T48 reguliert mit Fog/Concertina die Zellformveränderungen während der Mesoderminvagination in *Drosophila melanogaster*

Inaugural-Dissertation

zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von

Verena Kölsch
aus Hamburg

Köln, 2006
Berichterstatter: Prof. Dr. Maria Leptin

PD. Dr. Frank Sprenger

Inhaltsverzeichnis

Inhaltsverzeichnis ... 1
Zusammenfassung ... 5
Abstract .. 6
Abkürzungsverzeichnis ... 7

1 Einleitung ... 8
1.1 Gastrulation .. 8
1.2 Zellularisierung und Gastrulation in Drosophila melanogaster 8
1.3 Invagination des hinteren Mitteldarms in Drosophila .. 9
1.4 Genetische Kontrolle der Mesoderminvagination: Zygotische Faktoren 12
 1.4.1 Twist und Snail...1 2
 1.4.2 Folded Gastrulation ... 13
1.5 Invagination des hinteren Mitteldarms in Drosophila ... 11
1.6 Genetische Kontrolle der Mesoderminvagination: maternal-kontrollierte Gene ... 15
 1.6.1 Concertina.. 15
 1.6.2 RhoGEF2...1 7
 1.6.3 Rho-Signalweg, Myosin und Aktinzytoskelett... 18
1.7 Adhärenzverbindungen in der frühen Embryonalentwicklung von Drosophila 19
 1.7.1 Proteine der Adhärenzverbindungen.. 20
1.8 Modell zur Steuerung der Mesodermeinwanderung .. 22
1.9 Ziel der vorliegenden Arbeit .. 23

2 Ergebnisse .. 24
2.1 Defizienz Df(3R)Tl ... 24
2.2 Compound-Kreuzungen .. 25
2.3 Kartierung von kleineren Defizienzen in der Region 97D 27
 2.3.1 Phänotypische Analyse der Defizienzen .. 27
 2.3.2 Single-Embryo-PCR .. 28
2.4 Defizienz Df(3R)CC1.2... 31
 2.4.1 Phänotypische Analyse ... 31
 2.4.2 Phänotypische Charakterisierung auf zellulärer Ebene .. 33
 2.4.3 Kartierung .. 34
 2.4.4 Rettung der Defizienz Df(3R)CC1.2 durch T48-Transgen 35
2.5 T48 ... 37
 2.5.1 Expression von T48 ... 37
 2.5.2 Struktur von T48 .. 37
 2.5.3 Homologe Proteine ... 38
 2.5.4 Lokalisation in der Zelle .. 39
 2.5.5 Interaktionspartner von T48 .. 40
 2.5.6 In vitro Untersuchung der möglichen Interaktionspartner von T48......................... 42
5.5.2	Injektion	89
5.6	Antikörperfärbungen	90
5.6.1	Antikörperfärbung nach der „Avidin-Biotinylated Enzyme Complex“-Methode (ABC-Methode)	90
5.6.2	Färbung mit Fluoreszenz-gekoppelten Zweiantikörpern	91
5.7	*In situ* Hybridisierung	91
5.7.1	Herstellung einer Sonde	91
5.7.2	Hybridisierung	92
5.7.3	Detektion	93
5.8	Einbetten von Embryonen und Mikroskopie	93
5.8.1	Fluoreszenzfärbung	93
5.8.2	DAB-Färbung/*In situ* Hybridisierung	93
5.9	Schnitte von Embryonen	94
5.9.1	Fluoreszenzschnitte	94
5.9.2	Schnitte nach DAB-Färbung	94
5.10	Polymerase-Kettenreaktion (PCR)	95
5.10.1	Standard-PCR an Plasmid-DNA	95
5.10.2	PCR an einzelnen Embryonen („Single embryo PCR“)	95
5.11	Konstrukte	96
5.11.1	Konstrukte zur Herstellung transgener Fliegen	96
5.11.2	Konstrukte für *in vitro* translation	97
5.11.3	Konstrukte für GST-Fusionsproteine der PDZ Domänen	97
5.11.4	Konstrukte für Transfektion von Schneiderzellen	97
5.12	DNA-Arbeiten	98
5.12.1	*E. coli*-Stämme	98
5.12.2	Restriktionsanalysen	99
5.12.3	Agarose-Gel	99
5.12.4	DNA-Aufreinigung aus dem Gel	99
5.12.5	Ligation und Transformation	100
5.12.6	TOPO-TA-Klonierung	100
5.13	Isolierung von Plasmid-DNA	101
5.13.1	Mini-Präparation durch Alkalische Lyse	101
5.13.2	Plasmid-Midi-Präparation über Säulen-Chromatografie	101
5.14	Vorhersage möglicher Bindepartner von T48	101
5.15	SDS-PAGE und Coomassie-Färbung	102
5.16	*In vitro* Transkription	102
5.17	*In vitro* Translation	103
5.18	Autoradiografie	103
5.19	Expression und Aufreinigung von GST-Fusionsproteinen	104
5.20	Co-Immunopräzipitation	104
5.21	Arbeiten mit Schneiderzellen	105
Inhaltsverzeichnis

5.21.1 Kultivierung von Schneiderzellen .. 105
5.21.2 Transiente Transfektion von Schneiderzellen ... 105
5.21.3 Antikörperfärbung an Schneiderzellen .. 106
6 Literaturverzeichnis ... 107
7 Anhang ... 116
 7.1 Vektorkarten ... 116
Danksagung ... 118
Erklärung .. 119
Lebenslauf .. 120
Zusammenfassung

Abstract

Gastrulation in *Drosophila* is regulated by the two transcription factors Twist and Snail. But only a few targets of Twist are known to be involved in regulating cell shape changes during mesoderm invagination. This work reports the role of T48, a target of Twist, in regulating the cell shape changes occurring in the mesoderm. Embryos homozygous deficient for \textit{T48} display reduced apical constrictions in the mesodermal cells. This leads to a delay in furrow formation and irregularities during invagination of the mesoderm. T48 is a transmembrane protein with a PDZ-binding motif at the C-terminus. T48HA expressed in the early embryo localises to the apical membrane of the cells. T48 interacts with RhoGEF2 via the PDZ-binding motif. Embryos homozygous deficient for \textit{T48} show a delay in the accumulation of RhoGEF2 at the apical membrane of the invaginating cells. The accumulation is not completely blocked; at later stages an association of RhoGEF2 with the membrane is detectable. A similar phenotype can be observed in embryos from *concertina* mutant mothers. In \textit{cta/T48} mutant embryos the accumulation of RhoGEF2 at the apical membrane is absent and mesoderm invagination is completely blocked. Thus, T48 and Fog/Concertina signalling act in parallel to concentrate RhoGEF2 at the apical side of the ventral cells, which is necessary for the enrichment of Myosin and the constriction of the actin cytoskeleton at the apical side of the cells. If one of the signals is absent, the enrichment of RhoGEF2 is slowed down and the invagination is delayed. If both the signals are absent, RhoGEF2 fails to accumulate apically and invagination is completely blocked.

In addition, \textit{cta/T48} mutant embryos exhibit defects in the relocalisation of the adherens junctions during mesoderm invagination. The results suggest that there is a step of at least partial disassembly involved in relocalising the adherens junctions during mesoderm invagination.
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>bHLH</td>
<td>Basisches Helix-Loop-Helix-Motiv</td>
</tr>
<tr>
<td>BSA</td>
<td>Rinderserum</td>
</tr>
<tr>
<td>DAB</td>
<td>Diaminobenzidin</td>
</tr>
<tr>
<td>DH</td>
<td>Dbl-Homologie</td>
</tr>
<tr>
<td>EMT</td>
<td>Epithel-Mesenchym-Übergang</td>
</tr>
<tr>
<td>FBS</td>
<td>Fötales Rinderserum</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase-aktivierendes Protein</td>
</tr>
<tr>
<td>GDI</td>
<td>Guanine-Nukleotid-Dissoziations-Inhibitor</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanindiphosphat</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine-Nukleotid-Austauschfaktor</td>
</tr>
<tr>
<td>GFP</td>
<td>Grün fluoreszierendes Protein</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion-S-Transferase</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanintriphosphat</td>
</tr>
<tr>
<td>HA</td>
<td>Hämagglutinin</td>
</tr>
<tr>
<td>NGS</td>
<td>Ziegenserum</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PH</td>
<td>Pleckstrin-Homologie</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Gastrulation

1.2 Zellularisierung und Gastrulation in Drosophila melanogaster

1.3 Mesoderminvagination in *Drosophila*

Während der Mesoderminvagination wandert das prospektive Mesoderm im ventralen Bereich des Embryos nach innen und bildet die so genannte Ventralfurche. Im weiteren Verlauf gelangt das gesamte spätere Mesoderm ins Innere des Embryos, der Zellverband löst sich auf und die einzelnen Zellen wandern unter dem Ektoderm nach dorsal und beginnen, sich in die verschiedenen Mesodermderivate zu differenzieren (Abbildung 1.2).

Einleitung

Abbildung 1.2: Schematische Querschnitte von *Drosophila*-Embryonen während der Mesoderminvagination (modifiziert nach Leptin 2004)

Abbildung 1.3: Zellformveränderungen im Mesoderm während der Gastrulation (Details siehe Text)

Nun beginnen sich die Zellen apikal stark zusammenzuziehen und entlang der apiko-basalen Achse zu strecken (Kam et al. 1991). Das Zusammenziehen an der apikalen Seite kann man jedoch nur bei den 12 Zellreihen der zentralen Region feststellen,

1.4 Invagination des hinteren Mitteldarms in Drosophila

1.5 Genetische Kontrolle der Mesoderminvagination: Zygotische Faktoren

1.5.1 Twist und Snail

Einleitung

Abbildung 1.4: Schematischer Querschnitt eines Embryos mit den Expressionsdomänen ausgewählter Gene (modifiziert nach Wolpert et al. 2001)

1.5.2 Folded Gastrulation

Viele von Twist regulierte Gene sind in späteren Stadien der Mesodermentwicklung aktiv, so z. B. während der Migration der Zellen nach dorsal, z. B. heartless (Vincent et al. 1998) oder während der Differenzierung der verschiedenen Mesodermderivate, wie z. B. tinman (Yin et al. 1997). Es sind jedoch nur wenige Zielgene von Twist

1.6 Genetische Kontrolle der Mesoderminvagination: maternal-kontrollierte Gene

1.6.1 Concertina

Zusätzlich zu den zygotischen Faktoren gibt es maternal-kontrollierte Faktoren, die an der Kontrolle der Gastrulation beteiligt sind.

Concertina (cta) ist ein maternal-kontrolliertes Gen und die mRNA findet sich ubiquitär im gesamten Embryo (Parks et al. 1991). Concertina kodiert für ein G_α-Protein (Parks et al. 1991). G_α-Proteine sind Teile eines Heterotrimers, dem so genannten G-Protein. Diese sind an intrazellulären Signaltransduktionswegen beteiligt und koppeln membrangebundene Rezeptoren an intrazelluläre Effektormoleküle. G-Proteine sind Heterotrimere, die aus einer α-, β- und γ-Untereinheit bestehen. Die α-Untereinheit trägt zusätzlich eine Ras-ähnliche Untereinheit, die GDP bzw. GTP binden kann (Hamm 1998). G-Proteine agieren als molekularer Schalter (Abbildung 1.5): die Bindung von GDP bewirkt, dass die Bindestellen für Effektormoleküle durch die gebundene β- und γ-Untereinheit blockiert werden. Wird GDP durch GTP ausgetauscht, kommt es zu einer Konformationsänderung. Dadurch löst sich die α-Untereinheit von der β- und γ-Untereinheit und Effektormoleküle können binden. Der Übergang zwischen diesen beiden Formen wird durch die Aktivierung des Rezeptors reguliert.

Abbildung 1.5: GDP/GTP-Zyklus von G-Proteinen (modifiziert nach Stryer et al. 1986)

Die Aktivierung des Rezeptors durch Bindung eines Liganden katalysiert den Austausch von GDP gegen GTP und führt zur aktiven Form des G-Proteins. Durch
Einleitung

Concertina zeigt auf Proteinebene höchste Homologie zu den Mausproteinen G\(^\alpha_12\) und G\(^\alpha_{13}\) (Strathmann et al. 1989; Parks et al. 1991). G\(^\alpha_{12}\) und G\(^\alpha_{13}\)-Proteine bilden eine eigene Gruppe von α-Untereinheiten und zeigen nur 35-44 % Identität mit anderen Klassen von α-Untereinheiten von G-Proteinen (Strathmann et al. 1991). Zahlreiche Studien liefern Hinweise darauf, dass Mitglieder der G\(^\alpha_{12}/\alpha_{13}\)-Proteinfamilie zur Aktivierung von Rho-abhängigen Signalwegen führen und in vielen Fällen das Zellwachstum kontrollieren (Offermanns et al. 1994; Dhanasekaran et al. 1996; Gohla et al. 1998).

Während die Proteine der β- und γ-Untereinheit, die mit Concertina ein vollständiges G-Protein bilden, bekannt sind (Schaefer et al. 2001; Izumi et al. 2004), konnte der entsprechende Rezeptor, der zur Aktivierung des G-Proteins führt, bisher nicht identifiziert werden.

1.6.2 RhoGEF2

Abbildung 1.6: Proteinstruktur von RhoGEF2 (modifiziert nach Fukuhara et al. 2001, Details siehe Text)

Domänen wurden in den so genannten RGS-Proteinen gefunden. RGS-Proteine fungieren als GAPs und inaktivieren die α-Untereinheiten von G-Proteinen durch Katalyse der Hydrolyse von GTP (De Vries et al. 1999). Es gibt 2 Klassen von RGS-Proteinen, zum einen sehr kleine Proteine, die nur aus der RGS-Domäne bestehen, zum anderen größere Proteine, die weitere Domänen besitzen, z. B. eine DH-Domäne.

