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Abstract

We present a statistical analysis of directional discontinuities in the solar wind at 1 astro-
nomical unit. It is the first study of this kind based on simultaneous observations at four
nearby spacecraft. We use recent magnetic field and plasma data from the coordinated Clus-
ter spacecraft flying in formation a few hundred to a few thousand kilometres apart. With
four measuring platforms the ability to observe is considerably improved. For example, the
simultaneous four-point measurements allow for determining the discontinuity normals by
analysing the time differences between the occurrence of the discontinuity at each of the four
spacecraft. The events used in our analysis are grouped in three sets according to the period
of their observation, i.e., January - May of 2001, 2002 and 2003, respectively. The main
distinction between these three data sets is the different spacecraft separation, from 100 km
in 2002 to 5000 km in 2003, which enables us to investigate interplanetary discontinuities at
different scales. Another difference between the three data sets are the different prevailing
solar wind conditions. These include both slow solar winds and fast streams that map back
to coronal holes on the Sun.

Our analysis demonstrates that the Minimum Variance Analysis (MVA), an established and
widely used single-spacecraft technique to compute normals of discontinuities, is much less
reliable than previously assumed. We determine new criteria to decide whether or not MVA
yields reliable normal estimates. An important parameter is the ratio of intermediate to min-
imum eigenvalue λ2/λ3 of the magnetic covariant matrix. Instead of using 2 as the lower
limit for λ2/λ3 for applicability of MVA, as is common practice, we strongly suggest apply-
ing MVA only if λ2/λ3 > 10. Furthermore, the accuracy of MVA increases with increasing
spreading angle ω, the angle between the magnetic field vectors on the two sides of the dis-
continuity. We recommend MVA should not be used for ω < 60◦.

Inaccurate MVA normal estimates have resulted in a dramatic overestimation of the num-
ber of rotational discontinuities in earlier studies. Using the relative timing technique, we
do not find a single clear rotational discontinuity. A detailed error analysis of the multi-
spacecraft tool puts this new result on a firm footing. Analysis of plasma data shows that
many discontinuities do not satisfy the polarisation relation, a necessary condition for rota-
tional discontinuities. Our results allow for the interpretation that the solar wind is dominated
by tangential rather than rotational discontinuities which is in apparent contradiction to ear-
lier single-spacecraft studies. This finding is particularly true for fast coronal hole streams
where earlier observations claim a high abundance of rotational discontinuities.

Our new results entail significant implications for the dynamics of the solar wind micro-
structure and generation mechanisms for discontinuities. We also discuss possible conse-
quences for the understanding of the source region on the Sun and for the propagation of
cosmic rays through the heliosphere.

We study further properties of directional discontinuities, such as their thickness, their orien-
tation in space and their large-scale curvature. We conclude that interplanetary discontinuities
are 1-D structures superposed by non-isotropic fluctuations.





Zusammenfassung

In der vorliegenden Arbeit stellen wir eine statistische Untersuchung von Richtungsdiskonti-
nuitäten im Sonnenwind in der Nähe der Erde vor. Es ist die erste Analyse dieser Art, die auf
der gleichzeitigen Beobachtung an den Orten von vier anstelle von nur einem Satellit basiert.
Dies ermöglicht die Anwendung überlegener Auswertungstechniken, wodurch ein Jahrzehn-
te währender Trugschluss bezüglich der Mikrostruktur des Sonnenwindes ausgeräumt wird
und neuen Überlegungen die Tore geöffnet werden.

Bereits frühe Messungen mittels Magnetometern und Plasmainstrumenten an Bord von Sa-
telliten offenbarten eine starke Variabilität des Sonnenwindes. Ein großer Teil dieser Varia-
tionen ist nicht kontinuierlich, sondern erfolgt in sehr sprunghaften Änderungen der Sonnen-
windparameter, insbesondere in der Richtung des Magnetfeldes [Ness et al., 1966]. Diese
Richtungsdiskontinuitäten (DDs: directional discontinuities), typischerweise eingebettet in
ein ansonsten relativ ruhiges Magnetfeld, waren theoretisch nicht vorhergesagt. Die Kenntnis
ihrer Existenz verdanken wir alleinig der in-situ Beobachtung. Zahlreiche Untersuchungen
mittels späterer Satellitenmissionen ermöglichten große Fortschritte im Verständnis dieser
Strukturen. So wissen wir heute, dass es sich bei diesen häufig vorkommenden DDs wahr-
scheinlich um magnetohydrodynamische Tangential- (TDs) bzw. Rotationsdiskontinuitäten
(RDs) handelt, und dass sie vermutlich in der Nähe der Sonne entstehen. Die entscheiden-
de Frage jedoch, wie es überhaupt zu der Entstehung dieser Strukturen kommt, konnte bis
zum heutigen Tage nicht geklärt werden. Ein wichtiger Schritt zur Klärung dieser Frage, aber
auch zur Verbesserung unseres Verständnisses der Struktur des Sonnenwindes an sich, ist es,
eine genaue Vorstellung der DDs zu entwickeln. Dieser Problematik stellen wir uns in dieser
Arbeit.

TDs und RDs sind zwei sich deutlich voneinander unterscheidende Strukturen innerhalb
der Magnetohydrodynamik (MHD). MHD-Diskontinuitäten werden generell als lokal ebe-
ne Flächen verstanden, die zwei Plasmen mit unterschiedlichen Eigenschaften voneinander
trennen. Ein wesentlicher Unterschied zwischen TDs und RDs ist, dass bei RDs diese beiden
Plasmen über das Magnetfeld miteinander verbunden sind, bei TDs ist dies nicht der Fall. An-
ders ausgedrückt, ist das Magnetfeld bei TDs parallel zur Trennfläche, und die Normalkom-
ponente Bn ist somit Null. RDs hingegen besitzen ein von Null verschiedenes Bn. Da davon
auszugehen ist, dass die Entstehung und die dynamische Entwicklung im Sonnenwind der
beiden Diskontinuitätstypen unterschiedlichen Prinzipien unterliegen, ist zunächst zu klären,
ob es sich bei den DDs im Sonnenwind um den einen oder den anderen Typ handelt. Neue-
re Ergebnisse aus statistischen Beobachtungsanalysen schlagen generell eine Dominanz der
RDs vor (z.B. Neugebauer et al. [1984]). Diese tritt besonders deutlich im schnellen Sonnen-
wind, der den koronalen Löchern auf der Sonne entspringt, auf [Neugebauer and Alexander,
1991]. Im langsamen Sonnenwind hingegen ist das Verhältnis von RDs zu TDs eher ausgegli-
chen. Zur Unterscheidung der Diskontinuitätstypen wird häufig die Normalkomponente des
Magnetfeldes benutzt. Ist diese groß, und zwar größer als Null innerhalb des angenommenen
Fehlers, so handelt es sich um eine RD.

Ein generelles Problem bei dieser Methode ist es, die Genauigkeit, mit der Bn bestimmt wird,
abzuschätzen. Diese wiederum ist unmittelbar mit der Güte der Normalenrichtung der Grenz-
fläche verknüpft. Genau an dieser Stelle setzt die vorliegende Arbeit an. Nahezu sämtliche



vorangegangenen statistischen Untersuchungen basieren auf den Daten eines einzelnen Sa-
telliten. Das hat zur Folge, dass auch die zur Verfügung stehenden Analysewerkzeuge zur
Bestimmung der Grenzflächennormalen begrenzt sind. Üblicherweise wird dazu, wie auch in
vielen anderen Bereichen der Weltraumplasmaphysik, die Minimum-Varianz-Analyse (MVA)
benutzt. Ein schwerwiegender Nachteil dieser Technik ist die Schwierigkeit, einen vernünf-
tigen Fehler zu bestimmen.

Dank der Clustermission, die aus vier koordinierten Satelliten besteht, die in enger Formation
die Erde umkreisen, können diese Probleme überwunden werden. Obwohl das Hauptziel von
Cluster die Erkundung der Magnetosphäre ist, befinden sich die vier Raumfahrzeuge auch
für beträchtliche Zeitspannen im Sonnenwind. Da es keine vergleichbare Multisatellitenmis-
sion im interplanetaren Raum gibt, nutzen wir die Gelegenheit, Cluster für unsere Zwecke
einzuspannen.

Nach sorgfältiger Auswahl von DDs gemäß etablierter Kriterien, bleiben uns immerhin 366
Ereignisse im ungestörten Sonnenwind, d.h. außerhalb der Vorschockregion, in der Störun-
gen aufgrund von an der Bugstoßwelle reflektierten Teilchen auftreten können. Diese 366
DDs unterteilen sich in drei Gruppen, entsprechend der Untersuchungszeiträume, in de-
nen die Clusterbahn Sonnenwindanteile aufweist. Diese sind Januar - Mai im Jahr 2001,
2002, bzw. 2003, und unterscheiden sich zum einen durch unterschiedliche Satellitenabstände
und zum anderen durch die vorherrschenden Sonnenwindbedingungen. Die verschiedenen
Abstände erlauben eine Untersuchung der Diskontinuitäten auf unterschiedlichen Längen-
skalen (100 - 5000 km).

Die Benutzung von vier anstelle von nur einem Satelliten bietet nun diverse Vorteile. Ei-
nerseits können die MVA-Ergebnisse an nahe beieinander liegenden Orten miteinander ver-
glichen werden, und es kann somit ein Maß für die Genauigkeit dieser Methode gefunden
werden. Andererseits kann eine

”
echte“ Multisatellitenmethode (Triangulation) zur Bestim-

mung der Diskontinuitätennormalen angewendet werden. Diese basiert auf einfachen geo-
metrischen Überlegungen und macht sich die Zeitdifferenzen zwischen dem Erscheinen ei-
ner Diskontinuität an den einzelnen Satelliten zunutze. Ein großer Vorteil dieser Methode
gegenüber der MVA ist die einfache Fehlerbehandlung. Es stellt sich heraus, dass die Ge-
nauigkeit der Triangulation stark mit der Größe des aus den vier Raumfahrzeugen gebildeten
Tetraeders korreliert. Ein weiterer wichtiger Faktor ist die geometrische Güte des Tetraeders,
d.h. der Grad, zu dem die Figur, deren Eckpunkte die Positionen der vier Satelliten sind, ei-
nem regulären (gleiche Kantenlängen) Tetraeder ähnelt. Abgesehen von den eher wenigen
Ereignissen, die mit kleinen Satellitenabständen (100 km) untersucht werden, erzielen wir
eine sehr große Genauigkeit bei der Normalenbestimmung. Zum Beispiel sind die Normalen
im Mittel bis auf 5◦ genau bestimmt, wenn die Abstände 5000 km (im Jahr 2003) betragen.
In Einzelfällen, insbesondere bei hoher vorliegender geometrischer Güte des Tetraeders, sind
die Normalen sogar noch besser bestimmt.

Der Vergleich der vier MVA-Normalen sowohl untereinander als auch mit der Triangulati-
onsnormalen zeigt, dass die MVA sehr viel ungenauer ist als zuvor angenommen wurde. Wir
können sogar zeigen, dass unter bestimmten Voraussetzungen eine Richtung bestimmt wird,
die einer zufälligen Wahl gleichkommt. In anderen Fällen erweist sich diese etablierte Me-
thode jedoch als recht zuverlässig. Ungünstigerweise überwiegt der erste Fall. Wir sind in



der Lage, die Vorrausetzungen zu spezifizieren, bei denen MVA möglicherweise sinnvolle
Ergebnisse liefert. Ein wichtiger Parameter dabei ist das Verhältnis des mittleren zum klein-
sten Eigenwert λ2/λ3. Die Eigenwerte geben die Varianzen der Magnetfeldkomponenten in
Richtung der stärksten, mittleren und schwächsten Varianz an. Theoretisch sollte für eine 1-
D-Struktur die minimale Varianz verschwinden, und die Richtung, in der dies der Fall ist,
ist dann die Normale der Struktur. Sind mittlerer und kleinster Eigenwert nun aber ungefähr
gleich groß, etwa aufgrund von überlagerten Fluktuationen, so kann die Richtung der mini-
malen Varianz nicht eindeutig bestimmt werden. Aus diesem Grund sollte λ2/λ3 groß sein.
In früheren Arbeiten wurde häufig ein Minimalwert von (λ2/λ3)

L = 2 benutzt, um sinnvolle
MVA-Ergebnisse zu gewährleisten [Neugebauer et al., 1984; Horbury et al., 2001b]. Un-
sere Multisatellitenanalyse zeigt jedoch, dass dies viel zu optimistisch ist. Wir empfehlen,
(λ2/λ3)

L = 10 als untere Grenze zu wählen.

Wie bereits in Lepping and Behannon [1980] betont wird, spielt auch der Spreizwinkel ω, der
Winkel zwischen dem Magnetfeld auf der einen und der anderen Seite der Diskontinuität, ei-
ne wichtige Rolle für die Genauigkeit. Große Winkel haben in der Regel aussagekräftigere
Minimum-Varianz-Richtungen zur Folge. Diesem Ergebnis wurde bisher eher wenig Beach-
tung geschenkt - zu Unrecht, wie die vorliegende Arbeit zeigt. Wir empfehlen, MVA nicht zu
benutzen, wenn ω kleiner als ungefähr 60◦ ist. Da MVA ein breites Anwendungsspektrum in
der Weltraumplasmaphysik besitzt, sind diese neuen Erkenntnisse von höchstem allgemeinen
Interesse.

Für die Analyse von interplanetaren Diskontinuitäten hat die deutliche Überschätzung der
MVA-Genauigkeit dramatische Folgen. Die große Population der

”
eindeutig identifizierten“

RDs ist ausschließlich eine Folge der ungenauen MVA-Normalen. Beschränkt man sich bei
der Anwendung der MVA nur auf die Fälle, bei denen von sinnvollen Ergebnissen auszugehen
ist (großes λ2/λ3 und/oder ω), so schrumpft die Anzahl der aufgrund der Normalkomponen-
te Bn des Magnetfeldes identifizierten RDs dramatisch. Anwendung der Triangulation liefert
ausschließlich kleine Normalkomponenten. Tatsächlich zeigt die Fehleranalyse, dass die Wer-
te von Bn für alle untersuchten Fälle konsistent mit Null sind. Anders ausgedrückt, sind alle
unsere Ereignisse konsistent mit TDs, was im deutlichen Widerspruch zu sämtlichen früheren
Arbeiten steht. Insbesondere trifft dies auf den schnellen Sonnenwind koronalen Ursprungs
zu, der ja nach früherer Erkenntnis die meisten RDs beherbergen soll.

Neben der Normalkomponente des Magnetfeldes gibt es noch eine Reihe weiterer Kriterien,
anhand derer man Diskontinuitäten klassifizieren kann. Beispielsweise ist die Erfüllung der
Polarisationsrelation eine notwendige Bedingung für RDs. Diese wird von den meisten un-
serer Ereignisse nicht erfüllt. Somit sind nicht nur alle DDs unserer Stichprobe konsistent mit
TDs, sondern die meisten sind auch inkonsistent mit RDs. Dies lässt erstmals die Schlussfol-
gerung zu, dass es im Sonnenwind keine RDs gibt.

Diese neuen Ergebnisse werfen eine Reihe von Fragen auf. Geht man tatsächlich davon aus,
dass der Sonnenwind keine RDs enthält, so muss geklärt werden, ob RDs erst gar nicht entste-
hen oder ob sie zwar entstehen, aber kurzlebig sind. Zur Untersuchung der Stabilität sind bei-
spielsweise Computersimulationen hilfreich. Wir können andererseits auch nicht ausschlie-
ßen, dass einige der Diskontinuitäten RDs sind. In dem Fall stellt sich aber direkt die Frage,
warum alle RDs so ein kleines Bn haben. Dies könnte Aufschlüsse über mögliche Entste-



hungsmechanismen liefern. Nach bisheriger Vorstellung entstehen RDs aufgrund von nicht
linearen dynamischen Prozessen im Sonnenwind. Da wir keine RDs (mit großem Bn) fin-
den, sollte diese Theorie ernsthaft überprüft werden. Eine weitere Möglichkeit wäre, dass die
Stabilität von RDs an Bn geknüpft ist, so dass bis zur Ankunft bei der Erde nur solche mit
kleinem Bn ”

überleben“.

Da die meisten interplanetaren Diskontinuitäten wahrscheinlich in der Nähe der Sonne entste-
hen, enthalten deren Eigenschaften eventuell Informationen über die Sonne. Die Häufigkeit,
mit der RDs und TDs in den unterschiedlichen Arten des Sonnenwindes auftreten, hat eine
Vorstellung geprägt, wie mögliche Prozesse auf der Sonne die Entstehung von DDs erklären
(siehe z.B. Neugebauer and Alexander [1991] und Referenzen darin). Die vorgeschlagenen
Mechanismen stehen in engem Zusammenhang mit der Heizung der Korona [Parker, 1991b].
Unsere neuen Beobachtungsergebnisse könnten auch hier neue Impulse setzen.

Die Möglichkeit, dass alle oder die meisten DDs im Sonnenwind TDs sind, ist auch von
großer Bedeutung für die Charakterisierung der Topologie des interplanetaren Magnetfeldes.
Im Gegensatz zu RDs, trennen TDs Plasmaregionen voneinander, die magnetisch nicht mit-
einander verbunden sind. Eine große Anzahl von TDs würde also bedeuten, dass der Sonnen-
wind aus vielen solcher Regionen besteht, zwischen denen kein Plasmafluss existiert. Dies
könnte Auswirkungen auf die Ausbreitung kosmischer Strahlung in der Heliosphäre haben.

Neben der Klassifizierung von DDs beschäftigen wir uns mit weiteren statistischen Eigen-
schaften dieser Strukturen. Beispielsweise finden wir, dass aufgrund der allgemein schlechten
Übereinstimmung der Minimum-Varianz-Richtung mit der lokalen Diskontinuitätsnormalen
frühere Arbeiten über die großskalige Krümmung von DDs vorsichtig zu interpretieren sind.
Es erscheint uns nicht möglich, eine Aussage anhand von MVA-Ergebnissen zu treffen.

Die Multisatellitenanalyse erlaubt ferner eine verbesserte Bestimmung der Diskontinuitäten-
dicken. Unsere Ergebnisse stimmen aber im Wesentlichen mit früheren Einzelsatellitener-
gebnissen überein. Insbesondere zeigt sich, dass die minimal auftretende Dicke tatsächlich
einige Protonengyroradien beträgt.

Aufgrund der genaueren Normalenbestimmung kann außerdem eine aussagekräftigere Statis-
tik über die Orientierung der DDs im Raum erstellt werden. Ein Großteil der Grenzflächen-
normalen liegt in der Ebene der Ekliptik.

Die gleichzeitige Beobachtung der DDs an vier verschieden Orten und die Anwendung ver-
schiedener Auswertetechniken führt schließlich zu einer Modellvorstellung dieser Struktu-
ren: Interplanetare Diskontinuitäten setzen sich zusammen aus

”
idealen“ 1-D-Strukturen, die

zumindest auf der Clusterskala (5000 km) planar sind, und überlagerten anisotropen Fluktua-
tionen.

Die sich aus der vorliegenden Arbeit ergebenen möglichen Konsequenzen, etwa für die Aus-
breitung kosmischer Strahlung in der Heliosphäre oder der koronalen Heizung, können hier
nur am Rande diskutiert werden. Es erscheint jedoch erstrebenswert, sich dieser Problemati-
ken im Lichte der neuen Erkenntnisse anzunehmen.
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CHAPTER 1

INTRODUCTION

The space between the planets in our solar system is not empty. It is filled with charged par-
ticles emanating from the Sun. This streaming plasma is called the solar wind. The existence
of this continuous flow of charged particles was inferred only about half a century ago from
the observation that the plasma tails of comets always point almost radially away from the
Sun [Biermann, 1951]. With the beginning of the space age in the late 1950s and early 1960s,
in situ observations of the interplanetary medium by means of spacecraft measurements con-
firmed the existence of the solar wind. These early observations revealed that the solar wind
is highly variable in nature. The strong fluctuations are particularly distinct for the direction
of the magnetic field which is “frozen” in the plasma and thus carried out from the Sun into
interplanetary space. A fundamental feature is that variations of the field direction, and to
some extent also of the plasma parameters, are not continuous. Typically, rapid changes of
the magnetic field are embedded in a comparatively quiet background. These fundamental
solar wind features were identified to be magnetohydrodynamic discontinuities and are the
subject of the present work.

The recognition that discontinuities are ubiquitous features of the solar wind is solely based
on observations and was not predicted by theory. Although much progress has been made
in the past decades since the first report on solar wind discontinuities [Ness et al., 1966], the
most basic question is still waiting for a conclusive answer: why is the solar wind discon-
tinuous? There have, to date, been many attempts to answer this question. We now know
that the discontinuities are most likely generated on or near the Sun. Solar wind research
and in particular the study of discontinuities (which constitute a major part of the solar wind
micro-scale fluctuations) therefore also concerns processes that take place on the Sun. A
deeper understanding of solar wind discontinuities is perhaps one of the “pieces of the puz-
zle” necessary to reveal the Sun’s greatest secrets, namely the heating of the corona and the
acceleration of the solar wind.
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Understanding the true nature of the discontinuities is also imperative for characterising the
basic topology of the interplanetary magnetic field (IMF). This, in turn, may be relevant for
the analysis of the deflection of cosmic rays on their way through the solar system. These
energetic charged particles only “see” the IMF when entering the heliosphere. Since low-
energy cosmic ray particles are guided along the field lines, “kinks” in the magnetic field are
probably important scatterers of these particles. Hence, an important question is, whether or
not interplanetary discontinuities basically resemble “kinks” in the magnetic field. While the
so-called rotational discontinuities do resemble kinks, the tangential discontinuities separate
plasma regions that are not magnetically connected.

Another important aspect of solar wind research is that interplanetary space provides an ex-
cellent laboratory for plasma physics. Kinetic or magnetohydrodynamical effects that are
unachievable in limited terrestrial laboratories can be investigated. For instance, non-linear
dynamic processes and their possible importance for the generation of discontinuities can be
studied.

Progress in understanding solar wind discontinuities has been highly dependent upon the
available technology. The general approach is empirical in nature. Many statistical studies
based on in situ measurements were performed from the beginning of the space age until the
1980s. At that time it was generally believed that the structures characterised by the sharp
rotations of the magnetic field can be divided into rotational and tangential magnetohydrody-
namic discontinuities. Whereas earlier observations suggested a predominance of tangential
discontinuities, more recent investigations claim a more equal occurrence rate of both types
of discontinuities with a tendency towards more rotational discontinuities. After the initial
boom in in situ studies, the development of computers and software then favoured the inves-
tigation of discontinuities by computer simulation. In the 1990s, new observational data was
delivered by the Ulysses mission. This was the first spacecraft to leave the ecliptic plane,
so that measurements at high heliographic latitudes became possible. This was an important
step since the solar wind over the Sun’s poles generally (at least at solar activity minimum)
maps back to different source regions on the Sun, and has therefore different characteristics
than the solar wind near the ecliptic.

Almost all of the observational results have in common that they are based on single-spacecraft
data sets. In this work we present the first extensive statistical investigation of interplanetary
discontinuities using four-point measurements.

The experimental setup that we use is called Cluster. It is a space mission designed to explore
the interaction between the solar wind and the Earth by visiting the key regions of Earth’s
magnetosphere. One of the key issues of the Cluster mission is to better understand the
polar lights, which are the longest known (and perhaps most beautiful) manifestation of the
solar-terrestrial interaction. The main feature of Cluster is that it consists of four identical
coordinated spacecraft flying in close formation. This makes it possible for the first time
to separate between spatial and temporal variations in three dimensions. Although Cluster is
primarily designed to study the magnetosphere, parts of the orbit also traverse the undisturbed
solar wind. Since there is no other multi-spacecraft mission like Cluster in the interplanetary
medium, we avail ourselves of the opportunity to study solar wind discontinuities on the basis
of multi-point observations.
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The varying separations between the Cluster spacecraft, ranging from 100 to 5000 km allow
the study of discontinuities (which typically have a transition layer width of about 4000 km)
on various length scales. This allows us to reexamine earlier hypothesises regarding thick-
ness or large scale surface curvature of interplanetary discontinuities. Most importantly, the
simultaneous use of four spacecraft enables us to overcome tremendous drawbacks associated
with single-spacecraft analysis tools in estimating the discontinuity orientation in space. We
will be able to show that the established single-spacecraft technique, the Minimum Variance
Analysis (MVA), is much less reliable than previously assumed. Moreover, we can define cir-
cumstances in which MVA may yield reliable results and those where this technique should
not be applied. Since MVA is a widely used analysis tool in many fields of space plasma
physics, this result is important and should be of general interest.

The orientation of a discontinuity, i.e. its normal, also plays a key role in determining the
type of these structures. We will demonstrate that the occurrence rate ratio of rotational to
tangential discontinuities observed in earlier studies is strongly biased by the misinterpre-
tation of MVA results. This has given a false picture of the solar wind micro-structure, on
which proposals for discontinuity generation mechanisms, in connection with the solar wind
dynamics and processes on the Sun, are based. Using the relative timings between discon-
tinuity occurrence at the four spacecraft, we apply a method to determine the discontinuity
normals that is completely independent from MVA. One striking advantage of this technique,
as opposed to MVA, is that its error can be easily assessed. It turns out that the accuracy of
the relative timing method strongly depends on the separations between the spacecraft and
particularly on the geometrical shape formed by the four satellites. When the separations are
large (5000 km) and the four spacecraft constitute the vertices of a regular tetrahedron, the
multi-point technique is remarkably accurate. As a result, a completely new understanding
of the solar wind micro-structure develops, with all its consequences, for instance regarding
possible discontinuity generation processes.

This dissertation is organised as follows: In order to understand the medium in which in-
terplanetary discontinuities live and what role they play in that medium, it is necessary to
present some basics of the solar wind. We do this in chapter 2. Chapter 3 presents the nec-
essary theoretical background on magnetohydrodynamical discontinuities, summarises the
knowledge about interplanetary discontinuities prior to this work and further illuminates the
relevance of these structures in a global context. The Cluster mission is briefly introduced
in chapter 4. The most striking attribute of this mission is that it consists of four coordi-
nated spacecraft allowing for a wide range of new analysis techniques. The configuration,
i.e., the relative positions of the four satellites, is of essential importance for any kind of
multi-spacecraft analysis. Therefore, a detailed review of existing parameters to determine
the geometrical quality of the Cluster array and a subsequent thorough description of the
prevailing configurations at the times when we observe discontinuities is given in chapter 5.
In chapter 6 we present the identification criteria that we apply to select the events used in
our statistical analysis. The resulting sample is characterised and subdivided according to the
prevailing solar wind conditions. One of the most important prerequisites for analysing dis-
continuities is the precise knowledge of the surface normal. Indeed, the new results presented
in this work predominantly deal with this issue. For that reason, a comprehensive review of
techniques to determine discontinuity normals used in this work (particularly MVA, and the



4 INTRODUCTION

multi-spacecraft method) is presented in chapter 7. Thereafter we present our main results
(chapter 8) followed by a detailed error analysis of the multi-spacecraft technique (chapter
9). Finally, we discuss and summarise our results in chapter 10.



CHAPTER 2

THE SOLAR WIND

The solar wind is a continuous but highly variable stream of charged particles emanating
from the Sun’s hot atmosphere (corona). It consists mainly of protons, electrons and alpha
particles (≈ 5%). This flow is caused by the enormous temperature of the ionised corona
(≈ 106 K) and the gradient to the interstellar medium which encloses the heliosphere. The
pressure gradient is larger than the gravitational force of the Sun. The solar wind plasma is
collisionless beyond a few solar radii, and because of its high conductivity the solar magnetic
field is “frozen” in the plasma. The radially expanding solar wind transports the field into
interplanetary space while its footpoints remain anchored in the solar atmosphere. As a result
of the combined motion of outflow and the 27-day solar rotation period, the interplanetary
magnetic field (IMF) becomes bent into an Archimedian spiral form. After Parker [1958],
who postulated this characteristic field configuration, it is usually referred to as the Parker
spiral. At 1 AU1 this spiral makes an angle of approximately 45◦ to the Earth-Sun line and
the field magnitude is approximately 5 nT on average.

The existence of a hot expanded solar atmosphere has been known for a long time from ob-
servations during solar eclipses. It aroused scientific interest at the latest in the 19th century.
A spectacular observation took place on 1 September 1859: While sketching sunspot groups,
R. C. Carrington and R. Hodgson independently witnessed one of the most intense solar
flares. Only 18 hours later one of the strongest magnetic storms was registered [Carrington,
1859; Hodgson, 1859]. Hence, to reach Earth in that time, the disruption must have travelled
at a velocity of 2300 km/s, which is a remarkably fast propagation speed even according to
current knowledge. More important, a connection between eruptions on the Sun and distur-
bances of the Earth’s magnetic field was established. However, until 1951 the general belief
was that interplanetary space is basically a vacuum which is disrupted by eruptions on the
Sun. Eventually the observation that the plasma tails of active comets always point almost

11 astronomical unit (AU) is the mean distance between the Earth and the Sun.
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radially away from the Sun led Ludwig Biermann to postulate that the solar corpuscular ra-
diation is continuous rather than intermittent [Biermann, 1951]. Shortly before the beginning
of the space age Parker [1958] developed a dynamic model and predicted that interplanetary
space was filled with a plasma flowing rapidly outward from the Sun. Parker [1958] also
coined the phrase “solar wind” to describe the outward flowing solar corona which supplies
the pressure required to stand off the local interstellar medium, to exert the necessary force
on cometary plasma tails and to transmit solar disturbances to the geomagnetic field. The
first in situ observation of the solar wind was realised by four Soviet space probes in 1959.
Their measurements were consistent with Parker’s theory. The first conclusive measurement
were then performed by the Mariner 2 spacecraft in 1962. This satellite obtained a spectrum
of the solar wind every 3.7 minutes almost continuously for 113 days. There was no longer
any doubt that Parker had been correct. The solar wind exists. The measurements revealed
that the solar wind is organised into low- and high-speed streams (velocities ≈ 350 and 700
km/s, respectively). In all streams, the density was found to be anti-correlated with speed
[Neugebauer and Snyder, 1966]. These basic features of the solar wind were confirmed by
all subsequent spacecraft measurements in interplanetary space.

The fundamental issue in all solar wind research certainly deals with the solar wind’s origin:
What accelerates the solar wind? To date no conclusive answer has been found to this ques-
tion that is also closely related to the fundamental issue in coronal physics in general: How
is the corona being heated? We know that the solar wind is accelerated because the corona is
hot, and the corona exists because there is something heating it. However, we do not know
what heats the corona. Since in situ measurements in the vicinity of the solar surface are
impossible, in situ solar wind measurements shall help finding underlying mechanisms.

Our understanding of the solar wind has improved substantially in the last decades. The
organisation of the solar wind in two different types is firmly established by now. As already
found by Neugebauer and Snyder [1966] the most apparent difference between the two types
is the flow velocity. Furthermore, the proton density is known to be smaller in fast streams
(np ≈ 3 cm−3 at 1 AU) than in the slow streams (np ≈ 10 cm−3 at 1 AU). The fast solar wind
is characterised by its relatively low variability. In contrast, the slow solar wind is highly
variable. There is now increasing evidence that the acceleration of fast and slow solar wind
might be the result of different mechanisms. High-speed solar wind can usually be traced
back to coronal holes, regions in the corona where the density and the temperature are lower
than at other places in the corona. The weak, diverging and open magnetic field lines in
coronal holes extend radially outward and do not immediately return back to the Sun. The
open field lines allow the plasma to flow outward into interplanetary space. The larger the
coronal hole, the faster is the flow speed. The slow solar wind traces back to the active regions
in the solar atmosphere where the magnetic field lines close back down to the solar surface.
It is still unclear how the slow solar wind escapes from these regions.

The distribution of the coronal holes and the active regions in the Sun’s atmosphere vary with
the 11-year solar activity cycle. At solar maximum (large number of sunspots) the active
regions predominate. At solar minimum (small number of sunspots) the coronal holes expand
and cover both poles of the Sun. Around solar minimum sporadically tongues of the polar
coronal holes cross the solar equator. Hence an observer in the ecliptic (for instance near
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Earth) observes alternating fast and slow streams with a period of 27 days (the synodic solar
rotation period).2 We also find such recurring fast streams in the data to be analysed in this
work. Their existence enables us to relate the observed characteristics of the discontinuities
to the respective solar wind types and thus to the different source regions on the Sun.

The simple pattern of fast and slow wind is occasionally disrupted by the third type of solar
wind flow which is sometimes referred to as the transient solar wind. This type consists
of streams caused by isolated eruptions of material from the Sun’s atmosphere known as
coronal mass ejections (CMEs). They can happen at any time during the solar cycle but are
more common during solar maximum.

One of the most striking features of the solar wind is its variability. It is well known that
the observable solar wind parameters, such as velocity, density, temperature and magnetic
field, are variable on time scales ranging from seconds to more than a decade. For instance,
the subject of the present work, the discontinuities, have a time scale of the order of 10
seconds when observed from a spacecraft. An observer that rotates with the Earth around
the Sun finds a recurrence of solar wind structures with a period of 27 days. The latter is
particularly apparent during solar minimum and during decreasing solar activity although due
to the permanent evolution of the solar wind structures in time, a strict repetition is neither
expected nor observed. The reorganisation of the Sun’s magnetic field during the 11-year
activity cycle causes a variation of the solar wind on a time scale of a decade.3

Many of these variations are caused by the permanently changing conditions on the Sun.
Therefore, solar wind research is closely connected to the processes that take place on or near
the Sun. On the other hand, the solar wind itself is a highly dynamic system providing a
diversity of magnetohydrodynamical and kinetic effects.

Because of the variety of scales on which the fluctuations take place it is useful to define cer-
tain ranges. Four different scales are introduced: macro-scale (> 100 h), meso-scale (1−100
h), micro-scale (30 s - 1 h) and kinetic-scale (< 30 s) (see Burlaga [1969a] and references
therein). An important component of the macro-structure (and partially of the meso-structure)
are the corotating structures as for instance stream-stream interaction regions, i.e. regions
where a fast stream interacts with a slow stream. Sector boundaries, i.e. regions where the
polarity of the magnetic field changes, also belong to this category, as well as the Archime-
dian spiral structure of the magnetic field is certainly a macro-scale phenomenon. An early
suggestion for the solar wind structure on the meso-scale is that it consists of a collection of
intertwined and twisted filaments, regions with different plasma and field properties, that are
separated by tangential discontinuities [McCracken and Ness, 1966]. This model is some-
times referred to as the “spaghetti-model”. Further observations revealed that the existence
of an ensemble of such filamentary tubes with distinct boundaries enclosing well-ordered
magnetic field lines are difficult to identify. Therefore Burlaga [1969a] suggests to think of
the interplanetary medium as discontinuous rather than filamentary. In this model the solar
wind is structured by an ensemble of discontinuities rather than by pairs of discontinuities as
in the “spaghetti-model”.

2More details on the solar cycle are discussed in section 6.5.1.
3Note that from one period to the next the magnetic polarity changes. Thus, a full cycle is completed after

22 years.
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A considerable part of the micro- (and kinetic) structure consists of discontinuities, the sub-
ject of this dissertation. Other phenomena at this scale include Alfvén waves and non-linear
magnetohydrodynamic (MHD) waves. However, we point out that our understanding of the
solar wind at this scale is far from being complete. Belcher and Davis Jr. [1971] propose
that large-amplitude Alfvén waves propagating outward from the Sun with a broad wave-
length range dominate the micro-scale structure at least 50% of the time. The largest ampli-
tude Alfvénic fluctuations are found in stream-stream interaction regions. To identify Alfvén
waves Belcher and Davis Jr. [1971] use the polarisation relation that requires the fluctuations
in velocity to be strictly correlated to the field fluctuations (see next chapter). Furthermore,
Belcher and Davis Jr. [1971] find nearly constant density and field magnitude, as required
for Alfvén waves. However, these conditions are necessary, but not sufficient. Using only
one satellite Belcher and Davis Jr. [1971] are unable to confirm propagation of the identified
structures. In a more recent study Denskat and Burlaga [1977] utilise the relative timings be-
tween the Explorer 33 and 35 spacecraft to show that Alfvénic fluctuations are probably not
solely Alfvén waves. Indeed, they present evidence which indicates that tangential disconti-
nuities and possibly other types of static structures are found among Alfvénic fluctuations.

Much of the so far accumulated insight into the solar wind is gained from in situ observations
(mostly single-spacecraft). More recently, computer simulations have contributed to the un-
derstanding of dynamic processes in the interplanetary medium. For many applications the
MHD approximation is sufficient (see e.g. Burlaga [1971a]). Therefore, many simulations
are based on MHD theory. However, kinetic theory should be used for the smallest scale
(of seconds or less) because the characteristic length scales then become comparable to the
proton gyro-radius. Hence, to resolve the structure of discontinuities, hybrid simulations4 are
common in more recent studies (see the following chapter).

Although much progress has been made regarding the micro- and the kinetic-structure lately,
particularly due to high resolution data and hybrid simulations, the most fundamental ques-
tion is still waiting for a conclusive answer: Why is the solar wind discontinuous? The rapid
changes in the magnetic field direction (and the plasma parameters) in the form of MHD dis-
continuities have not been predicted, but are purely empirical. In order to tackle this problem
a reliable observational basis on the true nature of interplanetary discontinuities is essential.
In this work we considerably contribute to that issue by means of multi-point observations
with Cluster. We also discuss in how far our ground-breaking new results may be related to
the fundamental questions of coronal heating and the acceleration of the solar wind.

4In hybrid simulations the protons are treated as particles and the electrons as a fluid.



CHAPTER 3

DISCONTINUITIES

In the previous chapter we have shown that rapid changes in the magnetic field and plasma
parameters are a fundamental, and not yet fully understood, feature of the solar wind. Dis-
continuities also occur when the solar wind hits an obstacle such as for instance the Earth’s
(or another planet’s) magnetic field. The interaction forces the supersonic flow to slow down
to subsonic speed, i.e., a bow shock is generated. Another example is the magnetopause
which separates the shocked solar wind plasma from the planetary plasma (magnetosphere).
The general belief is that the magnetopause is in parts a tangential and in parts a rotational
discontinuity. Hence, discontinuities are important structures in space plasma physics in gen-
eral.

In this chapter we introduce discontinuities in the framework of MHD theory and show how
they are classified into shocks, rotational, tangential and contact discontinuities (section 3.1).
Then we present the present observational status on solar wind discontinuities (section 3.2).
Since these observations are seemingly in good accordance with theoretical considerations
regarding possible generation mechanisms (section 3.3), a picture on the origin of interplan-
etary discontinuities and their connection to the solar atmosphere has developed. Section
3.3 also presents some results of hybrid simulations regarding the stability of discontinuities.
These are important for our own conclusions based on multi-point observations which are
by no means consistent with the earlier conclusions. Moreover, we detail the motivation of
studying solar wind discontinuities (section 3.4).

3.1 Classification of MHD discontinuities

In the first part of this section we present a theoretical treatment of MHD discontinuities.
The aim is to introduce the subject of the present work and to show that the properties of the
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possible discontinuities are derived from first principles. In the second part we give a brief
overview of the criteria used in earlier works on interplanetary discontinuities and present the
criteria that we use.

3.1.1 Theory

A discontinuity spatially separates two plasma regions with different properties. An observer
crossing the discontinuity experiences rapid changes in the magneto-plasma parameters.

MHD theory permits such discontinuities. However, only certain well-defined changes from
one side to the other are allowed (jump conditions). In fact, it turns out that five distinct
types of discontinuities are possible. Their derivation in a thermally isotropic plasma is pre-
sented in several textbooks (e.g. Landau and Lifschitz [1967]). The theory for an anisotropic
plasma has been developed in response to the first solar wind measurements [Hudson, 1970;
Neubauer, 1970]. The treatment for the general case of an anisotropic plasma presented
below resembles that of Hudson [1970]. The special case of an isotropic plasma will be dis-
cussed subsequently. We limit the discussion to the basic physical considerations from which
the jump conditions used in this dissertation are derived.

We do not concern ourselves with the detailed structure of the discontinuities. We assume
that the bulk properties of the plasma on both sides of the discontinuity can be observed. The
two sides are denoted by the subscripts 1 and 2. This means, we presume that the plasma
densities ρ1 and ρ2, the bulk velocities V1 and V2 (relative to the spacecraft), the magnetic
fields B1 and B2 and the plasma pressures p‖ and p⊥ (in the rest frame of the plasma ) are
known. The subscripts ‖ and ⊥ denote the components parallel and perpendicular to the
magnetic field, respectively.

Let the discontinuity be a plane surface, with normal n, which moves at speed U relative to the
spacecraft frame. Assuming that the discontinuity surface is an infinite plane, U = U ·n is the
only component of U having physical significance. Further assumptions are time stationarity
in the discontinuity rest frame and that the only spatial variation is in the direction of n. We
point out that the latter assumption, i.e., that spatial variations only occur in one direction,
defines a one-dimensional (1-D) structure. We stress this here because the concept of one-
dimensionality will play an important role in parts of this work.

The following notation for the difference of a quantity X between the two sides of the dis-
continuity is used here and in the rest of this work:

[X ] = X2−X1 (3.1)

Moreover, the subscripts t and n denote the component of a vector tangential and normal to
the surface, respectively. The absolute value of a vector quantity X is denoted as X .

Conservation of mass, momentum, energy, the tangential component of the electric field
and the normal component of the magnetic field yield the following jump conditions at the
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discontinuity (see Hudson [1970]):

[Bn] = 0 (3.2)

[ρ(V−U) ·n] = 0 (3.3)

Bn[V] = G[B/ρ] (3.4)[
p⊥+

B2

2µ0
+

G2

ρ
− B2

n

µ0

(
1−

(p‖− p⊥)µ0

B2

)]
= 0 (3.5)

[
GVt −

BnBt

µ0

(
1−

(p‖− p⊥)µ0

B2

)]
= 0 (3.6)

where G ≡ ρ1(V1−U) ·n = ρ2(V2−U) ·n is the mass flux normal to the surface. Equation
3.2 results from ∇ ·B = 0, equation 3.3 describes the conservation of mass, equation 3.4
results from [Et ] = 0 and equations 3.5 and 3.6 result from the conservation of the flux of
normal and transversal momentum, respectively. Another equation can be derived from the
conservation of energy. These equations define the basic jump conditions. They are necessary
conditions for any type of discontinuity.

The distinct types of discontinuities are then obtained by distinguishing between those that
are stationary, i.e., that do not propagate with respect to the ambient plasma (G = 0) and those
that are propagating (G 6= 0). Non-propagating discontinuities are the contact discontinuity
(CD) and the tangential discontinuity (TD), and propagating discontinuities are the fast shock,
the slow shock and the rotational discontinuity (RD).

CDs have a non-zero component of the magnetic field through the surface, but no plasma
crosses the surface (G = 0, Bn 6= 0). From equation 3.4 it follows that V1 = V2, i.e., plasmas
on the two sides of a CD are in rest relative to each other. The density and internal energy
density can change across the CD. Due to the rapid diffusion along the field lines it is expected
that a CD would rapidly broaden into a smooth transition. In fact, CDs have not been observed
in the solar wind.

Most of the micro-scale fluctuations observed in the solar wind are characterised by small
density and field magnitude changes. Instead, the fluctuations are mostly in the direction of
the magnetic field. Changes in the field direction are expected predominantly for RDs and
TDs. Therefore, the relatively rare fast and slow shocks are not considered in this work. In
the following we present the properties of RDs and TDs.

TDs are non-propagating. In contrast to CDs, however, the magnetic field is tangential to
the surface (G = 0, Bn = 0). This considerably simplifies the jump conditions, and most
equations are identically satisfied. Equation 3.5 yields:

[
p⊥+

B2

2µ0

]
= 0 (3.7)

Hence, the total pressure (kinetic plus magnetic) is the same on both sides of a TD. All
other changes from one side to the other are arbitrary. Since Bn = 0, the two sides are not
magnetically connected: a TD separates two completely distinct plasmas which for instance
may be of different chemical composition. Another possibility to distinguish a TD from
any other pressure-balance structure is to show that it does not propagate with respect to the
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ambient plasma:
U = U ·n = V ·n (3.8)

i.e., the discontinuity velocity relative to the spacecraft must be the same as the normal com-
ponent of the solar wind velocity measured in the spacecraft frame. To test whether or not
propagation takes place, U must be known from observation, which is only possible when at
least four spacecraft are available. Note that for TDs, the conditions are the same for isotropic
and anisotropic plasmas.

RDs are propagating structures. Moreover, there exists a non-zero magnetic field normal
component (G 6= 0, Bn 6= 0). The bulk velocity equals the Alfvén velocity VA on both sides
of the RD in the discontinuity rest frame:

VAi = Vi−U =± Bi√
µ0ρi

√
Ai i = 1,2 (3.9)

where

A = 1−
(p‖− p⊥)µ0

B2 (3.10)

is the firehose factor, a measure for the anisotropy of the plasma. Note that A = 1 in the
isotropic case.

The propagation with Alfvén velocity implies that B1t and B2t need not be parallel (this can
be shown by evaluating equations 3.4 and 3.6 [Hudson, 1970]). Since Bn is continuous, this
means that the field vector B rotates in the RD plane, see also Figure 3.1.

The Alfvén velocities on the two sides of an RD are related by equation 3.3:

G = ρ1VA1 ·n = ρ2VA2 ·n (3.11)

Together with equation 3.2 it follows:

[ρA] = 0 (3.12)

Substituting equation 3.11 into equation 3.5 it follows that (as TDs) also RDs are pressure-
balance structures: [

p⊥+
B2

2µ0

]
= 0 (3.13)

Substituting equation 3.11 into equation 3.4 yields the polarisation relation:

[V] =±
√

ρA
µ0

[
B
ρ

]
(3.14)

This directly implies another necessary condition for RDs:

ρ1A1 = ρ2A2 =
µ0(V1−V2)

2

(B1/ρ1−B2/ρ2)2 > 0 (3.15)

Since ρ1 and ρ2 are positive, it follows:

A1 > 0 and A2 > 0 (3.16)
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Note that equation 3.16 is equivalent to the condition that the plasma does not suffer from the
firehose instability.1

Apparently, several necessary conditions need to be fulfilled to identify a discontinuity as an
RD. These conditions are somewhat different in the isotropic case (A = 1): Then equation
3.12 implies that the density is continuous. Further it can be shown that for A = 1 also
the kinetic pressure and the field magnitude are conserved. Also the polarisation relation
simplifies. Hence, in the case of an isotropic plasma the conditions for an RD are:

[B] = 0, [ρ] = 0, [p] = 0, [V] =±[B]/
√

µ0ρ (3.17)

Figure 3.1 presents a schematic of a TD (left) and an RD (right), and below the most important
characteristics of these two MHD discontinuities are summarised.

Tangential discontinuity (TD):

• V is tangential to the TD surface in the discontinuity rest frame (U = V ·n) ⇒ TDs are
convected structures

• B is tangential to the TD surface (Bn = 0) ⇒ two sides are not magnetically connected
⇒ different chemical compositions are possible

• total pressure is conserved

• all other parameters may change arbitrarily, particularly B and ρ

• conditions are the same for an isotropic plasma

Rotational discontinuity (RD):

• propagation with Alfvén velocity VA in the plasma frame

• Bn 6= 0 ⇒ the two sides are magnetically connected

• total pressure is conserved

• [V] and [B/ρ] are related by a definite polarisation relation

• [ρA] = 0, and A > 0 on both sides

• conditions are different for an isotropic plasma, e.g. [B] = 0 and [ρ] = 0

The derived theoretical properties of RDs and TDs offer a variety of possibilities to distin-
guish between these two types of discontinuities in the solar wind. Under the assumption that
the solar wind is isotropic, the conservation of B and ρ is often used to identify RDs. Strictly
speaking this is not correct, since the solar wind plasma is most likely not strictly isotropic.
Also note that although TDs may have large jumps in field magnitude and density, they do

1The condition for the firehose instability is usually written as p‖ > p⊥ + B2/µ0 (see e.g. Treumann and
Baumjohann [1997]).
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n

Figure 3.1: Illustration of a TD (left) and an RD (right). The discontinuities are approximated by
planar sheets with normal n. The magnetic field vectors on both sides are shown. The different colours
on the two sides of the TD indicate that the chemical compositions may be different.

not have to. Another possibility is to use the polarisation relation. However, since TDs may
also satisfy this condition although not required by theory, it is not a sufficient condition for
RDs. Because of this it is easy to mistake a TD for an RD. The best way to definitely identify
an RD is to prove a large magnetic field normal component, i.e., Bn must be larger than its
error. Then the discontinuity is inconsistent with being a TD. Indeed, this issue is an impor-
tant, perhaps the most important, subject of this work, since using four instead of only one
spacecraft considerably increases the accuracy in the determination of Bn.

To conclude this section we present a discontinuity as it appears in solar wind data measured
by one of the four Cluster spacecraft. Figure 3.2 shows one of the discontinuities we use in
our statistical analysis. Plotted are from top to bottom: the magnetic field (three components
in a coordinate system to be specified later and magnitude), the proton velocity in the same
representation, the proton temperature and the proton density. The discontinuity is clearly
visible in the middle of the shown four minute interval where most quantities rapidly change.
Before and after the discontinuity the shown parameters are rather constant. Note that this is
a relatively ideal situation. In general, the background fluctuations which are also visible in
Figure 3.2 are somewhat stronger and complicate the analysis. The discontinuity is charac-
terised by a strong rotation of the magnetic field vector. As is rather typical for solar wind
discontinuities, the magnitude is almost the same on both sides. Only a slight decrease is ob-
served. Note that there is a strong “dip” in the magnitude during the transition. Such so-called
magnetic holes (or magnetic decreases) are often observed in connection with discontinuities
[Turner et al., 1977]. Also the velocity vector rotates during the transition and the velocity
magnitude increases by about 10 km/s. Due to its variability it is difficult to see whether the
temperature differs on the two sides. It appears to be slightly lower after the discontinuity.
The density increases. As an additional information, not visible in Figure 3.2, we may add
that the magnetic field normal component Bn is very small for this particular event. In fact, it
is consistent with being zero within uncertainty.

What can we conclude from these information? A remarkable feature is that the vectorial
changes in velocity [V] and in magnetic field [B] are apparently correlated. For both vec-
tor quantities the z-component strongly increases, whereas the changes in the x- and the
y-component are more moderate (Vx and Bx decrease and Vy and By increase). This kind of
behaviour corresponds to the requirement for RDs to satisfy the polarisation relation 3.14.
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Figure 3.2: Example of an interplanetary discontinuity. High-resolution magnetic field data (22
vectors/s) and 4 s proton data from one of the Cluster spacecraft are shown.
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Can we conclude that the shown discontinuity is an RD? Since Bn is consistent with being
zero, it could as well be a TD. Also the jumps in density, field magnitude and temperature
(although rather moderate) would rather suggest a TD. Hence, we could as well conclude
that the discontinuity shown in Figure 3.2 is a TD that coincidentally fulfils the polarisation
relation. Provided that good-quality information on the thermal anisotropy are available, one
could test whether the density jump is consistent with equation 3.12.

We do not go any further. Our intention here is only to give a preview of the kind of problems
we are willing to tackle in this work.

3.1.2 Criteria used in observations

Different authors have suggested several criteria to categorise solar wind discontinuities into
RDs and TDs. Some of them use the requirement that the polarisation relation 3.14 must be
fulfilled by RDs [Burlaga, 1971b; Martin et al., 1973; Belcher and Solodyna, 1975; Solodyna
et al., 1977]. However, this technique can only yield an upper bound for the number of RDs
since TDs may coincidentally also fulfil equation 3.14. Indeed, in many cases TDs also
appear to have an Alfvénic character although MHD theory does not postulate this for TDs
[Denskat and Burlaga, 1977; Neugebauer et al., 1984]. Hence, a definite assignment to RDs
only by means of the polarisation relation is not possible.

Burlaga [1968] uses simultaneously plasma and magnetic field data to identify TDs on the
basis of a constancy of the total pressure. If additionally the magnetic field intensity and
the density vary across the transition, then these pressure-balance structures are assumed
to be not RDs (equations 3.17). Turner and Siscoe [1971] use a similar technique. TD
candidates are found by scanning for substantial changes in density between the two sides of
the discontinuity. However, any TD with [ρ] = [B] = 0 would be identified as RD within this
criterion.

These criteria have in common that plasma data are needed. An inherent problem thereby is
the partial unavailability and the lower time resolution and quality of plasma data compared
to magnetic field data. Moreover, the applied necessary conditions for RDs do not exclude
TDs. To unambiguously identify an RD, a non-zero magnetic field normal component Bn

needs to be verified. In fact, this is the most frequently used criterion. Smith [1973a] is
the first author to present a method that is based on magnetic field data alone. Besides the
field component |Bn| normal to the discontinuity surface also the change of field magnitude
|[B]| across the transition is considered. Both parameters are normalised by the maximum
magnitude Bmax upstream and downstream of the discontinuity, such that they range from zero
to unity. Note that the second criterion relies on the assumption of an isotropic solar wind.
This is often justified by the estimate A = 0.9± 0.1 presented in Burlaga [1971b]. Provided
that the firehose factor is indeed close to unity, the field magnitude should be conserved
across an RD, but can be arbitrary for TDs (see previous section). A serious challenge to
this method is the ability to give a satisfactory quantitative estimate for the error in |Bn|/Bmax

which is closely related to the determination of the discontinuity normal. A value of 0.4 is
arbitrarily chosen as a likely value when estimates based on the single-spacecraft Minimum
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Figure 3.3: Classification scheme used in this work.

Variance Analysis (MVA) technique are used [Smith, 1973a]. Consequently, Smith classifies
discontinuities as rotational when |Bn|/Bmax > 0.4 and |[B]|/Bmax < 0.22. The threshold
0.22 is also reasoned by error estimate arguments and the assumption of an isotropic solar
wind. These classification principles have been adopted by several authors [Mariani et al.,
1973; Lepping and Behannon, 1980; 1986; Neugebauer et al., 1984; Tsurutani et al., 1996a;
Horbury et al., 2001b; Söding, 1999].

As other authors [Horbury et al., 2001b; Söding, 1999], we follow Neugebauer et al. [1984]
who define the following classification criteria:

Rotational (RD): |Bn|/Bmax ≥ 0.4; |[B]|/Bmax < 0.2
Tangential (TD): |Bn|/Bmax < 0.4; |[B]|/Bmax ≥ 0.2
Either (ED): |Bn|/Bmax < 0.4; |[B]|/Bmax < 0.2
Neither (ND): |Bn|/Bmax ≥ 0.4; |[B]|/Bmax ≥ 0.2

A discontinuity with a small normal field component and small change in magnitude could
be either rotational or tangential. This is why Neugebauer calls them Either Discontinu-
ities (EDs). Without additional information (e.g. plasma data) it is not possible to determine
whether an ED is an RD or a TD. NDs are inconsistent with MHD RDs or TDs. Figure 3.3
illustrates this classification scheme.

The success of this method inherently depends on the ability to determine the true normal
of the discontinuity surface. In this regard Cluster provides a great opportunity to overcome
tremendous drawbacks associated with single-spacecraft tools. The important issue of dis-
continuity normal determination is comprehensively discussed in chapter 7.

Besides the above classification scheme we also utilise the polarisation relation, equation 3.12
and the fact that TDs are convected structures whereas RDs propagate with Alfvén velocity
to identify possible RDs among the EDs. The according results are presented in chapter 8.
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3.2 Observations of solar wind discontinuities

In this section we provide a brief overview of the observational results on interplanetary
discontinuities. We do not aim for completeness. Mostly results relevant to this dissertation
are reviewed. In particular we emphasise the various classification results different authors
have presented.

Since the surprising observation that most variations in the interplanetary magnetic field
(IMF) are discontinuous [Ness et al., 1966], discontinuities are known to be a fundamen-
tal feature of the solar wind. Realizing that most of these sharp changes are predominantly in
the field direction, Burlaga [1969a] introduces the term directional discontinuity (DD): The
change in field direction ω = ∠(B1,B2) must be larger than 30◦ in less than 30 s. Besides the
relatively rare interplanetary shocks, these events are considered to be either RDs or TDs.

With an average occurrence rate of one to two per hour [Burlaga, 1969a; Tsurutani and
Smith, 1979] (depending on details such as the used identification criteria, the prevailing
solar wind conditions and the radial distance from the Sun) DDs are abundant structures in
the solar wind. The distribution of the time intervals between successive DDs in a given ω
range follows an exponential decrease [Burlaga, 1969a]. This means that DDs tend to occur
in clusters rather than being equally spaced in time.

An important question is whether DDs are produced near the Sun and then convected to larger
heliocentric distances, or whether they are produced at all distances, for instance in colliding
solar wind stream regions. In order to answer this question, the occurrence rate of DDs as a
function of radial distance from the Sun has been determined [Burlaga, 1971b; Mariani et al.,
1973; Tsurutani and Smith, 1979; Barnstorf, 1980; Neubauer and Barnstorf, 1981; Lepping
and Behannon, 1986; Tsurutani et al., 1996a; Söding, 1999]. All of these studies reveal a
decrease of DD occurrence rate with increasing heliospheric distance. We do not concern
ourselves with details as precise decrease rates. We only note that heliospheric distances
ranging from approximately 0.3 AU to approximately 10 AU are considered. Assuming that
the observed correlation is real2 then it may imply that DDs are generated closer to the Sun
than 0.3 AU and disintegrate at larger distances. However, it can as well imply that the ratio
of generation rate to disappearance rate becomes smaller as heliocentric distance increases, or
that the discontinuities change size in some manner such that the used identification criteria
bias the result [Lepping and Behannon, 1986].

Another important observation in this regard is that most Alfvénic fluctuations in the solar
wind propagate outward, away from the Sun [Belcher and Davis Jr., 1971]. The interpretation
of this asymmetry of the propagation directions is that most of the disturbances are created
close to the Sun, below the critical point where the solar wind becomes super-Alfvénic, since
then inward propagating fluctuations could not be convected outward with the solar wind.
Several observations have confirmed that also nearly all RDs propagate outward from the Sun
(see e.g. Neugebauer and Buti [1990]), which suggests that it is rare for RDs to be created
beyond the critical radius. Therefore, it is the general belief that most of the DDs observed in

2Note that the occurrence rate also depends on the prevailing solar wind conditions. For instance, more DDs
are observed in fast streams.
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the solar wind have their origin in the solar corona, below the critical distance at which the
wind becomes super-Alfvénic [Neugebauer and Alexander, 1991].

The relative abundance of RDs and TDs in the solar wind has been controversially discussed.
The following summary provides an overview. Siscoe et al. [1968] find that for the major-
ity of the discontinuities they study the rotation of the magnetic field vector takes place in a
plane. This is equivalent to the condition Bn = 0. Since B1 6= B2, Siscoe et al. [1968] conclude
that these structures (80% of the total number of their events) are TDs. However, the method
they use is not appropriate to study RDs (this will be explained in chapter 7), and they cannot
rule out a substantial contribution of RDs. Utilising the polarisation relation for RDs for an
anisotropic plasma, Burlaga [1971b] comes to a similar conclusion as Siscoe et al. [1968]:
less than 25% of the DDs are RDs, and the majority of DDs are thus TDs. On the other hand,
Belcher and Solodyna [1975] find that DDs are predominantly RDs using a similar technique.
Using the absolute value of the magnetic field normal component Burlaga et al. [1977] find
some indication for a predominance of TDs. Neubauer and Barnstorf [1981] come essen-
tially to the same conclusion. Studies that use both, the normal magnetic field component
and the change in field magnitude across the transition usually find a predominance of RDs:
Smith [1973a]; Lepping and Behannon [1980]; Mariani et al. [1983] find around twice as
many RDs than TDs. Lepping and Behannon [1986] come to the same conclusion. However,
in a second estimate Lepping and Behannon [1986] consider the total number of RDs to be
the sum of those DDs with substantial normal components plus an estimated number of those
DDs with small normal components. The latter estimate is based on the assumption that there
is a uniform distribution of RDs per degree of discontinuity cone angle β = cos−1(|Bn|/B).
In that case the number of RDs and TDs is almost balanced. Neugebauer et al. [1984] esti-
mate that the number of RDs is by a factor 5-9 higher than the number of TDs. In addition,
Neugebauer et al. [1984] suggest that most of the ambiguous cases (EDs) are also predom-
inantly RDs. Hence, a clear dominance of RDs is concluded. Horbury et al. [2001b] finds
a similar ratio when estimating the surface normals by MVA. Also Tsurutani et al. [1996a]
find a predominance of RDs.

All of these studies, particularly those that use the magnetic field normal component to sep-
arate RDs from TDs, have in common that a certain amount of “clear RDs” can be identified
by means of a large value of Bn. The exact percentages of RDs and TDs vary. In general,
however, one can say that particularly the more recent investigations predominantly claim a
dominance of RDs. Certainly, much of the discussed discrepancies are due to the different
classification criteria used. Another reason, however, are the prevailing solar wind condi-
tions. For instance, the DDs considered in Burlaga [1971b] were all in slow solar wind, and
Belcher and Solodyna [1975] consider high-speed regions, which may indicate that RDs are
more likely to be found in the fast solar wind. Indeed, several investigations confirm that the
frequency of occurrence of RDs and the ratio of the number of RDs to the number of TDs
both increase with increasing solar wind speed [Martin et al., 1973; Turner, 1973; Burlaga
et al., 1977; Solodyna et al., 1977; Neubauer and Barnstorf, 1981; Barnstorf, 1980]. A de-
tailed study on the dependence of occurrence of RDs and TDs on solar wind type is presented
in Neugebauer and Alexander [1991]. There it is found that not all types of fast solar wind
promote a high RD abundance. The occurrence rate of RDs does not increase with solar wind
speed for flows associated with coronal mass ejections. The highest frequency of occurrence
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of RDs is found in fast streams originating from coronal holes on the Sun. Moreover, the
occurrence rate of RDs in all flows from magnetically open field regions is approximately
linearly related to the solar wind speed. In contrast, a high rate of TDs is found in solar wind
streams originating in the active regions of the Sun where the field lines are closed. The
observed dependence on solar wind type is of considerable importance, since it is consistent
with ideas on how RDs and TDs are generated, as we shall discuss in the following section.

We point out that the results presented above are solely based on DD normals estimated from
single-spacecraft techniques. There have also been a few studies utilising the relative tim-
ings between three spacecraft to determine the normals [Burlaga and Ness, 1969; Horbury
et al., 2001b]. Naturally, the demand of having three adequate spacecraft (from different
missions) simultaneously operating in the solar wind leads to only a very few events that
can be analysed this way. Also, the relative positions of the spacecraft may not be optimal.
Nevertheless, results of considerable interest could be found. The six events investigated in
Burlaga [1969a] are all consistent with TDs. Horbury et al. [2001b] finds that in contrast
to their single-spacecraft analysis (see above), the relative timing method yields many more
DDs with small values of Bn, indicating an abundance of TDs. Certainly, one may argue that
the problems associated with their specific investigation possibly do not allow for a defini-
tive conclusion, but we are convinced now that these findings are worthwhile to be pursued.
Indeed, the results presented in Horbury et al. [2001b] motivate major parts of the present
work.

Note that we could only give a brief overview of earlier results in this section. Some more
results shall be presented in later chapters when we need them. Of interest are for instance
the large scale surface curvature of the DD surfaces, the distribution of the spreading angle
ω, the discontinuity thickness and the orientation of the DDs in space.

3.3 Origin and stability of solar wind discontinuities

The observational results presented in the previous section suggest that possible generation
processes of RDs and TDs depend on the solar wind type. The ratio RD:TD is larger in
solar wind that maps back to coronal holes on the Sun (open field lines), whereas relatively
more TDs are observed in solar wind streams that map back to active regions (closed field
lines). As a matter of fact, these observations are consistent with a theory presented in Parker
[1987; 1990; 1991a;b]. Parker suggests that the heating of the active regions of the solar
corona is due to explosive dissipation of magnetic energy at many tangential discontinu-
ities. The creation of these TDs is explained as follows (see Parker [1991a] for a review):
The convection-driven continuing displacement of the photospheric foot-points of the bipolar
magnetic field winds and interweaves the field lines into a complicated topology (see Figure
3.4). The basic magnetostatic theorem states that nearly all strongly deformed magnetostatic
field topologies (embedded in an infinitely conduction fluid) spontaneously develop internal
surfaces of tangential discontinuities as the field relaxes to equilibrium. The surfaces of the
TDs lie along the topological separatrices, and are a consequence of the balance between
magnetic pressure and tension in any field in which the field lines are significantly wound
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Figure 3.4: A schematic drawing of the interwoven field of a bipolar magnetic region, arising from
the random shuffling of the foot-points of the field by the photospheric convection. Taken from Parker
[1991a].

Figure 3.5: Illustration of the magnetostatic theorem. Cross section through a continuous equi-
librium magnetic field (a), and deformation by application of external forces (b). Taken from Parker
[1991b].

and interwoven [Parker, 1991b].

The essential point in the magnetostatic theorem is the fragile nature of continuous field
configurations. The slightest deviation from the ideal form, that is necessary for a continuous
field, introduces TDs [Parker, 1991b]. Consider, for instance, a continuous equilibrium field,
e.g. a close-packed rectangular array of alternately twisted flux tubes extending uniformly in
the z-direction, as is sketched in Figure 3.5 (a). Almost all deformations of this continuous
field cause flux bundles with the same helicity to come into contact (Figure 3.5 (b)). The
separatrices are then surfaces of TDs [Parker, 1991b].

