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Introduction 

 

 

1. Introduction   
Integrins are the major cellular receptors for cell adhesion to extracellular matrix (ECM) 

proteins and are also important for cell-cell adhesions. Integrin mediated signaling regulates 

many aspects of cell behaviour. 

 

1.1    Cell-matrix adhesion 

Cell interactions with ECM (e.g., fibronectin, vitronectin and various collagens) are 

mediated by transmembrane cell adhesion receptors. Cell-ECM adhesions are crucial for 

various biological processes, including cell adhesion, migration, proliferation, 

differentiation, cell survival and they contribute to embryogenesis, wound healing, and 

inflammation (Hynes, 2002; Lee and Juliano, 2004). The adhesions with the ECM are 

mainly mediated by integrins, which connect the ECM to the actin cytoskeleton at the cell 

interior. Cell adhesion leads to integrin clustering and formation of classical focal adhesions 

and variants (focal complexes, fibrillar adhesions and podosomes) (Geiger et al., 2001).  

Focal adhesions (FAs) are flat and elongated cellular structures that localize near the 

periphery of the cell. FAs mediate strong cell adhesion to the substrate and anchor bundles 

of actin microfilaments through a plaque containing many FA associated molecules (Geiger 

et al., 2001). FA associated proteins include cytoskeletal proteins (e.g. talin, tensin, 

vinculin, paxillin, α-actinin and α/β-parvin), signalling molecules such as tyrosine kinases 

(e.g. Src, FAK, PYK2, Csk), serine/threonine kinases (e.g. ILK, PKC, PAK), modulators of 

small GTPases and other enzymes (PI3 kinase). FA associated proteins can bind to integrins 

(e.g ILK, FAK) or actin (e.g. α-parvin, vinculin) and thereby link integrins to the 

cytoskeleton. Some proteins can directly act as integrin-actin linkers (e.g. talin, familin, α-

actinin). Many adaptor proteins interact with integrin-bound and actin-bound components 

(e.g. PINCH) to link them to each other (Zamir and Geiger, 2001).  

FAs serve two significant functions. First they act as an ECM-actin cytoskeleton 

connection to transmit force or tension at adhesion sites to maintain strong attachments to 

the underlying ECM. Second, they function as a signalling center (Sastry and Burridge, 

2000). The core components of FAs are integrins. Each integrin consists of two 

transmembrane subunits, called α and β subunits. Integrin engagement leads to the 

recruitment and activation of signalling proteins such as FAK (Miranti and Brugge, 2002; 

Playford and Schaller, 2004). Phosphorylation of FAK recruits SH2-containing proteins 

including Src and Fyn and subsequently a variety of proteins that transduce signals to many 
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downstream pathways (Cary et al., 1998; Roy et al., 2002; Webb et al., 2004). Rho GTPases 

control signal transduction pathways that link cell surface receptors to a variety of 

intracellular responses, although they do not interact with integrin directly (Guo and 

Giancotti, 2004).  

 

1.2   ILK, PINCH, parvin and IPP ternary complexes  

ILK, PINCH and parvin are multidomain proteins that are widely expressed in human and 

mouse tissues, and are well conserved in evolution (Zhang et al., 2002; Wu, 2004). ILK 

binds PINCH and parvin and ILK-PINCH-parvin form ternary complexes (IPP complexes; 

Tu, et al., 2001; Wu, 2001; Wu 2004). The complexes act as structural and functional 

linkers between ECM and the actin cytoskeleton through integrin-binding ILK and actin-

binding- parvin proteins (Figure 1-1).  

 

Figure 1-1 ILK-PINCH-parvin complexes localize to focal adhesion sites through the interaction of ILK with 

the  β1 or β3 integrin tail. The activation of ILK by PI3K leads to the phosphorylation of  PKB/Akt and 

GSK3β (from Grashoff et al., 2004). 
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1.2.1 ILK  

ILK was discovered as a serine/threonine protein kinase that interacts with the cytoplasmic 

tails of β1 and β3 integrins (Hannigan et al., 1996). ILK is composed of three conserved 

domains (Figure 1-2). The N-terminal domain contains four ankyrin repeats that bind to the 

LIM protein PINCH (Tu et al., 1999) and interact with ILKAP, a PP2C phosphatase that 

negatively regulates ILK kinase activity (Leung-Hagesteijn et al., 2001). The pleckstrin 

homology (PH)-like motif of ILK binds PIP3, the product of PI3K (Huang and Wu, 1999). 

The C-terminal kinase catalytic domain of ILK binds to paxillin and the CH2 domains of α- 

and β-parvins leading to the FA localization of parvins (Wu and Dedhar, 2001, Tu et al., 

2001; Yamaji et al., 2001). Additionally, Pat-4, ILK homologue in C. elegans, binds to 

UNC-112, which in turn binds to filamin-binding protein migfilin. UNC-112 is essential for 

localization of Pat4/ILK to integrin-containing muscle attachment sites (Mackinnon et al., 

2002; Tu et al., 2003).   

 

 
Figure 1-2 Functional domains of ILK and its binding partners. There are four ANK repeats at the N-

terminus of ILK and the first ANK repeat mediates the binding to PINCH1/PINCH2. The PH motif binds 

PIP3. The C-terminal kinase domain binds to α-/ β-parvins. Integrin β1 binds to the C-terminus of ILK. A 

paxillin binding site (PBS) lies in the C-terminus of ILK and is important for paxillin binding.    

 

The kinase activity of ILK was shown by its ability to phosphorylate peptides and 

model substrate myelin basic protein in vitro (Hannigan et al., 1996), and to induce 

phosphorylation of the protein kinases PKB/Akt at Ser473 and GSK-3β at Ser9 in cells 

overexpressing ILK (Delcommenne et al., 1998). PKB/Akt is a Ser/Thr kinase implicated in 

cell proliferation and growth factor signaling and is a key signalling intermediate in the 

survival pathway (Lawlor and Alessi, 2001; Cantley, 2002). GSK-3β is inactivated by 

phosphorylation mediated by ILK (Delcommenne et al., 1998; Cohen and Frame, 2001). 

However, recently it was shown that the kinase activity of ILK is not required for PKB/Akt 

and GSK-3β signaling in several vertebrate cell types nor is it necessary for invertebrate 

development. As the defects in ILK null flies and worms could be fully rescued with ILK 

mutants that lacked kinase activity (Zervas et al., 2001; Mackinnon et al., 2002). 

Furthermore, ILK-null fibroblastoid cell lines and ILK-null chondrocytes have severe 
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adhesion and proliferation defects but normal phosphorylation of PKB/Akt and GSK-3β 

(Sakai et al., 2003; Grashoff et al., 2003).  

Several adaptor proteins such as PINCH and parvin that bind ILK directly or 

indirectly, regulate the actin cytoskeleton (Brakebusch and Fässler, 2003). 

 

1.2.2 PINCH 

PINCHs are LIM-only adapter proteins. There are two PINCH proteins, PINCH1 and 

PINCH2 in mammals and they are encoded by different genes and share significant 

sequence similarity (Zhang et al., 2002a; Braun et al., 2003). PINCH binds to the first N-

terminal ANK repeat domain of ILK through the LIM1 domain and links cell-adhesion 

mediated integrin signalling to growth factor receptors via an interaction with Nck-2 (Tu at 

al., 1999; Figure 1-3). Nck-2 interacts with growth factor receptor tyrosine kinases such as 

epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor 

(PDGFR), and recruits a large number of proteins including actin modulators such as 

Dock180 and the p21-activated kinase (PAK) (Velyvis et al., 2003). The interaction of ILK 

with PINCH plays a crucial role in the regulation of cell shape and migration (Tu et al., 

1999; Zhang et al., 2002b).   

 

 
Figure 1-3 The domain structure of PINCHs and their binding partners. PINCHs are 37kD proteins that 

contain five LIM domains. The LIM domain is a cysteine-rich protein binding motif consisting of around 50 

amino acids which can fold into two-zinc fingers. PINCH binds to ILK through its LIM1 domain and the 

LIM4 mediates binding to Nck-2.    

 

1.2.3 Parvin family 

The founding member of the parvin family, α-parvin, also known as CH-ILKBP/actopaxin, 

was identified independently in several laboratories (Nikolopoulos and Turner, 2000; Olski 

et al., 2001; Tu et al., 2001). Subsequently two other paralogues of α-parvin, β-parvin 

(affixin) and γ-parvin, were also identified (Olski et al., 2001; Yamaji et al., 2001). 

Mammalian α-, β- and γ-parvins are encoded by different genes. The mouse α-parvin gene 

is located on chromosome 7. β-parvin is located on chromosome 15 and γ-parvin is also 

present on chromosome 15 around 12 kb downstream of β-parvin. Mouse parvin genes 
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show similar gene structures as those found in humans (Table 3.2-1; Olski et al., 2001). β- 

and γ-parvin likely diverged from a common ancestral gene as lower organisms including 

C. elegans and D. melanogaster only have a single α-parvin-like gene (Olski et al., 2001; 

Tu et al., 2001; Yamaji et al., 2001; Lin et al., 2003).   

Parvins are composed of a single actin-binding domain (ABD) preceded by an N-

terminal stretch (Figure 1-4). The ABD contains two calponin homology (CH) domains in 

tandem. The N-termini of α- and β-parvins contain two putative nuclear localization signals 

(NLSs) and three potential SH3-binding sites (Olski et al., 2001). α-parvin contains a 

paxillin binding site (PBS) within the CH2 domain, which is important for binding to both 

paxillin and ILK (Olski et al., 2001; Nikolopoulos and Turner, 2002). 

Parvins are highly conserved between human and mouse. Mouse α-parvin is a 42.1 kD 

protein composed of 372 amino acids (aa), sharing 98.9% identity with human α-parvin at 

the amino acid level. Human and mouse β-parvins share high homology to α-parvin. Human 

and mouse γ-parvins are composed of 331 amino acids and are more distantly related to α-

parvin (Olski et al., 2001).  

 
Figure 1-4 Schematic representation of the domain structure of α- and β-parvin and their binding 

partners. There are two putative NLSs (black boxes) at the N-termini of the proteins. A paxillin binding site 

(PBS; 273-290) (purple box) locates in the CH2 domain of α-parvin. γ-parvin has similar protein structure 

with a shorter N-terminus and lacks the NLSs.  

 

In human and mouse there are single α-parvin proteins (Nikolopoulos and Turner, 

2000; Olski et al., 2001; Tu et al., 2001). There are four β-parvin isoforms expressed in 

humans arising from alternative splicing or alternate initiation sites, called CLINT (397 aa), 

β-parvin(l) (365 aa), β-parvin(s) (351 aa) and β-parvin(ss) (314 aa), in order of decreasing 

length (Yamaji et al., 2001; Mongroo et al., 2004). CLINT is only found in human. The N-

terminal sequence of CLINT arises from two unique 5’ exons (Mongroo et al., 2004). The 

three shorter β-parvin isoforms, β-parvin(l), β-parvin(s) and β-parvin(ss), are generated by 

different promoter usage (Yamaji et al., 2001). α-parvin is widely expressed (Nikolopoulos 
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and Turner, 2000; Olski et al., 2001; Tu et al., 2001; Yamaji et al., 2001). β-parvin is also 

widely expressed with higher expression levels in heart and skeletal muscles (Yamaji et al., 

2001) and β-parvin(ss) is the major isoform in spleen tissue and in platelets (Yamaji et al., 

2002). γ-parvin seems to be predominantly expressed in lymphoid organs (Korenbaum et 

al., 2001).   

α-parvin directly binds to F-actin, paxillin, Hic-5 (hydrogen peroxide-inducible clone-

5), and ILK (Nikolopoulos and Turner, 2000; Olski et al., 2001; Tu et al., 2001). β-Parvin 

directly binds to ILK, α-actinin and α-PIX (Yamaji et al., 2001; Rosenberger et al., 2003; 

Yamaji et al., 2004; Mishima et al., 2004). α-PIX activates Rac and Cdc42 and has been 

implicated in X-linked non-specific mental retardation (Kutsche et al., 2000). β-Parvin 

probably binds F-actin although this has never been shown directly (Yamaji et al., 2001; 

Brakebusch and Fässler, 2003). No γ-parvin binding partners have been identified so far. 

 

 
Figure 1-5 Domain structure and binding partners of paxillin.  Paxillin is composed of N-terminal 

leucine-rich LD motifs and C-terminal LIM domains that mediate protein-protein interaction. Paxillin binding 

partners include structural proteins (parvin, vinculin, tubulin) and signalling molecules (FAK, PTP-PEST) 

(Brown and Turner, 2004). 

 

Paxillin is a multidomain protein that localizes to FAs and functions as a molecular 

adaptor or scaffold protein that provides multiple docking sites at the plasma membrane and 

is involved in the integration of growth factor- and adhesion-mediated signal transduction 

pathways (Turner 2000; Figure 1-5). While most integrin-associated proteins interact with 

the cytoplasmic tails of β integrins, paxillin interacts with α integrins α4 and α9 (Liu et al., 

2001; 2002). Paxillin LD motifs bind to several proteins associated with remodelling of the 

actin cytoskeleton, such as α-parvin and ILK. For example, α-parvin directly binds to 

paxillin LD1 and LD4 motifs (Nikolopoulos and Turner, 2000). Additionally, the paxillin 

LD1 motif also mediates interactions with ILK, vinculin and the papillomavirus protein E6 

(Wood et al., 1994; Tong and Howley, 1997; Nikolopoulos and Turner, 2002). An α-parvin 

PBS mutant (V282G/L285R), incapable of binding paxillin in vitro, cannot target to FAs 
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and ectopic expression of the PBS mutant results in reduction in cell adhesion, which 

suggests an important role for α-parvin in integrin-dependent remodelling of the actin 

cytoskeleton during cell motility and cell adhesion (Nikolopoulos and Turner, 2000). Hic-5 

is a LIM protein with striking similarity to paxillin that shuttles between FAs and nucleus 

(Shibanuma et al., 2003) and is implicated in integrin-mediated signalling through an 

interaction with FAK (Nishiya et al., 2001). 

α-actinin consists of an N-terminal ABD containing two CH domains, a central region 

with four spectrin-like repeats and a C-terminal calmodulin-like domain. Two α-actinin 

molecules form a dimer. α-actinin binds to β integrins as well as cytoplasmic proteins 

including vinculin, zyxin and paladin and crosslinks actin filaments to actin bundles and 

networks and serves as an important scaffold protein (Otey and Carpen, 2004; Ronty et al., 

2004). α-actinin binds to the β-parvin CH2 domain in an integrin mediated adhesion-

dependent and in an ILK kinase activity-dependent manner (Yamaji et al., 2004). In CHO 

cells, β-parvin colocalizes with α-actinin and ILK at FAs and at the tip of the leading edge, 

whereas in skeletal muscle cells they colocalize at the sarcolemma (Yamaji et al., 2001). 

α- and β-parvins bind to the C-terminal kinase domain of ILK through their CH2 

domains and colocalize with ILK to FAs (Tu et al., 2001; Yamaji et al., 2001). The CH2 

domain of α-parvin mediates the FA localization of the protein through its interaction with 

both paxillin and ILK (Nikolopoulos and Turner, 2000; Tu et al, 2001). An α-parvin point 

mutation (F271D) that inhibits ILK-binding impairs the FA localization of α-parvin (Tu et 

al., 2001). The α-parvin CH2 domain alone is sufficient for FA targeting and α-parvin 

mutants lacking the CH2 domain do not localize to FAs (Tu et al., 2001; Olski et al., 2001). 

The functional interactions between ILK, α-parvin and paxillin have also been shown to be 

mutually important for the localization of these proteins to FAs (Nikolopoulos and Turner, 

2001; Attwell et al., 2003).    

Phosphorylation of α-parvin N-terminus has been implicated in the actin cytoskeleton 

reorganization processes, such as cell adhesion, migration and mitosis (Yamaji et al., 2001; 

Curtis et al., 2002; Clark et al., 2004). The N-terminus of α-parvin contains six putative 

cdc2 phosphorylation sites. The first two consensus phosphorylation sites are 

phosphorylated by cyclin B1/cdc2 kinase during mitosis and after mitosis there is adhesion-

independent dephosphorylation, which suggests that α-parvin dephosphorylation precedes 

cell spreading and the reformation of FAs (Curtis et al., 2002). Recently, it was shown that 

Erk may contribue to the cell adhesion/spreading- induced phosphorylation of the N-

terminus of α-parvin and the phosphorylation regulates cell spreading and migration (Clarke 
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et al 2004). β-parvin can be phosphorylated on its CH2 domain by ILK in vitro, although 

the biological significance of the phosphorylation is not known (Yamaji et al., 2001). 

 

1.2.4 The cellular functions of IPP complexes  

Multiple IPP ternary complexes may be present in the same cell. α- and β-parvin are co-

expressed in certain cell types (Zhang et al., 2004). PINCH1 and PINCH2 are also often 

present in the same cell (Zhang et al., 2002a). Both α- and β-parvins bind to ILK and form 

ternary complexes with ILK and PINCH (Tu et al., 2001; Zhang et al., 2004). The binding 

of α- and β-parvin to ILK is mutually exclusive. Similarly, one ILK molecule cannot bind to 

two PINCH molecules simultaneously (Zhang et al., 2002; Zhang et al., 2004).  

IPP complexes formation is essential for their recruitment to FAs, and the complexes 

formation precedes the recruitment into FAs (Zhang et al., 2002c). Disruption of the IPP 

complexes significantly impairs cell shape modulation, cell motility and fibronectin matrix 

deposition (Zhang et al., 2002d; Guo and Wu, 2002). Different IPP complexes have been 

suggested to play distinct roles, although they may share certain common functions (Wu, 

2004). Each component of the PINCH1-ILK-α-parvin complex has been shown to be 

important to protect cells from apoptosis (Fukuda et al., 2003a). For example, α-parvin has 

been shown to regulate cell survival by facilitating membrane translocation, but not the 

phosphorylation, of PKB/Akt. The membrane targeting of PKB/Akt is an early and 

obligatory step in the activation of PKB/Akt. Cells that were depleted of α-parvin by RNAi 

undergo extensive apoptosis despite the presence of cell-ECM contacts and soluble growth 

factors. While PINCH1-ILK-β-parvin complexes were suggested to play a proapoptotic role 

(Zhang et al., 2004). The IPP complexes stabilize the individual proteins of the complexes 

and the mutual dependence of the IPP components is well conserved in both mammals and 

invertebrates (Fukuda et al., 2003b; Lin et al., 2003).  

Rho GTPases (Cdc42, Rac, and Rho) act as molecular switches to control signal 

transduction pathways by cycling between a GDP-bound inactive form and a GTP-bound 

active form and they interact with downstream targets to elicit a variety of intracellular 

responses, including the regulation of actin dynamics (Etienne-Manneville and Hall, 2002). 

ILK, PINCH, α- and β-parvin have been shown to provide a signaling pathway that links 

integrin signaling to Cdc42/Rac activation. The loss of PINCH1 or ILK, significantly 

reduced the activation of Rac (Fukuda et al., 2003b), while loss of α-parvin, but not β-

parvin, markedly stimulated Rac activation and enhanced lamellipodium formation (Zhang 

et al., 2004). β-parvin binds to αPIX, a Rac/Cdc42-specific guanine nucleotide exchange 
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factor, and they co-localize at the cell periphery to lamellipodia and ruffles in cells adhered 

to fibronectin (Rosenberger et al., 2003). Over-expression of the αPIX-binding β-parvin 

CH1 domain induced significant actin reorganization in MDCK cells by activating 

Cdc42/Rac, and disrupted epithelial cell polarity (Mishima et al, 2004). 

