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Köln, März 2006



1. Berichterstatter: Prof. Dr. Josef Steinebach, Universität zu Köln
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3. Berichterstatterin: Prof. Dr. Marie Hušková, Karls-Universität, Prag
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Abstract

The fundamental question in change-point analysis is whether an observed stochastic
process follows one model or whether the underlying model changes at least once during
the observational period. Thus the field can essentially be divided into two subfields,
hypothesis testing and point estimating. This thesis deals with the first problem.

Most of the older works discuss independent observations, yet from a practical point
of view cases of dependent data have become more and more important. We develop
testing procedures for dependent models.

In change-point analysis critical values for testing procedures are usually obtained by
distributional asymptotics. These critical values, however, do not sufficiently reflect
dependency. Moreover it is a well-known fact that convergence rates especially for
extreme-value statistics are very slow. Using resampling methods we obtain better ap-
proximations, which take possible dependency structures more efficiently into account.
We prove that the original statistics and their resampling counterparts follow the same
distributional asymptotics. First we obtain limit theorems for the corresponding rank
statistics, which then combined with laws of large numbers imply the resampling asymp-
totics conditionally on the given data.

In a first part we consider abrupt and gradual changes in models of possibly dependent
observations satisfying a strong invariance principle.

The main part of this thesis studies a location model with dependent errors that form a
linear process. Different types of statistics are considered, such as maximum-type statis-
tics (particularly different CUSUM procedures) or sum-type statistics. The resampling-
methods have to be adapted to allow for dependent errors. Thus, we analyze a block
bootstrap as well as a bootstrap in the frequency domain.

Finally, some simulation studies illustrate that the permutation tests usually behave
better than the original tests if performance is measured by the α− and β−errors,
respectively.

Zusammenfassung

Die Changepoint Analyse beschäftigt sich mit der Fragestellung, ob ein beobachteter
stochastischer Prozess einem festen Modell folgt oder ob sich das zu Grunde liegende
Modell einmal oder mehrmals während des Beobachtungszeitraums ändert. Im Wesent-
lichen ergeben sich hieraus zwei Teilgebiete, wovon eines sich mit der Entwicklung statis-
tischer Tests das andere mit dem Schätzen der Stelle, an der der Strukturbruch stattge-
funden hat, beschäftigt. Diese Arbeit beschäftigt sich mit dem ersten Problem.

Eine große Mehrheit der älteren Arbeiten behandelt unabhängige Beobachtungen. Der
Fall abhängiger Daten ist jedoch für praktische Zwecke immer wichtiger geworden. Wir
entwickeln Test-Verfahren in abhängigen Modellen.

Die Festlegung kritischer Werte für Testverfahren zur Aufdeckung von Strukturbrüchen
erfolgt häufig auf der Basis von Verteilungsasymptotiken. Die so gewonnenen kritischen
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Werte beziehen jedoch mögliche Abhängigkeitsstrukturen nicht in ausreichendem Maße
ein. Außerdem sind die Konvergenzraten vor allem bei Extremwertasymptotiken be-
kanntermaßen sehr langsam. Durch den Einsatz von Resampling-Methoden können
bessere Approximationen erzielt werden, die auch mögliche Abhängigkeitsstrukturen
besser abbilden. Wir zeigen, dass die ursprünglichen Teststatistiken und die dazu-
gehörigen Resampling-Statistiken der gleichen Verteilungsasymptotik folgen. Hierzu
werden erst entsprechende Resultate für die dazugehörigen Rangstatistiken bewiesen.
Aus diesen lassen sich dann unter Zuhilfenahme von Gesetzen der Großen Zahlen ent-
sprechende Grenzwertsätze für die auf den Beobachtungen bedingten Resampling-Statis-
tiken herleiten.

In einem ersten Teil betrachten wir abrupte sowie graduelle Strukturbrüche in Modellen
von möglicherweise abhängigen Beobachtungen, die ein starkes Invarianzprinzip erfüllen.

Der Hauptteil dieser Arbeit beschäftigt sich mit einem Lokationsmodell mit abhängigen
Fehlern, die einen linearen Prozess bilden. Hierbei benutzen wir verschiedene Statis-
tiken wie zum Beispiel Maximum-Statistiken (insbesondere verschiedene CUSUM Ver-
fahren) oder auch Summen-Statistiken. Die Resampling-Methoden müssen hierbei an
den abhängigen Fall angepasst werden. Hierzu betrachten wir einerseits einen Block
Bootstrap, andererseits einen Bootstrap im Frequenzbereich.

Schließlich zeigen Simulationsstudien, dass obige Resampling-Tests im Gegensatz zu den
ursprünglichen Tests das Niveau sehr genau einhalten - und gleichzeitig über eine verhält-
nismäßig bessere Güte verfügen.
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Part I.

Theoretical Results





1. Introduction

1.1. Change-Point Analysis

Change alone is eternal, perpetual, immortal.1

Indeed the world is filled with changes. We encounter them – or the possibility of them
– everyday in such diverse fields as economics, finance, medicine, geology, physics and so
on. Therefore the detection, location and investigation of changes is of particular human
interest.

Change-point analysis provides statistical tools to decide whether a given (ordered) data
set remains stable over time or whether it follows a certain model up to an unknown
time-point and a different model afterwards. Usually this means that some parameters
in a given model are subject to change.

The earliest change-point studies go back to the 1950s (cf. Page [67, 68, 69]), where
they arose in the context of quality control. There, one usually observes the output of
a production line and assumes that a certain characteristic varies around a certain in-
control constant. Sometimes this characteristic suddenly starts to vary around another
out-of-control constant, for example due to a failure of the production device. One then
wants to know if and when such a change occurred to take appropriate measures. It is
important that in the above setting the location of the change is unknown, otherwise
the situation reduces to well-known two-sample problems.

Since then many articles have been published and the list of applications is becoming
longer and longer. Many of them cover the topic of a single change-point in the mean
(at-most-one-change or AMOC location model) for an independent sequence of random
variables. Of course in many situations dependent observations are much more realistic,
hence we will focus on that case in this thesis.

Recently, there has been an increased interest in the statistical analysis of change-point
detection and estimation. This is probably due to the fact that with the growing field
of information technology more and more data is collected, which can be (needs to be)
analyzed.

There are essentially two aspects of change-point analysis. The first one is to detect
whether there is a change at all. The second one is to estimate how many changes have
occurred and where. We will concentrate on the first problem.

Statistical procedures in change-point analysis can further be divided into two main
categories. In the a-posteriori analysis we have already observed past data and now

1accredited to the German philosopher Arthur Schopenhauer (1788-1860)
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want to know whether it contains a change. As a contrast the sequential approach
regularly takes new data and after each observation applies a new test. This way we
hope to be warned as fast as possible after the change occurred.

Sequential analysis has recently received a lot of attention since it is more realistic in
many situations again especially in view of the growing field of information technology.
Most of the older papers, however, are dealing with a-posteriori methods which remain
an active field of scientific research and which have proven to be very useful in the past.

Here, we will review a-posteriori methods, apply them for dependent data and improve
the existing tests by applying resampling methods to determine the critical values.

A typical very general mathematical formulation of the change problem can be expressed
as follows: Let X(1), . . . . , X(n) be the observed data. We now would like to decide
whether the null hypothesis of no change

H0 : X(1) D= X(2) D= . . .
D= X(n)

holds or whether the data follows the alternative

H1 : There exists 1 6 i < j 6 n : X(i)
D
6= X(j),

i.e. there is some kind of change in distribution.

Many problems can be transformed into a form that matches the above description. Let
us assume for example we have observed a financial time series with a linear drift, i.e.
Y (i) = a i

n + e(i), i = 1, . . . , n, Y (0) = 0, for some stationary error sequence {e(·)}. We
are interested in the question whether the linear drift changes over time, i.e. whether
it holds Y (i) = am

n + a∗ i−m
n + e(i), a 6= a∗, for i > m. Here, X(i) = Y (i) − Y (i − 1),

i = 1, . . . , n, matches the above description. This is essentially the kind of problem we
encounter in Chapter 2.

As already mentioned an important submodel – probably the most common one – is the
AMOC-location model, which is given by

X(j) =

{
µ + e(j), 1 6 j 6 m,

µ + d + e(j), m < j 6 n,

where m = m(n) is the unknown change-point, d = dn the mean change, {e(·)} a
centered error sequence. This error sequence is usually assumed to be a sequence of i.i.d.
random variables with E |e(1)|ν < ∞ for some ν > 2. We are now interested in testing
the null hypothesis of no change, i.e.

H0 : m = n,

versus the alternative of a change in the mean, i.e.

H1 : 1 6 m < n and d 6= 0.

Chapters 3 and 4 deal with this problem. There we drop the assumption of independence
and only assume that the error sequence follows a linear process.
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The above setting deals with an abrupt change, i.e. the mean jumps all of a sudden
from µ to µ + d at time-point m. In some situations gradual changes, where the mean
changes slowly from µ to µ+d, are more realistic. One of the models in Chapter 2 deals
with this kind of changes.

A detailed discussion of the field of change-point analysis can be found in the book of
Chen and Gupta [16], which specializes in parametric models, and more importantly in
the book of Csörgő and Horváth [19] who also take non-parametric models into account.
Another very good introduction into the field is the paper by Antoch et al. [3]. The
important models and tools are introduced and relevant references given.

1.2. Resampling Methods in Change-Point Analysis

One of the major problems in hypothesis testing is finding good approximations to the
critical values. Assume we have found a reasonable test statistic to one of our change-
point problems above. This can for example be done by using pseudo maximum-likelihood
or pseudo Bayes methods (confer Section 3.2). However, in practice the distributions of
these statistics – even for normal errors – are very complex, so that they can be com-
puted explicitly only for small sample sizes. Another possibility is to use the Bonferroni
inequality to derive an upper bound for the quantiles. But again this approach only
gives satisfactory results for small samples. For details confer Hawkins [43] or Antoch
et al. [3].

Critical values are thus often obtained by distributional asymptotics under the null
hypothesis. One problem with that approach, however, is that the limit distribution
sometimes depends on unknown parameters or its quantiles are not theoretically known
so that one needs to use simulations. Another severe problem is that the convergence is
often very slow, especially for extreme value statistics. This means that the asymptotic
critical values are only good approximations for large sample sizes, otherwise they fail.
Thus the test is usually not exact and might not even hold the chosen level. This is also
confirmed by our simulation studies in Part II.

Therefore Antoch and Hušková [2] proposed resampling methods to approximate the
critical values of an AMOC location model. More precisely they proposed a permutation
test. Since then the method has been applied to all kinds of problems in change-point
analysis such as kernel type statistics, U-statistics or linear regression models. For a
recent survey see Hušková [47]. A thorough introduction to resampling methods can be
found in the books of Good [35, 36].

How Do Permutation Tests Work?

Let X(1), . . . , X(n) be a sequence of random variables. Moreover let us assume Tn =
Tn(X(1), . . . , X(n)) is our test statistic. We reject the null hypothesis for large values
thereof. Consider the statistic of the permuted observations

TR
n := Tn(X(R1), . . . , X(Rn)).

R = (R1, . . . , Rn) is a random permutation of (1, . . . , n) independent of {X(·)} such
that P (R = r) = 1

n! for all permutations r = (r1, . . . , rn).



6 Introduction

Note that we can easily calculate (or rather simulate for computational matters) the
exact distribution of TR

n conditioned on the observed data sequence X(1), . . . , X(n).
There the randomness only comes from the permutation. So we reject the null hypothesis
if Tn(X(1), . . . , X(n)) is larger than the α-quantile of T

R|X
n , i.e. TR

n conditioned on
X(1), . . . , X(n).

The computational costs for exactly calculating TR
n are too high, so for practical purposes

we will use its empirical distribution function based on N random permutations.

For clarification we will state the algorithm here:

1) Calculate the value of the statistic for the given observations: T := Tn(X(1), . . . , X(n)).

2) Calculate TR(1)

n = Tn(X(R(1)
1 ), . . . , X(R(1)

n )) for some random permutation R(1) =
(R(1)

1 , . . . , R
(1)
n ).

3) Repeat step 2) N times, e.g. N = 10 000.

4) Calculate the α-quantile of TR(1)

n , . . . , TR(N)

n from Step 3), i.e. choose c minimal such
that

1
N

N∑
j=1

1{TR(j)
n 6c} > 1− α.

5) Reject the null hypothesis for T > c.

The above test is in the non-randomized form, in the randomized form we reject the null
hypothesis also for T = c with an appropriately chosen probability γ. As we will see
below, we then get an exact test under certain conditions on the error sequence. Yet, we
only make a small mistake using the non-randomized form (same as with the empirical
distribution function) and both versions are asymptotically equivalent in our examples,
since the limiting distribution of Tn is continuous. This is why we will use the above
version for practical purposes.

Formally the permutational test with level α is defined as follows:

ϕR(X(1), . . . , X(n)) =


1, >

γ, Tn(X(1), . . . , X(n)) = c(X(·)),
0, <

where c(X(·)), γ are chosen such that

P
(
TR

n > c(X(·)) |X(1), . . . , X(n)
)

+ γP
(
TR

n = c(X(·)) |X(1), . . . , X(n)
)

= α.

The next lemma shows that the above algorithm really corresponds to this test.

Lemma 1.2.1. If R = (R1, . . . , Rn) and {X(·)} are independent, we have for any
x ∈ R

P
(
TR

n 6 x |X(1), . . . , X(n)
)

=
1
n!

∑
r∈Rn

I{T r
n6x},

where Rn is the set of all permutations of (1, . . . , n).
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Proof.

P
(
TR

n 6 x |X(1), . . . , X(n)
)

=
∑

r∈Rn

E
(
1{Tn(X(r1),...,X(rn))6x} 1{R=r} |X(1), . . . , X(n)

)
=
∑

r∈Rn

1{Tn(X(r1),...,X(rn))6x} E
(
1{R=r} |X(1), . . . , X(n)

)
=
∑

r∈Rn

1{Tn(X(r1),...,X(rn))6x} P (R = r) =
1
n!

∑
r∈Rn

I{T r
n6x}.

Moreover the next lemma states that the above test is exact if the observations are ex-
changeable under H0, i.e. in particular if they are i.i.d. random variables. For dependent
data, however, this is not true in general.

Lemma 1.2.2. If (X(1), . . . , X(n)) are exchangeable under H0, the test ϕR is exact.

Proof. First note that the exchangeability gives Tn
D= TR

n . Hence it holds

E
(
ϕR(X(1), . . . , X(n))

)
= P (Tn > c(X(·))) + γP (Tn = c(X(·)))
= P

(
TR

n > c(X(·))
)

+ γP
(
TR

n = c(X(·))
)

= E
[
P
(
TR

n > c(X(·)) |X(1), . . . , X(n)
)

+ γP
(
TR

n = c(X(·)) |X(1), . . . , X(n)
)]

= α.

Yet, the critical values depend on our observations, so we would like to verify that their
limit behavior equals that of the unconditional critical values.
Also, the question remains how they behave (asymptotically) under alternatives. It turns
out that the limit behavior under both – the null hypothesis as well as alternatives –
matches the limit behavior of the unconditioned critical values under H0.
Thus we get an approximation for the critical values corresponding to the null distribu-
tion, even if the observed data does follow an alternative.

To clarify matters: Usually there exists a random variable Y , such that under H0 it
holds Tn

D−→ Y . We then prove that under H0 as well as H1 it holds for x ∈ CY (the
points of continuity of the distribution function of Y )

P
(
TR

n 6 x |X(1), . . . , X(n)
)
−→ P (Y 6 x) a.s.

The main tool in proving such a limit theorem is the corresponding result for a linear rank
statistic, where X(i) is replaced by scores an(i) with certain properties. Such results can
be obtained by investigating functionals of simple linear rank statistics. There is a vast
amount of literature on that topic, above all the book by Hájek et al. [40]. Once we have
a limit theorem for the corresponding rank statistics it suffices to prove that X(·) fulfills
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the conditions on the scores in an a.s.-sense. This usually reduces to proving strong
laws of large numbers. If these only hold true in a P -stochastic sense, it is usually still
possible to obtain the above result but only in a P -stochastic sense using the subsequence
principle.

This is the approach we use in Chapter 2. There we have possibly dependent obser-
vations, but they are – in a certain sense – still close to the independent case, so the
above methods work as presented here. In Chapters 3 and 4 we consider the AMOC
location model with dependent errors. There, we have to adapt the above method to
allow for the dependency structure. In Chapter 3 this is done by using the so-called
block permutation method, whereas in Chapter 4 the problem is solved by permuting
the Fourier frequencies of the process rather than the observations themselves.

An Example: AMOC Location Model with i.i.d. Errors

Now we give an easy example to illustrate the above principles. Therefore we choose the
AMOC location model with i.i.d. errors, i.e. X(i) = µ + dn1{i>m} + e(i), dn 6= 0. Here
{e(·)} are i.i.d. random variables satisfying

E e(1) = 0, 0 < var e(1) < ∞, E |e(1)|ν < ∞ for some ν > 2.

The test problem we are interested in is

H0 : m = n against H1 : m < n.

We are illustrating the idea with the classical CUSUM statistic, i.e.

Tn := max
16m6n

1√
n

∣∣∣∣∣
m∑

i=1

(X(i)− X̄n)

∣∣∣∣∣ ,
where X̄n := 1

n

∑n
i=1 X(i).

Antoch and Hušková [2] introduced the permutation method to change-point analysis
using the above problem but the weighted CUSUM statistic. This is somewhat more
complicated than our example because it deals with an extreme-value statistic and the
underlying rank theory is deeper than in our case. The proof for the permutation
statistic, however, is the same in both cases.

It is a well-known fact (confer for example Csörgő and Horváth [19], Chapter 2) that it
holds under H0

Tn

σ̂n

D−→ sup
06t61

|B(t)|,

where {B(·)} is a Brownian bridge and σ̂2
n := 1

n

∑n
j=1(X(j)− X̄n)2.

Let T a
n := max16m6n

1√
n
|
∑m

i=1(an(Ri)− ān)|, where an(·) are scores. The following
lemma gives the limit behavior of the rank statistic.

Lemma 1.2.3. If

σ2
n(a) :=

1
n

n∑
i=1

(an(i)− ān)2 > D1 > 0 (1.2.1)
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and

1
n

n∑
i=1

|an(i)− ān|ν < D2 < ∞ for some ν > 2, (1.2.2)

it holds as n →∞

1
σn(a)

T a
n = max

16m6n

1√
n σ2

n(a)

∣∣∣∣∣
m∑

i=1

(an(Ri)− ān)

∣∣∣∣∣ D−→ sup
06t61

|B(t)|,

where {B(·)} is a Brownian bridge.

Proof. This follows for example from Billingsley [9], Theorem 24.2 (p. 212). For details
confer Kirch [50], Corollary 5.3.1 b).
It is also possible to obtain the result using results from linear rank statistics (convergence
in C[0, 1], tightness) in a similar way as in Section 4.5 or from Corollary D.2.

We can now use the above rank statistic result and strong laws of large numbers to
obtain the desired limit theorem for the permutation statistic under H0 as well as H1.

Let TR
n = max16m6n

1√
n

∣∣∑m
i=1(X(Ri)− X̄n)

∣∣ be the permutation statistic. The follow-
ing theorem by Antoch and Hušková [2] gives its limit behavior.

Theorem 1.2.1. Under the above assumptions and if additionally dn 6 D3 < ∞, it
holds as n →∞ for all x ∈ R

P

(
1
σ̂n

TR
n 6 x

∣∣∣X(1), . . . , X(n)
)
−→ P

(
sup

06t61
|B(t)| 6 x

)
a.s.,

where {B(·)} is a Brownian bridge and σ̂2
n := 1

n

∑n
j=1(X(j)− X̄n)2.

Proof. We can apply Lemma 1.2.3 with an(i) := X(i), i = 1, . . . , n. To get the desired
result it is sufficient to check that (1.2.1) and (1.2.2) are satisfied almost surely for these
scores. Note

1
n

n∑
i=1

(X(i)− X̄n)2 =
1
n

n∑
i=1

(e(i)− ēn)2 − 2dn
1
n

m∑
i=1

(e(i)− ēn) + d2
n

m(n−m)
n2

.

Hence the classical law of large numbers implies

1
n

n∑
i=1

(X(i)− X̄n)2 > var(e(1)) + o(1) a.s.

Similarly, we get

1
n

n∑
i=1

|X(i)− X̄n|ν 6 C (E |e(1)|ν + Dν
3) + o(1) a.s.

for some constant C < ∞. For more details confer Kirch [50], Theorem 8.0.1. These
relations ensure that the assumptions of Lemma 1.2.3 are fulfilled, thus the assertion
follows.
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Bootstrap With Replacement

The permutation test from above can be interpreted as bootstrap without replace-
ment. We are then interested in the conditional limit behavior of statistic TU

n :=
Tn(X(U1), . . . , X(Un)), where U = (U1, . . . , Un) forms a triangular array of row-wise
i.i.d. random variables with P (U1 = j) = 1

n , j = 1, . . . , n. Moreover we require that U
is independent of {X(·)}. Here, the corresponding test is usually not exact.

Usually this approach gives the same results as above. This is, however, hardly surpris-
ing considering that one often proves rank statistic results by deriving them from the
corresponding results for the statistic with replacement. One example is the proof for
the Lindeberg-Condition of rank statistics, cf. Theorems 3.1 and 4.1 of Hájek [39].

In this work we will concentrate on the permutation test. Yet, we always remark how
to adapt the proofs to obtain the results for the bootstrap with replacement.

Small Sample Behavior and Simulations

After we have proven results of the above type for a given model (as e.g. Theorem 1.2.1
for the AMOC location model and the CUSUM statistic), we know that the permutation
test is a valid test just like the asymptotic one. However, we still do not know whether it
really is better than the asymptotic test regarding its small sample behavior if measured
by α- respectively β−errors. To find out about that it is standard procedure to conduct
a simulation study. This is done in Part II of this thesis.

There is little literature containing theoretical results showing that the small sample
behavior of resampling methods is better than the one of the original asymptotic test.
However, Berkes et al. [7] investigated convergence rates for different permutation statis-
tics. For the weighted CUSUM statistic they obtained a better rate for the difference of
the distribution functions of the permutation statistic and of the original statistic under
H0 than for the convergence under the null hypothesis.

1.3. Organization of the Material

In this thesis we investigate resampling methods for different change-point models with
dependent errors.
In the main part we prove the asymptotic validity of the proposed methods. In Chapter 2
we investigate abrupt as well as gradual changes in a model of possibly dependent data
satisfying a strong invariance principle. The statistics are based on the increments of the
processes. Because the distance between observations increases over time the dependency
structure is captured in the statistic. This is the reason why in this model the permu-
tation method as described in the previous chapters works without adjustment. Many
important examples satisfy the model assumptions including linear processes which we
will investigate further in the following two chapters.

In Chapters 3 and 4 we turn our attention to the classical location model. We introduce
common statistics that were originally developed for independent errors. They are used
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frequently for practical purposes even when the assumption of independence of the ob-
servations is not realistic in many real-life situation. Antoch et al. [4] and Horváth [45]
prove that the limit distributions of the statistics essentially remain the same if the er-
rors are linear processes instead of independent random variables. Since convergence is
rather slow and also the asymptotic quantiles are not always theoretically known, we
propose resampling methods to derive critical values. Because just permuting the ran-
dom variables does not sufficiently capture the dependency structure of the errors we
have to adapt the methods.
In Chapter 3 we investigate a block permutation method. There we consider blocks of
successive observations and permute the blocks but keep the order within the blocks.
The idea is that the dependency structure is captured within the block.
In Chapter 4 we resample the Fourier frequencies of the estimated underlying linear
process rather than the observations themselves. It is known that finitely many Fourier
frequencies are asymptotically independent and normally distributed. Since resampling
procedures work very well for independent data the idea is that permuting the Fourier
frequencies will also work well.
In all three chapters we first prove the corresponding rank statistic result. We then
derive the asymptotic of the permutation statistics from them. It turns out that the
obtained critical values are indeed good approximations of the critical values for the
original statistics under the null distribution. This is even true when the observations
follow an alternative.
This confirms that the resampling methods are theoretically valid. We do, however, not
know how well they perform in comparison to the asymptotic test.

This is why we give the results of a simulation study in a second part. The simulations
belonging to the model from Chapter 2 implement partial sums as well as renewal pro-
cesses and are given in Chapter 5.
The simulation study for the location model with an error sequence that forms a linear
process is given in Chapter 6. We use the example of different causal AR(1)-sequences.
It turns out that the resampling methods usually behave better than the asymptotic
method if performance is measured by α− and β−errors, respectively.

Finally we summarize some frequently used results, inequalities and methods in an ap-
pendix. A first chapter gives a short introduction into stochastic Landau symbols and
their properties. We use them frequently throughout this work without comment.
Moreover we develop some Hájek–Rényi–type inequalities for dependent random vari-
ables as well as moment inequalities for sums of dependent data which lead to (strong)
laws of large numbers.
In Appendix C we give a short introduction into the Beveridge-Nelson decomposition
which is a very useful tool in proving strong laws of large numbers for linear processes.
We also give some results obtained by Phillips and Solo [71] by exploiting this decom-
position.
The next two appendices deal with an embedding for permutation and exchangeable
processes by Einmahl and Mason [28] and some properties of simple linear rank statis-
tics. Both are useful to obtain the correct rank statistic results.
A final appendix states some results from change-point analysis that are used frequently
in this work.
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2. Change Analysis of Stochastic Processes
under Strong Invariance

Developing testing procedures in models of dependent data is becoming more and more
important considering nearly all real-life data is dependent.

In this chapter we develop a first permutation procedure for the change analysis of
possibly dependent data. This model is, however, still close to the independent case due
to the fact that the statistics consider observations that grow further and further apart.
This is why we can use the permutation procedures as described in Section 1.2.

More precisely we deal with a change in the drift as well as variance of a stochastic
process fulfilling a strong invariance principle. Abrupt as well as gradual changes are
studied. The statistics involved are based on the increments of the underlying process
which are asymptotically independent.

Simulation results in Chapter 5 confirm that the permutation tests usually behave better
than the original tests if performance is measured by the α− and β−errors, respectively.

The rank statistic results as well as the results concerning the abrupt change have already
been part of the author´s diploma thesis [50], although in a somewhat less refined version.
The results of this chapter have been published as a joint article with Josef Steinebach,
University of Cologne, [52].

This chapter is organized as follows:
The first section describes the models we are using and also specifies examples of pro-
cesses included in this setting. Furthermore we introduce the statistics to detect abrupt
or gradual changes as well as their null asymptotics.
Since the corresponding rank asymptotics are essential in the proof of the permutation
tests we develop them in Section 2.2.
In a final section we then introduce the permutation statistics and give their limit dis-
tribution, which shows that the permutation test as described in Section 1.2 works.

2.1. Models, Statistics and their Null Asymptotics

First we give a mathematical description of the models we use and illustrate that they
include a broad range of applications. Furthermore the statistics and their null asymp-
totics are given.
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Abrupt Change in the Mean or Variance of a Stochastic Process Under
Strong Invariance

A main tool in change-point analysis is to make use of invariance principles for the
observed sequence and develop asymptotic tests based on the approximating process.
This idea is also pursued in the following model by Horváth and Steinebach [46].

Suppose one observes a stochastic process {Z(t) : 0 6 t < ∞} having the following
structure:

Z(t) =

{
at + bY (t), 0 6 t 6 T ∗,

Z(T ∗) + a∗(t− T ∗) + b∗Y ∗(t− T ∗), T ∗ < t 6 T,
(2.1.1)

where a = aT , a∗ = a∗T are unknown parameters, b 6= 0, b∗ 6= 0 unknown constants, and
{Y (t) : 0 6 t < ∞} resp. {Y ∗(t) : 0 6 t < ∞} are (unobserved) stochastic processes
satisfying the following strong invariance principles:

For every T > 0, there exist two independent Wiener processes {WT (t) : 0 6 t 6 T ∗}
and {W ∗

T (t) : 0 6 t 6 T − T ∗}, and some ν > 2, such that, for T →∞,

sup
06t6T ∗

|Y (t)−WT (t)| = O
(
T 1/ν

)
a.s. (2.1.2)

and

sup
06t6T−T ∗

|Y ∗(t)−W ∗
T (t)| = O

(
T 1/ν

)
a.s. (2.1.3)

Moreover, we assume Y (0) = 0 and Y ∗(0) = 0. It should be noted that only weak
invariance has been assumed in Horváth and Steinebach [46], instead of the strong rates
of (2.1.2) and (2.1.3), which are required for later use here. Furthermore, the processes
{Z(·)}, {Y (·)}, and {Y ∗(·)} could be replaced by a family of processes {ZT (·)}, {YT (·)},
and {Y ∗

T (·)}, T > 0, since the asymptotic analysis is merely based on the approximating
family of Wiener processes {WT (·)} and {W ∗

T (·)}, respectively.

One is interested in testing the hypothesis of ”no change”, i.e.

H0 : T ∗ = T ,

against the alternative of ”a change in the mean at T ∗ ∈ (0, T )”, i.e.

H
(1)
1 : 0 < T ∗ < T and a 6= a∗ ,

respectively ”a change in the variance at T ∗ ∈ (0, T )”, i.e.

H
(2)
1 : 0 < T ∗ < T and b 6= b∗, but a = a∗.

We will now discuss some basic examples satisfying conditions (2.1.1) - (2.1.3) (for details
we refer to Horváth and Steinebach [46]).

Example 2.1.1 (Partial sums). Let {X(i) : i > 1} and {X∗(i) : i > 1} be two
independent sequences of i.i.d. random variables with E X(1) = µ, varX(1) = σ2 > 0
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respectively EX∗(1) = µ∗ and varX∗(1) = σ∗2 > 0. Consider Z(t) = S[t], where S0 = 0
and

Sk =

{
X(1) + X(2) + . . . + X(k), 1 6 k 6 T ∗,

S[T ∗] + X∗(1) + X∗(2) + . . . + X∗(k − [T ∗]), T ∗ < k 6 T.

If E |X(1)|ν < ∞ and E |X∗(1)|ν < ∞ for some ν > 2, then according to Komlós et
al. and Major [54, 55, 62] there exist independent Wiener processes {W (t) : t > 0},
{W ∗(t) : t > 0}, such that∣∣∣∣∣ 1σ

k∑
i=1

[X(i)− µ]−W (k)

∣∣∣∣∣ = o
(
k1/ν

)
,

∣∣∣∣∣ 1
σ∗

k∑
i=1

[X∗(i)− µ]−W ∗(k)

∣∣∣∣∣ = o
(
k1/ν

)
a.s.

This yields (2.1.1) - (2.1.3) with a = µ, b = σ, Y (t) = (Z(t) − µt)/σ, a∗ = µ∗, b∗ = σ∗

and Y ∗(t− T ∗) = (Z(t)− Z(T ∗)− µ∗(t− T ∗))/σ∗.

Example 2.1.2 (Renewal processes). Let {X(·)} and {X∗(·)} be as in Example
2.1.1. Furthermore µ, µ∗ > 0. Consider

Z(t) =

{
N1(t), 0 6 t 6 T ∗,

N1(T ∗) + N2(t− T ∗), T ∗ < t < ∞,

where for 0 6 t < ∞

N1(t) = min

{
k > 1;

k∑
i=1

X(i) > t

}
−1, N2(t) = min

{
k > 1;

k∑
i=1

X∗(i) > t

}
−1.

Then by Csörgő et al. [20] (confer also Csörgő and Horváth [18]; Steinebach [78]) the
approximations in (2.1.1) - (2.1.3) hold with a = 1/µ, b = (σ2/µ3)1/2, Y (t) = (N1(t) −
at)/b, a∗ = 1/µ∗, b∗ = (σ2∗/µ∗3)1/2 and Y ∗(t) = (N2(t)− a∗t)/b∗.

Example 2.1.3 (Dependent observations). Let Z(t) = S[t] be as in Example 2.1.1,
but now we drop the assumption of independence of X(1), X(2), . . . and X∗(1), X∗(2), . . ..
Instead let X(i) = µ + σe(i), 1 6 i 6 T ∗, X(i)∗ = µ∗ + σ∗e([T ∗] + i), 1 6 i 6 T − [T ∗],
where {e(·)} fulfills a strong invariance principle. Precisely suppose there exists {W (t) :
0 6 t < ∞}, such that for k →∞∣∣∣∣∣

k∑
i=1

ei − τW (k)

∣∣∣∣∣ = O(k1/ν) a.s. (2.1.4)

for some ν > 2 and some τ > 0. Such approximations have e.g. been obtained for weak
Bernoulli processes (confer Eberlein [24]), α- and φ-mixing sequences, general Gaussian
sequences and others (confer Philipp [70] for a comprehensive review). Aue et al. [5]
show such approximations for squares of augmented GARCH sequences. Then (2.1.1) -
(2.1.3) hold with Y (t) = (Z(t)−µt)/b and Y ∗(t−T ∗) = (Z(t)−Z(T ∗)−µ∗(t−T ∗))/b∗,
where b = στ and b∗ = σ∗τ .

Example 2.1.4 (Linear processes). One sequence included in Example 2.1.3 deserves
special attention, because we will also focus the research in Chapters 3 and 4 on it.
Namely we assume that the sequence in Example 2.1.3 is a linear process, i.e.

e(i) =
∑
s>0

ws ε(i− s), 1 6 i < ∞,
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where {ε(·)} is a sequence of centered i.i.d. random variables with var ε(0) = σ2 > 0 and
E |ε(0)|ν < ∞ for some ν > 2. If additionally (3.3.4) - (3.3.6) hold, then the invariance
principle in (2.1.4) is fulfilled for τ := σ

(∑
s>0 ws

)
. For details confer Lemmas 2.1 and

2.2 in Horváth [45].

It is assumed that the process {Z(t) : t > 0} has been observed at discrete time points
ti = ti,N = i T

N , 1 6 i 6 N = N(T ). Let ∆Zi,T = Z(ti) − Z(ti−1) and ∆̃Zi,T =
Z(ti)− Z(ti−1)−∆ZT . Because T/N →∞ the intervals between observations become
larger and larger. This is the reason why the asymptotic equals the one for independent
observations and also why the permutation methods work just as described in Section 1.2.
The block resampling methods of Chapter 3 are essentially based on the same idea (confer
Section 3.1).

We use CUSUM statistics (for more details on the derivation of them confer Section 3.2),
precisely:

M
(1)
T = max

16k6N

{
1√
T

1

b̂T

∣∣∣∣∣
k∑

i=1

(
∆Zi,T −∆ZT

)∣∣∣∣∣
}

, (2.1.5)

where ∆ZT = 1
N

∑N
i=1 ∆Zi,T , and

b̂2
T =

1
T

N∑
i=1

(
∆Zi,T −∆ZT

)2
,

resp.

M̃T = max
16k6N

{
1√
T

1
ĉT

∣∣∣∣∣
k∑

i=1

(
∆̃Z

2

i,T − ∆̃Z
2

T

)∣∣∣∣∣
}

, (2.1.6)

where ∆̃Z
2

T = 1
N

∑N
i=1 ∆̃Z

2

i,T , and

ĉ2
T :=

1
T

N∑
i=1

(
(∆Zi,T −∆ZT )2 − 1

N

N∑
l=1

(
∆Zl,T −∆ZT

)2)2

.

Remark 2.1.1. The statistic M̃T uses a slightly different variance estimator ĉ2
T than the

one given in Horváth and Steinebach [46]. It possesses, however, the same asymptotic
behavior, since the ratio of the two normalizations converges in probability to 1 under
the null hypothesis, and to some positive constant under the alternative (cf. Theorem
4.5.2 and Remark 4.5.1 in Kirch [50], additionally to equations (2.3.5) and (2.3.6)).
The variance estimator we use for the permutation method is the variance of the cor-
responding rank statistic (alternatively we could only use an estimator that is asymp-
totically equivalent under both, the null hypothesis as well as alternatives). Using an
estimator that is only equivalent under the null hypothesis would mean that the con-
vergence of the permutation statistic under alternatives changes. The test remains con-
sistent as long as under alternatives the permutation statistic does converge to some
limit distribution conditionally on the observations. Still, it is nicer to have the same
asymptotic behavior under both, the null hypothesis as well as alternatives.
This is why the modification is made, so we can use the same variance estimator for the
original as well as the permutation statistic. Since it is invariant under permutations the
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quality of the test does not depend anymore on the quality of the estimator. Simulations
suggest that this is one of the main advantages of the permutation method.
It is worth mentioning that the ratio of the two estimators under alternatives converges
to some positive constant. This means that the results concerning consistency (confer
Theorem 3.3 of Horváth and Steinebach [46]) remain true.

The following null asymptotics hold under the above conditions:

Theorem 2.1.1. a) If N = N(T ) → ∞ and N = o
(
T 1−2/ν

)
as T → ∞, then, under

H0,

M
(1)
T

D→ sup
06t61

|B(t)|.

b) If N = N(T ) →∞ and N = o
(
T 1/2−1/ν

)
as T →∞, then, under H0,

M̃T
D→ sup

06t61
|B(t)|.

Here {B(t) : 0 6 t 6 1} is a Brownian bridge.

Proof. Confer Theorems 2.1 and 2.2 of Horváth and Steinebach [46].

Remark 2.1.2. Horváth and Steinebach [46] also show that under certain assumptions
the tests are consistent (confer Theorems 2.3 and 3.3). This remains true for the new
change estimator for statistic M̃T (confer also Remark 2.1.1). The permutation tests are
then automatically consistent under the same assumptions.

Gradual Change in the Mean of a Stochastic Process Under Strong
Invariance

Steinebach [79] considers a similar model with a gradual change. Such changes are more
realistic in many ways. Hušková and Steinebach [48] propose a testing procedures for a
location model with such a change and independent observations. Permutation methods
work also very well for that model (confer Kirch [50] or Kirch and Steinebach [52]).

As with the model with an abrupt change from the previous section, the model considered
here allows dependency.

Suppose one observes a stochastic process {S(t) : 0 6 t < ∞} having the following
structure:

S(t) :=

{
at + bY (t), 0 6 t 6 T ∗,

S(T ∗) + a∗(t− T ∗) + b∗Y ∗(t− T ∗), T ∗ < t 6 T,
(2.1.7)

where a, b, b∗ and {Y (·)}, {Y ∗(·)} are as in model 2.1.1 above, a∗(t− T ∗) = a(t− T ∗) +
d(t−T ∗)1+γ , γ > 0 is known, d = dT is an unknown parameter. Note that – in contrast
to abrupt changes – the biggest difference in the mean of the increments is not a∗ − a
but depends on T, T ∗ and γ. Note that, instead of (2.1.2), Steinebach [79] assumes the
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following weak invariance principle for the process {Y (t) : 0 6 t < ∞}, namely that, for
every T > 0, there is a Wiener process {WT (t) : 0 6 t 6 T ∗} such that

sup
16t6T ∗

|Y (T ∗)− Y (T ∗ − t)−WT (t)| /t1/ν = OP (1) (T →∞). (2.1.8)

The reason is that small approximation rates are required near the change-point T ∗,
but only in a weak sense, whereas we need strong approximations for our permutation
principles below. Here, too, the processes {Z(·)}, {Y (·)}, and {Y ∗(·)} could be replaced
by a family of processes {ZT (·)}, {YT (·)}, and {Y ∗

T (·)}, T > 0.

We are now interested in testing the null hypothesis of ”no change in the drift”, i.e.

H0 : T ∗ = T

against the alternative of ”a smooth (gradual) change in the drift”, i.e.

H1 : 0 < T ∗ < T, d 6= 0.

Basic examples fulfilling the conditions above are again partial sums of i.i.d. random
variables, renewal processes based on i.i.d. waiting times and certain linear processes
(confer Steinebach [79] for more details). As in model 2.1.1, we assume that we have
observed {S(t) : t > 0} at discrete time points ti = i T

N , and set ∆Si,T = S(ti)−S(ti−1).

We will now work with the following statistic:

M
(2)
T =

√
N

T b̂2
T

max
16k<N

∣∣∑N
i=1(i− k)γ

+(∆Si,T −∆SN )
∣∣(∑N−k

i=1 i2γ − 1
N

(∑N−k
i=1 iγ

)2)1/2
, (2.1.9)

where ∆ST = 1
N

∑N
i=1 ∆Si,T , and b̂2

T = 1
T

∑N
i=1

(
∆Si,T −∆ST

)2. The statistic was first
proposed by Hušková and Steinebach in [48] in the context of a location model with
gradual changes and independent errors. It is the maximum likelihood statistic for this
model under normal errors.

Steinebach [79] assumes a slightly different weight, which is asymptotically equivalent
to the one used above. Simulation studies, however, show that the above weight gives
much better results for the permutation statistic. The results obtained in Steinebach [79]
remain valid.

The following theorem gives the null asymptotics of the above statistic.

Theorem 2.1.2. If (2.1.8) holds, N = N(T ) → ∞ and N = O(T ) as T → ∞, then,
under H0, for all x ∈ R :

P
(
αNM

(2)
T − βN 6 x

)
→ exp

(
−2e−x

)
,

where αN =
√

2 log log N and βN = βN (γ) is as follows:

(i) for γ > 1
2 :

βN = 2 log log N + log

(
1
4π

(
2γ + 1
2γ − 1

)1/2
)

;
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(ii) for γ = 1
2 :

βN = 2 log log N +
1
2

log log log log N − log(4π);

(iii) for 0 < γ < 1
2 :

βN = 2 log log N +
1− 2γ

2(2γ + 1)
log log log N + log

(
C

1/(2γ+1)
γ H2γ+1√

π22γ/(2γ+1)

)
,

with Hγ as in Remark 12.2.10 of Leadbetter et al. [59] (e.g. H1 = 1, H2 = 1/
√

π),
and

Cγ = −(2γ + 1)
∫ ∞

0
xγ((x + 1)γ − xγ − γxγ−1) dx.

Proof. Confer Theorem 2.1 in Steinebach [79].

Remark 2.1.3. Note that H2γ+1 is explicitely known only for few values of γ. It is,
however, necessary to know that value or have at least an approximation of it in order
to use the asymptotic test. As a contrast the permutation test can be used nevertheless.

Remark 2.1.4. Steinebach [48] shows consistency of the asymptotic test under certain
assumptions. Again this remains automatically true for the permutation test.

2.2. Asymptotics of the Corresponding Rank Statistics

In order to derive distributional asymptotics for the permutation statistics, we shall
make use of the following theorems for the corresponding rank statistics. We begin with
the corresponding rank asymptotic for the CUSUM statistic.

Theorem 2.2.1. Let (R1, . . . , Rn) be a random permutation of (1, . . . , n), and
an(1), . . . , an(n) be scores satisfying the following conditions:

1
n

n∑
i=1

(an(i)− ān)2 → 1, (2.2.1)

where ān := 1
n

∑n
i=1 an(i), and

1
n

max
16i6n

(an(i)− ān)2 → 0. (2.2.2)

Then, as n →∞,

max
16k6n

1√
n

∣∣∣ k∑
i=1

(an(Ri)− ān)
∣∣∣ D→ sup

06t61
|B(t)| ,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Proof. It follows from Theorem 24.2 in Billingsley [9].
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Remark 2.2.1. We obtain an analogous result for score statistics, where we replace
the permutations (R1, . . . , Rn) by a triangular array {Ui : i = 1, . . . , n} of rowwise i.i.d.
random variables that are uniformly distributed on {1, . . . , n}. Then we obtain under
(2.2.1) and (2.2.2)

max
16k6n

1√
n

∣∣∣ k∑
i=1

(an(Ui)− āU,n)
∣∣∣ D−→ sup

06t61
|B(t)| ,

where āU,n = 1
n

∑n
i=1 an(Ui). This result can then be used to prove the validity of the

bootstrap with replacement.

Proof of Remark 2.2.1. The result in Billingsley [9], Theorem 24.2, is already
formulated for exchangeable random variables. It suffices to prove

1
n

n∑
i=1

(an(Ui)− āU,n)2 P−→ 1,

1
n

max
i=1,...,n

(an(Ui)− āU,n)2 P−→ 0.

First of all we obtain as in (D.5)

āU,n − ān = oP (1),

thus it suffices to prove

1
n

n∑
i=1

(an(Ui)− ān)2 = 1 + oP (1). (2.2.3)

We use Lemma B.2 with Yn(i) = (an(Ui) − ān)2 and bn = n. Then (i) is obviously
fulfilled by (2.2.2). Furthermore (ii) holds true because of (2.2.1) and (2.2.2), since

1
n2

n∑
i=1

(an(i)− ān)41{(an(i)−ān)26n} 6
1
n2

n∑
i=1

(an(i)− ān)4

6
1
n

max
i=1,...,n

(an(i)− ān)2
1
n

n∑
i=1

(an(i)− ān)2 → 0.

Finally it holds for large n because of (2.2.1) and (2.2.2)

1
n

n∑
i=1

(an(i)− ān)21{(an(i)−ān)26n} =
1
n

n∑
i=1

(an(i)− ān)2.

Thus Lemma B.2 gives (2.2.3).

The next theorem deals with the rank asymptotics for the statistic for a gradual change.
In the case γ = 1, it was already proven by Slabý [77].

Theorem 2.2.2. Let R = (R1, . . . , Rn) be a random permutation of (1, . . . , n), and
an(1), . . . , an(n) be scores satisfying

1
n

n∑
i=1

(an(i)− ān)2 > D1, (2.2.4)
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and

1
n

n∑
i=1

|an(i)− ān|ν 6 D2, (2.2.5)

where D1, D2 are some positive constants, ν > 2, and ān = 1
n

∑n
i=1 an(i). Then, for

fixed γ > 0 and all x ∈ R, as n →∞

P
(
αnM (2)

n (a)− βn 6 x
)
→ exp

(
−2e−x

)
,

where

M (2)
n (a) =

1
σn(a)

max
16k<n

∣∣∑n
i=1(i− k)γ

+(an(Ri)− ān)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2
;

Here σ2
n(a) = 1

n

∑n
i=1 (an(i)− ān)2 , the variance of an(R1), αn =

√
2 log log n and

βn = βn(γ) is as in Theorem 2.1.2.

Remark 2.2.2. We obtain an analogous result for score processes, where we replace
the permutations (R1, . . . , Rn) by a triangular array {Ui : i = 1, . . . , n} of rowwise i.i.d.
random variables that are uniformly distributed on {1, . . . , n}. Then we obtain under
(2.2.4) and (2.2.5)

P
(
αnM (2,r)

n (a)− βn 6 x
)
→ exp

(
−2e−x

)
,

where

M (2,r)
n (a) =

1
σn(a)

max
16k<n

∣∣∑n
i=1(i− k)γ

+(an(Ui)− āU,n)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2
,

where āU,n = 1
n

∑n
i=1 an(Ui). We just need to replace Corollary D.1 in the proof of the

above theorem by Corollary D.2. This result can then be used to prove the validity of
the bootstrap with replacement.

Proof of Theorem 2.2.2. Confer Kirch [50], Corollary 5.2.3. For the sake of com-
pleteness we will repeat the details here. First note that

n
n−k∑
i=1

i2γ −

(
n−k∑
i=1

iγ

)2

= (n− k)
n−k∑
i=1

iγ − 1
n− k

n−k∑
j=1

jγ

2

+ k
n−k∑
i=1

i2γ

> k

∫ n−k

0
x2γdx = k

1
2γ + 1

(n− k)2γ+1.

(2.2.6)

It holds further as n →∞ uniformly in k 6 n/2

1
(n− k)2γ+1

n−k∑
i=1

i2γ − 1
n(n− k)2γ+1

(
n−k∑
i=1

iγ

)2

>
1

(n− k)2γ+1

∫ n−k

0
x2γ dx− 1

(n− k)2γ+2

(∫ n−k+1

0
xγ dx

)2

=
γ2

(2γ + 1)(γ + 1)2
− 1

(γ + 1)2

[(
1 +

1
n− k

)2γ+2

− 1

]

=
γ2

(2γ + 1)(γ + 1)2
+ o(1).

(2.2.7)
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Putting together (2.2.6) (for k > n/2) and (2.2.7) (for k 6 n/2) we arrive atn−k∑
i=1

i2γ − 1
n

(
n−k∑
i=1

iγ

)2
−1

= O
(
(n− k)−(2γ+1)

)
(2.2.8)

uniformly in k. Now, from Corollary D.1 with µ = 0, uniformly in k ∈ [1, n
2 ] :

1
σn(a)

k∑
i=1

(an (Rn−i+1)− ān) D=
√

nB

(
k

n

)
+ OP

(√
k(n− k)

n

)

=
√

nB

(
k

n

)
+ OP

(√
k
)

.

It holds
{√

nB
(

k
n

)
: k = 0, . . . , n

} D=
{
W (k)− k

nW (n) : k = 0, . . . , n
}

, where {W (t) :
t > 0} is a standard Wiener process. Since

∑n
i=1(i−k)γ

+xi =
∑n−k

i=1 (iγ−(i−1)γ)
∑n

j=i+k xj ,
we conclude

1
σn(a)

max
n−log n<k<n

∣∣∑n
i=1(i− k)γ

+(an(Ri)− ān)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2

=
1

σn(a)
max

1<k<log n

∣∣∑k
l=1(l

γ − (l − 1)γ)
∑k−l+1

i=1 (an(Rn−i+1)− ān)
∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2)1/2

D= max
1<k<log n

∣∣∑k
l=1(l

γ − (l − 1)γ)
(
W (k − l + 1)− k−l+1

n W (n)
) ∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2)1/2

+ OP (1) max
1<k<log n

∣∣∑k
l=1(l

γ − (l − 1)γ)
√

k − l + 1
∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2)1/2

= oP

(√
log log n

)
.

The last line follows because (2.2.8) and the law of iterated logarithm yield

max
1<k<log n

∣∣∣∑k
l=1(l

γ − (l − 1)γ)W (k − l + 1)
∣∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2
)1/2

= OP (1) max
1<k<log n

∣∣∣∑k
l=1(l

γ − (l − 1)γ)
√

(k − l + 1) log log(k − l + 1)
∣∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2
)1/2

= OP

(
max

1<k<log n

kγ
√

k log log k√
k2γ+1

)
= OP

(√
log log log n

)
,

and similarly

max
1<k<log n

∣∣∣∑k
l=1(l

γ − (l − 1)γ)k−l+1
n W (n)

∣∣∣(∑k
i=1 i2γ − 1

n

(∑k
i=1 iγ

)2
)1/2

= OP

(√
log n log log n

n

)
,
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max
1<k<log n

∣∣∣∑k
l=1(l

γ − (l − 1)γ)
√

k − l + 1
∣∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2
)1/2

= O(1).

Hence it suffices to investigate the maximum over k ∈ [1, n− log n] as Lemma F.1 shows.

We choose X(i) such that B
(

k
n

)
= 1√

n

(∑k
i=1 X(i)− kX̄n

)
with X̄n = 1

n

∑n
j=1 X(i),

{B(·)} denoting the Brownian bridge of Corollary D.1. Let Yin := Πn(i) − Πn(i −
1) −

(
X(i)− X̄n

)
, where {Πn(·)} and 0 < µ < min

(
ν−2
2ν , 1

4

)
are as in Corollary D.1

(with bn replaced by an) and Sn(l) :=
∑l

i=1 Yin. Note that
∑n

i=l Yin = −Sn(l− 1). Now
Corollary D.1 and (2.2.8) give

max
16k6n−log n

√√√√ n

n
∑n−k

i=1 i2γ −
(∑n−k

i=1 iγ
)2

∣∣∣∣∣
n∑

i=1

(i− k)γ
+Yin

∣∣∣∣∣
6 max

16k6n−log n

√√√√ n

n
∑n−k

i=1 i2γ −
(∑n−k

i=1 iγ
)2

n−k∑
l=1

|Sn(l + k − 1)|(lγ − (l − 1)γ)

= OP (1) max
16k6n−log n

nµ
n−k∑
l=1

((l + k − 1)(n− l − k + 1))1/2−µ√
n
∑n−k

i=1 i2γ −
(∑n−k

i=1 iγ
)2

(lγ − (l − 1)γ)

= oP ((log log n)−1/2),

where we used the fact that for k 6 n/2 it holds (l + k − 1)(n − l − k + 1) 6 n2/4 and
for k > n/2 it holds (l + k − 1)(n− l − k + 1) 6 k(n− k).

Again an application of the law of the iterated logarithm gives similarly to above,

max
n−log n6k6n

∣∣∑n
i=1(i− k)γ

+(X(i)− 1
n

∑n
i=1 X(i))

∣∣(∑n−k
i=1 i2γ − 1

n

(∑n−k
i=1 iγ

)2)1/2
= oP

(√
log log n

)
.

