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Summary: 

During the development of vertebrates the body is subdivided into repeated units, the 

somites. They are generated from the presomitic mesoderm (PSM) and are flanking 

the notochord on both sides. For this coordinated process components of the Delta-

Notch signalling pathway are important. 

Novel genes involved in somitogenesis were searched using microarray-technology. 

This technique had to be established in the lab and this was done using a cDNA 

library, which was prepared from embryos of mixed embryogenesis stages. The basic 

protocols were established like printing, labelling and hybridisation. The usage of 

spiked in controls was established as well. The controls were genes from the 

bacteriophage lambda.  

Later the cDNA library was used to compare the expression of wt and fss embryos. 

The fss mutant is linked to the gene Tbx24, which is no component of the Delta-Notch 

pathway, but belongs to the fused somite type mutants.  

To compare the other fused somite type embryos against wt the zebrafish oligo library 

from Sigma-Genosys was used. The other mutants are des, bea and aei. These 

mutants are defective in components of the Delta-Notch pathway, des in notch1a, bea 

in deltaC and aei in deltaD. 

As these components are involved in the starting of the cascade and because of this 

some rescue mechanisms might occur the mediator of the pathway Su(H) was used as 

well. For this gene morpholino knock down embryos were produced. 

The PSM consists of several compartments, namely a posterior, an intermediate and 

an anterior compartment. The PSM of the zebrafish was not dissected in these parts, 

as it is very small. The PSM of the mouse is bigger and therefore it was cut in an 

anterior and a posterior part, where the anterior part contains the intermediate and the 

anterior compartment. For this approach the mouse oligo library from Sigma-Genosys 

was used. 

The candidate genes found in these screens had to be validated by another method. 

The in situ hybridisation was chosen, as this allows the localisation of the expression 

and validation. For the mouse PSM screen this method was not used. Here the 

literature was scanned to find the expression pattern of the genes found. Doing this 

validated two candidates from this approach. 
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The genes found in the zebrafish screens were validated using the in situ 

hybridisation. Genes with an interesting expression pattern will be further 

characterised, i.e. their functional role in somitogenesis will be elucidated. 

 

Zusammenfassung: 

Während der Entwicklung der Vertebraten wird der Körper in sich wiederholende 

Einheiten unterteilt, die sogenannten Somiten. Diese werden von dem  präsomitischen 

paraxialen Mesoderm (PSM) gebildet und flankieren das Notochord zu beiden Seiten. 

Für den koordinierten Ablauf dieses Prozesses ist die Expression von Komponenten 

des Delta-Notch- Signaltransduktionsweges wichtig. 

Um neue Gene, die eine Rolle in der Somitogenese zu finden, wurde die 

Mikroarraytechnologie verwendet, die allerdings zunaechst noch etalbiert werden 

musste. Dafür wurde eine cDNA Bank verwendet, die aus Embryonen in 

verschiedenen Entwicklungsstadien hergestellt wurde. Die grundlegenden Protokolle, 

wie Printen, Markieren und Hybridisierung, wurden mit dieser Bank etabliert. Die 

Verwendung von zugegebenen Kontrollen wurde ebenfalls eingeführt. Diese 

Kontrollen waren Gene des Bakteriophagen Lambda. 

Danach wurde diese Bank verwendet um die Expression zwischen wt und fss 

Embryonen zu vergleichen. Die fss-Mutante ist in dem Gen Tbx24 defekt. Dieses Gen 

gehört nicht zum Delta-Notch Signalweg, aber zu den fused somite type Mutanten. 

Die Zebrafisch oligo Bank von Sigma-Genosys wurde für den Vergleich der fused 

somite type Mutanten mit den Wildtypembryonen herangezogen. Die Mutanten die 

noch zu dieser Klasse gehören sind des, bea und aei. Diese Mutanten haben Defekte 

in Komponenten des Delta-Notch Signalweges, des in notch1a, bea in deltaC und aei 

in deltaD. 

Da diese Komponenten am Beginn der Kaskade stehen und da es deshalb sehr 

wahrscheinlich ist das andere Teile der Kaskade einspringen könnten, wurde der 

Mediator des Signalweges, Su(H) ebenfalls verwendet. Für dieses Gen wurden 

Morpholino knock down Embryos erzeugt. 

Das PSM besteht aus mehreren Teilen, nämlich dem posterioren, dem intermediären 

und dem anterioren Kompartment. Das PSM des Zebrafisches wurde nicht in diese 

Teile zerschnitten, da es sehr klein ist. Das PSM der Maus ist grösser und deshalb 

wurde es hier in einen anterioren und einen posterioren Anteil geteilt, wobei der 
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anteriore Teil das anteriore und das intermediäre Kompartment umfasste. Für diesen 

Ansatz wurde die Maus Oligo Bank von Sigma-Genosys verwendet. 

Die Kandidatengene die in diesen Versuchen gefunden wurden, muβten noch durch 

eine andere Methode überprüft werden. Die in situ Hybridisierung wurde ausgewählt, 

da sie zusätzlich zur Validierung auch eine Lokalisierung der Expression erlaubt. Für 

den Maus-PSM Screen wurde diese Methode allerdings nicht verwendet. In diesem 

Fall wurde in der Literatur nach Expressionsmustern der gefundenen Gene gesucht. 

Zwei Kandidaten wurden auf diese Art und Weise überprüft. 

Die Gene, die in den Zebrafischversuchen entdeckt wurden, wurden durch die in situ 

Hybridisierung validiert. Gene, die ein interessantes Expressionsmuster zeigen 

werden weiter charakterisiert, das heiβt ihre funktionelle Rolle in der Somitogenese 

wird untersucht werden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 7 

1. Introduction: 

 

1.1. Somitogenesis: 

Somites are a feature shared by all vertebrates. They are formed during 

embryogenesis in an ordered manner from anterior to the posterior, are flanking the 

notochord on both sides and are generated from the presomitic mesoderm (PSM) (Fig. 

1). Three phases can be distinguished in somitogenesis: first, prepatterning of the 

PSM and establishment of the rostro-caudal polarity of the future somites, second, the 

formation of the somite border and third, the differentiation of the somites to generate 

the muscle, vertebrae, intravertebral disks and ribs of the trunk and tail (Maroto and 

Pourquiè, 2001). 

 

 

 

 

 

 

 
 

 

Figure 1: The left picture shows a mouse embryo and the right a zebrafishembryo during omitogenesis. The black arrows point to 
somite borders and the brackets demarcate the PSM (presomitic mesoderm), from which new somites are generated. 

 (This picture was taken from Saga and Takeda, 2001). 

 
Three classical models try to explain the periodicity of somite formation, namely 

Meinhardt’s model, cell cycle model and the clock- and wavefront model. 

Meinhardt’s model postulates that prior to the formation of each somite the cells in 

the presomitic mesoderm undergo several rounds of oscillation between two alternate 

stages corresponding to the prospective anterior and posterior compartment of the 

somite (Meinhard, 1986). 

The cell cycle model tries to link the cell cycle to somitogenesis. Evidence for this 

comes from chicken embryos, which were heat-shocked and showed several 

segmentation abnormalities that are repeated along the AP (anterior-posterior) axis 

with a regular interval of six to seven somites (Primett et al., 1988). It takes 
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approximately 10 hours in the chicken to form this number of somites and this time-

interval is needed to complete one cell cycle in the PSM (Primett et al., 1989). 

Therefore it was concluded that the cell cycle is the internal clock, which drives 

somitogenesis, but this theory has not been verified by further experiments. 

Nevertheless there is some linkage between somitogenesis and cell cycle, as 

Kawahara et al., 2004 suggest. They knocked down GADD45beta, which is involved 

in cell cycle control. The embryos displayed a disorganized cyclic expression of her1 

and of segmented expression of MyoD. 

Cooke and Zeeman formulated the clock and wavefront model in 1976. Here two 

phenomena are needed for periodic somite formation. First, there must be an intrinsic 

clock driving oscillations of presomitic cells between a permissive and a non-

permissive state. This is similar to the Meinhard’s model, but they (Cooke and 

Zeeman, 1976) also postulated the existence of a wavefront travelling along the body-

axis, which establishes a gradient of differentiation. Somite boundaries are formed, 

when oscillating cells of the PSM are reached by the wavefront. This model is most 

concurrent with the experimental data. 

First molecular evidence for the existence of an oscillator was found in chicken 

(Palmeirim et al., 1997). It was detected that hairy 1, a basic Helix-Loop-Helix 

(bHLH) transcriptional repressor showed different patterns of expression in the PSM, 

although the chicken embryos used, were at the same developmental stage. Dynamic 

expression patterns were found to be repeated every 90 minutes, which is the time to 

form one pair of somites in the chick. 

This oscillation was also detected to be an independent property of the PSM cells and 

not due to cell migration or a diffusible signal. Cells of the PSM undergo several 

rounds of oscillations before they become a somite. 

Most of these cycling genes belong to the Hairy/Enhancer-of-Split (Hes) family which 

are targets of the Delta-Notch pathway as for example hairy1 and hairy2 in the 

chicken (Palmeirim et al., 1997), hes1 and hes7 in the mouse (Jouve et al., 2000; 

Bessho et al., 2001) and her1 and her7 in the zebrafish (Holley et al., 2000; Oates and 

Ho, 2002). 

As Delta-Notch signalling plays an important role in somitogenesis it is interesting to 

see, which phenotypes are displayed by the mutants. Three mutants of the so-called 

fused somite type are defect in the Notch pathway, namely des (notch1a), aei (deltaD) 

(van Eeden et al., 1996) and bea(DeltaC) (personal communication Holley). These 
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mutants form several anterior somites and then cease somitogenesis. Therefore 

embryos of these mutants were chosen for the microrarray experiments described in 

this thesis. As the genes for which these mutants are defective are at the beginning of 

the signalling cascade and therefore “rescue and redundancy effects” are very likely to 

occur, the mediator of the Delta-Notch pathway, Suppressor of Hairless (Su(H)) 

(Sieger et al., 2003) was used as well (Fig. 2). As no mutant for this gene has been 

generated so far, the morpholino knockdown embryos were used (kindly provided by 

Dirk Sieger). 

 

 

 

 

 

 

 

 

 

 

Figure 2: Scheme of the Delta-Notch pathway: The receptor Notch (Notch1) binds it ligand Delta (Dll1 
or 3). The binding leads to cleavage (Furin and Presenilin) of the Intracellular Notch domain (ICN), 
which translocalises to the nucleus. In the nucleus the ICN binds Su(H) (Rbp-jк) and activates the 
target genes. If Su(H) is not bound to the ICN it acts as repressor. 
This picture was taken from Sada andTakeda, 2001. 
 

There is another mutant belonging to the fused somite type, namely fused somites (fss) 

(van Eeden et al., 1996). The mutant embryos form no somites at all. The fss mutant 

was linked to the gene Tbx24 (Nikaido et al., 2002), which is expressed in the 

intermediate and anterior PSM, but excluded in the posterior. This expression pattern 

might suggest that this gene plays a role in the wavefront, but the key-player of this 

part of somitogenesis seems to be Fgf8. It forms a gradient in the PSM were the 

concentration of Fgf8 is highest in the posterior part (Dubrulle et al., 2001). As Fgf8 

is a growth factor and part of the FGF/MAPK (mitogen-activated protein kinase) 

signalling cascade it is perhaps needed to keep the cells in the posterior and 

intermediate compartment of the PSM in an undetermined or undifferentiated state. 

After the concentration falls under a certain threshold in the anterior PSM the cells are 

able to form the epithelia of the somites (Sawada et al., 2001). 
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1.2. Aim of this thesis: 

Microarray technology was used to identify genes involved in the different 

somitogenesis events in zebrafish by comparing the expression in wildtype (wt) 

embryos with expression in different mutants belonging to the fused somite type class 

(van Eden et al., 1996) and Su(H)- morpholino knock down embryos (Sieger et al., 

2003) that show defects in somite formation. 

As experiments showed that there are several different compartments in the PSM it 

seemed worth to try to dissect it in at least a posterior and an anterior part. The 

zebrafish embryo is very small and the PSM even smaller, therefore it seemed 

worthwhile to do an experiment in the mouse, which has a bigger PSM. Here the PSM 

was cut in the two parts and those were hybridised on a chip. The border between 

anterior and posterior PSM was the umbilical chord, which was a good morphological 

feature and coincides with the expression of some genes, f.e. notch1 (Calceran et al., 

2004) at E9.5. 

The candidates found in the screens were validated using in situ hybridisations. 

Genes, which show a promising expression pattern are suitable for a further 

characterisation, i.e. their functional role in somite formation will be elucidated.  

Before the microrarray technology could be used for finding new somitogenesis genes 

it was necessary to be establish it. 

 

1.3. Microarray technology: 

This technology allows the comparison of gene expression between two or more 

states. This can be diseased and healthy, treated or untreated with chemicals or as 

used in this thesis between wildtype and mutant animals (Fig. 3). 

A typical microarray experiment consists of several steps (Fig. 4). The beginning is 

the biological question (Fig. 4A). In this case it is to find genes, which are involved in 

somitogenesis (see 1.1). Parallel to this question and the designing of adequate 

experiments (Churchill, 2002; Yang at Speed, 2002) (Fig. 4B) the microarray 

technology had to be established in the laboratory, i.e. how to print the probes and in 

which printing buffer (Fig.4C). Another important feature was the production of the 

labelled targets. This means, which RNA extraction should be used, total RNA or 

poly A+ enriched and before this, the tissue used for RNA extraction had to be chosen 
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(Fig. 4D). Intuitively one might suggest to use the presomitic region of the embryo, 

but as the zebrafish embryo is very small and a high amount of RNA is needed, we 

choose to use the entire embryo for RNA extraction. But in the case of the mouse 

microarray experiment we used parts of the PSM for RNA preparations. After this the 

right protocol for labelling the targets had to be established (Fig. 4E) and of course the 

hybridisation of the labelled targets to the printed probes as well (Fig. 4F). As 

mentioned above it is also very critical to design the experiments in a way that the 

most usage can be expected from the generated data. A keystone is the balance 

between technical and biological replicates (Yang and Speed, 2002). Technical 

replicates use the same labelled targets. Variances in these replicates stem for example 

from differences of the printed slides, differences during RNA isolation, labelling and 

so on. Biological replicates on the other hand use different samples. Here biological 

variance plays a role. This stems from individual differences of the fish (embryos and 

also parent fish), health state, water quality and so on. Another consideration should 

be, if the experimental design truly answers the biological question (Churchill, 2002). 

