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Kurzzusammenfassung   

Einfluß von Trehalose – und Mycolatbiosynthese auf die Zellwand 
eines Corynebacterium glutamicum L-Lysinproduktionsstamms 

 
Corynebacterium glutamicum besitzt, im Gegensatz zu anderen Gram-positiven Bakterien, in 

der Zellwand eine äußere Lipiddoppelschicht, die Mycolatschicht, die eine 

Permeabilitätsbarriere darstellt. Trehalose ist ein wichtiger Bestandteil der Mycolatschicht 

und an der Biosynthese von Mycolat beteiligt. Es konnte gezeigt werden, dass der erste 

Schritt der Mycolatbiosynthese, die Kondensation zu Trehalosemonomycolat, in der 

Zellwand stattfindet. Um die Bedeutung von Trehalose für die Mycolatschicht zu 

untersuchen, wurde die Zusammensetzung der Mycolatschicht gezielt durch die Kultivierung 

eines trehalosedefizienten Stammes mit verschiedenen Kohlenstoffquellen, in An- und 

Abwesenheit von Trehalose manipuliert. Ein trehalosedefizienter Stamm, der auf einem 

C. glutamicum L-Lysinproduzenten basierte, wurde gewählt, um zu überprüfen, ob die 

Veränderung der Mycolatzusammensetzung die Exkretion von L-Lysin steigern könnte. 

Weiterhin sollte die Lysinexkretion mit der Permeabilität der Zellwand korreliert werden. Die 

Analysen zeigten, dass Trehalose essentiell für die Mycolatbiosynthese war, wenn 

Saccharose oder Fruktose als Kohlenstoffquelle dienten, während Glukose Trehalose als 

Akzeptor und Überträger von Mycolsäuren ersetzen konnte. Externe Trehalose konnte 

cytoplasmatische Trehalose nur teilweise für die Mycolatsynthese ersetzen, so dass die 

Supplementierung des Mediums mit Trehalose im trehalosedefizienten Stamm nicht 

vollständig die Eigenschaften der Mycolatschicht des Ausgangsstammes wiederherstellen 

konnte. Eine unvollständige Mycolatschicht erhöhte die Permeabilität der Zellwand, und 

gleichzeitig steigerte sie die Exkretion von Lysin und regte die Exkretion von Glutamat an. 

Die Permeabilitätsbarriere kann scheinbar nur dann aufgebaut werden, wenn alle 

Bestandteile in der Menge vorhanden sind, die eine korrekte Anordnung der Mycolatschicht 

ermöglicht. 

Die physiologische Funktion von einem der drei Trehalosestoffwechselwege in 

C. glutamicum, dem OtsAB-Weg, war vor Beginn der Arbeit noch unbekannt. Die Analyse 

von Stämmen mit nur einem funktionellen Trehalosestoffwechselweg zeigte, dass der 

OtsAB-Weg der wichtigste Trehalosesyntheseweg unter Kohlenstofflimitierung war. Da 

Trehalose das wichtigste kompatible Solut unter Stickstofflimitierung ist, könnte der OtsAB-

Weg für die Synthese von Trehalose als Schutzsubstanz gegen osmotischen Stress unter 

Kohlenstoff- und Stickstofflimitierung notwendig sein, eine Mangelsituation, die im Boden, 

dem natürlichen Lebensraum von C. glutamicum, häufig auftritt. 

 



  Abstract 

Impact of trehalose and mycolate biosynthesis on the cell envelope 
of a Corynebacterium glutamicum L-lysine production strain 

 
In contrast to other Gram-positive bacteria all members of the suborder of 

Corynebacterineae, including Corynebacterium glutamicum, contain a cell envelope that 

comprises an outer lipid bilayer, the mycolate layer, which is considered as permeability 

barrier. Trehalose is an important component of the mycolate layer and involved in the 

biosynthesis of mycolate. The first step of mycolate biosynthesis, the condensation of 

trehalose monomycolate was proven to be located in the cell envelope. The composition of 

the mycolate layer was specifically manipulated by growing a trehalose deficient strain on 

different carbon sources in the absence and presence of trehalose to investigate the 

importance of trehalose for the corynebacterial mycolate layer. A strain deficient in trehalose 

biosynthesis deriving from a C. glutamicum L-lysine production strain was chosen to examine 

whether the alteration of the cell envelope could improve lysine production and to test 

whether lysine excretion was correlated with the permeability of the cell envelope. Trehalose 

was shown to be essential for mycolate synthesis, when sucrose or fructose were the carbon 

source, whereas glucose could replace trehalose as acceptor and translocator of mycolic 

acids. External trehalose substituted cytoplasmic trehalose only partially for mycolate 

synthesis so that supplementation of the medium with trehalose could not completely restore 

the properties of the mycolate layer of the trehalose deficient strain to those of the parental 

strain. An imperfect mycolate layer increased the permeability of the cell envelope, and at the 

same time enhanced the excretion of lysine and triggered the excretion of glutamate. Since 

synthesis alone of the native components of the mycolate layer was not sufficient to restore 

its native properties, the packing of the mycolate layer seemed to be crucial for its low 

permeability. 

The physiological function of one of the three different trehalose metabolic pathways of 

C. glutamicum, of the OtsAB-pathway, was unknown. Analysis of trehalose synthesis of 

strains defective in individual trehalose synthesis pathways showed that the OtsAB-pathway 

was the predominant trehalose synthesis pathway under carbon limiting conditions. Since 

trehalose is the predominant compatible solute under nitrogen limitation, the OtsAB-pathway 

might be necessary to synthesise trehalose as protectant against osmotic stress, when 

C. glutamicum is exposed to the coincidental limitation of carbon and nitrogen, which occurs 

frequently in its natural soil habitat.  
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Abbreviations 
 

AGM  Arabinogalactan mycolate 

ATP   Adenosine 5’-triphosphate 

BHI   Brain heart infusion  

BSA   Bovine serum albumin 

C   carbon 

cdw   Cell dry weight 

CTAB   N-cetyl-N,N,N-trimethylammoniumbromide 

EDTA   Ethylenediamine-tetraacetic acid 

FBP  Fibronectin binding protein 

GC   Gas chromatography 

GMM  Glucose monomycolate 

HPLC   High performance liquid chromotography 

kb   Kilo basepares 

KPi   Potassium phosphate buffer 

LB   Luria-Bertani 

LDH  Lactate dehydrogenase 

MIC  Minimum inhibitory concentration 

MM  Minimal medium 

MSTFA  N-methyl-N-trimethylsilyltrifluoracetamide 

N   Nitrogen 

OD  Optical density 

ODHC  2-oxoglutarate dehydrogenase complex 

OPA   Ortho-phthaldialdehyde  

ORF   Open reading frame 
osM  osmolal, dimension of osmolality, definied as number of osmotically active 

particles per kg solution 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

PIPES  Piperazine-1,4-bis(2-ethanesulfonic acid) 

PK  Pyruvate kinase 

PPP  Pentose phosphate pathway 

PTS   Phosphotransferase System  

PTV   Programmed temperature vaporizer  

TCA   Trichloro acetic acid  

TDM   Trehalose dimycolate 
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   Introduction 

1 Introduction 

1.1 Functions of Trehalose 

Trehalose (α-1,1-glucopyranosyl-glucopyranose) is a non-reducing disaccharide present in a 

large variety of both prokaryotes and eukaryotes, such as bacteria yeast, fungi, insects, 

invertebrates and plants, but not in mammals (Argüelles et al., 2000; Elbein et al., 2003). Its 

unique physical properties, including high hydrophilicity, chemical stability, non-hygroscopic 

glass formation and the absence of internal hydrogen bonding, make it an ideal protectant 

against different stresses such as heat, cold, dessication or osmotic stress. Furthermore, 

trehalose serves as carbon and energy source or as storage carbohydrate and controls 

metabolic pathways as a signalling molecule in yeast and in plants. In Corynebacterineae, a 

suborder within the Actinomycetales, trehalose is a crucial building block of the cell envelope. 

Exceptionally for Gram-positive bacteria, the cell envelope of Corynebacterineae comprises 

an outer lipid bilayer, named mycolate layer, distinct from the plasma membrane, which is 

composed of trehalose and mycolic acids. (Argüelles et al., 2000; Reinders et al., 1997; 

Hounsa et al., 1998; Fillinger et al., 2001; Elbein et al., 2003). 

In Corynebacterium glutamicum trehalose is utilized as protectant against osmotic stress, but 

it cannot serve as a carbon source. Since C. glutamicum belongs to the suborder of 

Corynebacterineae, its cell envelope comprises trehalose as a building block of the mycolate 

layer. The redundancy of three different pathways for trehalose synthesis emphasises the 

importance of trehalose for C. glutamicum (Wolf et al., 2003; Wolf, 2002). 

 

 

1.1.1 Trehalose as protectant against environmental stress 
Unique chemical and physical properties make trehalose a good protectant against various 

stresses. Since trehalose is a non-reducing disaccharide which does not form internal 

hydrogen bonds, it is an inert substance which is stabile over a wide range of temperature 

and pH. Analogous to other compatible solutes, trehalose stabilizes the native configuration 

of proteins by preferential exclusion to protect them against osmotic stress (Arakawa & 

Timasheff, 1985). Furthermore, trehalose protects proteins during extreme drying in the 

complete absence of water. Trehalose forms hydrogen bonds between its hydroxyl groups 

and the polar residues of the protein to maintain the native conformation of the protein 

(Carpenter & Crowe, 1989). 

One option for C. glutamicum to cope with osmotic changes is the de novo synthesis of 

trehalose (Wolf et al. 2003). The level of trehalose accumulation depends on the nutrient 

supply, especially the availability of nitrogen and the nature of the carbon source. Under 
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nitrogen limiting conditions trehalose is the predominant compatible solute, while in the 

presence of excess nitrogen trehalose synthesis is lower in favour of proline synthesis. 

C. glutamicum accumulates more trehalose grown on maltose than on sucrose. 

 

 

1.1.2 Trehalose as carbon source 
Microorganisms utilizing trehalose as carbon and energy source require an uptake system 

for trehalose and a possibility to degrade the disaccharide to glucose. Escherichia coli takes 

up trehalose via a phosphotransferase (PTS). The resulting trehalose-6-phosphate is 

cleaved by a phosphotrehalase into glucose and glucose-6-phosphate (Boos et al., 1987; 

Boos et al., 1990). At least two trehalose transport systems are present in Saccharomyces 

cerevisiae: the high-affinity H+-trehalose symporter Agt1p and a low-affinity uptake system 

that could be a facilitated diffusion process (Han et al., 1995; Stambuck et al., 1996). 

Trehalose can be hydrolysed to glucose either by the neutral trehalase Nth1 or by the acid 

trehalase Ath1 (Jules et al., 2004). 

C. glutamicum cannot utilize trehalose as carbon source indicating that this bacterium has 

either no uptake system for trehalose or no possibility to degrade it into a consumable form. 

Analysis of the genome sequence provided no information which of the two systems might 

not function in C. glutamicum since similarities neither to genes encoding uptake systems for 

trehalose nor to genes encoding trehalases were identified (Wolf, 2002). Nevertheless, a 

degradation system for trehalose was detected in C. glutamicum. The trehalose synthase 

TreS which catalyses in vitro the transglycosylation of maltose to trehalose and the reverse 

reaction in equilibrium, was found to degrade rather than synthesise trehalose under 

physiological conditions (Wolf et al., 2003). The presence of a degradation possibility 

indicates that the inability of C. glutamicum to utilize trehalose as carbon source might be 

caused by lack of an uptake system for trehalose. 

 

 

1.1.3 Trehalose as component of the bacterial cell envelope 
The cell envelope of Gram-negative bacteria contains a membrane composed of 

phospholipids and lipopoysaccharides which is distinct from the plasma membrane, whereas 

cell walls of most Gram-positive bacteria lack an outer membrane and are largely composed 

of peptidoglycan (Schlegel & Zaborosch, 1992). Although bacteria such as corynebacteria or 

mycobacteria which are members of the suborder of the Corynebacterineae are Gram-

positive bacteria harbouring a peptidoglycan based cell envelope, their cell envelope 

comprises an outer membrane similar to the cell envelope of Gram-negative bacteria. This 

additional membrane, named mycolate layer, is composed of the glycolipids trehalose 
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monomyclolate (TMM) and trehalose dimycolate (TDM), which consist of a molecule 

trehalose esterified by one or two mycolic acids, and mycolic acids covalently linked to the 

cell wall compound arabinogalactan (Brennan & Nikaido, 1995). Trehalose is not only a 

component of the mycolate layer as building block of TMM and TDM, but also involved in the 

synthesis of arabinogalactan bound mycolate because TMM is believed to serve as mycolyl-

donor for the synthesis of arabinogalactan mycolate (AGM) as well as of TDM (Shimakata & 

Minatogawa, 2000). Consequently, trehalose should be essential for the synthesis of TDM, 

TMM and arabinogalactan mycolate, the three main components of the mycolate layer. 

In mycobacteria the mycolate layer is responsible for the extremely low permeability of the 

cell envelope and consequently for the resistance of the human pathogen Mycobacterium 

tuberculosis to most common antibiotics (Brennan & Nikaido, 1995). Furthermore, trehalose 

dimycolate, also known as cord factor, plays a role in the persistence of this pathogenic 

bacterium in the host cell, presumably by inhibiting the fusion between lysosomes and 

phagosomes containing the bacteria (Spargo et al., 1991). The function of a variety of other 

trehalose containing glycolipids such as acetylated trehalose or sulphate containing 

glycolipids remains to be clarified. 

In C. glutamicum trehalose seemed indeed to be essential for the synthesis of the mycolate 

layer since the trehalose deficient C. glutamicum ATCC 13032 strains Cgl∆otsA∆treY∆treS 

and Cgl∆otsA∆treY were devoid of mycolate when they were cultured on sucrose as carbon 

source (Wolf et al., 2003). However, when the trehalose deficient Cgl∆otsA∆treY was 

supplemented with maltose, this strain synthesised arabinogalactan mycolate and a 

glycolipid which was neither TMM nor TDM. This glycolipid was identified as maltose 

monomycolate (Wolf, 2002; M. Daffé, personal communication). The synthesis of maltose 

monomycolate suggests that apart from trehalose other sugars may be involved in mycolate 

synthesis. This suggestion was supported by the observation that glucose monomycolate 

was synthesised by a C. glutamicum strain deleted in the mycolyltransferase PS1 (Puech et 

al., 2000). The type of carbon source could provide a tool to manipulate the mycolate 

composition in a trehalose deficient C. glutamicum strain to characterize the properties of the 

mycolate layer. 

 

 

1.2 Trehalose synthesis pathways in C. glutamicum 

At least five different trehalose synthesis pathways are identified in bacteria. Three pathways 

utilize activated glucose as substrate, while the others convert maltose or maltodextrin into 

trehalose. The most common synthesis route is the OtsAB-pathway. It catalyses the 

condensation of UDP-glucose and glucose-6-P to trehalose-6-P and the following 
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dephosphorylation to trehalose (Argüelles et al., 2000). The trehalose glycosyltransferring 

synthase TreT in the hyperthermophilic Archaeon Thermococcus litoralis forms trehalose and 

ADP from ADP-glucose and glucose (Qu et al., 2004). Pyrococcus horikoshii possesses a 

similar glycosyltransferase utilizing UDP-glucose and glucose as substrate (Ryu et al., 2005). 

In contrast, the bacterial species Rhizobium and Arthrobacter, the Archaeum Sulfolobus and 

Brevibacterium helvolobum, a close relative of Corynebacterium glutamicum, and 

mycobacteria utilize the storage carbohydrate maltodextrin as substrate for trehalose 

synthesis by the TreYZ-pathway (Maruta et al., 1996a/b/c; Kim et al., 2000; De Smet et al., 

2000). In the first step, the terminal maltosyl-residue of maltodextrin is transglycosylated by 

TreY to a trehalosyl-unit which is subsequently cleaved off by TreZ. A further way to 

synthesise trehalose is the transglycosylation of maltose to trehalose catalysed by the 

trehalose synthase TreS in a single step reaction. Not in all organisms is the synthesis of 

trehalose the prevalent direction of the reaction catalysed by TreS. Whereas in mycobacteria 

TreS catalyses predominantly the synthesis of trehalose (Pan et al., 2004), in Rhodobacter 

sphaeroides f. sp. denitrificans IL106 TreS catalyses the synthesis of maltose (Makihara et 

al., 2005). 

In contrast to other bacteria, C. glutamicum possesses not only one trehalose synthesis 

pathway, but three of the described pathways - OtsAB, TreYZ and TreS - indicating an 

important function of trehalose (Fig. 1). Whereas an in vitro enzymatic assay showed that the 

trehalose synthase TreS of C. glutamicum catalysed the transglycosylation of trehalose to 

maltose and the reverse reaction in equilibrium, under in vivo conditions TreS catalyses in 

C. glutamicum the degradation rather than the synthesis of trehalose (Wolf et al., 2003). 

Since no trehalases were identified in C. glutamicum, the TreS-pathway could be an 

alternative for the degradation of trehalose. The TreYZ-pathway seems to be the main 

trehalose synthesis pathway in C. glutamicum. It is responsible for the accumulation of 

trehalose as a compatible solute after a hyperosmotic shock. RNA-hybridisation experiments 

indicated that also the OtsAB-pathway is involved in the response of C. glutamicum to an 

osmotic shock, since the otsA gene was upregulated five fold after an osmotic upshift (Wolf 

et al., 2003). In contrast, data of Shimakata and Minatogawa (2000) suggest a function of the 

OtsAB-pathway in the synthesis of the cell envelope component trehalose monomycolate. 

These authors concluded from an in vitro assay that trehalose-6-phosphate, the product of 

OtsA, the first enzyme of the OtsAB-pathway, is essential for the biosynthesis of trehalose 

monomycolate. This conclusion was contradicted by the fact that a C. glutamicum strain 

deleted in the otsA gene synthesised trehalose mycolate (Wolf et al., 2003). Hence, the 

function of the OtsAB-pathway remained unclear. Only the simultaneous deletion of all three 

trehalose synthesis pathways in C. glutamicum resulted in a mutant devoid of mycolate 

suggesting that not OtsA alone, but both the enzymes of the OtsAB- and of the TreYZ-
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pathway are involved in the synthesis of the components of the mycolate layer (Wolf et al., 

2003). 

 

 

TreZTreZ
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
Fig. 1: Trehalose biosynthesis pathways in C. glutamicum 
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1.3 Corynebacterial cell envelope 

C. glutamicum shares the structure of the cell envelope with all members of the suborder of 

Corynebacterineae which includes also nocardia, rhodococci and mycobacteria (CNM-group) 

(Fig. 2). The plasma membrane is the innermost layer of the cell envelope which is protected 

by the cell wall skeleton. Peptidoglycan covalently linked to arabinogalactan which in turn is 

esterified by mycolic acids forms the cell well skeleton. The mycolic acids pair with trehalose 

mycolates to a lipid bilayer called mycolate layer. This lipid bilayer in addition to the plasma 

membrane is a phylogenetic trait of the Corynebacterineae which distinguishes their cell 

envelope from a usual cell envelope of Gram-positive bacteria. The outer layer of the cell 

envelope consists to 90 % of polysaccharides. In some corynebacterial strains the S-layer 

protein is attached to the outermost surface (Puech et al., 2001). 
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Fig. 2: Model of the cell envelope of C. glutamicum according to Puech et al. (2001), modified. From 
the cytoplasmic to the external side of the bacteria the cell envelope is composed of the plasma 
membrane, a cell wall skeleton and an outer layer. The plasma membrane is a lipid bilayer of 
phospholipids (empty oval symbols) and proteins (dark rectangles and elypses). The cell wall skeleton 
consists of peptidoglycan covalently linked to arabinogalactan which in turn is esterified by 
corynomycolic acids (thin parallel bars). The covalently bound mycolic acids arrange to the inner 
leaflet of a lipid layer with non-covalently linked lipids such as trehalose dimycolate (a pair of empty 
squares with two pairs of thin parallel bars) and trehalose monomycolate (a pair of empty squares with 
one pair of thin parallel bars). The outer leaflet of the lipid layer which is called mycolate layer is 
formed by non-covalently linked trehalose mycolate. Porins (dark squares) span the mycolate layer. 
The outer layer consists to 90% of polysaccharides, but contains also non-covalently linked lipids and 
proteins. 
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1.3.1 Plasma membrane 
The plasma membrane of C. glutamicum is mainly composed of polar phospholipids 

possessing palmitic (C16:0) and octadecenoic (C18:1) acids as fatty acid chains. 

Phosphatidylglycerol is the main head-group of phospholipids found in C. glutamicum (80 %) 

complemented by diphosphatidylglycerol (cardiolipin), phosphatidylinositol and 

phosphatidylinositol dimannosides (PIM2). 

 

1.3.2 Cell wall skeleton 
Three different layers build the cell wall skeleton in C. glutamicum. As common in all Gram-

positive bacteria a thick peptidoglycan layer neighbours the plasma membrane. In 

Corynebacterineae as in most other bacteria the peptidoglycan layer is composed of β-1,4-

linked N-acetylglucosamine and N-acetyl muramic acid residues linked to tri- or tetrapeptides 

such as L-Ala-D-Glu-meso-diaminopimelic acid or L-Ala-D-Glu-meso-diaminopimelic acid-D-

Ala (Schleifer & Kandler, 1972).  

The second layer consists of the heteropolysaccharide arabinogalactan which is composed 

of a linear alternating β-D-galactofuranosyl backbone connecting to a 3,5-branched α-D-

arabinofuranosyl structure. The galactofuranosyl backbone is attached by a phosphodiester 

link to the peptidoglycan. The terminal β-arabinofuranosyl residues are esterifyed on position 

5 by mycolic acids (Puech et al., 2001; Alderwick et al., 2005). 

Mycolic acids are long chain α-alkyl-β-hydroxy fatty acids and characteristic components of 

the mycolate layer, the third layer of the cell wall skeleton. In mycobacteria mycolic acids 

possess a very long chain (C60-90) and may be oxygenized or hydroxylated, whereas in 

nocardia and corynebacteria the alkyl-chain is shorter and the mixture of saturated and 

unsaturated fatty acids homologous (C40-50 nocardomycolic acids; C22-36 corynomycolic acids) 

(Qureshi et al., 1984). Mycolic acids linked to arabinogalactan constitute the arabinogalactan 

mycolate (AGM) or cell wall-bound mycolate. The esterification of one or two mycolic acids 

with a molecule trehalose yields trehalose monomycolate (TMM) and trehalose dimycolate 

(TDM), respectively, which are part of the extractable mycolate. TMM is the mycolyl-donor for 

the synthesis of arabinogalactan mycolate and TDM (Shimakata & Minatogawa, 2000). 

