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1. Motivation

The theoretical description of strongly correlated electron systems is a major challenge in solid
state physics. In these systems, the local interaction between the electrons leads to the formation
of a collective, strongly interacting ensemble, whose properties cannot be described in a simple
one-electron picture. As a result, even a small change in an external parameter such as doping,
pressure, or a magnetic field can have a dramatic effect on the nature of both the ground state
and the elementary excitations of the system [Sac00]. Apart from the influence of thermal fluc-
tuations, this effect leads to a rich variety of competing phases in the phase diagrams of strongly
correlated materials. Prominent examples are the high-temperature copper oxide superconduc-
tors [BM86, OM00, Sac03] or the manganese oxides as a prototype for the occurrence of colossal
magnetoresistance [TNOQ].

In connection with these phenomena, the understanding of the distinct physical properties of
Mott insulators is of significant importance [And87]. A Mott insulating phase is found to exist in
many transition metal oxides. Although these materials have a partially filled electron band at the
Fermi surface, they are good insulators, because correlations in the motion of the electrons induced
by their Coulomb interaction lead to localization effects. The important difference to the usual band
insulator is that the internal degrees of freedom, spin and orbital, survive in the Mott insulator, giving
rise to interesting collective behavior. In many cases, the low energy physics of the system is well
described by an effective magnetic model in a low-dimensional geometry, which is a consequence of
spatial anisotropies in the crystal structure. For example, a two-dimensional magnetic structure is
found in the undoped parent compounds of the high-temperature superconductors such as La;CuQ,
[EYB*88, YKE*89].

To illustrate these features, it is instructive to consider the Hubbard model, which is a generic
model to describe the motion of the conduction band electrons in the atomic limit [Gut63, Hub63,
Aue94]. In the case of there being only one electron band at the Fermi surface, one can neglect
the orbital degrees of freedom, and the Hubbard Hamiltonian reads

r,r,s

H==Y t(F.F)chcas+ U nmng. (1.0.1)
7

Here the first term describes hopping processes of the electrons with spin s according to the
site-dependent hopping integral t(7, 7). In the tight binding limit, one retains a minimal set of
short-range hopping amplitudes t(7, 7') on the lattice. The second term in Eq. (1.0.1) stems from
the Coulomb repulsion of the electrons and penalizes double occupancies of the individual lattice
sites. In particular for a half-filled band and in the limit of large Coulomb repulsion U, a Mott-
insulating state with one electron per site is energetically favored. In this case and in the leading
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order in 5, an expansion of the Hamiltonian (1.0.1) yields the spin—% Heisenberg model
H=>"J(FF)S:Ss, (1.0.2)
77

where the site-dependent antiferromagnetic exchange integral is given by J(F, 7) = 2t(F, 7)?/U
in terms of the original parameters. Evidently, the effective dimension of the spin system (1.0.2)
is reduced if the crystal structure disadvantages hopping processes of electrons along certain lat-
tice directions. Furthermore, only short-range Heisenberg interactions survive in the tight binding
approximation.

In recent years, the class of models described by the Heisenberg Hamiltonian (1.0.2) both for
spin—% and for larger spins has been studied extensively, because their magnetic properties depend
sensitively on the dimensionality, the effective lattice structure, and the range of the magnetic
interactions. In addition to this, higher order terms which are neglected in the low energy Hamilto-
nian (1.0.2) like e. g. a four-spin ring exchange [RHD83] can produce interesting physics. An even
larger class of magnetic models is obtained by further coupling the spins to an external magnetic
field, or by taking into account interactions between orbital or lattice degrees of freedom and the
magnetic system.

Due to the complex interplay of the various interaction mechanisms, quantum spin systems in
low dimensions provide typical examples for the occurrence of quantum phase transitions, i. e. qual-
itative changes in the nature of the ground state due to a variation of one or more model param-
eters [Sac00, Voj03]. Similarly, there is a fundamental difference in the nature of the elementary
excitations on either side of the transition. For this reason the existence of such a zero temper-
ature transition has an intense impact on the finite temperature properties of the system. One
way to examine the nature of the ground state is the analysis of correlation functions at low finite
temperatures.

To illustrate this, let us consider the antiferromagnetic Heisenberg model with spin—% and cou-
plings between nearest neighbors only. On a cubic lattice, the large coordination number tends to
stabilize long-range antiferromagnetic i. e. Néel order even at finite temperatures, which is charac-
terized by a finite sublattice magnetization and long-range spin correlations. In particular, the spin
correlation length diverges algebraically at the temperature of the Néel transition from the para-
magnetic to the ordered phase [San98a]. In one and two dimensions, the situation is somewhat
different because thermal fluctuations are known to destroy the long-range Néel order at finite
temperatures [MW66]. Nevertheless, in both cases there do exist ordered ground states. As far
as the square lattice Heisenberg model is concerned, there is a finite sublattice magnetization at
zero temperature [And52, Bar91, San97], accompanied by an exponential divergence of the spin
correlation length as T — 0 [CHN89, DM90, Bar91, BBGW98]. In the Heisenberg chain, the situ-
ation is more complicated, because there the quantum fluctuations are so strong that only quasi
long-range order can be established, i. e. there is an algebraic decay of the spin correlations in the
ground state. In addition to this, the corresponding correlation length diverges algebraically upon
cooling down the system to absolute zero [KBI93, Tak99]. A common feature both in one and
two dimensions is that there is a delicate dependence of the nature of the ground state on pertur-
bations of the Heisenberg Hamiltonian. Frequently, these perturbations drive the system towards



a paramagnetic ground state, and thus a finite spin correlation length both in the ground state
and at finite temperatures is found. Prominent examples where this situation is realized are the
frustrated Heisenberg chain [ON92, Egg96b] or the coupled ladder antiferromagnet on the square
lattice [Sac00].

In this thesis, basically two different types of quantum spin models will be investigated. The first
system is the one-dimensional spin—% Heisenberg model with anisotropic spin exchange between
nearest neighbors, the XXZ chain. Here we will especially focus on the quantum critical regime of
the model, i. e. we consider values —1 < A < 1 for the anisotropy parameter A of the system.
Although this model is exactly soluble by means of the Bethe ansatz [Bet31, KBI93, Tak99], there
remain a couple of unresolved questions concerning the decay of correlation functions. It will be
demonstrated that certain analytical expressions for the asymptotic behavior of two-point corre-
lations as predicted by conformal field theory provide a good starting point to examine the spin
and dimer correlations of the system at intermediate distances. The second class of models which
play a central part in this dissertation are quasi two-dimensional Heisenberg systems coupled to
lattice vibrations. From the theoretical point of view, there is a consistent picture on how this spin-
phonon coupling influences the properties of quasi one-dimensional spin systems. In particular, this
mechanism is known to be responsible for the occurrence of the spin-Peierls transition in a number
of substances like e. g. CuGeO3 [HTU93], which is a structural phase transition at finite temper-
atures accompanied by fundamental changes in the magnetic excitation spectrum [Pyt74, CF79].
In contrast to this, little is known about the impact of the spin-phonon coupling on quasi two-
dimensional systems. In this thesis, we will tackle this problem by considering the spin—% square
lattice Heisenberg model coupled to phonons. In the first step, the ground state properties of a
strictly two-dimensional model will be analyzed by studying spin correlations at low finite tempera-
tures. Afterwards, we will consider statically dimerized systems as the effective models to describe
the physics of spin layers coupled to three-dimensional lattice vibrations in the adiabatic limit. In
particular, we will see that an analysis of the dimer correlations of the square lattice Heisenberg
model is the key to establish a theory for the two-dimensional analog of the spin-Peierls transition.

In contrast to the special case of the XXZ chain, most of the theoretical models which are
of importance in the field of strongly correlated electron systems cannot be solved analytically.
Therefore along with approximative analytical approaches as e. g. the linear spin wave theory
[And52], the perturbation theory, or the application of field-theoretical instruments, numerical
techniques play a central part in modern condensed matter physics. In this thesis, we will make
use of various versions of the loop cluster algorithm [ELM93], which belongs to the extended class
of quantum Monte Carlo algorithms. In particular, the loop algorithm is best suited to evaluate
finite temperature correlation functions of quantum spin models. In contrast to other standard
numerical techniques like the density matrix renormalization group (DMRG) [Whi92, Whi93] or
the flow equation method [Weg94, KUQO], which basically apply to one-dimensional models, the
quantum Monte Carlo method is not obstructed by the dimensionality of the system. Furthermore,
it is possible to study significantly larger system sizes than those being accessible to the Lanczos
algorithm [Lan50].

This thesis is divided into three main parts, each of which contains a separate introduction to
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highlight the importance of the particular topic in the framework of condensed matter physics. In
the following chapter, we first give a detailed derivation of the various versions of the loop algorithm
for those quantum spin models which are investigated in this dissertation. The subsequent Chapter
3 deals with the issue of spin and dimer correlation functions in the XXZ chain. Afterwards in
Chapt. 4, we turn our attention to the square lattice Heisenberg model with spin-phonon coupling.
A comprehensive summary of the thesis can be found in Chapt. 5, which also contains an outlook
for future investigations. In the Appendix, the detailed derivations of some crucial identities are
given which have been left out of the main part to allow for a comprehensible presentation of
matters. The thesis closes with an abstract both in English and in German.



2. Quantum Monte Carlo loop algorithm

2.1. Introduction to quantum Monte Carlo

Quantum Monte Carlo (QMC) is a stochastic method to investigate the finite-temperature prop-
erties of quantum many body systems. Especially in the case of low-dimensional non-frustrated
quantum spin models, results obtained by QMC have contributed significantly to a deeper un-
derstanding of both thermodynamic and ground state properties of such systems. Besides the
development of fast computing machines this is mainly due to a rapid development of cluster algo-
rithms during the past decade. In this work we present numerical results for correlation functions
obtained by means of the loop cluster algorithm [ELM93], whose formulation for various models
is described in this chapter. Before discussing the details of the loop algorithm, however, we start
with a short survey of the development of the QMC method and modern algorithms in QMC.

In 1953, Metropolis et. al. realized that stochastic decisions can be used to simulate the statistics
of classical many body systems [MRR*53]. In principle, the method works by setting up a Markov
chain of classical configurations which are distributed according to their Boltzmann weight W (C) =
e PEC) /7 where E(C) is the energy of a given configuration C, Z the partition function and 8
the inverse temperature of the system. Starting from a given configuration C, a new configuration
C' is generated randomly and accepted according to the Metropolis probability

1 if W(C) <W(C,
PC-C) =1 e (2.1.1)
w((c)) else,

by drawing a random number. Such a procedure is called an update. In particular, the update
probability (2.1.1) is chosen such that the detailed balance condition

W(C)p(C — C') = W(C")p(C' — C) (2.1.2)

is fulfilled. Assuming also ergodicity of the algorithm, i. e. starting from an arbitrary configuration
any other configuration of the configuration space can be generated within a finite number of
updates, the detailed balance condition (2.1.2) guarantees that the configurations of the Markov
sequence take the correct distribution. Numerical estimates for physical observables are determined
by taking the mean value over all configurations of the Markov chain. Note that in practice
when starting the simulation a certain number of configurations is not taken into account for the
measurement of physical quantities to allow the algorithm to reach thermal equilibrium, i. e. to
thermalize.

For quantum many body systems, basically the same procedure can be applied if one succeeds in
mapping the quantum system to a classical system. Such an attempt was first done by Handscomb
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in 1962 for the ferromagnetic spin—% Heisenberg model [Han62]. This approach is based on a series
expansion of the partition function in 8. The applicability of his method, however, first seemed
to be very limited because in practice one needs to calculate the full traces of products of certain
bond operators analytically. This problem was overcome by Sandvik and Kurkijarvi in 1991 with
the stochastic series expansion (SSE) method [SK91]. There the traces are written as a sum of
diagonal matrix elements in a suitably chosen basis. The matrix elements can be calculated easily
and the sum is sampled along with the operator sequences.

An alternative approach is based on a path integral representation of the partition function.
By making use of the generalized Trotter-Suzuki formula, a d-dimensional quantum system is
mapped to a (d + 1)-dimensional classical system [Tro59, Suz76]. A QMC algorithm based on this
construction was first applied in 1977 by Suzuki et. al. for the spin—% XY model in one and two
dimensions [SMK77]. In case of the spin—% XXZ model, which will be of special interest in this
work, the Trotter-Suzuki decomposition of the partition function corresponds to a mapping to the
six vertex model of statistical physics [Bax82].

As they relied on local update procedures, one main problem of early QMC algorithms was that
they suffered severly from autocorrelation effects, i. e. statistical errors of measured quantities
grow because subsequent configurations of the Markov chain are not statistically independent.
More quantitatively, the integrated autocorrelation time Tin is @ measure for the importance of au-
tocorrelation effects in a Monte Carlo algorithm. Roughly spoken, from u configurations generated
by the update procedure only u/27. are statistically independent. In the vicinity of continuous
phase transitions autocorrelation times are connected to the correlation length £ of the system
according to Tin: ~ &%, where z is a dynamical critical exponent. Thus at a critical point, Monte
Carlo algorithms with non-vanishing z become inefficient because the correlation length diverges.
This phenomenon is called critical slowing down.

Historically it turned out that the problem of large autocorrelation times could be overcome by
constructing update procedures which alter the configurations of the Markov sequence globally,
i. e. the development of cluster algorithms. In the case of QMC based on the path integral
formulation, this was first achieved by the development of the loop cluster algorithm by Evertz
et. al. in 1993, for which autocorrelation times stay of the order of unity [ELM93]. A further
achievement was the formulation of the loop algorithm in continuous time by Beard and Wiese in
1996, which removed the systematic errors due to an artificial discretization of the time direction
when applying the Trotter-Suzuki breakup [BW96]. An alternative to the loop algorithm within
the path integral approach is the worm algorithm which was developed by Prokof'ev et. al. in
1998 [PST98a, PSTI8b]. In the same year Sandvik showed that cluster algorithms could also be
constructed for sampling in the SSE representation [San98b]. In this context the clusters are called
operator-loops. The approach was generalized to SSE algorithms based on directed loops in 2002,
which was shown to be equivalent to the formulation of the loop algorithm in continuous time in
the same paper [SS02].

The progress which has been made in the field of cluster algorithms in the past decade can be
illustrated by considering e. g. numerical investigations of the spin correlation function in the two-
dimensional spin—% Heisenberg model on a square lattice at low temperatures. In 1990, Ding and
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Makivi¢ studied the system by applying a QMC algorithm based on the path integral formulation
with local spin updates, simulating systems of maximum 128 x 128 sites and reaching tempera-
tures which correspond to correlation lengths up to 28 lattice spacings [DM90]. In 1998, Beard
et. al. investigated the system with up to 160 x 160 sites by means of a continuous time loop
algorithm. By further applying finite-size scaling methods to the QMC results, they were able to
reach correlation lengths of 352.000 lattice spacings [BBGW98].

To list all of the applications of the QMC method would go beyond the scope of this work.
It has been successfully applied to non-frustrated spin systems (also in the presence of magnetic
fields), to bosonic and one-dimensional fermionic systems. Review articles on the loop algorithm in
the path integral representation [Eve01, KHO04] as well as on the directed loop method in the SSE
representation [SS02] include lists of the relevant literature.

We close this survey with the remark that in spite of all the success of the QMC method there is
a class of models to which the method only provides limited access. These are frustrated quantum
spin systems and fermionic models in d > 1 dimensions, for which the mapping of the quantum
system to a classical system may yield configurations with negative Boltzmann weight (the sign
problem) [TWO04]. In these systems, the occurence of negative weights results in an exponential
growth of the statistical error and hence of computation time with the system size.

This chapter is organized as follows. In Sect. 2.2, we give a detailed description of the loop
algorithm for the antiferromagnetic spin—% XXZ chain and for the two-dimensional Heisenberg
model. We then derive how the loop algorithm can be applied for a Heisenberg model coupled
to bond phonons in one and two spatial dimensions (Sect.2.3). In Sect. 2.4, we finally discuss
rules for the measurement of correlation functions. In the same section, we present a more precise

discussion on the issue of numerical error analysis.

2.2. Loop algorithm for the XXZ model

In this part we elaborate the construction of the loop algorithm for Heisenberg-like quantum spin
models, see also Refs. [Eve01l, KH04]. We start by considering the case of the XXZ chain, and
construct the path integral representation of the partition function in the next subsection. In
Sect. 2.2.2, the discrete time version of the loop algorithm is derived for this model. We then
generalize the procedure to continuous time, see Sect. 2.2.3. Afterwards we investigate the special
case of the isotropic Heisenberg model and transfer our findings to the two-dimensional case
including bond disorder (Sect. 2.2.4). The results of this part are summarized in a sketch of the
algorithm in Par. 2.2.5.

2.2.1. Model Hamiltonian and Trotter-Suzuki decomposition

The Hamiltonian of the antiferromagnet spin—% XXZ chain reads

N N

J
H= Z H; = Z 5(0,’-(0,?;1 +olo)l +Doiof,,). (2.2.3)
i=1 i=1
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+ + -
+ + =
+ + -
+ + =

Fig. 2.1.: Graphical representation of the six plaquette configurations with non-vanishing plaquette weight
a (left), b (middle), and ¢ (right). The worldline representation is shown in the top row, while the vertex
picture is visualized in the bottom row.

Here the exchange coupling J is chosen to be positive, while the anisotropy parameter takes values
A € [0,1]. The symbols o (a = x, y, z) denote the components of Pauli spin operators at the
lattice sites i = 1,..., N. Note that we assume an even number N of lattice sites and periodic
boundary conditions. The physical properties of the model will be discussed in Chapt. 3, where we
especially focus on the behavior of spin and dimer correlation functions.

We now construct the path integral formulation of the partition function Z of the system. After
splitting the Hamiltonian (2.2.3) into even and odd parts,

H = Heven + Hodd, with (2.2.4)

Heven = Z H2i: Hodd = Z H2i+1:

we can apply the generalized Trotter formula [Tro59, Suz76] and write

M
Z=Tre® = m Zy= lim Tr (e—%”mne—%”odd) : (2.2.5)
—00

M—o0

The number M is called Trotter number.

In the following, we keep this number fixed and consider the Mth approximant Z,, of the par-
tition function. We insert (2M — 1) complete sets of o eigenstates between the exponentials in
Eqg. (2.2.5) and find the partition function of a classical system

Zn =Y W{sH = [Iws({s}). (2.2.6)
{sf} {sfy P

where the sum E{sik} extends over Ising spins s¥ = 1. The index k = 0,...,2M — 1 labels the
Trotter slices in imaginary time direction. In the second step we have exploited the observation
that the summands of Heven/oda COMmute, and therefore the weight W ({sk}) of one configuration
{sk} of Ising spins can be decomposed into a product of plaquette weights W,({s,}) depending on
the spin configurations {s,} on the shaded plaquettes of a (1+ 1)-dimensional checkerboard lattice.
On the plaquette lattice, the construction implies periodic boundary conditions both in space and
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time direction. The plaquette weights only depend on the four adjacent spins, i. e. they are given
by the expression

Wo({sp}) = (s sfa|lePH/M|sf ki), (2.2.7)
where the index i is even (odd) for even (odd) values of k due to the structure of the decomposition.
Because the summands H; of the Hamiltonian (2.2.3) conserve the z-component of the total spin
on each plaquette, there are only six non-vanishing plaquette weights. They can be calculated

easily, see App. A.1. We only denote the result here, which is

a=(++|ePHM| 4 ) = (= — |ePH/M| — ) = g RIA/2M, (2.2.8)
b= (+—|ePHM| — 4y = (— + e PH/M| 1 —y = PIB/2M sinh(GU/M), (2.2.9)
C=(+—|ePHIM| 4 )y = (— 4 |ePH/M| _ 1} = &PIBI2M osh(BU/M). (2.2.10)

Note that the matrix element b is originally proportional to sinh(—GJ/M). Here we implicitly
assume the application of a unitary transformation

U=]]os (2.2.11)

to the Hamiltonian of the system, which guarantees that all the plaquette weights are positive to
avoid negative Boltzmann weights.

The six non-vanishing plaquette weights can be represented graphically by making use of the
wordline and vertex pictures, respectively, see Fig. 2.1. In the first case, on each plaquette the
spins pointing upwards are connected by thick solid lines, the so-called worldlines. In this picture, a
configuration which contributes to the partition function is given by a set of closed worldlines on the
shaded plaquettes of the (1 + 1)-dimensional checkerboard lattice. In the latter case, arrows which
connect the center of each plaquette to its corners are drawn. These vertices are directed along the
imaginary time direction if the spin on the corner is pointing upwards, otherwise against it. In the
vertex representation, the connection between the XXZ model and the six-vertex model [Bax82]
which was mentioned in the introduction of this chapter becomes obvious. An example for a
configuration with non-vanishing Boltzmann weight on a checkerboard lattice with N = 4 sites and
2M = 6 Trotter slices is given in Fig. 2.2.

In its original formulation [ELM93], the loop algorithm was constructed in discrete time, i. €. the
simulations were carried out for classical systems with the partition function (2.2.6), keeping the
Trotter number M fixed. This way of proceeding will be described in the following subsection. In
Sect. 2.2.3 we then discuss how the algorithm can be formulated directly in the continuum limit
M — oo.

2.2.2. Plaquette breakups and loop construction

Early QMC algorithms for the XXZ model were based on update procedures with local deformations
of worldlines [HSSB81, CL83]. In addition to the problem of critical slowing-down, such algorithms
were not ergodic because they conserved both the temporal and spatial winding numbers, i. e. the
number of times a worldline winds around the (1 + 1)-dimensional checkerboard lattice. However,
the latter problem could be overcome by introducing additional global updates [DM90, DM91].
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Fig. 2.2.: Example for a configuration with non-vanishing Boltzmann weight on the checkerboard lattice of
shaded plaquettes. Taking the periodic boundary conditions into account, there are two closed worldlines
in the worldline representation (left). The same configuration in the vertex picture is shown in the right
panel.

The main advantage of the loop algorithm is that it allows global changes of a given configuration
by taking local stochastic decisions. In particular, the number of worldlines as well as winding
numbers may be changed significantly within one single update step. Furthermore, the principle of
importance sampling is incorporated, which means that the configurations of the Markov sequence
are sampled directly according to their Boltzmann weight. This guarantees that the computer is
not occupied with generating configurations which are rejected immediately.

An update within the loop algorithm consists of two steps. First, for a given worldline (or
vertex) configuration a set of closed loops is constructed by specifying loop segments on each
shaded plaquette of the (1 + 1)-dimensional checkerboard lattice. These breakups are determined
stochastically and depend on the spin configuration on each plaquette. The loops are built in such
a fashion that each spin belongs to a single loop. In the second step, each loop is flipped (i. e. all
the spins belonging to the same loop are inverted) with a certain probability. By construction of
the algorithm this yields a new configuration with non-vanishing Boltzmann weight. An example
for an update of the configuration from Fig. 2.2 with a single loop flip is shown in Fig. 2.3.

The way the loops are constructed can be understood most easily in the vertex picture. For a
given configuration of vertices, we pick an arbitrary spin s,-“ on the plaquette lattice and follow its
vertex into the adjacent plaquette. At the center of the plaquette, there are two possibilities of
arrows to follow. We arbitrarily choose one direction to get to a new plaquette, where we apply
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Fig. 2.3.: Example for a loop flip in the worldline configuration from Fig. 2.2. In the left panel, the original
worldline configuration is shown. The dashed line shows a single loop along which the spins are inverted
during the update. This results in a new worldline configuration which is depicted in the right panel.

the same scheme. If we have met a certain plaquette before, we move along the vertex which has
not been selected yet, since we do not allow the loop to overlap itself. This way of proceeding is
repeated successively until we reach the spin where the construction of the loop started. Now we
can start with another spin which does not belong to the first loop and construct a second loop in
the same fashion. We repeat this procedure until each spin of the lattice has been assigned to a
loop.

Equivalently, we can select a breakup on each plaquette, which means that the vertex configura-
tion on the plaquette is split into two loop segments. For each of the plaquette configurations with
non-vanishing plaquette weights as shown in Fig. 2.1, there are two possibilities of breakups, see
Fig. 2.4. For the two configurations with weight a, we can choose vertical and diagonal breakups.
For the plaquette configurations with weight b, horizontal and diagonal breakups are possible, while
for plaquettes with weight ¢ vertical and horizontal breakups can be selected, respectively. For each
type of plaquette, there is also another choice of breakup which is called freezing. Freezing can be
viewed as consisting of two connected loop segments. Thus two loops entering a plaquette with
freezing are glued together to a cluster of loops which have to be flipped together. Upon flipping
such a cluster the weight of the plaquette is conserved, i. e. it is frozen. The set of all the clusters
on the lattice will be called a graph in the following.

To specify both the probabilities for the selection of plaquette breakups and for the loop flips
we need a more technical description, see also Ref. [Eve01]. We first observe that by constructing
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Fig. 2.4.: Possible breakups for the six plaquette configurations with non-vanishing plaquette weights a
(top), b (middle), and ¢ (bottom) shown in the vertex representation. For each spin configuration, there
are two choices of breakups and, in addition, the possibility of freezing. The breakup weights are u, v and
w for vertical, horizontal, and diagonal breakups, respectively, and f; (i = 1,2, 3) for each type of freezing.

a graph G, we have mapped a wordline configuration of spins {s¥} with weight W ({sf}) to a
combination of worldlines and loops ({sX}, G) with a certain weight W({s¥}, G). On each plaque-
tte, this corresponds to assigning a breakup weight W,({s,}, Bp) to the combination of plaquette
configuration {s,} and breakup B,, for which we demand

Y Wo({ss}. Bp) = Wo({sp}). (2.2.12)
Bp

Wy({sp}. Bp) > 0. (2.2.13)
The update procedure of the loop algorithm now consists of two steps:

1. On each plaquette with spin configuration {s,}, select a breakup according to the probability

Wp({sp}, Bp)
Wo({sp})

The conditions (2.2.12) and (2.2.13) guarantee that the breakup probabilities are positive

p({sp} = ({s}. Bp)) = (2.2.14)

and normalized correctly. Relation (2.2.12) further implies

Z W({S,k} G)= Z H W,({sp}. Bp) = H Z W,({s,}. B,) (2.212)
G

G UB,=G P B,

[IWo({so}) = W({sf}). (2.2.15)
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2. After having identified the clusters constituting the graph G, determine which of the clusters
are flipped. A flip of a single cluster yields a new configuration {s,-k}’ with non-vanishing Boltz-
mann weight, keeping the graph G fixed. One possible choice for the transition probability
into the new configuration is the heat bath probability

W({s}. 6)

W({sf} G) + W({sf}. G)’

p(({s/}.6) = ({s/}.6)) = (2.2.16)

which can be shown easily to satisfy the detailed balance condition (2.1.2).

In the following we determine the breakup weights W, ({sp}. Bp) for the XXZ model. It is possible
to derive simple expressions for the breakup weights if we demand

Wo({sp}, Bp) = Wp({sp}'. Bp), (2.2.17)

i .e. the weight W,,({sp}, Bp) only depends on the type of breakup B, and not on the spin configu-
ration {s,} on the plaquette. For this reason we only have six different breakup weights u,v,w, and
fi (i =1, 2,3) for the six types of breakups as shown in Fig. 2.4. Making use of the abbreviations
for the plaquette weights as introduced in Egs. (2.2.8),(2.2.9), and (2.2.10), relation (2.2.12) now
reads

u+w+mf=a (2.2.18)
v+w+ fh, =b, (2.2.19)
utv+fh=c (2.2.20)

We can see that there are only three equations to determine the six breakup weights. We thus
have the freedom to construct a solution with vanishing freezing weights f; = 0 (i = 1,2, 3).
It is useful to search for solutions with minimal freezing weights because freezing is known to
increase autocorrelation effects due to the formation of clusters. If the size of the clusters becomes
comparable to the system size, the update scheme becomes inefficient. Heuristically, this can be
explained by observing that in the extreme case that there is only one single cluster, only the same
or the inverse configuration can be reached by one update. Excluding the possibility of freezing,
we find the solutions

y= %(a—b+c), (2.2.21)
v= %(—a+b+c), (2.2.22)
w = %(a+b—c), (2.2.23)

for the breakup weights.
We finally have to specify the loop flip probability p( ({s¥}, G) — ({s¥}', G) ). From the condition
(2.2.17), we first see that

W({sf}.6) = [[We{s:}. Bo) = [TWe{s5}. Bo) = W({s}'. G). (2.2.24)

By inserting this result into the relation (2.2.16), we find that each loop is flipped with probability %
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Fig. 2.5.: Example for a worldline configuration in the continuum limit M — co. There are four worldline
jumps which can be specified by the times 7o (o = 1,...,4) of the transitions and the spatial indices of
the lattice sites involved.

2.2.3. Continuous time

The artificial discretization of the Trotter direction which was used in the preceeding two subsections
leads to systematic errors, because the continuum limit M — oo in Eq. (2.2.5) can only be taken
into account by extrapolating the Monte Carlo estimates of physical quantities after running the
simulation with several finite values of M. In addition to this effect, for large values of the Trotter
number the algorithm is slowed down because the number of Ising spins on the checkerboard lattice
increases linearly with M. In this section we describe how these problems can be overcome by
formulating the loop algorithm directly in continuous time [BW96].

In the continuum limit, the worldline picture can still be used to visualize configurations which
contribute to the partition function (2.2.5) of the system. The discrete index k, however, which we
have used so far to label the Trotter slices in imaginary time direction, is replaced by a continuous
time variable 7 taking values in [0, 3). Instead of having to store the values of N x 2M lIsing spins
{sk} on the discrete checkerboard lattice, now the values of only N lIsing spins {s;(7)} at one
certain point of time (e. g. 7 = 0) plus the relevant information on worldline jumps are required to
specify a configuration. A transition of a worldline between two adjacent sites is characterized by
the time of the transition plus the spatial indices of the two Ising spins connected by the worldline
jump. An example with four such transition events on a lattice with N = 4 sites is depicted in
Fig. 2.5.

We are now going to discuss the construction of loops in continuous time. Similarly to the
case of worldline configurations, the loops are specified by transition events of loops jumping to an
adjacent site. In the discrete time version of the algorithm, there are in principle two possibilities
of breakups where a loop changes the lattice site. These are horizontal and diagonal breakups,
see also Fig. 2.4. The correspondence for M — oo is that a jump of a loop is either accompanied
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Fig. 2.6.: A possible choice of loop transition events represented by the thin lines for the worldline con-
figuration from Fig. 2.5. For each of the four worldline jumps, there is a corresponding loop jump. The
type of the loop transition is determined from the probabilities (2.2.30) and (2.2.31). Additionally, two
more transitions of loops have been determined according to the transition rates (2.2.27) and (2.2.29).
Connecting the horizontal and diagonal lines by vertical ones yields a graph consisting of closed loops.

by a reversal of the loop direction (a horizontal breakup in discrete time) or the direction of the
loop remains unchanged (corresponding to a diagonal breakup). Which type of transition occurs
depends on the underlying worldline configuration as in the discrete time version of the algorithm.
In practice transition events of loops are determined bond by bond. According to the underlying
worldline configuration, on each bond the time interval [0, 3) is cut into a number of intervals
[Ta» Ta+1) With constant worldline configuration on the two adjacent sites. For example, on the
bond between lattice sites 2 and 3 in Fig. 2.5 there are five such intervals. We first consider a time
interval where the two adjacent sites are both empty or occupied by worldlines. In our example,
this is the case for times 7 € [73,74). In discrete time, on each plaquette with this worldline
configuration we would either choose a vertical or a diagonal breakup. According to Eq. (2.2.14),
the probability for the selection of a diagonal breakup is
p= g = %(1 + g - g) = %(1 — e~ -8y, (2.2.25)
where we have used the result (2.2.23) and the expressions (2.2.8),(2.2.9), and (2.2.10) for the
plaquette weights from Sect. 2.2.1. Expanding the exponential to first order in AT = 3/M, this
becomes
p= A‘r%(l —A). (2.2.26)
Hence in continuous time, we can assign transition events of loops which conserve the loop direction
according to a constant probability per unit time, i. e. a transition rate

p

J
Adiag = A 5(1 —A4). (2.2.27)

Note that the time segments between two such transitions take an exponential distribution®

1This result is identical to the lifetime distribution of a radioactive nucleus with decay rate Adiag-
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~ e_AdiagT_

We can proceed in an analogous way for time intervals in which only one of the adjacent sites
is empty, e. g. the interval [0, 1) on the bond between sites 2 and 3 in Fig. 2.5. For finite M,
such a worldline configuration enables us to select vertical and horizontal breakups on the individual
plaquettes. The probability for a horizontal breakup is given by

v 1 a b b _ @ ATIA prer )
=—=—(1--4+-)=——— =~ A7=(1+A). 2.2.28
P=% 2( c+ c) 2 cosh(ATJ) T2( +4) ( )
Thus we have a transition rate y
Abor = = (1 + ) (2.2.29)

for loop transitions accompanied by a reversal of the loop direction.

We finally discuss what happens if the two spins interacting on the selected bond are connected
by a worldline jump. On the bond we have chosen in our example such an event takes place at the
times 71 and T». In discrete time, a transition of a worldline corresponds to a single plaquette with
plaquette weight b on which we can either choose a horizontal or diagonal breakup. From this rule
we conclude that for M — oo a worldline jump always leads to a loop transition event. To specify
the type of the event, we have to evaluate the limit AT — 0 of the probabilities %, % for horizontal
and diagonal breakups, respectively. By applying the rule of de L'Hospital, one can prove easily
that

v 1 a c eATJ _ e—A‘rJA Ar—0 1
phor—E—§(1—5+E)—W = 5(1+A), (2230)
1
Pdiag = 1= ppor = _(1 - A) (2231)

2

After having applied this scheme for all of the bonds on the lattice, one ends up with a set of loop
transition events, see Fig. 2.6. We can now connect the horizontal and diagonal line segments by
drawing vertical lines between them, and obtain a graph consisting of closed loops as in the discrete
time version of the algorithm. The loops can be flipped independently to reach a new worldline
configuration. The loop flip probability remains unchanged in the continuum limit, i. e. each loop
is flipped with probability % as discussed in the previous subsection.

2.2.4. One- and two-dimensional isotropic Heisenberg model and bond
disorder

We are now going to describe how the results of the preceeding three subsections can be general-
ized to formulate the loop algorithm for two-dimensional quantum spin systems. We restrict the
discussion to the case of the isotropic Heisenberg model on a square lattice, however including the
possibility of bond disorder, i. e. we allow for different values of the exchange coupling on different
bonds.

Before we focus on the two-dimensional case, it is instructive to consider the isotropic XXX
chain for which the loop construction rules from the previous two subsections take an especially
simple form. For later use, we examine the implications of the choice A = 1 in the Hamiltonian
(2.2.3) for both the discrete and continuous time version of the algorithm. We first observe that
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by setting A = 1, we find the relation a + b = ¢ for the plaquette weights (2.2.8),(2.2.9), and
(2.2.10). This implies that the solution (2.2.23) for the breakup weight w vanishes, while we get
u = a and v = b for the other two breakup weights (2.2.21) and (2.2.22). Thus there are no
diagonal breakups, and loops are only constructed by selecting vertical and horizontal breakups on
the individual plaquettes. In particular, only on plaguettes with spin configurations corresponding to
the weight ¢ a stochastic decision on the choice of breakup has to be made. Here the probability for
the selection of a horizontal breakup becomes £ = l—; = tanh(BJ/M). On plaquettes with weight a
and b, the choice is unique, namely vertical and horizontal breakups, respectively.

These results are consistent with the findings for M — oo. From the result (2.2.27) we see
that Agiag vanishes, and we only have to assign loop jumps accompanied by a reversal of the loop
direction according to the decay rate (see Eq. (2.2.29))

Ahor = J (2.2.32)

in time intervals where only one of the adjacent sites of a bond is carrying a worldline. As in the
discrete time version, we assign a horizontal breakup if we encounter a worldline jump, because
from relation (2.2.30) we find phor = 1.

With this knowledge we can now concentrate on the two-dimensional Heisenberg model on a

square lattice
N

H= SO (H 4 )= 3 (30015 + 3001021 (2233)
ij=1 ij=1
where the symbols &; denote Pauli spin operators at the lattice sites. As for the Hamiltonian
(2.2.3), we assume an antiferromagnetic coupling J > 0 and periodic boundary conditions. We will
comment on the physics of the model in Chapt. 4 in the context of two-dimensional spin models
with spin-phonon coupling.

As in Sect. 2.2.1, we start with the construction of the path integral formulation of the partition
function. In two dimensions, the decomposition (2.2.4) of the one-dimensional Hamiltonian (2.2.3)
into even and odd parts can be generalized by splitting the Hamiltonian (2.2.33) into four terms
according to

H= He(ven gdd + Hé/ven + Hgdd' with (2234)

X _ X y — y
even E :HQIL] Hodd - E :H2i+1,j' even E :H Hodd - 2 :Hi,2j+1'
ij ij

We can now follow the argumentation from Sect. 2.2.1 and carry out a Trotter-Suzuki breakup
[Tro59, Suz76]

M
. . B <) B
Z=TreP" = lim Zy= lim Tr (e W Heven @~ 11 Hoaa @ =1 Hoven @~ MHde) . (2.2.35)

M—oco M—o0

After inserting (4M — 1) complete sets of o eigenstates between the exponentials, the Mth
approximant of the partition function becomes (compare Eq. (2.2.6))

Zv =Y W{siH) = > [IWe{s}). (2.2.36)
{sk} {st} P
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A

Fig. 2.7.: Example for the (2 + 1)-dimensional generalized checkerboard lattice for the two-dimensional
Heisenberg model with N = 4 and M = 2. As in the one-dimensional case, a configuration with non-
vanishing Boltzmann weight is defined by a set of closed worldlines on the lattice. Visible segments of
these worldlines are sketched by the thick solid lines.

where we have exploited the fact that the summands of H:v/;/odd commute in the last step. In

complete analogy to the one-dimensional case, we thus arrive at the partition function of a classical
system of Ising spins s = 1 (k = 0,...,4M—1) interacting on the shaded plaquettes of a (2+1)-
dimensional generalized checkerboard lattice as depicted in Fig. 2.7. With A =1, we find the same
expressions (2.2.8), (2.2.9), and (2.2.10) for the non-vanishing plaquette weights as for the one-
dimensional model.2 As a result we can still use the worldline and vertex pictures to visualize the
configurations which contribute to the partition function (2.2.36). Worldline segments belonging to
a set of closed worldlines which characterize a given configuration are also sketched in the example
of Fig. 2.7.

Due to the analogy of this construction to our approach for the XXX chain, we can immediately
formulate the loop algorithm for the two-dimensional model. In the discrete time version, we can
construct closed loops by specifying loop breakups on the individual plaquettes of the generalized

2In two dimensions, we have to apply a unitary transformation U = Hij 0% 0 to guarantee that the

V4
i%2i+1,2j+1
plaguette weight b is positive on all plaquettes of the (2 + 1)-dimensional generalized plaquette lattice.
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checkerboard lattice. As the argumentation from Sect. 2.2.2 and the beginning of this subsection
does not depend on the dimensionality of the system, we obtain the same results for the breakup
selection probabilities and the loop flip probability as in the one-dimensional case. In addition, the
algorithm can immediately be formulated in continuous time. As for the one-dimensional model,
each worldline jump is accompanied by a horizontal breakup. Furthermore, we can proceed bond
by bond and identify time intervals with one empty adjacent site to assign loop transition events
accompanied by a reversal of the loop direction. Again the transition rate is given by the relation
(2.2.32). Then each loop is flipped with probability %

We finally address the case of bond disorder, i. e. we allow for spatial variations of the magnetic
exchange coupling J. Formally, this situation can be expressed by replacing

x/
J— 2 (2.2.37)

x/y
ij
> 0. Note that the choice (2.2.37) includes the case of statically dimerized models

in the summands of H
couplings® J;j-/y
for which the coupling constants ij/y take only two different values J(1 £ &) with § € [0, 1]. Such

models will be of particular interest in this thesis, see Chapt. 4.

of the Hamiltonian (2.2.33). However, we still assume antiferromagnetic

The update procedure described in this section can be extended easily to models with bond
disorder. The only difference to the case of the Heisenberg model with uniform couplings is that
the replacement (2.2.37) has to be taken into account in the expressions (2.2.8), (2.2.9), and
(2.2.10) for the plaquette weights (with A = 1). For finite M, this means that the probability £ for
selecting a horizontal breakup on plaquettes with weight ¢ becomes bond dependent. Equivalently,
in the continuum limit M — oo the transition rate (2.2.32) now depends on the selected bond of
the lattice. There are no other changes.

2.2.5. Summary: sketch of the algorithm

We close our discussion of the loop algorithm for Heisenberg-like spin models by giving a sketch
of the update procedure in the continuous time version of the algorithm. To study the properties
of the XXZ chain and the two-dimensional Heisenberg model with bond disorder, the algorithm
sketched below was implemented as a computer program, using a C++ code in both cases.

We assume starting with a worldline configuration with non-vanishing Boltzmann weight. Such
a configuration is specified by storing the values of N Ising variables {s;(7 = 0)} (N? Ising spins
{sij(T = 0)} in two dimensions) at a fixed point of time (here 7 = 0) plus a linked list consisting of
the times of and the sites connected by worldline jumps. An update now consists of the following
steps:

1. For each bond of the lattice, identify time intervals with constant worldline configuration on
the two adjacent sites. In each time interval, assign two types of loop jumps according to the
transition rates (2.2.27) and (2.2.29) in dependence on the underlying worldline configuration.

30n bonds with ij/y = 0, the plaquette weight b as well as the breakup weight v become zero. Therefore we can
incorporate the case of vanishing local couplings if we permit both worldline jumps and horizontal breakups on

the plaquettes associated with such a bond.
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For models with isotropic exchange, i. e. A = 1, only time intervals with one worldline on the
adjacent sites have to be considered, where loop jumps accompanied by a reversal of the loop
direction are assigned according to the transition rate (2.2.32). Bond disorder can be taken
into account by considering the replacement (2.2.37). For a given time interval [11, 7T2), the
transition times are determined by drawing a random number x € (0, 1] and calculating

, —Inx

T (2.2.38)

B Adiag/hor
If 7' < 10 — 71 holds, assign a loop jump at time 71 + 7' and repeat the procedure by taking
T1 + 7' as the new lower boundary of the time interval. Otherwise proceed with a new time
interval with constant worldline configuration.

