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Introduction

Strong interactions on a microscopic level can lead to highly non-trivial collective macro-
scopic behavior. High-temperature superconductivity arising from the complex interplay
of electrons in a solid is one such fascinating phenomenon. The essential physics of the
superconducting cuprate compounds can be captured by strongly interacting electrons in
copper-oxide planes within the three dimensional crystal structure.

Many similarities have been found between the two-dimensional superconducting cuprates
and the two-leg ladder compounds which has focused the interest on the ladder systems.
The spin ladder is a low-dimensional system of two coupled S = 1/2 Heisenberg chains.
From the theoretical point of view, it can be considered as a key model exhibiting a whole
range of relevant concepts of quasi one-dimensional spin physics like Haldane behavior,
dimerization, frustration, critical phases and matrix-product ground states by a careful
adaption of the coupling constants. The spin ladder is experimentally realized in a number
of materials. One of the most prominent examples, the so called phone number compound
Srya_Ca, Cu,, 0,4, becomes superconducting under pressure for values of x = 11.5 and
13.6. Besides, a whole family of cuprate ladder compounds with interesting properties have
been synthesized.

Cyclic four-spin interaction terms in addition to the usual nearest-neighbor coupling were
surprisingly found to be important to capture the essential physics of real spin ladder
systems. On this background, Lauchli et al. [1] proposed a T = 0 phase diagram for spin
ladders with arbitrary strength of cyclic exchange. They found six distinct phases including
spin liquid phases with different dominating short-range ordering and dimerized phases with
spontaneously broken Zo-symmetry. Three second-order and two first-order quantum phase
transitions emerge in the model. So far, the complete phase diagram has been subject to
only a few T = 0 studies. Although a lot of work was done to understand the zero- and
finite-temperature physics of the so called rung-singlet phase around the Heisenberg point,
no thermodynamic properties for the remaining interesting phases have been given yet.
Thermodynamics of the complete phase diagram will be the focus of this work.

Since there is no analytically solvable model amongst the studied spin ladder class, we have
to rely on trustworthy numerical methods. The transfer-matrix DMRG (TMRG) is one of
the most powerful numerical approaches for finite temperature. It is free of the negative-
sign problem or undesirable finite-size effects. For the special demands of the spin model
which includes frustration and important physics happening at very low temperatures, there
has been the need for a new, optimized TMRG implementation overcoming weaknesses of
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available older program code. We combine both, the advantages of a modern object-
oriented design and the use of highly-efficient mathematical routines from a performance
library, in a new TMRG implementation which preserves up to m & 400 states and produces
low-temperature data with high precision.

Our work with the TMRG algorithm motivated us to further develop the method itself.
As the corner transfer-matrix DMRG method brings reasonable advantage over TMRG for
classical systems, we have modified the concept for the calculation of thermal properties of
one-dimensional quantum systems. We have implemented the novel QCTMRG algorithm
and give some test results. A discussion highlighting the advantages and challenges of the
new method has been included.

The specific heat capturing important energy scales in the excitation spectrum and the
generalized susceptibilities detecting patterns of order are fingerprints of the system at finite
temperature. Important conclusions can be drawn about the excitation spectrum. The
observation of T > 0 data can even provide strong indications for ground-state properties
and quantum phase transitions. In the present work, we determine the specific heat for
the complete class of spin ladders models with cyclic exchange. A physical interpretation
based on the analysis of thermal local expectation values is given. Calculated generalized
susceptibilities confirm the existence of broken-symmetry phases and explain the interesting
behavior around the first-order quantum phase transitions in the model.

Outline of this thesis

Chapter 1 gives an introduction to the physics of the spin ladder. We start by a short
review of experimental realizations of ladder compounds and comment on a future modeling
by optical lattices. A general Hamiltonian showing a special duality-invariance is presented.
We motivate our interest in cylic four-spin interaction and discuss the T = 0 ground-state
phase diagram of the spin ladder with cyclic exchange introduced by Lauchli et al. [1].

Chapter 2 gives a description of relevant operators and the Hamiltonian in terms of pla-
quette operators and provides the spectrum of the plaquette Hamiltonian. We calculate
upper bounds to the ground state energy. This is done in terms of variational states of
matrix-product type including the different types of order which were proposed for the
ladder. The results are discussed and compared with the proposed phase diagram.

Chapter 3 outlines the TMRG method which provides thermodynamic properties of one-
dimensional quantum systems and has been used to obtain the results in Chapter 5. The
TMRG method combines the Trotter-Suzuki decomposition, the transfer-matrix approach
and the density-matrix renormalization group.

In Chapter 4, we present the quantum corner-transfer-matrix DMRG (QCTMRG). This
new numerical approach has been developed in the framework of this thesis. The algorithmic
implementation is shown and some results along with an analysis of the performance are
given.
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Chapter 5 focuses on the thermodynamic properties of the spin ladder. We present thermal
expectation values of relevant operators, the specific heat, and magnetic and generalized
susceptibilities of selected points in the different phases of the phase diagram. The results
are discussed and an interpretation consistent with the proposed T = 0 phase diagram is
given.

Chapter 6 draws the conclusion of this thesis and proposes perspectives for further research
on the presented topics.






1 Spin ladders






On the way from one to higher dimensions, spin ladder systems arise as an important
field of interest in modern solid state physics. Within the past fifteen years a huge effort
has been made to understand physical properties from the theoretical as well as from the
experimental point of view.

In this chapter, we give theoretical and experimental motivation for studies on spin ladder
systems. The spin ladder with nearest-neighbor interaction is introduced as a generic model
that shows basic features considered typical for spin ladder models. Yet, for an appropriate
description of real spin ladder materials further four-spin couplings have to be added to
the model leading to a general 6-parameter model. This general ladder model is self-dual
under a certain unitary transformation which provides useful information about the phase
behavior. Finally, we motivate the concept of cyclic exchange interaction and introduce the
spin ladder with cyclic exchange along with an overview about its T = 0 phase diagram.
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Figure 1.1: Sketch of a two-leg spin ladder.

1.1 Theoretical Motivation

The topological arrangement of spins in form of a ladder (see Fig. 1.1) captures the essential
low-temperature physics of a considerable amount of materials. Its physical properties have
been brought into connection with the properties of high-T¢ superconducting copper oxide
compounds [2].

In 1983, Haldane [3, 4] argued that antiferromagnetic chains of integer spin, in contrast to
the half-integer case, have an energy gap and their correlations decay exponentially. This
conjecture set a focus of interest on the low-temperature properties of one-dimensional
spin systems. In this context, Hirsch [5] found the quasi one-dimensional two-leg spin-1/2
ladder to have a finite energy gap in 1988.

One year before, the resonating valence-bond (RVB) state introduced by Anderson [6, 7]
was proposed as the ground state of compounds showing high-T¢ superconductivity [8]
on doping. The RVB state is also described as a spin-liquid because of its purely short-
ranged spin correlation and a finite excitation gap. From this background, Dagotto et al.
[9] studied two-dimensional spin-1/2 Heisenberg systems of finite size. Starting from a
chain they considered ladders with increasing number of legs. It came out as a surprise
that even-legged ladders show a finite gap while odd-legged ladders remain critical similar
to the spin chain. This observation of a spin-liquid phase in spin ladders triggered hope to
find superconductivity in quasi one-dimensional quantum systems where a huge amount of
numerical methods for further theoretical research is at hand.



Experimental realizations

1.2 Experimental realizations

The motivation provided by theorists strongly stimulated experimental efforts to synthesize
ladder materials.

1.2.1 Spin ladder compounds

Due to an “enormous experimental effort” [2], spin ladder systems have been realized in
several materials since the early 90ies of the last century. For historical reasons, we mention
the insulating magnetic salt (VO),P,0,. It has a two-leg vanadium-oxide ladder in its
structure which was reported in 1987 by [10]. A spin gap in the spectra found by inelastic
neutron scattering experiments [11] seemed to support the picture of a dominant ladder
structure. Early theoretical work [12] considered this compound as a possible realization
of the spin ladder. However, later inelastic neutron scattering experiments [13] revealed
that the compound should be rather modeled by alternating spin chains which are oriented
perpendicular to the ladders (see Fig. 1.2). This material exemplifies the subtleties which
have to be dealt with when revealing the dominant structures of complex compounds.
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Figure 1.2: Structure of (VO),P,0-. It is rather modeled by alternating spin chains (hori-
zontal line) than by ladders (vertical direction).

The most important realization of spin ladders involve cuprate ladder compounds which
allow hole-doping by chemical substitution. In the cuprate ladder compounds, the relevant
low-temperature physics happens in two-dimensional planes within the crystal. Here, an
edge-sharing arrangement of copper-oxide plaquettes makes up the spin ladder structure
(see Fig. 1.3, right). The dominant super-exchange runs via linear Cu-O-Cu paths between
adjacent ions and provides a strong Heisenberg coupling between the copper ions. Exchange
paths with an angle of 90° contribute only a reduced ferromagnetic interaction because the
involved orbitals do not overlap. Thus, intra-leg interaction is small and can usually be ne-
glected. Two families of compounds show such CuO-ladder structures: The cuprate ladder
compound SrCu,O5 and the telephone number compounds (Ca, Sr, Y, La);,Cu,,0,;.

The cuprate ladder compound SrCu,O5 [14] is considered to be the prototype of a weakly
coupled Cu,O5 spin ladder. The CuO-planes are separated by layers of strontium ions. A
finite spin gap of 420 K was reported and the spin-spin correlation was found to be a few
lattice spacings. Further, a series of oxides Sr, ;Cu,,;0,, has been synthesized which
contain n-leg ladders confirming the even/odd-effects mentioned above [15].



1.2.2 Optical lattices
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Figure 1.3: Spin chains (left) and ladders (right) arising from two-dimensional arrangement
of corner- and edge-sharing copper-oxide plaquettes. Black circles denote cop-
per ions, white circles denote oxygen ions. The dominant super-exchange paths
are depicted by straight lines.

The second class of cuprate compounds (Ca, Sr, Y, La),,Cu,,0,; contain one-dimensional
CuO, chains, (Ca, Sr,Y, La) layers and two-leg Cu,O ladders in their crystal structure.
Spin chains and ladders interact on different energy scales because in contrast to Fig. 1.3
the super-exchange in the spin chains is mediated via two Cu-O-Cu paths with an angle
of 90°. Thus, the behavior of chains and ladder can be studied separately. In contrast
to SrCu,O5 the so-called telephone number compounds can be synthesized at ambient
pressure which allow large single crystals to be grown.

Even the undoped compound Sry,Cu,,O,; is intrinsically doped with 6 holes per unit cell
which are distributed between the chains and ladders. This hole ratio can be varied on
substituting Sr by Ca. The 'self (hole-)doped’ system Sr,,_, Ca, Cu,,0,, becomes super-
conducting under pressure for values of x = 13.6: T¢ =~ 10K at 3 GPa [16] and x = 11.5:
Tc =~ 6.5K at 4.5 GPa [17]. The (formal) compound LagCagCu,,O,; fulfills the require-
ment of a true effective spin system since it does not contain holes.

Several other non-superconducting materials (La;_,Sr,CuO, s, (Ca,Mg)Cu,0O5 ) have
been found which contain ladders. Since in these compounds the interladder exchange
coupling is evidently stronger than in the telephone number compounds they are also re-
ferred to as " pseudo-ladder” compounds [18, 19, 20]. For a review about further ladder
compounds, see [21, 2].

1.2.2 Optical lattices

In recent research, a fascinating perspective for “quantum experiments” on spin systems
with a manifold of tunable parameters arose: Ultracold atoms can become trapped by the
optical dipol force in externally tuned optical standing waves. The arising systems, the so
called optical lattices, can be considered as artificial solids. See [22] for a review.



Spin ladder with nearest-neighbor interaction

At temperatures very near to absolute zero temperature bosonic atoms collapse to a single
quantum mechanical ground state. This is known as Bose-Einstein condensation. Since
the first experimental realization in 1995 (Cornell, Ketterle, and Wieman, Nobel price
2001)[23, 24], a fast growing field of research emerged. For instance, the first fermionic
condensate was realized in 2003 [25, 26] bypassing the Pauli exclusion principle by a BCS
transition which was originally invented to describe superconductivity. A review on fermionic
condensates and basic concepts can be found in [27].

Technically, laser cooling and magnetic evaporative cooling were used to reach ultra-cold
temperatures. A further development of the method confines Bose-Einstein condensed
atoms in an array of traps. These traps are built by periodic optical dipole potentials which
are formed by counter-propagating laser beams. The superposition of two standing wave
pairs forms for example a 2D lattice. This optical lattice is tunable in the sense that the
periodic potential which controls the tunneling rate between traps can be varied. In addition,
the interparticle interaction can be tuned via optically induced Feshbach resonances [28].

The physics of a system of ultracold atoms in an optical lattice is described by the Bose-
Hubbard model of an interacting boson gas in a lattice potential. The Hamiltonian

At a L1 o n
H=-J Z afaj+Ze,n,+§UZni(ni—1) (1.1)
i i

<ij>

includes particle hopping J, a tunable energy offset (¢;) per site, and the boson-boson
repulsion U where &;, é}L are the bosonic creation and annihilation operators and i = é;‘é,—

the atomic number operator.

Taking the Bose-Hubbard model as a starting point, a perturbative calculation around
states with one atom per site gives the effective spin Hamiltonian. In this fashion, spin
systems can be implemented in optical lattices. Even for an experimental realization of a
two-leg S = 1/2 spin ladder, different setups have been proposed [29, 30].

1.3 Spin ladder with nearest-neighbor interaction

The Heisenberg model [31] describes systems of localized spins with isotropic interaction
between nearest neighbors. In terms of the ladder, this means that both, rung and leg
interaction terms exist in the Hamiltonian

H=J) (S1j-Sijr1+S2-Saj1) +J1) S1,-So, (1.2)
- :

J

with two coupling parameters J; and J, see Fig. 1.4. The indices of the spin operators
denote leg and rung number, respectively.

In the antiferromagnetic regime with positive coupling constants, we consider two limiting
cases. The leg interaction is set to zero (J; = 0) in the strong-coupling (‘strong-rung’)
limit. Here, the system adopts a gapped phase with singlets on each rung in the ground
state. The elementary excitations are triplets with finite energy J,. We can regard the
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Figure 1.4: Spin ladder with nearest-neighbor two-site exchange.

C

system as a gas because the excitations are non-interacting. Thermodynamical quantities
can be calculated exactly. In the other limiting case (J, = 0), the decoupled-chains limit,
two independent Heisenberg chains emerge from the ladder model. Thus, we obtain the
physics of a spin-1/2 Heisenberg chain. In particular, we know that the system is in a
critical phase with algebraically decaying correlations.

Based on this observation, a transition between these two phases is expected at some ratio
of the two parameters and several calculations have been performed on this matter. Exact
Lanczos-diagonalization of small systems was used in [12] where it was found that the
transition happens for J; /J; < 0.4 or smaller. Arguments based on Abelian bosonization
[32] suggest that the gap opens for arbitrary small interchain coupling J; > 0. Results
from a mean field treatment of a flux phase state [33] predict the transition at J; = 0
as well as results from various numerical methods which have been considered in [34]. In
addition to these works, White et al. [35] proposed a picture of the spin ladder ground state
in terms of a short-ranged resonating valence bond (RVB) [7, 36] state. They argued that
the mechanism of spin confinement leads to a gap at non-vanishing rung coupling.

The presumably experimentally most relevant point on this parameter line is found at
Jy = J1, the so-called Heisenberg ladder, where interaction on rungs and legs have the
same strength. A spin gap of A = 0.504J, and a correlation length of £ = 3.19(1) were
calculated by density-matrix renormalization-group (DMRG) [35]. In Fig. 1.5, the gap
size can be estimated from magnetic susceptibility data which was obtained by the TMRG
method (Chapter 3).

In order to illuminate the influence of dimensionality, it is an interesting extension of the
model not to look at two-leg ladders only, but to consider ladders with an arbitrary number
n of legs as well. For the Heisenberg-type ladders (J; = J1), this has been done by
numerical calculations on the way from one dimension to two dimensions in [9] and, in a
more systematic fashion, in [35]. It was found that a significant difference between even
and odd-legged ladders exists. While ladders with n even have a finite gap to the excitation
spectrum, ladders with odd n are critical. The observed behavior was explained in terms
of RVB states: Confinement of free spins exists only in the even-leg case preventing soft
modes. However, with increasing number of legs the gap for even-legged ladders decreases.
This leads to a gapless spectrum in the infinite-leg limit. Thus, in-between the Heisenberg
chain and the two dimensional Heisenberg lattice which both are gapless, we find the
Heisenberg ladder with gapped spectrum. Note, however, that the chain has algebraically
decaying spin correlations while the 2d lattice is believed to show long-range Néel-order
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General Hamiltonian
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Figure 1.5: Energy gap of Heisenberg ladder. Shown is the temperature dependence of
the logarithmic derivative of the magnetic susceptibility with respect to the
inverse temperature B for different ratios of coupling constants JL/J”. The
curve should converge to the energy gap for T — 0 [37]. Data from TMRG
(m = 200).

[38].

Next to the ground state properties and size of the gap, the characteristic features of the
low-energy excitations determine the low-temperature behavior of a model. In the case
of the ladder, a disordered spin liquid with a Haldane gap is effectively realized. For each
J1 # 0 the spinon excitations confine to form triplet (magnon) and singlet excitations. In
the dynamical spin susceptibility x” (g, w), one can see a coherent §-peak near ¢ = 7 and
w the size of the triplet gap [39]. Thus, the magnons can be considered as “optical” in
this case. A refined discussion about spectral properties of spin ladders and a connection
to optical experiments is given in [40].

1.4 General Hamiltonian

The spin ladder Hamiltonian of localized spins can be considered as an effective model
with exchange interaction emerging from a perturbation theory in the Hubbard model.
Because of that it is a natural extension to account for terms arising beyond first order
perturbation theory. In addition to the two-site exchange interaction, new interaction terms
between the four sites of a plaquette appear as higher-order terms. In analogy to the spin
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chain, the two-spin terms are often called bilinear while biquadratic denotes four-spin terms.
Note that particle-hole symmetry of the underlying Hubbard model only permits terms with
an even number of spins [41].

VY Y =Y

Jd JII Jrr -/dd

Figure 1.6: Terms in Hamiltonian (1.3).

A most general SU(2)-invariant Hamiltonian with additional four-spin exchange

H = J Z (Sl,j . 51,j+1 + SQ,J' . 52,j+1) + J, Z (Sl,j . SQ,J')
J J
+Ja Y (S Saj+1+ Sz S1j41)
J
+Jrr Z (S1-S2j) (Stj41-S2+1)

J

+Ji Y (S1j-Sujt1) (S2j- Saj41)

J

+Jad Z (S1,/-S2j+1) (S2,-S1/+1) (1.3)
J

incorporates all terms respecting reflection symmetry along rungs and legs as well as transla-
tional invariance and time reversal symmetry [42]. The interactions are sketched in Fig. 1.6.
Besides including exactly solvable points and ring-exchange Hamiltonians emerging from
perturbational approaches, this general model exhibits a self-duality described later on. For
practical purposes, however, most work done on the spin-ladder with four-spin exchange is
restricted to interesting subspaces of the full model,which often still give rise to a rich phase
behavior. The model class we will focus on in this thesis is the cyclic four-spin interaction.

1.5 Spin ladder with cyclic four-spin exchange

Cyclic ring exchange was introduced in the context of condensed 3He [43, 44] which solid-
ifies under high pressure at low temperatures. In this exotic lattice, the effective magnetic
interaction between the fermionic spin-1/2 3He atoms is controlled by an atom-atom-
exchange process instead of the usual electron exchange in ordinary solids. For these
virtual exchange processes, it is energetically cheaper to make three or more particles ex-
change their places cyclically than to swap places of just two particles in some cases. This
results in higher order interaction terms involving more than two sites.



Spin ladder with cyclic four-spin exchange

The cyclic ring exchange between the four sites of a plaquette emerges next to the nearest-
neighbor interaction in effective spin systems. It can be denoted in terms of permutation
operators

Po+ P35t = 4[(S1-52)(S3-S4) — (S1-S3) (S2+S4) + (S1-S4) (S2 - S3)]
1
+S]_'SQ+S3'S4+S]_'S3+SQ'S4+S]_'S4+SQ'S3+Z (1.4)

which indeed rotate a spin configuration in a clockwise and anti-clockwise sense around a
plaquette:
2 - 3 3 — 4 1 - 2
(Pa+P3h)| | |>= | |>+ | |>
1 - 4 2 -1 4 — 3

On the other hand, spin Hamiltonians arise as effective models from large-U perturbation
theory of Hubbard models in crystals. Takahashi [41] was the first to successfully carry out
the t/U-expansion of the Hubbard model beyond leading order in two dimensions. In his
calculations a fixed relationship

Ji=Jir = —Jaa

between the four-spin interaction terms from Eq. 1.3 appearing in fourth order in t was
found. In the framework of the resonating valence bond (RVB) theory, the earlier results
of Takahashi were confirmed and expanded to higher orders [45, 46]. While the four-spin
interaction for terms up to order O(t*/U3) for an arbitrary lattice topology was given in
[41, 45], the result restricted to the two dimensional square lattice was explicitely provided
in [46]. In these effective spin models an interaction to next-nearest neighbors arose, too,
leading to a coupling between two next-neighboring rungs in the ladder case.

Aiming at a quantitative description in terms of an effective spin model of undoped CuO,-
planes, a direct perturbation expansion starting from a three-band Hubbard model has been
performed in [47]. In particular, for the analysis of the quasi-two-dimensional compound
La,CuQ,, the authors stress the relevance of the four-spin coupling as the leading correction
to the nearest-neighbor Heisenberg model. The strength of the four-spin coupling reaches
about 10% of the rung and leg coupling constant and is, thus, a non-negligible quantity
in copper-oxide compounds under study. Experimental studies revealed that it is necessary
to account for four-spin exchange terms in order to describe the physical properties of the
spin ladder system (La, Ca),,Cu,,0,4[48, 49] correctly.

In this sense, the Hamiltonian with cyclic exchange

H=J Y S;j-Srjsi+JD S1j-Soj+Jocd (Po+P5Y) (1.5)
T7€{1,2}.j J J

is believed to capture the effective physics of the ladder compounds correctly. Usually, we
neglect a trivial scaling J and regard an angle 6 with

J=Jcos® and Jyc = Jsinb (1.6)
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as the relevant parameter of the model.

The zero-temperature behavior for the spin ladder with cyclic exchange was studied in
several works! [52, 53, 1, 54]. The ground-state phase diagram of the spin ladder with
cyclic exchange was provided for the whole parameter space in [1]. In Fig. 1.7, the phase
diagram is depicted along with sketches of the proposed order.

VT *
ector Chirali
P }f/ / 4[ Zn%rder

ScalarChirality

Ferromagnetic
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Figure 1.7: Phase diagram of the spin ladder following [1, 55].

For small positive and down to large negative values of ring exchange the ladder stays in the
rung-singlet phase where we have a unique singlet ground state with a finite excitation gap
to triplet excitations. The ground state can be represented by a product state of singlets
on the rungs with momentum k = 0.

The second order quantum phase transition to a dimerized phase at 8 ~ 0.067 is a transition
of the Takhtajan-Babujian-type[56, 57] which is characterized by a spontaneous breaking
of discrete Zo-symmetry. In the staggered-dimer phase the ground state can be pictured

A second Hamiltonian derived from Eq. 1.3 with Jg = 0.Jeye 1= Jy = Jir = —Jag leaves three free
parameters J;, Jr and Jyc. It has been considered in [50, 51]. Both Hamiltonians differ only by (usually
small) two-spin interactions along the diagonals of the ladder.
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as a staggered arrangement of dimers on the ladder’s legs. Thus, it is two-fold degenerate
with momenta (0, 0) and (m, ™) breaking a discrete symmetry. The lowest lying excitation
is a triplet with a small gap to the ground state energy.

The exact point 6 = arctan(1/2) = 0.14767 is invariant under the duality transformation
described in Section 1.5.1. Here, the system is critical and a quantum phase transition takes
place. Beyond this phase transition, the dimerization vanishes rapidly and we find a gapped
phase with long-ranged order in the staggered scalar chirality. The order parameter is
linked to the stagger-dimer order by the duality transformation (Section 1.5.1).

Another second-order quantum phase transition of Takhtajan-Babujian-type is located at
0 =~ 0.38w. For 8 > 0.387, we find a short range ordered vector-chirality phase with a
unique ground state and a fully gapped excitation spectrum similar to the rung-singlet phase.
In contrast to the rung-singlet phase the dominant ground state correlations are not the
spin-spin correlations, but correlations of the vector chirality order parameters. A smooth
crossover at 6 = 0.85 leads over to the collinear-spin phase, a short range ordered region,
where spins on the same leg (on different legs) exhibit ferromagnetic (antiferromagnetic)
correlations. The system has a unique ground state and a fully gapped spectrum.

The last phase is the fully polarized ferromagnetic phase. It is located between two first
order transitions at 8§ = 0.947 and 6 = 0.40.

In Chapter 5, the thermodynamic properties of Hamiltonian (1.5) will be considered in
detail.

1.5.1 Duality transformation

The introduction of the duality transformation contributed significantly to the understand-
ing of the phases of the spin ladder with cyclic exchange. In [54], a duality transformation
corresponding to a gauge transformation of the singlet rung state [42] was proposed. The
unitary operator is given by
Up = H ei0(S1°52,~ %) (1.7)
J

with ¢ = 7/2. It maps the two spins of a rung to the following objects (we omit the rung
index j):

~ 1
S, = 5(51+52)—51X52 (1.8)

1
S, = E(Sl+52)+51x52 (1.9)

It is easily shown that S; and S, satisfy the spin commutation relations and represent
two spins of size S = 1/2. Application of the duality transformation on the new spin
variables restore the original spin variables. In the language of group theory, it is a canonical
transformation for the lowest representation of SU(2)xSU(2), and conserves the value of
the Casimir operators in this representation [55].
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Another general Hamiltonian covering the same models as (1.3) was introduced within the
context of the duality transformation [42]:

Hwxyz = Jr Z (S1)-S2j) + Jrr Z (S1,-S2,) (S1jt1-S2+1) (1.10)

J J
+W Z (S1,+S2,) - (S1j+1+Sa t1)

J

+XZ {(S1,-S1j+1) (S2, - S2j+1) + (S1j- S2,+1) (S1js1 - S2,j41) }
7

+Y > {(S1j— S24) - (S1jr1— Szy41) +4(S1, X S2) - (S1jr1 X S2,41) }
F

+2> {(S1;—S2)) - (S1j+1— S241) —4(S1 x S2) - (S1je1 X S211) }
]

The relation to (1.3) is given by

1 1

W = §(J|+Jd). X = §(JII‘+‘Jdd)v (1.11)
1 1 1 1

Y = 1_6(JII - Jdd) + Z(JI - Jd)- Z = _1_6(J” — Jdd) + Z(JI - Jd). (1.12)

The duality transformation maps the parameters (J,, J,,, W, X, Y, Z) to (J,, J;r, W, X, Y, = 2),
i.e.,it only affects the coupling Z. For Z = 0 the model is self-dual and shows a U(1) sym-
metry because it is invariant under a transformation (1.7) with arbitrary ¢ [42].

Thus, the Hamiltonian (1.3) is form-invariant under the duality transformation and contains
a self-dual sub-class of models for (Jy — Jyg) = 4(J — Jg)-






2 Exact results on spin ladders
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This chapter illustrates the character of the ground states of the spin ladder with cyclic
four-spin exchange in its different phases.

We start with introducing a reasonable basis for the Hilbert space of a four-spin plaquette.
Hereby, we take advantage of the symmetries of the model. A lower bound to the ground
state energy is given by an exact diagonalization of the spin ladder Hamiltonian on a
plaquette. Upper bounds are calculated analytically by variational states making use of the
matrix product ansatz.

2.1 Basis states of a four-spin plaquette

The spin ladder model is composed of interactions on four-spin plaquettes which, put on
a chain, form the ladder. Choosing a reasonable basis of a four-spin plaquette will simplify
and clarify analytical and numerical calculations.

It is essential to regard the system’s symmetries for this purpose. In the class of interaction
terms under consideration, see Hamiltonian (1.3), the following quantities are conserved in
the plaquette:

e The SU(2) symmetry of the isotropic interaction leads to a conservation of the total
spin S, defined by

S(S+1)=(S1;+ Sz, +S1j+1+ S2,+1)%

e The weaker assumption of a rotational invariance within the XY-plane leads to the
conservation of the z-component S% of the total spin. (Due to spin-flip (time-
reversal) symmetry it is sufficient to consider positive S#-values, only.)

e The reflection symmetry in rung direction leads to a parity P conservation under leg
exchange.

e The reflection symmetry in leg direction leads to a parity conservation which is related
to the momentum k conservation regarding ladders with more than two rungs.

By exploiting the various symmetries of the ladder, the corresponding Hilbert space can be
separated into distinct subspaces, so the effort of analytical and numerical calculations is
lowered.

