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Abstract

Biological systems and processes rely on a complex network of molecular interactions.
The association of biological macromolecules is a fundamental biochemical phenomenon
and an unsolved theoretical problem crucial for the understanding of complex living
systems. The term protein-protein docking describes the computational prediction of
the assembly of protein complexes from the individual subunits. Docking algorithms
generally produce a large number of putative protein complexes. In most cases, some of
these conformations resemble the native complex structure within an acceptable degree
of structural similarity. A major challenge in the field of docking is to extract the near-
native structure(s) out of this considerably large pool of solutions, the so called scoring
or ranking problem. It has been the aim of this work to develop methods for the efficient
and accurate detection of near-native conformations in the scoring or ranking process
of docked protein-protein complexes. A series of structural, chemical, biological and
physical properties are used in this work to score docked protein-protein complexes.
These properties include specialised energy functions, evolutionary relationship, class
specific residue interface propensities, gap volume, buried surface area, empiric pair
potentials on residue and atom level as well as measures for the tightness of fit. Efficient
comprehensive scoring functions have been developed using probabilistic Support
Vector Machines in combination with this array of properties on the largest currently
available protein-protein docking benchmark. The established scoring functions are
shown to be specific for certain types of protein-protein complexes and are able to detect
near-native complex conformations from large sets of decoys with high sensitivity. The
specific complex classes are Enzyme-Inhibitor /Substrate complexes, Antibody-Antigen
complexes and a third class denoted as "Other" complexes which holds all test cases
not belonging to either of the two previous classes. The three complex class specific
scoring functions were tested on the docking results of 99 complexes in their unbound
form for the above mentioned categories. Defining success as scoring a ’true’ result
with a p-value of better than 0.1, the scoring schemes were found to be successful in
93%, 78% and 63% of the examined cases, respectively. The ranking of near-native
structures can be drastically improved, leading to a significant enrichment of near-
native complex conformations in the top ranks. It could be shown that the developed

scoring schemes outperform five other previously published scoring functions.
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Zusammenfassung

Biologische Systeme beruhen auf komplexen Netzwerken molekularer Interaktionen.
Die Interaktion biologischer Makromolekiile stellt ein fundamentales biochemisches
Phinomen dar, sowie ein ungelostes theoretisches Problem von herausragender
Bedeutung fiir das Verstiandnis komplexer lebender Systeme. Als Protein-Protein
Docking wird die computergestiitze Vorhersage der Assoziation von Proteinkomplexen
aus den individuellen Untereinheiten bezeichnet. Dockingalgorithmen produzieren
im Allgemeinen eine sehr hohe Anzahl hypothetischer Komplexanordnungen, von
denen meist nur einige wenige der korrekten, nativen Losung &hnlich sind. Eine der
grossen Herausforderungen im Bereich des Dockings besteht im Herausfiltern der
wenigen nahe-nativen Strukturen aus der grossen Menge von Lésungsvorschligen.
Dieses wird auch als Scoring- oder Rankingproblem bezeichnet. Ziel dieser Arbeit war
es, Methoden zur effizienten und akkuraten Detektion von nahe-nativen Losungen

wahrend der Bewertungsphase von gedockten Proteinkomplexen zu entwickeln.

Eine Reihe von strukturellen, chemischen, biologischen und physikalischen Parame-
tern wurde verwendet, um Komplexanordungen, wie sie als Losungsvorschlige eines
Dockingalgorithmus enstehen, zu bewerten. Diese Bewertungsschemata beinhalten
spezialisierte Energiefunktionen molekularer Fragmente, evolutiondre Verwandtschaft,
komplexklassenspezifische Wahrscheinlichkeitsverteilungen von Residuen, Liickenvolu-
men, die Grosse der verborgenen Oberflache, emprische Paarpotentiale auf atomarer
und Aminosdurebene sowie ein Mass fiir die Festigkeit der Bindung. Unter Verwendung
des derzeit grossten Datensatzes von Protein-Protein Docking Testféllen wurden Ver-
fahren des {iberwachten maschinellen Lernens in Form von probabilistischen Support
Vector Machines trainiert,s um umfassende effiziente Bewertungsfunktionen fiir drei
spezifische Klassen von Proteinkomplexen zu erstellen. Bei diesen Dockingklassen
handelt es sich um Enzym-Inhibitor bzw. Enzym-Substrat und Antikérper-Antigen
Komplexe sowie eine dritte Klasse, der alle weiteren Testfélle zugordnet werden, die
keiner der beiden bisherigen Kategorien angehoren. Die entwickelten Bewertungs-
funktionen sind hochspezifisch fiir die einzelnen Kategorien von Proteinkomplexen
und in der Lage, nahe-native Losungen mit hoher Sensitivitit aus einer grossen

Anzahl potentieller Komplexanordnungen heraus zu erkennen. Eine Sortierung der
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Losungsvorschlige durch Anwendung der Bewertungsfunktionen fiithrt zu einer sig-
nifikanten Anreicherung von nahe-nativen Komplexen in den oberen Réngen. Die
drei entwickelten spezifischen Bewertungsfunktionen wurden an Dockingergebnissen fiir
99 Testfille erprobt, bei denen versucht wird, native Komplexe aus den ungebunden
Strukturen der einzelnen Untereinheiten vorherzusagen. Definiert man ein “korrektes”
Ergebnis iiber einen Wahrscheinlichkeitswert (p-value) von 0,1 oder besser, so sind
die entwickelten Bewertungsfunktionen in 93%, 78% und 63% der untersuchten Fille
erfolgreich. Ein Vergleich mit fiinf publizierten Bewertungsfunktionen fiir Protein-
Protein Docking zeigt, dass die komplexklassenspezifischen Bewertungsfunktionen den

jeweils einzelnen Methoden in der Anwendung iiberlegen sind.