Thus Lemma F.1 yields that it is equivalent to consider the maximum over 1 6 k < n.
Theorem 3.3 of Hušková and Steinebach [48] shows

P

(
α(n) max

16k6n

∣∣∑n
i=1(i− k)γ

+(X(i)− X̄n)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2
− β(n) 6 x

)
→ exp(−2e−x),

which completes the proof.

2.3. Permutation Statistics and their Limit Distributions

In this chapter we show that the permutation statistics conditioned on the given data
follow the same asymptotic as the original statistic under the null. This is true under
the null hypothesis as well as under alternatives for almost all realizations. This shows
that the permutation test as described in Section 1.2 works in this setting.
The main tool in the proofs are the rank statistic theorems developed in Section 2.2. We
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will use them choosing the ranks essentially as the increments of our observed process.
Then, we only need to verify the conditions on the scores which reduces to proving strong
laws of large numbers for the increments.

To this end we will start with two lemmas. The first one is needed to get a law of
logarithm for a sequence of Wiener processes. The second one contains some calculations
for the increments of the underlying process in our model.

Lemma 2.3.1. Let {Wn(t): t > 0}, n ∈ N, be Wiener processes and f be a function of
n, then

Wn(f(n)) = O
(√

f(n) log n
)

a.s. (n →∞).

Proof. It follows from a tail approximation for a normal distribution, namely it holds

P

(
Wn(f(n))√
f(n) log n

> 2

)
=

1√
2π

∫ ∞

2
√

log n
e−x2/2 dx �

∫ ∞

2
√

log n
xe−x2/2dx = n−2,

and
∑

n−2 < ∞, so that the Borel-Cantelli lemma gives the assertion.

In the sequel we assume that there is a 1-1-correspondence between N and T, which is
necessary to get a countable triangular array in N, and, in turn, allows us to use the
preceding lemma.

Moreover, we assume T ∗ = θT , 0 < θ 6 1, and N = o(T 1−2/ν). Let N∗ = bNT ∗

T c =
θN(1 + o(1)) and

∆Yi =


b
(
Y
(
i T
N

)
− Y

(
(i− 1) T

N

))
, i 6 N∗,

b(Y (T ∗)− Y (N∗T
N )) + b∗Y ∗( (N∗+1)T

N − T ∗) , i = N∗ + 1,

b∗
(
Y ∗ (i T

N − T ∗)− Y ∗ ((i− 1) T
N − T ∗)) , i > N∗ + 2.

(2.3.1)

The following lemma now gives some limit results concerning sums of functionals of the
increments of the underlying processes {Y (·)} respectively {Y ∗(·)}.

Lemma 2.3.2. a) It holds, as N →∞,

∆Y =
1
N

N∑
i=1

∆Yi = O

(√
T log N

N

)
a.s.

b) (i) For s = 2, 3, 4, as N →∞,

N (s−2)/2

T s/2

N∑
i=1

(∆Yi)
s → EW (1)s (θbs + (1− θ)(b∗)s) a.s.,

where W (1) has a standard normal distribution.

(ii) For κ > 0, as N →∞,

N (κ−2)/2

T κ/2

N∑
i=1

∣∣∆Yi −∆Y
∣∣κ = O(1) a.s.
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c) For κ > 0, as N →∞,

N (κ−2)/2

T κ/2
max

16i6N

∣∣∆Yi −∆Y
∣∣κ = o(1) a.s.

Proof. The proof makes use of (2.1.2) and (2.1.3) in combination with Lemma 2.3.1
and Corollary B.1.
First Lemma 2.3.1 and the invariance principles (2.1.2) for {Y (·)} respectively (2.1.3)
for {Y ∗(·)} yield

1
N

N∑
i=1

∆Yi =
1
N

(bY (T ∗) + b∗Y ∗(T − T ∗))

=
1
N

((bWT (T ∗) + b∗W ∗
T (T − T ∗)) + O

(
T 1/ν

N

)
= O

(√
T log N

N

)
a.s.

Note that

XiN :=

√
N

T

(
WT

(
i
T

N

)
−WT

(
(i− 1)

T

N

))
, i = 1, . . . , N∗,

X∗
iN :=

√
N

T

(
W ∗

T

(
i
T

N
− T ∗

)
−W ∗

T

(
(i− 1)

T

N
− T ∗

))
, i = N∗ + 1, . . . , N

form a triangular array of i.i.d. standard normal random variables. Now Lemma 2.3.1
and Corollary B.1 give

1
T

N∑
i=1

(∆Yi)2

= b2 1
N

N∗∑
i=1

X2
iN + (b∗)2

1
N

N∑
i=N∗+2

(X∗
iN )2 + O

(
N

T 1−2/ν
+
(

N

T 1−2/ν

)1/2
)

+ O

(
1
T

[
b

(
WT (T ∗)−WT

(
N∗ T

N

))
+ b∗W ∗

T

(
(N∗ + 1)

T

N
− T ∗

)]2
)

= θb2 + (1− θ)(b∗)2 + o(1) + O

(
log N

N

)
a.s.,

because |T ∗ −N∗ T
N | 6

T
N and |(N∗ + 1) T

N − T ∗| 6 T
N .

Since EW (1)3 = 0 we get analogously√
N

T 3

N∑
i=1

(∆Yi)3

= b3 1
N

N∗∑
i=1

X3
iN + (b∗)3

1
N

N∑
i=N∗+2

(X∗
iN )3 + O

((
N

T 1−2/ν

)1/2

+
(log N)3/2

N

)
= o(1) a.s.
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Furthermore EW (1)4 = 3, hence

N

T 2

N∑
i=1

(∆Yi)4

= b4 1
N

N∗∑
i=1

X4
iN + (b∗)4

1
N

N∑
i=N∗+2

(X∗
iN )4 + O

((
N

T 1−2/ν

)1/2

+
(log N)2

N

)
= 3

(
θb4 + (1− θ)(b∗)4

)
+ o(1) a.s.

Finally

N (κ−2)/2

T κ/2

N∑
i=1

∣∣∆Yi −∆Y
∣∣κ � N (κ−2)/2

T κ/2

N∑
i=1

|∆Yi|κ +
(

N

T

)κ/2

|∆Y |κ

� |b|κ 1
N

N∗∑
i=1

|XiN |κ + |b∗|κ 1
N

N∑
i=N∗+2

|X∗
iN |κ

+ O

((
N

T 1−2/ν

)κ/2

+
(log N)κ/2

N

)
+ O

((
log N

N

)κ/2
)

� 1 a.s.

Concerning c) we obtain similarly

N (κ−2)/2

T κ/2
max

16i6N

∣∣∆Yi −∆Y
∣∣κ � N (κ−2)/2

T κ/2
max

16i6N
|∆Yi|κ +

N (κ−2)/2

T κ/2
|∆Y |κ

� |b|κ

N
max

16i6N∗
|XiN |κ +

|b∗|κ

N
max

N∗+26i6N
|X∗

iN |κ + o(1)

6
|b|κ

N1/(κ+1)

(
1
N

N∗∑
i=1

|XiN |κ+1

)κ/(κ+1)

+
|b∗|κ

N1/(κ+1)

(
1
N

N∑
i=N∗+2

|X∗
iN |κ+1

)κ/(κ+1)

+ o(1)

= o(1) a.s.,

which completes the proof.

Abrupt Change in the Mean or Variance

We are now prepared to investigate the permutation statistics for an abrupt change in
the mean or variance, i.e.

M
(1)
T (R) = max

16k6N

{ 1√
T

1

b̂T

∣∣∣ k∑
i=1

(
∆ZRi,T −∆ZT

) ∣∣∣},

and

M̃T (R) = max
16k6N

{ 1√
T

1
ĉT

∣∣∣ k∑
i=1

(
∆̃Z

2

Ri,T − ∆̃Z
2

T

)∣∣∣}.

Here again, R = (R1, . . . , Rn) denotes a random permutation of (1, . . . , n) independent
of {Z(·)}.
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Theorem 2.3.1. Let {Z(t) : t ≥ 0} be a process according to model (2.1.1). Let T ∗ = θT ,
0 < θ 6 1, N = o(T 1−2/ν), and in b) also a = a∗. In a) no restriction on a or a∗ is
necessary. Then, for all x ∈ R, as T →∞,

a) P
(
M

(1)
T (R) 6 x

∣∣Z(t), 0 6 t 6 T
)
→ P

(
sup

06t61
|B(t)| 6 x

)
a.s.

b) P
(
M̃T (R) 6 x

∣∣Z(t), 0 6 t 6 T
)
→ P

(
sup

06t61
|B(t)| 6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Remark 2.3.1. The corresponding bootstrap result with replacement also holds true. In
that approach we sample with replacement from the increments of the observed process
instead of permuting them. Because the corresponding score results holds true under the
same assumptions on the scores (confer Remark 2.2.1), this follows immediately from
the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. Kirch [50], Theorem 10.0.3, gives the proof for constant a
and a∗. This is, however, not needed as we will see now. Let d := a∗ − a. Then it holds
for the increments of {Z(·)}

∆Zi,T = ∆ai + ∆Yi

with ∆Yi as in (2.3.1) and

∆ai =


a T

N , i 6 N∗,

a T
N + d

(
(N∗ + 1) T

N − T ∗) , i = N∗ + 1,

a T
N + d T

N , i > N∗ + 2,

and ∆a = 1
N

∑N
i=1 ∆ai = 1

N (aT + d(T − T ∗)).

Now, for the proof of a), consider the scores aN (i) = b̂−1
T

√
N
T ∆Zi,T , i = 1, . . . , N. Obvi-

ously, 1
N

∑N
i=1 (aN (i)− āN )2 = 1, which means that it is sufficient to verify assumption

(2.2.2) of Theorem 2.2.1.

Lemma 2.3.2 implies

1
T

N∑
i=1

(
∆Yi −∆Y

)2 = θb2 + (1− θ)(b∗)2 + o(1) a.s.,

and

1
T

N∑
i=1

(∆Yi −∆Y )(∆ai −∆a) =
1
T

N∑
i=1

(∆Yi −∆Y )
[
∆ai − a

T

N

]

� |d|
√

T

N

(
1√
NT

|Y ∗(T )− Y ∗((N∗ + 1)T/N − T ∗)|+ 1√
NT

|∆YN∗+1|+
√

N

T
∆Y

)
= o

(
|d|
√

T/N
)

a.s.
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Moreover

1
T

N∑
i=1

(∆ai −∆a)2 =
d2T

N

N −N∗ − 1
N

+ d2 1
T

(
T

N∗ + 1
N

− T ∗
)2

− d2 T

N

(T − T ∗)2

T 2

= d2 T

N
θ(1− θ) + o(d2T/N).

Putting the above together we obtain

b̂2
T > θb2 + (1− θ)(b∗)2 + o

(
|d|
√

T/N
)

+ o(1) a.s. (2.3.2)

as well as (d 6= 0)

N

Td2
b̂2
T > θ(1− θ) + o

(√
N

Td2

)
+ o(1) a.s. (2.3.3)

Note that

max
i=1,...,n

(∆ai −∆a)2 � d2 T 2

N2
. (2.3.4)

First consider the case d2T
N = O(1), which includes the null hypothesis. Then Lemma 2.3.2

and equations (2.3.2) respectively (2.3.4) give

1
N

max
16i6N

(aN (i)− āN )2 � 1

T b̂2
T

max
16i6N

(∆ai −∆a)2 +
1

T b̂2
T

max
16i6N

(∆Yi −∆Y )2

= o(1) a.s.

If, on the other hand, N
Td2 = O(1), then Lemma 2.3.2 and equations (2.3.3) respectively

(2.3.4) yield as well

1
N

max
16i6N

(aN (i)− āN )2 = o(1) a.s.

If neither d2T
N = O(1) nor N

Td2 = O(1), we can divide the sequence into two subsequences
each fulfilling one of the above conditions. This means we again get

1
N

max
16i6N

(aN (i)− āN )2 = o(1) a.s.,

which completes the proof of a).

For the proof of b), consider aN (i) = ĉ−1
T

√
N
T

(
∆Zi,T −∆ZT

)2. It suffices again to
verify the assumptions of Theorem 2.2.1.

Again 1
N

∑N
i=1 (aN (i)− āN )2 = 1. Note that because of a = a∗ it holds ∆Zi,T −∆ZT =

∆Yi −∆Y . Like above, Lemma 2.3.2 gives

N

T 2

N∑
i=1

(
∆Yi −∆Y

)4 → 3
(
θb4 + (1− θ)(b∗)4

)
a.s., (2.3.5)
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and

(̂b2
T )2 =

(
1
T

N∑
i=1

(∆Yi)2 −
N

T
∆Y

2

)2

→
(
θb2 + (1− θ)(b∗)2

)2
a.s. (2.3.6)

From Jensen’s inequality we conclude

lim
T→∞

N

T
ĉ2
T = lim

T→∞

(
N

T 2

N∑
i=1

(
∆Yi −∆Y

)4 − (̂b2
T )2
)

= 3(θb4 + (1− θ)(b∗)4)− (θb2 + (1− θ)(b∗)2)2 > 2(θb4 + (1− θ)(b∗)4) > 0 a.s.

So, an application of Lemma 2.3.2 results in

1
N

max
16k6N

(aN (k)− āN )2 =
1

T ĉ2
T

max
16k6N

((
∆Yk −∆Y

)2 − 1
N

N∑
i=1

(
∆Yi −∆Y

)2)2

� N

T 2
max

16k6N
(∆Yk −∆Y )4 +

1
N

(
1
T

N∑
i=1

(∆Yi −∆Y )2
)2

= o(1) a.s.,

which completes the proof of b).

Gradual Change in the Mean

Finally we turn to model (2.1.7) and investigate the permutation analogue of (2.1.9), i.e.
the statistic

M
(2)
T (R) =

√
N

T b̂2
T

max
16k<N


∣∣∣∑N

i=1(i− k)γ
+(∆SRi,T −∆SN )

∣∣∣(∑N−k
i=1 i2γ − 1

N

(∑N−k
i=1 iγ

)2)1/2

 .

The following asymptotic applies:

Theorem 2.3.2. Let {S(t) : t ≥ 0} be a process according to model (2.1.7). Assume
T ∗ = θT , 0 < θ 6 1, N = o(T 1−2/ν), no restrictions on a or d are necessary. Then, for
all x ∈ R, as T →∞,

P
(
αNM

(2)
T (R)− βN 6 x

∣∣S(t), 0 6 t 6 T
)
→ exp(−2e−x) a.s.,

where αN , βN = βN (γ) are as in Theorem 2.1.2.

Remark 2.3.2. Again the corresponding bootstrap result with replacement also holds
true. In that approach we sample with replacement from the increments of the observed
process instead of permuting them. Because the corresponding score results holds true
under the same assumptions on the scores (confer Remark 2.2.2), this follows immedi-
ately from the proof of Theorem 2.3.2.

Proof of Theorem 2.3.2. First note that, for the increments of {S(·)}, we have

∆Si,T = ∆ai + ∆Yi
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with ∆Yi as in (2.3.1) and

∆ai =


a T

N , i 6 N∗,

a T
N + d

(
(N∗+1)T

N − T ∗
)1+γ

, i = N∗ + 1,

a T
N + d

((
iT
N − T ∗)1+γ −

(
(i−1)T

N − T ∗
)1+γ

)
, i > N∗ + 2,

and ∆a = 1
N

∑N
i=1 ∆ai = 1

N

(
aT + d(T − T ∗)1+γ

)
.

Let ∆̃ai = ∆ai − aT/N , then the mean value theorem gives uniformly in i

∆̃ai � |d|T
1+γ

N

and uniformly for i > N∗ + 2 depending on γ > 1 or γ < 1

∆̃ai+1 − ∆̃ai � |d|
(

T

N

)1+γ

|i± 1− θN |γ−1.

Thus

N∑
i=1

|∆ai −∆a|ν � |d|ν T (1+γ)ν

Nν−1
. (2.3.7)

Let ∆Wi = W ∗
T (iT/N) − W ∗

T ((i − 1)T/N), then Lemma 2.3.1 and partial summation
show

N∑
i=N∗+2

∆Yi ∆̃ai =
N∑

i=N∗+2

∆Wi ∆̃ai + O(1)|d|T
3/2+γ

N1/2

(
N

T 1−2/ν

)1/2

�
√

T log N∆̃aN +
N−1∑

i=N∗+2

√
i
T

N
log N |∆̃ai+1 − ∆̃ai|+ o

(
|d|T

3/2+γ

N1/2

)

� |d|T
3/2+γ

N1/2

√
log N

N

1
N1/2+γ

N−1∑
i=N∗+2

i1/2|i± 1− θN |γ−1 + o

(
|d|T

3/2+γ

N1/2

)

= o

(
|d|T

3/2+γ

N1/2

)
a.s.

If one takes additionally Lemma 2.3.2 into account we arrive at

N∑
i=1

(∆Yi −∆Y )(∆ai −∆a) = o

(
|d|T

3/2+γ

N1/2

)
a.s. (2.3.8)

Next we have by the mean value theorem

N∑
i=1

(∆ai −∆a)2 >
|d|2T 2+2γ

N2
(1 + γ)2

∫ N−1

N∗+1

( x

N
− θ
)2γ

dx− |d|2 (T − T ∗)2+2γ

N

=
|d|2T 2+2γ

N

[
(1 + γ)2

2γ + 1
(1− θ)2γ+1 − (1− θ)2γ+2 + o(1)

]
=
|d|2T 2+2γ

N

(
(1− θ)2γ+1

2γ + 1
(
γ2 + θ(2γ + 1)

)
+ o(1)

)
.

(2.3.9)
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Consider first the case where |d| T 1/2+γ

N1/2 = O(1), which includes the null hypothesis.
Then choose the scores aN (i) :=

√
N/T∆Si,T . It suffices to prove the assumptions of

Theorem 2.2.2. By Lemma 2.3.2 and (2.3.7) it holds

1
N

N∑
i=1

|aN (i)−āN |ν �
(

N

T

)ν/2
[

1
N

N∑
i=1

|∆ai −∆a|ν +
1
N

N∑
i=1

|∆Yi −∆Y |ν
]
� 1 a.s.

Furthermore Lemma 2.3.2 and (2.3.8) show

1
N

N∑
i=1

(aN (i)− āN )2 >
1
T

N∑
i=1

(∆Yi −∆Y )2 − 2
1
T

N∑
i=1

(∆Yi −∆Y )(∆ai −∆a)

= b2θ + (b∗)2(1− θ) + o(1) a.s.

If, on the other hand, N1/2

|d|T 1/2+γ = O(1), we choose the scores aN (i) := N/(|d|T 1+γ)∆Si,T .
Again it suffices to prove the assumptions of Theorem 2.2.2. By Lemma 2.3.2 and (2.3.7)
it holds

1
N

N∑
i=1

|aN (i)− āN |ν

�
(

N

|d|T 1+γ

)ν
[

1
N

N∑
i=1

|∆ai −∆a|ν +
1
N

N∑
i=1

|∆Yi −∆Y |ν
]
� 1 a.s.

Furthermore (2.3.8) and (2.3.9) show

1
N

N∑
i=1

(aN (i)− āN )2

>
N

|d|2T 2+2γ

N∑
i=1

(∆ai −∆a)2 − 2
N

|d|2T 2+2γ

N∑
i=1

(∆Yi −∆Y )(∆ai −∆a)

>
(1− θ)2γ+1

2γ + 1
(
γ2 + θ(2γ + 1)

)
+ o(1) a.s.

If neither |d| T 1/2+γ

N1/2 = O(1) nor N1/2

|d|T 1/2+γ = O(1) we can divide the sequence into two
subsequences each fulfilling one of these conditions. This shows that the assumptions of
Theorem 2.2.2 are also fulfilled in that case, completing the proof.
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3. Block Resampling Methods for the
Location Model of Linear Sequences

In the following two chapters we will use resampling methods to obtain better approxima-
tions of critical values in the case where the errors in the location model are dependent.

In the last chapter we have developed resampling procedures for possibly dependent
data. The corresponding statistics are based on sums of increments of processes, where
the increments are taken over larger and larger intervals. The idea behind that is similar
to the idea of block resampling methods (confer the following section). But importantly
the observations we use for the statistics in the last chapter change over time.

In many practical situation, however, the statistics originally developed for independent
observations are used even when the observations are indeed dependent. Antoch et
al. [4] and Horváth [45] showed that apart from some minor adjustment the asymptotics
remain true for linear processes. The permutation test as described in Section 1.2 only
works for independent errors. This means that, here, we have to somewhat change the
technique to allow for dependency. In this chapter we will investigate block resampling
methods, in the next one resampling methods in the frequency domain.

The first section in this chapter gives a general overview of the history of block boot-
strapping techniques. We then give a short introduction into the most commonly used
statistics for the location model in Section 3.2. This is followed by their null asymptotics
under the given model.
Again the main tool in the proof of the validity of the permutation test is the limit
behavior of the corresponding rank statistics. This is developed in Section 3.4. Then, in
Section 3.5, we are ready to prove that the block permutation test works in this setting.
Along the way we prove the correct asymptotic of a variance estimator based on blocks.
Finally, we show that the block bootstrap with replacement also works by first prov-
ing the corresponding results for score processes and then concluding the validity of the
bootstrap. We then finish with further examples where block resampling techniques may
be useful.

3.1. Introduction

Since Efron [25] introduced the bootstrap in 1979, methods based on resampling have
been applied to numerous statistical problems. For the bootstrap to work, however, one
usually needs independent data. This was shown in 1981 by Singh [76] for m-dependent
processes. At the same time he suggested intensive research for time series based on
independent residuals. In that situation one can estimate the model parameters and
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bootstrap the estimated residuals. In the following years this idea was pursued for
different models including linear regression (e.g. Freedman [31, 32]) and autoregressive
time series (e.g. Bose [10]). Yet, this approach is restricted to situations where the
model can be relied upon.

A more general approach that can also be applied if the model class or the model
equations are unknown, resamples blocks of data rather than the data points themselves.
The motivation is that the dependency structure is preserved within the blocks so that
we get asymptotically correct estimates if the block size converges to infinity with the
sample size. This was first suggested by Hall [41] in 1985 and Carlstein [15] in 1986. Both
of them used the method to estimate variances and both of them used non-overlapping
blocks. Later, Künsch [57] and Liu and Singh [60] introduced the so called ”moving
blocks” bootstrap, where overlapping blocks are used. Politis and Romano [72] proposed
a circular procedure, where a circular periodic extension of the data sequence is used.
This has the advantage that the bootstrap is automatically centered around the sample
mean, whereas otherwise the first and the last observations are underrepresented leading
to some bias.

We will apply these techniques to our change-point problem with dependent innovations.
In order to use permutations (confer Section 3.5) we have to work with non-overlapping
blocks. Yet, for the bootstrap with replacement (confer Section 3.6) we focus our discus-
sion on the circular approach of moving blocks by Politis and Romano [72]. The proofs
can, however, be adapted to the regular moving blocks bootstrap (confer Remark 3.6.3).

Note that in the previous chapter we have already used a similar technique. There we
deploy it for the null asymptotic not only the permutation test. To be more precise the
statistics in Chapter 2 are based on sums of increments of processes between ti+1 and ti.
But their distance increases with time. The statistics in this chapter are also based on
partial sums and the block technique essentially leads to partial sums of fewer elements,
which themselves consist of sums of more and more observations. This is comparable
to the increasing intervals from the previous chapter. The biggest difference being that
there the original asymptotic was already based on ”blocks” and the maximum taken over
fewer elements (only at the points of complete ”blocks”). The proof for the rank statistic
in this chapter also depends crucially on the fact that it is asymptotically equivalent to
take the maximum of partial sums including only complete blocks (confer Lemmas 3.4.1
and 3.4.2).

3.2. Statistics for the Location Model

In this section we give a short introduction into the most common statistics used for
the location model. In particular we use the pseudo maximum likelihood method and
the pseudo Bayes method to derive the weighted CUSUM statistic (as base type for
maximum-type statistics) respectively a sum-type statistic, which is then generalized to
a class of these.

These statistics were originally developed for the location model with i.i.d. errors. More
precisely they are derived using the maximum likelihood or Bayes methods for inde-
pendent normal errors. All the same it can be shown that the statistics work for all
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non-degenerate sequences of i.i.d. errors as long as the νth moment (ν > 2) exists. For
details confer Csörgő and Horváth [19].

Antoch et al. [4] and Horváth [45] showed that they also work for dependent errors that
follow a linear process. For details confer Section 3.3.

Recall that the location model is given by

X(i) = µ + d 1{i>m} + e(i), 1 6 i 6 n,

and we are interested in testing the null hypothesis of no change

H0 : m = n

against the alternative of an abrupt change in the mean, i.e.

H1 : m < n, d 6= 0.

For the derivation of the test statistic we will further assume that the error sequence
{e(·)} is standard normally distributed. Let φ(·) be the density function of a standard
normal distribution.

Weighted CUSUM Statistic

Suppose for the moment that the change-point m is known. The log-likelihood ratio for
testing H0 against H1 is then given by

Λm(X(1), . . . , X(n))

= log
supa,b

∏m
i=1 φ(X(i)− a)

∏n
j=m+1 φ(X(j)− b)

supa

∏n
i=1 φ(X(i)− a)

= log

∏m
i=1 φ(X(i)− X̄m)

∏n
j=m+1 φ(X(j)− X̄∗

m)∏n
i=1 φ(X(i)− X̄n)

=
1
2

(
n∑

i=1

(X(i)− X̄n)2 −
m∑

i=1

(X(i)− X̄m)2 −
n∑

i=m+1

(X(i)− X̄∗
m)2
)

=
1
2

n

m(n−m)

(
m∑

i=1

(X(i)− X̄n)

)2

,

where X̄m := 1
m

∑m
i=1 X(i) and X̄∗

m := 1
n−m

∑n
i=m+1 X(i).

Usually the change-point m will be unknown. Then we have to take the supremum of
the log-likelihood ratio not only with respect to the means of the process before and
after the change but also with respect to the change-point. Thus we get the maximum
of the above expression, which is usually equivalently expressed as

T (1)
n = max

16m<n

(√
n

m(n−m)
|Sm|

)
, (3.2.1)

where Sm =
∑m

i=1(X(i)− X̄n).
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MOSUM Statistic

Here, we introduce a different type of statistic based on moving sums. It has proven
useful in cases where there is more than one change. The MOSUM statistic is defined
by

T (2)
n (G) = max

G<m6n

1√
G
|Sm − Sm−G| , (3.2.2)

where again Sm =
∑m

i=1(X(i)−X̄n) and G < n. We assume that G/n is small, typically
we choose G/n ≈ 0.05 or 0.01. This is meant as a rule of thumb not in the correct
asymptotic mathematical sense (confer assumptions on G in Theorem 3.3.2).

Remark 3.2.1. In recent years special attention has been paid to the following test
statistic, which is related to T

(2)
n (G) above:

T̃ (2)
n (G) = max

G<m6n−G

1√
2G

|Sm+G − 2Sm + Sm−G| .

It is especially suitable if we expect more than one change and it is useful as a diagnostic
tool (cf. also Antoch et. al. [3], Chapter 4.1.3). Note that T

(2)
n (G) is the first order dif-

ference of Sm´s, whereas T̃
(2)
n (G) corresponds to the second order difference. For reasons

of simplicity we will here refrain from discussing it in detail, yet a similar asymptotic
to that of T

(2)
n (G) holds true and the proofs in this work can easily be modified for this

statistic.

q-weighted CUSUM Statistics

The disadvantage of the above two statistics is that they converge almost surely to
infinity as n → ∞ respectively G → ∞. This can be seen by the law of iterated
logarithm. Thus, a limit distribution does not exist and the critical values also tend to
infinity. Nevertheless, it is possible to use asymptotic results to obtain critical values
that depend on n (confer Theorem 3.3.2), but the convergence is very slow.

The problem is caused by small and large values of m. This is why many authors prefer
to trim the maximum, for example they use

max
εn6m<n−εn

(√
n

m(n−m)
|Sm|

)
for some small ε > 0 instead of the weighted CUSUM statistic. This trimmed version
converges in distribution. In Chapter 4 we will also use trimmed versions, because it is
not possible to prove the results we need for extreme-value asymptotics using the tools
developed there (confer also Section 4.8.3).

Another possibility to alter the weighted CUSUM statistic such that it has a limiting
distribution is the following:

T (3)
n (q) = max

16m<n

(
1√

n q(m
n )

|Sm|
)

, (3.2.3)
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where again Sm =
∑m

i=1(X(i)− X̄n) and q(·) is a weight function defined on (0, 1). We
assume that the weight function q belongs to the class

Q0,1 = {q : q is non-decreasing in a neighborhood of zero, non-increasing in a
neighborhood of one and inf

η6t61−η
q(t) > 0 for all 0 < η < 1/2}.

For the case q ≡ 1 we will frequently refer to the statistic as classical CUSUM statistic.

The following integral plays a crucial role for the convergence of statistics based on
weight functions q. Let

I∗(q, c) =
∫ 1

0

1
t(1− t)

exp
{
−cq2(t)
t(1− t)

}
dt. (3.2.4)

We require the existence of a c such that I∗(q, c) < ∞ in order to show that the statistic
converges in distribution (confer Theorem 3.3.2).

A typical class of weight functions fulfilling these assumptions is

q(t) = (t(1− t))β , 0 6 β <
1
2
.

This also shows the connection with the weighted CUSUM statistic.

For details and further references confer Csörgő and Horváth [18], Chapter 4.

Sum Statistics

We derive now a sum-type statistic using the pseudo Bayes method (for details confer
e.g. Chernoff and Zacks [17]).

The method is based on the assumption that the unknown mean µ, the unknown mean
change d and the unknown change-point m are independent random variables that are
also independent of the error sequence. Let m be the random variable designating the
change-point m = 1, . . . , n− 1 with

P (m = m) =
1

n− 1
, m = 1, . . . , n− 1.

The random variables designating the mean µ and mean change d are

µ
D∼ N(0, γ2) respectively d D∼ N(0, σ2).

The density of (X(1), . . . , X(n)) under the null hypothesis given µ = µ is normal, more
precisely

fH (x1, . . . , xn |µ = µ) =
n∏

i=1

φ(xi − µ).
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Thus the unconditional density under the null hypothesis can be expressed by

fH(x1, . . . , xn) =
n∏

i=1

∫
R

φ(xi − µ)
1

γ
√

2π
exp

(
− µ2

2γ2

)
dµ

=
1

(2π)n/2

1√
1 + nγ2

exp

−1
2

n∑
i=1

x2
i +

n2

2
(

1
γ2 + n

) x̄2
n

 ,

where x̄n := 1
n

∑n
i=1 xi. Under alternatives the conditional density is

fA (x1, . . . , xn |m = m,µ = µ,d = d) =
m∏

i=1

φ(xi − µ)
n∏

i=m+1

φ(xi − µ− d).

After some calculations we obtain for the corresponding unconditional density

fA(x1, . . . , xn)

=
1

n− 1

n−1∑
m=1

∫
R

∫
R

m∏
i=1

φ(xi − µ)
n∏

j=m+1

φ(xj − µ− d)
1

2πγσ
exp

(
− µ2

2γ2
− d2

2σ2

)
dµ dd

=
1

(2π)n/2
exp

(
−1

2

n∑
i=1

x2
i

)√
1

(1 + nγ2)(1 + (n−m)σ2)− (n−m)2γ2σ2

· exp
(

1
2σ2

(
1 + (n−m)σ2

)
c2
1 + (n−m)c1c2 +

1
2

(
1
γ2

+ n

)
c2
2

)
,

where

c1 −→ σ2

∑n
i=m+1(xi − x̄n)

1 + m(n−m)
n σ2

, as γ →∞,

c2 −→ x̄n −
n−m

n
c1, as γ →∞.

We look again at the likelihood ratio for fixed n. Because the mean before the change
could be any value, we let γ →∞ and obtain:

Λ(X(1), . . . , X(n)) =
fA(X(1), . . . , X(n))
fH(X(1), . . . , X(n))

γ→∞−→ 1
n− 1

n−1∑
m=1

√
1

1 + m(n−m)
n σ2

exp

[
σ2

2
1 + (n−m)σ2(
1 + m(n−m)

n σ2
)2
(

m∑
i=1

(X(i)− X̄n)

)2

+ o(σ2)

]
,

where o(σ2) is meant as σ → 0.

Small values of σ correspond to weak alternatives, which are more difficult to detect.
Applying a Taylor expansion to exp the above likelihood ratio can be written, for small
values of σ, as

1 + σ2 1
2(n− 1)

n−1∑
m=1

(
m∑

i=1

(X(i)− X̄n)

)2

+ o(σ2), as σ → 0.



Model and Null Asymptotics 39

Again we reject H0 whenever the likelihood ratio is greater than an appropriate constant.
Thus the above procedure yields the following test statistic:

1
n

n−1∑
m=1

(
1√
n

m∑
i=1

(X(i)− X̄n)

)2

.

Using weight functions as already for q-weighted CUSUM statistics we arrive at a gen-
eralized version – the class of sum-type statistics:

T (4)
n (r) =

1
n

n−1∑
m=1

1
r(m/n)

(
1√
n

Sm

)2

, (3.2.5)

where again Sm =
∑m

i=1(X(i)− X̄n) and r(·) is a weight function defined on (0, 1).

Moreover we require that the weight function r fulfills for all x ∈ (0, 1)

r(x) > 0 and
∫ 1

0

t(1− t)
r(t)

dt < ∞. (3.2.6)

For these weight functions the above statistic has a distributional limit, confer Theo-
rem 3.3.2.

Again typical weight functions fulfilling conditions 3.2.6 are

r(t) = (t(1− t))β , 0 6 β < 2.

For more details and further references confer Csörgő and Horváth [19], Chapter 2.

3.3. Model and Null Asymptotics

In this section we give a more detailed description of the model we use in this chapter
and in Chapter 4. Moreover we state the null asymptotics of the statistics developed in
the previous section.

As already mentioned we drop the assumption of independent errors in the location
model. Instead we model the error sequence as linear processes.
Linear processes are used frequently in the modeling of time-series data. Consequently
the above approach already captures a broad range of practical applications. One impor-
tant example of linear processes is the so-called (causal) autoregressive moving average or
ARMA process. For more details confer Brockwell and Davis [13], Chapter 3. Example
3.3.1 states some properties of the α-mixing coefficients of causal ARMA processes.

We use the following AMOC location model:

X(i) = µ + d 1{i>m} + e(i), 1 6 i 6 n, (3.3.1)

where the errors {e(i) : 1 6 i 6 n} are given by the linear process

e(i) =
∑
j>0

wj ε(i− j),
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with weights wj and innovations {ε(·)}; m = m(n) is the unknown change-point and
d = dn the mean change.

We are interested in testing the null hypothesis of ”no change”

H0 : m = n

against the alternative of a change in the mean

H1 : 1 6 m < n and d 6= 0.

Moreover we assume that the innovations {ε(i) : −∞ < i < ∞} are i.i.d. random
variables with

E ε(i) = 0, 0 < σ2 = E ε(i)2 < ∞, E |ε(i)|ν < ∞ for some ν > 2. (3.3.2)

Mainly to ensure that the linear process is stationary and strong-mixing or fulfills the
assumptions of the BN decomposition (confer Appendix C) we need to impose some
more conditions on the weights as well as the innovations.

We suppose that the weights {ws : s > 0} satisfy∑
s>0

ws 6= 0,
∑
s>0

√
s|ws| < ∞. (3.3.3)

The random variables ε(i) are smooth with density function f satisfying

sup
−∞<s<∞

1
|s|

∫ ∞

−∞
|f(t + s)− f(t)| dt < ∞. (3.3.4)

Let

g(z) =
∑
s>0

wsz
s, z ∈ C,

and assume

g(z) 6= 0 for all |z| 6 1. (3.3.5)

Also,

ws = O(s−β) as s →∞ for some β > 3/2. (3.3.6)

In this chapter we investigate the statistics already derived in Section 3.2. In Chapter 4
we will mainly investigate the last two statistics and only use the trimmed versions of
the first two. At a glance the statistics are

T (1)
n = max

16m<n

(√
n

m(n−m)
|Sm|

)
,

T (2)
n (G) = max

G<m6n

1√
G
|Sm − Sm−G| ,

T (3)
n (q) = max

16m<n

(
1√

n q(m
n )

|Sm|
)

,

T (4)
n (r) =

1
n

n−1∑
m=1

1
r(m/n)

(
1√
n

Sm

)2

,

where Sm =
∑m

i=1(X(i)− X̄n) and X̄n = 1
n

∑n
i=1 X(i).
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Mixing Properties of Linear Processes

Gorodetskii [37] and Withers [82] investigate the strong-mixing properties of linear pro-
cesses.

We now state a result showing that under the above assumptions the linear process is
stationary and strong-mixing (for the definition of strong-mixing see Section B.2). We
need it to verify the conditions of Theorem 3.5.1.

Theorem 3.3.1. Under conditions (3.3.2), (3.3.4) - (3.3.6) we have for
β + 1/2 > ν > 2/(β − 1)

αe(j) = O(j−ρ), j →∞,

where ρ = (ν(β − 1)− 2)/(ν + 1). Particularly we have ρ > 2 for β > 4 and ν > 4.

Moreover it holds for ws = O(e−γs), γ > 0,

αe(j) = O
(
e−γλj

)
, j →∞,

where λ = ν(1 + ν)−1.

Proof. Confer Corollary 4 in Withers [82].

Example 3.3.1 (ARMA processes). Causal ARMA processes are an important class
of linear processes (confer Chapter 3 of Brockwell and Davis [13]). Equation (3.3.6)
there shows that the weights fall exponentially, i.e. ws = O(e−γs) for some γ > 0.
Thus according to the above lemma the alpha-mixing coefficient also falls exponentially.
Consequently conditions (3.5.2) respectively (3.5.3) are fulfilled for all δ and ∆, this is
important in view of Theorem 3.5.1 .

Null asymptotics

We now state the null asymptotics of the statistics from Section 3.2 which go back to
Antoch et al. [4] and Horváth [45]. The proof uses the Beveridge-Nelson decomposition
(for details confer Appendix C) and can thus deduce the results from the corresponding
ones for i.i.d. error sequences. We will give a short sketch of the proof for the classical
CUSUM statistic with an error sequence that forms a linear process. A more detailed
discussion of the problem can be found in Csörgő and Horváth [19], Section 4.1, or in
the above mentioned articles.

Theorem 3.3.2. Assume that (3.3.1) - (3.3.3) and H0 holds. Let α(x) =
√

2 log x and
β(x) = 2 log x + 1

2 log log x− 1
2 log π.

a) Then we have for all x ∈ R

P

(
α(log n)

T
(1)
n

τ̂
− β(log n) 6 x

)
−→ exp(−2e−x) as n →∞,

where τ̂ − τ = oP ((log log n)−1), τ2 := σ2
(∑

s>0 ws

)2 (τ > 0).
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b) If G = G(n) → ∞, G
n → 0 and G−1n2/ν log n → 0 as n → ∞, then we have for all

x ∈ R

P

(
α(n/G)

T
(2)
n (G)

τ̂
− β(n/G) 6 x

)
−→ exp(−2e−x) as n →∞,

where τ̂ − τ = oP (log(n/G)−1).

c) If q ∈ Q0,1 and I∗(q, c) < ∞ for some c > 0, then

1
τ̂

T (3)
n (q) D−→ sup

0<t<1

|B(t)|
q(t)

as n →∞,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge and τ̂ − τ = oP (1).

d) If r fulfills condition (3.2.6), then

1
τ̂2

T (4)
n (r) D−→

∫ 1

0

B2(t)
r(t)

dt as n →∞,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge and τ̂ − τ = oP (1).

Remark 3.3.1. Horváth [45], Theorem 1.3, and Csörgő and Horváth [19], Theorem 4.1.2
(additionally to Example 4.1.1) and Theorem 4.1.3, prove the assertion for CUSUM
statistics under (3.3.4) - (3.3.6) instead of (3.3.3). The latter also shows that the asymp-
totic for the q-weighted CUSUM statistics remains true for somewhat more general error
sequences. The bootstrap methods then also hold if the necessary strong laws of large
numbers are fulfilled, i.e. one only has to prove equations (3.5.4) - (3.5.8) respectively
(3.6.7) - (3.6.8).

Proof of Theorem 3.3.2. Confer Theorem 2.1 in Antoch et al. [4]. The assumptions
there are somewhat stronger, namely they require

∑
s>0 s|ws| < ∞. This is, how-

ever, only needed to obtain the BN decomposition (confer C.1), which also holds under∑
s>0

√
s|ws| < ∞.

To give an impression of the techniques we prove the result for the classical CUSUM
statistic. This is the easiest example and one has to refine the methods to derive the
results for different statistics. The proof essentially reduces to an application of the
Beveridge-Nelson decomposition (confer Lemma C.1) additionally to an application of
the corresponding results for i.i.d. sequences. The BN decomposition gives

e(i) = ε(i)
∑
s>0

ws − ẽ(i) + ẽ(i− 1), (3.3.7)

where {ẽ(·)} is a stationary process with E |ẽ(0)|p < ∞ for any p < ν. Thus

ēn − ε̄n

∑
s>0

ws =
1
n

(ẽ(0)− ẽ(n)) = oP

(
n−1/2

)
.

Furthermore

max
k=1,...,n

1√
n

∣∣∣∣∣
k∑

i=1

[
e(i)− ε(i)

∑
s>0

ws

]∣∣∣∣∣ = 1√
n

max
k=1,...,n

|ẽ(0)− ẽ(k)| = oP (1), (3.3.8)
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since the Markov inequality gives for 2 < p < ν

P

(
1√
n

max
k=1,...,n

|ẽ(k)| > δ

)
6

1
δp/2

n∑
k=1

1
np/2

E |ẽ(k)|p = o(1).

Putting together equations (3.3.7) and (3.3.8) we note that it suffices to investigate∣∣∣∣∣∑
s>0

ws

∣∣∣∣∣ max
k=1,...,n

∣∣∣∣∣ 1√
n

k∑
i=1

(ε(i)− ε̄n)

∣∣∣∣∣.
Using the above theorem for i.i.d. errors (confer e.g. Csörgő and Horváth [19], Theorem
2.1.1) we arrive at the assertion. It also explains why the variance correction term is
σ2 (

∑
ws)

2 instead of σ2
∑

w2
s , which one might have suspected.

Remark 3.3.2. In very much the same way it is possible to obtain the consistency of the
test from the consistency for the i.i.d. case. Theorem 2.4.13 in Csörgő and Horváth [19]
(h(x, y) = x − y) shows the asymptotic consistency of the classical CUSUM test for
certain alternatives. More precisely: If d 6= 0 is fixed and

m(n−m)
n3/2

→∞,

then it holds under HA for all x ∈ R as n →∞

P
(
T (1)

n (q1) > x
)
→ 1,

where q1 ≡ 1. The result holds if the error sequence {e(·)} is i.i.d. with existing νth
moment (ν > 2). Using the same arguments as in the proof of Theorem 3.3.2 we can
derive the consistency also in the case where the error sequence forms a linear process
fulfilling (3.3.2) and (3.3.3). This is true under the same alternatives as for the i.i.d. case.
Note that for the alternatives where the above test is consistent and where the bootstrap
is valid we automatically have consistency of the bootstrap test.

3.4. Asymptotics of the Corresponding Block Rank Statistics

It is well known that the rate of convergence of these statistics (especially the extreme
value statistics) can be very slow. So we are interested in alternative methods to de-
rive critical values, especially the permutation method by Hušková [47], confer also
Section 1.2.

We assume that we split our sequence of length n into L sequences of length K (i.e.
n = KL). K and L depend on n and converge to infinity with n. Instead of permuting
the observations X(i), we permute the blocks X(Kl+1), . . . , X(K(l+1)), l = 0, . . . , L−1,
and compute the statistics using the permuted blocks (there are no changes in the order
of X(·) within the blocks).

The idea is that the block contains enough information about the dependency structure
so that the estimate is close to the null hypothesis.



44 Block Resampling Methods for the Location Model of Linear Sequences

Remark 3.4.1. It is also possible to look at n = K(L − 1) + K∗, 0 < K∗ 6 K. Then
we still have L blocks altogether, but only L − 1 are of length K and one is of length
smaller or equal to K. The proofs remain the same, yet one always has to take care
of the shorter block, which makes notations much more complicated. Also it is always
possible to ignore the last (n mod L) observations to use the below theory, so this is
not much of a restriction.
For most results we need L → ∞ as well as K → ∞ as n = KL → ∞. However, this
cannot be simultaneously fulfilled due to prime numbers n.
We will assume that L →∞ and K = K(L), n = n(L) = KL. Otherwise we have more
than one K for each L, in which case we cannot use Corollary D.1 below anymore.
If there is only one K for each L the random sequence

{
1√
K

∑K
k=1 e(Kl + k), 1 6 l 6 L

}
L

forms a triangular array in L instead of one in n. The same problem arises when proving
equations (3.5.7) respectively (3.5.8) below.

We have already seen that the limit behavior of the corresponding rank statistics is
crucial in proving the validity of permutation tests. On the other hand it is also of
independent interest. In this section we prove the rank asymptotics from which we can
deduce the limit behavior of the permutation statistics in the next section.

The corresponding rank statistics are based on partial sums

Sa
L,K(l, k) :=

l−1∑
i=1

K∑
j=1

(an[K(Ri − 1) + j]− ān) +
k∑

j=1

(an[K(Rl − 1) + j]− ān),

where R = (R1, . . . , RL) is a random permutation of (1, . . . , L). Precisely we are inter-
ested in:

T
(1)
L,K(a) := max

26l6L−1
max

16k6K

√
LK

(K(l − 1) + k)(LK −K(l − 1)− k)

∣∣Sa
L,K(l, k)

∣∣ ,
T

(2)
L,K(G,a) :=

1√
G

max
16l6L,16k6K
K(l−1)+k>G

∣∣Sa
L,K(l, k)− Sa

L,K(l∗, k∗)
∣∣ ,

T
(3)
L,K(q,a) := max

16l6L,16k6K
(l,k) 6=(L,K)

1
√

KL q
(

K(l−1)+k
KL

) ∣∣Sa
L,K(l, k)

∣∣ ,
T

(4)
L,K(r,a) :=

1
(KL)2

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

) (Sa
L,K(l, k)

)2
,

where K(l∗ − 1) + k∗ = K(l − 1) + k −G, i.e. l∗ − 1 = bK(l−1)+k−G
K c,

k∗ = (K(l − 1) + k −G) mod K.

Theorem 3.4.1. Let R = (R1, . . . , RL) be a random permutation of (1, . . . , L). More-
over let an(1), . . . , an(n) be scores satisfying

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

(an(Kl + j)− ān)

∣∣∣∣∣
κ

6 D1 (3.4.1)

for some κ > 2 and

τ2
n(a) :=

1
L

L−1∑
l=0

[
1√
K

K∑
k=1

(an(Kl + k)− ān)

]2

> D2, (3.4.2)
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where ān := 1
n

∑n
i=1 an(i) and D1, D2 > 0 are some constants. Let α(x), β(x) be as in

Theorem 3.3.2.

a) If K = O ((log n)γ) for some γ > 0, we have for all x ∈ R

P

(
α(log n)

T
(1)
L,K(a)

τn(a)
− β(log n) 6 x

)
→ exp(−2e−x) as L →∞.

b) If, as L →∞, G = G(n) →∞, G/n → 0, and

G−1L−2µn log(n/G) = o(1) for some 0 6 µ < min
(

κ− 2
2κ

,
1
4

)
, (3.4.3)

then we have for all x ∈ R

P

(
α(n/G)

T
(2)
L,K(G,a)

τn(a)
− β(n/G) 6 x

)
→ exp(−2e−x) as L →∞.

c) If q ∈ Q0,1, I∗(q, c) < ∞ for some c > 0, and as L →∞

1
Lq2

(
1

KL

) → 0,
1

Lq2
(
1− 1

KL

) → 0, (3.4.4)

then

T
(3)
L,K(q,a)

τn(a)
D−→ sup

0<t<1

|B(t)|
q(t)

as L →∞,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

d) If r fulfills condition (3.2.6) and as L →∞

1
L2K

K∑
k=1

1
r
(

k
KL

) → 0,
1

L2K

K−1∑
k=1

1
r
(
1− k

KL

) → 0, (3.4.5)

then

T
(4)
L,K(r,a)

τ2
n(a)

D−→
∫ 1

0

B2(t)
r(t)

dt,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Remark 3.4.2. Concerning the weighted CUSUM-statistic T̃
(1)
L,K(a) with the maximum

over the complete range 1 6 K(l − 1) + k < n (instead of K 6 K(l − 1) + k 6 n−K),
the assertion remains true by Lemma F.1, if

max
16k6K

∣∣∣∣∣∣ 1√
k

k∑
j=1

(an(K(R1 − 1) + j)− ān)

∣∣∣∣∣∣ = oP

(√
log log n

)

and max
16k6K

∣∣∣∣∣∣ 1√
k

K∑
j=K−k+1

(an(K(R1 − 1) + j)− ān)

∣∣∣∣∣∣ = oP

(√
log log n

)
.
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The Markov inequality implies that this is fulfilled if

1
(log log n)µ/2

1
L

L∑
l=1

max
k=1,...,K

∣∣∣∣∣∣ 1√
k

k∑
j=1

(an(K(l − 1) + j)− ān)

∣∣∣∣∣∣
µ

→ 0

and
1

(log log n)µ/2

1
L

L∑
l=1

max
k=1,...,K

∣∣∣∣∣∣ 1√
k

K∑
j=K−k+1

(an(K(l − 1) + j)− ān)

∣∣∣∣∣∣
µ

→ 0

(3.4.6)

for some µ > 0.

Before we prove the above theorem we need two lemmas that deal with the increments
of the rank statistics respectively Brownian bridges.

Lemma 3.4.1. Let R = (R1, . . . , RL) be a random permutation of (1, . . . , L). Moreover
let an(1), . . . , an(n) be scores satisfying

1
L

L−1∑
l=0

max
k=1,...,K−1

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(an(Kl + j)− ān)

∣∣∣∣∣∣
κ

6 D for some constant D, (3.4.7)

where κ > 2 and ān := 1
n

∑n
i=1 an(i). Then we have for all µ < min

(
κ−2
2κ , 1

4

)
max

16l6L−1
16k6K

(
l(L− l)

L

)µ L√
l(L− l)

∣∣∣∣∣∣ 1√
LK

K∑
j=k+1

(an[K(Rl − 1) + j]− ān)

∣∣∣∣∣∣ = OP (1).

Proof. For every ε > 0 we find a C big enough such that

P

 max
16l6L−1

max
16k6K

(
L

l(L− l)

)1/2−µ
∣∣∣∣∣∣ 1√

K

K∑
j=k+1

(an[K(Rl − 1) + j]− ān)

∣∣∣∣∣∣ > C


6

L−1∑
l=1

P

 max
16k6K

(
L

l(L− l)

)1/2−µ
∣∣∣∣∣∣ 1√

K

K∑
j=k+1

(an[K(Rl − 1) + j]− ān)

∣∣∣∣∣∣ > C


6

L−1∑
l=1

1
Cκ

(
L

l(L− l)

)(1/2−µ)κ

E

 max
16k6K

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(an[K(Rl − 1) + j]− ān)

∣∣∣∣∣∣
κ

6 ε.

Note that (1/2− µ)κ > 1 and that for every s > 1 we have

L−1∑
l=1

(
L

l(L− l)

)s

6 2
dL/2e∑
l=1

(
L

l(L− l)

)s

6 2Ls

∫ L/2

1
(x(L− x))−s dx + O(1)

6 2s+1

∫ L/2

1
x−s dx + O(1) = O(1).

The next lemma corresponds to the one above, since it deals with the increments of
Brownian bridges. It is based on results of Csörgő and Révész [21].
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Lemma 3.4.2. Let {B(t) : 0 6 t 6 1} be a Brownian bridge. Then it holds:

a) max
16l6L
16k6K

√
L

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ = O(
√

log L) a.s.

b) max
(log L)s6l6L−(log L)s

16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣
= O((log L)

1−s
2 ) a.s., for any s > 0.

c) max
16l<L
16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ = OP (1).

Proof. a) follows immediately from Theorem 1.4.1 (p. 42) in Csörgő and Révész [21],
and implies b).
Note that b) implies c) for log L 6 l 6 L− log L.