Electron microscopy of freeze-fractured preparations of whole cells of C. glutamicum, a 

method revealing lipid bilayers by characteristic fracture planes, indicated that the cell 

envelope of the C. glutamicum wild type contained, additionally to the plasma membrane, a 

second lipid bilayer closer to the cell surface. Since this lipid bilayer was missing in 

Corynebacterium amycolatum, a naturally mycolate deficient strain, it was considered to be 

composed of mycolate (Puech et al., 2001). Whereas the inner lipid layer of the mycolate 

layer is formed mainly by arabinogalactan mycolate and minor amounts of extractable 

mycolate, the outer leaflet consists exclusively of TDM and TMM (Daffé & Draper, 1998; 
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Puech et al., 2001). Thus, the cell envelope of the Gram-positive Corynebacterineae 

possesses an outer membrane similar to the cell envelope of Gram-negative bacteria. In 

Gram-negative bacteria phospholipids form the inner and lipopolysaccharides the outer 

leaflet of the outer membrane. This outer membrane exhibits a permeability barrier for 

hydrophilic as well as hydrophobic solutes. The low permeability of the outer membrane 

explains why Gram-negative bacteria are more resistant to some antibiotics than most Gram-

positive bacteria (Schlegel & Zarborosch, 1992). In contrast, Jalier and Nikaido (1994) 

showed that the permeability of the cell envelope to some hydrophilic antibiotics of the Gram-

positive Mycobacterium chelonea, harbouring a mycolate layer, was 3 times lower than that 

of Gram-negative E. coli and 10 times lower than that of Gram-negative Pseudomonas 

aeruginosa. Similar to the outer membrane in Gram-negative bacteria, in mycobacteria the 

mycolate layer is considered to be responsible for the low permeability of the cell envelope 

and consequently it is supposed to be crucial for the low susceptibility to most antibiotics 

(Brennan & Nikaido, 1995). A correlation of mycolate layer and permeability of the cell 

envelope in C. glutamicum was revealed by the inactivation of a mycolyltransferase in 

C. glutamicum. The inactivation decreased the cell wall linked-mycolate of the mutant to 

50 % and caused increased uptake rates for glycerol and acetate (Puech et al., 2000). These 

results indicated that the nature of the mycolate layer may influence also the permeability of 

the cell envelope in C. glutamicum. 

 

 

1.3.3 Porins 
Similar to the outer membrane in Gram-negative bacteria, the mycolate layer of the Gram-

positive Corynebacterineae may constitute a permeability barrier impeding the uptake of 

hydrophilic nutrients. The outer membrane of Gram-negative bacteria contains channel-

forming proteins named porins facilitating the permeation of small hydrophilic molecules 

across the outer membrane. These porins are trimers of identical subunits. Each monomer 

contains one channel of 4 nm length (Cowan et al., 1992). Also the mycolate layer of 

Corynebacterineae comprises porins which passage hydrophilic solutes through the lipid 

bilayer, but the structure of these porins differs from that of the Gram-negative porins. In 

Corynebacterineae a porin is an oligomeric protein forming a single channel (Kartmann et al., 

1999; Lichtinger et al., 1998; Riess et al., 1998). The best studied porin of this type is MspA, 

the main porin of Mycobacterium smegmatis. It is a tetrameric-protein forming a cone-like 

structure with a single pore of 10 nm length. A further difference between Corynebacterineae 

and Gram-negative bacteria is the number of porins. M. smegmatis contains 15-fold less 

porins per µm2 cell wall than a Gram-negative bacterium which results in 45 less pores per 

µm2 since one porin of a Gram-negative bacterium contains three pores. Longer channels 
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and lower pore numbers may cause lower permeability of the cell envelope of M. smegmatis 

compared to Gram-negative bacteria (Niederweis, 2003). Expression of MspA in the 

pathogenic and slow growing Mycobacterium tuberculosis and Mycobacterium bovis BCG 

accelerated the uptake of glucose and enhanced the susceptibility to β-lactam antibiotics and 

to isoniazid, ethambutol and streptomycin, indicating that porins are responsible for nutrient 

supply as well as the uptake of drugs currently used in tuberculosis chemotherapy 

(Mailaender et al., 2004). Furthermore, deletion of the porin gene mspA in the non-

pathogenic M. smegmatis rendered it multidrug resistant (Stefan et al., 2004) and enhanced 

its intracellular persistence in macrophages, demonstrating that persistence depends on the 

permeability of the mycolate layer (Sharbati-Tehrani et al., 2005). 

In C. glutamicum three different porins are identified which exhibit an oligomeric structure 

similar to MspA. The major porin is PorA, a cation-selective cell wall channel formed by an 

oligomer of a 45-amino-acid polypeptide (Lichtinger et al., 1998 and 2001). The 

characterisation of a porA deletion mutant indicated the presence of an alternative anion-

selective cell wall channel with low channel conductivity. An anion-selective channel protein 

was identified with a conductance of 700 pS in 1M KCL and called PorB. Analysis of the 

genome sequence of C. glutamicum suggested the presence of a further anion-selective 

porin similar to PorB which was named PorC (Costa-Riu et al., 2003a/b). Additionally to 

PorA, the cation-selective channel PorH was identified (Hunten et al., 2005). Since the pore 

diameter of PorA is broader and the channel conductivity higher than that of the other porins, 

PorA was considered as the predominant hydrophilic channel in C. glutamicum. This 

assumption was confirmed by the fact that the deletion of the porA gene in the C. glutamicum 

wild type ATCC 13032 rendered the mutant less susceptible to the antibiotics ampicillin, 

kanamycin, streptomycin and tetracycline (Costa-Riu et al., 2003a). Furthermore, higher 

resistance to the antibiotics of the porA deletion mutant indicated that similar to 

mycobacteria, also the mycolate layer in C. glutamicum constitutes a permeability barrier for 

the uptake of antibiotics. Whereas in mycobacteria the impact of the mycolate layer on the 

uptake of antibiotics is of special interest, in C. glutamicum the influence of the cell envelope 

on the efflux of solutes is a crucial issue, since it is one of the most important industrial 

producers of amino acids. 

 

 

1.3.4 Outer layer 
The outer layer of the corynebacterial cell envelope consists to 90% of polysaccharides 

which are composed of glucose, mannose and arabinose (Puech et al., 2001). Some 

corynebacterial strains, but not the strains used in this study, have a protein attached to the 

cell surface – the S-layer protein – PS2 (Chami et al., 1997). Furthermore, the outer layer 
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contains various lipids, mostly TDM and TMM, but also phospholipids like PIM2 and 

phosphatidyl glycerol (Puech et al., 2001). 

 
 

1.4 Biosynthesis of mycolic acids and of mycolate 

Mycolic acids are α-alkyl-β-hydroxy fatty acids and a phylogenetic trait of the 

Corynebacterineae suborder within the Actinomycetales. As the α-alkyl-β-hydroxy structure, 

the so called mycolic motif, is common to the whole suborder, the enzymatic set for mycolic 

acid biosynthesis is supposed to be shared by the Corynebacterineae, but the mechanism of 

mycolic acid biosynthesis is not known in detail. Use of cell-free extracts showed that two 

palmitic acids serve as precursors for the condensation to a C32 mycolic acid (Shimakata et 

al., 1984; Walker et al., 1973). Recently, the enzyme catalysing the condensation of two fatty 

acids to a mycolic acid was identified as polyketide synthase Pks13 in C. glutamicum 

(Portevin et al., 2004). 

Also the following mycolate synthesis is still a matter of discussion. The first step is the 

transport of a newly synthesised mycolic acid and its condensation with trehalose to yield 

trehalose monomycolate (TMM). Based on results of an in vitro assay in Corynebacterium 

matruchotii Shimakata and Minatogawa (2000) suggest a role of trehalose-6-phosphate as 

an intermediate acceptor of mycolic acids. Contradicting these results, Wolf et al. (2003) 

demonstrated that trehalose-6-phosphate is not essential for mycolate syntheses in 

C. glutamicum in vivo. A mutant devoid of trehalose-6-phosphate due to deletion of otsA, the 

gene encoding trehalose-6-phosphate synthase, synthesised trehalose mycolate. In contrast, 

in Cgl ∆otsA∆treS∆treY, which is devoid of both trehalose and trehalose-6-P due to 

inactivation of all trehalose synthesis pathways, no mycolate was detected. These results 

emphasize the essentiality of trehalose rather than the importance of trehalose-6-phosphate 

for mycolate synthesis. Regardless of the acceptor, a mycolyltransferase is predicted for 

synthesis of TMM. The identity of this mycolyltransferase is unclear. 

The last steps of mycolate synthesis are the least controversial. Mycolyltransferases transfer 

the mycolyl-residue from TMM either to the free position 6 of the trehalose-residue of another 

TMM to yield trehalose dimycolate or to a terminal arabinofuranosyl of the arabinogalactan 

layer to yield arabinogalactan mycolate. In Mycobacterium tuberculosis the three antigen 85 

proteins were identified as mycolyltransferases by site directed mutagenesis and in vitro 

enzymatic assays. The antigen 85 proteins, which are also known as fibronectin binding 

enzymes (FBP), comprise a fibronectin-binding site which enables interaction with 

macrophages of the host immune system. The fibronectin-binding-site demonstrates that 

these mycolyltransferases are exported from the cell. The presence of a signal peptide which 

facilitates export through the plasma membrane is a further proof of the extracellular activity 
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of these enzymes. Since the mycolyltransferases are exported from the cytoplasm, the 

synthesis of TDM and AGM is supposed to be localised in the cell envelope (Belisle et al., 

1997; Ronning et al., 2000; Ronning et al., 2004). 

In C. glutamicum the first mycolyltransferase identified due to sequence similarity to the 

antigen 85 proteins was encoded by the csp-1 or cop-1 gene and called PS1 (Joliff et al., 

1992). A csp-1 mutant accumulated TMM and synthesised less TDM than the wild type 

proving the mycolyltransferase activity of PS1 and indicating the presence of further 

mycolyltransferases in C. glutamicum. In the genome of C. glutamicum six putative 

mycolyltransferase genes were identified. One gene was the already known, cop-1. The 

other five were named cmt1-5 (Brand et al., 2003) or cmytA-E (Sousa-D’Auria et al., 2003). 

Since a C. glutamicum ATCC 13032 mutant deleted in cop1, cmt1 and cmt2 could not 

synthesise TDM, but the single and double mutants produced TDM, Brand et al. (2003) 

concluded that cop1, cmt1 and cmt2 code for mycolyltransferases synthesising TDM. Cross-

complementation experiments in C. glutamicum CGL 2005 suggested two different classes 

of mycolyltransferases. CMytA (PS1) and cMytB (Cmt2) could replace each other in TDM as 

well as in arabinoglactan-mycolate synthesis, whereas a cmytA deletion mutant was only 

complemented in TDM production by the overexpression of cmytC (cmt1) or cmytD (cmt5). 

Sousa-D’Auria et al. (2003) concluded that the mycolyltransferases cMytA (PS1) and cMytB 

(Cmt2) transfer a mycolyl-residue to TMM as a well as to arabinogalactan, whereas cMytC 

(Cmt1) and cMytD (Cmt5) synthesise TDM, but no arabinogalactan mycolate. 

 

 

1.5 Amino acid production with C. glutamicum 

 

1.5.1 L-lysine production with C. glutamicum 
L-lysine is an essential amino acid for mammals which has to be provided in sufficient 

amounts in animal feed to meet the nutritional requirements. Since plant based feedstuff like 

corn, wheat or barley is poor in lysine, supplementation with lysine provides a possibility to 

increase the nutrient value. C. glutamicum is the sole organism utilized for industrial 

production of L-lysine which exceeds 600,000 tons per year of lysine. Lysine belongs to the 

aspartate familiy of amino acids as well as homoserine, methionine, threonine and leucin, 

which are all synthesised starting from oxalacetate, a component of the tricarboxylic acid 

cycle (Fig. 3).  

Lysine biosynthesis is regulated by the aspartate-kinase which is feedback inhibited by lysine 

and threonine. Since this feedback inhibition limits lysine synthesis, an aspartate-kinase 

resistant to feedback inhibition provides a tool to optimize lysine production. A further option 

  11 



Introduction   

to increase lysine synthesis is the restriction of the synthesis of the by-products homoserine, 

methionine and threonine. Conventional lysine production strains are based on the 

mutagenesis of aspartate-kinase and of enzymes of by-product synthesis, since they were 

obtained by random mutagenesis followed by screening for resistance to lysine or threonine 

analogues and/or nutritional requirement for by-products (Nakayama et al., 1973). 
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Fig. 3: Biosynthesis of the amino acids of the aspartate-family in C. glutamicum. Dashed arrows, 
regulation at enzyme level (feedback inhibition). 
 

A further approach to improve lysine production uses genetic engineering. Defined 

mutagenesis avoids secondary mutations which affect growth or stability. A crucial target 

also of genetic engineering is the feedback inhibition of the aspartate-kinase which is 

encoded by lysC. Overexpression of lysC alleles encoding aspartate-kinases, which were not 

feedback inhibited, increased lysine synthesis (Thierbach et al., 1990). A genetic approach to 

reduce the formation of by-products is the inactivation of the homoserine dehydrogenase 

(hom) the first enzyme of the metabolic branch leading to homoserine, methionine and 

threonine synthesis (Eikmanns et al., 1991). Consequently, overexpression of dapA 

encoding dihydrodipicolinate synthase, an enzyme of the lysine biosynthesis pathway 

competing with the homoserine dehydrogenase for their common substrate L-aspartate 

semialdehyde, increased lysine synthesis (Eggeling et al., 1998). A further bottleneck for 

lysine production are anaplerotic reactions as shown by overexpression of pyc encoding 
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pyruvate carboxylase which synthesises oxalacetate, the precursor of all amino acids of the 

aspartate familiy (Peters-Wendisch et al., 2001). 

A further obstacle for the production of lysine is the export of the amino acid. The first 

permeability barrier for lysine is the plasma membrane. Transport across the plasma 

membrane is mediated by the exporter LysE (Broer et al., 1991a/b; Vrljic et al., 1995; Vrljic et 

al., 1996; Bellmann et al., 2001). Product excretion seems to constitute a further bottleneck 

for lysine production, since overexpression of lysE increased lysine excretion (Pfefferle et al., 

2003). Apart from the plasma membrane the cell envelope of C. glutamicum comprises a 

second lipid bilayer, the mycolate layer, which is supposed to impede the permeation of 

solutes. However, the exact impact of the mycolate layer on the excretion of amino acids is 

unknown (Eggeling & Sahm, 2001). 

 

 

1.5.2 L-glutamate production with C. glutamicum 
Although more than 1,000,000 tons per year of L-glutamate are produced by C. glutamicum, 

little is known about the mechanism causing efflux of glutamate from the cell. Special 

treatment of the cell is always required such as biotin limitation, temperature upshift or 

addition of penicillin (Kimura, 2003). Some of these treatments interfere with the fatty acid 

composition of the plasma membrane e. g. the biotin containing acyl-CoA carboxylase, the 

first enzyme of fatty acid biosynthesis, might be the target of biotin limitation. The “leak 

model” suggested that increased permeability of the plasma membrane facilitated the 

passive diffusion of glutamate, but evidence for an L-glutamate exporter ruled out this model 

(Hoischen & Krämer, 1990; Gutmann et al., 1992). 

Currently, two different models for glutamate efflux are discussed. Eggeling & Sahm (2001) 

propose that the excretion of glutamate is determined by the structure of the corynebacterial 

cell envelope. Treatments inducing glutamate excretion may facilitate the passage through 

the mycolate layer by increasing its permeability. Since the components of the cell wall 

skeleton peptidoglycan, arabinogalactan and mycolic acids are linked by covalent bonding, 

alteration of any of these components influences the mycolate layer. Thus, treatment with 

penicillin, which inhibits the synthesis of peptidoglycan, as well as addition of ethambutol, 

which interferes with the synthesis of arabinogalactan, may increase the permeability of the 

mycolate layer (Nunheimer et al., 1970; Radmacher et al., 2005b). 

Treatments which manipulate fatty acid synthesis, e. g. biotin limitation, influence the fatty 

acid composition of the plasma membrane and they may similarly alter the composition of 

mycolate layer since fatty acids are essential for mycolate synthesis. This assumption was 

supported by the inactivation of the two fatty acid synthases FAS-IA and FAS-IB in 

C. glutamicum. The inactivation mutants fasA and fasB excreted glutamate without special 
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treatment and they exhibited an altered plasma membrane as well as a reduced amount of 

mycolic acids (Radmacher et al., 2005a). 

Systematic genetic engineering of fatty acid biosynthesis indicated that also the alteration of 

the plasma membrane may influence glutamate excretion since the appropriate lipid 

composition and the suitable membrane tension activate the L-glutamate carrier 

(Nampoothiri et al., 2002). 

Kimura (2003) explains glutamate overproduction by the “metabolic flux change model”. 

Already 30 years ago the central role of the activity of the 2-oxoglutarate dehydrogenase 

complex (ODHC) in glutamate production had been discovered (Shingu & Terui, 1971). 

ODHC belongs to the tricarboxylic acid cycle (TCA cycle) and catalyses the oxidative 

decarboxylation of 2-oxoglutarate to succinyl-CoA. Thus, ODHC competes with glutamate 

dehydrogenase, the first enzyme of the glutamate synthesis pathway, for their common 

substrate 2-oxoglutarate. Low ODHC activity may shift metabolic fluxes from the tricarboxylic 

acid cycle to glutamate production. The significance of ODHC for glutamate excretion was 

confirmed by the observation that activity of ODHC was reduced under conditions which 

cause glutamate overproduction such as biotin limitation or treatment with Tween 40 or 

penicillin (Kawahara et al., 1997), and that inactivation of ODHC by disrupting the odhA gene 

triggered glutamate excretion (Kimura, 2005). Analysis of metabolic fluxes proved that 

decreased ODHC activity directed carbon fluxes towards glutamate synthesis (Shirai et al., 

2005). 

How the special treatments triggering glutamate efflux influence the change of metabolic 

fluxes is unknown. Kimura (2005) suggests that fatty acid synthesis, the target of most 

treatments, and metabolic fluxes in TCA cycle and glutamate synthesis are controlled on the 

transcriptional level by the same global metabolic regulator. 

 

 

1.6 Objectives of the PhD-Thesis 

The first part of this project assessed the role of trehalose as protectant against osmotic 

stress. Since an involvement of the OtsAB trehalose synthesis pathway in mycolate 

synthesis, as suggested by Shimakata and Minatogawa (2000) could be ruled out (Wolf et 

al., 2003), the function of the OtsAB pathway remained unknown. RNA-hybridisation 

experiments indicated a role of this pathway in the response to osmotic stress in 

C. glutamicum (Wolf et al., 2003). Since the TreYZ-pathway is regarded as the predominant 

trehalose synthesis pathway after a hyperosmotic shock, conditions were searched which 

required the OtsAB-pathway for the synthesis of trehalose under osmotic stress. 
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The major part of this project aimed to investigate the function of trehalose as an important 

component of the corynebacterial cell envelope. In contrast to other Gram-positive bacteria 

all members of the suborder of Corynebacterineae, including C. glutamicum, contain a cell 

envelope that comprises a second lipid bilayer apart from the plasma membrane, the 

mycolate layer, which is considered as permeability barrier (Puech et al., 2001). An important 

building block for the biosynthesis of the mycolate layer is trehalose, since trehalose 

monomycolate (TMM) serves as a precursor for trehalose dimycolate (TDM) and 

arabinogalactan mycolate (AGM), which are, together with TMM, the main components of the 

mycolate layer. Whereas TDM and AGM are known to be synthesised in the cell envelope, it 

is unclear where the condensation to TMM is located. One objective of this project was to 

find out whether TMM is synthesised in the cell envelope like TDM and AGM or in the 

cytoplasm, where its building blocks trehalose and mycolic acids are synthesised. 

Since the trehalose deficient C. glutamicum strains Cgl∆otsA∆treY∆treS and Cgl∆otsA∆treY 

were devoid of mycolate when they were cultured on sucrose, trehalose seemed to be 

essential for mycolate synthesis (Wolf et al., 2003). However, Cgl∆otsA∆treY cultivated in 

medium supplemented with maltose synthesised AGM and a glycolipid identified as maltose 

monomycolate (Wolf, 2002; M. Daffé, personal communication) indicating that trehalose was 

not the sole sugar acceptor for mycolic acids. This assumption was supported by the 

detection of glucose monomyolcate in a C. glutamicum strain deleted in the 

mycolyltransferase PS1 (Puech et al., 2000). A further objective of this project was to 

analyse how the carbon source specifically influences the composition of the mycolate layer 

of a C. glutamicum strain inactivated in trehalose synthesis. Supplementation of the medium 

with trehalose was tested as an additional tool to influence the synthesis of the mycolate 

layer (Tzvetkov et al., 2003). The comparison of strains harbouring differently composed 

mycolate layers should reveal how the composition determines the properties of the 

mycolate layer, especially its permeability. A C. glutamicum L-lysine production strain 

inactivated in trehalose biosynthesis was chosen for these experiments to examine whether 

excreted lysine as a measure for the efflux of solutes could be correlated to the permeability 

of the cell envelope. Moreover, analysis of this strain should reveal whether the alteration of 

the cell envelope improves lysine production. 
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2 Materials and Methods 

2.1 Strains, plasmids and oligonucleotides 

 

this studyL-Lysine production strain carrying 
chromosomal deletions in the otsA, treY and 
treS ORFs

LP∆treS∆otsA∆treY

this studyL-Lysine production strain carrying 
chromosomal deletions in the otsA and treS ORFs

LP∆treS∆otsA 

this studyL-Lysine production strain carrying a 
chromosomal deletion in the treS ORF

LP∆treS

Nakayama et al. 
(1972)

L-Lysine production strain, lysCFBR, leuCD, hseCDATCC 21527

this studyWild type carrying chromosomal deletions in the 
glgC ORF

Cgl∆glgC

this studyWild type carrying chromosomal deletions in the 
treY, treS and glgC ORFs

Cgl∆treY∆treS∆glgC

this studyWild type carrying chromosomal deletions in the 
otsA, treS and glgC ORFs

Cgl∆otsA∆treS∆glgC

Wolf et al. (2003)Wild type carrying chromosomal deletions in the 
otsA, treY and treS ORFs

Cgl∆otsA∆treS∆treY

Wolf et al. (2003)Wild type carrying chromosomal deletions in the 
treY and treS ORFs

Cgl∆treY∆treS

Wolf et al. (2003)Wild type carrying chromosomal deletions in the
otsA and treS ORFs

Cgl∆otsA∆treS

Abe et al. (1967)Wild typeATCC 13032

C. glutamicum

Reference Description Strain 

this studyL-Lysine production strain carrying 
chromosomal deletions in the otsA, treY and 
treS ORFs

LP∆treS∆otsA∆treY

this studyL-Lysine production strain carrying 
chromosomal deletions in the otsA and treS ORFs

LP∆treS∆otsA 

this studyL-Lysine production strain carrying a 
chromosomal deletion in the treS ORF

LP∆treS

Nakayama et al. 
(1972)

L-Lysine production strain, lysCFBR, leuCD, hseCDATCC 21527

this studyWild type carrying chromosomal deletions in the 
glgC ORF

Cgl∆glgC

this studyWild type carrying chromosomal deletions in the 
treY, treS and glgC ORFs

Cgl∆treY∆treS∆glgC

this studyWild type carrying chromosomal deletions in the 
otsA, treS and glgC ORFs

Cgl∆otsA∆treS∆glgC

Wolf et al. (2003)Wild type carrying chromosomal deletions in the 
otsA, treY and treS ORFs

Cgl∆otsA∆treS∆treY

Wolf et al. (2003)Wild type carrying chromosomal deletions in the 
treY and treS ORFs

Cgl∆treY∆treS

Wolf et al. (2003)Wild type carrying chromosomal deletions in the
otsA and treS ORFs

Cgl∆otsA∆treS

Abe et al. (1967)Wild typeATCC 13032

C. glutamicum

Reference Description Strain 

Tab. 1: Bacterial strains used in this study 

ab. 2: Oligonucleotides used in this study. 

