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Abstract 

An adequate and efficient Ca2+ handling is the essential condition for effective functioning of the 
heart. Decreased peak systolic Ca2+ 2+ with prolongation of the duration of Ca transient, slower 
rates of SR Ca2+ uptake and various other alterations in Ca2+ efflux leading to elevation in 
diastolic Ca2+ are the key features of the failing heart. These key alterations in heart failure 
necessitate further evaluation of proteins involved in these regulatory mechanisms. Sorcin, a 
penta E-F hand family protein associates with cardiac ryanodine receptors, L-type Ca2+ channel 
as well as SR Ca2+ ATPase and modulates excitation-contraction coupling in the heart. The 
present thesis aims at understanding the role of sorcin in calcium handling, the effect of 
decreased level of sorcin on remodeling of the heart and subsequent transcriptional regulation, by 
using the adenoviral antisense RNA approach. 
A decrease in the endogenous sorcin expression (75% on the mRNA level and 53% on the 
protein level) was obtained in the adult rat cardiomyocytes. The decreased amount of sorcin 
resulted in reduced cell contractility and significantly depressed Ca2+ transient amplitude 
accompanied with the decreased rate of relaxation in the transfected cardiomyocytes. The 
increase in stimulation frequency was associated with a negative force-frequency relationship in 
cardiomyocytes with depressed sorcin, mimicking the behavior exhibited by the failing human 
cardiomyocytes. However, the β-adrenergic stimulation was unaltered. An oxalate facilitated 
Ca2+ uptake assay indicated decreased Ca2+ uptake by the sarcoplasmic reticulum in the 
cardiomyocytes with decreased expression of sorcin. Moreover, incubating the sarcoplasmic 
reticulum vesicle preparations with recombinant sorcin (1 µM) enhanced the SR Ca2+ uptake and 
brought it back to the control level. The depressed expression of SR Ca2+ ATPase on the mRNA 
as well as protein level was also observed. The expression of ryanodine receptors, triadin and 
phospholamban was unaltered, while a mild increase in the expression of FKBP12.6 was 
observed. In vivo downregulation of sorcin, achieved by the catheter based cardiac specific gene 
delivery resulted in severe chamber dilation. Echocardiography revealed ventricular 
enlargement, decreased heart rate and increased chamber dimension indicating dilated 
cardiomyopathy in the hearts with depleted levels of sorcin. After 14 days the animals were 
sacrificed and an increase in the heart weight was observed. In addition, upregulation of 
calcineurin expression and higher phosphatase activity was observed which was accompanied 
with increased dephosphorylation of NF-ATC3. GATA4 expression was significantly upregulated 
in the antisense sorcin transfected cardiomyocytes. The mRNA expression of hypertrophic 
marker gene β-myosin heavy chain was upregulated, while expression of atrial natriuretic factor 
and B-type natriuretic peptide was unaltered. 
In conclusion, using the antisense mRNA approach for sorcin it can be concluded that 
downregulation of sorcin diminishes the cardiac contractile performance and leads to the 
ventricular remodeling of the heart. This process is at least partially due to the activation of 
calcineurin-NFAT signaling pathway. The antisense approach proves to be a valuable tool to 
identify targets that modulate cardiac contractility and may open new avenues for the treatment 
of myocardial diseases with diminished cardiac output such as heart failure. 
 
 
 

 



 

Zusammenfassung 

Für eine effektive Herzfunktion ist eine effiziente Ca2+-Homöostase wesentlich. Vermindert 
systolisch freigesetztes Ca2+, eine Verlängerung des Ca2+-Transienten und eine reduzierte 
Aufnahmerate des sarkoplasmatischen Retikulums (SR) sind wesentliche Veränderungen einer 
Herzinsuffizienz. Diese Störungen machen eine weitere Untersuchung von Proteinen notwendig, 
die die myokardiale Ca2+-Homöostase regulieren. Sorcin ist ein EF-Hand Protein, dass mit dem 
kardialen Ryanodin-Rezeptor, dem L-Typ Ca2+ 2+-Kanal sowie mit der SR Ca -ATPase assoziiert 
ist und die elektromechanische Kopplung am Herzen mitreguliert. Die vorliegende Doktorarbeit 
hatte zum Ziel, die Rolle von Sorcin für die Ca2+-Homöostase, die Bedeutung einer verminderten 
Expression von Sorcin auf die Herzentwicklung und die transkriptionale Regulation mit Hilfe 
von adenoviralem Antisense Sorcin zu untersuchen. 
Eine Reduktion der endogenen Sorcin Expression (74% der mRNA Expression und 53% der 
Proteinexpression) konnte mit Hilfe dieses adenoviralen antisense Ansatzes in isolierten 
Rattenkardiomyozten erzielt werden. Die verminderte Sorcin Expression führte zu einer 
reduzierten Zellkontraktion, einer verminderten Amplitude des Ca2+-Transienten und einer 
Verlängerung der Relaxationsrate. Erhöhung der Stimulationsfrequenz zeigte eine negative 
Kraft-Frequenz-Beziehung (KFB) in Kardiomyozyten mit verminderter Sorcin Expression, die 
mit der KFB an insuffizienten, menschlichen Kardiomyozyten vergleichbar ist. Die β-adrenerge 
Stimulation blieb erhalten. Der Ca2+-Uptake mit Oxalat zeigte verminderte Aufnahmeraten des 
SR an Kardiomyozyten mit verminderter Sorcin Expression, Inkubation mit rekombinantem 
Sorcin (1µM) führten zu einer erhöhten SR Ca2+-Aufnahmerate. Zudem wurde eine reduzierte 
Expression der SR Ca2+-ATPase nachgewiesen. Die Expression des Ryanodin Rezeptors, von 
Triadin und Phospholamban blieb unverändert, während die Proteinexpressin von FKBP 12,6 
erhöht war. Reduktion der Expression von Sorcin mit Hilfe eines katheterbasierten, 
intrakoronaren Applikationsweges in vivo führte zu einer schweren Herzdilatation. 
Echokardiographie der transfizierten Herzen zeigte eine ventrikuläre Herzvergrösserung, eine 
verminderte Herzfrequenz und einen erhöhten end-diastolische Durchmesser. Nach 14 Tagen 
Transfektion wurde morphologisch eine Zunahme des Herzgewichtes gesehen. Zudem wurden 
an Antisense Sorcin transfizierten Kardiomyozyten eine erhöhte Calcineurin Aktivität und 
Expression, verbunden mit einer höheren NF-ATC3  Dephosphorylierung, und  eine erhöhte 
Expression der GATA4 Expression gefunden. Das Hypertrophiemarker-Gene „β- Myosin Heavy 
Chain“ war erhöht, während  die Expression des atrialen, natiuretischen  (ANP) und 
gehirnspezifischen, natiuretischen Peptiden (BNP) unverändert blieb.  
Zusammenfassend werden durch eine Verminderung der Sorcin Expression mit Hilfe eines 
adenoviralen Anti-sense Ansatzes eine reduzierte kardiale Kontraktionskopplung und eine 
dilatative Kardiomypathie ausgelöst. Dieser Prozess beinhaltet Störungen der Ca2+-Homöostase 
und Aktivierung des Calcineurin- NFAT Signaltransduktionsweges. Die adenovirale anti-sense 
Strategie kann dazu verwandt werden, um Zielproteine bei der Entstehung einer Herzinsuffizienz 
zu identifizieren, die die kardialen Kontraktilität und Leistung insbesondere bei verminderten 
kardialen Pumpleistung verbessern können. Dieser Ansatz kann in der Entwicklung neuer 
Therapieformen bei der menschlichen Herzinsuffizienz verwandt werden.   
 
 

 



 

 

1. Introduction 
 

1.1 Calcium cycling in the normal heart 
 
Calcium (Ca2+) ions function as ubiquitous intracellular messengers that regulate many different cellular 

processes in cardiac myocytes (Frank et al., 2003, Bers, 2005). Ca2+ plays a requisite role not only in the 

electromechanical and contractile activity in the excitation contraction coupling (E-C coupling) (Bers, 2002), 

but also in modulating E-C coupling by activation of kinases and phosphatases which can modulate gene 

expression responsible for hypertrophic signaling and heart failure (Chien et al., 2003). 

The process ensuring contraction and relaxation through a series of events from electrical excitation of the 

myocyte to the contraction of the heart is termed as excitation contraction coupling. Depolarization of the 

plasma membrane during the cardiac action potential activates voltage gated L-type Ca2+ channels (LTCC or 

dihydropyridine receptors) leading to a mild Ca2+ influx into the cytosol which in turn triggers a massive 

release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptors (RYR2), this phenomenon is 

termed as calcium induced calcium release (CICR) (Fabiato, 1985). The tremendous increase in cytoplasmic 

Ca2+ concentration (almost 10 fold) leads to the actin-myosin cross bridge formation, which is activated by 

Ca2+ binding to troponin C and ultimately results in the contraction of myocyte (Solaro et al., 2002, Brixius et 

al., 2002).  

The increase in cytosolic Ca2+ concentration during the contraction is immediately followed by Ca2+ removal, 

which results in deactivation of contractile machinery and myocardial relaxation during diastole. Cytosolic 

Ca2+ is pumped back into the sarcoplasmic reticulum (SR) by sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) 

(Bers, 2002, Frank et al., 2003). Activity of SERCA2a is under the control of phospholamban (PLB), which in 

the nonphosphorylated form inhibits SERCA2a activity while phosphorylation of PLB reverses this inhibition 

(Koss et al., 1996, Frank et al., 2000). 
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Fig. 1.1 Excitation contraction (E-C) coupling in normal heart 

(A) Depolarization due to action potential activates voltage gated L-type Ca2+ channels in the transverse tubule 
(yellow) resulting in a mild Ca2+ influx (blue circles) into the cytosol, Ca2+ influx can also occur through T-type Ca2+ 
channels (blue) or reverse mode Na+ +/Ca  exchanger (NCXrev, red). The Ca2+ influx from LTCC triggers a profound 
Ca2+ release from sarcoplasmic reticulum (SR) via RYR2 (orange). During systole, there is a ten-fold increase in the 
intracellular Ca2+ reaching a concentration up to 1 μM. At this high concentration, free Ca2+ binds to troponin C 
(brown), inducing a conformational change that results in cross bridge formation in actin–myosin myofilaments 
(green) and muscle contraction. The β-adrenergic signaling pathway (green) is capable of increasing the E-C 
coupling gain. Agonist activation of β-adrenoceptors (β-AR) allows activation of adenylate cyclase (AC) by 
production of cyclic AMP (cAMP), which is responsible for the activation of protein kinase A (PKA, green). β-AR 
kinases regulate the β-AR agonist activation. (B) During diastole intracellular Ca2+ is pumped back from the cytosol 
to the SR via SR Ca2+ ATPase (SERCA2a, pink) and relaxation of the myocyte is achieved. SERCA2a is regulated 
by phospholamban (PLB, purple). Phosphorylated PLB (with ‘P’) does not inhibit SERCA2a under baseline 
conditions. A part of Ca2+ + + is extruded from the cytosol by sarcolemmal Na  / Ca  exchanger mode (NCX, red). 
Modified from: Wehrens and Marks (2003).   
 
 
 

 



 

2+1.2 Altered Ca  cycling in the hypertrophied and failing heart 
Abnormal and altered intracellular Ca2+ handling plays a crucial role in the development of cardiac 

hypertrophy, heart failure and fatal ventricular arrhythmias (Wehrens et al., 2003). Depressed systolic 

intracellular Ca2+ transients, increased diastolic intracellular Ca2+ concentration and the slow rate of diastolic 

decay of intracellular Ca2+ concentration are the key features of the failing human heart (Beuckelmann et al., 

1992, Schwinger et al., 1995). Reduction in the SR Ca2+ content (Lindner et al., 2002) and a decreased E-C 

coupling gain have also been reported in the failing human myocardium (Gomez et al., 1997).  

Chronic hyperactivity of the sympathetic nervous system is one of the main characteristic of congestive heart 

failure (Chidsey, 1962). The constantly elevated high adrenergic activity leads to maladaptive changes in the β-

adrenergic signaling pathway and results in the decreased expression and coupling of the β-adrenoceptors 

(Bristow et al., 1984), reduction in the coupling of the β2-adrenoceptors (Daaka et al., 1997), an increase in the 

expression of the inhibiting G protein Gi, an increase in the expression of the β-adrenoceptor kinases 

(Neumann et al., 1988, Ungerer et al., 1993) and depressed expression and function of adenylyl cyclases 

(Rockmann et al., 2002). Altered β-adrenergic signaling and depressed phosphatase activity in heart failure is 

responsible for hyperphosphorylation of L-type Ca2+ channels (Chen et al., 2002), NCX (Wie et al., 2003) and 

cardiac RYR2 (Reiken et al., 2003, Marx et al., 2002). 

2+1.3 Role of Ca  cycling proteins in the altered calcium cycling 
Periodic change in Ca2+ concentration in cardiomyocytes is the prerequisite for cardiac contraction and 

relaxation. Various proteins associated with the SR, integrally regulate the vital periodic change in intracellular 

Ca2+ concentration ensuring the smooth functioning of the myocardium. Abnormal cardiac E-C coupling is the 

result of altered function of Ca2+ 2+ proteins responsible for intracellular Ca  homeostasis. Altered expression 

and activity of SERCA2a (Schwinger et al., 1995,) phosphorylation of PLB (Dash et al., 2001), RYR2 (Marks 

et al., 2002), Na+/Ca+ exchanger and Na+ K+ ATPase (Schwinger et al., 1999) have been reportedly associated 

with various features of contractile dysfunction (Arai et al., 1993, Go et al., 1995, Hasenfuss 1994).  

 

1.3.1 Ryanodine receptors – A macromolecular complex 
Ryanodine receptors (RYR2), a 565 kDa homotetramer consisting of four monomeric subunits is the main SR 

Ca2+ release channel and plays a predominant role in E-C coupling (Marx et al., 2002). The subunit contains a 

high conductance Ca2+ selective pore, Ca2+ activation and inactivation sites, several phosphorylation sites and 

multiple binding sites for an array of endogenous regulators, which include ATP, Mg+ and calmodulin. Knock 

out of RYR2 gene in mice proved to be fatal and the mice died at embryonic day 10 with morphological 

abnormalities. Prior to death the knock out cardiomyocytes showed structurally abnormal mitochondria, highly 

vacuolated SR with elevated concentrations of Ca2+, suggesting that RYR2 is absolutely required for cellular 

Ca2+ homeostasis as a major Ca2+ release channel (Takeshima et al., 1998). RYR2 also functions as a 

scaffolding protein for various other proteins like FK binding proteins, Calmodulin (CaM), calsequestrin, 

triadin, junction, and several other proteins forming a macromolecular complex channel protein system (Bers, 

2004) and alterations in these interacting proteins have been associated with the pathogenesis in the heart. 

 



 

1.3.2 Proteins interacting with ryanodine receptors  

(a) FK binding proteins 
FKBP 12.6, a member of immunophilin family of proteins associates with the cytosolic domain of cardiac 

RYR2 with high affinity (Marx et al., 2002). Disruption of the FKBP12.6 gene in mice resulted in cardiac 

hypertrophy in male mice, but not in female mice. Female mice hearts were normal, despite the fact that male 

and female knockout mice displayed similar dysregulation of Ca2+ release, the amplitude, duration of Calcium 

sparks and calcium-induced calcium release gain (Xin et al., 2002). Another study reported consistent display 

of exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death due to the ablation of 

FKBP 12.6 (Wehrens et al., 2003).  FKBP 12.6 stabilizes RYR2 channel activity and inhibits the aberrant 

activation of RYR2 during diastole, the protein kinase A based phosphorylation of FKBP 12.6 causes 

dissociation of FKBP 12.6 from the RYR2 resulting in unstable RYR2 channel which can induce life 

threatening arrhythmias (Wehrens et al., 2004). 

(b) Calmodulin 
Calmodulin (CaM is a 16.6 kDa Ca2+ binding protein with four E-F hands existing as pairs on the bi-globular 

structure (Strynadka et al., 1989). At high [Ca]i levels, CaM activates its targeting partners by binding to them 

with high affinity. It is suggested that under physiological conditions CaM bound to RYR2 may inhibit open 

basal probability and alter the Ca2+ dependent activation of the RYR (Yamaguchi et al., 2003). 

(C) Protein Kinase A, Calmodulin dependent protein kinase II and 
phosphatases 
Protein Kinase A (PKA) is anchored to cardiac RYR via protein kinase A anchoring protein (AKAP) in the 

cytosolic domain of RYR2. PKA dependent RYR2 phosphorylation alters RYR2 gating and reportedly speeds 

up the time course of release without affecting the amount of released Ca2+ (Valdiva et al., 2000). In the 

complex physiological system PKA activation also increases ICa trigger and SR calcium load in such a way 

that the amount of SR Ca2+ release during E-C coupling is greatly enhanced.  

Calmodulin dependent protein kinase II (CaMKII) is mainly expressed as the δ isoform in the heart and is also 

known to phosphorylate RYR2 and alter RYR2 activity (Wichter et al., 1991). Endogenous CaMKII increases 

the amount of SR Ca2+ release for a given SR Ca2+ content and ICa trigger in intact voltage clamped ventricular 

cardiomyocytes (Li et al., 1997). Transgenic mice overexpressing CaMKII δ exhibited increased diastolic 

calcium spark frequency and fractional SR Ca2+ release during E-C coupling despite a reduced SR calcium 

content and diastolic [Ca]  (Maier et al., 2003). i

In heart failure, despite the increased phosphatase expression there is less phosphatase associated with RYR2 

that could possibly lead to enhanced RYR2 phosphorylation in heart failure resulting in increased diastolic 

calcium leak (Bers, 2003). 

2+(d) Calsequestrin, junctin, triadin and histidine rich Ca  binding 
protein 
Cardiac calsequestrin is a 45.2 kDa high capacity moderate affinity Ca2+ binding protein localized at lumen of 

 



 

the junctional SR in cardiac muscle (Scott et al., 1988; Frank et al., 2001). Calsequestrin (CSQ) undergoes a 

structural transformation after binding to calcium. Transgenic mice overexpressing more than 10-fold CSQ 

developed cardiac hypertrophy and the cardiomyocytes showed increased amount of SR Ca2+ content (Jones et 

al., 1998, Sato et al., 1998) but the twitch Ca2+ transients and contractions were depressed. Adenoviral 

mediated moderate overexpression of CSQ (2-4 fold) resulted in enhanced Ca2+ transient amplitude and 

increased SR Ca2+ load (Terentyev et al., 2003). 

Triadin and junctin are present at the junctional SR and they interact with each other, CSQ and RYR2. The 

interaction between triadin, junctin and CSQ is suggested to influence indirectly RYR2 gating and Ca2+ release 

(Gyoerke et al., 2004). A histidine rich Ca2+ binding protein (170 kDa) is also present in the SR lumen and has 

been reported to bind to triadin (Sacchetto et al., 2001) and may also influence Ca2+ handling (Fan et al., 

2004). 

