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vorgelegt von

Rauno Büscher
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Abstract

Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal

fluctuations of the electromagnetic field. Using a path integral quantization for the gauge

field, an effective Gaussian action will be derived which is the starting point to compute

Casimir forces between macroscopic objects analytically and numerically. No assumptions

about the independence of the material and shape dependent contributions to the interaction

are made. We study the limit of flat surfaces in further detail and obtain a concise derivation

of Lifshitz’ theory of molecular forces [73]. For the case of ideally conducting boundaries,

the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within

the framework of a scalar field quantization approach, which is applicable for translation-

ally invariant geometries. We develop a non–perturbative approach to calculate the Casimir

interaction from the Gaussian action for periodically deformed and ideally conducting ob-

jects numerically. The obtained results reveal two different scaling regimes for the Casimir

force as a function of the distance between the objects, their deformation wavelength and

amplitude. The results confirm that the interaction is non–additive, especially in the pres-

ence of strong geometric deformations. Furthermore, the numerical approach is extended to

calculate lateral Casimir forces. The results are consistent with the results of the proximity–

force approximation for large deformation wavelengths. A qualitatively different behaviour

between the normal and lateral force is revealed. We also establish a relation between the

boundary induced change of the density of states for the scalar Helmholtz equation and the

Casimir interaction using the path integral method. For statically deformed boundaries, this

relation can be expressed as a novel trace formula, which is formally similar to the so–called

Krein–Friedel–Lloyd formula [64]. While the latter formula describes the density of states in

terms of the S–matrix of quantum scattering at potentials, the new trace formula is applied

to the free Green function, evaluated at the boundary surfaces of the confining geometry.

This latter formulation is non–approximative and hence exact.
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A Introduction

1 Fluctuation induced interactions

Casimir interactions are one of the manifestations of quantum physics which can not be

explained classically. The classical notion of vacuum is an empty space where all particles

are removed. Imagine this classical vacuum being free of fields, so that quantum mechanical

particles as photons are also removed. The problem now is that classical voidness has no

quantum mechanical analogon. Heisenbergs uncertainty principle sets the limit of knowledge

of pairs of physical parameters as the position x and the momentum p of a particle to the order

of Planck’s constant, ∆x · ∆p ≥ �/2. Another pairing is time and energy, ∆E · ∆t ≥ �/2,
which forbids the precise knowledge of an unique value for the energy of a system at a unique

point in time. The quantum mechanical solution is to assume the existence of fluctuations.

Particles are smeared out by considering them as probability distributions with a finite width

around an average value (which corresponds to the classical point–like value), they can

merge ”virtually” within a given time interval and carry an energy which is allowed by the

time–energy uncertainty relation. Quantum mechanics allows for the existence of zero–point

energy, and a foam of virtual particles and fields in the ”vacuum”. Since the geometry of

spacetime and the existence of particles and fields are linked with each other, the fluctuations

on Planck scale also concern the topology of spacetime itself, see Fig. A.1.

Naturally, the question arises if these quantum fluctuations can have an influence on the

interaction of microscopic or even macroscopic objects. This is in fact the case. To begin

with, the notion of fluctuation induced interactions shall be clarified from a more general

point of view. Obviously, fluctuations exist at small length scales, but not merely there.

They can also be of classical or thermal nature. To capture an idea of interactions caused

by fluctuations, a fluctuating medium is to be considered, as e.g. the zero point fluctuations

of the electromagnetic field, and secondly, objects which are immersed into that medium. In

case of the electromagnetic field, one can think of atoms, dipole molecules or more macro-

scopic objects like conductors. If the mere presence of the objects modifies the fluctuations,

these objects will get into interaction via the change of the fluctuations of the medium. For

example, the surface of a conductor poses the constraint that the tangential components
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Figure A.1: Fluctuating space–time.

(see www.casimir.rl.ac.uk)

Figure A.2: Fluctuation induced pressure.

(see www.casimir.rl.ac.uk)

of the electric field vanish on it. This suppresses some fluctuations of the zero point field

compared to the space without the conductor. This change of fluctuations determines the

interaction between the conductor surfaces. An example for thermal fluctuations is given

by the Brownian motion of a particle. The locations of the particle are characterized by a

Boltzmann distribution e−U(r)/kBT with the potential U(r) at each positions. Fluctuations in

the movement are then of the order ∼ kBT . The van–der–Waals force provides an example

for classical fluctuation induced forces.

Fluctuation induced interactions between objects depend on the characteristic features of

the objects as their topology or material properties. These features take influence on the

boundary constraints which are imposed on the fluctuating field. On the other hand, the kind

of field on which these conditions are imposed govern the interaction between the objects.

Fluctuation induced interactions have a broad range of relevance, cf. Refs. [83, 78, 14, 91].

To give some examples, they are important e.g. in cosmology since they are related to

zero point energies of fields [111]. Fluctuations of gluon fields confined by boundaries were

discussed in [81, 82], see also [21]. But they are also important in exotic areas such as

the physics related to biological problems including the dynamic behaviour of membranes

[92, 93, 47, 85, 86], or the sticking of large molecules as proteins on membranes which is
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related to the theory of correlated fluids [60].

The Casimir force is a striking example that vacuum fluctuations are not merely a theoretical

construct but have real consequences. This makes the Casimir effect globally significant

not only to quantum physics, but in all fields where fluctuation induced phenomena occur,

cf. [56, 78, 83, 60].

Figure A.3: Hendrik Brugt Ger-

hard Casimir (1909 – 2000).

(see www.casimir.rl.ac.uk)

We return to the quantum fluctuations of the electromag-

netic field. While quantum fluctuations can be expected

for any quantum field, especially for the electromagnetic

field, which is a long ranged fundamental interaction, mea-

surable effects can be expected. The zero point energy of

the vacuum state is formally infinite and it is commonly

disregarded by normal ordering the Hamiltonian, since it

is a constant which commutes with the creation and an-

nihilation operators of photons and has therefore no influ-

ence on the quantum dynamics governed by the Heisen-

berg equations of motion. However, the vacuum energy

is not arbitrary and subject to changes due to boundary

constraints. In fact, these are observable, as predicted by

Hendrik Casimir in the year 1948 [22]. Between two in-

finitely extended parallel conducting plates at distance H,

Casimir predicted an attractive force per surface area A of

F0

A
= − π2

240
�c

H4
(A1.1)

at zero temperature.

The presence of the plates constricts the quantized normal photon modes in the cavity

between the plates. They are described by harmonic oscillators with wave vector k =
(kx, ky, πn/H) and frequency ω(k) = c|k|, and their ground state energy is �ω(k)/2. The

ground state energy of the vacuum in the presence of the two plates is given by the sum over

all modes of these energy contributions, �/2
∑

k ω(k). This zero point energy is formally

infinite and must be regularized, which can be done by subtracting the asymptotic expression

of the sum for infinite surface distance. The force F0 is given by the derivative of the

regularized energy with respect to the plate distance. A detailed calculation is given e.g. in

Ref. [78]. The boundary induced restrictions to the field fluctuations inside the gap between

the surfaces and outside beyond the gap leads to a difference of radiation pressures of the

fluctuating zero point field, which induces the attractive Casimir force between the surfaces.
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This is illustrated in Fig. A.2. Historically, Casimir’s work was rooted in studies of colloidal

suspensions. The stability of those suspensions was explained by the interplay of repulsive

and attractive forces, where the attractive force was attributed to the London van–der–Waals

interaction at short distances. Experiments showed that for large colloidal molecules [110],

retardation due to the finite velocity of light has to be taken into account for the interaction.

Casimir and Polder [23] demonstrated that the London van–der–Waals inter atomic potential

U(r) ∼ −r−6 is modified by retardation and falls of as U(r) ∼ −α1α2�c/r
7, where α1, α2

are the static polarizabilities of the interacting molecules. For a deeper understanding of this

result and inspired by an advice from Bohr, who noted that the van–der–Waals force ”must

have something to do with zero point energy”, Casimir found that the retarded van–der–

Waals interaction between fluctuating dipoles can be related to the change of the zero point

energy of the electromagnetic field generated by the presence of the dipoles. This thread

gave the motivation to consider metallic plates.

��

��

Figure A.4: Proximity force ap-

proximation (PFA). The curved

boundary surfaces are approx-

imated locally by flat surface

segments.

The first experiments to detect Casimir interactions macro-

scopically were performed by Abricosova and Derjaguin in

1951 with dielectric materials [28, 29], namely with a flat

glass plate and spherical lenses with radii of R = 10 cm

and R = 25 cm. The distance between the plate and the

lenses were taken between H = 0.07µm and H = 0.5µm.

This configuration is easier to adjust than the exact par-

allelization of two flat plates. The finite curvature of the

lens can be well accounted for by the ”Derjarguin approxi-

mation” [27] or proximity force approximation (PFA). The

PFA method considers the sum of local contributions to

the interaction from small flat surface elements opposite

to each other, assuming that they behave as infinitesimally

small parallel plates. This phenomenological approach is

restricted to surfaces that have a small degree of non-

parallelism. This is a small local curvature in the case of

curved surfaces, as in Derjaguin’s experiments for a plate

and a sphere, where the radius of the sphere is much larger

than the minimum distance between the surfaces. How-

ever, if the curvature becomes larger, the distance between

the small flat surface elements changes rapidly, it can no

longer be determined unambiguously, see Fig. A.4, and the assumption of summing local

contribution becomes unreliable due to diffraction effects.
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Experiments with flat glass plates with distances between H = 0.6µm and H = 1.5µm were

performed by Overbeek and Sparnaay (1954) [95]. The first experiment with conducting

aluminium plates to verify Eq. (A1.1) was performed by Sparnaay (1958) [102] at distances

between H = 0.5µm and H = 2µm. The results agreed qualitatively with Casimir’s predic-

tion, at best. Further early experiments are reviewed in [55]. Their problems were mainly

technical, e.g. the alignment of the plates or the avoidance of residual charges. But later

high precision experiments [68, 87] confirm Casimir’s theoretical prediction to high accuracy.

These experiments will be discussed in the following section in more detail.

��

��

��

�

�

Figure A.5: Pair–wise summation

of potentials (PWS) to calcu-

late van–der–Waals forces be-

tween macroscopic bodies of ar-

bitrary shape. The interaction

between two dipoles x and y is

not independent from the pres-

ence of other dipoles, as x′.

The assumption of perfect conductivity of the surfaces

which led to Eq. (A1.1), is idealized. These surfaces are

reflecting for the electromagnetic spectrum at all wave-

lengths. However, since any real metal becomes trans-

parent for frequencies larger than the plasma frequency of

the material, a frequency cutoff is effectively posed by real

surfaces. Since the main contribution to the force results

from modes with wavelengths of the order of the surface

distance, Eq. (A1.1) is expected to hold if the distance

H between the surfaces is large compared to the plasma

wavelength λp, which is of the order of 0.1 to 10 microns

in recent experiments. For smaller H, the force will be

reduced compared to the ideal result F0 in Eq. (A1.1).

On the theoretical side, a way to include finitely conducting

boundaries is to consider the van–der–Waals interaction of

fluctuating dipoles in the materials and to sum over the

pair–wise contributions of the dipole interaction. This ap-

proximative method is known as pair–wise summation of

potentials (PWS). However, it was early recognized that

the van–der–Waals interaction is in general not additive,

i.e. the interaction between two atoms is influenced by

the presence of a third atom, see Fig. A.5. The additiv-

ity assumption is justified for dilute media only, where the

distances between the interacting molecules are large. The

alteration of the interaction due to the additivity assumption is illustrated by a model calcu-

lation in Ref. [78], which shows that the pair–wise summation of Casimir–Polder potentials

between a single molecule and an infinite conducting half space leads to a force which is

about 80% of the real Casimir force between them.
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The discrepancies between the results from the early experiments with dielectric materials

and the theoretical results based on this microscopic assumption of pair wise additivity of

intermolecular Casimir–Polder potentials for the van–der–Waals interaction gave the stim-

ulus to search for a theoretical description which allows for finite conductivity beyond the

microscopic additivity assumption.

This was achieved by Lifshitz in 1956, who developed a macroscopic theory of the fluctuation

induced forces between dielectrics [73], see also [69], by treating the dielectric matter as

continua with a frequency dependent dielectric susceptibility ε(ω). In the limit of ideal

conductivity, Lifshitz’ result reduces to Casimir’s result, cf. Eq. (A1.1). In the opposite limit

of dielectric susceptibilities close to unity, the result is in coincidence with the microscopic

approach of pair–wise summation of retarded van–der–Waals potentials [31, 32]. Lifshitz

solved Maxwell’s equations in two half spaces filled with dielectric media and in the vacuum

gap in between with the standard matching conditions at the boundary surfaces. In general,

any dielectric medium can be assumed instead of the vacuum gap. The equations read

∇× E =
iω

c
B, (A1.2)

∇× B = − iω
c
ε(ω)E − iω

c
K. (A1.3)

Here, a random source field K is introduced to account for the quantum fluctuations of the

field. The fluctuation–dissipation relation enforces the correlations〈
Ki(x)Kj(x′)

〉
= 2� Im ε(ω) δijδ(3)

(
x− x′) , (A1.4)

so that only the dissipative part of the dielectric function described by Im ε(ω) matters.

From this relation, correlation functions for the fields are calculated, and from the latter,

the Maxwell stress tensor is obtained. The Casimir pressure onto the (flat) surfaces is

then calculated from the zz–component of the stress tensor. The Lifshitz theory for the

interaction of dielectric media is generally accepted as to the description of Casimir forces

between real dielectric media since it had been supported by accurate experiments which

measure the thinning of liquid Helium films with an acoustic interferometry technique [96].

Further experiments confirming the Lifshitz theory were performed by Van Blokland and

Overbeek 1978 [106] on chromium. Other experiments are reviewed by Derjaguin et. al.

[30] and Sparnaay [103], a more recent review is provided by Elizalde et. al. [33].

In 1968, van Kampen and collaborators [107] rederived the Lifshitz theory in the non–retarded

limit. The concept behind their approach was similar to Casimir’s idea of considering the

fluctuations of the zero point energy, but with dielectric boundaries instead of ideal metals.

This approach was extended in 1973 to the general case including retardation [70, 99]. But
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in this approach, absorption does not show up explicitly, which is reflected by the fact that

only a real dielectric function occurs, contrary to the Lifshitz theory which is based on the

fluctuation–dissipation–relation and requires for a complex dielectric function. Barash and

Ginzburg proved the equivalence of both approaches in 1973 [10].

An alternative approach to the description of Casimir forces without direct reference to

the fluctuations of the vacuum field was provided by Schwinger’s source theory in the year

1978 [100, 101], see also [77, 80]. Schwinger considers the radiation reaction or source fields

induced between dipoles to derive the Casimir forces. However, the dipole radiation reaction

field is linked to the fluctuating zero point field by the fluctuation–dissipation relation. This

explains the deducibility of the Casimir force using Schwinger’s more unconventional concept

of source fields and thus the equivalence to Casimir’s vacuum field approach, although the

physical premises of both approaches appear to be different. In fact, the normal ordering of

equal time Heisenberg–picture photon operators avoids an immediate reference to the zero

point vacuum field and requires the source field description. This kind of dual description

either via source fields or via the vacuum field had also been performed for the Lamb shift [65].

Although the Lifshitz theory was a significant advance in the theoretical description of macro-

scopic van–der–Waals or Casimir interactions between real matter, its applicability to general

geometries is limited. The problem with Lifshitz’ approach is that it is not suited to surfaces

with arbitrary deformations, because then, the solution of Maxwell’s equations in different

regions with matching conditions at the boundary surfaces becomes unpracticable. This

difficulty equally applies to the approach of van Kampen and collaborators, who also con-

sidered the problem of half spaces separated by infinitely extended flat planes as boundaries.

However, the Casimir interaction is expected to be strongly dependent on geometry, and,

even the sign of the interaction can vary with geometry, as shown by Boyer, who predicted

a repulsive Casimir interaction for an ideally conducting sphere [18]. In contrast to that,

the local van–der–Waals interaction between two single neutral molecules is always attrac-

tive. This distinct microscopic and macroscopic behaviour underlines the non–additivity of

fluctuation forces.

The important and natural question is how the successful Lifshitz theory can be generalized

to include surface deformations. Corrections due to geometric deformations and material

dependent or thermal corrections to the ideal Casimir force in Eq. (A1.1) had been discussed

independently so far. This seems to be reasonable for the case that the characteristic length

scales of each of the modifications are widely different from each other. However, this

assumption is often not justified.

So far, the proximity–approximation method had mostly been used to account for geometries

in experiments which are ”similar” to the system of two flat plates, as e. g. the geometry
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consisting of a plate and a sphere where R � H. In arbitrary geometries, however, the

PFA can no longer be expected to be applicable, since it becomes unreliable for objects

with large curvatures. Contrary to that, the PWS is not affected by short scale changes of

the surface structure at small distances. To take the non–additivity of the interaction into

account, Mostepanenko and Sokolov [89] proposed a normalization of the Casimir–Polder

potential such that the pair–wise summation over two half spaces at distance H yields the

exact result for two flat plates. However, correlation effects between surface deformations

and the non–additivity are not taken into account by performing this normalization.

On the theoretical side, the changeover to the generalization of the description of the most

simple system of two flat plates to systems with deformed surfaces is non–trivial even for ideal

metals. It is not merely a technical difficulty, but rather of fundamental nature and closely

related to the spectral theory of quantum systems confined by arbitrary geometries [39].

The famous question ”Can one hear the shape of a drum ?” was posed by Kac in 1966 [59],

illustrating the problem of deducing the shape of a region from its resonance spectrum. 26

years later, this question was negated [51], however, the inverse problem of characterizing

the resonance spectrum for a given geometry is not yet solved in general. Pioneering work

in this field had been done by Balian and Bloch [2, 3, 4, 5, 6], and Duplantier [7]. Balian

and Bloch studied the scalar field wave equation by means of multiple reflection expansions

for a closed cavity [2]. This work was extended to the characterization of electromagnetic

eigenmodes in cavities [3] and the study of geometric properties of the eigenmodes [5]. A

semi-classical calculation of the Green function of a quantum mechanical system which is

related to the resonance spectrum was developed by Gutzwiller [52] by considering only

closed orbits in phase space. These concepts of spectral theory are closely related to the

Casimir problem. The Casimir interaction is highly sensitive to variations of the geometric

boundaries, this sensitivity translates to the spectrum {ω(k)} of eigenfrequencies of the

photon modes. The analytic knowledge of the spectrum would imply a solution of the Casimir

problem for arbitrary geometries. The multiple scattering approach was later considered for

the Casimir interaction by Balian and Duplantier [7, 8], it reduces to ray optics in the limit

of high frequencies. Recently, Jaffe and collaborators [58] proposed a new approach to

calculate the Casimir interaction between deformed metals based on ray optics considering

the contributions of all classical optical paths between the boundary surfaces. Schaden

and Spruch [97, 98] applied Gutzwiller’s semi-classical approach to calculate the Casimir

interaction in some simple geometries of ideal metals, as plate and sphere.

Thermal corrections to the Casimir force were also accounted for by Lifshitz [73]. Later in

1967, Mehra [76] inferred from a quantum statistical calculation an additional temperature

correction which does not appear in Lifshitz’ theory. It was stated that corrections due to
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thermal fluctuations become important for distances beyond 3µm. At T ≈ 300K, where

most experiments are performed, the de Broglie wavelength of photons is λT = �c
kBT

≈
7µm. It was postulated that temperature increases the force by 15% at a plate distance of

3µm [61]. Since a deviation from Casimir’s prediction of this magnitude was not observed in

the measurement of Lamoreaux [68], the influence of temperature on the Casimir interaction

is an object of current debate [84]. Since the dominant contribution to the force results

from frequencies ω ∼ H−1, for experiments in the range of H ≈ 1µm, the dominant

contributions are from frequencies in the infrared and visible regime, where the Drude model

ε(ω) = 1 − ω2
p/ω

2 is proposed as to describe real metals [66, 67], where ωp is the plasma

frequency of the metal.

The quantum field theoretical treatment of the Casimir effect with path integral quantization

was introduced in 1984 by Bordag, Robaschik and Wieczorek [15], later in 1991 independently

also by Li and Kardar [71, 72], who considered the interaction of deformed manifolds in a

fluid with long ranged correlations. This approach allows to include arbitrarily deformed

manifolds on which any kind of boundary condition can be implemented. This feature

makes the approach promising for an analysis of arbitrary geometries. Emig et. al. [35, 36]

developed a perturbation theory for the deformation of ideally conducting surfaces based

on this method. Finite conductivity can be accounted for by a suitable choice of boundary

conditions. The field theoretical approach is also interesting for the dynamic Casimir effect,

where the interacting objects are not assumed to be stationary. The dynamic Casimir effect

includes moving objects or fluctuating surfaces, as membranes. The creation of radiation by

moving mirrors was studied for a one dimensional cavity [88]. This has received attention

due to its connections to Hawking and Unruh effects which describe the radiation from black

holes and accelerated masses, respectively. A deeper understanding of these connections is

expected to be beneficial for QED, relativity and cosmology [111, 26].

2 High precision experiments and applications

While Sparnaay’s Casimir force measurement in 1958 [102] could only assert a qualitative

coincidence with Casimir’s result Eq. (A1.1) and the uncertainty was about 100%, in the

year 1997 S. K. Lamoreaux measured the Casimir force between a spherical lens of radius

R = 11.3 ± 0.1 cm and a flat plate with a diameter of 2.54 cm at distances between 0.6µm

and 6µm in an evacuated vessel [68]. The lens is fixed at a micro-positioning device controlled

by a piezoelectric stack, while the flat plate is mounted onto one arm of a torsion pendulum.

Both the lens and the plate were gold coated. The other arm of the pendulum is connected

to the central electrode of a pair of planar capacitors. Applying voltages to the capacitors
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allow for a measurement of the restoring force required to balance the pendulum for any

torque caused by the Casimir force between lens and sphere. This way, Casimir’s prediction

could be verified within 5% of accuracy.

Roy and Mohideen [87] performed an improved measurement with an atomic force microscope

and reached an agreement between experiment and theory of up to 1%. They used a similar

geometric setup with an aluminium coated polystyrene sphere of a diameter of 200 ± 4µm

mounted on a cantilever, see Fig. A.7. The distance to the aluminium coated plate was

taken in the range of 0.1µm to 0.9µm. Instead of a torsion pendulum, a deviation of the

distance between plate and sphere is detected by a laser beam reflected at the cantilever,

which is registered by a pair of photo diodes. A piezo stack is used to bring the flat plate

close to the sphere, see Fig. A.7.

In a similar experimental assembly, Chen, Mohideen and co–workers in 2002 [25] demon-

strated the existence of lateral Casimir forces predicted before [35, 36] which act tangentially

between deformed surfaces. They used a plate with uniaxial sinusoidal corrugation of period

1.2µm and a sphere of the same diameter of 200±4µm with gold coating, on which another

sinusoidal corrugation with different amplitude was imprinted. The amplitudes of corruga-

tion on the sphere and the plate were measured with the atomic force microscope as 59± 7
nm and 8 ± 1 nm, respectively. The lateral force was measured for a mean distance (which

is understood to be the minimum distance between plate and sphere without the corruga-

tion) in the range between 0.2µm and 0.3µm. The measured force exhibits the periodicity

corresponding to the corrugations.

Figure A.6: Experimental setup of Lamoreaux.

Picture from Scientific American & S. K. Lam-

oreaux. Figure A.7: Mohideen’s experiment [87].
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A few months prior to this experiment, Chan et. al. at the Bell Laboratories of Lucent Tech-

nologies recognized the influence of the Casimir force on Micro– and Nano–electromechanical

systems (MEMS,NEMS) due to their topological nature associated with the dependence on

the boundary of the electromagnetic field [38]. Boyer’s result [18] suggests that the Casimir

interaction can strongly be influenced in artificial microstructures. A generally more unde-

sired effect in MEMS which has been ascribed to the attractive Casimir force is the sticking

of mobile components [19]. Chan’s group realized experimentally a driven micromechanical

anharmonic oscillator the anharmonic behaviour of which is induced by the Casimir force and

thus showed the influence of the Casimir interaction even on dynamic features of MEMS [24].

Chan and Garcia also studied experimentally the critical Casimir force caused by thermal

order parameter fluctuations in Helium films near the critical point. They performed an

experiment which shows the thinning of 4He–films absorbed on a stack of copper electrodes

near the super fluid transition [43], see also Refs. [44, 105, 54].

Figure A.8: Micromecanical Os-

cillator [24].

The latter experiments make explicit that a potential area

of application of Casimir interactions lay in micro– and

nanotechnological applications as MEMS and NEMS. Pri-

marily, it would be interesting if surface geometries can be

designed in a way to avoid the sticking of mobile parts. Re-

lated to this is the question if repulsive forces can appear

between disconnected surface components [74]. There is

still an amount of theoretical work to be done to answer

this question. It can be expected that a combination of nor-

mal and lateral Casimir forces by a suitable design of sur-

face profiles can be used to construct ratchet–like machines

which can rectify fluctuations using the Casimir force.
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B Casimir interaction between dielectric

materials

The aim of this chapter is to develop an approach for the calculation of molecular interactions

between macroscopic surfaces of general shape. The approach is based on the path integral

quantization of the fluctuating electromagnetic field Aµ. In the free vacuum space, the field

quantization is described by the vacuum partition function

Z =
∫
� [A] eiS{A}, (B0.1)

which is governed by the Gaussian action S{A}. Here and in the following, we choose unities

such that � = 1 and c = 1.

The path integral quantization had been applied to calculate fluctuation induced interactions

for ideal metals at zero temperature, cf. Refs. [15, 13, 16, 48, 60, 35, 72]. Whereas ideal

metals can be described by local boundary conditions for the field components, this is no

longer possible for real materials. We will use non–local boundary conditions to describe the

interaction of the fluctuating field with the material boundaries. The viewpoint of describing

the interaction by field fluctuations in the vacuum with boundary conditions differs from

the more elaborated approach of considering the field fluctuations outside and inside of the

materials [73, 31, 32].

These non–local boundary conditions for the gauge field Aµ are based on the extinction

theorem of classical electrodynamics, see Refs. [41, 94, 17]. The guiding idea behind this

theorem is that an incident field (in the vacuum) induces dipole flutuations in the mate-

rial. The field of the dipole fluctuations propagates inside the material and a part of it

extinguishes the incoming field. For this reason the theorem is called ”extinction”–theorem.

Macroscopically, this extinction can be viewed as caused at the surface of the material, see

e.g. Ref. [78]. Thus, the theorem establishes a relation between field fluctuations outside

and inside of a material via boundary conditions for the quantized field modes, which can

be viewed as non–penetrable.

The boundary conditions allow to consider material properties, described by the frequency

dependent dielectric function ε(ω), and geometric deformations simultaneously, i.e. no as-



B1 General approach for material boundaries 17

sumptions are made about the correlations between contributions to the force from geometry

and material.

An effective Gaussian action is obtained from a path integral quantization. This action is a

functional of the dielectric function and the profile function which determines the geometry

of the surface, and it serves as a basis for further analytical (e.g. perturbative) or numerical

computations to study correlations between material properties and geometry. Thermal

fluctuations at finite temperatures are included straightforwardly within this description.

The formalism will be tested by studying first the limit of flat surfaces. This yields the results

found by Lifshitz [73] for the interaction of two flat surfaces of real materials in a concise way

and without the need to solve Maxwell’s equations in separated regions and to considering

stress tensor calculations, as done originally by Lifshitz. The Lifshitz theory can also be

derived within a scalar field approach. Although this works strictly only for flat surfaces, it is

very compact and can be compared with other approaches [107, 70]. Secondly, we consider

the action in the limit of ideal metals, where it can be calculated explicitly. A perturbative

analysis for this action had been performed in [35, 36] as well as in [34]. An analytic and

numeric analysis of this limit will be performed for periodic geometries in later chapters.

1 General approach for material boundaries

We will develop a macroscopic theory which allows to calculate the interaction between

materials of rather general shape. Instead of considering directly the field emitted by the

fluctuating dipoles in the material, we consider the interaction as generated by the modifi-

cations of the quantum (and thermal) fluctuations of the electromagnetic field between the

materials. No direct reference is made to the electromagnetic field fluctuations in the interior

of the materials. The effect of the dipoles induced by the external fluctuating field will be

described by material dependent boundary conditions which are defined at the surface of the

material. Our method is based on a path integral quantization of the electromagnetic gauge

field which has been applied before to ideal metals [15, 13, 48] and penetrable mirrors [16].

This approach has full generality in the sense that it can be applied to any body, character-

ized by its dielectric function, with any surface profile, described by a height field, at any

temperature.

The common approaches for computing the force between materials is to first determine the

solution of Maxwell’s equations both inside and outside the materials, and then to evaluate

the force either from the stress tensor or from the zero point energy of the modes using the

so–called argument theorem of complex analysis, see, e.g. Ref. [78]. The problem with these
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x||

x3

L

-L

H

0
S1

S2

R2

R1

ε1(ω)

ε2(ω)

Figure B.1: Two deformed surfaces S1 and S2 of dielectric media with dielectric functions ε1(ω) and

ε2(ω), respectively, separated by a gap of mean distance H along the x3–direction. The meaning

of the auxiliary surfaces R1 and R2 is explained in the text.

approaches is that they are not suited to treat arbitrary deformations since deformations in

general lead to a complicated modification of the mode structure and make the solution

of Maxwell’s equations a hard task. In the following, we will formulate the interaction

between deformed materials within the language of quantum statistical mechanics. Since

this formulation makes no explicit use of of the individual eigenfrequencies of the modes it

is better targeted for the treatment of deformations.

We consider the two interacting media as filling half spaces which are bounded by deformed

surfaces Sα, α = 1, 2. The deformations from a coplanar geometry of mean surface distance

H are described by the height functions hα(x‖) with x‖ the lateral surface coordinates, see

Fig.B.1. The media are characterized by their complex dielectric functions εα(ω), respectively.