In vivo genetic studies of PINCH, ILK and parvin have widened our knowledge of 

their functions. In invertebrates C. elegans and Drosophila, mutations in PAT-4/ILK, UNC-

97/PINCH lead to embryonic lethal with defects in dense body and M line assembly due to 

the disruption of the integrin–actin linkage (Hobert et al., 1999; Zervas et al., 2001; 

Mackinnon et al., 2002; Clark et al., 2003). PAT-6, the parvin homologue in C. elegans, 

localizes to body muscle attachments, which are the analogs of focal adhesions. PAT-6 null 

mutant worm show similar muscle attachment defects. The proper polarization and 

recruitment of PAT-6/parvin to muscle attachments requires perlecan, integrin, ILK and 

UNC-112 (Lin et al., 2003). Loss of function of ILK has also been studied in mammals. 

ILK null mice die during early embryogenesis and the ILK-null cells exhibit altered actin 

cytoskeleton organization, impaired cell–ECM adhesion and spreading, and reduced 

proliferation (Sakai et al., 2003; Grashoff et al., 2003; Terpstra et al., 2003). Thus, the 

cellular phenotypes induced by gene inactivation are remarkably similar to those resulting 

from disruption of the IPP complexes, which suggests that the formation of the IPP 

complexes is likely essential for many biological functions (Wu, 2004).  

  

1.3    Hematopoiesis and the immune response  

Cell-cell and cell-matrix adhesions of hematopoietic cells are important to control their 

migration, retention, self-renewal, and differentiation (Prosper and Verfaille, 2001). 

Integrins are important cell surface receptors mediating several of these interactions. α- and 

β-parvins have been implicated in integrin-mediated cell-adhesion and migration (Yamaji et 

al., 2002; Fukuda et al., 2003b).  

All blood cells derive from hematopoietic stem cells (HSC), which have the potential 

to self-renew and to develop the clonal precursors of all known differentiated blood cell 

types (Morrison et al., 1995). Hematopoiesis begins in the mouse on day 7 of gestation in 

the yolk sac outside the embryo proper and in the para-aortic splanchnopleura (PAS)/aorta-

gonad mesonephros (AGM) region in the embryo. Around embryonic stage 8.5 (E8.5), 

when circulation starts, the HSC are present in the fetal blood and at E10 start to colonize 

the fetal liver (Weissman, 1994). Later, hematopoietic progenitors seed bone marrow (BM), 

thymus, spleen and other lymphoid organs.  
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HSC give rise to lymphoid, myeloid and erythroid precursor cells. These different 

lineage-committed cells express characteristic markers on their surface. In thymus, the T 

cell precursors are part of CD4CD8 double negative (DN) population and they do not 

express molecules characteristic for mature T cells like CD4, CD8 or the T cell receptor 

complex. During the development of B cells, the first lineage specific marker is B220 

(CD45R) and this molecule is expressed at all stages through to activated B cells. B220 

expression increases during differentiation. While immature B cells express medium levels 

B220 (B220m), mature B cells produce high amounts of B220 (B220h). CD19 is expressed 

from the pro B cell stage throughout B cell development. IgM is present on immature B 

cells after the V, D, J rearrangements of the genes of the immunoglobulin heavy and light 

chains. In early mature cells a change in RNA processing of the heavy-chain primary 

transcript leads to production of two mRNAs encoding IgM and IgD. These cells leave the 

BM and can be activated by their specific foreign antigen in secondary lymphoid organs, 

where the expression of IgD increases. Activated B cells proliferate, and differentiate into 

antibody-secreting plasma cells and long-lived memory cells (Janeway et al., 2001).  

During the immune response, the macrophages and neutrophils of the innate immune 

system provide a first line of defense against pathogens. When the innate host defenses are 

bypassed, evaded, or overwhelmed, an adaptive immune response is required. Adaptive 

immunity refers to antigen-specific defense mechanisms designed to remove a specific 

antigen. Three major cell types participate in the acquired immue response: T cell, B cell, 

and antigen-presenting cells (APC), particularly dendritic cells (DC). An adaptive immune 

response is initiated when circulating naïve T cells encounter their corresponding antigen in 

secondary lymphoid tissues presented by APCs. The processed antigen is noncovalently 

bound to the major histocompatibility complex (MHC) class I and/or MHC class II 

molecules on the APC.  The antigen binding to T-cell receptors (TCRs) activate the T 

lymphocytes, and lead to their proliferation and differentiation into effector cells. Once 

activated, some T cells migrate to the sites of infection and help other phagocytic cells 

destroy the antigen. Other T cells remain in the peripheral lymphoid organ and help B cells 

respond to the antigen.  

Immunological memory is generated during the primary response in part because the 

proliferation of antigen-stimulated naïve cells creates memory cells through clonal 

expansion, and in part because memory cells are able to respond more sensitively and 

rapidly to the same antigen than naïve cells. Thus, immunologic memory in the antibody 

system is generated by a T-cell-dependent response and carried by long-lived memory B 
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cells in germinal centers of lymphoid follicles that recognize antigen by high-affinity 

antibodies. In the early stage of an immune response, plasma cells secrete antibody of the 

IgM class, while class switching may occur. Class switching occurs in mature B cells and is 

dependent on antigenic stimulation of the cell if antigen-activated mature B cells receive the 

cytokines released by activated T cells. During the second immune response, IgG antibodies 

appear at higher concentration, and great persistence, than IgM (Janeway et al., 2001). Mice 

deficient in CD40, OCA-B, and Vav1 are unable to switch isotype and can produce only 

IgM (Kawabe et al., 1994; Kim et al., 1996; Gulbranson-Judge et al., 1999).  

 

1.4    Aim of the thesis 

The physiological functions of mammalian parvins are unknown. The aim of my PhD 

project is to study the functions of parvins in vivo using parvin mutant mouse models 

generated by genetic approaches. The phenotypes of parvin loss-of-function mutants were 

analysed. This thesis mainly focuses on α- and γ-parvin.  
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2       Materials and Methods 
 

2.1 Construction of targeting vectors 

 

2.1.1 Plasmid DNA miniprep and maxiprep, PAC screening and maxiprep 

Plasmid DNA miniprep 

Minipreps were carried out according to a modified QIAGEN® protocol as follows. A single 

fresh bacterial colony was picked and cultured in 2 ml LB medium (1L: 10g NaCl, 10g 

tryptone peptone, 5g yeast extract) containing appropriate antibiotic (ampicillin 100µg/ml 

or kanamycin 25µg/ml or chloramphenicol 25µg/ml) at 37°C overnight with vigorous 

shaking. The next morning, bacteria were harvested and the pellet was rsuspended in 200 µl 

buffer P1 (50mM Tris.HCl, pH 8.0; 10mM EDTA) with 100µg/ml RNase. The bacteria 

pellet was lysed in 200µl buffer P2 (200 mM NaOH, 1%SDS) and incubated for 5 min at 

RT. The lysate was neutralized with 200µl chilled buffer P3 (3.0 M potassium acetate, 

pH5.5) on ice for 5 min and centrifuged for 5 min at 13000 rpm in a tabletop 

microcentrifuge. The supernatant was taken out and mixed with an equal volume of 

isopropanol to precipitate DNA. DNA was collected by centrifugation at 13000 rpm for 5 

min and the pellet was washed with 400 µl 70% ethanol and air-dried. DNA pellet was 

dissolved in 50-100µl H2O. 

Plasmid DNA maxiprep  

Plasmid DNA was prepared using the QIAGEN®plasmid maxiprep kit according to the 

procedure described by the manufacturer. 

PAC screening and maxiprep 

129/Sv mouse PAC(P1-derived artificial chromosome) library RPCI21 (from the Human 

Genome Mapping Project Center, Cambridge, United Kingdom, 10 membranes) was 

hybridised with mouse α-, β- and γ-parvin cDNA probes derived from EST clones (from 

I.M.A.G.E, UK-HGRP RC) to screen parvin genomic containing clones. The hybridisation 

procedures were followed as Materials and Methods  2.1.6. Five positive PAC clones were 

ordered for each parvin gene. 

 A single fresh bacterial colony was cultured in 500 ml LB medium at 37°C with 

antibiotic overnight. Bacterial cells were harvested by centrifugation at 6000 x g for 15 min 

at 4oC. The pellet was resuspended in 10 ml buffer P1 and lysed with 10 ml buffer P2 and 

incubated at RT for 5 min. The lysate was incubated with 10 ml chilled buffer P3 on ice for 
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10 min and centrifuged at 6000 x g for 15 min. The supernatant was taken out and an equal 

volume of isopropanol was added and incubated at RT for 30 min to precipitate DNA. DNA 

was pelleted by centrifugation at 4°C for 20 min at 15000 x g and resuspended in 5 ml H2O. 

Contaminant RNA was precipitated from the DNA solution by incubating the solution with 

5 ml 5M LiCl on ice for 30 min followed by centrifugation at 4°C for 10 min at 20000 x g. 

DNA supernatant was taken out and incubated with an equal volume of isopropanol at RT 

for 30 min. DNA was pelleted by centrifugation at 4°C for 20 min at 12000 rpm and 

washed with 70% ethanol, then resuspended in 700 µl H2O with 10 µl 10 mg/ml RNase and 

incubated at 37°C for 1h to remove the remaining RNA. The solution was extracted with 

700 µl Phenol/chloroform and DNA was reprecipitated with 70 µl NaAc (3M, pH 5,5) and 

700 µl isopropanol. The DNA pellet was washed with 70% ethanol, air-dried and dissolved 

in 100-200 µl H2O.  

 

2.1.2    Preparation of chemically competent cells  

Fifty microliters of competent DH5α cells were incubated in 5ml LB medium with 0.02 M 

MgSO4 and 0.01M KCl and cultured at 370C overnight. The next day, the 1ml overnight 

culture was cultured in 150ml prewarmed LB with 0.02M MgSO4/0.01M KCl and grown 

for around 1.75 h at 37oC until the culture reached an OD600 density of 0.3 to 0.4. The 

culture was kept on ice for 10 min and spun down for 10min at 6000 rpm at 40C. The pellet 

was resuspended in 37.5ml TFBI (25 mM KAc, 50mM MnCl2, 100 mM RbCl, and 10 mM 

CaCl2; pH 5.8; sterilely filtered; with sterile glycerol added to 15%) and kept on ice for 10 

min before spinning down at 6000 rpm for 10 min at 40C.  The pellet was resuspended in 

4ml TFBII (10mM MOPS pH 7.0; 75mM CaCl2, 10mM RbCl, 15% glycerol, autoclaved) 

and cells were aliquoted in 50 µl or 100 µl on dry-ice/isopropanol and kept at -80oC.  

 

2.1.3    Plasmid DNA digestion and purification 

Plasmids and vectors were digested with enzymes from New England Biolab. MabI, an 

isoschizomer of SexAI that cleaves DNA methylated by dcm methylase C (m5)CWGG was 

purchased from SibEnzyme, Ltd. Digested DNA fragments were separated on an agarose 

gel and visualized by ultraviolet light. The DNA fragments were isolated from an agarose 

gel and purified with QIAquick® or QIAEX®II Gel Extraction Kit (QIAGEN) according to 

the procedure described by the manufacturer. Recovery of the DNA fragments was checked 

on an agarose gel. 
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2.1.4    DNA linkers and oligonuclotides phosphorylation and annealing 

SalI, PstI, BamHI, NotI phosphorylated DNA linkers were purchased from New England 

Biolab. Alternatively, the complementary oligonucleotides containing appropriate 

restriction enzyme sites were phosphorylated and annealed as follows: 1µl 100 pmol/µl 

oligonucleotides A and Oligonucleotides B were mixed with 1µl 10 x T4 polynucleotide 

kinase buffer, 1µl 10mM ATP, 5µl H2O and 1µl T4 DNA polynucleotide kinase and 

incubated at 37oC for 1h. Seventeen microliters H2O and 3µl 0.5M NaCl were added and 

incubated at 80oC for 10min on a heating block. The heating block was switched off and the 

samples were taken out of the block until the temperature decreased below 30oC.  

 

2.1.5    DNA ligation and transformation   

Vector DNAs were digested and dephosphorylated with calf intestinal phosphatase (CIP) in 

order to reduce vector self-ligation. DNA polymerase I Large Klenow fragment (New 

England BioLabs) was used to fill in sticky DNA ends. Targeted DNA fragments were 

ligated to the vectors with T4 DNA ligase (New England BioLabs) in 20µl volume 

reactions. For Pfu DNA polymerase amplified PCR fragment cloning, DNA fragments were 
ligated to a blunt-end vector directly. For cloning of Taq DNA polymerase amplified PCR 

fragments, T-Vector was made by digesting pBlueScript® II KS vector with EcoRV and 

incubated with Taq DNA polymerase in the presence of dTTP at 37oC for 30 min to obtain 

an extra T at the end of linearized vector fragments.  

The ligations were transformed to chemically competent E. coli strain DH5α or dam 

mutant DM110 cells (demethylated mutant). Four microliter ligations were added to 100ul 

competent cells and incubated on ice for 45 min, heat-shocked at 42oC for 90 sec and 

incubated for 5 min on ice. The transformants were cultured in 1ml LB medium without 

antibiotics at 37oC for 30-40 min in a bacteria shaker and plated onto LB plates containing 

antibiotics with or without blue/white selection.  

  

2.1.6    Southern analysis and colony hybridization 

 DNA was digested with appropriate enzymes and separated in an ethidium bromide- 

containing agarose gel. The gel was photographed under UV light. DNA fragments were 

depurinated in 0.25 M HCl for 10 min, denatured in 0.5 M NaOH/1.5 M NaCl for 20 min 2 

times and neutralized with neutralizing buffer (0.5 M Tris.HCl pH 7.0, 1.5 M NaCl) for 20 

min 2 times. The DNA fragments were transferred to nylon membrane with 10 X SSC 

overnight and UV-crosslinked (autocrosslinker; UV Stratalinker 2400, STRATAGENE).  
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DNA probes were labelled using a random priming DNA labelling kit (rediprimerTM II kit, 

Amersham Pharmacia Biotech). Unincorporated nucleotides were removed by 

centrifugation of probe through a G-50 Sepharose column. The blot was prehybridized in 

church buffer (1L: 10g BSA, 500ml NaPi, 350 ml 20% SDS, 2ml 0.5M EDTA, 10ml 

10mg/ml single-strand DNA) at 65oC for 1h and hybridized with probes of 1X106 dpm/ml 

church buffer at 65oC overnight.  The blot was then washed with 1% SDS/40mM NaPi 2 

times for 20 min and exposed to X-ray film.   

For low-efficiency cloning, colony hybridization was used to screen positive clones. 

The bacteria were picked from one LB plate and scratched onto a second gridded LB plate 

and the same position of a gridded circular nylon.  Both plates were incubated at 37° to 

regrow the bacteria.  The next morning, the bacterial DNA on the membrane was lysed in 

denature solutions for 5 min and then in neutralization solution for 5min and crosslinked. 

The membrane was hybridized with radioactivity labelled probes as that for Southern blot. 

The positive colonies were recoved from the 1st LB plate.   

 

2.1.7    DNA sequencing  

Seven hundred micrograms plasmid DNAs or DNA fragments were sequenced with 2µl Big 

Dye Terminator premixture, 1µl 10 pmol/µl primers in 10 µl volumes. Sequencing cycling 

program: 95oC 30 sec, 50oC 30 sec, 60oC 4 min, cycling 25 times and samples were kept at 

4oC. DNA was precipitated with 0.1 volume 3M NaAc pH5.5 and 2.5 volume 99.9% 

ethanol and incubated -200C for 20 min. DNA was centrifuged at max speed at 13000 rpm 

for 10 min and washed with 70% ethanol. The sequencings were performed by 

Medigenomix (Martinsried, Germany) and viewed with Chromas version1.45. 

 

2.2       Generation of knockout mice (Talts et al) 

 

2.2.1 Feeder cell preparation  

Feeder cells were prepared from embryonic stage (E) 14.5 embryos containing a neomycin 

resistant gene. Embryos were isolated sterilely from the uterus of the pregnant mice.  The 

head, liver, kidneys and spleen of embryos were removed under the stereoscope. The 

remaining embryonic tissue was cut into small pieces and digested in a 50ml Falcon tube 

with 1x trypsin-EDTA (1mL/embryo) for 10 min at 37 oC. The tissue was further 

dissociated by pipetting with a 5ml pipette and incubated 10 min at 37 oC. This procedure 

was then repeated with a 2-ml pipette and incubated for 5-10 min at 37 oC. Following this 
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incubation, an equal volume of EF medium (DMEM with 10% FBS) was added to 

inactivate the trypsin activity. Non-dissociated tissue was allowed to sediment for 1-2 min 

and the supernatant containing single cells was seeded onto 10-cm dishes (1 dish per 

embryo).  After the cells reached confluence (2 days later), they were trypsinized and plated 

onto two 175-cm flasks/ per 10cm-petridish. Cells were grown to confluence and then for 

an additional 3 days to obtain super-confluent cells. Cells were harvested by trypsinization 

and 10% of the cells were reseeded back onto the 175cm-flasks. The other 90% of 

harvested cells were centrifuged at 900g for 5 min and the cell pellets were X-irradiated at a 

dose of 6000 Rad for 5.4 min at the Max-Planck Institute of Neurobiology.  Irradiated cells 

were frozen in freezing medium (70% DMEM, 20% FBS, 10% DMSO) in Nunc 

CryoTubesTM. with cells from each 175cm2 flask frozen into 3 vials. The reseeded cells 

were grown until they reached super confluence then irradiated and frozen as before. The 

day after freezing, a vial of cells was thawed and cultured to control efficiency of irradiation 

and contamination. 

 

2.2.2    ES cell culture      

The mouse R1 embryonic stem (ES) cell line, originally from the Andràs Nagy lab in 

Toronto, Canada, was established from a 129/Sv x 129/Sv-CP F1 3.5-day male blastocyst. 

The 15th passage R1 ES cells were cultured in ES cell medium supplemented with 20% FBS 

tested for ES cell use.  ES cell medium consisted of DMEM high glucose+ Na-

pyruvate+2mM L-Glutamate (Gibco), 0.1 mM 2-mercaptoethanol, 1X non-essential amino 

acids of 100x stock solution (Gibco), and 1000U/mL leukemia inhibitory factor (LIF). One 

ampoule of ES R1 cells was thawed and seeded onto a 25cm2 flask together with feeder 

cells in ES medium without antibiotics. The ES medium was changed every day and cells 

were trypsinized every second day onto 75 cm2 or 175cm2 flasks 2 to 3 times until enough 

cells were available for electroporation. 

 

2.2.3   Linearization of targeting vector  
One hundred micrograms of targeting construct DNA was digested with NotI in a volume 

of 200 µl for 1.5 h after which 1µl of digested DNA was separated in an agarose gel and 

compared with undigested DNA to control the complete linearization. The DNA solution 

was extracted with 200 µl phenol/chloroform, and followed with 200 µl chloroform 

/isoamylalcohol (24:1). The DNA was then precipitated with 0.1 volume of 3M Na-acetate 

pH 5.2 and 2.5 volumes of 99.5% ethanol. A coiled DNA thread was visible after vigorous 



   Materials and Methods 

 

shaking. The DNA string was washed with 70% ethanol once and transferred to a capped 

1.5 ml tube containing 1ml 70% ethanol and stored at –200C. 