Following analogon should show what is meant with this. If for example, the 

difference between male and female fish should be investigated, one should be certain 

that one does not have old and young fish in the sample because then the differences 

of age will also fall in the pool of differences. This elucidates why thinking of 

sampling is very important. 

 
Figure 3: Flowchart of a microarray experiment: The clones, oligos or cDNAs (referred to as probes) are spotted on a coated 
glass surface (slide). RNAs are extracted from two different tissues. The RNA is transcribed into cDNAs and labelled with two 
different fluorphores (dyes). These labelled targets are hybridised to the slide. During scanning two different images, for each dye 
one are created and then analysed. 

(Weeraratna et. al, 2004) 
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Scanning follows the hybridisation (Fig.4G) and gridding converts this scanned 

images into columns of numbers referring to the measured intensities and background 

values (Fig. 4H). Normalisation eliminates differences stemming from differences in 

dye efficiency (coupling to the cDNA, produced from the RNA) (Fig. 4I) (Yang et al., 

2002; Quackenbush, 2002;Park et al., 2003). After this, statistic methods had to be 

chosen (Fig. 4J), which allow to differentiate between true expression differences and 

variable differences coming from random events. They should be easy to use and suit 

the special requirements of the biological question (Leung and Cavaliere, 2003). As 

we are interested in differently expressed genes it might seem valid to set a certain 

threshold of up- or downregulation for a given gene and this is it what we did in the 

beginning of the experiments, later, experience showed that it would be better to 

compare expression changes to housekeeping genes and/or genes, which were known 

to be differently expressed (Chaudhuri, 2005).  

 
Figure 4: Steps in a microarray experiment. 
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2. Materials and Methods: 

 

2.1. Materials: 

 

2.1.1 Chemicals, kits and enzymes: 

µMACs Kit (Miltenyi) 

Fairplay labelling Kit (Stratagene) 

Cyscribe labelling Kit (Amersham) 

SYBR Green II (Molecular probes) 

Ethanol (Merck) 

Diethyl Pyrocarbonate (DEPC) (Sigma) 

NaOH (Fluka) 

HCl  

LiCl (Sigma) 

Oligo dT primer 

Reverse transcription buffer (Promega) 

Reverse transcriptase (Promega) 

10x transcription buffer (Roche) 

dNTPs (Sigma) 

NTPs (Roche) 

DIG RNA labelling mix (Roche) 

SP6 RNA polymerase (Roche) 

T7 RNA polymerase (Roche) 

DNaseI (Roche) 

Glycogen (Ambion) 

BM Purple (Roche) 

RNase Inhibitor (Roche) 

Anti DIG AP Fab fragments (Roche) 

Na2HPO4*2H2O (Merck) 

Na2SO4*10H2O (Merck) 

KH2PO4 (Sigma) 

NaCl (Merck) 

MgCl2 (Sigma) 
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Sodiumcitrate (Sigma) 

KCl (Sigma) 

Tween-20 (Merck) 

Sodium Acetate (Fluka) 

Cy3 reactive dye (Amersham Pharmacia)  

Cy5 reactive dye (Amersham Pharmacia) 

Alexa 555 (Molecular Probes) 

Alexa 647 (Molecular Probes)  

Sodium bicarbonate (Sigma) 

Formamide 

Boehringer Block (Roche) 

Yeast RNA (Sigma) 

Heparin 

3-(Cyclohexylamino)-propan-1-sulfonacid (Chaps) (Sigma) 

Paraformaldehyde 

Triethanolamine (Sigma) 

BSA (Bovine serum albumin) (Sigma) 

Levamisol 

DMSO (Sigma) 

Ethidium bromide 

Iso-propanol (Merck) 

Methanol (Merck) 

Taq DNA polymerase (selfmade) 

10x PCR Buffer (selfmade) 

Taq DNA polymerase (Ampliqon) 

10x PCR buffer (Ampliqon) 

Bruce Apple cDNA library 

Lambda Phage DNA (Sigma) 

Sigma Genosys mouse oligo library 

Sigma Genosys zebrafish oligo library 

Control oligos: lambda genes Q, N and G (Sigma) 

LB Broth Base (Gibco BRL) 

LB Agar (Gibco BRL) 

SOLR cells (Stratagene) 
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Virkon 

Ampicillin (Sigma) 

Kanamycin (Sigma) 

EDTA (Sigma) 

PCR purification kit (Quiagen) 

Rapid PCR purification and Gel extraction system (Biocat) 

Phenol/Chloroform (Roth) 

Chloroform (Roth) 

Tris-base (Merck) 

Ultra Pure H2O 

Glycerol (Roth) 

 

2.1.2 Equipment: 

Tubes 1.5 and 2ml (Eppendorf) 

PCR tubes (Mβb) 

Incubator for fish 

Incubator for bacteria 

Bacterial shaker 

Incubators 

12 well dishes (Nunc) 

pH meter 

Gel chambers 

Power supply (Biorad) 

Microscopic slides (Roth) 

Stereomicroscope (Zeiss) 

In situ machine (Intavis) 

Heating blocks (Eppendorf ) 

Mastercycler personal (Eppendorf)  

DNA Engine Tetrad (MJ Research) 

Centrifuge (Eppendorf) 

Centrifuge 5810 (Eppendorf) 

Pipettes (Gilson): P2, P20, P200, P1000 

Pasteur-pipettes glass (KMF) 
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Pasteur-pipettes plastic (KMF) 

Forceps (Inox no. 11) 

Aspiratory tube assembly for microcapillary pipettes (Sigma) 

glasscapillaries 

Reusable columns 

GAPSI slides (Corning) 

GAPSII slides (Corning) 

Elipsa slides (Eppendorf) 

Schott H slides (Schott) 

Gene Tac G3 (Genomic solution): Spotter and picker 

Gene Tac  Hybridization (Genomic solution) 

Gene Tac LS IV (Genomic solution): Laserscanner 

Multiprobe II Robotic liquid handling system (Packard) 

Hybridisation chambers (Corning) 

Coverslips (Corning) 

Lifterslips (Eerie) 

Slide-rack (Roth) 

Glass dishes (Roth) 

96 well culture plate (Nunc) 

96 well plate (Brand, ABgene) 

96 well filter plate (Nunc) 

384 microarray plates (ABgene) 

airpore tape (Deelux) 

PCR plate tapes (Brand) 

Robotic tips (Mβb, Neptun): 20, 200, 1000µl conductive and nonconductive 

Spectrometer (Eppendorf) 

 

2.1.3. Animals: 

Fish (Danio rerio):  

Wildtype fish were obtained from animal store “Schlepps” 

 

Mice wildtype strain: 

FVB/N (Charles River Laboratories) 
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2.1.4. Hormones: 

Pregnant mare serum (PMS) 

Human gonadotropic hormone (HGC) 

 

 

2.1.5. Primers: 

 

Table 1: Primer used 

 Name Accession-no Sequence 

Lambda control genes 

 Q-forward M38285 TAT TTA GGT GAC ACT ATA GGG CGC ATG AGA CTC GAA 

AGC GTA GC 

 Q-reverse  (T)18 CAT GCT GCT AAC GTG TGA CCG CAT 

TC 

 N-forward V00637 TAT TTA GGT GAC ACT ATA GTG GAC TGA 

ATT AGT TGC CAG CTA TG 

 N-reverse  (T)18  TGG CGG TGT TGA CAG AAA TAC CAC 

TG 

 G-forward X00166 TAT TTA GGT GAC ACT ATA GGA TCA GCC 

AAA CGT CTC TTC AGG CC 

 G-reverse  (T)18 GGT GTT AGA TAT TTA TCC CT TGC 

GGT 

Primer used for amplification of fragments of cDNA library  

 T3-forward   AAT TAA CCC TCA CTA AAG GG 

 T7-reverse  TAA TAC GAC TCA CTA TAG GG 

Primers for candidates of « Des » chip 

(forward primers include T3 sequence, reverse primer include T7 sequence) 

 Cx43.4 forward L46801 AAT TAA CCC TCA CTA AAG GGT CGA GGA 

CTG AGA CG 

 Cx43.4 reverse  TAA TAC GAC TCA CTA TAG GGC GGT CAA 

TGT CTC GC 

 D249 forward AB055680 AAT TAA CCC TCA CTA AAG GGA ACA AGC 

ACG GAG TG 

 D249 reverse  TAA TAC GAC TCA CTA TAG GGT GTC TCA 

GGT GCA GC 

 Her6 forward X97333 AAT TAA CCC TCA CTA AAG GGA ACA GAC 

TGT GAC AT 

 Name Accession-no Sequence 

 Her6 reverse  TAA TAC GAC TCA CTA TAG GGC CTC GGA 
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GTC TAC CA 

 Hsp90 forward AF068772 AAT TAA CCC TCA CTA AAG GGA CCA AGA 

TGC CTG AA 

 Hsp90 reverse  TAA TAC GAC TCA CTA TAG GGG AAG AGC 

GCG GAA CT 

 Mesogenin 

forward 

AJ309314 AAT TAA CCC TCA CTA AAG GGA GGA CAG 

GTC ATT TG 

 Mesogenin 

reverse 

 TAA TAC GAC TCA CTA TAG GGT GCC GGA 

TAA CTC TT 

 Mta forward AF097875 AAT TAA CCC TCA CTA AAG GGG GAC AGT 

GTC TAC TA 

 Mta reverse  TAA TAC GAC TCA CTA TAG GGC TCC AGC 

AGG AAG AA 

 P38a forward AB030897 AAT TAA CCC TCA CTA AAG GGA GAC TAG 

GAG CTG CG 

 P38a reverse  TAA TAC GAC TCA CTA TAG GGA TTC CTC 

TTG GGC AT 

 Pbx4 forward AF162696 AAT TAA CCC TCA CTA AAG GGG CTT GGG 

AAC AAA CC 

 Pbx4 reverse  TAA TAC GAC TCA CTA TAG GGC GGT TGA 

CCG AGC GA 

 MMP1A 

forward 

BI867183 AAT TAA CCC TCA CTA AAG GGG CTT GAT 

TCA AAA TT 

 MMP1A 

reverse 

 TAA TAC GAC TCA CTA TAG GGG TGC GAT 

TCT GGG AT 

 ZfdIII forward BG304258 AAT TAA CCC TCA CTA AAG GGG TTA GTT 

CCT GTC CG 

 ZfdIII reverse  TAA TAC GAC TCA CTA TAG GGC GCA CAT 

TTC CCA GC 

 Ziro5 forward AY017309 AAT TAA CCC TCA CTA AAG GGA CTC AAG 

TGA GAA GC 

 Ziro5 reverse  TAA TAC GAC TCA CTA TAG GGG AGA ATG 

AAT AAC AG 

 Ziro7 forward AF398433 AAT TAA CCC TCA CTA AAG GGA AAC TTC 

TTC ATG GA 

 Ziro7 reverse  TAA TAC GAC TCA CTA TAG GGT CTG TTA 

TGC AAA CA 

 Name Accession-no Sequence 

 Ztsg1 forward AF332096 AAT TAA CCC TCA CTA AAG GGG ATG GGG 

TCT TCA TC 

 Ztsg reverse  TAA TAC GAC TCA CTA TAG GGG TCC AGC 
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AGA AAC AC 

  
 

2.1.6. Solutions: 

DEPC-H2O: 

0.5ml DEPC was added to 1l H2O. The solution was left overnight at room 

temperature. Later the DEPC was inactivated by autoclaving. 

 

20 x SSC : 

175.3g NaCl and 88.2g Sodiumcitrat were dissolved in 1l H2O. The pH was adjusted 

to 4.7. Finally the solution was autoclaved. 

 

 

20 x PBS: 

160g NaCl, 6g KCl, 23g Na2HPO4 and 4.8g KH2PO4 were dissolved in 1l DEPC H2O. 

The pH was adjusted to 7.5 and the solution was autoclaved. 

 

1xPBS: 

20x PBS was diluted to 1x. 

 

4% PFA: 

40g paraformaldehyde powder was dissolved in 1l 1xPBS. The solution was heated 

until it became clear. Then it was aliquoted. 

 

Tris-HCl: 

121.1g Tris-base was dissolved in H2O. The pH was adjusted by adding HCl. 

 

5M NaCl:  

292g NaCl was dissolved in 1l DEPC H2O. The solution was autoclaved. 

 

0.5M MgCl2: 

101.7g MgCl2  were dissolved in 1l DEPC H2O. The solution was autoclaved. 

 

50x TAE-buffer: 
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For 1l 242.2g Tris and 57.1g Acetanhydrid were dissolved in water. 100ml 0.5M 

EDTA pH 8 were added and the solution was filled up with water. 

For electophoresis the buffer was diluted to 1x TAE. 

  

Agarose-gel loading buffer: 

15% Ficoll was dissolved in 45ml H2O. One drop of Bromphenol (0.25%) and Xylene 

Blue (0.25%) were added. The bluejuice was aliquoted in 1.5ml Eppendorf tubes. 

 

Sephadex G50: 

10g of the sephadex were suspended in 150 ml water and autoclaved. The sephadex 

was stored at 4°C 

 

Printing buffer (Schott H and Elipsa slides): 

To approximately 800 ml of water 1.78g of Na2HPO4*2H2O (100mM) was added. To 

this 10g of Na2SO4*10H2O (10%) was also added. Mixing was done until the solution 

became clear. Then the solution was adjusted to pH 9. Finally water was added to get 

1 l of 1x printing buffer. 

 

Hybridisation and washing solutions (GAPSI and II slides): 

The hybridisation solution contains 3xSSC, 0.3%SDS and 200ng/µl yeast tRNA. 

Medium stringency buffer:  2xSSC and 0.1%SDS  

High stringency buffer: 0.1xSSC and 0.05% SDS 

 

Hybridisation and washing solutions (Elipsa): 

The Pre-hybridisation-solution was 3xSSC, 0.3%SDS, 1%BSA 

The Hybridisation-solution was the same as the Pre-hybridisation-solution except for 

the lack of BSA (3x SSC, 0.3%SDS). 

Washing solution 1:  2xSSC, 0.1 SDS 

Washing solution 2: 0.1xSSC, 0.1%SDS 

Washing solution 3: 0.1xSSC 

 

Hybridisation and washing solutions (Schott H): 

Blocking solution: 50mM Ethanolamine was dissolved in 50mM borate buffer. The 

solution was adjusted to pH 9.0. 
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Hybridisation solution: 2xSSC, 0.1% SDS 

Washing solution 1: 2xSSC, 0.1% SDS 

Washing solution 2: 0,1xSSC, 0.1% SDS 

Washing solution 3: 0.1xSSC 

 

Binding solution (PCR-product purification): 

5.4 M Guanidinium-Hydrochlorid was dissolved in 20mM Tris-HCl, pH 7.5; 5mM 

EDTA; 50% Ethanol 

 

1 x PBST: 

20x PBS was diluted to 1x and 0.1% Tween-20 added. 