2+1.3.3 Sarcoplasmic reticulum Ca  ATPase (SERCA2a) 
2+ SR Ca ATPase is the prime regulator of the rate of Ca2+ reuptake during relaxation in the heart 

(Periasamy et al., 2001). Five distinct Ca2+ ATPase isoforms are found in skeletal, smooth and 

cardiac muscles and are encoded by three different mammalian genes (SERCA1, SERCA2 and 

SERCA3) (Arai et al., 1994, Loukianov et al., 1998). SERCA2a is the main isoform expressed in 

cardiac muscle. Transgenic mice overexpressing SERCA2a exhibited increased myocardial 

contractility and relaxation by increasing SR Ca2+ transport (He et al., 1997, Baker et al., 1998). 

Ablation of SERCA2a and SERCA2b resulted in the embryonic lethality (Periasamy et al., 

1999). Heterozygous mutant hearts expressing 65% of the protein levels of SERCA2 as 

compared to the wild type, exhibited impaired cardiac contractility and relaxation (Ji et al., 

2000). Ablation of SERCA2a specifically, resulted in increased incidence of neonatal mortality 

and structural malformations accompanied with mild cardiac hypertrophy with impaired cardiac 

contractility and relaxation (Van der Heyen et al., 2001). 

1.3.4 Phospholamban 
The calcium pumping activity of SERCA2a is primarily regulated by phospholamban (PLB), a low molecular 

weight (52 amino acid) integral SR membrane phosphoprotein that inhibits SERCA2a in its unphosphorylated 

state (Frank et al., 2000). Phospholamban is highly conserved and present in single copy in the genome of 

mammalian and avian species (Chu et al., 1998). Oligomeric phospholamban is a pentamer of five identical 

subunits (Luo and Kranias, 1998). Phosphorylation of PLB by cyclic-AMP dependent or calmodulin dependent 

protein kinases (PKA or CaMKII) relieves this inhibition, allowing faster twitch relaxation and decline of [Ca]i 

(Munch et al., 2000). Transgenic mice overexpressing two fold higher PLB in the heart displayed impaired 

cardiac contractility and relaxation but exhibited normal growth (Kadambi et al., 1996). However,  4 fold 

transgenic overexpression of PLB in mice resulted in development of overt heart failure and a premature 

mortality with aging (Dash et al., 2001). In contrast ablation of PLB was followed by increased force of 

 



 

contraction, attenuated β-adrenergic responsiveness, increased relaxation rates and enhanced cardiac in vivo 

performance (Luo et al., 1994, Chu et al., 1996). 
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Fig 1.2 Regulation of intracellular calcium homeostasis by Ca2+ cycling proteins. 

(A) During the action potential a small amount of extracellular Ca2+ enters the cardiomyocyte through the 
sarcolemmal L-type Ca2+ channels (LTCC), which in turn triggers the release of a larger amount of Ca2+ from the 
sarcoplasmic reticulum (SR) via ryanodine receptors (RYR2) into the cytosol. Phosphorylated PLB relieves its 
inhibition on SERCA2a activity, resulting in an increase in Ca2+ uptake into the SR. The RyR2 is also associated 
with cardiac calsequestrin (CSQ), triadin and junctin.  Sorcin is a penta-EF hand Ca2+ binding protein that binds 
directly to both RyR2 and the LTCC. (B) β-adrenergic stimulation causes enhanced Ca2+ release and uptake by via 
cAMP-dependent PKA signal pathway. PKA phosphorylates L-type Ca2+ channels (LTCC), the cardiac ryanodine 
receptor (RyR2) and phospholamban (PLB). The phosphorylated RyR2 is dissociated from FKBP12.6, resulting in 
pronounced channel open probability. Phosphorylated PLB relieves its inhibition on SERCA2a activity, resulting in 
an increase in Ca2+ uptake into the SR. The Ca2+ movement is indicated with blue broken lines. Modified from: 
Minamisawa et al. (2004). 
 
 
 
 
 
 

 



 

1.4 Sorcin and its role in calcium cycling 
Sorcin (soluble resistance-related calcium-binding protein) is an evolutionary conserved, 21.6 kDa Ca2+ 

binding protein. Sorcin was originally isolated from multidrug resistant cells in which it was overexpressed as 

a result of amplification of the sorcin gene (Meyers et al, 1991). In recent years sorcin has emerged as a 

potential calcium cycling protein and growing literature has emphasised its role in the regulation of 

intracellular homeostasis and modulation of E-C coupling. However, the ambiguity associated to its function 

demands further research to fully understand the role played by sorcin in the regulation of calcium cycling in 

the heart. 

1.4.1 Structure of sorcin  
Sorcin belongs to the newly found family of penta E-F hand proteins, which contains five E-F hand motifs that 

associate with membranes in a calcium dependent manner. Binding of Ca2+ to the high affinity sites E-F1 and 

E-F2 induces translocation of sorcin to membranes where it interacts with specific targets (Zamparelli et al., 

1997). Sorcin is capable of binding two calcium ions per monomer and exist as dimers in the absence of 

calcium (Zamparelli et al., 2000). Calcium free human sorcin forms a homodimer, in which each monomer 

adapts the penta E-F hand motif.  Sorcin molecule has a globular shape apart from the extended N-terminal 

portion. The C-terminal domain is predominantly α-helical containing eight α-helices and connecting loops 

incorporating five E-F hands. The E-F hands associate into pairs in a way that E-F 1 pairs with E-F2 and E-F3 

pairs with E-F4, The left E-F 5 motif is unpaired in the monomer but pairs with the E-F5 of the second 

monomer forming a dimer. Dimeric sorcin exhibits an asymmetrical structure (Xie et al., 2001). 

1.4.2 Expression and subcellular localization of sorcin  
Sorcin is widely expressed in most tissues including heart and skeletal muscle (Van der Bleik, et al., 1986). 

Sorcin also associates with presenilin-2 in brain and annexin-7 in adrenal medulla (Pack-Chung et al., 2000, 

Salzer et al., 2002). At subcellular level sorcin localizes to T-tubule junctions of cardiac SR (Meyers et al., 

1995) and co-localizes with RYR at the Z-lines in the normal heart whereas the degree of co-localization is 

noticeably disrupted in myopathic heart (Pickel et al., 1997). 

 

 



 

A 

B 

 

      Fig. 1.3 Ribbon structure presentation of dimeric sorcin.  

(A) Ribbon structure as viewed along the symmetry axis of the dimmer. Each monomer contains helices and 
loops that form five E-F hands. These E-F hands associate into pairs; E-F1 pairs with E-F2 whereas E-F3 pairs 
with EF4, and EF5 pairs with its counterpart from the other monomer to form part of the dimer interface. One of 
the monomers is shown in monochrome (gray) whereas the other is color-coded to show the sub-domain 
structures: E-F1 (green); E-F2 (blue); E-F3 (magenta); E-F4 (cyan); E-F5 (red); LE-F12, the linker connecting 
the adjacent E-F-hands within the first pair E-F1–E-F2 (yellow); LE-F34, the linker connecting the adjacent E-F 
hands within the second pair E-F3–EF-4 (gray); and the short N-terminal fragment (dark orange). For each E-F 
hand, the individual helices are denoted as E (N-terminal helix) and F (C-terminal helix) with an appropriate 
number indicating to which E-F hand it belongs, whereas the loops flanked by the E and F helices are denoted as 
L with the same corresponding number. A sorcin monomer contains eight helices that are numbered from _1 to 
_8. (B) Ribbon structure of sorcin as viewed perpendicular to the symmetry axis. Xie et al. (2001). 

 

 
 

 



 

1.4.3 Interaction of sorcin with other calcium binding proteins 
Sorcin associates with the cytoplasmic side of RYR in skeletal and cardiac muscle and participates in channel 

gating (Meyers et al., 1995). Co-immunoprecipitation of metabolically labelled cardiac myocyte proteins and 

several other in vitro binding studies indicated that sorcin inhibits open cardiac RYR2 from being incorporated 

into planar lipid bilayers with high affinity. This inhibitory effect of sorcin on ryanodine receptor was relieved 

by phosphorylation of sorcin with the catalytic subunit of PKA (Farell et al., 2003). 

In cardiac myocytes, sorcin significantly inhibits both the spontaneous activity of RYR in quiescent cells 

(visualized as calcium sparks) and the inward calcium current triggered activity that gives rise to intracellular 

transients. Sorcin decreases spark efficiency and amplitude, and the dynamic interaction with RYR2 occurs at a 

rate that would allow for modulation of the channel by sorcin on a beat-to-beat basis (Farell et al., 2003). The 

rapid and reversible effect of sorcin on RYR2 closure is kinetically capable of playing a role in terminating the 

positive feedback loop of calcium induced calcium release (Seidler et al., 2003). Calcium bound sorcin binds 

to the cytoplasmically oriented C-terminal domain of the cardiac L-type calcium channel’s pore-forming alpha 

1-C subunit, either at or near the I-Q calmodulin binding region, thus participating in channel inactivation. The 

functional effects of sorcin on RyR2 and the L-type calcium channel suggest that sorcin plays a role in 

interchannel communication (Meyers et al., 1998). 

Sorcin interacts with SERCA in sorcin overexpressing adult rat cardiac myocytes (Matsumoto et al., 2005) and 

increases NCX activity in sorcin overexpressing rabbit cardiac myocytes (Seidler et al., 2003). Other binding 

partners for sorcin include presenilin-2, which in complex with sorcin, may be involved in intracellular 

calcium modulation in neuronal cells (Pack-Chung et al., 2000) and annexin-7, as sorcin has been shown to 

inhibit annexin-7 mediated aggregation of chromaffin granules isolated from adrenal medullary tissue (Verzili 

et al., 2000). 

1.4.4 Adenoviral mediated gene transfer and transgenic mouse model 
A transgenic mice model overexpressing sorcin by mouse α-myosin heavy chain (α-MHC) promoter was 

developed. The transgenic mice developed normally with no change in expression of other calcium regulatory 

proteins. However, contractile abnormalities were observed in isolated adult transgenic myocytes along with 

significant depression of Ca2+ transient amplitudes. The rate of inactivation of transgenic myocyte L-type Ca2+ 

channels was accelerated by 15%, as compared to wildtype, while the whole cell calcium density and time 

course of channel activation were found to be normal (Meyers et al., 2003).  

On contrary, the adenoviral mediated overexpression of sorcin in either normal or diabetic mice and in adult rat 

cardiomyocytes using an adenoviral gene transfer approach showed an increase in cardiac contractility of the 

normal heart and dramatically rescued the abnormal contractile function of the diabetic heart. This study 

advocated that viral vector mediated delivery of sorcin to cardiac myocytes is beneficial resulting in improved 

contractile function in diabetic cardiomyopathy (Suarez et al., 2004). 

One study proclaimed that a point missense mutation in sorcin gene resulting in phenylalanine to leucine 

(F112L) was associated with an uncommon apical form of familial hypertrophic cardiomyopathy and 

hypertension. The prevalence of this mutation was 2 out of 200 patients with hypertrophic cardiomyopathy. 

The study reported that sorcin F112L lacks the inhibitory action of sorcin in RYR mediated Ca2+release 

 



 

(Mohiddin et al., 2002). 

Another study indicated that a mild over expression of sorcin (1.7 fold) exhibits a significantly higher peak 

force of contraction.  Echocardiography of in vivo transfected rat hearts with the adenoviral based 

overexpression showed enhanced fractional shortening and decreased end-systolic diameters indicating 

increased cardiac contractility though the gross morphology did not show any remarkable difference in the 

sorcin over expressed hearts (Frank et al., 2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 

1.5 Aims of the thesis 
Despite the growing literature, advocating the role of sorcin in calcium cycling and intracellular calcium 

homeostasis, the role of sorcin in heart remains controversial. The present study was aimed at apprehending 

the role of sorcin in Ca2+ signalling pathway by using antisense RNA strategy directed against de novo 

synthesis of sorcin. The adenoviral antisense sorcin vector was utilized to transfect isolated adult rat 

cardiomyocytes to investigate functional, biochemical and molecular consequences of adenoviral mediated 

downregulation of sorcin. In addition, the antisense sorcin vector was used for the adenoviral mediated in vivo 

sorcin gene delivery in rat hearts to study the functional consequences of depleted sorcin in the whole heart. 

 

The aims of the thesis were to specifically address the following questions: 

1. Does the downregulation of sorcin affects the cardiac Ca2+ handling and excitation- contraction 

coupling? 

2. Does the downregulation or ablation of sorcin induce any compensatory mechanism in the 

expression or activity of the Ca2+ binding proteins and alters the contractility in the E-C coupling? 

3. Does lowered expression of sorcin affect the SR Ca2+ 2+ storage and SR Ca release? 

4. Does reduced expression of sorcin result in functional remodelling of the heart in vivo? 

5. Does the ablation of sorcin affect the transcriptional regulation in the heart? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

2. Materials and Methods 

2.1 Materials 

2.1.1 Animals 
Male wistar rats, 220–250 g were used for the isolation of adult rat cardiomyocytes (ARC). For the 

catheter based in vivo gene transfer in hearts, male wistar rats 240-350 g were used. All the animals used 

were obtained from Charles River, Germany. The rats were housed in plastic cages in a room with a 

controlled humidity of 40 % and temperature of 22 °C. A controlled environmental 12 hour light-dark 

cycle was maintained. The experimental design was carried out according to German animal care 

legislation. 

2.1.2 Materials (reagents, buffers, cell culture medium, enzymes and 

antibodies)  

(a) Antisense adenoviral expression vector  
AdEasyTM adenoviral vector system, Stratagene 

Shuttle vector pAdTrack-CMV, Stratagene 

PCR 2.1 cloning vector, Invitrogen 

Restriction endonucleases, New England Biolabs 

Alkaline phosphatase, New England Biolabs 

Polyfect transfection kit, Stratagene 

PCR purification kit, Qiagen 

Electroporation cuvettes, Biorad 

Cell electroporator, Biorad 

AD293 cells, Stratagene 

Growth medium for AD293 cells: DMEM (4.5 g/L glucose, 110 mg/L sodium pyruvate and 2 mM L-

glutamine) supplemented with 10% v/v heat inactivated foetal bovine serum. 

Sea plaque® agarose, Stratagene 

(b) Isolation of rat cardiomyocytes 
Cell culture medium: Medium M199 500 ml, Gibco, MEM-Vitamin    10 ml, Gibco, non essential amino 

acids 5 ml, Gibco; Penicillin/Streptomycin 100 IU/ml 5 ml, Sigma, Insulin H 40 IE/ml, Höchst.  

Diethylether, Roth 

Powell-Medium (in mM): NaCl 110, KCl 2.5, KH2PO  1.17, NaHCO4 3 25, Glucose 2 g/l. 

Carbogen (95% O2 + 5% CO ), Linde 2

 



 

Collagenase Typ II, Biochrom 

Calcium chloride, Sigma 

Laminin natural mouse, Sigma 

Bovine serum albumin (BSA), Sigma  

(c) Protein preparation from transfected rat cardiomyocytes  
Cell-lysis buffer (in mM): Tris-HCl (pH 7.5) 5, EDTA (pH 8.0) 5 

Complete mini EDTA free protease inhibitor cocktail tablet, Sigma    

Freezing buffer (in mM): Saccharose 400, HEPES 5, TRIS 5, pH 7.2. 

(d) Quantitative immunoblotting 

Acrylamide-Bis 30%/0.8 % v/v, Roth 

Coomassie brilliant blue, Serva  

Dodecyl sodium sulphate (SDS), Serva 

Enhanced Chemiluminiscence (ECL) Kit, Amersham Life Science  

Acetic acid, Merck 

Glycerine, Merck 

Glycine, Merck 

Kaleidoscope prestained protein standards (≅ 7 –205 kDa), BioRad  

2-βMercaptoethanol 98% v/v, Sigma 

N, N, N´, N´-tetramethylendiamine (TEMED), Serva  
TBS (in mM): NaCl 150, Tris-HCl 10; pH 7.5 

TBST (in mM): NaCl 150, Tris-HCl 10, 0.05% v/v TWEEN 20, pH 7.5 

TWEEN 20, Merck 

Polyvinyldienfluoride (PVDF) membrane, BioRad 

Ponceau S, Serva  

Loading buffer (2x): 100 mM TRIS/HCl (pH 6.8), 2% v/v 

2-βMercaptoethanol, 4% SDS w/v, 0.2% Bromphenolblue 20% v/v  

X-ray film, Amersham 

(e) Antibodies for western blot 
Monoclonal (Mouse) Anti-sorcin antibody, (1:1000), Zymed,  

Polyclonal (Rabbit) Anti-sorcin antibody, (1:1000), self produced 

Monoclonal (Mouse) Anti-ryanodine receptor isoform 2 antibody, (1:1000), Affinity BioReagents                          

Monoclonal (Mouse) Anti-calsequestrin antibody, (1:1000), Biomol 

Polyclonal (Rabbit) Anti-calcineurin-A antibody, (1:1000),  Santa Cruz Biotechnology 

Polyclonal (Rabbit) Anti-FKBP12.6 antibody, (1:1000),  Biomol 

Monoclonal (Mouse) Anti-SERCA2 ATPase antibody, (1:1000),  Affinity Bioreagents 

Monoclonal (Mouse) Anti-triadin antibody, (1:1000), Affinity Bioreagents 

Monoclonal (Mouse) Anti-phospholamban antibody, (1:1000), Upstate Biotechnology 

 



 

Ployclonal (Rabbit) Anti-GATA-4(H112) antibody, (1:1000), SantaCruz Biotechnology 

Polyclonal (Goat) Anti-NF-ATC3 antibody, (1:1000), Santa Cruz Biotechnology 

Peroxidase-conjugated Anti goat IgG antibody, (1:2000), Sigma 

Peroxidase-conjugated Anti-mouse IgG antibody, (1:2000), Sigma 

Peroxidase-conjugated Anti-rabbit IgG antibody, (1:2000), Sigma 

(f) Immunofluoroscence measurement in transfected cardiomyocytes 
Triton X-100, Sigma,  

Polyclonal (Rabbit) Anti-sorcin antibody (1:500), self produced 

Alexa fluorTM 546 Anti-rabbit IgG, Molecular probes 

DAKO mounting medium, Molecular probes 

PBS (in mM): NaCl 137, KCl 2.6, K2HPO  1.8, Na4 2HPO  10 (pH 7.4) 4

Paraformaldehyde (4% w/v in PBS), Sigma 

(g) Contractility measurement of the transfected cardiomyocytes 
Tyrode buffer (in mM): NaCl 132, KCl 4.8, MgCl2 1.2, CaCl2 1.8, Glucose 10, HEPES 10, pH 7.3, Sigma 

Forskolin, Calbiochem 

(h) RNA isolation and reverse transcription 
RNase free water, Invitrogen 

Ethanol, Merck 

Ist strand buffer, Gibco  

0.1M dithiothreitol (DTT), Gibco 

Random primer, RNase inhibitor, Promega 

M-MLV reverse transcriptase, Gibco 

Deoxynucleotide triphosphate set, PCR grade, Roche Diagnostics 

Chloroform, Merck 

2-Propanol, Roth 

 

 
 

 

 
 

 



 

 