 

 

 

T

 

5'-tca ttc cat atc gtc ctt ttc-3'treSGa

1.8005'-atg act gat acc tct ccg ttg-3'treSgs2

5'-tca aaa ctc act atc ggg tac-3'treYa

2.7395'-gca cgt cca att tcc gca ac-3'treYs

5'-cgt tga cgt cgt ggg tat aga cc-3'otsAa

1.8085'-tct gcc agt gga tat gac tgt cc-3'otsAs

Size of amplified fragment (kb)Oligonucleotide sequence (5'-3')Designation

5'-tca ttc cat atc gtc ctt ttc-3'treSGa

1.8005'-atg act gat acc tct ccg ttg-3'treSgs2

5'-tca aaa ctc act atc ggg tac-3'treYa

2.7395'-gca cgt cca att tcc gca ac-3'treYs

5'-cgt tga cgt cgt ggg tat aga cc-3'otsAa

1.8085'-tct gcc agt gga tat gac tgt cc-3'otsAs

Size of amplified fragment (kb)Oligonucleotide sequence (5'-3')Designation
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Tab. 3: Plasmids used in this study 

 

Eikmanns, UlmpK19mobsacB carrying ∆glgCpK19IMC

Wolf et al. (2003)pK19mobsacB carrying a 0.71 kb deletion
in the treS ORF

pK19mobsacB ∆treS

Wolf et al. (2003)pK19mobsacB carrying a 0.34 kb deletion
in the treY ORF

pK19mobsacB ∆treY

Wolf et al. (2003)pK19mobsacB carrying a 0.21 kb deletion
in the otsA ORF 

pK19mobsacB ∆otsA

Schäfer et al. (1994)ori pUC, KmR, mob sacBpK19mobsacB

Wolf, 2002pUC19 carrying a 2.5 kb fragment containing 
the treS ORF

pUC19treS

Wolf, 2002pUC18 carrying a 2.7 kb fragment containing
the treY ORF

pUC18treY

Wolf, 2002pUC18 carrying a 1.8 kb fragment containing
the otsA ORF

pUC18otsA

Yanisch-Perron et al. (1985)plac, ApRpUC18/19

ReferenceDescriptionPlasmids
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in the otsA ORF 

pK19mobsacB ∆otsA

Schäfer et al. (1994)ori pUC, KmR, mob sacBpK19mobsacB

Wolf, 2002pUC19 carrying a 2.5 kb fragment containing 
the treS ORF

pUC19treS

Wolf, 2002pUC18 carrying a 2.7 kb fragment containing
the treY ORF

pUC18treY

Wolf, 2002pUC18 carrying a 1.8 kb fragment containing
the otsA ORF

pUC18otsA

Yanisch-Perron et al. (1985)plac, ApRpUC18/19

ReferenceDescriptionPlasmids

 

 

 

2.2 Media and culture conditions 

All cultivations were performed in shake flasks under aerobic conditions. Escherichia coli 

strains were kept at 37 °C and C. glutamicum strains at 30 °C. In both cases, LB medium 

was used as complex medium. CgXII medium (Keilhauer et al., 1993) was used as minimal 

medium for C. glutamicum. As carbon source 4 % sucrose, 4 % glucose or 4 % fructose 

were used. When indicated 2 % or 0.5 % of trehalose were added to the medium. The lysine 

producer strain ATCC 21527 and its derivatives were supplemented with 0.2 g/L L-leucin and 

0.4-0.8 g/L D/L-homoserine. High osmolality was adjusted by the addition of 750 mM NaCl 

(equivalent to an osmotic upshift of approx. 1.5 osM). For all strain characterizations, cells 

from LB precultures were washed once in CgXII medium and used to inoculate CgXII 

precultures, which were grown to exponential or early stationary phase. Subsequently, from 

those cultures, the CgXII main cultures were inoculated to an initial optical density (OD600) of 

1. If the main culture differed from the preculture in any parameter, e.g. carbon source or 

NaCl content, a washing step between pre- and main culture was included. 
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2.3 Molecular biology methods 

 

2.3.1 DNA digestion, ligation and purification 
Standard techniques like DNA digestion (enzymes purchased from New England Biolabs; 

Schwalbach), ligation using T4 ligase (New England Biolabs, Schwalbach) and plasmid DNA 

purification (NucleoSpin Plasmid; Macherey Nagel, Düren) were performed according to the 

manufacturer’s protocol. 

 

2.3.2 Competent cells and transformation 
Competent E. coli cells were prepared and transformed according to Inoue et al. (1990). 

Competent C. glutamicum cells were prepared as described by van der Rest et al. (1999) 

and transformed by electroporation (2.5 kV, 600 Ω, 2.5 µF) with a Gene-Pulser (Bio-Rad, 

München). 

 

2.3.3 Polymerase chain reaction 
The knock-out of genes in the genome in C. glutamicum mutants was examined by the 

amplification of DNA fragments containing internal deletions in the case of allelic 

replacement. Amplification of DNA fragments was carried out using Taq PCR Master Mix Kit 

(Qiagen, Hilden) according to the manufacturer’s protocol. Per reaction 2.5 mM MgCl2 were 

added. Oligonucleotides were obtained from MWG Biotech (Ebersberg, Germany). 

Sequence information on the C. glutamicum genome was generously provided by the 

Degussa AG (Hanau, Germany). 

 

2.3.4 Agarose gel electrophoresis 
To test C. glutamicum mutants for allelic replacement DNA fragments were amplified by PCR 

and analyzed by agarose gel electrophoresis (1 x TAE: 0.04 M Tris, 0.5 mM EDTA, pH 

adjusted to 7.5 with acetic acid) according to Sambrook et al. (1989). DNA extraction from 

the agarose gels was done with the NucleoSpin Extract II-Kit (Macherey Nagel, Düren) 

according to the manufacturer’s protocol. 

 

2.3.5 Construction of a strain defective in trehalose synthesis 
The knock-out of genes in the genome of C. glutamicum ATCC 21527 was performed by the 

method of allelic replacement described by Schäfer et al. (1994) to construct a 

C. glutamicum lysine producer strain defective in all three trehalose synthesis pathways. 

Derivatives of the vector pK19mobsacB containing the coding regions of otsA, treY and treS 

with internal deletions were kindly provided by A. Wolf and described recently (Wolf et al., 

2003; Tab. 3). For the allelic replacement, competent C. glutamicum cells were transformed 
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with pK19mobsacB derivatives by means of electroporation (van der Rest et al., 1999). 

Plasmid integration into the genome was verified by selecting kanamycin-resistant and 

sucrose-sensitive colonies (the expression of the sacB gene encoding the levan sucrase is 

toxic in sucrose-containing media). To promote re-excision of the plasmid DNA, positive 

clones were grown overnight in LB broth containing 25 µg/ml kanamycin, washed and 

cultivated in CgXII without phosphate and ammonium source containing 0.5 % glucose for 

6 h. Since the knock-out mutants were supposed to have a slower growth rate than the wild 

type, the starvation step should prevent that the knock-out mutants were overgrown by 

clones comprising the wild type allele. The starved cells were plated on LB agar 

supplemented with 15 % sucrose in different dilutions, usually between 10 -3 and 10 -5. 

Positive colonies obtained from the subsequent selection (KmS, SucR) were tested for allelic 

replacement by PCR (oligonucleotides are listed in Tab. 2). Single or double deletion strains 

were used instead of C. glutamicum ATCC 21527 to generate strains carrying multiple gene 

deletions. LP∆treS∆otsA was constructed from LP∆treS and LP∆treS∆otsA∆treY from 

LP∆treS∆otsA (Tab. 1). 

 

 

2.3.6 Construction of strains inactivated in glycogen synthesis 
Glycogen biosynthesis was inactivated by inserting the vector pK19IMC (kindly provided by 

B. Eikmanns) via homologous recombination into the glgC gene in the genomes of 

C. glutamicum ATCC 13032, Cgl∆otsA∆treS and Cgl∆treY∆treS (Schäfer et al. 1994). In 

short, competent wild type cells were transformed with pK19IMC by means of electroporation 

(van der Rest et al., 1999). Plasmid integration into the genome was verified by selecting 

kanamycin-resistant colonies. The ∆glgC insertion strains Cgl∆glgC Cgl∆otsA∆treS∆glgC 

and Cgl∆treY∆treS∆glgC were constructed (Tab. 1). These insertion strains were examined 

for cytoplasmic glycogen accumulation. 

 

 

2.4 Biochemical methods 
 
2.4.1 Determination of protein concentration 
Protein concentration was determined according to the method of Bradford (1976). The 

solution was calibrated using bovine serum albumin. 
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2.4.2 Cell disruption 
 

2.4.2.1 Cell disruption by permeabilisation with CTAB 
For the analysis of cytoplasmic amino acids by HPLC, 1 ml cell culture was separated from 

the medium by rapid filtration using 0.45 µm glass fibre filters (GF, Schleicher & Schuell 

GmbH, Dassel, Germany). The cells were washed twice with 2 ml of CgXII medium and 

incubated in 1 ml 0.1 % N-Cetyl-N,N,N-trimethyl-ammonium bromide (CTAB) for 10 min to 

release the cytoplasmic solutes. After a centrifugation step (20,000 g; 7 min, 4 °C) the 

supernatant was collected and stored at -20 °C until use. 

 

2.4.2.2 Cell disruption by methanolysis 
Cells were disrupted by methanolysis for the quantitative analysis of cytoplasmic trehalose. 

In short, 2 ml samples were taken from cell cultures. Cells were separated from the growth 

medium by centrifugation. The cells were washed once with 1 ml of fresh, isoosmotic CgXII 

medium and frozen with liquid nitrogen. Cells were permeabilized by incubation in methanol 

at 70 °C. Cell debris was removed by centrifugation and the supernatant was used for the 

preparation of GC-samples. 

 

2.4.2.3 Mechanical cell disruption 
2 ml samples were taken from cell cultures. The cells were washed with 50 mM Tris, 50 mM 

NaCl, pH 6.3 and 300 mg glass beads were added. The cells were broken up mechanically 

by means of a FastPrep FP120 (QBiogene, Heidelberg, D) (2 x 4.5 s, 6.5 m/s). The cell 

debris was removed by centrifugation (20,000 g; 10 min, 4 °C). 

 

2.4.3 Quantification of amino acids by HPLC 
For the quantitative analysis of external amino acids, especially lysine and glutamate, 1 ml 

samples were taken from cell cultures. Cells were separated from the growth medium by 

centrifugation and analysis was performed from the diluted supernatant. Cytoplasmic 

fractions were analysed for the quantification of cytoplasmic amino acids (cf. 1.4.2.1). The 

concentration of the amino acids was determined using a reversed phase high-performance 

liquid chromatography (HPLC) system (HP 1090 Liquid chromatograph, HP1046A 

fluorescence detector; Hewlett Packard) with automated fluorescent precolumn derivatization 

by ortho-phthaldialdehyd/mercaptopropionic acid (OPA). Solutes were separated by means 

of a reversed phase column (Multospher, CS Chromatographie Service) at 40 °C with a flow 

rate of 0.5 ml/min. The mobile phase was a mixture of solvent A (20 mM sodium actetate, 

pH 7.2, 0.3 % tetrahydrofurane, 0.04 % triethylamine) and 100% methanol (solvent B). A 
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hydrophilic-to-hydrophobic solvent gradient was used ranging from 35 % solvent B in the 

beginning to 100 % solvent B at the end of a run. 

 

2.4.4 Quantification of trehalose by GC 
Cytoplasmic and external trehalose were analysed quantitatively by means of gas 

chromatography (GC). Either 1 ml of the aqueous phase obtained after methanolysis of the 

cells (cf. 1.4.2.2) or 0.1 ml of the cultural supernatant was dried under N2 at 60 °C. The 

resulting extract was methoxymized by incubation with 35 µl of a methoxylamine/pyridine 

mixture (20 mg /ml pyridine) at 30 °C for 90 min. Subsequently, 65 µl MSTFA was added and 

the samples were derivatised at 65 °C for 60 min (Sweely et al., 1963). GC was performed 

using a Finnigan Trace-GC equipped with a MEGA fused-silica capillary column (10 m 

length, 0.1 mm internal diameter, 0.25 mm film thickness) obtained from MEGA (Legnano, 

Italy). The samples were applied by split-injection (1:25) / PTV. Separation was achieved by 

a linear temperature gradient from 60 °C to 280 °C with a heating rate of 13 °C/min, starting 

at 2 min after injection. The final temperature was kept constant for 3 min for complete 

elution. Myo-inositol was used as internal and trehalose as external standard. 

 

2.4.5 Determination of the cytoplasmic glycogen concentration 
For the determination of the cytoplasmic glycogen concentration in C. glutamicum cells the 

protocol of Parrou et al. (1997) was modified. Pellets of 2 ml bacterial culture were 

suspended in 40 mM potassium acetate and incubated for 5 min at 100 °C. Cells were 

broken up mechanically (cf. 1.4.2.3) and the cell debris was removed by centrifugation. To 

degrade glycogen to glucose, 100 µl of the supernatant were incubated for 2 h at 57 °C with 

70 U/ mg amyloglucosidase (Fluka, Buchs, Schweiz). The liberated glucose was determined 

by an enzymatic colorimetric test for glucose (Glucose liquicolor, Human, Wiesbaden). 

 

2.4.6 Quantification of carbon sources in bacterial cultures 
For the quantification of the carbon source in bacterial cultures, cells were removed by 

centrifugation. Lactate concentrations in the supernatant were determined by an UV-test (R-

Biopharm, Darmstadt) based on the following principle. In the presence of lactate 

dehydrogenase (LDH), lactate is oxidized to pyruvate by NAD. The equilibrium of this 

reaction lies on the side of lactate. By trapping pyruvate in a subsequent reaction catalyzed 

by the enzyme glutamatepyruvate transaminase (GPT) in the presence of L-glutamate, the 

equilibrium can be displaced in favour of pyruvate and NADH. The amount of NADH formed 

in the above reactions is stoichiometric to the amount of lactate. The increase in NADH was 

determined by means of its light absorbance at 340 nm. 
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Sucrose concentrations were determined by measuring the D-glucose concentration before 

and after enzymatic hydrolysis of sucrose (R-Biopharm, Darmstadt). Glucose concentrations 

were determined by an enzymatic colorimetric test (Glucose liquicolor, Human, Wiesbaden). 

 

2.4.7 Isolation, fractionation and analysis of lipids 
 

2.4.7.1 Extraction of glycolipids 
For the qualitative analysis of trehalose mycolate and glucose monomycolate, lipids were 

extracted from wet cells of 100 ml cultures for 16 h with CHCl3/CH3OH [1:2, (v/v)] at room 

temperature. This procedure was repeated with CHCl3/CH3OH [1:1, (v/v)] and CHCl3/CH3OH 

[2:1, (v/v)]. The organic phases were pooled and dried. The crude lipid extracts were re-

extracted in CHCl3/H2O [8:2, (v/v)]. The lower organic phases were collected, evaporated to 

dryness to yield the crude lipid extracts from each strain and comparatively examined using 

thin layer chromatography (TLC) on silica gel-coated plates (Durasil-25, 0.25 mm thickness, 

Macherey-Nagel) developed with CHCl3/CH3OH/H2O [65:25:4, (v/v/v)]. Glycolipids were 

visualized by spraying plates with 0.2 % anthrone in concentrated H2SO4, followed by heating 

to 110 °C. Blue spots indicate the presence of glycolipids. 

 

2.4.7.2 Extraction of arabinogalactan bound mycolic acids 
The cell residues obtained after the extraction of glycolipids (cf. 1.4.7.1) were dried for the 

qualitative analysis of arabinogalactan bound mycolic acids. Fatty acids were separated from 

the bacterial residues by saponification with 40 % KOH and subsequently neutralized with 

20 % H2SO4. They were extracted with diethylether, converted to methyl esters with 

diazomethane, dried under vacuum and weighed. Lipid extracts resolved in ether (10 mg/ml) 

were examined using TLC on silica gel-coated plates (Durasil-25, 0.25 mm thickness, 

Macherey-Nagel) and developed with CHCl2. Detection of mycolate was carried out by 

spraying the TLC plates with 0.01 % rhodamine B in 0.25 M NaH2PO4. 

 

2.4.7.3 Quantification of mycolic acids by GC 
The quantification of corynomycolic acids was performed as follows: extracts of glycolipids 

(10 mg/ml in CHCl3/CH3OH [1:1, (v/v)]) were dried under vacuum, saponified with 40 % KOH 

and neutralized with 20 % H2SO4. The fatty acids were extracted with diethyl ether, converted 

to methyl esters with diazomethane, dried under vacuum and weighed. Portions of fatty acid 

methyl esters from extractable lipids (1 - 2 mg) were treated with trimethylsilyl reagents to 

derivatise hydroxylated components of the mixtures, i.e. corynomycolates, and analyzed by 

GC. Fatty acid methyl esters of arabinogalactan bound mycolic acids (cf. 1.4.7.2) were 

similarly derivatised with trimethylsilyl reagents for the analysis by means of GC. GC of fatty 
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acid methyl esters was performed using a Hewlett Packard HP4890A equipped with a fused 

silica capillary column (25 m length x 0.22 mm i.d.) containing WCOT OV-1 (0.3 mm film 

thickness, spiral). A temperature gradient of 100 - 300 °C at 5 °C / min was used, followed by 

a 5 - 9 min isotherm plateau at 300 °C. 

 

 

2.4.8 Determination of the uptake of glucose, trehalose or betaine into 
C. glutamicum cells 

Uptake rates for [14C]labeled solutes were measured to determine whether trehalose is taken 

up into C. glutamicum cells. Cultures of the wild type and Cgl∆otsA∆treS∆treY were grown 

overnight in CgXII medium with 4 % sucrose as carbon source. Cells were harvested and 

washed once in KPi buffer (50 mM KPi pH 7.5, 20 mM NaCl). Subsequently, they were 

suspended in the same buffer and kept on ice. Cells with an optical density of 3 were 

preheated for 3 min at 30 ºC before the uptake measurement was started by the addition of 

either 500 µM [14C]glucose (Hartmann Analytic, Braunschweig, Germany, 100 µCi/ml) or 50 

µM [14C]trehalose (Trenzyme GmbH, Konstanz, Germany, 1 µCi/ml) i. e. final concentrations 

of 0.025 µCi/ml or 0.05 µCi/ml of labelled glucose or trehalose, respectively, in the assays. In 

the case of the uptake of betaine, an osmotic shock was performed by the addition of 

600 mM NaCl to activate the betaine uptake carriers of C. glutamicum. Cells were preheated 

for 3 min before the uptake reaction was started by the addition of 250 µM [14C]betaine. At 

different time intervals 100 µl samples were taken and filtered rapidly through 0.45 µm glass 

fibre filters (GF, Schleicher & Schuell GmbH, Dassel, Germany). The filters were washed 

twice with 2.5 ml of 100 mM LiCl solution and the radioactivity was determined by liquid 

scintillation counting (Beckmann).  

To determine whether the label was located in the cell wall fraction or the cytosol, the assay 

conditions were changed as follows. Cells were prepared and used in the transport assay as 

described above. After an incubation time of 10 min with 50 µM [14C]trehalose, 500 µM 

[14C]glucose or 250 µM [14C]betaine 100µl cells were filtered on glass fibre filters. They were 

partly permeabilized by the addition of 1 ml of 50 mM KPi buffer containing 0.1 % N-Cetyl-

N,N,N-trimethyl-ammonium bromide (CTAB) in order to release the cytosol without 

destroying the cell envelope. After 1 min the CTAB solution was filtered and the remaining 

cell envelopes were washed twice with 2.5 ml of 100 mM LiCl solution. In a parallel approach 

the filtered cells were incubated for 1 min in 50 mM KPi buffer instead of the CTAB solution 

before being washed with LiCl. The radioactivity determined in these control cells 

represented the total amount of the accumulated substrate present after 10 min of incubation 

with [14C]trehalose, [14C]glucose or [14C]betaine. The radioactivity was determined by liquid 

scintillation counting. 
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2.4.9 Determination of the permeability of the cell envelope 
 

2.4.9.1 Determination of glycerol uptake rates 
Uptake of glycerol was used as a measure for the permeability of the cell envelope. 

Concentrations from 20 - 100 µM [14C]glycerol (PerkinElmer, 100 µCi/ml) were added to 1 ml 

of 50 mM KPi, 20 mM NaCl containing 1 mg wet cells i. e. the final concentration in the assay 

was 2 µCi/ml of labelled glycerol. Aliquots (0.1 ml) were taken after 6, 12, 18, 24, 30, 60 min 

and cells were separated from the accumulation medium by filtration through glass fiber 

filters (GF, Schleicher & Schuell GmbH, Dassel, Germany). The filters were washed twice 

with 2.5 ml of 100 mM LiCl solution and the radioactivity was determined by liquid scintillation 

counting (Beckmann). 

 

2.4.9.2 Assay for glycerol kinase activity  

To determine the activity of the glycerol kinase in ATCC 21527 and in LP∆treS∆otsA∆treY, 

cells of both strains were grown in CgXII with 4 % sucrose to stationary phase, harvested, 

washed twice in 50 mM potassium phosphate (pH 7.5) and suspended in 2 ml of 50 mM 

Tris/HCl (pH 7.5), 10 mM MgCl2 and disrupted by glass beads. Cell debris was removed by 

centrifugation. Mixtures for the determination of glycerol kinase activity, based on the method 

described by Kwakman et al. (1994), contained 100 µl cell extract, 50 mM Tris HCl, 10 mM 

MgCl2, 2 mM ATP, 1 mM phosphoenolpyruvate, 1.2 U pyruvate-kinase and 1.1 U L-lactate-

dehydrogenase. The mixture was allowed to equilibrate for 90s prior to activity measurement. 

