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1. Introduction

During the last century it has been realized that power-law distributions are surprisingly
ubiquitous in natural and social sciences. Examples are the power-law distribution of indi-
vidual wealth or people's annual incomes [1] and the frequency of use of words in di�erent
languages [2] known as Pareto and Zipf's laws, respectively. Similar power-law distribu-
tions were observed in physics when studying the behavior of systems at their critical points,
related to second order phase transitions, in which 
uctuations on all length scales are im-
portant. Those power laws are linked to the fractal structure and scale-free property of a
system at its critical point. To understand the physics underlying the properties of such
systems one has to take into account e�ects of all length scales down to the microscopic
level [3].
Since the works of Wilson and introduction of the renormalization group theory [4{6]
physicists have tools for such studies. A great amount of work has been done within
the last three decades and a nice classi�cation known as universality classes has been
found, which gives physicists the ability of understanding a variety of di�erent systems by
identifying the universality class they belong to.
This paradigm of statistical physics has always been tempting for physicists encouraging
them towards solving problems of nonphysical systems having a large number of interact-
ing agents known as many body systems. Interactions in nonphysical systems are typically
unknown or can not be precisely de�ned, making the theoretical investigations more dif-
�cult. Even by approximations and assumptions the nonlinearity of interactions presents
serious problems. These systems have typically open boundary conditions, i.e. energy and
information can constantly be imported and exported across the system boundaries driving
them into a state far from equilibrium. The theory of nonequilibrium systems is up to now
not as well developed as the theory of equilibrium systems, for which Gibbs ensembles and
the Hamiltonian of the system can be used for the calculation of macroscopic averages.
Recent numerical techniques like Monte Carlo simulations, related to the achievements in
computer and electronic sciences, have opened the possibility of working on analytically
unsolvable problems. Examples are the Ising model in an external magnetic �eld in two
dimensions and the Ising model in three dimensions.
Numerical methods are also applicable by studying problems arising in systems far from
equilibrium and those belonging originally to other scienti�c disciplines like sociology, eco-
nomics, tra�c engineering, biology, etc. For instance the methods used to understand the
physics of nuclei and elementary particles are applicable for analyzing stock market data.
The new born interdisciplinary science is called econophysics [7, 8].
E�orts towards understanding systems showing this kind of properties lead to the devel-
opment of methods, concepts and classi�cations now known as the science of complex
systems. Complex systems are typically many body interacting systems with long-range
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correlations between their agents.
The theory of complex systems was �rst made popular by the Santa Fe Institute1. Sherman
and Shultz [9] give the following popular de�nition:

Complexity refers to the condition of the universe which is integrated and yet
too rich and varied for us to understand in simple common mechanistic or
linear ways. We can understand many parts of the universe in these ways,
but the larger and more intricately related phenomena can only be understood
by principles and patterns not in detail. Complexity deals with the nature of
emergence, innovation, learning and adaptation.

The self-similar and scale-invariant (both in space and time) behavior of complex systems
compared with �ndings of statistical physics suggests that they should be at a critical point.
But since no external tuning ever occurs one should think of a self-organization mechanism,
i.e. those systems organize themselves towards their critical points2.
Many physicists believe that this kind of process (named "self organized criticality"after P.
Bak [10]) is responsible for many of the empirically found power-law distributions and 1/f
noises.
Statistical analysis of data related to a complex system gives hints towards understanding
interactions between agents and the structure of agents. The common way of under-
standing complex systems with a nonlinear interaction is to de�ne models and make use of
simulations. The predictions of the simulations and the comparison with the real system
provide the possibility of 1) a better understanding of the system through its global rules,
number of degrees of freedom, stochastic elements etc. and 2) tuning and calibrating the
model for practical purposes.
The common approach of a physicist is to �nd the simplest model, i.e. a model with the
minimum number of microscopic rules. The aim is to �nd a generic model with the ability
of reproducing as much as possible results known from the real system.
This method was used by physicists to introduce a variety of di�erent models describing
problems like tra�c 
ow [11], pedestrian dynamics, economics [8], stock markets [7],
biological systems [12, 13], social sciences [14], etc. [15].
One question arising is how many rules and stochastic parameters a model needs to repre-
sent important features of the real system. For example, consider the Nagel-Schreckenberg
(NaSch) model as one of the simplest microscopic tra�c 
ow models [16,17]. This cellular
automaton model has two parameters (maximum velocity and the probability of braking)
and four update rules (acceleration, safety distance control, randomization braking and
driving).
The NaSch model reproduces some, but not all of the empirical observations. To make the
model able to reproduce these other properties of the tra�c 
ow one needs extra rules [18].
Similar models are now used for forecasting tra�c on highways in North Rhine-Westphalia
(NRW) in Germany [19]. The NaSch model does not use any assumptions and constraints

1http://www.santafe.edu/
2This is debated. Labor experiments require additional conditions, which can be considered as tuning.
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for the higher order 
uctuations, like 
uctuations in the velocity or time headway distribu-
tions. This demonstrates the ability of minimal simple models to produce realistic results
for systems having few number of decision freedom (where the separation between di�erent
rational strategies is not necessary).
One of the di�culties one encounters by studying more complicated systems, especially
systems with humans as agents, is the lack of empirical data. This data are necessary for
comparing the predictions of a model both qualitatively and quantitatively with the real
system.
However a rather philosophical question is whether human based systems3 could be treated
as systems of unintelligent particles.
Approaches of game theory to understand such systems based on the assumption of "ra-
tional strategies"agents choose to optimize their payo�. The main method of the game
theory is to search for the Nash equilibrium of the system, in which no agent could improve
his payo� better by changing his strategy [20]. However there are many phenomena ob-
served, where rational strategies do not provide a correct explanation [21]. The choice of
strategy seems to be a combination of random and rational selections.
Online auction houses like eBay4 can be considered as complex systems with a large number
of agents interacting through auctions. The data related to auctions is huge and well
formatted, making it suitable for statistical analysis. The agents participating in online
auctions are humans. These two aspects of online auctions are the motivation for this
study.
The auction house eBay has similarities with other social structures like cities. The network
economies provided by eBay has caused an ever growing number of agents. The large
number of bidders encourage more sellers. This will encourage more bidders, which in
turn encourage more sellers, etc. making the whole system grow, which give the eBay
company possibility of providing better services, more advertising, etc. This encourages
again both bidders and sellers, making eBay a good candidate for studying dynamical many
body interactive systems.
The aim of this study is not to measure the properties of the system quantitatively in
order to �nd and calibrate a model capable to reproduce these properties. We are rather
interested in the important microscopic rules, which can describe the empirical observa-
tions. There is a hope to �nd a quantitative description of roles of rationality of the agents
in the system. It is interesting to examine whether the empirical �ndings could be sepa-
rated in those, requiring rational agents and those, having their roots in totally stochastic

uctuations.

1.1. How this study is organized

Chapter 2 gives an overview of complex systems and complexity and discusses power-law
generating processes and ideas related to complex systems. Since statistical relations and

3Like pedestrian dynamics, tra�c 
ows, economy and social systems.
4eBay is a trademark of eBay Inc [22].
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distributions use the language of probability theory and stochastic processes, important
terms and methods are given also in this chapter.
In chapter 3, common terms and their de�nition used in the context of auctions and online
auctions is given, di�erent type of auctions are brie
y listed and the mechanism of eBay
auctions is discussed.
Game-theoretical approaches to the problem of auctions and online auctions, de�nition of
strategies and an overview of recent researches and opinions are given in chapter 4.
The main part of this work studies the empirical �ndings and their interpretation. The
method of data collection and empirical results are presented in chapter 5. Our interpre-
tations are discussed in chapter 6. It turned out that many of the observed behavior can be
explained without considering rational agents. In this chapter an application of our �ndings
in form of a method of detecting shill bidding is given and a minimal model for simulating
auctions is discussed.
The work concludes with a summary.



2. Complex Systems

As we will show eBay can be considered as a complex system, where large numbers of
agents interact with each other during auctions.
As mentioned, the network economies provided by eBay cause an ever growing number of
agents, where the large number of bidders encourage more sellers, which in turn encourage
more bidders, etc. An analogy is known from cities, where the number of population
cause better economic conditions, which make the city more attractive for those changing
their resident city. These kind of growth processes manifest themselves often in power-law
distributions known as Zipf's law [2], which is a log-log plot of the rank of a variable versus
its value (size) and show a line of the form y = a− bx , where b is close to 1. Zipf's law is
similar to the cumulative frequency distribution of a variable.
Although there is at present no accepted precise de�nition of complexity, complex systems
share a number of properties and behaviors. These systems are not only complicated but
show also long-range correlations, power laws, 1/f noise, scale invariance, self-similarity,
self-organization, criticality, etc. Some of these properties, e.g. power laws and 1/f noise
are believed to be �ngerprints of complex systems.
Properties of complex systems are not properties of any single agent in the system. They
usually can not be predicted or deduced from the behavior of the lower-level agents and
demonstrate a new stage in the evolution of the system.
A number of these properties are understood but many of them are subjects of new studies.
Studying complex systems is rather new, yet there exists a huge literature. In this section
we give a brief discussion of the most important properties of complex systems and other
related topics named above. Wherever such properties are observed in our study we refer
to descriptions in this section.

2.1. Emergence

Perhaps the most important property of complex systems is the so-called emergence. In
such systems some behaviors emerge as a result of relationships between the elements of
the system. An emergent behavior or emergent property is present when a number of
simple agents in a system form more complex behaviors as a whole, i.e. the system made
of several agents shows properties which the agents themselves do not have. For example,
consider tra�c 
ow as a system of moving cars and the occurrence of jams, which are not
a property of cars themselves, but exist in the relation between cars. Emergent properties
can also arise between other emergent properties.
The conditions for which a system shows emergent behavior are still subject of modern
studies but typically emergent properties arise when the system reaches a combination of
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interactivity, organization and diversity [23]. As mentioned, in a complex system it would
be impossible for an element or part of the system to control the whole system. If it would
be possible, all the complexity would have to be present in that element. For example,
consider the stock market. Stock market regulates the relative prices of companies around
the world but there exists no leader or one investor which controls the entire market and
the complexity of the system emerges through interactions of individual investors [23].
In physics, emergence is used to describe phenomena which occur at macroscopic scale but
not at microscopic levels. Examples are color and temperature. Even some basic structures
like mass, space, and time are believed as emergent phenomena in some theories (emerging
from more fundamental concepts like the Higgs boson).
Another property seen often in complex systems is that the relationships between elements
(at microscopic level) are short-range and nonlinear. It means the interaction occurs just
between near neighbors and may cause both large and small results.
Nonlinear relationships and interactions are also seen in many chaotic systems in which
observed behaviors are random-like. To distinguish between chaotic and complex systems
one should measure the order of complexity of the system. This could be done by using
algorithmic complexity, which is related to the length of the shortest computer program,
which can reproduce the measurements of the system. There exists other methods of
measuring the complexity of a system, examples are Gell-Mann's e�ective complexity [24]
and Bennett's logical depth [25].
Typically complex systems can not be considered as Markovian stochastic processes. They
have a large history and are very sensible against even small changes in the initial con�g-
uration. Any small change can lead to large deviations in the future. This property is also
similar to properties of chaotic systems (butter
y e�ect).
Another important typical property of complex systems is the open boundary condition. It
means the energy and information are imported and exported across the system boundaries.
Because of this, complex systems are usually far from equilibrium. But it is possible that
the system shows stability, where expectation values of observables appear to be time-
independent. This state of the system is called stationary state or stationary equilibrium.

2.2. Self-organization

In some systems, normally open ones, under especial conditions it is observed that the
internal order (organization) of the system increases automatically and without any external
tuning or management. In this case we talk about a self-organizing system and the process
is named self-organization. Self-organizing systems show typically emergent properties,
however, the relation between emergence and self-organization is still an open question1.
This idea seems to challenge the second law of thermodynamics, which suggests that the
entropy of a system should always increase (or the order should always decrease). However,
as far as considering open systems, these two ideas are not in contradiction. There exists
the possibility of reducing the entropy by transferring it to the environment, because of the

1For further discussion please see [26, 27].
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Figure 2.1.: This graph shows an example of Koch's snow
ake. From [29].


ow of matter and energy through the system boundaries. It appears, as Ilya Prigogine [28]
believed, that because isolated (closed) systems can not transfer energy and matter they
cannot decrease their entropy and only open systems far away from equilibrium can exhibit
self-organization. However, it is possible for an isolated system to increase macroscopic
order by increasing its overall (macroscopic and microscopic) entropy. Which means that
some macroscopic degrees of freedom can become more ordered at the expense of system's
microscopic disorder.
There exist several classes of physical processes that can be viewed as self-organization.
An overview is given below (see [30] for a detailed one):

i. Systems in thermodynamic equilibrium:

a) structural phase transitions, and spontaneous symmetry breaking:

i. crystallization and spontaneous magnetization.
ii. superconductivity, Bose-Einstein condensation and laser.

b) second-order phase transitions related to critical points and associated with
scale-invariant and fractal structures:

i. percolation in random media.
ii. critical opalescence of 
uids at the critical point.

ii. Thermodynamic systems away from equilibrium (the theory of dissipative structures
was developed to unify the understanding of these phenomena), examples include:

a) structure formation in astrophysics and cosmology including star and galaxy
formation.

b) self-similar expansion.

c) turbulence and convection in 
uid dynamics.

d) percolation.

iii. Self-organizing dynamical systems:

a) self-organized criticality, which claims that many systems exhibit critical and
scale-invariant behavior similar to the one observed by equilibrium systems un-
dergoing a second-order phase transition at their critical points. Examples are
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avalanches, earthquakes and forest �res. This theory has been successfully ap-
plied to a wide range of di�erent systems. Other possible examples are tra�c
jams, size of cities and size of companies.

2.3. Self-similarity, Fractals, Recursion

A self-similar object is similar to a part of itself (exactly, approximately or statistically,
which means parts of them show the same statistical properties at many scales). One
of the simplest examples is Koch's snow
ake. An example for statistical self-similarity are
coastlines. Self-similarity is a property of fractals which can typically be de�ned by recursive
procedures. Fig. 2.1 shows an example of Koch's snow
ake taken from [29].

2.4. Correlation, Power spectrum and 1/f noise

As mentioned, complex systems have typically a long-range memory. This property could
be measured in terms of the temporal autocorrelation function of the stochastic process
X(t) (which could be any time signal) and is de�ned as:

R(�) = hX(t1)X(t2)i−hX(t1)i hX(t2)i �
∫∞

−∞

∫∞

−∞
X1X2P (X1; X2; t1; t2)dX1dX2; (2.1)

where � � t2 − t1 and P (X1; X2; t1; t2) is the joint probability density that X1 is observed
at time t1 and X2 is observed at time t2. If there is no correlation between the signal at
t1 and at � time units later, we have R(�) = 0. The duration of memory can be measured
using the speed with which R(�) decreases. Short-range correlated random processes are
characterized by a typical time memory �c called the correlation time of the process. An
example is an exponential decaying autocorrelation function:

R(�) / exp(−�=�c): (2.2)

Long-range correlated random processes are in contrast characterized by the lack of a
typical temporal scale. This is the case if the autocorrelation function follows a power law
(see sec. 2.5.1).
Short-range, long-range or white noise processes can be distinguished by using the so-called
power spectrum of the process. For a given signal, the power spectrum gives a plot of the
portion of a signal's power (energy per unit time) falling within given frequency bins and
can be expressed in terms of the Fourier transform of the autocorrelation function:

S(f ) =

∫∞

−∞
R(�) exp(−2�if �)d�; (2.3)

Consider a stochastic process with a power spectrum of the form:

S(f ) ∼ |f |−�; (2.4)
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minimum exponent
quantity x xmin �
frequency of use of words 1 2:20(1)
number of citations to papers 100 3:04(2)
number of hits on web sites 1 2:40(1)
copies of books sold in the US 2 000 000 3:51(16)
telephone calls received 10 2:22(1)
magnitude of earthquakes 3:8 3:04(4)
diameter of moon craters 0:01 3:14(5)
intensity of solar 
ares 200 1:83(2)
intensity of wars 3 1:80(9)
net worth of Americans $600m 2:09(4)
frequency of family names 10 000 1:94(1)
population of US cities 40 000 2:30(5)

Table 2.1.: Parameters for some empirically found power-law distributions with the form
p(x) = Cx−�. Numbers in parentheses give the standard errors. (From [35])

with 0 < � < 2.
When � = 0, the power spectrum is frequency-independent and the stochastic process is
approximately white noise. White noise �(�) is the formal derivative of a Wiener process
(formal derivative because Wiener process is not di�erentiable) and has the following prop-
erties:

h�(�)i = 0〈
�(�)�(� 0)

〉
= �(� − � 0): (2.5)

So the integral of white noise is Wiener process and is characterized by � = 2. Short-
range processes share the property of having � = 2. When � � 1 the autocorrelation
function lacks a typical time scale and the stochastic process is long-range correlated. In
this case the stochastic process is called 1=f noise. 1=f noise is observed in many di�erent
phenomena [31{34] . 1=f noise showing self-similar temporal structures are examples of
temporal fractals. In contrast to spatial fractals, temporal fractals cannot be observed
directly. They are also called "
icker noise"or "pink noise".