 

2 x SSCT: 

20 x SSC was diluted to 2x SSC and Tween-20 was added to a final concentration of 

0.1%. 

 

0,2 x SSCT: 

20 x SSC was diluted to 0.2x SSC and Tween-20 was added to a final concentration 

of 0.1%. 

 

Hybridisation-solution: 

25ml Formamide, 12.5ml 20x SSC, 0.5g Boehringer Block, 500µl Heparin 

(10mg/ml), 500µl Denhard’s, 500µl 10% Tween-20, 500µl Chaps and 500µl 0.5M 

EDTA were mixed and brought to the final volume of 50ml. 

 

0.1M Triethanolamine (TEA): 

0.93g TEA was dissolved in 50ml DEPC H2O and the pH adjusted to pH 7.8.  

 

Blocking solution I (in situ Hybridisation): 

0.1 g BSA was dissolved in 50 ml 1xPBST. 

 

Blocking solution II (in situ Hybridisation): 

20ml Blocking solution I was mixed with heat-inactivated sheep serum (5%) 
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Alkaline Phosphates (AP)-buffer: 

5ml 1M Tris, 5ml 0.5 M MgCl2, 1ml 5M NaCl, 500µl 10% Tween and 250µl 1M 

Levamisol were mixed and brought to final volume of 50ml. 

 

TE-buffer: 

10mM Tris-Cl and 1mM EDTA (pH 8) 

 

 

2.2. Methods: 

2.2.1: Preparation of embryos: 
2.2.1.1: Fish: 

Fish were mated in separate small plastic boxes filled with water. On the bottom of 

the box were small glass balls to prevent eating of the eggs by the adult fish. One 

female fish was mated to one or two male fish. Mating started in the next morning 

after the light-cycle began. 

Two hours later the eggs were collected. The fish were grown overnight in a 22°C 

incubator. The fish grew to 10 somite stage. Then the fish were either used for RNA 

extraction (described below) or dechorionised and fixed in 4% PFA overnight at 4°C. 

After fixing the fish were dehydrated in MeOH (5min in 33% MeOH in PBST, 5min 

in 66% MeOH in PBST and 5min in 100% MeOH). The embryos were stored in 

100% MeOH at -20°C until use for in situ hybridisation.  

 

2.2.1.2: Mice: 

To increase the number of embryos, female mice were superovulated. For this 

purpose FVB/N mice between four to six weeks were injected with PSM at midday. 

48h later HCG was injected as well. Then the mice were mated. At E9.5 the females 

were killed. Noon after the day the vaginal plug was observed is considered as E0.5. 

The embryos were dissected out of the embryonic membranes in ice-cold PBS. Then  

in a first step the PSM below the umbilical chord was cut off and put into RNA later. 

After this the PSM above the umbilical and below the first somitic border was 

removed and put into another tube containing RNA later. The RNA of these two 

samples was extracted as described below.  
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2.2.2 Mixed embryogenesis stage cDNA -Library: 
This library was kindly provided by Bruce Appel. It was created using the Stratagene 

ZAP-cDNA synthesis kit using 12-20 somite stage embryos. PCRs, Purification and 

Rearraying were done together with Dr. Martin Gajewski, Eva Schetter and Vladimir 

Simovic. 

Mass excision was done following the instruction of the kit. The phagmids were 

transformed into SOLR cells and the bacteria were streaked out on LB Agar plates 

(described in Stratagene instruction manual: cDNA Synthesis Kit, ZAP-cDNA 

Synthesis Kit, and ZAP-cDNA Gigapack III Gold Cloning Kit). 

2.2.2.1: Picking of colonies: 

Colonies were picked using the Gene Tac Picker tool. 96 well culture plates were 

filled with LB medium containing Ampicillin. The plates were loaded into the picker 

together with the colonies on the LB-amp agar plates. The picking device was also 

equipped with washing baths allowing the washing and sterilisation of the 48 pin 

picking head before, during and after the picking process. The picking tool was first 

washed in 50% EtOH and Virkon. Then the tool moved to the ultrasonic bath 

containing water and was washed for 5 seconds. Afterwards the tool was washed in 

70% EtOH for 5 seconds. Finally the tool was sterilised with heat for five seconds. To 

allow cooling down of the pins the head rested for 5 seconds before the next picking 

step. 

The automated vision system (CCD camera and frame grabber card) could detect 

colonies after setting the parameters: size, circularity, grey range and kernel size. It 

was necessary to set this parameter carefully because otherwise merged colonies or air 

bubbles in the agar would have been picked. The picked colonies were transferred to 

the 96 well culture plates. After picking the plates were sealed with air pore tape and 

incubated o.n. on the shacker (300rpm) at 37°C. 

 

 

 

2.2.2.2: Automated colony PCR in 96 well format: 

From one 96 culture well plate two identical 96 colony PCRs in 96 well plates were 

made.  

The mastermix (1U Taq-polymerase, 1.5 mM Magnesium buffer, 1x Taq buffer, 

200µM dNTPs, 200nM T3 forward primer, 200nM T7 reverse primer) was filled into 
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a container and put into the machine on a cooling socket. The empty 96 well plates 

were also put on cooled holds. The 96 culture well plate was loaded in the machine, 

too. 200µl conductive tips were used by the machine to pipette the mastermix into the 

96 well plates (95µl per well). Afterwards 5µl bacterial suspension was pipetted to the 

mastermix. As two PCR plates were produced the total volume of bacterial 

suspension, which was pipetted was 10µl. To the remaining bacteria 100µl of 60% 

Glycerol was added and stored at -20°C.  

The PCR in the 96 well plates was done in a tetrad-thermocycler. Reaction profile: 

95°C for 2minutes, 35 cycles: 95°C for 30 seconds, 55°C for 45 seconds, 72°C for 2 

minutes and a final extension of 72°C for 5minutes. The PCRs were checked on a 1% 

Agarose Gel. 

2.2.2.3: PCR-product purification in 96 well format: 

The protocol used for PCR product purification was established by Dr. Martin 

Gajewski and was also done with the pipetting-robot. A 96-well filter plate was 

mounted on a vaccum manifold. The PCR products of both produced plates were 

transferred together with the Binding solution into the 96-well filter plate. Then 

vacuum was applied. 700µl wash solution washed the bound DNA. After this again 

vaccum was applied, this time longer to allow the entire removal of washing solution. 

With 50µl water (warmed to 60°C) in each well the DNA was eluted and collected in 

a fresh 96-well plate. The elution was checked on a 1% agarose gel. 

2.2.2.4: Rearraying of purified PCR products:  

This step was done using the pipetting-robot. Four 96 well plates containing purified 

PCR products were rearrayed into a 384 well plate. To do this 10 µl were pipetted out 

of each well and transferred to the 384 plate containing 10µl DMSO (printing buffer). 

The scheme of rearraying can be seen in Fig. 5. 

Positions 1-96 refer to plate 1, 97-192 to plate 2, 193-288 to plate 3 and 289-384 to 

plate 4. Tables were created to allow an easy reference to the original 96 well plate. 

 

2.2.3 Sigma Genosys mouse oligo library and zebrafish library: 

Both libraries were delivered in 384 well format. The oligos were lyophilised and 

each well contained 0.5nmole. The oligos are 65-mers with a 5’-C6 amino 

modification, helping in covalent binding of the oligo to the slide coating substrate. 

One oligo has been designed for each gene. Control oligos were present in the library 

and were housekeeping genes, i.e. beta-actin. The oligos were dissolved in the 
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Printing buffer to a final concentration of 20µM and a daughter-plate-set was created, 

which was used for printing. 

Mouse oligo library:  This library consisted of 22 228 oligos, including 231 control 

oligos. Dissolvation and creating of daughter plates was done together with Chriz 

Voolstra. 

Zebrafish oligo library:  This library was made up of 16 399 oligos, including 171 

controls. 

 

 

Figure 5: Scheme of rearraying. Four 96 well plates were rearrayed into one 384 well plate. The PCRs 
of plate 1 are in postions 1-96; of plate2 in 97-192; of plate 3 in 193-288 and of plate 4 in 289-384.  

 

 

 

2.2.4. PCR and in vitro transcription of the Lambda-Control genes for the 

cDNA-chip 

Out of Lambda DNA three control genes were amplified, namely Q, N and Gama cI 

(G). 

The mastermix contained 1x PCR buffer, 2.5mM MgCl2, 5% DMSO, 200nM forward 

primer, 200nM reverse primer, 1U Taq polymerase, 1µl lambda phage DNA. The 

primers  



 

 26 

had an overhang carrying the SP6 polymerase sequence. 

Reaction profile: 94°C for 15 minutes, 40 circles: 94°C for 30 seconds, 55°C  for 30 

seconds and 72°C for 45 seconds and a final extension of 72°C for 2min. 

The PCR products were purified using the Quiagen PCR purification kit. In the case 

of the Gene G more than one band was obtained. The product band was cut out and 

gel extracted using the Gel extraction kit. 

For all genes one reamplification was done. This product was purified, too.  

The purified product was Phenol- Chloroform extracted: One volume of 

Phenol/Chloroform was added and the tube was vortexted and afterwards centrifuged 

at maximum speed for 7 minutes. The upper phase (containing the DNA) was 

transferred to a new tube and mixed with one volume of Chloroform and again 

centrifuged. Again the upper phase was pipetted into a new tube. The DNA was 

precipitated by adding 1/20 volume 5M NaCl and 2.5 Volumes Ethanol at -20°C for 1 

hour. After this time the tube was centrifuged at maximum speed for 20 minutes and 

the supernatant was discarded. The pellet was washed once with 70% Ethanol in 

DEPC-H2O and afterwards dried completely. The pellet was dissolved in 20µl TE-

buffer and the concentration was measured. 200-400ng were used for transcription 

together with 2µl 10x transcription buffer, 2µl 10mM NTPs, 1µl RNase-Inhibitorand 

20U SP6 RNA Polymerase. The final volume of the reaction was 20µl. The reaction 

was incubated at 37°C for 3hours. To destroy the template DNA 1µl DNase was 

added after the transcription and incubated for 15 minutes at 37°C. After this the 

reaction was stopped by adding 1µl 0.2M EDTA. To get rid of the DNase the sample 

was again Phenol-Chloroform extracted and precipitated as described above. This 

time the pellet was dissolved in 20µl DEPC-H2O. The transcription was checked on a 

1.5% Agarose-gel. 

 

2.2.5. Printing on Microarray slides:  

General: 

Slides, which were stored at 4°C (Elipsa) or –20°C (Schott H) were put to room 

temperature 15 minutes prior to printing. The 384 plates were also allowed to warm to 

room temperature and afterwards spun down at 240g for 3 minutes. Slides and plates 

were put into the spotter. An antistatic brush was used to remove dust from the slides. 

The sonic bath was filled with water as well as one of the washing-station. The second 

washing-station was filled with 50% Ethanol. The washing protocol was 3 seconds 
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washing in sonic bath, 3 seconds in water with brushing, 3 seconds washing in 50% 

EtOH, 3 seconds heater and 5 seconds air-dry. 

After spotting the slides were left for 10 minutes in the spotter to allow drying.  

GAPSI and II: On this slide the PCR-products from the Bruce Appel cDNA were 

printed. As controls, Q and GFP DNA was printed on each sub-grid.  As printing 

buffer 50% DMSO was used. To covalently attach the DNA to the chip surface the 

slides were incubated for 2 hours at 80°C. 

Elipsa: On this type of slide the mouse oligo library was printed. Four slides were 

necessary to print the entire library. Three different controls were spotted on the chips. 

The Q oligo was printed on each subgrid and served additionally as a landmark. The 

oligos N and G were just printed into each subgrid on slide2 and 4. 100mM Sodium 

Phosphate Buffer was used for printing. Spotting on this type of slides was done 

together with Chriz Voolstra. Post-processing was done as described for the GAPS-

slides. 

Schott H: On this slide the zebrafish oligo library was printed. Two slides were 

needed to print the entire library. The control Q was again in each subgrid. The 

controls N and G could only be seen on slide2. The same printing buffer as for Elipsa 

slides were used. Post-printing incubation was done in a humidity chamber (wet 

towels in a box) for 2 hours at room temperature. Finally the slides were dried, by 

leaving them overnight in a closed box.  

 

2.2.6. SYBR green II staining: 

After printing the success of the spotting process, i.e. spot morphology and spot size, 

could be checked. One slide of each printing run was incubated in a 10 000 fold 

dilution of SYBR green II stain in 0.5x TBE buffer for 3minutes. Afterwards the 

slides were washed four times in 0.5x TBE buffer. Finally the slides were dried by 

centrifugation and scanned in the Microarray Scanner at 560nm. 

 

2.2.7. Labelling using the Fairplay-kit (Stratagene): 

The RNAs (approximately 1µg per sample) in precipitation was spun down 

(maximum speed for 20minutes). Then the pellet was washed with 70% Ethanol and 

dried completely at room temperature. 

cDNA synthesis: 
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The dried RNA was dissolved in 8.5µl DEPC-H2O. Control RNAs were added in 

following amounts: To the vial containing the RNA, which was later labelled with the 

green fluorphor 1µl Q, 0.5µl N and 2µl G were added. To the other vial 1 µl Q, 2µl N 

and 0.5µl G were added. 

To obtain a complete redissolvation, the RNAs were heated for 15 minutes at 37°C. 

Afterwards the RNAs were cooled down on ice and spun down. 2µl 10x Stratascript 

reaction buffer, 1µl 20x dNTP mix, 1.5µl 0.1DTT, 0.5ul Rnase Block (40U/µl) and 

1µl Stratascript reverse transcriptase (50U/µl) were added to each tube. Incubation 

was done at 48°. After 25minutes 1µl of Stratascript reverse transcriptase was added 

again and the tubes were incubated for additional 35 minutes. 

10µl 1M NaOH were added to the reactions and incubated at 70°C for 10 minutes to 

hydrolyse the RNA. After this the reactions were slowly cooled down to room 

temperature. The cDNA-solutions were neutralized by adding 10µl 1M HCl. The 

cDNA was purified by precipitation (4µl 3M Sodium Acetate, 1µl Glycogen and 100 

µl Ethanol). Precipitation was done overnight at -20°C. The reactions were spun down 

at maximum speed for 15 minutes. After washing the pellet with 70% Ethanol, it was 

dried completely. 