For a convenient description of the states, we start by symmetrizing the two spins 1/2
linked by a common rung and obtain three triplet states

=110 =5 (11+10)) md [e)=17) @D

with parity P = +1 as well as one singlet state

) =75 (17)-11)) (2.2
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having parity P = —1. It is natural to symmetrize the rung spins in this context since the
leg exchange symmetry plays a special role: It survives when the plaquette is extended to
a ladder.

In order to classify the 16 plaquette states, we arrange them by total spin S = 0,1,2. The
five S = 2-states

(S=2,P=1k=0)

Sz = 42 - ‘¢2ﬂ> = }titi> (2.3)
§7 = &1 : [by,) = 75 (|teto) +|tots))

S =0 b)) = S (2lioto) +]tst )+ |t)

are symmetric under spin reflection along rungs, legs and diagonals. The nine S = 1-states
are grouped into three triplets each of which is symmetric under spin reflection along
either rungs, legs or diagonals and anti-symmetric under spin reflection along the other two
directions. For example, the S = 1-state which is symmetric regarding reflection along
rungs can be expressed as two S = 1-triplets which have been formed by symmetrized
S = %-spins on rungs and coupled to a new S = 1-triplet:

(S=1P=1k=m)

S° = 41 k) = b (|tsto) — Jrots))
7 =0 by = ) -let))
(S§=1,P=—1k=0)
57 = £1 : ‘¢|1|¢1> = %(’t150>+}50ti>) (2.4)
s =0 = el) = Z5(|ts)+|%k))

«
I
L
R

=—-1,k=m)

(|trs0) = [s0+))
(|050) = |s0t0))

$% = 41 : |¢7,,) =
$* =0 |¢5)

S-Sl

According to this procedure, one can construct three S = 0-states consisting of a tensor
product of two singlets, formed by anti-symmetrized S = %—spins on rungs, legs or diag-
onals. These three states, however, are not linearly independent since they only span a
Hilbert space of dimension two. Therefore, we have to select two suitable states for an
appropriate basis. Because of the particular role of the leg exchange symmetry, we choose

a basis
(§5=0,P=1,k=0)

SZ = 0 : ‘¢é‘> = ’5050> (2-5)
st =0 ¢ o) = Z(ltow)—[te) —|et))
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built by the state consisting of a product of rung singlets and the state orthogonal to it.
The latter is, indeed, the difference between the state constructed by leg singlets and the
state constructed by diagonal singlets. For completeness, we provide the representation of
the S = O-states with singlets on legs and diagonals:

\[|¢II ><>>

by )
(loa) +v3leh™))
(2.6)

0y = 3 (Isos0) = [toto) + [trt-) + |e-:)) = (]
3 (—lsoso) = [toto) + [t+£-) + [£-84)) = —3

2.2 Plaquette operators

In the spin ladder with four-spin exchange, the most general Hamiltonian (1.3) consists
of various interaction terms on the plaquette (Here, the rung index j is omitted in the
operator names.):

O = (S1j-S1j+1+S2;-S0j+1)
= L(P-Pi+Pl-Pr—2P) )+ £ (|od ) (ah* | +]ab> ) (5 ]) (2.7)

Or = (S1,-S2j+S1j+1-S2/41)
3 (Py+Pi—Pl-Py 3P +P)) (2.8)

Og = (S1j"S2+1+S2,S1j41)
L (P, —Pi—Pl+pr—2Pl ) =2 (|ag ) (b | +]a5™) (05 ) (2.9)

On = (S1j-Sujt+1) (Soj-S2j+1)
L (P, -3pf +P) 3Py +7Pd +3P) ) - (|og ) (4}
Orr = (S1-S2,) (S1,j+1-S2,j+1)
= & (P+PL-3Pl-3P 40P +P) (2.11)
Ogd = (S1,-S2j+1) (S2, - S1j+1)
= &(P,-3PL—3P|+Py+7Ps+3P) X)jt‘f(\(po <¢“X]+}¢“X><¢g\) (2.12)
Po+P3t = op,-2ppand-P (| g ) (o [ +|ob* ) (85 ]) (2.13)

+}¢ux><¢ﬂ) (2.10)

For a basis representation we have chosen the plaquette states listed in Section 2.1. The
projection operator P¥ denotes the projection [¢%)(¢<| on a certain sub-state character-
ized by quantum numbers Q, e.g.

Pf_ = ’Plj;l +P1JE) +’pf:1 = ‘¢f+1><¢i_+1‘ +--- (2.14)

The Hamiltonian of the spin ladder with cyclic four-spin exchange (1.5) confined to a
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plaquette is described as

1
H = J (0, + 50,) + Joye(Pa + P 1) (2.15)

= 1[(3U48Jesc) Py —IPL+ P +(=3J-8Uesc) P} |

+1[(=3+40y0) Pg (=302 ) PY | 32 (U=2des0) (|04 ) (0™

+|ob*)(es])

in this basis representation. It's easy to see that all basis states inthe S=2and S =1
subspaces are eigenstates of the Hamiltonian. Their eigenenergies are the coefficients
of the projectors. All eigenenergies of the plaquette including the S = 0-sector will be
discussed in Section 2.3.

The impact of the duality transformation (1.7) on the rung symmetrized states

= |t40,-)(tr.0-| = i]50) (0] (2.16)

provides the singlet state with an imaginary coefficient. The representation of the duality
transformation extended to the plaquette reads

Ur =P, + P — iP] — iP} = Pd + Py (2.17)

adding imaginary phases to certain eigenstates.

As introduced in Section 1.5, different order parameters arise in the various phases of the
spin ladder with cyclic exchange (1.5):

e The rung-singlet phase is described by O,. The commutator with the system’s
Hamiltonian [H, O,] vanishes only at the point Jec/J = 1/2 which is a fixed point
of the duality transformation. The number of singlets and triplets on the rungs is
conserved in this case.

e The staggered-dimer phase has dimers sitting on alternating legs locally described by
the staggered-dimer order parameter

Osp = Si1;-S1j+1—S2;" 52,41 (2.18)
= ot ) (5| +]o1)(ot]
which breaks the translational symmetry and connects sub-spaces with kK = 0 and

k=m.

e The scalar-chirality phase is believed to have staggered long range order in the scalar
chirality. The local order parameter Sy ; - (SQ,J- X 51,j+1) has a spatial modulation
with wave vector (7, ) leading to

Osc = (S14S2;) - (S1j+1%S2,41) + (S1j41+S2,41) - (S1,%S2,) (2.19)
= —ifot)(ex|+iler)(ot]

which is the duality-transformed staggered-dimer order parameter (2.18).

+i
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e The vector chirality is a second chirality which is discussed in the context of frustrated
spin systems. For the spin ladder, correlations in the vector-chirality of rungs becomes
dominant in the so called vector-chirality phase [54, 1]. The vector chirality on a rung
is defined by S1j x Sy ; which is the dual operator to the Néel spin (S1; — S2;)/2.
In the case of a dominant vector-chirality ordering the scalar product of two rung
vector-chiralities

Ovc = (S1,%S2;) - (S1j+1%S2+1) (2.20)
1 X X
= 2 [PI=Pr = V3 (los)(0b ™|+ ob ) (0s )]

is the relevant plaquette operator.

e Within the dominant-collinear spin region, spins on the same leg (on different legs)
exhibit ferromagnetic (antiferromagnetic) correlations. The order parameter on a
single plaquette

1
Oco = 7 (S1j+S1j+1—Soj — 52,j+1)2 (2.21)

3 X X 1
= Pl pd+ 2 (a0 + 8 ) + 2

keeps track of this behavior.

2.3 Eigenenergies of a single plaquette

In this section, the Hamiltonian of the spin ladder with cyclic exchange is diagonalized on
a single plaquette. Its eigenvalues provide a lower bound for the exact ground-state energy
of the ladder. The nature of the lowest-energy eigenstate—together with an upper bound
provided by a variational state— will help us to characterize the nature of the ground-state.

We already chose a reasonable set of basis states in Section 2.1. Qut of the 16 plaquette
states, 14 states are fixed consistently with the symmetry without any free parameters.
A two-dimensional subspace remains for the case of vanishing total spin. As the model
Hamiltonian is given in the language of projection operators onto those quantum-number
conserving states (2.15), we simply read off the eigenenergies

E» = 3(3cosf+8sinf), Eif = —21cosf

2.22
El = 1 cosf EY = %(—3cosf —8sinb) (222)

of the single-plaquette system in the S = 2 and S = 1 subspaces where we neglected the
trivial rescaling J. Five degenerate S = 2 states show ferromagnetic ordering. Each of the
three S = 1 energies belongs to a plaquette-triplet composed of triplets on either rungs,
legs, or diagonals.

The eigenenergies

; 3 1
Efilo = = + - 2.2
0 2 cos @ 5X (2.23)
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Eigenenergies of a single plaquette

Energy E/J

\ \ \ \ \ | \ ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Model parameter 6/

Figure 2.1: Plaquette energies of the spin ladder with cyclic exchange versus system pa-
rameter 8. The fat black line represents the ferromagnetic state with S = 2.
The states with triplets on rungs (dotted), legs (dot-dashed), and diagonals
(dashed) have a total spin S = 1. The upper (double-dot-dashed) and lower
(thin straight) lines represent eigenenergies of the S = 0 subspace. The phase
boundaries proposed in [1] have been included as vertical, dotted lines.

with

x:= /16 — 12 cos@sinf — 13 cos2 6 (2.24)

can be calculated by diagonalization within the S = 0 subspace. All plaquette-eigenenergies
are plotted versus the model parameter 6 in Fig. 2.1.

As we have three interesting, but non-orthogonal, plaquette-states in the S = 0-subspace,
it is worth to mention that at 6 = arctan(1/4) ~ 0.0787 (6 = =w/2) the lowest energy
eigenstate is the state with singlets on the legs |¢|é> (on the diagonals |¢5<>). The state
|¢g ) is the lowest energy state for § = m + arctan (1/2) ~ —0.857. The contributions to
the lowest-energy S = 0 eigenstate are plotted in Fig. 2.2.

In general, plaquette ground states cannot be extended to a state of the whole chain in a
straightforward fashion. Only the state with singlets on rungs and the S = 2 ferromagnetic
states can be written as a simple product state on the whole ladder. In all other cases,
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Figure 2.2: Overlap of |¢g) (straight line), }¢‘(|,> (dashed), and |¢g ) (dotted) with the
lowest plaquette-energy eigenstate in the S = 0 subspace versus system pa-

rameter 6. The phase boundaries proposed in [1] have been included as vertical,

dotted lines.

we have an admixture of energetically higher lying local plaquette states when we consider
states on the full ladder. The eigenstate of the plaquette which is lowest in energy thus

provides a lower bound to the full ladder ground state energy.
Exact upper bounds of the ground state energy can be obtained with variational states of
matrix product type. These matrix product states are states defined on the whole ladder,

but no eigenstates of the ladder Hamiltonian in general.

2.4 Matrix product states as variational states

Upper bounds for the ground state energy will be derived by a variational approach based on

matrix product states in this section. Similar calculations have been done for the bilinear-
]. If the upper bound agrees with the lower bound derived

biquadratic spin-1 chain in |
in Section 2.3 the corresponding state is an optimal ground state. We expect the matrix
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product variational states to give us a good physical picture of the ground state in different
parameter regimes.

Matrix product states were introduced as a convenient representation of the valence bond
states (VBS) for integer-spin chains [59, 60]. Similar considerations have been done in
[61]. In terms of the original spin states, VBS wavefunctions factorize in terms of matrix
states which considerably simplifies all calculations. Matrix product states have also proven
to be a useful tool for constructing new classes of spin Hamiltonians with exactly known
ground states [59, 60, 62, 63, 64, 65], for variational study of the ground state properties
of one and quasi-one dimensional spin chains systems [58, 66, 67], and also for the study
of elementary excitations [68, 69, 70, 71]. Matrix product states can be generalized to
vertex state models in two and higher dimensions [72, 73, 63, 74, 75].

In the framework of ladders, the matrix product ansatz has been applied both for variational
states and for constructing models with optimum ground state. Optimum ground states
are global ground states constructed of only those local states which are ground states of
the local Hamiltonian as well. The matrix product ansatz was adopted to the spin-1/2 two-
leg ladder with two-spin rung, leg, and additional diagonal interaction in [66]. Variational
ground state energies as well as spin and string correlation functions were computed. In
[64], a model class with four-spin interaction was introduced which possesses unique or
twofold degenerate ground states of matrix product type. Within these ground states, the
state with staggered dimers on the ladder’s legs was given as a matrix product state in
addition to AKLT-type states. Based on this work, a model with exact scalar chiral ground
state was constructed by consideration of the duality transformation [42].

In this section, we extend the previous approaches. A set of matrix product states shall
now be considered as variational states for the spin ladder with cyclic four-spin exchange
including the states proposed earlier. We work out the character of the ground state in
the different phases of the model. Since we deal with variational states which give upper
bounds to the ground state energy we do not expect to find the exact phase boundaries,
but expedient approximations.

The matrix product state considered here

L
(W(w) =tr [ [Tgi(w) (2.25)
j=1

can be written as a trace of the product of matrices

U‘50>j+ }t0>j _\/E‘t+>j
gj(u) =

(2.26)
\/i‘t—>j “‘50>j_ |t0>j

containing the local rung-symmetrized states from Egs. (2.1) and (2.2) as elements. In
general, the parameter u is complex.

The ansatz is chosen to be isotropic with respect to SU(2) rotational symmetry which
is the symmetry of the ladder Hamiltonian under study. An anisotropic ansatz would
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replace the v/2-factor in Eq. (2.26) by another variational parameter [66]. The following
calculations have also been carried out with this additional anisotropy parameter. However,
no improvement of the variational energies could be found. Therefore, the results are not
shown and we only discuss the isotropic states explicitely.

The total spin of (2.25) vanishes (see [67]) making it an appropriate trial state for the
interesting antiferromagnetic regime. For the ferromagnetic part of the phase diagram, the
variational state of choice is the ferromagnetic product state with maximal spin alignment
and an energy (2.22) (S = 2 plaquette state).

The ansatz (2.25) has two limiting cases: For u = 0, all rung-singlet contributions are
eliminated. Thus, we get the AKLT-state of the spin-1 chain [76, 77]. The simple product-
state with only singlets on the rungs emerges in the case of infinite u.

Since we expect phases with spontaneously broken translational symmetry, an additional
degree of freedom is appropriate. Hence, we allow an alternation of the parameter u by
every second site. So, our variational state

L2

(W(u,0)) =tr Hg2j(u)g2j+1(au) (2.27)
j=1

gains another parameter o which we allow to be complex. Later, we will show that o0 = 1
holds for the lowest energy variational states. This ansatz comprises further states with
well known physical interpretation. For u =1 and ¢ = —1, we obtain a state with singlets
on the legs arranged in a staggered order [64]. Applying the duality transformation to
exactly this state, a state with perfect scalar-chiral order is obtained. It is written with a
purely imaginary parameter v =i and 0 = —1 in the matrix-product form [42].

2.4.1 Energy of the variational state

The transfer matrix method[59] for matrix product states allows us to calculate the expec-
tation values of certain operators explicitely. The technique makes use of the structure of
the matrix product ansatz. In our case, it essentially involves a diagonalization of a product
of 4 x 4 (number) matrices.

We choose the Hamiltonian H of the spin ladder with cyclic exchange, see Eq. (1.5), as
the operator whose expectation values are to be determined in this case. If we proceed like
this, we find the local expectation value of H given by

w(u, o) ::%<\U(u,a)|H}\U(u,a)>

3Jul?
8

3.3
== 2+ 5 (=30 = ddye) +

3
+3 <0u2 + 0*u*2) g

(lo+ 112J + o — 1|2 (—=3J — 8Jeyc))

1
(J - 2chc) + Z|0-|2|U|4 (_3J + 4chc)
(2.28)
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where N is the number of rungs of the ladder. The detailed calculations can be found in
Appendix A. This expectation value w(u, o) still has to be divided by the norm

Z(u,0) == (V(u,0)|V(u,0)) = (Jul® +3) (Jou* + 3) (2.29)

of the matrix product state to get the correct expectation value e(u, o) = w(u,0)/Z(u, o).
We want to find a variational state ‘\Uvar> of type (2.27) with a minimal local energy ey,
regarding the matrix product state’s parameters v and ¢ as variational parameters.

It will turn out to be useful to write the complex state parameters
u=re?and o = se® (2.30)

in terms of norm and phase, for our purpose. With this definition, we rewrite Eq. (2.28)
as

3
w(u, o) = 2 (—=5J — 4Jeyc) + r?(s? + 1) (=J — 4Jeyc) + 4sr? (J + 2Jeye) cos o
4
+ 45r? (J — 2Jeyc) cos (2¢ + a) + s%r* (—J + §chc) } (2.31)

which allows to us to consider two positive real numbers r and s as well as two angles
0 < ¢,a < 27 instead of complex numbers. The third term in Eq. (2.31) is minimal for
a=m7 (if J+2Jyc > 0) and a = 0 (if J+2Jec < 0). With a fixed, we can determine the
optimal value of ¢. By consideration of the fourth term we find that, for J — 2J,,c > 0, it
is best to choose ¢ = (a — 7)/2 while ¢ = a/2 is best for J — 2J.,c < 0. We conclude
from these conditions that an appropriate u is either real oder purely imaginary and that o
is a real number.

In sectors with fixed ¢ and «, the variational energy e takes the form

3 a15°r* 4+ 2asr’ + az(s> + 1)r’ + a

4 s°r*+3(s?+1)rs+9
with the constants a2 34 depending on the system variables J and Jcy. It has a local
extremum?! at

2 _ 3(82 + 33) — ag
(a2 + a3) — 3a1

s=1, (2.33)

with an energy
3 aja4 — (ap + a3)?
Car = — . 2.34
YT 4 9a; —6(ax + a3) + a4 (2.34)
Besides the local extrema we have to consider the boundaries. Here we find

da

321

r?500<s<oo0 : Evar = 75 r? = 00,0<5<00: Eyyy=— (2.35)
da a
r2 00,50 : Eva,:f, r2—>0,5—>oo:Evar:Z3. (2.36)

With these preceding calculations, we continue to find lowest-energy variational states for
spin ladders with different amounts of ring-exchange.

For a calculation, set x := sr? y := (s® + 1)r? and calculate derivatives.
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2.4.2 Calculation of variational energies in different regimes

We now have to consider different pairs of the variables a and ¢ for different regimes of the
Hamiltonian’ s coupling parameters as mentioned above. For obtaining a local extremum
(2.33), we set s = 1 in the following. The other limits of infinite and vanishing s have been
found to be unimportant in the examined cases. Further, we again eliminate the trivial
rescaling degree of freedom and set J = cos@ and Jgyc = sin 6.

Starting with 27 —arctan(1/2) < 6 < arctan(1/2) and, thus, a = 1, ¢ = 0, we look at the
model class including the Heisenberg ladder for 8 = 0. The adequate variational energy

(—5 cos §—4sin 8)—r?(10 cos 0+8 sin 6)+r*(— cos 6+ % sin )

€W'O(r) = % (r2+3)2 (2.37)
has a local minimum
2 . .
r0 COs“6 —32cosfsinf — 16 5> 5cosf +4sind
v = . t = 2.38
Svar 16 (cos8 + 2sin ) a T cosf +4sind ( )

for 6 > —arctan(1/4) which is also global minimum in this area. For 6 < —arctan% the
global minimum

3 .
el = 2 cos @ +sinf (2.39)
is found for r — oo. The variational states takes the simple form of a product of rung-
singlet states in this case.

Turning to the next phase, arctan(1/2) < 6§ < w— arctan(1/2), we have to set a = m, ¢ =
/2. The energy

(=5 cos@—4sin@)+r2(—2 cos0—24sin 0)+r*(— cos 0+ 2 sin6
) = 3 ' o0 e (Ceos0isnd) (3 40)
has a global minimum
—115c0s? 8 4+ 20 cos@sin@ + 112 cosf — 16sin@
T,7/2 2
= - t = 241
Evar 8 (cos® — 105sin6) a T cosf — 8sin@ (2.41)

within the whole region.

Setting @ = 0,¢ = 0 in the regime ™ — arctan(1/2) < 6 < 7 + arctan(1/2), we find an
energy

(=5 cos 0—4sin 0)+r?(6 cos 0—8 sin 0)+r*(— cos 6+ % sin )

e0,0(r) = % (7713)2 (2.42)
for the variational state. In the whole range, there is a global minimum
13cos? @ + 16 cosfsinf — 16 7cosf — 4sind
ed:0 = * > at 2= o7 (2.43)
32(—cosf +sinf) 3cosf —4sinf

Finally, for a = 0, ¢ = w/2 when 1 + arctan(1/2) < 6 < 2w — arctan(1/2), the variational
energy is

3 (=5cos8—4sin 0)+r2(—2 cos 0+8sin 6)+r*(— cos 6+ sin 6)
7 .

eo'”/2(r) (r2+3)2

(2.44)



32 Matrix product states as variational states

with a global minimum

o2 —19cos?6 — 4cosBsin6 + 16

= _ t r’=8tanf+1, 2.45
Svar 8 (cosf + 2sin0) a s anog+ (2.45)

if 8 < 3w/2. For & > 371/2 the global minimum is found in the rung-singlet state which
has the energy (2.39).

Energy E/J

C \
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Model parameter 6/m

Figure 2.3: Variational energies of matrix product states (2.25)—(2.27) for the spin ladder
with cyclic exchange. The fat black line is the lowest variational energy eyar
calculated by the matrix product ansatz versus system parameter 6. The fat
dashed line gives the lower bound of the local energy provided by diagonaliza-
tion of the local Hamiltonian. The thin lines are energies of selected (matrix)
product states: Ferromagnetic (straight), rung-singlet (dotted), ALKT-type
(dashed), staggered dimers on leg (dot-dashed), and scalar-chirality (double-
dot-dashed) state. The diamonds denote the approximated ground-state en-
ergy extrapolated from TMRG data. The phase boundaries proposed in [1]
have been included as vertical dotted lines.

Between 6 = w — arctan((+/154 — 7)/20) = 0.9167 and § = — arctan(3/2) ~ —0.317 the
ferromagnetic energy gets favorable. Here, we have to consider a ferromagnetic state as
best variational state.
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Variational parameter (Ju| — 1)/|ul

\ \ \ \ \ \ \ | \
00 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Model parameter 6/

Figure 2.4: Variational parameter within different regimes. The ratio (|u|—1)/|u| is plotted
versus the system parameter 0. If (|u|—1)/|u| = 0 (and ¢ = —1) the system is
in a pure staggered-dimer or scalar-chirality state which is not fulfilled for the
variational states in any regime. If (|u| —1)/|u| = 1, a rung-singlet state is the
favorable state.

In summary, we identified the variational states following ansatz (2.27) with lowest energy
within the whole parameter range of the spin ladder (1.5). The corresponding variational
energies are plotted in Fig. 2.3 along with several prominent matrix-product-type states.
Note that we included the ferromagnetic state as well. The variational parameter r = |u|
minimizing the variational energy is plotted in Fig. 2.4 as additional information.

2.5 Discussion of ground-state properties

In this section, we discuss our analytical results of the ground state properties of the spin
ladder with cyclic four-spin exchange. We include a comparison to the scenario presented
in Chapter 1.5.

We start the discussion of our variational studies from the well-studied point 6 = 0 where no
ring-exchange is present and the model reduces to the Heisenberg ladder, see Section 1.3.
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Here, we usually picture the ground-state as a product state of rung spins coupled to sin-
glets. This rung-singlet character extends when ring-exchange is turned on. However, the
phase extension to negative values of ring-exchange ranges further than the phase extension
to positive values of ring-exchange. Indeed, within — arctan(3/2) < 8 < — arctan(1/4) the
pure rung-singlet state is the variational matrix product state which is lowest in energy.
The lower bound provided by exact diagonalization lies about an energy unit below the
upper bound, so the model has no optimum ground-state in this region. Yet, this will not
significantly change the picture of a rung-singlet state because the lower-bound state has
a zero total plaquette spin as well and the rung-singlets give a major contribution, see
Fig. 2.2. The larger overlap with a plaquette state with singlets on the legs plays a minor
role because the latter cannot be extended to the full chain in the sense of a product state.
Lastly, upper bound and lower bound energy are well separated from the higher energies
of other plaquette and variational states. From our analytical calculations, we come to
the conclusion that the rung-singlet picture of the ground state is valid within the region
—arctan(3/2) < 8 < —arctan(1/4).

Our starting point, the Heisenberg ladder, lies in the transition range to the staggered-
dimer phase. We identify three potentially relevant points for the location of the phase
transition from the rung-singlet to the staggered-dimer phase: At 6 = —arctan(1/4), a
variational state with staggering crosses the pure rung-singlet state and gets minimal in
energy. At 6 = 0, the state with staggered dimers on legs crosses the rung-singlet state.
At 6 = arctan(1/4), an S = 1-state crosses an S = O-state in the plaquette-energies. The
favored plaquette state now consists of triplets on diagonals coupled to a local S = 1 state.
We conclude from these considerations that the transition happens within the relatively
broad range — arctan(1/4) < 6 < arctan(1/4).

Arguments shall be presented, though, that the true transition point lies near the upper limit
of this range: The variational matrix product state has the character of a rung singlet state
with only a small staggered contribution near the center of the rung-singlet phase because
the variational parameter v is still big, see Fig. 2.4. At @ = — arctan(1/4), upper (variational
energy) and lower bound (plaquette energy) differ by more than one unit of energy while,
at 8 = arctan(1/4), the difference is less than one fourth of an energy unit. Because of
this, we expect the ground state for bigger 6 to be closer to an optimal ground state which
is a staggered state with dimers on legs. Indeed, we see from Fig. 2.3 that a numerical
calculation of the ground state energy follows the form of rung-singlet energy up to almost
0 = arctan(1/4) rather than approaching the variational state. In [66, 70], a variational
approach with different matrix product states was done for the Heisenberg ladder. Two
spins were coupled along the diagonal of a plaquette to triplet states. They found that an
AKLT-state of these diagonal-triplets provided a variational energy —e = 1.102 which is
lower in energy than the staggered-dimer state energy.

Within the staggered phase, the lower bound is the S = 1-plaquette state with a small gap
to the S = O-state on the plaquette which is next in energy. Both plaquette states cannot
be extended to product states of the whole chain. The upper bound is given by a slightly
modulated staggered-dimer matrix product state. All other antiferromagnetic variational
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states are close by in energy. We notice that the ground state energy from Fig. 2.3 is close
to the matrix product ansatz variational energy. From this we conclude that the ground
state can indeed be pictured as two degenerate states with dimers on the legs arranged in
a staggered order. An existing energy gap is supposed to be small and the spectrum will
be dense because the variational and plaquette energies lie so close together.

The only phase transition point which is known exactly is located at 6 = arctan(1/2). The
transition from the staggered-dimer phase to the scalar-chirality phase is a fixed point of
the duality transformation (1.7). We see the duality in the energy level crossing of the
staggered-dimer matrix product state (u = 1) and the scalar-chirality matrix product state
(u = i). At the same time, the lowest lying variational state changes to a state with
scalar-chiral ordering. In contrast to this apparent behavior in the matrix product state,
no signature in the calculated ground state energy (Fig. 2.3) or in the energetically lowest
plaquette state can be seen.

Within the whole predicted scalar-chirality phase, the low-energy variational state has a
scalar-chiral ordering and, thus, is two-fold degenerate. It lies energetically very close to
the pure scalar-chirality state. The plaquette’s low-energy state is still the S = 1 state
with triplets on the diagonals. It lies well below the variational energy, but does not have an
extension to the whole ladder. The spectrum of energies broadens again after the energies
lay close together in the preceeding phase. We find the ground state energy from Fig. 2.3
close to the variational energy.

There is no indication in the matrix product states for the transition to the vector-chirality
phase which was predicted for 8 =~ 0.39w. There is, however, a level-crossing from an
S = 1-state to an S = O-state in the lowest plaquette-energy at & = w/2. The favored
plaquette state has singlets on the diagonals of a plaquette. We find no evidence for a
phase transition in the ground state energy from Fig. 2.3.

In the vector-chirality phase the lowest variational energy is still found in the scalar-chirality
matrix product state. Complementary to the scalar-chirality phase, the plaquette’s lowest
energy state for the bulk of the vector-chirality phase is found in the S = 0 sector. This
plaquette state, again, cannot be extended to the whole chain. There is a good agreement
between ground state energy from Fig. 2.3 and the variational energy. We cannot argue
from our calculations that the ground state is unique as it is claimed [1]. The spectrum of
matrix-product states gains a broad width, so there is evidence for a gap.