. At each worldline jump, assign a loop transition event corresponding to a horizontal or diagonal

breakup according to the probabilities (2.2.30) and (2.2.31), respectively. For models with
isotropic exchange, each worldline jump is accompanied by a loop transition with a reversal
of the loop direction. One ends up with a list consisting of the types and times of loop
transitions plus the sites connected by the loop jumps.

. ldentify loops. By following vertical connections between the loop segments defined by the

loop transition events, a search through the lattice for each loop is involved. The loop
identification is finished if a loop number has been assigned to each of the two loop segments
of the individual loop jumps.

. Determine which of the loops are flipped according to the loop flip probability %

. Flip the loops to generate a new worldline configuration. In practice, all of the loop flips

determined in the previous step can be performed at once by considering the individual loop
transition events. Depending on the type of the loop jump, the underlying worldline config-
uration, and on which of the two loops entering the breakup are flipped, a loop transition
event might translate into a worldline jump. At last, update the values of the Ising variables
at 7 =0.

. Measure observables. This step is only performed after the algorithm has thermalized. The

rules for measuring both diagonal and off-diagonal operators are derived in Sect. 2.4.

2.3. Loop algorithm for the bond coupling model

In this part we discuss the application of the loop algorithm to the spin—% Heisenberg model coupled

to bond phonons, see also Refs. [Kiihne01] and [Ait02] for a description of the algorithm in one

and two dimensions, respectively. We proceed in the same fashion as in Sect. 2.2. We start by

introducing the model Hamiltonian in one dimension and mapping the system to a classical one in

the following subsection. In Sect. 2.3.2, we then discuss how the loop algorithm can be modified

to update the spin degrees of freedom of the system. The update procedure for the phonons is

described in Par. 2.3.3. After generalizing our findings to the two-dimensional case (Sect. 2.3.4),

we give a sketch of the algorithm in Sect. 2.3.5.
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2.3.1. Model Hamiltonian and Trotter-Suzuki decomposition

We consider the one-dimensional isotropic Heisenberg model coupled to dispersionless Einstein
phonons on the bonds of the lattice. For a chain with periodic boundary conditions and an even
number N of lattice sites, the Hamiltonian reads [KL99]

H = Hey + Hpn,  with (2.3.39)

N N N
Jo. .
Hsp = Z Hi = Z E(O'io'i+1 — 1)(1 + g[a:‘ + a,.]), th = wz a;_tal__
i=1 i=1

i=1
As before, the symbols &; denote Pauli spin operators at the lattice sites. The phonon degrees of
freedom on the bonds are characterized by boson creation and annihilation operators a:.r and a;. The
part Hs, describes the dependence of the nearest neighbor Heisenberg exchange (exchange coupling
J > 0) on lattice distortions x; ~ [a:-' + a;] up to first order in the spin-phonon coupling constant
g > 0. The loss in elastic energy due to the deformation of the lattice is given by the contribution
Hph, where the phonons with frequency w > 0 are treated in the harmonic approximation.

For a detailed discussion of the bond coupling model in one and two dimensions we refer to
Chapt. 4. However, for later use we mention that the Hamiltonian (2.3.39) is equivalent to the
phenomenologically more realistic model

N N
1 -
H= 5 'EI(J’ + g'[a:-r + 3;]) 6idiq1 +w E a}La,-, (2.3.40)
=

i=1
which is obtained from Eq. (2.3.39) by shifting the phonon operators according to [RLUKO02]

gJ
a8+ 5, (2.3.41)

and neglecting a constant energy contribution. Note that the coupling constants of the model
(2.3.40) are given by J' = J(1 + -"%) and ¢’ = gJ in terms of the original couplings.

The construction of the path integral formulation for the partition function of the system (2.3.39)
is similar to our approach for the XXZ model in Sect. 2.2.1. After splitting the contribution Hs, in
(2.3.39) into even and odd parts,

HSp = Heven + Hodd, with (2.3.42)
Heven = Z Ho;, Hoda = Z Haitq,

we apply the generalized Trotter-Suzuki formula [Tro59, Suz76] as usual and find
Z=Tre P = |im Zy= lim Tr (e—%”eve"e—%”odde—%”w)m. (2.3.43)
M—o0 M—00
For fixed M, a suitable choice for the basis of the Hilbert space is now given by the combined
tensor product of the eigenstates of N Pauli spin matrices o7 and N occupation number operators
n = a,Ta,-. After inserting (3M — 1) complete sets of such states between the exponentials in
relation (2.3.43), we arrive at the partition function

Zw= Y W({sf.nfh= ) (HWP({sp.npn) Wen({n). (2.3.44)

k pk k pk
{sf.nk} {sf.nk} p
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Here the sum E{Sl_k’nf} extends over Ising spins s,.“ = 41 and phonon occupation numbers n,’-‘ € Np,
where the index k = 0, ..., 3M — 1 labels the time slices in Trotter direction according to our
usual notation. The structure of the decomposition implies that the weight W ({sX, n¥}) of a
configuration factorizes into two contributions:

1. The factor [, W, ({$p, np}) corresponds to the action of the terms e~ i Hevensosd i Eq. (2.3.43).
Because the individual summands of Heyen/oda COMmute, their contribution can be written as
a product of (N/2) x (2M) plaquette weights

W ({sp, np}) = (s sk, n,’-‘|e‘ﬁH"/M|s,-k+1s,-’:ﬁ1n,’.‘+1>. (2.3.45)

The plaquettes are defined on a (1 4+ 1)-dimensional modified checkerboard lattice (see also
Fig. 2.8), i. e. there are only plaquettes between Trotter slices with k = 3/, k = 3/ + 1
(mediating the action of Hevwen) and k = 3/ + 1, k = 3/ + 2 (corresponding to Hodd),

respectively. We point out that in addition to the spin variables the plaquette weights also
depend on the two phonon occupation numbers nf(/kH on the selected bond. Fluctuations
of the phonon occupation numbers can only occur on the shaded plaquettes of the modified

checkerboard lattice.

2. The factor Wy, ({n¥}) arises from the action of the terms e~ it (see relation (2.3.43))
between Trotter slices with k = 3/ + 2, k = 3(/ + 1). Between these slices, the classical
variables for both spins and phonons cannot change because H,y is diagonal with respect to
the chosen basis of the Hilbert space. In addition, we can immediately write down the result

Won({nf}) = [ e bt (2.3.46)
ik=31
To be able to construct the loop algorithm for the bond coupling model (2.3.39) we still need the
explicit expressions for the plaquette weights (2.3.45). In analogy to the case of the XXZ model,
there are only six spin configurations with non-vanishing plaquette weight, for a detailed calculation
see App. A.2. Introducing the abbreviation n = 26J/M, the results are

a(n, n') = (+ + n|e PH/M| L 1n'y = (— — nle™PH/M| — —n'y =G, (2.3.47)
b(n, nl) = <_|_ _ n|e—ﬁHi/M| _ +nl> — <_ + nle—ﬁH,—/Ml + _nl>
1
= E[A(gv n.n, nl) - 5n,n’]x (2.3.48)
c(n, ') = (+ = n[e PHM| 4 —n) = (= + n|ePH/M| — 1)
1
= 5[A(g. . n.n') + dn, (2.3.49)
where the quantity A is given by the expression

enén,n' if an = O,

A(g.m,n.n') = (2.3.50)

n—n'+2k

1+1ng? n (gn)
ent+ang )mZk:max{O,n’—n} KI(n—n + k)7 —k)T else.

Note that the plaquette weights (2.3.47),(2.3.48),and (2.3.49) are all positive or equal to zero
because the relation A(g,n, n, n') > §,,» holds.*

4As in Sect. 2.2.1, we assume having applied the unitary transformation (2.2.11) to the Hamiltonian to guarantee
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Fig. 2.8.: lllustration of the modified checkerboard lattice for the bond coupling model (2.3.39). The slices

with diagonal stripes indicate the action of e~ #"h  The thick solid lines represent a set of closed worldlines
for the spin degrees of freedom. The circles correspond to the phonon degrees of freedom which can only
fluctuate on the shaded plaquettes of the lattice, i. e. the occupation numbers of phonons in the same
block (indicated by the dashed lines) take the same value.

In particular, our results imply that we can still use the worldline (or vertex) picture to visualize
the spin degrees of freedom on the modified (1 + 1)-dimensional checkerboard lattice. We first

B .
—wten we simply

introduce the convention that between Trotter slices connected by the action of e
draw vertical worldline segments between Ising spins with positive spin (or a vertical arrow pointing
in imaginary time direction in the vertex picture). Otherwise no wordline is drawn (the arrow is
pointing against the Trotter time direction). On the shaded plaquettes of the lattice, we follow our
usual convention. Then as for the XXZ model, the spin part of a configuration which contributes
to the partition function is given by a set of closed worldlines on the modified plaquette lattice. An
example for a worldline configuration on a lattice with N = 4 sites and 3M = 9 Trotter slices is
given in Fig. 2.8.

We are now in the state to construct a QMC algorithm for the model (2.3.39). Due to the
coupling between spin and lattice degrees of freedom, however, it is difficult to derive an algorithm
which works directly in the continuous time limit M — oo. For this reason a discrete time algorithm
was used to simulate the finite-temperature behavior of the model and its counterpart in two

that the plaquette weight b is positive.
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dimensions. As we have mentioned before, such an approach requires an extrapolation of the
numerical data to infinite Trotter number. Alternatively, the simulations have to be carried out for
values of M large enough that the systematic error due to the discretization of the time direction
becomes smaller than the statistical error of measured quantities. The algorithm consists of two
independent parts: the spin degrees of freedom are updated by means of a modified version of the
loop algorithm for the XXX chain (with finite M) as discussed in Sect. 2.2.4. We comment on
the details in the following subsection. For the phonon occupation numbers, we apply an update
procedure which is based on local updates of blocks of three phonons indicated by the dashed lines
in Fig. 2.8. We discuss this procedure in Sect. 2.3.3 and show that, depending on the underlying
spin configuration, the algorithm can be improved by identifying clusters of such blocks which can
be updated simultaneously.

We close this subsection with a remark concerning the choice of the summands H; in the spin-
phonon part Hg, of the Hamiltonian (2.3.39). In principle, the generalized Trotter-Suzuki formula
has only been proven for bounded operators. Since they contain the displacement operators [af+a,~],
the summands H; do not fulfill this requirement. However, a number of numerical results based
on the QMC algorithm described in this section have been compared to numerical data obtained
from the flow equation and high temperature series expansion methods [RLUKO02, Biih03, BUOO04].
The comparison yields a convincing agreement between the different approaches, which justifies
the application of the generalized Trotter-Suzuki formula in our case.

2.3.2. Modified loop update

In this subsection we briefly comment on the loop updates for the spin degrees of freedom {s,-k}
on the (1 + 1)-dimensional modified checkerboard lattice as introduced in the previous subsection.
We point out that during a spin update, we keep the phonon occupation numbers {n,’-‘} fixed.
In principle, the loops are constructed in the same way as for the XXZ chain. On each of the
shaded plaquettes of the lattice, we specify a breakup of vertices. As ususal, the possible choices
of breakups depend on the underlying spin configuration as depicted in Fig. 2.4, see Sect. 2.2.2.

Between Trotter slices connected by the action of e 1 Hon

, we simply draw vertical loop segments
between adjacent spins in imaginary time direction. By using this convention, we assure that the
two spins of each pair s¥, s lie on the same loop, where k = 3/+2. Thus upon flipping the loop,
the two spins remain in the same state. By applying this scheme we arrive at a graph consisting of
clusters of closed loops on the modified plaquette lattice.

Because the weight W ({s¥, nk}) of a given configuration factorizes into a product of plaquette
weights W,,({sp, np}) and the phonon contribution W,n({nk}) (see Eq.(2.3.44)), the formal de-
scription is completely analogous to the one in Sect. 2.2.2. By identifying the weight W ({sX}) from
Par. 2.2.2 with the product [, W,({sp. ny}) and omitting the dependence of the plaquette and
breakup weights on the phonon occupation numbers, we receive the same solutions for the breakup
weights as for the XXZ model. In particular, this means that the freezing weights f; (i = 1,2, 3)
vanish and that the relations (2.2.21), (2.2.22), and (2.2.23) still hold. Furthermore, the loop flip
probability of 3 remains the same.

In addition, we have to stress that the plaquette weights (2.3.47), (2.3.48), and (2.3.49) obey
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the relation a4+ b = ¢ as in the case of the isotropic Heisenberg chain. This means that the results
from the beginning of Sect. 2.2.4 directly apply to the loop update procedure for the bond coupling
model. Hence we only have to take a stochastic decision for the type of breakup on plaquettes
with weight c. On these plaquettes, the probability for choosing a horizontal breakup is given by
the fraction

alo

2.3.3. Phonon updates

We now discuss the update procedure for the phonon occupation numbers {nf‘}. During a phonon
update, the values for the spin variables {s,-“} are kept fixed. In contrast to the global loop update
for the spin degrees of freedom, the update scheme for the phonons is based on local changes
of the phonon occupation numbers. Therefore to minimize autocorrelation effects, it is useful to
repeat the phonon update procedure from this subsection several times between successive loop
updates.

As we have mentioned in Sect. 2.3.1, the phonons on the modified plaquette lattice can be
grouped into blocks consisting of three phonons n¥, k™1, nk*2 with k = 3/ + 1 (k = 3/ + 2) for
even (odd) values of i. Due to the structure of the Trotter-Suzuki decomposition, the phonons of
each block take the same value and hence have to be updated simultaneously. Thus in principle, a
full update of the whole set of phonon occupation numbers {n,’-‘} consists of N x M local updates
of the phonons of each block. In practice this can be done blockwise, i. e. the occupation numbers

in each block are updated block by block until the whole lattice has been visited.

Now let us consider such a block where the three numbers n¥, nf*1, nf*2 take a certain value n;.
Similarly, we assume that the phonon occupation numbers of the two adjacent blocks with respect
to the imaginary time axis are given by ny and n,. The situation is visualized in the left part of

Fig. 2.9. According to Eq. (2.3.44), the weight of the whole configuration can be written as
_B
W({nf}) = Weest({nf}) Wp, (no, m) Wi, (1, n2) €™ u®™, (2.3.51)

where we have omitted all dependences on the spin variables for the moment. Here W,, (no, n1) and
W, (n1, np) denote the plaquette weights of the two plaquettes at the boundaries of the block, while
the factor e~ @ corresponds to the n;-dependent part of the contribution W, from Eq. (2.3.46).
The abbreviation W,est({s¥, n¥}) contains all the plaquette weights and factors of W, which do
not depend on the occupation number n; of the block. In the following we suggest a change
n — nf in the block. This corresponds to a change {n¥} — {nk}' of the configuration of phonons
on the plaquette lattice, which we accept according to the heat bath probability (compare also
Eq. (2.2.16))
w({nf}")
W({nf}) + W({nf})
W, (o, )W, (15, )%

= -. (2.3.52)
W, (ng, n1)W,,,(n1, no e~ mwm + W,, (ng, nt )W, nl,nz)e_%wnl
p1 P2 p1 1/VVpa Iy

p({nf} = {nf}) =

Here we have taken advantage of the fact that the factor W,est({n}‘}) cancels in the second line.
The choice (2.3.52) guarantees that the condition of detailed balance (2.1.2) is fulfilled.
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Fig. 2.9.: Visualization of a block (left) and a cluster consisting of two blocks (right) with phonon occupation
number n; on a bond with even index /. The occupation numbers in the adjacent blocks (clusters) are ng

and ny.

In the following we discuss an important observation which leads us to a significant improvement
of this update scheme. Let us imagine that on one of the two plaquettes at the boundary of
the selected block, we have a spin configuration with plaquette weight a. Then we find that for
any n} # ny the weight W ({n¥}') and hence the update probability (2.3.52) vanishes due to the
Kronecker symbol in the expression (2.3.47). This implies that the phonon occupation number of
the block is frozen until we apply a spin update to alter the underlying configuration of Ising spins.

We can avoid this problem by building clusters of blocks. Such a cluster can be constructed
as follows. Starting on a plaquette with weight W,, # a, we move along the time direction and
neglect all the plaquettes with weight a. After having passed by Q such plaquettes, we finally reach
a plaquette with weight W, # a. Grouping the blocks together, we obtain a cluster consisting of
(Q+1) blocks with one common phonon occupation number. An example for a cluster with Q = 1
is given in the right panel of Fig. 2.9. To construct an update for this number, we first note that
Eq. (2.3.51) can be generalized by writing

W({”lk}) = WreSt({nlk}) W, (no, n1) Wp,(n1, no) e_%w(Q+1)"1, (2.3.53)

because the contribution of each of the Q intermediate plaquettes with weight a is equal to unity.
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The abbreviation Wiest({n¥}) now includes all the factors which do not depend on the occupation
number ny of the cluster. Then a change ny — n} in the whole cluster is accepted with probability
(compare Eq. (2.3.52))

Wi, (no, i)W, (1, np)e~ ia(Q+ D)

Wi, (o, n1)W, (1, na)e™ # QDM L W, (g, n) Wi (1}, np) e m(@+Dm
(2.3.54)

It is obvious how these formulae have to be modified for the special case Q@ = M, i. e. the

p({nf} — {nf}) =

cluster extends over all Trotter slices in imaginary time direction (or for the case Q = M — 1,
which means that all of the plaquettes except for one have the plaquette weight a). Applying the
cluster updates for the phonon degrees of freedom, it becomes evident immediately that the whole
algorithm satisfies the ergodicity condition.

We add that for practical applications, one cannot allow the phonon occupation numbers to take
any natural number. Instead of this we have to introduce a cutoff nmax for the phonons, i. e. we only
allow for values n,‘.‘ < nmax. Evidently, this way of proceeding leads to systematical errors during
the simulation. These deviations, however, are well controlled if the measured mean occupation
numbers stay significantly smaller than the value selected for the cutoff. Such an analysis has been
done for the algorithm both in one and two dimensions [KL99, AL03].

We finally comment on how the concept of importance sampling can be incorporated for the
update procedure described above. As before, we consider a cluster consisting of Q blocks and
calculate the quantities

"
S(m) = > Wi (n0.J) W, (j 1) € QDI pl =0, i (2.3.55)
Jj=0

In addition we define S(—1) = 0. If we now draw a random number x € [0, 1), there is always an
integer nj with

S5(nm —1) 5(n)
L < —_— 2.3.56
S0imm) =™ S(ma) (23.56)
which we take as the new occupation number for the cluster. This implies
w. W ' —Bu(@+1)n,
p({nk} — {nky) = Voo Wi (. re)e 0P (2357)

S(nmax)

for the update probability, which is the natural extension of relation (2.3.54) and can be shown
easily to satisfy detailed balance.

2.3.4. Two-dimensional model

In analogy to the argumentation for the Heisenberg model in Sect. 2.2.4, we can immediately
generalize the loop algorithm for the spin-phonon coupling model (2.3.39) to a QMC algorithm for
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its two-dimensional counterpart

H = Hgs, + Hpn, with (2.3.58)

w—§3W+W

ij=1

N
S S
= Y- { 3@y~ D0+l + )+ 3@uigns ~ 1 + ol + ) |
ij=1

Hpn = wZ(aUa + b, LD,
ij=1

According to our usual notation, the symbols &;; denote Pauli spin matrices at the sites of a square
lattice with N x N sites and periodic boundary conditions. Since there are two bonds per lattice
site, we have to introduce two types of phonon creation (annihilation) operators a bu (aij, bij)
corresponding to the bonds oriented along the i- and j-direction, respectively. As in one dimension,
we have J > 0 and g,w > 0 for the coupling constants of the model. The (unphysical) static
terms —92—J(a +a;), —9—(bf + b;;) can be avoided by considering the two-dimensional analog of
the phonon shift (2.3.41) from Par. 2.3.1. For a detailed discussion on the properties of the model
we refer to Chapt. 4.

We first mention that by transferring our results from the preceeding three sections to the two-
dimensional case we do not gain fundamental new insights. For this reason we keep the following
discussion as short as possible, which is given for the sake of completeness. We split the part Hqp
from Eq. (2.3.58) into four parts

Hsp = Hiven + Hiaq + Hen + H24q: with (2.3.59)

X X y y
even § :H2I,j’ Hodd - E : H2i+1,j' even E :H/ 2 Hodd - § :Hi,2j+1'
ij ij

and apply the usual Trotter-Suzuki breakup [Tro59, Suz76]

M
_ . _B px _B px _B _B _B
Z=TrePH = Jim Zy = lim Tr (e 1 Heven @~ Hoaa @ 1 Heven @~ 11 Hoaa M”vh) . (2.3.60)
M—oo

M—o0

This time we have to insert (5M — 1) complete sets of eigenstates of the operators o7, for all the
sites, and of the operators n;; = aJr a;, mij = b:-rjb,j for all the bonds of the lattice to obtain the
partition function of a (2 + 1)- dlmenS|onaI classical model

Zu= Y W(stahmh= 3 O]mﬂ%mdwb)mﬂﬂﬂmﬁ)(ﬂmn

Kk mk Kk mk
{5 Mij u} {5 Mijo ij}

The partition function (2.3.61) depends on classical Ising spins s,-’; = +1 and phonon occupation
numbers nU, m € N, where k =0,...,5M —1 is the index for the Trotter direction as usual. The
lattice of the cIaSS|caI system can be characterized as a (2+1)-dimensional generalized checkerboard
lattice similar to the one depicted in Fig. 2.7, see Sect. 2.2.4. In analogy to Fig. 2.8 for the one-

dimensional model, however, we have to insert an additional striped slice indicating the action of
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H H

e~ #Hon between the slices with plaquettes corresponding to the terms e~ #Hsa and e~ mHen In
addition to the spin degrees of freedom {s,}, the plaquette weights W, of plaquettes associated
with the action of e # Meven/oad (e_%Hgve"/odd) also depend on two phonon occupation numbers {n,}
(or {mp}) as indicated in Eq. (2.3.61). In principle, they are given by the same matrix elements
(2.3.45) as in one dimension, i. e. the explicit expressions for the non-vanishing plaquette weights

(2.3.47), (2.3.48), and (2.3.49) are still valid.®> The result for W,, becomes

Won({nls, mk}) = [ e tetoi=mt) (2.3.62)
ij.k=51
in two dimensions.

Using the same conventions as for the spin-phonon chain, we can still apply the worldline (or
vertex) picture to visualize the spin part of a given configuration. Furthermore, we have argued
that the results for the plaquette weights do not depend on the dimensionality of the system. In
particular, this means that the relation a + b = ¢ holds for the non-vanishing matrix elements
on the plaquettes. Hence we can apply the discrete time version of the loop algorithm for the
two-dimensional Heisenberg model as described in Sect. 2.2.4 as a valid update procedure for the
spin degrees of freedom. As has been motivated in Sect. 2.3.2, we only have to set up vertical
loop segments between adjacent sites (with respect to the imaginary time axis) in Trotter slices
connected by the action of e~ mt to join those parts of loops which have been specified by the
breakups on the individual plaquettes.

The update procedure for the phonons is identical to the one described in Par. 2.3.3. Here each
block consists of five phonon occupation numbers which take the same value and hence have to
be updated simultaneously. Because the phonon degrees of freedom in the Hamiltonian (2.3.58)
are defined on the bonds of the lattice we can proceed bondwise, identify clusters and update the
phonon occupation number of each cluster successively.

2.3.5. Summary: sketch of the algorithm

As already done for the pure spin models, we will now summarize the update procedure for the
bond coupling model in one and two dimensions by giving a short sketch of the algorithm. The
algorithm was implemented as a C++ program to compute correlation functions for the one- and
two-dimensional bond coupling model.

We assume starting with a configuration which contributes to the partition function (2.3.44)
(Eq. (2.3.61) in two dimensions). Such a configuration is specified by storing the values of N x (3M)
Ising variables {s¥} plus the values of N x (3M) phonon occupation numbers {nk} (for the two-
dimensional model, we need each (N?) x (5M) values for the numbers {sk}, {nk}, and {m}).
Then an update of both spin and phonon degrees of freedom consists of the following steps.

1. Loop update for spin variables:

a) Specify breakups on the individual plaquettes of the lattice. On plaquettes with spin
configurations corresponding to the plaquette weights a and b the choice is unique,

5We assume having applied the same unitary transformation to the Hamiltonian as for the two-dimensional Heisen-
berg model in Sect. 2.2.4.
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namely vertical and horizontal breakups, respectively. On plaquettes with weight c,
select a horizontal breakup with probability g and a vertical breakup otherwise.

b) Identify loops. By adding vertical loop segments between Trotter slices connected by the

. B
action of e~ m /e

on each site of the lattice, the loop segments defined by the breakups
combine to a set of closed loops. The individual loops are identified by following the
loop segments through the lattice. The loop identification is finished if a loop number
has been assigned to each of the N x (3M) spin variables {s¥} (or (N?) x (5M) spins

{s,.’j} in the two-dimensional case).
c) Determine which of the loops are flipped according to the loop flip probability %

d) Flip the loops by inverting the Ising spins which belong to the loops determined in the
previous step.

2. Cluster updates for phonon occupation numbers:

a) ldentify clusters. This is done bondwise by analyzing the spin configuration on the
individual plaquettes.

b) On each bond of the lattice, update the phonon occupation numbers in each cluster
by applying the importance sampling procedure from Sect. 2.3.3. Proceed cluster by
cluster until each cluster on the selected bond has been visited. Repeat this procedure
several times (e. g. 30 times).

3. Measure observables. This step is only performed if the algorithm has thermalized. The rules
for the measurement of thermodynamic quantities are described in the following section.

2.4. Measurement of correlation functions and numerical error

analysis

In this part we will ask the question how one can measure thermal expectation values within the
loop algorithm. We restrict ourselves to the case of arbitrary spin correlation functions and, to
simplify matters, derive measurement rules on the basis of the loop algorithm for the XXZ chain
in discrete time, see Sects. 2.2.1 and 2.2.2. One can proof easily that the same rules hold for the
other types of models from Sects. 2.2 and 2.3. Furthermore, they can be generalized trivially to
the continuous time limit. In the next subsection, we first consider the simple case of diagonal
operators with respect to the chosen basis of the Hilbert space. We then concentrate on two-point
correlations (Sect. 2.4.2), and show that in principle both diagonal and off-diagonal spin correlators
can be calculated efficiently by evaluating the loop properties of a given worldline configuration. In
Sect. 2.4.3, we formalize this idea and address the case of general n-point correlations. We close
by discussing the issues of numerical error analysis and autocorrelation effects in Sect.2.4.4.
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2.4.1. Diagonal operators

In this subsection, we concentrate on operators which are diagonal with respect to the basis of the
Hilbert space. In our description of the loop algorithm for the XXZ chain, we have characterized the
spin degrees of freedom in a basis of o” eigenstates, see Sect. 2.2.1. Thus focussing on equal-time
correlations for the beginning, we are interested in expectation values of diagonal operators of the

type

D=1]]Joz. (2.4.63)
a=1

i. . we assume that D factorizes into a product of n Pauli spin matrices o7 acting on the spins
at those lattice sites characterized by the indices i,. For example, in case of the longitudinal two-
point spin correlation function we have D = o7o7. We start by making use of the Suzuki-Trotter
decomposition from Sect. 2.2.1, and write

1 —BH 1 = H 1 _EHeven _EHO M
(D) = 5 Tr (De™) = fim (Dju = im ——Tr D(e i Heven g f dd) , (2.4.64)
where Z and Zy are given by the expressions (2.2.5) and (2.2.6), respectively. In the following,
we keep the Trotter number M fixed and consider the Mth approximant (D), using the same
notation as is Par. 2.2.1. In analogy to our treatment of the partition function Zy,, we insert
(2M — 1) complete sets of o* eigenstates between the exponentials in Eq. (2.4.64). Furthermore,

we apply the operator D to the additional set of eigenstates stemming from the trace symbol,
which we label with the index k = 0 in the following. Since D is diagonal, we immediately find

O = 5 St H (2.465)

We can generalize this result easily to the case of time-dependent correlations, i. e. now we consider
operators

D= ﬁ 07 (Ta). (2.4.66)
a=1

Since we discuss the loop algorithm in discrete time, we assume that the times 7, are integer
multiples® of AT = %. This implies that we can write 74 = I AT with integers 0 < Iy < M — 1.
The time dependence of the individual factors o7 (1) is due to a translation in imaginary time
direction, which is given by

ATy =e ™ Ae™ (2.4.67)
for any (not necessarily diagonal) operator A. Thus we can apply each factor o7 (74) from the

definition (2.4.66) to the set of eigenstates characterized by the index k = 2/, and the relation
(2.4.65) is replaced by

(O = 5 S witsty [ 2 (2.4.68)
{s} o=1

|n continuous time, the times T4 can take arbitrary values in the interval [0,3).
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Note that this result is identical to the formula one obtains for the operator D = UTDU, where U
is the unitary transformation (2.2.11) which we applied to the Hamiltonian in Sect. 2.2.1 to avoid
negative plaquette weights.

From the relation (2.4.68), we can immediately read the measurement rule for diagonal operators
(2.4.66) in a QMC simulation. One obtains a numerical estimate for the quantity (D) by averaging

n
pyue = LS~ T 2% 2.4.69
(D U{Z} I (2.4.69)
where u is the number of Monte Carlo updates (after the algorithm has thermalized), and the sum
Ef{s/‘} extends over the individual configurations of the Markov chain.

Before we address the case of off-diagonal operators, we add a remark concerning the extrap-
olation to infinite Trotter number. To obtain a reliable estimate (D)MC for the expectation value
(D) = limp—00{D)m, one needs to calculate the numerical estimate (2.4.69) for various values of
M. Afterwards these numbers have to be extrapolated to the limit M — oo, which is well controlled
because in leading order the relation (D)y ~ 75> holds [Suz85]. As has been mentioned earlier,
such an extrapolation can be avoided if the value for the Trotter number is that large that the
systematic error due to the discretization of time is significantly smaller than the statistical error
(see Sect. 2.4.4) due to the finite number u of configurations generated during the simulation. The
best choice, however, is to run the simulation in continuous time and to compute the expectation
value (D)MC directly.

2.4.2. Improved estimators and off-diagonal correlation functions

We are now going to concentrate on the issue of expectation values of non-diagonal operators. The
concept behind the evaluation of such correlators can be best understood if we restrict ourselves to
the case of two-point correlation functions, for which we illustrate the basic ideas in this subsection.
A formal description and the more complicated case of general n-point correlations will be discussed
in the following section.

In Sect. 2.2.2 we have already mentioned that by selecting a breakup on the individual plaquettes
of the (1 + 1)-dimensional checkerboard lattice, we have mapped a worldline configuration of spins
{sk} to a combination of worldlines and loops ({s¥}, G). This construction enables us not only
to measure an operator in each configuration of the Markov chain, but also in all configurations
related by loop flips. We first construct such an improved estimator for the simple case of the
(time-dependent) two-point function (007 ), using a simplified notation by omitting the subindex
M for expectation values and introducing indices x, y which label both space and Trotter time,
i.e.x=(i,7)and y = (j, 72). According to our results from the previous section, each worldline
configuration gives a contribution of sys, to the numerical estimate for this correlation function,
compare Eq. (2.4.69). However, one obtains a better estimate by averaging this contribution
over all configurations which can be constructed by (virtually) flipping the loops of the underlying
graph. In our example, we have to distinguish between two cases. We first assume that the two
spins sy, s, belong to different loops. In this case we have to average over four different worldline
configurations, because each of the two loops can either be flipped or not. This means that we have
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Fig. 2.10.: Example for a configuration which contributes to {S{S;). On the left, a spin configuration
with one closed worldline is shown. The spins on the sites x, y are connected by a loop which is depicted
by the dashed line. The right panel illustrates the modified checkerboard lattice after the insertion of two
extra Trotter slices for the action of S§ and S, . After inverting the spins on the partial loop marked by
the number 1, one obtains the desired propagator.

HIsxSy + 5x(=5y) + (—=5x)s, + (—s¢)(—s,)] = 0 for the total contribution. The second possibility is
that both spins belong to the same loop, which can either change or keep its direction. Then the
total contribution is %[sxsy + (—5x)(—5y)] = s5xS,. Hence we find

SxSy if sx, 5, belong to the same loop,

(oxoy) — (2.4.70)

0 else,
for the improved estimator. We see that besides the spin configuration the improved estimator
(2.4.70) also explicitly depends on the particular graph.

In the following we argue that the same concept can be used to calculate off-diagonal correlations
[BCW98, AG00]. As an example, we consider the correlation function (S}S.), where St =
%(a"iiay) are the ladder operators of the spin algebra for spin—%. For example, measurement rules
for this expectation value are needed when calculating transversal spin correlations, because one can
apply the identity (oX0%) = (00X +0%0Y) = (S5S, +55S;). We first observe that the worldline
configurations generated by the loop algorithm never contribute to this correlation function. To
see this, we consider the same construction as we have used for diagonal operators in the previous
section. As we did there for the individual factors o7 (1) from the product (2.4.66), we apply the
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operators Sy, S, on the complete sets of o eigenstates at times 71 and T», respectively. Then
the contribution either vanishes due to the identity S*|+) = 0, or one obtains plaquettes which
violate the conservation of the number of worldlines on the plaquette lattice. We can visualize the
configurations which contribute to (S;S;") if we introduce two extra Trotter slices for the action of
Sy, S, at the corresponding Trotter times (or one extra slice if 71 = T» holds). On this modified
checkerboard lattice, the configurations with non-vanishing contributions are characterized by a
partial worldline or propagator connecting the two sites x, y, because then the z-component of the
total spin on each plaquette of the original lattice is conserved. From this point of view it becomes
even clearer that the worldline configurations generated during the simulation do not contribute
because for such configurations all worldlines are closed by construction. However, within the
loop algorithm we can measure (5,}*5;) by virtually flipping partial loops and hence creating the
desired propagator virtually. Again we have to distinguish between two cases. If s, and s, belong
to different loops, there is no contribution because we cannot construct a partial worldline which
connects the two spins. Only if s, and s, belong to the same loop, we can virtually flip one of the
two partial loops between the two spins to obtain the desired propagator. This amounts to a total
contribution of %(1 +0) = % because we can either flip the partial loop or not. Which part of the
loop has to be considered depends on the current worldline configuration. An example is shown in
Fig. 2.10. In summary, we find an improved estimator

1(-1)¥ if s¢, s, belong to the same loop,

(55S,) — (2.4.71)

0 else.

The additional factor of (—1)*/ appears if one takes into account the unitary transformation
(2.2.11) from Sect. 2.2.2.

2.4.3. Formal description

We now turn our attention to the case of general n-point correlation functions. To derive the
measurement rules in question, we need to formalize the ideas of the preceeding subsection. A
more detailed presentation is given in Ref. [AGOQ].

Our starting point is the mapping of a configuration {s¥} of Ising spins to a combination ({sf}, G)
of worldlines and loops by choosing breakups on the plaquettes. We further observe that we were
able to find the solutions (2.2.21),(2.2.22), and (2.2.23) for the non-vanishing breakup weights by
imposing the condition (2.2.17), i. e. the breakup weights only depend on the type of breakup and
not on the spin configurations on the plaquettes. For this reason we can rewrite the partition func-
tion (2.2.6) in terms of a statistical model of directed loops, where the direction of a loop is given
by the direction of the vertices of the worldline configuration. Starting from a loop configuration
{£} consisting of N, directed loops, we can construct 2 different configurations of directed loops
by either flipping the individual loops or not. As can be seen from the identity (2.2.24), all these
configurations have the same weight W ({£}) = W({s¥, G}). Hence we obtain

z=> w{e)2"=> w{e) [ TrJJ o™ (2.4.72)
{4 {¢} Le{e} W
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For the second equality we have rewritten our result as a weighted sum of traces over individual
loops. The notation can be understood as follows. We first note that each loop consists of a number
of loop segments defined by the breakups on the plaquettes. Each loop segment is identified with

a 2 X 2 matrix g". Because vertical and diagonal loop segments do not change the loop direction,
1

0 2) A horizontal loop segment, on the other hand,

they correspond to the identity matrix ¢° = (

does change the direction of the loop, and is therefore identified with the matrix o* = <(1) (1)) in
our notation. By using these conventions we can follow the course of a loop and collect a factor
o™ for each loop segment. For each closed loop, there is an even number of ¢* matrices under
the trace in the relation (2.4.72). Because all the other loop segments correspond to the insertion
of identity matrices and the identity (¢*)? = ¢© holds, we find a factor of Trg® = 2 for each loop
(two possible loop directions) and thus a total factor of 2V for the whole loop configuration as
demanded.

We are now in the state to treat the issue of expectation values of general operators
n
o=]][ s (2.4.73)
a=1

where the symbols S7= correspond to operators 0%, S¥* acting on the spins with spacetime indices
Xa = (la: Ta)- In terms of the loop model as defined by Eq. (2.4.72), the action of each factor S=
is given by the insertion of an additional 2 x 2 matrix o= (to be specified below) between the two
matrices 0" which correspond to the two loop segments adjacent to the spin s, . Therefore we
have

©) = 3> wienT I[ope IL weILo™ | (2.4.74)

{&} a Le{e} Iz
where the symbol 7 denotes proper time and space ordering for the insertion of the additional
matrices. Note that the insertion of extra factors under the traces in Eq. (2.4.74) corresponds to
the introduction of additional Trotter slices which was discussed in the context of the correlations
(S5S, ) in the previous subsection.
We now specify which kind of matrices o= have to be inserted for the factors S}* from the
definition (2.4.73). Depending on the loop direction at the site x, the replacement is

o o%(o?)
S —=<cot(o7) (2.4.75)
Sy o= (o)

for loops running along (against) the imaginary time direction, with 2 x 2 matrices o = (é _01),
+_ (0o 1 __ (o 0
oT = (0 0), and 0~ = (1 0).

In the following we throw more light on these results by reproducing the improved estimators
(2.4.70) and (2.4.71) from Sect. 2.4.2 for the two-point correlators (0f07) and (S{S, ), respec-
tively. As we did in the previous subsection, we first consider the case that the spins sy,s, lie on
different loops. Then Eq. (2.4.74) implies that we have two factors of the type

Tr (o7/* Ha”“) =Tro?/* =0, (2.4.76)
u
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‘ Sx ‘ Sy H contribution to (0507) ‘ contribution to (S5 S;) ‘

+1 | +1 iTr (o%0%) =1 iTr (oto7)=1
-1 ] -1 iTr (0%0%) =1 iTr (070%) =1
+1| -1 || 3Tr (¢%0*0?0*) = -1 | iTr (octo*oto*) =1
-1 | 41 || 3Tr (0?0¥0%0*) =1 | 3Tr (c-0*0c~0*) =3

Table 2.1.: Verification of the results (2.4.70), (2.4.71) from Sect. 2.4.2 in the case that the spins s,s,
belong to the same loop.

because we can omit the ¢® matrices for vertical and diagonal loop segments, and the ¢* matrices
for horizontal loop segments only appear in pairs because each loop is closed. Hence only a non-
vanishing contribution is found if the two spins belong to the same loop. In this case we can exploit
the same observations. We only have to keep two o*-matrices for a change of the loop direction
if the two spins sy,s, take different values. The one-loop contributions to (of07) and (S55S;) in
dependence on the loop orientation are given in Table 2.1. Note that the prefactors % stem from
the normalization factor  in Eq. (2.4.74). We see that the results coincide with our findings from
the previous subsection if we take into account that the unitary transformation (2.2.11) generates
an additional minus sign for each factor S with an even space index iy in the definition (2.4.73).

We finally return to the general case of arbitrary n-point correlation functions. In principle, one
can derive similar rules for these expectation values by analyzing the implications of Eq. (2.4.74).
To do this in a systematic way, it is useful to consider all possible distributions of the n factors from
relation (2.4.73) to m < n different loops. In a second step, the traces over the loops containing
such operators have to be calculated. In this thesis, we only need measurement rules for operators
with n < 4. In this case, the result (2.4.76) implies that only loop configurations with each loop
containing an even number (or none) of the spins s,, contribute. This leads to the conclusion
that the expectation values for all possible choices (2.4.73) with n = 1,3 vanish. For n = 2,
we have already discussed the relevant correlation functions extensively. For a derivation of the
measurement rules for those operators with n = 4 factors which are needed for a determination of
dimer correlations we refer to App. A.3.

2.4.4. Numerical error analysis

We have not discussed the issue of numerical error analysis so far. Since QMC is a numerical
technique, it is particularly important to have reliable error estimates for measured quantities from
a Monte Carlo simulation. In Sect. 2.1, we have already pointed out that autocorrelation effects
have to be taken into account for a correct determination of the measurement errors. In this
subsection, we discuss how autocorrelation times are defined and how they can be measured in
practice, which yields a possibility to deduce the correct numerical errors.