2.5. Power laws, Stable laws, Scaling

Power-law distributions of the form p(x) = Cx−� are ubiquitous and appear in many
di�erent scienti�c disciplines like physics, biology, social sciences, economics, computer
science, seismology, etc. In Table 2.1 we have listed some examples.
As mentioned in the previous section, power laws could be considered as �ngerprint of
complex systems. Here we give an overview of the properties of power laws. In section 2.6
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simple processes which produce power laws, and proposed theories explaining conditions for
which power laws occur are discussed.
In physics, power-law distributions are linked to continuous phase transitions and critical
points. They are known as one of the critical phenomena. At a critical point the length
scale of a system diverges and the system shows no length scale at all. Such a system is
scale-free. For example consider a magnet with a correlation length, a parameter which
measures the typical size of magnetic domains. Under certain conditions the correlation
length diverges (this is indeed seen experimentally, predicted by simulations and solved
exactly theoretically). The diverging correlation length means that all system elements
should be in connection to each other and the size of the magnetic domain (cluster) will
be the size of the system. In this case the system percolates and we name this one
cluster, the spanning cluster. In sec. 2.5.1 we will show that at a critical point (due to the
scale-invariance property), the observable quantities in the system should follow a power-
law distribution. Usually (and also for the example explained above) the circumstances
under which the divergence of the correlation length happens are very speci�c ones and the
parameters of the system have to be tuned precisely to produce the power-law behavior.
This makes, however, the divergence of length-scales an unlikely explanation for generic
power-law distributions. This is a motivation for the theory of self organized criticality
(SOC), which suggests that a large class of di�erent systems move themselves towards
their critical points without any external tuning.

2.5.1. Scale-free distributions

Power-law distributions are the only distributions showing scale-free behavior (see Appen-
dix A.1). The form of a power-law distribution is the same at any scale one looks at it.
That is the reason why these distributions are also called scale-free. This can be shown by
means of an example. Consider the population of cities is observed to follow a power-law
distribution and consider we �nd that cities with a population of 100.000 are 5 times as
common as cities with a population of 200.000. Switching to measuring population in
millions we will �nd again that cities with a population of 1 Million are 5 times as common
as cities with a population of 2 Millions. The scale-free property of a distribution p(x) can
be captured mathematically in the following condition:

p(ax) = g(a)p(x); (2.6)

where a is an arbitrary constant. This equation means if one increases the scale by which
one measures x by a factor a, the form of the distribution p(x) remains unchanged, except
for an overall multiplicative constant.
It is easy to show (see Appendix A.1) that a power-law p(x) is the only distribution satisfying
the condition of Eq. (2.6).
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2.5.2. Stable laws, Invariance properties

Consider Sn = x1 + x2 + :::+ xn as the sum of n independent identically distributed (i.i.d.)
random variables xi with probability density function (pdf) P1(x). In general Sn will have a
di�erent pdf Pn(x) given by n convolutions of P1(x). If the functional form of Pn(x) is the
same as the functional form of P1(x), this pdf and the corresponding stochastic process
are said to be stable. Within the formalism of the renormalization group, a stable law is
connected to a �xed point of the renormalization group (RG) transformation. Attractive
�xed points of RG describe the macroscopic behavior in the n → ∞ limit. Phase transitions
as a global change of regime at the macroscopic level under tuning of a control parameter
to change the strength of the correlations, are linked to repulsive �xed points [36].
One of the properties of stable distributions is self-similarity. We will show this in sec-
tion 2.5.3.
The central limit theorem (CLT) states that in the n → ∞ limit, and if xi has a zero
mean and a �nite variance �2, the normalized sum Snp

n will be a random variable with a pdf
converging to the Gaussian distribution with variance �2. This means Gaussian distributions
are stable. The stable laws have been studied and classi�ed by Paul L�evy (see [37]). He
discovered that in addition to Gaussian distributions, there exists a large number of other
pdfs sharing the stability condition:

Pn(y)dy = P1(x)dx; (2.7)

with y = anx + bn. All these pdfs share the property of having an asymptotic power-law
behavior. The asymptotic approximation of non-Gaussian stable distributions valid for large
values of |x | can be written as:

P (x) ∼ |x |−(1+�); (2.8)

This power-law behavior has deep consequences for the moments of the distribution. For
instance, all L�evy stable processes with � < 2 have in�nite variance and with � < 1, have
not only in�nite variance, but also in�nite mean.
Power-law distributions are not only stable under addition (aggregation), but also share
other invariance properties. As Mandelbrot shows in [38] (see [39] for further discussion),
power-law distributions are the only distributions that are invariant under mixture and max-
imization transformations. These properties can be seen as a reason of ubiquity of power
laws. We refer to Mandelbrot [38], who suggests power-law distributions are the norm for
high variability data (i.e. data with in�nite variance) and need no extra special explana-
tion (just like the Gaussian distribution as a norm for low variability data, i.e. data with
�nite variance). Invariance properties under observation transformations, such as addition
or mixture of several data sets or using a subset of maximums/minimums of the data, are
quite important for practical purpose. For example in economics, aggregate incomes are
easier to collect than data including each type of income separately; �le sizes in the Internet
are a mixture of di�erent distributions of the �le sizes existing on the various Web servers;
historical recorded data like earthquakes, wars, etc. are typically recorded as exceptional
events (e.g. largest).



2.5.3 Scaling 13

2.5.3. Scaling

As mentioned, Gaussian and L�evy distributions are stable. They also present similar scaling
properties. As we have shown in sec. 2.5.2 the pdf of the sum of N Gaussian i.i.d. random
variables with mean hxi and variance �2 is also a Gaussian with mean N hxi and variance
N�2. It means the rescaled variable S−Nhxi

�
p
N

has the same pdf as the initial variables and is
independent of N. This is also the case if one starts with power-law distributed variables
of the form Eq. (2.8) with 1 < � < 2. For the case 0 < � � 1 the rescaled variable
is S

�
p
N

(in this case hxi is not de�ned). This property provide a testing strategy for the
existence of Gaussian and power laws. One can compare di�erent data sets (e.g. obtained
from di�erent time windows or system sizes) and try to collapse the di�erent pdfs onto one
universal curve by varying the exponent �. When such a reascaling exists, we say that the
pdf exhibits scaling properties. Scaling is observed in a wide variety of di�erent systems.
Important examples are equilibrium systems at their critical points and self-organizing non-
equilibrium systems.

2.5.4. Log-normal versus power law

If the logarithm of a variable x is distributed according to a Gaussian pdf, x is said to be
distributed according to a log-normal pdf:

P (x) =
1p
2��2

1
x

[exp (− ln x − �)2=2�2]; (2.9)

Log-normal distributions are also very often observed in natural and social sciences. They
can be mistaken locally for a power law because they can look very similar over a relatively
large interval [40].
It is not easy to distinguish between power law and log-normal if the pdf curve is not
extended over several orders of magnitude. Log-normal distributions are not stable under
addition, but stable under multiplication, i.e. the product of log-normal distributions is
again log-normal.

2.6. Mechanisms for producing power laws

In this section we give an overview and describe a number of important physical mechanisms
that have been proposed to explain the occurrence of power laws.

2.6.1. The Yule process

The Yule growth process [41] is one of the most important general mechanisms that can
produce power-law distributions with a wide range of exponents to match the observations
by a suitable tuning of its parameters. For several of the distributions listed in Table 2.1,
especially city populations, citations and personal income, it is now the most widely accepted
theory.
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Consider a system as a collection of objects, such as papers (other examples include cities,
web pages, etc.). New objects appear every once in a while as people publish new papers.
Each paper has some property z associated with it, such as citations to the paper (or
number of people in a city etc.), that is observed to be distributed according to a power
law. We wish to explain this measured power-law distribution. Newly appearing objects
have some initial value z0 of z , for the case of papers and citations z0 = 0. This could be
di�erent if we consider other objects. Suppose in the time span between the appearance
of one paper and the next, l new citations (people) are added to the entire system. So
some papers (cities) will get new citations (people), but not necessarily all. Suppose the
simplest case that these new citations are added to papers in proportion to the number of
citations that the paper already has (i.e. we assume, that a paper that already has many
citations is more likely to be discovered during a literature search and hence more likely to
be cited again). This type of \rich-get-richer" process seems to be plausible for a wide
range of systems. Simon [42] named this process the "Gibrat principle", but it is used
under names of the "Matthew e�ect" [43], "cumulative advantage" [44] and "preferential
attachment" [45].
There is, however, a problem when z0 = 0. For example, new papers appear with zero
citations and will never get any citations. To overcome this problem one assigns new
citations in proportion to z + c , where c is a constant. Thus there are three parameters
z0, c and l that control the behavior of the model.
Let us measure the time in terms of steps, by each one new paper appears. so the total
number of citations is n(l+z0+c). Let us denote by pz;n that fraction of papers that have
z citations when the total number of papers is n. The probability that paper i receives a
new citation in the interval between nth and n+1th step is given by l(zi +c)=(n(l+z0+c))
and the total expected number of papers with z citations that receive a new citation will
be:

l(z + c)
n(l + z0 + c)

� npz;n =
l(z + c)
l + z0 + c

pz;n: (2.10)

The number of papers with z citation will decrease on each time step by this number. At
the same time this number increases because of those papers that previously had z − 1
citations and now have z . Thus one can solve the master equation for the new number
(n + 1)pz;n+1. In Appendix A.2 we show that the Yule process generates a power-law
distribution pz ∼ z−� (pz = limn→∞ pn;z) with an exponent related to the three parameters
of the process according to

� = 2+
z0 + c
l

: (2.11)

For citations of papers or links to world wide web pages we have z0 = 0 and we must have
c > 0 (to get any citations or links at all). So � = 2+ c=l . Price [44] assumed that c = 1
so that paper citations have the same exponent � = 2+ 1=l as the standard Yule process.
The most widely studied model of links on the web (Barab�asi and Albert [45]) assumes
c = l so that � = 3. This assumption can, however, not really be justi�ed. The actual
exponent for numbers of links to web sites is measured to be � = 2:2. So if the Yule
process is to predict the measurements we should put c ' 0:2l .
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2.6.2. Multiplicative processes

Levy and Solomon [46] have found that random multiplicative processes xt = �1�2:::�t
(with �j > 0) lead, in the presence of a boundary constraint, to a distribution P (xt) in the
form of a power law x−(1+�)

t . This process is discussed in detail by Sornette and Cont [47],
who found that this result applies to the asymptotic distribution of xt if the necessary
conditions 1) hlog�ji < 0 (corresponding to a drift xt → 0) and 2) xt not be allowed to
become too small, are satis�ed.
They show that a class of convergent multiplicative processes with repulsion from the origin
of the form:

x(t + 1) = eF (x(t);{b(t);f (t);:::}) b(t) x(t) ; (2.12)

share the same power-law pdf
P (x) = Cx−1−� (2.13)

for large x with � solution of
hb(t)�i = 1 : (2.14)

with F → 0 for large x(t), leading to a pure multiplicative process for large x(t) and
F → ∞ for x(t) → 0 (repulsion from the origin). F must obey some additional constraints
such as monotonicity which ensures that no measure is concentrated over a �nite interval.
The fundamental reason for the existence of the power-law pdf (2.13) is that ln x(t)
undergoes a random walk with drift to the left and which is repelled from −∞. A simple
Boltzmann argument [47] shows that the stationary concentration pro�le is exponential,
leading to the power-law pdf in the x(t) variable.
These results were proved for the process x(t + 1) = b(t)x(t) + f (t) by Kesten [48]
using renewal theory and was then revisited by several authors in the di�ering contexts of
ARCH processes in econometry [49] and 1D random-�eld Ising models [50] using Mellin
transforms, extremal properties of the G−harmonic functions on non-compact groups [46]
and the Wiener-Hopf technique [47].

2.6.3. Random walk

The widely used term "random walk"was �rst used by the biologist Karl Pearson in 1905 [51],
but the history of random walks goes back to two earlier observations. One of these ob-
servations was the irregular movement of small pollen grains in a liquid observed by Brown
in 1828 and known in physics as Brownian motion. The other one was the observation of
irregular series produced in gambling (coin tossing). This observation rose the interest of
Pascal, Bernoulli and Fermat in mid 16th century.
In physics, random walks are used as simpli�ed models of Brownian motion and also as
models for understanding some power-law distributions observed in the nature. A number
of properties of random walks are distributed according to power laws. For instance the
distribution of return times t (the walker returns to position 0 for the �rst time at time t)
follows a power law [35]:

ft ∼ t−3=2: (2.15)
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Random walks are also used for studying the avalanche dynamics typically occurring in the
theory of self-organized criticality. By using an unbiased �rst-return random walk process
and de�ning the number of steps the walker takes to return to position 0 as the lifetime of
the avalanche T , and the number of di�erent sites the walker has visited as spatial size of
the avalanche S, Yang et al. [52] show that T and S both follow power-law distributions.
An early analytical work of Montroll et al. [53] shows that for T → ∞ the relation between
hSi and T follows a power law:

hSi ∼ (16T=�)0:5: (2.16)

2.6.4. Combination of exponentials

Consider a process in which items grow exponentially in time. An example is the population
of organisms reproducing without any resource constraint. The size of the population is
then given by x ∼ e�t with � > 0. Suppose the items have a �xed probability of dying per
unit time, so that the times t at which they die are exponentially distributed p(t) ∼ e�t

with � < 0. This process has been discussed by Reed and Hughes [54], who found that
the distribution of the sizes x of the items at the time they die follows a power law. This is
actually an example of the general mechanism of combination of two exponentials, which
produces power-law distributions. Exponential distributions are very common and arise
in many di�erent phenomena. In physics, examples of exponential distributions include
survival times of � decay and the Boltzmann distribution of energies.
We describe this mechanism mathematically as follows. Suppose some quantity y has an
exponential distribution:

p(y) ∼ egy ; (2.17)

with g as a constant (for g > 0 there must exist a cuto� on the distribution). Suppose,
we are interested in some other quantity x which is exponentially related to y :

x ∼ ehy ; (2.18)

(h is another constant).
The probability density function of x can be written as:

p(x) = p(y)
dy
dx

∼
egy

hehy
=
x−1+g=h

h
: (2.19)

And p(x) will be a power-law distribution with exponent � = 1− g=h.
The power-law distribution of the frequencies of words was explained by using this mecha-
nism [55].

2.6.5. Self-organized criticality

At their critical points systems develop power-law distributions because of the divergence
of some characteristic scale. It was �rst proposed by Bak et al. [56], that many dynamical
systems arrange themselves so that they always sit at their critical point. One says that
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such systems display self-organized criticality (SOC). The original purpose of their work
was to explain why spatial and temporal fractals (1/f noise. See sec. 2.4) are found so
frequently in the nature. Despite initial enthusiasm and a large number of investigations
related to this problem, up to know there exist no accepted precise de�nition of SOC
and necessary conditions under which SOC behavior arises. Although self-organized critical
models have been used to understand many phenomena like forest �res [57], evolution [58],
avalanches [56], earthquakes [10, 59] and solar 
ares [60], SOC su�ers from the lack of a
detailed formalism and often does not provide a detailed explanation for the origin of power
laws in these systems.
This theory explains, however, how a number of interactive systems (observed in nature)
generate power-law relationships from simple interaction rules. As mentioned, the theory
of SOC claims that such systems self-organize themselves into a critical state. In this state
small perturbations might start chain-reactions named avalanches a�ecting a great number
of agents of the system.
An example of a naturally occurring SOC phenomena is the well known Gutenberg-Richter-
law, which gives the magnitude-frequency relation of earthquakes. However the standard
example of the theory is established to be the so called sandpile model. We will explain
this model brie
y here.
Imagine we have a quadratic lattice sandbox and add one sand grain at each time unit to
the box. First grains form a sandpile with a stable slope but by increasing number of grains
the slope increases until it reaches locally a critical value such that the addition of an extra
grain results in an avalanche. These avalanches �ll the empty space of the lattice little by
little.
In both cases, whether the slope is larger or smaller than the critical slope, the processes
bring it back to its critical value through avalanches or addition of grains respectively leaving
the system in a critical state. In this state, the distribution of many variables is found to
follow power laws. Examples are the lifetime, size and linear extent of the avalanches.
The relations between these variables are also found to be described by scale-independent
relationships [61].
The most important elements of the theory are listed below:

� Avalanches can have any size2. Yet, the distribution of the size of avalanches follows
a power law.

� Avalanches happen in a stochastic manner and there exists no periodicity.

� The surface of the sandpile shows a fractal structure.

� Global physical laws determine and dictate the interactions between the grains.

It is important to mention that sandpile experiments require extra rules, e.g. the addition-
rate should be such that the system has enough time to relax. Those rules could be
considered as tuning, which challenges the concept of self-organization.

2Ranging from one grain to the total number of grains building the sandpile.
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2.7. Mechanisms for producing log-normals

2.7.1. Multiplicative processes

We describe a multiplicative process which can produce log-normal distribution [62]. This
process was �rst introduced 1930 by the economist Gibrat [63] and is also used in biology
to describe the growth of organisms.
Suppose we start with an organism of size X0. At each step t, the organism may grow or
shrink, according to a random variable Rt , so that Xt = RtXt−1. If the Rk (with 1 < k �
t), have all log-normal distributions, then the Xt will also have log-normal distribution for all
t due to the property of stability under production of log-normal distributions (sec 2.5.2).
More generally, Xt will have a log-normal distribution even if the Rt are not themselves log-
normal distributed. Consider lnXt = lnX0+

∑t
k=1 lnRk . If the lnRt are independent and

identically distributed variables with �nite mean and variance, the Central Limit Theorem
says that

∑t
k=1 lnRk converges to a Gaussian (normal) distribution (sec 2.5.2), and Xt is

well approximated by a log-normal distribution.





3. Auctions, Online auctions, eBay

3.1. Auctions

An auction is a process of buying and selling things. In an auction an item is o�ered up
for sale by a seller. After taking bids, the item will be sold to the highest bidder. There
exists a special terminology used in the context of auctions (and online auctions). The
most important terms and their de�nitions are listed below. De�nitions used by eBay is
given if a term is used only in online auctions (like "proxy bidding").
Di�erent type of auctions are brie
y listed and the mechanism of eBay auctions is discussed
in this chapter.

� Ask Price: The minimum bid accepted for the item. In online auctions, ask price is
the current or listed price plus the bid increment.