The situation is different on coronal holes, because there only one end of the field is attached
to the Sun. Therefore, any transverse field produced by the motion of the foot-points simply
propagates to infinity along the field, and the field remains continuous. Hence, TDs do not
develop in the mean field as a consequence of the random motion of the foot-points of the
field in the photospheric convection. Part of the energy and momentum of the waves may
contribute to the acceleration of the solar wind above coronal holes [Parker, 1991b].

Indeed, a fundamental feature of the solar wind that maps back to coronal holes is the ubiqui-
tous presence of large amplitude Alfvén waves [Tsurutani et al., 1994; Goldstein et al., 1995;
Smith et al., 1995]. With |∆B|/|B| being typically≈ 1 to 2, these waves are highly non-linear
[Tsurutani et al., 1994; 1996a]. Tsurutani et al. [1994; 1996a] find that the occurrence of
RDs is strongly related to the occurrence of such wave trains. They even suggest that RDs
are an integral part of the Alfvén waves in the sense that RDs are the steepened edge of a
phase-steepened non-linear Alfvén waves.



22 DISCONTINUITIES

A few years before Tsurutani et al. [1994] suggested that RDs observed in the solar wind are
dynamically generated by the phase-steepening of non-linear Alfvén waves, Neugebauer and
Buti [1990] addressed the same question. Whereas Tsurutani’s conclusions are essentially
based on the characteristic appearance of Alfvén waves in solar wind magnetic field data,
Neugebauer and Buti [1990] search for some evidence that steepening indeed takes place.
They refer to theoretical studies of non-linear Alfvén waves [Sakai and Sonnerup, 1983; Buti,
1988; Kennel et al., 1988]. The theory presented by these authors predicts that the evolution
of non-linear waves into solitons is possible only for left- (right-) hand-polarised waves for
β′ = c2

s /(V 2
A cos2 θBn) < 1 (β′ > 1), where cs is the sound speed, VA the Alfvén speed and θBn

the angle between the propagation vector and the magnetic field. The solitons can degenerate
into RDs in the limiting case that their speed approaches the sound speed [Neugebauer and
Buti, 1990].

Neugebauer and Buti [1990] search for the predicted correlations between β′, the sense of
polarisation of the discontinuity and changes of magnetic field strength and plasma density
across the discontinuity (the fluctuations in the magnitude of the magnetic field and the den-
sity fluctuations are in (out of) phase for β′ < 1 (β′ > 1) [Neugebauer and Buti, 1990]), but
they cannot find significant evidence for the evolution of RDs from steepened Alfvén waves.

Neugebauer and Buti [1990] suggest that this negative result may be due to the fact that
the observations were made far from the regions in which the discontinuities were formed.
Hence, the properties of the RDs created close to the Sun may be changed to such an extent
that any original correlations are no longer detectable at 1 AU.

Despite the lack of evidence, the concept that RDs evolve from waves that are generated
in open field line regions as described above is widely accepted, because the observations
presented in the previous section are consistent with the discussed ideas of RD and TD gen-
eration. It is a major issue of the present work to revise the observational results, and thus
indirectly the suggested generation mechanisms, particularly the idea of phase steepening.

Also note that Parker [1991b] does not explain the existence of TDs in fast solar wind from
coronal holes. Ho et al. [1995] and Tsurutani et al. [1996b] study solar wind emanating from
the large polar coronal holes. They find that the TDs they observe may be divided into two
types. One of them is associated with mirror-mode structures, and usually occurs in pairs,
at the edges of these structures. These mirror-mode associated TDs have small directional
changes of the field vector (< 40◦) across them and comprise ≈ 19% of all TDs in the high
heliographic latitude regions [Ho et al., 1995].

Although the coronal hole flow is known to be comparatively constant, Neugebauer et al.
[1995] and McComas et al. [1995] find many small stream-stream interactions in solar wind
coming from high latitude coronal holes. Neugebauer et al. [1995] calls these structures “mi-
crostreams”. Ho et al. [1995] and Tsurutani et al. [1996b] conclude that the interaction of
these “microstreams” may be responsible for the other type of TD that they find (≈ 50% of
all TDs they observe). These TDs are usually associated with velocity gradients and clearly
separate two different plasma regions (in contrast to the mirror-mode associated TDs). Fur-
thermore, this second type of TDs has large directional field changes across the discontinuity
(> 60◦).
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Generally TDs can also be generated when a shock interacts with another discontinuity. How-
ever, shocks are rare (at least beyond 0.3 AU). Therefore, this possible mechanism probably
only contributes a small part to the total population of TDs in the solar wind.

Stability of RDs

In the following we briefly summarise results on the stability of RDs. We do not discuss any
details. We only aim to answer whether RDs are long-lived structure, or whether they are
short-lived, i.e., we want to know whether it is likely to observe RDs at 1 AU when they are
generated near the Sun.

In the previous discussion we were mostly interested in the field and plasma properties on the
two sides of a discontinuity. Looking at DDs in high resolution magnetic field data reveals an
inner structure, i.e., the field generally rotates smoothly within the transition layer over a time
scale of seconds. Details of this inner structure are of interest in particular in the kinetic the-
ory. It is for instance a priori unclear whether the rotation of the tangential magnetic field can
be larger than 180◦. A right-handed rotation of, say, 200◦ may have different properties (for
instance regarding stability) than a left-handed rotation of 160◦ although the “end-product”
on the two sides of the discontinuity may be the same.

To investigate the structure and stability of RDs in the kinetic limit, a number of hybrid
simulation (kinetic ions, massless fluid electrons) studies have been performed in the past
[Swift and Lee, 1983; Lee et al., 1989; Richter and Scholer, 1989; Goodrich and Cargill,
1991; Omidi, 1992; Krauss-Varban, 1993; Krauss-Varban et al., 1995; Karimabadi et al.,
1995]. Apart from Karimabadi et al. [1995] who conduct both 1-D and 2-D simulations,
generally 1-D codes are used, i.e., all variables are functions of time and one spatial variable
which is along the normal of the discontinuity. Note that the results may strongly depend on
the chosen parameters such as the plasma beta (the ratio of thermal to magnetic pressure), or
on the method used to form the RD.

Many of the simulations suggest that RDs with rotations of the tangential field larger than
|α| = 180◦ tend to be unstable (e.g. Swift and Lee [1983]; Omidi [1992]; Karimabadi et al.
[1995]). This finding is in agreement with observations of solar wind RDs [Neugebauer
and Buti, 1990]. Swift and Lee [1983] present the first simulation results using a hybrid
code. They find that when the rotation angle of the tangential magnetic field is 180◦ or less,
symmetric RDs, i.e. RDs with [B] = 0, are stable for both senses of rotation. Lee et al. [1989]
investigate the stability of RDs with α = 180◦. In agreement with Swift and Lee [1983], Lee
et al. [1989] also find that RDs are relatively stable. However, Swift and Lee [1983] and
Lee et al. [1989] investigate the temporal evolution only of RDs with relatively large angles
between the upstream magnetic field and the RD normal (θBn > 45◦).

In the study by Richter and Scholer [1989], the stability of symmetric RDs in which the
magnetic field rotates by 180◦ are investigated both, in the quasi-parallel (θBn < 45◦) and
the quasi-perpendicular (θBn > 45◦) regimes. For θBn = 60◦ and left-hand sense of rotation,
they obtain nearly the same results as Swift and Lee [1983] and Lee et al. [1989]. At the
end of the simulation runs there is almost no thickening of the transition region. Also the
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right-hand rotation appears stable for θBn = 60◦. However, RDs with θBn < 45◦ are found
to be unstable and to disintegrate into waves for both senses of rotation. This result is in
apparent contradiction to solar wind observations carried out so far, where a large number of
RDs with small angles θBn could be found. Note, however, that Neugebauer [1989] shows
that the complexity of the structure of RDs indeed increases as θBn decreases. Since the
RDs observed at 1 AU are presumed to be created in the solar corona and are (according
to the observations so far) stable over the two to six days required for them to travel from
the Sun to 1 AU, the minimum lifetime of RDs is much longer than Richter and Scholer’s
simulation times of ≈ 40 s [Neugebauer, 1989]. Therefore, Neugebauer [1989] suggests that
the observed complexity of the structures at small θBn should not be interpreted as evidence
for the instability of quasi-parallel RDs, as Richter and Scholer [1989] do.

The disagreement between simulation and observation appeared to be resolved by the results
presented in Goodrich and Cargill [1991]. Using a larger simulation box and longer runs,
they obtain stable solutions even at θBn = 30◦. Goodrich and Cargill [1991] show that the
break-up of quasi-parallel RDs observed by Richter and Scholer [1989] is transitory in nature,
and that a more stable structure evolves later in the simulations. Certainly, the observational
results presented in this dissertation will again provide a new slant on the whole subject.

More recent hybrid simulations also indicate that RDs are stable structures, at least in the
quasi-perpendicular case [Omidi, 1992; Krauss-Varban, 1993; Krauss-Varban et al., 1995;
Karimabadi et al., 1995].

As a final note we may add that there is a general problem with applying a 1-D hybrid code
to RDs, which could make the results of such studies of limited interest. The 1-D simulation
allows only wave vectors in the RD normal direction. If in reality decay of the RD were to
occur by generation of waves with k vectors parallel to B, this would be less and less possible
in the simulation for increasing angles θBn [Richter and Scholer, 1989].

3.4 The importance of solar wind discontinuities

Many aspects that motivate the investigation of solar wind discontinuities are already in-
cluded in the previous sections and chapters. DDs are a fundamental feature of the interplan-
etary medium and contribute a major part to the micro-scale fluctuations of the solar wind.
However, they are not fully understood yet. In particular there are ambiguities regarding their
true nature and origin. In the following we summarise the relevance of research on interplan-
etary discontinuities, and demonstrate the importance of identifying the true MHD type of
these discontinuities.

First of all the knowledge of the ratio RD:TD is of considerable interest to characterise the
topology of the IMF. By definition, the magnetic signature of a TD reveals the crossing of
two regions not magnetically connected. In other words, when a TD is observed, the local
medium is split into two distinct plasma regions, in contrast to an RD. A high occurrence of
TDs implies that the solar wind is formed of many such regions, with no plasma flow between
them. This might have consequences for the diffusion coefficients of energetic particles. If
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the majority of DDs are TDs, then low-energy cosmic rays with gyro-radii less than the
average discontinuity separation would tend not to be scattered by the DDs. Thus, the mean
free path would in fact be much greater than the distance between the DDs [Sari and Ness,
1969]. In contrast, if DDs are predominantly RDs, then cosmic rays travelling along field
lines are likely to encounter and be scattered by them.

Secondly, interplanetary space provides an excellent laboratory to observe plasma effects
which are unachievable in the limited terrestrial laboratories. For instance, questions regard-
ing non-linear dynamics can be tackled. Do processes such as phase-steepening of Alfvén
waves as discussed in the previous section indeed take place? Apparently, earlier observations
suggest that such processes may be possible. This issue is closely connected to the funda-
mental problem of finding applicable generation processes of interplanetary discontinuities.
The essential question still waiting for a conclusive answer is: why is the solar wind discon-
tinuous? Certainly, an indispensable first step in finding an answer is to provide a reliable
observational statement on which types of discontinuity exist in the solar wind at all.

Using space as a laboratory of plasma physics also allows to study the structure of the bound-
ary layers which is important for instance for investigating the stability of discontinuities. As
discussed in the previous section, comparison with simulation may be a promising approach
in this regard. Also the width of the boundary layers is an important parameter in the theory
of discontinuities. Discontinuities occurring in nature provide an excellent opportunity to
contribute to this issue.

Thirdly, the identification of MHD discontinuities (RDs versus TDs) in connection with find-
ing possible generation mechanisms may play an important role for processes that take place
in the solar corona. Two of the long-standing goals of solar wind research have been to iden-
tify and to understand the mechanisms for heating the solar corona and accelerating the solar
wind. Among the obstacles to realising these goals are the limitations of coronal observations
to remote sensing at a variety of electromagnetic wavelengths and the limitation of direct, in
situ measurements to distances outside the regions where the heating and acceleration occur.
If we accept the premise that most of the DDs observed in the solar wind originate close
to the Sun, their properties may help to understand their role in the physics of the corona.
Recent observations of the base of the solar corona [Solanki et al., 2003] support Parker’s
idea that the active regions of the solar corona are heated by dissipation of magnetic energy
at reconnecting TDs. Theorists will want to know on a quantitative level whether such TDs
are common, i.e., whether the heating associated with the dissipation of magnetic energy can
account for the observed coronal heating. Since observations of the lower corona are difficult,
a quantitative evaluation of TDs in the solar wind might help.

Finally, also the interaction of interplanetary discontinuities with the (Earth’s) magnetosphere
should be mentioned. For instance, Burlaga [1969a] finds a relation between the occurrence
rate of DDs and geomagnetic activity. There tend to be more DDs during geomagnetic dis-
turbed times [Burlaga, 1969a]. Also note that the orientation of the IMF immediately up-
stream of the Earth’s bow shock and magnetopause is known to be an important parameter in
the rate of reconnection and hence energy input into the Earth’s magnetosphere (see e.g. Sc-
holer [1991]). In particular, sharp changes in the polarity of the north-south component of
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the magnetic field, from northward to southward, can trigger dayside reconnection.3 A key
objective of space weather forecasts is the prediction of arrival times of such southward turn-
ings. Typically, magnetic field and plasma data from an upstream monitor spacecraft in halo
orbit around the libration point L1, around 1.5× 106 km sunward of the Earth, are used for
such predictions, measuring the solar wind around an hour before it arrives at the bow shock.
Certainly, to predict the Earth arrival time of southward magnetic field turnings a precise
knowledge of the discontinuity normal is essential. Hence, the general field of space weather
delivers a reason to carefully test existing techniques to evaluate discontinuity normals, a key
objective of the present study.

An important parameter for the interaction of interplanetary discontinuities with the magne-
tosphere is the transversal extension of the discontinuities. There have been some attempts to
estimate large scale surface curvature of DDs [Burlaga and Ness, 1969; Lepping et al., 2003].
These will be revised in the present work also.

We have addressed several fundamental problems above which are related to the research on
interplanetary discontinuities. Certainly, it is far beyond the scope of this work to provide
conclusive solutions to these problems. Our claim is to deliver observational input that may
be relevant for some of the discussed topics. The aim of this section was to give an overview
that helps to understand the relevance of interplanetary discontinuities and the research on
them in a more global context and to demonstrate that this kind of research is not solely of
academic interest. It contributes to answering fundamental questions.

3Note that the DD shown in Figure 3.2 is a good example for a northward turning of the IMF (z points
northwards).



CHAPTER 4

THE CLUSTER MISSION

In the previous chapters we have introduced the physical subject of this work. Before pre-
senting our own results, it is necessary to describe the “experimental setup” that we use.
The unique tool utilised in this work is the Cluster mission. The outstanding feature of this
space mission is that it consists of four coordinated spacecraft flying in close formation. This
motivates to split the experimental description in two parts. In the first part we give a brief
overview of the mission and the instruments that we use (this chapter). The second part
(next chapter) is solely devoted to describe the configuration built by the four spacecraft. The
geometry of the shape defined by the four points in space (the spacecraft positions) is of
considerable importance for any kind of multi-spacecraft analysis. Since the multi-spacecraft
idea is the essential point of the Cluster mission and also of the present work, the second part
will be discussed in some detail. It will be necessary to introduce a theoretical framework that
allows for a convenient description of the spacecraft formation. It is definitely worthwhile
to go through this formalism, as it enables us to describe the shape and orientation of the
formation by means of intuitive parameters. This will be of particular relevance for assessing
the accuracy of our multi-point analysis method to determine the discontinuity normals n and
velocity U relative to the spacecraft array.

For a comprehensive overview of the Cluster mission see Escoubet et al. [1997]; Credland
et al. [1997]; Escoubet et al. [2001]. Various techniques to analyse multi-spacecraft data are
compiled in Paschmann and Daly [1998].
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4.1 Mission overview and historical background

The four-spacecraft Cluster mission, together with the SOlar and Heliospheric Observatory
(SOHO) mission1, constitute the first cornerstone project of the ESA Horizon 2000 pro-
gramme, which was designed to make major progress in the investigation of the nature of
Sun-Earth interactions. These two missions are also known as the “Solar-Terrestrial Sci-
ence Programme” and have the American space agency NASA as a partner. The idea is that
SOHO monitors the Sun and the solar wind, whereas Cluster studies the magnetosphere and
near Earth space in the meantime.

The Cluster mission was first proposed in November 1982, and was ready for launch in 1996,
only seven months after the successful launch of SOHO. Unfortunately, the four Cluster
spacecraft were destroyed when the Ariane 5 rocket exploded during its maiden launch on
4 June 1996. The Cluster team suggested to revive the unique project by using spare parts
to build another spacecraft. It was named Phoenix after the mythical bird that rose from the
ashes. On 3 April 1997, the ESA science programme committee agreed that three new Cluster
spacecraft should be built alongside Phoenix, and Cluster II was born. Finally, the four
Cluster II (in the following named Cluster) spacecraft were successfully launched in pairs on
two Soyuz rockets from Baikonur Cosmodrome, Kazakhstan on 16 July and 9 August 2000.
The commissioning phase was completed on 31 January 2001. Since then Cluster has been
operating successfully. Originally funded to operate for 27 months, and now in an extended
mission phase until December 2005, the spacecraft and payload continue to perform well and
are expected to do so for several years to come. Recently another extension of four years
(until December 2009) has been granted to the Cluster team.

The key objective of the Cluster mission is to study physical processes involved in the in-
teraction between the solar wind and the magnetosphere by visiting the key magnetospheric
regions like the polar cusps, the auroral zone and the magnetotail. Also the magnetopause
and the bow shock are key objectives of Cluster. The continuing variations of the solar wind
lead to continuing motions of these boundary layers. Four-point measurements are extremely
helpful to study this motion and also the geometry of these boundaries. In general, the four
coordinated Cluster spacecraft allow for the first time to separate between spatial and tempo-
ral variations in three dimensions. With only one satellite this is not possible, as one cannot
distinguish between variations that are temporal in nature and variations that occur because
the satellite has moved from one place to another. At least two spacecraft are necessary to
separate spatial and temporal variations. However, two points in space define a straight line.
Hence, with two spacecraft only one dimension can be explored. At least four non-coplanar
spacecraft are necessary to obtain three-dimensional information. In addition, the simultane-
ous four-point measurements permit to derive differential plasma quantities. For instance, the
current density near the four spacecraft can be derived from the magnetic field measurements
using Ampère’s law.

1SOHO operates permanently in the solar wind between Sun and Earth. We shall also benefit from this
mission in this work (section 6.5).
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4.2 Orbit and separation strategy
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Figure 4.1: GSE coordinate
system.

Unless otherwise noted we always use the Geocentric So-
lar Ecliptic (GSE) coordinate system which is illustrated
in Figure 4.1. Earth is in the origin, the x-axis points to-
wards the Sun, the z-axis is perpendicular to the ecliptic
plane (positive North) and the y-axis completes the right-
handed system (see e.g. Hapgood [1992]). This system is
fixed with respect to the Earth-Sun line. The angles φ and
θ are used as indicated in Figure 4.1: θ is the angle be-
tween the vector to be represented and its projection in the
ecliptic plane (positive angles point northwards), and φ is
the angle between the projection and the Earth-Sun line. φ
is measured in a positive sense, i.e., counterclockwise as
viewed from the positive z-axis. Unless otherwise noted φ
ranges from 0◦ to 360◦ and θ from -90◦ to 90◦.

In order to meet the scientific objectives of the mission, the orbit was chosen with a perigee
at 4 Earth radii (RE), an apogee at 19.6 RE , an inclination of 90◦ and a line of apsides around
the ecliptic plane. The orbital period is 57 h. Figure 4.2 shows four orbits of one Cluster
spacecraft at one month intervals in the GSE equatorial plane. The first shown orbit (starting
on 1 December 2000) has its apogee at dusk. Then, as the Earth is rotating around the
Sun, the apogee rotates towards local noon. This way the Cluster orbit will cross all regions
of scientific interest during the course of the mission. Figure 4.2 also shows the position
of the magnetopause and the bow shock (dashed red lines) and the IMF (green lines) for
nominal conditions. The region marked by the fat dark green magnetic field lines indicates
the foreshock region, the region of the solar wind that is magnetically connected to the Earth’s
bow shock and thus subject to disturbances due to reflected particles. The thin light green
lines indicate the undisturbed solar wind. Only those segments of the orbit traversing this
latter region are of interest in this work. Apparently, Cluster is not primarily designed for
extensive studies of the undisturbed solar wind. However, there are still considerably long
intervals with all four spacecraft in this region of space.2 The careful selection of these
intervals is one important issue of the present work (chapter 6).

Since each of the four spacecraft has its own orbit, the spacecraft configuration continuously
varies along the orbit. Therefore, the spacecraft do not constitute the vertices of a regular
tetrahedron (all pairs of spacecraft are equally spaced) most of the time. This leads to the
necessity to establish a separation strategy, to be discussed in the next chapter (section 5.4).
Here we only briefly discuss the size of the Cluster array, i.e., the separations between the
four satellites. Using the thrusters on board each spacecraft, the inter-spacecraft separation
distance has been changed several times already, ranging from 100 to 5000 km, depending
on the spatial scales of the structures to be studied. Figure 4.3 gives an overview. Note that
the shown distances correspond to the separations at that parts of the orbit where a regular

2Note that the spacecraft are slowest near apogee. Therefore the hourly positions are closest to each other at
this part of the orbit.
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Figure 4.2: Cluster orbit. The orbital plane rotates with respect to the GSE z-axis. The complete
rotation takes one year. Hourly positions are marked by the black circles.

Figure 4.3: Distance between the spacecraft during the Cluster mission. The first three cusp-
intervals (red circles) are used in this work. Taken from http://clusterlaunch.esa.int/.

tetrahedron is constituted. The separation manoeuvres are performed at approximately six-
month intervals. The red circles indicate the intervals when apogee is on the sunward side of
Earth (solar wind), and the green squares indicate intervals with apogee in the magnetotail.
The intervals marked by the first three red circles (2001, 2002 and 2003) are used in this
work. The respective nominal separations are 600, 100 and 5000 km, which enables us to
study interplanetary discontinuities on various scales. Note that in the second half of this year
(2005) the separations will be adjusted to 10000 km. This large separation will be maintained
in the solar wind period in the first half of next year. In the course of this work we will realize
that it would be of great interest to continue our study using the tetrahedron of 10000 km side
length.
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4.3 The satellites and their payload

The four Cluster spacecraft are named after Latin-American dances: Rumba (formerly Phoe-
nix), Salsa, Samba and Tango. We choose a more prosaic nomenclature: Cl 1, Cl 2, Cl 3 and
Cl 4, respectively. The four spacecraft are identical. They are spin-stabilised, with a nominal
spin rate of 15 rpm. The spin axis points toward the North ecliptic plane. Each satellite
carries the same set of eleven experiments to measure the electric and magnetic fields from
DC to high frequencies, and electron and ion distribution functions at spin resolution. In the
following we only briefly introduce the instruments that we use in this work. These are the
fluxgate magnetometer (FGM) and the Cluster ion spectrometry (CIS) experiment.

4.3.1 Fluxgate magnetometer (FGM)

After about four and a half years in operation, the FGM instruments on board the four space-
craft are still in an excellent condition. For a detailed description of the instrument see Balogh
et al. [1997; 2001]. The principal investigator of this instrument used to be A. Balogh. Now
E. Lucek (both are from Imperial College in London, UK) fills the position. With the super-
visor of this dissertation, F.M. Neubauer, being co-investigator of the FGM instrument, the
Institute of Geophysics and Meteorology in Cologne is also involved in this experiment.

The FGM instrument on each spacecraft consists of two triaxial fluxgate magnetometers and
an on-board Data-Processing Unit (DPU). In order to minimise the magnetic background of
the spacecraft, one of the magnetometer sensors (OB sensor) is located at the end of a 5.2
m radial boom, and the other (IB) sensor at 1.5 m inboard from the end of the boom. In the
default configuration, the OB sensor is used as the primary sensor. Data are also acquired
simultaneously from the IB sensor at a lower rate.

The magnetometers have several operation ranges to provide good resolution in the solar wind
(expected field magnitudes between 3 and 30 nT), and up to the highest field values expected
in the magnetosphere along the Cluster orbit (up to 1000 nT). The digital resolution in the
solar wind range is 7.8×10−3 nT [Balogh et al., 1997]. All components of the magnetic field
are measured with an accuracy approaching 0.1 nT Balogh et al. [2001]. The time resolution
of the FGM data is 22 vectors/s in normal mode. The highest available time resolution is 67
vectors/s (burst mode). All of the data that we use are in normal mode.

Unfortunately, these data comprise a spin signal at≈ 0.25 Hz according to the 4 s spin period
of the satellites. To eliminate this signal we routinely apply a recursive notch filter (see
Hanstein et al. [1986] for details). In order to test whether the filtering significantly impacts
our results we have performed parts of the analysis also with the unfiltered data. We find that
whereas the results can be considerably different for the unfiltered data as compared to the
filtered data in individual cases, statistically the main results are the same.

Whenever we refer to high resolution FGM data in this work we mean the notch-filtered data
in normal mode resolution.
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4.3.2 Cluster ion spectrometry (CIS)

For a detailed description of the instrument see Rème et al. [2001]. The principal investigator
of this instrument is H. Rème from CESR in Toulouse, France.

The CIS instrument measures the full, three-dimensional ion distribution of the major mag-
netospheric ions (H+,He+,He++ and O+) from thermal energies up to about 40 keV/e with
a time resolution of one spacecraft spin period. The CIS package consists of two different
instruments: a Hot Ion Analyser (HIA) and an ion COmposition and DIstribution Function
analyser (CODIF) plus a Data Processing System (DPS) which permits extensive on-board
data processing. Using a time-of-flight technology, CODIF gives the mass per charge com-
position with an angular resolution of 22.5◦. HIA does not offer mass resolution but has
an angular resolution capability (5.6◦×5.6◦) adequate for ion-beam and solar wind measure-
ments. Each analyser has two different sensitivities in order to increase the dynamic range.

Unfortunately the CIS package is not functioning on all four spacecraft. CIS does not operate
at all on Cl 2, and additionally the HIA instrument is switched off on Cl 4.

We use the HIA instrument for our analysis of solar wind discontinuities. The HIA selects
the incoming ions according to the ion energy per charge by electrostatic deflection. The
electrostatic analyser consists of three concentric spherical elements. These three elements
are an inner hemisphere, an outer hemisphere, which contains a circular opening, and a small
circular top cap which defines the entrance aperture. The incoming particles are deflected
through 90◦. In the analyser a potential is applied between the inner and the outer plate,
and only charged particles with a limited range of energy and an initial azimuth angle (angle
about the spin axis) are transmitted. The particle exit position is a measure of the incident
polar angle (angle out of the spin plane) which can be resolved by a suitable position-sensitive
detector system. The HIA instrument has 2× 180◦ field of view sections parallel to the
spin axis with two different sensitivities (“high G” and “low g”). The 180◦ “low g” section
allows for the detection of the solar wind, and the required high angular resolution is achieved
through the use of 8× 5.625◦ central anodes, with the remaining 8 sectors having a 11.25◦

resolution. This configuration provides “instantaneous” 2-D distributions sampled once per
62.5 ms (1/64 of one spin, i.e., 5.625◦ in azimuth), which is the nominal sweep rate of the
high voltage applied to the inner plate of the electrostatic analyser to select the energy of the
transmitted particles. For each sensitivity section, a full 4π steradian scan is completed after
every spin of the spacecraft, i.e. after 4 s, giving a full, 3-D distribution of the ions in the
energy range of 5 eV/e to 32 keV/e. The moments of these 3-D distributions are used in this
work.



CHAPTER 5

GEOMETRICAL CONSIDERATIONS OF THE

CLUSTER ARRAY

Four non-coplanar points in space define a tetrahedron. If the separations between each pair
of points are equal, then it is a regular tetrahedron. The four Cluster spacecraft form a tetra-
hedron which in general is not regular. The shape of this polyhedron evolves continuously
along the orbital trajectories of the spacecraft.

The tetrahedral geometry is a principal factor affecting the precision of physical parameters
derived from four-point measurements. For many applications, including the determination
of discontinuity normals by relative timings, a configuration close to a regular tetrahedron is
highly desirable.

Because of the scientific importance of the spacecraft configuration, many quality factors
to describe the geometric shape of the tetrahedron have been suggested. The early one-
dimensional geometric factors provide a measure for the degree of regularity of the tetrahe-
dron. In order to obtain more detailed information about the tetrahedral geometry, such as
elongation E and planarity P and the orientation, 2-D parameters are necessary.

In this chapter we introduce some of the 1-D quality factors (section 5.1) and the more so-
phisticated 2-D parameters (section 5.2)1. The latter are closely related to the important
volumetric tensor which we also discuss in detail in section 5.2. We demonstrate the quality
factors’ performances by systematically deforming a regular tetrahedron (section 5.3). The
evolution of the tetrahedral geometry along the orbital trajectory is presented in section 5.4.
Important for our statistical study, and particularly for the error analysis in chapter 9, is the
tetrahedral geometry at the actual time of discontinuity occurrences. These configurations
are discussed in section 5.5.

1The summary of the quality factors presented here resembles the treatment in Robert et al. [1998].
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5.1 1-D geometric factors

The question of how to quantify the degree of tetrahedral regularity was first addressed in the
context of the Cluster mission by vom Stein et al. [1992]. They introduced the QGM parameter
which is defined as

QGM =
True Volume
Ideal Volume

+
True Surface
Ideal Surface

+1 (5.1)

The ideal volume and surface are calculated for a regular tetrahedron with a side length equal
to the average of the six distance between the four points. It can be shown that each term is
less or equal to unity, thus QGM ∈ [1,3]. This quality factor attempts to describe the “frac-
tional dimension” of the tetrahedron: QGM = 3 can only be achieved when the configuration
is a regular tetrahedron. A value of 1 indicates that the four spacecraft are in a line, since
only then the first two terms are both zero. However, there is nevertheless some difficulty
with this interpretation: QGM = 2 is not a sufficient condition for planarity. It is perfectly
possible to deform a regular (QGM = 3) tetrahedron continuously until it resembles a straight
line (QGM = 1) without it resembling a plane at any time.

In their paper on tetrahedron shape Robert and Roux [1993] present 17 different parameters
as ratios of various volumes, sizes and areas. One of these is particularly useful in estimating
the error in the determination of the spatial gradient of the magnetic field [Robert et al., 1998].
It is defined as

QRR = N ·
(

True Volume
Sphere Volume

) 1
3

(5.2)

where the sphere is the circumscribing sphere of the tetrahedron (all four points on its surface)
and N is a normalisation factor to make QRR = 1 for a regular tetrahedron. In appendix A
we show

N =

(
9π

2
√

3

) 1
3

QRR ranges from 0 to 1.

Twenty five geometric factors are defined and compared with respect to their ability to provide
a reliable index for the accuracy of the determination of the current density by Robert et al.
[1995b]. Two of them are QSR and QR8 to be defined below:

QSR =
1
2

(
a+b+ c

a
−1

)
(5.3)

where a, b and c are the lengths of the major, middle and minor semi-axes of the ellipsoid
representing the volumetric tensor defined in section 5.2. Since a ≥ b ≥ c, QSR takes values
between 0 and 1, where QSR = 1 indicates a regular tetrahedron (a = b = c), and QSR = 0
indicates that the four spacecraft are in a line (b = c = 0).

The final 1-D quality factor we present is similar to QGM and is defined as

QR8 =
True Volume
Ideal Volume

(5.4)

QR8 ranges from 0 to 1.

Appendix A contains more details of the mathematics of a tetrahedron and instructions on
how to calculate the presented 1-D quality factors.
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5.2 2-D geometric factors and the volumetric tensor

None of the 1-D parameters is capable of giving sufficient information about the shape and
orientation of the tetrahedron. This can only be done in a 2-D parameter space. The two
parameters we derive in this section were introduced by Robert et al. [1995a]. They are
closely connected to the volumetric tensor which for N vertices (or spacecraft) is defined as2

R =
1
N

N

∑
α=1

(rα− rb)(rα− rb)
T (5.5)

where rα is the position of spacecraft α in an arbitrary system of coordinates and

rb =
1
N

N

∑
α=1

rα (5.6)

is the mesocentre [Harvey, 1998]. Note that the mesocentre coincides with the centre of mass
if the spacecraft have identical mass. In component form the volumetric tensor reads3:

R jk =
1
N

N

∑
α=1

(rα j− rb j)(rαk− rbk) (5.7)

where rα j is the j-component of vertex α and rb j is the mean value, over all α, of rα j. If the
origin of coordinates is chosen to be the mesocentre, then the tensor R can be written as

R jk =
1
N

N

∑
α=1

rα jrαk (5.8)

The volumetric tensor is determined uniquely from the known orbital positions of the N
spacecraft. Its fundamental importance originates from the ubiquitous way in which it ap-
pears whenever a boundary normal or spatial gradient is determined from multi-point ob-
servations, for which purpose it must be inverted (see section 7.4 and e.g. Harvey [1998];
Chanteur [1998]; Chanteur and Harvey [1998]). Mathematically, R cannot be inverted if it
is singular, i.e., if one of its eigenvalues is zero and the spacecraft are coplanar. Physically,
the equivalent condition is that one of its eigenvalues is less than the uncertainty in the space-
craft position: the spacecraft are too close to being coplanar for the spatial gradient or the
boundary normal to be determined completely.

The volumetric tensor is symmetric. A symmetric tensor describes a quadratic form which
can be represented by an ellipsoid in space. This ellipsoid has three principal axes, each lying
in the direction of one of the eigenvectors of the tensor, with a semi-length determined by
the corresponding eigenvalue. This provides a description of the geometry of the polyhedron

2The formalism presented here is valid for N ≥ 4. Of course, for this work the special case N = 4 is relevant.
Dyadic notation is used: aT denotes the transpose of the column vector a, and the dyad abT is a tensor of rank
two.

3Note that we use the summation convention whenever this simplifies the mathematics, i.e., when in any
expression a term contains a product of two subscribed array elements with the same Latin index, then that term
is understood to be summed over the values 1, 2 and 3 of the index. Summations over Greek indices, used to
indicate the spacecraft, are written explicitly.
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which is intuitively simple and yet adequate to evaluate the geometric worth of the data for
studying any particular scientific objective [Harvey, 1998; Robert et al., 1998]. A derivation
of this is presented in the following:

Consider a plane defined by its normal n. Let r0 be any point in this plane and a = n ·r0. The
mean square distance σ2(n) of the N spacecraft from the plane is given by

σ2(n) =
1
N

N

∑
α=1

[n · (rα− r0)]
2 =

1
N

N

∑
α=1

(
n jrα j−a

)
(nkrαk−a) (5.9)

=
1
N

N

∑
α=1

rα jrαkn jnk−2a
1
N

N

∑
α=1

n · rα +a2

Differentiation with respect to a shows that for fixed but arbitrary rα and n, the minimum
value of σ2 occurs when a = 1

N ∑N
α=1 n · rα (for any direction n). Therefore

r0 =
1
N

N

∑
α=1

rα = rb (5.10)

The plane of minimum mean squares contains the mesocentre rb of the polyhedron [Harvey,
1998].

Introducing equation 5.10 and the tensor R of equation 5.5 into equation 5.9, the root mean
square “deviation” σ of the spacecraft from their mesocentre in the n-direction may be ex-
pressed as

σ(n) =
√

R jkn jnk (5.11)

The dimension, or thickness, of the polyhedron in that direction is defined as twice this value
[Harvey, 1998].

As the direction of the unit vector n varies over 4π, the value of σ(n) describes the surface of
an ellipsoid. A line in any direction n intersects this surface at two points whose separation is
equal to the thickness of the polyhedron in that direction. There are three directions in which
σ(n) is stationary. These are the principal axes of the ellipsoid defined by the eigenvectors
Ra, Rb and Rc of R. We denote the corresponding values of σ(n) by a, b and c, with

a≥ b≥ c

a2, b2 and c2 are the eigenvalues of R corresponding to the eigenvectors Ra, Rb and Rc, and
a, b, and c represent respectively the major, middle and minor semi-axes of the ellipsoid
[Harvey, 1998].

Thus, the volumetric tensor, and the associated ellipsoid, provide a simple way to visualise
the features of the global shape of a polyhedron. For instance, an ellipsoid reduced to a sphere
corresponds to a regular polyhedron, an ellipsoid reduced to a plane ellipse corresponds to
the spacecraft being coplanar and an ellipsoid reduced to a line corresponds to the alignment
of the spacecraft. At this point it may be noted that, even if the volumetric tensor was to be
renormalised so that the spacecraft of a regular tetrahedron actually lie on the surface of the
sphere, for an arbitrary configuration the spacecraft would generally not lie on the surface of
the corresponding ellipsoid.
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In order to describe the size and the shape of the polyhedron it is useful to have parameters
that are intuitively descriptive. This can be realized by using the three eigenvalues. From
these we can construct one parameter indicating the size and two parameters measuring elon-
gation and planarity. Furthermore, in the general case of an anisotropic configuration two
directions are required to define the orientation of the polyhedron in space.

When the polyhedron is isotropic, all three eigenvalues are equal (a2 = b2 = c2).

If it is stretched in one direction, a2 becomes greater than the other two eigenvalues (a2 >

b2,c2). If stretched further (or equivalently, if squeezed in the two orthogonal directions) until
b = c = 0, the spacecraft would lie on a straight line. This motivates to define the elongation,
or prolateness, as

E = 1− b
a

(5.12)

It ranges from 0 to 1, where E = 0 (a = b) means no elongation, and E = 1 (b = c = 0) cor-
responds to the maximum possible elongation, i.e., all spacecraft are in a line. Furthermore,
the eigenvector Ra defines the direction of elongation.

If the isotropic polyhedron is squashed in one direction, c2 becomes smaller than the other
two eigenvalues (c2 < a2,b2). If squashed further until c = 0 the spacecraft would lie in a
plane. Accordingly, the planarity, or oblateness is defined as

P = 1− c
b

(5.13)

It also ranges from 0 to 1, where P = 0 (b = c) means no planarity and P = 1 (c = 0) corre-
sponds to the maximum possible planarity, i.e., all spacecraft are in a plane. Furthermore, the
eigenvector Rc defines the normal of planarity. Note that b = 0 can only occur when c = 0.
In that case E = 1 and P is undefined.

In general the polyhedron is both stretched and squashed in mutually orthogonal directions.
Together with the direction of elongation and the normal of planarity the dimensionless pa-
rameters E and P define the physically important characteristics of the shape of the polyhe-
dron.

Finally, the parameter describing the characteristic size is defined as

L = 2a (5.14)

Choosing the largest eigenvalue a2 here is convenient, because it is always non-zero. The
size can be measured in any convenient unit of length.

Table 5.1 summarises the derived parameters. They are sufficient to describe the physically
important characteristics of a polyhedron. The direction of elongation and the normal of
planarity are by definition orthogonal, and so only three angles (e.g. the three Euler angles)
are needed to completely describe the orientation of the ellipsoid in three dimensions. These
three angles plus the values of L, E and P provide a complete description of the volumetric
tensor.

The shape of the polyhedron as E and P vary over their permitted ranges is indicated in Figure
5.1. Robert et al. [1998] define five general shapes to characterise the polyhedra according to
the E and P parameters:
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Table 5.1: Set of parameters sufficiently describing the physically important characteristics of a
polyhedron. The set consists of three scalars and two vectors.

Shape Orientation Characteristic Size
elongation E = 1− b

a direction of elongation Ra L = 2a
planarity P = 1− c

b normal of planarity Rc

• Pseudo-Sphere: E and P are small (bottom left corner in the E-P diagram Figure 5.1)
corresponding to pseudo-regular polyhedra.

• Pancake: E is small and P is large (top left corner in the E-P diagram) corresponding
to an ellipsoid which is a nearly flat circle.

• Cigar: E is large and P is small (bottom right corner in the E-P diagram) corresponding
to a long ellipsoid with a pseudo-circular section.

• Knife-Blade: E and P are large (top right corner in the E-P diagram) corresponding to
polyhedra which are both elongated and flat.

• Potato: Polyhedra that do not belong to one of the above categories. They are located
at the centre of the E-P diagram.

Note that the eccentricity of an ellipse is defined by e =

√
1− (b/a)2 also ranging from 0

to 1. The question arises whether elongation and planarity would have been better defined

accordingly. Then E and P would be simply the eccentricities ec =

√
1− (b/a)2 and ea =√

1− (c/b)2 of the ellipsoid respectively in the plane of planarity (containing the middle and
major axes), and in the plane perpendicular to the elongation (containing its minor and middle
axes). Both definitions are acceptable, but the elongation and planarity as defined above yield
a more uniform distribution of points in the E-P plane. This point is, of course, entirely
subjective because there is no a priori uniform distribution, but the statement is certainly true
for typical Cluster orbits [Robert et al., 1998].

Also note that the volumetric tensor does not describe a tetrahedron (N = 4) completely.
A complete description would require the position of three of the apexes with respect to
the fourth apex, i.e., nine independent quantities of which three describe orientation and six
describe shape. The symmetric volumetric tensor has only six independent quantities, of
which only three describe shape.

As a final remark we may add that in the special case of four spacecraft, R yields the volume
V of the tetrahedron. For this reason it is called the volumetric tensor. Harvey [1998] shows
that the volume is one third of the product of the three characteristic dimensions:

V
8abc

=
1
3

⇔ V =
8
3

√
|R| (5.15)
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Figure 5.1: The shape of the polyhedron as a function of E and P. Taken from Robert et al. [1998].

5.3 A simple performance study

Figure 5.2: Systematic deforma-
tion of a regular tetrahedron of unit
side by scaling the z-component of
vertex 3 by the factor m.

The primary objective of this section is to demonstrate
the performance of the quality factors by systematically
deforming a regular tetrahedron. We start with a regular
tetrahedron of unit side. We may take e.g. r1 = (1,0,0),
r2 = (1/2,

√
3/2,0), r3 = (1/2,

√
3/6,

√
6/3) and r4 =

(0,0,0), where rα are the position vectors of the four ver-
tices or spacecraft α = 1,2,3,4. This tetrahedron is plotted
in Figure 5.2 (thick solid black lines). By multiplying the
z-component of vertex 3 with a factor m≥ 0 (i.e., moving
vertex 3 along the vertical blue line) we can artificially cre-
ate irregular tetrahedra which are either elongated (m > 1)
or squashed (m < 1) in one direction. For m = 0 all space-
craft are in a plane (P = 1), and m → ∞ corresponds to
E = 1. Note that by this construction either E = 0 or
P = 0. We deliberately omit the general case here, where
the tetrahedron is both stretched and squashed in mutually
orthogonal directions, since we solely aim for a quantita-
tive understanding of the various parameters, especially of

E and P. The described procedure corresponds to moving along the left, respectively the bot-
tom side in the E-P diagram (Figure 5.1). The direction of elongation (m > 1) and the normal
of planarity (m < 1) both coincide with the z-axis of Figure 5.2. Three irregular tetrahedra
corresponding to m = 2.2, m = 0.8 and m = 0.2 (dashed lines) are plotted; those with m < 1
(P > 0) are plotted in red. Note that the vertices 1, 2 and 4 and the edges connecting them
are the same for all tetrahedra in our “reservoir”, regardless of m. Figure 5.2 gives an idea of
how m acts on the shape of the tetrahedron.

Figure 5.3 demonstrates how m is related to the quality factors defined in the previous sec-
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Figure 5.3: Quality factors (left) and tetrahedron volume, side lengths and semi-axes lengths in
arbitrary units as a function of m (right).

tions. The left side shows these parameters as a function of m and the right side shows the
tetrahedron volume, the side lengths Di j and semi-axes lengths of the corresponding ellip-
soid. To produce these plots we varied m in the range from 10−4 to 104 with ∆(logm) = 0.01,
i.e., the shown geometrical quantities are calculated for 801 different values of m.

For m≤ 1, E = 0, and for m > 1, E(m) strictly increases, approaching unity for m→∞. The
behaviour of the planarity is reversed. As m → 0, P approaches unity and strictly decreases
until m = 1. QGM approaches the asymptotic value QGM ≈ 1.8 for m → 0. In the notation of
“fractional dimension” it should be 2. On the other hand QGM = 2 for the elongated tetrahe-
dron defined by m = 4.3. Nevertheless, this concept still remains interesting. A value close
to 1 indeed indicates a highly elongated configuration, and QGM close to 3 ensures that the
tetrahedron is close to being regular. Similar to QGM, the factor QSR yields information on the
geometrical shape. QSR≈ 0.5 indicates a planar configuration with some confidence, whereas
a value close to 0 can only result from a strongly elongated tetrahedron and QSR ≈ 1 strongly
indicates a regular tetrahedron. As can be seen from Figure 5.3 the two remaining factors,
QR8 and QRR are more or less symmetric around m = 1, especially QR8. Both asymptotic
values are 0. Thus, they do not give real or direct information on the geometrical shape, but
can be considered as the degree of degeneration of the tetrahedron. For a detailed study of the
1-D parameters and their interrelation to the 2-D parameters, making use of the five general
ellipsoid shapes, see Robert et al. [1998].

Although the Cluster tetrahedra used in our analysis will be discussed in section 5.5 it may be
instructive to briefly introduce the limiting cases already in this section. To avoid large errors
caused by planar spacecraft configurations we introduce a cut-off value Pc = 0.8 (see also
section 5.5 and chapter 9 where we demonstrate that this is a reasonable choice). Whenever
applying relative timings, we either omit those cases with P > Pc or we give a caveat. The
most elongated tetrahedron occurring during DD observation is characterised by E = 0.55
(see section 5.5). The values m = 0.2 and m = 2.2 correspond to these upper boundaries in
P and E. They are indicated by the vertical dashed lines in Figure 5.3. Note that since E
and P are strictly monotonic functions in m for m > 1 and m < 1, respectively, m = 0.2 and
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m = 2.2 are the minimum and maximum values representing the range of deformation that
we are facing in our multi-spacecraft analysis. The corresponding tetrahedra shown in Figure
5.2 clearly illustrate this range. According to the above construction we can thus state that
the flattest configuration that we use (P = 0.8) can be realized by reducing the “height” of a
regular tetrahedron to 20% of its original value. To “generate” the most elongated configura-
tion the height must be increased to 220%. The value m = 0.8 corresponds to P = 0.21, an
intermediate value rather typical for the tetrahedra we use in 2003 (see section 5.5). Note,
however, that the real configurations that we consider are both stretched and squashed in mu-
tually orthogonal directions, e.g. the most elongated tetrahedron that we use in our analysis
is also the most flattened one (see Figure 5.8).

According to our construction, the side lengths Di j (i, j = 1,2,4) connecting the vertices 1, 2
and 4 are unity regardless of m, and the edges connecting vertex 3 to the other three vertices
have the same length D13(m) = D23(m) = D34(m) (Figure 5.3). This symmetric deformation
process causes the middle semi-axis b of the ellipsoid representing the volumetric tensor to
be constant in m. The major semi-axis is constant for 0 ≤ m ≤ 1 and increases linearly4 for
m ≥ 1. For the error analysis the minor semi-axis c is most relevant (see section 5.5). Its
value is zero for m = 0 and linearly increases for 0 < m ≤ 1. For m ≥ 1, c is constant. Note
that c(m = 0.2) = c(m = 1)/5. Thus, assuming a characteristic size L = 2a = 1000 km of the
regular tetrahedron (m = 1) the thickness of the ellipsoid in the direction normal to planarity
would still be 2c = 200 km for m = 0.2 (P = Pc), a significant value related to the accuracy
of orbit determination (see section 5.5).

5.4 Evolution of the tetrahedron along one orbit

In this section we apply the quality factors in order to study the evolution of the tetrahedron
shape along a typical Cluster orbit. We have chosen the orbit starting at 05:30 UT on day of
year (doy) 52 in 2001 which is plotted in Figure 5.4. The bow shock and the magnetopause
are also shown. The colour code indicates the region of geo-space traversed by the spacecraft.
Note that from our set of DDs, 16 were found in the shown solar wind region (red). In Figure
5.5 the tetrahedron characteristics for this particular orbit are plotted both, versus time and in
a E-P diagram. The origin of time coincides with doy 52, 05:30 UT, the perigee of the orbit.
To allow for a better comparison with Figure 5.4, the apogee and the perigee are indicated in
all plots of Figure 5.5, and in addition the northern cusp is marked in the E-P diagram.

Relative to the geocentric distance DE , the spacecraft appear to be close to each other, and the
four distances are superposed in the figure. One can see, however, that the inter-spacecraft
distances Di j vary in high proportions, and thus the shape of the tetrahedron has a strong
variation along the orbit. In particular, the volume of the tetrahedron reaches a value close
to zero twice (around hour 3 and hour 54 of the orbit). Accordingly the 1-D quality factors
take their minimum values at these points. Since the minor semi-axis c is also almost zero
here and the middle semi-axis b has a non-zero value, the tetrahedron is almost fully flat (the
planarity has its maximum close to 1.) The ecliptic projection of the normal of planarity Rc

4Note that the increase is in fact linear, the exponent in the double logarithmic plot is 1.
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Figure 5.4: Cluster 2 orbit from doy 52 2001 05:30 UT until doy 54 2001 14:40 UT. The three
panels located in the upper left, upper right and lower left show x-z, y-z and x-y projections of the
orbit, respectively, in GSE coordinates. The orbit traces are colour coded according to the region
of geo-space traversed by the spacecraft. Red: if in the solar wind or inside the magnetosphere and
within 3 RE of the model neutral sheet. Blue: if in the model magnetosheath; the magnetopause
boundary is the Roelof-Sibeck model [Roelof and Sibeck, 1993] using nominal conditions. Yellow:
magnetosphere, other than above. Taken from http://www-spof.gsfc.nasa.gov.

is aligned with the GSE y-axis (φ≈ 90◦).

When apogee is around local noon (as for the orbit we presently discuss) special empha-
sise in terms of separation has been put on the northern cusp and the southern magne-
topause/bow shock. In these two areas a perfect tetrahedron is constituted [Escoubet et al.,
1997]. Equipped with the necessary theoretical framework we are now able to adequately
describe the evolution of the configuration along the orbit. The northern cusp is traversed at
14:30 UT on doy 52, corresponding to hour 9 in Figure 5.5. Note that at this point and later
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Figure 5.5: Tetrahedron characteristics for the orbit shown in Figure 5.4 plotted with time (upper
left and right and lower left) and a hodogram of the successive positions of the tetrahedron in the E-P
diagram (lower right). The two plots at the top show the same quantities as Figure 5.3. In addition the
geocentric distance RE and the orientation (φ and θ) of the tetrahedra are plotted (lower left). Hourly
values are plotted, indicated by circles. In the E-P diagram the orbit hours are plotted next to the
symbols.

at hour 49 the inter-spacecraft distances are all equal. The side length of the regular tetra-
hedron at the northern cusp is the nominal separation distance for a specific interval of the
Cluster mission. It is 600 km for the solar wind period (i.e., when apogee is on the day-side
of the magnetosphere) in 2001, 100 km in 2002 and 5000 km in 2003. The semi-axes a, b
and c also have equal values, and thus the elongation and the planarity are zero. Also the
1-D parameters indicate regularity (QGM = 3 and QSR = QR8 = QRR = 1). The orientation
of the tetrahedron changes rapidly at these two points. At the northern cusp Rc rotates from
(φ≈ 90◦, θ≈−25◦) to (φ ≈ 20◦, θ≈ 25◦).

An advantage of having a regular tetrahedron at the northern cusp is that the configuration
stays quite close to a regular tetrahedron throughout the magnetosheath and solar wind. Ap-
proaching apogee the elongation and the planarity increase, have a local maximum at apogee
and decrease again. In this part of the orbit the tetrahedron is more flattened than elongated
(P > E). The normal of planarity rotates clockwise about the GSE z-axis, i.e., φ decreases
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from 20◦ to 0◦. At the same time θ also decreases to zero. Back in the magnetosphere the
spacecraft approach perigee and thus gain speed. As a consequence the configuration gets
more and more elongated. At perigee the elongation reaches its maximum value and the
spacecraft constitute a “string-of-pearls”.

In order to quickly characterise the distortion of the tetrahedron and its evolution along one
orbit another way is to plot a hodogram of the successive positions of the tetrahedron in an
E-P diagram (lower right of Figure 5.5) rather than plotting the characteristics with time.
The apogee corresponds to the portion of the figure where the different points are very close
to each other, the velocity being low and the shape slowly varying. The elongation E takes
moderate values here, whereas P is rather large. The perigee corresponds to the portion of the
figure where the points are widely spaced, because the spacecraft velocity along the average
trajectory is large. The tetrahedron is strongly elongated in this area. The transition of the
cusp (around hour 9) is located clearly in the pseudo-sphere region as defined in section 5.2.
During the rest of the curve the E-P parameters can take extreme values. In particular the
tetrahedron is very flat around hours 3 and 4 and around hour 54.

Note that the rather continuous progression of the shown parameters has an irregularity
around hours 14 and 15, which is caused by a spacecraft manoeuvre implemented at that
time.

5.5 Constellations used in our analysis

Although the selection of the discontinuities to be used in our analysis is subject of the follow-
ing chapter, it appears to be reasonable to characterise the corresponding spacecraft constel-
lations during the discontinuity observations already in this section. In the following chapter
we will show that overall 366 events are found that are suitable for further investigations. Of
these, 129 events are observed in 2001, 33 in 2002 and 204 in 2003. Using the quality fac-
tors for all 366 events and studying in particular the extreme cases in terms of elongation and
planarity, we are able to provide a clear insight into the prevailing geometrical characteristics.

A comprehensive knowledge of the present configurations is imperative for any multi-space-
craft analysis. This is especially true for the relative timing analysis used in this work. Since
the tetrahedral geometry is one of the principal factors affecting the precision of this method
we routinely monitor all five quality factors introduced in this chapter when analysing DDs.
However, ultimately decisive for the question whether or not the geometrical quality is suf-
ficient for our multi-spacecraft analysis are the 2-D parameters. Since the Cluster array is
rather squeezed to a planar configuration than stretched in the solar wind, the most important
indicator is the planarity P. To avoid large errors due to degenerated configuration we have
introduced a cut-off value of Pc = 0.8. For P > Pc the corresponding DD is not considered, or
a caveat is given. Note that not only the degree of irregularity is relevant for the error analysis,
but also the orientation of the tetrahedra. Since the error is largest in the direction normal to
planarity (see section 7.4.2 and chapter 9) it is crucial to be aware of any preferences of that
direction, since this might cause a bias in the results.
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Looking at the extreme cases of tetrahedra shape in our data sets already yields a detailed
overview of the geometrical characteristics we are facing. Figure 5.6 shows these configu-
rations. From top to bottom they are sorted according to their size, maximum in 2003 (top)
and minimum in 2002 (bottom). The left column shows the best configuration according to
regularity in the particular year. The second column shows the worst, i.e. most anisotropic,
configuration considered in our analysis. We also show the flattest configuration observed
at DD occurrence in 2003 (rightmost tetrahedron in the top row) in order to demonstrate the
wide range of shapes present in our tetrahedra reservoir. In Table 5.2 the most important
parameters characterising the shown tetrahedra are summarised.

The vertices are the positions of the four spacecraft numbered accordingly. Note that we
have translated the origin of the GSE system to the location of the southernmost spacecraft,
i.e., the one with the smallest z-component. This is always Cl 4 in 2001 and Cl 3 in 2002
and 2003 (see also Figure 5.7). The thick lines connect the vertices. They are dashed when
covered by one of the sides. The solid green line indicates the normal of planarity Rc and the
red line the direction of elongation Ra. The dashed lines in the corresponding colour are the
projections on the bounding walls. The axes have the same length in all three dimensions for
each plot. Note, however, that the sizes of the seven boxes are all different, the side lengths
are approximately 5000 km, 1000 km and 200 km for the top, middle and the bottom row,
respectively. Also the perspective may change to allow for the best 3-D interpretation and
comparison between the tetrahedra. However, it is the same among the three configurations
from 2003 and among the two from 2001.

To get the correct 3-D picture of the shapes presented it is necessary to consider the projec-
tions of the vertices on the x− y, x− z and the y− z plane (guided by the thin dashed lines).
Also helpful are the separation distances Di j given in Table 5.2. Then it can be realized that
all four vertices of the best configuration in 2003 (top left) are close to (or on) different walls
of the bounding box, and thus the almost perfect regularity (see quality factors in Table 5.2)
can be perceived. Note that the plane defined by the vertices 2, 3 and 4 (side 2− 3− 4) is
almost parallel to the y− z plane. For solar wind observations this means that signals coming
from the Sun will be first observed at these three spacecraft and some time later at Cl 1. A
DD, e.g. with a normal parallel to the x-direction would be observed almost simultaneously
at Cl 2, Cl 3 and Cl 4. Next to this tetrahedron the worst configuration in 2003 used in our
analysis is shown. It is elongated in the direction approximately given by the edge connect-
ing vertex 1 and 4 (see also the red line and D14 from Table 5.2). Vertex 2 is behind side
1− 3− 4. This tetrahedron is flattened (see also the quality factors in Table 5.2, especially
P = 0.8). However, the projections of the points 4, 2 and 1 on the x− z and the x− y plane
are far from being aligned. Thus, vertex 2 is not in the same plane as the other three vertices.
From Table 5.2 we see 2c = 470 km, i.e., the tetrahedron significantly expands in the direc-
tion normal to planarity. This is different for the rightmost tetrahedron (P = 0.99, 2c = 26
km). The two configurations are quite similar, apart from vertex 2 being much closer to side
1−3−4 here. The points 1, 2 and 4 are aligned now (all three projections of these points are
aligned). Thus, all four spacecraft are almost in one plane. Note that the thickness 2c = 26
km is close to the accuracy of orbit determination (see below).

Whereas we have a large variety of different tetrahedra shapes ranging from almost perfectly
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Figure 5.6: Extreme tetrahedra. From top to bottom: 2003, 2001, 2002 (descending order of size).
The leftmost column shows the best configuration and the second column the worst configuration in
terms of planarity P used for analysis in each year. The third tetrahedron in the top row is the flattest
configuration observed at DD occurrence in 2003. Details of these tetrahedra are summarised in
Table 5.2.
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Table 5.2: Parameters characterising the seven tetrahedra shown in Figure 5.6. From top to bottom:
day of year, side lengths Di j , quality factors and semi-axes a, b and c of the ellipsoid describing the
volumetric tensor. To identify the tetrahedra we use two letters defining their position in Figure 5.6,
the first letter indicates the row (Top, Middle, Bottom), and the second letter indicates the column
(Right, Middle, Left). The spacecraft separations and the lengths of the semi-axes are given in km.

TL TM TR ML MR BL BR
doy 22 44 30 53 34 52 54
D12 3659 3556 3982 827 1100 137 185
D13 3604 4404 5180 479 649 136 173
D14 3659 7192 8162 828 1028 81 106
D23 3737 2724 2759 1066 1303 182 225
D24 3674 3728 4181 1069 1309 182 224
D34 3751 4542 4592 699 553 120 99
E 0.029 0.546 0.597 0.281 0.337 0.300 0.351
P 0.025 0.797 0.989 0.578 0.718 0.571 0.718
QGM 2.998 1.844 1.565 2.489 2.243 2.480 2.231
QSR 0.959 0.273 0.204 0.511 0.425 0.500 0.416
QR8 1.000 0.188 0.009 0.608 0.408 0.604 0.400
QRR 0.999 0.132 0.002 0.745 0.666 0.719 0.660
a 1338 2543 2892 412 521 70 89
b 1299 1155 1164 296 345 49 58
c 1267 235 13 125 97 21 16

isotropic to almost totally flat (P ranges from 0.03 to 0.99) in 2003, the solar wind configu-
rations are all similar in 2001 and 2002. The extreme cases in terms of E and P are shown in
the middle (2001) and in the bottom (2002) row of Figure 5.6. The “archetype” is a relatively
flat “wedge” with the small side 1−3−4 extending approximately in the z-direction. Espe-
cially in 2002 the northernmost spacecraft (always Cl 1) is located almost directly above the
southernmost spacecraft (alway Cl 3 in 2002 and Cl 4 in 2001). Cl 2 is displaced far in the
negative y-direction (see also D23 and D24 in Table 5.2). Again, the projections on the walls
of the bounding box help visualising this.

Figure 5.7 demonstrates that the shown examples for the years 2001 and 2002 are in fact
typical for the whole reservoir of tetrahedra we use in these two years. Shown are the space-
craft coordinates relative to Cl 4 at the time of DD occurrences. Note that the abscissa is not
continuous in time. Discontinuous jumps in the coordinates are related to long gaps between
DD occurrences, appearing e.g. when Cluster is in the magnetosphere. Over the course of
the solar wind period5 the relative positions are fairly constant near apogee (i.e., in the solar
wind) and the sequence of spacecraft is always the same in the y- and the z-direction. Cl 4 is
furthest to the south followed by Cl 3, Cl 2 and Cl 1 in 2001. In the positive y-direction we
find consecutively Cl 2, Cl 1, Cl 4 and Cl 3, where Cl 2 is largely separated from the others

5The apogee of the Cluster orbit is on the day-side of the magnetopause approximately from January until
May (see chapter 4).
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Figure 5.7: Spacecraft positions relative to Cl 4 for all DDs in the order of temporal occurrence.
From top to bottom the x, y and z-components are shown. From left to right: 2003, 2001, 2002
(decreasing order of tetrahedron size). The typical colours for the individual spacecraft are used (Cl
1: black, Cl 2: red, Cl 3: green, Cl 4: blue). The dashed vertical lines indicate the tetrahedra shown
in Figure 5.6. The specific tetrahedra can be identified using the doy given in Table 5.2.

(≈ 1000 km), yielding the direction of elongation. Note that Cl 1 and 4 are very close to each
other in the x− y plane and largely separated in the z-direction (as in Figure 5.6). A constant
ordered sequence is also observed in the x-component, apart from Cl 2. Over the course of
the solar wind period the relative position of this spacecraft changes from being closest to
the Sun (largest x-component) to being closest to Earth. This corresponds to a clockwise
rotation of the tetrahedron about the z-axis in the GSE system, i.e., approximately about the
edge 1− 4. This can also be seen in Figure 5.6. Whereas Cl 2 is clearly the furthest to the
Sun on doy 34 (right tetrahedron), its x-component is close to that of Cl 3 on doy 53 (left
tetrahedron). Apart from the exchange of Cl 3 and Cl 4 the geometry of the spacecraft con-
stellation is qualitatively the same in 2002 (see Figure 5.7 (right)). Thus, the general shape
of the tetrahedra present in our analysis in 2001 and 2002 is well represented by the extreme
configurations shown in Figure 5.6.

Because of the large separation distances the variability of the tetrahedron shape is much
greater in 2003. However, some regularities can be found also. For instance, Cl 1 is generally
located closest to Earth (see Figure 5.7 (left)). Over the course of the year this spacecraft ro-
tates clockwise about the GSE z-axis (increasing y-component and decreasing x-component),
similar to Cl 2 in 2001 and 2002.

The parameters characterising shape, orientation and location of all tetrahedra associated with
the 366 DDs are shown in Figure 5.8. The format is the same as in Figure 5.5. As noted above,
the shape and the orientation of all tetrahedra are similar to each other in 2001 and 2002,
whereas large fluctuations between the various events are observed in 2003. Hence, the above
definition of a flattened “archetype” of all tetrahedra in 2001 and 2002 is indeed justified.
Note that the order of side lengths is generally the same for all events, e.g. D24 (D23) is
always largest in 2001 (2002). The only exception is the smallest side length. It is alternately
D34 and D13 in 2001 and D34 and D14 in 2002, i.e., the position of Cl 3 (Cl 4) moves “up
and down” relative to Cl 1 and Cl 4 (Cl 3) (cf. Figure 5.6). The spacecraft separations differ
strongly from DD to DD in 2003, especially D14. This side basically determines the degree of
regularity of the specific tetrahedra (see also Figure 5.6); the spread of the semi-axes lengths
correlates to the fluctuations of D14. The minor semi-axis c is particularly small, the major
semi-axis a large, and the volume is small, whenever D14 is large. Consequently, all quality
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Figure 5.8: Parameters characterising shape, orientation and location of the tetrahedra used in
our analysis. The format is the same as in Figure 5.5. The three sets of DDs found in the different
years are separated by the vertical lines. From left to right, the sets from 2003, 2001 and 2002 are
shown, i.e., sorted according to the tetrahedra sizes. The DDs of each set are plotted in their order
of occurrence. The parameters shown in the upper right plot are scaled for better comparison. The
unit of V ∗ is 108 km3 for the events in 2003, 106 km3 for 2001 and 5000 km3 for 2002. The spacecraft
separations D∗

i j are scaled by the average distance, i.e. D∗
i j = Di j/〈Di j〉, where the average is over all

six pairs and all events in the respective set. The three values of 〈Di j〉 are given in Table B.1. The unit
of the semi-axes lengths a∗, b∗ and c∗ is 500 km for the events in 2003, 100 km for 2001 and 20 km for
2002. In the upper left and in the lower right plot the value of Pc = 0.8 is indicated by the horizontal
line.

factors indicate degenerated tetrahedra for these events. For most events, however, the value
of D14 is similar to the other side lengths, and thus a, b and c have similar values, indicating
regular tetrahedra. The absolute value of c is of some importance for the error analysis (see
below). Whereas it only barely fluctuates around 100 km in 2001 and around 20 km in 2002,
c ranges between 13 and 1267 km in 2003.