The reaction was started by adding 0.3 mM NADH and 1 mM glycerol. The conversion of 

NADH was monitored at 340 nm. Protein concentrations were determined by the method of 

Bradford (1976). The protein content in the assay was in the range between 2 - 5 mg/ml. The 

specific activities were expressed as nmoles of NAD formed per minute per mg protein. 

 

2.4.9.3 Determination of the susceptibility of C. glutamicum strains to antibiotics 

The susceptibility of ATCC 21527 and LP∆treS ∆otsA ∆treY to the antibiotics penicillin, 

erythromycin or ethambutol was determined as an indicator for the permeability of the cell 

envelope. The minimum inhibitory concentrations (MIC) which inhibit the growth of the strains 

were determined by means of Etest® strips (AB Biodisk, Solna, Sweden). This test consists 

of an inert plastic strip with a MIC scale on one side and an immobilized exponential grade of 

antibiotic on the other side. When an Etest strip is applied to an inoculated agar surface the 

antibiotic gradient diffuses into the agar matrix. After incubation, whereby bacterial growth 

becomes visible, a symmetrical inhibition ellipse centred along the strip is seen. The MIC 

value is read from the scale where the ellipse intersects the strip. For inoculation, a CgXII 

overnight culture diluted to OD600 = 1 was spread with a cotton swab over the CgXII agar 
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plates. The plates inoculated with ATCC 21527 were incubated at 30 °C for 2 days, 

inoculated with LP∆treS ∆otsA ∆treY for 4 days. 

 

2.4.9.4 Measurement of the outer membrane permeability by using β-lactamases 

The permeation of cephalothin through the mycolic acid layer of C. glutamicum was 

measured spectrophotometrically using the method of Zimmermann and Rosselet (1977) as 

modified by Jarlier and Nikaido (1990). Mycobacterium smegmatis and C. glutamicum cells 

were grown to an OD600 of 1, harvested by centrifugation for 5 min at 3000 g at room 

temperature, washed with PBS and resuspended in 2.5 mM PIPES (pH 6.5) to a 

concentration of 80 mg of cells (wet weight) ml-1. This cell suspension (100 µl) was mixed 

with 400 µl of a 2.5 mM PIPES (pH 6.5) buffer containing 1 mM cephalothin. A sample of 

300 µl of this mixture was quickly transferred to a cuvette with 1 mm light path, and the OD 

at 260 nm was recorded for 40 min at 25 °C. In order to determine the activity of the 

periplasmic β-lactamases, 160 mg of cells (wet weight) resuspended in 1 ml of 2.5 mM 

PIPES (pH 6.5) were broken mechanically, and the hydrolysis of cephalothin by the 

supernatant, corresponding to 80 mg (wet weight) of broken cells, was measured as 

described above. 
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3 Results 

3.1 Function of the trehalose synthesis pathway OtsAB 

 

As C. glutamicum is an immotile soil bacterium it has to cope with changes of osmolality in its 

natural habitat. The bacterium adapts to altering osmolality by accumulation or synthesis of 

compatible solutes e. g. trehalose. C. glutamicum harbours three different trehalose 

synthesis pathways: OtsAB, TreYZ and TreS. Within the scenario of redundant biosynthesis 

pathways, TreS catalyses under physiological conditions rather the degradation of trehalose 

to maltose than the synthesis of trehalose. The TreYZ-pathway seems to be the main 

trehalose synthesis pathway in C. glutamicum. It is responsible for the accumulation of 

trehalose as a compatible solute after hyperosmotic shock (Wolf et al., 2003). The function of 

the OtsAB-pathway in C. glutamicum is unknown, but transcriptional regulation of the otsA 

gene indicated a function of the OtsAB-pathway in the osmostress response of C. 

glutamicum. After hyperosmotic shock the otsA gene was upregulated fivefold in carbon rich 

medium, although no osmostress dependent trehalose synthesis by OtsA and OtsB was 

detected (Wolf et al., 2003). We suggest that the OtsAB-pathway is necessary to synthesise 

trehalose after hyperosmotic shock under conditions of carbon limitation when glycogen, the 

substrate for the TreYZ-pathway, becomes limiting. Carbon limitation should not inhibit the 

OtsAB-pathway because its substrates are glucose-6-P and UDP-glucose which are 

essential for the central metabolism. 

 

 

 

3.1.1 Carbon source triggered glycogen limitation 
Since the accumulation of cytoplasmic glycogen depends on the type of carbon source 

(B. Eikmanns, personal communication), nature and quantity of the carbon source were 

varied to manipulate intracellular glycogen concentrations to analyse the influence of 

glycogen limitation on the trehalose biosynthesis pathways TreYZ and OtsAB. For this 

purpose, C. glutamicum ATCC 13032 was cultivated with 4 % glucose, 1 % glucose, 2 % 

acetate or 2 % lactate and intracellular glycogen concentrations were determined. 

 

Whereas biomass production of C. glutamicum ATCC 13032 was twice as high with 4 % 

glucose (13 g/L) than with 1 % glucose or 2 % acetate (6 g/L), the growth rate of 

C. glutamicum ATCC 13032 depended on the nature of the carbon source rather than on the 

quantity (Fig. 4). The growth rate in the exponential phase was equal with 1 % or 4 % 

26 



   Results 

glucose (µ = 0.4 h-1), whereas with 2 % acetate (µ = 0.2 h-1) it was only half as high. Also the 

glycogen concentration was influenced by the nature of the carbon source. C. glutamicum 

ATCC 13032 accumulated up to 2 µg/mg dcw glycogen after 24 h when it was cultured on 

1 % or 4 % glucose, whereas only 0.5 µg/mg dcw were detected in cells cultured on acetate. 

Since even with acetate cells contained glycogen, it was investigated whether lactate was 

more suitable to induce glycogen deficiency in C. glutamicum. 
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Fig. 4: Effect of the carbon source on bacterial growth and cytoplasmic glycogen synthesis of 
C. glutamicum ATCC 13032.  1 % glucose;  4 % glucose,  2 % acetate 
 

 

When ATCC 13032 was cultured on 2 % lactate, growth rate and biomass production was 

similar to ATCC 13032 cultured on 2 % acetate (Fig. 5). In contrast to cultivation on acetate, 

no glycogen was detected after 50 h cultivation on 2 % lactate. Thus, cultivation of 

C. glutamicum strains in medium supplemented with 2 % lactate could be used to reach the 

glycogen deficiency required for the elucidation of the function of the OtsAB-pathway. 
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Fig. 5: Effect of the carbon source on bacterial growth and cytoplasmic glycogen synthesis of 
C. glutamicum ATCC 13032.  2 % acetate;  2 % lactate. 
 

 

3.1.1.1 Significance of single trehalose synthesis pathways under carbon limitation 
Two mutants of C. glutamicum ATCC 13032 were selected to quantify the contribution of the 

TreYZ-pathway and of the OtsAB-pathway to trehalose biosynthesis. The mutant 

Cgl∆treY∆treS depended solely on the OtsAB trehalose synthesis pathway whereas 

Cgl∆otsA∆treS had only a functional TreYZ trehalose synthesis pathway. These strains and 

the wild type as a control were grown on 2 % lactate to reach glycogen limiting conditions. 

Cytoplasmic trehalose concentrations were analysed by means of GC. 

 

The strain harbouring only the TreYZ pathway (Cgl∆otsA∆treS) accumulated 0 - 5 µmoles/g 

dcw trehalose, whereas the strain depending only on the OtsAB pathway (Cgl∆treY∆treS) 

synthesised nearly wild type levels (Fig. 6). Cultivating these three strains under carbon 

surplus (4 % glucose) the opposite was found. Under these conditions, deletion of otsA did 

not influence trehalose synthesis at all, whereas a defect TreYZ-pathway reduced trehalose 

accumulation (Wolf et al., 2003). These results indicate that the cytoplasmic pools of 

precursors of the two pathways determine which biosynthetic route is used by C. 

glutamicum. 
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Fig. 6: Accumulation of cytoplasmic trehalose under carbon limitation in C. glutamicum strains with 
one functional trehalose synthesis pathway. Cultivation in minimal medium supplemented with 2 % 
lactate.  Cgl∆otsA∆treS;  Cgl∆treY∆treS;  ATCC 13032 

 

 

 

3.1.1.2 Significance of single trehalose synthesis pathways under carbon limitation 
after hyperosmotic shock 

As the transcription of the otsA gene was significantly induced after a hyperosmotic upshift 

(Wolf et al., 2003), it was investigated whether the OtsAB-pathway may become the 

predominant trehalose synthesis pathway under carbon limiting conditions. C. glutamicum 

strains Cgl∆treY∆treS, Cgl∆otsA∆treS and ATCC 13032 were cultivated in 2 % lactate for 

24 h to reach glycogen limitation. Then a hyperosmotic shock was applied by addition of 

NaCl to the growth medium. The osmolality of the basis medium CgC (0.9 osM), was 

increased by salt addition to 2.4 osM. Cytoplasmic glycogen and trehalose concentrations 

were analysed by an enzymatic assay or by means of GC, respectively. 

 

Immediately before and after hyperosmotic shock, Cgl∆otsA∆treS (TreYZ) accumulated only 

2 - 3 µmoles/g dcw of trehalose whereas Cgl∆treY∆treS (OtsAB) accumulated trehalose at 

wild type level (Fig. 7A). These data confirmed that the OtsAB-pathway was the predominant 

trehalose synthesis pathway under carbon limitation in the absence of osmotic stress. 

In spite of glycogen limitation, Cgl∆otsA∆treS (TreYZ) increased the cytoplasmic trehalose 

concentration from 2 - 180 µmoles/g dcw between 15 - 180 min after hyperosmotic shock, 

thus reaching wild type level, whereas Cgl∆treY∆treS accumulated only 1/3 of the wild type 

level in the same time frame. Analysis of the cytoplasmic glycogen level showed that these 
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strains did not synthesise glycogen shortly before and directly after hyperosmotic shock, but 

surprisingly, they started to accumulate glycogen 15 min after hyperosmotic shock (Fig. 7B). 

Thus, the substrate of the TreYZ-pathway was available 15 min after hyperosmotic shock 

facilitating trehalose synthesis by the TreYZ-pathway. Analysis of the lactate concentration in 

the supernatant of Cgl∆otsA∆treS, Cgl∆treY∆treS and ATCC 13032 cultures revealed that 

after 24 h of cultivation the lactate level (4-7 g/L) was still sufficient to facilitate glycogen 

synthesis after hyperosmotic shock (data not shown). Thus, cultivation of C. glutamicum 

strains in medium supplemented with 2 % lactate was not the right tool to obtain glycogen 

deficiency under hyperosmotic conditions. 
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Fig. 7: A, Relevance of single trehalose synthesis pathways under carbon limitation (2 % lactate) after 
hyperosmotic shock. Results from one out of three experiments are shown.  Cgl∆otsA∆treS;  
Cgl∆treY∆treS;  ATCC13032. B, Glycogen accumulation by C glutamicum strains harbouring only 
one trehalose synthesis pathway under carbon limitation after hyperosmotic shock. Light grey bars, 
Cgl∆otsA∆treS (TreYZ), dark grey, Cgl∆treY∆treS (OtsAB); black bars, ATCC 13032. 
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3.1.2 Inactivation of glycogen biosynthesis 
 

3.1.2.1 Construction of C. glutamicum strains inactivated in glycogen synthesis 
Glycogen biosynthesis was inactivated in C. glutamicum strains to avoid glycogen 

accumulation. The glgC gene encoding ADP-glucose-pyrophosphorylase, the first enzyme of 

the glycogen synthesis pathway, was inactivated in ATCC 13032 and in Cgl∆otsA∆treS and 

Cgl∆treY∆treS by inserting the plasmid pK19IMC (kindly provided by B. Eickmanns) via 

homologous recombination. The resulting insertion strains Cgl∆glgC, Cgl∆otsA∆treS∆glgC 

and Cgl∆treY∆treS∆glgC were glycogen deficient when cultivated in CgC supplemented with 

1 % sucrose whereas exponentially growing wild type cells accumulated 10 µg/mg of 

glycogen under the same conditions (data not shown). Lower growth rate and decreased 

biomass accumulation of the ∆glgC insertion strains compared to the wild type signalled that 

inactivation of glycogen biosynthesis weakened the general metabolism of the cell. 

Nevertheless, the glycogen deficient strains provided a tool to prevent trehalose synthesis by 

the TreYZ-pathway enabling the analysis of the function of the OtsAB-pathway. 

 

 

 

3.1.2.2 Significance of single trehalose synthesis pathways in C. glutamicum mutants 
inactivated in glycogen biosynthesis after hyperosmotic shock 

Growth and accumulation of internal solutes were analysed in the glycogen deficient 

C. glutamicum ∆glgC insertion mutants Cgl∆glgC, Cgl∆otsA∆treS∆glgC and 

Cgl∆treY∆treS∆glgC to find out whether the OtsAB-pathway replaces the TreYZ-pathway 

under carbon limitation after hyperosmotic shock. These strains were cultivated in CgC with 

1 % sucrose and a hyperosmotic shock was applied during exponential growth. The 

concentration of the compatible solute trehalose was determined, but also the concentration 

of the amino acid proline because under nitrogen surplus proline is the predominant do novo 

synthesised compatible solute in the wild type (Rönsch et al., 2003; Ley, 2005). Glycogen 

concentrations were measured to prove the carbon limiting conditions. 

 

All strains started to accumulate trehalose after hyperosmotic shock, but trehalose synthesis 

in the three ∆glgC insertion strains was 10 fold lower than in wild type cells (Fig. 8A). 

Cgl∆treY∆treS∆glgC, the strain harbouring the OtsAB-pathway, synthesised up to 10 µmol/g 

dcw trehalose, whereas Cgl∆otsA∆treS∆glgC synthesised only 1 µmol/g dcw trehalose. 

Thus, the OtsAB-pathway was the predominant trehalose synthesis pathway after 

hyperosmotic shock in the ∆glgC-background. 
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Surprisingly, Cgl∆otsA∆treS∆glgC, harbouring only the TreYZ-pathway, synthesised a small, 

but significant amount of trehalose. In spite of the inactivation of ∆glgC, all three insertion 

strains accumulated 0.5 µg/mg cdw cytoplasmic glycogen after hyperosmotic shock, a low 

amount compared to 10 µg/mg cdw glycogen accumulated by the wild type, but obviously 

sufficient for the TreYZ-pathway to synthesise trehalose. 

Growth of Cgl∆treY∆treS∆glgC recovered faster than that of Cgl∆otsA∆treS∆glgC after 

hyperosmotic shock emphasizing the importance of the OtsAB-pathway at the first glance 

(Fig. 8C). Since Cgl∆treY∆treS∆glgC grew also faster than the type strain ATCC 13032, 

trehalose could not be responsible for faster recovery of the mutant because cytoplasmic 

trehalose concentrations were 10 fold lower in the mutant compared to the wild type. 

Under conditions of nitrogen surplus, proline is the predominant de novo synthesised 

protectant against osmotic stress, therefore cytoplasmic proline concentrations were 

analysed in the glycogen deficient C. glutamicum strains Cgl∆glgC, Cgl∆treY∆treS∆glgC, 

Cgl∆otsA∆treS∆glgC and in the wild type. Cgl∆treY∆treS∆glgC and Cgl∆otsA∆treS∆glgC 

accumulated slightly more proline than the wild type (Fig. 8B). Thus under the conditions 

tested, proline rather than trehalose seemed to be responsible for the adaptation to osmotic 

stress also in the glycogen deficient C. glutamicum strains. 

The importance of proline was supported furthermore by the surprising phenotype of 

Cgl∆glgC. Growth of this strain hardly recovered after hyperosmotic shock. As the proline 

concentration of Cgl∆glgC was a fourth of that of the other ∆glgC insertion strains, it was 

probably not sufficient to protect this strain against osmotic stress. These results were 

reproduced with two Cgl∆glgC clones which derived from two independent inactivation 

experiments confirming that low proline accumulation was not due to accidental inactivation 

of proline biosynthesis genes. The reason for the special phenotype of Cgl∆glgC is unknown. 
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Fig. 8: Cytoplasmic accumulation of trehalose (A) and proline (B) in C. glutamicum ∆glgC insertion 
mutants after hyperosmotic shock, (C) growth.  ATCC 13032;  Cgl∆glgC,  Cgl∆otsA∆treS∆glgC; 

 Cgl∆treY∆treS∆glgC. 
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In summary, the enzymes of the OtsAB-pathway synthesised 10 times more trehalose than 

the enzymes of the TreYZ-pathway in a glycogen deficient background after hyperosmotic 

shock confirming its importance under these conditions. Nevertheless, the amount of 

trehalose accumulated was not sufficient for protection against osmotic stress as in the wild 

type 100 µmoles/g cdw of trehalose were necessary for recovery (Wolf et al., 2003). Slower 

growth and lower biomass accumulation of ∆glgC insertion strains compared to the wild type 

indicated that the energy metabolism might have been changed by the deletion of glycogen 

biosynthesis. In turn, an altered energy metabolism might explain the extremely low 

trehalose synthesis of the ∆glgC insertion strains. 

In contrast to trehalose, the compatible solute proline was synthesised in wild type amounts 

in the glycogen deficient background after hyperosmotic shock indicating that, similar to the 

situation in the wild type, proline might be the most important compatible solute in the ∆glgC 

insertion strains under conditions of N-surplus. 
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3.2 Localisation of the synthesis of trehalose monomycolate 

 

Although the mycolate layer is a phylogenetic trait of the Corynebacterineae, little is known 

about its biosynthesis. The mycolyltransferase catalysing the first step, i. e. the condensation 

a molecule of trehalose with a mycolyl-residue to trehalose monomycolate (TMM), is not 

identified. The following reactions, the transfer of the mycolyl-residue from TMM to 

arabinogalactan or to another TMM to form arabinogalactan mycolate or TDM, respectively, 

are catalysed by fibronectin binding proteins (FBP) or their analogues in C. glutamicum. 

Since these proteins are secreted, these reactions take place in the cell envelope. Whether 

synthesis of TMM is also localized in the cell envelope or in the cytoplasm where its building 

blocks are synthesised, is not known. 

The combination of the two following observations suggests that TMM synthesis is localized 

in the cytoplasm. The C. glutamicum wild type strain ATCC 13032 could not grow on 

trehalose as carbon source indicating that the disaccharide cannot be taken up by 

C. glutamicum (Wolf, 2002), and the addition of external trehalose to the medium of a 

trehalose deficient mutant of C. glutamicum facilitated synthesis of TMM (Tzvetkov et al., 

2003).  

Uptake rates for [14C]trehalose were determined for the wild type ATCC 13032 to prove the 

assumption that trehalose is not taken up into the cytoplasm by C. glutamicum. These uptake 

rates were compared to uptake into Cgl∆treY∆treS∆otsA, which was mycolate deficient 

under the chosen cultivation conditions, to differentiate between transport into the cytoplasm 

and incorporation into the mycolate layer. Uptake rates of [14C]glucose were measured to 

verify whether the energy state of Cgl∆treY∆treS∆otsA was high enough to trigger sugar 

uptake in spite of trehalose and mycolate deficiency. Both strains were cultivated in minimal 

medium with 4 % sucrose as carbon source. 

 

Nearly identical glucose uptake rates for both strains indicated a similar energy metabolism 

excluding that different uptake rates for trehalose resulted from lower energy status of the 

mycolate deficient strain compared to the wild type (Tab. 4). 

The wild type accumulated trehalose, but the uptake rate was 100 times lower than that of 

glucose. In contrast, no uptake of trehalose was detected in Cgl∆treY∆treS∆otsA which 

lacked the mycolate layer under the chosen cultivation conditions. Thus, trehalose 

accumulation in the wild type cells could reflect integration of trehalose into the cell envelope 

and more precisely into the mycolate layer rather than uptake into the cytoplasm. 
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Tab. 4: Uptake rates of [14C]trehalose and of [14C]glucose of ATCC 13032 and Cgl∆treY∆treS∆otsA 
after 10 min (trehalose) or 5 min (glucose) incubation 
 
 

 

 

 

 
9.0 +/- 0.6no uptakeCgl∆treY∆treS∆otsA

9.0 +/- 0.70.13 +/- 0.07ATCC 13032

nmol/(min*mg dcw)nmol/(min*mg dcw)

Glucose 
uptake

Trehalose 
uptakeStrain

9.0 +/- 0.6no uptakeCgl∆treY∆treS∆otsA

9.0 +/- 0.70.13 +/- 0.07ATCC 13032

nmol/(min*mg dcw)nmol/(min*mg dcw)

Glucose 
uptake

Trehalose 
uptakeStrain

 

Trehalose accumulation in isolated cell envelopes was compared to accumulation in whole 

cells to test the hypothesis that trehalose is integrated into the cell envelope by external 

enzyme activity rather than taken up into the cytoplasm. Therefore, cells were permeabilized 

with 0.1 % CTAB and washed thoroughly to separate the cytoplasmic solutes from of the 

remaining cell envelope. The compatible solute betaine served as a control for 

permeabilisation and washing conditions because it is avidly taken up into the cytoplasm 

after hyperosmotic shock and not metabolized. As a further control, the localisation of 

labelled glucose was determined because C. glutamicum takes up glucose into the 

cytoplasm and metabolizes it into cell envelope components. Accumulation of [14C]trehalose 

was determined after 10 min, while accumulation of [14C]glucose was already determined 

after 5 min as the uptake was much faster. In the case of the uptake of betaine, an osmotic 

shock was performed to activate the betaine uptake carriers of C. glutamicum and 

accumulation of [14C]betaine was measured 10 min after the osmotic shock. 

 

Accumulation of trehalose in ATCC 13032 was similar in isolated cell walls and in intact cells 

(Tab. 5). Thus, accumulation of trehalose detected in the whole cells represented 

accumulation only in the cell envelope. This proved that trehalose was not taken up into the 

cytoplasm, but that it was only integrated into the cell envelope. Permeabilisation and 

washing conditions were suitable to separate the cell wall from the cytoplasm and to prevent 

adhesion of the labelled substance to the cell wall as shown by the controls. Whereas 10 min 

after hyperosmotic shock 85.7 nmol/mg cdw betaine were taken up into the whole cells, no 

labelled betaine was detected in the cell wall, confirming that washing conditions were 

sufficient. After incubation with [14C]glucose 2/3 of the label was detected in the intact cells 

whereas 1/3 accumulated in the isolated cell envelopes. Labelling of the cell wall might result 

from [14C]glucose integrated into cell wall components, confirming that incorporation of 

[14C]labelled substances into the cell wall can be detected. 

In contrast to wild type cells, no label was detected in the intact cells or in the cell wall when 

Cgl∆treY∆treS∆otsA was incubated with [14C]trehalose proving the uptake measurements. 