We follow the argumentation from Ref. [Eve01], and first define a Monte Carlo average of an
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observable O over u configurations C;,
1 u
(OWMC = - 2; o), (2.4.77)
=
see e. g. Eq. (2.4.69) from Sect. 2.4.1 for the case of diagonal operators. If the configurations

{Ci} of the Markov chain were statistically independent, the error of the mean value (2.4.77) would
be o/+/u with the standard deviation

o? = - - - [(03MC - (o)) (2.4.78)

However, subsequent configurations generated by the update procedure are not statistically inde-
pendent, and therefore the relation (2.4.78) underestimates the correct size of numerical error bars.
To treat this issue, we define the autocorrelation function

Co(t)
Co(0)
Co(t) = (O(CHO(Cire )M — (O(CNHMUO(Cige )MC,

lo(t) = with (2.4.79)

which can be used to calculate the integrated autocorrelation time

o
Tint

N

+ i lo(t). (2.4.80)

By making use of this definition one can prove that the correct numerical error is given by oint/+/U,
with

o2, 21902, ifu> TS, (2.4.81)

It is useful to add some remarks at this point. We first have to stress that — according to the defini-
tions (2.4.79) and (2.4.80) — different observables have different autocorrelation times. Therefore
in the introduction to this chapter, we have been somewhat unprecise talking of a single autocorre-
lation time Tj,:. What remains valid is the conclusion that a Monte Carlo run with u measurements
contains only u/2'rif?t independent samples with respect to the observable @. We also have to
comment on the question of convergence of the sum in Eq. (2.4.80). Typically, one can expect the
sum to converge because the function Ip decays exponentially at large t. We only mention that
this dependence ~ e~t/Te defines the exponential autocorrelation time 'rg(p of the observable O,
which is an upper bound for the value of 79,

Evidently, one cannot use the relation (2.4.80) to determine the integrated autocorrelation times
in a computer simulation, because a direct evaluation of the autocorrelation function (2.4.79) for
each observable O and all times t is very ineffective. For the numerical data presented in this work,
the binning of time series technique was used instead. The idea is to group the u configurations

u

of the Markov chain into k bins of length / = . Then one computes the bin averages

bl
1
(O(N)HNC = ; Yoo, b=1,...,k (2.4.82)
i=(b—1)I+1
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and the variance of these averages
1 2
a’(l) = —1 E (O — (oM< ]". (2.4.83)

k
1
b=1

These numbers are used to evaluate the quantity

(2.4.84)

with the standard deviation o from Eq. (2.4.78). It can be shown that the function (2.4.84) grows
monotonically in /, and it converges to the integrated autocorrelation time for / > 79 Hence by
choosing / sufficiently large, one obtains a reliable numerical estimate for 7% and hence for the
corresponding statistical error due to the identity (2.4.81). Note that in practice / should not be
too large, because otherwise the number k of bins becomes too small and the quantity (2.4.84)

starts to fluctuate.
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3. Conformal invariance and correlation
functions of the XXZ chain

3.1. Known properties of the XXZ model: a survey

In this chapter we concentrate on the issue of correlation functions of the one-dimensional spin—%
XXZ model

N
J
H= 2 Z(afol)'(ﬂ +0j0l, +A0fohy), (3.1.1)
i=1

compare Eq. (2.2.3) from Sect. 2.2.1. We first give a short survey of the physics of the system for
J > 0 and arbitrary values of A in this section. Note that by choosing these values for the coupling
constants, we cover both the antiferromagnetic and ferromagnetic regimes of the model, because
there is a correspondence (J, A) < (—J, —A) mediated by the unitary transformation (2.2.11) from
Par. 2.2.1.

The XXZ chain has been studied extensively during the past decades and is one of the best
understood models in quantum many body physics. For this reason and due to its generic structure,
it serves as a reference system in the field of quantum magnetism. The magnetic properties of a
couple of quasi one-dimensional non-frustrated compounds are well described by the model. For
example, the isotropic antiferromagnetic Heisenberg model or XXX chain with A = 1 is realized by
the cuprates Sr,CuQO3 and Ca,CuQO3 [Egg96a, KFLT97]. An example for an inorganic substance
with considerably anisotropic exchange is Cs;CoCly, where A = 0.25 is realized [DOB*81,YSSH83].
The Hamiltonian (3.1.1) also plays a significant role in the context of fermionic models. By means
of a Jordan-Wigner transformation, the spin system (3.1.1) can be mapped to a one-dimensional
model of interacting spinless fermions (n; = C’-TC,')

N N
H= —t‘Z(c,TC,-+1 +c c,-T+1) + UZ NiNi+1, (3.1.2)
i=1 i=1
where the coupling constants of the fermionic model are given by t = —% and U = 2.

The XXZ chain is an integrable system, i. e. it is exactly soluble by means of the Bethe ansatz.
This approach was introduced by Bethe in 1931 to study the isotropic cases A = +1 [Bet31].
Lieb, Schultz, and Mattis investigated the free fermion case A = 0 in 1961 [LSM61]. In 1966,
Yang and Yang were able to construct the ground state of the system for general values of A
using the Bethe ansatz [YY66a, YY66b, YY66c]. Today the nature of the ground state and the

1The derivation of the fermionic model (3.1.2) from the XXZ Hamiltonian (3.1.1) involves the neglect of a constant

energy contribution.
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AE>0 AE=0 AE>0

T T
-1 attractive 0 repulsive 1 A

Ising-like ferromagnetic Ising-like antiferromagnetic

| |
! quantum critical !
| |
| |

ferromagnetic XXX antiferromagnetic XXX

Fig. 3.1.: Ground state phase diagramm of the XXZ model with J > 0. In the Ising-like regions |A| > 1,
there is an energy gap AE > 0. For —1 < A < 1, the excitation spectrum is gapless (AE = 0).

elementary excitations as well as the excitation spectrum are well understood. Similarly, ther-
modynamic quantities like the free energy, the specific heat and the magnetic susceptibility have
attracted considerable attention. The thermodynamics of the XX model were studied by Katsura
in 1962 [Kat62]. For A # 0, investigations of the model at finite temperatures are based on the
algebraic Bethe ansatz [K1i93]. Review articles on the properties of the XXZ model can be found
in Refs. [KBI93, Tak99].

The ground state phase diagram of the system in the thermodynamic limit (N — oo in Eq. (3.1.1))
is sketched in Fig. 3.1. We start by discussing the isotropic cases A = +1 which play a special
role because they are SU(2)-symmetric. The ferromagnetic XXX model with A = —1 has an
infinite number of degenerate ground states, spontanously breaking the SU(2)-symmetry of the
Hamiltonian. The system shows long-range ferromagnetic order at T = 0, because the ground
state can be characterized by a non-vanishing magnetization. The elementary excitations have
spin one and are interpreted as spin waves or magnons, whereas the low lying states of the gap-
less excitation spectrum can be characterized as m-magnon bound states or m-strings. For the
antiferromagnetic XXX chain (A = 1) the situation is somewhat different. Here a unique ground
state with a complicated correlated structure is found. There is no long-range order because the
staggered magnetization vanishes. The spectrum is gapless as in the ferromagnetic case, but the
excited states are superpositions of elementary spin—% excitations, so-called spinons [FT81,HZ93].
Spinons can only be excited in pairs which either form a singlet or a triplet state. A spinon can
be illustrated as a domain wall between antiferromagnetically ordered domains, compare Fig. 3.2.
Similar results as for A = 1 are valid in the region —1 < A < 1, where the system has a unique
complicated ground state as well. In addition, there is no gap to the excited states. The nature of
the massless excitations, however, depends on the choice of A. In the repulsive region 0 < A < 1,
one finds pairs of spinons similarly to the isotropic antiferromagnetic case. In the attractive region
—1 < A < 0, two kinds of excited states exist. The first is a superposition of elementary spin—%
excitations as in the repulsive case. The second kind can be characterized as m-magnon bound
states as in the ferromagnetic XXX chain.

For |A > 1|, the system behaves Ising-like, i. e. the system shows long-range order and a gap
in the excitation spectrum. In the ferromagnetic regime A < —1, there is a twofold degenerate
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Fig. 3.2.: lllustration of a pair of spinons. Starting with the Néel state | + — +...), a spinflip creates two
domain walls or spinons (left), which can propagate through the system (right).

ferromagnetic ground state | + + + ...) (and the spin-flipped state). The elementary excitations
can be characterized as massive magnons. In the Ising-like antiferromagnetic sector A > 1, the
two ground states show a Néel-type order with a finite sublattice magnetization. However, the
structure of the ground state is more complicated than in the Ising-limit A — oo, where two Néel
states of the form | + — + ...) (and the inverse state) become the exact ground states of the
system. As for A = 1, the elementary excitations can be characterized as pairs of spinons.

Although the Bethe ansatz provides a powerful instrument to analyze the system (3.1.1), it is
a challenge to evaluate correlation functions for the XXZ model analytically. One exception is the
ferromagnetic regime A < —1 at T = 0. Here one can evaluate arbitrary correlation functions
immediately due to the simple structure of the ground state. The most interesting correlation
function is certainly the static longitudinal spin correlation function

G(x) = (07071, (3.1.3)

which takes a finite value of Gj(x) = 1 for all distances x. We can see that the correlations of
the operator associated with the order parameter of the system reflect the long-range order in the
ground state. In analogy to this observation, one expects that for x — oo the absolute value of G
takes a finite value in the gapped antiferromagnetic sector A > 1. Another simple case is the XX
model, for which simple expressions for G| and the transversal spin correlation function

GL(x) = (0707,) (3.1.4)

both in the ground state and at finite temperatures were derived in the 1960s [LSM61,McC68]. For
general values of A, there exist certain multiple integral representations of the static spin correlation
functions at T = 0 [KMSTO02]. The approach has been generalized to finite temperatures recently
[GKS04]. Because of their complicated structure, however, it is hard to evaluate these expressions,
even numerically. In 2004, numbers for the third neighbor spin correlation functions as well as for
some four spin correlators in the ground state were published [KSTS04]. Further progress has been
made in Ref. [SST05], where the two-point spin correlations of the antiferromagnetic XXX model
up to x = 8 habe been calculated.

In the quantum critical region —1 < A < 1, the leading asymptotic expressions for two-point
correlation functions can be obtained from a combination of conformal field theory (CFT) and
Bethe ansatz results [KBI93]. The conformal approach is motivated by the observation [LP75]
that the low energy physics of the lattice Hamiltonian (3.1.2) can be described by an effective one-
dimensional quantum field theory, the fermionic Thirring model [Thi58]. Quantum field theories in
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one dimension in general turn out to be conformal invariant at a quantum critical point. For this
reason general results from CFT for the properties of correlation functions can be applied to the
XXZ model. In the ground state, CFT predicts an algebraic decay of the spin correlations G,/
and of the dimer correlation function

Ga(x) = (D;iDisx) — (Di){Di+x), (3.1.5)

where D; = ;0541 is the local energy operator of the XXX model. The critical exponents which
govern this quasi long-range order have been deduced both for spin [KBI93] and dimer correlations
[KIi98] in the literature. For A = 1, the competition between the quasi long-range Néel and
dimer orders reflects the tendency of the system to undergo a spin-Peierls transition towards a
non-magnetic dimerized ground state [KIGi98]. This kind of phase transition plays an important
role in systems with spin-phonon coupling [Pyt74, CF79]. A detailed analysis of Heisenberg-like
systems coupled to lattice degrees of freedom in one and two dimensions will be given in Chapt. 4.

We emphasize that CFT reveals a deep connection between the algebraic decay of correlations
in the ground state and the exponential decay which is found at low finite temperatures. The
same numbers that define the critical exponents at T = 0 also determine the correlation lengths
at T > 0. In particular, a smooth crossover between the low temperature and the ground state
behavior is predicted. However, despite of its success the conformal approach cannot be applied
to determine the correlation amplitudes. Furthermore, algebraic and logarithmic corrections to
asymptotic scaling for —1 < A < 1 and A = 1, respectively, are not accessible. These corrections
are due to the lattice nature of the model. Fortunately for G),., alternative field theoretical
methods have been applied successfully in this context during the past years [LZ97, Luk99, LT03].
In Ref. [LTO3], Lukyanov and Terras give closed expressions for the correlation amplitudes. In
addition, they discuss the leading algebraic and logarithmic corrections in the ground state. The
analytical results for the correlation amplitudes have been confirmed numerically by means of the
DMRG method [HF98, Luk99, HF01, HF04]. Deviations between analytical and numerical results
close to the isotropic point A = 1, however, are not discussed by the authors. In Ref. [HF04],
numerical estimates for the correlation amplitudes of certain four-point correlators are given as
well, but the authors do not consider the full dimer correlation function (3.1.5). The analytical
results for logarithmic corrections in the antiferromagnetic XXX model have also been compared
to DMRG data [HHMO95] in Ref. [LT03]. There is a good coincidence even down to very small
distances.

The argumentation from this section shows that numerical techniques are needed to fully un-
derstand the correlations of the XXZ chain. As has been mentioned above, exact analytical results
have only been obtained for distances x < 8 so far. In this chapter, we present a detailed numerical
investigation [ALO5] of low temperature data at intermediate distances on the basis of the QMC
loop algorithm from the Sects. 2.2.3 and 2.2.5 in the gapless repulsive region 0 < A < 1. We
concentrate on the crossover between low temperature and ground state properties. Here we espe-
cially pose the question to what extent the relations from CFT can be used to extract ground state
properties from finite temperature data. This is done to deduce independent numerical estimates
for the correlation amplitudes. Besides a comparison of the results for spin correlations to previous
analytical and numerical results, one main goal is to determine the amplitudes for the dimer corre-
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lation function which has not been done in the literature so far. We also ask the question in which
range of distances x the results from CFT are valid. Here we especially focus on the algebraic and
logarithmic corrections at T = 0 as given in Ref. [LT03] .

We emphasize that our analysis of the QMC data is based on the asymptotic expressions from
CFT. As the relevant literature is rather extensive, we give a detailed review of the concept of
conformal invariance in the next section. In particular, we focus on the general properties of two-
point correlation functions in conformal invariant theories. For the reader who is only interested in
our analysis of the numerical data, we recommend to skip this part and to continue with Sect. 3.3.
There we briefly comment on the Bethe ansatz solution of the XXZ model, and give the asymptotic
expressions for the correlation functions in question. In the same section, we also present a review
of the results for the correlation amplitudes and the corrections to asymptotic scaling from the
literature. Finally in Sect. 3.4, the numerical data are analyzed and compared to the findings from
Sect. 3.3.

3.2. Conformal field theory in two dimensions

In this section we give a detailed review of the general properties of two-point correlation functions
in conformal invariant theories. For further information on CFT and its application to statistical
physics we refer to Refs. [BPZ84, GO86, Gin90, Car90]. In the following subsection, we first intro-
duce the conformal group in d dimensions, and after restricting ourselves to the two-dimensional
case we determine the commutation relations of the conformal algebra for classical scalar fields. In
Par. 3.2.2, we then define the energy momentum tensor and motivate why quantum field theories in
two dimensions are conformal invariant at a quantum critical point. In the next step (Sect. 3.2.3),
we explain the concept of radial quantization, which is very helpful when showing that the modes
of the energy momentum tensor are the generators of the conformal algebra, see Par. 3.2.4. In
the subsequent Sect. 3.2.5, a definition of primary fields is given, which obey a particularly simple
transformation law under a conformal mapping. In particular, we discuss the properties of two-
point correlators of primary fields in the vacuum state of the theory. In Sect. 3.2.6, we introduce
the concept of conformal families, which is used to extract the asymptotic behavior of two-point
correlations of arbitrary fields in the ground state, see Sect. 3.2.7. Finally in Par. 3.2.8, we derive
asymptotic expressions for correlation functions in a strip geometry, which provide an instrument
to study finite-size effects at T = 0 and the asymptotics of two-point correlation functions at low
finite temperatures.

3.2.1. Classical conformal algebra in two dimensions

We consider the space R? with metrics guv and line element ds® = Juvdx*dx”. Under a change
of coordinates x — x’ the metrics transforms like

Ax* 8xP

Juv — gll,w(xl) =
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A conformal transformation is a mapping of coordinates which leaves the metrics invariant up to a
scale change

9w = Q2X) G- (3.2.7)

The set of conformal transformations constitutes the conformal group.
It is useful to understand the implications of the definition (3.2.7) for an infinitesimal conformal
mapping x* — x'* = x* + €#(x). Neglecting terms O(e2), we find?

9hy = Guv + Ou€s + 0,6y (3.2.8)

The comparison of this result to Eq. (3.2.7) yields Q(x) = 1+ £(8 - €). Therefore an infinitismal
conformal transformation fulfills the condition

2
Bu€y + By€, = 8(8 - €)Guv- (3.2.9)

In the introduction 3.1 to this chapter we have already mentioned that the critical behavior of
the XXZ model can be described by an effective one-dimensional quantum field theory, the Thirring
model. In such a theory the partition function Z of the system is given by a field integral

Z = /DA el (3.2.10)

where the action S[A] can be written as a (1 + 1)-dimensional integral over some Lagrange density
which depends on a set of local fields [A]. For this reason we restrict ourselves to the case d = 2
in the rest of Sect. 3.2.

After having defined how a conformal transformation acts in coordinate space, the next step
is to determine the commutation relations of the corresponding Lie algebra. In this section, we
search for a representation of the conformal group in the special case of classical scalar fields. For
this choice it is straightforward to determine the infinitesimal generators of the conformal algebra
and the corresponding commutation relations. Later we will discuss the case of critical quantum
field theories in two dimensions and show that the modes of the energy momentum tensor are the
generators of the conformal algebra in the quantum case.

In the following we choose d = 2 and the Euclidean metrics g,, = du.. In this case there is
no difference between covariant and contravariant notation, and we only use subindices to label
components of the quantities in consideration. Note that we still make use of the sum convention
if we denote indices by Greek letters. From the relation (3.2.9), we find the Cauchy-Riemann
equations

3060 = 3161, (3211)
6061 = —8160. (3.2.12)
Hence it is convenient to switch to complex coordinates z = xg + ix; and Z = xg — ix;. Then

an infinitesimal transformation takes the two equivalent forms €(z) = €¢ + ie; and €(Z) = ¢ —
ie1. At this point the reader may be reminded that Eq. (3.2.9) is a local condition. Conformal

2The reader may be reminded that the metric tensor gy, acts as the mediator between covariant and contravariant

notation, i. e. xp = guusx*.
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transformations in two dimensions thus coincide with meromorphic functions which can be written
as the Laurent series

€(2)=— Y a.z™, @) =- > bz". (3.2.13)

We now determine how an infinitesimal conformal transformation acts on classical scalar fields
f(z). Using the identity f(z + €) = f(z) + 9£(z) e + O(e?) and inserting the expansion (3.2.13)
for €(z), one obtains

fz+e)=(1- Z a,,z”+1%)f(z) (3.2.14)

(for €(Z) analogously). Therefore we can identify the corresponding infinitesimal generators

0 0

L, = —z"+1§, l, = —2"+1§, nez. (3.2.15)
The £'s satisfy the commutation relations
[€m, £n] = (m — n)emn. (3.2.16)

This algebra is called the Virasoro algebra V,. Simultaneously the relation
[zm-zn] = (m - n)zm+n (3217)

holds, and since we also have [Em,z,,] = 0, the local conformal algebra is the direct sum of two
isomorphic subalgebras. In Sect. 3.2.4 we will discuss that in the quantum case the relations
(3.2.16) and (3.2.17) are modified by an extra term on the right-hand side, the central extension.

So far we have only used the local conditions (3.2.11) and (3.2.12). The global conformal group
in two dimensions is defined by the set of conformal transformations that are well-defined and
invertible on the Riemann sphere CU co. It can be shown that this corresponds to transformations
which are generated by {£_1, %o, 21} U {€_1,40, 41},

3.2.2. Scale invariance and energy momentum tensor

We now explain why any quantum field theory in (1 4+ 1) dimensions is conformal invariant at a
quantum critical point. This question naturally leads to the definition of the energy momentum
tensor, which provides an instrument to construct a representation of the conformal algebra in the
quantum case.

To start with, we consider a quantum system on a lattice like the XXZ chain (3.1.1). At its critical
point, the system is scale invariant, i. e. the correlation length £ of correlations of the operator
associated with the order parameter is infinite. Sufficiently close to the critical point, i. e. for large
correlation lengths € > a (a is the lattice spacing), the behavior of the system on large length
scales does not depend on whether the system is defined on a lattice or in a continuum, and we
can assume that an effective field theory of the form (3.2.10) will describe the critical behavior of
the system properly.

In the following we discuss how the action S[A] in Eq. (3.2.10) changes under an arbitrary
infinitesimal coordinate transformation x, — x, + a,(x). In general we cannot expect S to be
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invariant under such a transformation, and the leading term in the change § S of the action is given
by
-1
6S = o / d?x T (x)8u0s. (3.2.18)

This equation defines the energy momentum tensor T,,(x). Scale invariance at the critical point
means that the partition function Z from the relation (3.2.10) does not change under dilatations
Xy — X, /X (which can be identified with a transformation a — Aa on the lattice, and corresponds
to the infinitesimal transformation a, = [+ — 1]x,). This condition is certainly fulfilled if S is
invariant, which means §S = 0 in the identity (3.2.18). This is the case if we demand

Ty.l/(x)ay.au = 0. (3.2.19)

Using 8a,/0x, = [+ — 1|84y, we find that T,, is traceless: Too + T11 = 0. If we further assume
that the theory is rotational invariant, we have To; = T19. Hence the energy momentum tensor has
only two independent components. By making use of these findings the integrand in Eq. (3.2.18)
becomes

Too(Goao — 811) + To1(Go1 + O1x0). (3.2.20)

In the last subsection we have seen that any infinitesimal conformal transformation a = ¢ fulfills
the Cauchy-Riemann equations (3.2.11) and (3.2.12). Therefore, if a is a conformal mapping, the
integrand (3.2.20) indeed obeys the condition (3.2.19). For this reason any (rotational invariant)
(1 + 1)-dimensional field theory is conformal invariant at a quantum critical point [Car90].

We close this subsection with some further remarks concerning the properties of the energy
momentum tensor in conformal invariant theories. If we demand §S = 0 and integrate the relation
(3.2.18) by parts, we find

8,Tyu =0. (3.2.21)
As we did in Sect. 3.2.1 we switch to complex coordinates and define
1 ) — 1 .

T(Z) = E(Too — ITOl), T(Z) = E(Too + IT01). (3222)

Then the insertion of Too = —T31 and Tg; = Ty into the identity (3.2.21) again reveals the

Cauchy-Riemann equations, and we find that T(z) is (locally) analytic.

3.2.3. Conserved charges and radial quantization

From the Noether theorem one knows that it is possible to construct a current j which satifies the
continuity equation
Ouly =0, (3.2.23)

if the underlying theory is invariant under a continuous group of transformations a. In this case an
arbitrary field A(z,Z) transforms® according to

A= A+ G,A (3.2.24)

3Due to the structure of the conformal algebra as discussed in Sect. 3.2.1 we explicitly keep the dependence of
the fields on Z. In terms of the original coordinates (xg, x1) € R2, this amounts to taking instead (xg, x1) € 2,
and then the transformation to (z,Z) coordinates is just a change of variables. One can recover the original real
coordinates by considering the surface defined by z = z* in C? (in contrast to our usual notation here * means

complex conjugation).
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W=XHX; z=exp(w)

X;>0

=0

Fig. 3.3.: Radial quantization. A cylinder with periodic boundary conditions along the x;-direction is mapped
to the complex plane. Circles in the plane correspond to slices with fixed time variable xo on the cylinder.

Here the variation §,A is given by the expression
0aA = [Qqo, A], (3.2.25)

where

Ra =/dX1]o(X0.X1) (3.2.26)

is the conjugated conserved charge. For the integration the time xo is kept fixed. However, it can
be shown that Q. does not depend on the specific choice of xo. Note that the operator Q, is not
only conserved, it also acts as a generator of the symmetry [Wei95].

In a conformal invariant theory, we can identify a = €, and the corresponding current is given by

Ju = Tuvey, (3.2.27)
while the conjugated charge becomes
Qe = /dx1 Tou€p- (3.2.28)
To verify whether j fulfills the continuity equation (3.2.23) we consider
Oy = 0u(Tuver) = (BuTpuv)ew + TuOues. (3.2.29)

By inserting the relations (3.2.21) and (3.2.19) from Sect. 3.2.2 we can see that both summands
vanish.

As we did in the previous subsections, we switch to complex coordinates w = xy + ixq, because
then the theory of analytic functions can be applied. In the following we make use of the concept
of radial quantization. We first compactify the space coordinate x1, i. e. we assume having mapped
the complex plane to a cylinder with periodic boundary conditions in the x;-direction: x; = x; 4+ 27.
Next we consider the transformation w — z = exp(w) (see also Fig. 3.3). Then the expression
(3.2.28) takes the especially simple form

Q.= 5r 42 T()e(2) + 5 42 T(@)eC@) (3:230)
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in terms of the new coordinates. The line integrals are performed over some circle of fixed radius
(corresponding to a fixed value for the time variable xp in Eq. (3.2.28)), using the sign convention
that both the dz and the dz integrations are taken in the counter-clockwise sense.

3.2.4. Mode expansion of the energy momentum tensor

We are now in the position to derive a procedure how to determine a representation of the conformal
algebra in a critical quantum field theory. At the end of Par. 3.2.2, it was shown that T(z) is locally
analytic. Therefore it is possible to write down the Laurent series

n = n
T(Z) - Z Zn+2' T(Z) = Z Zn+2” (3-2-31)
n=—oo n=—o0

These expansions are formally inverted by the expressions
L= ?f dz 7T (2),  Tn= —— ]f 4z 7T (2) (3.2.32)
" omi ' " omi ' -

We now consider an infinitesimal conformal transformation € and evaluate Q.. By inserting the
expansions (3.2.31) into the result (3.2.30), one finds (we set € = 0 for the moment)

1 1
QE = % ;Lnfdz ﬁe(z)
(3213) —1 1
= o Zaanj{dZ e
m,n
= - Zaan 6n—m+1,1

Here we have used the result f Zni’—,i+f = 2Midp—m+1,1 in the third step. Using Eq. (3.2.33) one can

show that the relation (3.2.25) from the preceeding subsection for a = € defines a representation of
the conformal algebra indeed. To see this, we consider two infinitesimal conformal transformations
e(z) = -3, anz™?! and {(z) = — 3, boz™L. Then we have

2.2

[Qerc. A
=[= (an + bn)Ln, Al

= Z an[Ln: A] - Z bn[Ln: A]
=[= > anln, Al+ [ balLs Al

=[Qe, A + [Qc. A ¥ 5. A+ 5:A (3.2.34)

SercAC

Furthermore, the relation (3.2.33) implies that the modes L, (and L, if we take the dependence
of Q¢ on € into account) of the energy momentum tensor are the generators of the conformal
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algebra in a critical (1 + 1)-dimensional quantum field theory. For a theory which is specified by the
action S[A] (see Eqg. (3.2.10)) we can construct the generators as follows: first determine T(z)
and T (Z) according to the results (3.2.18) and (3.2.22), then evaluate the L's and L's by means
of Eq. (3.2.32).

We now have to specify the commutation relations of the L's (and L’s). In quantum field theory,
we have to extend the classical Virasoro algebra Vo from Sect. 3.2.1 by postulating

[Ln: Lm] = (n - m)Ln+m + %n(nZ - 1)6n,—m- (3-2-35)
Simultaneously we demand
(Lo L] = (1 — M)Lpim + %n(nz — 1) —m: (3.2.36)

and [L,, L] = 0 as in Sect. 3.2.1. The algebra (3.2.35) is called the extended Virasoro algebra
V. and differs from the result (3.2.16) by adding an extra term proportional to the central charge
c, the central extension. Note that the central charge is real and satisfies ¢ > 0. It serves as
a free parameter of the theory, i. e. it describes the particular realization of conformal symmetry.
In principle it can be determined by comparing predictions for the finite-size behavior of e. g. the
ground state energy based on CFT to independent analytical or numerical results. We will consider
this point in Sect. 3.2.8. Note that — as in the classical case — global conformal transformations
are generated by the infinitesimal generators {L _;, Lo, L1} U {L_1, Lo, L1}.

3.2.5. Primary fields

We have not discussed the behavior of correlation functions so far. As we are interested in the
critical behavior of our theory, it is reasonable to search for fields ¢(z, z) which show an especially
simple transformation law under a conformal mapping (z,z) — (f(2), f(2)). i. e.

otz (E)" (L) o 2,762, 3237

Fields with the transformation property (3.2.37) are called primary fields, and the real numbers
(A4, Ay) are the anomalous dimensions of the field ¢.
In the framework of statistical physics, the relation (3.2.37) means that each primary field is
a scaling operator. This can be seen if we consider a scale change (z,Z) — (%,%). Then the
transformation property (3.2.37) becomes
V4

B(z,2) = AP0 ¢ (; X) , (3.2.38)

which indeed implies that ¢ is a scaling operator, and the corresponding scaling dimensions are
given by (A¢,K¢). In the context of the renormalization group, scaling operators are important
when describing the system in the vicinity of a critical fixed point, see e. g. Ref. [Car96].

To study the properties of primary fields more closely we consider the change of ¢(z) under an
infinitesimal conformal transformation z — z + ¢(z). In the following we simplify our notation by
omitting the dependence of ¢ on Z. It can be shown easily that taking the dependence on Z into
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account leads to analogous results. Therefore we will generalize our results to the properties of
fields depending on both z and Z later. We first evaluate

Ag A
(g) = (1 + %) =1+ Ad,g—z + O(€?), (3.2.39)
O(f(z)) =p(z+€(2)) =d(2) + e(z)% + O(€?). (3.2.40)

Inserting these identities into the relation (3.2.37) and neglecting terms O(e?), we obtain

#2) (1 + A¢§—€) [9(2) +e(2) )
Bz) +e(2) 92 + A¢¢( 2 G2
o(z) — Z an ( + Ag(n+ 1)z”d>(z)> (3.2.41)

On the other hand we know from Sect. 3.2.3 that ¢ — ¢ + 6.¢ with 6.¢ = [Qc, #]. Now we can
make use of the mode expansion (3.2.33), and find

b=~ an[Ln. ¢]. (3.2.42)

If we compare this result to Eq. (3.2.41), we obtain the commutation relations of the generators
of the conformal group and primary fields

n+1 ¢

[Lnd(z,2)] =z + Dp(n+1)2"¢(z, Z). (3.2.43)

Taking the dependence on Zz into account, one can prove the analogous equation

—=n+1 ¢

L, ¢(2z,2)] =2 -|- As(n+1)Z"¢(z, 2). (3.2.44)

The relations (3.2.43) and (3.2.44) provide a powerful tool to evaluate correlation functions of
quasiprimary fields. These are the fields which fulfill Eq. (3.2.43) only for n = —1,0, 1. Note that
each primary field is quasiprimary.

In the following we determine the properties of two-point correlation functions of quasiprimary
fields in the vacuum state |0) (which will be associated to the ground state in case of the critical
XXZ model later). Before we start, however, we have to make one further assumption. We
demand that the expectation value (0| T(z)|0) is analytic at z = 0. Taking into account the
property L} = L_,, which we do not want to prove here, this implies

Ln|0y =0 =(0|L,, n=-1,0,1. (3.2.45)
Hence we immediately have the result (n=—1,0,1)
0 = (0|[Ln, $1(z1)d2(22)]/0)
= (01¢p1(z1)[Ln, $2(22)110) + (Ol[Ln. $1(21)]$2(22)10). (3.2.46)

with two independent quasiprimary fields ¢; and ¢ depending on coordinates z; and z;, respectively.
We now evaluate Eq. (3.2.46) by making use of the relation (3.2.43):
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1. The case n = —1 yields
(02 + 82,)(0[¢1(21)$2(22)[0) = 0. (3.2.47)

If we change coordinates according to v = z3 + z, w = z3 — 2, this is equivalent to

8,{0|¢1(z1)p2(22)|0) = 0, which means

(0]¢1(21)P2(22)]0) = f(z1 — 20). (3.2.48)

2. By inserting n = 0 and making use of the property (3.2.48), we obtain the differential equation

of(z1 —
(Adn + A¢2)f(21 — 22) + (Zl _ 22)¥

=0 (3.2.49)

(with Ag, and Ay, being the anomalous dimensions of the fields ¢1 and ¢», respectively)
which has the solution

C
f(Z]_ — 22) = m (3250)
Here C is a constant number.
3. For n =1 we arrive at
(z1 + z2)(Ag, — Ag,) = 0. (3.2.51)

Since z; and z, can take any value this means Ag, = Ag,. Thus only two-point correlators
of quasiprimary fields with themselves have nontrivial properties.

We see that the two-point correlators of quasiprimary fields ¢;, ¢; in conformal invariant theories
vanish for i # j, and they show an algebraic decay for i = j. We can summarize the results of
this subsection if we remember that ¢; and ¢; also depend on Z. This leads to the generalized

expression
C

(21 — 20)%D¢ (21 — 72)2&,'
with (Ag, Ag) = (Ag,, Ag,). Note that Eq. (3.2.52) further implies Ay, Ay > 0, because otherwise
the correlations would increase with increasing distance which is unphysical.

(0[¢i(21,Z1)#j(22. 22)|0) = §;; (3.2.52)

3.2.6. Descendant fields and conformal families

In statistical physics, the asymptotic behavior of correlation functions in the vicinity of a critical
fixed point is determined by the simple scaling properties of scaling operators. At the beginning of
the previous section, we explained that in CFT each primary field is also a scaling operator. On the
other hand we cannot conclude that each scaling operator is a primary field, i. e. we cannot expect
that the relevant fields of the effective theory close to a quantum phase transition have the simple
transformation property (3.2.37) under conformal transformations. However, in this subsection
we argue that conformal invariance provides an instrument to classify all the fields composing the
operator algebra, and the primary fields play a crucial part in this argumentation.

To start with, we consider a primary field ¢ with anomalous dimensions (A4, Ag) and construct
secondary or descendant fields

o N (2,2 =Ly Lo L g, ... Ly 6(2,2). (3.2.53)
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‘ level ‘ dimension ‘ fields ‘
0 Ay #(z2)
1 Ap+1 L_1¢

2 A¢ +2 L_»¢, L2_1¢

Table 3.1.: The primary field ¢ and its descendant fields, which comprise the conformal family [¢], ordered
according to their dimension. To simplify matters, we have omitted the dependence of the fields on Z.

In this definition the numbers k,-,FJ- have to be positive or equal to zero since the relations
Lod(2,2) =0 = L,¢(z,2) VYn>0, (3.2.54)

hold.

In the following we consider the dimensions of secondary fields. In contrast to the case of
primary fields, we cannot expect that secondary fields are scaling operators. This means that under
a scale change z — z/X, secondary fields do not obey the simple transformation law (3.2.38)
from the preceeding subsection, and it does not make sense to speak of the scaling dimension
of a secondary field. However, due to their construction (3.2.53) we can expect that in leading
order, the correlations of descendants show an algebraic decay analogously to Eq. (3.2.52), but
the anomalous dimensions (Ag, Ag) will be replaced by the dimensions of the fields (in the case of
scaling operators, the scaling dimension and the dimension are identical). Note that in principle
higher order terms come into play, but we do not discuss them here since we are only interested
in the leading asymptotic behavior. We first mention that by considering [Q., T(z)], inserting the
mode expansions (3.2.31) and (3.2.33), then making use of the Virasoro algebra (3.2.35) and
finally comparing the result to the relation (3.2.43), it can be shown that the energy momentum
tensor T(z) is quasiprimary with anomalous dimension A+ = 2. Then it follows from the mode
expansion (3.2.31) that we have L, — A"L, under a scale change z — z/A. This means that
L _, has the scaling dimension n (for L _, analogous), and the dimensions of the secondary fields
as defined in Eq. (3.2.53) are given by

<A¢+Zk,-, K¢+ZE>. (3.2.55)

We see that the primary field ¢ and its descendants form a series of fields with integer-spaced
dimensions, see also Table 3.1. The numbers / = Y37, ki and | = Y., k; are the levels of the
descendant field dJ({_"}'{_E}). We call such a series a conformal family, and we denote it by [¢]

after the primary field which in a sense serves as the ancestor of the family. Due to the property
—p(Harkn k) (3.2.56)

(and analogously for z) a conformal family naturally contains all the derivatives of each field

involved.
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In principle, all the correlation functions of secondary fields are given by certain differential
operators acting on those of primary fields. It is difficult, however, to write down closed expressions
for those operators. From the result (3.2.52), we see that two-point functions of descendants of
different primary fields vanish. For correlators of two secondary fields belonging to the same
conformal family the leading order is given by Eq. (3.2.52), with the exponent 2A, (24) replaced
by 24y + h + b (284 + I1 + I2), where the numbers (I, 1;),i = 1,2, denote the levels of the two
fields.

We finally discuss how a secondary field ¢({"‘}'{_F}) changes under an infinitesimal conformal
mapping €. For this case it can be shown that the variation 65¢({_"}'{_E}) can be fully expressed in
terms of fields belonging to the same conformal family [¢]. On the other hand, we know that the
variation of ¢ is given by the expression (3.2.25), with Q. acting as a generator of the symmetry
(see also Sects. 3.2.3 and 3.2.4). Therefore the conformal families [¢] correspond to irreducible
representations of the conformal algebra, i. e. there are no subspaces invariant under conformal
transformations. This observation leads to an important conclusion concerning the structure of
the complete set of fields {A,} composing the operator algebra, namely that it consists of some
number (which can be infinite) of conformal families [¢;].

{A} =D 191 (3.2.57)

This property implies that correlations of arbitrary fields (and therefore especially of scaling op-
erators) in principle are given by the corresponding expressions for primary and secondary fields.
Since correlations of descendants can be expressed in terms of those of primary fields, the decay
of correlation functions in a conformal invariant theory is governed by the values of the anomalous
dimensions (Ag,, Ag,) of the primary fields ¢; which appear in the relation (3.2.57).

Before we analyze the two-point correlations of arbitrary fields in the following two subsections,
we make one further comment concerning unitarity. In quantum field theory, unitarity guarantees
the conservation of probabilities. For this reason it is important to search for values of the central
charge ¢ for which the Virasoro algebra has unitary representations. For ¢ < 1, it turns out that
only the values of ¢ given by [FQS84]

6
c=1—- ——, m € N>3z, 3.2.58
m(m+1) 23 ( )
are allowed, and for each value of m, there is only a finite number of representations (conformal
families). For ¢ > 1 no such restrictions are known, which is especially important for the case of

the XXZ model, where ¢ = 1 is valid (see Sect. 3.3.2).

3.2.7. Two-point correlations at 7 =0

We now concentrate on the behavior of two-point correlation functions of arbitrary fields in the
infinite-size geometry and in the vacuum state, which will be identified with the ground state in
the following. We further assume that the effective continuum model has gapless excitations with

a linear dispersion close to the Fermi points. Then we can write z = x + iveT (Vg is the Fermi
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velocity). The factor v is introduced so that both the real and imaginary part of z have the same
physical dimension.

On the lattice, we are interested in correlations of physical quantities (e. g. spin or dimer opera-
tors) which correspond to certain fields A(x, t) = A(z,Z) in the effective continuum model. Due
to the property (3.2.57), we can decompose A according to

A(z.2) =) B(Q)do(z.2), (3.2.59)
Q

where ¢g = ¢f{_k"}’{_m), i. e. the index Q labels both primary and descendant fields composing the
operator algebra. From the previous subsection, we know that the two-point correlators of fields
from different conformal families vanish, and in leading order the correlations of fields belonging
to the same conformal family are determined by the anomalous dimensions of the primary field
and the levels of its descendants. For this reason the leading asymptotic behavior of the two-point
correlator of the field A in the ground state is given by the correlations of that primary field ¢
which has minimal values (Ag, Ay) for the anomalous dimensions and a non-vanishing weight B in

the relation (3.2.59). According to Eq. (3.2.52), we therefore obtain
C

0|A(z1,Z1)A(20, Z)|0) ~ — . 3.2.60
(0]A(z1,71)A(22, 72)|0) G 22)e(z, —2,)e ( )
By setting zz = x + ivet and z; = 0, this gives an algebraic decay
C

A(x, T)A(0,0)) =0 ~ —, 3.2.61
(A(x, T)A(0,0)) =0 TV ( )

for the (Euclidean) dynamical two-point correlations at T = 0, which simplifies to
(A(X)A(0)) 7o ~ Cx~ALs+8y) (3.2.62)

for the equal-time correlation function if we set 7 = 0.

3.2.8. Finite-size effects

In this subsection, we close our digression on CFT by discussing finite-size effects. We start with an
analysis of the asymptotics of two-point correlations in a finite system [KBI93]. For this reason we
consider the mapping* f(z) = % log z, which is a conformal transformation since it is analytical
in the complex plane except for the origin z = 0. By applying this transformation and writing
f = u+iv, the complex plane is mapped onto a strip (cylinder) with periodic boundary conditions
along the v-direction: v = v 4+ L. The implications of this transformation can be used to study
finite-size effects at T = 0 if we set u = vgT, v = x, and L = N. On the other hand, by setting
u=x, v=vT, and L = %, the system gets finite along the time direction, and it is possible to
extract the asymptotics of correlations in the infinite system at finite temperatures. To apply the
results for T > 0 to the original lattice model, however, the temperature has to be sufficiently low,
so that the condition £ > a is fulfilled.

4For L = 2m, this transformation is the inverse of the mapping we used in the context of radial quantization, see
also Fig. 3.3 in Sect. 3.2.3.
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The key observation when analyzing the finite-size behavior of correlations of arbitrary fields is
that we can still make use of the decomposition (3.2.59). Then from an argumentation which
is completely analogous to our approach in the preceeding section, it follows that the leading
asymptotic behavior is determined by the correlations of that primary field ¢ with minimal anomalous
dimensions (Ag, Ag) and non-vanishing coefficient B in Eq. (3.2.59). For this reason we only discuss
the behavior of primary fields here.

For any primary field ¢(z, Z), the two-point correlations in the strip geometry can be evaluated by
making use of the transformation property (3.2.37) and the result (3.2.52) for the infinite system.
To simplify matters, we neglect the dependence of ¢ on Z and generalize our result later as usual.
We find

Ay Ay
clamemi0 CE (42) 7 (52) 7 olpsio

A A
(.252) (dz\"™* (dz\™* C
B (dﬁ) (df2> (z1 — 2)2B4” (3.2.63)

If we now insert z = exp(zT"f) and take the dependence on Z into account, we arrive at

™ 204 ks 28
<0|¢>(ﬂ.f1)¢(15,f2)|o>=C(Sinh[%(;l _fz)]) (Sinh[%(;l_m) . (3264)

which becomes

(QT‘W ) 2(Ag+Dy)

[2 cosh (2 (ur — u2)) — 2 cos (ZE(v1 — v2))]

if we replace f = u+iv. In the following we discuss the implications of this result for the following

(0[¢(u1, vi)@(u2, 2)|0) = C

o (3:265)

two cases:

1. Correlations in a finite chain of length N at T =0 (U1 = VT, vi = X, Up = v, = 0, and
L = N):
Then Eq. (3.2.65) becomes

(2_#)2(A¢+E¢)
(®(x, 7)$(0,0))7— = = T (3.2.66)
[2 cosh (3T veT) — 2cos (37x)] ™4
By inserting 7 = 0, this yields for the static correlation function
(2_1r)2(A¢+Z¢)
(6(x)9(0)) 7= = C X (3.2.67)

Ag+Ag
[2—2cos (2 x)] o+ 8
2. Low temperature correlations in the infinite system (u; = x, vi = VT, U = v» = 0, and

= ).

