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Zusammenfassung

Diese Arbeit befasst sich mit exakten L�osungen in
"
geometrischen\ Theorien der

Gravitation von der Art der Allgemeinen Relativit�atstheorie. Am Beginn des ersten
Kapitels geben wir eine kurze Einf�uhrung in den Kalk�ul der �au�eren Di�erential-
formen. Daran anschlie�end untersuchen wir die Cotton 2-Form, die zu konformen
Eigenschaften der Raumzeit in Beziehung steht und von besonderer Bedeutung f�ur
Modelle der Gravitation in 1+2 Dimensionen ist. Wir de�nieren die Cotton 2-Form
mittels der zweiten Bianchi-Identit�at, f�uhren eine irreduzible Zerlegung durch und
bestimmen so die Anzahl der unabh�angigen Komponenten. In drei Dimensionen
leiten wir die Cotton 2-Form aus einem Variationsprinzip ab. Dann klassi�zieren
wir die Cotton 2-Form im 3-dimensionalen Riemann'schen Raum und geben entspre-
chende Beispiele an. Danach konstruieren wir mit Hilfe der Cotton 2-Form kovariant
erhaltene geometrische Gr�o�en und untersuchen die entsprechenden Materie-Str�ome.
In diesem Rahmen f�uhren wir die Bach 3-Form ein und setzen sie in Beziehung zur
Chevreton 3-Form, einem Superenergietensor, der gegenw�artig in der Literatur dis-
kutiert wird. Abschlie�end untersuchen wir die Eigenschaften der Cotton 2-Form
im metrisch-aÆnen Raum.

Das zweite Kapitel ist der Gravitation in 1 + 2 Dimensionen gewidmet. Wir
besch�aftigen uns mit der Einstein-Cartan-Chern-Simons (ECCS)-Theorie von Miel-
ke und Baekler und �nden eine \BTZ-artige" L�osung mit konstanter axialer Torsion.
Wir bestimmen die Autoparallelen und Extremalen, die Killingvektoren und die glo-
balen Ladungen. Daran anschlie�end leiten wir den Teleparallelismus, die Einstein-
Cartan-Theorie und das Modell der topologisch-massiven Graviation aus der ECCS-
Theorie ab. Wir zeigen, wie sich die BTZ-L�osung mit Torsion zu L�osungen der vor-
genannten Spezialf�alle reduzieren l�asst. Abschlie�end leiten wir eine neue, konform-

ache L�osung der 1 + 2-dimensionalen Einstein'schen Gleichung f�ur perfekte Fl�us-
sigkeiten mit Hilfe in Kapitel 1 gefundener Techniken ab.

Im letzten Kapitel wenden wir uns der 1 + 3-dimensionalen Metrisch-AÆnen-
Graviationstheorie (MAG) zu. Das Hauptziel besteht in der Entwicklung eines ein-
fachen Modelles, in dem die Lorentz-Invarianz durch ein Vektorfeld verletzt wird.
Dazu verwenden wir einen bestimmten Anteil der Nichtmetrizit�at. Wir stellen einen
Lagrangian auf und w�ahlen die Kopplungsparameter derart, dass sich die Feldglei-
chungen auf einen quasi-einsteinschen Anteil und eine Wellengleichung f�ur das die
Lorentz-Invarianz verletzende Vektorfeld reduzieren. Abschlie�end diskutieren wir
eine einfache, von Baekler vorgeschlagene L�osung dieses Modells.
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Abstract

In this thesis we present exact solutions of geometrical theories of gravity, i. e. those
of a general relativistic type. In the �rst chapter, we give a short introduction into
the calculus of exterior di�erential forms. Subsequently we investigate the Cotton
2-form which is related to the conformal properties of spacetime and plays an im-
portant role in three dimensional models of gravity. We derive the Cotton 2-form
for arbitrary dimension by means of the second Bianchi identity. We perform an
irreducible decomposition and determine the number of independent components. In
three dimensions we derive it from a variational principle. We review its conformal
properties in Riemannian spacetime. Then we perform a classi�cation of the Cotton
2-form in three dimensional Riemannian spacetime and give examples for all classes.
After that we construct conserved geometrical quantities from the Cotton 2-form
and investigate the corresponding material currents. In this course we derive the
Bach 3-form and relate it to the Chevreton 3-form, a superenergy tensor for the elec-
tromagnetic �eld recently discussed in the literature. We conclude with discussing
the properties of the Cotton 2-form in metric-aÆne space.

The second chapter is devoted to gravity in three dimensions. We investigate
the Einstein-Cartan-Chern-Simons (ECCS) theory of Mielke and Baekler and �nd
a \BTZ-like" solution with constant axial torsion. We determine autoparallels and
extremals, Killing vectors and global charges of this solution. Subsequently, we de-
rive teleparallelism, Einstein-Cartan theory and topologically massive gravity from
the more general framework of the ECCS theory. We show how the BTZ-solution
with torsion reduces to solutions of the aforementioned subcases. In conclusion, we
construct a new conformally 
at perfect 
uid solution of Einstein's �eld equation in
three dimensions by using technics developed in chapter 1.

In the last chapter we turn to four-dimensional metric-aÆne gravity. The main
goal is to devise a simple model which allows for the breaking of Lorentz invariance by
means of a vector-like quantity. Therefore we take a vector-piece of the nonmetricity.
Then we set up a Lagrangian and derive the �eld equations. By means of analyzing
the �eld equations we �nd constraints on the coupling parameters which simplify
the �eld equations considerably. Thereby we arrive at the desired simple model
of Einstein's gravitational theory extended by a vector-like, Lorentz violating �eld.
Finally, we discuss a simple solution of this model by Baekler.
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Introduction: Einstein's theory of
gravity and beyond

Why go beyond Einstein's theory of gravity? Today, Einstein's theory of gravity,
nearly hundred years after it was proposed, is an experimentally well established
framework for describing gravitational phenomena. Even in every day life it plays
an important role; without general-relativistic corrections, GPS1-based navigation
would mislead us by several kilometres per day from the desired destination. Indeed,
in the vicinity of our earth general relativity predicts gravitational physics with
astonishing accuracy. The gravitational redshift, time delay in the gravitational �eld,
relativistic corrections of satellite orbits|all have been con�rmed. Also in our solar
system the relativistic corrections to the planetary orbits, time delays of radar pulses
traveling between the earth and its neighboring planets and the bending of the light
from distant stars in the gravitational �eld of the sun �t well into general relativity.
Gravitational lensing of distant galaxies gives evidence for the validity of general
relativity far away from us. The slowing down of the rotation period of the Hulse-
Taylor pulsar is in good agreement with calculations assuming the genuinely general-
relativistic e�ect of gravitational radiation. As important as these direct applications
of general relativity are, the tests of its fundamental assumptions is encoded in the
local validity of special relativity. Numerous experiments justify directly the axioms
and con�rm the predictions of local Lorentz invariance. Moreover, also quantum
�eld theory is hardly imaginable without the rigid Poincar�e group, and therewith
special relativity.

However, going beyond the solar system, �rst doubts arise. An anomalous accel-
eration of the Pioneer spacecrafts 10 and 11 has been detected. Anomalous means
not predictable by means of general relativity based celestial perturbation theory.
Is there just a technical problem or new physics involved? Looking deeper into the
cosmos the problems also become deeper . . . In order to explain the rotation curves
of galaxies and the expansion rate of the universe, we are forced to work with the
hypothesis that most of the gravitating mass-energy is comprised of invisible and
unknown forms of energy and matter. Up to the present, no direct experimental
evidence for such forms of mass-energy could be found.

On the theoretical side, there is a deep conceptual con
ict in unifying quantum

1Global positioning system: Sattelite-based positioning system
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theory and in particular the standard model of elementary particle physics, and
general relativity. Quantum �eld theory presupposes spacetime as background on
which the �elds propagate. In general relativity the gravitational �eld carries energy.
According to quantum theory, this energy should be quantized, i. e. spacetime itself
is suggested to be a quantum �eld. Does our world only consist of quantum �elds
whereas space and time, like macroscopical substances, appear only e�ectively due
to quantum interaction? Or is spacetime an irreducible classical quality of nature?
Despite many important advances the various quantum gravity theories until now
have not provided a consistent and de�nite answer. This motivates to look beyond
Einstein's theory of gravity.

It is important to understand the fundamental interaction between matter �elds
and spacetime (gravity). This is the reason for looking into a gauge theory of
gravity. We start from matter currents in 
at spacetime and then ask which degrees
of freedom of spacetime should be coupled to it. By Noether's theorem we know
that energy-momentum is related to translations in spacetime, angular momentum
(and spin) is related to rotations. The matter Lagrangian is invariant under rigid
spacetime translations and rotations, i. e., the rigid Poincar�e group. The next step
is, in the spirit of Einstein's equivalence principle, to soften the rigid invariance to a
local one and thereby introducing the potential of translations, the coframe #� and
the potential of rotations, the antisymmetric connection ��� = ����. In order to
make these degrees of freedom propagating, we have to introduce the corresponding
�eld strengths, the torsion T � = D#�, and the Riemann-Cartan curvature R�� =
\D���" and devise a dynamical Lagrangian. In this way we arrive at the Poincar�e
gauge theory. Experimental evidence suggests even a step beyond this structure.
The Regge-trajectories in elementary particle physics give rise to the hypothesis of
the existence of shear-currents. The corresponding shear potential turns out to be
the nonmetricity Q�� = �Dg��. We arrive at metric-aÆne gravity with independent
variables coframe #�, connection ��

� and metric g��.
The interplay between the various geometrical quantities coframe, connection,

metric, torsion, curvature and nonmetricity is mathematically very complex. This
thesis is devoted to the analysis of the geometrical structures in order to construct
exact solutions for metric aÆne gravity and various of its subcases, such as Poincar�e
gauge theory, teleparallelism, Einstein- and Einstein-Cartan theory, and topolo-
gically massive gravity. We thereby hope to contribute to the question of which
generalization of Einstein's theory of gravity is most promising.



Chapter 1

Geometry of n-dimensional
(post-)Riemannian spacetime

1.1 Introduction

We �rst give a short overview of di�erential geometry with exterior di�erential forms.
Subsequently, we turn to the Cotton 2-form which is of special importance in three
dimensional models of gravity.

The non{linear coupling of gravity to matter in general relativity presents dif-
�cult technical problems in attempts to understand the gravitational interaction of
elementary particles and strings or to investigate details of the gravitational col-
lapse. Progress in the former area has come mainly from treating quantum �elds
as propagating on �xed background geometries [98], whereas much of the progress
in the latter has come from detailed numerical work [31, 1, 51]. Exact solutions
of the relevant matter{gravity equations can play an important role by shedding
light on questions of interest in both general relativity and string theory. One is
often interested in certain classes of solutions with speci�ed asymptotic properties,
the most common of them are the asymptotically 
at spacetimes. Recent work
in string theory has, via the AdS/CFT conjecture, highlighted the importance of
the asymptotically anti{de Sitter spacetimes [80]. The AdS/CFT correspondence
relates a quantum �eld theory in d dimensions to a theory in d+ 1 dimensions that
includes gravity [50, 117]. This is the motivation for looking at the conformally 
at
spaces and at the spaces of constant curvature. For this reason we decided to review
the subject and to collect some old and new results that are nowadays important in
the context of anti{de Sitter spacetimes and to present them in a modern language.
These results seem presently not to be too well known in the community.

In the theory of conformal spaces the main geometrical objects to be analyzed
are the Weyl [114] and the Cotton [33] tensors. It is well known that for conformally

at spaces the Weyl tensor has to vanish. Then the Cotton tensor vanishes, too.
However, the Cotton tensor is only conformally invariant in three dimensions.

11
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Recently, the study of three-dimensional spaces is becoming of great interest;
for these spaces the Weyl tensor is always zero and the vanishing of the Cotton
tensor depends on the type of relation between the Ricci tensor and the energy{
momentum tensor of matter. Any three-dimensional space is conformally 
at if the
Cotton tensor vanishes. In Einstein's theory of gravity, the Ricci tensor is related to
the energy{momentum tensor of matter by means of the Einstein equation. Then the
vanishing of the Cotton tensor imposes severe restrictions on the energy{momentum
tensor. The Cotton tensor also plays a role in the context of the Hamiltonian
formulation of general relativity, see [4].

First we derive the Cotton 2-form in the context of the Bianchi identities. Sub-
sequently we describe its characteristic properties and perform an irreducible decom-
position with respect to the (pseudo-)orthogonal group. This allows us to determine
the number of irreducible components in any dimension. Moreover, in four dimen-
sions, we relate the Cotton to the Bach tensor. After that we show how to derive
the Cotton 2-form in 3 dimensions by means of a variational procedure. We classify
the Cotton 2-form in 3 dimensions by means of its eigenvalues and give examples
for all classes. Eventually we discuss the role of the Cotton 2-form in the context of
building covariantly conserved geometric quantities which may serve as gravitational
counterparts to conserved matter currents. We will encounter the Bach 3-form and
a certain super energy tensor of the electromagnetic �eld, the so-called Chevreton
tensor.
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1.2 Exterior calculus: Notation and Conventions

1.2.1 Coframe and frame, Levi-Civita density

We start from a given n-dimensional di�erentiable manifold Mn. At each point P of
Mn there is the n-dimensional tangent vector space TP (M). In such a tangent space
we can introduce a vector basis, the so-called frame fe�g�=0; ::: ;n�1. Since we have a
di�erentiable manifold, we are always supplied with a local coordinate system. The
frame can then be expanded in terms of the local coordinate basis @i according to

e� = ei� @i : (1.1)

If there exists a coordinate system such that the (non-degenerated) coeÆcients ei�
obey ei� = Æi� we call the frame natural or holonomic. We will give another criterion
a few lines below.

In the cotangent space T �
P (M) there exists a local one-form basis or coframe

which can be also expanded in terms of the local coordinate cobasis according to

#� = ej
� dxj : (1.2)

For every coframe there is a frame which is dual to that particular coframe,

e� c#� = ei� @ic(ej� dxj) = ei� ei
� = Æ�� : (1.3)

Again, the coframe is called holonomic or natural if there is a coordinate system
such that ei

� = Æ�i . This can be achieved if the coframe is integrable, i.e.

0 = 

 := d#
 =
1

2

��


 #� ^ #� ; (1.4)

where we introduced the object of anholonomity 

. Its components read


��

 = e�ce�c

 = 2 ei� e

j
� @[i ej]


 : (1.5)

In the case of a non-vanishing object of anholonomity we call coframe and frame
anholonomic. From now on we obey the following conventions:

�; �; � � � = 0; 1; 2; : : : ; (n� 1) are anholonomic or frame indices,

i; j; � � � = 0; 1; 2 : : : (n� 1) are holonomic or coordinate indices.

Under a coordinate transformation xi ! xi
0

the coordinate basis and cobasis, re-
spectively, transform according to

@i0 =
@xi

@xi0
@i ; dxi

0

=
@xi

0

@xi
dxi : (1.6)
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Thus, for a vector v = vi @i or a 1-form ! = !i dx
i to remain invariant under a

coordinate transformation, their respective components have to transform like

vi
0

=
@xi

0

@xi
vi ; !i0 =

@xi

@xi0
!i : (1.7)

The generalization to arbitrary p-forms and tensors is straightforward. The anholo-
nomic indices are not a�ected by coordinate transformations but by local frame
transformations. In general, the anholonomic indices are referring to a represent-
ation of a Lie-algebra. Taken as an example, a p-form with one upper index, !�

represents != !� e�. Thus, we call !� a vector-valued p-form. Analogously we term
!� as covector-valued p-form, and a p-form without index a scalar valued form.

A tensor density of weight w is de�ned as

T�01 ::: i0p
j01 ::: j

0

q = (sgn J)P jJ jw @xi1

xi
0

1
: : :

@xip

xi
0

p

@xj
0

1

xj1
: : :

@xj
0

q

xjq
Ti1 ::: ip

j1 ::: jq ; (1.8)

where J := det
�

@xi

@xi0

�
is the Jacobi determinant and P takes the values 0 or 1. In

the latter case we speak of a pseudo-density, which switches sign if the orientation
of the coordinate system is reversed.

We introduce the contravariant Levi-Civita density independent of all other struc-
tures of the manifold, apart from its dimension, by putting (here n = 4),

� ijkl =

8<:
1 if fijklg even permutation of f0; 1; 2; 3g
0 if fijklg no permutation of f0; 1; 2; 3g
�1 if fijklg odd permutation f0; 1; 2; 3g

: (1.9)

The weight turns out to be +1. Via the relation

�̂ijkl �
abcd := Æabcdijkl :=

8<:
1 if fijklg even permutation offa; b; c; dg
0 if fijklg no permutation of fa; b; c; dg
�1 if fijklg odd permutation of fa; b; c; dg

; (1.10)

where Æabcdijkl denotes the generalized Kronecker symbol, we de�ne the covariant Levi
civita tensor density, which is of weight �1. Thus,

�̂ijkl =

8<:
1 if fijklg even permutation of f0; 1; 2; 3g
0 if fijklg no permutation of f0; 1; 2; 3g
�1 if fijklg odd permutation of f0; 1; 2; 3g

: (1.11)

For anholonomic indices we �nd completely analogous relations, apart from the
fact that the determinant of the jacobian is replaced by the determinant of the local
frame transformation. We then speak of a pseudo density of anholonomic weight,
see A.1.1. in [58].



15

1.2.2 Connection, covariant derivative, and structure equa-

tions

In order to allow for a covariant derivative we introduce a connection 1-form by

ru e� = ��
�(u) e� ; ��

�(@i) = �i�
� ; ��

� = �i�
� dxi : (1.12)

It is comprised of n3 independent components. The meaning of such a general
connection and its role in de�ning parallel transport is explained in Schr�odinger's
classical text Space-Time Structure [104], e.g. Taken as an example, the exterior
covariant derivative of a p-form !�

� reads

D!�
� = d!�

� � ��

 ^ !
� + �


� ^ !�
 : (1.13)

According to the expansion of the connection (1.12) we �nd for the components
of the covariant derivative of a tensor of type (1,1), that is a 0-form 	�

�,

r� 	�
� = @� 	�

� � ���

 	


� + ��

� 	�


 : (1.14)

Subsequently, we de�ne the torsion, a vector-valued two-form T � by

T � =
1

2
T��

� #� ^ #� := D#� = d#� + ��
� ^ #� ; 1st structure eq.; (1.15)

and the curvature, an antisymmetric tensor-valued 2-form R�
�

R�
� =

1

2
R���

� #� ^ #� := d��
� � ��


 ^ �

� ; 2nd structure eq. (1.16)

v

w

v’

w’

transport by means 
of connection

closure failure in case
of non-vanishing torsion

Both quantities have a geomet-
rical interpretation. The torsion rep-
resents a closure failure of in�nites-
imal displacements: Let at a point P
be given two vectors v and w. By
means of the connection we perform
a parallel displacement of the vec-
tor v along w, yielding v0, and of
w along v, yielding w0, respectively.
If there is torsion present a closure
failure of the in�nitesimal parallelo-
gram will occur (see �gure). To be
more accurate, torsion measures the
non commutativity of displacements
of points, see [48].
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v

v’
α

In the presence of curvature a
vector which is parallely transported
around a closed loop in general will
not return to its initial state but will
be rotated by an angle �. Its length,
however, remains the same. This ro-
tation is represented by the antisym-
metric curvature 2-form. In a space-
time with nonmetricity the curvature

possesses also a symmetric piece. Then a vector is subjected to a general linear
transformation and changes its length, moreover, the angle between two vectors will
not be conserved under parallel transport. We will come back to this later.

The de�nitions of torsion, curvature and covariant exterior derivative are already
suÆcient to derive the Bianchi identities,

DT � = R�
� ^ #� ; 1st Bianchi ; (1.17)

DR�
� = 0 ; 2nd Bianchi : (1.18)

The �rst Bianchi identity follows from to the Ricci identity,

DD!�
� = �R�


 ^ !
� +R

� ^ !�
 : (1.19)

In order to prove the 2nd Bianchi identity we write the second structure equation
in the form

d��
� = ��


 ^ �

� +R�

� : (1.20)

Taking the exterior derivative of (1.20) yields

0 = dd��
� = d��


 ^ �

� � ��


 ^ d�

� + dR�

� : (1.21)

We can replace the derivatives of ��
� by means of eq.(1.16), yielding

0 = d��

 ^ �


� � ��

 ^ d�


� + dR�
�

=
�
��

Æ ^ �Æ

 +R�



� ^ �


� � ��

 ^ ��


Æ ^ �Æ
� +R


�
�

+ dR�
� :

= R�

 ^ �


� � ��

 ^R


� + dR�
� ; (1.22)

= DR�
� : (1.23)

The Lie-derivative is a kind of derivative which is independent from any kind
of connection or metric structure. We refer to [60] or [110] for the mathematical
details.

The Lie-derivative for a scalar-valued p-form reads (Cartan's formula)

Lu! = d(uc!) + ucd! : (1.24)

The proof can be found in [8], e.g.
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For a vector-valued p-form we have

Lu!
� = d(uc!�) + ucd!� � !� (@�u

� + u
 

�
�) ; (1.25)

and for a covector-valued p-form

Lu!� = d(uc!�) + ucd!� + !� (@�u
� + u
 

�

�) : (1.26)

The generalization to an arbitrary number of (mixed) indices is straightforward.
Sometimes it is desirable to replace the ordinary derivatives by covariant ones.

Then, the object of anholonomity is replaced by the torsion,

Lu!
� = D(uc!�) + ucD!� � !� (r�u

� + u
 T
�
�) : (1.27)

1.2.3 Metric, Hodge-, and Lie-duals

Now we introduce a geometric structure which allows us to represent length and
angles, namely a Riemannian metric

g = g�� #
� 
 #� ; g�� = g(e�; e�) ; (1.28)

where g�� is a symmetric, non-degenerated tensor �eld,

g�� = g�� ; det g�� 6= 0 : (1.29)

Since g�� is a symmetric, regular square matrix, there is a frame where it takes a
diagonal form. The elements on the diagonal are the eigenvalues of g. According to
Sylvester's theorem of inertia, the number ind(g) of negative eigenvalues is invariant
under similarity transformations. By normalization of the basis vectors we arrive at
the diagonal elements�1 or +1. A frame in which the components of the metric have
this form is called (pseudo) orthonormal frame. The number of negative eigenvalues
is called index such that

g�� = diag(�1;�1; : : :| {z }
ind

; 1; 1; : : :| {z }
n�ind

) : (1.30)

By means of the metric we can raise and lower indices in the usual way. It is quite
easy to calculate that the determinant of the metric g := det(gij) transforms like a
tensor density of weight +2. This can be used to construct the totally antisymmetric
unit tensor from the Levi-Civita tensor density:

�i1 ::: in :=
1pjdet(gij)j

�i1 ::: in (1.31)

Being a tensor we lower its indices by means of the metric

�i1 ::: in := gi1j1 : : : ginjn �
j1 ::: jn : (1.32)



18

Table 1.1: The �-basis

� := ?1 ; basis of n-forms,
��1 := ?#�1 = e�1 � ; basis of (n� 1)-forms,
��1�2 := ?(#�1 ^ #�2) = e�2 ��1 ; basis of (n� 2)-forms,
...

...
...

...
...

...
��1�2:::�n := ?(#�1 ^ #�2 ^ � � � ^ #�n) = e�n ��1�2:::�(n�1) :

(1.36)

By means of the Levi-Civita tensor density, we can de�ne a duality operation which
maps a contravariant tensor of degree p, 	�1 ::: �p , into a covariant tensor density of
degree n� p, namely 	�1 ::: �p �

�1 ::: �p �1 ::: �n�p. In order to establish a proper duality
operation between tensors/forms of degree p and degree n�p we have 1) to raise and
lower indices and 2) to get rid of the determinant of the Jacobian which arises from
coordinate transformations. Both can obviously achieved by means of the �-tensor.

We de�ne the Hodge-duality operation which maps a p-form 	 into a (n � p)-
form ?	

?	 :=
1

(n� p)! p!
	�1 ::: �p �

�1 ::: �p
�1 ::: �n�p #

�1 ^ : : : ^ #�n�p : (1.33)

We give some important relations for the Hodge-dual in appendix A.1. As compon-
ents we have

?	�1 ::: �n�p =
1

p!
	�1 ::: �p �

�1 ::: �p
�1 ::: �n�p : (1.34)

This suggests the following de�nition of the Lie-dual of a Lie-algebra valued p-form
with q-indices

!��1 ::: �n�q :=
1

q!
!�1 ::: �q ��1 ::: �q

�1 ::: �n�q : (1.35)

Supplied with a metric g and the corresponding Hodge-star duality operator ?, we
can de�ne the �-basis1, see table 1.1.

In general we assume independence of the metric and parallel transport, i. e. the
connection. Then arises the nonmetricity

Q�� := �Dg�� = �dg�� + 2�(��) : (1.37)

Together with the de�nition of the torsion, D#� = d#� + ��
� ^#�, we then can give

1The �-basis seemingly was introduced by Trautman, see [110].
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a decomposition of the connection according to

��� =
1

2
dg�� + (e[�cdg�]
)#
 + e[�c
�] � 1

2
(e�ce�c

)#


�e[�cT�] +
1

2
(e�ce�cT
)#


+
1

2
Q�� + (e[�cQ�]
)#
 : (1.38)

If nonmetricity is present, the curvature 2-form will no longer be antisymmetric,

DQ�� = �DDg�� = R�

 g
� +R�


 g
� = 2R(��) : (1.39)

As a consequence, vectors, if parallely transported around a closed loop will not
only be rotated but undergo a general linear transformation.

Figure 1.1: Take two vectors u and v and transport them in Euclidean, Riemann-
Cartan, and Metric-aÆne space around a closed loop.
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1.3 The Cotton 2-form in n-dimensional Rieman-

nian space

1.3.1 Bianchi identities and the irreducible decomposition

of the curvature

In a Riemannian space the torsion T � = D#� vanishes. Thus, the �rst Bianchi
identity reads

0 = DT � = DD#� = R�
� ^ #� ; (1.40)

or, in components,

R[��
]
Æ = 0 : (1.41)

The �rst Bianchi identity is a (co-)vector valued 3-form with

n

�
n
3

�
=
n2(n� 1)(n� 2)

3!
(1.42)

independent components that imposes the same number of constraint equations
on the components of the curvature. Accordingly, in n-dimensions, the curvature
2-form has�

n
2

� �
n
2

�
� n

�
n
3

�
=
n2(n� 1)(n+ 1)

12
(1.43)

independent components. For n = 3, we have 6 independent components and for
n = 4 (the case of GR) 20 independent components.