1.6.3 Rho-Signalweg, Myosin und Aktinzytoskelett

1.7 Adhärenzverbindungen in der frühen Embryonalentwicklung von Drosophila

Abbildung 1.7: Anlage der apiko-basalen Polarität während der Embryonalentwicklung von *Drosophila* (modifiziert nach Müller 2000)

(A) Während der Zellularisierung. (B) Zum Ende der Zellularisierung. (C) Ektodermzellen nach Ausstreckung des Keimstreifs. Separat gezeigt ist jeweils die Verteilung von Membranproteinen, Membran-assoziierten und zytoplasmatischen Proteinen.

1.7.1 Proteine der Adhärenzverbindungen

Schon während des Stadiums des ausgestreckten Keimstreifs zeigen die Zellen der Epidermis die Organisation eines typischen Epithels. Die Plasmamembran gliedert sich in verschiedene Bereiche. Einen apikalen und einen basolateralen Bereich, verbunden durch einen Bereich, der die Adhärenzverbindungen enthält.

![Abbildung 1.8: Proteine in Epithelzellen während der Embryonalentwicklung](image)

1.8 Modell zur Steuerung der Mesodermeinwanderung

Abbildung 1.9: Modell zur Steuerung der Mesoderminvagination (Details siehe Text)

1.9 Ziel der vorliegenden Arbeit

Im Rahmen dieser Arbeit sollten weitere Gene identifiziert und charakterisiert werden, die an der Regulation der Zellformveränderungen während der Mesoderminvagination beteiligt sind. In einem vorangegangenen Defizienzen-Screen wurde unter anderem für die Defizienz Df(3R)Tlp gezeigt, dass diese Gene deletiert, die in der Mesodermentwicklung eine Rolle spielen. Daher sollten die Gene identifiziert und charakterisiert werden, die in dieser Defizienz deletiert sind und deren Verlust zu einer Störung der Invagination des Mesoderms führt.
2 Ergebnisse

2.1 Defizienz $Df(3R)Tl^p$

Die Defizienz $Df(3R)Tl^p$ deletiert etwa 1 Mb genomischer DNA im Bereich 97-98 des 3. Chromosoms (Abbildung 2.4).

![Abbildung 2.1: Phänotyp von Embryonen, die homozygot defizient sind für $Df(3R)Tl^p$ (modifiziert nach Seher 2004)](image)

2.2 Compound-Kreuzungen

Abbildung 2.2: Kreuzungsschema: Compound-Weibchen gegen Männchen der Defizienz \(Df(3R)Tp\)

Compound-Weibchen haben eine abnormale Chromosomenverteilung in der Meiose. Kreuzt man diese Weibchen mit Männchen, die eine Deletion für einen bestimmten Bereich des Genoms tragen, kann man Nachkommen kreieren, die wildtypisch für maternal-kontrollierte Gene sind, aber zygotisch homozygot defizient für den Bereich der Defizienz (orange).
Kreuzt man diese Fliegen nun gegen einen Fliegenstamm mit einer Defizienz, kann eine genetische Situation kriert werden, in der die Mutter einen vollständigen Chromosomensatz hat, ein Viertel der Embryonen aber homozygot defizient ist für den Bereich der Deletion (orange in Abbildung 2.2). Mit Hilfe dieser Fliegen kann untersucht werden, ob ein beobachteter Effekt auf maternal-kontrollierte Gene zurückzuführen ist oder nur durch zygotische Komponenten entsteht.

Um die Embryonen untersuchen zu können, wurden Antikörperfärbungen gegen Twist (Roth et al. 1989) und Evenskipped (Frasch et al. 1987) durchgeführt. Mit der Färbung gegen Twist sollte hier, wie auch im Folgenden, das Mesoderm sichtbar gemacht werden, die Färbung gegen Evenskipped diente als Marker für das Alter der Embryonen (Seher 2004).

Abbildung 2.3: Phänotyp der Embryonen aus der Kreuzung der Compound-Weibchen mit Df(3R)Tlp

Die Analyse der Embryonen aus dieser Kreuzung ergab, dass es sich um einen rein zygotischen Effekt handelt, da in den Embryonen eine ebenso starke Störung der Invagination zu beobachten war, wie in Embryonen homozygot für Df(3R)Tlp (Abbildung 2.3). Da die Mütter aus diesen Kreuzungen jedoch ein vollständiges Genom haben, muss es ein zygotisch aktives Gen sein oder eine Kombination zygotisch aktiver Gene, die bei Ausfall die beobachteten Störungen während der Mesoderminvagination verursachen.
2.3 Kartierung von kleineren Defizienzen in der Region 97D

Um den Bereich einzugrenzen, in dem das Gen oder die Gene liegen, die wichtig sind für die Invagination, wurden weitere, kleine Defizienzen in dem Bereich von \textit{Df(3R)Tl} auf Defekte in der Ventralfurchenbildung hin analysiert und deren genaue Bruchpunkte anhand von Single-Embryo-PCR bestimmt (Abbildung 2.4).

2.3.1 Phänotypische Analyse der Defizienzen

Verschiedene überlappende Defizienzen wurden auf Störungen in der Einwanderung des Mesoderms untersucht. Dazu wurden Embryonen mit Antikörpern gegen Twist und Evenskipped gefärbt und die Mesodermeinwanderung untersucht.

Abbildung 2.4: Schematische Darstellung der Region, die in \textit{Df(3R)Tl} deletiert ist

Dargestellt sind der zytogenetische Bereich, der in der Defizienz \textit{Df(3R)Tl} deletiert ist, einige Gene in diesem Bereich und die kleineren Defizienzen, die für die Kartierung verwendet wurden. Durchgezogene Linien markieren den Bereich der Defizienzen, der deletiert ist, gestrichelte Linien markieren den Bereich, für den nicht eindeutig klar ist, ob er deletiert ist. Defizienzen, deren Embryonen Defekte während der Gastrulation aufwiesen, sind in der rechten Spalte mit „+“ markiert. Die senkrechten gestrichelten Linien grenzen den Bereich ab, der durch die Kartierung ermittelt wurde und das Gen oder die Gene enthält, die bei Ausfall zu Störungen in der Mesoderminvagination führen.

Dabei zeigte sich, dass Embryonen homozygot für einige der untersuchten Defizienzen, wie Defizienz \textit{Df(3R)ro}^{80b}, \textit{Df(3R)ro}^{XB3} und \textit{Df(3R)Tl}, ebenfalls Störungen in der Mesoderminvagination aufwiesen. Die Phänotypen waren vergleichbar mit dem beobachteten Phänotyp in \textit{Df(3R)Tl}-homozygoten Embryonen (Abbildung 2.5, A-D). In Embryonen von anderen Defizienzen jedoch verlief die
Einwanderung des Mesoderms wie im Wildtyp, wie in \(Df(3R)TI^X \) und \(Df(3R)D605 \) (Abbildung 2.5, E-H).

Abbildung 2.5: Phänotypen von Embryonen der kleinen Defizienzen
Antikörperfärbungen an Embryonen verschiedener kleiner Defizienzen etwa im gleichen Stadium (braun: anti-Twist, blau: anti-Eve). (A, B) Embryonen homozygot für \(Df(3R)ro^{80b} \). (C, D) Embryonen homozygot für \(Df(3R)TI^f \). (E, F) Embryonen homozygot für \(Df(3R)D605 \). (G, H) Embryonen homozygot für \(Df(3R)TI^X \). (A, C, E, G) ventrale Ansicht. (B, D, F, H) lateraler optischer Schnitt. Embryonen der Defizienzen \(Df(3R)ro^{80b} \) und \(Df(3R)TI^f \) zeigten vergleichbare Defekte während der Gastrulation wie \(Df(3R)TI^X \). Die Invagination des Mesoderms war verzögert und verlief unkoordiniert im Vergleich zu Wildtypembryonen. Embryonen der Defizienzen \(Df(3R)D605 \) und \(Df(3R)TI^X \) zeigten keine Störungen der Mesoderminvagination. Hier verlief die Invagination des Mesoderms wie im Wildtyp.

2.3.2 Single-Embryo-PCR
Da bei keiner der verwendeten Defizienzen die Bruchpunkte eindeutig bekannt waren, war eine exakte Bestimmung der Bruchpunkte notwendig, um den Bereich von Interesse möglichst genau eingrenzen zu können. Dazu wurden Embryonen der Defizienzen mit anti-Twist gefärbt und Embryonen mit Gastrulationsdefekten selektioniert. Von diesen einzelnen Embryonen wurde DNA isoliert und mittels PCR
Ergebnisse

auf das Vorhandensein der Gene im Bereich der bekannten Bruchpunkte getestet. So konnten für einige Defizienzen genauere Bereiche für die Bruchpunkte bestimmt werden (Zusammenfassung siehe Tabelle 1)

Für Defizienz Df(3R)ro80b konnten die Bruchpunkte am genauesten bestimmt werden (Abbildung 2.6). Der proximale Bruchpunkt liegt zwischen CG14243 und CG5480, der distale Bruchpunkt liegt zwischen Tsp97E und CG14254. Diese Defizienz deletiert also etwa einen Bereich von 350 kb. Embryonen homozygot für diese Defizienz zeigten Störungen in der Invagination des Mesoderms (Abbildung 2.5, A und B).

Abbildung 2.6: Single-Embryo-PCR an Df(3R)ro80b

Für Df(3R)TlX war schon vorher gezeigt worden, dass der distale Bruchpunkt in Toll liegt (Hashimoto et al. 1988). Dies konnte im Rahmen dieser Arbeit bestätigt werden. Da Embryonen homozygot für diese Defizienz jedoch keine Defekte in der
Gastrulation aufwiesen (Abbildung 2.5, G und H), ließ sich durch Kombination mit den Daten von *Df(3R)ro*¹⁸⁰b der Bereich, in dem das Gen, welches verantwortlich für die Störungen in *Df(3R)Tl*¹⁷¹ ist, auf etwa 180 kb zwischen den Genen *Toll* und *CG14254* (Abbildung 2.4) eingrenzen.

<table>
<thead>
<tr>
<th>Defizienzen</th>
<th>Bruchpunkte (Flybase)</th>
<th>Gastrulations-defekte</th>
<th>deletiert Flybase (schwarz) diese Arbeit (rot)</th>
<th>nicht deletiert Flybase (schwarz) diese Arbeit (rot)</th>
</tr>
</thead>
</table>
| *Df(3R)Tl*¹⁷¹ | 97A; 98A1-2 | + | *Pdf*
Tl
scrib
spz | *Rb97D*
pll |
| *Df(3R)Tl*¹⁷² | 97B; 97D1-2 | - | *Pdf*
Tl
scrib
spz (?) | *His2Av*
Rb97D
Pll
ro (Komplementation mit Df(3R)CC1.2)
T48 (in situ) |
| *Df(3R)Tl*¹⁷³ | 97B; 97E2-11 | + | *Tl*
Rb97D
spz | |
| *Df(3R)ro*¹⁸⁰b | 97D1; 97D13 | + | *scrib (?)*
amon (PCR)
Tl
His2Av
ro
Ets97D
Ets97D (PCR)
Tsp97E (PCR)
CG5480 (PCR) | *Pdf (PCR)*
scrib (PCR)
spz
(Komplementation)
CG14254 (PCR)
CG5471 (PCR)
CG31077 (PCR)
CG14243 (PCR) |
| *Df(3R)ro*¹⁸³ | 97D2; 97D9 | + | *His2Av*
Tl
ro
T48
Rb97D | *Tl (PCR)*
Bruchpunkt in Tl? |
| *Df(3R)D605* | 97E3; 98A5 | - | * pll*
spz | |

Tabelle 1: Zusammenfassung der Kartierung der kleineren Defizienzen im Bereich 97D
Informationen von Flybase sind in schwarz dargestellt, Ergebnisse dieser Arbeit sind rot markiert.
2.4 Defizienz Df(3R)CC1.2

Einen kleinen Bereich dieser 180 kb deletiert die Defizienz Df(3R)CC1.2 (Strutt et al. 1994, Abbildung 2.4). Diese Defizienz war durch die Exzision eines P-Elementes im 3. Exon des rough-Gens in der Fliegenlinie ro\(^{m13}\) generiert worden (Tomlinson et al. 1988; Strutt et al. 1994). Fliegen der Defizienz sind homozygot lebensfähig und fertile. Frühere Untersuchungen haben gezeigt, dass in dieser Defizienz das Gen rough deletiert ist, was zu rauen Augen in den Fliegen führt. Desweiteren ist der 5'-Bereich von T48 deletiert (Strutt et al. 1994).

2.4.1 Phänotypische Analyse

Um zu bestimmen, ob diese Defizienz Gene deletiert, die an der Mesoderminvagination beteiligt sind, wurden auch hier Embryonen phänotypisch anhand von Antikörperfärbungen gegen Twist und Evenskipped analysiert.

<table>
<thead>
<tr>
<th>Wildtyp</th>
<th>Df(3R)CC1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>H</td>
</tr>
</tbody>
</table>

Abbildung 2.7: Phänotyp von Embryonen der Defizienz Df(3R)CC1.2

Ergebnisse

während der Gastrulation, vergleichbar mit Embryonen von $Df(3R)TF^p$. Die Invagination setzte auch hier später ein und verlief nicht gleichmäßig über die gesamte ventrale Seite des Embryos.

