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Abstract

In the first half of this thesis, we use Giroux’s construction of contact open books to construct
contact structures on simply connected five-manifolds. This allows us to reprove a theorem of
Geiges concerning the existence of contact structures in all homotopy classes of almost contact
structures on simply-connected five-manifolds.

In the second part of this thesis, we give an algorithm for computing the contact homology of
some Brieskorn manifolds. As an application, we construct infinitely many contact structures on
the class of simply connected contact manifolds that admit nice contact forms (i.e. no Reeb orbits
of degree −1, 0 or 1) and have index positivity with trivial first Chern class. In particular we give
examples of simply connected five-manifolds with infinitely many contact structures.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Existenz und Eindeutigkeit von Kontaktstrukturen in
Dimension 5. Wir untersuchen die Existenz von Kontaktstrukturen mittels der sogenannten
offenen Buchzerlegung. Giroux hat gezeigt, daß jede Kontaktmannigfaltigkeit sich als offenes
Buch darstellen läßt. Umgekehrt schlägt er eine einfache Konstruktion vor, um gewisse offene
Bücher für die Konstruktion von Kontaktmannigfaltigkeiten zu benutzen. Wir verwenden diese
Konstruktion, um einen neuen Beweis des folgenden Satzes von Geiges [18] zu geben.

Satz 1. Sei M eine einfach zusammenhängende Fünfmannigfaltigkeit. Dann hat M eine
Kontaktstruktur in jeder Homotopieklasse von Fastkontaktstrukturen.

Unser Beweis gibt eine explizite Konstruktion dieser Kontaktstrukturen. Außerdem hat man
genügend Freiheit, um möglicherweise verschiedene Kontaktstrukturen in einer Homotopieklasse
zu konstruieren.

Im zweiten Teil dieser Arbeit studieren wir eine Invariante von Kontaktmannigfaltigkeiten,
nämlich Kontakthomologie. Die Theorie ist von Eliashberg und Hofer entwickelt worden [14], und
mit Hilfe dieser Theorie kann man unter anderem manchmal die Existenz von unendlich vielen
Kontaktstrukturen in einer Homotopieklasse zeigen. Wir präsentieren einen Algorithmus, um die
Kontakthomologie von sogenannten Brieskornmannigfaltigkeiten zu berechnen. Der Algorithmus
funktioniert für Brieskornmannigfaltigkeiten der Dimension größer als 3. Die meisten unserer
Anwendungen sind allerdings in Dimension 5. Zum Beispiel beweisen wir die folgende Behauptung.

Sei Bpk die einfach zusammenhängende Fünfmannigfaltigkeit mit zweiter Homologiegruppe
isomorph zu Zpk ⊕ Zpk für k ∈ N. Diese Mannigfaltigkeit ist nach einem Satz von Barden [2]
eindeutig bis auf Diffeomorphismus. Wir schreiben B∞ = S2 × S3.

Satz 2. Für jedes k ∈ N und jede Primzahl p > 3 besitzt die Mannigfaltigkeit Bpk unendlich
viele Kontaktstrukturen mit der gleichen Homotopieklasse von Fastkontaktstrukturen. Ebenfalls
besitzen zusammenhängende Summen der Gestalt

S2 × S3# . . .#S2 × S3

k mal
#B2# . . .#B2

l mal
#B3# . . .#B3

m mal
#B5# . . .#B5

n mal

unendlich viele Kontaktstrukturen mit der gleichen Homotopieklasse von Fastkontaktstrukturen für
k, l,m, n ≥ 0.

Hiermit verbessern wir ein Ergebnis von Ustilovsky [50], der das gleiche für Sphären der
Dimension 4k + 1 gezeigt hat.
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CHAPTER 1

Introduction

This thesis concerns itself with some issues in contact topology. It is divided into two parts.
The first part is about open book decompositions, which we use as a way of constructing con-
tact manifolds. Although it has been known for a long time, due to a paper of Thurston and
Winkelnkemper [49], that there is a relation between open book decompositions and 3-dimensional
contact manifolds, only recently has this relation been explored in higher dimensions. Key to this
new interest in open books was Giroux’s announcement that not only do certain open book decom-
positions give rise to contact manifolds, but that the converse holds true as well. Every contact
structure is carried in some sense by an open book decomposition.

In one direction, this correspondence is easy to understand. Suppose we are given a compact
Stein manifold P , i.e. a compact subset of a Stein manifold whose boundary is a level set of a
plurisubharmonic function, and a symplectomorphism of P that is the identity near the boundary
∂P . Such a symplectomorphism gives rise to a mapping torus that carries a contact structure. In
order to get a compact contact manifold and to complete the open book, we still need to glue in
the binding of the open book. Since the boundary of the mapping torus looks like ∂P × S1 (the
symplectomorphism was assumed to be the identity on the boundary), we can glue in the binding
∂P ×D2. The binding carries a contact structure as well and can be made compatible with the
contact structure on the pages. Thus we obtain a contact structure on a compact manifold which
is induced by an open book.

We give one example to illustrate the procedure. Consider the disk D2 with its standard
exact symplectic structure, which is given by 2rdr ∧ dϑ in polar coordinates. This is the simplest
example of a compact Stein manifold; it is a compact subset of C satisfying the above condition.
We will use the identity as the monodromy for the mapping torus. The mapping torus is the solid
torus D2 × S1 with contact form dϕ + r2dϑ. The binding is also a solid torus and the contact
form there has a similar shape. Gluing the pages and binding together gives us a compact contact
manifold, which in fact is isomorphic to S3 with its standard structure. We can represent the
open book graphically by removing one point from S3 so that we can draw the situation in R3.
This is done in Figure 1.2 and it explains the name “open book structure”.

In view of the fact that A’Campo [1] gave a construction for open books on simply-connected
5-manifolds, it is interesting to see how Giroux’s construction works in that case. Unfortunately,
it turns out that most of A’Campo’s open books are not admissible for Giroux’s construction, but
we can still use Giroux’s construction for contact five-manifolds. Indeed, we follow Giroux’s most
basic observation to construct contact 5-manifolds. More specifically, one of our results can be
regarded as an alternative proof of a theorem of Geiges.

Theorem 1.1 (Geiges). Let M be a simply-connected five-manifold. Then M admits a contact
structure in every homotopy class of almost contact structures.

Roughly speaking, we reprove this theorem by constructing an explicit contact structure in ev-
ery single case. This procedure is greatly simplified by Barden’s classification of simply-connected
5-manifolds, which allows us to write every simply-connected 5-manifold as a connected sum of
model 5-manifolds. Although there are infinitely many of these model manifolds, they all have a
rather nice structure.

In Chapter 7 we give a slightly modified version of a joint article with Klaus Niederkrüger.
We consider the disk-bundle associated to T ∗Sn as page of the open book and Dehn twists as
the monodromy. This is the simplest possible case for a non-trivial monodromy. In addition, in
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Figure 1.2. Open book in R3

the case n = 2 Seidel [46] has shown that these Dehn twists generate the group of compactly
supported symplectomorphisms of T ∗S2. His results also imply that the Dehn twists have order
2 diffeomorphically (relative to the boundary), but are of infinite order symplectically. In other
words, on the disk-bundle associated to T ∗S2 there are many Dehn twists that are isotopic relative
to the boundary, but not symplectically so.

The second part of this thesis concerns itself with contact homology. One motivation for
that theory is the following. An important problem in contact topology is to classify all contact
structures on a given contact manifold. In dimension three, there are cases where this problem is
completely solved, but in higher dimensions the situation is not clear at all. Let us consider the
simplest compact contact manifolds, the odd-dimensional spheres, to clarify this.

In dimension three, we have the notion of overtwistedness to roughly classify contact struc-
tures. Due to a result of Gromov [27] it is known that overtwisted contact manifolds cannot be
symplectically fillable. Results of Eliashberg [12] settle the situation for S3. There is a unique
tight contact structure (that is, in fact, also fillable) and in all homotopy classes of plane fields,
there is precisely one overtwisted contact structure up to isomorphism.

Higher dimensional spheres are very different. Indeed, most examples are known to be fillable.
If we restrict ourselves to dimension 5, the existence of a non-standard contact structure on
S5 was established by Eliashberg [11], who showed that the filling of the standard structure is
some sense unique. He used this to exhibit an exotic contact sphere. Unfortunately, we cannot
distinguish contact structures by their filling. In particular, exotic contact spheres cannot always
be distinguished from one another by their filling.

The next step was made by Eliashberg and Hofer, following ideas of Floer. They developed
a homology theory for contact manifolds, which can be used as an invariant of contact manifolds.
Roughly speaking, this contact homology works as follows. The chain complex is generated by
closed Reeb orbits and the differential is defined by counting certain pseudo-holomorphic curves
connecting closed Reeb orbits. This theory is still very much being developed, since its foundations
do not all have published proofs.

If we return to our example of the sphere, Ustilovsky’s result comes to mind. He showed using
contact homology that S4n+1 admits infinitely many contact structures. In itself, this does not
seem to be very different from the 3-dimensional case. However, Ustilovsky’s contact structures
are all fillable and they all have the same classical invariants, which were used to classify the
3-dimensional case.
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Our contribution can be seen as an extension of Ustilovsky’s results. We present an algorithm
to compute the contact homology of Brieskorn manifolds. Unlike Ustilovsky’s approach we do
not compute the contact homology by perturbing the contact form. The latter would make
computations extremely hard, if not impossible. Instead, we use Bourgeois’s Morse Bott contact
homology, which enables us to compute contact homology with certain degenerate contact forms.
In this way, we are able to use the nice natural contact form on the Brieskorn manifolds. All Reeb
orbits of these natural contact forms are closed, and hence we get an S1-action on the Brieskorn
manifolds. Interestingly, the contact homology can be expressed in terms of the homology of the
orbit spaces of this S1-action with some degree shifts.

Application of the algorithm in various cases gives several interesting examples. We obtain
many examples of index negative contact manifolds whose contact homology is only non-zero in
negative degrees. We also find many other exotic contact structures on spheres that were not
covered by Ustilovsky’s results. We use some of these in a connected sum construction and thus
we show that there are many manifolds admitting infinitely many contact structures. This covers
a class of manifolds that is not restricted to spheres.

Structure of this thesis. We will introduce a lot of theory in this thesis, so we will start by
describing known results before giving our own. In Chapter 2 we will describe some basic notions
that are needed. This is standard material to those who work in the field of contact or symplectic
geometry, but we provide it for the sake of completeness. Chapter 3 is about Stein manifolds,
a special class of symplectic manifolds where the relation with contact manifolds is particularly
interesting. It provides an overview on well-known properties of Stein manifolds that we need.

Chapter 4 concerns a particular class of contact manifolds. Again most results are taken from
the literature, but some are not so well-known. We conclude the first part of our preparations
Chapter 5. We present Giroux’s construction. Most of the other results in that chapter are from
the literature as well.

These preparations are used to present our results on open books for contact manifolds in
Chapter 6. Results from a joint paper with Klaus Niederkrüger are presented separately in Chapter
7.

Our other results concern applications of contact homology. We present a very rough outline
of that theory in Chapter 8, Chapter 9 and Chapter 10. Results from these chapters are all taken
from the literature. The chapter on Maslov indices contains fairly standard results, but the other
two preparatory chapters contain more advanced results. We are rather sketchy in those chapters,
because of the complexity of the theory. Although we have tried to make everything as accessible
as possible, it is probably helpful if the reader has some knowledge of Floer homology when reading
Chapter 9 and Chapter 10. After these preparations, we present our results in Chapter 11. In the
appendix we have included the code of a computer program that implements the algorithms from
Chapter 4 and Chapter 11.





CHAPTER 2

Basic notions

In this chapter we will recall the basic notions that we will be using. A reader familiar with
the subject can certainly skip this chapter.

2.1. Symplectic structures

Definition 2.1. A symplectic vector space is a pair (V, ω), where V is a vector space and
ω : V × V → R is a skew-symmetric, non-degenerate bilinear form.

Given a linear subspace in a symplectic vector space (V, ω), we define the symplectic com-
plement of W as

Wω = {v ∈ V | ω(v, w) = 0 for all w ∈W}.
We say W is isotropic if W ⊂ Wω. This means that ω|W vanishes. We say W is symplectic if
W ∩Wω = {0}. There are other related notions, but we will not use them.

Definition 2.2. A symplectic manifold is a smooth manifold M with a non-degenerate,
closed differential two-form ω.

We see that symplectic manifolds are always even-dimensional, since two-forms on an odd-
dimensional manifold must at least have a 1-dimensional kernel. If dimM = 2n, then the non-
degeneracy condition for ω can also be written as

ωn 6= 0.

Sometimes we will speak about the symplectic structure on a manifold, by which we mean the
symplectic form. An isomorphism in the symplectic category is often called a symplectomor-
phism. More explicitly, suppose (M,ω) and (N,Ω) are symplectic manifolds, then a diffeomor-
phism f : M → N is called a symplectomorphism if f∗Ω = ω.

Since we are mostly concerned with contact manifolds, we shall not elaborate on symplectic
manifolds in this section. To appreciate the strong relation between symplectic and contact mani-
folds, we will mention one basic result though. To that end we define the standard symplectic
form on R2n, which we denote by ω0. Let us use coordinates (x1, . . . , xn, y1, . . . , yn) for R2n and
define

ω0 =
n∑
i=1

dxi ∧ dyi.

Theorem 2.3 (Darboux’s theorem). Every symplectic manifold (M,ω) of dimension 2n is
locally symplectomorphic to an open subset of (R2n, ω0).

Example 2.4. Given a smooth manifold M , we can endow the cotangent bundle T ∗M with
a natural symplectic structure. There are many constructions for the symplectic structure and
here we choose a construction with local coordinates. See [34] for another construction. Around
a point x ∈M , there are local coordinates (q1, . . . , qn) such that (0, . . . , 0) corresponds to x. The
associated chart gives rise to a trivialization of the cotangent bundle. We write (p1, . . . , pn) for
coordinates on the fibers of the cotangent bundle. In these local coordinates, we can define the
canonical 1-form

λcan =
n∑
i=1

pidqi = p dq.

13
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This 1-form is, in fact, independent of the choice of coordinates and induces a global 1-form. The
exterior derivative of λcan is denoted by ωcan and is called the canonical symplectic form on the
cotangent bundle of M .

2.2. Contact manifolds

Let M be a (2n+ 1)-dimensional, smooth manifold.

Definition 2.5. A contact structure on M is a hyperplane field ξ that is locally given by
the kernel of a 1-form α such that

α ∧ dαn 6= 0.
The pair (M, ξ) is called a contact manifold.

Another way of phrasing this definition is to say that the contact structure is maximally
non-integrable. The identity

dα(X,Y ) = LXα(Y )− LY α(X)− α([X,Y ])

explains this formulation. Namely, a distribution ξ is integrable precisely when sections of ξ are
closed under the Lie-bracket. Since ξ is locally the kernel of the 1-form α, integrability of ξ means

α([X,Y ]) = 0

for all sections X and Y of ξ. For sections of ξ, the above identity reduces to

dα(X,Y ) = −α([X,Y ]).

We are requiring maximal rank for dα and therefore we are as far as we can possibly be from an in-
tegrable distribution. That is not to say that contact structures do not have integral submanifolds.
However, the maximal possible dimension that an integrable submanifold of contact structure can
have is less than that of other distributions. This is stated by the following proposition, see [20]
or [34].

Proposition 2.6. Let (M, ξ) be a contact manifold of dimension 2n+1. Let L be an integral
submanifold of ξ. Then at each point q ∈ L the tangent space TqL is an isotropic subspace of
(ξq, dαq). In particular dimL ≤ n.

Integrable submanifolds of maximal dimension are called Legendrian. Note that the above
statement does not depend on the choice of local 1-form α. Indeed, if we take α′ = fα, then the
exterior derivative of α and of α′ differ only by the non-zero function f , when restricted to the
contact structure,

d(fα)|ξ = df ∧ α|ξ + fdα|ξ = fdα|ξ.
Like in symplectic geometry, contact manifolds have nice local models and have similar stability

properties.

Theorem 2.7 (Darboux’s theorem). Let (M, ξ) be a (2n + 1)-dimensional contact mani-
fold. Let α be a contact form on a neighborhood of a point p in M . Then there are coordinates
x1, . . . , xn, y1, . . . , yn, z on a possibly smaller neighborhood U of p such that

α|U = dz +
n∑
j=1

xj dyj .

Theorem 2.8 (Gray stability). Let ξt for t ∈ [0, 1] be a smooth family of contact structures
on a closed manifold M . Then there is an isotopy ψt for t ∈ [0, 1] of M such that

Tψt(ξ0) = ξt for each t ∈ [0, 1].

There are several theorems that emphasize the topological nature of contact manifolds. The
following theorem, Theorem 2.41 from [20], is one of them.

Theorem 2.9. Let jt : L → (M, ξ), for t ∈ [0, 1], be an isotopy of isotropic embeddings of
a closed manifold L in a contact manifold (M, ξ). Then there is a compactly supported contact
isotopy ψt : M →M with ψt(j0(L)) = jt(L).
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In the special case of a Legendrian embedding, we will refer to this theorem as the Legendrian
isotopy extension theorem.

An important problem in contact geometry is the classification of contact structures on a given
manifold. It was discovered by Bennequin that some contact 3-manifolds carry non-isomorphic
contact structures. Nowadays the contact structures that Bennequin studied are referred to as
overtwisted. This comes from the following invariant, the existence of an overtwisted disk.

Definition 2.10. Let (M, ξ) be a contact 3-manifold. An overtwisted disk on M is a disk
D, such that D is tangent to the contact structure ξ at the boundary,

TD|γ = ξ|γ .
If M has an overtwisted disk, then we say that M is overtwisted. If M does not have an
overtwisted disk, then we say that M is tight.

Note that we see in particular that the boundary of such a disk is a Legendrian curve.

Example 2.11. We regard S3 as a subset of C2. On C2 we choose complex coordinates
(z1, z2). This way we can give S3 a contact structure by considering the 1-form

α =
i

2

2∑
j=1

zjdz̄j − z̄jdzj .

We will denote the restriction of this 1-form to S3 by α̃. The kernel of α̃ is a contact structure,
which we will call the standard contact structure on S3. This contact structure is tight, which
was shown by Bennequin and in fact, it is the unique tight contact structure on S3. It is also a
holomorphically fillable contact structure. The latter notion will be defined and discussed in more
detail in Chapter 3.

Note that in this particular example, the contact structure is the kernel of a globally defined
form. This is a more general phenomenon; if the contact structure is cooriented, we have a global
contact form α. The differential of α gives the contact structure ξ the structure of a symplectic
vector bundle, which we denote by (ξ, dα). We also see that dα has a 1-dimensional kernel on
TM . We use this fact to define the Reeb field.

Definition 2.12. The Reeb field of the contact manifold M with contact form α is the
vector field defined by

iRdα = 0,
iRα = 1.

Note that the Reeb field is strongly dependent on the choice of contact form. If f is a positive
function, the contact form fα defines the same contact structure as α. The associated Reeb field
Rfα, however, differs in general from Rα. It can be expressed in terms of the Reeb field Rα and
a perturbation Y . We have

Rfα = Rα + Y,

where the vector Y is determined by the following two equations

iY dα =
df

f2
− R(f) + Y (f)

f
α,

iY α =
1− f
f

.

Note that we can restrict the first equation to the contact structure ξ, which allows us to simplify
the first equation to

iY dα|ξ =
df

f2
|ξ.

These formulae are often useful in order to see what happens to the Reeb field after a perturbation.

Remark 2.13. From now on, we will only consider contact manifolds with a coorientable
contact structure.
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2.2.1. Almost contact structures. If we are given a (2n+1)-dimensional contact manifold
M with coorientable contact structure, then we split the tangent bundle of M into the Reeb line
bundle and the contact structure, which carries the structure of a symplectic vector bundle. A
symplectic vector bundle can be given the structure of a complex vector bundle.

Definition 2.14. Let (E,ω) be a symplectic vector bundle over M . An endomorphism
J : E → E is said to be a complex structure if J2 = −id. We say J is compatible with ω if

• ωp(Jv, Jw) = ωp(v, w) for all v, w ∈ Ep and all p ∈M .
• ωp(v, Jv) > 0 for all non-zero vectors v ∈ Ep and all p ∈M .

Since compatible complex structures always exist, see [34], we can indeed endow symplectic
vector bundles with the structure of a complex vector bundle.

Thus we can reduce the structure group of M from SO(2n + 1) to U(n) × 1. We might be
interested in doing the converse. This gives rise to the following definition,

Definition 2.15. An almost contact structure on 2n + 1-dimensional manifold M is a
reduction of the structure group of TM from SO(2n+ 1) to U(n)× 1.

An important and unsolved question is whether any almost contact structure can deformed
into an honest contact structure. In dimension 3 the answer is known to be positive.

Theorem 2.16. Let M be a closed, oriented 3-manifold. Then M admits a contact structure
in any homotopy class of almost contact structures.

For higher dimensional manifolds, Geiges has solved the above question in the affirmative for
highly connected manifolds, see [18] and [19]. In Chapter 6 we will discuss this matter in greater
detail.

Related to this question is the existence of an almost contact structure. Since we are mostly
concerned with five-dimensional manifolds, the following result due to Geiges [18] is useful. Let
M be a five-dimensional manifold. The obstruction to the existence of an almost contact structure
on M is given by the third integral Stiefel-Whitney class, W3. In other words, there exists an
almost contact structure on M if and only if W3 = 0. This characteristic class can be obtained by
looking at the coefficient sequence

0→ Z ·2→ Z→ Z2 → 0,

which induces a long exact sequence in cohomology,

H2(M ; Z)→ H2(M ; Z)→ H2(M ; Z2)
δ→ H3(M ; Z).

The image of second Stiefel-Whitney class, w2, under δ is W3.
2.2.1.1. Chern class of a contact structure. Now let (M, ξ) be a contact manifold with contact

form α. The associated almost contact structure is an invariant of the contact structure. In
general, this invariant can be hard to compute. We can, however, also assign other topological
invariants to a contact structure, which are easier to compute.

In the above discussion we already saw that the contact structure can be given the structure
of a complex vector bundle. We can define the Chern class of a contact structure ξ by choosing a
compatible complex structure for (ξ, dα) and computing the Chern class of that complex bundle.
Different choices of compatible complex structure lead to the same Chern class, since the space
of compatible complex structures J (E,ω) on a symplectic vector bundle (E,ω) is connected. In
fact, J (E,ω) is contractible. See for instance [34].

Again, in dimension 5 we can say more due to a result of Geiges [18]. Indeed, the almost
contact structure in dimension 5 is completely determined by the first Chern class.



CHAPTER 3

Stein manifolds, convex symplectic manifolds and
symplectic cobordisms

In this chapter we want to describe a class of symplectic manifolds which will be the basic
building blocks for our construction of contact manifolds. Roughly speaking, we are interested in
exact symplectic manifolds whose boundaries carry an induced contact structure. These symplectic
manifolds are called convex symplectic manifolds. We describe this notion following Eliashberg
and Gromov, see [10]. Stein manifolds are a special class of complex manifolds that are convex
symplectic.

We also introduce the notion of a symplectic cobordism which we will use a lot when we
introduce contact homology. However, the notion of a symplectic cobordism can also be regarded
as a generalization of a convex symplectic manifold.

3.1. Convex symplectic manifolds

Let (V, ω) be a symplectic manifold and let U be a domain in V bounded by a smooth
hypersurface S. A vector field X is called an expanding field for ω if and only if

(3.1) LXω = fω,

for a positive function f . The notion of a contracting field can be defined similarly. The hyper-
surface S is said to be ω-convex with respect to U if there exists an expanding field X that is
transverse to S and looking outward. Of course, we could also ask for a contracting field looking
inward. The notion of ω-concavity can be defined similarly. We say that a hypersurface S is
ω-concave with respect to U if there is an expanding field X that is transverse to S and looking
inward.

Remark 3.1. Note that the function f in the above definition must be constant if dimV ≥ 4.
Indeed, if LXω = fω, then we get a one-parameter family of symplectic forms ftω by integrating
along flow lines of X and pulling back. In particular ftω should be closed, so we have

dft ∧ ω = 0.

Non-degeneracy of ω then implies that dft = 0 if dimV ≥ 4. On the other hand, if we denote the
time t flow of X by FlXt , we have

fω = LXω =
d

dt
(FlXt

∗
ω)|t=0 =

d

dt
(ftω)|t=0.

By taking the exterior derivative here and using dft ∧ ω = 0, we see

df ∧ ω = 0.

By applying the same argument as for ft, we see that df = 0, which means that f is constant on
a connected component where X is defined. If the constant f is equal to 1, i.e.

LXω = ω,

then the vector field X is also called Liouville vector field.

There are three possibilities for the domain where X is defined.
1. X is defined in a neighborhood of S. The hypersurface S is then said to be locally
ω-convex.

2. X is defined in U including S. We say we have ω-convexity in U .

17
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3. X is defined on all of V . This is referred to as global ω-convexity or ω-convexity in V .

Remark 3.2. The notion of local ω-convexity for S corresponds to S being a hypersurface
of contact type in the sense of Weinstein, since the function f in Formula (3.1) is constant by
Remark 3.1.

3.2. Stein manifolds

In this section we will give several descriptions of Stein manifolds. We will also outline some
relations they have with contact manifolds.

Definition 3.3. A Stein manifold is a complex manifold that admits a proper biholomorphic
embedding into CN for some N ∈ N.

Examples of Stein manifolds are zero-sets of polynomials in CN . In particular the complex
affine space Cn is a Stein manifold. Notice that it immediately follows that Stein manifolds
are Kähler manifolds, they being complex submanifolds of the Kähler manifold CN . Note that
Stein manifolds are always exact symplectic. The symplectic form comes from the Kähler form
and because the Kähler form is exact on CN , the induced form on a Stein manifold is exact as
well. It also follows that a Stein manifold cannot be closed unless it consists of isolated points.
Namely, suppose a given Stein manifold is closed. Then the coordinate functions are holomorphic
functions which assume their extrema in an interior point. However, by the maximum principle
the coordinate functions are then locally constant. This can only occur if the Stein manifold
consists of isolated points.

To see how Stein manifolds relate to the previous section, we shall cite a few theorems. First
we need to define the following notion.

Definition 3.4. Let (M,J) be a complex manifold. We say a function f : M → R is
(strictly) plurisubharmonic if the two-form

ωϕ = −d(J∗dϕ)

satisfies ωϕ(v, Jv) > 0 for all non-zero tangent vectors v.

Remark 3.5. In the literature the term plurisubharmonic function is used for functions that
satisfy ωϕ(v, Jv) ≥ 0. If there is a strict inequality, the notion of strictly plurisubharmonic function
is used. However, since we will only consider the strict case, we will omit the word “strictly”.

We say a two-form ω is J-invariant if ω(Jv, Jw) = ω(v, w) for all tangent vector v and w.
Note that above two-form ωϕ is J-invariant. We can associate a symmetric form g to a J-invariant
two-form ω by putting

g(v, w) = ω(v, Jw).
For a plurisubharmonic function ϕ we have a two-form ωϕ coming from the above definition. The
associated symmetric form is then positive definite. In other words, a plurisubharmonic function
gives rise to a Kähler metric and an associated two-form ωϕ. This two-form is symplectic by
positive definiteness of gϕ. The notion of plurisubharmonic function can be used to characterize
Stein manifolds. This is done in the following theorem due to Grauert [26].

Theorem 3.6. A complex manifold M without boundary is a Stein manifold if and only if M
admits a proper Morse function ϕ : M → [0,∞) which is strictly plurisubharmonic.

By our previous observations, we see in particular that a plurisubharmonic function endows
a Stein manifold with a symplectic structure. We might wonder whether the symplectic structure
depends on the choice of plurisubharmonic function. The following theorem by Eliashberg and
Gromov [10] shows this not to be the case.

Theorem 3.7 (Eliashberg and Gromov). If (M,J) is a Stein manifold, then all symplectic
structures coming from plurisubharmonic functions on M are isomorphic.

Let ϕ be a plurisubharmonic function on M . The following proposition shows that the level
sets of ϕ are globally ωϕ-convex, which gives a relation between Stein manifolds and our previous
section.
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Proposition 3.8. Let ∇ϕ denote the gradient vector field of ϕ with respect to gϕ. Then ∇ϕ
is an expanding vector field for ωϕ.

Hence the level sets of a plurisubharmonic function are contact manifolds. Such contact
manifolds are said to be Stein fillable or holomorphically fillable.

Remark 3.9. We will use the term compact Stein manifold from time to time. This term
is a bit strange, because we just pointed out that Stein manifolds cannot be compact unless they
are points. This concept is to be understood in the following way. A compact complex manifold
M with non-empty boundary K is called a compact Stein manifold if M admits a strictly
plurisubharmonic Morse function f such that K is a level set of f . We get a proper Stein manifold
by removing the boundary.

The following theorem of Lefschetz shows that the Stein condition puts considerable con-
straints on the topology of the underlying complex manifold, see for instance [38].

Theorem 3.10. Every Stein manifold of real dimension 2n has the homotopy type of a cell
complex of dimension n.

In handlebody language, this means that Stein manifolds admit a handlebody decomposition
without handles of index higher than n. The following theorem by Eliashberg gives the converse
if the real dimension of the manifold is greater than 4, see [15].

Theorem 3.11. Let X be a 2n-dimensional smooth manifold with an almost complex structure
J and n > 2. Let ϕ : M → R be a proper Morse function such that the indices of all its critical
points are ≤ n. Then J is homotopic to a complex structure J̃ such that ϕ is J̃-convex. In
particular, the complex manifold (M, J̃) is Stein.

Note that this theorem covers both the case of proper Stein manifolds and of compact Stein
manifolds. With suitable modifications, another version of this theorem can actually be made to
work in real dimension 4 as well. This was also done by Eliashberg, but here we will follow a
description due to Gompf. We need to introduce some notation and definitions for his theorem
and we will start with that.

3.2.1. Some handlebody theory. In this section, we shall give a summary of some of the
results from the book by Gompf and Stipsicz [25]. We start by recalling how to construct a smooth
oriented manifold by adding handles to D4. We will attach the handles by increasing index. This
is, in fact, the most general case, because we can isotope the attaching maps such that handles
are attached in order of increasing index, see for instance proposition 4.2.7 from [25]. Note that a
handle of index k can be regarded as a thickened k-cell. Therefore the above theorem of Lefschetz
shows that we only need to attach handles of index one and two.

Later we will use these constructions of Stein manifolds, but only in a few simple cases, where
we just attach two-handles to D4. Because of this, I opted to give a rough outline of the general
case (attaching both one-handles and two-handles) and will give a more detailed description in
the presence of just two-handles. During the discussion, it might be helpful to refer to Figure 3.2
to visualize what the terms mean.

The attaching of one-handles to D4 is done as follows. Let Ai be a copy of S0 embedded in
S3 = ∂D4 for i = 1, . . . , k. The embeddings should be chosen disjointly, i.e. Ai ∩Aj = ∅ for i 6= j.
These sets Ai are called the attaching spheres of the one-handles. We find neighborhoods of
the Ai that are disjoint and diffeomorphic to S0 ×D3. Fix such neighborhood Ni of Ai and fix
a diffeomorphism ϕi to S0 ×D3 for each i. The neighborhoods Ni are referred to as attaching
regions.

Set Hi = D1×D3 for i = 1, . . . , k. These are the one-handles we want to glue in. The four-ball
with one-handles glued in is the identification space

X = D4 ∪H1 ∪ . . . ∪Hk/ ∼
where D4 3 x ∼ y ∈ Hi if and only if x ∈ Ni and ϕi(x) = y ∈ S0 × D3 ⊂ ∂Hi. Note that X
is not a smooth manifold. We can, however, use a smoothing corners procedure to obtain a well-
defined smooth manifold. We will denote this smooth manifold by X as well, where it is implicitly
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Figure 3.2. A handle attachment
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Figure 3.3. Boundary connected sum of two solid tori

understood that the corners are smoothed. The handlebody we obtain this way depends only on
the isotopy class of the embeddings ϕi. Replacing ϕi by an embedding that is isotopic to ϕi gives
a handlebody diffeomorphic to the original one. This is a general principle in handle attachment,
but one-handles are special in the sense that there is no obstruction in finding an isotopy of one
embedding ϕi to another one (unless the handlebody is disconnected).

Note that the boundary of X is diffeomorphic to #kS
1 × S2. Indeed, attaching a single one-

handle to D4 gives us S1 × D3. Adding multiple one-handles can be interpreted as taking the
boundary connected sum of copies of D4 with a single one-handle attachment, see also Figure 3.3
for an analogous situation with three-dimensional handlebodies. Since the boundary of a boundary
connected sum is a connected sum of the boundaries, our claim follows. This illustrates explicitly
that attaching handles along isotopic attaching spheres gives diffeomorphic manifolds.

In general we can attach the two-handles in a similar way. We choose embeddings of S1

into the boundary of the handlebody, which we call attaching circles, and glue the two-handle
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Figure 3.4. Framings on an unknot

D2 ×D2 to the handlebody, by identifying a neighborhood of the embedded S1 with a subset of
the boundary of the two-handle, namely with S1 × D2. A few remarks need to be made here.
The identification is not unique and needs to be indicated with additional data. In the case of
one-handles this was not a problem, because all framings of the normal bundle of the embedded S0

are isotopic. In the case of two-handles, with respect to some metric we can choose a orthogonal
trivialization of the normal bundle, so the homotopy class of framings is represented by a class in
π1(SO(2)) ∼= Z. Note also that there are embeddings of S1 in S3, or in general in #kS

1×S2, that
are not isotopic even if they are homotopic; an embedded circle can, for instance, be knotted.

This latter point is not a problem, but only indicates that the resulting handlebody depends
in a more essential way on the choice of embeddings than in the case of just attaching one-handles.
The other point, the framing, needs to be taken into account, though. We will describe the issue
of framing in the absence of one-handles.

3.2.1.1. Framing of two-handles. Let K be an embedding of S1 into D4 along which we want
to attach a two-handle. The framing of K is a trivialization of the normal bundle of K. Hence we
can indicate a framing by a parallel copy K ′ of K that is disjoint from K and is contained in a
tubular neighborhood of K that can be identified with the normal bundle of K. In the previous
section, we claimed that the homotopy class of framings of the normal bundle of K correspond
to π1(SO(2)) ∼= Z. In order to work with this correspondence, we need to specify a framing
corresponding to 0 ∈ π1(SO(2)). For that, we take any framing as we just described by choosing
a parallel copy K ′ of K and say it corresponds to 0 ∈ π1(SO(2)). Any other framing K ′′ can then
be defined by taking K ′ and putting additional twists around K in it, see Figure 3.4.

Of course, this correspondence is not unique. In the absence of one-handles, we can single
out a distinguished framing though. First orient K. If there are no one-handles, the curve K
is null-homologous in S3, and we can therefore choose an oriented Seifert surface Σ for K. If
K ′ is another embedding of S1 disjoint from K, then we define the linking number of K and
K ′ as the algebraic number of intersections of K ′ with the Seifert surface of K. Note that we
can always isotope K ′ to a curve that is transverse to Σ, in which case we can count the signed
intersection of K ′ with Σ. Alternatively, the linking number can be defined as the intersection
product of the class that K ′ represents in H1(S3 − N(K)) and the class that Σ represents in
H2(S3 −N(K), ∂N(K)). Here we have used N(K) to indicate a tubular neighborhood of K. We
will denote the linking number of K and K ′ by lk(K,K ′).

Remark 3.12. We should remark at this point that the linking number is independent of the
choice of Seifert surface. By definition, the linking number depends only on the homology class of
K ′ in H1(S3 −N(K)). Also, the linking number is symmetric,

lk(K,K ′) = lk(K ′,K).

With the notion of linking number we can define a distinguished copy K ′ of K by requiring
lk(K,K ′) = 0. The correspondence of the framing with π1(SO(2)) can then also be made more
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explicit. Namely if K is a framed embedding of S1 (with framing K ′′), we define the framing
coefficient of K as lk(K,K ′′).

In the presence of one-handles, we can in principle do something similar, but for attaching
circles that run over one-handles (and might therefore not be null-homologous) more work is
required. Because we will be using the above handle construction only in cases where there are
no one-handles, we will not go into this.

The attaching of a two-handle can now be made unambiguous by specifying an embedding of
the attaching circle in S3 ⊂ D4 and a framing coefficient to indicate the framing of the normal
bundle used in the identification. For the attachment of a single two-handle to D4, set H =
D2 ×D2. Choose a framed embedding K of S1 into S3 = ∂D4 such that the framing coefficient
of K coincides with the given one. Denote a tubular neighborhood of K that corresponds to the
normal bundle of K by N(K). The framed embedding gives rise to a diffeomorphism ϕ from
N(K) to S1 ×D2. Then we define

X = D4 ∪H/ ∼,
where D4 3 x ∼ y ∈ H if and only if x ∈ N(K) and ϕi(x) = y ∈ S1 ×D2 ⊂ ∂H. Again we need
to smooth corners to ensure that X is a smooth manifold. This process can be repeated in order
to attach any number of two-handles.

Remark 3.13. We will only be attaching two-handles to D4, so the attaching circles are just
curves in S3. This allows us to use the standard convention for drawing knots in S3, i.e. we assume
that the knots miss at least one point, so we can draw them in R3. We choose a projection of
R3 onto the plane such that the intersections in the projection are at most double points and
transverse. This allows us to visualize the attaching circles.

Remark 3.14. Although we said we needed an embedding of a link and framing coefficients
to determine the attaching of the two-handles unambiguously, the actual handlebody depends
only on the isotopy type of the link and the framing coefficients. That is to say, an isotopy of an
attaching circle gives rise to a diffeomorphism of the resulting handlebody.

3.2.1.2. Topology of a handlebody. The handlebody language is a very useful description when
we want to say something about the (algebraic) topology of a manifold. For instance, the han-
dlebody X obtained by attaching k one-handles to D4 gets an additional generator of π1(X) for
each one-handle, so π1(X) is a free group on k generators. Note that a two-handle can cancel a
one-handle (see Figure 3.5) and in fact, adding two-handles to a handlebody gives relations for
its fundamental group. A handle cancellation is a simple example where the relation is that the
generator corresponding to the one-handle is trivial. By letting the attaching circle of a two-handle
run in different ways over the one-handles (over several one-handles or multiple times over the
same one-handle), one can make more complicated relations. In dimension two and three not
every relation can be realized, because the attaching circles need to form an embedded link. In
dimension four there is no restriction, since the boundary of a handlebody is three-dimensional.
That leaves enough room to ensure attaching circles realizing any given relation can be embedded.

Our main point of interest concerns a handlebody without one-handles, so we will not prove
the above statements about the fundamental group. Earlier, we made the claim that attaching a
k-handle can be regarded as adding a thickened k-cell. By doing the reverse (shrinking the han-
dlebodies to cells), we also see that adding two-handles to the zero-handle D4 gives a handlebody
that is homotopy equivalent to a bouquet of k two-spheres. So if we define X as a handlebody D4

with k two-handles attached, we see that X is simply connected and H2(X) ∼= Zk.
The generators of the second homology can be explicitly represented by closed surfaces in

X in the following way. Let us denote the link of oriented attaching circles in ∂D4 by L. The
oriented components of L will be denoted by K1, . . . ,Kk. Each component Ki of the link admits
a Seifert surface that lies in ∂D4. We perturb the Seifert surface in such a way that its interior
lies in the interior of D4. Let us denote this surface with boundary Ki by Fi. If we attach the
two-handle along Ki, we see a disk with boundary Ki lying in the two-handle, namely the core
D2 × {0}. If we glue the core of the two-handle to Fi along Ki, we get a closed surface F̃i. If
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Figure 3.5. A two-handle cancelling a one-handle

the perturbed Seifert surface Fi is oriented such that its orientation on the boundary coincides
with the orientation of Ki, we can extend the orientation to F̃i. We can repeat this process for
all attaching circles and get a closed, oriented surface F̃i for each Ki, for i = 1, . . . , k. The classes
αi := [F̃i] ∈ H2(X) form a basis for H2(X).