VI



Definitions and abbreviations

ASA
Angstr(zjm
spec™
spect
acc
ACE
AUC
avg.
avgTF
BSV
BurSurf

CAPRI

Cons
ConsOE

fn

fp

fval
GapVol

geo
IF
mcc
NhcR
NhvR

PairPot
pred
red.
RIP
RIP 44
RIPg;
RIPy N
RMSD

accessible surface area

1A=10""m

specifictiy; reliability of false/negative predictions

specificity; reliability of true/positive predictions

accuracy

atomic contact energies; an atom-atom pair potential

area under the curve

average

scoring scheme based on average temperature factor in the interface area
Bounded Support Vectors

buried surface area; are occluded from solvent by contact surfaces of
complexed proteins

Critical Assessment of PRedicted Interactions; academic challenge for blind
protein interaction predictions

protein docking scoring scheme based on amino acid conservation scores
protein docking scoring scheme based on amino acid conservation scores
with an over emphasis on residues with a high interface propensity

false negative

false positive

f-value; harmonic average between sensitivity and specificity

gap volume; volume inbetween and delimited by contact surface of two or
more proteins

score/rank according to geometric fit

improvement factor

Matthews correlation coefficient

number of highly conserved residues

number of highly variable residues

probability

atom-atom pair potential

score/rank according to SVM predictor

reduction

residue interface propensities

residue interface propensities for Antibody-Antigen complexes

residue interface propensities for Enzyme-Inhibitor/Substrate complexes
residue interface propensities; universally applicable

root mean square deviation; a measure for structural similarity
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RMSD; ¢,
ROC

Rpscore
SE

sens

SV

SVM
SVMAbAg
SVMEg;

SVMOth

tn

ToF
ToFynr
ToF gy
ToF 44

tp

Aminoacids

Alanine
Cysteine
Asgpartate
Glutamate
Phenylalanine
Glycine
Histidine
Isoleucine
Lysine
Leucine
Methionine
Asparagine
Proline
Glutamine
Arginine
Serine
Threonine
Valine
Tryptophane
Tyrosine

root mean square deviation of interface C-alpha atoms

Receiver Operator Characteristics; plot of true positive against false posi-
tive rate

an empiric residue-residue pair potential

solvent effect

sensitivity

Support Vectors

Support Vector Machines; a machine learning method

SVM-based scoring scheme developed for Antibody-Antigen complexes
SVM-based scoring scheme developed for Enzyme-Inhibitor /Substrate cim-
plexes

SVM-based scoring scheme developed for complexes of type "Other" (non-
Antibody-Antigen and non-Enzyme-Inhibitor /Substrate complexes)

true negatve

Tightness of Fit; a scoring scheme for docked protein-complexes
Tightness of Fit; universally applicable

Tightness of Fit; specialised for Enzyme-Inhibitor/Substrate complexes
Tightness of Fit; specialised for Antibody-Antigen complexes

true positive

ALA
CYS
ASP
GLU
PHE
GLY
HIS
ILE
LYS
LEU
MET
ASN
PRO
GLN
ARG
SER
THR
VAL
TRP
TYR
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1 Introduction

"He has half the deed done who has made a beginning."

Horace, 65-8 B.C.

According to the conventional definition of life, an organism in question must exhibit
the following five stages of a living system at least once during their existence: growth,
motion, reproduction, metabolism, and response to stimuli. These parameters alone,
however, may be inadequate for proper classification without further specification.
For example, a mule is a living system, yet it cannot reproduce. Conversely, a non-
living entity such as fire may experience all five stages on some level. Biochemistry
focuses specifically on the aspect of metabolism to define a living system and implies
that the energy gained through metabolism is utilised to maintain the living state
by flowing into a coordinated regulatory network of molecular interactions. This
network is the fundamental basis for reactivity and all the other phenomena used
in the conventional definition of a living system. Implicitly, a huge quantity of the
ongoing processes in every living organism are based on, regulated or mediated by
molecular recognition mechanisms, thus the activity of a living cell can be portrayed
as a network of interactions. Such an interaction network could never be coordinated
without a high level of specificity. The specificity is mostly provided by the enormous
structural and physico-chemical variability of biological macromolecules like proteins
and nucleic acids, that are involved in the transfer of biological information.

Protein-protein interactions play a significant role in these processes for example in
signal cascades or gene regulation. In the proteomics era, where experimental high-
throughput methods like e.g. the yeast two-hybrid system yield growing amounts of
putative protein interaction data, the large quantity of data can no longer be handled
by experimental methods alone. Instead it requires the computer aided simulation
methods of bioinformatics to complement this knowledge. The exploration, under-
standing and detailed knowledge of complete protein interaction networks can only be
achieved by combining the often time consuming experimental methods like structure

solution by X-ray crystallography or NMR spectroscopy with the data management



2 Introduction

facilities and theoretical predictions provided by bioinformatics. Predictive methods for
protein-protein interactions are of special interest and importance where experimental
methods fail, e.g. for such short-term transient interactions which are not accessible
by the mentioned experimental methods due to their low stability and short half-life
(Eisenstein and Katchalski-Katzir, 2004).