Further it holds{√
L

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ : 1 6 l 6 L, 1 6 k 6 K

}
D=
{∣∣∣∣W (l)−W

(
l − K − k

K

)
− K − k

LK
W (L)

∣∣∣∣ : 1 6 l 6 L, 1 6 k 6 K

}
,

where {W (t) : t > 0} is a Wiener process. The law of iterated logarithm now gives
the assertion for (K − k)/(LK)W (L) so that it suffices to investigate the maximum
of |W (l) − W (l − (K − k)/K)|. The assertion for l = 1 follows immediately. For
2 6 l < log L consider lj := max(2, 2−j log L), then [2, log L) =

∑ML
j=0[lj+1, lj), where

ML =
⌈

log log L
log 2

⌉
− 2.

Theorem 1.2.1 (p. 30) of Csörgő and Révész [21] gives now

max
06j6ML

max
lj+16l<lj

max
16k6K

√
L

l(L− l)

∣∣∣∣W (l)−W

(
l − K − k

K

)∣∣∣∣
� max

06j6ML

max
lj+16l<lj

√
log lj

l
6 max

06j6ML

√
log lj
lj+1

= O(1) a.s.,

because

max
06j6ML

√
log lj
lj+1

6 max
06j6ML

√
2
log (2−j log L)

2−j log L
6 sup

x>1

√
2
log x

x
= O(1).

Since {B(t)} D= {B(1− t)}, we have

max
L−log L6l<L,16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣
D= max

16l6log L,16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
l

L
+

K − k

KL

)∣∣∣∣ .
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Now we get analogously to above

max
L−log L6l<L,16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ = OP (1)

Putting everything together we arrive at the assertion.

Now, we are ready to prove the main theorem of this section. In addition to the above
lemmas we use Corollary D.1. The techniques to obtain the correct limit results from
this kind of weighted embeddings are well established in change-point analysis.

Proof of Theorem 3.4.1. The idea of the proof is the following: We use Corollary D.1
for

bn(i) :=
1√
K

K∑
k=1

an(K(i− 1) + k).

To be able to do that, we need Lemma 3.4.1 to deal with the difference between the
statistic we get this way and TL,K(a). Very much in the same way we need Lemma 3.4.2
to deal with the difference between B(l/L) and B([K(l − 1) + k]/[LK]).

For notational convenience let ãn(i, j) := an(K(i− 1)+ j)− ān. Corollary D.1 states for
µ < min

(
κ−2
2κ , 1

4

)
max

16l6L−1

(
l(L− l)

L

)µ L√
l(L− l)

∣∣∣∣ 1√
L

Π(l)−B

(
l

L

)∣∣∣∣ = OP (1), (3.4.8)

where {B(t) : 0 6 t 6 1} is a Brownian bridge and

{Π(l) : 1 6 l 6 L} D=

 1√
Kτ2

n(a)

l∑
i=1

K∑
j=1

ãn(Ri, j) : 1 6 l 6 L

 . (3.4.9)

First we prove assertion a). Since

max
26l6L−1

max
16k6K

l(L− l)
(l − 1 + k

K )(L− (l − 1)− k
K )

= O(1), (3.4.10)

equation (3.4.8) yields

max
26l6L−1

max
16k6K

(
(l − 1 + k

K )(L− (l − 1)− k
K )

L

)µ

L√
(l − 1 + k/K)(L− (l − 1)− k/K)

∣∣∣∣ 1√
L

Π(l)−B(l/L)
∣∣∣∣ = OP (1),

(3.4.11)



Asymptotics of the Corresponding Block Rank Statistics 49

Moreover assumption (3.4.2) and Lemma 3.4.1 give

max
26l6L−1

max
16k6K

(
(l − 1 + k

K )(L− l + 1− k
K )

L

)µ−1/2
1

τn(a)

·

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

ãn(Rl, j)

∣∣∣∣∣∣
� max

26l6L−1
max

16k6K

(
l(L− l)

(l − 1 + k
K )(L− (l − 1)− k

K )

)1/2−µ

· max
26l6L−1

max
16k6K

(
L

l(L− l)

)1/2−µ
∣∣∣∣∣∣ 1√

K

K∑
j=k+1

ãn(Rl, j)

∣∣∣∣∣∣ = OP (1).

(3.4.12)

Using (3.4.11) and (3.4.12) with µ = 0 we get by the law of iterated logarithm

max
26l6(log L)2

max
16k6K

√
KL

(K(l − 1) + k)(KL−K(l − 1)− k)
1

τn(a)

·

∣∣∣∣∣∣
l−1∑
i=1

K∑
j=1

ãn(Ri, j) +
k∑

j=1

ãn(Rl, j)

∣∣∣∣∣∣
= max

26l6(log L)2
max

16k6K

√
KL

(K(l − 1) + k)(KL−K(l − 1)− k)
1

τn(a)

∣∣∣∣∣∣
l∑

i=1

K∑
j=1

ãn(Ri, j)

∣∣∣∣∣∣
+ OP (1)

= max
26l6(log L)2

max
16k6K

√
L

(l − 1 + k
K )(L− l + 1− k

K )

√
LB

(
l

L

)
+ OP (1)

= OP (1) + OP

(
max

26l6(log L)2

√
L

l(L− l)

(√
l log log l +

l

L

√
L log log L

))
= oP (

√
log log n).

Analogously we get

max
L−(log L)26l6L−1

max
16k6K

√
KL

(K(l − 1) + k)(KL−K(l − 1)− k)
1

τn(a)

·

∣∣∣∣∣∣
l−1∑
i=1

K∑
j=1

ãn(Ri, j) +
k∑

j=1

ãn(Rl, j)

∣∣∣∣∣∣ = oP (
√

log log n).

Lemma F.1 shows that it suffices to consider the maximum over (log L)2 < l < L −
(log L)2.
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Using (3.4.11) and (3.4.12) again we arrive now at

max
(log L)2<l6L−(log L)2

max
16k6K

√
KL

(K(l − 1) + k)(KL−K(l − 1)− k)
1

τn(a)

·

∣∣∣∣∣∣
l−1∑
i=1

K∑
j=1

ãn(Ri, j) +
k∑

j=1

ãn(Rl, j)

∣∣∣∣∣∣
= max

(log L)2<l6L−(log L)2
max

16k6K

√
KL

(K(l − 1) + k)(KL−K(l − 1)− k)
1

τn(a)

·

∣∣∣∣∣∣
l∑

i=1

K∑
j=1

ãn(Ri, j)

∣∣∣∣∣∣+ OP

(
(log L)−2µ

)
= max

(log L)2<l6L−(log L)2
max

16k6K

√
L

(l − 1 + k
K )(L− l + 1− k

K )

√
L

∣∣∣∣B( l

L

)∣∣∣∣
+ oP

(
(log log n)−1/2

)
.

This means that α(n) T
(1)
L,K(a)/τn(a)− β(n) has the same limit distribution as

α(n) max
(log L)2<l<L−(log L)2

max
16k6K

√
L

(l − 1 + k
K )(L− l + 1− k

K )

√
L

∣∣∣∣B( l

L

)∣∣∣∣− β(n).

Lemma 3.4.2 b) and (3.4.10) now give

max
(log L)2<l6L−(log L)2

16k6K

√
L

(l − 1 + k
K )(L− l + 1− k

K )

√
L

∣∣∣∣B( l

L

)∣∣∣∣
= max

(log L)2<l6L−(log L)2

16k6K

√
KL

(Kl −K + k)(KL−Kl + K − k)

√
KL

∣∣∣∣B(K(l − 1) + k

KL

)∣∣∣∣
+ oP ((log log n)−1/2)

D= max
(log L)2K<m6n−(log L)2K

√
n

m(n−m)

∣∣∣W (m)− m

n
W (n)

∣∣∣+ oP ((log log n)−1/2).

The law of iterated logarithm, K = (log n)γ , and Lemma F.1 yield as above that it is
equivalent to investigate the maximum over [1, . . . , n−1]. Assertion a) then follows from
Theorem 3.3.2 for i.i.d. standard normal random variables.

Now we prove assertion b). First we have

T
(2)
L,K(G,a)

τn(a)
=

1√
Kτ2

n(a)
max

16l6L,16k6K
K(l−1)+k>G

√
K

G

∣∣∣∣∣∣
l∑

i=l∗+1

K∑
j=1

ãn(Ri, j)

∣∣∣∣∣∣+oP ((log(n/G))−1/2),

since (3.4.1), (3.4.2) and the Markov inequality give analogously to the proof of Lemma 3.4.1

1√
τ2
n(a)

max
16l6L

√
K

G
max

16k6K

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

ãn(Rl, j)

∣∣∣∣∣∣ = L

(
K

G

)κ/2

OP (1)

= oP ((log(n/G))−1/2).
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Note that

L

(
K

G

)κ/2

=
(

n log(n/G)
GL2µ

)κ/2 1
log(n/G)κ/2Lκ/2−1−µκ

= o((log(n/G))−1/2),

because of (3.4.3) and κ/2− 1− µκ > 0. Equation (3.4.8) now gives

max
16l6L

√
K

G

∣∣∣Π(l)−
√

LB(l/L)
∣∣∣ = OP (1) max

16l6L

√
K

G

(
l(L− l)

L

)1/2−µ

= OP

(√
n

GL2µ

)
= oP ((log(n/G))−1/2).

Thus we deduce from the triangle inequality

T
(2)
L,K(G,a)

τn(a)
D=

√
K

G
max

l,k

√
L |B(l/L)−B(l∗/L)|+ oP ((log(n/G))−1/2)

=

√
K

G
max

l,k

√
L

∣∣∣∣B(K(l − 1) + k

KL

)
−B

(
K(l∗ − 1) + k∗

KL

)∣∣∣∣+ oP ((log(n/G))−1/2),

since Lemma 3.4.2 a) yields√
K

G
max

16l6L,16k6K
K(l−1)+k>G

√
L

∣∣∣∣B( l

L

)
−B

(
l∗

L

)
−B

(
K(l − 1) + k

KL

)
−B

(
K(l∗ − 1) + k∗

KL

)∣∣∣∣
�
√

K

G
max

16l6L,16k6K

√
L

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣�
√

K

G
log L

= o((log(n/G))−1/2) a.s.

Note that (3.4.3) implies K
G log L log(n/G) = o(1). The assertion now follows as above

from the case of independent standard normally distributed random variables (confer
e.g. Theorem 3.3.2), since (3.4.3) implies G−1n2/κ log n → 0.

Next we prove assertion c). Since maxη<t<1−η q(t) > C(η) > 0 for all 0 < η < 1/2,
(3.4.8) gives as n →∞

max
ηL6l6(1−η)L

max
16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣ 1√
L

Π(l)−B

(
l

L

)∣∣∣∣ = OP (L−µ) = oP (1),

where the constants depend on η.

Furthermore we get uniformly in L using again (3.4.10) and Lemma F.3 a)

max
1<l<ηL,(1−η)L<l<L

16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣ 1√
L

Π(l)−B

(
l

L

)∣∣∣∣
� max

16l<L

L√
l(L− l)

∣∣∣∣ 1√
L

Π(l)−B

(
l

L

)∣∣∣∣
· max
1/L<l/L<η,(1−η)<l/L<1

16k6K

min
[√

l−1+k/K
L ,

√
1− l−1+k/K

L

]
q
(

l−1+k/K
L

)
= OP (1) o(1) = oP (1) as η → 0.
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The term is equal to 0 for l = L and for l = 1 assumption (3.4.4) and (3.4.8) give as
L →∞

max
16k6K

1
q
(

k
KL

) ∣∣∣∣ 1√
L

Π(1)−B(1/L)
∣∣∣∣ = 1√

Lq
(

1
KL

) OP (1) = oP (1),

since 1
Lq2(1/KL)

→ 0 and q is non-decreasing in a neighborhood of 0.

On first choosing η small enough and then in dependence of η an L0 big enough, we now
get

max
16l6L,16k6K

(l,k) 6=(L,K)

1

q
(

K(l−1)+k
KL

) ∣∣∣∣ 1√
L

Π(l)−B

(
l

L

)∣∣∣∣ = oP (1) as L →∞. (3.4.13)

Lemma 3.4.1 and assumptions (3.4.1) respectively (3.4.2) show as L →∞

1√
τ2
n(a)

max
16l6L−1
16k6K

(
l(L− l)

L

)µ L√
l(L− l)

∣∣∣∣∣∣ 1√
LK

K∑
j=k+1

ãn(Rl, j)

∣∣∣∣∣∣ = OP (1).

Analogously to above this yields for L →∞

max
16l6L,16k6K

(l,k) 6=(L,K)

1√
LKτ2

n(a)
1

q
(

K(l−1)+k
KL

)
∣∣∣∣∣∣

K∑
j=k+1

ãn(Rl, j)

∣∣∣∣∣∣ = oP (1), (3.4.14)

where an application of the Markov inequality gives the assertion for l = L, because of
assumptions (3.4.1) and (3.4.4) and the fact that q is non-increasing in a neighborhood
of 1.

Now we deduce from (3.4.13) and (3.4.14) as in the proof of a)

T
(3)
L,K(q,a)

τn(a)
D= max

16l6L,16k6K
(l,k) 6=(L,K)

∣∣B ( l
L

)∣∣
q
(

K(l−1)+k
KL

) + oP (1). (3.4.15)

Lemma F.3 a) together with the fact that infη6t61−η q(t) > 0, for 0 < η < 1/2 yields

sup
0<t<1

min(t, 1− t)
q2(t)

= O(1).

Thus Lemma 3.4.2 b) and equations (3.4.10) imply

max
log2 L6l6L−log2 L

16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣B( l

L

)
−B

(
l

L
− K − k

KL

)∣∣∣∣
�
√

1
log L

max
log2 L6l6L−log2 L

16k6K

√√√√min(l − 1 + k/K , L− l + 1− k/K)

Lq2
(

K(l−1)+k
KL

) = o(1) a.s.
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We realize that assumption (3.4.4) respectively Lemma F.3 a) yield in view of (3.4.10)

max
16l<log2 L, L−log2 L<l<L

16k6K

min(l, L− l)

Lq2
(

K(l−1)+k
KL

) = o(1).

Using Lemma 3.4.2 c) we thus obtain

max
16l<log2 L, L−log2 L<l<L

16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣B( l

L

)
−B

(
l

L
− K − k

LK

)∣∣∣∣
= OP (1) max

16l<log2 L, L−log2 L<l<L
16k6K

√√√√ min(l, L− l)

Lq2
(

K(l−1)+k
KL

) = oP (1).

Finally we have for l = L with assumption (3.4.4)

max
16k<K

∣∣B (1− K−k
KL

)∣∣
q
(
1− K−k

KL

)
6

1√
Lq
(
1− 1

KL

) max
16k<K

√
L

∣∣∣∣B(1− K − k

KL

)∣∣∣∣ = oP (1),

since
√

LB[1−(K−k)/(KL)] =
√

L B̃[(K−k)/(KL)] = WL[(K−k)/K]− K−k
K
√

L
W̃ (1) for

a suitable Brownian bridge {B̃(t) : 0 6 t 6 1} and suitable Wiener processes {WL(t) :
t > 0} respectively {W̃ (t) : t > 0}.

This yields

max
16l6L,16k6K

(l,k) 6=(L,K)

∣∣B ( l
L

)∣∣
q
(

K(l−1)+k
KL

) = max
16l6L,16k6K

(l,k) 6=(L,K)

∣∣∣B (K(l−1)+k
KL

)∣∣∣
q
(

K(l−1)+k
KL

) + oP (1). (3.4.16)

Equations (3.4.15) and (3.4.16) show that it suffices to consider the asymptotic behavior
of max16m<n

1√
n q(m/n)

∣∣∑m
i=1(Xi − X̄n)

∣∣, where {Xi: i > 1} are i.i.d. standard normal
random variables. Theorem 3.3.2 now gives assertion c).

To prove assertion d) we first realize

1
KL

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

) ( 1√
L

Π(l)−B(l/L)
)2

= oP (1), (3.4.17)

where again {Π(l) : 1 6 l 6 L} is as in (3.4.9).
We deduce this assertion from (3.4.8) in a way similar to the proof of c). Assumptions
(3.2.6) and (3.4.10) give for 0 < η < 1/2

1
n

(1−η)L∑
l=ηL

K∑
k=1

1

r
(

K(l−1)+k
KL

) ( 1√
L

Π(l)−B(l/L)
)2

= OP (1) · 1
KL

(1−η)L∑
l=ηL

K∑
k=1

l
L

L−l
L

r
(

K(l−1)+k
KL

) ( L

l(L− l)

)2µ

= OP (L−2µ) = oP (1),
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where the constants depend on η. Moreover (3.4.10) yields

1
KL

ηL∑
l=2

K∑
k=1

1

r
(

K(l−1)+k
KL

) ( 1√
L

Π(l)−B(l/L)
)2

� max
16l<L

L2

l(L− l)

(
1√
L

Π(l)−B(l/L)
)2 1

KL

ηL∑
j=2

K∑
k=1

K(j−1)+k
KL

KL−K(j−1)−k
KL

r
(

K(j−1)+k
KL

) .

Now (3.4.8) with µ = 0 implies

max
16l<L

L2

l(L− l)

(
1√
L

Π(l)−B(l/L)
)2

·

∣∣∣∣∣ 1
KL

ηL∑
j=2

K∑
k=1

K(j−1)+k
KL

KL−K(j−1)−k
KL

r
(

K(j−1)+k
KL

) − η

∫ η

0

t(1− t)
r (t)

dt

∣∣∣∣∣ = oP (1)

as L → ∞ for any η > 0 (constants may depend on η). Finally assumption (3.2.6)
together with (3.4.8) (µ = 0) give

max
16l<L

L2

l(L− l)

(
1√
L

Π(l)−B(l/L)
)2

η

∫ η

0

t(1− t)
r (t)

dt = oP (1)

as η → 0 uniformly in L.

We get an analogous expressions for the sum of l over [(1− η)L,L− 1].

Choosing first η small enough and then L big enough we arrive at (3.4.17), since the
term is equal to 0 for l = L and for l = 1 condition (3.4.5) and equation (3.4.8) yield

1
KL

K∑
k=1

1
r
(

k
KL

) ( 1√
L

Π(1)−B(1/L)
)2

= OP (1) · 1
L2K

K∑
k=1

1
r
(

k
KL

) = oP (1).

Analogously we deduce from Lemma 3.4.1 and assumptions (3.4.1) respectively (3.4.2)

1
τ2
n(a)

1
KL

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

)
 1√

KL

K∑
j=k+1

ãn(Rl, j)

2

= oP (1),

where the Markov inequality gives the assertion for l = L because of conditions (3.4.1)
(which remains true with κ replaced by 2 and D1 replaced by 1 + D1) and (3.4.5).

It holds by the Minkovski inequality√√√√T
(4)
L,K(r,a)

τ2
n(a)

D=

√√√√√ 1
KL

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

)B2

(
l

L

)
+ oP (1).

Lemma 3.4.2 b) and (3.2.6) yield

1
KL

bL−log2 Lc∑
l=dlog2 Le

K∑
k=1

1

r
(

K(l−1)+k
KL

) (B

(
l

L

)
−B

(
K(l − 1) + k

KL

))2

= OP ((log L)−1) · 1
KL

bL−log2 Lc∑
l=dlog2 Le

K∑
k=1

l
L

L−l
L

r
(

K(l−1)+k
KL

) = oP (1).
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Condition (3.2.6) implies for all ϑ > log2 L
L

1
KL

dlog2 Le−1∑
l=2

K∑
k=1

K(l−1)+k
KL

r
(

K(l−1)+k
KL

) 6 ϑ
1

ϑKL

ϑL∑
l=2

K∑
k=1

K(l−1)+k
KL

r
(

K(l−1)+k
KL

) .

Again

ϑ
1

ϑKL

ϑL∑
l=2

K∑
k=1

K(l−1)+k
KL

r
(

K(l−1)+k
KL

) − ϑ

∫ ϑ

0

t(1− t)
r(t)

dt = o(1)

as L →∞ for all ϑ > 0 and

ϑ

∫ ϑ

0

t(1− t)
r(t)

dt = o(1) as ϑ → 0.

This means together with (3.4.5) and (3.4.10)

1
KL

dlog2 Le−1∑
l=1

K∑
k=1

l(L−l)
L2

r
(

K(l−1)+k
KL

) = o(1) as L →∞.

Thus Lemma 3.4.2 c) gives

1
KL

dlog2 Le−1∑
l=1

K∑
k=1

1

r
(

K(l−1)+k
KL

) (B

(
l

L

)
−B

(
K(l − 1) + k

KL

))2

= OP (1) · 1
KL

dlog2 Le−1∑
l=1

K∑
k=1

l(L−l)
L2

r
(

K(l−1)+k
KL

) = oP (1)

as L →∞. We get an analogous result for the sum over [bL− log2 Lc+ 1, L− 1] and for
l = L the fact that maxk

√
LB(1−k/(KL)) D= maxk(W (k/K)−k/(KL)W (L)) = OP (1)

gives

1
L2K

K−1∑
k=1

1
r
(
1− k

KL

) (√LB

(
1− k

KL

))2

= oP (1).

Putting everything together we see by the Minkovski inequality√√√√T
(4)
L,K(r,a)

τ2
n(a)

D=

√√√√ 1
n

n−1∑
m=1

1
r
(

m
n

)B2
(m

n

)
+ oP (1).

Theorem 3.3.2 now yields the assertion.
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3.5. Block Permutation Statistics and their Limit Distributions

In this section we prove that the block permutation test is indeed valid, i.e. it holds the
chosen level asymptotically. Precisely we show that the quantiles from the permutation
statistics given our observed data approximate the critical values corresponding to the
null distribution not only when our observations follow the null hypothesis but even
when they follow an alternative.
Main tool in the proof are the rank asymptotics developed in the previous section.
Furthermore we need strong laws of large numbers for the blocks and even for the
maximum of partial sums to prove that the conditions on the scores from the previous
section are almost surely fulfilled. Such laws hold e.g. for certain alpha-mixing sequences,
for details confer Appendix B.2. We have already seen that many linear sequences
are alpha-mixing, causal ARMA sequences even with an exponentially decaying mixing
coefficient (confer Section 3.3). This last property is nice in view of the assumptions of
Theorem 3.5.1, because then the conditions concerning the alpha-mixing coefficients are
fulfilled (for any δ,∆ > 0).

For the permutation result to hold true we standardize using the variance of the block
rank statistic. Then we verify that this variance converges to

τ2 := σ2

(∑
j>0

wj

)2

under H0, if we replace the ranks by our observations. The convergence is even suffi-
ciently fast for Theorem 3.3.2 under suitable conditions. The estimator we obtain that
way is (τ̂LK > 0)

τ̂2
LK :=

1
KL

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)− X̄n)

]2

.

Note that it does not depend on the permutations, thus the outcome of the permutation
test is in fact independent of the actual value of that estimator. Indeed, that is one of the
major advantages of the permutation test. The simulation study in Chapter 6 suggests
that the main problem with the asymptotic test is the performance of the estimator for
τ2.

We begin with a lemma verifying that τ̂2
LK converges to τ2.

Lemma 3.5.1. Under and (3.3.1) - (3.3.3) and H0

1
KL

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)− X̄n)

]2

= σ2

∑
j>0

wj

2

+ OP

(√
1
K

+

√
1
L

+
log log n

L
+ n

−µ−2
µ

)
,

where X̄n = 1
n

∑n
i=1 X(i) and µ < min(ν, 4).



Block Permutation Statistics and their Limit Distributions 57

Remark 3.5.1. It is easy to check that for independent errors the corresponding unbi-
ased estimate is

1
K(L− 1)

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)− X̄n)

]2

, (3.5.1)

which has asymptotically the same behavior – no matter which model {X(i)} follows.
Under H0 it also does not change the convergence rates. These two features make it a
good candidate as variance estimator as well.

Remark 3.5.2. We only have the correct asymptotic behavior of the above estimator
with K = 1 for independent observations (Marcinkiewicz–Zygmund). In general, the
following asymptotic is valid under H0 (confer Theorems C.1 and C.3), as n →∞,

1
n

n∑
i=1

(X(i)− X̄n)2 → σ2
∑
s>0

w2
s a.s.

Proof of Lemma 3.5.1. The proof makes use of the Beveridge-Nelson decomposition
outlined in Appendix C.

First of all we have (it holds X(i) = e(i) under H0):

1
KL

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)− X̄n)

]2

=
1

KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

−K ē2
n.

For the second term Theorem C.2 yields

K ē2
n = O

(
log log n

L

)
a.s.

The BN decomposition (confer Lemma C.1) gives

e(j) = ε(j)

(∑
s>0

ws

)
+ ẽ(j − 1)− ẽ(j)

and thus for the first term

1
KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

=

(∑
s>0

ws

)2
1

KL

L−1∑
l=0

(
K∑

k=1

ε(Kl + k)

)2

+
1

KL

L−1∑
l=0

(ẽ(Kl)− ẽ(K(l + 1)))2

+
∑
s>0

ws
2

KL

L−1∑
l=0

( K∑
k=1

ε(Kl + k)
)

(ẽ(Kl)− ẽ(K(l + 1)))

=: D1(L,K) + D2(L,K) + D3(L,K),

where ẽ(·) is another stationary linear process with existing second moment (for details
confer Lemma C.1).
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Concerning the first term we deduce from the law of Marcinkiewicz (cf. e.g. Loève [61],
p. 254, Moments Lemma 4◦)

1
KL

L−1∑
l=0

(
K∑

k=1

ε(Kl + k)

)2

=
1
n

n∑
i=1

ε2(i) +
1

KL

L−1∑
l=0

K∑
k1 6=k2

1

ε(Kl + k1)ε(Kl + k2)

= σ2 + OP

(
n
−µ−2

µ

)
+ OP

(√
1
L

)
,

where the last line follows from the Markov inequality, since

var
( 1

KL

L−1∑
l=0

K∑
k1 6=k2

1

ε(Kl + k1) ε(Kl + k2)
)

=
1

(KL)2

L−1∑
l=0

K∑
k11 6=k12

1

K∑
k21 6=k22

1

E(ε(Kl + k11) ε(Kl + k12) ε(Kl + k21) ε(Kl + k22))

� σ4 1
L

,

because

E(ε(Kl + k11) ε(Kl + k12) ε(Kl + k21) ε(Kl + k22))

=

{
σ4, (k11 = k21 ∧ k12 = k22) ∨ (k11 = k22 ∧ k12 = k21).
0, else.

Since

E

(
1
L

L−1∑
l=0

(ẽ(Kl)− ẽ(K(l + 1)))2
)

6 4 E(ẽ(0)2) < ∞,

the Markov inequality yields

D2(L,K) = OP

(
1
K

)
.

Concerning D3(L,K) we get by the Cauchy-Schwartz inequality

E

∣∣∣∣∣ 1
KL

L−1∑
l=0

(
K∑

k=1

ε(Kl + k)

)
(ẽ(Kl)− ẽ(K(l + 1)))

∣∣∣∣∣
6

1
KL

L−1∑
l=0

E

∣∣∣∣∣
(

K∑
k=1

ε(Kl + k)

)
(ẽ(Kl)− ẽ(K(l + 1)))

∣∣∣∣∣
6

1
KL

L−1∑
l=0

(
var

(
K∑

k=1

ε(Kl + k)

)
var(ẽ(Kl)− ẽ(K(l + 1)))

)1/2

� 1√
K

.

Again the Markov inequality gives

D3(L,K) = OP

(√
1
K

)
.
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Putting everything together we arrive now at the assertion.

Now we discuss the asymptotic behavior of the block permutation statistic conditionally
on the given observations.

We assume that L → ∞, K = K(L) → ∞, n = n(L) = KL and K/L = O(1) (confer
Remark 3.4.1).

Let R = (R1, . . . , RL) be a random permutation of (1, . . . , L) independent of {X(·)}.
We are interested in the permutation statistics

T
(1)
L,K(R) := max

26l6L−1
max

16k6K

√
LK

(K(l − 1) + k)(LK −K(l − 1)− k)

∣∣SR
L,K(l, k)

∣∣ ,
T

(2)
L,K(G,R) :=

1√
G

max
16l6L,16k6K
K(l−1)+k>G

∣∣SR
L,K(l, k)− SR

L,K(l∗, k∗)
∣∣ ,

T
(3)
L,K(q,R) := max

16l6L,16k6K
(l,k) 6=(L,K)

1
√

LK q
(

K(l−1)+k
KL

) ∣∣SR
L,K(l, k)

∣∣ ,
T

(4)
L,K(r,R) :=

1
(KL)2

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

) (SR
L,K(l, k)

)2
,

where K(l∗ − 1) + k∗ = K(l − 1) + k −G, i.e. l∗ − 1 =
⌊

K(l−1)+k−G
K

⌋
,

k∗ = (K(l − 1) + k −G) mod K and

SR
L,K(l, k) :=

l−1∑
i=1

K∑
j=1

(XK(Ri−1)+j − X̄n) +
k∑

j=1

(XK(Rl−1)+j − X̄n).

Now we prove that these statistics conditioned on the observations have the same asymp-
totic behavior as the statistics under the null hypothesis (cf. Theorem 3.3.2). It does
not matter whether our observations follow the null hypothesis or an alternative. This
is true under either of the following assumptions on the error sequence {e(i) : i > 1}
for certain δ,∆. Theorem 3.3.1 gives conditions under which linear sequences are strong
mixing and even provides the mixing coefficients. The alpha-mixing coefficients of causal
ARMA sequences decay exponentially (confer Remark 3.3.1), thus the below conditions
on the mixing coefficients are fulfilled for any δ,∆.

A.1 Let {Zi : i ∈ Z} be a random sequence with EZi = 0, i ∈ Z. Assume there is a
δ,∆ > 0, 2l 6 δ 6 2(l + 1), l = 0, 1, 2 . . ., with

E |Zi|2+δ+∆ 6 D1 for all i ∈ Z

and
∞∑

k=0

(k + 1)2l+2αZ(k)∆/(2l+4+∆) 6 D2(δ,∆), (3.5.2)

where αZ is the corresponding α-mixing coefficient.
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A.2 Let {Zi : i ∈ Z} be a strictly stationary sequence with EZi = 0, i ∈ Z. Assume
there are δ,∆ > 0 with

E |Zi|2+δ+∆ 6 D1 for all i ∈ Z

and there is a sequence α(k) with αZ(k) 6 α(k), k ∈ N, and

∞∑
k=0

(k + 1)δ/2α(k)∆/(2+δ+∆) 6 D2, (3.5.3)

where αZ is the corresponding α-mixing coefficient.

Now we state the main theorem showing that the block permutation method is valid.

Theorem 3.5.1. Assume that {X(i) : 1 6 i 6 n} fulfills (3.3.1) - (3.3.3) with ν > 4.
Let 0 < δ̃ < (ν − 4)/2 and let the sequence {e(i) : i > 1} fulfill assumptions A.1 or A.2
for some δ(j),∆(j), j = 1, 2, with 2 + 2δ̃ < δ(1) < ν − 2, ∆(1) := ν − 2− δ(1) respectively
0 < δ(2) < 2+δ(1)

2+δ̃
− 2 and ∆(2) := 2+δ(1)

2+δ̃
− 2− δ(2).

Under the alternative let either

(i) K(2+δ̃)/2|d|2+δ̃ min(m
n , n−m

n ) = O(1) and d2K
L = o(1) or

(ii) min(m
n , n−m

n ) > ε > 0 (no restriction on d = dn necessary).

Let α(x), β(x) be as in Theorem 3.3.2 and K/L = O(1). If K is bounded, we also need
var
(∑K

k=1 e(k)
)

> c > 0 as L →∞.

a) If K = O((log n)γ) for some γ > 0, then we have for all x ∈ R as L →∞

P

(
α(log n)

T
(1)
L,K(R)

τ̂LK
− β(log n) 6 x

∣∣∣X1, . . . , Xn

)
→ exp(−2e−x) a.s.

b) If G = G(n) →∞, G/n → 0, and (3.4.3), then we have for all x ∈ R as L →∞

P

(
α(n/G)

T
(2)
L,K(G,R)

τ̂LK
− β(n/G) 6 x

∣∣∣X1, . . . , Xn

)
→ exp(−2e−x) a.s.

c) If q ∈ Q0,1, I∗(q, c) < ∞ for some c > 0 and, as L →∞,

1
L q2

(
1

KL

) → 0,
1

L q2
(
1− 1

KL

) → 0

then we have for all x ∈ R as L →∞

P

(
T

(3)
L,K(q,R)

τ̂LK
6 x

∣∣∣X1, . . . , Xn

)
→ P

(
sup

0<t<1

|B(t)|
q(t)

6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.
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d) If r fulfills condition (3.2.6) and

1
L2K

K∑
k=1

1
r
(

k
KL

) → 0
1

L2K

K−1∑
k=1

1
r
(
1− k

KL

) → 0,

then we have for all x ∈ R as L →∞

P

(
T

(4)
L,K(r,R)

τ̂2
LK

6 x
∣∣∣X1, . . . , Xn

)
→ P

(∫ 1

0

B2(t)
r(t)

dt 6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Remark 3.5.3. It is worth mentioning that the proof does not exploit the fact that
the underlying error sequence forms a linear process. In fact we only need that the
variance of the sums is asymptotically positive (confer Lemma 3.5.2), the existence of a
νth moment (ν > 4) and conditions A.1 respectively A.2 on the mixing coefficients for
appropriate δ,∆ > 0. We can then use the results of Appendix B.2.

Remark 3.5.4. If 2 < ν 6 4 one gets the above results in a P -stochastic sense instead
of almost surely. We then need 0 < δ̃ < ν − 2 and (3.5.2) respectively (3.5.3) for
δ̃ < δ(1) < ν − 2, ∆(1) = ν − 2 − δ(1) and δ(2) > 2 + 2δ̃, ∆(2) > 0. The proofs are
analogous; we just replace the random variables by suitably truncated versions to get
equations (3.5.7) respectively (3.5.8) in a P -stochastic sense. As an example we will now
show the analogue of (3.5.8). Let

ỸL(l) := max
k=0,...,K−1

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

e(Kl + k)

∣∣∣∣∣∣
2+δ̃

.

Note that by Theorem B.8 a) it holds E |ỸL(l)| 6 D for all l, L and also E |ỸL(l)|1+δ < D̃

for δ = δ(1)−δ̃
2+δ̃

and all l, L. Let YL(l) := ỸL(l)− E ỸL(l). Note that {YL(l)} is uniformly

integrable. We show that 1
L

∑L
l=1 |YL(l)| = oP (1). Indeed the Markov inequality and

the uniform integrability give (δ = 2+δ(2)

2+δ̃
− 2)

P

(
1
L

L−1∑
l=0

|YL(l)| > 2ε

)

6 P

(
1
L

L−1∑
l=0

|YL(l)1{|YL(l)|>log L}| > ε

)
+ P

(
1
L

L−1∑
l=0

|YL(l)1{|YL(l)|6log L}| > ε

)

�ε max
l=0,...,L−1

E |YL(l)1{|YL(l)|>log L}|+ E

∣∣∣∣∣ 1L
L−1∑
l=0

|YL(l)1{|YL(l)|6log L}|

∣∣∣∣∣
2+δ

�ε o(1) +
(log L)2+δ

L(2+δ)/2
= o(1)

as L → ∞. The last line follows by Theorems B.5 respectively B.6, since for all r > 0
(in particular for r = 2 + δ(2) + ∆(2))

E
( |YL(l)1{|YL(l)|6log L}|

log L

)r

6 1.



62 Block Resampling Methods for the Location Model of Linear Sequences

Remark 3.5.5. a) Analogously to (4.5) respectively (4.6) in Lemma 4.3 in Antoch et
al. [4] one can show that under the null hypothesis it is possible to just consider
the maximum over C(log n)γ 6 m 6 n − C(log n)γ , C, γ > 0 in the statistic T

(1)
n .

This means that the corresponding permutation statistic has, conditionally on the
observations, exactly the same limit distribution as in the null asymptotic of the
original statistic. This shows that the critical values of the permutation distribution
are good approximations of the critical values of the distribution under the null
hypothesis no matter whether the observed sequence follows the null hypothesis or
some alternative.

b) Here, however, it is also possible to use T̃
(1)
n , where we take the maximum over the

whole range 1 6 K(l − 1) + k < n. The reason is that equation (3.4.6) in Remark
3.4.2 is fulfilled a.s. for logarithmic K.

Proof of Remark 3.5.5b). Analogously to equations (3.5.9) respectively (3.5.10) it
suffices to show that as L →∞

1

(log log n)(2+δ̃)/2

1
L

L−1∑
l=0

max
k=1,...,K

∣∣∣∣∣∣ 1√
k

k∑
j=1

e(Kl + j)

∣∣∣∣∣∣
2+δ̃

→ 0 a.s.

and
1

(log log n)(2+δ̃)/2

1
L

L−1∑
l=0

max
k=1,...,K

∣∣∣∣∣∣ 1√
k

K∑
j=K−k+1

e(Kl + j)

∣∣∣∣∣∣
2+δ̃

→ 0 a.s.

Similarly to equation (3.5.8), the proof of Corollary B.1 shows that the first equation is
fulfilled, if uniformly in l

1

(log log n)(2+δ̃)(2+δ(2))/2
E max

k=1,...,K

∣∣∣∣∣∣ 1√
k

k∑
j=1

e(Kl + j)

∣∣∣∣∣∣
(2+δ̃)(2+δ(2))

= O(1)

and
1

(log log n)(2+δ̃)/2
E max

k=1,...,K

∣∣∣∣∣∣ 1√
k

k∑
j=1

e(Kl + j)

∣∣∣∣∣∣
2+δ̃

= o(1).

However Theorems B.3 and B.5 respectively B.6 give under the assumptions of Theo-
rem 3.5.1 for 2 < η 6 2 + δ(1)

E max
k=1,...,K

∣∣∣∣∣∣ 1√
k

k∑
j=1

e(Kl + j)

∣∣∣∣∣∣
η

�
K∑

k=1

1
(
√

k)η
kη/2−1 =

K∑
k=1

1
k
� log K.

This gives the assertion if it holds log K

(log log n)(2+δ̃)/2
= o(1). Since (2 + δ̃)/2 > 1 this is

always fulfilled for logarithmic K. The proof for the second expression is analogous.

Remark 3.5.6. Note that we do not need K → ∞ for this theorem, however, in the
case of dependent errors τ̂LK

P→ τ only if K →∞. This means, we need K →∞ to be
able to use τ̂LK as an estimator in the original statistics (confer Lemma 3.5.1).
For independent errors, however, the permutation statistic for K = 1 has the correct
asymptotic behavior and, as the simulation study in Section 6.2 suggests, K = 1 is the
best choice of the block length.
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In order to prove the theorem we first need the following lemma.

Lemma 3.5.2. Under conditions (3.3.2) (the existence of the second moment suffices)
and (3.3.3) we have as n →∞

var

(
1√
n

n∑
l=1

e(l)

)
→

∑
i>0

wi

2

σ2 > 0.

Proof. It holds

var

(
1√
n

n∑
i=1

e(i)

)
=

1
n

n∑
l=1

n∑
k=1

∑
i>0

wi

∑
j>0

wj cov(ε(l − j), ε(k − i))

=
1
n

n∑
l=1

n∑
k=1

∑
i>0

wi

∑
j>0

wj σ2 1{l−j=k−i} → σ2
∑
i>0

wi

∑
j>0

wj ,

since ∣∣∣∣∣∣ 1n
∑
i>0

∑
j>0

wi wj

n∑
l=1

(
1−

n∑
k=1

1{l−j=k−i}

)∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
∑
i>0

∑
j>0

wi wj

min(j−i,n)∑
l=1

1 +
n∑

l=max(n−i+j+1,1)

1

∣∣∣∣∣∣
=

1
n

∣∣∣∣∣∣
∑
i>0

∑
j>i+1

wi wj min(j − i, n) +
∑
i>0

i−1∑
j=0

wi wj min(n, i− j)

∣∣∣∣∣∣
6

2√
n

∑
i>0

|wi|
∑
j>0

√
j|wj | → 0,

as n →∞.

We are now ready to prove the main theorem.

Proof of Theorem 3.5.1. In the following we will repeatedly use D as a constant. It
may be different in every inequality.

The Minkovski inequality and the monotone convergence theorem give for all i > 0

E |e(i)|ν 6 D

(∑
j>0

|wj |

)ν

,

for some constant D.

First of all Theorem B.8 b) gives as L →∞

1
n

n∑
j=1

e(j) = O

(√
log n

n

)
a.s. (3.5.4)
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Since E
(

maxk=1,...,K

∣∣∣∑k
j=1 e(Kl̂n + j)

∣∣∣2+δ(1)
)

= E
(

maxk=1,...,K

∣∣∣∑k
j=1 e(j)

∣∣∣2+δ(1)
)

for

all l̂n, Theorem B.8 and Remark B.2 give

1
K

K∑
k=1

e(Kl̂n + k) = O

(√
log K

K

)
a.s.,

as K →∞. For K bounded the Markov inequality yields

P

(
1√
L

∣∣∣∣∣
K∑

k=1

e(Kl̂n + k)

∣∣∣∣∣ > ε

)
� Kν

εν
L−ν/2 E |e(0)|ν � 1

εν
L−ν/2.

Because
∑

L L−ν/2 < ∞, it holds as L →∞

1√
L

∣∣∣∣∣
K∑

k=1

e(Kl̂n + k)

∣∣∣∣∣ = O
(√

log K
)

a.s. (3.5.5)

for K →∞ as well as K bounded.

Similarly we deduce for l∗ := dm/Ke as L →∞ (m 6= n)

1√
L(n−m)

∣∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣∣ = o(1) a.s. (3.5.6)

Since the α-mixing coefficient of { 1
K

∑K
k=1 e(Kl + k) : l > 0} is smaller than the one of

{e(i) : i > 1} for all K, assumptions (3.5.2) respectively (3.5.3) are uniformly fulfilled
in K. Also this sequence remains stationary for stationary {e(·)}.

Consequently Theorem B.8 a) shows that there is a D > 0 such that

µK(2 + δ(1)) := E max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

e(Kl + k)

∣∣∣∣∣
2+δ(1)

< D,

uniformly in l > 0 and K.

Note that 2(2 + δ(2) + ∆(2)) < (2 + δ̃)(2 + δ(2) + ∆(2)) = 2 + δ(1). The conditions of
Corollary B.1 are fulfilled and we conclude as L →∞

1
L

L−1∑
l=0

( 1√
K

K∑
k=1

e(Kl + k)
)2

=
1
L

L−1∑
l=0

[( 1√
K

K∑
k=1

e(Kl + k)
)2
− var

( 1√
K

K∑
k=1

e(k)
)]

+ var
( 1√

K

K∑
k=1

e(k)
)
→ C > 0 a.s.,

(3.5.7)

where we either use Lemma 3.5.2 (if K → ∞) or the fact that var
(

1√
K

∑K
k=1 e(k)

)
>

c > 0, if K is bounded.
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Moreover we get

1
L

L−1∑
l=0

[
max

k=0,...,K−1

∣∣∣ 1√
K

K∑
j=k+1

e(Kl + j)
∣∣∣2+δ̃

− µK(2 + δ̃)

]
+ µK(2 + δ̃)

6 D a.s.

(3.5.8)

Now we are ready to use Theorem 3.4.1 to arrive at the assertion. First consider (i).
Note that the condition includes the case of the null hypothesis (where d = 0). Choose
the scores an(i) := X(i). Without loss of generality assume µ = 0.

Note that

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)− X̄n

))2

=
1

KL

L−1∑
l=0

(
K∑

k=1

X(Kl + k)

)2

−KX̄2
n.

Moreover we have X̄n = d n−m
n + ēn so that equation (3.5.4) yields

KX̄2
n = Kd2

(
n−m

n

)2

+ 2
√

Kd
n−m

n

√
K ēn + K ē2

n

= Kd2

(
n−m

n

)2

+ o

(√
Kd

n−m

n

)
+ o(1) a.s.

Furthermore equation (3.5.4) gives as L →∞

1
KL

L−1∑
l=0

(
K∑

k=1

(
d1{Kl+k>m} + e(Kl + k)

))2

=
1

KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

+
1

KL

L−1∑
l=0

(
K∑

k=1

d1{Kl+k>m}

)2

+
2

KL

L−1∑
l=0

 K∑
j=1

d1{Kl+j>m}

( K∑
k=1

e(Kl + k)

)

=
1

KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

+ Kd2(n−m)/n + o

(√
|d|2K n−m

n

)
+ o(1) a.s.,

since d2K
L = o(1) so that

1
KL

L−1∑
l=0

(
K∑

k=1

d1{Kl+k>m}

)2

=
1

KL
d2 K2 n−m

K
+ o(1).
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Equations (3.5.5) and (3.5.6) now imply for l∗ := dm/Ke

2
KL

L−1∑
l=0

 K∑
j=1

d1{Kl+j>m}

( K∑
k=1

e(Kl + k)

)

� |d|K 1
n

∣∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣∣+ K|d| 1
n

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣
� |d|

√
K

n−m

n

1√
L(n−m)

∣∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣∣
+
√

K|d|min
(

n−m

n
,
m

n

) 1
(2+δ̃) 1

n
δ̃

2(2+δ̃)

1√
L

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣
= o

(√
|d|2K n−m

n

)
+ o(1) a.s.

Putting everything together equation (3.5.7) gives as L →∞

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)− X̄n

))2

= C + Kd2(n−m)/n−Kd2((n−m)/n)2 + o

(√
|d|2K n−m

n

)
+ o(1)

= C + Kd2[(n−m)m/n2] + o

(√
|d|2K n−m

n

)
+ o(1) a.s.

Now note that X(i) = (µ + d)− d1{i6m} + e(i). The same calculation shows as L →∞

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)− X̄n

))2

= C + Kd2m/n−Kd2(m/n)2 + o

(√
|d|2K m

n

)
+ o(1)

= C + Kd2[(n−m)m/n2] + o

(√
|d|2K m

n

)
+ o(1) a.s.,

which yields

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)− X̄n

))2

= C + Kd2
[
(n−m)m/n2

]
+ o

(√
|d|2K min

(
n−m

n
,
m

n

))
+ o(1)

> C + o(1) a.s.
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Second of all it holds using equations (3.5.4) and (3.5.8)

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

(
X(Kl + j)− X̄n

)∣∣∣∣∣
2+δ̃

� 1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

e(Kl + j)

∣∣∣∣∣
2+δ̃

+ |
√

Kēn|2+δ̃

+ |
√

Kd|2+δ̃((n−m)/n)2+δ̃ + |
√

Kd|2+δ̃(n−m)/n

� 1 + |
√

Kd|2+δ̃(n−m)/n a.s.

(3.5.9)

As above we get using the fact that X(i) = (µ + d)− d1{i6m} + e(i)

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(
X(Kl + j)− X̄n

)∣∣∣∣∣∣
2+δ̃

� 1 + |
√

Kd|2+δ̃m/n a.s.,

which gives

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(
X(Kl + j)− X̄n

)∣∣∣∣∣∣
2+δ̃

� 1 + |
√

Kd|2+δ̃ min
(

m

n
,
n−m

n

)
� 1 a.s.

For the proof of (ii) we distinguish the two main cases Kd2
n = O(1) and 1

Kd2
n

= O(1).
The first one is included in (i), so let us assume now that 1

d2K
= O(1). Then choose the

scores an(i) := X(i)/
√

d2K. Without loss of generality assume µ = 0.

Similarly as above we have

1
L

L−1∑
l=0

(
1

|d|K

K∑
k=1

(
X(Kl + k)− X̄n

))2

=
1

d2K2L

L−1∑
l=0

(
K∑

k=1

X(Kl + k)

)2

− 1
d2

X̄2
n.

Moreover X̄n = d n−m
n + ēn so that equation (3.5.4) gives

1
d2

X̄2
n =

(
n−m

n

)2

+ 2
1√
Kd

n−m

n

√
K ēn +

1
Kd2

K ē2
n =

(
n−m

n

)2

+ o(1) a.s.

Furthermore equation (3.5.4) yields as L →∞

1
d2K2L

L−1∑
l=0

(
K∑

k=1

(
d1{Kl+k>m} + e(Kl + k)

))2

>
1

d2K2L

L−1∑
l=0

(
K∑

k=1

d1{Kl+k>m}

)2

+
2

d2K2L

L−1∑
l=0

(
K∑

j=1

d1{Kl+j>m}

)(
K∑

k=1

e(Kl + k)

)
= (n−m)/n + o(1) a.s.,
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since

1
d2K2L

L−1∑
l=0

(
K∑

k=1

d1{Kl+k>m}

)2

=
1

K2L
K2 n−m

K
+ o(1)

and with l∗ := dm
K e we obtain by equations (3.5.5) respectively (3.5.6)

2
d2K2L

L−1∑
l=0

(
K∑

j=1

d1{Kl+j>m}

)(
K∑

k=1

e(Kl + k)

)

� 1√
K|d|

√
K

1
n

∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣+ 1√
K|d|

√
K

1
n

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣→ 0 a.s.

Altogether we have as L →∞

1
L

L−1∑
l=0

(
1

|d|K

K∑
k=1

(
X(Kl + k)− X̄n

))2

> (n−m)/n− ((n−m)/n)2 + o(1) >
ε

2
+ o(1) a.s.

Finally it holds using equations (3.5.4) and (3.5.8)

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1
|d|K

K∑
j=k+1

(
X(Kl + j)− X̄n

)∣∣∣∣∣
2+δ̃

�
(

1
|d|
√

K

)2+δ̃ 1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

e(Kl + j)

∣∣∣∣∣
2+δ̃

+
(

1
|d|
√

K

)2+δ̃

|
√

K ēn|2+δ̃ + ((n−m)/n)2+δ̃ +
n−m

n

� 1 a.s.

(3.5.10)

In the case, where d = dn is such that it follows neither of the above possibilities, we
have infinitely many n with Knd2

n 6 1 and also infinitely many with Knd2
n > 1. Then

just choose the scores

an(i) =

{
X(i) Knd2

n 6 1
X(i)/

√
Kd2 Knd2

n > 1.

As above the assumptions of Theorem 3.4.1 are fulfilled for both subsequences, hence
also for the complete sequence.

The assertion now follows from Theorem 3.4.1.

3.6. Block Bootstrap with Replacement

In the previous sections we have proven that the block permutation test works in this
setting. In this section we study the classical block-bootstrap (with replacement) and
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show that it also yields asymptotically correct critical values. We only sketch the proofs,
because they are very close to the ones for the permutation tests.

A block length of K gives (n−K) different blocks. The first K and the last K observa-
tions, however, are underrepresented in the bootstrap sample leading to some bias. This
is why Politis and Romano [72] proposed a circular procedure, where a circular periodic
extension of the data sequence is used. This has the advantage that the bootstrap is
automatically centered around the sample mean. So we glue the last and the first obser-
vation together and use all n blocks for the bootstrap, i.e. we have the following blocks
{(Xl+1, . . . , Xl+K), l = 0, . . . , n−1}, Xi = Xi−n, i > n. We concentrate on this method,
yet it is also possible to prove the validity of the first approach using the same methods.

Again we give first the asymptotic results for the corresponding score-processes, which
is the replacement analogue to rank statistics. Then we use these results to obtain the
asymptotics for the block bootstrap statistics.

3.6.1. Asymptotics of the Corresponding Score-Processes

Analogously to the rank asymptotics we derive now a corresponding result for the boot-
strap with replacement. Here, it should also be possible to derive the asymptotics directly
using results of Einmahl [26], since we have statistics based on sums of independent ran-
dom variables, which, however, form a triangular array.

Again L →∞, K = K(L), n = n(L) = KL, confer also Remark 3.4.1.