Table 2.1 List of primers  
 

GAPDH                  Forward  ACC ACA GTC CAT GCC ATC AC 

                                Reverse TCC ACC ACC CTG TTG CTG TA 

Sorcin                     Forward TGC TGT AGC TGG ACA GGA TG 

                                Reverse AGC ATT GAA ACC ATA AGC CG 

Phospholamban     Forward CGG GAT CCA TGG GCG TGG AGA TCG  

                                Reverse GCA GCA GAC ATA TCA AGA TGA A 

FKBP 12.6              Forward CCC CAG ACT ATG CCT ATG GA  

                                Reverse AAG AGT GGT GGG ACA TCAGG 

SERCA2a               Forward CTG CGA GCT CTT GCT CGA GTT GAA CC 

                                Reverse CGG GAT CCT GCA CAC ACT CTT TAC 

Calcineurin-A        Forward TCA CCG GTT GAC ATC TGA AG 

                                Reverse ATG GTT TTC TCC CGC CTA AG 

  TTG GCT TAC CAC ATC ATG GA 
            Forward NF-ATC3 TGG GCA TTC AAA GGG TTT AG 

                              Reverse 

GATA-4               Forward   CAG TTT CTG GAG CAA CCA CA 

                              Reverse   ACC AAA GCG ACA AGA ATT GG 

BNP                      Forward  CAG CTC TTG AAG GAC CAA GG 

                              Reverse  AGA CCC AGG CAG AGT CAG AA 

 ACG GAT GCC ATA CAG AGG AC β-MHC                 Forward 

 CCT CAT AGG CGT TCT TGA GC                               Reverse 

ANP                      Forward GGA ATG AGT CCA CTT TAA ATC CTT T  

                              Reverse   GAG CTT TTT AAC TGC AGC AAC TTT A 

 

For each primer pair the annealing temperature (TA) was calculated according to the following formula: 

T = 2( A + T ) + 4( G + C) – 5 A 

 

 

(i) Calcineurin activity measurement in transfected cardiomyocytes 
Tris, Roth  

Acetylated BSA (Bovine serum albumin), Promega 

Nickel chloride, Sigma 

Calmodulin (phosphodiesterase 3’ ’-5 –cyclic nucleotide activator), Sigma 

 



 

PNPP (p-Nitrophenyl phosphate), Sigma 

ELISA reader MRX Revealation , DYNEX Technologies 

(j) Measurement of calcium transient in transfected cardiomyocytes 
X- rhod-1 AM, Molecular Probes 

Tyrode sloution (in mM): NaCl 132, KCl 4.8, MgCl  1.2, CaCl2 2 1.8, Glucose 10, HEPES 10, pH 7.3 

aCl2 1.8 

Stimulator 

Confocal laser scanning microscope LSM 510 Meta, Zeiss 

(k) Expression and purification of recombinant sorcin 

Luria Bertani (LB) medium (1l) Bacto-trypton 10 g, Yeast extract 5 g, NaCl 5 g, ddH2O to 1l (pH 7.3)  

Ampicillin 100 mg/ml, Sigma 

IPTG, Sigma 

Elution buffer: Reduced glutathione 50 mM Tris-HCl (pH 8.0), Sigma 

PBS (in mM): NaCl 137, KCl 2.6, K2HPO  1.8, Na4 2HPO  10 (pH 7.4). 4

Lysozyme, Sigma 

EDTA, Roth 

TritonX-100, Sigma 

Glutathione agarose beads, Amersham 

2+(l) Sarcoplasmic reticulum Ca  uptake   
Potassium dihydrogen phosphate, Merck 

Sodium fluoride, Merck 

Sucrose, Roth  

Phenylmethanesulfonylfluoride (PMSF), Sigma 

Dithiothreitol, Merck 

Imidazole, Merck 

Potassium chloride, Merck 

Sodium azide, Merck 

Magnesium chloride hexahydrate, Merck 
’ ’Ethylene glycol bis (β-Aminoethyl ether)-N, N, N , N , tetra acetic acid, Sigma 

Potassium oxalate monohydrate, Merck 

Calcium chloride dihydrate, Merck 

Ruthenium red, Sigma 

Tris, Roth 

Adenosine-5’-triphosphate, Roche 

Whatman glass microfibre filters 2.5 cm, poresize 0.45 μm 

ACS II scintillation cocktail, Amersham 

 



 

Liquid scintillation analyzer TR-1600, Packard  

(m) Catheter based adenoviral injection in rat hearts and Echocardiography 
Acetylcholine, Sigma 

Isoflurane, Sigma 

Ketamine, Sigma 

Diazepam, Sigma 

Epinephrine, Hoechst  

Heparin 100 IU, Sigma 

Sodium bicarbonate, Braun 

3F balloon catheter, 2 F lumen balloon catheter, Edwards life science 

Pressure transducer, Stratham P23 XL 

Four chamber power lab system, AD instruments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 



 

 

2.2 Methods 

2.2.1 Generation of adenoviral antisense sorcin GFP (Ad.as.Sor.GFP) 

Adenovirus serotype 5 with antisense sorcin GFP (Ad.as.SOR.GFP) was generated using the AdEasyTM 

Adenoviral vector system from stratagene (Hajjar et al., 1997).  

(a) Cloning sorcin cDNA and insertion in transfer vector 
Sorcin human cDNA fragment was cloned in PCR 2.1 vector and confirmed by restriction 

digestions and sequencing. The cloned cDNA fragment was subsequently inserted in the 

multiple cloning site of shuttle vector pAD-TrackCMV (9.2kb) in reverse orientation using 

the endonuclease restriction enzyme sites Hind III and Xho I. The ligation was performed by 

using T4 DNA ligase (Molar ratio from Insert: Vector = 5:1) The orientation of the fragment 

was confirmed by restriction digestion and sequence analysis.  

(b) Production of recombinant Ad plasmid by homologous recombination 
The shuttle plasmid was linearized by Pme I, confirmed the complete digestion by agarose gel 

electrophoresis and purified by Qiagen purification kit to remove any salts, which can interfere in the 

subsequent electroporation. The purified linearized plasmid was dephosphorylated with alkaline 

phosphatase for 1 h at 37 °C. The BJ5183 cells were cotransformed with the linearized shuttle vector 

containing sorcin cDNA and the pAdEasy vector as per the manufacturer’s instructions, which resulted in 

the recombination event inside the BJ5183 cells. In short 1 μg of linearized, dephosphorylated shuttle 

vector and 1 μl of pAdEasy supercoiled vector (100 ng/ μl) were mixed with BJ5183 gently and 

transferred to prechilled electroporation cuvettes. A pulse of 200 Ω, 2.5 kV, 25 μF was used for 

electroporation. The cuvette was removed immediately; 1 ml of sterile LB broth was added and gently 

mixed by pipetting up and down to resuspend the cells. The transformants were incubated at 37 °C for 1 h 

while shaking at 225-250 rpm. The recombinant reaction mixture was plated on kanamycin plates and 

incubated overnight at 37 °C. The recombinant Ad plasmid was purified from the clone and confirmed by 

restriction digestion with Pac I enzyme. 

(c) Production of recombinant Ad virus 
The positive recombinant Ad plasmid was used to transform XL10-GOLD ultracompetent 

cells to amplify the recombinant adenovirus plasmid DNA by using the heat shock method 

following the manufacturer’s protocol. Briefly 50 ng of plasmid DNA was added to the pre 

aliquoted 100μl XL10-Gold ultra competent cells and incubated for 30 min on ice followed 

by heat pulsing the reaction mixture at 42 °C for 30 s. The reaction tube was incubated on 

 



 

ice for 2 min, 0.9 ml of pre warmed (42 °C) NZY+ ° broth was added and incubated at 37 C 

for 1 hour at 225-250 rpm. The transformant reaction was plated on kanamycin plates and 

incubated overnight at 37 °C. Positive colonies were checked by restriction digestion with 

Pac I. A maxiprep was done and purified by standard caesium chloride density gradient 

centrifugation to get highly pure DNA. The plasmid DNA was subjected to Pac I digestion, 

purified the reaction mixture with Qiagen PCR purification kit and resuspended in PCR 

grade water. AD293 cells produce the adenovirus E1 gene in trans allowing the production 

of infectious virus particles when the cells are transfected with E1 deleted pAdEasy vector. 

7-8 x 105 AD293 cells were plated in 60 mm tissue culture dish containing growth medium. 

After 24 hours the transfection was done by using PolyfectTM transfection kit following the 

manufacturer’s instructions. The progress of the transfection was monitored by the 

fluorescence microscopy (by detecting GFP expression). Adenovirus producing AD293 cells 

were washed with PBS and harvested by scraping the cells in 0.5 ml of PBS. The cell 

suspension was subjected to four rounds of freeze/thaw by alternating the tubes between dry 

ice-methanol bath and 37 °C water bath. The cellular debris were collected by 

microcentrifugation at 12000 g for 10 min at room temperature. The supernatant obtained 

was used as the primary virus stock. The titer (pfu/ml) was determined by plaque assay 

using agarose overlay. Similarly a control expressing GFP (Ad.GFP) was generated with the 

shuttle vector. Fig. 2.1 represents the schematic presentation of the generation of the 

adenoviral vectors. 
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Fig. 2.1 Schematic outline of the generation of adenoviral vector using AdEasy system  

The gene of interest (sorcin) was first cloned in reverse direction into shuttle vector pAdTrack-CMV. The 
resultant plasmid was linearized by digesting with Pme I and subsequently cotransformed into E.coli BJ5183 
cells with an adenoviral backbone plasmid pAdEasy-1. Recombinants were selected for kanamycin resistance 
and recombination was confirmed by multiple restriction endonuclease analyses. Finally the linearized 
recombinant plasmid was transfected into adenovirus packaging cell line (AD293 cells). The “left arm” and 
“right arm” represents the regions mediating homologous recombination between the shuttle vector and 
adenoviral backbone vector. Modified from Tong-Chuan He et al. (1997). 
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2.2.2 Isolation of adult rat cardiomyocytes (ARC) 

The isolation of cardiomyocytes was done by the enzymatic digestion technique. Male wistar rats (age 

10-12 weeks, 220 – 250 g) were anaesthetised by diethyl ether followed by cervical dislocation. Hearts 

were quickly excised, aorta cannulated and perfused with the calcium free oxygenated (95% O2 + 5% 

CO2) powell buffer on the Langendorff perfusion apparatus for 5 minutes at 37 °C at a constant flow rate 

of 8 ml/min. The heart was retroperfused with collagenase buffer (collagenase II, Biochrome), 26-30 mg 

(210 U/mg) in 40 ml oxygenated powell buffer with 31.25 μM CaCl  at a constant temperature of 37o
2  C 

for 15 to 20 min taking care that the buffer was oxygenated constantly. The heart was taken from the 

cannula and gently pipetted up and down in collagenase buffer with a blunt ended 10 ml pipette till all the 

cardiomyocytes were loosened, followed by centrifugation at 300 g for 3 min at room temperature, the 

supernatant was aspirated and the pellet (cardiomyocytes) was filtered through a nylon filter (200 μm) 

and adjusted to a volume of 10 ml with 4% BSA. The cardiomyocytes were subjected to increasing Ca2+ 

concentration in order to get calcium stable cardiomyocytes. Pre calculated volume of 100 mM CaCl2 was 

added in four gradual steps at an interval of 3 min each to achieve the final Ca2+ concentration 1.8 μM, 

followed by final centrifugation step 300 g for 3 min at room temperature. Supernatant was aspirated and 

the cardiomyocyte pellet was resuspended in 10 ml of culture medium. Cardiomyocyte count was 

calculated with neubaeur chamber. The cardiomyoctes were plated on 10.5 cm laminin precoated culture 

plates for protein preparation and on the laminin precoated 18 mm and 12 mm glass coverslips for 

contractility measurement and immunocytochemistry, respectively. Fig. 2.2 depicts the scheme of  

isolation of the cardiomyocytes . 

2.2.3 Transfection of cardiomyocytes 

The isolated cardiomyocytes were transfected with the Ad.as.SOR.GFP with 100 moieties of infection 

(MOI) and Ad.GFP as control (MOI 100) after three hours of isolation and allowing the cells to adhere to 

the laminin coated plates. After incubation with the virus for 12-20 h the media was changed. Successful 

transfection of cardiomyocytes was determined by monitoring the culture plates for green fluorescence 

using Axiovert microscope (Zeiss) with an excitation wavelength 473 nm by a fluorescence filter. 

Expression of green fluorescence protein marker by the cardiomyocytes verified the successful 

transfection. The cardiomyocytes were cultured for 48 h before protein preparation and other functional 

studies. 
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Fig. 2.2 Schematic presentation of the isolation of adult rat cardiomyotes. Fig. 2.2 Schematic presentation of the isolation of adult rat cardiomyotes. 

The aorta from the excised rat heart was cannulated and perfused with the Ca2+ free Powell buffer for 5 min 
followed by retroperfusion of collagenase II buffer for 15 to 20 min. All the buffers and solutions were 
constantly oxygenated (95% O2 + 5% CO2) and kept at 37 °C in the water bath.  

The aorta from the excised rat heart was cannulated and perfused with the Ca2+

  

 free Powell buffer for 5 min 
followed by retroperfusion of collagenase II buffer for 15 to 20 min. All the buffers and solutions were 
constantly oxygenated (95% O2 + 5% CO2) and kept at 37 °C in the water bath.  

  

2.2.4 Protein preparation from the transfected cardiomyocytes 2.2.4 Protein preparation from the transfected cardiomyocytes 

Cardiomyocytes were cultured on laminin coated plates for 48 h post transfection with 

Ad.as.SOR.GFP or Ad.GFP. Culture medium was changed and the cells were washed with 

PBS, 1 ml of lysis buffer (with complete mini EDTA free tablet / 10 ml of lysis buffer) was 

added to the culture plate and allowed to stand at room temperature for 5 min, the cells were 

scraped with the cell scraper and homogenised by using the ultrasonic homogeniser with two 

pulses for the whole cell homogenates. The cardiomyocyte homogenates were pooled from 

different preparations to scale up the amount of protein. The amount of protein was 

quantified by Bradford assay and stored in aliquots at –80 °C.  

Cardiomyocytes were cultured on laminin coated plates for 48 h post transfection with 

Ad.as.SOR.GFP or Ad.GFP. Culture medium was changed and the cells were washed with 

PBS, 1 ml of lysis buffer (with complete mini EDTA free tablet / 10 ml of lysis buffer) was 

added to the culture plate and allowed to stand at room temperature for 5 min, the cells were 

scraped with the cell scraper and homogenised by using the ultrasonic homogeniser with two 

pulses for the whole cell homogenates. The cardiomyocyte homogenates were pooled from 

different preparations to scale up the amount of protein. The amount of protein was 

quantified by Bradford assay and stored in aliquots at –80 °C.  

  

 



 

 

2.2.5 Extraction of transcription factors from transfected cardiomyocytes 

Isolation of nuclear extract and transcription factor was performed based on the protocol described earlier 

(Andrews et al., 1991). The procedure utilizes the hypotonic lysis followed by high salt extraction of 

nuclei. Briefly, 48 h post transfection, cardiomyocytes were scraped into 1.5 ml of cold PBS. Cells were 

pelleted and resuspended in 400 µl cold buffer A (10 mM HEPES-KOH pH 7.9 at 4 0C, 1.5 mM MgCl2, 

10 mM KCl, 0.5 mM dithithreitol, 0.2 mM PMSF). Cells were allowed to swell on ice for 10 min and 

then vortexed for 10 seconds. Samples were centrifuged and the supernatant discarded, the pellet was 

resuspended in 20-100 µl (according to starting number of cells) of cold buffer B (20 mM  HEPES-KOH 

pH 7.9 at 4 0C, 25% v/v glycerol, 420 mM NaCl, 1.5 mM  MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 

0.2 mM PMSF) and incubated on ice for 20 min for high-salt extraction. Cellular debris were removed by 

centrifugation for 2 min at 4 °C and the supernatant fraction (containing the DNA binding proteins) was 

stored at –70 °C for later use. 

2.2.6 Quantitative immunoblotting 

(a) SDS PAGE 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the discontinuous buffer system 

(Laemmli, 1970). Discontinuous polyacrylamide gel was prepared using glass plates of 10 cm x 7.5 cm 

dimensions and spacers of 0.5 mm thickness. The composition of resolving and stacking gels is given in the 

table 2.2. 

            Table 2.2 Composition of stacking and separating gels for SDS PAGE 

component stacking gel 4% separating gel 8% 

AA/Bis (30 %/0.8 %) 4.1 ml 7.2 ml 
1.5 M Tris pH 8.8 - 10.2 ml 
0.5 M Tris pH 6.8 3.7 ml - 
H O 22.3 ml 9.2 ml 2

300 µl 300 µl 10% SDS 
300 µl 95 µl 10% APS 
41 µl 24 µl TEMED 

   

Samples were mixed with suitable volumes of loading buffer, denatured by heating at      95 ºC for 5 min 

and loaded into the wells of the stacking gel. A prestained molecular weight marker (kaleidoscope) was 

run simultaneously on adjacent lane as a standard to establish the apparent molecular weights of proteins 

resolved on SDS-PAGE. Electrophoresis was performed in 1x gel-running buffer at a constant voltage of 

100-150 V until the bromophenol blue dye front had reached the bottom edge of the gel or had just run 

out of the gel.  

 



 

(b) Transfer of protein to PVDF membrane 

Proteins resolved on the gel were transferred electrophoretically to the PVDF membrane in Biorad 

blotting chamber in transfer buffer at constant current of 100 mA overnight at 4 °C. Membranes were 

checked by Ponceau S staining for complete transfer of protein. 

(c) Ponceau-S staining of PVDF membrane 

To check the transfer of proteins into the PVDF membrane, the membrane was stained in 10-15 ml of 

Ponceau S solution for 2-5 min at room temperature. After staining, the membrane was removed from the 

Ponceau S solution and rinsed with water to destain until bands of proteins were visible and the 

background was clear. The membrane was scanned for the documentation and washed with TBS to 

completely remove the stain. 

(d) Immunodetection of the membrane bound protein 

PVDF membranes with bound proteins were blocked with 5% low fat milk powder in TBST for two 

hours followed by washing in TBST three times, 10 min each. The membrane was incubated overnight at 

4 °C with primary antibody diluted appropriately in TBST followed by washing three times of 10 min 

each in TBST buffer. The membrane were further blocked with 5% low fat milk in TBST for 20 min 

followed by washing in TBS. Appropriately diluted secondary antibody conjugated with horseradish 

peroxidase was added to the membrane and incubated at room temperature for one hour. Unbound 

antibody was rinsed in TBST buffer two times for 10 min and subsequently rinsed in TBS for 10 min. The 

reaction was detected using an enhanced chemiluminescence detection system (ECL kit, Amsersham). 

(e) Developing the films 
Signal from bound antibody was detected using an enhanced chemiluminescence assay by capturing the 

signal on X-ray film. Intensity of the bands was quantified by densitometric measurement with biorad 

XL-10 densitometer. Calsequestrin was used as the loading standard. 

2.2.7 Immunofluorescence of transfected cardiomyocytes 
Cardiomyocytes transfected with Ad.as.SOR.GFP or Ad.GFP were cultured for 48 hours on 12 mm 

laminin precoated coverslips. Cardiomyocytes were fixed with a freshly prepared 4% paraformaldehyde 

solution in PBS for 15 min and subsequently permeabilised with 1% Triton-X 100 in PBS for 4 min. 