We can describe the intersection product of X with respect to this basis. At this point, the
orientation of the link L and of the associated Seifert surfaces comes into play, because arguments
for the following theorem rely on the linking number. We need one additional definition before we
can state the theorem.

Definition 3.15. The linking matrix of an oriented, framed link L = ∪ki=1Ki, where Ki is
an embedded circle in ∂D4, is given by the following (k × k)-matrix [aij ]. The entry aij is given
by lk(Ki,Kj) for i 6= j and by the framing coefficient of Ki if i = j.

Note that the linking matrix is symmetric. The intersection form of X is given by the following
theorem.

Theorem 3.16 (see [25]). Let X be a connected handlebody given by attaching k two-handles
to D4 along an oriented, framed link L in ∂D4. The matrix of the intersection form of X with
respect to the basis α1, . . . , αk as defined above is given by the linking matrix of L.

The surfaces F̃i used to represent the generators of the homology of X are not unique. We can
push the interior of the Seifert surface Fi to different “depths” in D4, see Figure 3.6. Of course,
such a perturbation extends to the surface F̃i and does not affect the homology class of F̃i. This
can be used to prove the above theorem. Suppose we want to compute the intersection product
of αi with αj . We can assume by pushing F̃j deeper that F̃i intersects F̃j at points where F̃j is
“vertical” (meaning that F̃j looks like I × Kj), see Figure 3.6. In other words, the intersection
points of F̃i with F̃j correspond to the intersection points of Fi with Kj . Note also that the
orientations of the intersections of F̃i with F̃j correspond to the ones of Fi with Kj . Thus we
obtain

αi · αj = F̃i · F̃j = Fi ·Kj = lk(Ki,Kj).
A similar argument can be applied to show that αi · αi = lk(Ki,K

′
i).

We would like to finish this section with an example, where we give a handlebody decompo-
sition for disk-bundles over S2.

Example 3.17. In this example we will attach an index 0 or 2 to the sets to indicate whether
they belong to a zero-handle or to a two-handle, respectively. We do this to avoid confusion, since
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Figure 3.6. Pushing Seifert surfaces to different depths

we will write the zero-handle as a product D2 ×D2. Since the two-handle had the same form, it
might be hard to distinguish which one is which.

Suppose we want to attach a two-handle along a framed unknot K in S3 ⊂ D4
0. We can

regard the zero-handle, D4
0, as the product D2 × D2

0. By an isotopy of the unknot K we can
assume that K lies in (∂D2)×D2

0. In fact, we can do the isotopy in such a way that the identity
is used in the first factor to glue the two-handle D2 ×D2

2 to the zero-handle D2 ×D2
0. Moreover,

the identification in the second factor can be assumed to be an element in SO(2). In other words,
we do the following. Let x0 be an element in the boundary of the zero-handle D2 ×D2

0 and let
y2 denote an element in the (∂D2 ×D2

2)-part of the two-handle. The attaching map is given by

f : S1 ×D2
2 → S1 ×D2

0

(p, v) 7→ (p,A(p)v),

for a loop A of SO(2)-matrices. Now we say that x0 ∼ y2 if x0 = f(y2). The handlebody X is
given by the identification space

X = D2 ×D2
0 ∪D2 ×D2

2/ ∼ .
It immediately follows that X is a disk-bundle over S2. More precisely, if the framing coefficient of
K is given by k, we see that we get a disk-bundle over S2 with Euler number k. Indeed, it suffices
to compute the self-intersection of a surface generating H2(X). One sphere F̃ that generates
H2(X) can be seen by taking the core of the two-handle, D2 × {0} and gluing this disk to the
Seifert surface F of the unknot K, which also is a disk. For another sphere representing the same
class as F̃ , take a disk D2 × {p} where p 6= 0. This disk intersects the zero-handle in a parallel
copy K ′ which indicates the framing of k. Since K ′ is the unknot as well, the Seifert surface F ′

for K ′ is also a disk. Gluing these two disks together gives a sphere F̃ ′. Note that F̃ represents
the same homology class as F̃ .

From the construction, it follows that F̃ and F̃ ′ can only intersect each other in the interior
of the zero-handle if we push the interiors of F and F ′ into the interior of D4. Moreover, we can
assume that F ′ is vertical at the intersection points. Therefore the self-intersection of the class of
F̃ is given by

F̃ · F̃ ′ = F · F ′ = F ·K ′ = lk(K,K ′) = k.

3.2.2. Legendrian curves. In the previous section, we roughly outlined how to attach one-
and two-handles to D4, by attaching them along attaching spheres in ∂D4 = S3. It turns out that
we get a natural Stein structure on a handlebody if we attach the two-handles along distinguished
curves with a specific framing. In fact, Eliashberg has proved a theorem showing that any compact
Stein manifold of dimension 4 can be represented in such a way.
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Figure 3.7. Canonical framing of a Legendrian curve

The first thing to note is that the zero-handle in a handle-body decomposition carries a Stein
structure. In fact, the four-ball D4 is a Stein filling for the unique tight contact structure on S3.
This observation can be regarded as a guideline, because the boundary of a compact Stein manifold
is a contact manifold. In other words, constructing a Stein structure on manifold M gives the
boundary of M a contact structure. In order to ensure that the boundary of a two-handlebody
carries a contact structure, the attaching circles of the two-handles need to be adapted to the
geometric structure. We do this by requiring the attaching circles to be Legendrian curves. There
are special requirements for the framings of the two-handles.

In the following, we will talk about Legendrian curves. We only intend to apply the discussion
to handlebody constructions without one-handles. Hence we will consider only S3 = ∂D4 with its
unique fillable contact structure ξ. A lot of points will apply in more general situations though.
In particular, everything that is done here can be made to work in the presence of one-handles.
For more information, see chapter 11 of [25].

For practical purposes, it is useful to draw the Legendrian curves in a diagram. As is common
in knot diagrams, we take out a point of S3 to be able to draw curves in R3. If we restrict the tight
contact structure on S3 to R3 we get a contact structure that is contactomorphic to the standard
contact structure on R3, see for instance Proposition 2.13 of [20]. We will use the convention of
Gompf and Stipsicz, so we consider R3 with contact form α = dz + x dy. We will use the front
projection, where a curve is projected to the yz-plane. This is done for the following reason.
Consider the curve

γ(t) = (x(t), y(t), z(t)) in R3.

If γ is a Legendre curve, then dγ
dt ⊂ kerα, which means that x = − dzdy . In other words, the slope

of γ in the yz-projection will determine the x-coordinate of a Legendrian curve. Moreover, for a
Legendrian curve, the projection cannot have vertical tangencies. Instead a Legendrian curve can
have cusps in its front projection. We also see from the condition x = − dzdy that an arc with a
larger slope will cross underneath an arc with a smaller slope, since larger slope implies a smaller
x-coordinate.

We will consider Legendrian isotopies, i.e. isotopies through Legendrian curves. By the Legen-
drian isotopy extension theorem in contact geometry, a Legendrian isotopy extends to an isotopy
of the ambient contact manifold.

Another feature of (oriented) Legendrian curves is that they come with a canonical framing.
This framing is induced by any vector field transverse to the contact structure, for instance the
Reeb field; we get a copy L′ of a Legendrian knot L by pushing L along such a transverse vector
field, see Figure 3.7. This framing is preserved by Legendrian isotopies. We get an invariant of L by
computing the framing coefficient of the canonical framing. This invariant is called the Thurston-
Bennequin invariant, tb(L) ∈ Z, and can be easily computed from the front projection of L.
The canonical framing is given by a copy L′ of L, obtained by pushing L upward. Here, we use
the fact that with our conventions the Reeb field points up in the front projection, i.e. R = ∂

∂z .
The framing coefficient of the canonical framing of L is then given by tb(L) = lk(L,L′). This
linking number can be computed from the front projection of L by counting the crossings of L
underneath L′ with orientation. Alternatively, we can count the writhe of L (signed crossings of
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Figure 3.8. Orientation of a crossing

Figure 3.9. How to count cusps for the rotation number

L with itself) and the number of cusps, since every cusp corresponds to a crossing of L and L′. In
Figure 3.8, we have indicated the usual convention for calling a crossing positive or negative. We
obtain the following result for the Thurston-Bennequin invariant of L,

tb(L) = writhe(L)− 1
2
#cusps,

where the writhe(L) is given by the positive crossings minus the negative crossings. See also [25].

In a similar way we can introduce another simple invariant of Legendrian curves. Let L be
an oriented Legendrian curve. Since we are mainly interested in Stein manifolds without one-
handles, we assume that L is null-homotopic and hence we can find a Seifert surface F for L. The
restriction of ξ to the Seifert surface F is symplectically trivial, since F is a surface with boundary.
In particular, we get a trivialization of ξ|L. Since L is oriented, we can choose a tangent vector v
to L that defines the orientation of L. Because L is Legendrian, the vector v lies in ξ|L. Hence
we may define the rotation number r(L) to be the winding number of v with respect to the
trivialization given by the Seifert surface F .

In case L is represented by a diagram in the front projection, we can use a global trivialization
of the contact structure on R3. Namely, the vector ∂

∂x lies in the contact structure. The winding
number with respect to this trivialization can be determined by counting with sign how often L
crosses ± ∂

∂x . This can only happen in cusps. We introduce the following notation to compute
r(L) more explicitly. In Figure 3.9, we have indicated which cusps we refer to as up-cusps and to
which ones we refer as down-cusps. We claim the rotation number of L is given by

r(L) =
1
2
(#{up-cusps} −#{down-cusps}).
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Figure 3.10. Different Stein structures on Σ4

This can also be found in [25]. See Figure 3.10 for an example of Legendrian curves distinguished
by these invariants. We should point out that these invariants do not always suffice to distin-
guish Legendrian knots from each other and that other, more subtle invariants exist, for instance
invariants coming from contact homology, see [8].

3.2.2.1. Two-handle attachment along Legendrian links. We have now introduced enough no-
tation to state Eliashberg’s theorem on Stein manifolds.

Theorem 3.18 (Eliashberg). A smooth, oriented open four-manifold X admits a Stein struc-
ture if and only if it is the interior of a handlebody such that the following conditions hold:

(a) Each handle has index ≤ 2.
(b) Each two-handle hi is attached along a Legendrian curve Li in the contact structure in-

duced on the boundary of the underlying handle body consisting of zero- and one-handles.
(c) The framing for attaching each hi is obtained from the canonical framing on Li by adding

a single negative twist.
A smooth, oriented compact four-manifold X admits a Stein structure if and only if it has a
handlebody decomposition satisfying (a), (b) and (c). Both in case of a compact Stein manifold
and in the case of a proper Stein manifold, such a handle decomposition comes from a strictly
plurisubharmonic function (with, in the compact case, the boundary of X as a level set).

In case there are no one-handles, condition (c) from the theorem can be restated by requiring
that the framing coefficient for the attaching handle hi be given by tb(Li)− 1. This can actually
be done in general, but we have not defined framing coefficients in the presence of one-handles.
See for instance [25] for more details.

We will use the theorem to construct compact Stein manifolds. A compact Stein manifold can
be represented by an oriented Legendrian link in #kS

1 × S2. Since we will not use one-handles,
we consider only oriented Legendrian links in S3. These will always represent simply connected
Stein manifolds. Note that the converse does not hold true. A handlebody decomposition with
one-handles can still give rise to a simply connected Stein manifold, because of handle cancella-
tion. Since all data that is needed to construct a Stein manifold can be obtained from the front
projection, we will represent Stein manifolds by drawing Legendrian links in the front projection.
This gives rise to a Kirby diagram. We simply draw the oriented, Legendrian attaching circles
of the two-handles. The framing coefficient for each component Li of the Legendrian link is given
by tb(Li)− 1.

The first Chern class of a Stein manifold provides an invariant that shows that a four-manifold
can carry non-isomorphic Stein structures. In absence of one-handles, the first Chern class can be
expressed as follows. Suppose X is a Stein manifold that is represented by a Kirby diagram. If
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Figure 3.11. Trivializations on the core of the two-handle and on the Seifert
surface of Li in ∂D4

there are no one-handles, then H1(X) = 0 and hence we can think of H2(X) as Hom(H2(X),Z).
In particular, the first Chern class would be such a homomorphism from H2(X) to Z. Recall
that an oriented link used for the attaching circles gives a canonical basis for H2(X). Each link
component Li gives a surface Fi that represents a generator [Fi] of H2(X). Then we have the
following proposition (see proposition 2.3 from [24]).

Proposition 3.19. With the above notation, the first Chern class of X is characterized by

〈c1(X), [Fi]〉 = r(Li).

Proof. In Figure 3.11 we have drawn a picture of the situation. This might help to clarify
the data involved. We start by giving suitable trivializations on the zero-handle and on the two-
handles. Since the two-handles are glued along S1’s to the zero-handle, we can express the Chern
class in terms of the winding number of the trivializations on the two-handles with respect to the
trivialization on the zero-handle. More precisely, on the boundary of the zero-handle D4 we choose
a trivialization of the complex tangent bundle. We take u = ∂

∂x (coming from a trivialization of
the fillable contact structure on S3) and v, which denotes the inward normal to S3 in D4. For the
two-handles hi, i = 1, . . . , k, we note that a two-handle hi can be regarded as a neighborhood of
D2×{0} ⊂ iR2×R2. The circle given by ∂D2×{0} denotes the attaching circle of the two-handle
hi. We write Si for this circle. We denote the tangent vector to Si by τ and the outward pointing
normal vector (in D2 × {0}) by ν. Note that (τ, ν) do not just trivialize TD2|Si

but they give
a complex trivialization of Thi|Si as well. With respect to the product trivialization on D2, the
trivialization (τ, ν) represents a (non-trivial) element in π1(SO(2)). As a complex trivialization,
(τ, ν) also represents an element in π1(U(2)), again with respect to the product framing. However,
SO(2) ⊂ SU(2) ⊂ U(2) and SU(2) is simply connected, so the complex trivialization (τ, ν) is
homotopic to the product trivialization. Hence (τ, ν) extends to a complex trivialization of Thi
over all of hi. When we now glue a two-handle hi to the zero-handle, gluing Si to Li, we identify
the tangent τ to the two-handle with the tangent field to the attaching circle Li. Also the vector
field ν becomes an inward normal to ∂D4 in D4. Let us call the resulting handlebody X. We can
see the surface Fi formed by the Seifert surface of Li in D4 glued to the core of the two-handle hi.

The bundle TX|Fi
is a rank 2 complex vector bundle over Fi and hence it splits into complex

line bundles. Actually, we can see that one of these line bundles is a trivial bundle, because the
vector fields v and ν match on Li and hence give rise to a nowhere vanishing section of TX|Fi . If
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we call this trivial bundle L, then we see that its complement, which we shall call Q, is trivialized
by u and τ on the two disks making up Fi. Since L is trivial, we have

〈c1(TX), [Fi]〉 = 〈c1(Q), [Fi]〉.

We finish by showing that the Chern class of the line bundle Q is indeed given by r(Li). As we saw
before, the surface Fi can be split into two surfaces with boundary, S1 and S2, the first one lying
in D4 and the second one being the core of the two handle hi. The line bundle Q is trivialized on
S1 by the vector field u. On S2 the vector field τ trivializes Q. Hence we get two trivializations of
Q on the intersection Li of the two surfaces S1 and S2, one coming from u and one coming from
τ . The Chern class of Q|Fi

can then be computed as the winding number of τ with respect to u.
This winding number is equal to the rotation number r(Li). �

See Figure 3.10 for an example of three different Stein structures on Σ4, the disk-bundle over
S2 with Euler number −4. In particular we see that disk-bundles over S2 can carry many Stein
structures. In fact, Gompf showed in [24] that many four manifolds admit infinitely many Stein
structures. We only consider a few simple cases of disk-bundles over S2 to construct contact
structures on five-manifolds, but even so we get infinitely many contact structures on some them,
distinguished (not surprisingly) by their Chern class. The exotic Stein structures that Gompf
provides might be used to construct more interesting examples of contact five manifolds.

3.3. Symplectic cobordisms

In this section we define symplectic cobordisms following [14]. The notation introduced here
will only be used in Chapter 9 and later chapters, but, as we shall see, we may regard Stein
manifolds as special symplectic cobordisms.

Definition 3.20. Let (W,ω) be a symplectic manifold. If (W,ω) has ends of the form

E− = V − × (−∞, 0] and E+ = V + × [0,∞),

such that V ± are compact manifolds and ω|V ± = d(etα±) with α± contact forms on V ±, then
we say that (W,ω) is a symplectic manifold with cylindrical ends. If we denote the contact
structure given by kerα± on V ± by ξ±, then we also say that such a symplectic manifold (M,ω)
is a directed symplectic cobordism between the contact manifolds (V +, ξ+) and (V −, ξ−). We
write

−−−−→
V −V + for the symplectic cobordism and call the contact manifolds (V +, ξ+) and (V −, ξ−)

symplectically cobordant.

If we use our previously introduced notation, we see that the contact manifolds V − and V +

are concave and convex, respectively. Namely, the expanding vector field ∂
∂t points inward for the

end E− and outward for E+ if we use the coordinates from the definition. We say that the end
E+ is convex and the end E− is concave.

Remark 3.21. This definition of a cobordism is different from what one usually encounters
in the literature, since in general cobordisms do have a boundary and the ends are usually given
in another order. This way of ordering the ends is the usual one in symplectic field theory though,
see [14]. We can relate a symplectic cobordism to a cobordism in the usual sense in the following
way. Let (W,ω) be a symplectic cobordism. Since the ends of a symplectic cobordism have the
form V −×(−∞, 0] and V +× [0,∞), we can remove the interiors of the ends and obtain a compact
cobordism

W 0 = W − (IntE+ ∪ IntE−).

This cobordism W 0 is referred to as a compact symplectic cobordism. The symplectic cobordism
W itself is then sometimes called completed symplectic cobordism.

To relate this definition to the previous sections, note that Stein and convex symplectic mani-
folds can be regarded as a symplectic cobordism between a certain contact manifold V and the
empty set.



30 3. STEIN MANIFOLDS

��� �������� 	�	�
��
����

�������������� �������������� ������������

Figure 3.12. Gluing symplectic cobordisms

Suppose now that we are given a contact manifold (V, ξ) with contact form α. Then we define
the symplectization of V as the symplectic manifold

V × R with symplectic form ω = d(etα),

where t denotes the coordinate on R. We can also regard the symplectization as a trivial symplectic
cobordism. This point of view can sometimes be useful in dealing with symplectic cobordisms, see
Chapter 9. Note also that the ends of any symplectic cobordism are isomorphic to the upper or
lower half of a symplectization.

Due to the structure at the ends of a symplectic cobordism, we see that two symplectic
cobordisms

−−→
V0V1 and

−−→
V1V2 can be be glued to give a symplectic cobordism

−−→
V0V2. This is illustrated

in Figure 3.12. More precisely, we have the following construction. Let W− =
−−→
V1V2 and W+ =−−→

V2V3 be symplectic cobordisms. The contact form on V2 is denoted by α. Then the convex
end E+ of W− looks like (V2 × [1,∞), d(etα)) and the concave end E− of W+ looks like (V2 ×
(−∞,−1], d(etα)). If we remove the interior of the ends E∓ from the cobordisms W±, we get
two cobordisms, each with boundary V2. In fact, we can arrange that closed collar neighborhoods
of the boundary of W± are symplectomorphic to ([−1, 1]× V2, d(etα)). In this identification, the
boundary of W− − Int (E−) is given by V2 × {1}, and the boundary of W+ − Int (E+) is given
by V2 × {−1}. Hence we can glue W− − Int (E−) and W+ − Int (E+) along the above collar
neighborhood and we obtain a glued cobordism W = W− }W+ (see also [14]).



CHAPTER 4

Some facts on Brieskorn manifolds

4.1. Brieskorn manifolds

In this section we would like to introduce Brieskorn manifolds. These are obtained by inter-
secting the zero-set of a polynomial of the form za0

0 + . . . + zan
n in Cn+1 with a sphere S2n+1. It

was shown that these sets are contact manifolds by Lutz and Meckert [30] if the radius of the
sphere is sufficiently small. Although it has probably been known for a much longer time that the
radius of the sphere used in defining Brieskorn manifolds is unimportant, I have not been able to
find a reference, so we give a reasonably short proof here of that claim.

We should also mention that the obvious filling of a Brieskorn manifold by the zero-set of the
polynomial za0

0 + . . . + zan
n is not a manifold, since it has a singularity at 0. If we replace the

defining polynomial by za0
0 + . . .+ zan

n − ε, we find a Stein filling for a Brieskorn manifold. These
give simple examples of Stein manifolds and we will use them in the coming chapters. This will
be discussed in more detail in Chapter 6. For now, let us define the following.

Definition 4.1. The Brieskorn manifold ΣR(a0, . . . , an) ⊂ Cn+1 (with a0, . . . , an ∈ N) is
defined as the intersection of the sphere S2n+1 = {(z0, . . . , zn) ∈ Cn+1| |z0|2 + . . . + |zn|2 = R}
with the zero set of the polynomial f(z0, . . . , zn) = za0

0 + . . .+ zan
n .

Theorem 4.2. The sets ΣR(a0, . . . , an) ⊂ Cn+1 as defined in Definition 4.1 are smooth mani-
folds. The form

α =
i

8

n∑
j=0

aj(zjdz̄j − z̄jdzj)

restricts to a contact form on ΣR(a0, . . . , an), which we will refer to as standard contact
form. We have that ΣR(a0, . . . , an) is contactomorphic to ΣR′(a0, . . . , an) with their standard
contact forms for all R,R′ > 0. In particular we have that ΣR(a0, . . . , an) is diffeomorphic to
ΣR′(a0, . . . , an) for all R,R′ > 0.

Remark 4.3. The theorem justifies the term manifold. Since Brieskorn manifolds with
the same exponents and standard contact structure are always contactomorphic, we will write
Σ(a0, . . . , an) and omit the radius of the sphere which is used to define the manifold.

Proof. Consider Cn+1 − {0} with symplectic form

ω = dα =
i

4

n∑
j=0

ajdzj ∧ dz̄j .

We identify the tangent bundle of Cn+1 − {0} with Cn+1 and consider the subbundle given by
ξω = span(X1, Y1, X2, Y2), where

X1 = (z̄a0−1
0 , . . . , z̄an−1

n ), Y1 = iX1,

X2 = −2i(
z0
a0
, . . . ,

zn
an

), Y2 = (z0, . . . , zn).

From this definition it is not clear whether these vectors are linearly independent. This will be
shown in the following though. In fact, we will show that ξω is a trivial symplectic vector bundle
of rank 4. First of all, let us use the Gram-Schmidt process to turn the above vectors into a
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symplectic standard basis. The Gram-Schmidt process yields

X̃1 =
X1√

ω(X1, Y1)
, Ỹ1 =

Y1√
ω(X1, Y1)

X̃2 = X2, Ỹ2 = Y2 −
∑
aiz

ai
i

2ω(X1, Y1)
X1,

where we have used that ω(X1, Y1) = 1
2

∑
j aj |zj |2(aj−1) > 0. Putting these vectors into ω shows

that X̃1, Ỹ1, X̃2 and Ỹ2 form a symplectic standard basis. Hence ξω is a trivial symplectic vector
bundle over Cn+1 − {0}.

In addition, the computation shows that X1, Y1, X2 and Y2 are linearly independent. This
can be used to show in an elementary way that the Brieskorn manifolds as defined above are
independent of the radius used. First of all, we need to show that the set ΣR(a0, . . . , an) is indeed
a manifold for each R > 0. First write ΣR = ΣR(a0, . . . , an) to simplify our notation.

Define the function

h : Cn+1 → R3

z 7→ (f(z) + f̄(z), (f(z)− f̄(z))/i, |z|2).

The first component of h is, of course, twice the real part of f and the second component of h is
twice the imaginary part of f . Hence ΣR = h−1(0, 0, R2). The differential of h is given by

Th =

 a0z
a0−1
0 . . . anz

an−1
n a0z̄

a0−1
0 . . . anz̄

an−1
n

−ia0z
a0−1
0 . . . −ianzan−1

n ia0z̄
a0−1
0 . . . ianz̄

an−1
n

z̄0 . . . z̄n z0 . . . zn


We use the vectors X1, Y1 and Y2 to show that the Th has full rank on the set h−1(0, 0, R2). More
explicitly, we find that on ΣR the following holds

Th(X1) =

 2
∑n
j=0 aj |zj |2(aj−1)

0
0

 , Th(Y1) =

 0
2
∑n
j=0 aj |zj |2(aj−1)

0

 ,

Th(Y2) =

 2Re(
∑n
j=0 ajz

aj

j )
2Im(

∑n
j=0 ajz

aj

j )
2R2

 .

Note that at each point of ΣR, the vectors Th(X1), Th(Y1) and Th(Y2) span R3, so Th has full
rank on ΣR. This shows that ΣR is a smooth submanifold of Cn+1 for each R > 0.

Next, we show that different radii R used to define ΣR give rise to diffeomorphic manifolds.
This is done by observing that ΣR is a codimension 1 submanifold of the complex manifold

M = {z ∈ Cn+1 | f(z) = 0 and z 6= 0},

by noting that ΣR is given by the preimage of R2 under the map | . . . |2 : Cn+1 → R≥0. By taking
this point of view, we see that ΣR1 and ΣR2 are diffeomorphic for each positive R1 and R2. Indeed,
| . . . |2 is a function on M without critical points, so our claim follows (see for instance theorem
3.1 from [38]).

We also see that ΣR is a contact manifold for each R. This can be done in the following way.
Since ΣR is a submanifold of Cn+1−{0}, we can restrict T (Cn+1−{0}) to ΣR and obtain a trivial
complex vector bundle of rank n + 1, which we will denote by VR. The symplectic complement
of ξω|ΣR

in VR will be denoted by ξ. Note that ξ is a subbundle of the tangent bundle of ΣR.
Indeed, if we plug in X1 into ω, we obtain

iX1ω =
i

4

n∑
j=0

(aj z̄
aj−1
j dz̄j − ajz

aj−1
j dzj),
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which is a linear combination the differential of f and of f̄ , which were used to define ΣR. Plugging
Y1 into ω gives a similar result, and for X2 we have

iX2ω =
1
2

n∑
j=0

(zjdz̄j + z̄jdzj).

This is one half times the differential of the function z 7→ |z|2. In other words, the condition that
a vector w ∈ VR lie in the symplectic complement of X1, Y1 and X2 implies that w is tangent to
ΣR. We can also see that ξ = kerα. Namely, if we plug Y2 into ω, we get

iY2ω =
i

4

n∑
j=0

aj(zjdz̄j − z̄jdzj) = 2α,

which shows that if w ∈ ξ, then w is both in the kernel of α and tangent to ΣR.
To complete the argument that ΣR is a contact manifold, note that X2 is tangent to MR and

iX2α = R2 6= 0. This shows that the form α ∧ dαn−1 is nowhere zero, because dα is a symplectic
form on ξ and iX2α 6= 0.

Finally, we observe that ΣR1 is in fact contactomorphic to ΣR2 . Indeed, we get a smooth
path of contact forms on ΣR1 by pulling back the contact form on each ΣRt for Rt between R1

and R2. This path starts at the standard contact form described above on ΣR1 and ends at the
contact form obtained by pulling back the standard form on ΣR2 . By Gray stability, these forms
are contactomorphic.

�

Remark 4.4. Note that this proof also shows that the Chern class of the contact structure
ξ is trivial. Indeed, the symplectic complement of ξ in Cn+1, given by ξω, is trivial. We have
c(ξ ⊕ ξω) = c(ξ)c(ξω) = c(Cn+1) = 1. Since c(ξω) = 1, the conclusion follows.

4.1.1. Reeb flow on Brieskorn manifolds. The Reeb vector field of the contact form

α =
i

8

n∑
j=0

aj(zjdz̄j − z̄jdzj)

has the particularly simple shape

R = 4i(z0/a0, . . . , zn/an),

where we regard TΣ(a0, . . . , an) as a subset of TCn+1. The Reeb flow is then given by

(4.1) ϕt(z) = (e4it/a0z0, . . . , e
4it/anzn),

which means that all Reeb orbits are closed. Hence we obtain an S1-action on the Brieskorn
manifold Σ(a0, . . . , an) ⊂ Cn+1.

4.2. Topology of Brieskorn manifolds

The above description of Brieskorn manifolds lends itself to computations, since we can use
coordinates. It can sometimes be difficult to see the topology though. Brieskorn manifolds have,
however, been studied extensively in the past and a lot is known about their topology. In particular,
many exotic spheres (spheres that are homeomorphic, but not diffeomorphic to the standard
sphere) can be realized as Brieskorn manifolds. We describe a few of these facts before we give
Randell’s algorithm to compute the homology of a Brieskorn manifold.

In [28] it is shown that the fundamental group of a Brieskorn manifold is abelian if its di-
mension is larger than 3. This can be used to show that Brieskorn manifolds are highly con-
nected, i.e. Σ(a0, . . . , an) is (n − 2)-connected. In other words, provided the middle homology
groupHn−1(Σ(a0, . . . , an); Z) vanishes, the Brieskorn manifold Σ(a0, . . . , an) is a homotopy sphere.
There is a nice criterion for this, which is much easier to check than using Randell’s algorithm to
compute the homology. We have taken this claim from [28].

Let Γ(a) denote the graph, whose vertices are the exponents a = (a0, . . . , an). We connect
two vertices ai and aj (with i 6= j) if gcd(ai, aj) > 1.
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Theorem 4.5. Assume n > 2. The Brieskorn manifold Σ(a0, . . . , an) is a homotopy sphere
if either of the following two conditions is satisfied:

(1) Γ(a) has two isolated points.
(2) Γ(a) has an isolated point and a connected component C with an odd number of points

such that if ai, aj ∈ C with i 6= j then gcd(ai, aj) = 2.

4.2.1. Homology of Brieskorn manifolds. In [42] Randell proves an algorithm which
can be used to compute the homology of a Brieskorn manifold. We give a short summary of his
results in the case of Brieskorn manifolds. The algorithm in Randell can also be used to compute
the homology of so-called generalized Brieskorn manifolds. Generalized Brieskorn manifolds are
defined as the common zero set of several complex polynomials, each one having a shape similar
to the polynomials used in defining Brieskorn manifolds, intersected with a sphere. See [42] for
more details.

As shown in the previous section, the Brieskorn manifolds admit the S1-action

t(z0, . . . , zn) = (tq0z0, . . . , tqnzn)

for t ∈ S1 and with qi = lcmj aj

ai
. Then define M∗ := M/S1, which, in general, will be an orbifold.

In his proof, Randell also shows how to compute the homology of the orbifold M∗, which will in
fact turn out to be useful in Chapter 11.

We introduce the following notation for the algorithm of [42]. Let I denote the set {0, . . . , n}.
A subset of I with s elements will by denoted by Is. If Is = {i1, . . . , is}, then let K(Is) denote the
Brieskorn manifold Σ(ai1 , . . . , ais) of dimension 2s−3. Note that M = K(I) contains all manifolds
K(Is) for all 1 < s ≤ n+1 in a natural way by restricting to suitable coordinate hyperplanes. We
define, following Randell,

κ(K(Is)) =
∑
It⊂Is

(−1)s−t
∏
i∈It

ai

lcm
j∈It

aj
.

Then we have for the free part of the homology

rk H̃n−1(M,Z) = κ(K(I)).

For the torsion part, a few additional definitions are required. We set

k(K(Is)) =
{
κ(K(Is)), if n+ 1− s is odd,
0, otherwise.

Let C(∅) = gcd
i∈I

(ai) and set

C(Is) =

gcd
i∈(I−Is)

ai∏
It$Is

C(It)
.

Now set dj =
∏
k(K(Is))≥j C(Is) and r = max{k(K(Is))|Is ⊂ I}. Then we have

TorHn−1(K(I),Z) = Zd1 ⊕ . . .⊕ Zdr .

There is another interesting result from Randell’s paper that we shall use. He computes the
rational (as well as its torsion part) homology of M∗. We shall only need the rational homology
of M∗. Randell’s results is as follows:

(4.2) Hq(M∗,Q) ∼=
{

Q, q even, 0 ≤ q ≤ dimM∗

0, otherwise

}
⊕
{

Qκ, q = 1
2dimM∗

0 otherwise

}
,

where κ = κ(K(I)).
A computer program that performs the steps of Randell’s algorithm can be found in Appendix

A.



CHAPTER 5

Construction of contact open books

5.1. Open books

Definition 5.1. An open book on a closed manifold M is a pair (K,ϑ), where
(a) K is a codimension 2 submanifold of V with trivial normal bundle and
(b) ϑ is a fibration ϑ : M −K → S1 that in a neighborhood K ×D2 of K is the angular

coordinate on D2.
The set K is called the binding of the open book and the closure of the fibers of ϑ are called
pages.

Let M be a closed manifold with open book (K,ϑ). Let F be a page of the open book. By
pushing a page F once around in the S1-direction, we get a diffeomorphism of F , the monodromy
of the open book. This can be made precise in the following way, see [31]. The vector field ∂

∂ϑ

on S1 can be pulled back to M outside the binding K. The time t-flow of this vector field gives
a diffeomorphism Ψt of M −K which can be extended to M by putting Ψt|K = id|K . The map
Ψ1 is determined uniquely up to isotopy by the fibration ϑ and is called the monodromy of the
open book.

Now let F be a 2n-dimensional manifold with non-empty boundary K. Then we can use a
diffeomorphism of F to play the role of monodromy and hence we can construct an open book.
Namely, let Ψ be a diffeomorphism of F that is the identity near the boundary of F . The mapping
torus V of Ψ is defined as

V = F × I/(x, 1) ∼ (Ψ(x), 0).
Since the Ψ is the identity near K, the boundary of V can be naturally identified with K × S1.
Hence we can glue in K ×D2, which has the same boundary. We obtain the relative mapping
torus Ṽ ,

Ṽ = V ∪K×S1 K ×D2.

The binding of the relative mapping torus is given by K × {0} ⊂ K ×D2. The projection to S1

which we denote by ϑ is given by the natural projection to S1 on V (note that by definition V is
an F -bundle over S1). Near the boundary, V looks like K × I × S1. This allows us to extend the
projection ϑ to K ×D2 −K × {0} by putting

ϑ : K ×D2 −K × {0} → S1

(x, r, ϕ) 7→ ϕ,

where r, ϕ are polar coordinates on D2. Hence Ṽ admits an open book with monodromy given by
Ψ. Observe that every open book can be obtained from the above construction. We will call an
open book obtained from such a construction an abstract open book formed from (F,Ψ) and we
write this open book as Ṽ(F,Ψ).

5.1.1. Open book connected sum. If we are given two manifolds M1 and M2 with open
book structures, then their connected sum M1#M2 admits an open book as well. This is called the
open book connected sum. It is performed as follows. Let Ki be the binding of the open book
on Mi for i = 1, 2 and let ϑi denote the fibration Mi −Ki → S1. Assume that the bindings are
connected. Let Di be a neighborhood of a point in Ki. By choosing this neighborhood sufficiently
small, we can assume, that Di

∼= D2n+1 and that Di ∩Ki
∼= D2n−1. The set Di− (Di ∩Ki) fibers

over S1 and corresponds to the trivial fibration with fiber diffeomorphic to D2n−1, see Figure 5.1.
Take the connected sum of M1 and M2 in the usual way, by removing a smaller ball D̃i ⊂ Di from
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Figure 5.1. Fibration of a ball minus binding over S1

Mi and identifying D1 − D̃1 with D2 − D̃2 via an orientation reversing diffeomorphism. We can
arrange this in such a way that the fibration over S1 is respected. When we perform the connected
sum in this way, we connect sum the bindings to form the set K1#K2. Note that outside this set
K1#K2 ⊂M1#M2, we have a fibration over S1, which coincides with the given fibration Mi−Ki

for i = 1, 2. Since the normal bundle of K1#K2 in M1#M2 is trivial, we get an induced open book
on M1#M2. If Fi denotes the page of the open book on Mi, then the page of the induced open
book on M1#M2 is given by F1\F2, the boundary connected sum of F1 and F2. If the bindings
Ki are connected, the book connected sum is well-defined. The construction itself will work just
as well in cases where the binding is disconnected, but the results will then of course depend on
the choice of Di.

The book connected sum can also be described using abstract open books. Let Mi be the
abstract open book formed from (Fi, ϕi) for i = 1, 2. Since the monodromy ϕi is required to be
equal to the identity near the boundary of Fi, we get a diffeomorphism ϕ1\ϕ2 of F1\F2 which
coincides with ϕ1 on F1 and with ϕ2 on F2. This allows us to form the abstract open book from
(F1\F2, ϕ1\ϕ2), which is isomorphic to the book connected sum of M1 and M2.

5.1.2. A special stabilization. In this section we will describe a special case of a so-called
stabilization of an open book. The notion of stabilization belongs to contact open books, which
we have not defined yet. However, the special case which we describe here can be applied to all
open books. We present this example in order to show that open books are not unique, and as a
preparation for later applications.

We need a few definitions before we can describe the construction. We denote the unit disk
bundle associated to T ∗Sn by T ∗|v|≤1S

n (v stands for a vector in a fiber of T ∗Sn).

Definition 5.2. A (right-handed) Dehn twist τ in T ∗|v|≤1S
n is the composition of the

time π map of the geodesic flow on Sn and the differential of the antipodal map.

In particular, a Dehn twist is the identity at the boundary, and by an isotopy we can ensure
that it is the identity in a neighborhood of the boundary. We will call this isotoped map a Dehn
twist as well.

Remark 5.3. For a left-handed Dehn twist, we simply take the time −π map of the geodesic
flow on Sn. For now, the difference is not important, but it will play a role if we talk about open
books and contact structures. Note also that if we restrict a Dehn twist to the zero section of
T ∗Sn, where v = 0, then the Dehn twist is just the antipodal map. If n is even, we quickly see
that a Dehn twist is not isotopic to the identity, because the induced homomorphism

τ∗ : Hn(T ∗|v|≤1S
n; Z) → Hn(T ∗|v|≤1S

n; Z)
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equals minus the identity map on Z. For n odd this argument does not hold, but such Dehn twists
are not isotopic to the identity either. The latter can, for instance, be seen by constructing the
abstract open book (T ∗Sn, τk) for n odd. We will show in Chapter 7 that this gives a manifold that
is diffeomorphic to Σ(k, 2, . . . , 2). For n odd these are all non-diffeomorphic manifolds distinguished
by Hn(Σ(k, 2, . . . , 2)) ∼= Zk. It follows that the maps τk are not isotopic for different k and hence
τ cannot be isotopic to the identity.

Note that for n even, the composition of an even number of Dehn twists can be isotopic to the
identity, e.g. Dehn twists on T ∗S2 have this property, as was shown by Seidel [46]. In general, the
situation is more complicated though, which can be seen by considering the abstract open book
(T ∗Sn, τk). These are diffeomorphic to Σ(k, 2, . . . , 2) and can for instance be exotic spheres.

Finally, we observe that T ∗|v|≤1S
n carries a canonical symplectic structure and that the Dehn

twist can be chosen to be a symplectomorphism. We will say more on this in Section 5.2.2.1.

The abstract open book obtained from (T ∗|v|≤1S
n, τ) is diffeomorphic to S2n+1, which we will

explain in Chapter 7. Let us denote this abstract open book by V(T∗|v|≤1S
n,τ). Now let M be

a manifold with open book (K,ϑ). We can alter the given open book structure on M by book
connect summing with V(T∗|v|≤1S

n,τ). The new open book on M is the stabilization of (K,ϑ). We
will give a few more details on general stabilizations in the section on contact open books.

In general there are many distinct open book structures on a given manifold (provided that at
least one open book structure exists). However, it turns out that some open books carry a natural
contact structure on them, and the process of stabilization (of which we just described a special
case) does not change the contact structure.