 

2.2.4    Electroporation of construct DNA into ES cells  

ES cells were washed with 1XPBS twice and harvested by trypsinization. The cells were 

counted and 5X107 ES cells were washed twice with 10ml PBS to remove remaining serum.  

At the same time, six 10-cm dishes were seeded with feeder cells in 7ml ES medium/dish.  

The linearized construct DNA was spun down and the 70% ethanol was removed. 

DNA was air-dried in the hood for 10 to 15 min and dissolved in 700µl PBS. The 

DNA/PBS solution was vortexed vigorously for 15-20 min until DNA completely dissolved 

and was no longer visible. The PBS/DNA solution was added to the 5X107 ES cell pellet 

and gently mixed.  The DNA/ES cell mixture was transferred to a Gene Pulser® Cuvette 

(0.4 cm electrode gap, Bio-Rad Laboratories) being careful to avoid air bubbles. The 

cuvette was incubated at room temperature for 1 min before electroporation (electroporation 

parameters: 0.8kv, 3uF, time constant 0.1ms). The cells were taken out from the cuvette 

with a glass pipette filled with 1ml ES medium and transferred to a 15 ml falcon tube with 

10 ml ES medium. The electroporated ES cells were equally distributed to six 10cm-dishes 

with preseeded feeder cells. 

 

2.2.5    Selection and picking of G418-resistent clones 

Selection with 500 µg/ml G418 began on the day following electroporation and was carried 

out for 6-8 days until picking. ES medium was changed every day during selection. One 

day before picking, fifteen 24-well tissue culture plates were seeded with feeder cells in 1ml 

G418-containing ES medium. G418-resistent clones were picked onto a 96-well 

microtiterplate filled with 150 µl trypsin-EDTA and incubated at 37oC for 5 min. And the 

ES clones were dissociated into single cells by pipetting up and down several times and 

transferred to the wells with feeder cells. The medium was changed on the next day to 

remove the trypsin-EDTA. Approximately 3 days after picking, all clones on one 24-well 

plate were frozen at the same time. ES Clones were trypsinized and resuspended in 1 ml 

freezing medium. Half of this was frozen and the remaining half was left in the well, which 

was then filled with ES medium. The medium was replaced the next morning to prevent the 

toxic effect of DMSO in the freezing medium.   

 

2.2.6    Identification of positive ES cell clones  
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The ES cells in 24-well plates were grown for 3-4 days until the medium turned yellow.  

The yellow medium was sucked away and ES cells were lysed in 0.5ml lysis buffer 

(100mM Tris-HCl at pH 8.5, 5mM EDTA pH 8.0, 0.2% SDS, 200mM NaCl, 100µg/ml 

proteinase K). The lysates were kept in lysis buffer for 8 h to 8 days until all samples were 

lysed. ES cell DNA was precipitated by adding 1 ml isopropanol to each well and the plates 

were shaken on an orbital shaker for 4-8 h at RT. DNA became visible as web-like 

structure. DNA was fished out and resolved in 150 µl TE buffer by incubation at 50-550C 

for 10-12 h. 24 µl DNA was digested with an appropriate enzyme in 30 µl volumes for 

Southern analysis. Recombinant ES clones were identified with both external and internal 

probes on Southern blots.  

 

2.2.7    Generation of chimeric mice and breeding scheme 

Positive ES cell clones that showed equal density of wildtype and recombinant alleles on 

Southern blot were selected and cultured for blastocyst microinjections. For microinjection, 

ES cells were trypsinized and washed twice with ES medium. ES cells were microinjected 

into C57/B6 blastocysts (day 3.5) and transferred into the uterus of day 2.5 pseudopregnant 

foster mice. The microinjections were performed in the Department of Molecular Medicine 

or by the transgenic facility at Max-Planck-Institute of biochemistry in Martinsried. The 

pseudomothers gave birth to chimeric mice 17-19 days after uterus transfer of injected 

blastocysts.  Using ES cells derived from 129/Sv mice, chimeric mice are recognized by 

agouti stripes. Highly chimeric male mice were mated to C57/B6 female mice for germ-line 

contribution of the ES cells. The heterozygous agouti offspring (if viable) were identified 

by Southern blotting. The heterozygous offspring were then mated to obtain homozygous 

mice. 

 

2.2.8 Mouse genotyping   

Mice were distinguished with numbered ear-tags and approximately 5mm piece of tails 

were clipped into tubes with corresponding numbers and incubated in 500 µl  lysis buffer 

(50mM Tris-HCl, pH 7.5; 50 mM EDTA; 1% SDS; and 10 µg/ml Proteinase K) at 550C 

overnight with vigorous shaking. Newborn mice were identified with a toe-clipping 

identification method. DNA was isolated using a phenol-chloroform extraction or a 

simplified DNA isolation method that omitted the phenol/chloroform extraction procedure 

(Laird et al., 1991). PCR analysis was used to identify wildtype, heterozygote and 

homozygote mice.  All reactions were run on a T3 Thermocycler PCR machine (Biometra) 
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and analyzed using agarose gel electrophoresis. For DNA amplification, genomic DNA was 

initially denatured for 3 min at 95°C followed by 34 cycles at 95°C for 30 sec, annealing at 

53°C for 30 sec and extended at 72°C for 30 sec.   

The following primers were used for mouse PCR genotyping.  

4 Primers were used for genotyping γ-parvin null mice:  

Wildtype allele F 5’-GTT TGA AGA ACT GCA GAA GG-3’ 

                         R 5’-GTT GAT CCA TTC CAT CAG CA-3’ 

Recombinant allele F 5’- CTG GGT AAT AAG CGT TGG CAA T -3’ 

                                R 5’- CCA ACT GGT AAT GGT AGC GAC-3’  

3 Primers were used for genotyping α-parvin exon 2 deletion mice:  

F1  5’-GGA ATG AAC GCC ATC AAC CT-3’ (for wildtype allele) 

F2  (PGKf):  5’-GAT TAG ATA AAT GCC TGC TC-3’ (for recombinant allele) 

R1  5’-TGA AAG CAG CTT CGG CCT AAC-3’ 

3 Primers used for genotyping α-parvin null mice: 

F1, F2 are same as those used for α-parvin exon 2 deletion mice 

R2  5'-TTG CGT GAG TTT GGA TCG AC-3' 

 

2.3 In vivo and in vitro assay methods 

 

2.3.1    Generation and purification of peptide antibodies 

Peptides of 14-16 amino acids from the N-terminal region of α-, β- and γ-parvins were 

synthesized and lyophilized in the department of Bioorganic chemistry in Max-Planck 

Institute. Two mg peptides were coupled to KLH (keyhole limpet hemocyanin, Imject® 

Maleimide Activated mc KLH, PIERCE). KLH is a carrier protein with a large molecule 

capable of stimulating its own immune response. For the initial immunization, one aliquot 

of 500 µg peptide-hapten complexes in 500µl PBS was mixed with 500µl Inject Freund’s 

Complete Adjuvant (Sigma) in an adaptor (B/BRAUN) between two syringes until 

emulsion developed. The emulsion was immediately injected subcutaneously to a rabbit 

with a non-pyrogenetic needle (20G x 1/2). After the initial immunization, the animal was 

boosted with injection of another aliquot of immunogen.  This was done 3 times with 2-

week intervals. One week after the 3rd boost or 7 weeks after the initial immunization, the 

animal was bled. Antisera were characterized by Western blotting, cell/tissue 

immunostaining and immunoprecipitation assays. The antisera were further purified by 

using SulfoLink® kit (PIERCE).    
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2.3.2    Peptide blocking experiment 

The specificity of peptide antisera to respective peptides was tested using a peptide 

blocking experiment. One microliter antiserum was mixed with corresponding peptides or 

control peptides. For example, 1µl α-parvin peptide antiserum was incubated with 12.5-20 

µg α-parvin peptide or control peptide (same amount of β-parvin or γ-parvin peptide) in 1ml 

5% milk/TBS solution and mixed overnight at 4oC. The next morning, the antibody-peptide 

complex was spun down and removed. The “cleaned” antibody supernatant was diluted in 

5% milk/TBS solution and applied to a Western blot. The protein band was abolished by 

incubation with the respective peptide, but not by control peptide.   

 

2.3.3    Western analysis   

Cells were lysed with lysis buffer (0.15 M  NaCl, 5 mM  EDTA, 1%  TX-100; PH 7.4) in 

the presence of proteinase inhibitors (Pepstatin 1uM, Na3VO4 1 uM, Leupeptin 10uM; or 

proteinase inhibitor tablet, Roche). Alternatively, tissues were homogenized in RIPA buffer 

(0.15 M NaCl, 50 mM Tris.HCl pH 7.4, 5 mM EDTA, 0.1%SDS, 1% sodium deoxycholate, 

1%TX-100 with proteinase inhibitors). Proteins were estimated with BCATM Protein Assay 

kit (PIERCE).  

Proteins (30 to 50 µg was used for detection of γ-parvin) were denatured at 95oC with 

15mg/ml freshly added DTT or 1% 2-mecaptoethanol and separated by 10% SDS-PAGE 

and transferred to PVDF membrane (Amersham Pharmacia Biotech) with 15% isopropanol. 

The blots were stained with 10% Ponceau S (Sigma) to record the ladder of the protein 

molecular weight marker (BD science, board range). The blots were blocked in 5% non-fat 

dry milk/TBS pH7.5/0.1%Tween20 (blocking solution) for 1 h at RT and probed with 

primary antibody in blocking solution for 1 h at RT or 4oC overnight. Blots were then 

washed with blocking solution 6 times for 5 min each and incubated with the secondary 

antibody diluted in blocking solution for 1 h at RT. The blots were washed with TBS 5 min 

5 times and signal was detected with ECL+PlusTM kit (Amersham Pharmacia). Occasionally 

blots were stripped with stripping buffer (100 mM 2-mecaptoethanol, 2% SDS, 62.5mM 

Tris-HCl pH6.7) at 550C for 30 min with occasional agitation. The blots were washed with 

TBS 6 times for 5min each to remove 2-ME after stripping and then reprobed using other 

antibodies. 

 

2.3.4    Immunoprecipitation (IP) assay   
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Cells were lysed or tissues were homogenized in ice-cold IP buffer (150 mM NaCl, 1 mM 

EGTA, 1% TX-100, 100 mM NaF, 10% Glycerol, 50 mM HEPES pH7.5, 10 mM 

Na4P2O7.10H2O) with proteinase inhibitors. Fifteen milligrams Protein A (Sigma) was 

incubated in H2O for 30 min and rinsed with IP buffer by centrifugation at 12000 g 20 sec 3 

times and resuspended in 1ml IP buffer. Fifty to one-hundred microliters of  Protein A was 

added to lysate of 500µg-1mg protein and mixed with 1µg parvin antibody by tumbling 

mixture end over end at 4oC overnight. The next day, the mixture was centrifuged and the 

pellet was washed with lysis buffer 3 times at 12000 x g at 4oC. The pelleted proteins were 

denatured in 20-40 µl 1X sample buffer and heated at 95oC for 5min and subjected to SDS-

PAGE followed by Western blotting assay. 

 

2.3.5    DNA mutagenesis and in vitro translation 

LB plates carrying α-, β- and γ-parvin cDNA plasmids in pGEM®-T Easy vector were 

kindly provided by the laboratory of Dr. Angelika A. Noegel (Cologne university). The 

sequencing of newly maxipreped cDNA plasmids showed a single mutation in each parvin 

cDNA. The mutations were corrected with QuickChangeTM site-directed mutagenesis kit 

(STRATAGENE) according to the procedure described by the manufacturer. 

 Parvin cDNAs (with a stop codon at the 3’ end) were amplified with Pfu/Vent® DNA 

ploymerase and cloned into a modified pCS2+ mammalian SP6 promoter driving expression 

vector (from Max-Planck Institute of Biochemistry) with FseI and AscI restriction enzyme 

sites. In vitro translation reactions were performed with TNT® Coupled 

Transcription/Translation Systems using rabbit reticulocyte lysate (Promega) according to 

the supplier's instructions. The post-translation reactions were analyzed by Western 

blotting.    

 

2.3.6   Northern analysis and RT-PCR 

Total RNA was isolated from tissues using TRIzol reagent (GibCo) according to the 

procedure described by the manufacturer with mild modification. Briefly, tissue samples 

were homogenized in TRIzol, 50-100 mg tissue/ml TRIzol.  Samples were incubated at RT 

for 5 min. Chloroform was added to the sample (at 0.2x the volume of TRIzol used) and 

vortexed vigorously and centrifuged at 12000 x g 4oC for 15min. The upper aqueous phase 

was extracted with 1 volume phenol pH 4.0/chloroform and centrifuged at 12000 x g for 15 

min at 4oC. The RNA in the upper aqueous phase was precipitated with 0.5 volume 

isopropanol and centrifuged at 12000 x g for 15 min at 4oC. The RNA pellet was washed 
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with 70% ethanol/DEPC-H2O, centrifuged at 12000 x g for 10 min at 4oC and air-dried. 

Finally, the RNA pellet was resolved in DEPC-H2O and quantified at A260.  

Six microlitersl of 15 µg total RNA was denatured in 14 µl denature solution (see 

below) at 56oC for 10 min and loaded with 2µl loading buffer (see below) onto an agarose-

formaldehyde gel and electrophoresed in 1X MOPS buffer at 120V for 2h. The gel was 

photographed and 18S and 28S ribosomal RNA bands were used to assess the size of 

mRNA. RNA was transferred to a charged nylon membrane and the blot was probed with 
32P-labeled cDNA probe. The same blot was stripped and reprobed with a NADPH cDNA 

probe as a RNA loading control.  

When RNA concentrations were too low, RNA was precipitated with 0.1 volume 4M 

LiCl, 2.5 volumes ethanol at –20oC for 1h or overnight.  

Agarose-formaldehyde gel preparation: 2.25g agarose was dissolved in 115ml DEPC-

H2O then cooled to 50oC.  The gel was then cast with 7.5 ml 20 X MOPS running buffer 

and 27 ml formaldehyde in a hood.  

Solutions: RNA denature solution 140 µl: 20 X MOPS 5 µl, formaldehyde 35 µl, 

formamide 100 µl. RNA loading buffer: 10µl ethidium bromide, 50µl 10 X formaldehyde 

gel loading buffer. 10 X formaldehyde gel loading buffer: 50% glycerol, 10 mM EDTA pH 

8.0, 0.25%(w/v) bromophenol blue. 20X MOPS gel running buffer: 0.8M MOPS, 0.2M 

NaAc, 20mM EDTA pH7.0.  

For RT-PCR, 2.5 µg total RNA was reverse-transcribed using the SuperScriptTM  II 

RNase H- reverse transcriptase (Invitrogen) according to the procedure described by the 

manufacturer. α-Parvin exon 2 deletion mice mRNA transcripts were analysed using 

primers derived from exon 1 and exon 3 sequences. F(E1f1): 5’-GCC TCA AAT GCC 

TGG AAT AA-3’, R(E3r): 5’-CAT TGT CCG GAC CTC ATT CT-3’. Amplified products 

were separated on 2% ethidium bromide agarose gel, visualized by UV transillumination 

and photographed.    

 

2.3.7    DNA transfection 

Full-length γ-parvin cDNA was amplified to include a stop codon at 3’ end and cloned into 

the pEGFP-C1 vector (Clontech) BamHI site to express GFP-γ-parvin fusion protein. To 

express N-terminal FLAG tagged γ-parvin, full-length γ-parvin cDNA was cloned into the 

BamHI site of pcDNA3.1-NFLAG vector (Sigma). To express C-terminal FLAG tagged γ-

parvin, full-length γ-parvin cDNA without stop codon was cloned into the BamHI site of 

p3XFAG-CMV-14 vector (Sigma). The control vectors, GFP-γ-parvin, FLAG-γ-parvin, or 
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γ-parvin-3XFLAG plasmids were transfected to NIH/3T3 cells with PolyFect® 

Transfection reagent (QIAGEN) in 6-well plates or 10cm-dishes according to the manual. 

30-40 h later, cells were trypsinized and reseeded onto fibronectin coated coverslides and 

fixed with 3-4%PFA after 6 h for immunostaining analysis. Alternatively, cells were 

directly lysed for Western blotting or immunoprecipitation assays. 

 

2.3.8    Immunofluorescence staining of cultured cells 

Coverslides (Ø120mm, MARIENFELD) were sterilized by ethanol immersion and flaming. 

The coverslides in 24-well were coated with 300ul 5-10 µg/µl fibronectin and kept at 4oC 

overnight or at 37oC for 1h.  Fibronectin was removed and coverslides were rinsed with 

PBS once and 1 ml medium was added to each well. Cells were grown on coverslides for 6 

h before fixation with ice-cold 3% PFA for 20 min. PFA was washed away with 1.5 ml 

PBS/well, 5 min 3 times. For intracellular protein staining, cells were permeabilized with 

0.2% TX-100/PBS for 30 min at RT. Cells were blocked with 5% goat serum/3% BSA in 

PBS at 370C or RT for 1 h and incubated with primary antibodies for 1 h at RT or 40C 

overnight. Primary antibodies were washed away and incubated with chrome-conjugated 

fluorescence second antibodies for 1h. For nucleus staining, cells were incubated with 0.1-

0.2 µg/ml DAPI for 5 min at RT. Cells were mounted with evanol and kept at 40C or -200C 

in dark. 

 

2.3.9   Immunostaining of tissue sections     

Tissues were frozen in cryomatrix (ThermoShandon, USA) with dry-ice/isopropanol and 

sectioned (MICROM, HM 500 OM) at 6-8 µm thickness. Cryosections were air-dried at RT 

for 1h and isolated using a PAP pen. Tissues were fixed with ice-cold 4% PFA/PBS for 20 

min. For immunofluorescence staining of tissue sections, the same procedures were 

followed as those for cell staining (2.3.8). 

2.3.10  Magnetic cell sorting 

B cells and T-cells were sorted using a magnetic cell sorting system according to the 

procedure described by the manufacturer (Miltenyi Biotec Inc. USA). Briefly, 1 x 107 

splenic cells were resuspended in 90 µl sorting buffer (PBS pH 7.2, 0.5% BSA, 2 mM 

EDTA) in a 15-ml Falcon tube and incubated with 10 µl mouse FITC conjugated B220, 

CD4 or CD8 antibodies (BD Bioscience) on ice for 30 min in the dark. The unbound 

antibody was washed away with 10 ml sorting buffer by centrifugation at 500 x g for 5 min. 

5 x 105 cells were taken out for FACS analysis control before sorting. The rest of the cells 
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were resuspended in 90 µl buffer with 10 µl anti-FITC MicroBeads for 15 min at 4-80C. 

Unbound anti-FITC MicroBeads were washed away and cells were resuspended in 500 µl 

buffer and applied to the column in the magnetic field. The column was washed with 500 µl 

sorting buffer 3 times. Then the column was removed from the separator and placed in a 

1.5ml Ependof tube. 1 ml sorting buffer was added to the column and the labelled cells 

were immediately flushed out by firmly pressing the supplied plunger.  Sorted cells were 

counted and 2-5 x 105 cells (around 1/10 of sorted cells) were applied for FACS analysis 

used for evaluation of the purity of sorted cells.  The sorted cells were lysed in 30-50 µl 

lysis buffer for Western analysis of parvins, ILK and PINCH expression.   