Now we are ready to study the asymptotics for the following corresponding score-
processes, which are also based on partial sums

S̃a
L,K(l, k) :=

l−1∑
i=1

K∑
j=1

(an[U(i) + j]− āU,n) +
k∑

j=1

(an[U(l) + j]− āU,n),

where U = (U(1), . . . , U(L)) is a vector of i.i.d. uniformly distributed r.v.´s on (0, . . . , n−
1). Precisely we are interested in

T̃
(1)
L,K(a) := max

26l6L−1
max

16k6K

√
LK

(K(l − 1) + k)(LK −K(l − 1)− k)

∣∣∣S̃a
L,K(l, k)

∣∣∣ ,
T̃

(2)
L,K(G,a) :=

1√
G

max
16l6L,16k6K
K(l−1)+k>G

∣∣∣S̃a
L,K(l, k)− S̃a

L,K(l∗, k∗)
∣∣∣ ,

T̃
(3)
L,K(q,a) := max

16l6L,16k6K
(l,k) 6=(L,K)

1
√

KL q
(

K(l−1)+k
KL

) ∣∣∣S̃a
L,K(l, k)

∣∣∣ ,
T̃

(4)
L,K(r,a) :=

1
(KL)2

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

) (S̃a
L,K(l, k)

)2
,

where K(l∗ − 1) + k∗ = K(l − 1) + k −G, i.e. l∗ − 1 =
⌊

K(l−1)+k−G
K

⌋
,

k∗ = (K(l − 1) + k −G) mod K.
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Theorem 3.6.1. Let U = (U(1), . . . , U(L)) be a vector of i.i.d. uniformly distributed
random variables on {0, . . . , n− 1}. Moreover let an(1), . . . , an(n) be scores satisfying

1
n

n−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

(an(l + j)− ān)

∣∣∣∣∣
κ

6 D1 (3.6.1)

for some 2 < κ 6 4 and

τ2
n(a) :=

1
n

n−1∑
l=0

[
1√
K

K∑
k=1

(an(l + k)− ān)

]2

> D2, (3.6.2)

where ān := 1
n

∑n
i=1 an(i) and D1, D2 > 0 are some constants. Let α(x), β(x) be as in

Theorem 3.3.2.

a) If K = O ((log n)γ) for some γ > 0, we have for all x ∈ R

P

(
α(log n)

T̃
(1)
L,K(a)

τn(a)
− β(log n) 6 x

)
→ exp(−2e−x) as L →∞.

b) If, as L →∞, G = G(n) →∞, G/n → 0, and (3.4.3), then we have for all x ∈ R

P

(
α(n/G)

T̃
(2)
L,K(G,a)

τn(a)
− β(n/G) 6 x

)
→ exp(−2e−x) as L →∞.

c) If q ∈ Q0,1 and I∗(q, c) < ∞ for some c > 0 and (3.4.4), then

T̃
(3)
L,K(q,a)

τn(a)
D−→ sup

0<t<1

|B(t)|
q(t)

as L →∞,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

d) If r fulfills condition (3.2.6) and (3.4.5), then

T̃
(4)
L,K(r,a)

τ2
n(a)

D−→
∫ 1

0

B2(t)
r(t)

dt as L →∞,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Proof. Instead of Corollary D.1 we use Theorem D.1 with

ZL(l) =
1√

τ2
n(a)K

K∑
k=1

(an(U(l) + k)− āU,n).

Analogous arguments as in the proof of Corollary D.2 show that under (3.6.1) and (3.6.2)
the assumptions of Theorem D.1 are fulfilled. The proof is then completely analogous
to the one of Theorem 3.4.1, if one replaces Lemma 3.4.1 with Lemma 3.6.1 below, and
therefore omitted.
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Remark 3.6.1. Concerning the weighted CUSUM-statistic ˜̃T (1)
L,K(a) with the maximum

over the complete range 1 6 K(l − 1) + k < n (instead of K 6 K(l − 1) + k 6 n−K),
the assertion remains true, if

1
(log log n)µ/2

1
n

n−1∑
l=0

max
k=1,...,K

∣∣∣∣∣ 1√
k

k∑
j=1

(an(l + j)− ān)

∣∣∣∣∣
µ

→ 0

and
1

(log log n)µ/2

1
n

n−1∑
l=0

max
k=1,...,K

∣∣∣∣∣ 1√
k

K∑
j=K−k+1

(an(l + j)− ān)

∣∣∣∣∣
µ

→ 0

(3.6.3)

for some µ > 0. This is analogous to Remark 3.4.2, however one has to take into account,
that as in equation (3.6.5) we have max16k6K

√
k(āU,n − ān) =

√
K(āU,n − ān) =

oP (
√

log log n).

We prove now that Lemma 3.4.1 remains true in our situation:

Lemma 3.6.1. Let U = (U(1), . . . , U(L)) be a vector of i.i.d. uniformly distributed
r.v.´s on (0, . . . , n− 1). Moreover let an(1), . . . , an(n) be scores satisfying

1
n

n−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

(an(l + j)− ān)

∣∣∣∣∣
κ

6 D for some constant D, (3.6.4)

where κ > 2, an(j) = an(j − n), j > n, and ān := 1
n

∑n
i=1 an(i). Then we have for all

µ < min
(

κ−2
2κ , 1

4

)
max

16l6L−1
16k6K

(
l(L− l)

L

)µ L√
l(L− l)

∣∣∣∣∣∣ 1√
LK

K∑
j=k+1

(an[U(l) + j]− āU,n)

∣∣∣∣∣∣ = OP (1),

where āU,n = 1
n

∑L
l=1

∑K
k=1 an(U(l) + k).

Proof. Note that

max
16l6L−1
16k6K

(
l(L− l)

L

)µ L√
l(L− l)

∣∣∣∣∣∣ 1√
LK

K∑
j=k+1

(an[U(l) + j]− āU,n)

∣∣∣∣∣∣
6 max

16l6L−1
16k6K

(
l(L− l)

L

)µ L√
l(L− l)

∣∣∣∣∣∣ 1√
LK

K∑
j=k+1

(an[U(l) + j]− ān)

∣∣∣∣∣∣
+ max

16l6L−1

(
L

l(L− l)

) 1
2
−µ√

K|ān − āU,n|

The proof for the first part is analogous to the proof of Lemma 3.4.1 and is therefore

omitted. Concerning the second part, note that max16l6L−1

(
L

l(L−l)

) 1
2
−µ

6 2 and

E
∣∣∣√K(ān − āU,n)

∣∣∣ 6 1
L

L∑
l=1

E

∣∣∣∣∣ 1√
K

K∑
k=1

(an(U(l) + k)− ān)

∣∣∣∣∣
=

1
n

n−1∑
j=0

∣∣∣∣∣ 1√
K

K∑
k=1

(an(j + k)− ān)

∣∣∣∣∣ 6 1 + D,

(3.6.5)

because of assumption (3.6.4). The Markov inequality now gives the assertion.
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3.6.2. Limit Distributions of the Block Bootstrap Statistics

We prove now that the block bootstrap also gives asymptotically correct critical val-
ues. Main tools are again the results developed in the previous subsection for score
processes together with the laws of large numbers of Appendix B.2. We need some as-
sumptions on the alpha-mixing coefficients of the linear process, which can be checked
by Theorem 3.3.1. Example 3.3.1 states that causal ARMA sequences with appropriate
innovations always fulfill the assumptions on the mixing coefficients.
As with the permutation method we obtain an estimator for τ2 along the way. Since all
proofs of this section are very close to the corresponding ones for permutation tests we
only sketch them.

First we study the following estimator for τ2 (τ, τ̂n(X) > 0):

τ̂2
n(X) :=

1
n

n−1∑
l=0

[
1√
K

K∑
k=1

(X(l + k)− X̄n)

]2

.

Again the block bootstrap test is independent of the actual value of that estimator
for the given observations. Thus the performance of the test does not depend on the
performance of an estimator, which is in fact the biggest problem of the asymptotic test
(confer Chapter 6).

Lemma 3.6.2. Under (3.3.1) - (3.3.3) and H0

1
n

n−1∑
l=0

[
1√
K

K∑
k=1

(X(l + k)− X̄n)

]2

= σ2

∑
j>0

wj

2

+ OP

(√
1
K

+

√
1
L

+
log log n

L
+ n

−µ−2
µ

)
,

where X̄n = 1
n

∑n
i=1 X(i) and µ <∈ (ν, 4).

Proof. The proof is analogous to that of Lemma 3.5.1. Since the blocks are not mutually
independent anymore, we need a different argument for the mixed term of the analogue
to D1(L,K).

var
( 1

Kn

n−1∑
l=0

K∑
k1 6=k2

1

ε(l + k1)ε(l + k2)
)

=
1

(Kn)2

n−1∑
l1=0

n−1∑
l2=0

K∑
k11 6=k12

1

K∑
k21 6=k22

1

E(ε(l1 + k11) ε(l1 + k12) ε(l2 + k21) ε(l2 + k22))

� σ4 1
L

,

because

E(ε(l1 + k11) ε(l1 + k12) ε(l2 + k21) ε(l2 + k22))

=


σ4, (l1 + k11 = l2 + k21 ∧ l1 + k12 = l2 + k22)

∨(l1 + k11 = l2 + k22 ∧ l1 + k12 = l2 + k21).
0, else.
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The rest of the proof is analogous and therefore omitted.

We discuss now the following bootstrap statistics

T
(1)
L,K(U) := max

26l6L−1
max

16k6K

√
LK

(K(l − 1) + k)(LK −K(l − 1)− k)

∣∣∣S̃U
L,K(l, k)

∣∣∣ ,
T

(2)
L,K(G,U) :=

1√
G

max
16l6L,16k6K
K(l−1)+k>G

∣∣∣S̃U
L,K(l, k)− S̃U

L,K(l∗, k∗)
∣∣∣ ,

T
(3)
L,K(q,U) := max

16l6L,16k6K
(l,k) 6=(L,K)

1
√

LK q
(

K(l−1)+k
KL

) ∣∣∣S̃U
L,K(l, k)

∣∣∣ ,
T

(4)
L,K(r,U) :=

1
(KL)2

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

) (S̃U
L,K(l, k)

)2
,

where K(l∗ − 1) + k∗ = K(l − 1) + k −G, i.e. l∗ − 1 = bK(l−1)+k−G
K c,

k∗ = (K(l − 1) + k −G) mod K and

S̃U
L,K(l, k) :=

l−1∑
i=1

K∑
j=1

(XU(i)+j − X̄U,n) +
k∑

j=1

(XU(l)+j − X̄U,n).

U = (U1, . . . , UL) is a vector of i.i.d. random variables uniformly distributed on
{0, . . . , n− 1} independent of X1, . . . , Xn.

We prove now, that – under certain assumptions on {X(i) : i ∈ N}, – these statistics
have, conditioned on the observations, exactly the same limit behavior as the original
statistic under the null. It does not matter whether our observations do follow the null
hypothesis or an alternative.

Theorem 3.6.2. Assume that the assumptions of Theorem 3.5.1 hold and

K 6 L
δ(2)

2
−ε for some ε > 0. (3.6.6)

a) If K = O((log n)γ) for some γ > 0, then we have for all x ∈ R as L →∞

P

(
α(log n)

T
(1)
L,K(U)

τ̂n(X)
− β(log n) 6 x

∣∣∣X1, . . . , Xn

)
→ exp(−2e−x) a.s.

b) If G = G(n) →∞, G/n → 0, and (3.4.3), then we have for all x ∈ R as L →∞

P

(
α(n/G)

T
(2)
L,K(G,U)

τ̂n(X)
− β(n/G) 6 x

∣∣∣X1, . . . , Xn

)
→ exp(−2e−x) a.s.

c) If q ∈ Q0,1, I∗(q, c) < ∞ for some c > 0 and, as L →∞,

1
L q2

(
1

KL

) → 0,
1

L q2
(
1− 1

KL

) → 0

then we have for all x ∈ R as L →∞

P

(
T

(3)
L,K(q,U)

τ̂n(X)
6 x

∣∣∣X1, . . . , Xn

)
→ P

(
sup

0<t<1

|B(t)|
q(t)

6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.
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d) If r fulfills condition (3.2.6) and

1
L2K

K∑
k=1

1
r
(

k
KL

) → 0
1

L2K

K−1∑
k=1

1
r
(
1− k

KL

) → 0,

then we have for all x ∈ R as L →∞

P

(
T

(4)
L,K(r,U)

τ̂2
n(X)

6 x
∣∣∣X1, . . . , Xn

)
→ P

(∫ 1

0

B2(t)
r(t)

dt 6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

If assumption (3.6.6) is not fulfilled, the above asymptotics remain true, but only in the
sense of P -stochastic convergence (instead of a.s.-convergence).

Remark 3.6.2. If 2 < ν 6 4 we get as in Remark 3.5.4 the above assertion in a
P -stochastic sense. Note that

ỸL(l) := max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

e(l + k)

∣∣∣∣∣
2+δ̃

still has a uniformly existing moment larger than the first one, hence is also uniformly
integrable. As in Remark 3.5.4 the uniform integrability and an argument as in (3.6.9)
gives

P

(
1
n

n−1∑
l=0

|YL(l)| > 2ε

)
�ε o(1) +

(log L)2+δ

Lδ/2

K

L
= o(1)

as L →∞.

Remark 3.6.3. It is also possible to use the bootstrap, where one does not use the
circular approach of Politis and Romano [72], which effectively gives (n−K) blocks to
choose from (instead of n blocks). The proof uses the same methods, but one has to
take the new situation into account and therefore go through the proof carefully.

Remark 3.6.4. Here, however, it is also possible to use T̃
(1)
L,K(U), where we take the

maximum over the whole range 1 6 K(l−1)+k < n. The reason is that equation (3.6.3)
in Remark 3.6.1 is fulfilled a.s. for logarithmic K. The proof is analogous to the one of
Remark 3.5.5 b), if one takes into account equation (3.6.9).

Proof of Theorem 3.6.2. The proof is analogous to that of Theorem 3.5.1, yet one
has to be very careful, which is why we will sketch it for this situation.

We are using repeatedly D as a constant, which may be different in every inequality.

In the present situation one has to be careful with equations (3.5.7) and (3.5.8). We
still want to use Theorems B.5 respectively B.6, however the α-mixing condition is not
fulfilled, because we have overlapping blocks. Using the following reasoning it is possible
to avoid that problem.
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First of all note that for the glued parts it still holds uniformly in K and l∗ = n−K +
1, . . . , n− 1 using Theorems B.5 respectively B.6

E

∣∣∣∣∣∣ 1√
K

n−l∗∑
j=1

e(l∗ + j) +
K−(n−l∗)∑

j=1

e(j)

∣∣∣∣∣∣
2+δ(1)

6 D.

Now use the following argument to arrive at the equivalent of equations (3.5.7) respec-
tively (3.5.8), i.e.

1
n

n−1∑
l=0

(
1√
K

K∑
k=1

e(l + k)

)2

→ C > 0 a.s. (3.6.7)

respectively

1
n

n−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

e(l + j)

∣∣∣∣∣
2+δ̃

= µK(2 + δ̃) + o(1) 6 D a.s. (3.6.8)

where again e(j) = e(j − n) for j > n.

The Markov inequality and Theorems B.5 respectively B.6 give for any ε > 0

P

 1
n

n∑
j=1

|Y (j)| > ε

 = P

(
K∑

k=1

1
L

L−1∑
l=0

|Y (Kl + k)| > Kε

)

6 P

(
max

k=1,...,K

1
L

L−1∑
l=0

|Y (Kl + k)| > ε

)
6

K∑
k=1

P

(
1
L

L−1∑
l=0

|Y (Kl + k)| > ε

)

� 1
ε2+δ(2)

K

L1+δ(2)/2
,

(3.6.9)

where

Y (s) :=

 1√
K

K∑
j=1

e(s− 1 + j)

2

− var

(
1√
K

K∑
k=1

e(k)

)

respectively

Y (s) := max
i=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=i+1

e(s− 1 + j)

∣∣∣∣∣
2+δ̃

− µK(2 + δ̃).

This converges to 0 sufficiently fast under (3.6.6) to imply a.s.-convergence, since∑
L>1

K

L1+δ(2)/2
6
∑
L>1

1
L1+ε

< ∞.

If assumption (3.6.6) is not fulfilled, the above convergence still holds in a stochastic
sense. The following reasoning in addition to the subsequence principle then also gives
the desired result.
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Theorems B.5 respectively B.6 yield for l1(n) < l2(n) and 0 6 cl 6 C(n)

l2(n)∑
l=l1(n)+1

cl e(l) � C(n)
l2(n)∑

l=l1(n)+1

|e(l)| = O(C(n)(l2(n)− l1(n))) a.s., (3.6.10)

if l2(n) − l1(n) → ∞. Otherwise if cl = O(1) and l2(n) − l1(n) = O(1), the Markov
inequality yields

1√
L

∣∣∣∣∣∣
l2(n)∑

l=l1(n)+1

cl e(l)

∣∣∣∣∣∣ = o(1) a.s. (3.6.11)

Now we are ready to use Theorem 3.6.1 to arrive at the assertion. We only sketch the
proof for (i), because it should be clear then how to adapt the proof of Theorem 3.4.1
(ii).

Again choose the scores an(i) := X(i). Without loss of generality assume µ = 0. Let
X(j) = X(j − n) for j > n. Note that it holds

1
n

n−1∑
l=0

(
1√
K

K∑
k=1

(
X(l + k)− X̄n

))2

=
1

Kn

n−1∑
l=0

(
K∑

k=1

X(l + k)

)2

−KX̄2
n.

Equation (3.5.4) gives

KX̄2
n = Kd2

(
n−m

n

)2

+ o

(√
Kd

n−m

n

)
+ o(1) a.s.

Again we get as L →∞

1
Kn

n−1∑
l=0

(
K∑

k=1

(
d1{n>l+k>m} + e(l + k)

))2

=
1

Kn

n−1∑
l=0

(
K∑

k=1

e(l + k)

)2

+ Kd2(n−m)/n + o

(√
|d|2K n−m

n

)
+ o(1) a.s.,

since d2K
L = o(1), so that

1
Kn

n−1∑
l=0

(
K∑

k=1

d1{n>l+k>m}

)2

=
d2 K2

Kn
(n−K −m + 1)+ + 2

d2

Kn

K−1∑
j=1

j2

= d2 K
n−m

n
+ o(1).

Similarly to equation (3.5.6)

1√
L(n−m)

n−K+1∑
j=m+K

e(j) = o(1) a.s.
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This and equations (3.6.10) and (3.6.11) now imply since K/L = O(1)

2
Kn

n−1∑
l=0

 K∑
j=1

d1{n>l+j>m}

( K∑
k=1

e(l + k)

)

� |d|K 1
Kn

∣∣∣∣∣
n−K∑
l=m

K∑
k=1

e(l + k)

∣∣∣∣∣+ |d| 1
Kn

∣∣∣∣∣
m−1∑

l=m−K+1

(l −m + K)
K∑

k=1

e(l + k)

∣∣∣∣∣
+ |d| 1

Kn

∣∣∣∣∣
n−1∑

l=n−K+1

(n− l)
K∑

k=1

e(l + k)

∣∣∣∣∣
� |d|K

n

∣∣∣∣∣
n−K+1∑
l=m+K

e(l)

∣∣∣∣∣+ |d| 1
n

∣∣∣∣∣
m+K−1∑
l=m+1

(l −m)e(l)

∣∣∣∣∣+ |d| 1
n

∣∣∣∣∣
n∑

l=n−K+2

(n− l + 1)e(l)

∣∣∣∣∣
+ O

(
|d|
√

K

L

)

= o

(√
|d|2K n−m

n

)
+ o(1) a.s.

The rest is analogous to the proof of Theorem 3.5.1.

3.7. Future Research

The question arises whether this approach could be used for different problems in change-
point analysis involving dependent data.

In fact the same statistics are used in diverse contexts. One possibility is to use the above
model with an error sequence other than linear processes. Theorem 4.1.2 of Csörgő and
Horváth [19] gives such a result for the q-CUSUM statistic, confer also Remark 3.3.1.
A different example can be found in Aue et al. [5]. There they derive an invariance
principle for augmented GARCH sequences. One of the main concerns in econometrics
is to decide whether the volatility remains stable over time or whether it changes in the
observation period. They propose to use statistics as in Section 3.2 for this problem and
derive their null asymptotics, which turn out to be the same as in Theorem 3.3.2. But
they do not clarify alternatives nor show consistency of the test.

Since the asymptotic distribution is the same as in Theorem 3.4.1, one can immediately
use the rank statistic result derived there. It then suffices to prove that assumptions
(3.4.1) and (3.4.2) are fulfilled almost surely under the null hypothesis as well as alter-
natives for scores of the type an(i) := c(K, n)X(i), where c(K, n) is some function of K
and n but not on i.

For the example in Remark 3.3.1 it would suffice to prove equations (3.5.4) - (3.5.8) re-
spectively (3.6.7) - (3.6.8) in order to obtain the validity of the bootstrap. In many cases
the proof of those equations also remains true, because it only uses certain conditions
on the mixing coefficients; confer Remark 3.5.3. The rest of the proof is then analogous
to the one of Theorem 3.5.1.
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The problem is more difficult for the model proposed by Aue et al. [5]. First one has to
clarify alternatives, then prove that assumptions (3.4.1) and (3.4.2) are fulfilled almost
surely for scores of the type an(i) := c(K, n)X(i) under the null hypothesis as well as
suitable alternatives.



4. Resampling Methods in the Frequency
Domain for Linear Sequences

In this chapter we continue to investigate resampling methods for the AMOC loca-
tion model with error sequences that form a linear process. Instead of using blocking
techniques we resample now in the frequency domain rather than the time domain.
This approach depends crucially on the fact that the error sequence is a linear process,
whereas the blocking techniques also hold for a larger class of error sequences (confer
Remark 3.5.3).
Nevertheless, the frequency bootstrap is a very interesting approach with the advantage
that it does not depend on a free parameter such as the block bootstrap does on the
block length.

The Chapter is organized as follows:
First we give a short introduction into the history of resampling in the frequency domain.
Then we thoroughly describe the algorithm for the frequency bootstrap test before giving
a mathematical formulation of the problem. We turn our attention to proving that the
test described in the first section is indeed asymptotically correct. Because the bootstrap
statistics are based on trigonometric polynomials we first have to state some properties
of trigonometric functions.
The proofs for the validity of the tests are again based on the corresponding rank statistic
asymptotics. Thus we will develop them in Section 4.5, yet this time the proofs are not
based on the embedding by Einmahl and Mason, Theorem D.1, but follow from simple
linear rank statistic results (confer Appendix E).

This enables us to prove in Section 4.6 that the critical values obtained by the frequency
bootstrap are in fact approximations of the quantiles of the distribution under the null
hypothesis. Again this is true even when the observations follow an alternative. This
time the approach makes use of change-point estimators. This is why we first prove
some of their properties. Finally we give a short outline of the proof of the validity for
the bootstrap with replacement.

We conclude the chapter with a discussion of some problems arising in the proofs, some
possible variations of the method and last but not least some future fields of applications
for the frequency bootstrap in change-point analysis.

4.1. Introduction

We have seen in the previous chapter that block bootstrapping techniques are established
methods if the data at hand is dependent. There is, however, one major drawback namely
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the choice of block length. This is motivated by the observation that the performance
of block bootstrapping procedures is sensitive to it. The simulation study in Section 6.2
confirms this observation. Recently some literature about the optimal choice of block
length has appeared. Yet, this is only available for some examples and the optimal choice
depends on the problem. By minimizing the mean squared error Hall et al. [41] show
for example that the optimal block length for a series of length n is equal to multiples
of n

1
3 , n

1
4 , and n

1
5 in the cases of variance or bias estimation, estimation of a one-sided

distribution function, and estimation of a two-sided distribution function, respectively.
The constant depends not only on the statistic of interest or the context, but also on
the generally unknown auto-covariance function of the underlying process.

For those reasons in 1992 Franke and Härdle [30] proposed a different approach of boot-
strapping kernel spectral density estimates based on resampling from the periodogram
of the original data. The idea behind that approach is that a random vector of the peri-
odograms of finitely many frequencies is approximately independent and exponentially
distributed (cf. e.g. Brockwell and Davis [13], Theorem 10.3.1). Later this approach
was also pursued for different models, e.g. for ratio statistics such as autocorrelations
by Dahlhaus and Janas [22] or in regression models by Hidalgo [44].

In the above papers the estimation problem as a whole was transformed into the fre-
quency domain. As a contrast we backtransform the bootstrapped coefficients and look
at the new sequences – back in the time domain – as new pseudo-time series. Using em-
pirical distribution functions we then construct the estimator. A similar approach was
used by Braun and Kulperger [11]. Nevertheless their bootstrapping in the frequency
domain is quite different from ours. Above all their bootstrapped coefficients do not
capture the properties of Fourier coefficients, such as the fact that the last ones are the
conjugated complex of the first ones. As a result Braun and Kulperger [11] do not nec-
essarily get real numbers after backtransforming and are thus forced to just work with
the real part of the backtransformed sequence.

4.2. Idea and Algorithm

In this section we explain the idea behind the bootstrap in the frequency domain and
give a thorough description of the algorithm.

First Step: Stationarization

First we need to get closer to the actual error sequence which we know forms a linear
process. So we use estimators for the change-point and the mean before and after the
change and can thus estimate the error sequence:

X̃(i) := (X(i)− X̄m̂)1[1,m̂](i) + (X(i)− X̄∗
m̂)1[m̂+1,n](i), (4.2.1)

where e.g. m̂ = min(arg max{|Sk|; k = 1, . . . , n}), Sk =
∑k

i=1(Xi − X̄), and
X̄∗

m̂ = 1
n−m̂

∑n
i=m̂+1 Xi.
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Second Step: Fourier Transform and Resampling of Fourier Coefficients

Then we compute the Fourier coefficients of {X̃(i) : 1 6 i 6 n}:

ω(j) :=
1√
n

n∑
k=1

X̃(k) exp(−2πijk/n).

It is known that these coefficients are asymptotically (complex) normally distributed
and independent with mean 0 and variance 2πf(λj); f is the spectral density of X̃;
λj = 2πij/n. This is true in the following sense (for details on the assumptions on the
underlying process and the proof confer Brillinger [12], Theorem 4.4.1, p. 94):

Theorem 4.2.1. Let sj(n) be an integer with λj(n) = 2πsj(n)/n → λj as n → ∞ for
j = 1, . . . , J , where 2λj(n), λj(n)± λk(n) 6≡ 0 mod 2π for 1 6 j < k 6 J . Under some
conditions on the moments and cumulants of the stationary sequence {e(i) : i > 0},
which does not need to be a linear process, the real and imaginary part of the Fourier
coefficients (Re[ω(λj(n))], Im[ω(λj(n))]), j = 1, . . . , J, are asymptotically independent
two-dimensionally normally distributed with mean zero and covariance matrix Σ, where

Σ =
(

πf(λ) 0
0 πf(λ)

)
and ω(λ) = 1√

n

∑n
k=1 X̃(k) exp(−ikλ).

Brockwell and Davis [13], Theorem 10.3.1, give a similar result for the periodograms.
This is less general because it specifically deals with linear processes but the conditions
on the weights and moments are less stringent. Namely they assume (3.3.2) with ν = 4
and (3.3.3). Our proofs are closely related to theirs and so we need the same assumptions
although it is possible to relax the first one somewhat, namely it suffices ν > 2.

Note that ω(n− k) = ω(k).

Let g(1) := Re(ω(1)), g(2) := Im(ω(1)), . . . , g(ñ− 1) := Re
(
ω
(

ñ
2

))
, g(ñ) := Im

(
ω
(

ñ
2

))
,

where ñ := n − 1 for n odd and ñ := n − 2 for n even. We bootstrap the centered
coefficients g(i)− 1

ñ

∑ñ
j=1 g(j) either with or without replacement.

We then choose ω(n− 1), . . . , ω (n− ñ/2) in the corresponding way.
For n even set ω(n/2) = 0 (or keep it). Both methods work in simulations. Asymptot-
ically there is usually no difference. It holds that Tn(X) = T

(1)
n (X) + T

(2)
n (X), where

T
(1)
n (X) is the statistic for the choice ω(n/2) = 0 and T

(2)
n (X) → 0, as n → ∞, condi-

tionally on X in a P -stochastic sense for most statistics T .
Note that ω(n) is the mean of the sequence (both before and after bootstrapping). Since
all the statistics we use center the input sequence, the mean is irrelevant, so we might
just set ω(n) = 0.

Remark 4.2.1. a) The covariance structure of the original sequence is coded in the
variances of the coefficients. Bootstrapping in the above way will destroy that,
but correspond to a similar sequence with independent errors and variance σ2

∑
w2

s ,
where wj are the weights of the given linear process. This is why we still need an
estimator for σ2 (

∑
ws)

2 in order to use the critical values of the bootstrap statistic
for the null hypothesis. Confer also Section 4.8.1 below.



82 Resampling Methods in the Frequency Domain for Linear Sequences

b) For independent errors: f(λj) (hence the variances) does not depend on j.

c) The permuted coefficients will be similar to normally distributed r.v. with mean 0
and variance πnσ2

∑
w2

j , since
∫ 2π
0 f(λ)dλ = σ2

∑
w2

j (see e.g. Neuhaus and Kreiss
[66], p. 26, Theorem 3.4.). Hence they will correspond to a sequence of i.i.d. errors
with variance σ2

∑
w2

j . Remark 4.5.2 gives the mathematically correct explanation
for this.

Third Step: Backtransformation

Use inverse Fourier transform to obtain a similar sample as the original one:

XR(l) :=
1√
n

n∑
k=1

ωR(k) exp(2πilk/n), (4.2.2)

where

ωR(l) = g(Rl)− ḡ + i (g(Rñ+1−l)− ḡ) , l = 1, . . . ,
ñ

2
,

ḡ = 1
ñ

∑ñ
j=1 g(j). Moreover ωR(n) = 0, ωR(n/2) = 0 (for n even);

ωR(n− l) = ωR(l), l = 1, . . . , ñ
2 , the conjugated complex of ωR(l).

Here, R = (R1, . . . , Rñ) is a random permutation of (1, . . . , ñ).

Now calculate the value of the chosen statistic for sample XR. This seems to work in
simulations. Our proof, however, only holds true if we just use n

α(n) of the n components
of XR where α(n) →∞, no matter how slowly (for ν > 4). It is also not important which
ones we use, although it is reasonable to use successive ones (confer also Section 4.8.1).

The permutation statistic is then standardized with the exact variance of the corre-
sponding rank statistic, confer also Remark 4.5.2, i.e.

2
ñ

ñ∑
l=1

(
g(l)− 1

ñ

ñ∑
k=1

g(l)

)2

.

This is essentially the factor needed to standardize the Fourier coefficients g(·). The
factor 2 is needed because we use each of these coefficients twice (in ωR(·) as well as
ωR(n− ·))
Remark 4.2.2. It is also possible to use the uncentered Fourier coefficients. Since
they converge uniformly to 0, the proofs remain the same. Just for some weights q
respectively r we need a good enough rate for the uniform convergence. To get that
we need somewhat stronger moment conditions on the linear process. It is noted in a
remark where necessary.

Forth Step: Calculation of Critical Values

Then we repeat the second and third step t times and calculate the α-quantile of the
statistic based on these t ”realizations”.

We reject the null hypothesis if the value of the statistic for the original sample (here
we have to divide by the asymptotic variance σ2 (

∑
ws)

2 or an appropriate estimate) is
larger than the above α-quantile.
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Some Thoughts and Remarks

The advantage of this method over the block permutation is that it does not depend on
the choice of a free parameter such as the block length. The block permutation, however,
does dependent crucially on the ”correct” choice of it (confer the simulation study in
Section 6.2).

The disadvantage is that we have to have good estimates for σ2 (
∑

ws)
2. If those esti-

mates are not good the quality of the test also degrades. This is the same as with the
asymptotic test. Unfortunately the estimates so far do not work too well. The block
permutation method, however, does not depend on it, because the null statistic as well
as each of the realizations of the permutation statistic is divided by the same value of it.
Further it can be expected that the block bootstrap is more robust if the error sequence
is in fact not a linear process but some other stationary sequence (confer Remark 3.5.3).

The simulation study in Section 6.2 shows that the frequency permutation method gives
better results than the asymptotic one. There we use the correct value of the variance
instead of an estimator, since we need to estimate the same value in both tests and we
are interested in evaluating the performance of the method developed in this chapter
not the performance of the estimator.

4.3. Mathematical Formulation of the Problem

In this section we give an exact mathematical formulation of the bootstrapped sequence.
This is important for the following sections which prove the validity of the resampling
procedure. For practical purposes, however, the representations in (4.3.1) respectively
(4.3.3) are not very well suited because the calculation is too slow. It is much more
efficient to use a Fast-Fourier-Transform (FFT) Algorithm.

The algorithm in Section 4.2 gives for n odd the following random sequence as bootstrap
approximation of the original observations:

Xo
R(s) :=

2
n

n∑
j=1

X̃(j)
〈
co
j(R)− 1

n− 1

n−1∑
k=1

co
j(k), co

s

〉

=
2
n

n−1∑
l=1

co
s(l)

(
n∑

j=1

X̃(j)co
j(Rl)−

1
n− 1

n−1∑
k=1

n∑
i=1

X̃(i)co
i (k)

)
,

(4.3.1)

where 〈 , 〉 is the standard scalar product, R = (R1, . . . , Rn−1) is a random permutation
of (1, . . . , n− 1), independent of X1, . . . , Xn, and for j = 1, . . . , n

co
j = (0, co

j(1), . . . , co
j(n− 1))T

= (0, cos(2πj/n), sin(−2πj/n), cos(2 · 2πj/n), . . . , sin(−(n− 1)/2 · 2πj/n))T ,
(4.3.2)

co
j(R) = (0, co

j(R1), . . . , co
j(Rn−1))T .
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Proof of representation (4.3.1). The defining equation (4.2.2) gives, for n odd,

nXo
R(s) =

√
n

ñ/2∑
l=1

ωR(l) exp(sλl) +
√

n

ñ/2∑
l=1

ωR(l) exp(sλl)

= 2
√

n Re
ñ/2∑
l=1

ωR(l) exp(sλl)

D= 2
ñ/2∑
l=1

cos(2πsl/n)

(
n∑

j=1

X̃(j)co
j(Rl)−

1
n− 1

n−1∑
k=1

n∑
i=1

X̃(i)co
i (k)

)

− 2
ñ/2∑
l=1

sin(2πsl/n)

(
n∑

j=1

X̃(j)co
j(Rn−l)−

1
n− 1

n−1∑
k=1

n∑
i=1

X̃(i)co
i (k)

)

D= 2
n−1∑
l=1

co
s(l)

[
n∑

j=1

X̃(j)co
j(Rl)−

1
n− 1

n−1∑
t=1

n∑
i=1

X̃(i)co
i (k)

]
,

where λj = 2πij/n and x + iy = x− iy is the conjugated complex. R = (R1, . . . , Rn−1)
is a random permutation of (1, . . . , n− 1) independent of X(1), . . . , X(n). However due
to a different order of the co

j(l), we have only distributional equality, where noted, since
a different permutation might lead to that representation.

For n even and ω(n
2 ) = 0, we get

Xe
R(s) :=

2
n

n∑
j=1

X̃(j)
〈
ce
j(R)− 1

n− 2

n−2∑
k=1

ce
j(k), ce

s

〉
D=

2
n

n−2∑
l=1

ce
s(l)

(
n∑

j=1

X̃(j)ce
j(Rl)−

1
n− 2

n−2∑
k=1

n∑
j=1

X̃(j)ce
j(k)

)
,

(4.3.3)

where R = (R1, . . . , Rn−2) is a random permutation of (1, . . . , n− 2) and

ce
j = (0, 0, ce

j(1), . . . , ce
j(n− 2))T

= (0, 0, cos(2πj/n), sin(−2πj/n), cos(2 · 2πj/n), . . . , sin(−(n/2− 1) · 2πj/n))T ,
(4.3.4)

j = 1, . . . , n, ce
j(R) = (0, 0, ce

j(R1), . . . , ce
j(Rn−2))T .

The proof is analogous to the one for n odd.

If one does not center the Fourier coefficients, we get the above expressions without the
mean term.

If instead we choose to keep our middle term, i.e. choose ω(n/2) =
∑n

j=1 X̃(j)(−1)j , we
get

Xe
R(s) =

2
n

n−2∑
l=1

ce
s(l)

(
n∑

j=1

X̃(j)ce
j(Rl)−

1
n− 2

n−2∑
k=1

n∑
i=1

X̃(i)ce
i (k)

)

+
1
n

(−1)s
n∑

j=1

X̃(j)(−1)j .
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The limit (in the C[0, 1]–sense), however, remains usually the same. Going through the
proofs the assertion of Lemma 4.3.1 is normally sufficient. For the statistics with weight
functions we sometimes need somewhat stronger conditions (often involving the weight
functions). This will be noted in a remark where necessary.

In the following we suppress the upper index of cj for the sake of simplicity, i.e. cj = co
j

for n odd and cj = ce
j for n even.

Remark 4.3.1. Define bj := co
j + 1√

2
e1 for n odd and bj := ce

j + 1√
2
e1 + (−1)j

√
2

e2 for n

even, where e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0 . . . , 0)T . Note that
{√

2/n bj

}
j=1,...,n

is an

ON-Basis (confer Theorem 4.4.1) for n even and odd with
〈√

2/n bs, e1

〉
=
√

1/n. This
gives immediately that the mean of the bootstrap sample is 0:

n∑
s=1

XR(s) =
√

2
n∑

s=1

〈
n∑

j=1

X̃(j)(cj(R)− c̄j),

√
2
n

bs

〉〈√
2
n

bs, e1

〉

=
√

2
n∑

j=1

X̃(j) 〈(cj(R)− c̄j), e1〉 = 0,

(4.3.5)

since for every ON-Basis b̃ and every x it holds x =
∑n

s=1〈x, b̃s〉b̃s.
Here c̄j := 1

ñ

∑ñ
k=1 cj(k)(0, 1, . . . , 1)T , ñ := n − 1 for n odd, respectively

c̄j := 1
ñ

∑ñ
k=1 cj(k)(0, 0, 1, . . . , 1)T , ñ := n− 2 for n even.

We use this bootstrap sequence to determine critical values. We choose n/α(n) of the n
bootstrap variables, and calculate the value of the statistic for these. Repeating this we
can then calculate critical values.
We need α(n) →∞, α(n) log2(n)

n = o(1), which means that α(n) converges to infinity, but
not too fast. It does, however, not matter how slowly. If we only have an existing moment
smaller than the fourth, we need that α(n) is also not too small (e.g. it could be of
logarithmic order with appropriate exponent) in order to get tightness (cf. Theorem 4.5.3
and Remark 4.5.8).

We are interested in choosing α(n) as small as possible, preferably α(n) = 1. Unfortu-
nately Section 4.8.2 shows that it is not possible to prove the result for α(n) = 1 using the
same methods. However the simulations in Section 6.3 illustrate that the performance
of the test does not depend on the choice of α(n).

For notational reasons choose α(n) such that n
α(n) is an integer.

Define

Z̃n(u) =

√
α(n)

n

∑
s6 n

α(n)
u

XR(β(s)), for u =
α(n)

n
,
2α(n)

n
, . . . , 1,

Z̃n(0) = 0 and let Z̃n(t) be linearly interpolated between (i−1)/n and i/n for i = 1, . . . , n.
The function β defines which n

α(n) of the n bootstrap variables we choose, e.g. β(s) = s.

Now we are ready to state the above mentioned lemma:

Lemma 4.3.1. a) For any triangular array {xi,n : i = 1, . . . , n}n∈N with either
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(i) 1√
n

maxj=1,...,n |xj,n| → 0 (as n →∞) or

(ii) 1

n
3
2

∑n
j=1 xj,n(−1)j = o(1)

it holds as n →∞

1

n
3
2

sup
06u61

∣∣∣∣∣∣
bunc∑
s=1

(−1)s
n∑

j=1

xj,n(−1)j

∣∣∣∣∣∣→ 0.

b) For any triangular array {xi,n : i = 1, . . . , n}n∈N with either

(i) sup06u61

∣∣∣∣∑b n
α(n)

uc
s=1 (−1)β(s)

∣∣∣∣ = O(1) and
√

α(n)
n maxj=1,...,n |xj,n| → 0 or

(ii) 1
n

∑n
j=1 xj,n(−1)j = o

(√
α(n)

n

)
it holds as n →∞

√
α(n)

n
3
2

sup
06u61

∣∣∣∣∣∣∣
⌊
u n

α(n)

⌋∑
s=1

(−1)β(s)
n∑

j=1

xj,n(−1)j

∣∣∣∣∣∣∣→ 0.

In many situations the maximum-type condition on the scores is fulfilled in a P -stochastic
sense if we replace xj,n by X̃(j) as in (4.6.24), where the estimators are given in (4.6.11)
for γ < 2

3 . This is e.g. the case if there exists a moment larger than the fourth one and
if under the alternative min

(
m
n , n−m

n

)
> ε > 0 and |d| 6 D < ∞. Furthermore α(·) has

to be of sufficiently small order, e.g. logarithmic.
The main argument is

α(n)
n

max
i=1,...,n

x2
i,n 6

1

n
κ−2

κ

(
1
n

n∑
i=1

|xi,n|κ
)2/κ

.

The proof of Theorem 3.5.1 gives that the sum is bounded in an a.s.-sense for linear
processes. We then have to adapt the argument for X̃. This is, however, analogous to
arguments given in the proof of Theorem 4.6.2.

Proof of Lemma 4.3.1. For the proof of a), note that
∑bunc

s=1 (−1)s = 0, if bunc is
even, and otherwise

∑bunc
s=1 (−1)s = −1. This gives

1

n
3
2

sup
06u61

∣∣∣∣∣∣
bunc∑
s=1

(−1)s
n∑

j=1

xj,n(−1)j

∣∣∣∣∣∣� 1√
n

max
j=1,...,n

|xj,n| → 0.

The proof of b)(i) is analogous. For the proof of b)(ii) note that
∑⌊

u n
α(n)

⌋
s=1 (−1)β(s) =

O
(

n
α(n)

)
.

In the following sections we will prove

P
(
h((Z̃n(id)− id Z̃n(1))/σ̃) ≤ x

∣∣X1, . . . , Xn

)
P−→ P (h(B(·)) 6 x)
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for all continuous h : C[0, 1] → R, for all x ∈ R and

σ̃2 :=
2

nñ

ñ∑
l=1

 n∑
i=1

X̃(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

X̃(j)cj(k)

2

.

From this we can derive the asymptotics for the statistics proposed in Section 3.3 by
choosing h appropriately (confer the proof of Corollary 4.5.1). Instead of using the
extreme value statistics we will work with the trimmed version.

This shows that we get an approximation for the critical values corresponding to the
null distribution, even if the observed data does follow an alternative.

4.4. Some Properties of Trigonometric Functions

The previous section has shown that the frequency permutation statistics are based on
trigonometric polynomials. In the proofs for the rank statistic asymptotics we use the
special structure of trigonometric polynomials. In this section we, therefore, state and
prove the properties of trigonometric functions that we need in the following.

The first theorem shows that {
√

2/n bj} forms an orthonormal basis.

Theorem 4.4.1. a) For j = 1, . . . , n it holds

n−1∑
l=1

co
j(l)

2 =
n− 1

2
,

n−2∑
l=1

ce
j(l)

2 =
n− 2

2
.

b) For i, j = 1, . . . , n, i 6= j it holds

n−1∑
l=1

co
j(l) co

i (l) = −1
2
,

n−2∑
l=1

ce
j(l) ce

i (l) = −1
2
(1 + (−1)i−j) =

{
0 i− j odd,
−1 i− j even.

This shows that {
√

2/n bj}j=1,...,n forms an ON-Basis.

Remark 4.4.1. Note that {
√

2
nc♦(l), l = 1, . . . , ñ} forms an ON-System as well (confer

e.g. Brockwell and Davis [13], page 333).

Proof. Assertion a) follows, since sin2 x + cos2x = 1 and sin(−x) = − sin(x).

To prove assertion b) let λs := 2πs/n and

x̃s :=
(

cos(λs), . . . , cos
( ñ

2
λs

)
, sin(−λs), . . . , sin

(
− ñ

2
λs

))T

∈ Rñ,

ỹs :=
(

sin(λs), . . . , sin
( ñ

2
λs

)
,− cos(−λs), . . . ,− cos

(
− ñ

2
λs

))T

,

where ñ = n− 1 for n odd and ñ = n− 2 for n even. First of all we realize

〈x̃s, x̃t〉 − 〈ỹs, ỹt〉 = 0. (4.4.1)
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Let s 6= t. Since sin(−x)− i cos(−x) = −i exp(−ix) and −i exp(−ix) = i exp(ix), we get
by the geometric sum for n odd

〈x̃s + i ỹs, x̃t + i ỹt〉 =
ñ/2∑
l=1

exp(il(λs − λt)) +
ñ/2∑
l=1

exp(−il(λs − λt))

=
n−1∑
l=1

exp(il(λs − λt)) = −1,

which gives

〈x̃s, x̃t〉+ 〈ỹs, ỹt〉 = Re(〈x̃s + iỹs, x̃t + iỹt〉) = −1. (4.4.2)

Putting together equation (4.4.1) and (4.4.2) we now arrive at the assertion for n odd.

The proof for n even is analogous with

〈x̃s + i ỹs, x̃t + i ỹt〉 =
n−1∑
l=1
l 6=n

2

exp(il(λs − λt)) = −1− (−1)s−t.

To obtain that {
√

2/n bj}j=1,...,n forms an ON–Basis, note that

i− j even ⇔ i + j even.

The following lemma gives a similar result for the sum of the product of four such
trigonometric functions.

Lemma 4.4.1. It holds for n odd

n−1∑
l=1

co
s1

(l)co
s2

(l)co
s3

(l)co
s4

(l) =


O(n),

∑4
j=1 δ

(j)
± sj = in, i ∈ Z, δ

(j)
± = ±1

with
∑n

j=1 δ
(j)
± = 0 or

∑n
j=1 δ

(j)
± = 4,

−1
2 , otherwise,

and for n even

n−2∑
l=1

ce
s1

(l)ce
s2

(l)ce
s3

(l)ce
s4

(l) =


O(n),

∑4
j=1 δ

(j)
± sj = in, i ∈ Z, δ

(j)
± = ±1

with
∑n

j=1 δ
(j)
± = 0 or

∑n
j=1 δ

(j)
± = 4,

0, s1 + s2 + s3 + s4 odd,

−1, otherwise.

Note that the condition above means that the sum is only of linear order if s4 is deter-
mined by a finite number of combinations of s1, s2, s3.

Proof. Let again ñ = n−1 for n odd and ñ = n−2 for n even and λs := 2πs/n. Define

(xs(1), . . . , xs(ñ))T :=
(

cos(λs), . . . , cos
(

ñ

2
λs

)
, sin(−λs), . . . , sin

(
− ñ

2
λs

))T

(ys(1), . . . , ys(ñ))T :=
(

sin(λs), . . . , sin
(

ñ

2
λs

)
,− cos(−λs), . . . ,− cos

(
− ñ

2
λs

))T

.
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Moreover es := xs + iys and es = xs − iys. Note that

S1 :=
ñ∑

l=1

xs1(l) xs2(l) xs3(l) xs4(l) =
ñ∑

l=1

ys1(l) ys2(l) ys3(l) ys4(l),

S2 :=
ñ∑

l=1

xs1(l) xs2(l) ys3(l) ys4(l) =
ñ∑

l=1

ys1(l) ys2(l) xs3(l) xs4(l),

S3 :=
ñ∑

l=1

xs1(l) ys2(l) xs3(l) ys4(l) =
ñ∑

l=1

ys1(l) xs2(l) ys3(l) xs4(l),

S4 :=
ñ∑

l=1

xs1(l) ys2(l) ys3(l) xs4(l) =
ñ∑

l=1

ys1(l) xs2(l) xs3(l) ys4(l).

For n odd we get

2(S1 − S2 − S3 − S4) =
ñ∑

l=1

Re(es1(l) es2(l) es3(l) es4(l))

=
ñ/2∑
l=1

(exp(il(λs1 + λs2 + λs3 + λs4)) + exp(−il(λs1 + λs2 + λs3 + λs4)))

=
ñ∑

l=1

exp(il(λs1 + λs2 + λs3 + λs4)) =

{
−1, s1 + s2 + s3 + s4 6= jn,

ñ, otherwise.

and analogously

2(S1 − S2 + S3 + S4) =
ñ∑

l=1

Re(es1(l) es2(l) es3(l) es4(l))

=

{
−1, −s1 − s2 + s3 + s4 6= jn,

ñ, otherwise,

2(S1 + S2 − S3 + S4) =
ñ∑

l=1

Re(es1(l) es2(l) es3(l) es4(l))

=

{
−1, −s1 + s2 − s3 + s4 6= jn,

ñ, otherwise,

2(S1 + S2 + S3 − S4) =
ñ∑

l=1

Re(es1(l) es2(l) es3(l) es4(l))

=

{
−1, −s1 + s2 + s3 − s4 6= jn,

ñ, otherwise.

Solving the above system of equations for the different cases we get S1 = −1
2 , if all of

the equations above are equal to −1, otherwise S1 = O(n), hence the assertion. Note
that the sum of the above expressions gives 8S1.

More precisely S1 = n−4
8 if exactly one of the equations equals ñ, S1 = n−2

4 if exactly
two of the equations equal ñ, S1 = 3n−4

8 if exactly three of the equations equal ñ and
S1 = ñ

2 if all four of the equations equal ñ.
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For n even it holds

2(S1 + S2 + S3 + S4)

=
n−1∑
l=1
l 6=n

2

exp(il(λs1 + λs2 + λs3 + λs4))

=

{
−1− (−1)s1+s2+s3+s4 , s1 + s2 + s3 + s4 6= jn,

n− 2, otherwise,

the other equations analogous.

Again note that

s1 + s2 + s3 + s4 odd ⇔ −s1 − s2 + s3 + s4 odd
⇔ −s1 + s2 − s3 + s4 odd ⇔ −s1 + s2 + s3 − s4 odd.

Solving the system of equations (again the sum gives 8S1) we get the assertion. More
precisely for s1 +s2 +s3 +s4 even we get S1 = n−8

8 if exactly one of the equations equals
n− 2, S1 = n−4

4 if exactly two of the equations equal n− 2, S1 = 3n−8
8 if exactly three

of the equations equal n− 2 and S1 = n−2
2 if all four of the equations equal n− 2.

Lemma 4.4.2. For s 6= jn, j ∈ Z, it holds

m∑
l=1

cos(2πsl/n) = O

(
max

(
n

s
,

n

n− s

))

and
m∑

l=1

sin(2πsl/n) = O

(
max

(
n

s
,

n

n− s

))
uniformly in m. Note that for all k 6 n it holds

k∑
s=1

max
(

n

s
,

n

n− s

)
6 2n

n∑
s=1

1
s

= O(n log n).

Remark 4.4.2. Most of the time we use Lemma 4.4.2 for
∑ñ/2

l=1(cos(2πsl/n)+sin(2πsl/n))
with ñ = n − 1 for n odd and ñ = n − 2 for n even. Even though it is then possible
to give the exact value for the sum, the rate will not be better (with the exception of n
and s simultaneously even).
More precisely one can show (using equation 1.342 of Gradshteyn and Ryzhik [38] and
some well-known facts about trigonometric functions) for s 6= jn, j ∈ Z, n odd,

n−1
2∑

l=1

cos(2πsl/n) = −1
2
,

n−1
2∑

l=1

sin(2πsl/n) =

{
−1

2 tan
(

πs
2n

)
, s even,

−1
2 tan

(
πs
2n + π

2

)
, s odd.
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For n even we get analogously

n
2
−1∑

l=1

cos(2πsl/n) =

{
−1, s even,

0, s odd.
n
2
−1∑

l=1

sin(2πsl/n) =

{
0, s even,

cotan
(

πs
n

)
, s odd.

Proof Lemma 4.4.2. First equation 1.342 of Gradshteyn and Ryzhik [38] gives

m∑
k=1

sin(2πsk/n) =
1

sin(πs/n)
sin((m + 1)πs/n) sin(mπs/n) = O

(
1

sin(πs/n)

)
,

m∑
k=1

cos(2πsk/n) =
1

sin(πs/n)
cos((m + 1)πs/n) sin(mπs/n) = O

(
1

sin(πs/n)

)

uniformly in m. Moreover maxx∈(0,π)
min(x,π−x)

sin(x) = O(1) (since sin(x)
x → 1 as x → 0 and

sin(x)
π−x → 1 as x → π). This gives now 1

sin(πs/n) = O
(
max

(
n
s , n

n−s

))
, hence the assertion.

4.5. Corresponding Rank Statistics

As in the previous chapters the derivation of the permutation asymptotics is based on the
corresponding results of rank asymptotics. In this section we analyze the corresponding
frequency rank statistics. The structure of the frequency rank statistics is, however,
much more complicated than before. Thus it is not possible to use the relatively strong
embedding of Einmahl and Mason, Theorem D.1. Instead we use simple linear rank
statistic results as outlined in Appendix E. That works fine for the q-weighted CUSUM,
the Sum, and the trimmed versions of the weighted CUSUM and MOSUM statistics,
but it is too weak for the extreme value statistics (confer also Section 4.8.3).