5.2. A basic construction of contact open books

In this section, we want to explain a basic construction for contact structures in terms of open
books due to Giroux [23]. Roughly speaking, we take a symplectic manifold with convex boundary
K and a symplectomorphism of that manifold. The mapping torus of this symplectomorphism
can be arranged in such a way that the resulting manifold admits a contact structure. Because
of convexity, the boundary K inherits a contact structure and a thickened K (i.e. K × D2) can
be glued onto the boundary of the mapping torus to give a closed contact manifold. Originally,
a similar construction was used by Thurston and Winkelnkemper to give a short proof that all
oriented three manifolds admit a contact structure [49]. Recently, Giroux proposed to use this
construction for contact manifolds in all dimensions. In fact, he even showed that the converse
holds true. Any closed contact manifold admits an open book such that the given contact structure
and the contact structure coming from the above construction are isomorphic.

Let (Σ, ω) be a symplectic manifold with non-empty ω-convex boundary K. Let ϕ be a
symplectomorphism of Σ that is the identity near the boundary of Σ. We start by constructing a
contact form on the mapping torus of (Σ, ϕ). The convexity condition gives a vector field X such
that LXω = ω near the boundary. Let β be the primitive of ω given by iXω so that β|K is a contact
form on K. We have ϕ∗ω = ω, but ϕ might not preserve β. However, the symplectomorphism
condition shows that ϕ∗β − β is closed. In fact, we can perturb ϕ such that the difference is even
exact, as the following lemma of Giroux shows.

Lemma 5.4 (Giroux). The symplectomorphism ϕ can be isotoped to a symplectomorphism ϕ1

such that ϕ∗1β − β is exact.

Proof. Let us denote the one-form ϕ∗β−β by µ. Since ω is non-degenerate, we find a unique
solution Y to the equation iY ω = −µ. The flow of the vector field Y preserves ω, because µ is
closed,

0 = −dµ = diY ω = LY ω.

Since ϕ is the identity near the boundary, µ and hence Y vanish near the boundary. If we denote
the time t flow of Y by ψt, then we see that ϕ1 = ϕ ◦ ψ1 is a symplectomorphism that is the
identity near the boundary. Note that LY µ = 0, so ψ∗t µ = µ for all t. We check that the difference
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Figure 5.2. A sketch of k1 and k2, respectively

of the pullback of β and β is indeed exact. We have

(ϕ ◦ ψ1)∗β − β = ψ∗1(µ+ β)− β = µ+ ψ∗1β − β.

On the other hand, we can express the difference ψ∗1β − β as

ψ∗1β − β =
∫ 1

0

d

dt
ψ∗t β =

∫ 1

0

ψ∗tLY β =
∫ 1

0

ψ∗t (iY ω + d(iY β)) = −µ+
∫ 1

0

dψ∗t (iY β).

Moving µ to the left-hand-side, we see that µ + ψ∗1β − β is exact, which shows the claim of the
lemma. �

Using this lemma, we can assume that ϕ∗β−β = −dh. Now, we construct the mapping torus
of (Σ, ϕ), but in a way that differs from the standard way. First choose a primitive h of the above
equation that is positive. This can always be done by adding a constant to h. We define

V = Σ× R/H,

where H(x, t) = (ϕ(x), t + h(x)). By choosing h positive we see directly that V is diffeomorphic
to the standard definition of a mapping torus, since we can deform V by replacing h by ht, where
ht interpolates h to 1. Note that H preserves α = β + dt. This means that the mapping torus V
inherits a contact form from the contact form α on Σ× R. We denote this contact form on V by
α̃.

We still need to glue in the binding to get a closed contact manifold. The restriction of β to
K is a contact form and will be denoted by γ. This form is extended to a contact form on the
product K ×D2. We choose the contact form

δ = k1(r)γ + k2(r)dϑ,

where (r, ϑ) are polar coordinates on D2 and r represents the radial direction. For k1(r) = 1 and
k2 = r2, the form δ is a contact form, but its Reeb dynamics do not match those on the mapping
torus V . This is corrected by perturbing k1 and k2. This idea is inspired by the Lutz twist, see
for instance [20]. The condition for δ to be a contact form amounts to

δ ∧ (dδ)n = nkn−1
1 (k1k

′
2 − k2k

′
1)γ ∧ dγn−1 ∧ dr ∧ dϑ 6= 0,

so δ is contact provided that k1k
′
2−k2k

′
1 6= 0 and k1 6= 0. Following Lutz, we can define k1 and k2

such that δ is contact and that δ coincides near the boundary of K×D2 with α̃ near the boundary
of V . See Figure 5.2 for a sketch of how k1 and k2 could look like.

These choices ensure that we get a contact form on the relative mapping torus V ∪∂ K ×D2.
This can be seen as follows. First of all, let us introduce some notation for the gluing procedure.
We will denote the set {(x, p) ∈ K × D2| |p| = r} by K × S1

r . By our choice of k1 and k2, the
contact form looks like

δ = e−tγ + dϑ

in a small enough neighborhood of the boundary. We show that the contact form has the same
form in a neighborhood of the boundary of the mapping torus.
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Recall that we introduced the vector field X with LXω = ω near the boundary of Σ. This
vector field can be used to define a suitable collar neighborhood of the boundary in V . We get
the following identification of a collar neighborhood of ∂Σ,

Ψ : [−ε, 0]×K → Σ

(s, x) 7→ FlXs (x).

Here we use FlXs to denote the time s flow of the vector field X. We use the form iXω = β to
construct the contact form on the mapping torus V . We claim that the pull-back of β under Ψ is

(Ψ∗β)(s, x) = esβ|K,x = esγx.

We see that this holds, because iXβ = 0 and d
dsΨ

∗|s=0β = (LXβ)|K = β|K = γ. This shows that
we can find a neighborhood of the boundary of V , where the contact form looks like

α = esγ + dϑ,

where we have used Ψ to identify a neighborhood of K in Σ with K× [−ε, 0]. Since the s-direction
corresponds to the negative r-direction in K×D2, we see that the contact forms δ and α match in
a collar neighborhood of the K×S1. Hence we can glue V and K×D2 along a collar neighborhood
of the boundary and obtain a closed contact manifold.

We summarize the results of the above construction and introduce some new notation. If an
abstract open book is formed from a convex symplectic page F with symplectic monodromy ϕ,
we get a contact structure on the abstract open book. Let us call the contact manifold (M, ξ)
obtained from such a construction an (abstract) contact open book. We write (M(F,ϕ), ξ(F,ϕ))
for such a contact open book.

5.2.1. Compatible open books. In the previous section we saw that Giroux’s construction
gave us an open book with a contact structure. Not every manifold with an open book structure
admits a contact structure though. On the other hand, many contact manifolds come with natural
open books, so it makes sense to have a notion which describes when an open book is compatible
with its contact structure.

Definition 5.5. A contact structure ξ on a manifold V is supported by an open book (K,ϑ)
if ξ is the kernel of a 1-form α that satisfies

(1) α induces a positive contact form on K, and
(2) dα induces a positive symplectic form on each fiber F of ϑ.

Such a 1-form α is said to be adapted to (K,ϑ).

Remark 5.6. We should stress that dα is required to induce a positive symplectic form on
each fiber F of ϑ and not on every page, i.e. closure of F . In fact, the latter does not hold.

Remark 5.7. We use the vector pointing out of the page to orient the binding as the boundary
of the page. This convention ensures that the standard contact structure on R3 is supported by
the natural open book (K,ϑ), where K is the z-axis and ϑ the standard angular coordinate on
the xy-plane. For practical purposes, positivity of the contact form can be checked by finding a
copy of the binding in the interior of a page, obtained by pushing the binding along a collar into
the page.

Example 5.8. The standard contact structure on S3 is supported by (H+, π+), where

H+ = {(z1, z2) ∈ S3| z1z2 = 0},

π+ : S3 −H+ → S1

(z1, z2) 7→ z1z2
|z1z2|

.

Here we regard S3 as a subset of C2, given by {(z1, z2) ∈ C2| |z1|2 + |z2|2 = 1}. The set H+ is an
embedded Hopf link in S3. This is an interesting example, since the standard contact structure
on S3 is not supported by (H−, π−), where

H− = {(z1, z2) ∈ S3| z1z̄2 = 0},
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π− : S3 −H− → S1

(z1, z2) 7→ z1z̄2
|z1z2|

.

Note the bindings of the open books (H+, π+) and (H−, π−) are the same sets in S3, but their
monodromy is different. In fact, (H−, π−) supports an overtwisted contact structure on S3.

5.2.2. Stabilization. Suppose (M, ξ) is a contact manifold that is supported by the open
book (K,ϑ). As we have seen in the example from Section 5.1.2, we can construct other open
books for M . The construction outlined there can be made compatible with the contact structure
and it can be generalized. We shall now describe this procedure using the abstract open book
picture. Just like in the special case from Section 5.1.2, we need a Dehn twist.

5.2.2.1. Symplectic Dehn twist. Let T ∗|p|≤1S
n denote the unit cotangent space of Sn. If we use

coordinates (q, p) ∈ Rn+1 × Rn+1 with |q| = 1 and p · q = 0 for T ∗|p|<1S
n, then we can write the

canonical 1-form as λcan = p · dq. The differential of λcan defines the canonical symplectic form
ωcan on T ∗|p|≤1S

n.
As before, we define a right-handed symplectic Dehn twist τ by the composition of the

time π map of the geodesic flow on Sn and the differential of the antipodal map. Since both maps
are symplectic, their composition τ is symplectic as well. Note that on the boundary T ∗|p|=1S

n the
map τ is the identity. Similarly, a left-handed Dehn twist can be defined as the composition of
the time −π map of the geodesic flow on Sn and the differential of the antipodal map. For a more
explicit description of Dehn twists, see [40].

Remark 5.9. The choice of canonical 1-form is important in this case, because taking −λcan
instead of λcan will reverse the roles of right-handed Dehn twist and left handed Dehn twists in
the following.

We end this section by introducing some notation. Let (F, ω) be a symplectic manifold of
dimension 2n and let

ψ : Sn → F

be a Lagrangian embedding, i.e. ψ∗ω = 0. By the Lagrangian neighborhood theorem [34], it
follows that a neighborhood of ψ(Sn) in F is symplectomorphic to T ∗Sn. Hence we can extend ψ
to a symplectic embedding of T ∗||p|≤1S

n. We get a symplectic embedding

ψ̃ : (T ∗|p|≤1S
n, ωcan)→ (F, ω).

If we perform a Dehn twist along this embedded cotangent bundle, we get a symplectomor-
phism of F , which we will denote by τψ. Note that this symplectomorphism has support only on
ψ̃(T ∗||p|≤1S

n).
5.2.2.2. Constructing a new contact open book. Let F be a compact Stein manifold of real

dimension 2n and let
ψ : Dn → F

be a proper Lagrangian embedding. Note that the embedded boundary, which we denote by K, of
the disk is a Legendrian sphere in ∂F . If dimF = 4, then we have seen in Chapter 3 that we can
attach a two-handle along K in a canonical way in order to obtain a new Stein manifold (by using
the canonical framing of K). This procedure works in all dimensions as shown by Eliashberg [15]:
there is a canonical way to attach an n-handle along K to obtain a Stein manifold F ′. Moreover,
we obtain an embedded Lagrangian sphere in F ′ by gluing the core of the n-handle along K to
the Lagrangian disk ψ(Dn). By abuse of notation, we write ψ for the Lagrangian embedding

ψ : Sn → F ′.

Now let ϕ : F → F be a symplectomorphism that is the identity near the boundary. We
can extend ϕ to a symplectomorphism (also denoted by ϕ) of F ′ by setting ϕ to be the identity
on the attached n-handle. Let ϕ′ = τψ ◦ ϕ. Giroux calls this extension of the pair (F,ϕ) to
(F ′, ϕ′) a positive Lagrangian plumbing. He has proved the following proposition about these
plumbings.
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Proposition 5.10 (Giroux). The contact manifolds (MF,ϕ, ξF,ϕ) and (MF ′,ϕ′ , ξF ′,ϕ′) are con-
tactomorphic.

With this proposition it makes sense to give the following notion of stabilization.

Definition 5.11. The contact open book (MF ′,ϕ′ , ξF ′,ϕ′) is said to be a stabilization of
(MF,ϕ, ξF,ϕ) if (F ′, ϕ′) can be obtained from (F,ϕ) by a sequence of positive Lagrangian plumbings.

In the special case of a stabilization presented in Section 5.1.2 we see that this proposition holds
by applying Proposition 5.13 from the next section. By that proposition, the contact open book
(MF ′,ϕ′ , ξF ′,ϕ′) is contactomorphic to the connected sum of (MF,ϕ, ξF,ϕ) and (MT∗Sn,τ , ξT∗Sn,τ ).
Since the contact open book (MT∗Sn,τ , ξT∗Sn,τ ) is contactomorphic to S5 with its standard contact
structure, the conclusion follows.

Remark 5.12. Giroux’s proposition does not hold true if we replace a positive Lagrangian
plumbing by a negative one, i.e. if we replace right-handed Dehn twists by left-handed ones. This is
where the contact category differs significantly from differentiable category, because the underlying
manifold can not see the difference between a left- or right-handed Dehn twist.

5.2.3. Connect summing open books. Suppose now we are given two abstract contact
open books, (M(F1,ϕ1), ξ(F1,ϕ1)) and (M(F2,ϕ2), ξ(F2,ϕ2)). We can take their book connected sums
to obtain a new abstract contact open book, (M(F1\F2,ϕ1\ϕ2), ξ(F1\F2,ϕ1\ϕ2)). This is seen by noting
that the boundary of F1\F2 remains convex and that ϕ1\ϕ2 is symplectic. We have the following
proposition.

Proposition 5.13. Let (M(Fi,ϕi), ξ(Fi,ϕi)) be abstract contact open books for i = 1, 2. Then

(M(F1,ϕ1), ξ(F1,ϕ1))#book(M(F2,ϕ2), ξ(F2,ϕ2)) ∼= (M(F1\F2,ϕ1\ϕ2), ξ(F1\F2,ϕ1\ϕ2)).

Here is a rather informal argument for this claim.

Proof. Let αi denote the contact form obtained from Giroux’s construction of the abstract
contact open book on Mi = (M(Fi,ϕi), ξ(Fi,ϕi)). We use the point of view of Weinstein [53] to
connect sumM1 andM2, see Figure 5.3, which we adapt for open books. LetDi be a neighborhood
of a point in the binding of Mi. This neighborhood can be chosen such that

αi|Di
= (±dz) + (±

n−1∑
j=1

yjdxj) + r2dϑ = (±dz) + (±
n−1∑
j=1

yjdxj) + xndyn − yndxn

in local coordinates. Here z and (x1, y1, . . . , xn−1, yn−1) are local coordinates for the binding of
Mi. We take a + sign for α2 and a − sign for α1. The coordinates (r, ϑ) are polar coordinates for
a disk neighborhood of the binding such that the fibration coming from the open book is given
by the ϑ coordinate. The polar coordinates (r, ϑ) correspond to the cartesian coordinates (xn, yn)
in the usual way. We see the contact form can be brought in this form by applying Darboux’s
theorem to the binding and using the special form of the αi near the binding.

We embed both neighborhoods D1 and D2 into the symplectic manifold (R2n+2, ω). If we
use coordinates (u, z, x1, y1, . . . , xn, yn), then we embed D1 at u = −1 and D2 at u = 1. The
symplectic form ω is the standard form, so that we have a Liouville vector field on R2n+2 that
gives us the contact forms on D1 and D2. Define R2 = z2 +

∑n
j=1 x

2
j + y2

j and choose a function f
such that the zero set of u2−f(R2) looks as in Figure 5.4. Let us denote the zero set of u2−f(R2)
by T .

We require f(R2) = 1 for large R2 and we specify f further as we go. In particular f can be
chosen such that the vector field

X = 2u
∂

∂u
− z ∂

∂z
+

1
2
(
n∑
j=1

xj
∂

∂xj
+ yj

∂

∂yj
)

is a Liouville vector field transverse to T . We will use this “tube” to form the connected sum of
D1 and D2. By removing smaller balls in D1 and D2 and replacing them with the zero set of
u2 − f(R2), we obtain the connected sum of D1 and D2. Since X is a Liouville vector field and
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Figure 5.3. Weinstein’s picture for a connected sum of contact manifolds

Figure 5.4. Profile of the connecting tube

transverse to T , the connected sum D1#D2 is a contact manifold. Note that the fibration extends
to the connecting tube, so this construction is compatible with the book connected sum. Since
we have not altered anything outside D1 and D2, we get the book connected sum of M1 and M2.
Because the fibration “tube” → S1 is trivial, we see that we can take the monodromy to be the
identity on the connected sum region (the “tube”). Hence we see that the monodromy of the open
book is equal to ϕ1 on M1 −D1 and to ϕ2 on M2 −D2. It is the identity on the “tube”, so we
get an induced contact open book on the connected sum of M1 and M2, which is isomorphic to
M(F1\F2,ϕ1\ϕ2), ξ(F1\F2,ϕ1\ϕ2). �

Remark 5.14. Another way to formulate this proposition is to say that contact open books
for (M1, ξ1) and (M2, ξ2) give a contact open book for (M1#M2, ξ1#ξ2).



CHAPTER 6

Open books on five-manifolds

6.1. Open book decompositions for simply connected contact five-manifolds

In this chapter we will give examples of Giroux’s theorem in dimension 5. We will give a new
proof of the following theorem.

Theorem 6.1 (Geiges). Let M be a simply-connected 5-manifold. Then M admits a contact
structure in every homotopy class of almost contact structures.

Along the way we find some other interesting results as well, which can be used to construct
more contact structures.

We begin by recalling Barden’s theorem on closed, simply connected five-manifolds [2]. LetM1

and M2 be closed, simply connected five-manifolds. Note that by simple connectedness, elements
in H2(Mi; Z2) can be regarded as maps from H2(Mi; Z) to Z2 for i = 1, 2. For this reason, the
second Stiefel-Whitney class w2(Mi) may be viewed as such a map from H2(Mi; Z) to Z2 (i = 1, 2).
In fact, we may find a minimal generating set of H2(Mi; Z) such that w2 is only non-zero on at
most one of these generators. This generator has order 2j for some j ∈ N0. The number j is called
the linking number.

Theorem 6.2. Two simply connected five-manifolds M1 and M2 are diffeomorphic if and
only if w2(M1) and w2(M2) are isomorphic, i.e. there exists an isomorphism A : H2(M1; Z) →
H2(M2; Z) such that w2(M1) = w2(M2) ◦A.

Note that w2(M1) and w2(M2) can only be isomorphic if the linking numbers of M1 and M2

are the same.
For practical purposes, another description of this theorem is useful. By the above theorem

there are unique (up to diffeomorphism) simply connected five-manifolds M in the following cases.
By unique we mean that the manifold is determined uniquely up to diffeomorphism.

1. For p prime and k ∈ N there exists M with H2(M ; Z) ∼= Zpk ⊕ Zpk and w2(M) = 0. We
will denote these manifolds by Bpk . These manifolds admit an almost contact structure
as the obstruction to such a structure, the third integral Stiefel-Whitney class W3(M),
vanishes. By Geiges’ theorem [18] they admit a contact structure as well.

2. For k ∈ N there exists M with H2(M ; Z) ∼= Zk2 ⊕ Zk2 and w2(M) 6= 0. Here W3(M) 6= 0,
so M does not carry an almost contact structure.

3. There exists a unique M with H2(M ; Z) ∼= Z2 and w2(M) 6= 0. This manifold is some-
times referred to as the Wu-manifold and does not carry an almost contact structure,
because W3(M) 6= 0.

4. There is a unique manifold M with H2(M ; Z) ∼= Z and w2(M) = 0. This manifold admits
an almost contact structure and therefore by Geiges’ theorem a contact structure.

5. There is a unique manifold M with H2(M ; Z) ∼= Z and w2(M) 6= 0. Its third integral
Stiefel-Whitney class is 0 and hence M admits an almost contact structure. Again it is
contact as well.

The manifolds in case 4 and 5 have well-known models, namely S2 × S3 and S2×̃S3 (the
non-trivial S3-bundle over S2), respectively. In [2] there are explicit models for all other cases as
well. For our purposes the existence of these models is enough, and in fact we will make our own
models for those manifolds in this list that admit a contact structure.

The manifolds of type 1 and 4 are said to be prime manifolds. Our notion of prime manifold
differs from the usual one and is to be understood in the following sense. Any simply connected
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Figure 6.1. Different Stein structures on Σ5

five-manifold M may be decomposed uniquely as the connected sum of prime manifolds with
possibly one additional summand of type 2, 3 or 5. This additional summand is only needed if
w2(M) 6= 0. Of course, the empty connected sum is diffeomorphic to S5.

Note that this implies in particular that M can only be contact if it can be written as a
connected sum of manifolds of type 1, 4 and 5. Because the connected sum is an operation in
the contact category, it suffices that we produce contact open books for S5 and for the manifolds
of type 1, 4 and 5 (recall the book connected sum used for connect summing open books can be
made compatible with the contact structures carried by the open books, see Proposition 5.13). We
know in view of Giroux’s theorem that this is possible and we are even provided a starting point
by A’Campo, see [1]. He has shown by explicit construction that simply connected five-manifolds
always admit open book decompositions. Unfortunately, the pages he used in his construction do
not always carry an exact symplectic form. In some other cases of his open books it is hard to see
whether the monodromy can actually be realized symplectically.

However, in the case M ∼= S5 it can obviously be done. The page is D4 with its standard
symplectic structure, the monodromy is the identity, so the mapping torus will carry a contact
structure following Giroux’s construction. Note that D4 provides a Stein filling for the binding S3,
so we are exactly in Giroux’s model situation. This open book is compatible with the standard
contact structure on S5.

6.1.1. Open books for S2 × S3 and S2×̃S3. In this section, we will construct open books
for manifolds of type 4 and 5 in the above notation. Our construction starts by taking a simple
Stein manifold Σk, the 2-disk-bundle over S2 with Euler number −k with k ≥ 2. We remark that
these manifolds carry often more than one Stein structure as can be seen in Figure 6.1.

First we will show that we get contact open books for S2 × S3 and S2×̃S3, then we will
show that the different realizations from Figure 6.1 can give rise to different contact structures on
S2 × S3 and S2×̃S3. Namely it will turn out that they have different Chern classes.

Let Sk denote the contact boundary of Σk. The space Sk is a lens space and can be identified
with circle bundle over S2 with Euler number −k due to Example 3.17. We will use the identity
as a monodromy, so the mapping torus of the pair (Σk, id) is diffeomorphic to A := Σk × S1. A
neighborhood of the binding will be written as B := Sk ×D2. The relative mapping torus is then
given by X = A ∪∂ B. Here we mean that A and B are identified in X in a collar neighborhood
of their boundary.

Note that X is simply connected by the Seifert-van Kampen theorem. Indeed, the generator
of π1(A) (the S1 direction in the product) gets killed in B and vice versa, as Σk is a simply
connected filling for Sk. We compute the homology of X using the Mayer-Vietoris sequence for
the pair (A,B) in X and then apply Barden’s theorem to show that we get S2 × S3 and S2×̃S3.
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We already know that H1(X) ∼= 0 by simple connectedness. Note that the intersection of A and B
is diffeomorphic to Sk × S1 × (−1, 1). This set is homotopy equivalent to Sk × S1. The homology
groups of A ∩ B can therefore be computed by using the Künneth formula. These remarks show
that we know all terms in the Mayer-Vietoris sequence except for Hi(X). The homology sequence
looks as follows.

0→ H5(X)→ H4(A ∩B)
∼=Z

→ 0→ H4(X)→ H3(A ∩B)
∼=Z

→ H3(A)⊕H3(B)
∼=Z⊕Z

→ H3(X)→ H2(A ∩B)
∼=Zk

→ H2(A)⊕H2(B)
∼=Z

g→ H2(X)→ H1(A ∩B)
∼=Z⊕Zk

f→ H1(A)⊕H1(B)
∼=Z⊕Zk

→ H1(X)
∼=0

The known terms are indicated. We may argue as follows to get the rest. The first part of the
sequence shows us that H5(X) ∼= Z. Notice that X is orientable and so we can apply Poincaré
duality to see that H4(X) ∼= H1(X) ∼= 0. This implies here that H4(X) ∼= 0 as well. We may
now tensor (over Z) the sequence with Q to obtain an exact sequence of vector spaces over Q. We
can then easily see that rkH3(X) = rkH2(X) = 1. This means that H3(X) ∼= Z, because simply
connected five-manifolds cannot have torsion in H3(X).

The map f in the sequence is surjective. We now want to show that it is injective as well to
be able to split off a part of the sequence. First observe that f must have the shape f(a, b) =
(g(a), h(a, b)), because Hom(Zk,Z) = 0. Also note that surjectivity of f implies that g(a) = ±a,
so g is injective.

Let (a, b) ∈ Z ⊕ Zk and suppose f(a, b) = 0. Since g is injective, this means that a = 0. By
applying the same argument to the inequality

f(a′, b′) ∈ Zk

we see that h : Zk → Zk is surjective. This can only hold true if h is injective, so b is 0 as well.
Note that because Hom(Zk,Z) ∼= 0, the map from H2(A ∩ B) to H2(A) ⊕H2(B) is the zero

homomorphism. Because we just showed that f is injective, we can split off the following part of
the Mayer-Vietoris sequence. We have

0→ H2(A)⊕H2(B)
∼=Z

g→ H2(X)→ 0,

so H2(X) ∼= Z. Using Barden’s theorem we see that X is either S2 × S3 or S2×̃S3. To decide
which one we get, we consider the second Stiefel-Whitney class and look at the Mayer-Vietoris
cohomology sequence with Z2 coefficients. Note that Z2 is a field and hence the sequence is
an exact sequence of vector spaces. This means that the following part of the Mayer-Vietoris
sequence,

→ H1(X; Z2)
∼=0

→ H1(A; Z2)⊕H1(B; Z2)→ H1(A ∩B; Z2),

can be separated from the long exact sequence. Indeed, we observe that the ranks of H1(A; Z2)⊕
H1(B; Z2) and H1(A ∩ B; Z2) are the same. Since the map in the sequence is injective, it is an
isomorphism between vector spaces. This simplifies the rest of the Mayer-Vietoris sequence. The
part that is relevant to us looks like

0→ H2(X,Z2)
(i∗,j∗)→ H2(A,Z2)⊕H2(B,Z2).

Here i and j denote the inclusions of A and B in X, respectively. Observe that the map (i∗, j∗)
is injective, so it suffices to see whether (i∗, j∗)w2(X) is zero or not.

Because i and j are inclusions, we have that i∗w2(X) = w2(A) and j∗w2(X) = w2(B). The
tangent bundle of B is trivial because it is the product of a 3-dimensional oriented manifold and
D2, so w2(B) = 0. We now consider the Stiefel-Whitney class of A. We denote the projection
from A = Σk × S1 to Σk by p1 and the projection from A to S1 by p2. We have

TA ∼= p∗1TΣk ⊕ p∗2TS1 ∼= p∗1(TΣk ⊕ ε1),
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where ε1 denotes the trivial real vector bundle of rank 1. This means that the Stiefel-Whitney class
of A is determined by the Stiefel-Whitney class of Σk. Now let p denote the projection of Σk to S2.
We have TΣk ∼= p∗TS2⊕p∗O(k), whereO(k) is the rank 2 vector bundle over S2 with Euler number
k. The class w2(TS2) is zero and w2(O(k)) = k mod 2. Therefore w2(Σk) ∈ H2(Σk; Z2) ∼= Z2 is
zero if k is even and non-zero if k is odd.

This shows that w2(X) = k mod 2, where we use H2(X; Z2) = Z2. By the classification result
for five-manifolds, X is diffeomorphic to S2 × S3 if k is even and it is diffeomorphic to S2×̃S3

if k is odd. We have obtained contact open book decompositions for S2 × S3 and S2×̃S3. In
particular, this shows that both manifolds admit contact structures. We now turn our attention
to the Chern class of the obtained contact structures. This, as it turns out, depends on the chosen
Stein structure on Σk.

6.1.1.1. Chern classes of contact structures. Let us take a look at Figure 6.1. Legendrian
unknots representing Σk have rotation numbers going from −k + 2,−k + 4, · · · , k − 2. Fix a
Legendrian unknot representing Σk and denote its rotation number by r. Proposition 3.19 tells
us that the Chern class of Σk is then given by r ∈ Z ∼= H2(Σk).

We now want to establish the relation between the Chern class of the contact structure cor-
responding to the open book decomposition we described and the Chern class of Σk, the page
of the open book. We may regard the pull-back p∗1TΣk as a subbundle of TA. If we denote the
symplectic form on Σk by ω, then we may write the contact form on A as α = dt+ β, where t is
the local coordinate on S1 = R/Z, and β satisfies dβ = p∗1ω. We obtain a complex structure J for
p∗1TΣk by pulling back the (almost) complex structure on Σk that is compatible with ω.

Next, we construct a vector bundle isomorphism from p∗1TΣk to the contact structure ξ =
kerα. Define

ϕ : p∗1TΣk → ξ

v 7→ v − β(v)
∂

∂t
.

In the definition of this map, we regard both p∗1TΣk and ξ as subbundles of the tangent bundle.
The vector field ∂

∂t generates the standard rotation in the S1-direction.
The inverse of ϕ can be obtained as follows,

ϕ−1(v) = H(Tp1(v)),

where we use H to denote the obvious lift from TΣk to TA. In other words, the inverse of ϕ
projects out the ∂

∂t -component of an element in ξ ⊂ TA. This map ϕ can be used to give ξ a
complex structure. We have the following diagram.

p∗1TΣk
ϕ - ξ

p∗1TΣk

J

? ϕ - ξ

J̃ = ϕ ◦ J ◦ ϕ−1

?

This makes ϕ into complex vector bundle isomorphism from (p∗1TΣk, J) to (ξ, J̃), because by
construction J̃ ◦ϕ = ϕ ◦J . We check now that the J̃ is a complex structure for ξ compatible with
dα = dβ. We set ṽ = ϕ(v) and w̃ = ϕ(w). Then

dβ(J̃ ṽ, J̃ w̃) = dβ(ϕ(Jv), ϕ(Jw)) = dβ(Jv, Jw) = dβ(v, w) = dβ(ϕ(v), ϕ(w)) = dβ(ṽ, w̃)

These steps hold true, because ϕ adds an S1-component and dβ does not contain any dt part, so
dβ(ϕ(. . .), ϕ(. . .)) = dβ(. . . , . . .). Also, J is a complex structure on (p∗1TΣk, J) compatible with
dβ. For the same reasons, the following holds:

dβ(ṽ, J̃ ṽ) = dβ(ϕ(v), ϕ(Jv)) = dβ(v, Jv) > 0 if ṽ 6= 0.

This proves that J̃ is a complex structure compatible with the contact structure ξ. Since (p∗1TΣk, J)
and (ξ, J̃) are isomorphic as complex vector bundles by ϕ (which covers the identity), their Chern
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classes are the same. We had already computed the Chern class of Σk, so we have proved that
c1(ξ) = r ∈ Z ∼= H2(A).

We resort again to a Mayer-Vietoris argument to complete our computation of the Chern class
of X. Consider the Mayer-Vietoris sequence for cohomology with integer coefficients. The part
that is relevant to us looks like

0→ H1(A)
∼=Z

⊕H1(B)
∼=0

α→ H1(A ∩B)
∼=Z

f→ H2(X)
∼=Z

(i∗,j∗)→ H2(A)⊕H2(B)
∼=Z⊕Zk

.

Since the map α is injective, it has to map 1 to some non-zero integer, say m. If m is not equal to
±1, then we see that f(m) = 0, but f(1) 6= 0 by exactness. However H2(X) has no torsion, so we
see that m = ±1 and thus the map α is an isomorphism. Again, by exactness the map f has to
be the zero homomorphism. So we see that the map (i∗, j∗) is injective. We can say a bit more,
namely that i∗ is injective. This can be seen by noting that H2(B) is torsion. We show that it
is an isomorphism by looking at the sequence of the pair (X,A). The piece of the sequence that
interests us, looks like

H2(X) i∗→ H2(A)→ H3(X,A).
By excision, we have H3(X,A) ∼= H3(B, ∂B). The latter group is seen to be isomorphic to
H2(B) = 0 by Poincaré duality. This shows that i∗ is surjective.

The restriction of the first Chern class of the contact structure ξX on X to A is given by
c1(ξ) = r. Since we just checked i∗ to be an isomorphism, it follows that c1(ξX) = r ∈ Z ∼= H2(X).
There is an ambiguity in this notation, namely it depends on which generator of H2(X) we take
(actually this ambiguity is of course also present in our discussion of c1(ξ)).

These ambiguities do not matter for the point we want to make, which is showing that all
possible Chern classes of ξX can be realized by our open books. For (X ∼= S2 × S3, ξX)qycle
we can realize all even Chern classes and for (X ∼= S2×̃S3, ξX) we can realize all odd Chern
classes. Namely, observe that the rotation number r of the diagram in Figure 6.1 can attain any
even value, provided that we have chosen k even and large enough for that purpose. The same
argument works for odd rotation numbers.

6.1.2. Open books for prime manifolds. In this section we will construct open book
decompositions of the remaining prime manifolds, i.e. those simply connected five-manifolds with
torsion H2 and trivial Stiefel-Whitney class. We start with a few remarks establishing some
notation and general arguments.

6.1.2.1. Some general arguments for computing the homology of open books. We will use some
arguments that are quite similar to the ones we used in the previous section. We start with a
compact Stein manifold Σ with boundary K and build the mapping torus

A := Σ× I/ ∼, where (x, 0) ∼ (ϕ(x), 1),

where ϕ is a symplectomorphism of Σ which is the identity near the boundary K. Define B =
K ×D2. Then the relative mapping torus X is formed by

X = A ∪∂ B,
by which we mean that we identify collar neighborhoods of the boundary of A and B. As we
mentioned in Section 5.2, this gives X an open book decomposition. The fundamental group of
X can be computed by applying the Seifert-van Kampen theorem. Since we are interested in
simply connected manifolds, we will always use a simply connected page Σ. This means that
the fundamental group of A is isomorphic to Z (note that A always fibers over S1), whereas
π1(B) ∼= π1(K). Now note that any generator of the fundamental group of B gets killed in A,
because we can first homotope a curve in B to lie in K×{point}. Then we see that any such curve
is contractible in Σ×{point} ⊂ A. Similarly, we see that the generator of π1(A) is contractible in
B. This is done by first homotoping any curve in A to lie in {point} × S1. The resulting curve is
contractible in {point} ×D2. Application of Seifert-van Kampen shows that π1(X) = 0.

For the computation of the homology we rely on the Mayer-Vietoris sequence of the pair of
the pair of subspaces (A,B) in X. Note that A∩B is homotopy equivalent to K × S1, because ϕ
is the identity near the boundary. The homology of K × S1 can be determined by the Künneth
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formula assuming that we know the homology of A and K. Since A is a fiber bundle over S1

with fiber Σ, we may apply the Wang sequence to get the homology of A (see [32] and also [39]
for our particular case). Note that for a simply connected page we can split off a part of the
Mayer-Vietoris sequence. We do this generalizing the argument from Section 6.1.1. A piece of the
Mayer-Vietoris sequence looks like

H1(A ∩B)
f→ H1(A)⊕H1(B)→ H1(X)

∼=0
.

We follow the same line of reasoning as in Section 6.1.1 to show that f is injective. First of all,
the Künneth formula shows that H1(A ∩ B) ∼= Z ⊕H1(K) ∼= H1(A) ⊕H1(B), since H1(A) ∼= Z
(by the homotopy exact sequence for A → S1) and H1(B) ∼= H1(K). Since homology groups are
finitely generated abelian groups, we can write

H1(A ∩B) ∼= H1(A)⊕H1(B) ∼= Zk ⊕ T.

In this formula Zk denotes the free part and T the torsion part which is a finite group. Since the
map f is a homomorphism and Hom(T,Zk) = 0, we may write f as

f : Zk ⊕ T → Zk ⊕ T
(a, b) 7→ (g(a), h(a, b)).

Because f is surjective by the above sequence, g is a surjective homomorphism from Zk to Zk.
We can, for instance by tensoring with Q, extend this map to a linear surjection from Qk to Qk.
Since the two vector spaces have the same dimension, the extended map must be injective as well,
so g is injective. In other words, if (a, b) ∈ ker f , then a is zero, so to find an element in the kernel
of f , we can restrict h to T and we obtain a surjective homomorphism from T to T . A surjective
map between two finite sets with the same number of elements is injective, so the kernel is just
the neutral element. Hence f is injective.

6.1.2.2. Brieskorn varieties. Giroux’s theorem on open book decompositions of contact mani-
folds says that we can always assume the page to be a Stein manifold. We therefore turn attention
to a particularly simple class of Stein manifolds, which we will call Brieskorn varieties. Take the
polynomial

Pt(z) =
n∑
i=0

zai
i − t

for z = (z0, . . . , zn) ∈ Cn+1 and t ∈ C. The zero set of this polynomial is a Stein manifold if
t 6= 0. If t = 0, the zero set of Pt has a singularity at 0 if one of the exponents is larger than 1.
We will denote the zero set of the polynomial Pt by Σa, where a indicates that this set depends
on the exponents a = (a0, . . . , an). The set Σa is called a Brieskorn variety. There is a group
action of Zai

on Σa obtained by multiplying the ith coordinate by ath
i roots of unity for each

i = 0, . . . , n. These Stein manifolds can be made into compact Stein manifolds by restricting Σa
to a ball BR = {z ∈ Cn+1 | |z| ≤ R} in Cn+1 with sufficiently large radius. By abuse of notation,
we will also denote this set by Σa. The boundary of this compact Stein manifold is a Brieskorn
manifold with exponents a, provided that t is small enough. This property of Brieskorn manifolds
can for instance be found in theorem 14.3 of [28], but we will give another argument in Section
6.1.2.3.

We would like to use Brieskorn varieties as pages with the corresponding Brieskorn manifolds
as binding in open books. We may of course use the identity for the monodromy of the pages, but
this will not give us any interesting open books. A Mayer-Vietoris argument similar to the one
used in the previous section and some additional arguments show that such open books will give
a connected sum of copies of S2 × S3 in dimension 5. Instead, we use the action of the generator
of Za0 on Σa as monodromy, i.e. we use the “rotation” map

ϕ : Σa → Σa
(z0, . . . , zn) → (ζa0z0, z1, . . . , zn),
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where ζa0 is the ath
0 root of unity e2πi/a0 . Since this is a biholomorphism, we get a symplectomor-

phism of the page, but we still need to show that we can isotope this map symplectically to the
identity near the boundary of the page. We will describe this in the following interlude.

6.1.2.3. The rotation maps ϕ are symplectically isotopic to the identity. Instead of considering
the polynomial P , we take the function

g =
n∑
i=0

zai
i − f(r),

where r =
√∑n+1

i=0 |zi|2 and the function f is a real valued function to be specified later. We

denote the zero set of g by Σ̃a of g. Note that this set is in general not be a Stein manifold. We
will, however, show that it is symplectic for suitable f . Take a vector X ∈ TCn+1|g−1(0). The
condition that X be tangent to Ṽa is

iXdg = iX

(
n∑
i=0

aiz
ai−1
i dzi −

1
2
∂f

∂r

n∑
i=0

(
z̄i
r
dzi +

zi
r
dz̄i)

)
= 0.

Let now ω0 denote the standard symplectic form on Cn+1 and suppose that ω0|Σ̃a
is degenerate

for the vector X at some point of V . Then we have

iXω0 = (λdg + λ̄dḡ)

for some λ ∈ C, because we know ω0 is non-degenerate on Cn+1. Using this relation, we deduce
that

iXdzj =
2
i

(
−
(
∂f

∂r

zj
2r

)
(λ+ λ̄) + aj z̄

aj−1
j λ̄

)
.