 

Fluorescent Dye Coupling : 

Using Amersham Pharmacia dyes : 

The pellets were dissolved in 10µl 2x Coupling Buffer. 45µl DMSO was added to one 

Cy3 and one Cy5 reactive dye package. After vortexing the dyes were spun briefly. 10 

µl of the dissolved dye were added to the cDNA sample. In darkness the tubes were 

incubated for 30 minutes at room temperature. 

Using Alexa Dyes :  

The pellets were dissolved in 5µl nuclease free H2O and incubated at 42°C for 5 

minutes. Then 3µl of labelling buffer (Sodium bicarbonate buffer) were added. 

2µl of DMSO were added to each vial of Alexa Dyes (555 and 647). The 8µl of 

amine-modified DNA were added to the dye. In darkness the tubes were incubated for 

1 hour at room temperature. Finally 10µl H2O were added to the reaction. 

Purification: 

Again a precipitation step was performed (2µl 3M sodium acetate and 50µl 100% 

ethanol) at -20°C for at least 30 minutes. The fluorescent DNA was spun down at 
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maximum speed for 15 minutes and washed with 70% Ethanol. The dried pellet was 

dissolved in 20µl deonized H2O. 

850µl sephadex were added to reusable columns. The column was placed into a 2ml 

tube and spun at 300xg for 1 minute. The flow-through was discarded and the spin 

column placed in a new 1.5ml tube. On the center of the column the labelled probe 

was added and spun for 2 minutes at 300xg. 

To check for the quality of the labelled material, 2µl probe were loaded together with 

2µl loading buffer on a 1% agarose gel without ethidium bromide. The gel was run for 

1hour at 70 Volt. In the Microarray-scanner the labelled cDNA could be checked. 

 

 

2.2.8. Labelling using the Cyscribe-labelling kit: 

The RNA was handled as described in the fairplay labelling section. Control RNAs 

were added in the same amount as described above. 1µl of anchored oligo(dT)  was 

added and incubated for 5 minutes at 70°C. After cooling down 4µl of 5x CyScript 

buffer, 2µl 0.1M DTT, 1µl dUTP nucleotide mix, 1µl dUTP CyDye-labelled 

nucleotide (red or green) and 1µl of reverse transcriptase were added and incubated at 

42°C for 1.5 hours. After the cDNA production the RNA was degraded by adding 2µl 

of 2.5M NaOH to the reaction and incubating it at 37°C for 15 minutes. 2µl of 2.5M 

HCl neutralised the cDNA solution. 

The labelled cDNAs were purified in the G-50 Sephadex Spin Columns as described 

above. 

 

 

 

2.2.9. Hybridisation on microarray slides: 

 

GAPSI and GAPSII slides: 

To 100µl of hybridisation solution 10µl of labelled cDNA was added (5µl green and 

5µl red labelled cDNA). The cDNA-mixture was denatured at 85°C for 3minutes and 

then at 65°C for 20 minutes. 

The hybridisation was done in the GeneTAC Hybridisation-station and the slides were 

mounted according to the instructions. 
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The hybridisation program consisted of following steps: 

The probe was introduced at 75°C. Then a step-down hybridisation was performed; 

3hours at 65°C, 3 hours at 55°C and 12 hours at 50°. Afterwards the slides were 

washed in the machine: medium stringency buffer 6 times at 50°C for 20 seconds. 

High stringency buffer 3 times at 25°C for 20 seconds and post wash buffer 3times 

at 25°C for 20 seconds. 

The slides were dried by centrifugation at 235xg for 5minutes. 

 

Elipsa slides: 

The prehybridisation solution was heated to 42°C and the arrays incubated in it for 45 

minutes, keeping the temperature at 42°C. Afterwards the slides were rinsed in water 

at room temperature. The slides were shortly dipped in iso-propanol and finally dried 

by centrifugation at 235g for 2 min. 

The hybridisation was done in hybridisation chambers. Into the tiny holes 3xSSC was 

pipetted to allow a humid environment in the chambers during hybridisation. To the 

labelled and combined cDNAs hybridisation-solution was pipetted (For four slides 

265µl). The cDNAs were denatured by heating the solution for 10 minutes at 80°C. 

The cDNA-hybridsation-solution was pipetted on the slides and a coverslip was 

placed onto the slide. The slide was put into the chamber and the chamber was 

submerged into a waterbath at 42°C. Hybridisation was done overnight (at least 16 

hours). 

After hybridisation the slides were washed using the glass-rack and the glass-

chambers. The first washing step was done at 42°C with washing solution 1 and was 

done to remove the coverslips. Afterwards the slide were put into another washing 

bath also containing washing solution 1 at 42°C and incubated for 5minutes. Then the 

slides were washed five times in washing solution 2 for 5 minutes at room 

temperature. Finally the slides were rinsed five times in washing solution 3 and dried 

by centrifugation at 235xg for 5minutes. 

 

Schott H slides: 

Prior to hybridisation the slides were incubated in the blocking solution for 1 hour at 

room temperature. Afterwards the slides were washed two times with water and then 

dried by centrifugation at 240xg for 6minutes. The cDNAs were combined with the 

hybridisation solution (65µl per slide were needed. Therefore 5µl of each labelled 
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cDNA was mixed with 55µl of hybridsation solution). The cDNA in hybridisation 

solution was denatured at 80°C for 10 minutes and then kept at 42°C until pipetting 

on the slide. A coverslip and later a lifter slip were placed onto the slide. Then the 

slide was put into a Corning chamber (Preparation of Corning chambers see Elipsa 

slides) and the chamber was submerged into a waterbath at 42°C. Hybridisation was 

done overnight (at least 16 hours). The slides were put shortly into washing solution 1 

to remove the cover- or lifterslips. Then the slides were incubated for 5 minutes in 

washing solution 1 at room temperature. Afterwards the slides were incubated for 5 

minutes in washing solution 2. Finally the slides were rinsed five times in washing 

solution 3 and the slides dried by centrifugation at 240xg for 6minutes. 

 

2.2.10. Scanning of microarray slides: 

The micorarray slides were scanned using the Genetac Scanner following the 

instruction manual. The green fluorphor was scanned at 560 nm and the red one at 

647nm. 

 

2.2.11. Preparation of DIG labelled Antisense probes: 

The template DNA was created by PCR using genespecific primers with an T7 

sequence overhang. The PCR was purified. 100ng of the purified DNA was used as 

template. 2µl DIG RNA labelling mix, 2µl 10 transcription buffer, 2µl T7 RNA 

polymerase and 1µl of RNase Inhibitor was added to the template. The transcription 

reaction volume was 20µl. The reaction was incubated for 2hours at 37° C. After this 

the template DNA was destroyed by adding 2µl DNaseI and incubation at 37°C. 

Purification was done by precipitation using 1/10 LiCl, 2.5Volumes 100% Ethanol  

 

and 1µl Glycogen. The precipitation was done at -20°C over night. The RNA was 

spun down at maximum speed for 20 minutes and washed once with 75% Ethanol in 

DEPC-H2O. The dried pellet was dissolved in 20µl DEPC-H2O. To prevent 

degradation of the DIG labelled RNA 20µl of Formamide was added and the RNA 

was stored at -20°C. 

 

2.2.12. in situ Hybridisation:  

2.2.12.1. Rehydration of embryos: 
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The dehydrated embryos were rehydrated by incubating them for 5minutes in 66% 

Methanol in PBST, 5minutes in 33% Methanol in PBST and washing them 3 times in 

PBST. 

 

2.2.12.2. Heat-treatment of zebrafish embryos 

The embryos in 1ml PBST were put in nearly boiling water for 10 minutes. The 

embryos were whirled up every two minutes to avoid sticking together of the 

embryos. After this the embryos were put for 5minutes on ice. Again the embryos 

were whirled up every minute. Finally the embryos were washed once with PBST. 

 

2.2.12.3. in situ Hybridisation using the hybridization machine: 

After heat-treatment the embryos were put together with the solutions in the machine. 

Following steps were done by the machine: 

2 times incubation in PBST 

10 minutes incubation in 0.1M Triethanolamine and Acetanhydrid  

Four times washing with PBST for 5minutes 

Incubation in 50% hybridisation solution in PBST at 65°C 

Prehybridisation in hybridisation solution at 65°C for 1 hour 

The hybridisation buffer was replaced by hybridisation solution containing DIG 

labelled probe (2-4µl labelled probe in 1ml hybridisation solution). Incubation was for 

18hours at 65°C. 

After hybridisation the embryos were washed in hybridisation solution for 30 minutes 

at 65°C and twice in 50% hybridisation solution in 2x SSCT at 65°C. Two washing 

steps in 0.2xSSCT at 65°C followed. 

Before antibody incubation the embryos were washed four times with PBST at RT. 

Blocking was done for 20 minutes in blocking solution I and for 60 minutes in 

blocking solution II at room temperature. The antibody (Anti-Dig alkaline phosphates 

linked) was diluted 1:2000 in blocking solution II and pipetted on the the embryos and 

incubated for 4 hours. 

Finally the embryos were washed 4 times in PBST and then incubated two times in 

AP-buffer. 

 

2.2.12.4. Staining reaction with BM-Purple: 
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The embryos were removed from the machine at put into a 12 well plate. 400µl of 

BM-purple (staining substate) was added and the staining reaction was done in the 

dark. 

To stop the staining reaction the embryos were washed 2 times in PBST. 

 

2.2.12.5. Photographing of stained embryos: 

Either the embryos were photographed as whole mounts under a stereomicroscope or 

the embryos were flat-mounted on a microscopic slide and the picture was taken 

under a microscope. For flat-mounting the yolk of the embryo was removed using 

acupuncture needles. The flattened embryo was covered with a cover-slip.  

 

2.2.13. DNA- Sequencing with the ABI- Sequencer: 

1 to 50 ng of PCR product was mixed with 2µl terminator ready reaction mix (Big 

Dye) and 2µl of sequencing primer. Water was added to a final concentration of 10µl. 

Sequencing programm: 1 minutes at 96°C, 30 times: 10 seconds 96°C, 15 seconds at 

the annealing temperature of the primer, 4 minutes at 60°C. Afterwards to the reaction 

10µl water was added. Purification and loading of the sequencer was done by the 

sequencing facility personal. 

The sequenced fragments were checked with Vector NTI and blasted against the 

NCBI database. 

 

2.2.14. mRNA Isolation using the µMACs-Kit: 

Danio rerio embryos at 10 somite stage were collected as described above. 

Approximately 100 animals were used per isolation. The embryos were transferred 

 

into an eppendorf tube and the water was removed using a glass Pasteur pipette. 

Lysisbuffer (1ml) was pipetted into the tube. With a small plastic pistil the 

dechorionated embryos were homogenized and vortexed for 3 minutes to lyse them 

completely. A centrifugation step at 4000g for 3 minutes reduced the foam produced 

during vortexing. The lysate was transferred into a column attached to a tube. The 

lysate was run through the column by centrifugation at 13 000g for 3 minutes to 

reduce viscosity. 50µl microbeads were added to the lysate. Then this mixture was 

transferred onto a column fixed in the magnetic field. Before this the column was 

equilibrated with 100µl Lysis buffer. 
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The lysate run through the column by gravity. Afterwards the column was washed 

twice with 200µl lysis-buffer and four times with 100µl washing buffer. These 

washing steps removed proteins, RNA and DNA.  

120µl Elution buffer (nuclease free H2O) eluted the enriched mRNA from the column. 

The first drop of the eluate was discarded and the rest was collected. 

The concentration of the RNA was obtained by measuring the absorbance. Finally the 

RNA was put into precipitation by adding 1µl Glycogen, 10µl 4M LiCL and 250µl 

100% EtOH. 

 

2.2.15. 1st synthesis: 

1µg precipitated mRNA (obtained with the µMACs Kit) was centrifuged at 14 000 

rpm for 20 minutes. The pellet was washed with 70% EtOH in DEPC- H2O and 

centrifuged again for 7minutes. After the pellet was dried completely the RNA was 

redissolved in 11µl DEPC-H20. To help the redissolvation the tube was incubated at 

37° C for 10 minutes. After this 1µg of oligo dT-primer was added and incubated at 

70°C for 5 minutes. Then the tube was put on ice and after cooling down, the contents 

of the tube were spun down. 5µl Transcription buffer, 2.5µl 25mM dNTPs, 2.5µl 

DEPC-H2O, 1µl RNase Inhibitor and 1µl Reverse Transcriptase were added and 

incubated for one hour at 48°C. The enzymes were inactivated by incubating the 

reaction for 10 minutes at 70°. 

 

 

 

 

 

3. Results: 

 

3.1.: General remarks on the different approaches: 

Several approaches were used to find novel genes involved in somitogenesis. The first 

one, using a cDNA library was also used to establish the technology in the lab. 

Several protocols were tried out until the ones described here where chosen and 

established (3.2). 
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The PSM consists of several different compartments and it seemed promising to 

investigate in the differences between them. The PSM of the zebrafish is very small 

and therefore the dissection in an anterior and posterior part was easier in the mouse 

system. This decision was also facilitated by the fact that the mouse oligo library 

(Sigma-Genosys) was at this time-point available in the lab (3.3). 

Finally genes, which are dependent on the Delta-Notch pathway, were detected using 

the zebrafish oligo libray (Sigma-Genosys) (3.4). 

 
3.2.: Establishment of microarray-technology: 

3.2.1: Printing: 

Three 96 well PCR plates were used for establishing the printing protocol. The DNA 

was mixed with 50% DMSO. This buffer was chosen because it denatures the double 

stranded DNA and therefore no heating step was needed prior to spotting. 

Additionally it reduces evaporation. One drawback of DMSO is that the spots tend to 

spread, but as not too many plates were used it was possible to print in the necessary 

distance to avoid merging of spots (Diehl et al, 2001).  

Corning GAPSII slides were used for the first printing runs. As the spotting 

morphology was good, this slide type was used for further experiments (Fig. 6), 

although other slide-types were tested as well, for example Arraylink (Genescan). 

 

 

Fig 6: SYBR green staining of one of the printing runs. Most of the spots show a round, even surface. 
 