Permeabilized cardiomyocytes were washed three times with PBS followed by blocking with 1% normal 

goat serum (NGS) for 30 min to avoid nonspecific binding. The blocked cardiomyocytes were incubated 

with the primary antibody diluted in PBS (1:500) for 60 min and washed four times with PBS before 

applying the fluorochrome conjugated secondary antibody in PBS 1:2000) for 60 min. Cells were washed 

three times with PBS to remove unbound secondary antibodies and incubated with bisbenzimide (0.1 

µg/ml) for 5 min to stain the nuclei, washed twice to remove unbound bisbenzimide. Cover slips 

containing stained cells were carefully lifted from wells and mounted on histoslides with DAKO 

mounting medium. The steps after adding secondary antibody were performed in dark.   

Image analysis  

The immunofluorecence was observed with an inverted fluorescence microscope (Axiophot, Zeiss). 

 



 

Digital images obtained were acquired with metamorph software and processed using Adobe 

Photoshop software. 

2.2.8 Contractility measurement in the transfected cardiomyocytes 

Contractility measurement was done by using the single cell investigation system based on the edge 

detection technique. A high speed video camera was attached to the objective to acquire the picture on 

the monitor, the cardiomyocytes were aligned on the longitudinal axis by turning the stage manually. 

The laminin coated glass plate with transfected cardiomyocytes were fixed on the perfusion chamber.  

The perfusion chamber was maintained at a constant temperature of 30 °C, the chamber was connected 

to a perfusion tube for the continuous flow of the buffer and a peristaltic pump was used to drain the 

excess fluid. The observation was done using the inverted microscope (Diaphot 200, Nikon, Japan). 

The microscope was attached to a computer which utilized the contraction transient software program 

to analyse the contractility in transfected cardiomocytes. Cardiomyocytes were field stimulated by 

using two platinum electrodes connected to a modulator. Tyrode solution perfused the cuvette at the rate 

of 0.5 ml /min at a constant temperature 30 °C maintained in the cuvette. The cells were stimulated for 

an acclimatisation phase for 5 min at 50 V at a frequency of 0.5 Hz.  

For the force frequency measurements, the frequency was increased from 0.25 Hz, 0.5 Hz, 1 Hz, 2 Hz, 

3 Hz and 5 Hz gradually.For studying the effect of β-adrenergic stimulation, transfected 

cardiomyocytes were stimulated at 0.5Hz and measurements were taken over increasing concentration 

of forskolin ranging from 0.1μM to 1 μM. Fig. 2.3 depicts the schematic diagram of the single cell 

investigation system used for the contractility measurements. 
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Fig. 2.3 Schematic presentation of the cardiomyocyte contractility measurement setup 

The coverslips with transfected cardiomyocytes were fixed on the cuvette on stage of the inverted microscope 
Diaphot 200 (Zeiss) attached to the perfusion chamber driven by a peristaltic pump. The high-speed video camera 
acquired the picture on the monitor through which the cells can be aligned manually on edge detection system that 
records the contraction of the cardiomyocyte and sends the signal to the attached computer, which analyse and 
records the signal in terms of contractility using contraction transient software program. 

 

2.2.9 Reverse transcriptase-PCR 

(a) RNA isolation from the isolated cardiomyocytes 

mRNA from the transfected cardiomyocytes was isolated with peqGOLD RNA pureTM according to 

manufacturer's instructions. Briefly, the cell suspension from isolated cardiomyocytes was mixed with 

peqGOLD RNA pureTM  . The suspension was incubated at room temperature for 5 min in order to disassociate 

the nucleotide complex followed by adding 0.2 ml chloroform. The tubes were gently vortexed for 5 sec. The 

samples were incubated at room temperature for 3-10 min and centrifuged for 5 min at 12,000 g, which led to 

the separation in three different phases, yellow phase of the phenol- chloroform in bottom, aqueous phase on 

the top and an interphase. The RNA was present in the aqueous phase while the DNA and proteins were 

present in the interphase and phenol phase, respectively. The aqueous phase containing total RNA was 

transferred into a new microfuge tube, RNA precipitated with isopropanol, incubated at room temperature for 5 

min and then centrifuged for 10 minutes at 20,000 g at 4 °C. The supernatant was discarded and the pellet 

 



 

washed with 1 ml of 75% ethanol, vortexed and centrifuged at 12000 g (4 °C). The RNA pellet was dried at 

room temperature, resuspended in RNase free water, and stored at -80 °C for further use. 

(b) RNA formaldehyde-agarose gel electrophoresis 

Denaturing formaldehyde-agarose electrophoresis was used for separation and resolution of 

RNA to check the quality of isolated RNA (Lehrach et al., 1977). 20 µg of purified total 

RNA was mixed with an equal volume of RNA-sample buffer and denatured by heating at 

65 ºC for 10 min. After denaturation, the sample was immediately transferred to ice and 

RNA loading buffer was added. Thereafter, the RNA samples were loaded onto a denaturing 

formaldehyde-agarose gel. 
(c) Preparation of formaldehyde-agarose gel  

For a total gel volume of 150 ml, 1.8 g agarose (final concentration 1.2%) was initially boiled with 111 ml 

DEPC-H2O in an Erlenmeyer flask, cooled to 60 ºC, 15 ml of the RNA gel casting buffer, pH 8.0 and 24 

ml of a 36% formaldehyde solution were added. The agarose solution was mixed by swirling and poured 

into a sealed gel casting chamber of the desired size. After the gel was completely set, denatured RNA 

samples were loaded and the gel was run in 1x RNA gel running buffer, pH 7.0, at 100 V until the 

bromophenol blue dye had migrated the appropriate distance through the gel, the gel was examined under 

UV light at 302 nm and was documented using the gel-documentation system.  

 

10 x RNA gel casting buffer                    10 x RNA gel running buffer   

200 mM MOPS                                        200 mM MOPS 

50 mM sodium acetate                             50 mM sodium acetate 

10 mM EDTA                                          10 mM EDTA 

pH 8.0                                                       pH 7.0  

RNA sample buffer                                 RNA loading buffer

50% v/v formamide                                50% w/v sucrose, RNase free 

6% v/v formaldehyde                              0.25% w/v bromophenol blue 

in 1x RNA-gel-casting buffer                  in DEPC-H O 2

 

(d) Generation of cDNA from isolated RNA 
cDNA was generated using the MLV revert aid according to the manufacturer’s protocol. Briefly, 1 µl 

random primer, 1 µg RNA and RNase free water (to make a final volume of 20 µl) was mixed in the 

microfuge tube, incubated the reaction mixture at 65 ºC for 10 min followed by incubating the tube on ice 

for 5 minutes. 4 µl first strand buffer, 2 µl dNTP (each), 2 µl DTT (0.1 M), 1 µl RNase inhibitor (5 units 

/µl) and 1 µl MLV-reverse transcriptase were subsequently added in the reaction tube. Reaction mixture 

was mixed well, incubated at 37 ºC for 1 h and the reaction stopped by heating the reaction mix to 95 ºC 

for 10 min to inactivate the reverse transcriptase. 

 



 

(e) Polymerase chain reaction (PCR) 
PCR was done by using specific primers for sorcin, phospholamban, FKBP12.6, calcineurin, SERCA2a, 

ANF, BNP, β-MHC, NF-ATC3, and GATA-4. A standard PCR programme is shown in Table 2.3. The PCR 

products were analysed on 2% agarose gel electrophoresis. GAPDH was used as the loading standard.  

 

                   Table 2.3  A standard PCR programme  

Step Cycles Temperature Time 

Initial 
denaturing 1 95 oC 1min 

Denaturing 25-35 95 oC 30 s 

Annealing 25-35 *calculated 60 s 

Elongation 25-35 68 oC 1- 5  min 

Final elongation 1 68 oC 10  min 

Cooling 1 4 oC  
            * as described in section 2.1.8 

 

2.2.10 Calcineurin activity measurement in transfected cardiomyocytes 

Calcineurin activity was measured by using Promega’s non-radioactive Ser/Thr phosphatase assay 

system. The difference in absorbance arising due to the phophatase activity between the test 

(Ad.as.SOR.GFP transfected cardiomyocytes) and control group (Ad.GFP transfected cardiomyocytes) 

was used as the parameter of calcineurin activity.  Calmodulin and NiCl2 were used to ensure that 

phosphatase activity was attributed specifically to calcineurin. Assay was performed on the homogenized, 

transfected cardiomyocytes. Freshly prepared solution-A (20 mM PNPP, 0.5 mg/ml acetylated BSA, 50 

mM Tris pH 7.4) and solution-B (20 mM PNPP, 0.5 mg/ml acetylated BSA, 50 mM Tris pH 7.4, 1 mM 

NiCl , 10 µg/ml calmodulin were dispensed (95 µl/well) in 96 well micro-titre plates and incubated at 30 2

°C for 10 min. 5 µl suspension of properly diluted homogenzed samples were added in triplicates to the 

wells, enzyme dilution buffer was used as the control. The plates were incubated for 15 min at 30 °C and 

the absorbance was measured at 410 nm with ELISA reader. 

Activity of calcineurin was calculated according to the equation given below 

Calcineurin activity  (nmolp /min/µl) =    i

(assay volume)(dilution factor)(sample absorbance 410 nm–control absorbance 410 nm) 
(Sample volume )(reaction time)(extinct coefficient)(path length) 

 

 



 

Assay volume = 100 µl for 96 well plates 

Dilution factor = fold dilution of sample  

Sample volume = 5 µl for 96 well plates  

Reaction time = 15 min  

Extinction coefficient of p–nitrophenolate (pH 7.4) = 1.75 x 104 M-1cm –1) 

Path length = 0.32 cm for 96 well plate                                                                       

2.2.11 Isolation and purification of recombinant sorcin protein from pGEX 

2TK vector 

Isolation and purification of recombinant sorcin protein was performed utilizing sorcin human cDNA, 

cloned in pGEX2TK expression vector. Overnight culture of pGEX2TK containing sorcin cDNA 

transformed E.coli. was diluted to 1:10 and was incubated on a shaker (200 rpm) for 60 min at 37 °C. 

Sorcin expression was induced by adding 100 mM IPTG to a final concentration of 0.1 mM and incubating 

the culture for another 4-6 h. The cells containing sorcin was harvested by centrifugation at 5500 g for 15 

min. The cell pellet was lysed by freshly prepared lysozyme solution (20 mg/ml). 0.5 M EDTA, 100 mM 

PMSF and 10% Triton X-100 were added as proteinase inhibitors and detergent respectively. Sorcin was 

purified by affinity chromatography by using 1 ml of 50% slurry of glutathione agarose beads. Sorcin 

bound to the glutathione agarose beads was eluted by elution buffer (50 mM Tris pH 8.0, 5 mM reduced 

glutathione). The elute was run on 10% SDS gel and bands were visualized by coomassie staining. The 

purity of the obtained protein was confirmed by silver staining and western blot. Concentration of the 

purified sorcin was determined colorimetrically by Bradford protein estimation assay. 

2+2.2.12 Sarcoplasmic reticulum Ca  uptake   
2+The rate of Ca  uptake into cardiomyocyte homogenates was measured over the range 0.02-5 μM free 

Ca2+, similar to the intracellular Ca2+ changes occurring between systole and diastole (Frank et al., 2000). 

The cell lysate from transfected cardiomyocytes was incubated at 37 °C for 2 min in 40 mM EGTA, 11 

mM ruthenium red and appropriate concentrations of 45CaCl  to yield 0.02 to 5 μM free Ca2+
2 . The 

reaction was started by adding 5 mM ATP. Ca2+ uptake was measured at 30, 60 and 90 s by adding an 

aliquot of the reaction mixture to the pre-soaked (in wash buffer) filter discs (pore size: 0.45 μm) and 60 

μl reaction mixture to the standard vial. The filter discs were washed twice with 2 ml of wash buffer. The 

excess wash buffer was filtered and the dried filters discs were kept in the scintillation vials containing 

9.5 ml of aqueous scintillation fluid (Amersham). The scintillation count was measured by liquid 

scintillation analyzer 1600 TR Packard. The uptake rates were determined by using the least square linear 

regression analysis over the time range measured and the obtained initial uptake rates were plotted as a 

function of each Ca2+ concentration.  

2.2.13 Calcium transient measurement in transfected cardiomyocytes 

To investigate whether the reduced expression of sorcin alters the cytosolic Ca2+ cycling, intracellular 

 



 

Ca2+ transients were measured. Cardiomyocytes were cultured on self made culture dishes with glass 

cover slip bottom. After 48 h of transfection cardiomyocytes were incubated with X- rhod-1 AM 

(acetomethoxy) dye for 10 min at room temperature. Media was changed and the cells were incubated 

at 37 °C for 30 min in a humified atmosphere with 5% CO2. The dishes were fixed manually on the 

stage of  Laser  scanning microscope, LSM 510 META and the cardiomyocytes were stimulated at 40 

V, 50 Hz.  The line scans along the longitudinal axis of the cardiomyocytes were recorded using a time 

series of 1.5 ms for 1500 times. Only the healthy, rod shaped, beating cardiomyocytes were included 

in the study. Rhodamine fluorescence was normalized, Ca2+ transient amplitude, time to peak and time 

to 80% decay was calculated. 

2.2.14 Catheter based adenoviral gene delivery into rat hearts  

The adenoviral injection was performed as described by Ding et al (2004). Briefly, 6 male 

wistar rats were used in each group, animals were intubated and anaesthetized with 

isoflurane (1.5% v/v), a 3F balloon was placed into the right atrium and a 2F lumen balloon 

catheter was placed into the aortic root. After baseline measurements of physiological 

variables a transient cardiac arrest was induced and 500 μl (1.0-1.2 x 1011) of adenoviral 

suspension was applied by gently filling the coronary vascular system. After 3 min the 

animals were resuscitated via injection of adrenaline. Using the above technique a 

transfection rate between 35-60% was achieved. 

2.2.15 Echocardiography and morphological assessment  

Echocardiography was performed on anaesthetized rats before adenoviral gene delivery to 

the hearts and after 7 and 12 days. Cardiac function was assessed using a 10 Mhz 

echocardiography head. M-Mode and 2-D echocardiography were digitalized. End-systolic 

diameter, end-diastolic diameter and fractional shortening were evaluated from both M-

mode and 2-D mode echocardiography. After 14 days of adenoviral transfection, the rats 

were sacrificed and the body, heart, liver and lung weights were obtained. Mid cavities 

slices from the transfected rat hearts was used for histological assessment. 

2.2.16 Statistical analysis 

Data are expressed as means ± SEM, and statistical significance was determined with students’s t-test for non-

paired observations. For the pharmacological effects of forskolin and time dependent changes in fractional 

shortening in the echocardiographic studies 2-way ANOVA was used. A p<0.05 was considered significant 

 

 

 

 



 

3. Results 
3.1 Generation and amplification of adenoviral vectors 
Adenovirus serotype 5 vectors for antisense sorcin with GFP expression and a control vector comprising only 

of GFP driven by cytomegalovirus promoter (CMV) was constructed. Human sorcin cDNA was cloned in the 

reverse orientation in multiple cloning site of pAdTrackCMV shuttle vector (9.2 kb) (Fig. 3.1-A). The 

pAdTrackCMV vector containing sorcin cDNA was linearized with Pme I. pAdEasy vector and linearized 

pAdTrackCMV vector containing sorcin cDNA were cotransformed in BJ5183 cells. Homologous 

recombination event in BJ5183 cells resulted in recombinant Ad.plasmid. Positive clones were confirmed by 

Pac I digestion (Fig. 3.1-B).  
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Fig. 3.1 Generation of the Adenoviral vectors 

(A) Human sorcin cDNA (in reverse orientation) was cloned in multiple cloning site of the shuttle vector pAd-
TrackCMV using Hind III and Xho I restriction sites. The orientation of the fragment was confirmed by restriction 
digestion. Upper band represent the 9.2 kb shuttle vector pAd-TrackCMV and lower band is 600bp sorcin cDNA. 
pAd-TrackCMV containing sorcin cDNA (pAd-TrackCMV-Sorcin) was linearized by using restriction endonuclease 
Pme I. The linearised pAd-TrackCMV-sorcin was cotransformed with pAdEasy vector into BJ5183 cells to produce 
recombinant adenoviral plasmid by homologous recombination. (B) Positive clones were checked with Pac I 
digestion. (C) Linearized recombinant Ad plasmid was transfected into adenovirus packaging cell line AD 293 cells. 
(D) GFP expression was visualized by fluorescence microscopy at 2 days. Only few cells were positive for GFP 
expression at day 2. (E) Comet like adenovirus producing foci was clearly visible at day 5. 
 
The linearized plasmid was used to transfect AD293 cells (Fig. 3.2-C). Progress of the transfection was 

monitored by GFP expression (Fig. 3.1-D). After day 2 of transfection only few cells were positive for GFP 

expression and after day 5 the virus producing foci were visible as comet shaped (Fig. 3.1-E).  

 



 

3.2 Optimization of transfection with adenoviral vectors 
The generated adenoviral vectors were optimized for transfection efficiency in adult rat cardiomyocytes prior 

to the physiological and biochemical experiments.  

Isolated cardiomyocytes were transfected at multiplicity of infection (MOI) of 1, 10, 50, 100 and 250 using 

Ad.GFP and Ad.as.SOR.GFP. Transfection efficiency of 95% or above was achieved at 100 MOI in both the 

vectors without any visible signs of toxicity (Fig. 3.2-A). Expression of GFP observed 48 h post transfection 

was used as a parameter of successful transfection (Fig. 3.2-B). 100 MOI was utilized for transfection 

throughout the study with isolated cardiomyocytes.  
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Fig.  3.2 Adult rat cardiomyocytes transfected with Ad.as.SOR.GFP  
(A) Phase contrast image of cardiomyocytes transfected with 100 MOI of Ad.as.SOR.GFP 48 h post transfection. 
(B) Successful transfection was monitored by the expression of GFP visualized by fluorescent microscope at 473 
nm. A transfection efficiency of higher than 95% was achieved without any visible signs of toxicity. All the 
experiments with isolated and cultured cardiomyocytes were carried out by using an MOI of 100. 
 

3.3 Downregulation of sorcin by Ad.as.SOR.GFP 
Isolated adult rat cardiomyocytes after 48 h of transfection with Ad.as.SOR.GFP were evaluated for 

downregulation of sorcin at mRNA and protein level. Ad.GFP was used as control.  

3.3.1 Downregulation of sorcin mRNA 

 



 

Transfected cardiomyocytes were cultured for 48 h and harvested for total RNA. Purity and integrity of RNA 

was determined spectrophotometrically by measuring the ratio of absorbance at 260/280 as well as 

electrophoretically by using (1.2%) agarose - formaldehyde gel (Fig 3.3-A). Expression of GAPDH was used 

as standard to ensure uniform loading (Fig 3.3-B).  RT-PCR using specific primers for sorcin revealed 74.5 % 

decrease in the sorcin mRNA in the cardiomyocytes transfected with Ad.as.SOR.GFP as compared to the 

Ad.GFP transfected cardiomyocytes (Fig 3.3-C & D). 

Fig 3.3 RT-PCR to evaluate downregulation of sorcin mRNA  

Total RNA was isolated from transfected cardiomyocytes 48 h post transfection. (A) Integrity and purity of RNA 

was verified with agarose-formaldehyde gel. (B) Expression of GAPDH was used as the loading control. (C) 
Downregulation of sorcin mRNA was revealed by RT-PCR at mRNA level in Ad.as.SOR.GFP transfected 
cardiomyocytes as compared to control Ad.GFP transfected cardiomyocytes (D) Densitometry analysis exhibited a 
significant (p<0.05)  decrease in sorcin mRNA levels in Ad.as.SOR.GFP transfected cardiomyocytes (318.5 ± 147.9 
densitometric units (DU)) as compared to control, Ad.GFP transfected cardiomyocytes (1250.7 ± 109.4 DU). 