In this case one obtains from Eq. (3.2.65)

( onT ) 2(By+Dy)
VF

(o(x, 7)$(0,0))750 = C W (3.2.68)
[2 cosh (%x) — 2cos (27rTT)] e
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With 7 = 0, this implies for the equal-time correlation function

(M) 2(8g+Dy)

VF
Ag+Ay
20T ¢
[2 cosh ("Vr—Fx) — 2]

This is the result which will be exploited extensively when analyzing the low temperature
data from QMC for the XXZ chain in Sect. 3.4. In particular, Eq. (3.2.69) implies that
the algebraic exponent 2(Ay + Ay) and the correlation amplitude C which govern the cor-

(6(x)9(0))7>0 = C (3.2.69)

relations at T = 0 (compare relation (3.2.62)) also determine the asymptotic decay at low
finite temperatures. We further point out that the result (3.2.69) guarantees a smooth
crossover to the corresponding expression (3.2.62) in the ground state, because we can ex-

2
pand cosh (%x) =1+1 (2”Tx) +O(T*) for small temperatures T. Note that for x > 1,

VF

Eq. (3.2.69) also yields the expected exponential decay

27r7— 2(A¢+E¢)
@000 rs0 = € (2 ) 77 emriem (3.2.70)
with the correlation length
-1 27['T —
(M= V—F(A"’ + Ag). (3.2.71)

We see that £ diverges linearly with the inverse temperature 3 as T — 0.

We now need a procedure to determine the anomalous dimensions (Ag, Ag) of primary fields
and the central charge ¢ of the underlying Virasoro algebra in the effective theory. These numbers
cannot be determined from CFT alone. However, one can compare the findings from the conformal
approach concerning finite-size effects for the energy and momentum spectra to independent ana-
lytical or numerical results for the lattice model to deduce the quantities in question. The argument
is as follows. We consider the result (3.2.65) with v = vg7, v = x and L = N, which has the
expansion [Car86]

(0[¢(x1, T1)P(x2, T2)|0)

2(A¢+K¢) el V] -~ A
B (2/3 ) 3" amam e W BetBetmim)nom)tif (Ae-Bytmom(a—x)  (3272)
m=0
= [(BytBgtm)
where a, = F(Bg+Dy)m! "

On the other hand one can analyze the correlations of the corresponding operator in the finite
lattice model. This model is defined by a quantum Hamiltonian such as Eq. (3.1.1) for the XXZ
chain, for which we want to assume translational invariance. Then it is possible to construct a
basis of the Hilbert space which consists of common eigenstates of the Hamiltonian H and the

total momentum operator P,

Hin, ky) = En(N)|n, kn), (3.2.73)
Pln, kn) = kn(N)|n, kn). (3.2.74)



3.3 Bethe ansatz solution and asymptotics of correlation functions for the XXZ model 57

On the lattice, the field ¢(x,T) corresponds to an operator ¢,(7) acting on the Hilbert space.
According to Eq. (2.4.67) from Par. 2.4.1, the dependence of ¢, on T is given by a Heisenberg
representation (in imaginary time t = iT) of the form ¢x(7) = e ™ @, e™™. Similarly, we can
translate ¢, according to ¢, = e’*F ¢y e=*P. Hence we have

(0165 (T1)85,(72)10) = Y (0ldhx, (1)1, k{1, k|, (72)10)

n,kn

=) 0ldo|n, ka)|? e~ (ErmEo)mmm)Filka—ko)(xi=x2), (3.2.75)

n,kn

where we have inserted a complete set of (H, P)-eigenstates in the first step. Then the comparison
to Eq. (3.2.72) yields

2TV, —

En(N) — Eo(N) = NF(A¢+A¢+m+m), (3.2.76)
2 _

kn(N) — ko(N) = W"(A¢—A¢+m—m)+2kFD. (3.2.77)

Here we have also included excitations where D particles are transferred from one Fermi point at
k = kg to the other at k = —kg. The relations (3.2.76) and (3.2.77) together with Eq. (3.2.75)
imply that the anomalous dimensions of the primary field ¢ determine the energy and momentum
of excitations mediated by the action of the operator ¢ on the ground state if the system is placed
on a cylinder of circumference N. Therefore, if it is possible to evaluate the energies and momenta
of these excitations independently (in the case of the XXZ model this is done using the Bethe
ansatz, see Sect. 3.3.1), one can determine the numbers (Ay, Ag).

We finally discuss the finite-size behavior of the ground state energy Eg under the assumption
of periodic boundary conditions, which yields a possibility to determine the central charge c. Since
we deal with ground state properties again, we make use of the conformal mapping defined at
the beginning of this subsection and set f = vgT + ix. In principle, the change in Ey under
the transformation f can be obtained from the relation (3.2.18) in Par. 3.2.2. Therefore it is
necessary to analyze the transformation behavior of the energy momentum tensor T(z), which is
a quasiprimary field (see also Sect. 3.2.6). For a detailed derivation we refer to the literature. We
only give the main result here, which is

TVE
= —Cc— 2.
Eo(N) = Neo — ¢ (3.2.78)

where €q is the ground state energy density (or ground state energy per lattice site) in the infi-
nite system. We see that by comparing this expression to independent results from analytical or
numerical techniques the central charge of the underlying Virasoro algebra can be extracted.

3.3. Bethe ansatz solution and asymptotics of correlation
functions for the XXZ model

In this part we apply our findings from CFT for the asymptotic behavior of two-point correlations
to the critical XXZ model with —1 < A < 1. According to the argumentation from Par. 3.2.8,
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however, we first need analytical results for the finite-size behavior of the model in order to determine
the anomalous dimensions of primary fields and the central charge of the effective quantum field
theory at low energies. For this reason we sketch how the XXZ chain can be solved analytically, and
discuss the outcomes required in the context of correlation functions in the following subsection.
Then in Sect. 3.3.2, these findings are combined with the expressions from CFT to derive the
asymptotics of spin and dimer correlations which are needed for the numerical analysis in Sect. 3.4.
We also turn to the topic of correlation amplitudes, especially focussing on the results for G, from
the literature (see Sect. 3.3.3). In Par. 3.3.4, we close this section with a discussion of algebraic
and logarithmic corrections to asymptotic scaling at T = 0.

3.3.1. The idea of the coordinate Bethe ansatz

In this subsection we consider the Hamiltonian

A=

N«

N
Y (070, +0lol,, + Alofor, — 1)), (3.3.79)
i=1

assuming periodic boundary conditions. Note that the model (3.3.79) differs from Eq. (3.1.1) by
an energy shift of —% which will simplify our notation below. In the following we present the
idea of the coordinate Bethe ansatz solution for this system, allowing for arbitrary values® of the
anisotropy parameter. For a more detailed review, we recommend Refs. [KBI93, Tak99].

The first observation one can exploit is that A conserves the z-component of the total spin,

N z1— | g 1 . z
[A,5%,]= [H, EZO',-] =0. (3.3.80)
i=1

Therefore the Hilbert space decomposes according to
N
3 =P Hm. (3.3.81)
M=0

i. . we can characterize the eigenstates of H by the number M of down-spins, which is connected
to the total magnetization by the relation

(SZ.) = g — M. (3.3.82)

A basis in each subspace 3, is given by the states (ih < hh < ... < im)

|i1i2...fM)EO'i:O'i;.. O'_|++...+>. (3383)

“Ciu

The state | + +...+) is called reference state or Bethe ansatz vacuum, and obviously forms a
basis of Hp. As has been mentioned in the introduction 3.1 to this chapter, it is also a ground
state of the system in the ferromagnetic sector A < —1. However, for values A > —1 the reference
state is not the ground state and therefore should not be confused with the vacuum state |0) from

5We explicitly include the case of the XX model here, which can be solved analytically without Bethe ansatz
methods [LSM61, McC68].
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Sect. 3.2. The states defined in Eq. (3.3.83) differ from the Bethe ansatz vacuum by M spins

overturned at the sites i1, i, ..., im. An arbitrary state in H s can be written as a superposition
vy = > a(iih,. ... i) iz - - - ing)- (3.3.84)
h1<ih<..<im

We see that solving the Schrodinger equation for the XXZ model is equivalent to the problem of
determining the coefficients a(iy, iz, - . ., im) for the eigenstates of the Hamiltonian (3.3.79).

The key idea behind the coordinate Bethe ansatz is to represent these coefficients as a superpo-
sition of plane waves with a fixed set of wavenumbers {q;},

a(i, o, ....im) = Y Ap it Faryin), (3.3.85)
PeSM
where Sy denotes the set of all permutations P of {1,2,..., M?}. By inserting the linear combina-

tion (3.3.84) together with the ansatz (3.3.85) into the Schrédinger equation H|Wum) = Em|¥m)
and exploiting the periodic boundary conditions, one receives M nonlinear coupled equations for
the wavenumbers {g;}

iGN H S(gq) =1, Jl=1,2,..., M. (3.3.86)
I

Here the quantity S(q;, g)) is given by
S(qj, q) = —e~ 0, (3.3.87)

with
(3.3.88)

Asin(lg; — @il/2) )
cos([g; + a/]/2) — Acos(lg; — ail/2) )
The equations (3.3.86) are the Bethe ansatz equations for the XXZ model, and S(g;, g;) is called

6(qgj, q)) = 2arctan (

two-particle scattering matrix. Note that neither of the quasi-momenta {g;} can be equal because
otherwise the wave function |9y} vanishes, and furthermore, these numbers are not necessarily
real. Similarly to the result (3.3.86), the amplitudes Ap in Eq. (3.3.85) can be expressed by A, (/
is the identity) and the scattering matrix in a unique way. The energy of |1m) can be written as a

sum of one-particle energies
M M
Eyv= Z E(q) =2J Z(cos(qj) —A). (3.3.89)
j=1 j=1

In analogy to the linear spin wave theory the plane waves in (3.3.85) are interpreted as magnons.
For A < —1, where the Bethe ansatz vacuum is also a ground state of the system, these particles
are the elementary excitations of the system. As we have explained in Sect. 3.1, this is not the case
in the quantum critical region —1 < A < 1 and in the Ising-like antiferromagnetic sector A > 1 of
the phase diagram.

We now restrict ourselves to the case —1 < A < 1. We do not discuss how the Bethe ansatz
equations (3.3.86) are solved in the quantum critical regime. We only give the results which are
needed to determine the asymptotics of correlation functions.
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In the following we assume that the number N of lattice sites is even. Like the Néel state,
the ground state of the system in the quantum critical regime can be characterized by M = %
i. e. it can be written as a (complicated) superposition of states with an equal number of up- and
down-spins. In the thermodynamic limit, the ground state energy density is given by the expression

o d
= —2Jsin’ : 3.3.90
€ >IN ’Y/_Oo cosh(mwA)(cosh(2y\) — cos) ( )
Here we have parametrized the anisotropy by defining v = arccos A, i. e. -y takes values in [0, 7).
Note that for the original Hamiltonian (3.1.1), one has to add an additional contribution of 2. For
the antiferromagnetic XXX model, the result (3.3.90) reduces to eg = —2JIn 2, which becomes

€0 = é —2JIn2 (3.3.91)

for the model (3.1.1) without energy shift. We have already described the nature of the gapless
elementary excitations in Sect. 3.1. As has been mentioned there, one has to distinguish between
the attractive and repulsive sectors of the quantum critical regime. However, a common feature

for both regimes is the result
_ mJsiny

P
for the Fermi velocity, which is obtained from the dispersion relation of the two-spinon excitations

VF (3392)

with SZ, = 0. Note that the expression (3.3.92) becomes ve = wJ in the isotropic limit A = 1.
The Fermi momentum is kr = 5.

In order to make use of the expressions derived from CFT in Sect. 3.2, we also need the Bethe
ansatz results for the finite-size behavior of the system. For periodic boundary conditions, the

finite-size correction to the ground state energy is

TVE

Eo(N) = NGO — 6—N,

(3.3.93)

while the expressions for the energy and momentum of the low lying excitations are [KBI93]

Eq(N) — Eo(N) = 27IF\IVF g(A/\/l)2 + %DQ +m+m|, (3.3.94)
ko (V) — ko(N) = QW”(DA/VHm—m) + 2ke D, (3.3.95)
with
o
n="— 7 (3.3.96)

Note that by denoting these formulae, higher order contributions are neglected. Here the low lying
excitations are classified in terms of the particles (spin-down sites) from Eq. (3.3.85). For the
derivation of the results (3.3.94) and (3.3.95) only the following three processes are important:

1. The number of particles can be changed by AM as compared to the ground state.

2. D particles can jump over the sea of filled one-particle states from one Fermi point to the
other (backscattering processes).
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3. In practice, the Bethe ansatz equations (3.3.86) are solved by using their logarithmic repre-
sentation
GN =" 8(q; a) = nym, (33.97)
1#i
where n; is integer (half-integer) if N is odd (even). Then the number m € N accounts for
processes where n; for the particle at one Fermi point is changed by m. Analogously, the
number n; for the particle at the other Fermi point may be changed by m.

3.3.2. Asymptotics from the conformal approach

The expressions for the ground state and the excited states obtained from the Bethe ansatz are
too complicated to evaluate the correlation functions G/, /q as defined in Egs. (3.1.3), (3.1.4),
and (3.1.5) directly. However, the results from Sect. 3.2 can be combined with the findings from
the previous subsection to obtain the asymptotic expressions for the correlation functions. In this
subsection, we give the relevant formulae for equal-time correlations in the thermodynamic limit
for both T = 0 and low finite temperatures.

We first determine the central charge ¢ and the anomalous dimensions (A4, A4) of those primary
fields which are important for the correlations of the XXZ model [KBI93, KIii98]. To do this, we
follow the method given in Par. 3.2.8. Comparing Eq. (3.3.93) to the result (3.2.78), we find c = 1
and therefore no restrictions on possible values for the anomalous dimensions due to unitarity. In
addition, the values for (Ag, Ag) can be obtained by comparing the formulae (3.3.94) and (3.3.95)
from the Bethe ansatz solution to the CFT results (3.2.76) and (3.2.77), respectively. Here we
only denote the expression for the sum

_ 1
Ay + By = g(AM)2 + 500" (3.3.98)

because only this quantity appears in the results (3.2.62) and (3.2.69) for static correlations from
the conformal approach. We now have to specify how the spin operators o7, S,-i and the dimer
operator D; act on the ground state. Note that for G, we consider the operators S,-i instead of
o7 because of the identity (0707%) = 3(070} + 00)) = (5}S; + S S}").

In the case of the longitudinal spin correlations, we obviously have AM = 0, i. e. the action of
o7 on the ground state involves no change of the number of down-spins. The same statement
holds® for the dimer correlations, because we can write D; = &6i11 = 2P i+1 — 1, where P41
is the permutation operator which interchanges the spins on the sites / and / + 1. Therefore
the fields which dominate the asymptotic behavior of both correlation functions Gj/q (i. e. with
minimal scaling dimensions) are characterized by the following choices for Q = (AM, D, m, m) in
the decomposition (3.2.59), see Sect. 3.2.7.

1. Q =(0,1,0,0):

SFrom the viewpoint of the QMC loop algorithm, the evaluation of dimer correlations involves the numerical
calculation of certain four-point correlations as described in App. A.3. In the context of CFT, the correlation

function Gy is interpreted as the two-point correlator of the local energy operator D;.
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According to Eq. (3.3.98), this choice corresponds to a primary field with
Ay +Dp = L (3.3.99)
The contribution of this field to the asymptotics of G4 is given by the Egs. (3.2.62) and

(3.2.69), respectively. We add that it can be shown [KBI93] that the dependence of the
weight B(Q) in Eq. (3.2.59) on D is given by (z = vet + ix)

B(Q) o e—2ixk|:D.
With D =1 and kr = 7 for the XXZ model this amounts to an additional factor of (—1)*.

2. Q =(0,0,1,0),(0,0,0,1):
These choices correspond to secondary fields and determine the subleading order of the decay
of Gjj/aim- Their leading contribution is also given by the results (3.2.62) and (3.2.69) if we
replace

Apg+Dy — Apg+Ag+m+mm=1 (3.3.100)

As far as the transversal spin correlations are concerned, we have AM = 1, because the operators
5?: may alter the number of down-spins by one. Therefore the leading and subleading orders of the
asymptotic decay of G, can be read from the Eqs. (3.2.62) and (3.2.69) as usual, where we have

1. Q =(1,0,0,0):
This corresponds to a primary field with

Dy+ DBy = g (3.3.101)

2. Q=(1,1,0,0):
In contrast to G 4, the subleading order of G is also controlled by a primary field with

1
+ (3.3.102)

- n
A¢+A¢=§ o’

Again we have to include an additional factor of (—1)* because we have D = 1.

We are now in the position to sum up our results. The asymptotics of the longitudinal and
transversal spin correlation functions in the ground state are given by

L e
G = (1) = + 2, (3.3.103)
XN
Cia ,Cio
Gll)=—- + (-1 ey (3.3.104)
For the dimer correlations, we omit the subleading order term and find
C
Ga(x) = (—1)*—¢. (3.3.105)

xn
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With respect to the numerical analysis in Sect. 3.4, we are particularly interested in the correspond-
ing expressions for low finite temperatures. These are

G)(x) ~ G0 (%);1 + G2 (%)2 , (3.3.106)
[2cosh (257x) — 2] [2cosh (37x) ~2
Cia (21‘;7)’7 . CLa(=1) <%)n+% )
[2 cosh (%X) - 2] : [2 cosh (%x) - 2] i
Ca(—1)~ <%) "

[2 cosh (%x) — 2] =

(3.3.107)

GL(x) =~

Gy(x) ~ (3.3.108)

where the Fermi velocity vg is given by Eq. (3.3.92). As expected, the expressions for longitudinal
and transversal spin correlation coincide (apart from a trivial factor of (—1)%) in the isotropic limit
A = 1. We further emphasize that in the free fermion case A = 0, which can be diagonalized
easily without making use of the Bethe ansatz, our findings for G| , are consistent with the results
obtained in Refs. [LSM61, McC68].

3.3.3. Correlation amplitudes

We have seen that the combination of CFT and Bethe ansatz results provides a powerful instrument
to determine the exponents of the asymptotic decay of correlation functions in critical theories.
To evaluate the correlation amplitudes and the leading corrections to asymptotic scaling, however,
one needs a quantitative relation between lattice operators and the fields which are important in
the effective critical theory. This cannot be achieved within the framework of conformal invariance,
and substantially different approaches have to be applied.

As we have pointed out in Sect. 3.1, closed expressions for the correlation amplitudes C/1,1/2
as well as corrections to the asymptotic behavior of spin correlations at T = 0 have been derived
for the quantum critical regime —1 < A < 1 in the literature [LZ97,Luk99,LT03]. The approach is
based on an asymptotic series expansion of the lattice Hamiltonian (2.2.3) in terms of the lattice
spacing a, where the leading order is given by the (conformal invariant) effective quantum field
theory at low energies, i. e. the Thirring model which is equivalent to the bosonic Gaussian field
theory. In terms of statistical physiscs, the higher order terms in this expansion correspond to
irrelevant (or marginal) scaling operators. For the lattice spin operators one can write down similar
series expansions in a. A quantitative relation between lattice operators and scaling fields can be
obtained by moving slightly away from the critical regime and considering the more general XYZ
model

N
1
H= 2 Z(Jxo’fo-l)';l + Jyoi o]y + J070hy), (3.3.109)
i=1

which contains the Hamiltonian (3.1.1) in the special case Jy = J,. The effective quantum
field theory which describes the low energy physics of the XYZ model properly is the sine-Gordon
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model. By comparing certain exact results obtained for the XYZ and the sine-Gordon models, one
can quantitatively connect lattice spin operators to scaling fields. This provides access to both
correlation amplitudes and to the leading corrections to asymptotic scaling for the critical XXZ
model. For more details we refer to the literature. However, for later use we write down the results
for the correlation amplitudes from Ref. [LT03], which are

8 M%) " © dt sinh((2n — 1)t) om—1 _,,
Cin =273 [2\/7—rr(2;2n)] P {/0 T (sinh(nt) cosh((L—mt 7 © i ) }

(3.3.110)

1
C”,g = _WTT]' (33111)

for the longitudinal spin correlation function, while the findings are

B 1 (2% ! ® dt sinh(nt) _ot
1T Sy lzﬁr(;ﬁ,)] exp{ % (Swmesa s ) }

(3.3.112)
o2 (% nty
T (1 —n) [ 2vAT (5)
” cosh(2nt)e™" — 1 1 ”?+1 _,,
X exp { _/0 (25inh(nt)sinh(t) cosh((1 —n)t) + soh) ~ m o2 ) }
(3.3.113)

for the prefactors of transversal correlations. Note that Cj,. 1 both diverge as A 1 1. This
indicates the presence of logarithmic corrections in the isotropic XXX model. In the case of the
dimer correlations, the amplitude C4 has not been determined in the literature.

3.3.4. Algebraic and logarithmic corrections to asymptotic scaling

In the last subsection, we have argued that the lattice nature of the XXZ model causes corrections
to the effective Gaussian field theory. As long as —1 < A < 1, the operators involved turn out
to be irrelevant, giving rise to additive algebraic corrections to the asymptotics of correlations in
the ground state. Although these corrections can be neglected at large distances, they might
be important when analyzing numerical data at intermediate distances. In the case of the spin
correlations G, , these corrections have also been determined by Lukyanov and Terras [LTO3].
In this thesis, we only analyze the leading corrections to the leading order terms, which can be
expressed by replacing

B,
Cii = Ga(x) =G (1 - g—_z) : (3.3.114)
Xn
B
Cii—=>Cila(x)=Cia (1 - 4—_4) : (3.3.115)
Xn

in the asymptotic results (3.3.103) and (3.3.104). For analytical expressions of the constants B,
and B see Ref. [LT03]. Note that for G4 no such result has been derived in the literature.
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The situation is somewhat different at the isotropic point A = 1, where one of the operators
involved becomes marginal. This gives rise to multiplicative logarithmic corrections [AGSZ89,GS89,
SFS89, Klii98]. In Ref. [LTO03], the authors also derive a precise expression for these corrections
in the case of the spin correlations. As above, we only give the corrections to the leading order
term here. Similarly to the Egs. (3.3.114) and (3.3.115), we express the result by assigning a
dependence on x to Cj 1.’

C[2 1 19, [13¢(3) 127 .
C||,1(g)—\/7r—3g[l 59~ 1289 +( 2 To04 ) 9 +0(gY)]|. (3.3.116)

Here g depends on x and can be determined by solving

Jges = 2v/2me™ty, (3.3.117)

which has to be done numerically in practice. The number vg = 0.5772 is the Euler constant.
For large x, Eq. (3.3.116) yields the asymptotic result Cj; ~ (Inx)% which had been found in
Refs. [AGSZ89, GS89, SFS89]. As has been mentioned before, we have Gj(x) = (—1)*GL(x) for
A = 1. For the dimer correlations, it is known that the leading logarithmic correction is of the
order Cq ~ (Inx)~3 [AGSZ89, Klii98].

3.4. Analysis of low temperature data

In this section we analyze the QMC data of correlation functions at low finite temperatures, re-
stricting ourselves to the gapless repulsive regime 0 < A < 1 of the model [ALO5]. The numerical
estimates for G|, /4 were obtained by means of the continuous time loop algorithm as described in
Sects. 2.2.3 and 2.2.5, applying the measurement rules from Sects. 2.4.2 and App. A.3 for the cor-
relation functions. The simulations were carried out for temperatures T = 0.02J,0.025/J,..., 0.1J
and values of the anisotropy parameter A = 0.0,0.1, ..., 1.0 in chains with N = 1000 sites and
periodic boundary conditions. In each run, a number of 10° spin updates was taken for the ther-
malization of the algorithm. Furthermore, for the measurement of correlation functions 2 x 108
configurations were evaluated to reach a high accuracy of the numerical results.

The section is organized as follows. In Par. 3.4.1, we focus on the spin correlation functions G,
and discuss to what extent the results from the Sects. 3.3.2 and 3.3.3 coincide with the numerical
data. Then in Par. 3.4.2, we concentrate on the crossover from low temperatures to the ground
state, and analyze the algebraic and logarithmic corrections to asymptotic scaling. The properties
of the dimer correlation function Gy are analyzed in an analogous fashion in the Sects. 3.4.3 and
3.4.4. There we especially focus on the correlation amplitude Cq, which has not been determined
in the literature. In the first of the two subsections we derive a rough numerical estimate for Cq by
directly fitting the asymptotic expression from CFT to the numerical data. The second subsection
is dedicated to the corrections to asymptotic scaling. In particular, we will see that this analysis
provides a possibility to deduce more reliable numerical estimates for the prefactor Cg.

"We set ¢ = 1 in Eq. (5.25) from Ref. [LTO03].
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Fig. 3.4.: Numerical values (circles) and fits (solid lines) for the absolute value of G (top) and G (bottom)
vs. distance for T = 0.02J. The value of the anisotropy parameter is A = 0.5. The numerical errors are
smaller than the symbol size.

3.4.1. Spin correlations: direct fits of asymptotic expressions

The predictions from Sect. 3.3.2 for the low temperature behavior of the longitudinal and transversal
spin correlations can be tested directly by considering the fitfunction

G (- (35T) ™ G, (21)™

v

) = 1 cosh (BZx) =27 Tocosh (B2Lx) — 2%

v

(3.4.118)

with five free parameters v, x4 1/, and Cy/,, see the formulae (3.3.106) and (3.3.107) for the
decay of G|, . The periodic boundary conditions are taken into account by fitting the symmetrized
form

9(x) = f(x) + F(N = x) (3.4.119)

to the numerical data. Since we are interested in asymptotic properties, it is reasonable to fit the
numerical data for distances x as large as possible. If the separation x is too large, on the other
hand, the absolute values of the Monte Carlo estimates become too small to be reliable. A good
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Fig. 3.5.: Fitting parameter v against temperature for A = 0.5 from fits of G (circles) and G. (squares).
The solid (dashed) line represents the average of the values over all temperatures extracted from Gy (GL).
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Fig. 3.6.: Comparison of averaged values for v from longitudinal (circles) and transversal spin correlations
(squares) to the exact result (3.3.92) (solid line) for vg from Sect. 3.3.1. The triangles are the numbers
derived from the fits of Gq, see Par. 3.4.3.

fitting performance is achieved by choosing xmin = 7 for the left boundary of the fitting interval.
The right boundary varies and is determined by the condition |Gj; 1 (Xmax)| > 107*. Note that for
G);, this condition is applied for odd values of x only, because we have G(x) = 0 for x even in the
XX model (A = 0) [LSM61, McC68]. To illustrate the quality of the fits, we give a typical example
in Fig. 3.4.

The number v can be viewed as a control parameter for the reliability of our approach. For fixed
anisotropy A and sufficiently low temperatures in an infinite system, we expect that v takes the
constant value vg for all temperatures, which is given by Eq. (3.3.92) from Par. 3.3.1. On a finite
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Fig. 3.7.. Temperature dependence of the fitting parameters x4/, for the leading (circles) and subleading
orders (squares) from direct fits to the data of G (top) and G. (bottom). The value for the anisotropy
parameter is A = 0.5. In both panels the solid (dashed) line corresponds to the averaged value as an
estimate for the correlation exponent of the leading (subleading) order.

lattice, however, significant deviations from this behavior should appear as soon as the temperature
becomes smaller than the gap in the excitation spectrum which opens due to the finite-size effect.
In Fig. 3.5, it is illustrated that the parameter v obtained by fitting both G| and G stays constant
in the whole temperature range indeed. Neglecting small fluctuations at higher temperatures, we
can therefore extract numerical estimates for the Fermi velocity by averaging the values of v over
all temperatures. The results for various choices of A are compared to the expression (3.3.92)
in Fig. 3.6. They coincide well with the exact result, although the mean values from the fits of
G slightly overestimate ve. From this analysis we conclude that the temperature range chosen is
sufficiently low to see the asymptotic behavior predicted by CFT on the one hand, and larger than
the finite-size gap in the excitation spectrum on the other hand.

From the other fitting parameters, one can derive numerical estimates for the correlation expo-
nents and amplitudes. Similarly to the values of v, we expect that for fixed A the fitting parameters
xg,1/2 and Cy, stay constant in the whole range of temperatures. For A = 0.5, it is shown ex-
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Fig. 3.8.: Absolute values of the fitting parameters Cy;/, vs. temperature for the leading (circles) and
subleading orders (squares) of G (top) and G. (bottom) for A = 0.5. The solid (dashed) lines depict the
average over all temperatures for the leading (subleading) contribution.

emplarily in the Figs. 3.7 and 3.8 that this expectation is fulfilled very convincingly. Even for the
subleading order terms, the fluctuations of the fitting parameters with the temperature are small.
As we did for the Fermi velocity, we therefore determine numerical estimates for the exponents and
amplitudes by averaging the numbers obtained from the fits over the whole temperature range.

As far as the correlation exponents are concerned, we have seen in Sect. 3.3.2 that x4 1/, should
take the constant values % and 1 for G|, while they should be equal to g—}—% and 7 for G, compare
the Egs. (3.3.106) and (3.3.107), respectively. The comparison to the numerical estimates is shown
in Fig. 3.9. In the case of the longitudinal correlations the leading order is reproduced well by the
Monte Carlo results for 0 < A < 0.5, while the subleading order coincides with the result from
CFT in the whole range of the anisotropy parameter A. For values A > 0.5, however, deviations
from the predicted behavior in the leading order are visible. This discrepancy can be ascribed to the
fact that the QMC data are fitted at values for x which are too small to fully reach the asymptotic
regime. As has been discussed in Sect. 3.3.4, at T = 0 the correlation amplitude C); has an
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circles represent the QMC results for the leading order, the squares for the subleading order. The solid
lines represent the leading exponents from CFT (%I and 7), while the exact results for the subleading order
(1and 7 + %1) are depicted by the dashed lines. The numerical errors are smaller than the size of the
symbols.
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algebraic correction of the order x>~ 7, compare the relation (3.3.114). Hence the influence of this
correction grows as A 1 1. Due to the close connection between ground state and low temperature
properties, a similar correction should play a part at low finite temperatures. For A = 1, one cannot
expect that the procedure applied in this subsection gives correct results because of the presence
of logarithmic corrections. Similar statements hold in the case of transversal correlations. As far
as the leading order is concerned though, the algebraic correction to C, ; at T = 0 is of the order
X (see Eq. (3.3.115)) and therefore less important than the corresponding correction for Gj.
For this reason deviations only appear for A = 1. Close to the free fermion point A = 0, it is
difficult to extract the correct exponent of the subleading order. This is mainly due to the large
difference of the leading and subleading exponents in this parameter range.

The findings for the correlation amplitudes Cj, 1 1/» support these observations, see Fig. 3.10.
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Fig. 3.10.: Absolute values of the correlation amplitudes for the longitudinal (top) and transversal spin
correlation functions (bottom). As in Fig. 3.9, the circles and squares are the QMC results for the leading
and subleading orders, respectively. The errors are smaller than the symbols. The solid lines represent the
exact results (3.3.110) and (3.3.112), the dashed lines Eqs. (3.3.111) and (3.3.113) from Ref. [LT03], see
Sect. 3.3.3. The numerical estimates derived from DMRG data in Ref. [HF04] are given by the triangles.

The numerical estimates confirm the expressions (3.3.110), (3.3.111), (3.3.112) and (3.3.113)
from Sect. 3.3.3 in the ranges for A described above. The values for A, where the QMC results for
the amplitudes deviate from the analytical asymptotic results, fully coincide with the discrepancies
observed for the correlation exponents. This supports the assumption that algebraic and logarithmic
corrections have to be taken into account close to and at the isotropic point A = 1, respectively.
From the figure we can also conclude that the numerical values obtained from DMRG data in
Ref. [HF04] give a better estimate of the correlation amplitudes as compared to the QMC results.
This is an expected result because DMRG is an instrument to investigate the ground state properties
of the system directly. In addition, the errorbars of quantities computed with DMRG are usually very
small. Close to A =1 and similarly to the QMC findings, however, the numbers from Ref. [HF04]
also show deviations from the analytical expressions due to the neglect of algebraic corrections.
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We will discuss this aspect in more detail in the next subsection.

We close this subsection with a remark concerning the crossover behavior from low finite tem-
peratures to T = 0. In Sect. 3.2.8 it has been explained that in CFT, the factor (2xL)(4¢54)
in the numerator of Eq. (3.2.69) guarantees a smooth connection to the ground state correlator
(3.2.62) from Par. 3.2.7 as T — 0. In Ref. [FM99], however, the authors point out that this point
has not yet been shown numerically. Since the fitting ansatz (3.4.118) includes such a temperature
dependence and the numbers obtained from the fits stay constant in the whole temperature range,
the QMC data clearly support this type of crossover behavior.

3.4.2. Spin correlations: algebraic and logarithmic corrections

In the last subsection we saw that, close to A = 1, one cannot determine the correct correlation
exponents and amplitudes by fitting the asymptotic expressions from Sect. 3.3.2 directly to the
numerical data at intermediate distances. For A < 1, we suspected that this is mainly due to alge-
braic corrections, while in the XXX model logarithmic corrections play a part. We now investigate
this point in more detail. Since we were well able to reproduce the exact results for the subleading
order terms in our analysis, we restrict the discussion to the leading order terms of G and G.

A systematic way to describe deviations from the asymptotic behavior at finite temperatures is to
formally keep the asymptotic expressions (3.3.106) and (3.3.107) from Sect. 3.3.2, but to assign
a dependence on distance and temperature to the correlation amplitudes, i. e.

Ciyra = Cyralx, T). (3.4.120)

Such an approach is justified if we get back to the expressions (3.3.114), (3.3.115) (for A < 1),
and (3.3.116) (for A = 1) from Par. 3.3.4 in the limit T — 0 and for x > 1, because in this
case a smooth crossover to the behavior in the ground state is ensured. Note that this is a
nontrivial assumption which has to be verified when analyzing the numerical data. The distance
and temperature dependent prefactors Cj;; 1 1(x, T) can be extracted as follows: for each value of
x and T, the QMC estimates for G and G_ are inserted into the symmetrized form (3.4.119) of
Egs. (3.3.106) and (3.3.107), then the resulting equations are solved for C} ; and C_ 1, respectively.
This procedure involves a subtraction of the subleading order, for which we make use of the exact
asymptotic results (3.3.111) and (3.3.113) for Cj» and C. . At this point a systematic error
comes into our analysis due to the neglect of both corrections to the subleading order terms and of
higher order contributions, but one can expect these corrections to be of minor importance when
investigating the leading order.

For G and A = 0.8, 0.9, the results for four different temperatures are plotted in Fig. 3.11. As
can be clearly seen, the values for Cj1(x, T) deviate strongly from the asymptotic constant value
(3.3.110) which is given by the dashed lines in the figure. As expected, these deviations from the
CFT prediction increase with higher temperatures. At any fixed temperature, the difference to the
asymptotic result grows when A is increased. This behavior is consistent with the influence of the
algebraic correction ~ x*77 in the ground state, whose impact grows as A 1+ 1. The values for
Cj1(x, T) can be extrapolated to T = 0. Reliable estimates for the values in the ground state are
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Fig. 3.11.: Absolute value of temperature and distance dependent prefactors Cj1(x, T) vs. x for A = 0.8
(top) and A = 0.9 (bottom). The open symbols represent the numerical results for four different finite
temperatures, while the extrapolated values to 7 = 0 are given by the filled circles. Also shown are the
asymptotic result (3.3.110) (dashed lines) and the asymptotics including the leading algebraic correction
(3.3.114) (solid lines). Note that the numerical errors are smaller than the size of the symbols.

determined by fitting a power law ansatz
C|\,1(X: T)= C||,1(X: T=0)+ aTP (3.4.121)

for fixed x with three free parameters Cj1(x, 7T = 0),a,0 to the data at temperatures T =
0.02/,0.0254,...,0.1J. An example for the quality of the fits is given in Fig. 3.12. The extrapolated
values for Cj1(x, T = 0) which we obtain in this way are also plotted in Fig. 3.11. In the whole
range of x shown in the figure and for both choices of the anisotropy parameter, the numbers are
clearly smaller than the asymptotic correlation amplitude. Again this effect grows when increasing
A. This result explains why — close to A = 1 — one cannot expect to find the correct correlation
exponents and amplitudes by fitting the asymptotic expression (3.3.106) directly to the numerical
data for x > 7, as we did in the last subsection. In particular it can be seen that within such a
procedure the values for Cj ; are strongly underestimated, see also Fig. 3.10. When moving away
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Fig. 3.12.: Temperature dependence of |C)1(x, T)| for fixed x = 40 and A = 0.8 (circles). The data are
extrapolated to T = 0 by fitting the relation (3.4.121) (solid line). The numerical errors are smaller than
the size of the circles.

from A = 1, on the other hand, where algebraic corrections get less important, the estimates from
the last subsection should become more reliable. The extrapolated values for Cj1(x, T = 0) can
also be compared to the result (3.3.114) from Ref. [LTO3] including algebraic corrections. For
A = 0.8 and x 2 25, there is a good agreement between the two curves. Note that discrepancies
for x 2 45 can mainly be assigned to technical difficulties in the extrapolation scheme. For A = 0.9
and x < 60, the result (3.3.114) does not coincide with the numerical data. Obviously it is not
sufficient to take into account only the leading algebraic correction to Cj; in order to correctly
describe the decay of G| at intermediate distances and in the proximity of A = 1.

For the transversal correlations and A < 1, we expect similar results as in the case of longitudinal
spin correlations. Deviations from the asymptotic behavior, however, should be smaller because for
G, the algebraic correction to the leading order in the ground state is only of the order ~ x4_%,
see Eq. (3.3.115) from Par. 3.3.4. Both expectations are found to be confirmed in Fig. 3.13,
where the numbers C, 1(x, T) are plotted for A = 0.9. As for the longitudinal spin correlations,
deviations from the asymptotic constant (3.3.112) (see Sect. 3.3.3) show up, which increase with
higher temperature, although the relative difference to the asymptotic value is much smaller than
for Gj. The extrapolated numbers to T = 0 only slightly differ from the constant value (3.3.112),
and the curve coincides with the result (3.3.115) including algebraic corrections for x 2 25. Since
the deviations from the asymptotic result as predicted by CFT are so small, in retrospective it is
clear why for G| and for all A < 1 the numerical results from the direct fits coincided well with the
expectations from CFT in the last subsection.

We now turn our attention towards logarithmic corrections in the isotropic XXX model. Here G|,
and G, become — apart from a trivial factor of (—1)* — identical. As we did in the previous cases
for A < 1, we derive amplitudes C1(x, T) from the QMC data and extrapolate these numbers
to zero temperature. The results are given in Fig. 3.14. For T > 0, one finds large deviations
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open symbols represent the numerical results for four different finite temperatures, while the extrapolated
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Fig. 3.14.: Absolute values of the amplitudes Cj 1(x, T) vs. x for A = 1.0. The open symbols are derived
from the QMC data for four different finite temperatures, while the filled circles show the extrapolated
values to T = 0. The exact result (3.3.116) including logarithmic corrections is given by the solid line.
The numerical errors are smaller than the symbols.

from the CFT behavior which also show a strong dependence on temperature. This is an expected
result since CFT does not take into account multiplicative corrections. The values for T = 0
can be compared to the expression (3.3.116) from Par. 3.3.4. The two curves coincide very well
even down to small distances x 2> 5. The same result has already been found in Ref. [LT03],

~

where the analytical expression (3.3.116) has been compared to DMRG data from Ref. [HHM95]
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Fig. 3.15.: Numerical values (circles) and fit (solid line) for the absolute value of G4 vs. distance for
T = 0.02J. As in Fig. 3.4, the value of the anisotropy parameter is A = 0.5. The errorbars are smaller
than the symbols.

computed by Hallberg et al. In that reference, however, the datapoints for G at T = 0 have only
been computed for x < 30. By means of our analysis, we can confirm the relation (3.3.116) very
precisely up to x = 80. For larger distances, deviations arise from inaccuracies in the extrapolation
scheme to zero temperature.

To finish our investigation of the spin correlations, we emphasize that we were able to confirm
the analytical expressions (3.3.114) and (3.3.115) for algebraic and Eq. (3.3.116) for logarithmic
corrections to the asymptotic behavior at T = 0. In retrospective, the assumption (3.4.120) to
describe deviations from CFT therefore was justified.

3.4.3. Dimer correlations: direct fits of CFT results

We now turn our attention to the dimer correlation function Gq4. Similarly to our approach for G|,
and G, we directly fit the symmetrized form (3.4.119) of

Cr (5™

(x) = 2eosh (B) — 27 (3.4.122)

with three free parameters v, xg, and C to the QMC data. The left boundary for the fitting interval
IS Xmin = 7, While Xmay is determined from the condition |G4(Xmax)| > 3 x 10™*. This condition for
Xmax reflects the fact that the numerical estimates for G4 are less reliable than those for the spin
correlations, since in the context of the loop algorithm Gy is a four-point function. For this reason
we also neglect any subleading contributions in the ansatz (3.4.122). From a direct examination
of the decay of Gy at finite temperatures, however, one can conclude that subleading order terms
are less important for the dimer correlations. This can also be seen in Fig. 3.15, where a typical
example for the quality of the fits is shown.
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Fig. 3.16.: Temperature dependence of the fitting parameters v (top), x4 (middle) and C (bottom). The
lines give the mean values averaged over all temperatures.

By comparing the fitfunction (3.4.122) to the asymptotic expression (3.3.108) from Par. 3.3.2
we expect that, for fixed A and for all temperatures, the parameters v, x4 and C take the constant
values vg, % and Cq4, respectively. The results for A = 0.5 are shown in Fig. 3.16. Although
stronger fluctuations than in the case of the spin correlations are visible especially for the parameter
v, this condition is fulfilled sufficiently. Note that — in analogy to the discussion for G| and G
— this means that we find a smooth crossover from finite temperatures to T = 0 as predicted by
CFT. Next we extract numerical estimates for ve and the correlation exponents and amplitudes by
averaging the numbers from the fits over the whole temperature range.