The relatively constant semi-axes and tetrahedra volumes yield barely fluctuating quality fac-
tors for the events in 2001 and 2002. The planarity (〈P〉 = 0.68) is approximately twice as
large as the elongation 〈E〉 = 0.33 for most events in these two years. The average value
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of QGM is 2.31 in 2001 and similar in 2002. The fluctuations of the quality factors are
much larger in 2003. However, for most events E and P are small. The average values are
〈P〉 = 0.32 and 〈E〉 = 0.27. Also, 〈QGM〉 = 2.68 and the abundance of values close to 3
indicates a predominance of rather regular tetrahedra during DD observation in 2003. Note
that whereas QR8 and QRR vary over the total range from 0 to 1, QSR > 0.2 for all DDs. This
is because the elongation is never extreme.

The distance DE of the Cluster spacecraft to Earth ranges roughly between 16 to 20 RE for the
events considered in our analysis. The spacecraft separations are large enough to resolve the
individual satellite positions in 2003 on the scale in Figure 5.8. The sequence of spacecraft
according to DE is mostly the same, with Cl 1 being closest to Earth and Cl 4 furthest away
from Earth.

The direction of elongation and of the normal of planarity vary both, within a single orbit
(see also Figure 5.5) and over the course of the solar wind period. The general trend is indeed
a decrease in φ, i.e., a clockwise rotation about the GSE z-axis within all three years. Note
that in 2003 there are some large jumps in φ and θ from one DD to the next. These events
are widely separated in time. More important, the tetrahedra with deviating orientation are
all close to regularity, i.e., Ra and Rc are somewhat ambiguous in these cases. In any case,
considering all 366 DDs, the normal of planarity covers all azimuthal directions. (Note that
rotating the normal of planarity by 180◦ does not change the orientation.)

In order to quickly characterise the shape of the tetrahedra we are facing, a more concise rep-
resentation is the E-P diagram (lower right of Figure 5.8). The locations of the five general
ellipsoid shapes defined in section 5.2 are indicated. The tetrahedra associated with the DDs
found in 2001 and 2002 are all confined to a small area (P ∈ [0.58,0.72], E ∈ [0.28,0.35] for
the tetrahedra in 2001 and P ∈ [0.57,0.72], E ∈ [0.30,0.36] for the events in 2002). Note that
although the scatter is much larger for the events in 2003, especially regarding planarity, the
distribution is confined close to a single path in the E-P space with one end in the “pseudo-
spheres” region and the other end in the “knife blades” region. The values of E and P are
correlated, i.e., the tetrahedra with small P also have small values of E, and those being very
flat are also the most elongated ones. There are no “pancake” or “cigar” like configurations
in our data set. Thus, we are in the convenient situation not being forced to ban many events
because of awkward spacecraft constellation. The dashed vertical line indicates Pc. The tetra-
hedra above this line are marked orange, denoting the events we treat with extra caution. The
meaning of the black crosses will be explained in a later chapter. The majority of tetrahedra,
however, is located in the opposite corner, in the “pseudo-spheres” region.

This means that the prevailing configurations in 2003 are much more regular than the “worst
configuration below cut-off” presented in Figure 5.6. Figure 5.9 (left) shows a histogram of
the values of E and P in 2003. There is a group of nine tetrahedra with 0.69 < P < 0.80,
13 fail the constraint P < Pc (see also the E-P diagram in Figure 5.8). The remaining 182
constellations have P < 0.62, and for 139 tetrahedra (68% of all events in 2003) the planarity
is even P < 0.34. Thus, if we were to name a typical configuration prevailing during DD
observations in 2003 this would be an almost regular tetrahedron comparable to the “best
configuration” in Figure 5.6.
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Figure 5.9: Histograms of the values of E (black) and P (red) for 2003 (left), and of Rc
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and Rc
θ (right) for 2003 (black) and 2001 (red).

For the other rather flat configurations the normal of planarity is variable. Figure 5.9 (middle
and right) shows histograms of Rc

φ and Rc
θ for the events in 2003 and in 20016. This direction

is always close to the ecliptic (|θ| ≤ 25◦ for all DDs). The normals of planarity are even more
concentrated around zero with a tendency toward positive values in 2001 (θ ∈ [−5◦,20◦]).
For the majority of events −25◦ ≤ θ ≤ −15◦ in 2003, another peak is between θ = 15◦ and
θ = 25◦. For the total of the 366 DDs the whole range −25◦ ≤ θ≤ 25◦ is quite well covered.
For the vast majority of events φ = 0◦±30◦ in 2001, with a maximum in the interval [5◦,30◦].
Thus, generally the normal of planarity is indeed roughly aligned with the GSE x-axis in 2001.
The angle φ varies between 305◦ and 145◦ in 2003. Therefore, all possible orientations in the
ecliptic projection are represented. The distribution is not uniform, however. For the majority
of events φ ∈ [50◦,140◦], i.e., the normal of planarity is roughly aligned with the GSE y-axis
for these events and therefore approximately perpendicular to the prevailing direction in 2001.

It is important to be aware of the variability of Rc since the error in DD normal determination
from relative timings is largest in the direction normal to planarity (see section 7.4.2 and
chapter 9). Thus, the error is generally not isotropic, i.e., it cannot be visualised as a cone
with a circular base. Instead, the base is degenerated to an ellipse. For the discussion of our
results it is also important to note that the orientation of the tetrahedra is not related to the
direction of the IMF. The latter is described by the Parker spiral in long time averages, but is
locally undetermined. Therefore, no systematic bias is introduced due to irregular tetrahedra
when we relate the DD normals determined from relative timings to the local magnetic field.

So far we have mainly focused on the shape and the orientation of the configurations. An-
other important factor affecting the precision of multi-spacecraft analysis results is the size of
the tetrahedra related to the scale of the physical structures studied. The average separations
for the constellations used in our analysis are 〈Di j〉= 160 km, 940 km and 3860 km in 2002,
2001 and 2003, respectively, where the average is taken over all six pairs of spacecraft and
over all events in the particular year.7 The average separation is about 1/20 of the median DD
thickness in 2002. In fact, the complete Cluster array is inside the transition layer simultane-

6From Figure 5.8 it can be seen that the range of values in 2002 is similar to the range in 2001. Therefore
we do not show the 2002 events.

7In appendix B a listing of the minimum, maximum and average separation distance for each of the six pairs
of spacecraft is given.
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ously for a large fraction of the traversal time for all 33 events. The extension of the array
exceeds the DD thickness for a significant number of events in 2001. However, the average
separation is still below the median value of the DD thickness in this year. The largest separa-
tion (D24 = 1309 km) observed in 2001 approximately equals the median value. Finally, the
largest side lengths are given in 2003. Here even the smallest observed spacecraft distance
(D23 = 2704 km) is larger than the median DD thickness, i.e., in most cases individual space-
craft are inside the transition zone during disjoint time intervals. Note that the relative timing
method gains precision with increasing absolute values of the time differences.8 Thus, in ad-
dition to the generally more regular shape of the tetrahedra, the large spacecraft separations
favour good quality multi-spacecraft results for the events in 2003.

It is also important to compare the thickness 2c of the tetrahedron in the direction normal
to planarity (Rc) to the accuracy of orbit determination (see section 5.2). The tolerance of
the satellite separation distances is 10 km for separation distances less than 1000 km and 1%
for separation distances greater than 1000 km [DDID, 2000]. Comparison with the values
in Table 5.2 shows that even the minimum values of 2c occurring in our analysis exceed the
error in position.

We close this chapter with a final remark on the tetrahedra presented in this last section. The
positions of the four spacecraft are taken for each of them at the time when it crosses the DD.
Therefore, they form a tetrahedron which does not correspond to any instantaneous configura-
tion of the array. However, typical time lags between occurrence at the four spacecraft range
from tenths (2002) to tens (2003) of seconds. With the typical spacecraft velocity of approx-
imately 1 km/s near apogee, the difference between the fictitious and the real configurations
is small.

8This statement applies to the separation scales considered in this work. For larger separations e.g. the
validity of the assumptions for the relative timing method to be applicable must be scrutinised more carefully.



CHAPTER 6

THE SET OF DISCONTINUITIES USED IN THIS

WORK

This chapter consists of two parts. The purpose of the first part (sections 6.1-6.4) is to present
how the set of DDs used in our subsequent analysis is selected and to present the selection
results. The second part (section 6.5) is motivated by the observational result that the fre-
quency of occurrence of RDs and the ratio of the number of RDs to the number of TDs are
both considerably larger in the fast solar wind originating from coronal holes on the Sun (see
chapter 3). In order to test this hypothesis with the enhanced possibilities of the Cluster mis-
sion we divide the set of DDs identified in sections 6.1-6.4 according to their origin on the
Sun. In particular we prove the existence of a considerable subset of DDs embedded in solar
wind originating from coronal holes.

The selection of events consists of four successive steps: (1) The identification of periods
when the apogee of the Cluster orbit is on the day-side of the magnetosphere. This is the case
from December until June (see chapter 4), however, appreciable intervals with Cluster in the
solar wind are observed only from January until May in each year. (2) The identification of
intervals during which all four spacecraft simultaneously measure solar wind data within each
orbit (section 6.1). (3) An automated search for DDs using established algorithms (section
6.2 and 6.3). (4) Ensure that the found DDs are free of foreshock activity (section 6.4).

In addition to these four steps we visually inspect each of the DDs in the resultant set after
performing step (4). As a final step (not subject of this chapter) we discard events that are
likely to be subject to large errors when the analysis methods described in the following
chapter are applied to them.
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6.1 Solar wind periods

Since Cluster is primarily a magnetospheric mission, only a small part of the orbit traverses
the solar wind. We use Cluster data from 1 February 2001 (beginning of the scientific data
recording on board the Cluster spacecraft) until the end of the solar wind part of the Cluster
orbit in 2003. According to step (1) we thus identify three periods with the apogee of the
Cluster orbit being on the sunward side of the magnetopause in this time interval, namely
one at the beginning of 2001, one at the beginning of 2002 and one at the beginning of
2003. The last period also contains some days at the end of 2002. Table 6.1 shows the
first and the last day, the number of days and the total time with all four Cluster satellites
simultaneously providing solar wind magnetic field data in each of these three periods. The
solar wind intervals are identified by “eye-balling” the magnetic field data, and are taken
from one outbound bow shock crossing to the following inbound bow shock crossing. In
these parts of the orbit we search for intervals with simultaneous measurements. Each day
providing a considerable amount of time with simultaneous measurements contributes to the
number of days in the fourth column in Table 6.1, and the total time shown in the fifth column
is the sum of all intervals with simultaneous measurements. Note that the first two periods
(2001 and 2002) suffer from extended data gaps for one or more satellites. At the end of the
year 2002 the data coverage was extended from 50% to 100%. Therefore, the total time with
all four spacecraft simultaneously measuring solar wind magnetic field data is almost by an
order of magnitude larger in the third period (2003) as compared to the other two periods.
Figure 6.1 gives a detailed overview of the times with all four spacecraft measuring solar
wind magnetic field data on a daily basis. It clearly shows that particularly the second period
(2002) suffers from bad data coverage. Useful intervals are usually short in duration, making
the identification of suitable DDs for our analysis difficult in this period.

Note that the solar wind intervals discussed above are preliminary, since the only two re-
quirements for identifying them are (1) all four satellites are sunward of the bow shock and
(2) all four FGM instruments simultaneously deliver data. Foreshock activity has not been
accounted for so far.

The next step, step 3, is to run automated search algorithms for DDs on the identified solar
wind periods. This procedure is detailed in the following two sections.

Table 6.1: First and last day, number of days and total number of hours with all four spacecraft pro-
viding simultaneously solar wind magnetic field data for each of the three periods identified. “name”
denotes the name of the set of DDs that we identify in the respective periods.

name first day last day # days time [h]
DD2001 3 Feb 2001 23 Apr 2001 22 274
DD2002 12 Jan 2002 23 Apr 2002 23 170
DD2003 27 Dec 2002 30 Apr 2003 82 1120
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Figure 6.1: Overview of days suitable for solar wind analysis with Cluster. Shown is the time with
all four spacecraft simultaneously measuring magnetic field solar wind data for each of these days.
Note that the third period (right) also includes two days at the end of 2002. Days left of day “zero”
denote the last days of 2002, e.g. day “-1”of 2003 corresponds to 31 December 2002.

6.2 Search criteria

Several similar criteria for detecting solar wind directional discontinuities (DDs) have been
published in the past [Siscoe et al., 1968; Burlaga, 1969a; Mariani et al., 1973; Tsurutani
and Smith, 1979; Lepping and Behannon, 1986]. They have in common that a sharp change
in the magnetic field embedded in a comparatively quiet background is identified. The two
most commonly used techniques in statistical studies, similar to ours, are those developed
by Tsurutani and Smith [Tsurutani and Smith, 1979] (in the following referred to as TS) and
Burlaga [Burlaga, 1969a] (referred to as B). Other authors use methods which are almost
identical to either one of the two techniques. For instance, Belcher [1975]; Barnstorf [1980]
use methods nearly the same as the B-method. More recent studies most often use the TS-
method [Neugebauer et al., 1984; Horbury et al., 2001b]. In order to provide consistency
with these earlier works we also use the B- and the TS-method. They will be described in the
following.

Tsurutani and Smith [1979] introduce four principal requirements for a selection method:
(1) The criteria should be as similar as is possible to those used in previous DD studies to
allow for comparison. (2) The criteria should not bias against DDs occurring in regions char-
acterised by weak magnetic fields. This constraint is necessary both because of the variability
in field strength with radial distance from the Sun and because of the time variability of field
strength at a given heliocentric distance. (3) The criteria should not bias against any type
of DD, i.e., either RDs or TDs. (4) The criteria should be implementable on a computer to
eliminate human error and to allow processing of large data sets.

The TS-method consists of three criteria [Tsurutani and Smith, 1979] which we denote by
TS1-TS3. Tsurutani and Smith [1979] apply them to data averaged over 60 s.

TS1: |∆B| ≥ Bmax/2

TS2: |∆B| ≥ 2δ, with δ2 = max(1
5 ∑i−k

j=i−k−4 |B j−B j−1|2, 1
5 ∑i+k

j=i |B j+1−B j|2)

TS3: Discontinuities are separated by at least 3 min.
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The main criterion TS1 states that the magnitude of the vector change |∆B|= Bi−Bi−k across
the DD exceeds one half the larger of the field magnitudes on either side of the DD. Based on
an empirical evaluation of the effect of varying k, Tsurutani and Smith [1979] find k = 3 to be
a nearly optimum choice. Choosing k < 3 would not allow for the identification of thick DDs,
and choosing k > 3, field changes other than discontinuities, such as Alfvén waves, tend to
be misinterpreted as discontinuities. TS2 ensures that the vector jump across the DD is large
in comparison with the general level of vector fluctuations on either side of the DD. The
fluctuation level is measured as the root mean square of the magnitude of the field changes
adjacent to the DD. Vector field changes between five successive vectors following Bi and
preceding Bi−k are used. TS3 is a consequence of a need to detect relatively thick DDs as
well as thin DDs. To ensure that a thick DD is not detected more than once, it is required that
adjacent DDs are separated by three minutes.

The main criterion of the B-method coincides with the definition of a DD (section 3.1), i.e.,
a rotation of the magnetic field vector by more than 30 degrees in less than 30 s [Burlaga,
1969a]. Three further criteria ensure among others that the fluctuations in the vicinity of the
DD are small. We denote the B-criteria by B1-B4. Burlaga [1969a] applies them to 30 s
average data.

B1: The angle ω between two successive field vectors must satisfy ω > 30◦.

B2: If criterion B1 is satisfied between the field vectors B1 and B2 then an average is com-
puted for the two points preceding B1 and for the two points following B2 (data points
marked by ovals in the upper left part of Figure 6.2). The angle ω̄ between these two
average values must also satisfy ω̄ > 30◦. This procedure eliminates noise points and
highly disturbed regions.

B3: The DDs obtained by step B1 are classified in single, double, triple and higher multiples
(see Figure 6.2). A single is simply a > 30◦ change in field direction which occurs in
30 s. These are most common. A large number of DDs obtained in step B1 occur
in pairs, i.e., two DDs occur separated by a 30 s interval. Such doubles, illustrated
in Figure 6.2, can be considered a single DD. A double would be seen if a true DD
occurred during a 30 s average of the field quantities. Therefore, both singles and
doubles are regarded as true DDs. The method of computing ω̄ gives two values of ω̄
for a double: one computed from the ovals in Figure 6.2 and one from the squares. A
further requirement for doubles is that these two angles are equal within 15◦. Triples
and higher multiples are eliminated from the set obtained in step B1. They could be
the result of several closely spaced DDs or a large gradient.

B4: Discontinuities which are separated by less than four data points (i.e., 2 minutes when
30 s averages are used) are disregarded.

Following Söding [1999] we apply the B-method to 60 s average magnetic field data to pro-
vide better consistency among the two techniques. As a final check, the selected DDs are
individually inspected, and ambiguous DDs are eliminated.

In order to compare the two methods, it is instructive to consider the case of a constant mag-
netic field magnitude (B1 = B2 = Bmax). In that case TS1 can also be written as ω & 28.96◦,
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Figure 6.2: Illustration of the B-method. Each point represents an average value. A=̂B1, B=̂B2.
Taken from Burlaga [1969a].

i.e. TS1 would select slightly more events as potential DDs than B1 (ω > 30◦). Note that in
most cases the change in magnitude across DDs is in fact rather small [Siscoe et al., 1968;
Burlaga, 1969a; Smith, 1973a]. However, in contrast to B1, TS1 also selects events with
smaller angular change provided that the field magnitude changes. Hence, the criterion TS1
is more general than B1: all DDs that satisfy B1 also satisfy TS1, but not vice versa. The cru-
cial difference is that B1 only accounts for directional changes, whereas TS1 also accounts
for changes in the field magnitude. In addition, the B-method is incapable of detecting thick
DDs, because ω is measured between two consecutive field vectors, whereas |∆B| is com-
puted using vectors separated by 3 min in the TS-method.

However, due to the differences in the additional criteria, the B-method can identify DDs that
are rejected by the TS-method. For example, the avoidance of DDs embedded in a strongly
fluctuating background field is realised by different means. It appears that the restriction TS2
using five data points on each of the two sides of the potential DD is stronger than B2 where
only two data points are used on either side. A structure that satisfies B2 but not TS2 certainly
exists.

Note that the threshold values in both the TS- and the B-method are empirical and not based
on physical discontinuity models. In particular the threshold spreading angle of 30◦ is arbi-
trary. The TS-method ostensibly avoids this arbitrary threshold angle. However, since signif-
icant changes in the field amplitude are rare, the TS1 effectively corresponds to ω & 30◦.

For multi-spacecraft observations, an additional complication is that a DD has to be simulta-
neously detected at all four spacecraft. Since the separation between the Cluster spacecraft is
relatively small it is unlikely that a DD is only observed at some of the spacecraft but not at
the others. Nevertheless, detection of a DD at one spacecraft but not at another does happen.
However, the explanation is usually not the tempting conclusion of having found a genuine
“edge” of a DD, but an artifact of the thresholding in the TS- or B-method. The measured
values at one spacecraft may be marginally above the threshold values, but marginally below
at another.



58 THE SET OF DISCONTINUITIES USED IN THIS WORK

Time [min]
6

Cl 1

Cl 2

0 1 2 3 4 5

Figure 6.3: Problem of simultaneous identification of a DD at different spacecraft due to differing
averaging intervals. Shown are hypothetical magnetic field data measured at two spacecraft (Cl 1 top
and Cl 2 bottom). The red line indicates high resolution data, and the black circles are 60 s averages.
These are connected by the black dashed line. Each of these average values is obtained by averaging
the high resolution data bounded by the vertical dashed lines.

We define a DD to be observed simultaneously at two or more spacecraft if a DD is detected
at these spacecraft within one minute (or within ±1 data point). Hence, if at Cl i a DD is
identified at the k’s data point of the day and at Cl j a DD is identified at data point k− 1, k
or k +1, then we say this DD is simultaneously found by spacecraft i and j . This definition
is reasonable, because (1) we do not observe time lags > 1 min and (2) according to TS3 and
B4 confusion between different DDs is not possible.

Because a DD sampled in high time resolution may have a different appearance when av-
eraged over chronologically shifted 1 min intervals the time lag may be another reason for
detecting a DD at one spacecraft but not at another. Figure 6.3 illustrates the problem. An
infinitely thin DD which appears as a sharp jump in high resolution data (red line) is consid-
ered. We assume the time lag between Cl 1 and Cl 2 to be exactly 30 s. Finally, the time grid
is such that at Cl 1 the 60 s averaging interval of the last averaged data point before the DD
lies completely on the “left” side of the DD, and the entire interval used to obtain the first 60
s average field vector after the DD lies on the “right” side. Let us assume the field rotates
by an angle ω = 40◦ across the DD. Then, the DD appears as a “single” DD at Cl 1, i.e., the
rotation takes place exactly between two data points. Due to the 30 s time lag one of the 60 s
average data points is centred at the time where the true transition takes place at the position
of Cl 2. For that data point one half of the averaging interval is on one side and the other half
on the other side of the DD. Therefore the DD appears thicker at Cl 2 than it does at Cl 1.
The 40◦ rotation is split into two 20◦ rotations. Thus, the DD would fail the B1 criterion at
the position of Cl 2.

Since generally the time lags we observe are much smaller than 30 s (the average values in
our analysis are 0.1 s in 2002, 1.3 s in 2001 and 5.11 s in 2003) we do not expect this effect
to be crucial. Nevertheless, shifted averaging intervals may cause small differences in the
individual time series which particularly for marginal cases can be decisive for whether or
not a DD is identified.

Due to the additional constraint that a DD must be identified at all four spacecraft, our selec-
tion process is stricter than application of the TS- or the B-method to a single spacecraft.
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6.3 Application of the search criteria

We independently apply both criteria, TS1-TS3 and B1-B4, to data from the intervals with
simultaneous solar wind measurements at all four spacecraft. We find that in the majority of
events a DD is detected consistently at all four spacecraft, at least by one of the two methods.
This section provides a statistical analysis of the events where a DD is only identified by one
of the two methods or only at some of the four spacecraft. Furthermore, we show that our
data is consistent with previous reports if interpreted as single-point observations.

Figure 6.4 shows the total number of DDs identified in each of the three periods separately
for the TS-method (left) and the B-method (right). On the right hand side of each plot the
identification results for the individual satellites Cl i are shown. Note that the total number
of DDs found is almost the same at each satellite, i.e., there is no bias as expected for equal
spacecraft. However, the DDs identified at the individual spacecraft are not always identical.
The left side of the plots in Figure 6.4 shows the number of DDs detected simultaneously at all
four spacecraft (4sat), at exactly three spacecraft (3sat), at exactly two spacecraft (2sat) and
at exactly one spacecraft (1sat). For the majority of events a DD is identified simultaneously
at all four spacecraft. Otherwise a DD is most likely to be observed at exactly one spacecraft.
Apart from the B-method in 2002 the least probable scenario is that two spacecraft identify
a DD, whereas the other two do not. This means that for the vast majority of events the
identification criteria yield the same result at three or at all four spacecraft.

For our further analysis we only use those DDs that are found by at least one of the two
methods simultaneously at all four spacecraft. In other words, the preselection consists of the
set union of TS4 and B4, where TS4 is defined as the set of DDs identified simultaneously at
all four spacecraft using the TS-method, and B4 is defined accordingly. For the reminder of
this thesis we do not distinguish by which method a DD has been identified. Therefore we
want to state which method provides the majority of DDs. Table 6.2 gives an overview. The
classification of the DDs contained in the set union B4 ∪TS4 into those DDs found by both
methods (B4 ∩TS4) and those DDs found solely by one of the two methods (TS4 \B4 and
B4 \TS4) is remarkably constant regarding the three solar wind periods. In agreement with
the discussion in the previous section the TS-method yields most events of our preselection.
Only ≈ 10% are solely identified by the B-method, ≈ 63% solely by the TS-method and
≈ 27% by both.

Table 6.2: Cardinal numbers of B4∪TS4, B4∩TS4, TS4 \B4, B4 \TS4, TS4 and B4. For the inter-
section B4∩TS4 and the difference quantities TS4 \B4 and B4 \TS4 the percentages of the set union
cardinal number are given in brackets.

name B4∪TS4 B4∩TS4 TS4 \B4 B4 \TS4 TS4 B4

DD2002 372 100 (27%) 240 (64%) 32 (9%) 340 132
DD2001 489 137 (28%) 310 (63%) 42 (9%) 447 179
DD2003 2673 715 (27%) 1700 (63%) 258 (10%) 2415 973
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Figure 6.4: Number of DDs identified by the TS-method (left) and by the B-method (right) in each
of the three solar wind periods of the Cluster orbit. The periods are sorted according to the spacecraft
separation in the respective years, i.e., from top to bottom: 2002, 2001 and 2003.

Analysis of events identified by less than four spacecraft

In the previous section we have discussed possible reasons why a DD may not be identified
by all four spacecraft. Consideration of the relative number of DDs simultaneously detected
at all four spacecraft as a function of spacecraft separation offers some further insight: Figure
6.5 shows this relative number as a function of the nominal spacecraft separation for each of
the three solar wind periods separately for the TS- and the B-method.

The figure shows, in agreement with the discussion in the previous section, that consistency
among the four spacecraft is better for the TS-method than for the B-method. Due to the time
lag a DD may appear differently at the various spacecraft when the field vectors are averaged
over 60 s depending on the time of the true DD relative to the time grid. As a consequence
B1 may be fulfilled at one spacecraft but not at another. Since |∆B| in TS1 is not computed
from consecutive field vectors this effect is less relevant for the TS-method.

For both methods the consistency between spacecraft decreases with increasing separation
as intuitively expected. The question is whether this dependence is a consequence of real
spatial or temporal changes in the magnetic field structure or simply a result of increasing
time lags with increasing separation. The effect of the time lags will undoubtedly be of some
importance at 5000 km separation and noticeable at 600 km. However, at 100 km separation,
the time lags are well below 1 s, and their effect cannot account for the increase from 0.83
(or 0.87) to 1.

Although we have not studied this quantitatively, it appears that many of the cases with dif-
ferent identification results at the different spacecraft are marginal, i.e the criteria are barely
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Figure 6.5: Relative number of DDs found simultaneously at all four spacecraft as a function of
the spacecraft separation. Since measurement at the same point in space must yield identical search
results we added the theoretical value (0,1).

fulfilled at some spacecraft and barely not fulfilled at the others. In most cases, however,
the main criterion (either TS1 or B1) is satisfied simultaneously at all four spacecraft, but
the secondary constraints, in particular TS2 and B2, are fulfilled at some spacecraft and not
fulfilled at the others. Hence, although it is tempting to draw conclusions regarding the true
structure of the actual discontinuity from Figure 6.5, such as propositions on the lateral size,
we abstain from doing so. A plausible conclusion is that the actual discontinuity is always
observed at the location of all four spacecraft (apart from the artifically created discrimination
in marginal cases), but due to differing appearances in the averaged data and due to differing
levels of background fluctuations (to be accounted for by the criteria TS2 and B2) in marginal
cases the detection is inconsistent. Both effects gain importance with increasing separations.

Note that we assume that the observed magnetic field structure is composed of an “actual
discontinuity” and a certain level of background fluctuations. This type of model will be
important in later chapters.

Also note that the DDs identified so far, though being sunward of the bow shock, could be
subject to foreshock activity. Hence, background fluctuations not directly related to the actual
discontinuities are likely to influence the results.

Consistency with previous single-point observations

Although the focus of this thesis is on four-point observations, it is useful to compare the
acquired data to previous one-point observation studies to ensure consistency. The remainder
of this section provides this comparison, treating each satellite as an independent mission.

According to previous studies [Burlaga, 1969a; Tsurutani and Smith, 1979] the TS-method
identifies two events per hour on average whereas the B-method yields only about one DD
per hour. Using each of the four Cluster satellites as a separate mission we find on average
1.95 DDs/h in 2001, 2.29 DDs/h in 2002 and 3.17 DDs/h in 2003 for the TS-method and
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0.82 DDs/h in 2001, 0.93 DDs/h in 2002 and 1.48 DDs/h in 2003 using the B-method. These
values are in good agreement with those found by Burlaga [1969a]; Tsurutani and Smith
[1979]. Note that the occurrence rate fluctuates strongly from year to year. In particular rel-
atively large values are found in 2003. In section 6.5 we will show that this is due to fast
solar wind streams present in this year. This correlation between the solar wind speed and the
occurrence rate is also consistent with earlier observations [Burlaga et al., 1977; Solodyna
et al., 1977; Barnstorf, 1980; Lepping and Behannon, 1986]. Also in agreement with ear-
lier studies [Burlaga et al., 1977; Tsurutani and Smith, 1979; Barnstorf, 1980; Lepping and
Behannon, 1986; Tsurutani et al., 1994; 1995; 1996a; Ho et al., 1996] we observe the occur-
rence rate to be highly variable from day to day (see section 6.5). Finally, the time difference
between occurrence of two consecutive DDs is found not to be constant, even within one day.
Instead, there is a tendency for DDs to occur in clusters [Burlaga, 1969a]. Although we have
not quantified this, we consistently observe clustering.

Note, however, that Cluster is not suitable for that kind of analysis because the four spacecraft
are not permanently in the solar wind, and the search results as presented in this section are
still hampered by possible foreshock activity.

Also note that due to the additional constraint that a DD must be identified at all four space-
craft we only use a subset of the DDs identified at the individual spacecraft in our subsequent
analysis.

To summarise, our single spacecraft results regarding DD occurrence are in good agreement
with earlier studies: (1) The number density of identified DDs is not constant in time but
fluctuates strongly from day to day. These fluctuations are correlated to the fluctuations of
the solar wind speed. (2) The tendency of DDs to occur in clusters is also visible within one
day and (3) a frequency of one (B-method) and two (TS-method) DDs per hour is observed
on average. This consistency contributes to our argumentation that the ensemble of DDs used
in our analysis does not differ statistically from those in earlier studies. We present further
evidence in section 8.1.

We have shown that most DDs are simultaneously identified at all four spacecraft. The ratio
of DDs simultaneously found at all four spacecraft to the average number of DDs identified
at each single spacecraft decreases with increasing spacecraft separation. We suggest that
this is partly due to the time lag between DD observations at the various satellites. A physical
reason may be that the general level of vector fluctuations on either side of the DD differs
considerably from spacecraft to spacecraft.

The total number of potential DDs identified for further analysis is 489 in 2001, 372 in 2002
and 2673 in 2003. Most of them (≈ 90%) are identified by the TS-method. Although there
were many more DDs visible at all four spacecraft than were identified by the TS- and the
B-method, we use only these DDs to provide consistency with earlier work. The next step is
to discard those DDs which are likely to be inside the Earth’s foreshock region.
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6.4 Avoiding foreshock activity - Final set of DDs

The DDs upstream (sunward) of the bow shock selected in the previous section cannot a
priori be regarded as being free of any influence of the Earth. The region upstream of the
bow shock and immediately downstream of the sheet of interplanetary magnetic field lines
tangential to the bow shock is subject to disturbances. This region, magnetically connected
to the bow shock, is referred to as the foreshock region.

As indicated in Figure 4.2 (section 4.2) Cluster only sporadically traverses the undisturbed
solar wind. Large portions of the orbit upstream the bow shock are in the foreshock region.
The careful selection of DDs in the undisturbed solar wind is the subject of this section.

Due to the interaction with the Earth’s magnetic field the solar wind decelerates and flows
around the magnetosphere. The bow shock is built where the transition from super-sonic to
sub-sonic velocity takes place. The major part of the solar wind particles transmits through
the bow shock into the magnetosheath. A small part (≈ 1%), however, is reflected and moves
along the field lines opposite to the solar wind flow direction with velocities two to three times
the solar wind velocity [Tsurutani and Rodriguez, 1981]. For this reason interactions between
the two populations and wave phenomena result. Since the interplanetary magnetic field is
convected with the solar wind this region of disturbed solar wind (foreshock) can only be
observed downstream of the sheet of interplanetary magnetic field lines tangential to the bow
shock: While the particles move back towards the Sun the field lines they are attached to move
downstream towards Earth [Scholer, 1991]. Therefore this curved surface is called foreshock
border. It is guaranteed that on the upstream side of this border no foreshock activity takes
places. Note that since the reflected particles are not infinitesimally fast, the true border is
closer to Earth. The angle between the theoretical and the true foreshock border depends on
the particular species being reflected. Since electrons are faster than ions, this angle is larger
for the ion foreshock border than it is for electrons [Treumann and Baumjohann, 1997].

According to the Parker spiral the acute angle between the interplanetary magnetic field and
the Earth-Sun line is 45◦ at 1 AU. However, the spiral form is only valid for long-term av-
erages. Due to the high variability of the field direction on small time scales this angle can
have any value. Consequently, the position of the foreshock border is constantly changing.

In order to decide whether Cluster is inside or outside the Earth’s foreshock, the position
of the bow shock must be known. In response to the variable solar wind the bow shock
must also be regarded as a variable surface. The distance of the sub-solar point (point on
the surface being closest to Sun) from Earth fluctuates around 15 RE (Earth radii). The bow
shock extends downstream of the sub-solar point and can be approximated by a hyperbolic
surface. Existing models determine an average position of the bow shock by fitting a two or
three dimensional function to the transition coordinates of several spacecraft that cross the
bow shock [Fairfield, 1971; Peredo et al., 1995]. The function describes a surface of second
order which includes ellipsoids and hyperboloids.

We use the model proposed by Peredo et al. [1995] where besides the transition coordinates
also the corresponding solar wind plasma data are utilised to give the shape and position of
the bow shock according to the prevailing solar wind conditions. Peredo et al. [1995] bin the
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bow shock crossings into four ranges of the observed Alfvénic Mach number MA = Vsw/VA,
where Vsw is the solar wind and VA the Alfvén velocity. Best-fitting bow shock surfaces are
then derived for each subset and for the total of the crossings. Since their data set lacks
any crossings with latitude below -50◦, Peredo et al. [1995] need to assume a north-south
symmetry.

Criterion to decide if Cluster is inside or outside the foreshock region

The technique we use to decide whether Cluster is inside or outside the foreshock region
is based on the geometrical considerations above and is illustrated in Figure 6.6. We say
a spacecraft is inside the foreshock region if the magnetic field line that goes through the
spacecraft is connected to the bow shock. Otherwise the spacecraft is in the undisturbed
solar wind. For the computation the position vector r0 of the spacecraft, the magnetic field
vector B0 and the position of the bow shock must be known. Introducing the straight line
S: s0 = r0 + mB0 into the bow shock model equation from Peredo et al. [1995] and solving
this equation for m shows whether this line intersects the bow shock or not: If real solutions
for the parameter m exist then the straight line intersects the bow shock and the spacecraft is
inside the foreshock region. If no real solution exists then there are no intersections and the
spacecraft is outside the foreshock region.

This method has been used in previous studies [Sperveslage, 1999]. Uncertainties are: (1)
the variability of the magnetic field, (2) the magnetic field lines are not necessarily straight
lines and (3) the bow shock is only on average approximated by the model equation. The true
variability of the bow shock cannot be accounted for by the model. Also note that we do not
distinguish between different Alfvénic Mach numbers. Instead we always use the bow shock
model Peredo et al. [1995] derive using the total number of crossings.

Besides the “yes-no”-decision explained above it is instructive to know how far away from
the foreshock border a spacecraft is located. Following Sperveslage [1999] we define D
as the shortest distance between the magnetic field line which goes through the measuring
spacecraft and the foreshock border (see Figure 6.6). In other words, D is the radius of the
cylinder around S that is tangent to the bow shock. We calculate D in computing the band of
straight lines which are parallel to S and which are tangential to the bow shock. For each of
these straight lines we then compute the distance to S. The shortest of these distances is D.
We denote the corresponding tangent by T . If the spacecraft is within the foreshock region
we define D to be negative. Positive values of D indicate that the spacecraft is outside the
foreshock region. For D = 0 the spacecraft is located in the foreshock border.

In order to decide which of the DDs in our preliminary set selected in the previous section
can be used for further analysis we seek a criterion based on the considerations above. The
first and most important requirement on this criterion is that all DDs that are likely to be
influenced by foreshock activity are discarded. The second requirement, however, is not to
be too generous in dropping DDs, so that enough events for a meaningful statistical study
remain after this selection step. With the apogee of Cluster (19-20 RE) being only a few RE

larger than the distance of the subsolar point of the bow shock to Earth this is a delicate task.
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Figure 6.6: Foreshock geometry in the ecliptic plane and illustration of the parameter D. Shown
is the bow shock, the foreshock border and two spacecraft measuring the (same) magnetic field which
is used to determine the orientation of the foreshock border. A spacecraft left of the foreshock border
(e.g. the green spacecraft) is outside the foreshock. The red spacecraft is inside the foreshock.

As a consequence of the field rotation across the DD the position of the foreshock border
generally changes when the DD passes the spacecraft. Therefore, Cluster can be outside the
foreshock region on one side of the DD, but inside the foreshock region on the other side.
The criterion must be capable to detect DDs which could be subject to foreshock activity on
either side. Also the time resolution of the magnetic field data used to determine the straight
line S is important. On the one hand we aim to avoid decisions based on high frequency
field fluctuations, i.e., the data should be averaged over sufficiently long time intervals. On
the other hand the averaging intervals should not be too long, since then one might miss
crossings of the foreshock border due to a changing field direction.

To find a criterion that accomplishes the formulated tasks we calculate the distance D for
different time resolutions of the magnetic field and plot this parameter together with the
magnetic field. In order to see how the value of D correlates with visible foreshock waves
we visually inspect a considerable fraction of the data. In addition, we investigate how the
parameter D evolves as a function of time across several DDs. Six different cases, examples
of which are shown in Figure 6.7, are possible: (1) D is constantly greater 0 over long periods
of time before, after and during the DD passes by, i.e., Cluster is outside the foreshock region
for the whole time (upper left). (2) D > 0 a long time before and after the DD, but D < 0
for a short time interval during the transition, i.e., Cluster dips into the foreshock region for
a moment (upper right). (3) and (4) are the complementary cases to (1) and (2), i.e Cluster is
inside the foreshock region the whole time or most of the time (middle panel of Figure 6.7).
Finally, cases (5) and (6) are those where D changes sign when the DD crosses Cluster. We
observe all six types.

Which of these cases is observed depends on the details of the field rotation. Let us for
example consider the green spacecraft in Figure 6.6 and assume the shown magnetic field
vector represents the downstream side of the DD. Then a counter-clockwise field rotation
around the GSE z-axis of, say, 90◦ yields a D-signature corresponding to case 2. If the
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Figure 6.7: Six cases describing the evolution of D across a DD. Shown are 4 s, 60 s and hourly
averages. The DD is in the centre of the 20 min intervals. The first group (top) corresponds to
DDs considered as being outside the foreshock region, the second group (middle) to DDs inside the
foreshock and the third group (bottom) contains DDs where Cluster is inside the foreshock on one side
and in the undisturbed solar wind on the other side. The complementary case (6) is not shown.

rotation angle is only ≈ 30◦ then the upstream magnetic field points towards the bow shock
and case 6 is realised. Finally, if the rotation axis lies in the ecliptic and is perpendicular to
the downstream B then the straight line S does not intersect the bow shock for any rotation
angle, i.e case 1 is realised.

These considerations demonstrate that a selection criterion eliminating events that are likely
to be influenced by foreshock activity introduces some bias: Certain magnetic field evolutions
will be discriminated against. Note, however, that this not necessarily implies a bias against a
specific type of DD. A discrimination against either RDs or TDs can only appear when they
have different statistical properties regarding orientation. Certainly, both RDs and TDs are
possible.
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Figure 6.8: D versus time for two typical days with Cluster in the solar wind. Shown are day 43
of year 2001 (left) and day 44 of year 2003 (right). The bow shock crossing on the former day is
indicated by the vertical line. The inserts show a 2 hour interval at the end of each day. D is plotted
for each spacecraft separately. The standard Cluster colour coding (Cl 1: black, Cl 2: red, Cl 3:
green and Cl 4: blue) is used.

In principle, cases 2-6 may be influenced by foreshock activity. However, for case 2, inspec-
tion of the data shows that the duration of negative D is generally small and that in these cases
no foreshock waves are observed in the magnetic field data. Therefore, in order to keep as
many events as possible and to minimise the bias introduced due to this selection process, we
formulate the following criterion: We use 60 s magnetic field averages to determine D and
consider a time interval ± 10 minutes on either side of each DD, i.e we have 21 consecutive
values of D in the vicinity of the DD (as in Figure 6.7). We then classify the DDs into three
groups according to the number k of positive D values: (I) outside foreshock (k ≥ 14), (II)
inside foreshock (k≤ 7) and (III) ambiguous (7 < k < 14). This classification combines cases
1 and 2 in group I, cases 2 and 3 in group II and cases 5 and 6 in group III.

A gradual change in field direction on one or both sides of the DD can cause further sign
changes of D. However, the time interval, the time resolution and the classification are chosen
such that the above assignment is valid in most cases according to our experience. Only the
events in group I are considered in our further analysis. In other words, we select all DDs
with more than 2/3 positive D values in the vicinity of the event. This way the spacecraft are
most likely outside the foreshock region on both sides of the DD. Note, however, that during
the field rotation Cluster may be inside the foreshock region for a short period of time.

Another requirement on the criterion follows from the necessity to account for the size of the
Cluster array, as will be discussed below.

Figure 6.8 shows 60 s averages of D versus time for two typical days with the apogee of
Cluster in the solar wind. On the left hand side day 43 of 2001 and on the right hand side day
44 of 2003 are shown. Both are on the evening side of Earth. Whereas Cluster is in the solar
wind (upstream of the bow shock) the whole day 44 of 2003, on day 43 of 2001 the outbound
crossing of the bow shock is at ≈ 07:30 (indicated by the vertical line). The behaviour of
D follows the trajectory of the spacecraft on average. Before the bow shock traversal, D
is by definition negative and increases approximately until apogee is reached. The value of
D turns from negative to positive values approximately 2.5 h after the bow shock crossing.
The fluctuations superposed to the otherwise gradual “orbit-induced” behaviour are due to
changes in the field direction. Rapid jumps of D correspond to DDs.
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Table 6.3: Number and percentage of DDs (related to the total number of DDs in B4∪TS4) that are
observed outside the foreshock, inside the foreshock, and the number of ambiguous DDs.

name B4∪TS4 outside inside ambiguous
DD2002 372 57 (15%) 255 (69%) 60 (16%)
DD2001 489 146 (30%) 254 (52%) 89 (18%)
DD2003 2673 257 (10%) 2067 (77%) 349 (13%)

Several insights can be gained from Figure 6.8. Firstly, intervals with Cluster being outside
the foreshock region (D > 0 RE) can be clearly identified. (Note, however, that generally
D < 4 RE). Within these intervals thin “dips” in D are observed, sometimes causing D to
be negative for a short duration (DDs according to case 2). The DDs surviving our selection
criterion are typically taken from such intervals.

Secondly, D is significantly different at the various positions of the four spacecraft in 2003.
According to section 5.5, Cl 4 has the largest distance from the bow shock and Cl 1 is closest
to Earth. The insert in Figure 6.8 shows a magnification of a 2 hour interval at the end of
the day (20:21-22:21). In the beginning of this interval all four spacecraft are outside and at
the end the whole array is inside the foreshock region. However, in between the foreshock
border cuts through the tetrahedron.

Our criterion must ensure that the whole array of spacecraft is outside the foreshock re-
gion. Therefore, we generate a fifth time series where each entry Dmin(tk) is defined as
Dmin(tk) = min(D1(tk),D2(tk),D3(tk),D4(tk)), where Di is the value of D at spacecraft i. The
2/3-criterion defined above is then applied using D = Dmin. Note that in 2001 and 2002 it is
almost irrelevant whether D is taken at any of the four spacecraft or if Dmin is used. Even in
the insert in Figure 6.8 (left) the four lines representing D coincide. However, in 2003 when
the tetrahedron is large, the difference is significant: Whereas using the position vector of Cl
4 yields 372 DDs that satisfy our foreshock criterion, using Cl 1 only 272 such DDs can be
identified. Using Dmin, 257 DDs are regarded as being outside the foreshock region.

Application of the criterion

The resulting number of DDs regarded as being inside or outside the foreshock region or
regarded as ambiguous according to our criterion are summarised in Table 6.3. Also shown
is the number of DDs in the preliminary set B4∪TS4 (from previous section).

Note that the number of ambiguous DDs is relatively small. As discussed above these are
predominantly events with Cluster being inside the foreshock region on one side but outside
the foreshock region on the other side (cases 5 and 6). Therefore, for the vast majority of
events (86% of the total number of DDs) the status is identical on both sides. This means
that for the majority of DDs discarded in this step the field direction on both sides is such
that Cluster is in the foreshock region. The details of the field rotation are irrelevant for the
selection process. Hence, for a bias against RDs or TDs to be introduced some mechanism
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Figure 6.9: Correlation between D and foreshock waves. Shown are the components and the
magnitude of 4 s Cluster magnetic field averages in GSE coordinates and the parameter D = Dmin

(60 s averages) for a three hour solar wind period. The standard colour code is used to indicate the
individual spacecraft.

would have to be presumed causing the field direction on both sides to be statistically different
for RDs than for TDs, such that Cluster is more likely to be in the foreshock region in the
vicinity of either type of DD. Since DDs are most likely produced on or near the Sun and
undergo dynamic changes in the solar wind until they reach 1 AU, a mechanism of that type
is hard to think of. Hence a bias against RDs or TDs is unlikely.

Unfortunately, but expected because of the orbit characteristics, most DDs are observed in
the foreshock region. One might argue that our criterion is too strict. Comparing Dmin with
observable foreshock waves in the magnetic field for a considerable amount of data indeed
indicates that our selection process is rather conservative. Figure 6.9 shows an example in-
terval. Plotted are 4 s magnetic field averages and 60 s averages of D = Dmin. Foreshock
waves appear after 10:52. Note that between 9:00 and 10:37 D is negative almost the whole
time and fluctuates around ≈−1 RE . No foreshock waves are visible. Nevertheless the DDs
visible in this interval are discarded from our set. A DD at 10:37 then causes D to rapidly
decrease to ≈ −18 RE . Not until ≈ 15 min later when another decrease of D to ≈ −35
RE is observed eventually foreshock waves set in. Probably we could use more DDs than
we actually do. However, application of our rather strict criterion ensures that no foreshock
disturbances tamper our results. The remaining DDs are definitively in the undisturbed inter-
planetary medium. Note that in addition to the above criterion we visually inspect the solar
wind data ambient to the selected DDs, as is done in Figure 6.9.

In Table 6.3 it can be seen that the relative number of DDs regarded as being outside the
foreshock region is variable. Whereas in 2001 30% of the total number of DDs are selected,
only 15% and 10% are selected in 2002 and 2003, respectively. The reasons are simple. The
large size of the Cluster array in 2003 may explain the relatively poor yield in 2003. However,
although the spacecraft separations are smallest in 2002 the relative number of selected DDs
is only half the number found in 2001. According to our criterion the minimum apogee of the
four spacecraft is decisive for selection. Due to friction losses the apogee of each spacecraft
decreases with time. Whereas the minimum apogee is 19.7 RE in 2001, it is 19.2 RE in 2002
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Table 6.4: Final number of events selected for analysis.

DD2002 DD2001 DD2003

33 129 204

and only 18.9 RE in 2003. Maybe even more important than the orbit characteristics is the
fact that the measurements started not until 1 February in 2001 in contrast to 2002 and 2003.
Although sporadically traversing the solar wind in January, Cluster is always particularly
close to the bow shock in that time and thus likely to be in the foreshock region.

Final set of DDs

As a final quality check the selected events are individually inspected in different time reso-
lutions. Another 17 (24, 53) DDs are dropped from the sample in 2001 (2002, 2003) either
because the field variations are very complex or because no significant discontinuity can be
found in the high resolution data. Table 6.4 summarises the final number of events that we
use in our analysis. The names DDyyyy exactly denote these sets of DDs selected in the re-
spective years. Because of both the different spacecraft separations and different solar wind
conditions prevailing during observation of the three sets a strict separation is necessary and
instructive. Note that not all of the events in Table 6.4 are suitable for the analysis methods
to be applied later. This, however, we discuss in due time.

In summary, we have selected a total number of 366 DDs suitable for further analysis which
can be regarded as true (i.e., without influence of Earth) interplanetary discontinuities. In
the following section these DDs are characterised according to the prevailing solar wind
conditions.

6.5 Prevailing solar wind conditions - Coronal holes

The aim of this section is to provide an overview of the prevailing solar wind conditions
during the observation periods of the selected DDs. In particular we prove that a considerable
amount of solar wind data used for DD analysis in this thesis originates from coronal holes
on the Sun.

The correlation of DDs to solar wind type, and thus to the source region on the Sun, is of
considerable interest for understanding their generation mechanisms. As is detailed in sec-
tions 3.2 and 3.3 many earlier observations, and theories for the generation of RDs based on
these observations, claim that the solar wind originating from coronal holes is characterised
by abundant RDs.

In section 6.5.1 we show in which phase of the solar activity cycle our measurements are
made. In section 6.5.2 we use the ACE spacecraft as a solar wind monitor to demonstrate that
different types of solar wind are present during our three periods of observations. In particular
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strong indications for solar wind that maps to coronal holes on the Sun are presented for
the 2003 observations. The subsequent three sections (6.5.3-6.5.5) solely provide further
evidence for these coronal hole flows. Finally we give an overview of the identified DDs that
are unambiguously identified to be in coronal hole flows (section 6.5.6). There we define a
subset DD2003CH of DD2003 which will be used in chapter 8 to test the hypothesis of abundant
RDs in solar wind that emanates from coronal holes on the Sun.

6.5.1 Solar activity cycle

Asking for the present solar wind conditions, the first question must be in which phase of
the solar cycle the measurements are made. The 11-year cycle of the Sun’s magnetic activity
is best described by the number of sunspots visible on the Sun. Since most forms of solar
activity are magnetic in origin, they undergo the same cycle. The number of active regions,
with their energetic radiation and bright magnetised loops, as well as the total number of solar
eruptions or flares, also vary from a maximum to a minimum and back to a maximum in about
11 years [Lang, 2001]. However, solar activity does not completely disappear at the minimum
in the sunspot cycle. In fact, recent major eruptions on the Sun (end of 2004/beginning of
2005) demonstrate that considerable activity can be observed also near solar minimum. The
size and location of coronal holes in the Sun’s atmosphere vary throughout the 11-year cycle.
During the minimum phase of the solar cycle there are two large and relatively stable coronal
holes on the Sun, one at each pole. Thus, an observer in the ecliptic plane (such as Cluster)
predominantly detects slow solar wind originating from the active regions of the Sun near
the equator. After solar minimum the polar coronal holes start to shrink. At the same time
the coronal holes deform and occasionally cross the solar equator causing fast streams to be
observed in the ecliptic. Near solar maximum the polar coronal holes disappear, and instead
small variable coronal holes at mid-latitudes are observed. Since the solar wind velocity
correlates with the size of the coronal hole [Wang and Sheeley Jr., 1990] the expected maximal
solar wind speed is relatively slow. During the declining phase these isolated coronal holes
combine, and finally they reform as the large connected polar coronal holes. Note that the
polarity is reversed compared to the preceding solar minimum. Therefore the period of a
complete cycle is actually 22 years. During the declining phase (particularly towards solar
minimum) large coronal holes can be observed that cross the equator, sometimes from pole
to pole. These coronal holes can be remarkably stable and can persist over several solar
cycles. The observer in the ecliptic plane then detects the periodic recurrence of fast solar
wind according to the rotation of the Sun.

Figure 6.10 shows monthly averages of the sunspot numbers of cycle 23. In order to bet-
ter identify solar maximum and the subsequent solar minimum we also plot a prediction by
Hathaway et al. [1999]. The shaded areas indicate the observation periods of the analysis of
this thesis. All three periods are in the declining phase of this cycle. Whereas the first period
(in 2001) almost coincides with solar maximum, the third period (in 2003) is almost in the
middle of the declining phase. According to the discussion above we thus expect to observe
different types of solar wind in the respective periods: Possible fast streams corresponding to
coronal holes in 2001 are expected to be short in duration and to cause relatively slow maxi-
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Figure 6.10: Monthly averaged sunspot numbers (thin solid line) for cycle 23 through December
2004 derived from the International Sunspot Numbers, compiled by the Sunspot Index Data Centre in
Belgium. The data are taken from http://science.msfc.nasa.gov. The thick line shows the sunspot num-
ber predicted by Hathaway et al. [1999], and the dotted lines show the expected 5 and 95 percentile
levels. The three periods with Cluster providing solar wind data (see Table 6.1) are indicated.

mal solar wind speeds. In contrast, large and stable coronal holes may provide considerable
amounts of persisting fast solar wind data in 2003. This circumstance enables us to compare
our results obtained in different solar wind conditions.

6.5.2 Using ACE as a solar wind monitor

In order to consistently monitor the prevailing solar wind conditions an observation platform
is needed that, unlike Cluster, continuously measures solar wind data. We utilise data from
the Advanced Composition Explorer (ACE) spacecraft [Stone et al., 1998]. Launched 25
August 1997, ACE orbits the L1 libration point which is a point of Earth-Sun gravitational
equilibrium about 1.5 million km sunward of Earth.

Figures 6.11-6.13 give a comprehensive overview of the prevailing solar wind conditions
during the periods used in our analysis. The first 120 days, i.e., 1 January until 30 April,
of each year are shown (2001 in Figure 6.11, 2002 in Figure 6.12 and 2003 in Figure 6.13).
Panels 1-4 show the search results of the TS- (panel 1 and 3) and the B-method (panel 2
and 4) for each day. The absolute number of DDs found per day is shown in the first two
panels. Since the time with all four spacecraft simultaneously delivering solar wind data
is different on each day (see Figure 6.1) we normalise these numbers by the relevant time
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with Cluster in the solar wind. The resulting occurrence rates (number of DDs per hour) are
shown in panels 3 and 4. The respective number of DDs simultaneously detected at all four
spacecraft is indicated by the black bars and the search results at each individual spacecraft
by the coloured horizontal lines (the standard colour code is used). In panel 6 four different
colours are used to indicate the intervals with all four spacecraft simultaneously measuring
solar wind data (grey) and the exact times of the identified DDs. DDs detected by either the
TS- or the B-method are marked by black lines. The subset of these DDs which are outside
the Earth’s foreshock region are marked green and finally the DDs used in our analysis are
marked red. Note that the above intervals and events are plotted on top of each other in the
order as itemised above so that barely grey or green intervals are seen. Also note that the lines
indicating individual events generally cannot be resolved. The red bars in panel 5 present the
total number of DDs contained in connected solar wind intervals.

Panels 7-13 show 12 h averages of ACE plasma and magnetic field measurements. The proton
velocity (panel 7), density (panel 8) and temperature (panel 9) and the α-particle to proton
ratio (panel 10) are from the Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM)
instrument [McComas et al., 1998]; the charge state ratio O7+/O6+ (panel 11) is from the
Solar Wind Ion Composition Spectrometer (SWICS) instrument [Gloeckler et al., 1998]; and
the magnetic field data (panel 12 and 13) is from the Magnetic Field Experiment (MAG)
[Smith et al., 1998]. The magnetic polarity P (panel 12) is the cosine of the angle Φ∗ between
the field direction in the R-T plane1 and the expected direction of an outward directed Parker
spiral. Hence, P = 1 for an outward directed nominal magnetic field vector, and P = −1 if
the field points towards the Sun along the Parker spiral. Panel 13 of Figures 6.11-6.13 shows
the field magnitude. Note that the ACE data are shifted by 50 minutes in order to account for
the time lag between ACE and Cluster.

Several issues relating to Figures 6.11-6.13 are discussed in the following. First, the poor
solar wind data coverage of Cluster in 2001 and 2002 as compared to 2003 is apparent.
Second, although the DD occurrence rate is 1/h for the B-method and 2/h for the TS-method
on average (see also section 6.3) it strongly fluctuates from day to day. In particular from
Figure 6.13 it can be seen that these fluctuations are similar for both search methods (TS and
B). More important, the fluctuations of the DD occurrence rate are correlated with the solar
wind velocity (compare panels 3 and 4 to panel 7, in particular in Figure 6.13). This agrees
with earlier studies, see also section 6.3. Söding [1999] finds that this correlation is linear
and a purely geometric effect: If the solar wind velocity is high, a larger plasma volume is
searched in a given time compared to periods of slow solar wind.

Different types of solar wind

Comparing the solar wind velocities shown in Figures 6.11-6.13, it becomes obvious that
distinct types of solar wind are prevailing in the three different periods of observation. In
2001 (close to solar maximum) the velocity is generally rather low. Occasionally fast streams

1The ACE magnetic field data is given in the so-called RTN coordinate system, which is a spacecraft centred
coordinate system, R is the Sun to spacecraft unit vector, T is perpendicular to R and in the plane of the solar
equator and N completes the right-handed triad.
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Figure 6.11: Overview of the DDs found and the prevailing solar wind conditions in 2001. 12 h
averages of ACE data are shown.
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Figure 6.12: Same as Figure 6.11 for 2002. The blue shaded areas indicate repetitive fast solar
wind streams.
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Figure 6.13: Same as Figure 6.12 for 2003.
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are observed. However, they are low in amplitude, relatively short in duration and not in
period with the rotation of the Sun. Some of these may be associated with temporary small
coronal holes on the Sun, others with transient events. For example the fast stream around
doy 47 is characterised by a relatively low α-particle to proton ratio (hard to see because
of the gap in the data), relatively low ratio O7+/O6+ and a more or less unipolar magnetic
field. Therefore, this stream might map back to a coronal hole. In contrast, the fast streams
towards the end of the shown period are characterised by large values of nα/np and O7+/O6+

and frequent polarity changes. Hence, we consider those streams as being associated with
transient events on the Sun. Note that the majority of DDs selected for further analysis (panel
5) is located predominantly in particularly slow solar wind regions, probably emanating from
active regions on the Sun.

In contrast, the ACE data observed in 2002 and 2003 show very different features. The
shown periods are characterised by very large amplitude, broad, quasi-repetitive streams of
high-speed solar wind. This is a common observation during the declining phase close to
solar minimum when a “tongue” of a large polar coronal hole crosses the solar equator. The
blue shaded areas roughly indicate the four fast streams visible in Figures 6.12 and 6.13.2

The four marked intervals are equal in length (10 d in 2002 and 15 d in 2003) and are equally
spaced. One shaded interval starts exactly 27.3 d after the beginning of the preceeding in-
terval. In other words, the time difference between two consecutive intervals equals one
Carrington rotation, i.e., the rotation period of the Sun as seen from Earth. The repetitive
occurrence of the four fast streams follows this periodicity remarkably well. Furthermore,
the long duration (≈ 10 d in 2003) of each fast stream is relatively constant. These features
alone strongly indicate a coronal hole, persisting over at least four rotations, as the source of
the fast streams. Nevertheless, we provide further illustration for agreement between these
streams and a coronal hole on the Sun below and in the following three sections (6.5.3-6.5.5).

Note that the interaction of slow and fast solar wind causes compression to high plasma den-
sities at the leading edge of the high-speed streams [Schwenn, 1990]. These density increases
are visible in Figures 6.11-6.13.

Indications for coronal hole flows in 2003

Because of the poor statistics and the fact that the majority of DDs is in slow solar wind in
2002 we only consider the fast streams of 2003 in our attempt to unambiguously identify
DDs in coronal hole solar wind. The procedure is exemplified in the following:

Solar wind originating from coronal holes is characterised by its steadiness and by low den-
sity. Furthermore, the helium abundance is relatively steady with the helium to hydrogen
ratio nα/np in the range 0.02 to 0.05 [Bame et al., 1977; Neugebauer and Alexander, 1991].
Another difference to the solar wind originating from active regions is that the O7+/O6+ ion
ratio is lower for coronal hole flows. Neugebauer et al. [2002] find that the O7+/O6+ ratio
is . 0.3 for solar wind from coronal holes near solar maximum whereas von Steiger et al.
[2000] find a ratio of < 0.03 in polar coronal holes near solar minimum. Finally, coronal

2Note that the intention here is not to exactly mark the fast streams. The shaded areas only serve as an
orientation.
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hole streams are usually associated with a magnetic sector of unique polarity. Crossing of a
sector boundary often occurs slightly ahead of the leading edges of the high-speed streams
[Schwenn, 1990].

All four characteristics of coronal hole flows are observed in the fast streams in Figure 6.13:
After the increase in the stream-stream interaction region the density decreases to typically
≈ 4 cm−3, and both the helium to hydrogen ratio nα/np and the O7+/O6+ ion ratio are within
the expected ranges. In particular the polarity is unique in an interval around the duration of
the fast streams.

Note that there is one exception: In the middle of the second fast stream around doy 50
the density increases to ≈ 9 cm−3, the temperature drops, a sharp peak in the ratios nα/np

and O7+/O6+ is observed and a dip in polarity occurs. These observations are indicative of
Coronal Mass Ejections (CMEs) (see Neugebauer et al. [2002] and references therein).

However, apart from this isolated case of a transient event the criteria for coronal hole flows
are well satisfied. Figure 6.14 shows as an example a zoom of the first fast stream (FS I) with
2h averages, where the above characteristics can be seen more clearly. Note that here also
the grey shaded intervals and DDs marked by green lines are visible (panel 2). The DDs that
we consider as being in coronal hole flows are marked by drawn through red lines. Apart
from the above criteria another requirement for selection as “coronal hole event” (i.e., a DD
in a coronal hole flow) is that the flow velocity is high (& 600 km/s). We also inspect the
corresponding plots for the other fast streams and proceed as demonstrated for FS I. Thereby
we identify a considerable number of DDs which clearly satisfy the above criteria. Others
are dropped from our list of “coronal hole events” because they do not seem to be in coronal
hole flow. We also discard those events being very close to the CME in FS II. Note, however,
that we only drop all DDs found on doy 49. This leaves some ambiguous events, namely
the remaining DDs in the vicinity of the CME. These are the events found on doy 48 and
those in the interval following the CME, i.e., doy 51. Another group of ambiguous DDs are
those at the leading edge of FS II (doy 46). Although these events are most likely in coronal
hole flow (they definitely are in fast solar wind), the ambient plasma originates from a region
very close to the border of a coronal hole. Therefore, it is unclear how much influence the
stream-stream interaction region has on the properties of these events.

In addition to the in situ measurements from the ACE spacecraft we also utilise remote sens-
ing measurements to confirm the association of the fast streams observed in 2003 with coronal
holes. In particular we use: (1) Coronal hole predictions of the Wang-Sheeley potential-field
source-surface model that utilises synoptic observations of the photospheric magnetic field;
(2) Extreme Ultra Violet (EUV) images of the Sun’s atmosphere; and (3) the helium I 1083
nm absorption line.

These observations are presented in the following three subsections.

6.5.3 Wang-Sheeley model

A potential-field source-surface model can be used to determine the magnetic field configura-
tion in the region between the Sun’s photosphere and the so-called source-surface [Schatten
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Figure 6.14: FS I from Figure 6.13, 2h averages. The first four panels of Figure 6.13 are dropped.
DDs potentially originating from coronal holes are marked by drawn through red lines.
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et al., 1969; Wang and Sheeley Jr., 1992]. The source-surface is a spherical reference surface
of constant potential in the corona where magnetic field lines are assumed to be radial. The
radius of the source-surface is usually taken to be 2-3 solar radii (RS). For the computation
the photospheric magnetic field needs to be known. It is taken from line-of-sight synoptic
observations for example provided by the Wilcox Solar Observatory (WSO) [Arge and Pizzo,
1998]. The potential-field source-surface model by Wang and Sheeley [Wang and Sheeley
Jr., 1992] also yields a forecast for the solar wind speed. The speed to which the solar wind
is accelerated is thought to be regulated by the amount by which magnetic flux tubes expand
from the base of the photosphere to the source-surface: The greater the flux tube expansion,
the more the available energy is spread out and the slower the resulting flow speed. An expan-
sion factor fs at any point P on the source-surface is determined by comparing the computed
local field strength at P with the associated value on the photospheric surface, as tracked back
along the field line passing through P. The solar wind speed is then obtained by an empirical
relation between fs and the flow velocity, established by Wang and Sheeley Jr. [1990].

We use the predictions of the Wang-Sheeley model to verify that the high-speed streams
observed in the ACE data indeed map to coronal holes on the Sun. To that purpose, we map
the data measured at ACE back to the time tsun when the plasma left the source-surface. We
use a mapping technique previously used by Neugebauer et al. [2002], where tsun is given
by tsun = tACE −R/Vsw. tACE is the time of observation at ACE, R the solar distance and
Vsw the measured solar wind speed. This means, we assume a radial flow at constant speed.
This simple technique gives rise to occasional ambiguities which are disregarded here. (For
a justification of the technique see Neugebauer et al. [2002].)