  

2.3.11  Generation of BM-derived dendritic cells and macrophages 

Bone marrow-derived dendritic cells and macrophages were generated in Dr. Michael Sixt’s 

lab in Max Planck Institute of Biochemistry, Martinsried. Briefly, on the day 0, bone 

marrow from 8-weeks-old control and γ-parvin-/- littermate mice was flushed out and 

dispersed into single cells by pipetting up and down and seeded into 10cm-petri dishes in 

9ml R10 medium (RPMI, 10% serum, 5% penicillin/streptomycin) plus 1ml conditioned 

medium from the GM-CSF-producing cell line for the generation of dendritic cells (2-3 x 

106 cells/dish). On the day 3, 8ml R10 plus 2ml GM-CSF were added into each dish. On the 

day 6, 10ml medium was replaced with 8ml R10 plus 2ml GM-CSF. And on the day 8, 

around 8 x 106 cultured non-adherent cells were pooled and cultured in a small cell culture 

dish and LPS (20ng/ml, Sigma) was added to stimulate the maturation of dendritic cells.  

To generate macrophages, the same procedure was followed as above, except that 

10% L929-conditioned medium, a source for M-CSF, was added into the medium to 

stimulate the growth of macrophages instead of GM-CSF. And the adherent cells were 

harvested on the day 7 by trypsinization.   

The cells were analysed by FACS with antibodies (CD11c-FITC, MHC II-FITC or  

biotinylated, Gr-1-PE, F4/80-biotinylated, CD86-PE or biotinylated, CD40-biotinylated; 

BD Biosciences Pharmigen). 

 
2.3.12  Flow cytometry analysis (FACS) 

Lymph nodes, spleen, thymus, Peyer’s patches and bone marrow were taken onto cell 

strainers (70um Nylon, BD FalconTM) with 10 ml cold PBS on a petri dish. Tissues were 

smashed on the strainer with the inner flat part of a 10 ml-syringe into single cells. Only 

hematopoietic cells could pass through the strainer. Single hematopoietic cells were 
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transferred into a 50ml Falcon tube through the strainer. The petri dish was rinsed with an 

additional 10ml PBS to collect all cells. Cells were spun down at 1300-1500 rpm 5 min at 

4oC. The supernatant was removed and cells were resuspended in 5ml FACS buffer 

(1%BSA/PBS). Splenic cells and thymocytes were diluted in 5 ml FACS buffer, while cells 

from bone marrow, lymph nodes, and Peyer’s patches were diluted in 2 ml or less of FACS 

buffer. Cells were counted and 1x106 cells were distributed into the wells of the round-

bottom 96-well plates for staining. Cells were pelleted in 96-well plates and resuspended in 

50µl primary antibody and incubated for 30 min on ice in the dark. The cells were washed 

once by adding 200 µl FACS buffer to the wells and centrifuged at 1300-1500 rpm 5 min at 

40C. Supernatants were sucked away and cells were resuspended in the secondary antibody 

and incubated for 10-30 min on ice in the dark. The secondary antibody was washed away 

with 200 µl FACS buffer as before and cells were resuspended in 200 µl FACS buffer and 

transferred into FACS tubes. 10 µl propidium iodide (PI, 50µg/ml) was added to each 

sample before FACS measurement to exclude dead cells. 

Fluorochrome-conjugatd and biotinylated antibodies used in FACS analysis were 

from BD Biosciences Pharmigen. Antibodies used: IgD-FITC (fluorescein isothiocyanate); 

B220-PE (phycoerythrin); IgM-Bio (biotinylated); CD4-FITC, CD3-PE, CD-8-Bio, Gr-1-

Bio, Mac-1-Bio, Ter119-Bio, NK1.1-FITC, Dx5-Bio. Primary antibodies were diluted in 

FACS buffer (1:200) and the 2nd SA-Cy5 (Cy5-conjugated streptavidin) was diluted 1:500.  

Samples were analysed on a BECTON DICKINSON FACSCalibur. The data were 

analysed with BD CellQuestTM Pro Software.             

2.3.13 Immunization 

NP20-CG (nitrophenyl-chicken γ-globulin; from the laboratory of Dr. Ari Waisman, 

Cologne University) was dilute to 1 mg/ml with sterile PBS. One volume of alum 

(Imject®Alum, PIERCE) was added to NP20-CG and incubated for 30 min at RT with 

vigorously vortex. Two-month-old control (+/+ or γ-parvin+/-) and γ-parvin-/- mice (n=5-6 

in each group) were immunized intraperitoneally with 100 µg NP20-CG (200 µl NP20-CG-

Alum emulsion). 50 µl blood was taken from eye with 50 µl capillary on the same day (day 

0) before the immunization and on the day 7, 14, 21, and 28 after the immunization. Blood 

was taken on the day 42 again and 10 µg/mouse of NP20-CG in PBS was administered 

intraperitoneally for secondary/memory responses and the blood was taken on the day 49, 

56, 63 and 70.  

Blood was let stood at RT for 2-3 h and centrifugated at 14000 rpm for 15 min and the 

sera were collected and kept at –20o.  The anti-NP-CG (nitrophenyl-chicken gamma 
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globulin) antibody isotypes (IgM, IgG1, IgG2a, IgG3, Igκ and Igλ) were determined by 

means of ELISA carried out in the laboratory of Dr. Ari Waisman (Cologne University).  

 

2.4    Reagents and antibodies 

Primary antibodies; PINCH1 and PINCH2 peptide rabbit polyclonal antibodies were 

generated by Fabio Stanchi in Max Planck Institute of Biochemistry, Martinsried. Mouse 

ILK and paxillin monoclonal antibodies were from BD Transduction laboratory. α-tubulin 

tyrosinated Y/L rat monoclonal antibody referred to Kilimatrin et a (1982).  α-actin rabbit 

polyclonal antibody was from Sigma. 

Secondary antibodies; Anti-rabbit/mouse/rat IgG(H+L)-HRP were from BD 

Biosciences. Anti-mouse IgG-FITC/Cy3, anti rabbit Cy3/FITC were from Jackson.  FITC-

conjugated phalloidin was from Sigma. Rabbit Anti-FLAG polyclonal antibodies were from 

Sigma. 

 

2.5    Statistics 

The statistics of FACS and ELISA data were performed with the Student’s t-test. The P 

value of significance was set at 0.05. 
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3 Results       
 
3.1 Generation and characterization of parvin peptide polyclonal 

antibodies 
 
3.1.1    Generation of anti-parvin peptide polyclonal antibodies in rabbits 
To generate mouse parvin-specific antibodies, N-terminal peptides were produced 
corresponding to α-parvin amino acid residues 5-19, β-parvin residues 3-16 and γ-parvin 
residues 2-17 with an additional cysteine (C) added to the N-terminus of the peptides 
(Figure 3.1-1).  Rabbits were immunized with peptides coupled to carrier protein KLH 
(keyhole limpet hemocyanin). The antisera were characterized by Western blotting, 
immunoprecipitation and immunostaining assays. 

 

Figure 3.1-1 The alignment of N-terminal amino acid sequences of mouse α-, β- and γ-parvin. The 
peptide sequences synthesized for antibody generation are emphasized with bold letters.     
 

3.1.2 Characterization of parvin peptide antibodies  
 
3.1.2.1 anti-α-, β- and γ-parvin peptide antisera specifically recognize the 
corresponding proteins on Western blot 
Spleen tissue lysate was used for characterization of the antibodies. α-parvin (42 kD), β-
parvin (41.7 kD) and γ-parvin (37.5 kD) were recognized by peptide antisera at their 
calculated molecular weights (Figure 3.1-2). The specificity of the antibodies to respective 
peptides was tested by a peptide blocking experiment. The corresponding signal of parvin 
was blocked by preincubation of antibody with the corresponding peptide, but not by 
control peptide. For α- and γ-parvin, the peptides specifically blocked the parvin signals, 
while the β-parvin peptide not only blocked the β-parvin signal, but also blocked two 
additional non-specific proteins. 

Parvin paralogues, especially α- and β-parvin, share high homology to each other 
(74% identity and 85% similarity). In order to investigate the specificity of antibodies 
between the three parvins, the full-length cDNAs of α-, β- and γ-parvin were cloned into a 
mammalian expression vector and translated in vitro using a SP6 promoter-driving in vitro 
transcription/translation system with rabbit reticulocyte lysate as described in Materials and 
Methods. The translation reactions were analysed by Western blotting together with spleen 
lysate as a positive endogenous protein control. Figure 3.1-3 shows that each parvin 
antibody specifically recognizes the respective protein with no cross-reaction with other 
parvin paralogues.  

α-parvin1MATSPQKSPLVPKSPTPKSPPSRKKDDSFLGKLGGTLARRKKAKEVSEFQEEGMNAINLPLSPISFELD69  
β-parvin      1MSSAPPRSPTPRAP-KMKKDESFLGKLGGTLARKKKTREVTDLQEEGKSAINSPMAPALVDIH62 
γ-parvin                        1MELEFLYDL---------------LQLP------------KEVAQ18
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Figure 3.1-2 α-, β- and γ-parvin peptide antisera recognize corresponding parvin proteins at calculated 
molecular weights (the first column of each blot group, α-parvin 42 kD, β-parvin 41.7 kD, and γ-parvin 37.5 
KD) in spleen lysate. The signals were specific to each peptide, which were blocked by corresponding 
peptides, but not by control peptides.    

 
 
 

 
 
Figure 3.1-3 No cross-reactions between parvin peptide antisera. In vitro translated α-, β- and γ-parvin 
proteins were subjected to SDS-PAGE and probed with α-, β- and γ-parvin peptide antisera. Spleen lysate was 
used as an endogenous positive control for parvin proteins.  No plasmid was added to the (negative) control in 
vitro translation reaction.  
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          There are three β-parvin isoforms expressed in mouse using different promoter usage 

(Yamaji et al., 2001). The peptide used for β-parvin antibody generation is only present in 

β-parvin(l) while absent in the two shorter isoforms β-parvin(s) and β-parvin(ss). Therefore, 

the β-parvin antibody only recognizes β-parvin(l). 

 

3.1.2.2 α-Parvin antibody works on cell immunostaining      

MEF (mouse embryonic fibroblast) cells were used for the characterization of the parvin 

antibodies on cell immunostaining. The expression of parvins in MEF cells was examined 

by Western blotting. Both α- and β-parvin(l) are expressed in MEF cells and spleen tissue, 

and β-parvin(l) is expressed at a lower level in MEF cells than in spleen. γ-parvin is 

expressed in spleen but not in MEF cells (Figure 3.1-4).  

α-parvin antiserum gave specific staining on MEF cells at the sites of focal adhesions. 
This signal could be specifically blocked by the α-parvin peptide, but not by control peptide 
(Figure 3.1-5). In contrast, β-parvin antiserum gave only non-specific background-like 
staining in MEF cells, similar to that of preimmune serum (data not shown). This may be 
due either to the low expression level of β-parvin(l) in MEF cells or the low binding affinity 
of the antibody. γ-parvin antiserum gave non-specific staining in nuclei of MEF cells (data 
not shown). Thus, only the α-parvin peptide antibody works for immunostaining on 
cultured cells. 
 

 
 

Figure. 3.1-4 α- and β-parvin(l), but not γ-parvin, are expressed in MEF cells.  MEF cells and spleen 
lysates were analysed by Western blotting with anti-α-, anti-β- and anti-γ-parvin peptide antibodies. Anti-α-
tubulin antibody was used as a loading control.  M, molecular weight marker.    
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Figure 3.1-5 Immunostaining of α-parvin in cultured cells. α-parvin antiserum gave specific staining in 
MEF cells at FAs. The signals were specifically blocked by α-parvin peptide, but not by control peptide. The 
preimmune serums only gave background staining.  

 
 
3.1.2.3 α-parvin antibody works on tissue immunostaining   
The α-parvin peptide antiserum was further characterized for tissue immunostaining on 
cryosections. The antibody gave specific staining on skin and embryonic tissues of lung, 
cartilage and muscle (Figure 3.1-6), while the preimmune serum showed only background 
staining (data not shown). β-parvin antiserum also gave staining on tissues (data not 
shown), however the signal was not be reliable since the antibody recognized two additional 
non-specific proteins on Western blot  (Figure 3.1-2).  
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Figure 3.1-6 Immunostaining of α-parvin on tissue cryosections. α-parvin peptide antiserum gave specific 
signals on tissue cryosections, such as skin and embryonic tissues of lung, muscle and cartilage. Picture 
magnifications 200x. 
 

 

 
 

Figure 3.1-7 Coimmunoprecipitation of α-parvin with ILK and PINCH1 in MEF cells.  MEF lysates 
were mixed with α-parvin peptide antiserum, purified antibody or preimmune serum as a control. The 
immunoprecipitates were analysed by Western blotting with α-parvin, ILK and PINCH1 antibodies.   

 
3.1.2.4 α- and γ-parvin antibodies work for immunoprecipitation  
Since α- and γ-parvin peptides specifically blocked the antibody binding to respective 
parvin proteins, the antisera were purified using the SulfoLink® kit. The purified antibodies 
gave the same patterns on Western blot as the unpurified antibodies (data not shown). The 
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antisera and purified antibodies were further characterized by immunoprecipitation (IP). 
Both α- and γ-parvin peptide antisera and purified antibodies could immunoprecipitate the 
corresponding proteins. Figure 3.1-7 shows that α-parvin, ILK and PINCH1 were detected 
in the immunoprecipitates with both the α-parvin peptide antiserum and purified antibody in 
MEF cell lysate.  This is consistent with the published data that α-parvin forms complexes 
with ILK and PINCH1 (Tu et al., 2001; Guo and Wu, 2002; Zhang et al., 2002; Wu, 2004). 
γ-Parvin was also detected in both γ-parvin peptide purified antibody and antiserum 
immunoprecipitates from spleen lysate (Figure 3.1-8 and data not shown). Moreover, ILK 
and PINCH1 were also detected in the immunoprecipitate with the γ-parvin antibody, 
indicating that the ILK-PINCH-parvin ternary complex can be formed with all three parvin 
isoforms. 
 

 
 

Figure 3.1-8 Coimmunoprecipitation of γ-parvin with ILK and PINCH-1 in spleen lysate. Spleen lysates 
were mixed with purified γ-parvin antibody or preimmune serum as a control. The immunoprecipitates were 
analysed by Western blotting with γ-parvin, ILK and PINCH1 antibodies. Con, preimmune serum. 
 
 

3.1.3 Summary  
The working conditions of parvin antibodies are summarized in Table 3.1-1. All three 
parvin peptide antibodies work on Western blot. They detect proteins of the correct sizes 
and the signals can be effectively blocked with the corresponding peptides. Additionally, 
both α- and γ-parvin antibodies can pull down the ternary complex proteins ILK and 
PINCH-1 in immunoprecipitation assays. Finally, the α-parvin antibody also works well for 
cell and tissue immunostaining. 
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Table 3.1-1 Working conditions of parvin peptide antibodies. 

Antiserum WB dilution IP Cell IM dilution Tissue IM dilution 
α-parvin 1:10000 + 1:4000 1:1000 
β-parvin 1:5000 - - - 
γ-parvin 1:5000 + - - 

 
The dilutions of antibodies used for Western blotting (WB) and immunostaining (IM) are shown. +, working 
assay; -, non-working assay.  
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3.2   In vivo analysis of γ-parvin                     
                                      

3.2.1 γ-parvin is expressed in lymphoid tissues, specifically in B cells, T cells, 

dendritic cells and macrophages 

The putative γ-parvin was identified as a parvin family member in 2001 (Olski et al., 2001). 
Little is known about γ-parvin except its mRNA expression profiles. Northern blots using 
embryonic and adult mouse tissues, adult human tissues, and various cell lines show that γ-
parvin is predominantly expressed in hematopoietic/lymphoid organs (Olski et al., 2001; 
Korenbaum et al., 2001). I confirmed the γ-parvin mRNA expression pattern by Northern 
blotting using a 639-bp cDNA probe derived from an EST clone (Accession: BC011200) 
encompassing nucleotides 140-777 of the cDNA. In agreement with published data, a major 
transcript of around 2.8-kb was detected (data not shown and Figure 3.2-10B; Korenbaum 
et al., 2001).  

Expression of the γ-parvin protein was confirmed by Western blotting with our anti-γ-

parvin peptide polyclonal antibody as described in Results 3.1. The lysates of lymphoid 

tissues including BM, thymus, spleen, lymph nodes (LN) and Peyer’s patches (PP), were 

resolved to SDS-PAGE and probed with antibodies to γ-parvin, α- and β-parvins, and ILK. 

 

  

The blots were stripped and reprobed with α-tubulin and α-actin antibodies as loading 

controls. γ-parvin was expressed in all five of these lymphoid tissues, with the highest 

expression level in BM. The other two members of the parvin family, α- and β-parvin, were 

also expressed in lymphoid tissues. However, very interestingly, α-parvin was not 

Figure 3.2-1 Expression of parvins and 
ILK in mouse lymphoid tissues on 
Western blot. α-tubulin and α-actin 
were used as protein loading controls.  
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detectable in BM lysate. Among these five lymphoid tissues, spleen tissue showed higher 

expression levels of both α- and β-parvins than the other lymphoid tissues. It seems that at 

least in BM and thymus, γ-parvin is the major parvin member expressed. ILK was 

expressed in all five lymphoid tissues at similar levels. Previously, it was shown that in 

some non-lymphoid tissues, such as lung, γ-parvin is moderately expressed, and several 

variant strong transcripts were detected in testis by Northern blot (Korenbaum et al, 2001). I 

found that γ-parvin was expressed at a very low level in the lung and was hardly detectable 

in testis lysate with the anti-γ-parvin antibody (data not shown). This may be due to the low 

expression level of the protein or the low detection sensitivity of my antibody. 

Interestingly, anti-rat tyrosinated α-tubulin monoclonal antibody gave a very weak 

signal from the lysate derived from BM (Figure 3.2-1). While with anti-rabbit α-actin 

polyclonal antibody, I showed that similar amount of protein was loaded from BM 

compared to the other lymphoid organs. The full-length yeast α-tubulin was used as the 

antigen to generate the tyrosinated rat monoclonal antibody (Kilmartin et al., 1982). 

Hematopoietic cells in BM have a high divergence with regard to the tubulin protein (Josh 

and Cleveland, 1990). The failure to detect α-tubulin in BM may be due to the low cross-

reactivity between tubulin species or the tyrosination difference arising from the sequence 

divergence (Wehland et al., 1984). 

To further investigate cell-type specific expression of γ-parvin, B and T cells were 

sorted by FACS from adult mouse splenic cells using antibodies against the B cell marker 

B220 and T cell markers CD4 and CD8. Spleen single cell suspension was prepared as 

described in Materials and Methods. Only hematopoietic cells could pass through the cell 

strainer while the tissue stroma cells were removed. The purities of the sorted cells were 

examined by FACS analysis and the lysates derived from B220+, CD4+ and CD8+ cells 

were used for Western analysis. γ-parvin, but not α- and β-parvin(l), was expressed in 

B220+, CD4+ and CD8+ subpopulations (Figure 3.2-2). Consistent with the absence of α-

parvin in BM lysate, α-parvin was not detected in B220+, CD4+ and CD8+ cell 

subpopulations, nor in spleen single cell preps (data not shown), suggesting that α-parvin 

was not expressed in hematopoietic cells. β-parvin(l) was expressed in spleen single cell 

preps but was absent in B220+, CD4+ and CD8+ subpopulations, 
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Figure 3.2-2 B220+, CD4+ and CD8+ cell-specific expression of parvins, ILK and PINCH1.  (A)The 

purities of B220+, CD4+ and CD8+ cells were 48.0%, 21.1% and 8.2%, respectively, before sorting and 

reached 99.0%, 93.7% and 91.7%, respectively, after sorting. (B)Western blot of parvins, ILK and PINCH1 in 

splenic cells and sorted B220+, CD4+, CD8+ cells.   