Abbildung 2.8: Querschnitte an Embryonen von Defizienz $Df(3R)CC1.2$
mesodermalen Zellen entlang des gesamten Embryos sehen kann, fand man dies in Embryonen von Df(3R)CC1.2 oft nur im anterioren Bereich, während im posterioren Bereich keine koordinierte Invagination stattfand. Im posterioren Bereich schoben sich die Zellen in unkoordinierter Weise in den Embryo, es kam jedoch nicht zur Ausbildung eines Ventralrohrs.

2.4.2 Phänotypische Charakterisierung auf zellulärer Ebene

Die Antikörperfärbungen gegen Neurotactin zeigten, dass sich die mesodermalen Zellen von Embryonen homozygot für Defizienz Df(3R)CC1.2 apikal abflachen (Abbildung 2.9, D; siehe auch Abbildung 2.27, I), so wie es auch im Wildtyp geschieht (Abbildung 2.9, A).

<table>
<thead>
<tr>
<th>Wildtyp</th>
<th>Df(3R)CC1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>

Abbildung 2.9: Querschnitte von Embryonen von Wildtyp und Df(3R)CC1.2 nach Neurotactin-Antikörperfärbung

(A, B, C) Ventraler Bereich von Querschnitten von Wildtypembryonen, (A) Stadium 5, (B) Stadium 6 (C) spätes Stadium 5. (D-E) Ventraler Bereich von Querschnitten von Embryonen vergleichbarer Stadien von Df(3R)CC1.2. Die ventralen Zellen in Embryonen von Df(3R)CC1.2 flachten sich zwar zwar an der apikalen Seite ab, zogen sich aber apikal nicht oder nur schwach zusammen. Dies war auch in späteren Stadien weniger ausgeprägt als im Wildtyp. Gleichzeitige DAPI-Färbung verdeutlichte dies, da auch die Kerne nicht ihre normale Position in den Zellen einnahmen.
Ergebnisse

Während es im Wildtyp im Folgenden zu einer deutlichen Konstriktion der apikalen Seite der mesodermalen Zellen kam (Abbildung 2.9, A), konnte man in Embryonen homozygot für Defizienz Df(3R)CC1.2 nur kaum, und wenn, dann stark verzögert apikale Konstriktionen beobachten (Abbildung 2.9, D und F). Die Zellen streckten sich entlang ihrer apiko-basalen Achse, es kam aber aufgrund vermindelter oder ganz fehlender apikaler Konstriktionen nicht zur Ausbildung einer geordneten Ventralfurche (Abbildung 2.9, D). Eine gleichzeitige DAPI-Färbung um die Kerne sichtbar zu machen, zeigte, dass auch die Verlagerung der Kerne diese Unregelmäßigkeiten in der Invagination widerspiegelte (Abbildung 2.9, D und F). In späteren Stadien konnten jedoch in einigen Zellen Konstriktionen beobachtet werden und es kam zur Ausbildung einer Ventralfurche, die jedoch weniger stereotyp und weniger geordnet war, als im Wildtyp (Abbildung 2.9, E). Die Ursache für die Defekte während der Gastrulation in Embryonen der Defizienz Df(3R)CC1.2 scheint folglich zu sein, dass es nicht zu rechtzeitiger, starker Konstriktion der apikalen Seite der Zellen des prospektiven Mesoderms kommt.

2.4.3 Kartierung

Defizienz Df(3R)CC1.2 deletiert den Bereich, in dem Gene liegen, die eine Funktion in der Regulation der Mesodermeinwanderung haben (Abbildung 2.10).

![Abbildung 2.10: Zytogenetische Karte der Gene in Bereich von Df(3R)CC1.2 (modifiziert nach Flybase)](image)

Abbildung 2.11: Single-Embryo-PCR an Embryonen von Df(3R)CC1.2

2.4.4 Rettung der Defizienz Df(3R)CC1.2 durch T48-Transgen

Abbildung 2.12: Rettung von Embryonen der Df(3R)CC1.2 durch Expression von T48

2.5 T48

2.5.1 Expression von T48

Abbildung 2.13: Expression von T48 im prospektiven Mesoderm

In situ Hybridisierung gegen T48 an Wildtypembryonen (A) ventrale Ansicht, (B) lateraler optischer Schnitt. T48 wird im prospektiven Mesoderm exprimiert.

2.5.2 Struktur von T48

T48 kodiert für ein Protein mit 419 Aminosäuren. Funktionen für T48 waren bisher nicht bekannt. Strukturmotive auf Proteinebene sollten Hinweise auf mögliche Funktionen geben. Das Protein hat ein Signalpeptid am N-Terminus, eine putative Transmembrandomäne, die das Protein in einen kleineren extrazellulären und einen größeren intrazellulären Bereich gliedert, und ein PDZ-Bindemotiv am C-Terminus (Abbildung 2.14).
Ergebnisse

Abbildung 2.14: Struktur von T48

T48 besitzt ein Signalpeptid am N-Terminus, eine Transmembrandomäne und ein PDZ-Bindemotiv am C-terminalen Ende.

2.5.3 Homologe Proteine

Bei T48 scheint es sich nicht um ein konserviertes Gen zu handeln. Homologe Proteine lassen sich nur bei den Diptera finden, z.B. in D. pseudoobscura und Anopheles gambiae.

Abbildung 2.15: Alignment (AlignX) von T48 aus Drosophila melanogaster, Drosophila pseudoobscura und Anopheles gambiae auf Proteinebene

2.5.4 Lokalisation in der Zelle

Abbildung 2.16: T48HA-Lokalisation in Blastoderm-Embryonen

(A) Aufsicht auf einen Embryo etwa im Stadium 5, Antikörperfärbung gegen HA. T48HA befand sich an den Membranen der Blastodermzellen. (B) optischer Schnitt durch Zellen des Blastoderms, Antikörperfärbung gegen HA (grün) und Bazooka (rot); T48 befand sich apikal zu Bereichen, die durch Bazooka markiert wurden. (C) optischer Schnitt durch Zellen des Blastoderms, Antikörperfärbung gegen HA (grün) und Phosphotyrosin (rot); T48 befand sich apikal zu Bereichen, die durch Phosphotyrosin markiert wurden, teilweise überlappten die Bereiche apikal. Baz: Bazooka, PTyr: Phosphotyrosin.

2.5.5 Interaktionspartner von T48

2.5.5.1 L(2)02045
In einem „Hefe-Zwei-Hybrid“-Screen (Giot et al. 2003) wurde L(2)02045 als Interaktionspartner von T48 identifiziert. L(2)02045 ist ein Protein mit putativer PDZ-Domäne und aufgrund seiner Sequenz möglicherweise an der Regulation von G-Protein-Signalwegen beteiligt (http://flybase.bio.indiana.edu). Um zu untersuchen, ob l(2)02045 im Mesoderm exprimiert wird, wurden in situ Hybridisierungen gegen die mRNA von l(2)02045 an Wildtypembryonen mit DIG-markierten Sonden durchgeführt
Es zeigte sich, dass \textit{l}(2)02045 im frühen Mesoderm exprimiert ist (Abbildung 2.17). Embryonen, die eine P-Insertion in \textit{l}(2)02045 tragen, zeigten keine Störungen in der Mesoderminvagination (nicht gezeigt).

2.5.5.2 RhoGEF2 und Scribbled

Ergebnisse

Abbildung 2.18: Computerdiagramm für die Interaktion des C-terminalen PDZ-Bindemotivs von T48 mit der PDZ-Domäne von RhoGEF2

2.5.6 In vitro Untersuchung der möglichen Interaktionspartner von T48

Ergebnisse

Abbildung 2.19: Autoradiogramm von Ko-Immunopräzipitationen von 35S-T48$_{intra}$ mit verschiedenen PDZ-Proteinen

Die Ko-Immunopräzipitationen zeigten, dass T48$_{intra}$ mit RhoGEF2-PDZ ko-immunopräzipitiert werden konnte (Abbildung 2.19). Die Autoradiographie zeigte bei der Probe, die mit RhoGEF2 inkubiert wurde, zwei deutliche Banden, die T48 repräsentieren.
Ergebnisse

Abbildung 2.20: Coomassie-gefärbtes Gel der Ko-Immunopräzipitationen in Abbildung 2.19

Coomassie-gefärbtes Gel der Ko-Immunopräzipitationen von T_{48}^{intra}, $T_{48}^{\text{intra} \Delta \text{ITTEL}}$ und $\text{CycA-Crb}_{\text{intra}}$ mit GST-Fusionsproteinen verschiedener PDZ-Domänen zur Ermittlung der Proteinmengen nach der Immunopräzipitation. Baz: Bazooka-PDZ, Sdt: Stardust-PDZ, RhoGEF2: RhoGEF2-PDZ, Scrb: Scribbled-PDZ.

Bei den anderen PDZ-Proteinen ließ sich im Autoradiogramm nur eine sehr geringe Menge T_{48} nachweisen. Diese Bande trat auch auf, wenn als Negativkontrolle Matrix, an die kein PDZ-Protein gekoppelt war, mit T_{48} inkubiert wurden. Dies war somit unspezifisches Binden von T_{48} an die Matrix. Eine klare Interaktion zeigte sich hier folglich für T_{48} mit RhoGEF2-PDZ, aber nicht mit Scribbled-PDZ und L(2)02045. Wurde ein verkürztes Konstrukt von T_{48}, dem das Motiv –ITTEL fehlte ($T_{48}^{\text{intra} \Delta \text{ITTEL}}$), mit den GST-Fusionsproteinen der verschiedenen PDZ-Domänen inkubiert, konnte für keines der PDZ-Proteine T_{48} in der Autoradiografie detektiert werden (Abbildung 2.19). Auch für RhoGEF2-PDZ konnte in diesem Versuch kein T_{48} in der Autoradiografie detektiert werden. Die Interaktion von T_{48}^{intra} mit RhoGEF2-PDZ war folglich abhängig vom PDZ-Bindemotiv in T_{48}.
2.5.7 *In vivo* Untersuchung von möglichen Interaktionspartnern

Abbildung 2.21: Expression von T48HA in Schneiderzellen

T48 mit internem HA-Epitop wurde transient in Schneiderzellen exprimiert und mittels Antikörperfärbung gegen HA detektiert. T48HA war in Schneiderzellen größtenteils mit der Membran assoziiert; geringe Mengen des Proteins fanden sich auch in Aggregaten in der Zelle.

T48HA zeigte auch bei der Expression in Schneiderzellen eine deutliche Assoziation mit der Plasmamembran. Allerdings wurde nicht die gesamte Menge an Protein an der Plasmamembran lokalisiert, geringe Mengen befanden sich in Aggregaten in der Zelle (Abbildung 2.21). Dies könnte darauf zurückzuführen sein, dass die gewählte Transfektionsmethode zu einer starken Überexpression des Proteins führt. Wurde GFP-markiertes RhoGEF2-PDZ, Scribbled-PDZ oder L(2)02045 in Schneiderzellen exprimiert, so fanden sich diese Proteine ebenfalls in Aggregaten in der Zelle (Abbildung 2.22).
Ergebnisse

Abbildung 2.22: Expression von PDZ-Proteinen in Schneiderzellen

Gesamte Proteine oder nur die PDZ-Domänen verschiedener Proteine wurden mit GFP oder FLAG-Epitop (nur für RhoGEF2) markiert und transient in Schneiderzellen exprimiert. (A) RhoGEF2-PDZ-GFP, (B) RhoGEF2-FLAG, (C) Scribbled-PDZ-GFP, (D) Discs large-PDZ-GFP, (E) L(2)02045-GFP. RhoGEF2-FLAG befand sich ubiquitär in der Zelle, alle anderen Proteine bildeten Aggregate in der Zelle.

Abbildung 2.23: Ko-Expression von verschiedenen PDZ-Proteinen mit T48HA in S2-Zellen
Transiente Transfektionen von S2-Zellen mit verschiedenen PDZ-Proteinen oder nur den PDZ-Domänen zusammen mit T48HA; gezeigt sind jeweils die Einzelbilder für die PDZ-Proteine (grün) und T48HA (rot) und die Überlagerung beider Bilder.
Ergebnisse

rekrutiert RhoGEF2-PDZ und RhoGEF2-FLAG an die Plasmamembran, jedoch keines der anderen PDZ-Proteine.

Abbildung 2.24: Ko-Expression von RhoGEF2 und T48HA_\text{ITTEL} in S2-Zellen
Dies legt eine direkte Interaktion von T48HA und RhoGEF2 über das PDZ-Bindemotiv nahe.

2.6 Expression von RhoGEF2 und Armadillo während der Gastrulation in Wildtypembryonen

Ergebnisse

Abbildung 2.25: Übersicht der Verteilung von RhoGEF2 und Armadillo in Wildtypembryonen während der Mesoderminvagination

Abbildung 2.26: Details der Verteilung von RhoGEF2 und Armadillo in Wildtypembryonen während der Mesoderminvagination

2.7 Verteilung von RhoGEF2 und Armadillo in T48-mutanten Embryonen

Ergebnisse

Abbildung 2.27: Verteilung von RhoGEF2 und Armadillo in T48-defizienten Embryonen während der Gastrulation

einer Kontraktion der apikalen Membranen kam, sich die Zellen aber entlang ihrer apiko-basalen Achse streckten (siehe auch Abbildung 2.9 D, F), kam es eher zur Ausbildung einer Plakode anstelle einer Invagination (Pfeilkopf in H, J).

2.8 Kooperation von T48 und Concertina in der Gastrulation

In Embryonen von homozygot concertina-mutanten Müttern zeigten nur einige der Zellen des prospektiven Mesoderms apikale Kontraktionen. Die Ventralfurchenbildung war verzögert und unkoordinierter als im Wildtyp (Parks et al.