� Auctioneer: An agent (person or a company) who conducts an auction.

� Bid: An o�ered price from a bidder.

� Bidder: Buyer. An agent who puts o�ers (bids) on the auctioned item. In the
context of online auctions the term "agent"is often used for "bidder".

� Bid Increment: The minimum amount by which a bid must exceed the current price
to be accepted by the auctioneer. This amount is usually determined by the current
price, i.e. it might not be constant during an auction.

� Bid Retraction: When a bidder cancels his own bid.

� Bid Shilling (also Shill Bidding): Fraudulent bidding by the seller by using an
alternate account or an associate of the seller in order to in
ate the price or increase
the attractivity of an item.

� Common Value Auctions: In a common value auction, the actual value of the object
being auctioned is the same to all bidders (but the actual value is perhaps not known
to anyone). Bidders place their bids on the basis of their own estimate of the actual
value of the item, but these values are strongly positively correlated (in contrast to
private value auctions).

� Current Price (also Listed Price or Current Bid): The last listed price of the item.
In second-price auctions current price is the second highest bid to date plus the bid
increment (if this amount is smaller than the maximum bid, unless the current price
would be the maximum bid).
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� Duration: Online auctions run on eBay have �xed time lengths of 1,3,5,7 or 10 days.

� Feedback: Publicly-available ratings and comments that buyers and sellers leave on
each others pro�le. eBay only allow a user to provide feedback on another user with
whom he has completed a transaction.

� Final Sale Price (or Final Value): Final listed price.

� Final Value Fee: The fee a seller has to pay the auctioneer, depending on the �nal
sale price.

� Hard Close: The auction has a �xed duration and ending time known to everyone.

� High Bidder: The buyer who placed the bid which would win the auction if it were
to close immediately.

� Insertion Fee (or Listing Fee): The fee a seller has to pay the auctioneer for listing
his item.

� Listing: The act of inserting/submitting an item for sale.

� Maximum Bid (or Threshold): The maximum amount the buyer is willing to pay
for an item. This amount is not revealed to other users and is used in proxy bidding.

� Minimum Bid: The minimum bid at any time is bid increment over the current ask
price of the auction. (If a bid is the �rst bid, the minimum bid is the starting price.)

� Private Value Auctions: In private value auctions, in contrast to common value
auctions, the actual value of the object being auctioned is not the same to all bidders.
Every bidder has his own estimation of the actual value. Examples are rare works of
art, antiques and stamp collections.

� Proxy Bidding (or Automatic Bidding): In online auctions: An option whereby
the auction site (eBay) automatically increases the buyer's current bid (called also
proxy bid) for the item over any subsequent bids placed by other buyers by the
lowest possible amount necessary (determined by price-dependent bid increments) to
maintain the buyer as the high bidder until the buyer's maximum bid is reached.

� Proxy Bid: The bid placed by the proxy system as bidder's.

� Reserve Price: The minimum price the seller will accept for the item to be sold. If
the �nal price is lower than the reserve price, no sale will take place. Reserve price is
not revealed to other users.

� Soft Close: The auction does not have a �xed ending time.

� Sniping: Placing a winning bid just before an auction closes. This is a strategy used
to prevent other bidders from outbidding the sniper or driving the price higher.



22 Di�erent types of auctions

� Starting Bid (also Starting Price or Opening Bid): The smallest amount that can
be entered as a bid for an auction. This is set by the seller. (Note that, in addition
to starting price, there may also be a reserve price on the item.)

� User: In online auctions, a user is a registered member, who can participate in
auctions as buyer or list items for sale as seller.

� Winner: Highest bidder at the end of the auction, who pays the �nal listed price for
the item.

� Winning Bid: A bid with which an auction ends.

3.2. Di�erent types of auctions

There exists di�erent types of auctions. The features and mechanisms of most common
auction types are brie
y listed below:

� English auction: Buyers bid against one another openly, by bidding higher than the
previous bid. The auction ends when there exists no bidder, who is willing to bid
further, or when a pre-determined price is reached. The highest bidder pays the
price. The seller may set a reserve price, so if the auctioneer fails to raise a bid
higher than this reserve the sale will not go ahead.

� Dutch auction (traditional): In the traditional Dutch auction the auctioneer begins
with a high asking price and lower the price until a bidder is willing to accept the
auctioneer's price, or a pre-determined minimum price is reached. In this kind of
auctions a sale requires only one bid.

� Dutch auction (by online auctions): Online auctions, in which more than one identical
good is sold simultaneously to a number of high bidders.

� Sealed �rst-price auction: All bidders simultaneously submit bids. No bidder knows
the bid of any other participant. The highest bidder pays the price he submitted.

� Sealed second-price auction (Vickrey auction): This auction type is identical to the
sealed �rst-price auction, except the winning bidder pays the amount of the second
highest bid.

� Silent auction: Participants submit bids normally on paper with or without the knowl-
edge how many other people are bidding or what their bids are. The highest bidder
pays the price he has submitted.
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3.3. Properties of online auctions in comparison to traditional
auctions

In contrast to traditional auctions, in online auctions bids can be placed at any time. Items
are listed for a number of days, so potential buyers have enough time to search, decide, and
bid. There are also no geographical constraints, sellers and bidders with internet access
can participate from anywhere in the world. This makes them more accessible and reduces
at the same time the cost of attending the auction. So the number of listed items and the
number of bids for each item may increase1. The items do not need to be shipped to a
central location, reducing costs, and reducing the seller's minimum acceptable price. Due
to the broad scope of products available, potential for a relatively low price, reduced selling
costs and the ease of access, there exist a large number of bidders and sellers building a
network.
A very recent work [64] studies the network of economic interactions that forms on eBay.

3.4. eBay

3.4.1. Some facts about eBay

With 105 million members worldwide (42 million in the US) and nearly $24 billion (worth
of goods exchanged in year 2004) eBay is the leading global e-commerce website. Each
day, there are millions of items sold on eBay. People come to eBay to buy all kinds of
practical, unique, and normal items, such as computers, automobiles, musical instruments,
real estate, jewellery, cameras, furniture, boats, scienti�c equipments, sporting goods, etc.
eBay reports that every three hours one Corvette is sold on its site , a diamond ring is sold
every six minutes, a digital camera every 90 seconds, and an article of clothing every three
seconds.
Fig. 3.1 shows one of the most recent advertisements of eBay just before the election (May
2005) in North Rhine-Westphalia (NRW) in Germany.

3.4.2. eBay auctions

The following description concerns rules used for items listed on eBay Germany (www.eby.de)
in the time between May 2003 and May 2004. Some of these rules and specially the detail
amount of fees could be di�erent if one uses other eBay sites (like eBay.com or eBay.co.uk)
for listing. The rules may change with the time so the information provided in the present
work are not necessarily valid in the future.

Listing items

To list an item for sale, the seller enters an auction category, a title, a description, shipping
conditions, payment methods, a starting price, auction's starting date, duration of the auc-

1In comparison to traditional auctions
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Figure 3.1.: One of the most recent advertisements of eBay just before the election (May
2005) in North Rhine-Westphalia (NRW) in Germany.

tion and some listing options which have in
uences on layout or position of the item when
it appears on the internet pages of eBay. The seller pays eBay an "Insertion Fee"(minimum
0.25 Euro for an item with starting price below 5 Euro and without any extra listing option),
which depends on the listing options, the starting price and the insertion category of the
item. The seller is also charged a "Final Value Fee"which is based on the �nal sale price
of the item (between 2.5 and 5 percent of the �nal sale price).

Publicly available information

Following data are publicly available as an auction proceeds:

� current bid

� total number of bids to date

� identity of all bidders and the time of their bid2 (but not the amount of their bid as
long as the auction has not ended).

� remaining time of the auction
2If the auction is set to be "private"by the seller, the identity of the bidders are nor revealed.
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Figure 3.2.: Screenshot of an eBay webpage. This Screenshot is taken from eBay's course
center [65].

� feedback information of seller and bidders

� static information, like starting date and time of the auction, starting price, insertion
category, etc.

Fig. 3.2 and Fig.3.3 show screenshots of the items-listing and the auction pages. These
screenshots are taken from eBay's course center [65].

Bidding

To participate in an auction run on eBay, one has to be a registered user. It is free of costs
to register on eBay. Any registered user can bid in an auction of his choice. Generally,
the user searches for the item of his interest and checks if the item matches. Before
bidding he might consider the seller's reputation3. Placed bids are considered binding but
bid retraction is possible in certain circumstances.

3Available in the form of feedback comments and rating.
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Figure 3.3.: Screenshot of an eBay webpage showing the publicly available data for an
auction. This Screenshot is taken from eBay's course center [65].

Mechanism of auctions

All eBay auctions are similar to second-price auctions (see sec. 4.1). They use an ascending-
bid format with the important di�erence that there is a �xed ending time set by the seller.
There are a variety of di�erent auction types run on eBay. Although we only study the
standard single item auction type (mostly with starting price of 1 Euro), here you �nd a
brief description of di�erent types of listing:

� Single Item: This is the most common type of listing. Here a single item is being
o�ered. The highest bidder pays the amount of the second highest bid plus a price-
dependent increment (see table 3.1).

� Dutch Auction: The seller o�ers more than one of the exact same item. The bidders
enter the desired quantity of the items with the price they want to pay per item. All
winners pay the lowest winning bid price.

� Buy It Now: A bidder can immediately win the item by choosing the "Buy It Now
option". This option can be selected by the seller during the listing process. The
"Buy It Now"price is also set by the seller during the listing process and is known to
bidders. This option is available to bidders until the �rst bid.
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Current Bid Bid Increment
EUR 1,00 - EUR 49,99 EUR 0,50
EUR 50,00 - EUR 499,99 EUR 1,00
EUR 500,00 - EUR 999,99 EUR 5,00
EUR 1000,00 - EUR 4.999,99 EUR 10,00
EUR 5000,00 and up EUR 50,00

Table 3.1.: Bid increments used by eBay (From [66]).

Bid increments

Bid increment increases as the current bid increases. Table 3.1 shows how eBay determines
the bid increments.

Feedbacks

Every eBay user has a feedback pro�le, which includes a feedback score and comments
left by their trading partners from previous transactions. This comments are classi�ed as
positive (+1), negative (-1) or neutral (0). The feedback score is the sum of these scores,
in which only comments from distinct users are used.

Proxy bidding

eBay uses a proxy mechanism for all submitted bids. Each bid on eBay is interpreted as
the bidder's maximum bid. An automated proxy system would bid for the bidder as the
auction proceeds, bidding only enough to outbid other bidders. If someone outbids the
bid, the system automatically increases his bid. This continues until someone exceeds this
maximum bid, or the auction ends and this bidder wins the auction. By using the proxy
system the user doesn't have to keep coming back to re-bid every time another bid is
placed. The description below is a brief overview how bidding on eBay works (from [67]):

i. When a user places a bid, he enters the maximum amount he would be
willing to pay for the item. This maximum amount is not revealed to other
bidders and the seller and is kept con�dential.

ii. The eBay system compares this bid with bids of the other bidders and
places bids on behalf of the user, using only as much of his bid as is
necessary to maintain his high bid position. The system will bid up until
the user's maximum amount is reached.

iii. If another bidder has a higher maximum, the user will be outbid. But, if
no other bidder has a higher maximum, the user wins the item and could
pay less than his maximum price.

eBay's proxy bidding system plays a central rule for the auction process. The algorithm
is used in our study for reverse engineering and �nding out about the current price at any
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given time. To make the mechanism of eBay's proxy bidding system better understood,
we give an example. Consider there is a "Stamp Collection"with the starting bid of 1.00
Euro o�ered. You see it but you are not sure that you really want it, so you bid 2.00 Euro.
You will be the high bidder with 1.00 Euro (since you have not outbid any other bidder, the
current amount is the same as the starting bid). The total number of bids will be 1. Later
another interested bidder sees the item. He enters a bid of 20.00 Euro. In this moment,
because he is the new high bidder and because he took the lead from someone else, he
needs to beat your max bid. He takes the lead for 2.50 Euro (that is 2.00 Euro to match
you plus 0.50 Euro for the increment to pass you). The total number of bids will be 2.
It is not possible for you to know about his true maximum bid in this moment. Later, he
decides that 20.00 Euro may not be enough to hold the item, so he bids again for 30.00
Euro. He is bidding basically against himself but eBay recognize this, so he still remains
the high bidder and the current bid is still 2.50 Euro, but the total number of bids will be
3. You see this and decide that you really do want the item, and you are willing to bid
more. You bid 5.00 Euro. That is not enough to overtake him, so he remains the high
bidder. eBay moves his proxy bid up to 5.50 Euro. At this moment the total number of
bids is 4. Now you bid 25.00 Euro. He remains the leader at 26.50 Euro. Still later you bid
50.00 Euro. You now take the lead at 30.50 Euro. Later, a stamp collector comes along
and is interested in this item. She bids 400.00 Euro for it. She takes the lead at 51.00
Euro, since the increment is now 1.00 Euro instead of the former 0.50 Euro. If there are
no other bids, the collector wins for 51.00 Euro. Her 349.00 safety margin would never be
seen by anybody. The total number of bids will be 7 and the distinct number of bidders
will be 3 at the end.





4. Game-theoretical Approaches

Game theorists study the behavior of individuals and optimal strategies in games. Although
the �rst formalization of the game theory by John von Neumann and Oskar Morgen-
stern [68] in 1944 had the aim of explaining economic behaviors, it found also applications
in other �elds like biology [69], political science [70], psychology [71], social science [69],
warfare and operations research.
By using the methods of game theory one seeks to �nd rational strategies, in which situ-
ations are taken into consideration where the outcome depends on the strategies chosen
by all players (not only on one's own strategy). These strategies might have di�erent or
overlapping goals.
The analysis and design of auctions are successful applications of the game theory. Auction
theory was pioneered by W. Vickrey in 1961 [72].
In this chapter we give an overview of results and raising questions when using game
theoretical approaches to understand second-price auctions.

4.1. Second-price auctions

The most familiar traditional type of auction is the open ascending-bid auction. This type
of auction is also called English auction (see sec. 3.1). A complete analysis of the English
auction as a game is rather complicated.
Another auction type similar to English auction but simpler for analysis is the second-
price (Vickrey) auction. Here the winner in the English auction pays the amount of the
second-highest bid. In a second-price auction, each potential buyer submits his bid to the
auctioneer, at the end of the auction, the auctioneer awards the auctioned object to the
bidder with the highest bid and charges him the amount of the second-highest bid.
One of the problems appearing when dealing with English auctions (in private value auctions
and in common value auctions with incomplete information) is the so-called winner's curse.
In common value auctions with incomplete information, the object being sold have a similar
value for all bidders, but the bidders are uncertain about this value at the time they submit
their bids. Each bidder has his private estimation of the value of the auctioned object. It is
plausible to assume that the average estimation of the bidders is close to the actual value
of the object. It means, the person with the highest bid has almost certainly overestimated
the value of the object. This person is the winner of the English auction. Thus, the winner,
who wins after bidding his true valuation has almost certainly overpaid.
This result can be obtained formally by using the conditional probability. If we calculate
the bidder's expected payo� from the auction conditioned on the assumption that he won
the auction, it turns out that for bidders bidding their true estimate, the expected pro�t is
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negative. It means that on average the winning bidder is overpaying.
Second-price auction was originally created by W. Vickrey [72] to reduce this problem
(winner's curse) and encourage people to bid what they believe the object is truly worth.
It turns out that this type of auction can reduce, but not eliminate, the winner's curse.
Let us answer the question of how one should bid in a second-price auction by using the
language of the game theory through an example. Consider a private value auction. It
means each bidder's estimation of the value is based on his personal opinions and tests for
the object (see sec. 3.1).
First consider the situation that a bidder bids less than the object was worth to him. In this
case, if he wins the auction, he pays the second-highest bid, so bidding less than his true
valuation does not change the result. But he risks that the object is being sold to someone
else at a lower price than what the object is worth to him, which makes him worse o�. Now
assume he bids more than his true value, the only case where this can make a di�erence
is when there exists, below this new bid, another bid exceeding his own true value. In this
case he, if he wins the object, must pay that price, which he prefers less than loosing the
auction. In other cases the outcome will be the same.
So in a second-price auction the optimal bidding strategy is to bid one's true value for
the object. Such strategy is called weakly dominant strategy in game theory. That is the
strategy with the best outcome, irrespective of what the other bidders are doing.
Second-price auctions provide insight into a Nash equilibrium (where no bidder can make
his payo� better by changing his strategy [20]) of the English auction. There exists a
strategy in the English auction which is equivalent to the weakly dominant strategy in the
second-price auction. In this strategy, a bidder remains active until the price exceeds his
true value, and then drops out. If all bidders use this strategy, no bidder can make his
payo� better by switching to a di�erent one.
eBay online auctions have features of both English and second-price auctions, in which, the
current price is observable to everybody. However, a bidder, instead of frequently checking
for the current price, can use the proxy bidding system provided by eBay, to stay in until
the price exceeds a given amount. If the high bidder is another one and his bid is below
that amount, then the system only increases the price enough so that it has the new high
bid. Operationally this gives bidders the possibility to act as if they are participating in a
second-price auction and bid their true value just once.

4.2. Game theoretical approaches by eBay auctions

Conventional game theory assumes that each player acts fully rational. However this as-
sumption does not hold in many cases, whether the players are humans or animals. This
counts as one of the major problems of applying game theory in the real world.
As we have shown in the previous section, given a second-price auction and fully rational
agents, the timing of bids plays no role and there is no inducement to bid less than one's
own value. However, empirical observations provided by Roth and Ockenfels [73] show that
internet auctions with a hard close (like eBay auctions) do not show the properties of the
perfectly functioning second-price auctions.
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In hard close auctions, the majority of bids is found to be placed just at the end of an
auction. These strategies are called late bidding and sniping. One of the arising questions is
the explanation of the di�erence between predictions of game theory and empirical �ndings.
Several groups have tried to understand this puzzle by de�ning and explaining new rational
strategies [73{76]. In this section we give a list of used strategies and an overview of
existing answers. Possible di�erent strategies are:

� Sniping: Bidding in the last few seconds.