Figure 6.15 shows as an example the mapped ACE data of the first fast stream in 2003 (bot-
tom) compared to the predictions of the Wang-Sheeley model (top) [Arge and Pizzo, 1998].
All six panels are shown for one Carrington rotation, i.e., from Carrington longitude 240◦ of
Carrington rotation 1998 until 240◦ of Carrington rotation 1999. The abscissa is the Carring-
ton longitude in degrees. Also shown are Carrington rotation numbers. The most recent data
are located at the far left of the map. To the right of the map, the data get progressively older.
Note that the abscissa of the mapped ACE data is given in day of 2003. This time corresponds
to the time given on top of the first panel. The crosses mark the daily position of the sub-
Earth point on the maps (Sun). Since the Sun’s rotation axis is inclined 7.25◦ to the ecliptic,
over the course of a year the sub-Earth point varies (in latitude) from +7.25◦ to -7.25◦ below
the Sun’s equator. From top to bottom the panels show: (1) The synoptic map of the radial
photospheric magnetic field distribution delivered from the WSO. (2) Derived coronal hole
areas. Coloured dots represent photospheric foot-points of open field lines, with different
colours used to indicate the expansion factors fs (or solar wind speed Vsw) associated with the
flux tubes. Areas shaded light grey (dark grey) are closed field lines with Br > 0 (Br < 0).
The black lines identify the connectivity between the outer (open) boundary (i.e. 2.5 Rs) and
the source regions of the solar wind at the photosphere. (3) Predicted radial field strength
Br at R = 5Rs. The yellow line indicates where Br = 0 gauss (i.e., the heliospheric current
sheet). (4) Solar wind speed at the source surface (R = 5Rs). (5) Polarity from panel 8 in
Figure 6.14 and (6) velocity from panel 3 in Figure 6.14 mapped back to the source surface.
The red lines roughly indicate the time when the plasma containing the DDs marked as drawn
through lines in Figure 6.14 left the source surface.
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Figure 6.15: Comparison of the Wang-Sheeley model predictions (panels 1-4) with the mapped
back hourly averages of polarity and velocity of FS I measured at ACE (panels 5 and 6). The top part
of the Figure (Wang-Sheeley model) is taken from http://solar.sec.noaa.gov./ws/.
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The Wang-Sheeley model predicts a large southern trans-equatorial coronal hole. The dashed
lines in the bottom panel mark the boundaries of that coronal hole at 2.5 Rs. The coinci-
dence between the fast stream and the coronal hole boundaries is satisfactory. Another issue
that needs to be tested in order to confirm the association of the fast stream with the de-
rived coronal hole is whether the polarity measured at ACE matches that determined from
the photospheric observations of the coronal hole. Comparison of panels 3 and 5 shows that
the polarities are the same. Both the field predicted for the source surface and the measured
interplanetary field point away from the Sun. Also the polarity changes coincide well. Note,
however, that the two heliospheric current sheet (HCS) crossings are retarded by approxi-
mately one day at the mapped ACE data. Nevertheless, the general agreement is good.

As a side note we may add that the HCS is located at mid-latitudes during this and the other
Carrington rotations in 2003 relevant for this study. This is in contrast to solar minimum
where the HCS is generally found to be near the equator.

Finally, also the predicted solar wind speed for the source surface coincides well with the ob-
servations at ACE. Hence, the overall agreement between the predicted fast stream associated
with the coronal hole and the observed stream FS I is satisfactory.

6.5.4 Extreme ultra violet imaging

Whereas hot dense plasma is trapped by the closed magnetic field lines within active regions,
the plasma pours outward from coronal holes where the field lines stretch out radially and
do not arch directly back to the Sun. Therefore, coronal holes are cool low density regions
and appear as dark areas seemingly devoid of radiation at extreme ultraviolet (EUV) and
X-ray wavelengths.3 In contrast, the most intense EUV and X-ray emission comes from
within active regions. Hence, a common way to detect coronal holes is to image the Sun’s
atmosphere in EUV or X-ray wavelengths.

We inspect EUV images taken from the Extreme UV Imaging Telescope (EIT) [Delabou-
dinière et al., 1995] on board the SOHO satellite. Launched on 2 December 1995, SOHO is
(as ACE) in a halo orbit around the L1 Lagrangian point and is designed to study the internal
structure of the Sun, its extensive outer atmosphere and the origin of the solar wind [Domingo
et al., 1995].

The top part of Figure 6.16 shows EIT images at a wavelength of λ = 28.4 nm which is the
emission line from Fe XV at a temperature near T = 2× 106 K. The bright areas are active
regions and the dark areas correspond to coronal holes. The nine images shown are taken on
consecutive days covering the interval doy 97 until doy 105, i.e., approximatively the time
when the plasma of the fourth fast stream in Figure 6.13 left the Sun. The evolution in time
follows that of a typewriter, i.e., the top row shows from left to right doy 97-99, the second
row shows doy 100-102 and the bottom row shows doy 103-105. A large trans-equatorial
southern polar coronal hole in geo-effective position is clearly visible. According to the solar
rotation, the visible structures move from left to right as time proceeds.

3Typical coronal temperatures are 1.0 to 1.5 ×106 K and 2 to 4 ×106 K within coronal holes and within
active regions, respectively, and the density in coronal holes is less than 10% of that found in active regions.
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Figure 6.16: Top: SOHO EIT 284 images. Any black areas on the solar disc are likely coro-
nal holes. Taken from http://sohowww.nascom.nasa.gov/data/summary/gif/. Bottom: Coronal hole
map derived from the HeI 1083nm absorption line produced at NSO, Kitt Peak. Source: f t p :
//nsokp.nso.edu/kpvt/coronal holes/. Daily images (maps) from 07.04.03-15.04.03 (correspond-
ing to FS IV) are shown.
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We also inspect the EIT images at the corresponding times when the plasma of the other three
fast streams left the Sun. In accordance with our assumption of a persistent coronal hole being
the source of the fast streams we find similar images at these three prior Carrington rotations
(not shown). We also observe that the coronal hole extends with time from one rotation to
the next. We check whether the onset and the end of each mapped back fast stream coincides
with start and end time of geo-effectiveness of the observed coronal hole. The agreement is
very good. Also note that the imaging result agrees well with the coronal hole derived by the
Wang-Sheeley model. Furthermore, we test whether the observation time of the individual
DDs corresponds to the geo-effective coronal hole.

We choose to present the EIT images corresponding to the fourth fast stream because of the
particularly interesting structure of an active regions reaching into the large coronal hole: A
tongue of an active region passes the sub-Earth point, i.e., the fast stream emanating from
the coronal hole is expected to be interrupted for a couple of days, exactly as is observed in
the ACE data (see Figure 6.13 ≈ doy 102-105). This remarkable coherence underlines the
association of the observed streams at ACE with the observed regions of open respectively
closed field lines on the Sun.

6.5.5 The helium I 1083 nm absorption line

Another common way to identify flow from coronal holes is to utilise the helium I (He I) 1083
nm absorption line [Neugebauer and Alexander, 1991; Neugebauer et al., 2002]. The He I
line at 1083 nm is formed by electron transitions between the two lowest energy levels of the
triplet states of the helium atom (ortho-helium). Hence, in order to have He I absorption an
electron must be in the lowest triplet state. This can be populated either by photoionisation by
UV and EUV radiation from the corona and subsequent cascading back (PR mechanism), or
by direct excitation by collisions from the ground state of para-helium. The PR mechanism
is effective only in regions with temperatures T < 10000 K, whereas collisional excitation
becomes important at T > 20000 K [Andretta and Jones, 1997].

The lowest metastable energy levels of ortho-helium are populated rather poorly in the solar
photosphere. Therefore, the absorption occurs in upper chromospheric regions (about 2000-
2400 km above the photosphere) [Brajsa et al., 1996] where the PR mechanism dominates.
Thus, helium images of the Sun are, in fact, excellent images of the chromosphere [Brajsa
et al., 1996]. The coronal radiation is assumed to penetrate inward into the upper chromo-
sphere, causing sufficient helium ionisation to populate the lower level of the He I 1083 nm
line, resulting in an optically thin absorption of the photospheric continuum at 1083 nm. The
amount of absorption, which is proportional to the optical thickness of the upper chromo-
sphere in the 1083 nm line, depends on the density and geometrical thickness of the upper
chromosphere. Absorption is increased in active regions, and reduced in coronal holes since
the coronal back radiation is reduced in coronal holes. Hence, the He I 1083 nm absorption
line is very shallow in coronal holes [Brajsa et al., 1996].

We use coronal hole maps derived from the He I 1083 nm absorption line produced at the
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National Solar Observatory (NSO) vacuum telescope located on Kitt Peak, Arizona.4 The
bottom part of Figure 6.16 shows the maps for the same days when the EUV images above
were made. Although the details of the derived contours differ from the contours found in
the EUV images, the general observation is the same. Apparently, the He I absorption line
techniques also identifies a coronal hole on the southern hemisphere. The derived contours of
coronal holes satisfactory agree with those seen in the EUV images. In particular, the “nose”
of the active region can be observed.

We also plot the coronal hole boundaries obtained from the He I absorption line as a function
of Carrington longitude as in Figure 6.15 and compare them to the coronal hole derived by
the Wang-Sheeley model (panel 2 in Figure 6.15). The observed agreement is excellent (not
shown). Since in turn the Wang-Sheeley model coincides well with the observed fast streams
at ACE (see Figure 6.15), consistency between all applied methods to confirm coronal holes
as the source of the four high-speed flows in 2003 is found. Also note that the polarity
is consistent. Hence, together with the issues discussed according to the in situ solar wind
measurements at ACE we unambiguously identify solar wind originating from a large coronal
hole on the Sun.

6.5.6 DDs in coronal hole flow

The analysis presented above results in 83 DDs that are identified to be in coronal hole flow
in 2003, i.e., 41% of the 204 DDs in the set DD2003. For the purpose of the ensuing discus-
sions we denote this subset of DD2003 as DD2003CH . All 27 DDs in FS I marked as drawn
through lines in Figure 6.14 are contained in DD2003CH . We have 48 candidates in FS II, but
we discarded 10 events (all events from doy 49) because they are too close to the transient
event around doy 50, i.e., FS II contributes 38 “coronal hole events”. The remaining DDs in
DD2003CH are found in FS III (15 DDs) and FS IV (3 DDs). The solar wind speed is slowest
in FS II compared to the other fast streams (see Figure 6.13). Sporadically Vsw < 600 km/s is
observed. However, Vsw = 600 km/s is not used as a strict cut-off velocity. Also note that of
the 38 events in FS II, 27 must be regarded as “unclear”. Although the ambient solar wind of
these DDs is most likely from a coronal hole, it is unclear to what extent the CME, respec-
tively the stream-stream interaction region, affects the properties of these DDs. However, the
remaining 56 events in DD2003CH are unambiguously in a steady coronal hole flow.

Figure 6.17 gives an overview of the field and plasma properties observed at Cluster in the
vicinity of the selected DDs in 2003. The distribution of the field magnitude, the proton den-
sity and the proton velocity of DD2003CH (red) are compared to the total set DD2003 (black).
Whereas magnetic field measurements from all four spacecraft are used the plasma data are
taken only from Cl 1. The number of DDs considered in the plasma data distributions is
reduced to 191 because of data gaps.

The field magnitude distributions are similar for the two sets and are typical for the solar
wind at 1 AU. The distribution for the coronal hole set appears to be somewhat narrower and

4The boundaries of coronal holes and their magnetic polarities are available online at
f t p://nsokp.nso.edu/kpvt/coronal holes/.
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Figure 6.17: Distributions of the magnetic field and plasma parameters observed with Cluster in
the vicinity of the selected DDs in 2003. Values just before and just after DDs are considered. From
left to right: Field magnitude, proton density and proton velocity. The black distributions correspond
to the total set DD2003 and the coronal hole subset is in red.

the observed magnitudes are slightly smaller. Whereas the densities are mainly in the range
2 to 5 cm−3 (i.e., typical fast stream values) for the subset DD2003CH , the density distribution
considering the whole set DD2003 is wider with another peak around 10 cm−3, a value typical
for slow solar wind from active regions. The velocity distribution shows that DD2003CH

indeed only contains DDs in fast streams. The distribution of the total set is bimodal with
another peak around 425 km/s.

The DDs found in 2001 are most likely embedded in solar wind from active regions on the
Sun. Therefore, it will be interesting to compare the results, e.g. according to DD classifi-
cation, we obtain for the sets DD2001, DD2003 and DD2003CH . In particular the test of the
hypothesis of high RD abundances in coronal hole streams is of considerable interest, and
can be easily performed after the thorough preparatory work presented in this section.

In summary we have shown that different types of solar wind are present during the intervals
we use for DD observation. In particular we have clearly identified high-speed coronal hole
flows. We have defined a subset DD2003CH of all DDs selected in 2003 which only contains
DDs identified within solar wind from coronal holes. According to earlier observations and
theories this set should contain mainly RDs. In the following chapters this hypothesis will be
tested exploiting the enhanced possibilities of the Cluster mission.



CHAPTER 7

DETERMINATION OF DISCONTINUITY NORMALS

The determination of the surface normal is a key issue in analysing MHD discontinuities.
This chapter describes techniques to compute the normals. Both single-spacecraft methods
(the minimum variance analysis and the cross product method) and a multi-spacecraft trian-
gulation method are discussed.

In a nutshell, minimum variance analysis (MVA) uses the fact that the normal is the direction
with smallest variations of the magnetic field (as Bn is a constant). The cross-product method
works only for TDs; then the normal is the vector perpendicular to the two magnetic field
vectors on either side of the discontinuity. The triangulation method is the most accurate, but
requires four spacecraft: the normal is geometrically determined based on the relative timing
of the crossing of the four spacecraft through the DD.

The analysis of the differences between these three methods provides the foundation for our
conclusions in the reminder of this thesis. There we claim that MVA produces normals that
are inconsistent between the four spacecraft, whereas the triangulation method provides ac-
curate normal estimates. Furthermore, to discern TDs and RDs by analysis of the magnitude
of the normal component of the magnetic field requires accurate normals and estimates of
their precision.

Sections 7.1 gives an overview of normal determination techniques. Sections 7.2 - 7.4 contain
detailed descriptions and error analyses of the MVA, cross product and triangulation methods,
respectively.
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7.1 Overview of normal determination techniques

Most analyses of discontinuities are based on data from a single spacecraft. Common single-
spacecraft methods to determine the surface normals exploit the jump conditions across the
discontinuities (see section 3.1). The continuity of the normal component of the magnetic
field (equation 3.2) is most useful as the magnetic field data is usually the most accurate and
with relatively high time resolution.

Ideally, applications of the jump conditions would involve simultaneous measurements on
both sides of the discontinuity using two independent measuring platforms. If the data stems
from a single satellite collecting data as it passes through the DD, one has to assume that the
external conditions do not change with time, i.e. time stationarity is assumed. The common
techniques either use observations taken well up- and downstream of the transition or use the
variations within the transition of the DD.

In the first case the normal to a planar surface can be determined if two vectors which are
parallel to the surface can be found. If the type of discontinuity is known beforehand, and
it is identified to be a shock, the coplanarity theorem can be used. The coplanarity theorem,
deduced from the jump conditions, states that the magnetic field on both sides of the shock
and the shock normal are in the same plane (e.g. Colburn and Sonett [1966]). Therefore,
(B1×B2) is perpendicular to n (B1 and B2 are the field vectors measured on opposite sides
of the shock). Because of the continuity of the normal magnetic field also (B1 −B2) is
tangential to the boundary. Hence, the shock normal can be calculated as n =±((B1×B2)×
(B1−B2))/|(B1×B2)×(B1−B2)|. This method is most widely used since only the magnetic
field is needed. If the discontinuity is identified to be a TD, then the normal is simply given
by n =±(B1×B2)/|B1×B2| (see equation 7.8 in section 7.3).

Techniques that use variations within the transition are referred to as minimum (or maximum)
variance analysis methods. In principle minimum variance analyse can be applied to quanti-
ties that theoretically possess a constant normal component across the discontinuity. For 1-D
discontinuities these are the magnetic field (equation 3.2) and the mass flux (equation 3.3).
The normal is then identified as the direction in which the variation of the magnetic field
[Sonnerup and Cahill, 1967; Sonnerup and Scheible, 1998] or of the mass flux [Sonnerup
et al., 1987; Sonnerup and Scheible, 1998] is minimised.

In practice, due to relatively large uncertainties in the plasma measurements and a relatively
poor time resolution, minimum variance analysis using mass flux has a larger uncertainty than
the magnetic field minimum variance analysis. Even more important, mass flux conservation
holds in the frame moving with the discontinuity. Hence, the measured plasma velocity must
be translated into the moving frame with the a priori unknown speed of the discontinuity
relative to the spacecraft frame. For a TD the discontinuity speed is simply given by U =

Vsw · n, where Vsw is the solar wind speed. For an RD the discontinuity speed must be
obtained separately because there is a net mass flux across an RD. Sonnerup and Scheible
[1998] suggest an iterative solution to this problem. As a consequence of these problems
the magnetic field minimum variance (in the following referred to as MVA), has become the
most widely applied tool for finding normals of discontinuities of unknown type.
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We will discuss this method and its limitations in detail in the following section. Here we only
note that by choosing the frame of reference such that the z-axis is parallel to [B], n must lie
in the x-y plane. After this transformation the search for n is confined to a plane. This method
is called BMVA [Söding, 1999]. For TDs and for RDs in an isotropic plasma (i.e., constant
density across the RD) the frame of reference can also be chosen such that the z-axis is parallel
to the difference vector of the plasma velocity; then the normal component of the velocity is
also constant. This method is referred to as VMVA [Söding, 1999]. A more sophisticated
technique which incorporates several conservation laws in one grand optimisation has been
proposed in Kawano and Higuchi [1996]. Besides n this method also determines the speed
of the discontinuity along n. While promising in principle, such approaches are affected
by the limited quality of the plasma data. It is important that any such procedure should
allow greater weight to be placed on quantities that are well determined with less weight
on quantities that are less well determined. Note that the above methods apply only to 1-D
discontinuities. Söding and Neubauer [1999]; Söding [1999] developed a minimum variance
technique for 2-D structures applicable to events observed at two spacecraft.

An alternative to the minimum variance analysis is the maximum variance analysis. Instead
of utilising the conservation of the normal component of physical quantities, it is used that
the tangential electric field is constant (see section 3.1) in the latter [Sonnerup et al., 1987].
Analogous to the minimum variance analysis of the magnetic field, the discontinuity normal
is along the maximum variance direction of the electric field. The electric field data for the
analysis can be obtained from either direct measurements of the electric field or the convective
electric field derived from the magnetic field and plasma velocity measurements according
to the frozen-in condition, or E =−V×B. It is important to note that the electric field must
be measured in a frame of reference moving with the discontinuity. In the spacecraft frame
one obtains a tangential electric field change due to the motion of the spacecraft relative to
the boundary. To account for this effect, one has to transfer the electric field into a frame
in which the discontinuity is at rest. As for the mass flux minimum variance analysis one
suffers from the problem that the discontinuity speed has to be known before the normal
of the discontinuity is determined. Sonnerup et al. [1987] developed an iterative method to
solve this problem. Because of these problems and the generally lower quality of the plasma
measurements, the magnetic field minimum variance analysis is more reliable in most cases.
However, the electric field maximum variance analysis can be used as an alternative in cases
when MVA has a large uncertainty (see the following section).

Multi-spacecraft methods

The use of multiple spacecraft facilitates the application of more advanced techniques based
on less assumptions. Denskat and Burlaga [1977] use magnetic field and solar wind velocity
data from the Explorer 33 and Explorer 35 spacecraft to study Alfvénic fluctuations in the in-
terplanetary medium. If only two spacecraft are used, a further condition besides the time lag
between wave front occurrence is needed. Denskat and Burlaga [1977] use the conservation
of the magnetic field normal component: (B2−B1) ·n = 0. In addition they also need the
solar wind speed measured at one of the two spacecraft. Neglecting the propagation speed
of the wave front they use (r12−Vswt12) ·n = 0, where r12 is the separation vector between
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the two spacecraft and t12 the time lag. Hence, the wave front normal can be determined as
n = ±((B2 −B1)× (r12 −Vswt12))/|(B2−B1)× (r12 −Vswt12)|. Applying this technique
they find a strong discrepancy between the minimum variance direction and the timing de-
rived normals. The distribution of the angle between these two directions has a peak between
40◦ and 50◦. Whereas the MVA normals are mostly aligned with the magnetic field, the
timing derived normals tend to be perpendicular to the magnetic field. Denskat and Burlaga
[1977] conclude that MVA does not give a good estimate of the phase front direction and
that the discrepancy is due to a misinterpretation of the significance of the minimum variance
direction. Horbury et al. [2001a] confirm this conclusion. ACE magnetic field and velocity
data are used to predict the arrival time at the Wind spacecraft of sharp southward turnings
of the interplanetary magnetic field in order to compare the accuracy of various methods of
estimating the normals. They find that of the 70% of events observed at ACE that could be
identified at Wind, 93% of arrival times were predicted within 10 minutes using the cross
product of the field immediately up- and downstream of the discontinuity, compared to only
56% using MVA. The poor performance of MVA is even more remarkable noting that 67% of
the arrival times were predicted within 10 minutes when simply assuming a sunward normal.

When data from three spacecraft are available the discontinuity normal can be calculated
without use of any jump condition. However, besides the timing information between the
pairs of spacecraft the plasma velocity measured at one of the spacecraft is needed. Apply-
ing this triangulation technique to the Explorers 33, 34 and 35 Burlaga and Ness [1969] find
normals of interplanetary discontinuities which are in good agreement with the normals deter-
mined by the cross product of the field immediately up- and downstream of the discontinuity.
Burlaga and Ness [1969] conclude that the six discontinuities investigated are TDs. Utilising
the inter-spacecraft timings between Geotail, Wind and IMP 8 Horbury et al. [2001b] find
that MVA results in many normal estimates lying far from the timing-derived normals, in
agreement with Denskat and Burlaga [1977]. Horbury et al. [2001b] conclude that the poor
performance of MVA is due to surface waves on the discontinuities.

Finally, using four spacecraft only the timing information between the pairs of spacecraft
is needed to determine the discontinuity normal as is detailed in section 7.4. With the four
coordinated spacecraft of the Cluster mission equipped with state of the art instruments we
significantly contribute to the developing understanding of the limitations of MVA. Our re-
sults, in particular concerning the reliability of MVA, are so far the clearest and most plausible
(Knetter et al. [2003], Knetter et al. [2004] and in detail the present work).

7.2 Sonnerup-Cahill minimum variance analysis

This section gives a detailed description of the Sonnerup-Cahill minimum variance analysis
(MVA) method and a critical discussion of the quality of the obtained discontinuity normals.
MVA is the most widely used single-spacecraft tool for this purpose, in particular if the type
of discontinuity is not a priori known. It is frequently applied to interplanetary waves and
directional discontinuities as well as to magnetopause crossings. However, we have shown
that recent multi-spacecraft studies indicate fundamental deficiencies of this method.
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7.2.1 Description of the method

The Sonnerup-Cahill MVA [Sonnerup and Cahill, 1967] is applied to magnetic field vector
data measured during a spacecraft traversal of a discontinuity. It is based on an idealised 1-D
model of the surface. Choosing a (a priori unknown) local Cartesian coordinate system such
that its z-axis points along the sought-after discontinuity normal vector n, i.e. ∂x = ∂y = 0, it
follows from the solenoidality of the magnetic field (see also section 3.1): ∇ ·B = ∂zBz = 0.

Application of this condition to discontinuities of finite thickness involves that the idealised
1-D model includes the assumption that the radius of curvature and the characteristic length
for lateral changes of its structure are much larger than its thickness.

The high time resolution available in many magnetometer experiments allows many vector
measurements Bi (i = 1, . . . ,N) to be made during a traversal. The minimum variance analysis
approximates an estimate for the discontinuity normal n as the direction in space along which
the field-component set {Bi ·n} (i = 1, . . . ,N) has minimum variance, i.e., n is determined by
minimisation of

σ2 =
1
N

N

∑
i=1
|(Bi−〈B〉) ·n|2 (7.1)

where 〈B〉 = 1
N ∑N

i=1 Bi is the average over the N field vectors [Sonnerup and Cahill, 1967].
Using a Lagrange multiplier λ the minimisation of σ2 with the constraint |n| = 1 can be
formulated as an eigenvalue problem:

M
Bn = λn (7.2)

where M
B is the magnetic covariant matrix which reads in component form

MB
µν = 〈BµBν〉−〈Bµ〉〈Bν〉 (7.3)

The allowed λ values are the eigenvalues λ1 ≥ λ2 ≥ λ3 of M
B. Since M

B is symmetric all
eigenvalues are real and the corresponding eigenvectors x1, x2 and x3 are orthogonal. The
three eigenvectors represent the direction of maximum, intermediate and minimum variance
of the field component along each vector and the corresponding eigenvalues λ1, λ2 and λ3

represent the actual variances in those field components and are therefore non-negative [Son-
nerup and Scheible, 1998].

The eigenvector x3, corresponding to the smallest eigenvalue λ3, approximates the discon-
tinuity normal and λ3 itself represents the variance of the magnetic field component along
the estimated normal. The eigenvectors x1 and x2 are tangential to the discontinuity and the
set {x1,x2,x3} arranged as a right-handed orthonormal triad provides a convenient natural
coordinate system for the analysis [Sonnerup and Scheible, 1998].

Deficiencies of the MVA method

For an ideal 1-D structure, σ2 = 0 in the normal-field component. In that case MVA yields
λ3 = 0. For real discontinuities in space one usually finds λ3 > 0, i.e., σ2 6= 0 along the
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direction of minimum variance. Several reasons can account for this discrepancy to an ideal 1-
D structure. First, the discontinuity may not be strictly 1-D, it might have 2-D or 3-D internal
structures. Second, since the field vectors are not measured simultaneously, time stationarity
needs to be assumed. In reality there could be temporal fluctuations in the orientation of the
discontinuity normal which may occur during the spacecraft traversal time. Third, random
and systematic measurement errors may occur. For modern magnetometers, the former are
usually negligible compared to other uncertainties but the latter can sometimes arise in form
of a zero-level offset. Note that a constant offset does not influence the normal determination.
However, a problem arises for satellites that rotate around a spin axis. Since the spin axis
magnetometer remains unmodulated by the satellite rotation the calculated normal vector is
likely to tend to coincide with the satellite spin axis rather than with the true normal direction
[Sonnerup and Cahill, 1967]. If for example the true magnetic field variations perpendicular
to the spin axis are zero, then due to the spin modulation one observes a non-zero component.

Assuming that all the effects mentioned above are negligible, another model straightfor-
wardly explaining λ3 > 0 can be thought of. Namely, an ideal stationary 1-D structure
observed with negligible measurement errors that is superposed by other fluctuations and
wave fields. Since MVA is incapable of separating the variations of the true 1-D structure
from those of other origin, any kind of superposed fluctuations, with non-zero variance of
the field-component normal to the 1-D structure, results in a non-zero value of λ3. Note that
if those superposed fluctuations are purely isotropic, then the determination of n is not af-
fected. However, a serious problem occurs when the superposed fluctuations or waves are
anisotropic. For example, if the magnetic perturbations within the 1-D structure are mainly
along the true normal of the 1-D discontinuity, the minimum variance direction may not be
the normal direction of the discontinuity. This will be detailed at the end of this section.

Degeneracies of the variance ellipsoid

For MVA to be applicable one needs at least three measured field vectors. If the used data set
consists of exactly three vectors, then the variation can only take place in the plane perpen-
dicular to x3 and one always finds λ3 = 0. If in addition the difference vectors are aligned,
one also finds λ2 = 0 because the variation then takes place in only one direction. In this case
the covariant matrix is said to be degenerate, and all that can be said about x2 and x3 is that
they are perpendicular to x1, i.e., the normal of the structure could be anything perpendicular
to the direction of maximum variance.

The problem of degeneracy is also of major importance when a large number of field vectors
within the transition are available, especially in the context of superposed fluctuations and
waves. It can be addressed conveniently in terms of the variance ellipsoid [Sonnerup and
Scheible, 1998] shown in Figure 7.1. The principal axes half lengths of the variance ellipsoid
are

√
λ1,

√
λ2 and

√
λ3, and the distance along an arbitrarily chosen direction, from the

origin to the intersection of a line along that direction with the ellipsoid surface, represents
the standard deviation of the magnetic field component along the chosen direction [Sonnerup
and Scheible, 1998].

Three types of (near) degeneracy are possible [Sonnerup and Scheible, 1998]. First, λ1 ≈
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Figure 7.1: Variance ellipsoid. The three eigenvectors x1, x2 and x3 are shown in the frame of
reference in which the magnetic field data are given. Taken from Sonnerup and Scheible [1998].

λ2 ≈ λ3, i.e. a nearly spherical variance ellipsoid. In this case no information about directions
normal or tangential to a discontinuity can be obtained. Second, λ1 ≈ λ2. Provided that λ3 �
λ1 ≈ λ2 this corresponds to a discus-shaped (oblate) variance ellipsoid and the discontinuity
normal is well determined via MVA.

However, for interplanetary discontinuities the third case of degeneracy, i.e. λ2 ≈ λ3, is fre-
quently observed (see section 8.3.1). In this case the variance ellipsoid is cigar-shaped (pro-
late) with the minimum and intermediate variance directions being constrained to be perpen-
dicular to x1 but otherwise arbitrary. Provided that λ1 � λ2 ≈ λ3 (as typically observed for
interplanetary DDs) the only statement that can be made using MVA is that the normal lies
in the plane perpendicular to the well-determined direction of maximum variance (x1).

For λ2 ≈ λ3 or equivalently λ2/λ3 being small, the minimum variance direction is extremely
sensitive to superposed fluctuations or wave fields. If these magnetic perturbations are aniso-
tropic and not aligned with x1 the direction of minimum variance will be basically determined
by the superposed fluctuations. In extreme cases, the orientation of the intermediate and min-
imum variance directions may trade places, corresponding approximately to a 90◦ rotation of
x2 and x3 around x1, in response to a minor adjustment of the number of data points or the
data filtering used in the analysis [Sonnerup and Scheible, 1998].

Eigenvalue ratio as estimator for uncertainty and further deficiencies

For these reasons the eigenvalue ratio λ2/λ3 is commonly used as an indicator for the reliabil-
ity of the minimum variance direction as an estimator for the discontinuity normal. In order
to ensure significant MVA results a minimum value (lower limit) (λ2/λ3)

L is used. Assuming
that for eigenvalue ratios greater than (λ2/λ3)

L the interpretation of the minimum variance
direction as the discontinuity normal is justified all discontinuities with λ2/λ3 ≥ (λ2/λ3)

L
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are used, and those with λ2/λ3 < (λ2/λ3)
L are discarded. Commonly, 1.5≤ (λ2/λ3)

L ≤ 2.5
is used: For example, Sonnerup and Cahill [1967] and Söding [1999] use (λ2/λ3)

L = 1.5,
Neugebauer et al. [1984] and Horbury et al. [2001b] use (λ2/λ3)

L = 2.0 and Smith [1973a]
use (λ2/λ3)

L = 2.5. The choice of such apparently small lower limits is believed to be justi-
fied by a numerical study of ideal discontinuities in the presence of isotropic noise [Lepping
and Behannon, 1980], to be discussed in the following section.

However, Lepping and Behannon [1980] also identify another parameter that considerably
determines the reliability of MVA, namely the discontinuity spreading angle ω, i.e., the angle
between the magnetic field vector upstream and downstream of the discontinuity. The larger
this angle, the smaller the error [Lepping and Behannon, 1980]. This is rather obvious since
for large ω the discontinuity will be more clearly distinguished from the natural noise and
superposed wave fields. However, the importance of ω has often been disregarded. Lepping
and Behannon [1986] use (λ2/λ3)

L = 2.0 and in addition ωL = 30◦ as a lower limit for the
spreading angle, and Lepping et al. [2003] use ωL = 90◦. Note that the present work will
reveal that the lower limits for the eigenvalue ratio used in past studies as presented above are
overly optimistic and confirm that ω is important.

The example of a magnetopause crossing presented in Sonnerup and Scheible [1998] showing
that the removal of only one data point at each end of the data interval leads to an exchange of
the minimum and the intermediate variance direction, points towards another general problem
associated with MVA: In principle, one may select many different time intervals for the MVA,
and each of them provides a different normal. Because of the statistical nature of MVA a large
number of field vectors minimises the uncertainty. However, one should avoid selecting the
interval too large, i.e., larger than the transition, because then too much weight on the fields
on the two sides is put, and the minimum variance direction would also be determined by the
wave activity upstream and downstream of the discontinuity. High resolution measurements
generally yield many field vectors within the transition. On the one hand this increases the
statistical significance of MVA (see next section), however, on the other hand, as the resolu-
tion increases, one may be able to resolve the wave activity within the discontinuity. As said
above, these waves may cause an uncertainty in the determination of the normal direction as
well. Filtering the data to pass only frequencies consistent with the thickness of the structure
helps reducing the uncertainty of the normal determination.

Further comments

Before continuing the discussion of the uncertainties in more detail in the following section
we may add three more comments on MVA: (1) The calculation of the covariant matrix (and
thus MVA itself) is independent of the temporal order of the measured field vectors used. (2)
MVA can be applied to all kinds of discontinuities. In particular there are no restrictions for
the normal component of the magnetic field. However, it is most useful for RDs, since it
has a large uncertainty for TDs as we will discuss in the following section. With the addi-
tional constraint 〈B〉 ·n = 0, MVA can be modified to give better results for TDs [Sonnerup
and Cahill, 1968]. However, then the type of discontinuity needs to be known a priori. (3)
Whenever we refer to “MVA” we mean the Sonnerup-Cahill minimum variance method as
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described in this section. This is important to note since there is another minimum variance
technique referred to as “Siscoe MVA” [Siscoe et al., 1968] which is formally similar to the
Sonnerup-Cahill MVA. Siscoe et al. [1968] minimise the sum of the squares of the individual
normal field components. In other words, they drop the second term in equation 7.1. There-
fore, “Siscoe MVA” can be applied only when the field vectors rotate in the discontinuity
plane from the pre-event direction to the post-event direction, i.e., the direction of minimum
variance coincides with the discontinuity normal only if the discontinuity is a TD.

7.2.2 Summary of past error analysis approaches

The following error analysis of MVA is imperative for the interpretation of any results derived
from this method. In particular to discern RDs and TDs by analysis of the magnetic field
normal component the uncertainty needs to be known.

The uncertainties in the orientations of the eigenvectors are generally a sum of a statistical
error and a systematic error. Whereas the statistical error can be estimated by use of standard
analytical tools or by use of computational techniques, the systematic part, as e.g. a lack of
stationarity or one-dimensionality, is not easy to assess.

Several authors have suggested approaches to estimate the error associated with MVA [Son-
nerup, 1971; Lepping and Behannon, 1980; Hoppe et al., 1981; Kawano and Higuchi, 1995;
Khrabrov and Sonnerup, 1998; Sonnerup and Scheible, 1998]. In the following we only illus-
trate the basic concepts presented in Lepping and Behannon [1980], Khrabrov and Sonnerup
[1998] and Sonnerup and Scheible [1998]; the other approaches are given in appendix C.
Here we focus on discussing the major problems.

Empirical error estimate

Lepping and Behannon [1980] carry out a computer simulation of discontinuities with strictly
known characteristics. The artificially created ideal discontinuities are simulated by a rotation
of the tangential magnetic field by an angle ω while the normal field component Bn is strictly
constant. The field magnitude Bp of the ideal discontinuities is also kept constant. The
number of field vectors is chosen to be proportional to the angle change ω. To these ideal
configurations is added isotropic noise. For a given noise amplitude these simulated DDs (for
fixed input values ω, Bn and Bp) are then used as input for MVA. For each input value of the
standard deviation of the noise distribution this procedure is repeated 100 times. For a given
set of ideal DD properties the program loops through an adjustable number of noise levels,
creating a full suite of sets from “quiet” to “noisy”. The process is repeated for another set
of ideal DD properties (different Bn and ω), and so on, until a reasonable spectrum of DDs
is created. An empirical error estimate for the relative normal component is proposed for the
ranges 30◦ < ω < 120◦ and 1 < λ2/λ3 < 5.6:

∆|Bn|
B

=
3
4

[
exp

(
120◦−ω

120◦

)3
]

sin(β)Λ3.60+2.44log Λ (7.4)
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where β = cos−1(|Bn|/B) and Λ = λ3/λ1 + λ3/λ2. Note that this error estimate depends on
the eigenvalue ratios and on ω and β. Since the eigenvalue ratio λ1/λ3 is usually considerably
larger than λ2/λ3, λ2/λ3 is the ratio of greatest concern in this error analysis, i.e., Λ≈ λ2/λ3

in most cases of interest. The β-dependence implies that for given ω and noise level, the Bn

estimate is on average worse for TDs than for RDs. Lepping and Behannon [1980] find that
resulting error values are greater by a factor of 2 or more for TDs relative to RDs. This is of
considerable interest for this and related works, since it complicates the problem of proving
a DD to be a TD by means of vanishing Bn.

In accordance with Sonnerup [1971] (see appendix C) they also find that the directional error
is larger in the x2-x3 plane than in the x1-x3 plane. Lepping and Behannon [1980] further
propose that using (λ2/λ3)

L = 2 as a minimum allowed value of λ2/λ3 is a sufficient criterion
in the majority of cases to at least prevent incorrect interpretation. However, they also state
that in some cases (less than 10% of the total cases studied) this criterion did not work,
and that in these cases ω was small (< 40◦). Therefore, Lepping and Behannon [1980]
suggest to also avoid such small-angle cases. The latter has, however, not been adopted
by the community. As stated in the previous section the most common criterion is to use
(λ2/λ3)

L = 2 as a lower limit.

Another result of Lepping and Behannon [1980] is that only 5% of the TDs have errors as
large as 0.3 |Bn|/B according to their error analysis, where in this case ∆Bn = Bn. Conversely,
all DDs whose |Bn|/B exceeds 0.3 are with 95% certainty RDs. Therefore they suggest to use
this value, instead of 0.4 as proposed by Smith [1973a] (see also section 3.1.2), as an upper
bound on the relative normal component value for TDs that can be used to separate them
from RDs in studies using only magnetic field data from a single spacecraft.

However, in order to adequately interpret these results, the assumptions made must be scru-
tinised. First, the number of field vectors within the transition being proportional to ω is not
what we observe for interplanetary discontinuities. We find thin DDs (small number of field
vectors) with large ω, but also thick DDs with small ω. From our experience (we have not
quantified this) we believe MVA yielding better normal estimates in the first case. One can
argue that the assumption of one-dimensionality is more likely to be fulfilled for thin DDs
possessing a large angular change of the field vectors than for thick DDs with the same ω.
Second, and this is probably more important, the model of 1-D structures being superposed
by isotropic noise may not be justified. The fluctuations and wave fields that are superposed
to real interplanetary discontinuities are more likely to be anisotropic. We remind that the
addition of isotropic noise indeed changes the variance ellipsoid (in the extreme case when
the noise to signal ratio is very large the ellipsoid approaches a sphere), but the eigenvectors
remain unchanged. In contrast, anisotropic noise does change the eigenvectors, particularly
x3. Therefore, we believe the estimate for the angular uncertainty of x3 and thus the esti-
mate for the uncertainty of Bn to be overly optimistic. Also, we suggest that λ2/λ3 > 2 does
not imply reliable MVA normals. Yet, the conclusion that the MVA error is largest for TDs
remains valid. The same holds for the conclusion that the error is also dependent on ω.
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Statistical error

Assuming that no systematic errors are present, a non-zero value of λ3 is solely due to the
statistical error. Assuming further that the noise is stationary, isotropic and spatially uncor-
related, this statistical part of the error can be calculated from first principles [Khrabrov and
Sonnerup, 1998]. Khrabrov and Sonnerup [1998] note explicitely that in most applications
this approach is a radical idealisation prompted by a lack of knowledge of the actual proper-
ties of the physical and instrumental noise. Therefore the resulting error estimates must be
regarded as a strictly a priori assessment of the uncertainty. Khrabrov and Sonnerup [1998]
perform a perturbation analysis on the eigenvector equation 7.2:

(M∗+∆M)(x∗i +∆xi) = (λ∗i +∆λi)(x∗i +∆xi) (7.5)

where the unknown noise-free state is denoted by an asterisk, and i = 1,2,3 correspond to
maximum, intermediate and minimum variance associated with M

∗, respectively. In the linear
approximation this ansatz yields the angular error estimates [Khrabrov and Sonnerup, 1998]:

|∆ϕi j|= |∆ϕ ji|=
[

λ3(λi +λ j−λ3)

(N−1)(λi−λ j)2

] 1
2

, i 6= j (7.6)

where |∆ϕi j| denotes the expected angular uncertainty of eigenvector xi for rotation toward
or away from eigenvector x j. Note that this estimate of the noise component decreases as
N−1/2 as expected for the purely statistical part of the error. Again, the error depends on the
eigenvalues. Except for very small values of λ3/(N− 1), the uncertainty becomes large for
the nearly degenerate case, λi ≈ λ j. This is an expected and desirable property, but the linear
analysis used in producing the error estimate then breaks down [Khrabrov and Sonnerup,
1998]. Since, for interplanetary discontinuities, λ1−λ3 is generally much larger than λ2−λ3

it follows that |∆ϕ32| is considerably larger than |∆ϕ31|.

Assuming the error associated with the variance λ3 and the two uncertainties associated with
the angular error estimates for x3 to be independent, Sonnerup and Scheible [1998] write the
composite statistical error estimate for 〈B〉 ·x3 as

|∆〈B ·x3〉|=
[

λ3

N−1
+(∆ϕ32〈B〉 ·x2)

2 +(∆ϕ31〈B〉 ·x1)
2
] 1

2

(7.7)

Note that for small noise-to-signal ratios no assumptions about the probability distribution
of the noise are required to calculate the angular uncertainty of x3 [Khrabrov and Sonnerup,
1998].

Finally, Sonnerup and Scheible [1998] point out that, because the conditions of a real obser-
vation of a discontinuity differ from the idealised model, a rule of thumb for reliability of
the minimum variance direction for common practice should be that λ2/λ3 ≥ 10 for N < 50.
Note that this value is by a factor of 5 larger than that proposed by Lepping and Behannon
[1980] which has been frequently used. Our multi-spacecraft analysis will show that this
rather intuitive estimate by [Khrabrov and Sonnerup, 1998] appears to be plausible.
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Comparison and discussion of the error estimates

Sonnerup and Scheible [1998] compare the results of several approaches to assess the MVA
error for a specific magnetopause crossing. They find that the empirical method proposed
by Lepping and Behannon [1980], the bootstrap method (see appendix C) and the purely
statistical approach by Khrabrov and Sonnerup [1998] yield comparable error values.

Furthermore, they show, according to Kawano and Higuchi [1995], that the errors predicted
by Sonnerup [1971] (see appendix C) exhibit a N−1/4 dependence instead of the N−1/2 de-
pendence expected for stationary random noise. They argue that the weaker dependence on N
found for this method may perhaps be justified when significant systematic errors are present
in addition to the noise, but for stationary isotropic noise, equation 7.6 has better theoretical
justification. Sonnerup and Scheible [1998] also claim that equations C.7 [Hoppe et al., 1981]
do not contain N at all. Hence, these error estimates would not approach zero as N → ∞, as
expected for time-stationary statistical fluctuations.

The discussion regarding statistical error versus systematic error is of considerable interest.
We disagree with the reasoning of Sonnerup and Scheible [1998] that a larger number of data
points inevitably leads to better normal estimates, as the following physical implications of
large datasets may outweigh the statistical advantages: A large number of data points is gen-
erally related to relatively thick discontinuities, and with increasing thickness the assumption
of one-dimensionality is increasingly difficult to justify. Furthermore, realising a larger num-
ber of data points by a higher time resolution physically leads to the problem of resolving
high-frequency wave activity within the transition which may not be directly connected to
the actual discontinuity one is interested in. Only a large number of field vectors due to a
slow motion of the discontinuity relative to the spacecraft implies no physical drawbacks.

Note that applying their method to a magnetopause crossing, Khrabrov and Sonnerup [1998]
find that the uncertainty actually increases with increasing N in that example. They presume
that this effect is the result of spatial and/or temporal inhomogeneity. Sonnerup and Scheible
[1998] admit that when data of high time resolution are used, the N−1/2 dependence may
lead to the underestimation of uncertainties, and also that additional systematic errors not
described by 7.6 and 7.7 may influence the estimate.

We further claim that methods that require certain properties of the noise such as isotropy,
as equation 7.4 and partially equation 7.6 do, are probably unrealistic and thus underestimate
the error. Since the error-formula proposed by Lepping and Behannon [1980] yields results
comparable to the statistical approach presented by Khrabrov and Sonnerup [1998] and the
bootstrap method, the results of Lepping and Behannon [1980] may serve as a reference for
our own analysis in this work.

The four Cluster spacecraft penetrate a discontinuity at four nearby locations. Assuming a
planar surface on the Cluster separation scale non-collinear MVA normals indicate poor per-
formance of MVA, and the deviations between the individual normals may be used to quantify
the uncertainty of MVA. The results we obtain by this simple comparison are detailed in chap-
ter 8. They will demonstrate that the assumptions made by most of the presented approaches
for assessing the error, as for example that the disturbance field is isotropic, cannot account
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for real interplanetary discontinuities.

As a final note we may add that a simple and efficient method to test the reliability of the
estimated MVA normal is to perform MVA for several different time intervals and to com-
pare the results. Experience indicates that if the results are essentially the same for several
neighbouring nested data segments centred at or near the middle of the discontinuity, they are
perhaps believable.

7.3 Cross product method for TDs

If a discontinuity is known to be a TD or has a vanishing normal component of the magnetic
field, it is possible to find the normal to the surface by simply noting that both upstream and
downstream magnetic field vectors are parallel to the discontinuity plane and, unlike the case
of a perpendicular shock, are not in general parallel to one another. Hence the normal is given
by the cross product of the upstream and the downstream magnetic field:

n =± B1×B2

|B1×B2|
(7.8)

The uncertainty associated with normals determined by this method is relatively small. It
stems from imprecision in B1 and B2 that are subject to fluctuations in the vicinity of the
TD. The uncertainty increases with increasing collinearity of B1 and B2. Similar to timing
methods and in contrast to MVA, the cross product method is completely independent of the
discontinuity fine structure, i.e., of superposed fluctuations within the transition.

However, it has to be checked a priori that the discontinuity is a TD.

Several authors have applied this method to interplanetary discontinuities [Horbury et al.,
2001a; Burlaga and Ness, 1969; Burlaga, 1969a; Denskat and Burlaga, 1977]. When data
from more than one spacecraft was available considerable agreement with timing-related
methods have been found [Horbury et al., 2001a; Burlaga and Ness, 1969].

We will use the cross product method only as a third reference.

7.4 Triangulation - multi-spacecraft technique using rela-
tive timings

One of the important objectives of the four-spacecraft Cluster mission is to allow determi-
nation of the orientation and speed of discontinuities without use of single-spacecraft tech-
niques. The use of relative timings between the four spacecraft results in an enormous in-
crease in the estimate reliability. This technique is referred to as triangulation. The disconti-
nuity must be observed at least at three positions for triangulation to be applicable [Burlaga
and Ness, 1969; Horbury et al., 2001b]. However, without requiring additional input as the
solar wind speed, four spacecraft are necessary.
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7.4.1 Description of the method

The timing method for determining discontinuity normals and velocities used in this work is
simple and was first presented by Russell et al. [1983] who applied it to interplanetary shocks.
It has been reviewed recently by Harvey [1998], Schwarz [1998] and Chanteur [1998] and has
become a frequently used tool in the interpretation of magnetopause and bow shock data from
the four Cluster spacecraft (e.g., Haaland et al. [2004]; Maksimovic et al. [2003]; Horbury
et al. [2002]). The method is based on the assumption that each of the four spacecraft crosses
a locally planar discontinuity that moves at a constant speed. If the spacecraft α crosses the
plane at time tα and its position vector is rα at that moment, then for each pair α and β,

(U(tα− tβ)) ·n = (rα− rβ) ·n (7.9)

where U is the constant velocity of the discontinuity relative to the spacecraft array and n the
discontinuity normal.

Figure 7.2 illustrates this. Note that only the time differences tαβ = tα− tβ and the difference
vectors rαβ = rα−rβ of the four spacecraft positions are used. Also note that the positions of
the four spacecraft, taken for each of them at the time when it crosses the discontinuity, form
a tetrahedron that does not correspond to any instantaneous configuration of the array.

Taking for instance Cl 1 as the reference spacecraft and defining P1 = (r12,r13,r14) and
t1 = (t12, t13, t14), the normal n and the speed along this normal U = U ·n can be calculated
as

n
U

= P
−1
1 t1 (7.10)

where P
−1
1 is the inverse of P1. Note that a necessary condition for a solution (i.e., for P

−1
1

to exist) is that |P| 6= 0. Therefore, the third constraint for applicability besides planarity
and constant velocity is that the four spacecraft are not coplanar. In reality, this mathematical
condition is replaced by a more physical condition which compares P1 with the standard error
in the relative spacecraft positions as determined from the orbit analysis, and the standard
error of the experimental measurements themselves. Indeed, as we will show at the end of
this section and in chapter 9, the precision of triangulation considerably depends on the shape
of the spacecraft tetrahedron. To ensure this third constraint to be fulfilled we have introduced
a cut-off value Pc for the planarity in chapter 5.

The required timing information can be obtained from any quantity measured at sufficient
time resolution by all four spacecraft, provided a well-defined change in that quantity occurs
at the discontinuity. In this work, we use magnetic field measurements from the four Cluster
spacecraft. The sharp rotation of the field vector indicates the crossing time. Figure 7.3
shows an example of an interplanetary discontinuity observed by Cluster. Whereas the field
magnitude remains constant (as is the case for the majority of DDs) the rotation of the field
vector is clearly visible in the sharp jumps of the components. The order of passage of the
transition is Cl 2, Cl 1, Cl 3 and finally Cl 4. The time lags are determined by shifting
the individual time series until the jumps are aligned (right side of Figure 7.3). For the
shown example we find t12 = 0.3 s, t13 = −0.7 s and t14 = −2.7 s. In section 9.2 we show
histograms of all observed timings (Figure 9.6). The maximum time lags we observe are
33 s in 2003, 6.4 s in 2001 and 0.5 s in 2002, the average values are 5.11 s, 1.23 s and
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Figure 7.2: Illustration of the triangulation technique. A planar discontinuity with normal n moves
relative to the Cluster array with constant velocity U. The spacecraft cross the discontinuity plane at
times tα (α = 1,2,3,4). On the right projections at time t1 and t2 are shown. Clearly, Ut12 = r12 ·n.

0.12 s, respectively. To optimise the procedure of finding the relative timings, we eliminate
undesirable high-frequency fluctuations. To this purpose, a low-pass filter is applied to the
data from each spacecraft by application of sliding averages. We use 1 s and 4 s averages
depending on the width of the transition and the type of fluctuations to be eliminated. The
thickness of the transition shown in figure 7.3 is approximately 1.5 s.1 Thus applying 4
s sliding averages in this specific case would considerably smooth the actual discontinuity
signature. Furthermore, the background field is rather quiet in this example. In general,
however, especially when strong superposed fluctuations are present, we inspect both the
high resolution data and sliding averages in order to determine precise time lags.

Note that alternatively a cross-correlation technique to determine the time differences could
be used (e.g., Haaland et al. [2004]; Maksimovic et al. [2003]). Although this technique is
more automated than ours, it suffers from the need to identify suitable data intervals for cross-
correlation. Based on comparison of a few test cases we believe that our timing estimates are
not worse than timings determined by cross-correlation.

Conditions for applicability

The assumption of constant velocity is problematic for the magnetopause and the bow shock.
There, the crossing time often varies significantly from spacecraft to spacecraft. In two re-
cent papers, Dunlop et al. [2001; 2002] have concluded from studies of Cluster magnetopause
events that the magnetopause speed was usually not constant during an event but could change
drastically over timescales of a minute or less, whereas the thickness showed more modest
variations. It is also well known that the bow shock can rapidly change velocity; indeed, it

1Histograms of the thickness of all DDs studied are shown in section 8.7. On average the duration of the
transition is about 9 s. Also note that we have discussed the relation between the DD thickness and the size of
the Cluster array at the end of section 5.5.
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Figure 7.3: High resolution magnetic field data for one example DD from the set DD2001. The
original four time series are shown on the left hand side. The time lags between the pairs of spacecraft
are obtained by shifting the time series until they are aligned (right side). The standard colour code is
used (Cl 1: black, Cl 2: red, Cl 3: green, Cl 4: blue). The vertical lines indicate the transition.

has been observed to reverse direction within the Cluster formation [Horbury et al., 2001c].
Assuming constant motion, as we do, this of course leads to considerable errors when the
boundary normals are determined. However, for interplanetary discontinuities the situation
is different. Here, the assumption of a constant velocity is well justified. Whereas the mag-
netopause and the bow shock are highly dynamic and move in and out due to changing solar
wind conditions, around a stable average position, interplanetary discontinuities are struc-
tures embedded in the solar wind that pass the Cluster array at comparatively high speeds.
Thus, relative velocity changes from one spacecraft to the other affecting the normal determi-
nation are unlikely. In general, we do not observe considerable differences in crossing times
at the four satellites, either. Consequently the assumption of constant motion is justified.

The second assumption is that the observed structure is planar over the width of the Cluster
array. For the discontinuities considered in this work, the typical Cluster inter-spacecraft
separation ranges from 100 km in 2002 to 4000 km in 2003 (see table B.1). This is much
less than the usual estimate for the large-scale curvature of interplanetary discontinuities;
Lepping et al. [2003] estimate an average of the radius of curvature to be 380 RE. In addition,
our subsequent analysis of Cluster data using single-spacecraft tools provides more evidence
for interplanetary discontinuities being in fact planar over the used tetrahedron scales. Thus,
we can argue with good cause that the conditions for the application of triangulation are
indeed satisfied.

Techniques to determine motional and geometrical properties of discontinuities

By combining MVA with relative timings more detailed motional and/or geometrical prop-
erties of the discontinuity can be determined. This method and its underlying assumptions
are described in Dunlop et al. [1997]; Dunlop and Woodward [1998]. It is referred to as the
discontinuity analyzer. Within this technique the boundary normals are solely obtained by
MVA. In the case of planar structures (inferred from collinearity of the MVA normals) a con-
stant acceleration can be determined. As discussed above, this is of considerable interest for
magnetopause or bow shock crossings generally comprising non-constant motion. In the case
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of non-coplanar MVA normals the discontinuity analyzer yields information about curvature.
There have also been earlier theoretical approaches addressing the local geometry of a surface
crossed by a group of satellites, e.g. Mottez and Chanteur [1994]. All these methods share the
necessity of using single-spacecraft techniques to determine local normals, with MVA as the
most common. For the outcome to be meaningful these normals need to be known precisely.
Our main results, that in most cases MVA does not yield well-defined boundary normals, is a
serious caution for the application of such techniques.

Generalised formalism using the volumetric tensor

Harvey [1998] criticises that the method we use (equation 7.10) is incapable of handling
relative time differences determined independently between each of the six different pairs of
spacecraft; these time differences may be subject to experimental errors and therefore, in the
mathematical sense, they will be mutually inconsistent. Furthermore, Harvey [1998] notes
that the method cannot be generalised to more than four spacecraft and that there is a lack
of symmetry selecting one reference satellite, despite the fact that the four spacecraft are
identical. In order to overcome these criticisms Harvey [1998] presents a treatment of the
problem which is formulated by means of the volumetric tensor (equation 5.5 chapter 5). It
is a homogeneous least squares method applicable to four or more spacecraft. See appendix
D for more details on this method.

7.4.2 Barycentric formalism - error analysis

In the following we present a third treatment of the problem of (N = 4) spacecraft crossing a
planar discontinuity in uniform motion. The formalism of barycentric coordinates and recip-
rocal vectors, first applied to a multi-spacecraft problem by Chanteur and Mottez [1993], is
especially helpful as it allows to theoretically derive analytical expressions for the uncertain-
ties associated with the relative timing method we use. The derivation of these expressions
and in particular their discussion is the aim of this section.

Barycentric coordinates and reciprocal vectors are well-known tools in applied mathemat-
ics but not in space physics. Also due to their importance in numerous topics that can be
addressed by a four-spacecraft mission, it is worthwhile to present this formalism. A self-
contained and detailed description is given in Chanteur [1998]. Here we provide a summary
of definitions and fundamental properties needed later.

Again, α = 1,2,3,4 denote the vertices of an irregular tetrahedron and rα their position vec-
tors. Chanteur [1998] introduces the barycentric coordinates considering the linear interpo-
lation of a naturally occurring scalar field u(r) or a vector field v(r) that is known only by the
values uα = u(rα) or vα = v(rα) measured at the vertices α. The linear interpolation of these
values in the vicinity of the cluster requires four basic interpolating functions µα which are
linear scalar functions of the position vector r, and which satisfy the constraints µα(rβ) = δαβ.
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Figure 7.4: Illustration of the barycentric coordinates and the reciprocal vectors. The reciprocal
vector k4, defined by equation 7.14, points towards vertex 4 and is the gradient of the barycentric co-
ordinate µ4 which is constant on any plane parallel to the face 1-2-3; the shaded plane, perpendicular
to the axis µα, is an iso-value surface of µα.

Let the linearly interpolated field, denoted by L[u], be given by

L[u](r) =
4

∑
α=1

uαµα(r) (7.11)

The four values µα are the barycentric coordinates of the point r. They can be expressed as
µα(r) = να + kα · r, where the να and kα are respectively scalar and vector constants to be
determined. Using the constraints µα(rβ) = δαβ one can deduce

µα(r) = 1+kα · (r− rα) (7.12)

kα · (rβ− rγ) = δαβ−δαγ (7.13)

Equation 7.13 shows that kα is normal to Πα, the face of the tetrahedron opposite to vertex
α. Thus, for example, by making use of rβγ = rγ− rβ, k4 can be written

k4 =
r12× r13

r14 · (r12× r13)
(7.14)

It is proportional to the area of the face of the tetrahedron opposite to vertex 4 and inversely
proportional to the volume of the tetrahedron. Expressions for k1, k2 and k3 are obtained
through cyclic permutations of the indices. Chanteur [1998] calls the kα the reciprocal vec-
tors of the tetrahedron. Figure 7.4 illustrates the definitions above. The barycentric coor-
dinates have the following properties. (1) µα(r) is constant in a plane parallel to Πα, (2)
µα(r) = 0 for all points lying in Πα, (3) µα(r) < 0 in the half space, relative to Πα not con-
taining vertex α, (4) µα(r) > 0 in the half space, relative to Πα containing vertex α and (5)
0 < µα(r) < 1 for all points lying inside the tetrahedron.
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In the following, two properties of the reciprocal vectors will be useful. First,

4

∑
α=1

kα = 0 (7.15)

From equation 7.12 the reciprocal vectors satisfy kα = ∇µα. Thus, taking the gradient of both
sides of ∑4

α=1 µα(r) = 1, which straightforwardly follows from the linear interpolation of a
constant scalar field, equation 7.15 follows. Second, by taking the gradient of A · r, where A
is a constant vector,

A =
4

∑
α=1

(rα ·A)kα (7.16)

is obtained, because r itself is a linear field and can thus be written r = L[r] = ∑4
α=1 rαµα(r).

We are now able to formulate the problem of N = 4 spacecraft crossing a planar discontinuity
in uniform motion by means of the reciprocal vectors (see Chanteur [1998]). Again, tα
denotes the time when spacecraft α crosses the surface through point Pα, the position of
which is r0

α at some arbitrary time t0. Then,

rα(tα) = r0
α +U(tα− t0), for α = 1 to 4 (7.17)

The scalar product of this equation with the (unknown) normal n gives

n · rα(tα) = n · r0
α +n ·U(tα− t0) (7.18)

Multiplying this equation by kα and summing over the four values of α yields

4

∑
α=1

kαn · rα(tα) =
4

∑
α=1

kαn · r0
α +

4

∑
α=1

kαn ·U(tα− t0) (7.19)

Due to the planarity assumption all scalar products n · r0
α are equal. Hence, using equation

7.15 one obtains
4

∑
α=1

kαn · rα(tα) = U
4

∑
α=1

kαtα (7.20)

Note that the reciprocal basis presently considered is the one associated to the fictitious tetra-
hedron built by the four spacecraft at positions rα(tα) which does not correspond to any
instantaneous configuration of the cluster. Hence, using equation 7.16 the left hand side of
the above equation is equal to n, which is eventually given by

n = UQ (7.21)

where

Q =
4

∑
α=1

kαtα (7.22)

The normal component of the relative velocity between the cluster of spacecraft and the
discontinuity is given by the condition n ·n = 1, i.e.

U = (Q ·Q)−
1
2 (7.23)
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Note that this result contains relative spacecraft positions but absolute crossing times. Once
n and U have been computed with equations 7.21 - 7.23 the consistency of the four equations
7.18 can be tested. As discussed earlier, significant inconsistencies imply that at least one of
our assumptions is not valid.

Using equations 7.21 - 7.23 the covariances of n and U can be calculated [Chanteur, 2003].
Differentiating equation 7.22 yields

δQ =
4

∑
α=1

δtαkα +
4

∑
α=1

tαδkα (7.24)

The deviations δkα of the reciprocal vectors can be obtained from the deviations δrα of the
position vectors, which are defined as the difference between the true position (rα)true and
the nominal position rα [Chanteur, 1998; 2003]. However, as we will discuss in chapter 9
the positional uncertainty can be neglected. Hence2

〈δQδQT 〉=
4

∑
α=1

(δtα)2kαkT
α (7.25)

Differentiating equation 7.21 yields after some straightforward calculation

〈δnδnT 〉= U2(I−nnT )〈δQδQT 〉(I−nnT ) (7.26)

where I is the unit tensor. The angular uncertainty of n in any direction e perpendicular to n
(see Figure 7.5) is then given by

(δθ)2 = eT 〈δnδnT 〉e (7.27)

Finally, from equation 7.23 one obtains

(δU)2 = U4nT 〈δQδQT 〉n (7.28)

Discussion of the uncertainties of n and U

Equations 7.25 - 7.28 identify the parameters contributing to the error values of n and U .
These are:

(1) The uncertainties δtα in the determination of the crossing times (equation 7.25). Note that
the presented method of crossing times can be modified to use time delays between spacecraft
as we do [Chanteur, 2003]. In that representation the uncertainties δtα of the absolute cross-
ing times in equation 7.25 are replaced by the uncertainties of the time delays. These need
to be related to the characteristic size L of the tetrahedron since the reciprocal vectors are
inversely proportional to L (equation 7.14). Generally the correlation between the four time
series decreases and thus the uncertainty of the time delays increase with increasing space-
craft separations. However, we find that the increase of the timing uncertainty is less than

2Dyadic notation is used: aT denotes the transpose of the column vector a, and the dyad abT is a tensor of
rank two. The expectation value of a random variable X is noted 〈X〉.
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linear in the separation distances. Therefore, the precision of our timing method increases
with increasing spacecraft separations for the range of distances considered here.

(2) Both the angular uncertainty of n (equation 7.27 with equation 7.26) and the uncertainty
of the velocity U (equation 7.28) explicitely depend on U . Whereas δθ depends linearly on U ,
the dependence is quadratic for δU . Albeit the fact that U = U ·n is the normal component of
the discontinuity velocity and that n can in principle be arbitrarily oriented with respect to the
solar wind velocity Vsw, it is apparent that the velocity of the moving plasma frame in which
the discontinuity is embedded is generally a crucial parameter determining U . Therefore, the
determination of n and U is generally more accurate in slow solar wind as compared to fast
solar wind streams.

(3) The geometry and orientation of the tetrahedron. These are implied by the right side
of equation 7.25, which for δt1 = δt2 = δt3 = δt4 = δt reads (δt)2

K, where K = ∑4
α=1 kαkT

α
is the so-called reciprocal tensor. It can be shown [Chanteur and Harvey, 1998] that K is
related to the volumetric tensor R, which provides information about the global shape of the
tetrahedron (see chapter 5): K = 1

4R
−1. A simple geometrical consideration demonstrates

the impact of the tetrahedron properties: Deforming a regular tetrahedron by moving vertex
4 along the axis k4 towards the face Π4 (see e.g. Figure 7.4) the planarity P increases from
zero (regular tetrahedron) to unity (vertex 4 lies in the plane defined by face Π4), and the
reciprocal vectors k1, k2 and k3 rotate about the axis defined by the intersection of the plain
containing face Π1, Π2 and Π3, respectively with the plain containing face Π4 until k1, k2

and k3 are parallel to each other and antiparallel to k4. Since the volume of the tetrahedron
approaches zero whereas the area of the sides remain positive, |kα| → ∞ (α = 1,2,3,4),
for vertex 4 approaching face Π4 (or P → 1), generally yielding large errors according to
equation 7.25. Therefore, the precision of triangulation decreases with increasing planarity
P. Furthermore, since the components of k1, k2 and k3 perpendicular to k4 vanish, and the
components antiparallel to k4 dominate, the angular uncertainty on n is largest in the direction
given by k4, which coincides with the normal to planarity. Hence, the angular uncertainty is
largest in the direction normal to planarity. This means that the cone of uncertainty as shown
in Figure 7.5 is unrealistic in the general case of an irregular tetrahedron and needs to be
replaced by an asymmetric figure. Finally, considering the projections of 〈δQδQT 〉 onto
I−nnT (equation 7.26) and onto n (equation 7.28) it is clear that the precision depends on
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the orientation of the tetrahedron relative to the discontinuity normal n.