1.1 Protein-protein assemblies

Protein-protein interactions play diverse roles in biology and differ based on the com-
position, affinity and half-life of the association. In vivo, the localisation, concentration
and local environment of a protomer (subunit of an oligomeric protein complex) can
affect the interaction between protein domains and are vital to control the composition
and oligomeric state of protein complexes. Since a change in quaternary structure is
often coupled with biological function or activity, transient protein-protein interactions

are important biological regulators.

1.1.1 Types of protein-protein interactions

Protein-protein interactions are often categorised into distinct types according to their

composition, in vivo stability and lifetime (Nooren and Thornton, 2003a):

e Homo- and hetero-oligomeric complexes

Protein-protein interactions occur between identical or non-identical chains
(i.e. homo- or hetero-oligomers). Oligomers of identical or homologous protomers
can be organised in an isologous or heterologous way. An isologous association
involves the same surface on two monomers forming an interface with matching
surfaces (e.g. Arc repressor and lysin; Figure 1.1 (a) and (c)), related by a 2-fold
symmetry axis. In contrast to an isologous association that can only further
oligomerise using a different interface (e.g. form a dimer of dimers with three
2-fold axes of symmetry), heterologous assemblies use different interfaces that,
without a closed (cyclic) symmetry, can lead to infinite aggregation (cf. Figure
1.2 (a,b)).
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e Non-obligate and obligate complexes

As well as composition, two different types of protein-protein complexes can be
distinguished on the basis of whether a complex is obligate or non-obligate. In
an obligate protein-protein interaction, the protomers are not found as stable
structures on their own in vivo.

Such complexes are generally also functionally obligate; for example, the Arc
repressor dimer (Figure 1.1 (a)) is essential for DNA binding. Many of the hetero-
oligomeric structures in the PROTEIN DATA BANK (PDB) (Berman et al., 2000)
involve non-obligate interactions of protomers that exist independently, such
as intracellular signaling complexes and antibody-antigen, receptor-ligand and
enzyme-inhibitor (e.g. thrombin-rhodniin; Figure 1.1 (e)) complexes. The
components of such protein-protein complexes are often initially not co-localised
and thus need to be independently stable. However, some homo-oligomers, which
by definition are co-localised, can also form non-obligate assemblies (e.g. sperm

lysin; Figure 1.1 (c)).

e Transient and permanent complexes

Protein-protein interactions can also be distinguished based on the lifetime of
the complex. In contrast to a permanent interaction that is usually very stable
and thus only exists in its complexed form, a transient interaction associates and
dissociates in vivo. One can distinguish between weak transient interactions that
feature a dynamic oligomeric equilibrium in solution, where the interaction is
broken and formed continuously (e.g. lysin; Figure 1.1 (c)), and strong transient
associations that require a molecular trigger to shift the oligomeric equilibrium.
Structurally or functionally obligate interactions are usually permanent, whereas

non-obligate interactions may be transient or permanent.

It is important to note that many protein-protein interactions cannot be classified
according to such unique distinct types. Rather, a continuum exists between non-
obligate and obligate interactions (Nooren and Thornton, 2003b), and the stability of
all complexes is highly dependant on the physiological conditions and environment.

An interaction may be mainly transient in vivo but become permanent under certain
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(a) Imyk (b) lyw

(c) 1lyn (d) 1ppf

(e) 1tbr (f) 1kkl

Figure 1.1: Selected examples for protein-protein interaction types (4-letter PDB-
identifier given): (a) obligate homomeric complex: P22 ARC repressor, (b) obligate
heteromeric complex: human cathepsin D, (c) non-obligate homomeric complex:
sperm lysin, (d) non-obligate heteromeric complex: human leukocyte elastase / turkey
ovomucoid inhibitor, (e) non-obligate permanent heteromeric complex: thrombin /
rhodniin inhibitor, (f) non-obligate transient heteromeric complex: L. casei protein
kinase Hprk / B. subtilis Hpr (obligate permanent interaction in Hprk trimer (red),
transient binding to Hpr (green)).
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(a) lewp (b) lcwp-assumed biological unit

Figure 1.2: Selected examples for protein-protein interaction types (4-letter PDB-
identifier given): (a) trimeric unit of viral coat protein: cowpea chlorotic mottle virus
(b) assumed biological unit of viral coat protein: spherical virus capsid (consisiting
of 60 trimeric units as depicted in (a), identical colour coding)

cellular conditions (Nooren and Thornton, 2003a). Folding data, as well as data on
the dynamics of the assembly at different physiological conditions or environments,
are often not available. However, the sub cellular localisation of subunits and the
function of the protein will often suggest the biologically relevant type of interaction.
For example, interactions in intracellular signaling are expected to be transient, since
their function requires a ready association (Rittinger et al., 1997b,a). Ultimately,
all interactions and complexation processes are driven by the concentration of the

components and the free energy of the complex relative to alternate states.

1.1.2 Specificity of protein-protein interactions

The specificity of protein-protein interaction is composed of two major factors: the
possibility of forming a more or less stable binding to its predestined binding partner(s)
and the potentially lower possibility of association to other protomers in an equally
stable and favorable way. It is well known that the binding specificity of protein-
protein interactions is mostly accomplished by relatively small structural changes in
the contact area of the binding partners - the so called interface region - rather than

spacious structural rearrangements (Sear, 2004). A single point mutation leading to
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an amino acid change in the interface region of any of the binding partners can cause
a complete loss or change of binding specificity as well as create an entirely new one.
The consequences of such a change in binding specificity can be quite drastic as the

following prominent examples of human hereditary diseases show:

(i) An example for a reduction or loss in binding specificity due to a single amino
acid change is osteogenesis imperfecta, commonly known as the "brittle bone"
disorder, a genetic disorder characterised by bones that break easily, often from
little or no apparent cause. The molecular cause for this disease is a defective
collagen assembly (Vogel et al., 1987). Collagen is a family of related structural
proteins which are vital to the integrity of many tissues including skin and bones.
The mature collagen molecule is comprised of three peptide chains wound in a
triple helix. In order to form the triple helix, collagen peptide chains have a
special repeating structure consisting of a specific three amino acid pattern. A
point mutation which, by changing a single amino acid, disrupts that pattern,
will either disturb the association of chains or prevent the triple helix formation
and may have very severe consequences. One mutant chain can disrupt a triple
helix with two wild type chains, effectively disturbing the functional unit in its

stabilising efficacy.

