicht aber für die Immunantwort benötigt wird (Lemaitre et al., 1996), besitzt einen entsprechenden Widerpart in Vertebraten, deren Komponenten indirekt an der Immunabwehr beteiligt sind. Homologe Enzyme sind hier in der Blutgerinnung und dem Komplement-System maßgeblich involviert (Übersicht: Kremm und Di Cera, 2002). Auch die Organisation der Kaskaden über drei Trypsin-ähnliche
Einleitung

Serinproteasen, die als Zymogene sezerniert werden und sich sequentiell proteolytsch aktivieren, ist konserviert.

1.5 Sequenzvergleich der Proteine der Dorsal-Gruppe in verschiedenen Insektenarten

Um Hinweise zu erhalten, in wie weit die Vorgänge, die in Drosophila melanogaster zur Ausbildung einer dorsoventralen Achse führen (vgl. 1.2.1 und 1.2.2), auch eine Rolle in der Spezifikation der Achsen niederer Insekten haben können, wurde auf Basis der Protein kodierenden Aminosäuresequenzen ein Vergleich der 11 Gene der Dorsal Gruppe sowie des IKB-ähnlichen Proteins Cactus mit den jeweiligen Homologen aus vier Insektenarten verschiedener Familien durchgeführt: Diese Arten sind Apis mellifera (Hymenoptera), Bombyx mori (Lepidoptera), Anopheles gambiae (Nematocera, Diptera) und Drosophila pseudoobscura (Brachycera, Diptera). Die Nematocera repräsentieren eine niedere Untergruppe der Dipteren, Lepidoptera werden nach morphologischen wie auch molekularen Kriterien als Schwestergruppe zu den Dipteren angesehen, Hymenopteren wiederum bilden eine Gruppierung außerhalb dieser Gruppe um Lepidopteren und Dipteren (Adoutte et al., 2000; Cranston und Gullan, 2002). Die Coleopteren, zu denen Tribolium gehört, werden im allgemeinen als Schwestergruppe zu den anderen holometabolnen Insekten angesehen und dies wird auch durch molekulare Untersuchungen unterstützt (Whiting et al., 1997; Cranston und Gullan, 2002), jedoch ist die genaue Positionierung der Coleopteren und ihrer Untergruppen zueinander noch nicht genau geklärt (Whiting et al., 1997; Caterino et al., 2002).

Die Sequenzierung der Genome der oben genannten Arten sind teilweise oder komplett durchgeführt worden und die zugehörigen Sequenzen sind über das Internet verfügbar (vgl. 2.4). Für den Vergleich der Proteine, die an der dorsoventralen Achsenbildung in Drosophila beteiligt sind, wurden nur eindeutig identifizierte Orthologe berücksichtigt. Dass heißt, dass für die in der jeweiligen Genomsequenz der einzelnen Arten identifizierten, homologen Proteine ihrerseits in der Gesamtsequenz von Drosophila melanogaster nach dem nächst verwandten Homolog gesucht wurde; konnte hierbei das Ausgangsprotein nicht als dasjenige mit der höchsten Identität isoliert werden, wurde der Treffer verworfen („best reciprocal hit“, Zdobnov et al., 2002).

Da die Annotation der genomischen DNA-Sequenzen aus Bombyx mori bislang nur unvollständig durchgeführt wurde und daher einige der gesuchten Homologe nicht eindeutig oder
ihre Sequenz nicht vollständig identifiziert werden konnten, eignen sich die ermittelten Werte für *Bombyx* nur eingeschränkt für einen Vergleich und sind daher von der weiteren Betrachtung teilweise ausgenommen.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Bombyx mori</th>
<th>Apis mellifera</th>
<th>Anopheles gambiae</th>
<th>D. pseudoobscura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windbeutel</td>
<td>39,3 a)</td>
<td>32,8</td>
<td>31,9</td>
<td>69,3</td>
</tr>
<tr>
<td>aa39-98</td>
<td>41,7</td>
<td>45,8</td>
<td>53,3</td>
<td>81,7</td>
</tr>
<tr>
<td>Pipe 10 ST-Box 10</td>
<td>66,6 (1)</td>
<td>63,9 (1)</td>
<td>64,6 (1)</td>
<td>90,3 (10)</td>
</tr>
<tr>
<td>Nudel</td>
<td>26,9</td>
<td>n.d.</td>
<td>25,7</td>
<td>57,2</td>
</tr>
<tr>
<td>PD1+2</td>
<td>31,1</td>
<td>34,8</td>
<td>43,9</td>
<td>83,7</td>
</tr>
<tr>
<td>Gd PD aa243-</td>
<td>--</td>
<td>--</td>
<td>n.d.</td>
<td>71,1</td>
</tr>
<tr>
<td>Snake</td>
<td>24,4 b)</td>
<td>29,4</td>
<td>22,1</td>
<td>78,8</td>
</tr>
<tr>
<td>PD aa186-</td>
<td>28,8</td>
<td>35,8</td>
<td>42,4</td>
<td>87,8</td>
</tr>
<tr>
<td>Easter</td>
<td>41,7</td>
<td>46,5</td>
<td>49,9</td>
<td>87,1</td>
</tr>
<tr>
<td>PD aa128-</td>
<td>45,4</td>
<td>44,7</td>
<td>54,9</td>
<td>90,5</td>
</tr>
<tr>
<td>Spätzle 1</td>
<td>--</td>
<td>(56,9) b)</td>
<td>-- c)</td>
<td>75,7</td>
</tr>
<tr>
<td>Toll</td>
<td>48,7</td>
<td>33,7</td>
<td>29,7 (5)</td>
<td>71,2 (10)</td>
</tr>
<tr>
<td>TIR</td>
<td>54,7</td>
<td>62,6</td>
<td>58,8</td>
<td>92,6</td>
</tr>
<tr>
<td>Tube</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>49,0</td>
</tr>
<tr>
<td>Pelle Kinase Domäne</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>79,7</td>
</tr>
<tr>
<td>Cactus (IκB)</td>
<td>41,8</td>
<td>41,3</td>
<td>41,3</td>
<td>81,6</td>
</tr>
<tr>
<td>RHD aa47-324</td>
<td>56,5</td>
<td>68,1</td>
<td>71,7</td>
<td>73,2</td>
</tr>
</tbody>
</table>

Tabelle 1.1: Vergleich der hergeleiteten Proteinsequenzen von Homologen der Dorsal Gruppe und Cactus im Vergleich. Anteil identischer Aminosäuren zu *Drosophila melanogaster* in %. Zeile 1 zeigt jeweils den Vergleich der gesamten identifizierten Sequenz, Zeile 2 zeigt den Vergleich konservierter Domänen. Zahlen in Klammern geben die Anzahl der insgesamt gefundenen homologen Sequenzen an. Bemerkungen: --) kein Homolog identifizierbar; a) aa85-98 konnten in *Bombyx* nicht identifiziert werden; b) kein eindeutiges Ortholog; c) es existieren Homologe zu *DmSpz2* und 4-6, jedoch nicht zu *DmSpz1* und *Spz3*; n.d.: Wert nicht ermittelt. Abkürzungen: PD = Protease Domäne; TIR = Toll intrazelluläre Domäne; RHD = Rel homologe Domäne aa = Aminosäurepositionen der jeweiligen *Drosophila melanogaster* Sequenz.

Die am stärksten konservierten Proteine sind offensichtlich Pipe, Toll und Dorsal. Dies lässt sich damit begründen, dass diese Proteine bei der Etablierung der DV-Achse nicht nur Schlüsselfpositionen einnehmen, sondern auch in anderen Prozessen benötigt werden – so werden alle 10 ST-Boxen in *D. melanogaster* in den Speicheldrüsen exprimiert (Sergeev et al., 2001), was auf eine ancestrale Rolle in der Funktion dieses Organs nahe legt.

Das primäre *pipe* Transkript in *D. melanogaster* enthält sämtliche 10 ST-Boxen und wird differentiell gesplicing, was zur Produktion von 10 verschiedenen reifen Transkripten führt, welche alle eine solche ST-Box enthalten (Sergeev et al., 2001). Die Konservierung gilt unter den 10 in *Drosophila melanogaster* gefundenen alternativen Spliceprodukten jedoch nur für die oben erwähnte Sulfotransferasebox 10 (ST10). Während auch in *Drosophila pseudoobscura* 10 mögliche Varianten gefunden werden konnten, findet sich in sämtlichen weiteren betrachteten Arten nur jeweils eine ST-Box, die allesamt die höchste Aminosäureidentität mit DmPipe ST10 aufweisen (vgl. 3.1.2). Somit scheinen die 9 weiteren ST-Boxen erst nach Abspaltung der Nematocera von der Linie der Brachycera entstanden zu sein. In Übereinstimmung dazu konnten aus *Musca domestica* 2 verschiedene ST-Boxen isoliert werden, die keine Orthologe zu DmPipe ST10 darstellen (eigene Beobachtung), so dass bereits in basalen Brachycerren zumindest eine Duplikation der ST-Box Exons erfolgt sein muss.

Da in *D. melanogaster* zwischen den ST-Boxen 7 und 10 partielle Redundanz zu bestehen scheint und beide im Follikelepithel exprimiert werden, erscheint eine Funktion der Pipe Proteine aus nicht-Drosophiliden in der Ausbildung der Dorsoventralachse durchaus vorstellbar (Sen et al., 1998; Sergeev et al., 2001).

Auch Toll und Dorsal sind an anderen Prozessen beteiligt – so in der Hämatopoiese (Govind, 1999) und in der Immunabwehr (Anderson, 2000). Es wurde bereits vermutet, dass die Immunabwehr die ancestrale Funktion des Toll-Dorsal Signalweges war und dieser für die Achsenbildung übernommen wurde, diese Funktion an sich also ein abgeleitetes Merkmal darstellt (Lall und Patel, 2001). Diese Annahme wird unterstützt durch die Feststellung, dass die Faktoren, die intrazellulär im frühen Embryo für die Weiterleitung des ventralen Signals benötigt werden (Toll, Pelle, Cactus und Dorsal) – mit Ausnahme von Tube – innerhalb der gesamten holometabolon Insekten deutlich höher konserviert sind, als die Faktoren, die für die Produktion aktiven Spätzles benötigt werden. Dass Tube eine Ausnahme darstellt, lässt sich damit erklären, dass Tube offensichtlich eine Insekten spezifische Errungenschaft darstellt, denn Homologe von Tube konnten außerhalb der Insekten nicht isoliert werden. Statt dessen existieren in der Toll Immunkaskade der Säuger drei andere, zu Myd88 ähnliche Adapter-

Für Toll hingegen wurden in Drosophila melanogaster mittlerweile insgesamt 9 verschiedene Proteine gefunden, in Anopheles dagegen 11, von denen nur vier in Drosophila ein eindeutiges Ortholog besitzen (Christophides et al. 2002). So findet sich für DmToll2, -3 und -4 kein Homolog in Anopheles, während Toll-1 und -5 in Anopheles jeweils dupliziert vorliegen. Da jedoch für die weiteren an der Immunantwort beteiligten Komponenten des Toll-Signalweges (Tube, Pelle, Cactus, Dorsal) nur je ein Homolog vorhanden ist (Christophides et al., 2002 und eigene Beobachtung) lässt sich vermuten, dass die zusätzlichen Toll-Rezeptoren entstanden sind in Antwort auf die im Vergleich zu Drosophila veränderten ökologischen Bedingungen, die auch in einer veränderten Pathogen Herausforderung münden, da von Anopheles andere Pathogene erkannt werden müssen als von Drosophila und um die Immunantwort auf diese Pathogene auszudehnen. Andererseits ist eine tatsächliche Rolle dieser Proteinfamilie in der Immunabwehr bislang ausschließlich für Toll1 in Drosophila mit Sicherheit nachgewiesen worden (Lemaitre et al., 1996; 1997).

Erstaunlicherweise lässt sich das Ortholog zu DmSpätzle1 nur in der Sequenz von Drosophila pseudoobscura identifizieren, während bereits in den niederer Dipteren (Anopheles) ein direktes Ortholog nicht zu finden ist. Jedoch finden sich in D. melanogaster eine Familie von insgesamt wenigstens 6 verschiedenen Spätzle-ähnlichen Proteinen (Parker et al., 2001). Da sich in Anopheles noch für vier dieser sechs Spätzle Orthologe finden lassen, in Apis jedoch noch maximal 2 (die Beziehung von einem dieser beiden möglichen Spätzles zu den Drosophila Homologen konnte nicht eindeutig geklärt werden), zeigt sich, dass diese Familie der Spätzle Proteine offensichtlich in Dipteren eine beschleunigte Evolutionsrate erfahren hat. Somit erscheint es möglich, dass in den niederer Insekten wie Hymenopteren und niederer Dipteren die Funktion von DmSpätzle1 als ventralisierender Ligand des Toll-Rezeptors in der

1.6 Zielsetzung der Arbeit

1 Einleitung

Abb 1.2: Expression von TcDorsal in frühen Embryonen, sichtbar gemacht durch anti-TcDorsal Antikörperfärbung. Aufeinanderfolgende Stadien zeigen eine Verfeinerung des anfänglich breiten Kerngradienten in einen schmalen Gradienten von ca. 4-6 Kernen zwischen höchsten und niedrigen Kernkonzentrationen von TcDorsal. Abb. nach Chen et al., 2000; modifiziert.

2 Material und Methoden

2.1 Haltung und Aufzucht von Tribolium castaneum

Die Haltung von Tribolium castaneum (Tenebrionidae, Coleoptera) erfolgte im wesentlichen wie bei Berghammer et al. (1999b) beschrieben. Käfer wurden in Plastikgefäßen auf Weizenmehl (Type 405), versetzt mit 5% Bäckerhefe gehalten. Die Temperatur betrug je nach Versuch 25°C bis 30°C. Zur Gewinnung von Nachkommen bzw. Wildtyp-Embryonen wurden die Käfer auf Instant-Mehl (Type 405) übertragen und für 8-48 Stunden bei 30°C belassen. Zur Vermeidung von Krankheiten wurde das Mehl vor Verwendung mit Fumidil B (Sanoti, Frankreich) versetzt (500mg/kg).

2.2 Präparation von Anopheles- und Tribolium-Ovarien

Um Ovarien aus Tribolium Weibchen zu isolieren, wurden aus einer Wildtyp-Kolonie zufällig Käfer ausgewählt und in eine Petrischale auf Eis überführt. Anschließend wurde das restliche Mehl abgewaschen und die Weibchen durch die Abwesenheit der Borstenbüschel am ersten Beinpaar identifiziert. Diese Weibchen wurden in eine neue, mit 4% Paraformaldehyd (PFA) in PBST gefüllte Schale auf Eis überführt und dort zunächst die Flügel abgezogen, die dorsale Kutikula geöffnet und die Ovarien samt Ovidukten frei präpariert und in einem Reaktionsgefäß, gefüllt mit 4% PFA in PBST gesammelt und anschließend weiter fixiert (2.6.3).
2.3 Molekularbiologische Arbeiten

2.3.1 Bakterienstämmen und Vektoren

DH10B: *(GIBCO, BRL)* Dieser Stamm wurde für die Klonierung von *pBluescript* Konstruktken verwendet.

Genotyp: F-, mcr A Δ(mrr-hsdRMS-mcrBC), Φ80lacZΔM15, ΔlacX74, endA1, recA1, deoR Δ(ara,leu)7697, araD139, galU, λ-, galK, nupG, rpsL

TOP 10: Dieser Bakterienstamm wurde primär zur Klonierung von PCR-Fragmenten in den pCR2.1 Vektor verwendet.

Genotyp: F- mcr A Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 deoR araD139 Δ(ara-leu)7697 galU galK rpsL (Str^R) endA1nupG

pBluescript® II KS [SK]: Für allgemeine Klonierungen, insbesondere als Vektor für die Klonierung von DNA-Fragmenten zur Synthese von Hybridisierungssonden und dsRNA, wurden die KS+- oder SK+-Variante des *pBluescript II* Vektors *(Stratagene)* eingesetzt.