* p < 0.05 

 

3.3.2 Downregulation of sorcin protein 
To analyze whether the decrease in sorcin mRNA is followed by reduction of sorcin protein expression, 

transfected cardiomyocytes were evaluated by immunofluorescence staining and western blot. 

 

 
 
 
 
 

 



 

3.3.2.1 Immunofluorescence staining of transfected cardiomyocytes 

Transfected cardiomyocytes were fixed with 4% PFA after 24 and 48 h of transfection. Sorcin protein was 

detected by using commercially available monoclonal antibody (Zymed). DNA specific fluorochrome DAPI 

(blue) was used to visualize the nucleus. A significant decrease in the sorcin protein was observed after 24 h 

(visualized as red), which was further decreased after 48 h (Fig. 3.4).  
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Fig 3.4 Immunofluorescence staining of the transfected cardiomyocytes  

Cardiomyocytes were fixed with 4% PFA after 24 and 48 h of transfection. Immunofluorescence staining was 
performed using antibody directed against sorcin (red) and nucleus specific dye DAPI (blue). GFP (green) 
expression was monitored as the control for successful transfection. Ad.as.SOR.GFP transfected cardiomyocytes 
after 24 and 48 h showed significant decrease in protein as judged by decrease in the intensity of fluorescence in 
comparison to the control Ad.GFP transfected cardiomyocytes. 

3.3.2.2 Immunoblotting of transfected cardiomyocytes 
Transfected cardiomyocytes were lysed using lysis buffer containing protease inhibitors. Protein concentration 

was measured colorimetrically, using Bradford assay. Calsequestrin, a house keeping gene was used for the 

normalization of protein levels and to ensure uniform loading (Fig. 3.5-A). The cell lysate was analyzed by 

western blot using antibody raised against sorcin. Significant reduction in the amount of sorcin protein was 

observed in the cell lysate of Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control (Fig. 3.5-

 



 

B).  Densitometric analysis revealed 53.4% decrease in sorcin content in Ad.as.SOR.GFP transfected 

cardiomyocytes as compared to the control (Fig 3.5-C). 
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Fig 3.5 Evaluation of sorcin expression in Ad.as.SOR.GFP transfected cardiomyocytes by western blot  

Cell lysate obtained from cardiomyocytes 48 h post transfection were analyzed for sorcin expression by western 
blot. (A) Protein levels were normalized by using calsequestrin expression. (B) Western blot using antibody directed 
against sorcin revealed significant reduction in the sorcin protein in Ad.as.SOR.GFP transfected cardiomyocytes as 
compared to control. (C) Densitometric analysis revealed a significant reduction in the sorcin protein levels 
(Ad.as.SOR.GFP: 379.0 ± 53.7 DU as compared to the Ad.GFP: 708.5 ± 29.8 DU; *p < 0.05) n = 6. 
 

3.4.1 Measurement of contractility in transfected 
cardiomyocytes 
To investigate the effect of downregulation of sorcin on contraction and relaxation properties single cell 

shortening of Ad.as.SOR.GFP and Ad.GFP transfected cardiomyocytes was measured using a video edge 

detection system, 48 h after transfection. Cardiomyocytes included in the study displayed characteristic rod 

shaped appearance, clear striations and unblebbed membranes. 
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Fig 3.6 Measurement of fractional shortening in transfected cardiomyocytes  
Transfected cardiomyocytes were investigated for fractional shortening on single cell edge detection system attached 
to a high speed video camera. (A) Cells were visualized on the screen attached to the inverted microscope to fix the 
edges of the cardiomyocytes to measure the fractional cell shortening at a stimulation frequency of 0.5 Hz. (B) 
Representative tracing of fractional shortening in Ad.as.SOR.GFP transfected (red) and Ad.GFP transfected (black) 
cardiomyocytes. Significant difference in the amplitude of cell contractility was observed in Ad.as.SOR.GFP 
transfected cardiomyocytes as compare to the Ad.GFP transfected cardiomyocytes.  
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Fig 3.7 Statistical analysis of fractional cell shortening in transfected cardiomyocytes 

Cell shortening (fractional shortening %) was analyzed in the transfected cardiomyocytes. The Ad.as.SOR.GFP 
transfected cardiomyocytes showed statistically significant decrease in the cell shortening (%). Ad.as.SOR.GFP (2.1 
± 0.25 %) exhibited a decrease of 43% in fractional cell shortening as compared to Ad.GFP (4.3 ± 0.55 %). Values 
presented are the ± SEM of 4 different experiments (n = 24); *p < 0.05.  
 

(Fig 3.6-A). Cardiomyocytes were field stimulated at the basal frequency of 0.5 Hz and cell shortening (% 

 



 

fractional shortening) was measured. Fig 3.6-B depicts a typical cell shortening tracing from Ad.GFP (black) 

and Ad.as.SOR.GFP (red) transfected cardiomyocytes A significant depression in the cell shortening was 

observed in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP transfected 

cardiomyocytes. Ad.as.SOR.GFP (4.3 ± 0.5 %), antisense sorcin transfected cardiomyocytes showed 

statistically significant 48.3% depressed amplitude of the cell shortening as compared to Ad.GFP (2.1± 

0.25%); *p<0.05, n = 24 (Fig 3.7). 

3.4.2 Intracellular Ca2+ transient measurement in 
cardiomyocytes 
To determine whether depletion of sorcin protein affects the calcium transients in intact cardiomyocytes 

intracellular Ca2+ transients were measured. Transfected cardiomyocytes were cultured on laminin coated glass 

bottomed culture dishes (Fig 3.8-A), loaded with rhodamine dye X-rhod 1 (Fig 3.8-B), stimulated at basal 

frequency of 1 Hz and recorded the line scans along the longitudinal axis of cardiomyocyte (Fig 3.8-C) with a 

time series of 1500 for 1.5 ms using laser scanning microscope (Zeiss).  
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Fig 3.8 Intracellular Ca2+

A B

C 

D

-transient measurement in transfected cardiomyocytes  

Transfected cardiomyocytes were cultured on laminin coated glass bottomed dishes. (A) Expression of 
GFP was monitored for the successful transfection. (B) Cardiomyocytes were incubated with X-rhod-1 
(rhodamine based dye) and proper loading was confirmed. (C) Cardiomyocytes were field stimulated at a 
stimulation frequency of 1 Hz and line scans were recorded along the longitudinal axis. (D) 
Representative line scans of a stimulated Ad.GFP transfected cardiomyocyte and corresponding calcium 
transient recording. 
 
Fig 3.8-D presents a typical line scan and recorded calcium transients in an Ad.GFP transfected 

cardiomyocyte. Recorded calcium transients were collected by using software LSM510 META.  Fig 3.9-A 

depicts a filled spectrum image of calcium transients recorded in Ad.GFP transfect cardiomyocyte. The data 

obtained was analyzed; the amplitude of the [Ca2+]  transients in  Ad.as.SOR.GFP transfected cardiomyocytes I 

 



 

was 33.1 % lesser as compared to the control (Fig 3.9-B).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 transients.   Fig 3.9 Intracellular Ca2+

The line scans of the transfected cardiomyocytes were recorded and data was collected using software LSM 510 
META® (A). Representation of a filled spectrum transient recorded in an Ad.GFP transfected cardiomyocyte. (B) 
Ad.as.SOR.GFP transfected cardiomyocytes exhibited significantly lowered amplitude of whole cell transient (6.70 
± 2.8 normalized fluorescent units, NFU; *p< 0.05) as compared to Ad.GFP (20.2 ± 9.0 NFU; *p< 0.05) transfected 
cardiomyocytes. (C) Time to reach maximum amplitude (T to Peak) was significantly increased in antisense SOR 
transfected cardiomyocytes as compared to control (68.0 ± 20.4 ms vs. 44.2 ± 13.1 ms; *p< 0.05) (D) Along with 
the decreased amplitude and increased time to peak , the relaxation was also significantly prolonged as evident by 
the significant increase in T 80% in antisense SOR transfected cardiomyocytes (515.8 ± 104.9 ms) as compared to 
Ad.GFP transfected cardiomyocytes (220.9 ± 40.4 ms) The cardiomyocytes included in the study were from four 
different myocyte isolations , n = 25; *p < 0.05. 
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Time taken to reach the maximum amplitude, Time to peak was significantly increased 
in the Ad.as.SOR.GFP transfected cardiomyocytes showing an increase of 53.8 % as 
compared to the Ad.GFP transfected cardiomyocytes (Fig 3.9-C), Decreased amplitude 
of transient and increased time to peak (T to peak) was accompanied by significantly 
prolonged transients in the Ad.as.SOR.GFP transfected cardiomyocytes, evident from 
133.4% increase in the relaxation time calculated as T-80% (Fig 3.9-D). All the above 
three parameters described were statistically significant (*p<0.05) n =25. 

3.4.3 Force-frequency relationship in transfected 
cardiomyocytes 
To analyze the effect of increasing stimulation frequency on the Ad.as.SOR.GFP transfected cardiomyocytes, 

the changes in contraction amplitude corresponding to the increasing frequency of stimulation (0.25 Hz to 5 

Hz) were recorded in field stimulated cardiomyocytes using a single cell edge detecting system. The increase 

in frequency of stimulation was associated with a negative force-frequency relationship in Ad.as.SOR.GFP 

transfected cardiomyocytes in contrast to control Ad.GFP transfected cardiomyocytes, which exhibited positive 

force frequency relationship. The force of contraction (FOC), judged by the cell shortening (% cell shortening) 

was significantly lower at stimulation frequencies ranging from 0.25 Hz to 5 Hz in Ad.as.SOR.GFP transfected 

cardiomyocytes as compared to control.  
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Fig 3.10 Force-frequency relationship in transfected cardiomyocytes. 
Transfected cardiomyocytes were cultured on 18 mm glass coverslips coated with laminin for 48 h, fixed the 
coverslips on the stage of Axiophot inverted microscope (Nikon) and field stimulated with increasing frequency 
rising from 0.25 Hz up to 5 Hz. Antisense SOR transfected cardiomyocytes showed a negative force-frequency 
relationship unlike the control Ad.GFP transfected cardiomyocytes, which exhibited a steady state force-frequency 
relationship with an increase in stimulation frequency, statistically significant difference in the cell shortening (%) at 
frequencies ranging from 0.25 Hz to 5 Hz was recorded.; *p<0.05. 
Significantly depressed cell shortening (in %) was observed in the Ad.as.SOR.GFP transfected cardiomyocytes 

at the baseline levels (0.25 Hz, *p<0.05) as compared to Ad.GFP transfected cardiomyocytes and was not 

augmented while increasing stimulation frequency (Fig. 3.10). The difference in cell shortening remained 

 



 

unchanged between Ad.GFP and the Ad.as.SOR.GFP transfected cardiomyocytes throughout all the 

frequencies measured (0.25 Hz to 5 Hz). 

 

3.4.4 Pharmacological interventions in transfected 
cardiomyocytes 
Binding of sorcin to the ryanodine receptor is influenced by beta-adrenergic stimulation upon protein kinase A 

dependent phosphorylation (Lokuta el al., 1997). To study the effect of beta- adrenergic stimulation on 

cardiomyocytes with decreased levels of sorcin expression, cardiomyocytes were subjected to stimulation with 

the adenylate cyclase stimulating agent forskolin. Ad.as.SOR.GFP transfected cardiomyocytes exhibited 

significantly lower fractional shortening as compared to the Ad.GFP transfected cardiomyocytes in the absence 

of forskolin at baseline contractility (0.5 Hz). However, a dose dependent increase in the fractional shortening 

(in %) was observed in both the groups after adding forskolin ranging from 0.1 μm to 1 μm (Fig. 3.11). This 

indicated that the β-adrenergic responsiveness remained intact in the Ad.as.sor.GFP transfected 

cardiomyocytes. 
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Fig 3.11 Effect of forskolin on transfected cardiomyocytes 

To study the effect of beta-adrenergic stimulation on transfected cardiomocytes, cardiomyocytes were subjected to 
increasing concentration of forskolin at stimulation frequency of 0.5 Hz (each group n=13). Increased cell 
shortening was observed at all concentrations of forskolin in Ad.as.SOR.GFP as well as Ad.GFP transfected 
cardiomyocytes. However, significantly decreased baseline levels in cell shortening were observed in Ad.as.sor.GFP 
as compared to Ad.GFP transfected cardiomyocytes. 
 

3.5 Expression and purification of recombinant GST-sorcin 
Recombinant GST-sorcin was expressed in E.coli. BL21 using pGEX2TK expression vector by induction with 

100 mM IPTG as described in the method section. Maximum yield was obtained 4 to 6 h post IPTG induction. 

Expressed sorcin was purified by affinity chromatography by using glutathione agarose beads to the lysed 

pellet and eluting the bound protein by four successive elutions. Fig. 3.12-A shows the analysis of the elutes 

 



 

obtained on SDS-PAGE (10% gel) as visualised by coomassie staining, the purity of expressed sorcin was 

confirmed by silver staining. Maximum yield was obtained from the first elute (Fig. 3.12-B). Concentration of 

the purified sorcin was determined colorimetrically by Bradford protein estimation assay, the yield of the 

protein obtained was 500 to 600 μg per preparation. The purified sorcin was used in the sarcoplasmic 

reticulum Ca2+ uptake assays. 
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Fig. 3.12 Expression and purification of recombinant GST-sorcin 

(A) 10 μl aliquots obtained at time points ranging from 1 to 8 h post IPTG induction were loaded on 10% SDS gel to 
analyze the expression of sorcin. Gel was stained with coomassie blue to visualize the expressed protein. Maximum 
yield was obtained at 4 to 6 h post IPTG induction. The band representing sorcin expression was shifted up to 47kDa 
due to the 26 kDa GST tag bound to 21.6 kDa sorcin. (B) Expressed sorcin was purified by affinity chromatography 
by using glutathione agarose beads, silver staining was performed to verify the purity of the expressed protein. 
Highly pure sorcin was obtained with this method, maximum yield was obtained from the first elute. Lanes 1-4:  
elutes, M: Protein standard. 
 

3.6 Sarcoplasmic reticulum Ca2+ uptake   
To examine the effect of sorcin on Ca2+ uptake function in the sarcoplasmic reticulum, oxalate-facilitated Ca2+ 

uptake assays were performed. As shown in Fig, 3.13, decreased expression of sorcin resulted in decreased 

Ca2+ uptake rate. Furthermore, addition of 1 μM of sorcin increased the maximal rate of SR Ca2+ uptake 

indicating a shift towards the normal levels in the SR Ca2+ uptake. This implies that decreases expression of 

sorcin leads to diminished SR Ca2+ uptake rates. 
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2+ content Fig. 3.13.  Sorcin regulates sarcoplasmic reticulum Ca

The rate of Ca2+-uptake into cardiomyocyte homogenates was measured by oxalate-facilitated Ca2+ uptake 
assay over the range 0.02-5 uM free Ca2+ (pCa = 8-5). The uptake rates were determined by using the least 
square linear regression analysis over the time range measured and obtained initial uptake rates were plotted as 
a function of each Ca2+ concentration. Decreased expression of sorcin resulted in decreased oxalate facilitated 
Ca2+-uptake rate. Addition of 1 μM of sorcin increased the maximal rate of SR Ca2+ uptake  

3.7 Effect of down regulation of sorcin on expression of 
calcium handling proteins 
Excitation-contraction coupling is a coordinated sequence between intracellular calcium handling proteins. To 

 



 

investigate the effect of downregulation of sorcin on intracellular calcium handling proteins, expression of 

ryanodine receptors (RYR2), sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a), phospholamban (PLB), 

FK binding protein 12.6 (FKBP12.6) and triadin was evaluated in Ad.as.SOR.GFP transfected cardiomyocytes 

and compared to the control Ad.GFP transfected cardiomyocytes. GAPDH was used as the control in the RT-

PCR to ensure uniform loading and calsequestrin as the standard for uniform loading in western blot in all the 

experiments. 

3.7.1 Ryanodine Receptor 
The SR calcium release channel or ryanodine receptor (RYR2) is a key component in cardiac excitation-

contraction coupling. It facilitates the systolic release of Ca2+ to initiate force of contraction at the 

myofilaments. To analyze whether depletion of sorcin in Ad.as.SOR.GFP transfected cardiomyocytes affects 

the expression of RYR2, cell lysate from the transfected cardiomyocytes were subjected to immunoblotting 

utilizing anti-RYR2 antibody (Fig. 3.14-A). No significant alteration in the expression of RYR2 was observed. 

Signals obtained were analyzed densitometrically. Statistical evaluation revealed no significant difference in 

the expression of RYR2 in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control. (Ad.GFP 

3922.6 ± 788.6 DU vs. Ad.as.SOR.GFP 3484.4 ± 503.2 DU); n = 6, (Fig. 3.14-B). 

2+3.7.2 Sarcoplasmic reticulum Ca  ATPase 
Sarcoplasmic reticulum Ca2+ ATPase (SERCA) is the key channel protein for the diastolic calcium transport 

into the sarcoplasmic reticulum (SR). During diastole the majority of released Ca2+ is pumped back into the SR 

to prepare the subsequent contraction cycle. The expression of SERCA2a, the main isoform expressed in 

cardiac muscle was evaluated by RT-PCR and western blot in Ad.as.SOR.GFP transfected cardiomyocytes. 

The mRNA expression of SERCA2a was significantly downregulated in the adenoviral transfected 

cardiomyocytes (Fig. 3.15-A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 3.14 Expression of Ryanodine Receptors (RYR2) in the transfected cardiomyocytes 
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(A) Expression of Ryanodine Receptor (RYR2) was investigated in cell the lysates of Ad.as.SOR.GFP transfected 
cardiomyocytes by western blot, using antibody directed against RYR2. No significant difference was observed in 
the expression of RYR2 in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control (Ad.GFP). (B) 
Signals obtained were analyzed by densitometry followed by statistical analysis. No significant alteration in the 
expression of RYR2 in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP transfected 
control cardiomyocytes (Ad.GFP 3922.6 ± 788.6 DU vs. Ad.as.SOR.GFP 3484.4 ± 503.2 DU; n = 6, was detected. 
 
 

 

Densitometric analysis revealed a significant decrease in SERCA2a mRNA expression in Ad.as.SOR.GFP 

transfected cardiomyocytes as compared to the control (Ad.GFP 692.9 ± 142.5 vs. Ad.as.SOR.GFP 349.2 ± 

25.0); n = 6, *p<0.05 (Fig. 3.15-B). Western blot using the cell lysate from the transfected cardiomyocytes, 

utilizing antibody directed against SERCA2a ndicated significant downregulation in the SERCA2a protein 

expression (Fig. 3.15-C). Densitometric analysis revealed a statistically significant decrease in the SERCA2a 

protein levels in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control  (Ad.GFP 3539.5 

± 459.0 vs. Ad.as.SOR.GFP 2239.8 ± 429.4); n = 6, *p< 0.05 (Fig. 3.15-D). 