2.8.1 Phänotypische Analyse von Embryonen von heterozygot *concertina*-mutanten Müttern, defizient für T48

Eine Untersuchung von Embryonen von heterozygot *concertina*-mutanten Müttern, die gleichzeitig homozygot defizient für T48 waren, zeigte, dass die Einwanderung des Mesoderms deutlich stärker gestört war, als in den Einzelmutanten (Abbildung 2.28). Ähnliches konnte auch schon zuvor für Embryonen gezeigt werden, die heterozygot für *fog* und homozygot defizient für T48 waren (Seher 2004).

Abbildung 2.28: Phänotyp von Embryonen von heterozygot *concertina*-mutanten Müttern, gleichzeitig homozygot defizient für T48

Antikörperfärbungen an Embryonen von heterozygot *concertina*-mutanten Müttern, gleichzeitig homozygot defizient für T48 (braun: anti-Twist, blau: anti-Eve). (A, B) Stadium 6, ventrale Ansicht (A) und lateraler optischer Schnitt (B). (C, D) Spätes Stadium 7, ventrale Ansicht (C) und lateraler optischer Schnitt (D). T48-defiziente Embryonen von heterozygot *concertina*-mutanten Müttern zeigten
eine deutlich stärkere Verzögerung und Unregelmäßigkeit in der Invagination des Mesoderms, als die Einzelmutanten. Doch auch hier waren die Störungen nur vorübergehend, am Ende der Gastrulation waren nahezu alle Zellen des Mesoderms eingewandert.

2.8.2 Phänotypische Analyse von concertina/T48-mutanten Embryonen

<table>
<thead>
<tr>
<th>Abbildung 2.29: Phänotyp von Embryonen von concertina/T48-mutanten Embryonen</th>
</tr>
</thead>
</table>

Eine detaillierte Analyse der Veränderungen auf zellulärer Ebene anhand von Neurotactin-Antikörperfärbungen zeigte, dass sich die Zellen weder apikal abflachen, noch sich entlang ihrer apiko-basalen Achse strecken, noch apikale Konstriktionen zeigen (Abbildung 2.30).

Abbildung 2.30: Neurotactin-Antikörperfärbung an Querschnitten von *concertina/t48*-Embryonen

Eine zusätzliche DAPI-Färbung an diesen Embryonen zeigte, dass zwar wenige Kerne ihre apikale Position verloren, aber der Grossteil an Kernen in einer apikalen Position verblieb. Die Verschiebung der Kerne könnte in diesem Fall auf mechanische Kräfte durch die Faltungen des Mesoderms aufgrund fehlender Keimstreifausstreckung zurückzuführen sein.
2.8.3 Verteilung von RhoGEF2 und Armadillo in *concertina/T48*-mutanten Embryonen

In *cta/T48*-mutanten Embryonen zeigte sich, dass RhoGEF2 ebenfalls wie im Wildtyp basal verschwand, sich jedoch zu keinem Zeitpunkt der weiteren Gastrulation apikal akkumulierte (Abbildung 2.31, D, Pfeilkopf).

Abbildung 2.31: Verteilung von RhoGEF2 und Armadillo in Embryonen von homozygot *concertina*-mutanten Müttern und in *concertina/T48*-mutanten Embryonen

Concertina und T48 scheinen folglich die beiden Faktoren zu sein, die für eine starke und schnelle Akkumulation von RhoGEF2 an der apikalen Membran der
Ergebnisse

59

Die Tatsache, dass in den Doppelmutanten keine Ansammlung der Adhärenzverbindungen an der apikalen Membran erfolgte, zeigt, dass es zumindest einen teilweisen Abbau der Adhärenzverbindungen an der subapikalen Membran und einen Wiederaufbau an der apikalen Membran geben muss und nicht ein Verschieben allein die Ursache der veränderten Lokalisierung sein kann. Auch zeigen die Ergebnisse, dass die Umlokalisation der Adhärenzverbindungen nach apikal beginnt, bevor es zu apikalen Konstruktionen in den mesodermalen Zellen kommt.

2.9 Verteilung von RhoGEF2 und Armadillo in snail-mutanten Embryonen

Obwohl es in Embryonen der concertina/T48-Doppelmutante nicht zu einer Akkumulation von Armadillo an der apikalen Membran kommt, sind die Zellen des Mesoderms weiterhin von den übrigen Zellen unterscheidbar. Denn während in den

![Abbildung 2.32: Verteilung von RhoGEF2 und Armadillo in snail-mutanten Embryonen](image)

Querschnitte von *snail*-mutanten Embryonen nach Antikörperfärbungen gegen RhoGEF2 (B) und Armadillo (A), Stadium 5. In *snail*-mutanten Embryonen löste sich Armadillo zu keinem Zeitpunkt von seiner subapikalen Position und akkumulierte nicht an der apikalen Membran (Pfeilkopf in A). RhoGEF2 schien sich wie im Wildtyp zu verhalten (B).

Snail scheint somit direkt oder indirekt am Auflösen der Adhärenzverbindungen an der subapikalen Membran beteiligt zu sein.
3 Diskussion

Desweiteren hat das Fehlen von Fog/Concertina und $T48$ einen Einfluss auf die korrekte Ausbildung oder die Aufrechterhaltung der Adhärenzverbindungen in den mesodermalen Zellen.

3.1 Die Deletion von $T48$ führt zu Störungen in der Mesoderminvagination

eindeutigen Beweis würde die Analyse einer Mutante für T48 liefern oder die Expression von T48 unter der Kontrolle des endogenen Promoters in Defizienz Df(3R)CC1.2.

3.2 Charakterisierung von T48

Es wäre wünschenswert, zusätzlich zu diesen Überexpressionsstudien auch das endogene Protein nachweisen zu können. Doch bisherige Versuche zur Generation eines Antikörpers waren nicht erfolgreich.

3.3 Interaktionspartner von T48

3.4 Rolle von T48 in der Gastrulation

3.5 Kooperation von T48 und Fog/Concertina in der Mesoderminvagination

Die Analyse von Embryonen von homozygot concertina-mutanten Müttern legt die Vermutung nahe, dass die beiden Signalwege nicht nacheinander aktiv werden, sondern parallel agieren. Wäre T48 für die frühe und Fog/Concertina für die spätere Akkumulation von RhoGEF2 verantwortlich, so wäre zu erwarten, dass in Embryonen von homozygot concertina-mutanten Müttern die apikale Akkumulation von RhoGEF2 zum richtigen Zeitpunkt einsetzt, aber in späteren Stadien nicht aufrechterhalten werden kann. In diesen Embryonen kam es aber ebenfalls zu einer verspäteten apikalen Akkumulation von RhoGEF2, die aber bis zum Ende der

3.6 Modell zur Funktion von T48

Einsetzen und einem unkoordinierteren Ablauf der Gastrulation, wie es in Embryonen der Defizienz Df(3R)CC1.2 zu beobachten war (Abbildung 3.1, oben).

lokale Inhibierung von Lamellipodien und ermöglicht so die Ausbildung von lokalen Ausstreckungen der Zellen, die mit den Nachbarzellen Kontakt aufnehmen und Konvergenzbewegungen ermöglichen.

3.7 T48 ist Signal X

Abbildung 3.2: Modell zur Regulation der apikalen Konstriktion der Zellen während der Mesoderminvagination (Details siehe Text)

Möglicherweise gibt es auch einen weiteren Faktor Y oder mehrere Faktoren, die zusätzlich an der Steuerung der Mesoderminvagination beteiligt sind. Es ist jedoch davon auszugehen, dass weitere Faktoren keine essentiellen Funktionen erfüllen, da die Deletion von T48 und Fog/Concertina ausreicht, um die Mesoderminvagination vollständig zu blockieren. Bisher ist jedoch nicht klar, wie es z. B. zum Abflachen der apikalen Seite der Zellen kommt oder wie die Zellkerne ihre apikale Position

3.8 Rolle von T48 und Fog/Concertina in der Verlagerung der Adhärenzverbindungen

aufrechterhalten. Es könnte auch sein, dass zwar Armadillo nicht an der apikalen Membran akkumuliert wird, Teile der Verbindungen aber weiterhin vorhanden sind, was eine Aufrechterhaltung des Zellverbandes erklären würde. Dies könnte z. B. durch den Nachweis anderer Proteine der Adhärenzverbindungen oder durch eine elektronenmikroskopische Analyse der Adhärenzverbindungen in den Doppelmutanten geklärt werden. Es könnte auch eine Rolle spielen, dass die Adhärenzverbindungen in den nicht-mesodermalen Zellen weiterhin intakt sind. In Mutanten für Komponenten der Adhärenzverbindungen sind die Adhärenzverbindungen des gesamten Embryos betroffen, hier jedoch nur die der mesodermalen Zellen.

Embryonen, die Mutationen in Genen tragen, die an der Ausbildung der Adhärenzverbindungen oder des Subapikalen Komplexes beteiligt sind, wie z. B. bazooka oder armadillo, zeigen deutliche Störungen in der Mesoderminvagination. Diese sind darauf zurückzuführen, dass die Zellen die Adhärenzverbindungen nicht korrekt ausbilden können, ihre Zellpolarität verlieren und mesenchymalen Charakter annehmen (Müller et al. 1996; Tepass et al. 2001). Dadurch können die normalen Gastrulationsbewegungen, die ein Epithel voraussetzen, nicht erfolgen. Intakte

3.9 PDZ-Bindemotive als Mechanismus zur Lokalisation von Proteinen

Es scheint folglich so zu sein, dass T48 in der Evolution nicht konserviert ist, dass der Mechanismus aber, Zellformveränderungen durch Lokalisation von bestimmten Proteinen über PDZ-Bindemotive zu erreichen, konserviert ist.
4 Material

4.1 Chemikalien und Materialien

Chemikalien wurden von den Firmen Roth (Karlsruhe), Sigma (Deisenhofen) und Invitrogen (Carlsbad, USA) bezogen, Plastikware von den Firmen Greiner (Solingen) oder VWR (Darmstadt).

4.2 Antikörper, Farbstoffe und Seren

Folgende Antikörper wurden mit den angegebenen Konzentrationen verwendet:

- Anti-Evenskipped
 aus Kaninchen, 1:5000
 M. Frasch, New York
 (Frasch et al. 1987)

- Anti-Twist
 aus Kaninchen, 1:5000
 S. Roth, Köln
 (Roth et al. 1989)

- Anti-Phosphotyrosin
 aus Maus, 1:10
 D. Morrison, Frederick

- Anti-RhoGEF2
 aus Kaninchen, 1:1000
 J. Grosshans, Heidelberg
 (Grosshans et al. 2005)

- Anti-Armadillo
 aus Maus, 1:3000
 E. Wieschaus, New York
 (Riggleman et al. 1990)

- Anti-Neurotactin
 Aus Maus, 1:5000
 C. Goodman, Berkeley
 (Hortsch et al. 1990)

- Anti-Bazooka
 aus Kaninchen, 1:500
 A. Wodarz, Düsseldorf
 (Wodarz et al. 1999)

- Anti-Hämaglutinin (HA)
 aus Ratte
 1:1000 (Schneiderzellen)
 Roche, Mannheim
Material und Methoden

1:100 (Embryonen)
Anti-Kaninchen, biotinyliert aus Ziege, 1:500
Dianova, Hamburg

Anti-Ratte, Alexa488 aus Ziege, 1:500
MoBiTec, Göttingen

Anti-Ratte, Alexa568 aus Ziege, 1:500
MoBiTec, Göttingen

Anti-Kaninchen, Alexa488 aus Ziege, 1:500
MoBiTec, Göttingen

Anti-Kaninchen, Alexa568 aus Ziege, 1:500
MoBiTec, Göttingen

Anti-Maus, Alexa568 aus Ziege, 1:500
MoBiTec, Göttingen

Anti-Digoxigenin, Alkalische Phosphatase-gekoppelt aus Maus, 1:500
Roche, Mannheim

Hoechst-Farbstoff 33258 (DAPI) 1:10000
Hoechst, Frankfurt

Rattenserum Dianova, Hamburg
Ziegenserum (NGS) Dianova, Hamburg
Rinder-Serumalbumin (BSA) Sigma, Deisenhofen
Fötales Rinderserum (FBS) hitzebehandelt und steril aliquotiert Sigma, Deisenhofen

4.3 Fertige Reagenziensätze („Kits“)

Vectastain ABC Elite Kit VectorLabs, Burlingame USA
DIG-RNA-Labelling Mix Boehringer, Mannheim
GFX PCR DNA and Gel Band Purification Kit GE Healthcare, Braunschweig
Jetstar Plasmid Midiprep Kit Genomed, Löhne
Material und Methoden