3.2.2.: Labelling and Hybridisation: 
Two different labelling methods were used in the beginning, a direct (Cyscribe 

labelling kit) and an indirect (Fairplay labelling kit) method. In the direct mode of 

incorporation of the nucleotides, the fluorescent molecules are coupled to one of the 

nucleotides (a dCTP or dUTP) prior to the first strand synthesis. The Fairplay 

labelling kit, on the other hand, uses aminoallyl modified nucleotides for 

incorporation during 1st strand synthesis. In a second step the fluorescent dye is 

coupled to the modification on the nucleotide. The indirect method was chosen 
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because in this case no sterical hindrance due to the dye during 1st synthesis can occur 

and no additional bias because of this is introduced (Hoen et al., 2003). 

Parallel to this, the lambda control genes (Q, G and N) were produced and spotted on 

a chip. The control RNAs to the corresponding “lambda spots” were spiked into the 

zebrafish RNA prior to labelling. By doing this, landmarks were produced in each sub 

grid, because at least the lambda DNA should hybridise and by adding these RNAs in 

different ratios to the fish DNA, these control spots could later be used for 

normalization and calibration of the chip. Thus in the case of a bias in the two dyes, 

the ratio could be normalized using the control spots because their mRNA ratio is 

known. 

For our experiments we also used the control genes to check the hybridisation success 

and also the amount of DNA needed for spotting. Therefore we spotted the three 

lambda control genes in three different concentrations on the chip (500ng, 250ng and 

125ng). Then the lambda RNAs for Q, N and G were labelled. The success of the 

labelling was checked on a gel (data not shown) and afterwards the labelled cDNA 

was hybridised to the chip. Figure 7 shows the result of this hybridisation. All three 

concentrations (represented by each subgrid) show good hybridisation and the ratios 

of the used RNAs are as expected. The yellow-orange spot corresponds to the Q- 

gene. The RNA in both labelling reaction was the same. The N-spot was red and here 

four times more N-RNA was spiked in the red-labelled reaction than in the green one. 

G had the opposite ratio to N and therefore the spot was green. 

 

3.2.3: First results using the mixed embryogenesis stages cDNA library: 

1344 purified cDNA-inserts (four plates) were spotted on chips together with the 

controls. The amount of DNA per well was estimated by loading them on an agarose 

gel. To be included into the experiment, they had to have a concentration of 250-

500ng. This spotted part of the library was used for testing the fss mutant against wild 

type fish. Several rounds of labelling and hybridisation were done to fine-tune the 

labelling protocol also a switch from Cy-dyes to Alexa-dyes were performed. For the 

“true” experiment two independent samples of fss and wt fish were generated and 

labelled. Fss was labelled red and wt RNA was labelled green. The independent 

samples were hybridised to four chips each, resulting in two biological and two 

technical replicates, but the technical replicates were over represented. 
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Gridding and normalization was done using the Analyzer (Genomic Solution) 

software. Afterwards the data of all slides were imported into the Array Scout 

software (Lion Bioscience) and a gene-list was produced containing genes, which 

show more than 2x down-regulation in the fss mutant condition on at least four slides. 

This gene list contained 43 genes. The corresponding cDNAs were sequenced and 

afterwards ten candidates were chosen for a second round of analysis by in situ 

hybridisation (Table 2). 

Of these only three candidates show expression in the somites, namely Pax-like, rack1 

and unnamed protein II. All three are expressed in the somites in the wt situation. In 

the fss embryos there are no somites and no expression can be detected in this region. 

(Fig.8) 

 

 
Figure7: Hybridisation of Lambda control genes. Lambda controls were spotted in three different concentrations on the chip. The 
hybridisation result was in all three cases the same. The yellow/orange spot corresponds to Q, which RNA ratio in both reaction 
was 1:1, G is the green spot with a ratio red:green=1:4 and N is red with a ratio of 4:1. 

Table 2: Genes found in the fss vs wt microarray experiment and chosen for validation with in situ 
hybridisation. 
 

Gene Accessionnumber Down-

regulation 

Down-regulation 

(log2 ratio) 

Celsr AF025330 2.3x -1.20 
Hsp90 AF068772 2x -1 
PAI I XP536673 2.3x -1.20 
Pax-like AJ299411 4.3x -2.10 
Rack1 AF025330 2.9x -1.54 
Sox2 NM213118 3.4x -1.77 
Unnamed Protein I XM688017 2.8x -1.49 
Unnamed Protein II AJ299411 2.3x -1.20 
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Unnamed Protein III U94592 2x -1 
Unnamed Protein IV XM694942 2.1x -1.07 
 

 

Figure 8: Three of the candidates showed expression in the somites. In the fss embryos this expression 
is not present. 

 

3.3.: Mouse oligo library: 

 

As hybridisation on GAPSII slides on which the mouse oligo library was spotted 

resulted in a bad ratio between background and signal a new slide type was used. The 

manufactors (Sigma-Genosys) recommended Elipsa slides, and therefore this slide 

type was used. The hybridisation protocol for this slide type was mostly established 

by Chris Voolstra. As the mouse oligo library consisting of 22 228 oligos could not be 

spotted on one slide due to technical limitations of the spotting robot, four slides were 

used. 

The mouse oligo-array was used to test gene expression in the different compartments 

of the PSM, namely the anterior versus the posterior part. The PSM of the E9.5 

embryos were extracted and then cut into a posterior and anterior part. The border 

between these two compartments was the umbilical chord. This border coincides with 

 

some expression domains, f.e notch1 (Calceran et al., 2004). The anterior part was 

labelled with the green fluorphor and the posterior one with the red dye. Six slide sets 

were used for hybridisation. Three different samples were taken, meaning three 

different litters from different female mice mated to different males were used. After 

hybridisation, gridding was done using the Spotfinder 224 (Tigr) and normalization 

with the MIDAS (Tigr) software. Further steps of analysis were done in Excel 
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(Microsoft). First the standard deviation of all six sets was calculated and all values 

above 30% Standard Deviation were excluded. 394 genes were detected to be 

differently expressed in the two compartments. 184 of them were higher expressed in 

the posterior part and 210 in the anterior part. 41 genes were chosen, which suggested 

an involvement in development (Table 3).  

 

Table 3 (mouse): Genelist of the mouse microarray experiment. The expression differences between the 
anterior and posterior compartment were tested. For two genes an expression pattern in the PSM was 
found (highlighted in blue). One false positive was also detected (red colour). 

 

Gene-name (Accession number) Fold-change (log2 ratio) 
Tdrd1 (NM_031387) -0.54 
zinc finger protein 281 (BC003243) -0.51 
MEF-2 (U13262) -0.51 
Zrf2 (NM_009584) -0.44 
Vpreb2 (NM_016983) -0.40 
Refbp2 (NM_019484) -0.37 
Myg1 (AF289484) -0.36 
Crtap (NM_019922) -0.35 
Hoxb13 (NM_008267) -0.33 
Balb/C (Z31362) -0.32 
Pint1 (AY029599) -0.26 
Sept6 (Sint1) (NM_017380) -0.26 
patched homolog (NM_008957) -0.25 
Rab20 (X80332) -0.21 
WAC (AF320996) -0.21 
GPR7 (U23807) -0.20 
Sox8 (Z18957) -0.20 
Bcl2-like 2 (NM_007537) -0.20 
integrin alpha 7 (NM_008398) -0.19 
zinc finger transcription factor GLI 

(AF189287) 
0.19 

Ors25 (NM_020291) 0.19 
Tcea2 (NM_009326) 0.19 
DR6 (AF322069) 0.19 
Asb8 (AF398969) 0.20 
Rec8 (NM_020002) 0.20 
Mapk8ip3 (NM_013931) 0.20 
Gene-name (Accession number) Fold-change (log2 ratio) 
Klk16 (NM_008454) 0.20 
claudin 11 (NM_008770) 0.21 
Spred-1 (AB063495) 0.22 
semaphorin 3B (NM_009153) 0.22 
Acdp1 (AF202994) 0.22 
Doc2b (NM_007873) 0.22 
mk2e (X74784) 0.22 
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Tubulin alpha 6 (NM_009448) 0.23 
Alg-4 (AF055668) 0.23 
BRAP2 (AF321921) 0.24 
RANBP20 (AY029528) 0.24 
Fiz1 (NM_011813) 0.24 
zinc finger protein 103 (NM_009543) 0.25 
Dp1 (NM_007874) 0.25 
Daf1 (NM_010016) 0.26 
TOB3 (AF343079) 0.27 
Clc1 (AJ011106) 0.29 
Fkbp6 (AF367710) 0.30 
Tbx19 (NM_032005) 0.31 
integrin beta 3 (Itgb3) (NM_016780) 0.31 
Krt2-18 (NM_016879) 0.32 
Krtap16.4 (AF345294) 0.33 
Krox-20 (X06746) 0.35 
Mox-2A (Z16406) 0.36 
Lbh (AF317517) 0.36 
Dvl2 (NM_007888) 0.40 
retinoic acid receptor beta 2 (X56573) 0.43 
presenilin 2 (NM_011183) 0.45 
Pou2af1 (NM_011136) 0.46 
Dscr6 (AB063284) 0.52 
 

 

The literature was scanned for pictures showing the expression of these genes in the 

somites. Unfortunately, only two papers were found showing the expression of the 

gene in the PSM. These two genes are Hoxb13 and Sint1 (Fig. 9). Both genes are 

higher expressed in the posterior compartment as the microarray result predicts. A 

gradient of the respective expression reaches into the anterior compartment. Hoxb-13 

expression is shown at age E9.0 (Fig. 9A) and Sint1 at age E11.5 (Fig. 9B). Another 

candidate where the expression is known is Krox20, but as this gene is only expressed 

in the brain it is a false positive. As only expression of these three genes was known it 

is difficult to calculate the rate of false positives. 
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Figure 9: Two genes, which were found as candidates in the mouse microarray experiment. Both genes 
are higher expressed in the posterior part of the PSM. A gradient of expression reaches into the anterior 
part. A: Hoxb-13 expression in an E9.0 embryo. Picture taken from Zeltser et al., 1996 B: Sint1 
expression in an E11.5 embryo. Picture taken from Sørensen et al., 2002). 

 

3.4.: Zebrafish oligo library: 

 

3.4.1. General comments: 

A new slide type was used for the zebrafish oligo library, namely the Schott H slide. 

The oligos carry an amino modification, which is linked to the amine reactive NHS 

esters on the slide. First tests showed that the spots were smaller than on the chips 

previously used (170-190µm in contrast to 230-300µm). As the library consisted of 16 

399 oligos it was not possible to spot all of them on one slide, but with the smaller 

spot morphology it was possible to print it on two slides. 

This time the hybridisation success on the first slides was not only estimated by eye, 

meaning checking the colours of the control spots. A run was done were both samples 

were wildtype, coming from the same batch. The RNA was separated in two parts. 

They were labelled with the two different dyes. Two slides were hybridised (each 

containing the first half of the library). Another hybridisation was done with des 

embryos versus wild-type. Analysis was performed as described below and the result 

plotted on an MA plot (Fig 10). The wt against wt hybridisation should result in equal 

expression ratios on all spots, whereas the des vs. wt hybridisation should show 

differential expression on some spots. The datapoints in the wt against wt plot cluster 

narrower around the 0-axis as the des against wt plot. As just one sample, although on 

two slides was hybridised, one has to expect a certain numbers of outliers on the wt vs 

wt plot (Fig 10: datapoints between -0.75 and –1.75 wtvswt plot)), but the tendency 

can be seen.  
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Figure 10: MA plots of the first hybridisations using Schott H slides. The upper plot shows a plot, 
where the des mutant was tested against wt. A broad cloud of datapoints can be seen. In the wt vs wt 
plot, where the datapoints should be near Zero, the cloud is much narrower, although some outliers can 
be detected. 
M= log2 (green/red) A=log2 √green x red ; green= labelled with the green fluorphor, red= labelled with 
the red fluorphor. 

 

The different delta-notch mutants were tested against wild-type fish. For each mutant 

three independent samples were prepared, the same was done for the wild-type fish. 

This means, that RNA was isolated from three different batches of eggs, laid on 

different days. The mutant RNA was always labelled with the red dye and the wild-

type RNA with the green one. 

The labelled cDNA was hybridised to two sets of slides and by doing this creating a 

technical replicate. This sums up to six slide sets hybridised per mutant. Gridding was 

done using the TIGR spotfinder 224 software. After normalization, which was done 

with the MIDAS (Tigr) software, the values above a Standard Deviation of 30% were 

excluded. This calculation was done with Excel (Microsoft). Instead of choosing an 



 

 43 

arbitrary fold change the internal control genes of the zebrafish-oligo library were 

used. The house keeping gene beta-actin should not change in the different mutants. 

Therefore ratios above or below the “Fold change” of beta-actin were chosen and the 

corresponding genes added to the list. The lowest “fold-change” of beta-actin was 

–0.05 and the highest 0.10. 

The list of genes was further shortened by including only known genes, meaning 

members of important pathways, for example the WNT pathway, transcription factors, 

or genes were motifs were discovered, suggesting transcription factors, i.e. zinc finger 

domains, leucin zipper etc. 

In the following chapters the genes containing zinc finger domains were numbered by 

the experimentator. This means, that a gene called zfdI, is an unknown gene 

containing a zincfinger domain and was discovered first during analysis of the 

microrarrays.  

As microarray results have a certain amount of false positives, a validation must be 

done. In this case the whole mount in situ hybridisation was chosen, as it not only 

allows the validation, i.e. see the expression difference between wild-type and mutant 

embryos, but also the determination of the expression site. This means that genes 

having an expression in the PSM or the somites are interesting candidates for further 

characterization. The validation of 13 candidates out of 34 found in the des-chip 

series, showed that the microarray results could be verified using in situ hybridisation. 

 

3.4.2.:Des/notch1:  

507 genes were found to be differently expressed in the des mutant, i.e. above or 

below the beta actin expression. More genes, namely 386, were down-regulated. Only 

121 genes were up-regulated. Most of these genes were unknown. Only 33 candidates 

remained meeting the above-mentioned criteria. 9 genes were up-regulated and 25 

genes were down-regulated in the des-mutant embryos. Gene names and fold-changes 

are in Table 4. 

Table 4 (des): 9 genes were up-regulated and 25 were down-regulated. Genes which were used for 
validation are in bold. 