 

which indicated that β-parvin(l) was likely expressed in erythroid and/or myeloid lineages. 

ILK was expressed in B220+, CD4+ and CD8+ subpopulations and the expression levels 

were lower in CD4+ and CD8+ T cells compared to those in B220+ cells. PINCH1 was 

weakly expressed in B220+ cells. Consistent with its low expression in thymus (Figure 3.2-

11), PINCH1 was not detectable in splenic CD4 and CD8+ T cells. PINCH2 was not 

detectable in lymphoid tissues of thymus or spleen (data not shown). 

To further investigate whether γ-parvin was expressed in other cell types, such as the 

myeloid lineages, BM-derived macrophages and dendritic cells were generated as described 

in the Materials and Methods. The purities of cultured dendritic cells and macrophages were 

85% and 98.7% respectively, as estimated by FACS using CD11c, MHCII and Gr-1 

antibodies for dendritic cells and Mac-1, F4/80 for macrophages (Figure 3.2-12A and B). 

Both dendritic cells and macrophages expressed γ-parvin and the expression level of γ-

parvin in macrophages was higher than that in dendritic cells (Figure 3-12C, lane 2 and 4). 
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β-parvin(l), but not α-parvin, was also expressed in dendritic cells and macrophages. Thus, 

γ-parvin was coexpressed with β-parvin(l) in dendritic cells and macrophages.  

 

3.2.2 γ-Parvin is associated with ILK and PINCH1 and forms ILK-PINCH1-γ-

parvin ternary complexes   

It is known that both α- and β-parvins bind to ILK and PINCH1 and form ILK-PINCH-

parvin (IPP) ternary complexes (Tu et al., 2001; Guo and Wu, 2002; Zhang et al., 2002). To 

investigate whether γ-parvin has such a property, spleen tissue lysate, which is abundant in 

γ-parvin protein, was immunoprecipited with anti-γ-parvin purified antibody and 

preimmuneserum as a control. As shown in Figure 3.1-8, γ-parvin, ILK and PINCH1 were 

detected in the immunoprecipitates with γ-parvin antibody, but not with control 

preimmuneserum. Thus, like α- and β-parvin, γ-parvin also formed ternary complexes with 

ILK and PINCH1. The ILK-PINCH-γ-parvin (IPP) ternary complexes are present in spleen, 

suggesting the ILK-PINCH-γ-parvin complexes could be formed in at least B220+ cells, 

dendritic cells and macrophages, where all three proteins are expressed (Figure 3.2-12).  

 

3.2.3 Subcellular localization of γ-parvin in fibroblasts 

Both α- and β-parvins localize to FA sites (Olski et al, 2001; Yamaji et al., 2001). The 

formation of ILK-PINCH-α-parvin complexes is necessary for FA localisation of each 

component (Zhang et al., 2002c). The association of γ-parvin with ILK and PINCH1 in 

spleen makes it worthwhile to test whether γ-parvin also localizes to FA as α- and β-parvins 

do. To visualize the subcellular localization of γ-parvin, γ-parvin was tagged at the N-

terminus with GFP. The control pEGFP vector and pEGFP-γ-parvin plasmid were 

transfected into NIH/3T3 fibroblasts. GFP-γ-parvin fusion proteins formed aggregate-like 

structures surrounding the nucleus. The expression of GFP and GFP-γ-parvin fusion 

proteins was confirmed with both γ-parvin antibody and GFP antibody by Western blot 

(Figure 3.2-3). Surprisingly, a small amount of GFP and γ-parvin were detected separately 

in the lysate of GFP-tagged γ-parvin transfected cells, indicating that some of the GFP-γ-

parvin fusion protein was cleaved between GFP and the γ-parvin linker region. The 

instability/cleavage of the fusion protein may account for the formation of aggregates. 

Alternatively, N-terminal tagged-GFP may interfere with the interactions between γ-parvin 

and its binding partners or interacting proteins, which would then interfere with the proper 

subcellular localization of GFP-γ-parvin.  

. 
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Figure 3.2-3 Subcellular localization of γ-parvin in fibroblasts. GFP and GFP-γ-parvin plasmids were 

transfected into NIH/3T3 cells. (A) GFP-γ-parvin formed aggregates in the cytoplasm and it was absent in 

focal adhesion-like structures, while GFP was distributed in both the cytoplasm and the nucleus. 

(B)Expression of GFP and γ-parvin fusion proteins. A small amount of GFP and γ-parvin were also detected 

in GFP-γ-parvin transfected cells by Western blotting.  Spleen lysate was used as an endogenous γ-parvin 

protein control.  

 

To exclude the possible interference of GFP-tag on the subcellular localization of γ-

parvin, a short Flag epitope was tagged either to the N- or the C-terminus of the protein. 

The constructs were transfected into NIH/3T3 cells. Cells were then stained with rabbit 

anti-Flag antibody and mouse anti-ILK, anti-paxillin antibodies or FITC-phalloidin. Flag-γ-

parvin displayed a cytoplasmic distribution and showed no colocalization of γ-parvin with 

ILK, paxillin or the tip of actin stress fibers (Figure 3.2-4). C-terminal Flag-tagged γ-parvin 

showed the same cytoplasmic distribution in NIH/3T3 cells (data not shown). The protein 

expression of Flag-tagged γ-parvins was confirmed by Western blot (Figure 3.2-5 and data 

not shown) 

The absence of γ-parvin in FA structures in NIH3T3 cells is probably due to the very 

weak binding affinity of exogenously expressed γ-parvin with ILK compared to 

endogenous α- and β-parvins, which are expressed at high levels in 3T3 cells. To test this, 

lysates derived from C-terminal Flag vector and γ-parvin-Flag plasmid transfected cells 

were immunoprecipitated with γ-parvin antibody and the immunoprecipitates were 

subjected to SDS-PAGE and probed with γ-parvin and ILK antibodies. γ-parvin, but not 

ILK, was detected in the immunoprecipitates (Figure 3.2-5), suggesting that exogenously 
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expressed γ-parvin cannot compete with α- and β-parvin for binding to ILK and therefore 

fails to localize to FAs. γ-parvin might localize to FA structures in certain cell types under 

certain conditions. Cells that do not express α- and β-parvin (cells derived from α- and β-

parvin double null mice) will be useful to further test this hypothesis.  

 

 
 

Figure 3.2-4 Subcellular localization of Flag-tagged γ-parvin in fibroblasts. Flag-tagged γ-parvin was 

absent at focal adhesion site-like structures and distributed in the cytoplasm. Flag-tagged γ-parvin 

plasmids were transfected into NIH/3T3 cells and stained with rabbit anti-Flag polyclonal antibody and anti-

ILK or anti-paxillin antibodies or FITC-conjugated phalloidin. Blue: DAPI staining in the nucleus. Right 

panels show the merged pictures. 
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3.2.4 Generation of γ-parvin knockout mice 

 
3.2.4.1 Gene structure, alternative splicing and the targeting strategy 

Mouse γ-parvin gene (PARVG) is located on chromosome 15 and is composed of 13 

exons. The mouse γ-parvin exons are numbered here according to the published human γ-

parvin gene due to the high similarity in their structures (Korenbaum et al., 2001). The 

exon-intron organization of mouse α-, β- and γ-parvin genes (PARVA, PARVB and 

PARVG) is summarized in Table 3.2-1. The structures of the mouse γ-parvin gene and 

protein are shown in Figure 3.2-6. γ-parvin is composed of an N-terminal region followed 

by two CH domains separated by a linker region. By analysis of the mouse γ-parvin cDNA 

sequence in the GeneBank Mouse EST database using the NCBI nucleotide BLAST 

program, two ESTs (BB844229 and AA000543) showed possible alternative splicing of the 

gene. EST1 was derived from a 6-day neonatal spleen and lacked the first ATG-containing 

exon (E4), due to a splicing event. There are two additional potential ATGs in exon 6. Thus, 

the shorter transcript might produce a short γ-parvin protein lacking the amino acids 

encoded by exon 4 and exon 5. Unfortunately, the translation of this potential short form of 

γ-parvin could not be investigated with our γ-parvin peptide antibody 
Table 3.2-1  

Figure 3.2-5 γ-parvin-Flag was not associated 
with ILK when expressed in NIH/3T3  cells.   
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Exon-intron organization of mouse alpha, beta, gamma parvin genes     
          
Gene Exon   Sequence at exon-intron junction Intron Size Codon Amino acid at   
  No Size 5' Splice donor 3' Splice acceptor              bp   phase  the splice site 
PARVA 1    268 AAGAAG/gtagga tctttc/TATCCG  ≥118218 I V  46  
ch7 2 90 TGCTGG/gtaaat ttacag/TATCCG    466 I E 76  
 3 71 ATGAAG/gtaaga ctgcag/GTGCTC          2707 O  K/V 99/100  
 4 103 TCTTCG/gtagga ctgcag/AGAAAC 12793 I E 134  
 5 141 TGGATT/gtgagt tttcag/CTGTTC 7693 I S 181  
 6 116 GTCCAG/gtaaga ttttag/AAACGA 4992 O  Q/K 219/220  
 7 59 CACAGA/gtatgt ttccag/GGCCCT          2425 II E 239  
 8 20 GGCATG/gtgagt tttcag/AACGTG          1025 I E 246  
 9 62 AAGAAG/gtgggt tttcag/ACCCTC            474 O  K/T 266/267  
 10 69 ACACAG/gttggt atgcag/TTTGCA          2651 O  Q/F 289/290  
 11 102 CAGAAG/gtaagg tgccag/GTCCTG 1132 O  K/V 323/324  
 12 73 CAGAAG/GTACTT ccacag/ACATTG         7517 I D 348  
  13   3153                     TACAAA             

PARVB 1 >=122 GGGAGG/gtgagt caacag/TGACTG    39044 I V  39  
ch15 2 90 AGATAG/gtacag tggacg/AGGAGA 2178 I E 69  
 3 71 GTCAAG/gtgagt caggta/GTGCTT    9192 O  K/V 92/93  
 4 103 TTCTGG/gtgagt ccaccg/AAAAGC   7522 I E 127  
 5 141 TCCACT/gtgagt  Ccgcag/CTATCC    2254 I S 174  
 6 116 GTTCGG/gtgagt Tttcag/AAGCGA   2659 O  R/K 211/213  
 7 59 CACAGA/gtaagt tcacag/GATCAT   2350 II E 232  
 8 20 GGTTTG/gattga ctgcag/AGCGGG   5422 I E 239  
 9 62 AAGAAG/gtagat tgacag/TCTCTC   365 O  K/S 259/260  
 10 69 ACCCAG/gtaggc ctgcag/TTTGCA   4949 O  Q/F 282  
 11 102 CAGAAG/gtaagt tgacag/GTGCAC   3748 O  K/V 316/317  
 12 73 CTGAAG/gtaaca ttgcag/ATGTGG   179 I D 341  
  13 >356                
PARVG          
ch15 3 >=112 CAGCGG/gtgagt Ttccag/GGAAGG      
 4          96 CACGAG/gtcctg cttcca/GGAGGA 1210 I G 27  
 5 65 CAGAAG/gtacgc cagcag/GTGCTG 504 O K/V 48/49  
 6 103 TGTTCC/gtaagc tttcag/AGAAGT 1056 I Q 83  
 7 141 TGGAGA/gtatgt ctctag/CCATCT 815 I T 131  
 8 116 ATTGAG/gtactt ctgtag/AGCACC 1196 O E/S 169/170  
 9 56 ATGCAA/gtgagg ctctag/GTCACA 344 II K 188  
 10 23 CTTTAC/gtgagt ctgcag/AGGACG 1628 I Q 196  
 11 59 CAAGAG/gtaggg tcttag/GCCATT 185 O E/A 215/216  
 12 69 ACCCAG/gtaggg ctgcag/TTTGCA 3130 O Q/F 238/239  
 13 102 GAAATG/gtaagc tcatag/CTGCAC 2967 O M/L 272/273  
 14 73 CTGAAG/gtgagt ccacag/ATATTG 412 I D 297  
  15      1601  cagttt             

Exon sequences are written in capital letters and intron sequence in lower case letters. Phase 0 refers to introns 

that do not split codon triplets, Phase I refers to introns inserted after the first nucleotide of the triplet; phase II 

introns are inserted after the second nucleotide of the triplet.  



Results: In vivo analysis of γ-parvin 

 

 
Figure 3.2-6 The scheme of gene and protein structures of γ-parvin, γ-parvin alternative splicing and 

the gene targeting strategy. γ-parvin is composed of 13 exons encoding a N-terminal region followed by two 

CH domains separated by a linker region. The first translation start codon ATG lies in exon 4. EST1 shows 

that exon4 is spliced out indicating that translation may start from two potential ATGs in exon 6. To obtain 

constitutive γ-parvin gene deletion, the genomic sequence spanning exon 3 to intron 7 encompassing both 

ATG-containing exons (exon 4 and 6) was replaced by the pWH9 vector. Insertion of NTR (an IRES, Inter 

Ribosomal Entry Site) to exon 3 leads to the truncation of γ-parvin mRNA translation and expression of LacZ. 

PA, poly adenine; PGK, PGK promoter; Neo, neomycin resistance gene. Arrow indicates ATG. Black boxes 

indicate non-coding exons, blue boxes coding exons.   

 

because the peptide sequence used for the antibody generation is encoded by exon 4, which 

is absent in the short isoforms. Given the low frequency of the shorter transcript (1 among 

139 ESTs), the shorter γ-parvin proteins cannot be major isoforms. The product of the other 

EST (AA000543) would only contain a short amino acid sequence encoded by exon 4 and 

the part of exon 5, which cannot be a functional protein. 

In order to obtain constitutive γ-parvin knockout mice, both exon 4 and exon 6 were 

deleted. The pWH9 vector was inserted into exon 3 of the γ-parvin gene and replaced the 

genomic sequence spanning from exon 3 to intron 7 (Figure 3.2-6). This insertion led to the 

deletion of both ATG-containing exons, exon 4 and exon 6, and, consequently, inactivation 

of the entire gene. The pWH9 vector contains a reporter gene β-galactosidase (LacZ) and 

the neomycin resistance gene (Neo). The reporter LacZ gene was designed to study the 

expression pattern of the targeted gene, especially at the cellular level while there is no 
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antibody available for cell and tissue immunostaining. The neomycin resistance gene was 

used for selection of recombinant embryonic stem cell clones after the electroporation of 

the targeting construct (Sakai et al., 2003).  

 

3.2.4.2 Assembly of the γ-parvin knockout targeting vector    

To build the γ-parvin knockout targeting vector, a cDNA fragment spanning exon 5 to exon 

13 derived from EST clone AA981356 was sequenced and used as a probe for the 

hybridisation with the 129/Sv mouse P1-derived artificial chromosome (PAC) library 

RPCI21. Five positive PAC clones were ordered from the Human Genome Mapping Project 

Center, Cambridge, United Kingdom, and investigated for the presence of exons 4, 5 and 6. 

PAC clone 656L16 was used for the construction of the targeting vector. A 15-kb XhoI 

fragment containing γ-parvin genomic sequence encompassing intron 3 to intron 12 was 

subcloned into pBlueScript®. A 5.5-kb XhoI-SexAI (the SexAI restriction enzyme site lies 

in exon 3) fragment containing part of exon 3 was subcloned as the 5’flanking arm and a 

2.3-kb StuI-ApaLI fragment containing exons 8 and 9 was subcloned as the 3’ flanking arm 

of the targeting construct. The WH9 vector containing a lacZ reporter gene and a PKG-

driven neo gene was ligated with the two arms. A genomic sequence of 5.4 kb spanning 

exon 3 to intron 7 was deleted in the recombinant allele. A 700-bp SphI/HindIII DNA 

fragment derived from intron 10 downstream of the 3’ flanking arm (marked as a red box in 

Figure 3.2-8), showed a specific band on Southern blot of genomic DNA when digested 

with HindIII (7.3 kb) or EcoRV (5.7 kb) (data not shown). The 700-bp DNA fragment was 

used as an external probe (EP) to identify recombinant ES clones. A 400-bp PCR fragment 

spanning exon 8 and part of intron 8 sequence was used as an internal probe to exclude 

random integrations that could not be detected with the external probe. The details of 

ligation steps are shown in Figure 3.2-7. 
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Figure 3.2-7 Cloning steps of construction of γ-parvin targeting vector.  A 15-kb XhoI fragment and a 7.3-

kb Hind III fragment were subcloned into the pBlueScript® and these two DNA plasmids were used for the 

construction of the targeting vector. In step 1, the 15-kb XhoI plasmid was digested with MabI, SexAI 

isoschizomer (in exon 3), and the DNA ends were blunted with Klenow and a phosphorylated SalI linker was 

inserted to obtain a DNA plasmid that contained a part of exon 3, exon 11 and exon 12 (plasmid a). In step 2, 

a XhoI/SalI 5.5-kb fragment (b) was isolated from the plasmid a and subcloned to the XhoI site of 

pBlueScript® in an orientated direction shown in the figure. In step 3, a StuI/ApaLI 2.3-kb fragment (C) was 

subcloned into the EcoRV site of pBlueScript® in an orientated direction with the SalI site at 5’ end and NotI 

site at 3’ end. In step 4, the 2.3-kb fragment was isolated with SalI and NotI restriction enzymes and ligated 

into the SalI and NotI sites of pWH9 vector (d). In the final ligation step 5, the 5.5-kb XhoI/SalI fragment was 

taken out from plasmid b and ligated into XhoI site of plasmid d in the orientation shown in e.  

A 700-bp SphI/HindIII fragment (red box) derived from intron 10 was used as an external probe to 

identify the recombinant ES clones on Southern blot.  A 400-bp PCR fragment spanning exon 8 and a part of 

intron 8, as shown in upper red box, was used as an internal probe to exclude the random integrations of the 

targeting vector in the recombinant ES clones that could not be detected with the external probe.  Exons are 

shown in grey boxes. The genomic sequence is presented with solid blue line. The thin lines indicate the 

sequence of the multiple cloning sites of the vectors. The restriction enzyme sites in italic indicate that they 

were destroyed and not recutable. The restriction enzyme sites shown in red were used for linearization of the 

targeting vector (NotI, from the pWH9 vector) or genotyping of ES clones and mice (HindIII and EcoRV). 

 
 

 

Figure 3.2-8 The genotyping strategy of wildtype and recombinant alleles. Genomic DNA was digested 

with HindIII or EcoRV and a 700-bp SphI/HindIII fragment was used as an external probe (EP, lower red 

box) to identify the recombinant allele on Southern blot. A PCR product spanning exon 8 and a part of intron 
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8 was used as an internal probe of the targeting construct (IP, upper red box) to detect the random integrations. 

Two pairs of primers (blue arrows) were used for genotyping. F1 was derived from exon 5, R1 from exon 6. 

F1/R1 amplified the wildtype allele of 544bp that was deleted in the recombinant allele. While F2/R2 

amplified a 814-bp fragment of LacZ gene that was only present in the recombinant allele derived from the 

pWH9 vector.   
 

3.2.4.3 Genotyping strategy for γ-parvin wildtype and recombinant alleles  

Figure 3.2-8 shows the strategy for genotyping wildtype and recombinant γ-parvin alleles. 