Now we return to check the tangency condition of X. The previous relations now give us

0 = iXdg =
2
i
λ̄

∑
j

a2
j |zj |2(aj−1) − ∂f

∂r

∑
j

aj
2r

(zaj

j + z̄
aj

j )


The coefficient of λ̄ has a term involving a2

i |zi|2(ai−1) in it. Now assume that the exponents are
larger than 1 and that the derivative ∂f

∂r < 1 − ε for some positive ε. This means that the term
with a2

i |zi|2(ai−1) will dominate for large r, i.e. the coefficient of λ̄ will be non-zero and therefore
λ̄ = 0. Since |λ̄| = |λ|, it follows that λ must be zero, which in turn implies that X is zero. This
last step shows that V can be made symplectic for suitable f . To be more precise we choose f
with the following properties.

1. The function f is constant 1 for r ≤ R0, where R0 is chosen in such a way that the above
mentioned term will indeed dominate.

2. For r ≥ R1 > R0 + 1, the function f is constant 0. Note that this condition is not
necessary for symplecticity. It will, however, be useful to make the rotation maps isotopic
to the identity for large radii.

3. Between R0 and R1, the function f goes smoothly from 1 to 0, connecting smoothly to
the already described parts of f . We will choose f such that its derivative is smaller
than 1− ε.

Now that we know that Σ̃a is symplectic, we want to see the corresponding rotation map can
be isotoped to the identity. First define the map ϕ : Cn+1 → Cn+1, sending (z0, . . . , zn) 7→
(ζa0z0, z1, . . . , zn). Now choose the following Hamiltonian function on Cn+1:

H =
n+1∑
i=0

π

ai
|zi|2.

The time t flow of the Hamiltonian vector field associated to H induces the map

ψt : (z0, . . . , zn) 7→ (e2πi
t

a0 z0, . . . , e
2πi t

an zn)
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Note that this map sends Σ̃a to Σ̃a for r > R1. Choose a function h which is constant 0 for
0 ≤ r ≤ R1 and which increases to 1 at r = R2 > R1, after which it is constant 1. Let ψ̃t denote
the time t flow of the Hamiltonian vector field associated to H̃ = hH. The map ψ̃t sends Σ̃a to
Σ̃a for all radii. By choosing t0 ∈ Z such that t0 = −1 mod a0 and t0 = 0 mod ai for i = 1, . . . , n,
we undo the rotation in the first coordinate for large radii and hence we see that it is the identity
near the boundary. Note this choice is not always possible, but if a0 is relatively prime to ai for
i = 1, . . . , n, it is. Altogether, we have the map

ϕ̃ = ψ̃t0 ◦ ϕ : Σ̃a → Σ̃a,

which is the identity near the boundary of Σ̃a. Also note that the choice of t0 is not unique.
6.1.2.4. Homomorphism on homology induced by the rotation map. We would like to know

what the relative mapping torus of the rotation map on Σ̃a is. Since the classification of simply
connected five-manifolds is mainly controlled by homology, it turns out that it suffices to know
what map the monodromy induces on the homology. First, we observe that ϕ and ϕ̃ are isotopic,
so they induce the same maps on homology. And we may, in fact, work with the non-deformed
Stein manifold Σa and the rotation map defined there (which we will also refer to as ϕ), because
Σ̃a and Σa coincide in ball of radius R0 around the origin as subsets of Cn+1.

These Stein manifolds Σa have been studied carefully in the past (see for instance [28])
and many results about their properties, including their homology, are known. We will give a
short summary of some of the results that we will use. The results that we are listing are from
Hirzebruch-Mayer, [28], but date back to Pham, see [41].

Stein manifolds are well known to have the homotopy type of a cell-complex of half their real
dimension, see Theorem 3.10. This fact is reflected in the following theorem,

Theorem 6.3 (Pham, see [28] and [41]). The set Ua = {z ∈ Σa | z
aj

j ≥ 0 for all j} is a
deformation retract of Σa. This deformation is compatible with the group action mentioned above.

We will use the group action a lot in the following, so let us introduce some notation. The
group of ath

j -roots of unity will be written as Gaj
∼= Zaj

when we consider it as an abstract group,
and we will denote a generator of Gaj by wj . As a subgroup of C∗, we shall write G̃aj . The roots
of unity will be indicated by ζj . We will write Ga = Ga1 ⊕Ga2 ⊕ · · · ⊕Gan

.
The set Ua can be identified with the join Ga0 ∗ · · · ∗Gan

in the following way. First a simple
observation. Suppose z ∈ C∗, then note that the condition zaj ∈ R≥0 is equivalent to z = ζj |zj |
with ζj an ath

j root of unity. This gives another description of the set Ua,

Ua = {(ζ0t0, . . . , ζntn) ∈ Cn+1| ζj ∈ G̃aj
, tj ≥ 0 and

n∑
i=0

t
aj

j = 1}.

On the other hand, the join Ga0 ∗ · · · ∗Gan
may be written as

G̃a0 ∗ · · · ∗ G̃an
= {(ζ0t0, . . . , ζntn) ∈ Cn+1 | ζj ∈ G̃aj

, tj ≥ 0 and
n∑
i=0

tj = 1}.

These sets can be identified if we rescale the tj ’s. Notice that this identification is compatible with
the group action, because Ga acts only on the roots of unity.

The join Ga0 ∗ · · · ∗ Gan
is an n-dimensional simplicial complex with an n-simplex for each

element in Ga. This is again compatible with the group action in the following sense. Let e denote
the simplex corresponding to 1 ∈ Ga. The other simplices are obtained by letting Ga act. In other
words, the simplicial chain complex in degree n can be written as

Cn(Ua) = Z(Ga)e,

where Z(Ga) denotes the group ring of Ga.
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Another related way to see that we have an n-dimensional simplicial complex is by noting
that we can map an n-simplex into Σa,

{(x0, . . . , xn) | xi ≥ 0 for all i and
n∑
j=0

xj = 1} → Σa

(x0, . . . , xn) 7→ (x1/a0
0 , . . . , x1/an

n ).

Note that this is the rescaling of the tj ’s we mentioned earlier. By letting G act, we give the entire
space Σa the structure of a simplicial complex. Using this picture we can see that the differential
of simplicial homology commutes with the group action.

For this, recall that in simplicial homology the differential for a single simplex v = 〈v0, . . . , vq〉
can be written as

∂〈v0, . . . , vq〉 =
q∑
j=0

(−1)j〈v0, . . . , v̂j , . . . , vq〉.

The notation v̂j means that we omit the term vj . This map can be extended linearly to give the
boundary operator ∂ : Cn(Ua)→ Cn−1(Ua). We will denote the jth term in the sum by ∂j . So we
may write

∂v =
q∑
j=0

(−1)j∂jv.

Since omitting a term from a simplex commutes with multiplication with group elements, we see
w∂ = ∂w. In particular, this relation simplifies to ∂j ◦ wi = ∂j ◦ 1 for the generators of the group
wj , since ∂j forgets the jth component of a simplex, whereas wj acts only on the jth component.

Hence we see that
h = (1− w0)(1− w1) . . . (1− wn)e

is a cycle. In fact, this may be used to to establish the following isomorphism

H̃n(Ua) ∼= Z(Ga)h.

We will give a more detailed explanation of this fact. We have already seen that the simplicial
chain complex in degree n satisfies Cn(Ua) ∼= Z(Ga). The nth reduced homology group can be
regarded as a subgroup of Cn(Ua) given by the kernel of ∂, because there are no simplices of higher
degree. Therefore we consider the following map

Cn(Ua) ∼= Z(Ga) → Z(Ga)h
w 7→ wh.

Note that the image of this map is always representing a cycle. Let Ia denote the kernel of the
map. The ideal Ia is generated by

1 + wj + w2
j + · · ·+ w

aj−1
j for j = 0, . . . , n.

Note that Ia is a direct summand of Z(Ga), so Z(Ga)h is a free Z-module of rank
∏n
j=0(aj − 1).

By a theorem of Milnor, Z(Ga)h is isomorphic to the homology of the join. Indeed, we have the
following theorem from [37].

Theorem 6.4 (Milnor). Let A,B be topological spaces, then

H̃r+1(A ∗B) =
∑
i+j=r

H̃i(A)⊗ H̃j(B) +
∑

i+j=r−1

Tor(H̃i(A), H̃j(B)).

Note that each of the groups Gaj is a space with aj points, so we have H̃0(Gaj ) ∼= Zaj−1 and
the other homology groups are zero. Applying Milnor’s theorem to Ga0 ∗ · · · ∗Gan

we find that

H̃n(Ga0 ∗ · · · ∗Gan
) ∼= Z(a0−1)(a1−1)·...·(an−1).

Hence it follows that our claim H̃n(Ua) ∼= Z(Ga)h holds true. We also get a convenient basis for
this group. Namely, note that the elements of the form

wk00 wk11 · . . . · wkn
n with 0 ≤ kj ≤ aj − 2 for j = 0, . . . , n
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form a basis for Z(Ga)h.
We will be interested in what map the group action induces on homology. That is why we

reviewed the description of Hirzebruch and Mayer instead of using Milnor’s theorems at an earlier
stage. We introduced several spaces for this, but their homology is the same,

H̃n(Σa) ∼= H̃n(Ua) ∼= H̃n(Ga0 ∗ · · · ∗Gan).

For the following, it is important to note that all identifications we made are compatible with the
group action. We consider the rotation map ϕ induced by multiplication of the first coordinate
by the first ath

0 root of unity. The map ϕ induces multiplication by w0 in Cn(Ua) ∼= Z(Ga). To
get the map in homology, take a representative in Cn(Ua) ∼= Z(Ga) of A ∈ H̃n(Ua), and multiply
by w0. The class this element represents is the image of A. It is well-defined by compatibility of
the boundary operator ∂ with the group action. This induced map on homology will be called ϕ#

and can be represented with respect to a basis of H̃n(Ua), giving a matrix representation for ϕ#.
We take the above basis of H̃n(Ua), given by classes represented by elements of the form

wk00 wk11 · . . . · wkn
n with 0 ≤ kj ≤ aj − 2 for j = 0, . . . , n.

The matrix representation of ϕ# consists of (a1 − 1) · . . . · (an − 1) blocks on the diagonal that
look like 

0 0 · · · 0 −1
1 0 · · · 0

0 1
. . .

...
...

...
. . . . . . 0

0 · · · 0 1 −1


if we order the basis by its degree in w1, then by its degree in w2 and so on.

The above representation of ϕ# can be used to compute the homology of the mapping torus

A′ := Σa × I/ ∼, where (x, 0) ∼ (ϕ(x), 1).

This is done most easily using the Wang sequence. We use the facts that H3(Σa) = 0 and that
π1(Σa) = 0 (and hence also H1(Σa) = 0). The piece that is relevant to us looks like

0→ H3(A′)→ H2(Σa)
ϕ#−id→ H2(Σa)→ H2(A′)→ 0.

Using the above matrix representation of ϕ# we see that ϕ# − id is injective, because the de-
terminant of the associated matrix is non-zero. Hence we conclude that H3(A′) = 0 and that
H2(A′) ∼= coker(ϕ# − id). We have

H2(A′) ∼= coker(ϕ# − id) ∼= Za0 ⊕ · · · ⊕ Za0 .︸ ︷︷ ︸
(a1−1)·...·(an−1)times

Indeed, each block of the matrix representation of ϕ# − id corresponding to the above block has
a cokernel isomorphic to Za0 , which can be seen by performing Gauss elimination. Together with
the discussion at the beginning of this section this gives us the homology of the mapping torus of
Σ̃a with monodromy ϕ̃. Let A denote this mapping torus,

A = Σ̃a × I/ ∼, where (x, 0) ∼ (ϕ̃(x), 1).

Then we have

H2(A) ∼= Za0 ⊕ · · · ⊕ Za0︸ ︷︷ ︸
(a1−1)·...·(an−1)times

.

The homotopy exact sequence of the fibration A → S1 shows that π1(A) ∼= Z, so we see that
H1(A) ∼= Z as well. All higher homology groups (grade larger than two) are zero.
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6.1.2.5. Homology of the relative mapping torus. In this section we will take a few specific
examples of Brieskorn varieties and use them to construct open book decompositions for five
manifolds. We use the basic ingredients obtained in the previous sections and a Mayer-Vietoris
argument similar to the one from section 6.1.1.

First of all, we consider the Brieskorn variety Σ̃a with exponents a0 = pk, a1 = 3 and a2 = 2,
where p is a prime different from 2 and 3, and k some positive integer. Notice that the associated
Brieskorn manifold K is then a homology sphere, i.e. H1(K) = 0. The set A denotes the mapping
torus of Σ̃a with monodromy ϕ̃ as in the previous section. We define B = K × D2 and set
X = A ∪∂ B.

We see that X is simply connected by the Seifert-van Kampen theorem. Indeed, we can apply
the arguments from our general discussion in Section 6.1.2.1. By Poincaré duality we see that
H4(X) = 0, and since K is a homology sphere we also have H2(A∩B) = 0. Consider the following
piece of the Mayer-Vietoris sequence,

0→ H2(A)
∼=Z

pk⊕Z
pk

⊕H2(B)
∼=0

→ H2(X)→ 0.

Here we have used the argument from section 6.1.2.1 to split off a part of the sequence. We see
directly that H2(X) ∼= Zpk ⊕ Zpk . In particular, the rank of H2(X) is zero, so H3(X) = 0 as well
by Poincaré duality and the universal coefficient theorem. This shows that the prime manifolds
M with H2(M) ∼= Zpk ⊕ Zpk admit contact open books for p 6= 2, 3. The binding is a Brieskorn
homology sphere of the form Σ(pk, 3, 2), and the page is the Brieskorn variety Σ̃a. Together with
our earlier results, this covers all prime manifolds except those with 2- or 3-torsion in their second
homology. To get them, we consider Brieskorn varieties with different exponents.

We stick to the notation we introduced before in this section, so A denotes the mapping torus
of Σa defined in section 6.1.2.4 and B denotes a neighborhood of the binding, given by K, the
boundary of Σa.

First we shall tackle the case of 2-torsion in homology. Consider the Brieskorn varieties Σ̃a with
exponents a0 = 2k, a1 = 3 and a2 = 3. Since the exponents are not relatively prime, we cannot
conclude that K is a homology sphere. We can, however, compute the homology of K by using
the algorithm of Randell [42], which we described in Section 4.2.1. So we get H1(K) ∼= Z2k ⊕Z2k .
As in the beginning of this section, the set B denotes the product neighborhood of the binding,
K×D2. The relative mapping torus X is given by X = A∪∂B. We see that π1(X) = 0 by arguing
in the same way as in Section 6.1.2.1. We apply the Mayer-Vietoris sequence to get the homology
of X. The fact that π1(X) = 0 shows that H1(X) ∼= H4(X) = 0. If we consider the Mayer-Vietoris
sequence with rational coefficients, we see quickly that the rank of H3(X) is zero. Together with
the arguments from Section 6.1.2.1 this reduces the remaining part of the Mayer-Vietoris sequence
with integer coefficients to

0→ H2(A ∩B)
∼=Z2

2k

i⊕j→ H2(A)
∼=Z4

2k

⊕H2(B)
=0

→ H2(X)→ 0.

We have used to Künneth formula to determine H2(A ∩ B). The rank of H1(K) is zero, so by
Poincaré duality H2(K) = 0 and hence we also have H2(B) = 0. Formula (6.1.2.4) gives the
homology of A. We may then argue for the remaining term H2(X) as follows. First tensor the
above short exact sequence with Z2. This gives a sequence of Z2-vector spaces. Since tensoring
is a right exact functor, we only need to check that (i⊕ j)⊗ idZ2 is injective to show that we get
a short exact sequence. Note that the map i ⊕ j can be represented by a (4 × 2) matrix with
coefficients in Z2k . Since i⊕ j is injective there is a (2×2) subdeterminant that is invertible in the
ring Z2k (i.e. a class represented by an odd number). If we then tensor with Z2, the corresponding
subdeterminant of the matrix representation of (i⊕ j)⊗ Z2 is non-zero and hence (i⊕ j)⊗ Z2 is
injective. So we have short exact sequence

0→ H2(A ∩B)⊗ Z2
∼=Z2

2

i⊕j→ H2(A)⊗ Z2
∼=Z4

2

⊕H2(B)⊗ Z2
=0

→ H2(X)⊗ Z2 → 0.
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We know that the rank of the first two terms is 2 and 4, respectively. So we see that the rank of
H2(X) ⊗ Z2 is equal to 2. On the other hand, the number of elements of H2(X) must be equal
to 22k by the above short exact sequence (with integer coefficients). Combining this information
we find that H2(X) ∼= G1 ⊕ G2, where Gi ∼= Z2ki for i = 1, 2 and k1 + k2 = 2k. For simply
connected five-manifolds these two groups G1 and G2 must be isomorphic, since the torsion parts
of the second homology group come in pairs (except for the Wu manifold, but that manifold does
not carry a contact structure), see Section 6.1. Therefore we get H2(X) ∼= Z2k ⊕ Z2k .

The arguments for the 3-torsion case are almost completely the same. The exponents for Σa are
different, of course. We take a0 = 3k, a1 = 4 and a2 = 2. As before we use the algorithm of Randell
[42] to compute the homology of the Brieskorn manifold K. This time we get H1(K) ∼= Z3k .
Formula (6.1.2.4) shows that H2(A) = Z3

3k . Again using the arguments from 6.1.2.1 we can split
off a part of the Mayer-Vietoris sequence. By tensoring with Q we see that the rank of H2(X) is
zero, and hence H3(X) = 0. This reduces the sequence to

0→ H2(A ∩B)
∼=Z3k

→ H2(A)
∼=Z3

3k

⊕H2(B)
∼=0

→ H2(X)→ 0.

We argue as before, by first tensoring this short exact sequence with Z3. We see that the rank of
H2(X)⊗Z3 is two. The order of H2(X) is equal to 32k. We use the structure of simply connected
five-manifolds again and see that H2(X) ∼= Z3k ⊕ Z3k .

6.1.3. Additional applications. In the previous sections we have constructed explicit open
books for all simply connected prime five-manifolds and for S2×̃S3 and S5 as well. Using the book
connected sum, this gives all simply connected five manifolds that can admit a contact structure,
a contact open book. Moreover, we have shown that we can realize every compatible Chern class
by choosing an appropriate open book. This can be seen by observing that a non-trivial Chern
class in a simply connected contact five-manifold can only come from an S2 × S3 or an S2×̃S3

factor. Since we have shown in those particular cases that we can obtain every compatible Chern
class, the conclusion follows.

Actually, we can even give another simple proof of the statement that each simply connected
almost contact five manifold admits a contact structure. This proof is based on a paper by Thomas
[48]. He gave constructions for contact structures on five-manifolds. Thomas used Brieskorn
manifolds of the form Σ(pk, 3, 3, 3) for p not divisible by 3 to show that prime manifolds with torsion
in H2 admit contact structures. However, we use Randell’s algorithm to show that Brieskorn
manifolds of the form Σ(3k, 4, 4, 2) realize the missing cases, i.e. prime manifolds with 3-torsion.
In fact, the following table might be useful.

Brieskorn manifold H2 condition
Σ(p, 3, 3, 3) Zp ⊕ Zp p is not divisible by 3
Σ(p, 4, 4, 2) Zp ⊕ Zp p is not divisible by 2
Σ(2k, 6, 3l, p) Zp ⊕ Zp p is not divisible by 2 and 3; k, l ∈ N
Σ(2, 2k3l, 3, p) Zp ⊕ Zp p is not divisible by 2 and 3; k, l ∈ N
Σ(2k, 2, 2, 2) Z

Our computations in Chapter 4 show that Brieskorn manifolds have always trivial second Stiefel-
Whitney class. In particular, we see that simply connected spin five-manifolds, i.e. w2 = 0, can
be written as a connected sum of Brieskorn manifolds.

We continue with our alternative proof. The above table shows that all simply connected
prime manifolds (recall that our notion of prime manifold differs from the usual one) can be
realized by Brieskorn manifolds and hence they carry a contact structure. To show that all almost
contact manifolds carry a contact structure we still need to verify that S2×̃S3 admits a contact
structure. This is most easily done using the open book decompositions of S2×̃S3 we described
earlier.

6.1.3.1. More open book constructions of contact manifolds. In Section 6.1.2.4 we constructed
the mapping torus of a Brieskorn variety, where the monodromy was obtained by multiplying the
first coordinate with a suitable root of unity. We can, of course, modify the monodromy a bit, for
example by multiplying several coordinates with suitable roots of unity. Then we may apply the
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same procedure to obtain other open books of five-manifolds. We would like to say here that this
construction is of course possible and in fact easy to do.

Repeating the construction gives other open books and shows that we get many different
open books for the same five-manifold. This is an interesting phenomenon, and might give rise to
many non-isomorphic contact structures on contact five-manifolds. Unfortunately, I was unable
to compute their contact homology, so these contact structures could still be isomorphic. In fact,
an example by Giroux [21] shows that the standard structure on S5 admits many different open
book decompositions. If we take a closer look at his examples, we also see that they are not always
related by stabilizations. This also shows that the equivalence relation we should use for open
books is not clear at the moment.

Also note that in Section 6.1.2.3, we isotoped the rotation map to the identity for large radii,
see formula 6.1.2.3. The t0 in that formula was chosen such that ϕ was isotoped to the identity
far away from the origin. The choice of t0 is, however, not unique. We can add lcm(a0, a1, a2) to
t0 and we obtain another symplectic isotopy from ϕ to the identity for large radii. Note that this
resembles a Dehn twist, because of the form of the isotopy we defined in Section 6.1.2.3.

6.1.3.2. Dehn twists. We would like to explore this feature in a bit more detail recalling our
previous discussion in 5.2.2.1. Let Σa ⊂ Cn+1 be the Brieskorn variety with exponents ai = 2 for
i = 0, . . . , n. The Brieskorn variety Σa can in that case be identified with T ∗Sn, see for instance
6.20 from [34]. Actually, it turns out that the symplectic manifolds

(Σa,
i

2

∑
j

dzj ∧ dz̄j) and (T ∗Sn, ωcan)

are isomorphic via the symplectomorphism

ψ : Σa → T ∗Sn

z = x+ iy 7→ (|x|−1x, |x|y),
where x, y ∈ Rn+1 such that x+ iy ∈ Σa. Now consider the map

ϕ : Σa → Σa
z 7→ −z.

This is a “rotation” map with a form slightly different from the type we described in Section
6.1.2.3. The exponents are now not relatively prime, but because they are the same, we can still
use the same trick to isotope the map to the identity for large |z|, after perturbing the manifold
Σa to the manifold Σ̃a described in Section 6.1.2.3. Let us denote this isotoped map by ϕ̃.

In other words, this map is an odd Dehn twist, and by choosing different values of t0 as
mentioned in the previous section we get different Dehn twists. If we apply the arguments from
Section 6.1.2.3 to the case where we take ϕ̃ to be the identity, we get the even Dehn twists.

Open books with page T ∗Sn and monodromy given by a Dehn twist are described in [40] and
endow spheres in dimensions 4k + 1 with infinitely many non-isomorphic contact structures. The
fact that the contact structures are indeed non-isomorphic was first shown by Ustilovsky [50]. In
other words, this might indicate that varying the value of t0 in Section 6.1.2.3 could give rise to
different contact structures on the same manifold in more cases, such as the open books we gave
for five-manifolds.

I should add at this point though that I did not verify that either way (taking different
Brieskorn varieties or isotoping the symplectomorphism in different ways to the identity) actually
gives different contact structures. Only in case that all exponents of the Brieskorn variety are 2
we know that that is true by [40] and [50].

6.1.3.3. Symplectomorphisms that are isotopic to the identity near the boundary. In order to
construct contact open books, we need an exact symplectic manifold Σ and a symplectomorphism
that is the identity near the boundary of Σ. In this section we would like to give some remarks
concerning these kinds of symplectomorphisms. The easiest non-trivial example would be the
following one. Let Σ be a symplectic manifold of dimension 2n with boundary and let L be a
Lagrangian embedding of Sn. Then we can do a symplectic Dehn twist on a neighborhood of L.
Such a neighborhood is symplectomorphic to T ∗Sn by a theorem of Weinstein that is now known
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as the Lagrangian neighborhood theorem [34]. We identify the neighborhood of L with T ∗Sn and
note that Dehn twists are isotopic to the identity away from the zero section. In other words, the
symplectomorphism defined on a neighborhood of L can be extended to be the identity outside
this neighborhood of L. We obtain a symplectomorphism that is suitable for a contact open book.
This is of course related to the Lagrangian plumbings that we defined earlier.

An interesting example is that open book decompositions can sometimes be used to make a
statement about the symplectomorphism group of a certain symplectic manifold. For instance,
take any Legendrian knot with tb either 0 or 2. If we attach a two-handle as in Theorem 3.18 to
such a knot, then we obtain a Stein manifold Σ, whose boundary is a homology sphere, say K.
We want to argue that Σ does not admit any symplectomorphism isotopic to the identity near the
boundary that induces −id on homology (note H2(Σ) ∼= Z). Assume that there is such a map,
which we denote by ϕ. Then we may define the mapping torus

A := Σ× I/ ∼, where (x, 0) ∼ (ϕ(x), 1).

The Wang sequence for A, a Σ-bundle over S1, shows that H2(A) ∼= Z2, cf. the sequence 6.1.2.4.
Let B = K × D2 be a neighborhood of the binding. The arguments from Section 6.1.2.1 apply
and show that X := A ∪∂ B is simply connected. A Mayer-Vietoris argument then shows that
H2(X) ∼= Z2. This means that X is diffeomorphic to the Wu manifold, which does not admit
a contact structure. Hence the assumption that there is such a symplectomorphism is false. Of
course, there might be situations where it can be shown that there is not even a diffeomorphism
with these properties.



CHAPTER 7

Open book decompositions for contact structures on
Brieskorn manifolds

This chapter is based on a joint article with Klaus Niederkrüger, see [40]. We construct
abstract contact open books using a simple Stein manifold, namely T ∗Sn with its canonical sym-
plectic form. For the monodromy we use Dehn twists. We show that these contact open books
are certain Brieskorn manifolds, namely Σ(k, 2, . . . , 2), where k is the order of the Dehn twist.

7.0.4. Dehn twists. Here we will give an explicit form for a Dehn twist in order to make
computations. See also Sections 5.1.2 and 5.2.2.1 for a more geometric description of a Dehn twist.
We write points in T ∗Sn−1 as (q,p) ∈ R2n with |q| = 1 and q ⊥ p.

We write a k-fold right-handed Dehn twist as

τk(q,p) =
(

cos gk(p) |p|−1 sin gk(p)
−|p| sin gk(p) cos gk(p)

)(
q
p

)
.

Here gk(p) = πk + fk(|p|), and fk is a smooth function that increases monotonically from
0 to πk for k > 0 on an interval that will be specified later. Outside this interval, fk will be
identically equal to 0 or πk, see Figure 7.1. Though the details do not matter for the Dehn
twist itself, our computations will turn out to put some constraints on fk. We can, of course,
also write a left-handed Dehn twist in this way by choosing a negative k and by requiring fk to
decrease monotonically to πk. In the following we will restrict ourselves to right-handed Dehn
twists though. Note that for small |p| a k-fold Dehn twist is (−1)k id, while for large |p| it equals
the identity map.

We will now construct a mapping torus of T ∗Sn−1 using right-handed Dehn twists following
the construction we described in Section 5.2. The canonical 1-form λcan = p dq on T ∗Sn−1

transforms like

τ∗kλcan = λcan + |p| d
(
fk(|p|)

)
.

��������

�
	

Figure 7.1. Sketch of fk
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Note that the difference λcan− τ∗kλcan is exact. This implies in particular that the Dehn twists are
symplectomorphisms of (T ∗Sn−1, dλcan). As a primitive of this difference λcan − τ∗kλcan we take

hk(|p|) := 1−
∫ |p|

0

sf ′k(s)ds.

Note that hk can assumed to be positive by choosing a suitable interval where fk increases.
To be more explicit, choose a smooth function f that is identically 0 on the interval [0, 1], on
the interval [1, 2] it increases monotonically from 0 to 1 and f is identically 1 on the interval
[2,∞). Furthermore, we may assume that the derivative f ′ is bounded by 2. Then we can take
fk(x) := kπf(ckx) with ck > 3kπ. We have∫ |p|

0

sf ′k(s)ds ≤
∫ ∞

0

kπcksf
′(cks)ds ≤ kπ

∫ ∞

0

yf ′(y)dy/ck ≤
kπ

ck

∫ 2

1

y2dy =
3kπ
ck

,

where we have substituted y = cks and used that f ′(y) = 0 outside the interval [1, 2] and that
f ′ is bounded by 2. Our choice of ck ensures that this integral is indeed smaller than 1, so hk is
positive. Consider the map

ϕk : R× T ∗Sn−1 → R× T ∗Sn−1,

(t;q,p) 7→ (t+ hk(|p|); τk(q,p)).

This map preserves the contact form dt + λcan on R × T ∗Sn−1, so we obtain an induced contact
structure on R× T ∗Sn−1/ϕk.

To make computations more convenient, we construct an additional intermediate mapping
torus. Let R× T ∗Sn−1/ ∼k be the mapping torus obtained by identifying

(t;q,p) ∼k (t+ 1; τk(q,p)).

We can define a diffeomorphism

R× T ∗Sn−1/ ∼k→ R× T ∗Sn−1/ϕk

by sending (t;q,p) to (hk(|p|)t;q,p). The pull-back βk of the described contact form under this
diffeomorphism is given by

βk = hk(|p|)dt− t|p| d
(
fk(|p|)

)
+ λcan.

During our computations a few more mapping tori arise, and one of the main goals is to construct
contactomorphism between them. For the convenience of the reader we have included a diagram
in Section 7.1.2 that contains all mapping tori and the maps between them.

7.1. Open books for the Brieskorn manifolds W 2n−1
k

We will consider a special class of Brieskorn manifolds (see Chapter 4 for some general facts on
these manifolds), namely Brieskorn manifolds of the form Σ(k, 2, . . . , 2) ⊂ Cn+1. We will denote
them as W 2n−1

k . Some of the computations will be a little easier if we take the radius of the sphere
to be

√
2.

Because of these special exponents, we have a large group acting on W 2n−1
k ; the orthogonal

group SO(n) acts linearly on Cn+1 by multiplying the last n coordinates with SO(n) in its standard
matrix representation, i.e. A · (z0, z1, . . . , zn) := (z0, A · (z1, . . . , zn)). This action restricts to
W 2n−1
k , because the polynomial f(z0, . . . , zn) = zk0 + z2

1 + . . .+ z2
n can be written as zk0 + ‖x‖2 −

‖y‖2 + 2i〈x|y〉 with x = (x1, . . . , xn) and y = (y1, . . . , yn).
The contact form we defined in Chapter 4 is also SO(n)-invariant. We write zj = xj + iyj . In

these coordinates the contact form looks like

αk := k · (x0 dy0 − y0 dx0) + 2
n∑
j=1

(xj dyj − yj dxj) ,

so we see immediately that it is indeed invariant under the group action.
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Although the group action will not appear explicitly in the following computations, it serves
as a guide. Often it is only necessary to describe a map on a thin slice of the manifold. The group
action can then be used to define the map everywhere.

Next, we note that we have an open book structure on W 2n−1
k : we define the binding B of the

open book by the set in W 2n−1
k with z0 = 0, and we have the fibration ϑ : (W 2n−1

k − B) → S1,
given by (z0, z1, . . . , zn) 7→ z0/|z0|. First we show that this does indeed define an open book, and
then we show that the monodromy can be regarded as a k-fold right-handed Dehn twist.

7.1.1. The binding. Note that the bindingB is naturally contactomorphic toW 2n−3
2 . Hence

the binding is a contact manifold. As a manifold, we can identify W 2n−3
2 with the unit sphere

bundle S(T ∗Sn). The latter fact can be seen as follows. We have an SO(n) action on W 2n−3
2 .

Indeed, the orbit of (1, i, 0, . . . , 0) is W 2n−3
2 and the stabilizer of (1, i, 0 . . . , 0) can be seen to be

SO(n− 2). Hence we can identify W 2n−3
2 = SO(n)/SO(n− 2) ∼= S(T ∗Sn)

The symplectic normal bundle of the binding is trivial, because for k 6= 1 we have a symplectic
basis

1√
2k

(1, 0, . . . , 0),
1√
2k

(i, 0, . . . , 0),

and for k = 1 we have the basis√
2
5
(1,− z̄1

4
, . . . ,− z̄n

4
),

√
2
5
(i,− iz̄1

4
, . . . ,− iz̄n

4
).

In particular we have that the normal bundle is trivial, which is necessary for B to be the binding
of an open book.

7.1.2. The pages. In this section, we want to prove that W 2n−1
k −B is contactomorphic to

R× T ∗Sn−1/ ∼k, the mapping torus of a k-fold Dehn twist.
We have an R-action on W 2n−1

k −B, given by

eit(z0, z1, . . . , zn) = (eitz0, e
ki
2 tz1, . . . , e

ki
2 tzn).

This induces a diffeomorphism between the pages ϑ−1(1) and ϑ−1(eit). Note that this action is
the flow of the Reeb field.

The following auxiliary mapping torus makes the computations more convenient. Define

Mk := R× T ∗Sn−1/σk,

where
σk(t,q,p) = (t+ 1, (−1)kq, (−1)kp).

We will now give an explicit map to show that P = ϑ−1(1) is diffeomorphic to T ∗|p|<1S
n−1. Here

T ∗|p|<1S
n−1 denotes the open unit disk bundle associated with the cotangent bundle of Sn−1. A

point (q,p) ∈ T ∗Sn−1 ⊂ Rn × Rn with |q| = 1, |p| ≤ 1, and q ⊥ p is mapped to

(q,p) 7→
(
1− |p|2, F (|p|)p + iG(|p|)q

)
,

with

F (r) =

√
2− (1− r2)2 − (1− r2)k

2r2
and

G(r) =

√
2− (1− r2)2 + (1− r2)k

2
.

Together with the R-action this gives a map

Φk : R× T ∗|p|<1S
n−1 → W 2n−1

k

(t,q,p) 7→
(
e2πit(1− |p|2), eπkit(F (|p|)p + iG(|p|)q)

)
.

This descends to a diffeomorphism of the subset of Mk with |p| < 1 to W 2n−1
k − B. For k even,

one obtains Φk(t + 1,q,p) = Φk(t,q,p), so that W 2n−1
k − B ∼= S1 × T ∗|p|<1S

n−1, and for k odd,
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one obtains Φk(t+1,q,p) = Φk(t,−q,−p), so that W 2n−1
k −B is a non-trivial T ∗|p|<1S

n−1-bundle
over S1.

The pull-back of the contact form αk to Mk under Φk gives

Φ∗kαk = 2πk
(
(1− |p|2)2 + |p|2F 2 +G2

)
dt+ 4FGλcan = 4πk dt+ 4FGλcan.

Next, we construct a diffeomorphism Ψk from Mk to the mapping torus R× T ∗Sn−1/ ∼k by
defining

Ψk(t;q,p) =
[
t;q · cos

(
tfk(|p|)

)
+

p
|p|
· sin

(
tfk(|p|)

)
,

p · cos
(
tfk(|p|)

)
− |p|q · sin

(
tfk(|p|)

)]
.

The map is well-defined, because Ψk ◦ σk(t;q,p) is identified with Ψk(t;q,p) in the mapping
torus R × T ∗Sn−1/ ∼k. In order to show that (W 2n−1

k − B,αk) and (R × T ∗Sn−1/ ∼k, βk)
are contactomorphic, we will show that the pull-back of αk under Φk is contactomorphic to the
pull-back of βk under Ψk.

We now compute the pull-back of βk under Ψk, noting that the norm of p is invariant under
Ψk (we do not write the dependence of hk and fk on |p|):

Ψ∗
kβk = hkdt− t|p|dfk + (p cos(tfk)− |p|q sin(tfk)) ·

(
dq cos(tfk)−

− q sin(tfk)(fkdt+ tdfk) + (
dp
|p|
− p d|p|
|p|2

) sin(tfk) +
p
|p|

cos(tfk)(fkdt+ tdfk)
)
.

Since we have p · q = 0 and |q|2 = 1, it follows that p dq = −q dp (recall that p dq = λcan)
and q dq = 0. We now use the standard trigonometric equalities and the fact that hk(y) =
1− yfk(y) +

∫ y
0
fk(s)ds to find

Ψ∗
kβk =

(
1 +

∫ |p|

0

fk(s)ds

)
dt+ λcan.

Note that Φ∗kαk has a very similar form. We make the following ansatz for a contactomorphism
of (Mk||p|<1,Φ∗kαk) to (Mk,Ψ∗

kβk):

Sk : (t,q,p) 7→ (t,q,
g(|p|)
|p|

p).

With this ansatz we find what p should map to in order to be a contactomorphism. Note that
the map Sk just rescales p. The pull-back under Sk of Ψ∗

kβk is given by(
1 +

∫ g(|p|)

0

fk(s)ds

)
dt+

g(|p|)
|p|

λcan.

Since we want this to be a multiple of Φ∗kαk, we need to solve the following equation,

g(|p|)
1 +

∫ g(|p|)
0

fk(s)ds
=
|p|FG
kπ

.

With the auxiliary function
h(y) :=

y

1 +
∫ y
0
fk(s)ds

,

the above equation becomes

(7.1) h (g(|p|)) =
|p|FG
kπ

.

Hence we can solve for g(|p|) by inverting h. The following arguments show that h can indeed be
inverted. The derivative of h is given by

h′(y) =
1−

∫ y
0
sf ′k(s)ds(

1 +
∫ y
0
fk(s)ds

)2 =
hk(y)(

1 +
∫ y
0
fk(s)ds

)2 ;



7.1. OPEN BOOKS FOR THE BRIESKORN MANIFOLDS W 2n−1
k 61

this is positive by our choice of hk in Section 7.0.4. This shows that h is strictly increasing.
Since fk(s) = kπ for s sufficiently large, we see that h(y) converges to 1/kπ if y tends to infinity.
Combining these two observations shows that the function h maps [0,∞) to [0, 1/kπ). Hence h can
be inverted when restricted to a suitable range. A short computation shows that the right-hand
side of the Equation (7.1), the term |p|FG/kπ, has positive derivative and is therefore strictly
increasing on the interval [0, 1). Moreover, it has the same range as h, namely [0, 1/kπ). Therefore
we can find a smooth solution to g(|p|) by applying the inverse of h to |p|FG

kπ .
This shows that the open book (B,ϑ) on W 2n−1

k has page T ∗Sn−1 with monodromy given by
a k-fold Dehn twist. The contactomorphism that achieves this is

Ck := Φk ◦ S−1
k ◦Ψ−1

k : (R× T ∗Sn−1/ ∼k, βk)→ (W 2n−1
k −B,αk).

Note that this contactomorphism also respects the projection to S1, because the S1-coordinate is
invariant under Ck. We summarize our results in the following diagram

(R× T ∗Sn−1/ϕk, dt+ λcan)∼=(
R× T ∗Sn−1/ ∼k, βk

) ψk←−Mk
Sk←−Mk||p|<1

Φk−→
(
W 2n−1
k , αk

)
.

7.1.3. The contact structure on W 2n−1
k is supported by the open book. We now

want to show that the open book we gave on W 2n−1
k is adapted to the contact form αk.

In Section 7.1.1 we showed that αk induces a contact form on the binding B. Next we note
that the Reeb field Rαk

is transverse to the pages, as its flow even provides a diffeomorphism from
one page to another. If we denote an open page (i.e. the page without the binding) by P , this
implies in particular that the rank of dαk|P is maximal, or in other words that dαk is a symplectic
form when restricted to P . This shows that dαk induces a symplectic form on each open page.

This verifies a part of Definition 5.5, but we still need the positivity condition. For that, we
use the following observation due to Giroux,∫

∂P

α ∧ (dαk)n−2 =
∫
P

(dαk)n−1 > 0.

The latter expression is positive because (dαk) is symplectic, so it gives a volume form on P . We
give P the orientation coming from this volume form. Hence we see that the orientation on the
binding coming from the contact form matches the orientation as the boundary of a page, provided
that the binding is connected. If the boundary is not connected, the form α∧ (dαk)n−2 could still
be negative on one component. We first observe that the binding is connected if n > 2. In case
the Brieskorn manifold is 3-dimensional (n = 2), we see that the binding given by z0 = 0 has two
components, namely the subsets of the Brieskorn manifold satisfying z2

1 + z2
2 = 0, or

{z1 = iz2} and {z1 = −iz2}.
If we send z2 to −z2, we map one component to the other without changing the form αk. Hence
their integrals must be the same, and by the above computation they are both positive.