Genotyp: ampR, ColE1-ori, lacI, lacZ’, T3-Promotor - multi cloning site ([SacI...KpnI] [KpnI...SacI]) - T7-Promotor

pCR 2.1-TOPO: Der Vektor wurde verwendet um amplifizierte PCR-Produkte zu klonieren.

Er ist Teil des *TOPO TA Cloning® Kits* der Firma *Invitrogen* (Kalifornien, USA)

Genotyp: lacZ’, f1 ori, kanR , ampR, lacI, puc ori Plac, M13-reverse Promotor - multi cloning site (Hind3-Apa1), T7-Promotor - M13-forward Promotor

2.3.2 Häufig verwendete Chemikalien

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>Konzentration / Lösungsinhalt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPC-H2O</td>
<td>0,1% DEPC (Diethylpyrocarbonat) in H2O</td>
<td>über Nacht bei 37°C inkubieren, anschließend autoklavieren</td>
</tr>
<tr>
<td>tRNA</td>
<td>20mg/ml tRNA aus Bäckerhefe (Roche, Mannheim)</td>
<td></td>
</tr>
<tr>
<td>Chlorix</td>
<td>Chlorbleiche (Natriumhypochlorid) 1:1 in Wasser</td>
<td></td>
</tr>
<tr>
<td>PEMS</td>
<td>0,1M Pipes 2mM MgSO4 1mM EDTA</td>
<td>pH mit NaOH auf 6,9 einstellen</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>50µg/ml (Vorratslösung 5mg/ml, 1:100 in PBST)</td>
<td></td>
</tr>
<tr>
<td>SSC 20-fach</td>
<td>150mM NaCl 15mM Natriumcitrat</td>
<td>pH7, autoklavieren</td>
</tr>
</tbody>
</table>
Material und Methoden

| Hybridisierungslösung (Hyb I) | 5x SSC
| | 50% Formamid
| | 1µl/ml Heparin
| | 0,2% Tween20
| Hybridisierungslösung / DNA (Hyb II) | Hybridisierungslösung mit 100µg/ml Lachsspermien DNA
| RNA-AP-Puffer | 100mM NaCl
| | 50mM MgCl₂
| | 100mM Tris, pH9,5
| | 0,2% Tween20
| NBT | 75mg/ml in 70% DMF
| X-Phosphat | 50mg/ml 5-Brom-4-chloro-3-indolyl-phosphat in DMF
| AP-Färbelösung | 2,2 µl NBT
| | 1,7 µl X-Phosphat
| | in 500µl RNA-AP Puffer
| LB-Medium: | 1 % (w/v) Bactotrypton
| | 0.5 % Hefextrakt
| | 0.5 % NaCl
| | pH 7.5, autoklavieren
| LB-Agar: | LB-Medium mit 1,5-2 % (w/v) Bactoagar
| LB-Platten [amp/X-gal] | LB-Agar mit 400µl Ampicillin (50mg/ml)
| | 256µl X-gal (10%)
| Ampicillin: | Stocklösung 25 mg/ml
| 10 x TBE: | 890mM Tris
| | 890mM Borsäure
| | 25mM EDTA
| Gel-Ladepuffer | 0,25% Bromphenol
| | 0,25% Xylan
| | 15% Ficoll
| TE: | 10 mM Tris/HCl, pH 8.0
| | 1 mM EDTA
| 1x PBS: | 130 mM NaCl
| | 7 mM Na₂HPO₄
| | 3 mM NaH₂PO₄
| | In DEPC-H₂O
| | pH7,4 mit HCl einstellen
| 1x PBT: | 0,1% Triton in 1x PBS
| 1x PBST | 0,2% Tween 20 in 1x PBS
| Phenol/Chlorofom: | 1:1 (v/v) mischen
| | 4 min bei 4000Upm zentrifugieren

Alle Lösungen sind in DEPC-H₂O pH 7,4 mit HCl einstellen.
Alle Lösungen und Medien wurden in dest. H₂O (*Milli-Q Water Purification System, Millipore, Eschborn*) angesetzt.

2.3.3 Oligonukleotide

Alle verwendeten Oligonukleotide wurden von den Firmen *Sigma* oder *Eurogentec* bezogen, mit Ausnahme der M13 reverse und M13 forward Primer, welche aus dem TOPO TA Cloning Kit von *Invitrogen* stammen.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Verwendung</th>
<th>Sequenz (5’-3’)</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>M13 reverse</td>
<td>Sequenzierung</td>
<td>CAGGAAACAGCTATGAC</td>
<td>TOPO Kit, Invitrogen</td>
</tr>
<tr>
<td>M13 forward</td>
<td>Sequenzierung</td>
<td>GTAAAAACGACCGCCAG</td>
<td>TOPO Kit, Invitrogen</td>
</tr>
<tr>
<td>PBS-E primer</td>
<td>PCR</td>
<td>TGACCCCTTTTGGGACCGCAAT</td>
<td>f. pBluescript Vektor</td>
</tr>
<tr>
<td>PBS-A primer</td>
<td>PCR</td>
<td>CTATGACCATGATTACGGAAG</td>
<td>f. pBluescript Vektor</td>
</tr>
<tr>
<td>T7-T3 primer</td>
<td>PCR</td>
<td>TAATACGACTCATTAGGATTCAGCCAG</td>
<td>f. dsRNA Transkription</td>
</tr>
<tr>
<td>T7-Sp6 primer</td>
<td>PCR</td>
<td>TAATACGACTCATTAGGATTCAGGAGGG</td>
<td>f. dsRNA Transkription</td>
</tr>
<tr>
<td>T3 primer</td>
<td>PCR</td>
<td>ATTAACCTCTACTAAAGGGA</td>
<td></td>
</tr>
<tr>
<td>T7 primer</td>
<td>PCR</td>
<td>TAATACGACTCATTAGGG</td>
<td></td>
</tr>
<tr>
<td>Anopip5</td>
<td>PCR</td>
<td>GCGACGGAGCTGAACACACG</td>
<td>Agpipe</td>
</tr>
<tr>
<td>Anopip3</td>
<td>PCR</td>
<td>CAGCGGCAGATCGGGAAGG</td>
<td>Agpipe</td>
</tr>
<tr>
<td>AnoEGF5</td>
<td>PCR</td>
<td>CAAGAAATGCCCCCGTAATA</td>
<td>AgEGF</td>
</tr>
<tr>
<td>AnoEGF3</td>
<td>PCR</td>
<td>GTAAAGCGAAGCGGACCAG</td>
<td>AgEGF</td>
</tr>
<tr>
<td>Tccazyg-fw</td>
<td>PCR</td>
<td>CG ACCCAGCGCTCCGGGACCTTCATGC</td>
<td>Tccactus</td>
</tr>
<tr>
<td>Tccterm-rev</td>
<td>PCR</td>
<td>TGGAGGCGGCTTTCTCCAGCG</td>
<td>Tccactus</td>
</tr>
<tr>
<td>Tcpipefw</td>
<td>PCR</td>
<td>CAAGTAAATAACACCCGTGAAGGC</td>
<td>Tcpipe</td>
</tr>
<tr>
<td>Tcpipeere</td>
<td>PCR</td>
<td>TGGCCACAGAAAAAATAGATTGAG</td>
<td>Tcpipe</td>
</tr>
</tbody>
</table>

2.3.4 Enzyme

Alle verwendeten Enzyme stammen von der Firma *Roche* (Mannheim) oder der Firma *Invitrogen* (Karlsruhe). Der Gebrauch erfolgte nach den Angaben des Herstellers unter Verwendung der angebotenen 10x Puffer.
2.3.5 Verwendete Antikörper

Für Antikörperfärbungen sowie zur Detektion Digoxigenin-markierter RNA-Sonden wurden folgende Antikörper verwendet:

Tab 2.2: Verwendete Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Verdünnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse-anti-en 4D9</td>
<td>1:1</td>
<td>Patel et al., 1989</td>
</tr>
<tr>
<td>Rabbit-anti-eve 2B8</td>
<td>1:10</td>
<td>Patel et al., 1994</td>
</tr>
<tr>
<td>Mouse-anti-phosphoTyrosin</td>
<td>1:400</td>
<td></td>
</tr>
<tr>
<td>Mouse-anti-acetyliertes Tubulin, Fab Fragmente</td>
<td>1:500</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>Mouse-anti-Digoxigenin, AP konjugiert, Fab Fragmente</td>
<td>1:500</td>
<td>Dianova, Hamburg</td>
</tr>
<tr>
<td>Horse-anti-mouse, Biotin konjugiert</td>
<td>1:600</td>
<td>Vector Laboratories</td>
</tr>
<tr>
<td>Goat-anti-rabbit, Biotin konjugiert</td>
<td>1:1000</td>
<td>Vector Laboratories</td>
</tr>
<tr>
<td>Rabbit-anti-mouse, Alexa488 konjugiert</td>
<td>1:400</td>
<td></td>
</tr>
<tr>
<td>Goat-anti-mouse, Alexa 488 konjugiert</td>
<td>1:400</td>
<td></td>
</tr>
</tbody>
</table>

2.3.6 DNA-Präparationen

Zur Präparation von Plasmid-DNA aus Bakterienkulturen wurde je nach der gewünschten DNA-Menge unterschiedliche Verfahren angewendet:

2.3.6.1 Plasmid-Minipräparation

2.3.6.2 Plasmid-Midipräparation

Zur Isolierung größerer Plasmidmengen wurden 50ml Kulturen über Nacht angesetzt. Am nächsten Tag wurde die Plasmidpräparation mit der gesamten Kultur unter Verwendung des Qiagen Plasmid® Midiprep Kit (Qiagen) oder zur Elution einer höheren DNA-Menge mit dem Genelute HP Midiprep Kit (Sigma) nach den Anweisungen des Herstellers durchgeführt.
2.3.7 Schneiden von DNA mit Restriktionsendonukleasen

Restriktionsendonukleasen (*Invitrogen, Roche*) ermöglichen es, aufgrund spezifischer Erkennungssequenzen, DNA an definierten Stellen zu spalten. Für analytische Zwecke wurde folgender Standard-Ansatz verwendet:

- 1-2 µg DNA
- 2µl 10x Puffer
- 3-4 U (Units) Restriktionsenzym pro µg DNA
- Mit H₂O auf ein geeignetes Volumen auffüllen (Standard: 20µl)
- 1-2 h bei 37°C inkubieren (in Ausnahmefällen bei einer abweichenden, vom Hersteller vorgegebenen Temperatur)
- Analyse der DNA durch Auftrennen in Agarosegelen

2.3.7.1 Schneiden von DNA zur Isolierung von DNA-Fragmenten

- 5-30 µg DNA
- 1/10 Volumen 10x Puffer
- 3-4 U Restriktionsenzym pro µg DNA
- Mit TE auf gewünschtes Volumen auffüllen
- 1 h bei 37°C inkubieren, nach 30 min Zugabe von weiteren 2-3 U Restriktionsenzym / µg DNA
- Auftrennen der DNA in Agarosegelen und Isolierung der Fragmente
- Reinigung der DNA durch Phenolisierung (2.3.10)

2.3.8 Größenseparation von DNA-Fragmenten durch Auftrennung in Agarosegelen

Das Auftrennen von DNA-Fragmenten erfolgte in Agarosegelen. Je nach Länge der aufzutrennenden Fragmente wurden horizontale Gele mit 0.7-1.5% (w/v) Agarose in 1x TBE-Laufpuffer aufgekocht und nach Zugabe von 0.1µg/ml Ethidiumbromid gegossen. Die Auftrennung erfolgte bei 3-10 V/cm in 1x TBE-Puffer. Zur Größenbestimmung diente der Vergleich mit definierten Größenstandards (*λ*/HindIII oder 1kb Leiter, *Invitrogen*). Die DNA-Proben wurden vor dem Auftragen mit 10x Auftragspuffer versetzt.
2.3.9 Isolierung von DNA-Fragmenten

Für das Auftrennen von DNA-Fragmenten aus Restriktionsanalysen wurde grundsätzlich die präparative Gelelektrophorese verwendet. Diese erlaubt eine Isolierung kleiner DNA-Mengen, ermöglicht aber eine relativ kurze Versuchsdauer bei einer hohen Genauigkeit der Größenauf trennung der DNA-Fragmente.

Zur Abtrennung nicht inkorporierter Nukleotide aus PCR-Ansätzen wurden die PCR-Produkte direkt mit Hilfe des *GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences)* aufgereinigt.

2.3.9.1 Präparative Gelelektrophorese

Die DNA-Fragmente wurden in einem 1.0-1.2% Agarosegel aufgetrennt, die gesuchte Bande unter UV-Licht ausgeschnitten und das Gelstück in ein Reaktionsgefäß überführt. Die Isolierung und Reinigung der DNA erfolgte mit Hilfe des *GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences)*. Die Angaben des Herstellers wurden befolgt. Die gereinigte DNA wurde anschließend in einem geeigneten Volumen TE-Puffer oder H₂O aufgenommen.

2.3.10 Phenol/Chloroform-Extraktion

2.3.11 Ethanolfällung
- Zugabe von 1/10 Vol. 3 M NaAc und 2.5 Vol. EtOH_{abs.}, gut vortexen
- ggf. für 30 min bei –20°C inkubieren
- 30 min bei 13.000 Upm zentrifugieren (Zentrifuge 5417C, Eppendorf).
- Überstand absaugen und ein Vol. 70% EtOH hinzugeben
- 10 min zentrifugieren bei 13.000 rpm
- Überstand absaugen, Pellet trocknen (Waschschritte gegebenenfalls wiederholen)
- DNA in geeigneter Menge TE oder H₂O aufnehmen

In Fällen, in denen das Volumen der Ausgangslösung zu groß war, wurde statt mit EtOH mit ein Volumen 2-Propanol und 1/10 Vol. 8M KAc gefällt.

2.3.12 Dephosphorylierung von 5'-Enden

Bei symmetrischen Ligationen von kohäsiven, überstehenden Enden (sticky end-Ligationen) oder Ligationen von Fragmenten mit glatten Enden (blunt end-Ligationen) kann es zu einem Ringschluss des geschnittenen Vektors kommen, ohne dass ein Fragment eingebaut wird. Da die verwendete Ligase als Substrat freie 5'-Phosphatgruppen braucht, werden diese bei den oben genannten Ligationstypen durch eine Behandlung mit alkalischer Phosphatase (CIP: calf intestine alkaline phosphatase; Roche) entfernt. Die für die Ligation benötigte Phosphatgruppe wird dann von dem Insertionsfragment zur Verfügung gestellt.

Dephosphorylierung von überhängenden Enden:
- 0.1 U CIP pro pMol 5'-Enden und 30 min bei 37°C inkubieren
- Zugabe von 0.1 U CIP pro pMol 5'-Enden und weitere 30 min bei 37°C inkubieren

Das Enzym wird nach der Reaktion durch Phenolisierung (2.3.10) von der DNA entfernt.