Genomic DNA was digested with HindIII or EcoRV. HindIII digestion led to a fragment of 

7.3 kb for the wildtype allele and 3.5 kb for the recombinant allele. The EcoRV digestion 

generated a wildtype fragment of 5.7 kb and a recombinant fragment of 4.9 kb. Using PCR 

genotyping, a 544-bp fragment spanning exon 5, intron 5 and exon 6 was amplified for the 

wildtype allele and an 814-bp fragment of the LacZ gene for the recombinant allele which 

is derived from the pWH9 vector and is absent in the wildtype allele. 
 

3.2.4.4 Generation of γ-parvin chimeric mice 

To generate γ-parvin parvin chimeric mice, 100 µg of linearized targeting vector DNA was 

electroporated into R1 embryonic stem (ES) cells as described in Materials and Methods. 

The day following the electroporation, ES clones were selected with G418 for six to eight 

days and afterwards, 360 G418-resistent ES clones were picked and frozen. The DNA 

samples of ES clones were analysed by Southern blotting to screen recombinant ES clones 

with the external probe. Out of 360 G418-resistent ES cell clones, 4 recombinant ES clones 

were identified (Figure 9A). The recombinant ES clones were further confirmed with the 

internal probe to exclude random integrations. No random integrations were detected in the 

recombinant ES clones. The internal probe recognized the fragments of the same sizes as 

those with the external probe (figure 9B). Two of the four blastocyst microinjected 

recombinant ES clones gave birth to highly chimeric agouti mice. The chimeric agouti male 

mice were mated with C57B6 females and the germ-line transmission of the mutated γ-

parvin gene in offspring was confirmed by Southern blotting with the external probe (data 

not shown). γ-parvin heterozygotes were crossed to obtain homozygotes.  

 

 



Results: In vivo analysis of γ-parvin 

 

 

Figure 3.2-9 γ-parvin recombinant ES clones were confirmed by Southern blotting. (A) One of four γ-

parvin recombinant ES clones (+/-) was detected with the external probe. (B) No random integrations were 

found in the four γ-parvin recombinant ES clones. A random integration was detected in one of non-

recombinant ES clones with the internal probe. ES cell genomic DNAs were digested with HindIII. Wt, 

wildtype allele, 7.3 kb; rec, recombinant allele, 3.5 kb. 

 
3.2.4.5 Genetic deletion of γ-parvin 

The offspring from γ-parvin heterozygous mating were genotyped by Southern blotting or 

PCR. The gene deletion of γ-parvin in homozygotes was confirmed by Northern blot at 

mRNA level and Western blot at protein level (Figure 3.2-10).    

 

 
 

Figure 3.2-10 The genetic deletion of γ-parvin. (A) γ-Parvin homozygous mice were identified by Southern 

blotting (upper panel) and PCR genotyping (lower panel). The gene deletion of γ-parvin was confirmed by 

Northern blotting (B) and Western blotting (C). GAPDH and tubulin were used as RNA and protein loading 

controls, respectively. 

 

3.2.5  Phenotypic analysis of γ-parvin null mice  

 
3.2.5.1  γ-Parvin null mice are viable and fertile and show normal Mendelian 

distribution 
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Genotyping of 159 adult offspring derived from heterozygous crosses revealed a normal 

Mendelian ratio of genotypes (+/+: 28 %, +/-:  47%, -/-: 25%). Both heterozygotes and 

mutant mice were viable, fertile and were not distinguishable from their wildtype 

littermates. 

 
3.2.5.2 ILK and PINCH1 are downregulated in the γ-parvin null hematopoietic cells, 

while α- and β-parvin(l) expression levels are not changed 

The expression of α- and β-parvins and parvin-associated proteins ILK and PINCH1 was 

investigated in γ-parvin null mice (Figure 3.2-11). ILK and PINCH1 proteins were reduced 

in the BM, thymus, LN and PP of γ-parvin null mice, but reduced expression was not 

obvious in the spleen tissue where α- and β-parvins were expressed at higher levels 

compared to other lymphoid organs. α- and β-parvin(l) expression levels were not changed 

in the γ-parvin null mice. 

BM-derived macrophages and dendritic cells from γ-parvin heterozygotes and γ-

parvin null mice were generated as described in Materials and Methods (Figure 3.2-12A, 

B). The cells derived from both γ-parvin heterozygotes and γ-parvin null mice showed 

similar purities (85% and 79% respectively for dendritic cells and 98.7% and 98% 

respectively for macrophages) as analysed by FACS using antibodies against CD11c, 

MHCII and Gr-1 for dendritic cells and Mac-1, F4/80 for macrophages (Figure 3.2-12A and 

B). The similar reduction of ILK and PINCH1 was observed in both γ-parvin-null 

macrophages and dendritic cells as compared to γ-parvin heterozygous cells (Figure 3.2-

12C). Consistent with previous observations, α-parvin was not expressed in either cell type. 

β-parvin(l) was coexpressed with γ-parvin in both cell types, while the protein level of β-

parvin(l) was not changed in the absence of γ-parvin. 
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Fig. 3.2-11 ILK and PINCH1 were reduced in the thymus, BM and LN of γ-parvin-null mice, but not in 

spleen tissue.  α- and β-parvin expression levels were not changed.   
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Fig. 3.2-12 ILK and PINCH1 were reduced in γ-parvin-null BM-derived dendritic cells and 

macrophages.  (A, B) BM-derived dendritic cells (A) and macrophages (B) were generated from γ-parvin 

heterozygotes and γ-parvin null mice and showed similar purities as analysed by FACS (85% and 79% 

respectively for dendritic cells and 98.7% and 98% respectively for macrophages). (C) Both γ-parvin and β-

parvin(l) were expressed in BM-derived dendritic cells and macrophages. ILK and PINCH1 were reduced in 

both cell types in the absence of γ-parvin as shown by Western blot.   

 

3.2.5.3 γ-Parvin null mice show normal architecture of lymphoid organs  

The lymphoid organs, thymus, spleen, LNs and PPs, from γ-parvin null mice were 

indistinguishable from those of control mice. γ-parvin null mice exhibited normal 

morphology in thymus, spleen, LN and PP compared to wildtype or heterozygous mice by 

HE staining (Figure 3.2-13). Immunostaining of spleen, LN, and PP with B cell marker 

B220 and T cell marker Thy1.2 showed normal T and B cell distribution in γ-parvin null 

mice compared to controls (Figure 3.2-14).  
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Figure 3.2-13 HE staining of spleen (A, B), PP(C, D), thymus (E, F) and LN (G, H). The γ-parvin null 

mice (left panel) showed similar morphology of lymphoid organs as controls (right panel). A, central arteriole.  

F, follicle. PALS, periarteriolar lyophoid sheath. Picture magnifications, 200X (A-D) or 100X (E-H). 
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Fig. 3.2-14 γ-parvin null mice showed similar B and T cell distribution in the spleen (A-C, +/+, D-F, -/-), 

LN (G-I, +/+, J-K, -/-) and PP (M-O, +/+, P-R, -/-) as wildtypes. Tissue cryosections were stained for B cell 

marker B220 and T cell marker Thy1.2. Picture magnification, 200X.  
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3.2.5.4 γ-Parvin null mice have normal cellularity of lymphoid organs and show 

normal hematopoiesis  

Hematopoietic cells of lymphoid organs were prepared as described in Materials and 

Methods. The cellularities of lymphoid organs of γ-parvin null mice were similar to those of 

control mice. Figure 3.2-15 presents statistics of the cellularities of BM (con: 29.8+8.1x106, 

-/-: 35.1+11.1x106), thymus (con: 37.1+10.6x106, -/-: 40.2+12.1x106) and spleen (con: 

104.0+33.5x106, -/-: 107.6+30.8x106) in 5-month-old control and γ-parvin-null mice. 

 
Figure 3.2-15 The cellularities of lymphoid organs (BM, thymus and spleen) from γ-parvin null mice are 

similar to those from controls (5-month old mice, n=5,5).  

 

As γ-parvin is expressed in lymphoid tissues, and specifically in lymphoid lineages of 

B and T cells and myeloid lineages of dendritic cells and macrophages (Figure 3.2-2, 12), I 

investigated whether the deletion of γ-parvin influenced the development of hematopoietic 

lineages. Hematopoietic cells prepared from lymphoid organs were immunostained with 

different lineage markers (B cell markers B220, IgM and IgD; T cell markers CD4, CD8 

and CD3; erythrocyte marker Ter119; granulocyte marker Gr-1; macrophage marker Mac-

1; and natural killer cell markers Dx5 and NK1.1) and analyzed by flow cytometry as 

described in Materials and Methods. No developmental differences were found between 

control and γ-parvin null mice in investigated haematopoietic lineages in both central 

lymphoid organs (BM and thymus, Figure 3.2-16) and in peripheral lymphoid organs 

(spleen, LN, PP) (5-month-old control and γ-parvin null mice; n=5;5. Figures 3.2-17). Data 

of CD19 and Dx5/NK1.1 staining are not shown. Normal hematopoesis of γ-parvin null 

mice was also demonstrated at earlier developmental stages such as 4- and 8-weeks-old 

(data not shown). 
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Figure 3.2-16 γ-parvin null mice (ko) showed normal hematopoietic lineage development in BM (A, C) 

and thymus (B, D) as controls.  Hematopoietic cells prepared from BM and thymus were analysed for the 

expression of B220, IgD, CD4, CD8, Gr-1, Ter-1 and Mac-1 by FACS. Bar graphs present the relative cell 

number of each population. 

 

 



Results: In vivo analysis of γ-parvin 

 

 

 

 

 
Figure 3.2-17 γ-parvin null mice (ko) showed similar B and T cell development in peripheral lymphoid 

organs (spleen, lymph nodes and Peyer’s patches) (n=5,5; 5-month-old mice).   

 

3.2.5.5 γ-parvin null dendritic cells can mature normally in vitro  

Since γ-parvin is expressed in dendritic cells, I further investigated whether γ-parvin-null 

dendritic cells could mature normally upon the stimulation of LPS in vitro. γ-parvin null 

dendritic cells could mature to the same extent as γ-parvin heterozygote cells. A 

representative experiment is shown in Figure 3.2-18. Both costimulatory molecules CD86 

and CD40 (CD40 staining data not shown), as well as MHC II were upregulated after the 

stimulation in both control and γ-parvin null cells. MHC II CD86+ cells increased from 
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37% before stimulation to 88% after LPS stimulation in control, and from 28% before 

stimulation to 84% in γ-parvin null dendritic cells.    

 

   
Figure 3.2-18 BM-derived dendritic cells from γ-parvin null mice could mature normally as those from 

γ-parvin heterozygotes and both CD86 and MHC II were upregulated after the stimulation with LPS 

overnight. 

 

3.2.5.6 γ-parvin null mice display normal T-cell dependent antibody response 

The specific expression of γ-parvin in DC, B and T cells suggested a potential role of the 

protein in the adaptive immune response. To test this, T-cell dependent antigen NP-CG was 

used to immunize the mice. The anti-NP antibody isotypes (IgM, IgG1, IgG2a, IgG3, Igκ 

and Igλ) were estimated by ELISA. No significant differences were found in any of all 

these anti-NP isotypes between γ-parvin null mice and controls (Figure 3.2-19). Anti-NP 

IgM increased dramatically in the first 7 days and then dropped on day 14. The peak of anti-

NP IgG1 appeared on day 14, later than IgM, and remained at a high level during the 

second immune response. γ-parvin null mice showed slightly higher production of anti-NP 

IgG1 and Igλ during the second immune response, but differences were not significant. The 

production of IgG2a and IgG3 in γ-parvin null mice and controls are also the same (data not 

shown).  

 
Figure 3.2-19 Normal T-cell dependent antibody responses in γ-parvin null mice. γ-parvin null mice 

produced similar amount of anti-NP IgM, IgG1 (A) and Igκ and Igλ Ig  (B) as controls (n=5-7 in each group).  
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3.3 In vivo analysis of α-parvin    
 

3.3.1 Exon2 deletion of α-parvin 

 

3.3.1.1 α-parvin knockout strategy  

The mouse α-parvin gene is located on chromosome 7 and composed of 13 exons (Table 

3.2-1). No alternative α-parvin mRNA splicing was found in mouse EST database. The 

translation start codon ATG is in exon 1. To obtain constitutive gene deletion of α-parvin, 

the pWH9 vector was inserted into exon 2 and part of exon 2 and intron 2 sequence was 

deleted (Figure 3.3-1). The translation of α-parvin mRNA should be truncated in exon2 

when the ribosome encounters NTR. 

  

Figure  3.3-1 α-parvin knockout strategy. The pWH9 cassette was inserted into exon 2. The translation of 

α-parvin mRNA should be truncated when the ribosome encounters NTR and LacZ should get expressed in 

the locations where α-parvin is expressed. Arrow indicates in-fram ATG. Black box, non-coding sequence of 

the cDNA; blue box, coding exon.   

 

3.3.1.2 Construction of α-parvin knockout vector 

For the construction of the α-parvin targeting vector, a 400-bp α-parvin cDNA fragment 

corresponding to the coding sequence spanning exons 1,2,3 and 4 derived from α-parvin 

EST clone AI006605 was used as a probe for the hybridisation of 129/Sv mouse P1-derived 

artificial chromosome (PAC) library RPCI21. Five positive PAC clones were ordered and 

clone 486C16 was used for further cloning. Briefly, a 2.7-kb of SacI/AvaI fragment (AvaI 

site lies in exon 2) was subcloned as the 5’ flanking arm and a 7.4-kb EcoRI fragment was 

subcloned as the 3’ flanking arm. The PWH9 vector that contains a lacZ reporter gene and a 

PKG-driven neo gene was ligated with the two arms. 150 base pairs encompassing part of 

exon 2 and intron 2 were deleted from α-parvin gene. The assembly steps of the construct 

are shown in figure 3.3-2.  
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Figure 3.3-2 Assembly steps of α-parvin targeting construct. A 4.4 kb PstI fragment and an EcoRI 7.4 kb 

fragment were subcloned to the pBlueScript® multiple cloning sites of PstI and EcoRI enzyme sites 

respectively in the orientated directions shown in the figure (plasmid a and b). These two DNA plasmids were 

used for the construction of the targeting vector. In step 1, an AvaI fragment (containing part of exon2) was 

isolated from the plasmid a and subcloned into the blunt EcoRV site in the orientated direction with a SacI site 

derived from pBlueScript® at 5’ end (plasmid c). In step 2, a SacI/AvaI fragment isolated from the plasmid a 

was ligated into SacI/EcoRV sites of the plasmid c to get a plasmid d. A SalI linker was ligated into the SacI 

site at 5’ end of the plasmid d and then a PstI linker was ligated into the plasmid d through a ClaI site. In step 

3, the 7.4 kb EcoRI fragment was taken out with XhoI/NotI enzymes and ligated into the pWH9 vector that 

was linealized with SalI/NotI enzymes (plasmid e).  In the final step 4, the SalI fragment from the plasmid d 

(with a SalI linker at 5’ end and a PstI site at 3’ end) was isolated and ligated into the XhoI site of the plasmid 

e to obtain the final targeting construct - plasmid f.  

 The PstI/SacI 400-bp fragment (lower red box, a sequence upstream of the 5’ flanking arm) was used as 

an external probe to identify the recombinant ES clones for Southern blotting.  A 740 bp PCR product 

amplified from the intron 1 sequence between the SacI and AvaI restriction enzyme sites (shown in upper red 

box), was used as an internal probe to exclude the random integrations of the targeting construct in the 

recombinant ES clones that could not be detected with the external probe. The grey boxes show exons. The 

solid blue lines present genomic sequence of the gene. The thin lines indicate the short sequences of the 

multiple cloning sites of the vectors. The restriction enzyme sites shown in italic indicate that they are 

destroyed and not recutable. The restriction enzymes shown in red were important enzymes that would be 

used for the linearization of targeting construct for the electroporation into ES cells (NotI, from pWH9 vector) 

and genotype identification of ES clones and mice (PstI). 

 

 
 
Figure 3.3-3 The genotyping strategy for wildtype and recombinant alleles of α-parvin. The wildtype and 

recombinant alleles were detected by PstI digestion for Southern blotting. A 400bp PstI/SacI fragment derived 

from intron 1, which was upstream of the 5’ flanking arm of targeting construct, was used as an external probe 

(EP, lower red box) to identify recombinant ES clones and mice genotyping on Southern blot. A PCR product 
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amplified from the intron was used as an internal probe (IP, upper red box) to detect the random integrations 

in the recombinant ES clones. Three-primer PCR system (blue arrows) was used for genotyping. F1 was 

derived from exon 2, R1 from intro 2. Both F1 and R1 primers were present in targeted construct. F1/R1 

amplified a 450 bp fragment on wildtype allele, but no product on recombinant allele. F2 was derived from 

PGK poly adenine sequence of the pWH9 vector and was absent in wildtype allele. F2/R1 amplified part of 

the PGK Poly A sequence and part of the intron 2 sequence and gave a PCR product around 720 bp.   
 

3.3.1.3 Genotyping strategy of wildtype and recombinant alleles of α-parvin 

Figure 3.3-3 shows the genotyping strategy for identification of wildtype and recombinant 

alleles. Genomic DNA was digested with PstI and the wildtype allele produced a fragment 

of 4.4 kb and recombinant allele of 3.1 kb on Southern blot detected with the external 

probe. A three-primer PCR genotyping system was also established for mice genotyping.     

 

3.3.1.4 Generation of α-parvin chimeric mice 

To generate α-parvin chimeric mice, targeting construct DNA was linearized and 

electroporated into R1 ES cells as described in Materials and Methods. ES clones were 

selected with G418 and the clones were picked. DNA of ES clones was analysed by 

Southern blotting with the external probe (a 400bp PstI/SacI fragment derived from intron 

1, Figure 3.3-3). Out of 350 G418-resistent ES cell clones, 47 recombinant ES clones were 

identified (recombination rate 13%, Figure 3.3-4). The recombinant ES clones were further 

confirmed with the internal probe to exclude random integrations that could not be detected 

by the external probe. The internal probe gave bands of exactly the same size as the external 

probe and no random integrations were detected in all recombinant ES clones (data not 

shown). The ES clones with equal density of both wildtype and recombinant alleles on 

Southern blot were chosen for blastocyst microinjections. One of four injected clones (clone 

19) gave birth to highly chimeric agouti mice. The chimeric agouti male mice were mated 

with C57B6 females and the pups were genotyped to confirm the germ-line transmission of 

the mutated α-parvin gene by Southern blotting with the external probe (data not shown). α-

parvin heterozygotes were crossed to obtain homozygous mice.  

 

 
 

Figure 3.3-4 Two of α-parvin recombinant 
ES clones were shown on Southern blot. 
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3.3.1.5 Exon 2 deletion of α-parvin    

The offspring from α-parvin heterozygote crosses were genotyped by Southern blotting and 

PCR genotyping to identify homozygotes (Figure 3.3-5). The mRNA expression of α-parvin 

mutant mice was investigated by Northern blotting with two cDNA probes (Figure 3.3-6A). 

The probe1 derived from coding sequence corresponding to α-parvin N-terminus, CH1 

domain and linker region was  

 
 

Figure 3.3-5 α-parvin mutant homozygotes were identified by Southern blotting and PCR genotyping 

according to the strategy shown in Figure 3.3-3. 
 