Gene-name (Accession number) Fold-change (log2 ratio) 

Cx43.4 (L46801) 0.37 
Pbx4 (AF162696) 0.36 
Similar to SP-1 (AI882784) 0.33 
FXR (U93467) 0.3 
p38a (AB030897) 0.29 
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Gene-name (Accession number) Fold-change (log2 ratio) 

zfdI (BI877718) 0.25 
 

Similar to MMP1-A (BI867183) 0.22 
Ziro 7 (AF398433) 0.22 
zfd II (AW116027) 0.16 
Similar to Bmp1 (BI884917) -0.11 
Similar to DP-1 (BI867054) -0.13 
Unc119b -0.13 

Hoxd12 (Y14547) -0.15 
ndr2 (AF056327) -0.17 
twisted gastrulation like protein 
(AF261692) 

-0.18 

mdm2 homolog (AF010255) -0.18 
zfdIII (BG304258) -0.18 
Similar to SPT4 (AI883716) -0.19 
Her6 (X97333) -0.21 
D249 (AB055680) -0.22 
Mta (AF097875) -0.22 
Semaphorin Z1b (AF083382) -0.25 
ztsg1 (AF332096) -0.25 
Wnt11 (AF067429) -0.25 
Reggie 2a (AF315947) -0.25 
Mesogenin (AJ309314) -0.28 
Cecr1 (AF384217) -0.30 
Fzd7b (was Zg13) (U49417) -0.40 
Similar to Matrix Metalloproteinase-14 
(BM186907) 

-0.44 

Ziro 5 (AY017309) -0.45 
Hsp90beta (AF068772) -0.48 
Similar to CTCF (BI883421) -0.53 
Pbx1a (AJ245962) -0.53 
Similar to nemo-like-kinase (BG304985) -0.60 
 

3.4.3.: aei/deltaD:   

131 genes were differently expressed in the aei mutant embryos. Of these 54 genes 

were up-regulated and 77 genes down-regulated. Again this list was shortened by 

excluding genes, which did not meet the chosen criteria. Eight genes remained, which 

were up-regulated and 12 genes, which were down-regulated (Table 5). 

Three genes were detected, which came up on different experiments, too, namely 

Semaphorin Zb1 (des and bea), Hoxd12 (des) and ndr (des). 

Table 5 (aei): Genes found in the microarray experiment aei vs wt. 8 genes were up-regulated and 12 
genes were down-regulated. 

Gene-name (Accession number) Fold-change (log2 ratio) 
Semaphorin Z1b (AF083382) 0.49 
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Gene-name (Accession number) Fold-change (log2 ratio) 
Similar to XRC9 (BI878221) 0.29 
Zg03 (U49407) 0.22 
Similar toUBI-D4 (AW420405) 0.20 
Similar to Thioredoxin (BI864190) 0.18 
Similar to Calsenilin/Dream (BI706537) 0.18 
Similar to P8 (BF717555) 0.14 
Hoxd12 (Y14547) 0.14 
MCM7 (AW777430) -0.15 
H3.3 (BI879444) -0.15 
Similar to Kinesin-C (BM025946) -0.18 
Similar to Eset (BE017589) -0.19 
Similar to Dystroglycan precursor 
(AW171079) 

-0.25 

Similar to Thymosin Beta-4 -0.28 
Junctional adhesion molecule 
(BQ133340) 

-0.30 

D204 (plexin A4) (AB055678) -0.43 
zcry1a (AB042248) -0.44 
ndr2 (AF056327) -0.45 
Similar to Cytochrome C Oxidase subunit 
(BM186826) 

-0.60 

Similar to Nuclear factor NF-Kappa-B 

p52 (AW059384) 
-0.65 

 

 

3.4.4.: bea/deltaC:  

109 genes were detected to be differently expressed in the bea mutant condition. 38 

genes were up- and 71 down regulated. In these experiments shortening of the list just 

left 10 candidates for further validation (Table 6). One of them was up-regulated and 

9 down-regulated in the mutant embryos. Again it was checked if some of the genes 

found were also candidates on other chips. There were four genes, namely Cecr1 

(des), Semaphorin Zb1 (aei and des), Unc119b (des, bea and Su(H)) and Pbx1a (des).  

Table 6 (bea): 10 genes were found to be up- or downregulated. One of them was up-, the others down-
regulated. 

 

Gene-name (Accession number) Fold-change (log2 ratio) 
rtk8 (AJ005029) 0.25 
Similar to Cathepsin Z precursor 
(BM103154) 

-0.11 

Six7 (AF030282) -0.11 
Similar to Pas domain protein 1 
(BG883983) 

-0.14 

Similar to p53-binding protein 53BP1 
(AI793650) 

-0.18 

Similar to Melanocyte-specific protein 1 -0.22 
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(AW342944) 
Gene-name (Accession number) Fold-change (log2 ratio) 
Unc119b (AF387341) -0.22 
Cecr1 (AF384217) -0.24 
semaphorin Z1b (AF083382) -0.28 
Pbx1a (AJ245962) -0.31 
 

 

3.4.5.: Su(H):  

In this experiment morpholino injected embryos were used. The injections were done 

by Dirk Sieger. The Su(H) knock down embryos were tested against wildtype 

embryos. These embryos were from the same batch as the ones, which were injected.  

132 genes were differently expressed. 70 of them were up-regulated and 62 were 

down regulated. Again the list of these genes was searched for genes meeting the 

criteria mentioned in the General Comments section. The final list shows 16 up-

regulated genes and 13 genes, which were down-regulated in the morpholino injected 

embryos (Table 7). 

Three genes were also found on other chips: Pbx4 (des), Wnt11 (des) and Unc119b 

(des and bea.) 

Table 7 (Su(H)): Morpholino injected embryos were tested against wildtype embryos. 16 genes are up-
regulated and 13 genes down-regulated in the injected embryos. 

 

Gene-name (Accession number) Fold-change (log2 ratio) 
Pbx4 (AF162696) 0.66 
CK2 alpha (X99964) 0.60 
Similar to Integrin alpha-6 (BM186155) 0.56 
Similar to Actin-like protein 2 
(AW154456) 

0.54 

fkd8 (AF052251) 0.50 
Similar to His 1 protein (BI533460) 0.48 
Hua (AF184244) 0.47 
G1-Related zinc finger protein 
(BI673966) 

0.46 

Zfd IV (BM104037) 0.38 
Zfd V (AI942517) 0.34 
Similar to zic3 (BM183276) 0.34 
Similar to Meprin A Beta- subunit 

precursor (BM184851) 
0.30 

Similar to Ece1 (BM182470) 0.30 
Similar to Ese-3A (BI705456) 0.29 
Similar to Znf72=Kruppel-Type zinc 

finger (BM071786) 
0.27 

Similar to Ring finger protein AO7 
(BM096183) 

0.26 
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Gene-name (Accession number) Fold-change (log2 ratio) 
FBX25 (BG303968) -0.54 
Similar to zinc finger 5 protein 
(AW422582) 

-0.55 

Similar to NP95 (AW594981) -0.55 
Mindin 2 (AB006085) -0.59 
Unc119b (AF387341) -0.62 
Similar to Hypothetical protein CGI-126 
(BM025947) 

-0.63 

Zfd VI (AI958897) -0.63 
Similar to Nucleoporin p54 (BI878193) -0.63 
Wnt11 (AF067429) -0.65 
Tie-2 (AF053632) -0.68 
Similar to Enhancer of filmentation 1 
(BI883121) 

-0.72 

Paracaspase (AF316598) -0.72 
F-spondin 1 (AB006086) -0.74 
 

 

3.4.6.: Validation: 

 

3.4.6.1. General remarks: 

Thirteen candidates of the des micorarray experiment were used for validation. 

Primers for these genes were designed and amplified using PCR. As the primers 

carried a T7 sequence overhang, the PCR products could directly be used for 

antisense insitu probe production. The in situ hybridisation was repeated at least two 

times with embryos around the 10-somite stage. Staining reactions for the wild-type 

and mutant embryos were stopped at the same time point. 

The validated genes can be grouped in following categories: 

I:   down-regulated in the PSM: mesogenin, zfdIII 

II:  down-regulated in the PSM and other regions: her6, ztsg, mta 

III: down-regulated in other regions of the embryo: ziro5, D249 

IV: up-regulated in the PSM: Cx43.3 

V:  up-regulated in other regions of the embryos: ziro7, p38, MMP1-A 

VI: Genes, were the regulation pattern could not be validated: Hsp90beta, Pbx4 

 

3.4.6.2. Category I: Down-regulation in the PSM: 

3.4.6.2.1. Mesogenin: 

zfMesogenin plays a role in development and is expressed in the PSM (Fig. 11A and 

C) (Yoon and Wold, 2000). The expression in the wt situation seems to be somewhat 
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stronger around the notochord and in the lateral parts a little bit weaker (Fig. 11C). In 

the des embryos the expression is in the same domain, but much more weaker (Fig. 

11B,D). This is what the microarray experiment has predicted. 

 

 

Figure 11: Expression of Mesogenin: Mesogenin is expressed in the PSM. In the wild-type embryos the 
expression near the notochord seems to be stronger than in the more lateral parts (C). The expression in 
the mutant is weaker (B, D). 

 

3.4.6.2.2. zfdIII (zinfinger domain): 

About this gene nothing is known, except that it contains a zincfinger domain, 

suggesting that zfdIII is a transcription factor. This gene was found to be down-

regulated in the mutants. 

In situ hybridisations showed that this gene was expressed in the PSM (Fig. 12A). In 

the des mutants this expression was down-regulated (Fig. 12B). 

 

Figure 12: Expression of zfdIII: This gene is expressed in the PSM (A) and down-regulated in the 
mutant situation (B). 
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3.4.6.3. CategoryII: Down-regulation in the PSM and other regions: 

 

3.4.6.3.1. Her6:  

This gene belongs to the Hairy/Enhancer of split gene family (Pasini et al., 2003) and 

was found to be down-regulated in the mutant embryos at least in the somite and 

posterior body part of the embryos. Wild-type embryos display expression of Her6 in 

the brain, the somites and the posterior embryo (Fig. 13A, C, E). In the head this gene 

is expressed in the telencephalon and the midbrain/hindbrain boundary (MHB) (Fig. 

13A). In the mutant embryos an up-regulation could be seen at the midline and an 

expression at the posterior border of the midbrain appeared. The expression in the 

telencephalon is in a smaller domain (Fig. 13B). A weak expression could be detected 

in the wildtype somites. Anterior to the somite strong expression of Her6 is present 

(Fig. 13C). The mutant expression is a smear spanning the entire region, where the 

somites normally form. The expression anterior of the somites has vanished (Fig. 

13D). In the posterior part of the body of wt embryos the expression can be detected 

in the posterior lateral mesoderm (Fig. 13E). This expression domain is missing in the 

des embryos (Fig. 13F).  

As most expression domains are smaller or not present in the des embryos Her6 could 

be validated as being down-regulated. 
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Figure 13 to picture on previous page: Expression of her6: In the wildtype embryos her6 is expressed 
in the brain, somites and PSM. In the head her6 is expressed in the midline the teleencephalon and the 
MHB (A). Expression in the somites is weak at the 10 somite stage. Anterior to the somite a high 
expression of Her 6 can be seen (C). In the posterior part of the embryo her6 is expressed in the 
posterior lateral mesoderm (E). In the mutant the expression in the telencephalon is reduced, but the 
expression in the midline and MHB is stronger. The posterior border of the midbrain is also 
demarketed by expression of her6 (B). The expression in the somite region is dysregulated (D) and the 
expression in the posterior lateral mesoderm has vanished (F). 
MHB: midbrain/hindbrain boundary  

 

3.4.6.3.2. mta:  

Mta is a gene involved in DNA-methylation and plays a role in development (Martin 

et al., 1999). In the wild-type embryos this gene is expressed in the entire brain and 

the PSM (Fig. 14 A, C ,E). As predicted by the microarray, this gene is down-

regulated in the mutants. In the brain the expression is weak (Fig. 14 D) and no 

expression in the PSM can be seen anymore (Fig. 14F). 

 

Figure 14: Expression of mta: In the wt embryos mta can be detected in the entire brain and the PSM 
(A, C, E). The expression in the des brain is much weaker as in the wildtype situation (D) and the 
expression in the PSM is not detectable (F). 

 

3.4.6.3.3. ztsg:  

This gene was found to be down-regulated and is called twisted gastrulation protein 

and plays a role in development (Scott et al., 2001; Ross et al., 2001). It is expressed 
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in the anterior half and the PSM of the embryo (Fig. 15A and C). As predicted by the 

microarray the expression is down regulated in the des embryos (Fig. 15B). In the 

PSM the expression was nearly not detectable (Fig. 15D). 

 

 

Figure 15: Expression of ztsg: This gene is expressed in the anterior part of the embryos and the PSM 
(A, C). In the mutants the expression was fainter in the anterior part (B) and nearly gone in the PSM 
(D). 

 

3.4.6.4. Category III: Down-regulation in other regions of the embryo: 

 

3.4.6.4.1. D249:  

Nothing is known about the function of the gene. The gene ontology for this gene 

suggests an involvement in signal transduction. In the microrarray experiment this 

gene was found to be down-regulated. The gene is expressed in the anterior head 

structure around the developing eye (Fig. 16A). The dorsal view (Fig. 16C) shows a 

strict expression border at the forebrain/midbrain boundary. In the des embryos the 

expression is much fainter, but remains at the same domains (Fig. 16B, D). In the 

lateral view the expression seems to be restricted to the eye primordia.  

 

3.4.6.4.2.. ziro5: 

This gene belongs to the Iroquois homeobox containing gene family (Wang et al., 

2001) and was found to be down-regulated in the des mutant. Ziro5 is expressed in the 

notochord and the brain. Expression in the notochord reaches down until it stops 

before the posterior PSM (Fig. 17A, C and E). In the mutants this expression seems to 

be a little bit weaker (Fig. 17D). In the brain ziro5 is normally expressed at the MHB 



 

 52 

and the posterior midbrain boundary. Further an expression domain lateral to the 

rhombomers could be seen (Fig. 17E). In the des embryos the expression domains 

have got broader and more diffuse. This expression was a little bit weaker, but as the 

domains are broader it might be argued, if this is really down-regulation (Fig. 17 B 

and F). 

 

Figure 16: Expression of D249: The gene is expressed in the embryonic head around and in the eye 
primordia (A, C). The expression of D249 in the mutant embryos is at the same place, but very reduced 
(B, D). 
 