The second Bianchi identity is

DR�
� = 0 ; r[�R��]�

� = 0 : (1.44)

We now perform the irreducible decomposition of the curvature with respect to
the pseudo-orthogonal group [58]:

n = 1 R�� = 0 ;
n = 2 R�� = Scalar�� ;
n = 3 R�� = Scalar�� + Ricci% �� ;
n � 4 R�� = Scalar�� + Ricci% �� + Weyl�� :

(1.45)

� The Scalar��-piece is given by

Scalar�� := � 1

n(n� 1)
R#�^#� ; R := e�cRic� ; Ric� := e�cR�

� ; (1.46)
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where R is the curvature scalar and Ric� the Ricci 1-form. This piece has 1
independent component and is present in any dimension n > 1. In components
we have

Ric� = Ric�� #
� ; Ric�� = R���

� ; R = R��
�� ; (1.47)

and

Scalar���� = � 2

n(n� 1)
Rg�[�g�]� : (1.48)

The Scalar piece enjoys the obvious symmetry

Scalar�� ^ #� = 0 ; Scalar[���]� = 0 : (1.49)

� From dimension three onwards the tracefree Ricci piece comes into play,

Ricci% �� := � 2

n� 2
#[� ^ Ric%�] ; Ric%�:= Ric� � 1

n
R#� : (1.50)

It has 1
2
(n+ 2)(n� 1) independent components. In index notation this corres-

ponds to

Ricci% ���� = � 4

n� 2
g[�j [� Ric% �j �] ; Ric% �� = Ric�� � 1

n
R g�� : (1.51)

If we contract the �rst Bianchi identity (1.40), we �nd

0 = e�c(R�
� ^ #�) = Ric� ^ #� ; (1.52)

since R�
� = 0 in a Riemannian space. Thus, Ric�� #

� ^ #� = 0 or

Ric�� = Ric�� ; (1.53)

that is, the Ricci tensor is symmetric. This also implies

Ricci% �� ^ #� = 0 : (1.54)

� Finally, in dimension greater than three, the Weyl 2-form emerges according
to

Weyl�� := R�� � Scalar�� � Ricci% �� : (1.55)

From the construction it is clear that the Weyl 2-form is totally traceless, i. e.,

e�cWeyl�� = �e�cWeyl�� = 0 ; e�ce�cWeyl�� = 0 : (1.56)

This property also explains the vanishing of the Weyl 2-form in 3 dimensions.
An arbitrary antisymmetric tensor{valued 2-form A�� = �A�� = A���� #

� ^
#�=2 in 3 dimensions has 9 independent components. The condition e�cA�� =
0 results in 3 one-forms, i. e., 9 constraint equations that eventually yield the
vanishing of all components.
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According to [62], we can combine Scalar�� and Ricci% ��,

Scalar�� + Ricci% �� = � 2

n� 2
#[� ^ L�] ; (1.57)

with

L� := e�cR�
� � 1

2(n� 1)
R#� ; (1.58)

i.e., this sum can be expressed in a coherent way in terms of the 1-form L�. From
Scalar�� and Ricci% �� it inherits the property

L� ^ #� = 0 : (1.59)

We may expand L� in components as

L�� = L�� = Ric�� � 1

2(n� 1)
Rg�� : (1.60)

This tensor is sometimes called Schouten tensor. Also the names rho tensor or P��
can be found in the literature. Then the curvature 2-form can be expressed as

R�� = Weyl�� �
2

n� 2
#[� ^ L�] (1.61)

or, in components,

R��
Æ = Weyl��
Æ �
4

n� 2
g[�j[
LÆ]j�] : (1.62)

1.3.2 Cotton 2-form

By applying the exterior covariant derivative to (1.61), we obtain the following
representation of the second Bianchi identity,

0 = DR�� = DWeyl�� +
2

n� 2
#[� ^ C�] ; (1.63)

where we encounter the Cotton 2-form

C� := DL� =
1

2
C��� #

� ^ #� (1.64)

or, in components,

C��
 = 2

�
r[�Ric�]
 � 1

2(n� 1)
r[�Rg�]


�
: (1.65)



23

We perform an irreducible decomposition of the Cotton 2-form with respect to the
Lorentz group. We can use the decomposition for the torsion, as given in [58], since
this is also a vector-valued 2-form. Then we have

C� = (1)C� + (2)C� + (3)C� ;
= TENCOT + TRACOT + AXICOT ;

1
2
n2(n� 1) = 1

3
n(n2 � 4) + n + 1

6
n(n� 1)(n� 2) ;

(1.66)

where

(2)C� :=
1

n� 1
#� ^ (e�cC�) ; (1.67)

(3)C� :=
1

3
e�c(C� ^ #�) ; (1.68)

(1)C� := C� � (2)C� � (3)C� ; (1.69)

or, in components,

(2)C��
� = � 2

n� 1
Æ�[�C�]�

� ; (1.70)

(3)C��
� =

1

3!
C[���] g

�� ; (1.71)

(1)C��
� = C��

� � (2)C��
� � (3)C��

� : (1.72)

TENCOT, TRACOT, and AXICOT are the computer algebra names of the
pieces of the Cotton 2-form, denoting the tensor, the trace, and the axial pieces,
respectively. The number of independent components of these pieces is given in the
third line of (1.66). They arise as follows: TRACOT corresponds to a scalar-valued
1-form C := e�cC� with n independent components. In general, a (co-)vector-valued
2-form has

n

�
n
2

�
=
n2(n� 1)

2
(1.73)

independent components. AXICOT corresponds to a scalar valued 3-form (C�^#�)
and thus has�

n
3

�
=
n(n� 1)(n� 2)

6
(1.74)

independent components. Thus, TENCOT is left with

n2(n� 1)

2
� n(n� 1)(n� 2)

6
� n =

n

3
(n� 2)(n+ 2) (1.75)

independent components.
We now show that in a Riemannian space the trace piece (TRACOT) and the

axial piece (AXICOT) vanish. Hence, only the tensor piece (TENCOT) with its
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n(n2 � 4)=3 independent components survives. This insight seems to be new. For
n = 3, we have 5 and for n = 4 (the case of GR) 16 independent components.

In order to see the vanishing of AXICOT, we contract the Cotton 2-form with
the coframe and use (1.59):

#� ^ C� = #� ^DL� = �D(#� ^ L�) = 0 ; (1.76)

or

C[���] =
2

3!
r[�L��] = 0 : (1.77)

The second Bianchi identity leads to a vanishing trace of the Cotton 2-form (TRACOT),
C = e�cC� = 0. In order to see this, we contract (1.63) twice:

0 = e�cDR�� = e�cDWeyl�� � n� 3

n� 2
C� � 1

n� 2
#� ^ C ; (1.78)

0 = e�ce�cDR�� = e�ce�cDWeyl�� � 2C = �2C ; (1.79)

or

C��
� = r�

�
Ric�

� � 1

2
R Æ��

�
= 0: (1.80)

As we see, the second Bianchi identity relates the derivative of the Weyl 2-form to
the Cotton 2-form,

e�cDWeyl�
� =

n� 3

n� 2
C� : (1.81)

This formula allows us to rewrite the Einstein equation as a Maxwell-like equation
for the Weyl tensor, see [14], e. g. The Ricci identity intertwines the derivative of
the Cotton 2-form with the Weyl 2-form,

DC� = DDL� = �R�
� ^ L� = �Weyl�

� ^ L� +
2

n� 2
#[� ^ L�] ^ L�

= �Weyl�
� ^ L� : (1.82)

Consequently, in three dimensions, C� is a covariantly conserved 2-form, withDC� =
0. Thus it is a candidate for a conserved current that can be derived by means of a
variational procedure.

The Weyl 2-form is antisymmetric and tracefree, i. e.

Weyl�� = �Weyl�� ; e�cWeyl�
� = 0 ;

and the L� 1-form ful�lls

e�cL� = e�cL� :
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Table 1.2: Properties of the Cotton 2-form C� in arbitrary dimensions

C� := DL� ; L� := e�cR�
� � 1

2(n� 1)
R#� Cotton 2-form

#� ^ C� = 0 (axialfree) 1st Bianchi identity
e�cC� = 0 (tracefree) contr. 2nd Bianchi ident.
DWeyl�� = � 2

n�2
#[� ^ C�] 2nd Bianchi identity

DC� = �Weyl�
� ^ L� Ricci identitybC� = C� + (n� 2) �;� Weyl�

� conformal transformation

Therefore the contraction of DC� with the frame vanishes,

e�cDC� = �e�c �Weyl�
� ^ L�

�
= �(e�cWeyl�

�) ^ L� �Weyl�
� ^ e�cL�

= 0 : (1.83)

This means, in components, that the divergence with respect to the last index
vanishes,

r�C��� = 0 : (1.84)

The properties of the Cotton tensor are summarized in Table 1.2.

1.3.3 The Cotton 2-form as a variational derivative

It is well known [40, 7] that C� can be obtained by means of varying the 3-
dimensional Chern-Simons action

CRR = �1

2

�
��

� ^ d��
� � 2

3
��

� ^ ��

 ^ �


�

�
(1.85)

with respect to the metric keeping the connection �xed. In order to enforce vanishing
torsion

T � = D#� = d#� + ��
� ^ #� (1.86)

and vanishing nonmetricity

Q�� = �Dg�� = �dg�� + ��

 g
� + ��


 g�
 ; (1.87)

we have to apply Lagrange multipliers. Then the total Lagrangian reads

L = CRR + �� ^ T � + ��� ^Q�� ; (1.88)
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where �� is a 1-form and ��� = ��� a symmetric 2-form. The corresponding �eld
equations read (for the explicit calculation see Appendix A.4.3)

ÆL

Æ��
= T � = 0 ; (1.89)

ÆL

Æ���
= Q�� = 0 ; (1.90)

ÆL

Æ��
�

= �R�
� � �� ^ #� + 2��

� = 0 ; (1.91)

ÆL

Æ#�
= D�� = 0 ; (1.92)

ÆL

Æg��
= D��� = 0 : (1.93)

We can solve (1.91) for its symmetric and its antisymmetric parts,

R[��] + #[� ^ ��] = 0 ; (1.94)

�R(��) + #(� ^ ��) + 2��� = 0 : (1.95)

Because of (1.90), the symmetric part of the curvature vanishes,

0 = DQ�� = �DDg�� = R�

 g
� +R�


g�
 = 2R(��) : (1.96)

Thus, by means of (1.95)

��� = �1

2
#(� ^ ��) : (1.97)

According to (1.61), in three dimensions, R�� = �2#[� ^ L�]. We substitute this
into (1.94) and �nd

�� = 2L� ; ��� = �#(� ^ L�) : (1.98)

Eventually,

1

2

ÆL

Æ#�
= C� ;

ÆL

Æg��
= �#(� ^ C�) ; � 2

n� 1
e�c ÆL

Æg��
= C� : (1.99)

In three dimensions the Cotton tensor arises from the variation of the topological
Chern-Simons term. Recently, Jackiw et al. [67, 52, 66] de�ned a modi�ed Cotton
tensor in n = 4 which also can be de�ned by means of a variational principle. They
start from the Pontryagin density

�1

2
R�

� ^R�
� = dCRR ;
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where the Chern-Simons action appears as a boundary term. In order to get a con-
tribution of CRR to the �eld equations Jackiw et al. introduce an external embedding
�eld �,

VJackiw =
1

2
� R�

� ^R�
� = �� dCRR = d� ^ CRR � d (� CRR) : (1.100)

The �eld � is kept �xed, i. e. will not be varied. A similar procedure was also carried
out for electromagnetism, where the embedding variable is related to symmetry
breaking. By varying (1.100) with respect to the metric one �nds

~Cij := �;m �
klm(iCkl

j) + �;k;l
?Weylk(ij)l :

This modi�ed Cotton tensor is manifestly symmetric and traceless. The vector �eld
�;i induces polarization dependence of the intensity of gravitational waves.

The Cotton 2-form de�ned by us only in n = 3 can be obtained from a variational
principle. However, in n = 4, the Bach 3-form can be obtained from the conformally
invariant action

VBach = �1

2
Weyl�� ^ ?Weyl�� :

For vanishing nonmetricity and torsion we obtain, see appendix A.4.2,

B� = �ÆVBach
Æ#�

= D?C� + ?Weyl�
� ^ L� :

Like the Cotton 2-form in 3 dimensions, the Bach 3-form in 4 dimensions is tracefree,
symmetric, covariantly conserved, conformally invariant, and vanishes in a conform-
ally 
at space. We will discuss the Bach 3-form in more detail in section 1.6.

1.4 Conformal correspondence

The conformal correspondence between two n{dimensional manifolds Vn and bVn is
achieved by means of a conformal transformation of the form [42, 102]

ĝ�� = exp(2�)g�� ; ĝ�� = exp(�2�)g�� ; (1.101)

where � is an arbitrary function. In general, a conformal transformation (1.101)
is not associated with a transformation of coordinates, i.e., with a di�eomorphism
of Vn; both metrics in (1.101) are given in the same coordinate system and frame.
Since these transformations preserve angles between corresponding directions, the
causal structure of the manifold is preserved. As a rule, indices of quantities with hat
are raised and lowered by means of ĝ�� or ĝ��, respectively, those of untransformed
quantities by g�� or g��. The transformed connection reads

b��
� = ��

� +
�
Æ�� d� � #� �

;� + �;� #
�
�

=: ��
� + S�

� ; (1.102)



28

a comma denotes partial and a semicolon covariant di�erentiation. If D̂ = d +
��

� + S�
� is the exterior covariant derivative with respect to b��

�, the transformed
curvature isbR�

� = db��
� � b��


 ^ b�

� = R�

� + 2#[� ^ S
] g
� ; (1.103)

with

S
 := D�;
 � �;
 d� +
1

2
�;��;� #
 : (1.104)

By contracting (1.103) with the frame e�c, we inferbL� = L� � (n� 2)S� ; (1.105)

[Weyl�
� = Weyl�

� ; (1.106)bR = exp(�2�) [R � 2(n� 1) �;�;� � (n� 1)(n� 2)�;��
;�] : (1.107)

The Weyl 2-form is conformally invariant since a conformal transformation does not
act on the trace-free part of the curvature. Application of bD onto (1.105) yields the
transformation behavior of the Cotton 2-form,bC� = C� + (n� 2) �;� Weyl�

� : (1.108)

Thus, in n = 3, where the Weyl 2-form vanishes, the Cotton 2-form becomes con-
formally invariant.

Criteria for conformal 
atness

In the following paragraphs we investigate the criteria for conformal 
atness, i. e., the
possibilities to transform the curvature to zero by means of a conformal transform-
ation. We basically follow [102]. Since we have seen that the curvature 2-form in 2,
3, and more than 3 dimensions is built up rather di�erently, we have to investigate
these cases separately.

n = 2
In n = 2 the only non-vanishing curvature piece is the curvature scalar R. Its

behavior under conformal transformation is given bybR = exp(�2�) (R � 2 �;�;�) = 0 : (1.109)

Thus,

bR = 0 () �;�;� =
R

2
: (1.110)

This is a scalar wave equation for the conformal factor � with R as source. Since
the wave equation always has a solution, we conclude that all 2-dimensional spaces
are conformally 
at.
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n � 3
For more than 2 dimensions we start from (1.61), namely

R�� = Weyl�� �
2

n� 2
#[� ^ L�] : (1.111)

Since the Weyl 2-form is conformally invariant it cannot be transformed to zero
by means of a conformal transformation. Consequently, the vanishing of the Weyl
2-form is a necessary condition for conformal 
atness.

The L� 1-form transforms according tobL� = L� � (n� 2)S� : (1.112)

We can transform L� to zero if there is a function � such that

L� = (n� 2)S� : (1.113)

This will impose a di�erential restriction on L��. By means of (1.104), we rewrite
the latter equation as a di�erential equation for �;�,

D�;� = �;� �;� #
� � 1

2
�;� �;� #� +

1

n� 2
L� : (1.114)

If we apply the covariant derivative to both sides of (1.114), we obtain a necessary
condition for the integrability,

�R�
� �;� = DD�;� = �;�D�;� ^ #� � �;�D�;� ^ #� +

1

n� 2
C� : (1.115)

This becomes a necessary and suÆcient condition of integrability if the dependence
on �;� can be eliminated, see [102, 103]. Thus we substitute D�;� from (1.114) into
(1.115):

�R�
� �;� = � 2

n� 2
L[� ^ #�] �;� +

1

n� 2
C� : (1.116)

Using the decomposition (1.61) of the curvature, we �nally arrive at

�(n� 2) Weyl�
� �;� = C� : (1.117)

For n = 3, the Weyl 2-form is zero and C� = 0 is the integrability condition for
the conformal factor. Thus, if the Cotton 2-form is zero, the space is conformally

at. Conversely, if the space is conformally 
at, there is a conformal transformation
such that bR�

� = 0 , bL� = 0 ) bC� = 0. Since the Cotton 2-form is conformally
invariant in 3 dimensions, we �nd C� = 0. Hence, the vanishing of the Cotton
2-form is the necessary and suÆcient condition for a V3 to be conformally 
at.

In more than 3 dimensions the vanishing of the Weyl 2-form is a necessary
condition for conformal 
atness. Thus, also in dimensions greater than 3, C� = 0
is the integrability condition for the conformal factor. However, for n > 3, the
contracted second Bianchi identity (1.78) implies the vanishing of the Cotton 2-
form when the Weyl 2-form is zero. Hence, the vanishing of the Weyl 2-form is also
the suÆcient condition for conformal 
atness.
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1.5 Classi�cation of the Cotton 2-form in three

dimensions

A vector-valued 2-form in 3 dimensions has 9 independent components, the same as
the number of components of a 3� 3 matrix. A mapping between these two can be
achieved by means of the Hodge dual. The Hodge dual of a vector-valued 2-form
in 3 dimensions is a vector-valued 1-form with the same number of independent
components. Its components form a 2nd rank tensor (\matrix"),

C�� := e�c?C� = ?(C� ^ #�) (1.118)

or, in components,

C�
� = r�

�
Ric�� � 1

4
Rg��

�
���� : (1.119)

This alternative representation of the Cotton 2-form, often called Cotton-York tensor
[120] (even though it was already discussed explicitly by ADM [4]), can only be
de�ned in three dimensions. Sometimes it appears under the name Bach tensor in
the literature, see [32], e.g. This seems to be a misnomer.

The Cotton tensor is tracefree

C�
� = e�c?C� = ?(C� ^ #�) = 0 : (1.120)

In three dimensions, the 2nd Bianchi identity (1.63) amounts to #[� ^ C�] = 0. In
view of the de�nition (1.118), we infer that the Cotton tensor is symmetric C�� =
C��. Introducing this symmetry explicitly into (1.119), we obtain the alternative
representation

C�� = C�� = ���(�r�Ric�
�) : (1.121)

We now perform a classi�cation of the Cotton tensor with respect to its eigen-
values. The corresponding generalized eigenvalue problem reads:�

C�� � � g��
�
V� = 0 ; C [��] = 0 ; C�� g�� = 0 : (1.122)

By lowering one index, we can reformulate this as ordinary eigenvalue problem for
the matrix C�

�. However, in that case, the symmetry C�� = C�� is no longer
manifest:�

C�
� � � Æ��

�
V� = 0 ; C�

� = 0 : (1.123)
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Euclidean signature

The case of Euclidean signature is simple: the generalized eigenvalue problem re-
duces to an ordinary one. As a real symmetric matrix C�� possesses 3 real eigen-
values and the eigenvectors form a basis. With respect to this basis, C�� takes a
diagonal form. Since C�� is tracefree, the sum of the eigenvalues is zero. Con-
sequently, we can distinguish 3 classes:

� Class A
Three distinct eigenvalues: �1 6= �2 and �3 = �(�1 + �2).

� Class B
Two distinct eigenvalues: �1 = �2 6= 0, �3 = �2�1.

� Class C
One distinct eigenvalue: �1 = �2 = �3 = 0.
In the present context of Euclidean signature, this implies C�� = 0.

Lorentzian signature

In the case of an inde�nite metric, the roots of the characteristic polynomial

det
�
C�� � � g��

�
= 0 (1.124)

may be complex. Accordingly, the matrix C�
� is no longer symmetric and in the

equivalent ordinary eigenvalue problem

det
�
C�

� � � Æ��
�

= 0 (1.125)

complex eigenvalues occur, too. This point seems to have been overlooked by the
authors of [12]. Consequently, the classi�cation will not be as simple as it was the
case for the Euclidean metric.

In the following, we will present a classi�cation of C�
�. The tracefree condition

(1.123)2, in orthonormal coordinates, reads explicitly

C1
1 + C2

2 + C3
3 = 0 : (1.126)

Accordingly, we can eliminate C3
3, e.g., from (1.123)1. Then the secular determinant

reads

det

������
C1

1 � � C1
2 C1

3

�C1
2 C2

2 � � C2
3

�C1
3 C2

3 �C1
2 � C2

2 � �

������ = 0 ; (1.127)

with the 5 matrix elements C1
1; C1

2; C1
3; C2

2; C2
3. We compute the determinant

and order according to powers of �,

�3 + b �+ c = 0 ; (1.128)
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where

b := �(C1
1)2 � C1

1C2
2 � (C2

2)2 + (C1
2)2 + (C1

3)2 � (C2
3)2 ; (1.129)

c :=
�
(C1

1)2C2
2 + C1

1(C2
2)2 + C1

1(C1
2)2 + C1

1(C2
3)2 (1.130)

+(C1
2)2C2

2 + 2C1
2C1

3C2
3 � (C1

3)2C2
2
�
:

The roots of (1.128) are given by

�1 = A ; �2 = �A
2

+ i

p
3

2
B ; �3 = �A

2
� i

p
3

2
B ; (1.131)

with

A :=
D2 � 12b

6D
; B :=

D2 + 12b

6D
; D :=

�
�108c+ 12

p
12b3 + 81c2

�1=3
: (1.132)

A cubic polynomial with real coeÆcients has at least one real root and the complex
roots have to be complex conjugates. The Jordan normal forms of the Cotton tensor
read:

\Petrov"-type Jordan form Segre notation eigenvalues

I

0
@ �1 0 0

0 �2 0
0 0 ��1 � �2

1
A [111] �1 6= �2; �3 = ��1 � �2

D

0
@ �1 0 0

0 �1 0
0 0 �2�1

1
A [(11)1] �1 = �2 6= 0; �3 = �2�1

II

0
@ �1 1 0

0 �1 0
0 0 �2�1

1
A [21] �1 = �2 6= 0; �3 = �2�1

N

0
@ 0 1 0

0 0 0
0 0 0

1
A [(21)] �1 = �2 = �3 = 0

III

0
@ 0 1 0

0 0 1
0 0 0

1
A [3] �1 = �2 = �3 = 0

O

0
@ 0 0 0

0 0 0
0 0 0

1
A

This parallels exactly the Petrov classi�cation of the Weyl tensor in 4 dimensions
[108]. This comes about since the Weyl tensor in 4D is equivalent to a (complex)
3� 3 tracefree matrix, as C�

� in 3D; for a similar classi�cation of C��, see [54].
Since one eigenvalue is real, types D and II with only one independent eigenvalue

�1 = �2 = �2�3 are always real. For class I, besides the real eigenvalue, two complex



33

eigenvalues may occur. In that case, they are complex conjugated. Therefore, class
I can be subdivided into class I with 3 real eigenvalues, [111], and class I' with one
real and two complex conjugated eigenvalues, [1z�z]. By performing a kind of null
rotation, we can also give a real form for class I':

I'

0@ Re z Im z 0
�Im z Re z 0

0 0 �2 Re z

1A [1z�z] �1 = �2 Re z; �2 = z; �3 = �z .

We can now specify simple criteria for deciding to which of these classes the
Cotton tensor C�

� belongs. First determine the eigenvalues.

1. Three di�erent eigenvalues (2 independent)

(a) all real ) Class I

(b) one real, two complex ) Class I'

2. Two di�erent eigenvalues (1 independent �1 = �2 = �2�3)

(a) (C�
� � �1 Æ

�
�)(C�


 + 1
2
�1 Æ



�) = 0 ) Class D

(b) else ) Class II

3. All eigenvalues zero

(a) C�
� = 0 ) 0

(b) C�
� C�


 = 0 ) Class N

(c) else ) Class III

Examples

We now give examples in order to demonstrate explicitly that all classes presented
are non-empty indeed. All results have been checked by means of computer algebra,
see Appendix A.5.1 for an explicit sample program.

� Class I'
The generic example is the (1+2)D static and spherically symmetric spacetime,
given in an orthonormal coframe with signature (+��) by

#0̂ =
p
 dt; #1̂ =

drp
 
; #2̂ = r d' ;  =  (r) : (1.133)

The Cotton tensor and its eigenvalues read, here ()0 = d=dr:

C�
� =

p
  000

4

0@ 0 0 �1
0 0 0
1 0 0

1A ; �1 = 0 ; �2 = ��3 = i

p
  000

4
: (1.134)
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A well-known example is the 3D analog to the Reissner-Nordstr�om solution,
a solution of the 3D Einstein-Maxwell equation [11]:

 = � r2 � q2 ln r �M : (1.135)

� Class I
In [92], eq.(4.1), the following solution for the vacuum DJT �eld equation is
given: The orthonormal coframe with signature (�+ +) reads

#0̂ = a0 (d + sinh � d�) ; (1.136)

#1̂ = a1 (� sin d� + cos cosh � d�) ; (1.137)

#2̂ = a2 (cos d� + sin cosh � d�) ; (1.138)

where the DJT �eld equations are ful�lled provided

a0 + a1 + a2 = 0 ; � = �a
2
0 + a11 + a22
a0a1a2

: (1.139)

Then the Cotton tensor reads

C�
� = �4

a21 + a1a2 + a22
(a1 + a2)a21a

2
2

0@ 1 0 0
0 �a1

a1+a2
0

0 0 �a2
a1+a2

1A : (1.140)

The eigenvalues can be read o� from the diagonal. For a1 = a2, the Cotton
tensor degenerates to class D. The solution eq.(4.6) in [92] is analogous to the
present case.

� Class D
An example is the 3D G�odel solution (signature (+��)), see [97] eq.(4.1):

#0̂ =

�
3

�

� h
dt� 2(

p
r2 + 1� 1) d�

i
; (1.141)

#1̂ =

�
3

�

�
drp
r2 + 1

; (1.142)

#2̂ =

�
3

�

�
r d� ; (1.143)

with

C�
� =

��
3

�3 0@ �2 0 0
0 1 0
0 0 1

1A ; �1 = �2 = �1

2
�3 =

��
3

�3
: (1.144)

This is a vacuum solution of the DJT model as well as a solution of the 3D
Einstein equation with matter.
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Many of the other solutions known for the DJT �eld equation are also of
Class D:

{ The squashed 3-sphere solutions by Nutku and Baekler [92], eq.(4.10)
and eq.(4.1), eq.(4.6) for a special choice of parameters (see above).

{ The topologically massive planar universe with constant twist of Percacci
et al. [97], eq.(3.20).

{ The perfect 
uid solution of G�urses [53], eq.(6).

{ The DJT-black hole solution of Nutku [91], eq.(24).

{ The recent black hole solution by Moussa et al. [87], eq.(4).

� Class N
In section 2.6, the following solution of the DJT-�eld equations is derived:

#0̂ = e�y=2
�
(1 +

1

2
e��y) dt+ (1� 1

2
e��y dx)

�
; (1.145)

#1̂ =
1

2
e��y=2 (dt� dx) ; (1.146)

#2̂ = dy : (1.147)

The Cotton tensor, with all eigenvalues being zero, reads

C�
� =

�3

2

0@ �1 �1 0
1 1 0
0 0 0

1A ; �1 = �2 = �3 = 0 : (1.148)

Another class N solution is given in [97], eq.(4.9).