MEGAscript High Yield Transcription Kit
Ambion, Austin, USA

In vitro Translation Kit
NEN/ PerkinElmer, Boston, USA

Expand High Fidelity PCR System
Roche, Mannheim

4.4 Enzyme und DNA-/Protein Marker

Restriktionsendonukleasen
New England Biolabs, Frankfurt

Klenow
New England Biolabs, Frankfurt

1kb DNA-Leiter
Invitrogen, Carlsbad, USA

T4-DNA-Ligase
New England Biolabs, Frankfurt

RNAsin
Promega, Wisconsin, USA

Cellfectin Reagenz
Invitrogen, Carlsbad, USA

Protease-Inhibitor-Cocktail
Sigma, Deisenhofen

Retikulozytenlysat
Promega, Mannheim

Precision Plus Protein Standard
Bio-Rad Laboratories, Hercules, USA

prestained

ProteinaseK
Qiagen, Hilden

4.5 Einbettungsmedien

Araldit
Serva, Heidelberg

Vectashield
VectorLabs, Burlingame, USA

Aquapolymount
Polysciences, Eppelheim

4.6 Fliegenstämme

w^{118}
Stammsammlung Leptin

hier w^-, verwendet als Wildtyp
Material und Methoden

- **w; Bl/SM1** Stammsammlung Leptin
- **w; TM3/TM6** Stammsammlung Leptin
- **Df(3R)Tf** Bloomington *Drosophila* Stock Center
- **Df(3R)ro** K. Anderson, New York
- **Df(3R)ro** Bloomington *Drosophila* Stock Center
- **Df(3R)Tl** Bloomington *Drosophila* Stock Center
- **Df(3R)Tl** Bloomington *Drosophila* Stock Center
- **Df(3R)D605** Bloomington *Drosophila* Stock Center
- **Df(3R)CC1.2** D. Strutt, Sheffield
- **ctaR10/CyO** K. Barrett, London
- **Df(2L)TE116GW11** Stammsammlung Leptin
- **w; P(w+ mat α-tub Gal VP16) (matGal4)** D. St. Johnston, Cambridge
- **C(3L)st; C(3R)e** E. Wieschhaus, Princeton
- **w; Df(3R)CC1.2** diese Arbeit
- **ctaR10/CyO; Df(3R)CC1.2** diese Arbeit
- **2xPEeT48/CyO** diese Arbeit
- **w; 2xPEeT48/CyO; Df(3R)CC1.2** diese Arbeit
- **UAS T48-HA/SM1** diese Arbeit

4.7 Oligonukleotide

Oligonukleotide wurden bei der Firma Roth (Karlsruhe) bestellt.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Sequenz 5’- 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T48 cDNA Fw1</td>
<td>CAACCGATTTGCAACTGACCG</td>
</tr>
<tr>
<td>2</td>
<td>T48 cDNA Fw2</td>
<td>TCTATGTGAAGTGAGTGC</td>
</tr>
<tr>
<td>3</td>
<td>T48 cDNA Fw3</td>
<td>TGACGACAAGTTCCCACGTG</td>
</tr>
<tr>
<td>4</td>
<td>T48 cDNA Fw4</td>
<td>CAAACAGAAGCTCATCAACG</td>
</tr>
<tr>
<td>5</td>
<td>T48 cDNA Fw5</td>
<td>ACCACGAGGTGCTCTACG</td>
</tr>
<tr>
<td>6</td>
<td>T48 cDNA Fw6</td>
<td>CTCTATCTCTGACGTCTCAACG</td>
</tr>
<tr>
<td>7</td>
<td>T48 cDNA Fw7</td>
<td>TAGATCGATGTAAGCACG</td>
</tr>
<tr>
<td>8</td>
<td>T48 cDNA Fw8</td>
<td>GATTATAAACCTTAGACG</td>
</tr>
<tr>
<td>9</td>
<td>T48 cDNA Rv1</td>
<td>AATTCAATTTGCAGCTTGACG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>pbluescript Fw</td>
<td><code>TTTTCCCAGTCAGCAGAC</code></td>
</tr>
<tr>
<td>11</td>
<td>pbluescript Rv</td>
<td><code>CAGGAAACAGCTATGAC</code></td>
</tr>
<tr>
<td>20</td>
<td>T48 ORF Fw2a</td>
<td><code>CATCTGCCATCTTCTGGCTC</code></td>
</tr>
<tr>
<td>21</td>
<td>T48 ORF Rv2</td>
<td><code>GTCGAAGTGCTAATCGTG</code></td>
</tr>
<tr>
<td>22</td>
<td>scrb Fw</td>
<td><code>GTGCATTCCCATCTTCAAG</code></td>
</tr>
<tr>
<td>23</td>
<td>scrb Rv</td>
<td><code>CAATGCAAACAGTCCAC</code></td>
</tr>
<tr>
<td>24</td>
<td>Pdf Fw</td>
<td><code>GTTCATTCGCAAGTCTCC</code></td>
</tr>
<tr>
<td>25</td>
<td>Pdf Rv</td>
<td><code>CGACTTGAATCTGTGAC</code></td>
</tr>
<tr>
<td>26</td>
<td>Ald Fw</td>
<td><code>GCTCTTTCATTCCAGTTC</code></td>
</tr>
<tr>
<td>27</td>
<td>Ald Rv</td>
<td><code>CACTGATAGCAAGCTCAC</code></td>
</tr>
<tr>
<td>28</td>
<td>Amon Fw</td>
<td><code>CCTTGGAATCCGATATCC</code></td>
</tr>
<tr>
<td>29</td>
<td>Amon Rv</td>
<td><code>GATGTACGACTTTATCGG</code></td>
</tr>
<tr>
<td>30</td>
<td>Ti Fw</td>
<td><code>CGATAGTTAACATCTGCC</code></td>
</tr>
<tr>
<td>31</td>
<td>Ti Rv</td>
<td><code>CAAAGTCAAACAGATCCG</code></td>
</tr>
<tr>
<td>32</td>
<td>Sda Fw</td>
<td><code>GTTACGTCACGAAGGTG</code></td>
</tr>
<tr>
<td>33</td>
<td>Sda Rv</td>
<td><code>CATTCAGCAAAACACCGAC</code></td>
</tr>
<tr>
<td>34</td>
<td>Ets97D Fw</td>
<td><code>CACAGATCAGCTTCTGGACG</code></td>
</tr>
<tr>
<td>35</td>
<td>Ets97D Rv</td>
<td><code>CCTATCAGTCAGCTTGAG</code></td>
</tr>
<tr>
<td>36</td>
<td>Tsp97E Fw</td>
<td><code>CAAGACGAGAATCCTTGAG</code></td>
</tr>
<tr>
<td>37</td>
<td>Tsp97E Rv</td>
<td><code>GATCATTCTGTTCATGCTG</code></td>
</tr>
<tr>
<td>38</td>
<td>NepYr Fw</td>
<td><code>GCTGTTTCATCCAGCTAC</code></td>
</tr>
<tr>
<td>39</td>
<td>NepYr Rv</td>
<td><code>GGAGCTTTTATAAGCTTTG</code></td>
</tr>
<tr>
<td>40</td>
<td>CG11929 Fw</td>
<td><code>CTGGTCTCACATCGCACTAC</code></td>
</tr>
<tr>
<td>41</td>
<td>CG11929 Rv</td>
<td><code>GTCAGTACAGCTTGGGTG</code></td>
</tr>
<tr>
<td>42</td>
<td>CG5467 Fw</td>
<td><code>GTTAGAGCCACAGATTC</code></td>
</tr>
<tr>
<td>43</td>
<td>CG5467 Rv</td>
<td><code>CTATAACGACTCAGTCGAC</code></td>
</tr>
<tr>
<td>44</td>
<td>CG5471 Fw</td>
<td><code>GAACCATCTCACCACCAC</code></td>
</tr>
<tr>
<td>45</td>
<td>CG5471 Rv</td>
<td><code>CATCTCCTGCTATGTCG</code></td>
</tr>
<tr>
<td>46</td>
<td>CG14243 Fw</td>
<td><code>CATAGTCCCTCCTGTTCAG</code></td>
</tr>
<tr>
<td>47</td>
<td>CG14243 Rv</td>
<td><code>CACGTGCAAGCTATAGG</code></td>
</tr>
<tr>
<td>48</td>
<td>beat-VII Fw</td>
<td><code>CATGCACAATTAGCTGACC</code></td>
</tr>
<tr>
<td>49</td>
<td>beat-VII Rv</td>
<td><code>GAGATCCATTGCGAGATTTG</code></td>
</tr>
<tr>
<td>50</td>
<td>CG14250 Fw</td>
<td><code>CAATTACGAGGCTGCTG</code></td>
</tr>
<tr>
<td>51</td>
<td>CG14250 Rv</td>
<td><code>GCAGTAACTCCTCTCAC</code></td>
</tr>
</tbody>
</table>
Material und Methoden

52 CG14253 Fw CTAACCACCAGCGATATTG
53 CG14253 Rv GATGCAGCTCTCATCTATC
54 CG31077 Fw CATGGATATGTCTGATGCG
55 CG31077 Rv GTATGTACCACCTGGACAC
56 Gr97a Fw CACGATTGTCTTTTACGC
57 Gr97a Rv CTGCTTCCACTCGTATTC
58 CG5521 Fw CAGCCGATAAGCAAGTTTC
59 CG5521 Rv CTGCTTCCACTCGTATTC
60 CG14248 Fw CCACACTCTCACTTTATG
61 CG14248 Rv CTCAACTGGGCAGATTAGG
62 CG5480 Fw CCAACACGTTAACAGATTG
63 CG5480 Rv CTCATCAATCAGCTGCAC
64 T48 intra Fw ATATAGATCTATGCGGCGGAAG
65 T48 intra Rv ACGGAGCTTAAAGATCTATAT
67 Rb97D Fw GAGACCAATATATCGGTG
68 Rb97D Rv CAGCAGTCTTCCGCAACAG
69 CG14254 Fw CACTCAATGGTAAGTGGG
70 CG14254 Rv CAATGGAGCGAAATCCTC
71 CG31075 Fw CTGGCCATAAGATATGTC
72 CG31075 Rv CTGCTATCAGTGCTCATC
73 CG31076 Fw ATGCAGCACAATCGAGCAC
74 CG31076 Rv CTTATCCAGACGACAAGTG
75 T48 intra delta Cterm Rv TTTCGACCGCAGTAAAGATCTATAT
76 CG31072 Fw GTACTCGAATTCAGGCTAC
77 CG31072 Rv CAATTAACCCGAGTTTG
78 BcDNA:LD09009 Fw GTCACGCAGAAACTACTG
79 BcDNA:LD09009 Rv GTTGATTCACGTACACC
80 Tl(2) Fw CGACGATGAGCTATTGTTC
81 Tl(2) Rv CAGATTCAAGGACCTTACAC
82 T48 Rv3 CTAGTTAGCTTGTCGATG
84 crb intra+3'UTR Rv TAGATGACATACAGATCTATAT
86 CG31078 Fw ATGCCAAGCAATGTCAGC
87 CG31078 Rv CAATGCGGCAACACAGCT
88 CG5500 Fw GGGCTGCATTATTGTTTG
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Primer-Set</th>
<th>Sense/Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>CG5500 Rv</td>
<td>CTTGTACTTAGTGTGTAAG</td>
</tr>
<tr>
<td>92</td>
<td>RhoGEF2 PDZ Fw</td>
<td>ATATGAATTCATGTCCCGGGAT</td>
</tr>
<tr>
<td>93</td>
<td>RhoGEF2 PDZ Rv</td>
<td>AAACCTTCAGGCGAATTTCATAT</td>
</tr>
<tr>
<td>94</td>
<td>Scrb PDZ Fw</td>
<td>ATATGAATTCATGGCAGAGGCT</td>
</tr>
<tr>
<td>95</td>
<td>Scrb PDZ Rv</td>
<td>GCACGGCAGGAAATTTCATAT</td>
</tr>
<tr>
<td>96</td>
<td>Dlg PDZ Fw</td>
<td>ATATGAATTCATGGCAGAGGCT</td>
</tr>
<tr>
<td>97</td>
<td>Dlg PDZ Rv</td>
<td>GCACGGCAGGAAATTTCATAT</td>
</tr>
<tr>
<td>98</td>
<td>Sdt PDZ Fw</td>
<td>ATATGAATTCATGGCAGAGGCT</td>
</tr>
<tr>
<td>99</td>
<td>Sdt PDZ Rv</td>
<td>GCACGGCAGGAAATTTCATAT</td>
</tr>
<tr>
<td>100</td>
<td>crb intra-CycA Fw</td>
<td>TATAGATATCATCGCGGGAGCC</td>
</tr>
<tr>
<td>103</td>
<td>T48 HA-intern Sph1 Fw</td>
<td>CTGTTACCCCTACGATGTGCCCGATTACG</td>
</tr>
<tr>
<td>104</td>
<td>T48 HA-intern Sph1 Rv</td>
<td>CATGCTGTACCCTACGATGTGCCCGATTACG</td>
</tr>
<tr>
<td>113</td>
<td>pGEX 5'</td>
<td>GGGCTGGCAAGCCAGGCGT</td>
</tr>
<tr>
<td>114</td>
<td>pGEX 3'</td>
<td>CCTCTGACACATGCAGCT</td>
</tr>
<tr>
<td>115</td>
<td>pRmHa/pDeGFP Fw</td>
<td>AAAGACCCGTGTGTAAG</td>
</tr>
<tr>
<td>116</td>
<td>pDeGFP Rv</td>
<td>GAGCTGGACGCAGT</td>
</tr>
<tr>
<td>118</td>
<td>2xPEeT48 ohne PDZ Fw</td>
<td>ATATGGATCATCAACGGCAT</td>
</tr>
<tr>
<td>119</td>
<td>2xPEeT48 ohne PDZ Rv</td>
<td>ATATGGATCATCAACGGCAT</td>
</tr>
<tr>
<td>120</td>
<td>l(2)02045 cds Fw</td>
<td>CAGTAACAGGATCAAG</td>
</tr>
<tr>
<td>121</td>
<td>l(2)02045 cds Rv</td>
<td>ATATCTTAGATCAAG</td>
</tr>
<tr>
<td>122</td>
<td>l(2)02045 in pDeGFP Fw</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>123</td>
<td>l(2)02045 in pDeGFP Rv</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>124</td>
<td>l(2)02045 in pGEX Fw</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>125</td>
<td>l(2)02045 in pGEX Rv</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>132</td>
<td>cta für 5'FLAG in pRmHa Fw</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>133</td>
<td>cta für 5'FLAG in pRmHa Rv</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>134</td>
<td>5'FLAG in pRmHa Fw</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>135</td>
<td>5'FLAG in pRmHa Rv</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td>140</td>
<td>RhoGEF2 5'FLAG Fw</td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATATGGATCATCGGAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATATGGATCATCGGAT</td>
</tr>
</tbody>
</table>
Material und Methoden