 



 

 

3.7.3 Phospholamban 
Phospholamban (PLN), a 52 amino acid sarcoplasmic reticulum protein regulates sarcoplasmic reticulum 

Ca2+ATPase activity by inhibiting SERCA2a in its unphosphorylated state. Phosphorylation through protein 

kinase A relieves this inhibition and activates the SR Ca2+-transport during stress response. The effect of 

depletion of sorcin on mRNA, protein and monomeric/pentameric assembly of PLB was investigated in 

Ad.as.SOR.GFP transfected cardiomyocytes. RT-PCR performed by using specific primers for PLB, followed 

by densitometric analysis, revealed no significant alteration in the mRNA level of PLB (Ad.GFP 656.6 ± 48.0 

DU vs. Ad.as.SOR.GFP 717.4 ± 42.2 DU); n = 6, (Fig. 3.16-A&B). Immunoblotting was performed on the cell 

lysate of the transfected cardiomyocytes utilizing anti-phospholamban antibody. Two distinct signals were 

obtained, one at ~ 6 kDa representing the monomeric and other at ~25 kDa yielding the pentameric or 

phosphorylated state of PLB (3.16-C). Densitometric analysis performed on the western blot signals indicated 

no significant difference in the monomeric (Ad.GFP 1340.9 ± 218.5 DU vs. Ad.as.SOR.GFP 1266.5 ± 413.1 

DU; n = 6, p< 0.05) or pentameric assembly of PLB (Ad.GFP 1854.1 ± 147.6 DU vs. Ad.as.SOR.GFP 1604.0 

± 289.7 DU); p< 0.05(Fig. 3.16-D&E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.15 Expression of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) in transfected cardiomyocytes 
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(A) The transfected cardiomyocytes were harvested for the total RNA preparation. RT-PCR was performed using 
specific primers for SERCA2a. A significant downregulation of SERCA2a mRNA was observed in the adenoviral 
antisense sorcin transfected cardiomyocytes as compared to the control. (B) Densitometric analysis revealed 
significant decrease in the SERCA2a mRNA levels in Ad.as.SOR.GFP transfected cardiomyocytes as compared to 
the Ad.GFP transfected cardiomyocytes (Ad.GFP 692.9 ± 142.5 vs. Ad.as.SOR.GFP 349.2 ± 25.0); n = 6, *p< 0.05. 
(C) Protein expression of SERCA2a was investigated in the cell lysate of the transfected cardiomyocytes by western 
blot utilizing an anti-SERCA2a antibody. Significant downregulation of SERCA2a protein was observed in the  
adenoviral antisense sorcin transfected cardiomyocytes as compared to the control. (D) Densitometric analysis of the 
western blot indicated a significant reduction in the SERCA2a protein level in Ad.as.SOR.GFP transfected 
cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes  (Ad.GFP 3539.5 ± 459.0 vs. 
Ad.as.SOR.GFP 2239.8 ± 429.4); n = 6, *p< 0.05. 
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Fig. 3.16 Expression of Phospholamban (PLB) in transfected cardiomyocytes  
(A) Cardiomyocytes after 48 h of transfection were harvested for the isolation of total RNA. RT-PCR using specific 
primers was performed. First three lanes present the PLB mRNA expression in Ad.GFP transfected cardiomyocytes 
and the next three lanes in Ad.as.SOR.GFP transfected cardiomyocytes. “M” represents the DNA marker. (B) 
Densitometric analysis of the obtained signals from the RT-PCR revealed no significant alteration in the PLB mRNA 
expression in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control Ad.GFP transfected 
cardiomyocytes (Ad.GFP 656.6 ± 48.0 DU vs. Ad.as.SOR.GFP 717.4 ± 42.2 DU); n = 6. (C) Immunoblotting from 
cell lysate of the transfected cardiomyocytes was performed by using anti-phospholamban antibody. Two distinct 
signals at ~ 6 kDa and ~25 kDa were obtained representing the native (or monomeric) and the pentameric 
(phosphorylated) state of PLB respectively. (D) Densitometric analysis revealed no significant difference in either 
the monomeric (Ad.GFP 1340.9 ± 218.5 DU vs. Ad.as.SOR.GFP 1266.5 ± 413.1 DU; n = 6. (E) or phosphorylated 
(Ad.GFP 1854.1 ± 147.6 DU vs. Ad.as.SOR.GFP 1604.0 ± 289.7 DU; n = 6, state of PLB in Ad.as.SOR.GFP 
transfected cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes.  

 



 

 

3.7.4 FK binding protein 12.6 
FK506 binding protein (FKBP 12.6) is one of the main accessory proteins of ryanodine receptors and is 

implicated in the modulation of SR calcium release (Prestle et al., 2001). To examine whether the depletion of 

sorcin in Ad.as.SOR.GFP transfected cardiomyocytes affects the expression of FKBP12.6, the mRNA and 

protein expression were investigated.  
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Fig. 3.17 mRNA and protein expression of FKBP 12.6 in the transfected cardiomyocytes 

The effect of the reduced sorcin levels on the expression of FKBP12.6 in the transfected cardiomyocytes was 
investigated by RT-PCR and western blot. (A) RT-PCR was preformed on the total RNA preparation from the 
transfected cardiomyocytes. First three lanes, next to the DNA marker “M” represent the Ad.GFP transfected 
cardiomyocytes and the next three lanes present the Ad.as.SOR.GFP transfected cardiomyocytes. A significant 
upregulation of the mRNA level was observed. (B) Densitometric analysis revealed a statistically significant 
increase in the mRNA level of FKBP 12.6 in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the 
Ad.GFP transfected cardiomyocytes (Ad.GFP 652.6 ± 139.0 DU vs. Ad.as.SOR.GFP 1253.1 ± 226.3 DU); n = 6, 
*p< 0.05. (C) Western blot using the cell lysate from the transfected cardiomyocytes was performed by utilizing the 
anti-FKBP 12.6 antibody. First four lanes present the FKBP12.6 protein expression in Ad.GFP transfected 
cardiomyocytes and the next four lanes in Ad.as.SOR.GFP transfected cardiomyocytes. A significant increase in the 
protein levels of FKBP 12.6 in Ad.as.SOR.GFP as compared to the control Ad.GFP transfected cardiomyocytes was 
observed. (D) Densitometric analysis revealed a statistically significant increase in the FKBP 12.6 protein level in 
Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control (Ad.GFP 1273.7 ± 142.2 DU vs. 
Ad.as.SOR.GFP 1626.0 ± 242.6 DU); n = 6, *p< 0.05. 
 
RT-PCR using specific primers for FKBP 12.6 followed by densitometric analysis revealed a significant 

 



 

increase in mRNA level of FKBP 12.6 in Ad.as.SOR.GFP transfected cardiomyocytes as compared to Ad.GFP 

transfected cardiomyocytes (Ad.GFP 652.6 ± 139.0 DU vs. Ad.as.SOR.GFP 1253.1 ± 226.3 DU); n = 6, 

*p<0.05 (Fig. 3.17-A&B).  

Upregulation of the mRNA level was accompanied by statistically significant upregulated protein level of 

FKBP12.6 in Ad.as.SOR.GFP transfected cardiomyocytes as compared to Ad.GFP transfected cardiomyocytes 

as judged by the immunoblot of cell lysate from the transfected cells using anti-FKBP12.6 antibody and 

analyzing the obtained signals by densitometry (Ad.GFP 1273.7 ± 142.2 DU vs. Ad.as.SOR.GFP 1626.0 ± 

242.6 DU); n = 6, *p<0.05 (Fig. 3.17-C&D). 

 

3.7.5 Triadin  
Triadin, an integral sarcoplasmic reticulum protein binds to the high capacity calcium binding protein 

calsequestrin and anchors calsequestrin to the ryanodine receptors.  
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Fig. 3.18 Triadin expression in the transfected cardiomyocytes  

(A) Cell lysate obtained from the transfected cardiomyocytes were subjected to western blot by utilizing the anti-
triadin antibody. First three lanes represent the protein expression of triadin in Ad.GFP transfected cardiomyocytes 
and the next three lanes in Ad.as.SOR.GFP transfected cardiomyocytes. No significant difference was observed in 
between the two groups. (B) Densitometry on the obtained signals revealed no significant difference in triadin 
expression in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes 
(Ad.GFP 3084.3 ± 180.8 DU vs. Ad.as.SOR.GFP 3294.5 ± 95.3 DU); n = 6, *p< 0.05. 
The triadin-calsequestrin-ryanodine receptor interaction is calcium sensitive and is indicated to modulate the 

intracellular calcium handling. To analyze whether downregulation of sorcin affects the expression of triadin, 

western blot utilizing the anti-triadin antibody was performed in cell lysate obtained from the transfected 

 



 

cardiomyocytes (Fig. 3.18-A). Densitometric analysis of the signals obtained revealed no significant alteration 

in the protein expression of triadin in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control 

Ad.GFP transfected cardiomyocytes. (Ad.GFP 3084.3 ± 180.8 DU vs. Ad.as.SOR.GFP 3294.5 ± 95.3 DU); n = 

6, *p< 0.05 (Fig. 3.18-B). 

 

3.8 In vivo adenoviral based sorcin gene delivery in adult rat 
hearts  
The physiological and biochemical experiments performed on Ad.as.SOR.GFP transfected cardiomyocytes 

clearly indicated the role of sorcin in intracellular calcium handling. To examine whether the effect of 

downregulation of sorcin on the cellular level is reproducible in vivo, a catheter based intracoronary adenoviral 

sorcin gene delivery was conducted.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  3.19 In vivo transfection of adult rat hearts using a catheter based approach 
(A) The adenoviral based sorcin gene delivery was achieved by catheter based intracoronary injections. Coronary 
circulation was isolated by aortic occlusion created by arterial balloon (AB) and right atrial occlusion was created by 
venous balloon catheter (VB). The technique resulted in cardiac specific delivery as illustrated by injection of 
methylene blue via the aterial balloon catheter. (B) Different phases of in vivo gene delivery: phase 1-2 represents 
the inflation of AB and VB respectively, phase 3 represents the cardiac arrest, phase 4 represents the injection of 
adenoviral suspension, phase 5 reprents the deflation of AB and VB. Phase 6 represnts the cardiopulmonary 
resuscitation and phase 7 represents the recovery phase (Modified from Ding et al., 2004). (C) Transverse slices of 
in vivo transfected hearts were used for immunofluorescence staining. Expression of GFP was used as the parameter 
of successful transfection. A transfection rate of 30-60% was achieved.  
 

Male wistar rats (240-350 grams) were subjected to transfection of Ad.as.SOR.GFP (n=6) and Ad.GFP (n=6) 

using the injection method of Ding et al. (2004). The adenovirus was injected through a balloon catheter into 

right and left ventricular coronary arteries. During the injection, the balloon was inflated in the ascending 

aorta. To minimize reflow through coronary veins a second venous balloon catheter was placed and inflated in 

B 

A C 

Transfected cardiomyocyte 

Methylene blue 
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the right atria (Fig. 3.19-A). The heart stopped beating under inflating conditions for approximately 3 min. 

Exposure of the adenovirus and transfection of the myocardium was optimal under no flow condition. After 3 

min of adenoviral exposure, the animal was resuscitated using epinephrine (Fig. 3.19-B).  

 

 

 

 

               
               Ad.GFP                                                      Ad.as.SOR.GFP 

Fig 3.20 M-Mode echocardiography transversal two chamber view in antisense sorcin (Ad.asSOR.GFP) and 
control rat hearts (Ad.GFP) 
Decreased expression of Sorcin resulted in severe dilatation of left ventricular (LV) chamber size after 12 days of 
transfection in comparison to control transfected hearts. Please note also the right ventricular chamber dimensions 
that were significantly enlarged in the Ad.ASSOR.GFP transfected hearts. Heart rate was significantly reduced in the 
Ad.as.Sor.GFP transfected hearts. 
 
 
 
 
 
 
After hemodynamic stabilization, the animals were returned to the cages for post interventional recovery. 

Immunostaing was performed on the transversal slices of the in vivo transfected hearts. Successfully 

transfected cardiomyocytes exhibited green fluorescence when observed at 473 nm (Fig. 3.19-C). The rate of 

transfection between 30-65 % was achieved with this technique. To assess the effect of Ad.as.SOR.GFP on 

cardiac function in vivo, echocardiography was performed pre injection (day 0), at day 7 and day 12 to monitor 

contractile function, end-systolic and end-diastolic diameters. M-Mode as well as transversal two-chamber 

views of Ad.asSOR.GFP and Ad.GFP transfected hearts were used.  

 



 

 

 

 
 

 

 

 
                            

 
 

 
 

 
 

 
 

ig 3.21 M-Mode echocardiography in antisense sorcin (Ad.as.SOR.GFP) and control  rat hearts (Ad. FP)  
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trol (Ad.GFP) and sorcin 
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F G
Decreased expression of sorcin resulted in severe dilatation of rat hearts after 12 days of transfection as judged b
end-diastolic parameters (*p<0.05). The control transfected hearts remained unchanged.  
 

ig 3.20 depicts M-mode echocardiography and transversal two chamber view in conF

downregulated (Ad.as.Sor.GFP) hearts at day 12 after adenoviral injection. Decreased expression of sorcin 

resulted in significant dilatation as well as right and left ventricular enlargement in Ad.asSOR.GFP. 

As judged by the left ventricular end-diastolic diameters, Ad.as.SOR.GFP transfected hearts

significantly (p<0.05) increased chamber dimensions. The dilatation of the left ventricular size increased with 

prolonged transfection time (Fig. 3.21). Fractional shortening was significantly reduced in Ad.as.SOR.GFP 

indicating diminished contractility in these hearts (Fig. 3.22-A). Thus, the Ad.as.SOR.GFP transfected hearts 

displayed functional features of dilated cardiomyopathy.  In addition, Ad.as.SOR-GFP transfected hearts 

showed decreased heart rate in comparison to control transfected rat hearts (Ad.GFP). In both groups heart 

rates was decreased due to the anaesthesia with ketamine and diazepam (baseline: approximately 350 

beats/min vs. anaesthesia: approximately 220 beats/min). However, transfection with Ad.as.SOR.GFP resulted 

in even more diminished rate as compared to Ad.GFP (Fig 3.22-B). 

 

 



 

 
 
 
Fig 3.22 Fractional shortening and heart rate in antisense sorcin (Ad.as.SOR.GFP) and control (Ad.GFP) 
transfected rat hearts.   
(A) Fractional shortening was significantly (*p<0.05) reduced in Ad.as.SOR.GFP (n=6) transfected rat hearts. In 
control transfected hearts (Ad.GFP) fractional shortening remained unchanged. (B) Heart rate was significantly 
reduced in Ad.as.SOR.GFP after 12 days of transfection, while heart rate stayed comparable in control Ad.GFP 
(n=6) at day 0, 7 and 12 after transfection. 
 

After 14 days of transfection, the animals were sacrificed to study the morphological changes in the in vivo 

transfected hearts. Heart morphology and the weight was significantly (p<0.05) increased in Ad.as.SOR.GFP 

(n=6) in comparison to control (Ad.GFP; n=6) (Fig. 3.23-A&B). Total body weight remained similar in 

Ad.as.SOR.GFP and Ad.GFP (Fig. 3.23-C). This indicated hypertrophy and subsequent dilated 

cardiomyopathy in the anti-sense sorcin transfected heart. Liver weight was also assessed, since this may 

indicate heart failure. However, liver weight remained unchanged throughout the groups studied (Fig. 3.23-D). 
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Fig 3.23 Gross morphological assessment of Ad.as.SOR.GFP (n=6) and control in vivo transfection rat hearts 
(Ad.GFP, n=6)  
(A). Antisense transfected hearts exhibited increased  gross morphology as compared to the control hearts. (B) Heart 
weight was singnificantly increased in the Ad.as.SOR.GFP transfected hearts (*p<0.05). (C) Body weight remained 
unchanged in Ad.as.SOR.GFP vs. Ad.GFP (D) To assess possible alteration in right heart function liver weight was 
evaluated. However, liver weight remained unchanged in Ad.asSOR.GFP in comparison to control. 
 

3.9 Calcineurin signaling in the transfected cardiomyocytes 
Alteration in intracellular calcium handling leads to compromised cardiac contractile performance resulting in 

the activation of molecular signaling pathways that regulate cardiac hypertrophy (Wilkins et al, 2004). 

Calcineurin, a calcium regulated Serine/Threonine protein phosphatase is activated by sustained elevation in 

intracellular calcium and functions as a positive regulator of cardiac hypertrophic growth through activation of 

nuclear factor of activated T-cells (NF-AT) transcription factors (Molkentin et al, 1998). To study whether the 

alteration in intracellular calcium level due to the depletion of sorcin in Ad.as.SOR.GFP transfected 

cardiomyocytes leads to the activation of calcineurin-NFAT signaling, calcineurin expression, calcineurin 

dependent phosphatase activity and nuclear translocation of NF-AT and GATA 4 expression in the transfected 

 



 

cardiomyocytes was studied. 

 

3.9.1 Calcineurin expression  
Calcineurin is comprised of a 59-63 kDa catalytic A (CN-A) subunit and a 19 kDa calcium binding (CN-B) 

subunit. Expression of CN-A (β) the main cardiac isoform of CN-A in mammalian cardiomyocytes was 

evaluated by RT-PCR and western blot followed by densitometric analysis of the obtained signals. The mRNA 

and protein expression of CN-A (β) was significantly increased in Ad.as.SOR.GFP transfected cardiomyocytes 

as compared to the Ad.GFP transfected cardiomyocytes (mRNA: Ad.GFP 482.1 ± 235.5 DU vs. 

Ad.as.SOR.GFP 1182.7 ± 206.6 DU, n = 6, (*p< 0.05) (Fig. 3.24-A&B); Protein: Ad.GFP 551.8 ± 65.5 DU vs. 

Ad.as.SOR.GFP 1217.8 ± 194.9 DU, n = 6; (*p< 0.05) (Fig. 3.24-C&D). 

 

3.9.2 Calcineurin enzymatic activity  
Calcineurin activation results in de-phosphorylation of the target protein NF-AT, which leads to nuclear 

translocation and activation of the hypertrophic gene program (Molkentin et al. 1998). Calcineurin 

phosphatase activity was measured by using non-radioactive serine/threonine phosphatase assay. A significant 

increase in calcineurin phosphatase activity was observed in Ad.as.SOR.GFP cardiomyocytes as compared to 

the Ad.GFP transfected cardiomyocytes (Ad.GFP 0.028 ± 0.013 µmol Pi/min/g vs. Ad.as.SOR.GFP 0.052 ± 

0.014µmol Pi/min/g) n = 6; *p< 0.05 (Fig. 3.24-E). 
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Fig 3.24 Expression of CN-A (β) and calcineurin dependent phosphatase activity in the transfected 
cardiomyocytes 
A) RT-PCR was performed on the total RNA isolated form the transfected cardiomyocytes by using CN-A (β) 
specific primers. The RT-PCR revealed increased mRNA expression of CN-A (β) in Ad.as.SOR.GFP transfected 
cardiomyocytes as compared to the control. (B) Densitometric analysis of the obtained signals revealed a significant 
increase in the mRNA expression of CN-A (β) in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the 
control (Ad.GFP 482.1 ± 235.5 DU vs. Ad.as.SOR.GFP 1182.7 ± 206.6 DU), n = 6; *p< 0.05. (C) Cell lysate from 
the transfected cardiomyocytes was used for the western blot utilizing anti-CN-A (β) antibody. Western blot 
indicated increased expression of CN-A (β) in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the 
control. (D) Densitometric analysis revealed significant increase in the Protein expression of CN-A (β) in 
Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes (Ad.GFP 551.8 
± 65.5 DU vs. Ad.as.SOR.GFP 1217.8 ± 194.9 DU), n = 6; *p< 0.05.(E) A significantly increased calcineurin 
phosphatase activity was observed in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP 
transfected cardiomyocytes. 