 
 

Figure 3.3-6 (A) Both α-parvin probes derived from cDNA and 3’UTR sequences respectively, gave 

signals of transcripts on Northern blots of liver and kidney tissues of α-parvin homozygous mouse. (B) 

α-Parvin homozygous mouse gave a shorter RT-PCR product in liver compared to that in wildtype 

mouse.   
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 hybridised with the β-parvin cDNA sequence corresponding to β-parvin CH1, linker region 

and CH2 domains (dotted line in Figure 3.2-6A) to exclude possible cross-reactions. Probe1 

gave two transcripts of 4.4 kb and 1.6 kb in liver and kidney tissues of wildtype mice. Probe 

2 derived from α-parvin 3’ UTR sequence gave a 4.4 kb transcript. This is consistent with 

the published data (Olski et al., 2001). Surprisingly, the homozygous mouse also gave 

similar pattern as wildtype and heterozygote on Northern blot. RT-PCR product amplified 

using primers derived from exon 1 and exon 3 was around 90bp shorter in homozygote than 

that from the wildtype (Figure 3.3-6B). The sequencing of the RT-PCR product showed that 

exon 2 was spliced out in the homozygotes.  

The truncated transcript produced an α-parvin mutant protein of 39 kD, lacking 30 

amino acids encoded by exon 2. The protein sequence encoded by exon 2 lies between the 

N-terminal 2nd NLS signal and CH1 domain. The expression of truncated α-parvin E2 ∆/∆ 

protein was confirmed with the α-parvin peptide polyclonal antibody. The mutant protein 

was expressed at a similar level to that in wildtype mouse (Figure 3.3-7).  
 

 
 

Figure 3.3-7  (A) Western blot of α-parvin exon2 deletion protein and (B) the scheme of α-parvin 

protein structure. Blue box indicates exon 2 coding sequence. Black box indicates the putative NLS. 

 

There are two polyA signals in the pWH9 cassette. The absence of exon 2 in 

homozygotes and the failure of detection of LacZ signal in both the heterozygote and the 

homozygote (data not shown) indicated the inserted pWH9 cassette was also spliced out 

together with exon 2.  Since exon 2 harbours the same codon phase I as exon 1, the 

transcript was still in frame and gave a partial-deletion α-parvin protein. Thus, the second 

targeting strategy was designed to obtain complete deletion of α-parvin.  
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3.3.2 Preliminary phenotypic analysis of α-parvin E2∆/E2∆ mice  

 

A total 263 offspring from α-parvin+/E2∆ crosses were genotyped. α-parvin exon 2 deletion 

homozygous mice are viable and fertile. Newborn offspring from α-parvin +/E2∆ mice 

crosses showed the normal Mendelian distribution (Table 3.3-1), while when genotyped at 

3-4 weeks age, only 20% mice offspring were α-parvin E2∆/E2∆  and 5% mutants were 

missing. 
Table 3.3-1 The ratio of genotyped mice.  

    
 

3.3.2.1 α-parvin E2∆/E2∆ mice are smaller  

Although α-parvin E2∆/E2∆ mice could develop to adult and were fertile, they were smaller 

than their littermates. The average body length of α-parvin E2∆/E2∆  female mice was 

significantly shorter than control mice at 1 day, 1-week, 2- and 3-weeks-old (P<0.05, n=6 to 

9 in each group; Figure 3.3-8). α-parvin E2∆/E2∆ mice had lower body weight than control 

mice and the differences were significant at 4-weeks of age. At 4-week-old, the average 

body weight of α-prvin E2∆/E2∆ female was around 75% of the control (Female mice: 

control 14.6 + 1.3g (n=28), E2∆/E2∆ 10.9 + 3.2g (n=14); P<0.0001. Male mice: con 15.5 + 

1.9g (n=24), E2∆/E2∆ 11.8 + 1.5g (n=5); P<0.0001; Figure 3.3-9). The significantly shorter 

length of α-parvin E2∆/E2∆ mice at newborn (P1) stage indicates that the deletion of exon 2 

retards normal embryonic development. The reduction in body weight may be a second 

defect.  
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Figure 3.3-8 α-parvin E2∆/E2∆ female mice have significantly shorter body length compared to control 

mice at 1-day, 1-week-, 2-weeks-and 3-weeks age (*P<0.05, n=6 to 9 in each group). 

 

 

 
Figure 3.3-9 α-parvin E2∆/E2∆ female mice have less body weight compared to control mice and the 

difference is significantly at 4-weeks- old age (*P<0.05, n=6 to 28 in each group). 

 

 

3.3.2.2 α-Parvin E2∆/E2∆ protein can localize to focal adhesion sites 

To investigate whether α-parvin E2∆/E2∆ protein can localize to focal adhesion sites as 

wildtype protein, cells isolated from the cartilage of newborn were stained with anti-α-

parvin and paxillin antibodies. α-parvin E2∆/E2∆ protein showed co-localization with 

paxillin (Figure 3.3-10).  
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Figure 3.3-10 α-Parvin E2∆/E2∆ protein can localize to FAs with paxillin. Cells isolated from the cartilage 

of an α-parvin E2∆/E2∆ newborn mouse were stained with anti-α-parvin and paxillin antibodies. Blue, DAPI 

staining in the nucleus. 

 

3.3.3 Generation of α-parvin null mice 

 

 To obtain α-parvin null mice, a second α-parvin knockout strategy was designed as shown 

in Figure 3.3-11. The pWH9 cassette was inserted into exon 2 and part of exon 2, intron 2 

and part of exon 3 were deleted. This insertion should disrupt the gene and lead to no 

protein production. Even if the inserted cassette would be spliced out as happened in the 

first strategy, exon 1 would be spliced to exon 4, the transcript would be out of frame and 

give no functional peptide, since exon 1 harbors codon phase I while exon 3 displays a 

codon phase O (Table 3.2-1).  

The second α-parvin targeting vector was builted based on the first contruct as shown 

in Figure 3.3-12. The 2nd targeting construct was electroporated into ES cells and the same 

experimental procedures were followed as for the first targeting construct. Three hundred 

sixty G418 ES clones were picked and 14% recombinant clones were identified with the 

external probe by Southern blot. No random integrations were detected with the internal 

probe in the recombinant ES clones (data not shown). One of the three blastocyst-

microinjected ES clones (clone 28) gave highly chimeric mice and the chimeric male mice 

were mated with C57B6 females to obtain heterozygotes. The germline contribution of ES 

clones was confirmed by Southern blot (data not shown). 
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 Figure 3.3-11 The 2nd α-parvin targeting strategy and genotyping strategy. The pWH9 cassette was 

inserted into exon 2 and part of exon 2, intron 2 and part of exon 3 were deleted. The genotyping for wildtype 

and recombinant alleles by Southern blotting was same as that for the first α-parvin targeting construct (figure 

3). A three-primer PCR system (blue arrows) was used for genotyping. Primers F1 and F2 are as same as 

those used for the first construct. R3 primer was derived from exon 3 sequence (see Materials and Methods).  

F1/R2 amplified a 571-bp fragment on wildtype allele.  F2/R2 amplified a 340-bp fragment that contains part 

of PGK PolyA and part of exon 3 sequence.   

 

Figure 3.3-12 (next page) The 2nd α-parvin targeting strategy and the assembly steps for the targeting 

construct. The α-parvin 2nd targeting construct was modified based on the first construct (figure 2).  In step 

1,the plasmid b containing a 7.4 kb EcoRI fragments was digested with BspE1 and the DNA fragment ends 

were blunted with klenow and re-ligated (plasmid g). Thus part of exon 3 was deleted. In step 2, a 7.1kb 

XhoI/NotI fragment was removed with XhoI/enzymes from the plasmid g and ligated into the pWH9 vector 

that was linealized with SalI/NotI enzymes (plasmid h). In the final step 3, the SalI fragment from plasmid d 

(with a SalI linker at 5’ end and a PstI enzyme site at 3’ end) was isolated and ligated into the XhoI site of the 

plasmid h to get the final targeting construct - plasmid i. 

 The external and internal probes were as same as those of the first α-parvin targeting strategy (Figure 

3.3-2). The grey boxes show exons. The solid blue lines stand for the genomic sequences of the gene. The thin 

lines indicate the short sequence of the multiple cloning sites of the vector. The restriction enzymes sites in 

italic indicate they were destroyed. The restriction enzymes in red were important enzymes that would be used 

for the linearization of targeting construct for the electroporation into ES cells (NotI, from pWH9 vector) and 

for genotyping of recombinant ES clones and mice (PstI). 
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3.3.4 α-parvin null mice are embryonic lethal 

The offspring from α-parvin heterozygotes crossing were genotyped by Southern blot and 

PCR to identify α-parvin null mice. Among 108 offspring, no α-parvin homozygotes were 

identified. The ratio of heterozygotes to wildtype mice is close to 2:1 (Figure 3.3-13). This 

indicates α-parvin null mice are embryonic lethal. 

 
Figure 3.3-13 α-parvin homozygotes are embryonic lethal. (A) Offspring derived from 

α-parvin heterozygotes crossing were genotyped by Southern blotting (A, upper panel) and 

PCR genotyping (A, lower panel). (B) The ratio of genotyped offspring from α-parvin 

heterozygotes crossing. 
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4. Discussion and perspectives 

 

4.1    Parvin peptide antibodies 

 Several parvin antibodies exist in the literature. For example, α-parvin full-length 

fusion proteins have been expressed to generate polyclonal and monoclonal antibodies 

(GST-α-actopaxin, Nikolopoulos et al., 2000; His-tagged α-parvin, Olski et al., 2001). 

Monoclonal antibodies were also produced using α-parvin residues 29-372 (GST-CH-

ILKBP residues 29-372, Tu et al., 2001). An anti-β-parvin polyclonal antibody has also 

been generated by using human β-parvin(ss) as the antigen (GST-ss-affixin; Yamaji et al., 

2001).  Recently, the group of Wu generated another β-parvin monoclonal antibody using 

N-terminal residues 1-91 (Zhang et al., 2004). However, none of these reported antibodies 

are commercially available and no γ-parvin antibody has been reported so far.  

Therefore, we generated our own anti-parvin peptide antibodies. This method was 

chosen for two reasons. First, the production of peptide antibodies is much less time 

consuming than other methods and, more importantly peptide antisera are extremely 

specific. This is an important issue due to the similarity of the three parvin proteins. The β-

parvin monoclonal antibody generated against residues 1-92 aa of the protein also 

recognizes α-parvin when α-parvin is enriched in the lysate (Zhang et al., 2004), which is 

mostly likely due to the homology between the long N-terminal sequences of the two 

proteins. This can be avoided with peptide antibody production. 

The disadvantage of peptide antibodies is the risk that they will not recognize the 

native proteins in immunohistochemistry staining or immunoprecipitaion assays as the short 

peptides contain fewer possible epitopes than the full-length proteins. This disadvantage 

was realized in our β-parvin peptide antiserum which did not recognize native protein in 

MEF cells. Additionally, our β-parvin peptide antibody was unable to recognize β-parvin(s) 

and β-parvin(ss), since the corresponding peptide sequence is absent in the two shorter 

isoforms (Figure 3.1-3, spleen tissue). An antibody generated using a full-length fusion 

protein of the human β-parvin short form was shown to cross-react with mouse β-parvin 

and detected all three β-parvin isoforms (Yamaji et al., 2001). No such comparisons can be 

made for the γ-parvin antibody. One mouse γ-parvin EST lacks exon 4, so the translation 

may start from one of the ATGs in exon 6 (Figure 3.2-1). The γ-parvin peptide we used for 

antibody generation was encoded by exon 4. Therefore, the γ-parvin peptide antibody 

would not be able to recognize the putative short form of γ-parvin. In order to generate 
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antibodies that can detect all isoforms of β- and γ-parvins, we also used peptides derived 

from the C-terminus of β- and γ-parvins to generate antibodies. Unfortunately, both C-

terminal peptide antisera failed to give specific signals on Western blot.  

 

4.2 Expression profile of parvins and their associated proteins ILK and PINCH1 in the 

hematopoietic system  

I confirmed the expression of the putative γ-parvin protein in the hematopoetic system on 

Western blot using our γ-parvin peptide polyclonal antibody. γ-parvin is highly expressed 

in, and relatively restricted to, lymphoid tissues such as BM, thymus, spleen, LN and PP, 

with the highest expression level in BM. Further, γ-parvin is specifically expressed at least 

in B220+, CD4+ and CD8+ cells, BM-derived macrophages and dendritic cells.  

α-parvin is expressed in neither BM nor spleen single cell preps, nor in B220+ cells, 

CD4+ and CD8+ T cells, BM-derived macrophages and dendritic cells. These results 

indicate that α-parvin is not expressed in hematopoietic cells. The expression of α-parvin in 

lymphoid tissues arises from the stroma cells. 

There are three β-parvin isoforms expressed in mouse (Yamaji et al., 2001). Our β-

parvin antibody only detects β-parvin(l). The expression of β-parvin(l) in BM-derived 

macrophages and dendritic cells, but not in B220+, CD4+ and CD8+ subpopulations, 

indicates β-parvin(l) is expressed in myeloid lineages, but not in lymphoid lineages.  

Three mouse β-parvin isoforms arise from different initiation codons on a single 

transcript and not from alternatice splicing (Yamaji et al., 2001). The expression of β-

parvin(l) and β-parvin(s) seems to be always coupled and they are co-expressed in the same 

tissue and same cell, and further, transfection of cells with β-parvin(l) cDNA leads to the 

expression of both β-parvin(l) and β-parvin(s) (Yamaji et al., 2001; Zhang et al., 2004). 

This suggests that the first two initiation codons are simultaneously active. The third 

initiation codon seems to be specifically active in spleen, as β-parvin(ss) is the major 

isoform expressed in spleen, and consistently, the predominant isoform in platelet (Yamaji 

et al., 2001; 2004).  

Given the simultaneous activation of the first two initiation codons, the expression of 

β-parvin(l) may represent the expression of both β-parvin(l) and β-parvin(s), while β-

parvin(ss) may also express in other hematopoietic cell types, in addition to platelets. A 

more complete expression profile of β-parvin in different hematopoietic cell types may be 

obtained by Northern blotting or RT-PCR, while the transcript cannot distinguish β-parvin 

isoforms. We are trying to express β-parvin-fusion proteins as antigens to generate new β-
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parvin antibodies that should recognize all isoforms (Yamaji et al., 2001; Zhang et al., 

2004).  

ILK protein, an α- and β-parvin binding partner, is widely expressed at similar levels 

in lymphoid organs of BM, thymus, spleen, LN and PP. Like γ-parvin, ILK is expressed in 

B220+, CD4+, CD8+ cells, macrophages and dendritic cells. PINCH1 is expressed in 

macrophages and dendritic cells, weakly in B220+ cells, but not in CD4+ and CD8+ T 

cells. PINCH2 is not detectable in lymphoid tissues. 

 

4.3 Subcellular localization of γ-parvin in fibroblasts    

γ-parvin is not expressed in fibroblasts such as NIH/3T3 cells (Figure 3.1-3). Exogenously 

expressed C- or N-terminal Flag-tagged γ-parvins in NIH/3T3 cells displayed a cytoplasmic 

distribution and did not localize to FAs with ILK or paxillin (Figure 3.2-4). γ-parvin can 

form complexes with ILK and PINCH1 in spleen cells in vivo (Figure 3.1-8). ILK and 

PINCH1 have been found both in the cytoplasm and FAs (Pasquet et al., 2002; Campana et 

al., 2003; C. Grashoff and R. Fässler, unpublished data). The cytoplasmic ILK in platelets 

can be translocated to the membrane upon ADP or PMA stimulation and this translocation 

correlates with a transient increase in ILK kinase activity (Pasquet et al., 2002). The 

subcellular localization of PINCH1 also has been shown to shuttle between cytoplasm, 

nucleus and membrane (Campana et al., 2003). Therefore, it is possible that, like ILK and 

PINCH1, γ-parvin may localize in the cytoplasm.  

The ILK-parvin interaction has been shown to be important to stabilize α-parvin 

(Fukuda et al., 2003), β-parvin (our unpublished data) and γ-parvin (Figure 3.2-11). 

Furthermore, the ILK-α-parvin interaction is important for both proteins to localize to FAs 

(Zhang et al., 2002). Therefore, it was important to check whether exogenously expressed 

γ-parvin also forms complexes with ILK and whether the binding of γ-parvin to ILK may 

facilitate its FA localization. However, only γ-parvin, but not ILK, was detected in the γ-

parvin-Flag transfected NIH/3T3 cells with γ-parvin antibody in the immunoprecipitation 

assay, which indicates that γ-parvin-Flag cannot bind to ILK. The failure of γ-parvin to bind 

to ILK may explain the absence of γ-parvin at FAs in NIH/3T3 cells. 

Both α- and β-parvins localize to FAs with ILK (Tu et al., 2001; Yamaji et al., 2001). 

Interaction of ILK with α- and β-parvin are mutually exclusive and the complexes 

formation between α-parvin and ILK is negatively regulated by β-parvin (Zhang et al., 

2004). The amount of ILK that bound to α- or β-parvin (FA targeted ILK pool) seems 

constant, as overexpressing β-parvin did not immunoprecipitate more ILK compared to 
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expressing normal level of β-parvin, while the ILK that bound to α-parvin decreased (Zhang 

et al., 2004). Therefore, it is possible that the failure of γ-parvin to bind to ILK may be due 

to its lower binding affinity to ILK compared to α- and β-parvins, exogenously expressed γ-

parvin cannot compete with endogenous α- and β-parvin for ILK binding and localizing to 

FAs. Cells that do not express α- and β-parvins will be used to further test this hypothesis. It 

has been shown that the interaction between α-parvin and ILK is essential, though not 

sufficient, for their efficient localization to cell-ECM adhesions (Zhang et al., 2002). 

Interactions with other proteins, such as paxillin are also essential for α-parvin targeting to 

FAs (Nikolopoulos and Turner). Thus, the association of γ-parvin with ILK and probably 

other proteins(s) may be essential to localize γ-parvin to FAs.  

 

4.4    ILK-PINCH-parvin complexes  

γ-parvin can form complexes with ILK and PINCH1  (Figure 3.1-12; 3.2-2). The ablation of 

γ-parvin downregulated both ILK and PINCH1 protein in lymphoid organs including BM, 

thymus, LN, and PP, where γ-parvin is the predominant parvin member, but not in spleen. 

In spleen, β-parvin(l) is expressed much more abundantly than in other lymphoid tissues 

(Figure 3.2-1). Furthermore, in spleen but not in thymus, β-parvin(ss) is expressed as the 

predominant β-parvin isoform at a much higher level than β-parvin(l) and β-parvin(s) 

(Yamaji et al., 2001). Therefore, like α-parvin, γ-parvin is important for maintenance of 

ILK and PINCH1, especially in cells where γ-parvin is the predominant parvin member. 

This is consistent with the published data showing that assembly of ILK-PINCH-α-parvin 

complexes promotes the stability of the proteins, a common function shared by different 

IPP complexes (Fukuda et al., 2003; Zhang et al., 2004).  

ILK deletion in macrophages results in a strong inhibition of PKB/Akt 

phosphorylation on Ser473 associated with the ILK kinase activity. The inhibition of 

PKB/Akt activity promoted apoptosis (Troussard et al., 2003). Loss of ILK results in a 

dramatic reduction of α-parvin and β-parvin(l) (Zhang et al., 2003; our observation, data not 

shown). Considering the mutual dependence of IPP complexes, γ-parvin is probably 

reduced in the ILK-deficient hematopoietic cells. The phenotype of ILK-deficient 

macrophages is probably partially due to the decrease of both ILK-PINCH1-γ-parvin and 

ILK-PINCH1-β-parvin complexes, as γ- and β-parvin are co-expressed in macrophages 

(Figure 3.2-12).   