In summary, for the subsequent analysis we need to keep in mind that we achieve best esti-
mates for n and U when the spacecraft separations are large, the solar wind velocity is low
and when the shape of the cluster is close to a regular tetrahedron. We need to be aware that
due to the large ratio δt/(spacecraft separation) the triangulation results are the least reliable
in 2002. Also, due to the poor statistics (only 33 events) in this year the contribution of the set
DD2002 regarding multi-spacecraft techniques is of minor importance. The most meaningful
triangulation results are obtained in 2003, where the separations are largest. However, as
discussed in chapter 5, care needs to be taken of strongly flattened spacecraft configurations
in this year. Using only those events with a suitable spacecraft geometry (P < Pc = 0.8 as
defined in chapter 5) we still retain a large data set of 191 events with excellent estimates of
n and U . In chapter 9 we will demonstrate that Pc = 0.8 is a reasonable cut-off value.

In chapter 9 we use an empirical method to estimate the uncertainties which gives the max-
imum possible deviation from the measured normal n (denoted as dn) and the maximum
possible difference to the measured velocity U (denoted as dU ) within the experimentally
observed uncertainty δt. A detailed error analysis for the specific events investigated will be
carried out in that chapter. Among others the importance of the identified factors affecting
the triangulation accuracy will be discussed in detail. For typical values of δt we obtain on
average (see table 9.1): dn = 5◦ and dU = 25 km/s in 2003, dn = 10◦ and dU = 75 km/s
in 2001 and dn = 35◦ and dU = 500 km/s in 2002. Note that in our analysis the angle θBn

between the magnetic field B and the discontinuity normal n is of particular interest. Due to
the anisotropy of the angular uncertainty, dθBn is in general considerably smaller than dn. As
a final remark we point out that in our error analysis (here and in chapter 9) we neglect the
possibility of DDs being non-planar or in non-constant motion on the Cluster scale.



CHAPTER 8

STATISTICAL ANALYSIS OF DISCONTINUITIES

AT 1AU

This chapter contains the majority of results of our statistical study on interplanetary discon-
tinuities.

First, we establish that the ensemble of DDs investigated in this study does not differ sta-
tistically from those in previous studies: Our results are consistent with previous studies if
analysed and interpreted as single-spacecraft measurements and using established analysis
tools such as MVA (section 8.1).

We then present the seminal result that four-spacecraft analysis with discontinuity normal
estimates based on the triangulation method yields strikingly different results than one-space-
craft analysis with normals from MVA (section 8.2). This result implies a radically different
physical picture of the solar wind micro-structure. Much of the following analysis is devoted
to solving the observed discrepancy.

We provide evidence for MVA being much less reliable than previously thought, yielding
poor estimates in many cases (section 8.3). Given that MVA is a widely used data analy-
sis technique applied in a variety of fields in space plasma physics, this result has drastic
implications beyond this project.

We define circumstances that are likely to favour erroneous MVA normal estimates, and we
propose a physical model for interplanetary discontinuities that accounts for these observa-
tions. According to the discussion in the previous chapter (section 7.2) the accuracy of MVA
mainly depends on the eigenvalue ratio λ2/λ3 and the discontinuity spreading angle ω. The
analysis presented in section 8.3 is hence mainly based on these two parameters.

Simple but effective consistency tests presented in section 8.4 prove that, in contrast to MVA,
the triangulation method yields reliable normal estimates.
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Being aware of the deficits associated with MVA, further problems can be tackled. In section
8.5 we discuss geometrical properties of DDs. Propositions for the large scale curvature
of DDs have been made in earlier studies (e.g. Lepping et al. [2003]). These are based on
MVA normal estimates made at two or more widely separated spacecraft. The four Cluster
spacecraft flying in formation only a few hundred or thousand kilometres apart are used to
help interpreting such results in section 8.5.

Another macroscopic quantity to be investigated is the orientation of the DDs in the inter-
planetary medium (section 8.6).

In order to determine the discontinuity thickness from the transition time, the relative velocity
between DD and spacecraft needs to be known. Whereas the velocity had to be derived from
plasma data in earlier studies it is directly computed by the triangulation technique in this
study. Also, because of the high time resolution of the FGM instrument on board Cluster, we
are able to resolve very thin DDs (section 8.7).

Note that the analysis presented in sections 8.1-8.7 is solely based on magnetic field data
from the FGM instrument on board Cluster. In section 8.8 we come back to the classification
analysis, approaching the problem from a different side. Whereas in section 8.2 only the nor-
mal component and the change of magnitude of the magnetic field are used, the polarisation
relation, the density jump and the propagation relative to the ambient plasma are investigated
in section 8.8 aiming to distinguish RDs from TDs. Not being misled by erroneous normal es-
timates (as all earlier studies based on MVA were) we can analyse the question of which type
of solar wind is most likely to host RDs. This in turn is strongly related to the long standing
question of identifying possible generation mechanisms of interplanetary discontinuities.

Some of the results presented in this chapter have already been published [Knetter et al.,
2003; 2004]. These publications contain a fractions of the results using magnetic field data
from 2001 only.

8.1 Single spacecraft analysis

In order to demonstrate that the ensemble of DDs investigated in this work does not differ
statistically from those in previous studies we use each satellite as a separate mission and
apply established single-spacecraft analysis tools.

We have already identified some characteristics of our sets of DDs indicating representative
ensembles in section 6.3 where we discussed the occurrence statistics. In accordance with
earlier studies we find: (1) The number density of identified DDs is not constant in time but
fluctuates strongly from day to day. (2) These fluctuations are correlated to the fluctuations of
the solar wind speed. (3) The tendency of DDs to occur in clusters is also visible within one
day, and (4) a frequency of one (B-method) and two (TS-method) DDs per hour is observed
on average. Further characteristics are discussed below.

It is found that the distribution of the discontinuity spreading angle ω follows an exponential



8.1 SINGLE SPACECRAFT ANALYSIS 111

0 30 60 90 120 150 180
ω [deg]

0

0.1

0.2

0.3

0.4

p
er

ce
n

ta
g

e α=75
α=63

mean=51.9
median=42.4

total=1292001

0 30 60 90 120 150 180
ω [deg]

0

0.1

0.2

0.3

0.4

p
er

ce
n

ta
g

e α=75
α=94

total=33
mean=65.3
median=62.3

2002

0 30 60 90 120 150 180
ω [deg]

0

0.1

0.2

0.3

0.4

p
er

ce
n

ta
g

e α=75
α=81

total=204
mean=60.7
median=55.5

2003

0 30 60 90 120 150 180
ω [deg]

0

0.1

0.2

0.3

0.4

p
er

ce
n

ta
g

e α=75
α=95

total=83
mean=65.6
median=57.3

2003CH

Figure 8.1: Histogram of ω obtained from Cl 1. All DDs are considered. The solid line shows a
fit with α = 75◦, the dashed line the best fit. The vertical dashed and dotted lines indicate the median
and mean value, respectively.

decrease for ω > 30◦:
Number of DDs(ω) ∝ e(

ω
α)

2

(8.1)

with α = 75◦ at 1 AU [Burlaga, 1969a; Burlaga et al., 1977]. This means that the distribution
rapidly decreases and that the majority of DDs have a small spreading angle ω. Burlaga
[1971b]; Mariani et al. [1973]; Barnstorf [1980] find similar distributions. Barnstorf [1980]
states that one half of all DDs have a spreading angle less than 50◦.

We find that ω is almost the same at the position of all four spacecraft.1 Figure 8.1 shows
the distributions we obtain from Cl 1 separately for all four sets (DD2001, DD2002, DD2003

and DD2003CH ). Note that as discussed in section 6.2 the distribution is artificially biased
due to the selection criteria used. Effectively, discontinuities with ω . 30◦ are disregarded.
However, since for the determination of ω high resolution FGM data are used, ω < 30◦

is possible in Figure 8.1. The ω distributions we find are consistent with the distributions
found in earlier studies. We fit each of the four distributions to equation 8.1 for ω > 30◦

(dashed line). Best fits are obtained for α = 63◦, α = 94◦ and α = 81◦ in 2001, 2002 and
2003, respectively. Especially in 2003, where most events contribute to the distribution, the
fitting parameter is close to α = 75◦, as found by Burlaga [1969a]; Burlaga et al. [1977]. A
weighted average over all three years yields α = 76◦. In accordance with Barnstorf [1980],
we observe median values around 50◦. Hence we add to our above list: (5) The distribution
of the spreading angle ω is consistent with distributions found for sets used in earlier studies.

Note that the distribution of ω is different for the four sets. Apparently the decrease is steepest
in 2001 (smallest α). In this period of observation, where we mostly identified slow solar
wind from active regions, the spreading angle is smallest (also compare the different average
values given in Figure 8.1). A comparison of α and the mean value between DD2003 and
DD2003CH confirms that ω tends to be larger in fast solar wind originating from coronal holes.

For our purpose the most important indicator of consistency with earlier studies is the single-
spacecraft classification result, i.e., the percentages RD:TD:ED:ND obtained using MVA. We
have discussed the classification results in section 3.2 found so far. We have shown that these
results vary. Whereas some authors find more TDs than RDs, the majority of studies claim
a dominance of RDs. There is general agreement that the abundance of RDs increases in
fast solar wind, and to our knowledge no published study does not find a clear RD at all. In

1This will be discussed in more detail in section 8.3.4.
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Table 8.1: RD:TD:ED:ND Percentages. Deviations from 100 are due to truncation errors.
Author Mission DDs MVA Triangulation

RD:TD:ED:ND (R/T) RD:TD:ED:ND

Smith [1973a] Mariner5 118 37:15:47:1 (2.5) -
Lepping and Behannon [1980] Mariner10 163 38:18:38:6 (2.1) -
Neugebauer et al. [1984] ISEE3 473 56:12:32:1 (4.7) -
Horbury et al. [2001b] Wind (I8, G) 35 57:11:26:6 (5.2) 9:14:74:3
DD2001 Cluster 432/4 35:16:47:2 (2.1) 0:16:83:2
DD2002 Cluster 113/4 42: 6:48:4 (6.7) 3: 6:91:0
DD2003 Cluster 698/4 42: 9:48:1 (4.5) 0:10:90:0
DD2003CH Cluster 282/4 37:11:49:3 (3.3) 0:14:86:0
DD2003CHS Cluster 185/4 45: 6:47:1 (7.0) 0:10:90:0

other words, all previous studies conclude that “unambiguously” identified RDs represent a
significant fraction of all observed discontinuities, so they must be considered an important
interplanetary phenomenon.

The classification results strongly depend on details in selection and on the rules applied for
classification. Therefore, we directly compare our results to studies that use the same classifi-
cation principles that we choose to adopt, namely a classification based on the magnetic field
component normal to the DD and the field magnitude jump across the transition (see Figure
3.3 in section 3.1.2).2 Four studies that are relevant in this regard are listed in Table 8.1. Note,
however, that Smith [1973a] and Lepping and Behannon [1980] use slightly different thresh-
olds. Table 8.1 shows from left to right: The authors, the spacecraft used, the number of DDs
investigated and the classification result (RD:TD:ED:ND) found using MVA. The number in
brackets (R/T) is the direct ratio of RDs to TDs. The rightmost column is not relevant for
the discussion in this section and can be ignored for the moment. The top part of Table 8.1
shows the results found in the literature. The results from our own analysis are presented
in the bottom part. These results are obtained by performing MVA with the data from each
spacecraft separately and subsequent calculating |Bn|/Bmax according to the derived normal
estimate. Following common practice (see section 7.2) we use (λ2/λ3)

L = 2 as a lower limit,
i.e., all DDs with λ2/λ3 ≤ 2 are discarded. The data shown in Table 8.1 represent the results
obtained at the individual spacecraft that satisfy the constraint. This means that if λ2/λ3 > 2
at all four spacecraft, the corresponding DD appears four times in the statistic. The individual
results for each spacecraft can be viewed in appendix B (Table B.2).

Table 8.1 shows that our single-spacecraft results agree very well with the percentages found
in literature. Excellent consistency is found between our 2001 result and the classifications
determined by Smith [1973a] and Lepping and Behannon [1980]. Neugebauer et al. [1984]
reason that the enhanced percentage of RDs that they find is caused by the high solar wind
velocity prevailing during the time interval of their investigation. The results we obtain for
DD2003 and DD2002, where the solar wind speed is also enhanced compared to 2001, are
consistent with Neugebauer et al. [1984], although we find a higher ratio of EDs to RDs. In

2Note that this only accounts for this part of the work. Later we will also apply other criteria.
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particular the ratio R/T is in excellent agreement for DD2003 (which is the largest of our sets).
The result obtained by Horbury et al. [2001b] is similar to that of Neugebauer et al. [1984],
although their statistics are worse. Also in agreement with other single-spacecraft studies is
that the relative number of RDs increases with increasing solar wind speed (The ratio R/T
found in 2003 is roughly twice as large as in 2001).

In order to study the dependence on solar wind type in more detail, we repeat the analysis
for the set DD2003CH , i.e., the subset of DD2003 containing only those DDs that are found in
fast streams presumably from coronal holes on the Sun (see section 6.5). We are surprised
to find relatively fewer RDs in the coronal hole subset than in the total set, contradicting
earlier results. Therefore we investigate the set DD2003CH in more detail. As one would
expect for coronal hole flow, the magnitude changes are all moderate with |[B]|/Bmax . 0.3
for all 83 DDs. Further, only 11 out of the 83 DDs have |[B]|/Bmax > 0.2, and using MVA
we identify only 7, 9, 9 and 7 TDs at Cl 1, Cl 2, Cl 3 and Cl 4, respectively. It turns out, that
the vast majority of these TDs in DD2003CH belong to the 27 DDs in FS II identified as being
“unclear” (see section 6.5), because either they are in the vicinity of the CME on ≈ doy 50 or
very close to the border of the fast stream where the stream-stream interaction region might
have some influence on the properties of the DDs. To be more precise, most TDs identified
in the set DD2003CH are observed on doy 46, 48 and 51. This explains the relatively large
magnitude changes (|[B]|/Bmax ∈ [0.2,0.3]) observed for these DDs. The set DD2003CHS in
Table 8.1 is the subset of DD2003CH where the 27 “unclear” events are removed. This set
contains only DDs unambiguously found in steady coronal hole flow. Of the remaining 56
DDs in DD2003CHS only 3 DDs are identified as TDs with |[B]|/Bmax only barely exceeding
the threshold 0.2. As can be viewed in Table 8.1, an increased ratio R/T is found for this subset
as compared to the total set DD2003. Hence, altogether our single-spacecraft classification
results coincide very well with earlier studies.

Note that, although statistically the individual analyses using each of the four spacecraft
yields similar classification results, the normals derived by MVA at the location of the four
spacecraft are always different for the traversal of a DD. Sometimes the angle between the
four individual MVA normals is small, and in other cases it is large, sometimes even 90◦.
(Figure 8.17 in section 8.5 gives an overview.) In fact, the deviating normals often lead
to a DD being identified as an ED at the location of one spacecraft and as an RD at the
location of another spacecraft. Because of the small separations between the Cluster satellites
this remarkable disagreement between the four MVA results is indicative of a considerable
uncertainty associated with the MVA normal determination. This will be detailed in the
following sections.

As a final test for consistency we compare the average MVA eigenvalue ratio λ2/λ3, the
spreading angle ω and the discontinuity thickness separately found for RDs, TDs and EDs
according to the classification above. We only exemplarily present our results of 2001. An
important result for the following discussion is the consistent observation that λ2/λ3 is sig-
nificantly smaller for RDs than for TDs and EDs on average. We find 〈λ2/λ3〉 = 4.8 for
RDs, 〈λ2/λ3〉 = 11.1 for TDs and 〈λ2/λ3〉 = 12.2 for EDs for the set DD2001. The corre-
sponding values obtained by Lepping and Behannon [1986] are: 〈λ2/λ3〉 = 4.9, 8.5and8.8.
Söding [1999] finds the same tendency, although the differences are not as pronounced, and
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the eigenvalue ratios are generally larger. The latter is probably due to the different time
resolution used: Whereas Lepping and Behannon [1986] and we use high resolution mag-
netic field data (0.040 s and 0.045 s, respectively), Söding [1999] uses WIND and IMP 8 data
averaged to 3 and 1.28 s, respectively.

Also relevant for the subsequent discussion is that ω is found to be smaller for RDs than
for TDs and EDs on average. We find 〈ω〉 = 40◦, 62◦ and 64◦ for RDs, TDs and EDs,
respectively, which compares well to the values found by Söding [1999] (40◦, 65◦ and 60◦).

Finally, the average thickness we observe agrees well with earlier studies at 1 AU. We find
similar values for RDs and TDs (2600 km and 2100 km, respectively). Burlaga et al. [1977];
Lepping and Behannon [1986] and Söding [1999] also find similar values, although the DDs
analysed by Burlaga et al. [1977] are rather thin (1200 km and 1300 km, respectively)
and those found by Söding [1999] are rather thick (≈ 4000− 6000 km, depending on the
spacecraft used, for both types of DDs). Hence, the average thicknesses we find for the set
DD2001 are somewhere in-between and compare well to those found by Lepping and Behan-
non [1986] (2600 km for both types). Note also that the determination of the DD thickness is
influenced by the time resolution.

In summary, we have shown by comparison of several statistical properties that the set of
DDs used in our analysis is consistent with those used in earlier studies. In particular the
classification result is consistent when the normals are estimated using MVA, and a significant
number of RDs is found. Hence, apart from the alarming observation of diverging MVA
normals at the locations of the four Cluster spacecraft, we confirm many physical properties
of interplanetary discontinuities gained in the last four decades. This first step of our analysis
is of great importance, since it puts the results of the following section in the right light.

8.2 Classification result from triangulation compared to MVA

Apart from the important observation that the four MVA normals are inconsistent among each
other for many DDs, the results obtained in the previous section are solely based on single-
spacecraft techniques. Using Cluster as a true multi-spacecraft mission we can determine the
discontinuity normals by utilising the time lags between the four spacecraft (see section 7.4).
Application of this triangulation technique yields surprising results.

Figure 8.2 shows the distribution of DDs in the classification diagram introduced in section
3.1.2 (Figure 3.3) for each of the four sets DD2001, DD2002, DD2003 and DD2003CH separately.
The MVA results (black diamonds) are obtained from the FGM data of Cl 4. Note that only
those DDs are shown for which λ2/λ3 > 2. To allow for better comparison the triangulation
results (red squares) are also shown only for these DDs, and the change in field magnitude
for triangulation is adopted from the FGM data of Cl 4. Thus, the value of |[B]|/Bmax is the
same for the red squares as for the black diamonds for each DD in Figure 8.2.

Strong differences between the MVA and the triangulation results are found for the values of
|Bn|/Bmax which are determined by the normal estimates. The scatter obtained using MVA
compares very well to similar plots in earlier studies (see e.g. Smith [1973a]; Lepping and
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Figure 8.2: Scatterplots based on normal estimates from triangulation (red squares) and Cl 4 MVA
(black diamonds). Uncertain triangulation results, i.e., P > 0.8 (only 2003) are green. Top row: 2001
and 2002. Bottom row: 2003 and 2003CH. Only those DDs are shown for which λ2/λ3 > 2 at the
location of Cl 4.

Behannon [1980]), confirming the result of the previous section. In particular, a huge number
of RDs is found.

However, application of triangulation yields a completely different picture. The timing-
derived normals yield much smaller normal components of B, i.e., Bn. Especially when
the magnitude change is small (|[B]|/Bmax < 0.2) a major difference between the two meth-
ods is apparent. For the majority of DDs, |Bn|/Bmax < 0.1 is obtained when the normals
are estimated via relative timings, and the RD category remains almost completely devoid.
Considering all 366 DDs only one event is classified as an RD according to the criteria ap-
plied here. This event is found in 2002 (see upper right of Figure 8.2), where the spacecraft
separations are very small and thus the triangulation performance is worst. In addition, with
|Bn|/Bmax = 0.4093 this event is very close to the border between EDs and RDs.



116 STATISTICAL ANALYSIS OF DISCONTINUITIES AT 1AU

In fact, the small values of |Bn|/Bmax found when triangulation is applied even decrease
with increasing quality of the relative timing method. As discussed earlier (sections 5.5 and
7.4) the accuracy of the relative timing normal estimates increases with increasing spacecraft
separations. Due to the small separations, and thus small time lags, the derived normals in
2002 must be handled with great care. In contrast, the normal estimates in 2003, where the
separations are largest, can be regarded as excellent. The triangulation results in 2001 are in-
termediate. Commensurate with these different accuracies, the observed normal components
of the magnetic field decrease with increasing spacecraft separations. Whereas the scatter of
|Bn|/Bmax is largest in 2002 and intermediate in 2001, the observed values of |Bn|/Bmax are
all close to zero in 2003 when triangulation is applied.

The accuracy of normal determination also strongly depends on the geometrical properties
of the tetrahedron built by the four spacecraft. We have pointed out in section 5.5 that the
tetrahedron can become very flat in 2003 yielding large uncertainties for the relative timing
method. DDs observed with extremely flat tetrahedra (planarity P > Pc = 0.8) are marked
green in Figure 8.2 (bottom). Note that some of these events are identified as being RDs.
They are marked as black crossed in the E-P diagram of Figure 5.8. Obviously, triangulation
yields large values of |Bn|/Bmax only when its performance is worst. In these cases, however,
the uncertainty in normal determination is too large to consider the results as meaningful. In
fact, errors as large as 90◦ are found (see chapter 9).

We have demonstrated with great care that the set DD2003 contains a considerable number
of DDs in fast coronal hole streams (see section 6.5) where past studies and thereof deduced
theories expect to find a huge abundance of RDs. Hence, whereas the absence of RDs in 2001
could be argued to be connected to the prevailing slow solar wind from active regions, this
type of argumentation fails for the set DD2003. In order to emphasise this issue we also show
the scatterplot containing only the set DD2003CH (lower right in Figure 8.2). No clear RD is
identified in this subset of DDs in coronal hole flow when triangulation is used.

However, in contrast to the total set DD2003, this subset does not contain many clear TDs ei-
ther. No DD with a large change in field magnitude is observed. As discussed in the previous
section, the few cases with |[B]|/Bmax barely exceeding the threshold 0.2 are predominantly
those DDs that are found in the vicinity of the CME or near the fast stream border. The point
of major importance, however, is that the absence of any cases with large values of |Bn|/Bmax

is independent of solar wind type. The observed differences of the triangulation results in
the four sets of DDs as presented in Figure 8.2 only correlate with the varying precision of
normal determination.

The classification results obtained using triangulation are summarised in Table 8.1 (rightmost
column). Note that the percentages presented are based on all selected DDs, apart from the
13 cases in 2003 where the spacecraft configuration is too far from a regular tetrahedron (P >

0.8). However, no eigenvalue ratio restrictions are applied. The number of DDs considered
are: 129 (DD2001), 33 (DD2002), 191 (DD2003), 76 (DD2003CH ) and 49 (DD2003CHS). The most
striking difference compared to the MVA results is that no clear RD is found, aside from the
one in 2002. Commensurate with the absence of RDs, the number of EDs is increased. The
relative number of clear TDs is about the same as for the single-spacecraft analysis. This
means that all of the DDs “unambiguously” identified as RDs by MVA are found to be EDs
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when triangulation is used. Hence, the vast majority of DDs are identified to be EDs.

Note that in contrast to MVA, the triangulation classification results are remarkably stable.
The result is almost the same in all three periods of observation.

Apparently, the basic result presented in Horbury et al. [2001b] and our result are similar (see
Table 8.1). Horbury et al. [2001b] also find many DDs being identified as RDs by MVA to
be EDs when relative timings are used, although their result is not as extreme as ours.

As pointed out earlier in this work, the study presented in Horbury et al. [2001b] is quite
distinct from our study in several aspects. First, they use only three spacecraft. Thus, in order
to determine the discontinuity normal, they need the measured plasma velocity. If four space-
craft are available, as in the present study, only magnetic field data are needed. Hence, the
techniques are quite different. Second, the three spacecraft used in Horbury et al. [2001b] are
from three different missions and they are thus not coordinated as the four Cluster spacecraft
are. Different magnetometers with different time resolutions may introduce additional error.
Third, the distance between the three spacecraft in Horbury et al. [2001b] is typically 2×105

km. The distance between the four Cluster spacecraft is typically 1000 km, which is of the
order of ten thermal proton gyro-radii in the solar wind. Thus, two clearly distinct scales are
observed in the two studies. Whereas the assumption of planar structures on the length scale
of gyro-radii seems to be reasonable, it is not clear a priori whether the same assumption
holds for distances 200 times larger. Finally, the much larger number of events (366 in the
present work compared to 35 in Horbury et al. [2001b]) contributes to a higher level of con-
fidence. Note that Horbury et al. [2001b] still find a considerable number of RDs. It is not
clear to what extent this difference can be attributed to the difficulties mentioned above.

Note that when we say, we do not find any RDs when triangulation is used, this means no
RDs found according to the classification rules applied. Apart from the fact that the large
group of EDs may contain RDs, the classification criteria are somewhat arbitrary. In order to
test whether the small values of |Bn|/Bmax found are consistent with |Bn| = 0, i.e., whether
the DDs in question are consistent with TDs, one has to compare these values with the error
associated with the determination of |Bn|/Bmax. This is done in chapter 9.

Having a closer look at the distributions of DD2001 and DD2003 in Figure 8.2, one realises
that some DDs in the ED-section have larger normal components than those in the TD-
section (|Bn|/Bmax & 0.1). This might indicate that these events are RDs with small but finite
|Bn|/Bmax. In order to determine the true nature of these DDs, we use plasma data (section
8.8).

Nevertheless, the triangulation results presented in this section for the first time open up the
possibility that indeed no RDs are present in the solar wind at 1 AU. At least one might argue
that the solar wind is dominated by TDs and not by RDs. This possible conclusion would
be of great importance for the micro-structure of the solar wind, since TDs separate distinct
plasma regions which are not magnetically connected. This in turn might have dramatic
impact on energetic particle diffusion. Certainly, this finding is also relevant for possible
generation processes and the stability of interplanetary discontinuities. Not finding any RDs
probably contains information about what non-linear dynamical processes are relevant in the
solar wind plasma. For instance, the proposed phase-steepening of Alfvén waves as a source
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for RDs (see section 3.3) becomes questionable when no RDs are observed in the solar wind.
Even if all (or some) EDs were RDs, new perspectives would be given. In that case the
question arises, why do all RDs have such small normal magnetic field components. This is
also related to the issue of generation processes and the stability of DDs.

Since the selected ensemble of events is representative in the sense that single-spacecraft
analysis is consistent with earlier studies, the strong discrepancy between the RD:TD ratios
must be a result of the different methods used. One might argue that the small spacecraft
separations and the resulting short time lags between occurrences at the four spacecraft yield
uncertainties in the triangulation method. However, the consistency tests and the detailed
error analysis, as discussed below, demonstrate that the timing-derived normals are indeed
reliable. Aside from that, Horbury et al. [2001b] find similar results using timing-derived
normals with typical inter-spacecraft separations of about two orders of magnitude larger than
the distances in the present study. Thus, spacecraft separations and associated uncertainty
arguments are not maintainable. Instead, we presume that non-isotropic fluctuations cause a
bias away from the true normals and hence cause inaccurate MVA estimates even if λ2/λ3 > 2
is required.

Indicative of unreliable MVA normals are the deviations observed between the four space-
craft. Another indication is the cases that simultaneously have large |[B]|/Bmax and large
|Bn|/Bmax. Whereas |Bn|/Bmax < 0.1 for all DDs with |[B]|/Bmax > 0.2 when triangulation is
applied (2003), |Bn|/Bmax also takes large values when MVA is used for the same DDs (see
the scatter of DD2003, i.e., lower left of Figure 8.2). In particular MVA identifies NDs where
triangulation finds clear TDs. Note that using triangulation only one ND is found (in 2001),
and this event is probably a weak shock.

Provided our assumption is correct, and the discrepancy between the classifications from
MVA and triangulation is indeed caused by inaccurate MVA normals, then it should be pos-
sible to find a subset of DDs for which both methods agree, for instance those DDs for which
the four individual MVA estimates are consistent. Since MVA results generally gain relia-
bility with increasing λ2/λ3 and/or ω, the MVA normal estimates should converge towards
the triangulation estimates when the lower limits (λ2/λ3)

L and/or ωL are increased. Note
that Horbury et al. [2001b] find no dependence of their results on the eigenvalue ratio λ2/λ3.
However, they only have a small statistic and do not investigate this issue systematically.

In the following we prove the existence of subsets of DDs for which the two methods agree
very well. These subsets indeed happen to consist of those DDs for which MVA is most reli-
able, i.e., when (λ2/λ3)

L or ωL are large. In the following section we analyse the dependence
of the normal estimates on these two parameters and its consequences for the ratio RD:TD.

8.3 Reexamination of MVA - consequences

Because the strong deviations between the MVA normals observed at the different spacecraft
are hard to explain by means of motional or geometrical DD properties, we assume that
inaccurate MVA normal estimates are responsible for the extremely different classification
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Figure 8.3: Variance ellipsoids obtained from the magnetic field data of the example discontinuity
presented in Figure 7.3 for each of the four Cluster spacecraft separately. The ellipsoids are shown in
GSE coordinates. Note that the direction of maximum variance is compressed by a factor of ten. The
four respective MVA normal estimates are indicated by the thin arrows. The triangulation normal is
shown as a thick partly transparent vector. To allow for better comparison this vector is attached to
each of the four ellipsoids. The corresponding values of λ2/λ3 and the respective angle between the
MVA normal and the triangulation normal are displayed.

results discussed in the previous section. This section contains a systematic statistical analysis
confirming this hypothesis.

We successively increase (λ2/λ3)
L and ωL and study how the differences between the two

methods evolve as a function of this limitation. It turns out that MVA is much less reliable
than previously assumed. In particular, we demonstrate that using the lower limit (λ2/λ3)

L =

2 is by no means sufficient to ensure reliable MVA normal estimates.

Before presenting the statistical analysis, we illustrate the basic idea by means of the example
presented in Figure 7.3 (section 7.4). Since the global structure (in particular the thickness)
of the DDs appears very similar at the four spacecraft, we always pick an interval of equal
length for the application of MVA at all four spacecraft. This interval is selected after the
time series are shifted such that they are aligned. The vertical lines in Figure 7.3 (right) mark
this interval. The corresponding variance ellipsoids are shown in Figure 8.3.

The ellipsoids obtained from the data of spacecraft 1, 2 and 4 have a shape comparable to flat
surfboards. This is reflected in the relatively large values of λ2/λ3. Here the MVA normals
are well defined and coincide well with the triangulation normal.

At the position of Cl 3 the eigenvalue ratio is small (λ2/λ3 = 1.8) and the corresponding
variance ellipsoid is “cigar-shaped”. In this case the MVA normal estimate can be anything
perpendicular to the direction of maximum variance. As a consequence the MVA normal
derived at Cl 3 deviates from the triangulation normal.
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Figure 8.4: Distribution of λ2/λ3 (left) and λ1/λ2 (right) obtained from all four Cluster satellites.
All DDs in the set DD2003 are considered. The solid line shows a fit to p ∝ exp(−βλ2/λ3), respectively
p ∝ exp(−βλ1/λ2). The median and the mean values are also plotted (vertical dashed and dotted
line).

Note that λ2/λ3 = 1.8 is in the vicinity, or even exceeds, the lower limit used for the applica-
tion of MVA in almost all past studies (see section 7.2) and also in this study when producing
Figure 8.2 and the corresponding classification results.

The example presented in Figure 8.3 clearly confirms our assumption stated above. The
following systematic analysis provides evidence on a statistical basis.

8.3.1 Parameters affecting the precision of MVA

In this section the distributions of the parameters affecting the precision of MVA are pre-
sented. The distribution of ω has already been discussed in section 8.1 where we have found
an exponential decrease. The distributions of λ2/λ3 and λ1/λ2 are very similar in the three
periods of observation. Figure 8.4 shows the distributions of these two eigenvalue ratios for
the set DD2003. Both distributions can be fitted to an exponential function with a fitting pa-
rameter β (see caption). Note that the λ2/λ3 distribution (left) compares quite well to the
distribution found by Lepping and Behannon [1986]. Unfortunately for the application of
MVA the majority of events have a small eigenvalue ratio λ2/λ3 with a most probable value
of λ2/λ3 = 2.5. The distribution then rapidly decreases with β = 0.19. Only about 18% of
the events lie above λ2/λ3 = 10. Hence, attempting to improve the performance of MVA by
increasing the lower limit (λ2/λ3)

L results in a dramatic reduction of events suitable for the
analysis. Physically, the small λ2/λ3 ratios found for interplanetary discontinuities indicate
deviations from 1-D structures. However, it is unclear whether the actual discontinuity is not
1-D or whether λ3 6= 0 is caused by fluctuations superposed to a 1-D discontinuity.

In contrast to λ2/λ3 the ratio of largest to intermediate eigenvalue λ1/λ2 decreases slowly
(β = 0.021). Generally λ1/λ2 is found to be rather large (λ1/λ2 = 58 on average). The
values found for λ1/λ2 are almost ten times the value of λ2/λ3, yielding strongly elongated
variance ellipsoids. In other words, the “surf boards” or “cigars” as shown for the example in
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Figure 8.5: Relationship between λ2/λ3 and ω. Left: DD2001. Right: DD2003. The values found at
each spacecraft are plotted. The standard colour code is used.

Figure 8.3 are extremely long. This is important to know since it indicates that the direction
of maximum variance is generally well defined. Hence, a reasonable normal estimate must be
perpendicular to this direction. We apply this necessary condition to the triangulation normals
in order to confirm their reliability (section 8.4). Physically, the maximum eigenvalue being
considerably larger than the intermediate eigenvalue indicates that the field change across the
discontinuity takes place mostly in one direction, i.e., linearly polarised waves.

The corresponding distributions for the coronal hole subset DD2003CH (not shown) are similar
to the eigenvalue distributions of the total set DD2003.

For the accuracy of MVA the two most important parameters are λ2/λ3 and ω. In Figure 8.5
we plot λ2/λ3 versus ω, in order to examine how these two parameters are related. All DDs
found in DD2001 (left) and DD2003 (right) are shown. The values found at each spacecraft are
shown. Since the spreading angle ω is almost the same at the location of the four spacecraft
one can see that λ2/λ3 differs strongly at the four positions in many cases. The differences
can be extreme for individual DDs. This discrepancy is the subject of later discussions.

Figure 8.5 shows an accumulation of DDs in the region λ2/λ3 < 5 and 30◦ < ω < 60◦.
Also shown are values of λ2/λ3 averaged over 10◦ intervals (black squares connected by the
dashed line). A least squares fit of these averages indicates a weak linear trend in the 2001
data. Increasing ω by 10◦ yields an increase of λ2/λ3 by 0.08. For the set DD2003 no such
linear trend is observed. Also comparing the weak trend to the enormous scatter around the
fit in 2001, the linear coherence is rather meaningless. Plenty of small-ω DDs with large
eigenvalue ratios are observed. Thus, it is legitimate to claim that the two parameters are
independent.

Obviously there are regions in Figure 8.2 where triangulation and MVA results are consistent
and regions where enormous discrepancies are observed. In order to get a first clue as to
how this is related to the corresponding eigenvalue ratios and ω values, we examine how
these parameters are distributed over the classification diagram. In Figure 8.6 the results
obtained by MVA for all DDs with λ2/λ3 > 2 are shown individually for each of the four
spacecraft for the set DD2001. The colour indicates the value of λ2/λ3 (left) and ω (right)
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Figure 8.6: Distributions of λ2/λ3 (left) and ω (right) for the set DD2001. All four spacecraft are
considered. Only DDs with λ2/λ3 > 2 are plotted.

for the corresponding DD. Obviously the smallest eigenvalue ratios are observed when the
MVA results deviate most from the triangulation results, namely in the RD-category. Here
the majority of DDs have λ2/λ3 < 5, whereas those events where MVA and triangulation are
consistent (i.e., those with small |Bn|/Bmax) happen to have larger values of λ2/λ3.

Analogous results are found for the ω distribution (right hand side of Figure 8.6). Almost all
DDs with ω > 90◦ are in the TD or the ED category, whereas the RD category is dominated
by discontinuities with ω < 50◦. Again, those DDs for which the normals are determined
with highest accuracy using MVA the two methods are closest to each other. In other words,
RDs are predominantly found when the performance of MVA is worst.

The corresponding distributions for the sets DD2002 and DD2003 (not shown) yield qualita-
tively the same picture. Also the average values of λ2/λ3 and ω separately computed for RDs,
TDs and EDs are similar for these two years. The observation of small eigenvalue ratios and
spreading angles in the RD section as compared to EDs and TDs can be regarded to be well
established (see also the discussion in section 8.1).

The qualitative impression gained from Figure 8.6 is quantified in the following section by
successively increasing (λ2/λ3)

L and ωL and observing how the differences between the two
methods evolve as a function of this limitation.

8.3.2 Dependence on the eigenvalue ratio λ2/λ3

In this section we study how the results of MVA and triangulation evolve as a function of
the lower limit (λ2/λ3)

L . Figure 8.7 shows from top to bottom the average angle between
the MVA and the triangulation normals, the average difference 〈∆(|Bn|/Bmax)〉 between the
MVA-derived values of |Bn|/Bmax and those obtained from triangulation and the remaining
number of DDs as a function of (λ2/λ3)

L. The results are shown for all three years of ob-
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Figure 8.7: Dependence on (λ2/λ3)
L. Top: Average angle between the four MVA normals and

the triangulation normal (solid line) and average angle between the MVA normals among each other
(dashed line). Middle: Average non-negative difference of |Bn|/Bmax. Bottom: Number of DDs re-
maining when λ2/λ3 > (λ2/λ3)

L is enforced. The thin coloured lines correspond to the scenario when
each spacecraft is treated separately. The thick dashed line is generated when all four spacecraft are
required to satisfy λ2/λ3 > (λ2/λ3)

L simultaneously, and the thick solid line represents the case when
at least one satellite accomplishes the requirement. For the upper and middle panels we require all
four satellites to satisfy the eigenvalue restriction simultaneously. From left to right the sets DD2003,
DD2001 and DD2002 are shown, i.e., in decreasing order of the prevailing spacecraft separations. Note
that in DD2003 only those DDs are considered for which P < 0.8.

servation separately. From left to right the sets DD2003, DD2001 and DD2002 are shown, i.e.,
in decreasing order of the prevailing spacecraft separations. Apparently, the results obtained
in 2003 (left) and 2001 (middle) are quite similar, whereas a different picture is obtained
in 2002. We start by discussing the typical characteristics found in 2003 and 2001 before
pointing out differences between the three periods of observation.
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The average values shown in Figure 8.7 are produced as follows. For each DD the average
angle between the timing-derived normal and the four MVA normals is calculated. Then
the average over all discontinuities satisfying λ2/λ3 > (λ2/λ3)

L is determined (solid line).
Note, that in the representation shown only those DDs are considered for which the MVA
eigenvalue ratios at all four satellites are simultaneously sufficiently large.

Apparently, the angle between the normals strongly depends on the eigenvalue ratio. The
average angle between the MVA normals and the triangulation normal of the DDs in the
set DD2003 decreases from 32.5◦ for (λ2/λ3)

L = 1 to 4◦ when only DDs with λ2/λ3 > 20
are considered. Accordingly, the maximum value for (λ2/λ3)

L = 1 is 29◦ in 2001 which
decreases to 7◦ for (λ2/λ3)

L = 10.

Also plotted is the average angle between the six pairs of MVA normals (dashed line). This
average angle is calculated by determining the angle between each pair of the four MVA
normals from a single DD crossing, yielding an average angle for each DD. Then the average
over all DDs satisfying λ2/λ3 > (λ2/λ3)

L is computed (as above).

Again, a strong decrease with (λ2/λ3)
L is observed. Moreover, the two curves (i.e., the

solid and the dashed curve) are indeed very similar to each other. In particular, the agree-
ment between the MVA normals among each other is hardly better than between the MVA
normals and the timing-derived normal. Note that in 2003 (2001) the two curves intersect at
(λ2/λ3)

L ≈ 5.5(8), i.e., for (λ2/λ3)
L & 5.5(8) the agreement between the four MVA normals

and the triangulation normal is even better than the agreement between the MVA normals
among each other. This could be realised for instance by MVA normals scattered around the
(true) normal determined by triangulation.

These observations clearly support the hypothesis that the deviations between the two meth-
ods are substantially caused by inaccurate MVA normal estimates. If we consider only dis-
continuities with well defined MVA normals, i.e., with large λ2/λ3 values, MVA is self-
consistent and consistent with triangulation.

Important for the classification into RDs and TDs is the fraction of magnetic field threading
the discontinuity plane, i.e. |Bn|/Bmax. The middle panel of Figure 8.7 shows the average
difference 〈∆(|Bn|/Bmax)〉 between the MVA-derived values of |Bn|/Bmax and those obtained
from triangulation (solid line). Again the average difference between the MVA values among
each other is displayed by the dashed line. The averaging procedure is the same as described
above. Note that ∆(|Bn|/Bmax) denotes the absolute value of the respective differences.

The dependence on (λ2/λ3)
L is qualitatively similar to that observed for the average angle.

When no restriction on λ2/λ3 is enforced, a mean difference of 〈∆(|Bn|/Bmax)〉= 0.37(0.32)

is found between the triangulation and the MVA values in 2003 (2001). This reflects the
unacceptable situation presented in Figure 8.2, where we have two methods yielding two
completely distinct RD:TD ratios. For (λ2/λ3)

L = 14(8) the difference between the two
methods is down to 〈∆(|Bn|/Bmax)〉= 0.04(0.08) in 2003 (2001). In that case no significant
discrepancies would be reflected on the RD:TD ratios.

Comparing the values of |Bn|/Bmax arising from MVA among each other, an average differ-
ence of 〈∆(|Bn|/Bmax)〉= 0.22(0.21) is found when (λ2/λ3)

L = 1 in 2003 (2001). In many
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cases this inevitably leads to discontinuities being classified as clear RDs by one spacecraft
and as possible TDs by another one. Only for large eigenvalue ratios can a consistent classi-
fication result be expected at the different spacecraft, according to Figure 8.7.

The bottom panel of Figure 8.7 shows the number of DDs remaining when λ2/λ3 > (λ2/λ3)
L

is enforced. The four coloured thin solid lines correspond to the single-spacecraft scenario,
i.e., when the eigenvalue restriction needs to be satisfied only at the individual satellite sep-
arately. The thick dashed line gives the number of events remaining when all four satellites
have to satisfy λ2/λ3 > (λ2/λ3)

L simultaneously, i.e., this curve represents the number of
events contributing to the averages shown in the top and the middle panel of Figure 8.7.
Finally, the thick solid line represents the case when only at least one of the four satellites
accomplishes the requirement. In the single-spacecraft scenario the observed decrease is ex-
ponential in (λ2/λ3)

L. In contrast, the decrease of the number of remaining DDs is much
steeper when the requirement is enforced at all four spacecraft simultaneously, indicating
that λ2/λ3 varies considerably at the distinct spacecraft locations. This important issue is the
subject of section 8.3.4. There we particularly demonstrate that this variability depends on the
spacecraft separation. Here we point out that applying the λ2/λ3 restriction simultaneously
to all four spacecraft is a much stronger requirement than for the single-spacecraft case.

The curves describing the angle between the various normals and the differences between
the observed magnetic field normal components as a function of (λ2/λ3)

L show drastically
changed characteristics when only a small number of events is left. The rapid strictly mono-
tonic decrease observed for small (λ2/λ3)

L values turns into a more discontinuous charac-
teristic. This is particularly apparent in 2002 where a priori only a small number of events
is available. The comparison between the MVA normals and the triangulation normal shows
the expected characteristic only for λ2/λ3 . 4.2. Beyond that point strong fluctuations are
observed. Note that only 12 DDs satisfy the restriction λ2/λ3 > 4.2. At about the same
number of events (corresponding to (λ2/λ3)

L = 8.8 in 2003 and (λ2/λ3)
L = 7.7 in 2001) the

rapid strict monotonic decrease also ends in 2003 and 2001. Hence, the rather unexpected
behaviour is most likely due to the poor statistics when (λ2/λ3)

L is large. In addition to the
small number of events, one has to account for the fact that the triangulation normals can be
inaccurate in 2002 because of small spacecraft separations. Therefore, the poor performance
in 2002 is likely to be contaminated by erroneous triangulation normals contained in the small
remaining subset of DDs when (λ2/λ3)

L is large.

Another noticeable result is that apparently the MVA normals are well aligned among each
other in 2002. Even when no restrictions on λ2/λ3 are imposed, good agreement between
the four MVA normals is observed. However, we do not interpret this alignment as an in-
dicator of reliable MVA normals. Instead, we suggest that the superposed fluctuations, that
are responsible for the direction of minimum variance not coinciding with the discontinu-
ity normal, do not differ strongly between the spacecraft locations when they are only 100
km apart. When the DDs are observed at larger separated locations (as in 2003 and 2001) the
anisotropic superimposed fluctuations may have different minimum variance directions at the
four spacecraft positions. This issue is the subject of following sections.

More important for the discussion in this section is the conclusion, drawn from the obser-
vations in 2001 and 2003, that inaccurate MVA normals are responsible for the discrepancy
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between the two methods, and that by increasing (λ2/λ3)
L a subset of DDs can be found for

which the four MVA normals are consistent among each other and with triangulation.

Classification results

Figure 8.8 demonstrates that the classification result strongly depends on the choice of (λ2/λ3)
L

when MVA normal estimates are used. On the left the percentages of RDs, TDs and EDs are
shown as a function of (λ2/λ3)

L obtained by both MVA and triangulation. The MVA results
are based on the data from Cl 1. Note that the λ2/λ3 criterion needs to be satisfied only
at Cl 1. The middle and the right part of Figure 8.8 show the ratio RD:TD obtained from
MVA, found at each spacecraft separately. Whereas the plot in the middle, analogous to the
left plot, is obtained by enforcing λ2/λ3 > (λ2/λ3)

L only for the corresponding spacecraft,
all four spacecraft need to satisfy the requirement simultaneously in the rightmost plot. We
show only the results for DD2001 here. The number of DDs available in 2002 is too small for
that kind of analysis, and the results found for DD2003 are similar to those presented in Figure
8.8. Any differences are discussed below.

The striking impact of the lower limit (λ2/λ3)
L is obvious. Figure 8.8 (left) shows that the

triangulation results are rather independent on (λ2/λ3)
L. The same holds for the percentage

of TDs obtained by MVA. However, the relative number of RDs identified using MVA de-
creases with increasing (λ2/λ3)

L, whereas the percentage of EDs increases correspondingly.
The MVA results approach the results obtained by using relative timings. If only DDs with
λ2/λ3 & 10 are considered, both methods agree well, and for (λ2/λ3)

L = 14 MVA yields ex-
actly the same result as triangulation. This means that simply by ensuring good quality MVA
results (large eigenvalue ratios) a subset of DDs can be found for which the MVA-derived and
the triangulation-derived classification results are consistent. Note that according to Figure
8.7 this subset coincides with the DDs for which the four MVA normals are also consistent
among each other.

From Figure 8.8 (middle) it can be seen that particularly the ratio RD:TD considerably de-
pends on the chosen value of (λ2/λ3)

L . Without enforcing a restriction on λ2/λ3, the ratio
is between 2.6 and 3.1 depending on the spacecraft considered. With increasing (λ2/λ3)

L

the value of RD:TD decreases dramatically. For (λ2/λ3)
L = 2 the RD to TD ratio is ≈ 2

(see also Table 8.1). However, with a selection criterion λ2/λ3 > 5 the observed incidences
of RDs and TDs are balanced, i.e. RD:TD = 1, and the decrease continues in this manner.
Hence, the choice of (λ2/λ3)

L is definitely decisive for the classification result that one ob-
tains. Since we have not found physical arguments explaining the coherence between the
eigenvalue ratio and the ratio RD:TD, but many arguments (both theoretical and observa-
tional) proving the correlation between (λ2/λ3)

L and the error cone angle associated with
MVA, we conclude that the RD:TD ratio approaches the true value with increasing (λ2/λ3)

L.
For (λ2/λ3)

L = 13,23,9,20 the triangulation result RD:TD = 0 is reached at Cl 1,2,3 and 4,
respectively.

Note that there are a few events with large eigenvalue ratios included in the RD category, for
instance when data from Cl 2 or Cl 4 are used. The set DD2003 also contains such cases (not
shown). However, these events are all very weak with a small spreading angle (ω≈ 30◦).
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Figure 8.8: Dependence of the classification result on (λ2/λ3)
L. Only data from 2001 are shown.

Left: Percentages of RDs (black), TDs (red) and EDs (green). Results obtained from MVA applied to Cl
1 data (solid lines) and from triangulation (dashed lines) are shown. Note that the line representing
the RD percentage found from triangulation coincides with the horizontal axis. Middle and right:
Ratio RD:TD for each satellite separately. For the left and middle panels the lambda criterion needs
to be satisfied only at the individual spacecraft. The vertical line indicates (λ2/λ3)

L = 2. In the right
panel all four spacecraft are enforced to satisfy λ2/λ3 > (λ2/λ3)

L simultaneously. The number of
remaining DDs can be extracted from Figure 8.7.

Also note that when the much stricter requirement of simultaneously enforcing λ2/λ3 >

(λ2/λ3)
L is applied the ratio RD:TD decreases even more rapidly, and no RDs are observed

when (λ2/λ3)
L > 8 (right of Figure 8.8). This is particularly apparent in 2003 (not shown).

So far we have clearly demonstrated a correlation between the classification result and the re-
liability of MVA. If (λ2/λ3)

L is chosen large enough, the MVA normals are almost collinear.
In this case MVA yields the same picture as triangulation, namely a solar wind dominated by
discontinuities with small values of |Bn|/Bmax, which appears to be closest to the truth. Note,
however, that we cannot exclude the possibility that “real RDs” have smaller eigenvalue ra-
tios than TDs or EDs (i.e., DDs with small values of |Bn|/Bmax) and we thus introduce a bias
favouring TDs by selecting only events with high eigenvalue ratios. The question is whether
it is an intrinsic property of RDs to have small eigenvalue ratios or whether some DDs are
simply identified as RDs by MVA because they have small eigenvalue ratios. We suggest
the latter to be the correct answer. Of course we cannot guarantee that we do not pre-select
the results by increasing the lambda ratio, but there are at least two arguments against this:
(1) Triangulation yields small values of |Bn|/Bmax for all events regardless of (λ2/λ3)

L. One
advantage of this multi-spacecraft method is that it is independent of the inner DD structure
and thus independent of λ2/λ3. (2) For 1-D structures, deviations from λ3 = 0 can occur
only due to superposed fluctuations. The DDs we omit have λ2 ≈ λ3, with λ3 distinct from
zero, i.e., there are superposed fluctuations present (assuming the actual discontinuities to be
1-D in nature). There is no reason for RDs to be distinct from TDs in this respect. Further
arguments will follow.

The observations presented above entail serious practical consequences. For (λ2/λ3)
L = 5

only approximately 50% of the DDs in the original sets remain (see Figure 8.7). However,
in order to achieve satisfactory MVA normal estimates, we suggest to use (λ2/λ3)

L ≈ 10 as
a lower limit. In that case only approximately 25% of the total number of events persist,
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dramatically reducing the number of DDs suitable for studies using MVA. In order to pursue
this issue a little further, we ask how many DDs remain when we demand a certain average
angle between the MVA normals. Therefore, we plot the number of DDs versus the average
angle for the different subsets arising from varying (λ2/λ3)

L (not shown). The observed
coherence is linear: Number of DDs (〈angle〉) ∝ k〈angle〉, with k = 7.3(11.3) using DD2001

(DD2003). In other words, in order to increase the average MVA accuracy by 10◦, one has to
abandon 73 out of the 129 DDs (57%) in 2001 and 113 out of the 204 DDs (55%) in 2003.

More evidence for the poor performance of MVA and for |Bn|/Bmax being small

Figure 8.9 provides further evidence for the poor performance of MVA in the low lambda ratio
regime. Moreover we demonstrate that the apparently true DD normals appear to be indeed
perpendicular to B. The left hand side of Figure 8.9 shows various distributions of the angle
θBn between the derived normal n and the average magnetic field B. The top panel shows
the results for DD2001 and the middle panel the results for DD2003. The θBn distribution
obtained from MVA is shown for different subsets. These subsets are selected according
to the values of λ2/λ3. Counting all DD traversals of each individual spacecraft, we have
4× 129 and 4× 204 DD crossings in 2001 and 2003, respectively. Of these, all traversals
with λ2/λ3 ∈ [1,3] are put in one group, regardless of the particular spacecraft (light blue).
The same is done for the ranges λ2/λ3 ∈ (3,8] (magenta) and λ2/λ3 > 8 (dark blue). A further
group is built by the DDs where all four spacecraft simultaneously satisfy λ2/λ3 > 8 (green).
As a reference we also plot the theoretical θBn distribution that one obtains for uniformly
distributed vectors on a unit sphere, i.e. P(θBn ∈ [l,u]) =

R u
l sin(θBn)dθBn. This distribution

would be obtained when the normal vector is chosen at random for each transition with any
direction having equal probability. The other reference plotted is the θBn distribution obtained
from triangulation. The bin width is 5◦.

The distributions shown are qualitatively the same in 2001 and in 2003. In both plots (up-
per left and middle left of Figure 8.9) a considerable change of the MVA distributions with
increasing accuracy (lambda ratio) is found. The distribution according to the worst MVA
normals (λ2/λ3 ∈ [1,3]) remarkably well resembles the random distribution. In other words,
MVA normal estimates in the low eigenvalue regime yield the same result as randomly chosen
directions would give.

With increasing values of λ2/λ3 the MVA-derived distributions differ more and more from
the random distribution and approach the distribution from triangulation. This means that the
relative number of DDs with large θBn increases. Note that the strongest restriction, i.e., the
“green group”, leads to the absence of DDs with θBn < 50◦ in 2003.

Apparently triangulation always yields normals close to being perpendicular to the magnetic
field, i.e. θBn ≈ 90◦. We have shown above that with increasing quality this result is also
approached using MVA. It is of considerable interest that apparently also the θBn distributions
obtained from relative timings are different for different accuracies. This is shown in the
bottom left plot of Figure 8.9. Here the distributions according to the triangulation normals
are shown separately for each year. With increasing spacecraft separations (i.e., increasing
accuracy) the respective distributions more clearly resemble a δ-distribution at θBn = 90◦.
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Figure 8.9: Left (top and middle): Probability distribution of θBn = ∠(〈B〉,n) obtained from MVA
for different ranges of λ2/λ3 compared to the distribution obtained from uniformly distributed vectors
on the unit sphere (black) and the distribution obtained from triangulation (red). Data from 2001
(top) and 2003 (middle) are shown. In the bottom panel the triangulation results for all three years
are compared. Right: Distributions of |Bn|/Bmax. For the triangulation results only DDs with P < 0.8
are considered.

Whereas the poorly estimated normals in 2002 occasionally yield relatively small angles, the
normals obtained with larger separations in 2001 and particularly in 2003 are always nearly
perpendicular to B. As a further test we selected all DDs in the set DD2003 for which the
relative timings are identified to be particularly well known3. Certainly, for this subset (90
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DDs) the determined normals are most accurate. The distribution of this “best estimates”
- set is represented by the green line. Indeed, the trend towards θBn = 90◦ with increasing
reliability of the normals can be confirmed. All but one DD (θBn = 76◦) are found in the last
two bins, i.e., for 99% of the DDs the angle between the normal and the magnetic field is
greater than 80◦; and 85% of the normals are identified to be perpendicular to B within only
5◦.

It is tempting to conclude from these observations that the true normals of the DDs investi-
gated are in fact perpendicular to B. In terms of the magnetic field normal component this
means |Bn|/Bmax = 0.

The corresponding distributions of |Bn|/Bmax are presented on the right hand side of Figure
8.9. The colour code for the respective sets in the lower panel is the same as for the θBn distri-
bution. The largest normal component found in the “best estimates” - set is |Bn|/Bmax = 0.17.
For 91% of the DDs |Bn|/Bmax is less than 0.1, and for 70% |Bn|/Bmax is even below 0.05.
With increasing uncertainty, the resulting values of |Bn|/Bmax increase. The largest normal
components are found in 2002 where the spacecraft separations are extremely small. Here a
considerable number of DDs have normalised normal components between 0.15 and 0.45. In
chapter 9 we compare the measured normal components to the uncertainty of triangulation,
in order to prove that the found values are indeed consistent with |Bn|/Bmax = 0.

The top and the middle panel on the right hand side of Figure 8.9 show the |Bn|/Bmax dis-
tributions obtained from MVA compared to the triangulation-derived distributions. In the
distribution represented by the blue line all 129 DDs in 2001 (top), respectively all 191 DDs
with P < 0.8 in 2003 (middle) are considered. The normal components are almost uniformly
distributed with a slight increase towards small |Bn|/Bmax values. Considering only rela-
tively well determined MVA normals (λ2/λ3 > 8 simultaneously at all four spacecraft), the
distribution (red) approaches that found by triangulation (black).

In summary, we have demonstrated the existence of a subset of DDs for which MVA and
triangulation yield consistent classification results. This subset coincides with those DDs for
which the MVA normals are also consistent among each other, i.e., when λ2/λ3 is large. We
conclude that MVA is inadequate to determine reliable normal estimates when λ2/λ3 is small.
In particular the choice of (λ2/λ3)

L = 2 is overly optimistic. Using such a small lower limit
yields fallacious classification results. Moreover, we find that the more precisely the normals
are determined the more they tend to be perpendicular to the magnetic field. This is true both
for MVA and for triangulation. This observation may suggest that perhaps all DDs in our
representative set are TDs. At least they may all be consistent with being TDs.

8.3.3 Dependence on the spreading angle ω

The other parameter affecting the accuracy of MVA is the spreading angle ω. Since λ2/λ3

and ω are two independent parameters, finding another subset of DDs with consistent normals
by increasing ωL would certainly confirm our conclusions from the previous section.

3For instance because of a particularly quiet background field.
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Figure 8.10: Same as Figure 8.7 for ωL.

The procedure is the same as above. Basically only the parameter (λ2/λ3)
L is replaced by

ωL. Figures 8.10 and 8.11 are analogous to Figures 8.7 and 8.8, respectively.

Apparently the average angle between the various normals and the average difference be-
tween the values of |Bn|/Bmax also strongly depend on ωL (see Figure 8.10). Both quantities
dramatically decrease with increasing values of ωL. As for (λ2/λ3)

L, the two curves repre-
senting the angle between the MVA normals among each other and the angle between the
MVA normals and the triangulation normal intersect. For ωL & 60◦ the MVA normals agree
on average better with the triangulation normal than among each other. Note that the two
curves are even closer together than in Figure 8.7, indicating that mainly poor MVA esti-
mates are responsible for the discrepancy between the two methods. Again, considering only
DDs with well defined MVA normals, MVA is self-consistent and consistent with triangu-
lation. Comparing the results obtained for the set DD2002 (right) one may conclude that in
addition to MVA, the triangulation results gain accuracy with increasing ω whereas stricter
requirements regarding λ2/λ3 only affect the MVA normals. Whereas for large λ2/λ3 cases
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the decrease of 〈∆(|Bn|/Bmax)〉 is less clear, and the angle between MVA and triangulation
normals even increases with increasing (λ2/λ3)

L, the agreement between the two methods
continuously improves with increasing ωL. However, we need to keep in mind the poor
statistics in 2002.

The differences between the measured normal components of the magnetic field almost van-
ish when only DDs with large spreading angles are considered. This value goes down to
〈∆(|Bn|/Bmax)〉 ≈ 0.02 in 2003 and 2001. This means that considering only DDs with a large
spreading angle identical classification results are expected.

The observations above confirm that ω is indeed an important parameter for the accuracy of
MVA, as already pointed out by Lepping and Behannon [1980]. Unfortunately this coherence
has not been adopted by the community so far. Commonly only a lower limit of (λ2/λ3)

L ≈ 2
is used in order to ensure reliable MVA normals, and ω is disregarded (see the discussion
in section 7.2). Although the proposed value of ωL = 40◦ [Lepping and Behannon, 1980]
appears to be overly optimistic (Figure 8.10 rather suggests to use ωL ≈ 90◦, or perhaps
ωL ≈ 60◦ in connection with an additional requirement on λ2/λ3 to ensure consistent MVA
normals), the principle finding of Lepping and Behannon [1980] to consider ω is certainly
important.

The bottom panel of Figure 8.10 points to an important difference between the two parameters
λ2/λ3 and ω. The number of DDs remaining as a function of (λ2/λ3)

L strongly depends on
how the restriction is enforced (see bottom panel of Figure 8.7). If we require that at least one
satellite satisfies λ2/λ3 > (λ2/λ3)

L, many more DDs are left over than when all four satellites
have to satisfy the requirement. Even in the single-spacecraft scenario, where each satellite
is treated separately, differences occur. On the other hand, all six curves are almost the same
when ωL is increased (bottom panel of Figure 8.10). Apparently the macroscopic observable
ω is the same at the positions of the four spacecraft, whereas λ2/λ3, which strongly reflects
the inner structure of the DDs, varies considerably at the distinct locations. This issue will be
detailed in section 8.3.4.

Classification results

Analogous to the analysis in the previous section we investigate the dependence of the classi-
fication result on the choice of ωL. Figure 8.11 is similar to Figure 8.8. The left and the middle
panel show the percentages of RDs, TDs and EDs as a function of ωL in 2001 and 2003, re-
spectively. Again, the solid lines indicate the MVA classification results and the dashed lines
those obtained from triangulation. An additional requirement is that also λ2/λ3 > 2, such
that the initial results (on the left) correspond to the classifications obtained in earlier studies.
All four satellites are enforced to satisfy the ω criterion simultaneously. However, since ω
is almost the same at the position of the four spacecraft, this specification is not particularly
relevant. The right panel shows the ratio RD:TD obtained for the set DD2003. The vertical
lines indicate the value ωL = 30◦. Because most of the selected DDs according to the B- and
the TS-method have spreading angles ω > 30◦ (see section 6.2), the classification results are
almost constant left of this line.
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Figure 8.11: Dependence of the classification result on ωL. Similar to Figure 8.8. Left and middle:
Percentages for RDs (black), TDs (red) and EDs (green) obtained from Cl 1 (MVA) in 2001 (left) and
from Cl 4 (MVA) in 2003 (middle). Note that the line representing the RD percentage found from tri-
angulation coincides with the horizontal axis. Right: Ratio RD:TD for each satellite separately (data
from 2003). In all three plots the ωL criterion needs to be satisfied at all four spacecraft simultane-
ously. In addition λ2/λ3 > 2 is applied for the left and the middle plot. The vertical line indicates
ωL = 30◦. The number of remaining DDs can be extracted from Figure 8.10.

The principle characteristics of the ωL dependence observed in Figure 8.11 are the same as
for the (λ2/λ3)

L dependence (Figure 8.8). Also the results are almost the same in 2001 and
in 2003. With increasing ωL the percentage of RDs found using MVA decreases whereas the
relative number of EDs increases correspondingly. For ωL & 60◦ (80)◦ MVA yields the same
results as triangulation in 2001 (2003). Hence, the classification result also strongly depends
on the choice of ωL, and the MVA results approach those obtained from triangulation.

In addition to the decrease of RDs and the increase of EDs, there is a superposed tendency
towards more TDs, independent of the method used. Obviously discontinuities showing a
change in magnitude also have a larger spreading angle ω.

The dependence of the percentage of EDs on ωL found using MVA is particularly interesting.
Initially the relative number of EDs increases corresponding to the decrease of RDs. The
maximum of the ED curve is reached approximately at the value of ωL for which MVA and
triangulation agree. A further increase of ωL then yields a decreasing number of EDs in
favour of TDs. In contrast, the relative number of EDs found using triangulation is almost a
strictly monotonic decreasing function of ωL.

The partially increased relative number of TDs found by triangulation as compared to MVA
(in the low ω regime) accounts for the NDs identified by MVA. Those DDs are identified as
TDs when triangulation is applied (also see Figure 8.2). This also applies to the left hand side
of Figure 8.8.

From the right hand side of Figure 8.11 it can be seen that the ratio RD:TD also strongly
depends on ωL. Without enforcing a restriction on ω, this ratio ranges between≈ 4.5 and≈ 7
in 2003. For ωL & 30◦ the ratio dramatically decreases with increasing lower limit ωL, and
is unity for ωL ≈ 70◦. Finally, for ωL ≈ 80◦−110◦ (depending on the spacecraft considered)
MVA identifies no RDs either.
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Moreover, the classification results considerably differ at the individual spacecraft when all
DDs are considered. With increasing accuracy of MVA this discrepancy decreases, i.e., good
quality MVA normals yield consistent classification results among each other. Note that no
restrictions on λ2/λ3 are enforced for the right panel of Figure 8.11.

As in the case of the λ2/λ3 criterion, the number of DDs identified to be suitable for proper
MVA application is dramatically reduced. Therefore, single-spacecraft studies give a choice
between rather poor statistics with good quality MVA normals or good statistics with poorly
estimated normals.

Analogous to the discussion in the previous section we cannot exclude the possibility of “real
RDs” having, in fact, only small spreading angles. However, it would require a remarkable
coincidence for “real RDs” to be always characterised by parameters for which MVA per-
forms poorly, i.e., small lambda ratios and small ω. It is more reasonable to conclude that
DDs in this parameter regime have small normal components in reality, as triangulation sug-
gests, and that MVA identifies them as “clear RDs” simply because of a huge error cone
angle.

The main conclusions of this and the previous section can be summarised as follows: In-
creasing the reliability of MVA by separately increasing two independent parameters, i.e.,
(λ2/λ3)

L and ωL, we find the same result. In both cases subsets can be identified for which
the MVA results are consistent among each other and the two different methods are also con-
sistent (i.e., for λ2/λ3 & 10 and ω & 70◦, respectively). Thus we conclude that the different
classification results found initially are simply due to the poor performance of MVA in well
defined circumstances (small values of λ2/λ3 and/or ω). We further conclude that the solar
wind is dominated by DDs with a small magnetic field normal component, perhaps TDs.