We prove convergence in C[0, 1]. Therefore we show the convergence of the finite-
dimensional distribution in a first subsection and tightness of the process in a second
subsection. In Subsection 4.5.3 we finally state the main result, i.e. convergence in
C[0, 1], and deduce the rank asymptotics for our statistics of choice from it.

The frequency rank statistics are essentially determined by Z̃n(u) := Zn(u) − EZn(u),
where

Zn(u) =
2
√

α(n)
n3/2

ñ∑
l=1

∑
s6 n

α(n)
u

cβ(s)(l)
n∑

j=1

xj,ncj(Rl)

=

√
α(n)

n

∑
s6 n

α(n)
u

xR(β(s))

(4.5.1)

for u = j α(n)
n and linearly interpolated in between. Again ω(n

2 ) = 0, cj = co
j and

ñ = n− 1 for n odd respectively cj = ce
j and ñ = n− 2 for n even.
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We assume that the scores fulfill the following conditions:

2
nñ

ñ∑
l=1

(
n∑

i=1

xi,nci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

xj,ncj(k)

)2

= 1

1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
i=1

xi,nci(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
j=1

xj,ncj(k)

∣∣∣∣∣
κ

= O(1), 2 < κ 6 4.

(4.5.2)

The last condition can be weakened to = o(g(n)) for some g(n) → ∞, confer Re-
marks 4.5.3 and 4.5.8.

Remark 4.5.1. If we do not subtract the mean of the Fourier coefficients we additionally
need (cf. Remarks 4.5.4, 4.5.6, 4.5.7)

1
ñ

ñ∑
l=1

1√
n

n∑
j=1

xjcj(l) = o

(
1

log n
√

α(n)

)
. (4.5.3)

This is e.g. fulfilled for α(n) log4(n)
n max16i6n x2

i,n → 0, which follows for appropriate (e.g.
logarithmic α(n)) from condition

1
n

n∑
i=1

|xi,n|κ = O(1),

since

1
n

max
16i6n

x2
i,n 6

1

n
κ−2

κ

(
1
n

n∑
i=1

|xi,n|κ
) 2

κ

In case of weighted statistics we need an even stronger condition, which can be derived
as above for appropriate weights (cf. Remark 4.5.9).

In the following we write xj := xj,n for the sake of simplicity.

Remark 4.5.2. Note that by Theorem 4.4.1 it holds for n odd

2
nñ

ñ∑
l=1

(
n∑

j=1

xjcj(l)

)2

=
1
n

n∑
j=1

x2
j −

1
nñ

n∑
i6=j
1

xixj =
1
ñ

n∑
j=1

x2
j −

1
nñ

(
n∑

j=1

xj

)2

,

respectively for n even in the same way

2
nñ

ñ∑
l=1

(
n∑

j=1

xjcj(l)

)2

=
1
ñ

n∑
j=1

x2
j −

2
nñ

n/2∑
j=1

x2j

2

− 2
nñ

n/2−1∑
j=0

x2j+1

2

.

If we replace xj by X̃(j) the three squared means above will converge to 0 in a
P -stochastic sense under appropriate conditions as the proof of Theorems 4.6.1 and
4.6.2 state.
Theorem C.3 states that as n →∞

1
ñ

n∑
j=1

e2(j) → σ2
∑
s>0

w2
s a.s.
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for a linear process with weights wj and innovations having variance σ2. The proof of
Theorem 4.6.2 also shows 1

n3/2

∑
l

∑
j(X̃(j) − e(j))cj(l) = oP (1). This gives together

with equation (4.6.3) that

2
nñ

ñ∑
l=1

( n∑
i=1

X̃(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

X̃(j)cj(k)
)2 P−→ σ2

∑
s>0

w2
s

under the same assumptions as in Theorem 4.6.2.
Thus we standardize the bootstrap statistic asymptotically with σ

√∑
w2

s . On the other
hand the original statistic is asymptotically standardized with τ = σ|

∑
ws|. This shows

that our bootstrap sample rather corresponds to an independent sequence with variance
σ2
∑

w2
s . That confirms the statement in Remark 4.2.1 a) respectively c) .

4.5.1. Convergence of the Finite-Dimensional Distributions

The next theorem shows that the finite dimensional distributions of Zn converge to those
of a Wiener process (for α(n) → ∞). For α(n) = 1 the covariance structure converges
to that of a Brownian bridge, but it is not clear whether the limit distribution is normal
(confer also Section 4.8.2).

Theorem 4.5.1. Under (4.5.2) it holds for any 0 6 u1 < . . . < uk 6 1, k > 1,

(Zn(u1)− EZn(u1), . . . , Zn(uk)− EZn(uk))
D−→ (W (u1), . . . ,W (uk)),

where {W (t) : 0 6 t 6 1} is a Wiener process, if α(n) →∞, but α(n) log2(n)
n → 0.

Remark 4.5.3. Note that the above theorem remains true, if one replaces the condition

1
n

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

xjcj(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
i=1

xici(k)

∣∣∣∣∣∣
κ

= O(1)

by the following weaker condition

1
n

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

xjcj(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
i=1

xici(k)

∣∣∣∣∣∣
κ

= o
(
α(n)

κ−2
2

)
.

This will be useful later because of the characterization of P -stochastic convergence via
a.s.-convergence (subsequence principle). The problem with the first condition is that
there is no such characterization for OP .

Remark 4.5.4. Under (4.5.3) the assertion of Theorem 4.5.1 remains true if we do not
center the Fourier coefficients since Lemma 4.4.2 gives uniformly in u

EZn (bNuc/N) = 2

√
α(n)

n3/2

bNuc∑
s=1

ñ∑
l=1

cβ(s)(l)
n∑

j=1

xj
1
ñ

ñ∑
k=1

cj(k)

�
√

α(n) log n
1

n
3
2

ñ∑
k=1

n∑
j=1

xjcj(k) = o(1).

(4.5.4)
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The following theorem might be useful in some situations. It states that any finite
sequence of bootstrapped samples belonging to any frequency is asymptotically inde-
pendent, standard normally distributed.

Theorem 4.5.2. For any M > 0 and any 0 < λ1 < . . . < λM < 1 let

x∗s,n :=
2
n

ñ∑
l=1

cbnλsc(l)

 n∑
j=1

xjcj(Rl)−
1
ñ

ñ∑
k=1

n∑
j=1

xjcj(k)

 ,

then it holds under conditions (4.5.2) as n →∞

(x∗1,n, . . . , x∗M,n) D−→ (Y1, . . . , YM ),

where (Y1, . . . , YM ) D= N(0, IM ).

Remark 4.5.5. As in Remark 4.5.3 we can also weaken the condition by the following
one:

1
n

κ
2

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

xjcj(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
i=1

xici(k)

∣∣∣∣∣∣
κ

= o(1).

Proof of Theorem 4.5.2. This goes along the lines of the proof of Theorem 4.5.1

below with dn(l) =
√

2
n

∑M
i=1 γicbnλic(l).

For the proof of Theorem 4.5.1 we need the next lemma. It states that the linearly
interpolated part of Zn(·) can be neglected to derive the asymptotics.

Lemma 4.5.1. Under conditions (4.5.2) it holds as n →∞ uniformly in 0 6 u 6 1

Zn(u)−EZn(u)−Zn

(⌊
n

α(n)
u

⌋
α(n)

n

)
+E Zn

(⌊
n

α(n)
u

⌋
α(n)

n

)
= OP

(√
α(n)

n

)
.

This remains true for α(n) = 1.

Proof. Let N := n
α(n) →∞ as n →∞. Then it holds

Zn(u)− Zn

(
bNuc

N

)
= (Nu− bNuc) 1√

N
xR(β (dNue)).

We note that xR(β (dNue)) as defined in equation (4.5.1) is a linear rank statistic with
the following variance (confer Lemma E.1)

var

 2
n

ñ∑
l=1

cβ(dNue)(l)
n∑

j=1

xjcj(Rl)


=

4
n2(ñ− 1)

ñ∑
k=1

(
cβ(dNue)(k)− 1

ñ

ñ∑
i=1

cβ(dNue)(i)

)2 ñ∑
l=1

(
n∑

j=1

xjcj(l)−
1
ñ

ñ∑
t=1

n∑
i=1

xici(t)

)2

� 1
n

ñ∑
i=1

(cβ(dNue)(i))
2 +

(
1
ñ

ñ∑
i=1

cβ(dNue)(i)

)2

= O(1),

where we used the fact that 2
nñ

∑ñ
l=1

(∑n
i=1 xici(l)− 1

ñ

∑ñ
t=1

∑n
j=1 xjcj(t)

)2
= 1. The

Markov inequality now gives the assertion.
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Remark 4.5.6. If we do not center the Fourier coefficients, it still holds that the dif-
ference between Zn(u) and Zn(bNuc/N) converges to 0, but possibly with a slower rate
because of equation (4.5.4). By using the mean of the difference we obtain analogously
E
(

1√
N

xR (β(dNue))
)
�
√

α(n) 1
n3/2

∑
k

∑
j xjcj(k).

Now we are ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. By the Cramer-Wold device it suffices to prove that for
γ1, . . . , γk 6= 0 we have

∑k
i=1 γi(Zn(ui)− EZn(ui))

D−→
∑k

i=1 γiW (ui) (w.l.o.g. u1 6= 0).

Again let N = n
α(n) . First of all Lemma 4.5.1 shows that it suffices to prove∑k

i=1 γi (Zn (bNuic/N)− EZn (bNuic/N)) D−→
∑k

i=1 γiW (ui).

Regarding the variance we first realize using Theorem 4.4.1

2
nN

ñ∑
l=1

 k∑
i=1

γi

bNuic∑
s=1

cβ(s)(l)

2

= 2
k∑

i=1

k∑
j=1

γiγj
1

nN

bNuic∑
s1=1

bNujc∑
s2=1

ñ∑
l=1

cβ(s1)(l) cβ(s2)(l)

=
k∑

i=1

k∑
j=1

γiγj
ñ

n
min

(
bNuic

N
,
bNujc

N

)
+ O

 k∑
i=1

k∑
j=1

|γiγj |
bNuicbNujc

Nn


→

k∑
i=1

k∑
j=1

γiγj min(ui, uj).

(4.5.5)

Moreover with Lemma 4.4.2 we get

1√
Nn

ñ∑
l=1

k∑
i=1

γi

bNuic∑
s=1

cβ(s)(l) �
log(n)√

N
→ 0 (n →∞). (4.5.6)

Now Lemma E.1 together with (4.5.5) and (4.5.6) yield as n →∞

var

(
k∑

i=1

γiZn (bNuic/N)

)
→

k∑
i=1

k∑
j=1

γiγj min(ui, uj), (4.5.7)

where we used (4.5.2) again.

Since the Lindeberg condition is fulfilled as we will see below, this gives asymptotic
normality with mean 0 and variance

∑k
i=1

∑k
j=1 γiγj min(ui, uj) = var

(∑k
i=1 γiW (ui)

)
.

Now we verify the Lindeberg condition for rank statistics, confer Theorem E.1.
We consider the linear rank statistic Sn =

∑n
i=1 dn(i)an(Rn(i)) with dn(l) :=√

2
nN

∑k
i=1 γi

∑bNuic
s=1 cβ(s)(l) and an(l) :=

√
2
n

∑n
j=1 xjcj(l). (4.5.5) and (4.5.6) show

that

ñ∑
l=1

(
dn(l)− d̄n

)2 → k∑
i=1

k∑
j=1

γiγj min(ui, uj) > 0. (4.5.8)
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Moreover

1
nN

max
16l6ñ

 k∑
i=1

γi

bNuic∑
s=1

cβ(s)(l)

2

� N2

nN
=

1
α(n)

→ 0,

hence because of (4.5.6)

max
16l6ñ

(
dn(l)− d̄n

)2 = O

(
1

α(n)

)
→ 0. (4.5.9)

By (4.5.8) and conditions (4.5.2) it holds

1
ñ

ñ∑
i=1

(dn(i)− d̄n)2
ñ∑

j=1

(an(j)− ān)2 →
k∑

i=1

k∑
j=1

γiγj min(ui, uj) > 0, (4.5.10)

and (4.5.9) gives

{|dn(j)− d̄n||an(i)− ān| > τ} ⊂ {|an(i)− ān| > ε
√

α(n)},

where ε = C−1τ for an appropriate constant C > 0. This together with (4.5.8) - (4.5.10)
means that the Lindeberg condition

lim
n→∞

1
ñ

∑
|δnij |>τ

δ2
nij = 0 for any τ > 0,

where

δnij = (dn(j)− d̄n)(an(i)− ān)

 1
ñ

ñ∑
j=1

(dn(j)− d̄n)2
ñ∑

i=1

(an(i)− ān)2

− 1
2

,

can be reduced to

1
ñ

∑
|an(i)−ān|>ε

√
α(n)

(an(i)− ān)2 → 0 for any ε > 0.

This yields a Lyapunov-type condition as follows

1

α(n)
κ−2

2

1
ñ

ñ∑
i=1

|an(i)− ān|κ → 0 for some κ > 2. (4.5.11)

Since this condition is fulfilled by conditions (4.5.2), this completes the proof.

4.5.2. Tightness

We have seen that the finite-dimensional distributions are asymptotically normal, so we
only need tightness to get convergence in C[0, 1]. This is the assertion of the following
theorem.

Theorem 4.5.3. Under conditions (4.5.2) the sequence of processes {Zn(u)−EZn(u) :
0 6 u 6 1} is tight for κ < 4 if log2(n)α(n)

n = O(1) and log2 n

α(n)
κ−2
4−κ

= o(1). For κ = 4 the

above sequence is tight for any α(n) including α(n) = 1.
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Remark 4.5.7. If one does not center the Fourier coefficients the above theorem remains
true. Equation (4.5.4) together with the linearity of the expectation gives (Zn is linearly
interpolated) that sup06s6t61 |EZn(t) − EZn(s)| → 0, which shows that {Zn(u) : 0 6
u 6 1} is also tight. Note that Theorem 8.2 in Billingsley [9] states that tightness for a
process {Yn(u) : 0 6 u 6 1} means that {Yn(0)} is tight and for all ε, η > 0, there exists
0 < δ < 1 and n0 such that

P

(
sup

|s−t|<δ
|Yn(s)− Yn(t)| > ε

)
6 η for all n > n0.

Remark 4.5.8. As in Remark 4.5.3 for κ = 4 we can here substitute the condition

1
n

ñ∑
l=1

(
1√
n

n∑
j=1

xjcj(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
j=1

xjcj(k)

)4

= O(1)

by

1
α(n)n

ñ∑
l=1

(
1√
n

n∑
j=1

xjcj(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
j=1

xjcj(k)

)4

= O(1),

if log2(n)α(n)
n = O(1), since then it holds in the proof for Theorem 4.5.3 below

z4d � nN3(t− u)2.
For κ < 4 we can also substitute the condition by

1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
j=1

xjcj(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
j=1

xjcj(k)

∣∣∣∣∣
κ

= O
(
α(n)δ

)

for some 0 < δ < 1, if (log n)2 = o
(
α(n)

(κ−2)(1−δ)
4−κ

−δ
)
. The proof is analogous to the one

for Theorem 4.5.3 below with An := α(n)
1−δ
4−κ .

Proof of Theorem 4.5.3. Let N = n
α(n) again. First note that Zn(t) − EZn(t) −

Zn(u) + EZn(u) = 2
n
√

N

∑ñ
l=1 dn(l) (an(Rl)− ān) is a linear rank statistic with

dn(l) =
bNtc∑

s=dNue+1

cβ(s)(l) + (Nt− bNtc) cβ(dNte)(l) + (dNue −Nu) cβ(dNue)(l),

an(l) =
n∑

i=1

xi ci(l).

Here ān := 1
ñ

∑ñ
l=1 an(l) and an equivalent expression for d̄n.

Define

z2d :=
ñ∑

l=1

(
dn(l)− d̄n

)2 =
ñ∑

l=1

d2
n(l)− ñ(d̄n)2 6

ñ∑
l=1

d2
n(l),

z4d :=
ñ∑

l=1

(
dn(l)− d̄n

)4
,
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z2a analogously. For κ < 4 we need the following decomposition

Zn(t)− EZn(t)− Zn(u) + EZn(u)

=
2

n
√

N

ñ∑
l=1

dn(l)

[
(an(Rl)− ān) 1{ 1√

n
|an(Rl)−ān|>An}

− 1
n

ñ∑
k=1

(an(k)− ān) 1{ 1√
n
|an(k)−ān|>An}

]

+
2

n
√

N

ñ∑
l=1

dn(l)

[
(an(Rl)− ān) 1{ 1√

n
|an(Rl)−ān|6An}

− 1
n

n∑
k=1

(an(k)− ān) 1{ 1√
n
|an(k)−ān|6An}

]
=: Sc(t, u) + S(t, u).

Choose An := α(n)1/(4−κ). We will first prove the tightness of Sc(t, 0). According
to Billingsley [9], Theorem 8.3, it suffices to prove that for each ε, η > 0, there exists
0 < δ < 1, n0 with

1
δ

P

(
sup

u6t6u+δ
|Sc(t, u)| > ε

)
6 η, n > n0,

for all u. Because of the linear interpolation it suffices to show

1
δ

P

(
max

j6i6max(N,j+1+δN)
|Sc(i/N, j/N)| > ε

)
6 η, n > n0,

for all 1 6 j 6 N .

Theorem 4.4.1 gives

z2d 6
ñ∑

l=1

d2
n(l) � nN(t− u) + N2(t− u)2 � nN(t− u). (4.5.12)

Hence Lemma E.1, (4.5.2) and the fact that
∑

(bi − b̄)2 6
∑

b2
i show

E |Sc(t, u)|2 6
1

nN
z2d

1
ñn

ñ∑
k=1

(an(k)− ān)2 1{ 1√
n
|an(k)−ān|>An}

� (t− u)A−(κ−2)
n

1
ñ

ñ∑
k=1

∣∣∣∣ 1√
n

(an(k)− ān)
∣∣∣∣κ � (t− u)A−(κ−2)

n .

(4.5.13)

Now Theorem B.4 gives

1
δ
P

(
max

j6i6max(N,j+1+δN)
|Sc(i/N, j/N)| > ε

)
6

1
ε2δ

E max
j6i6max(N,j+1+δN)

|Sc(i/N, j/N)|2 � 1
ε2

(log n)2

Aκ−2
n

� η, n > n0.
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To get the tightness of {S(t, 0) : 0 6 t 6 1} it suffices to show according to Billingsley [9],
Theorem 12.3, that for some C > 0 and γ > 1 and all 0 6 u 6 t 6 1

E[S(t, u)]4 6 C(t− u)γ .

This together with the tightness of Sc(t, 0) gives then the tightness of Zn(t)− EZn(t).

Now Lemma E.1 yields

E[S(t, u)]4 � 1
N2n6

z2
2ãz

2
2d +

1
N2n5

z4ãz4d +
1

N2n6
z4ãz

2
2d +

1
N2n6

z2
2ãz4d, (4.5.14)

where ãn(l) := (an(l)− ān) 1{ 1√
n
|an(l)−ān|6An}, z2ã, z4ã analogous to above.

First note that z2ã 6 z2a. By assumption (4.5.2) we have

z2a = O(n2). (4.5.15)

Let s4ã =
∑ñ

l=1 (an(l)− ān)4 1{ 1√
n
|an(l)−ān|6An}, then

z4ã � s4ã + n3

(
1
n

ñ∑
l=1

1√
n

ãn(l)

)4

� s4ã + n3

(
1 +

1
n2

z2a

)4

� s4ã + n3 � α(n)n3,

(4.5.16)

since

s4ã � A4−κ
n n2

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

xjcj(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
i=1

xici(k)

∣∣∣∣∣∣
κ

� α(n)n3.

Next Lemma 4.4.2 gives

d̄n �
n∑

s=1

max
(

1
s
,

1
n− s

)
� log n,

and anyway

d̄n � N(t− u),

which together means

n(d̄n)4 � nN2(t− u)2 log2(n) � nN3(t− u)2.

Moreover Lemma 4.4.1 shows
n∑

l=1

d4
n(l) � nN3(t− u)3 + N4(t− u)4 � nN3(t− u)2.

This finally gives

z4d � nN3(t− u)2. (4.5.17)

Putting together equations (4.5.12) and (4.5.14) to (4.5.17), we realize

E[S(t, u)]4 6 C(t− u)2, (4.5.18)

which gives the assertion.

For κ = 4 the argument is as for S(t, u). Note that then z4a = O(n3), also we replace
equation (4.5.17) by z4d � n2N2(t−u)2. This way we do not need the assumption that
log2(n)α(n)

n = O(1).
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4.5.3. Rank Asymptotics

Now we can use the results of the previous two subsections to derive the main theorem of
this section. It shows that the process {Z̃n(·)} converges in C[0, 1] to a Wiener process.
In a corollary we deduce then the asymptotics for the frequency rank statistics belonging
to the statistics we investigate. It is the main tool in the proof of the validity of the
frequency bootstrap test.

Theorem 4.5.4. Under the conditions of Theorems 4.5.1 and 4.5.3, it holds

{Z̃n(u) : 0 6 u 6 1} C[0,1]−→ {W (u) : 0 6 u 6 1},

where Z̃n(u) := Zn(u)− EZn(u) and {W (u) : 0 6 u 6 1} is a standard Wiener process.

Proof. This follows immediately from Billingsley [9], Theorem 8.1, in regard of Theo-
rems 4.5.1 and 4.5.3.

From the above theorem we can now derive the asymptotics for the frequency rank
statistics we are interested in.

Corollary 4.5.1. Let the conditions of Theorems 4.5.1 and 4.5.3 be fulfilled and Z̃n(t) :=
Zn(t)− EZn(t).

a) For all ε > 0 we get

T (1f)
n (x) := sup

ε6t61−ε

√
1

t(1− t)
|Z̃n(t)− tZ̃n(1)| D−→ sup

ε6t61−ε

√
1

t(1− t)
|B(t)|.

b) It holds for any ε > 0

T (2f)
n (x) := sup

ε6t61
|Z̃n(t)− Z̃n(t− ε)− εZ̃n(1)| D−→ sup

ε6t61
|B(t)−B(t− ε)|.

c) If q ∈ FC1
0 and

(i) ∫ 1

0

1
q2(t)

dt < ∞ or

(ii) κ = 4,∫ 1

0

t(1− t)
q4(t)

dt < ∞

and t
q4(t)

is non-increasing in a neighborhood of 0 and 1−t
q4(t)

is non-decreasing in
a neighborhood of 1,

then it holds

T (3f)
n (x, q) := max

16k<N

1
q
(

k
N

) ∣∣∣∣Z̃n

(
k

N

)
− k

N
Z̃n(1)

∣∣∣∣ D−→ sup
06t61

|B(t)|
q(t)

,

where N = n
α(n) .
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d) For
∫ 1
0

(t(1−t))κ

r(t) dt < ∞ for some 0 6 κ < 1, it holds

T (4f)
n (x, r) :=

∫ 1

0

1
r(t)

|Z̃n(t)− tZ̃n(1)|2 dt
D−→
∫ 1

0

B2(t)
r(t)

dt.

Here {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Remark 4.5.9. If we want to keep the middle term of the Fourier coefficients, i.e. choose
ω(n/2) =

∑n
j=1 X̃(j)(−1)j , the bootstrap sample XR(s) has an additional term, namely

1
n(−1)s

∑n
j=1 X̃(j)(−1)j . We need to make sure that it does not change the convergence

of the statistic.
Lemma 4.3.1 gives conditions that are sufficient for a) respectively b). Yet for general
weight functions q(·) and r(·) we need in the case of c) respectively d) a somewhat
stronger condition, namely

1
n

sup
06u61

∣∣∣∣∣∣
buNc∑
s=1

(−1)β(s)
n∑

j=1

xj(−1)j

∣∣∣∣∣∣ = O(1). (4.5.19)

This is, however, fulfilled in many interesting cases. For c) Lemma F.3 a) gives – similarly
to the proof of the corollary below – that the part of the statistic involving the middle
term converges to 0 under (4.5.19), more precisely

max
16k<N

1
n
√

Nq
(

k
N

)
∣∣∣∣∣∣

k∑
s=1

(−1)β(s)
n∑

j=1

xj(−1)j − k

N

N∑
t=1

(−1)β(t)
n∑

j=1

xj(−1)j

∣∣∣∣∣∣ = o(1).

Under d) analogous arguments as in the proof of the corollary below give∫ 1

0

1
r(t)

(Ỹ (t)− tỸ (1))2 dt =
∫ 1−1/N

1/N

1
r(t)

(Ỹ (t)− tỸ (1))2 dt + o(1)

= o(1)
∫ 1

0

(t(1− t))κ

r(t)
dt + o(1) = o(1),

where Ỹ
(

k
N

)
= 1

n
√

N

∑k
s=1(−1)β(s)

∑n
j=1 xj(−1)j , k = 1, . . . , N , and linearly interpo-

lated in between.

It is also possible to use the uncentered Fourier coefficients. We then need under c)
additionally as N →∞

log2(n)
max(q(1/N), q(1− 1/N))

√
N

max |xj | → 0 or

log n
√

α(n)
max(q(1/N), q(1− 1/N))

1
n3/2

ñ∑
l=1

n∑
j=1

xjcj(l) → 0.

The above assumptions are somewhat stronger than the ones in Remark 4.5.1. Analogous
to equation (4.5.4) it then holds

max
16k<N

1
q (k/N)

|E(Zn(k/N))| → 0.
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Note that there exists an η > 0, such that supη6 k
N

61−η
1

q( k
N ) 6 C < ∞ and for k

N 6 η

respectively k
N > 1− η it holds 1

q( k
N ) 6 1

q( 1
N ) .

Under d) we need the above condition with q(t) replaced by (t(1 − t))κ/2. Similarly to
above we then get∫ 1

0

1
r(t)

E
(
Z̃n(t)− tZ̃n(1)

)2
= o(1).

Proof of Corollary 4.5.1. The results for a) and b) follow immediately from Theo-
rem 4.5.4, since we can deduce from the Portmanteau theorem (cf. e.g. Billingsley [9],
Theorem 2.1)

f(Zn(·)) D−→ f(W (·)),

where {W (t) : 0 6 t 6 1} is a Wiener process and f : C[0, 1] → R any continuous
function. Note that C[0, 1] is provided with the sup-norm. Thus both of the above
transformations are continuous, which gives the assertion.

For the proof of c) note that in the same way we get for any η > 0

max
Nη6k6N−Nη

1
q
(

k
N

) ∣∣∣∣Z̃n

(
k

N

)
− k

N
Z̃n(1)

∣∣∣∣ D−→ sup
η6t61−η

|B(t)|
q(t)

, (4.5.20)

because infη6t61−η q(t) > 0.

Moreover Lemma F.2 shows that I∗(q, c) < ∞ for all c > 0 so that Lemma F.3 b) gives

lim
η→0

sup
0<t<η,1−η<t<1

|B(t)|
q(t)

= 0 a.s.,

which implies for all x > 0

P

(
sup

0<t<η,1−η<t<1

|B(t)|
q(t)

> x

)
→ 0 as η → 0. (4.5.21)

The proof for tightness (Theorem 4.5.3, equation (4.5.18)) has shown

N2 E |S(j/N, i/N)|4 6 C(j − i + 1)2.

In a neighborhood of 0, i.e. for η small enough, q(·) is non-decreasing. Now the Markov
inequality together with Theorem B.3 gives for all x > 0 and all ε > 0

P

(
max

16k<ηN

1
q
(

k
N

) |S(k/N, 0)| > x

)
� 1

x4

1
N2

ηN∑
k=1

k

q4
(

k
N

) 6 ε (4.5.22)

for η 6 η0 and all n. Under (i) Lemma F.2 gives that I∗(q, c) < ∞ for all c > 0 so that
Lemma F.3 a) yields

1
N2

ηN∑
k=1

k

q4
(

k
N

) 6 sup
06t6η

t

q2(t)

∫ η

0

1
q2(t)

dt → 0 as η → 0. (4.5.23)
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The proof of tightness (Theorem 4.5.3, equation (4.5.13)) and Theorem B.4 show that

P

(
max

16k<ηN

1
q
(

k
N

) |Sc(k/N, 0)| > x

)
� 1

x2

log2(n)

α(n)
κ−2
4−κ

∫ η

0

1
q2(t)

dt → 0, (4.5.24)

uniformly in n as η → 0.

For κ = 4 under c)(i) the same arguments as in (4.5.22) and (4.5.23) hold, if we replace
S(t, u) by Zn(t)− EZn(t)− Zn(u) + EZn(u). Under c)(ii) it holds

1
N2

ηN∑
k=1

k

q4
(

k
N

) 6
∫ η

0

t

q4(t)
dt → 0 as η → 0.

Equation (4.5.7) gives E(Zn(1)− EZn(1))2 = O(1) and by Lemma F.3 a)

max
16k6ηN

√
k/N

q(k/N)
→ 0

as η → 0 uniformly in n, thus the Chebyshev inequality gives for all x > 0, δ > 0

P

(
max

16k6ηN

k/N

q(k/N)
|Zn(1)− EZn(1)| > x

)
6 δ (4.5.25)

for all n, for all η 6 η0(x, δ).

Putting together equations (4.5.22), (4.5.24) and (4.5.25) we finally get for all x > 0

P

(
max

16k<ηN

1
q
(

k
N

) ∣∣∣∣Zn

(
k

N

)
− EZn

(
k

N

)
− k

N
(Zn(1)− EZn(1))

∣∣∣∣ > x

)
6 ε (4.5.26)

for η 6 η0 and all n.

Using the same arguments we deduce

P

(
max

1−η6k<1

1
q
(

k
N

) ∣∣∣∣Z̃n

(
k

N

)
− k

N
Z̃n(1)

∣∣∣∣ > x

)
6 ε (4.5.27)

for η 6 η0 and all n.

Moreover |P (max(X, Y ) 6 x) − P (X 6 x)| 6 P (Y > x) so that equations (4.5.20),
(4.5.21), (4.5.26) and (4.5.27) give for all x > 0 as n →∞

P

(
max

16k<N

1
q
(

k
N

) ∣∣∣∣Z̃n

(
k

N

)
− k

N
Z̃n(1)

∣∣∣∣ 6 x

)
→ P

(
sup

06t61

|B(t)|
q(t)

dt 6 x

)
by first choosing η small enough and then n big enough in dependence of η.

For the proof of d) first note that
∫ 1
0

1
(t(1−t))κ dt < ∞, hence by c)

max
16k6N

|Z̃n(k/N)− k/NZ̃n(1)|
(k/N(1− k/N))κ/2

= OP (1). (4.5.28)
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Since Z̃n(t)− tZ̃n(1) = Nt
(
Z̃n

(
1
N

)
− 1

N Z̃n(1)
)

for 0 6 t 6 1
N , we get as N →∞

∫ 1
N

0

(
Z̃n(t)− tZ̃n(1)

)2

r(t)
dt 6

|Z̃n(1/N)− 1/NZ̃n(1)|2

(1/N)κ

∫ 1
N

0

tκ

r(t)
dt = oP (1).

Since an analogous expression for
∫ 1
1− 1

N

(Z̃n(t)−tZ̃n(1))2

r(t) dt holds, it suffices to consider∫ 1− 1
N

1
N

1
r(t) |Z̃n(t)− tZ̃n(1)|2 dt.

Due to Theorem 4.5.4 it holds for any η > 0

Cn(η) :=
∫ 1−η

η

1
r(t)

|Z̃n(t)− tZ̃n(1)|2 dt
D−→
∫ 1−η

η

B2(t)
r(t)

dt =: C(η), (4.5.29)

because
∫ 1−η
η

1
r(t) dt < ∞.

Moreover

An(η) :=
∫
{(1/N,η)∪(1−η,1−1/N)}

1
r(t)

|Z̃n(t)− tZ̃n(1)|2 dt

6

(
sup

1/N6t61−1/N

|Z̃n(t)− tZ̃n(1)|
(t(1− t))κ/2

)2 ∫
{(0,η)∪(1−η,1)}

(t(1− t))κ

r(t)
dt = oP (1)

(4.5.30)

as η → 0 uniformly in n, since

sup
1
N

6t61− 1
N

|Z̃n(t)− tZ̃n(1)|
(t(1− t))κ/2

= OP (1)

because of (4.5.28) and the linear interpolation of Z̃n(t) between k
N and k+1

N .

Furthermore Lemma F.3 c) gives

lim
η→0

C(η) = lim
η→0

∫ 1−η

η

B2(t)
r(t)

dt =
∫ 1

0

B2(t)
r(t)

dt =: C a.s., (4.5.31)

since
∫ 1
0

t(1−t)
r(t) dt < ∞.

Putting together the above results we derive now the assertion. Let ε > 0, x > 0. Choose
δ > 0 such that |P (C 6 x + 2δ) − P (C 6 x)| 6 ε, η such that P (|An(η)| > δ) 6 ε,
for all n, as well as P (|C(η) − C| > δ) 6 ε. Finally choose n1, such that |P (Cn(η) 6
x + δ)− P (C(η) 6 x + δ)| 6 ε, for all n > n1. Then it holds for all n > n1

P

(∫ 1− 1
N

1
N

1
r(t)

|Z̃n(t)− tZ̃n(1)|2 dt 6 x

)
= P (An(η) + Cn(η) 6 x, |An(η)| < δ) + P (An(η) + Cn(η) 6 x, |An(η)| > δ)
6 P (Cn(η) 6 x + δ) + ε

6 P (C(η) 6 x + δ) + 2ε

= P (C(η) 6 x + δ, |C(η)− C| < δ) + P (C(η) 6 x + δ, |C(η)− C| > δ) + 2ε

6 P (C 6 x + 2δ) + 3ε
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6 P

(∫ 1

0

B2(t)
r(t)

dt 6 x

)
+ 4ε.

This shows that lim supn→∞ P (
∫ 1− 1

N
1
N

1
r(t) |Z̃n(t)− tZ̃n(1)|2 dt 6 x) 6 P (

∫ 1
0

B2(t)
r(t) dt 6 x).

An analogous argument (now choosing δ such that |P (C 6 x− 2δ)−P (C 6 x)| 6 ε and
n1 such that |P (Cn(η) 6 x− δ)− P (C(η) 6 x− δ)| 6 ε) gives for all n > n1

P

(∫ 1− 1
N

1
N

1
r(t)

|Z̃n(t)− tZ̃n(1)|2 dt 6 x

)
> P

(∫ 1

0

B2(t)
r(t)

dt 6 x

)
− 2ε,

hence lim infn→∞ P (
∫ 1− 1

N
1
N

1
r(t) |Z̃n(t) − tZ̃n(1)|2 dt 6 x) > P (

∫ 1
0

B2(t)
r(t) dt 6 x). This

completes the proof.

4.6. Limit Distributions of the Frequency Permutation
Statistics

In this section we finally prove that the critical values obtained by the frequency per-
mutation method as proposed in Section 4.2 are asymptotically correct. Precisely we
prove that the quantiles we obtain from the bootstrap are asymptotically the same as the
ones corresponding to the distribution of the original statistic under the null hypothesis.
Thus, even if our observations follow an alternative we get a good approximation of the
critical values corresponding to the null distribution.

In the previous chapters it was always possible to obtain such approximations by boot-
strapping the raw observation data. As a contrast for the frequency method we first need
to estimate the underlying linear sequence and then bootstrap the Fourier coefficients
of the estimated linear process. Note that the other approach will in general fail in this
context (confer Remark 4.6.2).

To estimate the underlying linear process we need estimators for the change-point, the
mean of the observations before the change and the mean after the change. In a first
subsection we prove that the frequency permutation method works if we have observed
a linear process. This is essentially what we had if the estimators were always correct.
We then show in a second step that the estimators are good enough in the sense that using
them will not change the limit behavior. This shows that the frequency permutation
method as described in Section 4.2 works in this setting. The proof can be found in
Subsection 4.6.3.
In order to be able to prove this important theorem we first need to investigate some
properties of the change estimators we use, which can be found in Subsection 4.6.2.

4.6.1. Permutation Statistics of a Linear Sequence

Now we investigate the sequence corresponding to X̃(·) if we used the correct values for
the change-point and the mean before and after the change instead of estimators. This
is then just the underlying linear process

e(i) := (X(i)− µ)1[1,m](i) + (X(i)− d− µ)1[m+1,n](i),
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where m is the real change point (m = n under the null hypothesis), µ the mean of the
sequence before the change and d + µ the mean after the change.

Theorem 4.6.1. Let (3.3.2) and (3.3.3) be fulfilled, α(n) →∞ but α(n) log2(n)
n = O(1).

For ν < 4 additionally assume log2(n) = o
(
α(n)(ν−2)(1−δ)/(4−ν)−δ

)
for some 0 < δ < 1.

Then it holds

P
(
f [(Z̃e

n(id,R)− id Z̃e
n(1,R))/σ̂n] ≤ x

∣∣X(1), . . . , X(n)
)

P−→ P (f(B(·)) 6 x) .

for all continuous f : C[0, 1] → R and for all x ∈ R. Here

σ̂2
n :=

2
nñ

ñ∑
l=1

 n∑
i=1

e(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

e(j)cj(k)

2

.

and

Z̃e
n(u,R) =

√
α(n)

n

∑
s6 n

α(n)
u

eR(β(s))

for u = α(n)
n , 2α(n)

n , . . . , 1; Z̃e
n(0, R) = 0. Z̃e

n(t, R) is linearly interpolated between (i−1)/n
and i/n for i = 1, . . . , n, where eR(·) is as in equation (4.3.1) respectively (4.3.3) with
X̃(·) replaced by e(·).

If additionally the error-sequence {ε(i) : −∞ < i < ∞} of the linear process is i.i.d.
normally distributed, the above assertion holds in an almost sure sense.

Remark 4.6.1. It is possible to keep the middle term of the Fourier coefficients instead
of setting it equal to 0 if e.g. sup06u61

∣∣∣∑bNuc
s=1 (−1)β(s)

∣∣∣ = O(1) even for the correspond-
ing result to Corollary 4.5.1. Then (4.6.5) shows that condition (4.5.19) in Remark 4.5.9
is fulfilled.
If we do not center the Fourier coefficients, Remark 4.5.9 gives a sufficient additional con-
dition. For appropriate α(·) and appropriate weight functions this is fulfilled because of
equation (4.6.8). Alternatively one can confer Remark B.1 which states 1

n

∑n
j=1 |e(j)|µ =

O(1) a.s. for all 2 < µ < ν.

Remark 4.6.2. In contrast to the block bootstrap the below proof will not work in this
setting if we work with the observed random variables as they are under alternatives.
Essentially, this means instead of proving the result for e(i) we had to prove it for
e(i) + d 1{i>m}. This is not possible in the below way, because e.g. for l = 1 and a
change at n/4

d4 1
n3

 ∑
j>n/4

cj(1)

4

≈ cnd4

for some constant c > 0, which is not bounded. The mixed terms also will in general
not be able to compensate for that.

Proof of Theorem 4.6.1. In view of Theorem 4.5.4 and the Portmanteau theorem (cf.
e.g. Billingsley [9], Theorem 2.1) it suffices to prove conditions (4.5.2) in the OP (1)–sense
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for

xi := e(i)

 2
nñ

ñ∑
l=1

 n∑
i=1

e(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

e(j)cj(k)

2− 1
2

.

This implies = oP (g(n)) for some g(n) → ∞ as in Remarks 4.5.3 respectively 4.5.8.
Thus we can use the subsequence principle to obtain the assertions by an application of
Theorem 4.5.4.
For normal errors we prove the above assertion in an almost sure sense.

First Theorem C.1 yields

1
n

n∑
j=1

e(j) = o(1) a.s. (4.6.1)

In view of Remark 4.5.2 it therefore suffices to prove

1
n

n∑
j=1

e(j)2 P−→ c > 0, (4.6.2)

1
n3/2

ñ∑
l=1

n∑
j=1

e(j)cj(l) = oP (1), (4.6.3)

1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
j=1

e(j)cj(l)

∣∣∣∣∣
κ

= OP (1) (4.6.4)

for κ = min(4, ν). Additionally, we need for n even

2
n

n/2∑
j=1

e(2j) = oP (1),
2
n

n/2∑
j=1

e(2j − 1) = oP (1). (4.6.5)

For normally distributed errors we need the above asymptotics in an a.s.-sense. For
(4.6.3) this holds because of Corollary B.1 and the argument given in Remark 4.5.1.

Concerning conditions (4.6.5) note that

e(2l) =
∑
s>0

wsε(2l − s) =
∑
s>0

[w2sε(2l − 2s) + w2s+1ε(2l − 2s− 1)] =: e1(l) + e2(l).

Both e1(·) as well as e2(·) fulfill now the conditions of Theorem C.1, which gives the
assertion in an a.s.-sense. The second condition follows in the same way.

Condition (4.6.2) follows immediately from Theorem C.3 in an a.s.-sense for both normal
as well as general innovations.

The proof of conditions (4.6.3) respectively (4.6.4) for both cases goes along the lines of
the proof of Theorem 10.3.1 in Brockwell and Davis [13]. It is based on the following
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decomposition

1√
n

n∑
j=1

e(j) exp(−2πijl/n)

=
1√
n

∑
k>0

wk exp(−2πilk/n)

 n−k∑
j=1−k

ε(j) exp(−2πilj/n)


= Ψ(l)

1√
n

n∑
j=1

ε(j) exp(−2πilj/n) + Yn(l),

where

Ψ(l) :=
∑
k>0

wk exp(−2πilk/n),

Yn(l) :=
1√
n

∑
k>0

wk exp(−2πikl/n)Un,j(k),

Un,l(k) :=
n−k∑

j=1−k

ε(j) exp(−2πilj/n)−
n∑

j=1

ε(j) exp(−2πilj/n).

This now gives

1√
n

n∑
j=1

e(j) cos(2πjl/n)

= Re(Ψ(l))
1√
n

n∑
j=1

ε(j) cos(2πjl/n)− Im(Ψ(l))
1√
n

n∑
j=1

ε(j) sin(−2πjl/n)

+ Re(Yn(l)),

1√
n

n∑
j=1

e(j) sin(−2πjl/n)

= Re(Ψ(l))
1√
n

n∑
j=1

ε(j) sin(−2πjl/n) + Im(Ψ(l))
1√
n

n∑
j=1

ε(j) cos(2πjl/n)

+ Im(Yn(l)).

First we look at condition (4.6.3). It holds

1
n

ñ∑
l=1

1√
n

n∑
j=1

e(j)cj(l)

=
1
n

n∑
j=1

ε(j)

[
1√
n

ñ∑
l=1

cj(l) Re
(

Ψ
(⌊

l + 1
2

⌋))]

+
1
n

n∑
j=1

ε(j)

[
1√
n

ñ∑
l=1

cj(l)(−1)l+1 Im
(

Ψ
(⌊

l + 1
2

⌋))]

+
1
n

ñ/2∑
l=1

(Re(Yn(l)) + Im(Yn(l))).
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For the first term the Chebyshev inequality gives for any τ > 0

P

∣∣∣∣∣ 1n
n∑

j=1

ε(j)
[

1√
n

ñ∑
l=1

cj(l)Re
(

Ψ
(⌊

l + 1
2

⌋))]∣∣∣∣∣ > τ


6

σ2

τ2n2

n∑
j=1

1
n

[
ñ∑

l=1

cj(l)Re
(

Ψ
(⌊

l + 1
2

⌋))]2

6
σ2

τ2n3

[
ñ∑

l=1

Re2

(
Ψ
(⌊

l + 1
2

⌋)) n∑
j=1

cj(l)2

+
∑
l1 6=l2

Re
(

Ψ
(⌊

l1 + 1
2

⌋))
Re
(

Ψ
(⌊

l2 + 1
2

⌋)) n∑
j=1

cj(l1)cj(l2)

]

� 1
τ2n2

ñ/2∑
l=1

Re2(Ψ(l)),

where the last line follows because {
√

2
nc♦(l), l = 1, . . . , ñ} is an ON-System (confer e.g.

Remark 4.4.1), where c♦(l) = (c1(l), . . . , cn(l))T .

Because
∑

j>0

√
j|wj | < ∞ it holds

max
l=1,...,ñ

|Ψ(l)| = max
l=1,...,ñ

∣∣∣∣∣∑
j>0

wj exp(−2πijl/n)

∣∣∣∣∣ 6∑
j>0

|wj | < ∞, (4.6.6)

hence 1
n2

∑ñ/2
l=1 Re2(Ψ(l)) � 1

n . This gives

1
n

n∑
j=1

ε(j)

[
1√
n

ñ∑
l=1

cj(l)Re
(

Ψ
(⌊

l + 1
2

⌋))]
= OP

(
1√
n

)
and an analogous argument yields

1
n

n∑
j=1

ε(j)

[
1√
n

ñ∑
l=1

cj(l)(−1)l+1Im
(

Ψ
(⌊

l + 1
2

⌋))]
= OP

(
1√
n

)
.

Note that Re(Un,l(k)) respectively Im(Un,l(k)) is a sum of 2k independent random vari-
ables for k < n and for k > n a sum of 2n independent r.v.´s with mean 0 and a
uniformly bounded κth moment. Thus it holds

ERe2(Un,l(k)) � min(k, n), E Im2(Un,l(k)) � min(k, n)

and hence the Minkowski inequality gives uniformly in l

E
(
Re2(Yn(l))

)
� 1

n

(∑
k>0

|wk|min(k, n)
1
2

)2

� 1
n

(∑
k>0

k
1
2 |wk|

)2

� 1
n

, (4.6.7)
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analogously E(Im2(Yn(l))) � 1
n . The Chebyshev and Cauchy-Schwarz inequalities now

imply

P

 1
n

∣∣∣∣∣
ñ/2∑
l=1

Re(Yn(l))

∣∣∣∣∣ > τ

 6
1

τ2n2

∑
l,k

cov(Re(Yn(k)),Re(Yn(l)))

6
1

τ2n2

∑
l,k

√
var Re(Yn(k)) varRe(Yn(l)) � 1

τ2n
.

Analogously we get P
(

1
n

∣∣∣∑ñ/2
l=1 Im(Yn(l))

∣∣∣ > τ
)
� 1

τ2n
.

Putting everything together we have

1
n3/2

ñ∑
l=1

n∑
j=1

e(j)cj(l) = OP (n−1/2), (4.6.8)

hence condition (4.6.3).

For the proof of (4.6.4) we need the following, which we get using a similar argument as
above. Theorem B.7 shows

E |Un,l(k)|κ � min(k, n)
κ
2

and hence the Minkowski inequality gives uniformly in l

E |Yn(l)|κ � 1
n

κ
2

(∑
k>0

|wk|min(k, n)
1
2

)κ

� 1
n

κ
2

(∑
k>0

|wk|k
1
2

)κ

� 1
n

κ
2

.

The Markov inequality implies

P

 1
n

ñ/2∑
l=1

|Yn(l)|κ > τ

 6
1
τ

max
l

E |Yn(l)|κ � 1
τ

1
n

κ
2

, (4.6.9)

which converges to 0 sufficiently fast so that we have almost sure convergence.

Furthermore it holds

1
n

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

e(j)cj(l)

∣∣∣∣∣∣
κ

� max
l=1,...,ñ/2

|Ψ(l)|κ 1
n

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

ε(j)cj(l)

∣∣∣∣∣∣
κ

+
1
n

ñ/2∑
l=1

|Yn(l)|κ.

Putting together (4.6.6) and (4.6.9) shows that it suffices to prove the assertion for a
sequence of i.i.d. r.v.´s.

For {ε(i) : 1 6 i 6 n} i.i.d. N(0, σ2) r.v.´s,
{√

2/n
∑n

j=1 ε(j)cj(l) : 1 6 l 6 ñ
}

is also
i.i.d. N(0, σ2)–distributed (confer e.g. Brockwell and Davis [13], p. 344). Then the law
of large numbers (for the triangular case confer e.g. Corollary B.1) gives

1
n3

ñ∑
l=1

 n∑
j=1

ε(j)cj(l)

4

= O(1) a.s. (4.6.10)
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For a general sequence of innovations the Markov inequality gives the assertion, since

P

 1
n1+κ/2

ñ∑
l=1

∣∣∣∣∣
n∑

j=1

ε(j)cj(l)

∣∣∣∣∣
κ

> C

 6
1
C

max
16l6ñ

E

∣∣∣∣∣ 1√
n

n∑
j=1

ε(j)cj(l)

∣∣∣∣∣
κ

� 1
C

,

where the last line can be seen via Theorem B.7.

4.6.2. Some Properties of the Change Estimators

In this subsection we will discuss estimators m̂, µ̂1 respectively µ̂2 for the unknown
variables m, µ1 := µ, µ2 := µ + d, where d ≡ 0 under H0. Specifically we are interested
in the following estimators:

m̂ = m̂(γ) = min(arg max(|Sk(γ)|, k = 1, . . . , n− 1)),

where Sk(γ) =
(

n

k(n− k)

)γ k∑
i=1

(X(i)− X̄), 0 6 γ < 1.

µ̂1 = µ̂1(γ) =
1
m̂

m̂∑
i=1

X(i),

µ̂2 = µ̂2(γ) =
1

n− m̂

n∑
i=m̂+1

X(i).

(4.6.11)

The most interesting estimators being the ones with 0 6 γ 6 1
2 , and there more specifi-

cally γ = 0 and γ = 1
2 .

We establish some properties of these estimators in order to prove that the frequency
permutation methods still gives good approximations of the critical values, if we do not
know the underlying linear process but need to estimate it. The estimators suitable for
this purpose have to fulfill the following conditions as the proof of Theorem 4.6.2 will
show.
Lemma 4.6.1 proves that the above estimators fulfill these conditions under certain
assumptions on the alternatives.

Under H0 m̂ still has to behave reasonably, more precisely

|µj − µ̂j | = oP

( √
n

log n

)
, j = 1, 2,

m̂

n
|µ1 − µ̂1|r +

n− m̂

n
|µ2 − µ̂2|r1{m̂<n} = oP (1), r = 1, 2,

m̂3

n2
(µ1 − µ̂1)4 +

(n− m̂)3

n2
(µ2 − µ̂2)41{m̂<n} = OP (1).

(4.6.12)

Under H1 the following conditions are sufficient

|µi − µ̂j | = oP

( √
n

log n

)
, i, j = 1, 2,

n
1
4 |µj − µ̂j | = OP (1), j = 1, 2,

(µj − µ̂j)4
|m− m̂|3

n2
+ |d|4 |m− m̂|3

n2
= OP (1), j = 1, 2,

|m− m̂|
n

|d|r = oP (1), r = 1, 2.

(4.6.13)



112 Resampling Methods in the Frequency Domain for Linear Sequences

For local alternatives we need a somewhat weaker set of conditions:

|µi − µ̂j | = oP

( √
n

log n

)
, i, j = 1, 2,

m ∧ m̂

n
|µ1 − µ̂1|r = oP (1),

n− (m ∨ m̂)
n

|µ2 − µ̂2|r1{m̂<n} = oP (1),

(m ∧ m̂)3

n2
(µ1 − µ̂1)4 = OP (1),

(n− (m ∨ m̂))3

n2
(µ2 − µ̂2)41{m̂<n} = OP (1),

(µ2 − µ̂1)4
(m̂−m)3+

n2
= OP (1), (µ1 − µ̂2)4

(m− m̂)3+
n2

1{m̂<n} = OP (1),

(m̂−m)+
n

|µ2 − µ̂1|r = oP (1),
(m− m̂)+

n
|µ1 − µ̂2|r1{m̂<n} = oP (1),

(4.6.14)

for r = 1, 2, where a+ = max(a, 0), a ∧ b = min(a, b), a ∨ b = max(a, b).

Remark 4.6.3. The conditions given in the first lines must be stronger if we do not
center the Fourier coefficients. Confer also Remark 4.6.7, this is why we give the exact
convergence rates in Lemma 4.6.1.

Now we prove that the estimators given in equation (4.6.11) fulfill the above conditions
(and thus work as estimators for the frequency bootstrap). We need to impose certain
conditions on the change-point m and the mean change d first.

Let ϑ̃ := min
(

m
n , n−m

n

)
. The first possibility is that we are under the null or a local

alternative, fulfilling

|d| log n√
n

= o(1), |d|2ϑ̃ = o(1), and |d|4nϑ̃3 = O(1). (4.6.15)

Under the following alternatives the conditions are also fulfilled:

a) For 0 6 γ < 1
2 :

ϑ̃ > δ > 0, |d|
√

n →∞, |d| log n√
n

= o(1). (4.6.16)

b) For γ = 1
2 :

ϑ̃ > δ > 0, |d|
√

n

log n
→∞, |d|

√
log3 n

n
= O(1). (4.6.17)

c) For 1
2 < γ 6 3

4 :

ϑ̃ > δ > 0, |d|n1−γ →∞, |d|nγ−1 = o(1),
|d|

n2−3γ
= O(1).