� Late Bidding: Bidding in the last few minutes.

� Evaluation: Placing one's true value. In most cases the bids are placed early and are
signi�cantly greater than the minimum required value.

� Incremental Bidding: Placing minimum acceptable bids. Usually more than one bid
is placed close to each other.

� Seller's Shill Bidding: See sec. 3.1

� Squeezing: By squeezing, a seller uses any second eBay account to bid in his favour,
in order to uncover the sealed bid of potential buyers. By learning the threshold of the
highest bidder, the seller either retracts or cancels a shill bid and then he will submit
another bid, this time matching the threshold (he learned from the highest bidder
before). The unsuspecting bidder already has placed his bid, if he is not out-bidden
by a higher price he will pay his maximum price, and gain no pro�t from the auction.
The potential payo� has been squeezed from him by the seller, so that the buyer
makes zero pro�ts, instead of gaining the di�erence between the second-highest bid
and his threshold (from [76]).

� Unmasking: Bidding as long as someone else is the high bidder.

� Bid shielding: When a bidder puts a false high bid (which is then retracted) to reveal
the current highest value or to deter other bidders from competing. Then the high
bid can be retracted allowing the bidder to win the auction at a low price.

Some papers show that sniping is rational in common value auctions. Wilcox [74] argues
that potential buyers try to get additional information from other bidders, especially from
experts, those who frequently place bids on similar items. The potential buyers observe the
bids of experts as an indication for the market price of the auctioned goods. In response
to this behavior experts place their bids late.
Roth and Ockenfels [73] have observed similar behavior in auctions of antiques. But this
behavior has not been observed with other auctioned goods. It seems that the expert
bidders will place their bids late on goods where the market value is hard to determine.
It is plausible to assume that the bidders try to protect themselves against the incremental
bidding strategies of others. This seems to be a reason for sniping and late bidding. Ariely
et al. [77] found evidence for incremental bidding behavior in second-price internet auctions.
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A theoretical explanation for incremental bidding is provided by Roth and Ockenfels [75].
They argue that by late bidding one may face the risk of not being able to bid at all, due
to technological problems e.g. internet connection and network delay uncertainties. They
also show that in case of only one bidder, the expected payo� of an early bid exceeds that
of a late bid. They conclude that there exists no dominant strategy (incremental bidding is
not dominated strategically), however, late bidding can be the best response to incremental
bidding strategy.
Another group of papers consider sniping as the best response to shill bidding, which has
solely the purpose of in
ating the �nal price.
Wang et al. [78] discuss under which circumstances shilling would be a utility-maximizing
strategy. Chakraborty and Kosmopoulou [79] show that in a common value auction it is
only the auctioneer who could gain from shilling activities. They show that shill bidding
reduces the surplus of the bidders and conclude that the auctioneer has an incentive to
encourage shilling.
Barbaro and Bracht [76] demonstrate that sniping is a dominant strategy if one takes into
account additional rules of online auctions. They considered the possibilities of retracting
a potential buyer's bid or canceling a bid by the seller themselves. They called this strategy
squeezing. They suggested that the best response to the squeezing strategy is the late
bidding, because squeezing involves time. They show that sniping is part of a Bayesian-Nash
equilibrium.

4.3. Revenue equivalence theorem

There are many interesting results found by theoretical analysis of auctions. One important
result is given here. It is important that one takes both the auction format (English, second-
price, Dutch, etc.) and the valuation environment (common values, private values) into
consideration. For example it is found that under independent private values, English and
Vickrey auctions are theoretically equivalent.
The seller's revenue from English, Vickery, �rst-price and Dutch auctions with private
values1 is found to be the same. This leads to the "Revenue equivalence theorem", which
states that all auction formats that award the item to the highest bidder and lead to the
same bidder participation will generate on average the same revenue for the seller [80].

1There exist some additional assumptions.



5. Data Collection and Empirical Results

In this chapter we explain the method used to collect the data from eBay.de. Furthermore
we give results of the statistical analysis of this data such as important relations between
di�erent variables and their distributions. For the statistical analysis we use some standard
software like SPSS and GNU Plot, but to have more detailed and e�ective results for
our speci�c problems and questions, we had to develop our own individual tools. These
tools are developed in C++ by using several compilers such as GNU g++, GNU gcc and
MS-Visual C++ under both SUN and MS-Windows platforms.
As mentioned in chaper 2, the study of complex systems has to deal with high variability
data related to phenomena where large events and small events both occur. Normally
large events occur rarely. In contrast small events occur frequently and are common. This
property is captured in ubiquitous power-law distributions.
Statistical analysis of such high variability data is, however, tricky. Low frequency of large
events causes a poor statistics in the tail of histograms, making them noisy and di�cult to
work with. For example it is very di�cult to �t a curve to such noisy histograms in order to
�nd the probability density function (pdf). A common way of solving this problem is to use
logarithmic binning, which has the disadvantage of loosing information. The better way is
to plot the data by calculating the cumulative density functions (cdf) instead of plotting
the relative frequencies (and trying to �nd the probability density functions directly). In
our work we use mainly cumulative frequency histograms and �t curves to �nd cdf of
distributions. Knowing the cdf it is possible to �nd the pdf. It is simply the derivative of
the cdf. There exist also simple relations between exponents of both functions. We will
discuss this in sec. 5.1.
In this work we use the terms heavy-tailed, scaling and power-law distributions interchange-
able.

5.1. Density functions

5.1.1. Probability density function

Having a set of random variables x , e.g. time series or any statistical study like exam
scores, one of the most common statistical analysis is to �nd the probability distribution of
x . Probability distributions are typically de�ned in terms of the probability density function
(pdf) or the cumulative distribution function (cdf).
The pdf p(x), is de�ned such that the probability of �nding x in an interval �x around x is
given by p(x)�x . p(x) is by de�nition non-negative and normalized
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∫ xmax

xmin

p(x) dx = 1; (5.1)

where xmin is the smallest and xmax the largest possible value for x .
The probability density function is also called probability distribution.

5.1.2. Cumulative density function

The cumulative density function (cdf), P (x), describes the probability that x takes on a
value greater than or equal to x:

P (x) =

∫∞

x
p(x 0) dx 0: (5.2)

The cdf of a distribution with a power-law pdf, p(x) = Cx−�, also follows a power law,
with an exponent � = �− 1:

P (x) = C
∫∞

x
x 0−� dx 0 = C

�− 1
x−(�−1) = C 0x−�: (5.3)

The cdf of a distribution with an exponential pdf, p(x) = Ce−�x , is also an exponential
function with the same parameter �:

P (x) = C
∫∞

x
e−�x 0 dx 0 = C

�
e−�x = C 0e−�x : (5.4)

5.2. Data collection

To collect the data we used di�erent self developed software and scripts, which automate
monitoring eBay auctions through internet interfaces (HTTP protocol). The entire infor-
mation about eBay transactions are well protocolled and saved in eBay databases. This
information is however not publicly available. The method we used is to our knowledge,
despite of its weakness, the only one, one can use to collect this kind of data. All results
achieved by analysing/studying the data gathered in this fashion could be more precise if
one has the opportunity of using eBay databases directly.
The response of eBay to any HTTP request is in the form of HTML �les. To mine out
particular patterns of content and extracte formatted data from unformatted HTML �les
we use the screen scraping1 technique and advantages of regular expressions provided by
many programming languages.
The screen scraping is an inelegant method of consuming data from a web page, depending
on a consistent format of the web page. Nevertheless the huge data mining possibility this
technique provides has turn it into a science and many leading companies like Microsoft
have built it in their web services products.

1Screen scraping is the act of parsing the HTML in generated web pages by using programs designed to
mine out particular patterns of content.
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The programming language we use is PERL due to high 
exibility of regular expressions
and comfortable HTML parsing techniques.
The extracted formatted data was stored in a MS-Access database into several tables.
Because many of the information we are interested in, are available just after an auction is
ended, the auction web-pages should be visited both before and after ending of the auction
(note that an ended auction is not listed or linked on eBay web-pages directly). There
are some serious problems linked to the use of the screen-scraping method, for example
by calculating the time intervals between events, one should take the summer-winter clock
change into consideration. This is not done automatically by standard packages known to
us (the format of time used by eBay.de is the common "dd.mm.yy hh:mm:ss"format). To
gain dynamic information, like current price of an item at a speci�ed time or the feedback
score of a seller at the time a given item was running by him, from the raw data, one
should �nd reverse engineering methods by using the same algorithms used by eBay. There
exist in most cases no clear explanation of those algorithms and one has to test several
algorithms to �nd the right one.
To minimize errors in the process of data extraction and �lter out wrong data from the
database, one needs access to the information originally published on the web-pages, to
control suspicious items, e.g. those items showing extreme behavior.
So we needed to capture the whole published information of a number of items. This
information includes plain text, graphics, java-scripts and all other data formats, which are
integrable in HTML �les. To gain this data we used the Microsoft "MHT"web-archive
single �le format by using MS-ADO and Visual C++.
eBay's answer to each automated HTTP-request takes about 2 seconds. With about 1
million auctions ending every day, it is impossible to collect all the transaction information
by using the method explained above. So one has the problem of collecting a good subset
of data, which captures many di�erent features and includes as many as possible cases
happening in eBay. To solve this problem we decided to work with two di�erent sets of
data. One of them should be gathered from as many di�erent categories as possible,
with large variety in �nal prices (see Fig. 5.1). For this purpose we decided to gather all
auctioned items listed by eBay as the result to a widely used search-query. The other data
set should include all transactions in one or more categories over a large period of time.
We decided to monitor categories "Web Projects"and "websites & domains"because of
the variety of o�ers and the possibility of studying both common value and private value
strategies (see sec. 3.1). In these categories one �nds both standard o�ers, like web spaces,
with a common value and also rare valuable o�ers (projects or domain names) without any
standard or common value.
In Fig. 5.1 we show the cumulative probability distribution of �nal prices of all auctions.
The �nal price varies between 1 Euro and 10000 Euro, but the number of auctions ending
with a price higher than 1000 Euro is not big enough to o�er a good statistical analysis,
i.e. the results of our study are applicable to auctions ending with a �nal price below 1000
Euro.
Many of our results are found to be valid for both di�erent data sets. These data sets have
the following properties:
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Figure 5.1.: Cumulative probability distribution of �nal price for both data sets. Power-law
lines are guides for the eye and have slopes of −1:25 and −0:7.

i. DB-1: a data set collected from auctions existing on March 22, 2004 on eBay.de.
We focus on auctions with the label "OVP"2 in the title, indicating a new product,
and �nd 173,315 auctioned items, grouped in 9904 subcategories by eBay. 262,508
distinct agents bidding on items and 43,500 sellers o�ering auctioned items are iden-
ti�ed.

ii. DB-2: all auctions in subcategories "web projects"3 and "websites & domains"4 are
collected over 10 months, involving 11,145 agents that bid on 52,373 items (some
of these items are listed also in a second category).

5.3. Empirical results

As mentioned, distributions of many variables and also functionalities of expectation values
of some variables on other variables are measured to follow simple and common functions
like exponentials and power laws. In this section we give some of our most important
empirical �ndings. In the next chapter we will give our interpretations and explanations of
some of these relations.

2Originalverpackung
3Computer|Domainnamen| Web-Projekte
4Business & Industrie|Gesch�afts- & Firmenverk�aufe|Websites & Domains
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Figure 5.2.: Distribution of the positive feedback scores of sellers. Cumulative probability
distribution of the positive feedback scores of each seller is plotted. The data
set DB-1 is used. The solid line corresponds to a �t function of the form
f (x) / (x + c)−� with � = −1:28 and c = 195.

5.3.1. Distribution of positive feedback scores of sellers

The distribution of the positive feedback scores has a power-law tail. We have studied this
distribution for both data sets and found similar results. This kind of distribution is known
from scale-free networks, for instance similar distributions are found when studying the total
number of internet web-pages linked to a speci�ed web-page (see Table 2.1 and [45]).
We use a modi�ed scaling law to describe these distributions. A �t function of the form
f (x) / (x + c)−� is used. For the exponent � we �nd values � = −1:28 and � = −1:42
for the one day gathered data set, DB-1 (Fig. 5.2) and the data set gathered over 10
months, DB-2 (Fig. 5.3) respectively. This indicates that the exponents of pdfs of the
positive feedback scores are −2:28 and −2:42 for DB-1 and DB-2 respectively.

5.3.2. Distribution of positive feedback scores of bidders

The distribution of positive feedback scores of bidders has also a power-law tail. This
distribution is studied by using a subset of 126152 randomly chosen agents of the data set
DB-1. Fig. 5.4 shows the cumulative distribution of positive feedback scores. A power law
f (x) / (x)−2:2 is plotted as a guide for eyes.
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Figure 5.3.: Distribution of positive feedback scores of sellers. Cumulative probability distri-
bution of positive feedback scores of each seller is plotted. The data set DB-2
is used. The solid line corresponds to a �t function of the form f (x) / (x+c)−�

with � = −1:42 and c = 71.

5.3.3. Distribution of agents bidding on a certain item

The probability distribution of distinct number of agents nagent simultaneously bidding on
a certain item is exponential and is given by:

P (n) / exp(−n=n0); (5.5)

where n0 = 2:9.
This is in agreement with the behavior found in a previous study [81] for eBay.com and
the Korean eBay, where the authors found n0 = 2:5 for eBay.com and n0 = 7:4 for Korean
eBay.
In Fig.5.5 the histogram of number of agents nagent simultaneously bidding on a certain
item is plotted.

5.3.4. Distribution of total number of bids placed on one item

The probability distribution of the total number of bids nbids received for an item is expo-
nential and is given by Eq. (5.5) where n0 = 6:5.
This is also in agreement with the behavior found on eBay.com and Korean eBay [81],
where the authors found n0 = 5:6 for eBay.com and n0 = 10:8 for Korean eBay.
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Figure 5.4.: Distribution of positive feedback scores of bidders. Cumulative probability
distribution of positive feedback scores of each bidder is plotted. A subset of
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corresponds to the power law f (x) / (x)−2:2.

In Fig. 5.6 the cumulative probability distribution P (nbids) of bids nbids received for an item
is plotted.

5.3.5. Total activity of individual agents as bidder or seller

We found that activities of individual agents as bidder or seller follow power-law distribu-
tions. The total number of bids placed and the total number of auctions o�ered by agents
are studied by using the data set gathered over 10 months (DB-2). One can �nd that the
probability distribution of the total number of bids placed by the same agent, nbids, follows
a power law:

P (nbids) / n−

bids; (5.6)

where 
 = 1:9 (Fig. 5.7).
In Fig. 5.7 both cumulative probability and probability distributions of nbids are shown.
The probability distribution of total number of auctions o�ered by the same agent, denoted
by nauct, is also characterized by a similar power law:

P (nauct) / n−�
auct; (5.7)
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agent follows a power law. Cumulative probability and probability distributions
of the total number of di�erent auctions, nauct, o�ered by the same agent are
plotted.
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where � = 2 (Fig. 5.8).
In Fig. 5.8 both cumulative probability and probability distributions of nauct are shown.
This is an important result and the value of � = 2 is understandable. We will refer to and
discuss this result in the sec. 6.1.
To �nd the pdf of this distribution a �t function of the form f (x) = �x� is used. The
parameters are found to have values � = 1:00487� 0:0062 and � = −1:99832� 0:01056.

5.3.6. Distribution of returns

We de�ne the dimensionless variable return, %, as the relative increase of the submitted
bid, b:

% = (b − pauct)=pauct; (5.8)

where pauct is the current or listed price just before the bid is placed.
There are several reasons why the de�nition of returns does make sense. It is common,
that the human perception or response to a physical stimulus increases with the relative
changes of the stimulus. This functionality is known as the Weber-Fechner law [82]. The
Weber-Fechner law states that in order that the intensity of a sensation may achieve an
arithmetic progression, the stimulus itself must achieve a geometric progression. Examples
are brightness, sound intensity and pitch.
The distribution of % is found to follow a power law for almost 3 orders of magnitude with
exponent −2:44 (Fig. 5.9). Similar surprising distributions are also found by statistical
analyzing of music pieces, focusing on the distribution of pitch appearances [83].

5.3.7. Correlation of returns and bids

Although the bids are correlated, the returns show a very short range correlation. By
computing the correlation function cij =

〈
%i%j

〉
− h%ii 〈%j

〉
of the returns (indices denote

the chronological order of arriving bids; averaging is done over all auctions) one �nds that
cij has non-vanishing values just for i = j (Fig. 5.10). For comparison we have computed
the correlation function of bids kij =

〈
bibj

〉
− hbii 〈bj

〉
too. The non-vanishing correlation

is expected because of the drift in the listed price and the minimum accepted bid. We
found an interesting behavior, kij is not monotonically decreasing. This behavior could not
be understood and needs more studies (Fig. 5.11).

5.3.8. Distribution of bid submission times

By analyzing the collected data we found that bidders prefer to bid close to auction ending
times. Fig. 5.12 shows the cumulative probability distribution of bid submission times as a
function of the time remaining until the end of the auction. Two regimes with exponential
behavior can be observed related to the most common auction lengths of 7 and 10 days.
Both parts are well described by P (�t) / exp(−�t=T0) with T0 = 68:94 (Fig. 5.12).
Close to the end of the auctions sniping (see sec. 4.2) leads to a power-law distribution
P (�t) / (�t)−
 with 
 = 1:1 (Fig. 5.13).
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correlation is expected because of the drift in the listed price and the minimum
accepted bid. The non-monotonic decreasing behavior of kij could not be
understood and needs more studies.