We have found no (sensible) solutions to the Einstein or DJT �eld equations
which are of Class II or III. However, it is easy to �nd metrics for which the Cotton
tensor is in general of class I but may degenerate to classes II or III. Just in order
to show that these classes are nonempty, we will sketch corresponding examples:

� Class II
The following coframe (signature (� + +)),

#0̂ = e�2y dt+ dx ; #1̂ = ey dx ; #2̂ = dy ; (1.149)

yields the Cotton matrix

C�
� =

0
@

8e�3y 6(3e�2y � 1) 0

�6(3e�2y � 1) �4e3y (3e2y + 1) 0

0 0 4e�3y (e2y + 1))

1
A : (1.150)
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In general we �nd three di�erent eigenvalues

�1 = 2e�3y
�
3
p
1� e6y + 7e4y � 7e2y � 3e2y + 1

�
; (1.151)

�2 = 2e�3y
�
�3
p
1� e6y + 7e4y � 7e2y � 3e2y + 1

�
; (1.152)

�3 = 2e�3y(3e2y + 1) : (1.153)

Hence, in general, this yields class I (or I'). However, for y = 0 this reduces to

C�
� y=0

=

0@ 8 12 0
�12 �16 0

0 0 4

1A ; �1 = �2 = �4; �3 = 8 : (1.154)

Since

�
C�

� � 8Æ��
� �
C�

� + 4Æ��
�

= 144

0@ �1 �1 0
1 1 0
0 0 0

1A 6= 0 ; (1.155)

this matrix belongs not to class D. Indeed we �nd�
C�

� � 8Æ��
� �
C�

� + 4Æ��
�2

= 0 : (1.156)

Thus, it belongs to class II.

� Class III
The Cotton tensor for the following coframe (signature (�++)) is also of class
I in general:

#0̂ = (x� t) dt ; #1̂ = (x+ t) dx ; #2̂ = dy ; (1.157)

C�
� =

4(2t2 + x2)x

(t + x)5(t� x)4

0B@ 0 0 1

0 0 (t2+2x2)(t+x)t
(2t2+x2)(t�x)x

�1 (t2+2x2)(t+x)t
(2t2+x2)(t�x)x

0

1CA ; (1.158)

where the three di�erent eigenvalues read

�1 =
4
p
t8 + 2(t7x+ tx7) + t6x2 + 16(t5x3 + t3x5)� t2x6 � x8

(t+ x)5(t� x)5
; (1.159)

�2 = ��1 ; (1.160)

�3 = 0 : (1.161)

Again, this leads to class I (or I'). On the hypersurface given by x = t(
p

13 +
3)=2, all eigenvalues collapse to zero. However, one can easily compute that
also in that case

C�
� 6= 0 ; C�

� C�

 6= 0 ; but C�

� C�

 C


Æ = 0 : (1.162)

Therefore, the Cotton tensor degenerates to class III.

� Class 0: All conformally 
at solutions.
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1.6 The Cotton 2-form and automatically con-

served quantities

In this section we want to shed some light on the subtle interplay between conserved
matter currents and geometrical identities. Experience has told us that all forms
of energy gravitate | the source of gravity is the energy density of matter. From
special relativity we know that the energy density is accommodated in the time
component of the energy-momentum vector. In this way we �nd the vector-valued
energy-momentum (n� 1)-form

� = �� e� =
1

(n� 1)!
��1:::�n�1

� #�1 ^ � � � ^ #�n�1 e� =: T�
� �� e� : (1.163)

By means of the Noether identities the energy-momentum is conserved. In 
at
spacetime we have

d�i = 0 , rj T
ij = 0 : (1.164)

We have identi�ed the source of gravity. What about the gravitational �eld? Ein-
stein recognized that the connection of 
at spacetime acts as the \inertial �eld
strength". Switching on gravity means supplying the connection with own degrees
of freedom and thereby arriving at a curved Riemannian spacetime. In electro-
magnetism, e. g., the divergence of the �eld strength is proportional to the source
current. The (covariant) derivative of the connection is given by the curvature.
Hence, we suspect the curvature to be proportial to the energy-momentum. Since
the energy-momentum is a vector-valued, conserved (n � 1)-form we have to look
for a similar piece of the curvature. The basic relation in order to construct such a
quantity is the second Bianchi identity,

DR�
� = 0 : (1.165)

The conservation equation D�� = 0, as a vector valued n-form, has n independ-
ent components. The Bianchi identity is a tensor valued 3-form and thus has
n2(n� 1)(n� 2)=6 independent components. However we can extract a piece with
n independent components in a straightforward manner by contracting it with the
frame,

e�ce�ce
cDR�
 = 0 : (1.166)

Then we have a covector-valued 0-form with n components. We can rewrite this
equation by taking the Hodge dual,

?
�
e�ce�ce
cDR�


�
= �#� ^ #� ^ #
 ^ ?DR�


= �DR�
 ^ ? (#� ^ #� ^ #
)

= �DR�
 ^ ���
 = �D �R�
 ^ ���

�
; (1.167)
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where we used some elementary rules of exterior algebra and the relation D���
 = 0,
which is valid in Riemannian spacetime. This suggests the de�nition of the Einstein
(n� 1)-form

G� :=
1

2
���
 ^R�
 ; with DG� = 0 : (1.168)

In this way we motivate the Einstein equation (` is the gravitational constant)

G� = `�� ; (1.169)

which is valid in all dimensions n. We may generalize this �eld equation without
departing too far from general relativity by adding further conserved geometrical
(n� 1)-forms at the left hand side.

Here, we draw our attention to dimension dependent equations. Also in this case
our starting point is the second Bianchi identity. By di�erentiation of the second
Bianchi identity we found, see table 1.2,

DC� = �Weyl�
� ^ L� : (1.170)

Since in n = 3 the Weyl tensor vanishes, the Cotton 2-form, in three dimensions, is
a conserved (3� 1) = 2-form. Thus, what about the gravitational �eld equation

G� + �C� = `�� ? (1.171)

This is nothing else than the well-known DJT-model of gravity!
Something similar can be obtained in 4 dimensions by using the Bianchi identity

for the dual of the curvature. In Appendix A.4.2 it is shown that

DD?C� = �D �?Weyl�
� ^ L�

�
: (1.172)

Thus,

B� := D?C� + ?Weyl�
� ^ L� =: B�

� �� (1.173)

or, in components,

B�� = r�C��� + L�� Weyl���� ; (1.174)

is a covariantly conserved 3-form:

DB� = 0 (r�B�
� = 0) : (1.175)

We recognize the Bach tensor B�� [5, 102, 96, 112] . From the symmetry properties
of C�, L�, and Weyl�� it follows that

B� ^ #� = 0 (B�
� = 0) ; e�cB� = 0 (B[��] = 0) : (1.176)
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Moreover, it transforms as a conformal density and can be derived from a variational
principle, see appendix A.4.4. Since in a conformally 
at space the Weyl and the
Cotton tensors vanish, the vanishing of the Bach tensor is also a necessary (but not
suÆcient) condition for a four dimensional space to be conformally 
at. Applying
again our heuristical scheme we may put

G� + �B� = `�� (1.177)

and just have \found" Bach gravity!
What is now the physical content of this game? In Einstein gravity, the Bianchi

identity DG� = 0 corresponds to D�� = 0. In turn, D�� = 0 is a conserved current
due to the �eld equations of matter. In 
at space, without gravity, we then �nd the
corresponding conservation law d�� = 0 for the free matter �elds.

Do also the Cotton or the Bach forms supply us with such independent conser-
vation laws? Let us assume Einstein gravity, G� = `��. The Einstein (n� 1)-form
is equivalent to the 1-form L�,

G� = L� ^ ��� = `�� : (1.178)

This equation can be inverted, yielding a 1-form representation of Einstein's �eld
equation,

L� = ` e�� ; (1.179)

where the modi�ed energy-momentum 1-form is de�ned according to

e�� = (�1)n�1+ind
�
?�� � 1

n� 1
? (�
 ^ #
) ^ #�

�
: (1.180)

Similar to (1.178) we �nd2

�� = e�� ^ ��� : (1.181)

Consequently, we can express the Cotton 2-form in terms of energy-momentum,

C� = DL� = `De�� = (�1)n�1+ind `D

�
?�� � 1

n� 1
? (�
 ^ #
) ^ #�

�
: (1.182)

Since the vanishing of the Cotton 2-form is, in all dimensions, a necessary criterion
for conformal 
atness, matter sources which allow conformally 
at solutions of Ein-
stein's �eld equations must ful�ll (1.182). In n = 3 this is also a suÆcient condition

2Incidentally, this can be understood from a kind of dual variation. In [88] the formula of the
variation of the �-basis is given (here adapted for an orthonormal coframe),

Æ�� = Æ#� ^ ��� ) ÆL = Æ#� ^
ÆL

Æ#�
= Æ?#� ^

ÆL

Æ?#�
= Æ#� ^ ��� ^

ÆL

Æ?#�
;

or ÆL
Æ#�

= (�1)n ÆL
Æ?#�
^��� : This formula directly yields the relations between G� ; L� and �� ; e��.
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for conformal 
atness. We will make use of this fact when deriving the conformally

at perfect 
uid solution in section 2.7.

In n = 3, the Cotton 2-form is identically conserved,

DC� = �Weyl�
� ^ C�

n=3
= 0 : (1.183)

Hence, in n = 3, the Einstein equation implies (` = 1)

DC� = DDe�� = �R�
� ^ e�� = 0 : (1.184)

Using the irreducible decomposition of the curvature and eq.(1.179), eq.(1.184)
amounts to an algebraic constraint on the energy-momentum:

e�� ^ #� ^ ?�� = 0 : (1.185)

However,

#� ^ ?�� = ?(e�c��) = ?(T�� ���) = 0 ; (1.186)

since the energy-momentum is symmetric which corresponds to angular momentum
conservation, see [57, 83].

What about the Bach 3-form? We can proceed along the same line as before.
Replacing L� by e�� we �nd the matter-counterpart of the Bach 3-form,

X� := D?D

�
?�� � 1

3
? (�
 ^ #
) ^ #�

�
+ ?Weyl�

� ^ ?�� : (1.187)

This is a conserved quantity provided the Einstein equation holds. Can we �nd a
corresponding conserved quantity in 
at spacetime, i. e. if we switch of gravity? In
the course of studying literature on electromagnetic conservation laws, [13], we came
across the Chevreton tensor

Hij := (rkFil) (rkFj
l) � 1

4
gij (rkFlm) (rkF lm) : (1.188)

It is tracefree and symmetric and thus has 9 independent components. Moreover, it
is conserved in 
at spacetime. In [41], Edgar derives an alternative representation of
the Chevreton tensor eq.(1.188) just by using the source free Maxwell equations, the
de�nition of the electromagnetic energy-momentum and some geometrical identities
in n = 4,

2Hij = rkrkTij � 2Tkl Weyli
k
j
l +

2R

3
Tij : (1.189)

This occured to us rather similar to the Bachtensor, (1.174),

Bij = rk Cikj + Lkl Weylikjl = 2rkr[iLk]j + Lkl Weylikjl ; (1.190)
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if one replaces Lij by Tij and assuming R = 0. Indeed, a short calculation, see
appendix A.4.8, showed

Hij = �`Bij ; (1.191)

provided the Einstein-Maxwell equation holds. This becomes even more appar-
ent by using an alternative representation of the Bach tensor, using the trace-free
Ricci-tensor (compare [112], but mind the signs due to di�erent conventions for the
curvature!),

Bij = �rkrk %Ricij + 2Weylikjl %Rickl

+2

�
%Ricik %Rickj � 1

4
gij %Rickl %Rickl

�
+

�
1

3
%Ricij � 1

12
gijrkrk +

1

3
ri@j

�
R : (1.192)

Comparing this to the Chevreton tensor (1.189) we see that provided

Gab = ` Tab (Einstein equation), (1.193)

T ab gab = 0 (trace free), (1.194)

TaiT
i
b � 1

4
T ij Tij gab = 0 (Rainich condition), (1.195)

we indeed �nd (1.191). In exterior calculus, we can de�ne the Chevreton 3-form

H� := H�
b �b : (1.196)

Incidentally, by making again use of the source-free Maxwell equations, we can give
the following representation,

H� =
1

2
e�c(F� ^� F�)�F� ^ (e�c�F�) (1.197)

=
1

2

�
(e�cF�) ^� F�)� F� ^ (e�c�F�)

�
; (1.198)

where

F� := D(e�c?F ) : (1.199)

This 3-form is manifestly traceless and symmetric by construction,

#a ^ Ha = 0 ; e�cH� = 0 : (1.200)

Additionally, it is conserved in 
at space, see appendix A.4.9.

DH� = 0 
at space : (1.201)
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Table 1.3: The mapping between conserved matter currents and geometrical iden-
tities

Einstein equation
G� = `��

contracted
2nd Bianchi
identity

DG� = 0  ! D�� = 0
conservation of

energy-momentum
current

G� = `�� ;

�� ^ #
� = 0 ;

�� ^
?�� �

1
4 g�� �
 ^

?�
 = 0 :

divergence free
Bach 3-form

DB� = 0  ! DH� = 0
conservation of
Chevreton
current

In general, we do not have DH� = 0 in an arbitrary spacetime. It is known from
the literature [41] that the Chevreton 3-form is conserved in Einstein spaces.

These structures suggest that the Chevreton 3-form is connected to some Noether
identity. Eq. (1.197) looks like the canonical energy-momentum for the Lagrangian
F�^?F� = D(e�c?F )^?D(e�c?F ). ThenH� would be related to translations. How-
ever, the Langrangian contains derivatives of the electromagnetic �eld F . Probably
one should try to transform it to a �rst-order Langrangian by means of an appro-
priate change of variables in order to �nd a viable physical interpretation. The
concrete example of a point charge suggests that the Chevreton 3-form is some-
how related to quadropole interaction. In cartesian coordinates (electromagnetic
potential A = q=r dt) the components of H� read (A;B = 1; 2; 3)

[H�] =
q2

r6

0BBB@
3 0

0 �3xAxB � 2ÆAB r2

r2

1CCCA : (1.202)

The spatial part clearly resembles the usual electromagentic quadropole tensor. Fur-
ther investigations are necessary.
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1.7 Generalization of the Cotton 2-form to post-

Riemannian spacetimes

Riemann-Cartan spacetime

In Riemannian space(time) the Cotton 2-form arises as the exterior covariant deriv-
ative of the 1-form part of the curvature in the context of the 2nd Bianchi identity,

C� = DL� ; L� = e�cR�
� � 1

2(n� 1)
R#� :

This de�nition can naturally be generalized to Riemann-Cartan space(time). In this
case, three additional irreducible parts of the curvature occur. We again identify a
1-form piece, see appendix, page 88,

(4)R�� + (5)R�� + (6)R�� = � 2

n� 2
#[� ^L�] ; L� := e�cR�

� � 1

2(n� 1)
R#� ;

(1.203)

and a 2-form piece

M�� := R�� +
2

n� 2
#[� ^ L�] ; (1.204)

where

M�� = (1)R�� + (2)R�� + (3)R�� : (1.205)

Then we apply the exterior covariant derivative to eq.(1.204),

DR�� = DM�� � 2

n� 2
T [� ^ L�] +

2

n� 2
#[� ^ C�] = 0 ; (1.206)

where C� is the Cotton 2-form C� = DL� as introduced in the previous sections.
We expand it in a coframe

C� = DL� = D (L�
� #�) = (DL�

�) ^ #� + L�
�D#�

= (r� L�
�)#� ^ #� + L�

� T � ; (1.207)

and read o� the components

C��
� = 2r[�L�]

� + L�
� T��

� : (1.208)

We also may rearrange eq.(1.206) in order to isolate the 1- and 2-form pieces.

DM�� � 2

n� 2
T%[� ^Ric%�] +

2

n� 2
#[� ^ C�] � 2

n� 2
#[� ^ E�] = 0 ; (1.209)
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where

E� :=
1

n� 1
T ^ Ric% � � n� 2

2n(n� 1)
RT% � +

n� 2

2n(n� 1)2
RT ^ #� ; (1.210)

T% � := T � � 1

n� 1
#� ^ T = (1)T � + (3)T � : (1.211)

All irreducible pieces of C� 6= 0, the trace is

C = e�cC� =
1

2
(e�ce�cT 
) e
cM�� +

1

n� 2

�
(L�e�cT ) + 2 (e�cT [�) (e�cL�])

�
;

(1.212)

and the axial piece reads

C� ^ #� =
n� 2

n� 3
#� ^ (e�cDM��)� 2

n� 3
#� ^

�
e�c
�
T [� ^ L�]

��
: (1.213)

The Divergence is now given by

DC� = �M�
� ^ L� +

1

n� 2

�
(#� ^ L�) ^ L�

�
: (1.214)

Even in n = 3, where M�� = 0, DC� is non-vanishing. There is no speci�c relation
to the conformal transformation behaviour of the Riemann-Cartan curvature which
actually is conformally invariant, see below.

Metric-aÆne space

In metric-aÆne space, the curvature is asymmetric. It can be split into a symmetric
and an anti-symmetric piece,

R�� = R[��] +R(��) =: W�� + Z�� : (1.215)

Hence, there exist two contractions (Z� := e�cZ��)

e�cR�� = Z� � (L� +
1

n� 2
L#�) ; (1.216)

e�cR�� = Z� + (L� +
1

n� 2
L#�) : (1.217)

The curvature does therefore not contain a unique 1-form piece but two independent
1-form pieces. In order to cover the 1-form content of the curvature we have to
consider both (or two linear combinations, respectively). Consequently, one would
have to de�ne two \Cotton 2-forms",

(W )C� := DL� ; (1.218)
(Z)C� := DZ� : (1.219)
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Conformal Transformation in metric-aÆne space

According to [58], conformal transformations in metric-aÆne space are give by3

~g :

�
~g�� = 
L�2F g�� ; ~#� = 
F #� ; ~e� = 
�F e� ;
~��

� = ��
� � C Æ�� d ln 
 $ ~R�

� = R�
� :

(1.220)

Since the curvature is conformally invariant, the Cotton 2-form will play no special
role. Moreover, a metric-aÆne space can not be conformally 
at. Torsion and
nonmetricity transform according to

~Q�� = 
L�2F [Q�� � (L� 2F + 2C) g�� d ln 
] ; (1.221)
~T � = 
F [T � + (F � C) d ln 
 ^ #�] : (1.222)

The conformal transformation acts only on the trace pieces,

~T = T + (C � F )(n� 1)d ln 
 ; (1.223)
~Q = Q� (L� 2F + 2C) d ln 
 : (1.224)

Hence, torsion and nonmetricity can be transformed to zero if

(1)T � = (2)T � = 0 ; dT = 0 ; (1.225)
(1)Q�� = (2)Q�� = (3)Q�� = 0 ; dQ = 0 ; (1.226)

where, if both, T and Q, are present we additionally need

T = �(C � F )(n� 1)

L� 2F + C
Q : (1.227)

The curvature is conformally invariant. In its de�nition enters only the connection.
In our approach, the connection is transformed only by a piece proportional to a
total di�erential, see eq.(1.220). This additional piece obviously does not contribute
to the curvature R�

� = d��
� � ��


 ^ �

�. The Riemannian piece of the curvature

does, of course, transform, see appendix A.4.7.
In conclusion it can be stated that we may keep the de�nition C� = DL� also

in Riemann-Cartan and metric-aÆne spaces. However, already in Riemann-Cartan
space(time) the Cotton 2-form loses most of its distinctive properties which made it
of speci�c interest in Riemannian spacetimes.

3In order to compare our results to [58], in this section, we use C� for the object of anholonomity
and 
 for the conformal factor!
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Chapter 2

Gravity in three dimensions:
Models and solutions

2.1 Introduction

On �rst sight, (1+2){dimensional gravity seems to be rather boring. In 3 dimensions
(3D), the Weyl tensor vanishes and the curvature is fully determined by the Ricci
tensor and thus, via the Einstein equation, by the energy-momentum alone. Outside
the sources the curvature is zero and there are no propagating degrees of freedom,
i.e., no gravitational waves. Moreover, there is no Newtonian limit. But even if
spacetime is 
at, it is not trivial globally. A point particle, e.g., generates the
spacetime geometry of a cone. In such a geometry we have light bending, double
images, etc. The spacetime for N particles can be constructed similarly by gluing
together patches of (1 + 2)D Minkowski space. This was occasionally investigated
since the late 1950s, see Deser et al. [38] and the review of Carlip [23].

Some problems in (1+3)D gravity reduce to an e�ective (1+2)D theory, like the
cosmic string, e.g.; the high{temperature behavior of (1+3)D theories also motivates
the study of (1 + 2)D theories. In this context, Deser, Jackiw, and Tempelton
(DJT) proposed a (1 + 2)D gravitational gauge model with topologically generated
mass [40]. However, the real push for (1 + 2)D gravitational models came when
Witten formulated the (1 + 2)D Einstein theory as a Chern{Simons theory, in a
similar way as proposed by Ach�ucarro and Townsend [3], and showed its exact
solvability in terms of a �nite number of degrees of freedom [115, 116]. Also de Sitter
gravity, conformal gravity, and supergravity, in (1+2)D, turn out to be equivalent to
Chern{Simons theories [64, 73, 34, 35], see also the recent monograph of Blagojevi�c
[16].

Mielke and Baekler (MB) proposed a (1 + 2)D topological gauge model with
torsion and curvature [84, 7, 85] from which the DJT{model can be derived by
imposing the constraint of vanishing torsion by means of a Lagrange multiplier
term. Gravitational theories in (1 + 2)D with torsion, see also Tresguerres [111]

47
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and Kawai [71], are analogous to the continuum theory of lattice defects in crystal
physics, in particular, the corresponding theory of dislocations relates to a torsion of
the underlying continuum, see Kr�oner [76], Kleinert [72], Dereli and Ver�cin [36, 37],
Katanaev and Volovich [70], Kohler [74], and Puntigam and Soleng [101]. The fresh
approach of Lazar [77, 78, 79] promises additional insight.

The next important impact on (1 + 2)D gravity was the discovery of a black
hole solution by Ba~nados, Teitelboim, and Zanelli (BTZ) [11]. The BTZ black hole
is locally isometric to anti-de Sitter (AdS) spacetime. It can be obtained, see Brill
[20], from the AdS spacetime as a quotient of the latter with the group of �nite
isometries. It is asymptotically anti{de Sitter and has no curvature singularity at
the origin. Nevertheless, it is clearly a black hole: it has an event horizon and,
in the rotating case, an inner horizon. Also electrically and magnetically charged
generalizations are known. For extensive discussions see the reviews [10, 24, 25, 23,
9, 15]. The relevance to (1 + 3)D gravity can also be seen from the fact that the
BTZ solution can be derived from the (1 + 3)D Pleba�nski{Carter metric by means
of a dimensional reduction procedure, see Cataldo et al. [27]. By means of the BTZ
solution, many interesting questions can be addressed in the context of quantum
gravity. For example, Strominger computed the entropy of the BTZ black hole
microscopically [109]. There is also a relationship between the BTZ black hole and
string theory, see Hemming and Keski{Vakkuri [63]. Some recent work on solutions
in 3 dimensional gravity can be found in [93], [39], e. g.

Thus, although (1 + 2)D gravity lacks many important features of real, (1 + 3)D
gravity, it keeps enough characteristic structure to be of interest, especially in view
of the fact that in the (1 + 2)D case many calculations can be done which are far
too involved in (1 + 3)D for the time being.

In this chapter, we will �rst construct a general Lagrangian for quadratic Poin-
car�e gauge theory enriched by a rotational and a translational Chern-Simons term
and derive the corresponding �eld equations. Then we specify to a model proposed
by Mielke and Baekler which could be called \Einstein-Cartan-Chern-Simons the-
ory" (ECCS). We derive the general vacuum solution which carries constant axial
curvature and constant axial torsion. From this we derive a suitable coframe and
connection 1-form. We arrive at a generalized BTZ-solution with torsion, see table
2.1. Subsequently we determine the Killing vectors, the autoparallels and global
charges. The ECCS theory contains various gravitational models as subcases:

� Teleparallel gravity in case of vanishing curvature and rotational Chern-Simons
term,

� Topologically massive gravity (Deser-Jackiw-Tempelton model) in case of van-
ishing torsion,

� Einstein-Cartan theory in case of vanishing of both Chern-Simons terms,

� Einstein gravity in case of vanishing of both Chern-Simons terms and vanishing
torsion.



49

We show that the global charges in all this subcases reduce to the results known from
the literature. Subsequently we derive the subcases in a rigorous manner by means of
imposing Lagrange multipliers. We show that our BTZ-solution with torsion is also
a solution of proper teleparallelism and of 3D Einstein-Cartan theory with matter.
We also derive a new solution of the DJT-model and a conformally 
at perfect 
uid
solution of Einstein's theory, that is, an analog of the interior Schwarzschild solution.

2.2 Topological Poincar�e gauge theory

Now we construct a Lagrangian for n = 3 which encompasses the variables #� and
��

� and the �eld-strengths T � and R�
�. Additionally, we use the Hodge dual. We

consider a �rst order �eld theory. Moreover we demand the Lagrangian to be at
most quadratic in the �eld strengths and cubic in the gauge potentials.

First, we consider 3-forms linear in the �eld strengths. In the case of the
curvature we need a 1-form with two indices. The natural choice for this is ���,
yielding

VEC := � 1

2`
R�� ^ ��� : (2.1)

This is the usual Einstein-Cartan (Hilbert-Einstein in the case of vanishing torsion)
Lagrangian. We have introduced a fundamental length ` in order to guarantee the
same physical dimension of all terms in the Lagrangian. To build a 3-form linear
in torsion, we are in need of a 1-form with one index. Therefore, we may use the
coframe #�,

CT :=
1

2`2
#� ^ T� : (2.2)

Since #� may be interpreted as gauge potential of local translations, we call CT
the translational Chern-Simons term. The Chern-Simons 3-form for the curvature
reads [55]

CL := �1

2

�
��

� ^ d��
� � 2

3
��

� ^ ��

 ^ �


�

�
: (2.3)

This term is cubic in the gauge potential �. In 4D, CL is a boundary term and its
exterior derivative dCL = �R�� ^ R��=2 is quadratic in the curvature.

Second, we turn to 3-forms quadratic in the �eld strengths. They are built up
from the �eld strength and linear combinations of its contractions multiplied by its
dual. It was shown that these products can be most appropriately given in terms of
the irreducible pieces of the �eld strengths. The torsion has 3 irreducible pieces, a
tensor piece (1)T �, a trace piece (2)T �, and an axial piece (3)T � (for their de�nition
see appendix A.3 and [58]). The curvature in general has 6 irreducible components.
However, in 3 dimensions only three survive, namely the scalar piece (6)R��, the
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tracefree symmetric Ricci piece (4)R��, and the (post-Riemannian) antisymmetric
Ricci piece (5)R��. For the precise de�nition of the irreducible pieces, we refer to ap-
pendix A.3. Then we can write the most general quadratic pieces of the Lagrangian
as

VT2 =
1

2`
T � ^ ?

�
a1

(1)T� + a2
(2)T� + a3

(3)T�
�
; (2.4)

VR2 =
1

2`2
R�� ^ ?

�
b4

(4)R�� + b5
(5)R�� + b6

(6)R��

�
: (2.5)

Finally, we include a cosmological term

V� = ��

`
� : (2.6)

Thus, our Lagrangian reads

V1 = �VEC + V� + VT2 + VR2 + �T CT + �L CL : (2.7)

We multiply the Einstein-Cartan piece with a dimensionless constant � and the
Chern-Simons parts with \vacuum angles" �T and �L. This Lagrangian includes
many known models of (1 + 2)D gravity. For � = 1, a1 = a2 = a3 = 0, b4 = b5 =
b6 = 0, �T = �L = 0, we arrive at the standard Einstein theory with cosmological
constant in (1 + 2)D. If we include the curvature Chern-Simons term (�L 6= 0) and
the Riemannian quadratic curvature terms (a1 = a2 = a3 = 0, b5 = 0), we �nd
the \quadratic gravity in (2 + 1)D with topological Chern-Simons term" advocated
by Accioly et al.[2]. By setting the quadratic terms to zero and keeping Einstein-
Cartan, cosmological, and both Chern-Simons terms, we recover the 3D topological
gravity model of Mielke and Baekler [84, 7].