4.8 Verwendete Vektoren

<table>
<thead>
<tr>
<th>Vektor</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCRII-TOPO</td>
<td>Invitrogen, Carlsbad, USA</td>
</tr>
<tr>
<td>pKS</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pUAST</td>
<td>Rubin et al. 1982</td>
</tr>
<tr>
<td>2xPEßGal</td>
<td>Jiang et al. 1991; Jiang et al. 1993</td>
</tr>
<tr>
<td>pSP64T</td>
<td>R. Wilson; (Krieg et al. 1984)</td>
</tr>
<tr>
<td>pGEX-4T-2</td>
<td>Amersham Biosciences, Braunschweig</td>
</tr>
<tr>
<td>pGEX-4T-3</td>
<td>Amersham Biosciences, Braunschweig</td>
</tr>
<tr>
<td>pSP72</td>
<td>Promega, Mannheim</td>
</tr>
<tr>
<td>pRmHa</td>
<td>Bunch et al. 1988</td>
</tr>
<tr>
<td>pDeGFP</td>
<td>Bunch et al. 1988</td>
</tr>
</tbody>
</table>

4.9 Puffer und Lösungen

Ampicillin
100 mg/ml Stocklösung in 50 % Ethanol
0,1 mg/ml Endkonzentration

Apfelsaftagar
375 ml Wasser
13,5 g Agar
6,25 g Zucker
1 g Nipagin
125 ml Apfelsaft

Araldit
57,4 g Araldit CY212
48 g Härter HY964
2 ml Beschleuniger DY964
<table>
<thead>
<tr>
<th>Material und Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocklösung</td>
</tr>
<tr>
<td>1 % BSA in PBT + 5 µl NGS</td>
</tr>
<tr>
<td>Coomassie-Entfärber</td>
</tr>
<tr>
<td>10 % Essigsäure</td>
</tr>
<tr>
<td>30 % Ethanol</td>
</tr>
<tr>
<td>Coomassie-Färber</td>
</tr>
<tr>
<td>0,25 % Coomassie Brilliant Blue</td>
</tr>
<tr>
<td>50 % Methanol</td>
</tr>
<tr>
<td>10 % Essigsäure</td>
</tr>
<tr>
<td>Färbelösung DAB-Färbung</td>
</tr>
<tr>
<td>500 µl PBT</td>
</tr>
<tr>
<td>50 µl DAB (Stock: 1 mg/ml in H₂O)</td>
</tr>
<tr>
<td>Für Blaufärbung:</td>
</tr>
<tr>
<td>0,6 µl NiCl₂ (6 %ige Stocklösung in H₂O)</td>
</tr>
<tr>
<td>0,6 µl CoCl₂ (6 %ige Stocklösung in H₂O)</td>
</tr>
<tr>
<td>Hitzefix-Salzlösung</td>
</tr>
<tr>
<td>0,4 % NaCl</td>
</tr>
<tr>
<td>0,03 % TritonX-100</td>
</tr>
<tr>
<td>Homogenisierungspuffer</td>
</tr>
<tr>
<td>10 mM Tris pH 8,3</td>
</tr>
<tr>
<td>(Single-Embryo-PCR)</td>
</tr>
<tr>
<td>0,5 % Tween20</td>
</tr>
<tr>
<td>0,5 % NP-40</td>
</tr>
<tr>
<td>50 µM KCl</td>
</tr>
<tr>
<td>0,2 µl ProteinaseK</td>
</tr>
<tr>
<td>Hybridisierungslösung</td>
</tr>
<tr>
<td>50 ml Formamid</td>
</tr>
<tr>
<td>25 ml 20x SSC</td>
</tr>
<tr>
<td>0,1 ml Heparin (50 mg/ml)</td>
</tr>
<tr>
<td>1 ml 10 % Tween20</td>
</tr>
<tr>
<td>auf 100 ml mit A. dest</td>
</tr>
<tr>
<td>in situ-Färbelösung (pro Ansatz)</td>
</tr>
<tr>
<td>1 ml Färbeppuffer</td>
</tr>
<tr>
<td>3,5 µl NBT</td>
</tr>
<tr>
<td>3,5 µl X-Phosphat</td>
</tr>
<tr>
<td>NBT (4-Nitrotetrazoliumchlorid)</td>
</tr>
<tr>
<td>10 mg/ml in 70 % Dimethylformamid</td>
</tr>
<tr>
<td>X-Phosphat (5-Bromo-4-chloro-3-indolyl-phosphat)</td>
</tr>
<tr>
<td>10 mg/ml in Dimethylformamid</td>
</tr>
<tr>
<td>In situ-Färbeppuffer</td>
</tr>
<tr>
<td>100 mM NaCl</td>
</tr>
<tr>
<td>50 mM MgCl₂</td>
</tr>
<tr>
<td>100 mM Tris, pH 9,5</td>
</tr>
<tr>
<td>0,1 % Tween20</td>
</tr>
<tr>
<td>IP-Puffer</td>
</tr>
<tr>
<td>10 % Glycerol</td>
</tr>
</tbody>
</table>
Material und Methoden

50 mM HEPES pH 7,5
150 mM NaCl
1 % TritonX-100
1,5 mM MgCl₂
1 mM EGTA

IP-Waschpuffer
10 % Glycerol
20 mM HEPES pH 7,5
0,1 % TritonX-100
150 mM NaCl

Kanamycin
50 mg/ml Stocklösung in H₂O
30 µg/ml Endkonzentration

Lämmli, 4x
8 % SDS
400 mM Dithiothreitol (DDT)
240 mM Tris pH 6,8
0,004 % Bromphenolblau
40 % Glycerol

Laufpuffer, 5x
72 g Glycin
15 g Tris
5 g SDS
auf 1 l mit A. dest

LB-Agar
LB-Medium mit 1,2 % Agar

LB-Medium
10 g Bactotrypton
5 g Hefeextrakt
10 g NaCl
auf 1 l mit A. dest
pH 7,2

Maismehlagar
90 g Agar
1 kg Maismehl
1 kg Malzextrakt
230 g Zuckerrübensirup
120 ml 20 % Nipagin in 70 % Ethanol
360 ml 20 % Propionsäure
auf 12 l mit A. dest

PBS, 10x
80 g NaCl
Material und Methoden

2 g KCl
14,4 g Na$_2$HPO$_4$
2,4 g KH$_2$PO$_4$
auf 1 l mit A. dest
pH 7,4

PBT 1x PBS + 0,1 % Tween20

Sammelgel
1,3 ml 30:0,8 Acrylamid-Bisacrylamid-Lösung
2,5 ml 0,5 M Tris-HCl pH 6,8
6,1 ml A. dest
50 µl 20 % SDS
10 µl TEMED
50 µl Ammoniumpersulfat (APS)

SSC, 20x
175,3 g NaCl
88,2 g Natriumcitrat
pH 7

Stopp- und Auftragspuffer
0,5 % (w/v) Xylencyanol
0,5 % (w/v) Bromphenol
40 % (v/v) Glycerin in TAE-Puffer

TAE
200 mM Tris-Acetat, pH 7,7
10 mM EDTA

Trenngel, 12,5 %
4,2 ml 30:0,8 Acrylamid-Bisacrylamid-Lösung
1,25 ml 3 M Tris-HCl pH 8,9
4,4 ml A. dest
50 µl 20 % SDS
5 µl TEMED
50 µl Ammoniumpersulfat (APS)

2x TY-Medium
16 g Bactotrypton
10 g Hefeextrakt
5 g NaCl
auf 1 l mit A. dest
pH 7,0
4.10 Computer-Software

Adobe Photoshop 7.0
Canvas 9
Vector NTI 9
5 Methoden

5.1 Fliegenhaltung

Die Fliegenhaltung erfolgte in kleinen Kunststoffröhrchen mit Watte-Cerapenstopfen, die zu einem Viertel mit Maismehlagar gefüllt waren. Die Fliegen wurden entweder bei 18 °C oder 24 °C gehalten.

5.2 Ablagen von Embryonen

Ablagen von Embryonen wurden in kleinen Ablagekäfigen durchgeführt, die auf auswechselbare Schalen mit Apfelsaftagar und ein wenig Frischhefe gesetzt wurden. Die Ablagen erfolgten bei 24 °C, wurden alle 2 Std gewechselt und dann 2 Std nachentwickelt, so dass die Embryonen ein Alter von 2-4 Std hatten.

5.3 Dechorionisieren von Embryonen

5.4 Fixieren von Embryonen

5.4.1 Standardfixierung mit 4 % Formaldehyd in PBS

5.4.2 Hitzefixierung

5.4.3 Fixierung mit Paraformaldehyd
Für Antikörperfärbungen zur Detektion von T48HA wurden die Embryonen mit einer 1:1 Mischung aus 4 % Paraformaldehyd (Methanol-frei) in PBS und Heptan fixiert. Zur Devitellinisierung wurde anstelle von Methanol 80 % Ethanol verwendet und für mindestens 2 min gevortext. Anschließend wurden die Embryonen in 80 % Ethanol gewaschen und direkt gefärbt.
5.5 Herstellung transgener Fliegen

5.5.1 Injektionsmix

100 µg/ml Δ2-3 Transposase (Helfer-Plasmid) und 400 µg/ml Konstrukt-DNA wurden in einem 50 µl-Ansatz in H₂O gemischt. Nach Zugabe von 0,1 Vol 3 M Natriumacetat und 3 Vol Ethanol wurde die DNA für mindestens 1 Std bei -20 °C präzipitiert und anschließend durch Zentrifugation (14.000 rpm, 20 min 4 °C) gefällt. Das Pellte wurde mit 70 % Ethanol gewaschen und nach Trocknen in 40 µl H₂O resuspendiert. 2 µl dieses Mixes wurden zum Beladen der Injektionsnadel verwendet.

5.5.2 Injektion

5.6 Antikörperfärbungen

5.6.1 Antikörperfärbung nach der „Avidin-Biotinylated Enzyme Complex“-Methode (ABC-Methode)

Am folgenden Tag wurde der Erstantikörper vollständig von den Embryonen abgezogen. Die Embryonen wurden wieder 1x kurz, dann 3x 10 min in 500 µl PBT gewaschen. Anschließend wurden die Embryonen 1 Std in Blocklösung zur Absättigung unspezifischer Bindungen des Zweitantikörpers inkubiert. Nach dem Blocken wurden die Embryonen mit 500 µl des entsprechend verdünnten Zweitantikörpers für 1 Std bei Raumtemperatur inkubiert. Anschließend wurden die Embryonen wieder 1x kurz und 3x 10 min in 500 µl PBT gewaschen.

Während dieser Waschschritte wurde der AB-Komplex aus dem Vectastain ABC Elite Kit vorbereitet. Dazu wurden pro Färbeansatz 500 µl PBT mit 10 µl Lösung A

5.6.2 Färbung mit Fluoreszenz-gekoppelten Zweitantikörpern
Bis einschließlich der Waschschritte nach der Inkubation mit dem Erstantikörper wurde hier ebenso verfahren, wie bei der Antikörperfärbung nach ABC-Methode. Nach den Waschschritten wurden die Embryonen ebenfalls geblockt und dann mit 500 µl des entsprechenden Zweitantikörpers inkubiert. Ab diesem Schritt erfolgten jedoch alle weiteren Waschschritte im Dunkeln aufgrund der Lichtempfindlichkeit der Fluoreszenzfarbstoffe. Nach 1 Std Inkubation wurden die Embryonen wieder 1x kurz und 3x 10 min in 500 µl PBT gewaschen und konnten dann unter dem Mikroskop analysiert werden.

5.7 In situ Hybridisierung

5.7.1 Herstellung einer Sonde

Für die Herstellung einer Sonde wurde die entsprechende cDNA linearisiert und aufgereinigt. Unter Verwendung des DIG RNA Labelling Mix wurde dann eine RNA-Sonde hergestellt. Hierbei wurden bei der Transkription der Gegenstrangprobe mit

Folgender Reaktionsansatz wurde verwendet:

- 8 µl linearisierte, aufgereinigte DNA
- 2 µl DIG RNA Labelling Mix
- 0,5 µl RNasin
- 2 µl T7-Polymerase
- 2 µl Transkriptionspuffer
- 5,5 µl A. dest

Der Ansatz wurde 3 Std bei 37 °C inkubiert und anschließend bei –20 °C gelagert.

5.7.2 Hybridisierung

Für die in situ Hybridisierung wurden fixierte und devitellinisierte Embryonen verwendet. Die Embryonenmenge pro Eppendorfgefäss entsprach einem Volumenäquivalent von etwa 50 µl. Während der Waschschritte und Antikörperinkubationen wurden die Embryonen auf einem Schüttler leicht bewegt. Der Methanol wurde von den Embryonen abgezogen und diese 3x 5 min in 1 ml PBT auf dem Schüttler leicht bewegt. Die Embryonen wurden dann mit Proteinase behandelt. Dazu wurden sie mit 5 µl ProteinaseK (10 mg/ml) in 1 ml PBT für 35 sec kräftig geschüttelt, die Embryonen wurden 30 sec absinken gelassen, die Lösung abgezogen und sofort 100 µl Glycin und 900 µl PBT zugegeben und erneut für 3 min kräftig geschüttelt. Anschließend wurden die Embryonen 3x 5 min in PBT gewaschen. Für eine zweite Fixierung wurden die Embryonen in 500 µl 4 % Formaldehyd in PBT für 20 min inkubiert, gefolgt von erneutem Waschen für 3x 5 min in 1 ml PBT. Nach diesen Waschschritten wurden die Embryonen 10 min in 1 ml eines 1:1-Gemisches aus PBT und Hybridisierungslösung, dann 2x 10 min in 1 ml Hybridisierungslösung inkubiert. Daraufhin wurden die Embryonen im Heizblock bei 55 °C zur Anpassung an die Hybridisierungstemperatur für 1 Std vorinkubiert. Während dieser Zeit wurde die hergestellte Sonde 1:10 in H₂O verdünnt und 1,5 µl davon in 150 µl Hybridisierungspuffer 5 min aufgekocht.