At 6 = m — arctan(1/2) = 0.8527, an interesting region sets in which is characterized by
a number of level-crossings in the matrix product states: At & = w — arctan(1/2), the
variational state looses staggering and the weight of the rung-singlet contribution grows
rapidly. This is the so called “smooth crossover” to the dominant-collinear-spin phase
where the spins on a common leg (rung) are orientated parallel (antiparallel). At 6 =
m—arctan((v/154—7)/20) = 0.9167, the variational state crosses the ferromagnetic state
which is an optimum grund state. This is a lower bound for the point where ferromagnetism
is allowed to set in. An upper bound for the ferromagnetic regime to start is at 6 = w —
arctan(1/6) = 0.9477 where the lowest S = 0-plaquette state crosses the ferromagnetic
state.
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Within the ferromagnetic phase, the ground state is clearly separated from the matrix
product states. The ground state is a product state (S = 2 on each plaquette) representing
a fully polarized ferromagnet. In Fig. 2.3 the optimum ground-state properties of the
ferromagnet are clearly visible. Here, plaquette state energy, ground-state energy and
variational energy are identical. At both boundaries, we see a kink in the ground-state
energy which is a signature of a first-order phase transition.

At § = —m/2, the S = 0-plaquette state with a high rung-singlet contribution crosses the
ferromagnetic state. The pure rung-singlet state, however, gets lower in energy than the
ferromagnetic state at 6 = —arctan(3/2) = —0.31w. We expect the phase transition to
happen somewhere in between those two points. Indeed, the predicted value of 8 = —0.407w
is located almost exactly in the middle.

As a conclusion, we obtained upper and lower bounds to the ground state energy in the
whole parameter range of the spin ladder with cyclic four-spin exchange. We found physi-
cally representative (matrix) product states for the rung-singlet phase, the staggered-dimer
phase, the scalar-chirality phase, and the ferromagnetic states. Limiting points for the
location of the phase transitions were given. In this way, we supported the ground state
phase diagram of [1] by exact calculations.
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The quantum Transfer Matrix Density Matrix Renormalization Group (QTMRG or shorter:
TMRG) is a powerful numerical algorithm for the calculation of the thermodynamics of
one dimensional quantum systems. In the framework of this thesis, | developed a high-
performance implementation of the TMRG method which provided the thermodynamical
properties presented in Chapter 5. The TMRG method succeeds in combining three refined
approaches: Trotter-Suzuki decomposition, transfer-matrix formalism and density-matrix
renormalization group (DMRG).

In this chapter, we start with a description of the classical decomposition of quantum
chains (Section 3.1) which is the basis of many numerical finite-temperature approaches.
The decomposition yields a classical system on a two-dimensional infinite lattice. The
calculation of its partition function can be reduced to finding only the lowest eigenvalues of
an infinite-sized transfer matrix (Section 3.2). We can force the transfer matrix to a fixed
size when we iteratively expand in a way that unimportant degrees of freedom are omitted
in each step by DMRG (Section 3.3). Finally, we present the iteration procedure for the
quantum TMRG method (Section 3.4).

3.1 Classical decomposition of quantum chains

The statistical properties of a given quantum system with Hamiltonian H in thermodynamic
equilibrium are encoded by the partition function

Z=tre M (3.1)

Its calculation demands knowledge about the whole spectrum of H. In only a small number
of cases Z can be calculated analytically [78]. For both analytical and numerical purposes it
is often useful to map a d-dimensional quantum system onto a (d+ 1)-dimensional classical
system. After elimination of the quantum mechanical fluctuations, the corresponding two-
dimensional classical system can be subject to existing exact and approximation techniques
like the transfer-matrix method introduced by Kramers and Wannier [79] and Monte Carlo
simulations [30].

3.1.1 Trotter-Suzuki-decomposition

The most prominent d + 1-dimensional classical decomposition of the partition function
for a d-dimensional quantum system has been established by Suzuki [81, 82, 83, 84]. One-
dimensional chains with only nearest-neighbor interaction are considered in the following.
Note that the quasi one-dimensional two-leg spin ladder can be mapped onto a quantum
chain. I The decomposition itself, however, works as well in higher dimensions and with

1The most natural mapping of a spin ladder merges both legs to a single S = 1/2 chain of twice the length
of the ladder. This induces up to third-nearest-neighbor interaction when cyclic four-spin exchange for
the ladder is considered. If, however, the sites of the quantum chain consist of rung-triplet states (2.1)
and rung-singlet states (2.2) of the ladder, the chain Hamiltonian (2.15) will only have nearest-neighbor
terms even if there is cyclic four-spin exchange in the corresponding ladder model.
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further interactions.

In an arbitrarily chosen basis, the chain Hamitonian H as well as the thermodynamically
relevant density operator e " are represented by nt x n‘-matrices, with n being the
number of local states. Thus, the matrices of both quantities grow exponentially with the
chain length L preventing an exact diagonalization of systems with reasonable sizes.

In the case where the Hamiltonian
L
A=Y R with [Bj1, Beesa] =00/ £k (3.2)
J=1
consists of commuting nearest-neighbor interaction only i.e., in classical systems, the imag-

inary time quantum-mechanical propagator e " reduces to a product of locally acting
propagators which leads to

Z=tre PEh =y (e_ﬁr’)L. (3.3)

This tremendously diminishes calculational effort because only the small n x n-matrix h has
to be diagonalized for a calculation of Z. For real quantum systems, however, a different
strategy has to be chosen.

In a considerable number of quantum systems only interaction between nearest neighbors
predominates. So, one succeeds in splitting the Hamiltonian

L

H= Z hjj+1 = Hodd + Heven  With  Hoqq/even 1= Z hjjy1 (3.4)
j=1 j=odd/even

into just two sums Hygq and Heven Of pairwise commuting local terms. We aim at a
decoupling of both sums so that each part can be treated in a fashion similar to the non-
commuting case sketched above. Applying the so called Trotter formula [85], we can
describe the partition function

Z = tre BHosatHeven) — i tr (e_eHodde_eHeve")M
M—o00
" (35)
= lim tr H e—€hijr H e—€hi+
M—
o Jj=odd j=even

(with € := 3/M) as a trace over a product of alternating operators which exactly holds in
the case of infinite M (Trotter limit). It can be shown that the error for finite M is of order
O(€?) [86]. As a benefit from this factorization, we are able to insert 2M identities of the

form
Z‘SI---SL><51---SL|:]- (36)

pictured as slices of discrete temperature or imaginary time, where the chain state \51 ... 5L>
is the tensor product of local quantum states |sj> at site j. Thus, we achieve a classical two
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i i+1
Sk+1 Sk+1
ikl _
T k+1 = m i1
1
Sk S,

Figure 3.1: Graphical representation of 4-spin transfer-matrix 7. The bended curves illus-
trate the symmetries of the object.

dimensional model, spanned by the real space or chain direction and the auxiliary introduced
imaginary time or so called Trotter direction.

The local transfer matrix (see Fig. 3.1)

T /k++11 : <5k5,’(+1\e’€h""'+1\5,"(“5,’(111 (3.7)

coupling imaginary-time slides k with k + 1 at real space sites i and i + 1 is a fourth order
tensor of dimension n x n x n x n = n* With this definition, the partition function of the
quantum chain (3.5) now reads as a partition function

M L/2
— 2i—1,2i . 2i,2i+1
Z= Z HHT2k 1.2k T2k, 2k+1 (3.8)
k=1i=1

u: L,
p=1...2M

of a two-dimensional chequerboard-type classical model (see Fig. 3.2). Note that real space

Trotter direction M

real space direction L

Figure 3.2: Graphical representation of Trotter decomposition (3.8). The four-spin trans-
fer matrices have been composed in a chequerboard-like fashion which has its
cause in the even/odd distinction. The small circles represent classical spin
variables to be summed over. Periodic boundary conditions in both directions
are assumed (not depicted here).
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and Trotter direction appear in a symmetric fashion. Nevertheless, general Hamiltonians
introduce a reduced symmetry into the local transfer matrix 7 leading to a net anisotropy
of the chequerboard model.
Thermal expectation values of local operators can be calculated by a modified partition
function. We recall the statistical definition of the thermodynamical expectation value
Z(0i)
7
of an operator O living at a site /. It is now an easy task to write down the non-normalized
expectation value Z(0;) in terms of the two-dimensional classical model similar to (3.8).
We introduce the modified local transfer-matrix

Fith = (sis{ 0 hom s sith) .10

<O; >= Z(O,) =1tr O;e_ﬁH (3.9)

and replace one standard transfer-matrix within the product (3.8) by it in order to get

3\ — E 12,23 mjjtl j+1j+2 _L—1,L_LL+177M 17L/2 2i-1,2i _2i.2i+1
Z(O,)— ("'1,2"'2,3---7'{,2 Té,s -T2 To3 Hk:2Hi:172k—1,2k72k,2k+1 (3-11)

Periodic boundary conditions are imposed by the trace in (3.9), so without loss of generality
we place 7 in row k = 1 of the Trotter direction at an odd site J.

Equations (3.7) and (3.8) contain the whole thermodynamics of the underlying quantum
system in the limit M — oo with 8 = eM. There are, however, quantum-classical decom-
positions differing from the chequerboard approach presented in this section.

3.1.2 Alternative decomposition

In addition to the well-established chequerboard-like decomposition of a quantum chain,
other Trotter decompositions have already been proposed by Suzuki [81]. In [87], Sirker and
Kliimper introduced a decomposition which reduces the periodicity of the classical plane
along the Trotter direction to one column while the chequerboard model leads to a two-
column-wide period. The advantages of this method shall be discussed in the framework
of Quantum TMRG (see sect. 3.4). Here, we want to sketch the basic idea.

In this different approach, again, the partition function
Z= lim tr {[Tl(e)Tg(e)]M/Q} with Tio(e) = Tr e MO (3.12)
M—00

is composed of a trace over a field of two distinct transfer matrices 71 propagating
along the Trotter direction. In contrast to (3.5) the chain Hamiltonian is no longer split
into mutually commuting parts Hogd even but the rows are now build up of infinitesimal
evolution operators of the whole Hamiltonian adopting left and right shift operators Tg | .
Note that because of translational invariance, [Tr |, H] = 0. Graphically (see Fig. 3.3), the
decomposition is represented as rows of alternately rotated local transfer matrices 7. It can
be shown that as in the chequerboard decomposition the corrections to the approximated
partitions functions and free energies are no larger than O(e?) [89].
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Trotter direction M

N

real space direction L

Figure 3.3: Graphical representation of the alternative Trotter decomposition (3.12).

3.2 Transfer-matrix approach

The two-dimensional lattice emerging from the Trotter-Suzuki decomposition of quantum
chains consists of equal rows and columns with width of three sites in real space or Trotter
direction, respectively. Consider again the partition function of the chequerboard decom-
position (3.8) which we repeat for convenience

M L/2
— 2i—1,2i 2121+1
z= Z HHTQk 1,2k T2k, 2k+1° (3.13)
{Sﬁ} k=1i=1
v=1...L,
w=1.. 2M

We obtained this two-dimensional model when we extended the density operator e A/ into
the imaginary-time direction. The other way round, we can split the system into slices of
imaginary-time for two fixed neighboring spins. A product of these vertical transfer matrices
will make up the system. We, thus, combine one column of local transfer matrices into a
n*M x n?M_matrix

2i-1 2it1 2i—1,2i _2i2i+1
T(S(;izl..zl\/l) (;IL 1. 2M)) Z H Tok—12kTok ok +1 (3.14)
uf{lsu 2M

which we call vertical transfer matrix. Is is depicted in Fig. 3.4. This could as well be done
with a row of transfer matrices, but this would lead us back to (3.5) and, finally, to finding
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the spectrum of H.? With vertical transfer matrices, Eq. (3.8) becomes

L/2
— 2i—1 $2it1 _ L
Z = Z HT S(u=1..2m)" (;i+1_.2M)) =tr7> (3.15)

{31} i=1
=t L)
w=1...2M

a product of matrices [79]. The latter equality holds because in a translationally invariant
chain the real space index of the vertical transfer matrix 7 can be omitted.

Trotter direction M

real space direction L

Figure 3.4: Graphical representation of the vertical transfer matrix (3.14). Periodic bound-
ary conditions in the Trotter direction are assumed (not depicted here).

Unfortunately, except for models with an expecially well-condition structure, the infinite-
sized vertical transfer-matrix 7 from (3.14) cannot be calculated analytically. An important
simplification, however, in the calculation of physically relevant quantities such as free
energy density or thermodynamical expectation values lies in the fact that they depend
only on the largest eigenvalues of the transfer matrix 7.

With the complete set of eigenvalues A; and eigenvectors \\U,-> of 7 and Eq. (3.15), we
find that the free energy density at temperature T

— 1 _ L L/2 In Amax
fo= - im i InZ = |meﬁ In (Z)\ > 25 (3.16)

as fundamental thermodynamic quantity is determined by only the largest eigenvalue Amax
of T in the thermodynamic limit. In Section 3.2.1, we provide arguments that Amax is
always unique.

2Both choices, though, lead in their limits to the same result. So, Trotter and thermodynamic limit can
be exchanged [82].
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The calculation of the expectation value of a local operator O requires the definition of a
modified transfer matrix

i—1 21 1 ~2i—1,2i __2i,2i+1 2i—1,2i 21 2i+1
TO(S(# 1oy Sum1.omy) = Ti2 T T2 E: | | Tok—1okTokoksr  (3.17)
{s3'} k=2
u:l...QM

with the local modified transfer matrix 'rl’ 121 from Eq. (3.10) for arbitrary sites 2i — 1
and /. This leads to an expectation value

Z(0)) 7207
O) = =7 =im — iz
. )\M ! <wmax‘7-(’)‘wmax>
= L||—>moo Z Z wi‘T()‘\U,‘> = - (3.18)
%,_/

#0, only if A\j=Amax

involving again only the largest eigenvalue and eigenvector.

3.2.1 Spectrum of the quantum transfer matrix

An analysis of the transfer-matrix spectrum can give an argument why the largest eigenvalue
is non-degenerate.

For the limiting case T — oo, the local transfer-matrix of the Trotter decomposition (3.7)
reduces to

TII< Ilj—+11 . <Sk5ll(+1‘e*€hi,i+1‘5k+l ’+1> ) 0 gt (3.19)

SkrSka1 Sk

which means that the initial spin configuration will not be changed by the transfer-matrix.
This simple form can be made plausible if we remember that each state of the Hilbert
space of the system has the same Boltzmann weight in the T — oo limit because it has
an equal energy. From this, it is easy to prove that the the largest eigenvalue of T is given

by A1 = n?, with the number of local states n, and all other eigenvalues are zero.

The gap between the leading and next-leading eigenvalues of the the transfer matrix be-
comes smaller with decreasing temperature. However, we expect that the gap vanishes
only at zero temperature because a vanishing gap indicates a diverging correlation length
[89], i.e., a critical point or a certain kind of long range order. They are expected to be
present in a one-dimensional quantum system only at zero temperature. This has been
proven by Mermin and Wagner [90] for ferro- or antiferromagnetic order in 1D Heisen-
berg models. Although a rigorous statement has not been formulated yet, the absence
of phase transitions at finite temperature is believed to be correct for all one-dimensional
equilibrium systems [91, 92]. Therefore the free energy at non-zero temperature with fixed
Trotter number M is determined solely by the largest eigenvalue of the transfer matrix in
the thermodynamic limit.
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3.3 Density Matrix Renormalization Group (DMRG)

The numerical algorithms in this work base on the density matrix renormalization group
(DMRG) introduced by White [93, 94]. We will briefly review the concepts of DMRG in
this section.

The DMRG was originally developed to compute the ground state and low-energy spectrum
of a quantum system with short-range interactions. It allows to treat large systems at high
precision and does not suffer from the negative sign problem which makes quantum Monte-
Carlo methods of limited use for frustrated or fermionic systems.

In the DMRG, we consider large-sized systems by iteratively building them up from smaller
systems. At each iteration step, irrelevant states are projected out to keep the space of
states at a fixed size.

3.3.1 Density-matrix projection

The key idea behind DMRG is the density-matrix projection which gives the prescription
how to truncate the Hilbert space

We consider a large system, commonly named superblock, composed of two interacting
subsystems, the system block and the environment block. An arbitrary state \1/)> of the
superblock can be represented in a basis formed by tensor product of basis states from the
system and the environment block

Nsg Neg

) = Zzwiyj‘ai>55’ﬁj>EB (3.20)

i=1 j=1

where {|a;)} is the basis of the system block with size Nsg and {|G;)} is the basis of the
environment block with size Ngg. The aim is to find a minimal set of new basis states
for the system block that reproduce the given state of the superblock optimally. Then, we
can truncate the basis of the system block without changing the state (and the properties)
of the superblock. Generally, the superblock state cannot be written as a simple product
of one system and one environment state. A fact which is referred to as entanglement,
a concept which has become an active field of research within the past few years in the
context of quantum information theory [95, 96, 97, 98, 99].

The density-matrix projection provides a new basis for the system block that represents
the superblock state and is optimal in the above meaning by density-matrix diagonalization.
The reduced density matrix of the system block

Neg

{af|plai) = Z’ll)f,j’llfﬂ,j (3.21)
j=1

contains all information about the entanglement between system and environment block
[99, 95]. The relevant states of the system block are then given by those eigenvectors of
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the reduced density matrix which have the largest eigenvalues. The number Ngg' < Ngg of
these eigenvectors which have the largest eigenvalues make up the new basis of the system
block.

This truncation prescription has been derived by three argumentation lines: 1. The sta-
tistical physics approach which concentrates on the expectation value of operators [100].
2. The quantum mechanics approach which aims at the error minimization of an approx-
imative wavefunction [93, 94]. 3. The quantum information approach [

, 96] which shows that the density-matrix projection preserves a maximum of system-
environment entanglement.

3.3.2 Algorithm

The iteration procedure may vary depending on the system and its properties we are inter-
ested in. In this chapter, we present the iteration procedure describing the original 7 = 0
DMRG introduced by White [93]. In Section 3.4 and Chapter 4, the appropriate algo-
rithms will be given for some DMRG variants. It useful to start with a sketch of infinite
size algorithm (The notation follows [102].):

i. We start from a lattice of small size £. The system block S of Hilbert space size m®

consists of a basis {|m7 )}, the Hamiltonian A7 and operators known in this basis.

At initialization, this is maybe still an exact basis of the block (N4, < m®)

ii. The new system block S’ is built from S and one additional site. Its Hilbert space has
a size N° = m® Ngjte and its basis consists of product states {|m;o)} = {|m7)|o)}.
The Hamiltonian I—AIZSJr1 on S’ can be expressed in this basis, but this is usually not
done explicitely in order to save storage.

iii. We form the superblock of length 2£+ 2 from system S’ and environment which is S’
reflected, if symmetries allow. The Hilbert space has a size (N°)2. The superblock
Hamiltonian /:/2e+2 could be constructed explicitely.

iv. The ground state |\U> of I:I2e+2 is determined by large sparse matrix diagonalization.
This is by far the most time consuming part!

v. The desired ground state properties (energies and correlators) from }\U> are calcu-
lated. This step might be left out at some intermediate lengths.

vi. The reduced density matrix is constructed p = trg [W)(W| and the eigenbasis |wq )
ordered by descending eigenvalues w,, calculated. The new basis for S’ is formed by
taking the m° eigenstates with largest weights. We build a N° x m® rectangular
matrix T with elements (m7o|mg, ;).

vii. We perform the reduced basis transformation I-AIIEZr1 = TTHy 1T onto the new m>-

state basis. We rename I-AIEZrl — Hgy1 and restart with the new block size £+ 1 at
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step (ii.) until the final length is reached. The operator representations are updated
in this step as well.

In Fig. 3.5, we present a schematic plot of the infinite-size algorithm.

0@

0000 00 ‘%

Figure 3.5: Schematic plot of the infinite-size algorithm: From a system block and a single-
site block (a), we construct a new system block (b) by simple tensor product.
The system block and its mirror image form the superblock (c). The reduced
density matrix is formed from its ground state. Finally the system block (d) is
projected to the new basis.

The DMRG has been successfully applies to systems of sizes up to L ~ 1000. However, it
is important to perform an extrapolation first in m — oo then in L — oo.

Finite-size algorithm

The infinite-system algorithm does not give satisfactory results in all cases of interest.
Problems arise if the environment in the early growing of the chain does not resemble the
system of final length closely enough, for example, if the system is inhomogeneous. Then
the states retained in the early stage do not have to be important for the desired final
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state. Here the finite-system algorithm helps out. The idea is to optimize the chosen basis
for a system of fixed length by shifting the ‘free’ sites through the system. To do this the
system is built to a desired length with the infinite-system algorithm, but in subsequent
steps one of the blocks grows at the cost of the other block shrinking. In each step the
reduced basis transformation is only performed for the growing block.

The largest eigenvalues of the quantum transfer matrix are targeted by TMRG-calculations.
The spectrum of transfer matrices is considered to be well-behaved in the sense that there
is a finite gap between the largest and second largest eigenvalue, see Section 3.2.1. This
is why the finite-size algorithm is generally not implemented for TMRG studies.

Errors

The errors from the DMRG can be estimated in several ways. Roughly speaking, the
eigenvalues of the reduced density matrix measure the importance of the corresponding
eigenstates for representing the target state. Therefore, the truncation error which is
defined as the sum of all the eigenvalues of the states not kept as basis states is often
proportional to the errors of physical quantities calculated within the DMRG. However,
there are other sources of error which are not captured in the truncation error which
come from the fact that the chain is built up and long-range interaction are cut off. A
careful convergence analysis in the number of kept states m usually provides a more reliable
estimation of the full error. The DMRG is exact when m — oco. However, convergence
up to tiny errors of, say, 10~7 is usually achieved even for moderate values of m ~ 50 —
300, at least for ground state properties of one-dimensional systems with local interactions.
This is related to the fact that for these states the reduced density matrices can be shown
to have an eigenvalue spectrum that is exponentially decaying. Therefore, the truncation
error is exponentially suppressed as the number of kept states m is increased. Although it
cannot be ruled out that an ill-behaved system may be trapped in a metastable state for
intermediate values of m, this phenomenon seems to be exceedingly rare in practice.

In some cases, the errors of different quantities that are calculated during the same DMRG
run can significantly differ in size. As an example, the precision in the ground state energy
in the Spin-1 Heisenberg model could be calculated to decent precision with very little
states. Looking at the ground-state entanglement entropy of the same calculations, one
could observe a very strong dependence on the number of states [103].

3.3.3 Further DMRG-applications

Since the introduction of DMRG a large family of DMRG methods evolved to aim at
different kinds of model classes. A recent and exhaustive review was given in [102]. Here,
we mention only same recent extensions.

A different perspective on the DMRG algorithm was recently provided from quantum infor-
mation theory. It has been known for some time that the truncated DMRG states always
belong to the class matrix product states [104, , 106]. In fact, the DMRG can be recast
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as a variational method that uses matrix product states as ansatz wave functions, and finds
the optimal state among them [104]. This alternative formulation recently opened up a
new perspective on extensions of the DMRG that overcome many of its original limitations:
For example, the original DMRG was improved drastically with respect to the description
of time-dependent systems [107, , ] and of periodic boundary conditions [110]; and
efficient algorithms for two-dimensional models and finite temperature seem to be within
reach [111, ]

3.4 Transfer Matrix DMRG

The correspondence of d-dimensional quantum systems and d + 1-dimensional classical
models inspired Nishino to apply a modified DMRG algorithm to two-dimensional classical
models. In 1995, he introduced the Transfer Matrix DMRG (TMRG) [112] yielding the
computation of the highest eigenvalue of the transfer matrix. Only one year later, Nishino
and Okunishi presented a numerical variant of Baxter's Corner Transfer Matrix method
[113, , 78] based on the DMRG [115] connecting the system’s corner transfer matrices
to the renormalized density matrix of DMRG. This method will be reviewed in Chapter 4
where it will be extended to quantum systems.

The problem of finding the extreme eigenstates of the one-dimensional transfer matrix
strongly resembles the search for the lowest-lying excitations of a chain Hamiltonian as
in conventional DMRG. While, however, only the small eigenvalues (low energies) of the
Hamiltonian matrix are of special interest in the latter case, we yield for the highest eigen-
values of the transfer matrix in the two-dimensional classical model. Application of the
DMRG in order to find the highest eigenvalues of a transfer matrix establishes the Transfer
Matrix DMRG or shorter the TMRG. The abbreviation TMRG can also stand for temper-
ature DMRG which aims more at the underlying physical system.

The TMRG for quantum systems combines Trotter-Suzuki decomposition, the transfer-
method and DMRG. It has been proposed by Bursill et al.[116] and significantly improved
by Wang, Xiang [117] and Shibata [118].

3.4.1 Algorithm

In principle, the TMRG algorithm is nothing else but the application of the DMRG method
(see Section 3.3) onto the quantum transfer matrix 7. Whereas the DMRG is basically
designed for computing the ground state and low excitations, respectively, the TMRG
computes the leading part of the spectrum. Even if the basics of the TMRG are closely
related to its DMRG predecessor, the rich structure of the transfer-matrices turns the
algorithm to be slightly more sophisticated. One of the basic differences to DMRG is
the discrimination between odd and even iteration step resulting from the chequerboard
decomposition.
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Figure 3.6: Sketch of the TMRG algorithm. The enlargement procedure is illustrated for
the two cases of M odd and M even. In each iteration step the system and
environment block are increased by one plaquette and reduced to a fixed size by
density matrix projection. Within this procedure the shape of the block tensors
changes from step to step. Further illustration can be found in [119].

We start by constructing the system block
S — (T1,2’T3,4 o 'TM,M+1)(T2,3T4,5 st TM—l,M) if M odd (3 22)
(T1.273.4* TM—1,M)(T2,3Ta5 - - TM,m+1) if M even '
and the environment block

| (tmyo.m+3 - Tom—1,2M) (TM41, M2 - - Tom,1)  if M odd
E— ! (3.23)
(TM+1,Mm+2 - Tom—1,2m) (TM42,M+3 - - Tom,1)  If M even

from the local transfer matrices. Both blocks are tensors which can be written in a basis
representation

(sine) and  (ESER) (3.24)
where the s-indices label spin sites and the n-indices join M — 1 spins to a block spin. Thus,

the dimension of S and E is n*m? with m = n>(M~1)_ In this notation, n is the number of
states of a single site.
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i. The transfer matrix 7 can now be assembled by

31053 SHNEs) .
51n552nE SSlﬂSSQ * E§2n -5~1 |f M Odd
7’I\/Isln552n,:— = 3 n.3 g Y (3.25)
Soins2 L E2"ESLif M even
51552 Song8;
where we used the convention that equal upper and lower indices are summed out.

The dimension of Ty is then given by n* - m*. To save computer storage, the

environment has not to stored explicitely if the system is translationally invariant.
Now, the leading left and right eigenvectors

‘/\é/R> = (A;/nisQnE) (3.26)

of the quantum transfer matrix 7y, are computed. With these results, we can calcu-
late the required thermodynamic properties. For the calculation of local expectation
values, we have to multiply the operator to the system block and build the modified
quantum transfer matrix. If correlation lengths are of interest, not only the leading,
but also the next leading eigenvalues have to be computed.

ii. We use the right and left eigenstates to construct the reduced density matrix

n
S_ Z /\s I nsang S]_nSSQrIE (3.27)

sinssang

where fis = ns®s and iy = ns®s’. The reduced transfer matrix p has the dimension
n? - m?. Note, that in contrast to the standard DMRG algorithm, the density matrix
is not symmetric.

iii. Diagonalize p. Use the m leading eigenvectors of the spectrum to construct left and
right projectors V' and U, respectively. The variable m < m - n labels the number of
retained states of the DMRG algorithms. The leading right eigenvectors of p appear
as columns of U and the left eigenvectors make up the rows of V. U and V have the
dimension m- m- n.

iv. This system is enlarged by one local transfer matrix:

sin'§  s'sh .
~c! Bl ! Sslnss T~ 2 |f M odd
spficsy 1Nss '3s) 308
S1fissy VA 1ol ( . )
s g5 LSS e
s1ngé ’T§52 | even

The tensor S has large dimension n® - M2. The projectors U and V are used to
truncate S: .
SiNsSy _ M5 | &SiAsS) i
Ssln%SQ U ) 551ﬁ552 ) VnSS (329)

With this, the dimension of S is reduced to n* - m2.

v. We replace m by m and restarted the iteration at step ii.

The presentation of the algorithm follows closing the corresponding section in [119] where
illustrative additional pictorial representations were provided. For further details on the
method, see the detailed review of Shibata[120].
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3.5 Technical annotations

In the framework of this thesis, a new TMRG implementation was developed. The code was
written in the programming language C++ and the underlying mathematical objects were
implemented in classes. Thus, different levels of hierarchy can be screened from one another
and protected against undesired access. This allows clear and complex programming at
the same time. The enlargement of the system block can be expressed as a function of
two objects without dealing with confusing indices on a higher level. On a lower level,
all routines which the main running time is spent on, have been optimized. The most
time-consuming part in TMRG programs are matrix-multiplications. These routines have
been implemented from some refined high-performance libraries (Sun Performance Library,
ARPACK) to save system resources. The maximal number of preserved states m could be
increased from m & 120 of an older TMRG program to m & 300 which made our study of
frustrated systems feasible.