Our following investigation will mainly circle around solutions with constant
axial torsion. The most general case we consider in this context is the Mielke-Baekler
model which also may be called Einstein-Cartan-Chern-Simons theory (ECCS). We
�nd the general vacuum solution which is a prolongation of the well-known BTZ
solution of 3D Einstein gravity. Subsequently we show that this solution also solves
the �eld equations of Einstein teleparallel gravity and Einstein-Cartan theory. The
Deser-Jakiw-Tempelton (DJT) [40] model of topological massive gravity arises by
means of imposing a Lagrange multiplier for vanishing torsion. Thus, we consider
the following Lagrangian

V =
1

2`

"
��R�� ^ ��� � 2 � � + T � ^ ?

 
3X

I=1

aI
(I)T�

!#

+
�T

2`2
#� ^ T� � �L

2

�
��

� ^ d��
� � 2

3
��

� ^ ��

 ^ �


�

�
+Q�� ^ ��� + T � ^ �� +R�

� ^ ��� : (2.8)
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The �eld equations follow from the variation with respect to g�� (zeroth �eld equa-
tion), #� (�rst �eld equation), ��

� (second �eld equation), and the Lagrange mul-
tipliers (constraint equations). However, in [58] it is shown that the zeroth �eld
equation can be eliminated by means of the Noether identities. We are then left
with the �rst �eld equation and the antisymmetric part of the second �eld equation.
These read

DH� +
�

2`
���
 R

�
 +
�

`
�� � �T

`2
T� � E� �D�� = �� ; (2.9)

�

2`
���
 T


 � �T
2`2

#� ^ #� � �LR�� + #[� ^H�] �D�[��] � #[� ^ ��] = ��� ; (2.10)

where we also included the respective matter currents and

H� = �1

`
?

 
3X

I=1

aI
(I)T�

!
; (2.11)

E� =
1

2

�
(e�cT �) ^H� � T � ^ (e�cH�)

�
: (2.12)

2.3 Einstein-Cartan-Chern-Simons theory

In this section we assume

�� = ��� = a1 = a2 = a3 = 0 ; (2.13)

and obtain the Lagrangian

VMB = �VEC + V� + �T CT + �L CL + Lmat ; (2.14)

where we included a matter Lagrangian. We �nd the �eld equations by variation
with respect to coframe and connection, respectively:

�

2
���
 R

�
 + � �� � �T
`
T� = `�� ; (2.15)

�

2
���
 T


 � �T
2`
#� ^ #� � �L `R�� = ` ��� : (2.16)

The 3-forms of the material energy-momentum and spin currents are de�ned by
�� := ÆLmat=Æ#

� and ��� := ÆLmat=Æ�
��, respectively. For vacuum, �� = 0, ��� =

0, we can algebraically solve the two equations with respect to curvature R�� and
torsion T �. It turns out that both, R�� and T �, have only an axial piece with one
independent component:

R�� � #� ^ #� ; T� � �� : (2.17)
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The coeÆcients can be expressed in terms of the coupling constants. We put the
right-hand side of (2.16) to zero and multiply it by �=(2�L`) �

���. We arrive at
(�L 6= 0)

�2

4�L`
���� ���
| {z }
=�2 Æ�


T 
 � �T�

4`2�L
���� #� ^ #�| {z }

=2 ��

��
2
���� R�� = 0 : (2.18)

We substitute this into the �rst �eld equation (2.15). Together with (2.16), we �nd

T� =
2�`2�L � �T�

�2 + 2�T�L

��
`

=: 2
T
`
�� ; (2.19)

R�� = � ��`2 + �2T
�2 + 2�T�L

#� ^ #�
`2

=:
R
`2
#� ^ #� ; (2.20)

where

�2 + 2�T�L 6= 0 (2.21)

has to be required. By redoing this derivation for the case �L = 0, we see that (2.19)
and (2.20) remain valid. Thus (2.21) is the only constraint of the coupling constants.

Eqs.(2.19) and (2.20) represent the general exact vacuum solution of the Einstein-
Cartan-Chern-Simons model with the MB-Lagrangian (2.14).

2.3.1 Vacuum solution of the ECCS theory

The (1+2){dimensional model of Mielke and Baekler contains the DJT model in the
limit of vanishing torsion. Therefore it is expected that the general solution of the
�eld equations (2.15) and (2.16) contains a kind of BTZ{like solution with torsion
which, in the same limit, reduces to the standard BTZ solution.

According to (2.19) and (2.20), the vacuum solution has constant curvature
and torsion. Thus, we make a static and spherically symmetric ansatz for the
(orthonormal) coframe,

#t̂ = N(r) dt ; (2.22)

#r̂ =
dr

N(r)
; (2.23)

#�̂ = G(r) [�W (r) dt+ d�] ; (2.24)

where N(r); G(r) and W (r) are free functions. Our ansatz for #r̂ does not restrict
the generality. We could introduce another free function #r̂ = dr=F (r). However,
rescaling of the radial coordinate according to dr = (dR=N)F leads back to our
ansatz.

The metric reads

g = �#t̂ 
 #t̂ + #r̂ 
 #r̂ + #�̂ 
 #�̂ : (2.25)
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Together with the torsion, see (2.19),

T � = 2
T
`
�� ; T =

2�`2�L � � T�

2 (�2 + 2�T�)
; (2.26)

we calculate the connection according to, c. f. eq.(1.38), (
� := d#�)

��� = e[�c
�] � 1

2
(e�ce�c

) #
 � e[�cT�] +

1

2
(e�ce�cT
)#
 ;

see also [58] Eq.(3.10.6), for dg�� = 0 and Q�� = 0. Subsequently, we compute
the curvature and the components of the �eld equations. Linear combination of the
components of the 1st �eld equation (2.15) yields

d2G

dr2
�n2

G
= 0 : (2.27)

Consequently, we put

G = A+Br ; (2.28)

where A and B are integration constants. After substitution of (2.28) into (2.15),
one component turns out to be

�
N

2

�
d2W

dr2
(A+Br) + 3B

dW

dr

�
= 0 : (2.29)

This requires

W =
�

(A+Br)2
+ � : (2.30)

Again we have introduced two integration constants, � and �. Together with (2.30),
the 1st �eld equation (2.15) yields a �rst order ordinary di�erential equation for N2,
which can be integrated (m is another integration constant),

N2(r) = m+
�2

(rB + A)2
� �e�

B2

�
A2 � 2ABr �B2r2

�
; (2.31)

where we introduced an e�ective cosmological constant

�e� =
T 2 +R
`2

: (2.32)

This agrees with [7] Eq.(9.3). By means of the coordinate transformation r! Ar+B
and � ! � + � t and some change in notation, we arrive at our new BTZ-like
solution with torsion, see Table 2.1 for its explicit form. The topological terms in the
Lagrangian induce an e�ective cosmological constant even if the `bare' cosmological
constant � vanishes. If we put �L = �T = 0, then �e� = �� and T � = 0, and we
fall back to the standard BTZ solution [11].

The M = 1 and J = 0 metric is then recognized as the three{dimensional anti{de
Sitter space AdS3. It is straightforward to see that the general solution (2.19) and
(2.20) represents a space of constant negative curvature. Thus, the BTZ black hole
with torsion is also locally isometric to AdS3.
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Table 2.1: Exact vacuum solution of the 3D Einstein-Cartan-Chern-Simons
theory: BTZ-like solution with torsion

vacuum
�eld eqs.

�

2
���
 R

�
 +� �� �
�T

`
T� = 0 (2.33)

�

2
���
 T



�

�T

2`
#� ^ #� � �L `R�� = 0 : (2.34)

coframe

#t̂ =  (r) dt (2.35)

#r̂ =
dr

 (r)
 (r) :=

s�
J

2r

�2

�M + �e� r2 (2.36)

#�̂ = r

�
� J

2r2
dt+ d�

�
(2.37)

metric g = �#t̂ 
 #t̂ + #r̂ 
 #r̂ + #�̂ 
 #�̂ (2.38)

connection

�t̂r̂ = ��r̂t̂ =

�T
`

J

2r
� �e� r

�
dt+

�
J

2r
� T

`
r

�
d� (2.39)

�r̂�̂ = ���̂r̂ =  (r)

�T
`
dt+ d�

�
(2.40)

��̂t̂ = ��t̂�̂ = �
�
J

2r2
+
T
`

�
dr

 (r)
(2.41)

torsion T � = 2
T
`
�� (2.42)

curvature

Riemann-Cartan R�� =
R
`2
#� ^ #� (2.43)

Riemann eR�� = �e� #
� ^ #� (2.44)

Cotton

Riemann-Cartan C� = �T R
`3

�� (2.45)

Riemann eC� = 0 (2.46)

constants T :=
� �T

2
� + �`2�L

�2 + 2�T�L
R := � �2T + ��`2

�2 + 2�T�L
�e� :=

T 2 +R
`2

(2.47)
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2.3.2 General conformally 
at vacuum solution with torsion

As we have seen, the vacuum �eld equations (2.15), (2.16) imply constant Riemann-
Cartan curvature. We can decompose the Riemann-Cartan curvature into the
Riemannian curvature eR�� and a torsion dependent part,

R�� = eR�� �DK�� +K�

 ^K
� ; (2.48)

where the contortion K�
� is de�ned according to

T � =: #� ^K�
� : (2.49)

Then also the Riemannian curvature turns out to be constant, see appendix A.4.10.
Consequently, the Riemannian Cotton 2-form is zero and the metric has to be con-
formally 
at. Hence we make the ansatz

#0̂ =
dx

	
; #1̂ =

dy

	
; #2̂ =

dz

	
; (2.50)

where 	 = 	(x; y; z). The 1st �eld equation (2.15) yields that the mixed second
derivatives vanish. Therefore 	 has the form

	 = 	(x)(x) + 	(y)(y) + 	(z)(z) : (2.51)

Then, the 1st �eld equation requires

�@yy 	(y) = @xx 	(x) = �@zz	(z) : (2.52)

This leads to the general solution with 5 Parameters A;B;C;D;E

	 = A
��x2 + y2 + z2

�
+Bx + Cy +Dz + E : (2.53)

The �eld equations impose only one constraint equation on the parameters,

0 = B2 � C2 �D2 + 4AE + �e� : (2.54)

For B = C = D = 0, E = 1 we recover the usual form of the (anti-) de Sitter metric,
for A = B = D = E = 0 the Poincar�e metric. Coordinate transformations which
yield the BTZ-metric are given in [23].

In the anti-de Sitter case we can display the solution, coframe and connection,
very compactly as

#� =
dx�

 
;  = 1� �e�

4
(�x2 + y2 + z2) ; (2.55)

��� =
T
`
��� + x[� #�]

�e�

3
: (2.56)

For �T = 0, this corresponds to the solution of Dereli and Ver�cin [37].
In the \teleparallel" case, where the Riemann-Cartan curvature vanishes, we

have T = `
p

�e� . Then we recover the solution of Fjelstad and Hwang [45].
For �e� = 0, i.e. vanishing Riemannian curvature, we recover Cartan's spiral

staircase solution discussed in [26] as an example for a 3D space with torsion. How-
ever, the requirement �e� = 0 = R + T 2 amounts to a constraint on the coupling
parameters. We will discuss this case in section 2.5.
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2.3.3 Properties of our solution

Autoparallels and extremals

In a Riemann{Cartan space, the autoparallels (straightest lines) and the extremals
or geodesics (longest/shortest lines) do not coincide in general. An autoparallel
curve xi(s) obeys, in terms of a suitable aÆne parameter s, the equation

d2 xk(s)

ds2
+ �ij

k d x
i(s)

ds

d xj(s)

ds
= 0 : (2.57)

The (holonomic) components of the connection �ij
k depend on metric and torsion

according to

�ij
k = e�ij

k � Kij
k ; Kij

k :=
1

2

��Tijk + Tj
k
i � T k

ij

�
; (2.58)

where e�ij
k is the Christo�el symbol and Kij

k the contortion. In (2.57), only the
symmetric part of the connection enters. By means of (2.58), it can be expressed as

�(ij)
k = e�(ij)

k + T k
(ij) : (2.59)

The extremals are determined by the metrical properties of spacetime alone and
follow from the variation of the world length

R p�gij _xi _xj in the standard way:

d2 xk(s)

ds2
+ e�ij

k d x
i(s)

ds

d xj(s)

ds
= 0 : (2.60)

For our solution, see Table 1,

Tijk = 2
T
`
�ijk =) Ti(jk) = 0 : (2.61)

Thus, the torsion dependent piece drops out in (2.59) and (2.57). Autoparallels and
extremals coincide and we get the same geodesics as in the case of the standard
BTZ{solution in Riemannian spacetime.

Killing vectors

In a Riemann-Cartan space we call � = �� e� a Killing vector if the latter is the gen-
erator of a symmetry transformation of the metric and of the connection according
to

$� g = 0 ; $� ��
� = 0 ; (2.62)

see [58, p.83]. These two relations can be recast into a more convenient form,

e(�c eD��) = 0 ; (2.63)

D
�
e�c

_

D ��
�

+ �cR�
� = 0 ; (2.64)
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where eD refers to the Riemannian part of the connection (Levi{Civita connection)

and
_

D to the transposed connection:
_

D:= d+
_

��
� := d + ��

� + e�cT �. For our
solution we �nd two Killing vectors, namely

(t)

� := @t and
(�)

� := @� ; (2.65)

that is, the same Killing vectors as in the case of the standard BTZ solution.

Quasilocal conserved quantities

Now we consider the conserved quantities of our solution. Nester, Chen, and Wu
[90], see also the literature quoted there, proposed a quasi{local boundary expres-
sion within metric{aÆne gravity, a theory the spacetime of which goes beyond the
Riemann{Cartan structure in that it carries additionally a nonmetricity. We ad-
apt the formulas of [90] for the case of vanishing nonmetricity. The derivation
starts from a �rst{order Lagrange n{form V that is at most quadratic in its �eld
strengths T � and R��. The corresponding momenta read H� := �@ V =@T � and
H�� := �@ V =@R��. The Lagrangian can be decomposed with respect to a vector
�eld N , with Ncd� = 1:

V = d� ^NcV
=: d� ^

h
� ($N#

�) ^H� �
�
$N��

�
� ^H�

� �N�H� � dB
i
: (2.66)

The Hamilton 2{form H is de�ned by H := N�H� + dB . Since H� turns out to be
proportional to the �eld equations, only the spatial boundary 1{form B contributes
to the boundary integral of H. In order to obtain �nite values for the quasi{local
\charges", the boundary term has to be compared to a reference or background solu-
tion which will be denoted by a bar over the corresponding symbol. As background,
we choose our solution with M = 0; J = 0. Moreover, the di�erence of a quantity
� between a solution and the background is �� := � � �. Then, the quasi{local
charges are given by [90]

B(N) := �
�

(Nc#�) �H� + �#�
�
NcH�

�
(Nc#�) �H� + �#� (NcH�)

�

�
8<: (

_

D �N�) �H�� + ����
�
NcH��

�
(
_

D �N�) �H�� + ���� (NcH��)

9=; : (2.67)

The upper (lower) line in the braces is chosen if the �eld strengths (momenta) are
prescribed on the boundary. The momenta of our solution read H� = �(�T=2`

2)#�
and H�� = (�=2`) ��� � (�L=2) ���.
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We derive the quasi{local energy and angular momentum by taking for the vector
�eld N the Killing vectors @t or @�, respectively:

`B(@t) =
h
�L (�e�` J � T M) + �

�
�e�r

2 �
p

�e� r 
�i
d�

� 1

2`

�
(2�L T 2 � �T)M � 2`�L �e�JT + � (`�e�J � 2MT )

�
dt; (2.68)

`B(@�) = �
h�

2
J + �L (`M � T J)

i
d�

�
�
�
�

�e�r
2 �

p
�e� r 

�
+

1

`
(�LT � �) (`M � T J) +

�T
2`
J

�
dt : (2.69)

In order to obtain total energy and angular momentum, we have to integrate, for
t = const, the B's over a full circle and to perform the limit r!1.

E1 =
1

`
lim
r!1

Z 2�

0

h
�L (�e�` J � T M) + �

�
�e�r

2 �
p

�e� r 
�i
d� ; (2.70)

L1 =
1

`
lim
r!1

Z 2�

0

�
h�

2
J + �L (`M � T J)

i
d� : (2.71)

By carrying out the integration and taking the limit we �nd1

E1 =
2�

`

�
�L (�e� `J � T M) + �

M

2

�
; (2.72)

L1 = �2�

`

h�
2
J + �L (`M � T J)

i
: (2.73)

In each case occur admixtures from the other charge, respectively. This is not too
surprising, since torsion and curvature emerge in both �eld equations. We can
recover some speci�c cases well known from the literature and compare our results.

In the �rst place, of course, we consider 3D Einstein theory, where only the
Riemann-Cartan and cosmological constant terms survive,

Einstein theory �T = �L = 0 ; � = 1 ; � 6= 0 : (2.74)

Indeed we arrive at the usual interpretation of the parameters M and J as mass
and angular momentum,

E1 =
�

`
M ; L1 = ��

`
J ; (2.75)

provided we identify the 3D gravitational constant as ` = � and introduce a factor
�1 into the angular momentum. The last point seems to be somewhat awkward.
However, one has to keep in mind that a corresponding factor �1=2 is also intro-
duced in classical general relativity, see Wald [113]. Moreover we have to keep in

1In our publication, [47], we adapted the choice ` = � and introduced a factor �1 into the
angular momentum. We will discuss this choice on the next page.
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mind that there is no clear and unambiguous prescription of which timelike and
spacelike Killing vectors are to be used in order to get the \right" energy and angu-
lar momentum. The parameters J and M can be expressed in terms of the proper
angular momentum L1 and the proper mass-energy E1:

J = � `
�

(�� 2�L T )L1 + 2`�LE1

�2 � 4��L T � 4�2LR
=: � `

�
(AL1 +B E1) ; (2.76)

M =
`

�

(�� 2�L T )E1 + 2�e� `�L L1
�2 � 4��L T � 4�2LR

=:
`

�
(AE1 + C L1) : (2.77)

The Killing equations and the quasi-local charges are linear in the Killing vectors.
Hence, we could de�ne the new Killing vectors

�(t) := A@t + C @� ; �(�) := �A@t � B @� : (2.78)

These \automatically" yield the canonicalM and J as mass and angular momentum,
respectively.

Also the \teleparallel limit" gives the expected result. Here we assume �L = 0
and R = 0. This implies �2T = ���`2, i. e. we have to keep the Einstein-Cartan
piece. We will understand the reason in the next section. This also explains that
�T does not independently contribute to the charges: Without either Riemann-
Cartan or rotational Chern-Simons piece the corresponding Lagrangian allows only
vanishing torsion and curvature! Thus, we fall back to the Einsteinian case, as it
should be since it turns out that the MB-Lagrangian constrained to yield vanishing
curvature is indeed equivalent to the teleparallel Einstein Lagrangian.

Finally, we consider the subcase of vanishing torsion. As we are going to show
in section 2.6 this corresponds to the DJT model of topologically massive gravity.
We �nd it especially satisfactory that we obtain a result in agreement with the
literature. In [87] the authors assume the following identi�cation of parameters

2`�L = � 1

�
; �e� = �� = l�2 ; ` = � = � ; � = 1 ; (2.79)

where � is the DJT coupling constant. We stress that this is exactly the identi�cation
which is enforced by the proper procedure to deduce the DJT �eld equations form
the Mielke-Baekler model by means of a Lagrange multiplier for vanishing torsion!
Then

E1 = M � J

�l2
; L1 = J � M

�
: (2.80)
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2.4 Teleparallelism

In teleparallel gravity we demand vanishing curvature. The basic variable is the
coframe, acting as a translational gauge potential. The Lagrangian than is taken to
be quadratic in the �eld strength, i. e. torsion,

V := VT2 � �

`
� + ��� ^R�� + ��� ^Q�� : (2.81)

In [58] it is shown that due to the Noether identities the �eld equation for g�� drop
out completely and we are left with the antisymmetric part of the �eld equation for
���,

R�� = 0 ; (2.82)

DH� +
�

`
�� � E� = 0 ; (2.83)

D�[��] � #[� ^H�] = 0 ; (2.84)

where, as a reminder,

H� = �1

`
?

 
3X

I=1

aI
(I)T�

!
; (2.85)

E� =
1

2

�
(e�cT �) ^H� � T � ^ (e�cH�)

�
: (2.86)

In view of the identity, see appendix A.4.6 ,

D��� = ���
 ^ T 
 = �2#[� ^ ?

�
(1)T�] � (n� 2) (2)T�] � 1

2
(3)T�]

�
; (2.87)

we can give a general solution for the Lagrange multiplier provided we choose

a1 = �1 ; a2 = n� 2 ; a3 =
1

2
: (2.88)

Consequently, we �nd for the Lagrange multiplier

��� = � 1

2`
��� : (2.89)

In this way we recovered nothing else than Einstein's teleparallelism which is equi-
valent to general relativity because of, see appendix A.4.5,

R�� ^ ��� = Rfg�� ^ ��� � 2 d(#� ^ ?T �)

+T � ^ ?

�
�(1)T� + (n� 2) (2)T� +

1

2
(3)T�

�
: (2.90)

Hence the Lagrangian (2.81) with the choice of parameters (2.88) is e�ectively equi-
valent to the conventional Hilbert-Einstein Lagrangian. Moreover, in [48] it is shown
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that (2.88) makes the Lagrangian (2.81) invariant under local Lorentz transforma-
tions.

In the following we show that our \BTZ-solution with torsion" is also a solution
of the proper, Einstein teleparallelism in n = 3 where

H� = �1

`
?

�
�(1)T� + (2)T� +

1

2
(3)T�

�
: (2.91)

The �eld equations to ful�ll are given by

DH� � E� +
�

`
�� = 0 ; R�� = 0 : (2.92)

Our aim was to embed the solution of constant axial torsion into teleparallel gravity.
Hence we make the ansatz

T � = 2
T
`
�� ) H� =

T
`2
#� : (2.93)

A simple calculation (using D#� = T � and some relations for the eta basis) yields

DH� = 2
T 2

`3
�� ; E� =

T 2

`3
�� : (2.94)

Hence the �eld equation (2.92) reduce to

T 2

`3
�� +

�

`
�� = 0 , T = �p��` : R�� = 0 : (2.95)

It remains the task to �nd a suitable metric/coframe such that the Riemann-Cartan
curvature vanishes. Therefore we split the connection 1-form into its Riemannian
piece and the contortion

��
� = �fg

�
� �K�

� ; (2.96)

which is determined by the torsion according to K�
� ^ #� = T �, and �nd

R�
� = Rfg

�
� �DK�

� +K�

 ^K


� : (2.97)

For our ansatz of constant axial torsion we compute by means of some simple algebra

R�� = R
fg
�� �

T 2

`2
#� ^ #� : (2.98)

Again we arrive at constant Riemannian curvature. A suitable coframe and metric
have already been derived in section 2.3.1. This solution is a subcase of the vacuum
solution of the Mielke-Baekler model. The teleparallel constraint R�� = 0 here
results in a constraint on the coupling parameters,

�2T + ��`2 = 0 ; �L = 0 : (2.99)

This case was extensively studied by Blagojevic [19, 18, 17].
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2.5 �E. Cartan's spiral staircase

In 1922, �E. Cartan gave the following prescription of parallel transport in a space
with curvature and torsion:

\. . . imagine a space F which corresponds point by point with a Euc-
lidean space E, the correspondence preserving distances. The di�erence
between the two spaces is following: two orthogonal triads issuing from
two points A and A' in�nitesimally nearby in F will be parallel when
the corresponding triads in E may be deduced one from the other by a
given helicoidal displacement (of right{handed sense, for example), hav-
ing as its axis the line joining the origins. The straight lines in F thus
correspond to the straight lines in E: They are geodesics. The space F
thus de�ned admits a six parameter group of transformations; it would
be our ordinary space as viewed by observers whose perceptions have
been twisted. Mechanically, it corresponds to a medium having constant
pressure and constant internal torque."

Obviously, Cartan's prescriptions are re
ected in the solution (2.55, 2.56),

#� =
dx�

 
;  = 1� �e�

4
(�x2 + y2 + z2) ; ��� =

T
`
��� +x[� #�]

�e�

3
; (2.100)

where the e�ective cosmological constant has to be set to zero, �e� = 0, then auto-
parallels and extremals coincide, see 2.3.3. Thus, in the spiral staircase, extremals
are Euclidean straight lines. This is apparent in Cartan's construction. We can view
this as a subcase of the BTZ-solution with torsion of the MB-model provided we
impose the following constraint on the coupling parameters, see table 2.1,

0 = �e� =
T 2 +R
`2

; (2.101)

or

4�2`4�2L � 3�2T�
2 � 12��`2�T �L � 8�3T �L � 4�3�`2 = 0 : (2.102)

Cartan apparently had in mind a 3D space with Euclidean signature. For an altern-
ative interpretation of Cartan's spiral staircase we consider the 3D Einstein{Cartan
�eld equations without cosmological constant. This is a subcase of our \Master
Lagrangian" (2.8) with � = a1 = a2 = a3 = �T = �L = �� = 0. The �eld equations
are then

1

2
���
 R

�
 = `�� ; (2.103)

1

2
���
 T


 = ` ��� : (2.104)
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Figure 2.1: Cartan's spiral staircase. Cartan's rules [26] for the introduction of
a non-Euclidean connection in a 3D Euclidean space are as follows: (i) A vector
which is parallelly transported along itself does not change (cf. a vector directed
and transported in x-direction). (ii) A vector that is orthogonal to the direction of
transport rotates with a prescribed constant \velocity" (cf. a vector in y{direction
transported in x{direction). The winding sense around the three coordinate axes is
always positive.

x
y

z
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If we put �e� = 0, then, see (2.55,2.56), we arrive at

#� = Æ�i dx
i ; ��� =

T
`
��� : (2.105)

The components of the connection are totally antisymmetric: �
�� = e
c��� =
(T =`) �
��. The Riemannian curvature vanishes. By simple algebra we �nd,

T � = 2
T
`
�� ; eR�� = 0 ; R�� = �T

2

`2
#�� : (2.106)

The coframe and the connection of (2.105), Euclidean signature assumed, form a
solution of the Einstein{Cartan �eld equations with matter provided the energy{
momentum current (for Euclidean signature the force stress tensor t�

�) and the spin
current (here the torque or moment stress tensor s��


) are constant,

�� =: t�
� �� = �T

2

`3
�� and ��� =: s��


 �
 = �T
`2
#�� : (2.107)

Inversion yields

t�
� = �T

2

`3
Æ�� ; s��
 = �T

`2
���
 : (2.108)

We �nd a constant hydrostatic pressure �T 2=`3 and a constant torque �T =`2, ex-
actly as foreseen by Cartan. In solid state physics, this corresponds to a superposi-
tion of three \forests" of screw dislocations that are parallel to the coordinate axes
with constant and equal densities. However, in a real crystal, the Riemann{Cartan
curvature R�� has to vanish (instead of the Riemannian curvature eR��, as in our
exact solution) and no pressure would emerge macroscopically.

Thus we can either view the spiral staircase as a vacuum solution and special
case of our (constrained) solution of Table 1 or as a material solution of 3D Einstein{
Cartan theory (with Euclidean signature) carrying constant pressure and constant
torque.