(ii) The single substitution of valine for glutamic acid at position six of the beta-
globin polypeptide chain in human haemoglobin gives rise to sickle cell anaemia
in homozygote individuals. The modified chain reveals an extended binding
specificity to itself and therefore develop a tendency to crystallise at low oxygen
concentrations, forming threads of haemoglobin molecules which in turn evoke
the sickle-like shape of erythrocytes that gave the disease its name (Rodgers,
1997).

Often, proteins are only biologically active in the complexed oligomeric state. A loss
of the ability to form the relevant oligomer therefore can lead to a loss in biological
activity, as it has been described by Bennett et al. (1994) for a single amino acid
substitution in dimeric proteins.

Single mutations on primary structure level that lead to a loss of the binding affinity of
transcription factors can even lead to gene knockout (Rausa et al.; 2004). The ability

of introducing an entirely new binding specificity by a single point mutation without
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taking the intermediate stage of a non-specific interface is a critical pre-requisite for
the evolution of interfaces (Xu et al., 1998) (see section 1.1.3).

1.1.3 Evolution of protein-protein interactions

The structure and affnity of a protein-protein interaction is tuned to its biological
function as well as the physiological environment and control mechanism. Protein-
protein interactions presumably evolve to optimise functional efficacy. Not necessarily
are strong interactions involved, since weak transient interactions that are efficiently
controlled are of similar importance in cellular processes. Obligate complexes may
simply reflect the need for stability or the evolution of a function that requires
both protomers. For example, symmetric DNA-binding modules, designed to bind
to an equally symmetric macromolecule, or inter-subunit active sites with catalytic
residues on different subunits, that would be inactive as separate proteins. While some
oligomerisations are obligate from a functional perspective, others may seem incidental
to function (e.g. oligomerisation of cytokines whose primary function lies in receptor
binding as a monomer). It might seem that such an interaction survives because there
is simply no selective pressure to reject it from the evolutionary path, but on the other
hand redundancy is also an evolutionary principle, providing a backup in the case
of malfunctions of the first instance. The evolution of a protein-protein interaction
may also be related to folding, especially in the case of obligate complexes, where
folding of the individual protomers and oligomerisation occur concurrently (Xu et al.,
1998). In contrast, in non-obligate interactions, each protomer folds independently
and the interaction site has presumably evolved on the surface of the stable monomer.
Some oligomers may evolve through domain swapping that involves a rearrangement of
domains where inter-domain interactions are replaced by inter-monomer interactions
(Bennett et al., 1994). Varying oligomeric states or structures within a homologous
protein family can give further hints on the evolution of the family. For a conserved
oligomeric state, the residues at the interface are preferentially conserved compared
with the rest of the surface (Valdar and Thornton, 2001). However, in large families
that have members with varying oligomeric states or structures, these residues are

found to be less conserved, as expected (Nooren and Thornton, 2003b).
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1.2 Protein-protein interfaces

Many studies have been accomplished in order to gain knowledge on the general nature
of the interacting surface areas involved in protein-protein interactions, the so called
protein-protein interfaces (Bogan and Thorn, 1998; Larsen et al., 1998; Jones and
Thornton, 1996). The individual aspect of such studies, ranging from the size and shape
of interfaces to their composition and physico-chemical properties will be discussed in

the following subsections.

1.2.1 Structural characteristics of protein-protein interfaces

The interface of a - notional binary - protein complex depicts those parts of the surface
area of the protomers where they are in close contact to each other. Those contacting

sections of the protomers’ surface are often denoted as interface patches.

1.2.1.1 Geometric properties of interface patches

Areas on the surface of the individual protomers of a protein-protein complex which
are in close proximity to each other and presumably involved in establishing the
interaction are denoted as interface areas. The interface areas consist of one or more
areal contiguous fractions of the proteins’ surfaces denoted as interface or recognition
patches. In statistical surveys, Janin and Chothia (1990) list the average interface
area with 1600 £ 400 A” giving an estimate for the standard interface size. This
is equivalent to 170 + 39 surface atoms, or 85 atoms per recognition patch. Often,
but not necessarily, a protein-protein interface constitutes of a single interface patch.
Chakrabarti and Janin (2002) refined the statistical analysis and showed that multi
patch interfaces can be considerably larger than single patch interfaces but generally
contain at least one pair of patches that is equivalent in size to a single patch interface.
While Jones and Thornton (1997) have noted, that protein-protein interfaces tend to

be planar, Chakrabarti and Janin (2002) found out, that some are clearly non-planar.

1.2.1.2 Physico-chemical properties of interface patches

By screening a large number of alanine mutants for which the change in free energy

of binding upon mutation to alanine has been measured, Bogan and Thorn (1998)
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discovered that the free energy of binding is not evenly distributed across interfaces.
Instead, there are so called hot spots of binding energy, made up of a small subset of
residues in the dimer interface. These hot spots are enriched in hydrophobic amino
acids, and are surrounded by energetically less important residues that most likely
serve to occlude bulk solvent from the hot spot. Occlusion of solvent was found to be
a necessary condition for highly energetic interactions.