The program code was developed and tested on the institute’s local computer network,
mainly on a Sun, UltraSPARC-II, 502MHz, 512 MB. The final calculations have been carried
out on a compute server, Sun Fire 15K containing 72 processors of type UltraSPARC-III
with a clock speed of 900 MHz and 144 Giga-Byte RAM. On both systems the code was
compiled by the Sun WorkShop 6 update 2 C++ compiler.
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The Quantum Corner Transfer Matrix DMRG (QCTMRG) for the calculation of ther-
modynamic properties of finite one-dimensional quantum systems will be introduced in this
chapter. This new method is based on Nishino’s Corner Transfer Matrix DMRG (CTMRG)
for classical systems. In the CTMRG method calculating the partition sum and obtaining
the reduced density is one step and does not involve finding eigenvectors of large matrices.
Thus, CTMRG performs drastically better than the TMRG method for classical systems.
Can we benefit from the ideas of the CTMRG in the quantum case?

We implemented the QCTMRG method within the framework of this PhD-thesis. The
algorithm and its essential features are presented in this chapter. We close with first
results and a discussion of the method’s performance.

4.1 Corner TMRG for classical models

An improved algorithm for two-dimensional classical models was introduced by Nishino and
Okunishi [115] using the idea of DMRG for a numerical algorithm in terms of Baxter's
Corner Transfer matrix method [113, , 78].  We shall briefly sketch the outline of
the algorithm. A nice introduction can be found in original works [115, ] and in the
framework of a general DMRG review [102]. For our extension of the CTMRG, similar
iteration steps will be presented in more detail in Section 4.2.

P

Figure 4.1: Representation of a four-spin plaquette W. The symmetries of the cartoon
represent the isotropic interaction of the interaction-round-a-face (IRF) model
studied by Nishino [115, ].

Consider again a two-dimensional system of L x L sites connected through classical nearest-
neighbor interactions. Now the two-dimensional lattice can be split into four quadrants
C1,2,3.4, €ach of size L/2 x L/2. Under the assumption of open boundary conditions each
quadrant can be interpreted as corner transfer matrix of size n~/2 x n-/2 with two open
edges and two edges which are summed out. For simplicity we assume that symmetries
are such that each corner transfer matrix can be described by the same symmetric matrix
C(a, b). This is, indeed, not an unusual feature and allows us to identify the matrix C with
its transpose. Now the partition function of the two-dimensional system takes the form

Z=trC*=21+XN+. .. (4.1)

which is the sum over the fourth power of the eigenvalues of the corner transfer matrix

A systematic enlargement of an exactly solvable small initial system is required to obtain
the infinite size properties of the two-dimensional system. For a renormalization procedure
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Figure 4.2: Decomposition of a 4 x 4 system into four corner transfer matrices. A square-
shaped classical system with 40 sites emerging from the bond variables of the
IRF model is divided into four equally sized sub-squares. Each sub-square has
two open edges which will be summed out in the partition function. The re-
maining two free edges are left as degrees of freedom. Thus, each sub-square
can mathematically be represented by a matrix.

Figure 4.3: Reduced density matrix formed by four corner transfer matrices corresponds to
a cut of the system.

in the sense of DMRG consider the quantity

0= 5 3 Ci.a)C(a, BYC(b. C(c.j), (4.2)
i

which meets the requirements of a density matrix as can be checked easily. In a picture
introduced by Nishino [115, | one can imagine p;; as a “cut” of the the system, see
Fig. 4.3. The density matrix p;; can be considered as a reduced density matrix since it
covers only half of the systems length while the other half is traced out. Note that we have
obtained a reduced density matrix without finding eigenvalues of some large sparse matrix
like in conventional DMRG.

Yet, complete diagonalization of the corner transfer matrix C = Y A;|v;)(v;| is still needed,
but this step has to be done in TMRG as well. It uses considerably less resources than
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Figure 4.4: Enlargement of the corner transfer matrices.

finding eigenvalues of the vertical transfer matrix from TMRG. The diagonalized corner
transfer matrix gives the diagonalized form of the reduced density matrix:

1
oii =7 A1yl (4.3)
J

Like in the DMRG method, we can adopt the eigenvectors belonging to a certain number
of m highest eigenvalues in order to find a truncated form

522)\J‘VJ><VJ‘, AL > A > (4.4)
Jj=1

of the corner transfer matrix. With the help of the small four-spin plaquette W and a
half-row transfer matrix P, we enlarge the truncated corner transfer matrix (Fig. 4.4).
Iteratively we continue by diagonalization of the enlarged corner matrix.

The CTMRG has been applied to Ising models with spin-1/2 [121] and spin-3/2[122].
A vertex model with 7 vertex configurations [123] and self-avoiding walk models in two
dimensions [124, ] have been considered.

In [126], a powerful variant of the CTMRG has been introduced for one-dimensional
stochastic system like the diffusion-annihilation process or the branch-fusion process. Here
the decomposition includes a real space and real time direction. The light-cone TMRG
(LCTMRG) is a modification of the corner-transfer-matrix DMRG, adjusted by an addi-
tional causality argument. The conservation of probabilities which is an essential feature
of real-time stochastic systems leads to a triangle-shaped Trotter decomposition. This
“light cone” leads to a significant reduction of resources. The causality argument used
by the LCTMRG method is not applicable for quantum systems since the Trotter-Suzuki
decomposition works with the imaginary time direction.
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4.2 CTMRG for quantum systems

The application of the CTMRG-algorithm on the two-dimensional system emerging from
the Trotter-Suzuki decomposition of a quantum chain (figs. 3.2 and 3.3) leads to the idea
of a Corner Transfer Matrix DMRG for one-dimensional quantum models (QCTMRG). In
contrast to the generically classical models treated with CTMRG so far, two substantial
differences arise in dealing with a Trotter decomposition:

e A significant anisotropy evolving from existence of a well-distinguished real space and
a Trotter direction.

e Calculation of the trace in order to obtain the partition function demands periodic
boundary conditions in the two-dimensional plane.

Both aspects will be considered in our implementation.

We consider a two-dimensional rectangular lattice decomposed by a Trotter decomposi-
tion. Starting with an initial system small enough to be treated analytically, our aim is to
iteratively expand this system in both directions to large enough sizes.

Periodic boundary conditions correspond to the trace in the calculation of the partition
function. They are physically essential in Trotter direction. We are, however, free to
choose open boundary conditions in real space direction. This choice significantly reduces
computational effort because the tensor-dimensionality of the corner tiles is now three
rather than four in the case of real-space periodic boundary conditions. Thus, free sites
at both real space edges will be integrated out, whereas the edge states regarding Trotter
direction are left as degrees of freedom in order to permit periodical closing.

4.3 Renormalization algorithm

At an arbitrary renormalization step, we consider a lattice of fixed size in both directions
divided into four parts as in the corner transfer matrix method (see Fig. 4.5). Assuming
free edges in Trotter direction, we no longer deal with two-dimensional matrices as in
conventional CTMRG, but with three-dimensional tensors. So the pieces of the system
are third and fourth order tensors and, thus, shall rather be called tiles than—somewhat
misleadingly—matrices in this context. Here, a composition of left resp. right corner tiles
C;, Cr makes up the whole system.

Now we introduce some additional tiles which are required for enlarging the system in the
renormalization step (Fig. 4.6). The unit cell of the two-dimensional Trotter decomposition
forms the smallest basic tile W with four free edges. Arising from the spatial symmetries,
three more tiles play the role of the row-to-row transfer matrix of CTMRG. Here, we have
for both left and right side the row-to-row tiles P, and Pr and a single column-to-column
tile P/, which are tensors of third resp. fourth order!.

!Depending of the symmetries of the spin chain and the Trotter decomposition, C; and Cg as well as P,
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Figure 4.5: Trotter decomposition segmented into four corner tiles. The periodical bound-
ary conditions are illustrated by the double-headed arrow. The corner tiles
C., Cr have been depicted by special symbols reflecting the underlying sym-
metry. We adopted the quantum-classical decomposition introduced by Sirker
[see (3.12)] in our approach.
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Figure 4.6: Graphical representation of left and right corner tiles C;, Cr, row-to-row tiles
P; , Pr, column-to-column tile P, and basic tile W. An additional tile X is used
for the measurement of expectation values.

Together with these tiles, we have to keep account of the different bases associated with
their edges. The basic tile W demands a vertical basis {]0V>} at the left and right edge
and a horizontal basis {\0H>} at the upper and lower edge, both consisting of one- or
two-site states depending on the size of the unit cell of the Trotter decomposition. These
bases will be unaffected by changes within the renormalization procedure. The edge bases

and Pr can be represented by a single tile in special cases. Here, we assume the general case with no
vertical reflection symmetry.
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of the corner tiles, however, are iteratively renormalized during the CTMRG-iterations
representing states of an increasing spin chain. Still, they are chosen to keep a fixed
maximum size. The maximum size of the vertical-edge basis {|my)} of the corner tiles
is my. The horizontal edges of the corner tiles are different for the left/right corner tile.
Their bases {|m; )}, {|mg)} have a maximum size of m; resp. mg. Tiles P, Pg and P,
include bases which stay unaltered as well as renormalized bases corresponding to their
different edges.

With the concept of the constituting tiles, we sketch the outline of the QCTMRG algorithm:

i. Construction of initial tiles

In the special case of the Sirker-like decomposition (see Section 3.1.2), the basic tile
W (Fig. 4.7) as well as the column-to-column tile R, are built by addition of two
mutually rotated transfer matrices 7. The left row-to-row tile P, and the left corner
tile C; arise by summing out the left free sites of W. For the right row-to-row tile
Pr and the right corner tile Cg the right free sites of W are bent into the horizontal
edges in order to aim a summation with the neighboring site on the lower/upper
tile when composing tiles. In Fig. 4.8 the construction of all initial tiles is depicted.
These initial tiles demand the construction of the initial bases. The vertical basis
of corner and column-to-column tile is {|my)} = {|ov)} = {|o) ® |o)}. while the
horizontal basis of left corner and row-to-row tile is {|m.)} = {|on)} = {|o")}, and
the horizontal basis of right corner and row-to-row tile is {|mg)} = {|o) ® |o)} in
the first iteration.
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Figure 4.7: Graphical representation of the basic tile W in the Sirker-decomposition. A
composition of two transfer matrices can be depicted as a tile with four arms
at the edges. The shape of the arms symbolizes the symmetries of the tile and
the bases of the underlying tensor operator.

ii. Calculation of expectation values

All tiles are combined to form a periodically closed two-dimensional lattice in order
to determine the partition function of the system. Summing out the states on the
inner edges, we obtain the desired partition function Z of the system. The partition
function Z(O) of the modified system with a certain operator O situated in the middle
of the lattice (see Fig. 4.9) can be realized similarly. Thus, the thermodynamical
expectation value (O) = Z(0)/Z of the system can be computed.
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Figure 4.9: (a) Calculation of the partition function Z and (b) of the partition function of
the system containing a certain operator Z(O).

iii. Enlargement of system tiles

In the next step of the renormalization process, the system is expanded by enlarge-
ment of the corner tiles in applying a row-to-row, a column-to-colum tile and the
basic tile. Correspondingly, the row-to-row and column-to-column tiles have to be
expanded by addition of the basic tile. These enlargement steps, which technically
correspond to matrix-multiplication, are illustrated in Fig. 4.10. Enlargement of
the tiles implies enlargement of the bases, which is done by simple tensor products
()} = {Im)olov)}. {|m)} = {|m)@low)} and {|e)} = {me)®lon)}
Note that the sizes of the bases grow by a factor of 4 to 16 depending on the un-
derlying spin system, which correspondingly increases the size of the tiles.
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iv. Construction of reduced density matrices

Figure 4.10: Enlargement of system tiles.

The crucial step in the DMRG-like renormalization procedure is the construction of
the reduced density matrix. In the Trotter decomposed lattice, three density matrices
pv. pL and pr are required in order to renormalize the three different types of bases
appearing in the system. Aiming at the partition function, we have to put four corner
matrices together and to sum out all common edges. The concept of the reduced
density matrix, however, is to compose the corner matrices and to sum out all but
one edge. The picture of the reduced density matrices then corresponds to cuts of
the system (see Fig. 4.11).

v. Truncation of bases

The idea behind renormalization group procedures is to iteratively integrate out in-
significant degrees of freedom. In the context of DMRG-type algorithms, measuring
the contribution of states for calculating the partition function is carried out by di-
agonalization of the reduced density matrix. Since the partition function is nothing
but the trace over the reduced density matrix, eigenstates with large eigenvalues
will dominate the sum. Conservation of the bases’ sizes demands truncation of the
eigenstates with lowest weight. So, we establish a projection onto the m states with
largest eigenvalues as renormalization prescription. Since a projection is obtained for
each of the three bases, all edges of the system tiles are now reduced to a fixed size
keeping only the most relevant states for calculation of the partition function.
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Figure 4.11: QCTMRG cuts.

vi. lteration

Go to step (ii) until desired system size is reached.

4.3.1 Normalization of growing tiles

While our interest lies in the calculation of (local) expectation values of a certain quantum
mechanical system, we have to deal with the partition functions of an iteratively increased
classical system in the QCTMRG-algorithm. Thus, the partition function is a rapidly
growing entity leading to several huge matrix entries in the tiles’ numerical representation
in each renormalization step. So, the program runs the risk of exceeding the numerical
capacity of the variables of the system. To avoid this problem, a constant prefactor is
extracted in each renormalization step. For details, see Appendix B.

4.4 Results

We computed the energy and the free energy of the Ising model[127] for a first comparison.
The antiferromagnetic Ising chain (J > 0) with the classical Hamiltonian

H= JZO'J'O'J'_H (4.5)
J

is exactly solvable by a transfer matrix method [79]. The classical Ising spin o can take the
values +1, —1. We first like to review some analytical results obtained by transfer matrix
calculations.

In the QCTMRG method, open boundary conditions are preferable. Thus, our analytical
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Free energy dens. f/J
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Figure 4.12: Free energy per site vs. temperature for the antiferromagnetic Ising chain of
varying chain length. The free energy (circles) from QCTMRG with m = 32
and € = 0.05 agrees to high precision with the exact value (4.7)(straight line).
Note that the chain length is L = 10/T. The free energy of the infinite chain
is plotted (dashed line) for comparison.

calculations focus on this case as well. By transfer matrix, we get the partition function

Z(L,T) =2t cosht1 (%) (4.6)
for open boundary conditions. This leads to a free energy per site of
T L-1 J
f(L,T)_—ZInZ_—T[ [ cosh <?)+In2]. (4.7)
The average energy per site
1720 L—-1 J
eavg(L, T) = 18T InZ = T Jtanh <?> (4.8)

is calculated with respect to the whole chain. However, apart from the boundaries we get
a local energy expectation value

J
<J0'j0'_j_|_1>(L,T) = —Jtanh <?> (4.9)

for a chain of length L at temperature T which does not show finite size effects.

The thermodynamics of the Ising chain has been computed by the QCTMRG algorithm.
We kept m = 32 states within the renormalization procedure and chose the inverse factor
of temperature T and number of imaginary time steps M to be e = (TM)~! = 0.05. We
expect an excellent agreement with the analytical results because the Trotter decomposition
becomes exact for the classical Ising model. In Figures 4.12 and 4.13 the numerical results
are plotted and, indeed, both data show the expected agreement.
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Figure 4.13: Expected local energy in the center of the chain vs. temperature for the antifer-
romagnetic Ising chain of varying chain length. The local energy expectation
value in the center of the chain (circles and squares denote odd and even chain
lengths) from QCTMRG with m = 32 and € = 0.05 agrees to high precision
to the thermal average local energy (4.9) of the infinite chain (dashed line).
The average local energy (4.8) for a chain of length L (straight line) differs
because of the fluctuating edge spins from open boundary conditions. Note
that the chain length is L = 10/T.

We face a different situation in considering the antiferromagnetic spin-1/2 Heisenberg
model
H=J)_S;-Sj (4.10)
J
on the chain. The model is exactly solvable [128] but quantum fluctuations are no longer
suppressed. Thus, the Heisenberg chain can serve as a trial system for the QCTMRG
algorithm.

We calculated the free energy and the expectation value of the energy operator in the
middle of the chain, see figs. (4.14) and (4.16). The calculations have been done with
fixed ratio € = 0.05 while the preserved number of states m from the renormalization was
varied from m = 50 to m = 400.

In Fig. (4.14), the free energy density is plotted against temperature. Note that the chain
length is related to temperature by L = 10/T. With increasing m the free energy tends to
converge. Interestingly, the convergence is faster for lower values of T and correspondingly
larger system sizes. We account for that point later in Section 4.5.2. For a comparison,
we added the well-converged data for an infinite chain calculated by conventional TMRG.
We see the deviation of the QCTMRG data from this curve more pronounced at higher
temperatures which are related to smaller system sizes. Thus, we can interpret the deviation
as a finite-size effect.

For three points of fixed temperature and chain lengths the free energy density f was
extrapolated, see Fig. 4.15. We find f growing with 1/m for each point. This results from
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Figure 4.14: Free energy density vs. temperature for the Heisenberg chain of varying chain
length. The free energy density is plotted for different QCTMRG calculations
(straight lines) with a preserved number of states m = 50, 100, 200, 400 (from
top to bottom). Note that the chain length is L = 10/T. The free energy
density (data from TMRG, m = 200) of the infinite chain is plotted (dotted)
for comparison.
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Figure 4.15: Free energy density vs. inverse number of states for the Heisenberg chain of

various lengths at various temperatures. The free energy density of chains
with T = 0.25J and L = 40 (diamonds), T = 0.1J and L = 100 (squares),
and T = 0.04J and L = 250 (circles) has been calculated by QCTMRG (open
symbols) with a varying number of states kept during the renormalization. The
dashed lines are linear fits. The filled symbols denote the free energy of an
infinite system calculated by TMRG.
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the fact that the partition sum is underestimated for smaller number of states kept m.
This leads to a monotonically increasing free energy for growing 1/m. As already noticed
earlier, the convergence is better for smaller temperature and larger system sizes.
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Figure 4.16: Energy per site vs. temperature for the Heisenberg chain of varying chain
length. The energy expectation value at the chain center is plotted for
different QCTMRG calculations with a preserved number of states m =
50, 100, 200, 400 (from outside to inside). The upper curves belong to sys-
tems with an odd number of sites, the lower curve belong to systems with an
even number of sites. Note that the chain length is L = 10/T. The exact
energy density of the infinite chain is plotted (dotted) for comparison.

The energy expectation value in the center of the chain has been calculated for various
system sizes and temperatures in Fig. 4.16. Again we have ¢ = 0.05 which leads to a fixed
relation LT = 10 for the QCTMRG data. Odd and even chain lengths are included in this
calculation, in contrast to the free energy data which has only been given for even chains.
For odd chains, the expectation value was taken from a plaquette at the exact center of
the decomposition. For even chains, we considered one of the two central plaquettes.

Even chain lengths appear as the natural choice in the renormalization procedure. Chains
with an odd number of sites have a well-defined central site which might give better results.

We find the even system energy expectation values lying below the infinite system value
and the odd system lying above the infinite system value. The low-energy spectrum of the
antiferromagnetic Heisenberg chain involves spin-1/2 spinons which can be identified with
quantum domain walls. The ground state is a total spin singlet on chains with an even
number of spins. In odd chains there is no spin singlet ground state and so always a spinon
“excitation” is present. In the domain wall picture, there is always a kink present. For this
reason, we expect the chains with an even number of sites to possess a lower local energy
than chains with an odd number of sites. However, we expect that the expectation values
for even and odd chains converge to the same limit in an infinite chain. This description
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Figure 4.17: Energy per site vs. inverse number of states for the Heisenberg chain of various
lengths at various temperatures. The energy expectation values at the center
of even chains (lower symbols) with T = 0.25J and L = 40 (diamonds),
T = 0.1J and L = 100 (squares), and T = 0.04J and L = 250 (circles)
and of odd chains (upper symbols) with T = 0.256J and L = 39 (diamonds),
T =0.101J and L = 99 (squares), and T = 0.0402J and L = 249 (circles).
have been calculated. We denote the exact energy density of the infinite chain
by full symbols. The dashed lines are linear fits.

agrees well with our observed behavior.

In either case, we have a strong dependence of the expectation value on the number of
preserved states m in the renormalization group. For both even and odd number of sites,
we can still distinguish the data curves up to low temperatures even for high values of m.
Yet, the convergence for even system sizes is faster than for odd sizes.

To get a more quantitative picture we plotted the convergence of several points of fixed
temperature and system size, see Fig. 4.17. Like in the free energy data, the low-T
and larger sized systems show a better convergence. We included linear fits for a better
understanding. The expectation values for even/odd sized system at finite temperatures
seem to differ even in an 1/m extrapolation. The infinite-chain expectation value lies
well-between those boundaries. For larger system sizes and lower temperatures we obtain
a better convergence in 1/m. However, we recommend a careful analysis beyond linear
approximation if high-precision data is needed.

The results from this section shall serve as an illustrating background for a discussion of
the scope of application and the limits of the QCTMRG technique.
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4.5 Discussion of the QCTMRG method

The QCTMRG method combines the corner-transfer-matrix technique and the DMRG to
obtain thermodynamic data for one-dimensional quantum systems of finite size. A crucial
attribute for the QCTMRG algorithm is the fixed relation between system size and tem-
perature during the renormalization loops. This condition sets the focus of the method to
finite size systems, in contrast to the TMRG. Yet, a significant advantage in computational
resources would make the QCTMRG an interesting choice for low-temperature studies of
very large systems where finite-size effects play a marginal role.

4.5.1 Running time and storage use

For a view on the algorithm’s running time and storage use, we studied the scaling behavior
with the number of states kept m of the different steps in the algorithm. See Sec. B.1 in the
appendix. We find the algorithm to take asymptotically O(m*) elementary floating point
operations (FLOPS) and a storage use of order @(m?3) floating point numbers for large
m. However, the most time is spend in matrix-multiplications operations where a naive
approach would give a running time of O(N3) FLOPS for multiplication of two N x N
matrices. In contrast to this, the fastest algorithm currently known has an asymptotic
running-time of O(N237°) FLOPS. So we expect the running-time to scale asymptotically
with well-below fourth order in m in a clever implementation.

In case of the transfer-matrix DMRG algorithm, the by-far most time consuming part is
the Implicitly Restarted Arnoldi Method (IRAM) employed to find the largest eigenvalues
of the transfer-matrix. We, thus, expect the asymptotic scaling behavior to be dominated
by this routine from the ARPACK-library. The running-time of the IRAM routine depends
sensitively on the problem. Thus, it performs with between O(1) and O(N) x the cost
of a certain matrix-vector product when N x N is the size of the matrix. In our case, the
demanded matrix-vector product has a cost of O(m?3) flops and the total matrix has a
basis of size N o« m?. We thus expect the total running-time to vary between O(m®) worst
case and O(m?®) best case. Further reduction might be achieved when clever algorithms
for matrix multiplications are implemented.

The storage scales with the size of of the system-block-transfer-matrix (O(m?) numbers),
while the storage usage is determined by the size of the corner tile (O(m3) numbers) in
the QCTMRG method.

From the theoretical point of view, the QCTMRG and the TMRG algorithms have similar
running-times in the large-m limit. The TMRG algorithm will be favorable in some special
cases where the IRAM routine reaches a fast convergence. For some ill-posed problems,
however, the QCTMRG algorithm might have an advantage. The TMRG algorithm is the
clear winner when storage usage is a sensible quantity.

In our implementation, we observed a roughly similar running time of both algorithms

for different number of preserved states m. The storage use was, indeed, higher in the
QCTMRG algorithm.
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4.5.2 Fundamental challenges

Yet, we still face some fundamental challenges of the QCTMRG algorithm in addition to
the advantages of TMRG concerning the use of system resources. As already mentioned
above, the quantum character of our system enforces periodical boundary conditions in
Trotter direction which makes the two-dimensional corner transfer-matrix from Nishino's
CTMRG a three-dimensional tensor in the case of QCTMRG. This is the reason behind
an increase in running-time and storage which is crucial and destroys the advantages from
the development of CTMRG over TMRG.

Another more subtle point involves the spectra of the reduced density matrices from the
renormalization procedure. Consider the limit T — oo which is close to the starting system
of TMRG and QCTMRG where 8 = 1/T = eM is small. As shown in Section 3.2.1, the
local transfer-matrix of the Trotter decomposition (3.7) reduces to

Lt Jod it l|amehiin i LN _ s s
Tk k+1 "= <5k5k ‘e " ‘5k+15k+1>_65,2,5;(“65,’(“,5&11 (4.11)

which means that the initial spin configuration will not be changed by the transfer-matrix.

Now, we consider a Trotter decomposition like Fig. 3.2 for infinite temperature or vanishing
€. The chosen graphical representation depicts the Kronecker symbols as lines passing
through the transfer-matrix plaquettes. If the system is periodically closed in Trotter
direction and has open boundaries in space direction, we can imagine the paths as non-
interacting lines around a cylinder. This depicts the trace from the partition sum.

Building a reduced density matrix introduces a vertical or horizontal cut into the system.
Consider the case of a cut in Trotter direction which corresponds to the cut in TMRG.
One “spin path” has been cut through while all the others stay intact, i.e. they still
are summed out in the reduced density matrix. Only the intersected thread determines
the eigenspectrum of the reduced density matrix. With a straightforward calculation (see
appendix C for a similar calculation on the Ising model ), we find one or two degenerate
eigenvalues depending on whether we intersect an odd or even number of sites. All other
eigenvalues remain zero in this case. This turns our renormalization step, which is a
truncation of basis states, to be highly effective. In a system with small ¢ we still find a
small number of dominating eigenvalues which lead a DMRG renormalization to success.

The opposite situation is faced when the cut is made in space direction. If the underlying
spin chain has a number of 2L spins, the density matrix will “cut” as much as L paths.
All L spins act separately and, thus, all spin configurations have the same contribution
to the partition function. Merely the remaining degrees of freedom will be summed out.
Consequently, we are left with a reduced density matrix which has St degenerate eigenstates
when S is the spin size. No effective truncation can be found. The situation in cases with
high, but finite temperature is certainly less ill-posed. Though, still we expect a slow decay
of the spectrum of the reduced transfer matrix.

This scenario explains why our calculated QCTMRG data show a most significant devia-
tion from the expected values at higher temperatures. Starting with a small system size
the algorithm can still handle the system with high precision. For larger system sizes, a
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truncation has to be done during the renormalization step which cannot be optimal since
the reduced density matrix will still have a flat spectrum. At even larger system sizes
and lower temperatures the spectrum of horizontal density matrix will become acceptably
well-behaved again.

4.5.3 Conclusion

We developed a new method for finite-temperature studies of one-dimensional quantum
systems based on the CTMRG of Nishino. The free energy densities and a thermal energy
expectation values at the chain centers have been successfully calculated for the classical
Ising chain and the antiferromagnetic spin-1/2 Heisenberg chain by the Quantum Corner-
Transfer Matrix DMRG. Reliable results were given for finite temperatures and system
sizes. Yet, the algorithm faces two difficulties:

e Periodic boundary conditions reduce the efficiency.
e The reduced density matrix in space direction has a slowly decaying eigenspectrum.

If finite-temperature data in the thermodynamic limit is aimed at, the quantum TMRG
method is certainly still the method of choice. At least one of the mentioned problems
should be solved to make the QCTMRG technique an attractive option.






5 Thermodynamics of spin ladders with
cyclic exchange
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Thermodynamic properties of spin ladder systems have been discussed in a number of pa-
pers [37, , , 18, , , ]. However, the focus was mainly on models not
containing four-spin interaction. The first providing specific heat and magnetic suscepti-
bility data for a ladder model with four-spin exchange were Biihler et al. [50, ]. They
obtained results from exact complete diagonalization and a high-temperature series expan-
sion method incorporating T = 0 information (ground state energy, dispersion) from a
continuous unitary transformation method [51]. Yet, they focused on only small positive
values of four-spin exchange and did not calculate generalized susceptibilities.

In this chapter, we will present various thermodynamical quantities for the complete phase
diagram of the spin ladder with cyclic exchange. This includes the specific heat and mag-
netic susceptibility as experimentally accessible system properties of particular interest.
Unknown microscopic couplings can be revealed when experimental data are compared to
thermodynamic properties of effective models. We illustrate the special characteristics of
the phases by providing thermal expectation values of local operators. We identify phases
with spontaneously broken Z,-symmetry by calculating generalized susceptibilities.

All calculations were performed by the numerical Transfer Matrix DMRG introduced in
Chapter 3. The convergence in the DMRG parameter m was checked for all calculations.
While convergence was often already reached at m = 100, in general, m = 300 was found
to be a good choice. In some samples, we also checked the influence of the choice €.
Here, we confirmed that the well-establish value ¢ = 0.05 gives most appropriate results.
All calculation were performed on a compute server of type Sun Fire 15K at the Zentrum
fiir angewandte Informatik, Universitat zu Koln. Each calculation took up to a week of
computational time.