The gap between the media is assumed to be vacuum, i.e. ε(ω) = 1.

The free energy E of the photon gas in the gap between the two surfaces can be calculated

from the imaginary time path integral for the electromagnetic gauge field Aµ. In the absence
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of media, the vacuum partition function Z0 is given by

Z2
0 =

∫
� [A∗A] e−SE{A∗,A}, (B1.2)

where we have introduced a complex valued gauge field which leads to a double counting

of each degree of freedom. The reason for this will become clear below when we discuss

the boundary conditions at the surfaces. Here, the functional integration runs over all fields

which are defined on the whole space–time. The Euclidean action SE{A∗, A} is the imaginary

time version of the action S{A∗, A} of the electromagnetic field in Minkowskian space–time

with coordinates X = (t,x) = (t,x‖, x3),

S{A∗, A} = −1
2

∫
X

(
F ∗
µνF

µν
)
(X) − 1

ξ

∫
X

(∂µA∗µ) (∂νA∗ν) (X), (B1.3)

where the first term comes from the Lagrangian of the electromagnetic field Fµν = ∂µAν −
∂νAµ and the second term results from the Faddeev–Popov gauge fixing procedure which

assures that each physical field configuration is counted only once in the path integral over the

gauge field. The parameter ξ allows to switch between different gauges; all gauge invariant

quantities calculated from this action like, e.g., the Casimir force, are independent of ξ. In

the following, we will use the Feynman gauge corresponding to ξ = 1. The coefficients in the

action of Eq. (B1.3) differ by a factor of 1/2 from the conventional definition of the action for

a real valued gauge field in order to obtain the correct photon propagator which in Feynman

gauge reads Gµν = gµν/K
2 with momentum K = (ω,k),K2 = KµK

µ = ω2 − k2 and

Minkowskian metric tensor gµν = diag(1,−1,−1,−1). The Euclidean action is obtained

from Eq. (B1.3) by applying a Wick rotation to imaginary time which amounts to the

transformations t → −iτ , ω → iζ and A0 → iA0, A∗0 → iA∗0 while the remaining

components remain unchanged [108, 109]. Since this transformation corresponds to the

change gµν → −δµν for the metric tensor, the Euclidean action in momentum space becomes

SE{A∗, A} =
1
β

∞∑
n=−∞

∫
k
A∗µ(ζn,k)G−1

E,µν(ζn,k)Aν(ζn,k) (B1.4)

where we allowed for a finite temperature T by introducing bosonic Matsubara frequencies

ζn = 2πn/β with β = 1/T . The Euclidean Green function is given by GE,µν(ζ,k) =
δµνGE(ζ,k) with GE(ζ,k) = (ζ2 + k2)−1. Note that here and in the following, integrals

over momenta are always weighted with the factor (2π)−n, where n is the dimension of the

integral.

In the presence of the two media of mean surface separation H the free energy (H–dependent

finite part of the total energy) is obtained from a restricted partition function. The restrictions
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are due to boundary conditions for the gauge field which are imposed by the dielectric

properties of the media. It should be mentioned that there is an alternative, microscopic

treatment of the Casimir force by considering the coupled system of fluctuating charges in

the neutral materials and the gauge field. In the latter description, the Casimir interaction is

mediated by the exchange of virtual photons. However, in our macroscopic formulation below

we will look at the Casimir force as resulting from the perturbation of normal photon modes as

opposed to the exchange of virtual quanta populating the unperturbed modes of the coupled

system in unbounded space. Therefore, it is sufficient to derive the boundary conditions

from classical electrodynamics which completely determine the normal mode structure in the

presence of boundaries.

The restricted partition function will be defined for an auxiliary geometry which consists of

three regions which are divided from each other by the infinitely large surfaces S1 and S2

which are assumed to be infinitesimally thin. All three regions are assumed to be vacuum

space with the same velocity of light. As for the unrestricted partition function, the functional

integral extends again over all gauge fields defined on the entire space–time. Below, we will

show that the auxiliary geometry ”simulates” exactly the original geometry of two half spaces

filled with dielectric materials (see Fig.B.1) when appropriate material dependent boundary

conditions are defined on the infinitesimally thin surfaces S1 and S2. It turns out that there

are three boundary conditions on each surface Sα which we number by j = 1, 2, 3. Each of

these conditions implies the vanishing of a non–local linear combination of derivatives of the

components of the gauge field. Since the boundary conditions will be non–penetrable, the

two infinitesimally thin surfaces separate three regions with independent spectral problems.

One can imagine that the two half spaces are replaced by regions which are also bounded by

two infinitely large surfaces at x3 → +∞ and x3 → −∞ on which one imposes the same

boundary conditions as on S1 and S2, respectively. Depending on the region the observer is

located in, the boundary conditions ”simulate” a dielectric medium which occupies the entire

space behind the surface. Thus, the restricted partition functions formally yield the sum of

the energies of three similar spectral problems which differ only by the mean surface distance.

The latter distance is sent to infinity for the two outer regions which implies the vanishing

of the corresponding Casimir energies. Thus, in this limit, which is always understood in

the following, the restricted partition function yields exactly the finite H–dependent Casimir

energy of the original geometry of Fig. B.1 The restricted partition function Z(H) can be

written as

Z(H)2 = Z−2
0

∫
� [A∗A]

∏
αj

∏
ζn

∏
x∈Rα

δ

[∫
x′∈Sα

Lαjµ(ζn;x,x′)Aµ(ζn,x′)
]
e−SE{A∗,A},

(B1.5)



B1 General approach for material boundaries 21

where we enforced the boundary conditions by inserting delta functions for all positions x
on (flat) auxiliary surfaces Rα which are placed at x3 = ±L with sufficiently large L so

that the surfaces Sα are located between them, see Fig. B.1 The final result for the force

between the media should (and will) be independent of L. The differential operators Lαjµ
depend via both the dielectric function εα and the normal vector n̂α on the surface index α.

Their actual form will be computed below. The interaction (Casimir) free energy of the two

surfaces Sα is given by

E(H) = − 1
β

ln
[Z(H)Z−1

∞ (H)
]
, (B1.6)

where β = 1/T is the inverse temperature. Z∞ is the asymptotic limit of Z for H → ∞ so

that E is measured relative to two surfaces which are infinitely apart from each other. The

Casimir force per unit area A between the surfaces is then given by F/A = −∂HE/A.

1.1 Boundary conditions

In this section, we will derive the boundary conditions at the surfaces of the dielectric media.

The boundary conditions are based on the optical extinction theorem of Ewald [41] and Os-

een [94], see also [17]. This theorem states that part of the electromagnetic field produced by

the molecular dipoles inside a medium exactly cancels the incident field, while the remainder

propagates according to Maxwell’s equations in continuous media. Ewald and Oseen proved

the theorem for crystalline media and amorphous, isotropic dielectrics, respectively, using an

approach based on classical molecular optics. Later, Born and Wolf extended the theorem

to more general classes of materials [17]. A relationship between the extinction theorem and

the Lifshitz theory of dispersion forces for continuous media has been pointed out by Milonni

and Lerner [79]. They use the fact that the extinction theorem permits a reduction of the

multiple scattering problem for the molecular dipoles to the solution of the wave equation

for the gauge field Aµ with appropriate boundary conditions. From this they conclude that

the extinction theorem shows that the macroscopic Lifshitz theory for continuous media cor-

rectly accounts for all multiple scattering non–additive contributions to the force between

flat surfaces. We will demonstrate that these concepts are useful to describe the interaction

of even deformed surfaces.

We will use an (equivalent) reformulation of the extinction theorem as a non–local boundary

condition which enforces the laws of reflection and refraction at the surfaces of the interacting

media. Our derivation of the boundary conditions follows closely the approach outlined

in [75]. We start with the common problem of finding solutions of Maxwell’s equations in the

presence of a single interface separating two half spaces of materials with different dielectric

functions. We assume that one half space is filled with a dielectric material described by ε(ω)
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whereas the other half space is vacuum. The standard approach to this problem is to solve

simultaneously the Maxwell equations in both half spaces by connecting them at the interface.

The corresponding matching conditions state that (in the absence of surface charges and

currents) the magnetic field B and the tangential components of E are continuous while

the normal component of E jumps across the interface such that the normal component of

D = ε(ω)E is continuous. We assumed that the magnetic permeability is equal in both half

spaces.

In what follows we are interested in the spectral properties of the electromagnetic field in

the vacuum gap between two surfaces. Thus, it suffices to know the field on one side of the

interface only. Therefore, we would like to find a more efficient way to solve the matching

problem. We will show below that it is in fact possible to obtain the solution in one half

space by solving the appropriate Maxwell equations in this region only subject to boundary

conditions which contain all necessary information about the material behind the surface.

We assume the observer to be in the vacuum gap and solve the equations there which are

then subject to material dependent boundary conditions. Note that the latter point of view

is a standard concept for ideal metals where the matching conditions are trivially fulfilled

by vanishing tangential components of the electric field. Thus, the boundary conditions

considered here can be interpreted as a generalization of the latter concept to dielectric

media.

In order to obtain the boundary conditions, we first derive a general statement on a vector

field (here the magnetic field B) which is assumed to be a solution of the Helmholtz wave

equation inside a volume V occupied by a medium with dielectric function ε(ω) and with

boundary surface S = ∂V , (∇2 + ε(ω)ω2
)
B(ω,x) = 0. (B1.7)

Here, B can be subjected to a boundary condition on S which, however, remains unspecified

for the time being. In addition to that, we define the standard free Green function Gε,
which is defined on the unbounded space–time which, however, is assumed to be filled with

a dielectric medium described by ε(ω). It satisfies(∇′2 + ε(ω)ω2
)Gε(ω;x,x′) = δ(3)(x− x′). (B1.8)

Applying Green’s theorem to the components of B and to Gε, one easily obtains, using

Eqs. (B1.7) and (B1.8),∫
x′∈S

[
B(ω,x)

(
n̂′ · ∇′Gε(ω;x,x′)

) − Gε(ω;x,x′)
(
n̂′ · ∇′)B(ω,x)

]
=

{
B(ω,x) if x ∈ V,

0 if x 	∈ V,

(B1.9)
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with the normal unit vector n̂′ = n̂(x′) of the surface pointing to the outside of V . It is

important to remark that Eq. (B1.9) does not imply that the actual magnetic field of the

matching problem vanishes outside V . Instead, the magnetic field on the vacuum side is

not obtainable by matching or boundary conditions. Eq. (B1.9) does not provide a solution

for the boundary value problem. It is only an integral statement since the specification of

arbitrary values of B and (n̂ · ∇)B at the interface would be an overspecification of the

boundary value problem. The result of Eq. (B1.9) will be used for the case that the position

x is located outside the medium so that the integral has to vanish. Using some vector

algebra, see [57], and the Maxwell equations ∇ · B = 0 and ∇ × B = −iωε(ω)E, the

integral of Eq. (B1.9) can be transformed into∫
x′∈S

[−iωε(ω)
(
n̂′ × E(ω,x′)

)
+

(
n̂′ ·B(ω,x′)

)∇′

+
(
n̂′ × B(ω,x′)

)×∇′ ]Gε(ω;x,x′) = 0.
(B1.10)

The latter integral provides a relation between the field components if the surface is ap-

proached from the inside of the dielectric space. The terms in Eq. (B1.10) are all continuous

across the surface. This can bee seen from the continuity conditions on the electromagnetic

field mentioned above (note that n̂ ·E does not appear in Eq. (B1.10)), and the fact that the

Green function Gε and dielectric function ε(ω) are continuous at the surface. (The function

ε(ω) is here spatially constant and should not be confused with the spatially varying ε in

Fig. B.1.)

As a consequence, we can now use the vanishing of the integral as a boundary condition

for the electromagnetic field on the vacuum side of the surface. As a side remark, we note

that if we had started with the wave equation for the electric field instead of the magnetic

field we had obtained a similar expression as Eq. (B1.10) containing, however, the normal

component of E. Due to the discontinuity of the normal component of the electric field

across the surface, the condition that the integral vanishes had not translated to the field on

the vacuum side. In the case of ideal conductivity, ε(ω) → ∞, and the integral in Eq. (B1.10)

will be dominated by the first term. In this limit, the integration can be carried out, leading

to the local condition n̂× E = 0.

The condition of Eq. (B1.10) can now be used to determine the differential operators

Lαjµ(ζ;x,x′) appearing in Eq. (B1.5). We express the electric and magnetic field in terms

of the gauge field. After a Wick rotation to imaginary time, the corresponding relations

read Ej = −i∂jA0 − ζAj and Bj = εjkl∂kA
l in Euclidean space. Multiplying Eq. (B1.10)

with (ζεα)−1 and decomposing Lαjµ(ζ;x,x′) = n̂αk (x
′)� kα

jµ (ζ)GεαE (ζ;x − x′) with respect

to the components n̂αk of the normal vector to the surface using the standard summation

convention for k, and with respect to the action on the material dependent Euclidean Green
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function GεαE defined by Eq. (B1.8), one gets after some algebra the explicit results

�
1α(ζ) =

 0 − 1
ζεα

(∂̄3∂2−∂̄2∂3) 1
ζεα

(∂̄1∂3+∂̄3∂1) − 1
ζεα

(∂̄1∂2+∂̄2∂1)

i∂3 − 1
ζεα

∂̄1∂3
1

ζεα
∂̄2∂3 ζ− 1

ζεα
(∂̄2∂2−∂̄1∂1)

−i∂2 1
ζεα

∂̄1∂2 −ζ+ 1
ζεα

(∂̄3∂3−∂̄1∂1) − 1
ζεα

∂̄3∂2

 , (B1.11)

�
2α(ζ) =

−i∂3 − 1
ζεα

∂̄1∂3
1

ζεα
∂̄2∂3 −ζ+ 1

ζεα
(∂̄1∂1−∂̄2∂2)

0 − 1
ζεα

(∂̄2∂3+∂̄3∂2) − 1
ζεα

(∂̄1∂3−∂̄3∂1) 1
ζεα

(∂̄2∂1+∂̄1∂2)

i∂1 ζ− 1
ζεα

(∂̄3∂3−∂̄2∂2) − 1
ζεα

∂̄2∂1
1

ζεα
∂̄3∂1

 , (B1.12)

�
3α(ζ) =

 i∂2
1

ζεα
∂̄1∂2 ζ− 1

ζεα
(∂̄1∂1−∂̄3∂3) − 1

ζεα
∂̄3∂2

−i∂1 −ζ+ 1
ζεα

(∂̄2∂2−∂̄3∂3) − 1
ζεα

∂̄2∂1
1

ζεα
∂̄3∂1

0 1
ζεα

(∂̄3∂2+∂̄2∂3) − 1
ζεα

(∂̄3∂1+∂̄1∂3) − 1
ζεα

(∂̄2∂1−∂̄1∂2)

 . (B1.13)

The partial differential operators ∂̄j are acting on the spatial argument of GεαE , whereas the

”free” operators ∂j are acting on the gauge field to which Lαjµ is applied. For non–deformed

surfaces as considered in the conventional Lifshitz theory, i.e., n̂ = (0, 0,±1), only the last

matrix is relevant.

1.2 General result for deformed surfaces

Now we are in the position to calculate the partition function defined by Eq. (B1.5) and

by the operators in Eqs. (B1.11)–(B1.13). Similar to the approach of Refs. [72, 48], we

introduce auxiliary fields to treat the delta function constraints. However, here we will use

complex valued auxiliary fields since the arguments of the delta functions are complex in our

problem. Moreover, the fields will not be defined on the original surfaces Sα itself but on

the flat auxiliary surfaces Rα since these are the regions on which the ”external” positions

x of the boundary conditions are located, cf. Eq. (B1.5). Introducing on each of the two

surfaces Rα at x3 = Lα = (−1)α−1L with lateral coordinates x‖ the three fields ψαj(ζ,x‖)
for j = 1, 2, 3, the delta functions for fixed α and j can be written as

∏
ζn

∏
x∈Rα

δ

[∫
x′∈Sα

Lαjµ(ζn;x,x′)Aµ(ζn,x′)
]

=
∫
� [ψ∗

αjψαj ] e
i
�

n

�
x‖
�
x′∈Sα

{ψ∗
αj(ζn,x‖)Lα

jµ(ζn;(x‖,Lα),x′)Aµ(ζn,x′)+ c.c.}
.

(B1.14)

Inserting this representation into the partition function of Eq. (B1.5), the complex gauge

field Aµ can be integrated out, using the free action SE{A∗, A} of Eq. (B1.4). The partition

function can then be expressed in terms of an effective quadratic action for the auxiliary

fields,

Z2(H) =
∫ ∏

αj

�
[
ψ∗
αjψαj

]
e−Seff{ψ∗

αj ,ψαj} (B1.15)
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with

Seff

{
ψ∗
αj , ψαj

}
=

∑
n,n′

∫
x‖

∫
x′
‖

ψ∗
αj

(
ζn,x‖

)Mαβ,jl
(
ζn,x‖; ζn′ ,x′

‖
)
ψβl

(
ζn′ ,x′

‖
)
, (B1.16)

where the standard summation convention applies to all indices. Since in Feynman gauge

the propagator of Aµ is diagonal in µ, the resulting matrix kernel can be written as

Mαβ,jl
(
ζ,x‖; ζ ′,x′

‖
)

= 2πδ
(
ζ − ζ ′

)
×

∫
y∈Sα

∫
y′∈Sβ

Lαjµ
(
ζ; (x‖, Lα),y

)L†β
µl

(
ζ ′; (x′

‖, Lβ),y
′)GE

(
ζ;y − y′), (B1.17)

where a summation over µ is implicit and GE(ζ,y) is the free Euclidean photon propagator

with Fourier transform GE(ζ;k) = (ζ2 +k2)−1. This matrix kernel is defined on the surfaces

Rα like the auxiliary fields ψαj are. To simplify this result and to prove the independence

of the free energy on the choice of L, it is useful to rewrite Eq. (B1.17) in terms of the

differential operators � kα by Lαjµ(ζ;x,x′) = n̂αk (x′)� kα
jµ (ζ)GεαE (ζ;x−x′) in order to make

explicit the dependence of the material Green functions. It is important to keep in mind that

the differential operators act on the spatial arguments of GεαE as well as on those of the free

propagator GE. Now the kernel in Eq. (B1.17) acquires the form

Mαβ,jl
(
ζ,x‖; ζ ′,x′

‖
)

= 2πδ
(
ζ − ζ ′

) ∫
y∈Sα

∫
y′∈Sβ

n̂αk n̂
′β
s

[
�

kα ·� ′†sβ]
jl

× GεαE

(
ζ;x− y

) |x3=Lα G∗εβ
E

(
ζ ′;x′ − y′) ∣∣∣x′3=Lβ

GE

(
ζ;y − y′),

(B1.18)

where � ′kα acts on the primed coordinates and a summation over k and s is implicit. In

the following, we will skip the index at GE since we work completely in Euclidean space.

Note that the integral measure on the manifolds Sα contains the square root of the induced

surface metric gα = det(gα,ij) with the Riemannian metric tensor

gα,ij = δµν
∂Xµ

α

∂xi
∂Xν

α

∂xj
(B1.19)

with summation over the indices µ, ν = 0, 1, 2, 3. The vectors Xα parametrize the manifolds

Sα in 4D Euclidean space–time by the 3D vectors x. Using the parametrization in terms

of (static) height profiles over a base plane in the geometry considered here, Xα(t,x‖) =(
t,x‖, hα(x‖)

)
which leads to gα = 1 +

(∇‖hα
)2

. The integrals in Eqs. (B1.17)–(B1.18)

are thus given by
∫
x∈Sα

=
∫
x‖

√
gα. The surface normal vectors n̂α assume the form

n̂α =
(−1)α√
gα

 hα,1

hα,2

−1

 (B1.20)
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with hα,j = ∂jhα and gα = 1+
(∇‖hα

)2
. Thus, the factor

√
gα will cancel in Eqs. (B1.17)–

(B1.18). This property will be used in explicit calculations for flat and for ideally conducting

boundaries in the forthcoming sections.

In momentum space, using Gε(ζ,k) = (ε(iζ)ζ2 + k2)−1, the partially Fourier transformed

material Green function can be written as

Gεα(ζ;k‖, z
)

=
e−pα(ζ,k‖)|z|

2pα(ζ,k‖)
(B1.21)

with pα(ζ,k‖) = (εα(iζ)ζ2 + k2
‖)

1/2. With this representation, the kernel becomes

Mαβ,jl
(
ζ,k‖; ζ ′,k′

‖
)

= 2πδ
(
ζ − ζ ′

) ∫
y∈Sα

∫
y′∈Sβ

e
−ik‖·y‖+ik′

‖·y′
‖

× e−pα(ζ,k‖)|Lα−y3|

2pα(ζ,k‖)
e
−pβ(ζ′,k′

‖)|Lβ−y′3|

2pβ(ζ ′,k′
‖)

× n̂αk n̂
′β
s

[
�̂

kα(ζ,k‖) · �̂ ′†sβ(ζ ′,k′
‖)
]
jl
G(ζ;y − y′),

(B1.22)

where the differential operators �̂ kα(ζ,k‖) are obtained from the � kα of Eqs. (B1.11)–

(B1.13) by substituting ∇̄‖ ≡ (∂̄1, ∂̄2) → ik‖, ∂̄3 → (−1)αpα. Thus, the operators �̂ kα(ζ,k‖)
are acting via the remaining derivatives ∂j only on the spatial coordinates of the vacuum

Green function G(ζ,k). At this stage, it will become obvious that the free energy or force is

independent of the positions x3 = ±L of the auxiliary surfaces Rα. Due to the construction

of the surfaces Rα, we have |Lα − y3| = (−1)α−1(Lα − y3). A consequence of this is the

observation that the kernel can be factorized into

Mαβ,jl
(
ζ,k‖; ζ ′,k′

‖
)

= ηα
(
ζ,k‖

)M̃αβ,jl
(
ζ,k‖; ζ ′,k′

‖
)
ηβ

(
ζ ′,k′

‖
)

(B1.23)

with the functions ηα(ζ,k‖) = exp
(−pα(ζ,k‖)L

)
/2pα(ζ,k‖) and the simplified L–independent

kernel

M̃αβ,jl
(
ζ,k‖; ζ ′,k′

‖
)

= 2πδ
(
ζ − ζ ′

) ∫
y∈Sα

∫
y′∈Sβ

e
−ik‖·y‖+ik′

‖·y′
‖

× e
−(−1)αpα(ζ,k‖)y3−(−1)βpβ(ζ′,k′

‖)y′3

× n̂αk n̂
′β
s

[
�̂

kα(ζ,k‖) · �̂ ′†sβ(ζ ′,k′
‖)
]
jl
G(ζ;y − y′).

(B1.24)

From Eq. (B1.15) follows that the partition function is Z(H) = (detM)−1/2 with the deter-

minant taken with respect to both the continuous (ζ,k‖) and the discrete (α, j) arguments.

Due to the structure of Eq. (B1.23) one has detM ∼ detM̃. Since the functions ηα(ζ,k‖)
are independent of the mean surface distance H, the proportionality constant of the two
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determinants is independent of H, too. Therefore, this constant, as well as the dependence

on L will drop out of the free energy of Eq. (B1.6), which can now be written as

E(H) =
1
2β

ln det
(M̃M̃−1

∞
)
, (B1.25)

where M̃∞ denotes M̃ in the limit of asymptotically large H. The normal force can then

be directly obtained by F = −∂HE which yields per surface area

F/A = − 1
2Aβ

Tr
(M̃−1∂HM̃

)
. (B1.26)

In Eq. (B1.26), there is no need to subtract the asymptotic expansion for large H. This is

different from the study of lateral forces, as will be seen later. The trace has to be taken

with respect to the Matsubara frequencies ζn, the lateral momenta k‖, and the discrete

arguments given by the surface index α and the index j which enumerates the boundary

condition at each surface. Eqs. (B1.24)–(B1.26) represent the main result of the general

approach discussed here; these formulas will be applied later to specific model situations.

Before proceeding, some features of the above results will be discussed. During the derivation

of the matrix kernel M̃ we worked within the Feynman gauge. This is no loss of generality

since the restricted partition function Z(H) can be considered as the expectation value

of the boundary condition enforcing delta–functions with respect to the free action of the

gauge field. The arguments of the delta functions are composed of the electromagnetic field

components, and are thus manifestly gauge invariant, which assures also the gauge invariance

of the kernel M̃.

Firstly, we consider the case where the kernel M̃ is diagonal in momentum space so that

the force can be calculated exactly. This will be the case when the geometry has transla-

tional symmetry in the lateral directions, i.e., for flat surfaces for which the height functions

vanish, hα(x‖) = 0. Then, the integrals in Eq. (B1.24) can be easily computed and the

resulting kernel provides a concise account of Lifshitz’ theory will be discussed in detail be-

low. Even for deformed surfaces the kernel can be obtained explicitly if one considers the

limit of ideal metals, i.e. a diverging dielectric function ε(iζ). In this particular limit, both

pα and the operators �̂ kα become independent of the lateral momentum k‖. Therefore,

after parametrizing the surfaces in the way that y3, y
′
3 are replaced by functions of the lateral

coordinates y‖,y′
‖, respectively, the integrals in Eq. (B1.24) correspond to Fourier trans-

formations with respect to the lateral coordinates, and the kernel assumes a simple form

in position space as we will demonstrate explicitly. However, any kind of deviation from

flat surfaces, even for ideal metals, renders M̃ non–diagonal and makes the evaluation of

Eqs. (B1.25)–(B1.26) a difficult problem. There are basically two approaches to treat this
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problem. First, one can consider the amplitude of the surface deformations as small com-

pared to both the mean surface distance H and other characteristic lateral length scales as,

e.g., the roughness correlation lengths. Then, one can apply perturbation theory to obtain

the force in powers of the deformation profiles hα(x‖). This program has been carried out in

detail for ideal metals in Refs. [35, 36]. Secondly, one can try to compute the force exactly

by numerical algorithms. For periodically deformed (corrugated) surfaces of ideal metals,

the corresponding kernel can be transformed into a form which is particularly suited for an

efficient numerical evaluation of the force. This will discussed in detail in the next chapter,

for a quick reference, see [34]. We expect that these techniques can be applied to the general

case of deformed surfaces of dielectric media using the approach derived here of expressing

the force in terms of a kernel (Eq. (B1.24)) which contains all information about material

and geometrical properties of the surfaces. As for ideal metals, the kernel is proportional

to the vacuum Green function which, however, is now dressed by the operators �̂ kα which

contain the reflection and refraction properties of the material.

2 Flat surface limit and the Lifshitz theory

As a simple application of our approach, we consider in this chapter the case of flat surfaces

of general dielectric media. In this particular limit, the force between the surfaces is well

known from more conventional approaches. The corresponding result is known as the so

called Lifshitz theory of molecular forces [73]. In the following, we will show that our path–

integral approach provides a compact derivation of the Lifshitz result without the need to

solve Maxwell’s equations with a random source explicitly and to calculate the expectation

value of the stress tensor. In the flat surface limit, the surfaces are parametrized by (y‖,Hα)
with Hα = 0,H for α = 1, 2, respectively. Due to the translational symmetry of the problem,

it is convenient to work in momentum space. Using the representation

G(ζ,y) =
∫
q‖
eiq‖·y‖ e

−p(ζ,q‖)|y3|

2p(ζ,q‖)
(B2.27)

of the vacuum Green function in Eq. (B1.24) with p(ζ,q‖) = (ζ2 + q2
‖)

1/2 yields

M̃αβ,jl
(
ζ,k‖; ζ ′,k′

‖
)

= 2πδ
(
ζ − ζ ′

) ∫
q‖

∫
y‖

∫
y′
‖

e
−ik‖·y‖+ik′

‖·y′
‖

× e
−(−1)αpα(ζ,k‖)Hα−(−1)βpβ(ζ′,k′

‖)Hβ

× (−1)α+β
[
�̂

3α(ζ,k‖) · �̂ ′†3β(ζ ′,k′
‖)
]
jl
e
iq‖·(y‖−y′

‖) e
−p(ζ,q‖)|y3−y′3|

2p(ζ,q‖)
,

(B2.28)
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where we made use of the surface normal vectors n̂α = (0, 0, (−1)α−1) for flat surfaces. The

differential operators �̂ 3α and �̂ ′†3β can now be expressed in momentum space with the

replacements ∇‖ → ik‖ and ∇′
‖ → ik′

‖ yielding

M̃αβ,jl
(
ζ,k‖; ζ ′,k′

‖
)

= (2π)3δ
(
ζ − ζ ′

)
δ(2)

(
k‖ − k′

‖
)

× ηαβ
[
�̂

3α(ζ,k‖) · �̂ ′†3β(ζ ′,k′
‖)
]
jl

e−p(ζ,k‖)|y3−y′3|

2p(ζ,k‖)

∣∣∣∣∣ y3=Hα

y′3=Hβ

,
(B2.29)

where we separated the factor ηαβ = (−1)α+βe
−(−1)αpα(ζ,k‖)Hα−(−1)βpβ(ζ′,k′

‖)Hβ which will

be discussed below. The differential operator �̂ 3α acquires now the form

�̂
3α(ζ,k‖) =

−k2 − k1k2
ζεα

ζ+ 1
ζεα

[k2
1+(−1)αpα∂3] −i (−1)αpα

ζεα
k2

k1 −ζ− 1
ζεα

[k2
2+(−1)αpα∂3]

k1k2
ζεα

i
(−1)αpα

ζεα
k1

0
ik2
ζεα

[(−1)αpα+∂3] − ik1
ζεα

[(−1)αpα+∂3] 0

 (B2.30)

and the primed adjoint operator acts via ∂3 on y′3. Before we calculate from this expression

the free energy and force between the surfaces, it is instructive to examine the structure of

the matrix in (B2.30). It is not difficult to see that the third row of the matrix–operator �̂ kα

can be expressed in terms of the other rows via (−1)αipα�̂ 3α
3µ =

∑2
j=1 kj�̂

3α
jµ . The physical

reason for this lays in the fact that there exist only two independent boundary conditions

for each surface. Since the surfaces are flat here, any field configuration can be considered

as a superposition of transversal magnetic (TM) and transversal electric (TE) waves as in

cavities or waveguides [57]. Each mode type is characterized by a scalar field which satisfies

only one boundary condition at each surface. Later, the problem will be formulated from the

outset in terms of two scalar fields representing TM and TE modes. However, for deformed

surfaces, this separation is no longer expected to hold since the modes will mix under the

scattering at deformations.