Von den Embryonen wurde die Hybridisierungslösung vollständig abgezogen, die Sonde auf die Embryonen gegeben und über Nacht bei 55 °C ohne Schütteln hybridisiert. Am nächsten Tag wurde die Sonde von den Embryonen entfernt und
Material und Methoden

Diese zuerst 3x 20 min mit 1 ml vortemperierter Hybridisierungslösung, dann 1x mit 1 ml 1:1 Hybridisierungslösung/PBT bei 55 °C gewaschen. Anschließend wurde 5x 20 min in PBT gewaschen und die Temperatur dabei langsam an Raumtemperatur angepasst. Während dieser Zeit erfolgte die Präabsorption des anti-Digoxygenin-Antikörpers, Alkalische Phosphatase-gekoppelt.

Die Embryonen wurden anschließend mit 500 µl dieses Antikörpers, 1:500 in PBT verdünnt, für 1 Std bei Raumtemperatur inkubiert. Nach Entfernen des Antikörpers wurde 4x 20 min in 1 ml PBT, anschließend 1x 5 min und 2x 10 min in Färbepluffer gewaschen.

5.7.3 Detektion

5.8 Einbetten von Embryonen und Mikroskopie

5.8.1 Fluoreszenzfärbung
Nach der Färbung wurden die Embryonen direkt in Vectashield eingebettet und mit einem ApoTom (Zeiss, Jena) mikroskopiert und fotografiert.

5.8.2 DAB-Färbung/ In situ Hybridisierung
Nach der Farbreaktion und mehrfachem Waschen wurden die Embryonen in einer aufsteigenden Alkoholreihe dehydriert, einmal in Aceton gewaschen und dann in einem 1:1-Gemisch aus Araldit und Aceton für 1 Std inkubiert. Anschließend wurden die Embryonen in Araldit auf einem Schnappdeckelchen eingebettet und bei -20 °C gelagert. Embryonen wurden in diesen Deckelchen sortiert und gegebenenfalls
Material und Methoden

einzeln in Araldit auf Objektträger überführt und mit einem Axioplan (Zeiss, Jena) mikroskopiert und fotografiert.

5.9 Schnitte von Embryonen

5.9.1 Fluoreszenzschnitte

5.9.2 Schnitte nach DAB-Färbung

5.10 Polymerase-Kettenreaktion (PCR)

5.10.1 Standard-PCR an Plasmid-DNA

Für eine Standard-PCR an Plasmid-DNA wurde das Expand High Fidelity PCR System verwendet. Folgender Reaktionsansatz in einem Volumen von 50 µl wurde verwendet:

- 1 µg Template
- 0,2 mM dNTPs (10 mM)
- 1x Puffer ohne MgCl₂
- 2,5 mM MgCl₂ (25 mM)
- 1,75 U µl Polymerase
- je 0,5 mM Primer

Das Standard-PCR-Programm war wie folgt:

- 95 °C 10 min
- 95 °C 45 sec
- 50 °C 60 sec (je nach Primer)
- 72 °C 2 min (je nach Produktlänge)
- 72 °C 10 min
- 24 Zyklen

Die PCR-Produkte wurden anschließend in pCRII-TOPO kloniert (siehe 2.12.6).

5.10.2 PCR an einzelnen Embryonen („Single embryo PCR“)

Embryonen wurden nach Standardprotokoll fixiert und gegen Twist gefärbt. Einzelne Embryonen etwa gleichen Alters (am besten etwa Stadium 10) wurden in PCR-Gefäße mit 10 µl Homogenisierungspuffer überführt, 1 Std bei -20 °C, 30 min bei 37 °C und 3 min bei 95 °C inkubiert. 1 µl dieser DNA-Lösung wurde für die PCR-Reaktion eingesetzt. Für jeden Embryo wurden parallel verschiedene Ansätze gemacht:

- „Positivkontrolle“ (mit Sicherheit nicht deletierter Bereich), hier CG11929
- „Negativkontrolle“ (mit Sicherheit deletierter Bereich), hier Tl (außer für Df(3R)roXB3).
- Zu testende Primerkombinationen (bis zu 4 verschiedene)
Material und Methoden

Zur Bestimmung der Bruchpunkte der Defizienzen wurden verschiedene genspezifische Primerpaare getestet.

PCR-Ansatz in einem Reaktionsvolumen von 25 µl:

- 1 µl DNA-Lösung
- 1x Puffer ohne MgCl₂
- 2,5 mM MgCl₂
- 0,2 mM dNTPs
- je 0,5 mM Primer
- 0,3 µl Polymerase High fidelity
- 15,7 µl A. dest

PCR-Reaktion:

- 95 °C 5 min
- 95 °C 45 sec
- 50 °C 60 sec (je nach Primer)
- 72 °C 2 min 30 sec
- 72 °C 10 min
- 30 Zyklen

Alle verwendeten Primer wurden zuvor an genomischer DNA auf Funktion getestet.

5.11 Konstrukte

5.11.1 Konstrukte zur Herstellung transgener Fliegen

5.11.2 Konstrukte für in vitro translation
Um die in vitro Translations-Konstrukte für T48 zu erhalten, wurden PCR-Fragmente der gesamten intrazellulären Domäne (AS 183-419, Primer 64/65) und der intrazellulären Domäne ohne PDZ-Bindemotiv (AS 183-411, Primer 64/75) in die BglII-Schnittstelle von pSP64T (mit βGlobin 5'- und 3'UTR) kloniert.
Der intrazelluläre Teil von crumbs wurde über PCR von pGEX-crbintra (zur Verfügung gestellt von E. Knust) amplifiziert (Primer 100/84) und in die EcoRV- Schnittstelle von pSP64CycA ligiert.

5.11.3 Konstrukte für GST-Fusionsproteine der PDZ Domänen
Für RhoGEF2-GST wurde das Smal/NotI-Fragment der RhoGEF2-cDNA, welches die PDZ-Domäne enthält, in pGEX-4T-3 ligiert.
Die Scribbled-cDNA (pNB40 Scribbled, zur Verfügung gestellt von D. Bilder, Berkeley) wurde mit Nael/Nhel geschnitten, mittels Klenow aufgefüllt und in die Smal- Schnittstelle von pGEX-4T-3 inseriert.
Für l(2)02045 wurde der offene Leserahmen mittels PCR mit den Primern 124/125 amplitiziert und über BamHI/EcoRI im gleichen Leserahmen mit GST in pGEX-4T-3 kloniert.

5.11.4 Konstrukte für Transfektion von Schneiderzellen

Für die Expression des vollständigen \textit{RhoGEF2} wurde in pRmHa mit Hilfe von Linkern (Primer 140/141) ein 5'-FLAG-Epitop eingebracht und der offene Leserahmen von \textit{RhoGEF2} aus pUASp\textit{RhoGEF2} über \textit{KpnI/}X\textit{bal} in pKS subkloniert und anschliessend über \textit{Xbal}, aufgefüllt/\textit{KpnI} und \textit{BamHI}, aufgefüllt/\textit{KpnI} in pRmHa 5'-FLAG inseriert.

Um die PDZ-Domänen von \textit{Discs large} in Schneiderzellen zu exprimieren, wurde ein Fragment mittels PCR von pT7\textit{β}link\textit{DlgPDZ1-3} amplifiziert (Primer 96/97), welches die PDZ-Domänen enthält und über \textit{EcoRI} im gleichen Leserahmen mit GFP in pDeGFP kloniert.

Für \textit{Scribbled} wurde ein Fragment mit allen 4 PDZ-Domänen mittels PCR von pNB40 \textit{Scribbled}-cDNA amplifiziert (Primer 94/95) und in den \textit{EcoRI}-Schnitt von pDeGFP kloniert.

5.12 DNA-Arbeiten

5.12.1 \textit{E. coli}-Stämme

- DH5aTM-T1R: F-Φ80\textit{lacZΔM15 Δ(ZYA-argF)U169lac recA1 endA1 hsdR17(r\textsubscript{k}, m\textsubscript{k}) phoA supE44 thi-1 gyrA96 relA1 tonA
- MachITM-T1R: F-Φ80(lacZ)ΔIM15 ΔlacX74 hsdR(r\textsubscript{k}, m\textsubscript{k}) ΔrecA1398 endA1 tonA
- BL21 (DE3): F- \textit{dom ompT hsdS(r\textsubscript{B}, m\textsubscript{B}) gal}\textsubscript{λ} (DE3)
5.12.2 Restriktionsanalysen
Zur analytischen Restriktion von Plasmid-DNA wurden 0,5-1,0 µg DNA eingesetzt; für präparative Zwecke wurden 5-10 µg DNA gespalten. Die Spaltungsansätze aus Wasser, Puffer (optimaler Puffer laut Hersteller-Protokoll), Restriktionsenzym und DNA wurden für 2 Std bei 37 °C inkubiert.

5.12.3 Agarose-Gel
Anhand der Gel-Elektrophorese können DNA-Fragmente entsprechend ihrer Größe aufgetrennt werden, da DNA-Fragmente unterschiedlicher Größe unterschiedlich schnell im angelegten Spannungsfeld wandern.
Dazu wurde 1 g Agarose in 100 ml TAE-Puffer unter Erhitzen gelöst (1 %iges Gel) und 2 µl Ethidiumbromid hinzugefügt. Die flüssige Agarose wurde in eine entsprechende Elektrophoresekammer gegossen und ein Kamm eingesteckt, um Taschen auszusparen. Sobald die Agarose fest geworden war, wurde der Kamm gezogen und das Gel mit TAE überschichtet.
Da es sich bei Ethidiumbromid um eine interkalierende Substanz handelt, die durch UV-Licht angeregt werden kann, war es möglich, die Größe der DNA Fragmente nach ausreichender Auftrennung unter einem UV-Schirm durch Vergleich mit dem Größenmarker zu identifizieren.

5.12.4 DNA-Aufreinigung aus dem Gel
Hierzu wurde das GFX PCR DNA and Gel Band Purification Kit (GE Healthcare) verwendet und nach Herstellerangaben eingesetzt. Die DNA wurde im letzten Schritt mit 30 µl A. dest eluiert.
5.12.5 Ligation und Transformation

Zur kovalenten Verknüpfung von Vektor- und Fragment-DNA wurde nach folgendem Schema ein Ligationsansatz hergestellt:

- 1 µl Vektor
- 2 µl Insert
- 1 µl Ligasepuffer
- 1 µl Ligase
- 5 µl A. dest

Die Reaktion wurde 1 Std bei Raumtemperatur inkubiert. Anschliessend wurden 2 µl für die Transformation verwendet. 50 µl-Aliquots von chemisch kompetenten Zellen wurden auf Eis aufgetaut, mit 2 µl der Ligation gemischt und 20 min auf Eis inkubiert. Für einen Hitzeschock wurden die Bakterien 40 sec bei 37 °C inkubiert, mit 200 µl LB-Medium versetzt und 1 Std bei 37 °C geschüttelt. Aliquots von 50 µl und 200 µl wurden auf Platten mit dem entsprechenden Antibiotikum ausplattiert und über Nacht bei 37 °C inkubiert.

5.12.6 TOPO-TA-Klonierung

Folgender Ansatz wurde für die Ligation verwendet:

- 2 µl PCR-Reaktion, direkt nach Ablauf des Programms
- 0,5 µl Salzlösung
- 0,5 µl Vector

Die Reaktion wurde 5 min bei Raumtemperatur inkubiert, und dann 2 µl für eine Standard-Transformation verwendet.

Um auf das PCR-Produkt zu selektionieren und keine Kolonien durch Template zu erhalten, wurde der Transformationsansatz auf einer Platte mit Ampicillin und zusätzlich Kanamycin ausplattiert.
5.13 Isolierung von Plasmid-DNA

5.13.1 Mini-Präparation durch Alkalische Lyse

Durch alkalische Lyse bakterieller Zellen kann die Plasmid-DNA nach Ausfällen der restlichen zellulären Bestandteile, einschließlich chromosomaler DNA, isoliert werden (Sambrook et al. 1989).

Zu diesem Zweck wurden ausgehend von Einzelkolonien Kulturen in 2 ml LB-Medium mit entsprechendem Antibiotikum über Nacht bei 37 °C geschüttelt. Von dieser Kultur wurden dann 1,5 ml in ein Eppendorfgefäss überführt und 5 min (5000 rpm) bei Raumtemperatur sedimentiert. Das Bakterienpellet wurde durch alkalische Lyse nach Standardmethode aufgeschlossen. Die DNA wurde in 50 µl Wasser gelöst und bei -20 °C gelagert.

5.13.2 Plasmid-Midi-Präparation über Säulen-Chromatografie

Mit Hilfe dieser Methode konnten grössere Mengen gereinigter Plasmid-DNA aus 50 ml Übernachtkulturen gewonnen werden. Alle Arbeitsschritte erfolgten gemäß Standardprotokoll des Herstellers (Genomed, Löhne). Die DNA wurde in 50 µl A. dest resuspendiert, anschließend photometrisch bei 260 nm die Konzentration bestimmt, die DNA auf eine Standardkonzentration von 1 µg/µl eingestellt und bei -20 °C gelagert.