Along with the results we give a discussion of the interesting properties for finite temper-
ature and sketch the impact of the quantum phase transitions in this model on T > 0
data.

In the following, we set kg = 1 and gug = 1 for simplicity.

5.1 Local expectation values

The TMRG method gives us the possibility to calculate the thermal expectation values of
operators on a single plaquette. A huge number of potential operators can be thought of
for the plaquette has a number of sixteen states. However, the conservation laws helps us
to concentrate on the essential non-trivial plaquette-operators and to get, by this, a good
understanding of the physics.

The Hamiltonian shows a number of symmetries, see Section 2.1, which lead to conserved
quantities and allow us to choose a well-justified set of basis states. Thus, no operator con-
necting two subspaces with a different configuration of such quantum numbers (S, S$%, P, k)
will have a non-vanishing expectation value.

A basis set of operators which can form each possible plaquette operator with non-trivial
expectation value is given by projectors onto the basis states, (2.3), (2.4), and (2.5). Since
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the S = 0-subspace is twofold degenerate, we will consider the thermal expectation value
of the overlap between both S = 0-states

Oo = [¢g ) (@b ™| + |00 )¢5 | (5.1)

as well. For states with non-zero total spin, all operators within a spin multiplet have the
same expectation value because of the SU(2) symmetry. For this reason, it suffices to
calculate seven thermal expectation values

(Pa). (Pi), (P, (PY). (Pe). (P6™). (©o) (5.2)

in order to restore the expectation values of all non-trivial plaquette-operators. The expec-
tation values of the projectors (Pg-) and <73(|]|’X> together with the expectation value of
the overlap <(’)0> give us the expectation values of every operator in the S = 0 subspace of
the plaquette. A diagonalization of this subspace helps us to find the operator |¢§') with
highest expectation value and the operator \d)'é’} with lowest expectation value with S =0
on the plaquette.

In figs. 5.1 and 5.2, the thermal expectation values of the plaquette-projectors are plotted.
In the insets, we present the overlap of the highest contributing S = 0 state with the
plaquette states with singlets on rungs, legs, and diagonals, in order to identify the character
of the state.

An interpretation of these expectation values can be given as a reduced density matrix:
All degrees of freedom except the spin alignment on a single plaquette are traced out
of the thermodynamic ensemble of states by the projection operators. We succeeded in
obtaining a diagonal representation of this 16 x 16-matrix. In [135], such a reduced density
matrix of a degenerate ground-state was diagonalized in order to identify the relevant order
parameters of the spin ladder in the spontaneously-broken symmetry phase.

For a comparison with the numerical TMRG data, we give the T = 0 expectation values
of the matrix-product ground-state introduced in Eq. (2.27):

_ 1N 6

(P,) =0, (Pi) = RT3 (5.3)

31,,12 2 31,,12 2

Iy _ 2lul® (o +1) «  alul (o —1)
<P1> - (|U|2 + 3)2 <P1 > - (|U|2 + 3)2 (54)

) 4
P5)= i (PE) =0 55)
with

o) = ﬁ (ow () +v3lal)) (5.6)

The expectation values with respect to the variational parameter u are depicted in Fig. 5.3.
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Thermal expectation value
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Figure 5.1: Expectation values of projectors onto plaquette states versus temperature for
representative systems in the various phases. The expectation value of the
projectors (P, ) (fat solid), (Pi) (dotted), <77|1|> (dot-dashed), (P;*) (dashed),
(PE) (thin solid), and (PY) (double-dot-dashed line) are plotted from TMRG
calculations. In the insets, we show the overlap of |¢f') with |pg) (dotted),

\¢|c‘,> (dot-dashed), and |@ ) (dashed line). These data are given for two ladder
systems in the rung-singlet phase at 6 = —2/97 (1) and 6 = 0 (I) and for one
system in the staggered-dimer phase at 6 = 1/97 (llI).
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Figure 5.2: Expectation values of projectors onto plaquette states versus temperature
for representative systems in the various phases. (Legend see Fig. 5.1). I:
scalar-chirality phase at 8§ = 1/3m, Il: vector-chirality phase at 8 = 5/9,
[ll: dominant-collinear-spin phase at 8 = 8/97, IV: ferromagnetic phase at
0 =-2/3m.
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Figure 5.3: Expectation values of projectors onto plaquette states vs. variational parameter
of Eq. (2.27): (Pi-) (dotted), (Pl for o = 1 or (P{) for ¢ = —1 (dashed),
and (Pg") (solid line). In the insets, we show the overlap (absolute value) of
o) with: |@g ) (dotted), |¢|A> (dashed), and |¢g ) (solid line). for o sgn(u?) =
1. For osgn(u?) = —1, the solid and dashed curves must be interchanged.
Note the logarithmic scale of wu.

5.1.1 Rung-singlet order parameter

The rung-singlet state is one of the possible product states. All neighboring spins on a rung
are coupled to a singlet state on the ladder, see Section 2.4. It is the exact ground state
of the ladder in the limit of decoupled rungs which can be deformed into the Heisenberg
ladder without crossing a phase transition [2]. This fact leads to the successful application
of the continuous unitary transformations method for the rung-singlet phase of the ladder
with cyclic exchange [51].

We calculated two quantities in order to detect the presence of rung-singlet ordering. In
Fig. 5.4, we calculated the possibility to find a singlet state on a rung. The expectation
value of the projector can vary between 0 and 1. The average value for infinite temperature
is 1/4. In Fig. 5.5 (thick lines), we calculated the possibility to find singlets on both rungs
of a plaquette, i.e. on neighboring rungs. This can be understood as a two-point correlation
function. Here, the expectation value can vary between 0 and 1 as well, but the average of
uncorrelated spins is only 1/16. We will now discuss the basic features of the phases with
respect to these parameters.

Within the rung-singlet phase, we find a clear dominance of the rung-singlet states for
low temperatures. As discussed in Chapter 2, the rung-singlet character of the ground
state is strong in the lower part of the phase diagram (for example 8 = —2/97) while it
is in stronger competition with other phases around the Heisenberg ladder (6 = 0). This
is exactly what we see at the two reference points from that phase. Further, a plateau
for the order parameters at 6 = —2/97 emerges for low temperatures. We conclude
that the rung-singlet ordering stays stable up to temperatures T = 0.6J when states with
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Figure 5.4: Projector \50><50] onto a singlet state on a single rung versus temperature
for representative systems in the various phases. I: rung-singlet phase at 8 =
—2/97 (dashed line) and 6 = 0 (solid), Il: staggered-dimer phase at 8 =
1/97 (solid), and scalar-chirality phase at 8 = 1/37 (dashed), Ill: vector-
chirality phase at 8 = 5/97 (solid), dominant-collinear-spin phase at 6 = 8/97
(dashed), and ferromagnetic phase at 6 = —2/37 (dotted). Data from TMRG-
calculation. At T = 0, the ground-state expectation value of the variational
matrix product state (Chapter 2) is depicted (diamond for solid, triangle for
dashed, circle for dotted line).
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Figure 5.5: Two-point correlation for singlets on nearest-neighbor rungs <730L> (thick lines)
versus temperature for representative systems in the various phases. I: rung-
singlet phase at 6 = —2/97 (dashed line) and 6 = 0 (solid), II: staggered-dimer
phase at & = 1/97 (solid), and scalar-chirality phase at 8 = 1/37 (dashed),
[1l: vector-chirality phase at & = 5/97 (solid), dominant-collinear-spin phase
at 6 = 8/9m (dashed), and ferromagnetic phase at 8 = —2/37 (dotted).
Data from TMRG-calculation. At T = 0, the ground-state expectation value
of the variational matrix product state (Chapter 2) is depicted (diamond for
solid, triangle for dashed, circle for dotted line). Thin lines: squared curves of
Fig. 5.4.
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small rung-singlet contributions can be excited. At 6 = 0 no such pronounced behavior is
observed. Here, the stable temperature range is smaller.

In the phases with symmetry-breaking in the ground states as well as in the vector-chirality
phase, the rung-singlet contribution is still larger than the average value, but especially the
two-point correlation drops well-below the rung-singlet phase expectation values.

For the dominant-collinear-spin phase, we find significantly smaller expectation values than
in the rung singlet-phase. However, for low temperatures the two-point correlation is above
average. There is, however, a rapid decrease with increasing temperature. This decrease is
caused by ferromagnetic states which are low in energy in the vicinity of the ferromagnetic
phase. As expected, rung singlets are suppressed in the ferromagnetic phase.

In Chapter 2, we found variational matrix product states with staggered ordering. The
variational states give the expectation values

2
<\U(u,a)]<|50>j<so{j>|\U(u,o)> = |u||;|+3 and (5.7)
4
(W(u,0)| (Py); |[W(u.0)) = ﬁ (5.8)

for our local parameters on a rung j. Considering the adequate variational parameters, we
plotted their ground state expectation values as small symbols at 7 = 0 in figs. 5.4 and
5.5.

Asides from the model with & = —2/9m, all thermal expectation values show good con-
vergence towards the corresponding variational value in Fig. 5.4. In Fig. 5.5, the thermal
expectation values show the expected convergence only in the vector-chirality and in the
ferromagnetic phase. An explanation of this behavior can be found in the expectation
values of the variational states (5.7) and (5.8). Note that the probability of finding two
singlets on neighboring rungs is just the square of the possibility of finding a singlet on
one rung. This is just the random statistical distribution of the rung-singlets. Hence, the
rung-singlets are uncorrelated in the variational state.

For a comparison, we plotted the squared single rung-singlet expectation value into Fig. 5.5
(thin lines) which corresponds to a statistical distribution. In the rung-singlet phase, we
see that singlets attract each other. We have a probability to find another singlet next to
a singlet which is enhanced. In the staggered phases and in the vector-chirality phase, it is
vice versa: Singlets repel each other slightly. In the dominant-collinear-spin phase, we find
attracting singlets again. Note that the deviation of the statistical behavior sets in at low
temperatures in this case. Lacking singlets, we find none of this interesting behavior in the
ferromagnetic phase.

5.1.2 Vector-chirality order parameter

In Fig. 5.6, the expectation value for the vector-chirality (2.20) is plotted for representative
systems from the various phases. We included the T = 0 expectation value of the corre-
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various phases.

0.5 1
Temperature T/J

15
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sponding variational matrix product states for a comparison. The expectation vanishes in
the infinite temperature limit which is satisfied for each curve.

In the rung-singlet phase, both expectation values rise to positive values near 1/4 in the
low temperature limit where a plateau emerges. However, the variational state expectation
value differs significantly from these plateau values: Neither of these variational states gives
any vector-chirality contribution.

The staggered-dimer phase has a only a small negative vector-chirality expectation value.
The reference variational state gives a value of zero. In the scalar-chirality phase, the
vector-chirality and its variational state take a value of —1/4 for very low temperatures.
The dominant vector-chirality phase even falls below this value. The variational state has a
slightly lower expectation value. In the dominant-collinear-spin system, the vector-chirality
expectation value tends to —1/5 for small temperatures. The ferromagnetic phase has no
contribution to the vector-chirality for T — 0.

5.1.3 Collinear-spin order parameter

The local order parameter for the dominant-collinear-spin phase (2.21) has a T — oo
expectation value of 5/8. Its behavior with respect to temperature is plotted in Fig. 5.7
together with the T = 0 expectation values from the variational states.

In the rung-singlet phase, the representative curves lie slightly above the average of uncor-
related spins. While the Heisenberg system converges to its variational expectation value,
the system at 6 = —2/97 does not reach the value 3/2 of its corresponding variational
state for T — 0. The phases with symmetry breaking in the ground state deviate weakly
from the average of uncorrelated spins. The staggered-dimer system falls off while the
scalar-chirality system increases when T = 0 is approached. Both curves agree with the
variational states’ zero-temperature behavior.

The vector-chirality representative system shows essentially the same graph as the scalar-
chirality system. For T — 0, the expectation value approaches a finite value close to
the variational state’s expectation value, The model at & = 5/97, however, leads to an
expectation value of nearly 3/2 at T — 0 which is maximum for the plotted curves from all
phases. Here, we find a drastic deviation of the corresponding variational state’s expectation
value because in the variational state the contribution of (P{) is overestimated. The
ferromagnetic state follows a smooth curve towards its T = 0 expectation value 1/2.

The collinear-spin order parameter gives, though restricted to a single plaquette, a good
indication for the dominance of the collinear-spin correlations predicted for T — 0 by [1].
In the discussion of the phase transition to the ferromagnetic phase (Section 5.5.4), we
will use the collinear-spin operator to explain the influence of the level-crossing associated
with the first order quantum phase transition on thermal properties.
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Figure 5.7: Collinear-spin order parameter (Oc¢o/) versus temperature for representative
systems in the various phases. I: rung-singlet phase at 6 = —2/97 (dashed line)
and 6 = 0 (solid), Il: staggered-dimer phase at 8 = 1/97 (solid), and scalar-
chirality phase at & = 1/3w (dashed), Ill: vector-chirality phase at 6 = 5/97
(solid), dominant-collinear-spin phase at § = 8/97 (dashed), and ferromagnetic
phase at 8 = —2/37 (dotted). Data from TMRG-calculation.
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5.2 Specific heat

The specific heat capacity (or shorter: specific heat) is the amount of energy required to
raise the temperature of one lattice site by one energy unit. Specific heat measurements
can provide very rich quantitative information on the distribution of electronic states and
their interactions and is experimentally accessible easily. Therefore, it can be considered as
a fingerprint of the spectral characteristics of a physical system. It keeps track of critical
behavior and phase transitions. Specific heat measurements of spin ladder materials have
been conducted down to very low temperatures.

5.2.1 General properties

The specific heat ¢ is defined by the first derivative of the specific entropy s = S/N (system
size N) with respect to temperature multiplied by the temperature T:

1_0S

=—T—= 5.9

“TN'oT (5:9)

By making use of the equivalence of thermodynamic potentials, the specific heat can be

calculated in two distinct ways, namely as the first derivative of the local energy u(T) or
the second derivative of the free energy f(T):

du o0*f

T

“Toar T ot

(5.10)
This relationship becomes important for numerical calculations where second derivatives
lose precision compared to first derivatives. We calculated the specific heat from the first
derivative of the expectation value of the local Hamiltonian.

Note that the specific heat

1 AE> 1 (H?) = (H)®

CTNTT TN T

>0 (5.11)
is a measure for energy fluctuations at a certain temperature 7. From this, we see that C
is always non-negative and that ¢ cannot be expressed in terms of an expectation value of
a local operator since <H2> contains long-range interactions.

From a high temperature expansion of the partition function we find
cox1/T? for T — oo. (5.12)

No such general form is given for low temperatures. In many cases, however, the low-
lying energy spectrum of a system is known and low-temperature approximation for the
specific heat can be derived analytically. In systems with some ferro- or antiferromagnetic
long-range order at zero temperature, for example, the low-lying excitations are spin waves.
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These gapless modes lead to a power-law behavior of the specific heat at low temperatures.
A ferromagnet has
cox T9? (5.13)

and an antiferromagnet has
co T (5.14)

with space dimension d [136]. On the other hand, if there is a gap A in the system, the
specific heat decays exponentially
co e BT (5.15)

for very low temperatures. Additionally, if the elementary excitations are weakly interacting
massive bosons the specific heat reads

c o TU?272=8/T (5.16)

with space dimension d [137, ]. The spin ladder with two spin interaction can be
considered as a system with magnon-type excitations (dispersion €, = A + a| |k| — «|" +
oh). lts low-temperature approximation (T — 0, n = 2)

AN\ Y? /AN\3/? 1+T+3 T\?
©x\a T AT a\a

(T — 0,n = 2) was given by [37]. We note that the temperature dependence of ¢ involves
only on the ratio A/T in this case.

e /T (5.17)

One-dimensional quantum systems at a critical point are conformally invariant [138]. In
this case, the specific heat shows a linear low-temperature behavior
o
c=—T (5.18)
3V|:
where ¢ is the conformal anomaly (or central charge) and v the velocity of elementary
excitations ( and kg have been set to unity.) [139, I

5.2.2 Specific heat of the spin ladder

The spin ladder with cyclic exchange exhibits a rich phase diagram which includes critical
points, quantum phase transitions and spontaneously broken symmetries (see Section 1.5).
From this, we expect the specific heat to show significantly different shapes in the various
phases reflecting their different properties.

With TMRG, we calculated the specific heat for the complete parameter space of Hamil-
tonian (1.5). In Fig. 5.8, the specific heat of special points from distinct phases is plotted.
These show structures which are representative for their phases. We identify three types of
curves reflecting the underlying physics: Specific heat for the gapped phases with unique
ground state, for the ferromagnet and for the phases with doubly-degenerate ground state.
We close this section with a discussion of the behavior at the phase boundaries.
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Figure 5.8: Specific heat versus temperature for representative points in the various phases.
I: rung-singlet phase at # = —2/97 (dashed line) and & = 0 (solid), Il
staggered-dimer phase at 6 = 1/97 (solid), and scalar-chirality phase at
6 = 1/3m (dashed), Ill: vector-chirality phase at 6 = 5/97 (solid), dominant-
collinear-spin phase at 6§ = 8/9m (dashed), and ferromagnetic phase at
0 = —2/3m (dotted). Data from TMRG-calculation.
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Figure 5.9: Same plots as in Fig. 5.1 with specific heat data represented as solid grey line.
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5.2.3 Specific heat in the gapped phases with unique ground state

The antiferromagnetic rung-singlet phase and the dominant vector-chirality/collinear-spin
phase possess a unique ground state and finite excitation gap thus meeting the scenario
proposed by Haldane [3, 4, ]. In the reference points pictured in Fig. 5.8, the exponential
decay can clearly be seen for the Haldane phases. It is, however, generally not an easy task
to deduce the correct value of the energy gap if the correct asymptotics is not known
precisely to the first few orders because of the dominance of the exponential function. For
the whole temperature range, the temperature dependence of the specific heat is roughly
of Schottky-type

>

A\? e
CSchottky = 1 <?> —( 2 (5.19)
1+ ne_T)

which is the specific heat of a (n+ 1)-level system (unique ground state and n degenerate
states at an energy A) in the gapped systems without long-range ordering. This fact
has also been observed in the spin-1 chain [142]. For the high-temperature regime, we
observe the T—2-law (5.12) which is the high-temperature limit for the Schottky-peak
approximation as well.

However, the excitation gap is generally not fitted correctly by a Schottky peak. Gapped
systems show an exponential increase for low temperatures. The precise T — 0 asymptotics
can be described if the dispersion of the low-lying excitation is known. In [37], the low-
lying excitation were found to be magnons arising from the picture that the system is
essentially a ground state consisting of singlets and excitations are produced by breaking
up singlets. Based on this, a low-temperature approximation (5.17) for the Heisenberg
ladder was given. This picture was adopted in [143, 51, 40]. Starting from the isolated
rung-dimer limit suitably chosen continuous unitary transformations (CUT) were used to
map the ladder to an effective system with conservation of singlets and triplets. In this
way, spectral densities of the spin ladder within the rung-singlet phase were calculated
successfully.

The first to provide specific heat and magnetic susceptibility data for a ladder model with

four-spin exchange, defined by (1.3) with J; = 0 and %J,, = %J,, = —%Jdd = JCByC were
Biihler et al.[50, ]. They obtained results from exact complete diagonalization and

a high-temperature series expansion (HTSE) method incorporating T = 0 information
(ground state energy, dispersion) from a CUT method, see [51]. Discussing the models
arising from the two parameter 0 < x = J;/J; 1 and 0 < x¢yc = Jg,c/J, < 1 subspace
a competition was found between the leg coupling x and cyclic exchange xcyc. The leg
ordering stabilizes antiferromagnetic ordering against magnetic perturbations and shifts the
peak to higher temperatures while decreasing its height. The frustrating cyclic exchange
Xeye leads to a decrease of the overall dispersion [52, 51]. It shifts the specific heat and
susceptibility peaks to lower temperature with increasing xcyc. The results of [50] were
compared with our results and a good agreement was found [144]. The HTSE method used
involves knowledge about the ground state energy and the low-temperature asymptotics.
When this behavior is not precisely known the HTSE becomes unstable at low temperatures.
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In the reference points (Fig. 5.8) of the rung-singlet phase, we see that the specific heat
peak of the point at § = —2/97 is higher and located at higher temperatures than the peak
in the Heisenberg model. This behavior can be explained in the context of the results from
the previous section: At 6 = —2/97 the system shows the rung-singlet character more
clearly than at 8 = 0 where stronger admixtures of triplets play a role. A more detailed
discussion for the interesting region in the vicinity to the transition to the ferromagnetic
regime will be given in Section 5.5.5.

The vector-chirality phase shows a clear maximum but has a pronounced shoulder at higher
temperatures which is a remnant of the double-peak structure observed in the neighboring
scalar-chirality phase. In the dominant-collinear-spin phase a strong peak appears at low
temperatures which can be interpreted as a consequence of a flat dispersion in the low-lying
excitation spectrum.

5.2.4 Specific heat of the ferromagnet

The excitation spectrum of a ferromagnet is described by spin waves which are magnons
with a quadratic dispersion in the long wave-length limit. There is no excitation gap
above the highly degenerate ground state. These properties cause a rapid increase of the
entropy for temperatures close to T = 0 resulting in a specific heat ¢ o T1/2 without the
exponential factor.

The specific heat features a broad peak with a maximum at high temperatures at the ferro-
magnetic reference system in Fig. 5.8. This behavior is owed to the fact that ferromagnetic
excitations lie well below other excitation energies which set in at a higher temperature,
compare Figs. 2.1 and 5.2. These properties including the low-temperature behavior can
be seen in the reference model at § = —2/37.

5.2.5 Specific heat in the phases with doubly-degenerate ground state

Double peaks in the specific heat have been theoretically and experimentally observed in a
number of spin systems. The double-peak structure is a signature of two different kinds of
excitations on well-separated energy scales.

In [145], a double peak structure appeared in the thermodynamics of layered Ising models.
Ordering of finite regions and global ordering of infinite range, in different temperature
ranges leads to the structure of the specific heat curves in this three dimensional model.
Several models show a specific-heat double peak when an external magnetic field is ap-

plied. This helps with the interpretation of the underlying type of excitation. The (1, %)
ferrimagnet H = Zszl (Sj-s;j+ds;-Sj+1). with two kinds of spin S =1, s = % and
an optional dimerization 4§, is an example for a system in which application of a magnetic
field leads to a separation of energy scales [146, , , ]. As a result, the specific
heat shows two pronounced peaks each of which can be associated with one out of two
dominant excitations. The low-energy spectrum can be described in terms of spin wave

theory [150]. The spin-wave-theory approach starts from a Néel state with a macroscopic
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magnetization M = (S — s)N. The resulting energy dispersion gives both a ferromagnetic,
gapless excitation branch (Goldstone modes) and antiferromagnetic gapped excitations.
The antiferromagnetic zig-zag spin chain in magnetic fields was studied by TMRG in [151].
They found a double peak structure at fields above hco which gives the onset of satura-
tion. Here, a down spin in the otherwise fully polarized state can be regarded as a spinless
fermion. The additional low-temperature peak moves to lower temperatures when h ap-
proaches h.o from above. From this it was concluded that the peak could be interpreted
as divergence of the density of states at the bottom of the dispersion curve.[151]

In an S = 1/2 alternating Heisenberg chain system F;PNN a second low energy peak was
measured [152] for a field strength hey < h < heo which moves to lower temperatures
with increasing field. Thermodynamical properties of magnetic field effects on the ladder
compound Cu,(CgH;,N,),Cl, were measured by NMR in [153, 154]. Theoretical studies
of two-leg Heisenberg ladders without four-spin interaction were performed by TMRG in
[131] and the magnetization and specific-heat properties were essentially confirmed. The
low-energy spectrum of the ladder in a strong magnetic field model can be described in
terms of an effective XXZ Heisenberg model. It shows soft modes at field strengths right
above the critical fields which marks the onset of zero magnetization. This is exactly the
region where a double peak occurs in the specific heat [131].

The so-called delta chain or saw-tooth chain was studied in [155, , ]. It shows a
double peak in the specific heat which is a result of the presence of topological excitations
called kinks and anti-kinks which always appear in pairs in a frustrated quantum chain with
a doubly degenerate ground state. There is a mass associated with the quasi-particle anti-
kink. The low-temperature peak position was shown to depend on the creation energy of an
anti-kink while the kinetic energy of the anti-kink gives the broadening of this peak. A high
anti-kink mass, thus, gives localization of the quasi-particles leading to a large divergence
in the density of states and to a sharp peak. Having a doubly degenerate ground state and
including frustration, the delta chain might give the correct scenario for the excitations in
the spontaneously broken symmetry phases of the spin ladder.

We conclude that there are two well-separated energy scales for the excitation spectrum
of systems which show a double peak in the specific heat. Additionally, the dispersion of
the lower excitations is supposed to be flat to give a sharp shape of the low-temperature
peak.

For a discussion of the staggered-dimer phase and the scalar-chirality phase of the spin
ladder, we have to review the ground state properties. We concentrate on the staggered-
dimer phase because the scalar-chirality phase is described by the duality transformation of
the former phase. The sketch of the ground state of the staggered-dimer phase exhibits
dimers on the legs arranged in a staggered order. A discussion of a model with this ground-
state structure has been given in terms of a matrix product ground state in [158]. This
approach started from a matrix product state of the form (2.27) which was considered to
be a ground state of a special ladder class which includes four-spin exchange but has no
common point with our model. In this setting, they managed to calculate the low-lying
spectrum by constructing variational states. Two types of excitations were considered: A
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singlet-triplet excitation where a dimer breaks up, and a topological excitation in terms
of solitons where the staggered order is shifted by one site. The excitation gaps of the
different excitations depend on some model parameters. There is also a dispersionless
magnon mode present which is usually high in energy.

Since the doubly degenerate ground state is a feature of the staggered-dimer phase in the
spin ladder with cyclic exchange and the staggered-dimer configuration is a good sketch of
its properties, we suggest that the picture of the low-lying excitations can be transferred
to our case as well. In this case, the low-temperature peak reflects low-lying elementary
excitations as described above while the rest of the spectrum sets in at higher temperatures.

As a support for this picture, we consider the matrix-product state with staggering, given in
Eq. (A.23) with ¢ = —1 and u real. The state is formed by the plaquette operators ]¢fo>,

|41, ). and \¢H> (for u = 1) only. In Fig. 5.9, we see that, indeed, these plaquette operators
have the highest expectation values in the low-temperature regime. Their decrease marks
the low-temperature peak. The high-temperature peak is located at a temperature where
the plaquette-singlet state loses weight compared to a state with triplets on legs.

Since the scalar-chirality phase is dual to the staggered-dimer phase, we can extend the
above argumentation via the duality transformation (1.8) to this phase. Here, the same
plaquette states are expected to dominate the ground state with ‘¢5<> (for u = i) being
now the relevant S = 0 plaquette state.

5.2.6 Specific heat for the whole parameter space

In order to see how the specific heat evolves within the whole parameter space, we calcu-
lated it at several further points. The local maxima of the specific heat were determined
numerically. They are plotted in Fig. 5.11 and their heights are shown.

This specific heat peak of the rung-singlet phase persists within the whole phase. The
highest temperature associated with this peak takes the value 7 = 0.88J and is located
at 8 = —0.1937w. At the staggered-dimer-phase boundary, the peak temperature decreases
continuously to T & 0.2J. In the close vicinity of the phase transition to the ferromagnetic
phase the specific heat shows two local maxima. We will comment on that in detail in
Section 5.5.5.

The staggered-dimer phase is characterized by a double peak-structure (5.8). There is a
steep slope at lower temperatures and very slow decay for T — oo. The low-temperature
peak is located at T = (0.2 — 0.4)]. It emerges continuously from the rung-singlet-
phase peak. The high-temperature peak is not yet present at the phase transition to the
rung-singlet phase, but evolves from a shoulder. It is located at T = (0.5 — 0.8)J. The
scalar-chirality phase shows the same double-peak structure as the preceding phase. The
lower temperature peak lies again in the range T = (0.2 — 0.4)J. The high-temperature
peaks is located between T = 0.9J and T = 1.2J. Both peaks get shifted to higher
temperatures with increasing 6.

In the vector-chirality phase the high-T peak degenerates to a shoulder again. The low-
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Figure 5.11: Local maxima of specific heat curves versus model parameter 6. a. Temper-
ature of peak b. Maximal specific heat at peak (Inset: Zoom for rung-singlet
region, gray shaded: Temperature from a.). Diamonds/circles are data from
TMRG (m = 300). The solid lines serve only as a guide to the eye. The
phase boundaries proposed in [1] have been included as vertical dotted lines.
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temperature peak increases constantly with the system parameter 6. The peak reaches a
highest temperature T = 0.48J at § = 0.587. No distinct feature is found in the dominant-
collinear-spin phase which is connected to the vector-chirality phase by a smooth crossover.
We have a pronounced peak at low temperatures which shifts to zero temperature in
approaching the transition to the ferromagnetic phase. The ferromagnetic phase has a
single broad peak. It is located at infinitely small temperature at the phase transition from
the dominant-collinear-spin spin phase and shifts to maximum temperature T = 1.44J at
6 = —0.651m. The peak decreases to a temperature of T & 0.73J at the boundary to the
rung-singlet phase.