2.3.13 Ligation

Für Ligationen wurden gewöhnlich 100ng geschnittener Vektor und ein 3-facher molarer Über-schuß des Fragments, das ligiert werden soll, eingesetzt.
- 100ng Vektor
- Insertionsfragment
- 6µl 5x Ligationspuffer (Roche)
- 1 U T4-Ligase (Roche)
- ad 30µl TE
- Inkubation bei RT über Nacht
2.3.14 Konzentrationsbestimmung von DNA

Es gilt:
- doppelsträngige DNA: 1 E_{260} = 50 µg/ml
- einzelsträngige DNA: 1 E_{260} = 40 µg/ml
- freie Nukleotide: 1 E_{260} = 30 µg/ml

2.3.15 Polymerase-Kettenreaktion (PCR)

Zur Herstellung von DNA-Matrizen zur *in vitro* Transkription von einzel- (ssRNA) oder doppelsträngiger (dsRNA) RNA wurden die gewünschten Inserts bzw. Gen-Bereiche aus dem jeweiligen pBluescript oder pCR2.1 Konstrukt amplifiziert. Um aus diesem Vektor in einem Schritt RNA Transkripte beider Orientierung synthetisieren zu können, wurde für die dsRNA Transkription ein spezifischer Primer für die Region des T7-RNA Polymerase Promoters verwendet, sowie ein Primer, der spezifisch an die Sequenz des T3- oder SP6-RNA Polymerase Promoters bindet und an diese eine weitere Bindestellen-Sequenz für die T7-RNA Polymerase anhängt (vgl. 2.3.17).
2.3.15.1 PCR-Reaktion

Für die PCR wurde je 0,5µl präparierter Plasmid-DNA bzw. der genomischen oder cDNA aus *Anopheles gambiae* bzw. *Tribolium castaneum* eingesetzt. Die Ansätze umfassten ein Volumen von insgesamt 25µl. Die Reaktionsansätze setzten sich aus folgenden Komponenten zusammen:

- 1x Reaktionspuffer
- 0,5µM je Primer
- 0,2mM dNTPs
- 100-300ng Matrizen-DNA
- 2 U Red Taq-Polymerase oder 1x Adv 2 Polymerase
- ad 25µl H₂O

Das Reaktionsgemisch wurde auf Eis jeweils in 0,2ml Reaktionsgefäße vorgelegt, anschließend wurde die Matrizen-DNA hinzu pipettiert.

Für Standard-PCR Reaktionen wurde die REDTaq™ Taq-Polymerase und der zugehörige REDTaql™ ReadyMix™ PCR Reaction Mix (Sigma) verwendet. In diesem liegen sowohl die Polymerase, als auch die dNTPs bereits in geeigneter Konzentration in einem 2x Reaktionspuffer vor.

Zur Amplifikation geeigneter Templates zur in vitro Transkription wurde die Advantage 2 Polymerase der Firma BDM Biosciences benutzt. Die Angaben des Hersteller wurden jeweils befolgt. Die Reaktionen wurden in einem Mastercycler Gradient der Firma Eppendorf (Hamburg) durchgeführt. Die verwendeten Primer sind unter (2.3.4) aufgeführt.

Es wurden folgende PCR-Programme verwendet:

Für die Amplifikation von Transkriptionsmatrizen:

Initiale Denaturierung: 95°C für 2 min

Zyklus (34x):
- Denaturierung: 94°C für 50 sec
- Hybridisierung: 58°C für 55 sec
- Extension: 72°C für 1:20 min

Finale Verlängerung: 72°C für 8 min
- 4°C
Für die Isolierung von *Agpipe, AgEGF, Tcpipe* und *Tccactus*:

Initiale Denaturierung: 95°C für 2 min

1. Zyklus (3x):
 - Denaturierung: 95°C für 50 sec
 - Hybridisierung: 53°C für 45 sec
 - Extension: 72°C für 1 min

2. Zyklus (33x):
 - Denaturierung: 95°C für 50 sec
 - Hybridisierung: 60°C für 1 min
 - Extension: 72°C für 1 min
 - Finale Verlängerung: 72°C für 5 min 4°C

Bei diesem Programm wurden die Länge und die Temperatur der Hybridisierungsschritte den jeweils verwendeten Primern (siehe 2.3.3) angepasst.

2.3.16 Herstellung von Digoxigenin-markierten RNA-Sonden

Zur Herstellung von Sonden zur *in situ* Hybridisierung wurde im ersten Schritt das Plasmid mit entsprechendem DNA-Fragment linearisiert und gefällt. Alternativ wurde das entsprechende Fragment mittels PCR-Reaktion amplifiziert und anschließend aufgereinigt (2.3.9). Für die anschließende *in vitro* Transkription wurde folgender Reaktionsmix angesetzt:

4µl 5x RNA-Polymerase-Puffer (*Roche, Mannheim*)
2µl Digoxigenin NTP Mix (*Roche, Mannheim*)
1µl RNase Inhibitor (*Roche, Mannheim*)
500ng-1µg linearisiertes Plasmid
2µl T3 oder T7 Polymerase (*Roche, Mannheim*)

Das Reaktionsgemisch wurde mit DEPC behandeltem Wasser auf 20µl aufgefüllt und 2 h bei 37°C inkubierte. Danach wurde die Lösung zum Abbau des Templates 10 min mit RNase freier DNase behandelt. Die eine Hälfte der RNA wurde anschließend mit 190µl H₂O (DEPC), 5µl tRNA (20µg/ml) und 45µl LiCl gemischt und bei –20°C gelagert. Die restliche RNA wurde hydrolysiert. Hierzu gibt man zu 10µl RNA 40µl H₂O sowie 50µl 2x Carbonat-
Puffer und inkubiert für 40 min bei 70°C. Die Reaktion wird mit 100µl Stoplösung, 5µl tRNA und 45µl 0,4M LiCl abgestoppt. Die beiden RNA-Sonden werden dann mit 500µl 100% EtOH für 10 min bei –20°C präzipitiert und anschließend 10min bei 14.000 Upm zentrifugiert. Das Pellet wird 2x mit je 500µl 70% EtOH gewaschen und erneut für je 10 min bei 14.000 Upm zentrifugiert. Danach wird die RNA-Sonde in 50µl Hybridisierungslösung II aufgenommen.

2.3.17 Synthese doppellädriger RNA (dsRNA)

Im Anschluss an die Elution wurden Konzentration und die Gesamtmenge an dsRNA bestimmt und diese mit 3 Vol. 100% EtOH und 1/2 Vol. 7,8M NH₄Cl für 90 min bei –20°C gefällt. Sodann wurde der Ansatz für 30 min bei 14.000 rpm in der Kühlzentrifuge (5417R, Eppendorf, 4°C) zentrifugiert, anschließend einmal mit 70% EtOH gewaschen und nach erneuter Zentrifugation in einem geeigneten Volumen Injektionspuffer aufgenommen und bei –20°C gelagert.

- dsRNA Injektionspuffer: 200mM KH₂PO₄, 30mM NaCitrat in DEPC-H₂O, mit KOH auf pH 7.5 einstellen (nach Montgomery et al., 1998)

2.3.18 Herstellung transformationskompetenter E.coli Bakterien

- Ca. 1 l LB-Medium mit einer kleinen Menge Bakterien animpfen, über Nacht bei 37° C unter Schütteln hochwachsen lassen, bis die OD₆₀₀ 0.5 erreicht
- Kolben 15-30 min in Eiswasser kühlen, dabei Kolben mehrmals schwenken
- Pelletieren der Zellen durch 15 min Zentrifugieren bei 4.000 rpm in vorgekühlter Zentrifuge
- Zell-Pellet in 1 l eiskaltem, sterilem H₂O resuspendieren
- Zellen durch 15 min Zentrifugieren bei 4.000 rpm pelletieren
- Pellet in 500ml kaltem H$_2$O resuspendieren
- Zentrifugation wie oben
- Zell-Pellet in 20ml eiskaltem, sterilem 10% Glycerin resuspendieren
- Zentrifugation wie oben
- Zell-Pellet in 2ml eiskaltem, sterilem 10% Glycerin resuspendieren
- 40µl-Aliquots in Mikrozentrifugengefäße vorlegen, in flüssigem Stickstoff einfrieren, Zellen bei -70°C lagern
- Die Transformationseffizienz wird durch Transformation mit 1ng pBS DNA getestet und sollte eine Transformationsrate von 108–109 Transformanten pro µg DNA ergeben.

2.3.19 Bakterientransformation

Für die meisten Subklonierungen wurden E.coli-Zellen nach dem unter 2.3.18 angegebenen Protokoll kompetent gemacht und die Plasmide oder Ligationsansätze standardmäßig per Elektrotransformation in die Zellen transformiert.

- 30 min Auftauen der kompetenten Zellen auf Eis
- Standardmäßig wurden 4µl eines Ligationsansatzes oder 1µl einer gegebenenfalls verdünnten Plasmid-DNA zu 40µl kompetenten Bakterien pipettiert
- Elektro-Impuls wie unten beschrieben
- mit 1ml 37 °C warmem SOC-Medium überschichten, mischen, zur Induktion des Antibiotika-Resistenzgens für ca. 50 min bei 37°C auf einem Drehrad inkubieren
- Verschiedene Verdünnungen des Ansatzes zur Selektion auf Ampicilin-haltige LB-Platten (100µg/ml) ausplattieren und ü.N. bei 37°C inkubieren

- SOC-Medium: 2% Baktotrypton, 0,5% Hefeextrakt, 0,0 % NaCl, auf pH 7 einstellen; autoklavieren, 10mM MgCl$_2$ und 2mM Glucose zugeben

Für die Elektrotransformation wurde das Protokoll der Firma Gibco BRL (Karlsruhe) verwendet. Die Transformationen wurden mit einem Gene Pulser Elektroporator (Bio-Rad) nach Herstellerangaben bei einer Spannung von 1.8kV, einer Kapazität von 25µF und einem Widerstand von 200 Ohm in 0,2cm breiten Küvetten durchgeführt.
2.4 Sequenzierung und Verarbeitung der Sequenzdaten

2.5 RNA Interferenz

2.5.1 dsRNA Injektionen

2.5.2 Aufzucht injizierter Tribolium Puppen

2.5.3 Kutikulapräparation von Tribolium-Larven

Die gesammelten Eier von wildtypischen oder dsRNA-injizierten Weibchen wurden für einen Zeitraum von mindestens 4 Tagen in sogenannten maturing sieves (Berghammer *et al*., 1999b) bei 30°C inkubiert. Larven die innerhalb dieses Zeitraums schlüpfen, fallen durch das Sieb und werden so von den mutanten Embryonen getrennt. Zur Präparation der Kutikula wurden die nicht geschlüpften Embryonen zuerst dechorionisiert (2.6.1), anschließend mit einem Pinsel in Klärblocks überführt und nach Überschichtung mit einem 9:1 Milch-

- Hoyers Medium: 20g Glycerin, 30g Gummi arabicum, 200g Chloralhydrat, ad 50ml H2O dest.

2.6 Histologische Methoden

Um eine ausreichende Anzahl an Embryonen für nachfolgende Experimente zu erhalten, wird eine Tribolium Population auf Instant Mehl übertragen und die Embryonen in den nachfolgenden 2 Tagen gesammelt. Die Käfer werden zu diesem Zweck zuerst durch das Aussieben in einem 700µm Sieb (Retsch) vom Mehl getrennt. Daraufhin werden die im aufgefangenen Mehl befindlichen Embryonen durch erneutes Aussieben mit einem Sieb mit kleinerer Maschengröße (300µm) vom Mehl getrennt und im folgenden Schritt dechorionisiert.

2.6.1 Dechorionisierung

2.6.2 Fixierung von Embryonen

Die Embryonen wurden mit einem feinen Pinsel in ein vorbereitetes Heptan-Fix Gemisch (5ml Heptan, 4ml PEMS, 1ml 37% Paraformaldehyd) überführt und für 25 min auf einem Drehrad geschüttelt. Die untere, wässrige Phase wurde abgenommen und das doppelte Volumen an Methanol der verbliebenen oberen Phase zugegeben. Anschließend wurden die Embryonen für 1 min kräftig geschüttelt, um die Vitellinmembran zu entfernen. Sobald die devitellinisierten Embryonen auf den Grund des Gefäßes gesunken waren, wurden diese mit Hilfe einer abgeschnittenen Pipettenspitze in ein 1,5ml Reaktionsgefäβ überführt. Da vor allem ältere Embryonen oftmals in der Vitellinhülle fest hängen, wurden anschließend die Embryonen in der Interphase 2x durch eine 10ml Spritze mit einer 0,9mm Kanüle gezogen. Auch hier wurden die anschließend zu Boden sinkenden Embryonen in ein neues Reaktions-
gefäß überführt und direkt 3x mit Methanol gewaschen. Nun wurde die obere Phase und ein Großteil der Methanolphase entfernt. Danach wurden die verbliebene Embryonen 3x mit Methanol gewaschen und anschließend per Hand devitellinisierst und für weitere Methoden weiterverwendet oder für unbestimmte Zeit bei –20°C gelagert.

2.6.3 Fixierung von Ovarien

Da die Ovarien nicht wie die Embryonen von einer Membran umgeben sind, vereinfacht sich das Fixierungsprotokoll im Vergleich zu 2.6.2: Ovarien von Tribolium und Anopheles wurden nach dem Sammeln in PBST für 30 min (Tc) bzw. für 1h (Ag) in 4% PF in PBST fixiert. Anschließend wurde das Fixativ durch 3 kurze Waschschritte in PBST und nachfolgend 3x 10 min Waschschritte in PBST entfernt. Im Anschluss wurden die Ovarien direkt für die jeweilige Methode weiter verwendet.

2.6.4 in situ Hybridisierung

in situ Hybridisierung an Tribolium-Embryonen

Die fixierten und in Methanol aufbewahrten Embryonen werden in 1ml MeOH/PBST (1:1) für 5min, gefolgt von 10min in PBST rehydriert. Anschließend werden die Embryonen erneut für 20 min in 1ml 4% PF/PBST fixiert. Nach der Fixierung folgen erneute Waschschritte in PBST (2x kurz und 3x 5 min). Nun werden die Embryonen für 10 min in einer 50%-igen Hybridisierungslösung (Hyb I in PBST) und im Anschluss für 10 min in 100%-iger Hybridisierungslösung inkubiert. In diesem Zustand können die Embryonen bei -20°C gelagert werden. Hierauf folgt die Prähybridisierung der Embryonen für 1h bei 55°C in Hyb II. Der Überstand wird nach Ablauf der Zeit entfernt, die RNA-Sonde zugegeben und bei 55°C über Nacht inkubiert (Sondenmix: 50µl Hybridisierungslösung/DNA + 1-2µl RNA-Sonde).

Am darauffolgendem Tag wird der Sondenmix abgenommen und die Embryonen 3x kurz und 4x für je 30 min mit vorgewärmter (55°C) Hybridisierungslösung I gewaschen. Die Rehydratisierung erfolgt durch jeweils 10 min waschen in einer absteigenden Reihe von Hyb I in PBST (4:1, 3:2, 2:3 bei 55°C, 1:4 bei RT).

Anschließend werden die Embryonen für 30 min in 1ml 4% PF/PBST rehydriert und für 10 min in 100%-iger Hybridisierungslösung inkubiert. In diesem Zustand können die Embryonen bei -20°C gelagert werden. Hierauf folgt die Prähybridisierung der Embryonen für 1h bei 55°C in Hyb II. Der Überstand wird nach Ablauf der Zeit entfernt, die RNA-Sonde zugegeben und bei 55°C über Nacht inkubiert (Sondenmix: 50µl Hybridisierungslösung/DNA + 1-2µl RNA-Sonde).

Am darauffolgendem Tag wird der Sondenmix abgenommen und die Embryonen 3x kurz und 4x für je 30 min mit vorgewärmter (55°C) Hybridisierungslösung I gewaschen. Die Rehydratisierung erfolgt durch jeweils 10 min waschen in einer absteigenden Reihe von Hyb I in PBST (4:1, 3:2, 2:3 bei 55°C, 1:4 bei RT).
2.6.4.1 in situ Hybridisierung an Ovarien

Die in situ Hybridisierung an Ovarien erfolgte im wesentlichen wie unter 2.6.4.1 beschrieben. Da jedoch das Follikelepithel für die meisten RNA-Sonden undurchlässig ist, wurde im Anschluss an die Rehydratisierung zur Permeabilisierung ein Protease K Verdau eingefügt (Konz: 50µg/ml; Dauer: 6 min bei RT). Im Anschluss wurde die Reaktion mit Glycin abgestoppt (Konz: 2mg/ml; 1x kurz auf Eis, 1x für 2 min bei RT). Es folgten 3 kurze Waschschritte in PBST, sowie 2 Waschritte a 10min in PBST. Im Anschluss wurden die Ovarien für 20 min in 4% PFA in PBST refixiert und anschließend mehrmals in PBST gewaschen. Es wurde weiter verfahren wie unter 2.6.4.1 beschrieben.