5.3.9. Relation between price and number of bids

Each bid increases the listed price of an auctioned item (for an exception of the case, if a
high bidder places a new bid. See sec. 3.4.2). So an interesting questions is: How does
the price increases in average when a new bid arrives?
There are several studies describing the in
uence of static parameters like the ending time
(which day of the week, on which daytime), start price, etc. on the �nal price, less is known
about relations between dynamic parameters.
We looked for the functionality of the price on other dynamic parameters (such as number
of bids) and studied the relation between price pauct and number of bids nbid for each closed
auction. i.e. we look for the relation between the �nal price and the total number of bids
placed of an item. Fig. 5.14 shows the result for the data set DB-2.
The mean achieved price hpaucti for auctioned items with the same number of bids placed
on them (nbid) is found to increase in a power law with the number of bids.
This kind of functionality for conditional expectation values is rather common in systems
with very nonlinear dynamics or with stochastic multiplicative ampli�cation e�ects, which
are discussed in sec. 2.6.
This result seems to be plausible. Properties like pauct, nbid and bidding time tbid are
connected and to �nd the expectation values, one needs a large number of conditional
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Figure 5.12.: Distribution of bid submission times. The graph shows the cumulative proba-
bility distribution of bid submission times as a function of the time remaining
until the end of the auction. The Insets show the distribution of very small
remaining times and for remaining time more than 7 days.
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Figure 5.13.: Cumulative probability distribution of bid submission times close to the end of
the auctions, where sniping leads to a power-law distribution P (�t) / (�t)−


with 
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Figure 5.14.: Relation between �nal price and total number of bids nbid. Scatter plot and
linear regression (see Appendix A.3) of log(pauct) versus log(nbid) is shown.
The data set DB-2 is used.
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Figure 5.15.: Relation between �nal price hpaucti and number of bids nbid. Subsets of the
data set DB-1 is used. One-day-collected data, collected on di�erent days of
week are used.
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Figure 5.16.: Relation between �nal price and distinct number of bidders. Scatter plot and
linear regression of log(pauct) versus log(ndist−bidder) is shown.

probability functions, but if no scale characterize the system then we expect that for example
the relation between hpaucti and nbid to be described by a scale-free relationship, that is a
power law as shown in sec. 2.5.1.
The relation between hpaucti and nbid is shown in Fig. 5.14 and Fig. 5.15. A power-law
relation can be seen

hpaucti / n�bid; (5.9)

where � = 1:58 for the data set DB-2 (Fig. 5.14) and � = 1:53 for the data set DB-1
(Fig. 5.15).
This functionality seems to be universal and not depending on subcategories or time inter-
vals one uses to collect the data. As shown, this functionality is examined both with data
collected in large time intervals with focusing on selected subcategories (DB-2 Fig. 5.14)
and with just one-day-collected data on a very large domain of subcategories, collected on
di�erent days of week (DB-1).
The minimum starting price on ebay.de is 1 Euro. An interesting open question is if this
functionality is di�erent on ebay.com or ebay.uk, where the minimum starting prices are
lower than 1 (independent of currency).
Another interesting question is the relation between price and the number of distinct bidders.
To �nd this relation we have analyzed all auctions starting with 1 Euro and ending after
at least one bid. The data set DB-1 is used. We found 520449 bids placed on 59305
auctions. The mean and standard deviation of the number of distinct bidders per auction
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are found to be 5:141 and 3:22 respectively. The relation between hpaucti and ndist−bidder

is again a power law:

hpaucti / n�dist−bidder; (5.10)

where � = 1:79 for the data set DB-1.
The relation between pauct and ndist−bidder is shown in Fig. 5.16.





6. Interpretation of Empirical Results

In this chapter we give our interpretation and explanations of the behavior found in online
auctions. Some of the empirical �ndings provided in chapter 5 could be understood or even
predicted quantitatively by means of existing theories/mechanisms and stochastic processes
discussed in sec. 2.6. Other interesting results could be understood only qualitatively so
far.
We will present our interpretations and compare our results, where possible, with other
similar systems and processes. In some cases it is important to have a better knowledge of
the network architecture of eBay as a community, where several types of interactions can
take place. We will discuss these features and our ideas whenever they are necessary for
a better understanding. Some terms and de�nitions given in chapters 3, 4 are used and
referred in this chapter.

6.1. Number of items o�ered by sellers

As presented in sec. 5.3.5, the total number of items o�ered by the same agent follows a
power-law distribution:

P (nauct) / n−�
auct; (6.1)

where � = 2 (Fig. 5.8).
This empirically found result could be explained by using the Yule process (discussed in
sec. 2.6.1).
Consider at time t there exists nx;t agents who have o�ered exactly x items up for sale
until this time. We are interested in the distribution of x , i.e. we would like to know the
probability that an agent has o�ered exactly x items in a given time span. Let us measure
the time such that at each time step one agent becomes a seller by o�ering up a single
item for sale. This is a natural assumption because it is common that agents who start to
act as a seller in eBay should �rst learn about o�ering items in practice.
Suppose in addition to the item o�ered by the new seller, j new items are o�ered at each
time step by people who have previously o�ered other items. So the total number of o�ered
items up to time t is given by

nt = tj + t: (6.2)

It is plausible to assume that agents who o�ered more items in the past are more likely to
o�er new items. So we assume that these j new items are o�ered by sellers in proportion to
the number of items they have already o�ered, so Pi / xi, where Pi denotes the probability
that the seller i with total number of o�ered items xi o�ers a new item up for sale.
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Let Px;t denote the probability of �nding a seller with exactly x o�ered items up to the
time t. So we will have nx;t = tPx;t and the total number of sellers with x o�ers which
o�er a new item in time t will be:

j
x
nt
nx;t =

jx
j + 1

Px;t (6.3)

Note that the total number of sellers at time t, denoted by n, is selected to be t, i.e. n = t.
By using the Eq. (6.3) we can write the master equation as following:

(t + 1)Px;t+1 = tPx;t +
j

j + 1
((x − 1)Px−1;t − xPx;t); for x > 1. (6.4)

and

(t + 1)P1;t+1 = tP1;t + 1−
j

j + 1
P1;t; for x = 1. (6.5)

We are interested in the stationary state, where Px;t does not depend on t anymore. So
we solve these equations in the limit t → ∞, and use Px = limt→∞ Px;t.
Solving Eq. (6.5) one gains

P1 =
j + 1
2j + 1

; (6.6)

and Eq. (6.4) becomes

Px =
j

j + 1
[
(x − 1)Px−1 − xPx

]
; (6.7)

and we will have
Px =

x − 1
x + 1+ 1=j

Px−1: (6.8)

This equation can be iterated to get

Px =
(x − 1)(x − 2) : : : 1

(x + 1+ 1=j)(x + 1=j) : : : (3+ 1=j)
P1

= (1+ 1=j)
(x − 1) : : : 1

(x + 1+ 1=j) : : : (2+ 1=j)
: (6.9)

One can simplify this equation by making use of the property � (a) = (a − 1)� (a − 1) of
the � -function:

Px = (1+ 1=j)
� (x)� (2+ 1=j)
� (x + 2+ 1=j)

; (6.10)

and by using the notation of Legendre beta-function �(a; b) =
� (a)� (b)
� (a+b) we obtain

Px = (1+
1
j
)B(x; 2+ 1=j): (6.11)
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Since the beta-function has a power-law tail B(a; b) / a−b, Px can be written as

Px / x−�; (6.12)

where the exponent is given by � = 2+ 1=j .
As mentioned we use the data set which includes all auctioned items in two di�erent
subcategories over 10 months. The other data set is not suitable for this study because it
is just a snapshot of an extreme dynamical system and can provide no information about
activity of agents over a large time span directly. The only parameter which contains
information about the history of agents activities and could be used for similar studies is
the total number of feedback scores. But this variable (gathered with the method we have
used) can not be divided into scores gained from sell and scores gained from buy activities.
We measured the total number of o�ered items to be nt = 52373 and the total number of
distinct sellers to be n = 5165 (when using DB-2). By using Eq. (6.2) we �nd

j =
nt
n

− 1 = 9:14: (6.13)

The exponent of the pdf (Eq. (6.12)) is predicted to be � = 2:1094 and the P1 is predicted
to be j+1

2j+1 = 0:526.
The actual exponent for the distribution and P1 are empirically found to be 2 and 0:48 re-
spectively (see Fig. 5.8) which are both in good agreement with the theoretical predictions.
For the other data set (DB-1) we �nd nt = 173315 and n = 43501. So we can calculate
j to be 2:98 and � = 2:33. These results are not compared with the data we have
collected because the number of distinct sellers is huge and the database SQL-queries are
very time-consuming.
The di�erence between the two predicted exponents, related to di�erent data sets (�DB−1 =

2:1094 and �DB−2 = 2:33), can be understood when one takes into consideration, that
in subcategories like "web-projects"there exists a clear di�erence between seller and buyer
communities, i.e. there exists a number of sellers, which use eBay as a market place. They
o�er their products and in many cases the same or similar product for several times. On the
other hand there exist a community of buyers, who are interested in products o�ered by the
sellers in these subcategories, but never o�er an item up for sale in the same subcategory.
This argumentation is not valid if one take a large variety of subcategories into consideration
because an agent, which has act as a buyer once, could act as a seller in some quite di�erent
class of categories. For instance an agent, who buys a computer for his personal use (and
not in order to trade with it) can o�er an old book or his car up for sale in eBay. We
believe this is the reason why the relative distinct number of sellers are larger for the data
set including many di�erent subcategories (DB-1 includes 9904 di�erent subcategories),
and the reason why the predicted exponents are di�erent for these two data sets.
The observed power-law and explanation given above suggest that the o�ered items in
selected subcategories are dominated by a few number of power-sellers, who o�er new
items proportional to their previous o�ered items.
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6.2. Number of positive feedback scores

After the end of an auction the participating buyer and the seller (transaction partners)
are encouraged to leave feedback comments on their pro�les by eBay. This policy provides
a nice information for other users and can be used by future activities of the seller or the
buyer. The method used in the previous section predicts the distribution of the total number
of items o�ered by a seller in a large period of time. If after any transaction all sellers would
receive a positive feedback, the distribution of the positive feedback scores should also be
the same as the distribution of the total number of o�ers. Our statistical analysis shows a
di�erent result. Both these distributions follow power laws but the exponents are di�erent.
For the data set DB-2 these distributions are given by

P (nauct) / n−�
auct; (6.14)

where � = 2 (Fig. 5.8).
for the total number of o�ered items and

P (nauct) / n−

auct; (6.15)

where 
 = 2:42 (Fig. 5.3).
for the positive feedback scores.
This can be understood when one considers that the probability of receiving a positive
feedback is smaller than one and decreases with increasing number of items a seller o�ers.
This seems to be plausible for great values of nauct, where the seller should use automated
methods of working out emails (as the standard method, eBay uses for sending information
to sellers and buyers) and sending his sold items, which would increase the probability that
buyers are unsatis�ed. In contrast, it is also plausible to assume that the power-sellers
are more familiar with the problems a seller may have and should be able to have satis�ed
customers (in average).
To verify these assumptions and �nd the reason why these two distributions have di�erent
exponents one needs to know more about the relation between number of o�ers and number
of negative and neutral feedbacks. This is not done yet.

6.3. Bid submission times

As we have shown in sec. 5.3.8 the distribution of bid submission times as a function of the
remaining time until the end of the auction is exponential except for the �nal seconds and
is well described by P (�t) / exp(−�t=T0) with T0 = 68:94 (Fig. 5.12). This is subject of
discussion of many studies based on game theoretical approaches [73{76]. These studies,
in contrast to our quantitative description, include more or less just qualitative discussions,
where people search for rational strategies leading to a nonuniform distribution for bid
submission times. As mentioned and discussed in sec 4.1 in a Vickrey auction1 (note that
eBay auctions can be viewed as Vickrey auctions) there is no reason for bidders to submit

1Second-price auction.
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Figure 6.1.: Distribution of bid submission times. The graph shows the cumulative prob-
ability distribution of bid submission times for a subset of the data set DB-1
as a function of the time remaining until the end of the auction. The distri-
bution hast the form P (�t) / exp(−�t=T0) with T0 = 90. Comparison with
Fig. 5.12 shows the same functional form for both distributions.

bids less than their true values (values they are willing to pay) and also there exists no
reason to wait and submit bids later. But recent studies [76], [75] show that there are
reasons why a bidder should bid later, for example to avoid bidding-wars, being outbidden,
being victim of shill bidding, being squeezed, etc. The idea is that there exist other rational
strategies which lead to gain better payo�s. These strategies suggest a preferred time-span
for bid submissions. Descriptions of several ideas are given in an overview in sec. 4.2.
The study of strategies and their impact on other observable parameters is somehow com-
plicated. There exists no exact de�nition and conditions under which one distinguishes
between two or more strategies, i.e. having the bid history, the exact identi�cation of
strategies bidders have used is not easy and not accurate and rather impossible by means
of automatic methods.
Consider the following three strategies: sniping, late bidding and evaluation (see sec. 4.2
for the de�nition). They are all characterized by the number of bids the bidder places,
which is exactly one. However having the information, how many bids a bidder places on
an auction, is not enough for the identi�cation of the strategy. Sniping strategy needs, for
example, submission of exactly one bid in the last 3 or 5 seconds (�t < 3 or �t < 5). This
one bid should be the winning bid, i.e. the return, as de�ned in Eq. (5.8) and explained in
sec. 5.3.6 should be small (is equal to the increment divided by the price).
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N = Number of cases �t N /(Total number of events)
182 � 5 (sec) 0:019
425 � 10 (sec) 0:025
1387 � 1 (min) 0:082
2185 � 10 (min) 0:130
3140 � 1 (hour) 0:186
5379 �t

T � 0:5 0:319

Table 6.1.: Number of cases depending on the remaining time for the subset of data DB-1.
All auctions starting with 1 Euro, ending with the total number of bids between
15-20 are studied. Bid-events of bidders who have bidden just once on an item
are studied. T is the duration of the auction.

We are interested to know which strategies are used and how frequently they are used (how
are strategies weighted). To �nd out the weight of di�erent strategies and to examine if
the distributions of bid submission times is related to the choice of strategy, we analyzed
a subset of the data set DB-1 with the following properties:

� To avoid the unknown e�ect of parameters on the choice of strategy, we decided
to work with a subset of data including items with similar parameters like the total
number of bids placed on them and starting price. We select all auctions with starting
price of 1 Euro, which have ended with a total number of bids between 15 and 20.
We �nd the total number of distinct bidders to be 45575 and the total number of
bids to be 90923. The reason for the choice of total number of bids between 15 and
20 is that if the total number of bids is too small some strategies might not have
been used. On the other hand, if we select items with a large total number of bids
we will not have enough data for a good statistical analysis.

� We are �rst interested in the simplest strategies. They all share the same property
of having exactly one bid. These strategies are as named above sniping, late bidding
and evaluation. To identify these strategies we focus on bid-events of bidders who
have bidden just once on an item. We �nd 16855 such events. The number of cases
depending on �t is given it Table 6.1.

To identify a strategy we need the bid submission time. The eBay auctions have di�erent
durations of 1,3,5,7 and 10 days and it is better to work with � = �t

T instead of �T , where
T denotes the duration of the auction.
Using this subset of data, one should expect a di�erent distribution for bid submission
times (di�erent from the distribution found for the whole data set), because strategies like
squeezing, shill bidding, unmasking and warrior strategies are �ltered out. This is however
not the case. It is a surprising result that the distribution of bid submission times for
this subset of data is the same (approximately) as the one measured by using the whole
database. In Fig. 6.1 the distribution of bid submission times is shown. This distribution
has also the form P (�t) / exp(−�t=T0) with T0 = 90.
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Figure 6.2.: Distribution of relative bid submission times. The graph shows the cumulative
probability distribution of relative submission times for a subset of the data set
DB-1 as a function of the relative time remaining until the end of the auction
� = �t

T . The distribution has the form P (�) / exp(−�=�0) with �0 = 0:53.