In the discussion of the phase transition in the model (Section 5.5), we will refocus on the
specific heat. There, we will explain the special properties of the specific heat in the vicinity
of the first order quantum phase transitions.

5.3 Magnetic susceptibility

The magnetic susceptibility describes the response of a system to a magnetic field. More
formally, it is the derivative of the expectation value of the magnetization for a specific

magnetic field hg:
9(m(h)))

oh ho

The zero field susceptibility xpm = xm(h = 0) contains information about the magnetic
excitations of a model. Since, in numerics, applied fields always have a finite size, we have
to replace the derivative from (5.20) by a difference quotient:

X & {(m(h)) = (m(=h)) _ {(m(h))
2h h

xm(ho) = (5.20)

L if (m(Ah)) = — (m(=h)) (5.21)

with a small field h. Thus, we first have to consider the magnetization curve before we
numerically calculate zero temperature susceptibilities. The difference quotient is generally
stable for different small field sizes in the antiferromagnetic regime and a field size of
h = 0.05 is often appropriate.

In Fig. (5.12), we present the magnetic susceptibilities of some reference points in different
phases. As for the specific heat some general forms of temperature dependence related to
the properties of the studied model can be found.

In the rung-singlet phase, the susceptibility shows a pronounced peak with an exponential
decay to T — 0. The exponential decay results from a finite excitation gap in this phase.
In [50], the susceptibility of the spin ladder with cyclic exchange was calculated by HTSE
and showed to be consistent with our data. In the dominant-collinear-spin phase, the
same behavior is observed as in the rung-singlet phase, but the peak is moved to lower
temperatures. Here, ferromagnetic excitations lie low in energy and, thus, give a high
contribution to the entropy at low temperatures. In the representative model of the vector-
chirality phase, we see a flat, very broad peak. The susceptibility seems to turn to finite
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Figure 5.12: Magnetic susceptibility versus temperature for representative systems in the
various phases. |: rung-singlet phase at 6 = —2/97 (dashed line) and 6 = 0
(solid), Il: staggered-dimer phase at & = 1/97 (solid), and scalar-chirality
phase at 6 = 1/3w (dashed), Ill: vector-chirality phase at 6 = 5/97 (solid),
dominant-collinear-spin phase at # = 8/9 (dashed), and ferromagnetic phase
at 6 = —2/37 (dotted). The susceptibility diverges for the ferromagnetic
phase. The low-temperature regime is plotted in Fig. 5.14. Data from TMRG-
calculation.
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values for T — 0. Calculations for different magnetic field sizes showed no essential
difference in the curvature. However, in a closer zoom, we found a sudden decay for
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Figure 5.13: Low-temperature behavior of magnetic susceptibility for 6 = 5/97 (vector-
chirality phase). The solid curve in both plots is the susceptibility data from
TMRG (h = 0.05,m = 200). On the right hand side we plotted In(xmv'T)
against inverse temperature and applied a linear fit (dotted). This fitted curve
was added to the left plot which is a zoom of the lower curve of Fig. 5.12 .

T — 0at T =~ 0.05 (Fig. 5.13, left plot). In [37], a low temperature approximation was
given for the magnetic susceptibility of the Heisenberg ladder

~i>

! .- 5.22
XM X \/Te (5.22)
based on the same assumptions that lead to (5.17). Referring to this low-temperature
approximation, we plotted In(xmv/T) against T—1(Fig. 5.13, right plot). The expected
linear behavior is apparent. A linear regression gives a slope of A = 0.0267. No precise
estimate for the excitation gap can be given since the finite field of h = 0.05 is of the
same order of magnitude as A. However, for the model with 6 = 7/2 a lower bound
A > 0.016Jcyc to the system gap of the same order of magnitude was given [159] which is
consistent with our data.

The magnetic low-temperature properties of a ferromagnet can be described properly by
spin-wave theory. For the spontaneous magnetization in the limit of h — 0 one obtains
Bloch’s T3/2 law [160, 161] for low temperatures:

m(T) ~ m(0) [1 - aT3/2} (5.23)
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Figure 5.14: Inverse magnetic susceptibility versus squared temperature for the ferromag-
netic model at § = —6/97 calculated for magnetic fields of various strength.
The curves (from bottom to top) belong to fields of strength h = 0.001, 0.005
(solid lines), h = 0.01,0.02 (dashed lines), h = 0.05,0.1 (dotted lines). In
the inset, the same curves for a broader temperature range are shown. We
see an excellent agreement with the expected x o T2 behavior in the limit
for vanishing magnetic field. Data from TMRG with m = 300.

This approximation contains the saturated magnetization m(0) = SN (for a number N of
spins S) and a constant a. The zero-field susceptibility diverges in the limit T — 0 like
1

Xferro X ﬁ (5.24)
as was shown for isotropic ferromagnetic Heisenberg chains with arbitrary spin by thermo-
dynamic Bethe ansatz [162]. We expect this behavior for the ferromagnetic spin ladder as
well because it can be mapped to the ferromagnetic spin-1 Heisenberg chain. We calcu-
lated the susceptibility according to (5.20) and present a plot of the inverse susceptibility
in Fig. 5.14. Our results show clearly the predicted asymptotics. Note that the calculation
were performed down to very low temperatures T = 0.005.

The phases with doubly-degenerate ground states and very small excitation gap both show
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a flat susceptibility curve. The susceptibility exhibits a peak located at the position of
the low-temperature peak of the specific heat data which is a signature of the spectrum of
low-lying soliton and magnon excitations of the staggered ground states. The susceptibility
stays finite down to low temperatures. However, the TMRG data (m = 200, ¢ = 0.05)
is reliable down to T & 0.02 — 0.05 only. Due to the small excitation gap [159] in these
phases the correct low-temperature cannot be determined from the magnetic susceptibility
calculated by TMRG.

5.4 Generalized susceptibilities

Within its phase diagram the spin ladder with cyclic exchange exhibits two phases with a
spontaneously broken discrete symmetry including a two-fold degenerate ground-state and
an excitation gap. An adequate way to study a system with a degenerate ground state is to
apply a small external symmetry-breaking field and to measure the response of the system.
The sensitivity of system for small perturbation is captured by a (generalized) susceptibility.

This approach was applied to n-leg spin ladders with third-nearest-neighbor two-spin in-
teraction [163]. The spontaneous dimerization of the ground state of odd-leg ladders was
revealed for a considerable amount of frustrating third-nearest-neighbor coupling from a
T = 0 DMRG study.

In our case, the phases with spontaneously broken symmetry are the staggered-dimer and
the scalar-chirality phase. In the case of the staggered-dimer phase, the order parameter is

Osp =) _e™ (S1;-Sijt1—S2j-Saji1) - (5.25)
]

Its ground state expectation values should be equal in size, but of opposite sign for either of
the two ground-states. However, without external symmetry-breaking the two degenerate
ground-states are inextricably entangled, thus no finite expectation value of the order
parameter can be measured. In order to reveal the degeneracy by TMRG we apply a small
but finite field a which couples the order parameter to the Hamiltonian of the system:

Heff = H+ a Osp (5.26)

Regarding this effective system, the TMRG method allows us to calculate the thermal
expectation value

Osp = (Osp) ., (5.27)

of the staggered-dimer operator 1 which we call “staggered-leg dimerization”. With these
quantities, we define the corresponding susceptibility

_ 00sp
Xsb = a

‘a:O (5.28)

Technically, it suffices to calculate the expectation value of the order parameter confined to a single
plaquette.
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for zero field a = 0. If the system possesses a spontaneously broken symmetry, Osp will
stay finite as the external field a goes to zero or, in other words, the susceptibility will
diverge for T — 0. Note that this relation holds exactly only in the thermodynamic limit.

In the TMRG method, ladders of infinite size are studied. However, we have to deal with
small, but finite fields in any numerical calculation and we calculate at finite temperatures
by TMRG. Statements about the T = 0 behavior demand a careful extrapolation. For this
reason it is instructive to consider a simple system meeting the proposed scenario in the
low-energy regime.

The ferromagnetic Ising chain [127] in a longitudinal magnetic field
N N
H= Z —JO'J'O'H_]_ - Z hO'J'_H_ (5.29)
J J

(o = £1 are classical spin variables, J > 0 the coupling constant, and h the applied
magnetic field) possesses two fully polarized ground states and an excitation gap. Its
Zo-symmetry can be broken spontaneously. These properties are shared by the proposed
character of the staggered-dimer and scalar-chirality phase. The thermodynamic properties
can be calculated quite easily by a transfer matrix method making it an ideal test case.

We reinterpret the magnetization as the thermal expectation value of the order parameter

10 eB/sinh(Bh
Osp(a, T) = —= 2 InZ(a, T) = — sinh(6h) . (5.30)
B oa /€287 sinh?(Bh) + e—287
For the limit T — 0, the expectation value converges to saturation
Osp(a, T -0)=1 (5.31)
which has to be adjusted to the appropriate value. The susceptibility becomes
e/ T
xsp(0,T) = - (5.32)

for the zero field limit.

5.4.1 Staggered-dimer susceptibility

As a representative system, we discuss the staggered-dimer susceptibility of the model with
6 = m/9 in detail. First, we determine the expectation value of (5.30) in various fields
(see Fig. 5.15 a.). We get approximately the correct line shapes predicted by (5.30) and
a J = 0.05 by an estimate two-parameter fit which is of the order of magnitude of the
energy gap [159]. In contrast to the magnetization in the Ising chain, the staggered-leg
dimerization (5.31) of the ladder system does not approach a common saturation value Og,t
in the T — 0 limit for all field strengths. These differences show the limitations of the Ising
approximation. Although we believe that the plots show the correct low-temperature data,
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Figure 5.15: a. Expectation value of staggered-leg dimerization versus temperature for

the fields a = 0.1,0.08,0.02,0.01 (from top to bottom). The black solid
lines are TMRG data (m = 100)), the dotted curves are separate fits of the
Ising susceptibility (5.30) with a the T — 0 value as an additional degree of
freedom.

b. Inverse staggered-dimer susceptibility versus temperature calculated by the
fields @ = 0.1,0.08,0.02,0.01 (from top to bottom).



5.4.2 Scalar-chirality susceptibility 105

a small deviation to lower values of staggered-leg dimerization still seems likely?. From
the dimerization data, we calculate the staggered-dimer susceptibility. In Fig. 5.15 b., the
inverse value is plotted against temperature. The linear increase at higher temperatures
can be motivated by Eq. (5.32) which is an analog of the Curie law for ferromagnets.
At low temperatures the curves separate. All curves still tend to finite susceptibilities for
T — 0, but this value decreases for smaller fields.

In Fig. 5.16, we plotted the staggered-dimer susceptibility for the reference points from
different phases. The staggered-dimer susceptibility is very flat in the ferromagnetic phase.
For the other phases, the susceptibility approaches finite values for T — 0 except for the
staggered-dimer phase where it diverges. An interesting behavior can be observed in the
rung-singlet phase. Here, the staggered-dimer susceptibility has a pronounced peak which
increases in size and moves to lower temperatures as it approaches the staggered-dimer
phase. It can be interpreted as an indication of the vicinity to the phase transition. In the
phases with chirality, the susceptibility has a flat structure and an estimated finite value at
T — 0. The dominant-collinear-spin phase exhibits a susceptibility nearly identical to the
susceptibility of the Heisenberg ladder.

5.4.2 Scalar-chirality susceptibility

The scalar-chirality phase is related to the staggered-dimer phase via the duality trans-
formation (1.7). The appropriate order parameter is the scalar-chirality operator (2.19)

Osc = (Sl,ﬂ‘szj) : (Sl,j+1><52,j+1)-|-(51,j+1+52,j+1) . (S]_,J'XSQ,J'). (5.33)

The scalar-chirality susceptibility xsc shall be introduced in analogy to the staggered-dimer
susceptibility. The associated field shall be denoted by 7.

We expect a divergence of the scalar-chirality susceptibility for the scalar-chirality phase
in the T — 0 asymptotics and finite or vanishing susceptibilities in the other phases.
The susceptibilities of the reference points are presented in Fig. 5.17. The models in the
rung-singlet phase have a single peak at 7 = J and finite susceptibility at T — 0. The
curves have the same form as for the staggered-dimer susceptibility but the peaks shifted
to higher temperatures and the susceptibility is weaker in the whole temperature range.
This difference is caused by the larger distance to the scalar-chirality phase compared to
the neighboring staggered-dimer phase. The vicinity of the scalar-chirality is sensed by the
model in the staggered-dimer phase: It has a pronounced peak at low temperatures. The
representative model of the dominant-collinear-spin phase has a peak at low temperatures
and a finite susceptibility for T — 0. The ferromagnetic model shows no significant
response.

2|t was not possible to calculate properties of models with a TMRG parameter larger than m = 100 down
to very low temperatures because of numerical instabilities for m > 100. This phenomenon seems to be
connected to the staggering which might carry the risk of over-estimating irrelevant states during the
renormalization procedure. Further research on this matter would be desirable.
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temperature T/J

Figure 5.16: Staggered-dimer susceptibility versus temperature for representative systems
in the various phases. |: rung-singlet phase at 6 = —2/97 (dashed line) and
® = 0 (solid), Il: staggered-dimer phase at & = 1/97 (solid), and scalar-
chirality phase at § = 1/3w (dashed), Ill: vector-chirality phase at § = 5/97
(solid), dominant-collinear-spin phase at & = 8/9w (dashed), and ferromag-
netic phase at § = —2/37 (dotted). Data from TMRG-calculation.
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Scalar-chirality susceptibility xsc

temperature T/J

Figure 5.17: Scalar-chirality susceptibility versus temperature for representative systems in
the various phases. |: rung-singlet phase at 6 = —2/97 (dashed line) and 6 = 0
(solid), Il: staggered-dimer phase at & = 1/97 (solid), and scalar-chirality
phase at 6 = 1/3w (dashed), IlI: vector-chirality phase at 6 = 5/97 (solid),
dominant-collinear-spin phase at # = 8/9 (dashed), and ferromagnetic phase
at @ = —2/37 (dotted). Data from TMRG-calculation.
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Figure 5.18: Inverse scalar-chirality susceptibility versus temperature for representative sys-
tems in the scalar-chirality phase (lower curves) at & = 1/3m and neighboring
phases (upper curves: staggered-dimer phase at 6 = 1/97, central curves:
vector-chirality phase at 8 = 5/9m). We calculated the susceptibility as the
numerical derivative of the scalar-chirality with symmetry breaking fields n
from TMRG with m conserved states (dotted: n = 0.01, m = 200; dashed:
1 = 0.005, m = 200; dot-dashed: m = 0.01, m = 300; solid: n = 0.005,
m = 300).

Two candidates for a diverging scalar-chirality susceptibility can be identified from Fig. 5.17.
The models in the phases with dominating chiral correlations both give a strong response
to the scalar-chirality field. For a closer look, we plotted the inverse susceptibilities of these
systems along with the reference point from the staggered-dimer phase in Fig. 5.18. As
can be seen, the numerics is significantly better behaved in this case. DMRG parameter
values up to m = 300 were reached and small fields 7 < 0.01 could be considered. We
conclude from this data that the scalar-chirality susceptibility indeed only diverges in the
scalar-chirality phase as expected. The vector-chirality phase still has a strong response
at T — 0 but has no spontaneously broken symmetry. In the staggered-dimer phase, the
susceptibility reaches a strong maximum a low temperatures but decreases for T — 0.

The generalized susceptibilities proved to be a useful tool to analyze the excitation spectrum
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of the models. We provided evidence for a broken symmetry of the ground state in two
phases from thermodynamical data. The vicinity of phase transitions was seen in the sus-
ceptibilities belonging to the ordering involved. While the divergence of the scalar-chirality
susceptibility in the corresponding phase could be clearly confirmed, the staggered-dimer
susceptibility suffered from numerical instabilities. This could be a point to concentrate on
in further studies.

5.5 Phase transitions

In this section, the focus will be on the phase transitions between the phases of the spin
ladder with cyclic exchange. We will discuss the influence of phase transitions on thermo-
dynamical quantities in the framework introduced above. Estimates for the location of the
phase transitions as well as a comparison to results from other studies will be provided.

5.5.1 Rung-singlet phase to staggered-dimer phase

The second order quantum phase transition from the rung-singlet phase to the staggered
dimer phase has been subject to discussions since the model class had been established.
The existence of dimerized phases on a ladder with four-spin interaction has been shown

in [164, : . In [52, , 53], a dimerized phase was conjectured. Its existence
was confirmed by a subsequent study [1] where the Lieb-Schultz-Mattis twist operator
[167, ] which signals the transition by a sign change, was applied. This critical point

was also focused on in [166] where a central charge of ¢ = 3/2 for the underlying conformal
field theory was obtained from numerical calculations. It was claimed that the universality
class it belongs to is described by the k = 2 SU(2) Wess-Zumino-Witten type in the
continuum limit. Thus, it is a transition of the Takhtajan-Babujian-type[56, 57] which is
characterized by a spontaneous breaking of discrete Zo-symmetry.

Although agreement about the character of the phase transition has been reached, the pre-
cise point of the phase transition is still unknown. Earlier works based on DMRG proposed
0. ~ 0.08897 [169] and exact diagonalization plus conformal field theory 0.0607[166]. In
the year 2003, the transition points 0.097 [54], (0.074+0.01)7 [1], and (0.0597 +0.0003) 7
[170] have been obtained by DMRG studies. In the same year, with the CUT method the
transition point was found at (0.051 + 0.009)w [51].

The dense spectrum of the Hamiltonian (see Fig. 2.1, where the plaquette states lie close
together in energy) and the small gap are the cause why it is so hard to get a precise
numerical estimate of the phase transition. From the considerations of plaquette states
and matrix-product variational states we identified three points of interest in the context of
the phase transition: At § = —arctan(1/4) ~ —0.0787, the variational state with lowest
energy includes staggering. At 8 = 0, the staggered-dimer state crosses rung-singlet state
in the matrix-product states and, at arctan(1/4) ~ 0.078, there is a level crossing in the
plaquette states.
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Figure 5.19: Plaquette projector expectation values versus model parameter. Level-
crossing between plaquette states with highest contribution S = 0-state Pg’
(circles) and S = 1-state P;* (diamonds) at T = 0.1 (thin line) and T = 0.05
(thick line). In the inset: Expectation values of P; (upper lines) and Py’
(lower lines) for & = 0.05007 (dashed) and 6 = 0.05567 (solid).

From conformal field theory, we expect a linear low-temperature behavior (5.18) of the
specific heat at the precise point of the second order phase transition. Indeed, our numerical
data is consistent with a linear low-temperature behavior around 6 = 0.05w. No precise
estimate for the location of the phase transition can be given, though, because small data
fluctuations owed to the iterated truncation procedure defeat a trustworthy analysis at
very low temperatures. We face the same situation in the numerics at the staggered-dimer
to scalar-chirality phase transition and the scalar-chirality phase to vector-chirality phase
transition.

In Fig. 5.19, we consider again the dominant plaquette projectors in both regimes. Indeed,
at 8 =~ 0.0537 we observe a level-crossing from the plaquette singlet 73(’)“ to the plaquette
triplet P;*. Although this is not a proof for a phase transition it strongly indicates a
change in the character of the ground state. The smooth crossover is consistent with the
picture of a second order quantum phase transition. At the same point, we see a change
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in the two-point rung-singlet correlation (see Section 5.1.1). In the rung-singlet phase, the
probability to find two singlets on neighboring rungs is enhanced while it is suppressed in
the staggered-leg phase. From both observations, we expect the precise location of the
phase transition between 6 = 0.05007 and 8 = 0.0556.

5.5.2 Staggered-dimer phase to scalar-chirality phase

At 0 = arctan(1/2) ~ 0.14767, the model is self-dual and shows a U(1) symmetry because
it is invariant under a transformation (1.7) with arbitrary ¢ [42]. The overlap between
|¢g) and \¢‘(|)’X> vanishes at this point, see Fig. 2.2. The energetically lowest S = 0 state

is ‘¢|(|,’X>, a superposition between the state with singlets on the legs and the state with
singlets on the diagonals. This behavior can as well be observed in the thermal expectation
values.

In the vicinity of the phase transition, the low-temperature specific-heat peak becomes
smaller in size than the second peak. A minimum is reached exactly at the transition
point. This can be explained by the fact that low-lying excitations close the gap at the
phase transition and weight in the density of states is shifted from the peak maximum
towards lower temperatures. In [131], a similar observation was made for a spin ladder
under magnetic field.

5.5.3 Scalar-chirality phase to vector-chirality phase

The phase transition from the scalar-chirality phase to the vector-chirality phase was
claimed to be in the same universality class as the rung-singlet to staggered-dimer tran-
sition [55]. Two DMRG studies references give its possible position 6. ~ 0.387 [54]
and (0.39 £ 0.01)7 [1]. This the position near the parameter 6 =~ 0.41 where the high-
temperature peak in the specific heat becomes a shoulder of the other peak. This behavior
could be related to the phase transition.

5.5.4 Vector-chirality/collinear-spin phase to ferromagnetic phase

For the first order quantum phase transition from the dominant-collinear-spin phase to
the ferromagnetic phase, we have two exact boundaries. The parameter 8 ~ 0.9167 is a
lower bound for phase transition from the variational states, and 6 ~ 0.9477 is an upper
bound for phase transition from the plaquette states, see Section 2.5. The predicted value
0. = 0.947 lies near the upper bound.

For the first order transition to the ferromagnetic phase, we expect a jump in the zero-
temperature magnetic susceptibility. While the singlet ground state of the dominant-
collinear-spin phase gives no response to an infinitely small magnetic field, the spontaneous
magnetization leads to a divergence of the magnetic susceptibility in the ferromagnetic
phase. We plotted the susceptibility of several points around the expected phase transition
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Figure 5.20: Inverse magnetic susceptibility versus temperature in the vicinity of the
dominant-collinear-spin/ferromagnetic phase transition. For each model the
susceptibility was calculated at a small magnetic field h = 0.05 (dashed
lines) and h = 0.01 (solid lines). The susceptibility for the models 6/m =
0.922,0.928,0.933,0.939, 0.944 (in the sense of the arrow) is depicted. Data
from TMRG (m = 200).

in Fig. 5.20. All curves show the expected linear Curie-law behavior for higher tempera-
tures. For 68 < 0.933m, the inverse susceptibility changes curvature and increases again
for T — 0. This effect is strengthened for smaller magnetic fields. For 6 > 0.939,
the inverse susceptibilities tend to a finite value xyn = 0.1 for a field h = 0.05 and tend
to a very small finite value xm ~ 0.02 for a field h = 0.01. Note, at this point, that
we need a small field to numerically calculate the zero-field magnetic susceptibility. This
has two consequences: 1. The applied field itself can generally drive the phase transition
which leads to an overestimation of the susceptibility which scales with the field strength
in the phase with singlet ground state. 2. The zero-field susceptibility will never show a
divergence for the estimate by difference quotient because the denominator is always finite
due to the finite field in our calculations. Thus, the susceptibility will be underestimated
for larger applied fields. Both effects can clearly be seen in Fig. 5.20. These observations
suggest a phase transition at 0.9337 < 6 < 0.9397.

At the estimated point of the phase transition, the position of the specific heat is minimal

with respect to temperature (see Fig. 5.11 a.). This behavior can be motivated by con-
sidering the plaquette states. At a first order phase transition we expect a level-crossing
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Figure 5.21: Thermal expectation value of plaquette operators <P2> (solid line) and

<P5<’L> (dashed line) versus temperature in the vicinity of the dominant-

collinear-spin/ferromagnetic phase transition. The expectation values for the
models 6/m = 0.928,0.933,0.939, 0.944 (in the sense of the arrows) is de-
picted. Data from TMRG (m = 200).

of two phases with different characters. The ferromagnetic phase will give the maximum
weight for the operator P, which projects on the S = 2 subspace. The dominating, but
not long-ranged order is locally described by the collinear-spin order parameter Ocq (2.21)
in the dominant-collinear-spin phase. lts expectation value can vary between —% and %
and is close to maximum in the dominant-collinear-spin phase. In order to compare the
influence of this competing orders, we consider the plaquette projector on the eigenstate

05 = 5 (V3log) + o)) (5.34)

of Ocel which has maximal energy. Both projectors are plotted in Fig. 5.21. The thermal
expectation values of the different models develop a significant distinction for low temper-
atures. The ferromagnetic systems (8/m = 0.939, 0.944) gain a high contribution of the
S = 2 state as expected and suppress the thermal expectation value which is sensitive to
collinear-ordering. The systems from the gapped phase (/7 = 0.928,0.933) have low

weight for the ferromagnetic states and a high contribution from <\¢§'L>>. Assuming

that these local expectation values give a correct estimate for the type of order present
in the ladder, the phase transition is located at point 6 where the dominating projector
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weight changes in Fig.5.21. This is in the range 0.93371 < 6 < 0.9397 as suggested by the
magnetic susceptibility data.

The specific heat has a peak at temperatures where states with a significant spectral weight
become relevant weight in the thermodynamic ensemble indicated by a steep slope of the
entropy. We can identify the relevant temperatures with the regions where the dominant
plaquette states rapidly win weight. These regions move to T = 0 when the phase transition
is approached.

The reason why the peaks are located at small temperatures comes from the fact that,
in the vicinity of the phase transition, we have a flat dispersion spectrum. This can be
seen in Fig. 2.1 The ferromagnetic plaquette state lies close in energy to the the rest of
the plaquette spectrum at the phase transition we consider here. In the middle of the
phase, the distance in energy of the plaquette excitations is maximal which is reflected in
a maximum temperature of the specific heat peak.

5.5.5 Ferromagnetic phase to rung-singlet phase

The first-order quantum phase transition [1] from the ferromagnetic to the rung-singlet
phase shows interesting behavior in the thermodynamics. In Fig. 5.22 we present the
specific heat data of four representative points near that transition. For the points in the
ferromagnetic phase, the specific heat scales like v/T (5.13) in the low-temperature regime.
There is a broad peak at a temperature T = 0.6J. When we cross the transition to the
rung-singlet phase we find that a very sharp and high peak at low temperatures arises.
The broad peak from the ferromagnetic phase is, however, still present almost at the same
position. For higher values of 6 the sharp peak broadens and loses height and shifts to
higher temperatures until it merges with the peak from the ferromagnetic phase at a value
of 8 & —0.380. A similar pronounced behavior can be seen in the entropy (Fig. 5.23).
Here, a steep increase at finite temperature corresponds to the peak which is found in the
specific heat.

We will give a description of this phase transition by considering a possible scenario. In a
second step, we will confirm the essential properties of this scenario and show the difference
between the assumptions and the situation faced in the ladder in detail by a comparison
with the numerical data.

Assume that the ladder rungs can carry either only singlets or triplets. No admixtures
between rung-singlets and rung-triplets are allowed by a high energy barrier. In that case,
the Hilbert space reduces to the product space of a singlet ladder state with only singlets on
the rungs and the complete Hilbert space of a spin-1 chain. The spin-1 chain is considered
to be in a ferromagnetic regime with a highly degenerate ground state and soft modes in
the spectrum.

We introduce a parameter 6 which varies the singlet and ferromagnetic energies such that
a first-order phase transition indicated by the level-crossing of singlet and ferromagnet at
0 =6.and T =0 is induced. At a point close to the phase transition the free energy of
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Figure 5.22: Specific heat near the ferromagnetic to rung-singlet phase transition. Plotted
is data for & = —0.4037 (solid), 8§ = —0.3977 (dotted), 6 = —0.3947
(dashed), and 8 = —0.3897 (dot-dashed line). The inset shows the same
curves for a different scaling ratio. The peak of the ferromagnetic phase
(solid line) survives at the inset of the rung-singlet phase. Here, we observe an
additional very sharp peak at low-temperatures. Moving further into the rung-
singlet phase the peak broadens, flattens and shifts to higher temperatures.

the singlet and the ferromagnet will read

Fim = Epm+aT3, (5.35)
Frs = Ers. (5.36)

at low temperatures. Egrpm and Egrs are the ground state energies of the ferromagnet
and the singlet state and a is a constant. The entropy of the ferromagnet is determined
by spin wave excigation modes with a quadratic dispersion and thus gives a contribution
proportional to T2. If the system approaches the transition point from the ferromagnetic
site, we will hardly see consequences in the thermodynamics because the singlet excitation
has a vanishing contribution compared to the ferromagnetic spin wave excitation spectrum.
More interesting features are expected in the singlet phase close to the transition point.
Here, we get a sudden high contribution to the density of states at the gap energy. This



116 Phase transitions
1.5
)
>
o
d o
1S
L
| | |
0O 1 2 3 4
Temperature T
1 ‘ T
0.8
el
(O]
= 0.6
[
>
b. & T E—
- : i .
S 04r : .
O P i
') |
o
x
L
0.2+ _
| | |
O0 1 2 3 4
Temperature T
Figure 5.23: a. Entropy near the ferromagnetic to rung-singlet phase transition. Data

is plotted for 8 = —0.4117 (solid), § = —0.3897 (dotted), 8 = —3/97
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b. Expectation value of the projector on ferromagnetic plaquette states (2.3)
near the ferromagnetic to rung-singlet phase transition. Plotted is data for
0 = —0.4117 (solid), & = —0.3977 (dotted), & = —0.3897 (dashed), and
6 = —0.3617 (dot-dashed line).
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results in a steep increase of the entropy and, thus, a sharp peak in the specific heat at a
characteristic temperature T¢,. We identify T, as the point where the ferromagnet wins
enough entropy to have the same free energy as the singlet which is energetically favored.
With this, it follows:

Ers — Erm ) ¢
_ji_jm> (5.37)

Fem(Ten) = Frs(Ten) = Ten = < 5

From the predicted level-crossing we further assume that the energy difference scales lin-
early close to the critical point

ERS - EFM x 0 — Gc (5.38)
leading to a scaling law for the characteristic temperature
Ten = c (6 — 6.)%3 (5.39)

with a constant c¢. At this point, one should remember that there is no phase transition for
finite temperatures in one-dimensional systems. So, we expect no phase transition at Ty
but a transition which becomes a smooth crossover-region with increasing temperature.
Still, the quite sharp low-temperature increase in the entropy of models near the phase
transition give a remnant of a true first-order phase transition at finite temperatures. In
this case, the steep increase would become a non-analyticity which gives the latent heat at
a finite-temperature phase transition.