 



 

 

3.9.3 Expression and nuclear translocation of NF-AT in the 
transfected cardiomyocytes  
Activated calcineurin dephosphorylates cytosolic NF-AT transcription factors resulting in their nuclear 

translocation (Molkentin et al., 1998, Ritter et al., 2002). To investigate whether increased calcineurin 

phosphatase activity in Ad.as.SOR.GFP transfected cardiomyocytes affects the expression and 

dephosphorylation of NF-ATc3, one of the main NF-ATc isoform expressed in the cytosol of mammalian 

cardiomyocyte, the mRNA expression and nuclear translocation of NF-ATc3 was evaluated in the transfected 

cardiomyocytes. RT-PCR using NF-ATc  specific primers exhibited significant increase in the NF-ATc3 3 mRNA 

expression in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP transfected 

cardiomyocytes (Ad.GFP 641.5 ± 77.0 DU vs. Ad.as.SOR.GFP 905.9 ± 21.2 DU); n = 6, *p<0.05 (Fig.3.25-

A&B). To investigate the nuclear translocation of NF-ATc3, western blots from cytosolic and nuclear fraction 

of the transfected cardiomyocytes were performed. Signals obtained from western blot were analyzed by 

densitometry. A significant decrease in the NF-ATc3 level was observed in the cytosolic fraction (Ad.GFP 

1800.0 ± 79.1 DU vs. Ad.as.SOR.GFP 1180.8 ± 270.5 DU); n = 6, *p<0.05 (Fig.3.25-C&D) in contrast to the 

increased NF-ATc3 level in the nuclear fraction (Ad.GFP 717.0 ± 102.0 DU vs. 901.1 ± 35.9 Ad.as.SOR.GFP 

DU); n = 6, *p< 0.05 (Fig. 3.25-C&E) of the Ad.as.SOR.GFP transfected cardiomyocytes indicating an 

increased de-phosphorylation and nuclear translocation of NF-ATc3 in the Ad.as.SOR.GFP transfected 

cardiomyocytes as compared to the control Ad.GFP transfected cardiomyocytes. The dephosphorylated 

fraction (nuclear fraction of NF-ATc3 migrated faster on the gel as compared to the phosphorylated (cytosolic 

fraction) of NF-ATc3.
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Fig. 3.25 mRNA expression and nuclear translocation of NF-ATc3 in the transfected cardiomyocytes 

 (A) mRNA expression of NF-ATc3 was investigated in the transfected cardiomyocytes. RT-PCR using primers 
specific for NF-ATc3 was performed on the total RNA isolated from the transfected cardiomyocytes. (B) 
Densitometric analysis performed on the signals obtained from the RT-PCR revealed significant increase in the NF-
ATc3 mRNA expression in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP transfected 
cardiomyocytes (Ad.GFP 641.6 ± 77.1 DU vs. Ad.as.SOR.GFP 905.9 ± 21.3 DU); n = 6, *p< 0.05. (C) Western blot 
was performed on the cytosolic and nuclear fractions of the transfected cardiomyocytes using an anti- NF-ATc3 
antibody. In the cytosolic fraction depressed level of NF-ATc3 protein was observed in the Ad.as.SOR.GFP 
transfected cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes, but in the nuclear fraction the 
NF-ATc3 protein level was increased in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP 
transfected cardiomyocytes. (D) Densitometric analysis revealed significant decrease of NF-ATc3 in the cytosolic 
fraction and (E) significant increase in the dephosphorylated NF-ATc3 in the nuclear fraction of the Ad.as.SOR.GFP 
transfected cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes (n = 6; *p< 0.05). 
 

 



 

3.9.4 GATA-4 expression in the transfected cardiomyocytes 
GATA-4 is one of the main nuclear transcription factors that interacts with and is activated by de-

phosphorylated NF-ATc3 resulting in the induction of genes typical of cardiac hypertrophy (Molkentin et al, 

1998, Ritter, et al, 2002). Expression of GATA-4 was investigated in the transfected cardiomyocytes by RT-

PCR and western blot. mRNA expression of GATA-4 was significantly upregulated in Ad.as.SOR.GFP 

transfected cardiomyocytes as compared to the control Ad.GFP transfected cardiomyocytes (Ad.GFP 564.0 ± 

65.3 DU vs. Ad.as.SOR.GFP 762.3 ± 9.8 DU); n = 6, *p< 0.05 (Fig.3.26-A&B).  
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Fig. 3.26 Expression of GATA-4 in the transfected cardiomyocytes  

(A) Transfected cardiomyocytes were harvested for the total RNA preparation. RT-PCR was performed 
using GATA-4 specific primers. (B) Densitometric analysis revealed a significant increase in the mRNA 
expression of GATA-4 in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP 
transfected cardiomyocytes (Ad.GFP 564.0 ± 65.3 DU vs. Ad.as.SOR.GFP 762.3± 9.8 DU); n = 6, *p< 
0.05. (C) Protein expression of the GATA4 was investigated in the cell lysate of transfected 
cardiomyocytes with western blot utilizing anti-GATA-4 antibody. (D) Densitometric analysis of the 
western blot indicated significant increase in the GATA-4  protein expression in the Ad.as.SOR.GFP 
transfected cardiomyocytes as compared to the control Ad.GFP transfected cardiomyocytes (Ad.GFP 
1202.8 ± 57.2 DU vs. Ad.as.SOR.GFP 2746.7 ± 506.5 DU); n = 6, *p< 0.05. 
 
Morevever, significant increase in the protein expression of GATA-4 was also observed in the Ad.as.SOR.GFP 

transfected cardiomyocytes as compared to the control Ad.GFP transfected cardiomyocytes (Ad.GFP 1202.8 ± 

57.2 DU vs. Ad.as.SOR.GFP 2746.7 ± 506.5 DU); n = 6, *p< 0.05 (Fig. 3.26-C&D). 

3.9.5 Expression of cardiomyopathic marker genes in the 

 



 

transfected cardiomyocytes 
mRNA expression of β- myosin heavy chain (β-MHC), atrial natriuretic factor (ANF) and B-type natriuretic 

peptide (BNP) was investigated in Ad.as.SOR.GFP transfected cardiomyocytes followed by densitometric 

analysis to analyze whether the depletion of sorcin leads to the induction fetal cardiac genes as markers of 

cardiac hypertrophy. mRNA expression of β-MHC was significantly increased in Ad.as.SOR.GFP transfected 

cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes (Ad.GFP 674.0 ± 87.1 DU vs. 

Ad.as.SOR.GFP 144.4 ± 84.4 DU); n = 6, *p< 0.05 (Fig. 3.27-A&B). No significant alteration was observed in 

the mRNA expression of ANF (Ad.GFP 700.4 ± 24.3 DU vs. Ad.as.SOR.GFP 755.5 ± 66.1 DU); n = 6, (Fig. 

3.27-C&D) and BNP (Ad.GFP 260.81 ± 12.76 DU vs. Ad.as.SOR.GFP 261.27 ± 28.49 DU); (Fig. 3.27-D&E) 

in the Ad.as.SOR.GFP transfected cardiomyocytes as compared to the control Ad.GFP transfected 

cardiomyocytes (Ad.GFP 564.0 ± 65.3 DU vs. Ad.as.SOR.GFP 762.3 ± 9.8 DU); n = 6. 
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Fig.3.27 Expression of β-MHC, ANF and BNP in Ad.as.Sor.GFP transfected cardiomyocytes 

Total RNA was isolated from the transfected cardiomyocytes, RT-PCR was performed using specific primers for β- 
myosin heavy chain (β-MHC), atrial natriuretic factor (ANF) and B-type natriuretic peptide (BNP). Products 
obtained from the RT-PCR were analyzed on 2% agarose gel. A, C and E represents the mRNA expression profile of 
β-MHC, ANF and BNP respectively. Densitometric analysis of obtained signals was performed. B, D and F present 
the densitometric analysis of β-MHC, ANF and BNP respectively. mRNA expression of β-MHC was significantly 
upregulated in Ad.as.SOR.GFP transfected cardiomyocytes as compared to the Ad.GFP transfected cardiomyocytes 
(Ad.GFP 674.0 ± 87.1 DU vs. Ad.as.SOR.GFP 144.4 ± 84.4 DU); n = 6, p< 0.05. mRNA expression of ANF and 
BNP appeared unaltered and no significant alteration was observed n = 6; p < 0.05. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4. Discussion 
Myocardial Ca2+ cycling and Ca2+ dependent signaling pathways play a vital role in cardiac hypertrophy and 

heart failure. Thus, an adequate and efficient Ca2+ handling is the essential condition for effective functioning 

of the heart. Decreased peak systolic Ca2+ with prolongation of the duration of Ca2+ transient has been reported 

to be responsible for the systolic dysfunction, such as reduced force generation capacity and slower rates of 

force decay (Beuckelmann et al., 1992, Wehrens et al., 2003). Slower rates of SR Ca2+ uptake and various other 

changes in determinants of Ca2+ efflux produce rate dependent elevation in diastolic Ca2+, which is responsible 

for diastolic defects in the failing heart (Schwinger et al., 1995). These key alterations in heart failure warrant 

further evaluation of proteins involved in regulatory mechanisms. In this respect, the Ca2+ binding protein, 

sorcin has been under investigation for its role in cardiac excitation contraction coupling. 

Sorcin, a penta E-F hand family protein associates with cardiac ryanodine receptors (Meyers et al., 1995), L-

type Ca2+ channel (Meyers et al., 1998) and modulates excitation contraction coupling in the heart. Interaction 

of sorcin with SR Ca2+ ATPase has also been implicated. All these interactions have projected sorcin as a 

potential regulator of intracellular Ca2+ homeostasis. Some studies reported a positive role of sorcin on the 

cardiomyocyte contractility (Frank et al., 2005, Matsumoto et al., 2005) and even indicated the capability of 

sorcin in rescuing the heart from the abnormal contractility in diabetic cardiomyopathy (Suarez et al., 2003). 

Other studies claimed decreased contractility and significantly depressed calcium transients in the sorcin 

overexpressing myocytes (Meyers et al., 2003, Farrell et al., 2003). Due to these discrepancies it remains 

unknown whether decreased expression or lack of sorcin results in phenotypical or contractility changes in the 

heart. The present thesis was aimed at understanding the role of sorcin in the cardiac modulation in isolated rat 

cardiomyocytes as well as in the whole rat hearts by using the adenoviral antisense RNA approach. Several 

studies have been reported with different overexpression models, for the first time this study used an 

adenoviral mediated sorcin downregulation approach to understand the role of sorcin in calcium handling, the 

effect of decreased level of sorcin on the remodeling of the heart and subsequent transcriptional regulation. 

4.1 Depressed levels of sorcin and excitation contraction coupling 
2+Adenoviral vectors have been used successfully to study the function and activity of various Ca  handling 

proteins (Hajjar et al., 1997, 1998, del Monte et al., 1999). A drastic decrease in the endogenous sorcin 

expression (74.5% on the mRNA level and 53% on the protein level) was obtained after 48 h by using the 

antisense adenoviral sorcin vector.  

The downregulation of sorcin elicited adaptive and compensatory physiological alterations exhibited in terms 

of decreased cell contractility and significantly depressed Ca2+ transients amplitude accompanied with the 

decreased rate of relaxation. Frank et al. (2005) reported increased cell shortening without any alterations in 

the systolic kinetics of the contraction cycle (time to peak tension) as a result of a mild overexpression of 

sorcin (1.7 fold). Similar results were obtained in adenoviral studies displaying mild amounts of sorcin 

overexpression (Suarez et al., 2003, Matsumoto et al., 2005). However, other studies suggested that enhanced 

amounts of sorcin might diminish cardiac excitation contraction coupling resulting in a diminished Ca2+ 

 



 

transients presumably via the binding of sorcin to RYR or LTCC (Farrel et al., 2003, Seidler et al., 2003, 

Meyers et al., 2003). Some disparities are attached to these findings. In a transgenic mouse model 

overexpressing sorcin driven by the cardiac α-MHC promoter diminished excitation contraction coupling was 

observed resulting in inhibited contraction and relaxation parameters. No phenotypical changes such as cardiac 

hypertrophy were reported. As a functional link depressed amplitudes of Ca2+ transients and whole cell [Ca2+]i 

were shown in transgenic isolated cardiomyocytes which suggested that diminished (ICa) was linked to a 

depressed activation of LTCC (Meyers et al., 2003). Seidler et al. (2003) reported no effects of overexpression 

of sorcin on LTCC in adenoviral transfected rabbit cardiomyocytes overexpressing sorcin. Siedler et al. (2003) 

reported that the diminished Ca2+ transients in myocytes overexpressing sorcin was due to an increased 

Na+/Ca2+ exchanger activity which resulted in an outward movement of Ca2+ into the extracellular space 

accompanied by decrease in the SR Ca2+ content. 

In contrast, a study by Suarez et al. (2004) reported that in adenoviral transfected cardiomyocytes of mouse 

hearts, sorcin overexpression resulted in enhanced cardiac contractility and even rescued the contractile 

dysfunction displayed in diabetic cardiomyopathy. These findings go in line with the present study as depleted 

levels of sorcin in the cardiomyocytes led to the decreased contractility, depressed amplitudes of peak systolic 

Ca2+ and prolonged Ca2+ transients. Similar results were obtained in the studies with adenoviral mediated mild 

overexpression of sorcin (Matsumoto et al., 2005). Since the overexpression studies reporting the positive 

effect of sorcin on contractility displayed mild over expression (1.7 fold and 3.5 fold) and the present study 

indicated the depressed contractility in the presence of decreased level of sorcin, it is suggested that sorcin 

indeed has a positive effect on the contractility and exhibits the contrasting results in terms of depressed 

contractility when expressed at pathologically higher levels indicating that pathologically higher concentration 

(> 10 fold) of sorcin might turn cardiotoxic.  

2+4.2 Sorcin and SR Ca  content 

Abnormal Ca2+ regulation in the myocytes is a central feature in the altered contractility of the failing heart 

(Hasenfuss et al., 1994, Schwinger et al., 1995, Frank et al., 2003). Decreased peak systolic Ca2+ with 

prolongation of the duration of Ca2+ transient has been described as the hallmarks of the failing heart 

(Beuckelmann et al., 1992). The central feature limiting Ca2+ transient amplitude is a decrease in sarcoplasmic 

reticulum Ca2+ content (Lindner et al., 1998). SR Ca2+ content reflects the balance between Ca2+ uptake (via 

2+SERCA), Ca  efflux via ryanodine receptor (RyR) and extracellular extrusion via the Na+/Ca2+ exchanger. 

Thus, reduced SR content in heart failure can be attributed to diminished Ca2+ pumping by SERCA or 

increased SR Ca2+ leak via RYR2 (Schwinger et al., 1995, Marxs et al. ,2001). In addition, the diastolic decline 

of the Ca2+ transient is diminished due to the reduced activity of sarcoplasmic 2+reticulum Ca  ATPase 

(SERCA2a) and reduced phosphorylation of phospholamban PLB (Schwinger et al., 1995, Bers et al., 1995, 

Schwinger et al., 1999). 

The findings from the present study indicated decreased Ca2+ uptake by the SR in the cardiomyocytes with 

decreased expression of sorcin. However, incubating the SR preparations with 1 µM of recombinant sorcin 

enhanced the SR Ca2+ uptake indicating an active role of sorcin in the maintenance of SR Ca2+ content. 

 



 

Furthermore, significantly depressed expression of sarcoplasmic reticulum ATPase was observed at mRNA as 

well as protein level. A recent study by Matsumoto et al. (2005) reported increased SR Ca2+ load in the rat 

cardiomyocytes with adenoviral mediated overexpression of sorcin. According to their study recombinant 

sorcin increased the Ca2+ uptake in a dose dependent manner, which goes in line with the present findings of 

depressed SR Ca2+ uptake upon transfection with adenoviral antisense sorcin inducing depressed expression of 

sorcin. 

Suarez et al. (2004) reported an increase in SR Ca2+ content in the cardiomyocytes overexpressing sorcin. 

According to their report SR Ca2+ content was 49% higher in the cardiomyocytes overexpressing sorcin. They 

also reported enhanced peak of the systolic or upstroke phase of the Ca2+ transient. 

 In the present study the expression of phospholamban, the physiological regulator of SERCA2a was found to 

be unaltered. However, the SERCA2a/phospholamban ratio was decreased which resulted in the depressed 

activity of SERCA2a and the reduced Ca2+ content in SR. Decreased SERCA2a/phospholamban ratio resulting 

in depressed SERCA2a activity leading to reduced  Ca2+ content in SR is well documented (Schwinger et al., 

1995, Chu et al., 1998, Minamisawa et al., 1999). No alteration in the expression of RYR2 and triadin was 

observed which suggests that the release channel (RYR2) was in an unaltered state. The expression of 

FKBP12.6 was significantly increased which suggests a compensatory mechanism to restore the SR Ca2+ 

content. With respect to the SR Ca2+ release mechanism, RYR2 function has been shown to be significantly 

dependent on FKBP 12.6. RYR forms a complex with FKBP, the phosphatases PP1, PP2a and the Protein 

kinase A anchoring protein mAKAP (Marx et al., 2000). It has been proposed that phosphorylation of FKBP 

significantly modulates inactivation of RYR channels and favours a more leaky state of RYR in failing 

myocardium (Marx et al., 2002). The lack of FKBP 12.6 induces cardiac sudden death (Wehrens et al., 2003). 

Sorcin and FKBP 12.6 may act as counterparts in modulation of SR Ca2+ release through ryanodine channels 

(Lokuta et al., 1997). The mild increase in expression of FKBP 12.6 upon adenoviral downregualtion of sorcin 

can be seen as a compensation of sorcin effect on ryanodine receptors. Following the notion of inhibitory 

effects of sorcin in functional studies in cardiomyocytes in vivo (Meyers et al., 2003) and in vitro (Farrell et al., 

2003, Seidler et al., 2003), depressed expression of sorcin indicate a decreased inhibition of the open 

probability of cardiac RYR leading to lesser released systolic Ca2+. This mechanism is paired with decreased 

SR Ca2+ uptake rates that result in an insufficient storage of SR Ca2+. The diminished SR Ca2+ uptake leads to 

an outward movement of Ca2+ outside of the myocyte via the Na+,Ca2+ exchanger depleting the cardiac cell of 

Ca2+ that may be useable for subsequent contractions.  