Lo Conte et al. (1999) as well as Chakrabarti and Janin (2002) consequently distin-
guished two regions of interface patches: the core region, which constitues of those
atoms that are solvent accessible in the unbound state and will loose their contact to
the solvent within the transition to the complexed state, and the rim region, which
is composed of those atoms that remain at least partially solvent accessible in the
complexed state. The idea behind such a distinction is that the rim region of a
recognition patch acts like a sealing, shielding the core region of the interface from the
solvent and thus enabling a drastic change in the medium that transmits interaction
forces.

Further studies showed, that energetic hot spots correlate well with sequentially highly
conserved residues (Hu et al., 2000; Ma et al., 2001, 2003; Halperin et al., 2004). If it
is only a limited number of residues that make up for most of the binding free energy
of a functional protein-protein complex and if protein-protein interactions evolve to
optimise functional efficacy, these residues should clearly be conserved during evolution.
Lijnzaad and Argos (1997) found in their studies, that hydrophobicity plays an
important role in complex formation by detecting hydrophobic surface areas of the
protomers (Lijnzaad et al., 1996) and a subsequent statistical analysis of these patches
in interface and non-interface regions of a set of protein-protein complexes. In 90%
of the cases, the largest or second largest hydrophobic surface patch was overlapping
with the interface region. The fraction and distribution of hydrophobic patches vary
significantly with the type of protein-protein complex. Large hydrophobic contact
areas are predominant mostly in homomeric obligate permanent complexes. This gives
also an explanation for their permanent and obligate binding: Exposing such large
hydrophobic surface areas directly to the aqueous environment of a living cell would

destabilise the protomers beyond means.
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1.2.1.3 Composition of interface patches

Since interface regions of protein-protein complexes seemingly differ from the rest of
the protein surface in their physico-chemical properties, investigations aiming for the
detection of a difference in the composition of their primary building units - the amino
acids - lie at hand. Jones and Thornton (1997) and Lo Conte et al. (1999) calculated
propensities for each of the 20 proteinogen amino acids to be part of an interface
region on different datasets of protein-protein complexes and came to similar results:
The by far highest interface propensities were assigned to the large hydrophobic amino
acids Tryptophane and Tyrosine, followed by Methionin and Phenylalanine. Cysteine
obtained a rather high value as well due to its ability to form highly stabilising disulfide
bridges, followed by Histidine, Isoleucine and Leucine. A propensity around zero was
assigned to the smallest amino acid Glycine, while the highly hydrophilic amino acids
Asparagine and Aspartate, Glutamine and Glutamate, Lysine, Proline, Serine and
Threonine were assigned negative values, clearly being least abundant in interface areas.
Chakrabarti and Janin (2002) were able to further refine these interface propensities
by splitting the interface patches into a core and rim region, clearly indicating that
the more hydrophilic an amino acid is, the higher the difference in propensity between
the core and the rim region becomes. This fortifies the theory of a hydrophobic core

surrounded by a slightly more hydrophilic rim on interface patches.

1.2.1.4 Native interfaces versus crystal contacts

While native protein-protein interfaces are highly specific, thus making complex for-
mation a directed process, non-native interfaces, as they occur e.g. in protein crystals,
are often randomly induced. This is among others caused by the fact, that proteins are
dynamic structures and that the concentration of protein in a crystal is significantly
higher than under natural conditions. In order to distinguish native interfaces from
crystal-packing contacts, geometric and physical chemical properties can be consulted
as distinction criteria:

The size of random interfaces is consistent with those of native interfaces, as an analysis
of non-native random protein-protein associations generated by computer aided sim-
ulations yielded (Janin and Rodier, 1995). Even though the overall interface area of

non-specific interfaces does not distinguish them from functional contact surfaces, the
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size of the individual interface patches can be used to discriminate highly fragmented
crystal contact areas (45% of which show sizes of less than 100 A2; Carugo and Argos
(1997)) from functional interfaces. Furthermore, non-specific interfaces are found to be
less compact in terms of atomic packing. The chemical and amino acid compositions of
large crystal-packing interfaces resemble the protein solvent-accessible surface. These
interfaces are less hydrophobic than in homodimers and contain much fewer fully buried
atoms. Using a residue propensity score and a hydrophobic interaction score to assess
preferences seen in the chemical and amino acid compositions of the three different
types of interfaces, as well as indexes to evaluate the atomic packing, Bahadur et al.
(2004) were able to distinguish crystal contacts from native protein-protein interfaces

with accuracies up to 95%.

1.3 Characterisation of protein-protein interactions

With the amount of data available on genetic interactions, a lot of attention has been
drawn on systems biology, in particular biomolecular interactions. Even though a
large number of methods has been developed to detect, examine, predict and quantify
protein-protein interactions, it is still not possible to determine the full interaction
network of a complete cell. These methods differ with respect to their aim as well as
the nature and the amount of details their results provide. The most common goals
are the determination of binding partners, the determination of the complex structure,

the quantification of the binding force, and the examination of binding kinetics.