(4.6.18)
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Remark 4.6.4. If min
(

m
n , n−m

n

)
> δ > 0, then it suffices that the mean change d does

not converge to infinity too fast. Precisely:

0 6 γ < 1
2 :

|d| log n√
n

= o(1),

γ = 1
2 |d|

√
log3(n)

n
= O(1).

This shows that under the usual assumptions m = ϑn, 0 < ϑ < 1, and |d(n)| 6 D < ∞
the estimators given in (4.6.11), 0 6 γ 6 1

2 , fulfill the above conditions. This remains
true for γ < 2

3 .
The reason is that each sequence can be divided into two sub-sequences (possibly one of
which is empty), one fulfilling |d|4n = O(1), the other one |d|

√
n →∞, |d|

√
n

log n →∞,

|d|n1−γ →∞, respectively.

The following lemma states that for the above alternatives and under the null hypothesis
the estimators (4.6.11) fulfill the condition we need to prove the validity of the bootstrap.

Lemma 4.6.1. i) Under H0 the estimators (4.6.11) fulfill (4.6.12). Moreover it holds
|µj − µ̂j | = OP (1), j = 1, 2.

ii) Under local alternatives that fulfill (4.6.15), the set of assumptions given in (4.6.14)
are valid. Besides, |µi − µ̂j | = OP (1 + |d|) = oP (

√
n/ log(n)), i, j = 1, 2.

iii) Under alternatives fulfilling (4.6.16)- (4.6.18), respectively, equations (4.6.13) hold
true. Additionally |µi − µ̂j | = OP (1 + |d|) = oP (

√
n/ log(n)), i, j = 1, 2.

Before we can prove the above lemma we first need a result from Kokoszka and Lei-
pus [53].

Lemma 4.6.2. For the estimators m̂ in equation (4.6.11) it holds

|d|min
(

m

n
,
n−m

n

)1−γ ∣∣∣∣m̂n − m

n

∣∣∣∣
6 Cnγ−1 max

16k<n

 1
kγ

∣∣∣∣∣∣
k∑

j=1

(X(j)− EX(j))

∣∣∣∣∣∣+ 1
(n− k)γ

∣∣∣∣∣∣
n∑

j=k+1

(X(j)− EX(j))

∣∣∣∣∣∣
 ,

where C := 2 max
(

m
n , n−m

n

)γ
/(1− γ).

Proof. Confer equation (3.11) and (3.12) in the proof of Theorem 1.1 in Kokoszka and
Leipus [53].

Now we are ready to prove that the estimators (4.6.11) are suitable for the frequency
bootstrap.

Proof of Lemma 4.6.1. It holds e(j) = X(j)− EX(j). First we prove the assertion
for the null hypothesis. We have to verify conditions (4.6.12). Concerning the second
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equation(
m̂

n

) 1
2

|µ1 − µ̂1| =
1

n
1
2

∣∣∣∣∣∣ 1

m̂
1
2

m̂∑
j=1

(X(j)− EX(j))

∣∣∣∣∣∣ 6 1

n
1
2

max
16k6n

∣∣∣∣∣∣ 1

k
1
2

k∑
j=1

e(j)

∣∣∣∣∣∣
= OP

(√
log n

n

)
= oP (1),

because the Hájek-Renyi inequality in Lemma B.1 gives:

P

 max
16k6n

∣∣∣∣∣∣ 1

k
1
2

k∑
j=1

e(j)

∣∣∣∣∣∣ > C

� 1
C2

n∑
k=1

k−1 � 1
C2

log n

Analogously

n− m̂

n
|µ2 − µ̂2|21{m̂<n} = oP (1).

In the exact same way we get the other assertions, precisely

m̂3

n2
(µ1 − µ̂1)4 +

(n− m̂)3

n2
(µ2 − µ̂2)41{m̂<n} = OP

(
1
n

)
|µj − µ̂j | = OP (1),
m̂

n
|µ1 − µ̂1| = OP

(
n−

1
2

)
= oP (1),

n− m̂

n
|µ2 − µ̂2|1{m̂<n} = oP (1).

This gives the assertion for the null hypothesis.

Next we prove that under (4.6.15), the estimators fulfill assumptions (4.6.14). Note that

µ̂1 − µ1 =
1
m̂

m̂∑
j=1

(X(j)− EX(j)) + d
(m̂−m)+

m̂
.

The proofs for 1
m̂

∑m̂
j=1(X(j)−EX(j)) are analogous to the ones for the null hypothesis.

For the second term note that

min(m, m̂)
n

∣∣∣∣d (m̂−m)+
m̂

∣∣∣∣r � |d|r min
(

m

n
,
(m̂−m)+

n

)
� |d|r min

(
m

n
,
n−m

n

)
= o(1), r = 1, 2,

since

|d|min
(

m

n
,
n−m

n

)
6

√
|d|2 min

(
m

n
,
n−m

n

)√
min

(
m

n
,
n−m

n

)
= o(1).

In the same way we get for the third line of (4.6.14)

min(m, m̂)3

n2

∣∣∣∣d (m̂−m)+
m̂

∣∣∣∣4 � |d|4 min
(

m3

n2
,
(m̂−m)3+

n2

)
� |d|4nϑ̃3 = O(1).

Concerning the last two conditions it holds for m̂ > m

µ̂1 − µ2 =
1
m̂

m̂∑
j=1

(X(i)− EX(i))− m

m̂
d.
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Again the proofs for 1
m̂

∑m̂
j=1(X(i)−EX(i)) are as above, if one takes into account that

(m̂ −m)+ 6 m̂. So we are interested in the second term. For the fourth condition we
get

(m̂−m)3+
n2

∣∣∣d m

m̂

∣∣∣4 � |d|4 min
(

m3

n2
,
(m̂−m)3+

n2

)
= O(1).

And similarly for the last condition

(m̂−m)+
n

∣∣∣d m

m̂

∣∣∣r � |d|r min
(

m

n
,
(m̂−m)+

n

)
= o(1), r = 1, 2.

The proofs of the results involving µ̂2 are analogous and therefore omitted. Moreover
we have shown |µi − µ̂j | = OP (1 + |d|), i, j = 1, 2.

Finally we prove that conditions (4.6.13) are fulfilled, if the alternative fulfills assumption
(4.6.16) - (4.6.18), respectively. The first line of (4.6.13) follows analogous to local
alternatives.

Lemma B.1 states

P

nγ−1 max
16k6n

1
kγ

∣∣∣∣∣∣
k∑

j=1

(X(j)− EX(j))

∣∣∣∣∣∣ > C

� n2(γ−1)

C2

n∑
k=1

1
k2γ

� 1
C2

·


n−1, γ < 1

2 ,

n−1 log n, γ = 1
2 ,

n2γ−2, γ > 1
2 ,

and an analogous expression for max16k<n
1

(n−k)γ

∑n
j=k+1(X(j)−EX(j)). This together

with Lemma 4.6.2 gives now in case of

γ <
1
2

: |d| |m̂−m|
n

= OP

(√
1
n

)
,

γ =
1
2

: |d| |m̂−m|
n

= OP

(√
log n

n

)
,

γ >
1
2

: |d| |m̂−m|
n

= OP

(
nγ−1

)
,

(4.6.19)

since ϑ̃ > δ > 0. Hence under the following condition on d

γ <
1
2

: |d|
√

n →∞,

γ =
1
2

: |d|
√

n

log n
→∞,

γ >
1
2

: |d|n1−γ →∞,

(4.6.20)

it holds m̂−m
n = oP (1). This gives

n

min(m̂, n− m̂)
= OP (1), (4.6.21)
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since

n

m̂
=
(

m̂−m

n
+

m

n

)−1

6

(
δ +

m̂−m

n

)−1
P−→ δ−1 < ∞

and an analogous argument for n
n−m̂ 6 δ−1+oP (1). As before µ̂1−µ1 = 1

m̂

∑m̂
j=1(X(j)−

EX(j)) + d (m̂−m)+
m̂ . For the second term it holds under (4.6.20) because of (4.6.19)

respectively (4.6.21)

d(m̂−m)+
m̂

=


OP

(√
1
n

)
, γ < 1

2 ,

OP

(√
log n

n

)
, γ = 1

2 ,

OP

(
nγ−1

)
, γ > 1

2 ,

(4.6.22)

Moreover by Lemma B.1

1√
n

m̂∑
j=1

(X(i)− EX(i)) 6
1√
n

max
16k<n

k∑
j=1

(X(i)− EX(i)) = OP (1).

This together with (4.6.21) and (4.6.22) now gives under (4.6.20) in case of

γ <
1
2

:
√

n|µ̂j − µj | = OP (1),

γ =
1
2

:
√

n

log n
|µ̂j − µj | = OP (1),

γ >
1
2

: n1−γ |µ̂j − µj | = OP (1), j = 1, 2.

(4.6.23)

Here the assertion for j = 2 follows in the same way. Putting together (4.6.19) and
(4.6.23) we realize that under (4.6.16) - (4.6.18), respectively, assumptions (4.6.13) hold.

4.6.3. Convergence of the Permutation Statistics Using Estimators

We are now ready to state the main theorem. It shows that the procedure described in
Section 4.2 gives asymptotically the correct critical values. The theorem states conver-
gence of the permutation processes conditioned on the observations in C[0, 1] whereas
the corollary specifies the results for the statistics we are interested in.

Consider now

X̃(i) := (X(i)− µ̂1)1[1,m̂](i) + (X(i)− µ̂2)1[m̂+1,n](i), (4.6.24)

for suitable estimators m̂, µ̂1 and µ̂2, confer also equation (4.2.1). Usually we will choose
the estimators defined in equation (4.6.11) with 0 6 γ 6 1/2. Lemma 4.6.1 proves that
they fulfill the assumptions of the following theorem for a wide range of alternatives.

Theorem 4.6.2. Let the conditions of Theorem 4.6.1 be fulfilled. Let under H0 as-
sumptions (4.6.12) and under H1 assumptions (4.6.13) respectively (4.6.14) be fulfilled.
Then

P
(
f [(Z̃X

n (id,R)− id Z̃X
n (1,R))/σ̂n] ≤ x

∣∣X(1), . . . , X(n)
)

P−→ P (f(B(·)) 6 x)
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for all continuous f : C[0, 1] → R and for all x ∈ R. Here

σ̂2
n :=

2
nñ

ñ∑
l=1

 n∑
i=1

X̃(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

X̃(j)cj(k)

2

,

Z̃X
n (u,R) =

√
α(n)

n

∑
s6 n

α(n)
u

XR(β(s)), for t =
α(n)

n
,
2α(n)

n
, . . . , 1,

Z̃X
n (0, R) = 0 and Z̃X

n (t, R) is linearly interpolated between (i − 1)/n and i/n for i =
1, . . . , n, XR(·) is as in equation (4.3.1) respectively (4.3.3).

Remark 4.6.5. If we have estimators with appropriate convergence rates in an a.s.-
sense, we get for normal innovations as in Theorem 4.6.1 the convergence in an a.s.-sense.

Remark 4.6.6. It is again possible to keep the middle term of the Fourier coefficients
instead of setting it equal to 0. It is also possible to work with uncentered Fourier
coefficients under appropriate conditions. For more details confer Remark 4.6.7.

The following corollary states the limit behavior of our statistics of interest.

Corollary 4.6.1. Under the conditions of Theorem 4.6.2 the following holds:

a) For all ε > 0 we get for all x ∈ R

P
(
T (1f)

n (R) 6 x |X(1), . . . , X(n)
)

P−→ P

(
sup

ε6t61−ε

√
1

t(1− t)
|B(t)| 6 x

)
,

where T (1f)
n (R) := sup

ε6t61−ε

√
1

t(1− t)
|Z̃X

n (t,R)− tZ̃X
n (1,R)|.

b) It holds for any 0 < ε < 1

P
(
T (2f)

n (R) 6 x |X(1), . . . , X(n)
)

P−→ P

(
sup

ε6t61
|B(t)−B(t− ε)| 6 x

)
,

where T (2f)
n (R) := sup

ε6t61
|Z̃X

n (t,R)− Z̃X
n (t− ε,R)− εZ̃X

n (1,R)|.

c) If q ∈ FC1
0 and

i) ∫ 1

0

1
q2(t)

dt < ∞ or

ii) κ = 4,∫ 1

0

t(1− t)
q4(t)

dt < ∞

and t
q4(t)

is non-increasing in a neighborhood of 0 and 1−t
q4(t)

is non-decreasing in
a neighborhood of 1,
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then it holds

P
(
T (3f)

n (R, q) 6 x |X(1), . . . , X(n)
)

P−→ P

(
sup

06t61

|B(t)|
q(t)

6 x

)
,

where T (3f)
n (R, q) := max

16k<N

1
q
(

k
N

) ∣∣∣∣Z̃X
n

(
k

N
,R
)
− k

N
Z̃X

n (1,R)
∣∣∣∣ , N =

n

α(n)
.

d) For
∫ 1
0

(t(1−t))s

r(t) dt < ∞ for some 0 6 s < 1, it holds

P
(
T (4f)

n (R) 6 x |X(1), . . . , X(n)
)

P−→ P

(∫ 1

0

B2(t)
r(t)

dt 6 x

)
,

where T (4f)
n (R, r) :=

∫ 1

0

1
r(t)

|Z̃X
n (t,R)− tZ̃X

n (1,R)|2 dt.

Here {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Proof. The proof is analogous to that of Theorem 4.6.2, below, using Corollary 4.5.1
instead of Theorem 4.5.4.

Remark 4.6.7. As in Remark 4.6.1 in view of Remark 4.5.9 it is possible to keep the
middle term if sup06u61

∣∣∣∑bNuc
s=1 (−1)β(s)

∣∣∣ = O(1).
It is also possible to work with uncentered Fourier coefficients if√

α(n) log n

max(q(1/N), q(1− 1/N))
1

n3/2

ñ∑
l=1

n∑
j=1

X̃(j)cj(l)
P−→ 0.

Equations (4.6.8), (4.6.25) and Lemma 4.6.1 show that

1
n3/2

ñ∑
l=1

n∑
j=1

X̃(j)cj(l) = OP

(
log n√

n
(1 + |d|)

)
,

where d ≡ 0 under H0.

Also the following result can be proven in exactly the same way using Theorem 4.5.2. It
gives the validity of bootstrapping procedures where one is only interested in functionals
of a finite sequence. It might be useful in some situations.

Theorem 4.6.3. For any M > 0 and any 0 < λ1 < . . . < λM < 1 let

X∗
s,n :=

2
n

ñ∑
l=1

cbλs·nc(l)
n∑

j=1

X̃(j)cj(Rl).

Under the conditions of Theorem 4.6.2 it holds as n → ∞ for all x ∈ R and all
f : RM → R continuous:

P
(
f(X∗

s,n, . . . , X∗
M,n) 6 x |X(1), . . . , X(n)

) P−→ P (f(Y1, . . . , YM ) 6 x),

where (Y1, . . . , YM ) D= N(0, IM ).
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Now we prove the main theorem of this section.

Proof of Theorem 4.6.2. Again we have to verify conditions (4.5.2) in a P-stochastic
sense keeping in mind the conditions in Remarks 4.5.3 respectively 4.5.8 for

xi := X̃(i)

 2
nñ

ñ∑
l=1

 n∑
i=1

X̃(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

X̃(j)cj(k)

2− 1
2

.

Using (4.6.1) - (4.6.5) and the triangle inequality, it suffices to show that

1
n

n∑
j=1

(X̃(j)− e(j)) = oP (1) for n odd;

1
n

n∑
i=1

|X̃(i)− e(i)|2 = oP (1);

1
n3/2

ñ∑
l=1

n∑
j=1

(X̃(j)− e(j))cj(l) = oP (1);

1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
j=1

cj(l)(X̃(j)− e(j))

∣∣∣∣∣
κ

= OP (1) for κ = min(4, ν);

1
n

n/2∑
j=1

(X̃(2j)− e(2j)) = oP (1),
1
n

n/2∑
j=1

(X̃(2j − 1)− e(2j − 1)) = oP (1) for n even.

Concerning the second equality note that (a + b)2 6 2a2 + 2b2, hence a2 6 2(a − b)2 +
2 b2, which gives (a − b)2 > 1

2a2 − b2. This shows in our situation 1
n

∑n
i=1 |X̃(i)|2 >

1
2n

∑n
i=1 |e(i)|2 −

1
n

∑n
i=1 |X̃(i)− e(i)|2.

Because of Lemma 4.4.2

1
n3/2

ñ∑
l=1

n∑
j=1

(X̃(j)− e(j))cj(l) �
log n√

n
max

j=1,...,n
|X̃(j)− e(j)|, (4.6.25)

and

1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
j=1

cj(l)(X̃(j)− e(j))

∣∣∣∣∣
κ

� 1 +
1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
j=1

cj(l)(X̃(j)− e(j))

∣∣∣∣∣
4

.

This means it suffices to prove the boundedness for κ = 4. Moreover we will verify

log n√
n

max
j=1,...,n

|X̃(j)− e(j)| = oP (1).

Under H0 it holds (µ1 = µ2 = µ)

X̃(i)− e(i) = (X(i)− µ̂1)1[1,m̂](i) + (X(i)− µ̂2)1[m̂+1,n](i)− (X(i)− µ)

= (µ1 − µ̂1)1[1,m̂](i) + (µ2 − µ̂2)1[m̂+1,n](i).
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By Lemma 4.4.1 it holds

1
n3

ñ∑
l=1

(µ1 − µ̂1)4
(

m̂∑
j=1

cj(l)

)4

+
1
n3

ñ∑
l=1

(µ2 − µ̂2)4
(

n∑
j=m̂+1

cj(l)

)4

� m̂3n

n3
(µ1 − µ̂1)4 +

(n− m̂)3n
n3

(µ2 − µ̂2)41{m̂<n} = OP (1).

This shows that the conditions are fulfilled under H0, since assumptions (4.6.12) are
fulfilled.

Under H1 we have

X̃(i)− e(i)
= (X(i)− µ̂1)1[1,m̂](i) + (X(i)− µ̂2)1[m̂+1,n](i)− (X(i)− µ1)1[1,m](i)

− (X(i)− µ2)1[m+1,n](i)

= (µ1 − µ̂1)1[1,m∧m̂](i) + (µ2 − µ̂2)1(m∨m̂,n](i) + (µ1 − µ̂2)1(m̂,m](i) + (µ2 − µ̂1)1(m,m̂](i).

The triangle inequality together with assumptions (4.6.13) now give for r = 1, 2

m ∧ m̂

n
|µ1 − µ̂1|r +

n− (m ∨ m̂)
n

|µ2 − µ̂2|r +
(m− m̂)+

n
|µ1 − µ̂2|r

+
(m̂−m)+

n
|µ2 − µ̂1|r � oP (1) +

|m− m̂|
n

|d|r = oP (1),

where a+ = max(a, 0). By Lemma 4.4.1

1
n3

ñ∑
l=1

(µ1 − µ̂1)4

m∧m̂∑
j=1

cj(l)

4

� min(m, m̂)3

n2
(µ1 − µ̂1)4 � n(µ1 − µ̂1)4 = OP (1).

Analogously we get

1
n3

ñ∑
l=1

(µ2 − µ̂2)4
(

n∑
j=m∨m̂

cj(l)

)4

= OP (1).

Moreover for m̂ < m 6 n

(µ1 − µ̂2)4
1
n3

ñ∑
l=1

(
m∑

j=m̂+1

cj(l)

)4

� (µ1 − µ̂2)4
(m− m̂)3+n

n3

� (µ2 − µ̂2)4
|m− m̂|3

n2
+ |d|4 |m− m̂|3

n2
= OP (1).

Analogously for m < m̂

(µ2 − µ̂1)4
1
n3

ñ∑
l=1

(
m̂∑

j=m+1

cj(l)

)4

= OP (1).

Under assumptions (4.6.14) analogous arguments hold. This completes the proof.
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4.7. Frequency Bootstrap with Replacement

The question remains whether the bootstrap with replacement is also possible in this
setup. So instead of permuting the Fourier coefficients we sample from them with re-
placement. It turns out that this approach gives the same results as above. This is,
however, hardly surprising considering that one often proves rank statistic results by
deriving them from the corresponding results for the statistic with replacement. One
example is the proof of the Lindeberg condition for rank statistics, confer Theorems 3.1
and 4.1 of Hájek [39].

The proofs for the frequency bootstrap with replacement are analogous although one
has to use the following two lemmas instead of the rank statistic results of Appendix E.

Lemma 4.7.1. Let {Ui}i=1,...,n be a triangular array of row-wise i.i.d. r.v.´s fulfilling
P (Ui = k) = 1

n for k = 1, . . . , n.

a) E (
∑n

i=1 dia(Ui)) = nd̄nān, where d̄n = 1
n

∑n
i=1 di and an analogous expression for

ān.

b) var (
∑n

i=1 dia(Ui)) =
∑n

i=1 d2
i

1
n

∑n
j=1 (a(j)− ān)2.

c) E (
∑n

i=1 di(a(Ui)− ān))4 � 1
n2 s2

2dz
2
2a+

1
ns4dz4a, where s2d :=

∑n
j=1 d2

i , z2a :=
∑n

j=1(a(i)−
ān)2, s4d :=

∑n
j=1 d4

i and z4a :=
∑n

j=1(a(i)− ān)4.

Proof. The first two assertions are obvious. For c) note that

E ((a(Ui1)− ān)(a(Ui2)− ān)(a(Ui3)− ān)(a(Ui4)− ān))

=


1
n

∑n
j=1(a(j)− ān)4, i1 = i2 = i3 = i4,

1
n2

(∑n
j=1(a(j)− ān)2

)2
, (iπ(1) = iπ(2)) ∧ (iπ(3) = iπ(4)) ∧ (iπ(1) 6= iπ(3)),

0, else,

π is a permutation of {1, 2, 3, 4}. This yields

E

(
n∑

i=1

di(a(Ui)− ān)

)4

=
∑

i1,i2,i3,i4

di1di2di3di4 E ((a(Ui1)− ān)(a(Ui2)− ān)(a(Ui3)− ān)(a(Ui4)− ān))

� 1
n2

s2
2dz

2
2a +

1
n

s4dz4a.

The central limit theorem for a triangular array of row-wise independent r.v.´s states:

Lemma 4.7.2. If the Lindeberg condition

1
s2dz2a

∑
i,j

|di(a(j)−ān)|>ε
√

s2dz2a/n

(di(a(j)− ān))2 → 0

for all ε > 0 is fulfilled, then
∑n

i=1 dia(Ui) is asymptotically normal.
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Note that the Lindeberg condition is essentially the same as before, the only difference
being that we are working with the uncentered sums s2d, s4d instead of the corresponding
centered sums z2d, z4d. Lemma 4.7.1 shows that the moments also have the same upper
bounds if one replaces the centered sums z2d, z4d by their uncentered counterpart s2d, s4d.
Thus going carefully through the proofs of Lemma 4.5.1 as well as Theorems 4.5.1, 4.5.2,
and 4.5.3 one notes that the proofs remain valid for the above case, i.e. for the score
processes corresponding to the bootstrap with replacement, under the same assumptions
on the scores as before. In fact the proofs are even somewhat easier.

Consequently, Theorem 4.5.4 and Corollary 4.5.1 remain true when we replace the per-
mutations (R1, . . . , Rn) by random vectors (U1, . . . , Un) as above. This finally shows
that the bootstrap with replacement also has the wanted asymptotic behavior. More
precisely Theorem 4.6.2, 4.6.3 as well as Corollary 4.6.1 remain true if again we re-
place the permutations R by random vectors (U1, . . . , Un) as above and independent of
X1, . . . , Xn.

4.8. Future Research

In this section we discuss some possible variations of the method. For example the
above algorithm gives a bootstrap sample that is close to the independent case. It may
be possible to first estimate the spectral density and then get a bootstrap sample that
preserves the covariance structure much better. Also the question remains whether we
can or cannot use α(n) = 1. Finally we discuss some other areas from change-point
analysis where the method could also be useful.

4.8.1. Frequency Bootstrap Under Knowledge of Spectral Density?

We have seen theoretically as well as in the simulation study that the above approach
essentially creates another sample of the time series close to an independent one. The
reason supposedly is that permuting the Fourier coefficients destroys the covariance
structure of the original sequence, which is coded in the variances of the Fourier coeffi-
cients – multiples of the spectral density at that point.

So it stands to reason that we might get an even better bootstrap if we divide the
coefficients by the square root of the spectral density, permute and then multiply with
that value again. Dahlhaus and Janas [22] follow that approach in the context of ratio
statistics, so do Franke and Härdle [30] for kernel spectral density estimates. Of course it
is immediately obvious that it is an even more complicated task to get good estimators
for the spectral density than for the single value σ2

(∑
s>0 ws

)2. And of course the
correct density will usually be unknown in applications.

Let g̃ be the spectral density and g(2j − 1) = g(2j) = g̃(2πj
n ) the spectral density at the

point 2πj
n . Then the above bootstrap gives the following bootstrap sequence

X̌R(s) =
2
n

ñ∑
l=1

cs(l)
√

g(l)

 n∑
j=1

X̃(j)
cj(Rl)√
g(Rl)

− 1
ñ

ñ∑
k=1

n∑
i=1

X̃(i)
ci(k)√
g(k)

 , (4.8.1)
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which can be seen analogously to equation (4.3.1).

What we would like now is that the above sequence has asymptotically the correct
covariance structure conditionally on the given data and not only the covariance structure
of a corresponding independent sequence. This would then give the desired improvement.
The algorithm then compares the value of the null statistic without use of a variance
estimator with the value of the corresponding bootstrap statistic involving

ŽX
n (u) =

1
N

∑
s6Nu

X̌R(β(s))

again without standardizing.

To get the asymptotic behavior we want we need to choose successive random variables
from the bootstrap sample, i.e. β(s) = c + s for some constant 0 6 c < n − N . This
is not surprising if we keep in mind that heuristically the bootstrap sample is close to
an AR(1) series. Taking only every second element of an AR(1) sequence in general
has a different covariance structure than the original AR(1) sequence. For the sake of
simplicity we assume c = 0.

The conditional covariance structure is then given by E(ŽX
n (u)ŽX

n (v)|X1, . . . , Xn) and we
would like this value to converge to min(u, v)σ2 (

∑
ws)

2. It requires quite complicated
calculations (e.g. multiple sums of products of the spectral density (or its inverse) with
trigonometric functions) to obtain the correct asymptotic for the above covariance. Here,
we will only discuss the case of an AR(1)-time series X(i) = ρX(i− 1) + ε(i), where the
spectral density is known (confer e.g. Brockwell and Davis [13]), i.e.

g̃(x) =
σ2

2π
(1− 2ρ cos(x) + ρ2)−1.

This gives already a very good impression of the difficulties that arise in the general
case.

To prove the validity of the bootstrap we need similar results as in the proof of the
following lemma. The important tools are results for sums of trigonometric functions
multiplied by different powers (positive and negative) of the spectral density, similar to
the results obtained in Section 4.4. It seems difficult to get such results for the spectral
density of a general linear process, even more difficult to get them for an estimator
thereof. The following lemma only needs a small part of these results – and only for
the known density of an AR(1)-process. It is, however, already complicated to get these
results, so that one can expect difficulties in the general case.

Remark 4.8.1. There is one thing noteworthy about the proof concerning the question
about α(n) = 1 discussed in more detail in Section 4.8.2. For the bootstrap without
the frequency density we get the covariance structure of a Brownian bridge instead of
a Wiener Process if α(n) = 1. The reason is that the part where s1 6= s2 converges to
uv if α(n) = 1 and to 0 otherwise. Now using the above approach we note that even
for α(n) →∞, which is needed for this proof to hold true, the part where s1 6= s2 does
not converge to 0 but is essential to obtain the correct asymptotic. Without that term
the asymptotic covariance would correspond again to the independent case. We can see
this by equation (4.8.4). This might be a hint that we need α(n) →∞ also in the other
bootstrap.
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Lemma 4.8.1. Let X(·) be an AR(1) time series with parameter ρ (0 < |ρ| < 1,
ws = ρs) and X̌R(s) as in (4.8.1), where we replace X̃(·) by X(·). Let the innovations
be i.i.d. fulfilling (3.3.2) with ν > 4 and (3.3.4), furthermore log n√

N
→ 0 and log n

α(n) → 0.
Then as n →∞

E(ŽX
n (u)ŽX

n (v)|X1, . . . , Xn) → min(u, v)
σ2

(1− ρ)2
a.s.

Proof. First of all Lemma E.1 shows

E(ŽX
n (u)ŽX

n (v)|X1, . . . , Xn)

=
2

n(ñ− 1)

ñ∑
l=1
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cj(l)√
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− 1
ñ

ñ∑
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n∑
i=1

X(i)
ci(t)√
g(t)

2

· 2
nN

ñ∑
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 ∑
s16Nu

cs1(k)
√

g(k)− 1
ñ

ñ∑
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∑
s116Nu

cs11(t)
√

g(t)
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·
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cs2(k)
√

g(k)− 1
ñ

ñ∑
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∑
s216Nv

cs21(t)
√

g(t)

 a.s.

(4.8.2)

Concerning the second sum we note that uniformly in u

1√
Nn

ñ∑
l=1

∑
s6Nu

cs(l)
√

g(l) = o(1). (4.8.3)

For the proof note that g is monotone in [0, π] and for |ρ| < 1 there exist m,M with
0 < m 6 g̃(x) 6 M < ∞ for all x. Lemma 4.4.2 and partial summation give

1√
Nn

ñ∑
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k6 ñ
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� log n√

N
= o(1)

uniformly in u.
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Concerning the main part of the second sum we can replace the sum (over k) by an
integral, which we can then calculate. For this we need the following equality, which e.g.
can be found in Gradshteyn et al. [38] 1.352

m−1∑
k=1

k sin(kx) =
sin(mx)

4 sin2(x/2)
− m cos((2m− 1)x/2)

2 sin(x/2)
=

{
O
(

m
x

)
, 0 < x < π

2 ,

O (m) , π
2 < x < π.

Note that sup0<x<π/4
x

sin(x) = O(1), supx>0

∣∣∣ sin(x)
x

∣∣∣ = O(1), supπ/2<x<π
1

sin2(x/2)
6 1

sin2(π/4)
,

and | sin(m(π − x))| = | sin(mx)|.

Noting that cos(x) cos(y) + sin(x) sin(y) = cos(x− y) the mean value theorem gives

1
N

∑
s1,s2

2π
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ñ/2−1∑
k=2

∫ 2πk/n

2π(k−1)/n

∣∣∣∣∣∑
s1,s2

(s2 − s1) sin(ξ(s2 − s1))

∣∣∣∣∣ dx

� 1
α(n)

+
N

n
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It holds (cf. e.g. Bronstein et al. [14], p. 1053) for |ρ| < 1∫ π

0

cos(x(s2 − s1))
1− 2ρ cos x + ρ2

dx =
πρ|s2−s1|

1− ρ2
.

Thus we get (w.l.o.g. u 6 v)
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1
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(4.8.4)

Noting that
∑n

i=1(X(i)− X̄)(Y (i)− Ȳ ) =
∑n

i=1 X(i)Y (i)− nX̄Ȳ equations (4.8.3) and
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(4.8.4) give
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ñ

n∑
t=1

∑
s116Nu

cs11(t)
√

g(t)


·

 ∑
s26Nv

cs2(k)
√

g(k)− 1
ñ
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(4.8.5)

Concerning the first sum of the covariance decomposition we get analogous to the proof
of equation (4.8.3)

1
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ñ∑
t=1

n∑
i=1

X(i)
ci(t)√
g(t)

� 1√
n

n∑
i=1

|X(i)|
(

1
i

+
1

n− i

)

� log n√
n

max
16i6n

|X(i)| � log n

nδ̃/(2(2+δ̃))

(
1
n

n∑
i=1

|X(i)|2+δ̃

)1/(2+δ̃)
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(4.8.6)

where the last line follows by (3.5.8). Moreover we have
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ñ∑
l=1

cj(l)ci−1(l)−
2π

σ2
ρ

ñ∑
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A similar argument as in Remark 4.5.2 thus gives

2
nñ
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where the last line follows because of Theorem C.3. Thus putting together equations
(4.8.5) and (4.8.6) - (4.8.8), we get the desired asymptotic.

4.8.2. Bootstrapping with the Complete Sequence?

As already mentioned our natural choice for α(n) would be α(n) = 1. The above theory,
however, does not cover this case. The problem is that the Lindeberg condition is not
fulfilled, because the Noether condition is not fulfilled (cf. Theorem E.1) as the following
lemma shows.

Lemma 4.8.2. The Noether condition for α(n) = 1 is not fulfilled in this setup, more
precisely∑ñ
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that the last part converges to 0:
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Putting everything together we arrive at the assertion.
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Theorem E.1 shows that the Lindeberg condition is equivalent to asymptotic normality,
if the Noether condition is fulfilled. This means that in the present setup – even though
we know, the Lindeberg condition is not fulfilled – it is still possible to have asymptotic
normality. Indeed one would expect that because of the following facts.
We know that any finite number of the Fourier coefficients themselves are already asymp-
totically normal (cf. Theorem 4.2.1).
Also we have seen that any finite number of the backtransformed bootstrap sample be-
longing to any frequency (6= 0) is asymptotically normal (cf. Theorem 4.5.2).
Last but not least we also know that using n/α(n) of the backtransformed r.v.´s (instead
of a given number of them) we still have asymptotic normality as long as α(n) → ∞,
but no matter how slowly (cf. Theorem 4.5.4). It also does not matter, which ones we
choose.

As a contrast there is also some thoughts that support the opposite idea, namely that
the bootstrap really only holds true for α(n) → ∞. The first one is the asymptotic
behavior of the covariance structure if one takes into account the frequency density,
confer Remark 4.8.1.
The second thought concerns trigonometric series estimates of densities. Suppose we
have observed the i.i.d. sample Y (1), . . . , Y (n). An estimate of the density of Y (1) is
given by

1
2π

1 + 2
m∑

j=1

(âj cos(jx) + b̂j sin(jx))

 ,

where âj = 1
n

∑n
i=1 cos(j Y (i)) and b̂j = 1

n

∑n
i=1 sin(j Y (i)). In this situation a similar

phenomenon happens, precisely Hall [41] shows that in this and some similar situations
under certain conditions on the density the mean integrated square error (MISE) is
O(m/n)+o(m−r) for some r > 0 and this rate is exact. Something similar can be found
in Anderson and De Figueiredo [1]. Thus we can only use m of the n Fourier coefficients
to estimate the density with m/n → 0.

What are the advantages of choosing α(n) = 1?

Taking the complete backtransformed bootstrap sequence we can use Z̃n instead of
Z̃n − tZ̃n(1). This sum has asymptotically already the same covariance structure as
a Brownian bridge as the following Lemma shows. Also note that Z̃n(1) = 0 already
(confer Remark 4.3.1 – also 1.342 of Gradshteyn and Ryhzik [38] shows

∑n
s=1 cs(l) = 0

for all l = 1, . . . , ñ).

Lemma 4.8.3. For α(n) = 1 it holds as n → ∞ for all 0 6 u, v 6 1 for all scores
satisfying (4.5.2)

E Z̃n(u) = 0.

cov
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)
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Proof. Lemma E.1 gives a closed formula for the covariance. Lemma 4.4.1, equation
(4.5.6), and the scores conditions (4.5.2) now give

cov(Z̃n(u), Z̃n(v))

=
2
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)
= min(u, v)− uv + o(1).

4.8.3. Frequency Bootstrap for Extreme Value Statistics

Another topic of interest is, how one can prove corresponding results for the extreme
value statistics. For this one usually needs an approximation with rates, which the
central limit theorem cannot give.

4.8.4. Bootstrapping Statistics Based on Periodograms

Picard, Giraitis and Leipus [33, 34] proposed some change point procedures to test
whether there occurred a change in the spectral density of a sequence of random variables.
Their statistics are already based on the periodogram and they show convergence in
D[0, 1]. The frequency bootstrap should therefore work in their setting. For more
details confer Csörgő, Horváth [19], chapter 4.4.2, and references therein.
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Part II.

Simulation Study





5. Change Analysis of Stochastic Processes
under Strong Invariance

In this chapter we describe the results of a number of simulation studies conducted for
the models under strong invariance of Chapter 2. There, we have proven that the per-
mutation principle is asymptotically applicable for processes satisfying (2.1.1) or (2.1.7).
The simulation study shows that the permutation method usually gives better results
than the asymptotic test if performance is measured by α− and β−errors respectively.
We present some tables giving simulated quantiles of the original statistic under the null
as well as permutation quantiles for different alternatives. Although these tables contain
a lot of information they are rather difficult to grasp. This is why we also use visual
methods below to demonstrate the goodness of the procedures.

The simulations are implemented in the software package R, Version 1.2.3. Computation
time is not a problem, even the calculation of the permutation quantiles of the statistics
for the gradual test for a sequence of length 200 using 10 000 permutation takes less than
5 seconds on an Intel(R) Pentium 4, 2.66 GHz, 512 MB RAM. The calculation of that
statistic is more expensive than for the classical CUSUM statistic in case of the abrupt
change.

QQ-Plots

Quantile-quantile plots or QQ-plots are a common tool to compare two distributions. It
is a scatterplot, i.e. a plot of the values of one variable against another, of the quantiles
of one distribution against the quantiles of another one. If the distributions are similar
the plot should be on the diagonal. Even when the data follows the same distribution
there are some deviations in the ends, i.e. for very small or very large quantiles. A
straight line that is not on the diagonal indicates that the distribution is similar but
with a different mean and/or variance. The diagonal is given by the dotted line.

In our case we do the following:

1) Exact distribution: Determine the empirical distribution function of the statistic
(under H0) based on 10 000 samples of length n.

2) Simulate observations: Simulate one specific realization of the model for particular
parameters of H0 or H1.

3) Permutation distribution: Determine the empirical distribution function of the block
permutation statistic based on 10 000 permutations conditioned on the realization of
the model from the previous step.
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90% 95% 99%
1.224 1.358 1.628

Table 5.1.1.: Asymptotic quantiles of M
(1)
T

4) Draw a QQ-plot of the null distribution from step 1) against the permutation distri-
butions from step 3).

The plot gives a good idea how well the permutation distribution of one specific realiza-
tion matches the distribution of the original statistic under H0.

Due to different computational complexities we use different values of t for different
models.

It is possible that the performance of the permutation test is good even though the
QQ-plot suggests that the match of the distributions is not that good yet. The reason
is that the test only compares the permutation quantiles conditioned on one sequence of
observations with the value of the original statistic for that exact sequence. Therefore
we also use the following type of plots.

SPC-Plots

Size-power-curves or SPC-plots demonstrate the power of a test. They plot the empirical
distribution function of the p-values of the statistic for the null hypothesis or a given
alternative with respect to the distribution used to determine the critical values of the
test.
What we get is a plot that shows the actual α–errors resp. 1−(β–errors) on the y-axis
for the chosen quantiles on the x-axis. So, the graph for the null hypothesis should be
close to the diagonal (which is given by the dotted line) and for the alternatives should
be as steep as possible.

In our case we simulate t1 processes following the given model. For each of these pro-
cesses we use t2 permutations to calculate the empirical distribution function of the
permutation statistic given the generated process. We can then calculate the p-value
of the generated process with respect to the permutational distribution (conditioned on
that same process). Finally we plot the empirical distribution function of the so obtained
t1 p-values and obtain a SPC-plot.
Where applicable we also give the SPC-plot of the asymptotic test, i.e. we calculate the
p-value with respect to the asymptotic distribution. Of course this is only possible if the
distribution function of the limit is known.

Due to different computational complexities t1 and t2 differ from model to model.

5.1. Simulations for the Test of an Abrupt Change in the Mean

The following simulations are based on partial sums of normally distributed random
variables (with variance 1) (confer Example 2.1.1), and on a Poisson process (confer
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Partial sums Poisson Process
N 90% 95% 97.5% 99% 90% 95% 97.5% 99%
100 1.165 1.295 1.409 1.564 1.156 1.283 1.398 1.554
200 1.190 1.328 1.446 1.603 1.182 1.301 1.426 1.586

Table 5.1.2.: Simulated critical values of M
(1)
T (under the null hypothesis)

Example 2.1.2). More specifically, we simulate the increments of the partial sums as
i.i.d. random variables, and the increments of the Poisson process are taken at times
1, 2, . . . (instead of i T

N , i = 1, . . . , N , since this means only a scaling of the underlying
r.v.’ s). Other than that, we use the following parameters:

• N = 100, 200

• N∗ = 1
4N , 1

2N , 3
4N

Partial sums Poisson Process
N N∗ d 90% 95% 97.5% 99% 90% 95% 97.5% 99%
100 0 1.175 1.301 1.423 1.557 1.141 1.273 1.393 1.547
100 25 1 1.167 1.297 1.405 1.532 1.173 1.312 1.420 1.545
100 25 2 1.165 1.290 1.403 1.541 1.172 1.294 1.407 1.532
100 25 3 1.160 1.296 1.421 1.540 1.172 1.311 1.441 1.590
100 25 4 1.166 1.296 1.415 1.551 1.165 1.291 1.406 1.551
100 50 1 1.167 1.301 1.417 1.563 1.173 1.306 1.415 1.542
100 50 2 1.173 1.307 1.426 1.567 1.164 1.290 1.407 1.574
100 50 3 1.181 1.313 1.435 1.590 1.161 1.291 1.402 1.551
100 50 4 1.184 1.324 1.441 1.589 1.160 1.288 1.397 1.557
100 75 1 1.165 1.300 1.412 1.546 1.167 1.284 1.415 1.575
100 75 2 1.170 1.304 1.404 1.547 1.164 1.292 1.408 1.547
100 75 3 1.175 1.295 1.418 1.561 1.174 1.299 1.412 1.534
100 75 4 1.171 1.296 1.422 1.578 1.165 1.299 1.404 1.551
200 0 1.190 1.328 1.455 1.589 1.179 1.311 1.417 1.568
200 50 1 1.185 1.311 1.438 1.579 1.184 1.317 1.434 1.579
200 50 2 1.177 1.306 1.424 1.567 1.180 1.308 1.426 1.555
200 50 3 1.180 1.307 1.429 1.555 1.184 1.313 1.423 1.553
200 50 4 1.180 1.305 1.428 1.555 1.186 1.314 1.427 1.563
200 100 1 1.181 1.315 1.435 1.586 1.196 1.323 1.450 1.583
200 100 2 1.180 1.312 1.423 1.551 1.190 1.316 1.442 1.574
200 100 3 1.174 1.314 1.422 1.545 1.183 1.315 1.431 1.561
200 100 4 1.181 1.311 1.425 1.560 1.182 1.311 1.428 1.569
200 150 1 1.185 1.324 1.442 1.588 1.181 1.310 1.439 1.575
200 150 2 1.185 1.325 1.449 1.583 1.192 1.330 1.449 1.580
200 150 3 1.183 1.317 1.446 1.590 1.181 1.313 1.433 1.588
200 150 4 1.181 1.315 1.441 1.597 1.194 1.330 1.450 1.613

Table 5.1.3.: Simulated critical values of the permutation statistic M
(1)
T (R)
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• d := a∗ − a = 0, 0.25, 0.5, 1, 2, 3, 4

Here N∗ is the change-point, and we are in the case of the null hypothesis for d = 0.

We generate 10 000 series of increments ∆Z1, . . . ,∆ZN corresponding to model (2.1.1)
for different parameters under the null hypothesis. The resulting quantiles can be found
in Table 5.1.2. The asymptotic critical values are given in Table 5.1.1 for comparison;
they are too large. Moreover, the exact quantiles are somewhat larger for the partial
sums than for the Poisson process.

To study the critical values obtained from the permutation method we simulate one
realization according to the given model and calculate the permutation quantiles based
on 10 000 permutations for this realization. We do this for different realizations but
use the same random numbers in each case to get a better idea of the stability of the
procedure. The results can be found in Table 5.1.3.
These critical values give better estimates than the asymptotic ones. It also does not
seem to be important where exactly the change point is located.

QQ-plots of the simulated null distribution versus different permutation distributions
(each conditioned on one realization only) are to be found in Figure 5.1.1.

(1) Partial Sum (2) Poisson Process

Figure 5.1.1.: QQ-plots of M
(1)
T (under H0) against M

(1)
T (R) for N = 100, N∗ = 75

(1) Partial Sum (2) Poisson Process

Figure 5.1.2.: Size-power-curves of M
(1)
T (R) with respect to the asymptotic distribution

and with respect to the permutation distribution for N = 100, N∗ = 75
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The permutation distribution fits the null distribution perfectly. Moreover, the result
does not depend on the alternative.

Next we are interested in how well the test performs – and also how well it performs in
comparison to the asymptotic one. For this reason we create size-power-curves of both
methods under the null hypothesis and under alternatives. We use 1 000 realizations of
{Z(·)} and for each of these 10 000 permutations to calculate the permutation distribu-
tion.
The results are presented in Figure 5.1.2.

We have already seen that the asymptotic quantiles are too large by comparing them
with the simulated ones of the original statistic under the null hypothesis. This is also
confirmed by the size-power-curves which show that the actual level of the asymptotic
test is somewhat too small. Even though both methods apparently perform well, we
do have a better fit under the permutation method. Under the null hypothesis (d =
a∗ − a = 0), the solid line (representing the permutation method) fits better to the
diagonal. Moreover, under alternatives the lines representing the permutation method
are also steeper meaning that the power of this test is better than the power of the
asymptotic one.

5.2. Simulations for the Test of a Gradual Change in the Mean

The simulations in this section are also based on partial sums of normally distributed
r.v. (with variance 1) and on a Poisson process as in the previous section. The following
parameters are used:

• N = 100, 200

• N∗ = 1
4N , 1

2N , 3
4N

• D = 0, 1
4 , 1

2 , 1, 2, 4

Here, N∗ is the change-point, and the null hypothesis is given for D = 0. The parameter
D has been rescaled in comparison to d in (2.1.7), more precisely, the increments of the
change are chosen as D

(1+γ)Nγ

(
(i−N∗)1+γ

+ − ((i− 1)−N∗)1+γ
+

)
. The latter expression

depends on T only through N . The reason is that the magnitude of the parameter D

N γ 90% 95% 97.5% 99%
100 0.5 1.738 2.150 2.554 3.082
100 1 2.298 2.710 3.114 3.643
100 2 2.130 2.542 2.946 3.474
200 0.5 1.868 2.263 2.649 3.155
200 1 2.353 2.747 3.134 3.640
200 2 2.192 2.586 2.973 3.479

Table 5.2.1.: Asymptotic critical values of M
(2)
T
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is then comparable (as can be seen via the mean value theorem) to the parameter δ in
Hušková and Steinebach [48], where X(i) = µ + δ

(
i−m

n

)γ
+

+ e(i) for an i.i.d. sequence
{e(·)}.

Once again, we generate 10 000 series of increments ∆S1, . . . ,∆SN under the null hy-
pothesis for the various choices of parameters. The resulting quantiles can be found
in Table 5.2.2. The asymptotic critical values are given in Table 5.2.1. This time the
asymptotic quantiles are usually too small.

For comparison, we simulate the critical values obtained through the permutation method
as before. Some results can be found in Table 5.2.3. The critical values are quite good
but decline as the change becomes more obvious.

We create QQ-plots of the simulated null distribution versus various permutation dis-
tributions in order to get an idea how well the approximation fits. The results can be
found in Figure 5.2.1.

Here, the matches (and thus the critical values) are quite good but decline, if γ < 1 as
the change becomes more obvious. On the other hand this leads to a greater power of the
test, since the critical values are only too small if we are already under an alternative.

Moreover we have some kind of ”step behavior” for the Poisson process. Apparently
there are several permutations leading to the same maximal value (i.e. the value of the
statistic). This, however, does not seem to influence the accuracy of the quantiles as the
size-power-curves, below, show. Remember that there are 10 000 points in the plot.

We create size-power-curves of the asymptotic method as well as the permutation method.
For γ = 0.25 we do not know the asymptotic quantiles, since H0.25 is not known.
The results can be found in Figure 5.2.2.

First of all the test gives good results for γ = 0.25, where we do not have the asymptotic
test available. Also for γ = 0.5 the permutation test performs quite well, while the
α-errors of the asymptotic one are far too high, e.g. for partial sums we have an actual
α-error of 40% for a nominal one of 10%. For γ > 1 both methods perform well,
although the power under the permutation method is always greater than the power
under the asymptotic method. The plot on the complete interval (0, 1) also shows, that
the asymptotic curve (in contrast to the permutational one) is too high between 0.15

Partial sums Poisson Process
N γ 90% 95% 97.5% 99% 90% 95% 97.5% 99%
100 0.25 2.589 2.858 3.134 3.435 2.66 2.978 3.249 3.647
100 0.5 2.46 2.742 3.011 3.281 2.496 2.82 3.162 3.543
100 1 2.307 2.613 2.866 3.168 2.336 2.679 3.048 3.454
100 2 2.225 2.527 2.809 3.14 2.226 2.584 2.885 3.385
200 0.25 2.625 2.898 3.154 3.441 2.659 2.968 3.286 3.671
200 0.5 2.481 2.787 3.009 3.319 2.505 2.824 3.167 3.499
200 1 2.355 2.625 2.864 3.215 2.355 2.692 3.042 3.502
200 2 2.247 2.527 2.806 3.09 2.282 2.664 3.008 3.439

Table 5.2.2.: Simulated critical values of M
(2)
T (under the null hypothesis)
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Table 5.2.3.: Simulated critical values of the permutation statistic M
(2)
T (R)
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and 1. However, this is not a problem for the test, since one would hardly choose any
critical value in that range.

Furthermore the power declines with increasing γ; for γ = 2 it is almost impossible to
distinguish between any alternatives. However, this is not surprising, since for γ = 2
(and N∗ = 3

4N) we have an effective mean difference of the increments of approximately
D
16 , which is not very much.

When we use d without rescaling i.e. as in (2.1.7) and T = N (which changes d slightly),
the critical values decrease significantly. Nevertheless, this does not seem to affect the
permutation method at all – apparently the permutation quantiles are still smaller than
the value of the test statistic for the unpermuted observations. With the asymptotic
method, however, we only obtain good β-errors for smaller d’ s, but observe a sudden
jump in the β-errors (up to 100%) as soon as d gets larger. For example this jump occurs
at d = 2 for the 90%-quantile with γ = 0.5, N = 100, 200.

Note that here (in contrast to the i.i.d case) the consistency of the test is not guar-
anteed, since the estimator for b is unbounded under the alternative (which violates
condition (2.4) of Steinebach [79]).
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(1) Partial Sum, γ = 0.25 (2) Poisson Process, γ = 0.25

(3) Partial Sum, γ = 0.5 (4) Poisson Process, γ = 0.5

(5) Partial Sum, γ = 1 (6) Poisson Process, γ = 1

(7) Partial Sum, γ = 2 (8) Poisson Process, γ = 2

Figure 5.2.1.: QQ-plots of M
(2)
T (under H0) against M

(2)
T (R) for N = 100, N∗ = 75
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(1) Partial Sum, γ = 0.25 (2) Poisson Process, γ = 0.25

(3) Partial Sum, γ = 0.5 (4) Poisson Process, γ = 0.5

(5) Partial Sum, γ = 1 (6) Poisson Process, γ = 1

(7) Partial Sum, γ = 2 (8) Poisson Process, γ = 2

Figure 5.2.2.: Size-power-curves of M
(2)
T (R) with respect to the asymptotic distribution

and with respect to the permutation distribution for N = 100, N∗ = 75



6. Change Analysis of the Location Model
with an AR(1)-Error-Sequence

In this chapter we describe the results of a simulation study concerning the block per-
mutation method of Chapter 3 and the frequency permutation method of Chapter 4.
So far we have only proven that they are asymptotically applicable. The purpose of
the simulation study below is to determine how well they are actually working for small
sample sizes n.
The linear process we implement is a causal AR(1) sequence. It turns out that the
permutation methods usually behave better than the asymptotic method if performance
is measure by α− and β−errors, respectively. Moreover the performance of the block
permutation method is better than the frequency permutation as long as we choose an
appropriate block length. Otherwise the goodness of the block permutation method
drops significantly.
Due to limitation of space we will only give a small part of the simulation study, yet
the results are typical. We present some tables giving simulated quantiles of the original
statistic under the null as well as permutation quantiles for different alternatives, but
we focus on QQ-plots and SPC-plots (for a short introduction confer Chapter 5) since
they provide the information in a much more comprehensible way.