For practical reasons concerning future single-spacecraft investigations we point out that be-
sides λ2/λ3, also ω is an important parameter affecting the accuracy of MVA (see also Lep-
ping and Behannon [1980]). In order to a priori ensure reasonable MVA results a preselection
of events with ω & 60◦ appears adequate. Further quality tests (much stricter than in common
practice) must then be done by inspecting the eigenvalue ratio λ2/λ3 after MVA is performed.

8.3.4 Variability of λ2/λ3 and ω

In the previous sections we have noted that, whereas similar values of ω are observed at the
positions of the four spacecraft, λ2/λ3 varies strongly at the distinct locations where a DD is
traversed. This is explicitely shown in Figure 8.12. On the left the distributions of

∆(λ2/λ3)/(λ2/λ3)max = ((λ2/λ3)max− (λ2/λ3)min)/(λ2/λ3)max

are presented, where (λ2/λ3)max is the maximum and (λ2/λ3)min the minimum of the λ2/λ3

values observed at the four spacecraft. The right hand side shows the distributions of the
correspondingly defined values of ∆ω/ωmax. From top to bottom the results for DD2002,
DD2001 and DD2003 (i.e., in the order of increasing spacecraft separations) are shown.

Apparently λ2/λ3 differs strongly at the positions of the four spacecraft. In many cases the
observed difference ∆(λ2/λ3) between the maximum and the minimum of the four λ2/λ3
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Figure 8.12: Distributions of ∆(λ2/λ3)/(λ2/λ3)max (left) and ∆ω/ωmax (right). Note the different
ranges of the ordinate. From top to bottom: 2002, 2001, 2003.

values is almost as large as the maximum value (λ2/λ3)max itself. In contrast, the spreading
angle is similar at all four spacecraft. Note that we have used high resolution data to determine
ω (i.e., ω is the angle between the first and the last high resolution magnetic field vector
of the DD). Hence, the results are hampered by high frequency fluctuations. Certainly the
agreement would be even better if average values were used.

In sections 8.4 and 8.5 we use 20 s average field vectors immediately upstream and down-
stream of the DDs to estimate the normals via the cross product of these vectors. The excel-
lent agreement between the cross product normals (see section 8.5) indicates that the averaged
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upstream and downstream field vectors also coincide at the positions of the four spacecraft.
Hence, macroscopic observables determined by quantities requiring measurements on the two
sides of the DDs, such as ω, generally agree very well at the locations of the four spacecraft.
Consequently, methods estimating discontinuity normals independently of the inner structure
of the DDs, such as the triangulation method or the cross product method, agree very well,
even if λ2/λ3 is small (see sections 8.4 and 8.5). We conclude that the actual discontinuity
does not differ at the positions of the four spacecraft.

In contrast to ω, the eigenvalue ratio λ2/λ3 depends strongly on the inner structure of the
DDs. The individual values of λ2/λ3 being extremely different at the four positions indicates
a considerable variability of the superposed fluctuations or high frequency wave fields on the
length scales given by the spacecraft separations. Furthermore, this observation indicates that
the superimposed fluctuations are non-isotropic.

Considering that the measured eigenvalues and corresponding eigenvectors account for the
sum of the measured variances, which are composed of both the pure undisturbed disconti-
nuity and the superimposed fluctuations, the variability of λ2/λ3 can then be explained by a
varying spatial orientation of the non-isotropic perturbation field related to the actual discon-
tinuity. For instance, the total eigenvalue ratio is generally large when the minimum variance
direction of the superimposed fluctuations coincides with the minimum variance direction of
the actual discontinuity. This way (λ2/λ3)max could be realized at one spacecraft. At another
spacecraft the wave vector of the superimposed fluctuations might be oriented such that the
minimum variance direction of the undisturbed discontinuity coincides with the maximum
variance direction of the perturbation, yielding a large total value of λ3 and thus generally a
small value of λ2/λ3. Hence, non-isotropic fluctuations or waves, superposed on the ideal
discontinuity and thus modifying the undisturbed variance ellipsoids differently at different
positions, are a likely reason for observing different MVA normal estimates at the distinct
positions of the four satellites.

Dependence on the spacecraft separation

From Figure 8.12 it can be seen that the observed variability of λ2/λ3 and ω depends on the
spacecraft separations. Whereas not much difference between the sets DD2001 and DD2003

are found, the values of λ2/λ3 and ω are considerably closer together in 2002 where the
spacecraft separations are small.

To visualise the spatial dependence we plot the average values of ∆(λ2/λ3)/(λ2/λ3)max and
∆ω/ωmax (marked as vertical lines in Figure 8.12) versus the average spacecraft separation in
the three periods of observation (Figure 8.13). Although only four distances are considered,
Figure 8.13 bares information of considerable interest. Both quantities strictly monotonically
increase when the spacecraft separations are small. However, although the maximum avail-
able average distance is still relatively small (≈ 4000 km in 2003), both ∆(λ2/λ3)/(λ2/λ3)max

and ∆ω/ωmax appear to saturate: The variability of ω is almost the same at an average sep-
aration of 900 km as at 4000 km, and the rate of increase of ∆(λ2/λ3)/(λ2/λ3)max almost
vanishes for distances > 900 km. Note, however, that we can only address the spacecraft sep-
arations given by Cluster. It would be interesting to see how the quantities evolve for larger
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Figure 8.13: Average values of ∆X/Xmax (X = λ2/λ3, ω) versus average spacecraft separation in
the corresponding period of observation. We added the theoretical values ∆X/Xmax(0) = 0.

separations, e.g. 2 or 3 magnitudes larger.

Of particular interest is the dramatic increase of ∆(λ2/λ3)/(λ2/λ3)max observed for small
separations. Strong discrepancies between the eigenvalue ratios are found already at an av-
erage separation of only ≈ 100 km. From the discussion above one may conclude that the
length scales on which the superimposed high frequency fluctuations are spatially correlated
is rather small. It would be certainly interesting to pursue this issue further, for instance by
also examining λ1/λ2.

We point out that we assume the variability of λ2/λ3 to be solely related to fluctuations
superimposed on the actual discontinuity. To test this it would be interesting to repeat the
analysis for magnetic field data intervals not containing any DDs. Certainly, this type of
multi-spacecraft analysis is also relevant for studies related to solar wind turbulence, but this
is beyond the scope of the present work.

Whereas the small separations in 2002 appear to be still within the segment of the curve where
the spatial variability of λ2/λ3 sharply increases with distance, the separations in 2001 and
2003 are already in the region of moderate increase. Hence, the spacecraft separations in 2002
(≈ 100 km) may be small enough for the minimum variance directions of the disturbance field
to be well aligned at the four positions. Therefore, the error associated with the interpretation
of the minimum variance direction of the total signal as the true normal of the discontinuity
is similar at all four spacecraft. As a consequence, the four individual MVA normal estimates
agree fairly well in 2002 (see preceeding sections).

We conclude that the non-isotropic high frequency disturbances may be correlated on length
scales observed in 2002 for many DDs and are generally rather uncorrelated on length scales
& 900 km (as observed in 2001 and 2003), yielding aligned minimum variance directions in
2002 and deviating normal estimates in 2001 and 2003.
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8.3.5 Superposed wave fields - one example

The observations and conclusions presented in the previous sections imply that an appro-
priate model for discontinuities in interplanetary space is a 1-D structure, that is planar on
the Cluster separation scale, superposed by non-isotropic fluctuations or wave fields. The
superposed fluctuations could be MHD waves, independently existing in the solar wind, or
the discontinuities could generate these wave modes of their own. The example we present
in this section confirms that the above model indeed coincides well with the observations.
Furthermore, we discuss the nature and possible origins of the superposed fluctuations.

The procedure we apply consists of subtracting the superposed fluctuations from the observed
total structure and subsequently analysing the DD and the fluctuations separately. In addition
we examine the fluctuations in a quiet (not containing a DD) interval in the vicinity of the
DD to study whether the fluctuations within and outside the DD are interrelated.

The example shown in Figure 8.14 is taken from the set DD2001. The DD, identified as an
RD by MVA and as an ED using triangulation, is observed on doy 44 at 03:07 UTC. It is
extreme in the sense that it represents a rather weak DD (ω ≈ 30◦) superposed by strong
fluctuations. It is characterised by large MVA eigenvalue ratios (λ2/λ3 = 11, 23, 8, 20 at Cl
1, Cl 2, Cl 3 and Cl 4, respectively) and well aligned MVA normals (see Table 8.2). Apart
from the small spreading angle, one could thus assume that MVA performed rather well.
However, this particular event attracts our attention, because in spite of good eigenvalue
ratios and the consistent MVA results, the triangulation normal is almost perpendicular to the
MVA normals (see Table 8.2). Certainly the time gaps between the spacecraft are difficult to
evaluate, because of the strongly fluctuating field. Hence, this is probably one of the cases
were triangulation performs relatively poor. However, using low pass filtered data, i.e., 4 s
sliding averages, timings can be found which permit a reasonable normal estimate. In any
case, the associated triangulation error cone angle is well below 90◦.

In order to investigate the influence of the superposed fields we subtract a model {B(m)
disc} for

the actual discontinuity from the observed field B(m) = B(m)
disc +B(m)

f luc. The remaining signature

{B(m)
f luc} then solely consists of the superimposed wave fields.4

The difficulty of such an approach is to find a suitable model {B(m)
disc} for the actual discon-

tinuity. Trigonometric functions may be useful in this regard. For instance Schröder [2002]
uses the arc tangent function. However, the mean characteristic of the particular event in
Figure 8.14 resembles rather a simple linear ramp. In a first step we low pass filter the data
using 4 s sliding averages. Figure 8.14 shows that even the filtered data comprise waves,

4The brackets {} denote the set of the individual field vectors B(m), B(m)
disc or B(m)

f luc, respectively.

Table 8.2: Angles between the four MVA normals among each other (left) and between the MVA
normals and the triangulation normal (right), in degrees.

1-2 1-3 1-4 2-3 2-4 3-4 T-1 T-2 T-3 T-4
5.3 3.2 1.2 8.3 6.5 2.6 87.5 83.8 88.4 88.6
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Figure 8.14: Cl 3 data of a DD observed on doy 44 at 03:07 UTC. The components are shown
in GSE coordinates. The high resolution FGM data are represented by the black line. Besides the
discontinuity (11216-11226) a quiet interval before the DD is shown (11186-11212). The red line
represents 4 s sliding averages and the green line a linear fit to these averages. The blue line represents
the difference between the DD in high resolution data and the linear fit. Note that for better visibility
we moved the zero-point of that time series. The horizontal lines indicate zero in each component.

indicating relatively low frequency fluctuations. It can be seen that the actual transition be-
tween the upstream and the downstream field can be best fitted by a linear function in each
component. Both the high resolution and the 4 s averages fluctuate around that fit, indicating
that the linear approach is indeed justified.

The next step is to perform a minimum variance analysis separately for the total structure and
for the superposed fluctuations B(m)

f luc = B(m)−B(m)
disc (blue line in Figure 8.14). In addition we

analyse a “quiet” interval (second 11186-11212), which is clearly outside the DD, to compare
the fluctuations within the DD with those in the ambient magneto-plasma.

The analysis reveals that the direction of minimum variance is almost the same for the fluc-
tuations {B(m)

f luc} as for the total structure {B(m)}. The angle between the two respective
directions of minimum variance is 10◦, 3◦, 3◦ and 5◦ for the data from Cl 1, Cl 2, Cl 3 and Cl
4, respectively. Table 8.3 summarises the MVA results for Cl 3 in detail. First, it can be seen
that besides the eigenvector x3, corresponding to the minimum eigenvalue λ3, x1 and x2 are
also similar for the field vector sets {B(m)

f luc} and {B(m)}. Second, the extracted fluctuations
have almost exactly the same lowest and intermediate eigenvalues λ3 and λ2 as the total struc-
ture. Note that λ3 is always slightly smaller when only the fluctuations are considered; this is
also true for the other three spacecraft. The only difference is that the maximum eigenvalue
λ1 is an order of magnitude larger for the total DD.
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Table 8.3: Comparison of the Cl 3 MVA results for the total structure (DD) and for the super-
posed fluctuations (FL). Top: Eigenvectors in GSE coordinates and angle (AN) between the respective
vectors in degrees. Bottom: Corresponding eigenvalues and eigenvalue ratios.

x1 x2 x3

DD (-0.5785, 0.7460, 0.3293) (0.8153, 0.5171, 0.2604) (0.0237, 0.4195, -0.9074)
FL (-0.6795, 0.6920, 0.2438) (0.7320, 0.6167, 0.2896) (0.0500, 0.3752, -0.9256)
AN 7.7 7.6 3.2

λ1 λ2 λ3 λ1/λ2 λ2/λ3

DD 2.4519 0.0990 0.0130 24.8 7.6
FL 0.2111 0.0994 0.0125 2.1 8.0

These observations confirm the idea that interplanetary discontinuities consist of an ideal
1-D structure that is superposed by non-isotropic fluctuations and illustrate the associated
difficulties regarding MVA. The linear fit of the actual discontinuity implies that λ2 = λ3 = 0;
i.e., with the superposed fluctuations being subtracted from the net signal the covariant matrix
is degenerated. Only the direction of maximum variance x1 is defined, whereas the minimum
variance direction could be anything perpendicular to x1. The positive values of λ2 and λ3

are solely contained in the superimposed fluctuations. Apparently, with an eigenvalue ratio
λ2/λ3 = 8 these fluctuations are highly non-isotropic. This means, in cases similar to the
example where the actual discontinuity is linearly polarised, or at least close to that, the
direction of minimum variance is purely determined by superposed fluctuations, provided
they are non-isotropic. Therefore, extreme caution must be exercised when interpreting the
direction of minimum variance to be the discontinuity normal.

The agreement between the two sets regarding λ2 and λ3 is slightly weaker for the other three
spacecraft (not shown). This is because the directions of maximum variance for {B(m)

f luc} and

{B(m)} are not so well aligned as is the case for the Cl 3 data. If they were in fact parallel
to each other, the total DD and the fluctuations would have exactly the same intermediate
and smallest eigenvalues. Whenever the directions of maximum variance are tilted, λ3 of the
superposed fluctuations must be smaller than for the total structure (as is observed) since the
additional variance of the discontinuity causes the variance ellipsoid to change orientation.

We point out that by choosing a linear fit to model the actual transition we pushed the results
presented above to a certain extent. However, the linear fit appears to be adequate, and in
addition small non-linearities would not change the principle result.

Note that the four directions of minimum variance obtained for the extracted fluctuations are
almost aligned among each other, indicating that the superposed fluctuations are spatially
correlated over the spacecraft separation scale. This large correlation length causes the four
MVA normals of the total structure to be aligned also.

The agreement among the four minimum variance directions is also excellent for the quiet
interval outside the DD. They are aligned within 5◦. Furthermore, these fluctuations have a
similar direction of minimum variance as the extracted fluctuations within the discontinuity.
They only deviate by 5◦-15◦ at the respective satellites. Hence, the fluctuations within and
outside the DD may be interrelated.
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As stated above, the only reliable information on the actual discontinuity obtained from MVA
is the direction of maximum variance. Hence, the true discontinuity normal should be per-
pendicular to that direction. We find the angle between the triangulation normal and x1 to
be 81.2◦. Therefore the relative timing result is at least consistent with the maximum vari-
ance direction obtained from MVA, although the time lags are difficult to determine for the
example event.

It is interesting to note that (as usual) according to triangulation a vanishing normal com-
ponent is computed (|Bn|/Bmax = 0.003). In contrast, the minimum variance direction is
almost aligned with the magnetic field (|Bn|/Bmax = 0.98). This is the typical discrepancy
we observe between the two methods for many DDs with small ∆B and moderate (≈ 30◦)
spreading angle (such as the DD in Figure 8.14). The analysis above reveals that, in fact, the
wave-vector of the superposed fluctuations is parallel to the mean field (the angle between B
and x3 is only 4◦ for {B(m)

f luc}). Provided that λ2/λ3 is small for the actual discontinuity this
causes the minimum variance direction of the total structure (discontinuity plus waves) to be
also aligned with the mean field.

To answer questions regarding the nature and particularly the origin of these apparently im-
portant superimposed waves, an extended study, including the investigation of more DDs,
would be necessary. We do not further pursue this. However, previous studies (both theo-
retical and observational) already suggest interesting answers. According to Hollweg [1982],
Horbury et al. [2001b] conclude that the superposed wave fields are surface waves on and
around the discontinuity surface. Hollweg [1982] discusses MHD surface waves on TDs and
shows that a variety of waves could be supported, but argues that compressive surface waves
would be damped, leaving a population of non-compressive modes whose wave-vectors
would lie parallel to the mean field, not to the discontinuity normal (as in our example).
Furthermore, Hollweg [1982] finds that the surface waves bear a resemblance to the usual
Alfvén mode in a uniform medium.

The occurrence of correlated field and velocity changes across TDs has already been observed
by Denskat and Burlaga [1977]. They assume that the static structures are surrounded by
MHD waves. The static structures will move with the solar wind, and the waves will generally
move past them or possibly even interact with them. However, the possibility that the TDs
might support a wave mode of their own has first been raised by Hollweg [1982]. As discussed
in chapter 3, the Alfvénic nature of these fluctuations led several authors (e.g., Neugebauer
et al. [1984]) to conclude that the static structures were consistent with RDs.

To conclude, both the deviation of the minimum variance direction from the discontinuity
normal due to surface waves or other field-perpendicular fluctuations and the Alfvénic ap-
pearance of these waves are likely reasons for mistakenly identifying TDs as RDs. Further-
more, the example presented in this section shows that large ratios λ2/λ3 are only a necessary
condition for reliable MVA normal estimates, not a sufficient one.
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8.3.6 New classification criteria for single-spacecraft studies

Assuming interplanetary discontinuities to be planar on the scale of the Cluster array, the only
reason for the relative normal component |Bn|/Bmax having different values at the positions of
the four spacecraft is the inaccuracy of MVA. Hence, ∆(|Bn|/Bmax) can be used as an indicator
for the error associated with MVA normal estimates, which is important for ascertaining an
appropriate criterion to discern RDs from TDs in studies using only magnetic field data from
a single spacecraft.

For TDs, Bn = 0 is required. In order to say that a DD is most likely not a TD, one can
introduce a threshold bnc such that if |Bn|/Bmax > bnc, the corresponding DD is not tangential.
Some attempts have been carried out to estimate bnc so far (see section 7.2). Smith [1973a]
established this method and quantified bnc = 0.4. Although this was only a sophisticated
guess, this value has been applied often in related studies, as we do in parts of this work. A
more profound analysis has been carried out by Lepping and Behannon [1980], where bnc =

0.3 is determined by numerical simulations of ideal discontinuities superposed by isotropic
noise.

Using magnetic field data from the four coordinated Cluster spacecraft we are in the unique
position to determine bnc empirically as follows: For each DD traversal we compute the pair-
wise differences between the values of |Bn|/Bmax measured at the four spacecraft, provided
that λ2/λ3 > (λ2/λ3)

L at both spacecraft. The threshold bnc for the particular (λ2/λ3)
L is

then identified as the value exceeding 95% of all measured ∆(|Bn|/Bmax) values. We there-
fore assume the true value of |Bn|/Bmax to be inside an interval of width bnc with a probability
of 95%. Since a TD has a normal component of zero, this means that for 95% of the TDs
the measured value of |Bn|/Bmax is below bnc. Conversely, if |Bn|/Bmax > bnc is found, the
corresponding DD is not a TD with 95% confidence.

As discussed in section 8.3.4, aligned MVA normal estimates do not indicate that the direction
of minimum variance indeed coincides with the discontinuity normal when the spacecraft
separations are as small as in 2002. For that reason we use only the sets DD2001 and DD2003

to estimate bnc. Note, however, that collinear minimum variance directions do not necessarily
guarantee reliable normal estimates, even if the spacecraft are ≈ 1000 km apart (see the
example presented in the previous section). Therefore, even by using only DDs from 2001
and 2003 we probably still underestimate the value of bnc.

Figure 8.15 shows distributions of ∆(|Bn|/Bmax) for subsets of DD2003 with different restric-
tions on λ2/λ3. All pairs of spacecraft with λ2/λ3 > (λ2/λ3)

L are considered. The values of
bnc are marked by the vertical lines. As one would expect from the results presented previ-
ously, the width of the distribution decreases with increasing strength of the requirements on
λ2/λ3. Table 8.4 summarises the values of bnc we obtain for various lower limits (λ2/λ3)

L

and ωL. Besides the decrease of bnc with increasing (λ2/λ3)
L and ωL, it can be seen that

we determine similar values of bnc for both sets (DD2001 and DD2003). Note that bnc is even
smaller in 2003 than in 2001 for some lower limits, although the spacecraft separations are
larger.

We remind the reader that the most commonly used value of bnc is 0.4 in connection with



8.3 REEXAMINATION OF MVA - CONSEQUENCES 143

0 0.2 0.4 0.6 0.8 1
∆(|Bn|/Bmax)

0

0.1

0.2

0.3

0.4

0.5

0.6

p
er

ce
n

ta
g

e

λ2/λ3

L
=1

N=774

2003

N=1224
(λ2/λ3)

L
=1

0 0.2 0.4 0.6 0.8 1
∆(|Bn|/Bmax)

0

0.1

0.2

0.3

0.4

0.5

0.6

p
er

ce
n

ta
g

e

λ2/λ3

L
=1

N=774

2003

(λ2/λ3)
L
=5

N=357

0 0.2 0.4 0.6 0.8 1
∆(|Bn|/Bmax)

0

0.1

0.2

0.3

0.4

0.5

0.6

p
er

ce
n

ta
g

e

λ2/λ3

L
=1

N=774

2003

(λ2/λ3)
L
=20

N=37

Figure 8.15: Distributions of ∆(|Bn|/Bmax) for different subsets of DD2003. Only pairs of spacecraft
with λ2/λ3 > (λ2/λ3)

L are considered. From left to right (λ2/λ3)
L = 1 (i.e., the total set), (λ2/λ3)

L =

5 and (λ2/λ3)
L = 20. The vertical lines indicate the value of bnc. N denotes the number of pairs

considered.

(λ2/λ3)
L = 2. Our results show that this is definitely overly optimistic; bnc = 0.6 appears to

be more adequate. Conversely, Table 8.4 suggests that using bnc = 0.4, meaningful classifi-
cation results may be found when only DDs with λ2/λ3 & 5 or ω & 60◦ are considered. The
threshold bnc = 0.3 suggested by Lepping and Behannon [1980] appears reasonable when
requiring (λ2/λ3)

L ≈ 10 or (ω)L ≈ 90◦. Note, however, that as discussed above the thresh-
olds we suggest are only lower limits for bnc. Hence, to assure not to mistakenly identify too
many DDs as “clear RDs” by means of the normal magnetic field component using MVA, we
suggest to enforce even stricter requirements on λ2/λ3 and ω.

The analysis presented in this section confirms that MVA is much less reliable than previ-
ously thought to determine the correct type of interplanetary discontinuities, yielding a large
number of fallaciously identified “clear RDs”. Our results in earlier sections suggest that this
dramatic underestimation of the error is supported by the assumption of isotropic fluctuations
superposing the discontinuities (also see the discussion in section 7.2). For instance, we as-
sume that the simulations carried out by Lepping and Behannon [1980] would yield a larger
value of bnc if non-isotropic fluctuations were considered.

Table 8.4: Values of bnc for different restrictions (λ2/λ3)
L (top) and ωL (bottom). The number of

pairs used is given in brackets.
(λ2/λ3)

L 1 2 5 10 20
2001 0.66 (774) 0.58 (572) 0.33 (241) 0.29 (80) 0.23 (31)
2003 0.65 (1224) 0.62 (924) 0.44 (357) 0.35 (125) 0.26 (37)

ωL 60◦ 90◦ 120◦

2001 0.37 (205) 0.30 (100) 0.28 (24)
2003 0.44 (449) 0.23 (108) 0.11 (41)
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8.4 Consistency tests for triangulation

In previous sections we have shown that the discrepancy between the classification results
obtained from triangulation and MVA is caused mainly by inaccurate MVA normals and can
be resolved when only DDs are considered for which MVA performs well. The purpose of
this section is to affirm, by means of simple consistency tests, that the triangulation results
in turn generally provide reliable normal estimates and thus reliable magnetic field normal
components. A detailed error analysis for the relative timing method follows in chapter 9.

The most striking feature of the triangulation normals is that they all tend to be perpendicular
to the magnetic field. Before showing the tests for consistency we demonstrate with a thought
experiment that the relative timing method does not a priori exclude the possibility of large
magnetic field normal components: Triangulation determines the normal solely on the basis
of the time lags between magnetic field variations observed at the four spacecraft. Let us
assume that triangulation is performed and |Bn|/Bmax = 0 is found. Adding a constant field,
aligned with the computed normal, would not change the orientation of the normal, since
adding a constant field does not affect triangulation. This way any positive value of |Bn|/Bmax

can be realised, and any orientation of n relative to B is possible without limitations.

In the following, two independent consistency tests for the triangulation normals are pre-
sented. The first test is based on the fact that the direction of maximum variance is generally
well determined (see e.g. section 8.3.1). Hence, a necessary condition for the true disconti-
nuity normal is that it is perpendicular to the direction of maximum variance. The second test
we perform makes use of the observation that the triangulation normals tend to be perpendic-
ular to the magnetic field. If a discontinuity is indeed tangential, or has a vanishing normal
component, then the normal can also be calculated by the cross product of the upstream and
the downstream magnetic field vector (see section 7.3): n = ±(B1×B2)/(|B1×B2|). Con-
sequently, the triangulation normals should coincide with the cross product normals.

Figure 8.16 shows the distributions of the angle between the triangulation normal and the
direction of maximum variance (left) and the distributions of the angle between the triangu-
lation normal and the cross product normal (right) for the sets DD2002, DD2001 and DD2003.
The histograms are presented from top to bottom in increasing order of the prevailing space-
craft separations. Also shown are the distributions for the subset of DD2003 containing those
DDs for which the relative timings can be determined best (bottom). Since we have four max-
imum variance directions and four cross product normals for each DD, the total number of
angles contributing to each statistic is four times the number of DDs in the corresponding set.
To determine B1 and B2 for the cross product, we average over 450 magnetic field vectors,
i.e., ≈ 20 s on either side of the DD. This interval is assumed to be long enough to eliminate
fluctuations and short enough to be not too far away from the DD.

Maximum variance direction

Apparently both tests are successful. A clear tendency for the timing-derived normals to be
perpendicular to the maximum variance direction can be seen in Figure 8.16. Furthermore,
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Figure 8.16: Distributions of the angle between the triangulation normal and the direction of max-
imum variance (left) and the angle between the triangulation normal and the cross product normal
(right). From top to bottom: DD2002, DD2001, DD2003 and the subset of DD2003 containing those DDs
for which the relative timings can be determined best. Only DDs with P < 0.8 are considered. The
vertical lines indicate the average angle.
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the ideal distribution (δ-function at 90◦) is approached with increasing accuracy of the trian-
gulation normals (from top to bottom). As pointed out earlier, the relative timing estimates
are worst in 2002, corresponding to a comparatively broad distribution in Figure 8.16. How-
ever, the triangulation normal is perpendicular to the maximum variance direction within 10◦

for more than half of the DDs (57%) even for the set DD2002. The same percentage of trian-
gulation normals is perpendicular to the maximum variance direction within only 5◦ in 2001,
and in 91% of all cases a deviation of less than 15◦ is observed. On average the triangulation
normals are only 6◦ away from being perpendicular to the maximum variance direction for
the set DD2001. Excellent agreement with the expected distribution for exact methods is found
for the set of DDs for which we expect triangulation to perform best, i.e., the subset DD2003

(good timings). Almost all of the triangulation normals of these DDs (99%) are perpendicu-
lar to the maximum variance direction within 15◦, and 77% are perpendicular within 5◦. On
average the expected result is achieved within about 3◦. Note that the maximum variance
direction is not accurate, either.

As a side-note we may add that, since the direction of minimum variance is by definition
perpendicular to the maximum variance direction, the triangulation normal and the MVA
normal both lie in the plane perpendicular to the maximum variance direction (see also Figure
8.3). A remaining difficulty is to distinguish the minimum from the intermediate variance
direction. In order to make this task tractable the ratio λ2/λ3 must be sufficiently large.

Cross product normal

The right hand side of Figure 8.16 shows that generally the triangulation normal coincides
well with the cross product normals. As is the case for the first consistency test, the required
result for exact triangulation and cross product normals under the assumption that all DDs
are TDs is approached with increasing accuracy of the relative timing method, i.e., from top
to bottom. The average angle between the two methods decreases from 22.0◦ for the set
DD2002 and 11.2◦ for DD2001 to 8.6◦ for DD2003. Considering only those DDs in DD2003 for
which triangulation performs best the average angle goes down to 5.7◦. In that case the angle
between the triangulation normal and the cross product normals is less than 30◦ for almost
all DDs (99%), and it is less than 10◦ for 91% of the DDs. For more than half of the events
(54%) the two methods even agree within 5◦.

To provide a reference we may recall that the average angle between the triangulation normal
and the MVA normals is≈ 30◦ when the same DDs as in Figure 8.16 are considered. Consid-
ering only the few DDs for which MVA performs best, the agreement between triangulation
and MVA is similar to the average angle between triangulation and cross product normals
(see Figure 8.7). Also note that the average angles between triangulation and cross product
normals compare quite well with the average angular errors associated with triangulation that
we compute for the respective sets (see table 9.11 in chapter 9).

Accounting for the fact that also the cross product method is subject to errors, the agreement
between the two methods is very good. Note that the cross product method works only for
TDs, and we do not exclude the possibility that there are some DDs with small but finite
|Bn|/Bmax. The other source of error for the cross product method is that B1 and B2 are not



8.5 SURFACE CURVATURE ON THE CLUSTER SCALE AND BEYOND 147

known precisely. For instance, the 20 s interval we average over on both sides of the DD
may contain real trends or variations that make the determination of the upstream and the
downstream state imprecise. Another problem are zero-level offsets of the fluxgate magne-
tometers. Whereas MVA and triangulation are not affected by this offset, the cross product
method considerably depends on accurate zero-levels.

We point out that just as for the relative timing method, the cross product method is indepen-
dent of the inner structure of the DDs. Hence, superimposed fluctuations within the transition
do not affect the cross product normals, in contrast to MVA.

To summarise, both tests for consistency carried out above were successful. We conclude that
triangulation performs very well and that with considerable confidence |Bn|/Bmax is, in fact,
very small for all DDs in the representative ensemble considered here. However, since any
method to determine DD normals is subject to some error it is impossible to claim that all
events are TDs, i.e., |Bn|/Bmax = 0. The new perception is that all DDs are, in fact, consistent
with being TDs (see also chapter 9). Since in addition the majority of events have only small
field magnitude changes across them, they could as well be RDs propagating almost perpen-
dicular to the magnetic field (i.e., almost static structures). Hence, in order to determine the
true type of these EDs, the use of plasma data is necessary. Jump conditions that require
plasma data will be examined in section 8.8.

8.5 Surface curvature on the Cluster scale and beyond

Another subject of multi-point observations is to study the geometrical properties of boundary
layers. The statistical considerations presented in this section demonstrate that attempts to
assess surface curvature are strongly affected by the imprecision of MVA.

For practical reasons one generally assumes DDs to be infinitely extended planar structures.
This assumption simplifies for instance the determination of the DD normal. Also studies
on the interaction of DDs with planetary magnetospheres generally use this simple model.
However, because the source region of DDs (on or near the Sun) is limited in size and because
the solar wind is a highly dynamic medium it is more reasonable to assume that interplanetary
discontinuities have a finite transverse extent and that they are curved on large scales.

The first observational indication for curved DD surfaces was given by Burlaga and Ness
[1969]. They suggested that DDs may have significant surface curvature on spacecraft sepa-
ration scales ranging from < 10 RE to ≈ 135 RE . To be more specific, they studied a small
number (7 events) of DDs which they identified as TDs. Comparing the normals computed
by the cross product technique at three spacecraft they determined that TD surface curvature
is likely, but they did not estimate the typical degree of curvature. An extensive study on the
degree of 2-D curvature of DD surfaces at 1 AU was carried out by Lepping et al. [2003].
They used data from the IMP-8 and the WIND spacecraft which were on average separated
by ≈ 130 RE (i.e., ≈ 106 km) during the investigation. Using MVA normals, Lepping et al.
[2003] estimated an average radius of curvature of 380 RE , and a most probable value of 290
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RE . Furthermore, they found that 56% of the events have concave surfaces as viewed from
the Sun and 44% have convex surfaces.

For that type of analysis it is crucial to have good estimates of the local surface normals.
Lepping et al. [2003] point out that the assumption they made that a change in a DD normal
from one position to the other is due exclusively to DD surface curvature may be incorrect.
They suggest the possibility that waves on the DD surface are partly or fully responsible for
a change in the normal.

In view of the large radii of curvature found by Lepping et al. [2003], it appears as if the
comparatively tiny side lengths of the Cluster tetrahedron are unsuitable to contribute to the
issue of DD surface curvature. For instance, a radius of curvature of Rc = 300 RE corresponds
to a change in normal from one spacecraft to the other of less than 0.1◦ for typical tetrahedra
sizes in 2003. This is certainly far beyond the capability of MVA. For that reason, we do
not present a detailed analysis on surface curvature. Instead, a simple statistical treatment is
given. The main result is that the deviations between MVA normals at different spacecraft
are statistically similar at the Cluster separation scales (about 1000 km) as at 106 km.

Figure 8.17 (top) shows the distributions of the angle between the four MVA normals for each
year. Only DDs are considered for which λ2/λ3 > 2 simultaneously at all four spacecraft.
The enormous discrepancies between the normals measured at the closely spaced Cluster
satellites are hard to explain by means of curved DD surfaces or perhaps rigid rotations of the
surface between the four traversals. As stated earlier these differences even cause a DD to
be identified as an RD at one spacecraft and as a possible TD at another one in many cases.
Lepping et al. [2003] also observe such “changes of type” between the widely separated
WIND and IMP-8 spacecraft. They suggest that these “changes of type” might be real. In
fact, |Bn|/Bmax may be different at the location of widely spaced spacecraft when the DD
surface is curved. However, a significant real change of |Bn|/Bmax within a time gap of the
order of 1 to 10 seconds (as observed with Cluster) is hard to imagine. We have concluded
earlier that the discrepancy between the spacecraft is most likely due to poorly performing
MVA. We further suggested that the relatively good alignment found in 2002 is caused by
similar MVA errors at the four positions when the spacecraft are close together.

In the previous section we have demonstrated that in turn the cross product method yields
reasonable normal estimates, because the normal magnetic field component is generally very
small for all DDs investigated. The bottom part of Figure 8.17 shows the distributions of the
angle between the four cross product normals. Note that no quality selection is carried out,
i.e., all DDs are considered in each set. Almost perfect collinearity between the four cross
product normals is observed. The angle between these normals is less than 10◦ for nearly all
DDs in the entire ensemble and it is less than 5◦ for the vast majority of events. On average
the angle between the four cross product normals is 1.5◦, 3.7◦ and 4.1◦ in 2002, 2001 and
2003, respectively. Hence, accounting for the error associated with the cross product method,
no DD surface curvature on the scale of the Cluster array is needed to explain these vanishing
discrepancies. The assumption of planar structures on that length scales appears reasonable.
However, we remind the reader that caution must be exercised when interpreting the cross
product normals, because the type of DD must be known to be tangential before application
of that method. Note that the superposed fluctuations we have identified as the source for
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Figure 8.17: Average angle between normals determined from single-spacecraft analysis methods.
Top: MVA. Only DDs with λ2/λ3 > 2 simultaneously at all four spacecraft are considered. Bottom:
Cross product method. From left to right the sets DD2002, DD2001 and DD2003 are shown.

the poor performance of MVA do not affect the cross product method. Most likely this is the
reason for finding deviating MVA normals and well aligned cross product normals.

Figure 8.18 shows the dependence of the average angle between the four MVA normals on
the average spacecraft separation prevailing in the three periods of observation (left). On the
right hand side 〈∆(|Bn|/Bmax)〉 is shown. As in Figure 8.13 a fourth point (0, 0) is added.
The dependence is shown for different restrictions on ω. Also plotted is the average angle
between the four cross product normals.

The behaviour of the individual curves is similar to that found for ∆(λ2/λ3)/(λ2/λ3)max (see
Figure 8.13). A strong increase of the average angle and 〈∆(|Bn|/Bmax)〉 at small distances is
followed by almost stagnating values when the separations become larger. This behaviour is
especially apparent when the requirements on ω are rather strict. The value of 〈∆(|Bn|/Bmax)〉
even decreases with distance for ωL = 90◦ and ωL = 120◦ as does the average angle between
the MVA normals for ωL = 90◦. Note, however, that the statistics are poor for large values
of ωL. For instance, only around 15 events remain in each of the three sets for ωL = 90◦.
Furthermore, we point out that different DDs in different solar wind conditions are compared
at the three average separations.

Although the angles are much smaller when the cross product is used to estimate the normals,
the general behaviour as a function of separation is the same. The average angle appears to
saturate.

Certainly, using only the relatively small Cluster arrays our conclusions are restricted to a
limited spatial scale. However, we can easily augment our data set by the observations made
by Lepping et al. [2003] using widely spaced spacecraft. In order to ensure high quality MVA
normal estimates, Lepping et al. [2003] use ωL = 90◦ as a lower limit. They find an average
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Figure 8.18: Dependence of the average angle between single-spacecraft normals (left) and derived
average differences between |Bn|/Bmax (right) as a function of spacecraft separation.

angle between the MVA normals determined at IMP-8 and WIND of 12.5◦ at an average
separation of ≈ 106 km. This is the same angle we find for ωL = 90◦ at a separation of only
100 km, i.e., four orders of magnitude smaller. Hence, adding the point (106 km, 12.5◦)
determined by Lepping et al. [2003] to the left hand side of Figure 8.18, the observation of
a saturating average angle can be expanded to an average spacecraft separation of 106 km.
Moreover, we compare the distribution of the angle found by Lepping et al. [2003] (Figure
7 in their paper) to the distributions we obtain for ωL = 90◦ (not shown). In spite of the
enormous difference in spacecraft separation the distributions are quite similar to each other.
Note, however, that in addition to the requirement ω > 90◦ Lepping et al. [2003] carefully
inspect the ratio λ2/λ3. They do not use DDs with λ2/λ3 < 5.5, and for most DDs in their
statistics the lambda ratio is greater than 10. Therefore, their normal estimates are probably
better than those used in Figure 8.18.

Let us assume for a moment that the angles between the normals measured at the four Clus-
ter spacecraft are not caused by errors associated with MVA, but are indeed caused by real
surface curvature. We then use the average angles together with the average spacecraft sep-
arations in the three periods of observation to roughly estimate “typical radii of curvature”.
We find Rc ≈ 2000 km, 6000 km, 14000 km for the three sets DD2002, DD2001 and DD2003,
when the lower limit (λ2/λ3)

L = 10 is used. These hypothetical radii of curvature appear
exceedingly small, particularly compared to 〈Rc〉 = 380 RE found by Lepping et al. [2003].
Moreover, the “radius of curvature” dramatically increases with increasing spacecraft sepa-
ration. Conversely this means that the average angle between the individual normals does not
increase strong enough with distance (in this simplified statistical treatment) to yield consis-
tent typical curvatures in the three periods of observation. Let us assume that Rc ≈ 14000 km
(i.e., the result for set DD2003) is a reliable estimate for the typical curvature. Then, provided
that the DDs found in 2001 and 2002 have similar characteristics, the average angle between
the normals would be expected to be only 3.7◦ and 0.6◦, respectively, and not 9.3◦ and 4.7◦

as observed. These considerations of the average properties indicate that it is difficult to
distinguish whether real curvature or poor MVA estimates cause the normals to deviate.

To determine the rough estimates of Rc presented above we make a lot of simplifying as-
sumptions. For instance, instead of the average side length of the tetrahedra one actually
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must use the lateral distance between the spacecraft in the DD plane (for more details see
Lepping et al. [2003]). Furthermore we stress that we only consider average properties and
compare totally different DDs observed in different years with different solar wind condi-
tions. The considerations above strictly speaking can only be applied when a single DD is
observed simultaneously at spacecraft separated on various length scales. However, the aim
in this section is not to cover all the details necessary for a conscientious analysis. Instead, we
aim to demonstrate that statistically similar deviations between MVA normals are found at
separation scales ranging from≈ 102 km to≈ 106 km, and this complicates the determination
of large scale DD surface curvature.

To conclude, our results indicate that Lepping et al. [2003] may not measure large scale
curvature properties. They explicitely allow for the possibility that waves on the DD surface
are responsible for the two MVA normals not to be aligned. The Cluster results show that the
deviations are more likely due to fallacious MVA normal estimates, although we must keep
in mind that Lepping et al. [2003] carefully select the used DDs to ensure reasonable MVA
normals. Perhaps DDs are less curved on large scales than proposed by Lepping et al. [2003],
but have a corrugated structure on a smaller scale. We point out that we do not propose planar
structures on large scales. We only claim that MVA may not be appropriate to determine a
typical degree of DD surface curvature. In other words, it is difficult to distinguish between
true large scale curvature, inaccurate MVA normals or ripples on otherwise planar structures.
The finding of Lepping et al. [2003] that the ratio of concave to convex curvature as seen
from the Sun is balanced may also indicate a rather random mechanism, such as inaccuracies
or small scale structures, to be responsible for the specific normals to deviate.

As a final note we add that, also supported by the well-aligned cross product normals, the
assumption of planar DDs on the Cluster separation scale appears to be well justified. Note
that this is an important prerequisite for triangulation to be applicable.

8.6 Distribution of the discontinuity normals in space

The awareness of MVA normal estimates being highly inaccurate in many cases requires a
revision of the previously established idea (based on single-spacecraft studies) of how inter-
planetary discontinuities are oriented in space.

The orientation of discontinuities in the solar wind (at 1 AU) has been the subject of a consid-
erable amount of literature [Burlaga, 1969a; 1971b; Burlaga et al., 1977; Turner and Siscoe,
1971; Mariani et al., 1973; Smith, 1973b; Barnstorf, 1980; Lepping and Behannon, 1986;
Söding, 1999]. Burlaga [1969a; 1971b]; Mariani et al. [1973] use the cross product method
to estimate the normal n. They consistently find that the ecliptic component of n tends to
be perpendicular to the average magnetic field direction given by the Parker spiral [Parker,
1958]. Whereas Burlaga [1969a; 1971b] observe a strong tendency of n to be directed away
from the ecliptic plane, Mariani et al. [1973] find no clear preference for the normal to be
oriented either in or at a large angle to the ecliptic plane. Note, however, that the direction of
B1×B2 is a priori perpendicular to the local magnetic field and does not necessarily coincide
with the DD normal.
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The majority of studies use MVA to estimate the normals. Often the distributions are pre-
sented separately for RDs and TDs, determined by means of the normal magnetic field com-
ponent. According to our results presented in previous sections, this separation is rather
meaningless. Nevertheless, it is interesting to revisit these earlier results on normal distribu-
tions in the light of our new findings.

The general result is that the MVA normals of TDs tend to be perpendicular to the spiral
average magnetic field direction and close to but somewhat out of the ecliptic plane (i.e.,
similar to the cross product results), while the normals of RDs are more randomly scattered
(see Burlaga et al. [1977] and references therein). Burlaga et al. [1977] confirm this general
pattern, i.e., an isotropic distribution of the RD normals in the ecliptic and a preference of
the TD normals perpendicular to the Parker spiral. However, Burlaga et al. [1977] also find
that most DDs (both TDs and RDs) have a normal inclined to the ecliptic plane by an angle
θ ≈ 30◦. Smith [1973b] finds that the orientation of RDs show no statistically significant
preference for any direction, i.e., the normals are randomly scattered.

Barnstorf [1980]; Lepping and Behannon [1986]; Söding [1999] compare the DD normals
to the local magnetic field. All three report essentially the same observation: Whereas the
RD normals tend to be aligned with the local magnetic field, the ecliptic component of the
TD normals tend to be perpendicular to the local field. The normals of both types of DD are
found to be close to the ecliptic plane. Whereas Lepping and Behannon [1986] and Söding
[1999] compute the local field only from the measurements within the DD transition zone for
each of the events, Barnstorf [1980] in addition uses an hourly average field value centred at
the DD, to exclude local effects. However, the results as described above remain unchanged.

Söding [1999] concludes that the distribution of the normals is not correlated with the macro-
scopic magnetic field (Parker spiral) in detail, but that it is essentially determined by the local
magnetic field. The RD normals being aligned with the local magnetic field are interpreted
by all three authors to confirm that RDs are associated with phase steepened Alfvén waves
propagating along the magnetic field.

These earlier observations are hampered by the fact that the normal estimates are based on
single-spacecraft methods. The DDs identified as RDs most likely have a large normal mag-
netic field component, because MVA performs poorly in these cases. We suggest that the
normals of the events being identified as field parallel propagating steepened Alfvén waves
are aligned with the magnetic field, because the superimposed fluctuations have a wave vector
parallel to B, not the discontinuity itself. Caution must be exercised also when interpreting
the distributions of B1×B2. This direction coincides with the DD normal only if it is a TD.

In the following we present our own results obtained from triangulation. In order to have a
reference, and for better comparison with the earlier results, we also present the distribution
of our MVA normals. As in the other single-spacecraft studies, we use (λ2/λ3)

L = 2 to
provide consistency.

The distributions of nφ and nθ derived from triangulation and MVA are shown in Figure 8.19.
As illustrated in Figure 4.2, θ is the angle between the normal and its projection in the ecliptic
plane (positive angles point northwards), and φ is the angle between the projection and the
Earth-Sun line (φ = 0◦ means that the ecliptic component of n points towards the Sun). We
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Figure 8.19: Distributions of the normals in space (left: φ, and right: θ). Only DD2003 is presented.
The horizontal line corresponds to a uniform distribution. The vertical line indicates φP.

choose the orientation of all normals such that they point in the sunward half space. Different
from the definition in section 4.2, the sign of φ is the same as the sign of the GSE y-component
and thus ranges from -90◦ to +90◦. Note that the Parker spiral angle is φP ≈−45◦ at 1 AU in
this representation.

Since the distributions are very similar for all sets5, we only show DD2003 as a representative
example. The distribution of nφ derived from triangulation (green) has a maximum at about
15◦. The corresponding distribution for the MVA normals (red) is quite similar, but it is
considerably broader.

Also plotted is the distribution of the average magnetic field within the transition zone of each
DD. Note that this distribution differs from the expected azimuthal field direction according
to the Parker spiral (φP ≈ −45◦). Several reasons can be responsible for this discrepancy.
First, the Parker angle is generally only visible on long term averages. On shorter time scales
(days, or weeks) the field direction varies. Second, the average fields within DDs may be
different from long term averages due to local effects associated with the DDs themselves.
Third, the maximum of the distribution being shifted by 30◦ from φP towards the GSE y-axis
can well be related to our selection process that accounts for foreshock activity. In section
6.4 we pointed out that certain field configuration cause Cluster to be within the foreshock
region. Particularly when the major semi-axis of the Cluster orbit is along the Earth-Sun
line, i.e., around March each year, an interplanetary magnetic field parallel to the GSE y-axis
yields longer intervals with Cluster in the undisturbed solar wind. Towards the end of each
solar wind period (around May) an IMF orientated almost perpendicular to φP is necessary to
find Cluster outside the foreshock region. Hence, the distribution of 〈B〉 is probably biased
by our foreshock selection, and thus probably also the distribution of n.

However, this possible bias does not affect the relation between the local magnetic field and
the preferred orientation of DDs. Figure 8.19 (left) shows that the triangulation normals tend
to be perpendicular to the local magnetic field in the ecliptic plane. This is the same result that
Barnstorf [1980]; Lepping and Behannon [1986]; Söding [1999] find for their TDs. Many of
our MVA normals show the same tendency. However, there is a subset of DDs for which
the MVA normals are parallel to the local field. These are the events classified as RDs.

5In particular the coronal hole set DD2003CH shows similar characteristics as the total set DD2003.
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In agreement with most previous studies, the normals are near the ecliptic in most cases,
regardless of the method used (right hand side of Figure 8.19).

A frequently used representation of the DD orientation in space is shown in Figure 8.20 for
DD2001 (left) and DD2003 (right). We generated these plots by determining the intersections
of the normal vectors placed at the origin of a unit sphere and the surface of that sphere. The
left hand side shows the calculated intersection point density integrated over θ as a function of
φ, i.e., the distribution in the ecliptic plane. The right hand side shows the density integrated
over φ as a function of θ, i.e., the distribution perpendicular to the ecliptic. The particular
sections in Figure 8.20 comprise an angle of 15◦ and the respective radius of each sector is
proportional to the density for that interval. The semicircle (dotted line) represents a uniform
distribution of normal vectors.

The distributions are quite similar for the two years. One difference is that θ tends to be
positive for the triangulation normals in 2001 and negative in 2003. However, in both years
θ is rather small, and we assume that this difference is likely a statistical effect. The distribu-
tions of θ for the MVA normals show the same tendency as the respective distributions of the
triangulation normals. However, the scatter around θ = 0◦ is stronger when MVA is applied.6

Also the direction perpendicular to the Earth-Sun line in the ecliptic plane is almost devoid of
normals. Only a few MVA normals point in that direction. Note that the triangulation-derived
distributions of nφ are almost the same in the two years. In agreement with Barnstorf [1980];
Lepping and Behannon [1986]; Söding [1999], the maximum is perpendicular to the ecliptic
component of the local magnetic field (see Figure 8.19). However, contradicting Burlaga
[1969a; 1971b]; Mariani et al. [1973]; Barnstorf [1980], the most probable azimuthal direc-
tion is not perpendicular to the Parker spiral, indicating that the local magnetic field is more
important than large scale properties of the IMF, as suggested earlier by Söding [1999].

Although broader, the distribution of the MVA normals in the ecliptic plane is similar to
that found using triangulation. However, there is one systematic difference between the two
methods which is particularly apparent in 2003: Whereas for almost no triangulation normal
φ = φP is observed, this direction is populated by a considerable number of normals when
MVA is used. This population consists of RDs in previous studies. Note that for the coronal
hole subset DD2003CH the number of these DDs is less significant (not shown), contradicting
the hypothesis of phase steepened Alfvén waves. In other respects, particularly regarding
triangulation, the distributions for DD2003CH are very similar to the distributions for DD2003.

In conclusion, statistically the distributions of n obtained from MVA and triangulation are
quite similar. However, for a subset of the DDs the MVA normals tend to be aligned with
the magnetic field in the ecliptic plane. This subsets consists of those DDs for which MVA
performs poorly.

The observations from earlier studies that the orientation of RDs is either uniformly dis-
tributed [Smith, 1973b] or tends to be aligned with the local magnetic field [Barnstorf, 1980;

6Note that the statistics are poor when θ is close to 90◦. Using MVA we find only one DD with θ > 82.5◦

in 2001 and one DD with θ < −82.5◦ in 2003. But since the surface of the unit sphere above 82.5◦ (or below
−82.5◦) is small, a large density is determined in the respective sections. Aside from these two events strongly
inclined normals according to the ecliptic plane are sparse.
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Figure 8.20: Spatial distribution of normal estimates derived from MVA (top) and triangulation
(bottom) in GSE coordinates. On the left the respective distributions in the ecliptic plane are shown
and on the right the distributions normal to the ecliptic plane. The results for DD2001 (left) and DD2003

(right) are shown.

Lepping and Behannon, 1986; Söding, 1999] very well confirms our conclusions in previous
sections. We suggest that the MVA normal estimates are highly inaccurate for those DDs
identified as RDs by means of the normal magnetic field component. This yields a random
distribution with a tendency to be aligned with the magnetic field, because the minimum vari-
ance direction of the superimposed fluctuations tends to be parallel to B (see section 8.3.5).
We do not believe that phase steepened Alfvén waves are the reason for the observed distri-
bution, as is generally assumed. If only well defined MVA normals (or triangulation normals)
are considered, this RD part of the distribution disappears, leading to a reduced spread of the
normals in space. The remaining distribution is comparable to that found for TDs (i.e., those
DDs for which MVA performs well) in previous studies.

In agreement with most previous studies we find that the normals tend to be in the ecliptic
plane.

We propose that the ‘true’ DD normals are near the ecliptic plane and tend to be perpendicular
to the local magnetic field in that plane. In the particular case of the DDs selected in this
thesis, this results in an orientation approximately radially away from the Sun. However, there
may be a bias due to the selection criteria accounting for the foreshock region. Therefore,
we suggest that the most likely azimuthal direction is perpendicular to the Parker spiral in
general.
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8.7 Discontinuity thickness

In this section we study the width of interplanetary discontinuities. By using the four Clus-
ter spacecraft, the thickness can be more accurately determined than in previous single-
spacecraft studies. We confirm earlier observations, in particular that the thinnest DDs found
have a width of a few proton gyro-radii.

Early observations already show that DDs are rather thin structures. For instance, Siscoe et al.
[1968] find that the time needed for the DDs to pass a spacecraft is generally less than 10 s
which corresponds to a width of few proton Larmor radii. Hence, the kinetics of the involved
particles are important.

Predictions from theory

Assuming that the plasma is collisionless over the small scales in the boundary layer and
that particles interact only with the magnetic and electric fields, Lemaire and Burlaga [1976]
solve the Vlasov’s equation and the Maxwell’s equations for stationary 1-D boundary layers.7

They study several boundary conditions that can be realised by TDs. Besides a change in the
field direction some discontinuities include a change in magnitude, others do not. Lemaire
and Burlaga [1976] find that two kinds of boundary layers are possible. In one the current
within the layer is carried by electrons, and in the other the current is carried by protons.
The thickness of the electron boundary layers would be on the order of a few electron Lar-
mor radii. However, Lemaire and Burlaga [1976] propose that the electron boundary layers
broaden and that the electron velocity distribution function reaches rapidly an equilibrium
state where it is nearly isotropic and where the electrons no longer carry the electric current.
They suggest that the electron boundary layers may be destroyed in a time interval less than
the transit time of the solar wind between the Sun and 1 AU.

In contrast, the proton boundary layers are found to be stable, and their thickness is always
on the order of a few proton Larmor radii, as one expects because the currents are due to
gyrating protons [Lemaire and Burlaga, 1976].

Hence, Lemaire and Burlaga [1976] propose that the thickness of DDs observed in the solar
wind is alway a few to several proton gyro-radii, and not as thin as several electron gyro-radii.

Complementary to the analytic approach, Cargill [1990]; Cargill and Eastman [1991] use
1-D hybrid simulations to compute the TD equilibrium structure. Assuming that electron
physics may not be important, they choose an ion kinetic description where the ions are
treated as simulation particles and the electrons as a massless fluid. The simulations are
started with an infinitesimally thin TD in pressure equilibrium, which is then allowed to
evolve in time. Imposing different plasma and field conditions on either side of the TDs,
Cargill [1990]; Cargill and Eastman [1991] find that the structure of a TD strongly depends
on the initial conditions. The final width of the TDs is between 2 and 5 thermal proton
gyro-radii, consistent with the analytic solutions from Lemaire and Burlaga [1976].

7Their work is an extension of the work of Sestero [1964] who considers only the case in which the magni-
tude of the magnetic field changes while the direction remains constant.
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Observations - transition time

In situ observations of the thickness of interplanetary discontinuities has been the subject of
a considerable amount of literature [Siscoe et al., 1968; Burlaga et al., 1977; Tsurutani and
Smith, 1979; Barnstorf, 1980; Lepping and Behannon, 1986; Söding, 1999]. It is generally
found that the transition time τ needed for the DDs to pass the spacecraft is less than 10 s in
most cases (see e.g. Siscoe et al. [1968]; Burlaga et al. [1977]; Tsurutani and Smith [1979];
Söding [1999]). For instance, Burlaga et al. [1977] find that 70% of the durations are less
than 10 s, and 98% are less than 15 s (for TDs). The relative number of DDs with transition
times longer than 10 s is found to decrease rapidly.

The thickness distributions depend strongly on details in the analysis. The criteria to select
DDs are not the same in all studies, and also the choice of the start and end time of the
discontinuities is rather subjective. Moreover, the available time resolution of the magnetic
field data plays an important role. If for instance the sampling rate is less than, say, 1 s−1,
the thinnest DDs can probably not be resolved. For these reasons the average thicknesses
observed vary.

By using high-resolution magnetic field measurements from Explorer 43 with a sampling
rate of 14 s−1 Burlaga et al. [1977] can resolve the structure of even the thinnest DDs in their
sample. On average they find a transition time of 5 s. In contrast, Söding [1999] finds τ = 15
s using IMP-8 data (time resolution = 1.28 s) and τ = 20 s using WIND data with a time
resolution of 3 s.

Although the sampling rate of the FGM instruments on board the Cluster spacecraft is higher
(22 s−1) than for the magnetometer on board Explorer 43 we find an average transition time
of ≈ 9 s. Figure 8.21 shows the distributions we obtain for the four sets DD2001, DD2002,
DD2003 and DD2003CH . The average and median values are indicated by the vertical lines. In
agreement with previous studies, the transition time is less than 10 s for most DDs. The DDs
in our sets are somewhat thicker than those found by Burlaga et al. [1977], and thinner than
those found by Söding [1999].

The distributions are quite similar in all four sets. However, there are more DDs with very
short transition times (less than 4 s) in 2001 (slow solar wind) than in the other sets where the
most likely value is 5 s.

Observations - thickness

In order to calculate the actual width d of the transition, besides the transition time τ, the
surface normal n and the DD velocity U relative to the spacecraft need to be known. The
thickness is then given by

d = (U ·n)τ (8.2)

When only a single spacecraft is available, U needs to be determined as U = Vsw +VA−Vs/c,
where Vsw is the local solar wind velocity, VA the propagation velocity of the DD relative to
the ambient plasma and Vs/c the spacecraft velocity. Therefore, the determination of d is
subject to a considerable amount of errors in single-spacecraft studies. First, n is usually
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Figure 8.21: Histograms of the discontinuity thickness in s. All DDs are considered. The vertical
lines indicate the average value (dotted line) and the median value (dashed line). From left to right:
Top: DD2001, DD2002, Bottom: DD2003, DD2003CH .

poorly determined due to the dependence on MVA. Second, the direction and magnitude
of propagation need to be computed. The direction of propagation is usually determined by
testing whether B and Vsw are correlated or anti-correlated. The magnitude of the propagation
velocity is set to zero for TDs and equals the Alfvén velocity VA for RDs. To compute VA, the
plasma density is needed (see equation 3.9), introducing further uncertainties. Moreover, all
or many of the RDs are likely to be EDs which, if at all, propagate extremely slow. Therefore,
previous estimates of the DD thickness need to be revisited.

Using the relative timings between the four Cluster spacecraft, n is determined more pre-
cisely, and we do not need to make assumptions regarding propagation, since U = U ·n is
calculated by triangulation. Figure 8.22 shows the distributions that we obtain for our four
sets. Again, the average and median values are shown. Note that the distributions are some-
what different for the four sets. Whereas almost half of all DDs in DD2001 (44%) are within
the first bin (1000 km) and the average thickness is 2773 km, the other sets, containing fast
solar wind streams, show a tendency towards thicker DDs. For instance, the average thick-
ness is almost 1.5 times larger in 2003 than in 2001 and only a small percentage of DDs is
thinner than 1000 km (6%). The maximum of the distributions moves even more towards a
larger thickness when only the coronal hole events are considered (DD2003CH ). These obser-
vations may suggest that the DDs are thicker in fast solar wind streams than in slow solar
wind. Note, however, that due to the higher flow velocity, n and U are less accurately de-
termined for the DDs in DD2003CH (see section 7.4). Because of the small separations, the
thickness is determined least accurately in 2002.
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Figure 8.22: Histograms of the discontinuity thickness in km. All DDs are considered. From left to
right: Top: DD2001, DD2002, Bottom: DD2003, DD2003CH .

In previous studies the distributions are often presented separately for RDs and TDs (see also
section 8.1). Since the population of the RDs is most likely a consequence of erroneous MVA
normals, we only compare our results to the TD distributions found previously. Average
values found for the TD thickness at 1 AU are: 1300 km (14 s−1) [Burlaga et al., 1977],
2450 km (4 s−1) [Barnstorf, 1980], 2640 km (25 s−1) [Lepping and Behannon, 1986] and
4001 km (0.78 s−1) [Söding, 1999]. The numbers in brackets denote the sampling rate used.
Apparently, Söding [1999] finds larger thicknesses than the other studies. This is probably
related to the lower sampling rate used in that work. Whereas the average thickness we
obtain for the set DD2001 compares well to those found by Barnstorf [1980] and Lepping
and Behannon [1986], the average thickness found in 2003 is almost the same Söding [1999]
finds using the IMP-8 data. This is surprising, because due to the high time resolution of the
Cluster FGM one would expect the widths to compare well with those found by the other
authors listed above. Thus, perhaps the deficiencies of single-spacecraft analysis cause an
underestimation of the DD thickness which is “compensated” by the low time resolution in
the case of Söding [1999].

In the light of the theoretical predictions presented at the beginning of this section the dis-
continuities thickness is often given in units of the thermal proton gyro-radius rL. Burlaga
et al. [1977] find that the thickness ranges from 1.5 rL to 82 rL and that on average d = 12 rL.
Hence, although the thickness distribution overlaps the thickness of the theoretical current
sheets [Lemaire and Burlaga, 1976; Cargill, 1990; Cargill and Eastman, 1991], the average
observed thickness is higher than that found theoretically.

It is also interesting to note that Barnstorf [1980]; Söding [1999] find that, contrary to the
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Figure 8.23: Same as Figure 8.22, but only in the range d = 0−1000 km. The bin width is 50 km.

theoretical prediction, the average thickness in terms of the thermal proton gyro-radius de-
creases as a function of solar distance. However, Lepping and Behannon [1986] find that d
in units of rL is constant between 0.46 and 1 AU.

In order to confirm the prediction that electron boundary layers are absent at 1 AU, one is
interested in very thin DDs. The thinnest DD found by Burlaga et al. [1977] has a width
of 1.5 thermal proton gyro-radii, confirming the theoretical result. However, because of the
large uncertainties associated with this single-spacecraft study, we revisit this issue making
use of the four Cluster spacecraft.

Figure 8.23 shows only the first bin (i.e., 0− 1000 km) of the respective distributions pre-
sented in Figure 8.22. The bin width is reduced to 50 km. Apparently, no DDs thinner than
200 km are observed. Particularly in 2001 the distribution drops rapidly at this value. We
point out that even these thinnest DDs can be fully resolved by the high-resolution FGM
data. Table 8.5 shows the transition time τ, the number of data points within the transition,
the thickness d in km, the local thermal proton gyro-radius rL and the thickness in units of
rL for the thinnest DD observed in each of the three periods of observation. The number of
data points indicates that practically we could resolve thinner DDs, even on the order of a few
electron gyro-radii (the expected width of electron boundary layers [Lemaire and Burlaga,
1976]). However, the thinnest DDs we observe are on the order of 2−4 rL, i.e., even thicker
than the thinnest boundary found by Burlaga et al. [1977]. Hence, our results confirm previ-
ous predictions and observations.

In summary, we find that the distribution of the DD thickness obtained from triangulation
compares quite well to those found in earlier single-spacecraft studies, although the DDs
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Table 8.5: Properties of the thinnest DD found in each period of observation.

Year τ [s] data points d [km] rL [km] d [rL]
2001 0.76 18 212.7 67.8 3.1
2002 0.71 17 228.0 63.4 3.6
2003 0.53 14 360.4 165.2 2.2

in 2003, where fast solar wind streams are prevailing, appear to be somewhat thicker than
previously assumed. For the theory of discontinuities it is of interest that no DDs as thin as a
few thermal electron gyro-radii are found.

8.8 Using plasma data to identify possible RDs

In this section we come back to the problem of classifying DDs into RDs and TDs. In sections
8.2-8.4 we have shown that |Bn|/Bmax is small for all DDs in our ensemble, and in chapter
9 we will demonstrate that indeed all events are consistent with being TDs. Since the only
certain indication for unambiguously identifying an RD is a magnetic field normal component
larger than its uncertainty would allow for a TD, our sample contains no clear RDs. However,
because most DDs also have a small change in magnitude |[B]|/Bmax across the boundary (see
Figure 8.2) and we cannot prove Bn = 0 exactly, it is still possible that the majority (or even
all) of the EDs are RDs with tiny magnetic field normal components. Since about 90% of all
events are identified as EDs, these somewhat special RDs could theoretically constitute the
major fraction of interplanetary discontinuities.

Besides Bn > 0 we have derived further necessary conditions for RDs (section 3.1). Using
these criteria, which requires plasma data, we seek to identify possible candidates that are
consistent with RDs (sections 8.8.4-8.8.7). In agreement with previous studies (e.g. Neuge-
bauer et al. [1984]), one of the conditions (the polarisation relation) is found not to be satis-
fied by the majority of DDs. Being aware that all of our DDs are consistent with TDs, this
result is discussed from a new perspective.

In addition to the criteria that can be applied using a single spacecraft, we are able to test
whether or not the DDs propagate relative to the ambient plasma (section 8.8.6). No indica-
tion for RDs are found this way.

In contrast to previous studies, the DDs that satisfy the necessary RD conditions are not found
predominantly in fast solar wind streams from coronal holes (section 8.8.7). This result is of
considerable interest for identifying possible generation mechanisms for RDs.