2.6 The Deser-Jackiw-Templeton model

In our geometrical section we already mentioned the fact that the Cotton 2-form
in 3 dimensions is covariantly conserved and can be derived from the rotational
Chern-Simons Lagrangian by imposing vanishing nonmetricity and torsion. Thus,
it can be consistently coupled to matter. In our Master-Lagrangian we have to put
�T = a1 = a2 = a3 = 0, yielding

LDJT = �LCRR + VHE + V� + �� ^ T � + ��� Q�� + Lmat

= �LCRR � 1

2`
R�� ^ ��� � �

`
� + �� ^ T � + ��� ^Q�� + Lmat : (2.109)
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Using (1.99) and (2.9, 2.10) we �nd

G� + ��� +
1

�
C� = `�� ; (2.110)

where G� = 1
2
���
 ^ R�
 is the Einstein 2-form and the DJT coupling constant

1=� = �2�L`, see [40]. The Einstein (n� 1)-form G� is equivalent to the 1-form L�

according to

G� = L� ^ ��� ; (2.111)

see [62]. Hence, we may rewrite the DJT-�eld equation as a di�erential equation for
L� ,

DL� + �L� ^ ��� = `��� � ���� : (2.112)

The Bianchi identities imply full integrability of this system.
In the following we derive a new solution of the DJT-model. Our motivation was

to �nd a Class N spacetime c. f. section 1.5. Inspired by the corresponding (1 + 3)D
metrics, we start with the ansatz

#0̂ = dt+ dx ; #1̂ = dt� dx ; #2̂ = dy ; (2.113)

with the non-orthonormal metric

g = #0̂ 
 #1̂ +  #1̂ 
 #1̂ � #2̂ 
 #2̂ ;  =  (y) : (2.114)

The Cotton tensor, in this frame, reads ( ()0 = d=dy):

C�
� =  000

0@ 0 0 0
�1 0 0
0 0 0

1A ; �1 = �2 = �3 = 0 : (2.115)

The vacuum DJT �eld equation reduces to

1

�
 000 �  00 = 0 ; (2.116)

with the general solution

 = Ay + B e�y + C : (2.117)

In an orthonormal coframe with signature (� + +) and A = C = 0 and B = 1,
coframe and Cotton tensor can be brought into the more familiar form

#0̂ = e�y=2
�
(1 +

1

2
e��y) dt+ (1� 1

2
e��y dx)

�
; (2.118)

#1̂ =
1

2
e��y=2 (dt� dx) ; (2.119)

#2̂ = dy : (2.120)
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The Cotton tensor, with all eigenvalues being zero, in this frame, reads

C�
� =

�3

2

0@ �1 �1 0
1 1 0
0 0 0

1A ; �1 = �2 = �3 = 0 : (2.121)

2.7 Einstein: Conformally 
at perfect 
uid solu-

tion

As an application of the relation between energy-momentum 2-form and Cotton 2-
form, eq. (1.182) and as an example for a class 0 solution, we will derive the spher-
ically symmetric, conformally 
at, perfect 
uid solution to Einstein's �eld equation.
We use the ansatz

#0̂ = N(r) dt ; #1̂ = dr=F (r) ; #2̂ = r d� ; (2.122)

with signature (� + +). The energy{momentum of the perfect 
uid is given by

�� = [�(r) + p(r)] u� u
��� + p �� ; (2.123)

where u� is the 4-velocity of the 
uid elements which, in an orthonormal frame, is
given by u� = (1; 0; 0). By using (1.182), we �nd

C0̂ = �
�
F

2N
(2 @r [N (p+ �)]�N @r�)

�
#0̂ ^ #1̂ ; (2.124)

C1̂ = 0 ; (2.125)

C2̂ = �F
2
@r� #

1̂ ^ #2̂ : (2.126)

Consequently, we have to demand constant energy density � = const for a conform-
ally 
at solution with C� = 0. By using � = const, we infer from (2.124)

N(r) =
c1

� + p(r)
; (2.127)

where c1 is an integration constant. The 0-component of the Einstein �eld equation
(1.8) yields

F 2(r) = c2 � (`�+ �) r2 : (2.128)

The remaining components of the �eld equation are ful�lled provided

dp

dr
=

(`�� �) (p+ �) r

F 2
: (2.129)
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This ordinary di�erential equation can be integrated yielding (c3 is another integra-
tion constant)

p =
c3 F (`� + �) + (c3)

2`� + �F 2

(c3)2 `2 � F 2
: (2.130)

Finally, the solution is given by (2.122,2.127,2.128,2.130), compare the solutions
in [46].

This is the analog to the interior Schwarzschild solution which is also conformally

at. The constants can be chosen in such a way that the pressure is positive and
�nite. A smooth joining to the BTZ-metric also is possible.
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Chapter 3

Einstein-aether theory

3.1 Introduction

In the previous sections we considered gravitational theories living in Riemann-
Cartan or Riemannian spacetimes. The independent variables have been the coframe
and the connection with the �eld strength torsion and curvature, respectively. The
metric hasn't been an independent variable; the corresponding �eld strength, the
nonmetricity, which characterizes the non-compatibility of metric and parallel trans-
port, has been forced to be zero by means of a Lagrange multiplier. As a con-
sequence, the symmetric part of the connection can be eliminated from the �eld
equations and only the antisymmetric part remains as an independent variable. In
this last chapter we are going to liberate the action principle from the last constraint,
the vanishing of the nonmetricity, thereby promoting the connection to a truly inde-
pendent variable. Allowing for nonmetricity corresponds to abolishing local Lorentz
invariance. In Riemann-Cartan spacetime, the length and the angles between vec-
tors remain absolute structures in the sense that these are preserved under parallel
transport. In the presence of nonmetricity

Q�� = �Dg�� ; (3.1)

the scalar product between two vectors changes under parallel displacement along
a curve with tangent vector u as ( L is the gauge covariant Lie derivative)

 Lug(V;W ) = �uc �6Q��V
�W � +Qg(V;W )

�
; (3.2)

where

Q :=
1

n
Q�

� ; 6Q�� := Q�� �Qg�� ; (3.3)

are the trace (Weyl covector) and the traceless (shear) part of the nonmetricity. In
the case of vanishing shear, the light-cone is left intact|we have a rigid (conformally)
light-cone structure which may be viewed as the epitome of local Lorentz invariance.
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Hence, by allowing for nonmetricity, we break down the local Lorentz invariance of
Riemann-Cartan spacetime.

Violation of Lorentz invariance is a generic feature of many models of quantum
gravity, see [68, 75], e. g. In classical general relativity, the 
at Minkowski space
is, in a way, the ground-state of spacetime in the absence of matter �elds, i. e. va-
cuum. If now spacetime becomes a quantum �eld itself, there is no apriori reason
why the ground state of this quantum �eld should be Lorentz invariant. Indeed,
even in classical electrodynamics it is conceivable that there are vacuum spacetimes
which are characterized by a non-Lorentz invariant constitutive relation which ob-
structs the familiar light-cone structure of conventional Maxwell-Lorentz electro-
dynamics, see [61]. Thus one should be open-minded for dissolving the light-cone
. . . The deformation of the light cone leads to observable consequences and there is
an intensive search going on to see these e�ects by means of astrophysical observa-
tions [68, 99, 100].

The most common reaction in the literature to the challenge of Lorentz symmetry
violation is the introduction of a preferred frame and thereby reintroducing a kind
of \aether �eld". Jacobson and Mattingly [69] introduce an extra timelike 4-vector
�eld u which, in addition to the metric, describes the properties of spacetime. In
order to make the theory general covariant, they take this �eld to be dynamical,
determined by a Lagrangian carrying a kinetic term (ru)2 and a massive term u2.
Consequently, the aether �eld equations are Yang-Mills like,

rH + lower order terms � `u ; (3.4)

where H � ru is the �eld momentum (excitation) and ` some constant.

We will propose a di�erent scheme. It doesn't seem very natural to associate u
with the properties of spacetime. What tools do we have to characterize spacetime
itself? We measure length and angles (�! metric g��) in a local frame of reference
(�! #�) and compare these measurements carried out at di�erent points (�!
parallel transport ��

�). Thus, the intrinsic properties of spacetime are encoded in
(g��; #

�; ��
�) and quantities derived therefrom. An additional, external vector �eld

is foreign to this structure! Moreover, the geometry of metric-aÆne spacetime, by
carrying nonmetricity, is rich enough to account for a violation of Lorentz invariance.
As additional bene�t we can give a consistent framework of how to couple the \aether
�eld" to matter, a problem which seems to be unsolved in the theory of J&M. We
assume, in the spirit of the equivalence principle, minimal coupling, i. e., partial
derivatives are replaced by covariant ones.

In the theory of J&M the \aether" is represented by the vector �eld u. In order to
compare our approach to theirs, we �rst look for vector-like, geometrical quantities
which characterize Lorentz violation in metric-aÆne geometry. In the next step we
propose a Lagrangian for our \geometrical-aether" theory. Eventually we analyze
the �eld equations and construct some simple solutions.
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3.2 Vector-likeLorentz-violatingquantitiesinMAG

We argued in section 3.1 that the genuine quantity describing Lorentz violation is
the nonmetricity. In this section we look for vector-like pieces of the nonmetricity.
In n dimensions, as a symmetric tensor-valued 1-form, the nonmetricity has n2(n+
1)=2 independent components. We immediately recognize a vector-like piece with n
components by splitting o� the trace,

Q :=
1

n
Q�

� ; 6Q�� := Q�� �Qg�� : (3.5)

The Weyl covector Q is a scalar-valued 1-form and therefore has n independent
components. It is related to scale transformations, see (3.3), and thus extends the
Lorentz to the conformal group. The presence of Q does not touch the (conformal)
light-cone structure. The nonmetricity Q�� = Qi�� dx

i, from a geometrical point
of view, can be understood as a strain measure for the di�erent directions speci�ed
by the 1-forms dxi. Accordingly, 6Q�� de�nes a shear measure since the dilation
measure Q is subtracted out. In order to �nd a vector-like degree of freedom of
6Q��, we contract it with the frame and �nd

�� := e�c 6Q�� ; � := �� #
� ; n components : (3.6)

Apparently, the 1-form � is our desired vector-like shear measure. It remains the
task to resolve (3.6) with respect to 6Q��. Of course, �� with n components does
not contain all information of 6Q�� with n(n+ 1)(n� 2)=2 independent components.
We will denote the piece of 6Q�� which corresponds to � by (3)Q��. The superscript
3 is conventional and will be explained later. The excess of 6Q�� over (3)Q�� is

~6Q�� :=6Q�� � (3)Q�� ; (3.7)

with

~6Q�
� = (3)Q�

� = 6Q�
� = 0 ; (3.8)

e�c(3)Q�� = �� ; e�c ~6Q�� = 0 : (3.9)

We now make an ansatz for (3)Q�� in order to obtain its explicit form. The only
possibility to construct a symmetric tensor-valued 1-form out of scalar-valued 1-
forms �(I) and �(II), is

(3)Q�� = #(� e�)c�(I) + g�� �(II) ; (3.10)

The 1-forms �(I); �(II) can be determined using the constraints (3.8,3.9),

(3)Q�
� = �(I) + n�(II) = 0 ; (3.11)

e�c(3)Q�� =
n+ 1

2
e�c�(I) + e�c�(II) = e�c� : (3.12)
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Thus we �nd

�(II) = � 1

n
�(I) ; �

(I)
� =

2n

(n� 1)(n+ 2)
�� ; (3.13)

and consequently

(3)Q�� =
2n

(n� 1)(n+ 2)

�
�(� #�) � 1

n
g�� �

�
: (3.14)

It turns out that (3)Q�� already is an irreducible piece of the nonmetricity which
can be decomposed according to

Q�� = (1)Q�� + (2)Q�� + (3)Q�� + (4)Q�� ;

= TRINOM + BINOM + VECNOM + CONOM ;
1

2
n2(n+ 1) =

1

6
n(n� 1)(n+ 4) +

1

3
n(n2 � 4) + n + n ;

where the remaining pieces are de�ned by

(2)Q�� = �2

3
e(�cP�) ; P� =6Q�� ^ #� � 1

n� 1
#� ^ � ; (3.15)

(4)Q�� = g�� Q ; (3.16)
(1)Q�� = Q�� � (2)Q�� � (3)Q�� � (4)Q�� : (3.17)

In conclusion, we have found a vector-like piece of the nonmetricity which is
related to shear and therewith genuine Lorentz violating. This piece, (3)Q��, will be
in the center of interest in the following.

In order to set up a \J&M-like Lagrangian" we require a massive term propor-
tional to ����. Indeed such a term can be naturally constructed from the respective
irreducible piece (3)Q��,

(3)Q�� ^ ?(3)Q�� =
2n

(n + 2)(n� 1)
� ^ ?� =

2n

(n + 2)(n� 1)
���� � : (3.18)

It remains the task to �nd an appropriate kinetic term. This is the subject of the
next section.

3.3 The quest for the kinetic aether term: The

strain curvature

In the last section we motivated the use of the 1-form piece � of the nonmetricity
as \aether 1-form". The corresponding aether �eld strength should be of the type
F � d�. Then, the canonical, Yang-Mills like kinetic term for a 1-form �eld � would
look like

F ^ ?F � d� ^ ?d� : (3.19)
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How could we construct such a piece for our aether 1-form? First we note that the
nonmetricity acts on the level of a connection, i. e., a gauge potential. We can split
o� the post-Riemannian part of the connection, the distortion

N�
� := ��

� � �fg
�
� : (3.20)

We can read o� the components of N�� from the decomposition of the connection
(1.38) and �nd

Q�� = 2N(��) : (3.21)

If we opt for interpreting the nonmetricity, and therewith its irreducible pieces, as
connections, the corresponding �eld strength, i. e. the exterior covariant derivatives,
act as curvature 2-forms. Indeed, by employing the zeroth Bianchi identity we �nd
the symmetric strain curvature 2-form

2Z�� := DQ�� = 2R(��) : (3.22)

Obviously, it has one distinctive piece, namely its trace Z := g��Z�� = Z


. It

should be noted that Z is related to a premetric quantity. In a space with only a
linear connection, the curvature R�

� can be contracted, R�
�, even if a metric is not

present. Thus R


 and, as a consequence, also Z is rightfully called dilcurv, the

part of the curvature related to dil(at)ations. This is an irreducible piece of Z�� and
we call it

(4)Z�� :=
1

4
g��Z : (3.23)

Since on the level of the nonmetricity dilations are related to (4)Q��, we denoted the
related curvature piece by the same number. In fact, the zeroth Bianchi identity, if
contracted, yields g��DQ�� = 2Z



 = Z. By partial integration, we �nd

Z = 2dQ or (4)Z�� =
1

2
g�� dQ =

1

2

�
D (4)Q��+ 6Q�� ^Q

�
: (3.24)

The tracefree piece can be further decomposed into various \traces", see appendix A.3:

6Z� := e�c 6Z��; �̂ :=
1

n� 2
#�^ 6Z�; Y� := �(6Z�� ^ #�) : (3.25)

Subsequently we can subtract out the traces:

�� :=6Z� � 1

2
e�c(#
^ 6Z
); �� := Y� � 1

n� 2
e�c(#
 ^ Y
) : (3.26)
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The irreducible pieces may then be written as (see [58])

(2)Z�� := �1

2
�(#(� ^��)) ; (3.27)

(3)Z�� :=
1

n + 2

�
n#(� ^ e�)c � 2 g��

�
�̂ ; (3.28)

(4)Z�� :=
1

n
g�� Z ; (3.29)

(5)Z�� :=
2

n
#(� ^ ��) ; (3.30)

(1)Z�� := Z�� � (2)Z�� � (3)Z�� � (4)Z�� � (5)Z�� : (3.31)

Our main interest focuses on (3)Q��. Is it possible to relate its exterior covariant
derivative to one of the irreducible pieces of Z��? In order to answer this question
we calculate

D(3)Q�� =
2n

(n� 1)(n+ 2)

�
T(� ��) � #(� ^D��) +

1

n
Q�� ^ �� 1

n
g�� d�

�
:

(3.32)

We use the following representation of the exterior covariant derivative of the zero-
form ��:

D�� = #� e�cD�� = #�D� �� = #�D��� = #�D(���) + #�D[���] (3.33)

Let us denote the \symmetric exterior derivative" as

D�� = #�D(���) : (3.34)

The antisymmetric part can be retrieved from the exterior derivative ,

#�D[���] = �1

2
e�cd� +

1

2
e�c (T � ��) : (3.35)

Thus,

D�� = D�� � 1

2
e�c (d�� T ���) : (3.36)

Substituting this into (3.32) yields

D(3)Q�� =
2n

(n� 1)(n+ 2)

h
T(� ��) � #(� ^ D��) + 1

2
#(� ^ e�)c (d�� T 
�
)

+ 1
n
Q�� ^ �� 1

n
g�� d�

i
: (3.37)

Apparently, the right-hand side of (3.37) contains all irreducible pieces of the sym-
metric curvature Z��. Contraction with the metric, for instance, yields

g��D(3)Q�� = Q ^ � : (3.38)
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Thus, D(3)Q�� contributes to (4)Z��. For a better understanding of this structure
we make the simplifying assumptions

T � = 0 ; Q�� = (3)Q�� : (3.39)

Then we �nd

2 (3)Z��
�
= (3)D(3)Q�� =

1

(n+ 2)(n� 1)

�
n#(� ^ e�)cd�� 2g�� d�

�
; (3.40)

2 (5)Z��
�
= (5)D(3)Q�� =

4

n
#(� ^ ��) ; (3.41)

�� = � n2

(n� 1)(n+ 2)

h
D�� � 1

n
#� e

�cD��

� 2

(n� 1)(n+ 2)
(�� �� #� ����=n)

i
: (3.42)

In general, derivatives of � will occur in di�erent irreducible pieces of the symmetric
curvature Z��. However, in view of (3.40), the piece (3)Z�� seems to be the simplest
generalization of d�, especially in view of the identity, see appendix A.4.12,

(3)Z�� ^ ? (3)Z�� =
n(n� 2)

n+ 2
�̂ ^ ?�̂ ; (3.43)

which obviously should parallel d�^ ?d�. We can give the general relation between
�̂ and �, see appendix A.4.11,

�̂ =
1

2(n� 1)
d�� 1

2(n� 2)
e�cDP� � 1

2(n� 2)

(
1

n� 1
P� e

�c [(n� 1)Q� � + T ]

+

�
n+ 1

n+ 2
(1)T� +

n

n� 1
(3)T�

�
�� � �(1)Q�� + (2)Q��

� ^ e�c(1)T �

)
: (3.44)

In the special case

(1)T � = (3)T � = (2)Q�� = 0 ; (3.45)

we indeed �nd the desired simple relation

�̂ � d� ; (3.46)

and arrive at

(3)Z�� ^ ? (3)Z�� � d� ^ ?d� : (3.47)

We conclude that

(3)Q�� ^ ? (3)Q�� + (3)Z�� ^ ? (3)Z�� (3.48)
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presents itself as the centerpiece for embedding the J&M-aether �eld into metric-
aÆne gravity. However, life will not be so simple . . . The �rst Bianchi identity

0 = B� = DT � �R�
� ^ #� ; (3.49)

interweaves various pieces of nonmetricity, torsion, and curvature in a complicated
manner. By contraction we �nd

e�cB� = RIC + (n� 2) �� n� 2

2
dQ + e�c

�
D((1)T � + (3)T �)

�
+

1

n� 1
((1)T � + (3)T �) e�cT � n� 2

n� 1
dT = 0 ; (3.50)

#� ^B� = ~X �D(#� ^ (3)T�) + T � ^ T� = 0 : (3.51)

Even if we assume that the torsion only possesses its trace piece, i. e.

T � = (2)T =
1

n� 1
#� ^ T ; (3.52)

and therewith �̂ = d�=(2(n� 1)), we have

RIC � n� 2

2(n� 1)
d (2T + (n� 1)Q� �) = 0 ; (3.53)

i. e. a dynamical aether �eld requires the presence of torsion.
When setting up a Lagrangian, it seems we are forced to include also torsion.

This leads us straight to the next section.

3.4 Lagrangian for metric-aÆne gravity

We now set up a �rst-order Lagrangian for gravity and aether. The independent
variables are (g��; #

�; ��
�). These are coupled minimally to matter �elds 	,

Ltot = V (g��; #
�; Q��; T

�; R�
�) + L(g��; #

�;	; D	) : (3.54)

The variation of the matter Lagrangian

ÆL =
1

2
Æg�� �

�� + Æ#� ^ �� + Æ��
� ^��

� + Æ	 ^ ÆL

Æ	
(3.55)

allows us to identify the material currents coupled to the potentials as metric energy-
momentum and canonical energy-momentum, and as hypermomentum (���;��;�

�
�).

The energy-momenta ��� and �� are related to each other by a Belinfante-Rosenfeld
type of relation. The hypermomentum splits in spin current � dilation current �
shear current:

��� = ��� +
1

4
g�� �



 +
_

�%�� ; ��� = ���� ;
_

�%�� =
_

�%�� : (3.56)
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The hypothetical shear current
_

�%�� is discussed in [89, 59], see also the literature
given there.

The gauge Lagrangian is built in \Yang-Mills fashion", quadratic in the �eld
strengths,

VMAG � 1

�
(REC + �0 + T 2 + TQ+Q2) +

1

�
(W 2 + Z2) : (3.57)

The part in the �rst parentheses describes \weak gravity", governed by the conven-
tional gravitational constant �. It contains the usual Einstein-Cartan type term, a
cosmological term and terms quadratic in torsion and nonmetricity. Since we have
seen that torsion and nonmetricity enter into the connection and the weak-gravity
part contains no derivatives of the connection (namely the curvature), only new
contact interactions in addition to usual Newton-Einstein gravity will arise. In or-
der to make the connection propagating, we have to allow for the \strong gravity"
part in the last parentheses, characterized by the strong gravitational constant �.
It turns out that the most general (parity conserving) quadratic Lagrangian is most
appropriately displayed in terms of the 4 + 3 + 6 + 5 irreducible pieces of Q��, T �,
W�

�, and Z�
�, respectively (see [43], [95], [56], and references given):

VMAG =
1

2�

"
�a0R�� ^ ��� � 2�0 � + T � ^ �

 
3X

I=1

aI
(I)T�

!

+ 2

 
4X

I=2

cI
(I)Q��

!
^ #� ^ �T � +Q�� ^ �

 
4X

I=1

bI
(I)Q��

!

+ b5
�
(3)Q�
 ^ #�

� ^ �
�
(4)Q�
 ^ #�

� #

� 1

2�
R�� ^ �

 
6X

I=1

wI
(I)W�� + w7 #� ^ (e
c(5)W 


�)

+
5X

I=1

zI
(I)Z�� + z6 #
 ^ (e�c(2)Z


�) +
9X

I=7

zI #� ^ (e
c(I�4)Z

�)

!
: (3.58)

Here � is the dimensionful (weak) gravitational constant, �0 the \bare" cosmological
constant, and the dimensionless � is the strong gravity coupling constant. The con-
stants a0; : : : a3, b1; : : : b5, c2; c3; c4, w1; : : : w7, z1; : : : z9 are dimensionless and should
be of order unity. Note the nontrivial formula

R�� ^ ��� = (6)W�� ^ ��� : (3.59)
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The �eld equations then read

DM�� �m�� = ��� ; (zeroth) (3.60)

DH� � E� = �� ; (�rst) (3.61)

DH�
� � E�

� = ��
� ; (second) (3.62)

ÆL

Æ	
= 0 : (matter) (3.63)

The excitations or gauge momenta are given by

M�� = �2
@V

@Q��

; H� = � @V

@T �
; H�

� = � @V

@R�
�
: (3.64)

The metric energy-momentum of the gauge �elds is

m�� := 2
@V

@g��
= #�^E� +Q�


^M�
�T �^H��R

�^H
� +R�
^H�


 ; (3.65)

the canonical energy-momentum of the gauge �elds1

E� :=
@V

@#�
= e�cV + (e�cT �)^H� + (e�cR�


)^H�

 +

1

2
(e�cQ�
)M�
 ; (3.66)

and the hypermomentum of the gauge �elds

E�
� :=

@V

@��
�

= �#� ^H� � g�
M
�
 : (3.67)

One can show that if the second �eld equation is ful�lled, either the zeroth or the
�rst �eld equation is redundant due to the Noether identities. The excitations can
be read o� from the Lagrangian since we can use the Euler theorem for homogeneous
functionals. Take for instance

V (R��) = R�� ^ �

 
6X

I=1

wI
(I)W��

!
; (3.68)

and substitute R�� �! �R��. Then we have

V (�R��) = �2 V (R��) ; (3.69)

and �nd by di�erentiation with respect to �

@ V

@(�R��)
^ d (�R��)

d�
=

@ V

@(�R��)
^R�� = 2�V ; (3.70)

1For the relations between di�erent energy-momentum currents in gravitational theory one
should also compare Itin [65].
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or, for � = 1, and employing the de�nition of the momenta,

V = �1

2
H�� ^R�� : (3.71)

Then we can read o� H�� by comparison with the explicit form of V . Since all terms
in (3.58) are homogeneous in this sense, we may generally apply this scheme. This
method does not work in case of the rotational Chern-Simons Lagrangian considered
in section 2.6. Then the variation has to be carried out by hand, see appendix A.4.3.

In the following we will not have to consider the full Lagrangian in (3.58)|
remember that our main interest is focused on (3)Q�� and (3)Z��. Additionally we
will of course keep the Einstein-Cartan part. Moreover we assume some more pieces
which will allow us to cancel some parts of the �eld equations by imposing algebraic
constraints on the coupling parameters.

3.5 Simple gravity-aether model and search for

exact solutions

Now we are going to devise explicitly a simple gravity-aether model. Our idea is to
arrive at a wave-like equation for the aether �eld

D? (3)Z�
� � D?D(3)Q�

� = 0 ; (3.72)

and the usual Einstein-like equations for the gravitational part. Therefore we surely
keep Einstein-Cartan, cosmological, (3)Q2 and (3)Z2 terms. Additionally, we allow
for the torsion-square term (2)T 2, the cross term (2)T (3)Q, and the piece (6)W 2. These
will allow us to set the excitations H� and M�� to zero by means of appropriate
constraints on the coupling parameters. We thus assume the Lagrangian

VEA =
1

2�

��a0 �(6)W �� ^ ��� + 2� �
�

+ a2 T
� ^ ? (2)T� + 2c3

(3)Q�� ^ #� ^ ?T �

+b3Q�� ^ ?(3)Q��
�� 1

2
R�� ^ ?

�
w6

(6)W�� + z3
(3)Z��

�
:

By means of prolongation methods developed in [6], Baekler suggested a solution to
the �eld equations. The coframe/metric will be assumed to be of the Schwarzschild-
de Sitter form,

#0 = e�(r)dt ; #1 = e��(r)dr ; #2 = r d� ; #3 = r sin� d� ; (3.73)

where

g = �#0̂ 
 #0̂ + #1̂ 
 #1̂ + #2̂ 
 #2̂ + #3̂ 
 #3̂ ; (3.74)

together with the Schwarzschild-de Sitter function

e2�(r) = 1� 2
M

r
� �

3
r2 : (3.75)
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The torsion 2-form is

(2)T � =
L0e

��(r)

4r2
;

0BB@
#01

#01

#02 � #12

#03 � #13

1CCA ; (3.76)

whereas the tensor part (1)T � and the axially symmetric piece (3)T � vanish identic-
ally. The nonmetricity Q�� is given by

Q�� = (1)Q�� + (3)Q�� =
L0e

��(r)

2r2

0BB@
#0 + #1 0 #2 #3

0 #0 + #1 #2 #3

#2 #2 0 0
#3 #3 0 0

1CCA : (3.77)

The curvature pieces for this solution are explicitly displayed in appendix A.4.13. In
order to form a solution of the �eld equation we have to require certain constraints
on the coupling parameters,

8b3 + 3c3 = 0 ; a2 + 2c3 = 0 ; 3a0 = 2��w6 ; z3 = 0 : (3.78)

When we checked this solution by means of computer algebra, we realized that under
these conditions the aether 1-form is, in fact, completely arbitrary apart from the
fact that it has to be light-like � ^ ?� = 0. This is a pity but not very astonishing
since the (3)Z part, which governs the aether dynamics, has been canceled. In
the following we try to understand this structure better, especially the role of the
constraints.