The simulations are implemented in the software package R, Version 1.8.1. Computation
time is not a problem, even the calculation of the permutation quantiles of the frequency
statistics for a sequence of length 80 using 10 000 permutation takes less than 5 seconds
on an Intel(R) Pentium 4, 2.66 GHz, 512 MB RAM. Because of the Fourier transforms
the calculation of that statistic is more expensive than of the block permutation statistic.

In a first section we summarize the outcome of the simulation study for all three tests –
asymptotic , block permutation and frequency permutation test. We focus our attention
on a comparison of the three methods.
The following two sections then give more details of the simulation study for the block
permutation test respectively the frequency permutation test. We concentrate on the
q-weighted CUSUM statistic and only give a small portion of the simulation results of
the other three statistics.

6.1. Comparison of the Results of the Three Methods

Asymptotically all three methods are equivalent, yet there are huge differences in their
small sample behavior.

The asymptotic critical values have the obvious advantage that they are easily obtained
for the extreme value statistics and in some cases for the q-weighted CUSUM as well as
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for sum statistics. In many other cases, however, they are not known theoretically. Fur-
thermore a disadvantage of the asymptotic critical values is the rather slow convergence
rates.
The main problem is to get a good estimator for σ2 (

∑
ws)

2 which is needed to get the
correct asymptotic for the original statistic. It is not easy to obtain such an estimator
and the performance is usually rather bad. As a result the performance of the test also
drops.
This can be seen by comparing for example the SPC-plots of the asymptotic test in
Section 6.2 with the ones in Section 6.3 for statistic T

(3)
n (q1), q1 ≡ 1. The only differ-

ence is that in the curves for the block bootstrap we use an estimator (more precisely
the Bartlett log window estimator (confer (6.2.1))) for the above term, whereas in the
frequency case we use the exact value.
The test performs much worse if we use the estimator instead of the real value. Moreover
the quantiles are rather too conservative (high) if we use the correct value, but far too
small if we use the estimator instead. In real life situations the exact value is usually
not known.
Similarly the frequency permutation test also needs an estimator for σ2 (

∑
ws)

2. The
simulation study suggests that, when using the correct value, the test performs quite
well even somewhat better than the asymptotic method. However, just like with the
latter there will be a problem using an estimator. Since the quantiles of the frequency
method are not as conservative as the asymptotic ones, the quantiles with estimator will
be even worse.
So both methods should only be applied in real life situations when one has some addi-
tional information which leads to an improvement of the estimator. Then the frequency
test usually performs better than the asymptotic one.

As a contrast the block bootstrap method is independent of an estimator. The reason is
that the variance of the rank statistic, which is to be used in the bootstrap, is invariant
under block permutations. On the other hand Lemma 3.5.1 shows that it is a valid
estimator for σ2 (

∑
ws)

2. Thus it can also be used in the original statistic. Because
it is invariant under block permutations the value of the original statistic for the given
sample is divided by the same value as the permutation statistic for each permutation.
Since we are interested only in a comparison of the value of the original statistic for
the given sample with some quantile of the block permutation statistic, this comparison
is independent of the actual value of that estimator for the given observations. So the
performance of the test is indeed independent of the performance of the estimator, which
is a huge advantage.

Another drawback of both, the frequency method as well as the asymptotic method, is
the independence of the critical values from the correlation of the underlying time series.
For the asymptotic quantiles this is obvious, for the frequency method it is suggested by
the simulation study. As a contrast the simulated correct quantiles do depend strongly on
the underlying correlation. However, the QQ-plots as well as size-power-curves suggest
that the frequency bootstrap performs slightly better than the asymptotic method in
this regard.

The block bootstrap on the other hand takes the correlation much better into account.
Yet it only does so, if we choose our block length appropriately. The simulations show
that the block bootstrap depends crucially on a good choice of block length K. If chosen
incorrectly it behaves worse than the asymptotic and the frequency permutation test.
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However, taking a large block length is a safe choice if one either assumes the data to
be dependent or is not sure about it. Even for independent data a large K gives good
α–errors, yet the β–errors slightly increase.

In real life situations it seems best to use the block bootstrap with a large block length if
uncertain. In case one has a better knowledge of the data (and thus has a good estimator
for σ2 (

∑
ws)

2) it may also be appropriate to use the frequency bootstrap.

For the MOSUM statistic it is always best to use the asymptotic quantiles, since they
are known and easy to obtain. The block bootstrap works usually not so good for this
statistic. The frequency bootstrap works better than the block method yet not as good
as the asymptotic one.

6.2. Simulation of the Block Permutation Method

The simulations show that the results for the weighted CUSUM statistic T (1), the q-
weighted CUSUM statistic T (3)(q), and the sum-statistic T (4)(r) are very similar. The
block permutation test does behave better than the asymptotic method for an appropri-
ately chosen block length K.

The asymptotic test, however, does perform better with the MOSUM statistic T (2)(G).
The block permutation method is not very well suited here. The reason is that we are
looking at a generally very small (e.g. G = 0.05 n or G = 0.1 n) window of data. So K
has to be small compared to G, otherwise the maximum is taken of the same numbers
for many different permutations. For larger n and larger G the permutation method
behaves somewhat better, but it is still not as good as the asymptotic method, which
is working fairly well. Only in the case of i.i.d. error sequences, where we can choose
K = 1, the above problem does not occur and the permutation method actually works
comparably well, maybe even somewhat better than the asymptotic one.

Following the advice of Antoch et al. (confer [4], Remark 3) we use the following Bartlett
log window estimator as variance estimator in the asymptotic case:

τ̃2
n(Λ) = R̂(0) + 2

Λ∑
k=1

(
1− k

Λ

)
R̂(k), (6.2.1)

where

R̂(k) =
1
n

m̂−k∑
j=1

(Xj −Xm̂)(Xj+k −Xm̂) +
n−k∑

j=m̂+1

(Xj −X
∗
m̂)(Xj+k −X

∗
m̂)

 ,

m̂ = min{arg max{|Sk| : k = 1, . . . , n}} and X
∗
m̂ = 1

n−m̂

∑n
i=m̂+1 Xi. For n = 80 we

choose Λ = 8 (Λ = 12 for n = 120) in accordance with the results obtained by Antoch
et al. [4].

For the block permutation test, however, we need to use estimator (3.5.1) in order to
have the correct asymptotic behavior – conditioned on the observations. Since it is
invariant under permutations, the original as well as permutation statistic is divided by
the same value so that the actual value is irrelevant. This is an advantage, because the
goodness of the test does not depend on the goodness of the estimator.
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In the simulation study we use the model of Section 3.3, where {e(i) : i > 1} forms an
AR(1) sequence with autoregressive coefficient ρ ∈ {0,±0.1,±0.2,±0.3,±0.5, 0.7} and
{ε(j) : −∞ < j < ∞} are i.i.d. N(0, 1), hence τ = 1

1−ρ . We create the AR(1)-sequences
recursively (i.e. e(i) = ρ e(i− 1) + ε(i), where we throw the first 50 away). Sample sizes
are 80, 120, 210, the change-points under the alternative are at n

4 , n
2 , 3

4n, we choose the

block length K approximately as 1, log n
2 , log n, (log n)2

2 and d ∈ {0, 0.25, 0.5, 1, 2, 4}.

We discuss the q-weighted CUSUM and MOSUM statistics in more detail but only give
a small yet typical selection of plots for the weighted CUSUM and Sum statistics, since
the results are very similar. For more details confer Kirch [51].

6.2.1. Variance Estimation

In this subsection we investigate the estimator (3.5.1)

τ̂2
LK :=

1
K(L− 1)

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)− X̄n)

]2

for τ2 = σ2
(∑

s>0 ws

)2.
This is not exactly the same estimator as in Section 3.5, yet it is asymptotically equivalent
(both under the null hypothesis and alternatives) with fast enough convergence rates.
Moreover it is unbiased for i.i.d. errors and – as some simulations show – does behave
better for all error sequences. Confer also Remark 3.5.1.

The purpose of the first simulations is to illustrate the behavior of the above estimator
for different values of the block length K. Therefore we simulate AR(1) sequences with
the parameters as above. Table 6.2.1.1 shows the mean of τ̂LK of 10 000 repetitions
(under the null hypothesis).

n = 80 n = 120 n = 210 n = 80 n = 120 n = 210
ρ τ K τ̂LK K τ̂LK K τ̂LK ρ τ K τ̂LK K τ̂LK K τ̂LK

-0.5 0.67 1 1.15 1 1.16 1 1.15 0.1 1.11 1 1 1 1 1 1
-0.5 0.67 2 0.81 2 0.82 3 0.82 0.1 1.11 2 1.05 2 1.05 3 1.07
-0.5 0.67 4 0.76 4 0.76 5 0.75 0.1 1.11 4 1.07 4 1.07 5 1.08
-0.5 0.67 10 0.69 12 0.68 15 0.68 0.1 1.11 10 1.06 12 1.07 15 1.08
-0.3 0.77 1 1.05 1 1.05 1 1.05 0.2 1.25 1 1.01 1 1.02 1 1.02
-0.3 0.77 2 0.87 2 0.88 3 0.85 0.2 1.25 2 1.11 2 1.11 3 1.16
-0.3 0.77 4 0.82 4 0.83 5 0.81 0.2 1.25 4 1.16 4 1.17 5 1.19
-0.3 0.77 10 0.77 12 0.77 15 0.77 0.2 1.25 10 1.18 12 1.19 15 1.21
-0.2 0.83 1 1.02 1 1.02 1 1.02 0.3 1.43 1 1.04 1 1.04 1 1.05
-0.2 0.83 2 0.91 2 0.91 3 0.89 0.3 1.43 2 1.18 2 1.19 3 1.26
-0.2 0.83 4 0.87 4 0.87 5 0.86 0.3 1.43 4 1.28 4 1.3 5 1.32
-0.2 0.83 10 0.82 12 0.82 15 0.83 0.3 1.43 10 1.32 12 1.34 15 1.37
-0.1 0.91 1 1.00 1 1.01 1 1.00 0.5 2 1 1.13 1 1.14 1 1.15
-0.1 0.91 2 0.95 2 0.95 3 0.94 0.5 2 2 1.39 2 1.39 3 1.55
-0.1 0.91 4 0.92 4 0.93 5 0.92 0.5 2 4 1.2 4 1.63 5 1.7
-0.1 0.91 10 0.89 12 0.89 15 0.9 0.5 2 10 1.78 12 1.82 15 1.87
0 1 1 1 1 1 1 1 0.7 3.33 1 1.35 1 1.37 1 1.38
0 1 2 0.99 2 1 3 1 0.7 3.33 2 1.75 2 1.78 3 2.07
0 1 4 0.99 4 0.99 5 0.99 0.7 3.33 4 2.2 4 2.24 5 2.41
0 1 10 0.96 12 0.97 15 0.98 0.7 3.33 10 2.68 12 2.8 15 2.93

Table 6.2.1.1.: Mean values of τ̂LK under the null hypothesis
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Under strong correlation large values of K give best results. Also the greater n the
better are the results, which is consistent with the asymptotic given in Lemma 3.5.1.
However the convergence is rather slow.

6.2.2. q-weighted CUSUM Statistic

In this subsection we examine the behavior of the statistic T
(3)
n (q) and its block permuta-

tion counterparts. We concentrate on q1 ≡ 1, yet the simulations for q2 = (id(1− id))1/4

give very similar results. As far as we know the asymptotic quantiles are theoretically
only known for q1 ≡ 1. For all other choices we have to run a simulation to use the
asymptotic method at all. The block permutation method, however, is applicable no
matter which weight function q we choose.

We compute the quantiles of the null hypothesis from 10 000 simulated values of
T

(3)
n (q)/τ̂LK under the null hypothesis. We use the same set of random numbers for

each combination of variables (as long as n remains the same) to get better comparable
results. The distribution of the null hypothesis depends on the block length K, since we
use a different variance estimator for different K. Table 6.2.2.3 gives the results of this
simulation for q1.

In the same way we then compute the quantiles of T
(3)
n (q)/τ , i.e. we divide the statistic

by τ , instead of an estimator for it. The results can be found in Table 6.2.2.2 for q1 = 1.

The simulations show that the quantiles for this statistic also depend strongly on the
correlation ρ between the observations. This is more obvious if we use the real value of the
variance, since the estimators (3.5.1) used in Table 6.2.2.3 compensate for the difference
somewhat. Not surprisingly the results of Tables 6.2.2.2 and 6.2.2.3 are closest for large
K, which is the best estimator (cf. Table 6.2.1.1).

90% 95% 97.5%
1.224 1.358 1.480

Table 6.2.2.1.: Asymptotic quantiles (CUSUM statistic, q1 ≡ 1)

n = 80 n = 120 n = 210
ρ 90% 95% 97.5% 90% 95% 97.5% 90% 95% 97.5%

-0.5 1.24 1.373 1.49 1.234 1.36 1.485 1.222 1.354 1.477
-0.3 1.205 1.337 1.461 1.206 1.329 1.449 1.2 1.332 1.453
-0.2 1.192 1.32 1.45 1.192 1.317 1.439 1.193 1.324 1.445
-0.1 1.178 1.307 1.436 1.182 1.308 1.434 1.184 1.317 1.435
0 1.163 1.295 1.425 1.173 1.298 1.421 1.177 1.309 1.427

0.1 1.151 1.279 1.412 1.159 1.284 1.412 1.17 1.302 1.416
0.2 1.136 1.268 1.394 1.146 1.273 1.398 1.163 1.295 1.405
0.3 1.119 1.25 1.377 1.135 1.26 1.383 1.154 1.285 1.394
0.5 1.079 1.21 1.34 1.105 1.233 1.35 1.128 1.256 1.369
0.7 1.012 1.144 1.262 1.048 1.187 1.296 1.088 1.217 1.333

Table 6.2.2.2.: Simulated critical values of T
(3)
n (q1)/τ
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The asymptotic quantiles (confer Table 6.2.2.1 for q1 ≡ 1) on the other hand are the
same no matter which model the errors follow. This means that they are wrong in some
cases. We can also see that the difference between the largest and the smallest value of
T

(3)
n (q)/τ (i.e. for ρ = −0.5 and ρ = 0.7) diminishes for a greater number of observations,

which is consistent with the asymptotic results. However the convergence is rather slow.
The above observations are true for both q1 and q2, they are even more obvious for q2

than q1.

To study the critical values obtained from the block permutation method, we simu-
late one realization according to the given model and calculate the block permutation
quantiles based on 10 000 permutations for this realization. We do this for different
realizations, but use the same random numbers in each case to get a better idea of the
stability of the procedure. A selection of these quantiles can be found in Table 6.2.2.4
for q1.
The results depend on the correlation about as much as the ones for the null hypothesis.

Under positive correlation they are quite stable for different alternatives. Under negative

n = 80 n = 120 n = 210
ρ K 90% 95% 97.5% K 90% 95% 97.5% K 90% 95% 97.5%

−0.5 1 0.718 0.804 0.876 1 0.714 0.792 0.861 1 0.715 0.795 0.867
−0.5 2 1.012 1.117 1.218 2 1.021 1.137 1.221 3 1.018 1.12 1.221
−0.5 4 1.092 1.202 1.304 4 1.087 1.198 1.304 5 1.096 1.211 1.309
−0.5 10 1.216 1.336 1.456 12 1.196 1.296 1.39 15 1.187 1.294 1.39
−0.3 1 0.887 0.992 1.077 1 0.882 0.986 1.088 1 0.887 0.985 1.081
−0.3 2 1.044 1.162 1.254 2 1.048 1.166 1.271 3 1.096 1.211 1.314
−0.3 4 1.113 1.229 1.313 4 1.12 1.231 1.328 5 1.123 1.238 1.342
−0.3 10 1.193 1.306 1.411 12 1.188 1.295 1.394 15 1.178 1.284 1.381
−0.2 1 0.961 1.071 1.173 1 0.973 1.085 1.178 1 0.974 1.077 1.186
−0.2 2 1.089 1.204 1.299 2 1.079 1.2 1.3 3 1.107 1.246 1.351
−0.2 4 1.123 1.241 1.334 4 1.12 1.241 1.348 5 1.156 1.272 1.379
−0.2 10 1.182 1.294 1.392 12 1.18 1.283 1.361 15 1.178 1.292 1.379
−0.1 1 1.059 1.172 1.284 1 1.071 1.184 1.286 1 1.075 1.201 1.309
−0.1 2 1.114 1.234 1.341 2 1.118 1.244 1.359 3 1.142 1.269 1.38
−0.1 4 1.134 1.242 1.349 4 1.143 1.263 1.366 5 1.162 1.274 1.382
−0.1 10 1.188 1.291 1.39 12 1.169 1.279 1.368 15 1.179 1.291 1.388

0 1 1.154 1.281 1.41 1 1.162 1.29 1.403 1 1.181 1.321 1.425
0 2 1.152 1.268 1.37 2 1.166 1.293 1.421 3 1.183 1.314 1.425
0 4 1.141 1.258 1.35 4 1.157 1.276 1.392 5 1.172 1.289 1.407
0 10 1.17 1.275 1.367 12 1.169 1.266 1.361 15 1.174 1.282 1.374
0.1 1 1.255 1.389 1.517 1 1.278 1.424 1.543 1 1.298 1.437 1.564
0.1 2 1.19 1.315 1.425 2 1.217 1.348 1.462 3 1.213 1.341 1.456
0.1 4 1.157 1.275 1.371 4 1.166 1.282 1.4 5 1.193 1.311 1.421
0.1 10 1.166 1.271 1.367 12 1.168 1.272 1.36 15 1.172 1.272 1.358
0.2 1 1.371 1.523 1.656 1 1.388 1.536 1.67 1 1.431 1.592 1.751
0.2 2 1.233 1.357 1.477 2 1.277 1.406 1.529 3 1.243 1.384 1.501
0.2 4 1.173 1.279 1.384 4 1.207 1.322 1.42 5 1.209 1.341 1.46
0.2 10 1.153 1.246 1.327 12 1.159 1.261 1.342 15 1.169 1.273 1.36
0.3 1 1.494 1.65 1.776 1 1.534 1.707 1.861 1 1.579 1.754 1.919
0.3 2 1.302 1.438 1.562 2 1.352 1.504 1.627 3 1.296 1.437 1.567
0.3 4 1.2 1.314 1.414 4 1.216 1.346 1.444 5 1.228 1.357 1.467
0.3 10 1.137 1.231 1.316 12 1.159 1.25 1.331 15 1.171 1.288 1.376
0.5 1 1.824 2.02 2.19 1 1.88 2.098 2.273 1 1.946 2.168 2.367
0.5 2 1.489 1.631 1.761 2 1.544 1.698 1.838 3 1.423 1.562 1.697
0.5 4 1.26 1.386 1.473 4 1.304 1.434 1.546 5 1.294 1.428 1.549
0.5 10 1.128 1.215 1.29 12 1.144 1.234 1.311 15 1.169 1.279 1.366
0.7 1 2.323 2.542 2.73 1 2.473 2.71 2.928 1 2.564 2.83 3.055
0.7 2 1.78 1.928 2.081 2 1.87 2.052 2.224 3 1.703 1.887 2.042
0.7 4 1.394 1.512 1.6 4 1.48 1.614 1.726 5 1.452 1.605 1.734
0.7 10 1.116 1.192 1.252 12 1.142 1.223 1.289 15 1.174 1.274 1.35

Table 6.2.2.3.: Simulated quantiles under null hypothesis (CUSUM statistic, q1 ≡ 1)
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n = 80 n = 210
ρ d K m 90% 95% 97.5% K m 90% 95% 97.5%

−0.5 2 1.278 1.399 1.513 3 1.209 1.329 1.45
−0.5 0.5 2 20 1.239 1.359 1.463 3 52 1.199 1.326 1.437
−0.5 1 2 20 1.19 1.309 1.416 3 52 1.192 1.313 1.431
−0.5 2 2 20 1.148 1.269 1.384 3 52 1.179 1.313 1.426
−0.5 4 2 20 1.13 1.26 1.375 3 52 1.173 1.305 1.422
−0.5 0.5 2 40 1.217 1.342 1.45 3 105 1.202 1.322 1.434
−0.5 1 2 40 1.178 1.304 1.413 3 105 1.185 1.319 1.427
−0.5 2 2 40 1.152 1.28 1.381 3 105 1.173 1.313 1.419
−0.5 4 2 40 1.142 1.265 1.376 3 105 1.171 1.299 1.428
−0.5 4 1.21 1.317 1.405 5 1.221 1.338 1.451
−0.5 0.5 4 20 1.147 1.257 1.357 5 52 1.194 1.319 1.433
−0.5 1 4 20 1.11 1.232 1.335 5 52 1.169 1.29 1.387
−0.5 2 4 20 1.097 1.218 1.34 5 52 1.148 1.275 1.389
−0.5 4 4 20 1.09 1.215 1.342 5 52 1.145 1.271 1.389
−0.5 0.5 4 40 1.139 1.246 1.342 5 105 1.191 1.31 1.416
−0.5 1 4 40 1.108 1.225 1.321 5 105 1.163 1.294 1.405
−0.5 2 4 40 1.094 1.219 1.327 5 105 1.146 1.282 1.395
−0.5 4 4 40 1.099 1.224 1.328 5 105 1.143 1.28 1.396
−0.5 10 1.327 1.397 1.449 15 1.194 1.282 1.352
−0.5 0.5 10 20 1.1 1.171 1.225 15 52 1.126 1.232 1.314
−0.5 1 10 20 1.035 1.105 1.151 15 52 1.081 1.203 1.296
−0.5 2 10 20 1.002 1.134 1.143 15 52 1.066 1.18 1.271
−0.5 4 10 20 0.974 1.143 1.143 15 52 1.058 1.177 1.265
−0.5 0.5 10 40 1.074 1.179 1.263 15 105 1.109 1.211 1.311
−0.5 1 10 40 1.035 1.085 1.302 15 105 1.075 1.187 1.29
−0.5 2 10 40 1.007 1.046 1.317 15 105 1.062 1.188 1.295
−0.5 4 10 40 1.001 1.022 1.321 15 105 1.049 1.233 1.293

0 2 1.167 1.291 1.393 3 1.18 1.306 1.408
0 0.5 2 20 1.153 1.279 1.384 3 52 1.175 1.304 1.413
0 1 2 20 1.144 1.268 1.365 3 52 1.179 1.303 1.405
0 2 2 20 1.128 1.251 1.367 3 52 1.175 1.302 1.408
0 4 2 20 1.127 1.256 1.368 3 52 1.174 1.303 1.405
0 0.5 2 40 1.154 1.277 1.384 3 105 1.174 1.299 1.416
0 1 2 40 1.144 1.266 1.377 3 105 1.172 1.299 1.415
0 2 2 40 1.136 1.26 1.371 3 105 1.168 1.3 1.418
0 4 2 40 1.139 1.265 1.374 3 105 1.167 1.291 1.423
0 4 1.12 1.225 1.317 5 1.176 1.302 1.412
0 0.5 4 20 1.102 1.218 1.312 5 52 1.17 1.292 1.397
0 1 4 20 1.093 1.208 1.308 5 52 1.158 1.28 1.377
0 2 4 20 1.087 1.21 1.315 5 52 1.146 1.266 1.376
0 4 4 20 1.085 1.212 1.339 5 52 1.139 1.271 1.375
0 0.5 4 40 1.095 1.21 1.305 5 105 1.172 1.289 1.39
0 1 4 40 1.09 1.203 1.306 5 105 1.161 1.274 1.379
0 2 4 40 1.095 1.212 1.321 5 105 1.147 1.276 1.384
0 4 4 40 1.099 1.219 1.331 5 105 1.142 1.282 1.395
0 10 1.34 1.426 1.509 15 1.113 1.189 1.244
0 0.5 10 20 1.105 1.168 1.237 15 52 1.099 1.198 1.277
0 1 10 20 1.066 1.117 1.142 15 52 1.072 1.187 1.262
0 2 10 20 1.016 1.125 1.127 15 52 1.055 1.181 1.269
0 4 10 20 0.985 1.14 1.14 15 52 1.055 1.173 1.26
0 0.5 10 40 1.089 1.205 1.268 15 105 1.077 1.181 1.263
0 1 10 40 0.999 1.118 1.282 15 105 1.066 1.175 1.279
0 2 10 40 0.99 1.06 1.311 15 105 1.064 1.18 1.274
0 4 10 40 0.993 1.03 1.32 15 105 1.057 1.192 1.286
0.5 2 1.13 1.26 1.365 3 1.15 1.276 1.384
0.5 0.5 2 20 1.125 1.257 1.366 3 52 1.164 1.272 1.388
0.5 1 2 20 1.122 1.251 1.375 3 52 1.162 1.278 1.391
0.5 2 2 20 1.122 1.243 1.351 3 52 1.168 1.294 1.4
0.5 4 2 20 1.117 1.243 1.351 3 52 1.17 1.298 1.404
0.5 0.5 2 40 1.133 1.261 1.379 3 105 1.152 1.282 1.385
0.5 1 2 40 1.132 1.258 1.361 3 105 1.155 1.281 1.399
0.5 2 2 40 1.13 1.257 1.357 3 105 1.162 1.289 1.406
0.5 4 2 40 1.134 1.258 1.369 3 105 1.166 1.298 1.422
0.5 4 1.089 1.198 1.293 5 1.15 1.273 1.373
0.5 0.5 4 20 1.088 1.204 1.3 5 52 1.149 1.27 1.383
0.5 1 4 20 1.09 1.202 1.293 5 52 1.148 1.261 1.385
0.5 2 4 20 1.081 1.195 1.297 5 52 1.142 1.265 1.369
0.5 4 4 20 1.087 1.211 1.309 5 52 1.139 1.263 1.377
0.5 0.5 4 40 1.09 1.198 1.302 5 105 1.153 1.272 1.377
0.5 1 4 40 1.091 1.199 1.292 5 105 1.145 1.264 1.369
0.5 2 4 40 1.087 1.202 1.305 5 105 1.143 1.262 1.367
0.5 4 4 40 1.097 1.21 1.327 5 105 1.142 1.275 1.379
0.5 10 1.158 1.241 1.412 15 1.078 1.152 1.211
0.5 0.5 10 20 1.132 1.214 1.281 15 52 1.084 1.181 1.249
0.5 1 10 20 1.028 1.114 1.143 15 52 1.07 1.174 1.251
0.5 2 10 20 1.048 1.075 1.091 15 52 1.061 1.17 1.254
0.5 4 10 20 1.015 1.121 1.121 15 52 1.054 1.175 1.263
0.5 0.5 10 40 1.099 1.194 1.26 15 105 1.063 1.154 1.232
0.5 1 10 40 1.089 1.145 1.189 15 105 1.051 1.144 1.225
0.5 2 10 40 0.977 1.109 1.258 15 105 1.052 1.159 1.251
0.5 4 10 40 0.996 1.067 1.304 15 105 1.058 1.184 1.278

Table 6.2.2.4.: Permutation quantiles (CUSUM statistic, q1 ≡ 1)
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(1) ρ = −0.5, K = 10 (2) ρ = −0.1, K = 2

(3) ρ = −0.1, K = 4 (4) ρ = −0.1, K = 10

(5) ρ = 0.5, K = 1 (6) ρ = 0.5, K = 2

(7) ρ = 0.5, K = 4 (8) ρ = 0.5, K = 10

Figure 6.2.2.1(i).: QQ-plots of T
(3)
n (q1)/τ̂LK (under H0) against T

(3)
L,K(q1)(R)/τ̂LK for

n = 80, m = 40 and different values for ρ and K
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(9) ρ = 0.5, K = 5 (10) ρ = 0.5, K = 15

Figure 6.2.2.1(ii).: QQ-plots of T
(3)
n (q1)/τ̂LK (under H0) against T

(3)
L,K(q1)(R)/τ̂LK for

n = 210, m = 105 and different values for ρ and K

correlation, however, the quantiles get smaller the more obvious the change. As we will
see later, this phenomenon contributes to a better power of the test. For greater n they
clearly stabilize (see e.g. ρ = −0.5, K = 10, 15, n = 80, 210). The dependence on the
mean difference d is even greater for q2.

Comparing the values with those of Table 6.2.2.3 shows that there is a good match for
an appropriately chosen value of K. For stronger correlated error sequences the match
between null hypothesis and permutation quantiles is the better the longer the block
length K is. This is not very surprising since in this case the dependence structure is
much better preserved. In the independent case we have a better match for a shorter
block length. Yet for ρ = −0.5 i.e. negatively correlated error sequences the quantiles
match better under K = 4 than K = 10.

Figures 6.2.2.1(i), 6.2.2.1(ii), and 6.2.2.2 show some typical QQ-plots of the distribution
of the original statistic under the null versus the block permutation distribution condi-
tioned on just one realization. Here we use 10 000 permutations.
For n=80 we get best matches for K = 4. This is even true for ρ = ±0.5. But the
closer to independence the errors are, the better the plots become for small K. For
independent errors the plot for K = 1 is as good as the one for K = 2 or K = 4.

For K = 10 and n = 80 the greatest simulated values show some kind of ”step behavior”,
i.e. many different permutations give the same value of the permutation statistic. This
is due to the fact that there are only 8 blocks to permute. So, if there is one block
that gives (e.g. if put on the first place) the ”maximally” obtained value, there is a
good chance that several permutations will put this block at the same place. However,
this phenomenon disappears for greater n (cf. e.g. Figures 6.2.2.1(ii), which gives the
QQ-plots for n = 210 and K = 15). Even for small n, this phenomenon does not seem to
influence the goodness of the test, as the size-power-curves will show. The test behaves
very well with large values of K under H0 as well as H1. Apparently the number of
such ”outliers” is too small to influence the quantiles (remember that there are 10 000
points for each alternative in the plot). The simulated quantiles of the block permutation
statistic for different values of K also confirm this. Even the 97.5%–quantiles are good
approximations of the null quantiles (also for K = 10).

The plots displayed below have a change at n/2, but we get essentially the same picture



152 Change Analysis of the Location Model with an AR(1)-Error-Sequence

for different choices of m. Moreover the distribution seems to be independent of d (i.e.
the mean difference before and after the change) for positively correlated observations.
There is again only the exception of K = 10, but fortunately the values get smaller
if there is a more obvious change. This means that we are more likely to reject the
null hypothesis under alternatives, which improves the power of the test. For negatively
correlated observations the values get also smaller for more obvious changes.

Next we are interested in how well the test performs – and also how well it performs in
comparison to the asymptotic one. For this reason we create size-power-curves of both
methods under the null hypothesis and under alternatives. To have a fair comparison
we use τ̃n(8) (cf. (6.2.1)) as variance estimator for the asymptotic test. For the block
permutation test we use the statistics as proposed in Section 3.5. The asymptotic method
does not depend on K at all. The curves may look slightly different, since we use different
sample paths in each plot namely the same as for the block permutation method. We
use 10 000 random permutations to obtain the distribution of the block permutation
statistic conditioned on one realization, but we only use 1 000 realizations to create the
size-power-curves.

Some results are presented in Figures 6.2.2.3 and 6.2.2.4. The asymptotic test does not
perform too well, except in the case of ρ = −0.5. The α–errors in all other cases are too
high, e.g. for ρ = 0.5 we even have an actual α–error of 20% for a nominal one of 10%.
Using double exponentially distributed innovations we get essentially the same pictures.

(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 4

(3) ρ = 0.5, K = 4 (4) ρ = 0.5, K = 10

Figure 6.2.2.2.: QQ-plots of T
(3)
n (q2)/τ̂LK (under H0) against T

(3)
L,K(q2)(R)/τ̂LK for n =

80, m = 40 and different values for ρ and K
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(1) ρ = −0.5, K = 10 (2) ρ = −0.3, K = 2

(3) ρ = −0.3, K = 4 (4) ρ = −0.3, K = 10

(5) ρ = 0.5, K = 4 (6) ρ = 0.5, K = 10

(7) ρ = 0, K = 1 (8) ρ = 0, K = 10

Figure 6.2.2.3.: Size-power-curves of T
(3)
n (q1)/τ̃n(8) with respect to the asymptotic dis-

tribution and of T
(3)
L,K(R, q1)/τ̂LK with respect to the permutation dis-

tribution for n = 80, m = 40 and different values for ρ and K
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For the block permutation test it is apparently very important to choose an appropri-
ate K. For an independent error-sequence the α–error is good for all choices of K,
however, the β–errors increase (i.e. the y-values decrease under alternatives) somewhat
for higher K. The best choice here would indeed be K = 1. On the other hand a choice
of K = 10 is best under strong dependence.

This shows that the block permutation test performs very well. This is especially im-
portant if we want to choose q 6≡ 1, because it saves us an extensive simulation of the
asymptotic critical values.

The figures also show that the power of the test is better for negatively correlated error
sequences. This is due to the fact that the permutation quantiles slightly decrease for
greater mean differences as already mentioned.

The more dependent we suspect the data to be the greater we should choose K, since
a choice of too large a K does not negatively influence the α–errors. It does, however,
increase the β–errors but only slightly. This also means that – if in doubt – it is always
better to choose a larger K.

A comparison of both methods (for an appropriately chosen K) yields that the α–errors
of the block permutation test are always better than those of the asymptotic test (with
the single exception of ρ = −0.5). Concerning the β–errors we realize that – depending
on the data – they are comparable (if taken into account that a larger α-error goes
usually along with a smaller β-error) for both methods.

(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 4

(3) ρ = 0.5, K = 4 (4) ρ = 0.5, K = 10

Figure 6.2.2.4.: Size-power-curves of T
(3)
L,K(R, q2)/τ̂LK with respect to the permutation

distribution for n = 80, m = 40 and different values for ρ and K
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6.2.3. Sum Statistic

In this section we examine the behavior of the Sum statistic T
(4)
n (r) and its block permu-

tation counterparts. Here we use r1 ≡ 1 and r2 = (id(1− id))3/2, which fulfill conditions
(3.2.6).

As far as we know the asymptotic quantiles are only known for r1 ≡ 1. The distribution
function is given in Kiefer [49], Table 3, B1(x) (confer also Antoch et. al. [3], p. 15).
For all other choices we have to run a simulation to use the asymptotic method at all.
The block permutation method, however, is applicable no matter which weight function
r we choose.

Since the results are very similar to the ones for the q-weighted CUSUM statistic we
refrain from giving them in detail and only show a selection of QQ-plots and size-power-
curves without comment. The only real difference is that the QQ-plots even for large
values of the block length K do not show the step behavior that is typical for the
q-weighted CUSUM statistics. This is because we are here looking at sums and not
maxima.

The QQ-plots can be found in Figures 6.2.3.1, 6.2.3.2(i) and 6.2.3.2(ii). For r2 the QQ-
plots for a large correlation e.g. ρ = 0.5 and long block length (e.g. K = 10) are different
for the null hypothesis and alternatives. This difference, however, diminishes for more
observations. SPC-plots can be found in Figures 6.2.3.3 and 6.2.3.4.

(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 4

(3) ρ = 0.5, K = 4 (4) ρ = 0.5, K = 10

Figure 6.2.3.1.: QQ-plots of T
(4)
n (r1)/τ̂2

LK (under H0) against T
(4)
L,K(r1)(R)/τ̂2

LK for n =
80, m = 40 and different values for ρ and K
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(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 4

(3) ρ = 0.5, K = 4 (4) ρ = 0.5, K = 10

Figure 6.2.3.2(i).: QQ-plots of T
(4)
n (r2)/τ̂2

LK (under H0) against T
(4)
L,K(r2)(R)/τ̂2

LK for
n = 80, m = 40 and different values for ρ and K

(5) ρ = 0.5, K = 5 (6) ρ = 0.5, K = 15

Figure 6.2.3.2(ii).: QQ-plots of T
(4)
n (r2)/τ̂2

LK (under H0) against T
(4)
L,K(r2)(R)/τ̂2

LK for
n = 210, m = 105 and different values for ρ and K
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(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 4

(3) ρ = 0.5, K = 4 (4) ρ = 0.5, K = 10

Figure 6.2.3.3.: Size-power-curves of T
(4)
n (r1)/τ̃2

n(8) with respect to the asymptotic dis-
tribution and of T

(4)
L,K(R, r1)/τ̂2

LK with respect to the permutation dis-
tribution for n = 80, m = 40 and different values for ρ and K

(1) ρ = −0.1, K = 4 (2) ρ = 0.5, K = 10

Figure 6.2.3.4.: Size-power-curves of T
(4)
L,K(R, r2)/τ̂2

LK with respect to the permutation
distribution for n = 80, m = 40 and different values for ρ and K
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6.2.4. Weighted CUSUM Statistic

In this subsection we examine the behavior of the weighted CUSUM statistic T
(1)
n and

its block permutation counterpart. Since the results are very similar to the q-weighted
CUSUM statistic we only give some QQ- and SPC-plots in Figures 6.2.4.1 resp. 6.2.4.2.

(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 4

(3) ρ = 0.5, K = 4 (4) ρ = 0.5, K = 10

Figure 6.2.4.1.: QQ-plots of T
(1)
L,K/τ̂LK (under H0) against T

(1)
L,K(R)/τ̂LK for n = 80,

m = 40 and different values for ρ and K

(1) ρ = −0.1, K = 4 (2) ρ = 0.5, K = 10

Figure 6.2.4.2.: Size-power-curves of T
(1)
n /τ̃n(8) with respect to the asymptotic distribu-

tion and of T
(1)
L,K(R)/τ̂LK with respect to the permutation distribution

for n = 80, m = 40 and different values for ρ and K
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6.2.5. MOSUM Statistic

As already mentioned the block permutation method is not very well suited for the
MOSUM statistic. We are looking at a generally very small (e.g. G = 0.05 n or G =
0.1 n) window of data. So K has to be small in comparison to G, otherwise the maximum
is taken of the same numbers for many permutations.

(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 2

(3) ρ = 0.3, K = 1 (4) ρ = 0.3, K = 3

Figure 6.2.5.1(i).: QQ-plots of T
(2)
n (G1)/τ̂LK (under H0) against T

(2)
L,K(G1)(R)/τ̂LK for

n = 120, m = 60 and different values for ρ and K

(5) ρ = 0.3, K = 3 (6) ρ = 0.3, K = 6

Figure 6.2.5.1(ii).: QQ-plots of T
(2)
n (G1)/τ̂LK (under H0) against T

(2)
L,K(G1)(R)/τ̂LK for

n = 210, m = 105 and different values for ρ and K
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We give some QQ-plots and size-power-curves to demonstrate the fact.

Here, we use n = 120 and n = 210 so that G is not all too small. Moreover we use
G1 ≈ 0.05 n (more precisely G1(120) = 6, G1(210) = 10) and G2 ≈ 0.1 n (more precisely
G2(120) = 12, G2(210) = 20). The simulations show that the block permutation method
is indeed working better for G2 than G1, probably because the ”window” is somewhat
larger.

(1) ρ = −0.1, K = 1 (2) ρ = −0.1, K = 4

(3) ρ = 0.3, K = 4 (4) ρ = 0.3, K = 6

Figure 6.2.5.2(i).: QQ-plots of T
(2)
n (G2)/τ̂LK (under H0) against T

(2)
L,K(G2)(R)/τ̂LK for

n = 120, m = 60 and different values for ρ and K

(5) ρ = 0.3, K = 3 (6) ρ = 0.3, K = 6

Figure 6.2.5.2(ii).: QQ-plots of T
(2)
n (G2)/τ̂LK (under H0) against T

(2)
L,K(G2)(R)/τ̂LK for

n = 210, m = 105 and different values for ρ and K
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For K = 1 the QQ-plots only fit the null distribution if we have independent error
sequences or maybe error sequences under weak dependence (ρ = ±0.1). For K > 1
the fit under the null hypothesis becomes better (at least if K is not too large), but the
curves under alternatives are not a good match.

As already mentioned earlier the curves for larger G, i.e. Figures 6.2.5.2(i) and 6.2.5.2(ii),
are better than those for smaller G, i.e. Figures 6.2.5.1(i) and 6.2.5.1(ii). The reason is
that we can choose a somewhat larger K to better fit the correlated data, but the match
is still not very good.

(1) ρ = −0.1, K = 2 (2) ρ = −0.1, K = 3

(3) ρ = 0, K = 1 (4) ρ = 0, K = 2

(5) ρ = 0.3, K = 2 (6) ρ = 0.3, K = 3

Figure 6.2.5.3.: Size-power-curves of T
(2)
n (G1)/τ̃n(8) with respect to the asymptotic dis-

tribution and of T
(2)
L,K(G1,R)/τ̂LK with respect to the permutation dis-

tribution for n = 120, m = 60 and different values for ρ and K
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Secondly the plots get slightly better for larger n (confer Figures 6.2.5.1(ii) respectively
6.2.5.2(ii)), but apparently the convergence is rather slow.

To create size-power-curves we only use 1 000 permutations for the empirical distribution
function of each realization to save some computational time. Some results are presented
in Figures 6.2.5.3 and 6.2.5.4.

As expected the asymptotic test performs quite well, although in some cases it performs
better than in others. This is due to the fact that the asymptotic quantiles do not
depend on the correlation, but the null quantiles do.

(1) ρ = −0.1, K = 2 (2) ρ = −0.1, K = 4

(3) ρ = 0, K = 1 (4) ρ = 0, K = 2

(5) ρ = 0.3, K = 4 (6) ρ = 0.3, K = 6

Figure 6.2.5.4.: Size-power-curves of T
(2)
n (G2)/τ̃n(8) with respect to the asymptotic dis-

tribution and of T
(2)
L,K(G2,R)/τ̂LK with respect to the permutation dis-

tribution for n = 120, m = 60 and different values for ρ and K
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The block permutation test performs quite well for independent error sequences and
K = 1, confer Figure 6.2.5.3, (3), respectively 6.2.5.4, (3). For G1 the α-errors are
slightly better than the asymptotic α-errors, however the β-errors are higher. For G2 the
α-errors for the permutation method are also better and the β-errors about comparable.

In general the block permutation test does not perform very well. For K = 1 it can dis-
tinguish the alternatives, but the α–errors are completely wrong, especially for stronger
correlated data. A larger K puts the α–error closer to where they are supposed to be,
but also leads to a worse distinction of the alternatives.

Furthermore the block permutation method performs better for G2 than G1. All of the
effects described above are weaker for a larger G. Then the permutation method even
has a good fit under weak alternatives, i.e. ρ = ±0.1, and K = 2. This is in accordance
with the asymptotic behavior of the permutation statistic as proven in Theorem 3.5.1.

6.3. Simulation of the Frequency Permutation Method

In this section we investigate the performance of the frequency permutation method in
more detail.

Again we use an AR(1) sequence (throwing away the first 50 data points) with param-
eter ρ ∈ {0,±0.1,±0.3,±0.5, 0.7}, standard normally as well as double-exponentially
distributed innovations (mean 0, variance 1) and length n = 80, change-point m = 40.
Then we use the algorithm as described in Section 4.2 with 60 respectively 70 bootstrap
r.v.´s, i.e. n

α(n) = 60 respectively = 70. Here, we take the first 60 respectively first 70.
Moreover we use all 80 r.v.´s, which corresponds to α(n) = 1.

We do not use any variance estimators in the fourth step but rather use the actual
values to get better comparable results. Indeed if we compare the asymptotic results
here with the ones we have obtained in the previous section, we see that they perform
much better here. The only difference is that we have used estimators there. For
practical purposes the goodness of the procedure of the frequency test as well as of the
asymptotic one depends crucially on the goodness of the estimator for σ2 (

∑
ws)

2. That
is the disadvantage over the block permutation test. Here, however, we are interested in
the performance of the algorithm itself, so to get an objective picture we use the (usually
unknown) exact value of σ2 (

∑
ws)

2.

The simulations for n odd are slower than the ones for n even, because of the nature of
the FFT-Algorithm. This is why one should use the algorithm for n even.

Again we give the details of the simulation study only for the q-weighted CUSUM statis-
tic. For the other statistics we present a small selection of (representative) plots due
to limitations of space. The results are, however, very similar. Details can be found in
Kirch [51].

6.3.1. q-weighted CUSUM Statistic

In this subsection we investigate the statistics T
(3)
n (q) for q1 ≡ 1 as well as q2 :=

(id(1− id))1/4. We concentrate on the discussion of q1, since we can then also compare
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Normal r.v.´s Double exp. r.v.´s
n ρ N m d 90% 95% 97.5% 90% 95% 97.5%
80 -0.5 60 1.175 1.356 1.527 1.115 1.283 1.397
80 -0.5 70 1.2 1.346 1.545 1.133 1.329 1.451
80 -0.5 80 1.165 1.344 1.531 1.104 1.266 1.422
80 -0.5 60 40 0.5 1.14 1.287 1.439 1.171 1.261 1.442
80 -0.5 70 40 0.5 1.128 1.302 1.463 1.176 1.322 1.444
80 -0.5 80 40 0.5 1.133 1.255 1.385 1.169 1.317 1.455
80 -0.5 60 40 1 1.189 1.326 1.434 1.121 1.293 1.441
80 -0.5 70 40 1 1.215 1.372 1.562 1.139 1.291 1.429
80 -0.5 80 40 1 1.185 1.379 1.518 1.138 1.291 1.408
80 -0.5 60 40 2 1.169 1.318 1.51 1.12 1.279 1.403
80 -0.5 70 40 2 1.21 1.384 1.546 1.148 1.277 1.391
80 -0.5 80 40 2 1.186 1.336 1.559 1.146 1.269 1.364
80 -0.5 60 40 4 1.193 1.347 1.519 1.119 1.265 1.376
80 -0.5 70 40 4 1.182 1.408 1.617 1.122 1.262 1.39
80 -0.5 80 40 4 1.194 1.388 1.55 1.123 1.276 1.37
80 0 60 1.155 1.287 1.402 1.12 1.226 1.298
80 0 70 1.172 1.328 1.441 1.127 1.217 1.302
80 0 80 1.174 1.307 1.412 1.104 1.211 1.28
80 0 60 40 0.5 1.156 1.297 1.375 1.158 1.261 1.357
80 0 70 40 0.5 1.164 1.318 1.414 1.14 1.262 1.336
80 0 80 40 0.5 1.149 1.3 1.386 1.126 1.221 1.307
80 0 60 40 1 1.163 1.291 1.381 1.141 1.26 1.378
80 0 70 40 1 1.209 1.322 1.449 1.145 1.254 1.338
80 0 80 40 1 1.192 1.306 1.43 1.141 1.257 1.36
80 0 60 40 2 1.155 1.306 1.46 1.135 1.207 1.285
80 0 70 40 2 1.204 1.339 1.476 1.127 1.215 1.308
80 0 80 40 2 1.19 1.344 1.427 1.117 1.224 1.306
80 0 60 40 4 1.16 1.308 1.45 1.123 1.242 1.351
80 0 70 40 4 1.195 1.333 1.473 1.154 1.258 1.364
80 0 80 40 4 1.182 1.35 1.46 1.157 1.254 1.37
80 0.3 60 1.151 1.303 1.422 1.128 1.232 1.34
80 0.3 70 1.134 1.287 1.477 1.132 1.247 1.318
80 0.3 80 1.114 1.293 1.456 1.133 1.247 1.296
80 0.3 60 40 0.5 1.128 1.274 1.413 1.17 1.274 1.369
80 0.3 70 40 0.5 1.155 1.298 1.471 1.161 1.272 1.383
80 0.3 80 40 0.5 1.159 1.313 1.459 1.148 1.265 1.361
80 0.3 60 40 1 1.146 1.305 1.433 1.169 1.299 1.424
80 0.3 70 40 1 1.169 1.359 1.541 1.182 1.303 1.422
80 0.3 80 40 1 1.143 1.356 1.567 1.184 1.303 1.401
80 0.3 60 40 2 1.179 1.296 1.398 1.135 1.241 1.372
80 0.3 70 40 2 1.177 1.333 1.46 1.149 1.271 1.378
80 0.3 80 40 2 1.177 1.34 1.476 1.145 1.288 1.363
80 0.3 60 40 4 1.145 1.268 1.385 1.136 1.263 1.411
80 0.3 70 40 4 1.126 1.296 1.419 1.167 1.296 1.432
80 0.3 80 40 4 1.124 1.239 1.385 1.166 1.322 1.413
80 0.5 60 1.149 1.358 1.539 1.146 1.281 1.392
80 0.5 70 1.128 1.332 1.628 1.164 1.277 1.391
80 0.5 80 1.138 1.329 1.56 1.15 1.27 1.387
80 0.5 60 40 0.5 1.109 1.245 1.444 1.158 1.28 1.364
80 0.5 70 40 0.5 1.143 1.302 1.509 1.159 1.261 1.361
80 0.5 80 40 0.5 1.137 1.305 1.509 1.136 1.264 1.364
80 0.5 60 40 1 1.15 1.33 1.517 1.173 1.373 1.475
80 0.5 70 40 1 1.174 1.344 1.568 1.173 1.363 1.551
80 0.5 80 40 1 1.174 1.34 1.587 1.209 1.335 1.464
80 0.5 60 40 2 1.163 1.342 1.491 1.137 1.255 1.355
80 0.5 70 40 2 1.146 1.402 1.606 1.186 1.293 1.412
80 0.5 80 40 2 1.153 1.39 1.608 1.166 1.306 1.428
80 0.5 60 40 4 1.11 1.26 1.461 1.14 1.285 1.468
80 0.5 70 40 4 1.107 1.336 1.475 1.15 1.345 1.478
80 0.5 80 40 4 1.092 1.294 1.466 1.176 1.308 1.481
80 0.7 60 1.2 1.467 1.698 1.187 1.355 1.543
80 0.7 70 1.183 1.549 1.769 1.231 1.404 1.512
80 0.7 80 1.166 1.481 1.754 1.224 1.376 1.479
80 0.7 60 40 0.5 1.107 1.335 1.506 1.183 1.333 1.423
80 0.7 70 40 0.5 1.118 1.385 1.618 1.18 1.311 1.456
80 0.7 80 40 0.5 1.127 1.38 1.701 1.154 1.334 1.484
80 0.7 60 40 1 1.109 1.319 1.553 1.194 1.362 1.488
80 0.7 70 40 1 1.129 1.436 1.669 1.206 1.397 1.561
80 0.7 80 40 1 1.134 1.371 1.682 1.206 1.383 1.536
80 0.7 60 40 2 1.192 1.385 1.49 1.156 1.309 1.469
80 0.7 70 40 2 1.184 1.361 1.57 1.148 1.368 1.583
80 0.7 80 40 2 1.179 1.349 1.603 1.138 1.35 1.586
80 0.7 60 40 4 1.141 1.315 1.484 1.15 1.359 1.601
80 0.7 70 40 4 1.133 1.379 1.529 1.151 1.439 1.646
80 0.7 80 40 4 1.123 1.311 1.54 1.171 1.353 1.623

Table 6.3.1.1.: Simulated permutation quantiles of statistic T
(3f)
n (R, q1) for a fixed inno-

vation sequence based on 1 000 permutations
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the results with the asymptotic test. We only give a short extract of the simulations for
q2 to demonstrate that the results are very similar.

First, we simulate the critical values of the statistics under the null, where we use
the correct (rather than an estimated) variance. The critical values are based on 10 000
simulated values, the results can be found in Table 6.3.1.2.

To get an impression of the permutation quantiles for one fixed underlying error sequence
we calculate them by means of the empirical distribution function of the frequency
permutation statistic based on 1 000 permutations. We use the same underlying error
sequence for all choices of parameters and also the same 1 000 permutations. This way
we get a better idea, how much the obtained quantiles depend on the alternative. Some
results can be found in Table 6.3.1.1.

The frequency permutation quantiles are stable for different alternatives as well as dif-
ferent values of N . However, unlike the null quantiles they are also stable for different
correlations. This is due to the fact that by permuting the coefficients they loose their
variance structure, which in the end means the permuted sequence looses its covariance
structure and thus is close to the independent case. The asymptotic quantiles also do
not depend on the covariance structure of the sequence, so the same problem arises.

Again QQ-plots will better illustrate the similarity of the distribution of the frequency
permutation statistic conditioned on a given sequence and the distribution of the original
statistic under the null. Here, we use 1 000 simulated time series respectively 1 000
permutations to obtain the QQ-plot. The permutation quantiles are based on one fixed
AR(1)-process for different mean changes.

The plots look very similar, no matter how many data points we use (the value of N
is not important). This remains true for a different selection function β. To illustrate
this point we give all three plots for ρ = 0 (yet this is true for every other choice of ρ as
well). For a selection of other values of ρ we then only give the plot where we use all n
values. The results can be found in Figures 6.3.1.1(i), 6.3.1.1(ii) respectively 6.3.1.2(i),
6.3.1.2(ii).