Cgl∆treY∆treS∆otsA accumulated the control substances betaine and glucose similar to the 
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wild type. 60.2 ± 6.6 nmol/mg cdw of betaine was detected in the intact cells, but nothing in 

the isolated cell walls confirming that the washing conditions were sufficient also for the 

mycolate deficient strain. After 5 min incubation with [14C]glucose, 2/3 of the label were in the 

intact cells whereas 1/3 was in the cell walls demonstrating that also in the strain lacking the 

mycolate layer incorporation of [14C]labelled substances into the cell wall could be detected. 

Presumably, the label detected in the cell wall corresponded to glucose metabolised into 

components of the peptidoglycan or the arabinogalactan layer. 

 

 
Tab. 5: Accumulation of [14C]trehalose, [14C]betaine and [14C]glucose in ATCC 13032 and 
Cgl∆treY∆treS∆otsA after 10 min (trehalose, betaine) or 5 min (glucose) incubation 
 
 
 
 
 
 
 
 
 

in cell wallsin whole cellsin cell wallsin whole cellsin cell wallsin whole cells

1.8 ± 0.35.4 ± 0.70.3* ± 0.0660.2 ± 6.60.2* ± 0.10.1* ± 0.4Cgl∆treY∆treS∆otsA

3.2 ± 0.07.5 ± 0.20.5* ± 0.0585.7 ± 101.5 ± 0.31.6 ± 0.5ATCC 13032

nmol/mg cdwnmol/mg cdwnmol/mg cdwnmol/mg cdwnmol/mg cdwnmol/mg cdw

Glucose
accumulation

Betaine
accumulation

Trehalose
accumulationStrain

in cell wallsin whole cellsin cell wallsin whole cellsin cell wallsin whole cells

1.8 ± 0.35.4 ± 0.70.3* ± 0.0660.2 ± 6.60.2* ± 0.10.1* ± 0.4Cgl∆treY∆treS∆otsA

3.2 ± 0.07.5 ± 0.20.5* ± 0.0585.7 ± 101.5 ± 0.31.6 ± 0.5ATCC 13032

nmol/mg cdwnmol/mg cdwnmol/mg cdwnmol/mg cdwnmol/mg cdwnmol/mg cdw

Glucose
accumulation

Betaine
accumulation

Trehalose
accumulationStrain

* in these measurements the detected radioactivity was below 70 counts per minute, which is the level 
of background activity 
 

 

Whereas Cgl∆treY∆treS∆otsA, which lacked the mycolate layer, did not accumulate 

trehalose during this short incubation time, neither in cell envelopes nor in intact cells, the 

wild type accumulated trehalose exclusively in the cell envelope. These data show that the 

wild type incorporated trehalose into the cell envelope, more precisely into the mycolate layer 

and furthermore, that the wild type could not take up trehalose into the cytoplasm. Thus, the 

assumption was substantiated that TMM is synthesised in the cell envelope and not in the 

cytoplasm. 
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3.3 Importance of trehalose for the cell envelope of a 
C. glutamicum L-lysine production strain 

 

Exceptionally for Gram-positive bacteria, the cell envelope of Corynebacterineae comprises 

a second lipid bilayer apart from the plasma membrane, the mycolate layer (Puech et al., 

2001). The mayor building blocks of the mycolate layer are mycolic acids and trehalose. 

Since C. glutamicum as well as the human pathogens Mycobacterium tuberculosis and 

Mycobacterium leprae belong to the suborder of the Corynebacterineae they share the 

mycolate layer as a characteristic trait. In mycobacteria the mycolate layer renders the cell 

envelope impermeable to most of the common antibiotics (Brennan & Nikaido, 1995). As 

recombinant C. glutamicum strains with reduced mycolate content showed increased uptake 

rates for glycerol and acetate, the mycolate layer might determine the permeability of the cell 

envelope also in corynebacteria (Puech et al. 2000). Trehalose seemed to be essential for 

the synthesis of the mycolate layer since the trehalose deficient C. glutamicum ATCC 13032 

strains Cgl∆otsA∆treY∆treS and Cgl∆otsA∆treY were devoid of mycolate when they were 

grown on sucrose as carbon source (Wolf et al., 2003). However, when the trehalose 

deficient Cgl∆otsA∆treY was supplemented with maltose, this strain synthesised 

arabinogalactan mycolate and maltose monomycolate (Wolf, 2002; M. Daffé, personal 

communication) indicating that trehalose was not the sole sugar acceptor for mycolic acids. 

This assumption is supported by the detection of glucose monomycolate in a C. glutamicum 

strain deleted in the mycolyltransferase PS1 (Puech et al., 2000). This project addressed the 

question how the carbon source and the availability of trehalose influence the synthesis of 

mycolate and how in turn an altered mycolate layer may change the properties of the cell 

envelope, especially the permeability. 

Whereas in mycobacteria the influence of the cell envelope on the uptake of antibiotics is 

important, in C. glutamicum the influence of the cell envelope on the efflux of substances is 

more relevant as it is the sole industrial producer of the amino acids L-lysine and L-

glutamate. Whereas excretion of glutamate requires specific conditions e. g. biotin limitation 

or treatment with detergents (Eggeling and Sahm, 2001), the production of lysine is carried 

out with especially mutated C. glutamicum strains. The lysine biosynthesis pathway or 

pathways leading to side-products are manipulated, either by undirected mutagenesis and 

screening or by genetic engineering, to obtain C. glutamicum lysine producer strains 

(Pfefferle et al., 2003). The discovery of the lysine exporter LysE in C. glutamicum revealed 

that efficient lysine efflux is a further prerequisite for lysine production (Broer et al., 1991 a/b; 

Vrljic et al., 1995; Vrljic et al., 1996; Bellmann et al., 2001). LysE exports lysine across the 

plasma membrane into the cell envelope where lysine has to cross a second lipid bilayer - 
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the mycolate layer. As the deletion of trehalose synthesis pathways influenced the 

composition of the mycolate layer, trehalose deficiency may provide a further tool to facilitate 

the efflux of amino acids. However, it has to be considered that amino acids may not cross 

the mycolate layer directly, but that porins may facilitate the crossing. 

Consequently, the question whether trehalose deficiency could enhance amino acid 

excretion by a lysine producer strain was a further focus of this project. Moreover, it was 

examined whether excreted lysine as a measure of the efflux of solutes could be correlated 

to the permeability of the cell envelope. 

 

 

3.3.1 Characterisation of C. glutamicum L-lysine production strain 
ATCC 21527 

The L-lysine production strain ATCC 21527 was chosen to address the question how the 

availability of trehalose influences the properties of the mycolate layer and the excretion of 

amino acids, and moreover, whether trehalose deficiency could enhance the excretion of 

amino acids. Furthermore, this strain facilitated to examine whether the permeability of the 

cell envelope and the excretion of amino acids could be correlated. 

The C. glutamicum lysine producer strain ATCC 21527 was obtained by random mutation 

and selection. Requirement for leucine and homoserine and resistance to the threonine 

analogue α-amino-β-hydroxyvaleric acid indicate that lysine synthesis in ATCC 21527 was 

increased due to inactivated by-product synthesis and an aspartate-kinase resistant to feed-

back inhibition. During fermentation this strain produced 38.2 g/L of L-lysine (Nakayama et 

al., 1973). 

Comparison of lysine producer C. glutamicum ATCC 21527 to the wild type ATCC 13032 

should reveal how the mutations in the lysine producer influenced the general metabolism 

and especially trehalose metabolism to see whether the impact of trehalose metabolism on 

the mycolate layer in the wild type could be adapted to the lysine producer. Therefore, 

growth and cytoplasmic and external concentrations of lysine and trehalose were analysed 

with HPLC and GC, respectively. Since the behaviour of the wild type was well characterised 

under different osmotic conditions (Wolf, 2002), the two strains were compared in the 

absence of osmotic stress (0.2 osM) and under high osmolality (2.4 osM). 

 

Introduction of amino acid auxotrophy in the lysine producer increased the generation time 

and the yield of biomass two times compared to the wild type in the absence of osmotic 

stress (Fig. 9). Besides the difference in growth velocity, increase of the osmolality had a 

similar effect on both strains since the growth rate of both strains divided in half under high 

osmolality. 
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Fig. 9: Comparison of growth of wild type ATCC 13032 and L-lysine producer ATCC 21527 at 
constant osmolality of 0.2 osM or 2.4 osM.  ATCC 13032 (0.2 osM),  ATCC 13032 (2.4 osM),  
ATCC 21527 (0.2 osM);  ATCC 21527 (2.4 osM). 
 

Also trehalose metabolism was similar in wild type and lysine producer under the same 

cultivation conditions (Fig. 10). In the absence of osmotic stress, both strains accumulated 

about 50 µmoles/g cdw cytoplasmic trehalose and excreted about twice as much into the 

culture medium. Both, the cytoplasmic and the external trehalose concentration rose to the 

fivefold amount under hyperosmotic conditions in the wild type as well as in the lysine 

producer. Data for the wild type were consistent with results of the analysis of trehalose 

metabolism under different osmotic conditions by A. Wolf (2002). 
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Fig. 10: Comparison of cytoplasmic and external trehalose accumulation by wild type ATCC 13032 
and L-lysine producer ATCC 21527 at constant osmolality of 0.2 osM or 2.4 osM.  ATCC 13032 (0.2 
osM),  ATCC 13032 (2.4 osM),  ATCC 21527 (0.2 osM);  ATCC 21527 (2.4 osM).  
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Lysine synthesis was different in both strains (Fig. 11). Whereas the wild type accumulated 

about 20 µmoles/g cdw cytoplasmic lysine which was not excreted, the lysine producer 

accumulated the 7 fold amount and excreted 50 mM (7.3 g/L) lysine after 50 h cultivation. 
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Fig. 11: Comparison of cytoplasmic and external L-lysine accumulation by wild type ATCC 13032 ( ) 
and L-lysine producer ATCC 21527 ( ) at an osmolality of 0.2 osM. 
 

 

As expected, the lysine production strain excreted lysine in contrast to the wild type. Since 

cells were cultivated in shake flasks the lysine excretion was lower than excretion achieved 

by fermentation (Nakayama et al., 1973). 

Auxotrophy for homoserine and leucine limited growth rate and biomass production of the 

lysine producer compared to the wild type, but the overall growth behaviour was the same 

under the tested conditions. Trehalose metabolism was unaffected by the mutations in the 

lysine producer. As the influence of deletion of enzymes of trehalose metabolism might be 

similar in both strains, too, the lysine producer ATCC 21527 is a suitable strain to investigate 

the influence of trehalose deficiency on properties of the mycolate layer and on lysine 

excretion. 
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3.3.2 Construction of a C. glutamicum lysine production strain defective in 
trehalose biosynthesis 

A C. glutamicum L-lysine production strain defective in all three trehalose synthesis 

pathways was the prerequisite to investigate the influence of trehalose metabolism on the 

mycolate layer and on the excretion of amino acids. Either the otsA, treS or treY gene 

encoding the first enzyme of one of the three trehalose synthesis pathways, respectively, 

was deleted in the chromosome of C. glutamicum lysine production strain ATCC 21527. Wild 

type alleles were exchanged against alleles comprising internal deletions by two events of 

homologous recombination (Schäfer et al., 1994). Plasmids containing the otsA, treS or treY 

gene with internal deletions were described recently (Wolf et al., 2003). Strains carrying 

multiple gene deletions were generated by further exchanges of alleles in single or double 

deletion strains. LP∆treS∆otsA∆treY defective in all three trehalose synthesis pathways was 

constructed. This strain was indeed unable to synthesise trehalose as demonstrated by GC 

analysis (data not shown). 

 

 

3.3.3 Effect of trehalose deficiency on the growth behaviour of C. glutamicum 
lysine producer ATCC 21527  

Since the trehalose deficient wild type mutant was mycolate deficient when cultured on 

sucrose as carbon source, but not on maltose, growth of LP∆treS∆otsA∆treY was analysed 

in medium supplemented with different carbon sources, i. e. with 4 % sucrose, 4 % fructose 

and 4 % glucose. Sucrose and fructose are of major importance for the industrial production 

of L-lysine which is carried out mostly on molasses, whereas in research, almost exclusively 

glucose is used as carbon source. The cultures were supplemented with 2 % trehalose to 

assay whether external trehalose could be used for mycolate synthesis and whether the 

phenotype of the parent strain ATCC 21527 could be restored, although C. glutamicum could 

not take up trehalose into the cytoplasm (cf. 3.2). 

 

LP∆treS∆otsA∆treY grew on all three carbon sources, but growth rate and biomass 

accumulation were significantly decreased compared to the reference strain ATCC 21527 

(ATCC 21527 µ = 0.3 h-1; LP∆treS∆otsA∆treY µ = 0.2 h-1; Fig. 12). LP∆treS∆otsA∆treY 

regained native growth behaviour supplemented with fructose or glucose in the presence of 

2 % trehalose whereas cultivation on sucrose and trehalose only partially restored growth. 

Thus, trehalose added to the culture medium could replace at least partially trehalose 

biosynthesis. The level of restoration of growth behaviour depended not only on the 

availability of trehalose, but also on the nature of the carbon source. 
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Fig. 12: Effect of external trehalose on growth of L-lysine producer ATCC 21527 and trehalose 
deficient LP∆treS∆otsA∆treY in dependence of the carbon source of the medium. A, sucrose; B, 
glucose; C, fructose.  ATCC 21527 medium without trehalose;  ATCC 21527 medium with 2 % 
trehalose;  LP∆treS∆otsA∆treY medium without trehalose;  LP∆treS∆otsA∆treY medium with 2 % 
trehalose. 
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During cultivation, cells of LP∆treS∆otsA∆treY exhibited a phenotype distinct from the parent 

strain. They aggregated in liquid culture (BHI) and after centrifugation the cell-pellet was 

difficult to resuspend in medium. On agar plates (CgXII + sucrose) the colony surface was 

rough compared to the smooth bacterial lawn of ATCC 21527 and aggregation of cells was 

observed in the microscope. The tendency of the cells to adhesion indicated that trehalose 

deficiency altered the cell surface properties. Probably, the cell surface became more 

hydrophobic. External trehalose decreased the tendency to aggregation. A similar phenotype 

was described for the wild type based trehalose deficient strain Cgl∆otsA∆treS∆treY (Wolf, 

2002). 

 

 

 

3.3.4 Effect of trehalose availability and carbon source on the composition of 
the mycolate layer 

The mycolate layer consists of mycolic acids covalently linked to arabinogalactan, the 

arabinogalactan mycolate (AGM), and mycolate extractible by organic solvents namely 

trehalose mono- and dimycolate (TMM and TDM). The composition of the mycolate layer of 

LP∆treS∆otsA∆treY and of ATCC 21527 cultivated with sucrose, glucose or fructose in 

combination with 0, 0.5 or 2 % of trehalose was analysed by means of thin-layer 

chromatography (TLC) to find out how the availability of trehalose and the type of carbon 

source influenced the mycolate composition in LP∆treS∆otsA∆treY. The trehalose deficient 

strain was supplemented with 0.5 % and 2 % trehalose to see whether externally supplied 

trehalose could be used for mycolate synthesis, although C. glutamicum could not take up 

trehalose into the cytoplasm (cf. 3.2). 

ATCC 21527 synthesised arabinogalactan mycolate in equal amounts independent of 

trehalose supplementation and carbon source (Fig. 13.A-C, left). This strain synthesised both 

TMM and TDM under all tested conditions. The amount of trehalose mycolates increased 

with increasing trehalose supplementation (Fig. 13.A-C, right). Thus, the composition of the 

mycolate layer of ATCC 21527 was independent of the carbon source and depended only 

quantitatively on the supplementation with trehalose (cf. summary in Tab. 6). 

In contrast, the composition of the mycolate layer of LP∆treS∆otsA∆treY varied under 

different cultivation conditions. LP∆treS∆otsA∆treY grown on sucrose or fructose in the 

absence of trehalose did not synthesise arabinogalactan mycolate (Fig. 13.A+C, left), 

whereas on glucose in the absence of trehalose small amounts of arabinogalactan mycolate 

were detected (Fig. 13.B, left). Probably, glucose could substitute trehalose as translocator of 

mycolyl-residues to arabinogalactan whereas sucrose and fructose could not. This 

assumption was supported by results of the analysis of extractable lipids (Fig. 13.A-C, right). 
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LP∆treS∆otsA∆treY cultured on sucrose or fructose in the absence of trehalose was devoid 

of mycolate. LP∆treS∆otsA∆treY cultured on glucose in the absence of trehalose synthesised 

neither TMM nor TDM, but it synthesised a glycolipid migrating slightly slower than TDM. 

Recent analyses of the trehalose deficient wild type derivative Cgl∆otsA∆treS∆treY showed 

that this strain synthesised neither TMM nor TDM grown on sucrose- or glucose-medium, but 

also a glycolipid migrating slightly slower than TDM which was identified as glucose 

monomycolate (GMM) by GC-MS analysis (Tropis et al., 2005). Presumably, also the 

unidentified glycolipid in LP∆treS∆otsA∆treY is GMM. In this case, also in this strain, glucose 

could be esterified by mycolic acids and consequently, glucose could replace trehalose as 

acceptor of mycolic acids and translocator of mycolyl-residues to arabinogalactan. Hence, 

trehalose was not essential for mycolate synthesis, when glucose was the carbon source. 

LP∆treS∆otsA∆treY synthesised native arabinogalactan mycolate amounts supplemented 

with 2 % trehalose whereas cultivation with 0.5 % trehalose restored arabinogalactan 

mycolate synthesis partially, signalling a dose dependent effect of trehalose 

supplementation. The influence of trehalose supplementation on arabinogalactan mycolate 

synthesis was similar on all three carbon sources. In contrast, the composition of the 

extractable mycolate differed in dependence of the carbon source also in the presence of 

trehalose in the culture medium. The combination of trehalose and sucrose enabled 

LP∆treS∆otsA∆treY to synthesise TMM, but not TDM. LP∆treS∆otsA∆treY supplemented 

with fructose and trehalose synthesised TMM and TDM. Cultivated on glucose and trehalose 

this strain synthesised not only TMM and TDM, but also GMM. Although trehalose was not 

taken up into the cytoplasm by C. glutamicum, LP∆treS∆otsA∆treY used trehalose supplied 

in the culture medium for mycolate synthesis, proving that mycolate synthesis is localized in 

the cell envelope. 

TLC is not a suitable method for the exact quantification of mycolate, but the size of the lipid 

spots provided indications about the fractions of the different types of mycolates. While the 

composition of the mycolate layer depended on the carbon source, the quantity of mycolates 

could be correlated to the concentration of external trehalose. The amount of TMM and TDM 

increased with rising trehalose concentrations in combination with all three carbon sources. 

In glucose-medium, less GMM was synthesised when more trehalose was supplied 

indicating that trehalose was the preferred substrate for mycolate synthesis. 
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Fig. 13: TLC of arabinogalactan-bound lipids (left) and extractable lipids (right) of ATCC 21527 (LP) 
and of LP∆treS∆otsA∆treY (LP∆SAY) culivated in CgXII with 4% sucrose (A), 4% glucose (B) or 4% 

fructose (C) and different concentrations of trehalose. S1, sample of arabinogalactan mycolate (AGM). 
S2, sample of trehalose dimycolate (TDM) and trehalose monomycolate (TMM). GMM, glucose 
monomycolate. 
 

 

Results of the qualitative analysis of the composition of the mycolate layer are summarized in 

the following table (Tab. 6). 

 

 
Tab. 6: Effect of trehalose and carbon source on the composition of the mycolate layer of L-lysine 
producer ATCC 21527 and trehalose deficient LP∆treS∆otsA∆treY 
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External addition of trehalose was essential for mycolate synthesis in LP∆treS∆otsA∆treY 

when sucrose or fructose were used as carbon source. In contrast, glucose substituted 

trehalose as acceptor and translocator of mycolic acids enabling the synthesis of 

arabinogalactan mycolate and of the novel glycolipid GMM in the absence of trehalose. 

These data were consistent with recently published results for the trehalose deficient wild 

type derivative Cgl∆otsA∆treS∆treY (Tropis et al., 2005). Supplementation with trehalose 

enabled LP∆treS∆otsA∆treY to synthesise arabinogalactan mycolate, TMM and TDM similar 

to the parental strain supplemented with glucose and fructose, whereas with sucrose only 

arabinogalactan mycolate and TMM were synthesised. Thus, the mycolate layer of 

LP∆treS∆otsA∆treY can be manipulated gradually from complete lack of mycolate to wild 

type like mycolate composition by the choice of the carbon source and the supplementation 

with trehalose. 

 

 

 

3.3.5 Quantitative effect of trehalose supplementation on the amount of 
mycolate 

The analysis of the mycolate composition of LP∆treS∆otsA∆treY by means of thin-layer 

chromatography provided only qualitative information. However, the size of the lipid spots 

indicated that LP∆treS∆otsA∆treY synthesised more mycolate if the medium was 

supplemented with 2 % trehalose instead of 0.5 % trehalose. The comparison of the amount 

of the different kinds of mycolate in LP∆treS∆otsA∆treY with the corresponding amounts in 

the wild type could reveal whether the mycolate composition could not only be restored 

qualitatively, but also quantitatively. Moreover, the existence of a quantitative correlation of 

the mycolate concentration with the trehalose concentration could facilitate the manipulation 

of the grade of reconstitution of the mycolate layer by supplementing the medium with 

different concentrations of trehalose. For the quantitative analysis, mycolic acids were 

isolated by saponification of TMM, TDM, GMM and arabinogalactan bound mycolate and 

quantified by means of gas chromatography (GC). 

 

In a typical chromatogram (Fig. 14) palmitic (C16:0; peak 4) and octadecenoic acid (C18:1; 

peak 7) had the retention time of about 9 min and 10.6 min, respectively, followed by the 

mycolic acids C32:0 (20.4 min, peak 17), C34:1 (21.6 min, peak 21) and C34:0 (22.0 min, peak 

22) (retention times according to standards of the group of M. Daffé, ipbs Toulouse). As 

palmitic and octadecenoic acid are part of the plasma membrane which is supposed to be 

unaffected by the different conditions tested, these fatty acids were taken as internal 

standard. 
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Fig. 14: GC chromatogram of lipid extracts from ATCC 21527 cultivated in CgXII with 4 % glucose and 
2 % trehalose 
 

 

The ratio between the sum of the peak areas of the mycolic acids and the sum of the peak 

areas of the fatty acids was calculated to compare the mycolate content under the different 

conditions. The resulting factors are summarized in the following Tab. 7. 