In the following two sections we specify the conditions to be tested and introduce the data
set. Before performing the tests we demonstrate that the anisotropies measured by the CIS
instrument aboard Cluster are unrealistically high, which complicates the analysis (section
8.8.3).
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8.8.1 Necessary conditions for RDs to be tested

We use the moments (density ρ, velocity V and temperature T ) calculated from the proton
distribution function measured by the CIS HIA instrument aboard Cl 1. The moments of the
3-D distributions have a time resolution of 4 s, i.e., the spin period of the satellite (see section
4.3.2). Note that the protons are treated as a single fluid with the moments calculated by
integration over the entire proton distribution. Often, however, the solar wind has two proton
beams: a slower, denser primary beam plus a faster, less dense secondary beam with less
energy flux [Feldman et al., 1973; Marsch et al., 1981]. Also note that we do not account
for contributions from alpha particles and electrons. A detailed study, also incorporating a
secondary proton beam and alpha particles, is done by Neugebauer et al. [1984]. They find
that the inclusion of alpha particles does not change the basic results.

The plasma moments are difficult to determine, and they are therefore subject to considerable
uncertainty. This is particularly true for the computation of the thermal anisotropy. As stated
in section 3.1 the degree of anisotropy is often given in terms of the firehose factor A:

A = 1−
(p‖− p⊥)µ0

B2

The subscripts ‖ and ⊥ refer to directions relative to the local magnetic field. Burlaga et al.
[1977] find that

√
A = 0.9± 0.1 in the solar wind. Therefore an isotropic plasma is often

assumed in related studies. Being aware of the experimental problems associated with the
determination of T‖ and T⊥, we also assume A = 1 in a first approach. The related results
can be used as a reference. In a second step we utilise the measured quantities T‖ and T⊥ to
determine A.

The necessary conditions for RDs to be tested in the following are summarised in Table 8.6
(see also section 3.1). Following Neugebauer et al. [1984], the polarisation relation (condi-
tion 2) is tested in two steps. In a first step the collinearity of [V] and [B/ρ] is tested (condition
2.1), and in a second step the magnitudes of [V] and [B/ρ] are compared (condition 2.2). For
the latter we define the ratios Riso

VB and RV B which are expected to equal unity for RDs.

For TDs the change in velocity and the change of the magnetic field vector are not necessarily
related. Also, the density (or ρA) can change arbitrarily across the boundary. Note, however,
that TDs can satisfy conditions 1 and 2, although this is not required according to MHD
theory. Therefore, it is important to point out that conditions 1 and 2 are necessary but not
sufficient conditions for RDs.

In order to test conditions 1 and 2, only one spacecraft is needed, and our results essentially
confirm previous findings (e.g. Neugebauer et al. [1984]).

Condition 3 states that RDs propagate with the Alfvén velocity. Since TDs are convected
structures that do not propagate, the right side of condition 3 must be zero for TDs. Note that
testing this condition is tractable, because the DD velocity U relative to the spacecraft array
is accessible due to our relative timing analysis. By using only data from a single spacecraft
U remains unknown, unless one makes assumptions regarding propagation. However, the
Alfvén velocity VA is typically 40 km/s in the solar wind near 1 AU. In addition, n is usually
almost perpendicular to B. Hence, one expects the right side of condition 3 to be very small
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Table 8.6: Necessary conditions for RDs to be tested.

Condition Isotropic (A = 1) Anisotropic (A from data)
1. [ρ] = 0 [ρA] = 0

2. [V] =±
(

1
µ0ρ

) 1
2

[B] [V] =±
(

ρA
µ0

) 1
2

[B/ρ]

2.1 [V] ‖ [B] [V] ‖ [B/ρ]

2.2 Riso
VB = (µ0ρ)

1
2
|[V]|
|[B]| = 1 RVB =

(
µ0

ρA

) 1
2 |[V]|
|[B/ρ]| = 1

3. (V−U) ·n =

(
1

µ0ρ

) 1
2

B ·n (V−U) ·n =

(
A

µ0ρ

) 1
2

B ·n

for possible RDs, making it difficult to distinguish between propagating and non-propagating
structures.

In section 8.2 we have noted that a small sub-group of the EDs is found for which the normal
magnetic field components are larger than for the DDs in the TD category which usually
have |Bn|/Bmax . 0.1 in 2003 and |Bn|/Bmax . 0.15 in 2001 (see the scatter diagram 8.2 for
DD2001 and DD2003). In the following sections we also seek to find out whether the DDs in
this sub-group are more likely to satisfy the RD conditions than the others. Therefore, we
split the group of EDs into those with |Bn|/Bmax ≤ 0.1 (0.15) and those with |Bn|/Bmax > 0.1
(0.15) in 2003 and (2001). The first sub-group will be referred to as ED∗ and the latter as
RD∗. Note, however, that the number of RD∗s is small. Of those DDs in DD2001 for which
plasma data are available only 11 fall into the RD∗ category (12%), and 28 DDs (15%) would
be classified as RD∗ in DD2003. Therefore, the statistics are probably too poor to support
any fundamental conclusions. Moreover, |Bn|/Bmax is still small for the RD∗s. According to
our error analysis they are consistent with TDs. Therefore, it is important not to confuse this
new category with the traditional RD category which was believed to contain clear RDs. For
these reasons the subdivision of the EDs into ED∗s and RD∗s is certainly of minor importance
and can be regarded as a desperate attempt to identify at least some DDs that are rotational
according to MHD theory.

8.8.2 Data coverage and selection of intervals

Since the data coverage of the CIS instrument is generally worse than that of the FGM instru-
ment, plasma data are not available for all DDs in our ensemble. For the following numbers
of events sufficient plasma information is available:

DD2001: 91 out of 129 DDs
DD2002: 32 out of 33 DDs
DD2003: 191 out of 204 DDs
DD2003CH : 83 out of 83 DDs
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Figure 8.24: Intervals to average plasma and field data over.

In order to test the conditions 1-3 listed in Table 8.6, it is necessary to know the plasma and
field properties on both sides of the DDs. Since we are interested in the state of the magneto-
plasma in the immediate vicinity of the events, the interval to average over should not be
too long and not too far away from the DD. On the other hand, however, caution must be
exercised not to include information from within the transition.

We select the intervals to average over as shown in Figure 8.24. The solid line represents a
DD in high-resolution FGM data centred at time zero. The start and end time, hr-start and
hr-end, of the DD are known from our prior analysis and coincide with the borders of the
interval used for MVA. Plasma data from the CIS instrument (4 s resolution) are marked by
the circles. We plotted them as if they would coincide with the FGM data. This is, of course,
only for the purpose to simplify the illustration. The first CIS record of the averaging interval
on side 2 (right) of the DD is taken from the interval [hr-end+5s, hr-end+9s], marked by the
bar named CIS-2-first. This choice definitively ensures that the averaged data do not contain
any information from within the transition. The moments on side 2 are then averaged over
this and the following 4 data points. Hence, the average is taken over 5 records (shaded
light grey in Figure 8.24) corresponding to a time interval of length 20 s. Since we need to
interrelate plasma and field data, the high-resolution magnetic field data must be averaged
over the same interval. Because the time tag of each CIS record is in the centre of the 4 s
measuring period, the interval over which we average the FGM data begins 2 s before the
time assigned to the first CIS record and ends 2 s after the time assigned to the last of the five
CIS records (dark grey in Figure 8.24). The corresponding intervals on side 1 (left) of the
DD are determined accordingly.

8.8.3 Thermal anisotropy

Before performing the tests for consistency with RDs, it is instructive to get an idea of the de-
gree of thermal anisotropy measured by the CIS instrument. Figure 8.25 shows distributions
of T‖/T⊥ measured just before and after the DDs (as described in the previous section) for all
four sets.

The reliability of these measurements may be tested by comparing T‖/T⊥ obtained from CIS
measurements to earlier long-time measurements. Using Vela 3 data, Hundhausen et al.
[1970] find generally smaller anisotropies. In particular, no such extreme values of T‖/T⊥ are
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Figure 8.25: Distributions of T‖/T⊥ measured in the vicinity of the DDs. From left to right: DD2001,
DD2002, DD2003. The histogram and the numbers plotted in red correspond to the set DD2003CH .

found as in the CIS data. Hundhausen et al. [1970] find that on average T‖/T⊥ = 1.9± 0.9,
a median value of 1.6 and a range of values from 1.1 to 3.4. Using Helios data between 0.9
and 1 AU, Schwenn [1990] finds T‖/T⊥ = 1.5 on average. A comparison with the average
and median values presented in Figure 8.25 shows that the anisotropies measured by CIS are
comparatively high. The best agreement with values from the literature is obtained in 2001.

We observe a tendency towards higher anisotropies with increasing solar wind speed. The
values of T‖/T⊥ are particularly high in 2003 where many high speed solar wind streams are
observed. Comparing anisotropies from DD2003 with those of DD2003CH shows that indeed
the highest anisotropies are found in the fast streams. Here the average value is more than
twice as large as the average value found by Schwenn [1990]. Note that the tendency of
increasing anisotropy with increasing solar wind speed also contradicts the long-time mea-
surements. Using data taken only for solar wind speeds V < 400 km/s, Schwenn [1990] finds
〈T‖/T⊥〉 = 1.7, and 〈T‖/T⊥〉 = 1.2 is found for V > 600 km/s. Hundhausen et al. [1970]
also find a decrease of anisotropy with increasing solar wind speed. In the light of these
observations, the extreme anisotropies found in the fast streams in 2003 appear even more
unrealistic.

It is difficult to say whether the high anisotropies observed by the CIS instrument (particularly
in 2003) are real or whether they are subject to large errors. We tend to believe that the latter
is true. Note, however, that comparison with the literature might be hampered by the fact
that the data shown in Figure 8.25 are all measured in the vicinity of DDs, and it is unclear
whether the discontinuities affect these average values. A better approach to test the quality
of the CIS measurements would certainly be to use all available solar wind data and directly
compare them to other satellites, as for instance ACE.

Note that the high anisotropies measured by the CIS instruments lead to many DDs that suffer
from the firehose instability (see section 3.1). According to equation 3.16, we use A > 0 as
a further criterion to identify RDs when T‖ and T⊥ are used to determine A. Consequently, a
large number events are removed from the list of possible RDs because of high anisotropies.
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8.8.4 Continuity of ρA

In the limit that contributions from alpha particles and electrons and the proton anisotropy
can be neglected, condition 1 can also be written as {n} = 1, where n is the proton number
density and {n}= larger of n1/n2, n2/n1.

Figure 8.26 shows the distributions of {n}. Apparently, n is continuous for almost all DDs.
The one DD with {n}= 1.6 in 2001 coincides with the only ND event that we find. This is
probably a weak shock. The coronal hole events do not differ from the other events.

Accounting for the large error associated with the determination of n, the values found for
{n} can be regarded as being consistent with {n} = 1. Note that the conservation of n is a
well established result (see e.g. Neugebauer et al. [1984]).

Following Neugebauer et al. [1984] we also present the distributions of {n} for the different
types of DDs found in 2001 and 2003 separately (middle and bottom part, respectively, of
Figure 8.26). Since we do not find any clear RDs, we split the group of EDs into RD∗s
and ED∗s as discussed above. No clear difference can be observed. However, it appears
as if the conservation of n is indeed better satisfied for the RD∗s than for the TDs and that
the distribution of the ED∗s resemble more that of the RD∗s than that of the TDs in 2003.
Neugebauer et al. [1984] find the same result. However, accounting for the poor statistics the
difference is negligible. Moreover, the conservation of n appears to be better satisfied for the
ED∗s than for the RD∗s in 2001.

We conclude that, in accordance with previous studies, condition 1 for the isotropic case is
satisfied for all DDs. Note that, although not required by MHD theory, n is also conserved
across TDs.

Figure 8.27 shows the distributions of {ρA}. In contrast to the isotropic approximation,
considerable jumps in ρA are found across the DDs. This is particularly apparent across
the coronal hole events where the abundance of RDs was assumed to be large according to
previous studies. No difference is found between the three groups TDs, RD∗s and ED∗s (not
shown). Since n is continuous, the large jumps of ρA correspond to jumps in the firehose
factor.

There are two possibilities to interpret the discontinuity of ρA observed for the majority of
events: (1) Most DDs do not satisfy condition 1 and, therefore, they are no RDs, and (2) the
measured anisotropies, which are particularly high in the vicinity of the coronal hole events,
are unrealistic. We tend to believe that (2) is the more likely interpretation. Note that, for
instance, Neugebauer et al. [1984] find distributions of ρA that are similar to the results for
the isotropic distribution, i.e., A is found to be rather continuous. Also note that according
to the CIS data, many DDs suffer from the firehose instability. For 29, 5 and 72 DDs A < 0
on at least one side of the DD in 2001, 2002 and 2003, respectively, and A < 0 for more than
half of the coronal holes events.
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Figure 8.26: Distributions of {n}. Top: All DDs are considered. From left to right: DD2001,
DD2002, DD2003. The distribution for DD2003CH is plotted in red. Middle: DD2001 separately for
RD∗s, ED∗s and TDs. Bottom: Same as middle panel for DD2003.
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8.8.5 Polarisation relation

In this section the polarisation relation is tested. Two well established results from previous
studies are confirmed: First, [V] and [B/ρ] are aligned for almost all DDs (although not
required for TDs). Second, RVB and Riso

VB are generally less than unity, i.e., this necessary
condition for RDs is mostly not satisfied.

Condition 2.1

We begin with condition 2.1, i.e., the collinearity of [V] and [B/ρ] required for RDs. Note
that for RDs propagating outward from the Sun, the minus (plus) sign applies in condition 2
when the interplanetary magnetic field points away from (toward) the Sun. We define ΘV B

to be the angle between [V] and [B/ρ], where the sign of [B/ρ] is reversed when the IMF
points toward the Sun. In this way ΘVB ≈ 180◦ for RDs propagating outward from the Sun.
Note, however, that the appropriate choice of sign is not always clear, especially when a
DD changes the sense of the field from inward to outward, or vice versa. Also note that the
accuracy of ΘV B decreases with decreasing |[V]|.

Figure 8.28 presents |[V]| versus ΘVB in a polar scatter diagram for all four sets separately,
and the corresponding percentage distributions of ΘVB are shown in Figure 8.29. It can be
seen that in most cases, apart from those where |[V]| is very small, [V] and [B/ρ] tend to be
either parallel or anti-parallel. The directions of [V] and [B/ρ] are (anti-)parallel within 30◦

for more than 90% of the events in 2002 and 2003, whereas deviations of ΘVB from 0◦ or
180◦ are more common in 2001. From Figure 8.28 it can be seen that generally |[V]| is larger
in 2002 and 2003 than in 2001 which might explain this difference. Apart from one TD in
2001 (|[V]| ≈ 90 km/s, ΘVB ≈ 140◦) there are no DDs with large |[V]| at angles which are not
close to 0◦ or 180◦. Note that besides this TD, no difference between TDs and EDs (ED∗s
plus RD∗s) is found. This is an interesting result, since according to MHD theory the angle
ΘVB is arbitrary across TDs. Also note that the only ND event in our sample (blue) deviates
from the other events.

There is a strong anisotropy, with many more DDs near 180◦ than near 0◦ which is more
accentuated in 2002 and 2003 than in 2001 (slow solar wind). Considering only the coronal
hole events a slightly stronger anisotropy is observed than for the total set DD2003, which
might be indicative for the solar wind type to be important in this regard.

The dependence on solar wind speed (particularly ΘVB being closer to 0◦ or 180◦ in fast
streams than in slow solar wind) has been found earlier [Solodyna et al., 1977]. However,
Neugebauer et al. [1984] suggests that this result is an artefact arising from the dependence of
the magnitude of [V] on solar wind speed combined with the inaccuracy of determining ΘV B

when |[V]| is small. Burlaga [1969b] finds that DDs with large |[V]| usually occur when V
is high, and Turner [1973] states that the relative number of times that |[V]| exceeds 25 km/s
is greater in high-speed streams. Neugebauer et al. [1984] also observe a strong correlation
between |[V]| and V .

According to Figures 8.28 and 8.29, condition 2.1 is satisfied by nearly all events, and most
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2001 2002

2003 2003CH

Figure 8.28: Polar scatter diagram of the change in velocity |[V]| versus the angle ΘVB between
[V] and [B/ρ]. For the sets DD2001 (upper left) and DD2003 (lower left) the types of DDs are colour
coded (red: TD, black: RD∗, green: ED∗ and blue: ND).
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Figure 8.29: Distribution of the angle ΘVB. From left to right: DD2001, DD2002 and DD2003. The
distribution for DD2003CH is plotted in red.

DDs are consistent with outward propagating RDs so far (at least in the isotropic limit).

Of particular interest is that the change in velocity and in the field direction are (anti-)correla-
ted also for the TDs. We point out that this result is well established, and several authors
contributed to this issue:

Neugebauer et al. [1984] suggest that the Alfvénic nature of TDs, in the sense that [V] is
(anti-)parallel to [B/ρ], could have its cause in the mechanisms responsible for the generation
of TDs close to the Sun, in Alfvénic changes perhaps having greater stability than other
changes and thus being more likely to survive to 1 AU. Another explanation could lie in
processes which alter the plasma conditions at the DD as it moves out from the Sun to 1 AU.
One possibility is that the observed Alfvénic condition may be generated by interplanetary
turbulence (Neugebauer et al. [1984] and references therein).
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Neugebauer [1985] finds that the alignment of [V] and [B/ρ] across TDs is independent of
the solar wind stream structure and that it occurs at all solar distances between 1 and 2.2 AU.
Neugebauer [1985] suggests that the alignment may be caused either by Alfvénic fluctuations
travelling through the plasma on the two sides of a TD or by surface waves on the TDs.
Since the level of Alfvénic fluctuations strongly depends on the solar wind stream structure
[Belcher and Davis Jr., 1971], and Neugebauer [1985] finds no correlation of the alignment
with stream structure, the first explanation appears unlikely. Based on the work by Hollweg
[1982] on surface waves in a cold plasma with [ρ] = 0 and [B] = 0, it can be shown that
in the limit that the amplitude of the surface wave is large compared to the underlying field
change of the discontinuity, [V] and [B] are aligned [Neugebauer, 1985]. Note that Horbury
et al. [2001b] suggest that also the misinterpretation of the minimum variance direction as
the discontinuity normal is caused by the surface waves proposed by Hollweg [1982] leading
to large apparent normal components in many cases (see section 8.3.5).

Surfaces at which one fluid flows past another can be subject to disruption by the Kelvin-
Helmholtz instability. Using the stability criterion derived by Sen [1963], Neugebauer et al.
[1986] find that TDs for which [V] and [B/ρ] are not aligned are unstable to the Kelvin-
Helmholtz instability. They conclude that the alignment of [V] and [B/ρ] probably results
from the destruction by the Kelvin-Helmholtz instability of TDs for which ΘVB is far away
from 0◦ or 180◦.

In contrast to the explanations given above, where it is assumed that the alignment of [V] and
[B/ρ] across TDs is real, other authors claim these DDs to be, in fact, RDs. For instance,
Solodyna et al. [1977] attribute all DDs with ΘVB close to 0◦ or 180◦ to RDs and the rest
of the DDs to TDs. de Keyser et al. [1998] suggest the Alfvénic nature observed for DDs
with large field magnitude changes and a small normal field component to be indicative for
these structures (conventionally identified as TDs) to be, in fact, RDs, i.e., phase-steepened
large-amplitude Alfvén waves [Tsurutani et al., 1994] that happen to propagate quite slowly
as their wave vector is nearly perpendicular to the magnetic field.

The alignment of [V] and [B/ρ] for all DDs is still a puzzle today. Moreover, condition 2.1
leads to no clear conclusion. If TDs are Alfvénic in nature, this condition cannot be used to
discern RDs and TDs. In any case, according to the alignment of [V] and [B/ρ] nearly all
DDs in our ensemble are consistent with RDs.

Condition 2.2

We now consider condition 2.2, addressing the relative magnitudes of [V] and [B/ρ]. We
begin with the isotropic limit (A = 1 per default). Figure 8.30 shows the distributions of Riso

VB.
In the upper panel all DDs in the four sets of DDs are considered. The middle and the bottom
panel present the distributions separately for the RD∗s, TDs and ED∗s found in 2001 (middle)
and 2003 (bottom).

Apparently, the theoretical value of Riso
VB = 1 expected for RDs in an isotropic plasma is not

observed for the majority of events. The magnitude of [V] is generally smaller than required
from MHD theory. Condition 2.2 appears to be better satisfied in 2002 and 2003 than in
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Figure 8.30: Distributions of Riso
VB. Top: All DDs are considered. From left to right: DD2001,

DD2002, DD2003. Middle: DD2001 separately for RD∗s, ED∗s and TDs. Bottom: Same as middle panel
for DD2003.

2001. Although the statistics are poor, the distributions obtained separately for the RD∗s,
TDs and ED∗s show some characteristic differences. The distributions for the TDs appear
much broader than those for the RD∗s, as one would expect from theory, because Riso

VB is
arbitrary for TDs. However, in contradiction to MHD theory, Riso

VB is not centred at unity
but at ≈ 0.5 in 2001 and at ≈ 0.75 in 2003. Hence, even those DDs that are more likely
RDs according to the normal magnetic field component do not satisfy condition 2.2. The
distributions of the ED∗s appear to be a mixture of the TD and the RD∗ distributions.

These observations coincide very well with earlier studies [Martin et al., 1973; Belcher and
Solodyna, 1975; Solodyna et al., 1977; Neugebauer et al., 1984; Söding, 1999]. For instance,
Solodyna et al. [1977] find 〈Riso

VB〉 = 0.6 using Pioneer 6 data and 〈Riso
VB〉 = 0.73 using data

from Mariner 5 for DDs with ΘVB ≥ 140◦.

Solodyna et al. [1977]; Söding [1999] find that 〈Riso
VB〉 is closer to unity in fast solar wind

streams than in slow solar wind. This is in agreement with our observation that 〈Riso
VB〉 is

larger in 2002 and 2003 than in 2001. Note, however, that Riso
V B is not closer to unity for the

coronal hole events than for the total set of DDs in DD2003. Therefore, we cannot confirm a
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clear association with solar wind speed. Neugebauer et al. [1984] find 〈Riso
VB〉= 0.59 for their

RDs.

We point out that this contradiction to MHD theory has been a major problem, because ac-
cording to the magnetic field normal component, derived from MVA, a considerable number
of RDs were found which were believed to be inconsistent with TDs. Therefore, the majority
of these events were inconsistent with both, RDs and TDs. Using the four Cluster spacecraft,
we now know that these large |Bn|/Bmax cases are an artefact caused by misinterpretation
of the minimum variance directions. Since according to triangulation all DDs are consistent
with TDs, we could argue that there is at most a small fraction of DDs that is consistent with
RDs, and that therefore the majority of events are, in fact, TDs. For instance, Riso

V B is in the
interval [0.8, 1.2] for only 2 DDs (2% of all DDs) in 20018 and for only 5 DD (16%) in
2002. The corresponding number is relatively large in 2003 (62 DD, i.e., 32%) when all DDs
are considered. Note that in contradiction to earlier theories this increased percentage is not
found to be clearly related to the coronal hole events. Only for 25% of these DDs Riso

VB is in
the interval [0.8, 1.2].

Neugebauer et al. [1984] find that the inclusion of the proton anisotropy in the calculation
does not change the result. Instead of 〈Riso

VB〉 = 0.59 they find 〈RVB〉 = 0.62, which is not
a significant improvement [Neugebauer et al., 1984]. In contrast, we find a considerable
improvement of the results in favour of RDs in all four sets. Figure 8.31 presents the distri-
butions we obtain for RVB, i.e., when using the thermal proton anisotropies measured by the
CIS instrument. Note that a considerable number of events (detailed in the respective plots)
is inconsistent with RDs, because they suffer from the firehose instability. However, for the
remaining events the inclusion of the anisotropy noticeably leads to more events with RVB in
the vicinity of unity. Whereas the difference to the isotropic limit is marginal in 2001, about
half of the events with A > 0 show the expected RD characteristic, i.e., RVB ≈ 1 in 2003.
Whereas the sharp distribution for the RD∗s is still centred below unity (consistent with ear-
lier works) in 2001, the majority of RD∗s indeed behave as expected for RDs from MHD
theory in 2003. Note, however, that the statistics are poor and that this result is in apparent
disagreement with previous observations [Neugebauer et al., 1984]. It may well be that the
agreement with RD theory observed for a large fraction of events in 2003 is caused by uncer-
tain anisotropies measured by the CIS instrument. We would like to remind the reader that
T‖ and T⊥ appear most unrealistic in the fast streams observed in 2003. Also note that the
anisotropy is even so high that RVB > 1 is observed in many cases.

Let us pursue this a little further. Using condition 2.2 one can calculate the anisotropy A that is
necessary to compensate the small magnitude of [V] observed in the isotropic approximation.
This should be on the order of the typical firehose factor near 1 AU:

√
A =

√
µ0

ρ
|[V]|
|[B/ρ]|

!≈ 0.9±0.1 (8.3)

Note that for [ρ] = 0 the right hand side is equal to Riso
VB. The upper panel of Figure 8.32

presents the distributions of
√

A obtained from equation 8.3. Apparently
√

A needs to be

8Note that one of these two DDs is the ND. With a large jump in density and field magnitude this event is
unlikely to be an RD.
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Figure 8.31: Same as Figure 8.30 for RVB.

rather small for condition 2.2 to be satisfied in most cases. On average a firehose factor of√
A ≈ 0.5 is needed in 2001 and

√
A≈ 0.7 in 2003. However, the measured firehose factors

are generally closer to unity, at least in 2001 and 2002 (middle panel of Figure 8.32). In
agreement with earlier investigations [Burlaga, 1971b; Söding, 1999],

√
A = 0.9± 0.1 in

most cases in these two years. The discrepancy between
√

A determined from equation 8.3
and

√
A measured by the CIS instrument, which is particularly apparent in 2001, leads to

RVB 6= 1 in most cases in DD2001. Surprisingly, the two values of
√

A coincide quite well in
2003, such that the measured firehose factor leads to a distribution of RV B which is centred
at unity (see Figure 8.31). The relatively high anisotropy measured in 2003 compensates the
small magnitude of [V].

The direct comparison of the two values (desired
√

A from the polarisation relation and di-
rectly measured

√
A) for each individual event (bottom part of Figure 8.32) demonstrates

the differences between the three sets DD2001, DD2002 and DD2003 more clearly. Whereas in
2001 the desired value of

√
A (black circles) is generally very small and the measured firehose

factor (red squares) is in the expected range, the two values of
√

A coincide very well in many
individual cases in 2003. We point out that the latter observation is in apparent contradiction
to previous results and may be due to measurement errors. Also note that the distribution of
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Figure 8.32: Firehose factor. Top: Calculated from condition 2.2 such that RVB = 1. Middle:
From thermal anisotropy measured by CIS. Bottom: direct comparison of the two values for each
individual event. From left to right: DD2001, DD2002 and DD2003. The vertical (top and middle) and

the horizontal lines (bottom) indicate the expected range of
√

A.

RVB being centred around unity in 2003 fallaciously indicates consistency with RDs, because
many DDs have A < 0, and are therefore not considered in the distribution.

Note that according to Neugebauer et al. [1984], besides the inclusion of anisotropy, the use
of a multi-stream model and adjustment for a possible offset in the density calibration of the
ISEE 3 instrument can diminish, but not eliminate, the discrepancy between observation and
MHD theory. After all these adjustments Neugebauer et al. [1984] are still left with 〈RVB〉< 1
for their RDs. Note that a similar discrepancy exists between the observed magnitudes of δV
and δB in Alfvén waves in the solar wind [Belcher and Davis Jr., 1971; Belcher and Solodyna,
1975; Goldstein et al., 1995]. It appears to be a general problem which has not been fully
understood, yet.

Since according to triangulation all DDs are consistent with TDs, we can argue that DDs
not satisfying condition 2.2 are not consistent with RDs and are therefore TDs. However,
some authors propose that there may exist mechanisms affecting the ratio RV B such that it
differs from the polarisation relation. For instance de Keyser et al. [1998] suggests that as the
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RD propagation speed decreases (small |Bn|/Bmax), particles need more time to drift across
the layer and can be affected by other phenomena, such as deviations from planar geometry
and diffusion due to micro-turbulence, resulting in a lower velocity jump magnitude than
predicted from condition 2.2.

In summary, condition 2.1 is satisfied by nearly all DDs in our set, and condition 2.2 is gen-
erally not satisfied. However, particularly in 2003 we identify some events that are consistent
with RDs according to conditions 1 and 2.

8.8.6 Propagation relative to the ambient plasma

The tests of conditions 1 and 2 performed in the previous sections require data from only a
single spacecraft. Some DDs could be identified that are consistent with RDs. In agreement
with previous studies, most of them are outward propagating. However, since according to
condition 2.1 also clear TDs have the characteristics of outward propagating RDs in most
cases, a definite assignment to RDs is not possible.

A direct measurement of the propagation velocity is possible only when at least four space-
craft are available. In that case the discontinuity velocity U relative to the spacecraft array
can be determined from triangulation. Together with the solar wind velocity V measured
by the CIS instrument, the propagation with respect to the ambient plasma is then given by
(V−U) ·n. In this section we seek to differentiate between propagating and non-propagating
structures by means of this quantity (condition 3).

Figure 8.33 demonstrates that this intention is complicated by small Alfvén velocities. Plotted
are the percentage distributions of the normal component of the Alfvén velocity measured
just after the DDs. For the vast majority of events VA ·n is less than 10 km/s, which is on the
order of the errors in V ·n and U . However, for some events VA ·n is larger than the error.
Therefore, at least some individual DDs may be identified that propagate at Alfvén speed.
Furthermore, we try to find a trend in the statistical data that might indicate propagation.

Figure 8.34 presents the relation between V ·n and U for four different sets of DDs, namely
DD2002, DD2001, DD2003 and the subset of DD2003 for which triangulation performs best
(from top to bottom). Hence, the accuracy of n and U determined from the relative timing
method increases from top to bottom. Note that on the left hand side of Figure 8.34 we
plot the solar wind velocity measured on both sides of the DDs separately. Since not much
difference between V ·n on the two sides is observed, we consider only V ·n measured after
the DDs in the probability distributions of (V−U) ·n on the right hand side of Figure 8.34
and in the reminder of this section.

The increasing accuracy from top to bottom is clearly reflected in the degree of agreement
between V ·n and U . The DD velocity U determined from triangulation is subject to huge
errors in 2002 where the spacecraft separations are small. The enormous discrepancies be-
tween V ·n and U cannot be related to propagation which is expected to be on the order of 10
km/s (see Figure 8.33). Therefore, the set DD2002 is of no use for our purpose here.

The DD velocity U is considerably better determined in 2001 where the spacecraft separa-
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Figure 8.33: Histograms of the normal component of the Alfvén velocity |VA ·n| measured after the
DDs in 2001 (left) and 2003 (right). The isotropic approximation (A = 1) is in red.

tions are intermediate (second panel in Figure 8.34). However, U is still far from the solar
wind speed in many cases. Note that the distribution is asymmetric with a few DDs having
extremely large values of U . This is an artifact caused by the triangulation method which will
be explained in chapter 9.

When the spacecraft separations are large (in 2003), U is determined much more precisely.
The width of the distribution is much smaller in the third panel than in the second panel of
Figure 8.34. The asymmetry is diminished, but still visible.

Note that, provided the errors in U and V · n are symmetric and normally distributed, one
would expect the distribution of (V−U) ·n to resemble a normal distribution centred at zero
when all DDs are simple convected structures (TDs). In fact, we find 〈(V−U) · n〉 ≈ 0 in
2003. However, a new kind of asymmetry becomes apparent. Comparing the probability
distribution of (V−U) ·n to the Gaussian-fit, which is centred at zero, one sees that the most
probable value of (V−U) ·n is not zero, but is shifted to a positive value. Apparently, DD
velocities 5 to 25 km/s below the flow speed are more likely than velocities exceeding the
proton flow speed. (Note that the bin width is 10 km/s.) This asymmetry is of considerable
interest since it is in the range of the Alfvén velocity. Hence, it may be related to propagation
with respect to the solar wind flow. Note that (V−U) ·n > 0 corresponds to inward propagat-
ing structures, contradicting the general belief that RDs propagate outward from the Sun (see
previous section). However, in chapter 9 we will show that the shifted maximum is caused by
an asymmetric error in U . Therefore, the asymmetry is probably not related to propagation,
but would be expected for convected structures.

In the bottom panel of Figure 8.34 only those DDs are considered for which the relative
timings between the spacecraft can be determined particularly well. For these DDs (for 85
of which also plasma data are available) n and U can be regarded as highly accurate. This
high precision leads to the data points of all events being very close to the solid diagonal line
plotted in the scatter diagram (left). For nearly all DDs (V−U) ·n is less than 45 km/s and
for 65% this quantity is even less than 15 km/s. The standard deviation is 16 km/s. Note that
this is on the order of the error of the proton velocity determination. Fränz [2004] estimates
an error of 2% in the x-component of V and 50% in the y- and z-components (in GSE
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Figure 8.34: Left: V ·n versus U. Data points corresponding to convected structures are expected
to lie on the solid line. DDs for which U differs from V · n by less than 50 km/s are found within
the first pair of dashed lines, and the second pair of dashed lines indicates a difference of 100 km/s.
Right: Corresponding probability distributions of (V−U) ·n. The dashed curve represents a fit to a
centred normal distribution. From top to bottom: DD2002, DD2001, DD2003 and the subset of DD2003

containing those DDs for which the relative timings can be determined best. Only DDs with P < 0.8
are considered.
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Figure 8.35: Consistency test for propagating RDs. The directly measured propagation and the
propagation expected for RDs from MHD theory coincide for the events in the upper left corner (in-
ward propagation) and for the events in the lower right corner (outward propagation). From left
to right: DD2003, DD2003 (good timings) and DD2003CH . Only those DDs are considered for which
P < 0.8. The colour code (only left and middle) indicates the type of DD.

coordinates). Since the normals of most DDs in our set (particularly in DD2003) are directed
nearly parallel to the Earth-Sun line (see section 8.6), the error of V ·n is on the order of 10
km/s when V = 500 km/s is assumed. Hence, the errors are on the order of the quantity that
we wish to measure.

Nevertheless, one could expect to observe at least a tendency for the measured propagation
direction to coincide with the expected direction obtained from the correlation between [V]

and [B/ρ], if the DDs were RDs. However, Figure 8.35 demonstrates that this is not the case.
Here (V−U) ·n is plotted against ΘVB. As noted previously, ΘVB = 180◦ corresponds to out-
ward propagating RDs. In that case U would be larger than V ·n and hence (V−U) ·n < 0.
Thus, outward propagating RDs would be consistently observed by both methods only for
DDs that are in the lower right corner of Figure 8.35. Accordingly, the upper left corner
corresponds to consistently identified inward propagating RDs. Apparently, no correlation
between the two methods to identify the direction of propagation can be found. On the left
hand side of Figure 8.35 all DDs in 2003 are considered, and only those DDs with well deter-
mined relative timings are plotted in the middle. However, no improvement of the correlation
is observed. The degree of correlation is also independent of the type of DD. The sign of
(V−U) · n is independent of ΘVB regardless of |[B]|/Bmax and |Bn|/Bmax. (The different
types are colour coded: green: ED∗s, black: RD∗s and red: TDs.) In particular, also the RD∗s
do not show a tendency toward consistency. Finally, the right hand side of Figure 8.35 shows
the subset of coronal hole events, DD2003CH . Again, no consistent propagation direction is
found.

In a final attempt to identify a propagating RD, we plot (V−U) · n against VA · n (Figure
8.36). Theoretically, TDs (red) should all lie at the origin, and RDs should be on the diagonal
line. Clearly, the error in U is too large to draw any conclusions. Even when only those DDs
are considered for which triangulation performs best (not shown), no correlation can be seen.
Some improvement is achieved, however, when A is not determined from CIS but is set to
unity (right). Note that the correlation between (V−U) · n and VA · n appears to be even
worse for the RD∗s than for the TDs and the ED∗s. This may indicate that also the magnetic
field normal component is inaccurately determined for these events.
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Figure 8.36: Directly observed magnitude of propagation |(V−U) ·n| versus the magnitude of the
Alfvén speed |VA ·n| for the set DD2003. On the left hand side VA is determined using the anisotropy
measured by CIS, and on the right VA is determined in the isotropic limit (A = 1). Only those DDs for
which P < 0.8 are considered.

It is also difficult to identify individual cases for which reasonable agreement between (V−
U) · n and VA · n can be determined. Of particular interest in this regard are DDs with a
relatively large Alfvén velocity on both sides. There is one ED∗ with a relatively large value
of VA ·n (34 km/s) for which (V−U) ·n (45 km/s) is close to VA ·n. However, by inspecting
the other side of this DD (in Figure 8.36 only the quantities after the DDs are shown), we find
VA ·n = 4 km/s and (V−U) ·n = 45 km/s. Since the flow velocity must equal the Alfvén
velocity on both sides of an RD in the DD rest frame, this one hopeful candidate must be
dropped also. Moreover, ΘVB = 87◦ for this event, i.e., it is one of the few cases for which
[V] and [B/ρ] are not aligned and can therefore not be an RD.

To conclude, we are not able to assign any DD to be rotational by means of propagation. The
results are rather consistent with convected TDs. However, since even in the best cases the
uncertainty in U is of the order of the Alfvén speed, no definite conclusion in favour of either
of the two types is possible.

8.8.7 Properties of possible RDs

In the previous sections we have tested whether the DDs in our ensemble satisfy several
necessary conditions for RDs (conditions 1-3 in Table 8.6). These tests were performed
separately. However, for a DD to be consistent with an RD all these necessary conditions
need to be satisfied simultaneously. In the following we aim to identify DDs that accomplish
this demand. In a second step we analyse the properties of this subset of possible RDs, in
order to deepen our understanding of their origin.

To do so it is necessary to establish quantitative criteria that select those DDs that satisfy
the necessary conditions. We point out that the thresholds we define in the following are
rather arbitrary numbers which are not based on a detailed error analysis. The resultant set of
DDs must therefore be regarded as a subset of the total ensemble which is more likely to be
consistent with RDs than the remaining DDs. It may well be that we over- or underestimate
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the number of possible RDs. Moreover we remind the reader that all of the selected events
can still be tangential.

We apply the following criteria:

C1: RVB ∈ [0.8,1.2] (A from CIS), Riso
V B ∈ [0.8,1.2] (A = 1)

C2: C1 + {nA}< 1.4 (A from CIS), {n}< 1.2 (A = 1)

C3: C2 + (ΘVB < 20◦) ∨ (ΘVB > 160◦)

C4: C3 + |[B]|/Bmax < 0.2

C5: C4 + ((V−U) ·n > 0 ∧ ΘV B < 90◦) ∨ ((V−U) ·n < 0∧ΘV B > 90◦)

C6: C5 + |(V−U) ·n−VA ·n|< 20 km/s

Note that we distinguish between the isotropic approximation (A = 1) and the case where
we determine A from the CIS data (A 6= 1 in general). The criterion C1 selects all DDs that
satisfy condition 2.2 from table 8.6. According to the previous sections the majority of events
fail this test. The remaining DDs need to additionally satisfy condition 1 (C2) and condition
2.1 from table 8.6 (C3). In the next step (C4) all DDs with large magnetic field magnitude
changes are sorted out. Finally, criteria C5 and C6 test whether for the remaining events also
the direction of propagation is determined consistently (C5) and whether the propagation
velocity determined from triangulation coincides with the Alfvén velocity (C6).

Table 8.7 presents the number of events remaining after each step. The results for the isotropic
approximation (A = 1) are shown on the left hand side, and the right hand side corresponds
to the case where we use the CIS data to determine A. Note that for testing the criterion C1
we use ρA measured immediately before the DDs. The upper row on the right side of Table
8.7 indicates the number of events for which A > 0 immediately before the DDs. Also note
that the events failing C2 in the anisotropic case also include those DDs for which A < 0 on
both sides of the transition layer.

Although many DDs suffer from the firehose instability, C1 is considerably more often sat-
isfied when A is determined from CIS than in the isotropic approximation in all three sets.
However, we point out that the value of A measured by the CIS instrument is questionable.

Apart from criterion C2 in the anisotropic case, the criteria C2-C4 are satisfied for almost
all events that are preselected by the criterion C1. It is particularly interesting that nearly all
events selected according to C3 have only a small change in magnetic field magnitude across
them (C4), i.e., they are all EDs. This means that C3 automatically rejects DDs which are
likely to be tangential according to |[B]|/Bmax.

Inspecting the number of possible RDs that remain after C4 is applied, a remarkable differ-
ence between the four sets of DDs is observed. Particularly in the isotropic approximation
(which we believe is more meaningful) apparently more possible RDs are identified in 2002
and 2003 than in 2001. After all, 59 events (31%) remain after step C4 in 2003, whereas only
1 DD (1%) remains in 2001. This difference and its possible relation to the prevailing solar
wind conditions will be discussed below.
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Table 8.7: Number (and percentage) of DDs satisfying the necessary RD-conditions.

A = 1 DD2001 DD2002 DD2003

total 91 32 191
C1 2 (2%) 5 (16%) 62 (32%)
C2 1 (1%) 5 (16%) 62 (32%)
C3 1 (1%) 5 (16%) 61 (32%)
C4 1 (1%) 5 (16%) 59 (31%)
C5 0 (0%) 4 (13%) 27 (14%)
C6 0 (0%) 0 (0%) 18 (9%)

A 6= 1 DD2001 DD2002 DD2003

A1 > 0 65 (71%) 28 (88%) 138 (72%)
C1 14 (15%) 14 (44%) 66 (35%)
C2 7 (8%) 11 (34%) 32 (17%)
C3 6 (7%) 11 (34%) 32 (17%)
C4 6 (7%) 11 (34%) 32 (17%)
C5 2 (2%) 9 (28%) 17 (9%)
C6 1 (1%) 1 (3%) 14 (7%)

According to the discussion in the previous section, the significance of the criteria C5 and
C6 is questionable. Particularly in 2002 and 2001 the uncertainty in the determination of
U is probably too large to draw any conclusion from these two criteria. Note that of those
events satisfying C4 about 80% are found to have a consistent propagation direction in 2002
(small separations), and about 50% satisfy this criterion (C5) in 2003. Because of the large
separations, the best results should be obtained in 2003. However, no correlation is found.
Since this may well be due to the error of U generally being larger than the Alfvén speed, we
attach no importance to criteria C5 and C6, and we define the DDs passing C4 as possible
RDs for the following discussion. We note only that a considerable number of events from
DD2003 (9% in the isotropic approximation) also survive C6.

Solar wind type

We now address the question why apparently many more DDs can be considered as possible
candidates for RDs in 2003 (and 2002) than in 2001. The most obvious difference between
these periods of observation is the presence of fast streams originating from coronal holes
on the Sun in 2002 and 2003 (see section 6.5). This may suggest that coronal hole streams
are indeed more likely to contain RDs than slow solar wind streams. We recall that earlier
observations (mainly based on the normal magnetic field component determined by MVA)
confirm this picture which is related to the idea of RDs being phase-steepened Alfvén waves
(see sections 3.2 and 3.3). Utilising the relative timings between the four Cluster spacecraft,
we have shown that according to |Bn|/Bmax no clear RD exists in these fast streams. Perhaps
the selection of possible RDs by means of criterion C4 leads to a preference for these events
to be in coronal hole streams which would confirm earlier observations and related theory at
least to some extent. However, the results presented in the previous sections already indicate
that this is not the case.

Assuming that the DDs satisfying criterion C4 are good candidates for possible RDs, we now
investigate whether RDs are indeed more abundant in coronal hole streams than in the slow
solar wind: Of the 59 DDs satisfying C4 in the isotropic limit in 2003, 39 are found in slow
solar wind and only 20 are found in coronal hole streams. Hence, 36% of the 108 DDs in slow
solar wind streams are possible candidates for RDs, whereas only 24% of the 83 coronal hole
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events satisfy C4. This means that the probability of finding an RD in solar wind originating
from coronal holes is even reduced.

When A is determined from the CIS data this trend is even more pronounced. In that case
(right side of Table 8.7) only 6 out of the 32 possible RDs are in coronal hole streams. Hence,
the percentage of RD candidates is 22% in the slow solar wind compared to only 7% in
coronal hole streams.

Note that in section 6.5 we classified 27 of the 83 coronal hole events as “unclear”, because
they might be affected by a CME or by stream-stream interaction regions. By removing these
ambiguous DDs from the coronal hole events and adding them to the group of slow solar
wind DDs, we get the following result: 21% of the remaining coronal hole group and 35% of
the other group are possible RDs in the isotropic approximation, and when A is determined
from CIS the corresponding percentages are 4% and 22%. Hence, the “unclear” events have
a similar percentage of possible RDs as the low speed DDs, and the percentage of possible
RDs is even smaller in the remaining coronal hole group.

We conclude that the assumed abundance of RDs in coronal hole streams can by no means
be confirmed by our analysis. In fact, our results suggest that the opposite is the case, i.e.,
the probability of finding an RD is even lowered in coronal hole streams. Together with the
|Bn|/Bmax analysis based on triangulation, it is questionable if RDs exist at all in the solar
wind at 1 AU. And if they were indeed present, then they would have a vanishing magnetic
field normal component. Moreover, possible RD candidates are not preferentially observed
in coronal hole streams. Putting these new results together, the well accepted hypothesis of
phase-steepening Alfvén waves as possible source for RDs appears at best questionable.

Since the coronal hole streams do not appear to be a plasma environment favouring RD
generation, the question arises whether we are able to identify another solar wind type which
is likely to contain RDs. Therefore, we mark all possible RDs as vertical lines in Figures
6.11 - 6.13 in section 6.5 (not shown) and analyse where most of these events can be found.
On a qualitative level it appears as if stream-stream interaction regions have an enhanced
probability of containing possible RDs. For instance, four of the six candidates found in
2001 (including the one found in the isotropic approximation) are found in the stream-stream
interaction region on doy 43 (see Figure 6.11). Several stream-stream interaction regions can
be identified in 2002 and 2003. Most of them comprise possible RDs.

In order to further pursue this analysis, we study the distributions of the proton velocity and
density in the vicinity of the RD candidates (not shown). We observe a slight enhancement of
the density and slightly decreased velocities in the vicinity of these events which is consistent
with the above hypothesis. However, the difference from the distributions of the other DDs
is small and probably not significant.

Note that because of the rather poor solar wind coverage, this type of analysis is difficult
using the Cluster spacecraft. Knowing that MVA is unreliable and that |Bn|/Bmax is generally
small, only a single spacecraft is needed to test C4. Therefore, one could use a measuring
platform permanently operating in the solar wind, such as ACE, to pursue this analysis. Not
being misguided by fallacious MVA normals one could then use the criteria applied in this
section (C4) to identify possible RD candidates, just as presented above. With a huge sample
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of candidates one could then systematically investigate which type of solar wind is most
likely to contain RDs.

We point out that recent hybrid simulations also identify stream-stream interaction regions as
plasma regions where RD generation appears likely [Lyu, 2003]. Therefore, it appears to be
worthwhile to carry out the experiment suggested above.

Statistical properties

In the following we summarise further characteristics of the DDs identified as possible RDs.
Most of the parameters we consider can be obtained from a single spacecraft. Hence, this
analysis could be repeated with a larger sample, for instance, acquired by the ACE spacecraft.

Essentially, the subset of DDs selected according to C4 does not differ significantly from the
other DDs. For instance, the distributions of the discontinuity thickness and the spreading
angle ω for the RD candidates are very similar to those found for the other DDs. Also, the
average and median values are nearly the same. The eigenvalue ratios λ2/λ3 of the possible
RDs appear to be somewhat larger than the values we usually find. This is an interesting
result, because it suggests that the assumption of one-dimensionality is not less justified for
the DDs satisfying C4. This result also has some relevance for our analysis presented in
section 8.3.2, since it demonstrates that increasing the lower limit (λ2/λ3)

L does not sort
out possible RDs. Finally, we examine the magnetic field normal components. The finding
that |Bn|/Bmax determined by MVA is the same as for the DDs not satisfying C4 (in fact,
|Bn|/Bmax appears to be even slightly smaller for the possible RDs) confirms that the large
values of |Bn|/Bmax determined by MVA do not justify for considering the corresponding
DDs as RDs. Using the triangulation normals to determine |Bn|/Bmax, we find a similar
result. In particular, no dominance of RD∗s (i.e., EDs with |Bn|/Bmax > 0.15 in 2001 and
EDs with |Bn|/Bmax > 0.1 in 2003) can be found in the sample of possible RDs according to
criterion C4.

To conclude, the only definite indication for an RD is a magnetic field normal component that
is larger than its uncertainty would allow for a TD. None of the DDs in our entire ensemble
satisfies this condition. However, there are some DDs that satisfy several necessary RD
conditions simultaneously (see Table 8.7). This sample can be regarded as being consistent
with RDs. Therefore, we cannot exclude the possibility that there are some RDs with small
values of |Bn|/Bmax in the solar wind at 1 AU. However, the DDs in this sample show no
specific characteristics. Since RDs and TDs are two distinct types of MHD discontinuities
one might expect to observe differences. Hence, it may well be that the criteria defined in
this section are only incidentally satisfied, and that the selected DDs are in fact TDs.

In contradiction to earlier observations (e.g. Neugebauer and Alexander [1991]), possible
RDs are more likely to be found in stream-stream interaction regions than in fast solar wind
streams originating from coronal holes on the Sun. It is of considerable interest to relate this
observation to the theory of possible generation processes for RDs. The established line of
argument is to relate the abundance of non-linear Alfvén waves to the presently belief that
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there is an abundance of RDs in coronal hole streams. Hence, the connection between these
two solar wind features appeared obvious. In the light of our new observational results, this
argumentation is hard to maintain.

On the other hand, the agreement of our observations with the recent hybrid simulations that
identify the plasma conditions in stream-stream interaction regions to favour RD generation
[Lyu, 2003] appears promising. On the theoretical side, further simulations may be helpful to
understand the exact generation mechanisms in these plasma regions. Particularly an expla-
nation is needed for possible RDs always having a small magnetic field normal component.
Perhaps the idea of phase-steepening is still maintainable in the sense that stream-stream in-
teraction regions provide exactly the environment needed to produce the kind of possible RDs
that we observe.

To verify the observational results acquired in this section we suggest an extended investiga-
tion of interplanetary discontinuities. Since our diligent analysis presented in other parts of
this work leaves no doubt that |Bn|/Bmax is generally small, the suggested investigation can
take this result for granted. Hence, C4 can be tested using only a single satellite which perma-
nently operates in the solar wind. With a huge sample of DDs the analysis presented in this
section can than be repeated to verify the assumption of stream-stream interaction regions as
possible source regions for RDs.

As a final comment, we may add that Neugebauer et al. [1984] find that according to condi-
tions 1 and 2, their EDs have more attributes of their RDs than of their TDs. Among others,
this lead Neugebauer et al. [1984] to conclude that the majority of EDs are, in fact, RDs.
However, since their classification of RDs is based on unreliable MVA estimates, all of these
events are most likely EDs, according to our new multi-spacecraft results. Hence, it is not
surprising that the EDs found in Neugebauer et al. [1984] have similar characteristics as their
RDs. Therefore, the similarities of their EDs with their RDs can not be used to argue that
EDs are mostly RDs.



CHAPTER 9

ERROR ANALYSIS OF THE TRIANGULATION

METHOD

Normals obtained by the triangulation method (section 7.4) have an imprecision that is mostly
due to uncertainty in the timing data. This chapter discusses the relationship between the
error δt of the timing data and the errors dn and dU of the normal n and the velocity U of the
discontinuity relative to the spacecraft array. In particular, it analyses the strong dependence
of this relationship on external factors, such as the geometry of the spacecraft configuration
and the absolute value of U .

This discussion is imperative for the far-reaching radical results presented in chapter 8. It
provides the justification for our claim that the triangulation technique yields reliable normal
estimates, in contrast to the MVA technique.

Our method to estimate absolute errors of n and U consists in an analysis of the spread of n
and U if the relative timings vary within an interval ti j±δt (section 9.1). In particular, we will
show that a symmetric error distribution within that interval yields anisotropic distributions
of errors dn and dU . This affords a simple explanation for the deviations of the distribution
of (V ·n−U ) from the Gaussian distribution (see section 8.8.6).
In order to be aware of circumstances that are likely to produce large uncertainties, it is
important to know the principle factors determining the precision of triangulation. Section
9.2 discusses how dn and dU are affected by the absolute value of U , by the geometry factor P
of the spacecraft configuration and by the orientation of the spacecraft configuration. Among
others, we demonstrate that Pc = 0.8 is a reasonable upper limit for the planarity.
Section 9.3 gives numerical values for the errors of the datasets for 2001, 2002 and 2003.
Finally, section 9.4 presents the most important conclusion of this chapter: As a consequence
of this error analysis, we can confidently claim consistency of the data with vanishing normal
component of the magnetic field (|Bn|/Bmax = 0) and with vanishing propagation (U = V ·n).
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9.1 Method and symmetry considerations

This section gives an analysis of the error of the triangulation method (section 7.4). The
uncertainty stems mostly from the uncertainty in the relative timings ti j between the space-
craft, as the only other input parameter, the satellite positions, is known with much higher
precision. The uncertainty in n, corresponding to the imprecision δt in the relative timings, is
best visualised as a generally deformed asymmetric cone around the normal n. The shape of
this cone is analysed by sampling the interval ti j±δt of the relative timings between the four
spacecraft (by 11 sample points each). We will see that the error cone often degenerates to a
nearly flat error fan. This anisotropy and the asymmetry of the error of the relative velocity
U are discussed.

Recall the method to determine relative timings (e.g., Figure 7.3): The data curves for the
magnetic field at the different satellites j are, roughly, piece-wise constant with a smoothed
jump at t j when spacecraft j passes through the discontinuity. The relative timings t1 j = t j−t1
( j = 2,3,4) are obtained by manual alignment of the curves of Cl j and the reference curve
of Cl 1.

The determination of t1 j has an ambiguity that is due to differences in shape of the curves
which mostly stems from superposed fluctuations. We quantify this uncertainty in the follow-
ing way: Instead of the best alignment value ti j, we identify an interval of values Tj = [t−, t+]

of all those values that yield acceptable alignment. The average is ti j = (t−+ t+)/2 and the
uncertainty is δt = (t+− t−)/2. This uncertainty depends on various parameters. Most im-
portant is the level of background fluctuations superposed to the discontinuity. In particular,
δt depends strongly on the spacecraft separations, since with increasing distance the correla-
tion between the individual time series decreases. For the data sets analysed in the previous
chapters we find that δt ≈ 0.1ti j on average. In contrast, the relative error in the satellite
distances, approximately 1% (see chapter 5), is one order of magnitude lower. It is therefore
neglected in the following discussion.

The corresponding uncertainties of the obtained normal vectors n and of the velocities U
are now evaluated by the following process: Each of the three intervals T j associated with
an event is sampled by 11 equidistant points. This yields N = 113 = 1331 combinations of
acceptable timing values t̂1 = (t̂12, t̂13, t̂14) for which normal vectors n̂i and velocities Ûi are
calculated by the triangulation method (equation 7.10).

Plotted as unit vectors from the same origin, these N normal vectors n̂i form a deformed
asymmetric cone. The spread of the cone is an indication of the error of n. Any conceivable
combination of reasonable timing values yields a normal vector contained within the error
fan. Similarly, the spread of the solutions Ûi yields the error of U .

Instead of the uniform distribution of the t̂1 j, that we use, a Gaussian distribution in Tj might
be more appropriate, to account for the t̂1 j close to t1 j being more likely correct. A Monte
Carlo calculation then yields the statistical error. This definition yields a smaller error than
ours. What we get is the maximum deviation from n and U possible within δt. So, e.g.,
when we ask whether there is any possible solution n̂i within δt that is perpendicular to the
magnetic field (i.e., the associated DD is consistent with a TD) our treatment is advantageous.
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Figure 9.1: Error cone of the triangulation normal for two examples. Shown are the measured
normal n (black) and the 1330 n̂i for δt = 0.2 s (red). Also shown are Rc (green) and Ra (blue), and
projections onto the coordinate planes. The coordinate system is GSE. The two examples are extremes
of the orientation of the spacecraft configuration relative to the DD surface: n and Rc are almost
aligned for ub 2001 051 123955 (left) and almost perpendicular for ub 2001 077 060017 (right).
The angles between n and Rc are ∠(n,Rc) = 4.6◦ and ∠(n,Rc) = 86.0◦, respectively, and the angles
between n and the direction of elongation are ∠(n,Ra) = 86.6◦ and 47.3◦, respectively.

This, of course, only holds within the limitation of the limited number of N different results.
We cannot cover the whole continuum of possible solutions within the time uncertainty. In
fact, instead of using a fixed number N, it might be better to keep the time step between two
consecutive t̂1 j constant, in order to treat various values of δt equally. Not doing so might
favour larger errors for small δt as compared to larger δt, because the density of solutions is
higher. However, for small ranges of δt the effect is negligible. The density of solutions is
rather high even for the largest δt that we use.

Figure 9.1 shows the scatter of the n̂i around n for two examples with δt = 0.2 s (a typical
value in 2001). The normals n̂i in the diagram are too close to be resolved individually.
These two examples1 are particularly instructive because of the orientation of the spacecraft
configuration relative to the normal: The discontinuity normal n and the normal of planarity
Rc of the volumetric ellipsoid are nearly aligned for ub 2001 051 123955 (left) and nearly
perpendicular for ub 2001 077 060017 (right).2

In the first case, the normals n̂i form a nearly circular cone, the error is isotropic. In the
second case, the error cone degenerates to an error fan expanding in the plane defined by n
and Rc. The projections of the cone onto the coordinate planes in Figure 9.1 elucidate this
degeneracy. The anisotropy is caused by the fact that the error is largest in the direction of Rc

(see section 7.4.2).

1ub yyyy ddd hhmmss is an identification code that we use, where yyyy is the year, ddd the day of year and
hhmmss hour, minute and second of observation of the event.

2See chapter 5 for the definitions of Ra, Rb, Rc and planarity P.
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Figure 9.2: Left: Distribution of the angle between the measured normal n and the 1330 normals
n̂i, and (right) distribution of the 1331 velocities Ûi for the event ub 2001 051 123955 (left of Figure
9.1). The vertical line indicates the measured velocity U.

To characterise the deviations more quantitatively, we now discuss the distributions of the
normal and speed deviations. Figure 9.2 shows distributions of the deviations of n̂i from n
and of the associated Ûi for ub 2001 051 123955. These statistics plus the distribution of
the angle between all pairs of n̂i are calculated for each DD. We define the following scalar
quantities to characterise the distributions:

Dn := max(∠(n̂i, n̂ j)), (9.1)

dn := max(∠(n̂i,n)), (9.2)

DU := Ûmax−Ûmin, (9.3)

dU := max(|Ûi−U |), (9.4)

with i, j = 1, . . . ,1331 and Ûmax(min) = max(Ûi) (min(Ûi)). Thus, Dn and DU are the total
spread of possible solutions within δt, and dn and dU are the largest deviation from the
measured parameters n and U . For ub 2001 051 123955 we find Dn = 15.9◦. For a perfectly
isotropic error this would be the apex angle of the error cone. In that case, dn would be
exactly half of Dn. However, we find dn = 9.3◦ (see also Figure 9.2).

To account for incidental large deviations we also calculate 95% confidence intervals. The
spreads within these intervals are denoted by the appendix ‘95’. For instance, 95% of the
angles between n and n̂i are less than dn95.

Asymmetry of the error of U

The distribution of the Ûi is clearly not symmetric (Figure 9.2). The left side (low velocities)
is steeper than the right side (high velocities). Compared to U , the maximum of the distribu-
tion is slightly shifted towards lower velocities. From there the distribution slowly decreases
towards high values of Ûi. The asymmetry of the distribution is characteristic for most DDs.
It is a consequence of U ∝ 1/ti j (see equation 7.10). The t̂i j are distributed symmetrically
around ti j. The t̂i j with |t̂i j| > |ti j| are mapped on velocities Ûi < U in a narrow codomain
as compared to the codomain Ûi > U of the t̂i j with |t̂i j| < |ti j|. The Ûi > U can be large,
especially for t̂i j close to zero.
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This asymmetry explains the observed asymmetric distribution of (V ·n−U) (Figure 8.34):
Let t̃i j be the true time difference between Cl i and Cl j yielding the true velocity Ũ . The
unknown value of t̃i j is assumed to be in Tj. Furthermore, it is plausible to assume that the
probability distribution of the ti j of the events in our ensemble is centred at t̃i j. Because
of U ∝ 1/ti j, the distribution of the measured velocities U around the true velocities Ũ is
asymmetric, following the same arguments as above. This means that the most probable
velocity that we obtain from triangulation is slightly below the true velocity. Large deviations
are associated with measured velocities larger than the true velocity. The latter are, however,
less probable. Therefore, just by means of these uncertainty considerations one expects the
distribution of (Ũ −U ) to be asymmetric, as is qualitatively observed for the distribution of
(V ·n−U) in Figure 8.34. (Note that Ũ = V ·n for non-propagating structures).

In particular, the abundance of DDs with (V · n−U) ∈ [0,20] as compared to the normal
distribution (see the distribution for 2003 in Figure 8.34) caught our attention, since these
DDs could also be interpreted as RDs propagating toward the Sun at Alfvén speed. However,
propagation is not necessary in order to explain the observed feature of the (V ·n−U) dis-
tribution. Simply convected structures, as TDs, can produce the distribution shown in Figure
8.34, provided that the discrepancies are within the error bars. Also note that extreme dif-
ferences between V ·n and U are predominantly observed for negative values of (V ·n−U ),
i.e. large U , in Figure 8.34, which is also in agreement with our expectations.

Anisotropy of the error cone of n

a

ni

Rc

R

n

Figure 9.3: Illustration of
the “error fan” when Ra, Rc

and n are perpendicular to
each other.

As stated above, the distribution of the n̂i is anisotropic for the
example ub 2001 077 060017 (Figure 9.1). In the following
we illustrate by statistical means that this observation is valid
in general whenever the spacecraft configuration is anisotropic.
Furthermore, we argue that this anisotropy does not introduce a
bias to the measured DD normals.

The error cone being degenerated to a flat fan expanding in the
plane spaned by n and Rc is equivalent to (n× n̂i)⊥ Rc ∀i, i.e.,
the volume of the parallelepiped spaned by the vectors n, n̂i and
Rc is zero: Sx := (n× n̂i) ·Rx = 0 ∀i (x = c). This is illustrated
in Figure 9.3. Since the fan is not totally flat and Ra and Rc are
generally not perpendicular to n, in reality, Sc = 0 is certainly
not strictly to expect. However, Figure 9.4 shows that indeed
〈Sc〉< 〈Sa〉. Especially in 2001, 〈Sc〉 predominantly takes small
values, whereas 〈Sa〉 is rather uniformly distributed, as expected.

These features are less apparent in 2003. This is because the spacecraft configuration in 2003
often resembles an almost regular tetrahedron, e.g., P < 0.34 for 139 events (see chapter 5).
Therefore, the effect of anisotropic configurations on the error is reduced in 2003. Neverthe-
less, on average 〈Sa〉 is more than twice as large as 〈Sc〉. The distributions of 〈Sa〉 and 〈Sc〉
for the set of DDs in 2002 is similar to the distributions in 2001 (not shown).
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Figure 9.5: Histograms of ∠(n,Rc) (solid line) and ∠(n,Ra) (dashed line) for 2001 (left) and 2003
(right).

Another reason for the value of 〈Sc〉 being smaller than 〈Sa〉 could also be that ∠(n,Rc) is
possibly smaller than ∠(n,Ra). Figure 9.5 shows that this is indeed the case in 2001: The
DD normals tend to be closer to Rc than to Ra. However, the distributions of ∠(n,Ra) and
∠(n,Rc) do not differ significantly in 2003. Therefore, 〈Sc〉 < 〈Sa〉 is, in fact, due to the
anisotropy of the error.

It is important to point out that the anisotropic error does not introduce a bias for the calcu-
lation of n. Whereas the most likely angle between n and Rc is around 30◦ in 2001, n and
Rc tend to be more perpendicular to each other in 2003 (see Figure 9.5). This suggests that
there is no mechanism systematically falsifying the normal calculation yielding directions
ruled by the orientation of the spacecraft array. Instead, the DD normals are predominantly
oriented along the Earth-Sun line (see section 8.6), regardless of the tetrahedron orientation.
Therefore, the observed distributions of ∠(n,Rc) simply reflect the orientation of the space-
craft configuration (shown in Figure 5.9), which for the vast majority of events is such that
Rc is scattered around the Earth-Sun line within 30◦ in 2001, whereas Rc is predominantly
perpendicular to this direction in 2003.
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We will discuss further implications of the DD orientation relative to the spacecraft configu-
ration in the next section.

9.2 Parameters affecting the error - avoiding large errors

In the last section we have demonstrated how the empirical uncertainty δt for the timing data
yields error estimates for the normal n and the DD velocity U . This section discusses the
parameters affecting the error. Two results are of particular interest: First, particularly error-
prone spacecraft constellations are identified. The P > 0.8 cut-off criterion for the minimal
planarity can be formulated to eliminate such events from our statistics. Second, the error of
the triangulation method increases with increasing solar wind speed V .