1.3.1 Experimental methods

Biochemical and biophysical experiments are widely used to gain insight into biomolec-
ular interactions. The following section gives a brief overview on the basic working
principles and the information gained by selected experimental methods. The methods
can be classified according to the detail level of information they provide about protein
complexes which reach from the determination of individual binding residue pairs to the
complete determination of complex structures in atomic detail and the quantification

of the binding force.
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1.3.1.1 Determination of binding partners, binding regions or interaction

restraints

e Protein affinity chromatography

A protein can be covalently coupled to a matrix such as Sepharose under
controlled conditions and be used to select ligand proteins that bind and are
retained from an appropriate extract. A particular clever and useful variety of
this method is the so called Tandem Affinity Purification (TAP) (Rigaut et al.,
1999), where, via systematic Polymerase Chain Reaction (PCR) mutagenesis at
the 3’-end of the gene, the protein is provided with a specific tag. This tag
allows for the purification using an appropriate adapted affinity column. Using
the right conditions for eluations makes the purification of complex partners
of the tagged protein(s) possible (Gavin et al., 2002), implicitly providing the

information which binding partners are involved.

o Affinity Blotting

In a procedure analogous to the use of affinity columns, proteins can be
fractionated by Polyacrylamid Gel Electrophoresis (PAGE), transferred to a
nitrocellulose membrane, and identified by their ability to bind a protein, peptide,
or other ligand (Vasilescu et al., 2004).

e Immunoprecipitation

Co-immunoprecipitation is a classical method of detecting protein-protein inter-
actions and has been used frequently in experiments. For this method cell lysates
are generated, antibody is added, the antigen is precipitated and washed, and

bound proteins are eluted and analysed (Masters, 2004).

e Chemical cross-linking

The procedure of chemical cross-linking involves three steps. First, the complex
(presumably of units P and P’) is reacted with a cleavable bi-functional reagent
containig a disulfide bridge of the form RSSR’, and the R and R’ groups react
with susceptible amino acid side chains in the protein complex PP’. This reaction
forms adducts of the form P-RSSR’- P’. Second, the proteins are fractionated on

an SDS-gel in the absence of reducing agents. The gel separates the proteins
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based on molecular weight, and cross-linked proteins of the form P-RSSR’-P’
migrate as species of greater molecular weight. Third, a second dimension of
the SDS-gel is run after treatment of the gel with a reducing agent to cleave the
central disulfide bond. Un-cross-linked species align along the diagonal of the
2D-gel, because their molecular weights do not change after reduction. Cross-
linked proteins migrate off the diagonal because they migrated as P-RSSR’-P’
in the first dimension and as molecules of the form P-RSH and P’-R’SH in the
second dimension. The cross-links are identified by their size, which corresponds
to that of the un-cross-linked species P and P’ (Fancy, 2000).

e Protein probing

A labeled protein can be used as a probe to screen an expression library in order to
identify genes encoding proteins interacting with this probe. Interactions occur
on nitrocellulose filters between an immobilised protein and the labeled probe
protein. This procedure was automised in large scale on what is known as protein

microarrays or proteome chips (Kawahashi et al., 2003).

e Phage display

Smith (1985) first demonstrated that an E. coli filamentous phage can express a
fusion protein bearing a foreign peptide on its surface. These foreign amino acids
were accessible to antibody, such that the "fusion phage" could be enriched over
ordinary phage by immunoaffinity purification. Smith suggested that libraries of
fusion phage might be constructed and screened to identify proteins that bind to a
specific antibody. There have been numerous developments in this technology to

make it applicable to a variety of protein-protein and protein-peptide interactions.

e Yeast two-hybrid system
The two-hybrid system (Fields and Song, 1989) is a genetic method that uses
transcriptional activity as a measure of protein-protein interaction. It relies on the
modular nature of many site-specific transcriptional activators, which consist of a
DNA-binding domain and a transcriptional activation domain. The DNA-binding
domain serves to target the activator to specific genes that will be expressed, and
the activation domain contacts other proteins of the transcriptional machinery

to enable transcription. The two-hybrid system is based on the observation



14

Introduction

that the two domains of the activator need not be covalently linked and can
be brought together by the interaction of any two proteins. The application of
this system requires that two hybrids are constructed: a DNA-binding domain
fused to protein X, and a transcription activation domain fused to protein Y.
These two hybrids are expressed in a cell containing one or more reporter genes.
If X and Y interact, they create a functional activator by bringing the activation
domain into close proximity with the DNA-binding domain. This can be detected

by expression of the reporter genes.

Mass Spectrometry

There has been increasing interest in Mass Spectrometry as a tool in structural
biology in general, but particularily to obtain information about biomolecular
complexes. One approach used is Hydrogen/Deuterium exchange. With this
method, the rate of exchange provides information about the accessibility of a
residue in question. Rate differences between free and bound forms indicate that
a given residue is protected on complex formation and thus probably involved
in the interaction (Lanman and Prevelige, 2004). Another possibility is cross-
linking, where residues close in space are detected by first covalently linking two
molecules by the use of a cross-linking reagent, and then subjecting the resulting
material to peptide mass fingerprinting or other protein identification methods
(Back et al., 2003).