CHAPTER 8

Maslov index and closed Reeb orbits

8.1. Maslov index for loops of symplectic matrices

In this chapter we would like to define the Conley-Zehnder index which plays the role of
degree in contact homology. This index is a special kind of Maslov index. Because there are many
different Maslov indices, we will introduce a few of them and then point out relations between
them. Most of the statements here can be found in [43] and [44].

Since the fundamental group of Sp(2n) (the group of matrices that preserve the standard
symplectic form in R2n) is isomorphic to the integers, one might be interested in an explicit
isomorphism π1(Sp(2n)) → Z. This can be given by the so-called Maslov index. By requiring
some properties, we can define a distinguished isomorphism. We have the following theorem from
[34], Theorem 2.35,

Theorem 8.1. There exists a unique functor µl, called the Maslov index for symplectic
loops, which assigns an integer µl(ψ) to every loop ψ : S1 → Sp(2n) of symplectic matrices and
satisfies the following axioms:

• Homotopy: Two loops in Sp(2n) are homotopic if and only if they have the same Maslov
index.
• Product: For any two loops ψ1, ψ2 : S1 → Sp(2n) we have µl(ψ1ψ2) = µl(ψ1) + µl(ψ2).

In particular, the constant loop ψ(t) = 1 has Maslov index 0.
• Direct sum: If n = n′ + n′′, we may regard Sp(2n′)⊕ Sp(2n′′) as a subgroup of Sp(2n).

The Maslov index is additive with respect to this operation: µl(ψ ⊕ ψ′) = µl(ψ) + µl(ψ′)
• Normalization: The loop ψ : S1 → U(1) ⊂ Sp(2) defined by ψ(t) = e2πit has Maslov

index 1.

Indeed, we can give an explicit description of this functor. This is done by constructing a map
from Sp(2n) to S1, which can be used to compose with a path of symplectic matrices. Thus we
obtain a map from S1 to S1, whose degree we can consider. More precisely, we do the following.
An element A from Sp(2n) can be retracted onto U(n) by using

(AAT )−1/2A =
(
X −Y
Y X

)
.

Here we decomposed A into a symmetric, positive definite matrix and an orthogonal matrix, and
consider only its orthogonal part. We use this decomposition to define

ρ : Sp(2n) → S1

A 7→ det(X + iY ),

where X,Y are defined the equation above. For a loop of symplectic matrices ψ : S1 → Sp(2n),
we define the Maslov index as

µl(ψ) = deg(ρ ◦ ψ).
This definition is convenient for many computations, but it can sometimes be helpful to have
another interpretation of the Maslov index. We define Sp∗(2n) to be the set of symplectic matrices
without an eigenvalue equal to 1. This set has two components, which can be distinguished by
the sign of det(1−ψ) for ψ ∈ Sp∗(2n). The complement of Sp∗(2n) in Sp(2n) is called the Maslov
cycle and is an algebraic variety of codimension 1 with a natural coorientation. For any loop
ϕ : S1 → Sp(2n) the intersection number with the Maslov cycle turns out to be even. The Maslov
index µ(ϕ) is half this number.

63
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8.2. Conley-Zehnder index

The map ρ can also be used to define the so-called Conley-Zehnder index. This index
assigns to every path ψ : [0, 1] → Sp(2n) with ψ(0) = 1 and ψ(1) ∈ Sp∗(2n) an integer. One
definition goes as follows. We extend the path ψ to a map ψ : [0, 2] → Sp(2n) such that ψ(s) ∈
Sp∗(2n) for s ≥ 1 and ψ(2) is either W+ = −1 or W− = diag(2,−1, . . . ,−1, 1

2 ,−1, . . . ,−1). Such
an extension is unique up to homotopy. Note here that W+ and W− lie in different components
of Sp∗(2n). Since ρ(W±) = ±1, we find that ρ2 ◦ ψ : [0, 2]→ S1 is a loop. As the degree of this
map is independent of the chosen extension, the Conley-Zehnder index

(8.1) µCZ(ψ) = deg(ρ2 ◦ ψ)

is well-defined. Following [44] we list the following properties of the Conley-Zehnder index, which
are similar to the ones that define the Maslov index for symplectic loops. Indeed, [45] shows that
the homotopy, loop and signature property determine the Conley-Zehnder index uniquely

• Naturality: For any path ϕ : [0, 1]→ Sp(2n), µCZ(ϕψϕ−1) = µCZ(ψ).
• Homotopy: The Conley-Zehnder index of ψ is invariant under homotopies of ψ with fixed

endpoints.
• Zero: If ψ(s) has no eigenvalue on the unit circle for s > 0 then µCZ(ψ) = 0.
• Direct sum: If n = n1 + n2, we may regard Sp(2n1)⊕ Sp(2n2) as a subgroup of Sp(2n).

The Conley-Zehnder index is additive with respect to this operation: µ(ψ1 ⊕ ψ2) =
µ(ψ1) + µ(ψ2). The paths are both supposed to have the proper form, i.e. ψi : [0, 1]→
Sp(2ni) with ψi(0) = 1 and ψi(1) ∈ Sp∗(2ni) for i = 1, 2.

• Loop: If ϕ : [0, 1]→ Sp(2n) is a loop with ϕ(0) = ϕ(1) = 1, then

µCZ(ϕψ) = µCZ(ψ) + 2µl(ϕ).

• Signature: Let S be a symmetric, non-degenerate (2n × 2n)-matrix with ‖S‖ < 2π.
Define ψ(t) = exp(J0St). Then we have

µCZ(ψ) =
1
2

sign(S).

Here sign(S) is the signature of the matrix S, i.e. the number of positive minus the
number of negative eigenvalues. The norm on matrices is taken to be

‖S‖ = max
|x|=1
|Sx|,

where we have used the standard Euclidean norm on R2n.

For a lot of computations another definition of the Conley-Zehnder index is often convenient.
Let ψ be a path ψ : [0, 1] → Sp(2n) with ψ(0) = 1 and ψ(1) ∈ Sp∗(2n). A number t ∈ [0, 1]
is called a crossing if det(1 − ψ(t)) = 0. For a crossing t we may define the quadratic form
Γ(ψ, t) : ker(1− ψ(t))→ R by

Γ(ψ, t)v := ω0(v, ψ̇(t)v)

for v ∈ ker(1− ψ(t)) and ω0 the standard symplectic form on R2n. This quadratic form is called
the crossing form. A crossing t is said to be regular if its corresponding crossing form is
non-degenerate. Note that regular crossings are always isolated. If the path ψ has only regular
crossings, its Conley-Zehnder index may also be computed as follows:

(8.2) µCZ(ψ) =
1
2

signΓ(ψ, 0) +
∑

t is a crossing,t>0

signΓ(ψ, t).

Because the Conley-Zehnder index is invariant under homotopies with fixed endpoints, we may
compute the Conley-Zehnder index for general paths in the same way after making a small per-
turbation (fixing the endpoints) to ensure that all crossings are regular. It is proved in [43] that
the definitions in Formula (8.1) and Formula (8.2) of the Conley-Zehnder index agree.
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8.2.1. Maslov index for paths. Robbin and Salamon [43] considered more general paths
of symplectic matrices. They defined a more general Maslov index, which can be regarded as a
generalization of the Conley-Zehnder index. It can be defined as follows. Let ψ : [a, b]→ Sp(2n)
be any path of symplectic matrices. If this path has only regular crossings, its Maslov index may
be defined by

(8.3) µ(ψ) :=
1
2

signΓ(ψ, a) +
∑

t is a crossing,t∈(a,b)

signΓ(ψ, t) +
1
2

signΓ(ψ, b).

As before, Γ(ψ, t) denotes the crossing form of ψ at t. If there is no crossing in a, the first term
( 1
2 signΓ(ψ, a)) should be read as 0. The last term ( 1

2 signΓ(ψ, b)) should be dropped in case there
is no crossing in b. If the considered path ψ has non-regular crossings, we first make a small
perturbation ψ̃ of ψ such that ψ̃ has only regular crossings. As before, we obtain this perturbation
using a homotopy of ψ that fixes the endpoints. We put µ(ψ) = µ(ψ̃). This general Maslov index
is half-integer in general and has the following properties.

• Naturality: For ϕ ∈ Sp(2n) we have µ(ϕψϕ−1) = µ(ψ).
• Homotopy: The Maslov index of ψ is invariant under homotopies of ψ with fixed end-

points.
• Catenation: Let ψ : [a, b]→ Sp(2n). Then we have for a < c < b

µ(ψ) = µ(ψ|[a,c]) + µ(ψ|[c,b])

• Direct sum: If n = n1 + n2, we may regard Sp(2n1)⊕ Sp(2n2) as a subgroup of Sp(2n).
The Maslov index is additive with respect to this operation: µ(ψ1⊕ψ2) = µ(ψ1)+µ(ψ2),
where ψi : [0, 1]→ Sp(2n1) for i = 1, 2.

We note that the loop and signature properties as we found them for the Conley-Zehnder index
will also hold for this more general index.

8.2.2. Example. Here we will compute the Maslov index of a certain path of symplectic
matrices. In itself, this is not very interesting since we simply use Formula (8.3), but we will get
a convenient formula that we shall use in Chapter 11.

Consider the path of symplectic matrices given by

ψ : [0, T ] → Sp(2)

t 7→ eit =
(

cos(t) − sin(t)
sin(t) cos(t)

)
.

We see that there is always a crossing at t = 0. Depending on what T is, there can be additional
crossing at integer multiples of 2π smaller than T . The derivative of ψ is given

ψ̇(t) =
(
− sin(t) − cos(t)
cos(t) − sin(t)

)
,

so at a crossing t, the derivative ψ̇(t) is the standard (almost) complex structure on R2. By
plugging this into the second slot of the standard symplectic form, we get the standard metric on
R2. Hence we see that the signature at each crossing is 2. In case T is not divisible by 2π, the
only crossing at the boundary of [0, T ] is the one at 0; this contributes 1 to the Maslov index.
There are bT/2πc interior crossings, each of which increases the Maslov index by 2. On the other
hand, if T is divisible by 2π, we have two crossings at the boundary, both contributing a 1 to the
Maslov index, and T/2π − 1 interior crossings. So we obtain

(8.4) µ(ψ) =
{

2 T
2π if T is divisible by 2π,

2b T2π c+ 1 otherwise.
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8.3. Indices for closed Reeb orbits

In this section, (M,α) will denote a closed contact manifold of dimension 2n− 1 with contact
form α. Moreover, we will assume that the contact form satisfies a certain genericity condition
which we shall define now. The Reeb field of α is denoted by R and the contact structure by
ξ = kerα.

Let γ be a closed Reeb orbit of period T , and take p ∈ γ. The time t flow of the Reeb field,
which we shall write as

FlRt : M →M,

preserves the contact structure ξ. In fact, the Reeb flow preserves dα because of LRα = diRα +
iRdα = 0. Hence we get a symplectic map of symplectic vector spaces

ψγ : (ξ, dα)|p → (ξ, dα)|p,

defined by the restriction of TpFlRT to ξ|p.

Definition 8.2. The map ψγ is called the linearized return map. The closed Reeb orbit
γ is said to be non-degenerate if the linearized return map has no eigenvalue equal to 1.

For now we require closed Reeb orbits to be non-degenerate. This imposes some conditions
on the contact form, but they turn out to be rather mild, as we see in the following proposition.

Proposition 8.3. There exists a C∞-small perturbation α′ of α such that all closed Reeb
orbits of α′ are non-degenerate.

A proof of this proposition can for instance be found in [5]. In general, a perturbation, such
as the one from this proposition, destroys a lot of symmetry that could be present in the contact
form. We illustrate this in the following example, whose numerics will be used again later on. We
consider the (2n− 1)-dimensional sphere as a subset of Cn,

S2n−1 = {(z1, . . . , zn) ∈ Cn|
n∑
i=1

|zi|2 = 1}.

We can take the following contact form

α =
i

2

n∑
j=1

(zjdz̄j − z̄jdzj)|TS2n−1 .

We can easily verify that the Reeb field and flow are given by

Rα = i(z0, . . . , zn) with flow FlRα
t (z1, . . . , zn) = (eitz1, . . . , eitzn).

We see that all Reeb orbits are closed. Indeed, the time 2π flow of the Reeb field is the identity
map on S2n−1. In particular, all closed Reeb orbits are degenerate.

We can also take a perturbed contact form

α̃ =
i

2

n∑
j=1

aj(zjdz̄j − z̄jdzj)|TS2n−1 ,

with the aj linearly independent over Q. The Reeb field has a similar form to the one before, and
the flow is given by

FlRα̃
t (z1, . . . , zn) = (eit/a1z1, . . . , e

it/anzn).

In this case, all but one of the the coordinates of closed Reeb orbits must be zero, i.e. we have n
closed Reeb orbits (if we do not count multiple covers), and the jth one is given by

t 7→ (0, . . . , 0, eit/aj , 0, . . . , 0)
at jth position

.

This Reeb orbit has period 2πaj . If we take t = 0 as a starting point for each closed Reeb orbit,
then we can compute the linearized return map. At these starting points, which are given by
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1), the contact structure coincides with the complex tangent space to
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the sphere. Hence we see that the return map of the jth closed Reeb orbit is given by the diagonal
((n− 1)× (n− 1))-matrix

diag(ei2πaj/a1 , . . . , ̂ei2πaj/aj , . . . , ei2πaj/an),

where ˆ denotes an omitted term. All closed Reeb orbits of the perturbed contact form α̃ are
non-degenerate, but the contact form has now a different shape for different coordinates.

We will now assume that we have a generic contact form on M , i.e. a contact form whose
closed Reeb orbits are non-degenerate.

8.3.1. Indices for homologically trivial Reeb orbits. Let γ be a closed Reeb orbit that
is homologically trivial. We define its Conley-Zehnder index in the following way. First choose a
Seifert surface S1 for γ along with a trivialization of ξ on S1. Next, we choose a framing of ξ on
S1,

ϕ1 : S1 × R2n−2 → ξ|S1

(of course linear in the second slot). The path of symplectic matrices we are going to consider is
the differential of the Reeb flow restricted to ξ,

ψ1 := ϕ−1
1 ◦ TF lRt |ξ ◦ ϕ1(γ(0), . . .)

Now we put µCZ(γ;S1) = µCZ(ψ1) := µCZ(pr2 ◦ ψ1), where pr2 denotes the natural projection
to R2n−2. By naturality of the Conley-Zehnder index this is independent of the framing chosen
on S1. It is, however, not independent of the chosen Seifert surface. The dependence can be
expressed relatively easily though. Choose another Seifert surface S2 and denote the framing of ξ
on S2 by ϕ2 : S2 × R2n−2 → ξ|S2 . We define, as above,

ψ2 := ϕ−1
2 ◦ TF lRt |ξ ◦ ϕ2(γ(0), . . .) = ϕ−1

2 ◦ ϕ1 ◦ ψ1 ◦ ϕ−1
1 ◦ ϕ2(γ(0), . . .).

We want to relate ψ1 and ψ2 via a symplectic base change. Note that the symplectic matrix on
the right, ϕ−1

1 ◦ ϕ2, is evaluated in γ(0), whereas the one on the left, ϕ−1
2 ◦ ϕ1, is evaluated in

γ(t). In other words, the naturality property does not apply. In order to make use of our list
of properties, we want to relate ψ1 and ψ2 through a loop of symplectic matrices starting at the
identity. This can be guaranteed by choosing a different framing on S2, obtained from the old
framing by multiplying with the constant matrix (ϕ−1

1 ◦ ϕ2)−1 in γ(0). Let us denote this new
framing by ϕ′2. We have

ϕ′2(x, v) = ϕ2(x, (ϕ−1
1 ◦ ϕ2)−1

γ(0)v).

Note that the Conley-Zehnder index of γ with respect to the framings ϕ2 and ϕ′2 are the same by
naturality of this index.

We write ψ′2 for the symplectic path associated to γ measured with respect to the trivialization
ϕ′2. As before, we have

ψ′2 = ϕ′2
−1 ◦ ϕ1 ◦ ψ1 ◦ ϕ−1

1 ◦ ϕ′2(γ(0), . . .).

Note that the symplectic matrix on the right, ϕ−1
1 ◦ ϕ′2, is now the identity in γ by virtue of

our change of framing. Therefore we have ψ′2 = ϕ′2
−1 ◦ ϕ1 ◦ ψ1. Note that ϕ′2

−1 ◦ ϕ1 can be
regarded as a loop of symplectic matrices that starts at the identity. By the loop property of the
Conley-Zehnder index we can then write µCZ(ψ′2) = µCZ(ψ1) + 2µl(ϕ′2

−1 ◦ ϕ1).
The term µL(ϕ′2

−1 ◦ϕ1) is the winding number of the trivialization of ξ|S2 with respect to the
trivialization of ξ|S1 and hence it represents 〈c1(ξ), [S1 ∪ S2]〉. The relation between the Conley-
Zehnder indices of the two trivializations ϕ1 and ϕ2 can then be written as

(8.5) µCZ(γ, S2) = µCZ(γ, S1) + 2〈c1(ξ), [S1 ∪ S2]〉.

Once we have computed the Conley-Zehnder index of a Reeb orbit, we can define the degree
of that Reeb orbit as

deg(γ) = µCZ(γ, S1) + n− 3.
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Remark 8.4. If we compute the Conley-Zehnder index (and hence the degree) in this way,
we see that this index is not well-defined unless c1(ξ) = 0 (see Formula (8.5) ). In our applications
this will actually be the case, but in general this is a problem that has to be taken into account.
We will say more on this in Chapter 10. See also Remark 8.6. In principle, we do not need the
term n− 3, since we will only be using cylindrical contact homology, but the n− 3 is needed for
generalizations and we include it to stick with the usual conventions.

8.3.1.1. A practical computation of the Conley-Zehnder index. Let (M, ξ) be a contact mani-
fold of dimension 2n − 1 with contact form α. Suppose the symplectic vector bundle (ξ, dα) is
symplectically stably trivial, i.e.

(ξ ⊕ ε2k, dα⊕ ω2k) ∼= (ε2n+2k−2, ω2n+2k−2) for some k ∈ N,

where (ε2k, ω2k) denotes the trivial symplectic vector bundle of rank 2k. Then we might use the
trivialization of (ε2n+2k−2, ω2n+2k−2) instead of choosing a disk.

Consider a contractible closed Reeb orbit γ. We extend the linearized Reeb flow along γ to
(ξ ⊕ ε2k, dα ⊕ ω2k). Let us denote the extended flow by Φ, the restriction of this extension to
(ε2k, ω2k) by Φξω , and the linearized Reeb flow by Φξ.

Then we compute the Maslov index of the extended Reeb flow (note that we allow the extension
to have degenerate endpoints). By the direct sum property of the Maslov index, we expect

µ(Φ) = µ(Φξ ⊕ Φξω ) = µ(Φξ) + µ(Φξω ).

Note that the Maslov index does not depend on the choice of trivialization of the symplectic
vector bundle (ε2n+2k−2, ω2n+2k−2). Indeed, if Φ′ is the extended linear flow with respect to
another trivialization, then there is a basis transformation along γ from one trivialization to the
other, which can be extended to M . We write ψ : S1 = R/Z→ (ε2n+2k−2, ω2n+2k−2) for this basis
transformation. The two paths of symplectic matrices are related by

Φ′(t) = ψ(t)Φ(t)ψ(0)−1.

By the loop property (which is also valid for the Maslov index), we see that the Maslov indices of
the two paths are related by

µ(Φ′) = µ(Φ) + 2µl(ψ) = µ(Φ).
The latter equality holds because the trivializations extend to the whole manifoldM . In particular,
they extend to a disk bounding the Reeb orbit γ, so the map ψ must be homotopic to the constant
map. The same argument applies to the path Φξω . In particular, we can consider a trivialization
of (ξ, dα) on a disk and extend this trivialization to (ε2n+2k−2, ω2n+2k−2). Hence we can compute
the Conley-Zehnder index of the Reeb orbit γ as

µ(Φξ) = µ(Φ)− µ(Φξω ).

Remark 8.5. Note that a contact structure ξ is symplectically stably trivial if and only if
ξ ⊕ ε2 is trivial. See for instance Ustilovsky’s thesis [51], Chapter 2, for this claim. Also observe
that the total Chern class of a symplectically stably trivial contact structure is trivial.

8.3.2. Indices for homologically non-trivial Reeb orbits. Although we will only con-
sider contractible Reeb orbits in our applications of contact homology (so we can actually take the
Seifert surfaces to be disks in dimensions greater than 4), it is still interesting to define the index
of a Reeb orbit in more general cases. For the sake of convenience we will restrict ourselves to
the case that H1(M ; Z) is torsion-free. We can choose curves δ1, . . . , δr in M representing a basis
of H1(M ; Z). Here the torsion-free condition is important, because we can otherwise only assume
the curves to represent a generating set of H1(M ; Z). We also choose trivializations of ξ on each
of the curves δi. We will call these curves δi reference arcs.

Any closed Reeb orbit γ will be either null-homologous or homologic to a (non-trivial) linear
combination of the reference arcs δ1, . . . , δr. In the first case we proceed as in the previous section.
In the second case we choose a surface Sγ that represents the homology between γ and a linear
combination of the reference arcs. The trivializations ξ|δi extend to the surface Sγ . Hence we get
a surface with a trivialization of ξ. Since γ is in the boundary of the surface Sγ , we can then



8.3. INDICES FOR CLOSED REEB ORBITS 69

compute the Conley-Zehnder index in a way similar to the one from the previous section. The
degree of a closed Reeb orbit is then similarly defined as

deg(γ) = µCZ(γ, Sγ) + n− 3.

Remark 8.6. It is important to note that the Conley-Zehnder we compute this way is in
general not well-defined, but depends on the choice of reference arcs and the homology between
the closed Reeb orbits and the reference arcs. Therefore it is important to keep track of the choices
made. When we introduce contact homology in Chapter 10 these choices will be part of the data
and hence we can “compensate” in some sense for the fact that the Conley-Zehnder index is not
well-defined. In other words, data like the surface realizing the homology between γ, the reference
arcs and the homology between Reeb orbits and reference arcs shall be used later on.

In case H1(M ; Z) is not torsion free, we can actually follow a similar strategy by choosing
curves representing a basis of the free part and curves that represent a minimal generating set of
the torsion part. The standard way to make this work (see for instance [14], section 2.9.1, or the
lecture notes of Bourgeois, [5]) assigns a rational degree to a closed Reeb orbit.

8.3.3. Closing remarks on degrees. In our application of contact homology, the contact
form has degenerate Reeb orbits, so computations as above cannot be performed directly. Since we
have introduced the Maslov index as well, we can however compute that index following the same
procedure as for non-degenerate orbits by choosing a Seifert surface or a homology to reference
arcs if we replace the Conley-Zehnder index by the Maslov index. The degree is defined differently
though, but we will say more on this in Chapter 10. Note that the Maslov index for non-degenerate
Reeb orbits is the same as the Conley-Zehnder index.

From this point on, we will only consider manifolds without torsion in H1. At some point,
results could be made more general by restricting to contractible Reeb orbits instead of requiring
torsion-free homology.





CHAPTER 9

Pseudo-holomorphic curves in symplectic cobordisms

In this chapter we will introduce pseudo-holomorphic curves in symplectic cobordisms. This
is a rather large theory and we will not provide proofs of the statements we make. Some notions
and theorems basically go back to Gromov’s article on pseudo-holomorphic curves [27], but we
will also use some of the more recently developed notions coming from symplectic field theory.
In the end we are interested in a small part of symplectic field theory, namely contact homology,
which, among other things, provides invariants of contact manifolds. We will describe that theory
in the next chapter, but again it is a rather large theory and we will only provide sketch proofs.

Since our application of pseudo-holomorphic curves takes place in contact homology, we can
think of holomorphic curves in symplectizations most of the time. However, the proof of invariance
of contact homology requires holomorphic curves in more general cobordisms, so we will not restrict
ourselves to symplectizations. The discussion here follows mostly the article of Eliashberg, Givental
and Hofer [14], and some elements come from [6] and [3]. Other good references are [44] and [33].

In the following we will only consider manifolds with coorientable contact structure and from
now on we will often only specify a contact manifold by a pair (V, α), where α is a contact
form. Throughout the discussion we will often mention Morse homology. Morse homology can be
regarded as a “prototype” for contact homology (and also Floer homology). In finite-dimensional
Morse homology the technical aspects are much simpler than the technicalities of contact homology.
Moreover, some of the main ideas of contact homology are already contained in Morse homology.
We refer to the book of Schwarz [47] to cover the needed ideas.

9.1. Almost complex structures

In order to speak about pseudo-holomorphic curves in a symplectic manifold (M,ω), we need
an appropriate complex structure on the tangent space of M . We will consider the following
notion, but there are weaker notions which allow the study of pseudo-holomorphic curves.

Definition 9.1. (cf. Definition 2.14) An almost complex structure J on M is said to be
compatible with ω if

1. ω(v, Jv) > 0 for all v ∈ TM
2. ω(Jv, Jw) = ω(v, w) for all v, w ∈ TM .

Remark 9.2. If J is an almost complex structure compatible with ω, then ω(. . . , J . . .) is a
Riemannian metric.

Definition 9.3. Let (Σ, j) be a Riemann surface with complex structure j and let (M,ω, J)
be a symplectic manifold with compatible almost complex structure J . We say a map f : (Σ, j)→
(M,J) is pseudo-holomorphic or (by slight abuse of notation) holomorphic if

(9.1) J ◦ Tf = Tf ◦ j.

We see that this is a generalization of the Cauchy-Riemann equations. For instance, if we take
(Σ, j) to be the standard complex plane and we take M = R2 with is standard symplectic and
(almost) complex structure, then Equation (9.1) is just the standard Cauchy-Riemann equation.
Sometimes we will use the term J-holomorphic map or (j, J)-holomorphic map instead of just
pseudo-holomorphic. We shall do this in cases where we vary the almost complex structure on W
or on S and W , respectively.

71
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We rewrite Equation (9.1) and simultaneously introduce the delbar operator ∂̄

∂̄f =
1
2
(Tf + J ◦ Tf ◦ j) = 0.

Like in complex analysis this is often a convenient way of writing the Cauchy-Riemann equations.

9.1.1. Symplectic cobordisms. Since we will consider curves in symplectic cobordisms,
we want to use almost complex structures that respect the symplectic structure of a symplectic
cobordism. Let W =

−−−−→
V −V + be a symplectic cobordism between the contact manifolds (V −, α−)

and (V +, α+). By definition, the symplectic form on W looks like d(etα−) near the negative end
V −× (−∞, 0] and like d(etα+) near the positive end V +× [0,∞). As in Section 3.3 the number t
denotes the coordinate on the interval. We will consider almost complex structures J on W that
are translation-invariant on the ends. By this we mean that J is invariant under the map t 7→ t±c
(− sign for the negative end and + sign for the positive end) for large |t| and c > 0. In the special
case of a symplectization we require J to be globally translation invariant (not just near the ends).

If we restrict ourselves to a slice V ± × {t}, we want in addition the contact structure on that
slice, given by ξ± = kerα±|V ±×{t}, to be invariant under J . Furthermore, we will put

(9.2) J
∂

∂t
= Rα± ,

where Rα± is the Reeb field of the contact form α±.
Note that one way to obtain such an almost complex structure on the symplectization of (V, α)

is by starting with a complex structure J̃ on ξ = kerα that is compatible with dα. This complex
structure can be extended to T (V × R) by requiring

J
∂

∂t
= Rα.

Thus we can get an almost complex structure on T (V × R) that is compatible with d(etα).

9.2. Holomorphic curves

Let (V, α) be a contact manifold and let (W,ω) be its symplectization. We choose a suitable
almost complex structure J for W following the discussion from the previous section. Let γ be a
closed Reeb orbit in V . The vertical cylinder γ ×R is then a J-holomorphic curve in W , because
we imposed the requirement (9.2) on J . In this example we see that the curve behaves nicely near
the ends. We want to formalize this behavior in the following definition.

Definition 9.4. Let f : D2 − {0} → W be a J-holomorphic map. We can write f(r, ϑ) =
(fV (r, ϑ), fR(r, ϑ)) ∈ V × R with polar coordinates on D2 − {0}. We say f is asymptotically
cylindrical over the closed Reeb orbit γ at ±∞ if

lim
r→0

fR(r, ϑ) = ±∞

and
lim
r→0

fV (r, ϑ) = γ̃(ϑ)

for a parametrization γ̃ of the Reeb orbit γ.

With this definition, we can also indicate what class of holomorphic curves we are mainly
interested in. We consider rational curves that are asymptotically cylindrical over Reeb orbits,
i.e. maps from the 2-sphere minus a number of punctures, where the behavior near the punctures
is similar to the example of the vertical cylinder. We will also use the notation from this definition
more often. The subscripts V and R indicate the projections from a curve to the V - and R-
component.

Note also that we can speak about asymptotically cylindrical holomorphic curves in general
symplectic cobordisms by virtue of the structure of the ends (they look like part of a symplectiza-
tion). In the following we will often talk about positive and negative punctures. This notion is
used to indicate whether the Reeb orbit over which a holomorphic curve is asymptotically cylin-
drical near a puncture, is either at the positive end or the negative end of a symplectic cobordism.
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The energy is an important quantity we can assign to a holomorphic curve. For the symplec-
tization W = V ×R of the contact manifold (V, α) this notion is easiest to define. We choose the
almost complex structure J on W as before. We denote the symplectic form on W by ω = d(etα)
and have the inclusion

i : V → V × R
x 7→ (x, 0).

Definition 9.5. Let f : S →W be a pseudo-holomorphic curve. We write f = (u, a). Then
the ω-energy of f is defined by

Eω(f) =
∫
S

a∗i∗ω.

This energy are defined for more general two-forms ω as well. If we put ω = d(etα), where α
is a contact form on M , the ω-energy is also called contact area. Under suitable assumptions,
the energy is finite and can be computed using Stokes’ theorem. Indeed if f : (S, j) → (W,J)
is a pseudo-holomorphic curve that is asymptotically cylindrical over the Reeb orbits Γ− at the
negative end and asymptotically cylindrical over the Reeb orbits Γ+ at the positive end of W ,
then the contact area of f is equal to

Eω(f) =
∫

Γ+
α−

∫
Γ−

α.

Note that this expressions involves the integral of α along a curve. This quantity is known as the
action and will play a role in Chapter 10. Note that the definition of contact area is very similar
to the area of a holomorphic curve in Gromov’s theory. However, the actual area of a holomorphic
curve in a symplectization cannot be bounded. Hence the definition is modified to pick out only
the “contact part” of the area and not the component in the t-direction.

Remark 9.6. There are also other notions of energy. The most important condition in later
theorems will be boundedness of the energy. In [3] another, not equivalent notion of energy is used
for these bounds. However, if we require the holomorphic maps to be proper, then boundedness
of the notion we defined here and boundedness of energy in the sense of [3] are equivalent. See
Lemma 5.15 of [3] for a proof of this claim. For this reason we need to include the condition of
properness in some statements, which is often absent in the literature where the other notion of
energy is used.

For more general symplectic cobordisms, we do the following. Let W be a symplectic cobor-
dism, which we may write as

W = W− ∪ W̄ ∪W+,

where W̄ is the compact symplectic cobordism obtained from W by removing the ends, and W±

are positive and negative ends of symplectizations, i.e.

V − = V − × (−∞× 0], and W+ = V + × [0,∞)

The manifolds V ± are contact manifolds. We have the inclusions

i± : V ± → V ±

x 7→ (x, 0)

Definition 9.7. Let f : S → W be a pseudo-holomorphic map. We write its restriction to
the ends of W as F |V ± = (u±, a±). The ω-energy of f is defined as

Eω(f) =
∫
f−1(W̄ )

f∗ω +
∫
f−1(W−)

u−
∗
i−
∗
ω +

∫
f−1(W+)

u+∗i+
∗
ω.

All the energies we defined here can be shown to be non-negative, see Lemma 6.1 of [3]. On
the other hand, in a symplectization a holomorphic curve can have contact area 0 if and only if
that curve is either a vertical cylinder or a constant map.

Note that the energy of a holomorphic curve that is asymptotically cylindrical over closed
Reeb orbits near all ends is always finite. In fact, there is a kind of converse for symplectizations,
see [14].
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Figure 9.1. Homology class for a holomorphic curve

Theorem 9.8. Suppose that α is a generic contact form on M , i.e. all closed Reeb orbits
are non-degenerate. Let W = symp(M) denote the symplectization of (M,α). Let C be a non-
compact Riemann surface without boundary and let f : C → W be a proper pseudo-holomorphic
curve. Suppose the contact area of f is bounded. Then C is conformally equivalent to a punctured
Riemann surface obtained from the closed Riemann surface Sg of genus g; we have s+ + s−

punctures, which can be divided in s+ positive punctures and s− negative punctures, such that the
map f is asymptotically cylindrical over closed Reeb orbits near the positive punctures at +∞ and
that near the negative punctures the map f is asymptotically cylindrical over closed Reeb orbits at
−∞.

9.2.1. Homology class of a holomorphic curve. In this section we assign a homology
class to a holomorphic curve. At first this might seem a matter of book-keeping, but in later
sections it will be vital to have this information.

Let W =
−−−−→
V −V + be a symplectic cobordism between the contact manifolds (V −, α−) and

(V +, α+). Let us assume that W is topologically trivial, i.e. W ∼= V − × R ∼= V + × R. We
will write V for both V − and V + if we only need the topological structure of the underlying
manifold. Choose a compatible almost complex structure as in Section 9.1. Let S be the 2-sphere
with s+ positive punctures, written x+ = {x+

1 , . . . , x
+
s+}, and s− negative punctures, denoted by

x− = {x−1 , . . . , x
−
s−}. Let f : S → W be a holomorphic curve that is asymptotically cylindrical

over Reeb orbits at all punctures.
In order to associate a homology class to f we need a closed surface. To that end we attach

the surfaces we used to compute the Conley-Zehnder index of the Reeb orbits (see Section 8.3) to
the holomorphic curve. We can cap off those punctures that are asymptotically cylindrical over
homologically trivial Reeb orbits with their Seifert surfaces. For each of the other punctures the
holomorphic curve is asymptotically cylindrical over a closed Reeb orbit γ that is not homologically
trivial. In Section 8.3 we chose a surface Sγ that realized a homology between γ and a linear
combination of the reference loops. We attach these surfaces to the holomorphic curve as well and
hence we obtain a surface A in W with boundary equal to a linear combination of the reference
loops. Note that A represents a homology between the reference loops at the positive end and
the reference loops at the negative end. Hence we see that the projection of A to V is a closed
surface, which represents a homology class. See Figure 9.1 for a graphical representation of this
construction in case f is a holomorphic cylinder (a sphere with one positive and one negative
puncture).



9.2. HOLOMORPHIC CURVES 75

9.2.2. Moduli spaces of holomorphic curves. Let W be a symplectic cobordism and S
a closed Riemann surface with set of “distinguished points” p. These points can be punctures,
which we denote by x+ ∪ x−, but also marked points, which we denote by m. At each of the
punctures we also specify unit tangent vectors, which we will call directions. We use these to fix
the parametrization of the Reeb orbits at the ends.

Definition 9.9. We say a smooth holomorphic map f : (S − (x+ ∪ x−))→W is stable if

• Every component of S at which f is constant must have at least three distinguished
points, punctures or marked points.
• f is not a vertical cylinder on at least one component of S − p.

The first condition means that the Euler characteristic of such a component is negative. The
reason to put this in is to ensure that the automorphism group of the component is finite. To put
this into perspective, one should keep in mind that the group of biholomorphisms of S2 is triple-
transitive. The stability condition might seem a bit strange to impose at first. It will, however,
play an important role, as the stability will guarantee finiteness in a later construction. Originally,
this notion (only the first) was introduced by Kontsevich for closed holomorphic curves. In that
case, it is in fact necessary to ensure that the moduli spaces are Hausdorff.

Let W be a symplectic cobordism with almost complex structure J . By Γ− we mean a finite
set of closed Reeb orbits on the negative end of W and by Γ+ we mean a finite set of closed Reeb
orbits on the positive end of W . Let us denote byMA

m(Γ+,Γ−;W,J) classes of maps f that satisfy
the following.

• f is a stable (j, J)-holomorphic map that sends S − (x+ ∪ x−) to W . Here (S, j) is a
closed Riemann surface. The sets x+ and x− are positive and negative punctures.
• f is asymptotically cylindrical over the Reeb orbits γ+ ∈ Γ+ at the positive end at the

punctures x+. Similarly we require f to be asymptotically cylindrical over the Reeb
orbits of Γ− at the negative end near the punctures x−.
• The homology class of f in the sense of the previous section is given by A.
• Given maps f : (S−(x+ ∪ x−), j)→ (W,J) and f ′ : (S′−(x′+ ∪ x′−), j′)→ (W,J) that

satisfy the above, we say f and f ′ are equivalent if there is a biholomorphism ϕ : S → S′

such that f = f ′ ◦ ϕ.

At each of the punctures we can specify directions which fix the parametrization of the Reeb orbits
in the following sense. At a positive puncture p that is asymptotically cylindrical over the Reeb
orbit γ with direction v we require that

lim
t↓0

f ◦ δ(t) = γ(0)× {∞}

for paths δ with δ(0) = p and dδ
dt (0) = v. Note that for an m-fold covered Reeb orbit γm there

are m distinct parametrizations; we can rotate by mth roots of unity around a puncture and get
the same image in W . In other words, we get an action by Zm on the Reeb orbits and also on
the moduli space whose elements are asymptotic over γm at one of their punctures. For now, this
action does not carry any additional information, but it will be of importance when we consider
orientations of the moduli spaces.

Later on, we will be mostly interested in curves in symplectizations W . In that case we have a
global R-action on W which respects the additional structure like the almost complex structure J .
Hence the moduli space inherits this R-action and we will considerMA(Γ+,Γ−;W,J)/R instead.

We would also like to remark on the marked points. The main purpose here is to illustrate
the stability condition. Note that for higher genus curves the stability condition can be modified.
One needs fewer marked points to get a negative Euler characteristic (and a finite automorphism
group). Besides this illustration, we shall not use the marked points directly in this chapter, but
they can be used to make holomorphic curves more rigid. For instance, one can eliminate families of
equivalent curves by adding marked points. Since the equivalence relation we introduced required
marked points to be mapped to marked marked points under biholomorphisms, this translates to
“smaller” equivalence classes. Besides being a theoretical tool, marked points can also be used to



76 9. PSEUDO-HOLOMORPHIC CURVES IN SYMPLECTIC COBORDISMS

Figure 9.2. Breaking of a cylinder

define more sophisticated versions of contact homology, leading to finer invariants than the ones
that we consider.

9.2.3. Convergence of holomorphic curves. The moduli spaces we introduced in the
previous section are not compact, so we will describe the compactification here. The behavior of
a sequence of stable maps can be described in a few steps. The picture we can keep in mind is
that besides the phenomena we can expect from Gromov compactness, curves can “break” in a
way that is similar to the broken gradient flow in Morse homology, see Figure 9.2.

To be more precise, we recall the definition of “cusp” or nodal curves which appear in Gromov
compactness. Let (S, j) be a Riemann surface with an even number of distinct marked points,
which we shall call special points. We denote these special points by D and we require them
to come in pairs. Hence we may write D = {(c1, d1), . . . , (ck, dk)}. We define the nodal surface
coming from (S, j) and D as

SD = S/{ci ∼ di for i = 1, . . . , k}.
So the nodal surface SD is formed from the components of S by gluing them along the pairs in the
set D. Because special points are all distinct, the nodal surface SD is a possibly singular surface
with at most double points as singularities. The standard example of a nodal curve would be the
case S = S2 ∪ S2 with a special point on each S2. The nodal curve consists of two spheres glued
together at one point, see Figure 9.3. Alternatively, we can describe a nodal surface as a Riemann
surface (S̃, j̃) with a finite set of disjoint circles γ1, . . . , γk. By collapsing the circles to points we
obtain the nodal surface (the collapsed circle corresponds of course to the double point singularity
in the previous picture. See for instance [29] for the latter description. We will call the singular
points of a nodal curve nodes.