For flat surfaces we are thus led to introduce the reduced matrix–operator

Ωα(ζ,k‖; ∂z) =
(

−k2 − k1k2
ζεα

ζ+ 1
ζεα

[k2
1+(−1)αpα∂z ] −i (−1)αpαk2

ζεα

k1 −ζ− 1
ζεα

[k2
2+(−1)αpα∂z ]

k1k2
ζεα

i
(−1)αpαk1

ζεα

)
, (B2.31)

which consists of two linear independent rows only. Defining Ωα±(ζ,k‖) ≡ Ωα(ζ,k‖;±∂z),
the kernel can be written as

M̃αβ,jl
(
ζ,k‖; ζ ′,k′

‖
)

= (2π)3δ
(
ζ − ζ ′

)
δ(2)

(
k‖ − k′

‖
)

× ηαβ

[(
Ωα

+(ζ,k‖) ·Ω†β
− (ζ ′,k′

‖)
)
jl

e−p(ζ,k‖)|z|

2p(ζ,k‖)

]
z=Hα−Hβ

.
(B2.32)
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The entries of this diagonal matrix consist of the 4 × 4 matrices which are given by the

expression in the square brackets. Inserting now Eq. (B2.31) into Eq. (B2.32), we obtain for

the expression in the square brackets the 4 × 4 matrix

M̃(ζ,k‖) =

(
A1

e−pH

ε1ε2ζ2
B

e−pH

ε1ε2ζ2
B A2

)
(B2.33)

in terms of the symmetric 2 × 2 matrices

Aα =

(
εα−1
εα

ζ2 + εα−1
ε2α

k2
1 + ε2α−1

ε2α
k2
2 − εα−1

εα
k1k2

− εα−1
εα

k1k2
εα−1
εα

ζ2 + ε2α−1
ε2α

k2
1 + εα−1

ε2α
k2
2

)
, (B2.34)

B =

(
b1 c

c b2

)
, (B2.35)

with

bα =
(
p2
1 − k2

πα − pp1

) (
p2
2 − k2

πα − pp2

)
+ k2

πα

(
ε1ε2ζ

2 + k2
α − p1p2

)
, (B2.36)

c = k1k2

(
(ε1 + ε2 − ε1ε2)ζ2 + k2

‖ − p(p1 + p2) + p1p2

)
, (B2.37)

with πα ≡ 3 − α and using pα = (εα(iζ)ζ2 + k2
‖)

1/2 and p = (ζ2 + k2
‖)

1/2. The Casimir

free energy per unit area can now be obtained from Eq. (B1.25). In the limit H → ∞
the off–diagonal elements of M̃ in Eq. (B2.33) vanish, so that we have to compute the

functional determinant of the matrix

M̃(ζ,k‖)M̃−1
∞ (ζ,k‖) =

(
I e−pH

ε1ε2ζ2
BA−1

2
e−pH

ε1ε2ζ2
BA−1

1 I

)
, (B2.38)

where I is the 2 × 2 identity matrix. In the above matrix we have neglected the factor ηαβ

appearing in Eqs. (B2.29), (B2.32). This factor will have no effect on the free energy as will

be shown at the end of this section. The determinant of the matrix in Eq. (B2.38) can be

calculated using the relation

det(Y ) = 1 − Tr(X1 ·X2) + det(X1 ·X2) (B2.39)

for a general 4 × 4 matrix of the form

Y =

(
I X1

X2 I

)
. (B2.40)

Thus, the free energy can be obtained by calculating the determinant of just a 2× 2 matrix.

Using Eq. (B1.25), the logarithm of the product of all the determinants for different ζn and
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k‖ becomes a corresponding sum and integral. This yields for the free energy per surface

area A the result

E/A =
1
2β

∞∑
n=−∞

∫
k‖

ln det
[
M̃(ζn,k‖)M̃−1

∞ (ζn,k‖)
]
, (B2.41)

where the determinant runs over the discrete 4 × 4 matrix at fixed ζ and k‖. Calculating

explicitly this determinant with the aid of Eq. (B2.39), we obtain

E/A =
1
β

∞∑′

n=0

∫ ∞

0

k dk

2π
ln

([
1 − e−2pnH pn1 − pn

pn1 + pn

pn2 − pn
pn2 + pn

]

×
[
1 − e−2pnH pn1 − ε1pn

pn1 + ε1pn

pn2 − ε2pn
pn2 + ε2pn

]) (B2.42)

with k = |k‖|. The corresponding force per unit area is given by

F/A = − 1
β

∞∑′

n=0

∫ ∞

0

k dk

π
pn

([
pn1 + pn
pn1 − pn

pn2 + pn
pn2 − pn

e2pnH − 1
]−1

+
[
pn1 + ε1pn
pn1 − ε1pn

pn2 + ε2pn
pn2 − ε2pn

e2pnH − 1
]−1

)
,

(B2.43)

where we defined pnα =
√
εαζ2

n + k2 and pn =
√
ζ2
n + k2. The prime at the summation

sign indicates that the term for n = 0 is to be multiplied by 1/2. It is important to note that

the dielectric function in the above expressions is evaluated along the imaginary axis only,

since εα ≡ εα(iζ) due to the initial Wick rotation to the Euclidean field theory. Since εα(iζ)
is completely determined by the imaginary part of the dielectric function for real frequencies

ω, the force depends only on the dissipative properties of the media, as expected from the

fluctuation–dissipation–theorem. The results in Eqs. (B2.42)–(B2.43) agree with the original

results obtained by Lifshitz, see Refs. [73, 78].

The limit of zero temperature is obtained by performing the continuum limit for the Mat-

subara frequencies, i.e. ζn → ζ, thus 1
β

∑′
n≥0 f(ζn) → ∫∞

0
dζ
2πf(ζ) for any function f .

Changing the integration variable to q =
√

1 + k2/ζ2 and defining sα ≡ √
q2 − 1 + εα(iζ)

yields

E/A =
∫ ∞

0

ζ2dζ

2π

∫ ∞

1

q dq

2π
ln

([
1 − e−2|ζ|qH s1 − q

s1 + q

s2 − q

s2 + q

]
×

[
1 − e−2|ζ|qH s1 − ε1q

s1 + ε1q

s2 − ε2q

s2 + ε2q

]) (B2.44)
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for the free energy, and

F/A = − 1
2π2

∫ ∞

0
ζ3dζ

∫ ∞

1
q2dq

([
s1 + q

s1 − q

s2 + q

s2 − q
e2|ζ|qH − 1

]−1

+
[
s1 + ε1q

s1 − ε1q

s2 + ε2q

s2 − ε2q
e2|ζ|qH − 1

]−1
) (B2.45)

for the force, cf. Eq. (2.9) in Ref. [73].

Finally, we come back to the omitted factor ηαβ . The effect of taking into account this factor

is that in the matrix kernel of Eq. (B2.33), A2 is multiplied by e−2p2H and B is multiplied

by −e−p2H while A1 remains unchanged. For the matrix in Eq. (B2.38) this means that the

off–diagonal matrix ∼ A−1
2 gets multiplied by the factor −ep2H while the matrix ∼ A−1

1 gets

multiplied by the inverse factor −e−p2H . Due to Eq. (B2.39), the determinant depends only

on the product of the two off–diagonal matrices so that the factors coming from the ηαβ

drop out in the determinant of M̃M̃−1∞ .

3 The limit of ideal metal boundaries

In the previous section, we saw that our general approach reproduces the Lifshitz theory for

flat surfaces of dielectric media. In this section we will apply the path integral approach to

deformed surfaces. As an example we consider ideal metals with infinite dielectric functions

εα. This is a reasonable approximation for surface separations which are large compared

to the plasma wavelength λp of the material. However, our general result for the kernel of

Eq. (B1.24) contains all information which is necessary to treat deformed surfaces of non–

ideal metals or general dielectric media as well. In the latter case the kernel M assumes

in general no particular simple form and has to be computed numerically in order to obtain

the force. For ideal metals the kernel can be calculated explicitly and the result provides

another interesting limit which has not been studied previously. In previous works only special

deformations of ideal metals have been studied by a path integral approach. If the surface

deformations are translationally invariant in one direction as for, e.g., uni–axial corrugations,

the electromagnetic field can be separated into TM and TE modes. This property has been

used in [35, 36, 34] to describe the surface interaction by a scalar field theory. In contrast,

here we will allow for general deformations so that no separation into TM and TE modes is

possible anymore.

The starting point is the general result of the kernel M̃ in Eq. (B1.24). For asymptotically

large εα → ∞, both pα(ζ,k‖) and the operators �̂ kα become independent of the lateral
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momentum k‖. The kernel can then be written as

M̃αβ,jl
(
ζ,k‖; ζ ′,k′

‖
)

= 2πδ
(
ζ − ζ ′

) ∫
y∈Sα

∫
y′∈Sβ

e
−ik‖·y‖+ik′

‖·y′
‖

× e−(−1)α |ζ|√εαy3−(−1)β |ζ|√εβy′3

× n̂αk n̂
′β
s

[
�̂

kα(ζ)· �̂ ′†sβ(ζ ′)
]
jl
G(ζ;y − y′),

(B3.46)

with the differential operators

�̂
1α(ζ) =

 0 0 0 0
i∂3 0 0 ζ

−i∂2 0 −ζ 0

 , �̂
2α(ζ) =

 −i∂3 0 0 −ζ
0 0 0 0
i∂1 ζ 0 0

 ,

�̂
3α(ζ) =

 i∂2 0 ζ 0
−i∂1 −ζ 0 0

0 0 0 0

 .

(B3.47)

Due to the simple exponential dependence of the integrand of Eq. (B3.46) on k‖, it is more

convenient to transform the kernel to position space. When we insert the height profile of

the surfaces with y3 = Hα+hα(y‖), y′3 = Hβ+hβ(y′
‖),Hα = 0,H for α = 1, 2, the position

space form of the kernel can be read off from Eq. (B3.46) to be

Mαβ,jl
(
ζ,y‖; ζ ′,y′

‖
)

= 2πδ
(
ζ − ζ ′

)
× e−(−1)α |ζ|√εαHα−(−1)β |ζ|√εβHβ e

−(−1)α |ζ|√εαhα(y‖)−(−1)β |ζ|√εβhβ(y′
‖)

× n̂αk n̂
′β
s

[
�̂

kα(ζ)· �̂ ′†sβ(ζ ′)
]
jl
G(ζ;y − y′) ∣∣∣∣∣∣ y3=Hα+hα(y‖)

y′3=Hβ+hβ(y′
‖)

.

(B3.48)

Before proceeding, it is useful to discuss the two exponential factors depending on
√
εα.

The second factor depends on the height profiles hα but is independent of the mean surface

distance H. Defining ηα(ζ,y‖) = e−(−1)α |ζ|√εαhα(y‖), the matrix has the same structure as

in Eq. (B1.23), but with k‖ replaced by y‖. Due to the arguments given below Eq. (B1.23),

the factors ηα(ζ,y‖) drop out of the free energy and can thus be neglected in the following.

For the first exponential factor in Eq. (B3.48), this argument does not apply since it depends

on H. However, we can use that the factor does not depend on the lateral coordinates y‖.
The effect of this exponential factor is that every 2× 2 sub-matrix of M̃ which results from

keeping (j, l), (ζ,k‖) and (ζ ′,k′
‖) fixed is multiplied by the same only ζ dependent factors.

The two diagonal elements of each of these matrices are multiplied by 1 and e−2|ζ|√ε2H ,

respectively, while the off–diagonal elements are multiplied by e−|ζ|√ε2H . It can be verified

that this leads to a the global factor e−N |ζ|√ε2H for the determinant of M̃ if N denotes the
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dimension of the matrix M̃. Taking the determinant of the ratio M̃M̃−1∞ , the factor will

drop out and can thus be omitted from the beginning.

Now the kernel assumes a simple form. Expressing the surface normal vectors in terms of the

height profile, see Eq. (B1.20), the kernel can be written as a functional of the height profile.

For the same reason as for the factors ηα(ζ,y‖) could be omitted above, we can skip the

normalization factor (−1)α/
√
gα of the normal vector. Thus we obtain for the differential

operators

(
n̂αk �̂

kα
)
(ζ,y‖) =

 ihα,2∂3 − i∂2 0 −ζ −hα,2ζ
ihα,1∂3 + i∂1 ζ 0 hα,1ζ

−ihα,1∂2 + ihα,2∂1 hα,2ζ −hα,1ζ 0

 ≡ Ω̃α. (B3.49)

We observe that the third row of the matrix in Eq. (B3.49) is linearly dependent since

Ω̃α
3µ =

∑2
j=1 hα,jΩ̃

α
jµ. Therefore, as in the Lifshitz theory limit discussed earlier, the matrix

has to be reduced to its first two rows. The linear dependence of rows reflects the fact that

for ideal metals there are only two independent boundary conditions for each surface. As

mentioned earlier, for general deformations, a reduction to TM and TE modes as it occurs

in the Lifshitz theory is not possible. However, for ideal metals the boundary condition can

be simply written as

[n̂α(y) × E(ζ,y)]y∈Sα
= 0. (B3.50)

This boundary condition requires the two tangential components of the electric field to vanish

locally. Saying it differently, the limit of infinite conductivity converts the three originally

non–local boundary conditions into two local conditions. The final result for the matrix

kernels is now given by a 4 × 4 matrix with j, l = 1, 2,

Mαβ,jl
(
ζ,y‖; ζ ′,y′

‖
)

= 2πδ
(
ζ − ζ ′

)[
Ω̃α · Ω̃′†β]

jl
G(ζ;y − y′) ∣∣∣∣∣∣ y3=Hα+hα(y‖)

y′3=Hβ+hβ(y′
‖)

(B3.51)

with the curvature dependent differential operator[
Ω̃α·Ω̃′†β]

jl
= (−1)j+l

{
ζ2

(
δjl + hα,πjh

′
β,πl

)
+ (hα,πj∂3 + ∂πj)

(
h′β,πl∂

′
3 + ∂′πl

)}
(B3.52)

acting on the vacuum Green function. The transpose permutation πj ≡ 3 − j was defined,

and analogously to the notation for the derivatives ∂, ∂′, the prime on h′ in Eq. (B3.52)

indicates the dependence on the primed variable y′
‖. Inserting the Green function

G (
ζ;y − y′) =

∫
q‖
e
iq‖·(y‖−y′

‖) e
−p(ζ,q‖) |y3−y′3|

p(ζ,q‖)
(B3.53)



B4 Scalar field approaches 35

into Eq. (B3.51) yields

Mαβ,jl(ζ,y‖; ζ ′,y′
‖) = 2πδ(ζ − ζ ′)

∫
q‖
e
iq‖·(y‖−y′

‖) Ω̂jl(∇‖,∇′
‖)

× 1
2p
e
−p|hα(y‖)−hβ(y′

‖)+H(δα2−δβ2)|,
(B3.54)

with p = p(ζ,q‖) and with the 2 × 2 operator Ω̂ given by

Ω̂jl(∇‖,∇′
‖) = δjlζ

2 +
(
1 − ζ2/p2

)
∂πj∂

′
πl + i

(
qπj∂

′
πl − qπl∂πj

)
+ qπjqπl. (B3.55)

For the Fourier transformed kernel M̃ one obtains from Eq. (B3.54),

M̃αβ,jl(ζ,k‖; ζ ′,k′
‖) = 2πδ(ζ − ζ ′)

∫
y‖

∫
y′
‖

∫
q‖
e
−i(k‖−q‖)·y‖+i(k′

‖−q‖)·y′
‖ Ω̂jl(∇‖,∇′

‖)

× 1
2p
e
−p|hα(y‖)−hβ(y′

‖)+H(δα2−δβ2)|.

(B3.56)

Applying integration by parts in Eq. (B3.56), the differential operator Ω̂jl becomes algebraic

in virtue of the replacements ∇‖ → i(k‖ − q‖),∇′
‖ → i(q‖ − k′

‖). Then, M̃ together with

the formula of Eq. (B1.25) yields the exact free energy of the interacting surfaces. We note

that in Eq. (B3.55), we omitted the factor (−1)j+l, cf. Eq. (B3.52), because this factor

cancels if detM̃ is evaluated.

Generally, it is not possible to give a closed analytical expression for the determinant of

M̃. However, either perturbative [35, 36, 34] or numerical [34] techniques can be used to

evaluate the free energy and force. This will be studied in the following chapters.

4 Scalar field approaches

In general, the scope of applicability of scalar field theories is more restricted than that of

gauge field formalisms, however, their advantage is that calculations become simpler in many

cases and there is no need for any gauge fixing. For these reasons, we study the path integral

approach for scalar fields in further detail in order to describe geometries which allow for

a scalar field approach in a more simple way from the beginning. This will be done for

geometries of ideal metals in chapters C,D. However, an interesting example is also given

by the case of flat surfaces of dielectric media. It will be shown that that the Lifshitz theory

can be obtained directly from a scalar field path integral quantization choosing appropriate

boundary conditions. As mentioned earlier, no gauge fixing is necessary any more, different

from the treatment in the previous section.
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In the analysis done above, cf. Eqs. (B2.30)–(B2.31), we argued that the field can be

decomposed into transversal magnetic (TM) and transversal magnetic (TE) modes. Each

of the mode types obeys one boundary condition on each surface, which leads to a reduced

matrix kernel.

To decompose the electromagnetic field into both types of modes, one needs to specify a

preferred spatial direction as a reference axis. We will choose without any restrictions the

y2–direction. Having defined such a reference axis, any field configuration in a geometry

which is translationally invariant along that axis is decomposable into TM and TE modes,

respectively, which allows for a scalar field path integral quantization. The procedure of mode

decomposition has successfully been applied in the treatment of wave guide geometries [57].

The (real–valued) scalar fields are given by the electric and magnetic field components along

the axis of translational symmetry,

E2(X) = Φ(X), B2(X) = 0, for TM modes,

B2(X) = Φ(X), E2(X) = 0, for TE modes,
(B4.57)

for any X in 4D Minkowskian spacetime. If the plates are ideally conducting, the boundary

conditions for TM– and TE modes are of Dirichlet– and of Neumann–type, respectively, i.e.,

Φ
∣∣
Sα

= 0 for TM modes,

∂n̂αΦ
∣∣
Sα

= 0 for TE modes, (B4.58)

with the normal derivative pointing into the vacuum between the surfaces, as before. After a

Wick rotation to imaginary time, both types of modes are described by the Euclidean action

SE {Φ} =
1
2

∫
X

(∇Φ)2 (X) (B4.59)

with the 4D Euclidean nabla operator ∇ ≡ (∂µ)3µ=0 and with the partition function

Z0 =
∫
�Φ e−SE{Φ}. (B4.60)

Recall that in 4D Euclidean space, the surface positions on the manifolds Sα are parametrized

by Xα(y) = (y, hα(y1) + Hδα2) with y = (y0, y1, y2) = (y0,y‖), where the vector y‖
represents the base plane over which the surfaces are spanned. Since the mean distance of

the surfaces is H,
∫
y1
hα(y1) = 0.

Following the procedure of section B.1, the boundary conditions are imposed by inserting

delta functions on the surfaces in the functional integral. Doing this for the boundary

conditions for ideal metals, cf. Eq. (B4.58), we obtain a separate partition function for each
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wave type. They are given by

ZD = Z−1
0

∫
�Φ

2∏
α=1

∏
Xα

δ [Φ(Xα)] e−SE{Φ}, (B4.61)

ZN = Z−1
0

∫
�Φ

2∏
α=1

∏
Xα

δ [∂n̂αΦ(Xα)] e−SE{Φ}, (B4.62)

for Dirichlet and Neumann boundary conditions, respectively. The forthcoming procedure is

analogous to the approach in case of the gauge field. First, the delta functions will be repre-

sented by functional integrals over auxiliary fields which couple to the free fields according to

the boundary conditions. Then, the Gaussian integration over Φ can be performed, yielding

for any kind of boundary condition

Z =
∫ 2∏

α=1

�ψα e
−Seff{ψα} (B4.63)

with an effective action

Seff{ψα} =
1
2

∫
y

∫
y′
ψα(y)Mαβ(y,y′)ψβ(y′). (B4.64)

Summation convention is applied to repeated indices. After subtracting the divergent and

H–independent terms, the energies can be written as E = ln det(MM−1∞ )/(2L), with L

being the Euclidean length in time direction. Since the Casimir energy is given by the sum

of its contributions for TM and TE modes, the same applies to the force F = −∂HE ,

FTM = − 1
2L

Tr
(M−1

D ∂HMD

)
, (B4.65)

FTE = − 1
2L

Tr
(M−1

N ∂HMN

)
, (B4.66)

cf. Eq. (B1.26), where for finite temperatures, the Euclidean length in time direction is given

by L = β. The right–hand side of these expressions is always finite, and no regularization of

divergences by subtraction of the vacuum energy in the absence of boundaries is necessary.

This will not be the case in the discussion of lateral forces, as will be discussed in chapter D.

The Dirichlet and Neumann matrix kernels of the effective Gaussian action can be expressed

in terms of the Euclidean scalar Green’s function G(y, y3) =
[
4π(y2 + y2

3)
]−1

, and are

respectively given by

Mαβ
D (y,y′) = gα(y1)1/4gβ(y′1)

1/4G (
Xα(y) −Xβ(y′)

)
, (B4.67)

Mαβ
N (y,y′) = gα(y1)1/4gβ(y′1)

1/4∂n̂α(y1)∂n̂β(y′1)G
(
Xα(y) −Xβ(y′)

)
, (B4.68)
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with the metric coefficients given by gα = 1 + (∇‖hα)2 = 1 + (∂1hα)2. They arise from the

integral measure on the curved manifold Sα. However, they are independent of H and they

cancel in the product of MM−1∞ and can therefore be ignored in the calculation of forces.

Applying the parametrization in terms of height profiles, the matrix kernels can now be

written as

Mαβ
D (y,y′) = G (

y − y′;hα(y1) − hβ(y′1) +H(δα2 − δβ2)
)
, (B4.69)

Mαβ
N (y,y′) = (−1)α+β{−∂2

3 +
[
h′α(y1) + h′β(y

′
1)
]
∂1∂3 − h′α(y1)h′β(y

′
1)∂

2
1}

×G (
y − y′; y3 − y′3)

) ∣∣∣ y3=hα(y1)+Hδα2

y′3=hβ(y′1)+Hδβ2

, (B4.70)

with ∂j = ∂
∂yj

. Note that these results are valid for any kind of uniaxial deformation.

4.1 Derivation of the Lifshitz theory

We consider again the limit of flat surfaces with dielectric boundaries characterized by the

dielectric functions εα(ω) for α = 1, 2.

Instead of working in position space, it is convenient to calculate with a partially Fourier

transformed representation in the following, so that after a Wick rotation to imaginary

frequencies ω → iζ, the fields depend on the set of parameters (ζ,k‖, z). Here, k‖ is the

in–plane lateral momentum vector, the last coordinate z was kept in position space which is

especially suited to a geometry with flat surfaces.

Due to the rotational symmetry in the lateral plane of the flat surface geometry, it turns out

that it is useful to adapt the choice of the direction to the lateral momentum k‖ of the field

mode. Note that this can be done since the modes for different k‖ are decoupled for flat

surfaces. Therefore, in the following we will choose for a given k‖ the lateral coordinates so

that k2 = 0, and y2 defines the longitudinal direction. Following the parametrization of the

TM and TE modes for waveguides [57], the longitudinal components of the electric (for TM

modes) and magnetic (for TE modes) field define the ral–valued scalar field Φ according to

Eqs. (B4.57), as before.

The transversal components Ej ≡ Ej(ζ,k‖; z) and Bj ≡ Bj(ζ,k‖; z) of the electromagnetic

field are then given by

E1 = k1k2
ζ2+k2

2
Φ, B1 = ζ

ζ2+k2
2
∂zΦ,

E3 = −ik2
ζ2+k2

2
∂zΦ, B3 = −iζk1

ζ2+k2
2
Φ,

(B4.71)
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for TM modes, and

E1 = −ζ
ζ2+k2

2
∂zΦ, B1 = k1k2

ζ2+k2
2
Φ,

E3 = iζk1
ζ2+k2

2
Φ, B3 = −ik2

ζ2+k2
2
∂zΦ,

(B4.72)

for TE modes, where we performed already a Wick rotation to imaginary frequency, ω → iζ.

Using the Maxwell equations it can be shown that the dynamics of the field Φ is governed

by the usual wave equation, corresponding to the Euclidean action, see Eq. (B4.59).

In the following, we restrict the discussion to the case of zero temperature. Finite tempera-

tures T > 0 can be treated in analogy to the gauge field approach by introducing Matsubara

frequencies. The boundary condition for the scalar field Φ can be derived from the optical

extinction theorem discussed at the beginning of section B.1. There, from Eq. (B1.10) we

obtain, using the Fourier representation of the material Green function Gε, in Euclidean space

the conditions

− ζεα(iζ)E2 − ik1B3 − (−1)αpαB1 = 0, (B4.73)

ζεα(iζ)E1 − ik2B3 − (−1)αpαB2 = 0, (B4.74)

ik‖ ·B‖ − (−1)αpαB3 = 0, (B4.75)

for the flat surface Sα. Recall that pα = (εα(iζ)ζ2 + k2
‖)

1/2 and p = (ζ2 + k2
‖)

1/2. Now

we make use of the fact that we can constrict the analysis to the case k2 = 0 by a suitable

choice of the lateral coordinates. After inserting the electromagnetic field components as

given by Eqs. (B4.73)–(B4.75), the above conditions collapse to a single boundary condition

for the scalar field Φ which can be formulated as

(1 − Γα∂n̂α) Φ |z=Hα = 0, (B4.76)

with Γα = 1
pα

for TM modes, and Γα = εα
pα

for TE modes, where ∂n̂α = (−1)α−1∂z denotes

the normal derivatives at the surfaces. Due to the dependence of k‖, the mixed–mode

boundary condition Eq. (B4.76) is non–local in position space. In the limit of ideal metals

with εα → ∞, it reduces to the well known Dirichlet and Neumann boundary condition

(depending on the choice of Γα) for TM and TE modes, respectively. Note that Γα is real,

since the same is valid for εα along the imaginary frequency axis. Therefore, Φ can be

considered to be real–valued.

The restricted partition function for the field Φ reads for both types of modes

Z = Z−1
0

∫
�Φ e−SE{Φ} ∏

α

∏
ζ,k‖

δ [(1 − Γα∂n̂α) Φ |z=Hα ] , (B4.77)



40 Casimir interaction between dielectric materials

where the boundary constraints were again implemented by delta functions. Note the simi-

larity to Eqs. (B4.61)–(B4.62). Now we proceed in analogy to the treatment of the gauge

field path integral performed in section B.1. Introducing two auxiliary fields ψα, one for each

surface Sα, and performing the Gaussian integration for Φ, the partition function is given by

Eq. (B4.63) with an effective action Seff which is given now by

Seff {ψα} =
1
2

∫
ζ

∫
ζ′

∫
k‖

∫
k′
‖

ψα
(
ζ,k‖

)Mαβ
(
ζ,k‖; ζ ′,k′

‖
)
ψβ

(
ζ ′,k′

‖
)
, (B4.78)

with summation over repeated indices and the 2 × 2 matrix kernel

Mαβ
(
ζ,k‖; ζ ′,k′

‖
)

= (2π)3δ
(
ζ + ζ ′

)
δ
(
k‖ + k′

‖
)

× 1
2p

(
1 − p2Γ2

1 (1 − pΓ1)(1 − pΓ2) e−pH

(1 − pΓ1)(1 − pΓ2) e−pH 1 − p2Γ2
2

)
.

(B4.79)

From this kernel, using Eq. (B1.25) in the zero temperature limit, one gets for the Casimir

energy per unit surface area A

E/A =
1
2

∫
ζ

∫
k‖

ln det
(MM−1

∞
)

=
∫ ∞

0

dζ

2π

∫ ∞

0

k dk

2π
ln

(
1 − e−2pH 1 − pΓ1

1 + pΓ1

1 − pΓ2

1 + pΓ2

)
,

(B4.80)

with the determinant of the 2 × 2 matrix (B4.79) at fixed ζ and k‖, and k = |k‖|. The

matrix M∞ is diagonal since for H → ∞ the off–diagonal elements vanish. Therefore, the

determinant of the matrix product can be easily obtained, yielding the last expression in

Eq. (B4.80). Substituting Γα by 1/pα or by εα/pα we obtain the contribution of the TM

and TE modes, respectively, to the energy. Obviously, the sum of both contributions yields

the result obtained earlier from the gauge field approach.

5 Summary

So far, we have derived an effective Gaussian action Seff which describes material properties

and geometric deformations.

The general case can only be described by the gauge field approach. Within the scalar

field quantization approach, we formulated the effective action for the limiting case of ideal

metals, as well as for flat surfaces of dielectric materials. Both limits were also discussed

for the action obtained from the gauge field quantization. The latter limit reproduces the

Lifshitz theory of molecular forces. The limit of ideal metals will be studied in further detail
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in the coming chapters for geometries which can be treated within the framework of the

scalar field approach.