2.6.4.2 Detektion hybridisierter RNA-Sonden

Im Anschluss an die oben beschriebene Rehydratisierung erfolgte die Detektion der hybridisierten RNA-Sonden mittels eines anti-Digoxigenin Antikörpers (vgl. 2.3.3). Hierzu folgten zwei Inkubationsschritte in 1%BSA in PBST für jeweils 20 min bei RT zur Absättigung der unspezifischen Antikörperbindestellen und ein anschließender kurzer Waschschritt in PBST. Als nächstes wird der Antikörpermix (Anti-Digoxigenin gekoppelt an alkalische Phosphatase, 1:5000 verdünnt in PBST). Die Inkubation erfolgt über Nacht bei 4°C auf dem Rad. Es folgen 3 kurze Waschschritte und 3 von 15 min in PBST. Danach werden die Embryonen 3x 5 min mit RNA-AP Puffer äquilibriert. Während des letzten Inkubations schrittes wird die AP-Färbelösung vorbereitet. Für die Farbreaktion werden die Embryonen in Glasschälchen überführt, der AP-Puffer abgenommen und die Färbelösung zugegeben. Der Reaktionsansatz wird durch Abdecken vor Licht geschützt. Die Farbreaktion kann mehrere Stunden dauern und sollte in regelmäßigen Abständen unter einem Stereomikroskop kontrolliert werden. Zum Stoppen der Farbreaktion wird wiederholt mit PBST gewaschen und die Embryonen anschließend in ein sauberes Reaktionsgefäß in PBST überführt. Nach der Beendigung der Färberreaktion werden die Embryonen entweder mit einem Fluoreszenz-Farbstoff gegengefärbt (2.6.7) oder direkt in Glycerin auf einem Objektträger eingebettet.

2.6.5 Antikörperfärbung an Embryonen

Antikörperfärbungen ermöglichen die Detektion von Genexpressionen auf Proteinebene. Hierfür wird ein spezifischer Antikörper verwendet, der die einzigartigen Epitope an dem gewünschten Protein erkennt und an sie bindet. Dieser Antikörper wird mit einer zusätzlichen Erkennungsstelle ausgestattet, die die Bindung eines zweiten Antikörpers ermöglicht, an den ein Enzym gekoppelt ist. Bei Verwendung eines Peroxidase gekoppelten Antikörpers wird
2 Material und Methoden

2.6.5.1 Erster Antikörper

Für die Antikörperfärbung wurden ca. 100-200 Embryonen in ein Reaktionsgefäß überführt und in 3 Schritten mit geeigneten Mischungen von Methanol und PBST rehydriert.

- 1x waschen in 50% Methanol in PBST
- 1x kurz und 1x 10 min waschen in PBST
- 1x Fixierung: 20 min in 500 µl 4% PFA / PBST

Das Fixativ wird anschließend entnommen und die Embryonen 3x in PBST für 5 min gewaschen. Anschließend werden die Embryonen zum Blockieren unspezifischer Bindungsstellen 2x in 1% BSA/PBST für je 30 min gewaschen. Die BSA-Lösung wird entnommen und der jeweilige Antikörper (verdünnnt in 1% BSA/PBST) zugegeben. Die Inkubation erfolgt bei leichtem Schütteln ü.N. bei 4°C. Danach werden die Embryonen 2 x kurz in PBST gewaschen und 4 x in PBST für je 30 min inkubiert.

2.6.5.2 Zweiter Antikörper

2.6.5.3 ABC Reaktion
10µl ‘A’ (Avidin) und 10µl ‘B’ (biotinylierte Peroxidase) (*Vectastain Peroxidase Standard Kit, Vector Laboratories*) werden in 1 ml PBST gemischt und mindestens 30 min vorinkubiert. Dann werden die Embryos in dem ABC/PBST Gemisch für 2 h inkubiert und anschließend 3 x kurz und 3 x für 5-10 min mit PBST gewaschen.

2.6.5.4 Färbung
Nach der Entnahme des PBST werden die Embryonen in DAB Lösung kurz äquilibriert. Im nächsten Schritt werden die Embryonen zur Färbung in Glasschälchen überführt. Anschließend wird die DAB Lösung durch DAB/H₂O₂ Lösung ausgetauscht und die Farbreaktion unter dem Mikroskop verfolgt. Nachdem die Färbung die gewünschte Stärke erreicht hat, wird durch Zugabe von PBST gestoppt. Anschließend werden die Embryonen 3 x mit PBST gewaschen, zurück in Reaktionsgefäße überführt und entweder gegengefärbt oder direkt eingebettet.

Verwendete Lösungen:
- DAB Lsg.: 2 ml PBST + 200µl 10x DAB
- DAB/H₂O₂: 1 ml DAB Lsg. + 2µl H₂O₂ (4% in PBST)

2.6.6 Färbung von F-Actin mittels Phalloidin
Für Phalloidin-Färbungen wurden je 10-12 Ovarien in ein Reaktionsgefäß überführt und anschließend 3 x mit PBS-0,1% Triton gewaschen. Nachfolgend wurden die Ovarien 3 x 15 min in PBS-0,1% Triton gewaschen und für 2 h in PBS-1% Triton inkubiert. Anschließend wurde unter Lichtabschluss Phalloidin (Rhodamin- oder FITC-konjugiert, *Molecular Probes*; Konz: 1/400 in PBS-0,1% Triton) zugegeben und 2 h bei RT inkubiert. Anschließend wurde 3 x mit PBS-0,1% Triton gewaschen. Nachfolgend wurden die Ovarien 3 x 15 min. mit PBS-0,1% Triton gewaschen, dann auf einem Objekträger in *Vectashield* Medium eingebettet und unter einem Fluoreszenz-Mikroskop analysiert.

2.6.7 DNA-Färbungen
Um die DNA der Zellkerne in *Tribolium*-Embryonen sichtbar zu machen, wurde der Farbstoff Hoechst 33258 (DAPI) verwendet. Dieser wurde entweder nach erfolgter Fixierung der Embryonen oder nach Abschluss der Farbreaktion zur Detektion von Antikörpern oder hybridisierten RNA-Sonden für 15min in einer Verdünnung von 1:1500 in PBST zugegeben und unter leichtem Schütteln inkubiert und anschließend in mehreren Waschschritten a 5 bis
10 min in PBST der überschüssige Farbstoff wieder entfernt. Die Embryonen wurden anschließend bei 4°C gelagert oder direkt in Vectashield Medium eingebettet.

Da sich dieser Farbstoff sowohl in Oozytenkernen als auch in Follikelzellkernen von Tribolium- und Anopheles-Eikammern nicht adäquat sichtbar machen ließ, wurde für diese Gewebe der Fluoreszenz-Farbstoff Toto-3 (Molecular Probes) verwendet. Die Färbereaktion erfolgte analog der oben für DAPI beschriebenen.

2.7 Mikroskopie

Konfokale Aufnahmen wurden mit einem Leica TCS SP2 Mikroskop gemacht, unter Verwendung der Leica Confocal Software, Version 2.5.

Die Nachbearbeitung der Fotos erfolgte mit Hilfe des Programms Photoshop, Version 6.0 und 7.0 (Adobe).
3 Ergebnisse

3.1 Oogenese

In *Drosophila melanogaster* werden sowohl die anterioposteriore als auch die dorsoventrale Achse des zukünftigen Embryos bereits während der Oogenese festgelegt. Im ersten Teil der vorliegenden Arbeit sollte daher nach Hinweisen gesucht werden, ob für andere Insekten, in diesem Falle *Tribolium castaneum* und *Anopheles gambiae*, ebenfalls Hinweise dafür existieren, dass die Achsenbildung des Embryos bereits während der Oogenese initiiert wird.

3.1.1 Lokalisierung des Oozytenkerns während der Oogenese

Moskitos als Stellvertreter einer basalen Gruppe der Dipteren besitzen meroistische Ovariens, die aus jeweils etwa 50 Ovariolen bestehen, die strahlenförmig von einer zentralen Struktur (Calyx) abzweigen. Jede der Ovariolen setzt sich aus einem Germarium und zwei Eikammern zusammen, welche wiederum aus je einer Oozyte und 7 Nährzellen, um-schlossen von einem einschichtigen Follikelepithel, bestehen (Sokolova, 1994, Abb3.1). Die jeweils jüngere der beiden Eikammern bleibt dabei in einem frühen Stadium ruhend bis zum Blutmahl. Dies initiiert die Reifung der Eikammer (Abb.3.1, E2) innerhalb 48-50 Stunden bis zur Ablage
eines fertigen Eies, während sich gleichzeitig eine neue Eikammer hervor-gebracht wird (E1),
die sich bis zu einem festgelegten Stadium weiterentwickelt, wo sie dann ihrerseits in einem
Ruhezustand arretiert wird. Gleichzeitig wird vom Germarium (G) eine neue Eikammer
erhörgemacht. Alle Eikammern eines Weibchens entwickeln sich simultan.

Abb.3.1: Übersicht von Ovarien aus *Anopheles gambiae* und *Tribolium castaneum* anhand von DAPI-
Färbungen. A: Freipräparierte *Anopheles* Ovarien, 44hpi. 100fache Vergrößerung. B: Ausschnittvergré-
ßerung aus A, weißer Kasten (400fach). Zu erkennen sind das Germarium (G) und eine arretierte, frühe
Eikammer einer Ovariole (E1). C: Freipräparierte Ovariole aus *Tribolium*, gefärbt mit anti-acetyliertem
tubulin Antikörper (grün). 200 fache Vergrößerung. Man erkennt das Germarium (G) und vier Eikammern
unterschiedlicher Stadien (E1-E4).

In *Tribolium* existieren dagegen telotrophe Ovarien. Dies bedeutet, dass hier die Oozyte zwar
ebenfalls mit einer Reihe von Nährzellen verbunden ist, diese jedoch nicht wie bei Dip-teren
zusammen mit der Oozyte eine Eikammer bilden, sondern die Nährzellen im Bereich des
Germariums verbleiben und mit der sich entwickelnden Oozyte ausschließlich über die
sogenannten „Nährstränge“ verbunden bleiben. In einer Ovariole entwickeln sich bis zu vier
Oozyten in unterschiedlichen Stadien (Ullmann, 1973; vgl. Abb.3.1, C).
Da die Oozytenkerne in beiden Spezies mit DAPI-Färbungen nicht in allen Stadien sichtbar gemacht werden konnten, wurden zur Analyse der Oozytenkernposition konfokale Aufnahmen von Toto-3, bzw. Phalloidin Färbungen verwendet (Abb3.2).

Blutmahl) ist der Kern in einer in Bezug auf beide Achsen der Eikammer asymmetrischen Position zu finden, während die Oozyte selbst bereits durch Einlagerung von Dotterproteinen gewachsen ist (Abb. 3.2 C). In dieser Position findet sicher Oozytenkern auch in späteren Stadien (vgl. Abb. 3.4).

Im Gegensatz hierzu bewegt sich der Oozytenkern in *Tribolium* nicht in Bezug auf die anterio-posteriore Achse der Ovariole. Während er auch hier in frühen Stadien in etwa zentral in der Oozyte liegt (3.2 D; Stadium 5 nach Ullmann, 1973), wandert er von dort in progressiv späteren Stadien in eine kortikale Position, während die Oozyte durch die Aufnahme von Dotterproteinen deutlich an Größe zunimmt (3.2 E und F, entsprechend den Stadien 7 und 8 nach Ullmann, 1973). Somit wird der Kern hier nur in Bezug auf die zukünftige dorsoventrale Achse asymmetrisch positioniert.

3.1.2 Isolierung von Pipe Homologen aus *Anopheles gambiae* und *Tribolium castaneum*

Auf Aminosäureebene besteht zwischen DmPipe ST10 und AgPipe eine Identität von 73,1% und zwischen DmPipeST10 und der isolierten TcPipe ST-Box von 67,2%. Zu anderen ST-
Boxen aus *Drosophila melanogaster* besteht für AgPipe und TcPipe eine Identität von maximal 49%.

pipe codiert für ein Enzym der Familie der Heparansulfat-Sulfotransferasen (HSSTs). In HSSTs existieren 2 Regionen innerhalb der katalytischen Domäne, die bei allen bislang untersuchten HSSTs konserviert sind: Dies sind zum einen eine 5'-Phosphosulfat Bindestelle, die eine konservierte basische Aminosäure enthält, sowie eine 3'-Phosphat Bindestelle, die in fast allen bekannten HSSTs ein konserviertes Arginin, sowie einen zusätzlich konservierten Serinrest enthalten. Desweiteren ist eine RDP-Sequenz in allen HSSTs vorhanden und auch essentiell, da diese Aminosäuren für die Aufrechterhaltung der 5'-Substratbindestelle verantwortlich sind (Ong *et al.*, 1999).

Ein Sequenzvergleich zeigt, dass beide Motive, die essentiell für die Funktion der Heparansulfat-Sulfotransferasen sind, auch in den isolierten Pipe Proteinen vollständig vorhanden sind (Abb.3.3, rot markierte Bereiche). In allen Fällen werden beide Bindestellen

offensichtlich von jeweils nur einem Exon kodiert, während die Intron-Exon Struktur der Pipe Proteine aus den verschiedenen Insektenarten außerhalb der ST-Box voneinander abweicht (eigene Beobachtung).

Auch finden sich sämtliche Aminosäurereste, für die in verwandten HSSTs aus dem chinesischen Hamster nachgewiesen wurde, dass sie für deren Aktivität essentiell sind, vollständig konserviert in allen zu PipeST10 ähnlichen Proteinen (Abb.3.3; mit * markierte As; Ong et al., 1999). Dagegen zeigen PipeST3 und die Sulfotransferase CG10234 aus Drosophila melanogaster in der ersten Bindestelle jeweils 3 Aminosäureaustausche, während die zweite Bindestelle eine höhere Ähnlichkeit zu denen der Pipe-ST10 Proteine aufweist. Des weiteren zeigen sämtliche isolierten ST-Boxen Homologie zu Heparansulfat-2-Sulfotransferasen mit einer Type II-Transmembranthropologie, welche charakteristisch für Golgi Membran Proteine ist, im Gegensatz zu cytosolischen Sulfotransferasen (Kobayashi et al., 1997). Dies zeigt sich neben den N-terminalen Transmembranregionen, die in allen Homologen außer dem Tribolium Protein auffindbar waren, auch in spezifischen Signaturen innerhalb der ST-Boxen, zum Beispiel im Vorhandensein der oben erwähnten Sequenz RDP, die sich in cytosolischen Sulfotransferasen nicht findet (Kobayashi et al., 1997). Die Abwesenheit einer Transmembranregion für TcPipe in der Tribolium Datenbank lässt sich vermutlich auf die bislang unvollständige Sequenzierung des Tribolium Genoms zurückführen.

Zur weiteren Analyse der isolierten Pipe Homologen wurde auf Basis der Aminosäuresequenzen der identifizierten ST-Boxen ein phylogenetischer Stammbaum erzeugt (Abb 3.4).

Die erwarteten phylogenetischen Verhältnisse werden von den errechneten bootstrap Werten im allgemeinen recht gut unterstützt. Die geringeren Werte für die Knotenpunkte zwischen AmPipe und BmPipe, sowie für BmPipe und den Proteinen aus Dipteren lässt sich vermutlich auf die unvollständige Annotation des Bombyx Genoms zurückführen, da hier die Pipe Sequenz aus mehreren, nicht zusammenhängenden DNA Fragmenten abgeleitet wurde und die Zugehörigkeit einiger Bereiche zum BmPipe Protein nicht sicher geklärt werden konnte. Verwendet wurde für diesen Stammbaum neben ST-Box 10 nur die ST-Box 3 aus Drosophila melanogaster und D. pseudoobscura, da diese von den übrigen ST-Boxen auf Aminosäurebasis die höchste Ähnlichkeit zu der jeweiligen ST-Box 10 besitzt (Daten nicht gezeigt) und die Berücksichtigung sämtlicher ST-Boxen aus beiden Drosophila-Arten diesen Bereich des Stammbaumes nicht wesentlich beeinflusst (vgl. vollständigen Stammbaum im Anhang, 6.3).