1.3.1.2 Determination of the complex structure

e X-ray crystallography

Protein X-ray crystallography provides a detailed picture of the atomic structure
of a protein-protein complex. Most of the complex structures known so far have
actually been determined by this method which uses the diffraction of X-rays by
periodically composed protein crystals. From the resulting diffraction patterns,
the relative position of the protein backbone, side chains, down to the individual
atoms (depending on the resolution attained) can be calculated. As mono-
crystals of the respective protein are needed for this process, this also limitates
the method, since especially large and hydrophobic proteins (e.g. membrane com-

plexes) are difficult and often time consuming to crystallise. Another problematic
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feature of X-ray diffraction patterns is the fact that they provide a single "frozen"
snapshot of the dynamic protein structure in an artificial environment (cf. section
1.2.1.4 on page 10). Though one might argue, that protein crystals can consist
of up to 70% of crystal water. The concentration of protein in such a crystal is

such comparable to the cytosolic protein concentration (up to 25%).

e Nuclear Magnetic Resonance spectroscopy (NMR)

NMR spectroscopy relies on the absorption and emission of radio-frequency
radiation by the nuclei of certain atoms when they are placed in a magnetic field
and facilitates the measurement of inter atomic distances and connectivities. In
contrary to the X-ray crystallography, this method allows proteins to be studied
in solution, giving full access to the molecules’ dynamics via a whole time series of
snapshots of the molecule, without the influence of crystal contacts. The method
is limitated, due to its complexity, by the size of the molecules for which the rel-
ative positions of the atoms can be determined. The "classical" approach, based
on the use of intermolecular Nuclear Overhauser Effects (NOE), in combination
with Residual Dipolar Couplings (RDC) allows for the determination of protein
structures of a sequence length up to a maximum of 300 amino acids. Novel
methodologies like Transverse Relaxation Optimised Spectroscopy (TROSY) and
Chemical Shift Perturbations (CSP) have alleviated the size limitations for the
determination of biomolecular structures in solution up to a mass of 50 kDA
(Bonvin et al., 2005). Based on the average mass of the twenty proteinogen
amino acids (118.9 DA), this equals an average sequence length of 420 amino

acids.

1.3.1.3 Quantification of the binding force

e Isothermal Titration Chromatography (ITC)

Isothermal Titration Chromatography (ITC) is the most quantitative means
available to measure the thermodynamic properties of protein-protein interaction.
The procedure is able to determine the stoichiometry of the interaction, the
association constant, the free energy, enthalpy, entropy, and heat capacity of

binding. ITC measures the binding equilibrium directly by determining the heat
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evolved on association of a ligand with its binding partner. In a single experiment,
the values of the binding constant, the stoichiometry, and the enthalpy of binding
are determined. The free energy and entropy of binding are determined from the
association constant. The temperature dependence of the enthalpy parameter,
measured by performing the titration at varying temperatures, describes the heat

capacity term (Pierce et al., 1999).

e Nanobiotechnology

The recent progress in nanobiotechnology enabled the direct access to inter-
molecular forces. One example is the so called Atom Force Microscopy (AFM)
which allows to physically measure the absolute binding force between two macro-
molecules via capillary springs (Clausen-Schaumann et al., 2000). Besides this
direct way to measure the binding affinity, there is also the possibility to quantify
this force via a comparison of one complex to others posing as a reference, in
a procedure known as Congruent Force Intermolecular Test (C-FIT) (Albrecht
et al., 2003).

e Surface Plasmon Resonance (SPR)

This method measures complex formation by monitoring changes in the resonance
angle of light impinging on a gold surface as a result of changes in the refractive
index of the surface up to 300 nm away. A ligand of interest (peptide or protein
in this case) is immobilised on a dextran polymer on the gold coated surface.
A protein that interacts with the immobilised ligand is retained on the polymer
surface, which alters the resonance angle of impinging light as a result of the
change in refractive index brought about by increased amounts of protein near
the polymer. Since all proteins have the same refractive index and since there is
a linear correlation between resonance angle shift and protein concentration near
the surface, this allows to measure changes in protein concentration at the surface
due to protein-protein or protein-peptide binding, respectively. Furthermore,
the measurements can be done in real time, giving access to the kinetics of the
reaction (Malmqvist, 1993).

In the area of functional genomics, the rapidly increasing number of completely anno-

tated genomes accessible reveals the existence of many proteins for which functional
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information is incomplete or absent. Especially the methods mentioned above gained
on importance as they can be used to screen whole libraries of proteins and are suitable
as high-throughput assays. This arises the question of reliability of such methods. The
yeast two-hybrid method for example is known to produce a high number of false
positive interactions and the assessed liability is about 50% (Sprinzak et al., 2003),
which clearly indicates that so far a combination of different methods is needed to
uncover the interaction network of a cell. Theoretical methods, which will be attended

to in the next section, can further supplement the experimental data.

1.3.2 Theoretical computational methods

Theoretical approaches are used to address the problem of protein-protein interaction
prediction. These are classified here according to the information required as input

and/or prerequisite.

1.3.2.1 Methods based on genetic information

Computational methods based on genetic information are often used to validate
experimental interaction data (e.g. the outcome of yeast two-hybrid experiments) and
detect false positive interactions, but can also be used for the prediction of protein

function and interaction (Date and Marcotte, 2005).

e Phylogenetic profile comparison

Phylogenetic profile comparison is based on the pattern of the presence or absence
of a given gene in a set of genomes, that is, determining in which organisms the
gene is present and in which it is not. Similarity of phylogenetic profiles can be
interpreted as being indicative of the functional need for corresponding proteins
to be simultaneously present in order to perform a given function in combination.
However, although this similarity may suggest a related functional role, a direct
physical interaction between the proteins is not necessarily implied (Pellegrini
et al., 1999). The main limitations of this approach lie in the fact that it can
only be applied to complete genomes, as only then it is possible to rule out the
absence of a given gene. Similarly, the method cannot be used with essential

proteins that are common to most organisms.
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e Conservation of gene neighbourhood

The organisation of bacterial genomes into regions that tend to code for function-
ally related proteins, such as operons, is a well-known fact. This neighbourhood
relationship becomes even more relevant when it is conserved in different species.
The adjacency of genes in various bacterial genomes has been used to predict
functional relationships between corresponding proteins (Dandekar et al., 1998).
The main limitations of this method is that it is only directly applicable to

bacteria, in which the genome order is a relevant property.