In Fig. 6.2 we show the distribution of �t
T for this subset of data. The distribution has the

form P (�) / exp(−�=�0) with �0 = 0:53. The constants T0 and �0 are related. The mean
value of auction duration of this subset of data is 6:59 days. So T0

6:59�24 = 0:56, which is
very close to the value of �0.
These results suggests that the exponential nature of the distribution of the bid submission
times is not to be understood and explained only by means of the chosen strategy of bidders
and has it roots in other properties of eBay. One of these properties is the listing method
eBay uses. The items are listed by using the so called "ending soonest"criterion by default
(if a user has not changed the standard sort criterion). This means, the auctions closer
to their end are listed �rst. Normally there are 50 items listed on each page by eBay (to
see the remaining items one has to click the "Next"navigator-link in the bottom of the
page). So the auctions not close to their end are found only after several clicks and can
not be seen directly. This means, the probability of being seen for an item, increases with
the decreasing remaining auction time. We do not have any suggestion which functional
form this probability should have, but if the pdf of this probability has an exponential form,
the distribution of bid submission times could be explained without considering alternative
rational strategies.
Other sort possibilities are as called by eBay the following, "newly listed", "lowest price
�rst", "highest price �rst", "closest distance �rst"and criteria depending on payment pos-
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Figure 6.3.: Distribution of bid submission times. The graph shows the probability distri-
bution of relative submission times for a subset of the data set DB-1 as a
function of the relative time remaining until the end of the auction �t

T . An
uniform binning method with size of bins equal to 0:01 is used. The approxi-
mately symmetric form is an evidence for the role of sorting criteria provided
by eBay and suggests that the exponential behavior of bid submission times is
caused partly by the sorting criterion eBay uses for the listing of items.

sibilities.
We can imagine that the "newly listed"criterion is the most used one after the standard
"ending soonest"criterion. This assumption can not be veri�ed here because the corre-
sponding data are not available. We have found however evidence which shows the prob-
ability of bidding increases not only at the end of the auction, but also at the beginning.
The distribution seems to show a very nice symmetric behavior around �t

T = 0:5 with the
exception of the regime where �t

T < 0:1. To show this we have measured the probability
P (�tT ) by using an uniform binning method with the size of bins equal to 0:01 (and using
the subset of data explained above). The result is shown in Fig. 6.3. To observe the
mentioned symmetric behavior better, we show the frequency of relative submission times
of the same data in Fig. 6.5, in which we use bins of 0:1. The frequency of bids with a
relative submission times �t

T 2 [0; 0:1) has the value 6682 and is not shown in the graph
(see also Fig. 6.4).
If we assume that the choice of the strategy does not depend on the time the item is
observed by the bidder, the probability that a bid is placed on it at time t (remaining time
�t) will be the product of two probabilities: the probability that the item is �rst observed
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Figure 6.4.: Frequency of bid submission times. The graph shows the frequency of relative
submission times for a subset of the data set DB-1 as a function of the relative
time remaining until the end of the auction �t

T . An uniform binning method
with size of bins equal to 0:004 is used. The frequency of bids with a relative
submission times �t

T 2 [0; 0:04) is not shown in the graph.

by a bidder at this time and the probability that the bidder places a bid on that item after
he has seen it:

P (�t) = P (S)P (B): (6.16)

P (S) denotes the probability of being seen and is a function of �t. P (B) denotes the
probability of placing a bid and depends on the chosen strategy of the bidder.
To reveal the in
uence of the sort criterion explained above, and focus on the e�ect of
strategies bidders use for bidding, an interesting way is to look at the items listed by using
the eBay's "Featured Plus!"option. This option can be selected by the seller and costs
12,95 Euro. The items including this option appear at the top of the listing page and can
be seen as long as the auction runs independent of the remaining time of the auction.
eBay describe this option as follows: "How Featured Plus! works in Search: Search results
can be organized by the listing end date, price, or other options that the viewer can choose.
There are 50 results per page. Your Featured Plus! item will appear at the top of the page
it naturally falls on in the search results list." [22].
Another reason why the distribution of bid submission times is exponential could be related
to the "Watch this item"option provided by eBay. This option gives an interested buyer the
possibility of monitoring an auctioned item in his "My eBay"environment. So the bidder can
take his time for making his decision without loosing the information about the interested
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Figure 6.5.: Distribution of bid submission times. The graph shows the frequency of relative
submission times for a subset of the data set DB-1 as a function of the relative
time remaining until the end of the auction �t

T . An uniform binning method
with size of bins equal to 0:1 is used. The frequency of bids with a relative
submission times �t

T 2 [0; 0:1) has the value 6682 and is not shown in the
graph. The approximately symmetric form is an evidence for the role of sorting
criteria provided by eBay. And suggest that the exponential behavior of bid
submission times is caused partly by the sorting criterion eBay uses for the
listing of items.

item (like web-page of the item, etc.). Unfortunately, we do not know how many bidders
use this option.
It would be interesting to know how many times a bidder visits the item's web-page in
average before he places his bid. Unfortunately this kind of information is not to be gained
from the listing data.
So far we have shown that the choice of strategy does not explain the exponential behavior
of the bid submission times. But this does not mean that the bid submission time is
independent of the choice of strategy. To examine this, one should measure the order
of relation between "strategies"and bid submission times. This is, as explained above,
not easy due to unspeci�c de�nition and conditions of strategies. Instead of measuring the
relation between strategy and bid submission time one can measure the relation/correlation
between return and bid submission time. One expects that towards the end of the auction,
sniping and late bidding should cause small values for the returns because the actual bid of
the winning bid is not being listed and the winning bid will be the second highest bid plus
a small increment (% � Increment

pauct
). In contrast early bids, mostly coming from evaluators,

should be independent of the actual listed price and should cause greater values for returns
(this should be the case at least for auctions beginning with 1 Euro).
We studied this and tried to �nd the relation between return % and relative bid submis-
sion time � . A scatter plot of the logarithm of returns versus the logarithm of relative
submission times � is shown in Fig. 6.6. The regression line shows a clear dependence
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Figure 6.6.: Scatter plot of log(%) versus log(�) with � = �t
T . The graph shows the relation

between logarithm of returns and logarithm of relative submission times for a
subset of the data set DB-1. The regression line shows a clear dependence of
both parameters. The form of relation is h%i / �0:38. A con�dence interval of
95% is used.

of both parameters. The bold lines show a con�dence interval of 95%, which is used for
determination of the regression. The form of this relation is h%i / �0:38. It follows again
a power law, similar to the relation between hpaucti and nbid (Fig. 5.14 and Fig. 5.15).

6.4. Achieved price and its relation to the number of bids

One of our most interesting �ndings is the relation between the �nal price pauct and number
of bids placed nbid. As presented in sec. 5.3.9, this relation between hpaucti and nbid follows
a power law:

hpaucti / n�bid; (6.17)

where � = 1:58 for the data set DB-2 (Fig. 5.14) and � = 1:53 for DB-1 and its subsets
(Fig. 5.15).
Suppose the starting bid is P0 = 1 and suppose we forget about the second maximum rule
for the determination of the price. We assume that after each bid the price increases and
reaches the amount of the new placed bid. Then P1 = (%1 + 1)P0 and

Pn = (%n + 1)� : : :� (%1 + 1)P0; (6.18)
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Number of bids � � Number of samples
10 1:5938 0:39061 849
20 2:0931 0:37168 204
30 2:3555 0:39811 64
40 2:4231 0:48846 31
> 30 2:5831 0:46509 683
> 40 2:7566 0:47132 282

Table 6.2.: Statistics of frequency of logarithm of end price for �xed total number of bids
for all auctions starting with 1 Euro. The data set DB-2 is used.

and we will have

ln(Pn) = ln(%n + 1) + : : :+ ln(%1 + 1): (6.19)

If the ln(%n+1) (for n = 1; 2; : : : ) are independent and identically distributed (i.i.d.) random
variables with �nite mean and variance, the Central Limit Theorem says that

∑n
k=1 ln %k

converges to a Gaussian (normal) distribution (sec 2.5.2), and Pn is well approximated by
a log-normal distribution.
Although our assumption is not what really happens in eBay, the prediction of Eq. (6.19)
is observed (approximately) empirically. In Fig. 6.7 we show the frequencies of logarithm of
end prices for �xed total number of bids by using the data set DB-2 and auctions starting
with 1 Euro, for the total number of bids equal to 10, 20, 30 and 40. For better statistics
we have studied this distribution also for a given interval of the total number of bids. In
Fig. 6.8 we show frequencies of the logarithm of end prices for the total number of bids
greater than 30 and total number of bids greater than 40. Means and standard deviations
are given in Table 6.2.
The distribution functions of the logarithm of prices seem to be similar for both data sets.
We have studied this distribution also for the other data set (DB-1). The larger number of
data in this database makes it possible to have better �tted curves. The model discussed
above makes use of the central limit theorem, which is only valid in the limit where n → ∞.
Since we use it for 10 < n < 70, deviations from the predictions of the central limit theorem
can be expected. However, since we watch many realizations of the same stochastic
process, these deviations will be reduced because the averaging over many realizations is
the same as averaging one realization over a long time.
The Gaussian distribution of the logarithm of end prices seems to be valid also for the other
data set (DB-1). In Fig. 6.9 we show frequencies of logarithm of end prices for �xed total
number of bids by using the data set DB-1 and auctions starting with 1 Euro, for the total
number of bids equal to 10 and 30. The mean and standard deviations found by using this
data set are very close to those found by using the data base DB-2.
As mentioned the stochastic process described above is not what happens in reality in eBay.
As a matter of fact one should expect di�erent distributions for %n. The %n depends on
the actual price and its minimum value is determined by the minimum increment, which
depends itself on the actual price:
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Figure 6.7.: Distribution of the end price for �xed total number of bids by using the data set
DB-2. Distribution of the logarithm of end price for all auctions starting with
1 Euro and ending after exactly 10, 20, 30 and 40 bids. Means and standard
deviations are given in Table 6.2.

%minn =
F (Pn−1)
Pn−1

; (6.20)

where F is the price dependent bid-increment (given in Table 3.1).
So the expected value for the price by using the stochastic process of Eq. (6.18) will be
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Figure 6.8.: Distribution of the end price for a �xed total number of bids by using the data
set DB-2. Distribution of the logarithm of end price for all auctions starting
with 1 Euro and ending after minimum 30 bids or minimum 40 bids are plotted.
The �tted curves are Gaussian (normal) distributions with � values of 2:58 and
2:76 respectively and � = 0:47.
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Figure 6.9.: Distribution of the end price for a �xed total number of bids by using the data
set DB-1. Distribution of the logarithm of end price for all auctions starting
with 1 Euro and ending after exactly 10 and 30 bids. Means and standard
deviations are close to those found by using the data base DB-2 (given in
Table 6.2).

hPni =

∫%max1

%min1

: : :
∫%maxn

%minn

P (%1)(1+ %1) : : : P (%n)(1+ %n)� P0 d%1 : : : d%n; (6.21)

which is not solvable without assumptions, making it tractable.
The log-normal distribution, as discussed in sec. 2.5.4, has similarities with power laws.
Locally these distributions can be mistaken for each other. To �nd the actual distribution
of the end price for items ending with a given number of bids, we started a systematic
study. We used another subset of the data set DB-1 including all auctions starting with 1
Euro and ending after nbid bids with nbid 2 (10; 15], nbid 2 (20; 25], nbid 2 (30; 35] and
nbid 2 (40; 45].
We show the results in Fig. 6.10. All these distributions can be well �tted with a curve of
the form f (x) / (x + c)b, which has a power-law asymptotic. Values of c and b are given
in the graphs.
The cumulative distributions and the corresponding pdfs seem to follow power laws. This
is, as mentioned in sec. 2.5.3, to be veri�ed by searching for an universal scaling law. For
this purpose we measure the scaled distribution P (pauct

n
bid
) for several values of 
 and try to

�nd a value for 
 for which all distributions of pauct

n
bid
are similar. These distributions for 


equal to 0:8, 1:1, 1:5, 2 , 3 and 4 are shown in Fig. 6.11. One �nds that for 1:5 � 
 � 2
all distributions are similar, where 
 < 1:5 and 
 > 2 are bad candidates.
So far we have studied the relation between the number of bids and the end price of
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Figure 6.10.: Cumulative distribution of the end price for �xed total number of bids by using
a subset of the data set DB-1 including all auctions starting with 1 Euro and
ending after nbid bids with nbid 2 (10; 15], nbid 2 (20; 25], nbid 2 (30; 35]
and nbid 2 (40; 45]. Fitted curves have the form f (x) / (x + c)b.

auctions starting with 1 Euro. We showed that a simple stochastic process predicts a log-
normal distribution for prices reached after nbids bids. This approximation is close to the
observed actual distribution but is not exactly the right one. The actual distribution has
the important scale-free property related to the critical state of eBay as a complex system.

6.5. Auctions with other starting prices

It would be interesting to know the relation between the end price and the number of bids
for auctions with starting prices other than 1 Euro. The data we have gathered -and are
working with- is however not suitable for this kind of studies. The problem we encounter
when running such studies is the poor statistics we have for auctions starting with higher
prices.
In Fig. 6.12 we show the histogram of the number of auctions starting with di�erent prices
(in Euro). The data we use for this histogram is a subset of 10% randomly chosen auctions
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Figure 6.11.: Universal scaling law. Distributions of pauct

n
bid
for several values of 
 =

0:8; 1:1; 1:5; 2; 3 and 4. For 1:5 � 
 � 2 all distributions are similar. The
data set DB-1 is used for this study.
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Figure 6.12.: Histogram of the number of auctions starting with di�erent prices (in Euro).
The data we use for this histogram is a subset of 10% randomly chosen
auctions of the data set DB-1. This diagram shows that the number of
auctions decreases strongly with the increasing starting price.

of the data set DB-1. Fig. 6.12 shows that the number of auctions decreases strongly with
the increasing starting price. We limit this study to two di�erent intervals of starting prices
and study all auctions ending with at least one bid, with starting prices pstart 2 (1; 3)
including 18041 auctions and pstart 2 (9; 11) including 3952 auctions.
There exists di�erent possibilities for the functionality of hpaucti on nbid (for the case the
starting price is higher than 1 Euro), even if we assume that the relation found empirically
(Eq. (6.17)) should hold. Depending on the assumption whether the simple stochastic
process introduced in Eq. (6.18) is applicable or not one yields di�erent results.
Let us �rst start with Eq. (6.18), where P0 > 1. In this case the equation will be

ln(Pn) = ln(%n + 1) + : : :+ ln(%1 + 1) + ln(P0); (6.22)

so

ln(
Pn
P0

) = ln(%n + 1) + : : :+ ln(%1 + 1): (6.23)

By using the assumption that %n are i.i.d. random variables, the right side of this equation
will represent the price achieved after n bids when starting from 1 Euro. By averaging both
sides of the Eq. (6.23), and by setting hln(Pn)i � ln(hPni) one obtains
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Figure 6.13.: Scatter plot and linear regression (curve �tting) of log(pauct) as a function
of log(nbid − nstart) for data with pstart 2 (1; 3). The exponent � is found to
be 1:53 equal to the one found by analyzing auctions starting with 1 Euro.

〈
ln(
Pn
P0

)

〉
= hln(Pn)i |pstart=1; (6.24)

and by using Eq. (6.17) we will have
〈

ln(
Pn
P0

)

〉
/ �nbid: (6.25)

Using the assumption
〈
ln(PnP0 )

〉
� ln

〈
Pn
P0

〉
again, one should expect

〈
Pn
P0

〉
/ n�bid: (6.26)

On the other hand one can imagine that the starting price does not have an important
in
uence on the evolution of the price, so that the transformed value pauct − pstart should
follow the empirically found relation (Eq. (6.17)).
Another possibility is that the starting price imagined as the price achieved after n 0 bids, if
the auction would start from 1 Euro and the price would follow Eq. (6.17).
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These possibilities could be veri�ed/falsi�ed by means of statistical analysis of the data.
We consider three possibilities for the functionality of hpaucti on nbid as follows:

i.
〈
pauct

pstart

〉
/ n�bid,

ii. hpauct − pstarti / n�bid,

iii. hpaucti / (nbid + nstart)
�,

where � can be di�erent from the one known for auctions starting with 1 Euro. In the
third possibility we make use of nstart, which is de�ned as the number of bids an auction
should receive if starting with 1 Euro to reach its starting price pstart, by assuming that
the relation hpaucti / n�bid is also valid for auctions starting with a given price higher than
1 Euro. We calculate nstart by using the Eq. (6.17) as

nstart / e(ln(pstart)=�): (6.27)

We use the empirical results gained by analyzing auctions starting with 1 Euro (presented
in sec. 5.3.9) and set � = 1:53. For the auctions starting with pstart 2 (1; 3) we calculate
a mean value for nstart to be 1:57 and for the auctions starting with pstart 2 (9; 11) a mean
value of nstart to be 4:5.
Fig. 6.13 shows the linear regression (curve �tting) of log(pauct) as a function of log(nbid +

nstart) for data with pstart 2 (1; 3) and Fig. 6.14 shows the same graph for data with
pstart 2 (9; 11).
Fig. 6.15 shows the scatter plot and the linear regression of log(pauct − 9) as function of
log(nbid) for data with pstart 2 (9; 11). The exponent � is measured to be 1:31. This
seems to be in better agreement with results known from analyzing auctions starting with
1 Euro compared with the result shown in Fig. 6.14, where � = 1:20. To verify this result
and make a better comparison we analyze all auctions starting with pstart > 1 and ending
after at least one bid. The result of this study is presented in Fig. 6.16 which shows the
scatter plot and the linear regression of log(pauct − pstart + 1) as a function of log(nbid).
The exponent � is measured to be 1:41, which is close to 1:53.
This study shows that the relation between the expectation value of the rescaled/transformed
price, achieved after n bids and number of bids nbid (n = nbid) is scale-free. The exponents
turn out to be similar and approximately independent of the starting price if one considers
the transformed achieved price equal to pauct − pstart + 1.

6.6. Fraudulent bidding

The interesting observation explained in the previous section combined with the scale-free
distribution of the end prices for a �xed number of bids, which can be �tted by using a
log-normal distribution, can be used for detecting auctions showing an abnormal behavior.
Independent of the strategy chosen by a bidder, it is plausible to assume that he would like
to win the interested auctioned item with a price below a maximum budget he has and with
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Figure 6.14.: Scatter plot and linear regression of log(pauct) as a function of log(nbid +

nstart) for data with pstart 2 (9; 11). The exponent � is found to be 1:2
which is not in good agreement with the result found by analyzing the auctions
starting with 1 Euro.

a winning bid as low as possible. There exists, as mentioned in sec. 4.2, strategies leading
to a higher end price, which is just in the interest of the seller. Shill bidding as a fraudulent
bidding by a seller using an alternate account or a friend in order to in
ate the price is
one of these strategies. Shill bidding is strictly forbidden by eBay [84], but nevertheless
happens quite frequently. The other strategy is the so called squeezing, in which a seller
uses a second account in order to uncover the bid of a potential buyer. Then he retracts
his bid and uses shill bidding to push the price as high as possible without winning.
Both these strategies cause a statistically measurable deviation from the average behavior.
The simple relation of Eq. (6.17) provides a tool for searching for such strategies. This
will be discussed in the following section.