Somit lassen sich die isolierten AgPipe und TcPipe, wie auch die in Bombyx und Apis identifizierten Homologe jeweils eindeutig als Ortholog zu DmPipeST10 einordnen und zeigen auf Sequenzebene Ähnlichkeit zur Familie der im Golgi-Apparat lokализierten Sulfotransferasen.
Im Verlaufe dieser Arbeit wurden ebenfalls zwei Pipe-ähnliche ST-Boxen aus Musca domestica isoliert. Diese zeigen jedoch im Vergleich zu Drosophila die höchste Ähnlichkeit zur ST-Box 2 bzw. ST-Box 5 und wurden daher nicht weiter analysiert.

3.1.3 Expression von Agpipe während der Oogenese

Während sämtliche Pipe Isoformen in Drosophila melanogaster während der Embryogenese in den sich entwickelnden Speicheldrüsen exprimiert werden, finden sich sowohl ST7 als auch ST10 Transkripte zusätzlich während der Oogenese ausschließlich in ventralen Follikelzellen. (Sen et al., 1998; Sergeev et al., 2001). Da jedoch in allen analysierten nicht-Brachyceren nur jeweils eine Pipe Isoform vorhanden ist, erscheint es möglich, dass diese sowohl Funktionen während der Embryogenese als auch in der DV-Achsenbildung während der Oogenese zeigen.

Aus diesem Grund wurde mittels in situ Hybridisierung die Verteilung von Agpipe Transkripten an Eikammern aus Anopheles gambiae untersucht (Abb.3.5). Die früheste detektierbare mRNA Expression findet sich in Eikammern ca. 21 hpi. Zu diesem Zeitpunkt erstreckt sich das pipe Signal auf eine Seite des Follikelepithels und umspannt ca. 50% des Umfanges der Eikammer. Dabei wird Agpipe sowohl in Follikelzellen exprimiert, die der Oozyte aufliegen, als auch von solchen, die über den Nährzellen liegen (Abb.3.5 A und C). Um die Expression von Agpipe mit der Position des jeweiligen Oozytenkerns vergleichen zu können, wurden die DNA der Zellkerne mit Toto-3 gefärbt. Hierbei zeigt sich, dass in allen Oozyten dieses Stadiums der Kern sich in einer kortikalen Position am anterioren Ende befindet, und zwar auf der Seite der Oozyte, der den Agpipe exprimierenden Follikelzellen abgewandt ist (Abb.3.5, B und D).
In späteren Stadien, ab ca. 27 hpi lässt sich Agpipe in allen Follikelzellen rund um die Oozyte detektieren und verschwindet ab ca. 32 hpi völlig (Abb 3.5 E und Daten nicht gezeigt).

Weiterhin wurde versucht, ein Homolog zum Drosophila melanogaster Gen gurken aus Anopheles zu isolieren und dessen Expression zu analysieren. Es zeigt sich jedoch, dass offensichtlich im Genom von Anopheles nur ein EGF ähnliches Molekül kodiert ist (Zdobnov et al., 2002 und eigene Beobachtung), während es in D. melanogaster drei sind (Gurken, Spitz und Keren). Die mRNA Expression dieses AgEGF Gens während der Oogenese lässt sich ab 24 hpi fortlaufend nachweisen, ist jedoch in keinem der analysierten Stadien räumlich beschränkt, sondern erstreckt sich auf sämtliche Zellen des Follikelepithels (Daten nicht gezeigt). Innerhalb der Oozyte konnte keine Expression detektiert werden.
3.1.4 **Expression von Tcpipe während der Oogenese**

Da mit *Anopheles* auch in wenigstens einem Organismus außerhalb der Brachyceren eine asymmetrische Verteilung von *pipe* Transkripten im Follikelepithel während mittleren Stadien der Oogenese erfolgt, wurde die Expression von *Tcpipe* während der Oogenese von *Tribolium* mittels *in situ* Hybridisierung untersucht.

![Expression von Tcpipe während der Oogenese](image)

Abb. 3.6: Expression von Tcpipe während der Oogenese. Gezeigt sind zwei verschiedene Oozyten mit *Tcpipe* Expression. In der Oozyte aus BI liegt der Oozytenkern der Expressionsdomäne von *Tcpipe* gegenüber (BII).

Tcpipe wird während der Oogenese in mittleren Stadien asymmetrisch im Follikelepithel exprimiert (Abb. 3.6). In früheren Stadien findet sich dagegen keine Expression. *Tcpipe* mRNA findet sich etwa in einer Hälfte des Follikelepithels, während die andere Hälfte von Transkripten frei bleibt. Eine eindeutige Aussage über die Kernlokalisierung in diesen Stadien ist bislang nicht möglich. So sind aufgrund der großen Mengen an Dotterproteinen in diesem Stadium die Oozytenkerne in DAPI- oder Toto-3 Färbungen zumeist nicht sichtbar. In Einzelfällen, in denen der Oozytenkern in diesem Stadium erkennbar war, lag er auf der Seite der Oozyte, der der Expressionsdomäne von *Tcpipe* abgewandt ist (Abb. 3.6, BII). Eine Färbung mit Phalloidin wie in Abb. 3.2 verwendet, ist im Anschluss an die *in situ*-Hybridisierung nicht möglich, da hierfür die Ovarien mit Methanol behandelt werden, welches zur Depolymerisierung von Aktin führt.
3.2 Isolierung eines *cactus*-Gens aus *Tribolium castaneum*

Zur Isolierung eines Homologs zum *Drosophila* Gen *cactus* wurde das Sequenzarchiv der *Tribolium*-Datenbank mit dem zuvor identifizierten, vollständigen Cactus Protein aus *Anopheles gambiae* mit Hilfe des Programmes TBlastN 2.2.6 nach ähnlichen Sequenzen durchsucht. Zwei genomische DNA-Fragmente mit hoher Ähnlichkeit zu *Agcactus* wurden isoliert und die Homologie der abgeleiteten Proteinsequenz zu dem identifizierten Cactus aus *Drosophila melanogaster* verifiziert.

Aus einer embryonalen Gesamt-cDNA von *Tribolium castaneum* wurde mit Hilfe von geeigneten Primern (Primersequenz siehe 2.3.4) ein 619bp umfassender Bereich amplifiziert und kloniert, der beide identifizierten Sequenzblöcke umfasst. Die vollständige Sequenz dieser cDNA und der hieraus abgeleiteten Proteinsequenz des längsten offenen Leserasters ist im Anhang unter 6.4 wiedergegeben.

Die abgeleitete Proteinsequenz zu dieser cDNA umfasst die Aminosäurepositionen 220 bis 434 in DmCactus. Diese Region enthält fünf Ankyrin-Wiederholungen, die zur Bindung an das Dorsal Protein essentiell und ausreichend sind (Kidd, 1992). Da die abgeleitete Proteinsequenz jedoch nicht dem vollständigen Cactus Protein aus *Drosophila* entspricht und weder ein Start- noch ein Stopcodon identifiziert werden konnten, handelt es sich bei dem von der isolierten cDNA abgeleiteten Sequenz offensichtlich um ein unvollständiges Protein. Die abgeleitete Proteinsequenz zeigt eine Aminosäureidentität von 45,8% zu der Sequenz von DmCactus und von 39,7% zu AgCactus (Abb.3.7). Die Identität zu IκB-α aus Maus beträgt 27,9%. Dabei findet sich innerhalb der Ankyrin-Wiederholungen kein Bereich mit erhöhter Identität.
Ergebnisse

<table>
<thead>
<tr>
<th></th>
<th>IKK-Region</th>
<th>Ankyrin-Wh.</th>
<th>PEST-Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>DmCactus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MmIkB-α</td>
<td></td>
<td>36,7%</td>
<td>17,2%</td>
</tr>
<tr>
<td>AgIkB</td>
<td></td>
<td>51,2%</td>
<td>31,0%</td>
</tr>
<tr>
<td>TcCactus</td>
<td></td>
<td>45,8%</td>
<td></td>
</tr>
</tbody>
</table>

Abb.3.7: Vergleich der IkB-ähnlichen Proteine aus *Drosophila melanogaster*, Maus, *Anopheles* und *Tribolium*. Gezeigt sind ein Schema der jeweils isolierten Domänen, sowie die Ähnlichkeit der Ankyrin-Wiederholungen und der Gesamtsequenz des jeweiligen Proteins im Vergleich zu DmCactus. Die IKK-Region und die PEST-Region in DmCactus und MmIkB-α sind notwendig für den signalabhängigen, bzw. den signalunabhängigen Abbau des jeweiligen Proteins (Reach et al., 1996; Aoki et al., 1996). Ein 43 Aminosäuren langer Bereich N-terminal der Ankyrin-Wiederholungen ist in AgIkB nicht konserviert (gelb schraffierter Bereich).

Ein phylogenetischer Stammbaum, der auf Basis der Ankyrin-Regionen der in 1.5 identifizierten IkB-Homologen aus verschiedenen Insektenarten, sowie zweier IkB-Proteine aus Nicht-Insekten (Maus IkB-α und *C.elegans* IkB1) und dem abgeleiteten Protein aus *Tribolium* erstellt wurde, belegt die nahe Verwandtschaft des isolierten, partiellen Proteins aus *Tribolium* zu den verschiedenen IkB-Proteinen aus Insekten (siehe Abb.3.8). Insbesondere unterstützen die errechneten bootstrap Werte eine nahe Beziehung des *Tribolium* Proteins zu den IkB-ähnlichen Proteinen der Dipteren, während zwei in *Apis* identifizierte IkB-Proteine außerhalb dieser Familie liegen. Dies erscheint jedoch ausschließlich durch die Duplikation des IkB codierenden Gens in *Apis* bedingt. Nimmt man die Sequenz von AmIkB2 von dem Vergleich aus, so nimmt das verbleibende AmIkB1 eine Position zwischen den IkB-Proteinen aus Dipteren und dem Protein aus *Tribolium* ein (Daten nicht gezeigt).

Aufgrund der hohen Verwandtschaft der abgeleiteten Proteinsequenz zu denen von IkB-Proteinen aus anderen Insektenarten, insbesondere zu *Drosophila* Cactus wird das isolierte *Tribolium* Protein im weiteren als *Tribolium castaneum* Cactus (TcCactus) bezeichnet.

Eine erweiterte Datenbanksuche nach Regionen, die Ähnlichkeit zu den IKK-Regionen und PEST-ähnlichen Regionen aus Maus und *Drosophila* aufweisen, blieb erfolglos, jedoch stand...
aufgrund der andauernden Sequenzierung für diese Suche nur ein Teil des Genoms von *Tribolium* zur Verfügung.

3.3 Die Expression von *Tccactus*

Zur Untersuchung der räumlichen Verteilung der mRNA des *Tccactus* Gens während der Embryogenese von *Tribolium* wurde aus dem isolierten cDNA Konstrukt eine Digoxigenin-markierte Sonde hergestellt und die Expression der *Tccactus* Transkripte mittels *in situ* Hybridisierung sichtbar gemacht.

3.3.1 Expression während des Blastodermstadiums

Erste *cactus* Transkripte finden sich während der Embryogenese in frühen Blastoderm-stadien in einem Streifen von Zellen auf der gesamten ventralen Seite des Embryos (Abb.3.9 A). Zu diesem Zeitpunkt wird erstmalig eine Differenzierung in die embryonale Zellen und die Serosazellen sichtbar (Abb.3.9 AII). Die *cactus* RNA Expression umfasst zu diesem
Zeitpunkt sowohl Zellen der eigentlichen embryonalen Anlage, wie auch Zellen der zukünftigen Serosa.

Dabei nimmt die Stärke der Expression von der ventralen Mittellinie zu weiter lateral gelegenen Zellen hin graduell ab (Abb.3.9 A). Dieser Aspekt der Expression ähnelt der Proteinlokalisierung von TcDorsal in denselben Stadien. Dorsal Protein bildet zu diesem Zeitpunkt einen Kerngradienten aus, der ebenfalls die höchsten Konzentrationen entlang der ventralen Mittellinie und nach lateral hin abnehmenden Konzentrationen aufweist (Chen et al., 2000).

Tccactus in situ	DAPI

Diese ventrale Expressionsdomäne erstreckt sich entlang der gesamten anterio-posterioren Achse vom anterioren bis zum posterioren Pol des frühen Embryos (Abb. 3.9 B).

Mit Beginn der Ausbildung der posterioren Primitivgrube beginnt sich die Expression in den anterioren Serosazellen abzuschwächen (Abb. 3.9 C). Gleichzeitig verbreitet sich der Streifen der *cactus* exprimierenden Zellen im Bereich der embryonalen Anlage in weiter lateral gelegenen Zellen, während die Expression im anterioren Bereich vollständig eingestellt wird (Abb. 3.9 D). Zu diesem Zeitpunkt ist die Abgrenzung der extraembryonalen Serosazellen von der Keimanlage abgeschlossen (Abb. 3.9 CII und DII).

3.3.2 Expression während der Invagination des Keimstreifs

Dabei beschränkt sich die Expression eindeutig auf die Zellen des eigentlichen Embryos, während die Zellen des den Embryo überwandernden Amnions frei von Expression bleiben (Abb. 3.10 B).

Während das Amnion den Embryo überwandert, wird die *cactus* Expression entlang der anterio-posterioren Achse in einigen Gruppen von Zellen herunter reguliert (Abb. 3.10 C), während die terminalen Domänen die Expressionsstärke beibehalten.
3.3.3 Expression während der Keimstreifausstreckung

Bereits kurz vor dem Schluss des Serosafensters lässt sich deutlich die Modulation der *cactus* Expression entlang der anterior-posterioren Achse erkennen (Abb.3.11 A, vgl. Abb.3.10 C): Zu diesem Zeitpunkt ist die *cactus* mRNA in zwei longitudinalen Streifen zu beiden Seiten des Mesoderms detektierbar. Hierbei lassen sich entlang der anterior-posterioren Achse vier Domänen deutlicher Expression unterscheiden, die von Regionen unterbrochen werden, in denen die Expression von *cactus* herunter reguliert worden ist (Abb.3.11 A und B). Die am weitesten anterior gelegene Expression starker *cactus* Expression findet sich in der medialen
Region zwischen den Kopflappen. Weiter posterior finden sich eine größere und eine kleinere Region mit *cactus* mRNA Expression. Die vierte, am weitesten posterior lokalisierter Domäne ist im Bereich der Wachstumszone lokalisiert.

Zu Beginn der Keimstreifausstreckung wird diese Expression weiter verfeinert: Während die terminalen Domänen zwischen den Kopflappen und in der Wachstumszone beibehalten werden, wird die Expression von *Tccactus* in den mittleren Körperregionen allgemein herab reguliert; dabei trennt sich die anteriore der beiden Domänen im Bereich zwischen Kopf und Wachstumszone in zwei kleinere Regionen schwacher Expression auf, während die posteriore der beiden frühen Regionen *cactus* zunächst weiterhin exprimiert (Abb.3.11 B). In dieser Region ist die Einwanderung des Mesoderms noch nicht abgeschlossen. Daher finden sich hier noch teilweise zwei Reihen von *cactus* exprimierenden Zellen, während weiter anterior beide lateralen Domänen zu einer Zellgruppe zusammengeschmolzen sind.

In späteren Stadien verschwindet die Expression in den mittleren Körperregionen völlig, lediglich zwischen den Kopflappen und in der Nähe der Wachstumszone wird *cactus* weiterhin exprimiert, jedoch deutlich schwächer als zuvor (Abb.3.11 C). Die halbkreisförmige Domäne in der Region der Wachstumszone ähneln in ihrer Form sehr der Expressionsdomäne von *Tcbrachyenteron* in der Anlage des Hinterdarms (Kispert et al., 1994 und R. Schröder, persönliche Mitteilung). In Analogie hierzu könnte die für *Tccactus* gezeigt Domäne ebenfalls der Hinterdarmanlage entsprechen.