To calculate the force, one needs to specify the geometric profile and the dielectric function

ε(ω). In general, the calculation of the force can only be performed numerically. However,

different asymptotic regimes can be specified, where simplifications are possible. One example

is given by the different regimes for the surface distance: for large surface distances H, the

influence of material properties decreases (cf. the Lifshitz formula Eq. (B4.80)), so that ε

can be assumed to be constant. At smaller distances, the influence of the frequency becomes

more important and makes the result for the force sensitive to the choice of ε(ω). In the

regimes for large and small ε(ω), the action can be expanded as a functional of ε by an

expansion of the general kernel M̃ in Eq. (B1.24). We expect that in the first case, the

strong geometry dependence and non–additivity of the Casimir force should dominate. In

the opposite limit of rarified media where ε approaches 1, the effect of the non–additivity of

Casimir force decreases, which gives the possibility to compare with approximation methods

which are based on additive summation of forces as e.g. the PWS approach of Casimir–

Polder–potentials, see chapter A.

Both the choice of the appropriate boundary condition and the choice of the dielectric

function to describe real metals are object of recent dispute, see. e.g. Ref. [45], where other

types of boundary conditions as the impedance boundary condition [12, 11] are proposed.

However, the approach discussed here allows for any kind of (nonlocal) boundary condition,

cf. Eq. (B1.5).
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C Effect of geometry on the Casimir force

In this chapter, we confine ourselves to the study of the geometrical dependence of the

Casimir force in geometries with ideally conducting surfaces.

In the first paragraph, an approach to the Helmholtz spectrum for arbitrarily deformed bound-

aries will be introduced. Via the path integral formalism which was outlined in chapter B, we

establish a novel trace formula between the boundary induced change of the photon density

of states and the Green function of the Helmholtz equation for scalar fields, which is related

to the effective Gaussian action of the path integral quantization.

In the second part of this chapter, we develop an analytic approach for the exact calculation

of the Casimir interaction for the special class of periodic geometries. First, this will be done

for the case of geometries with uniaxial deformations, where the fluctuating electromagnetic

field can be separated into TM and TE modes which can be described by scalar fields which

satisfy Dirichlet and Neumann boundary conditions, respectively, see chapter B. Later, we

extend the approach to biperiodic surfaces, i.e. surfaces which are periodic in two directions.

1 Geometries and the density of states

The quantization of the electromagnetic field in a given domain V leads to the zero point

vacuum energy at zero temperature of

E0 =
1
2

∑
k

ω(k), (C1.1)

with the spectrum {ω(k)} of harmonic oscillator ground state eigenfrequencies which rep-

resents the ground state of the photon gas in that domain, see e.g. Ref. [78]. For photons,

the eigenmodes are ω(k) = c|k| = k (note that unities were chosen such that c = 1 and

� = 1). The sum is running over all modes of the spectrum. The sum must be regularized,

since it is formally divergent.

As it was already mentioned in the discussion of boundary conditions in the last chapter B,

the division of the free vacuum space into separated volumes Vν , see Fig. C.1, defines a

spectral problem in each of the volumes. For any of these, the difficulty is to calculate the
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spectrum {ω(k)} analytically. The spectrum turns out to be highly sensitive to changes of the

confining geometry, since it depends on the constraints which are imposed to the fluctuating

electromagnetic field at the boundary surfaces of the given geometry. In a succession of works,

Balian and Bloch analysed specific situations regarding the distribution of eigenfrequencies

in confined geometries, for both the scalar field [2] and the electromagnetic field [3] using

a multiple reflection expansion. Balian and Duplantier [8] applied the multiple reflection

expansion to the Casimir problem.

The problem of determining the resonance spectrum for a given geometry is also known in

the spectral theory quantum billiards, see Ref. [39]. It turns out that in general, an analytic

evaluation of the spectrum is not possible.

Considering the density of states (DOS)

ρ(ω) =
∑
k

δ
(
ω − ω(k)

)
, (C1.2)

the zero point energy in Eq. (C1.1) can be transformed into

E0 =
1
2

∫ ∞

0
dω ω ρ(ω). (C1.3)

For the geometry depicted in Fig. C.1(a), the regularization of the energy is performed as

in the previous chapter B by subtracting the part for asymptotically large surface distance

H. We are interested in the regularized change of the DOS δρ for the whole vacuum space

given by the sum of the DOS in each of the volumes into which the space is divided with

the DOS for infinite surface separation subtracted,

δρ(ω) =
∑
ν

ρν(ω) − ρ∞(ω). (C1.4)

ρν is the DOS in the volume Vν , ν = 1, 2, 3, cf. Fig. C.1(a), and ρ∞ is the DOS for infinite

surface separation. The change of the DOS contains neither volume terms nor single surface

contributions, it measures only changes in the geometry by moving the surfaces rigidly. The

regularized ground state energy for the whole system is then given by Eq. (C1.3) with ρ

substituted by δρ in the integrand.

For more complicated geometries as the one in Fig. C.1(b), the regularization procedure

is more complicated as well. For a set of finitely extended and disconnected volumes Vν ,

Balian and Duplantier [7, 9] introduce a cutoff χ(ω) into the integral for the energy in

Eq. (C1.3), which reflects the fact that realistic surfaces become transparent for frequencies

beyond the plasma frequency of the material. Furthermore, the DOS ρ is regularized by

defining the change of the DOS with respect to a large box Σ which encloses all volumes
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Figure C.1: Separated regions in free space by boundary surfaces. In (a), two infinitely extended

surfaces S1 and S2 with mean distance H separate the space into 3 volumes. In (b), a more

general configuration of disconnected objects of arbitrary shape is shown.

Vν , δρ(ω) =
∑

ν ρν(ω) − ρΣ(ω). Then, they study the behaviour of the energy when

the boundary volume Σ is inflated to infinity and when the boundary surfaces between the

volumes Vν become perfectly conducting with χ→ 1.

In the following, the geometry depicted in Fig. C.1(a) will be taken into account. We consider

the Helmholtz equation for scalar fields(∇2 + ω2
)
Φ(x) = 0, (C1.5)

where the field Φ lives in one of the separated volumes and is assumed to satisfy Dirichlet

or Neumann conditions at the boundary surface of the volume. For geometries which allow

for a separation of the fluctuating electromagnetic field into TM and TE modes, as infinitely

extended hollow waveguides [57], or uniaxially deformed surfaces, cf. chapter B, the scalar

field with Dirichlet and Neumann conditions can be identified with TM and TE field modes,

respectively. The Green function for Eq.(C1.5) satisfies(∇′2 + ω2
)G(ω;x,x′) = δ(3)(x − x′) (C1.6)

and the DOS in a given volume V is related to the Green function by

ρ(ω) =
∫
V
d3x ρ(ω,x) = −2ω

π

∫
V
d3x ImG(ω;x,x), (C1.7)
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where ρ(ω,x) is the local DOS. Since the DOS is real and more regular along the imaginary

axis, it is useful to perform a Wick rotation ω → iq0 to Euclidean space 1. For the Euclidean

DOS ρE(q0) ≡ −ρ(iq0), the total regularized ground state energy reads

E0 =
1
2

∫ ∞

0
dq0 q0 δρE(q0). (C1.8)

From Eq. (C1.7), one gets then

ρE(q0) = −2q0
π

∫
V
d3x GE(q0;x,x) (C1.9)

with the Euclidean Green function GE, which is real along the imaginary axis2. In the

following, we will skip the index at GE and ρE since we work completely in Euclidean space.

The key result is that the correction of the Euclidean Green function G for the geometry to

the free Euclidean Green function

G0

(
q0;x,x′) =

∫
d3q

(2π)3
eiq(x−x′)

q20 + q2
=

e−|q0||x−x′|

4π|x − x′| (C1.10)

for the vacuum space can be expressed by a non–local relation between the free Green

functions evaluated at the surface of the geometry. This relation is given by

G̃(q0;x,x′) ≡ G(q0;x,x′) − G0(q0;x,x′)

= −
∑
αβ

∫
du du′ G0

(
q0;x, sα(u)

)M−1
D,αβ

(
q0;u,u′)G0

(
q0; sβ(u′),x′)

(C1.11)

for Dirichlet boundary conditions, where u,u′ are 2D coordinates of the surfaces Sα, and the

corresponding space vectors sα(u), sβ(u′) parametrize the surfaces. Eq. (C1.11) is obtained

by path integral quantization, details of the derivation are left to appendix F.1. For Neumann

conditions, the G0 on the right hand side have to be replaced by their normal derivatives

∂n̂α(u)G0 at the surface point sα(u), where n̂α(u) is the normal vector pointing into the

volume V where x,x′ are located. MD,MN are the matrix kernels of the effective Gaussian

action for Dirichlet or Neumann boundary conditions, respectively, cf. appendix F.1. Note

that Eq. (C1.11) holds for every region, for Neumann conditions, the change of the direction

of the normal derivative at the free Green function is compensated by the the change of the

direction of the normal derivative which appears in the kernel MN.

1In chapter B, the Wick rotation for the frequency was denoted as ω → iζ. Hence follows ζ = q0.
2One has to perform the Wick rotation first for the local DOS for complex arguments z ∈ � given by

ρ(z,x) ≡ −(2z/π)G(z;x,x) and then take the imaginary part.
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Integrating both sides of Eq. (C1.11), over the whole space, one obtains for any kind of

boundary condition ∫
d3x G̃(q0;x,x) =

1
2q0

∂

∂q0
Tr ln(M). (C1.12)

From Eq. (C1.9), we obtain for the change of the DOS

− π

2q0
δρ(q0) =

∫
d3x G(q0;x,x) −

∫
d3x G∞(q0;x,x). (C1.13)

On the right hand side of Eq. (C1.13), the Green function G∞ for H → ∞ has to be

subtracted to get the change of the DOS, δρ. The Green functions G,G∞ can be replaced by

their corrections to the free Green function, which are given by G̃ = G−G0 and G̃∞ = G∞−G0,

respectively, since the free Green function will be cancelled in Eq. (C1.13). Subtracting the

contribution for H → ∞ also from the result in Eq. (C1.12) and comparing with Eq. (C1.13),

we obtain the trace formula

δρ(q0) = − 1
π

∂

∂q0
Tr ln(MM−1

∞ ), (C1.14)

where the trace is taken over the 2D parametrization vectors u,u′ and the discrete surface

indices α, β of the matrix M.

The trace formula Eq. (C1.14) relates the change of the DOS with the matrix kernel M of

the effective Gaussian action. It has the advantage that all geometric informations about

the system are implicitly contained in the kernel M. No complicated integrations over

finite space regions need to be performed. A formally similar expression has been derived

by Balian and Duplantier [7] within the framework of a multiple reflection expansion for the

Casimir effect, the operator to which the trace is applied contains information about multiple

reflection paths of surface scatterings, see Eq. (7.20) of [7].

In quantum spectral theory, the so–called Krein–Friedel–Lloyd formula [64] has the same

structure as the trace formula, but is applied to quantum scattering described by the S-matrix

or the so–called Kohringa–Kohn–Rostoker (KKR) multiple scattering matrix [20, 63, 62],

see also [50].

At finite temperatures, the photon field is no longer in the vacuum state. Then, the expression

for the energy in Eq. (C1.8) has to be replaced by by an expression of the form

E0 =
∫ ∞

0
dq0 f(q0) δρ(q0), (C1.15)

see Ref. [9], with the temperature dependent weight

f(q0) =

{
q0/2 if T = 0

πT
∑′∞

n=0
Θ (q0 − 2πnT ) if T > 0

. (C1.16)
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Recall that the prime at the summation sign indicates that the term for n = 0 is weighted by

the factor 1/2. In the limit of T → 0, Eq. (C1.8) is restored from Eq. (C1.15). For T > 0,
one obtains via partial integration

E = T

∞∑′

n=0

Tr ln
[M(q0)M−1

∞ (q0)
]
, (C1.17)

which is identical to the result in Eq. (B2.41). Since the Casimir force is given by F = −∂HE ,

the DOS is related to the Casimir force by

F = −
∫ ∞

0
dq0 f(q0) ∂Hδρ(q0). (C1.18)

Thus, the contributions to the interaction at fixed frequency q0 is determined by the geometric

properties of the DOS, characterized by the term ∂Hδρ(q0), which describes the variation

of the change of the DOS with the distance H. In the following paragraphs, we consider

specific model situations for the calculation of the Casimir interaction.

2 Periodically shaped boundaries

In this paragraph, periodically deformed geometries will be considered. These geometries

have the advantage that they allow for a discrete decomposition of the kernel M in Fourier

space, which can be attributed to the fact that the spectrum of surface deformations is

bounded. For arbitrary surface deformations, as in the case of stochastic roughness, this is

generally not the case and it may be of advantage to resort to a position space representation

of the kernel M.

This property of periodic profiles suggests to analyse the problem in Fourier space, which

will be done in the present section. In the first paragraph, we constrict the analysis to the

translationally invariant geometries which can be treated within the framework of a scalar

field formalism. Numerical evaluations will be presented in the next chapter for special

cases of periodic geometries. However, the formalism which will be discussed here can also

be extended to the more general case of biperiodic surface deformations which have to

be described by means of the gauge field theory. This will be pointed out in the second

paragraph.

2.1 Uniaxial periodic corrugations

As before in the discussion of the scalar field approach, cf. chapter B, the system un-

der consideration is given by two surfaces Sα of ideal conductivity, which are parametrized
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over the (time dependent) base plane spanned by y = (y0, y1, y2) by the vector Xα(y) =
(y, hα(y1) + δα2H)), where hα is periodic, hα(y1) = hα(y1 +λ) with the corrugation wave-

length λ, cf. Fig. D.1.

The path integral quantization of the scalar field which satisfies Dirichlet and Neumann

boundary conditions yields the effective Gaussian action governed by the matrix kernels MD

and MN, cf. Eqs. (B4.69)–(B4.70),

Mαβ
D (y,y′) = G (

y − y′;hα(y1) − hβ(y′1) +H(δα2 − δβ2)
)
, (C2.19)

Mαβ
N (y,y′) = (−1)α+β{−∂2

3 +
[
h′α(y1) + h′β(y

′
1)
]
∂1∂3 − h′α(y1)h′β(y

′
1)∂

2
1}

×G (
y − y′; y3 − y′3)

) ∣∣∣ y3=hα(y1)+Hδα2

y′3=hβ(y′1)+Hδβ2

. (C2.20)

From the matrix kernel the Casimir interaction is evaluated via F = Tr
(M−1∂HM

)
/(2L),

cf. Eqs. (B4.65)–(B4.70) in chapter B. Due to the translational invariance of the geometry

along the spatial direction y2, and since the surfaces are static, i.e. the profiles hα are

independent of y0, it is useful to define the vector y⊥ ≡ (y0, y2), which is perpendicular to

the direction of modulation and which comprises the components of translational invariance.

Inserting the Green function

G(y, z) =
∫
q
eiq·y

e−q|z|

2q
=

∫
d3q

(2π)3
eiq·y

e−q|z|

2q
(C2.21)

into the matrices MD,MN, and since, due to the periodicity of the modulation, the partially

Fourier transformed Green function e−q|z|/(2q) for z = hα(y1) − hβ(y′1) +H(δα2 − δβ2) is

a periodic function in (y1, y
′
1), it can be expanded into a Fourier series as

1
2q
e−q|hα(y1)−hβ(y′1)+H(δα2−δβ2)| =

∞∑
m,n=−∞

ϕαβmn(q) e
2πi(my1+ny′1)/λ (C2.22)

with the Fourier coefficients

ϕαβmn(q) =
1
λ2

∫ λ

0
dy1

∫ λ

0
dy′1 e

−2πi(my1+ny′1)/λ
1
2q
e−q|hα(y1)−hβ(y′1)+H(δα2−δβ2)| (C2.23)

which depend on H and the modulation functions hα, and q =
√
q20 + q21 + q22 . In gen-

eral, they can only be computed numerically. Inserting Eq. (C2.22) into MD,MN, as it is

performed in appendix F in detail for a rectangular corrugation, one obtains for the Fourier

transform in general the expansion

M̃ (p,q) = (2π)3δ(2) (p⊥+ q⊥)
∞∑

m=−∞
δ (p1 + q1 + 2πm/λ) Nm (q⊥, q1) . (C2.24)
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Here and in the following, the indices D,N for Dirichlet– and Neumann–boundary conditions

will be skipped if the given expression applies to both cases. The 2×2–matrices Nm (q⊥, q1)
depend on the length q⊥ =

√
q20 + q22 of the perpendicular vector q⊥. Since the Fourier

coefficients in Eq. (C2.23) enter via Eq. (C2.21) and Eq. (C2.22), into the matrix M, the

matrices Nm can only be calculated analytically if this applies also to the Fourier coefficients

ϕαβmn, which is the case for the rectangular geometry discussed in chapter D, see also in the

appendix F.

Note that the discrete Fourier expansion of the matrix kernel M̃ in Eq. (C2.24) can be inter-

preted as a consequence of Blochs theorem, since the boundary conditions for the fluctuating

field are imposed on a surface with periodic deformation.

The nonzero entries of M̃ are arranged in the 2 × 2 blocks Nm along bands parallel to

the diagonal where q1 differs by an integer multiple of 2π/λ from p1, see Fig. C.2. The

matrix M̃ can be transformed into block–diagonal form by row and column permutations.

To do so, we discretize the momenta p1, q1 ∈ 2π
W {0, . . . , N} with N = W/λ − 1 and W

being the length of the system in the direction of modulation, which is considered to be a

(large) integer multiple of λ. Taking this parametrization, the matrix M̃ decomposes into

the 2(N + 1) × 2(N + 1)–blocks Bkl for k, l = −∞, . . . ∞
Bkl(q⊥) = diag{Bkl (q⊥, 2πj/W ) |j = 0, . . . N} (C2.25)

with

Bkl (q⊥, q1) = Nk−l (q⊥, q1 + 2πl/λ) , (C2.26)

see the left part of Fig.C.2, where the matrix M̃ is depicted for k, l = −1, 0, 1.

By subsequent row and column permutations, M̃ transforms into the block diagonal matrix

M̃ (p⊥,q⊥) = diag{M̃j (p⊥,q⊥) |j = 0, . . . N} (C2.27)

with

M̃j (p⊥,q⊥) = (2π)2δ(2) (p⊥ + q⊥)
{
Bkl (q⊥, 2πj/W )

}∞
k,l=−∞. (C2.28)

As it is illustrated in Fig.C.2, the blocks M̃j consist of the elements of all Bkl, which are

located at the same position in each matrix Bkl for any fixed k, l. Hence, each block M̃j is

composed of exactly those elements which correspond to the same discrete momentum q1 =
2πj/W . Since dim(Nm) = 2, the number of permutations is even, so that the determinants

of the matrix M̃ are the same before and after having performed the permutations to

transform it into block–diagonal form. Thus,

Tr lnM̃ = ln detM̃ = ln
N∏
j=1

detM̃j =
N∑
j=1

Tr lnM̃j (C2.29)
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Figure C.2: Transformation of the matrix M̃ to block–diagonal form. The figure shows a finite part of

the matrix, corresponding to the blocks Bkl with k, l = −1, 0, 1, before and after the permutations

of rows and columns. Before the transformation, M̃ has a band structure with diagonal blocks Bkl

consisting of 2×2–matrices Nm along the diagonal. First, the rows and columns which are formed

by the first entry Nm in every block Bkl, indicated as a grid, are permuted and compose the first

block M̃0 of M̃ (right box). This process is repeated N times until the (N + 1)th entry of the

Bkl to get M̃N (right box). The momenta q1 within each block M̃j are constant for every column

and differ only by integer multiples of 2π/λ between columns of the same block, as indicated by

the labels in the right box. The blocks differ in momentum by the shift jδ, δ = 2π/W , which is

located in the unit cell [0, 2π/λ[ since j = 0, . . . , N = W/λ − 1. The dependence on the lateral

momentum q⊥ is not shown.

and then, the derivative with respect to the surface distance reads

∂HTr lnM̃ =
N∑
j=1

Tr
(M̃−1

j ∂HM̃j

)
. (C2.30)

Eqs. (C2.29)–(C2.30) reflect that free energy is additive, i.e. it can be calculated by taking

the sum of their contributions to the decoupled subsystems described by the matrices M̃j.

Each of these subsystems takes into account the scattering at the fixed momenta qj =
2πj/W + 2πl/λ which only differ by integer multiples of 2π/λ.

The total trace over the matrix M̃j , which consists of contributions over all discrete and
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continuous degrees of freedom, can be performed using Eq.(C2.28) to yield

Tr
(M−1

j ∂HMj

)
=

LW

(2π)2

∫
d2q⊥

∞∑
k,l=−∞
α,β=1,2

[
B−1
kl,αβ · ∂HBlk,βα

]
(q⊥, 2πj/W ) . (C2.31)

The sum on the right hand side of Eq.(C2.31) comprises the contribution of the discrete

arguments to the trace which we denote by tr in the following. The indices α, β on B

enumerate the matrix elements of the 2 × 2–matrices Nm, cf. Eq.(C2.26). Recall that L is

the system size in time direction, cf. Eqs. (B4.69)–(B4.70). We define the function

g(q) ≡ tr
{
B−1(q⊥, q1) · ∂HB(q⊥, q1) −B−1

∞ (q⊥, q1) · ∂HB∞(q⊥, q1)
}
. (C2.32)

The index ∞ in Eq. (C2.32) assigns the asymptotic expressions for H → ∞. Note that

the term containing the asymptotic expressions vanishes, since the limit is taken before

performing the derivative.

The continuum limit for q1 is performed by taking both N and W to infinity such that

λ = W/(N + 1) remains constant. Then the sum over j = 0, . . . , N in Eq.(C2.30) forms an

integral, and one obtains

∂HTr ln
(M̃M̃−1

∞
)

= LW 2

∫ ∞

−∞

dq0
2π

∫ ∞

−∞

dq2
2π

∫ 2π/λ

0

dq1
2π

g(q0, q1, q2). (C2.33)

Due to the definition of g, the left hand side of Eq.(C2.33) is already regularized. The change

of the DOS for the system is related to the function g by

1
A
∂Hδρ(q0) = − 1

π

∫ 2π/λ

0

dq1
2π

∫ ∞

−∞

dq2
2π

∂q0g(q0, q1, q2), (C2.34)

where A = W 2 is the surface area of the system. As explained at the end of the previous

paragraph after Eq. (C1.18), the term on the left hand side of Eq. (C2.34) determines the

contribution to the Casimir force at fixed frequency q0.

The function g has the following symmetries: at first, a shift in the momentum q1 →
q1 + 2π/λ leads to renumbering of the matrix elements Bkl, since the matrix M̃ has infinite

dimension. Thus, g(q⊥, q1) = g(q⊥, q1 + 2π/λ). Secondly, if the surface profiles have

reflection symmetry, i.e. hα(−y1) = hα(y1), this symmetry translates to the function g as

g(q⊥,−q1) = g(q⊥, q1), since Nm(q⊥,−q1) = N−m(q⊥, q1).

The normal Casimir force F/A = −1/(2LW 2)Tr(M̃−1∂HM̃) per surface area A = W 2, cf.

Eqs. (B4.65), (B4.66) can now be expressed as

F/A = − 1
8π2

∫ ∞

0
q⊥dq⊥

∫ 2π/λ

0
dq1 g (q⊥, q1) . (C2.35)
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Note that from the symmetry relation g(q⊥,−q1) = g(q⊥, q1), the integration over q1 in

Eq. (C2.35) can be restricted to the interval [0, π/λ), which gives an additional factor 2 on

the right hand side of this equation. However, in the general case where hα(−y1) 	= hα(y1),
one has to resort to Eq. (C2.35), which represents the key result of this section.

In the next chapter, this result will be used for a numerical computation of the normal

and lateral Casimir force in a geometry with rectangular gratings, see Fig. D.1. As it was

pointed out above, this geometry allows for an analytic evaluation of the Fourier coefficients

in Eq.(C2.23) and thus for the matrices Nm. For general periodic modulations the input

of the numerical computation are (numerically) evaluated matrices Nm from the Fourier

expansion in Eq.(C2.24).

In any case, it is necessary to resort to a numerical algorithm to compute the function g from

the input matrices Nm, since the inversion of the matrix B which enters into Eq. (C2.32) is

not practicable analytically. Then, all following operations as the computation of the trace

and the integration in Eq. (C2.35) to get the force have also to be performed numerically.

Before implementing the numerical algorithm to calculate the Casimir force, one needs a

cutoff for the dimension of M̃. Since M̃ is composed of the blocks Bkl, see Fig.C.2 and

Eq.(C2.25), a cutoffM is defined by a restriction of the discrete indices k, l ∈ {−M, . . . ,M}.
Then, dim(M̃) = 2(2M + 1)(N + 1). Fig.C.2 displays the restricted matrix for M = 1. For

the correspondingly defined function gM , the discrete trace tr in Eq.(C2.32) is restricted to

the summation over k, l = −M, . . . ,M as well. Inserting gM into Eq.(C2.35) defines the

result FM which converges to F for M → ∞. To examine the convergence, the case of two

flat plates at distance H will be considered. Then, M̃ is diagonal and Nm ∼ δm0. Thus, the

matrix B is also diagonal with Bkl (q⊥, q1) = δklN0 (q⊥, q1 + 2πl/λ). Note that now, the

corrugation wavelength λ is a ”dummy” parameter since there is no corrugation any more.

The result for gM is

gM (q⊥, q1) =
M∑

l=−M

2q̃l
e2q̃lH − 1

(C2.36)

with q̃l ≡
√
q20 + q22 + (q1 + 2πl/λ)2. The Mth order approximation FM to the force is

obtained by integration over q1 and yields

FM/A = − 1
8π2

∫ ∞

0
q⊥dq⊥

∫ 2π/λ

0
dq1 gM (q⊥, q1)

= − 1
4π2λ2

∫ ∞

0
q⊥dq⊥

∫ 2π(M+1)

−2πM
du

ũ

e2ũH/λ − 1
. (C2.37)

In the last row of Eq. (C2.37), the dimensionless variable ũ = (λ2q2⊥+u2)1/2 was introduced.

For M → ∞, the right hand side of Eq. (C2.37) yields F/A = − π2

480H4 , which is the well
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known result for the Casimir force per surface between flat plates. The correction to the

finite order result is determined by the dimensionless ratio H/λ and decays exponentially

fast to zero as F − FM ∼ e−4πMH/λ for large M . Thus, a numerical approach should give

accurate results for large M . In general, we expect that the convergence becomes faster for

increasing values of H/λ.

2.2 Biperiodic boundary surfaces

The analysis in the previous section applies to geometries with a translational symmetry where

the field modes separate into contributions of TM and TE modes, which can be treated within

the framework of scalar field quantization. However, if this translational symmetry does no

longer exist, as in the case of biperiodic surface modulations, the modes will mix under the

scattering at deformations and thus, a representation of the modes by scalar fields is no

longer expected to hold. In this case, one has to resort to the gauge field formalism outlined

in chapter B. Biperiodic profile functions satisfy hα(y‖) = hα(y1, y2) = hα(y1 +λ1, y2 +λ2)
with corrugation wavelengths λ1 and λ2. No numerical computations were made to calculate

the Casimir forces between biperiodic profiles. However, it is interesting to study how the

previously discussed matrix transformation translates to the more general case of biperiodic

surface deformations.

Analogously to the former case treated within the scalar field approach, the response ker-

nel M̃ of the effective Gaussian action from the gauge field path–integral quantization

contains the partially Fourier transformed Green function e−q|z|/(2q) with z = hα(y‖) −
hβ(y′

‖) +H(δα2 − δβ2), cf. Eq. (B3.54) and Eq. (B3.56), which is now a periodic function

in (y1, y
′
1, y2, y

′
2) and which can be expanded as

1
2q
e
−q|hα(y‖)−hβ(y′

‖)+H(δα2−δβ2)| =
∞∑

mj ,nj=−∞
(j=1,2)

ϕαβm1m2,n1n2
(q) e

2πi
λ1

(m1y1+n1y′1)e
2πi
λ2

(m2y2+n2y′2)

(C2.38)

with the Fourier coefficients

ϕαβm1m2,n1n2
(q) =

1
λ2

1λ
2
2

∫ λ1

0
dy1

∫ λ1

0
dy′1 e

− 2πi
λ1

(m1y1+n1y′1)
∫ λ2

0
dy2

∫ λ2

0
dy′2 e

− 2πi
λ2

(m2y2+n2y′2)

× 1
2q
e
−q|hα(y‖)−hβ(y′

‖)+H(δα2−δβ2)|.

(C2.39)

In general, the Fourier coefficients ϕαβmn,ks have to be calculated numerically. By inserting

Eq. (C2.38) into Eq. (B3.54), in analogy to the one dimensional case, M̃ can be transformed
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Figure C.3: Nested structure of the discretized matrix M̃ after having performed the permutation

algorithm to convert it to block diagonal form. The only regions with nonzero entries are the grey

shaded infinite block matrices Mj1j2 at fixed j1, j2 along the diagonal.

into

M̃αβ,jl (p,q) = (2π)3δ(p0 + q0)

×
∞∑

m=−∞

∞∑
n=−∞

δ (p1 + q1 + 2πm/λ1) δ (p2 + q2 + 2πn/λ2) Nαβ,jl
m,n (q) ,

(C2.40)

where Nm,n (q) are now 4×4 matrices, which can only be obtained analytically if the Fourier

coefficients ϕαβm1m2,n1n2(q) are known analytically as well.

The transformation of M̃ to block–diagonal form is now achieved by discretizing the mo-

menta pj, qj ∈ 2π
W {0, . . . , Nj} with integers Nj = W/λj − 1 for j = 1, 2 where W is the

system length in the yj directions. Then the permutation process outlined above will be

used twice, which gives finally the nested block diagonal form

M̃ (p0, q0; N1, N2) = (2π)3δ (p0 + q0) diag
{

diag {Mj1j2 (q0)}N2

j2=0

}N1

j1=0
, (C2.41)

see Fig. C.3, with the block matrices M̃j1j2 (q0) = B
(
q0; 2πj1

W1
, 2πj2
W2

)
, and the matrix B is

defined as

Bαβ,rs
k1l1,k2l2

(q0, q1, q2) = Nαβ,rs
k1−l1,k2−l2

(
q0, q1 + 2π l1

λ1
, q2 + 2π l2

λ2

)
. (C2.42)
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The discretized matrix M̃ now depends on the integers N1, N2 which was noted in (C2.41).