We �rst analyze the excitations H� and M�� . For the Lagrangian (3.73) we �nd

H� = �1

�
?
�
a2

(2)T� + c3
(3)Q�� ^ #�

�
= � 1

3�
? [#� ^ (c3 � + a2 T )] : (3.79)

Hence, any two of the equations

(i) H� = 0 ; (3.80)

(ii) a2 + 2c3 = 0 ; (3.81)

(iii) T = �
2

, (3)Q�� ^ #� = 2 (2)T� ; (3.82)

imply the remaining equation. We also have

M�� = �2

�

�
b3

(3)Q�� + c3

�
#(� ^ ?(2)T �) +

1

4
g�� ?T

��
= � 2

3�

�
#(�

�
4

3
b3 ��) + c3 e

�)cT
�
� g��

�
b3
3

� +
c3
4
T

��
: (3.83)
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Again, any two of

(i) M�� = 0 ; (3.84)

(ii) 8b3 + 3c3 = 0 ; (3.85)

(iii) T = 1
2

� ; (3.86)

imply the remaining equation to hold. Thus, by assuming

a2 + 2c3 = 0 ; 8b3 + 3c3 = 0 ; T =
1

2
� ; (3.87)

the �eld equations reduce to

FIRST e�cV + (e�cR�

) ^H�


 = 0 ; (3.88)

SECOND DH�
� = 0 ; (3.89)

where

H�
� =

a0
2�

��� + w6
?(6)W �

� + z3
?(3)Z�

� : (3.90)

When assuming � = 2T and T � = (2)T �, the distortion simply evaluates to (half
of) the nonmetricity,

N�� =
1

2
Q�� : (3.91)

Since we were mainly interested in the nonmetricity, this seems to be rather satis-
factory. As a consequence we also get a particularly simple splitting of the curvature
into Riemannian and post-Riemannian parts. In general, we �nd the formula

R�
� = Rfg

�
� +DfgN�

� �N�

 ^N


�

= Rfg
�
� +DN�

� +N�

 ^N


� : (3.92)

Hence, if (3.91) holds,

R�� = Rfg
�
� +

1

2
D
�
Q�
g


�
�

+
1

4
Q�


 ^Q

�

= Rfg
�
� +

1

2
g
�DQ�
 � 1

2
Q�
 ^Q
� +

1

4
Q�


 ^Q

�

= Rfg
�
� + Z�

� � 1

4
Q�


 ^Q

� : (3.93)

From this equation we directly derive the contribution of the aether �eld to the
irreducible piece (6)W��, i. e., to the curvature scalar W = e�ce�cR��. Because of
e�ce�c = �e�ce�c, the symmetric Z�� drops out,

W = Rfg � 1

4
e�ce�c (Q�


 ^Q
�) : (3.94)
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Under the assumption Q�� = (3)Q��, the last term simply evaluates to

e�ce�c �(3)Q�

 ^ (3)Q
�

�
= �8

9
�� �� : (3.95)

If we assume a light-like aether,

0 = �� �� = ?(� ^ ?�) ; (3.96)

the curvature scalar collapses to its Riemannian part. This allows us to cancel
the (6)W and Einstein-Cartan like pieces in the �eld equation SECOND by as-
suming a metric/coframe which yields a constant Riemannian curvature, the usual
Schwarzschild-de Sitter form, for instance,

#0̂ = e�(r) dt ; #1̂ = e��(r) dr ; #2̂ = rd� ; #3̂ = r sin � d� ; (3.97)

e2�(r) = 1� 2
M

r
� �

3
r2 : (3.98)

The well-known Riemannian curvature scalar for this metric reads

(6)R�� = ��
3
#� ^ #� : (3.99)

By assuming

a0 = 2�w6
�

3
; (3.100)

we arrive at

H�
� = z3

? (3)Z�
� : (3.101)

Moreover, because of the light-likeness of �, we have

T � ^ ? (2)T� � T ^ ?T � � ^ ?� = 0 ; (3.102)

Q�� ^ ? (3)Q�� � � ^ ?� = 0 ; (3.103)
(3)Q�� ^ #� ^ ? (2)T � = 2T � ^ ? (2)T� = 0 : (3.104)

Consequently, the �eld equations read

z3
2

��
e�cZ�


� ^? (3)Z�
 � Z�
 ^ �e�c? (3)Z�


��
= 0 ; (3.105)

z3D
? (3)Z�

� = 0 : (3.106)

These equations form an algebraic constraint on the components of (3)Z�� and a
wave-like equation for (3)Q�� and are thus exactly what we were looking for. Unfor-
tunately, we were not able to �nd an exact solution for the aether �eld �. Thus it
seems that we have either to allow for di�erent pieces governing the aether dynamics
in the Lagrangian or alter the structure of the underlying Riemannian spacetime.
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Both possibilities are not too far-fetched. Since the aether 1-form as a vector-like
quantity introduces a preferred direction in spacetime, it seems plausible to assume
a cylindrically symmetric structure of spacetime and not a spherically symmetric
one, as we did in our simple ansatz (3.73). On the other hand, dynamical aether
terms also do occur in other pieces of the curvature than (3)Z, as we have seen in
(3.37). Thus, it may also be viable to postulate a ((5)Z)2-term instead or additional
to the ((3)Z)2-term in the Lagrangian. We made extensive computer algebra exper-
iments in both directions but did not succeed in �nding a sensible solution. Further
investigations are necessary.
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Appendix A

Appendix

A.1 Rules for exterior calculus

We would like to remind the reader of the following relations which hold for p-forms
� and  , and a q-form !. Furthermore we denote the exterior product by ^, the
interior product by c, the Hodge-star operator by ? and the exterior derivative by
d. The symbols u; v stand for vectors, a and b are numbers, ind is the index of the
metric.

(�+  ) ^ ! = � ^ ! +  ^ ! (A.1)

(a �) ^ ! = � ^ (a!) = a (� ^ !) (A.2)

� ^ ! = (�1)pq ! ^ � (A.3)

uc(a + b�) = auc + buc� (A.4)

(u + v)c! = uc! + vc! (A.5)

uc(� ^ !) = (uc�) ^  + (�1)p � ^ (uc!) (A.6)

ucvc� = �vcuc� (A.7)

#� ^ e�c� = p � (A.8)
?(a + b�) = a? + b?� (A.9)

?? = (�1)p(n�p)+ind  (A.10)
?(e�c ) = (�1)(p�1) #� ^ ? (A.11)

e�c? = ?( ^ #�) (A.12)
? ^ � = ?� ^  (A.13)

d(a + b�) = a d + b d� (A.14)

d(! ^ �) = d! ^ �+ (�1)q ! ^ d� (A.15)

dd� = 0 (A.16)
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A.2 Conventions of index notation

Our index notation is based on the conventions of Schouten [102] and for exterior
calculus we refer to [58]. For quick and easy reference, we display our conventions
for index positions and signs of the Christo�el symbol, the Riemann tensor, and the
Ricci tensor (holonomic indices i; j; � � � = 0; 1; 2; 3). The sign of the Ricci tensor is
the same as those of the Lij tensor and the Cotton tensor. In particular, the Ricij
sign introduces a relative sign between the Lij tensor and the Weyl tensor in the
decomposition of the curvature:

riTj
k = @iTj

k � �ij
` T`

k + �i`
k Tj

` ; (A.17)

+Rijk
` = @i�jk

` � @j�ik
` + �im

` �jk
m � �jm

` �ik
m ; (A.18)

+Ricjk = Rijk
i ; (A.19)

+R = Rij
ji ; (A.20)

Weylijk` = Rijk` +
4

n� 2
g[ij[kL`]jj] : (A.21)

An extensive comparison between the various conventions can be found in [86].

A.3 Irreducible decompositions

A.3.1 Nonmetricity

The nonmetricity splits into 4 irreducible parts:

Q�� = (1)Q�� + (2)Q�� + (3)Q�� + (4)Q�� ;

= TRINOM + BINOM + VECNOM + CONOM ;
1

2
n2(n+ 1) =

1

6
n(n� 1)(n+ 4) +

1

3
n(n2 � 4) + n + n ;

(2)Q�� = �2

3
e(�cP�) ; (A.22)

(3)Q�� =
2n

(n� 1)(n+ 2)

�
�(� #�) � 1

n
g�� �

�
; (A.23)

(4)Q�� = g�� Q ; (A.24)
(1)Q�� = Q�� � (2)Q�� � (3)Q�� � (4)Q�� : (A.25)
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A.3.2 Torsion

The torsion is a one-indexed 2-form. There are again two possibilities two build a
one-index form out of scalar valued forms, namely by taking the exterior product of
the frame with a 1-form and by taking the interior product with the frame. What
is left over is the irreducible 3rd rank piece.

T � = (1)T � + (2)T � + (3)T � ;

= TENTOR + TRATOR + AXITOR ;
1

2
n2(n� 1) =

1

3
n(n2 � 4) + n+

1

6
n(n� 1)(n� 2) ; (A.26)

where

(2)T � =
1

n� 1
#� ^ (e�cT �) ; (A.27)

(3)T � =
1

3
e�c(T � ^ #�) ; (A.28)

(1)T � = T � � (2)T � � (3)T � : (A.29)

A.3.3 Curvature

According to [58, 82] the curvature 2-form in a metric-aÆne spacetime decomposes
into 11 irreducible pieces. First we split it into a symmetric and an antisymmetric
part,

R�� = W�� + Z�� ; W�� = R[��] ; Z�� = R(��) : (A.30)

The antisymmetric piece W�� can be further decomposed with respect to the pseudo-
orthogonal group:

W�� = (1)W�� + (2)W�� + (3)W�� + (4)W�� + (5)W�� + (6)W��

= Weyl + Paircom + Pscalar + Ricsymf + Ricanti + Scalar ;

where

(2)W�� = (�1)ind ?(#[� ^  �]) = e[�c ~ �] ; (A.31)

(3)W�� = (�1)ind
1

12
?(X ^ #� ^ #�) = � 1

12
e�ce�c ~X ; (A.32)

(4)W�� = � 2

n� 2
#[� ^ ��] ; (A.33)

(5)W�� = � 1

n� 2
#[� ^ ��] ; (A.34)

(6)W�� = � 1

n(n� 1)
W #� ^ #� ; (A.35)

(1)W�� = W�� � (2)W�� � (3)W�� � (4)W�� � (5)W�� � (6)W�� ; (A.36)
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with the traces

W � := e�cW �� ; W := e�cW � ; X� := ?(W ��^#�) ; X := e�cX� ; (A.37)

and the covector-valued forms

 � := X� � 1

4
#� ^X � 1

n� 2
e�c(#� ^X�) ; (A.38)

�� := W� � 1

n
W #� � 1

2
e�c(#� ^W�) ; (A.39)

�� := e�c(#� ^W�) =: e�cRIC : (A.40)

We can get rid of the stars in the de�nition of the various traces,

RIC = #� ^ (e�cW�
�) ; (A.41)

~X = W�� ^ #� ^ #� = (�1)ind ?X ; (A.42)

~ � = W�� ^ #� +
1

4
e�c ~X +

1

n� 2
#� ^RIC = (�1)(n�1)+ind ? � : (A.43)

We �nd characteristic contraction properties,

e�c�� = 0 ; �� ^ #� = 0 ; (A.44)

e�c ~ � = 0 ; ~ � ^ #� = 0 ; (A.45)

e�c�� = 0 ; �� ^ #� = �2RIC : (A.46)

The 1-form pieces can be collected,

L� = �� +
1

2
�� +

n� 2

2n(n� 1)
W #� = e�cW�

� � 1

2(n� 1)
W #� : (A.47)

We may give a very intuitive representation of the irreducible decomposition. In the
�rst line of (A.48) we have the irreducible 4th-rank piece for which all contractions
vanish. In the second line are pieces displayed which e�ectively correspond to a 1-
form with one index multiplied with the coframe. In the last line of (A.48) we display
the pieces which can be obtained by taking the interior product with a 3-form.

W�� = (1)W��

� 2

n� 2
#[� ^ ��] � 1

n� 2
#[� ^ ��] � 1

n(n� 1)
R#� ^ #�

+e[�c ~ �] � 1

12
e�ce�c ~Z : (A.48)

For the symmetric part we �nd 5 irreducible pieces,

Z�� = (1)Z�� + (2)Z�� + (3)Z�� + (4)Z�� + (5)Z�� ; (A.49)
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where the single pieces are de�ned according to

(2)Z�� =
1

2
(�1)ind ?

�
#(� ^ ��)

	
; (A.50)

(3)Z�� =
1

n + 2

n
n#(� ^ (e�)c�̂)� 2g�� �̂

o
; (A.51)

(4)Z�� =
1

n
g�� Z ; (A.52)

(5)Z�� =
2

n
#(� ^ ��) ; (A.53)

(1)Z�� = Z�� � (2)Z�� � (3)Z�� � (4)Z�� � (5)Z�� ; (A.54)

where

Z�� =: Z% �� + 1
n
g�� Z



 ; (A.55)

Z% � := e�cZ% �� ; �̂ := 1
n�2

#� ^ Z% � ; Y� := ?(Z% �� ^ #�) ; (A.56)

�� := Z% � � 1
2
e�c(#
 ^ Z% 
) ;�� := Y� � 1

n�2
e�c(#
 ^ Y
) : (A.57)

The contractions of � and � vanish,

e�c�� = 0 ; #� ^ �� = 0 ; e�c�� = 0 ; #� ^ �� = 0 : (A.58)

Contractions of the irreducible pieces of the curvature

Contractions with the coframe

(1)W�
� ^ #� = 0 ; (A.59)

(2)W�
� ^ #� = ~	� ; (A.60)

(3)W�
� ^ #� = �1

4
e�c ~X ; (A.61)

(4)W�
� ^ #� = 0 ; (A.62)

(5)W�
� ^ #� = � 1

n� 2
#� ^ RIC ; (A.63)

(6)W�
� ^ #� = 0 ; (A.64)

(1)Z�
� ^ #� = 0 ; (A.65)

(2)Z�
� ^ #� = (�1)n�1+sgn ?�� ; (A.66)

(3)Z�
� ^ #� = ��̂ ^ #� ; (A.67)

(4)Z�
� ^ #� =

1

2
dQ ^ #� ; (A.68)

(5)Z�
� ^ #� = 0 : (A.69)
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Contractions with the frame

e�c(1)W�
� = 0 ; (A.70)

e�c(2)W�
� = 0 ; (A.71)

e�c(3)W�
� = 0 ; (A.72)

e�c(4)W�
� = �� ; (A.73)

e�c(5)W�
� =

1

2
e�cRIC ; (A.74)

e�c(6)W�
� =

1

n
W #� ; (A.75)

e�c(1)Z�
� = 0 ; (A.76)

e�c(2)Z�
� = 0 ; (A.77)

e�c(3)Z�
� =

n� 2

2
e�c�̂ ; (A.78)

e�c(4)Z�
� =

1

n
e�cZ ; (A.79)

e�c(5)Z�
� = �� : (A.80)

Contractions with the frame and the coframe

e�c
�
(1)W�

� ^ #�� = 0 ; (A.81)

e�c
�
(2)W�

� ^ #�� = 0 ; (A.82)

e�c
�
(3)W�

� ^ #�� = 0 ; (A.83)

e�c
�
(4)W�

� ^ #�� = 0 ; (A.84)

e�c
�
(5)W�

� ^ #�� = �RIC ; (A.85)

e�c
�
(6)W�

� ^ #�� = 0 ; (A.86)

e�c
�
(1)Z�

� ^ #�� = 0 ; (A.87)

e�c
�
(2)Z�

� ^ #�� = 0 ; (A.88)

e�c
�
(3)Z�

� ^ #�� = �(n� 2) �̂ ; (A.89)

e�c
�
(4)Z�

� ^ #�� =
n� 2

2
dQ ; (A.90)

e�c
�
(5)Z�

� ^ #�� = 0 : (A.91)
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Double-duality relations in n = 4

(1)W ��� =
1

2
����� (1)W�� = ? (1)W �� ; (A.92)

(2)W ��� =
1

2
����� (2)W�� = �? (2)W �� ; (A.93)

(3)W ��� =
1

2
����� (3)W�� = ? (3)W �� ; (A.94)

(4)W ��� =
1

2
����� (4)W�� = �? (4)W �� ; (A.95)

(5)W ��� =
1

2
����� (5)W�� = ? (5)W �� ; (A.96)

(6)W ��� =
1

2
����� (6)W�� = ? (6)W �� : (A.97)

A.4 Calculations

A.4.1 Double-duality relations for the curvature

In this section we proof the double-duality relations for the irreducible pieces of the
antisymmetric curvature. The proofs all work in a similar way by computing

e�ce�c(��� ^ (i)W��) = e�ce�c(? (i)W�� ^ #� ^ #�) ;

and making use of the contraction properties of the respective curvature pieces.

1) (1)W��� = 1
2
����� (1)W�� = ? (1)W��

Because of e�c(1)W�� = 0 we directly �nd

e�ce�c(��� ^ (1)W��) = ����� (1)W�� : (A.98)

On the other hand (#� ^ (1)W�� = e�c?(1)W�� = 0),

e�ce�c(��� ^ (1)W��) = e�ce�c �?(#� ^ #�) ^ (1)W��

�
= e�ce�c �? (1)W�� ^ #� ^ #�

�
= 2? (1)W�� : (A.99)

2) (2)W��� = 1
2
����� (2)W�� = �? (2)W��

Since e�c(2)W�� = 0 we again have

e�ce�c(��� ^ (2)W��) = ����� (2)W�� : (A.100)
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Shifting the Hodg-star and using (2)W�� = e[�c ~ �] ; we �nd

e�ce�c(��� ^ (2)W��) = e�ce�c �? (2)W�� ^ #� ^ #�
�

= ?((2)W�� ^ #� ^ #�) ^ #� ^ #�
+2? (2)W �� � 4 ?((2)W�

[�j ^ #�) ^ #j�]
= 2? (2)W �� � 4 ? ~ [� ^ #�] = 2? (2)W �� � 4 ?(e[�c ~ �])

= �2? (2)W �� (A.101)

3) (3)W��� = 1
2
����� (3)W�� = ? (3)W��

We have once more e�c(3)W�� = 0,

e�ce�c(��� ^ (3)W��) = ����� (3)W�� : (A.102)

On the other hand, remembering

(3)W�� = � 1

12
e�ce�c eX ;

we obtain,

e�ce�c(��� ^ (3)W��) = e�ce�c �? (3)W�� ^ #� ^ #�
�

= ?((3)W�� ^ #� ^ #�) ^ #� ^ #�
+2 ? (3)W �� � 4 ?((3)W�

[�j ^ #�) ^ #j�]
= ? eX #� ^ #� + 2 ? (3)W �� + ?(e[�c eX) ^ #�]
= 2 ? (3)W �� (A.103)

4) (4)W��� = 1
2
����� (4)W�� = �? (4)W��

In this case the contraction with the frame is non-vanishing,

e�ce�c(��� ^ (4)W��) = ����� (4)W�� + 2�� ^ ���� : (A.104)

In view of

(4)W �� = �#[� ^ ��] ;
the last term on the right hand side can be reformulated,

�� ^ ���� = �� ^ #� ^ e�c���� = �� ^ #� �����
= � (4)W�� �

���� : (A.105)

Hence,

e�ce�c(��� ^ (4)W��) = ������ (4)W�� : (A.106)

Now we use #� ^ (4)W�� = e�c ? (4)W�� = 0,

e�ce�c(��� ^ (4)W��) = e�ce�c �? (4)W�� ^ #� ^ #�
�

= 2 ? (4)W �� ; (A.107)

which completes the proof.
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5) (5)W��� = 1
2
����� (5)W�� = ? (5)W��

Since only the double contractions (5)W��^#�^#� = 0 and e�ce�c(5)W�� = 0 vanish
the proof is a little bit more involved. We use

(5)W�� = �1

2
#[� ^ ��] ; �� = e�cRIC ;

and calculate

e�ce�c(��� ^ (5)W��) = �1

2
e�ce�c(��� ^ #� ^ ��)

= �1

2
(����� #� ^ �� + 2 ���� ^ ��)

= �1

2
(����� #� ^ �� + 2#� ^ ����� ^ ��)

=
1

2
(����� #� ^ ��) = ������ (5)W�� : (A.108)

On the other hand

e�ce�c(��� ^ (5)W��) = e�ce�c �? (5)W�� ^ #� ^ #�
�

= ?((5)W�� ^ #� ^ #�) ^ #� ^ #�
+2 ? (5)W �� � 4 ?((5)W�

[�j ^ #�) ^ #j�]
= 2 ? (5)W �� + 2 ?(#[� ^RIC) ^ #�]
= 2 ? (5)W �� + 2 ?(#[� ^ e�]cRIC)

= 2 ? (5)W �� + 2 ?(#[� ^ ��]) = �2 ? (5)W �� ; (A.109)

which completes the proof.

6) (6)W��� = 1
2
����� (6)W�� = ? (6)W��

This is quite easy,

1

2
����� (6)W�� =

1

24
W ����� #� ^ #� =

1

24
W #� ^ #� ^ (e�ce�c���)

=
1

12
W ��� =

1

12
W ?(#� ^ #�) = ? (6)W �� : (A.110)

A.4.2 Bach 3-form and Bianchi identity

By means of the Ricci identity and the decomposition of the curvature we have

DD?C� = �R�
� ^ ?C�

= �Weyl�
� ^ ?C� � Ricci% �

� ^ ?C� � Scalar�
� ^ ?C� : (A.111)
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For p-forms �,  of the same degree, there holds ?� ^  = ? ^ �. By means of
#� ^ ?� = (�1)p�1 ?(e�c�), we can prove that Scalar�� ^ ?C� = 0. Performing a
\partial integration" we arrive at

DD?C� = �D �?Weyl�
� ^ L�

�
+
�
D?Weyl�

�
� ^ L� � ?Ricci% �

� ^C� : (A.112)

Next, we use the \double duality relations" for the irreducible pieces of the curvature,

?Weyl�� = Weyl��
1

2
����� ; (A.113)

?Ricci% �� = �Ricci% ��
1

2
����� ; (A.114)

?Scalar�� = Scalar��
1

2
����� : (A.115)

Together with eqs.(1.63) and (1.57), we obtain

�
D?Weyl�

�
� ^ L� =

1

2
����

�DWeyl�� ^ L� = � 1

2
����

� #[� ^ C�] ^ L�

= �1

2
����� #� ^ L� ^ C� = �?Ricci% �

� ^ C� + ?Scalar�� ^ C�

= ?Ricci% �
� ^ C� : (A.116)

Substituting this into (A.112) completes the proof.

A.4.3 Variation of the ECCS Lagrangian

We consider the Lagrangian

CRR = �1

2

�
��

� ^ d��
� � 2

3
��

� ^ ��

 ^ �


�

�
: (A.117)

The variation of this Chern-Simons Lagrangian, which only depends on the connec-
tion, turns out to be

ÆCRR = �Æ��
� ^ R�

� +
1

2
d
�
��

� ^ Æ��
�
�
: (A.118)

In the next step, we enforce vanishing torsion and nonmetricity by means of respect-
ive Lagrange multiplier terms:

L = CRR + �� ^ T � + ��� ^Q�� : (A.119)
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The variation then yields

ÆL = ÆCRR + Æ�� ^ T � + �� ^ ÆT � + Æ��� ^Q�� + ��� ^ ÆQ��

= �Æ��
� ^ R�

� + Æ�� ^ T � + �� ^
�
dÆ#� + Æ��

� ^ #� + ��
� ^ Æ#��

+Æ��� ^Q�� + ��� ^ (�dÆg�� + Æ��

 g
� + ��


 Æg
� + Æ��

 g�
 + ��


 Æg�
)

+
1

2
d
�
��

� ^ Æ��
�
�

= �Æ��
� ^ R�

� + Æ�� ^ T � + Æ��� ^Q�� +
1

2
d
�
��

� ^ Æ��
�
�

+ �� ^DÆ#�

�Æ��
� ^ �� ^ #� � ��� ^DÆg�� + Æ��

� ^ (��� + ��
�)

= Æ�� ^ T � + Æ��� ^Q�� + Æ#� ^D�� + Æg��D�
��

�Æ��
� ^ (R�

� + �� ^ #� � ��� � ��
�)

�d
�
��� ^ Æ#� +

1

2
��

� ^ Æ��
� � ��� Æg��

�
: (A.120)

A.4.4 Variational principle for the Bach 3-form

Our aim is to carry out the variation of Weyl�� ^ ?Weyl�� with respect to the
coframe assuming vanishing torsion and nonmetricity. In order to use our canonical
formalism we note that due to the orthogonality relations for the irreducible pieces,

(i)R�� ^ ? (j)R�� = 0 for i 6= j ; (A.121)

we may start from the Lagrangian

VBach = �1

2
R�� ^ ?Weyl�� +

1

2
Q�� ^ ��� + T � ^ �� : (A.122)

We again can eliminate the zeroth �eld equation by means of the Noether identity
and arrive at

Q�� = 0 ; (A.123)

T� = 0 ; (A.124)

D?Weyl�� � #[� ^ ��] = 0 ; (A.125)

D�� + E� = 0 ; (A.126)

where

E� =
1

2

�
(e�cR�
) ^ ?Weyl�
 � R�
 ^ (e�c?Weyl�
)

�
: (A.127)

In n = 4 we can express D?Weyl�� in terms of the Cotton 2-form since, only in
n = 4, we have the double-duality relation

?Weyl�� =
1

2
����� Weyl�� : (A.128)
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Then we can express the covariant derivative of the Weyl 2-form by means of the
Cotton 2-form, see table 1.2. Moreover we use some relations for the Hodge-dual
and that the contractions of the Cotton 2-form with the frame and the coframe,
respectively, are zero. Thus we �nd

D?Weyl�� =
1

2
�����DWeyl��

= �1

2
����� #� ^ C� =

1

2
���

� ^ C� =
1

2
(e�c���) ^ C�

=
1

2
e�c(��� ^ C�) =

1

2
e�c(?C� ^ #� ^ #�) = �#[� ^ ?C�] : (A.129)

Substituting this into (A.125) directly yields

�� = �?C� : (A.130)

In order to compute E�, we also use the double-duality relation and additionally
the irreducible decomposition of the curvature. First, we �nd

(e�cR�
) ^ ?Weyl�
 = (e�cWeyl�
) ^ ?Weyl�


� �e�c(#� ^ L
)
� ^ ?Weyl�
 ; (A.131)

(e�c?Weyl�
) ^R�
 = (e�c?Weyl�
) ^Weyl�


�(e�c?Weyl�
) ^ #� ^ L
 : (A.132)

The double-duality relation amounts to the equality of the �rst terms on the re-
spective right-hand sides,

(e�c?Weyl�
) ^Weyl�
 =

�
e�c
�

1

2
��
�� Weyl��

��
^Weyl�


= (e�cWeyl��) ^
�

1

2
��
�� Weyl�


�
= (e�cWeyl��) ^ ?Weyl�� : (A.133)

Now we treat the mixed terms. Here we use the property of the Weyl 2-form
that the contractions with the frame and the coframe vanish. Consequently, also
the respective contractions with the Hodge-dual of the Weyl 2-form vanish (since
ec?(: : : ) = ?(� � � ^ #�)),�

e�c(#� ^ L
)
� ^ ?Weyl�
 = L
 ^ ?Weyl�
 � #� ^ (e�cL
) ^ ?Weyl�


= L
 ^ ?Weyl�
 (A.134)

(e�c?Weyl�
) ^ #� ^ L
 = L
 ^ �e�c �#� ^ ?Weyl�

�� ?Weyl�


�
= �L
 ^ ?Weyl�
 : (A.135)

Consequently,

E� = �L
 ^ ?Weyl�
 : (A.136)
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Eventually we arrive at

ÆVBach
Æ#�

= �(D?C� + L
 ^ ?Weyl�
) = �B� ; (A.137)

where the expression for the Bach 3-form does exactly coincide with the one con-
structed from the Bianchi identity, see appendix A.4.2.