The error is different for each DD. Principal factors are: (1) the tetrahedral geometry, (2)
the orientation of the configuration relative to n and (3) the DD velocity U relative to the
spacecraft array (see also section 7.4.2). (1) includes both, the characteristic size L and the
shape of the tetrahedra. Since the configurations we use are squashed rather than elongated
(see chapter 5), the planarity P is an essential parameter determining the accuracy of the
triangulation method in this work. The characteristic tetrahedra sizes are discussed in chapter
5. They are different for each year of observation, largest in 2003, intermediate in 2001 and
smallest in 2002. The different impacts of the above factors on the error will be discussed in
this section. The aim is to identify circumstances likely to produce large errors and to avoid
these if indicated.

Uncertainties of the relative timings - influence of the tetrahedra size

The only uncertain quantities that go into the calculation are the relative timings ti j (assuming
the relative spacecraft positions to be well known). Therefore, besides the above parameters,
the choice of δt is essential.

Generally, the correlation between the four time series decreases, and thus δt increases, with
increasing separation between the spacecraft. In addition, however, δt inherently depends on
the actually observed field signature of the particular DD. For some DDs the background field
is very quiet. In these cases δt is small. Other DDs are embedded in a strongly fluctuating
field. These superposed fluctuations complicate the determination of the ti j and thus yield
large uncertainties. Also the thickness and the spreading angle contribute to the accuracy of
the ti j.

The experience in manual alignment of the four time series shows that an interval Iδt =

[δtmin,δtmax] can be estimated such that δt ∈ Iδt for the majority of events. Since the cor-
relation between the four time series depends on the spacecraft separations, Iδt is different for
each period of observation. We estimate Iδt = [0.03 s, 0.05 s] in 2002, Iδt = [0.05 s, 0.2 s] in
2001 and Iδt = [0.1 s, 0.4 s] in 2003. Note that δt can be outside Iδt for individual events.

Also note that finding reasonable estimates is most difficult in 2002 where the timing uncer-
tainties are generally small. The δt we estimate for the DDs in 2002 are on the same order of
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Figure 9.6: Histograms of the time differences between the spacecraft. All 6 pairs of spacecraft are
considered. From left to right: 2003, 2001, 2002. The minimum value, the maximum value and the
average value of |ti j| are shown.

magnitude as the sampling rate of the magnetic field data (22 vectors/second, i.e., ∆t ≈ 0.045
s). In principle, interpolation by eye allows for δt < ∆t. However, there are of course limita-
tions for δt. Therefore, the ratio δt/|ti j|, mainly determining the size of the error, is largest in
2002, yielding large errors.

Figure 9.6 shows histograms of the relative timings ti j for each year. According to the various
spacecraft separations these values are clearly distinct in the three years. The respective
intervals Iδt are located within the first bin of the histogram in each year. The average values
〈|ti j|〉 are also shown. According to the empirically determined intervals Iδt , the ratio δt/〈|ti j|〉
ranges between 2% and 8% in 2003, between 4% and 16% in 2001 and between 25% and 42%
in 2002. Note that the uncertainty in evaluating the relative timings increases less than linearly
with the separation distances for the range of separations that we consider. Therefore, for
the spacecraft separations considered here, the accuracy generally increases with increasing
tetrahedra size (see also section 7.4.2).

Error as a function of the DD velocity U relative to the spacecraft array

In order to study the error as a function of U , it is advantageous to use DD2001 or DD2002,
because the planarity is similar for all DDs in these sets, in contrast to DD2003 (see chapter
5). Figure 9.7 shows dU , dU/U and dn versus U for DD2001. In agreement with the ana-
lytic argument presented in section 7.4.2, we observe a quadratic dependence of dU on U .
The solid line in the left plot is a quadratic least-squares fit to the dU . The observed linear
dependence of dU/U on U demonstrates the agreement with the theoretical prediction more
clearly. The directional error dn increases linearly with U , also in agreement with theory
(section 7.4.2). Thus, since U is generally related to the solar wind speed V , we can conclude
that in particular for our set of DDs the error is larger in fast solar wind compared to slow
solar wind.

Error as a function of planarity P

The dependence of the error on the tetrahedral shape is stronger than on the velocity. This
is best exemplified by DD2003 because the whole range of P is covered by this set. Since
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the two error sources add together, it is instructive to plot dU and dn versus P and versus U
side by side. Figure 9.8 shows this dependence for DD2003 for δt = 0.3 s. On the left hand
side the error is plotted versus P. The vertical dashed line indicates Pc and the thin solid
lines border the range of P in 2001 and 2002. This figure clearly shows that the tetrahedral
shape is of crucial importance. The error increases with increasing P. For the majority of
events, P < 0.34 (see also chapter 5). In this regime, dn < 10◦ for all but one DD. The rate
of increase is moderate for P < 0.8, and extremely large errors are observed for P > 0.8. The
uncertainty of U can be as large as 350 km/s and dn reaches its maximum value of 90◦.

This is the reason for choosing Pc = 0.8. Omitting events with P > Pc prevents us from
fallacious triangulation results a priori. Also note the average values of dn and dU shown
separately for the subsets with P < 0.8 and P > 0.8.

The right hand side of Figure 9.8 demonstrates that the effect of the tetrahedral shape is
stronger than the influence of U . Whereas the dependence on U is explicit in 2001 (Figure
9.7), the scatter around the least-squares fit (quadratic for dU and linear for dn) is larger in
2003, because of the superposed impact of the geometry factor P. This even holds for the
shown subset of DDs with P < Pc. In the inserts all 204 events are shown. The 13 events with
P > Pc are marked by crosses. For these DDs the deviation from the quadratic, respectively
linear, U dependence is particularly apparent. Regardless of U , the error is largest when P
takes very large values. This confirms that Pc = 0.8 is a good choice for the cut-off value. At
least, it must not be larger.

The values of P covered by the sets DD2001 and DD2002 indicate that no extreme errors due to
planar spacecraft constellations are expected. However, the “shape-induced” error is certainly
larger than for the majority of events in 2003. Apart from the larger spacecraft separations,
the generally high geometrical quality of the tetrahedra in 2003 (after the restriction P < Pc)
is decisive for the excellent quality of the results for this set of DDs. Fortunately, the majority
of events used in this work are from 2003: Of the 191 DDs in 2003 with P < Pc for 139
events (73%) P < 0.34. This is more than the total number of DDs studied in 2001 (129)
and in 2002 (33). For the above reasons the interpretation of the triangulation results is most
meaningful in 2003.
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Figure 9.8: The two main parameters determining the accuracy of triangulation. (Left) planarity
P and (right) DD velocity U relative to the spacecraft array. Shown are dU (top) and dn (bottom) for
2003 for δt = 0.3 s. The vertical thick dashed line indicates the cut-off value Pc = 0.8. For P > Pc

the error can be large. The two thin solid lines indicate the range of P present in 2001 and 2002. To
better isolate the U-dependence the DDs are split in those with P < Pc (circles) and those with P > Pc

(crosses). Only the inserts show both groups. dU(U) is fitted to a quadratic function and dn(U) to a
linear function (solid line). For the fitting procedure only those DDs with P < Pc are considered.

Influence of the orientation of the tetrahedra relative to n

Finally, we discuss the impact of the orientation of the generally anisotropic spacecraft con-
figuration related to the DD orientation. Equations 7.26 and 7.28 in section 7.4.2 demonstrate
the influence of the orientation on the error analytically. Here, this is illustrated by the follow-
ing geometrical consideration: The uncertainty of n is largest in the direction Rc perpendicu-
lar to planarity (section 7.4.2). Let, for instance, n and Rc be aligned, i.e., the DD surface and
the plane defined by Ra and Rb are parallel. Then the direction in which the uncertainty of n
is largest coincides with n. Consequently, the error is small. The other extreme is n ⊥ Rc. In
that case the largest uncertainty of n is perpendicular to n, i.e., the directional error is large.

Figure 9.9 illustrates the two extreme cases. Let us assume P = 1 for simplicity, i.e., all four
spacecraft are in the plane spaned by Ra and Rb. Then, the DD is observed simultaneously
at the four locations for n ‖ Rc (left hand side of Figure 9.9). Any change of the relative
orientation of the two planes, e.g. by a rotation of the DD normal n by an angle ψ, yields
ti j 6= 0 for at least one pair of spacecraft. Rotating n in the opposite direction causes a change
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in sign; the order in which the spacecraft observe the DD is extremely sensitive to small
changes of n. In the initial situation (left hand side of Figure 9.9) all relative position vectors
ri j are perpendicular to n. Since ti j ∝ n · ri j ∝ cos∠(n,ri j), and the derivative of the cosine
is maximal at 90◦, ti j is most sensitive regarding perturbations of n when n is approximately
perpendicular to ri j, i.e., when n and Rc are aligned. In the contrary, this means that a given
uncertainty δti j has only relatively little impact on n in that case. Hence, for the case n ‖ Rc

the error in n is smallest.

The other extreme is n ⊥ Rc (right hand side of Figure 9.9). In that case, relatively large
rotations of n in the direction Rc cause only relatively small changes in the ti j. (Note that
the sequence of spacecraft observing the DD on the right hand side of Figure 9.9 remains un-
changed unless ψ > 90◦). Therefore, a given uncertainty δti j yields relatively large deviations
in n.

Figure 9.9 also illustrates why the uncertainty of n is largest in the direction normal to pla-
narity: Rotating the DD surface in any other direction than Rc yields a larger rate of change
of n · ri j and thus of ti j.

The relative timings ti j are in general smaller when n ‖Rc than in the case n⊥Rc. In addition,
the transversal dislocations of the spacecraft are generally smaller in the latter case, yielding
smaller δti j. Therefore, the accuracy of the absolute value of the DD velocity U , which is
mainly determined by the ratio δti j/ti j, is best when n ⊥ Rc, i.e., reversed compared to the
accuracy of n.

For an adequate empirical analysis of the effect of the tetrahedron orientation on the error, it
is again advantageous to use DD2001, because the shapes of the configurations are all similar
in this set of DDs. Therefore, the influence of variable P is minimised. Figure 9.10 shows dU
and dn plotted versus ∠(n,Rc). The respective trends expected as explained above are visi-
ble. However, the dominant influence of U yields a large scatter. The orientation is even less
relevant in 2003 (not shown). Here, the accuracy of the DD velocity even slightly increases
with increasing angle between n and Rc, contradicting the expectations. This is because P
is the dominant parameter, and there is a tendency for increasing P with increasing ∠(n,Rc)

(not shown), i.e., P mainly determines the observed trend in 2003.
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Figure 9.10: Dependence of the error on the orientation of the tetrahedron relative to the measured
DD normal n. 2001, δt = 0.05 s. The solid lines indicate the linear trend.

In conclusion we state that U is an important factor determining the precision of the tri-
angulation method. Therefore, it is important to keep in mind that in the fast solar wind,
e.g. originating from coronal holes, the uncertainty is expected to be larger than in slow solar
wind. Since P is restricted to a small range in 2001 and 2002, U is the dominant factor for
the variability of the error for the sets of DDs in these years. The orientation of the spacecraft
configuration relative to the DD orientation is noticeable but not crucial. The most important
factor affecting the precision of n and U is the tetrahedral geometry. Therefore it is manda-
tory to define a cut-off value for the planarity. We have shown that Pc = 0.8 is a reasonable
value.

9.3 Histograms and average values of the errors of n and U

This section presents an overview of the error estimates of our three data sets.

In the previous section we have defined intervals Iδt so that δt ∈ Iδt for the majority of events
for each of the three sets DD2001, DD2002 and DD2003. Figure 9.11 and Table 9.1 give an
overview of the size of the error associated with the determination of the DD normal n and
the DD velocity U relative to the spacecraft array based on these intervals.

Figure 9.11 shows histograms of dn and dU for δtmin and δtmax for each year. Since the
true uncertainty δt of an individual event is in-between δtmin and δtmax for most DDs, the
distribution of the actual error values is somewhere between these extreme cases.

The uncertainties are moderate in 2001, but dn and dU can take large values in 2002 where
the spacecraft separations are small. Best reliability is achieved for the DDs in 2003 (large
separations). For δtmin = 0.1 s, 〈dn〉= 2.1◦ and 〈dU〉= 10.8 km/s. For all DDs, dn(δtmin) <

8◦ and for all but three DDs, dn(δtmin) < 5◦. Even for δtmax = 0.4 s, the error remains small:
For 95% of all DDs dn < 15◦, and the most probable value is 5.5◦.

The average values of all used error parameters and their standard deviations are shown in
Table 9.1 for various values of δt separately for each year. The average directional error
increases linearly with increasing δt ∈ Iδt in 2003, and slightly stronger than linear in 2001.
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Figure 9.11: Histograms of dn (top) and dU (bottom) for δt min and δtmax for each of the three years
(2003, 2001, 2002 from left to right). Only DDs with P < Pc are considered. Note the different ranges
for the different data sets. For the illustration only, we limit the range of dU to 500 km/s. Larger
errors for dU, i.e. dU > 500 km/s, are observed for 2 DDs in 2001 (δt = 0.2 s), for 10 DDs in 2002
(δt = 0.03 s) and for 16 DDs in 2002 (δt = 0.05 s).

Table 9.1: Average values of the error parameters and their standard deviations in brackets for
various values of δt (in seconds) ranging from δtmin to δtmax (apart from 2002). 〈〉 denotes the average
over all DDs with P < Pc. The units of dn and dU are degrees and km/s, respectively.

yr δt 〈dn〉 〈dn95〉 〈Dn〉 〈dU〉 〈dU95〉 〈DU〉
0.10 2.1(1.0) 1.6(0.8) 4.1(2.0) 10.8(7.0) 8.3(5.1) 21.2(13.6)
0.20 4.2(2.1) 3.3(1.7) 8.1(4.0) 22.0(14.1) 16.8(10.3) 42.4(27.0)
0.30 6.3(3.1) 4.9(2.5) 12.2(5.9) 33.6(21.5) 25.5(15.7) 63.6(39.7)20

03

0.40 8.4(4.2) 6.5(3.3) 16.2(7.8) 45.4(28.8) 34.3(21.2) 84.2(51.9)

0.05 3.4(1.7) 2.5(1.2) 6.4(3.0) 26.1(20.3) 20.1(15.9) 48.3(35.4)
0.10 7.4(3.7) 5.0(2.4) 13.0(6.1) 56.8(47.4) 43.0(36.5) 98.0(73.8)
0.15 11.9(6.3) 7.8(3.8) 19.9(9.5) 93.2(84.2) 69.2(63.0) 151.0(119.0)20

01

0.20 17.3(9.4) 10.8(5.4) 27.3(13.1) 137.4(139.8) 99.0(96.8) 209.6(180.0)

0.01 8.6(6.3) 5.8(4.2) 14.9(10.3) 118(124) 87(89) 201(199)
0.03 35(25) 21(16) 47(29) 516(850) 343(523) 706(953)
0.05 55(29) 39(25) 65(26) 1173(2502) 527(624) 1430(2599)20

02

0.07 71(22) 51(26) 80(17) 1996(2609) 691(626) 2298(2721)

The increase is far from linear in 2002 within the shown interval. The standard deviation is
approximately half of the value of the parameters describing the directional error in 2003 and
2001. In contrast, it is large in 2002. Especially the standard deviation of the velocity error is
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huge in 2002. 〈dn95〉 and 〈dU95〉 are considerably smaller than 〈dn〉 and 〈dU〉, respectively.

We have already pointed out that the error is expected to be largest for 2002. However,
the large error estimates of Figure 9.11 and Table 9.1 are very conservative. A reason for
overestimating the error may be that δt is most difficult to evaluate in 2002, because of the
small relative timings. Whether δtmax = 0.05 s or 0.07 s or whether δtmin = 0.01 s instead
of 0.03 s is hard to evaluate from the data, but makes a big difference to the error estimates.
Therefore, we also show the values according to δt = 0.01 s and δt = 0.07 s in Table 9.1.

The choice of Iδt is uncritical when the separations (and thus the relative timings) are larger.
In these case (2003 and 2001), Iδt is accurately determined and, even more important, vari-
ations of a few hundredth of a second do not strongly affect the error estimate. However,
we are aware that the multi-spacecraft analysis we carry out is least reliable in 2002, and in
addition the statistics are poor (only 33 events). So this particular set of DDs is certainly
least relevant for the conclusions of this work related to true multi-spacecraft techniques. In
contrast, excellent results are obtained for 2003. These are probably the best normal esti-
mates ever determined for solar wind discontinuities. In addition, the good statistics (204
events) benefit the significance of our conclusions. The configurations present in 2001 yield
an intermediate scenario.

Despite the excellent accuracy we achieve in 2003, the velocity error dU is on average still
too large to distinguish RDs from TDs by means of propagation (see also section 8.8.6). This
can be seen by comparing the observed Alfvén velocities (|VA ·n| < 10 km/s in most cases
in Figure 8.33) to 〈dU〉 ranging between 11 and 45 km/s in 2003. We point out, however,
that here only average values are considered. For individual events the precision can be much
better.

9.4 Error of Bn - consistency with the assumption of
tangential discontinuities

Based on the measurement of very small normal components Bn of the magnetic field, we
suggested in chapter 8 that all observed DDs may be tangential discontinuities. In this section
we show that an analysis of the errors of Bn is consistent with that suggestion, albeit not a
proof. We analyse the error of |Bn|/Bmax as a function of δt much in analogy to our previous
analysis of n, and verify consistency of (V ·n−U ) with the assumption of (non-propagating)
TDs.

In the previous sections we have discussed the error of the DD normal n. We have shown that
in general the error is anisotropic. For that reason, comparing dn to the measured deviation
of θBn from 90◦ cannot answer whether θBn = 90◦ within error, as required for TDs. Only
the component of the error parallel to the magnetic field is relevant. Therefore, we calculate
the normalised magnetic field normal component (b̂n)i := (|Bn|/Bmax)i and the angle (θ̂Bn)i

between n and B for each of the 1330 n̂i for each event. We define b̂min
n := min((b̂n)i) and

b̂max
n := max((b̂n)i), and θ̂min

Bn and θ̂max
Bn , accordingly. Analogue to equations 9.1-9.4 we then
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define:

DBn := b̂max
n − b̂min

n (9.5)

dBn := max(|Bn|/Bmax− b̂min
n , b̂max

n −|Bn|/Bmax), (9.6)

DθBn := θ̂max
Bn − θ̂min

Bn , (9.7)

dθBn := max(θBn− θ̂min
Bn , θ̂max

Bn −θBn) (9.8)

i.e., DBn is the maximal difference found between the 1331 normalised normal compo-
nents for each event, and dBn is the maximal difference to the measured normal component
|Bn|/Bmax according to the normal n.

A discontinuity is consistent with a TD, if at least one of the (b̂n)i is zero (or equivalently
(θ̂Bn)i = 90◦ for at least one solution n̂i). The opposite conclusion is strictly speaking incor-
rect: Since we only calculate a limited number of normals n̂i for each DD, a direction in the
continuum of normals according to ti j± δt can exist which is perpendicular to the magnetic
field, even if b̂min

n 6= 0. However, because of the high spatial density of the n̂i this is unlikely,
unless δt is large.

Consistency with Bn = 0

Figure 9.12 shows the measured values of |Bn|/Bmax (top) and θBn (bottom) with error bars
for all DDs in our set. The upper and lower boundaries of the error bars are b̂max

n and b̂min
n , and

θ̂max
Bn and θ̂min

Bn , respectively. The DDs are sorted in decreasing order of b̂min
n and increasing

order of θ̂max
Bn , respectively.

As already shown in chapter 8, the measured values of |Bn|/Bmax are generally close to zero
and the measured angles θBn are close to 90◦. This is particularly apparent for the DDs in
2003. With decreasing spacecraft separations (2001 and 2002) the clearness of this result
fades. Figure 9.12 demonstrates that this increase of |Bn|/Bmax correlates with the lengths of
the error bars. The shown error bar lengths 〈DBn〉 and 〈DθBn〉 are averaged over all DDs in
each of the three sets. They clearly increase with decreasing spacecraft separations.3

To provide a point of reference, the value |Bn|/Bmax= 0.4 (often used as threshold to dis-
tinguish between RDs and TDs) is indicated by the horizontal line in Figure 9.12. Only for
isolated events (with P > Pc in 2003), b̂max

n exceeds this value. Even in 2002, where the
uncertainty is largest, only for 10 DDs, i.e., less than one third of all events, the maximum
possible value within error exceeds 0.4. In general, b̂max

n is clearly below this threshold.

The error bars of θBn are also rather small. The average length is 〈DθBn〉 = 11.4◦ in 2003
including DDs with P > Pc, and 〈DθBn〉= 24.9◦ in 2002. Most important, the upper boundary
is θ̂max

Bn = 90◦ in most cases. Accordingly, b̂min
n = 0, i.e., the constraint for consistency with

TDs is satisfied. Only for 30 out of the 204 DDs in 2003 (≈ 15%), 26 out of the 129 DDs in
2001 (≈ 20%), and 8 out of 33 DDs in 2002 (≈ 25%), b̂min

n 6= 0 (or θ̂max
Bn 6= 90◦) for the δts

used in Figure 9.12.

3Note that these values differ from those in Table 9.2 where only DDs with P < Pc are considered.
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Figure 9.12: |Bn|/Bmax (top) and θBn (bottom) with error bars for all DDs found in 2003 (left), 2001
(middle) and 2002 (right), including those with P > Pc. The DDs are sorted in decreasing order of
b̂min

n (top) and increasing order of θ̂max
Bn (bottom), respectively. The upper and lower error boundaries

are connected by solid lines to guide the eye. The measured values are indicated by circles. δt = 0.4
s, 0.2 s and 0.03 s for 2003, 2001 and 2002, respectively.

As pointed out in section 9.2, the intervals Iδt = [δtmin,δtmax] do not include all individual
uncertainties δt. In some cases, δt can exceed the values used in Figure 9.12. A careful
examination of the events with b̂min

n 6= 0 for the given values of δt shows that this subset
consists exactly of those DDs for which the relative timings are most difficult to determine,
and thus δt is large. The reason for the poor correlation of the four time series is mostly a
strongly fluctuating background magnetic field. This yields uncertainties δt of more than 1 s
in individual cases in 2003.

Hence, considering that δt can be relatively large for individual events, we find that |Bn|/Bmax

= 0 and θBn = 90◦ within error for all DDs in our data set.

Consistency with zero propagation relative to the solar wind plasma

We now demonstrate that also U = V ·n within error. Figure 9.13 shows the measured DD
velocities U relative to Cluster in descending order (blue circles). The error bars are shown for
δtmax of the particular year. The upper and lower boundaries (Ûmax and Ûmin) are connected
by black lines to guide the eye. Also plotted are Ûmax and Ûmin for δt = 0.2 s in 2003, δt = 0.1
s in 2001 and δt = 0.03 s in 2002 (green line). Only those DDs are shown for which plasma
data are available, in order to allow for comparison with the plasma velocity V ·n (indicated
by the red crosses). The DDs with P > Pc are encircled. The average length of the error bars
〈DU〉 is shown for each year.4

4Note that these values differ from those in Table 9.1 where only DDs with P < Pc are considered.
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Figure 9.13: Velocity U (blue circles) in decreasing order with error bars for δt max. From left to
right: 2003, 2001, 2002. Also shown are Ûmin and Ûmax for δt = 0.2 s in 2003, δt = 0.1 s in 2001
and δt = 0.03 s in 2002. Only DDs for which plasma data are available are shown. The red crosses
indicate the values of V ·n. They are encircled when P > Pc.

The error bars show some interesting features: First, DU (see equation 9.3) increases with
decreasing spacecraft separation. Second, the error bar length increases with increasing U .
This trend is disrupted by some peaks caused by planar spacecraft configurations (P > Pc) in
2003. This is in agreement with the conclusions in section 9.2, i.e., that the error is mainly
determined by the tetrahedral geometry and by U . Third, the error is asymmetric. As dis-
cussed in section 9.1, U is closer to Ûmin than to Ûmax, in general. The smaller the spacecraft
separations, the more pronounced is the asymmetry. This is a consequence of increasing
δt/ti j with decreasing tetrahedra size: The t̂i j in Û = ri j ·n/t̂i j can simultaneously get close
to zero when δt/ti j is large.

For the majority of events, V · n is scattered around U within the error bars even for the
smaller of the two shown uncertainty δt (green line). Especially in 2003, V ·n is close to U .
Only for 12 out of 191 events (6%), V ·n is outside the error bars of U for δt = 0.4 s. Strong
deviations between U and V ·n are primarily observed when U is inaccurately determined.

Because θBn is close to 90◦, possible propagation velocities are likely to be less than 10 km/s
(see previous section). Apparently, the error is larger than that. Note that besides U , also V
and n are subject to error, not accounted for in Figure 9.13. Thus, all DDs are consistent with
being non-propagating structures. In the few cases where |V ·n−U | is greater than the error,
the deviation cannot be explained by propagation, because the difference is too large (on the
order of 100 km/s). Probably these large differences are due to a mixture of the named errors.
Note, however, that V ·n is still in the vicinity of Ûmin and Ûmax, respectively, for these DDs,
indicating a reasonable choice of δt and thus reasonable error estimates in all three years.

Statistical analysis

Table 9.2 gives an overview of the average values of the used parameters characterising the
error of |Bn|/Bmax and θBn for the same uncertainties δt as in Table 9.1. The average values
confirm a small error, particularly in 2003. For instance, 〈dθBn〉 ranges between 1.7◦ for
δt = 0.1 s and 6.8◦ for δt = 0.4 s, and 〈dBn〉 ranges between 0.026 and 0.102 in 2003. Even
in 2002 the error decisive for discerning RDs and TDs is moderate. The maximal observed
deviation from the measured angle between n and B is on average 29◦ for δt = 0.05 s, and
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Table 9.2: Same as Table 9.1 for |Bn|/Bmax and θBn.

yr δt 〈dBn〉 〈dBn95〉 〈DBn〉 〈dθBn〉 〈dθBn95〉 〈DθBn〉
0.10 0.026(0.014) 0.020(0.010) 0.046(0.025) 1.7(0.9) 1.3(0.7) 3.0(1.6)
0.20 0.051(0.027) 0.040(0.021) 0.083(0.044) 3.4(1.7) 2.6(1.3) 5.5(2.9)
0.30 0.077(0.040) 0.059(0.031) 0.114(0.059) 5.1(2.6) 3.9(2.0) 7.6(3.9)20

03

0.40 0.102(0.053) 0.079(0.041) 0.143(0.072) 6.8(3.5) 5.3(2.7) 9.6(4.8)

0.05 0.032(0.017) 0.024(0.013) 0.056(0.032) 2.1(1.1) 1.6(0.8) 3.7(2.0)
0.10 0.067(0.040) 0.050(0.029) 0.105(0.060) 4.4(2.6) 3.3(1.8) 7.0(3.8)
0.15 0.104(0.067) 0.078(0.048) 0.152(0.090) 6.9(4.4) 5.2(3.1) 10(5.8)20

01

0.20 0.144(0.100) 0.107(0.069) 0.199(0.122) 9.8(6.9) 7.1(4.6) 13(8.3)

0.01 0.074(0.058) 0.056(0.045) 0.123(0.109) 5.1(4.4) 3.8(3.4) 8.6(8.0)
0.03 0.241(0.171) 0.180(0.131) 0.344(0.236) 18(15) 13(11) 25(20)
0.05 0.366(0.189) 0.282(0.180) 0.483(0.235) 29(19) 21(16) 37(22)20

02

0.07 0.502(0.203) 0.373(0.177) 0.628(0.228) 42(20) 29(16) 50(23)

Table 9.3: Measured average values for the same data set as in Table 9.1 and 9.2. 〈|90◦−θBn|〉 is
given in degrees and |V·n-U | in km/s.

〈|Bn|/Bmax〉 〈|90◦−θBn|〉 |V·n-U |
2003 0.049 3.3 19
2001 0.078 5.3 61
2002 0.132 8.6 185

〈dBn〉 is less than 0.4. Note that the values of 〈dθBn〉 are smaller than the values of 〈dn〉 in
Table 9.1, reflecting the anisotropy of the error. Also note the linear dependence on δt for all
parameters in each year of observation.

It is instructive to compare the average error values to the actually measured average values
(Table 9.3). Two observations are of interest: (1) The quantities in Table 9.3 increase with
decreasing spacecraft separations, i.e., larger errors allow for larger measured values. (2)
The measured average quantities are on the order of the associated error values in the low-
δt region of the particular year: The values of 〈|Bn|/Bmax〉, 〈90◦−θBn〉 and 〈V ·n−U〉 are
comparable to the values of 〈dBn〉, 〈dθBn〉 and 〈dU〉, respectively, for δt = 0.2 s in 2003. For
instance, the measured average deviation of θBn from 90◦ is 3.3◦ and 〈dθBn〉(δt = 0.2 s) =

3.4◦. The measured values in 2001 are on the order of their error values for 0.10 s < δt < 0.15
s on average, and the corresponding δt is between 0.01 s and 0.03 s in 2002.

Figure 9.14 compares the histograms of the measured values to the histograms of the asso-
ciated errors. The histograms of the error parameters are shown for the same values of δt
as in Figure 9.13. From top to bottom (i.e., with decreasing tetrahedra size) the histograms
of the measured quantities widen in the same manner as the width of the histograms of the
associated error parameters increases.
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Figure 9.14: Histograms of the measured values of |Bn|/Bmax, (90◦−θBn) and |V ·n−U | (from left
to right) compared to the histograms of the associated error values for δt max and a smaller value of
δt. From top to bottom: 2003, 2001, 2002. Only configurations with P < Pc are considered. The
histograms of |V ·n−U | contain only those DDs for which plasma data are available. Note that for
these histograms the ranges are different for each year. dU > 500 km/s for 2 DDs for δt = 0.2 s in
2001, and dU > 1000 km/s for 5 (8) DDs for δt = 0.03 s (δt = 0.05 s) in 2002.

Apparently, the measured values are as large as allowed for by the given error margin. Even
the width associated to the lower δt error distribution equals or exceeds the width of the
distribution of the measured values. This holds for all shown quantities in each year.

Figure 9.14 suggests that, if we were able to reduce the errors to infinitely small values, then
the distributions of the measured values would approach a δ-distribution at zero. Recall that
in Figure 8.9 we considered only those DDs for which the relative timings can be determined
best, and found the expected tendency. This could be extended, e.g., by additionally requiring
excellent tetrahedra qualities.5 We have not done this, but we are confident that the widths of
the distributions of |Bn|/Bmax, (90◦−θBn) and (V ·n−U ) would decrease even more.

5Note that the separations between the Cluster spacecraft will be at 10000 km in the solar wind next year
(see Figure 4.3). This provides an excellent opportunity to obtain even more accurate triangulation results than
in 2003 with a nominal separation of 5000 km.
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To conclude, the main result of this section is that the quantities |Bn|/Bmax, (90◦−θBn) and
(V ·n−U ) are all consistent with zero within the error for all DDs, i.e., all events in our set
are consistent with being TDs. We have shown that the extent to which the quantities listed
above differ from zero is related to the size of the error.6 According to these results, it is
tempting to conclude that all DDs in our set (and maybe in general) are indeed TDs. Other
authors (e.g. Siscoe et al. [1968]; Burlaga [1971b]; Horbury et al. [2001b]) conclude that
the solar wind is dominated by TDs on grounds of observations less clear than our results.
However, we deal with this issue with great care. At last we cannot strictly prove |Bn|/Bmax=

0. Therefore, we have to allow for the possibility of small but finite magnetic field normal
components, i.e., we are not able to prove that there are no RDs in our set of DDs in the last
consequence (using magnetic field data only). However, we can conclude that if there were
RDs, then they would all have extremely small values of |Bn|/Bmax.

6Note that we find the same result for the MVA technique: Increasing the accuracy of that method yields
smaller values of |Bn|/Bmax (see chapter 8).



CHAPTER 10

DISCUSSION AND SUMMARY

In this work a statistical analysis of 366 interplanetary discontinuities at 1 AU is presented. It
is the first study of this kind based on the simultaneous observation at four nearby spacecraft.
Magnetic field and plasma data from the coordinated Cluster spacecraft flying in formation a
few hundred to a few thousand kilometres apart are used. In nearly all related investigations
the discontinuities have been analysed along the trajectory of only a single satellite. With
four measuring platforms the ability to observe is considerably improved. This advantage is
versatile. On the one hand, simple comparison of the time series acquired at different loca-
tions of the solar wind structures and application of well accepted single-spacecraft analysis
techniques already yields surprising new results. On the other hand, by making use of a true
multi-spacecraft technique, a completely new understanding of the solar wind micro-structure
evolves.

Data set and experimental setup

The 366 DDs in our ensemble are selected by application of frequently used criteria, to pro-
vide consistency with previous work. Due to the near-Earth trajectory of the Cluster space-
craft, caution must be exercised to prevent the data from being contaminated by foreshock
activity. By applying a rather conservative criterion, we ensure a clean set of discontinu-
ities in the undisturbed solar wind. Unfortunately, this caution also leads to a considerable
reduction in number of the original set of events.

The selected DDs are grouped in three sets according to the period of their observation, i.e.,
January - May of 2001, 2002 and 2003. The main distinction between these three sets is the
different spacecraft separation from 100 km in 2002 to 5000 km in 2003, which enables us to
investigate interplanetary discontinuities at different scales. For the triangulation method the
small separations in 2002 are not of much use, because the small relative timings introduce
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large uncertainties. However, to analyse the fluctuations that are superimposed on the pure
discontinuities, for example, the variety of scale length is very useful. Triangulation performs
best on the 2003 data set, where the separations are large. Probably the accuracy of the normal
estimates for many DDs in this set is the highest ever achieved.

The continuous evolution of the tetrahedron built by the four spacecraft along the orbital
trajectory can lead to extremely flattened configurations in 2003. To monitor the tetrahedral
geometry, we introduce quality factors. Particularly helpful are the 2-D factors planarity and
elongation. Based on an error analysis, we determine a cut-off value for the planarity below
which satisfactory accuracy is guaranteed.

Another difference between the three sets are the different prevailing solar wind conditions.
Whereas predominantly slow streams are observed in 2001, we are able to assign recurring
fast streams in 2003 to coronal holes on the Sun. We define a subset of the largest set DD2003

(204 events) which contains only DDs in coronal hole streams.

Minimum Variance Analysis is much less reliable than previously assumed

Our analysis demonstrates that the Minimum Variance Analysis (MVA), a widely used anal-
ysis technique to compute normals of discontinuities, is much less reliable than previously
assumed. Using the data of the four coordinated Cluster spacecraft we determine new criteria
to decide whether or not MVA yields reliable normal estimates.

The surface normal of an ideal 1-D MHD discontinuity is well defined as the direction with
zero variance of the magnetic field (λ3 = 0). Generally, superposed fluctuations yield an
increase of λ3, and the 1-D structure does not appear as such anymore. Consequently, the
accuracy of MVA decreases. The ratio of intermediate to minimum variance (λ2/λ3) is an
important parameter to assess the reliability of this method. Numerical simulations of an ideal
discontinuity superposed by isotropic noise suggest a lower limit of (λ2/λ3)

L = 1.8 for MVA
to determine sufficiently accurate normal estimates [Lepping and Behannon, 1980]. Accord-
ingly, in most studies on discontinuities (λ2/λ3)

L = 2 has been used to ensure reasonable
results.

Our analysis shows that this limitation is not strict enough. We conclude that 3-D wave fields
also propagating perpendicular to the surface normal and involving non-isotropic fluctuations
affect the MVA result, even if λ2/λ3 > 2. To prevent MVA normal estimates from being
contaminated by wave fields, we suggest applying MVA only if λ2/λ3 & 10. We point out that
besides λ2/λ3, the spreading angle ω is also an important parameter affecting the accuracy
of MVA (see also Lepping and Behannon [1980]). In order to a priori ensure reasonable
MVA results, a preselection of events with ω & 60◦ appears adequate. Further quality tests
(much stricter than in common practice) should then be done by inspecting the eigenvalue
ratio λ2/λ3 after MVA is performed. Unfortunately these strict requirements entail serious
practical consequences as they dramatically reduce the number of DDs suitable for MVA.

Moreover, we show that a large eigenvalue ratio is only a necessary condition for reliable
MVA normal estimates, not a sufficient one. Particularly when the intermediate eigenvalue
λ2 of the actual discontinuity is small, the minimum variance direction of the total structure
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(discontinuity plus waves) can be determined mainly by superposed fluctuations. According
to previous studies, the wave-vector of the superposed fluctuations is likely to be aligned to
the mean magnetic field. We do not answer questions regarding the nature and particularly
the origin of the superimposed waves. Whether the superposed fluctuations are MHD waves
independently existing in the solar wind or the discontinuities generating wave modes of their
own is left unanswered. However, a likely explanation is given by Horbury et al. [2001b] who
suggest that surface waves [Hollweg, 1982] on discontinuity surfaces are responsible for the
minimum variance direction not to coincide with the discontinuity normal.

We point out that MVA is a widely-used analysis tool. Therefore, awareness that this method
performs poorly in many cases should be of considerable general interest for all communities
involved in space plasma physics.

Not a single clear RD is found when timing-derived normals are used

We demonstrate that underestimating the MVA error has resulted in an incorrect understand-
ing of the solar wind micro-structure. There has been a long going controversy about which
type of discontinuity is more abundant in the interplanetary medium in the 1970s (and 1980s).
Most authors claim a clear dominance of RDs, especially in fast solar wind streams. Others
suggest that TDs are more abundant than RDs. However, all single-spacecraft studies have in
common that two clearly distinct populations are found: TDs (identified by large magnitude
changes of the magnetic field and small Bn) and a considerable number of RDs (large normal
component of the magnetic field).

On the basis of the normal component of the magnetic field and the change in field magnitude
across the DDs, we classify the selected events into RDs, TDs, EDs and NDs. Utilising MVA
to determine the DD normals we end up with a large number of RDs when the same criteria
as have been applied in previous studies are used. In fact, the classification into RDs, TDs,
EDs and NDs is in good agreement with previous findings.

The timing-derived normals yield strikingly different results: Not a single clear RD is found.

We perform several consistency tests and a detailed error analysis to confirm that the normal
components of the magnetic field determined by triangulation are reliable. Moreover, we
show that |Bn|/Bmax = 0 within error for all events. Thus, all DDs in our ensemble are
consistent with being tangential. We point out that to our knowledge this is in apparent
contradiction to all other studies. In addition, we find that the more precisely the normals
are determined (both from triangulation and MVA) the more they tend to be perpendicular to
the magnetic field. This observation may suggest that perhaps all DDs in our representative
ensemble are tangential.

Our analysis reveals that the discrepancy between single and multi-spacecraft results oc-
cur when the MVA eigenvalue ratio λ2/λ3 (or the spreading angle ω) is small. Using only
those DDs for which we assume MVA yields reliable normal estimates, the RD-category
remains empty also in the single-spacecraft analysis. In other words, the population of the
RD-category is simply a result of unreliable MVA normal estimates.
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Being able to estimate the error in the determination of |Bn|/Bmax associated with MVA we
can postulate new criteria to distinguish RDs from TDs in single-spacecraft studies. In pre-
vious studies the threshold bnc = 0.4 has often been used in combination with (λ2/λ3)

L = 2.
Our analysis shows that this is definitely overly optimistic; bnc = 0.6 appears to be more real-
istic in that case. Conversely, we suggest that bnc = 0.4 may yield meaningful classification
results when only DDs with λ2/λ3 & 5 or ω & 60◦ are considered.

Hence, by using data from the four spacecraft of the Cluster mission we shed some light on
the long-going debate about which type of discontinuity dominates the solar wind. Evidently,
the rate of occurrence of clear RDs in the solar wind is far less than was previously assumed.
In our representative ensemble it is zero. However, since any method to determine DD nor-
mals is subject to error, it is impossible to claim that all events are TDs. The new perception
is that all DDs are consistent with being TDs. Since in addition the majority of events have
only small field magnitude changes across them, they could as well be RDs propagating al-
most perpendicular to the magnetic field. Hence, in order to determine the true type of these
EDs (≈ 90% of the total number of DDs), the use of plasma data is necessary.

Using plasma data to identify possible RDs

We test several necessary conditions for RDs. These tests are complicated for instance by
poorly determined thermal anisotropies. Because the DD normals are approximately perpen-
dicular to the magnetic field, the normal components of the Alfvén velocity are generally
rather small (|VA ·n| is less than 10 km/s for most events). Since this is on the order of the
accuracy of V ·n and U in the best cases, testing whether or not the DDs are propagating is
difficult.

We find that the majority of events fail the polarisation relation: The magnitude of [V] is
generally smaller than required for RDs from MHD theory. This has been observed in pre-
vious studies already (e.g. Neugebauer et al. [1984]) and has been a major problem, because
according to Bn (derived from MVA) a considerable number of RDs were found. Therefore,
the majority of these events were inconsistent with both RDs and TDs. Since all of the DDs
in our sample are consistent with TDs, this problem does not occur anymore.

We find some DDs that satisfy the necessary RD conditions. This sample can be regarded as
being consistent with RDs. Therefore, we cannot exclude the possibility that there are some
RDs with small Bn in the solar wind at 1 AU. However, it may well be that the RD conditions
are satisfied only incidentally and that the discontinuities we identify as possible RDs are, in
fact, TDs. Furthermore, we point out that the argumentation in Neugebauer et al. [1984], who
suggest that the majority of EDs are rotational, must be dealt with great care. This reasoning
is based on a comparison of the properties found for their EDs with those found for their
TDs and RDs. Since their RD population is apparently caused by inaccurate MVA normal
estimates, these DDs are probably, in fact, EDs, and the comparison is thus invalid.

Another surprising observation is that possible RDs are predominantly found in stream-
stream interaction regions and not in the fast solar wind originating from coronal holes, as
previously assumed.
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Discussion of the physical implications of our results

Since DDs are known to be a fundamental feature of the interplanetary medium, these new
observational results are of considerable importance in many aspects which shall be discussed
in the following.

Since all DDs in our sample are consistent with TDs, and the majority of DDs are inconsistent
with RDs, it is reasonable to assume that the solar wind is dominated by TDs. This greatly
enhances our understanding of the solar wind micro-structure. By definition, the magnetic
signature of a TD reveals the crossing of two regions magnetically not connected. In other
words, when a TD is observed, the local medium is split into two distinct plasma regions,
contrary to an RD. A high occurrence rate of TDs implies that the solar wind is formed of
many such regions, with no plasma flow between them. This might have consequences for
the diffusion coefficients of energetic particles: Sari and Ness [1969] suggest that if DDs are
basically tangential, low-energy cosmic rays (kinetic energy T < 100 MeV/nucleon) having
gyro-radii less than the average discontinuity separation would tend not to be scattered by
DDs but rather by the magnetic fluctuations between the DDs. Thus, the mean free path
would be much greater than the distance between the DDs. On the other hand, if DDs are
rotational, cosmic rays travelling along field lines are likely to encounter and be scattered by
them.

Two of the long-standing goals of solar wind research have been to identify and to understand
the mechanisms for heating the solar corona and accelerating the solar wind. Among the ob-
stacles to realising these goals are the limitations of coronal observations to remote sensing at
a variety of electromagnetic wavelengths and the limitation of direct, in situ measurements of
the plasma, fields and waves to distances outside the regions where the heating and accelera-
tion occur. If we accept the premise that most of the DDs observed near 1 AU originate close
to the Sun, their properties may help to understand their role in the physics of the corona.
An inherent problem is to distinguish those parameters that retain some signature of coronal
processes, as opposed to those which are strongly modified by interplanetary processes, such
as non-linear dynamics.

Parker [1987; 1990] has suggested that the convection driven, random shuffling of the foot
points of closed field lines at the surface of the Sun necessarily leads to the creation of TDs.
Bursts of magnetic reconnection across these TDs yield “nanoflares” which are responsible
for the development of the hot X-ray corona. Recent observations [Solanki et al., 2003]
support this idea. Theorists will want to know on a quantitative level whether such current
sheets are common, i.e., whether the heating associated with the dissipation of these currents
can account for the observed coronal heating. Since observations of the lower corona are
difficult, a quantitative evaluation of TDs in the solar wind might help. The abundance of
TDs that we observe at 1 AU may be relevant in this regard. Also the observed distribution

number of DDs(ω) ∝ exp(−ω/75◦)2 (10.1)
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may be looked at from a different perspective now. All previous studies find this distribution
or a similar one. The new input from the present work is that the DDs might all be TDs. A
reason for the observed decrease with increasing ω could then be that TDs with ω = 180◦ are
destroyed after reconnection according to Parker [1987; 1990] and are thus not observed in
the solar wind.

However, we do not know anything about the connection between the TDs in the lower corona
and those that we find in the solar wind. Also note that Parker [1987; 1990] further suggests
that on solar field lines that are open to the solar wind (coronal holes) TDs are less likely to
form, because the disturbances created by the shuffling foot points can be carried away by
waves. According to our analysis, however, the abundance of TDs is not reduced in coronal
hole streams, which one should expect according to Parker [1987; 1990].

The most important relevance of our work is perhaps the aspect of using the solar wind as
a laboratory for plasma physics, particularly in the context of non-linear dynamic processes.
This issue is closely connected to identifying possible mechanisms responsible for the gen-
eration and the stability of discontinuities. Ever since the first observations of DDs in 1966,
scientists seek to understand why the solar wind is discontinuous. In order to make progress
in this regard, naturally the first step must be to acquire reliable observational input on the
type of MHD discontinuities present.

Two scenarios are consistent with our results: (1) All DDs are tangential discontinuities. (2)
Some of the DDs are rotational discontinuities with vanishing Bn. Scenario (1) is supported
by a number of observations. One indication is for instance that the exact result Bn = 0 for
TDs is approached with increased reliability of the normal estimates. Another argument is
that necessary RD conditions may well be satisfied coincidentally. Let us assume that this
scenario is correct. In that case the non-linear processes suggested to support RD generation
must be regarded as not applicable. Since in particular we do not find clear RDs in coro-
nal hole streams, which are characterised by an abundance of non-linear Alfvén waves, the
presently well accepted idea of RDs being an integral part of phase steepened Alfvén waves
is at best questionable. Hence, the concept of phase steepening needs to be rethought.

Another possibility would be that RD generation takes place, but any kind of RD is short-
lived in the solar wind and is therefore not observed at 1 AU. This, however, is in apparent
disagreement with the results of hybrid simulations and is therefore unlikely.

Now let us assume scenario (2) is correct, and the EDs that satisfy the polarisation relation
are indeed rotational. Then the question immediately arises, why do they all have such small
values of Bn? Is it because the generation mechanisms are such that RDs with large Bn

are not supported? Are all kinds of RDs (with arbitrary Bn) generated, but only those with
small Bn survive until they reach 1 AU? Is a dynamic process, that deforms or turns the
RD surfaces such that they must have small Bn near the ecliptic, physically possible? These
questions, arising from the results presented in this work, are of fundamental importance for
the progress of understanding the generation and the dynamics of the solar wind. Certainly,
it is beyond the scope of this thesis to answer these questions, but we may contribute some
thoughts on them:
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Let us assume for a moment that there is indeed a direct connection between Alfvén waves
and the generation of RDs. Then, θBn being close to 90◦ for all RDs implies that the wave
vectors of the Alfvén waves must also be oriented almost perpendicular to B. The general be-
lief, however, is that the propagation direction of Alfvén waves in the interplanetary medium
is strongly oriented along the ambient magnetic field. Note that this assumption is predomi-
nantly based on MVA (see e.g. Denskat and Burlaga [1977] and references therein). Denskat
and Burlaga [1977] study general Alfvénic fluctuations with two spacecraft and find that the
distribution of ∠(n,B) peaks near 90◦ when the relative timings between the spacecraft are
utilised, in contrast to the MVA result. Thus, perhaps our result must be understood to be
more general, in the sense that it is not only applicable to discontinuities, but also to other
magnetic field fluctuations in the solar wind. According to Denskat and Burlaga [1977] the
majority of Alfvénic fluctuations are also non-propagating. The question to be answered is,
can these “quasi-static” structures phase steepen into RDs?

Since we assume that stream-stream interaction regions are favourable plasma regions to
contain possible RDs, future investigations (both experimental and theoretical) should focus
on the physical characteristics of these regions when seeking likely generation mechanisms.

The stability of RDs has been the subject of a considerable amount of theoretical work. The
hypothesis that RDs with large Bn are generated but short-lived is supported by the hybrid
simulations presented by Richter and Scholer [1989]. They find that in contrast to RDs
with a large magnetic field normal component, RDs with small Bn are long-lived structures.
However, more extended simulations show that also RDs with large Bn are stable [Goodrich
and Cargill, 1991]. Hence, provided that RDs with a large magnetic field normal component
are generated near the Sun, they should be observed near 1 AU. Since this is apparently not
the case, we must conclude that they are not generated.

The final possibility we mentioned above to explain our observations under assumption (2) is
a dynamic process that deforms or turns the RDs such that they have small Bn at the position
where we observe them. A reason for such a deformation is suggested by de Keyser [2003]
who claims that a configuration consisting of a more or less planar RD over large distance
scales close to the heliospheric current sheet is not possible, because the RD surface then
would cut the current sheet. Since the plasmas on both sides of the “structural TD” have
completely different origins, it is unlikely that a common wave would propagate through
both. de Keyser [2003] suggests that RDs propagating outward along B could be common
near the centre of coronal holes. Since such RDs do not cut the heliospheric current sheet,
their shape must rapidly deform and necessarily be almost parallel to the sector boundary
yielding n to be nearly perpendicular to B.

However, this type of argumentation may hold for the events observed in the slow solar
wind in 2001, but not for the events found within coronal hole streams, where Cluster is far
away from the heliospheric current sheet. Since we also invariably find small normal field
components for the latter DDs, this explanation is insufficient to explain all the characteristics
of our observations

According to the above discussion the most likely interpretation of our observational results
is that RDs (with large Bn) are not generated at all.
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As a matter of course, the question also arises, what causes the high occurrence rate of TDs?
If indeed most (or all) DDs are tangential, then the TD occurrence rate is one to two per
hour. The problem of finding suitable TD generation mechanisms appears to be particularly
challenging for the fast streams emanating from coronal holes on the Sun.

Further results

Utilising the enhanced possibility of the four-spacecraft Cluster mission, we also tackle other
problems:

• A more reliable determination of the discontinuity thickness is possible. However,
our results are basically in good agreement with previous single-spacecraft studies. In
particular, we can confirm that the width of the thinnest observed DDs is a few proton
gyro-radii.

• The high accuracy of the DD normals principally allows for an enhanced description of
the DD orientation in space. We find that the normals tend to be in the ecliptic plane and
perpendicular to the local magnetic field. We point out, however, that our results may
be biased due to the selection criteria regarding the foreshock region. Since application
of the cross product method to determine the surface normals appears justified (because
Bn is small), one may rely on previous studies using this technique. They find that the
most likely orientation in the ecliptic plane is perpendicular to the Parker spiral.

• Another consequence of the inaccurate MVA normals is that attempts to assess large
scale curvature of DD surfaces must be carefully interpreted. We claim that MVA may
not be appropriate of determining a typical degree of surface curvature. It is not pos-
sible to differentiate between true large scale curvature, inaccurate MVA normals or
ripples on otherwise planar structures. However, we are rather certain that the assump-
tion of planar DDs on the Cluster separation scale is well justified.

Final remarks

The observations and conclusions presented in this work suggest that an appropriate model
for discontinuities in the interplanetary medium is a 1-D structure that is planar on the Cluster
separation scale on which non-ideal wave fields in the sense of non-isotropic fluctuations are
superposed.

We believe that the results presented in this work justify the proposition for an interplanetary
multi-spacecraft mission operating permanently in the solar wind. As Cluster, this mission
should consist of at least four spacecraft with variable separations.1 Then, many things that
have been done with only a single spacecraft could be repeated with reliable surface normals.
It would be interesting, for instance, whether or not the orientations of consecutive DDs are
related to each other. Analysis of that kind is important to better understand the topology of

1Ideally the mission should consist of two or more sets of “Clusters” with variable separations between the
sets, to allow for large scale studies.
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the interplanetary magnetic field and would also contribute to understanding the discontinu-
ous nature of the solar wind. Another requirement would be to have excellent plasma data
that for instance would also allow determining the chemical compositions on both sides of
the DDs. This would considerably facilitate the classification into RDs and TDs.

The main focus of the present work is a thorough analysis of multi-point solar wind obser-
vations, incorporating many technical details. We considerably contribute to understanding
the solar wind micro-structure. This work is of great interest in that it evidently abandons
misconceptions that persisted for over three decades. However, it can only be understood as
a first step. The next and decisive step is to build a theoretical framework which is consis-
tent with the observations. For instance, a definite proposition on the stability of RDs (with
large Bn) is mandatory. If the present status is correct, i.e., RDs are long-lived structures,
then theory needs to establish generation processes that produce only RDs with small normal
components of the magnetic field.

Also the question regarding particular solar wind structures that are likely to contain RDs
is of interest. We assume stream-stream interaction regions to be important and propose an
extended study (only one spacecraft is needed) to verify this assumption. In addition, the
work of Lyu [2003] may provide a theoretical framework.

The other possibility that becomes increasingly tempting in the course of this work is that the
solar wind contains no RDs at all. The possible impact of this conclusion on, for instance,
the heating of the solar corona and the acceleration of the solar wind, or the propagation of
cosmic rays on their way through the heliosphere is beyond the scope of this work. In any
case, it appears worthwhile to investigate these questions in the light of our conclusions.
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APPENDIX A

MATHEMATICS OF A TETRAHEDRON

To calculate the 1-D quality factors QGM, QRR and QR8 (equations 5.1, 5.2 and 5.4), the
geometrical properties of a tetrahedron need to be studied. The summary we present here is
based on Daly [1994].

Consider the tetrahedron defined by four points in space numbered 1 to 4, with position
vectors r1, r2, r3, r4. Without any loss of generality, we may consider only the differences
dα = rα− r4 in describing the points.

A.1 Area of the sides

The area S of a parallelogram bounded by two vectors d1 and d2 is given by the magnitude
of their cross product. Any triangle is half of a parallelogram, so its area is

S =
1
2
|d1×d2|

where d1 and d2 are the vectors for any two sides of the triangle.

We specify side α of the tetrahedron to be the one opposite vertex α, i.e. it does not contain
the point α. The areas of the four sides of the tetrahedron are then given by

S1 =
1
2
|d2×d3| (A.1)

S2 =
1
2
|d1×d3| (A.2)

S3 =
1
2
|d1×d2| (A.3)

S4 =
1
2
|(d2−d1)× (d3−d1)|=

1
2
|d1×d2 +d2×d3 +d3×d1| (A.4)
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The total surface S is the sum ∑4
α=1 Sα.

A.2 Volume of the tetrahedron

The volume V of a parallelepiped defined by three vectors in space is the triple product of
those vectors. Any tetrahedron is 1/6 of such a figure, hence

V =
1
6
|d1 ·d2×d3| (A.5)

A.3 Circumscribing sphere

To find the circumscribing sphere, we need the point that is equidistant from all four vertices,
i.e. we want r such that

(r− rα) · (r− rα) = r2−2r · rα + r2
α = ρ2 for α = 1 to 4

If we take point 4 as the origin, i.e. if we use the dα vectors in place of the rα, then r2 = ρ2

and this equation reduces to

2r ·dα = d2
α for α = 1 to 3 (A.6)

This matrix equation can be solved for the vector r and the radius of the sphere ρ2 = r2. The
volume V0 of the circumscribing sphere is then

V0 =
4
3

πρ3 (A.7)

A.4 The regular tetrahedron

The regular tetrahedron of unit side is the ideal against which the true figure of the four
spacecraft is to be measured. All relevant quantities can easily be derived from the equations
above. They are listed in Table A.1.

Table A.1: Values for the regular tetrahedron of unit side.

Quantity Value
Sα

√
3/4

S
√

3
V

√
2/12

ρ
√

6/4

V0
4
3π
(3

8

) 3
2
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A.5 Calculating the quality factors QGM, QRR and QR8

The quality factors in equations 5.1, 5.2 and 5.4 can now easily be calculated from the above
quantities.

For QGM the true volume and the true surface are needed. They are found from equations A.5
and A.1 - A.4, respectively. To get the side L of the “ideal” regular tetrahedron we average
the 6 distances between the 4 points. The “Ideal Volume” and the “Ideal Surface” are then
given by Videal = L3

√
2/12 and Sideal = L2

√
3, respectively. Then we can express QGM as:

QGM =
V

Videal
+

S
Sideal

+1 (A.8)

The calculation of QR8 (equation 5.4) is according to this.

For QRR the radius of the circumscribing sphere is calculated from equation A.6. The “Sphere

Volume” is then obtained from equation A.7. For a regular tetrahedron QRR
!
= 1. Thus,

substituting V =
√

2/12 and ρ =
√

6/4 from Table A.1 into equation 5.2 and setting QRR = 1
we get

N =

(
9π

2
√

3

) 1
3

. (A.9)

The actual volume of the sphere need not be calculated. The constant factors in equation A.7
can be included in the normalisation factor N . Then we get

QRR =

(
9
√

3
8

V

) 1
3

·ρ−1 (A.10)
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APPENDIX B

TABLES

Table B.1: Minimum, Maximum and average separation between the six pairs of spacecraft in km.
2001 D12 D13 D14 D23 D24 D34

Min 827 479 828 1066 1069 370
Max 1111 744 1028 1303 1309 701
Ave 1043 637 967 1232 1236 539

2002 D12 D13 D14 D23 D24 D34

Min 137 136 81 180 179 64
Max 186 173 121 225 224 120
Ave 177 165 108 213 212 92

2003 D12 D13 D14 D23 D24 D34

Min 3097 3328 3278 2704 3230 3263
Max 4845 5687 8640 4311 4799 4605
Ave 3592 3769 4734 3428 3661 3981
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Table B.2: RD:TD:ED:ND Percentages from this work. MVA results from the individual spacecraft
are shown. Deviations from 100 are due to truncation errors.

DD2001 DDs RD:TD:ED:ND R/T
All 432 35:16:47:2 2.1
Cl1 109 35:17:47:1 2.0
Cl2 106 28:15:53:4 1.9
Cl3 106 37:16:44:3 2.3
Cl4 111 38:16:44:2 2.3

DD2002 DDs RD:TD:ED:ND R/T
All 113 42: 6:48:4 6.7
Cl1 28 43: 7:46:4 6.0
Cl2 28 43: 4:50:4 12.0
Cl3 27 37:11:44:7 3.3
Cl4 30 43: 3:50:3 13.0

DD2003 DDs RD:TD:ED:ND R/T
All 698 42: 9:48:1 4.5
Cl1 180 42: 8:48:1 5.1
Cl2 175 41:10:49:1 4.2
Cl3 168 38:10:51:1 3.8
Cl4 175 46: 9:43:2 5.3

DD2003CH DDs RD:TD:ED:ND R/T
All 282 37:11:49:3 3.3
Cl1 71 34:10:54:3 3.4
Cl2 71 41:13:45:1 3.2
Cl3 71 34:13:51:3 2.7
Cl4 69 39:10:45:6 3.9



APPENDIX C

MVA ERROR ANALYSIS

This appendix contains additional approaches, to those presented in section 7.2.2, to assess
the uncertainty of MVA.

Standard differential approach

Sonnerup [1971] uses a standard differential approach. The angular error estimate for x3 is
proposed to consist of the angular change produced by changing the minimum variance away
from λ3 by the amount ∆λ3 given by

|∆λ3|2 =
1

(N−1)N

N

∑
i=1

[(Bi ·n−〈B〉 ·n)2−λ3]
2 (C.1)

i.e. (∆λ3)
2 is taken to be the variance of the N individual measurements (Bi ·n−〈B〉 ·n)2 of

λ3 divided by (N−1) [Sonnerup, 1971]. From the two conditions

(x3 +∆x3)M
B (x3 +∆x3) = λ3 +∆λ3 (C.2)

(x3 +∆x3)
2 = 1 (C.3)

one then finds in second order

|∆λ3|= (∆x31)
2(λ1−λ3)+(∆x32)

2(λ2−λ3) (C.4)

where ∆x3 j denotes the j-component of ∆x3. Note that the covariant matrix M
B remains

undisturbed. Equation C.4 describes an error cone of elliptical cross section with the minor
semi-axis of length

|∆x31|= [|∆λ3|/(λ1−λ3)]
1
2 (C.5)
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along x1 and the major semi-axis of length

|∆x32|= [|∆λ3|/(λ2−λ3)]
1
2 (C.6)

along x2. Note that the error explicitely depends on the eigenvalue separations (λ2−λ3) and
(λ1−λ3) and that the error is asymmetric for λ1 6= λ2. As expected from the discussion in
the previous section, the error is larger along x2 than along x1, indicating that the largest
uncertainties in the normal vector are associated with rotations of that vector about x1. The
values |∆x31| and |∆x32| from equations C.5 and C.6, respectively can then be used to calculate
|∆〈B ·x3〉| [Sonnerup, 1971].

Hoppe et al. [1981]

We only briefly mention Hoppe et al. [1981]. They present a qualitative discussion of the
angular uncertainties in x3 and suggest

|∆x3 j|= tan−1[λ3/(λ j−λ3)], j = 1,2 (C.7)

i.e. the error is solely determined by the eigenvalues.

Bootstrap method

Another interesting concept is the bootstrap method [Efron, 1979]. Kawano and Higuchi
[1995] introduce the application of that method to the estimation of the error in MVA. A
bootstrap sample is generated by drawing successively N vectors with replacement from the
measured set of N vectors. Thereby each of the N vectors from which to be drawn has
the same probability to be chosen. The resulting bootstrap sample may contain identical
vectors so that a sample usually does not contain all the measured vectors. A large number
(K ≥ 103) of bootstrap samples is generated in this fashion and each of these randomised
samples is subjected to MVA, producing a set of K minimum variance eigenvectors x3 and
corresponding normal-field components 〈B〉 ·x3. The distribution of these quantities can then
be statistically characterised, and the standard deviation may be used as an error estimate.



APPENDIX D

GENERALISED FORMALISM OF THE RELATIVE

TIMING TECHNIQUE

Harvey [1998] presents a treatment of determining n and U from the simultaneous observa-
tion of a discontinuity at N ≥ 4 spacecraft which is formulated by means of the volumetric
tensor (equation 5.5 chapter 5). It is a homogeneous least squares method.

Considering a cluster of N ≥ 4 spacecraft the positions rα of the spacecraft can be expressed
relative to their mean position, i.e. the mesocentre (equation 5.6 in chapter 5). Then,

N

∑
α=1

rα = 0 (D.1)

The time of observation on spacecraft α is denoted by tα. The “best” values of n and U are
determined by minimising the expression

S =
N

∑
α=1

[n · rα−U(tα− t0)]
2 (D.2)

where t0 is some origin of time. Dividing the above equation by U 2 and using m = n/U , the
only undetermined quantities are t0 and the three components mk of the vector m. Minimising
S by putting ∂S/∂t0 = 0 and ∂S/∂mk = 0 and using equation D.1 yields1 (see Harvey [1998])

t0 =
1
N

N

∑
α=1

tα (D.3)

i.e. t0 is simply the time at which the mesocentre of the polyhedron crosses the discontinuity;
and

m jR jk =
1
N

N

∑
α=1

tαrαk (D.4)

1Note that we use the summation convention as described in chapter 5.
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where R jk is the volumetric tensor as defined in equation 5.8. Provided that |R| 6= 0 the inverse
of the volumetric tensor exists and satisfies R jkR−1

kl = δ jl , where δ jl is the Kronecker delta.
Then equation D.4 may be solved to give

ml =
1
N

(
N

∑
α=1

tαrαk

)
R−1

kl (D.5)

Note that this solution for m = n/U only contains absolute spacecraft positions and abso-
lute crossing times, in contrast to equation 7.10 where only differences in position and time
are used. In general, it is easier to determine time delays of the observations made on one
spacecraft with respect to those made on each of the other spacecraft (as we do). With N
spacecraft, this yields N(N−1)/2 time delays tαβ = tα− tβ, with 1 ≤ α≤ N and 1≤ β < α.
Minimising

S =
N

∑
α=1

N

∑
β=1

[n · (rα− rβ)−Utαβ]
2 (D.6)

n and U can be determined using relative positions and timings. This ansatz yields (see
Harvey [1998])

ml =
1

N2

[

∑
α6=β

tαβ(rαk− rβk)

]
R−1

kl (D.7)

provided that |R| 6= 0. The symbol ∑α6=β indicates summation over the N(N−1)/2 (and not
N(N−1)) terms with α 6= β.

Note that the condition
tαβ + tβγ + tγα = 0 (D.8)

may or may not be satisfied exactly for α 6= β 6= γ 6= α, i.e. the time differences can be mutu-
ally inconsistent. If condition D.8 is satisfied for all values of α, β and γ the information from
all N(N−1)/2 time differences are redundant. In that case there are only N−1 independent
time offsets tαβ, and for N = 4 the least squares method is formally identical to the method
we use (equation 7.10). A failure of this consistency check would mean that at least one of
our assumptions, the planarity of the discontinuity or the uniformity of the motion, is not
valid. Another possibility would be that the time delays are not determined accurately. In ei-
ther case application of relative timing methods is not advisable. However, since the method
presented by Harvey [1998] uses six instead of three time differences it may be less sensitive
to errors made in determining the precise timings to the extend that these relative timings are
determined with statistically independent errors.
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Sonnerup, B. U. Ö. and L. J. Cahill, Magnetopause structure and attitude from Explorer 12
observations, J. Geophys. Res., 72, (A1), 171–183, 1967.
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nutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließ-
lich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn
nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese
Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass
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