The results for the Fermi velocity are given in Fig. 3.6, see Sect. 3.4.1. From the discussion given
above it is evident that the numerical errors are larger than in the case of G),.. For A < 0.8, the
estimates for vg coincide with the exact result (3.3.92) within the numerical errors. Closeto A =1
systematic deviations appear. Again this is probably due to algebraic and logarithmic corrections
close to and at the isotropic point. The differences to the exact result are more pronounced for
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Fig. 3.18.: Numerical estimates for the absolute value of the correlation amplitudes Cq4 against anisotropy.
The circles represent the averaged values for the parameters C from direct fits as described in Par. 3.4.3.
The estimates extracted from an analysis of distance dependent prefactors Cq(x, T = 0), see Sect. 3.4.4,
are given by the squares.

the conformal dimensions, see Fig. 3.17. Here the behavior is very similar to the leading order of
the longitudinal spin correlation function. For 0 < A < 0.5, the numerical values coincide with
the prediction from Sect. 3.3.2. For A > 0.5 though, the results become less reliable. As for G
the interpretation is that close to A = 1 irrelevant operators induce algebraic corrections to the
correlation amplitude Cy, i. e. the values for x chosen in the fitting procedure are too small to
reach the asymptotic regime. Exactly at the isotropic point A = 1, logarithmic corrections are
brought forward. In contrast to the case of G|, where the correlation exponents close to A = 1 are
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underestimated by the QMC results, here the numbers for x4 overestimate the asymptotic values.
In the XXX model, this effect can easily be understood by observing that on the one hand, the
exponent of the multiplicative logarithmic correction at T = 0 is positive (%) for G|, while it is
negative (—%) for Gg, see also Sect. 3.3.4. On the other hand these logarithmic corrections are
not taken into account when considering the fitfunctions (3.4.118) and (3.4.122). Close to A =1,
algebraic corrections should create similar effects.

Comparing these results to our findings from the analysis of the spin correlations in the last
subsection, we conclude that for A < 0.5, where the QMC numbers for the correlation exponents
coincide with the CFT result, the averaged values of C give good estimates for the amplitudes Cq.
These numbers are represented by the open circles in Fig. 3.18. As A 1 1, however, we expect
Cq — 0 due to the logarithmic correction ~ (In x)_% at T = 0. As can be seen in the figure, this
limit is not realized by the data from the direct fits. More precise values for C4 in the vicinity of
A =1 will be derived in the next subsection.

3.4.4. Dimer correlations: deviations from the asymptotic behavior

In analogy to our approach for the spin correlations in Sect. 3.4.2, a systematic way to describe
deviations from the CFT predictions is to allow for dependences

Cd — Cd(X, T) (3.4.123)

in the Egs. (3.3.105) and (3.3.108) from Par. 3.3.2. The temperature and distance dependent
amplitudes Cq4(x, T) are derived from the QMC data by — for fixed A and each value of x and T
— inserting the numerical values into the symmetrized form (3.4.119) of relation (3.3.108), and
then solving the resulting equations for C4. For each distance x, a numerical estimate for the
corresponding number C4(x, T = 0) in the ground state can be extracted by fitting a power law
function as given in Eq. (3.4.121) with three free parameters to the data. Since the QMC estimates
for G4 at large distances and high temperatures have larger statistical errors than those for G|,
we only take into account the datapoints from the ten lowest temperatures 0.02J < T < 0.065J
in this part of our analysis.

For A = 0.9, the results for four different finite temperatures and the extrapolated values to
T = 0 are shown in Fig. 3.19. The curves show a similar behavior as those for the spin correlations.
With higher temperatures we find an increasing difference to the extrapolated curve for T = 0.
One main difference to the properties of G| and G is that the finite temperature curves approach
the one for T = 0 from below. For the range of distances shown in the figure, the numbers
Ca(x, T = 0) show a strong dependence on x. This indicates the presence of strong algebraic
corrections to the asymptotic behavior in the system. The number of datapoints, however, is too
small to determine the exponent of the algebraic correction from the T = 0 data. It is possible
though to extract an estimate for the asymptotic value C4 from the curve in the ground state.
This is done by applying a linear fit in % to the T = 0 data for x > 10. The result of the fit is
shown in Fig. 3.19 as well.

In the same way one can determine numerical estimates for Cy for the other choices of A < 1.
Note that upon moving away from the isotropic point A = 1, the number of datapoints where
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Fig. 3.19.: Absolute value of temperature and distance dependent prefactors C4(x, T) for A = 0.9. The
open symbols are the numerical results for four different finite temperatures, while the filled circles represent
the extrapolated values to T = 0. The solid line is an asymptotic fit to the T = 0 values for x > 10.
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Fig. 3.20.: Absolute value of corrections to the asymptotic behavior from CFT Ca(x, T) vs. x at A = 1.
The open symbols represent Cq(x, T) for temperatures T = 0.02J,...,0.08J, while the filled circles are
the extrapolated values for the ground state. The inset shows the estimates at 7 = 0 times (In x)% in a

plot against distance.

the asymptotic fit can be applied decreases because Gy decays more rapidly in the ground state,
compare Eq.(3.3.105). The opposite effect is that with decreasing A the numbers Cq(x, T = 0)
show a smaller dependence on x because algebraic corrections get less pronounced. For this reason
our extrapolation scheme gives reliable results even in the vicinity of the XX model. The numbers we
obtain are shown and compared to the results of the previous subsection in Fig. 3.18. For A < 0.5,
where we consider the estimates for Cq from the direct fits to be reliable, both results coincide.
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For A — 1, the numbers from this subsection show a more realistic tendency. In particular they
seem to obey the condition Cq — 0 as A 1 1 which is expected due to the logarithmic correction
~ (In x)‘% in the ground state of the XXX model.

We finally discuss the deviations from the conformal behavior for A = 1, see Fig. 3.20. As for
A < 1, the curves for finite temperatures approach the result for T = 0 from below. We make use
of the extrapolated values to the ground state to test the exponent of the multiplicative logarithmic
correction. Plotting |C4(x, T = 0)| x (In x)% against x in the inset of Fig. 3.20, we can see that the
numerical values saturate to a constant value = 4 for x > 1, indicating that the correct asymptotic
behavior is visible even at intermediate distances.
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4. Two-dimensional systems with
spin-phonon coupling

4.1. Introduction to spin systems with spin-phonon coupling

Quasi one-dimensional antiferromagnets with spin-phonon coupling have attracted considerable
attention during the past decades. Although the models taking into account this mechanism are
rather complicated, they are well understood because they can be studied by a wide range of
analytical and numerical techniques. In contrast to this, little is known about the physics of two-
dimensional spin systems with spin-lattice coupling, which will be investigated by means of the
QMC method in this chapter. Before we start with our analysis, however, we give an outline of the
relevant literature in this section.

In Sect. 3.1 we have mentioned that for spin—%, the mechanism of the spin-phonon coupling is
closely connected to the phenomenon of the spin-Peierls transition. A theoretical understanding of
this type of phase transition was established by the fundamental work of Pytte [Pyt74] and Cross
and Fisher [CF79] in the 1970s, who considered a cubic lattice consisting of linear chains

N Ji
H=Y" 5 &iGit1. (4.1.1)
i=1

The spins only interact between nearest neighbors along the chain direction according to the site-
dependent antiferromagnetic exchange integral J;. Expanding the exchange coupling in terms of
the displacement vectors &; of the two magnetic ions adjacent to a particular bond, one obtains

b = J+ gV - Giur) + O(?), (4.1.2)

i. e. the spin degrees of freedom are coupled to three-dimensional lattice vibrations with a spin-
phonon coupling constant g > 0. By means of a Jordan-Wigner transformation, the spin Hamilto-
nian (4.1.1) can be mapped to a model of spinless interacting fermions. In the fermionic description,
there is a structural similarity to quasi one-dimensional half-filled electronic systems coupled to lat-
tice degrees of freedom. These systems are known to exhibit a metal-insulator transition accompa-
nied by a structural phase transition upon decreasing the temperature, the Peierls transition [Pei55].
The spin-Peierls transition is the analogous phenomenon for the spin model (4.1.1). Treating the
phonon degrees of freedom in the random phase approximation, one finds a renormalization

w?(q) = wj(q) + N(q. Q) (4.1.3)

of the bare phonon frequencies wp for momenta q directed along the chains. Here the polarizability
I describes the response of the lattice to the magnetic degrees of freedom due to the spin-phonon
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Fig. 4.1.: Schematic illustration of the spin-Peierls state. The spins of each chain group into pairs, leaving
a magnetic structure described by the Hamiltonian (4.1.4) with alternating couplings %(1 =+ §).

coupling. In principle, I can be determined from the (Euclidean) dynamical structure factor of
the dimer correlation function in the uniform, i. e. undistorted, Heisenberg model. While Pytte
determined this quantity by treating the interaction part of the Hamiltonian in the Hartree-Fock
approximation, Cross and Fisher improved on his calculation by applying bosonization techniques.
As T — 0, the polarizability at' g = m and Q = 0 diverges like —2 [CF79]. Hence when decreasing
the temperature, the phonon with ¢ = 7 gets softened until at a certain critical value T, the
right-hand side of Eq. (4.1.3) vanishes. This indicates a structural instability towards a dimerized
state, i. e. a distorted state which can be characterized by the magnetic ions of each chain moving
together in pairs. The result is a structure of alternating bond lengths along the chains as depicted
in Fig. 4.1. At the same time, a gap opens in the magnetic excitation spectrum. The loss in elastic
energy due to the lattice distortions is overcompensated by a gain in the magnetic energy which
reflects the tendency of the spins of each pair to form singlet states.

Since w(q = ) vanishes as T | T, an adiabatic treatment is a good approximation to describe
the magnetic properties of the system. In a mean-field approximation, the effective magnetic model
in the adiabatic limit is the statically dimerized spin chain

I -
H= 5;(1+(—1) 0)0iGit1- (4.1.4)

Here the dimerization § = §(T) > 0 is proportional to the local lattice distortion of the original
model, which serves as the order parameter of the transition. Hence the dimerization takes positive
values below T, while § vanishes at all temperatures above the spin-Peierls transition. In addition,
we have § = 0at T = T, which reflects the fact that the transition is continuous. Note that as soon
as § > 0 holds, the elementary excitations of the model (4.1.4) cannot be characterized as massless
spinons like in the isotropic Heisenberg chain. Instead, there is a gapped excitation spectrum
consisting of triplet-like excitations (so-called triplons [SKU04]) above a paramagnetic ground
state. A quantitative analysis of the thermodynamics of the spin-Peierls transition based on the
adiabatic approach has been performed recently by means of bosonization and the thermodynamic
Bethe ansatz [OCO04].

Two years after Pytte's theoretical prediction, the existence of the spin-Peierls transition was
proven experimentally in the organic compounds TTFCuBDT and TTFAuBDT [JBJ*76]. For both
systems, the adiabatic treatment yielded a convincing explanation of the experimental results. In
the subsequent years, further quasi one-dimensional organic substances showing the spin-Peierls
transition were discovered, namely the compounds MEM-(TCNQ), [HKS*79], (TMTTF),PFg
and (TMTTF),AsFg [PMCt82, LCGT84, MFFM85] as well as (BCPTTF),PFg [LRP193].

In 1993, the interest in systems with spin-lattice coupling was renewed when Hase et al. found

1in this chapter, we set a = 1 for the lattice constant of the models under consideration.
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Fig. 4.2.: Sketch of the frustrated Heisenberg chain Eq. (4.1.5) with competing nearest and next-nearest
neighbor antiferromagnetic exchange (coupling constants 2 and &7, respectively).

evidence of the spin-Peierls transition in the inorganic CuGeO3 [HTU93]. Providing the possibility to
grow single crystals, this compound is more convenient for experimental studies. However, a careful
analysis of neutron scattering data revealed that the phonon-softening described by Eq. (4.1.3)
was absent in CuGeOsz [LHS'94, HSH*95, BWL*96]. Furthermore, a comparison between the
experimental curves and theoretical predictions of the magnetic susceptibility showed that the
Heisenberg model with nearest neighbor interactions only is not sufficient to describe the magnetic
properties of the system. Instead, the proper effective spin model [CCE95] for the high-temperature
phase of CuGeOs is the frustrated Heisenberg chain

N

I - -
H= > ;(O';O'H_l + adidita), (4.1.5)

compare Fig. 4.2. It is a characteristic feature of this model that the next-nearest neighbor in-
teraction provides an alternative mechanism to obtain a dimerized ground state. At T = 0, the
system shows a quantum phase transition from a Néel ordered state to a non-magnetic phase for
values of a > a, with a critical frustration of o & 0.2412 [ON92, Egg96b].

The occurrence of a significant spin-phonon coupling has also been proven for (VO),P>07
[GLGT00, KTPT02], although this system exhibits no structural phase transition accompanied
by the opening of a spin gap. However, a disputive discussion on its magnetic structure re-
vealed [JJGJ87, GNT197, PBAT98, UN98, YNKT99] that the system is a good realization of the
alternating Heisenberg chain (4.1.4). Recently, the inorganic TiOCl has been suggested as another
candidate for the spin-Peierls transition. Here susceptibility measurements indicate two different
phase transitions in the low temperature regime [SMC*T03]. While the role of the orbital de-
grees of freedom is not settled for this system [KBM*03, SDVRG04], both the opening of a spin
gap [SMCT03, LCCT04] as well as considerable phonon anomalies due to the spin-lattice cou-
pling [LCVT05] have been reported in the literature.

As a result of the experimental studies on CuGeOQOg3;, strictly one-dimensional dynamical models
have been proposed to investigate the influence of the spin-phonon coupling in the non-adiabatic
regime. Restricting ourselves to one-dimensional lattice distortions u; = (aH—a,-)/ﬁ in Eq. (4.1.2),
and coupling the spins to dispersionless Einstein phonons of frequency w for simplicity, we obtain
the difference coupling model

N N
1 .
H= > Z(J +g9 [a}L+1 +a,,— a:-’ —a;])Gidiy1 +w Z a:-ra,-. (4.1.6)
i=1 i=1
In the antiadibatic limit J/w — 0, one can integrate out the phonon degrees of freedom and map
the system to the frustrated Heisenberg chain (4.1.5) [KF87,Uhr98]. In leading order in Z and in

w
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Fig. 4.3.: Ground state phase diagram of the bond coupling model (4.1.7) from Ref. [RLUKO02]. The solid
line is the phase separation line between the Néel ordered (ungapped) and the dimerized (gapped) ground
state obtained by the flow equation method. The squares and circles represent QMC results obtained by
means of the algorithm from Sect. 2.3. The dashed line is the result from Ref. [WWF99] based on a
perturbative series expansion.

terms of the original coupling constants, the frustration parameter of the effective model is given

by a = Hence for sufficiently large numbers of the spin-phonon coupling, the frustration

_d
wlt2g? "
exceeds the critical value a.. This corresponds to a quantum phase transition from a (quasi) Néel
ordered to a dimerized ground state. The interpretation is that the occurence of a soft phonon mode
is non-generic for the spin-Peierls transition, i. e. the adiabatic treatment only covers one possible
scenario to find a dimerized ground state. The ground state phase diagram of the model (4.1.6) in
the entire frequency range has been analyzed by means of exact diagonalization and perturbative
series expansions [WWF99], DMRG [BMH99], renormalization group techniques [SSB00], and flow
equations [RBUO1]. Recently, the DMRG method has also been applied to a model with difference
coupling which couples the spins to one-dimensional dispersive phonons [BB05]. Note that models
which describe a difference coupling mechanism are not accessible to QMC because there is a
non-trivial sign problem.

A second model which has been proposed is the bond coupling model

N N

1
H= 2 E(J+ gla; + ;1) 7i0i+1 +wZa,a,-, (4.1.7)

i=1 i=1

compare Eq. (2.3.40) from Sect. 2.3.1. Here the spins are coupled to phonon degrees of freedom
defined on the bonds of the lattice, which is considered to be a more realistic scenario for CuGeOs.
There according to the Goodenough-Kanamori-Anderson rules [Goo55,Kan59,And63, GK96], a dis-
placement of the oxygen ions between adjacent copper sites significantly influences the bond angle of
the Cu-O-Cu superexchange path and hence the corresponding exchange integral [KGM96, WGB99,
FWO00]. The model (4.1.7) is accessible to the QMC algorithm described in Sect. 2.3, which has
been applied to study the thermodynamics of the system in Refs. [KL99, Kiihne01, RLUKO02]. In
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addition, an alternative QMC algorithm based on the SSE representation [SSC97, SC99] as well
as high temperature series expansions [Biih03, BUO04] have been used to investigate the behavior
of the system at finite temperatures. The thermodynamic quantities are influenced significantly
by a non-vanishing spin-phonon coupling. In particular, the maximum of the magnetic suscep-
tibilty is suppressed and shifted to higher temperatures as compared to the uniform Heisenberg
model. The nature of the ground state and the magnetic excitations have also been studied in
a number of publications relying on QMC [KL99, SSC97,SC99, RLUKO02, SSCO03], exact diagonal-
ization [WFK98], perturbative series expansions [WWF99, TEMO01] and flow equations [RLUKO02].
Even the influence of a non-vanishing interchain coupling between adjacent spin chains has been
analyzed [Sen03], which is usually neglected in numerical studies. The ground state phase diagram
of the model taken from Ref. [RLUKO2] is shown in Fig. 4.3. Similarly to the case of difference
coupling, the system exhibits a quantum phase transition from a gapless to a gapped state even in
the antiadiabatic regime. The exact shape of the phase separation line, however, differs between
the two models. For example, this can be seen from the values for the critical coupling 9‘5 in the
antiadiabatic limit é — 0. While this number vanishes for the difference coupling model (4.1.6),
it takes a finite value for the bond coupling mechanism as described by Eq. (4.1.7), compare also
Fig. 4.3.

In principle, a coupling between the spin and lattice degrees of freedom is a generic feature
regardless of the dimensionality and lattice structure of a magnetic system, since the vibrations of
the lattice ions always influence the magnetic exchange. Hence it is always possible to write down
a Taylor expansion of the type (4.1.2) for the exchange integrals. Therefore besides its relevance
for one-dimensional spin systems, the spin-phonon coupling is expected to play a part in certain
materials with a two-dimensional magnetic structure. For example, there are indications that this
mechanism is relevant for LuMnO3; and YMnQOs3, which are realizations of the spin-2 Heisenberg
model on a triangular lattice [JHO5]. In this work, we focus on the spin-3 Heisenberg model on
a square lattice because it describes the magnetism of the undoped parent compounds of the
high temperature superconductors such as La;CuO4 [EYB88, YKET89]. As in one dimension,
one expects that the spin-lattice coupling leads to a phonon softening analogously to Eq. (4.1.3),
where the renormalization of the bare phonon frequencies is given by certain structure factors of
the two-dimensional dimer correlations. In contrast to the one-dimensional case though one cannot
assume that these quantities diverge since the square lattice Heisenberg model shows long-range
Néel order in the ground state [And52, Bar91, San97] accompanied by an exponentially diverging
spin correlation length as T — 0 [CHN89, DM90, Bar91, BBGW98]. A quantitative analysis if
and under which circumstances the response of the lattice to the magnetic degrees of freedom
is sufficiently large to drive the system into a structural instability has not yet been done in the
literature.

The published articles on this issue are mainly restricted to statically dimerized models [KKK99b,
KKK99a, AO00, SKH02], i. e. two-dimensional generalizations of the Hamiltonian (4.1.4) on a
square lattice. In the spirit of Pytte's approach, such systems are interpreted as effective models
to describe the magnetic properties of distorted spin layers coupled to three dimensional phonons
in the adiabatic limit. A more general starting point to obtain this class of models is the two-
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Fig. 4.4.. The three possible arrangements of alternating couplings along each linear chain on a square
lattice with a minimal 2 x 2 unit cell are the plaquette (left), the stair (middle), and the meander model
(right). As in Fig. 4.1, thick and thin lines correspond to couplings (1 + §).

dimensional square lattice Hubbard model coupled to lattice vibrations, the Peierls-Hubbard model.
In the adiabatic limit of this model, one receives dimerized hopping amplitudes for the electrons
and thus a dimerized spin exchange in the limit of infinite on-site Coulomb repulsion [TH88, ZP88,
Maz89, TH89, YNKO1, YK02]. The question which dimerization pattern is energetically favored is
an unresolved issue. In principle, the optimal pattern is expected to consist of truly two-dimensional
lattice modulations which correspond to commensurate wave vectors. However, even by restricting
oneself to those patterns characterized by alternating couplings %(1 + §) along each linear chain
of the square lattice (i. e. there is an equal number of strong and weak bonds) there remains an
infinite number of possibilites. In the literature, only three such models with a minimal 2 x 2 unit
cell as shown in Fig. 4.4 have been investigated, revealing an ambiguous picture. In Ref. [SKH02],
the authors determine the ground state energies of the three models by applying linear spin wave
theory and conclude that a stair-like distortion has the largest gain in magnetic energy. This result
contradicts an older analysis based on exact diagonalization, which supports the plaquette model
as the optimal configuration [TH88]. Note that such a comparison of ground state energies for
the effective spin models does not take into account possible differences in the elastic energy loss
due to the lattice distortions.

The search for the energetically favored dimerization pattern is motivated by the fact that the
nature of the lattice modulation determines whether a transition to a paramagnetic phase is possible.
In one-dimensional spin-Peierls systems, the structural transition from the uniform to the distorted
phase coincides with a magnetic phase transition from a magnetically ordered to a non-magnetic
phase. As far as two-dimensional spin systems are concerned, quantum fluctuations are known to
be less important due to the larger coordination number. For this reason one expects that the
long-range antiferromagnetic order in the ground state is more stable towards dimerization. Indeed
at T = 0, each of the three models from Fig. 4.4 has an extended phase characterized by the
coexistence of dimerization (i. €. § > 0) and long-range magnetic order [SKHO02]. In case of the
stair and meander models, it is believed that there is no transition to a state with short-range
magnetic correlations in the whole interval § € [0,1]. This is consistent with the observation
that for § = 1, the stairs and meanders decouple to independent chains of infinite length with
quasi long-range order in the ground state. However, the situation is different to the plaquette
model, which exhibits a quantum phase transition to a paramagnetic phase at a critical dimerization
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0 < dc < 1. The exact value of . is controversial. While the estimate 6. ~ 0.798 based on the
linear spin wave calculation from Ref. [SKHO02] very likely overestimates the accurate number, the
result §. =~ 0.30 based on a series expansion starting from uncoupled plaquettes seems to be more
realistic [KKK99b]. We add that the plaquette model from Fig. 4.4 has also been analyzed to
understand the gapped excitation spectrum of CaV,4Qg. This substance is a realization of the 1/5
depleted square lattice Heisenberg model which is topologically equivalent to a different type of
plaquette lattice [KKK99b, KKK99a].

We close this survey by noting that an analysis of two-dimensional spin-phonon systems in the
non-adiabatic regime is an even more challenging task. Here most of the analytical and numerical
instruments which have successfully been applied to the one-dimensional models are not available.
However, since the applicability of the QMC method is not hampered by the dimensionality of the
system, it is possible to make use of the loop algorithm from Sect. 2.3.4 to investigate the two-
dimensional counterpart of the bond coupling model (4.1.7). So far only thermodynamic properties
such as the magnetic susceptibility or the specific heat have been analyzed [Ait02, AL03], showing
that the spin-phonon coupling has a similar impact on these quantities as in one dimension.

This chapter is organized as follows. In the following section, we analyze the ground state
properties of the two-dimensional bond coupling model. There we especially focus on the non-
adiabatic regime and try to clarify to what extent the long-range Néel order of the square lattice
Heisenberg model is affected by the spin-phonon coupling. In Sect. 4.3, we then consider statically
dimerized spin models as effective models in the adiabatic limit. In particular, we develop an
approach to compare the magnetic energy gain for all possible patterns with an equal number
of strong and weak bonds. By assuming a bond coupling mechanism, this treatment also allows
for a quantitative discussion of the two-dimensional counterpart of the spin-Peierls transition. In
Sect. 4.4, the same idea is applied to a difference coupling model with a more realistic assumption
for the lattice potential, which will enable us to study phonon dispersion curves and hence the
softening of phonon modes.

4.2. Ground state properties of the two-dimensional bond
coupling model

In this part we focus on the two-dimensional bond coupling model, i. e. the generalization of the
spin-phonon chain (4.1.7) on the square lattice. The Hamiltonian reads

N

1 I
H= > Zl(-/ +9 [a,Tj + a;1)3i0i+1,
ij=

N

1 JEr—

+ 2 Z(J +9 [biTj + b;1)3;Gi j+1 (4.2.8)
ij=1

N
+w Z(a}'ja,j + b:-'jb,.j).
ij=1
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One main difference to the linear chain is that on the square lattice there are two bonds per lattice
site. Therefore we have to distinguish between two types of phonons defined on bonds oriented
along the i- (phonon operators a;, a}}) and j-direction (phonon operators b;;, b,TJ-), respectively.

The aim of this section is to answer the question to what extent the spin-phonon coupling in
Eq. (4.2.8) affects the long-range antiferromagnetic order which is found in the ground state of
the square lattice Heisenberg model. In particular, we are interested in the non-adiabatic regime of
the model. The influence of the spin-lattice coupling is studied by exemplarily analyzing the spin
correlations of two systems with fundamentally different choices for the coupling constants [ALO3].
For the first system, we select g = 0.1J and w = 8J, i. e. the value of the fraction £ is so small
that we cannot expect the spin-phonon interaction to have a significant influence on the nature
of the ground state. However, this statement does not hold for the second system, where we
arbitrarily choose g = w = 0.67J which corresponds to a considerably large value of 2.

Another goal of this section is to study the influence of the dimensionality of the system. For
this reason we first discuss the finite temperature correlations of the one-dimensional bond coupling
model (4.1.7) for both sets of parameters in the following subsection. Then in Par. 4.2.2, we apply
a similar approach to the model (4.2.8) and compare our findings to the results from Sect. 4.2.1.

4.2.1. Spin correlation length in one dimension

In the introduction 4.1 to this chapter, we have already discussed the properties of the one-
dimensional bond coupling model (4.1.7). As far as the two systems with g = 0.1J, w = 8J
and g = w = 0.67J are concerned, we can see from the ground state phase diagram in Fig. 4.3
that the first system behaves Heisenberg-like, i. e. it shows quasi long-range Néel order at T = 0
like the one-dimensional XXX model. The latter choice of coupling constants, on the other hand,
corresponds to a strongly dimerized system with a gapped excitation spectrum.

In the following we demonstrate that the nature of the ground state is reflected by the behavior
of the spin correlation function (g§cZ) at low finite temperatures. According to our discussion
from the beginning of Par. 2.3.1, the Hamiltonian (4.1.7) is accessible to the loop algorithm from
Sect. 2.3, which provides a tool to evaluate the spin correlations in question. It is therefore possible
to extract the spin correlation length €19 of the two systems by fitting an exponential decay

f(x) = ae /" (4.2.9)

with two free parameters a, £1¢ to the numerical data at intermediate distances. While applying 30
phonon updates per loop update with a value of 40 for the phonon cutoff, a number of 1.25 x 10°
spin updates was taken for the thermalization of the algorithm, and 3.75 x 10 configurations were
evaluated to obtain reliable numerical estimates for the expectation values in question. For the
system with g = 0.1J and w = 8J, the choice for the Trotter number was M = 160 which is
large enough to avoid an effect of the finite Trotter number. Furthermore, the system sizes were
chosen so large that finite-size effects are negligible (N = 500 for T = 0.025J,0.05J, N = 400
for T = 0.075J,0.125J, and N = 300 for T = 0.1J,0.15J), i. e. the system size is significantly
larger than the values for £1¢ extracted from the fits. As far as the system with g = w = 0.67J
is concerned, the correlation lengths are found to be so small that a chain length of N = 200
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Fig. 4.5.: Correlation length £ of the one-dimensional bond-coupling model (4.1.7) vs. inverse temperature
% for the two sets of parameters as described in the text.

is sufficient to make statements about the thermodynamic limit. In this system, the influence of
the finite Trotter number is more important. For M = 400 at the lowest temperatures, however,
this effect is smaller than the error which comes into the analysis during the fitting procedure (the
simulations were run with M = 400 for T = 0.017J,0.025J,0.033J, M = 360 for T = 0.05J, and
M = 160 for T > 0.067J). Note that with these choices, autocorrelation effects are well under
control in both systems.

The results for the correlation lengths are depicted in Fig. 4.5, where the fitting parameter ¢4
is plotted against % They unambiguously show the expected behavior. For g = 0.1J and w = 8J,
the correlation length grows linearly with the inverse temperature. This is an expected result,
because in this system the spin-phonon coupling is only an irrelevant perturbation of the XXX
Hamiltonian. Hence according to our discussion from Chapt. 3, the low temperature physics of the
system is well described by an effective conformal invariant field theory, and the formulae (3.2.70)
and (3.2.71) from Par. 3.2.8 (with Ay + Ay = 3 as for the XXX chain, see Sect. 3.3.2) determine
the leading asymptotic behavior of the spin correlation function. Non-universal effects only enter
in the correlation amplitude C and in the Fermi velocity v¢ (i. e. the slope of the straight line in
Fig. 4.5). Note that in order to obtain reliable quantitative results for this system, a better ansatz
for the fitfunction would be given by Eq. (3.4.118) from Par. 3.4.1, which is based on the more
accurate result (3.2.69) (see Sect. 3.2.8) for the decay of primary fields at low finite temperatures.
However, we are only interested in the qualitative behavior of the spin correlations in this section
(for the same reason we do not give any error bars for correlation lengths obtained from numerical
fits in this and the next subsection). Furthermore and in contrast to Eq. (3.4.118), the ansatz
(4.2.9) should also apply to the gapped region of the phase diagram and hence to the system with
g =w = 0.67J. As can be seen from the figure, for this choice the correlation length £*¢ shows a
paramagnetic behavior as anticipated, i. e. the spin correlations stay short-range even at very low
temperatures due to the dimerization in the ground state.
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Fig. 4.6.: Logarithm of the finite system correlation lengths £y vs. inverse temperature for g = 0.1J,
w = 8J, and five different system sizes.

4.2.2. Spin correlations and staggered magnetization of the
two-dimensional model

We now turn our attention to the two-dimensional bond coupling model (4.2.8). As we did for
the one-dimensional case in the previous subsection, we first analyze the spin correlation length
of the two systems with g = 0.1J, w = 8J, and g = w = 0.67J. Note that our discussion at
the beginning of Par. 2.3.1 did not basically depend on the dimensionality of the system, i. e. the
model (4.2.8) can be mapped exactly to the Hamiltonian (2.3.58). Hence we can apply the loop
algorithm from Par. 2.3.4 and the improved estimator (2.4.70) from Sect. 2.4.2 to compute the
two-point spin correlation function

G(X) = (050%) = (05007) (4.2.10)

(i.e. X =(i,))) for finite temperatures. As in the one-dimensional case, in both systems a number
of 30 phonon updates per loop update (again with a value of 40 for the phonon cutoff) is sufficient
to keep autocorrelation effects under control.

We first consider the system with g = 0.1J and w = 8J. Similarly to the situation in one
dimension, we expect that for this set of parameters the coupling between spin and lattice degrees
of freedom is not sufficient to destroy the long-range Néel order which is present in the ground state
of the Heisenberg model [And52, Bar91, San97]. Thus for reasons of universality, we can assume
that the correlation function (4.2.10) obeys the known asymptotic result [CHN89, DM90, Bar91]

G(X) ~ C(-1)H x| e 1/, (4.2.11)

with the algebraic exponent X close to the classical Ornstein-Zernike value of 3 [DM90]. In contrast
to the linear dependence of £'9 on the inverse temperature in the XXX chain, here the correlation
length £ diverges exponentially with % as T — 0 [CHN89,DM90,Bar91, BBGW98]. For the system
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Fig. 4.7.: Semilogarithmic plot of the finite system correlation length £y against % for g = w = 0.67J,
and the same set of system sizes as in Fig. 4.6.

with g = 0.1J and w = 8J, we deduce numerical estimates for the finite system correlation lengths
&n by fitting the symmetrized function

(4.2.12)

Fx) — 5 (1) (e—fl/ém e—(N—|x*|)/aN)

VR N
with two free parameters a and &y to QMC data calculated in systems with linear system sizes N =
10,12, 14, 20, 24. For the simulations, the total number of Monte Carlo sweeps per temperature
was 10°, while the first 25% of the configurations were skipped for thermalization of the algorithm.
The values for the Trotter number of M = 120 for temperatures 0.5J < T < 0.9J, and M = 80 for
T > J, respectively, are sufficiently large to avoid finite-size effects in Trotter direction (for N = 24
the choice was M = 120 at all temperatures). The results are shown in Fig. 4.6, where the natural
logarithm of &y is plotted vs. % They clearly reflect our expectations. At high temperatures,
no dependence on the system size is visible, and we find the same exponential growth as in the
Heisenberg model. When decreasing the temperature, finite-size effects become important. As
soon as the estimates for £y obtained from the fits become of the order of the linear system size,
the curves branch off from the asymptotic behavior.

The ansatz (4.2.12) is also applied to fit the numerical data for the second system with g = w =
0.67J. While the linear system sizes and the number of loop updates were chosen to be identical
to those given above, the values for the Trotter number were M = 160 for 0.5J < T < 0.63J,
M = 120 for 0.67J < T < 1.33J, and M = 80 for T > 1.67J (for N = 20 the number of
configurations was 1.5 x 10, while it was 2 x 10° for N = 24 and 0.5J < T < 0.63J). The results
for the correlation lengths are depicted in Fig. 4.7. Surprisingly, the curves show a very similar
behavior as compared to those given in Fig. 4.6. In retrospective, this justifies the application of
the same fitting function (4.2.12) as for the system with g = 0.1J and w = 8J. The conclusion is
that we find Heisenberg-like behavior of the spin correlation length even for a fairly large value of
the spin-phonon coupling. This is a striking difference to the one-dimensional bond coupling model,
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Fig. 4.8.: Test of the scaling prediction (4.2.13) for g = 0.1J, w = 8J (top), and g = w = 0.67J (bottom).

where the same choice corresponds to a strongly dimerized system, compare the discussion from
Sect. 4.2.1. However, from our analysis we can also come to the conclusion that a strong spin-
phonon coupling weakens the tendency of the system to establish antiferromagnetically ordered
domains. From the Figs. 4.6 and 4.7 we see that at the same temperature, the correlation lengths
in the system with g = w = 0.67J are smaller than the corresponding values for g = 0.1 and
w = 8J. We will discuss this aspect in more detail below.

At this point the reader might argue that an analysis of the spin correlation length at finite
temperatures is not sufficient to draw reliable conclusions about the nature of the ground state.
However, in the following we demonstrate that the data for £y at T > 0 can be used to make
direct statements about ground state properties. The argument is as follows: let us assume that
the system shows long-range Néel order in the ground state. In terms of the renormalization group,
this means that there is a critical fixed point at T = 0 which controls the system properties at low
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temperatures. In this case the finite-size scaling relation [CEFT95, CEPS95, BBGW98]

am ()

holds, where F is a universal scaling function. With the data from the Figs. 4.6 and 4.7 it is

(4.2.13)

possible to test the scaling prediction (4.2.13), see Fig. 4.8. There for both choices of coupling
constants and N = 10, 12 the fraction Eg—l:"’ is plotted against %"’ For g = 0.1J and w = 8J as
well as g = w = 0.67J the data clearly collaps onto one curve. Thus the assumption that the two
systems show long-range antiferromagnetic order in the ground state is valid indeed. Note that
the shape of the scaling function F in Eq. (4.2.13) depends on the particular choice of coupling
constants in Eq. (4.2.8).

A more quantitative understanding of the influence of the spin-phonon coupling can be achieved

by considering the order parameter for a Néel ordered phase, which is the staggered magnetization

N
Ms = lim_ ﬁ Z(—l)i+f @i (4.2.14)
ij=1
As long as T > 0 holds, Ms vanishes because due to thermal fluctuations no long-range anti-
ferromagnetic order can be established. This is in accordance with the Mermin-Wagner theorem
which states that in d < 2 dimensions there is no breaking of a continuous symmetry (here the
SU(2) symmetry of the Hamiltonian (4.2.8)) at finite temperatures [MW66]. As far as the square
lattice spin—% Heisenberg model at T = 0 is concerned, there is long-range order and hence a
finite staggered magnetization [And52, Bar91,SSC97]. For this system, a comparison of the accu-
rate numerical value of My = 0.3070(3) obtained from QMC simulations [San97] to the number of
Ms = 0.5 for a classical Néel state indicates that quantum fluctuations are of significant importance
in two-dimensional quantum spin systems.

In the following we determine numerical estimates for Ms in the two systems with spin-phonon
coupling at T = 0. We emphasize that a direct measurement of the observable (4.2.14) in the
ground state is not possible since the QMC method can only be applied to finite systems at
temperatures T > 0, where M; vanishes. However, the staggered magnetization can be accessed

by measuring

N 2 N

m2(N) = <(ﬁ Z(—l)"ﬂa,-zj) > = ﬁ Z(—l)'+j (02,0%), (4.2.15)
ij=1 ij=1

which is just the static structure factor of the two-point spin correlation function (4.2.10) at

momentum (7, ). At sufficiently low temperatures, one can neglect the temperature-dependence

of this quantity and the estimates for m? take their values in the ground state with numerical

accuracy. In this case we can make use of the identity [RY88,Bar91, San97]

b 1
3m2(N) = M2 + Nt O(W) (4.2.16)

to extrapolate to the thermodynamic limit, and we obtain the order parameter M in the ground
state. Here b is a constant number and the factor of three on the left-hand side accounts for the
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Fig. 4.9.: Extrapolation of the staggered magnetization Ms from finite-size data for 3m? as defined in
Eq. (4.2.15). The triangles are the datapoints for g = 0.1J, w = 8J, while the squares represent the QMC
results for g = w = 0.67J. The error bars are smaller than the size of the symbols. The solid straight lines
are the curves from a linear fit according to Eq. (4.2.16), and the filled circle corresponds to the result
Ms = 0.3070(3) for the square lattice Heisenberg model from Ref. [San97].

fact that the definition (4.2.14) makes use of the full spin operators &;;, while the relation (4.2.15)
is based on the two-point correlations of the corresponding z-components o7

We are now in the position to apply this scheme to the two systems with g = 0.1J, w = 8J and
g =w = 0.67J. The spin correlations were calculated in systems with N = 8,10, 12, 14, 16, taking
5 x 10° spin updates (with 25% of the sweeps skipped for thermalization as before) and M = 160
for the Trotter number. The choice for the temperature was T = 0.1J, which is found to be
sufficiently low to make quantitative statements about the staggered magnetization in the ground
state. In Fig. 4.9, the values for 3m? are plotted against % The results show the correct finite-size
behavior as predicted by Eq. (4.2.16), and therefore we can make use of linear regression to deduce
the numerical estimates for Ms. For the system with g = 0.1J and w = 8J we have M; = 0.298(5),
i. e. the spin-phonon interaction only leads to a small reduction of the staggered magnetization as
compared to the Heisenberg model. As far as the second system with g = w = 0.67J is concerned,
the result is Ms = 0.275(5). Thus we find — in accordance with the finite-size scaling analysis of
the correlation length in Fig. 4.8 — that there is long-range antiferromagnetic order in the ground
state even for a large value of the fraction 2. As expected, the reduction of Ms due to the spin-
phonon coupling is significantly larger than for g = 0.1 and w = 8J. However, the value for the
staggered magnetization is still so large that from our analysis, we cannot conclude that the model
(4.2.8) shows a quantum phase transition towards a paramagnetic state like its one-dimensional
counterpart (4.1.7).

To clarify whether the model (4.2.8) shows such a transition, one would have to move even
further into the strong coupling regime and increase the fraction of £ drastically. In this case
though, the loop algorithm from Sect. 2.3.4 strongly suffers from autocorrelation effects and is not
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applicable in practice. This is mainly due to the local nature of the phonon update procedure as
described in Par. 2.3.3. We further emphasize that from the analysis in this section, one cannot
judge whether the weakening of the Néel order due to the spin-phonon coupling is accompanied by
lattice distortions. To answer this question, it is necessary to measure the correlations of the local
displacements operators (a:-fj + ajj) and (b;fj + bjj). This amounts to a calculation of non-diagonal
quantities composed of the phonon annihilation and creation operators, which is hampered even
more by large autocorrelation times because the concept of improved estimators (see Sect. 2.4.2)
cannot be applied. Furthermore and according to our discussion from Par. 4.1, it is not clear
which operator exactly has to be measured to study a ground state with broken translational
invariance because it is not known which type of distortion pattern is energetically favored. Note
that in principle, even a finite temperature phase transition from the uniform to a distorted phase
is conceivable. However, an analysis of the specific heat of the model does not give any hints on
the occurrence of such a feature [Ait02, AL03].

4.3. Statically dimerized spin models and the optimal
dimerization pattern

In the last section we saw that for large values of the fraction Z, the loop algorithm from Par. 2.3.4
only provides limited access to the two-dimensional bond coupling model (4.2.8). Although we
showed that the spin-lattice interaction tends to suppress the antiferromagnetic order in the ground
state, we were not able to answer the question whether the model exhibits a quantum phase
transition to a paramagnetic state. Furthermore, we were not capable of studying under which
circumstances lattice distortions might come into play and which pattern of the distortions would
be realized.