 
Figure 17: Expression of ziro5: This gene is expressed in the brain and the notochord (A, C, E). The 
expression in the notochord stops anterior to the posterior PSM (C). In the brain ziro5 is expressed in 
the MHB and the posterior midbrain boundary. Expression of ziro5 lateral to the rhombomeres was 
also detectable (E). In the des mutant the expression in the notochord seems a little bit weaker (D). The 
brain expression looks more diffuse and the sharp borders of expression observed in the wt embryos 
have vanished (B, F). 
MHB: midbrain/hindbrain boundary 
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3.4.6.5. Category IV: Up-regulation in the PSM: 

 

3.4.6.5.1. Cx43.4 (Connexin 43.4):  

Connexin 43.4 plays a role in the cell-cell communication by building gap junctions 

between cells (Wei et al., 2004). This gene should be up-regulated and the expression-

pattern verified this (Fig. 18). In the wild-type embryos the strongest expression can 

be seen in the most posterior part of the PSM (Fig. 18A, C). A faint gradient reached 

towards the intermediate and anterior part of the PSM. In the des situation the 

expression is stronger and the domain broader reaching to the anterior PSM. The 

gradient cannot be detected. It seems as in the des embryos, instead of the gradient-

like expression, Cx43.3 is equally strong expressed in the entire PSM (Fig. 18B, D). 

 

 

 

Figure 18: Expression of Cx43.3. At the 10 somite stage the expression is restricted to the PSM. In the 
wild type embryos the expression is restricted to the more posterior part of the PSM. A faint gradient in 
the intermediate PSM can be seen (A, C). In the mutant embryos the expression is stronger and reaches 
more to the anterior (B, D). 

 

3.4.6.6. Category V: Up-regulation in other regions of the embryo: 

 

3.4.6.6.1. Similar to MMP1A (Matrix Metalloproteinase-1A): 

MMP1A is a Matrix Metalloproteinase and is important for the connection of cells 

(Mott and Werb, 2004). A weak, kind of background expression of this gene can be 
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detected in the normal embryos (Fig. 19A, C). The expression in the des embryos was 

up-regulated, according to the result of the microarray analysis (Fig. 19B, D). 

 

 

Figure 19: Expression of MMP1-A: This gene is expressed weakly in the entire wt embryo (A, C). The 
expression is highly up-regulated in the des embryos as predicted by the microarray analysis. 

 

3.4.6.6.2. p38a:  

This gene plays a role in cell motility and is part of the MAPK pathway (Mori et al., 

1999). In wt embryos this gene is expressed in the brain and the PSM (Fig. 20A). In 

the brain several compartments with higher expression of p38a can be detected, 

namely the telencephalon and the midbrain. Between these parts the expression is 

downregulated (Fig. 20A and C). This expression is perturbed in the mutant embryos 

(Fig 20B and D) as the expression is higher and no compartments can be detected. 

The normal expression of p38a is also detectable in the PSM (Fig. 20E), but this 

expression seem to be unaffected in des embryos (Fig. 20F). 

 

3.4.6.6.3. ziro7:  

This gene also belongs to the Iroquois homeobox containing gene family (Lecaudy et 

al., 2001), but was up-regulated in contrast to ziro5, which was down-regulated. This 

gene is only expressed in the brain (Fig. 21). In the wt situation it is expressed in two 

boundaries flanking the midbrain. It is also expressed in the first rhombomere (Fig. 

21A, D and G). Checking the expression in des embryos reveals an interesting feature, 
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namely that two types exist. In the Type I expression the normal wild type expression 

can be seen, but additionally expression in the lateral parts connection this patterns 

can be detected. The expression in the rhombomere has vanished, but the lateral 

region flanking the rhombomers shows now expression of ziro7 (Fig. 21B, E and H). 

Type II shows the same expression as Type I, but there is a strong expression in the 

midbrain. 

 

 
Figure 20: Expression of p38a: In wt embryos this gene is expressed in brain (A, C) and weakly in the 
PSM (E). In the brain a higher expression in the telencephalon and the midbrain can be seen (A, C). 
This pattern in the brain is perturbed in the des embryos as the expression is up-regulated in the entire 
brain region (B, D). The expression in the PSM seems to be unaffected (F). 

 

3.4.6.7. Category VI: The regulation pattern could not be verified: 

 

3.4.6.7.1. Hsp90beta:  

Hsp90beta is heat shock-protein, which also plays a role in cell-cycle (Krone et al., 

2003). This gene is ubiquitously expressed and no difference between wt and des 
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situation can be detected (Fig. 22). This can be due to the sensitivity of the validation 

method chosen, or this gene might be a false positive. 

 

 

 

Figure 21: Expression of ziro7: This gene is expressed in the brain. Expression in the two boundaries 
flanking the midbrain  and the first rhombomere can be detected in the normal situation (A,D,G). In the 
mutant embryos two types of expression were observed. In TypeI the wildtype domains are present and 
additionally the lateral structures show also expression, connecting the different expression domains in 
the brain. No expression in the rhombomers can be seen, just in the lateral parts (B, E, H). TypeII is the 
same as TypeI, but there is expression in the midbrain (C, F,I). 
 

 
Figure 22: Expression of Hsp90beta: Hsp90 is ubiquitously expressed. No difference in expression 
between wt and des embryos can be seen. 
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3.4.6.7.2. Pbx4:  

Pbx4 is a transcription factor containing a homeo-domain (Vlachakis et al., 2000). 

Expression is strong in the anterior half of the embryo in the wt and des embryos (Fig. 

23). The up-regulation found in the microarrays cannot be verified by these in situ 

patterns, but there is a difference in the expression in the forebrain (Fig. 23C and D). 

This might be just the morphological difference between the two embryos and not a 

difference in expression. 

 

 

Figure 23: Expression of Pbx4: This gene is widely expressed in the anterior part of the embryo. 
Expression signal seems to be equally expressed in wt and des, but the patterns in the brains seems to 
be a little bit deregulated in the des embryos (C, D). 
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4. Discussion:  

 

4.1. Microarray: 

The microarray experiments performed in the practical work of this thesis were 

different from each other. Nevertheless all of them gave results, which could be 

validated either by in situ hybridisation or by comparing the data with information 

present in the literature. In the following paragraphs the different approaches in the 

different steps are compared with each other. As the different experiments were done 

one after the other, an improvement can be detected. 

 

4.1.1: Experimental design and sampling: 

 

4.1.1.1.Sampling: 

Entire zebrafish embryos were used for RNA isolation. This decision allowed to 

detect differences in brain and PSM development in the different mutants. But on the 

other hand some of these differences cannot be separated by microarray analysis 

anymore and in the worst case, the differences might cancel each other out. This 

might be the case if there is up-regulation in the brain and down-regulation in the 

PSM. The observed difference in this case would be zero.  

In the case of fss, this is not a problem because the gene defect in fss is Tbx24 and it is 

expressed only in the intermediate and anterior PSM (Nikaido et al., 2002). In the 

other fss type mutants one might argue that their phenotype in the brain is rather mild 

and not easily observable morphologically (vanEden et al, 1996). But except for 

DeltaC/bea there are roles in neurogenesis described (Haddon et al., 1998, Gray et al., 

2001 and Wright et al, 2004) and expression of DeltaC in brain regions is very weak 

(Haddon et al., 1998 and Gajewksi personal communication). This is reflected by the 

fact that the list of candidates for bea is the shortest. This might be because there are 

no or only a few neurogenesis genes transcribed. Notch1/des plays a role in 

neurogenesis as migration of some neural crest population is aberrant and crest-

derived dorsal root ganglion neurons are misplaced in des embryos. Additionally an 

increased number of motor neurons are present. (Gray et al., 2001). Accordingly, from 

13 genes validated 4 show an exclusive expression in brain domains.  
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DeltaD/aei plays a role in primary neurogenesis. Together with DeltaA and B it is 

expressed in cells, which will become primary neurons. Primary neurons emerge from 

proneural clusters of neuro-epithelial cells by lateral inhibition (Haddon et al., 1998 

and Wright et al., 2004). Here genes involved just in brain-development can be found, 

for example plexin A4 (Miyashita, T. et al., 2004), which shows the efficiency of the 

procedure.  To focus in further experiments on PSM genes it might be worthwhile to 

perform microarrays with RNA isolated of PSM, which has been amplified using one 

of the procedures, which are on the market (f.e. SenseAMP/IMPLEN). 

 

4.1.1.2: Experimental design: 

Careful design is important to get the maximum on information. Biological and 

technical variances must be taken into account to estimate the necessary number of 

repetitions (Churchill, 2002; Yang and Speed, 2002). In the case of the fss cDNA 

microarray experiments the experimental design was sub-optimal compared to the one 

used for the oligo chips. In the first experiments only two independent samples were 

taken to cancel out biological variance. Both samples were hybridised to four chips 

each. These are technical replicates to cancel out differences in spotting, labelling and 

hybridisation. Two technical replicates per biological sample would have been 

sufficient (Yang and Speed, 2002). One more biological sample would have resulted 

in a good experimental design as a simple way of assessment of the adequacy of the 

design shows, namely by determination of the degrees of freedom (df). Here the 

number of independent units are counted and then the number of treatments is 

subtracted. At least one df should be left (Churchill, 2002). In the case of fss, we had 

two independent samples minus two treatments (as two dyes were used). The result is 

zero, meaning that all statistical tests relied on technical variance alone. This results in 

candidates, which might be just due of individual differences in the fish batches taken. 

As pools of 100 embryos each were used, this effect was smoothed out a little bit. The 

zebrafish oligo approach on the other hand had three independent samples minus 2 

treatments, giving one degree of freedom, which is satisfying, according to the above 

mentioned assumptions. The same is true for the mouse oligo arrays. 
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4.1.2. Normalization: 

 

Two different modes of normalization were used. The fss cDNA microarrays were 

normalized using the lambda control spots. As 48 lambda Q-spots, distributed over 

the entire chip are present, this is indeed valid. As the amount of labelled material 

should be equal, aberration of this ratio can be easily detected. With this calculated 

correction factor the ratio for the other genes can be normalized as well. The Lowess 

method later chosen, uses all spots and is therefore more sensitive than the other 

method. In addition, this normalization method allows the division of the chip in some 

subunits and normalization is then done for each unit separately. This is a good 

option, if the hybridisation is not even on the entire chip (Yang et al., 2002; Park et 

al., 2003; Quackenbush, 2002).  

 

4.1.3. Statistics and choosing of candidates: 

 

For analysis of microarrays many different statistical approaches can be used (Leung 

and Cavaliere, 2003). Two possibilities seemed reasonable, the first, using a t-test 

with subsequent estimation of the false discovery rate (Grant et al., 2005) or an 

approach in which only these genes are kept, which show a similar ratio (in a given 

Standard Deviation) of expression in all experiments. The latter was used, although 

this method might lead to losing of some of the truly differently expressed genes, as it 

is very strict. On the other hand the amount of false positives is reduced, allowing the 

assumption that nearly all candidate genes found are differently expressed. 

In the cDNA approach all genes, which were at least 2 times up or down regulated in 

at least four experiments were chosen as candidates (log 2 ratio =1), as this is the 

threshold for the fold-change used by many groups.  

On the oligo chips this fold change approach was not chosen as here the observed fold 

changes were much lower compared to the cDNA chips perhaps because of the 

different slide surface, i.e. planarity to the coating or spot morphology, f.e. different 

sizes (Dudley et al., 2002). 

The log2 ratio fold changes of her7 shows -0.53 (log2) fold change and a difference 

can be observed (Fig. 24). The genes showing a higher or lower “fold-change” of 

beta-actin, which should not change, were taken as candidates. 
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Figure 24: her7 showed a down-regulation of –0.53 in the des embryos and this can be seen after in situ 
hybridization. Therefore even this small log2 ratios can be used for detecting differently expressed 
genes. 

 
 

4.2. Genes found using microarray technology, which might play a 

role in somitogenesis. 

 

4.2.1. General notes on candidates:  

The genes found on the microarrays using zebrafish RNA can be, as described above, 

involved in other processes than somitogenesis. Especially brain development, as the 

Notch-Delta pathway plays an important role there, can lead to true positives, which 

are not involved in somitogenesis. 

The genes validated show this. Here the genes D249, Pbx4, ziro5 and ziro7 show 

expression in the brain, but not in the PSM and/or the somites.  

I focus here, to validate the approach on the candidate genes, for which information, 

i.e. expression pattern, functional information etc. could be found in the literature or 

which have been validated by in situ hybridisation. 

 

 

4.2.2. Zebrafish microarrays: 

 

4.2.2.1: cDNA Microarray: 

Ten genes were validated and three genes of them showed differently expression: 

Pax-like, rack1 and an unnamed protein (unnamed proteinII). Hsp90beta, which was 

also found, showed ubiquitous expression and no difference between wt and fss could 

be seen. Interesting is that the genes validated were expressed in the somites, where 

Tbx24/fss is not expressed, but this situation is comparable with the expression of 
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Fgf8 in fss embryos. There the expression of Fgf8 in the tailbud is unchanged, but the 

expression in the somites is disturbed (Nikaido et al., 2002). 

The role of Pax-genes in somitogenesis is the patterning of sclerotome (Pax1) and the 

dermamyotome (Pax3) (Cossu et al., 1996b), this means it acts in late stages in 

somitogenesis. In chicken (Suetsugu et al., 2002) Pax2 show a cycling expression at 

the future border of the forming somite, but as this gene is not expressed in mouse 

PSM, it might be that this expression is avian specific. As the gene-fragment found in 

the microarray is similar to Pax genes it is not possible to tell, which Pax it is and one 

just can speculate about the role it might play in somitogenesis. At it is expressed in 

the somites, but not in the PSM it might be involved in patterning of the somite into 

the sclerotome and dermomyotome, but not in pre-pattering of the PSM. 

In Xenopus, receptor for activated c-kinase 1 (rack1) is expressed in the somites of 

embryos comparable to the expression found in zebrafish (Kwon et al., 2001). In 

another study (Lilienthal et al., 1998) it was shown that rack1 interacts with the 

integrin beta subunit. As integrin alpha 5 plays a role in mouse (Goh et al., 1997) and 

zebrafish somitogenesis (Jülich et al, 2005 and Koshida et al., 2005) and other 

integrins (see below) were detected in the microarrays conducted in this thesis it 

seems as rack1 might play an important role in somitogenesis and it might be 

worthwhile to do functional analysis with this gene. The role rack1 might play is that 

it forms together with an integrin beta a receptor for fibronectin and/or Laminin and 

by doing this helps to form and maintain the epithelia of the somites by accumulation 

of fibronectin at the somite boundaries. 

It seems as if these two validated genes together with unnamed protein II play a role 

in epithelialization or later events in somitogenesis.  