 
 
 
Tab. 7: Quantitative effect of trehalose supplementation on the amount of mycolate. GC analysis of 
extractible and arabinogalactan bound lipids of ATCC 21527 and of LP∆treS∆otsA∆treY cultured on 0, 
0.5 or 2 % trehalose and 4 % glucose or 4 % sucrose as carbon source. The relative amount of 
mycolate was calculated by dividing the peak areas of mycolic acids by the peak areas of fatty acids. 
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For ATCC 21527, the ratio between mycolate and internal standard was similar on glucose 

and sucrose. The ratio increased slightly in the presence of trehalose. Probably, synthesis of 

mycolate had been limited by the amount of cytoplasmic trehalose or external trehalose was 

more accessible. 

No mycolic acids were detected in LP∆treS∆otsA∆treY grown with sucrose, proving results 

from TLC analysis. When LP∆treS∆otsA∆treY was cultured on sucrose and 0.5 % trehalose, 

mycolic acids were synthesised. The ratio between trehalose mycolate and internal standard 

as well as the ratio between arabinogalactan mycolate and internal standard was fourfold 

higher when this strain was cultured on the fourfold concentration of trehalose (2 %). Thus, 

the mycolate content of the cell envelope of LP∆treS∆otsA∆treY depended quantitatively on 

the concentration of trehalose, when sucrose was the carbon source confirming that under 

these conditions external trehalose was the only acceptor and translocator of mycolic acids.  

Mycolic acids were detected among extractible lipids and in extracts of the cell wall bound 

mycolic acids of LP∆treS∆otsA∆treY cultured on glucose in the absence of trehalose. 

Presumably, these mycolic acids derived from GMM. Supplementation of 

LP∆treS∆otsA∆treY with trehalose increased the ratio between mycolate and internal 

standard, but mycolate and trehalose concentrations were not correlated quantitatively. With 

glucose as carbon source, mycolate synthesis was not determined by external trehalose 

alone proving that glucose could replace trehalose as acceptor and translocator of mycolic 

acids. 

As the mycolate content could be correlated to the trehalose concentration in combination 

with sucrose, but not in combination with glucose, different trehalose concentrations can be 

used to manipulate the amount of mycolate only in LP∆treS∆otsA∆treY cultured on sucrose. 

The relative concentration of extractible mycolate and of arabinogalactan mycolate of 

LP∆treS∆otsA∆treY cultivated in sucrose-medium was lower than in ATCC 21527, even in 

the presence of 2 % trehalose. In contrast, LP∆treS∆otsA∆treY cultivated in glucose-medium 

synthesised lower amounts of mycolate in the absence of trehalose, but similar or even 

higher mycolate concentrations than the parental strain when the medium was supplemented 

with 0.5 % or 2 % trehalose. Thus, on glucose, the amount of mycolic acids seemed to be 

sufficient to build a native mycolate layer. However, this method does not differentiate 

between mycolic acids derived from trehalose mycolate and from glucose mycolate. 
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3.3.6 Influence of trehalose on the permeability of the cell envelope 
In comparison to other Gram-positive as well as to Gram-negative cell envelopes, e. g. of 

E. coli or Pseudomonas aeruginosa, the permeability of the cell envelope of mycobacteria is 

extremely low for some hydrophilic as well as hydrophobic solutes e. g. antibiotics. The 

mycolate layer – a lipid bilayer of unusual thickness and low fluidity - constitutes the main 

permeation barrier (Brennan & Nikaido, 1995). Whereas hydrophobic solutes have to diffuse 

through the mycolate layer directly, small and hydrophilic solutes are believed to pass 

through porins – proteins forming hydrophilic channels. Lower permeability to small 

hydrophilic solutes was explained by a smaller number of porins and longer porin channels in 

Mycobacterium smegmatis compared to E. coli (Engelhardt et al., 2002). However, the 

relative importance of porin mediated crossing or direct permeation of the mycolate layer is 

unknown for most substances. 

Also in C. glutamicum the mycolate layer is believed to determine the permeability of the cell 

envelope, since C. glutamicum strains with reduced mycolate content due to inactivation of a 

mycolyltransferase took up faster glycerol and acetate (Puech et al., 2000). Measurement of 

the permeability of the cell envelope of LP∆treS∆otsA∆treY should reveal whether also an 

incomplete mycolate layer caused by trehalose deficiency rendered the cell envelope of 

C. glutamicum more permeable and whether the native phenotype was restored when the 

medium was supplemented with trehalose. 

Therefore, three different methods were applied. The Zimmermann-Rosselet assay, which 

determines the diffusion of β-lactam antibiotics by measuring β-lactamase activity, is one of 

the most suitable methods to determine the permeability of the mycolate layer because it 

considers only diffusion through the outer layer, the mycolate layer and the arabinogalactan 

layer, but not through the plasma membrane, which exhibits a further permeation barrier. A 

further assay was based on an assay developed for mycobacteria. In mycobacteria the 

mycolate layer, is made responsible for the resistance against various antibiotics, thus in this 

assay cell wall permeability was correlated to the susceptibility to antibiotics (Liu and Nikaido, 

1999). The third method was based on the observation that recombinant C. glutamicum 

strains with reduced mycolate content were characterized by an increased uptake rate for 

glycerol (Puech et al., 2000). 

 

 

3.3.6.1 Inspection of the Zimmermann - Rosselet assay for C. glutamicum 
The Zimmermann - Rosselet assay determines rates of diffusion of β-lactam antibiotics 

through bacterial cell walls (Zimmermann and Rosselet, 1977). The permeability of the cell 

wall to a β-lactam antibiotic is measured using intact cells and periplasmic β-lactamases as a 

sink. Thus, diffusion is determined from the cell surface through the outer layer, the mycolate 
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layer and the arabinogalactan layer to the peptidoglycan layer, where β-lactamases are 

located. As the mycolate layer is the only permeation barrier limiting diffusion on this 

pathway, the Zimmermann - Rosselet assay provides a very accurate tool to determine the 

permeability of the mycolate layer. The assay is well established for Mycobacterium 

smegmatis (Stahl et al., 2001), but for C. glutamicum no β-lactamase activity is reported. 

Although a putative β-lactamase gene was annotated in the genome of C. glutamicum, the 

existence of a functional β-lactamase has not been proven. Since the β-lactam antibiotic 

cephaloridine used by Stahl et al. (2001) could no longer be purchased, the related β-lactam 

antibiotic cephalothin was chosen for the permeability assay. Hydrolysis of the β-lactam 

antibiotic by the β-lactamase was monitored by determining UV absorption. The absorption 

maximum of cephalothin was 260 nm. Whereas the crude extract of M. smegmatis cells was 

able to hydrolyse cephalothin completely within 30 min, proving the experimental setup, an 

extract of C. glutamicum cells did not decrease the absorption of cephalothin. Cell extracts of 

C. glutamicum and of M. smegmatis were mixed to rule out a possible inhibition of β-

lactamase activity by an unknown substance in the C. glutamicum cell extract. Cephalothin 

was hydrolysed by the mixture. This means that the cell extract of C. glutamicum is not 

inhibiting β-lactamase activity and furthermore that a functional β-lactamase is not present in 

C. glutamicum under the chosen cultivation conditions. 

As no β-lactamase activity was detected in C. glutamicum, it was tested whether the 

heterologous expression of β-lactamase was possible in this bacterium. In a C. glutamicum 

strain comprising the coding sequence for β-lactamase integrated into the chromosome 

(kindly provided by O. Ley), no β-lactamase activity was detected. Thus, the Zimmermann - 

Rosselet assay is unfortunately not a suitable method to determine the permeability of the 

cell envelope in C. glutamicum. 

 

 

3.3.6.2 Resistance to antibiotics as an indicator for the permeability of the cell 
envelope 

As the Zimmermann-Rosselet assay could not be performed with C. glutamicum, a further 

assay developed for mycobacteria which correlated the resistance to antibiotics to the 

permeability of the cell envelope was applied. One disadvantage of this test was that the 

target of the antibiotic may be located in the cytoplasm of the cell so that diffusion of the 

antibiotic was determined by the permeability of both, the mycolate layer and the plasma 

membrane. Therefore, we chose two antibiotics which act on cell wall components. The β-

lactam antibiotic penicillin G inhibits the synthesis of the peptidoglycan layer and the anti-

tuberculosis drug ethambutol interferes with arabinogalactan synthesis. Both antibiotics are 

relatively small hydrophilic molecules. As charge and size of the molecule determine the 
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passage through the mycolate layer (Lambert, 2002), the large hydrophobic macrolide 

antibiotic erythromycin, which works on protein biosynthesis, was selected as an alternative. 

The minimal inhibitory concentration of these antibiotics for the lysine producer strain ATCC 

21527 and its trehalose deficient derivative LP∆treS∆otsA∆treY was determined by the use 

of a plastic strip bearing an immobilized antibiotic gradient on its back and the respective 

concentration scale on the front side which was laid on an agar plate inoculated with one of 

the C. glutamicum strains (Fig. 15). Antibiotic resistance of both strains was tested when 

cultivated on agar supplemented with 4 % glucose, 4 % fructose or 4 % sucrose and with 

2 % trehalose if indicated. 
 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Influence of trehalose on the inhibition of bacte
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An imperfect or missing mycolate layer affected the resistance to erythromycin less than that 

to penicillin or ethambutol. This could be due to the fact that erythromycin has to cross an 

additional permeability barrier, the plasma membrane, to access its target. 
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Fig. 16: Effect of external trehalose on the minimal inhibitory concentration (MIC) of antibiotics on L-
lysine producer ATCC 21527 and on trehalose deficient LP∆treS∆otsA∆treY in dependence of the 
carbon source of the medium. The values are means of three independent determinations. Black bars, 
ATCC 21527 medium without trehalose; white bars, ATCC 21527 medium with 2 % trehalose; grey 
bars, LP∆treS∆otsA∆treY medium without trehalose; grey shaded bars, LP∆treS∆otsA∆treY medium 
with 2 % trehalose. 
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3.3.6.3 Diffusion of glycerol as an indicator for the permeability of the cell envelope 
A further method taking diffusion through the cell envelope as an indicator for the 

permeability of the cell envelope was to measure uptake rates of [14C] labelled compounds. A 

feature of diffusion - in contrast to uptake by active transport - is that uptake rates rise 

proportionally to substrate concentrations. Recently, Puech et al. (2000) correlated glycerol 

uptake to the mycolate content. 

Uptake rates of LP∆treS∆otsA∆treY and ATCC 21527 were measured for different 

concentrations of [14C]glycerol to determine the influence of an incomplete mycolate layer 

due to trehalose deficiency on the permeability of the cell envelope. Cells were grown on 

sucrose because under these conditions the mycolate layer was missing in 

LP∆treS∆otsA∆treY. Supplementation of the medium with trehalose should demonstrate 

whether the restoration of the mycolate layer caused native permeability. Cells were 

harvested during stationary growth phase. 

 

The uptake rates for glycerol of the two strains increased proportionally to the glycerol 

concentration, signalling that diffusion limited glycerol uptake (Fig. 17). Uptake of glycerol of 

the mycolate deficient LP∆treS∆otsA∆treY was twice as fast as of the reference strain 

indicating that higher permeability of the envelope of LP∆treS∆otsA∆treY accelerated 

diffusion. When LP∆treS∆otsA∆treY was supplemented with trehalose, glycerol uptake rates 

were slightly lower than without trehalose, but not as low as for the parent strain. Thus, the 

partial restoration of the mycolate layer of LP∆treS∆otsA∆treY due to the presence of 

external trehalose slightly decreased the permeability of the cell envelope, but the extent of 

permeability of the parent strain was not reached. These data were consistent with results of 

the measuring of resistance to antibiotics. Taken together, results obtained by these two 

methods confirmed that lack of mycolate made the cell envelope of the trehalose deficient 

strain more permeable compared to the cell envelope of ATCC 21527 and that the mycolate 

layer synthesised from trehalose supplemented in the medium did not have the same 

properties as the native mycolate layer. 
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Fig. 17: Effect of external trehalose on uptake of [14C]glycerol into stationary cells of L-lysine producer 
ATCC 21527 and of trehalose deficient LP∆treS∆otsA∆treY cultivated with 4 % sucrose. The values 
are means of three independent determinations.  ATCC 21527 medium without trehalose, 

 LP∆treS∆otsA∆treY medium without trehalose,  LP∆treS∆otsA∆treY medium with 2 % trehalose. 
 

 

Although the proportionality of glycerol concentration and uptake rates indicated that glycerol 

entered the cell by diffusion, an enzymatic assay for glycerol kinase - the key enzyme in 

glycerol metabolism - was established to verify that diffusion and not metabolism was the 

limiting factor for transport in stationary cells. Furthermore, this assay was utilized to 

compare the glycerol metabolism of LP∆treS∆otsA∆treY and of ATCC 21527 to exclude that 

different uptake rates for glycerol were due to different metabolic activities. 

Glycerol kinase activity was determined in a coupled assay based on the following reactions: 

 

 
 

Glycerol + ATP

K
ADP + PEP →
Pyruvate + NAD

 

 

The amount o

conversed glyc
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performed without extract or without the enzymes PK and L-LDH, to exclude that additional 

enzymes conversed NADH or that NADH was decaying for other reasons, respectively. As 

the concentration of NADH did not decrease under the control conditions (data not shown), 

this glycerol kinase assay was suitable to determine glycerol kinase activity. 

The specific activity of the glycerol kinase was similar in the two strains (0.25 ± 0.01 µmoles * 

min-1 * mg-1 protein) indicating that trehalose deficiency did not alter glycerol metabolism. 

Hence, uptake rates determined for stationary cells of LP∆treS∆otsA∆treY and of ATCC 

21527 did not differ because of the metabolism, but because of cell envelope properties. A 

100 fold higher glycerol kinase activity than glycerol uptake rates supported furthermore that 

glycerol uptake was not limited by glycerol kinase activity, but by diffusion. 

 

 

 

3.3.7 Impact of the availability of trehalose and of the carbon source on the 
excretion of amino acids 

An incomplete mycolate layer rendered the cell envelope of the C. glutamicum lysine 

producer ATCC 21527 more permeable as shown by measuring uptake of substances. The 

lysine producer strain had been chosen for this project since its ability to excrete lysine 

facilitated also the investigation of the impact of an incomplete mycolate layer on the efflux of 

solutes. Furthermore, comparison of the trehalose deficient lysine producer strain 

LP∆treS∆otsA∆treY to its parental strain ATCC 21527 should reveal whether lack of 

mycolate rendered the production strain more powerful. The two strains were cultivated on 

4 % sucrose, 4 % glucose or 4 % fructose, in the absence and presence of trehalose. 

Excretion of amino acids was determined by measuring the supernatant by means of HPLC. 

 

The absolute concentration of lysine which accumulates during cultivation in the medium is 

one characteristic feature of a lysine production strain. LP∆treS∆otsA∆treY and ATCC 21527 

excreted the highest lysine concentration grown on sucrose whereas on glucose or fructose 

both strains excreted less than one third of this concentration (Fig. 18). 
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Fig. 18: Effect of external trehalose on L-lysine excretion of L-lysine producer ATCC 21527 and 
trehalose deficient LP∆treS∆otsA∆treY in dependence of the carbon source of the medium. A, 
sucrose; B, glucose; C, fructose.  ATCC 21527 medium without trehalose;  ATCC 21527 medium 
with 2 % trehalose;  LP∆treS∆otsA∆treY medium without trehalose;  LP∆treS∆otsA∆treY medium 
with 2 % trehalose.  
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Biomass related lysine excretion (lysine accumulation in mM divided by cell dry weight) takes 

into account that LP∆treS∆otsA∆treY synthesised significantly less biomass than the parent 

strain (Fig. 12), therefore specific lysine excretion was used as a measure for the efflux of 

solutes. In sucrose-medium, biomass related lysine excretion of LP∆treS∆otsA∆treY was 

twice as high as that of the reference strain indicating that lack of mycolate facilitated lysine 

excretion by LP∆treS∆otsA∆treY (Fig. 19.A). When external trehalose enabled a partial 

restoration of the mycolate layer in LP∆treS∆otsA∆treY, the specific lysine excretion was only 

slightly higher than that of the reference strain. These data suggested that lack of mycolate 

was responsible for enhanced lysine excretion in the lysine producer strain, but results of the 

analysis of lysine excretion by the two strains in glucose- or fructose-medium were not 

conclusive (Fig. 19.B+C). Although LP∆treS∆otsA∆treY cultivated with fructose lacked the 

mycolate layer completely, biomass related lysine excretion was lower than that of ATCC 

21527. In glucose-medium without trehalose LP∆treS∆otsA∆treY excreted slightly more 

lysine per biomass than ATCC 21527 in the first 30 h of cultivation. But afterwards, 

LP∆treS∆otsA∆treY and ATCC 21527 in trehalose supplemented medium, both synthesising 

the native mycolate composition, excreted more lysine than LP∆treS∆otsA∆treY in glucose-

medium without trehalose which synthesised only AGM and GMM. 

Probably, the composition of the mycolate layer is not the only factor which determines lysine 

excretion under these conditions. Kiefer et al. (2002) showed that the lysine productivity of 

the lysine producer ATCC 21253 was different on glucose, sucrose and fructose. In this 

strain the three carbon sources entered central metabolism at different levels guiding carbon 

fluxes to NADPH generating pathways of different efficiency thus providing different levels of 

NADPH for lysine synthesis (Georgi et al., 2005). The lysine producer ATCC 21527 excreted 

three times more lysine in sucrose-medium than in fructose- or glucose-medium, although 

the composition of the mycolate layer was similar under all cultivation conditions. Hence, the 

carbon source influenced not only the composition of the mycolate layer and thus indirectly 

lysine excretion, but also lysine synthesis directly. Like its parental strain, 

LP∆treS∆otsA∆treY excreted more lysine on sucrose-medium than on glucose- or fructose-

medium indicating that the metabolism of the cell depends on the carbon source also in this 

strain. 
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Fig. 19: Effect of external trehalose on specific L-lysine excretion of lysine producer ATCC 21527 and 
trehalose deficient LP∆treS∆otsA∆treY in dependence of the carbon source of the medium. A, 
sucrose; B, glucose; C, fructose.  ATCC 21527 medium without trehalose;  ATCC 21527 medium 
with 2 % trehalose;  LP∆treS∆otsA∆treY medium without trehalose;  LP∆treS∆otsA∆treY medium 
with 2 % trehalose. 

60 



   Results 

C. glutamicum is not only used for the industrial production of lysine, but also for the 

production of the amino acid glutamate. In the wild type strain the excretion of glutamate is 

caused by special treatments e.g. by biotin limitation or addition of detergents, which affect 

the lipid composition of the plasma membrane or the mycolate layer, but the exact 

mechanism triggering glutamate excretion is not known. 

Surprisingly, glutamate was detected in the culture medium of LP∆treS∆otsA∆treY under 

normal cultivation conditions i. e. MM with sucrose, glucose or fructose as carbon source, 

whereas the parental strain did not excrete glutamate under the same conditions (Fig. 20). In 

contrast to the wild type, glutamate excretion by LP∆treS∆otsA∆treY required no special 

treatment. Obviously, the lacking or decomposed mycolate layer triggered glutamate 

excretion. This assumption was proven by the fact that cultivation of LP∆treS∆otsA∆treY with 

2 % trehalose, which enabled the synthesis of a nearly native mycolate layer, inhibited 

glutamate excretion. Slightly higher glutamate excretion of LP∆treS∆otsA∆treY cultivated on 

glucose-medium compared to sucrose- or fructose-medium, could be due to higher 

glutamate synthesis on glucose. 
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Fig. 20: Effect of external trehalose on spontaneous glutamate excretion of L-lysine producer ATCC 
21527 and trehalose deficient LP∆treS∆otsA∆treY in dependence of the carbon source. A, sucrose; B, 
glucose; C, fructose.  ATCC 21527 medium without trehalose;  ATCC 21527 medium with 2 % 
trehalose;  LP∆treS∆otsA∆treY medium without trehalose;  LP∆treS∆otsA∆treY medium with 2 % 
trehalose. 
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3.3.8 Effect of the carbon source on the metabolism of LP∆treS∆otsA∆treY 

and of ATCC 21527 
Analysis of the efflux of the amino acids lysine and glutamate revealed that their excretion 

was not only influenced by the state of the mycolate layer, but that it might be determined 

furthermore by the energy metabolism of the cell. In lysine producer ATCC 21526 sucrose 

and glucose directed the carbon fluxes differently, so that depending on the carbon source 

different levels of NADPH were available for the synthesis of lysine (Wittmann et al., 2004; 

Kiefer et al., 2003). 

Biomass yield YX/S (g dcw / g carbon source) and product yields YGlu/S for glutamate (g 

glutamate / g carbon source) and YLys/S for lysine (g lysine / g carbon source) were calculated 

to get an insight into carbon and amino acid metabolism of LP∆treS∆otsA∆treY compared to 

ATCC 21527. Substrate concentrations in the medium were measured at different time 

points to determine the consumption of the carbon source. 

 

LP∆treS∆otsA∆treY as well as ATCC 21527 spent 14 % less glucose than sucrose on 

biomass and amino acid production indicating that by-product formation or overflow 

metabolism restricted energy for amino acid production on glucose-medium (Fig. 21). The 

unassigned substrate consumption of LP∆treS∆otsA∆treY was higher than that of ATCC 

21527 with both carbon sources, probably due to a higher maintenance coefficient. Whereas 

ATCC 21527 excreted lysine, but not glutamate, LP∆treS∆otsA∆treY excreted both, 

glutamate and lysine. The amounts of these amino acids depended on the carbon source. 

Whereas LP∆treS∆otsA∆treY utilized more glucose for glutamate than for lysine synthesis, 

the reverse was found on sucrose-medium. Since lysine synthesis requires more NADPH 

than glutamate synthesis, on glucose less NADPH might be available for lysine synthesis 

due to the high unassigned substrate consumption. In contrast on sucrose-medium, 

LP∆treS∆otsA∆treY has sufficient NADPH to synthesise lysine at its disposal. 
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Fig. 21: Influence of the carbon source on the biomass yield and the yields for lysine and glutamate of 
ATCC 21527 and LP∆treS∆otsA∆treY after 24 cultivation with 4 % glucose or 4 % sucrose. Light grey 
sector, biomass yield YX/S; dark grey sector, lysine yield YP/S lys; black sector, glutamate yield YP/S glu; 
anthracite sector, unassigned substrate consumption. 
 
 
In summary, there are at least two possibilities how the carbon source directs amino acid 

excretion in LP∆treS∆otsA∆treY. (i) The carbon source influences the condition of the 

mycolate layer, facilitating efflux of amino acids. (ii) The carbon source directs carbon fluxes 

in the metabolism of the cell affecting amino acid metabolism. 
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4 Discussion 

4.1 Function of the trehalose synthesis pathway OtsAB 
 

In its natural habitat as well as during industrial production C. glutamicum has to cope with 

changes of osmolality to which it adapts by accumulation or synthesis of compatible solutes 

e. g. trehalose. Wolf et al. (2003) showed that trehalose synthesis increased under 

hyperosmotic conditions in C. glutamicum. The level of trehalose accumulation depended on 

the nutrient supply, namely carbon and nitrogen availability. Whereas in the presence of 

excess nitrogen proline was the predominant compatible solute, under nitrogen limitation the 

amino acid synthesis was lower in favour of trehalose synthesis. 