Further consequences arise from the fact that the ferromagnetic states with a macroscopic
magnetization form the only excitations in the singlet phase. From this, we expect a jump
in the zero-field susceptibility at T, and, if a field is applied, a discontinuity from zero to
saturation in the zero-temperature magnetization. This is in contrast to the usual behavior
where after overcoming a singlet-triplet gap the magnetization continuously increases from
zero when a magnetic field is applied. It results from a common picture where the low-
lying excitations are formed by sparse rung-triplets within a bulk of rung-singlets. Yet, in
our simplified model these kind of excitations are suppressed and won’t contribute to the
low-temperature behavior. This argumentation follows [171] where a spin ladder model
class differing from ours was considered for a phase transition driven by magnetic field.
There, it was claimed that such a phase behavior is only possible when a certain amount
of frustration is present.

To check this scenario we recall the results from the exact calculations in Chapter 2. We
found an exact upper bound (6, ~ —0.317) and an exact lower bound (6, = —m/2) for the
phase transition. In this region, the lowest-energy plaquette states are the ferromagnetic
state and a state in the S = 0 subspace (see Fig. 2.1). The S = 1 plaquette states
(2.4) which mix rung-singlets and rung-triplets are sufficiently higher in energy. This could
be enough to keep the rung-singlet and rung-triplet spaces separated like in the suggested
model. However, the low-energy S = 0 state is not the pure rung-singlet state but contains
some admixture of rung-triplet states to be minimal in energy.
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Figure 5.24: Expectation value of plaquette projectors versus temperature near the fer-
romagnetic phase transition at 6 = —0.3947 (solid). We plotted the prob-
ability to find pairs of singlets, triplets, or a singlet/triplet-pair on a plaque-
tte. The curves are the thermal expectation values of (spsp) (lower line) and
((so*) + {-s0)) (upper line). TMRG-data (m = 300).

We checked the contributions of rung-singlets and -triplets for a representative point by
TMRG data (see Fig.5.24). Both expectation values stay constant in the low-temperature
regime up to T = 0.02. More than 80% of the rungs contain singlets. There is only a
small admixture of rung-triplets each of which has a rung-singlet neighbor with a probability
of 40%. At temperature T, the expectation values change almost abruptly. Above T,
the thermodynamics is dominated by the ferromagnetic states.

In Fig. 5.25, we give a zoom of Fig. 5.11. In this parameter region the specific heat
has a very sharp peak at low temperatures which can be identified with the characteristic
temperature T., where ferromagnetic excitations set in. The location of the peaks is given
for different parameters 6. The curve Tch(6) is highly consistent with an estimate of the
form (5.39) where we determined ¢ = 4.20 & 0.04. The location of the phase transition
6. = (—0.4067 £ 0.004)7 can even be given with a higher accuracy. This result is well
consistent with the result 6. = —0.407 from exact diagonalization and DMRG published
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Figure 5.25: Zoom of Fig. 5.11. Temperature T, for the sharp peaks of the specific heat
versus system parameter 6 (diamonds). The solid line is an estimate of the
form ¢ |6 — 6|3

in [1].

To check the influence of an external magnetic field, we considered a system in the rung-
singlet phase near the phase transition under a magnetic field h. In the inset of Fig. 5.26 the
magnetization m is plotted against the temperature for various magnetic fields. Coming
from high temperatures, the magnetization increases with raising field. For values h < 0.05
the magnetization falls off abruptly at a certain low temperature. For higher fields the
system reaches saturation mgyy = 0.5 for T — 0. At the point of the magnetization
change, the specific heat has the characteristic sharp peak which survives from the zero-
field case. For higher magnetic fields, the peak moves to lower temperatures. We expect a
phase transition at some critical field 0.05 < h. < 0.1 where the ferromagnetic excitation
spectrum is gapless. For higher fields, we observe an exponential low-temperature decay
in the specific heat which is the fingerprint of a phase with energy gap. The gap results
from the energy that is needed to break up a fully polarized state and to create a magnon
excitation. This gap grows with h as can be seen in the weaker increase of the specific
heat for higher magnetic field. Yet, in the plot for h = 0.1 still a visible small shoulder is
present which comes from the low lying ferromagnetic spectrum. A closer look at the low-
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Figure 5.26: Specific heat (inset: magnetization) versus temperature for model at 6 =
—0.3897 with magnetic field of various strength. Three models have zero
magnetization for T = 0: h = 0 (solid line),h = 0.01 (dotted), and h = 0.05
(dashed). Three models saturate for T = 0: h = 0.1 (solid), h = 0.5 (dot-
ted), and h = 1.0 (dashed). Models with h < 0.05 show the characteristic
sharp peak for low temperatures (h = 0 and h = 0.01 are almost indistin-
guishable). The magnetization for zero field h = 0 vanishes.

temperature behavior, though, gives an exponential behavior. Thus, the system is already
in the fully polarized phase with a gap at h =0.1.

We conclude that the above-presented scenario of a first order quantum phase transition
between a ferromagnetic and a singlet phase agrees perfectly with the numerical data. A
stable ground state with strong rung-singlet character exists on one site of the spectrum
and a ferromagnetic state exists on the other side. We also confirm a mechanism that
suppresses the mixture of rungs and triplets which is essential for the character and sharp-
ness of the transition. The scaling behavior of the specific-heat maxima was reproduced
correctly and on this basis the position of the quantum phase transition was estimated
with high precision. Finally, we found the expected behavior in the rung-singlet phase close
to the ferromagnetic phase when a magnetic field is applied. A similar phase transition
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to a fully polarized phase appears. This leads to similar signatures in the thermodynamic
quantities.






6 Conclusions
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In this thesis, we determined the finite temperature behavior of the spin ladder with arbitrary
cyclic exchange. The calculated properties include specific heat, magnetic and generalized
susceptibilities, and thermal expectation values of a complete basis set of plaquette opera-
tors. The proposed T = 0 behavior was confirmed and the picture of different competing
interactions was extended to finite temperatures. In this context, we were also able to ex-
plain some unusual features of the specific heat at special points in the model. The results
were obtained by Transfer Matrix DMRG (TMRG) and a supporting variational calculation
with a set of matrix-product states was done for T = 0. We developed a new numerical
technique QCTMRG and provided a thorough analysis of its performance. In the following,
we give a concluding summary along with an outlook for the different aspects of this thesis.

QCTMRG

Based on Nishino’s Corner Transfer Matrix DMRG (CTMRG) method, we developed a new
numerical approach for the calculation of thermodynamic properties of one-dimensional
quantum systems. The so-called quantum CTMRG (QCTRMG) is based on the Trotter-
Suzuki decomposition of quantum chains. The QCTMRG method separates the arising
classical model into four quadrants and expands them iteratively while the basis of the edge
states is kept at a fixed size by truncation via density-matrix projection. In contrast to the
classical CTMRG a significant anisotropy evolved from the existence of a well-distinguished
real space and a Trotter direction and the calculation of the trace in order to obtain the
partition function demanded periodic boundary conditions of the two-dimensional plane.

We implemented the algorithm in object-oriented design in the C++ programming lan-
guage. For the resource-consuming matrix-multiplications, routines from a specially opti-
mized high-performance library were adopted. The free energy densities and thermal energy
expectation values at the chain centers have been successfully calculated for the classical
Ising chain and the antiferromagnetic spin-1/2 Heisenberg chain by the Quantum Corner-
Transfer Matrix DMRG. Reliable results were given for finite temperatures and system
sizes.

QCTMRG and the TMRG have the same asymptotics for the running time in the large-m
limit. TMRG has less storage use though. The periodic boundary conditions implied by the
trace in the partition function destroys the advantages from the development of CTMRG
over TMRG. Additionally, the flat eigenspectrum of the horizontal density matrix gives bad
estimates at high temperatures.

Outlook: If finite-temperature data in the thermodynamic limit is aimed at, the quantum
TMRG method is certainly still the method of choice. At least one of the mentioned
problems should be solved to make the QCTMRG technique an attractive option.

TMRG

The Quantum Transfer Matrix DMRG (QTMRG or shorter: TMRG) is a powerful nu-
merical algorithm for the calculation of the thermodynamics of one dimensional quantum
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systems. In the framework of this thesis, a high-performance implementation of the TMRG
method was developed which provided the thermodynamical properties of the spin ladder
with cyclic exchange.

The TMRG method bases on the DMRG which can be interpreted as a variational method
in the space of matrix-product states [104, 110]. Asinvented by S. R. White in 1992[93] the
fundamental idea is the density-matrix projection in order to truncate the Hilbert space at
each step of an iterative enlargement procedure. This concept was extended successfully to
the application at finite temperatures [117, ]. Principally, the one-dimensional quantum
chain is mapped onto a classical two-dimensional chequerboard model by a Trotter-Suzuki
decomposition. The thermodynamics is captured in the largest eigenvalues of the quantum
transfer matrix which is determined by DMRG. We conclude that the TMRG algorithm is
indeed an optimal choice for our purposes. Alternatively, quantum Monte-Carlo simulations
are often chosen to study thermodynamic properties, but the TMRG has some fundamental
advantages: The thermodynamics are treated in the exact thermodynamic limit of the
quantum chain. This is guaranteed by the underlying transfer-matrix approach. Thus
no finite size corrections affect the TMRG data. More importantly, the TMRG does not
suffer from the “sign problem” known from quantum Monte-Carlo simulations of frustrated
models.

Outlook: Generally, the family of DMRG methods is rapidly growing. Much progress
has been made within the last few years. A short overview about the recent work has
already been given in Section 3.3.3. The recent developments in DMRG theory [102]
lead to a better understanding of the method and the connection between the quality of
the density matrix projection and the entanglement of the underlying states. Detailed
studies of this behavior are still missing in the TMRG case. Major differences to the
DMRG method have to be faced: Both transfer matrix and reduced density-matrix are
asymmetric and there is still no rigorous proof in which way to choose an optimal density
matrix [116, , , : , |. Further, no agreement has been reached about
the definition of an entanglement measure for finite temperatures, see [103] for a review.
These challenges span an interesting field of research.

Plaquette operators

Spin models usually possess some symmetries which often include translational invariance
and conservation of the total spin S and its z-component. On the spin ladder, we have an
additional parity symmetry which divides the Hilbert space into two parts represented by the
number of rung-singlets modulo 2. Regarding these symmetries on the ladder, we provided
a complete set of 16 basis states that conserve the quantum numbers associated with the
symmetries. Except for a two-fold degenerate S = 0 subspace, each of the remaining
14 plaquette states can be uniquely determined by its quantum numbers. It is now an
illuminating task to write down the Hamiltonian and relevant operators in terms of these
plaquette eigenstate. Thus, a representation by plaquette-state projection operators is
achieved. This approach is frequently used in the context of matrix-product ground states
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[63, 65, 71]. By this representation, we already obtain all eigenvalues of the plaquette
Hamiltonian which can give already a rough sketch of the expected phase. At the same
time, these plaquette energies provide a lower bound to the local ground-state energy. If the
ground-state energy has the same local energy as the plaquette state it is to be considered
an optimal ground state. An exact upper bound to the ground-state energy is given by
variational states. We provided variational states of the matrix-product type [59, 60] which
were essentially able to capture the proposed ground-state characteristics.

Two positive aspects emerged in the consideration of thermal quantities:

1. Different types of dominating order were proposed for the various phases of the model.
Assuming the local operator associated with this order keeps the symmetries of the model,
there exists an operator representation in terms of plaquette projectors. Reversely, if all
thermal expectation values of the 16 plaquette projectors plus one overlap expectation
value for the S = 0 subspace are known, the thermal expectation value of an arbitrary
operator can be constructed without further numerical TMRG calculations. In fact, the
number of projector expectation values to be considered reduces to five plus one overlap
when SU(2) symmetry is fulfilled.

2. The analysis of the thermal expectation values of the projectors provided valuable
information about the specific heat peaks. Level crossings in the projector expectation
value often indicate a sudden rise of entropy and, thus, a peak in the specific heat. If the
types of order which are present in the model are known, the expectation values can give
important information where certain states become important. Yet, no information about
true long-range order can be provided, but this is not supposed to exist in one-dimensional
system at finite-temperature anyway. For a quick and informative analysis of specific heat
data especially in the vicinity of phase transitions it turned out to be a useful tool.

Outlook: The consideration of thermal expectation values of local eigenstates can easily be
extended to other systems when thermodynamical data is considered. They are feasible by
almost no extra cost in the TMRG algorithm and provide important evidence for proposed
spectral behavior.

Thermodynamics of the spin ladder with cyclic exchange

In this work, a picture of the thermodynamical behavior of the whole parameter range of
the spin ladder model with cyclic exchange

H=cos® Y S;;j-Srjy1+c0os0) S1;-Sp;+sin6> (Pa+P5") (6.1)
T€{1,2},j J J

has been given, see Fig. 6.1. At this point, we will summarize the essential features of the
phase diagram.

Rung-singlet phase. At 6 = 0 the ladder is a an gapped phase with a unique ground
state and exponentially decaying correlation. The ground state can be sketched as singlets
sitting on the rungs of the ladders. The rung-singlet phase extends when a finite value
of ring-exchange is turned on. We showed that the singlet expectation value is indeed
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Figure 6.1: Phase diagram of the spin ladder following [1, 55].

dominant in this phase. The specific heat shows a single Schottky-like peak and a clear
exponential decay for T — 0. A similar behavior is seen in the magnetic susceptibility. The
specific heat and magnetic susceptibility curves in this phase were found to be consistent
with previous results [50]. The peak of the specific heat moves to lower temperatures when
a positive amount of cyclic exchange is switched on. This is caused by the flat dispersion
spectrum of the solitonic and magnon-excitations of the staggered-dimer phase which get
lower in energy in vicinity of the phase transition.

The position of the second order quantum phase transition is still under discussion [169,

, 54, 1, , 51]. We observed a level crossing in the thermal expectation values of
the relevant operator between 6 = 0.05007 and 0.05567. This is no proof, but may be
considered as a strong indication for a phase transition to the staggered-dimer phase at this
point. The result is consistent with some of the more recent data 6 = (0.0597 +0.0003)
[170] and & = (0.051 £ 0.009)7 [51].

Staggered-dimer phase. The picture of the ground state in the staggered-dimer phase is
characterized by the arrangement of dimers on the legs in a staggered order. This order
is long-ranged and leads to a doubly degenerate ground state. The phase was shown
to possess a very small excitation gap [1]. An adequate way to study a system with
a degenerate ground state is to apply a small external symmetry-breaking field and to
measure the response of the system. The sensitivity of system for small perturbation is
then captured by a generalized susceptibility. In the staggered-dimer phase, we were able
to show that the susceptibility which is associated with the staggered-dimer order diverges
at a representative point € = 7/9 from the staggered-dimer phase for T — 0 while it goes
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to zero or to finite values in the other phase. This is a signature of the long-range order
present in the ground state. The specific heat in this phase has a characteristic double
peak structure. In [158], a set of possible low-lying excitations above a matrix-product
ground-state was given exactly in terms of magnons and solitonic excitations. For the
staggered-dimer phase, we propose similar excitations which lie low in energy and have a
flat dispersion. The rest of the spectrum sets in at a higher energy scale. This scenario
leading to the double-peak in the specific heat can be supported by thermal expectation
values of plaquette operators.

At 0 = arctan(1/2) =~ 0.14767, the model is self-dual and shows a U(1) symmetry because
it is invariant under a transformation (1.7) with arbitrary ¢ [42]. In the vicinity of the phase
transition, the low-temperature specific-heat peak becomes smaller in size than the second
peak. A minimum is reached exactly at the transition point. In [131], a similar observation
was made for a spin ladder under magnetic field.

Scalar-chirality phase. The system enters a state with scalar-chiral long-range order
which corresponds to the staggered-dimer order under the duality transformation at 6 =
arctan(1/2) [1, 54]. The associated susceptibility for this phase diverges at a representative
point 8 = m/3 for T — 0. For representative points from other phases the scalar-chirality
susceptibility converges to finite values for T — 0. The specific heat maxima move to
higher temperatures for higher values of 8 which indicates that the dispersion of excitations
inclines again.

The phase transition from the scalar-chirality phase to the vector-chirality phase (6 = 0.387
[54] and (0.39 £ 0.01)7 [1]) was claimed to be in the same universality class as the rung-
singlet to staggered-dimer transition [55]. At 6 ~ 0.4m, we observe a point where the
high-temperature peak in the specific heat becomes a shoulder of the other peak. This
behavior could be related to the phase transition.

Dominant vector-chirality/collinear-spin phase. In [1], the dominant vector-chirality
phase was introduced as a short range ordered phase with a unique ground state and a fully
gapped excitation spectrum similar to the rung-singlet phase. The vector-chirality phase
shows a clear maximum in the specific heat but it has a pronounced shoulder at higher
temperatures which is a remnant of the double-peak structure observed in the neighboring
scalar-chirality phase. The shoulder vanishes for increasing cyclic-exchange.

At 8 = 1 — arctan(1/2) there is a crossover region to dominant-collinear-spin correlations.
In [1], it was found that the correlation lengths are very small in that region. This behavior
leads to a strong peak in the specific heat data which corresponds to the short range-
ordering.

At 6 = 0.94m, a first-order quantum phase transition to the ferromagnetic phase was
proposed in [1]. While the singlet ground state of the dominant-collinear-spin phase gives
no response to an infinitely small magnetic field, the spontaneous magnetization of the
ferromagnet leads to a divergence of the magnetic susceptibility at T = 0. We calculated
the magnetic susceptibility in the vicinity of the predicted phase transition and found that
the divergence sets in between 0.9331 < 6 < 0.939w. At the estimated point of the
phase transition, the position of the specific heat was found to be minimal with respect
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to temperature because there is a flat dispersion spectrum for the low-lying states in the
vicinity of the phase transition motivated by a dense spectrum of plaquette eigenenergies.

Ferromagnetic phase:

The specific heat of the ferromagnet has a single peak that moves to higher temperatures
as 6 is increased. It declines again in temperature when the phase transition to the rung-
singlet phase is approached. This can be motivated by the distance of the ferromagnetic
ground state, which is an optimum ground state, to the other states in the energy spectrum
of the plaquette.

At 6 = (—0.4067 £ 0.004)7w, we observe a rather unusual first-order quantum phase tran-
sition from the ferromagnetic phase to the rung-singlet phase. States that contain both
singlets and triplets on a plaquette are higher in energy than the ferromagnet and the
plaquette singlet state as can be seen from the plaquette energies. Thus we can consider
a situation where a singlet ladder state (rung-singlet phase) and the ladder ferromagnet
perform a level-crossing at the phase transition. All other states are high in energy can
be neglected—to a first approximation. This level-crossing leads to a sharp peak in the
specific heat of models close to the phase transition in the rung-singlet phase. This peak
corresponds to a sudden jump in the entropy caused by the emerging ferromagnetic spec-
trum. We predicted a scaling law T¢, = ¢ (6 — 96)2/3 for the peak position which is highly
consistent with an observation from the TMRG specific heat data. Additionally, we showed
that a similar phase transition can be driven by an external magnetic field.

As a conclusion, we summarize the most important results of our study:

e The proposed T = 0 phase diagram of the spin ladder with cyclic exchange is consis-
tent with our results from thermodynamic studies. Although no phase transition for
finite temperatures is expected in one dimension, a rich T > 0 behavior was found.

e We observed a double peak in the specific heat of the broken symmetry phases.

e A caricature of a first order phase transition for T > 0 was found in a quasi one-
dimensional spin system.

Outlook:

e In order to clarify the exact position of the second order quantum phase transitions,
further studies with the generalized susceptibilities could be helpful.

e It seems to be a promising task to study the thermal behavior under magnetic fields
at different points in the phase diagram. Mila [174] predicted the emergence of
magnetization plateaus if frustration is present in the model.

e The thermal studies could be extended to other points in a general spin ladder system
[55] or to include anisotropies. It might be fruitful, for example, to find a connecting
line from the dimerized phases to a model with matrix-product ground state [158, 42]
in order to clarify the details of the excitation spectrum.
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e In principal, the TMRG method allows the calculation of correlation lengths as well.
However, it is a sophisticated task to deduce the order parameter associated to the
correlation lengths from the numerical data. In the case of the spin ladder with its
rich phase diagram, it appears to be worthwhile to start an attempt.






A Matrix product states as variational
states
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Upper bounds for the ground state energy will be derived by a variational approach adopt-
ing matrix product states. Similar calculations have been done in [58] for the bilinear-
biquadratic spin-1 chain. Lower bounds are given by the lowest eigenvalue of the local
interaction as derived earlier. Note that the lower bound is only reached if the ground state
is an optimal state, like the ferromagnetic ground state or the VBS state.

We expect the matrix product variational states to give us a picture of the ground state in
different parameter regimes.

The general form of the transfer matrix of a given operator A is

(g11|Alg11) (g12|Algr2) (911|A|g12) {912|Alg11)
T(u) = <921‘ 921> <922 A‘922> <921 922> <922‘A‘921> (A1)
(911|A|g21) (912|A|g22) (911|Alg22) (912|Alga1) | '
(p1|Alg11) (922|Alg12) (921|A|g12) (922|A|g11)
o SRUISRVTS
u|Sop), + |t —V2|t
gi(u) = ( R o ) (A-2)
\@‘L>/ ulso), = |to),
follows the corresponding transfer matrix (site indices are omitted)
ait+a+az+as ai3 —as — de —dg — a10
T(u) = ai4 ar+a—az—as a1l — a2 a7 — ag
- ar + ag —3ag + aio dy —dy —asz+ aa dis
ail + a1 —as + ag aie ay —dy+az— as
(A.3)
with
ay = u*u<So{A}So> ar = <to{A}to>
a3 = u*<So‘A‘to> dq = u<t0‘A‘So>
as = V2u'(solAlty) a = V2(to|A|ty)
o = Var(sAle) a5 = Va(nlale) e
3 = VEu(tAlo) a0 = VE(E|Al) |
= Vault |Als) = VA |Alk)
a1z = 20t |Alty) ais = 2(t_|Alt)
ais = —2<t_|_|A}t7 aig = —2<t7‘A|t_|_>

For a reduction of the matrix, we assume A = A hermitian. This leads to the transfer
matrix

a+a+ b+ b* di —C1 — C (—c1 — o)*
Ti(u) = ds ay+a—b->b* (3 —cq)* C3— Cq
G+ (—c1+ )* a—a-—-b+b e
(c3+ c)* —C1+ G e ai—a+b—b*

(A.5)
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with
a = vulslAls) @ = (t|Al) b = u{s|At)
G = ﬁu*(so\A\t+> @ = \/§<t0’A|t+> (A.6)
c3 = \/§u*<so‘A‘L> Cy = \/§<t0’A|L> -
dy = 2<t+‘A‘t+> d = 2<t_‘A|t_> e = —2<t_|_‘A‘t_>.
If A conserves S%-value and is symmetric under spin-flip we find the transfer matrix
a1 +ap+b+b d 0 0
B d ai;+a,—b—b* 0 0
T(U)— 0 0 aa—a—b+ b 0
0 0 0 al — az + b — b*
(A7)
with
ar i u*U<So’A|50>, a2 32 <t0|A‘t0> (A.8)

b U*<50‘A’t0>, d 2<t:|:}A‘ti>.

The most important transfer matrix is the transfer matrix of the identity operator. Here,
we calculate

81=‘U|, agzl,bzo, d=2 (A9)
which gives
lul> +1 2 0 0
- 2 lul? +1 0 0
0 0 0 lul? — 1
for arbitrary complex u. The transfer matrices eigenvalues and -vectors are:
x1 = |uP+3, |um) = %(1, 1,0,0)t
_ 2 = Ll _ t
X2 = |u|2 1, |w) = J5(1,-1,0,0) (A11)
xs = |u?—1, |us) = (0,0,1,0)t
x4 = |u®—1, |u) = (0,0,0, 1)

In order to obtain the energy of the variational state, we have to calculate the expectation
value of the local Hamiltonian which affects two sites. Thus, we consider the state matrix
of two sites i.e.,a plaquette of the ladder:

a<u,cr>:g,(u)><g,+1<au):(‘?11> '?12>> (A.12)

‘921> |922>

with
1911) = ou?|seso) + u(|soto) + o|toso)) + |toto) — 2|t t-) (A.13)
5) = V2 (ullsots) +oltsso)] + [[tot) ~|41o)]) (A14)
6) = V2(ullsot)+alts0)] - [[tot) — ¢-t0)]) (A15)

G02) = ou?|seso) — u(|soto) + oltoso)) + |toto) — 2| t-ty ). (A.16)
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We can represent the entries of the state matrix in the basis from Section 2.1:

911) = V2|t )+ (lo+ulel, )+o-11|e5 ) +VE|eh ™ )+ou2|e) (A.17)
G12) = 2|ot,,)-u(lo+uel, )+lo-11[er, ) (A.18)
|o1) —2lot)+u(lotulol | )+lo-11|er ) (A.19)
|G22) = v2|oi,) -2 (lo+1l|ol, )+lo—11[65, ) ) +vE[ol* )+ou|od) (A.20)

With the auxiliary state matrices

oh)  —valer,) ) oy —vael )
L 0 +1 ' H: 0 +1 A21
& (fz\aw ek ) T ey ey A

|¢i<0> _\/E‘d)i( > )
~ 2, A.22
o ( V2o, —ler) "2
the state matrix (A.12) takes the form
g(u,0) = —V2g1 + f[0+ 1]g! + ﬁ[a— 1]g5
(au2}¢>L>+ﬂ¢“X>> . (A.23)
Special cases:
Gu=0) = —V2gi +V3|ey™) (A.26)
Jg(u— ) = 0u2’d)0 ) (A.27)
Glu=10=-1) = —\/§(gf+gf)—<{d>o> \/_\chX))
2[ol)
to So [
- V3
BN TR
Vil Ry )
Gu=io=-1) = —v2(g-+ig})+ (}¢&> + \/§\¢B'X>) (A.29)
-2 ><>

The transfer matrix for hermitian and parity as well as S%-conserving two-site operator A
has the form

T(u) = (A.30)

O O 0O v
S O v O
o o O O
™ O O O
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with

a = (gu|Algu)
= 20 Al + 30 AI0E) + 1 (1o + 1208l JAlal) + 1o — 1P(0% 1 A10%,)
+V3 (ou?(8h|Ald5) + 0" u*?(d5 \A|¢” ) + lof?lul* (8¢ | Alog )
¢ = (GulAlgn)
= 4o, |Alet,) +1ul (Jo + 1201, |40, ) + 1o — 1(95,,[A]95.,))
e = (911|A|g22)
= —2(b|alod) + 36 Al6k) - (1o + 124, Alol,) + lo — 112085 4]6))
+V3 (ou? (¢ |Alog) + 0" u (g5 A0} ™)) + loPlul* (95| Aldg )

The transfer matrices eigenvalues and -vectors are:

x1 = a+c, |um) = 1(1100)t

X2 = a—c, |w) = f(l —-1,0,0)¢ (A31)
X3 = e, lus) = (0,0,1,0)¢ '
Xs = e lus) = (0,0,0,1)¢

For SU(2)-symmetric operators the eigenvalues are

x1 = 6(of|alor)+3(al*|alol* )+ (1o+112(0) A6 )+lo-112(s} |A[61)) (A.32)
+V3 (0w (ol | Al g )+oru?(of | Aloh* ) +ollu (of |4 eg) (A.33)
X234 = -2(of|alor)+3(eh|A|e)) 1L (lo+112(o) |A|6] ) +io-12 (07| Als5)) (A.34)
+V3 (0w (eh |Alog ) +orur (5| Aleh*) ) +ol2lu* (o5 | Alss) (A.35)
Regard A =id:
a = 5+uf(lof +1) +|o|ul* (A.36)
c = 4+2[ul?(lo]* +1) (A.37)
e = 1—|u(jof +1) + |o)*|ul* (A.38)
with this: (A.39)
k1 = (Ju®+3) (loul* +3) (A.40)
koza = (lu?—=1)(Joul>-1) (A.41)

Regard A = H:
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3|uf”

m o= ——J+ (3J 4eye) + = (lo+ 1°J + |o — 11> (=3J — 8Jeyc))

1
+V3 (au + a*u*2> £ (J —2Jeye) + —|<7|2|u|4 (=3J 4+ 4Jeyc)
|u |2

M4 = —J-I— —( 30— 4deye) — — (lo + 1[2J + |0 = 1| (—3J = 8Ueyc))
+V3 <au + 0*u*2> g (4 —2Jeye) + Z|a|2|u|4 (=3J 4+ 4Jeye)
Use the representation u = re® and o = re®:
m o= - ( 5J — 4Jeyc) + ((5 +1+2scosa)) +(s”+ 1 —2scosa) (—3J — 8Jgyc))
+3sr2cos (2¢ + ) (J — 2Jeye) + Zs2r4 (—3J + 4Jeyc)
= Z (=54 — 4Jeye) + r?(s* + 1) (=J — 4Jeye) + 4sr? cosa (J + 2Jeyc)

4
+4sr?cos (2¢ + @) (J — 2Jeyc) + 5°r* <—J + gjcyc> }

With these calculations, we easily obtain the energies of a class of variational states of the
matrix product type for the spin ladder with cyclic exchange.
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APPENDIX A. MATRIX PRODUCT STATES AS VARIATIONAL STATES

SZ

SZ

SZ

SZ

SZ

SZ

SZ

SZ

SZ

SZ

SZ

|5) =

+2

+1

+1

+1

+1

=0

0

1

’¢2¢2> } ty >
_ 1 t+ to
o = H(150+12))

(S=1,P=-1k=0)

(1e-10))
oy = H(-10)
(S=1,P=1k=m)

) o . (A.24)
) = S|l )+ )

to So
o) = H(1 0]

H
Sl

£

% _ 1 to | %

o = H(0-1D)
(S=0,P=1,k=0)

e = 1)

o = & (1011 -150)

S (b -vales)) . b =5 (Valehy+1es)  (a2s)

2

Table A.1: Reasonable choice of basis states for a single plaquette, leg symmetrized.