We restrict ourselves to topologically trivial cobordisms, i.e. symplectic cobordisms that are
diffeomorphic (not necessarily symplectomorphic) to a symplectization of the contact manifold
V . The following definitions come from [6], with some elements from [3]. Since we consider
topologically trivial cobordisms V ×R, we can always write a map f from a Riemann surface S to
V ×R as a pair (u, a) ∈ V ×R. We use this notation in the following where we will always denote
holomorphic maps by f , possibly with an index. The pair (u, a) inherits this index.

Definition 9.10. Let (S, j) be a nodal curve. A holomorphic map of height (or level) k in
the symplectization of V is a triple (S, j, f) consists of the following data.
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Figure 9.3. Getting a nodal curve by identifying points and by collapsing circles

• The connected components of S̃ = S − {singular points} are labelled by {1, . . . , k}. We
refer to these labels as levels and require that levels of two components of S̃ differ by
at most 1 if the closure of the two components share a node. We use S(i) to denote the
union of connected components of S̃ with level i.

• We have proper holomorphic maps f (i) : (S(i), j) → (V × R, J) with bounded energy
for i = 1, . . . , k making up f . In addition we require that each node shared by S(i) and
S(i+1) is a positive puncture for f (i) at which f (i) is asymptotic to a closed Reeb orbit γ
and a negative puncture for f (i+1) at which f (i+1) is asymptotic to the same Reeb orbit
γ such that f (i) extends continuously across the nodes from S(i).

Height k curves are also referred to as holomorphic buildings. To stick with this termi-
nology, we will sometimes call f (i) : S(i) → W the floors of the holomorphic building. The
definition of height k curves in more general symplectic cobordisms W is obtained by splitting W
into cobordisms W1, . . . ,Wk such that W = W1 } · · ·}Wk. The map f (i) in the above definition
should be interpreted as a map to Wi. Note that we can perform this splitting procedure for a
symplectization W in such a way that the split components W1, . . . ,Wk are all symplectizations.
Of course, this definition can also be used for symplectic cobordisms that are not topologically
trivial.

The notion of stability for height k curves is similar to the notion we defined previously,
basically imposing the stability condition on each level.

Definition 9.11. We say a height k holomorphic map (S, j, f) to (V ×R, ω) is stable if the
connected components of S(i) on which f (i) is constant have negative Euler characteristic (after
removing marked points) or Eω(f (i)) > 0.

Negative Euler characteristic implies that the automorphism group of such a component is
finite. This is important for the moduli space to be well-behaved. We already mentioned that
Eω(f) ≥ 0 with equality only holding if f is a vertical cylinder or a constant map.

We now come to the definition of convergence of stable curves of height k. We can keep
convergence in the sense of Gromov in mind, since for height 1 the two notions coincide. Here is
the definition for a symplectization.

Definition 9.12. A sequence of stable curves of height k given by (Sn, jn, fn), n ∈ N, is said
to converge to a stable curve (S, j, f) of height k′ ≥ k if there is a sequence of maps ϕn : Sn → S

and sequences t(i)n ∈ R for i = 1, . . . , k′, such that
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• the maps ϕn are diffeomorphisms outside a (possibly empty) set of circles Cn. Distinct
circles from Cn are mapped to distinct nodes in S. Away from these nodes of S, the
sequence (ϕn)∗jn of complex structures converges to j.
• The sequences (un ◦ ϕ−1

n , t
(i)
n + an ◦ ϕ−1

n ) : S(i) → V × R converge in the C∞-topology
to f (i) : S(i) → V × R on every compact subset of S(i) for i = 1, . . . , k′.
• For each node p of S between adjacent levels, we can consider a sequence of curves
γn : (−ε, ε) → Sn intersecting ϕ−1

n (p) transversely at t = 0 and satisfying ϕn ◦ γn = γ
for all n. Then limt↓0 u(γ(t)) = limt↑0 u(γ(t)).

In case we are considering general symplectic cobordisms, we can generalize the definition by
using the splitting of a cobordism we mentioned earlier. We also need to interpret the second
point in the definition in another way. In general symplectic cobordisms there is no translation
invariance, but we can still use the structure at the ends of a symplectic cobordism.

We briefly mention how these notions will appear in contact homology. We might think of
contact homology as a Morse homology where the critical points are given by closed Reeb orbits
and the gradient flow is given by holomorphic curves that are asymptotic to closed Reeb orbits.
Index 2 gradient flow lines in Morse homology form a one dimensional manifold whose ends can
be described by broken gradient flow lines. Stable curves of height 2 are the analogue of this in
contact homology.

In a similar spirit we shall sometimes speak about broken holomorphic curves. By that we
mean stable curves of height k > 1 (actually k = 2 for our purposes).

9.2.4. Compactness of the moduli space. If we want to work with compact moduli
spaces, we should, of course, at least add the stable curves of height k for all k to the moduli
space. Let W be a symplectic cobordism that is topologically trivial and choose a suitable almost
complex structure J . We write M̄(W ) for the moduli spaces of pseudo-holomorphic curves of any
level. In case we consider pseudo-holomorphic curves with specified asymptotics we will write as
before M̄(Γ+,Γ−,W ), where Γ+ and Γ− denote the Reeb orbits at the positive and negative end,
respectively. The bar stands for adding stable curves of all heights k.

That these moduli spaces are indeed compact under certain assumptions, has been established
in [3]. We have

Theorem 9.13 (Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder). For every E > 0, the
space {f ∈ M̄(W ) | E(f) ≤ E} is compact.

There are much more general versions of this theorem, but this suffices for our needs. We
rephrase the compactness result to stress its importance. Suppose that we are given a sequence of
stable height k curves fn such that E(fn) ≤ E. Then there is a subsequence fni which converges
to a stable curve of height k′ ≥ k in the sense of Definition 9.12. In other words, the notion of
stable curves suffices to describe all elements in the compactified moduli space.

9.2.5. The structure of the moduli space. In this section we will discuss the elements
which form the heart of the matter together with the compactness results. In order to keep things
brief, we will be sketchy.

We start by giving another description of the moduli space of maps from a Riemann surface
S to an almost complex manifold (W,J). We first give a rough idea, whose origins lie in Floer
homology, and then indicate what complications appear and what modifications of the setup must
be made. In particular, we should inform that reader that the description that we will give at first
serves to illustrate the main ideas. As given, the actual description only works in a few situations.

Let B(S,W,Γ) be the space of stable maps from S to W asymptotic over the Reeb orbits Γ.
There is a vector bundle E over B(S,W,Γ), such that the fiber at [u] ∈ B(S,W,Γ) is isomorphic to
the space of (0, 1)-forms on S with values in (u∗TW ), i.e. the space of sections Γ(S,Ω0,1(u∗TW )).
Since the delbar operator ∂̄J acting on a map u gives such a (0, 1)-form with values in u∗TW , we
can regard ∂̄J : B(S,W,Γ)→ E as a section of the bundle E . The zero set of this section describes
the J-holomorphic maps and therefore the moduli space we are interested in.
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Remark 9.14. Some comment is needed on a proper description of the above setup. Since
we require that maps converge to closed Reeb orbits near the punctures, this needs to be included
in the data in a suitable way. One can, for instance similar to the setup of Floer homology in
the monotone case, try to consider the Banach manifold of maps with prescribed asymptotics. In
order to still have a norm without compactness of W , we need to include asymptotic weights. The
bundle E is a Banach bundle in this setup. Doing this properly complicates the discussion and
we will not go into this. Furthermore, there are additional complications which we want to show
before indicating how to tackle these.

Using the implicit function theorem we can try and show that this zero set is a smooth
manifold. To apply that theorem, we need that the linearization of ∂̄J at a holomorphic curve
u is a surjective Fredholm operator. We use that T(u,0)E ∼= TuB(S,W,Γ) ⊕ Eu and consider the
projection of the linearized Cauchy-Riemann operator to Eu, which we denote by

∂̄u : TuB(S,W,Γ)→ Eu.
From now on we will also call this projection the linearized Cauchy-Riemann operator, since it
contains all information we need. From [9], Proposition 2.10, we have the following expression for
∂̄u,

∂̄uξ = ∇sξ + J(u)∇tξ + (∇ξJ̃(u))ut.
Here ∇ denotes the covariant derivative with respect to the natural metric on the symplectization,

gsym = dt⊗ dt+ α⊗ α+ dα(. . . , J . . .).

One still needs to verify the Fredholm property of ∂̄u. A proof of this property can be found in
[9], Theorem 3.6.

9.2.5.1. Index of ∂̄u and Conley-Zehnder indices of Reeb orbits. The expression for the lin-
earized operator can be written in a nice form near the punctures. Let us take the case of a positive
puncture where the solution u of the Cauchy-Riemann equation is asymptotic to the closed Reeb
orbit γ. We can choose a unitary trivialization of TW on u near the positive puncture,

Φ : R× R/Z× R2n → TW |u.
We require this map to be linear on the R2n-factor. By a unitary trivialization of TW |u we mean a
trivialization which maps the symplectic structure ω and almost complex structure J on TW |u to
the standard structures ω0 and J0 on R2n. With respect to a unitary trivialization, the linearized
operator can be written as

(9.3) ∂s + J0∂t + S(t).

Here we can assume that S is represented by symmetric matrices. This expression is also useful
for establishing a relation between the Conley-Zehnder indices of Reeb orbits and the index of the
linearized operator. We denote the limit lims→∞ Φ(s, t) by Φ+(t). Since we know that u converges
to a closed orbit at infinity, we may consider

Ψ(t) = Φ+(t)−1(TF lRt (x0))Φ+(0).

This is a path of symplectic matrices. We can compute its derivative and find (cf. [45], Section 5)

(9.4) Ψ̇ = J0SΨ.

This relation is needed to establish the connection between the Conley-Zehnder index of the Reeb
orbits and the index of (9.3). We will use this relation later on to derive some information on the
Cauchy-Riemann operator in a particular case.

Remark 9.15. Note that S is determined by the Reeb orbit γ. In other words, the asymptotic
form of the linearized Cauchy-Riemann operator is determined by the “boundary” conditions.

Remark 9.16. We see again that the Conley-Zehnder index of a Reeb orbit need not be well-
defined. The choice of trivialization Φ might give another index than the trivialization we have
chosen before in Section 8.3.
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9.2.5.2. Dimension formula. First we define some notions that are needed in our discussion.

Definition 9.17. Let (S, j) be a Riemann surface and (W,J) a symplectic cobordism with
compatible almost complex structure J . We say a pseudo-holomorphic curve u : S → W is
multiply covered if there exists a Riemann surface (S′, j′), a pseudo-holomorphic curve u′ : S′ →
W and a holomorphic branched covering ϕ : S → S′ such that

u = u′ ◦ ϕ with deg(ϕ) > 1.

A pseudo-holomorphic map is said to be simple if it is not multiply covered. We say a pseudo-
holomorphic map u : S →W is somewhere injective if there exists a point z ∈ S such that

u−1(u(z)) = {z} and Tzu 6= 0.

If ∂̄u surjective, then the ∂̄−1
J (0) is a smooth submanifold of dimension given by the Fredholm

index of ∂̄u. This set can still be empty though.
A nice argument to compute the Fredholm index is presented in [6]. From there we have the

following dimension formula for the moduli space (if we have transversality)

(9.5) dimMA(Γ+,Γ−;W,J) =
s+∑
j=1

µCZ(γ+
j )−

s−∑
i=1

(µCZ(γ−i ) + n− 3)

+ (n− 3)(2− s+) + 2〈c1(J), A〉.

We will often refer to this index as the virtual dimension of the moduli space. Note that for one
positive puncture, one negative puncture and c1(J) = 0, this formula has the form

(degree at the positive puncture)− (degree at the negative puncture),

which is very similar to the dimension of the space of gradient trajectories in Morse homology.
Up to this point, the construction of the moduli spaces is similar to the one in Floer homology

in the monotone case. The next step in that case would be perturbation of the almost complex
structure and/or the Hamilton function. This way we can always achieve transversality in Floer
homology; in our situation there are some cases where this works as well. Indeed, after a suitable
perturbation of J , the moduli space of simple holomorphic maps in a symplectization is a smooth
manifold whose dimension is given by the above formula. This is due to the following theorem of
Dragnev [9].

Theorem 9.18. Let BAs (Γ+,Γ−) denote the set of somewhere injective, finite energy curves
asymptotic to Γ+ near the positive punctures and asymptotic to Γ− near the negative punctures.
Then BAs (Γ+,Γ−) carries the structure of a separable Banach manifold.

The moduli space of somewhere injective holomorphic curves can be seen as a subset of
BAs (Γ+,Γ−). The Sard-Smale theorem shows that regular almost complex structures J are generic,
and hence we can obtain transversality for such a generic choice of J . As a result, the moduli space
of somewhere injective curves carries the structure of a smooth manifold with dimension given by
the above formula. A proof of a similar statement for closed holomorphic curves can be found in
Section 3.2 of [33]. Both proofs rely on the assumption that curves are somewhere injective.

Unfortunately, if we drop the latter assumption, we cannot, in general, achieve transversality
by perturbing the almost complex structure. We now give a simple example of this fact. Let us
consider the case of a holomorphic cylinder, i.e. s+ = s− = 1 in the above dimension formula.
Suppose for instance that µCZ(γ+)− µCZ(γ−) is large enough so that

dimMA(γ+, γ−;W,J) = µCZ(γ+)− µCZ(γ−) + 2〈c1(J), A〉 ≥ 0

for a certain fixed homology class A. Assume that this moduli space is non-empty, so we can take
u ∈MA(γ+, γ−;W,J). Now we might consider positive multiples of the homology class A, which
we will denote by NA with N ∈ N. For N > 1, the expected dimension of MNA(γ+

N , γ
−
N ;W,J)

could be different from the dimension of MA(γ+, γ−;W,J) (this depends on the precise data).
We use γN to denote the N -fold covering of the Reeb orbit γ.
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However, there exists a covering of the cylinder of degree N , for instance z 7→ zN if we use
C − {0} as a model for a cylinder. Let us take such a map ϕN . Then the composition u ◦ ϕN
represents an element in MNA(γ+, γ−;W,J), and we see that all elements of MA(γ+, γ−;W,J)
give rise to an element of MNA(γ+

N , γ
−
N ;W,J).

In particular, if the dimension of MA(γ+, γ−;W,J) does not coincide with the dimension
of MNA(γ+

N , γ
−
N ;W,J) (more generally, we should take the dimension of the space of covering

maps of degree N into account), we cannot expect MNA(γ+
N , γ

−
N ;W,J) to carry the structure of

a smooth manifold. Even in cases where the moduli space is smooth, the virtual dimension might
not coincide with the actual dimension. These arguments show that we cannot always obtain
transversality by perturbing J . Indeed, as we mentioned earlier, our description sofar does not
work in all cases.

9.2.5.3. Some remarks about multivalued perturbations. In the previous section we mentioned
that transversality cannot always be obtained by perturbing the almost complex structure. There-
fore we need another kind of perturbation. In principle we could try and perturb the complex
structure on the Riemann surface as well. In the literature, it is more usual though to consider
inhomogeneous perturbations, i.e. perturbations by sections ν, so that we consider the inhomoge-
neous Cauchy-Riemann equation

∂̄Ju = ν.

This allows us in fact to keep some symmetry. For instance, this way it is not necessary to perturb
a symmetric almost complex structure J , whereas a symmetric almost complex structures would
often not be admissible in our previous description. We have so far neglected to mention one of
the features of the setup explicitly, namely equivariance of ∂̄J under the automorphism group of
the Riemann surface. Because of the stability condition, this automorphism group is always finite.
If u ∈ B(S,W,Γ) and ϕ ∈ Aut′(S), then

∂̄J(u ◦ ϕ) = ϕ∗∂̄J(u).

We require the perturbation to respect this structure. Now we really need to specify the space
of maps, about which we have been rather unspecific up to this point. In the setup for Floer
homology in the monotone case and also in Dragnev’s case of somewhere injective maps, the space
B of maps carries the structure of a smooth Banach manifold.

This is no longer true in our case. We consider the space of stable maps into a symplectic
cobordism with prescribed asymptotics. This space (or at least a neighborhood of the moduli space
of holomorphic curves in this space) can be endowed with the structure of a Banach orbifold, similar
to [35]. That paper gives some details for closed holomorphic curves in symplectic manifolds. A
similar problem arises there if one does not restrict to somewhere injective curves.

Roughly speaking, the orbifold structure comes from the group of automorphisms of a holo-
morphic curve. This group is finite due to the stability condition. Indeed, some curves might have
a non-trivial automorphism group, whereas other nearby curves lack that symmetry and have only
a trivial group of automorphisms. Hence the uniformization charts for the orbifold can be thought
of as follows. We can choose a parametrization f̃ for a stable map f ∈ B. We can define Ũ as a
neighborhood of f̃ consisting of parametrized stable maps that are close to f̃ in a suitable metric.
Let us denote the automorphism group of the curve f by G. The action of G on f̃ can be extended
to a possibly shrunken Ũ such that Ũ/G can be identified with a neighborhood of f in the space
of stable maps B. If we call this identification πG, then the uniformization chart around f is given
by (Ũ , G, πG).

Similarly, the bundle E mentioned earlier can also be defined, but it is an orbibundle. For
these bundles there is also a notion of a Fredholm section. Indeed, the Cauchy-Riemann operator
can be regarded as such a section. The moduli space of holomorphic curves is still the zero set
of this section, but it will in general be a singular space, since the ambient space B is no longer
smooth. We should remark here that the moduli space does not in general carry the structure of
an orbifold, but rather that of a branched “manifold”. A more precise description of the structure
of the moduli space requires a more thorough discussion about the virtual cycle language from
[35], for instance.



82 9. PSEUDO-HOLOMORPHIC CURVES IN SYMPLECTIC COBORDISMS

Figure 9.4. Examples of 1-dimensional moduli spaces; one that carries a smooth
structure and one that does not.

Also note that we still need some argument to obtain transversality (indeed, outside the
singular points of B the situation is as before). Since we are now dealing with orbibundles, the
perturbations in general have to be multivalued.

In Morse homology (or early versions of Floer homology), one of the arguments to show that
the theory is a homology theory boils down to the following. The boundary of smooth, compact
1-manifolds is zero with orientation. We would like to mimic that argument, but since the moduli
spaces are no longer smooth, there can be an odd number of boundary points. On the other hand,
we need to take the automorphism group of the curves into account.

One can assemble the data of the moduli spaces needed for later applications in contact
homology into the so-called virtual moduli cycle. This is a rational homology cycle relative to the
boundary representing the moduli space, i.e. its fundamental class. The elements in this cycle are
weighted by 1/|G|, where |G| is the order of the automorphism group. The idea is that by taking
these weights into account, we can still mimic the argument from Morse homology, see Figure
9.4. The arrows in that figure indicate an orientation that we will discuss in the next section.
Also notice that we have added weights in the non-smooth case. The idea is, that if we count the
oriented boundary with these weights, we get zero just as in the smooth case. As a result, the
differential in contact homology will involve rational coefficients.

9.2.6. Gluing and orientation of the moduli space. In this section we will describe two
important ingredients for later constructions. In order to simplify the discussion we consider the
case of one positive and one negative puncture. That particular case was done by Floer and Hofer
[16] and suffices for our needs, since we will consider cylindrical contact homology, where only
curves with one positive and one negative puncture are considered.

9.2.6.1. Gluing. Let us describe the gluing procedure, which we use to glue two holomorphic
curves with matching asymptotics. This gluing procedure can also be performed at the level of
Cauchy-Riemann operators. We consider maps from a cylinder into a symplectic cobordism W
that satisfy the Cauchy-Riemann equation. We require convergence of the map to a Reeb orbit at
both the positive and the negative puncture. We already saw in Formula (9.3) that the Cauchy-
Riemann operator can be given a specific form near the punctures, and we will consider operators
that have such a form. We write O(γ+, γ−) for the space of Fredholm operators that have the
form of Formula (9.3), where the behavior near the positive puncture and negative puncture is
determined by γ+ and γ−, respectively, in the sense of Remark 9.15. We will use O to denote the
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space of all such operators,
O =

⋃
γ+,γ−

O(γ+, γ−).

The space of operators O(γ+, γ−) will play an important role for the orientation which we describe
below, but we will first continue our discussion of the gluing procedure, which is due to Floer. For
simplicity, let us consider the case of a symplectization of the contact manifold (V, α) with c1 = 0.
Then there is a well-defined grading and we need not concern ourselves with the homology class
of the holomorphic curves. Suppose we are given holomorphic cylinders u ∈ M(γa, γb)/R and
v ∈M(γb, γc)/R and that both moduli spaces are 0-dimensional, so

µCZ(γa)− 1 = µCZ(γb) = µCZ(γc) + 1.

In the sense of Definition 9.10, the curves u and v are the levels of a broken cylinder of height 2.
We want to show that this broken cylinder lies in the boundary of the 1-dimensional moduli
space M(γa, γc)/R. With some abuse of notation, we will denote the parametrizations of the
holomorphic curves u and v by the same letters. Moreover, we can parametrize them such that
their directions “match”, i.e.

lim
t→−∞

uV (t, ϕ) = lim
t→∞

vV (t, ϕ) = γb(ϕ).

The next step is define an approximation of the gluing of the holomorphic cylinders for every R > 0.
It turns out that for large R this approximation can be deformed into a genuine holomorphic
cylinder. Before we give the approximation, let us first define the auxiliary functions ζ(t, ϕ) and
η(t, ϕ) by the conditions

uV (t, ϕ) = expγb(ϕ)ζ(t, ϕ),
vV (t, ϕ) = expγb(ϕ)η(t, ϕ).

We also need to choose a smooth cutoff-function β(t) that is identically 0 for t ≤ −1, and identically
equal to 1 for t ≥ 1. Let us write Floer’s approximation to the glued cylinders as w̃R = (w̃V , w̃R),
where

w̃V =

 vV (t+R,ϕ) for t ≤ −1,
expγb(ϕ)(β(t)ζ(t−R,ϕ) + (1− β(t))η(s+R,ϕ)) for t ∈ [−1, 1],
uV (t−R,ϕ) for t ≥ 1,

and

w̃R =

 vR(t, ϕ) t ≤ −1
β(t)uR(t, ϕ) + (1− β(t))vR(t, ϕ) t ∈ [−1, 1]
uR(t, ϕ) t ≥ 1

with the abbreviations vR(t, ϕ) = vR(t+R,ϕ)− vR(R, 0) and uR(t, ϕ) = uR(t−R,ϕ)−uR(−R, 0).
An argument due to Floer allows us to deform the approximation to a genuine solution. One
needs the condition that the operators ∂̄u and ∂̄v are surjective. Then the linearization of ∂J at an
approximate solution w̃R can be shown to be surjective for large R, and to admit a right inverse.
In addition, for large R we have that ∂̄J w̃R tends to 0. Using the mentioned right inverse, it
follows from the implicit function theorem that near w̃R there exists a holomorphic cylinder wR.
Hence we get a family of holomorphic cylinders wR for R > R0.

In the limit R → ∞, this family of cylinders converges to a broken cylinder of height 2 in
the sense of Definition 9.12. Indeed, for the sequence of approximate solutions w̃n we can insert
t1n = ±n in Definition 9.12 to obtain a sequence that converges to u respectively v on all compact
sets [−N,N ]. Hence we see that w̃n converges to a broken curve consisting of u and v.

Hence we see that broken cylinders are in the boundary of the 1-dimensional moduli space
M(γa, γc)/R, ⋃

γb

M(γa, γb)/R×M(γb, γc)/R ⊂ ∂M(γa, γc)/R.

The boundary may consist of more than just holomorphic cylinders, even if we consider only the
boundary of a 1-dimensional moduli space M(γa, γc)/R. Since the moduli space is not always
a smooth manifold, we should keep in mind that these boundary points might be different from
what one expects from the analogous situation in Floer homology. At any rate, note the similarity
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with Morse homology, where broken trajectories make up the boundary of a 1-dimensional moduli
space. The above construction also works without the assumption that c1 = 0. In that case, we
need to take the homology class of the holomorphic curve into account. We have⋃

γb,A++A−=A

MA+
(γa, γb)/R×MA−(γb, γc)/R ⊂ ∂MA(γa, γc)/R.

9.2.6.2. Orientation on the space of operators O(γ+, γ−). Suppose that we are given two
operators with matching boundary conditions, i.e. L ∈ O(γ1, γ2) and K ∈ O(γ2, γ3). Then we
can construct a new operator M ∈ O(γ1, γ3) following Floer and Hofer [16]. The new operator
M is often denoted by L#K and is called the glued operator. For later applications, we need
some relations of index bundle and this gluing procedure. The index bundle L at an operator L
is defined as the top exterior power of the kernel of L tensored with the top exterior power of the
cokernel of L,

Det(L) =
top∧

ker(L)⊗

(
top∧

coker(L)

)∗
.

This is in fact a line bundle over O. Actually, since we consider operators whose asymptotics are
fixed, this is a trivial line bundle. Floer and Hofer show this by proving that for fixed asymptotics,
the space O is contractible, and hence any vector bundle over O is trivial. Because the bundle L
is trivial, we can choose non-vanishing sections for L over O(γ1, γ2) and O(γ2, γ3). In particular,
we get orientations for LL and LK . There exists a natural isomorphism

ψ : Det(L)⊗Det(K)→ Det(M),

which is defined in [16] and also in [4], Corollary 7. Suppose σ(L) is an orientation of Det(L) (a
non-vanishing vector), and σ(K) is an orientation of Det(K). We get an orientation on Det(M)
induced by ψ, which we denote by σ(L)#σ(K). We will use this discussion to orient the moduli
space.

In the literature the moduli space is not oriented directly, in order to avoid having to deal
with transversality issues at this stage. Instead we find an orientation of the index bundle L of
the space O(γ+, γ−). We have a map from the moduliM(γ+, γ−) to O(γ+, γ−) given by

π : M(γ+, γ−) → O(γ+, γ−)
u 7→ ∂̄u

where ∂̄u is the linearization of the Cauchy Riemann operator ∂̄J near u, which we also saw in
Section 9.2.5.

It turns out that when transversality is satisfied, then the top exterior power of TM is canon-
ically isomorphic to π∗L, so that an orientation of L induces one on the moduli space. Indeed, in
case the Cauchy-Riemann operator is surjective, the tangent space to the moduli space is given
by

TM =
⋃
u∈M
{u} × ker(∂̄u),

so the highest exterior power of TM can be written as (again using surjectivity of ∂̄u)
top∧
TuM =

top∧
ker(∂̄u)⊗ R∗ = Det(∂̄u).

We now want to choose coherent orientations of the index bundle, i.e. a map σ : O → L such that
if L and K are operators with matching asymptotics, then

σ(L)#σ(K) = σ(L#K).

The choice of such an orientation is possible, see theorem 1 of [4].

Remark 9.19. In some situations there are natural orientations for the index bundle. For
this, we consider the asymptotic form of the operators,

∂s + J0∂t + S(t).
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Note that the first part ∂s+J0∂t is always complex linear, i.e. commutes with J0. The second part,
S(t), is in general only real linear. If the second part is also complex linear, the whole operator is
(asymptotically) complex linear and hence its kernel is endowed with a natural orientation, which
we can use for the coherent orientation procedure. We will use this argument in a slightly different
setup later on.

Now we remind ourselves of the discussion of directions in Section 9.2.2. There we saw that
for a Reeb orbit γm that is an m-fold covering of a simple closed Reeb orbit, we have a Zm-action
on that orbit and in fact on moduli spaces whose curves are asymptotic to γm at some puncture.
By itself, this action does not seem to be of any interest, but we need to see whether the coherent
orientations respect this action. To that end we define the following.

Definition 9.20. A closed Reeb orbit γm is said to be bad if γm is the m-fold covering of
some Reeb orbit γ and if the difference

µCZ(γm)− µCZ(γ)

is odd. This can only happen is m is even. Closed Reeb orbits that are not bad are called good.

We have the following theorem (theorem 3 from [4])

Theorem 9.21 (Bourgeois, Mohnke). Let γm be an m-fold cover of a simple closed Reeb orbit
γ. Suppose γm is one of the Reeb orbits at ±∞. Then the above Zm action onMA(Γ+,Γ−;W,J)
is orientation preserving if and only if γm is good.

This theorem will be the main reason for excluding the bad Reeb orbits from the chain complex
of contact homology. We see that in the presence of bad Reeb orbits, different parametrizations
of closed Reeb orbits can give the moduli spaces different orientations. Hence we can only orient
the moduli spaces in a meaningful way if we do not consider bad orbits.





CHAPTER 10

Cylindrical contact homology

10.1. Introduction

In this chapter we present the basic setup of contact homology. We will restrict ourselves to
cylindrical contact homology, though we will indicate roughly how to generalize this.

10.2. Contact homology for generic contact forms

Let (M, ξ) be a contact manifold that admits a contact form α such that ξ = kerα. As usual
we define the Reeb field Rα of α by

iRαdα = 0 and iRαα = 1.

Keep in mind that the Reeb field depends on the choice of contact form. Let us now consider the
action functional

A : C∞(S1,M) → R

γ 7→
∫
γ

α.

This is the starting point for contact homology. Roughly speaking, we want to do a kind of
Morse theory for this functional and use the ideas from Morse theory as a guide, similar to Floer
homology. This brings us to the first issue, the critical points of A.

We find the critical points by inserting 1-parameter families of loops into A. If γt : S1 =
R/Z→M for t ∈ [0, 1] is such a family, we get

(10.1)
d

dt
|t=0

∫
S1
γ∗t α =

∫
S1
γ∗0LXα =

∫
γ0(S1)

iXdα =
∫ 1

0

dα(X(s), γ̇0(s))ds.

HereX is the vector field that generates the family up to first order, X = d
dtγt|t=0. We used Stokes’

theorem to eliminate one of the terms that arises in Cartan’s formula for the Lie derivative. The
final expression is only 0 for all possible families of paths and hence for all X if iγ̇0dα = 0, where
γ̇0 is the tangent vector to the curve γ0. This means that tangent vectors to γ0 are parallel to the
Reeb field. By reparametrizing γ0 we see that γ0 is a closed Reeb orbit.

Like in Morse homology, we want to consider critical points that are in some sense non-
degenerate, i.e. the Hessian of A at critical points is non-degenerate. This amounts to the same
notion of non-degenerate Reeb orbits as in Section 8.3.

Let us introduce the chain complex for contact homology in a more precise fashion. Suppose
the dimension of M is 2n−1. Choose a generic contact form for ξ, which can be done according to
Proposition 8.3. Next, let γ a closed non-degenerate Reeb orbit and assume that γ is homologically
trivial. Then we define the degree of γ by (see also Section 8.3)

degγ = µCZ(γ) + (n− 3).

Note that the Conley-Zehnder index depends on the choice of trivialization. Since we assumed γ
to be homologically trivial, we can find a Seifert surface S for γ and use the trivialization of ξ over
S to find the Conley-Zehnder index. Now let A be a surface in M with homology class [A]. This
gives us another trivialization of ξ coming from S#A. Their Conley-Zehnder indices are related
in the following way (this formula is of course related to Formula (8.5) )

(10.2) µCZ(γ, S#A) = µCZ(γ, S) + 2〈c1(ξ), [A]〉.

87
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In other words, even if we always compute the Conley-Zehnder index by using trivializations com-
ing from Seifert surfaces, the degree is still not well-defined, unless c1(ξ) = 0. In our applications
we actually have that the first Chern class is trivial, but we want to indicate in the following what
to do if the Chern class of ξ is not trivial. We already mentioned this in Remark 8.6

Remark 10.1. In Section 8.3 we also defined the degree for Reeb orbits that were not ho-
mologically trivial (we described that case where H1(M) is torsion free). This was done using
reference arcs where we fixed a trivialization of the contact structure. The contact homology we
define in the next sections can also be defined in a similar way for homologically non-trivial Reeb
orbits. Indeed the associated contact homology can still be used as an invariant of the contact
structure, but it will in general depend on the choice of reference arcs.

To put this into perspective, we recall that in the Morse homology case, the dimension of the
space of gradient trajectories between p and q is given by

dimMMorse(p, q) = ind(p)− ind(q).

In contact homology we work with the moduli space of holomorphic curves. If we just consider
holomorphic cylinders between Reeb orbits γ+ and γ−, the (virtual) dimension is given by

dimMA(γ+, γ−) = deg(γ+)− deg(γ−) + 2〈c1(ξ), A〉.

In particular, the dimension does not just depend on the critical points, but on additional in-
formation, namely the homology class of a holomorphic curve as well. If we take that point of
view, we see that the closed Reeb orbits by themselves do not carry enough information to make a
statement about the dimension of the moduli space. Hence we need to put additional information
in the chain complex, which is done using the coefficient ring for the chain complex.

The coefficient ring. Let us continue with our discussion of the Conley-Zehnder index of a
homologically trivial Reeb orbit. In case the first Chern class of ξ is not trivial, the Conley-Zehnder
index depends on the chosen Seifert surface. The Conley-Zehnder index with respect to a different
Seifert surface is given by (10.2). In order to account for the dependence on a homology class, we
give the homology classes a grading and include them in the coefficient ring in the following way.
The grading on homology is given by

(10.3) |A| = −2〈c1(ξ), A〉 for A ∈ H2(M ; Z).

Now let R be a submodule of H2(M ; Z) with zero grading, i.e. A ∈ R implies |A| = 0. This
choice is, of course, not unique. In fact, in a few of our applications later on, where c1(ξ) = 0, we
actually choose R = H2(M ; Z). In the discussion of the differential in contact homology in Section
10.2.2, we will clarify the choice of R. This choice can vary from application to application, but
sometimes it is necessary to choose R = 0 even in cases where c1(ξ) = 0.

By choosing a submodule R in the above way, we see that the quotient H2(M ; Z)/R has a
well-defined grading. We then choose our coefficient ring to be the graded ring Q[H2(M ; Z)/R].
By using such coefficient rings we are able to provide additional information in the chain complex
for contact homology, and we will see that this is enough to get the dimension of the moduli space.
We will sometimes refer to the graded ring Q[H2(M ; Z)/R] as the Novikov ring of H2(M ; Z)/R.

10.2.1. Chain complex of contact homology. Roughly speaking, the chain complex of
contact homology is generated by closed Reeb orbits. Some closed Reeb orbits need to be excluded
though, namely the bad Reeb orbits which we defined in Section 9.2.6. Without these, the moduli
space can be oriented using the coherent orientations.

Definition 10.2. The chain complex C∗(M,α) of cylindrical contact homology is the graded
module freely generated by the good Reeb orbits over the graded ring Q[H2(M ; Z)/R].

We will write elements of the coefficient ring Q[H2(M ; Z)/R] as finite sums of the form
k∑
i=1

qie
Ai , where qi ∈ Q and Ai ∈ H2(M ; Z)/R.
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That way we have encoded the multiplication structure of the coefficient ring in a convenient way.
We split the module C∗ by the homotopy class of a Reeb orbit. Hence we can write C∗ as a sum
over free homotopy classes a,

C∗ = ⊕aCa∗ .
The differential we define later respects this splitting.

10.2.2. Differential for cylindrical contact homology. First we would like to give some
motivation for the differential, see also [14]. We would like to pursue the ideas of Morse homology
here, which means that we need the gradient flow of A. To that end we need to have a metric on
the free loop space

Λ(M) = C∞(S1,M).
We choose a complex structure J on ξ compatible with dα. This gives rise to a metric on ξ,

g(v, w) = dα(v, Jw),

which we extend to TM by saying that the Reeb field Rα is a unit normal field to ξ. The tangent
bundle of Λ(M) at curve γ can be expressed as

TγΛ(M) ∼= C∞(S1 = R/Z, γ∗TM),

so we get an induced metric on Λ(M) given by

gΛ(X,Y ) =
∫ 1

0

gγ(t)(X(t), Y (t))dt

for vectors X,Y ∈ C∞(R/Z, γ∗TM). This metric allows us to pursue the ideas of Morse homology
with the action functional. The idea to extend Morse homology to such a setting was first put
forward by Floer, see for instance [17], and was used to establish various kinds of Floer homology
theories. The reader should keep this in mind, since many ideas of contact homology come from
Floer’s observations.

We now consider the gradient flow of the action functional A with respect to the metric we
just defined. Let γ be a curve in M . From the computation in Equation (10.1) we see that the
differential of the action in the direction of X ∈ C∞(R/Z, γ∗TM) at γ is given by

dA(γ)[X] =
∫ 1

0

dαγ(t)(X(t), γ̇(t))dt,

where γ̇(t) is the the tangent vector to γ at γ(t). If we use π to denote the projection from TM
to ξ along the Reeb field, we see that

∇A(γ) = −Jπ(γ̇)

solves the equation∫ 1

0

dαγ(t)(X(t), γ̇(t))dt =
∫ 1

0

dα(∇A(γ), JX)dt = gΛ|ξ(∇A(γ), X)

for all X ∈ C∞(R/Z, γ∗TM). Therefore it also solves dA(γ)[X] = gΛ(∇A(γ), X) for all X, so the
gradient of A with respect to gΛ is given by ∇A(γ) = −Jπ(γ̇). If we write a gradient flow line as
a map

u : S1 × R→M,

then u has to satisfy the following equation that has the flavor of a Cauchy-Riemann equation (we
use the convention for the gradient flow that u̇ = −∇u),

∂u

∂s
(t, s)− Jπ(

∂u

∂t
(t, s)) = 0.

Note that due to our convention for the gradient flow this would actually correspond to an “anti-
holomorphic” curve. This, however, makes no difference for the subsequent arguments involved.
We will call the curves involved later on, although incorrectly, holomorphic curves. Our choice for
the negative gradient flow is mostly in order to stick with the conventions of Morse homology.

We can try and turn the above equation into a genuine Cauchy-Riemann equation by extending
the equation to the symplectization of M . By extending the complex structure on ξ in a suitable
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way to T (M × R), for instance using Equation (9.2), we get the following equation for U(t, s) =
(u(t, s), a(t, s)) ∈M × R,

(10.4)
∂U

∂s
(t, s)− J ∂U

∂t
(t, s) = 0.

With some abuse of notation, we use J to denote also the almost complex structure on M × R
obtained by extension from ξ. As in the previous chapter we can consider the natural metric on
the symplectization, which is given by

g̃(. . . , . . .) = dt⊗ dt+ α⊗ α+ ω(. . . , J . . .).

Now we write this Cauchy-Riemann equation as a system,
∂u

∂s
(t, s)− Jπ(

∂u

∂t
(t, s))− ∂a

∂t
(t, s)R(u(t, s)) = 0,

∂a

∂s
(s, t) + g̃

(
∂u

∂t
(t, s), R(u(t, s))

)
= 0.

Since dA(γ)[fR] = 0 for any function f , and −Jπ(∂u∂t (t, s)) is the gradient of A, we see that the
first equation of the above system can be seen as the flow of the gradient-like vector field

−Jπ(
∂u

∂t
(t, s))− ∂a

∂t
(t, s)R(u(t, s)).

Hence our extension to the symplectization of the original gradient flow equations does not change
our interpretation of the Cauchy-Riemann equation too much. Indeed, trajectories between crit-
ical points (closed Reeb orbits) described by Equation (10.4) can now be interpreted as pseudo-
holomorphic curves that are asymptotically cylindrical over closed Reeb orbits. These holomorphic
curves are precisely those elements of the moduli spaces we described in Chapter 9. We try to
make a homology theory out of this setup by counting these holomorphic curves between critical
points in a suitable way, similar to Morse homology.