Another gene, which was tested using in situ hybridisation, but showed no difference 

between wt and fss embryos, was Hsp90beta. Because of this it was thought of a false 

positive, but this gene also showed-up in the des-chip. There again no difference in 

the expression in the mutant embryos could be detected, but it plays a role in 

somitogenesis (Krone et al., 2003). Blockage with Geldanamycin leads to somites, 

varying in size and shape, the trunk is shortened and the tailbud malformed (Lele et 

al., 1999). This chemical binds specific to Hsp90α and β and interacts with the ATP 

binding domain. Normally Hsp90 interacts with and modulates the activity of several 

signalling molecules and transcription factors, for example myoD (Shaknovich et al., 

1992 and Kotz et al, 1994). Hsp90 can stimulate the DNA binding activity of MyoD. 
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Having this in mind it seems logical that this gene appeared in the microarray 

experiments, but it is interesting that it did not display a difference in the in situ 

hybridisation. A plausible explanation might be that Hsp90beta is really expressed 

differently, but that the sensitivity of the validation method is too low. It might be that 

in both cases, wildtype and mutant, the gene is expressed in an amount that the output 

signal (Staining) is over-saturated in both conditions and therefore no difference can 

be seen. Another explanation might lay in the difference of embryo handling in 

microarray experiments and embryo fixation before in situ hybridisation. The 

embryos, used for microarrays are killed quickly by smashing them in lysis buffer, the 

other embryos are put in 4%PFA and die perhaps slower and as this induces stress, 

stress chaperones as Hsp90beta are activated, but this seems less likely as the 

response to this must be in a time-interval of maximal 20minutes. This is the time to 

fixate the embryos in PFA. 

 

4.2.2.2. zebrafish oligo microarrays:  

Here the genes found in the des/notch1 chip, which have been validated will be 

presented. 

Thirteen genes, which showed different expression on the des chip genes, have been 

tested using in situ hybridisation. This was not only done to validate the genes, but 

also to check for the site of expression, as we are interested in genes involved in 

somitogenesis. The genes, which show an interesting pattern in the PSM and or the 

somites will then be further characterized. 

Of the thirteen genes 11 genes could be validated. Two genes showed no expression 

differences namely Hsp90beta (see section 4.2.2.1) (Fig. 22) and Pbx4 (Fig. 23). 

Pbx4, which was found to be up-regulated, just showed some deregulation in the 

forebrain region, which might be due to the role of notch1a in brain development. 

Ziro5 (Fig. 17), ziro7 (Fig. 21) and D249 (Fig. 16) are just expressed in the brain and 

are not interesting for a further analysis, but they show the expression difference 

predicted by the microarray analysis. P38a shows expression in the PSM, but the up-

regulation of the expression can only be detected in the brain (Fig. 20). 

Connexin43.3:  This gene belongs to a gene-family, which function is to form gap-

junctions (Wei et al., 2004). Gap-junctions are 2-3nm in diameter and mediate the 

passage of ions, metabolites and small signalling molecules less than 1 kDa in size. 

Gap-junctions play a role in establishment and/or maintenance of differences in cell 
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adhesion, migration and the interpretation of positional information (Meyer et al., 

1992, Warner et al., 1992, Paul et al., 1995). Cx43.3 function can lead to cross talk 

with cell signalling pathways that regulate cell adhesion, cell motility and the actin 

cytoskeleton (Essner et al., 1996). This gene was up-regulated in the des-mutant. In 

the wild-type situation this gene was expressed as a gradient in the PSM, with the 

highest expression in the posterior part. This gradient was not observable in the des-

mutant. In the mutant an even expression in the entire PSM can be seen (Fig. 18). The 

expression in the wildtype situation is similar to the gradient expression of Fgf8 

(Dubrulle et al., 2001, Sawada, 2001). It seems as if the undetermined cells cross talk 

via gap-junctions and later this communication is shut down. This restriction of cross-

talk might be necessary for the cells to establish or maintain their more determined 

fate in the anterior part of the PSM. The communication in earlier stages can be 

necessary for prepatterning of the somites. After the prepattering is done a shut-down 

of additional signals seems to be necessary. 

Cx43.4 might interact with other genes found in the microarray experiments. On the 

aei-chip a junctional adhesion protein was found, which might interact with the 

Connexin to form a Connexon. As mentioned above Connexins can interact with the 

actin cytoskeleton and on the Su(H) chip the actin-like protein2 was found. 

Her6: Pasini et al., 2003 showed that Her6 is Notch-dependent by blocking Su(H). In 

this case her6 is down-regulated in the PSM and the somites. The AP polarity in the 

somites is disrupted as well. The embryos displayed a phenotype like embryos of the 

des, bea, aei and mib mutations. Interesting it is not only the case that Her6 depends 

on notch1a, but that regular expression of notch1a also depends on Her6. Therefore it 

was no surprise that in the des mutant embryos Her6 is down-regulated in the somites 

and the PSM (Fig. 13). 

ZfMesogenin: For zfmeso no information was present, whether it is linked to the 

Delta-Notch pathway. Here zfmeso is downregulated in the des mutant embryos (Fig. 

11). Mesogenin mouse mutants lack posterior somites. Brachyury expression is up 

regulated indicating that Mesogenin normally represses T-Box gene expression (Yoon 

and Wold, 2000). This might link Delta-notch signalling with FGF signalling as 

Tbx24 is a T-box gene and Fgf8 expression is disturbed in the somites of fss embryos 

(Nikaido et al, 2002). 

Similar to MMP1-A: Matrix Metalloproteinases are endopeptidases playing a role in 

growth, development, wound healing, arthritis and cancer. Until recently, it was 
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thought that these roles were only fulfilled by degrading ECM (Extracellular matrix), 

but this activity also releases information of the ECM. The ECM consists of laminins, 

fibronectins, integrins, heparan sulfate proteoglycans etc. and also serves as a 

reservoir for embedded cytokines and growth factors. MMPs cleave insoluble ECM 

fragments and ECM associated molecules. This leads to free bioactive fragments and 

Growth-factors (members of the VEGF and TGF-beta family for example) and change 

ECM architecture (reviewed in Mott and Werb, 2004). In the des mutant MMP1-A 

was up regulated (Fig. 19). This might just be an effect of deregulation, meaning that 

notch1a regulates this gene allowing proper function of this gene, on the other hand it 

is also possible that the high activity is necessary to allow functioning and survival of 

the cells by releasing the factors stored in the ECM. 

Mta: This gene plays a role in DNA methylation, which is an important factor in the 

control of genetic information. Embryos treated with chemicals inducing DNA hypo-

methylation (5-aza cytidine and 5-axa-2 deoxycytidine) exhibited developmental 

perturbation, namely a loss of tail and abnormal patterning of the somites. The head 

was affected as well. This phenotype implies that mta plays a role in somite formation 

and posterior body formation. DNA methylation normally occurs to stabilize a certain 

state of cells in which genes not required are silenced (Martin, et al., 1999). In the wt 

embryos mta is expressed in the tailbud and the head (Fig. 14), as the phenotype of 

blocking methylation suggested. As methylation patterns change during development, 

it might be that in the tailbud, genes are inactivated, which would drive the cells to a 

more determined fate. The role of mta might be to allow many rounds of mitosis 

without differentiation in the posterior part of the body. Later and more anterior the 

genes, which were inactivated via methylation must be activated again to allow 

specification into cells, which can now be prepatterned into somites. As mta is not or 

only residually active in the mutant this might lead to an early prepatterning, 

disturbing the possibility of a normal somite formation at least in the somites formed 

after the first seven somites. During the building of the first somites the differentiation 

might not be that advanced as in the latter ones and therefore normal somites are 

formed. Interesting in this aspect is that normally cells expressing the Notch-receptor 

on the surface are hindered to adopt a certain cell fate, when binding with the ligand 

Delta occurs at least during neurogenesis (Schroeder et al., 1998).  

ZfdIII: This gene is down-regulated in the des mutant embryos. The only fact about 

that gene known is that it contains a zinc-finger domain, which marks this gene as a 
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transcription factor, but without any functional data nothing more can be said about 

this gene. 

Ztsg1: In Xenopus it has been shown that twisted grastrulation (Tsg) can increase the 

binding of Chordin to BMP4 and by doing so acts as cofactor in antagonizing BMPs. 

(Scott et al., 2001). If knocked down in zebrafish the expression of MyoD is reduced. 

(Ross et al., 2001). In zebrafish ztsg1 is down regulated in the des mutants suggesting 

that ztsg1 connects Delta-Notch and BMP signalling. Interestingly a gene similar to 

Bmp1 and a gene, called twisted gastrulation like (tgl) have been found as well on the 

des-chips. 

 

4.2.2.3. Genes found in microarrays using zebrafish embryos, which have not been 

validated and comparison of genes found: 

In this section only some of the genes found are described. The choice, which genes 

should be included here was based on the information in the literature, if expression or 

functional data was present. Is should be noted that because these genes have not been 

validated by own in situ hybridisation, this section is even more speculative as the 

previous one. The genes chosen were found in more than on one chip (Table 8).  

 

Table 8: Genes found on more than one chip series. 

 des aei bea Su(H) fss 

Cecr1 down  down   
Hoxd12 down up    
Hsp90-beta down    down 
Ndr2 down down    
Pbx1a down  down   
Pbx4 up   up  
Semaphorin Zb1 down up down   
Unc119b down  down down  
Wnt11 down   down  
 

 

The regulation-pattern was on all chips the same except for Hoxd12 and Semaphorin 

Z1b. These genes were down-regulated on the des chip and up-regulated on aei. There 

are two possible explanations for this. First, it can be that on one chip the regulation 

predicted is not true or second, that there is a difference if the receptor (notch1a) or 

ligand (deltaD) is defective. 
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Cecr1: Cecr1 belongs to the family of adenosine deaminase-related growth factor 

(ADGF) (Maier et al., 2001). The deamination of adenosine is required for mitogenic 

action as imaginal discs cell-cultures depleted of adenosine by using bovine adenosine 

deaminase show stimulation of proliferation. Addition of adenosin inhibits 

proliferation (Zurovec et al., 2002). In the bea and des experiments this gene is down-

regulated, which might mean that proliferation is also somewhat down-regulated. 

BrdU (5-bromo-2’-deoxyuridine) labelling of des/bea and wt embryos, showing 

proliferation might verify this thesis, together with the in situ test. 

Hoxd12: Until now, for this gene only a role in patterning of the anterior-posterior 

polarity of the nascent limb bud has been described (Deschamps, 2004), but it is not 

unlikely that it also is involved in the A/P-patterning of the embryonic axis, as 

Hoxd12 was found to be up-regulated on the aei chip and down-regulated on the des 

chip. Therefore an important first step is to validate this via in situ hybridisation and 

later after determining the expression pattern a theory might be formulated. 

Hsp90beta: see above 

Ndr2(nodal related 2): This gene is an early mesendodermal inducer and 

overexpression experiments lead to an elongation of the anterior and posterior 

somites. In later stages (24h) the body axis was kinked (Erter et al., 1998). On the des 

and aei chip this gene was down regulated and it seems reasonable that this gene is 

necessary for proper somite formation. 

Pbx1a: This gene is an important Co-factor for transcriptional regulation as it 

modifies the selectivity and affinity to the DNA (Vlachakis et al., 2000). The gene 

was down regulated in the des and bea microarray-experiments. The literature 

suggests that this gene is only expressed in the brain. 

Pbx4: Pbx4 is as Pbx1a a Co-factor for transcriptional regulation (Vlachakis et al., 

2000). Interestingly this gene was up regulated on the des and Su(H) chips, suggesting 

an involvement in different regulations as Pbx1a. This gene is also not expressed in 

the somitic region and/or the PSM.  

Semaphorin Z1b: This gene plays a role in caudal primary (CaP) motor axon 

guidance. Not much is known about the signals that define the CaP pathway, but they 

are channelled into the anterior half of the somites and it is theorized that the posterior 

half possess an inhibitory environment. Semaphorin Zb1 is a likely candidate to play a 

role in this process of inhibiting as it is expressed in the posterior half of the somites 

(Bernhardt et al., 1998). It was very surprising to find out that this gene was down-
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regulated in the bea and des mutant, but up-regulated on aei-chips. Maybe Zb1 cannot 

be expressed in its compartment because the patterning of the posterior somites has 

not worked in the mutants and for unknown other factors Zb1 is expressed widely in 

the entire somites in aei embryos (leading to an up-regulation) and down-regulation in 

des and bea. 

Unc119b: UNC-119 proteins are highly conserved at both sequence and functional 

levels in many metazoans (Drosophila, C.elegans, Danio rerio, Humans etc.). In 

zebrafish, as in the other animals this gene is expressed in various neural tissues 

(Manning et al., 2004). In des, bea and Su(H) embryos this gene is down-regulated 

according to the microarray. It is not unlikely that Delta-Notch components regulate 

Unc119b in  brain development. 

Wnt11: The mutant for Wnt11 silberblick (slb) made clear that this gene is needed for 

convergent extension movements during gastrulation. Slb mutants also show 

abnormal extension of axial tissue. No role in somitogenesis had been described 

(Heisenberg et al., 2000), but Wnt11 is expressed in the tailbud from the early 

segmentation stages on, later expression in the notochord can be detected. At 16-

somite stage Wnt11 is induced in the medial part of the somite and from 24h on this 

gene is expressed in the myotome (Makita et al, 1998). Makita et al. also showed that 

Wnt11 is induced by FGF by implanting a bead soaked in this protein. On the des and 

Su(H) chips this gene was down-regulated. Perhaps Wnt11 acts at the interface 

between the Notch and the WNT pathway in somitogenesis and/or neurogenesis. 

 

4.2.3. Mouse oligo library: 

Only two genes have been validated by literature, namely Hoxb13 and Sint1(Sept9). 

Hoxb13 is expressed in the tailbud and a gradient of expression reaches into the 

anterior PSM. This gene has a role in the patterning of the A/P axis (Zeltser et al., 

1996) Therefore this gene might not be involved directly in somitogenesis. Sint1 

(Sept9) belongs to the Septin gene family, which encode nucleotide-binding proteins. 

They have been described as cell division cycle regulated proteins (Sørensen et al., 

2002). This gene is also higher expressed in the posterior part of the PSM as the 

anterior one. Furthermore it is expressed in the somites. This gene might be involved 

in the linkage between cell cycle and the segmentation clock (Primett et al., 1988 and 

1989).  
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There is another gene, which might be expressed in the predicted pattern, namely 

Retinoic acid receptor beta 2 (RAR beta2). This gene is up regulated in the anterior 

PSM, according to the microarray experiment. Retinoic acid plays a role in fine-

tuning of the wavefront (Diez del Corral et al., 2003, Moreno et al., 2004). It forms an 

opposite gradient to FGF8, showing exactly the regulation pattern predicted by the 

mouse-chips. 
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