Later, these integers together with W will be taken to infinity such that the corrugation

wavelengths λj = W/(Nj + 1) remain constant. Furthermore, the kj , lj are running over

all integers, such that every block B has infinite dimension. For the numerical calculations,

it will be necessary to introduce a cutoff Mj such that kj , lj = −Mj , . . . ,Mj . Thus, the

blocks B will become finite dimensional with the dimension 4(2M1 + 1)(2M2 + 1). The

determinant of the matrix M̃ in (C2.41) will then be given by

detM̃ =
∏
q0

N1,N2∏
j1,j2=0

detMj1j2(q0). (C2.43)

By using ln detM̃ = Tr lnM̃, the derivative of (C2.43) with respect to the mean surface

distance H leads to

∂H ln detM̃ = L

∫ ∞

−∞

dq0
2π

N1,N2∑
j1,j2=0

tr
{
M−1

j1j2
(q0)· ∂HMj1j2(q0)

}
, (C2.44)

where the trace tr on the right hand side of Eq. (C2.44) is running over all discrete arguments

at fixed j1, j2. Analogously to the discussion of the one dimensional case, we define the

function

g (q) ≡ tr
{
B−1 (q)· ∂HB (q) −B−1

∞ (q)· ∂HB∞ (q)
}

=
∞∑

k1,l1=−∞

∞∑
k2,l2=−∞

2∑
α,β,r,s=1

{
(B−1)αβ,rsk1l1,k2l2

· (∂HB)βα,srl1k1,l2k2

− (B−1
∞ )αβ,rsk1l1,k2l2

· (∂HB∞)βα,srl1k1,l2k2

}
(q0; q1, q2) .

(C2.45)

Then, Eq. (C2.44) is recovered by

∂H ln det
(
M̃M̃−1

∞
)

= L

∫ ∞

−∞

dq0
2π

N1,N2∑
j1,j2=0

g
(
q0; 2πj1

W1
, 2πj2
W2

)

→ LW 2

∫ ∞

−∞

dq0
2π

∫ 2π
λ1

0

dq1
2π

∫ 2π
λ2

0

dq2
2π

g (q0; q1, q2) .

(C2.46)

In the last row of Eq. (C2.46), the continuum limit was performed. We note that g has

the symmetry g (q0, q1, q2) = g (q0, q1 + 2π/λ1, q2 + 2π/λ2), since B is of infinite dimension

and therefore, a shift of the argument qi by an integer multiple of 2π/λi will be absorbed.
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3 Summary

In this chapter, we deduced a trace formula for the change of the Helmholtz spectrum by

conducting surfaces of general shape. The derivation is based on a path integral quantization

of the scalar field. While the discussion was focussed on the geometry composed of two plates

Sα for α = 1, 2, which is related to the Casimir problem, we note that the trace formula is

sufficiently general to describe more general geometries including closed and disconnected

objects, as depicted in Fig. C.1(b), see also the derivation in appendix F.1. For complicated

geometries, an adapted regularization procedure has to be considered [9]. The formalism

can also be extended to any space dimension, which might be interesting for applications to

chaotic systems as classical or quantum billiards.

Focusing on the Casimir interaction, a non–approximative method to compute interactions

in geometries with periodic structure and ideally conducting surfaces was developed in the

second part of this chapter. The effective Gaussian action obtained from the path integral

quantization was transformed to a representation which is adapted to periodic geometries.

It was shown that the method can easily be extended to periodic geometries which can not

be treated within the framework of a scalar field theory.

Path integral quantization in the presence of boundaries has been previously applied to per-

turbative calculations of Casimir interactions between static and dynamic deformed manifolds

in the context of both thermal [71, 72] and quantum fluctuations [48, 49] of the confined

field. However, these discussions were restricted to surfaces with small local curvature.

An efficient numerical computation of the force between macroscopic objects with strong

periodic deformations can be performed based on the results obtained in this chapter. This

will be done in the following chapter D, where special periodic geometries are taken into

account, for which the matrix B in Eq. C2.26 can be obtained analytically.
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D Casimir forces in periodic geometries

The Casimir interaction is strongly dependent on geometry. To date, the functional de-

pendence of the interaction on changes of the geometry has been tried to be understood

mainly by means of approximative methods. However, there is little knowledge about this

dependence in geometries beyond some simple cases which are similar to the system of two

flat plates, as e. g. plate and sphere. Not only inevitable surface roughness, but also and

above all microstructures with artificial surface design require a treatment which goes further

than the conventional approximative methods, which are restricted if the surface curvature

becomes large or assume pair–wise additivity of intermolecular forces on microscopic scale.

This chapter is devoted to the study of the Casimir force in geometries which have periodically

deformed surface structures. Specific geometries will be analysed, following up the general

features which were outlined in chapters B, C, using the path integral technique. Periodic

geometries were proposed to reveal more about the nature of the Casimir interaction [48, 35].

In Refs. [35, 36], sinusoidally corrugated surfaces are studied by means of perturbation theory

to second order with respect to the deformation amplitude. This approximative method is

reasonable as long as the deformation is smooth with low curvature, i. e. the deformation

amplitude is the smallest length scale in the system. Otherwise, if the profile exhibits sin-

gularities as edges, perturbation theory to finite order yields divergent contributions to the

interaction. This could only be repaired by smoothing out any sharp edge over a finite length

scale, then sum up all orders of perturbation theory and then performing the limit to the

profile with sharp edges again. This is evidently not practicable. Even for smooth profiles, a

low order perturbation expansion will be insufficient if the curvature becomes large. Then,

an expansion to higher orders is necessary to obtain reliable results. Thus we conclude that

for arbitrary geometries, nonperturbative techniques become important.

In the first part of the chapter, we confine ourselves to the study of the normal Casimir force

between a flat plate and a plate with periodic corrugation. We choose a uniaxial rectan-

gular grating with edges for the corrugated mirror, see Fig. D.1. This profile is especially

interesting because in fact it demands a nonperturbative analysis, because a perturbative

analysis is a priori not applicable, due to the edges. The calculation of the Casimir inter-

action is an application of the general approach for uniaxial periodic geometries based on
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the scalar field quantization for ideal metals outlined in chapter B. Within this approach,

the transversal magnetic (TM) and transversal electric (TE) waves of the electromagnetic

field could be treated separately, and for the specific geometry considered here, they reveal

a qualitatively distinct behaviour. We also compare the numerically obtained results to the

proximity force approximation (PFA), which is equivalent to the renormalized pair–wise sum-

mation of Casimir–Polder potentials (PWS) if one of the plates is flat. The PFA assumes

small local curvature, which is fulfilled for the flat segments of the rectangular grating, but

violated near the edges where the curvature becomes infinitely large. While the deviation of

the nonperturbative results from the PFA and PWS reflects the non–additivity of the Casimir

force, the data scale towards the results of the PFA for large deformation wavelengths, where

the density of edges along the axis of corrugation becomes small. In the opposite limit of

small deformation wavelength, a different scaling is found, which is a non–perturbative ef-

fect. Furthermore, our numerical results will be compared to the perturbative results for the

sinusoidally corrugated surface which were calculated in [35] and [36]. It will be seen that the

profile with edges modifies the force compared to a smooth profile even at large distances.

Later in the second part, we will extend our study to lateral Casimir forces between two plates

with rectangular gratings, see Fig. F.1. No lateral forces can exist in a geometry where one

of the plates is flat, since there is no length scale which defines any lateral shift between the

plates. As done in the case of the normal force, the results will be discussed and compared

to those of the approximation methods.

1 Normal Casimir forces between periodically corrugated

surfaces

The considered rectangular profile has amplitude a and corrugation wavelength λ and is

opposed to a flat plate at a mean distance H, see Fig.D.1. Choosing y1 to be the direction

of modulation, the height profile function reads

h1(y1) =

{
a for |y1| < λ/4
−a for λ/4 < |y1| < λ/2

(D1.1)

with periodic continuation h1(y1 + λ) = h1(y1). Since the upper plate is flat, h2(y1) = 0.
To apply the general result of Eq. (C2.35) to the Casimir force, the matrix M̃ needs to

be decomposed into the coefficient matrices Nm of the expansion in Eq. (C2.24). For an

arbitrary periodic profile, one needs to resort to a numerical evaluation of the matrices Nm.

The periodicity of the profile of the lower plate permits its representation as a discrete Fourier
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Figure D.1: Geometry consisting of a rectangularly corrugated plate and a flat plate. The surfaces

are translationally invariant along the x2–direction.

series,

h1(y1) =
2a
π

∞∑
n=−∞

(−1)n−1

2n− 1
e

2πi
λ

(2n−1)y1 . (D1.2)

Inserting this expansion (D1.2) into the matrix M, cf. Eqs. (C2.19)–(C2.20), and calculating

the Fourier transformed matrix M̃ leads after some algebra to the matrices Nm. This

calculation will be performed in appendix F in detail 1. The results for Dirichlet boundary

conditions are

ND,m (q⊥, q1) =

(
AD
m (q⊥, q1) 0

0 0

)
+ δm0

(
1
4q (1 + e−2aq) e−qH

2q cosh(aq)
e−qH

2q cosh(aq) 1
2q

)
(D1.3)

if m is even, and

ND,m (q⊥, q1) =

 0 (−1)
m−1

2

mπ
e−qH

q sinh(aq)
(−1)

m−1
2

mπ
e−q̃mH

q̃m
sinh(aq̃m) 0

 (D1.4)

if m is odd.

1In the appendix, both plates are corrugated and described by the function in Eq. (D1.2). From the resulting

matrices, the matrices for the geometry in Fig. D.1 will be recovered by setting the amplitude of the second

plate to zero.
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Analogously, for Neumann boundary conditions, the results are

NN,m (q⊥, q1) =

(
AN
m (q⊥, q1) 0

0 0

)
+ δm0

(
− q

4(1 + e−2aq) q
2e

−qH cosh(aq)
q
2e

−qH cosh(aq) − q
2

)
(D1.5)

if m even, and

NN,m (q⊥, q1) =

 0 (−1)
m−1

2

mπ
e−qH

[
q+ 2πm

λ
q1
q

]
sinh(aq)

(−1)
m−1

2

mπ
e−q̃mH

[
q̃m− 2πm

λ
q1+2πm/λ

q̃m

]
sinh(aq̃m) 0


(D1.6)

if m odd. The functions AD
m and AN

m are defined as follows:

AD
m (q⊥, q1) =

1
π2

∞∑
k=−∞

(−1)
m
2

(2k − 1)(m− 2k + 1)
e−2aq̃2k−1 − 1

q̃2k−1
(D1.7)

and

AN
m (q⊥, q1) =

1
π2

∞∑
k=−∞

(−1)
m
2

(2k − 1)(m− 2k + 1)
1 − e−2aq̃2k−1

q̃32k−1

×

×
[
q1
(
q1 + 2πm/λ

)(
q1 + 2π(2k − 1)/λ

)2 + 2q2⊥
(
q1 + πm/λ

)(
q1 + 2π(2k − 1)/λ

)
+ q4⊥

]
(D1.8)

respectively, with q̃n = (q2⊥ + (q1 + 2πn/λ)2)1/2, which implies q = q̃0. With these results,

the Casimir force will be calculated by first constructing the matrix Bkl at finite truncation

order M , cf. Eq. (C2.26). From this, the function gM (q⊥, q1) will be computed by inverting

the matrix B numerically and multiplying with ∂HB, cf. Eq. (C2.32). Finally, the integration

will be performed, see Eq. (C2.35). This yields the force approximation FM which converges

to F for M → ∞. For a sequence of fixed truncation orders M , we obtain a sequence FM ,

which will be extrapolated to the force F .

In the limit of small corrugation wavelength, λ→ 0, it turns out that a closed form for the

function g(q⊥, q1) can be calculated, which allows to compute the Casimir force exactly.

1.1 Small corrugation wavelength

In the following, the case will be considered where the corrugation wavelength sets the

smallest length scale in the system. In the limit of small corrugation wavelength λ→ 0, one

would expect that the photon field modes of the zero point fluctuating field which mainly

contribute to the interaction between the plates, which are those which have a wavelength

of the order of the distance H, no longer enter into the narrow valleys of the corrugated
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plate. If λ is kept at a small but fixed value, this picture should be still a good, though

approximate description, since it still affects the wavelengths of order H. Consequently, one

expects that the plates interact with a force which is equal to a force between two flat plates

at the reduced distance H − a. The question remains to what extent this approximation

is applicable, how large is the correction if λ becomes larger, e. g. of order a. To verify

the expectation of this ”reduced distance argument” and to clarify the latter question, the

previously developed approach will be applied to the case of λ→ 0. In this limit, the matrices

Nm(q⊥, q1) assume a particularly simple form for both TM and TE modes. Their explicit

form is given in appendix F. From this result, the function gM (q⊥, q1) which was introduced

earlier in chapter C before Eq. (C2.36), will be calculated analytically.

As pointed out previously, the infinite–dimensional matrix Bkl is truncated for the calculation

at order M with k, l = −M, . . . ,M so that the leading matrix entries are taken into ac-

count. From the exponential convergence behaviour of the result for flat plates given below

Eq. (C2.37), one can expect that in the limit λ→ 0, the series gM (q⊥, q1) converges rapidly

to g(q⊥, q1). Our explicit calculation of gM (q⊥, q1) for low M confirms this expectation.

From the truncated matrix Bkl of Eq. (C2.26) and the matrices in appendix F we get the

result

gM (q⊥, q1) =

{
− 2q(1+e−2aq)

1+e−2aq−2e2(H−a)q for M = 0

q
{
coth

(
q(H − a)

)− 1
}

for 1 ≤M ≤ 3
(D1.9)

for both TM and TE modes. From Eq. (D1.9) one sees that for orders M ≥ 1 the function

gM remains invariant with increasing dimension M of the matrix Bkl. We have verified this

explicitly for M = 1, 2, 3, it is plausible to assume the latter result to hold for allM ≥ 1. The

result has precisely the form which one gets for two flat plates at reduced distance H − a.

Integrating the function gM (for M ≥ 1) according to Eq. (C2.35), one obtains the Casimir

force per surface area for both types of modes

F0/A = − π2

480
1

(H − a)4
. (D1.10)

Thus, in the limit λ → 0, TM and TE modes yield the same contribution F0 to the total

electrodynamic Casimir force F = 2F0. The result of Eq. (D1.10) confirms the physical

”reduced distance argument” introduced at the beginning of this paragraph. Note that this

result is nonperturbative in a/H and exact in the limit λ → 0. A perturbation expansion

for smooth surface profiles yields always corrections of order a2 [35, 36]. For small a/H,

Eq. (D1.10) has the expansion

F0/A = − π2

480
1
H4

[
1 + 4a/H + O(a2/H2)

]
, (D1.11)



62 Casimir forces in periodic geometries

where a > 0. In general, a has to be replaced by |a|. This shows that Eq. (D1.10) is

non–analytic at a→ 0 and perturbation theory is not applicable for small λ
 |a|.
Below in the numerical analysis it will be seen that F0 is the upper limit of the Casimir

force for both TM and TE modes for fixed H/a, i. e. with increasing λ the force decreases,

starting from F0. We expect the reduced distance argument to be valid for corrugations of

arbitrary shape, if λ is identified with the characteristic length of surface deformations.

1.2 Large corrugation wavelength

In the opposite limit of very large λ, the corrugated surface is composed of large flat segments

with a low density of edges. The main contribution to the force results from photon modes

with wavelengths of the order of the distanceH. Thus, at sufficiently small surface separation

H 
 λ, diffraction can be neglected in the dominant range of modes, and the proximity

force approximation (PFA) should be applicable.

The PFA assumes that the total force can be calculated as the sum of local forces between

flat and parallel infinitesimally small surface elements at their local distance H − h(y1). It

neglects diffraction which is strictly justified for smooth surfaces with small local curvature

only. In the case discussed here, h1 should be smooth with a
 λ. While the latter condition

is satisfied, the influence of the corners of the rectangular surface profile should decrease for

λ → ∞, such that the comparison of the exact result for the force with the result obtained

by the PFA should be reasonable.

The pair–wise summation of renormalized Casimir–Polder potentials (PWS) and the PFA

are identical for the case that one of the plates is flat, see Ref. [36]. The renormalization of

the potential is performed such that the PWS for flat plates yields the exact result.

The PFA is applied in the limit λ→ ∞ by considering the flat segments of the surface profile

h1 as flat plates at the distances H + a,H − a which are weighted each by one half across

the entire surface area leading to for both TM or TE modes to the result

F∞/A = − π2

480
1
2

[
1

(H − a)4
+

1
(H + a)4

]
. (D1.12)

In the next section, we will see that this result poses a lower limit to the Casimir force for

both TM and TE modes. Expanding Eq. (D1.12) in orders of a/H, we get

F∞/A = − π2

480
1
H4

[
1 + 10a2/H2 + O(a4/H4)

]
. (D1.13)

Since, due to the sum in the square brackets on the right hand side of Eq. (D1.12), the terms

of odd powers cancel mutually in an expansion with respect to a/H, the correction for small

a/H in the limit of large wavelength λ is of order (a/H)2, contrary to the limit of small λ.
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1.3 Exact results

In this section, the nonperturbative approach for periodic geometries outlined in chapter C

will be implemented for the geometry depicted in Fig. D.1. This has to be done numerically,

since the function gM can not be computed analytically from the input matrices Nm in

Eqs. (D1.3)–(D1.6) at arbitrary corrugation wavelength λ.

The basis for the numerical approach was outlined in the general discussion for periodic

geometries. Note that the analytic knowledge of the input matrices Nm allows for an analytic

evaluation of Bkl and its derivative with respect to H. This circumvents the risk of getting

inaccurate results from numerical differentiation. Once the function gM at finite truncation

order is known, the integration in Eq. (C2.35) will be performed, which is straightforward

due to the exponential decay of gM . Thus, the force FM is obtained, which converges to F

in the limit M → ∞.

From our analysis of the flat plate geometry in chapter C, see Eq. (C2.37), we expect an

exponentially fast convergence of the finite size correction FM−F ∼ e−γM with a coefficient

γ, which depends on geometrical lengths. This will appear to be consistent with the numerical

data, as discussed in more detail in the next section. It allows for an extrapolation of F from

the FM for M ≤ Mmax. We chose Mmax between 10 for the smallest λ/a = 0.1 and 97 at

the largest value λ/a = 300.

The separate contributions FTM and FTE from TM and TE modes to the Casimir force

were calculated in units of the corresponding forces FT,flat for flat surfaces at the same

(mean) distance H, where T = TM,TE. For flat plates, both forces are equal. We varied

the mean surface distance H and the corrugation length λ both measured in units of the

corrugation amplitude a. The results of the extrapolation of the data for FM are displayed

in Fig.D.2 as a function of H/a at different corrugation lengths λ/a ranging between 0.1
and 300. Additionally, in Fig.D.3, we show the results for the full force F = FTM + FTE

in an experimentally relevant range of small plate separations of up to H/a = 16. In

the experiment of Chen and Mohideen [25], the ratio H/a is of this order. At any fixed

distance, both types of modes are bounded from above by the result for the force F0 at

reduced distance, cf. Eq. (D1.10), and are bounded from below by F∞, the result from the

proximity force approximation, cf. Eq. (D1.12). For small λ/a the numerical data increase

and approach F0. For large λ/a, the data converge from above to the lower bound F∞.

Since the convergence towards F∞ becomes slower for increasing H/a, there are two distinct

scaling regimes for the force at fixed corrugation length λ/a.

At small H/a, the relative change of the force compared to the force between two flat plates

FT/FT,flat − 1, decays as (H/a)−2. After a crossover regime the relative change of the force
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Figure D.2: Normal Casimir force for TM modes (a) and TE modes (b) as a function of H/a

for various corrugation lengths λ. The (dimensionless) relative change compared to the force for

flat plates FTM,flat = FTE,flat = −π2/(480H4) is shown. The two bold curves which enclose the

numerical data are the analytic results F0 for λ → 0 (upper curve) and F∞ for λ → ∞ (lower

curve).

decays at larger H � λ like (H/a)−1, following the behaviour of the exact result F0 for

λ → 0. The so far described qualitative behaviour of the force is common to both types of

modes. However, there is a clear distinction between TM and TE modes, especially at large

λ/a, as can be seen from Fig. D.2. The force from TE modes has much more pronounced

deviation from the proximity approximation result F∞ as the TM modes. In particular at

large corrugation lengths (λ/a = 300) this can be seen clearly from our numerical data. The

same behaviour is observed for the deviations from F0 at small λ/a. Thus, the force FTE

appears at intermediate values of λ/a more strongly separated from the lower and upper

bound, cf. Fig. D.2(b). We will return to this point later in the section when we discuss the

scaling of the force with λ/a close to the bounds.

The differences between TM and TE modes seen above call for a quantitative study of the

ratio of the two wave types. To set an example, it shall be mentioned that in some geometries

such as a sphere or a cube, the Casimir energy for the full electromagnetic field leads to a

repulsive force (which tends to extend the volumina), whereas the force obtained from a

scalar field calculation with Dirichlet boundary conditions remains attractive [18, 90].

Since in uniaxial geometries such as the geometry we are looking at, the electromagnetic

gauge field and the scalar field with Dirichlet boundary conditions differ in the presence of a
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Figure D.3: Total Casimir force F = FTM + FTE in the short distance regime. The relative change

δF = (F − Fflat)/Fflat of the force compared to force for flat plates Fflat = −π2/(240H4) is

depicted. The enclosing curves have the same meaning as in Fig.D.2, but are now given by 2F0

and by 2F∞ since both TM and TE modes have the same contribution in these limits.

scalar field with Neumann boundary conditions, i.e. TE waves, it is interesting to analyse the

difference of the two wave types in more detail. This can be done by looking at the functional

dependence of the ratio FTM/FTE on the length scales of the geometry. Fig. D.4 shows this

ratio as a function of the distance H/a. One observes that at fixed λ/a, in the limit of

large surface distance, the ratio converges to 1, which is consistent with the fact that the

geometry approaches that of two flat plates. Equally, in the limit of smallH/a→ 1, the ratio

FTM/FTE approaches 1, which is in accordance with the proximity force approximation which

does not distinguish between the two wave types. FTM/FTE shows a peak for a characteristic

H/a which depends on λ/a. For the entire range of studied corrugation lengths the ratio

converges to one for large H/a according to |FTM/FTE − 1| ∼ (H/a)−1, see Fig. D.4(b).

However, this asymptotic behaviour sets in only beyond a crossover separation H which

increases with λ. At intermediate λ/a the ratio varies approximately between 0.95 and 1.15
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Figure D.4: (a) Ratio of the normal force for TM and TE modes as a function of the distance H for

various corrugation wavelengths λ. (b) Log–log–plot of the deviation of the ratio from 1 at large

surface distance H .
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Figure D.5: Scaling behaviour of the force for TM modes (a) and TE modes (b) as a function of

λ/a for fixed distance H = 10a close to the lower bound (PFA) F∞ for λ→ ∞ and to the upper

bound F0 for λ→ 0.

in the studied range of λ/a. TM modes dominate at λ/a � 10 and at small H/a for all λ/a.

The contribution from TE waves is larger for λ/a � 10 and H/a � 2. It is instructive to



D1 Normal Casimir forces between periodically corrugated surfaces 67

 0.0001

 0.001

 0.01

 0.1

 0.1  1  10  100  1000
(a)

 0.0001

 0.001

 0.01

 0.1

 0.1  1  10  100  1000
(b)

Figure D.6: This is the same plot as Fig. D.5 but for the surface distance H = 100a.

compare this behaviour to perturbative results of Ref. [35, 36] for the geometry consisting

of a smooth sinusoidally corrugated and a flat plate. As will be explained in more detail in

the next section, the perturbative result for the later geometry yields FTM/FTE > 1 for all

λ/a � 1 and H/a � 1, in contrast to our results for the rectangular corrugation. This

observation suggests that the corners of the rectangular corrugation in fact cause the slight

amplification of TE waves compared to TM waves at λ/a � 10. One can argue that imposing

for TE modes a vanishing normal derivative on the field at the concave corners inside the

valleys of the corrugation provides a stronger constraint on field fluctuations as compared to

Dirichlet conditions for TM modes. If the width of the valleys is decreased with λ the two

opposite corners can no longer be considered separately and the Dirichlet condition might

provide a stronger restriction. For very small H/a the main contribution to the force comes

from rather short wavelengths which should be only very weakly affected by the Neumann

conditions at the concave corners. Finally, we consider the scaling of the force from TM and

TE modes close to lower and upper bounds F∞ and F0, respectively. Figures D.5 and D.6

show a logarithmic plot of force form TM and TE modes at fixed H = 10a and H = 100a,
measured relative to F∞ for large λ/a and relative to F0 for small λ/a. At small λ we found

an interesting qualitative difference between both types of modes for the scaling towards the

exact result F0 for λ→ 0,

F0 − FTM

FTM,flat
∼ λ

a
,

F0 − FTE

FTE,flat
∼

(
λ

a

) 1
2

. (D1.14)

For the difference of the exponents, we cannot present a satisfying simple argument.
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Figure D.7: Finite size scaling for flat plates. Displayed are ln |F2M+1/Fflat − 1| as as function of

2M+1 with the cutoff order M . The exponential decay does not set in immediately, it depends on

the ratio H/λ and saturates due to the limited and previously defined precision of the algorithm.

Note that λ has no physical meaning here, since the plates are flat. The same applies to the

amplitude a relative in units of which the surface distance H is measured.

In the limit of large λ/a, the PFA result is approached linearly for both TM and TE modes.

FTM − F∞
FTM,flat

∼ a

λ
,

FTE − F∞
FTE,flat

∼ a

λ
, (D1.15)

which can be understood within the framework of classical ray optics [58] as we will discuss

in section 1.5 of this chapter.

1.4 Numerical algorithm and finite size scaling

In this paragraph, the algorithm for the numerical computation of the Casimir force will be

discussed in detail.

For the numerical calculation of the function gM at finite cutoff order M , we used the so–

called LU–decomposition and LU–backsubstitution, see [40], which is an efficient algorithm

based on the Gaussian diagonalization procedure to determine the matrix B−1∂HB and then

its trace from the (analytically calculated) matrices B and ∂HB.

To obtain the force per surface area FM/A according to Eq. (C2.35), the numeric integration

of the obtained function gM was performed for q1 ∈ [0, π/λ) and q⊥ ∈ [0,Λ) with a cutoff
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Figure D.8: Finite size scaling plots for TM modes for fixed values of the corrugation length λ and

the distance H . Displayed are the logarithmic finite size corrections ln |1 − F2M+1/Fflat| as a

function of the cutoff order 2M + 1. The convergence is slower than for flat plates.

Λ, which is allowed due to the exponential decay of gM in q⊥. The matrices Nm(q⊥, q1)
depend exponentially on q⊥, cf. Eqs. (D1.3)–(D1.6), and this exponential decay in q⊥
translates to the function gM . Note that this is consistent with the result for flat plates,

cf. Eq. (C2.36). Moreover, the decay is independent of the cutoff order M . This can be

compared to Eq. (C2.37) for the flat plate result, where M only enters in the integral over

q1. The cutoff Λ has to be chosen as large as to reach the saturating regime for FM under

a further increase of Λ. Since Λ does not depend on M , the cutoff Λ could be found by
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Figure D.9: The same plots as in D.8 for TE modes.

testing the function gM at small orders of M .

The sampling points (q⊥, q1) ∈ [0,Λ)× [0, π/λ) were chosen dynamically by the integration

routine DCUHRE [1] to satisfy the relative accuracy ∆FM/FM of the force which was set

to 10−5.

The calculations were performed with Λ ≥ 100/H, which assures that the results for FM

after performing the integration are within the noise given by ∆FM . Therefore, the limiting

factor of precision is posed by the numerical integration, since the calculation of the function

gM via the LU–decomposition–backsubstitution procedure is a deterministic process with a

precision which is only limited by double precision format of the data.
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Finally, we discuss the extrapolation of FM to F . As long as M is not large enough to reach

the saturation regime, where for a fixed value F for the force |F − FM | ≈ ∆FM for all

M ≥M0, the final result for the force has to be extrapolated.

Since the convergence is expected to be exponential, F is determined by the scaling assump-

tion F − FM ∼ e−γM with a coefficient γ which depends on geometrical lengths. We show

the results as a function of 2M + 1. This modified cutoff counts the number of the 2 × 2
submatrices Nm in each row or column of B, which is always odd.

First, we test the exponential convergence for the case of flat plates. Fig. D.7 shows the

logarithmic correction to the force ln |F2M+1/Fflat − 1| as a function of 2M + 1 with the

finite cutoff order M for different values of λ and H. After a linear decay determined by

γ, which depends only on the ratio of H/λ, the saturation regime is reached due to the

limited precision of the integration routine. The precision is given by the point where the

data deviate from the linear decay, which is 1 − F2M+1/Fflat ≈ e−12 ≈ 10−5.

In Figs. D.8–D.9, the exponential decay of the finite size corrections to the force for the

corrugated plates for selected values λ/a = 10, 100, 300 of the wavelength and H/a =
10, 100 of the surface distance are shown. Note that the convergence for corrugated plates

is much slower as in the case for flat plates, so that it can in general not be expected to reach

the regime of saturation. We observe that for the corrugated plates, the decay exponent

has no longer a simple dependence on the ratio H/λ, as in the case of flat plates. The

data show an exponential decay as from a critical value of 2M + 1 between 80 and 120.
The extrapolated value for the force F is obtained by a fit of the data FM such that the

exponential decay with the exponent γ is obeyed with a minimal error ∆γ. The uncertainty

of the extrapolated result is governed by the exponent e−∆γMmax . We could estimate the

force within a range of ±5% percent of accuracy, depending on the maximum value for the

cutoff order Mmax.