6.6.1. Shill bidding

It is not uncommon that certain agents try to manipulate the sell price of the items they
o�er. Therefore we distinguish two di�erent types of bidding behavior:
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Figure 6.15.: Scatter plot and linear regression of log(pauct − 9) as a function of log(nbid)

for data with pstart 2 (9; 11).

i. All bidders try to keep the price as low as possible,

ii. At least one bidder tries to push the price higher.

The second type of behavior normally corresponds to shill bidding, which happens typically
in private value auctions. Usually this sort of manipulation can be identi�ed only after the
auction has ended because the whole purpose of shill bidding is increasing the price without
winning in the end.
Online auction fraud is according to the National Consumer League [85] and Federal Trade
Commission [86] the number one Internet fraud and is increasing rapidly [87]. Because of
the huge number of online auctions and users, and the ease of creating new accounts, it
seems to be very di�cult to detect shill bidding without any computer aided method.
Previous trials have shown that shill bidding is di�cult to recognize in an automated way.
We have tried to identify this sort of manipulation through the discussed statistical prop-
erties. Indeed, successful shill bidding leads to auctions which show clear deviations from
the observed simple statistical laws.
By using the relation between hpaucti and nbid (Eq. (6.17)) and the fact that the variances
of log-normal �ts of the distributions of the prices depend very weakly on nbid, (�2 � 0:15)
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Figure 6.16.: Scatter plot and linear regression of log(pauct − pstart + 1) as function of
log(nbid) for all auctions with pstart > 1 and ending after at least one bid.

we de�ne a method of �nding indications of shill bidding automatically.
Assume that the distribution of logarithm of prices with a �xed number of bids is a Gaussian
distribution with mean � and variance �2. The probability to �nd a price (log(price)) that
falls within one standard deviation � of the average price is theoretically 68:3%. This
theoretical con�dence interval is indicated in Fig. 6.17 by the two straight lines with slopes
1:32 and 1:92, respectively. Therefore one expects that the probability P� that the actual
price pauct is larger than hpaucti+� is about 15:9%. However, for our data we �nd P� = 7%
which indicates deviations from the log-normal distribution (see inset of Fig. 6.17).
We assume that auctions using shill bidding or other similar strategies leading to a higher
price should fall out of the con�dence interval de�ned above. To verify this assumption we
have performed two tests by:

i. investigating the statistical properties of auctions identi�ed as shill bidding,

ii. checking whether randomly chosen auctions outside the con�dence interval of the
price-bid relationship discussed above show indications of shill bidding.

Both tests require an extensive amount of work, e.g. the investigation of the trading history
of the seller over a long time or monitoring eBay discussion forums [88, 89].
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Hints and criteria we use for �nding indications of shill bidding are as follows:

� A member bids several times under the highest bidder towards the end of an auction,
incrementing the current price by small amounts.

� A member bids several times towards the end of an auction and retracts if he bids
more than the high bidder.

� A member bidding several times even when there are no other bidders.

� A bidder bids exclusively or nearly exclusively on one or two seller's items, yet rarely
wins.

� Similarity of seller and bidder IDs.

� Seller relist quickly the item. When items are accidentally won by a shill account,
they are often relisted soon after auction closes.

� Prompt feedback after an item is accidentally won by a shill account.

Fig. 6.17 shows a comparison between these shill-auctions and average behavior of all
auctions, clearly indicating the deviations from the average behavior.
For test (i) we have chosen 9 auctions that clearly have been identi�ed as manipulated by
shill bidding, e.g. through information from discussion forums. Only after that we have
investigated the bidding history of these auctions in more detail. Fig. 6.17 shows that all of
those, except for one, are clearly outside the con�dence interval. For test (ii) 10 auctions
outside the con�dence interval have been chosen randomly. These have been checked
thoroughly for indications of shill bidding. This also required investigating other auctions
by the same seller etc. In this way we have found a clear indication for shill bidding in 7 of
the 10 auctions.

6.7. Returns

As shown in sec. 6.4, the distribution of returns % de�ned as the relative increase of the
submitted bid b, % = (b − pauct)=pauct plays a central role for the evolution of the price.
As presented in sec. 5.3.6 and in Fig. 5.9 the distribution of % is found to follow a power
law for almost 3 orders of magnitude with exponent −2:44.
It seems that the distribution of returns does not depend on variables like the number of bids
or actual price. The returns are found to be very short-ranged correlated and approximately
independent (see sec. 5.3.7).
Although there exist evidences that the human perception to a physical stimulus increases
with the relative changes of the stimulus (Weber-Fechner law [82]) and for a wide range
of sensations the generalized Stevens' power law [96, 97], (which states that the intensity
of a stimulus relates to its perceived strength according to the relation S = cI�, where S
is the amount of sensation, C a constant, I the stimulus intensity, and � the exponent) is
found to hold, we do not have an explanation of the power-law distribution of returns up
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Figure 6.17.: Shill Bidding. Distribution of sell prices as function of the number of bids
placed. Only auctions with a starting price of 1 Euro are considered. We use
both data sets DB-1 and DB-2 for our -in the text discussed- test. Gray dots
correspond to the average sell price for �xed number of bids. The broken lines
specify the con�dence interval (one standard deviation) determined from a
log-normal �t. This is shown for nbid = 20 in the inset. For other values of
nbid very similar results are obtained. Black dots indicate auctions identi�ed as
shill bidding using the criteria of [90{95]. Triangles denote auctions that have
been tested for possible shill bidding. For black triangles strong indications
for shill bidding have been found. Light-gray and dark-gray colors denote
regimes with high or low probability of shill bidding respectively.

to now. We believe that this power-law distribution can be viewed as an emergent behavior
of the eBay as a complex system, giving indications for the criticality of the system.
The only parameter with in
uence on returns seems to be the bid submission time. As
shown in sec. 6.3, return and relative bid submission time are correlated. The relation is
described by a linear regression and using the common form of least squares �tting and is
given by h%i / �0:38 (Fig. 6.6).
We found that the power-law form of the distribution does not change when considering
di�erent time spans for the bid submissions. We analyzed the data set DB-1 and selected
all bids related to auctions with a duration of 7 days. We divided the bid-event data in
several subsets and looked at bids placed in time spans of last 6 minutes, last 30 minutes,
last one hour, last 3 hours, last 9 hours, �rst 5 hours, �rst 10 hours, �rst 15 hours and
�rst 50 hours and measured the cumulative frequency of returns. The result is shown in
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Figure 6.18.: Cumulative distribution of returns for several time intervals of the arriving
bid. The power-law form of the distribution seems to be stable.

Fig. 6.18. The power-law form of the distribution seems to be stable.
If we assume that the exponents of the power-law distributions are close to 
 independent
of the strategy a bidder may choose, the cumulative probability density function of returns
related to the bids with the same strategy j (denoted by Pj(% >)) will be a power law with
exponent 
 + 1

Pj(% >) = Cj%
+1: (6.28)

Let a bidder choose a strategy j among n possible strategies with a given probability pj .
The summation over all pj should be 1:

n∑

j=1

pj = 1: (6.29)

Now imagine we have a sample data of bids without any knowledge about the strategy the
bidders have chosen by placing their bid and measure the cumulative frequency of returns
of these bids. The cumulative probability density function should follow a power law due
to the stability under mixture discussed in sec. 2.5.2. This is easy to show:
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Figure 6.19.: Relation between hpaucti and nbid by using the described model. The model
is able to reproduce the empirically found relation.

P (% >) = p1P1(% >) + � � �+ pnPn(% >) =

n∑

i=1

pjPj(% >)

=

n∑

i=1

pjCj%
+1 = (

n∑

j=1

pjCj)%
+1 = C%
+1 (6.30)

where C =
∑n
j=1 pjCj .

By using the assumption that the distribution of returns does not depend strongly on the
choice of the strategy we de�ned a model and used Monte Carlo simulations to test the
behavior like the relation between hpaucti and nbid.
A simple model with following rules provides results similar to our empirical observations.
For (t + 1)th iteration:

i. pick a random number %(t + 1) with a power-law distribution in interval [a; b] and
exponent � = −2:5, where a = 10� (increment=pauct(t)) and b = 1000,

ii. calculate bid b(t + 1) = (%(t + 1) + 1)pauct(t),
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Figure 6.20.: Simulation results. Distribution of the end price for a �xed number of bids
by using the described model. Distribution of the logarithm of end price for
auctions starting with 1 Euro and ending after minimum 9 and maximum 11
bids are plotted. The �tted curve is a Gaussian (normal) distribution with
� = 1:32 and � = 0:16.

iii. pauct(t + 1) is selected as the second maximum of the set fb(1); :::; b(t + 1)g
In Figs. 6.19, 6.20 and 6.21 we show the results of the simulations. We have simulate
10.000 auctions starting with 1 Euro.
In Fig. 6.19 the relation between log(pauct) and log(nbid) is plotted. The model seems to
generate results in a very good agreement with the empirically found relation.
Figs. 6.20 and 6.21 show frequencies of logarithm of the end prices for �xed number
of bids. The means are close to the empirical values. This is not the case for standard
deviations.



Figure 6.21.: Simulation results. Distribution of the end price for a �xed total number of
bids by using the described model. Distribution of the logarithm of end price
for auctions starting with 1 Euro and ending after minimum 29 and maximum
31 bids are plotted. The �tted curve is a Gaussian (normal) distribution with
� = 2:03 and � = 0:16.





7. Discussion

7.1. Summary

The present work studies eBay online auctions as a complex system, where agents in form of
sellers and bidders interact in a large number. The �rst chapter gives reasons why studying
such a system is interesting also for physicists. The main argument is the existence of
di�erent rational strategies an agent can choose. The question whether human based
systems could be analyzed by means of methods developed for unintelligent agents is still
open. We discuss this in section 6.3 and �nd that the assumption of rational agents can
be neglected at least for a large number of behaviors and properties.
The main part of the present work studies the empirical �ndings and their interpretation.
These �ndings are the result of statistical analysis of two major sets of data gathered by
using the internet interfaces. The screen-scraping and HTTP parsing methods used provide
well formatted data over 200,000 auctions. The auctions are chosen such that the data
includes a large variety of �nal prices and other dynamical variables. Some of our studies
need a long time monitoring of the activity of agents. That is the reason why we gathered
two di�erent sets of data. One of them represents a randomly chosen part of all auctions
of eBay for a �xed date. The other one monitors some selected categories over a large
time span.
Results of statistical analysis of the data can be classi�ed in two main groups. One includes
the probability distributions of selected variables. The other one includes relations between
di�erent variables which allow to identify correlations. These results are brie
y listed below1:

� Probability distribution of variables

{ Final price (for the complete data set and for a variety of �xed number of bids).

{ Starting price.

{ Duration of auctions.

{ Number of positive feedbacks received (both for sellers and bidders).

{ Total number of bids placed on an item.

{ Total number of bids placed by a bidder.

{ Total number of items o�ered by a seller.

{ Bid submission time (both with respect to the real remaining time to the end
of an auction and relative remaining time to the end of an auction).

1Note that some of these results are not explicitly included in the present work.
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{ Return, de�ned as the relative di�erence between the placed bid and the actual
price.

� Correlated variables

{ Relation between �nal price and number of bids placed on an item. Also as a
function of the starting price.

{ Relation between �nal price and distinct number of bidders participating in an
auction.

{ Relation between return and relative bid submission time.

Statistical analysis of the eBay data shows that the probability density functions for a wide
range of quantities follow rather simple functionalities like exponential and power laws.
Some of these power-law distributions are to be explained by means of simple growth
processes. In section 6.1 we present an explanation of the distribution of the total number
of items o�ered by the same seller by using the Yule process (discussed in sec. 2.6.1). The
result predicted by the theory is very close to the measured one.
It is found that the role of rational agents is not crucial and some observed power laws
are to be understood as results of some simple microscopic rules, providing a self-similar
structure.
Similar arguments can be used for explaining the distribution of the number of positive
feedbacks (sec. 5.3.3).
One of the most interesting �ndings of this study is the scale-invariant relation between
the average price and the number of bids placed on the item. This nontrivial relation was
studied thoroughly by means of simple stochastic processes and by searching for scaling
conditions in sec. 6.4. Similar relations are found between other quantities. For instance,
the relation between return and relative bid submission time2 is a similar scale-invariant
relationship. It is also found that the relation between the average price and the distinct
number of bidders obeys the same scale-independent functionality3. These relations are
evidences, which indicate that the system should be in the critical state. Scale-invariance
is connected to the fractal structure of the system making the system show self-similar
properties on any scale, which is observed by many human based systems.
Another interesting result of this study is the �nding that the bidders prefer to bid close
to the auction ending times. The probability of bid submission as a function of the time
remaining until the end of the auction is found to decrease exponentially with increasing
remaining time. Close to the end of the auctions the distribution of bid submission times
is found to follow a power law.
These �ndings challenge the prediction of the game theory, which suggests that in second-
price auctions4 with fully rational agents the timing of bids should not play any role and
there should exist no incentive to bid less than one's own private value. Several studies and
e�orts towards understanding and explaining the di�erence between theoretical prediction

2The remaining time to the end of auction divided by its duration.
3With other exponent.
4eBay auctions can be considered as second-price auctions due to the proxy-bidding mechanism.
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of equally distributed bid submission times and actual observed exponential and power-law
distributions are done by using methods of the game theory. A brief presentation of results
and explanations of these approaches is given in chapter 4.
Our own study indicates that the choice of the bidding strategy is not the only parameter
responsible for the exponential behavior of the distribution of bid submission times. Instead
also other mechanisms like the sorting criteria o�ered by eBay are relevant.
The items are listed on eBay pages by using the so called "ending soonest"criterion by
default. This means, auctions closer to their end are listed �rst. So the probability of being
seen for an item, increases with the decreasing remaining auction time due the limited
number of items listed on each page. The analysis of the data shows that the probability
of bidding increases not only at the end of the auction, but also at the beginning. The
distribution shows a symmetric behavior around the mid-duration of the auction (with the
exception of the regime very close to the end). This �nding suggests that the other sort
criterion called "newly listed"should have been used commonly by potential buyers and that
the probability of placing a bid should be directly connected to the probability of �nding of
the auction on eBay pages.
The empirically found power-law distribution of bid submission times close to the end of
auctions (Fig. 5.13) can be understood by considering an avalanche like dynamics known
from the theory of self-organized criticality. Close to the end, placing a new bid results in
reaction of other potential buyers causing them placing more new bids, this activity stays
on until the system has reached a relaxed state. Self-organized criticality is one of the
mechanisms of producing power-law distributions, which are observed almost everywhere
in natural and human sciences and are related to large interactive systems known as com-
plex systems. Chapter 2 gives an overview of complex systems and power-law generating
mechanisms.
Simple and robust relations, like that between the average price and the number of bids,
can provide the possibility to identify auctions showing a statistically abnormal dynamical
progress. For example the average price versus number of bids relation can be successfully
used for the detection of the forbidden shill bidding, which happens frequently. Shill bidding
is the fraudulent bidding by a seller on his own item by using an alternate account or a friend
in order to in
ate the price. Shill bidding is di�cult to recognize in an automated way.
We found that shill auctions show statistically measurable deviations from the average
behavior and used this �nding for construction of a method, which identi�es suspicious
auctions automatically. This method is introduced in sec. 6.6.1.
We have tested the method by studying the history of selected suspicious auctions in
more detail. Indeed we found that a large fraction of them shows strong evidence for
manipulations by shill bidding.
The criticality of eBay, and perhaps one of the main �ndings of the present study, can be
summarized in the power-law distribution of returns5. It is found that a variety of properties
of the system can be captured and explained through this distribution showing the possibility
of �nding a variable, which mirrors a great part of the complexity of the system.

5De�nition of returns and explanations are given in sections 5.3.6 and 6.7.
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7.2. Open problems

It is shown that the choice of strategy does not explain the exponential behavior of the
bid submission times. But this does not mean that the bid submission time is independent
of the choice of strategy. Indeed there are evidences that both distribution and average
value of returns depend on the bid submission time (return can be used for a automated
separation between some di�erent strategies, for example consider sniping and evaluation
strategies, which result in average relative small and large values of return, respectively).
How the choice of strategy quantitatively determines the bid submission time is still an
open question.
To answer this question, however, one needs other data than used in the present work. One
possibility is to analyze the auctions listed by using the so-called "Featured Plus!"option.
These items appear at the top of the listing page and can be seen as long as the auction runs
independent of the remaining time of the auction. By using this kind of data, the in
uence
of sorting criteria would be unimportant and the chosen strategy could be identi�ed more
precise and simpler.
Another open question concerns the power law distribution of the returns. Although there
exist evidences that the human perception to a physical stimulus increases according to
exponential and power-law relations with the stimulus6, we do not have an explanation why
the distribution of stimulus (in this case, return) should follow a power law.
Some interesting relations are not studied in the present work due to technical restrictions.
We believe, answering some arising questions, especially when searching for the in
uence
of rationality, are only possible by using detailed information about events like number of
visits of a potential buyer before bidding, etc.
Although lots of relations and distributions could be understood qualitatively and quantita-
tively, there exists, up to now, no unifying model, which describes all of the observations. It
is debatable if such a unifying model could exist. It seems to be possible to model many of
features discussed in this work because of the stochastic nature of them. But many other
features are results of rational adaptive decisions of agents. These features are not easily
understandable, nor the conditions on which an agent would select a speci�ed decision are
clearly available.
eBay regarded as a complex system seems to have features of totally stochastic processes,
irrational agents and fully rational agents altogether.

6Weber-Fechner law and Stevens' power law [96, 97].