Ein weiterer Puls von *Tccactus* Expression zeigt sich in Embryonen mit maximal elongiertem Keimstreif: Hier wird *cactus* in einem schmalen Streifen von Zellen entlang der ventralen Mittellinie exprimiert (Abb.3.11 D). In diesem Stadium beschränkt sich die linienförmige Expression auf die Segmente des Kopfes und des Thorax. Hierbei findet sich in jedem Segment ein Fleck besonders starker Expression an der anterioren Grenze des jeweiligen Segmentes (Abb.3.11 E). In anterioren Abdominalsegmenten zeigt sich dagegen nur jeweils ein Fleck von *Tccactus* Expression (Abb.3.11 D; Pfeile). Die posteriore Expressionsdomäne in der terminalen Region des Embryos bleibt auch in diesen Stadien erhalten, während die anteriore Domäne nun verschwunden ist.
3.3.4 Maternale Expression von *Tccactus*

Innerhalb des Follikelepithels konnte in keinem der analysierten Stadien eine Expression von *Tccactus* nachgewiesen werden.
3.3.5 RNAi mit TcCactus

Zur Klärung der Funktion von TeCactus wurde parentale RNAi mit einer 308bp großen dsRNA durchgeführt, die dem 5’-Bereich der isolierten cDNA entspricht. In drei unabhängigen Versuchsansätzen wurde cactus dsRNA in Konzentrationen von entweder 1,5 µg/µl, 0,7 µg/µl sowie 0,4 µg/µl in weibliche Puppen injiziert. Tabelle 3.2 zeigt die Anzahlen der injizierten Weibchen, sowie die Schlüpf- und die Überlebensrate der einzelnen Versuchsansätze.

<table>
<thead>
<tr>
<th>Konz. dsRNA</th>
<th>Anzahl der injizierten Puppen</th>
<th>Schlüp (%)</th>
<th>Überlebensrate nach 4 Tagen (%)</th>
<th>Überlebensrate nach 6 Tagen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>81 Männchen</td>
<td>65 (80,2%)</td>
<td>65 (80,2%)</td>
<td>65 (80,2%)</td>
</tr>
<tr>
<td>1,5 µg/µl</td>
<td>119</td>
<td>87 (73,1%)</td>
<td>2 (2,3%)</td>
<td>0</td>
</tr>
<tr>
<td>0,7 µg/µl</td>
<td>44</td>
<td>36 (81,8%)</td>
<td>8 (18,2%)</td>
<td>0</td>
</tr>
<tr>
<td>0,4 µg/µl</td>
<td>51</td>
<td>39 (76,5%)</td>
<td>10 (19,6%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 3.1: dsRNA Injektionen mit TcCactus RNA. Zeile 1 zeigt die Vergleichswerte für die Kontrolle (uninjizierte Wildtyp-Männchen), Zeilen 2 bis 4 die Zahlen der injizierten Puppen, sowie die jeweiligen Überlebensraten der Versuchsansätze mit verschiedenen Konzentrationen von TcCactus dsRNA. In Klammern sind die prozentualen Anteile angegeben.

Ebenso trat bei den uninjizierten Männchen, mit denen die Weibchen direkt im Anschluss an den Schlupf gekreuzt wurden, keine erhöhte Letalität auf, was eine Kontamination oder eine allgemeine verringerte Vitalität durch eventuell im Mehl befindliche Pathogene ausschließt.

Somit handelt es sich bei der beobachteten Letalität um eine spezifische Reaktion auf die Injektion der cactus dsRNA. Während der 6 Tage bis zum Verlust sämtlicher Weibchen konnten keine Eier gewonnen werden.
3.4 Funktionelle Analyse von Tcdorsal

Die im folgenden aufgeführten Ergebnisse sind, soweit nicht anders vermerkt, das Resultat von Injektionen mit Tcdl dsRNA in einer Konzentration von 1,0 µg/µl.

Zum einfachen Verständnis werden im folgenden Embryonen, die aus Eiern hervorgehen, welche von mit *Tcdorsal* dsRNA injizierten Weibchen gelegt wurden, als „*Tcdl* RNAi Embryonen“ bezeichnet.

3.4.1 Defekte in der Morphologie von Tcdl RNAi Embryonen

Um festzustellen, welchen Einfluss TcDorsal auf die Spezifizierung der embryonalen Achsen hat, wurde die DNA der Zellkerne von *Tcdl RNAi Embryonen* mit DAPI angefärbt.

Bereits während des Blastodermstadiums unterscheiden sich Tcdl RNAi Embryonen von Wildtypembryonen gleichen Stadiums klar aufgrund einer veränderten Verteilung von Serosa und Keimanlage. Während im Wildtyp die Keimanlage sich auf die ventrale Hälfte der posterioren Seite des Eies beschränkt, erscheint die Anlage im *Tcdl* RNAi Embryo symmetrisch, die Zellen der Keimanlage kondensieren über den gesamten Umfang der posterioren
Hälfte (Abb.3.13 A, B). Einen identischen Effekt kann man bei RNAi Experimenten mit TcToll beobachten (Abb.3.13 C).
Zwar bilden sich aus solchen symmetrischen Anlagen Keimstreifen, diese zeigen jedoch keine mehrschichtige Organisation, stattdessen bilden diese Embryonen einschichtige Hohlschläuche aus, die keine Anzeichen einer dorsoventralen Differenzierung erkennen lassen und komplett apolar erscheinen (Abb.3.14 C und D). So sind sowohl erkennbare Kopfstrukturen, als auch Beinanlagen nicht vorhanden. Jedoch erfolgt die Spezifizierung der Keimanlage offensichtlich unabhängig von Dorsal, benötigt also keine dorsoventrale Information.

Da diese Phänotypen möglicherweise auch aufgrund einer fehlerhaften AP-Achsen Festlegung entstehen könnten, wurden dieselben Embryonen auf die Proteinexpression des Segmentpolaritätsgens Engrailed als Marker für die AP-Achse hin untersucht (Abb.3.14).

Gleichfalls erscheint die in solchen Embryonen beobachtete Serosa wildtypisch, da sowohl im Blastodermstadium die Kerne der Serosazellen augenscheinlich polyploid sind, da sie in den DAPI-Färbungen deutlich größer erscheinen als die Kerne der Keimanlage als auch, da die Serosa in Stadien der Keimstreifausstreckung wie im Wildtyp den gesamten Embryo umschließen (Abb 3.14 B). Auch sind wie im Wildtyp die Serosazellen selbst deutlich größer als die Zellen der Keimanlage, was sich in den DAPI-Färbungen durch eine größere Entfernung der einzelnen Serosakerne ausdrückt.

3.4.2 Die Wachstumszone in dorsalisierten Embryonen

Es lässt sich zeigen, dass die posteriore Wachstumszone der einzige Bereich in Tcdl RNAi Embryonen ist, der eindeutig ein mehrschichtiges Gewebe ausbildet (Abb.3.15 D und G). Jedoch zeigen die Wachstumszonen in diesen Embryonen eindeutig weniger Zellschichten als die Wachstumszone in Wildtyp-Embryonen (vgl. Abb.3.15 D, G und K). Demgegenüber sind mediale und anteriore Bereiche der Embryonen in Form eines einschichtigen Epithels aus zumeist palisadenförmigen Zellen organisiert (Abb.3.15 A, B).
Abb3.15: Antikörperfärbungen gegen phosphoryliertes Tyrosin (pTyr; grün) und DNA-Färbung mittels Toto-3 Iodid (blau) an Tcdl RNAi (A-G) bzw. Wildtyp-Embryonen (H-K). Gezeigt sind jeweils eine lichtmikroskopische Aufnahme eines Tcdl RNAi Embryos in einem mittleren (A) und einem späten Stadium (E), bzw. eines Wildtyp-Embryos im Stadium der mittleren Keimstreifausstreckung (H). Die weiteren Bilder zeigen optische, konfokale Längsschnitte der in A, E, H markierten Bereiche der entsprechenden Embryonen bis auf (F), das einen Querschnitt durch den medialen Bereich des Embryos in (E) zeigt. Anterior ist jeweils links.

Im Wildtyp ist die der Amnionhöhle zugewandte Zellschicht der Wachstumszone epithelial organisiert, während weiter dorsal gelegene Zellschichten mesenchymalen Charakter zeigen. Auch in Tcdl RNAi Embryonen besitzt die Zellschicht, die der Körperröhle zugewandt ist, epitheliales Aussehen, während die weitere Schichten in der Wachstumszone mesenchymal erscheinen (Abb.3.15 D).

Auch eine klare Trennung des Amnions von der Keimanlage ist in Tcdl RNAi Embryonen nicht eindeutig nachzuweisen, jedoch erscheinen die Zellen, die in der Wachstumszone dem
mehrschichtigen Bereich gegenüber liegen, flacher als die Zellen des eigentlichen Embryos (Abb.3.15 D; Pfeil). Auch in Wildtyp-Embryonen erscheint das Amnion als flache Zellschicht auf der ventralen Seite des Embryos (Abb.3.15, K). Somit ist nicht sicher, ob es sich bei der Körperhöhle der Tcdl RNAi Embryonen ebenfalls tatsächlich um eine Amnionhöhle handelt.

3.4.3 Expression mesodermaler Gene

3 Ergebnisse

Bereits während der frühen Keimstreifinvagination lässt sich jedoch eine schwache Expression von Tctwist am posterioren Ende des Keimstreifs in etwa der Hälfte der analysierten Embryonen erkennen (Abb.3.16 B; diese Region liegt im Vergleich zu den Achsen des Eies am weitesten anterior, da der Embryo mit dem posteriore Ende zuerst einwandert; bzw. beim Wildtyp dieses Ende zuerst vom Amnion überwandert wird). Bei voll ausgestrecktem Keimstreif werden sowohl twist als auch snail in weiten Regionen des Embryos nicht exprimiert (Abb.3.16 D und F). Allerdings fand sich am posterioren Ende immer noch eine schwache Expression von twist mRNA wie auch Protein in einer kleinen Gruppe von Zellen im terminalen Bereich (Abb.3.16 D; anti-TcTwist Färbung). Dieser Aspekt wurde für snail nicht beobachtet, jedoch kann eine Expression von snail mRNA
unterhalb der Detektionschwelle in diesen Zellen nicht ausgeschlossen werden. Dies könnte auch erklären, warum nur etwa 50% der Tcdl RNAi Embryonen eine terminale Tctwist Expression erkennbar war. Andererseits kann es sich hierbei auch um einen schwächeren Phänotyp handeln, als in Embryonen, in denen diese Expressionsdomäne vollständig fehlt, jedoch fanden sich hierfür keine morphologischen Hinweise.

3.4.4 Expression von lateralen Markergenen

In Drosophila werden sowohl short gastrulation als auch ventral nervous system defective (vnd) jeweils in einem Streifen im präsumptiven neurogenen Ektoderm zu beiden Seiten des Mesoderms exprimiert. Hierbei wird sog in einem ca. 8 Zellen breiten Streifen, vnd in einem 4-5 Zellen umfassenden Streifen im ventralen Bereich der sog exprimierenden Region angeschaltet (Stathopoulos und Levine, 2002a). In Tribolium wurde mit Hilfe degenerierter Primer PCR ein Homolog zu sog kloniert (Stockhammer, 2003). Tcsog wird wie Dmsog in Bereichen beiderseits des Mesoderms exprimiert, jedoch dehnt sich die Expression im Gegensatz zu seinem Drosophila Homolog auch auf das zukünftige Mesoderm aus (Stockhammer, 2003, Abb. 3.17 A).

![Abb. 3.17: Expression von Tcsog in Wildtyp (A,C) und Tcdl RNAi Embryonen (B,D). Gezeigt sind Stadien der frühen Keimstreifinvagination (A und B), sowie Embryonen in Stadien der Keimstreifausstreckung (C und D).](image-url)
Ähnlich zur Expression mesodermaler Gene wird auch Tcsog in Tcdl RNAi Embryonen in frühen Stadien weder ventral noch in lateralen Regionen exprimiert (Abb 3.17 B). Dagegen zeigen mutante Embryonen in späteren Stadien in einigen Zellen, die vermutlich innerhalb des terminalen Segmentes lokalisiert sind, schwache Expression von Tcsog (Abb. 3.17 D). Der Rest des Embryos bleibt jedoch auch in diesen Stadien frei von Tcsog mRNA. Im Gegensatz zur terminalen Expression von Tetwist findet sich die terminale Expression von Tcsog in sämtlichen betrachteten Embryonen (nicht gezeigt).

Auch für Tcvnd lässt sich in Tcdl Embryonen ausschließlich innerhalb der Wachstumszone eine Expression nachweisen, während sämtliche anderen Zellen frei von Expression bleiben (Abb.3.18).

Abb.3.18: Expression von Tcvnd während des Stadiums der Keimstreifelongation, in Wildtyp (A) und einem Tcdl RNAi Embryo in einem vergleichbaren Stadium. Anterior ist jeweils rechts.
3.4.5 *dpp* und *zen* als Marker für extraembryonales Gewebe

![Wildtyp vs. Tcdl RNAi](image)

Sowohl für *zen1* als auch für *zen2* lässt sich nachweisen, dass die frühe Expression in einer anterioren Kappe erhalten bleibt (Abb.3.19 B, D). Die dorsale Grenze der Expressionsdomäne beider Gene bei ca. 55% Eilänge verschiebt sich dabei nicht. Jedoch ist die ventrale Grenze beider Expressionsmuster deutlich in Richtung posterior verschoben (von 80% nach 50-60% Eilänge), so dass die Expressionsdomäne nun eine symmetrische Kappe im
anteriorem Drittel bzw. in der anterioren Hälfte des frühen Embryos ausbildet. Die genaue Lage der ventralen Expressionsgrenze unterscheidet sich leicht zwischen verschiedenen Embryonen (vgl. Abb. 3.19 B und D), jedoch lassen sich zwischen beiden *zen* Genen keine spezifischen Unterschiede feststellen.

3.4.6 Klärung des Zellschicksals in *Tcdl* RNAi Embryonen

Die Abwesenheit mesodermaler Zellmarker (vgl. 3.4.3) sowie ein Vergleich mit mutanten *dorsal* Phänotypen aus *Drosophila* lassen vermuten, dass die Zellen, die in *Tcdl* RNAi den Embryo bilden, entweder ein ektodermales Schicksal besitzen oder Amnioserosa ähnliche Zellen darstellen.

Zur Klärung dieser Frage wurde die Expression des Gens *Tcppanner* untersucht (das verwendete Konstrukt ist eine freundliche Leihgabe von N. Berns und R. Reuter, unveröffentlicht). In *Drosophila* wird *pannier* neben weiteren Aspekten in frühen Stadien spezifisch in der sich entwickelnden Amnioserosa exprimiert und wird auch für die Beibehaltung der Amnioserosa benötigt (Heitzler *et al.*, 1996; Ashe *et al.*, 2000).