Since the dimension of the moduli space does not just depend on the degree of the Reeb
orbits, but also on the homology class of a holomorphic curve, we count elements of all zero-
dimensional moduli spaces instead of just considering connecting trajectories between Reeb orbits
of index difference 1, which we would do in Morse homology. Note here that we consider pseudo-
holomorphic curves in symplectizations. In that special case the moduli space of holomorphic
curves carries an R-action induced by the translation in the R-direction on the symplectization.
Hence we can count the number of components in the zero-dimensional moduli spaceM/R. Also
note that the R-action gives the 1-dimensional components ofM an orientation, which we will call
the flow orientation. On the other hand, the components have also been oriented by the coherent
orientation procedure. By comparing the orientations on the 1-dimensional components ofM we
get signs which we use to count the elements of M/R. We define the differential, using these
counting rules, on the generators of the chain complex and extend linearly. Let γa be a closed
Reeb orbit and define

∂γa = κγa

∑
γb∈CritA,
A∈H2(M)

 ∑
C∈MA(γa,γb)/R

dim MA(γa,γb)=1

±1
κC

 eπ(A)γb.

The sign in this formula is determined by the procedure we just described. Note that this is the
same procedure that can be used to produce the sign in Floer homology, which is in turn analogous
to determining the sign in Morse homology. We have used κγa

to denote the multiplicity of the
Reeb orbit γa, and κC to denote the order of the covering group of the cylinder C. Recall our
brief discussion where we mentioned the virtual cycle for a motivation of those weights. The
projection π maps elements of H2(M ; Z) to H2(M ; Z)/R. Note that in case γa is simple and the
cylinder C is simple, this formula is the same as in the original formulation of Floer homology with
Z-coefficients. Also note that by defining the differential this way, the overall degree of eπ(A)γb is
1 less than the degree of γa. We also see that in favorable situations, for instance if c1(ξ) = 0,
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the dimension of the moduli space depends only on the difference in degree between Reeb orbits,
and hence the differential counts only Reeb orbits of degree difference 1. The Reeb orbit γa gives
us an energy bound for holomorphic curves involved in the differential of γa. This is due to the
fact that A(γa) is finite, giving us an upper bound for the contact area or dα-energy. Then the
compactness theorems we discussed in Section 9.2.4 guarantee that the expression used for the
differential only contains finite sums of non-zero elements.

With this differential we have completed the definition of the chain complex (C∗, ∂). Although
we will not use that fact, it is important to note that this chain complex comes with an additional
filtration given by the action of a Reeb orbit. The differential respects this filtration. Indeed, since
the dα-energy of a holomorphic cylinder going from γa to γb is always non-negative, the action of
the Reeb orbit of γb satisfies

A(γb) ≤ A(γa).

Under suitable circumstances, the square of ∂ vanishes and the associated homology is an invariant
of the contact manifold (M, ξ).

Theorem 10.3. Let con denote the free homotopy class of contractible curves. If Cconk = 0
for k = −1, 0, 1, then ∂2 = 0 and the homology H∗(C∗, ∂) is independent of choice of the contact
form α, the choice of complex structure J , and the choice of perturbation ν as described in Section
9.2.5.3.

If the above theorem applies, then we define the cylindrical contact homology HC∗(M, ξ)
as the homology of the above chain complex. Note that cylindrical contact homology comes with
an additional grading given by free homotopy classes of curves. This works since we are counting
cylinders with our differential and those can not change the homotopy class of a Reeb orbit. We
write HCa∗ (M, ξ) for the part of the homology that corresponds to the homotopy class a.

Note that it is not true that contact homology is independent of all choices made. For instance,
if c1(ξ) is not trivial, then we might change the degree of a Reeb orbit by taking a different surface
for the trivialization of the contact structure, needed to compute the degree, according to Formula
(8.5). In case there are homologically non-trivial Reeb orbits, we have to choose reference arcs, and
the contact homology will depend on those choices. We can still use it as an invariant though by
fixing these choices when comparing different contact structures. Also note that in case the above
theorem applies and c1(ξ) = 0, the homology HCcon∗ (M, ξ) can always be used as an invariant
without specifying these choices.

10.2.3. Sketch of proof for cylindrical contact homology. We will now give a rough
sketch of the proof of this theorem following Bourgeois’s lecture notes [5]. An important guiding
idea for the proof is the proof of the corresponding statement in Morse homology. This in itself
was also used for Floer homology, and a fairly detailed proof in that case can be found in [44].
At several places we define maps by counting certain holomorphic curves, but we will do this in
cases where c1(ξ) = 0. To obtain the general case we have to use our coefficient ring; we do not
just consider a single “target” Reeb orbit, but also products with elements in the coefficient ring.
In other words, replace γb by eAγb and consider those γb and A such that the moduli space has
the proper dimension, i.e. like the differential, the maps we consider have the form

Φγa = κγa

∑
γb

A∈H2(M)

 ∑
C∈MA(γa,γb)

deg(γa)−deg(γb)+2〈c1,A〉=k

±1
κC

 eπ(A)γb,

where k is the index difference, which is 1, 0 or −1 in the cases we consider. Of course, the moduli
space in this formula needs to be replaced by the particular moduli space we consider at that
point.

Moreover, we will detail the additional assumptions imposed on the non-existence of certain
Reeb orbits. Also, we assume that transversality is satisfied. This can be done in some cases by
perturbation of the complex structure, but in most cases we need to use more general perturbations,
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Figure 10.1. Breaking of a cylinder

such as the ones provided by virtual cycle techniques. Keep in mind that this is the point where
contact homology differs significantly from the original formulation of Floer homology.

First we consider ∂2. We can write that map out and see that it counts broken trajectories
between γa and γc with intermediate critical point γb. These trajectories represent elements of
M(γa, γc).

The argument from Morse homology we want to mimic is that the boundary of compact 1-
dimensional manifolds vanishes if we count with orientation. We cannot expect this argument to
work straight away since the moduli spaces might not be smooth manifolds. On the other hand,
we count curves with weights, so the situation is slightly different. The moduli space involved,
M(γa, γc), is compact and has dimension 1. By Floer’s gluing construction we already know that

∂M(γa, γc) ⊃ ∪bM(γa, γb)×M(γb, γc).

Hence we see that all curves counted by ∂2 lie in ∂M(γa, γc). We are in business if

∂M(γa, γc) = ∪bM(γa, γb)×M(γb, γc).

For the other inclusion, i.e. ”⊂ “, we need to use one of our additional assumptions. Consider a
family of cylinders that breaks into a cylinder, a tree like curve and same disks capping off some
of the punctures. See Figure 10.1 for an example with one such capping disk.

We use Formula (9.5) to see what the dimension of the moduli space of broken components
is, assuming that transversality is satisfied. Since every component should have a non-negative
dimension for its moduli space, we see that the degree of γdisk should be at least 1. However,
degree 2 or higher is not possible, since the whole curve should be on the boundary of a moduli
space of dimension 1 (the whole curve has index 2 and a tree-like curve cannot have index 0 in
a symplectization). Hence we see that generically the breaking of a cylinder into similar curves
with more such capping disks cannot occur.

The remaining case of one capping disk can happen, but since we assumed that there were
no degree 1 contractible Reeb orbits, there will be no such curves at the boundary of the moduli
space, and hence we see that the boundary of the 1-dimensional moduli space M(γa, γc)/R has
the structure we just mentioned.

If all Reeb orbits involved are simple, then the moduli spaces are smooth manifolds, and the
identity ∂2 = 0 follows from the fact that one-dimensional manifolds have vanishing boundary
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if we count with orientation. For the general case, this argument might be taken as inspiration.
Namely, in general the fundamental cycle of M/R is a rational cycle, instead of an integer cycle
in the smooth case. The boundary of this cycle can be identified with ∂2. Geometrically, this
corresponds to the following. The count by ∂2 consists of products of weights of the height 2
curves and the factor κγb

. This factor indicates different ways in which the cylinders can be glued.
Indeed, κγb

is the multiplicity of the Reeb orbit γb where we glue. Hence a rotation around the
punctures corresponding to γb by a κγb

-th root of unity does not affect the image curve, giving rise
to κγb

inequivalent ways of gluing the cylinder. Thus one can show that the count by ∂2 equals
κγa

times the weight 1/κC , where C is a height 2 cylinder at the boundary of a 1-dimensional
moduli space M/R. These cylinders multiplied by their weight represent the boundary of the
rational fundamental cycle.

This shows that ∂2 = 0, so we obtain indeed a homology theory. Now we want to show that
the resulting homology is independent of the choice of contact form and almost complex structure.
Let α1 and α2 be contact forms describing the contact structure ξ on M and let J1 and J2 be
compatible almost complex structures on the symplectization of (M,α1) and (M,α2), respectively.
Instead of considering curves in the symplectization, we look at another symplectic cobordism.
Namely, we can choose a homotopy of the contact forms, βs, such that β0 = α1 and β1 = α2.
Next, choose a function f : R → [0, 1] such ω = d(etβf(t)) is a symplectic form on M × R. In
addition, we require f(t) to be identically 1 for large negative t and to be identically 0 for large
positive t. Thus we get a symplectic cobordism W between the contact manifolds (M,α2) and
(M,α1). We choose an almost complex structure on J on W = (M ×R, ω) that is equal to J2 for
large negative r, and we require it to be equal to J1 for large positive r. Here r is the coordinate
on R. This symplectic cobordism allows us to define a map ΦW from the chain complex C∗(α1)
to the chain complex C∗(α2) by counting cylinders connecting Reeb orbits. The definition is very
similar to the definition of the differential, but we count elements of zero-dimensional components
ofM instead of counting elements ofM/R, since we do not have global translation invariance on
a general symplectic cobordism.

To see that ΦW is a chain map, we then argue using similar arguments as in the case of ∂2 = 0.
If we write the differentials for the chain complexes C∗(α1) and C∗(α1) as ∂1 and ∂2, respectively,
the chain map property can be written as

ΦW ◦ ∂1 − ∂2 ◦ ΦW = 0.

Note that the left hand side of this equation amounts in our case to counting certain broken
holomorphic curves; height 2 curves that first follow a cylinder in the symplectization of (M,α1)
and then a cylinder in W , or height 2 curves that consist of a cylinder in W followed by a cylinder
in the symplectization of (M,α2). We want to argue by showing that all these curves lie in the
boundary of the one-dimensional moduli space M(γ1, γ2), where γ1 ∈ C∗(α1) and γ2 ∈ C∗(α2).

Similar to the situation of ∂2 = 0, a cylinder can break in different ways. We refer again to
Figure 10.1. Cylinders can break into height 2 curves that consist of a tree-like curve, several disks
and a cylinder. An index counting argument similar to the one given before shows that the only
situation that could happen is a tree-like curve, one disk bounding a Reeb orbit of degree 0 and
a cylinder (we can copy the argument from before if we note that we are now counting curves in
general symplectic cobordisms). Since we assumed that there are no contractible degree 0 orbits,
we see that all curves on the boundary are indeed counted by

ΦW ◦ ∂1 − ∂2 ◦ ΦW .

To be more precise, this argument has similar complications as the argument for ∂2 = 0.
In other words, a homotopy of the contact forms and other data involved allows us to define

a chain map between the associated chain complexes, and hence we obtain a map on the level of
homology, which we denote by Φ̄W . Finally, we show that this map is an isomorphism. Towards
that end, we construct an inverse of Φ̄W . On the level of chains, the first choice is the map
associated to the “reversed” symplectic cobordism W . We take the symplectic cobordism W̄ =
(M × R, d(etβ1−f(t))) and follow the same procedure to find a suitable almost complex structure
J as in the case of W .
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The composition ΦW̄ ◦ΦW can also be described by considering curves in the glued symplectic
cobordism W̄ } W . Instead of counting index 0 curves in this cobordism directly, we first want
to deform the symplectic structure on W̄ }W to the structure of the symplectization of (M,α1).
The map Φsympl(M,α1) corresponding to this deformed cobordism is the identity, because the only
index 0 curves in a symplectization are the vertical cylinders. Moreover, these vertical cylinder
preserve the orientation of the Reeb orbits, i.e. γ 7→ +γ.

We now want to show that such a deformation of the symplectic structure on a cobordism
gives rise to chain homotopy A : C∗(M,α1) → C∗+1(M,α1). That way we see that the original
map ΦW̄ ◦ ΦW also gives the identity on homology.

Let us do this construction in a more precise manner. Let ωs be a path of symplectic forms
for s ∈ [0, 1] such that ω0 corresponds to the symplectic form on the glued cobordism W̄ } W
and such that ω1 is the symplectic form of the symplectization of (M,α1). Hence we get a family
of cobordisms Ws, and we choose compatible almost complex structures Js. We construct the
chain homotopy by counting Js-holomorphic curves in the family of cobordisms Ws. Note that we
cannot use the dimension formula since we cannot obtain transversality for a 1-parameter family
of cobordisms by perturbations. For a generic k-parameter family of cobordisms Ws, s ∈ [0, 1]k,
we have the following dimension formula:

dimMA
k−par(Γ

+,Γ−;W,J) = µCZ(γ+)−
s−∑
i=1

(µCZ(γ−i ) + n− 3)

+ (n− 3)(2− s+) + 2〈c1(J), A〉+ k.

By counting cylinders connecting γa to γb such that deg(γa)−deg(γb) = −1, we obtain a map

A : C∗(M,α1) → C∗+1(M,α1).

Note that the curves counted by A lie always in Ws with s ∈ (0, 1), since transversality is satisfied
at the boundary.

Once again we consider the boundary of the one-dimensional moduli space M(γa, γc), where
deg(γa) − deg(γc) = 0. The boundary of this moduli space consists of several components. We
have components coming from the boundary of the parameter space [0, 1], which are counted by
id−ΦW̄ ◦ΦW (recall that the counting of index 0 curves in the symplectization gives the identity
at the level of chains). On the other hand, there can be components which consist of height 2
holomorphic curves. Since the height 2 curve is the limit of a sequence of cylinders, we are in a
similar situation as before. Ideally, the first floor would consist of a cylinder counted by either A
or ∂1 and the second floor would have a cylinder counted by ∂1 or A (such that the whole curve
has “index 0”). However, as before a cylinder might break into a tree-like curve, some disks and
a cylinder. We can once again apply an index counting argument to show that only the case of
a tree-like curve with one capping disk and a cylinder can occur. If this happens, the Reeb orbit
bounded by the capping disk has degree −1, so in our situation all curves in the boundary of
M(γa, γc) are counted by

id− ΦW̄ ◦ ΦW − ∂1 ◦A−A ◦ ∂1.

By the same argument as in the previous two cases, we see that A does indeed give a chain
homotopy between id and ΦW̄}W = ΦW̄ ◦ ΦW , so it follows that ΦW̄}W induces the identity on
homology. We repeat this construction for ΦW ◦ ΦW̄ and find that Φ̄W is an isomorphism, as
claimed.

Remark 10.4. We put in additional assumptions to deal with the splitting of a cylinder into
a tree-like curve and a capping disk. We can define a more general contact homology that does
not require these additional assumptions. This is done by not considering cylinders, but tree-like
curves instead, i.e. curves with an arbitrary number of negative punctures. If we consider tree-like
curves all along the splitting would just be another curve counted by ∂ or one of the other maps.
It turns out, that the chain complex needs an appropriate modification and is, in fact, an algebra
generated by Reeb orbits.
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This generalization also explains the need for the term n − 3 in the definition of degree. By
making this choice, one can ensure that the unit element in the algebra has degree 0 as well as
making the form of the differential more elegant, cf. Formula (9.5).

Remark 10.5. Different coefficient rings give wildly different results for the contact homology,
see [5] for an example with contact structures on T 3. Even if c1(ξ) = 0 it can sometimes be useful
to use more complicated coefficients such as Q[H2(M)], because that allows us to extract more
information from contact homology, such as the particular homology class of the holomorphic
curves.

10.2.4. Example. In Section 8.3 we gave an example for non-degenerate Reeb orbits on the
sphere with standard contact structure if we deformed the contact form. This deformed contact
form is admissible for contact homology and allows us to compute the cylindrical homology of the
standard contact structure on spheres.

We use the notation introduced in Section 8.3, where we found that the closed Reeb orbits all
had the form

(0, . . . , 0, eit/aj , 0, . . . , 0)
at jth position

.

We call this orbit the jth closed Reeb orbit and write γNj for an N -fold covering of this orbit. In
order to compute the Conley-Zehnder index, we observe that S2n−1 ⊂ Cn. We have the symplectic
form (we extended α̃ to Cn)

ω = dα̃ = i
n∑
j=1

ajdzj ∧ dz̄j .

With respect to this symplectic form, the symplectic complement ξω of the contact structure ξ is
trivial. We have the following basis for the symplectic complement

X1 = −i( z1
a1
, . . . ,

zn
an

), Y1 = (z1, . . . , zn).

Note that we can extend the Reeb flow in obvious way to Cn. The differential of this extended
Reeb flow is a path of symplectic matrices given by the diagonal matrices

diag(eit/a1 , . . . , eit/an).

We write ΦCn , Φξ and Φξω for the path of symplectic matrices obtained by restricting the extended
Reeb flow to Cn, ξ and ξω, respectively. Note that the extended Reeb flow acts trivially on X1

and Y1 and thus on ξω. Hence we see that the following holds

µCZ(ΦCn) = µCZ(Φξ ⊕ Φξω ) = µCZ(Φξ).

We can compute the first Maslov index easily by using the direct sum property of the Maslov
index and Formula 8.4. The period of the closed Reeb orbit above is given by 2πaj .

We see that the Conley-Zehnder index of the jth closed Reeb orbit and its multiples is given
by

µCZ(γNj ) = 2N + 2
∑
i 6=j

baj
ai
c+ n− 1.

For the degree of these Reeb orbits we just need to add n − 3. Note that the resulting degree is
always even, so the differential is the zero map. To see what the resulting contact homology is
up to degree 2n − 2 + D for any D ∈ Z≥0, we use invariance of contact homology. Namely, we
choose the coefficients ai such that ai+1/ai > D. By Gray stability the resulting contact structure
is contactomorphic to the standard contact structure on S2n−1. By the above formula, the degree
of a closed Reeb orbit will always be larger than 2D unless we consider the multiples of the first
closed Reeb orbit γN1 . The latter give precisely one generator in each even degree between degrees
2n − 2 and D. By invariance of contact homology, we can repeat this argument for all D and
hence we see that

CHk(S2n−1, ξstd) ∼=
{

Q if k is even and k ≥ 2n− 2
0 otherwise.
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10.3. Morse-Bott contact homology

In many cases a contact manifold comes with a natural contact form that has degenerate closed
Reeb orbits. The symmetry often also means degenerateness of Reeb orbits (see for instance the
example of S2n−1 with its standard contact structure in Section 8.3), so we need to perturb the
contact form if we want to use the description of contact homology we gave in the last section.
We can again use Morse homology as a guide. There it is possible to construct a homology with
functions having degenerate critical points if they are of a suitable type, namely we can consider
Morse-Bott functions. These ideas can be adapted to contact homology [6]. There is, however,
quite a bit of effort involved in making these ideas work. We will give a recipe-like description of
the theory of Bourgeois. We will give a bit more detail at some places when we use Bourgeois’s
ideas in another form later on. In some of his theorems We shall restrict ourselves to contact
forms for which all Reeb orbits are closed. This is not a requirement in Bourgeois’s work and only
takes care of a small technical detail. We will also assume that the first Chern class of the contact
structure is trivial. This was a requirement in Bourgeois’s earlier work, [6] but this restriction was
lifted later on.

Let σ(α) denote the action spectrum of α, i.e. the critical values of the action functional A.
Instead of generic contact forms, we allow contact forms with degenerate Reeb orbits. We still
need some regularity conditions as is shown in the following definition.

Definition 10.6. A contact form α is said to be of Morse-Bott type if the action spectrum
σ(α) is discrete and if, for every T ∈ σ(α), MT = {p ∈ M |ϕT (p) = p} is a closed, smooth
submanifold of M , such that the rank dα|MT

is locally constant and TpMT = ker(TϕT − id)p.
The Reeb flow induces an S1-action on MT ′ . Using this action we define the orbit space

ST ′ := MT ′/S
1. Note that these orbit spaces are orbifolds in general.

The chains of the Morse-Bott chain complex will correspond to the critical points of suitable
Morse functions on the orbit spaces. Bourgeois constructs these Morse functions by induction
(note that he needs Morse functions on orbifolds for which he introduces a suitable notion in [6]).
We will now describe his construction.

For the smallest T ∈ σ(α), the orbit space ST is a smooth manifold. Take any Morse function
fT on it. For larger T ∈ σ(α), ST is an orbifold where the singularities are the orbit spaces
ST ′ with T ′ dividing T . The previously defined Morse functions fT ′ on the orbit spaces ST ′ are
extended to a function fT on ST by requiring that the Hessian of fT restricted to the normal
bundle of ST ′ is positive definite. These Morse functions are then lifted to MT and extended to a
function f̄T on M such that they have support only in a tubular neighborhood of MT .

For T ∈ σ(α), Bourgeois considers the following family of contact forms αλ = (1+λf̄T )α. We
have

Lemma 10.7 (Bourgeois). For all T , we can choose λ > 0 small enough such that the periodic
orbits of Rαλ

in M of action T ′ ≤ T are non-degenerate and correspond to the critical points of
fT ′ .

Let p ∈ S′T be a critical point of f ′T and denote its corresponding closed Reeb orbit (and its
multiple covers) by γpkT ′ for k = 1, 2, . . .. As Bourgeois’s construction is explicit enough, he is able
to compute the Conley-Zehnder indices of these Reeb orbits provided λ has been chosen so small
such that Lemma 10.7 applies:

(10.5) µCZ(γpkT ′) = µ(SkT ′)−
1
2
dimSkT ′ + indexp(fkT ′).

This determines the degree of the Reeb orbits associated with the perturbed contact form with
small period. The following notion is helpful in dealing with orbits of larger period.

Definition 10.8. The orbit spaces ST are said to have index positivity if there exist
constants c > 0 and c′ such that µ(ST ) > cT + c′ for all T ∈ σ(α).

Similarly, we define index negativity of the orbit spaces ST if there are constants c < 0
and c′ such that µ(ST ) < cT + c′. In order to control the behavior of orbits with larger period,
Bourgeois has the following result.
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Lemma 10.9 (Bourgeois). Assume that the orbit spaces ST have index positivity, that c1(ξ) = 0
and that all Reeb orbits are closed. Then there exists a λ0 > 0 such that, if 0 < λ < λ0, all period
orbits γλ of Rαλ

of action greater than T satisfy µCZ(γλ) > cT/2, where c is the positive constant
from the index positivity of ST .

This lemma makes sure that other closed Reeb orbits that do not correspond to any critical
point of the Morse functions on the orbit spaces have large Maslov indices. A similar result holds
in case of index negativity of the orbit spaces. Hence we push those orbits that do not correspond
to critical points of the chosen Morse functions away to larger degree in the case of index positivity,
so that those orbits do not affect the differential of contact homology in lower degree. In the case
of index negativity, orbits are, of course, pushed to large negative degree

The chains of the Morse-Bott complex are the critical points p of the Morse functions fT for
T ∈ σ(α), with degree given by

(10.6) deg(p) = µ(SkT ′)−
1
2
dimSkT ′ + indexp(fkT ′) + n− 3.

Before we give the definition of the differential, first recall that the fibered product of A and B
over C for maps f : A→ C, g : B → C is given by

A×C B = {(a, b) ∈ A×B| f(a) = g(b)}.
LetM(S+, S−) denote the moduli space of holomorphic curves with degenerate asymptotics, with
orbit spaces S+ and S− for the positive and negative punctures, respectively. We will use the
moduli space of generalized holomorphic cylinders, which is given by

MfT (S+, S−) =M(S+, S−) ∪
(
M(S+, S′)×S′

(
R+ ×M(S′, S−)

))
∪ . . . ,

where the union runs over successive fibered products (cf. height k stable curves we introduced
before). Note that the union is finite, because a holomorphic curve has to have positive energy
(the energy is equal the action of the top Reeb orbit minus the action of the bottom Reeb orbit)
and the action spectrum is discrete. The projection maps for these fibered products are ev− and
ϕfT ◦ev+. The maps ev− and ev+ are the evaluation maps at the negative and positive punctures,
respectively, i.e. ev± : M(S+, S−) → S±, and here ϕfT is the gradient flow of fT on the orbit
space. In other words ϕfT ◦ ev+ : (t, u) 7→ ϕfT (t) (ev+(u)), where t ∈ R+ and u ∈M(S′, S′′).

10.3.1. Orientation of the moduli space. The moduli space of holomorphic curves needs
to be oriented. Bourgeois does this using the coherent orientation procedure, in a similar way
as in contact homology with generic contact forms, discussed in Section 9.2.6. There are a few
obstructions to the existence of coherent orientations. First of all, there is the notion of a bad Reeb
orbit. Since we are working here with Morse-Bott instead of generic contact forms, the notion is
slightly different from the notion we gave before.

Definition 10.10. A Reeb orbit γ is said to be bad if it is the 2m-fold cover of a simple
Reeb orbit γ′ ∈ ST and if

(µ(S2T )± 1
2
dimS2T )− (µ(ST )± 1

2
dimST )

is odd. If a Reeb orbit is not bad, it is said to be good.

In Morse-Bott contact homology, there can be another obstruction to the existence of coherent
orientations. For this, we remind ourselves of the discussion in Section 9.2.6, where we indicated
how to orient the moduli space in case the asymptotics are non-degenerate. We have a map π
from the moduli space of holomorphic curves M to the space of Fredholm operators O(γ+, γ−)
defined by sending a holomorphic map to its linearized Cauchy-Riemann operator. Let L denote
the determinant bundle over O(γ+, γ−). Then π∗L is naturally isomorphic to the top exterior
power of TM in case of transversality. In case the asymptotics for O(γ+, γ−) are fixed, O(γ+, γ−)
is contractible and hence L is trivial. In this case there are no obstructions to orient M.

On the other hand, if the asymptotics are allowed to vary, as is the case for the Morse-Bott
formalism, then we may get a non-contractible space of Fredholm operators. This can happen,
because the space of operators fibers over submanifolds of the form MT . If that space MT is not
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simply connected, it may contain a loop of operators such that the determinant bundle over that
loop is not trivial. Such a loop is called a disorienting loop. We should remark here that if the
projection of this loop to the orbit space ST is contractible, the loop in MT is homotopic to a bad
Reeb orbit.

These phenomena can be present in general, because the linearized Cauchy-Riemann operator
is usually only real linear and not complex linear. In favorable cases, the linearized Cauchy-
Riemann operator is complex linear as well and an orientation on the determinant line bundle
can be obtained directly from the induced complex structure on the kernel and cokernel of the
linearized Cauchy-Riemann operator. This removes the need to see whether there are disorienting
loops or bad orbits, because they cannot occur in that case.

10.3.2. Differential for Morse-Bott contact homology. With these remarks in mind,
the differential can be defined. The differential of the chain complex is given by

(10.7) dp = ∂p+
∑
q

nqq,

where p ∈ ST , ∂ is the Morse-Witten differential of the Morse function fT on ST ′ , q ∈ ST
′
and nq

is the algebraic number of elements in the fibered product

(Wu(p)×ST
MfT (ST ;ST ′)×ST ′ W

s(q))/R
if this product is zero-dimensional, and 0 otherwise (q ∈ ST ′). In this product, W s and Wu denote
the stable and unstable manifolds of a critical point of fT on an orbit space, respectively.

Theorem 10.11 (Bourgeois). Let α be a contact form of Morse-Bott type for a contact struc-
ture ξ on M that satisfies c1(ξ) = 0. Assume that all Reeb orbits are closed. Assume that, for
all T ∈ σ(α), MT and ST are orientable, π1(ST ) has no disorienting loop, and all Reeb orbits
in ST are good. Assume that the almost complex structure J is invariant under the Reeb flow
on all submanifolds MT . Assume that the cylindrical homology is well defined: the Morse-Bott
chain complex has no contractible orbits of index −1, 0 or +1. Assume furthermore that all orbit
spaces ST of contractible periodic orbits have index positivity or index negativity. Then the homo-
logy H∗(C ā∗ ) of the Morse-Bott chain complex (C ā∗ , d) of (M,α) is isomorphic to the cylindrical
homology HF ā∗ (M, ξ) of (M, ξ) with coefficients in the Novikov ring of H2(M,Z)/R.

There are other (improved) versions of this theorem, but this one suffices for our needs. In
addition we will take the ring R in the above theorem to be H2(M,Z), or in other words we will
use Q-coefficients for the Morse-Bott chain complex.



CHAPTER 11

Applications of contact homology

Most of the results in this chapter are from my paper [52]. In short, we use Morse-Bott contact
homology to study the cylindrical homology of Brieskorn manifolds. We obtain an algorithm which
can be used to compute the contact homology. In addition, we show how some Brieskorn manifolds
give us “nice” contact manifolds, where nice means that the contact manifold admits a contact
form for which the cylindrical contact homology is well-defined. By using connected sums, many
of these nice contact manifolds can be shown to admit infinitely contact structures. That way we
show that a large class of contact manifolds admit infinitely many contact structures.

11.0.3. Algorithm for the computation of the cylindrical homology of Brieskorn
manifolds. Consider the Brieskorn manifold M = Σ(a0, . . . , an) ⊂ Cn+1 with contact form in-
duced by α = i

8

∑
aj(zjdz̄j − z̄jdzj) and assume n ≥ 3, which means that M is at least 5-

dimensional. The Reeb flow of the contact form α is given by ϕt(z) = (e4it/a0z0, . . . , e
4it/anzn).

In Remark 4.4 we observed that the first Chern class of the contact structure induced by α is
zero. Moreover, all Reeb orbits are closed. We will use the notation we introduced in Chapter
4, in particular Section 4.2.1. The algorithm works as follows. It might be helpful to look at the
examples in Section 11.0.5.1 to clarify the statements of the algorithm.

(1) Compute the homology of M using the algorithm of Randell [42] which we described in
Section 4.2.1. This information can be used to determine more precisely what manifold
M is (if the dimension of M is five, this step provides enough information to use the
classification of Barden, see [2]). This step also involves some numerics that are used in
Step (4).

(2) Identify all orbit types that can occur for the Reeb flow. This is done as follows. For
all subsets Is ⊂ I = {0, . . . , n}, s > 1, the minimal positive time T such that 2T/π is
divisible by all elements of ai, i ∈ Is, is π

2 lcmi∈Is
(ai). The same minimal time T can

occur for several sets Is. Let JT denote the largest such set. We obtain a collection of
sets JT1 , . . . , JTk

for different T1, . . . , Tk. The corresponding submanifoldsMTi
:= K(JTi

)
indicate submanifolds that are invariant under the time Ti Reeb flow. As in Section 4.2.1,
K(JTi) denotes the Brieskorn manifold with exponents aj1 , . . . , ajs where we have written
JTi

= {j1, . . . , js}.
(3) Compute the Maslov indices of an orbit in MTi

with time NTi (N ∈ N). In order to
ensure that we do not consider orbits of another orbit space, we have to choose N such
that for i 6= j multiples NTi are not divisible by Tj whenever JTi

⊂ JTj
. Note that the

Maslov index will only depend on the orbit type and not on the orbit itself. We may use
the following formula if we choose N as above

µ(SNTi
) = 2

∑
j∈JTi

2NTi
πaj

+ 2
∑

j∈I−JTi

b2NTi
πaj

c+ #(I − JTi)− 4N
Ti
π
.

The algorithm fails if one does not obtain index positivity or negativity for the orbit
spaces at this point. The conditions for these are given by

n∑
j=0

1
aj

> 1 for index positivity, and
n∑
j=0

1
aj

< 1 for index negativity.

(4) The dimension of the orbit space STi
= MTi

/S1 is given by 2#JTi
− 4. Compute the

rational homology of the orbit spaces STi
in the following way. First of all, compute the

99
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rank of the H#JTi
−2(MTi

), given by

κ = rkH̃#JTi
−2(MTi

) =
∑

Is⊂JTi

(−1)#JTi
−s
∏
j′∈Is

aj′

lcm
j∈Is

aj
.

With Formula (4.2) we can compute the rational homology of the orbit spaces.

Hq(STi
,Q) ∼=

{
Q, q even, 0 ≤ q ≤ dimSTi

0, otherwise

}
⊕
{

Qκ, q = 1
2dimSTi

0 otherwise

}
.

(5) The cylindrical contact homology with Q-coefficients ofM with induced contact structure
is a Q-vector space, where the number of generators in each degree can be determined as
follows. For each Ti we get rkHj(STi

,Q) generators in degree µ(SNTi
)+n−3+j− 1

2dimSTi

for j = 0, . . . ,dimSTi
and N ∈ N such that for j 6= i the multiples NTi are not divisible

by Tj whenever JTi
⊂ JTj

(using the Maslov-index that has been computed in Step 3).
For the cylindrical contact homology to be well-defined and an invariant of the contact structure
there should be no generators in degree −1, 0 or 1. To check this, one needs to define Morse
functions fT on the orbit spaces ST following Bourgeois’s construction described in Section 10.3.
The critical points of these Morse functions form the Morse-Bott chain complex with grading given
by Formula (10.6). If there are no critical points with degree −1, 0 or 1 then the algorithm yields
the cylindrical contact homology for contractible Reeb orbits. Note that these computations can
depend on the choice of Morse functions.

Remark 11.1. We should emphasize at this point that cylindrical contact homology of
Brieskorn manifolds is a periodic repetition of certain Q-vector spaces with a degree shift. This
can be seen as follows. Let us consider the orbit space STi

and multiple coverings SNTi
where N

is chosen such that for i 6= j the time NTi is not divisible by Tj whenever JTi
⊂ JTj

. If we add

si :=
πlcm
j′∈I

aj′

2Ti

to N , the corresponding orbit space remains the same, since πlcmj′∈Iaj′

2 is divisible by all Tj . We
see that the Maslov index changes as follows,

µ(S(N+si)Ti
) = µ(SNTi

) + 2 lcm
j∈I

aj

 n∑
j′=0

1
aj′
− 1

 .

This shift of the Maslov index is independent of the orbit space STi
and hence the terms in the

contact homology corresponding to the orbit space STi
are repeated with period at most

2 lcm
j∈I

aj

 n∑
j=0

1
aj
− 1

 .

The periodicity of contact homology allows us to stop the algorithm after a finite number of steps.

Remark 11.2. Note that the requirement that n ≥ 3, is not strictly necessary. For n = 2
though, we are looking at 3-dimensional Brieskorn manifolds, which are in general not simply
connected. We can of course deal with these cases in an easy way by considering only contractible
Reeb orbits, but then one needs to investigate which Reeb orbits are contractible, which I have
not done.

Remark 11.3. If we consider Brieskorn manifolds with large exponents, we can ensure that
we have index negativity. In addition, large exponents ensure that the grading is strictly less than
−1, guaranteeing that cylindrical contact homology is well-defined. Indeed if

min
i∈I

ai ≥
5n
2
,
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then the algorithm will always give the cylindrical contact homology of the Brieskorn manifold
Σ(a0, . . . , an). This estimate is rather rough and can be obtained from the formula for the Maslov
index from Step (3).

Remark 11.4. Note that the contact homology is completely determined by the degree shifts
coming from the Maslov index and the homology of the orbit spaces, which can be encoded in
the homology of the orbifold Σ(a0, . . . , an)/S1 and its singular subspaces. See [52] for a more
extensive discussion on a possible relation with orbifold cohomology and some open problems.

We have implemented this algorithm in a simple computer program whose code can be found
in the appendix.

11.0.4. Proof of the algorithm. Consider the Brieskorn manifold M = Σ(a0, . . . , an) ⊂
Cn+1 with contact form induced by α = i

8

∑
aj(zjdz̄j − z̄jdzj). The differential ω := dα =

i
4

∑
ajdzj ∧ dz̄j is a symplectic form on Cn+1. Let ξ be the contact structure given by kerα|TM .

Note that the contact form is of Morse-Bott type (Definition 10.6). This is seen as follows.
Discreteness of the action spectrum is guaranteed by Step (2) of the algorithm. The sets MT

in Definition 10.6 are Brieskorn manifolds with their standard contact form. In particular they
are closed submanifolds of M . Note that this verifies the rank condition on dα as well. The last
condition for α being of Morse-Bott type can be checked by observing that the differential of the
Reeb flow ϕ is diagonal. Namely, the differential of the Reeb flow described in Formula (4.1) is
the diagonal matrix

Tϕ = diag(eit/a0 , . . . , eit/an).

The rank condition on Tϕ−id which we require for a Morse-Bott contact form is then also verified.
We verify that Step (3) gives the correct Maslov indices. For each time Ti that we found in

Step (2), consider the N -fold covering of MTi
with N such that NTi is not divisible by Tj ’s of

a larger orbit space. Now let p ∈ MTi and consider its orbit under the Reeb flow γ(t) := ϕt(p)
for t ∈ [0, NTi]. To compute its Maslov index, we use the obvious extension of the Reeb flow to
Cn+1, and we denote this extension by ϕt as well. The symplectic action of the extended Reeb
flow ϕt on Cn+1 is given by the differential Tϕt = diag(e4it/a0 , . . . , e4it/an) for t ∈ [0, NTi]. We
denote the path of symplectic matrices induced by the extended flow by ΦCn+1 . We can now use
the additivity of the Maslov index and Formula (8.4) to get the index of this path. This gives us

µ(ΦCn+1) = 2
∑

aj∈JTi

2NTi
πaj

+ 2
∑

aj∈I−JTi

b2NTi
πaj

c+ #(I − JTi).

In order to get the Maslov index of the Reeb flow, we use the additivity property of the Maslov
index to note that we may subtract the Maslov index of the restriction of ΦCn+1 to the symplectic
complement ξω of the contact structure ξ in Cn+1.

In the proof of Theorem 4.2 we found a symplectic basis of ξω, which in terms of

X1 = (z̄a0−1
0 , . . . , z̄an−1

n ), Y1 = iX1,

X2 = −2i(
z0
a0
, . . . ,

zn
an

), Y2 = (z0, . . . , zn)

is given by

X̃1 =
X1√

ω(X1, Y1)
, Ỹ1 =

Y1√
ω(X1, Y1)

X̃2 = X2, Ỹ2 = Y2 −
∑
aiz

ai
i

2ω(X1, Y1)
X1.

With respect to this basis, the action induced on ξω by the extended Reeb flow is given by

Tϕt(X̃1(x)) = e4itX̃1(ϕt(x)), Tϕt(Ỹ1(x)) = e4itỸ1(ϕt(x))

Tϕt(X̃2(x)) = X̃2(ϕt(x)), Tϕt(Ỹ2(x)) = Ỹ2(ϕt(x)).
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We use again Formula (8.4) with T substituted by NTi to see to see that the Maslov index of this
path of symplectic matrices is equal to

µ(Φξω ) = 4N
Ti
π
.

Taking the difference of the Maslov indices we found yields the desired result from Step (3). The
conditions for index positivity and negativity can be found by observing that btc ≥ t − 1 and
btc ≤ t.

We show that the determinant bundle of the linearized Cauchy-Riemann operator can be
oriented directly, i.e. we shall show that the linearized Cauchy-Riemann operator is asymptotic to
a complex linear operator. First of all, we note that near the punctures this operator can be given
the form,

∂

∂s
+ J0

∂

∂t
+ S(s, t),

(see Formula 9.3) where S are symmetric matrices, J0 is the standard complex structure, and
(s, t) are cylindrical coordinates near the puncture, t for the S1-coordinate. We have (see Formula
(9.4))

lim
s→∞

S(s, t) = S̃(t),

with

S̃(t) = −J0
dψ(t)
dt

ψ−1(t),

where ψ are the symplectic matrices obtained from the linearized Reeb flow in the symplectization
M × R. Note that if these matrices ψ(t) are unitary with respect to the above trivialization, the
matrix S̃ will commute with J0. We will verify that we can choose a trivialization such that the
matrices ψ are unitary.