A.4.5 Decomposition of the Einstein-Hilbert Lagrangian in

a Riemann-Cartan space

We use the basic de�nitions

RC-curvature R�
� = d��

� � ��

 ^ �


� ,
Torsion T � = d#� + ��

� ^ #� ,
Contortion ([58] 3.10.10) T � =: K�

� ^ #� ,
K�� = �K�� = e[�cT�] � 1

2
(e�ce�cT
)#
 ,

Riemannian connection �
fg
�� = ��� +K�� ,

Riemann curvature Rfg
�� := d�fg

�
� � �fg

�

 ^ �fg



� :

Then we have:

R�
� = d�fg

�
� � dK�

� � ��fg
�

 �K�



� ^ ��fg



� �K


�
�

= d�fg
�
� � dK�

� � �fg
�

 ^ �fg



� +K�


 ^ �fg


� + ��


 ^K

�

��

�
^K�


 + �

�
^K�




= Rfg
�
� �DK�

� +K�

 ^K


� : (A.138)

Next, we use

d
�
K�� ^ ���

�
= D

�
K�� ^ ���

�
=
�
DK��

� ^ ��� �K�� ^D���
[58] 3:8:5

=
�
DK��

� ^ ��� �K�� ^ T 
 ^ ���
 : (A.139)

Hence,

R��^��� = Rfg ��^����d
�
K�� ^ ���

��K��^T 
^���
+K�
^K

�^��� : (A.140)

The last two terms are proportional:

K�� ^ T 
 ^ ���
 = �K�� ^KÆ

 ^ #Æ ^ ���


1
= �K�� ^KÆ


 ^ ?
�
eÆc (#� ^ #� ^ #
)

�
= �K�� ^KÆ


 ^ ?
��
ÆÆ� #� ^ #
 � ÆÆ� #� ^ #
 + ÆÆ
 #� ^ #�

��
= 2K�
 ^K


� ^ ��� : (A.141)

The last equality follows because K�� is antisymmetric.
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Up to know, we have

R�� ^ ��� = Rfg �� ^ ��� � d
�
K�� ^ ���

�� 1

2
K�� ^ T 
 ^ ���
 : (A.142)

Let us express

K�� ^ ���
 = e[�cT �] ^ ���
 � 1

2

�
e�ce�cTÆ

�
#Æ ^ ���


in terms of irreducible pieces of the torsion.
We consider the two terms separately:

e[�cT �] ^ ���
 = e�cT � ^ ���
 = e�c �T � ^ ���

�� T � ^ e�c���
| {z }

=0

= �e�c �T � ^ (e�c��
)
�

= �e�c �e�c �T � ^ ��

�� �e�cT �

� ^ ��
�
2
= �e�c �e�c �#� ^ #
 ^ ?T �

�� (e�cT �) ^ ��

�

3
= �e�c �#
 ^ ?T� � #� ^ ?T
 + #� ^ #
 ^ ?(T � ^ #�)� (e�cT �) ^ ��


�
4
= �?T
 + #
 ^ ?(T� ^ #�) + n ?T
 � (n� 2) ?T
 � n#
 ^ ?(T � ^ #�)

+(n� 2)#
 ^ ?(T � ^ #�) + (e�ce�cT �) ^ ��

= ?T
 � #
 ^ ?(T � ^ #�) + (e�ce�cT �) ^ ��
 : (A.143)

Moreover:

(e�ce�cT �) ��
 = e
c
�
(e�ce�cT �) ��

�
= e
c

�
e�c �#� ^ ?(e�cT �)

�	
= e
c

�
n ?(e�cT �)� (n� 1) ?(e�cT �)

�
= �?

�
#
 ^ (e�cT �)

�
: (A.144)

We turn to the second term:

(e�ce�cTÆ)#Æ ^ ���
 = (e�ce�cTÆ) ?
�
eÆc(#� ^ #� ^ #
)

�
= (e�ce�cT�) ��
 � (e�ce�cT�) ��
 + (e�ce�cT
) ���

= �2
�
e�c(e�cT �)

�
��
 � 2 ?T
 : (A.145)

The last equality follows because

?T
 = ?

�
1

2
T��
 #

� ^ #�
�

=
1

2
(e�ce�cT
) ��� : (A.146)

1For a p-form  we have #� ^
? = (�1)(p�1) ? (e�c )

2� ^ ? =  ^ ?� for rank� = rank 
3e�c

?� = ?(� ^ #�)
4#� ^ (e

�c�) = p� for p = rank�
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The irreducible decomposition of the torsion reads

(2)T � =
1

n� 1
#� ^ (e�cT �) ; (A.147)

(3)T � = (�1)ind(g)
1

3
?
�
#� ^ ?(T � ^ #�)

�
; (A.148)

(1)T � = T � � (2)T � � (3)T � : (A.149)

We also need

?(3)T 
 = (�1)s
1

3

�
#� ^ ?(T � ^ #�)

�
(�1)(n�2)(n�(n�2))+ind(g) =

1

3
#� ^ ?(T � ^#�) :

(A.150)

(according to [82] (2.10) and [58] (3.7.5) ind and s is used synonymous). Then,

K�� ^ ���
 = e�cT � ^ ���
 � 1

2
(e�ce�cTÆ)#Æ ^ ���


= 2 ?T
 � #
 ^ ?(T � ^ #�)� 2 ?
�
#
 ^ (e�cT �)

�
= 2 ?(1)T
 + 2 ?(2)T
 + 2 ?(3)T
 � 3 ?(3)T
 � 2(n� 1) ?(2)T


= 2

�
?(1)T
 � (n� 2) ?(2)T
 � 1

2
?(3)T


�
: (A.151)

Last, we rewrite

K�� ^ ��� = e�cT � ^ ��� � 1

2
(e�ce�cT
)#
 ^ ���

= e�c(T � ^ ���) + (�1)n�2 ?T 
 ^ #
 = e�c(#� ^ #� ^ ?T �) + #
 ^ ?T 


= n#� ^ ?T � � (n� 1)#� ^ ?T � + #
 ^ ?T 
 = 2#
 ^ ?T 
 : (A.152)

Substituting this into eq.(A.142) we �nd the �nal result:

R�� ^ ��� = Rfg�� ^ ��� � 2 d(#� ^ ?T �)

+T � ^ ?

�
�(1)T� + (n� 2) (2)T� +

1

2
(3)T�

�
: (A.153)

A.4.6 On the Einstein choice in metric-aÆne space

In a n-dimensional metric-aÆne space we have the following geometric identity:

���
 ^ T 
 = �2#[� ^ ?

�
(1)T�] � (n� 2) (2)T�] � 1

2
(3)T�]

�
: (A.154)

We start from (T := e�cT �):

���
 ^ T 
 = e
c (��� ^ T 
)� (�1)n�2 ��� ^ T : (A.155)
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The �rst term on the rhs can be rewritten as

e
c (��� ^ T 
) = e
c (?(#� ^ #�) ^ T 
) = e
c (?T 
 ^ #� ^ #�)

= (e
c?T 
) ^ #� ^ #� + (�1)n�2 [ ?T 
 g�
 ^ #� � ?T 
 ^ #� g�
 ]

= ?(T 
 ^ #
) ^ #� ^ #� + 2(�1)n�2 ?T[� ^ #�]
= ?(T 
 ^ #
) ^ #� ^ #� � 2#[� ^ ?T�] : (A.156)

We can rewrite this formula in terms of the irreducible components of the torsion,

?(3)T � = (�1)s
1

3
??
�
#� ^ ?(T � ^ #�)

�
=

1

3
#� ^ ?(T � ^ #�) : (A.157)

Hence,

#[� ^ ?(3)T�] =
1

3
?(T 
 ^ #
) ^ #[� ^ #�] =

1

3
?(T 
 ^ #
) ^ #� ^ #� : (A.158)

Substituting T � = (1)T � + (2)T � + (3)T �, and (A.156, A.158) into (A.155) we
obtain

���
 ^ T 
 = 3#[� ^ ?(3)T�] � 2#[� ^ ?
�
(1)T�] + (2)T�] + (3)T�]

�� T ^ ���
= �2#[� ^ ?

�
(1)T�] + (2)T�] � 1

2
(3)T�]

�
� T ^ ��� : (A.159)

The term T^��� can be expressed by the piece (2)T� alone. Since �^T is a n+1-form
we have

0 = e�ce�c(� ^ T ) = e�c [�� ^ T + (�1)n � (e�cT )]

= ��� ^ T + 2(�1)n�1 �[� e�]cT ; (A.160)

or,

T ^ ��� = 2 �[� e�]cT : (A.161)

For ? (2)T� we �nd

#� ^ ? (2)T� =
1

n� 1
#� ^ ?(#� ^ T ) = � 1

n� 1
#� ^ e�c?T

=
1

n� 1
[e�c(#� ^ ?T )� g��

?T ]

=
1

n� 1

�
(�1)n�1 e�c(?T ^ #�)� g��

?T
�

=
1

n� 1

�
(�1)n�1 e�c(�� ^ T )� g��

?T
�

=
1

n� 1
[�T ^ ��� + �� (e�cT )� g��

?T ] : (A.162)
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Antisymmetrizing and substituting (A.162) we arrive at

#[� ^ ? (2)T�] =
1

n� 1

��T ^ ��� + �[� e�]cT
�

= � 1

2(n� 1)
T ^ ��� : (A.163)

Substituting (A.163) into (A.159) yields

���
 ^ T 
 = �2#[� ^ ?

�
(1)T�] + (2)T�] � 1

2
(3)T�]

�
+ 2(n� 1)#[� ^ ? (2)T�]

= �2#[� ^ ?

�
(1)T�] � (n� 2) (2)T�] � 1

2
(3)T�]

�
: (A.164)

A.4.7 Conformal transformation of the Riemannian connec-

tion

In order to compare our results to [58], in this section, we use C� for the object of
anholonomity and 
 for the conformal factor!

According to (1.38), the Riemannian connection reads

�
fg
�� =

1

2
dg�� + (e[�cdg�]
)#
 + e[�cC�] � 1

2
(e�ce�cC
)#
 ; (A.165)

where the anholonomity is given by

C� = g�� C
� = g�� d#

� : (A.166)

We consider the combined transformations

~g�� = 
L�2F g�� ; ~#� = 
F #� ; ~e� = 
�F e� : (A.167)

Substitution into 3.10.9 yields:

d(~g��) = (L� 2F ) 
L�2F (d ln 
) g�� + 
L�2F dg�� ; (A.168)

(~e[�cd~g�]
) ~#
 = e[�cd(
L�2F g�]
)#


= (L� 2F ) 
L�2F (e[�cd ln 
) g�]
 #



+
L�2F (e[�cdg�]
)#
 : (A.169)

With the de�nition (A.166) we obtain:

~e[�c ~C�] = 
L�3F e[�cg�]
 d(
F #
)

= 
L�2F e[�cC�] + F 
L�2F e[�c(g�]
 d ln 
 ^ #
)

= 
L�2F e[�cC�] + F 
L�2F e[�c(d ln 
 ^ #�]) ; (A.170)

(~e�c~e�c ~C
) ~#
 = 
�F (e�ce�c ~C
)#
 = 
L�3F e�ce�c(g
Æ d(
F#Æ))#


= 
L�2F (e�ce�cC
)#


+
L�2F F (e�ce�c(d ln 
 ^ #
))#
 : (A.171)
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Thus,

~�
fg
�� = 
L�2F �

fg
�� +

1

2
(L� 2F ) 
L�2F [g�� d ln 
 + 2( e[�cd ln 
) g�]
#


 ]

�1

2
F 
L�2F [(e�ce�c(d ln 
 ^ #
))#
 � 2 e[�c(d ln 
 ^ #�])] : (A.172)

It should be noted that this result di�ers from the corresponding formula eq.(3.14.12)
in [58]. It seems there is used the incorrect equation C� = d#�.

Remark. Because of the simple structure of d ln 
 = d� = �;� #
� (with 
 =

exp �), the terms can be considerably simpli�ed (the only possibilities to built 2-
indexed 1-forms from �;�, g�� and #� are d� g�� and �;� #�).

(e[�c(d ln 
) g�]
)#
 =
1

2
(�;� #� � �;� #�) ; (A.173)

g�� d ln 
 = g�� d� ; (A.174)

(e�ce�c(d ln 
 ^ #
))#
 = �2 �;[� #�] ; (A.175)

e[�c(d ln 
 ^ #�]) = �;[� #�] ; (A.176)

such that

~�
fg
�� = 
L�2F �

fg
�� +

1

2
(L� 2F ) 
L�2F (g�� d� + �;� #� � �;� #�)

+F 
L�2F (�;� #� � �;� #�) : (A.177)

The pieces arising from the conformal transformation are tensorial,

S�� =
1

2
(L� 2F ) 
L�2F (g�� d� + �;� #� � �;� #�)

+F 
L�2F (�;� #� � �;� #�) : (A.178)

We have:

S(��) =
1

2
(L� 2F ) 
L�2F g�� d� (A.179)

which corresponds to Q�� = 0 ) ~Q�� = 0.

S�
� ^ #� = F 
L�2Fd� ^ #� ; (A.180)

i.e. T � = 0 ) ~T � = 0 if F = 0.

A.4.8 Bach- and Chevreton tensor

We proof that under the conditions

riTij = 0 (divergence free), (A.181)

Gij = � Tij (Einstein equation), (A.182)

T ij gij = 0 (trace free), (A.183)

TijT
j
j � 1

4
T kl Tkl gij = 0 (Rainich condition), (A.184)
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the Bach tensor

Bij = rk Cikj + Lkl Weylikjl = 2rkr[iLk]j + Lkl Weylikjl ; (A.185)

can be rewritten as

Bij = �Hij := �2G Tij := �2Tij + 2Cikjl T
kl : (A.186)

We use holonomic coordinates a; b; c; d; i; j and assume � = 1.
Because the energy momentum is trace free, the �eld equation yields

Tab = Gab = Ricab = Lab : (A.187)

Substituting this into (A.185) we obtain

Bab = rcraTcb �rcrcTab + T cd Weylacbd : (A.188)

We employ the Ricci identity,

rcraT
c
b �rarcT

c
b = Rcad

c T d
b �Rcab

d T c
d = Ricad T

d
b �Rcab

d T c
d : (A.189)

We use the irreducible decomposition of the curvature and arrive at

rcraT
c
b �rarcT

c
b = Ricad T

d
b �Weylcab

d T c
d + 2(g[cj[bLd]ja])T

cd : (A.190)

Replacing Lab and Ricab via the �eld equation yields

rcraT
c
b �rarcT

c
b = �Weylcab

d T c
d + 2

�
TacT

c
b � 1

4
gab TcdT

cd

�
: (A.191)

The second term on the right hand side vanishes because of the Rainich identity.
Using rcT

c
b = 0 and substituting the result into (A.188) we get

Bab = �rcrcTab + 2T cdWeylacbd = �Hab : (A.192)

A.4.9 Conservation of the Chevreton 3-form in 
at space-

time

The Chevreton 3-form reads

H� =
1

2
e�c(F� ^� F�)�F� ^ (e�c�F�) (A.193)

=
1

2

�
(e�cF�) ^� F�)� F� ^ (e�c�F�)

�
; (A.194)

where

F� := D(e�c�F ) : (A.195)
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We now prove the conservation of H� in 
at space. We use holonomic coordinates
a; b; i; j; k : : : By construction we have, in 
at space,

dFi = dd(eic�F ) = 0 : (A.196)

Moreover,

d�Fa = d�d(eac�F ) = d�d(Fij�
ij
a=2) = d�(@kFij#

k ^ �ija=2)

= d�(@kFij(g
ki�ja � gkj�ia + Æka�

ij)=2)
@iF

i
j = 0

= d�(@a
�F ) = �d@aF = �@adF = 0 : (A.197)

Both equations will not hold in a general spacetime! Using dFa = 0 = d�Fa, the
exterior derivative of Ha amounts to

�2dHa = Fb ^ d(eac�F b)� d(eacFb) ^�F b = Fb ^ $ea
�F b � ($eaFb) ^�F b

= Fb ^�$eaF b � ($eaFb) ^�F b

= ($eaF b) ^�Fb � ($eaFb) ^�F b = 0 : (A.198)

I have used here

$�
ea = �$ea ; $eaF b = eacdF b + d(eacF b) : (A.199)

A.4.10 Contortion and curvature for constant axial torsion

We start from our ansatz for the torsion

T � = 2
T
`
�� : (A.200)

The contortion 1-form is de�ned according to

K�� = e[�cT�] � 1

2
(e�ce�cT
) #
 : (A.201)

The �rst term thus gives

e[�cT�] = 2
T
`
e[�c��] = �2

T
`
��� : (A.202)

For the second term we �nd

(e�ce�cT
) #
 = 2
T
`
#
 e�ce�c�
 = �2

T
`
#
 e
c��� = �2

T
`
��� : (A.203)

Consequently,

K�� = �T
`
��� : (A.204)
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In order to calculate the curvature we proceed from

R�� = R
fg
�� �DK�� +K�


 ^K
� : (A.205)

We have the identity

D��1:::�p = �1

2
nQ ^ ��1:::�p + T � ^ ��1:::�p� : (A.206)

Hence,

DK�� = �T
`
D��� = �T

`
T 
 ^ ���
 = �2

T 2

`2
�
 ^ ���
 : (A.207)

For the product of the �'s, in n = 3, it holds

�
 ^ ���
 = e
c(� ���
) = e
c(?1 ?(#� ^ #� ^ #
)) = e
c(??(#� ^ #� ^ #
))

= (�1)inde
c(#� ^ #� ^ #
) = (�1)ind #� ^ #� : (A.208)

Consequently, for odd index of the metric,

DK�� = 2
T 2

`2
#� ^ #� : (A.209)

Finally we treat

K�

 ^K
� =

T 2

`2
��


 ^ �
� =
T 2

`2
e
c(�� ^ �
�) =

T 2

`2
e
c(?#� ^ ?(#
 ^ #�))

=
T 2

`2
e
c(??(#
 ^ #�) ^ #�) = (�1)ind

T 2

`2
e
c(#
 ^ #� ^ #�)

=
T 2

`2
#� ^ #� : (A.210)

Eventually we arrive at

R�� = R
fg
�� �

T 2

`2
#� ^ #� : (A.211)

A.4.11 General relation between �̂ and d�

We start from the de�nition of �̂ in (3.25) and move the interior product to the left:

�̂ =
1

n� 2
#�^�e�c 6Z��

�
=

1

n� 2

��e�c(#�^ 6Z��)+ 6Z�
�
�

= � 1

n� 2
e�c(6Z��^#�) :

(A.212)

Obviously, we have to express 6Z�� ^ #� in terms of nonmetricity and torsion. This
is possible by means of the zeroth Bianchi identity

DQ�� = �DDg�� = R�

 g
� +R�


 g�
 = 2R(��) = 2Z�� : (A.213)
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We wedge with #� from the right and obtain

D
�
Q�� ^ #�

�
= 2Z�� ^ #� �Q�� ^ T � : (A.214)

On the other hand, by making use of

Q�� ^ #� = P� +
1

n� 1
#� ^ � +Q ^ #� (A.215)

and of

D#� = D(g�� #
�) = (Dg��) ^ #� + g��D#

� = �Q�� ^ #� + T� ; (A.216)

we can calculate

D
�
Q�� ^ #�

� (A:215)
= D

�
Q ^ #� +

1

n� 1
#� ^ � + P�

�
= dQ ^ #� �Q ^D#� +

1

n� 1
D#� ^ �� 1

n� 1
#� ^ d� +DP�

(A:216)
= dQ ^ #� �Q ^ ��Q�� ^ #� + T�

�
+

1

n� 1

��Q�� ^ #� + T�
� ^ �� 1

n� 1
#� ^ d� +DP�

(A:215)
= dQ ^ #� +Q ^

�
Q ^ #� +

1

n� 1
#� ^ � + P�

�
�Q ^ T�

� 1

n� 1

�
Q ^ #� +

1

n� 1
#� ^ � + P�

�
^ � +

1

n� 1
T� ^ �

� 1

n� 1
#� ^ d� +DP�

= dQ ^ #� +Q ^Q ^ #� +
1

n� 1
Q ^ #� ^ � +Q ^ P� �Q ^ T�

� 1

n� 1
Q ^ #� ^ �� 1

(n� 1)2
#� ^ � ^ �� 1

n� 1
P� ^ �

+
1

n� 1
T� ^ �� 1

n� 1
#� ^ d� +DP�

= dQ ^ #� +Q ^ P� �Q ^ T� � 1

n� 1
P� ^ � +

1

n� 1
T� ^ �

� 1

n� 1
#� ^ d� +DP� : (A.217)

Now we can compare (A.214) and (A.217). We �nd

2 6Z�� ^ #� = 2Z�� ^ #� � 2(4)Z�� ^ #�

= Q ^ P� �Q ^ T� � 1

n� 1
P� ^ �

+
1

n� 1
T� ^ �� 1

n� 1
#� ^ d� +DP� +Q�� ^ T � : (A.218)
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We expand the last terms by means of the irreducible decomposition of torsion and
nonmetricity:

Q�� ^ T � = 6Q�� ^ T � +Q ^ T�
= 6Q�� ^

�
(1)T � + (3)T �

�
+ 6Q�� ^

�
1

n� 1
#� ^ T

�
+Q ^ T�

= 6Q�� ^
�
(1)T � + (3)T �

�
+

1

(n� 1)2
#� ^ � ^ T

+
1

n� 1
P� ^ T +Q ^ T� : (A.219)

Moreover,

1

n� 1
T� ^ � =

1

n� 1

�
(1)T� + (3)T�

� ^ � +
1

(n� 1)2
#� ^ T ^ � : (A.220)

Substituting (A.219,A.220) into (A.218) yields

2 6Z�� ^ #� = DP� � 1

n� 1
#� ^ d�+ 6Q�� ^

�
(1)T � + (3)T �

�
+

1

n� 1

�
(1)T� + (3)T�

� ^ �

+P� ^
�
Q� 1

n� 1
(�� T )

�
: (A.221)

We use the following properties of the irreducible pieces:

e�cP� = e�c(1)T� = e�c(3)T� = 0 ; e�c 6Q�� = �� : (A.222)

Then we �nd

2e�c(6Z�� ^ #�) = P� e
�c
�
Q� 1

n� 1
(�� T )

�
+

n

n� 1

�
(1)T� + (3)T�

�
��

�n� 2

n� 1
d� + e�cDP�� 6Q�� ^ e�c

�
(1)T � + (3)T �

�
: (A.223)

We can further simplify the last term. First we note that

e�c(3)T � = (�1)s e�c1

3
?
�
#� ^ ?(T 
 ^ #
)

�
= (�1)s

1

3
?
�
#� ^ ?(T 
 ^ #
) ^ #��

= �e�c(3)T � : (A.224)

Hence,

6Q�� ^ e�c
�
(1)T � + (3)T �

�
= 6Q�� ^ e�c(1)T �

= (1)Q�� ^ e�c(1)T � + (2)Q�� ^ e�c(1)T �

+ (3)Q�� ^ e�c(1)T � : (A.225)
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The last term can be further rewritten as

(3)Q�� ^ e�c(1)T � =
2n

(n� 1)(n+ 2)

�
#(� ��) � 1

n
g�� �

�
^ e�c(1)T �

=
n

(n� 1)(n+ 2)

�
#� �� ^ e�c(1)T � + ��#�e

�c(1)T �
�

=
n

(n� 1)(n+ 2)

�
��

��e�c(#� ^ (1)T �) + (1)T �
�

+ 2��
(1)T �

�
=

3n

(n� 1)(n+ 2)
��

(1)T � ; (A.226)

where we used #� ^ (1)T � = 0. Finally we arrive at

�̂ =
1

2(n� 1)
d�� 1

2(n� 2)
e�cDP�

� 1

2(n� 2)

(
1

n� 1
P� e

�c [(n� 1)Q� � + T ]

+

�
n+ 1

n+ 2
(1)T� +

n

n� 1
(3)T�

�
��

� �(1)Q�� + (2)Q��

� ^ e�c(1)T �

)
: (A.227)

Note that in the last line we could substitute (2)Q�� = �2 e(�cP�)=3.

A.4.12 On the square of (3)
Z

We proof that the following relation holds for arbitrary spacetimes:

(3)Z�� ^ ? (3)Z�� =
n(n� 2)

n+ 2
�̂ ^ ?�̂ : (A.228)

This comes about since (3)Z�� corresponds to a scalar-valued degree of freedom,
namely to the two-form �̂, see (3.28). For a p-form �, we have the rules for the
Hodge dual ??� = (�1)p(n�p)�1� in the case of Lorentz signature, furthermore,
#�^(e�c�) = p � and ?(�^#�) = e�c ?� . Thus, the terms quadratic in contractions
of �̂ in the end evaluate to �̂ ^ ?�̂ ,

(e�c�̂)^?(e�c�̂) = �(e�c�̂)^?(e�c ??�̂) = �(e�c�̂)^#�^?�̂ = 2 �̂^?�̂ : (A.229)

We recall the de�nition (3.28)

(3)Z�� =
1

n+ 2

h
n#(� ^ e�)c�̂� 2 g�� �̂

i
: (A.230)
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It is symmetric (3)Z [��] = 0 and tracefree (3)Z


 = 0. Thus,

(3)Z�� ^ ? (3)Z�� =
1

n+ 2

h
n#� ^ (e�c�̂) ^ ?(3)Z��

i
=

1

(n+ 2)2

h
n2 #� ^ (e�c�̂) ^ ?

�
#(� ^ (e�)c�̂)

�
�2n#� ^ (e�c�̂) ^ g�� ?�̂

i
: (A.231)

In order to calculate the �rst term, we apply the rules for commuting the Hodge
star with the exterior/interior product.

?
�
#(� ^ (e�)c�̂)

�
= � ?

h
(e(�c�̂) ^ #�)

i
= � e(�c ?