Die Expression von *Tepannier* wird in den früh exprimierenden Zellen offensichtlich beibehalten, da in maximal elongierten *Tcdl* RNAi Embryonen in variierendem Ausmaß weiterhin größere Gruppen von Zellen in nicht vorhersagbaren Regionen *Tepannier* exprimieren. Hierbei findet sich in einigen Embryonen *pannier* Expression in weiten Teilen des Embryos einschließlich der terminalen Region (Abb. 3.20 E), während in anderen Embryonen vergleichbarer Stadien *pannier* nur in kleineren Arealen exprimiert wird, die auch unzusammenhängend sein können (Abb. 3.20 F). Jedoch ist die Expression nicht auf eine Seite des Embryos beschränkt, sondern erstreckt sich über den ganzen Umfang des Keimstreifs (3.20 F).
3.4.7 Früh exprimierte Marker: Tc006A12 und hairy

In frühen Tcdl RNAi Embryonen (auch in schwachen Phänotypen, vgl. 3.4.7) bildet sich zwar die posteriore Expressionsdomäne aus, jedoch fehlt die anteriore, dreieckförmige Domäne vollständig (3.21 B). Auch in späteren Stadien, während der Keimstreif-ausstreckung, wo Tc006A12 in wildtypischen Embryonen sowohl Kopfbereich, als auch in der oben erwähnten Gap-Gen ähnlichen Domäne exprimiert wird, findet sich in Tcdl RNAi Embryonen ausschließlich die Gap-Gen Domäne, während der anteriore Bereich von Expression frei bleibt (nicht gezeigt).

In frühen Blastodermstadien ist in Tcdl RNAi Embryonen die Expression von hairy nicht nachweisbar. Dies könnte sich entweder auf einen zeitlich verzögerten Beginn der Expression oder auf eine geringere Expressionsstärke zurückführen lassen.

3.4.8 Schwache Phänotypen

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Ablage 1 (4d)</th>
<th>Ablage 2 (6d)</th>
<th>Ablage 3 (10d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse I Leere Eihülle</td>
<td>69 (71,9%)</td>
<td>28 (39,4%)</td>
<td>3 (7,9%)</td>
</tr>
<tr>
<td>Klasse II Kutikularest</td>
<td>22 (22,9%)</td>
<td>8 (11,2%)</td>
<td>-</td>
</tr>
<tr>
<td>Klasse III Dors. Kutikula</td>
<td>-</td>
<td>14 (19,7%)</td>
<td>2 (5,3%)</td>
</tr>
<tr>
<td>Klasse IV Wildtyp</td>
<td>5 (5,2%)</td>
<td>21 (29,6%)</td>
<td>33 (86,8%)</td>
</tr>
<tr>
<td>n</td>
<td>96</td>
<td>71</td>
<td>38</td>
</tr>
</tbody>
</table>

Tab. 3.2: Kutikulapräparationen von Eiablagen Tcdl injizierter Weibchen (Konz.: 0,5µg/µl) 4, 6 und 10 Tage nach Injektion. Angegeben sind jeweils die Anzahlen der gefundenen Phänotypen pro Phänotypklasse sowie der prozentuale Anteil an der insgesamt analysierten Anzahl (in Klammern). n = Anzahl der untersuchten Kutikulas; Dors. Kutikula: Kutikula mit dorsalen Borsten, jedoch ohne ventrales Borstenmuster und Beine. Bei Injektion mit 1,0µg/µl Tcdl dsRNA lassen sich die Klassen II und III erst 9-10 Tage nach Injektion und in einem noch geringeren Umfang finden.
Frühe Eiablagen von dsTcdl injizierten Weibchen enthalten fast ausschließlich leere Eihüllen ohne erkennbare Kutikula (Klasse I; Abb 3.23 B). Da diese leeren Eier bei Injektion von H\textsubscript{2}O nicht auftreten, sollten diese dem stärksten Phänotyp der RNAi mit Tcdorsal entsprechen. Dies weist auf eine Abwesenheit des die Kutikula sezernierenden Ektoderms hin.

Im Gegensatz zu den Kutikulapräparationen ließen sich bei der Untersuchung von Marker- genen nur selten Embryonen finden, die offensichtlich einen hypomorphen Phänotyp darstellen. Ein Beispiel eines solchen Embryos zeigt Abb.3.24.
Abb.3.24: Expression von *Tc006A12* in einem hypomorphen *Tcdl* RNAi Embryo.

4 Diskussion

4.1 Frühe Schritte zur Achsenbildung während der Oogenese

Somit wurde für Vertreter von wenigstens drei verschiedenen Insektenordnungen, Orthopteren, Coleopteren und Dipteren, und sowohl für Langkeimer (*Anopheles, Musca, Drosophila*) als auch für Kurzkeimer (*Acheta, Tenebrio, Tribolium*) eine asymmetrische Lokalisierung beschrieben. Dies legt nahe, dass eine asymmetrische Positionierung des Oozytenkernes eine Voraussetzung für die Achsenbildung nicht nur in *Drosophila*, sondern in verschiedenen Insektenordnungen darstellt. Da sich jedoch in *Tribolium* der Oozytenkern ausschließlich in Bezug zur dorsoventralen Achse bewegt, ist nicht sicher, ob der Kern hier auch als Ausgangspunkt eines Signals zur Spezifizierung der posterioren Follikelzellen dient, wie dies in *Drosophila* der Fall ist (Roth *et al.*, 1995; Peri *et al.*, 1999). Existiert ein solches Signal auch in *Tribolium*, müsste dies in einem sehr frühen Stadium erfolgen, in dem der Oozytenkern noch Kontakt zu sämtlichen Follikelzellen, einschließlich der später posterioren Follikelzellen hat (vgl. Abb.3.2 D). Dann jedoch muss das polarisierende Signal so gesteuert werden, dass ausschließlich die posterioren Follikelzellen das Signal empfangen oder diese Zellen müssen bereits vorher als separate Follikelzellepopulation die Kompetenz erworben haben, dieses Signal von der Oozyte zu verarbeiten. Aus *Drosophila* ist bekannt, dass dort tatsächlich...

Die Eihülle vieler Insektenarten aus unterschiedlichen Ordnungen lassen bereits die Vorhersage der beiden Hauptkörperachsen anhand von Markern zu. Somit muss wenigstens in Arten, die solche Eier hervorbringen, eine Information zur Spezifizierung der Körperachsen während der Oogenese an die sich entwickelnde Oozyte weiter gegeben werden (Roth, 2003). In Drosophila ist hierfür die Positionierung des Oozytenkerns und die damit zusammenhängenden Signalprozesse über das TGFα-ähnliche Protein Gurken von entscheidender Bedeutung. Da die Positionierung des Oozytenkerns offensichtlich auch in niederen Insektenordnungen bis zu den Orthopteren in einem stereotypischen Muster und zumindest in Bezug auf eine der beiden Körperachsen asymmetrisch erfolgt, lässt sich postulieren, dass auch hier der Oozytenkern als Ausgangspunkt eines Signals zur Musterbildung fungiert. Ob auch in niederen Insektenarten ein TGFα-ähnliches Molekül als Signal verwendet wird, lässt sich jedoch nicht eindeutig vorhersagen. Datenbanksuchen nach Orthologen von Gurken führten in Arten außerhalb der Drosophiliden bislang zu keinem eindeutigen Ergebnis (S.Roth, persön-

Jedoch ist zum einen denkbar, dass die mRNA des EGF Gens aus *Anopheles* gerade in Stadien zwischen den hier analysierten Stadien asymmetrisch lokalisiert wird. Für diese Arbeit standen nur Ovarien in begrenzter Anzahl zur Verfügung, so dass nur Stadien in Intervallen von ungefähr 150 Minuten Differenz untersucht werden konnten. Sollte die mRNA des TGFα-ähnlichen Gens jedoch nur kurzzeitig asymmetrisch lokalisiert werden, wäre hierfür ein Zeitraum von 2 Stunden möglich, was in etwa 5% der Entwicklungsdauer der Oozyte entspricht. Des weiteren ist möglich, dass eine asymmetrische Aktivität eines solchen TGFα-Homologs nicht über die Lokalisierung der Transkripte gesteuert wird, sondern durch posttranskriptionelle Regulation. Jedoch ließ sich z.B. eine Regulation auf Ebene der Translation mit den zur Verfügung stehenden Methoden nicht nachweisen. Es ist jedoch bekannt, dass der EGF-Signalweg in *Drosophila* wie in Vertebraten auch eine ausgeprägte posttranslationelle Regulierung aufweist (Freeman und Gurdon, 2002). Vor allem die Regulierung der Produktion von aktiven EGF- oder TGFα Liganden durch proteolytische Spaltung einer membrangebundenen Form ist ein wiederkehrendes Motiv in der Kontrolle der Aktivität des EGF-Signalweges. Aufgrund der geringen Sequenzähnlichkeit ist allerdings nicht eindeutig geklärt, ob das *Anopheles* EGF Homolog eine inaktive, membrangebundene Form besitzt.

Eine eingehendere Analyse der Verteilung von mRNA und Protein des TGF-α ähnlichen Gens aus *Anopheles* sollten eine Aussage über die Verwendung des EGF-Signalweges in der dorsoventralen Musterbildung zumindest in Nematoceren erlauben.

4.2 Die Etablierung der Dorsoventral-Achse im frühen Tribolium Embryo

Demgegenüber zeigen die Kutikulapräparationen bei Injektionen von Tcdl dsRNA in geringerer Konzentration, dass dorsale Bereiche des die Kutikula sezernierenden Ektoderms offensichtlich in solchen Experimenten weniger stark betroffen sind, während weiter ventrale Bereiche auch in diesen Experimenten nicht beobachtet werden konnten. Auch zeigten in situ Hybridisierungen gegen Tctwist keine Expression, woraus sich schließen lässt, dass sowohl ventrales Ektoderm wie auch das Mesoderm in diesen Embryonen weiterhin abwesend sind. Somit zeigt sich, dass analog zur Funktion von Dorsal in Drosophila, TcDorsal ebenfalls in
der Lage ist, verschiedene Schwellenwerte für die Spezifizierung von unterschiedlichen Zell-
Schicksalen entlang der dorsoventralen Achse des Tribolium Embryos festzulegen.

Wie bereits postuliert, geht die Verlagerung der Anlagen extraembryonaler Membranen im
Laufe der Insekten Evolution von anterioren in dorsale Bereiche des frühen Embryos einher
mit einer Verschiebung der Expressionsdomänen der Gene zerknüllt und dpp (Stauber et al.,
1999; Schmitt-Ott, 2000). Tribolium stellt möglicherweise einen Zwischenschritt auf dem
Weg zu einer solchen Verschiebung dar: Während die frühe Expression beider Gene in
Tribolium sich auf die anterioren Regionen des Embryos beschränkt, und somit unter Kon-
trolle des anterioposterioren oder des terminalen Systems stattfinden sollte, ist der Aspekt der
späteren Expression beider Gene zumindest teilweise unter Kontrolle des dorsoventralen
Systems (Schröder et al., 2000; vgl. 4.3). Jedoch scheint in Tribolium der Dorsal-abhängige
Einfluss auf die Kontrolle entlang der AP-Achse aufgesetzt zu sein: Zunächst findet eine
Eingrenzung des Zellschicksals entlang der anterioposterioren Achse statt, die anschließend
durch das dorsoventrale System weiter auf den anterior-dorsalen Bereich eingegrenzt wird.
Diese Situation in Coleopteren stellt somit eventuell einen Zwischenschritt dar auf dem Weg
von einer primär anterioposterioren Anlage extraembryonalen Gewebes in extremen
Kurzkeimern und der Kontrolle der spezifizierenden Gene hin zu einer Anlage und Kontrolle
von dpp und zen hauptsächlich in Abhängigkeit der dorsoventralen Information wie in
höheren Dipteren.

Der Einfluss von Dorsal auf die dorsoventrale Musterbildung des Embryos scheint in
Tribolium im Vergleich zu Drosophila eher in einer generell polarisierenden Funktion zu
bestehen. Dies zeigt sich im Vergleich des RNAi Phänotyps von Tcdorsal mit denen von
Tcsog und Tctwist. So lassen sich die Erweiterungen der Expressionsdomänen der beiden
Gene dpp und zen in Tcdl RNAi Embryonen ausschließlich durch einen Ausfall von sog
erklären, da in Tcsog RNAi Embryonen die frühe Expression von dpp und zen von der in Tcdl
RNAi Embryonen nicht zu unterscheiden ist (Mikulski, 2004).

Des weiteren verschwindet in starken Tctwist mutanten Embryonen ebenso wie in allen Tcdl
RNAi Embryonen die Expression von snail völlig (Basal, 2004). Somit scheint der Einfluss
von TeDorsal auf die Aktivierung von snail ausschließlich indirekt über die Regulierung von
twist zu bestehen. In Drosophila konnte gezeigt werden, dass zur Etablierung sämtlicher
Schwellenwerte entlang der dorsoventralen Achse Twist alleine nicht ausreichend ist, da bei
Ausfall von Dorsal Twist nur einen Teil der Schwellenwerte definieren kann (Stathopoulos

Somit kommt den zygotischen Genen offensichtlich in Kurzkeimern eine größere Bedeutung in der Unterteilung der embryonalen dorsoventralen Achse in unterschiedliche Regionen zu, als dies in höheren Dipteren der Fall ist. Anopheles, dessen Entwicklung als Langkeimer und niedere Diptere eher derjenigen von Drosophila ähnelt (Monnerat et al., 2002), sollte im Vergleich zu Tribolium einen weiter zunehmenden Einfluss des maternalen Systems in der Spezifizierung der embryonalen dorsoventralen Achse zeigen.

4.3 Späte Prozesse der dorsoventralen Musterbildung

In Tcdl RNAi Embryonen erscheint die Wachstumszone ähnlich dem Wildtyp als mehrschichtiges Gewebe aus mesenchymalen Zellen. Diese Region ist die einzige in Tcdl RNAi Embryonen, die mehrschichtig ist, während der Hauptteil des Embryos aus einschichtigen, zumeist palisadenförmigen Zellen mit epithelialem Aussehen besteht.

Dies zeigt, dass die Wachstumszone in Tribolium kein neues dorsoventrales Muster für die im Zuge der Keimstreifelongation hervorgebrachten Segmente generiert. Statt dessen hängt auch das dorsoventrale Muster dieser Segmente von der im frühen Blastoderm durch die Toll-Dorsal Kaskade errichteten dorsoventralen Information ab. Wie diese frühe polarisierende Information in der zellulären Umgebung der Wachstumszone gespeichert wird und an die aus ihr hervorgehenden neuen Segmenten vermittelt wird, konnte im Verlauf dieser Arbeit nicht untersucht werden. Jedoch scheint der für einige der analysierten Gene (z.B. Tctwist, Tcso, Tcvnd) in Tcdl RNAi Embryonen beobachtete Puls an Expression in der Region der Wachstumszone nicht ausreichend für die Vermittlung einer korrekten dorsoventralen Achse für die neu gebildeten Segmente. Eine formelle Möglichkeit würde darin bestehen, dass während des Blastodermstadiums bereits Zellpopulationen innerhalb der Wachstumszone mit einer unterschiedlichen dorsoventralen Information ausgestattet werden, die als Stammzellen

4.4 Potentielle Zielgene von TcDorsal und deren Regulierung

Die Ausweitung der *dpp* und *zen* Expression in *Tcdl* RNAi lässt sich so ausschließlich auf der Basis des Fehlens der *sog* Expression erklären, während in *Drosophila* Dorsal an die cis-regulatorischen Sequenzen von *dpp* und *zen* bindet und die Expression beider Gene in ventralen Regionen des frühen Embryos reprimiert (Rushlow *et al.*, 2000; Stathopoulos und Levine, 2002).

Beschränkung auf den dorsalen Bereich zu erfahren. Die Ausweitung der Expression beider Gene in Richtung der anterioposterioren Achse erfolgt somit unabhängig von dorsoventraler Information. Offensichtlich ist das dorsoventrale System notwendig zur Eingrenzung der Expression von *dpp* und *zen* auf die dorsalen, anterioren Bereiche (vgl. auch 4.2).