The aim of this section is to gain a deeper understanding of these problems by investigating
statically dimerized spin models [ALKWO05]. As in the case of quasi one-dimensional spin-phonon
systems, the analysis of such models can be viewed as a mean field approach to investigate the
influence of the spin-phonon coupling in the adiabatic limit. One way to derive this class of models
is to consider the bond coupling Hamiltonian (4.2.8), and replace

glali+a,)=v2gul — V2g(ul)=JAy (4.3.17)
g(bl + b)) =V2gul, — V2g(ul)=JBys. (4.3.18)
Here we have § € [0,1] and Aj;, B;j = £1, i. e. we only allow for two possible values +§ of the
x/y

iy
there is an equal number of strong and weak bonds,

lattice distortions {(u:/”) on the bonds of the lattice. Furthermore, we impose the constraint that

N
> (A + Byj) =0. (4.3.19)
ij=1

For a treatment of arbitrary lattice distortions we refer to Sect. 4.4, where we focus on a two-

dimensional difference coupling model (4.1.6) in the adiabatic limit. Note that the Ising-like vari-

ables {Aj;, Bj;j} have been introduced to encode the particular dimerization pattern. With the
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replacements (4.3.17) and (4.3.18), the spin-phonon interaction part of Eq. (4.2.8) becomes

N
J - -
H = 2 Z [(1 + Aj;6)0Git1, + (1 + Bij6)d;G) j+1] . (4.3.20)
ij=1

which can be viewed as the two-dimensional analog of the dimerized Heisenberg chain (4.1.4). We
add that by assuming a bond coupling mechanism, the loss in elastic energy due to the lattice
distortions does not depend on the particular dimerization pattern. Indeed in the limit of small
phonon frequencies w, the third line of Eq. (4.2.8) becomes

K M
Hais = = ,-JZ=1[(AU5)2 +(By;0)*] = KN?82, (4.3.21)

with an elastic constant K defined by w? = g (m is the mass of the oscillating ions on the bonds).
We see that it is sufficient to investigate the statically dimerized models (4.3.20) in order to draw
conclusions about the full lattice Hamiltonian which is the sum of Eqgs. (4.3.20) and (4.3.21). We
further point out that — although here we have constructed the statically dimerized models starting
from the bond coupling model (4.2.8) — the set of magnetic Hamiltonians defined by Eq. (4.3.20)
is a very general starting point for our analysis. For example, these systems can also be viewed as
possible candidates for effective spin models to describe the magnetism of independent spin layers
coupled to three dimensional lattice vibrations.

In the following subsection, we first concentrate on the three models from Fig. 4.4 (see Sect. 4.1).
With regard to the controversial discussion in the literature, we compare numerical estimates for
the ground state energies and determine which of the three models has the largest energy gain
in the magnetic sector. In the subsequent subsections, we develop a method to investigate the
whole class of models defined by Eq. (4.3.20) with the confinement (4.3.19). We first explain
the main ideas behind this approach for the well understood dimerized Heisenberg chain (4.1.4)
in Par. 4.3.2. In particular, we show that by performing a Landau expansion of the free energy
for this system it is possible to establish a mean field theory of the spin-Peierls transition. As
the approach relies on a numerical computation of integrated dynamical dimer correlations, the
analysis of the one-dimensional system provides a means to check the corresponding numerical
routines which will also be needed in the two-dimensional case. In Sect. 4.3.3, we then turn to
quasi two-dimensional systems and demonstrate that an analogous approach yields a possibility to
compare all possible patterns in the region of small dimerization §. By analyzing the numerical
data for the two-dimensional dimer correlations, we obtain the optimal distortion pattern among
all possibilities encoded by Eq. (4.3.20) (see Par. 4.3.4). Having determined this pattern, it is
straightforward to generalize the ideas from Sect. 4.3.2 and to establish a Landau theory of the
two-dimensional analog of the spin-Peierls transition in Par. 4.3.5. Under the assumption that the
relation (4.3.21) correctly describes the elastic energy of the distorted system, we investigate the
dependence of the transition temperature on the elastic constant K. A discussion on the order of
the transition is also included. Finally in Par. 4.3.6, we return to the question from Sect. 4.2 whether
a coupling between spin and lattice degrees of freedom can drive the system into a paramagnetic
phase.
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model | Ay | By |
plaquette || (—=1) (—1y

stair (=) | (-1)¥
meander || (—=1)* | (=1)

Table 4.1.: Possible choices for {Aj;, Bjj} in Eq. (4.3.20) to model the three dimerized lattices as depicted
in Fig. 4.4 from Sect. 4.1.

4.3.1. Models with alternating couplings and minimal unit cell

In this subsection, we focus on the three models depicted in Fig. 4.4 from Sect. 4.1. As has been
mentioned there, these systems are the only possibilities of dimerized systems on a square lattice
with an equal number of strong and weak bonds, alternating couplings along each linear chain, and
a minimal 2 x 2 unit cell. Obviously, the three models belong to the set of Hamilton operators
defined by the Egs. (4.3.20) and (4.3.19), see also Table 4.1. Being representations of the isotropic
Heisenberg model with antiferromagnetic bond-dependent couplings, they are directly accessible to
the continuous time loop algorithm as described in the Pars. 2.2.4 and 2.2.5.

In the introduction 4.1 to this chapter, we have already pointed out that the discussions in
the literature reveal an ambiguous picture which of the three patterns has the largest gain in the
magnetic energy as compared to the Heisenberg model (for fixed §). While the Lanczos calculations
on small lattices from Ref. [TH88] indicate that the plaquette model has the lowest ground state
energy, the results from Ref. [SKHO02] based on linear spin wave theory point towards the opposite
direction, because there the authors find a stair-like distortion to be energetically favored.

In the following our aim is to clarify which of the two statements is true. We tackle this question
by comparing numerical estimates for the ground state energy densities ¢ of the three models in the
whole regime § € [0, 1] of the dimerization parameter. These numbers can be deduced from QMC
results for the internal energy per lattice site U, which is given by (see the Hamiltonian (4.3.20))

_(H) 3¢ . :
U= = SN2 Z (1 + Ayd)(ofo7ia ) + (1 + Bid) (o507 41)] . (4.3.22)
ij=1

i. e. we need to compute the spin correlations between nearest neighbors on the dimerized square
lattice. Note that by denoting Eq. (4.3.22), we have taken opportunity of the fact that at finite
temperatures and for arbitrary pairs of spins &;;, &k the relation (&;0%) = 3(05-0;,) holds. The
further argumentation is analogous to the one from Par. 4.2.2, where we have discussed how the
staggered magnetization M in the ground state can be deduced from finite temperature data for the
static structure factor of the two-point spin correlation function. For sufficiently low temperatures,
the QMC results for U coincide with the ground state energy density €o(/N) of the finite system
with numerical accuracy. Then one can apply a finite-size scaling analysis based on the relation
[Bar91,San97]

a 1
eo(N) = €0 + T O(W) (4.3.23)

to obtain the corresponding values for ¢g in the thermodynamic limit N — co.
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Fig. 4.10.: Comparison of the ground state energy density €o in dependence on § for the plaquette (circles),
stair (squares) and meander model (diamonds). The numerical error bars are smaller than the size of the
symbols. The inset is a magnification of the region with small § € [0, 0.2].

The QMC estimates for the internal energy of the three models were computed in systems with
linear systems sizes N = 12,16, ...,32 and values of § =0,0.02,...,0.3and § =0.35,0.4,...,1
for the dimerization, respectively. A temperature of T = 0.04J was found to be sufficiently low
so that the ground state completely dominates the behavior of U. While the first 2 x 10* Monte
Carlo sweeps were skipped for the thermalization of the algorithm, a number of 2 x 10% worldline
configurations was taken for the evaluation of expectation values. Afterwards for each of the three
models and each value of §, a two-parameter fit according to Eq. (4.3.23) was applied to the
QMC data for six different system sizes, providing the desired numerical estimates for €y in the
thermodynamic limit.

The reliability of this approach can be checked by considering the two special choices § = 0 and
0 = 1, where the results can be compared to independent exact or numerical findings. As far as
the uniform square lattice Heisenberg model with § = 0 is concerned, we find €g/J = —1.3392(2),
which — for our purposes — is in good accordance with the result of ¢g/J = 1.33887(1) from a very
careful analysis of SSE data in Ref. [San97]. For the plaquette model with § = 1, the numerical
result of €9/J = —1.99997(8) agrees perfectly with the exact value of €g/J = —2.0 which can be
determined easily, because in this limit the plaquette lattice consists of uncoupled and periodically
closed XXX chains with only four sites. In case of the stair and meander models with § = 1, one
has a set of uncoupled XXX chains of infinite length. Hence the exact result for the ground state
energy is given by the Bethe ansatz result (3.3.91) for the one-dimensional Heisenberg model (see
Par. 3.3.1) with the replacement J — J(1+§) = 2J, which yields €o/J ~ —1.7725887. Again this
is in sufficient agreement with the numerical value of ¢g/J = —1.7733(1). Note that the numerical
errors given here are those obtained from the fitting procedure and do not account for systematic
effects due to the simulation of finite temperatures or the neglect of higher order terms in the
relation (4.3.23).
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The comparison of the ground state energy densities for the three models with § € [0, 1] is given
in Fig. 4.10. The results leave no doubt that for any fixed §, the plaquette model has the largest
gain in the magnetic energy. This statement also holds in the region of small § (inset of Fig. 4.10),
which is of particular interest in the context of systems with spin-phonon coupling, because in real
solids the occurrence of large lattice distortions due to this mechanism is very unlikely. We see
that our findings are in accordance with those from Ref. [TH88], while the application of linear
spin wave theory in Ref. [SKHO02] to determine the favored dimerization pattern turns out to be
problematic.

4.3.2. Landau theory of the spin-Peierls transition: the dimerized chain
revisited

In principle, the procedure to extract the ground state energies of dimerized spin models as described
in the previous subsection applies to each of the models defined by the Egs.(4.3.20) and (4.3.19).
For this reason it would be straightforward to compare the gain in magnetic energy for a larger set
of distortions patterns than just the three lattice modulations as depicted in Fig. 4.4. However,
this way of proceeding is somewhat unsatisfactory because there always remains an infinite number
of possibilities to arrange strong and weak bonds on the square lattice which are not taken into
account. In the following subsections, we will develop a method to compare all possible patterns in
the region of small but finite dimerizations §. Before we focus our attention on this issue though,
we discuss the basic ideas behind this approach in the context of quasi one-dimensional spin-Peierls
systems in this subsection.

We follow the argumentation from Refs. [KRS99,RKS00], and consider the dimerized Heisenberg
chain (4.1.4) with temperature dependent dimerization §(T) as the effective model to describe the
magnetism of a spin-Peierls system in the adiabatic limit, see also the discussion from Sect. 4.1.
The loss in the elastic energy due to possible lattice distortions can be taken into account by adding
a contribution

Hais = gNé2 (4.3.24)

to the magnetic Hamiltonian (4.1.4), see also the analogous expression (4.3.21) in the two-
dimensional case. In the following we investigate the dependence of the transition temperature
T, of the spin-Peierls transition on the elastic constant K. We start by performing a Landau
expansion [LL79] of the free energy per lattice site (T, §) for the Hamiltonian (4.1.4), which reads

f(T,0) =f(T) + %a(T)éz + 21—413(T)64 + 0(89). (4.3.25)

Here the odd orders in § vanish because the Hamiltonian is invariant under the transformation
0 — —4, and fo(T) = f(T,6 = 0) is the free energy of the uniform Heisenberg chain. The

coefficient
82
862

of the second order will be called ‘dimerizability’ in the following, because it describes the tendency

a(T) = f(T,9) (4.3.26)
5

=0

of the system to establish a dimerized state. The critical temperature T, can be determined if
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we also take into account the lattice contribution (4.3.24). As soon as the free energy gain of
—3a(T)4? in the magnetic sector (we expect that a(T) takes negative values at all temperatures
T > 0) outweighs the elastic energy loss of %62 per lattice site as given by Eq. (4.3.24), a dimerized
state is energetically favored. Hence the condition to determine T is

—a(T.) = K, (4.3.27)

and an investigation of the transition temperature amounts to a calculation of the dimerizability
for the uniform XXX chain.

In the following we derive an explicit expression for a(T) in a finite system with N sites and
periodic boundary conditions. Making use of the relation f = —ﬁ InZ (with Z = Tre™PH as
usual) and %Ls:o = 0 due to the invariance under transformations § — —4, Eq. (4.3.26) becomes

1 8%Z

a(T) = T BNZ, 662 |, . (4.3.28)

6=0

where we have introduced the abbreviation Zg for the partition function of the uniform Heisenberg
chain with § = 0. In the next step, we consider the general identity

32

——| TrePHHA = z /ﬁ dt (A(0)A(T)), (4.3.29)
062 |5— B Jo

where A is an arbitrary operator which does not necessarily commute with H. The partition
function Z as well as the expectation values on the right-hand side are defined with respect to the
unperturbed Hamiltonian H, and the time-dependence of A(T) is given by a translation in imaginary
time direction as defined by Eq. (2.4.67), see Par. 2.4.1. A proof of the relation (4.3.29) can be
found in App. A.4. In the following we identify H = H(§ = 0) and A= —% > (=1)'D;, where
D; = &;Gi+1 is the local dimer operator as introduced in Sect. 3.1, and apply the formula (4.3.29)
to the relation (4.3.28). The result is

Ty =~ [ ar <(— o5 o) (-2 XNj(—ly‘D,-(T))>
i=1 Jj=1

6=0
2 [P
:—zg(—l)/o d7 (Do (0)Di(T)) 5y (4.3.30)

where we have exploited the translational invariance of the uniform Heisenberg chain and the
periodic boundary conditions in the second step. We see that the gain in the magnetic energy
due to the dimerization is controlled by the (Euclidean) dynamical structure factor of the dimer
correlation function at zero frequency and momentum 7, evaluated for the uniform Heisenberg
model. This is in accordance with the findings from Refs. [Pyt74, CF79], see the discussion in the
introduction 4.1 to this chapter. There in the context of softening of phonon modes as described
by Eq. (4.1.3), we have mentioned that the same quantity governs the behavior of the polarizability
M(qg, Q) at momentum g = 7 (with Q = 0), which is the relevant phonon mode to study in the
context of the spin-Peierls transition. According to Ref. [CF79], the dimerizability diverges like —%
as T — 0. This indicates that one cannot perform a Taylor expansion of the ground state energy
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Fig. 4.11.: QMC data for the negative dimerizability evaluated via Eq. (4.3.30). The numerical errors
are smaller than the size of the symbols. The solid line is the TMRG result from Ref. [RKS00]. The
intersection point of the horizontal dashed line at —a = K (here K = 3J) with the curve for —a(T) yields
the critical temperature T (here T = 0.43J) of the spin-Peierls transition.

in & analogous to the expression (4.3.25) for the free energy at finite temperatures. Indeed in the
vicinity of § = 0, the ground state energy gain of the model (4.1.4) scales like &3 [CF79]. Thus
regardless of the exact value of the elastic constant K, there is always a transition to a dimerized
phase at finite temperatures.

The application of bosonization techniques in Ref. [CF79] only yields approximate results for the
dimerizability, which should be checked against independent numerical findings. Numerical data
for a(T) have been obtained using the TMRG approach in Refs. [KRS99, RKS00]. Replacing the
second derivative in Eq. (4.3.26) by the corresponding difference quotient, the authors find the
identity

o(T) = im 2 [(3182), — (5ot ] (4331)
This relation can be assessed by first computing the difference of the nearest neighbor spin correla-
tions on bonds with different couplings %(1 F 0) for several dimerizations § > 0, and subsequently
extrapolating to § = 0. The TMRG data were found to be in good qualitative agreement with the
bosonization results from Ref. [CF79].

In the remainder of this subsection we show independent numerical data for a(T) which have been
obtained by applying the continuous time loop algorithm as described in Sects. 2.2.4 and 2.2.5. The
computation is based on a direct evaluation of the identity (4.3.30), i. . in contrast to the approach
from Refs. [KRS99, RKS00] there is no extrapolation procedure involved. The measurement rules
for the dynamical dimer correlations are given in App. A.3. Note that the integration over 7 in
Eq. (4.3.30) can be directly incorporated in the numerical routines. While 2 x 10* loop updates were
applied for thermalization, a number of 5 x 10° configurations was evaluated for the calculation of
expectation values. The results for —a(T) with five different system sizes N = 100, 200, .. ., 500
are shown in Fig. 4.11. For the temperature range given in the figure, there is no visible finite-
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size effect, i. e. we can assume that the data represent the thermodynamic limit with sufficient
accuracy. Besides the characteristic divergence as T — 0, there is a good quantitative agreement
to the TMRG data from Refs. [KRS99, RKS00]. The small deviations at low temperatures could
indicate systematic errors of the TMRG data due to the extrapolation procedure mentioned above.

Given the curve for —a(T) and a certain value of the elastic constant K, one can immediately
assess the condition (4.3.27) to determine the critical temperature T, of the spin-Peierls transition.
Drawing a horizontal line at —a = K in the figure, the value for T, corresponds to the first coordinate
of the intersection point of the two curves. For the example with K = 3J as shown in Fig. 4.11,
this procedure yields T. ~ 0.43J.

Before we return to the dimerized spin models in two dimensions, we add the remark that the
approach from this subsection is not sufficient to determine the values of §(7T) for temperatures
below T.. Furthermore, the ansatz cannot be applied to analyze the order of the spin-Peierls
transition. Both issues would require an evaluation of the fourth order coefficient b(T) in the Landau
expansion (4.3.25), which amounts to a calculation of certain dynamical eight-point correlation
functions. Although it is in principle feasible, this is an even larger challenge than the evaluation of
the dynamical dimer correlations.

4.3.3. Effective Ising model for the dimerizability

We now return to the issue of two-dimensional statically dimerized spin models. In this section we
develop a numerical method to compare the gain in the magnetic energy for all possible patterns
defined by the Egs. (4.3.20) and (4.3.19), which applies to the region of small dimerizations § > 0.
The only restriction of this approach is due to the finite system size which can be treated in
numerical simulations. We emphasize that focussing on small values of § is not a severe limitation,
because from the viewpoint of systems with spin-phonon coupling one only expects small lattice
distortions to be important in real materials.

The key idea behind our analysis is to perform the same Landau expansion of the free energy
of the two-dimensional Hamiltonian (4.3.20) as we did for the dimerized chain in the preceeding
subsection. We then observe that for any choice of {Aj;, Bj;} in Eq. (4.3.20), we obtain the same
expression (4.3.25) for the free energy density as in one dimension. In particular, the odd orders in
4 vanish due to the constraint (4.3.19). Thus for any fixed but small value of §, it is sufficient to
analyze the dependence of the dimerizability a(T) (which is defined by the same expression (4.3.26)
as in the one-dimensional case) on the Ising variables {A;;, Bj;j} in order to compare the different
dimerization patterns.

Again in analogy to the treatment of the dimerized chain (4.1.4), we derive an explicit expression
for the dimerizability of the Hamiltonian (4.3.20) for a finite system with N x N lattice sites and
periodic boundary conditions in the following. In contrast to the approach in one dimension though,
we do not specify the arrangement of strong and weak couplings on the square lattice, i. e. we
formally keep the dependence of a(T) on the numbers {A;;, Bj;j}. Another difference is that in two
dimensions, we have to introduce two types of local dimer operators

= = Y — = =
DZ- = 0ij0i+1,s D’-j = 00} j+1, (4.3.32)
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because there are two possible orientations of dimers defined on bonds directed along the i- and j-
direction. Using these conventions and identifying H = H(6 = 0) and A = —&/ >2i;lAi;D) + B;;DY],
we can apply the identity (4.3.29) from Par. 4.3.2 (see also App. A.4) to the two-dimensional analog
of Eq. (4.3.28). This gives

3 N
A1) =~ [ o < ( N O B;,-D,-YJ-(O)])

ij=1

N
X < — @ Z [AkIDil(T) + Bk[D{I(T)]) >
2 6=0

k,/=1

J2 b . X X
=~ /0 dr ; [A,,-Ak,<D,.j(o)Dk,(T)>5:0+B,-,-Bk,<D,¥J.(o)D{,(T)>5:0
iJ.k,1=1

+ A,‘_,'Bk/ {<DZ(O)D{I(T)>5:0 + <DZ(T)D‘Z,(0)>5:0}] . (4333)

Thus as in one dimension, we have expressed the dimerizability in terms of specific structure factors
of the dynamical dimer correlations. However, the more important observation is that the result
(4.3.33) can be rewritten as the classical Hamilton function of a bilayered system consisting of
2N? Ising spins {Aj;, Bjj} with long-range interactions. Indeed by interchanging the summation
and integration in Eq. (4.3.33), we obtain an Ising Hamiltonian

N
a(M)y= Y [Kilk—il—j)AjAu+Ka(k—i.1—j) BijBi + Ks(k —i.1 =) AjjBi]. (4.3.34)
igk, =1

where the coupling constants

J2 I¢]

Ki(k =i l—j)= _W/o d7 (D}(0) Dg/(7)) 50 (4.3.35)
2 I¢]

Kok —i.1—j) = _# RECAOLACHE (4.3.36)
J2 I¢]

Kstk — i1 =) =~ 7353 /0 a7 [(DXO) DY) pp + (DETIDLO),o].  (4337)

only depend on the differences of coordinates due to the translational invariance of the uniform
Heisenberg model.

In particular, the result (4.3.34) provides a roadmap to determine the dimerization pattern which
minimizes the magnetic free energy of the finite system (4.3.20) for small § > 0:

1. For any fixed temperature T > 0 of the quantum system, determine the coupling constants
(4.3.35), (4.3.36), and (4.3.37) of the classical Ising model (4.3.34) by evaluating dynamical
dimer correlations of the uniform square lattice Heisenberg model. This is done on the basis
of the continuous time loop algorithm from Sects. 2.2.4 and 2.2.5. The numerical routines
to compute the integrated dimer correlations are identical to those in the one-dimensional
case, see also Par. 4.3.2.

2. Extract the configuration of Ising spins {Aj;, Bij} which minimizes the classical Hamilton
function (4.3.34). In practice, this is done numerically by applying classical Monte Carlo
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techniques. Note that only configurations with a vanishing total magnetization have to be
taken into account due to the constraint (4.3.19). For a detailed description of this part we
refer to the following subsection.

At this point we comment shortly on the structure of the coupling constants K, (a = 1,2, 3) of
the Ising Hamiltonian (4.3.34). In contrast to e. g. the definition (3.1.5) of the dimer correlation
function Gg for the XXZ chain (see Sect. 3.1), the explicit expressions (4.3.35), (4.3.36), and
(4.3.37) for the lIsing couplings involve no subtraction of background terms, which are usually
expressed by the square of the (site-independent) expectation value of the local exchange energy
between adjacent spins on the square lattice. For this reason all the couplings of the Ising model
(4.3.34) turn out to be strongly ferromagnetic. However, the ferromagnetic configurations with
Ajj = Bjj = £1 for all (i, /) have been excluded from our analysis due to the zero magnetization
constraint (4.3.19), because they correspond to a uniform expansion or contraction of the whole
lattice. Hence only the deviations from the ferromagnetic background determine the dimerization
pattern which is energetically favored.

We close this subsection with some technical remarks on the evaluation of the Ising couplings K
(e =1,2,3). As can be seen from the Egs. (4.3.35), (4.3.36), and (4.3.37), one basically has to
compute three different types of dimer correlations to determine these coupling constants. These
are the two-point correlations of each two dimers oriented along the i- and j-direction, respectively,
as well as the cross correlations of one dimer oriented along the /- and the second directed along
the j-direction. The numerical effort for the computation of these quantities can be minimized
by exploiting the periodic boundaries and the fact that the square lattice Heisenberg model with
uniform couplings (i. €. § = 0 in Eq. (4.3.20)) is invariant under a rotation of 7 of the lattice. By
making use of the definitions (4.3.32), we therefore have

(DY(0)Dy (1)) 50 = ((F507,j+1)(0)(FriGh,i1)(T)) s
= ((Fn—,iFN—j-1)(0) (TNt kON—1-16)(T)) 50 = {DN—j-1,/(0) DX =1 4(T)) 5. (4.3.38)
and
(DIAT)DY(0))50 = {(§1jGis1,)(T)(Tk1Fk,141)(0)) 5o
= ((Fn-j.iON=i+1)(T)(Fn=1 kT N=-1-1.4)(0))s—g = (DR (T) Dhci—1,4(0)) sy, (4.3.39)

where the replacement (i, j) — (N—j, i) (for (k, /) analogous) in the second step of both equalities
is due to a rotation of 3 of the lattice. We see that it is sufficient to compute only two different
types of expectation values

(D5O)D5(T)) 5o (DE(O)DY(T)) s (4.3.40)

to determine the coupling constants (4.3.35), (4.3.36), and (4.3.37).

4.3.4. Classical Metropolis algorithm and the optimal dimerization pattern

As has been pointed out in the previous subsection, the dimerized spin model which has the lowest
free energy among all Hamiltonians described by the Egs. (4.3.20) and (4.3.19) can be obtained by
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first evaluating the coupling constants K, (a = 1,2, 3) of the Ising Hamiltonian (4.3.34) for the
dimerizability by means of the QMC loop algorithm. Afterwards, one has to determine the classical
configuration of Ising spins { A;;, Bj;} with minimal 'energy’ a(T') in the sector of zero magnetization.
In this subsection we explain how the latter problem can be solved by applying classical Monte Carlo
techniques. The basic idea is to combine the standard Metropolis algorithm (see the introduction
2.1 to Chapt. 2) with some cooling procedure. For example, a similar ansatz has been used in
the literature to obtain the classical ground state of Ising-like systems with long-range Coulomb
interactions [LEFK94] or competing nearest and next-nearest neighbor couplings [KL04].

To give more details, we assume having computed the couplings (4.3.35), (4.3.36), and (4.3.37)
of the Ising Hamiltonian, keeping the temperature T and linear system size N of the square lattice
Heisenberg model fixed. We further introduce the temperature t of the Ising model, which — in
contrast to temperature T of the quantum system — has no physical meaning and is treated as an
auxiliary parameter in this section. To simplify the notation, we only make use of the dimensionless
variable £ = t/K1(0, 0) in the following, i. €. the auxiliary temperature is measured in units of the
largest coupling constant K (0, 0) of the Ising Hamiltonian. We now arbitrarily pick a relatively large
value fmax for the temperature of the Ising system. Starting with a randomly chosen configuration
of Ising spins which fulfills the constraint of vanishing magnetization (4.3.19), we then apply a
certain number of local Metropolis updates (to be specified below) in order to thermalize the
classical system. Only the last configuration obtained from this simulation is kept, and serves as
the starting configuration for a new Monte Carlo run at an inverse temperature which has been
increased by a value of A(1/f). Upon repeating this procedure, the system gets cooled down
step by step, until at a sufficiently low temperature fmin the configuration of Ising spins remains
unchanged during the simulation. This means that the algorithm has converged to a set of Ising
spins {Ajj, Bjj} (with zero magnetization) which corresponds to a minimum of the classical 'energy’
(4.3.34). Note that in practice, it is necessary to repeat the whole algorithm a couple of times
to assure that the resulting configuration is the global minimum of Eq. (4.3.34). However, as the
cooling procedure is based on a stepwise reduction of the auxiliary temperature t, the algorithm
tends to avoid local minima by construction.

Before we focus on the results for the favored dimerization pattern, we give some more details on
the local Metropolis updates which are applied during the simulation. A local update consists of two
steps. In the first step, we randomly choose two Ising spins among the set of variables {A;;, Bj;}.
Note that only pairs of spins with opposite directions are selected to assure that a flip of the two
spins maintains the zero magnetization condition (4.3.19). In the second step, a simultaneous
spinflip of the two spins is proposed and accepted according to the Metropolis probability (2.1.1)
from Sect. 2.1, which becomes

1 if Aa <0,
p(C—C")= (4.3.41)

e~ha/t else.
Here Aa = a(C') — a(C) is the 'energy’ difference of the old and new configurations C, C’ of Ising
spins {Aj;, Bjj} according to Eq. (4.3.34).
We are now in the position to discuss the results of the procedure which has been proposed in
this and the previous section. The integrated dynamical dimer correlations of the square lattice
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Fig. 4.12.: Visualization of the ground state of the Ising model (4.3.34) with vanishing magnetization for
N = 6. Open and filled circles correspond to the values +1 of the Ising variables {A;;} (left panel) and
{Bij} (right panel). The same pattern was obtained for all temperatures T = 0.1J,0.2J,...4.0J and linear
system sizes N = 6, 8, ..., 20 of the quantum system.

Heisenberg model were evaluated for eight different linear system sizes N = 6,8,...,20 and 40
different temperatures T = 0.1J,0.2J,...,4.0J. While 2 x 10* Monte Carlo sweeps were skipped
for thermalization, a number of 108 configurations was evaluated to reach a high accuracy of the
QMC estimates. As far as the classical Monte Carlo algorithm is concerned, all simulations were

started at an auxiliary temperature of fmax = % while the other choices were A(1/t) = % and

fmin = 55 for small system sizes N < 16, and A(1/f) = ; and fmin = 55 in large systems with
N > 18, respectively. At each auxiliary temperature £, a number of 10* x N? local updates was
applied to reach thermal equilibrium.

For all choices of T and N for the quantum system, one finds that the Metropolis algorithm
converges to a configuration of Ising spins which can always be visualized by the same crossing
stripe pattern as the one depicted for N = 6 in Fig. 4.12. As the result is so robust against
variations of temperature and the system size, we therefore conclude that the plaquette pattern as
shown in the left panel of Fig. 4.4 from Sect. 4.1 (see also Table 4.1 from Par. 4.3.1) corresponds
to the lattice modulation which minimizes the dimerizability of the Hamiltonian (4.3.20) and hence
the free energy in the vicinity of § = 0. Furthermore, our result gives evidence that a plaquette-like
structure is also the pattern with the lowest ground state energy, because we have included an
investigation of the low temperature regime in this section. In particular, this is consistent with the
analysis of ground state energies for the plaquette, stair and meander models from Sect. 4.3.1.

4.3.5. Landau theory of the ’spin-Peierls’ transition in two dimensions

In the preceeding subsection we have found that for small dimerizations d, a plaquette-like pattern
of strong and weak bonds has the largest gain in the magnetic free energy among the set of models
defined by the Eqs. (4.3.20) and (4.3.19). Assuming that the elastic energy loss due to the lattice
distortions is given by the same expression (4.3.21) for all the dimerized models, we therefore
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conclude that the plaquette model is the proper effective model to describe the magnetism of quasi
two-dimensional systems with spin-phonon coupling in the adiabatic limit.

Having determined the correct dimerization pattern, it is straightforward to apply the same ideas
which we have used in the context of quasi one-dimensional spin-phonon systems in Sect. 4.3.2,
and to establish a Landau theory for the two-dimensional analog of the spin-Peierls transition. This
transition can be characterized by the occurrence of a structural instability of the uniform lattice
towards a plaquette-like distortion at a certain critical temperature T.. The order parameter of
the transition is the temperature-dependent dimerization §(T'), which takes finite values below T
and vanishes at temperatures T > T.. We emphasize that in contrast to the situation in one
dimension, this structural phase transition is not accompanied by a magnetic transition, i. e. the
magnetic excitation spectrum remains gapless below T.. This is due to the fact that for 0 < § < 6,
the plaquette model has an extended phase with coexisting dimerization and long-range Néel order in
the ground state [KKK99b, SKH02] (see also the discussion in Par. 4.1). However, it is conceivable
that under certain conditions the system exhibits another transition at a second critical temperature
T! < T, where the dimerization §(T) exceeds the critical value §. of the plaquette model. This
means that below T/, the system has a gapped magnetic excitation spectrum above a non-magnetic
ground state which is characterized by short-range magnetic correlations. We will comment on this
issue and on the exact value of §. in the following subsection.

Here we focus on the structural transition at T., following the argumentation from Par. 4.3.2.
The critical temperature T, can be determined if we compare the magnetic free energy gain of
—%am(T)cS2 for the plaquette pattern to the elastic energy loss per lattice site, which is given by
K§? according to Eq. (4.3.21). Such a comparison yields the condition

—an(Te) = 2K (4.3.42)

for T., compare the analogous expression (4.3.27) from Par. 4.3.2 in the one-dimensional case. We
therefore have to analyze the temperature dependence of the dimerizability ap given by Eq. (4.3.34)
with A; = (—1)" and B;; = (—1), because according to Table 4.1 from Sect. 4.3.1 these choices
correspond to the plaquette pattern. For this set of parameters {A;;, B;j;} the dimerizability takes an
especially simple form. Indeed, by exploiting the identities (4.3.38), (4.3.39) and the translational
invariance of the uniform Heisenberg model, one finds

N
an(T) =2 Z Ki(k —i, 1 _j)(_l)i+k
ik, =1

N
=202 ) (1) Ki(x1, %), (4.3.43)
x1,x0=1
where we have introduced distance coordinates (x;, x) = (k — i,/ — j) in the second step (see
Eq. (4.3.35) for the definition of Ky).

The temperature dependence of the dimerizability (4.3.43) is given in Fig. 4.13, which shows
the QMC data for —a,(T) and eight different linear system sizes N = 10,12, ..., 24. While for
each temperature 2 x 108 configurations were taken for the computation of dimer correlations, a
number of 10 loop updates was chosen for the thermalization of the algorithm. The curves exhibit
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Fig. 4.13.: QMC data for the negative dimerizability of the plaquette model vs. temperature for different
linear system sizes N = 10,12,...,24. The inset shows a magnification of the low temperature regime,
where finite-size effects are emphasized. For clarity the datapoints are plotted without errorbars. To gain
some insight about the size of the numerical errors, the reader is referred to Fig. 4.14, where the finite-size
effect for T = 0.1J and T = 0.9J is investigated. In addition in Fig. 4.15, the curve for the largest system
with 24 x 24 sites is replotted including errobars.

a fundamentally different behavior as compared to the one-dimensional dimerizability, see Fig. 4.11
from Par. 4.3.2. In one dimension, —ap(7T) grows monotonously with decreasing temperature,
which leads to the characteristic divergence as T — 0. In contrast to this, the corresponding
quantity (4.3.43) has a pronounced maximum at Tyax & 0.9J and stays finite as T — 0.

Evidently both features are generic for the thermodynamic limit, because for the largest values
of N the effect of the finite system size (see the inset of Fig. 4.13) is of the same order as the
symbol sizes. This statement also holds in the vicinity of Tax, where finite-size effects become
emphasized. This is demonstrated in Fig. 4.14, where the dependence of the dimerizability on the
inverse system size for T = 0.1J and T = 0.9J is shown exemplarily. Keeping the temperature
fixed, the numerical estimates for —ap(T) scale linearly with 4.

Heuristically, the fact that a,(T) does not diverge can be understood to reflect a competition
of the square lattice Heisenberg model to establish long-range antiferromagnetic or dimer order in
the ground state. As has been pointed out in Chapt. 3, the one-dimensional XXX model shows
a coexistence of quasi long-range order of both types in the ground state. For this reason the
two correlation functions G4 as defined in Sect. 3.1 decay algebraically at T = 0, which is
accompanied by a divergence of the corresponding correlation lengths £|1|;’d as T — 0 (see also
the discussion on the behavior of the spin correlation length of the one-dimensional bond coupling
model in Par. 4.2.1). According to Eq. (4.3.30), in one dimension a(T) is given by the dynamical
structure factor of the dimer correlation function at zero frequency and momentum 7« (evaluated
for the uniform Heisenberg chain), and hence closely related to the dimer correlation length. Thus
in a sense the temperature dependence of the dimerizability reflects the divergence of £§d. In two
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Fig. 4.14.: QMC estimates for the negative dimerizability of the plaquette model vs. ng for T = 0.1J
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(circles) and T = 0.9J (squares). The straight lines are the results of a linear fit in ;.

dimensions, the situation is somewhat different because the square lattice Heisenberg model shows
long-range Néel order in the ground state (for a more detailed discussion see Sect. 4.2.2). For this
reason we expect the dimer correlation length &4 and hence ay(T) as given by Eq. (4.3.43) to stay
finite even at T = 0.

In the following we discuss the implications of the condition (4.3.42) for the existence of the
structural phase transition described above. In analogy to the approach from Sect. 4.3.2, one can
determine T. by drawing a horizontal line at —ap = 2K in Fig. 4.13. The critical temperature
then corresponds to the first coordinate of the intersection point of the two curves. Applying this
scheme, we first observe that for large values 2K 2> 1.6J of the elastic constant there is no such
intersection point, because the dimerizability stays finite with —an(T) < —ap(Tmax) ~ 1.6J for
all T > 0. Hence in contrast to the situation in one-dimensional spin-Peierls systems, only for
small values of K the free energy gain in the magnetic sector overcompensates the loss in the
elastic energy due to the lattice distortions. For 2K < 1.6J the two curves intersect, i. e. there
is a structural transition. Interestingly, in the range 1.45J < 2K < 1.6J there are two solutions
of the condition (4.3.42). This might indicate the occurrence of a reentrance of phases (uniform
— distorted — uniform) upon decreasing the temperature. However, this interpretation has to be
treated with great care since our analysis does not take into account higher order terms in the
Landau expansion (4.3.25) of the free energy density. For even smaller values of 2K < 1.45J,
there is only one intersection point and hence no such reentrance feature.

For the sake of completeness we also compare the behavior of the dimerizability (4.3.43) for the
plaquette lattice to the corresponding curves for a stair- and meander-like lattice distortion. Explicit
expressions for ag/me(T) in the latter two cases can be obtained by inserting A;; = Bj; = (—1)+
for the stair and A;; = (—1), B;j = (=1} for the meander configuration into Eq. (4.3.34), see
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Fig. 4.15.: Comparison of the dimerizability for the plaquette (circles), stair (squares) and meander model
(diamonds). The linear system size is N = 24.

Table 4.1 from Par. 4.3.1. They read

ast(T) = 2N? Y (1) Ky (x, x2) (4.3.44)

x1,%2
for the stair configuration, while the result for a meander-like pattern is
ame(T) = N2 Y [(—1)%F2 4 (=1)"]Ky1(x1, Xe). (4.3.45)
X1,%

We see that as for the plaquette pattern, these expressions only depend on the quantities K1 (x1, x2)
as defined by Eq. (4.3.35). No additional computational effort is required to determine these
numbers. The three curves for a lattice with 24 x 24 sites are depicted in Fig. 4.15. The findings
are completely consistent with our analysis of ground state energies in Sect. 4.3.1. As can be seen
from the figure, the gain in the magnetic free energy is largest for the plaquette model, followed by
the meander and stair patterns, respectively. As they can be expressed by the same dynamical dimer
correlations, all three curves show a local maximum at intermediate temperatures. The position of
the maximum, however, depends on the choice of the distortion pattern to a slight degree.

We have not commented on the order of the structural phase transition at 7. so far. To answer
the question whether the transition is continuous, we need to analyze the sign of the coefficient

4
B(T) = g F(T8)| (4:3.46)
of the fourth order term in the Landau expansion (4.3.25) of the free energy density. A direct
evaluation of by (T) would go beyond the scope of this work because it requires the computation
of certain dynamical eight-point correlation functions. However, given numerical values for the
second order coefficient a,(T), it is possible to gain some insight into the behavior of by (T). The

argument is based on the observation that for sufficiently small values of §, one has the relation

boi(T) ~ %[f(T. 6) —fo(T) - %apu(T)éz], (4.3.47)
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Fig. 4.16.: lllustration of the procedure to determine the free energy of the plaquette model as described
in the text. The circles represent the QMC data for the internal energy evaluated in a system with § = 0.5
and 16 x 16 lattice sites. The numerical errors are smaller than the symbols. The dashed line is the result
obtained by fitting a polynomial (4.3.51) to the QMC data, while the solid curve for the free energy is
obtained after integrating this series and subtracting T In2 according to Eq. (4.3.50).

where terms O(6°) have been neglected. From this identity we see that it is possible to analyze
bei(T) if we calculate the free energies of the uniform Heisenberg model and the plaquette model
for one small value of § in addition to the dimerizability.

At this point we encounter the problem that it is not possible to compute the free energy of a
quantum system by means of the QMC method directly. As has been explained in Sect. 4.3.1, it
is straightforward though to evaluate the internal energy U for the plaquette model. These QMC
estimates can be used to extract numerical estimates for the free energy, although we have to point
out that the approach described in the following does not apply to the low temperature regime.
We start with the well known relation

) =—=dT (4.3.48)

from statistical physics. By integrating this equation over the interval [T, 0o), we find

+ / U (4.3.49)

Tt

f f

T T

T—o00

The constant %|T_m is just the negative entropy of an ideal paramagnet and hence given by —In 2.
Therefore Eq. (4.3.49) yields

= u(t)
2

F(T)=—Tin2+ T/ dt, (4.3.50)
T

which is the demanded relation between the internal and the free energy of the system.
In practice, numerical estimates for U(t) were computed using the continuous time loop algorithm
from Sects. 2.2.4 and 2.2.5, choosing two different values § = 0.25, 0.5 for the dimerization and
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Fig. 4.17.: Numerical estimates for the fourth order coefficient (4.3.46) of the Landau expansion (4.3.25)
for the plaquette model. The data have been calculated via Eq. (4.3.47) with two different values § = 0.25
(circles) and § = 0.5 (squares) of the dimerization.

N = 16 for the linear system size. The numbers of loop updates were 2 x 10* for thermalization and
10° for the evaluation of expectation values. After fitting a phenomenological high temperature
series up to tenth order in 1,
10
U(T) = %
k=1
to the QMC data with T/J € [0.5, 6], the integration in Eq. (4.3.50) becomes trivial. For § = 0.5,
the quality of the fit as well as the result for f(T,§) after application of the formula (4.3.50) is

illustrated in Fig. 4.16. At sufficiently high temperatures T 2> J, the procedure yields convincing

(4.3.51)

results. Exactly the same approach is also applied to derive numerical estimates for the free energy
fo(T) of the uniform Heisenberg model with N = 16. Here the coefficients ax obtained from the fit
compare well to the corresponding values from the literature which are valid in the thermodynamic
limit [Bar91]. In our analysis we nevertheless make use of the fitting parameters, because the
numbers from the literature do not take into account finite-size effects.

Given the numerical data for (7)), f(T,d) and the dimerizability an(7T) (with N = 16), we can
now apply the identity (4.3.47) for § = 0.25,0.5. The results for by (T) are shown in Fig. 4.17.
In the temperature range T 2 J, where the numbers for the free energies can be trusted, the two
curves coincide qualitatively, although there is a systematic shift between the two sets of datapoints.
This shift is probably due to the neglect of higher order terms in the expression (4.3.47). The main
conclusion we can draw from the figure is that for T 2 J, the coefficient by (T) takes positive values
which means that the structural phase transition at T, is continuous. However, it is not possible
to give reliable errors for the numerical estimates of by (7). For this reason one cannot judge
whether the occurrence of negative values for by (T) at high temperatures (which are deduced
from the internal energy data with § = 0.25) is an artefact of the method described in this
subsection. Furthermore, it is not possible to make any statements about the sign of b, (T) in the
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low temperature regime.