The plots for independent or only slightly correlated data look very good, whereas for a
strong correlation there seems to be a slight difference in distribution.

Normal r.v.´s Double exp. r.v.´s
ρ 90% 95% 97.5% 90% 95% 97.5%

-0.5 1.24 1.373 1.49 1.255 1.396 1.512
-0.3 1.205 1.337 1.461 1.208 1.348 1.466
-0.2 1.192 1.32 1.45 1.19 1.33 1.446
-0.1 1.178 1.307 1.436 1.175 1.312 1.43
0 1.163 1.295 1.425 1.161 1.295 1.411

0.1 1.151 1.279 1.412 1.144 1.282 1.401
0.2 1.136 1.268 1.394 1.131 1.271 1.388
0.3 1.119 1.25 1.377 1.118 1.256 1.376
0.5 1.079 1.21 1.34 1.084 1.214 1.336
0.7 1.012 1.144 1.262 1.019 1.151 1.267

Table 6.3.1.2.: Simulated quantiles of the statistic T̃
(3)
n (q1) under the null, n = 80
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(1) ρ = −0.5, N = 80 (2) ρ = −0.3, N = 80

(3) ρ = 0, N = 60 (4) ρ = 0, N = 70

(5) ρ = 0, N = 80 (6) ρ = 0.1, N = 80

(7) ρ = 0.3, N = 80 (8) ρ = 0.5, N = 80

Figure 6.3.1.1(i).: QQ-plots of T
(3)
n (q1) (under H0) against T

(3f)
n (R, q1) for standard nor-

mally distributed innovations, n = 80, m = 40 and different values for
ρ and N
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(9) ρ = −0.3, N = 80 (10) ρ = 0.1, N = 80

(11) ρ = 0.3, N = 80 (12) ρ = 0.5, N = 80

Figure 6.3.1.1(ii).: QQ-plots of T
(3)
n (q1) (under H0) against T

(3f)
n (R, q1) for double expo-

nentially distributed innovations, n = 80, m = 40 and different values
for ρ and N

Finally we also give a selection of size-power-curves in Figures 6.3.1.3(i), 6.3.1.3(ii) re-
spectively 6.3.1.4. Here again the results are very similar for all three choices of N . To
create the SPC-plots we use 10 000 time series according to the model (null hypothesis
as well as alternatives) and for each of these 1 000 permutations. When we only use

(1) ρ = −0.1, N = 80 (2) ρ = 0.3, N = 80

Figure 6.3.1.2(i).: QQ-plots of T
(3)
n (q2) (under H0) against T

(3f)
n (R, q2) for standard nor-

mally distributed innovations, n = 80, m = 40 and different values for
ρ and N
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(3) ρ = −0.1, N = 80 (4) ρ = 0.3, N = 80

Figure 6.3.1.2(ii).: QQ-plots of T
(3)
n (q2) (under H0) against T

(3f)
n (R, q2) for double expo-

nentially distributed innovations, n = 80, m = 40 and different values
for ρ and N

1 000 time series, the plots depend on the seed of the random generator. Using 10 000
gives almost identical pictures and thus the plots can be considered to be correct.

The match is usually better than the asymptotic quantiles (if known) with the exception
of negatively correlated errors, where the asymptotic quantiles match best.

(1) ρ = −0.3, N = 80 (2) ρ = 0.3, N = 80

(3) ρ = 0, N = 60 (4) ρ = 0, N = 80

Figure 6.3.1.3(i).: SPC-plots for T
(3f)
n (R, q1) for standard normally distributed innova-

tions, n = 80, m = 40 and different values for ρ and N
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(5) ρ = −0.3, N = 80 (6) ρ = 0.3, N = 80

(7) ρ = 0, N = 60 (8) ρ = 0, N = 80

Figure 6.3.1.3(ii).: SPC-plots for T
(3f)
n (R, q1) for double exponentially distributed inno-

vations, n = 80, m = 40 and different values for ρ and N

(1) ρ = 0, N = 80 (2) ρ = 0.3, N = 80

Figure 6.3.1.4.: SPC-plots for T
(3f)
n (R, q2) for standard normally distributed innovations,

n = 80, m = 40 and different values for ρ and N
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6.3.2. Sum Statistic

In this subsection we investigate the sum statistics T
(4)
n (r) for r1 ≡ 1 as well as r2 :=

(id(1 − id))
3
2 . T̃

(4f)
n (r) denotes the corresponding frequency permutation statistic, it is

essentially statistic T
(4f)
n (r) from Corollary 4.6.1, where we approximated the integral

by a sum. Precisely

T̃ (4f)
n (r) =

1
N

N−1∑
m=1

1
r(m/N)

[
Z̃X

n (m/N,R)− m

N
Z̃X

n (1,R)
]2

with {Z̃X
n (u,R)} as in Theorem 4.6.2. We only give a short extract from the simulation,

yet results are similar to the previous sections. We concentrate on r1, since then we also
know the limit distribution.

Some QQ-plots can be found in Figures 6.3.2.1(i) and 6.3.2.1(ii), some size-power-curves
in Figures 6.3.2.2(i), 6.3.2.2(ii) respectively 6.3.2.3(i), 6.3.2.3(ii).

For r1 we have very good plots for both the frequency permutation test as well as the
asymptotic one. For r2 the plot is best for independent errors in case of normal innova-
tions and for positively correlated errors in the case of double exponentially distributed
errors.

(1) ρ = −0.3, N = 80 (2) ρ = 0, N = 80

(3) ρ = 0.3, N = 80 (4) ρ = 0.5, N = 80

Figure 6.3.2.1(i).: QQ-plots of T
(4)
n (r1) (under H0) against T̃

(4f)
n (R, r1) for standard nor-

mally distributed innovations, n = 80, m = 40 and different values for
ρ and N
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(5) ρ = −0.1, N = 80 (6) ρ = 0.3, N = 80

Figure 6.3.2.1(ii).: QQ-plots of T
(4)
n (r1) (under H0) against T̃

(4f)
n (R, r1) for double expo-

nentially distributed innovations, n = 80, m = 40 and different values
for ρ and N

(1) ρ = −0.3, N = 80 (2) ρ = 0.3, N = 80

Figure 6.3.2.2(i).: SPC-plots for T̃
(4f)
n (R, r1) for standard normally distributed innova-

tions, n = 80, m = 40 and different values for ρ and N

(3) ρ = −0.3, N = 80 (4) ρ = 0.3, N = 80

Figure 6.3.2.2(ii).: SPC-plots for T̃
(4f)
n (R, r1) for double exponentially distributed inno-

vations, n = 80, m = 40 and different values for ρ and N
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(1) ρ = 0, N = 60 (2) ρ = 0, N = 80

(3) ρ = −0.3, N = 80 (4) ρ = 0.3, N = 80

Figure 6.3.2.3(i).: SPC-plots for T̃
(4f)
n (R, r2) for standard normally distributed innova-

tions, n = 80, m = 40 and different values for ρ and N

(5) ρ = 0, N = 80 (6) ρ = 0.3, N = 80

Figure 6.3.2.3(ii).: SPC-plots for T̃
(4f)
n (R, r2) for double exponentially distributed inno-

vations, n = 80, m = 40 and different values for ρ and N
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6.3.3. Weighted CUSUM Statistic

Now we investigate the trimmed version of the weighted CUSUM statistic (ε = 0.1)

T̃ (1)
n := max

0.1n6m<0.9n

(√
n

m(n−m)
|Sm|

)
.

(1) ρ = −0.1, N = 80 (2) ρ = 0.5, N = 80

Figure 6.3.3.1.: QQ-plots of T̃
(1)
n (under H0) against T

(1f)
n (R) for standard normally

distributed innovations, n = 80, m = 40 and different values for ρ and N

(1) ρ = 0, N = 60 (2) ρ = 0, N = 80

(3) ρ = −0.3, N = 80 (4) ρ = 0.3, N = 80

Figure 6.3.3.2.: SPC-plots for T
(1f)
n (R) for standard normally distributed innovations,

n = 80, m = 40 and different values for ρ and N
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Since it is very similar to the results for the q-weighted CUSUM statistic we only give
some QQ- and SPC-plots in Figures 6.3.3.1 and 6.3.3.2 for normally distributed errors,
yet the plots for double exponentially distributed innovation are very similar.

6.3.4. MOSUM Statistic

Finally we investigate the trimmed version of the MOSUM statistic (ε = 0.1)

T̃ (2)
n := max

0.1n6m<0.9n

1√
n
|Sm − Sm−0.1n|.

It corresponds to G = 0.1n.

Just as the block permutation test the frequency permutation test only works fine for the
MOSUM statistic if we have independent errors. The results for the double exponentially
distributed innovations and normal ones are very similar, so we only give some QQ-plots
and size-power-curves for normal innovations in Figures 6.3.4.2 and 6.3.4.1.

(1) ρ = 0, N = 60 (2) ρ = 0, N = 80

(3) ρ = −0.3, N = 80 (4) ρ = 0.3, N = 80

Figure 6.3.4.1.: SPC-plots for T
(2f)
n (R) for standard normally distributed innovations,

n = 80, m = 40 and different values for ρ and N
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(1) ρ = −0.1, N = 80 (2) ρ = 0.3, N = 80

Figure 6.3.4.2.: QQ-plots of T̃
(2)
n (under H0) against T

(2f)
n (R) for standard normally

distributed innovations, n = 80, m = 40 and different values for ρ and N
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Part III.

Appendix





A. Landau Symbols in Stochastics

In this appendix we give definitions as well as some easy rules of calculus for the deter-
ministic as well as stochastic Landau symbols. We use them quite frequently throughout
this work without further comment. Those symbols are short expressions for convergence
respectively boundedness and are very convenient in longer calculations. We do not ex-
plicitely give the proofs for the rules of calculus, but they are easily obtained by definition
in case of deterministic or a.s. Landau symbols. The P -stochastic rules are a little more
difficult to obtain, for details confer e.g. van der Vaart [81], Section 2.2.

Definition A.1 (Deterministic Landau Symbols). Let {Xn}, {Un} be deterministic
sequences with Un > 0, then as n →∞

Xn = o(Un) :⇐⇒ Xn

Un
→ 0 as n →∞;

Xn = O(Un) :⇐⇒ |Xn| 6 C Un for some C > 0, for all n.

Note that even though it is standard to use the equality sign, this is in fact not a
symmetric relation.

We also use the following notation for O(·), because it is more convenient in longer
inequalities. It reminds of an inequality sign and ultimately it is an inequality sign that
also contains constants.

Definition A.2. Let {Xn}; {Un} be sequences, {Un} additionally positive, then

Xn � Un :⇐⇒ Xn = O(Un).

We now obtain immediately some rules of calculus for the Landau Symbols.

Lemma A.1. Let {Xn}, {Yn} be deterministic sequences, {Un}, {Vn} additionally pos-
itive, then it holds:

(i) Xn = o(Un) =⇒ Xn = O(Un).

(ii) Xn = O(Un), Yn = O(Vn) =⇒ Xn±Yn = O(max(Un, Vn)), XnYn = O(UnVn).

(iii) Xn = o(Un), Yn = o(Vn) =⇒ Xn ± Yn = o(max(Un, Vn)).

(iv) Xn = O(Un), Yn = o(Vn) =⇒ XnYn = o(UnVn).

(v) Xn = O(Un), Un = O(Vn) =⇒ Xn = O(Vn),
if we replace at least one of the O by o we obtain Xn = o(Vn).



180 Landau Symbols in Stochastics

(vi) If Xn → X as n →∞, it holds Xn = O(1).

(vii) Xn = O(1) =⇒ max16i6n Xi = O(1).

Proof. The assertions are easily obtained from the definitions, which is why they are
omitted.

Now we turn to stochastic Landau symbols.
Note that they reduce to the deterministic definitions for deterministic sequences.

Definition A.3 (Stochastic Landau Symbols). Let {Xn}, {Un} be stochastic se-
quences with Un > 0 almost surely, then as n →∞

Xn = oP (Un) :⇐⇒ Xn

Un

P−→ 0 as n →∞;

Xn = o(Un) a.s. :⇐⇒ Xn

Un
→ 0 a.s. as n →∞;

Xn = OP (Un) :⇐⇒ ∀ε ∃C : P (|Xn| > C Un) 6 ε ∀n.

Xn = O(Un) a.s. :⇐⇒ ∃C : |Xn| 6 C Un a.s. ∀n,

where in the last line C might depend on the realization ω. In the almost sure case we
again also use Xn � Un a.s. instead of Xn = O(Un) a.s.

We also have the following rules of calculus:

Lemma A.2. Let now {Xn}, {Yn} be stochastic sequences, {Un}, {Vn} additionally al-
most surely positive, then it holds:

a) If we replace the deterministic Landau symbols with the corresponding almost sure
symbols, assertions (i)-(vii) of Lemma A.1 remain true.

b) If we replace o, O with oP respectively OP , assertions (i)-(v) of Lemma A.1 remain
true. In assertion (vi) we get Xn = OP (1) for Xn

P−→ X for some random variable
X, particularly it holds for any random variable X = OP (1). Assertion (vii) is in
general not fulfilled.

c) Xn = O(Yn) a.s. =⇒ Xn = OP (1)
and Xn = o(Yn) a.s. =⇒ Xn = oP (1).

Proof. For the almost sure convergence this follows immediately from the definitions
and Lemma A.1. The results for oP and OP are somewhat more difficult. Some details
can be found in van der Vaart [81], Section 2.2.



B. Some Useful Inequalities

In this appendix we state some inequalities we frequently use throughout this work. A
first section deals with Hájek–Rényi–type inequalities not only for the i.i.d. case but also
for dependent random variables. In a second section we give moment inequalities for
higher order moments of sums of possibly dependent random variables. This also leads
to upper bounds for higher order moments of the maximum of partial sums. Finally
one can use these moment inequalities to obtain a strong law of large numbers, which is
essential for the proof of Theorem 3.5.1, and even give a convergence rate.

B.1. Hájek–Rényi–Type Inequalities

The first lemma shows that the Hájek–Rényi inequality remains true for linear pro-
cesses. That result can be obtained from the inequality for i.i.d. random variables by
an application of the BN decomposition in Lemma C.1.

Lemma B.1. Let {bk} be a non-increasing positive sequence of constants, i.e. b1 > b2 >
. . . > bn > 0. If

e(i) =
∑
s>0

ws ε(i− s), i = 1, 2, . . .

is a linear process with i.i.d. innovations with existing second moment and∑
s>0

√
s |ws| < ∞,

the following inequalities hold:

a) P

(
max

k06k6n
bk

∣∣∣∣∣
k∑

i=1

e(i)

∣∣∣∣∣ > α

)
6

C

α2

k0b
2
k0

+
n∑

i=k0+1

b2
i

 .

b) P

(
max

k06k6n−l
bn−k

∣∣∣∣∣
n∑

i=k+1

e(i)

∣∣∣∣∣ > α

)
6

C

α2

(
lb2

l +
n−k0∑
i=l+1

b2
i

)
,

where C < ∞ is a constant only depending on the weights and the variance of the linear
process.

Proof. The proof of a) can be found in Bai [6], Proposition 1. The assumptions on the
weights are somewhat stronger there. Lemma C.1 and Remark C.1, however, show that



182 Some Useful Inequalities

the BN decomposition remains true under the above assumptions, i.e. there exists a
stationary process ẽ(·) with finite variance such that e(i) = ε(i)

∑
j>0 wj− ẽ(i)+ ẽ(i−1).

This gives
∑n

i=k+1 e(i) =
∑n

i=k+1 ε(i)
∑

j>0 wj + ẽ(k)− ẽ(n).
The proof of b) is analogous, yet we give it for the sake of completeness. It is also based
on the above BN decomposition. Because {bk} is non-increasing it holds bn−k 6 bl,
k 6 n−l, thus the Chebyshev inequality and the Hájek–Rényi inequality for independent
errors give

P

 max
k06k6n−l

bn−k

∣∣∣∣∣∣
n∑

j=k+1

e(j)

∣∣∣∣∣∣ > α


6 P

∣∣∣∣∣∣
∑
j>0

wj

∣∣∣∣∣∣ max
k06k6n−l

bn−k

∣∣∣∣∣∣
n∑

j=k+1

ε(j)

∣∣∣∣∣∣ > α/3


+

n−l∑
k=k0

P (bn−k|ẽ(k)| > α/3) + P (bl|ẽ(n)| > α/3)

6 P

∣∣∣∣∣∣
∑
j>0

wj

∣∣∣∣∣∣ max
l6k6n−k0

bk

∣∣∣∣∣∣
k∑

j=1

ε(n− j + 1)

∣∣∣∣∣∣ > α/3

+
C̃

α2

(
n−k0∑
k=l

b2
k + b2

l

)

6
C

α2

lb2
l +

n−k0∑
j=l+1

b2
j

 .

We turn now to a Hájek–Rényi–type inequality for possibly dependent random variables,
where the only assumption is one on the higher order moments of their partial sums.
That assumption is fulfilled for a large class of random variables, not surprisingly the
result is somewhat weaker.

Móricz et al. [65] , Theorem 3.1., give an approximation of higher order moments for the
maximum of partial sums. Going along the lines of their proof it is possible to obtain
a first result for moments of maxima of weighted partial sums as the following theorem
shows. For γ = 2 it was proven by Lavielle and Moulines [58].

Theorem B.1. Let {Y (i) : i ∈ N} be a sequence of random variables satisfying

E |Si,j |γ 6 C|j − i + 1|ϕ

for some γ > 1, ϕ > 1 and some constant C > 0, where Si,j =
∑j

l=i Y (l).

Then for any positive and non-increasing sequence b1 > b2 > . . . > bn > 0, there exists
a constant A(ϕ, γ) > 1 (only depending on ϕ and γ) with

E
[

max
k=1,...,n

(bk|S1,k|)
]γ

6 CA(ϕ, γ)nϕ−1
n∑

k=1

bγ
k ,

where C is as above.

Proof. The proof follows closely that of Theorem 3.1. in Móricz et al. [65].
For n = 1 the assertion is obviously right for any A(ϕ, γ) > 1. We prove the assertion
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for n > 1 by induction. Let m = bn
2 c+ 1, which gives

m− 1 6
n

2
, n−m 6

n

2
.

Moreover let Mi,j := maxk=i,...,j bk|Si,k|. Since for k > m it holds bk|S1,k| 6 bk(|S1,m|+
|S(m+1),k|) 6 bm|S1,m|+ bk|S(m+1),k|, we get

M1,n = max[M1,(m−1) , bm|S1,m| , max
k=m+1,...,n

bk|S1,k|]

6 bm|S1,m|+
(
Mγ

1,(m−1) + Mγ
(m+1),n

) 1
γ

.

Note that mbγ
m 6

∑m
i=1 bγ

i 6
∑n

i=1 bγ
i , which together with the Minkowski inequality

and the induction hypothesis gives

(EMγ
1,n)

1
γ

6 bm(E |S1,m|γ)
1
γ +

(
E(Mγ

1,(m−1)) + E(Mγ
(m+1),n)

) 1
γ

6 bm(Cmϕ)
1
γ +

(
A(ϕ, γ)C

[
(m− 1)ϕ−1

m−1∑
k=1

bγ
k + (n−m)ϕ−1

n∑
k=m+1

bγ
k

]) 1
γ

6

(
Cmϕ−1

n∑
i=1

bγ
i

) 1
γ

+

(
A(ϕ, γ)C

(n

2

)ϕ−1
[

m−1∑
k=1

bγ
k +

n∑
k=m+1

bγ
k

]) 1
γ

6

(
Cnϕ−1

n∑
k=1

bγ
k

) 1
γ
[
1 +

(
A(ϕ, γ)
2ϕ−1

) 1
γ

]
.

Now we only need to find a constant A(ϕ, γ) > 1 such that

1 +
(

A(ϕ, γ)
2ϕ−1

) 1
γ

6 A(ϕ, γ)
1
γ . (B.1)

By the assumption that ϕ > 1 it holds 1
2ϕ−1 < 1, which shows that equation (B.1) is

fulfilled for any constant

A(ϕ, γ) >

(
1− 1

2
ϕ−1

γ

)−γ

> 1.

This gives the assertion.

However, one gets an improved version if one uses the result by Móricz et al. [65] (i.e.
the above result for bj ≡ 1) and the following theorem by Fazekas and Klesov [29]:

Theorem B.2. Let α1, . . . , αn be non-negative numbers, {Y (i) : i ∈ N} a sequence of
random variables satisfying for each 1 6 m 6 n

E max
16j6m

|Sj |γ 6
m∑

j=1

αl

for some γ > 0, where Sj =
∑j

l=1 Y (l).
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Then for any positive and non-increasing sequence b1 > b2 > . . . > bn > 0 it holds

E
[

max
k=1,...,n

(bk|Sk|)
]γ

6 4
n∑

k=1

bγ
kαk.

Proof. Confer Theorem 1.1 in Fazekas and Klesov [29].

We now get an improved version of Theorem B.1.

Theorem B.3. Let {Y (i) : i ∈ N} be a sequence of random variables satisfying

E |Si,j |γ 6 C|j − i + 1|ϕ

for some γ > 1, ϕ > 1 and some constant C > 0, where Si,j =
∑j

l=i Y (l).

Then for any positive and non-increasing sequence b1 > b2 > . . . > bn > 0, there exists
a constant A(ϕ, γ) > 4 (only depending on ϕ and γ) with

E
[

max
k=1,...,n

(bk|S1,k|)
]γ

6 CA(ϕ, γ)
n∑

k=1

bγ
kkϕ−1,

where C is as above.

Proof. First of all Theorem B.1 with bj ≡ 1 gives

E
[

max
k=1,...,m

|S1,k|
]γ

6 CÃ(ϕ, γ)mϕ 6 C(ϕÃ(ϕ, γ))
m∑

k=1

kϕ−1,

since
∑m

l=1 lϕ−1 >
∫m
0 xϕ−1 dx = 1

ϕmϕ. Then Theorem B.2 gives

E
[

max
k=1,...,n

(bk|S1,k|)
]γ

6 C(4ϕÃ(ϕ, γ))
n∑

k=1

bγ
kkϕ−1,

which is the desired assertion.

A corresponding result for ϕ = 1 is given in the following theorem.

Theorem B.4. Let {Y (i) : i ∈ N} be a sequence of random variables satisfying

E |Si,j |γ 6 C|j − i + 1|

for some γ > 1 and some constant C > 0, where Si,j =
∑j

l=i Y (l) and b1 > b2 > . . . >
bn > 0 a positive and non-increasing sequence. Then

E
[

max
k=1,...,n

bk|S1,k|
]γ

6 4C(log(2n))γ
n∑

j=1

bγ
j

where C is as above.

Proof. Theorem 3 in Móricz [64] gives the result for bj ≡ 1. An application of Theo-
rem B.2 then gives the desired assertion.
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B.2. Moment Inequalities and Strong Law of Large Numbers

In this section we summarize some results on moment inequalities for strong-mixing
random sequences. Further we use these results to obtain a strong law of large numbers
for triangular arrays of dependent random variables.

First we give the definition for strong-mixing.

Definition B.1 (strong-mixing). Given a random sequence {Y (i) : i > 1}, let Am
n be

the σ-Algebra generated by {Y (i) : n 6 i 6 m}, and define the corresponding α-mixing
sequence by

αY (k) = sup
n

sup
A,B

|P (A ∩B)− P (A)P (B)| ,

where A and B vary over the σ-fields An
−∞ and A∞

n+k, respectively. We call αY (k)
the mixing coefficient. Note that in case the sequence {Y (·)} is strictly stationary, the
supn in this definition becomes redundant. The sequence {Y (·)} is called α-mixing or
strong-mixing if αY (k) → 0 as k →∞.

The following theorem gives a moment inequality for α-mixing random variables, which
are not necessarily stationary.

Theorem B.5. Let {Y (i) : i ∈ Z} be a random sequence with EY (i) = 0, i ∈ Z.
Assume there is a δ,∆ > 0, 2l 6 δ 6 2(l + 1), l = 0, 1, 2 . . ., with

E |Y (i)|2+δ+∆ 6 D1 for all i ∈ Z (B.1)

and
∞∑

k=0

(k + 1)2l+2αY (k)∆/(2l+4+∆) 6 D2(δ,∆), (B.2)

where αY is the corresponding mixing coefficient. Then it holds

E

∣∣∣∣∣
n∑

i=1

Y (i)

∣∣∣∣∣
2+δ

6 Γ(D1, D2, δ, ∆) n(2+δ)/2,

where Γ(D1, D2, δ, ∆) is a constant just depending on D1, D2, δ, and ∆.

Proof. Analogous to Politis et al. [73], Corollary A.0.1, p. 319.

The following theorem gives the corresponding result for stationary sequences. Here the
conditions on the α-mixing sequence is somewhat weaker.

Theorem B.6. Let {Y (i) : i ∈ Z} be a strictly stationary sequence with EY (i) = 0,
i ∈ Z. Assume there are δ,∆ > 0 with

E |Y (i)|2+δ+∆ 6 D1 for all i ∈ Z (B.3)

and there is a sequence α(k) with αY (k) 6 α(k), k ∈ N, and

∞∑
k=0

(k + 1)δ/2α(k)∆/(2+δ+∆) 6 D2(δ,∆), (B.4)
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where αY is the corresponding mixing coefficient. Then it holds

E

∣∣∣∣∣
n∑

i=1

Y (i)

∣∣∣∣∣
2+δ

6 Γ(D1, α, δ, ∆) n(2+δ)/2,

where Γ(D1, α, δ,∆) is a constant just depending on D1, α(k), k ∈ N, δ, and ∆.

Proof. Confer Yokoyama [83], Theorem 1.

Under some stronger assumptions, e.g. for martingale difference sequences, certain sta-
tionary and Φ-mixing sequences, certain stationary aperiodic Markov sequences, we do
not need the existence of a higher moment. Here, we give the result for independent
sequences; for the above examples and more details confer Stout [80], Theorem 3.7.8.

Theorem B.7. Let {Y (i) : i > 1} be a sequence of independent random variables with
EY (i) = 0, i > 1, satisfying E |Y (i)|2+δ 6 C, i > 1 for some δ > 0. Then, there is a
constant D such that

E

∣∣∣∣∣
n∑

i=1

Y (i)

∣∣∣∣∣
2+δ

6 D n(2+δ)/2,

where D only depends on C and δ.

Remark B.1. Again one can derive a corresponding result for linear processes us-
ing the BN decomposition. Let {e(·)} be a linear process fulfilling the assumptions of
Lemma C.1, particularly the innovations have a νth moment (ν > 2). Lemma C.1 then
gives for 0 < δ < ν − 2

E

∣∣∣∣∣
n∑

i=1

e(i)

∣∣∣∣∣
2+δ

6 D1 n(2+δ)/2 + D2 E |ẽ(0)|2+δ 6 D̃n(2+δ)/2.

Serfling [74] obtained moment inequalities for the maximum of partial sums as well as a
convergence rate in the strong law of large numbers in cases where moment inequalities
of the partial sums as above are fulfilled.

Theorem B.8. Under the conditions of Theorem B.5, B.6, B.7, or Remark B.1 it holds:

a) E

 max
l=1,...,n

∣∣∣∣∣∣
l∑

j=1

Y (j)

∣∣∣∣∣∣
2+δ
 6 D n(2+δ)/2,

where D only depends on δ and the joint distribution of the Y (i).

b)
1
n

∣∣∣∣∣∣
n∑

j=1

Y (j)

∣∣∣∣∣∣ = O

(
(log n)1/(2+δ)(log log n)2/(2+δ)

n1/2

)
a.s.

Proof. Confer Lemma B respectively Theorem 3.1 in Serfling [74].
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Remark B.2. Assertion b) of Theorem B.8 remains true for a triangular array that
fulfills uniformly the assertion in a).

Remark B.3. If we have a stationary time series with E |Y (i)|2+δ 6 D, i > 0, for some
δ,D > 0, and if αY (k) = O(k−2), then the invariance principle by Kuelbs and Philipp
in [56] and the law of iterated logarithm give

1
n

∣∣∣∣∣∣
n∑

j=1

Y (j)

∣∣∣∣∣∣ = O

(√
log log n

n

)
a.s.

The following strong law of large numbers is a consequence of Theorem B.8 b) and
Remark B.2. It can also be easily derived using a result as in Theorems B.5, B.6, or B.7
and the Markov inequality.

Corollary B.1. Let {Yn(i) : 1 6 i 6 n}n be a triangular array, which fulfills uniformly
the conditions of Theorem B.5, B.6, B.7, or Remark B.1 then as n →∞ we have:

1
n

n∑
i=1

Yn(i) → 0 a.s.

Proof. The Markov inequality gives

P

(
1
n

∣∣∣∣∣
n∑

i=1

Yn(i)

∣∣∣∣∣ > ε

)
6

1
n2+δε2+δ

E

∣∣∣∣∣
n∑

i=1

Yn(i)

∣∣∣∣∣
2+δ

� n−(1+δ/2).

The assertion follows, since
∑

n>1
1

n1+δ/2 < ∞.

Finally we give a weak law of large numbers for triangular arrays of row-wise independent
random variables, which we need to prove the validity of the bootstrap with replacement
in Chapter 2.

Lemma B.2. Let {Yn(i) : 1 6 i 6 n}n be a triangular array of row-wise independent
random variables. Let bn > 0 with bn → ∞, and let Ỹn(i) = Yn(i)1{|Yn(i)|6bn}. Suppose
that as n →∞

(i) P
(

max
i=1,...,n

|Yn(i)| > bn

)
→ 0, and

(ii) b−2
n

n∑
i=1

E Ỹn(i)2 → 0.

Then

1
bn

n∑
i=1

(Yn(i)− E Ỹn(i)) P−→ 0.

Proof. Confer Durrett [23], Chapter 1 (5.5). The proof remains true if we replace
condition (i) there with the somewhat weaker condition above.
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C. Beveridge-Nelson Decomposition of a
Linear Process

In this appendix we introduce a method of deriving asymptotics for linear processes,
which we use frequently in the present work. The key to the approach is an algebraic
decomposition of the linear filter into long-run and transitory elements. In the economet-
ric literature it is known as the Beveridge-Nelson or BN decomposition (confer Beveridge
and Nelson [8]). The method offers a simple unified approach to strong laws and central
limit theory for linear processes.

Phillips and Solo [71] put the method on a mathematical foundation and prove strong
laws of large numbers, central limit theorems and even a law of iterated logarithm by it.
We will now give a short description of it using the example of the strong law of large
numbers and state some more of the results by Phillips and Solo that are important for
this thesis, for details confer their paper [71].

Lemma C.1 (BN decomposition). Let {ε(·)} be a sequence of i.i.d. random variables
with zero mean and E |ε(0)|ν < ∞ for some ν > 2. Let {ws : s > 0} be weights satisfying∑

s>0

√
s|ws| < ∞.

Then the following decomposition holds:

e(i) :=
∑
s>0

ws ε(i− s) = ε(i)
∑
s>0

ws + ẽ(i− 1)− ẽ(i),

where {ẽ(·)} is a stationary process satisfying E |ẽ(0)|p < ∞ for any p < ν.

Remark C.1. If we only assume that {ε(·)} has a finite second moment, then we still
get the above decomposition. But we also only have a finite second moment of {ẽ(·)}. It
is also possible to use somewhat different assumptions on the weights. For details confer
Phillips and Solo [71].

Proof. Let

w̃s :=
∑
j>s

wj .

Then
∑

s>0 w̃2
s < ∞, since

∑
s>0

∑
j>s

wj

2

=
∑
s>0

∑
k>s

∑
l>s

wkwl =
∑
k>1

∑
l>1

wkwl min(k, l)

6

∑
k>1

√
k|wk|

2

< ∞.
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Thus an application of Kolmogorov´s three series theorem gives that
∑

s>0 w̃sε(i − s)
converges almost surely. Hence

ẽ(i) :=
∑
s>0

w̃sε(i− s)

is a stationary sequence. Now a simple calculation yields

e(i) = ε(i)
∑
s>0

ws + ẽ(i− 1)− ẽ(i).

For a proof of E |ẽ(0)|p < ∞ for all p < ν confer the proof of Theorem 3.3 in Phillips
and Solo [71].

We illustrate how the above lemma can be used to obtain results such as strong laws of
large numbers on the following Theorem:

Theorem C.1 (SLLN). Under the assumptions of Lemma C.1 it holds as n →∞

1
n

n∑
i=1

e(i) → 0 a.s.

Proof. As a consequence of the BN decomposition, Lemma C.1, it holds

1
n

n∑
i=1

e(i) =
∑
s>0

ws
1
n

n∑
i=1

ε(i) +
1
n

(ẽ(0)− ẽ(n)).

This shows that the strong law of large numbers for {e(·)} follows directly from the
strong law of large numbers for {ε(·)} as long as

n−1ẽ(0) → 0, n−1ẽ(n) → 0 a.s.

The Markov inequality shows that this is fulfilled because∑
n>1

P
(
n−1|ẽ(0)| > δ

)
6

1
δ2

E ẽ(0)2
∑
n>1

n−2 < ∞.

An analogous argument yields the almost sure convergence of n−1ẽ(n).

We give now two more results of Phillips and Solo [71] that we need in this work. The
proofs are also based on the BN decomposition, but we will not give the details here.

Theorem C.2 (LIL). Under the assumptions of Lemma C.1 it holds as n →∞

lim sup
n→∞

√
1

2τ2n log log n

n∑
i=1

e(i) = 1 a.s.

and lim inf
n→∞

√
1

2τ2n log log n

n∑
i=1

e(i) = 1 a.s.,

where τ2 =
(∑

s>0 ws

)2 var ε(0).

Proof. Confer Phillips and Solo [71], Theorem 3.3.
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Theorem C.3 (SLLN for covariances). Under the assumptions of Lemma C.1 it
holds for h > 0 as n →∞

1
n

n∑
i=1

e(i)e(i + h) → var ε(0)
∑
s>0

wsws+h a.s.

Particularly we have for the variance as n →∞

1
n

n∑
i=1

e(i)2 → var ε(0)
∑
s>0

w2
s a.s.

Proof. Confer Theorem 3.7 and Remark 3.9 of Phillips and Solo [71].
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D. A Weak Approximation to Permutation
and Exchangeable Processes

In this chapter we state an approximation by a Brownian bridge to permutation and
exchangeable processes. The proof is based on the Skorokhod embedding for martingales
and goes back to Einmahl and Mason [28], Theorem 1. It allows us to derive the
asymptotics for rank statistics as well as score processes from that of the statistics for
i.i.d. normal variables.

Theorem D.1. Let Zn = (Zn(1), . . . , Zn(n)), n = 1, 2, . . . , be a sequence of
n-dimensional random vectors satisfying

∑n
i=1 Zn(i) = 0,

1
n

n∑
i=1

E [|Zn(i)|ν ] 6 D, (D.1)

for some D > 0, ν > 2 and

1
n

n∑
i=1

(Zn(i))2 = 1 + OP

(
n−2s

)
, (D.2)

where s := min
(

ν−2
2ν , 1

4

)
. Then, on a rich enough probability space, there exists a se-

quence of stochastic processes {Πn(k) : 1 6 k 6 n} (n = 1, 2, . . .) with

{Πn(k) : 1 6 k 6 n} D=

{
k∑

i=1

Zn(Ri) : 1 6 k 6 n

}
,

where (R1, . . . , Rn) is a random permutation of (1, 2, . . . , n), independent of Zn, and
there is a fixed Brownian bridge {B(t) : 0 6 t 6 1} such that, for 0 6 µ < s,

max
16k<n

(
k(n− k)

n

)µ n√
k(n− k)

∣∣∣∣ 1√
n

Πn(k)−B(k/n)
∣∣∣∣ = OP (1).

The proof of the above theorem goes along the lines of Theorem 1 of Einmahl and
Mason [28], which gives the result for ν = 4. We only need to replace the Hájek-Rényi
inequality (cf. [28], p. 110) respectively Lemma 3 there with the following lemmas. The
details for Corollary D.1, i.e. in the case where Zn is a vector of scores, can be found in
Kirch [50], Theorem 5.1.1. It is also possible to derive the result from a generalization
by Häusler and Mason [42], Theorem 2.

Lemma D.1. Let M(0) = 0, M(1), . . . ,M(m), m > 1, be a mean 0, square-integrable
martingale, and a(1) > . . . > a(m) > 0 be constants. Then, for 1 < γ 6 2 and λ > 0,

P

(
max

16i6m
a(i)|M(i)| > λ

)
6 2γ−1 1

λγ

m∑
i=1

a(i)γ E |M(i)−M(i− 1)|γ .
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Proof. Confer Lemma 1 in Häusler and Mason [42], or Lemma 5.1.2 in Kirch [50]
together with Einmahl [27].

Lemma D.2. Let Zn = (Zn(1), . . . , Zn(n)) be random vectors with
∑n

i=1 Zn (i) = 0, and
(R1, . . . , Rn) be a random permutation independent of Zn as in Theorem D.2. Then, for
1 6 i 6 n and 1 6 γ 6 2,

E
∣∣∣ i∑

j=1

Zn (Rj)
∣∣∣γ 6 2 min (i, n− i)

1
n

n∑
j=1

E |Zn (j)|γ .

Proof. Confer Mason [63], the proof for rank statistics is given in Lemma 5.1.3 in
Kirch [50]. It remains valid in our situation: The case n = 1 is obvious, so let n > 2.
Moreover let Un (1) , . . . , Un (n) be i.i.d. random variables on {1, . . . , n} with

P (Un (l) = i) =
1
n

, i, l = 1, . . . , n.

Let 1 6 i 6 n/2. Hoeffding´s inequality (cf. Shorack and Wellner [75], p. 878) gives for
all 1 6 s 6 2

E

(∣∣∣∣∣
i∑

k=1

Zn (Rn (k))

∣∣∣∣∣
γ ∣∣∣Z) 6 E

(∣∣∣∣∣
i∑

k=1

Zn (Un (k))

∣∣∣∣∣
γ ∣∣∣Z) .

The von Bahr-Esseen inequality (cf. [75], p. 858) now gives

E

(∣∣∣∣∣
i∑

k=1

Zn (Un (k))

∣∣∣∣∣
γ ∣∣∣Z) 6 2

i∑
k=1

E
(
|Zn (Un (k))|γ

∣∣∣Z) =
2i

n

n∑
j=1

|Zn (j)|γ .

Taking expectations on both sides now gives the assertion.

For n/2 < i < n we also get the assertion, since

i∑
k=1

Zn (Rn (k)) = −
n∑

k=i+1

Zn (Rn (k)) .

The case i = n is trivial, since the left side is equal to 0.

In this work we need two special cases of the above theorem, which we state in two
corollaries. The first one is for rank statistics and an immediate consequence of the
theorem. We need it to obtain the rank asymptotics which in turn help prove the
permutation statistic results.

Corollary D.1. Let bn(1), . . . , bn(n) be scores satisfying

σ2
n(b) :=

1
n

n∑
i=1

(
bn(i)− b̄n

)2
> D1, (D.3)

and

1
n

n∑
i=1

∣∣bn(i)− b̄n

∣∣ν 6 D2, (D.4)
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Then, on a rich enough probability space, there is a sequence of stochastic processes
{Πn(k) : 1 6 k 6 n} (n = 1, 2, . . .) with

{Πn(k) : 1 6 k 6 n} D=

{
1√

σ2
n(b)

k∑
i=1

(
bn(Ri)− b̄n

)
: 1 6 k 6 n

}
,

where (R1, . . . , Rn) is a random permutation of (1, 2, . . . , n), b̄n = 1
n

∑n
i=1 bn(i), and

there is a fixed Brownian bridge {B(t) : 0 6 t 6 1} such that, for 0 6 µ < min
(

ν−2
2ν , 1

4

)
,

max
16k<n

(
k(n− k)

n

)µ n√
k(n− k)

∣∣∣∣ 1√
n

Πn(k)−B(k/n)
∣∣∣∣ = OP (1).

Proof. Follows immediately from Theorem D.1 by choosing Zn(i) := 1
σn(b)(bn(i)− b̄n).

The second corollary is also a consequence of the above theorem. We need it to prove
the bootstrapping results with replacement.

Corollary D.2. Let bn(1), . . . , bn(n) be scores satisfying (D.3) and (D.4). Then, on a
rich enough probability space, there is a sequence of stochastic processes {En(k) : 1 6 k 6 n}
(n = 1, 2, . . .) with

{En(k) : 1 6 k 6 n} D=

{
1√

σ2
n(b)

k∑
i=1

(
bn(Ui)− b̄U,n

)
: 1 6 k 6 n

}
,

where {Ui : i = 1, . . . , n} is a triangular array of rowwise i.i.d. random variables uni-
formly distributed on {1, 2, . . . , n}, b̄n = 1

n

∑n
i=1 bn(i), b̄U,n = 1

n

∑n
i=1 bn(Ui), and there

is a fixed Brownian bridge {B(t) : 0 6 t 6 1} such that, for 0 6 µ < min
(

ν−2
2ν , 1

4

)
,

max
16k<n

(
k(n− k)

n

)µ n√
k(n− k)

∣∣∣∣ 1√
n
En(k)−B(k/n)

∣∣∣∣ = OP (1).

Proof. We show that the assumptions of Theorem D.1 are fulfilled for Zn(i) = 1
σn(b)(bn(Ui)−

b̄U,n). This yields the assertion because

(Zn(1), . . . , Zn(n)) D= (Zn(R1), . . . , Zn(Rn)),

where (R1, . . . , Rn) is a random permutation of (1, . . . , n) independent of {Ui : i =
1, . . . , n}.

Let s := min
(

ν−2
2ν , 1

4

)
and note that

b̄n − b̄U,n =
1
n

n∑
i=1

(bn(Ui)− b̄n) = OP (n−s), (D.5)

because the Markov inequality gives

P
(
|b̄n − b̄U,n| > C/ns

)
6

n2s

C2
var

(
1
n

n∑
i=1

(bn(Ui)− b̄n)

)
� n2s−1

C2
→ 0.
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Furthermore the Minkowski inequality gives

E |b̄n − b̄U,n|ν 6 E |bn(U1)− b̄n|ν 6 D2.

Thus we get

1
n

n∑
i=1

E |Zn(i)|ν � 1
|σn(b)|ν

(
E |bn(U1)− b̄n|ν + E |b̄n − b̄U,n|ν

)
� 1.

Moreover the Markov inequality additionally to the von Bahr-Esseen inequality (cf. e.g.
Shorack and Wellner [75], p. 858) gives (r := min(ν, 4))

P

∣∣∣∣∣
n∑

i=1

[
(bn(Ui)− b̄n)2 − 1

n

n∑
j=1

(bn(j)− b̄n)2
]∣∣∣∣∣ > C/n2s−1


6

nsr−r/2

Cr/2
E

∣∣∣∣∣
n∑

i=1

[
(bn(Ui)− b̄n)2 − 1

n

n∑
j=1

(bn(j)− b̄n)2
]∣∣∣∣∣

r/2

6
1

Cr/2
2r/2−1 E

∣∣∣∣(bn(Ui)− b̄n)2 − 1
n

n∑
j=1

(bn(j)− b̄n)2
∣∣∣∣r/2

� 1
Cr/2

(
1
n

n∑
i=1

|bn(i)− b̄n|r + (1 + D2)r/2

)
� 1

Cr/2
,

note that sr − r/2 + 1 = 0. This now gives together with (D.5)

1
n

n∑
i=1

(
1

σn(b)
(bn(Ui)− b̄U,n)

)2

= 1 + OP (n−2s), (D.6)

because

1
n

n∑
i=1

(
1

σn(b)
(bn(Ui)− b̄U,n)

)2

− 1

=
1

σ2
n(b)

1
n

n∑
i=1

[
(bn(Ui)− b̄n)2 − 1

n

n∑
j=1

(bn(j)− b̄n)2
]
− 1

σ2
n(b)

(b̄U,n − b̄n)2

= OP (n−2s).



E. Some Results on Rank Statistics

In this chapter we give some simple linear rank statistic results that we need in the
proofs of Chapter 4. For a detailed discussion of the subject confer the book by Hájek
et al. [40].

The first lemma gives closed formulas for some moments of linear rank statistics.

Lemma E.1. Consider the following two simple linear rank statistics:

S1 =
n∑

i=1

c(i)a(Ri), S2 =
n∑

i=1

d(i)b(Ri),

where c(·), a(·), d(·) and b(·) are some vectors and (R1, . . . , Rn) is a random permutation
of (1, . . . , n). Then it holds

a) var S1 =
1

n− 1

n∑
i=1

(a(i)− ā)2
n∑

j=1

(c(j)− c̄)2,

b) cov(S1, S2) =
1

n− 1

n∑
i=1

(a(i)− ā)(b(i)− b̄)
n∑

j=1

(c(j)− c̄)(d(j)− d̄),

c) E(S1 − ES1)4 = 3
(n− 1)3

n + 1
(σ2

a)
2(σ2

c )
2 +

(n− 1)(n− 2)(n− 3)
n(n + 1)

k4ak4c,

where ā = 1
n

∑n
i=1 a(i), σ2

a = 1
n−1

∑n
i=1(a(i)− ā)2 and

k4a =
1

(n− 1)(n− 2)(n− 3)

[
n(n + 1)

n∑
i=1

(a(i)− ā)4 − 3(n− 1)3(σ2
a)

2

]

and analogous expressions for b, c, d.

Proof. Confer Hájek et al. [40], Theorems 3.3.3 and 3.3.4 and problem 25 in Section 3.3.

The next theorem gives necessary and sufficient conditions for asymptotic normality of
simple linear rank statistics.

Theorem E.1. The simple linear rank statistic Sn =
∑n

i=1 c(i)a(Ri) is asymptotically
normal, if the Lindeberg condition

lim
n→∞

1
n

∑
|δnij |>τ

δ2
nij = 0 for any τ > 0
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with

δnij = (c(i)− c̄)(a(j)− ā)

 1
n

n∑
i=1

(c(i)− c̄)2
n∑

j=1

(a(j)− ā)2

−1/2

is fulfilled.
If additionally the Noether conditions∑n

i=1(a(i)− ā)2

maxi=1,...,n(a(i)− ā)2
→∞,

∑n
i=1(c(i)− c̄)2

maxi=1,...,n(c(i)− c̄)2
→∞

hold, then the Lindeberg condition is also necessary.
Furthermore the Lindeberg condition implies the Noether condition.

Proof. Confer Hájek et al. [40] Section 6.1., problems 2 and 3, p. 241 and Hájek [39].
Hájek [39], Theorem 5.1, shows that the Lindeberg condition implies the Noether con-
dition.



F. Some Results from Change-Point
Analysis

In this appendix we state some well-known facts from change-point analysis that we use
throughout this work.

The first lemma gives conditions under which the limit distribution remains the same
even if one only considers the maximum over fewer elements.

Lemma F.1. Let αn, βn be sequences of positive numbers, βn →∞, and An, Bn random
variables satisfying An = o(βn/αn), then it holds for all y ∈ R

|P (αn max(An, Bn)− βn 6 y)− P (αnBn − βn 6 y)| → 0

as n →∞.

Proof. First it holds

P (αn max(An, Bn) 6 y + βn) 6 P (αnBn 6 y + βn) ,

moreover for all y there exists N(y) with y/βn + 1 > 1/2 for all n > N(y). Thus

P (αn max(An, Bn) 6 y + βn) > P (αnBn 6 y + βn) + P

(
αn

βn
An 6

1
2

)
− 1

> P (αnBn 6 y + βn)− ε

for n large enough. The proof can already be found in Lemma 4.1.1 in Kirch [50].

Now we state some results involving the weight functions q(·) we use for the q-weighted
CUSUM statistics and r(·) we use for the sum statistics (confer Section 3.2):

Lemma F.2. Let q ∈ FC1
0 and∫ 1

0

t(1− t)
q4(t)

dt < ∞ or∫ 1

0

1
q2(t)

dt.

Then I∗(q, c) < ∞ for all c > 0.

Proof. The proof for squared q can be found in Csörgő and Horváth [18], Corollary 1.3.
The proof for the first integral is analogous to the proof given there. Note that for all
c > 0 and x > 0

x2 exp(−cx) 6
4

c2e2
,
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which gives

∫ 1

0

1
t(1− t)

exp
(
−c

q2(t)
t(1− t)

)
dt =

∫ 1

0

t(1− t)
q4(t)

q4(t)
t2(1− t)2

exp
(
−c

q2(t)
t(1− t)

)
dt

6
4

c2e2

∫ 1

0

t(1− t)
q4(t)

dt < ∞

Lemma F.3. a) If q ∈ Q0,1 and I∗(q, c) < ∞ for some c > 0, it holds

lim
t→0

√
t

q(t)
= 0 = lim

t→1

√
1− t

q(t)
.

b) If q ∈ Q0,1 and I∗(q, c) < ∞ for all c > 0, it holds

lim
t→0

|B(t)|
q(t)

= 0 = lim
t→1

|B(t)|
q(t)

a.s.

c) If r(·) is positive on (0, 1) and 0 6 p < ∞, then the following statements are equiva-
lent: ∫ 1

0

(t(1− t))p/2

r(t)
dt < ∞∫ 1

0

|B(t)|p

r(t)
dt < ∞ a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Proof. For a) confer Csörgő and Horváth [18], Chapter 4, Corollary 1.1, for b) Corollary
1.2 and for c) Chapter 5, Lemma 3.2.
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[55] Komlós, J., Major, P., and Tusnády, G. An approximation of partial sums of
independent rv´s and the sample df. ii. Z. Wahrsch. verw. Geb., 34:33–58, 1976.

[56] Kuelbs, J., and Philipp, W. Almost sure invariance principles for partial sums of
mixing b-valued random variables. Ann. Probab., 8:1003–1036, 1980.

[57] Künsch, H.R. The jackknife and the bootstrap for general stationary observations.
Ann. Statist., 17:1217–1241, 1989.

[58] Lavielle, M., and Moulines, E. Least-squares estimation of an unknown number of
shifts in a time series. J. Time Ser. Anal., 21:33–59, 2000.

[59] Leadbetter, M.R., Lindgren, L., and Rootzén, H. Extremes and Related Properties
of Random Sequences and Processes. Springer, New York, 1983.

[60] Liu, R.Y., and Singh, K. Moving blocks jackknife and bootstrap capture weak de-
pendence. In LePage, R. and Billard, L., editors, Exploring the Limits of Bootstrap,
pages 225–248, New York, 1992. Wiley.
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Mandl,P. and Hušková, M., editors, Asymptotic Statistics, pages 447–457, Heidel-
berg, 1994. Physica-Verlag.

[79] Steinebach, J. Some remarks on the testing of smooth changes in the linear drift of
a stochastic process. Theory Probab. Math. Statist., 61:164–175, 1999.

[80] Stout, W.F. Almost Sure Convergence. Academic Press, New York, 1974.

[81] van der Vaart, A.W. Asymptotic Statistics. Cambridge University Press, Cambridge,
1998.

[82] Withers, C.S. Conditions for linear processes to be strong-mixing. Z. Wahrsch.
verw. Geb., 57:477–480, 1981.

[83] Yokoyama, R. Moment bounds for stationary mixing sequences. Z. Wahrsch. verw.
Geb., 52:45–57, 1980.





Notation 209

Notation

Real and Complex Numbers

bxc integer part of x, largest integer n 6 x

dxe smallest integer n > x

x+ positive part, max(x, 0)
x ∨ y maximum of x and y

x ∧ y minimum of x and y

o, O Landau symbols, confer Appendix A
an � bn an = O(bn), confer Appendix A
〈 , 〉 standard scalar product on Rn

1A indicator function, = 1 on A, = 0 else

a + ib conjugated complex, = a− ib

Re(z) real part of z

Im(z) imaginary part of z

Probability

a.s. almost surely
i.i.d. independent and identically distributed
r.v. random variable
EX expectation of X

var X variance of X

cov(X, Y ) covariance of X and Y

E(X|Y ) conditional expectation of X given Y (the σ-algebra generated by Y )
P (A|Y ) conditional probability, = E(1A|Y )
oP , OP Landau symbols, confer Appendix A
an � bn a.s. an = O(bn) a.s., confer Appendix A

P−→ converges in probability
D−→ converges weakly, in distribution

X
D= Y X and Y have the same distribution

Xn
D= Yn + oP (γn) there exist Z

(j)
n = oP (γn), j = 1, 2, such that Xn + Z

(1)
n

D= Yn + Z
(2)
n ;

this means in particular that Xn/γn has the same distributional
asymptotics as Yn/γn
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