In der Zwischenzeit konnten weitere konzentrationsabhängige Motive in cis-regulatorischen Regionen von Dorsal Zielgenen in *Drosophila* identifiziert werden. Dies ermöglichte auch die Identifizierung von bis dahin nicht bekannten Zielgenen des Dorsal Transkriptionsfaktors (Stathopoulos et al., 2002). Für *Tribolium* Dorsal wurden solche Bindemotive bislang nur für die cis-regulatorische Region von Tctwist eingehender untersucht (Chen et al., 2000; Mikulski, 2004). Ein Nachweis für eine direkte Regulierung der in der vorliegenden Arbeit verwen-

4.5 Zur möglichen Funktion von \textit{Tccactus}

Eine genaue Analyse der Funktion von \textit{Tccactus} wurde im Laufe der vorliegenden Arbeit durch die in den RNAi Experimenten auftretende Letalität verhindert (vgl. 3.3.5). Diese auftretende Letalität im adulten Stadium macht eine Betrachtung der \textit{cactus} Funktion während der frühen Embryogenese von \textit{Tribolium} mittels parentaler RNAi unmöglich. Die Ursache für die Letalität konnte im Verlaufe dieser Arbeit nicht geklärt werden, jedoch zeigt dieses Phänomen beim Ausfall von \textit{Tccactus} Parallelen zu starken \textit{Drosophila} Mutanten für \textit{cactus}.

Im Gegensatz zu anderen Genen der Dorsal Gruppe führt ein Ausfall von \textit{Dmcactus} ebenfalls zu vollständiger Letalität in larvalen und puppalen Stadien (Roth et al., 1991).

Alternativ könnte es wie in Aps beobachtet auch in Coleopteren zu einer Duplikation und möglicherweise anschließend zu einer Subfunktionalisierung der beiden neuen cactus-Gene gekommen sein. Dann könnte eines dieser Gene einen Teil des maternalen Aspektes, das andere den zygotischen Aspekt der Funktion des ancestralen Gens verkörpern. Eine solche Duplikation ist in Tribolium z.B. für das zerknüllt Gen zu beobachten, wo beide Gene in der Region der zukünftigen Serosa exprimiert werden, jedoch eindeutig voneinander abweichende, nicht redundante Funktionen in der Spezifizierung dieser Gewebe erfüllen (Falciani et al., 1996; M. van der Zee und S., Roth, in Vorbereitung). Auch wurde für die Evolutionslinie der Dipteren eine Duplikation eines ancestralen Hox3-Gens postuliert, in dessen Anschluss eines der beiden Gene (bicoid) eine anterior spezifizierende Funktion übernommen hat, während das andere, zerknüllt, eine Funktion in der Spezifizierung der extraembryonalen Membranen in höheren Dipteren erfüllt (Schmidt-Ott, 2000; Stauber et al., 2002).

Während sich in frühen Drosophila Embryonen maternale cactus mRNA nachweisen lässt (Geisler et al., 1992), konnte die Expression von Tribolium cactus mRNA im Embryo erst einige Stunden nach Eiablage nachgewiesen werden. Da jedoch in Tribolium Ovarien maternale Tccactus mRNA Expression beobachtet wurde, erscheint es wahrscheinlich, dass dieser Aspekt der Expression die Funktion von Tccactus im frühen Embryo sicherstellt. Das beob-
achtete Expressionsmuster lässt darauf schließen, dass die maternale mRNA im gesamten Ei lokalisiert wird und bis zum Zeitpunkt der Eiablage translatiert und anschließend komplett abgebaut wird. Maternales Cactus Protein sollte dann als cytoplasmatischer Inhibitor für TeDorsal im frühen Embryo fungieren. Dem entsprechend sollte sich Cactus Protein im abgelegten Ei nachweisen lassen. Leider war jedoch bis zum Abschluss dieser Arbeit die Erzeugung eines anti-TcCactus Antikörpers nicht möglich. Ein solcher Antikörper sollte nicht nur endgültigen Aufschluss über die zeitliche Aktivität des Cactus Proteins liefern, sondern auch Hinweise auf die Regulation des Tccactus Gens aufzeigen.

Die in dieser Arbeit dargestellte zygotische Expression von Tccactus korreliert zeitlich nicht mit der Annahme, dass Cactus als genereller Inhibitor der Kernlokalisation von Dorsal in sämtlichen Zellen des frühen Blastoderms wirkt und der signalbedingte Abbau des zygotischen Cactus Proteins zur Ausbildung des Dorsal-Gradienten in den am weitesten ventral gelegenen Zellen führt. In diesem Falle müsste Dorsal in weiter dorsal gelegenen Zellen ebenfalls aufgrund der Abwesenheit von Cactus eine hohe Kernkonzentration aufweisen, was jedoch nicht der Fall ist.

Eine weitere Möglichkeit wäre eine Einbeziehung des zygotischen Cactus Proteins in den Verfeinerungsprozess des Dorsal Gradienten selbst: Im Anschluss an die Errichtung des frühen, breiten Kerngradienten von Dorsal, beginnt eine koncentrationsabhängige Aktivierung von cactus. Dorsal überwindet die durch diese Cactus Expression errichtete, neue Schwelle

Es konnte gezeigt werden, dass in Drosophila Dorsal in Zellkultur in der Lage ist, die Translation von Cactus zu verstärken und dessen Stabilität zu erhöhen (Kubota und Gay, 1995). In Vertebraten ist das Nf-κB Protein p65 ebenfalls in der Lage, die Konzentration seines eigenen Inhibitors, IkB zu erhöhen (Scott et al., 1994). In diesem Falle jedoch erfolgt die Regulation offensichtlich auf transkriptioneller Ebene. Zudem konnten κB-Bindestellen in der cis-regulatorischen Region des menschlichen IkB-α Gens nachgewiesen werden, die für eine Aktivierung des IkB-α Gens nach Induktion mit TNFα essentiell sind (Ito et al., 1994). Es wurde postuliert, dass diese Regulierung Teil eines autoregulatorischen Rückkopplungsmechanismus ist, der als Folge eines signalabhängigen Abbaus des IkB-Proteins benötigt wird, um ein andauerndes Gleichgewicht der Nf-κB und IkB Proteine in der Zelle zu gewährleisten.

4.6 Die Toll-Dorsal Kaskade in Tribolium

Vermutlich sind auch weitere, wesentliche Bestandteile der in Drosophila agierenden Kaskade in Tribolium wiederzufinden, da sich zumindest in Lepidopteren und Hymenopteren nahezu sämtliche Komponenten der Signalkette identifizieren lassen (vgl. 1.5). Außerhalb der Insekten finden sich jedoch bislang keine eindeutigen Hinweise auf eine Einbeziehung der Toll-Dorsal Kaskade in Prozesse der frühen Achsenbildung:

Im Egel Helobdella robusta (Hro) konnte eine Expression eines Dorsal Homologs während der frühen Embryonalentwicklung gezeigt werden (Goldstein et al., 2001). Während jedoch snail als mögliches Zielgen von Dorsal in den selben Zellen angestellt wird, zeigt das beobachtete Expressionsmuster keinen Hinweis auf eine generelle Funktion dieses Dorsal Homologs in der dorsoventralen Musterbildung der Anneliden, da Hrodorsal in mesodermalen und ektodermalen Vorläuferzellen exprimiert wird, jedoch nicht im frühen Embryo ausschließlich in prospektiven ventralen Zellen zu finden ist.

Jedoch kann die Situation in Anneliden wie in Nematoden als stark abweichend von der frühen Insektenentwicklung betrachtet werden: In beiden Systemen setzt eine Zellularisierung bereits sehr früh in der embryonalen Entwicklung, während der ersten Zellteilung, ein. Dies
macht insbesondere die Verwendung eines extrazellulären Liganden zur Aktivierung der intrazellulären Toll-Kaskade in diesen Stadien sehr unwahrscheinlich.

Zwar zeigt das aus *Xenopus* isolierte, zu Dorsal ähnliche, Rel-1 Protein Expressionsmuster, die mit einer Funktion während der frühen Embryogenese vereinbar wären, und Überexpression dieses Proteins führt zu einer Unterdrückung dorsaler Zellschicksale, jedoch ließ sich bislang eine eindeutige Funktion für XRel-1 in der Achsenbildung nicht nachweisen (Kao und Lockwood, 1996; Armstrong et al., 1998).

Interessanterweise existieren Hinweise, dass in Spinnen ebenfalls zygotisches Dpp eine gravierendere Rolle in der dorsoventralen Achsenbildung einnimmt, als dies bei Insekten der Fall ist (Akiyama-Oda und Oda, 2003).

Die – mögliche – unabhängige Rekrutierung des Toll/Dorsal Signalweges zur Ausübung von Funktionen während der frühen Embryogenese in Insekten und *Xenopus* könnte auf eine
generelle Eignung dieses Signalweges für eine Steuerung früher Entwicklungsprozesse zurückzuführen sein.

5 Zusammenfassung

Im Gegensatz zur Etablierung der dorsoventralen Achse des *Drosophila* Embryos, ist die Spezifizierung dieser Körperachse in Kurzkeiminsekten bislang größtenteils un verstanden. Da die meisten Segmente von einer posterioren Wachstumszone in einer zellulären Umgebung hervorgebracht werden, stellt sich die Frage, ob maternale Faktoren Einfluss auf die dorsoventrale Musterbildung solcher Segmente haben können.

Das isolierte *Tccactus* Gen besitzt ein Expressionsmuster, das eine Rolle in der Verfeinerung des Dorsal Gradienten oder in der Übertragung der maternalen polarisierenden Information an zygotische Gene nahe legt. Obwohl maternale RNA im frühen *Tribolium* Embryo nicht nachweisbar ist, könnte die beobachtete maternale Expression der *Tccactus* mRNA in Ovarien eine Quelle zur Erzeugung von maternalem Cactus Protein sein, dass im frühen Embryo eine Rolle als genereller cytoplasmatischer Inhibitor für TcDorsal erfüllen könnte.

Abstract

Whereas the formation of the embryonic dorsoventral axis of the *Drosophila* embryo has been analysed in great detail, the specification of this body axis in short-germ insects is only poorly understood. As most of the segments are produced by a posterior growth zone in a cellular environment, the question arises if early acting factors can participate in the dorsoventral organization of later added segments.

In this work, we show that the *Tribolium* Nf-κB like factor Dorsal, like its *Drosophila* counterpart, is essential for the polarization of the dorsoventral axis of the *Tribolium* embryo albeit having a more general role in axis formation. Whereas key target genes as *twist* and *sog* are conserved between *Drosophila* and *Tribolium* Dorsal, the influence of TcDorsal on other putative target genes might be indirect. Dorsal function was also found to be required for defining the dorsoventral axis of posterior segments, that are only added long after Dorsal expression is detectable.

Furthermore, *Tribolium* and *Anopheles* show clear signs of early steps of axis formation already during oogenesis. This is remarkable as the architecture of ovaries in Coleopterans deviates from that of Dipteran ovaries. Here, the asymmetrical positioning of the oocyte nucleus and subsequent asymmetric expression of homologues to the *Drosophila* gene *pipe* were found to be conserved between the analysed species and might provide maternal cues for defining the ventral side of the future embryo.

The expression pattern of the isolated *Tccactus* gene implies a role for *Tccactus* in refining the Dorsal gradient or transducing maternal polarizing information to zygotic genes. Though maternal RNA was not detectable in the early *Tribolium* embryo, maternal expression of *Tccactus* mRNA in the ovary might supply the developing oocyte with a source for maternal Cactus protein that could fulfil a function as a general cytoplasmic inhibitor of TcDorsal in the early embryo.

Thus, fundamental processes in dorsoventral axis formation seem to be conserved between short-germ and long-germ insects. The differences between both types of insects regarding the impact of the maternal Toll/Dorsal pathway versus zygotic genes on axis formation might be attributed to the different modes of embryogenesis.
6 Anhang

6.1 Allgemeine Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Anopheles gambiae</td>
</tr>
<tr>
<td>Am</td>
<td>Apis mellifera</td>
</tr>
<tr>
<td>AP</td>
<td>anterioposterior</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure(n)</td>
</tr>
<tr>
<td>Bm</td>
<td>Bombyx mori</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>cDNA</td>
<td>Komplementäre DNA (complementary DNA)</td>
</tr>
<tr>
<td>Ce</td>
<td>Caenorhabditis elegans</td>
</tr>
<tr>
<td>Dm</td>
<td>Drosophila melanogaster</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DNase</td>
<td>Desoxyribonuklease</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynucleosidtriphosphat</td>
</tr>
<tr>
<td>Dp</td>
<td>Drosophila pseudoobscura</td>
</tr>
<tr>
<td>ds</td>
<td>doppelsträngig</td>
</tr>
<tr>
<td>DV</td>
<td>dorsoventral</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>hpi</td>
<td>Stunden nach Induktion (Blutmahl)</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasenpaare</td>
</tr>
<tr>
<td>mRNA</td>
<td>Boten RNA (messenger RNA)</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat gepufferte Salzlösung (phosphate buffered saline)</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA Interferenz</td>
</tr>
<tr>
<td>SSC</td>
<td>standard salin citrate</td>
</tr>
<tr>
<td>ST-Box</td>
<td>Sulfotransferase-Box</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris/Borat/EDTA-Puffer</td>
</tr>
<tr>
<td>Tc</td>
<td>Tribolium castaneum</td>
</tr>
<tr>
<td>TE</td>
<td>Tris/EDTA-Puffer</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-Amniomethan</td>
</tr>
<tr>
<td>U</td>
<td>Einheiten (units)</td>
</tr>
<tr>
<td>Upm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>ü.N.</td>
<td>Über Nacht</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
</tbody>
</table>
6.2 Partielle cDNA Sequenz von *Tcpipe* und abgeleitete Proteinsequenz

Abbildung 6.1: Sequenz der mittels PCR amplifizierten, partiellen cDNA von *Tcpipe*. Dargestellt ist ebenfalls die aus der cDNA-Sequenz abgeleitete Proteinsequenz des längsten offenen Leserasters dieser cDNA.
6.3 Phylogenetischer Stammbaum der Pipe Proteine aus Insekten

6.4 Partielle cDNA Sequenz von *Tccactus* und abgeleitete Proteinsequenz

Abb. 6.3: Sequenz der mittels PCR amplifizierten, partiellen cDNA von *Tccactus*. Dargestellt ist ebenfalls die aus der cDNA-Sequenz abgeleitete Proteinsequenz des längsten offenen Leserasters. Die fünf Ankyrin-Wiederholungen sind unterstrichen, ein Threonin, das möglicherweise ein Phosphorylierungssignal darstellt, ist rot markiert.
7 Literatur

Simpson, 1982

Erklärung

Ich versichere hiermit, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabelle, Karten und Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnungen kenntlich gemacht habe; dass diese Dissertation keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie noch nicht veröffentlicht worden ist, sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der geltenden Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Herrn Prof. Dr. Siegfried Roth betreut worden.

Ich versichere, dass ich alle Angaben nach bestem Wissen und Gewissen gemacht habe und verpflichte mich, jedmögliche, die obigen Angaben betreffende Veränderung, dem Dekanat unverzüglich mitzuteilen.

Köln, den 02.12.2004

Patrick Kalscheuer
Lebenslauf

Patrick Kalscheuer

Staatsangehörigkeit: Deutsch

Geboren am 19.12.1973 in Köln

Eltern: Karl-Josef Kalscheuer und Lieselotte Kalscheuer, geb. Herrmann

1980-1984
Besuch der Städtischen Grundschule in Erftstadt-Gymnich

1984-1993
Besuch des Städtischen Gymnasiums in Erftstadt-Lechenich

Juni 1993
Abitur am Städt. Gymnasium in Erftstadt-Lechenich

1993-1994
Grundwehrdienst bei 11. Kompanie/ AusbReg 3 in Roth und JaboG 31 “B“ in Kerpen

1994-2000
Studium der Biologie an der Universität zu Köln

März 2000
Erlangung des Diploms

Prüfungsfächer: Entwicklungsbiologie, Genetik, Biochemie

Diplomarbeit bei Herrn Dr. Uwe Hinz am Institut für Entwicklungsbiologie der Universität zu Köln

Titel: Molekulare Analyse des *Drosophila* Gens *bHLH54F*

Seit 2001
Doktorarbeit bei Herrn Prof. Dr. Siegfried Roth am Institut für Entwicklungsbiologie der Universität zu Köln