5.14 Vorhersage möglicher Bindepartner von T48

Material und Methoden

5.15 SDS-PAGE und Coomassie-Färbung

5.16 In vitro Transkription

Für die in vitro Transkription wurden die entsprechenden cDNAs linearisiert und in folgendem Reaktionsansatz unter Verwendung des MEGAscript High Yield Transcription Kits (Ambion, Austin, USA) transkribiert:

- 2 µl 10x Reaktionspuffer
- je 2 µl ATP, CTP, GTP, UTP (50 mM)
- 2 µl Enzymmix
Material und Methoden

- 1 µg linearisierte DNA
- Nuklease-freies Wasser bis zu einem Endvolumen von 20 µl

Der Ansatz wurde 3 Std bei 37 °C inkubiert und nach Zugabe von 1 µl RNase-freier DNase1 (2 U/µl) für weitere 15 min bei 37 °C inkubiert. Um die RNA zu fällen, wurden 25 µl LiCl-Lösung und 30 µl Nuklease-freies Wasser zugegeben, das ganze dann mindestens 30 min bei -20 °C inkubiert und anschließend für 15 min bei 14.000 rpm und 4 °C zentrifugiert. Der Überstand wurde entfernt, das Pellet mit 70 % Ethanol gewaschen, getrocknet und in 10 µl Nuklease-freiem Wasser resuspendiert.

5.17 *In vitro* Translation

Für die *in vitro* Translation unter Verwendung des *in vitro* Translation Kits (NEN/Perkin Elmer, Boston, USA) wurde folgender Reaktionsansatz für 2 Std bei 30 °C im Wasserbad inkubiert:

- 17,5 µl Retikulozytenlysat
- 1,5 µl RNA (1 µg/µl)
- 0,5 µl Aminosäure-Mix ohne Methionin
- 0,25 µl RNasin
- 3,25 µl Nuclease-freies Wasser
- 2 µl 35S-Methionin (11 µCi/µl 35S-Methionin)

Anschließend wurde der Reaktionsansatz bei -20 °C gelagert.

5.18 Autoradiografie

5.19 Expression und Aufreinigung von GST-Fusionsproteinen

Die GST-Fusionsproteine wurden im E. coli-Stamm BL21 (DE3) exprimiert. Mit einer Übernacht-Starterkultur wurden 200 ml-Kulturen 1:100 in 2xTY-Medium + Ampicillin angeimpft. Die Kulturen wurden bei 37 °C geschüttelt, bei einer OD600 ~0,6 mit 0,1 M IPTG (Isopropyl-β-D-thiogalactopyranosid) induziert und für weitere 4 Std bei 37 °C inkubiert. Anschließend wurden die Kulturen abzentrifugiert (4000 rpm, 10 min) und in 10 ml PBS + Protease-Inhibitorcocktail (Sigma, Deisenhofen) resuspendiert. Die Bakterien wurden durch Ultraschallbehandlung (Output control ~3, Duty Cycle +20, 3x 45 sec, 10 sec Pause) lysiert und anschließend bei 4000 rpm, 4 °C für 10 min abzentrifugiert. Der Überstand wurde in ein neues Falcon überführt und 1 % TritonX-100 zugegeben. Während des Zentrifugationsschritts wurden die Glutathion-Sepharose-Kügelchen (beads) vorbereitet: pro 200 ml Kultursatz wurden 70 µl des Gemischs (75 % beads) abzentrifugiert (3000 rpm, 5 min), mit 1,3 ml PBS + 1 % TritonX-100 gewaschen, erneut abzentrifugiert und in 100 µl PBS + 1 % TritonX-100 resuspendiert. Diese 100 µl wurden zu dem Überstand der Kulturen nach Ultraschallbehandlung gegeben und für 30 min bei Raumtemperatur auf dem Schüttler bewegt, um die Proteine aus dem Bakterienlysat an die Sepharose-beads zu koppeln. Als Negativkontrolle wurde PBS + 1 % TritonX-100 mit den beads versetzt und im Folgenden wie die anderen Proben behandelt. Nach 30 min Inkubation wurden die beads zentrifugiert, in 1 ml PBS + 1 % Triton resuspendiert, mehrfach mit PBS + 1 % TritonX-100 gewaschen und zum Schluss in 100 µl IP-Puffer resuspendiert. Die Menge der gebundenen Fusionsproteine wurde durch SDS-PAGE und anschließende Coomassie-Färbung bestimmt.

5.20 Co-Immunopräzipitation

Für die Immunopräzipitation wurden 25 µl des in vitro translatierten Proteins mit je 30 µl des an Sepharose-beads gebundenen Fusionsproteins gemischt und für 3 Std bei 4 °C inkubiert. Anschließend wurde der Ansatz mit IP-Puffer auf 500 µl aufgefüllt und zentrifugiert (3000 rpm, 5 min). Die beads wurden nun 2x 5 min in 500 µl Waschpuffer auf dem Schüttler inkubiert und abzentrifugiert. Nach 2 Waschschritten
wurden die beads nach der Zentrifugation in 25 µl Lämmli resuspendiert, 5 min auf 95 °C erhitzt und dann 10 µl davon mittels SDS-PAGE aufgetrennt. Das Gel wurde mit Coomassie gefärbt, um die GST-Proteine zu detektieren, und anschließend getrocknet. Mittels Autoradiografie konnte bestimmt werden, wie viel des in vitro translatierten Proteins präzipitiert werden konnte.

5.21 Arbeiten mit Schneiderzellen

5.21.1 Kultivierung von Schneiderzellen

Die Kultivierung von Schneiderzellen erfolgte in 50 ml Gewebekulturflaschen bei 27 °C. Dazu wurden die Zellen in 10 ml Schneider’s Drosophila Medium mit 5 % Fötalem Rinderserum (FBS) kultiviert und etwa alle 2-3 Tage 1:2 mit frischem Medium + FBS verdünnt und in neue Flaschen transferiert. Alle Zellkulturarbeiten wurden unter der Sterilbank durchgeführt.

5.21.2 Transiente Transfektion von Schneiderzellen

Für Transfektionen wurden 10^6 Zellen verwendet und gut gewachsene Kulturen gegebenenfalls entsprechend verdünnt. Die Zellsuspension wurde mit je 3 ml auf 6-Loch-Platten verteilt und so über Nacht bei 27 °C inkubiert.

Für das getrennte Ansetzen des DNA-Mix und des Cellfectin-Mix wurden am nächsten Tag in Eppendorff-Gefäßen je 100 µl serumfreies Medium pro Transfektion vorbereitet. Für den DNA-Mix wurden pro Konstrukt 300 ng DNA zugegeben und für den Cellfectin-Mix wurden jeweils 10 µl Cellfectin zugegeben. Diese beiden Ansätze wurden dann gemischt und für 15 min bei Raumtemperatur inkubiert.
Material und Methoden

Um Antikörperfärbungen an Zellen machen zu können, ist es notwendig, die Zellen auf Deckgläschen wachsen zu lassen. Dazu wurden autoklavierte Deckgläschen (10x 10 mm) mit 30 µl Concanavalin (0,5 mg/ml) beschichtet. Zwei dieser so vorbereiteten Deckgläschen wurden nun zu jedem Transfektionsansatz gegeben und die Zellen weitere 24 Std inkubiert. Während dieser weiteren 24 Std wurde den Zellen ausreichend Zeit gegeben, die gewünschten Proteinen zu exprimieren. Am nächsten Tag konnte die Antikörperfärbung erfolgen.

5.21.3 Antikörperfärbung an Schneiderzellen

Für die Antikörperfärbung wurde das Medium von den Transfektionen abgesaugt und die Zellen mit 2 ml PBS gewaschen. Zur Fixierung wurden die Zellen für 10 min in 1 ml 4% Formaldehyd in PBS, und zur anschließenden Permeabilisierung 30 sec in 1 ml PBS mit 0,5% TritonX-100 inkubiert. Anschließend wurden die Zellen 3x 10 min mit PBT gewaschen. Nach Inkubation mit dem jeweiligen Erstantikörper für 1 Std bei Raumtemperatur wurden die Zellen erneut 3x 10 min gewaschen und anschließend mit dem Fluoreszenz-gekoppelten Zweitantikörper ebenfalls für 1 Std inkubiert. Ab hier erfolgten alle Schritte im Dunkeln. Nach der Antikörperinkubation wurden die Zelle nochmals 3x 10 min gewaschen. Anschließend wurden die Deckgläschen in einem kleinen Tropfen Vectashield eingebettet, mit Nagellack versiegelt und dann am Mikroskop (Zeiss, Jena) ausgewertet.
6 Literaturverzeichnis

F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K.,
Renzulli, R., Aanensen, N., Carrola, S., Bickelhaupt, E., Lazovatky, Y.,
DaSilva, A., Zhong, J., Stanyon, C. A., Finley, R. L., Jr., White, K. P.,
Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A.,

mediates signaling from lysophosphatidic acid receptor via epidermal growth

Grosshans, J., Wenzl, C., Herz, H. M., Bartoszewski, S., Schnorrer, F., Vogt, N.,
the formation of the furrow canal by directed actin assembly during Drosophila

Gumbiner, B. M. (2005). "Regulation of cadherin-mediated adhesion in

family of oncogenes and controls cell shape changes during gastrulation

669-72.

Harris, B. Z. und Lim, W. A. (2001). "Mechanism and role of PDZ domains in

Harris, T. J. C. und Peifer, M. (2004). "Adherens junction-dependent and -
independent steps in the establishment of epithelial cell polarity in Drosophila."

"Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl

activity are catalyzed by a common domain on the dbl oncogene product." J

Hart, M. J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W. D., Gilman, A. G.,
Nucleotide Exchange Activity of p115 RhoGEF by G{alpha}13." Science
280(5372): 2112-2114.

Drosophila, required for dorsal-ventral embryonic polarity, appears to encode
a transmembrane protein." Cell 52(2): 269-79.

"Dynamics of receptor/G protein coupling in living cells." EMBO J. 24(23):
4106-4114.

(1990). "Drosophila neurotactin, a surface glycoprotein with homology to

precoupled receptor-guanine nucleotide protein complex." Biochemistry 27(7): 2374-84.

7 Anhang

7.1 Vektorkarten

![Vektorkarte pBlueScript II KS+ (V1)](image1)

![Vektorkarte pSP72 (V13)](image2)

![Vektorkarte pUAST (V12)](image3)

![Vektorkarte 2xPEbetaGal](image4)
Danksagung

An dieser Stelle danke ich Maria Leptin, dass sie mir die Möglichkeit gegeben hat, meine Promotion in ihrer Arbeitsgruppe anzufertigen, und für die Betreuung während meiner Arbeit.

Frank Sprenger danke ich für die Funktion als zweiter Prüfer meiner Arbeit. Siegfried Roth und Veit Riechmann danke ich, dass sie Vorsitz und Beisitz bei der Disputation übernehmen.

Mein Dank gilt allen jetzigen und früheren Mitgliedern der Arbeitsgruppen Leptin, Sprenger und Klein für Diskussionen, Hilfe, aber auch so manche schöne Feier und Ablenkung vom Stress der Arbeit! Besonders danke ich den Leuten der Gruppe Sprenger, dass sie mich so nett in ihrem Schreibaum aufgenommen haben. Dort drohte einem wenigstens nicht die Gefahr, durch umkippende Papierstapel erschlagen zu werden!

Mein besonderer Dank gilt an dieser Stelle meinen Eltern für alle Unterstützung und Liebe, die sie mir geben!

Meinem Freund Maik gilt ebenso besonderer Dank für seine Hilfe, Liebe und Unterstützung – aber Du weißt ja eh, was ich sagen will!
Erklärung

Kölsch, V, Seher, T, Ballester, GFJ, Serrano, L, Leptin, M (submitted)
Control of Drosophila gastrulation by apical localisation of adherens junctions and RhoGEF2

Köln, Februar 2006

Verena Kölsch
Lebenslauf

Zur Person

Verena Kölsch
geboren am 20.01.78 in Hamburg
ledig

Schulbildung

1984-1988 Grundschule in Altenberge
1988-1997 Gymnasium Paulinum Münster

Studium und berufliche Tätigkeiten

1997-2002 Studium der Biologie an der Philipps Universität Marburg
Schwerpunkte: Entwicklungsbioologie, Genetik und Zoologie
während des Studiums: studentische Hilfskraft und Betreuung von Praktika
Titel der Diplomarbeit: „Untersuchungen zur Expression und Regulation des
hand-Gens bei Drosophila melanogaster“, betreut durch Dr. Achim. Paululat

2002-2006 Promotion an der Universität Köln, betreut durch Prof. Dr. Maria Leptin
Titel der Dissertation: „T48 reguliert mit Fog/Concertina die Zellform-
veränderungen während der Mesoderminvagination in Drosophila melanogaster“

Publikationen und Poster

Kölsch V, Paululat A.
The highly conserved cardiogenic bHLH factor Hand is specifically expressed in circular visceral
muscle progenitor cells and in all cell types of the dorsal vessel during Drosophila embryogenesis.

Dynamics of heart differentiation, visualized utilizing enhancer elements of the Drosophila
melanogaster bHLH transcription factor Hand. Gene Expression Patterns

Kölsch, V, Seher, T, Ballester, GFJ, Serrano, L, Leptin, M (submitted)
Control of Drosophila gastrulation by apical localisation of adherens junctions and RhoGEF2

2003 18th Drosophila Research Conference 2003, Göttingen
Poster: Identification of novel genes involved in ventral furrow formation

2004 European Life Scientist Organisation Meeting 2004, Nizza
Poster: T48 is involved in gastrulation in Drosophila

Poster: T48 is involved in ventral furrow formation

Auszeichnungen