�
e�)c�̂

�
= �(�1)n�1 e(�c

�
?�̂ ^ #�)

�
= e(�c

�
#�) ^ ?�̂

�
= g�� ?�̂� #(� ^ (e�)c ?�̂) : (A.232)

The second term in the brackets of (A.231) simply evaluates to

�2n#� ^ (e�c�̂) ^ g�� ?�̂ = �2n#� ^ (e�c�̂) ^ ?�̂ = �4n �̂ ^ ?�̂ : (A.233)

Substituting (A.232) and (A.233) into (A.231), we �nd

(3)Z�� ^ ? (3)Z�� =
1

(n+ 2)2

h
2n2�̂ ^ ?�̂� n2 #� ^ (e�c�̂) ^ #(� ^ (e�)c ?�̂)

�4n �̂ ^ ?�̂
i
: (A.234)

The term in the middle yields (#� ^ #� = 0)

(#� ^ e�c�̂) ^ (#(� ^ e�)c?�̂) =
1

2

h
#� ^ (e�c�̂) ^ #� ^ (e�c?�̂)

+#� ^ (e�c�̂) ^ #� ^ (e�c?�̂)
i

=
1

2

h
�#� ^ (e�c�̂) ^ #� ^ (e�c?�̂)

i
= �(n� 2) �̂ ^ ?�̂ : (A.235)

Eventually,

(3)Z�� ^ ? (3)Z�� =
1

(n+ 2)2
�
2n2 + n2(n� 2)� 4n

�
�̂ ^ ?�̂

=
n(n� 2)

n+ 2
�̂ ^ ?�̂ : (A.236)
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A.4.13 Curvature of the spherically symmetric aether solu-

tion

The various non-vanishing pieces of the curvature of the solution on page 79 read:

(1)W�� =
m

r3

0BB@
0 2#01 �#02 �#03
� 0 #12 #13

� � 0 �2#23

� � � 0

1CCA ;

(2)W�� = 0 ;
(3)W�� = 0 ;
(4)W�� = �#[� ^ ��] ;

�0 =
L2
0

8r4 e2�
(#0 + #1) ;

�1 =
L2
0

8r4 e2�
(#0 + #1) ;

�2 = 0 ; �3 = 0 ;
(5)W�� = 0 ;

(6)W�� = � 1

12
W #�� ; W = 4� ;

(1)Z�� = � L0

24r3B

0BBBB@
2A#01 �6B #01 3B #02 � A#12 3B#03 � A#13

� �2C #01 C #02 + 3B #12 C #03 + 3B #13

� � 4B #01 0

� � � 4B #01

1CCCCA ;

A = 2�r3 � 15m+ 3r ; B = �r3 + 6m� 3r ; C = 4B � A ;
(2)Z�� = 0 ;

(3)Z�� =
1

6

�
4#(� ^ e�)c�� 2g�� �

�
; � = � L0

2r3
#01 ;

(4)Z�� = 0 ;

(5)Z�� =
1

2
#(� ^ ��) ;

�0 =
L0

2r3B

�
(2�r3 � 6m)#0 � (2�r3 + 3m� 3r)#1

�
;

�1 =
L0

2r3B

��(2�r3 + 3m� 3r)#0 + (4�r3 + 6m� 6r)#1
�
;

�2 = � L0

2r3
#2 ; �3 = � L0

2r3
#3 :
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A.5 Computer algebra

A.5.1 Classi�cation of the Cotton tensor

% Calculation of Cotton-York tensor form given coframe/metric

out "baekler1.exo";

load excalc ;

% Definition of coframe/metric

% Nutku, Baekler Ann. Phys (NY) 195 (1989) 16, eq 4.1

coframe o(0) = a0 * (d psi + sinh(theta)* d phi) ,

o(1) = a1 * (-sin(psi) * d theta

+ cos(psi)*cosh(theta) * d phi),

o(2) = a2 * ( cos(psi) * d theta + sin(psi) *cosh(theta)* d phi)

with metric g = -o(0) * o(0) + o(1)*o(1) + o(2)*o(2) ;

frame e ;

displayframe ;

% calculation of curvature

pform riem2(a,b) = 2;

riemannconx chris1 ;

chris1(a,b) := chris1(b,a) ;

riem2(-a,b) := d chris1(-a,b) - chris1(-a,c) ^ chris1(-c,b) ;

% calculation of L_a and Cotton

pform ll1(a)=1,cotton2(a)=2;

ll1(a) := e(-b) _| riem2(a,b)

- 1/4 * (e(-c) _| ( e(-d) _| riem2(c,d) )) * o(a) ;

cotton2(a) := d ll1(a) + chris1(-b,a) ^ ll1(b) ;

% Definition of Cotton tensor

pform cotmat(a,b) = 0 ;

cotmat(a,b) := #(cotton2(a)^o(b)) ;

% Definitio of Cotton matrix
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matrix cotm(3,3) $

for a:= 1:3 do {for b:= 1:3 do{

cotm(a,b) := cotmat(-(a-1),b-1) }}$

% Definition Einstein 2-form

pform einstein2(a) =2;

einstein2(a) := (1/2) * #(o(a)^o(b)^o(c)) ^ riem2(-b,-c);

% Test of DJT field equations

pform null(a)=2;

null(a) := einstein2(a)+(1/mu)*cotton2(a);

let cos(~a)**2 + sin(~a)**2 => 1 ;

let cosh(~a)**2 - sinh(~a)**2 => 1 ;

a0+a1+a2:=0;

mu := -(a0**2+a1**2+a2**2)/(a0*a1*a2);

null(a) := null(a);

% test cotm

write "cotm/cotm(1,1);";

cotm/cotm(1,1);

% prefector cotm(1,1)

write " prefector cotm(1,1)";

off exp;

on gcd;

cotm(1,1);

write "cotm";

cotm;

end;

A.5.2 Test of the BTZ-solution with torsion

% chh 2003-01-02

% ansatz in curvature

load excalc ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% general spherical symmetric %

% coframe %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pform {nn,ff,gg,ww}=0;

fdomain nn=nn(r),ff=ff(r),gg=gg(r),ww=ww(r);

coframe o(t) = nn * d t,

o(r) = (d r)/nn,

o(phi) = gg * ( d phi - ww * d t )

with signature (-1,1,1) ;

frame e ;

pform {curv2(a,b),curv2_ansatz(a,b)} = 2 $

pform torsion2(a)=2,conx1(a,b) = 1 $

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Ansatz for torsion: only axial piece %

% Nuo. Cim B 107, 91--110 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

torsion2(a) := 2*tor/ell * #o(a) ;

curv2_ansatz(a,b) := curv/ell**2 * o(a) ^ o(b) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Connection according to PR 258, 1-171, eq. 3.10.6 %

% with g=const %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

conx1(a,b) := 1/2 * ( e(a) _| d o(b) - e(b) _| d o(a) )

- 1/2 * ( e(a) _| ( e(b) _| d o(-c) ) ) * o(c)

- 1/2 * ( e(a) _| torsion2(b) - e(b) _| torsion2(a) )

+ 1/2 * ( e(a) _| ( e(b) _| torsion2(-c) )) * o(c) ;

%%%%%%%%%%%%%%%%

% RC-Curvature %

%%%%%%%%%%%%%%%%

curv2(-a,b) := d conx1(-a,b) - conx1(-a,c) ^ conx1(-c,b) $



114

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% equation for torsion is identically fulfilled %

% now fulfill equation for curvature %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pform aux(a,b) = 2 ;

aux(a,b) := curv2(a,b) - curv2_ansatz(a,b) ;

pform curv_comp(a,b) = 0 ;

curv_comp(a,b) := eps(a,c,d)*eps(b,d,e) * e(-c) _| (e(-d) _| aux(-d,-e)) ;

% (t,t) + (r,r)

curv_comp(t,t) + curv_comp(r,r) ;

% yields

gg := aa + bb * r ;

% (t,phi)

curv_comp(t,phi) ;

% yields

ww := alpha/((aa+bb*r)**2) + beta ;

% finally, (t,t)

curv_comp(t,t) ;

% yields an 1st order diff. eq. for nn**2

solve(ws,@(nn,r)) ;

aux2 := 2*nn*

(aa**4*curv + aa**4*tor**2 + 4*aa**3*bb*curv*r + 4*aa**3*bb*r*tor**2 +

6*aa**2*bb**2*curv*r**2 + 6*aa**2*bb**2*r**2*tor**2 + 4*aa*bb**3*curv*r**3 +

4*aa*bb**3*r**3*tor**2 - alpha**2*bb**2*ell**2 + bb**4*curv*r**4 +

bb**4*r**4*tor**2)/(aa**3*bb*ell**2*nn + 3*aa**2*bb**2*ell**2*nn*r +

3*aa*bb**3*ell**2*nn*r**2 + bb**4*ell**2*nn*r**3) ;

nn := sqrt(m+int(aux2,r)) ;

% test

curv_comp(a,b) ;

% define effective cosmological constant
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(tor**2+curv)/ell**2 := lam_eff ;

on exp, div, rat ;

off gcd, allfac ;

factor m,lam_eff,alpha ;

nn**2 ;

A.5.3 Test of 3D perfect 
uid solution

% Test of interior BTZ solution

%out "interior.exo";

load excalc ;

pform {nn,ff,pp,rho} = 0;

fdomain nn = nn(r),ff=ff(r),pp=pp(r),rho=rho(r);

coframe o(0) = nn*d t ,

o(1) = d r/ff ,

o(2) = r*d phi

with metric g = -o(0) * o(0) + o(1)*o(1) + o(2)*o(2) ;

frame e ;

displayframe ;

pform riem2(a,b) = 2;

riemannconx chris1 ;

chris1(a,b) := chris1(b,a) ;

riem2(-a,b) := d chris1(-a,b) - chris1(-a,c) ^ chris1(-c,b) ;

pform ll1(a)=1,cotton2(a)=2;

ll1(a) := e(-b) _| riem2(a,b)

- 1/4 * (e(-c) _| ( e(-d) _| riem2(c,d) )) * o(a) ;

cotton2(a) := d ll1(a) + chris1(-b,a) ^ ll1(b) ;

pform cotmat(a,b) = 0 ;

cotmat(a,b) := (1/2) * #(o(a)^o(c)^o(d)) * e(-c) _| (e(-d) _| cotton2(b)) ;
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matrix cotm(3,3) $

for a:= 1:3 do {for b:= 1:3 do{

cotm(a,b) := cotmat(-(a-1),b-1) }}$

pform energy(a,b) = 0 ;

pform u(a) =0;

u(a) := 0;

u(0) := 1 ;

energy(a,b) := (rho+pp)*u(a)*u(b)+pp*g(a,b);

pform coten(a)=1 ;

pform energy(a) =2 ;

energy(a) := energy(a,b)*#o(-b) ;

coten(a) := #(energy(a)-(1/2)*e(a) _| (o(b)^energy(-b)));

d coten(a) + chris1(-b,a)^coten(b);

@(rho,r) := 0;

nn := c1/(rho+pp);

end;

ff := sqrt(c2-(kappa*rho+lam)*r**2) ;

pp:=(c4*ff*(kappa*rho+lam)+c4**2*kappa*lam+rho*ff**2)/

(c4**2*kappa**2-ff**2);

% Definition Einstein 2-form

pform einstein2(a) =2;

einstein2(a) := (1/2) * #(o(a)^o(b)^o(c)) ^ riem2(-b,-c);

einstein2(a) + lam* #o(a) - kappa * energy(a);

end;

A.5.4 Quasi local energy after Nester et al.

load excalc ;
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load limits;

a0 := -kappa/(2*ell);

a1 := theta_t/(2*ell**2);

a2 := -theta_l / 2;

pform{conx1(a,b)}=1;

pform {o_ref(a),conx_ref1(a,b),hh1_ref(a),hhhh1_ref(a,b)} = 1;

pform {hh1(a),hh1_ref(a),hhhh1(a,b),hhhh1_ref(a,b),delo1(a),delconx1(a,b),

transconx1(a,b),delhh1(a),delhhhh1(a,b)} = 1;

psi := sqrt((j/(2*r))**2 -m + lam_eff * r**2 ) ;

coframe o(0) = psi * d t,

o(1) = d r / psi,

o(2) = -j/(2*r) * d t + r * d theta

with signature (-1,1,1) ;

frame e ;

pform torsion2(a) = 2;

torsion2(a) := 2*tor/ell * #o(a) ;

conx1(a,b) := 1/2 * ( e(a) _| d o(b) - e(b) _| d o(a) )

- 1/2 * ( e(a) _| ( e(b) _| d o(-c) ) ) * o(c)

- 1/2 * ( e(a) _| torsion2(b) - e(b) _| torsion2(a) )

+ 1/2 * ( e(a) _| ( e(b) _| torsion2(-c) )) * o(c) ;

hh1(a) := a1 * o(a) ;

hhhh1(a,b) := a0 * #(o(a)^o(b)) + a2* conx1(a,b);

o_ref(0) := sqrt(lam_eff * r**2)* d t;

o_ref(1) := d r / sqrt(lam_eff * r **2);

o_ref(2) := r * d theta;

tor_ref := tor ;

conx_ref1(a,b) := 0;

index_symmetries conx_ref1(a,b): antisymmetric ;

conx_ref1(0,1) := - r *lam_eff * d t -tor_ref/ell* r * d theta;

conx_ref1(1,2) := sqrt(lam_eff*r**2) *(tor_ref/ell*d t+ d theta);

conx_ref1(2,0) := - tor_ref/ell * d r / sqrt(lam_eff * r **2);
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hh1_ref(0) := a1 * o_ref(0) ;

hh1_ref(1) := a1 * o_ref(1) ;

hh1_ref(2) := a1 * o_ref(2) ;

index_symmetries hhhh1_ref(a,b): antisymmetric ;

hhhh1_ref(0,1) := - a0 * o_ref(2) + a2 * conx_ref1(0,1);

hhhh1_ref(1,2) := a0 * o_ref(0) + a2 * conx_ref1(1,2);

hhhh1_ref(2,0) := -a0 * o_ref(1) + a2 * conx_ref1(2,0);

delhh1(a) := hh1(a) - hh1_ref(a) ;

delhhhh1(a,b) := hhhh1(a,b) - hhhh1_ref(a,b) ;

delo1(a) := o(a) - o_ref(a) ;

delconx1(a,b) := conx1(a,b) - conx_ref1(a,b) ;

%transconx1(a,b) := e(a) _| conx1(-c,b)*o(c) - e(a) _| torsion2(b) ;

%transconx1(a,b) := conx1(a,b) + e(a) _| torsion2(b) ;

n := @(t);

transconx1(a,b) := (-e(b) _| (d(n _|o(a)) +conx1(a,-c) * (n _|o(c)) + n _|

torsion2(a) ));

pform bb1 = 1;

bb1 := (n _| o(a)) ^ delhh1(-a)

+ delo1(b) ^ (n _| hh1_ref(-b))

- transconx1(c,d) ^ delhhhh1(-c,-d)

- delconx1(e,f) ^ (n _| hhhh1_ref(-e,-f)) ;

2*pi * limit(@(theta) _| bb1,r,infinity) ;

limit(@(t) _| bb1,r,infinity) ;

pform bb2 = 1;

bb2 := (n _| o_ref(a)) ^ delhh1(-a)

+ delo1(a) ^ (n _| hh1(-a))

- (n _| conx_ref1(a,b)) ^ delhhhh1(-a,-b)

- delconx1(a,b) ^ (n _| hhhh1(-a,-b) );
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2*pi * limit(@(theta) _| bb2,r,infinity) ;

limit(@(t) _| bb2,r,infinity) ;

%killing eq

pform transconx(a,b) = 1;

transconx(a,b) := conx1(a,b) + e(a) _| torsion2(b) ;

pform aux(a,b) = 1 ;

aux(a,b) := e(a) _| (d (xi _| o(b)) + transconx(-c,b)^(xi _| o(c))) ;

d aux(a,b) + conx1(-c,a) ^ aux(c,b) + conx1(-c,b) ^ aux(a,c) + xi _|

curv2(a,

A.5.5 Spherically symmetric aether solution

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% file baekler5.exi, chh, 2004-04-16, 2004-11-30 %

% test for spherically-symmetric aether-solution %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load "excalc";

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% input coframe and metric %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pform mu = 0;

fdomain mu = mu(r);

coframe o(0) = exp(mu) * d t,

o(1) = exp(-mu) * d r ,

o(2) = r * d theta,

o(3) = r *sin(theta) * d phi

with

metric g = -o(0)*o(0) + o(1)*o(1) + o(2)*o(2) + o(3)*o(3)$

frame e$

%%%%%%%%%%%%%%%%%%%%%%

% input nonmetricity %
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%%%%%%%%%%%%%%%%%%%%%%

pform{nonmet1(a,b)}=1 ;

nonmet1(a,b) := 0;

index_symmetries nonmet1(a,b): symmetric ;

pform aether = 0;

% input aether function

%aether := l0*exp(-mu)/(2*r**2) ;

fdomain aether = aether(r) ;

nonmet1(0,0) := aether * (o(0) + o(1)) ;

nonmet1(0,2) := aether * o(2) ;

nonmet1(0,3) := aether * o(3) ;

nonmet1(1,1) := aether * (o(0) + o(1)) ;

nonmet1(1,2) := aether * o(2) ;

nonmet1(1,3) := aether * o(3) ;

% alternative non-metricity for arbitrary, light-like aether field

%pform lamz(a) = 0 ;

%fdomain lamz = lamz(r);

%lamz(0)**2-lamz(1)**2-lamz(2)**2-lamz(3)**2 :=0;

%nonmet1(-a,-b) := (4/9)*((o(-b)*lamz(-a)+o(-a)*lamz(-b))/2

% -g(-a,-b)*(lamz(-c)*o(c))/4);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% calculation torsion according to prolongation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pform torsion2(a) = 2;

torsion2(a) := (1/2) * nonmet1(a,b) ^ o(-b) ;

%%%%%%%%%%%%%%

% connection %

%%%%%%%%%%%%%%

pform {conx1(a,b)}=1 ;

%conx1(-a,-b) := (1/2) * ( e(-a) _| d o(-b) - e(-b) _| d o(-a) )
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% - (1/2) * ( e(-a) _| ( e(-b) _| d o(-c) ) ) ^ o(c)

% + (1/2) * nonmet1(-a,-b)

% + (1/2) * (e(-a) _| nonmet1(-b,-c)

% - e(-b) _| nonmet1(-a,-c)) *o(c)

% - 1/2 * ( e(-a) _| torsion2(-b) - e(-b) _| torsion2(-a) )

% + 1/2 * ( e(-a) _| ( e(-b) _| torsion2(-c) )) ^ o(c) ;

% alternative torsion

riemannconx chris1 ;

chris1(-a,b) := chris1(b,-a) ;

pform contor1(a,b) = 1;

contor1(-a,-b) := (1/2) * ( e(-a) _| torsion2(-b) - e(-b) _| torsion2(-a))

- (1/2) * (e(-a) _| (e(-b) _| torsion2(-c)))^o(c) ;

conx1(-a,b) := chris1(-a,b) -contor1(-a,b)

+ (1/2) * nonmet1(-a,b)

+ (1/2) * (( e(-a) _| nonmet1(b,-c))

- ( e(b) _| nonmet1(-a,-c))) ^ o(c) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% irreducible decomp. torsion %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pform {tentor2(a),trator2(a),axitor2(a)}=2$

trator2(a):= (1/3)*o(a) ^ (e(-b) _| torsion2(b));

axitor2(a):= (1/3)*e(a) _| (o(-b) ^ torsion2(b));

tentor2(a):= torsion2(a)-trator2(a)-axitor2(a);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% irreducible decompostition nonmetr. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pform lamzero(a)=0, {weylcovector1,nomtracefree1(a,b),lamone1,

binom1(a,b),vecnom1(a,b),trinom1(a,b),conom1(a,b)}=1,

{thetatwo2(a),omega2(a)}=2, thetathree3=3$

weylcovector1 := nonmet1(-c,c)/4$

nomtracefree1(-a,-b) := nonmet1(-a,-b) - g(-a,-b)*weylcovector1$

lamzero(-a) := e(b)_|nomtracefree1(-a,-b)$

lamone1 := lamzero(-a)*o(a)$
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thetatwo2(-a) := #(nomtracefree1(-a,-b)^o(b))$

thetathree3 := o(a)^thetatwo2(-a)$

omega2(-a) := thetatwo2(-a)-(1/3)*e(-a)_|thetathree3$

binom1(-a,-b) := (1/3)*#(o(-a)^omega2(-b)+o(-b)^omega2(-a));

vecnom1(-a,-b) := (4/9)*((o(-b)*lamzero(-a)+o(-a)*lamzero(-b))/2

-g(-a,-b)*lamone1/4);

conom1(-a,-b) := g(-a,-b)*weylcovector1;

trinom1(-a,-b) := nonmet1(-a,-b) - binom1(-a,-b)

-vecnom1(-a,-b) - conom1(-a,-b);

%%%%%%%%%%%%%%%%%%%%%%%%%

% calculation curvature %

%%%%%%%%%%%%%%%%%%%%%%%%%

pform curv2(a,b) = 2 ;

curv2(-a,b) := d conx1(-a,b) - conx1(-a,c) ^ conx1(-c,b) $

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% irreducible decomp. curvature %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pform {ztracef1(a),yy1(a),xi1(a),upsilon1(a)}=1,

{z2(a,b),ztracef2(a,b),delta2,

zcurvone2(a,b), zcurvtwo2(a,b),zcurvthree2(a,b),

dilcurv2(a,b),zcurvfive2(a,b)}=2$

z2(-a,-b) := (1/2)*(curv2(-a,-b)+curv2(-b,-a))$

ztracef2(-a,-b) := z2(-a,-b)-(1/4)*g(-a,-b)*z2(-c,c)$

ztracef1(-a) := e(b)_|ztracef2(-a,-b)$

delta2 := (1/2)*o(a)^ztracef1(-a)$

yy1(-a) := #(ztracef2(-a,-b)^o(b))$

xi1(-a) := ztracef1(-a)-(1/2)*e(-a)_|(o(c)^ztracef1(-c))$

upsilon1(-a) := yy1(-a)-(1/2)*e(-a)_|(o(c)^yy1(-c))$

zcurvtwo2(-a,-b) := -(1/4)*#(o(-a)^upsilon1(-b)

+o(-b)^upsilon1(-a));

zcurvthree2(-a,-b):= (1/6)*(2*(o(-a)^(e(-b)_|delta2)

+o(-b)^(e(-a)_|delta2))-2*g(-a,-b)*delta2);

dilcurv2(-a,-b) := (1/4)*g(-a,-b)*z2(-c,c);

zcurvfive2(-a,-b) := (1/4)*(o(-a)^xi1(-b)+o(-b)^xi1(-a));

zcurvone2(-a,-b) := z2(-a,-b)-zcurvtwo2(-a,-b)

-zcurvthree2(-a,-b)-dilcurv2(-a,-b)-zcurvfive2(-a,-b);
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pform {wzero,xzero}=0,

{wone1(a),xone1(a),psi1(a),phi1(a)}=1,

{w2(a,b),paircom2(a,b),pscalar2(a,b),ricsymf2(a,b),

ricanti2(a,b), scalar2(a,b), weyl2(a,b)}=2$

w2(-a,-b) := (1/2)*(curv2(-a,-b)-curv2(-b,-a))$

wone1(a) := e(-b)_|w2(a,b)$

wzero := e(-b)_|wone1(b)$

xone1(a) := #(w2(b,a)^o(-b))$

xzero := e(-a)_|xone1(a)$

psi1(-a) := xone1(-a)-(1/4)*o(-a)^xzero

-(1/2)*e(-a)_|(o(b)^xone1(-b))$

phi1(-a) := wone1(-a)-(1/4)*o(-a)*wzero

-(1/2)*e(-a)_|(o(b)^wone1(-b))$

paircom2(-a,-b) := -(1/2)*#(o(-a)^psi1(-b)-o(-b)^psi1(-a));

pscalar2(-a,-b) := -(1/12)*#(xzero^o(-a)^o(-b));

ricsymf2(-a,-b) := -(1/2)*(o(-a)^phi1(-b)-o(-b)^phi1(-a));

ricanti2(-a,-b) := -(1/4)*(o(-a)^(e(-b)_|(o(c)^wone1(-c)))

-o(-b)^(e(-a)_|(o(c)^wone1(-c))));

scalar2(-a,-b) := -(1/12)*wzero*o(-a)^o(-b);

weyl2(-a,-b) := w2(-a,-b)-paircom2(-a,-b)-pscalar2(-a,-b)-

ricsymf2(-a,-b)-ricanti2(-a,-b)-scalar2(-a,-b);

factor o(0),o(1),o(2),o(3) ;

%%%%%%%%%%%%%%%%%%%%

% input lagrangian %

%%%%%%%%%%%%%%%%%%%%

pform {lag41,lag42,lag43,lag44,lag45,lag4} = 4;

lag41 := (1/(2*kap)) * (-aa0*(curv2(a,b) ^ #(o(-a)^o(-b)) + 2 * lam * #1));

lag42 := (1/(2*kap)) * aa2 * torsion2(a) ^ # trator2(-a);

lag43 := (1/kap) * cc3 * vecnom1(-a,-b) ^ o(a) ^ # torsion2(b);

lag44 := (1/(2*kap)) * bb3 * nonmet1(a,b) ^ # vecnom1(-a,-b) ;

lag45 := - (1/2) * curv2(a,b) ^ #( zz3 * zcurvthree2(-a,-b)

+ ww6 * scalar2(-a,-b) ) ;

lag4 := lag41 + lag42 + lag43 + lag44 + lag45 ;
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%%%%%%%%%%%%%%%

% excitations %

%%%%%%%%%%%%%%%

pform {energy3(a),capm3(a,b)} = 3 ;

pform {htr2(a),hrot2(a,b)}= 2 ;

htr2(-a) := - (1/kap) * # (aa2 * trator2(-a) + cc3 * vecnom1(-a,-b) ^ o(b)) ;

hrot2(a,-b) := (aa0/(2*kap)) * #(o(a)^o(-b))

+ # ( ww6 * scalar2(a,-b) + zz3 * zcurvthree2(a,-b) ) ;

capm3(a,b) := -(2/kap) * ( bb3 * # vecnom1(a,b)

+ cc3 * (1/2) * ( o(a) ^ #trator2(b) + o(b) ^ #trator2(a) )

+ (1/4)* cc3 * g(a,b) * #(e(-c) _| torsion2(c)) ) ;

energy3(a) := e(-a) _| lag4

+ (e(-a) _| torsion2(b)) ^ htr2(-b)

+ (e(-a) _| curv2(-b,c)) ^ hrot2(b,-c)

+ (1/2) * ( e(-a) _| nonmet1(-b,-c)) ^ capm3(b,c) ;

%%%%%%%%%%%%%%%%%%%%%%

% field equations %

%%%%%%%%%%%%%%%%%%%%%%

pform first3(a) = 3 ;

first3(-a) := d htr2(-a) - conx1(-a,b) ^ htr2(-b) - energy3(-a) ;

pform second3(a,b) = 3 ;

second3(a,-b) := d hrot2(a,-b) + conx1(-c,a)^hrot2(c,-b)

- conx1(-b,c)^hrot2(a,-c)

+ o(a) ^ htr2(-b) + capm3(a,-b) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% substitution of constraints %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mu := log(1-2*m/r-lam/3*r**2)/2 ;

aa2 := - 2 * cc3 ;

bb3 := - 3* cc3 / 8 ;
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aa0 := 2*kap*lam*ww6/3 ;

zz3 := 0 ;

on exp ;

on gcd ;

factor o(0),o(1),o(2),o(3) ;

factor ^ ;

first3(a);

second3(a,b);
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