4.3.6. Critical dimerization of the plaquette model

In the previous subsection we have pointed out that —in contrast to the situation in one-dimensional
spin-Peierls systems — the structural transition at T. which occurs for 2K < 1.6J does not coincide
with a magnetic transition, because for § < d. the plaguette model shows long-range antiferromag-
netic order in the ground state. Furthermore it has been mentioned that for sufficiently small values
of the elastic constant, one cannot exclude the existence of a second magnetic phase transition at
T! < T, which would be characterized by the fact that 6(T) below T/ exceeds the critical value .
of the plaquette lattice.

In principle, the effective dimerization §(T) at any temperature T < T. can be derived by
minimizing the free energy of the full model which consists of the magnetic Hamiltonian (4.3.20)
(with A;j = (=1), B;; = (—1Y for a plaquette-like distortion) and the lattice contribution (4.3.21).
Apart from the computation of the dimerizability (4.3.43) this would require to determine the fourth
order coefficient (4.3.46) of the Landau expansion (4.3.25) for the plaquette model. Although the
estimates shown in Fig. 4.17 provide the possibility to draw conclusions about the sign of b, (T),
they are not reliable enough to perform a quantitative analysis of §(7). We are therefore not
capable of studying the dependence of T! on K. From our analysis of the two-dimensional bond
coupling model at T = 0 in Sect. 4.2.2, we can only conclude that the values for K have to be
very small to encounter a breakdown of the long-range Néel order in the ground state.

It is nevertheless important to have an accurate numerical estimate for .. As has been mentioned
in the introduction 4.1 to this chapter, the values for the critical dimerization which have been
published in the literature are contradictory. While linear spin wave theory predicts . ~ 0.798
[SKHO02], the result . =~ 0.30 from Ref. [KKK99b] based on series expansion techniques seems
to be more realistic. In the remainder of this section we derive an independent numerical estimate
for §. by means of the QMC method. The approach is based on a computation of the staggered
magnetization M;(d) in the ground state, which takes finite values for § < d. and vanishes for all
d > Oe.

To determine numerical estimates for Ms(d), we can make use of the same ideas which have been
applied to the two-dimensional bond coupling model in Par. 4.2.2. For each value of §, one has to
compute the static structure factor (4.2.15) of the two-point spin correlation function (4.2.10) at
very low temperatures and for various system sizes. Then one can extract the value of M;(§) in
the ground state by extrapolating to the thermodynamic limit according to Eq. (4.2.16). As usual,
the spin correlations for four different system sizes N = 20, 24, 28, 32 were calculated by means of
the continuous time loop algorithm as described in Sects. 2.2.4 and 2.2.5. While the first 2 x 10*
Monte Carlo sweeps were skipped to reach thermal equilibrium, 2 x 10% worldline configurations
were evaluated. A temperature of T = 0.04J was found to be sufficiently low to avoid systematic
errors due to the simulation of finite temperatures.

The values for M(8) which are obtained in this fashion are plotted in Fig. 4.18. They show the
expected behavior, i. e. the staggered magnetization decreases with § and drops to zero at some
critical value in the vicinity of § = 0.29. Note that the estimate of Ms = 0.304(1) obtained for the
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Fig. 4.18.: QMC estimates for the staggered magnetization Ms(§) of the plaquette model (circles). The
numerical errors are smaller than the size of the circles. The solid line is obtained by fitting the ansatz
(4.3.52) to the data with & € [Omin, 0.29] (here dmin = 0.24 holds). The inset shows the dependence of the
fitting parameter d. on the left boundary dmin Of the fitting interval.

uniform Heisenberg model is in sufficient agreement with the corresponding value of M; = 0.3070(3)
from Ref. [San97]. An accurate number for the critical dimerization can be derived by fitting a
phenomenological power law function

£(8) = c(8c — 6)* (4.3.52)

with three free parameters ¢, o, and d. to the numerical data with § € [6min, 0.29]. An example for
the quality of the fits with dmin = 0.24 is also given in the figure. As the value for the parameter §.
depends on the left boundary dmi, of the fitting interval, the fitting procedure is applied repeatedly
for various choices of §min. The results for d. in dependence of §min are given in the inset of
Fig. 4.18. From this plot, we deduce a value of

8 = 0.291(3) (4.3.53)

for the critical dimerization of the plaquette model. Note that the numerical errorbars given in
the inset of Fig. 4.18 only represent the least-square errors from the fits. In contrast to this, the
value of Ad. = 0.003 in Eq. (4.3.53) is a conservative estimate of the true error which takes into
account additional systematic effects like possible deviations from the assumption (4.3.52) for the
fitfunction, or the extraction of Ms(d) from finite-temperature data for the spin correlations. In
conclusion we find that the result (4.3.53) is close to the number given in Ref. [KKK99a]. The
estimate obtained from linear spin wave theory, on the other hand, drastically overestimates the
exact value of 6.
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4.4. Spin-lattice coupling and phonon dynamics in quasi

two-dimensional systems

In Sect. 4.3, we found that a plaquette-like arrangement of strong and weak bonds on the square
lattice has the largest gain in the magnetic free energy among the models defined by the Hamiltonian
(4.3.20) with the constraint (4.3.19). Assuming that the elastic energy loss due to the lattice
distortions is given by the same contribution (4.3.21) for the whole class of models (4.3.20), we
also came to the conclusion that the plaquette model is the proper effective model to describe
the magnetism of spin layers with bond coupling in the adiabatic limit. Having determined the
dimerization pattern, we were able to establish a Landau theory of the two-dimensional counterpart
of the spin-Peierls transition. In contrast to the situation in quasi one-dimensional systems though,
this structural phase transition towards a plaquette-like distortion does not affect the magnetic
properties of the system. From the experimentalist's point of view, the occurrence of lattice
modulations can be studied most conveniently by investigating the temperature dependence of the
phonon dispersion curves, which can be measured in neutron or Raman scattering experiments.
However, the approach from the preceeding section is not useful to study the influence of the spin-
phonon coupling on the lattice dynamics for real materials, where the strongly simplified expression
(4.3.21) is not valid.

The aim of this section is to gain a deeper understanding of this issue [ALKWO05]. To be
more precise, we study three-dimensional cubic systems with a monoatomic unit cell, whose lattice
contribution to the total Hamiltonian is given by the general expression

=,

Has = 3 22 +V({R ) (4.4.50

r

Here Rz P- are the position and momentum vectors of the magnetic ions with mass m at the
lattice sites. In the harmonic approximation, the interaction part V({R;}) of Hgis can be written
as

VRN =33 Y GPRIuE., (4.4.55)

FX a,B=x,y,z

where iy = R7 — F'is the displacement vector of the ion at lattice site 7. The expression (4.4.55)
defines the dynamical matrix Go(X) = (Gg‘ﬁ()'(’)) (with a, 8 = x, y, z) of the system. In particular,
the phonon dispersion relations can be determined from this matrix, because the eigenvalues of its
Fourier transform Go(g) are the squares of the phonon frequencies wo(§). We emphasize that by
introducing Gy, the loss in the elastic energy due to the lattice distortions depends on the type of
the lattice modulation, which is a striking difference to the assumption (4.3.21) from the previous
section.

In the presence of spin-phonon coupling, one expects that the magnetic degrees of freedom
influence the phonon dynamics, i. e. the bare dynamical matrix Go(X) has to be modified due to the
spin-lattice interaction. In this section, we determine and analyze these corrections by generalizing
the ideas from Ref. [CF79] to systems consisting of independent spin layers which are coupled to
the three-dimensional phonon system given by Eq. (4.4.54). The magnetic Hamiltonian for the
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quasi two-dimensional subsystems reads

N

Z [+ Moy — ug}) G5dinay + (1 + Moy — u7}) §iGijaa ] (4.4.56)
ij=1

H=

which is a two-dimensional generalization (with A\ = v/2g) of the spin-lattice interaction part of
the difference coupling model (4.1.6) from Sect. 4.1. For systems with a monoatomic unit cell,
the Hamiltonian (4.4.56) is the simplest non-trivial choice which allows to study the influence of
the spin-lattice interaction on the phonon dispersion relations. Following Cross and Fisher [CF79],
we apply an adiabatic decoupling to the full lattice problem, dealing with the phonons as the slow
and the quantum spins as the fast degrees of freedom. In such a scenario we can replace the
displacement operators i~ by their expectation values. Equivalently, we can treat the quantities
ufj/y and > in the Egs. (4.4.56), (4.4.55) as classical variables. This will be assumed for the
remainder of this section.

At this point we have to emphasize that the components of the classical vectors > take con-
tinuous values. Hence in contrast to the analysis of statically dimerized models in the previous
section, where only two possible values £ for the lattice distortions were taken into consideration,
the approach from this section enables us to study arbitrary lattice modulations. However, by
introducing the spin Hamiltonian (4.4.56) we suggest a mechanism for the spin-phonon interaction
which differs fundamentally from the bond coupling mechanism assumed in Sects. 4.2 and 4.3.

In the following subsection, we first determine the contribution of the magnetic Hamiltonian
(4.4.56) to the dynamical matrix in leading order of the spin-phonon coupling. In the sequel in
Sect. 4.4.2, we analyze the momentum and temperature dependence of this additional term. As
in the one-dimensional case, the spin-lattice interaction is found to induce a softening of phonon
modes. Determining those phonon modes which are most affected by the spin-phonon coupling
provides a tool to specify which types of lattice modulations are energetically favored. In Par. 4.4.3
finally, we specify the lattice potential V' in Eq. (4.4.54) and calculate the full dynamical matrix for
this simple model. Having determined the dynamical matrix, it is possible to investigate the influence
of the spin-phonon coupling on the phonon dynamics, and to discuss under which conditions the
system is driven towards a structural instability.

4.4.1. Renormalization of the dynamical matrix

In this subsection we derive an expression which specifies the influence of the spin-phonon coupling
as given by Eq. (4.4.56) on the dynamical matrix Go(X) defined by the interaction part (4.4.55) of
the lattice Hamiltonian (4.4.54). As the system consists of non-interacting magnetic layers which
are coupled to the three-dimensional phonon system, one expects that Go(X) is only affected for
distance vectors X = (x1, x2, 0) lying in the planes of interacting spins. In addition to this, we observe
that the spin Hamiltonian (4.4.56) involves no lattice distortions uy; perpendicular to the magnetic
layers. Thus it is sufficient to study the modifications of the 2 x 2 submatrix of Go(X) = (Gg‘ﬁ()'(’))
with a,8 = x,y in Eq. (4.4.55) for these choices of X, and the analysis of the impact of the
spin-phonon coupling on the phonon dynamics is reduced to an effective two-dimensional problem.
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The key idea behind our approach is to follow the argumentation from Sects. 4.3.2 and 4.3.3,
and to perform a Landau expansion
19°F

Ao
o 208N2

F(T,)\) = Fo(T) + oF

2 3
o A2 +0(N®) (4.4.57)

A=0

of the free energy for the magnetic Hamiltonian (4.4.56), where Fo(T) is the free energy of the
square lattice Heisenberg model according to our usual notation. Exploiting the lattice symmetries
of the uniform Heisenberg model, the coefficient of the first order term in Eq. (4.4.57) becomes
oF J N
Mo §<500510>A:0 D [y = i} + {ul - uf}] =0, (4.4.58)
= ij=1

because the expression between the square brackets vanishes if we assume periodic boundary con-
ditions. We see that the leading contribution of the spin-phonon coupling is given by the second
order in the expansion (4.4.57).

In the following we determine the second order coefficient ng,; To evaluate this quantity,

A=0"
we first note that the model (4.4.56) is formally equivalent to the statically dimerized Hamiltonian

(4.3.20) from Sect. 4.3 if we replace

5= (4.4.59)
Ay — {ufy; — ulh (4.4.60)
Bij = {4 — ufi}- (4.4.61)

Hence we can immediately read the demanded result from the expression (4.3.34) for the two-
dimensional dimerizability (see Par. 4.3.3), which gives

8°F

N
N2 = N? Z [Kl(k =i —f){uf+1.j - “E}{UEH,/ — U}
A=0 ik, =1

+ Ka(k =i, 1 —J'){U,{Hl - U,J';'}{U{,/H — U}

+ Ka(k — i, 1 = ) {uiyrj — uiHuy 0y — ul 3, (4.4.62)

where the factor of N2 in the first line takes into account that the result (4.3.34) stems from an
expansion of the free energy density (T, §), while here the total free energy F(T, A) is considered.
The numbers K, (o = 1, 2, 3) in the relation (4.4.62) are given by the couplings (4.3.35), (4.3.36),
and (4.3.37) from Par. 4.3.3. In the sequel we rewrite the result (4.4.62) by introducing distance
coordinates (x1, x2) = (k — i,/ — j) and again exploiting the periodic boundary conditions, i. e.

82F N .
W = N? Z {UUUi+xl,j+x2[2K1(X1,X2)—Kl(Xl—l,Xg)—Kl(X1+l,X2)]
A=0 iJ,x1,%0=1
+u5u;‘/+xl,j+x2[2K2(X1,X2) - K2(X1,X2 - 1) - K2(X1-X2 + 1)]
Fuiu il Ka(xa, %) + Ks(xa + 1, — 1)

—K3(x1+1, %) — K3(x1, xo — 1)]} (4.4.63)
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The important consequence is that the second order contribution in the expansion (4.4.57) takes

10°F 7YY fm (4.4.64)
2%, 0 ug 4.

F.X a,B=x,y

the form

Here we have introduced the 2 x 2 matrix g(X) = (g*°(X)) (with a, B = x, y), whose entries are

given by
2702
gH(X) = — —[2Ki(x1 ) = Ki(xa = 1x0) = Kilxa +1,) ], (4.4.65)
>\2 2
gyy(X) [2K2(X1 Xg) — KQ(Xl Xo — 1) Kg(Xl,Xg + 1)], (4.4.66)
gv(x) = yx(—)?')
>\2N2

[K3(X1 x0) + K3(x1+ 1,x0 — 1) — K3(x1 + 1, %) — Kz(x1, x — 1)].  (4.4.67)
Note that the non-diagonal entries g*¥(X) have the property

g (%) = g (=X), (4.4.68)
which is a consequence of the symmetries of K3(X), i. e.

K3(xi, x2) = K3(—x1 + 1.x2) = K3(x1, =% — 1) = K3(—x + 1, —xp — 1)
= K3(—XQ,X1 — 1) = K3(XQ +1,x3 — 1) = K3(X2 +1, —Xl) = K3(—X2, —Xl). (4469)

Apparently, the result (4.4.64) has the same structure as the expression (4.4.55). Therefore at
finite temperatures and in the leading order of the spin-phonon coupling, the influence of the
magnetic degrees of freedom on the lattice dynamics can be expressed if we replace

Go(X) = G(X) = Go(X) + g(R). (4.4.70)

To analyze the influence of the spin-lattice interaction on the phonon dispersion relations, one has
to determine the eigenvalues of the corresponding matrix

A

G(q) = Go(@) + 8(d). (4.4.71)

where the Fourier transform A(g) of an arbitrary quantity A(X) is defined by
A@@) =) eTTAR). (4.4.72)
%

With this definition, we can immediately determine the entries of §(§) from the real space quantities
(4.4.65), (4.4.66), and (4.4.67). The result is

AXX [ = 2>‘2 [ —
g°(q) = — (1 = cos q1) Ki(q), (4.4.73)
v, 2A2 .
§7(q) = —(1 — cos g2) K2(), (4.4.74)

2
§7(q)=9"(a = :\—m [(1-em)(1—e®)K3(q) +c c ], (4.4.75)
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where we have introduced the abbreviation (o = 1, 2, 3)
Ka(@) = N* Ko () (4.4.76)

for the Fourier transformed and rescaled coupling constants (4.3.35), (4.3.36), and (4.3.37) from
Par. 4.3.3. Note that the identity (4.4.68) implies that the off-diagonal entries (4.4.75) of §(q)
take real values.

Before we investigate the behavior of §(§) in the following subsection, it is instructive to com-
ment on the relation between Eq. (4.4.71) and the corresponding expression (4.1.3) for quasi
one-dimensional spin-Peierls systems. According to Refs. [CF79, Pyt74] and to the discussion
from Sects. 4.1 and 4.3.2, in one dimension the renormalization of phonon frequencies due to the
spin-phonon coupling is given by the polarizability M(qg, Q) in Eq. (4.1.3). In particular, I can be
expressed via the dynamical structure factor of the two-point dimer correlation function. The result
(4.4.71) of this subsection for the two-dimensional problem is the completely analogous expres-
sion. On the one hand, we have already mentioned that the eigenvalues of the dynamical matrix
G(g) are the squares of the phonon frequencies w(g). On the other hand and according to the
relations (4.4.73), (4.4.74), and (4.4.75), we have expressed the entries of the additional contri-
bution §(§) to the bare dynamical matrix G’o(cT) by the Fourier transforms of the two-dimensional
integrated dynamical dimer correlations. Thus, the matrix §(g) plays the role of the polarizability
in Eq. (4.1.3).

4.4.2. Analysis of the spin-phonon contribution

In this subsection we try to gain some insight into the influence of the spin-phonon coupling by
analyzing the contribution §(§) to the full dynamical matrix (4.4.71). As has been emphasized in the
previous subsection, the entries (4.4.73), (4.4.74), and (4.4.75) of §(§) are given by the rescaled
Fourier transforms (4.4.76) of the couplings K, (a = 1,2, 3) of the effective Ising model (4.3.34)
for the dimerizability a(T), see also Sect. 4.3.3. Therefore we can apply the same numerical routines
which have been used in the Pars. 4.3.4 and 4.3.5 to calculate §(g). In this and the following
subsection and if not otherwise stated, we analyze QMC data for §(§) evaluated in systems with
24 x 24 lattice sites, taking 10° loop updates for thermalization and 2 x 108 configurations for the
computation of expectation values. The system size is sufficiently large to keep finite-size effects
well under control. For example, this can be seen from the discussion on finite-size effects for
the dimerizability a,(T) of the plaquette model in Par. 4.3.5, which is twice the rescaled Fourier
transform Ki(m, 0) according to Eq. (4.3.43).

The first conclusion which can be drawn from the calculation of §(§) is that for all temperatures
T=0.1J0.2J..., 4.0J, the trace of §(§) vanishes or takes negative values irrespectively of the
momentum vector §. This implies that also the trace of G(g) = Go(§) + §(J) is reduced due to
the spin-phonon interaction, which is just the sum w?(g) +w3(qJ) of the squares of the two phonon
frequencies w,/>(q). The interpretation is that the spin-phonon coupling induces a softening of
phonon modes as in the one-dimensional case. The further argumentation is completely analogous
to the one from Refs. [Pyt74, CF79], compare also the beginning of Sect. 4.1. When decreasing
the temperature of the system at fixed A (or increasing A at fixed T), there will be certain phonon
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Fig. 4.19.: Eigenvalues I1;,,(q) of the spin-phonon contribution §(§) to the dynamical matrix for a triangular
path through g-space and four different temperatures. For T = 0.1J, the linear system size is N = 28.

frequencies which are most affected by the spin-lattice interaction. A structural phase transition
into a distorted phase is encountered as soon as the renormalized frequency w(go) of a particular
phonon which is characterized by the wave vector @y and polarization vector pgy turns to zero,
because then the system gains energy by macroscopically occupying this phonon mode. Here
the polarization vector py is the corresponding eigenvector of the full dynamical matrix G(go). In
particular, the wave and polarization vectors of the phonon determine the type of lattice modulation
which characterizes the distorted phase. Note that in principle in a two-dimensional system, it is
possible to occupy two such phonon modes with independent (i. e. orthogonal) polarization vectors
at the same time.

In the following we examine the structure of §(g&) in more detail by calculating its eigenvalues
M1/5(G), which are plotted along a triangular path in g-space for four different temperatures in
Fig. 4.19. We first see that for all choices of @, the sum M1(g) + MN2(g) of the two eigenvalues
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Fig. 4.20.: lllustration of two different types of lattice modulations. Left Panel: A superposition of two
phonons with g1 = (m, 0), p1 = (1,0) and g> = (0, 7), P> = (1, 0) reveals a plaquette-like pattern of lattice
distortions, which is favored most by the spin-phonon contribution §(§) in Eq. (4.4.71). Right panel: By
superposing two phonons with g1 = (w, 1), p1 = (1,0), and @ = (w, ), P> = (0, 1), one obtains diagonal
stripes, which corresponds to an effective magnetic model with a stair-like arrangement of strong and weak
bonds.

(i. e. the trace of §(q)) indeed vanishes or takes negative values. However, the more important
observation is that the curves show a pronounced global minimum at (m, 0). Note that for sym-
metry reasons the analogous feature is found at (0, 7), which is not shown in the figure. A third
characteristic point in g-space is (m, 7), where the two curves for the eigenvalues I/, (§) exhibit
a local minimum and a saddle point, respectively. A more precise investigation of §(§) at the three

points yields:
1. g=(m,0):
Here the matrix g reads
N 222 an(T) O
m,0)=— , 4477
g(m.0) = — ( o o ( )

where we have made use of the relation 2K;(m,0) = ay(T) according to Eq. (4.3.43)
from Par. 4.3.5. Thus the eigenvalues of g(m, 0) are given by My(m,0) = %a,,.(T) and
My(m, 0) = 0, while the corresponding eigenvectors are (1,0) and (0, 1), respectively.

2. §=(0,m):
In analogy to the point at ¢ = (m, 0), one obtains
232 (0 0
g(0,m) = — , (4.4.78)
m 0 ap|(T)

because of the relation 2K,(0, ) = 2Ky(m, 0) = ay(T). We therefore find M;(0,7) =
%am(T) and My(0, w) = 0, with eigenvectors (0, 1) and (1, 0).
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3. §=(m,m):
Here § becomes

2
o(mm) = % <ast(()T) ast(()T))' (4.4.79)

To explain this result we first note that according to the expression (4.3.44) from Sect. 4.3.5,
we have the relation 2K (7, ) = 2K,(m, ) = ax(T). which has been used for the entries
on the diagonal. In addition and according to Eq. (4.4.75), the off-diagonal entries of §(m, )
are proportional to K3 (7, ), which vanishes because the Fourier transform of the couplings
K3(x1, x2) (see Eq. (4.3.37) from Sect. 4.3.3) is the weighted sum of each four equiva-
lent contributions which cancel at (mw, 7). We therefore find two degenerate eigenvalues
Myjo(m, m) = %ast(T). Again the corresponding eigenvectors are found to be parallel to the
coordinate axes, because g(m, ) is diagonal.

It is important to emphasize that we have expressed the global minima My(w, 0) and M1(0, )
as well as the degenerate eigenvalues MMy /,(m, 7) by the dimerizabilities a,(7) and ast(T) of the
plaquette and stair model. Hence the temperature dependence of these eigenvalues can be deduced
from the two corresponding curves in Fig. 4.15. In particular, this means that the influence of the
spin-lattice coupling on the phonon dynamics is largest in the vicinity of the maximum T &~ 0.9J
of a,(T). As can be seen in Fig. 4.19, the eigenvalues of §(q) take their smallest values at this
temperature.

Furthermore, our analysis implies that in the leading order in X, the gain in the magnetic free
energy due to the spin-lattice coupling as described by Eq. (4.4.57) is largest for a simultaneous
occupation of one phonon with g = (m,0) and polarization vector p; = (1,0), and a second
phonon with g> = (0, 7) and orthogonal polarization p> = (0, 1). Hence the spin-phonon coupling
contribution §(§) in Eq. (4.4.71) favors a plaquette-like lattice distortion as illustrated in the left
panel of Fig. 4.20. This corresponds with our findings from Sect. 4.3.

However, our result does not mean that a structural transition due to the spin-lattice interaction
is always directed towards the plaquette lattice. For a complete investigation of this issue one has
to take into account the bare contribution Go(§) to the dynamical matrix. It is conceivable that
under certain conditions the bare phonon frequency wo(go) at some wave vector go # (7, 0), (0, )
is significantly smaller than the corresponding values at (m,0) and (0, 7). In such a case this
phonon mode might vanish first when decreasing T (or alternatively, increasing A\), and a different
type of lattice modulation is found. For example, this is likely to occur for the two phonons with
Go,1/2 = (m,m) and independent polarization vectors pp; = (1,0) and ppo = (0,1). Especially
at higher temperatures, the two eigenvalues Iy /,(m, 7) are close to the global minima at (w, 0)
and (0, ), compare Fig. 4.19. In contrast to the plaquette pattern, a macroscopic occupation of
the two (, )-phonons leads to the formation of diagonal stripes as illustrated in the right panel
of Fig. 4.20. In the language of statically dimerized spin models, this corresponds to a stair-like
arrangement of strong and weak bonds.
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4.4.3. Analysis of the full dynamical matrix for a simple model

In this subsection we investigate the full dynamical matrix G(§) for a simple choice of the lattice
potential V({R7}) in Eq. (4.4.54), i. e. we specify the bare dynamical matrix Go(§) of the system.
The model under consideration, the K-K'-model, is characterized by a harmonic lattice potential
which consists of two different types of elastic couplings. While each pair of adjacent lattice ions is
subject to a quadratic potential with an elastic constant K, there exists an additional coupling K’
between next-nearest neighbors, i. e. over the diagonals of each square on the lattice. The entries
of the Fourier transformed bare dynamical matrix for this problem read

A 2

GE(q) = E[K(l —cosqi) + K'(1 —cos gy cosqo)] (4.4.80)
A 2

Gy = E[K(l —cosqgo) + K'(1 — cos gy cosgn) ] (4.4.81)
N A 2

Go” () = Gg*(4) = — K'sin gy sin o, (4.4.82)

see App. A.5 for a detailed derivation of these expressions.

Having specified the lattice potential, it is possible to calculate the renormalized matrix G(§)
by adding the QMC results for §(§) from the preceeding subsection to the bare dynamical matrix
Go(g) which is specified by the formulae (4.4.80), (4.4.81), and (4.4.82). Then the eigenvalues of
G(§) correspond to the squares of the renormalized phonon frequencies w1/5(q) of the system.

For a typical choice of coupling constants, the temperature dependence of the resulting curves is
shown in Fig. 4.21. As can be seen from the figure, the spin-phonon interaction leads to a significant
reduction of particular phonon frequencies upon decreasing the temperature. Corresponding with
our findings from the previous subsection, however, the overall size of this phonon softening strongly
depends on the momentum vector . For example in the vicinity of the center (0, 0) of the first
Brillouin zone, the two phonon branches are almost unaffected by the coupling to the spin degrees of
freedom. At (w, 0) and (m, 7), on the other hand, we observe the expected characteristical features.
At (m, ), there is a significant reduction of both eigenvalues wf/z(w,w) when decreasing the
temperature. The most striking feature though occurs at (7, 0). While the smaller of the two bare
phonon frequencies wp 1/>(m, 0) is not affected by the spin-phonon coupling, there is an immense
reduction of the second frequency when cooling down the system. At a certain intermediate
temperature, this originally disadvantaged phonon branch breaks through the unaffected one, and
finally turns to zero at a critical temperature T slightly above T = 1.2J. Note that exactly the same
feature is found at (0, ), which is expected for symmetry reasons. Evidently, the corresponding
polarization vectors are orthogonal and parallel to the coordinate axes, because both G(m,0) and
G(0,m) are diagonal matrices. Thus, in accordance with the analysis of §(§) in Par. 4.4.2 we
conclude that there is a structural phase transition from the uniform phase at high temperatures
to a plaquette phase at T < T-..

An alternative way to obtain this structural transition is to tune the spin-phonon coupling constant
A, while the temperature and the elastic constants K, K’ are kept fixed. An example with a fairly
small value of the fraction %’ and T = 0.1J is given in Fig. 4.22, where QMC data for a system
with 28 x 28 sites have been evaluated. The curves look very similar to the ones depicted in
Fig. 4.21. While a small value of X is not sufficient to drive the system into a structural instability,
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Fig. 4.21.: Eigenvalues wf/Q((j) of the renormalized dynamical matrix G(§) along a triangular path in G-
space, evaluated for a system with K = 0.6J, %’ = 0.2, and A = 1.0 at four different temperatures. As
indicated by the thick circle in the bottom panel, one of the two eigenvalues at (7, 0) changes its sign
slightly above T = 1.2J, corresponding to a structural instability towards a plaquette-like lattice distortion.

a plaquette-like lattice modulation is found as soon as A exceeds a certain critical value, which is
given by A\ = 0.41 for this particular choice of coupling constants.

To deduce the exact value of Ac, we consider the eigenvalues of G(§) at (7, 0) (or equivalently,
at (0,m)). The condition for a transition to a plaquette phase is that the smaller eigenvalue of

G(m, 0) vanishes. At (m,0), we have

2 (2(K-|—K’)+>\23,,|(T) 0 )

G(m, 0) =
(m0)=2 0 2K!

(4.4.83)
see also the expression (4.4.77) for g(mw,0) from the previous subsection. For sufficiently large
values of the spin-phonon coupling, the smaller of the two eigenvalues is w?(m,0) = Z[2(K +
K') + X2ap(T)]. By setting this number equal to zero, we obtain the critical value A for a
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Fig. 4.22.: Squared phonon frequencies wf/z(a') in a system with K = 0.1J and a small fraction KV' =0.2
without spin-phonon coupling (top panel), and three different finite values of A (lower three panels). The
temperature is T = 0.1J. At A = 0.41, there is a structural phase transition to the plaquette phase,
because one of the two phonon frequencies at (1, 0) (thick circle in the bottom panel) and another one at
(0, ) turn to zero.

plaquette-like lattice distortion, i. e.

Ao _ =2 (LK (4.4.84)
K an(T) K]’ o

In the following we consider the question whether the structural transition is always directed
towards the plaquette structure [Web]. As far as the K-K'-model with A = 0 is concerned, an
examination of Go(§) implies that the two bare phonon frequencies wo,1/2(m, T) get significantly
reduced with respect to the maxima at (w, 0) and (0, 7) if the ratio %’ is increased. Therefore
for sufficiently large values of this fraction, we expect that the renormalized phonon frequencies

wy/2(m, ) vanish first when increasing A. This feature is illustrated in Fig. 4.23, where the eigen-
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Fig. 4.23.: Eigenvalues of the dynamical matrix G(§) for K = 0.1J and a considerably large value of the
ratio %’ = 0.8 at T = 0.1J. The comparison of the bare phonon frequencies for A\ = 0 (top panel) to the
corresponding curves for KV' = 0.2 (top panel of Fig. 4.22) shows that the two phonon modes at (=, ) are
reduced significantly with respect to the maximum at (m, 0). When increasing the spin-phonon coupling
(lower three panels), the lower of the two phonon branches with § = (q, q) gets softened. At \ = 0.47, the
corresponding eigenvalues w?(q, q) all vanish simultaneously (illustrated by the thick ellipse in the bottom
panel).

values of G((]’) are plotted for a typical example with %’ = 0.8. Note that again QMC data for a
system with N = 28 have been evaluated. However, besides the expected feature at (, 7) a whole
branch of squared phonon frequencies with wavevectors (q, g) vanishes at the same value A, ~ 0.47
of the spin-phonon coupling. The analogous feature is found on the second diagonal (g, —g) of the
Brillouin zone, which is expected for symmetry reasons. Therefore within the numerical accuracy,
one cannot judge whether the structural instability can be characterized by the wavevector (m, 7)
(corresponding to the diagonal stripe pattern as shown in the right panel of Fig. 4.20) or by a
particular pair of incommensurate wavevectors (g, g) and (g, —q) with g # .
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Fig. 4.24.: Numerical estimates for K3(q. q) — 2K1(q, q) vs. g evaluated for a system with N = 28 at
T = 0.1J (circles). The solid line depicts the approximation (4.4.89) to the full Fourier transformed
difference.

The fact that for large %’ a whole branch of phonon frequencies vanishes requires a more detailed
analysis. This means that we have to analyze the eigenvalues of G(§) at (g, g) (or equivalently, at
(g,—q)). For these wavevectors, the renormalized dynamical matrix becomes

G(q,q)=3(

m

[K + X2K1(q, 9)](1 — cos q) + K'sin% q X K3(q, 9)(1 — cos q) + K'sin% g
¥ Ry(q.q)(1—cosq)+ K'sin?q  [K +N2Ry(q, q)](1 — cos q) + K'sinq

(4.4.85)

where we have used the identity K1(g, q) = K2(g, g) which holds for symmetry reasons. For g =,

this matrix is diagonal with two degenerate eigenvalues wf/z('/r, m) = Z2(2K + X2ax(T)), see also

the expression (4.4.79) for g(w, w). For g # w the degeneracy is lifted, and the lower of the two

eigenvalues becomes w?(q, q) = 2(1 — cos q){K + N2[K1(q, q) — 1K3(q, q)]}. By setting this

number equal to zero, we obtain the critical spin-phonon coupling

2

R _ 2 [Ro(a,0) - 2Ra(a.0)] (4.46)

for a transition to a distorted phase which is characterized by two independent phonons with
wavevectors (g, g) and (g, —q). In particular, the whole phonon branch with momenta (q, q)
simultaneously vanishes if the right-hand side of Eq. (4.4.86) does not depend on g. This means

K3(q.q) — 2K1(q. q) = const = —2K1(m, ) = —ax(T), (4.4.87)

where the second equality is due to the fact that K3(, ) vanishes. Within the numerical accuracy,
the numerical data for K1(§) and K3(§) obey the condition (4.4.87) at all temperatures. For the
system with N = 28 and T = 0.1J this is illustrated in Fig. 4.24. Note that it is not possible to
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give relieable errorbars for the Fourier transformed difference K3(q, ) — 2K1(q, q), because the
covariances between the real space structure factors K;(X) and Ks(X) for different distances X
were not evaluated during the QMC simulations. Thus from the numerical data, it is not possible
to judge whether the identity (4.4.87) holds exactly or only approximately.

It is possible though to understand why Eq. (4.4.87) holds at least approximately. We first
consider the difference of the real space quantities K3(X) — 2K1(X). In real space, the two Ising
couplings K3(X) and 2K1(X) quickly decay towards the same constant background at large dis-
tances, which is given by the square of the local energy per bond times the inverse temperature of
the system. As a result, the difference K3(X) — 2K1(X) is strongly peaked around X = 0. Thus
only small distances X give a significant contribution to the Fourier transformed difference

K3(a.q) — 2Ki(q,q) = N> e "9t 2)[K3(%) — 2Ky (K)], (4.4.88)

where only the special choice § = (q, g) has been considered. From Eq. (4.4.88), we further
see that only distances X = (x1, x2) with x; = —x» give a constant contribution to the Fourier
transform. The contributions with x; # —x» cancel within the numerical accuracy. By taking into
account the peaked structure of K3(X) — 2K1(X), we therefore conclude that

Ks(a,q)—2K1(a, q) ~ N*{K3(0,0)+Ks(1, —1)+Ks(—1,1)—2[K1(0, 0)+K1(1, —1)+K:1(-1,1)]}

(4.4.89)
is a good approximation for the Fourier transformed difference. In the example from Fig. 4.24, the
solid line depicts the result of the approximation (4.4.89) which is in good accordance with the
numerical data for the full Fourier transformed difference R3(q, q) — 2P~(1(q, q).

We are now in the state to establish the phase diagram of the K-K’-model with spin-phonon
coupling at finite temperatures. Our results can be interpreted most easily if we keep T and K
fixed. As can be seen from Fig. 4.15 (see Par. 4.3.5), the negative dimerizability —a,(T) is always
larger than the corresponding number —aq(7T) for a stair-like lattice distortion. According to the
Egs. (4.4.84) and (4.4.86) (together with (4.4.87)) and for sufficiently small values of %’ we
therefore find the relation Acp < Acqq and thus the plaquette phase for all A > Acpi. In the
region of large %’ on the other hand, the system prefers the phonon branches with wavevectors
(g.q) and (g, —q) as soon as A exceeds A qq. because in contrast to Eq. (4.4.84) the expression
(4.4.86) does not depend on K’. The phase segragation line between the two distorted phases can
be deduced by equating the right-hand sides of the two conditions (4.4.84) and (4.4.86) (together

with (4.4.87)), which yields
K' _a(T) _
K h ast(T)

The phase diagram for T = 0.1J which is obtained from QMC results for a,/s:(T) in a system

1. (4.4.90)

with 28 x 28 spins is shown in Fig. 4.25. We emphasize that the examination of G(§) for arbitrary
wavevectors @ gives no evidence for the existence of further phases in the phase diagram of the
K-K'-model with spin-phonon coupling.

On the basis of the three expressions (4.4.84), (4.4.86), and (4.4.90) it is also possible to discuss
the influence of the temperature on the phase diagram of the system. The T-dependence of the

parameters apl_(%-), ast_(ZT) and Z"t'g-g — 1, which enter the three equations for the phase segregation
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Fig. 4.25.: Phase diagram of the K-K'-model with spin-phonon coupling determined from QMC data for
apst(T) for T = 0.1J and N = 28. The transition lines between the undistorted and the two distorted
phases are given by the expressions (4.4.84) and (4.4.86) (together with Eq. (4.4.87)), while the phase
segragation line between the plaquette and the incommensurate phase (characterized by wavevectors (q, q)
and (g, —q)) is obtained from Eq. (4.4.90).

lines, is given in Table 4.2. To obtain a structural phase transition at higher temperatures, one has
to increase X\ (or decrease K) significantly as compared to the low temperature regime, which is an
expected feature. A more interesting point is that the largest extension (with respect to the ordinate
axis in Fig. 4.25) of the two distorted phases is found at temperatures close to the maximum
Tmax = 0.9J of the curve for —ap(T) (or the corresponding temperature Tmax = 1.1J where
—ag(T) takes its maximum), see the Figs. 4.13 and 4.15. Thus in principle and in accordance with
the investigation of the statically dimerized plaquette model in Sect. 4.3.5, a reentrance (uniform —
distorted — uniform) of phases is conceivable for certain values of the coupling constants. However,
this interpretation has to be taken with great care because we do not take into account higher
order terms in the Landau expansion (4.4.57) from Par. 4.4.1, which correspond to anharmonic
contributions to the phonon dynamics. Another major influence of the temperature on the phase
diagram is that the segragation line between the plaquette and the incommensurate phases is
shifted towards smaller values of %’ upon increasing T.

We close this chapter with a couple of remarks concerning the applicability of the approach
from this section. Due to the adiabatic treatment of the lattice degrees of freedom, we have
neglected the kinetic energy contribution of the lattice ions to the total Hamiltonian, which is the
sum of Egs. (4.4.54) and (4.4.56). For this reason the phonon dispersion curves as shown in the
Figs. 4.21, 4.22, and 4.23 contain a systematic error which enters especially at higher energies,
and therefore have to be handled carefully if compared to experimental data. In any case, for a
direct comparison to the experiment one would have to take into account that the unit cell of
real quasi two-dimensional substances contains a considerably large number of interacting lattice
ions. For this reason one cannot expect that the simple K-K’-model correctly describes the full



4.4 Spin-lattice coupling and phonon dynamics in quasi two-dimensional systems 131

o 2 Ele T 22 [
0.1 1.37 | 2.20 0.60 2.1 2.13 | 2.56 0.21
0.2 1.38 | 2.19 0.59 2.2 2.24 | 2.65 0.19
0.3 1.38 | 2.20 0.59 2.3 2.34 | 2.74 0.17
0.4 1.38 | 2.18 0.58 2.4 2.45 | 2.84 0.16
0.5 1.36 | 2.17 0.59 2.5 2.56 | 2.94 0.15
0.6 1.34 | 2.15 0.61 2.6 2.67 | 3.04 0.14
0.7 1.30 | 2.11 0.63 2.7 2.79 | 3.15 0.13
0.8 1.26 | 2.06 0.63 2.8 2.90 | 3.26 0.12
0.9 1.26 | 2.02 0.60 2.9 3.02 | 3.37 0.11
1.0 1.27 | 2.00 0.58 3.0 3.14 | 3.47 0.11
1.1 1.30 | 1.99 0.53 3.1 3.26 | 3.58 0.10
1.2 1.35 | 2.00 0.48 3.2 3.38 | 3.69 0.09
1.3 1.41 | 2.03 0.43 3.3 3.50 | 3.81 0.09
1.4 1.48 | 2.07 0.40 3.4 3.62 | 3.92 0.08
1.5 1.56 | 2.11 0.35 3.5 3.74 | 4.03 0.08
1.6 1.65 | 2.18 0.32 3.6 3.87 | 4.15 0.07
1.7 1.73 | 2.24 0.29 3.7 3.99 | 4.27 0.07
1.8 1.83 | 2.31 0.26 3.8 4.11 | 4.39 0.07
1.9 1.92 | 2.39 0.24 3.9 424 | 450 0.06
2.0 2.02 | 2.48 0.22 4.0 436 | 4.62 0.06

Table 4.2.: QMC estimates for the parameters —2, —2- and 2} _ 1 which govern the expressions

ap(T)" ast(T) ast(T)
(4.4.84), (4.4.86), and (4.4.90) for the phase segregation lines in the phase diagram of the K-K'-model

with spin-phonon coupling. For T = 0.1J, the dimerizabilities a,/s:(T) were evaluated in a system with
28 x 28 sites (compare also the phase diagram 4.25), while the linear system size was N = 24 for all
T>0.1J.

phonon branches of the magnetic ions for this class of materials. However, we do expect that
the softening of phonon modes is well described within the adiabatic approach. In particular and
regardless of the details of the microscopic model for the lattice potential, the results from this
section imply that the phonon frequencies at wavevectors (m,0), (0, 7) and (m, ) are strongly
affected by the spin-lattice interaction. The occurrence of lattice distortions characterized by
incommensurate wavevectors is also conceivable. For this reason it seems worthwhile to search for
these symptoms of the spin-phonon coupling in experimental data. As for the quasi one-dimensional
CuGeO3 though, the adiabatic limit is not realized in the undoped parent compounds of the high
temperature superconductors like e. g. LaxCuO4 [Web]. Indeed, the neutron diffraction data for a
number of cuprates have been successfully described by an empirical model without introducing a
coupling between the spin and lattice degrees of freedom [CRPP95].