C. glutamicum harbours two different trehalose synthesis pathways: OtsAB and TreYZ. 

Whereas the TreYZ-pathway is responsible for the accumulation of trehalose as a 

compatible solute after hyperosmotic shock, the function of the OtsAB-pathway in 

C. glutamicum was unknown. The suggestion that the OtsAB-pathway is involved in 

mycolate synthesis was ruled out by the fact that a C. glutamicum strain deleted in the otsA 

gene synthesised trehalose mycolate (Wolf et al., 2003). Upregulation of the otsA transcript 

by a factor of five 15 min after a hyperosmotic shock indicated a function of the OtsAB-

pathway in the osmostress response of C. glutamicum (Wolf et al., 2003). As an immotile soil 

bacterium C. glutamicum is not only exposed to changes of external osmolality, but it has to 

cope furthermore with limitation of nutrients. Since glycogen, the substrate for the TreYZ-

pathway, becomes limiting under conditions of carbon limitation, the OtsAB-pathway could 

be necessary to synthesise trehalose when it is simultaneously exposed to carbon limitation 

and an osmotic upshift. 

Before the relevance of trehalose synthesis by the OtsAB-pathway after hyperosmotic shock 

could be studied, the experimental setup to achieve glycogen limitation had to be developed. 

The first approach was based on the observation that the quality of the carbon source 

influenced the intracellular concentration of glycogen (B. Eikmanns, personal 

communication). Testing of different carbon sources revealed that cultivation with 2 % lactate 

caused glycogen deficient cells. The deletion mutants Cgl∆treY∆treS and Cgl∆otsA∆treS 

harbouring only the OtsAB-pathway or the TreYZ-pathway, respectively, were grown on 2 % 

lactate to quantify the contribution of each pathway to trehalose synthesis under glycogen 

limitation. Under these conditions the OtsAB-pathway was the predominant trehalose 

synthesis pathway, whereas under carbon surplus (4 % glucose) TreYZ is more important 

(Wolf et al., 2003). Thus, the quality of the carbon source determined the pool of precursors 

which in turn decided which pathway was used for the synthesis of trehalose. 
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Although cells were glycogen depleted after cultivation in medium supplemented with 2 % 

lactate for 24 h, these conditions were not suitable to determine trehalose synthesis under 

glycogen limitation after hyperosmotic shock, since Cgl∆treY∆treS, Cgl∆otsA∆treS and the 

wild type started to accumulate glycogen 15 min after the osmotic upshift. The TreYZ-

pathway became the predominant pathway for trehalose synthesis, as soon as glycogen was 

available, so that under these conditions the OtsAB-pathway was of minor importance. 

Accumulation of glycogen was unexpected since it is not the typical response to osmotic 

stress and carbon limitation was supposed rather to suppress the synthesis of the storage 

carbohydrate. The residual amount of 0.5 % lactate was a possible resource for glycogen 

accumulation in the cell which had been glycogen depleted before. A connection between 

glycogen synthesis and osmotic shock was also observed in other organisms. 

Bradyrhizobium japonicum cells produced glycogen under high osmolality (Pfeffer et al., 

1994) and in yeast glycogen metabolism was induced by an osmotic shock (Hohmann et al., 

2002). Probably, in C. glutamicum the accumulation of glycogen was triggered by the 

cumulating effects of the two different stresses, carbon limitation and osmotic upshift. 

Since cultivation on lactate was not a suitable tool to provide glycogen starvation conditions 

after a hyperosmotic shock, glycogen biosynthesis in Cgl∆treY∆treS, Cgl∆otsA∆treS and the 

wild type was inactivated to elucidate the function of the OtsAB-pathway. Therefore the glgC 

gene encoding ADP-glucose-pyrophosphorylase, the first enzyme of the glycogen synthesis 

pathway, was disrupted (Eikmanns, personal communication). The insertion strains 

Cgl∆glgC, Cgl∆otsA∆treS∆glgC and Cgl∆treY∆treS∆glgC were glycogen deficient. Lower 

growth rate and decreased biomass accumulation of the ∆glgC insertion strains compared to 

the wild type signalled that inactivation of glycogen biosynthesis weakened the general 

metabolism of the cell.  

After a hyperosmotic shock, growth of the glycogen deficient mutant Cgl∆treY∆treS∆glgC, 

harbouring the OtsAB-pathway as single trehalose synthesis pathway, recovered fastest 

suggesting that trehalose synthesised by the enzymes of the OtsAB-pathway was the most 

important compatible solute. Although Cgl∆treY∆treS∆glgC synthesised significantly more 

trehalose than Cgl∆otsA∆treS∆glgC, the amount of trehalose was still 50 fold lower than the 

amount synthesised by the wild type when trehalose replaced proline as the main compatible 

solute under N-limitation (Wolf et al., 2003). Considering the low amount of trehalose, it was 

unlikely that it was responsible for the fast growth recovery of Cgl∆treY∆treS∆glgC. Since 

proline is the most important compatible solute in the wild type (Rönsch et al., 2002; Ley, 

2005), it was verified whether it could also be accounted for protection against osmotic stress 

in the ∆glgC insertion mutants. Similar proline accumulation in Cgl∆otsA∆treS∆glgC and 

Cgl∆treY∆treS∆glgC and in the wild type confirmed that proline was the most important 

compatible solute also in the glycogen deficient strains. The predominant role of the amino 
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acid proline as protectant against osmotic stress in contrast to the sugar trehalose seems to 

be reasonable since under the tested conditions nitrogen was available in surplus whereas 

carbon limitation might change the whole sugar metabolism. An altered energy metabolism 

may explain furthermore, why the three ∆glgC insertion mutants synthesised much lower 

amounts of trehalose and why they were growing slower than the wild type. 

The important role of proline as a compatible solute in the glycogen deficient strains was 

proven by Cgl∆glgC which behaved differently from the other ∆glgC insertion strains. For 

unknown reasons, this strain synthesised significantly less proline than the wild type. 

Consistently, it did not resume growth after hyperosmotic shock. Since low proline synthesis 

in Cgl∆glgC was surprising, a ∆glgC clone derived by a different round of mutagenesis was 

tested to exclude that the first clone contained secondary mutations. But both clones 

exhibited the same phenotype. 

Taken together these results indicate that the OtsAB-pathway was necessary for trehalose 

synthesis under carbon limitation when the TreYZ-pathway was not working. Why the otsA 

gene was upregulated after hyperosmotic shock remains unclear because under glycogen 

limitation trehalose was not the most important compatible solute, but proline was 

responsible for protection against osmotic stress. However, the conditions of the natural 

habitat of C. glutamicum are difficult to imitate in the laboratory. In the soil the bacterium may 

be constantly exposed to a variety of limitations. Since trehalose is the predominant 

compatible solute under nitrogen-limitation, the OtsAB-pathway might be necessary for the 

synthesis of trehalose as compatible solute after an osmotic upshift when the cells suffer 

from simultaneous carbon- and nitrogen-limitation. 
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4.2 Localisation of the synthesis of trehalose monomycolate 
 

The detailed mechanism of mycolate biosynthesis is unknown in Corynebacterineae. Already 

the first reaction step, the condensation of a molecule of trehalose with a mycolyl-residue to 

TMM, raises several questions. It is neither clear where the synthesis of TMM takes place, in 

the cytoplasm or in the cell envelope, nor which mycolyltransferase catalyses this reaction. 

Whereas Takayama et al. (2005) recently suggested for Mycobacterium tuberculosis that 

TMM is synthesised in the cytoplasm, we assumed that synthesis of TMM is located in the 

cell envelope of C. glutamicum. This hypothesis was based on the correlation of the following 

two observations. The C. glutamicum wild type strain ATCC 13032 could not grow on 

trehalose as carbon source indicating that the disaccharide cannot be taken up by 

C. glutamicum (Wolf, 2002), and a trehalose deficient mutant of C. glutamicum could 

synthesise TMM when it was cultivated in medium supplemented with external trehalose 

(Tzvetkov et al., 2003).  

Uptake of [14C]trehalose into cells of C. glutamicum ATCC 13032 after short time incubation 

(10 min) was determined to verify the assumption that external trehalose was integrated into 

the mycolate layer by the activity of external enzymes and not via uptake into the cytoplasm 

followed by export of TMM. The use of Cgl∆treY∆treS∆otsA and wild type allowed the 

differentiation between these two possibilities, because after cultivation in minimal medium 

supplemented with sucrose no mycolate was present in the trehalose deficient 

Cgl∆treY∆treS∆otsA. Furthermore, accumulation of [14C]trehalose in isolated cell envelopes, 

obtained by permeabilisation of wild type cells followed by washing, was compared with 

accumulation of [14C]trehalose in intact wild type cells. Accumulation of [14C]glucose and of 

[14C]betaine was quantified as control for the energy state of the cell and the isolation 

conditions of the cell envelopes. 

Whereas a very low, but significant uptake rate for [14C]trehalose was measured in the wild 

type, no uptake of [14C]trehalose into the mycolate deficient Cgl∆treY∆treS∆otsA cells was 

detected. Since similar uptake rates for [14C]glucose excluded that the energy state of 

Cgl∆treY∆treS∆otsA was unfavourable for sugar uptake, the different uptake activities for 

[14C]trehalose of these two strains indicated that [14C]trehalose was incorporated into the 

mycolate layer in the wild type rather than taken up into the cytoplasm. This assumption was 

proven by the integration of equal amounts of [14C]trehalose into both, isolated cell envelopes 

and intact cells. In other words, [14C]label determined in the whole cell derived exclusively 

from [14C]label in the cell envelope. Since [14C]betaine was washed away completely 

whereas the partial incorporation of [14C]glucose into the cell envelope was detected, the 

method was suitable to distinguish between incorporation and adsorption of [14C]trehalose. 

68 



   Discussion 

Thus, determination of uptake of [14C]trehalose after short time incubation confirmed the 

assumption that C. glutamicum cells cannot take up trehalose into the cytoplasm. 

Consequently, trehalose supplemented in the medium remains outside the plasma 

membrane in the cell envelope. Since a trehalose deficient C. glutamicum strain cultivated 

with external trehalose was able to synthesise TMM, TMM synthesis has to be localized in 

the cell envelope. Accordingly, in the wild type, which synthesises trehalose in the cytoplasm, 

a transporter which exports trehalose across the plasma membrane into the cell envelope 

has to be postulated. Since the second building block of TMM, the mycolic acids, are also 

synthesised in the cytoplasm a further exporter might be required. Recently, Tropis et al. 

(2005) suggested that a mycolyl-residue might be linked to a phospholipid of the plasma 

membrane which transfers the mycolyl-residue into the cell envelope. 

Furthermore, Tropis et al. (2005) reported that apart from trehalose also glucose, maltose 

and maltotriose were esterified by mycolic acids and enabled the synthesis of AGM and of 

the respective glycosyl monomycolate in the trehalose deficient Cgl∆treY∆treS∆otsA, 

whereas other carbon sources such as sucrose, fructose or pyruvate did not facilitate 

mycolate synthesis. The three carbon sources glucose, maltose and maltotriose all have a 

structure in common with trehalose: a terminal α-glucosyl sugar residue. This α-glucosyl 

sugar unit was identified as the residue esterfied by mycolic acids (Tropis et al., 2005). 

Consequently, the still unknown mycolyltransferase catalysing the condensation of a sugar 

with a mycolyl-residue to glycosyl monomycolate can only use sugars comprising α-glucosyl 

sugar residues as substrate. Since in C. glutamicum ATCC 13032 six mycolyltransferases 

were identified which are partially redundant, the analysis of deletion mutants with a single 

functional mycolyltransferase could help to identify the mycolyltransferase synthesising TMM. 
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4.3 Importance of trehalose for the cell envelope of a 
C. glutamicum L-lysine production strain 

 

Exceptionally for Gram-positive bacteria, the cell envelope of the Corynebacterineae 

contains a second lipid bilayer apart from the plasma membrane, named mycolate layer. In 

mycobacteria, which belong to the suborder of Corynebacterineae, the mycolate layer is 

supposed to make the cell envelope impermeable to most of the common antibiotics 

(Brennan & Nikaido, 1995; Puech et al., 2001). Since C. glutamicum strains with reduced 

mycolate content exhibited higher uptake rates for glycerol and acetate, the mycolate layer 

could determine the permeability of the cell envelope also in corynebacteria (Puech et al. 

2000). Mycolate deficiency of trehalose deficient C. glutamicum strains which were cultured 

on sucrose indicated that trehalose is essential for mycolate synthesis (Wolf et al., 2003). 

However, maltose and glucose were identified as alternative acceptors of mycolyl-residues 

(Wolf, 2002; M. Daffé, personal communication; Puech et al., 2000). 

In this project the question was addressed how the carbon source and the absence of 

trehalose specifically influence the composition of the mycolate layer of a C. glutamicum 

strain inactivated in trehalose synthesis. Additionally, the impact of the supplementation of 

the medium with trehalose on the synthesis of the mycolate layer was examined. Strains 

harbouring differently composed mycolate layers were compared to investigate how the 

composition determines the properties of the mycolate layer, especially its permeability. 

Since C. glutamicum is one of the most important industrial producers of amino acids, a 

trehalose deficient strain based on the C. glutamicum L-lysine production strain ATCC 21527 

was chosen for these experiments. This strain was used to test whether the alteration of the 

cell envelope could improve lysine production. Moreover, it was examined whether lysine 

excretion as a measure of the efflux of solutes could be correlated to the permeability of the 

cell envelope. Measuring the uptake of substances was a method to determine the 

permeability of the mycolate layer. 

 

 

4.3.1 Impact of the availability of trehalose and of the carbon source on the 
composition of the mycolate layer 

All three trehalose synthesis pathways were inactivated in a C. glutamicum lysine production 

strain to investigate the influence of trehalose and of the carbon source on the composition of 

the mycolate layer. The mycolate composition of this trehalose deficient strain was analysed 

quantitatively and qualitatively under six different cultivation conditions: supplemented with 

sucrose, fructose or glucose as carbon source, in the absence or presence of external 
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trehalose, respectively. Whereas the trehalose deficient strain LP∆treS∆otsA∆treY did not 

synthesise any mycolate grown on sucrose- or fructose-medium, the same strain 

synthesised AGM and GMM grown on glucose-medium signalling that glucose could replace 

trehalose as acceptor and translocator of mycolic acids. These data were consistent with 

results of the analysis of the trehalose deficient strain based on the wild type (Wolf et al., 

2003; Tropis et al., 2005). Since glucose could replace trehalose for mycolate synthesis, it 

was surprising that no mycolate was synthesised with sucrose and fructose as carbon source 

because these sugars are metabolized into glucose phosphates inside the cytoplasm. Since 

all carbon sources were provided in excess, it could be excluded that glucose was not 

available for mycolate synthesis because of rapid consumption for the energy metabolism or 

other compounds. Hence, the externally available carbon source seemed to determine 

monomycolate synthesis indicating that synthesis of GMM was localized in the cell envelope 

and not inside the cytoplasm. These data confirmed again that synthesis of TMM was 

located in the cell envelope (cf. 4.2). The major proof of the localisation of the synthesis of 

glycosyl monomycolates in the cell envelope consisted of the result that supplementation of 

the culture medium with trehalose facilitated TMM synthesis in the trehalose deficient 

LP∆treS∆otsA∆treY, although trehalose was shown not to enter the cytoplasm of 

C. glutamicum (cf. 3.2). Since TLC analysis showed that GMM synthesis in 

LP∆treS∆otsA∆treY decreased in favour of TMM synthesis when the medium was 

supplemented with trehalose, GMM and TMM were likely to be synthesised by the same 

mycolyltransferase which then should have a higher affinity for trehalose than for glucose.  

Supplementation of medium with fructose and trehalose facilitated not only TMM, but also 

TDM and AGM synthesis in LP∆treS∆otsA∆treY restoring qualitatively a native mycolate 

composition. Also LP∆treS∆otsA∆treY cultured on glucose and trehalose synthesised the 

native mycolate composition including TMM, TDM and AGM, but additionally, GMM. 

Quantification of mycolic acids showed that LP∆treS∆otsA∆treY grown on glucose and 2 % 

trehalose synthesised more arabinogalactan mycolate and extractible mycolate than the 

parental strain. Since the method applied for the quantification of extractable mycolate did 

not differentiate between mycolic acids originating from glucose monomycolate or trehalose 

mycolate, and since arabinogalactan mycolate can be synthesised from GMM as well as 

from TMM as mycolyl-donor, the additional amount of mycolic acids could derive from 

glucose monomycolate which is not synthesised in ATCC 21527. These data indicated that 

external glucose participated efficiently in mycolate synthesis. 

Surprisingly, LP∆treS∆otsA∆treY grown on sucrose-medium supplemented with trehalose 

synthesised only AGM and TMM, but no TDM. Under these conditions the amount of 

arabinogalactan mycolate as well as the amount of extractible mycolate was significantly 

lower than in the parental strain. Possibly, TDM is absent because the disaccharide sucrose 
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inhibits TDM synthesis by blocking the catalytic site of the mycolyltransferase. With this 

explanation in mind it is surprising that ATCC 21527 could synthesise TDM when it was 

grown on sucrose. Since ATCC 21527 synthesises trehalose in the cytoplasm, TDM 

synthesis in this strain could indicate that cytoplasmic trehalose is more efficient for mycolate 

synthesis than external trehalose. This assumption was supported by the observation that on 

sucrose mycolate synthesis in LP∆treS∆otsA∆treY was very low compared to the wild type. 

Probably, the amount of external trehalose was not sufficient to compete with sucrose for the 

catalytic site of the mycolyltransferase, or access of external trehalose to the catalytic site 

was limited.  

In summary, utilisation of a C. glutamicum L-Lysine production strain inactivated in trehalose 

synthesis facilitated a specific manipulation of the composition of the mycolate layer. 

Supplementation of this strain with different carbon sources and external trehalose caused 

various stages of restoration of the mycolate layer, from completely missing to parental strain 

composition. The mycolate layer was lacking completely when this strain was grown on 

sucrose or fructose, while an incomplete mycolate layer, consisting of AGM and GMM was 

synthesised during cultivation on glucose. Thus, trehalose was essential for mycolate 

synthesis in the combination with sucrose or fructose as carbon source, whereas glucose 

could partially substitute trehalose as acceptor and translocator of mycolic acids. In the 

presence of external trehalose this strain synthesised on sucrose-medium neither the native 

composition nor the native amount of mycolate, whereas on glucose- and fructose-medium 

all native components were synthesised. However, the composition of the mycolate layer of 

LP∆treS∆otsA∆treY grown on glucose and trehalose differed from the native composition in 

two aspects. Additionally to the native mycolate composition, LP∆treS∆otsA∆treY 

synthesised GMM, furthermore, the amount of mycolate in the trehalose deficient strain was 

higher. These data indicated that the proportions of AGM, TMM and TDM might not be equal 

in the native mycolate layer and the mycolate layer of LP∆treS∆otsA∆treY. Since AGM, 

GMM, TMM and TDM have different structures, diverging fractions of these components in 

LP∆treS∆otsA∆treY could change the packing of the mycolate layer compared to ATCC 

21527. 

Since either the amount of mycolate in LP∆treS∆otsA∆treY was lower than in the native 

strain or the fractions of the different types of mycolate varied between ATCC 21527 and the 

trehalose deficient strain, these results indicate that external trehalose could only partially 

substitute trehalose synthesised in the cytoplasm for the synthesis of the mycolate layer. 

How can the inefficiency of external trehalose be explained? Different substrate affinities of 

the mycolyltransferases can be excluded since the molecule is the same, but the access of 

external and cytoplasmic trehalose to the enzyme might differ. Since TMM synthesis is 

located in the cell envelope an exporter for trehalose is postulated which translocates 

72 



   Discussion 

cytoplasmic trehalose across the plasma membrane. Probably, the mycolyltransferase 

catalysing the condensation to TMM is attached to this exporter, so that cytoplasmic 

trehalose can be metabolised efficiently. In contrast, the catalytic site may be difficult to 

access for trehalose passing through the cell envelope. The impediment of access for sugar 

molecules diffusing through the cell envelope might be necessary to ensure efficient 

mycolate synthesis under physiological conditions, since glucose was shown to compete with 

trehalose for mycolate synthesis and sucrose may even block the catalytic site of the 

mycolyltransferase. 

 

 

4.3.2 Impact of the composition of the mycolate layer on growth of a 
C. glutamicum L-lysine production strain 

Trehalose deficiency reduced significantly growth rate and biomass production in 

LP∆treS∆otsA∆treY compared to the parental strain ATCC 21527 indicating that inhibition of 

mycolate synthesis in LP∆treS∆otsA∆treY may slow down the synthesis of a new cell wall 

after division of the cell. LP∆treS∆otsA∆treY grown on sucrose or fructose being mycolate 

deficient exhibited an equally slow growth phenotype as LP∆treS∆otsA∆treY grown on 

glucose which could synthesise GMM and AGM. Obviously, AGM and GMM were not 

sufficient to restore a mycolate layer with properties similar to that of the parental strain. 

Probably, TMM and TDM were necessary for the appropriate arraying of the lipid bilayer. 

Furthermore, under these conditions the amount of mycolate synthesised in 

LP∆treS∆otsA∆treY was lower than in ATCC 21527 indicating that the amount of mycolate 

was not sufficient to form a lipid bilayer covering the whole bacterial surface of 

LP∆treS∆otsA∆treY. In coincidence with these results, LP∆treS∆otsA∆treY cultured on 

glucose and 2 % trehalose exhibited a growth phenotype similar to ATCC 21527 probably 

caused by the ability to synthesise AGM, TMM and TDM in higher quantities than the 

parental strain. Also LP∆treS∆otsA∆treY cultured on a mixture of fructose and trehalose 

synthesised the native mycolate composition (TMM, TDM and AGM) and grew like the 

parental strain. Consistently, LP∆treS∆otsA∆treY cultured on a mixture of sucrose and 

trehalose which synthesised lower quantities of mycolate than the parental strain and lacked 

TDM, had a slower growth rate than ATCC 21527. Taken together these results indicate that 

with respect to growth behaviour TMM and especially TDM may be important structural 

components of the mycolate layer. Furthermore, the quantity of the different types of 

mycolate could be decisive for the restoration of a mycolate layer facilitating native growth. 
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4.3.3 Impact of the composition of the mycolate layer on the permeability of 
the cell envelope 

The permeability of the cell envelope of the Corynebacterineae is extremely low for some 

hydrophilic as well as hydrophobic solutes, e. g. antibiotics (Brennan & Nikaido, 1995). 