1.5 Comparison to approximative methods

In this section, we compare the numerical results for the square wave profile with the per-

turbatively obtained results for a sinusoidally shaped profile, see Ref. [36]. At the beginning

of the present chapter, it was noted that the perturbation theory with respect to the defor-

mation amplitude can generally not be performed for non–smooth surface deformations. We

will see that perturbation theory yields divergences in the presence of sharp surface defor-

mations as edges. For this reason, we compare the results of the numerical approach for the

square wave profile with the perturbatively obtained results of a sinusoidally shaped profile

discussed in Ref. [36]. We show that discrepancies in the results from the two approaches
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can be qualitatively understood in terms of classical ray optics, a concept which was used in

Ref. [58] for the computation of Casimir interactions in non–trivial geometries.

Recall that the renormalized free Casimir energy is given by E = −(1/L) ln
(ZZ−1∞

)
, with

the partition function Z and the Euclidean length L in time direction, cf. Eq. (B1.6) 2. The

logarithm of the partition function is additive, lnZ = lnZD + lnZN with lnZD and lnZN

the partition functions of TM modes (which satisfy Dirichlet boundary conditions) and TE

modes (which satisfy Neumann boundary conditions), respectively, cf. Eqs. (B4.61)–(B4.62).

In Ref. [36], the logarithm of the partition function lnZ is expanded in powers of the surface

profiles hα. From the fact that the surface profiles describe the deviation from the mean

surface distance, one obtains that the lowest order correction to the energy of two flat plates

E0 = −π2A/720H3 is of second order in the height profile. The first order correction vanishes

assuming that the spatial average of the height profiles is zero,
∫
y1
hα(y1) = 0. The second

order correction can be expressed as E2 = Ecf,1 + Ecf,2 + Ecc. The term Ecf,α contains the

second order correction to the energy which results from the deformation function hα while

the other plate is kept flat. Correlations of the surface deformations are captured by the

other term Ecc. Following Ref. [36], the terms are given by

Ecf,α = − π2

120LH5

∑
α

∫
d3y hα(y1)2

+
1
4L

∑
α

∫
d3y

∫
d3y′ K

(
y − y′) (hα(y1) − hα(y′1)

)2
, (D1.16)

Ecc =
1

2L

∑
α	=β

∫
d3y

∫
d3y′ Q

(
y − y′) hα(y1)hβ(y′1). (D1.17)

The integrations are taken over the three dimensional space defined by y = (y0, y1, y2). The

K and Q are response kernels which contain separate contributions from TM and TE modes.

Note that E2 contains further formally infinite contributions, which, however, are singled out

by regularizing the energy, which is done by subtracting the contributions for H → ∞.

The second plate is flat in the geometry considered here, i.e. h2 = 0, see Fig. D.1. Thus,

the total energy to second order in perturbation theory reduces to E = E0 + Ecf,1. Inserting

now the Fourier series Eq. (D1.2) for the rectangular height profile h1 into Eq. (D1.16), the

energy per surface area can be transformed into

E
A

=
E0

A
− a2π2

120H5
+ 2πa2

∫ ∞

0
dy y2KD (y) +2πa2

∫ ∞

0
dy0

∫ ∞

0
dy‖ y‖KN

(
y0, y‖

)
. (D1.18)

The kernel for the Dirichlet boundary condition depends only on y = |y| and is explicitly

2In Eq. (B1.6), the Euclidean length in time direction L is given by the inverse temperature β (for T > 0).
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given by

KD (y) = − 1
2π4y8

+
π2

128H6y2

cosh2(s)
sinh6(s)

, (D1.19)

with s = πy
2H . The kernel KN for the Neumann boundary condition assumes a more compli-

cated form because the normal derivative breaks the equivalence of space and time directions.

Therefore, it depends on y0 and on y‖ = |y‖| separately, see Ref. [36]. The integrals in

Eq. (D1.18) diverge at y → 0. However, for any smooth profile, one obtains to lowest order

[h1(y1) − h1(y1 + y′1)]
2 ∼ y′21 , and the second term on the left hand side of Eq. (D1.16)

becomes regular.

We consider a sinusoidal profile with amplitude a0 and corrugation wavelength λ given by

h1(y1) = a0 cos(2πy1/λ), see Fig. D.10(a), to compare with the rectangular geometry with

amplitude a. For the sinusoidal profile, Eq. (D1.16) yields for the sum of TM and TE modes

together with zero order term E0 the perturbative correction to the force

F/Fflat = 1 + G̃

(
H

λ

)(a0

H

)2
+ O (

a3
0

)
, (D1.20)

with the function parameter free G̃(x) ≡ (480/π2)
(
G(x)−uG′(x)

)
, where G = GTM+GTE

is the sum of its contributions from TM and TE modes, the explicit forms of which are

calculated in Ref. [36] and given by

GTM(x) =
π3x

480
− π2x4

30
ln(1 − e−4πx) +

π

1920x
Li2

(
1 − e−4πx

)
+
πx3

24
Li2

(
e−4πx

)
+
x2

24
Li3

(
e−4πx

)
+

x

32π
Li4

(
e−4πx

)
+

1
64π2

Li5
(
e−4πx

)
+

1
256π3x

[
Li6

(
e−4πx

)− π6

945

]
, (D1.21)

GTE(x) =
π3x

1440
− π2x4

30
ln(1 − e−4πx) +

π

1920x
Li2

(
1 − e−4πx

)
− πx

48
(
1 + 2x2

)
Li2

(
e−4πx

)
+

[
x2

48
− 1

64

]
Li3

(
e−4πx

)
+

5x
64π

Li4
(
e−4πx

)
+

7
128π2

Li5
(
e−4πx

)
+

1
256π3x

[
7
2
Li6

(
e−4πx

)− π2Li4
(
e−4πx

)
+

π6

135

]
, (D1.22)

with the polylogarithmic function Lin(z) =
∑∞

k=1 z
k/kn [37].

Here, for the purpose of comparison, we are interested in the asymptotic limits of large and
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Figure D.10: Paths of the proximity force approximation (PFA) and the geometric optics approach

for both sinusoidal (a) and rectangular corrugation (b) with a 
 λ. The arrows denote the paths

of the PFA, which are measured normal to one of the surfaces. The lines without arrows represent

the shortest path of length �(x) through a given point x in the vacuum gap between the plates.

small H/λ. Expanding G̃ for these limits yields for Eq. (D1.20)

F

Fflat
− 1 =


8π
3
a0

H

a0

λ
for λ
 H

5
(a0

H

)2
+

(
4π2

3
− 20

)(a0

λ

)2
for λ� H

. (D1.23)

In both limits the results are valid only if a0 
 λ. In the limit of small λ/a0 there is a

divergence ∼ a0/λ in the perturbative result which reflects the above mentioned divergence

in Eq. (D1.18) for rectangular corrugations with vertical segments. This singularity does

not appear in our numerical results of the previous section; it is a characteristic feature

of perturbation theory. In the following comparison we consider only the case λ � a0.

Eq. (D1.23) suggests for large plate separations H � λ a decay of the excess force from

the corrugation ∼ a0/H and for small H/λ a decay ∼ (a0/H)2. The scaling behaviour

is in agreement with our observations for the rectangular corrugation as demonstrated by

Fig. D.2. However, the latter Figure also shows that for smaller λ/a � 10 the scaling regime

with a decay ∼ (a/H)2 does not exist.

Next, the perturbative result in Eq. (D1.23) will be compared with the numerical results for

the derivation of the actual Casimir force from the proximity–force approximation (PFA),

(F − FPFA)/Fflat. Since the PFA does not distinguish between TM and TE modes, FPFA =
2F∞ where F∞ is given by Eq. (D1.12). In general, The PFA is not uniquely definable and

thus can lead to ambiguous results. Since in the PFA, the plates are assumed to be locally

flat, and the distance between the surfaces is measured perpendicular to the surface elements,
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the measured distances will depend on the choice of the surface relative to which the distance

is measured. This is indicated by the arrows in Fig. D.10(a). Note that this ambiguity does

not arise for the square wave geometry, see Fig. D.10(b). For smooth surfaces with finite

curvature as the sinusoidally shaped corrugation, the results of the PFA thus depend on the

reference plate. If the reference plate is flat,the Casimir energy of the PFA is

EPFA =
1
A

∫
S2

dS E0

(
H − h1(x1)

)
, (D1.24)

with E0(H) being the energy for flat plates at distance H. Taking the corrugated plate as

the reference plate, the result, however, is

EPFA =
1
A

∫
S1

dS E0

[(
H − h1(x1)

) (
1 + [h′1(x1)]2

)1/2
]
. (D1.25)

For a smooth corrugation, the integrals in the expressions (D1.24), (D1.25) can be expanded

in powers of the amplitude a0. This yields for large corrugation wavelengths λ the difference

between the force F from perturbation theory, Eq.(D1.23), and FPFA, based on the flat and

the corrugated plate, respectively,

Fpt − FPFA

Fflat
=


(

4π2

3
− 20

)(a0

λ

)2
for the flat plate as reference plate

(
10π2

3
− 20

)(a0

λ

)2
for the corrugated plate as reference plate

.

(D1.26)

The key result is the decay ∼ (a0/λ)2 for large λ, which has to be compared to the a/λ

decay seen in the numerical results for the square wave profile, see Figs. D.5, D.6. Thus, the

deviation from the PFA is stronger for the rectangular profile than for the sinusoidal profile,

presumably due to the edges. Before giving a simple physical argument for the variation

of the decay exponent, we discuss the different amplitudes in Eq. (D1.26). While the PFA

based on the corrugated plate yields a positive amplitude, the amplitude of the flat plate

based PFA is negative and thus, the force FPFA is not a lower bound to the force at fixed

H/a, contrary to the numerical results for the rectangular profile. The observation that the

Casimir force is located between the results of the flat and the curved surface based PFA

was also made for a plane–sphere geometry [46].

Recently, classical ray optics has been applied to improve upon the PFA for the calculation

of Casimir forces [58]. This concept does not account for diffraction and thus works strictly

only if the radii of curvature are large compared to the surface distance. However, it yields a

simple picture for the distinct scaling behaviour for the sinusoidal and square wave geometry

at large wavelengths λ. Thus, even in the presence of edges, geometric optics provides a
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better description than the PFA. Instead of considering all optical paths in the vacuum gap

between the surfaces, the idea is to select for each point x the shortest ray between the

surfaces through that point, the length of which is denoted by �(x), see Fig. D.10. The

Casimir energy from the optical approximation can be written as

Eopt

Eflat
=

∫
d2x‖

∫ H

h1(x1)
dx3

H3

A�4(x‖, x3)
, (D1.27)

where the integral runs over the vacuum gap between the surfaces.

First, we apply Eq. (D1.27) to the sinusoidal profile, cf. Fig. D.10(a). For small amplitudes

a0 
 λ as considered here, the sinusoidal profile can be replaced in good approximation by a

piecewise linear profile. Then, for each point x between the plates, �(x) is to be determined

for this simpler profile. Since an exact determination of �(x) is rather complicated, we

consider the situation where the point x is close to one of the surfaces and then assume for

arbitrary x a linear interpolation between the two situations, see right part of Fig. D.10(a).

If x is close to the deformed surface S1, the shortest path is perpendicular to the flat surface

S2, and vice versa. With the so obtained approximative lengths �(x), one obtains from

Eq. (D1.27) by expansion in a0/H for the correction to the flat surface based PFA the

scaling
Fopt − F∞

Fflat
∼

(a0

λ

)2
(D1.28)

which reproduces the scaling of the corrections to the PFA at large λ, in agreement with the

result (D1.23) from perturbation theory.

In order to examine the influence of edges on the deviations from the PFA, the optical

approach will also be applied to the rectangular corrugation in Fig. D.10(b). Except for

small domains with almost triangular cross section along the x1–axis, the shortest paths for

the positions x are perpendicular to both surfaces. Therefore, the deviations from the PFA

can only result from paths through points in the shaded domains. These paths end either at

the corner C for points in the larger (light shaded) domain, or at the vertical segment of the

corrugated surface for those points which are located in the smaller (dark shaded) domain.

If λ is sufficiently large, the domains belonging to adjacent edges of the corrugated plate do

not overlap and can be treated independently. Moreover, since the ratio of the area of the

cross section of the larger domain, represented by the triangle ABC, with the area of the

cross section of the smaller domain scales like ∼ (H/a)2, it suffices to consider the larger

domain for the evaluation of Eq. (D1.27) in the asymptotic limit a
 H. The result is

Fopt − F∞
Fflat

∼ a

λ

√
a

H
, (D1.29)
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which is consistent with the observed scaling behaviour of the numerical data for the rect-

angular profile, cf. Figs. D.5,D.6 and Eq. (D1.15). We conclude that the analysis of the

shortest optical paths explains the dependence of the Casimir force on the surface shape

close to the proximity force limit for λ� H.

Furthermore, the ratio of the contributions from TM and TE modes to the force which is

obtained from the perturbative expansion for the sinusoidal profile in Eq. (D1.20) will be

discussed. To low order in a0, the result is given by

FTM

FTE
= 1 +

8π
3
a0

λ

a0

H
, (D1.30)

which holds if a0 
 λ 
 H. Thus for sinusoidal corrugations the force has always larger

contributions from TM modes at asymptotically large H, in contrast to our numerical results

for rectangular corrugations, cf. Fig. D.4(a). We argued in the previous section that edges

might cause the amplification of TE mode contributions. However, the convergence of the

ratio to one for large H turns out be insensitive to the shape of the corrugations. Our

numerical results agree perfectly over the full range of studied λ/a with perturbation theory

in that the ratio decays like a/H to one, see Fig. D.4(b). For small λ/a→ 0 the amplitude

in no longer given by Eq. (D1.30) but saturates at a finite value which decreases with λ

since for λ → 0 the reduced distance argument of section 1.1 implies equal contributions

from both types of modes.

2 Lateral Casimir forces between periodically corrugated

surfaces

Chen and Mohideen measured the lateral Casimir force between a sinusoidally corrugated

plate and a sphere with large radius and with imprinted sinusoidal corrugation [25] at surface

distances between 0.2µm and 0.3µm using an atomic force microscope. In correspondence

H
a

b

λ

δ

Two metallic surfaces

Figure D.11: Geometry with two corrugated plates. b is the lateral shift between the plates.
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to that experiment, Emig and co–workers calculated the lateral force perturbatively between

two sinusoidally corrugated surfaces [36]. The lateral Casimir force tends to align the plates

such that the maxima of the surface profiles are opposed to each other [25]. From this we

expect that for the periodic geometry depicted in Fig. D.11, the force has a stable equilibrium

position at b = λ/2 and an unstable equilibrium position at b = 0. For a periodic profile, the

force is necessarily periodic as well. If one plate is flat, as in the geometry we considered for

the study of the normal Casimir force, there is no length scale which defines a lateral shift

between the plates relative to each other and no lateral force exists.

We follow the development in Ref. [36] analogously and study the lateral force between two

corrugated plates. Our aim is to test the non–perturbative algorithm for periodic surfaces

developed in chapter C also for the lateral force, which is especially sensitive to changes of

the geometry since it is determined by the interaction of the surface corrugations of both

plates. On the other hand, it is interesting to analyse how the lateral force is modified due to

the edges in the geometry, since it was seen that edges lead to non–perturbative effects of the

normal Casimir force. The key results of this paragraph will be that the lateral force exhibits

an universal behaviour in the large distance limit. Furthermore, perturbation theory provides

a good approximation for small deformation amplitudes independently of the presence of

edges, which is in striking contrast to the results for the normal force.

We consider the geometry of two periodically deformed plates with edges, cf. Fig. D.11. The

corrugation of the plates is assumed to have equal amplitude a and the plates are laterally

shifted to each other, which is expressed by the relation h2(y1) = h1(y1 +b), with the height

profile h1 given by Eq. (D1.1). The length b is the parameter which describes the relative

lateral shift between the plates. The lateral Casimir force is obtained by taking the derivative

of the free energy with respect to this shift, Flat = −∂bE .

The height profiles hα have the Fourier series expansion

hα(y1) =
2a
π

∞∑
n=−∞

(−1)n−1

2n− 1
e

2πi
λ

(2n−1)(y1+δα2b)

=
4a
π

∞∑
m=1

(−1)m−1

2m− 1
cos

[
2π(2m− 1)(y1 + δα2b)/λ

]
.

(D2.31)

The procedure is now similar to that for the normal force. Given the matrices Nm, which are

calculated explicitly in appendix F yields the matrix Bkl at fixed truncation order M . This

gives the function

gM = tr
{
B−1∂bB −B−1

∞ ∂bB∞
}

(D2.32)

cf. Eq. (C2.32), with the truncated trace tr over the discrete indices α, β = 1, 2 and

k, l = −M, . . . ,M . Note that, contrary to the case where the derivative is taken with respect
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to the surface distance H, the term B−1∞ ∂bB∞ does not vanish automatically and must be

subtracted explicitly to regularize the function gM . Thus, the calculation of the lateral force

is at the same time a critical test of our numerical algorithm, since the regularization must

be implemented explicitly.

The function gM must be real, since its integral yields the force. However, due to the

parametrization of the hα, the matrices Nm are complex, leading thus to a B with complex

entries, too. In order to take the real part, we use

Re (B−1∂bB) = Re (B−1) ∂bReB − Im (B−1) ∂bImB. (D2.33)

with the real and imaginary parts of the inverse

Re (B−1) = [(ReB) + (ImB)(ReB)−1(ImB)]−1, (D2.34)

Im (B−1) = −(ReB)−1(ImB)Re (B−1). (D2.35)

The same applies to the matrix B∞. Taking these identities as an input to calculate gM

numerically, the lateral force is obtained by a numerical integration according to Eq. (C2.35).

At short corrugation wavelengths, the amplitude of the lateral force falls off to 0. This is

consistent with the fact that in the limit λ → 0, the geometry approaches two flat plates

where no lateral force exists any longer. This can be interpreted as a ”reduced distance

argument” for the lateral force. However, contrary to the case for the geometry with one flat

plate, the matrices Nm assume no particularly simple form in the limit λ → 0 for arbitrary

b, so that we have no independent analytical test for this limit and one has to resort to the

numerical treatment. In the opposite limit, where the deformation wavelength becomes the

largest length scale in the system, i. e. for λ → ∞, for both height profiles h1 and h2,

the density of edges along the y1–axis tends to zero. Recall that in the prior discussion for

the normal force, we used this fact to apply the proximity–approximation. Although this

approximation is strictly applicable only if the surface curvature is finite and small, we found

that this limit is well described by the PFA for flat plates at the two distances weighted

each one half. For this reason, we expect that it is reasonable to apply the proximity

force approximation also for the lateral force. For the geometry in Fig. D.11, there are three

different distances, and the weight factors depend on the shift b. The proximity approximation

to the force is given by

FPFA = −∂bEPFA = − 1
λ
∂b

∫ λ

0
dy1 E0

(
H + h2(y1) − h1(y1)

)
=

1
λ

(
2E0(H) − E0(H − 2a) − E0(H + 2a)

) (D2.36)
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for 0 < b < λ/2 with the Casimir energy E0 for flat plates. At b = λ/2, FPFA changes sign, so

that the profile of the force reproduces the profile of the surfaces within this approximation.

The expansion of Eq. (D2.36) in the corrugation amplitude a for a
 H yields

FPFA =
π2

15
a2A

λH5
+ O(a4). (D2.37)

The higher order corrections O(a4) in Eq. (D2.37) are � 5.1% of the exact result in

Eq. (D2.36) for H/a = 10 and below 5 · 10−3% for H/a = 100. Note that at fixed

distance H, FPFA is linear as a function of H/λ for both Eq. (D2.36) and Eq. (D2.37).

The numerical computations will show that the PFA becomes exact in the limit λ/H � 1,
as it is expected from the results obtained for the normal force. In contrast to the normal

force, we will see that the PFA is an upper bound to the lateral Casimir force.

We also compare our findings to the PWS approximation, which is strictly justified only

in the limit of dilute media due to its additivity assumption. The PWS accounts for non–

additivity by renormalizing the Casimir–Polder potential so that the PWS yields the known

result in the limit of flat plates, cf. [14]. For the conducing surfaces, the renormalized

retarded pair potential is given by U(r) = (π/24)�c/r7, see also [36]. We can expect the

PWS approximation to hold for λ/H � 1, which will be confirmed by the numerical results.

However, there is little intuition about its results for intermediate values λ ≈ H. Recall that

the PWS is identical to the proximity–approximation if one plate is flat [36]. Here, this is no

longer the case. The Casimir energy in the PWS approximation is given by

EPWS =
∫
V+

d3y
∫
V−
d3y′ U

(|y − y′|) , (D2.38)

where the volumes V± are the exterior regions beyond the plates which enclose the vacuum

gap. In terms of the height profiles hα, Eq. (D2.38) assumes the form

EPWS =
∫
d2y‖

∫
d2y′

‖

∫ ∞

H+h2(y1)
dz

∫ h1(y1)

−∞
dz′ U

(√
(y‖ − y′

‖)
2 + (z − z′)2

)
. (D2.39)

To calculate FPWS from Eq. (D2.39), the derivative with respect to b is taken analytically

and then, the remaining integrals are computed numerically.

2.1 Perturbation theory for the lateral force

In the previous discussion of the normal Casimir force for the geometry depicted in Fig. D.1,

we concluded that the edges in the profile lead to non–perturbative effects. It was observed
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that the perturbation theory leads to divergent results due to the edges of the profile. The

divergence could be attributed to the pole of the kernel K(y) for |y| → 0, cf. Eq. (D1.16).

Note that for the lateral interaction between two corrugated surfaces, the term

Ecc =
1
L

∫
d3y

∫
d3y′Q

(
y − y′) h1(y1)h2(y′1), (D2.40)

cf. Eq. (D1.17), contributes to the energy, since both h1, h2 	= 0. Contrary to the re-

sponse kernel K, the kernel Q is regular for |y| → 0. Therefore, the integral expression in

Eq. (D2.40) has no divergences and is well defined. Furthermore, since Ecc is the only term

of the second order approximation to the energy which depends on the lateral shift b between

the plates, the lateral force will be given by Flat = −∂bEcc. Therefore, we expect that for

small deformation amplitude a, the lateral Casimir force can be captured by perturbation

theory, which is a qualitatively different behaviour compared to the normal force. Inserting

the Fourier expansion Eq. (D2.31) into Eq. (D2.40) and using h2(y1) = h1(y1 + b) gives

Ecc =
4a2A

π2

∞∑
n=−∞

e2πi(2n−1)b/λ

(2n − 1)2

∫
d3y Q (y) e2πi(2n−1)y1/λ. (D2.41)

Before proceeding, we consider the sinusoidally shaped surface profile h1(y1) = a0 cos(2πy1/λ).
In Ref. [36], the perturbative expansion of this profile led to the result

Ecc =
a2

0A

H5
cos

(
2πb
λ

)
J
(
H/λ

)
+ O(a3

0), (D2.42)

with an amplitude function J , which has separate contributions from TM and TE modes,

J = JTM + JTE. Those are given by

JTM(x) =
π2

32

∫ ∞

0
ds

sin(4xs)
4xs

sinh2(s)
cosh6(s)

, (D2.43)

and JTE(x) = j1(x) − x2j2(x) + x4j3(x), with

j1(x) =
π2

32

∫ ∞

0
ds

sin(4xs)
4xs

sinh2(s)
cosh6(s)

[
5
2
− sinh2(s)

]
, (D2.44)

j2(x) =
π2

4

∫ ∞

0
ds

sin(4xs)
4xs

sinh2(s)
cosh4(s)

, (D2.45)

j3(x) =
π2

2

∫ ∞

0
ds

sin(4xs)
4xs

sinh2(s)
cosh2(s)

. (D2.46)

Furthermore, an explicit calculation of the separate contributions from Dirichlet and Neu-

mann boundary conditions to the kernel Q in Ref. [36] was made.
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The Dirichlet kernel

QD(y) =
π2

128
1

H6y2

sinh2(s)
cosh6(s)

(D2.47)

depends only on y = |y|, and s = πy/(2H). The Neumann kernel has not the full rota-

tional symmetry as the Dirichlet response kernel, since the normal derivative appears in the

Neumann boundary condition. It assumes the form

QN

(|y0|, |y‖|
)

=
(
∂2
zg(y,H) + F6(y)

)F4(y) + F2(y)2 − ∂2
1 (F4 · F2) (y) +

1
8
∂4

1

(F2
4

)
(y),

(D2.48)

with the functions

F2(y) = − π

16H3y

sinh(s)
cosh3(s)

, (D2.49)

F4(y) =
1

4πHy
sinh(s)
cosh(s)

, (D2.50)

F6(y) = −∂2
zg(y,H) +

π3

16H5y

sinh(s)
cosh5(s)

[
1 − 1

2
sinh2(s)

]
, (D2.51)

and with the second derivative of the Green function g(p, z) ≡ ∂2
zG(p, z) = p

2 e
−p|z| which

reads in position space

g(y, z) =
∫

d3p
(2π)3

eip·y g(p, z). (D2.52)

Considering the expressions above, we insert the Dirichlet and Neumann kernels QD, QN into

the integral on the right hand side of Eq. (D2.41). The Neumann kernel can be brought into

rotational symmetric form by integration by parts. Then, we get

∫
d3y Q (y) e2πi(2n−1)y1/λ =

2
H5

J
(|2n − 1|H/λ). (D2.53)

Thus, the energy assumes the form

Ecc =
16a2

π2

A

H5

∞∑
n=1

cos
(
2π(2n − 1)b/λ

)
(2n− 1)2

J
(
(2n − 1)H/λ

)
. (D2.54)

This expression for the energy constitutes the main result of this section. The function J

can be calculated explicitly from the integral expressions Eqs. (D2.43)–(D2.46) by contour
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Figure D.12: Semilogarithmic plot of the function J(nx) for odd n = 1, 3, 5. For large arguments,

the function decays exponentially.

integration in the complex plane, which is performed in Ref. [36]. The result is given by

JTM(x) =
π2

120
(16x4 − 1) artanh(e−2πx) + e−2πx

[
π

12

(
x3 − 1

80x

)
Φ(e−4πx, 2)

+
x2

12
Φ(e−4πx, 3) +

x

16π
Φ(e−4πx, 4) +

1
32π2

Φ(e−4πx, 5)

+
1

128π3x
Φ(e−4πx, 6)

]
, (D2.55)

JTE(x) =
π2

120
(16x4 − 1) artanh(e−2πx) + e−2πx

[
− π

12

(
x3 +

x

2
+

1
80x

)
Φ(e−4πx, 2)

+
1
24

(
x2 − 3

4

)
Φ(e−4πx, 3) +

5
32π

(
x− 1

20x

)
Φ(e−4πx, 4)

+
7

64π2
Φ(e−4πx, 5) +

7
256π3x

Φ(e−4πx, 6)
]
. (D2.56)

In Eqs. (D2.55), (D2.56) the Lerch trancendent Φ(z, k) =
∑∞

n=0
zn

( 1
2
+n)k is used, cf. Ref. [37].

Here, we are interested in the asymptotic behaviour of J for large and small arguments,

J(x) =
4π2

15
{
x4 + O(x2)

}
e−2πx for x� 1, (D2.57)

J(x) =
π2

120
+ O(x) for x
 1. (D2.58)
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For large arguments, J will be dominated by its exponential decay. This can be seen in

Fig. D.12, where the decay of J(nx) as a function of x is shown for n = 1, 3, 5. Note that

for H � λ, Eq. (D2.54) is dominated by the term for n = 1,

Ecc =
16a2

π2

A

H5
cos

(
2πb
λ

)
J
(
H/λ

)
+ O (n > 1) . (D2.59)

Eq. (D2.59) is consistent with Eq. (D2.42) for a0 = 4a/π. Since this a0 is the amplitude

of the first harmonic of the square wave profile, cf. Eq. (D2.31), the lateral force at large

distance is governed by the large scale surface structure described by the first harmonic.

Since this property is generic for periodic surfaces, we note that the regime H � λ is

asymptotically universal regarding changes of the short scale surface structure. Eq. (D2.59)

yields the force

Fpt =
32a2

π

A

λH5
sin

(
2πb
λ

)
J
(
H/λ

) H
λ→ 128π
15

a2A

λ5H
sin

(
2πb
λ

)
e−2πH/λ. (D2.60)

There are evidences that this universal behaviour of the lateral force is independent of the

range of validity of perturbation theory, i.e. it holds also if the deformation amplitude a

becomes large. We will come back to this point in the next section, where the exact results

obtained from our numerical algorithm are discussed.

If the deformation wavelength λ becomes larger, the higher harmonics of the series in

Eq. (D2.54) are no longer negligible. Then, the series can be cut off at n � λ/H, where the

argument of J is still at the order of 1, cf. Fig. D.12. In the extreme limit for λ → ∞ at

fixed distance H, all terms of the (convergent) series contribute, since J becomes constant,

cf. Eq. (D2.58), and Eq. (D2.54) can be simplified to

Ecc =
16a2

π2

A

H5
J
(
0
) ∞∑
n=1

cos
(
2π(2n − 1)b/λ

)
(2n− 1)2

=
a2Aπ

30H5

(
π

2
− 2π

λ
|b|

)
. (D2.61)

The latter equality in Eq. (D2.61) holds for |b| ≤ λ/2 with periodic continuation for integer

multiples of λ. Hence, one gets for the lateral Casimir force for 0 < b < λ/2,

Flat = −∂bEcc =
a2π2A

15λH5
. (D2.62)

Note that the force changes sign at b = λ/2. Eq. (D2.62) is the second order expansion of

FPFA, cf. Eq. (D2.37). Thus, the validity of the PFA, which is expected from the results for

the normal Casimir force for H 
 λ, is confirmed by perturbation theory, where a 
 H is

assumed.
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For general values of H/λ, the lateral force is obtained from Eq. (D2.54) as

Flat =
32a2

π

A

λH5

∞∑
n=1

sin
(
2π(2n − 1)b/λ

)
2n− 1

J
(
(2n− 1)H/λ

)
. (D2.63)

From Eq. (D2.63) we observe that the perturbative approximation to the lateral force is

periodic as a function of the lateral shift b, which confirms our expectations. Moreover, it

is symmetric around b = λ/4 for |b| < λ/2. Especially, at b = λ/4, where the maximum for

the force is expected, one gets, using x = H/λ,

Flat =
32a2

π

A

λH6
x
{
J(x) − 1

3
J(3x) +

1
5
J(5x) ± . . .