As far as the K-K’'-model is concerned, we emphasize that we have not made any statements
about the ground state phase diagram of the system, because the Landau expansion (4.4.57) of the
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free energy is only applicable at finite temperatures. Furthermore, we were not able to examine the
order of the transitions between the different phases in Fig. 4.25, although in Sect. 4.3.5 we have
found some indications that the transition from the uniform to the plaquette phase is continuous.
Another issue which remains unsolved is the question whether the spin-lattice interaction can drive
the system into a paramagnetic phase. While such a feature can be excluded if e. g. the system
favors a stair-like magnetic structure [SKH02], it remains possible in the plaquette region of the
phase diagram 4.25.
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5. Conclusions

5.1. Summary

This thesis deals with the properties of correlation functions in low-dimensional quantum antifer-
romagnets. In particular, it is demonstrated that the analysis of finite temperature correlations
provides an instrument to examine both thermodynamic and ground state properties of this class
of spin systems. The thesis consists of three main parts. Chapter 2 deals with the loop algorithm
as the basic numerical instrument which is used in this work. In Chapt. 3, this method is applied
to study the equal time spin and dimer correlation functions of the spin—% XXZ chain. The third
main part in Chapt. 4 is dedicated to the square lattice spin—% Heisenberg model with spin-phonon
coupling.

The numerical data which are examined in this dissertation were computed by means of the
loop algorithm, which is described in Chapt. 2. The loop algorithm is a quantum Monte Carlo
(QMQ) technique. Quantum Monte Carlo in general is a numerical method based on stochastic
decisions to determine the finite-temperature properties of quantum many body systems. As the
method is non-perturbative, it does not suffer from systematic truncation errors. For this reason
the numerical estimates for thermal expectation values are exact up to a statistical error which
reflects the limited access of CPU time in a computer simulation. Furthermore and in contrast to
other numerical approaches like DMRG, the method is not obstructed by the dimensionality of the
system. Finite-size effects are well under control, because considerably large system sizes can be
treated.

The loop algorithm in particular is based on a path integral representation of the partition func-
tion. Due to the general applicability of this construction, it can be formulated for a large class of
spin models. The major advantage of the algorithm is that it allows for global loop updates of the
spin degrees of freedom, leading to a substantial reduction of autocorrelation times. A description
of the loop algorithm for the one-dimensional XXZ model is given in Sect. 2.2. In this case, one
can formulate the algorithm directly in continuous time. This removes the systematic error which
comes from the artificial discretization of Trotter time in the construction of the path integral.
The generalization to the two-dimensional Heisenberg model on a square lattice is straightforward,
including the case of bond disorder, i. e. bond-dependent antiferromagnetic spin exchange. In
Sect. 2.3, it is shown that the loop algorithm can be extended to the Heisenberg model coupled
to dispersionless Einstein phonons. For this bond-coupling model both in one and two spatial di-
mensions, one has to modify the loop update procedure by introducing additional local updates for
the phonon degrees of freedom. However, this extension is at the expense of there being no simple
way to remove the artificial discretization of Trotter time. Section 2.4 deals with the evaluation
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of correlation functions and reliable numerical error bars. The expectation values of both diagonal
and off-diagonal operators with respect to the chosen basis of the Hilbert space are computed most
efficiently within the framework of improved estimators.

In Chapt. 3, the loop algorithm is applied to examine the equal time spin and dimer correlations
of the quantum critical XXZ chain in the low temperature regime. This model is of particular
importance because it is realized in a couple of substances like e. g. SrCuQOs. Furthermore, as
it is integrable by means of the Bethe ansatz, the model serves as a reference system in the
field of quantum magnetism. Certain analytical expressions for the longitudinal and transversal
spin correlations have been derived in the literature. However, it has not yet been possible to
evaluate these expressions for intermediate and large distances. The long distance properties of
spin and dimer correlations both at low finite temperatures and at absolute zero are nevertheless
well understood due to a combination of conformal field theory and Bethe ansatz results.

Section 3.2 gives a detailed survey of the asymptotic properties of correlation functions in con-
formal invariant theories, where primary fields play a crucial part. In leading order, the two-point
correlators of arbitrary fields in the ground state are found to decay algebraically. The corresponding
powers are given by the anomalous dimensions of the primary fields involved. Likewise, the same
quantities govern the correlation length of the exponential decay which is predicted at low finite
temperatures. In particular, conformal field theory predicts a smooth crossover from the behavior
at low temperatures to the corresponding expressions in the ground state. The application of the
findings from the conformal approach to the special case of the critical XXZ chain is reviewed in
Sect. 3.3, where the asymptotic expressions for the decay of the two-point spin and dimer corre-
lations are given explicitly. The same section also contains a survey of additional field theoretical
results concerning the longitudinal and transversal spin correlation functions. These are the cor-
relation amplitudes and the leading algebraic and logarithmic corrections to asymptotic scaling in
the ground state.

The Monte Carlo estimates for the three different correlation functions at finite temperatures
are examined in Sect. 3.3. The analysis is restricted to the repulsive gapless region 0 < A < 1 of
the model. A chain length of N = 1000 is found to be sufficiently large to make statements about
the thermodynamic limit even at very low temperatures T > 0.02J. The numerical data clearly
demonstrate that the expressions from the conformal approach correctly describe the crossover
from the low temperature regime to the ground state. Deviations from asymptotic scaling at finite
temperatures are investigated. Furthermore, an extrapolation of these results to zero temperature
allows to study algebraic and logarithmic corrections in the ground state. As far as the longitudinal
and transversal spin correlations are concerned, the correct correlation exponents of the leading
and subleading orders are extracted from the numerical data. In addition, independent numerical
estimates for the correlation amplitudes are determined and compared to previous analytical and
numerical results. For 0 < A < 1 and zero temperature, it is discussed to what extent the algebraic
corrections obtained by Lukyanov and Terras coincide with the data at intermediate distances. As
far as the corresponding logarithmic corrections in the isotropic XXX chain are concerned, the
perturbative results from the literature are found to describe the numerical estimates very precisely
down to small distances. In the case of the dimer correlation function, it is possible to deduce
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the correct correlation exponents of the leading order from the Monte Carlo data for values of the
anisotropy parameter which are not too large. Reliable estimates for the correlation amplitudes for
all 0 < A < 1 are determined by analyzing the deviations from asymptotic scaling. For A = 1, these
deviations are found to be consistent with the exponent of —% for the multiplicative logarithmic
correction in the ground state.

The square lattice Heisenberg model coupled to phonons is investigated in Chapt. 4. This
system is of special interest, because the two-dimensional Heisenberg model describes the magnetic
properties of the undoped parent compounds of the high temperature superconductors such as
LaCuy0O4. Although the interaction between spin and lattice degrees of freedom is generic to
all magnetic materials, there is only a fragmentary knowledge of the impact of the spin-phonon
coupling on substances with a quasi two-dimensional magnetic structure.

In Sect. 4.2, the loop algorithm is applied to examine the spin correlations of the two-dimensional
bond coupling model for two different choices g = 0.1J, w = 8J, and g = w = 0.67J of coupling
constants. In one dimension, the first system shows quasi long-range antiferromagnetic order in
the ground state, while the second is strongly dimerized. The fundamentally different orders in the
ground state are reflected in the temperature dependence of the spin correlation length at low finite
temperatures. As far as the two-dimensional model is concerned, an analogous analysis implies that
the large value of the spin-phonon coupling for the second system is not sufficient to destroy the
long-range Néel order of the square lattice Heisenberg model. Besides the characteristic exponential
growth of the spin correlation length upon decreasing the temperature, this interpretation is strongly
supported by a finite-size scaling analysis of the correlation length in systems with up to 24 x 24
lattice sites. Nevertheless the spin-phonon coupling weakens the antiferromagnetic order in the
ground state. This conclusion is drawn from an analysis of the staggered magnetization at zero
temperature, which is obtained by studying the static structure factor of the spin correlation function
at very low temperatures. For g = w = 0.67J, the value of the staggered magnetization is found
to be reduced with respect to the unperturbed Heisenberg model.

Section 4.3 deals with statically dimerized Heisenberg models as the effective spin models to
describe the magnetism of distorted spin layers with spin-phonon coupling in the adiabatic limit.
These systems are studied most conveniently by means of the loop algorithm in continuous time.
In a first step, the plaquette, stair and meander models are considered as those three models
which are characterized by a minimal 2 x 2 unit cell and alternating bonds along each linear chain
of the square lattice. Numerical estimates for the ground state energies are deduced from low
temperature data for the internal energies in systems with a maximum size of 32 x 32 spins. In the
whole range 0 < § < 1, the plaquette pattern has the largest energy gain due to the dimerization
as compared to the other two dimerized models. In the sequel, the case of arbitrary dimerization
patterns is discussed, i. e. all the different possibilities of distributing an equal number of strong
and weak bonds on the square lattice. By considering the second order term in a Landau expansion
of the free energy in § for this general case, the problem of determining the optimal configuration
of dimerized bonds is mapped to an effective Ising model with long-range interactions. These
coupling constants are given by the integrated dimer correlations of the uniform Heisenberg model,
which were computed for linear system sizes N < 20 and 40 different temperatures of the quantum
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system. An application of classical Monte Carlo techniques to this Ising model always yields a
plaquette configuration as the energetically favored dimerization pattern. Under the assumption
that the loss in the elastic energy due to the lattice distortions is identical for the whole class
of dimerized models, it is then possible to establish a Landau theory for the two-dimensional
analog of the spin-Peierls transition. This is a structural phase transition from the uniform to the
plaquette-distorted lattice upon cooling down the system. In contrast to the situation in quasi
one-dimensional systems, the Monte Carlo estimates for the two-dimensional 'dimerizability’ in
systems with maximum 24 x 24 spins give no evidence for a divergence of this quantity at low
temperatures. This means that the structural transition only occurs for small values K < 0.8J of
the elastic constant. The analysis of the dimerizability also provides an instrument to determine the
critical temperature of the transition, which is likely to be continuous according to an investigation
of the free energy of the plaquette model at intermediate and high temperatures. The question
whether the spin-phonon coupling can drive the system to a paramagnetic ground state remains an
open issue. Such a transition is conceivable, because the plaquette model exhibits a quantum phase
transition from an antiferromagnetically ordered to a spin gapped phase. The critical dimerization
can be determined by studying the staggered magnetization of the plaquette model in the ground
state. An analysis of the static structure factor of the spin correlations analogous to the approach
for the bond coupling model yields a critical value of §. = 0.291.

The influence of the spin-phonon coupling on the phonon dynamics is examined in Sect. 4.4,
where a difference coupling mechanism between the spin and lattice degrees of freedom is assumed.
In an adiabatic treatment of the phonons and in an expansion up to the second order of the spin-
phonon coupling constant A, the spin-lattice interaction leads to a renormalization Go — Go + g
of the bare dynamical matrix which is specified by the particular lattice model. The entries of the
spin-phonon contribution § are given by certain structure factors of the dimer correlations of the
square lattice Heisenberg model, and hence accessible to the continuous time loop algorithm. The
numerical analysis of the matrix § for lattices with maximum 28 x 28 sites at various temperatures
implies that the phonon branches at momentum (7, 0) and (0, 7) are most affected by the spin-
lattice interaction. This reflects the tendency of the system to establish a plaquette pattern of
lattice distortions. However, the spin-phonon coupling also has a significant impact on the two
phonon modes at (7, w). This kind of lattice modulation corresponds to the formation of diagonal
stripes and hence a stair-like arrangement of strong and weak bonds in an effective magnetic model.
The occurrence of lattice instabilities is investigated in more detail for a special choice of the bare
dynamical matrix. For this K-K’-model, a significant phonon softening at (m, 0), (0, 7) and (m, )
is found upon decreasing the temperature or alternatively, increasing the spin-phonon coupling. A
thorough investigation of these features allows to examine the phase diagram of the system. Both
the occurrence of the transition and the type of lattice modulations in the low temperature phase
depend on the specific values of the elastic constants K and K’. Regardless of the temperature, a
distorted phase only exists for sufficiently large values of the fraction "—Kz The plaquette structure
can only be established for small numbers of the ratio %’ When increasing this ratio, two phonon
branches with momentum (g, g) and (g, —q) are found to vanish simultanously when increasing "—Kz
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5.2. Outlook

As far as the quantum critical XXZ chain is concerned, it remains a major challenge to evaluate the
exact analytical expressions for the spin correlation functions from the literature. For this reason
further numerical investigations in this system are indispensable. The approach from Chapt. 3
can be directly applied to study the low-temperature correlations in the gapless attractive region
—1 < A < 0 of the phase diagram. In particular, this should lead to a better understanding of
the deviations from asymptotic scaling as predicted by conformal field theory. The QMC method
is also useful to examine the spin correlations at intermediate and high temperatures, where the
results from conformal field theory are not valid.

The knowledge of the properties of the dimer correlation function is even more uncomplete due
to a lack of analytical expressions. Similarly to the case of spin correlations, the loop algorithm or
related QMC techniques can be used to study this correlation function in the region —1 < A < 0,
and at intermediate and high temperatures for general values of A. Other numerical approaches
like DMRG allow for a direct computation of the dimer correlations in the ground state. Such data
can serve for an independent analysis of the deviations from asymptotic scaling at absolute zero,
which can be compared to the findings from this dissertation.

A wide field which has only been touched in this thesis is the issue of dynamical correlations
of the XXZ chain. These are of particular interest because they can be measured in scattering
experiments. The QMC method, however, only provides direct access to Euclidean dynamical
quantities. Thus an application of DMRG or exact complete diagonalization seems to be more
promising in this context.

For the square lattice Heisenberg model coupled to phonons there remain a couple of unresolved
questions. As far as the two-dimensional bond coupling model is concerned, it is desirable to
investigate the regime with very large spin-phonon coupling. This is especially important to give a
definite answer to the question whether an increasing spin-phonon coupling can lead to a breakdown
of long-range magnetic order in the ground state. In addition to this, the occurrence of lattice
distortions should be investigated to establish the ground state phase diagram of the system.
However, especially in the case of large spin-phonon coupling the modified loop algorithm which
has been applied in this dissertation severly suffers from autocorrelation effects. For this reason
the development of alternative QMC techniques seems to be helpful to cope with these problems.

Another promising way to gain more insight into the influence of the spin-phonon coupling is to
consider the statically dimerized plaquette model. In principle, the continuous time loop algorithm
provides access to the coefficients of the fourth and higher order terms in the Landau expansion
of the free energy of this system, because arbitrary n-point correlation functions of the uniform
Heisenberg model can be evaluated. Having determined the coefficient of the fourth order, a more
detailed discussion on the structural phase transition from the uniform to the plaquette phase
is possible. In particular, one should be able to determine the temperature dependence of the
dimerization in the distorted phase. As a consequence, the analysis under which conditions the
dimerization exceeds the critical value d. becomes feasible. Furthermore, an unambiguous result
for the sign of the fourth order coefficient would allow to determine the order of the transition.

Evidently, the search for substances with a quasi two-dimensional magnetic structure is required,
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which show a structural phase transition driven by the spin-phonon coupling. To find experimental
evidence for the presence of a strong spin-lattice interaction, one has to identify those phonon
modes of the magnetic ions which show an anomalous softening behavior. Having found such a
substance, it is possible to calculate theoretical phonon dispersion curves which can be compared
to the experimental data. The adiabatic approach from Sect. 4.4 directly applies to this problem,
because it is not restricted to the simple special case of the K-K’-model. In practice, one has to
establish the bare dynamical matrix for the specific solid by modelling the lattice degrees of freedom
in a realistic fashion. Then it is straightforward to determine the full renormalized dynamical matrix
by making use of the QMC data from this thesis, and hence to deduce the desired renormalized
phonon frequencies.
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A. Appendix

A.1. Plaquette weights for the XXZ model

In this section we give a detailed derivation of the expressions (2.2.8),(2.2.9), and (2.2.10) for the
plaquette weights (2.2.7) of the XXZ model. In a simplified notation this means that we have to
calculate matrix elements
(s15p| @ PHrea/M |5l 51 (A.1.1)
with
Hplaq = é(afag‘ + oyod + Aoio}). (A.1.2)

Introducing the permutation operator P> which interchanges the spins on site 1 and site 2, we can
make use of the identity
ooy +0l0y = (1 —0i05)P (A.1.3)

in the Taylor expansion

_ﬁleaq/M Z( 1)k( ) [(1_0_1 )P12—|—A0'fa'§]k- (A.1.4-)

We now simplify the square bracket in this expression, which becomes

(1 — 0Z0%)Pin + Acio3]F =

k

> (:7)(1 0703)"PA M (003) " =
m=0
k
3 (o) 1 etoRy e ot L0 (1) Palt — (17 =
2+ Pu) (1~ 0708) + Aofadl* + 5 (1~ P) (0505 — 1) + A3t (A15)

due to the identity P7, = 1. Again we consider the square brackets, i. e.

[(1—0fo3) + Aofo3]* = [ofo5(A — 1) + 1] =

(1)@= meiosymin -

(1)@= D™ S0+ (17 + ool - (-1 =

Il
o

1
(1 + oZ0Z)ak + 5(1—c,—fc,—§)(2—A)", (A.1.6)
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and
1 1
(0703 — 1) + AgZoZ]* = 5(1 + oZo3)AF + 5(1 —oi03)(—2— D)k (A.1.7)
in an analogous fashion (here we have (af/z)2 = 1). Therefore we find for the expression (A.1.5)

[(1 - ofo3)Pio + Agfod]* =

1 1 1
S(L+0T08)A* + 2(1+ Po)(1 - 0708)(2 = A + (1 = Pro)(1 — 0505)(-2— A)¥, (A18)
and thus for Eq. (A.1.4)

e~BHoaa/M

1 1
Ee_ﬁJApM(l + 0%03) + ZeﬁJA/”"'[e—ﬁJ/'V’(l + Pio)(1 — 0%02) + M1 — Pp)(1 — 0%02)].

(A.1.9)

We now apply this identity to the basis states of the system, and obtain

e PHhisa/M| 1 1) = e BIA2M| 4 1)

e P/ M| 4 —) = %eﬁMM[e‘WM(I + =)+ =)+ M+ ) == D)),

et/ M) — ) = Z PIMBIM(| 4 ) ] = 4)) + M| 4 =) |~ +))],

e—ﬁHp.aq/M| — )= e—ﬁJA/2M| - ). (A.1.10)
We therefore have for the non-vanishing matrix elements

<_|_ T |e—ﬁH,,|aq/M| + _|_> — <_ _ |e—ﬁleaq/M| B _> — e—ﬁJA/2M’ (A.1.11)

(4 — |@PHwaa/M| _ 1y = (— 4 |@=PHwsa/M| 1 _y = @BIA/2M sinh(—BJ/M), (A.1.12)

(+ — |ePHea/M| 4 )y = (— 4 |ePHha/M| _ 1) = &PIB/2M cosh(GJ/M). (A.1.13)

These are the expressions (2.2.8),(2.2.9), and (2.2.10) except for the minus sign in the argument
of the sinh in the second line. The sign is removed when considering the matrix elements of the
unitarily transformed Hamiltonian

leaq = Jnglaq 0-5. (A114)

which are given by

(s152] oo/ M]s] ) —

i (_k_ll)k (%)k (515:](05 Hplaqo3)¥|s155) =
(

k
7)) (15l (H) o3lsish) =

(e -1 k k
$25p Z( k!) (%) (5152|(leaq)k|515£> =

5259 (515 €7 Ha/M |51 61 (A.1.15)

Note that in the second step again the identity (c3)? = 1 was used. Hence the unitary transfor-
mation only changes the sign of the matrix elements (A.1.12) as desired.
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A.2. Plaquette weights for the bond coupling model

In this part we derive the Egs. (2.3.47), (2.3.48), and (2.3.49) for the plaquette weights (2.3.45)
of the bond coupling model. Simplifying our notation as in App. A.1, we have to calculate the
matrix elements
(s15pn|ePHoaa/M | gl 5!ty (A.2.16)
with y
Hplaq = 5(&‘1&'2 —c)(1+ g[a' + a]). (A.2.17)
Note that by introducing the constant ¢ in the bond Hamiltonian (A.2.17), we have generalized
the case described in Sect. 2.3.1 where we have ¢ = 1 for the summands H; of Hs, in (2.3.39).

We will set ¢ = 1 at the end of this section. As for the plaquette weights of the XXZ model, we
first expand exp(—BHpiaq/M) in a power series and find

(sy5pn|e™PHeaa/M |5l 6l 'y =

0 k
> ( klu) (f,é,) (519[(6182 — ) [si55)(nl(1 + gla' + a])*|n"). (A.2.18)
<Kl

By making use of the permutation operator P;, of the spins on site 1 and site 2 and the identity
010> = 2P1» — 1, we can simplify

1
(&1&2 — C)k = (2P12 -1 C)k = 2k(P12 — 5[1 + C])k =
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This implies
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[(5515555255 + 6515565251)’4(9! N, n, nl) + (6515555255 - 5515565255)/4(91 M2, N, nl)] ' (A-2-20)

N = N =
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where we have introduced
A(g,m, n, ') = (n|enttola'+aD| g1y, (A.2.21)

and the abbreviations n; = Qﬁ,j,(c —1)andm = f,j,(c-l— 3). We now have to calculate A. We first

consider the simple special case gn = 0, for which one obtains
A(g,m, n,n'") = e™(n|n') = "3, (A.2.22)
Otherwise we can make use of
egn(al+a) — ggnal ggna—jlgnat.gnal — ggnal ggnagzg™n® (A.2.23)
and find
A(g,m,n,n') = <n|en(1+9[a*+a])|nl> — e”eégzﬂz(n|e9"afeg’7"’|n’) —
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Since we have (n|n' — k 4+ I) = 8, v _k+; We can evaluate the sum over /, which leads to

A(g.m.n.n') =

n

k n—n'+k k—1 n—n'+k—1
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en(1+379°) /iy E (gm)™"* . (A.2.25)
koo }k!(n—n’-l—k)!(n’—k)!
=max{0,n'—n

Together with the relation (A.2.22), this is the result (2.3.50) from Sect. 2.3.1. We can now set

¢ = 1, which implies 71 = 0 and 7, = % = 7. Inserting these findings into Eq. (A.2.20), we

finally get six non-vanishing matrix elements
(+ + n|e™PHM| 4 40’y = (= — n|e™PH/M| — —py = 5, 1, (A.2.26)
(+ — n|e PHIM| _ 1 n!y = (— 4 n|e PH/M| 4 —p) = —%[A(g, n.nn) =08, (A.2.27)
(+ — nle™PHM| 1 _p') = (= + n|ePH/M| — 1) = %[A(g, n.n,n') +8nml. (A.2.28)

Except for the minus sign in the second line, these are the results (2.3.47), (2.3.48), and (2.3.49). In
complete analogy to the calculation for the XXZ model, this sign can be removed by considering the
matrix elements of the unitarily transformed Hamiltonian (A.1.14) of (A.2.17), see also App. A.1.
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A.3. Measurement rules for four-point correlation functions

In this section, we make use of the relation (2.4.74) from Sect. 2.4.3 and derive measurement
rules for those four-point correlators which are needed for the evaluation of dimer correlations
(Di(T1)Dj(T2)). Here the dimer operator D;(71) is defined by Di(11) = Gi(T1)Gi+1(T1) = 0% 0x,
(for Dj(72) analogously), i. e. according to our notation from Sects. 2.4.2 and 2.4.3 the indices
x; and xo denote spacetime points on the (1 + 1)-dimensional checkerboard lattice for the XXZ
model. Due to the identity &,,0%, = 2(S5 Sy, + S5, S,) + 0%,0%,, we have

Di(m1)Dj(m) = achr,z(za;la;z

+2[0},05,S,.S,, + 05,055, S, + 5% 550507, + S5, 55,03, 0%,

X2~ N X2 X271 X277 Y2
+ 41555555, + 54:505,.5 + 5455555, + 555505, 551, (A.3.29)

and hence we have to determine measurement rules for four-point correlations of the type

(oyon0%07), (A.3.30)
(SFS,oz07), (A.3.31)
(§FS5,55S,)). (A.3.32)

with general spacetime indices v, w, x, y. As has been mentioned in Par. 2.4.3, there are only two
possibilities to obtain a non-vanishing contribution to these expectation values. One situation is
that the four spins sy, sw, Sx, S, group into two pairs of spins which belong to two different loops.
The second possibility is that the spins all belong to one single loop.

We start with the correlation function (A.3.30). Since the corresponding operator is diagonal
with respect to the basis of the Hilbert space, we can argue in an analogous way to our approach
for the longitudinal two-point correlations in Sect. 2.4.2. One immediately finds

SvSwSxSy if the spins group into two pairs belonging to different loops,
(oyon050,) — SySwSxSy if the four spins all belong to one single loop,
0 else.
(A.3.33)

The identical result can also be derived from relation (2.4.74) by evaluating the relevant traces.

‘ Sx ‘ Sy H one-loop contribution from S o7 ‘ one-loop contribution from S S

+1 ] +1 Tr (670?) =0 Tr (ct0ot) =0
-1 -1 Tr (670%)=0 Tr(c707)=0
+1| -1 Tr (oto*c?0%) =0 Tr (ctoXo~0*) =0
-1 | +1 Tr (607 0%0%0*) =0 Tr (6c7oXoto*X) =0

Table A.1.: Evaluation of the trace over a single loop for the cases that S{o; and S¢S act on the two
SpiNs Sx, Sy.
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We now consider expectation values of the type (A.3.31). For the two-loop contributions, there
are two different cases. The first is that the four spins group into pairs (s,. Sw) and (sx, Sy). Then
for the first pair, we have to evaluate the trace over a loop where two matrices o (depending
on the value of the spin variables s,, s, ) have been inserted. Similarly, for the second pair the
trace over a loop after the insertion of two ” matrices has to be determined. We have already
derived the results in Table 2.1 in the context of two-point correlations, see Sect. 2.4.3. Hence the
total contribution is given by the product %sxsy. In the second case we have the two distributions
(Sv.5x), (Sw. Sy) and (s,,s,), (Sw.Sx), respectively. Here the relevant traces over the individual
loops both vanish. The case that the two operators ST, ¢Z are applied to two spins lying on the
same loop is considered in Table A.1. The one-loop contributions depend on the order in which the
four spins are traversed by the loop. For example, if we assume that all four spins have the same
value +1 and that they are stringed according to s, — sy — s, — 5, we have to evaluate

1 _ 1 1
ETr (c70%070%) = —5 = "35%% (A.3.34)

As usual, the prefactor % takes into account the normalization factor % from Eq. (2.4.74). Observ-
ing that there are 2* = 16 different spin configurations and six possibilities to line up the four spins,
we have to perform such a calculation in 96 different cases. As a result one finds that there are only
two different contributions i%sxsy, where the sign depends on the order in which the four spins
are traversed by the loop. Adding an additional factor of (—1)9" (g, h are the spatial components
of the indices v, w) for the influence of the unitary transformation (2.2.11) from Sect. 2.2.1 for
both one- and two-loop contributions, we finally obtain

(—1)9ths,s, if the spins group into two pairs (sy, Sw), (Sx. Sy)
belonging to different loops,

(—1)9ths,s, if the spins belong to a single loop and are traversed

(StSz070T) - | according to Sy — Sw —> Sx = Sy, Sy —> Sw —> Sy — S«
(or the reversed orders),

(—1)9th+iss, if the spins belong to a single loop and are traversed

according to s, = sy = 5, — S, (or reversed),

0 else.
(A.3.35)
At last we consider correlations of the type (A.3.32). As for the correlation function (A.3.31),
we have to distinguish between two cases for the two-loop contributions. If the four spins group
into pairs (sy, Sw). (Sx, Sy) or (sv,Sy), (Sw, Sx), we find two factors of the same type that we have
determined in Table 2.1 for the two-point function (S{S; ). Therefore the total contribution is
(3)? = %. In the case that the pairs are (s, Sx), (Sw, Sy), there is no contribution because the
action of two operators ST to different spins belonging to the same loop yields vanishing traces,
see also Table A.1. For the one-loop contributions, we only have to calculate a single trace as

before. In the example given in the context of the correlations (A.3.31), the relevant trace is

1
STr (ctoto~07) =0. (A.3.36)
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Again such a calculation has to be done in 96 different cases. We find that the results only take
two different values, namely a vanishing contribution (as in our example) or the value of % which
depends on the order in which the four spins are traversed by the loop. We finally have to include
an additional prefactor (—1)97"+/*J which accounts for the influence of the unitary transformation
(2.2.11), where g, h, i, are the spatial components of the spacetime indices v, w, x,y. Thus in
summary, we have

(—1)g+htitil if the spins group into two pairs (sy, Sw), (Sx, Sy) or
(sv, Sy), (Sw. Sx) belonging to different loops,
(SySuSES,) = (~1)gth+i+il if the spins belong to a single loop and are traversed

according to s, — s, — S, — Sy (or the reversed order),

0 else.
(A.3.37)

A.4. A useful identity for the calculation of dimerizabilities

In this section we prove the identity (compare Eq. (A.4.38) from Par. 4.3.2)
62
80% |50

which is used for the calculation of dimerizabilities in Sects. 4.3.2 and 4.3.3. Here A is an arbitrary

Tr e=BH+A — g /0 ® dr AO)A(T)). (A.4.38)

operator which does not necessarily commute with H. The partition function Z as well as the
expectation values on the right-hand side are defined with respect to the unperturbed Hamiltonian
H, and the time-dependence of A(T) is given by a translation in imaginary time direction as defined
by Eq. (2.4.67), see Par. 2.4.1.

We start with the right-hand side of Eq. (A.4.38). Making use of the definition (2.4.67), we find

6]
g /0 d7 (A(0)A(T)) =

Z /ﬁ T (Ae™MAelT=PH) =
/ d'rTr[ Z( 7) H" (i(T_Iﬁ)IH’)] =
k=0 1=0 It
1 i (1) (=B k]
ﬁ/o dTTr[AZOIZ D) H'AH ]_

ISR ([orvcoar Jeae ] e

k=0 [

where we have inserted the Taylor representation of the exponential function in the third line,
followed by an application of the Cauchy formula for the product of two infinite series. Evaluating
the integral

—nin

G (A.4.40)

/ d’T’T (,’. 5)k i ( 1)k Iﬁk+1(
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the expression (A.4.39) becomes

7 B
. /0 dT (A(0)A()) =

[~ (—B)* : I apgk—1| _
Tr_AkZ:O(k_l_l)!gHAH ]_

- o) k
T[4 & S (oH) A | =

k=1 " I=1

- oo k
Tr(AY % > (—BH + 8A) T A(-BH + 5A)""]

k=1 I=1

=0

o [ 1

—| Tr|AY —(-BH+ 6A)"] =

3 |50 ;) k!

9 Tr (Ae™PHTe4) = o Tr e PH+e4 (A.4.41)
93 |50 86 |50

due to the cyclic invariance of the trace symbol. The result (A.4.41) is the left-hand side of
Eq. (A.4.38).

A.5. Derivation of the bare dynamical matrix G, for the
K-K’'-model

In this appendix we derive the expressions (4.4.80), (4.4.81), and (4.4.82) for the entries of the
dynamical matrix Go(g) of the K-K'-model, see Par. 4.4.3. We start with the general expression
for the harmonic potential between two lattice ions at lattice sites 7, 7,

- 2
KO I’—F’

V(R:— Rp) = — = (G — )] (A.5.42)

where Ky is the elastic constant which defines the energy scale of the interaction. As far as the
K-K'-model is concerned , the total lattice potential consists of the two parts

V({R7}) = Van({R#}) + Vnn ({R7}). (A.5.43)

where Viyy is the sum of the potentials between pairs of the nearest neighbors (coupling K), and
Vwnn contains all contributions of pairs of the next-nearest neighbors (coupling constant K').
According to Eq. (A.5.42), the total contribution of the nearest neighbor terms is

vt =53 K@) + () aa0)]

) +|(3) @ )] r (%) @i u*u—l)r b sy

where the lattice constant has been set to one as usual, and the global factor of % takes into
account that the contribution of each pair of neighboring ions is counted twice in the summation.
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In the following we evaluate the vector products in the squared brackets and determine the squares
of the resulting expressions. For example under the assumption of periodic boundary conditions,
the first squared bracket from Eq. (A.5.44) gives

% i: g [( )(Uu L7i+1J)]2 = g i [(u)? = ujui ] (A.5.45)

ij=1

Comparing this result to the relation (4.4.55) from Sect. 4.4, we find that the selected term
contributes to the following entries of the real space dynamical matrix Go(X):

G¥(% = (0,0)) — % G¥(% = (1,0)) - —g. (A.5.46)

For the other three summands in the expression (A.5.44), we can proceed in an analogous fashion.
We receive the following non-vanishing contributions to the entries of the matrix Go(X):

2K

Gonn(0,0) = = (A.5.47)
K
Gonn(1,0) = Goyn(—1,0) = T (A.5.48)
2K
Gun(0.0) = — (A.5.49)
K
Gonn(0.1) = Ggyn (0. 1) = ey (A.5.50)

With these numbers, it is possible to calculate the Fourier transform Go nn () of Go,nn (X) according
to Eq. (4.4.72), see Par. 4.4.1. The result is

ae . 2K
Gonn(d) = —= (1~ cosq1), (A.5.51)
A 2K
Gon(@) = —~(1 = cos qz), (A.5.52)
Gorun(@) = G =0, (A.5.53)

which also reflects the elementary symmetries of the square lattice. For the lattice potential Viyyn
in Eq. (A.5.43) the way of proceeding is completely analogous. The relation (A.5.44) is replaced
by

o0 =33 KL (Y- ] + [ (D)@ 5]

2=
n [ (_11) (@, — L7,+1J_1)]2 + [%( 1) (Gij — LTi—l,j+1)]2 }

(A.5.54)

S-S
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Again we have to evaluate the squared vector products. Now we find the following non-vanishing

contributions to the entries of the real space dynamical matrix Go(X):

2K’
ONNN(O 0) =
KI
ONNN(1 1) 0NNN(_1-_1) = G())(,)I(\INN(]-'_]-) = G())(,XNNN( 1 1) —_,
2K’
ONNN(O 0) =
KI
GE‘J/,JI,\INN(I' 1) GE‘J/NNN( 1, 1) GgNNN(l 1) = GEJV,J;\INN(_]-' 1) = “om’
X Xy Xy X KI
GO,JII\INN(]" 1) = Go NNN( 1,-1)= Go NNN(l 1) = _GO,JI/\INN(_]” 1)=—-7=.

Then the calculation of the Fourier transform GO_NNN(E]’) of Go nnn (X) yields

A . 2K
Gannn(@) = Gy (@) = — (1 — cos g cos q2),
2K" | )
sin g1 sin go.
m

G())(:‘II\INN(J) = G(J)/,);\INN((T) =

x x K’
Gg,NNN(l’ 1) = GgNNN( 1,-1)= G(}J/NNN(]‘ 1) = _Gg,NNN(_l' )=—5—.

(A.5.55)
(A.5.56)
(A.5.57)
(A.5.58)
(A.5.59)

(A.5.60)

(A.5.61)

(A.5.62)

By adding the matrices Go nn(§) defined by the Eqs. (A.5.51), (A.5.52), (A.5.53), and Go nnn(§)
with entries (A.5.61) and (A.5.62), respectively, we finally obtain the results (4.4.80), (4.4.81),
and (4.4.82) from Sect. 4.4.3, i. e. the desired result for the bare dynamical matrix Go(g) of the

K-K'-model.
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Abstract

In this thesis the quantum Monte Carlo loop algorithm is applied to study the properties of correla-
tion functions in low-dimensional quantum antiferromagnets. Two different types of lattice models
are investigated. The first system is the quantum critical XXZ chain. The second class of models
emerges when coupling the square lattice Heisenberg model to phonons.

The quantum Monte Carlo method provides direct access to the finite-temperature properties
of these non-frustrated quantum spin systems. The numerical estimates for thermal expectation
values are exact up to a statistical error which reflects the limited amount of CPU time in a
computer simulation. The loop algorithm in particular is based on global loop updates for the spin
degrees of freedom, substantially reducing autocorrelation effects. In the case of pure spin models,
the algorithm can be directly formulated in the limit of continuous Trotter time. The expectation
values of both diagonal and off-diagonal operators are computed efficiently within the framework
of improved estimators.

The method is first used to study the two-point spin and dimer correlation functions of the
quantum critical XXZ chain at low temperatures. Here a comprehensive survey is given of the
long distance properties of the correlations, which are obtained by a combination of conformal
field theory and the Bethe ansatz. Starting from these asymptotic expressions, the crossover from
the finite-temperature to the ground state behavior is investigated. The Monte Carlo data are
used to extract numerical estimates for the correlation amplitudes, which are compared to previous
analytical or numerical results. The deviations from asymptotic scaling at low finite temperatures
and intermediate distances are examined. The results are also used to study the algebraic and
logarithmic corrections in the ground state.

The loop algorithm is further applied to compute the spin correlations of the square lattice
Heisenberg model coupled to dispersionless Einstein phonons. The low temperature data allow to
examine the magnetic order in the ground state. Further insight into the influence of the spin-
phonon coupling is gained by studying statically dimerized Heisenberg models in two dimensions,
which are viewed as the effective models to describe the magnetism of layered spin-phonon systems
in the adiabatic limit. Here the quantum Monte Carlo technique is used to determine the specific
pattern of dimerized bonds which has the largest gain in the magnetic energy. A direct comparison
of ground state energies is only possible for a small number of dimerized systems. For this reason
an alternative approach is developed, which allows to study a significantly larger class of models.
Starting from a Landau expansion of the free energy, this amounts to a computation of specific
structure factors of the dimer correlations of the uniform Heisenberg model. As a consequence,
a Landau theory for the two-dimensional counterpart of the spin-Peierls transition is established.
The adiabatic approach also applies to the Heisenberg model coupled to dispersive phonons. In this
case the data for the dimer correlations are used to study the impact of the spin-phonon coupling
on the phonon dispersion relations. In particular, the softening of phonon modes is investigated,
which is relevant for experimental studies on substances with a quasi two-dimensional magnetic
structure.
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Deutsche Zusammenfassung

In der vorliegenden Arbeit werden die Eigenschaften von Korrelationsfunktionen in niedrigdimen-
sionalen Quanten-Antiferromagneten mit Hilfe des Quanten-Monte-Carlo-Loop-Algorithmus unter-
sucht. Dabei werden zwei unterschiedliche Typen von Gittermodellen behandelt. Das erste System
ist das quantenkritische eindimensionale XXZ-Modell. Die zweite Klasse von Modellen entsteht
durch Kopplung des Heisenberg-Modells auf dem Quadratgitter an phononische Freiheitsgrade.

Die thermodynamischen Eigenschaften dieser nichtfrustrierten Quantenspinsysteme sind im Rah-
men der Quanten-Monte-Carlo-Methode direkt zuganglich. Die Methode liefert numerisch exakte
Daten fiir thermische Erwartungswerte, die mit einem statistischen Fehler behaftet sind, der die
Beschrankungen in der Laufzeit von Computersimulationen widerspiegelt. Der Loop-Algorithmus
im Speziellen zeichnet sich durch ein globales Update-Schema der Spinfreiheitsgrade aus, was
zu einer substantiellen Reduktion von Autokorrelationseffekten fiihrt. Bei der Anwendung auf
reine Spinmodelle ist eine direkte Formulierung im Limes kontinuierlicher Trotterzeit moglich. Er-
wartungswerte sowohl diagonaler als auch nicht-diagonaler Operatoren lassen sich effizient im Rah-
men sog. Improved Estimators berechnen.

Die Methode wird zundchst auf die quantenkritische XXZ-Kette angewandt, deren Spin- und
Dimerkorrelationsfunktionen bei tiefen Temperaturen untersucht werden. Dieser Teil beinhaltet eine
ausfiihrliche Ubersicht iiber die Eigenschaften der Korrelationen bei groBen Abstanden, die sich aus
einer Kombination von konformer Feldtheorie und Bethe-Ansatz-Ergebnissen ergeben. Angewandt
auf die Monte-Carlo-Daten, ermdglichen die asymptotischen Ausdriicke eine Analyse des Ubergangs
vom Regime tiefer Temperaturen in den Grundzustand. Zudem werden unabhangige Zahlenwerte
fiir die Korrelationsamplituden bestimmt und mit dlteren numerischen oder analytischen Ergebnissen
verglichen. Abweichungen vom asymptotischen Verhalten bei tiefen Temperaturen und mittleren
Abstanden werden diskutiert. Diese Ergebnisse ermdglichen auch eine Untersuchung algebraischer
und logarithmischer Korrekturen im Grundzustand.

Der Loop-Algorithmus dient weiterhin zur Berechnung der Spin-Korrelationen des Heisenberg-
Modells auf dem Quadratgitter mit Kopplung an dispersionslose Einstein-Phononen. Die Tieftem-
peraturdaten erlauben insbesondere eine Analyse der magnetischen Ordnung im Grundzustand.
Der Einfluss der Spin-Phonon-Kopplung wird zudem im Rahmen statisch dimerisierter Heisenberg-
Modelle untersucht. Diese Systeme dienen als effektive magnetische Modelle zur Beschreibung
geschichteter Spin-Phonon-Systeme im adiabatischen Limes. Die Quanten-Monte-Carlo-Methode
ermdglicht die Bestimmung derjenigen Anordnung dimerisierter Kopplungen, die zur groBten Ab-
senkung der magnetischen Energie filhrt. Ein direkter Vergleich von Grundzustandsenergien ist
dabei nur fiir eine kleine Anzahl verschiedener Dimerisierungsmuster moglich. Aus diesem Grunde
wird ein alternativer Zugang entwickelt, der den Vergleich einer groBen Klasse von dimerisierten
Modellen zulasst. Ausgehend von einer Landau-Entwicklung der freien Energie, erfordert dieser
Ansatz die Berechnung bestimmter Strukturfaktoren der Dimerkorrelationen des nicht-dimerisierten
Heisenberg-Modells. Die im Folgenden aufgestellte Landau-Theorie fiir das zweidimensionale Anal-
ogon des Spin-Peierls-Ubergangs basiert auf denselben Daten. Das zweidimensionale Heisenberg-
Modell mit Kopplung an dispersive Phononen wird ebenfalls im Rahmen der adiabatischen Naherung
untersucht. Hier ermdglichen die numerischen Daten fiir die Dimer-Korrelationen eine Analyse
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des Einflusses der Spin-Phonon-Kopplung auf die Phononen-Dispersionsrelationen. Dabei wird
insbesondere das sog. Softening bestimmter Schwingungsmoden untersucht, was von besonderer
Relevanz fiir Experimente an Materialien mit einer quasi-zweidimensionalen magnetischen Struktur
ist.
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