A. Appendix

A.1. Power-law distributions and scale-free condition

Here we show1 that a power-law p(x) is the only distribution satisfying the scale free
condition of Eq. (2.6).
Starting from Eq. (2.6), we �rst set x = 1 to gain p(a) = g(a)p(1) and g(a) = p(a)=p(1).
The Eq. 2.6 can then be written as

p(ax) =
p(a)p(x)
p(1)

: (A.1)

Now we di�erentiate both sides with respect to a

xp 0(ax) =
p 0(a)p(x)
p(1)

; (A.2)

where p 0 is the derivative of p with respect to its argument. Let us set a = 1 now to get

x
dp
dx

=
p 0(1)
p(1)

p(x): (A.3)

This �rst-order di�erential equation has the following solution

ln p(x) =
p(1)
p 0(1) ln x + constant: (A.4)

By setting x = 1 we �nd that the constant is ln p(1). And we will have

p(x) = p(1) x−�; (A.5)

where � = −p(1)=p 0(1).

1Further discussion in [35].
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A.2. The Yule process

Here we show2 how the Yule process generates power-law distributions. Using the process
de�nition in sec. 2.6.1, one can derive the master equation as follows

(n + 1)pz;n+1 = npz;n + l
z − 1+ c
z0 + c + l

pz−1;n − l
z + c

z0 + c + l
pz;n; for z > z0, (A.6)

and

(n + 1)pz0;n+1 = npz0;n + 1− l
z0 + c

z0 + c + l
pz0;n; for z = z0. (A.7)

(Note that z can not be less than z0.)
By searching for stationary solutions of these equations and using pz = limn→∞ pn;z one
�nds that:

pz0 =
z0 + c + l

(l + 1)(z0 + c) + l
; (A.8)

and

pz =
(z − 1+ c)(z − 2+ c) : : : (z0 + c)

(z − 1+ c + �)(z − 2+ c + �) : : : (z0 + c + �)
pz0

=
� (z + c)� (z0 + c + �)

� (z0 + c)� (z + c + �)
pz0 ; (A.9)

where the � -function notation and de�ned � = 2 + (z0 + c)=l are used. By using the
beta-function one can simplify this expression:

pz =
B(z + c; �)

B(z0 + c; �)
pz0 : (A.10)

The beta-function has a power law in its tail3, causing the Yule process generating a power-
law distribution of the form pz ∼ z−� with the exponent:

� = 2+
z0 + c
l

: (A.11)

2Further discussion in [35].
3B(a; b) ∼ a−b.
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A.3. Linear regression

Here we present4 the linear least squares �tting technique as a mathematical procedure for
�nding the best-�tting curve to a given set of points by minimizing the sum of the squares
of the o�sets (also called residuals) of the points from the curve. The least squares �tting
is the most commonly applied form of linear regression. In this �tting technique the sum of
the squares of the o�sets is used instead of the o�set absolute values because this allows the
residuals to be treated as a continuous di�erentiable quantity. However, because squares
of the o�sets are used, outlying points can have a disproportionate e�ect on the �t.
Assume a linear �t of a set of n data points

y = a + bx: (A.12)

The sum of the squares of the o�sets will be

L2(a; b) =

n∑

i=1

[yi − (a + bxi)]
2: (A.13)

The condition for L2 to be a minimum is that

@(L2)
@a

= −2
n∑

i=1

[yi − (a + bxi)] = 0; (A.14)

and

@(L2)
@b

= −2
n∑

i=1

[yi − (a + bxi)]xi = 0: (A.15)

These lead to the equations

na + b
n∑

i=1

xi =

n∑

i=1

yi ; (A.16)

and

a
n∑

i=1

xi + b
n∑

i=1

xi 2 =

n∑

i=1

xiyi : (A.17)

And we will have

a =

∑n
i=1 yi

∑n
i=1 xi

2 −
∑n
i=1 xi

∑n
i=1 xiyi

n
∑n
i=1 xi 2 − (

∑n
i=1 xi)

2 ; (A.18)

and
4See [98] for further discussion.
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b =
n

∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
∑n
i=1 xi 2 − (

∑n
i=1 xi)

2 : (A.19)

This can be simpli�ed by means of the de�nition of variances �x 2 and �y 2 and covariance
Co(x; y) =

∑n
i=1(xi−hxi)(yi−hyi)

n as

b =
Co(x; y)
�x 2

: (A.20)

A very useful quantity is the so-called correlation coe�cient R, which is de�ned by

R =
p
bb 0; (A.21)

where b 0 is the coe�cient in
x = a 0 + b 0y ; (A.22)

and is given by

b =
Co(x; y)
�y 2

: (A.23)

So R2 will be

R2 =
Co2(x; y)
�x 2�y 2

: (A.24)

This correlation coe�cient will be 1 if there is complete correlation (then the lines coincide
since all data points lie on them), otherwise it will be smaller than 1 and decreases toward
0 for linear �ts to increasingly noisy data.
The correlation coe�cient is independent of origin and scale.
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Deutsche Zusammenfassung

Die vorliegende Arbeit besch�aftigt sich mit eBay-Auktionen als einem komplexen System.
Das Onlineauktionshaus eBay bildet ein System aus vielen Agenten, die als K�aufer und
Verk�aufer durch Auktionen in Wechselwirkung zu einander treten.
Solche menschbasierten Systeme unterscheiden sich von anderen in der Physik bekannten
Systemen durch das rationale Handeln ihrer Agenten. Von daher ist die M�oglichkeit, diese
Systeme mittels der Methoden der Statistischen Physik zu untersuchen umstritten. Anders
als in Systemen unintelligenter (unbelebter) Agenten k�onnen Menschen in ihrem sozialen
System zwischen mehreren existierenden rationalen Strategien w�ahlen. Diese Konzepte
werden in Abschnitt 6.3 diskutiert.
In vorliegender Arbeit wird jedoch evident, dass die Rationalit�at der Agenten bei einem
gro�en Teil der Eigenschaften des Systems keine Rolle spielt und vernachl�assigt werden
kann.
Der Hauptteil dieser Arbeit befasst sich mit empirischen Befunden und deren Erkl�arungen.
Die empirischen Befunde sind die Ergebnisse einer statistischen Analyse zweier Datensamm-
lungen, die �uber Internetschnittstellen von eBay gewonnen wurden. Die Screen-Scraping-
und HTTP-Parsing-Methoden erm�oglichten einen formatierten Datengewinn aus �uber 200,000
Auktionen.
Die Auswahl der Auktionen wurde so getro�en, dass die Datensammlung ein m�oglichst
weites Spektrum der Endpreise und anderer dynamischer Variablen abdeckt.
Bei einigen Studien m�ussen Agentenaktivit�aten �uber einen l�angeren Zeitraum beobachtet
werden. Das ist der Grund, weshalb zwei unterschiedliche Datenmengen gesammelt wur-
den. Die eine beinhaltet zuf�allig ausgew�ahlte Auktionen aus allen eBay-Kategorien, die
gleichzeitig an einem bestimmten Datum liefen. Die andere beinhaltet alle Auktionen zwei-
er ausgew�ahlter Kategorien �uber den Zeitraum von 10 Monaten. Die Methoden und eine
detaillierte Beschreibung der Datenmengen sind in Abschnitt 5 gegeben.
Die Ergebnisse der statistischen Analyse k�onnen in zwei Hauptgruppen von Wahrscheinlich-
keitsverteilungen von Messgr�o�en und Beziehungen zwischen unterschiedlichen Messgr�o�en
geteilt werden. Die Wahrscheinlichkeitsverteilungen diverser Gr�o�en wie Endpreis, Start-
preis, Auktionsdauer, Anzahl der positiven Bewertungen, Gesamtanzahl der Gebote eines
K�aufers, Gesamtanzahl der Angebote eines Verk�aufers, Gebotszeit (Zeit bis zum Auktions-
ende), Return (de�niert als die relative Di�erenz zwischen Gebot und aktuellem Preis) sind
untersucht worden.
Wir haben auch die Beziehungen zwischen korrelierten Variablen untersucht. Beispiele sind
Beziehungen zwischen Endpreis und Anzahl der Gebote, Endpreis und Anzahl der verschie-
denen Bieter und Return und der relativen Gebotzeit.
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Unsere Studie zeigt, dass die Wahrscheinlichkeitsdichten vieler Messgr�o�en einfache Formen
annehmen, wie Potenzgesetze oder Exponentialfunktionen.
Potenzgesetze sind als untrennbare Eigenschaft mit komplexen Systemen verbunden. Sie
tauchen �uberall auf, unabh�angig davon, ob man Natur, Menschen, Evolution der Organis-
men oder B�orsenm�arkte beobachtet.
Sie sind seit mehr als einem Jahrhundert durch sozial- und naturwissenschaftliche Beob-
achtungen zu einer der wichtigsten Fragen der Wissenschaft geworden. Gegenstand fr�uher
Betrachtungen waren die Verteilung des Volksverm�ogens, bekannt als Pareto-Verteilung [1]
und die Verteilung von W�ortern in Sprachen, bekannt als Zipfsches Gesetz [2].
�Ahnliche Potenzgesetze wurden in der Physik bei der Untersuchung der Systeme in deren
kritischen Punkten in Zusammenhang mit Phasen�uberg�angen zweiter Ordnung beobach-
tet. Solche Systeme weisen eine skalenfreie Struktur auf, wobei Fluktuationen auf allen
L�angenskalen eine wichtige Rolle spielen.
Erst nach Arbeiten von Wilson [4] und der Einf�uhrung der Theorie der Renormierungsgrup-
pe haben Physiker die M�oglichkeit solche Probleme systematisch zu studieren. Viel Arbeit
wurde in den letzten drei Jahrzehnten investiert und eine hilfreiche Klassi�kation, die kriti-
sche Systeme in Universalit�atsklassen zusammenfasst, wurde gefunden. Diese erm�oglichte
Physikern eine gro�e Anzahl von unterschiedlichen Systemen durch Identi�zierung ihrer
zugeh�origen Universalit�atsklassen zu verstehen.
Dieses Paradigma der statistischen Physik war immer eine Motivation f�ur Physiker, sich
mit nichtphysikalische Systeme, die aus vielen wechselwirkenden Agenten bestehen, zu
besch�aftigen.
Die Wechselwirkungen der Agenten in nichtphysikalischen Systemen sind allerdings entwe-
der nicht bekannt oder mathematisch nicht de�nierbar. Sogar mit Hilfe von Annahmen und
Approximationen bleiben solche Systeme wegen der Nichtlinearit�at der Wechselwirkungen
analytisch unl�osbar.
Neue numerische Methoden wie Monte Carlo-Simulationen bieten die M�oglichkeit einer
numerischen Behandlung. Die �ubliche Vorgehensweise ist die De�nition von Modellen und
deren minimalen mikroskopischen Regeln. Diese Modelle werden f�ur Simulationen verwen-
det. Die Ergebnisse und Vorhersagen werden dann mit den realen Systemen und bekannten
empirischen Daten verglichen.
Eine solche Methode wurde von Physikern f�ur die Modellierung des Stra�enverkehrs und
der Fu�g�angerdynamik, biologischer und �okonomischer Systeme usw. bereits erfolgreich
verwendet.
Potenzgesetze werden als eine der emergenten Eigenschaften komplexer Systeme beobach-
tet. Komplexe Systeme teilen eine Reihe von Eigenschaften. Die wichtigsten sind Emergenz,
Nichtlinearit�at, O�enheit und Selbstorganisation. Trotz vieler Bem�uhungen solche Eigen-
schaften zu verstehen, gilt die Komplexit�atstheorie als eine neue Wissenschaft, die noch
am Anfang ihrer Entwicklung steht.
Eines der wichtigsten Konzepte befasst sich mit der �Ahnlichkeit vom Verhalten dieser Sy-
steme mit Gleichgewichtssystemen in ihren kritischen Punkten. Dieses Konzept, bekannt
als selbstorganisierte Kritikalit�at, besagt, dass Systeme im Nichtgleichgewicht dazu neigen,
sich von selbst in einen kritischen Zustand zu entwickeln.
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In Abschnitt 2 werden sowohl wichtige Eigenschaften komplexer Systeme als auch Prozesse
f�ur die Erzeugung von Potenzgesetzen diskutiert.
Unsere Untersuchung zeigt, dass manche empirisch gefundenen Potenzgesetze mittels ein-
facher Wachstumsprozesse zu verstehen sind. Zum Beispiel l�asst sich die Verteilung der
Anzahl der Angebote eines Verk�aufers durch Anwendung des so genannten Yule-Prozesses
quantitativ verstehen (siehe Abschnitt 6.1).
Eine der interessantesten Ergebnisse unserer Untersuchung ist die skalenfreie Beziehung
zwischen mittlerem Preis und Anzahl der Gebote. �Ahnliche Beziehungen sind auch zwi-
schen anderen Messgr�o�en gefunden worden. Diese skalenfreien Beziehungen sind Hinweise
darauf, dass das System sich im kritischen Zustand be�ndet.
Skalenfreiheit taucht h�au�g in Studien zu menschbasierten Systemen auf und ist direkt mit
der fraktalen Struktur des Systems, welches selbst�ahnliche Eigenschaften besitzt, verbun-
den.
Ein anderes interessantes Ergebnis dieser Studie zeigt, dass die Bieter es vorziehen, ihre
Gebote erst gegen Ende der Auktion abzugeben. Dieses Ergebnis steht nicht im Einklang
mit den Vorhersagen der Spieltheorie. Diese besagt, dass in Zweitpreisauktionen (Vickrey-
Auktionen) mit rationalen Agenten die Bietzeit keine Rolle spielt und es keine Tendenz
geben sollte, weniger zu bieten als man glaubt, dass die Ware wert sei.
Viele spieltheoretische Studien haben das Ziel, Strategien, die zum Sp�atbieten f�uhren, als
rationale Strategien plausibel zu machen. Eine kurze Zusammenfassung dieser Studien ist
in Abschnitt 4 gegeben.
Unsere Studie zeigt, dass die Wahl der Bietstrategie nicht der einzige Parameter ist, der
f�ur das exponentielle Verhalten der Gebotzeitverteilung verantwortlich ist, sondern dabei
andere Mechanismen wie Sortierungskriterien von eBay eine sehr wichtige Rolle spielen.
In der Arbeit gefundene einfache robuste Beziehungen wie die zwischen Endpreis und Anzahl
der Gebote bieten die M�oglichkeit, normale und manipulierte Auktionen automatisch zu
unterscheiden.
Eines der h�au�gsten Internetverbrechen ist das verbotene Shill-bidding, wobei ein Verk�aufer
versucht beim Bieten auf eigenen Auktionen den Preis eines Artikels k�unstlich hochzu-
treiben. Wir fanden heraus, dass erfolgreiches Shill-bidding zu einer statistisch messbaren
Abweichung vom Durchschnittsverhalten f�uhrt.
Die Kritikalit�at dieses Systems kann durch die Wahrscheinlichkeitsverteilung von Returns
wiedergegeben werden. Die Verwendung dieser Verteilung liefert Erkl�arungen f�ur andere
gemessene Verteilungen und Verhalten. Dieses wurde in einem einfachen Model getestet.
Trotz qualitativer und quantitativer Erkl�arungen f�ur viele beobachtete Eigenschaften k�onnen
wir zurzeit kein vereinheitlichtes Modell f�ur dieses System vorschlagen.
Diese Studie hat herausgefunden, dass viele Eigenschaften als einfache Ergebnisse stocha-
stischer Prozesse zu verstehen sind. Einige andere sind ohne Einbeziehung der Rationalit�at
der Agenten nicht zu erkl�aren.





English Abstract

The present work studies eBay online auctions as a complex system, where agents in form
of sellers and bidders interact in a large number. In contrast to unintelligent agents of
physical systems, humans have the choice between di�erent possible rational strategies.
The empirical �ndings in this work are the result of statistical analysis of two major sets
of data with more than 200,000 auctions. Probability distribution functions and relations
between di�erent variables are studied. Statistical analysis of the eBay data shows that
the probability density functions for a wide range of quantities follow rather simple func-
tionalities like exponential and power laws. Similar power-law distributions were observed
in physics when studying the behavior of systems at their critical points, related to second
order phase transitions. Although lots of relations and distributions could be understood
qualitatively and quantitatively, there exists, up to now, no unifying model, which describes
all of the observations.
As an application we have found that a kind of fraud known as shill bidding leads to
signi�cant deviations from the average behavior.
eBay regarded as a complex system seems to have features of totally stochastic processes,
irrational agents and fully rational agents altogether.

Deutsche Kurzzusammenfassung

Die vorliegende Arbeit besch�aftigt sich mit eBay-Auktionen als einem komplexen System.
Das Onlineauktionshaus eBay bildet ein System aus vielen Agenten, die als K�aufer und
Verk�aufer durch Auktionen in Wechselwirkung zu einander treten. Anders als in Systemen
unintelligenter (unbelebter) Agenten k�onnen Menschen in ihrem sozialen System zwischen
mehreren existierenden rationalen Strategien w�ahlen.
Die empirischen Befunde dieser Arbeit sind die Ergebnisse einer statistischen Analyse von
�uber 200,000 Auktionen. Die Wahrscheinlichkeitsverteilungen und die Beziehungen zwi-
schen korrelierten Variablen wurden untersucht. Unsere Studie zeigt, dass die Wahrschein-
lichkeitsdichten vieler Messgr�o�en einfache Formen annehmen, wie Potenzgesetze oder
Exponentialfunktionen. �Ahnliche Potenzgesetze wurden in der Physik bei der Untersuchung
der Systeme in deren kritischen Punkten in Zusammenhang mit Phasen�uberg�angen zweiter
Ordnung beobachtet.
Als Anwendung konnte gezeigt werden, dass betr�ugerisches Shill-bidding zu einer deutlichen
Abweichung vom mittleren Verhalten f�uhrt.
Diese Studie hat herausgefunden, dass viele Eigenschaften als einfache Ergebnisse stocha-
stischer Prozesse zu verstehen sind. Einige andere sind ohne Einbeziehung der Rationalit�at
der Agenten nicht zu erkl�aren.
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