}
. (D2.64)

For large x, the force will be dominated by the exponential decay of the lowest order term

J(x), cf. Eq. (D2.57). For small x → 0, the term in curly brackets will approach the value

of π3/480, and the force will become linear in x at fixed distance H, which is in accordance

with the result for the proximity–force value.

2.2 Exact results

In this section, we implement the non–perturbative approach for periodic geometries outlined

in chapter C for the geometry depicted in Fig. F.1. to calculate the lateral Casimir force.

This has to be done numerically, since the function gM can not be computed analytically

from the input matrices Nm which are listed in full generality in appendix F. The approach

is analogous to that for the normal force with the distinction that the derivative is taken

with respect to the shift b. Once the function gM at finite truncation order is known, the

integration in Eq. (C2.35) will be performed.

Thus, the force FM is obtained, which converges exponentially to F in the limit M → ∞,

which appears to be consistent with the numerical data, as discussed in more detail in the

next section. It allows for an extrapolation of F from the FM for M ≤ Mmax. For the

calculation of the lateral force, the cutoff order M was chosen between 10 and 37. The

numerical process is more complicated for the evaluation of the lateral force, since the real

and imaginary parts of the matrix B have to be computed, cf. Eq. (D2.33), which requires

the inversion of two matrices consecutively, cf. Eq. (D2.34). We calculated the force for TM

modes and TE modes separately, but we constrict the discussion to the total Casimir force

which is the sum of the separate contributions for both types of modes, F = FTM + FTE.

The numerical data reveal three different regimes, which are depicted in the diagram in

Fig. D.13(a). It shows the approximate validity ranges of the PFA and the PWS approxima-

tion methods, which become reliable for small H/λ, when the surfaces are composed of large,
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Figure D.13: (a) Approximate ranges of validity of the proximity force and PWS approximations and

the sector of asymptotic universality for the lateral Casimir force as estimated from Fig. D.14.

The vertical bar shows the range of corrugation wavelengths 5a ≤ λ ≤ 300a at fixed plate distance

H = 10a, for which the shape dependence of the force with b was analysed, see (b).

flat segments and when the density of edges of the profile along the axis of corrugation is

small. The PWS exhibits a slightly amplified validity range compared to the proximity–force

approximation (PFA).

For larger H � λ, both PFA and PWS become unreliable. In this regime, the lateral force

can only be studied numerically or perturbatively if a
 λ,H, as pointed out in section 2.1.

For large H � λ, we have seen from the results of perturbation theory that the lateral

force decreases exponentially fast to zero and we observed that the force becomes asymptot-

ically universal in the sense that it approaches the lateral force between sinusoidally shaped

surface profiles with equal corrugation wavelength λ and amplitude a0 = 4a/π. Since the

latter profiles are the first harmonic of the Fourier expansion of the profile with edges, cf.

Eq. (D2.31), we conclude that the short scale surface structure, which is described by higher

harmonics of the height profile, see Eq. (D2.31), is irrelevant for the interaction at large

distances. This asymptotically universal behaviour is consistent with the numerical data for

the force which is indicated by the lower triangular region in Fig. D.13(a). The perturbative

approximation to which the numerical data for the force are compared at large distances

reads, cf. Eq. (D2.60) with a0 = 4a/π,

Fpt = 2π
a2

0A

λH5
sin

(
2πb
λ

)
J (H/λ) . (D2.65)
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Figure D.14: (a) Lateral force Flat at b = λ/4 for the geometry of Fig. D.11 depending on the reduced

distance δ = H − 2a (solid curves). Flat is measured in units of the normal force F0 = π2/240H4.

The proximity force (PFA, dashed-dotted lines) and pair-wise summation (PWS, dashed lines) and

the perturbative result Fpt for sinusoidal profiles at large distance (dotted lines) are displayed. (b):

Dependence of the lateral force on the ratio H/λ for fixed H (solid curved). Shown are also the

results from PFA, PWS, and Flat.

At fixed distance H = 10a, Fig. D.13(b) exhibits the dependence of the force on the lateral

shift b in the interval between 0 and λ/2 for various values of λ, as indicated by the vertical

bar in the diagram D.13(a). The data for the force are given in units of the normal force

F0 for flat plates at distance H. At first, we note that the force vanishes at b = 0, λ/2
and becomes maximal close to b = λ/4, which is consistent with our expectations. Varying

λ in the range between 5a and 300a, the transition between the three regimes displayed in

Fig. D.13(a) can be observed. At large λ ≥ 100a, the numerical data approach to the results

from the PWS which are displayed as dashed curves. For λ ≥ 300a, the data and the PWS

result are in good agreement, and the force profile approaches the rectangular shape of the

height profile and assumes a constant value, as expected from the PFA. This value scales

with λ−1, cf. Eq. (D2.36).

In the intermediate regime given by the data for λ = 20a, 50a, the force amplitude increases

and the dependence on b becomes more peaked. Note that the force becomes asymmetric,

since the maximum is assumed at bmax = λ/4 + ∆b, where we observe the larger ∆b around

λ/a = 50. This asymmetry is neither reproduced by perturbation theory nor by the PWS.
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Fig. D.13(b) shows that the maximal amplitude of force can be found in the range around

λ = 20a.

For further decreasing λ, represented by the data curves for λ = 5a and λ = 10a, the regime

of universality is approached, the asymmetry in b decreases, and the force profile tends to a

sinusoidal form. For λ/a = 5, 10, 20 we included the perturbative result of Eq. (D2.65) into

Fig. D.13(b), represented by the dotted lines. The best agreement between the perturbative

result and the data is obtained for λ = 10a. However, the numerical data show still a

slight asymmetry of the exact result. For λ = 5a, the numerical data exhibit the best

agreement with a sinusoidal function ∼ sin(2πb/λ). However, the amplitude of the force

shows a stronger deviation from the perturbative result than in the case for λ = 10a. This

can be expected since the deformation amplitude a is already large compared to λ for the

applicability of perturbation theory, which assumes a 
 λ. The sinusoidal shape of the

exact result for the force indicates that the force at large distances is universal, it no longer

depends on the short scale surface structure described by the higher harmonics of the height

profile, independently of the ratio λ/a. However, a strict proof of this requires for a numerical

computation of the lateral force for the sinusoidal profile at arbitrary λ/a.

Note that also the PWS result assumes a sinusoidal shape dependence, but the amplitude is

about 1/2 of the numerical result for λ = 10a and even smaller for λ = 5a which shows the

failure of the pair–wise additivity assumption in strongly non–planar geometries.

As seen above, the maximum of the lateral force as a function of b is assumed close to

b = λ/4. Therefore, Fig. D.14(a) displays the data for the force at b = λ/4 as a function of

the reduced distance δ = H−2a in units of the normal force F0 for flat plates at distance H.

The results from the PWS and the PFA are represented by dotted and dashed–dotted curves,

respectively. For distances beyond δ ≈ λ/20, the PFA starts to fail, since it does not capture

the exponential decay with increasing δ. In contrast, the PWS–approximation to the force

reproduces the exponential decay. However, for increasing distances beyond δ ≈ 2λ, the devi-

ation of the PWS from the numerical data is about one order of magnitude. The perturbative

results of Eq. (D2.65) is represented by dotted curves for λ = 10a and λ = 100a. In con-

trast to Fig. D.13(c), we used the asymptotic expression J(x) = (4π2/15)(H/λ)4 e−2πH/λ

for large H/λ, cf. Eq. (D2.57), for Fig. D.14. While the similarity of the perturbative results

with the numerical data for the general J at b = λ/4 suggests a good coincidence in general

(which is not the case if the dependence on b is taken into account, see Fig. D.13), the use of

the asymptotic expression is a better indication in Fig. D.14 for the asymptotically universal

regime, where the exact result for the force also assumes a sinusoidal shape as a function of

the shift b.

We find a good agreement (within the precision of the numerical data) between the per-
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turbative approximation to the force for the first harmonic of the rectangular profile with

the numerical data for this profile for distances δ ≥ λ. This shows that the force becomes

universal. However, in the regime λ ≤ a beyond the range of validity of perturbation theory,

represented by the data for λ = 0.1a and λ = a in Fig. D.14, there is no independent

(analytical) result to which the numerical data can be compared.

The dependence of the lateral force on H/λ at fixed distances H/a = 2.5, 10, 40 is repre-

sented in Fig. D.14(b). The force increases linearly for small H/λ in accordance with the

PFA (dashed–dotted curve). For larger H/λ, it exhibits a maximum and then it decays ex-

ponentially, as the PWS. The PWS becomes unreliable beyond the maximum. Displayed are

also the asymptotic results from perturbation theory for H/a = 10, 40. Note the agreement

of the perturbative with the numerical results at large H/λ for H = 40a. For H = 10a,
the perturbative result starts to fail at larger H/λ � 2.5. The position of the maximum at

λ ≈ 2.5H for H/a = 10, 40 is in agreement with the findings in Ref. [36]. For H/a = 2.5,
the maximum is shifted towards smaller wavelengths.

2.3 Numerical algorithm

The algorithm for the computation of the lateral force is a modified version of the algorithm

used before to calculate the normal force such that the arguments concerning the choice

of the integral cutoff, the precision, and extrapolation apply here in the same form. The

difference lays in the calculation of the function gM for any finite cutoff order M . Here,

the LU–decomposition–backsubstitution procedure to perform the matrix inversion is to be

applied twice to perform the inversion of the complex valued matrix B, see Eq. (D2.34),

to get the product B−1∂bB. The same procedure is to be performed for the asymptotic

matrices B∞, because the regularization must be implemented explicitly. Otherwise, since

B−1∂bB is not regularized, the trace over the latter product of matrix would diverge. Note

that there is no analytical reference test for flat plates, since for that case, the lateral force

vanishes. This also holds for the FM by construction, since the function gM for the lateral

force already vanishes if one of the plates is flat.

In Figs. D.15–D.16, the finite size convergence of the FM to the lateral force F is shown

in units of the normal force for flat plates, for the selected values of λ/a = 10, 100 and

H/a = 5, 10, 100 at b = λ/4 for TM and TE modes (apart from the plot for H/a = 5 and

λ/a = 100).

We observe that the exponential convergence sets in for the ratios H/λ = 1 and H/λ = 1/2
for cutoffs between M = 13 and M = 20 or 30 ≤ 2M + 1 ≤ 40, for both TM and TE

modes, see figures. A distinction between the modes is observed for H/λ = 0.1, where a
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slower convergence is expected.

For TM modes, the exponential convergence sets in later than for TE modes; the critical

cutoff orders are M ≈ 22 for TM modes and M ≈ 17 for TE modes, respectively.
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Figure D.15: Finite size scaling plots for the TM mode contributions for the lateral Casimir force

at b = λ/4 and at fixed values of the corrugation length λ/a = 10, 100 and the distance H/a =

5, 10, 100. Displayed are the logarithmic finite size corrections ln |F2M+1/F − 1| as a function of

the modified cutoff order 2M + 1 cf. Fig. D.8.
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Figure D.16: Finite size scaling plots for the TE mode contributions for the lateral Casimir force

at b = λ/4 and at fixed values of the corrugation length λ/a = 10, 100 and the distance H/a =

5, 10, 100; cf. the TM mode contributions in Fig. D.15.

3 Summary

This chapter was devoted to the study of the normal Casimir force between a flat plate and a

plate with rectangular corrugation, and of the lateral Casimir force between two plates with

rectangular corrugation, respectively.
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The main purpose of this discussion is to obtain the Casimir interaction in those regimes

where the approximation methods as the proximity approximation (PFA), pairwise summation

of Casimir–Polder potentials (PWS) and perturbation theory are not feasible, as for plates

with edges, including the case of large deformation amplitudes.

For the normal force, the perturbatively predicted existence of two different scaling regimes for

the deformation induced part of the interaction as a function of the mean surface separation

H could be confirmed. It was also found that for small corrugation lengths λ, only the large

H scaling regime exists. For large λ and small H, the influence of diffraction at the edges

decreases and the force approaches the results predicted by the PFA and by the PWS. This

asymptotic behaviour could also be confirmed for the lateral force. By explicit calculations

it was found that in the limit of very small corrugation lengths the force can be obtained as

the interaction of two flat surfaces with a reduced distance. This limit is trivially fulfilled for

the lateral force, which vanishes.

The scaling of the normal force close to the limits of small and large corrugation lengths were

also computed. These limits provide an upper and lower bound, respectively, to the force.

In both cases, a power law scaling with λ/a was found, rendering corrections to the PFA in

general large. The exponents of these power laws depend on the type of modes for small

corrugation length, whereas at large corrugation length we find an interesting dependence of

the exponents on generic features of the corrugations.

By comparing with perturbation theory for a sinusoidal corrugation, it was found that edges

induce a slower scaling towards the results of the PFA as compared to smooth profiles. This

different scaling behaviour could be explained in terms of ray optics, a concept which was

recently taken up by Jaffe and collaborators [58].

While for the normal Casimir force, effects beyond perturbation theory could be asserted,

the lateral force appears to be well controllable by perturbation theory for arbitrary ratios

of the distance H and the corrugation wavelength λ, as long as the deformation amplitude

is the smallest length scale, which is generally assumed by perturbation theory. This is an

unexpected result since edges pose no problem to the applicability of perturbation theory,

contrary to the case of the normal force. This different qualitative behaviour between the

normal and the lateral force was attributed to the fact that both forces are determined by

different response kernels, with different analytic behaviour.

For distances H much larger than the corrugation wavelength, the lateral Casimir force be-

comes independent of the detailed surface structure, i.e. it becomes equal for any two uni-

axially and periodically shaped surfaces of the same amplitude and deformation wavelength.

This universal behaviour could be asserted by perturbation theory for small amplitudes, and
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there is evidence for this behaviour to be generic, only dependent on the ratio H/λ. The

confirmation of these findings is left to future experiments, since in the experiment of Chen,

Mohideen and co–workers [25], the lateral force was measured in a range of H/λ < 1, outside

of the universal regime.

Since for periodic surfaces, the spectrum of deformations is bounded, this universal feature

of the lateral force can not be expected for arbitrary surface deformations, as e.g. in the

case of stochastic surface roughness.
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E Density of states in periodic geometries

In this chapter, the trace formula Eq. (C1.14) of the density of states (DOS) which was

introduced in chapter C.1 will be applied to the case of the periodic geometry with rectan-

gular surface profiles which was considered for the discussion of the lateral Casimir force in

chapter D.2.

The Casimir force is governed by the change of the DOS via Eq. (C1.18). (For the lateral

force, the derivative with respect to the surface distance H in Eq. (C1.18) is to be replaced

by the derivative with respect to the lateral shift b.) A calculation of the change of the DOS

for a given geometry can be expected to be insightful regarding the relation between the

change of the frequency spectrum and the interaction. Past a discussion of the normal and

lateral Casimir forces in a given geometry, the question naturally arises which frequencies of

the spectrum yield the dominant contributions to the interaction, and how the qualitative

differences between the normal and the lateral force can be re–identified at the level of the

DOS. In the previous chapter D, the distinct behaviour of the normal and of the lateral

Casimir force was analysed numerically and perturbatively. While one can expect that a

perturbative expansion of the change of the DOS for a general surface deformation should

restore the results of the prior discussion, in the present chapter, we will confine ourselves to

a numerical analysis.

In the first section, the change of the DOS will be calculated analytically for flat plates from

the trace formula Eq. (C1.14). Then, it will be shown that the non–perturbative algorithm

developed in chapter C.2 for the calculation of the Casimir force in periodic geometries can

also be applied to calculate the change of the DOS, using the trace formula. The algorithm

will be tested in the flat surface limit and the so obtained result is consistent with the analytic

result.

In the second part of this chapter, for the geometry depicted in Fig. D.11, the DOS will be

calculated numerically. This geometry has translational symmetry and can be subjected to

a scalar field quantization. The obtained contributions to the DOS for TM and TE modes

will be discussed qualitatively for different ratios of the surface deformation length and the

surface separation. We also examine the convergence of the approximation to the DOS for

finite cutoff order M for both contributions of TM and TE modes.
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1 Analytic form of the density of states for flat plates

The starting point of our discussion is the trace formula in Eq. (C1.14),

δρ(q0) = − 1
π

∂

∂q0
Tr ln(MM−1

∞ ), (E1.1)

with the trace running over the 2D surface parametrization vector of the matrix kernel M
and over the surface index. The frequency q0 is excluded from the trace here. Inserting the

momentum space representation M̃ of the response kernel M for flat plates into Eq. (E1.1)

yields for the change of the DOS per surface area A for each type of modes

δρ(q0)
A

= − 1
π
∂q0

∫ ∞

−∞

dq1
2π

∫ ∞

−∞

dq2
2π

ln
(
1 − e−2qH

)
(E1.2)

with q = |q| =
√
q20 + q21 + q22 , since M̃ is diagonal in momentum space. From Eq. (E1.2)

one gets for the sum of both mode contributions

δρ(q0)
A

=
q0
π2

ln
(
1 − e−2q0H

)
. (E1.3)

Note that δρ(q0) is non–analytic at for q0 → 0. For large q0H � 1, using ln(1 − z) =
−∑∞

n=1 z
n/n, the change of the DOS assumes the form

δρ(q0)
A

� − q0
π2

e−2q0H . (E1.4)

For periodic geometries, the permutation algorithm introduced past Eq. (C2.24) can be

applied. As a result, the kernel M̃ in momentum space could be brought into block–diagonal

form M̃ = diag{M̃j | j = 1, . . . , N} by discretizing the momentum q1 which is parallel to

the axis of corrugation. M̃j are the sub–matrices at fixed momentum q1 = 2πj/W with

W = λ(N+1) being the system length along that axis. The trace over M̃ is then obtained by

summing the traces of the block–matrices M̃j, cf. Eq. (C2.29). We perform the derivative

with respect to q0 in Eq. (E1.1) and obtain

∂q0 Tr lnM̃ =
N∑
j=1

Tr
(M̃−1

j ∂q0M̃j

)
. (E1.5)

Note the analogy to Eq. (C2.30), where the derivative is taken with respect to H for the

calculation of the normal Casimir force. The traces in Eq. (E1.5) and in Eq. (C2.30) are

different, since for the calculation of the force, the trace runs over all discrete and continuous

arguments, including q0.
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With the matrix B defined in Eq. (C2.26), Eq. (E1.5) acquires the form cf. Eq. (C2.31),

∂q0 Tr lnM̃ = W

N∑
j=1

∞∑
k,l=−∞
α,β=1,2

∫ ∞

−∞

dq2
2π

[
B−1
kl,αβ · ∂q0Blk,βα

](
q0; q1 = 2πj/W, q2

)
. (E1.6)

The second sum in Eq. (E1.6) represents the trace tr over the discrete set of variables, and

the sum over j will be substituted by the integral (W/2π)
∫ 2π/λ
0 dq1 in the continuum limit

for q1. In analogy to Eq. (C2.32), we define

γ(q) ≡ tr
{
B−1(q) · ∂q0B(q) −B−1

∞ (q) · ∂q0B∞(q)
}
. (E1.7)

For the numerical calculation, the trace tr will be cut off by restricting the summation over

k, l to the set −M, . . . ,M , as before. Recall that the index ∞ in Eq. (E1.7) denotes that

the limit of large surface distance H → ∞ is performed. Then, one obtains the function γM

which converges to γ as M → ∞. Using the trace formula, one gets

δρ(q0) = −W
2

π

∫ ∞

−∞

dq2
2π

∫ 2π/λ

0

dq1
2π

γ (q0; q1, q2) . (E1.8)

Since W 2 = A is the surface area, for the finite order approximation of the change of the

DOS per surface area, one obtains

δρM (q0)
A

= − 1
4π3

∫ ∞

−∞
dq2

∫ 2π/λ

0
dq1 γM (q0; q1, q2) . (E1.9)

This expression is the basis for the numerical computation of the change of the DOS at fixed

cutoff order M . To test the convergence, the limit of flat plates at distance H will be taken

into account. Then, Bkl (q0; q1, q2) = δklN0 (q0; q1 + 2πl/λ, q2), where for Dirichlet (TM)

and Neumann (TE) boundary conditions N0 is given by

ND,0 (q) =
1
2q

(
1 e−qH

e−qH 1

)
, NN,0 (q) =

q

2

(
−1 e−qH

e−qH −1

)
, (E1.10)

respectively, cf. Eq. (D1.3) and Eq. (D1.5) for a = 0. Using tr ln = ln det for the trace over

N0 gives

γM (q) =
M∑

l=−M
∂q0 ln detαβ

(
N0N

−1
0,∞

)
(q0; q1 + 2πl/λ, q2)

=
M∑

l=−M
∂q0 ln

(
1 − e−2q̃lH

)
= 2Hq0

M∑
l=−M

q̃−1
l

(
e2q̃lH − 1

)−1
,

(E1.11)
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where we introduced q̃l =
√
q20 + (q1 + 2πl/λ)2 + q22 . Eq. (E1.11) holds for both TM and

TE modes. A comparison with Eq. (C2.36) shows that γM (q) decays even faster than gM

as a function of q1. From Eq. (E1.9) one gets for the total change of the DOS per surface

area A

δρM (q0)
A

= − 1
2π3

∫ ∞

−∞
dq2

∫ 2π(M+1)/λ

−2πM/λ
dq1 ∂q0 ln

(
1 − e−2qH

)
. (E1.12)

For M → ∞, the boundaries of the integral over q1 extend to infinity and Eq. (E1.12) yields

δρ(q0)
A

= − q0
π2

∫ ∞

q0

ds ∂s ln
(
1 − e−2sH

)
=

q0
π2

ln
(
1 − e−2q0H

)
, (E1.13)

which is the total change of the DOS per unit area for flat plates, cf. Eq. (E1.3). As it can

be seen from Eq. (E1.12), the correction for finite order converges to zero exponentially fast

as δρ− δρM ∼ e−4πMH/λ.

2 Numerical results

In Figs. E.1, E.2, the change of the DOS per surface area is shown in units of H as a

function of Hq0 for the cutoff orders M = 1, 5, 9, 13. Since δρ < 0, the change of the DOS

is also multiplied by (−1). The data for finite cutoff orders appear to be rapidly convergent

for intermediate and small deformation wavelengths λ = a, λ = 10a and H � λ at fixed

distance H = 10a. In these cases, only the data curve for the lowest order M = 1 can be

distinguished from the other curves, at best. For the larger value λ = 100a at H = 10a,
the data for M = 1 can still clearly be distinguished from the data of higher cutoff order,

however, the data for M ≥ 5 are saturating and can not be distinguished any more in

the figures. For λ = 10a and H = 2.5a, where the plates have a small reduced distance

δ = 0.5a, the convergence becomes slower, for M ≥ 9, the data reach the saturation regime

of convergence as well. Note that the curve for M = 13 is only a small correction to the

curve for M = 9, compared to the differences between the data curves of lower order.

We also considered the change of the DOS for the ratios b = 0 and b = λ/4, represented by

the red and by the green curves in Figs. E.1, E.2, respectively. While for H � λ, the change

of the DOS is almost indistinguishable for both values of b, for λ = 100a and H = 10a, the

change of the DOS is slightly larger for b = λ/4 than for b = 0 in the regime Hq0 � 1. A

pronounced deviation is notable for λ = 10a and H = 2.5a, where the change of the DOS

for b = λ/4 is larger than for b = 0. The strongest deviation appears for Hq0 � 2. While for

TM modes, the maximum of the change of the DOS is shifted to larger frequencies q0, for

TE modes, the position of the maximum is almost unchanged, and the change of the DOS
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Figure E.1: change of the DOS for TM modes (left column) and TE modes (right column) for finite

orders M = 1, 5, 9, 13 for H/a = 2.5 and λ/a = 10. Both δ/λ = 0.05 and δ/a = 0.5 are small,

and there is a pronounced difference in the change of the DOS between b/λ = 0 and b/λ = 0.25.

is not so strongly amplified for frequencies around the maximum as for larger q0 � 2/H.

Contrary to that, the amplification of the change of the DOS for TM modes is more uniform.

In the following, the discussion will be constricted to the data for finite cutoff order M = 13.
Due to the fast convergence of the change of the DOS, this seems to be a reasonable

assumption as long as the reduced distance δ is still of the order of the deformation amplitude

a and as long as the corrugation length λ does not exceed the distance H by more than one

order of magnitude, which is not the case for the considered range of length scales.

As a qualitative argument for the difference of the shape of the change of the DOS for b = 0
and b = λ/4 one can think of the following: the variation of the geometry as a whole is

small if the corrugated plates are shifted relative to each other by λ/4 for a large ratio H/λ.

Therefore, one can expect that the change of the DOS is not strongly affected by this shift.

However, if H/λ and λ/a become small, which corresponds to a large curvature at small

distances for smooth profiles, the geometry is strongly changed by a shift of λ/4 such that

the spectral problems for both situations are widely different from each other. Therefore,

a notable variation of the change of the DOS can be expected as well. While for b = 0,
the plates in our geometry in Fig. D.11 are in an (unstable) equilibrium position and the

segments of the surfaces have a local distance of H everywhere, for b = λ/4, the interaction

is amplified. This can be understood as follows: On the one hand, in the previous discussion

in chapter D.2 it was shown that the lateral Casimir force assumes its maximum close to
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Figure E.2: change of the DOS for TM modes (left column) and TE modes (right column) for finite

orders M = 1, 5, 9, 13 and for H/λ = 1, 10 (δ/λ = 8, 0.8). The curves for b/λ = 0 and b/λ = 0.25

are almost indistinguishable, contrary to the curves in Fig. E.1.

b = λ/4. On the other hand, the normal force can be expected to be larger as well,

since the local distance of the surface will be the reduced to δ = H − 2a for one half of

the deformation wavelength. Thus, the amplification of the change of the DOS reveals the

stronger interaction at b = λ/4. The shift of the maximum of the change of the DOS to

larger frequencies for TM modes, cf. Fig. E.1, reflects the fact that for b = λ/4, the main

contribution results from modes with smaller wavelengths. However, for TE modes, this is

not the case.

In the following, we consider the change of the change of the DOS at fixed distance H = 10a



100 Density of states in periodic geometries

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.5 1 1.5 2 2.5 3 3.5 4

-H
δρ

(q
0)

/A

Hq0

λ/a=100 H/a=10 b/λ=0.0
λ/a=100 H/a=10 b/λ=0.25

TM

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.5 1 1.5 2 2.5 3 3.5 4

-H
δρ

(q
0)

/A

Hq0

λ/a=100 H/a=10 b/λ=0.0
λ/a=100 H/a=10 b/λ=0.25

TE

Figure E.3: change of the DOS for TM modes (left column) and TE modes (right column) for finite

orders M = 1, 5, 9, 13 and for H/λ = 100 (δ/λ = 0.08). The curves for b/λ = 0 and b/λ = 0.25

are almost indistinguishable, contrary to the curves in Fig. E.1.

and for b = 0. Figs. E.4 and E.5 display the numerical results for the change of the DOS for

TM modes (left part) and TE modes (right part) as a function of Hq0, for λ/a = 1, 10, 100,
respectively. These values cover two orders of magnitude for the ratio H/λ. The figures

also display the result for flat plates at distance H(= 10a) and at reduced distance δ =
H − 2a(= 8a). At reduced distance, the change of the DOS is amplified over the whole

range of frequencies q0 due to the stronger interaction at smaller distances. The maximum is

shifted to larger values of q0, which is consistent with the fact that the dominant contribution

to the interaction comes from frequencies q0 ∼ 1/H.

While in the intermediate regime for H/λ = 1, cf. Fig. E.4, the numerical results for the

corrugated surfaces are similar for TM and TE modes, significant differences emerge for

H/λ = 0.1 and H/λ = 10. Since for small frequencies q0 
 1/λ, the wavelengths of the

modes are large compared to the corrugation wavelength λ, one can expect that these modes

are confined by the outer segments of the plates and the change of the DOS approaches

effectively the change of the DOS for flat plates at reduced distance. In Fig. E.4, this

expectation is confirmed by the behaviour of the TE modes. However, the result for TM

modes appears to be more closely located to the result for flat plates. In chapter D (see

Pg. 67), it was assumed that the concave corners of the rectangular profile might pose a

stronger restriction to TE waves, which satisfy Neumann conditions, than to TM waves.

This could give an explanation for the unexpected behaviour of the TM modes.
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Figure E.4: change of the DOS δρ(q0) for the geometry in Fig. D.11 for b/λ = 0, H = 10a and

λ/a = 1, 10 and for finite cutoff order M = 13 for TM modes (left) and TE modes (right). Shown

are also the results for flat plates at H = 10a (dashed curves) and at reduced distance H = 8a

(dotted curves). For the rescaled frequency (Hq0)–axis, H = 10a.

Fig. E.5 shows the change of the DOS for H/λ = 0.1 and q0 � 1/λ. The TM result

is located close to the result for flat plates apart for frequencies close to the maximum.