 

4.5 γ-parvin is dispensable for normal hematopoiesis 
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γ-parvin is predominantly and specifically expressed in the hematopoietic system, including 

BM, thymus, spleen, LN and PP. Furthermore, γ-parvin expression starts at E7, and 

possibly even earlier (Korenbaum et al., 2001). That is the time when hematopoiesis begins 

in the yolk sac outside the embryo proper and HSCs migrate to the PAS/AGM (Morrison et 

al., 1995). This spatio-temporal expression pattern indicates that γ-parvin may play a role in 

the development of the hematopoietic system. However, no differences were found in the 

organization and distribution of B cells/T cells, and the cellularity of both central and 

peripheral lymphoid organs between control and γ-parvin null mice (Figure 3.2-13, 14, 15). 

FACS analysis using different hematopoietic lineage markers showed that γ-parvin null 

mice display normal development of hematopoietic lineages of B cells, T cells, 

granulocytes/macrophages, erythrocytes, and NK cells (NK cell data not shown), as 

compared to control mice. Further IgD and IgM stainings showed the normal development 

of B cells at different stages. Thus γ-parvin is dispensable for hematopoiesis. The formation 

of ILK-PINCH1-γ-parvin complexes is not crucial for hematopoiesis, since PINCH1 is only 

weakly expressed in B cells and absent in T cells (Figure 3.2-2). Although ILK is 

downregulated in γ-parvin null hematopoietic cells, the expression of β1 and β3 integrin 

was not changed (data not shown). Several experimental evidence suggested that 

β1 integrin-mediated adhesion of HSC is important for their function in the BM (Potocnik 

et al., 2000). It has also been shown that β1 integrin is not essential for HSC retention in the 

BM, for hematopoiesis or trafficking of lymphocytes (Brakebusch et al., 2002). γ-parvin 

null macrophages exhibit the same behavior of movement as control cells in an in vitro 

migration assay (data not shown).  

 

4.6 γ-parvin is dispensable for T-cell dependent antibody response  

 γ-parvin transcription was reduced under certain pathological conditions, such as in 

Burkitt’s lymphoma and leukemias, as well as colorectal adenocarcinoma (Korenbaum et 

al., 2001). The specific expression of γ-parvin in dendritic cells, macrophages, B and T cells 

suggests a potential role of the protein in the adaptive immune response.  

Dendritic cells (DC) are extremely efficient APC at initiating primary T cell responses 

because they express high levels of MHC class II molecules, costimulatory molecules such 

as CD40 and B7 (CD86 and CD80) and other adhesion molecules. B cells share several 

important characteristics with other APC and also act as APC for CD4 T cells. CD40 on the 

B cell plays a critical role in isotype switching via an interaction with the CD40 ligand 

CD154. We observed similar maturation of γ-parvin null DCs and control cells in vitro 
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upon the stimulation of LPS. T-cell dependent antigen NP-CG requires interaction with TH 

cells to stimulate B cells for antibody production. No significant differences were found in 

the anti-NP-CG antibody production between γ-parvin null mice and controls. γ-parvin null 

mice showed slightly, but not significant, increase in IgG1 and Igλ production during the 

second immune response (Figure 3.2-19). We are currently determining the total amount of 

different immunoglobulins under physiologic conditions in γ-parvin null mice compared to 

controls to estimate their general ability to produce abtibodies. 

These data suggest a functional redundancy of γ-parvin, which may compensate for β-

parvin. The phenotypic analysis of β/γ-parvin double knockout mice will deepen our 

understanding of these two proteins in the hematopoietic system. β-parvin and γ-parvin are 

located on the same chromosome and the distance between the two genes is less than 12 kb. 

Therefore we could not obtain β- and γ-parvin double knockout mouse by breeding crosses. 

Instead, we are trying to generate a β-parvin-null/γ-parvin-floxed allele in ES cells. We 

built a γ-parvin exon 6 floxed construct. The deletion of exon 6 should lead to ablation of γ-

parvin (Figure 3.2-6). The γ-parvin-floxed recombinant ES clones were microinjected to 

blastocysts check the germ-line transmission. The γ-parvin-floxed recombinant ES clones 

that went into the germ line were chosen for the electroporation of the β-parvin targeting 

construct and a single β-parvin recombinant clone was identified. We are currently breeding 

the β/γ-parvin chimeric mice for germline transmission.  

 

4.7 α-parvin is critical  for mouse embryo development  

α-parvin null mice are embryonic lethal, which is consistent with the in vivo study of α-

parvin/PAT-6, the sole parvin homolog in C. elegans. PAT-6 null worms die of a lethal 

defect in the assembly of muscle dense bodies that attach actin filaments to the sarcolemma 

(Lin et al., 2003). ILK-PINCH1-α-parvin complexes provide crucial physical linkages 

between integrins and the actin cytoskeleton and transduce diverse signals from the ECM to 

intracellular effectors and play important roles in many biological processes (Wu, 2004). 

ILK null mouse embryos die during the peri-implantation stage (Sakai et al., 2003), and 

PINCH1 null mice also die around embryonic stage E5.5-6.5 (R. Bordoy, A. Braun, R. 

Fässler, unpublished data). PINCH2 null mice do not show obvious phenotypes and no 

obvious upregulation of PINCH2 was observed in PINCH1-deficient MEF cells (F. Stanchi, 

R. Fässler, uppublished data). β-parvin null mice are viable and fertile (I. Thievessen, H. 

Chu, R. Fässler, unpublished data). β-parvin is upregulated in α-parvin-depleted cells 

(Zhang et al., 2004). The phenotype of α-parvin null mice may be the combined 
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consequence of the loss of α-parvin and increase in β-parvin, since ILK-PINCH1-β-parvin 

complexes are suggested to function as a pro-apoptosis mediator, contrast to the anti-

apoptotic function of α-parvin.  

Conditional deletion of ILK in chondrocytes leads to skeletal growth retardations 

characterized by abnormal chondrocyte shape and decreased proliferation in vivo, and 

diminished chondrocyte spreading on ECM and reduced stress fiber formation in vitro 

(Grashoff et al., 2003; Terpstra et al., 2003). The phenotype of the reduced chondrocyte 

proliferation in the absence of ILK is, at least partially, caused by the loss of ILK-PINCH1-

α-parvin complexes, and probably other IPP complexes. A conditional deletion of α-parvin 

in chondrocytes will provide a valuable model to understand the mechanism of action of 

ILK in chondrocytes, and to dissect the distinct roles between the different components of 

the IPP complexes. 

Thus, the analysis of α-parvin null mice will add valuable knowledge to functions of 

both parvins and the IPP complexes. I am currently trying to find out when α-parvin-null 

embryos die and to establish α-parvin-deficient cell lines for the study of the cellular 

functions of α-parvin.  

 

4.8 Intact α-parvin is indispensable for normal embryo development 

α-parvin E2-deletion mice are significantly smaller than their littermates, and show a 

reduction of the body length at birth. The mechanism underlying the phenotype is not clear 

yet. At 3-4 weeks old, 5% of the mutant mice die, and the weight of the mutant mice is 

significant lower than control mice after 4 weeks, which is probably a secondary defect, 

probably due to that the mutant mice cannot compete with the wildtype or heterozygote 

littermates for milk or defect in food absorption in the intestine. α-parvin is widely 

expressed in intestine, skin, lung, muscle and chondrocytes (Figure 3.1-6 and data not 

shown). The α-parvin E2-deletion protein can localize to FAs with paxillin as well as the 

wildtype protein (Figure 3.3-10). It is likely that the α-parvin E2-deletion protein binds to 

ILK through its intact CH2 domain (Zhang et al., 2004). α- and β-parvins are coexpressed 

in many tissues and cell types (Nikolopoulos and Turner, 2000; Yamaji et al., 2001). In 

MEF cells, α-parvin E2-deletion protein is expressed at a similar level as the full length 

protein in wildtype mice, while β-parvin(l) expression level in MEFs is not changed (data 

not shown). The normal FA localization of the α-parvin E2-deletion protein indicates that 

the defect during mutant mouse embryonic development is probably not directly related to 

the function of the IPP complexes, but due to other protein interactions with the N-terminus 
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of α-parvin, where 30 amino acids encoded by exon 2 are missing. These 30 amino acids 

contain a putative SH3 binding site (PLSP) and a putative serine (S19) phosphorylation site 

(Olski et al., 2001; Curtis et al., 2002). The N-terminus of α-parvin is phosphorylated by 

cyclin B1/cdc2 during mitosis and dephosphorylation occurs after mitosis in an adhesion-

independent manner. There is evidence suggesting that yet unknown proteins may bind to 

the N-terminus and/or the CH1 region of α-parvin and/or β-parvin (Zhang et al., 2004; 

Yamaji et al., 2004). The new binding partner(s) of α-parvin may be identified by 

immunoprecipitation with our α-parvin polyclonal antibody. 

 

4.9 Distinct roles of parvin paralogues 

The structurally similar parvin paralogues have distinct roles both in vitro and in vivo, 

although they share some common features. α- and β-parvins have an identical domain 

architecture and share a high level of sequence similarity, yet play distinct and even 

contrasting roles in regulation of cell behavior. For example, α-parvin functions as an 

important anti-apoptotic protein, while β-parvin functions as a pro-apoptotic protein (Zhang 

et al., 2004). Consistent with this, recently Mongroo et al (2004) reported that the 

expression level of β-parvin, but not α-parvin, was downregulated in certain breast cancer 

cell lines and tumors, and the downregulation of β-parvin was suggested to contribute to the 

upregulation of ILK signalling. The fuctions of α- and β-parvin in cell shape modulation are 

also different (Fukuda et al., 2002; Zhang et al., 2004). Both α- and β-parvins, but not γ-

parvin, localize to FAs in NIH/3T3 fibroblasts (Olski et al., 2001; Yamaji et al., 2001 and 

Figure 3.2-4). 

The distinct roles of parvins are shown by our in vivo studies. α-parvin null mice die 

during embryonic development and the intact α-parvin protein is important for normal 

embryo development, while β-parvin null mice are viable and fertile (our unpublished data). 

The mice with the ablation of γ-parvin, which is specifically expressed in hematopoietic 

cells, show normal architectures in lymphoid organs and normal hematopoiesis. Thus, β- 

and γ-parvins that probably appear during evolution by gene duplication events are 

dispensable for embryogenesis.  

The regulations between structurally similar parvin paralogues have been observed 

between α- and β-parvins and the regulations are at least partially through the IPP 

complexes. For example, interactions of α- and β-parvin with ILK are mutually exclusive 

and competitive (Zhang et al., 2004). α-parvin is absent in hematopoietic cells. β-parvin(l) 

is co-expressed with γ-parvin in certain hematopoietic cells, such as dendritic cells and 
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macrophages (Figures 3.2-12). However, no regulated change in expression was observed 

between β- and γ-parvin. Even in the β- and γ-parvins co-expressin dendritic cells and 

macrophages, β-parvin(l) expression levels were not changed in the absence of γ-parvin. 

Similarly, the expression γ-parvin protein in the β-parvin null lymphoid organs was not 

changed compared to wildtypes (I. Thievessen, H. Chu, R. Fässler, unpublished data). β-

parvin may compensate the lost function of γ-parvin in those β- and γ-parvin co-expressing 

cells.  

 With its restricted expression profiles in hematopoietic cells, γ-parvin functions 

differently than α- and β-parvin. The studies presented in this thesis indicate γ-parvin is a 

functionally redundant parvin member, although structurally it promotes stability of ILK 

and PINCH1 in hematopoietic cells. β-/γ-parvin double knockout in hematopoietic cells 

may reveal additional functions of γ-parvin.   
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5 Summary/Zusammenfassung 
 
Cell interactions with extracellular matrix (ECM) are essential for various biological 

processes, including cell migration, proliferation, differentiation, regulation of gene 

expression and cell survival. The interactions mainly involve the integrin family, which 

links ECM to the actin cytoskeleton. The link between integrin and actin is mediated by 

cytoplasmic molecules. Among them, a novel family of focal adhesion associated proteins, 

parvins (α-, β- and γ-parvins), have been described. α- and β-parvins bind to integrin-linked 

kinase (ILK) and link integrins to the actin cytoskeleton. 

With the parvin paralogue-specific peptide polyclonal antibodies we generated, I 

could show the expression profiles of parvins in the hematopoietic system. α-Parvin is 

absent in hematopoietic cells. The longest β-parvin isoform (β-parvin(l)) is expressed in 

hematopoietic cells, but not in B220+, CD4+ and CD8+ cells. γ-Parvin is highly expressed 

in lymphoid organs and specifically in B220+, CD4+ and CD8+ T cells. And both β-

parvin(l) and γ-parvin are expressed in dendritic cells and macrophages. γ-Parvin can form 

ternary complexes with ILK and PINCH1 in spleen cells. However, unlike α and β-parvin, 

Flag-tagged γ-parvin expressed in NIH/3T3 fibroblasts displays a cytoplasmic distribution 

with no colocalization with paxillin, ILK or the tips of actin stress fibers. Further 

immunoprecipitation assays show that the Flag-tagged γ-parvin could not bind to ILK.   

To analyze parvin functions in vivo, α- and γ-parvin mutant mice were generated by a 

genetic approach and the phenotypes of the mutant mice were analysed.  

(1) γ-Parvin null mice are viable and fertile, and show normal architecture of lymphoid 

organs as demonstrated by HE staining and B and T cell immunostainings. The mutant mice 

have normal cellularity of lymphoid organs and FACS analyses show normal hematopoiesis 

in the mutant mice as compared to control mice. γ-parvin null mice exhibit similar T-cell 

dependent antibody responses as control mice. γ-parvin null BM-derived dendritic cells can 

mature normally in vitro as control cells. Both ILK and PINCH1 are downregulated in γ-

parvin null hematopoietic cells compared to control cells, while the expression levels of α-

parvin and β-parvin(l) are not changed in the absence of γ-parvin.  

(2) No α-parvin null mice are identified from the offspring of heterozygote crosses, which 

suggests that α-parvin is critical for mouse embryogenesis.  

(3) α-Parvin exon 2 deletion mutant mice are viable, but they are smaller and the new-born 

mutants have significant shorter body length compared to control littermates, although the 
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mutant protein can localize to focal adhesion sites with paxillin as well as the wildtype 

protein. Thus, an intact α-parvin is important for normal embryo development.  

         In summary, different parvin members seem to have distinct roles. The embryonic 

lethal phenotype of α-parvin-null mice indicates that β-parvin cannot take over the function 

of α-parvin during embryogenesis. β-parvin may compensate the loss of function of γ-

parvin in the hematopoietic system. Alternatively, γ-parvin might be a functional redundant 

parvin member in the hematopoietic system. 

 

 
Zusammenfassung  
 
 
Die Interaktion von Zellen mit der extrazellulären Matrix (ECM) ist essentiell für viele 

biologische Prozesse. Dazu zählen Migration, Proliferation, Differenzierung, Regulation der 

Genexpression oder das Überleben der Zelle. Diese Interaktion wird hauptsächlich durch 

Proteine der Integrinfamilie vermittelt, welche die ECM mit dem Aktin-Zytoskelett 

verbinden. Die Verbindung zwischen Integrinen und Aktin wird durch zytoplasmatische 

Proteine hergestellt. Unter diesen befindet sich eine neue Familie von Proteinen, die mit 

fokalen Adhäsionskontakten assoziert sind, die Parvine. Es sind 3 Isoformen, α−, β− und γ-

Parvin beschrieben. α− und β−Parvin binden ILK (integrin linked linase) und verbinden so 

Integrine mit dem Aktin-Zytoskelett. 

Mit den von uns generierten Parvin subtyp-spezifischen polyklonalen 

Peptidantikörpern konnte ich das Expressionsprofil der einzelnen Parvine im 

hämatopoetischen System analysieren. α-Parvin fehlt in hämatopoetischen Zellen. Die 

längste von drei β-Parvin Isoformen ist in hämatopoetischen Zellen exprimiert, nicht jedoch 

in B220, CD4 und CD8 positiven Zellen. Im Gegensatz zu α− und β−Parvin ist γ Parvin 

fast ausschließlich in lymphoiden Organen und besonders in B220, CD4 und CD8 positiven 

Subpopulationen vertreten. In dendritischen Zellen und Makrophagen wird neben γ-Parvin 

auch β-parvin(l) exprimiert. γ-Parvin kann in Milzzellen einen ternären Komplex mit ILK 

und PINCH1 bilden. Im Gegensatz zu α- und β- Parvin zeigt ein in NIH/3T3 Fibroblasten 

exprimiertes, Flag-markiertes γ-Parvin zytoplasmatische Lokalisation. Eine Kolokalisation 

mit Paxillin, ILK oder den Spitzen von Aktin-Stressfasern konnte nicht beobachtet werden. 

In Ko-Immunopräzipitationsexperimenten konnte gezeigt werden, dass Flag-markiertes γ-

Parvin nicht an ILK bindet. 



Summary  

 

Um in vivo Funktionen zu analysieren wurden α- und γ-Parvin defiziente Mäuse 

generiert und ihre Phänotypen analysiert. 

(1) γ-Parvin knock-out Mäuse sind lebensfähig und fertil. Auch konnte in HE Färbungen 

und Immunfärbungen von B und T Zellen ein normaler Aufbau der lymphoiden Organe 

beobachtet werden. Die lymphoiden Organe der mutierten Mäuse zeigten normale 

Zellularität. In FACS-Experimenten wurde eine normale Hämatopoese der mutierten Mäuse 

beobachtet. Verglichen mit Kontrolltieren γ-Parvin null Mäuse zeigten keinen Unterschied 

in der Antikörperproduktion nach Stimmulierung der T-Zellen. Auch zeigten γ-Parvin 

defiziente, vom Knochenmark gewonnene dendritische Zellen eine normale in vitro 

Reifung. Während ILK und PINCH1 in lymphoiden Organen von γ-Parvin defizienten 

Mäusen geringer exprimiert wurden als in Wildtypmäusen, konnte keine Änderung in der 

Expression von α- und β-Parvin beobachtet werden.  

(2) Das Fehlen von homozygoten α-Parvin defizienten Nachkommen aus Verpaarungen 

von heterozygoten Mäusen lässt auf eine wichtige Rolle von α-Parvin in der 

Mausembryogenese schließen. 

(3) Mäuse in denen das Exon 2 von α-Parvin deletiert wurde sind lebensfähig, aber kleiner 

als ihre wildtypischen Geschwister, obwohl das mutierte Protein ebenso mit Paxillin in 

fokalen Adhäsionen lokalisiert wie das Wildtypprotein. Ein intaktes α-Parvin ist daher 

wichtig für eine normale Embryonalentwicklung. 

Zusammenfassend scheinen verschiedene Parvine unterschiedliche Funktionen zu haben. 

Der embryonal lethale Phänotyp der α-Parvin null Mäuse lässt vermuten, dass β-Parvin 

nicht dessen Funktion in der Embryogenese ersetzten kann. Den Verlust γ-Parvins im 

Hämatopoietischen System jedoch kann möglicherweise durch β-Parvin funktionell 

kompensiert werden. Alternativ kann eine funktionelle Redundanz zwischen β und  γ-

Parvin im hämatopoetischen System nicht ausgeschlossen werden. 
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