Exceptionally for Gram-positive bacteria, the cell envelope of this suborder comprises a 

second lipid bilayer apart from the plasma membrane, named mycolate layer, which 

constitutes the main permeation barrier. In mycobacteria the mycolate layer is of unusual 

thickness and low fluidity and is supposed to render these bacteria resistant to most of the 

common antibiotics (Brennan & Nikaido, 1995). Although the mycolate layer in 

C. glutamicum is thinner than in mycobacteria due to shorter mycolic acids constituting this 

lipid bilayer, the mycolate layer was correlated to the permeability of the cell envelope, since 

C. glutamicum strains with reduced mycolate content due to inactivation of a 

mycolyltransferase took up glycerol and acetate faster (Puech et al., 2000).  

This project investigated how different levels of restoration of the mycolate layer altered the 

permeability of the cell envelope. The analysis of the mycolate layer of a trehalose deficient 

strain showed that the composition of the mycolate layer could be manipulated by cultivating 

this strain on different carbon sources, in the absence or presence of external trehalose. The 

Zimmermann-Rosselet assay would have been the best method to measure the permeability 

of the mycolate layer. This assay, which was established in mycobacteria, determines the 

diffusion of β-lactam antibiotics by measuring β-lactamase activity. Thus, only diffusion 

through the outer layer, the mycolate layer and the arabinogalactan layer, but not through the 

plasma membrane, which exhibits a further permeation barrier, is determined. Unfortunately, 

no β-lactamase activity was detected in C. glutamicum under the tested conditions making 

this test unusable for this bacterium. 

A further assay developed for mycobacteria correlated the resistance to antibiotics to the 

permeability of the cell envelope. With penicillin G and ethambutol we chose two hydrophilic 

antibiotics which act on cell wall components to ensure that their diffusion is only determined 

by the mycolate layer and not by the plasma membrane. The macrolid antibiotic erythromycin 

was selected as an example for a large hydrophobic molecule. A lacking or imperfect 

mycolate layer increased the permeability of the cell envelope significantly as shown by 

lower resistance of LP∆treS∆otsA∆treY compared to ATCC 21527 to the antibiotics 

penicillin G, erythromycin and ethambutol. The cultivation of LP∆treS∆otsA∆treY in medium 

supplemented with trehalose decreased the permeability of the cell envelope, but not to the 

level of permeability of the cell envelope of ATCC 21527. 

Since LP∆treS∆otsA∆treY grown on sucrose synthesised neither the native mycolate 

composition nor the native mycolate amount, it was not astonishing that external trehalose 

did not restore native permeability of the cell envelope. The mycolate layer was incomplete, 
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causing higher susceptibility to the antibiotics. However, it was surprising that the native 

permeability was not restored when LP∆treS∆otsA∆treY was cultured on fructose- or 

glucose-medium supplemented with trehalose, since under these conditions the native 

mycolate composition was synthesised, and at least in glucose-medium the amount of 

mycolate was even higher than in ATCC 21527. Furthermore, growth of LP∆treS∆otsA∆treY 

was similar to the parental strain under these conditions. Perhaps, not the mere amount of 

mycolic acids decides whether the mycolate layer obtains the appropriate structure, but the 

proper fractions of the different components have to be available. For example 

LP∆treS∆otsA∆treY grown on glucose and 2 % trehalose synthesised twice of the native 

amount of AGM. In the parental strain AGM constitutes the inner layer of the mycolate layer 

together with TDM and TMM. A higher amount of AGM in LP∆treS∆otsA∆treY may displace 

TDM and TMM from the inner layer, thus the fluidity of the lipid bilayer may be altered 

facilitating uptake of the tested substance. Furthermore, under these conditions 

LP∆treS∆otsA∆treY synthesised GMM additionally to the native mycolate composition. 

Probably, also the presence of GMM impeded the proper arrangement of the mycolate layer. 

Taken together these data indicated that the different types of mycolate have to be 

synthesised in specific fractions to ensure the appropriate packing of the mycolate layer. The 

importance of the packing of the mycolate layer for its permeability had already been 

demonstrated by measuring the fluidity of mycolate layers with different structures (Liu et al., 

1996). 

However, the tested substances may either pass directly through the lipid domains of the 

mycolate layer, or cross it through porins. Whereas erythromycin is likely to cross the 

mycolate layer directly because it is too large and too hydrophobic to diffuse through a porin 

channel (Stephan et al., 2004) the acidic β-lactam antibiotic penicillin G was supposed to 

pass the mycolate layer by porins. Costa-Riu et al. (2003) showed that deletion of porA, the 

gene encoding the major porin in C. glutamicum, decreased the susceptibility of the mutant 

to the positively charged penicillin ampicillin. As ethambutol is a small hydrophilic solute it 

should penetrate the mycolate layer by the help of porins (Lambert, 2002), but inactivation of 

MspA the major porin in M. smegmatis did not increase resistance to this drug indicating that 

either other porins were responsible for ethambutol uptake or a further mechanism e. g. 

direct permeation through the mycolate layer (Stephan et al., 2004). Although the tested 

antibiotics may use different pathways to cross the mycolate layer in the native strain, 

mycolate deficiency in LP∆treS∆otsA∆treY moved away the permeation barrier for all three 

tested antibiotics. This result can be correlated with the observation that no porins, which are 

believed to be integrated into the mycolate layer, could be detected in the mycolate deficient 

Cgl∆treY∆treS∆otsA (R. Benz, personal communication). The partially restored, probably not 

well packed mycolate layer, due to supplementation of LP∆treS∆otsA∆treY with trehalose, 
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facilitated higher permeation rates for all substances than the cell envelope of the native 

strain. If porins are present under these conditions, they may not represent the only passage 

over the mycolate layer for substances using porins in the native strain. 

 

Since the Zimmermann-Rosselet assay, which provides a very accurate tool to determine the 

permeability of the mycolate layer by measuring diffusion of β-lactam antibiotics, was 

unusable for C. glutamicum, alternatively, [14C]glycerol uptake rates of cells of 

LP∆treS∆otsA∆treY and of ATCC 21527 were determined as a measure of the permeability 

of the cell envelope. Since no genes comprising sequence similarities to genes encoding a 

glycerol diffusion facilitator protein were identified in the genome of C. glutamicum, uptake of 

[14C]glycerol is supposed to be determined by the diffusion through the cell envelope, i. e. by 

diffusion through the mycolate layer and through the plasma membrane. The velocity of 

diffusion in turn is determined by the permeability of the cell envelope. Since no difference 

between the two strains was observed for the uptake rates of [14C]glucose (cf. 3.2), which is 

mediated by a phosphotransferase system, the plasma membrane is supposed to be similar 

in these strains. 

However, it had to be excluded that the uptake rates of the two strains differed because of 

different glycerol metabolisms. Similar activities of glycerol-kinases in both strains proved 

that their glycerol metabolism was comparable. Since glycerol-kinase activity was 100 times 

higher than the [14C]glycerol uptake rates, the glycerol metabolism was ruled out as a limiting 

factor for [14C]glycerol uptake under the tested conditions. Furthermore, the uptake rates of 

[14C]glycerol of the two strains increased proportionally to the glycerol concentration, 

indicating that diffusion limited [14C]glycerol uptake. Higher uptake rates of [14C]glycerol of 

LP∆treS∆otsA∆treY compared to ATCC 21527 indicated that the cell envelope of the 

trehalose deficient strain was more permeable than that of the parental strain. Since 

LP∆treS∆otsA∆treY and ATCC 21527 were cultivated with sucrose as carbon source the 

mycolate layer lacked completely in LP∆treS∆otsA∆treY. Also porins are believed to be 

absent when the mycolate layer is missing (B. Eikmanns, personal communication). Since 

lack of mycolate and of porins increased [14C]glycerol uptake rates, the mycolate layer even 

including porins seems to constitute a permeation barrier for glycerol. Supplementation of the 

medium with trehalose reduced the uptake rates by LP∆treS∆otsA∆treY slightly, but not to 

the low level of the native strain indicating that external trehalose could not completely 

replace cytoplasmic trehalose for the synthesis of a mycolate layer exhibiting native 

permeability. 

In summary, measuring the resistance to antibiotics as well as the uptake of [14C]glycerol 

showed that under conditions of lacking or incomplete mycolate synthesis the permeability of 

the cell envelope in the trehalose deficient strain was higher than in the parental strain. 
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These results proved the assumption that similar to mycobacteria also in C. glutamicum, the 

mycolate layer determines the permeability of the cell envelope for antibiotics and glycerol.  

Although the presence of external trehalose in combination with glucose or fructose 

facilitated the synthesis of all native compounds of the mycolate layer in the trehalose 

deficient strain, the permeability of its cell envelope remained significantly higher than that of 

the parent strain. The quantitative and qualitative analysis of the composition of the mycolate 

layer already indicated that, in spite of the presence of all native components due to 

supplementation with trehalose, the mycolate layer of the trehalose deficient strain might 

differ from the native mycolate layer, since the fractions of AGM, TMM and TDM might not be 

equal in both strains. AGM, GMM, TMM and TDM might have to be available in appropriate 

amount and proportion to restore the permeation barrier.  

 

 

4.3.4 Impact of the availability of trehalose and of the carbon source on the 
excretion of amino acids 

Whereas in mycobacteria the influence of the cell envelope on the uptake of antibiotics is 

important, in C. glutamicum the influence of the cell envelope on the efflux of substances is 

more relevant as it is the sole industrial producer of the amino acids L-lysine and L-

glutamate. The discovery of the lysine exporter LysE in C. glutamicum revealed that lysine 

production requires efficient efflux of the amino acid (Broer et al., 1991a/b; Vrljic et al., 1995; 

Vrljic et al., 1996; Bellmann et al., 2001). LysE exports lysine across the plasma membrane 

into the cell envelope where lysine has to cross a second lipid bilayer - the mycolate layer.  

Measurement of the permeability of the cell envelope of LP∆treS∆otsA∆treY and ATCC 

21527 containing differently composed mycolate layers demonstrated that an imperfect 

mycolate layer increased the permeability of the cell envelope for the uptake of the tested 

antibiotics and of glycerol. The following part of the project investigated whether also the 

efflux of substances, especially of amino acids, was influenced by different compositions of 

the mycolate layer caused by the absence or presence of trehalose and by the type of 

carbon source. 

Lysine excretion by the trehalose deficient LP∆treS∆otsA∆treY was similar to ATCC 21527 

except for one condition. Only LP∆treS∆otsA∆treY grown on sucrose in the absence of 

trehalose excreted significantly more lysine than the parent strain. Since LP∆treS∆otsA∆treY 

was mycolate deficient under these conditions, the elimination of the permeation barrier 

could be responsible for enhanced lysine excretion. Supplementation of the medium with 

trehalose decreased lysine excretion nearly to the level of the parent strain. Since under 

these conditions the mycolate layer is partially restored, it could impede lysine excretion. 
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However, the measurement of uptake of antibiotics and of glycerol indicated that the native 

permeability is not restored under these conditions. 

A further restriction for the relevance of the permeability of the mycolate layer for the 

excretion of lysine was the fact that LP∆treS∆otsA∆treY was also mycolate deficient cultured 

on fructose in the absence of trehalose, but excreted lysine concentrations similar to the 

parent strain. Lysine excretion of LP∆treS∆otsA∆treY as well as of ATCC 21527 was 

significantly lower on fructose than on sucrose. Hence, the carbon source influenced amino 

acid excretion also of ATCC 21527 which exhibited a similar composition of the mycolate 

layer on all three carbon sources. This in turn indicated that apart from the mycolate layer, a 

further factor, which was also influenced by the carbon source, determined lysine excretion. 

Similarly, cultivation of the C. glutamicum lysine producer strain ATCC 21253 on sucrose, 

glucose and fructose caused different levels of lysine production (Kiefer et al., 2002). 

Metabolic flux analysis showed that the carbon sources caused different fluxes through the 

pentose-phosphate-pathway (PPP) and also through the tricarboxylic acid cycle (Kiefer et al., 

2003; Wittmann et al., 2004). Since these two pathways are the main sources of NADPH in 

C. glutamicum and an excess of NADPH is considered to be essential for efficient lysine 

production, the different metabolic fluxes could explain the different levels of lysine excretion. 

This assumption was confirmed by metabolic flux analysis of ATCC 21526 which showed 

that the NADPH budget within the cell depended on the carbon source (Kiefer et al., 2003; 

Wittmann et al., 2004). Higher lysine synthesis from sucrose than from glucose or fructose in 

ATCC 21527, the lysine producer used in this study, could indicate that during cultivation on 

sucrose excess of NADPH facilitated lysine synthesis whereas on glucose and fructose 

NADPH was limiting. However, ATCC 21527 excreted more lysine cultured on sucrose than 

cultured on glucose or fructose, while the other two lysine production strains excreted more 

lysine grown on glucose than grown on the two other carbon sources. Since all three strains 

were generated by random mutagenesis, this divergence could be due to unidentified 

secondary mutations in carbon metabolism. 

A further support for the hypothesis that NADPH was limiting for lysine synthesis in ATCC 

21527 grown on glucose was the fact that under these cultivation conditions this strain 

exhibited a higher amount of unassigned substrate consumption. This unassigned substrate 

consumption could be caused by higher by-product formation and/or overflow metabolism 

which in turn consumes NADPH. Also LP∆treS∆otsA∆treY cultured on glucose showed a 

higher unassigned substrate consumption than cultured on sucrose indicating by-product 

formation and/or overflow metabolism similar to the parent strain. 

In summary, when ATCC 21527 was grown on sucrose an excess of NADPH was generated 

enabling a high level of lysine production. Enhanced lysine excretion by LP∆treS∆otsA∆treY 

on sucrose may be interpreted as indication that lysine production by ATCC 21527 had been 
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limited by the permeation barrier and that spare NADPH was available for additional lysine 

production. Taking the enhanced excretion of lysine as an indicator for higher permeability of 

the cell envelope these results support the permeability measurements (cf. 4.3.3). In 

contrast, the imperfect mycolate layer did not enhance lysine excretion when 

LP∆treS∆otsA∆treY was grown on fructose or glucose indicating that lysine excretion was 

not limited by the permeation barrier under these conditions, but by an additional factor, 

presumable a low NADPH pool. 

In spite of enhanced lysine excretion on sucrose LP∆treS∆otsA∆treY is not suitable for 

industrial amino acid production. Fermentation of the trehalose deficient strain is not efficient 

because of low biomass production and low growth rates. Furthermore, slow growth makes 

LP∆treS∆otsA∆treY very susceptible for contamination. 

 

Unlike lysine excretion, the excretion of L-glutamate requires special treatments of the cell 

such as biotin limitation, temperature upshift or addition of penicillin or of detergents (Kimura, 

2003). Two different mechanisms that may trigger the excretion of glutamate are discussed. 

Eggeling and Sahm (2001) suggest that the structure of the cell envelope, especially the 

permeability of the mycolate layer is crucial for glutamate efflux. Kimura (2003) favours the 

“metabolic flux model” which is based on the 30 years old observation that the activity of the 

ODHC enzyme complex plays a central role in glutamate production (Shingu & Terui, 1971).  

The cultivation conditions applied in this project did not include a special treatment to trigger 

glutamate excretion. Consequently, ATCC 21527 did not excrete glutamate. Surprisingly, the 

trehalose deficient LP∆treS∆otsA∆treY spontaneously excreted glutamate cultured on all 

three carbon sources. Since the main difference between LP∆treS∆otsA∆treY and ATCC 

21527 was the composition of the mycolate layer, the changed lipid composition of this 

second lipid bilayer could be the trigger for glutamate excretion by LP∆treS∆otsA∆treY. 

This assumption was supported by recent experiments indicating a function of the cell wall 

skeleton for glutamate excretion. The cell wall skeleton consists of peptidoglycan linked 

covalently to arabinogalactan which in turn is esterified by mycolic acids. Radmacher et al. 

(2005b) showed that glutamate excretion was triggered by treatment with ethambutol, which 

inhibits arabinogalactan synthesis. Consequently, the ethambutol treated cells exhibited a 

reduced content of arabinogalactan mycolate which should impede the appropriate formation 

of the mycolate layer. These recent results are consistent with the old observation that 

penicillin treatment, which inhibits peptidoglycan synthesis, triggers glutamate excretion 

(Nunheimer et al., 1970). Furthermore, glutamate excretion was induced by inactivation of 

the fatty acid synthases FAS-IA and FAS-IB, which synthesise building blocks for 

phospholipids constituting the plasma membrane as well as for mycolic acids. Manipulation 

of fatty acid synthesis could generally influence the constitution of both lipid bilayers since 

  79 



Discussion   

the fasA and fasB inactivation mutants exhibited an altered phospholipid composition as well 

as an altered mycolate composition (Radmacher et al., 2005a). In summary, inhibition of the 

synthesis of any of the components of the cell wall skeleton induced the excretion of 

glutamate supporting the hypothesis of Eggeling and Sahm (2001). As all the components of 

the cell wall skeleton are covalently linked, elimination of any of them causes finally lack of 

arabinogalactan mycolate. Since trehalose deficiency is supposed to affect only the mycolate 

layer and no other component of the cell wall skeleton, glutamate excretion by 

LP∆treS∆otsA∆treY proved that the alteration of the mycolate layer alone was sufficient to 

induce glutamate excretion. 

In contrast to lysine excretion, glutamate excretion was similar on all three carbon sources, 

and only slightly higher when LP∆treS∆otsA∆treY was grown on glucose as carbon source. 

Recently, Georgi et al. (2005) reported that glutamate production by ATCC 13032 was not 

affected by the carbon source and explained this with the fact that only 1 mol NADPH is 

required for synthesis of 1 mol glutamate. In contrast, 4 mol NADPH are needed for 1 mol 

lysine. Consequently, glutamate synthesis depends not as much on the energy metabolism 

as lysine synthesis, so that the effect of the carbon source on the energy pool is not relevant. 

Supplementation of the medium with trehalose almost completely impeded the excretion of 

glutamate by LP∆treS∆otsA∆treY. Similarly, LP∆treS∆otsA∆treY excreted lysine 

concentrations as low as ATCC 21527 when the medium was supplemented with trehalose. 

Under these conditions the partially restored mycolate layer could constitute a permeation 

barrier for glutamate and lysine. However, the measurement of uptake of antibiotics and of 

glycerol indicated that the native permeability of the mycolate layer is not restored under 

these conditions. Probably, trehalose deficiency influences amino acid excretion on the level 

of metabolism. Whether increase of amino acid excretion in the absence of trehalose is due 

to higher permeability of the mycolate layer or due to changes of metabolism cannot be 

definitely answered based on the results of this project. 
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5 Summary 
The first part of this project focused on the role of trehalose as a protectant against osmotic 

stress. Since an involvement of the OtsAB trehalose synthesis pathway in mycolate 

synthesis, as suggested by Shimakata and Minatogawa (2000) could be ruled out (Wolf et 

al., 2003), the function of the OtsAB-pathway remained unknown. RNA-hybridisation 

experiments indicated a role of this pathway in the response to osmotic stress in 

Corynebacterium glutamicum (Wolf et al., 2003). Analysis of trehalose synthesis in strains 

defective in individual trehalose synthesis pathways disclosed that the OtsAB-pathway was 

the predominant trehalose synthesis pathway under carbon limiting conditions in the absence 

and presence of osmotic stress. However, trehalose was not the most important protectant 

against osmotic stress under these conditions. Nor is trehalose the predominant compatible 

solute during the usual cultivation in minimal medium providing abundant carbon and 

nitrogen, but trehalose is the most important protectant against osmotic stress under nitrogen 

limiting conditions (Wolf et al., 2003). Therefore, the OtsAB-pathway might be necessary to 

synthesise trehalose as compatible solute, when C. glutamicum is exposed to the 

coincidental limitation of carbon and nitrogen, which occurs frequently in its natural soil 

habitat. 

In contrast to other Gram-positive bacteria all members of the suborder of 

Corynebacterineae, including C. glutamicum, contain a cell envelope that comprises a 

second lipid bilayer apart from the plasma membrane, the mycolate layer, which is 

considered as a permeability barrier (Puech et al., 2001). Trehalose is important for the 

biosynthesis of all main components of the mycolate layer since trehalose monomycolate 

(TMM) serves as a precursor for arabinogalactan mycolate (AGM) and trehalose dimycolate 

(TDM). A C. glutamicum strain inactivated in trehalose synthesis was utilized to investigate 

the importance of trehalose for the corynebacterial mycolate layer, with special focus on the 

permeability of the mycolate layer. The C. glutamicum L-lysine production strain ATCC 

21527 deficient in trehalose biosynthesis was chosen for these experiments to test whether 

lysine excretion could be correlated with the permeability of the cell envelope. Moreover, this 

strain was tested for improved lysine production due to the alteration of the mycolate layer. 

Analysis of this C. glutamicum L-lysine production strain inactivated in trehalose synthesis 

showed that the mycolate layer lacked completely when this strain was grown on sucrose or 

fructose, while grown on glucose it synthesised AGM and glucose monomycolate. Thus, 

trehalose was only essential for mycolate synthesis, when sucrose or fructose were the 

carbon source, whereas glucose could replace trehalose as acceptor and translocator of 

mycolic acids. Under these conditions of lacking or incomplete mycolate synthesis, the 

growth rate of the trehalose deficient strain was lower compared to ATCC 21527 and the 
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permeability of the cell envelope was higher compared to the parent strain proving that the 

mycolate layer determines the permeability of the cell envelope. 

Trehalose could not be taken up into the cytoplasm of C. glutamicum as demonstrated by the 

determination of [14C]trehalose uptake rates, and the trehalose deficient strain could 

synthesize TMM when trehalose was supplied in the medium. Hence, the condensation to 

TMM had to be located in the cell envelope. External trehalose replaced cytoplasmic 

trehalose for mycolate synthesis only partially, since the trehalose deficient strain did not 

synthesise TDM and contained lower quantities of mycolate than ATCC 21527 cultured on a 

mixture of sucrose and trehalose, while it synthesised the native mycolate composition 

cultured on a mixture of fructose or glucose and trehalose. Since growth rate and biomass 

production were restored to the level of the parent strain when the trehalose deficient strain 

was grown on a mixture of glucose or fructose and trehalose, but not on a mixture of sucrose 

and trehalose, the native composition and/or the native amount of the mycolate layer was 

important for the growth behaviour. In contrast, the mere presence of all the components of 

the native mycolate layer in the trehalose deficient strain was not sufficient to restore the 

extent of permeability of the mycolate layer of the parent strain. Presumably, the components 

of the mycolate layer have to be available in appropriate amount and proportion to restore 

the permeation barrier. An imperfect mycolate layer enhanced the excretion of lysine only 

when the trehalose deficient strain was cultured on sucrose. Dependency of lysine excretion 

on the carbon source confirmed the significance of carbon fluxes through the central 

metabolism for amino acid production. An incomplete mycolate layer was identified as trigger 

for glutamate excretion because, in contrast to the parent strain, the trehalose deficient strain 

spontaneously excreted glutamate. 
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