The result for TE modes appears to be only slightly amplified compared to the result for flat

plates. Since frequencies in the range q0 � 1/λ are expected to resolve the surface structure,

these results suggest that in the limit H 
 λ, the change of the DOS can be obtained as

a sum of its contributions from local space domains. This would be in accordance with the
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Figure E.5: Same plot as E.4 for TM modes (left) and TE modes (right) for λ/a = 100.

observation that both lateral and normal Casimir forces can be described by the proximity

approximation in the regime H 
 λ, where diffraction at the edges can be neglected and

the interaction is obtained as a sum over its local contributions.

3 Summary

Past the derivation of the trace formula for the change of the DOS in chapter C, in the

present chapter we dedicated the attention to the behaviour of the change of the DOS as

a function of the frequency q0. The numerical method introduced in the second part of

chapter C was applied to calculate the change of the DOS numerically for a geometry with

square wave corrugated plates. A rapid convergence of the finite–order approximation of the

change of the DOS could be observed. Moreover, a qualitatively different behaviour of the

TM and TE mode contributions to the DOS was found for the cases that the ratio H/λ

between the surface distance and the deformation wavelength becomes either large or small.

We expect a perturbation expansion of the DOS to be feasible and beneficial in order to

understand these differences at an analytical level, at least for small and smooth surface

deformations.
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F Appendix

1 Correlation functions and the density of states

In this appendix, we use the scalar field quantization in Euclidean space to derive a relation

between the 2–point correlation function (Green function) for a given geometry with bound-

ary surfaces and the free Green function for the system without boundaries. The deduction

presented here follows closely the approach outlined in [53], but allows for Dirichlet, Neu-

mann, and also mixed mode boundary conditions. In the second part, we derive from the

relation between the density of states (DOS) and the Green function in Eq. (C1.9) the trace

formula Eq. (C1.14) using the relation for the Green functions deduced in the first part.

1.1 The Green function for boundaries

The massless scalar field is described by the Gaussian action in Euclidean space by

S{Φ} =
1
2

∫
d4X(∇Φ)2 (F1.1)

with the nabla operator ∇ in 4D Euclidean spacetime. Given a family of Sα of submanifolds

in the Euclidean spacetime enumerated by the (discrete) index α, each point of the manifold

is represented by a vector Xα(u) = (Xµ
α(u))µ=0,...3 where the 3D parametrization vector is

given by u = (u0,u‖). Note that u‖ is not necessarily cartesian. Since the further discussion

will be restricted to manifolds which correspond to rigid surfaces in space (i.e. the shape of

the surfaces is constant in time), and moreover, to stationary problems, each point of the

manifold is given by Xα(u) =
(
u0, sα(u‖)

)
. However, the formalism is sufficiently general to

allow for fluctuating surfaces in arbitrary dimensions as well, see Ref. [53] for further details.

The generating functional for correlation functions is given by

Z{J} =
〈
e
�
d4X J(X)Φ(X)

〉
(F1.2)

with the average 〈 . . . 〉 defined by

〈F 〉 ≡ �
−1

∫
�Φ(X)

∏
α

∏
Xα

δ
[
D̂αΦ(Xα)

]
e−S{Φ} F, (F1.3)
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where � is the normalization constant, such that 〈1〉 = 1. Correlation functions of

N th order can be obtained via functional derivatives from the generating functional as〈
Φ(X1) . . .Φ(XN )

〉
= δNZ{J}/(δJ(X1) . . . δJ(XN )

)∣∣
{J}=0

. The differential operator D̂α

determines the kind of boundary condition, e.g. D̂α = 1 for Dirichlet–BC, D̂α = ∂n̂α = n̂α·∇
for Neumann–BC, any linear combination of both (as e.g. the boundary condition used in

the scalar field based derivation of the Lifshitz theory). More generally, an arbitrary lin-

ear operator D̂α(∇) is feasible. The delta functions in Eq. (F1.3) can be represented as a

functional integral over an auxiliary field Ψα for all α as

∏
Xα

δ
[
D̂αΦ(Xα)

]
=

∫
�Ψα(Xα) ei

�
α

�
Sα

dXαΨα(Xα) D̂αΦ(Xα). (F1.4)

Via partial integration, the differential operators D̂α in Eq. (F1.4) can now be shifted onto the

auxiliary fields Ψα. This changes the sign at every single derivative in the operators, which

may be denoted by D̂−
α ≡ D̂α(−∇). Transforming the integration over the surface Sα in the

exponent on the right hand side of Eq. (F1.4) to the integration over the parametrization

vector u, one gets

∏
Xα

δ
[
D̂αΦ(Xα)

]
=

∫
�Ψα

(
Xα(u)

)
ei
�

α

�
duΦ[Xα(u)] D̂−

αΨα[Xα(u)]
√
gα(u)

≡
∫
�Ψα

(
Xα(u)

)
e
�
d4X Φ(X)ρ(X).

(F1.5)

gα is the determinant of the induced metric which appears in the surface measure, see

Eq. (B1.19). The field ρ is defined by the integral relation in the exponential function of

Eq. (F1.5), it is introduced formally to perform the Gaussian integration over Φ(X), which

is done by inserting the left hand side of Eq. (F1.5) into Eq. (F1.3) for F → 1. This leads

to

� =
∫ ∏

α

�Ψα

(
Xα(u)

)
e

1
2

�
X

�
X′ ρ(X)GE,0(X,X

′)ρ(X′) (F1.6)

with the free Euclidean Green function GE,0. The evaluation of Z{J} corresponds to substi-

tuting ρ→ ρ+ J in Eq. (F1.6). This gives

Z{J} = �
−1C

∫ ∏
α

�Ψα(Xα) e−Seff{Ψ,J}, (F1.7)

with the constant C = e
1
2

�
X

�
X′ J(X)GE,0(X,X

′)J(X′), and the effective action can be read off

by inserting the fields ρ(X) and shifting the operators D̂α onto the free Green function by
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partial integration. This leads to

Seff{Ψ, J} =
1
2

∑
αβ

∫
u

∫
u′
ψα(u)

√
gα(u) D̂αD̂′

βGE,0

(
Xα(u),Xβ(u′)

)√
gβ(u′)ψβ(u′)

− i
∑
α

∫
X

∫
u
ψα(u)

√
gα(u) D̂αGE,0

(
Xα(u),X

)
J(X)

(F1.8)

with the new auxilary fields ψα(u) = Ψα

(
Xα(u)

)
. The prime at the operator denotes

that it acts on the primed variable. To get an measure for the path integral which is

invariant under transformations of the local coordinates [42, 104], we introduce the field

φα(u) ≡ gα(u)1/4ψα(u) which is weighted by the quartic root of the determinant of the

induced Riemannian metric. Hence, Eq. (F1.7) can be reformulated as

Z{J} = �
−1C

∫ ∏
α

�φα(u) e−Seff{φ,J}, (F1.9)

with

Seff{φ, J} =
1
2

∑
αβ

∫
u

∫
u′
φα(u)M̂αβ

(
u,u′)φβ(u′) − i

∑
α

∫
X

∫
u
φα(u) ηα(u,X) J(X),

(F1.10)

and M̂αβ (u,u′) ≡ gα(u)1/4gβ(u′)1/4D̂αD̂′
βGE,0

(
Xα(u),Xβ(u′)

)
, cf. Eqs. (B4.67)–(B4.68),

and ηα(u,X) ≡ gα(u)1/4D̂αGE,0

(
Xα(u),X

)
. The Gaussian integration in Eq. (F1.9) can

be performed. Setting η̂α(u) ≡ −i ∫X ηα(u,X)J(X), one gets

Z{J} = Ce
1
2

�
αβ

�
u

�
u′ η̂α(u)M̂−1

αβ(u,u′) η̂β(u′)

= Ce−
1
2

�
X

�
X′ J(X)K(X,X′) J(X′)

= e−
1
2

�
X

�
X′ J(X){GE,0(X,X′)−K(X,X′)}J(X′), (F1.11)

where K(X,X ′) ≡ ∑
αβ

∫
u

∫
u′ ηα(X,u)M̂−1

αβ (u,u′) ηβ(u′,X ′). The kernel K can now be

expressed in terms of the Green functions, since the metric factors g
1/4
α cancel each other.

The Euclidean 2–point–correlation function between the points X and X ′ can now directly

be obtained from the generating functional as

GE

(
X,X ′) =

δ2Z{J}
δJ(X)δJ(X ′)

∣∣{J}=0 = GE,0(X,X ′) −K(X,X ′)

= GE,0(X,X ′) −
∑
αβ

∫
u

∫
u′
D̂αGE,0

(
X,Xα(u)

)M−1
αβ

(
u,u′) D̂′

βGE,0

(
Xβ(u′),X ′)

(F1.12)
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with the matrix Mαβ (u,u′) = D̂αD̂′
βGE,0 (Xα(u),Xβ(u′)) which was used before in the

discussion of periodic geometries. Since the density of states is related to the correction

of the Green function (for the given geometry) to the free Green function for the vacuum

space G̃E (X,X ′) ≡ GE (X,X ′)− GE,0 (X,X ′), the DOS is governed by the second term on

the right hand side of Eq. (F1.12). To proceed, the partially Fourier transformed Euclidean

Green function is to be evaluated:

G̃E

(
q0, q

′
0;x,x

′) =
∫
x0

∫
x′0
e−iq0x0−iq′0x′0 G̃E

(
X,X ′) . (F1.13)

Due to the choice of static boundaries and the homogenity of the Green function, the kernel

M and its inverse are homogenious as well. Using these properties, Eq. (F1.13) transforms

into

G̃E

(
q0, q

′
0;x,x

′) = −
∑
αβ

∫
x0

∫
x′0

∫
u

∫
u′
e−iq0x0−iq′0x′0 D̂αGE,0

(
x0 − u0,x− sα(u‖)

)
× M−1

αβ

(
u,u′) D̂′

βGE,0

(
u′0 − x′0, sβ(u

′
‖) − x′)

= −
∑
αβ

∫
x0

∫
x′0

∫
u

∫
u′

∫
dp0

2π

∫
dp′0
2π

∫
dq0
2π

e−iq0x0−iq′0x′0 eip0(x0−u0)+ip′0(u
′
0−x′0)+iq0(u0−u′0)

× D̂αGE,0

(
p0;x − sα(u‖)

)M−1
αβ

(
q0;u‖,u′

‖
) D̂′

βGE,0

(
p′0; sβ(u

′
‖) − x′)

= −2πδ(q0+q′0)
∑
αβ

∫
u‖

∫
u′
‖

D̂αGE,0

(
q0;x−sα(u‖)

)M−1
αβ

(
q0;u‖,u′

‖
)D̂′

βGE,0

(
q0; sβ(u′

‖)−x′).
(F1.14)

Since G̃(q0, q′0; · ) = 2πδ(q0 + q′0) G̃(q0; · ), one obtains for Dirichlet and Neumann boundary

conditions explicitly

G̃E

(
q0;x,x′) = −

∑
αβ

∫
u

∫
u′
GE,0

(
q0;x− sα(u)

)M−1
D,αβ

(
q0;u,u′) GE,0

(
q0; sβ(u′) − x′)

(F1.15)

where, for simplicity of notation, u is now considered to be the 2D parametrization vector.

The kernel is given by MD,αβ (q0;u,u′) = GE,0

(
q0; sα(u)− sβ(u′)

)
. Anologously, Neumann

boundary conditions yield

G̃E

(
q0;x,x′) = −

∑
αβ

∫
u

∫
u′
∂n̂αGE,0

(
q0;x−sα(u)

)M−1
N,αβ

(
q0;u,u′)∂n̂′

β
GE,0

(
q0; sβ(u′)−x′)

(F1.16)

with the kernel MN,αβ (q0;u,u′) = ∂n̂α∂n̂′
β
GE,0

(
q0; sα(u) − sβ(u′)

)
.
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1.2 The trace formula

To calculate the density of states for the given geometry, the trace over the Green function

for x = x′ must be calculated, which yields∫
d3x G̃E(q0;x,x) = −

∑
αβ

∫
x

∫
u

∫
u′

D̂αGE,0

(
q0;x− sα(u)

)
× M−1

αβ

(
q0;u,u′) D̂′

βGE,0

(
q0; sβ(u′) − x

)
= −

∑
αβ

∫
x

∫
u

∫
u′

∫
d3q

(2π)3
eiq·(x−sα(u)) D̂α(iq)

q20 + q2
M−1

αβ

(
q0;u,u′)

×
∫

d3q′

(2π)3
eiq

′·(sβ(u′)−x′) D̂′
β(iq

′)
q20 + q′2

= −
∑
αβ

∫
u

∫
u′
M−1

αβ

(
q0;u,u′) ∫

q
eiq·(sβ(u′)−sα(u))

D̂α(iq)D̂′
β(iq)(

q20 + q2
)2

=
1

2q0

∑
αβ

∫
u

∫
u′
M−1

αβ

(
q0;u,u′) ∂

∂q0

[
D̂αD̂′

β

∫
q

eiq·(sβ(u′)−sα(u))

q20 + q2

]
.

(F1.17)

Since the term in squared brackets is the transposed matrix kernel Mαβ(u′,u), Eq. (F1.17)

yields∫
d3x G̃E(q0;x,x) =

1
2q0

∑
αβ

∫
u

∫
u′
M−1

αβ

(
q0;u,u′) ∂

∂q0
Mβα

(
q0;u′,u

)
=

1
2q0

∂

∂q0
Tr ln (M) ,

(F1.18)

where the trace is taken over the set of ”free” variables, i.e. at fixed q0. Since the integral in

Eq. (F1.18) extends over the whole space, we consider its disjunct partition into the volumes

Vν separated by the boundary surfaces of the geometry. The regularization of Eq. (F1.18) is

performed by subtracting from the left hand side the part for which the distance H between

the surfaces is taken to asymptotically large values. Then,∫
�

ν Vν

d3x G̃E(q0;x,x) − ”H → ∞” =
1

2q0
∂

∂q0
Tr ln

(MM−1
∞

)
. (F1.19)

Since the left hand side of Eq. (F1.19) times the factor −2q0/π is the change of the Euclidean

density of states δρ(q0) for the whole system, see Eq. (C1.9), we get the trace formula

δρ(q0) = − 1
π

∂

∂q0
Tr ln

(MM−1
∞

)
. (F1.20)
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2 Fourier transform of the rectangular corrugation

We calculate analytically the Fourier transform of them Matrix M of the rectangular cor-

rugation model discussed in chapter D. Both plates are assumed to have a rectangular

corrugation profile with the same wavelength λ, and amplitudes a1, a2.

We start with Dirichlet boundary conditions. Performing first the Fourier transformation of

the orthogonal spacetime and frequency–momentum components defined by x⊥ = (x0, x2)
and p⊥ = (p0, p2), respectively, we have

M̃αβ
D (p,q) =

∫
x⊥

∫
y⊥

∫
x1

∫
y1

eip⊥·x⊥+iq⊥·y⊥eip1x1+iq1y1

× G (x⊥− y⊥, x1− y1;hα(x1) − hβ(y1) +H(δα2 − δβ2))

= (2π)2δ(2)(p⊥+ q⊥)
∫
x1

∫
y1

∫
p′1
ei(p1−p

′
1)x1+i(q1+p′1)y1

× e−
√
p2⊥+p′21 |hα(x1)−hβ(y1)+H(δα2−δβ2)|

2
√
p2
⊥+ p′21

.

(F2.21)

To evaluate this last expression analytically, it is necessary to find a simplified expression

for the dependence of the second exponential term on x1 and y1. At this point, the use

of piecewise constant profiles for the material plates becomes crucial: Since hα = ±aα, for

α = β we can write

e−p̃|hα(x1)−hα(y1)| = e−aαp̃
[
cosh(aαp̃) + a−2

α hα(x1)hα(y1) sinh(aαp̃)
]
. (F2.22)

Similarly, for α 	= β, we get

e−p̃|hα(x1)−hβ(y1)+H(δα2−δβ2)| = e−p̃H
[
cosh(aαp̃) − (−1)αa−1

α hα(x1) sinh(aαp̃)
]

×
[
cosh(aβ p̃) − (−1)βa−1

β hβ(x1) sinh(aβ p̃)
]
.

(F2.23)

To keep the notation short, we introduced p̃ =
√
p2
⊥+ p′21 . We now insert the Fourier series

expression for hα given by

hα(x1) =
2aα
π

∞∑
n=−∞

(−1)n−1

2n− 1
e

2πi
λ

(2n−1)(x1+δα2b) (F2.24)

into the right hand side of Eqs. (F2.22) and (F2.23). Then, inserting those into Eq. (F2.21),

the remaining integrals over x1, y1 and p′1 can easily be performed. This yields the periodic

formula

M̃D (p,q) = (2π)3δ(2) (p⊥+ q⊥)
∞∑

m=−∞
δ (p1 + q1 + 2πm/λ) ND,m (q⊥, q1) (F2.25)
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with the matrices

ND,m (q⊥, q1) =

 AD
m,1 (q⊥, q1) BD

m,12 (q⊥, q1)

γmBD
m,21 (q⊥, q1) γmAD

m,2 (q⊥, q1)


+ δm0

 1
4q (1 + e−2a1q) e−qH

2q cosh(a1q) cosh(a2q)

e−qH

2q cosh(a1q) cosh(a2q) 1
4q (1 + e−2a2q)


(F2.26)

for m even, and

ND,m (q⊥, q1) =

 0 CD
m,12 (q⊥, q1)

CD
m,21 (q⊥, q1) 0

 (F2.27)

for m odd. The entries of the matrices are given as follows

AD
m,α (q⊥, q1) =

(−1)
m
2

π2

∞∑
k=−∞

1
(m− 2k + 1)(2k − 1)

e−2aα q̃2k−1 − 1
q̃2k−1

, (F2.28)

BD
m,αβ (q⊥, q1) = 2

(−1)
m
2

π2

∞∑
k=−∞

γ(2k−1)(δβ2−δα2)

(m− 2k + 1)(2k − 1)
e−q̃2k−1H

q̃2k−1

× sinh(aαq̃2k−1) sinh(aβ q̃2k−1) , (F2.29)

and

CD
m,αβ (q⊥, q1) =

(−1)
m+1

2

mπ

[
(−1)αγmδα2

e−qH

q
sinh(aαq) cosh(aβq)

+ (−1)βγmδβ2
e−q̃mH

q̃m
sinh(aβ q̃m) cosh(aαq̃m)

]
,

(F2.30)

where the phase factor γ = e2πib/λ was introduced. We note that the off–diagonal entries

BD
m,αβ and CD

m,αβ implicitly depend on b through γ. Furthermore, we introduced the short

hand notation q̃n =
[
q2⊥ + (q1 + 2πn/λ)2

]1/2
, which implies q = q̃0.

In chapter D.1, the matrices ND,m have the symmetry ND,m (q⊥,−q1) = ND,−m (q⊥, q1),
and analogously for the Neumann matrices NN,m. We remark that this symmetry is no longer

valid here for either type of boundary conditions, since h2(x1) 	= h2(−x1) in general. It is

only recovered for a2 = 0 or b = lλ/2 for any integer l.

The matrix M̃N for the Neumann boundary condition is obtained similarly as for the Dirichlet

boundary condition. Evaluating first the Fourier transform of the orthogonal components as
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done in expression (F2.21), the result is

M̃αβ
N (p,q) = (2π)2δ(2) (p⊥+ q⊥) ×

∫
x1

∫
y1

eip1x1+iq1y1

× (−1)α+β
(−∂2

x3
+

(
h′α(x1) + h′β(y1)

)
∂x1∂x3 − h′α(x1)h′β(y1) ∂2

x1

)
×

∫
p′1
e−ip

′
1(x1−y1) e

−
√
p2⊥+p′21 |x3−y3|

2
√
p2
⊥ + p′21

∣∣∣x3=hα(x1)+Hδα2

y3=hβ(y1)+Hδβ2

= (2π)2δ(2)(p⊥+ q⊥)
∫
x1

∫
y1

∫
p′1
ei(p1−p

′
1)x1+i(q1+p′1)y1

× (−1)α+β

2

−√
p2
⊥+ p′21 − ip′1√

p2
⊥+ p′21

(∂x1− ∂y1) −
p′21

(p2
⊥ + p′21 )

3
2

∂x1∂y1


× e−

√
p2⊥+p′21 |hα(x1)−hβ(y1)+H(δα2−δβ2)|.

(F2.31)

We apply partial integration to obtain

M̃αβ
N (p,q) = (2π)2δ(2)(p⊥+ q⊥) × (−1)α+β

2

∫
p′1

[
−
√
p2
⊥+ p′21

− p′1√
p2
⊥+ p′21

(
p1 − q1 − 2p′1

)
+

p′21
(p2

⊥+ p′21 )
3
2

(p1 − p′1)(q1 + p′1)


×

∫
x1

∫
y1

ei(p1−p
′
1)x1+i(q1+p′1)y1 e−

√
p2⊥+p′21 |hα(x1)−hβ(y1)+H(δα2−δβ2)|.

(F2.32)

This expression will be treated analogously to the case of the matrix for the Dirichlet boundary

condition, cf. Eq. (F2.21). It differs from the Dirichlet–kernel by the additional p′1–dependent

term. This yields again expression (F2.25), but now with ND,m substituted by the Neumann

matrices NN,m, which are given by

NN,m (q⊥, q1) =

(
AN
m,1 (q⊥, q1) BN

m,12 (q⊥, q1)
γmBN

m,21 (q⊥, q1) γmAN
m,2 (q⊥, q1)

)

+ δm0

(
− q

4(1 + e−2a1q) q
2e

−qH cosh(a1q) cosh(a2q)
q
2e

−qH cosh(a1q) cosh(a2q) − q
4(1 + e−2a2q)

)
(F2.33)
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Figure F.1: Two stepwise constant plates with the same wavelength λ but with different amplitudes

a1 and a2. The plates are translationally invariant into the y–direction.

for m even, and

NN,m (q⊥, q1) =

(
0 CN

m,12 (q⊥, q1)
CN
m,21 (q⊥, q1) 0

)
(F2.34)

for m odd. The entries are now given by

AN
m,α (q⊥, q1) =

(−1)
m
2

π2

∞∑
k=−∞

1
(m− 2k + 1)(2k − 1)

1 − e−2aα q̃2k−1

q̃32k−1

× φmk(q⊥, q1), (F2.35)

BN
m,αβ (q⊥, q1) = 2

(−1)
m
2

π2

∞∑
k=−∞

γ(2k−1)(δβ2−δα2)

(m− 2k + 1)(2k − 1)
e−q̃2k−1H

q̃32k−1

× sinh(aαq̃2k−1) sinh(aβ q̃2k−1)φmk(q⊥, q1), (F2.36)

and

CN
m,αβ (q⊥, q1) =

(−1)
m+1

2

mπ

[
(−1)αγmδα2 e−qH

(
q +

2πm
λ

q1
q

)
sinh(aαq) cosh(aβq)

+ (−1)βγmδβ2e−q̃mH
(
q̃m − 2πm

λ

q1 + 2πm/λ
q̃m

)
× sinh(aβ q̃m) cosh(aαq̃m)

]
,

(F2.37)
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using the function

φmk(q⊥, q1) = q1
(
q1 + 2πm/λ

)(
q1 + 2π(2k − 1)/λ

)2

+ 2q2⊥
(
q1 + πm/λ

)(
q1 + 2π(2k − 1)/λ

)
+ q4⊥.

(F2.38)

As in the case of the Dirichlet–matrices, the off–diagonal elements depend on b via the phase

factor γ = e2πib/λ. The matrices of the previous discussion of the rectangular corrugation

model are now simply recovered by performing the limit a2 → 0 and by defining a = a1.

3 Reduced distance for the matrices Nm

In this appendix, the limit λ→ 0 of the matrices Nm(q⊥, q1) for the rectangular corrugation

model of chapter D will be performed (cf. section 2 of this appendix for a = a1, a2 = 0
and λ → 0), which corresponds to the limit of reduced distance, cf. Eq. (D1.10). These

matrices depend on the distance of the argument q1 to the positions 2πn/λ, which requires

diverse distinctions of cases. Considering this, for the Dirichlet case we find the simplified

expressions

ND,0 (q⊥, q1 + 2πn/λ) λ→0=



 e−2aq+1
4q

e−qH

2q cosh(aq)

e−qH

2q cosh(aq) 1
2q

 for n = 0

 − 1
π2n2

e−2aq−1
q ε

ε λ
4π|n|

 for n odd

 0 ε

ε λ
4π|n|

 for n even

(F3.39)

where we have introduced a small quantity ε, which is needed in order to have a non–singular

matrix Bkl. However, at the end we can safely take ε → 0 in the final expression for the

Casimir force. As λ → 0, this quantity vanishes as ε ∼ λ exp(−2πn(H − a)/λ). The other
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matrices for m 	= 0 are given by

ND,m (q⊥, q1 + 2πn/λ) λ→0=



 0 (−1)
m−1

2

πm
e−qH

q sinh(aq)

0 0

 for n = 0

 0 0

(−1)
m−1

2

πm
e−qH

q sinh(aq) 0

 for n = −m

 0 0

0 0

 for n 	∈ {−m, 0}

(F3.40)

for odd m and

ND,m (q⊥, q1 + 2πn/λ) λ→0=



 − (−1)
m
2

π2n(m+n)
e−2aq−1

q 0

0 0

 for n odd

 0 0

0 0

 for n even

(F3.41)

for even m 	= 0. Analogously, for the von–Neumann matrices, we find

NN,0 (q⊥, q1 + 2πn/λ) λ→0=



 − q
4(e−2aq + 1) q

2e
−qH cosh(aq)

q
2e

−qH cosh(aq) − q
2

 for n = 0

 4(−1)n−1

λ2

q21
q3

(e−2aq − 1) ε

ε −π|n|
λ

 for n odd

 − 1
λ

[π|n|
2 + 2

π C̃0(n)
]

ε

ε −π|n|
λ

 for n even

(F3.42)
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and

NN,m (q⊥, q1 + 2πn/λ) λ→0=



 0 2(−1)
m−1

2

λ
q1
q e

−qH sinh(aq)

0 0

 for n = 0

 0 0

−2(−1)
m−1

2

λ
q1
q e

−qH sinh(aq) 0

 for n = −m

 0 0

0 0

 for n 	∈ {−m, 0}

(F3.43)

for m odd, and

NN,m (q⊥, q1 + 2πn/λ) λ→0=



 4(−1)
m
2

λ2

q21
q3

(e−2aq − 1) 0

0 0

 for n odd

 −2n(n+m)
πλ C̃m(n) 0

0 0

 for n even, n 	∈ {−m, 0}

 ±mq1
π2 C̃m(n) 0

0 0

 for n ∈ {−m, 0}

(F3.44)

for even m 	= 0.

Here, the asymptotic behaviour of ε for λ → 0 is ε ∼ λ−1 exp(−2πn(H ± a)/λ). The

constant is given by C̃m(n) = (−1)m/2
∑′∞

l=−∞[(2l− 1)(2l− 1−m)|2l− 1+n| ]−1, and the

prime at the summation sign indicates that l 	= (1 − n)/2 if n is odd.
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Kurzzusammenfassung

Casimirkräfte sind fluktuationsinduzierte Kräfte. Wir untesuchen die elektrodynamische

Casimirkraft, die von Quantenfluktuationen und thermischen Fluktuationen des elektromag-

netischen Feldes erzeugt wird. Mit Hilfe der Pfadintegralquantisierung des elektromagnetis-

chen Eichfeldes wird eine effektive Gaußsche Wirkung hergeleitet, die als Ausgangspunkt für

die analytische und numerische Berechnung der Casimirkraft dient. Es werden keine Annah-

men über die Unabhängigkeit der geometrieabhängigen und materialabhängigen Beiträge

zur Kraft gemacht. Wir untersuchen den Limes flacher Platten und erhalten eine kom-

pakte Darstellung der Lifshitzschen Theorie molekularer Kräfte [73]. Im Limes idealleiten-

der Oberflächen läßt sich die Gaußsche Wirkung explizit angeben. Beide Grenzfälle wer-

den auch im Rahmen der Skalarfeldquantisierung untersucht, die auf translationsinvariante

Geometrien angewendet werden kann. Es wird eine nichtperturbative Methode entwick-

elt, um die Casimirkraft aus der Gaußschen Wirkung für periodisch deformierte, idealleit-

ende Oberflächen numerisch zu berechnen. Die Ergebnisse zeigen zwei Skalenregime für die

Casimirkraft als Funktion des Abstandes zwischen den Oberflächen, und ihrer Krümmung.

Die Nichtadditivität der Casimirkraft als fluktuationsinduzierte Kraft wird durch die erhalte-

nen Resultate belegt. Weiterhin wird die numerische Methode auch zur Berechnung der lat-

eralen Casimirkraft zwischen periodisch deformierten Oberflächen verwendet. In bekannten

Limites sind unsere Ergebnisse konsistent mit denen anderer Approximationsverfahren, wie

der ”proximity force approximation” im Falle großer Deformationswellenlängen, bzw. kleiner

Oberflächenkrümmung. Es zeigt sich ein qualitativ unterschiedliches Verhalten zwischen

der normalen und lateralen Kraft. Darüberhinaus stellen wir eine Beziehung zwischen der

Änderung der Zustandsdichte für die skalare Helmholtzgleichung durch die Anwesenheit von

beliebig geformten Oberflächen und der Casimirwechselwirkung mit Hilfe der Pfadintegral-

methode her. Für statisch deformierte Oberflächen läßt sich diese Beziehung in Form einer

neuen Spurformel ausdrücken, die formal ähnlich ist zur sogenannten Krein–Friedel–Lloyd

Formel [64]. Während letztere jedoch die Zustandsdichte über die S–Matrix für Quanten-

streuprozesse an Potentialen beschreibt, so wird die neue Spurformel auf die freie Greenfunk-

tion, welche auf den Grenzflächen der Geometrie des Problems ausgewertet wird, angewandt.

Diese letztere Formulieung ist nicht approximativ und somit exakt.
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Institut für theoretische Physik, Zülpicher Straße 77, 50677 Köln
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