Note that the linearized extended Reeb flow on Cn+1 is represented by a path of unitary
matrices. Keep in mind that the metric is given by ω(. . . , J . . .), where J is the standard com-
plex structure on Cn+1. For the above purposes we need a trivialization that comes from the
symplectization of M , so this one is not suitable. To that end, recall that a contact structure
ξ is symplectically stably trivial if and only if ξ ⊕ C is symplectically trivial (see also Remark
8.5). This means that we can split off a complex line bundle from our trivialization on Cn+1.
Define V := spanR(X̃1, Ỹ1) and let W be the orthogonal complement of V in Cn+1. Because the
linearized extended Reeb flow maps V to V , we can see that the linearized extended Reeb flow
induces a map from W to W which is unitary with respect to the induced metric. Note also that
ξ is a subbundle of W , and W contains the Reeb line bundle. Hence W can be identified with the
tangent bundle of the symplectization of M restricted to M × {point}. Let ψ(t) be the path of
unitary matrices given by the linearized extended Reeb flow on W with respect to an orthonormal
basis of W . Then we define S̃(t) as in the above.

It follows that the Cauchy-Riemann operator

∂

∂s
+ J

∂

∂t
+ S̃(t)

is complex linear. By the above discussion, the given linearized Cauchy-Riemann operator on
the symplectization is asymptotic to this operator. As mentioned in Section 10.3, this gives us
an orientation of the determinant bundle. In particular, no bad orbits or disorienting loops can
occur.

Index positivity/negativity is verified in Step (3) of the algorithm. If there are no generators
in degree −1, 0 or 1, then the homology of the Morse-Bott complex is isomorphic to cylindrical
contact homology according to Theorem 10.11. Consider the Morse-Bott complex with generators
the critical points p of the chosen Morse functions with grading given by µ(ST ) − 1

2 dimST +
indexpfT + n − 3. The differential of the Morse-Bott complex is given by Formula (10.7). The
differential acting on p ∈ ST is given by

dp = ∂p+
∑

nqq.
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The first term is the Morse-Witten differential for the critical points of the Morse functions fT .
The second term counts the number of elements in the zero-dimensional part of the fibered product

(Wu(p)×SMfT (S;S′)×S′ W s(q))/R.

Now note that there is an S1-action on the symplectization of M induced by the Reeb flow. A
holomorphic curve asymptotic to closed Reeb orbits comes therefore in at least an S1-family (by
letting the Reeb flow act) except in the case that the curve is a vertical cylinder. This means the
above fibered product is at least 1-dimensional, so it will not contribute to the differential. This
argument is due to Bourgeois, see for instance Section 9.3 of [6].

This implies that the only non-zero contribution to the differential comes from ∂p, which
means that the cylindrical contact homology is isomorphic to the Morse-Witten homology of the
orbit spaces ST with degree shifts of µ(ST )− 1

2 dimST +n− 3. As the Morse-Witten homology of
the orbit spaces is equal to the rational homology of the orbit spaces which is computed in Step
(4), we find that the contact homology is given by our algorithm.

11.0.5. Examples.
11.0.5.1. Cylindrical homology of some contact structures on S2×S3. In this section we con-

sider the family of Brieskorn manifolds of the form M = Σ(2l, 2, 2, 2) for l > 1. Using our
algorithm, it turns out that these manifolds are diffeomorphic to S2 × S3 and that their cylindri-
cal contact homologies are all isomorphic. This is a bit exceptional, since typically we get very
different homologies for different exponents. In the Section 11.1.1 we find some new exotic contact
structures on spheres which illustrates the latter point. Let us now turn our attention to the
application of the algorithm to M = Σ(2l, 2, 2, 2). The numbering is as in the algorithm.

(1) We find rkH2(M) = 1. Computation of the homology torsion by Randell’s algorithm
shows that there is none. By the classification of simply connected five manifolds [2] we
see that M ∼= S2 × S3, as the second Stiefel-Whitney class of M is zero.

(2) The time T1 = π
2 2 is the minimal time for the sets Is ⊂ {0, . . . , n} = I which do not

include 0. Hence we see JT1 = {1, 2, 3}.
The time T2 = π

2 2l appears as minimal time for the set I = {0, 1, 2, 3}. So JT2 =
{0, 1, 2, 3}.

(3) We get, for NT1
2
π not divisible by l,

µ(SNT1) = 2N + 1 + 2bN
l
c.

The principal orbits have Maslov index

µ(SNT2) = 2lN + 2N.

(4) We find dimST1 = 2 with H0(ST1 ,Q) = Q and H2(ST1 ,Q) = Q. All other homology
groups are 0. The orbit space ST2 has dimension 4, with the homology H0(ST2 ,Q) = Q,
H2(ST2 ,Q) = Q2 and H4(ST3 ,Q) = Q. The other homology groups are zero.

(5) The period we defined in (11.1) is equal to 2+2l. This allows us to compute fewer terms.
For the first period, the contributions from SNT1 lie in degree

2N + 2bN
l
c+ k

for N = 1, . . . , l − 1 (since we are considering a single period) and k = 0, 2. The
contribution due to SNT2 are in degree

2l + k,

for k = 0, 2, 4. For the first period, we get one generator in degree 2, two generators in
degree 4, 6, . . . , 2l + 2 and one generator in degree 2l + 4. Hence the cylindrical contact
homology has one generator in degree 2 and two generators in degree 2k for k > 1. We
note that the cylindrical homology is well-defined, as there are no generators in degree
−1, 0 or 1 (lowest degree is higher than 1).
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We can also apply the algorithm to Σ(2, 2, 2, 2), which has just a single orbit space. This yields
the same contact homology.

11.0.5.2. Some contact structures with index negativity. Let us consider Brieskorn manifolds
with large exponents such that we have index negativity and that the degree is strictly less than
−1. In case all exponents are equal, contact homology is particularly easy to compute. For
simplicity, we consider examples coming from Brieskorn manifolds of the form M = Σ(k, k, k, k)
with k ≥ 6. If we are just interested in the contact homology of M , then we may skip Step (1)
(which would allow us to identify M). Since M has only a single orbit space, the computations
are simple.

The minimal return time is T = π
2 k. Hence we get the Maslov index

µ(SNT ) = 2 · 4 ·N − 2 ·N · k = 2N(4− k).
Step (4) of the algorithm shows that H0(ST ; Q) ∼= Q, H2(ST ; Q) ∼= Qd, where d = κ + 1 =
(k−1)4−1

k + 2. The last homology group is H4(ST ; Q) ∼= Q. This gives the information needed for
a single period of contact homology. Taking the Maslov index into account we get the following
for the contact homology of M .

We have one generator in degree 2N(4− k)− 2 for N = 1, 2, . . .. In degree 2N(4− k) we have
(k−1)4−1

k + 2 generators and in degree 2N(4− k) + 2 we have again one generator (N = 1, 2, . . .).
Another way to phrase the result is the following. First notice that since all exponents of

the Brieskorn manifold are equal, the contact manifold Σ(k, k, k, k) can be identified with an S1-
bundle over a symplectic manifold. The contact homology of Σ(k, k, k, k) is given by the singular
homology of this underlying symplectic manifold repeated with degree shifts of 8− 2k.

11.1. Exotic contact structures

Our aim in this section is to describe a certain class of contact manifolds that admits infinitely
many non-isomorphic contact structures.

Given two contact manifolds (M1, ξ1) and (M2, ξ2), we can build a new contact manifold by
forming their connected sum, see [36] and [53]. If we think of a connected sum as first removing
a disk from both M1 and M2 and then gluing them via a “connecting” tube, then the contact
structure on M1#M2 can be made to coincide with the contact structure on M1 with a disk
removed and M2 with a disk removed.

In order to say something about the contact homology of the connected sum, we find generic
contact forms α1, α2 for the contact structures ξ1 and ξ2, i.e. contact forms whose closed Reeb
orbits are non-degenerate.

First we need another, but similar notion of index positivity, which we will refer to as
Ustilovsky index positivity. Suppose that a contact structure ξ is symplectically stably trivial
and let F be a corresponding trivialization. We may then compute the Maslov index with respect
to the trivialization F . The index does depend on the trivialization and we indicate this by mak-
ing the Maslov index visibly dependent on the trivialization F by writing µ(. . . , F ). We use ε to
indicate the trivial bundle.

Definition 11.5. Let (M,α) be a contact manifold. Assume that π1(M) = 0 and that the
bundle (ξ, dα) is symplectically stably trivial. Let F be a symplectic trivialization of ξ ⊕ ε2. The
contact form α is called Ustilovsky index-positive if there exist constants c > 0 and d such
that for any Reeb orbit γ we have

µ(γ;F ) ≥ cA(γ) + d.

Ustilovsky has shown in his thesis that this notion does not depend on the choice of trivial-
ization.

Example 11.6. Brieskorn manifolds are symplectically stably trivial (for instance, see our
proof of Theorem 4.2). Hence we may consider Ustilovsky index positivity of a Brieskorn manifold
Σ(a0, . . . , an). Here we really need n ≥ 3, because many Brieskorn manifolds in dimension 3
are not simply-connected. Note that a Brieskorn manifold has Ustilovsky index positivity if all
orbit types have index positivity. Namely, our computation of the Maslov indices for closed orbits
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used the trivialization coming from Cn+1. If we use that trivialization to verify Ustilovsky index
positivity, we see that the formula from Step (3) of the algorithm can be modified as follows:

µ(γ(t)|t∈[0,T ]) =
n∑
j=0

µ(e4it/aj |t∈[0,T ])− µ(e4it|t∈[0,T ]),

where the Reeb orbit γ is given by

γ(t) = (e4it/a0z0, . . . , e
4it/anzn),

for (z0, . . . , zn) ∈ Σ(a0, . . . , an) ⊂ Cn+1. Then apply Formula (8.4).

We have the following theorem from Ustilovsky ([51], Theorem 5.2.1):

Theorem 11.7 (Ustilovsky). Let (M1, α1), (M2, α2) be two simply connected contact mani-
folds of dimension 2n − 1 that have Ustilovsky index positivity. Assume all periodic orbits of
Rα1 and Rα2 are non-degenerate. Then for any integer N there exists a contact form α on
M = M1#M2 so that

(1) (M,α) is Ustilovsky index-positive.
(2) All periodic orbits of Rα are non-degenerate.
(3) If c1j , c

2
j and cj denote the numbers of periodic Reeb orbits of degree j in M1, M2 and

M3, respectively, then for j ≤ N , we have cj = c1j + c2j + βj, where βj = 1 for j =
2n− 3, 2n− 1, . . ., and βj = 0 otherwise.

The βj ’s in this theorem are the degrees of the periodic Reeb orbits in the “connecting tube”.
We will take for M1 any contact manifold satisfying the conditions of the above theorem of
Ustilovsky and forM2 we will take a special contact sphere. This sphere will have the property that
its contact homology contains generators with degree lower than the lowest degree of a generator in
the “connecting tube”. After taking the connected sum with M1 and using Ustilovsky’s theorem,
the resulting contact manifold M1#M2 will be diffeomorphic to M1, but its cylindrical contact
homology will have more generators in low degrees.

11.1.1. Construction of a special contact sphere. Let us consider the Brieskorn mani-
fold M = Σ(p1, . . . , pn−1, 2, 2) where p1, . . . , pn−1 are odd primes which will be specified later
(they need to be chosen large enough). Notice that we immediately see that this manifold has the
homology of a sphere by Theorem 4.5. Then use the fact that Brieskorn manifolds of dimension
at least 5 are always simply connected and conclude that M is homeomorphic to a sphere with
the generalized Poincaré conjecture as proved by Smale. We apply our algorithm to compute the
first terms of the contact homology.

11.1.1.1. Contact homology of Σ(p1, . . . , pn−1, 2, 2). We have the following orbit types and
Maslov indices.

• I2 = {2, 2}. The minimal return time for orbits of this type is T = π. The Maslov index
of the corresponding orbits is given by

µ(SNT ) = 2
n−1∑
i=1

b2N
pi
c+ n− 1 ≥ n− 1.

If the pi’s are odd primes, the first term will vanish for at least N = 1. Now we turn
our attention to the homology of the orbit space. It has dimension 0 and Formula (4.2)
shows that H0(ST ,Q) = Q2. This shows that the contact homology of M has at least
two generators in degree 2n − 4. Since the first term is always even, multiple covers of
this orbit will have either the same degree or a higher even degree. Note that this orbit
type will not give any generators in degree 2n− 3.
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• Sets of the form {pi1 , . . . , pik} with k at least 2. The minimal return time is now T =
pi1 · . . . · pik π2 . The Maslov indices of the orbit spaces are given by

µ(SNT ) = 2
∑
j

pi1 · . . . · p̂ij · . . . · pikN + 4bNpi1 · . . . · pik
2

c

+ 2
∑
l 6=ij

bNpi1 · . . . · pik
pl

c+ n− 1− k + 2− 2Npi1 · . . . · pik .

Note that 4bNpi1 ·...·pik

2 c ≥ 2Npi1 · . . . · pik − 2 and that dimST = 2k − 4. Using this
estimate, we find that the degree of the associated generators can be estimated from
below as

degree ≥ 2n− 2− 2k + 2
∑
j

pi1 · . . . · p̂ij · . . . · pikN.

Since the sum contains at least two terms, we can make the Maslov index arbitrarily large
by choosing big primes. In particular, the degree of these orbit types can be assumed to
be larger than 2n− 3.

• Sets of the form {pi1 , . . . , pik , 2, 2}. The minimal return time is T = pi1 · . . . · pikπ. The
associated Maslov indices are

µ(SNT ) = 4
∑
j

pi1 . . . p̂ij · . . . · pikN + 2
∑
l 6=ij

b2Npi1 · . . . · pik
pl

c+ n− 1− k.

For k > 1 the first term will contain at least one pi-term. This means that the degree
(note that the dimension of the orbit space is now 2k) will become as large as we like by
choosing the p’s accordingly. For k = 1 the first term is 4N and we see that the degree
is at least 4N + n− 3 + n− 3 ≥ 2n− 2.

Summarizing these estimates, we see that by choosing suitable primes we may assume that the
contact homology contains at least two generators in degree 2n − 4 and no generators in degree
2n−3. Note that we have (Ustilovsky) index positivity since two exponents are 2, see the condition
from Step (3) of the algorithm.

In order to be able to apply Theorem 11.7, we need to have a generic contact form on M that
has at least two closed Reeb orbits in degree 2n− 4 and no generators in degree 2n− 3. We will
do this, along with a more general statement in the following interlude.

11.1.1.2. Generic contact forms. In this section, we want to associate a generic contact form,
i.e. a contact form whose closed Reeb orbits are non-degenerate, to the Morse-Bott contact forms
used in our algorithm.

Let M be a contact manifold of dimension 2n − 1 and let α be a contact form on M that
satisfies the Morse-Bott condition. We use Bourgeois’s construction of Morse functions on the
orbit spaces described in Section 10.3. We use his ideas to perturb α into a generic contact form
such that we still have some information on the indices of the closed Reeb orbits. The following
observations by Ustilovsky [51] will play a key role.

Lemma 11.8. If (M,α) is Ustilovsky index-positive, then a C∞-small perturbation α′ of α the
manifold (M,α′) is also Ustilovsky index-positive. Moreover, if µ(γ;F ) ≥ cA(γ) + d for orbits γ
of Rα then, for α′ close enough to α, µ(γ′;F ′) ≥ c′A(γ′) + d′ for orbits γ′ of Rα′ , where c′ = c/2
and d′ = −|d| − 2n.

Remark 11.9. Note that for a small perturbation, there is a one-to-one correspondence be-
tween non-degenerate Reeb orbits of the contact form and of the perturbed contact form up to
some period. The Conley-Zehnder indices of the corresponding orbits are the same. This can be
seen with the following argument.

In our definition of the Conley-Zehnder index we start by choosing an extension of the path
of symplectic matrices to either W+ or W−. For a small perturbation, the endpoint of the path
of symplectic matrices will be in the same component of Sp∗(2n), so we choose an extension to
the same point W± for both the unperturbed and the perturbed path. This means that the
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extended paths will be homotopic with fixed endpoints, so the perturbed path will have the same
Conley-Zehnder index as the unperturbed path.

Lemma 11.10. Let α be the standard contact form on the Brieskorn manifold Σ(a0, . . . , an),
n ≥ 3. Assume that the exponents are such that we have Ustilovsky index positivity (cf. Example
11.6). Then for all N ∈ Z there exists a generic contact form α′, such that all generators of the
chain complex of α′ coincide with the generators of the Morse-Bott chain complex of α up to degree
N .

Proof. Let us denote the constants from the Ustilovsky index positivity by c > 0 and d such
that µ(γ) ≥ cA(γ) + d for a part γ of a Reeb orbit. Choose T ≥ max{N, 4

c (N + |d| + 4n)}. By
Lemma 10.7 we find a perturbation α′′ of α such that its periodic Reeb orbits up to action T
are non-degenerate and correspond to critical points of the chosen Morse functions on the orbit
spaces. Since we have Ustilovsky index positivity for α, we will have the same for α′′ by Lemma
11.8, where the constants are now c/2 and −|d| − 2n.

We perturb α′′ further to make all Reeb orbits non-degenerate and call the perturbation α′.
Once again, α′ is Ustilovsky index positive with constants c/4 and −|d| − 4n. By Remark 11.9
this perturbation will not change the Conley-Zehnder indices of orbits with period up to T (and in
particular up toN). The perturbation will introduce new periodic Reeb orbits. However, the newly
created ones can be made to have period larger than T (by making a small enough perturbation).
As a result of Lemma 11.8, their Conley-Zehnder indices will be larger than Tc/4− |d| − 4n ≥ N .
This proves our lemma. �

11.1.1.3. A generic contact form for Σ(p1, . . . , pn−1, 2, 2). We continue with our construction
of a contact sphere from Section 11.1.1. As before, we write our Brieskorn sphere as M =
Σ(p1, . . . , pn−1, 2, 2). We get the Morse-Bott chain complex for contact homology by following
Bourgeois’s construction of Morse functions for the orbit spaces from Section 10.3. Note that the
computation of the contact homology of M in Section 11.1.1.1 shows that the Morse-Bott complex
will have at least two generators in degree 2n− 4 and no generators in degree 2n− 3. This holds
true because the lowest-dimensional orbit spaces have dimension 0, so the number and degree of
generators associated to those orbit spaces do not depend on the choice of Morse functions. Note
that these data do depend on the choice of Morse functions for the other orbit spaces.

Now we apply Lemma 11.10 to obtain a generic contact form where the the number and degree
of generators of the chain complex coincide with those of the Morse-Bott complex up to degree
2n− 2. This gives M a generic contact form and allows us to use Theorem 11.7.

11.1.2. Constructing new contact structures.

Theorem 11.11. Let (M, ξ) be a simply-connected contact manifold. Assume furthermore
that M admits a nice contact form (a contact form without any closed Reeb orbits of degree −1, 0
or 1) that has Ustilovsky index positivity (in particular c1(ξ) = 0). Then M admits infinitely many
non-isomorphic contact structures.

Proof. Let N ′ = Σ(p1, . . . , pn−1, 2, 2). The above discussion shows that N ′ admits a generic
contact form that is Ustilovsky index positive with at least two generators in degree 2n − 4, no
generators in degree 2n − 3 and no generators in lower degrees. As remarked before, we know
that N ′ is homeomorphic to a sphere. Since the differentiable structures on a sphere form a finite
group, we can find an r such that N := N ′# . . .#N ′︸ ︷︷ ︸

r

is diffeomorphic to the standard sphere. By

Theorem 11.7, N admits a generic contact form whose cylindrical contact homology has at least
2r generators in degree 2n − 4, precisely r − 1 generators in degree 2n − 3 and no generators in
lower degrees.

Now apply Theorem 11.7 to M and N . The connected sum M#N will be diffeomorphic to M ,
since N is diffeomorphic to S2n−1. The theorem shows that the connected sum still admits a nice
contact form (because no generators are added in degrees −1, 0 or 1). The number of generators
of the chain complex of the cylindrical contact homology is increased by 2r in degree 2n− 4 and
by r in degree 2n − 3. Because of Ustilovsky index positivity there are only a finite number of
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generators in each degree. Since the number of generators in degree 2n−5 is unchanged by taking
the connected sum with N , taking repeated connected sums with N will ensure that we get a
contact structure on M with a contact homology different from the original one, namely with
more generators in degree 2n− 4. By taking more connected sums with N we get infinitely many
contact structures on M , all with different cylindrical contact homology distinguished by the rank
of the homology in degree 2n− 4. �

Remark 11.12. Although Ustilovsky never mentions this theorem, I am sure he knew this
result already, at least in case the contact manifold has dimension 4k + 1, since we can also use
the exotic contact spheres of Ustilovsky in those cases. The theorem in itself is not so useful if
we do not have a way to generate “nice” contact forms which we require in the theorem. In fact
the only cases I could find in the literature are spheres. Because of Lemma 11.10 I thought this
theorem was worth mentioning, since Lemma 11.10 gives a way to construct a large family of
“nice” contact manifolds suitable for use in the theorem. This family of Brieskorn manifolds does
not consist of spheres only.

Therefore we can combine this theorem with our algorithm to construct infinitely many contact
structures on a large class of manifolds. We will focus here on contact manifolds of dimension
5. The methods do work in all dimensions, but we should mention that in case the dimension
of the contact manifold is 4k − 1, there are infinitely many homotopy classes of almost contact
structures on the sphere. This means that invariants from algebraic topology could then already
suffice to prove the existence of infinitely many contact structures on a given contact manifold,
see for instance [19]. However, in dimension 4k+ 1 there are only finitely many homotopy classes
of almost contact structures on the sphere.

From the example we considered earlier we see that the Brieskorn manifold Σ(2, . . . , 2) has
an index positive contact structure whose cylindrical contact homology is well-defined. Note that
we can identify Σ(2, . . . , 2) with (ST ∗Sn, λcan). We can use Lemma 11.10 to perturb the contact
form to a nice contact form. Thus Theorem 11.11 implies that ST ∗Sn admits infinitely many
contact structures for n > 2 with trivial first Chern class. Repeated application of the theorem
shows the following corollary.

Corollary 11.13. Let n > 2 and k > 0. The manifold

ST ∗Sn# . . .#ST ∗Sn
k times

admits infinitely many contact structures with trivial first Chern class.

11.1.3. Exotic contact structures in dimension 5. We want to show that a large class
of simply connected five-manifolds admit infinitely many contact structures in a single homotopy
class of almost contact structures. In the last section we have already shown that ST ∗S3 ∼= S2×S3

satisfies this. Since connected sums of nice index positive contact manifolds are again nice index
positive contact manifolds, we try to find such contact structures on some of the prime manifolds,
see Section 6.1. Application of our algorithm shows that the Brieskorn manifolds Σ(2, 3, 3, 3),
Σ(2, 3, 4, 4) and Σ(5, 2, 3, 6) are both nice index positive contact manifolds. Their homologies can
be computed using Randell’s algorithm and are isomorphic to Z2 ⊕ Z2, Z3 ⊕ Z3 and Z5 ⊕ Z5,
respectively. This means that we have covered a few of the prime manifolds mentioned in Section
6.1.

We will show that many other prime manifolds admit infinitely many contact structures as
well. I have not found a nice family of index positive contact structures on them, so we cannot
invoke Theorem 11.11 to use them in connected sums. Let us consider the Brieskorn manifolds
of the form Σ(2k, 6, 9, p), where k ≥ 2 and p is relatively prime with 2 and 3. We use Randell’s
algorithm to compute the homology and find that

H2(Σ(2k, 6, 9, p); Z) ∼= Zp ⊕ Zp.
Hence we have found a one-parameter family of Brieskorn manifolds with the same homology.
Let us put a0 = 2k, a1 = 6, a2 = 9 and a3 = p in order to use the same notation as in our
algorithm. Since

∑3
i=0

1
ai

< 1, the contact structure on these Brieskorn manifolds are index
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negative. Although it is rather straightforward to compute the contact homology now, we still
need to show that the contact homologies for different k are not isomorphic. To that end, we
introduce a kind of weighted Euler characteristic. Define

χW ((M,α)) = lim
N→∞

∑N
i=−N (−1)i rk(CHi(M,α))

N
.

Since the cylindrical contact homology of Brieskorn manifolds is, if defined, a periodic repetition of
Q-vector spaces, this limit exists. Indeed, we see that this limit is equal to the Euler characteristic
of a single period as computed in our algorithm of the contact homology divided by the period

2 lcm
j∈I

aj

 n∑
j=0

1
aj
− 1

 ,

since this period is always even. Note that odd periods would give a 0 “weighted” Euler charac-
teristic.

Note that the above definition for this “weighted” Euler characteristic is obviously an invariant
of the homology. We compute this invariant by computing the Euler characteristic of single
period of contact homology and dividing by the period. We will now give some details for this
computation. These details give almost enough information to get the full contact homology as
well, so the reader might ask why one could not use this directly. To distinguish contact structures
by the ranks of the contact homology, we could try to follow Ustilovsky [50] and find that there are
“degree jumps” between the homologies of different Brieskorn manifolds. However, we would have
many more orbit types involved in such an argument. Therefore I preferred the present approach.

The above formula for the period gives

period = 2
(

32p+ 2k(
3
2
p+ p+ 3− 32p)

)
.

As mentioned before, we see that this is a negative number for the values of p and k that we are
considering. To complete the argument, we list a table containing the data we need. We list the
orbit types, the minimal closure time of the Reeb orbits in that orbit type, how often that orbit
type contributes within a single period of contact homology, the homology of that orbit space and
its contribution to the Euler characteristic. I determined how often a orbit type appears within
the first period by dividing the time of a full period by the time of that orbit type. That way
one overcounts because of the larger orbit spaces that appear. We subtract how often larger orbit
types appear. In other words, we made the table starting at the largest orbit type, which can only
appear once, and worked our way back.

Orbit type Minimal time How often H∗ χ
(2k, 6) 2k · 3 3p− (p− 1)− (3− 1)− 1 Q2 2
(2k, p) 2kp 32 − (3− 1)− 1 Q 1
(6, 9) 2 · 32 2k−1p− (p− 1)− (2k−1 − 1)− 1 Q3 3
(6, p) 2 · 3p 2k−1 · 3− (2k−1 − 1)− (3− 1)− 1 Q 1
(9, p) 32p 2k − (2k−1 − 1)− 1 Q 1

(2k, 6, 9) 2k · 32 p− 1 Q,Q2,Q 0
(2k, 6, p) 2k · 3p 3− 1 Q, 0,Q 2
(6, 9, p) 2 · 32p 2k−1 − 1 Q, 0,Q 2

(2k, 6, 9, p) 2k · 32p 1 Q, 0,Q, 0,Q 3

We get the Euler characteristic of the first period of contact homology by multiplying the
Euler characteristic of each orbit type with the number of times that orbit type appears. We
obtain the following formula for the “weighted” Euler characteristic.

χW (Σ(2k, 6, 9, p)) = −
p+ 8 + ( 3p

2 + 1)2k

−18p+ (13p− 18)2k
.

Note that functions of the form a+bx
c+dx are injective if denominator and numerator are not multiples

of one another. For fixed p the above expression has such a form and hence we see that the contact
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manifolds Σ(2k, 6, 9, p) are not contactomorphic for different k, although they are diffeomorphic
for fixed p.

We summarize a somewhat weakened version of the above discussion in the following corollary.

Corollary 11.14. The prime manifolds Bpk admit infinitely many contact structures for
primes p > 3 and all k ≥ 1. The prime manifolds B2, B3 and B∞ = S2×S3 also admit infinitely
many contact structures. In addition, we have that connected sums of the form

S2 × S3# . . .#S2 × S3

k times
#B2# . . .#B2

l times
#B3# . . .#B3

m times
#B5# . . .#B5

n times

admit infinitely many contact structures. All contact structures constructed in this corollary have
the same formal homotopy class of almost contact structures.



Appendix A: Brieskorn algorithm in C

This program performs the steps of Randell’s algorithm and of the algorithm to compute
contact homology. It will always show a bit more than a single period of contact homology. If
more is needed, then one needs to modify the “mindeg” and “maxdeg” variables in an appropriate
way.

#include <iostream.h>

typedef int *wijs;
typedef wijs *wijzer;

int n=4;

class list{
public:
list *first;
list *next;
int k,nummer;
int lcm;
list()
{
next=NULL;

}
void nieuw(int nieuw_lcm,int k1,int n1);
void check(int nieuw_lcm,int k1,int n1);
void laatzien();

};

void list::laatzien()
{
cout << k << " " << nummer << " met lcm " << lcm << endl;
if( next!=NULL )
next->laatzien();

}

void list::nieuw(int nieuw_lcm,int k1,int n1)
{
next=new list;
next->first=first;
next->k=k1;
next->nummer=n1;
next->lcm=nieuw_lcm;

}

void list::check(int nieuw_lcm,int k1,int n1)
{

111
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if( nieuw_lcm==lcm )
{
k=k1; nummer=n1;

}
else
{
if( next!=NULL )
{
next->check(nieuw_lcm,k1,n1);

}
else
{
// create a new member in the list
nieuw(nieuw_lcm,k1,n1);

}
}

}

int fact(int k)
{
if( k==0 )
return 1;

else
return k*fact(k-1);

}

int binom(int n, int k)
{
return fact(n)/fact(k)/fact(n-k);

}

int gcd(int k, int l)
{
int hulp;

if( l>k )
{
hulp=l; l=k; k=hulp;
return gcd(k,l);

}
if( k%l==0 )
return l;

else
return gcd(l,k%l);

}

int gcdset(int *exponent,wijzer *b, int k, int tel)
{
int i;
int currentgcd=1;
for( i=0; i<=k; i++)
{
currentgcd*=exponent[b[i][k][tel]];

}
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for( i=0; i<=k; i++)
{
currentgcd=gcd(exponent[b[i][k][tel]],currentgcd);

}
return currentgcd;

}

int gcdsetcomplement(int *exponent,wijzer *b, int k, int tel)
{
int i,j,found;
int currentgcd=1;

for( i=0; i<n; i++)
{
currentgcd*=exponent[b[i][n-1][0]];

}
for( i=0; i<n; i++)
{
found=0; j=0;
while( !found && j<=k )
{
if( b[j][k][tel]==b[i][n-1][0] )
found=1;

j++;
}

if( !found )
{
currentgcd=gcd(exponent[b[i][n-1][0]],currentgcd);

}
}

return currentgcd;
}

int lcm(int k, int l)
{
return k*l/gcd(k,l);

}

int lcmset(int *exponent,wijzer *b, int k, int tel)
{
int i;
int currentlcm=1;
for( i=0; i<=k; i++)
{
currentlcm=lcm(exponent[b[i][k][tel]],currentlcm);

}
return currentlcm;

}

int prodset(int *exponent,wijzer *b, int k, int tel)
{
int i;
int prod=1;
for( i=0; i<=k; i++)
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{
prod*=exponent[b[i][k][tel]];

}
return prod;

}

int setcheck(wijzer *b,int k,int tel,int i,int l)
{
int j1,j2,found;

for( j2=0; j2<=i; j2++ )
{

j1=0; found=0;
while( !found && j1<=k )
{
if( b[j2][i][l]==b[j1][k][tel] )
{
found=1;

}
j1++;

}
if( !found )
return 0;

}
return 1;

}

main()
{
cout << "Number of exponents: ";
cin >> n;

int i,tel,k,l;
int loop;
int *a,*last;
wijs *kappa,*lcms,*tkappa,*C;
wijzer *b;
int *exponent;
int sign,rmax,d;
int found,maxlcm;
list *orbits,*first;
int *chrank;
int mindeg,mindeg2,maxdeg,maxdeg2,period,degree;

//allocate memory
a=new int[n];
last=new int[n];
kappa=new wijs[n];
tkappa=new wijs[n];
lcms=new wijs[n];
C=new wijs[n];

b=new wijzer[n];
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exponent=new int[n];
orbits=new list;

for( i=0; i<n; i++ )
{
cout << "exponent a_" << i << ": ";
cin >> exponent[i];

}

for( l=0; l<n; l++ )
{
b[l]=new wijs[n];
for( i=0; i<n; i++ )
{
(b[l])[i]=new int[binom(n,i+1)];

}
kappa[l]=new int[binom(n,l+1)];
tkappa[l]=new int[binom(n,l+1)];
lcms[l]=new int[binom(n,l+1)];
C[l]=new int[binom(n,l+1)];

}

//initialize arrays to count properly; the entries are b[k][i][j]
//we count sets with i elements as follows
// (0,..,i-1),(0,..,i-2,i),..,(0,..,i-2,i),(0,..,i-3,i-1,i)
// i indicates the number of elements, j which i-element set
//(as counted above) and k the k-th entry of that set
//eg b[i-1][i-1][0]=i-1, b[i-1][i-1][1]=i, b[0][i-1][1]=0
for( i=0; i<n; i++ )
{
last[i]=binom(n,i+1)-1;
for( k=0; k<=i; k++ )
{
((b[k])[i])[last[i]]=(n-1)-i+k;

}
for( k=0; k<=i; k++ )
{
((b[k])[i])[0]=k;

}
}

for( i=0; i<n; i++ )
{
for( tel=1; tel<binom(n,i+1)-1; tel++ )
{
loop=1;
k=i;
for( l=0; l<i; l++ )
{
((b[l])[i])[tel]=((b[l])[i])[tel-1];

}
((b[k])[i])[tel]=((b[k])[i])[tel-1]+1;
while( loop )
{
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if( ((b[k])[i])[tel]==((b[k])[i])[last[i]]+1 && k!=0 )
{
((b[k-1])[i])[tel]=((b[k-1])[i])[tel-1]+1;
k--;

}
else
loop=0;

}
//reset
k++;
while( k<=i )
{
((b[k])[i])[tel]=((b[k-1])[i])[tel]+1;
k++;

}
}

}

//compute lcm
for( k=0; k<n; k++ )
{
for( tel=0; tel<binom(n,k+1); tel++ )
{
lcms[k][tel]=lcmset(exponent,b,k,tel);

}
}

//compute kappa as in Randell’s algorithm
rmax=0;
for( k=0; k<n; k++ )
{
for( tel=0; tel<binom(n,k+1); tel++ )
{
sign=(k+1)%2;
if( sign==0 )
sign=+1;

else
sign=-1;

kappa[k][tel]=sign;

// sum over subsets with i+1 elements
for(i=0; i<k; i++)
{
// sets with i+1 elements
for( l=0; l<binom(n,i+1); l++ )
{
//check whether set is a subset of b[-][k][tel]
if( setcheck(b,k,tel,i,l) )
{
sign=(k-i)%2;
if( sign==0 )
sign=+1;

else
sign=-1;
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kappa[k][tel]+=sign*prodset(exponent,b,i,l)/lcmset(exponent,b,i,l);
}

}
}

// set b[-][k][tel] always occurs as a subset of itself
kappa[k][tel]+=prodset(exponent,b,k,tel)/lcmset(exponent,b,k,tel);

sign=(n+1-k)%2;
if( sign==0 )
tkappa[k][tel]=0;

else
tkappa[k][tel]=kappa[k][tel];

if( tkappa[k][tel]>rmax )
rmax=tkappa[k][tel];

}
}

//n odd implies rmax is at least 1 (empty set contributes in that case)
if( n%2!=0 )
{
if( rmax==0 )
rmax=1;

}

for( k=0; k<n; k++ )
{
for( tel=0; tel<binom(n,k+1); tel++ )
{
C[k][tel]=gcdsetcomplement(exponent,b,k,tel)/gcdset(exponent,b,n-1,0);
// subsets with i+1 elements
for(i=0; i<k; i++)
{
// sets with i+1 elements
for( l=0; l<binom(n,i+1); l++ )
{
//check whether set is a subset of b[-][k][tel]
if( setcheck(b,k,tel,i,l) )
{
C[k][tel]/=C[i][l];

}
}

}
}

}

cout << "Rang H_" << n-2 << " is equal to " << kappa[n-1][0] << endl;
cout << "The torsion components of H_" << n-2 << " are" << endl;
loop=0;
for( i=0; i<rmax; i++ )
{
d=1;
for( k=0; k<n; k++ )
{



118 APPENDIX A: BRIESKORN ALGORITHM IN C

for( tel=0; tel<binom(n,k+1); tel++ )
{
if( tkappa[k][tel]>=i+1 )
{
d*=C[k][tel];

}
}

}
//empty set counts once if n is odd, tkappa=0
if( n%2!=0 )
d*=gcdset(exponent,b,n-1,0);

if( d!=1 )
{
cout << "Z_d_" << i << "=" << d << endl;
loop=1;

}
}

if( loop==0 )
cout << "No torsion" << endl;

//Begin computing CCH; lcm determines orbit type
orbits->lcm=lcms[1][0];
orbits->k=1; orbits->nummer=0;
for( k=1; k<n; k++ )
{
for( tel=0; tel<binom(n,k+1); tel++ )
{
// checks whether this lcm has already been found and updates structure
orbits->check(lcms[k][tel],k,tel);

}
}

//orbits->laatzien();

first=orbits;
//determine minimal and maximal degree in the first period of ch
//(rough estimates to get bounds for a table)
// get period as well;
d=1;
mindeg=-2-2*d-10; maxdeg=4*n-6-2*d;
period=-2*lcms[n-1][0];
for( i=0; i<n; i++ )
{
mindeg+=2*((int) d/exponent[i]); maxdeg+=2*((int) d/exponent[i]);
period+=2*(lcms[n-1][0]/exponent[i]);

}
for( d=2; d<=lcms[n-1][0]; d++ )
{
mindeg2=2*n-2-2*d; maxdeg2=4*n-6-2*d;
for( i=0; i<n; i++ )
{
mindeg2+=2*((int) d/exponent[i]); maxdeg2+=2*((int) d/exponent[i]);

}
if( mindeg2<mindeg )
mindeg=mindeg2;
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if( maxdeg2>maxdeg )
maxdeg=maxdeg2;

}
mindeg-=10;
maxdeg+=10;
//normalize maxdeg
maxdeg=maxdeg-mindeg;
chrank=new int[maxdeg+1];
cout << "mindeg/maxdeg: " << mindeg << " " << maxdeg << endl;
for( i=0; i<=maxdeg; i++ )
{
chrank[i]=0;

}
// consider time pi/2*d
for( d=1; d<=lcms[n-1][0]; d++ )
{
//find largest orbit space whose period divides d*pi/2
k=0; tel=0; found=0; maxlcm=1;

while( orbits!=NULL )
{
if( d%orbits->lcm==0 )
{
if( found )
{
if( orbits->lcm>maxlcm )
{
k=orbits->k;
tel=orbits->nummer;
maxlcm=orbits->lcm;

}
}

else
{
found=1;
k=orbits->k;
tel=orbits->nummer;
maxlcm=orbits->lcm;

}
}

orbits=orbits->next;
}

//if d is divisible by one of the lcms,
//we get a contribution for homology
if( found )
{
//increase the rank of the appropriate chgroups
degree=0;
for( i=0; i<n; i++ )
{
if( d%exponent[i]==0 )
degree+=2*d/exponent[i];

else
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degree+=2*((int) d/exponent[i])+1;
}

//k+1 is the number of exponents: 2(k+1)-4 is dim orbit space
degree=degree-2*d+n-4-(k+1)+2;
for( i=0; i<=2*(k+1)-4; i+=2)
{
chrank[degree+i-mindeg]+=1;

}
chrank[degree+(k+1)-2-mindeg]+=kappa[k][tel];

}
orbits=first;

}
// now list some ranks, simple version which is not always correct
cout << "The following is only correct if the period is not equal to 0, ";
cout << endl << "and if there are no generators in degree -1,0 or 1";
cout << endl << "The period is " << period << endl;
for( i=0; i<=maxdeg; i++ )
{
tel=chrank[i];
k=i-period;
while( k<=maxdeg && k>=0 && period!=0 )
{
tel+=chrank[k];
k-=period;

}
cout << "In degree " << i+mindeg << " ch has rank " << tel << endl;

}
//program does not free memory; here should be some delete’s

}
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nutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich
Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach ent-
nommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation
noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie - abgesehen
von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, daß ich eine
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ist auf dem Preprint-server http://xxx.lanl.gov zu finden.
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