4.3 Decreased expression of sorcin:  Effect on force-frequency relationship and 

β-adrenergic stimulation 

The present study showed that the increase in frequency of stimulation was associated with a negative force-

frequency relationship in cardiomyocytes with depressed sorcin, unlike the control-transfected 

cardiomyocytes, which exhibited flat and positive force frequency relationship. The force of contraction 

(FOC), judged by the cell shortening (% cell shortening) was significantly lower at stimulation frequencies 

ranging from 0.25 Hz to 5 Hz in cardiomyocytes with depressed sorcin expression. Significantly depressed cell 

 



 

shortening (%) was observed at the baseline levels and was not augmented while increasing stimulation 

frequency. The difference in cell shortening remained unchanged throughout all frequencies measured (0.25 

Hz to 5 Hz). Several studies demonstrated an altered force-frequency relationship in failing heart (Schwinger 

et al., 1992, Gwathmey et al., 1987).  In these studies, force of contraction increased in nonfailing myocardium 

but not in diseased cardiac tissue. In this respect sorcin depleted cardiomyocytes exhibit similar force-

frequency behavior as failing human myocardium. Thus, reduced sorcin levels accompanied with the alteration 

in SR Ca2+ uptake mechanism mimic the cellular and functional remodeling observed in dilated 

cardiomyopathy (Schwinger et al., 1993, Hasenfuss et al., 1994, Schwinger et al., 1995, Frank et al., 1998). A 

dose dependent increase in cell shortening in the cardiomyocytes with depressed level of sorcin as well as the 

control transfected cardiomyocytes upon forskolin stimulation was observed. The amount of increase in cell 

shortening was similar in both groups implying a preserved β-adrenergic stimulation even in the presence of 

lowered content of sorcin. 

Frank et al., (2005) reported that adenoviral mediated mild overexpression of sorcin (1. 7 fold) in rat 

cardiomyocytes resulted in a dose dependent increase in cell shortening on β-adrenergic stimulation in sorcin 

overexpressing cardiomyocytes as well as in control group. According to this study time to peak tension 

remained unchanged upon β-adrenergic stimulation and no difference in the rate of relaxation between control 

and sorcin overexpressing cardiomyocytes was observed. This study suggested that the positive inotropic 

effect of sorcin was independent of β-adrenergic stimulation. Lokuta et al. (1997) showed a dissociation of 

sorcin following protein kinase A dependent phosphorylation under in vitro conditions. Following the notion 

that lesser binding of sorcin to the ryanodine receptor results in an increased open probability of the SR Ca2+ 

release channel, protein kinase A phosphorylation leads to an increase in force of contraction. This 

phenomenon was also observed in the present study in cell shortening experiments in antisense transfected 

cardiomyocytes. However, protein kinase A is responsible for phosphorylating several other targets in the 

cardiomyocytes, such as phospholamban (Frank et al., 2000), L-type Ca2+-channels (Van der Hayden et al., 

2005), FKBP (Marks et al., 2000) and myofibrillar Troponin I (Kentish et al., 2001). All these downstream 

phosphorylatable target proteins influence cardiac contractility and may compensate for the decresed 

expression of sorcin in case of β-adrenergic stimulation. Thus, no difference in cell shortening was observed 

upon higher β-adrenergic stimulation with forskolin. Moreover, β-adrenergic stimulation experiments were 

performed after 48 h of transfection in isolated cardiomyocytes which is not similar to the chronically reduced 

expression of sorcin in the heart. The longer duration of time with depressed sorcin levels in the in vivo hearts 

indicated overt heart failure and dilated cardiomyopathy, which is independent of β-adrenergic stimulation.  

4.4 Decreased expression of sorcin and functional remodeling of the heart 

Dilated cardiomyopathy has been clinically defined as a condition with depressed systolic and diastolic 

function accompanied by chamber dilatation and in later stages by heart failure (Packer et al., 1990). The most 

common cause of heart failure is coronary artery disease, followed by hypertension and valvular pathologies. 

The initial cardiac insult is accompanied by impaired contractility, ventricular remodeling (changes in wall 

thickness and/or volume) and activation of the sympathetic nervous system activity as compensatory response 

 



 

to maintain cardiac output (Hunt, et al., 2001). Although these responses initially support cardiac output, they 

eventually lead to abnormalities like chamber dilation, fibrosis as well as functional abnormalities that 

ultimately restrict cardiac performance and result in cardiac failure. Along these lines, downregulation of 

sorcin in vivo, followed by adenoviral antisense RNA transfer through intracoronary injection resulted in 

severe chamber dilation. Echocardiography revealed dramatic remodeling of the heart with ventricular 

enlargement, decreased heart rate and increased chamber dimension. The fractional shortening was reduced 

and contractility was diminished indicating the presence of dilated cardiomyopathy in the heart with depleted 

level of sorcin. The dilation progressed with the duration of time. After 14 days the animals were sacrificed 

and an increase in the heart weight was observed, while body weight and liver weight remained unchanged at 

this time point.  All these parameters indicated that with lowered expression of sorcin the heart undergoes 

ventricular remodeling emphasizing the role of sorcin in contractility as well as progressive pathogenesis of 

heart failure. Adenoviral mediated in vivo gene delivery of sorcin resulted in increased fractional shortening 

and decreased end diastolic diameters (Frank et al., 2005). In this study, the morphology remained unchanged 

after 14 days of adenoviral exposure, suggesting a positive inotropic effect of sorcin under in vivo conditions 

which possibly explains the decreased contractility, and reduced fractional shortening in the hearts with 

depleted levels of sorcin. In transgenic mice overexpressing sorcin no changes were observed in heart weight 

and dimensions (Meyers et al., 2003). However, function of whole heart hemodynamics and isolated mouse 

cardiac myocytes revealed decreased force, Ca2+ transients and calcium sparks, which were mainly due to the 

L-type Ca2+ channel function. This indicated that overexpression of sorcin did not exhibit cardiac remodeling. 

Moreover, another in vivo study depicted a significant enhancement of cardiac performance upon 

overexpressing of sorcin in cardiomyopathic hearts (Suarez et al., 2004), another study showed that sorcin 

expression is significantly reduced in the rabbit model of left ventricular dysfunction (Elliot et al., 2004). The 

difference in these overexpression studies might arise from variation in the experimental set up and exposure 

of overexpressed sorcin over longer durations in a transgenic model, while high protein levels of sorcin may 

induce adaptive changes and more complex phenotype which could also be a result of altered Ca2+ handling 

proteins upon aging. The result from the present study in whole hearts strengthens the hypothesis that 

depressed levels of sorcin results in depressed contractility accompanied by ventricular remodeling of the heart 

complying with the findings from Frank et al (2005) that short-term exposure to sorcin and relatively low 

expression levels may result in a beneficial alteration of cardiac performance. The crucial role may be a dose 

dependent effect of sorcin on intracellular Ca2+ handling, with improvement of Ca2+ availability at low levels 

of overexpression and detrimental effects at depressed as well as extremely higher levels of sorcin 

overexpression.  

4.5 Calcineurin-NF-AT signaling  

The hypertrophic growth of cardiomyocytes is initiated by endocrine, paracrine, and autocrine factors that 

stimulate a wide array of membrane-bound receptors. Their activation results in the triggering of multiple 

cytoplasmic signal transduction cascades, which ultimately affects nuclear factors and the regulation of gene 

expression. Calcineurin has been implicated as a regulator of the hypertrophic response in conjunction with the 

 



 

nuclear factor of activated T cells (NF-AT) (Molkentin et al., 2001). Calcineurin is a Serine-Threonine 

phosphatase that is uniquely activated by calcium-calmodulin. The calcineurin enzyme consists of a 59 to 61 

kDa catalytic subunit termed calcineurin-A and a 19 kDa calcium-binding E-F hand domain containing protein 

called calcineurin-B. Once activated, calcineurin dephosphorylates NF-ATC3 in the cytoplasm, resulting in its 

nuclear translocation (Lim et al., 2000). In the present study the cardiomyocytes with the decreased expression 

of sorcin exhibited increased expression of Calcineurin-A protein along with the increased calcineurin 

phosphatase activity as measured by using a serine/threonine phosphatase assay. Increased calcineurin activity 

was also confirmed by the enhanced dephosphorylation of NF-ATC3 resulting in increased translocation of NF-

ATC3 to the nucleus.  For the first time, Molkentin et al. (1998) reported that overexpression of activated 

calcineurin in the heart of transgenic mice resulted in profound cardiac hypertrophy that underwent a transition 

to dilated cardiomyopathy within 2 months. Calcineurin was subsequently shown to operate through NF-ATC3 

in the heart because transgenic mice expressing a constitutively nuclear mutant of NF-ATC3 also demonstrated 

cardiac hypertrophy. The specificity of the transgenes was demonstrated by the observation that cyclosporine-

A inhibited cardiac hypertrophy in calcineurin-transgenic mice, but not in NF-ATC3 -transgenic mice (Lim, et 

al., 2000). Pharmacologic calcineurin inhibition attenuated dilated and hypertrophic cardiomyopathy in three 

different mouse models of heart disease owing to alterations in sarcomeric proteins. However, two separate 

studies concluded that calcineurin inhibitors had no effect in blocking pressure overload hypertrophy in 

rodents (Zhang et al., 1999, Ding et al., 1999). The reason for these conflicting data is not yet resolved, but 

factors such as effective drug dosage, age, sex of animals and activation of other hypertrophic pathways may 

underlie the disparities. 

Two separate studies reported no change in calcineurin activity in response to pressure overload hypertrophy in 

the heart (Zhang et al., 1999; Meguro et al., 1999). The assessment of calcineurin enzymatic activity in cardiac 

protein extracts is technically difficult given the relatively low calcineurin content in the heart. Calcineurin-A 

activity was suggested to be significantly elevated in failed human hearts through the use of a calmodulin co-

immunoprecipitation assay (Lim et al.,1999). More recently, these results were extended by the observation 

that calcineurin-A protein levels and total calcineurin enzymatic activity are each significantly elevated in both 

hypertrophied and failed human hearts (Lim et al., 2000). In the context of downregulation of sorcin the 

calcineurin pathway was activated and at least partially explains the development of dilated cardiomyopathy. 

Calcineurin is activated by chronically elevated Ca2+ levels (Molkentin et al., 1998). Considering the activation 

of calcineurin phosphatase activity, increased expression of calcineurin-A, increased nuclear translocation of 

NF-ATC3 along with the diminished Ca2+ 2+  transients and prolonged Ca decay upon sorcin depletion it can be 

concluded that calcineurin and its downstream target NF-ATC3 contributes to the development of impaired 

function and heart failure. The increased signaling of the calcineurin-NFAT3 pathway contributes at least 

partially to the development of heart failure in hearts with depressed sorcin levels. 

GATA-4 transcription factor has been shown to play an important role in cardiac development and regulation 

of cardiac-specific gene expression (Orkin 1995, Charron et al., 1999). The six GATA members can be divided 

into two subfamilies; GATA-1, -2 and -3, which are expressed in hematopoietic cells, and GATA-4, -5 and -6, 

which are expressed in various tissues, including the heart. Binding motifs for GATA factors have been 

 



 

identified within the promoters of most cardiac expressed genes. In the present study the expression of GATA-

4 significantly increased at the mRNA as well as protein level upon 48 h of adenoviral transfection (Liang et 

al., 2001) reported that adenoviral overexpression of GATA-4 enhanced sarcomeric organization, induced an 

increase in cell surface area and increased total protein accumulation in cultured neonatal cardiac myocytes. 

Transgenic mice with 2.5-fold overexpression of GATA-4 in the adult heart demonstrated an increase in heart 

to body weight ratio, histological features of cardiomyopathy, and activation of hypertrophic genes, such as 

ANP and BNP (Liang et al., 2001). It has been recently shown that pressure overload and hypertrophic 

agonists regulate gene expression via GATA-4 dependent mechanism (Hautala et al., 2001) and those 

hypertrophic agonists activate GATA-4 dependent gene expression by increasing GATA-4 binding or 

transactivating activity (Liang and Molkentin, 2002). GATA-4 is calcineurin dependent and activates 

corresponding subset of genes responsible for hypertrophic response. In the present study, elevated GATA-4 

expression leads to the remodeling of the heart and eventually to heart failure. Whether this is solely 

calcineurin dependent remains unclear since other pathway may activate GATA-4 signaling as well. 

Adenoviral overexpression of GATA-4 was shown to enhance sarcomeric organization and increase total 

protein accumulation leading to development of cardiac hypertrophy (Liang et al., 2001). This implies that 

GATA-4 participates in hypertrophic gene expression without direct binding to a gene promoter, probably by 

interacting with other transcription factors present in the nucleus, such as NFAT3 and MEF2. 

The present study indicated increased mRNA expression of β-MHC isoform in cardiomyocytes with depressed 

expression of sorcin.  It is reported that pathological remodeling of the heart in rodent models is accompanied 

by upregulation of β-MHC expression with consequent reduction in myofibrillar ATPase activity and reduced 

shortening velocity of cardiac myofibres, leading to contractile dysfunction (Braunwald et al., 2000) which 

goes in line with the present findings. The mRNA expression of ANF and BNP was found to be unaltered in 

the cardiomyocytes with decresed expression of sorcin. ANF and BNP are considered as the stress marker and 

are often activated in cardiomyopathic animal models (Feldman et al., 1991; 1993). However, Karen et al. 

(1998) and Bueno et al. (2002) suggested that the pathways for cardiac hypertrophy and induction of the fetal 

program can at least in part be dissociated since in some hypertrophic models ANP expression was unaltered 

inspite of the increased BNP and β-MHC expression. 

In the present study the activation of well characterized calcineurin pathway is activated due to reduced levels 

of sorcin. The consequences of this activation are overt cardiac dysfunction and animal as well as human 

cardiomyopathies. However, no single intracellular transduction cascade regulates cardiac hypertrophy in 

isolation, but instead each pathway operates as an integrated component of an orchestrated response. The 

possible activation of other pathways responsible for the hypertrophy induced by decreased expression of 

sorcin needs to be studied. 

 



 

 

4.6 Conclusion  

In conclusion, this study demonstrates that sorcin downregulation diminishes the cardiac 

contractile performance. Decreased expression of sorcin results in depressed cardiac 

contractility, depressed amplitude of intracellular Ca2+ transients and decreased rate of relaxation 

due to the reduced SERCA2a activity and reduced Ca2+ content. This ultimately leads to the left 

and right ventricular remodeling of the heart expressed in terms of ventricular enlargement, 

increased chamber dimension and decreased heart rate. This process is at least partially due to 

the activation of calcineurin-NFAT signaling pathway. This study establishes the concept that 

sorcin is an in vivo and in vitro regulator of myocardial contractility. The mechanism of action of 

sorcin involves regulation of cytosolic Ca2+ 2+ fluxes and SR Ca  content. Depletion of sorcin 

results in overt heart failure underlining the importance of this protein in excitation contraction 

coupling. The present study emphasizes the importance of antisense RNA approach as a valuable 

tool to identify targets that potentially improve cardiac contractility and cardiac performance 

especially in states of diminished cardiac output, such as heart failure. This will further increase 

the understanding of excitation contraction coupling and may provide new avenues to 

beneficially enhance cardiac performance in the therapy of myocardial diseases and heart failure. 
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10 Appendix 
 
a. Sorcin cDNA sequence used in the present study: NM_003130 

  
        1 ggcggagagg cctggcgcac agggcgaggg cggctgcggc gcagtctgca gcatggcgta 
       61 cccggggcat cctggcgccg gcggcgggta ctacccaggc gggtatggag gggctcccgg 
      121 agggcctgcg tttcccggac aaactcagga tccgctgtat ggttactttg ctgctgtagc 
      181 tggacaggat gggcagatag atgctgatga attgcagaga tgtctgacac agtctggcat 
      241 tgctggagga tacaaacctt ttaacctgga gacttgccgg cttatggttt caatgctgga 
      301 tagagatatg tctggcacaa tgggtttcaa tgaatttaaa gaactctggg ctgtactgaa 
      361 tggctggaga caacacttta tcagttttga cactgacagg agtggaacag tagacccaca 
      421 agaattgcag aaggccctga caacaatggg atttaggttg agtccccagg ctgtgaattc 
      481 aattgcaaaa cgatacagca ccaatggaaa gatcaccttc gacgactaca tcgcctgctg 
      541 cgtcaaactg agggctctta cagacagctt tcgaagacgg gatactgctc agcaaggtgt 
      601 tgtgaatttc ccatatgatg atttcattca atgtgtcatg agtgtttaaa tcaagaggaa 
      661 gctgcatgaa tgtaatcaac attccaactg gagctctcct ttgcttgtcc tctttgcctt 
      721 cggtaatatg tataaactta catcacgact ttctcttaac agctgttgta aagtttatta 
      781 ctttatgtac aactgaagtt ttgttttagt tttgataata aattctttgg aactttaata 
      841 agatctagtc tgttacacca tttagaactt tcctgagcca ttatcagtca tgccttattt 
      901 tcttgctaaa actctatgta aatttaagta tgcaaaatgt ttaagtcaca ttatttattt 
      961 ttcattgtga gacactaaaa actgttaatc agactacagc tgttatcttt cctctcctac 
     1021 aaagaatact ccacacataa aaacttaggt aaatgacata gacgcacttg ggtgaaataa 
     1081 aacaacaaaa aaggtaatcc agtaatccac gtcaggattc accttagaag tttagcacac 
     1141 gcccttcaaa acctgttgaa taatttgatt ggcaaatact atctgtcacc aagtcccttt 
     1201 ttgtcatcta tttaaacctt tgttaactct ccttaaaaat cttgtacatt ataagcttaa 
     1261 ctatataaaa agaaaattga tagaaaaaga ctaagggaat atatggaaat attaacaatg 
     1321 tttattttgg atgaatggaa ttctagatga ctttaatttt ctttatatca gtatttttca 
     1381 gattttctat atgctttcct tttaaaatca gattttagtt tttaaaatac tgatacatcc 
     1441 attttgatat accatgtatt cacactttaa aaaatacaca tagcagagta tcggaaagta 
     1501 tgtaccaaaa cattgatctg gctaccactg ggagtcagga tcatgagttc atcttcttcc 
     1561 ttcttactgc ttttccaaac attctccagt aagcaggtac tacatttata atggaaggaa 
     1621 ttttttaaaa aattttaagc tgtacacttt caagtaagat ctgaattcta atgctggctt 
     1681 gtgcctctta ctatgtggtt tggtcattat agataatgcc cagtttcagt ttccccatct 
     1741 ttgaaaagga gataatatgt tatctcttgg gagtagttct gaatatgaag tgtgttgata 
     1801 caagaagcac tgacaatgtt tctgtttctt aaatttaaaa ctggcctggt ttgccttttt 
     1861 tatcaagaga gcttaacaga taaaaaatga aattagtcta ttttctactt gccagcagag 
     1921 tatctgtctt attttaggat gcagtgtgaa acttaccatt caactgaaca actagttgtc 
     1981 aactaatgaa aataaaacat tttctctaag aaaaaaaaaa aaaaaaaaaa 

 

b. Sorcin protein sequence:  accession NM_003130.2

        
        1 maypghpgag ggyypggygg apggpafpgq tqdplygyfa avagqdgqid adelqrcltq 
       61 sgiaggykpf nletcrlmvs mldrdmsgtm gfnefkelwa vlngwrqhfi sfdtdrsgtv 
      121 dpqelqkalt tmgfrlspqa vnsiakryst ngkitfddyi accvklralt dsfrrrdtaq 
      181 qgvvnfpydd fiqcvmsv 
 
 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_003130.2
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