B QCTMRG - Technical details
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In this appendix, details of the implementation of the QCTMRG algorithm shall be pre-
sented. A smart choice of the matrix multiplications can drastically lower the running time.
In Section B.1, we give an estimate of the resource consumption in the various QCTMRG
iteration steps. A steadily-growing partition function during the iterations requires normal-
ization of the tiles. Details are presented in Section B.2.

B.1 Running-time analysis of the QCTMRG algorithm

An essential feature of the QCTMRG-algorithm is the composition of various tiles which are
mathematically implemented as tensor or matrix multiplication. Running time and storage
consumption of the algorithm delicately depend on the order in which the tiles are put
together.

For instance, regard a multiplication of three n x n-matrices A, B, C. The straightforward
computation

Dap = ZAa,iBi,jCj,b (B-1)

i

requires four nested loops (one for each variable), giving an order O(n*) for the running
time. The storage consumption stays of order @(n?), which is the size of the matrices.
Remember that constant prefactors do not play an essential role as we choose n sufficiently
high. A different approach to the matrix-multiplication problem introduces an auxiliary
n X n-matrix M and the computations

Mj; = ZAa,iBi,j- D,p= Z M,;,iB; b (B.2)

which both include the summation over one variable only. While the order of storage used
(O(n?)) stays the same in this case, the running time, originating from three nested loops,
reduces to O(n3).

Even more drastic decrease of resource consumption can be achieved by the smart choice
of computational order in the case of tensor multiplication, where the number of variables is
generically higher. So, in terms of efficiency, a detailed description of the tensor multiplica-
tion is an essential requirement to a successful implementation of the QCTMRG-algorithm
and shall be given here.

In the following, we refer to the picture of the system consisting of two-dimensional tiles
described above. A tile called W, e.g., will be represented by
°
W n, (B.3)

u
~

with the variables r, 0, I, u being states at the right, upper, left and lower edge of the tile.
In this description, we review the iteration part of the QCTMRG-algorithm (introduced in
Section 3.4.1), providing the underlying multiplications.
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Running-time analysis of the QCTMRG algorithm

i. Construction of initial tiles
Initial representations of the tiles

~ ~ ~ ~ ~ ~ ~

o) o) o] ) o) o) o)
(¢ Cp 1), (0 Cr o), (e« PL 1),(l Ppo),( R/ n,UWDNUXrnr

~ ~ ~ ~ ~ ~ ~

required in the renormalization procedure are constructed.

ii. Composition of enlarged system tiles

Enlarge Row-to-row-tiles:

{or.2} & &
(¢« P n= Z (o 'DL v W n
{U\l,}} v a9 2

(Pr. P.x. Prx analogously)
Storage: O(m?S3), Running time: O(m?S*)

Enlarge Column-to-column-tile:

~ (h By n)

o b
(a2} By (nan)= Zh: -

= (b W 1)

Storage: O(m?S*), Running time: O(m?S®)

Create auxiliary tiles:

{012} 2 &
(¢ TL nN= Z (¢ CL V(v By n, Tg analogously
{0} v U up

Storage: O(m3S?), Running time: O(m*S?)

Compose enlarged corner tiles:

{012}
~ (¢ Tr n)
{03,2} {h12}
¢ Co tnab=) -~
ug o0} {h12}
{u2 {h12} ~
(¢ P n)
{Ul,lz}

(Cr, Crx, Crx analogously)
Storage: O(m3S3), Running time: O(m*S*)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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iii. Calculation of expectation values
a) Odd-site system
Firstly, left auxiliary tiles are build:

{g12}
- (¢ Cr {n2d)

® {hy 2}
(¢ V| {ro3h)= g {hﬁ} , Vi X analogously (B.9)
1,2

— {g1.2}.{h12} o T rn )

{9\1,/2}

Storage: O(m?S), Running time: O(m*S3)

Next, construct right auxiliary tiles:

~ (h Cr ®)
© L

({2} C,UDR 9= - (B.10)
- (b Pr o)

Storage: O(m?S*), Running time: O(m?S®)

g
~ ({h2} CPgr )
® h
(thas) Vi &)= E; - (B.11)
- 7 ( kb Cgr e
<
Storage: O(m?S), Running time: O(m*S)
Finally, get partition function:
Z = Z (¢ VI {vi23){vi23} Vg o) (B.12)
{v1.23} < R

(Zx,, analogously)
Storage: O(1), Running time: O(m?S)

Absorbing the constant S into the prefactor, we accomplish the calculation of the
expectation value in a time O(m®) requiring a maximum storage of order O(m?).
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b) Even-site system

After construction of auxiliary tiles. ..

{g12}
~ (e CL {n2})
2 {ugd
(¢ V| {no234})= Z ~ (B.l3)
. {h1,2}
=~ {91.2}.{h1,2} =
(¢ CL {mad)
{9&/2}
(V. x, Vr analogously)
Storage: O(m?S?), Running time: O(m*S%)
...we get the partition function:
Z= > (Vi vaDuna} Vg @ (B.14)
{vi23} < s

(Zx,, analogously)
Storage: O(1), Running time: O(m?S)

Here, the total time is of order O(m*) and the storage of order O(m?).

iv. Construction of reduced density matrices
After the enlarged tiles are renamed to the original name, the reduced density matrices
can be build. In the following, the size of the state space at the edges of the employed
tiles is mS. Initially, we again compose left and right column tiles:

~

g
~ (¢ Cp 1)
L4 h
. = = B.15
(¢ Vi {na) >, - (B.15)
- (o CL )
<
(Vk analogously)
Storage: O(m?S?), Running time: O(m*S*)
With these, two auxiliary tiles are build:
° ° 0
(1 HL 9= _ (= CL v) (v} Vg ) (B.16)
L v L N

(Hg analogously)
Storage: O(m3S%), Running time: O(m*S*)
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By now, we can construct the horizontal reduced density matrices:

~ —

h o
pr(o,u) = Z (¢ Cp v) (v HL o) (B.17)
h

v,h &

(pr analogously)
Storage: O(m?S?), Running time: O(m*S*)

The vertical reduced density matrix is easily composed:

~ ~

pv(Lr) = (o VL {roD({hv} Vi o) (B.18)
v L] L

~ ~

Storage: O(m?S?), Running time: O(m3S3)

So, in the construction of the reduced density matrices, we keep an upper bound of
O(m*S*) time steps and storage use of order O(m3S3).

v. Diagonalization of reduced density matrices
The diagonalization of right, left, and vertical reduced density matrix is performed by
the routine DGEEVX from the cross-platform open source software “Linear Algebra
Package”. It takes a number of O(m3S3) time steps [175], and uses storage of order
O(m?S?)

vi. Renormalization
The renormalization process can be performed in O(m*S3) time steps with a maxi-
mum storage use of O(m3S3).

Overall, we expect the running-time to be of order O(m®) and storage use of order O(m?)
within the QCTMRG algorithm. The local basis size S has been absorbed into the prefactor.

B.2 Normalization of growing tiles

While our interest lies in the calculation of (local) expectation values of a certain quantum
mechanical system, we have to deal with the partition functions of an iteratively increased
classical system in the QCTMRG-algorithm. Thus, the partition function is a rapidly
growing entity, leading to several huge matrix entries in the tiles’ numerical representation
in the renormalization step. So, the program runs the risk of exceeding the numerical
capacity of the variables of the system. To avoid this problem, a constant prefactor is
extracted in each renormalization step.

Regard, for example, the corner tiles C9, Cl belonging to the first two iteration steps. In

a normalization procedure, we divide C? by the maximum of the absolute value ¢? of its
entries, yielding the new tile C? = 1/c°C?, labeled by a tilde, with entries between 0 and
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1. The same normalization procedure is applied to the tiles C%, P2, P3 and P2. Note, that
the tilded tiles as well as the maximum entries are stored in each iteration step rather than
keeping the original tiles.

Within the QCTMRG-algorithm,the system-tiles are successively increased, leading to e.g.

~ ~

o1 02
~ (e C? i) (v P\(/) n)
tor2) J g
¢ Ct o) = Y - - (B.19)
(i 2} vi,va,h1,ho 10 2
(¢ P v2) (v W )
a 2
s @
(' CE V1) (V1 P\(/] r1)
= CEP\O/I)E Z s , (B.20)
v1,va,hy,ho L 2
(o PLO ) (v W n)
4 &2
for2}
(e Ci {r2})
{Ul,}}

employing the stored variables. In the algorithm, the tilded tiles are composed to form
the new tile C}, which itself has to be normalized to C} = 1/¢}C} like the tiles in the
preceeding iteration step. We find as results for the first iteration steps

= Q€. i =clpdplCl (B.21)
PP = PP, P! =pip}P} (B.22)

which can be generalized to

i

it = ot [T clelel | Gt (8.23)
=0
ptt = HWL PiFL. (B.24)
Jj=0

Similar considerations define the correspondence between the partition function Z and



149

composition of the stored corner tiles at step 7/ + 1:

2 2
(o« C[PP vy m CFY o
hy
Zitl = ~ B.25
1% vzh: h hy ha ( )
» V2,11, H P
PP e Ct w) G
s ha
(o« Cftw) mu Cgloo
: n Z
1% \; h hy h ( )
1.V2,011.,112 o~ ~ -
(¢ Chw) (e CEFY @)
Zi+1
with .
1
, P N
741 = (e 1) T] (cl chel el ply) (B.27)
J=0

In the calculation of thermodynamical quantities we are either interested in the logarithm of
the partition function (leading to the free energy) or in the ratio of the partition function of a
locally modified system and the partition function of the original system (other expectation
values). In the latter case, we can completely ignore the prefactors of the system tiles, since
they appear in both partition functions and, thus, only the normalized tiles are required. In
the former case, it is sufficient to store the logarithm of the prefactors, then the product of
large prefactors in (B.27) is commuted into a sum of smaller numbers, which is numerically
easier to handle. With the logarithm of z/t1, the free energy density at iteration step i+ 1

| T T, . -,
Fitl _IInZ""l:—Z(Inz’+1+InZ’+1) (B.28)

is added together by the logarithm of the prefactor z'*1 and the logarithm of the partition
function calculated by the normalized tiles.






C Reduced density matrix of the Ising chain
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For testing the numerical algorithms, it is useful to make a comparison with analytical
data. An easy-calculable, classical model is the antiferromagnetic Ising chain (4.5). In this
appendix, we provide an exact formulation of eigenvalues and eigenvectors of the vertical
transfer matrix and of the reduced density matrix. Additionally, we present a data table for
direct comparison to TMRG-output at the end.

The local transfer matrix (3.7) is

l+1
erk

AR, ST sre (C.1)

Tkk+1 = 9, 151941 s

We assume periodic boundary conditions, i.e. Sop41 = s1. For simplicity, we now fix i = 1.
Building up a vertical transfer matrix

1 3 A
T(S(uzl..2M)' S(p,:l..QM)) = E , H T k 1, 2kT2k 2k+1
{sﬁ} k=1
uw=1...2M
M
— —€J(53, 5353 S5k)
Z H Sk Sok1 52k Sk 1552k+1 52k653k+1 523ke
W k=l
uw=1...2M

_ —eJ(s}, 5%+5253)) 5
Z H 6521( Si1 52k+1 Sgke (C )

{52} k=1

one sees that all 5 have the same value s as a consequence of the Kronecker symbols.
So the transfer matrix

1 3 _ Z H —eJ(s}, 52 +52s3,)
T(S(“:l--2M)' S(l‘:l--2M)) 652/( k-1 S§k+1 523ke

{s?} k=1
M M M
= (H 555’(1,521‘() %X 2 cosh [6./5(2 521k +S§k) X (H 555,’(’55,“1) (C.3)
k=1

k=1 k=1

can be written in a much simpler way.

Alternative representation of 7

A vector in this Hilbert space Hs of 2M spins is:

’Vs> = Z V5(51,52,...52/w)’51>® ’52>®"'®}52M> (C4)

{su}
u=1...2M

We define a new, smaller Hilbert space H; spanning the states of M spins. It consists of
a tensor product of states of all spins at sites 2k, k = 1... M. Here, a vector reads:

viy=" > ve(tito,.. t)|a) @ 1) @ -+ ® [tm) (C.5)
{tu}



154 APPENDIX C. REDUCED DENSITY MATRIX OF THE ISING CHAIN

In order to allow interaction between both Hilbert spaces, two projection operators are
introduced:

M

Py = Z ‘tl, to, ... tM> H 6tk,52k652kx52k71<51’ 52, ... 52/\/1‘ (C.6)
{tu}.{su} k=1
M

Pﬁ = Z ‘tl- t2, ... tM> H 6tk,52k552kx52k+1<51' 521 SQM‘ (CT)
{tu}.{su} k=1

With the definition

M
M= > |t th ... ty)2cosh [eJS(Z o+ te)| (tito, . tul (C.8)
{tu}{tu} k=1
we rewrite the transfer matrix
T =Po *MPg (C.9)

as product of matrices.

Eigenvalues and eigenvectors of 7

Turning again to the problem of finding the exact eigenvalues and vectors, we argue as
follows:

i. From this representation it can be seen that any non-vanishing eigenvalue XA; > 0 has
a corresponding right eigenvector of the form

UF =P, 1OF, (C.10)
i.e. it can be represented as projection of a vector from H; to Hs.
i. WR as a right eigenvector must fulfill
TUF = NUF (C.11)
which can be rewritten as
P *MPgP 1O = Py N 0F. (C.12)

This is, by leaving out the projection P;! at the left hand side, an eigenvector
equation for ®F:
MPsPy ol = \;0R. (C.13)

iii. Forward and backward projection with both different projection operators
PePa b= [t )M [+ [V (I | =Py (C.14)

projects out all states except for [ tM ) :=|tt... 1) and | {M):=| 1L ... L )in
Hy.
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iv. With these considerations and 7% = 22”:1 tk, it follows

NOF{t D)) = Y MPy oF{e D [{tL)) (C.15)
{t.}
MCORAM) [47) +oFUM) [4M)]  (C16)

= {QCD,R(TM) cosh [eJS(T? + MS)]

+ 20R(IM) cosh [eJS(TZ — MS)] }!{t“}>. (C.17)

v. For ®R(tM) and &R (M) we find:

NOFMY = 20F (M) cosh [2eMJS?] + 207 (IM) (C.18)
NOFUMY = 20F(M) + 20F(IM) cosh [-2eMJS?] (C.19)

This gives the eigenvalues

A+ = 2(cosh [2eMJS?] +1) = 4 cosh? [eMJS?] (C.20)
A= = 2(cosh [2eMJS?] — 1) = 4sinh? [eMJS?] (C.21)

which agree with the well-known transfer matrix solution of the Ising model [79].
Further, we find

oR(M) = oM (C22)
OR(My = —oR(M) (C.23)

as a condition for the eigenvectors. For the general components ®R({t,}) of the
eigenvectors we get:

2

SR({L)) = %cosh(eJSTz)CDﬁ(TM) (C.24)
i 2

OR({t,}) = %smh(eﬁﬂwﬁﬁ"”) (C.25)

or simplified and setting ®¥(tM) = dR(tM) = 1:

Ly = e (C.26)
_ sinh(eJST?)
OR({t.}) = Sinh(eMJS?) (C.27)

The left eigenvectors can as well be represented as projection on the reduced Hilbert
space H;:
\IJ,-L({tM}) = q:','L({tu})Pﬁ (C-28)
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A similar procedure as in the right eigenvector case shows

as well.

cosh(eJST?)

i) = cosh(eMJS2)

sinh(eJST?)

L) = sinh(eMJS?2)

As a solution for the eigenvector problem in Hg, we get

cosh(eJSS M

R _
Vi({su}) = m H 056,52k 11

M

cosh(eJS )
vi({s}) = cosh(eMJ5?) | H Osyi 1.5

and

smh(eJSS M

\UE({SM}) = smh(eI\/IJ52) H552k Sok+1

smh(chSS M
= H Ospi 1.5

UE({s}) = sinh(eMJS2) !

wiEwh

Z A ({s“})\li ({su})
{su}

Z cosh?(eJS =)
2 2
= }cosh (eMJS?) ;-

cosh?(eMJS?) cosh2(—eMJ52)_
cosh’(eMJS?) = cosh?(eMJS?)

H 552k 52k+1652k 1,52k

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)

(C.38)
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Reduced density matrix p

The reduced density matrix p = >, o |WE ) (WE] lives on the Hilbert space of the M
first spins s ... sy summing out the spins Spy4+1 ... Som-

M 2M
p(sél-l-':lM)'S(“:lM)) - Z H 55£k,1.5£k552k152k+1 H 65;(’51(
{SM11.2mt-{5M41.2m} k=1 k=M+1
y cosh(eJSE S22 sty cosh(eJSE SR, 1) (C.39)
2 cosh?(eMJS?) '
M
- Z H 6551(71'551(65?"'5%4—1

5 k=1

y cosh(eJS5[MS + 5'22]) cosh(eJS5[M5 + S7]) (C.40)

2 cosh“(eMJS?)

The summation and the staggered arrangement of the delta symbols leads to setting all
“upper” spins Sp1+1.2m = Sm+1..2m = S in (C.40). This has consequences for the “lower”
spins as well.

Eigenvalues and eigenvectors of p
The non-vanishing eigenvalues of p

M
kf"/):R({S;I;,}) = Z Z H 5s§k_1,s§k652k,52k+1

{su} & k=1
y cosh(eJS3[M5 + S'Z]) cosh(eJS 5[M5 + S7])
2 cosh?(eMJS?)

Yl ({su}) (C.41)

can be found by similar considerations as above:

M
Af"le({SL}) = Z H55£k71,55k552k,52k+1

5 k=1
y { cosh(eJS3[M5 + S'?]) cosh(eJS3[M5 + MS])
2 cosh?(eMJS?2)
cosh(eJS3[M3 + S'?]) cosh(eJS3[M5 — MS])
2 cosh?(eMJS?2)

PrAM) +

wFIM} (c.42)

Now, we have to distinguish between odd and even M. For the case of odd M, we see
that the density matrix has only non-vanishing elements for s, = 5 and s; = § and the
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eigenvalue equation

M
Xf”([)F({SL}) = Hésék—l’sék
k=1
cosh(eJS2[Ms), + S'?]) cosh(eMJISsh,) m, ) \m
; C.43
X 2 cosh? (M JS?) i ([sm]™)  (C.43)
M 1 ! !
B cosh(eJS5[Msy, +S”?]) .\ m
- ;(E[lésékl-sék 2 cosh(eMJS?) i (lswl™) (C.44)

reduces to a more simple form. For ¥ R(+M) and ¥ (M) we find two decoupled equations

1 1
M) = Zor "), AU = J9F ), (C.45)
leading two a two-fold degenerate eigenvalue of Af , = 3.

Considering M even, sy; = § and s; = § leads to an equation

M 1 !
R/ B cosh(eJS5[MS + S”]) .
N = H 655k71’5§k{ 2 cosh(eMJS?) v +

k=1
cosh(eJS3[-MS + S'?])
2 cosh(eMJS52)

wrM) ) (C.46)

which takes us to

RaaMy _ L R M R(|M
R(My _ 1 RaMy + LR M
NURUM) = ey R + UM (C48)
and 1 1 1 1
A= 2 1+ cosh(eMJSQ)] R 2 [1 ~ cosh(eMJS?) | (C.49)

In Table C.1, we give some eigenvalues of the transfer matrix and the corresponding reduced
density matrix for fixed € and various Trotter numbers.
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M Ay A A2 X
1 4.00063 0.00063 0.50000 0.50000
2 4.00250 0.00250 0.99984 0.00016
3 4.00563 0.00563 0.50000 0.50000
4 4.01001 0.01001 0.99938 0.00062
5 4.01565 0.01565 0.50000 0.50000
6 4.02254 0.02254 0.99860 0.00140
7 4.03070 0.03070 0.50000 0.50000
8 4.04013 0.04013 0.99751 0.00249
9 4.05084 0.05084 0.50000 0.50000
10 4.06283 0.06283 0.99612 0.00388
20 4.25525 0.25525 0.98477 0.01523
50 5.77685 1.77685 0.91606 0.08394
100 14.26458 10.26458 0.76477 0.23523
200  150.41990  146.41990 0.58154 0.41846
500 268339.28652 26833528652 0.50193 0.49807

Table C.1: Eigenvalues of transfer matrix and reduced density matrix for fixed ¢ = 0.05,
J=1and S =1/2 for various M.
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Abstract

This thesis focuses on the thermodynamical properties of spin ladder systems. The inter-
est in spin ladders has been triggered by the fact that spin ladders show some principal
similarities with two-dimensional superconducting cuprate compounds. However, spin lad-
ders are quasi one-dimensional systems and can thus be treated with the whole number of
analytical and numerical methods which have been developed for one-dimensional systems.
This makes spin ladders an attractive field of research in the context of strongly correlated
electron systems. In the past few years, it has been noticed that spin ladder systems with
an additional four-spin interaction show a rich and surprising phase diagram.

In this thesis, we calculate thermodynamic quantities for the spin ladder system with
cyclic exchange by the transfer-matrix density-matrix renormalization group (TMRG). In
the TMRG-method, a one dimensional quantum system with short-ranged interaction is
mapped onto a two-dimensional classical lattice. The free energy of this system is deter-
mined by the highest eigenvalue of an appropriate transfer-matrix which is iteratively en-
larged while unimportant degrees of freedom are truncated by the so-called density-matrix
projection.

We have proposed a new variant of the TMRG approach that combines ideas of the so called
corner transfer matrix approach with a two dimensional Trotter decomposition. Since this
method does not require a time consuming diagonalization of large systems, the calculation
of thermodynamic quantities of one dimensional quantum systems should be much faster.
However, tests performed on the classical Ising model and the Heisenberg chain indicated
two inherent difficulties related to the structure of the Trotter decomposition. These
difficulties have not been solved up to now.

The results for the ladder systems have been obtained by implementing a TMRG code which
makes use of object-oriented programming techniques in highly efficient numerical routines.
In that way reliable and precise numerical data could be obtained for temperatures down to
T = 0.02. Using this approach specific heat, generalized susceptibilities and thermodynamic
expectation values have been determined. We found evidence for the rich phase structure
of the phase diagram predicted for vanishing temperature.

In the vicinity of the first order phase transition our finite temperature results indicate a
caricature of the transition in the behavior of the specific heat, i.e. a sharp maximum at low
temperatures. The position of this maximum depends algebraically on the distance from
the transition. Furthermore in the phases with broken discrete symmetries a characteristic
shape of the specific heat with two maxima was observed. The broken symmetries were
identified clearly by the divergence of the related generalized susceptibilities.






Deutsche Zusammenfassung

Die vorliegende Arbeit beschaftigt sich mit den thermodynamischen Eigenschaften von
Spinleitern. Spinleitern bestehen aus zwei iiber Sprossenverbindungen miteinander wechsel-
wirkenden Spinketten, die als topologische Struktur in komplexen Ubergangsmetallverbin-
dungen auftreten und die relevante Tieftemperaturphysik bestimmen. Die Tatsache, dass
fiir eindimensionale Systeme eine ganze Reihe hochentwickelter analytischer und numeri-
scher Methoden zur Verfiigung stehen, macht Spinleitern zu einem attraktiven Forschungs-
gebiet im Bereich stark korrelierter Elektronensysteme. In jiingerer Zeit wurde entdeckt,
dass zahlreiche experimentell realisierte Substanzen nur verldsslich durch die Einbeziehung
eines zyklischen Vier-Spin-Wechselwirkungsterms (Ringaustausch) theoretisch modelliert
werden kdnnen.

In der vorliegenden Arbeit wurden thermodynamische GroBen fiir Spinleitern mit beliebigem
Ringaustausch numerisch mit Hilfe der Transfermatrix-Dichtematrix-Renormierungsgruppe
(TMRG) berechnet. In der TMRG-Methode wird ein eindimensionales Quantensystem mit
kurzreichweitiger Wechselwirkung auf ein zweidimensionales klassisches Gittermodell abge-
bildet. Die freie Energie des zugrundeliegenden Systems wird durch den héchsten Eigenwert
einer geeigneten Transfermatrix codiert, welche durch eine iterative Prozedur vergroBert
wird. Unwichtige Freiheitsgrade werden dabei durch Dichtematrixprojektion verworfen.

Eine Weiterentwicklung der TMRG-Methode wird in dieser Arbeit vorgestellt, die die Idee
der so genannten Corner-Transfermatrix-Methode fiir die zweidimensionale Trotterzerle-
gung anwendet. In dieser Methode fehlt die zeitaufwandige Berechnung von Eigenwer-
ten groBer Systeme. Im Prinzip ist daher ein hoher Geschwindigkeitsvorteil gegeniiber der
TMRG in der Berechnung von thermischen Eigenschaften von eindimensionalen Quanten-
systemen zu erwarten. Testberechnungen am klassischen Ising-Modell und am Heisenberg-
modell zeigen jedoch zwei bis lang ungeloste inharente Schwierigkeiten, die mit der Struktur
der zweidimensionalen Trotterzerlegung zusammenhangen.

Im Rahmen der vorliegenden Arbeit ist ein TMRG-Programm entstanden, das sowohl die
Methoden der objektorientierten Programmierung als auch hohe numerische Effizienz in
den relevanten Routinen umsetzt. VerlaBliche numerische Daten konnten so bis in einen
Temperaturbereichvon T = 0, 02 mit hoher Genauigkeit erzielt werden. Mit dieser Methode
wurden spezifische Warmekapazitat, verallgemeinerte Suszeptibilitdten und thermische Er-
wartungwerte berechnet. Wir fanden damit eine Reihe von Hinweisen, welche das reichhalti-
ge Phasenverhalten des vorhergesagten Phasendiagramms fiir verschwindende Temperatur
bestatigen.

In der Nahe eines Quantenphaseniibergangs erster Ordnung sahen wir bei endlichen Tem-
peraturen die Karikatur eines Phaseniibergangs, das heiBt ein scharfes Tieftemperaturma-
ximum in der spezifischen Warme, dessen Position iiber ein Potenzgesetz vom Abstand
zum Punkt des Phaseniibergangs abhangt. Dariiberhinaus ermittelten wir in den Phasen
mit gebrochener diskreter Symmetrie eine charakteristische Struktur mit zwei Maxima in
der spezifischen Warme. Die gebrochenen Symmetrien konnten wir als Divergenzen in ent-
sprechenden verallgemeinerten Suszeptibilitaten klar erkennen.
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