e Gene fusion events

Interactions between proteins can be deduced from the presence in different
genomes of the same protein domains, which either form part of a single
polypeptide chain (multi-domain protein) or act as independent proteins (single
domains). Methods based on recursive sequence searches and multiple sequence
alignments have been combined in order to detect such domain fusion events
(Marcotte et al., 1999; Enright et al., 1999). By definition, this approach is
restricted to shared domains in distinct proteins, a phenomenon whose true extent

is still unclear, especially in prokaryotic organisms.

e Similarity of phylogenetic trees

Based on the assumption that interacting protein pairs coevolve, the correspond-
ing phylogenetic trees of the interacting proteins should show a greater degree
of similarity or symmetry than noninteracting proteins would be expected to
show. This so called mirrortree method, essentially an extended version of the
phylogenetic profile comparison, can be used to identify potentially interacting

proteins (Pazos and Valencia, 2001).

1.3.2.2 Sequence based methods

According to Anfinsen’s hypothesis that "protein sequence determines structure deter-
mines function" (Anfinsen, 1973), many of the properties of a protein can be predicted
if only they are known for other proteins of homologous sequence. To a certain amount,
this is also true for the identification of protein-protein interfaces, in particular when

specialised binding motifs or domains have evolved due to a higher amount of selective
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pressure on functional parts of the protein surface which exist in various proteins and
communicate certain binding properties. Prominent examples are the Leucine zipper
motif or the SH2 and SH3 protein-protein interaction domains. The Leucine zipper is
a protein-protein interaction motif in which there is a cyclical occurrence of Leucine
residues every seventh residue over short stretches of a protein in an alpha-helix. These
Leucine residues project into an adjacent Leucine zipper repeat by interdigitating into
the adjacent helix, forming a stable coiled-coil (Landschulz et al., 1988). The SH2
domain has been recognised as a common motif involved in protein-protein interactions
in a significant number of proteins. They share a motif of about 100 amino acids
that is involved in the recognition of proteins and peptides containing phosphorylated
tyrosines. Many proteins have been shown to have an SH3 domain, which varies
between about 55 and 75 amino acids in length. Like the SH2 domain, the SH3 domain
binds simple peptides with a high degree of sequence specificity and a high affinity. As
judged on a qualitative basis, a 10-amino-acid Proline-rich sequence within the domain
is responsible for strong binding (Koch et al., 1991).

Supervised machine learning methods have been applied in order to recognise inter-
actions based solely on primary structure (Bock and Gough, 2001; Ofran and Rost,
2003). Using a combination of different machine learning techniques while focusing on
sequence neighbours of a target residue, Yan et al. (2004) were able to identify interface
residues on the basis of sequence information with an averaged accuracy of 72%.
Since, as previously claimed, the selective pressure on functional surface regions are
known to be quite high, amino acids that contribute predominantly to the binding
force should be highly conserved if the interacting function of an interface region is to
be maintained during evolution. Comparing protein sequences among different species
gives hint to so called evolutionary traces which can be used for interface prediction
(Lichtarge et al., 1996; Lichtarge and Sowa, 2002).

The co-evolution of interacting proteins can be tracked closely by quantifying the
degree of co-variation between pairs of residues from these proteins (correlated mu-
tations). These positions may correspond to compensatory mutations that stabilise
the mutations in one protein with changes in the other in order to further ensure the
interaction function. Those correlated mutations can be detected by species-spanning
sequence comparisons and used for the prediction of binding partners and the amino

acids involved in interactions (Pazos et al., 1997; Valencia and Pazos, 2003; Bradford
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and Westhead, 2003). The main limitation of this sometimes called "in silico two-
hybrid" approach is the need for complete alignments with a good coverage of species
common to the two proteins under study. This limitation arises as a direct consequence
of the hypothesis of co-evolution, which naturally requires the simultaneous study of

the corresponding protein pairs in each genome.

1.3.2.3 Structure based methods

Different varieties of approaching the problem of theoretical protein-protein interaction
prediction depend on the amount of data available as input and the final aim of the
prediction. The common feature of these methods is that they require the knowledge of
structural data in order to calculate position specific geometrical, physical or chemical

properties of the proteins in question.

e Prediction of interaction sites/interface regions

These methods require the structural data of a single protein as input and will
in return predict those residues or areas of the surface which are most likely part

of an interface to other proteins.

The bioinformatics tool ISPRED (Fariselli et al., 2002) uses evolutionary conserva-
tion along with surface disposition as descriptors to train a neural network (NN)
based system. The NN is finally able to detect in average 73% of the residues
involved in protein-protein interactions correctly within a selected database of

heterodimers.

The protein interaction prediction programs PROMATE (Neuvirth et al., 2004)
and PPI-PRED (Bradford and Westhead, 2005) follow a different approach,
aiming for the prediction of contiguous interface regions rather than interface

residues.

PROMATE has been developed using an extensive optimisation procedure in order
to create a contiguous scoring function from individual scoring schemes created
for each surface patch examined. The individual scoring schemes in use are
based on amino acid propensities, pairwise amino acid distribution, evolutionary
conservation, secondary structure information, sequence distance, distribution

of temperature factors, the number of water molecules in the crystal structure
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and hydrophobicity. The final predictor is able to correctly predict 70% of the

interfaces for a dataset of transient dimeric complexes.

PPI-PRED uses evolutionary conservation and surface disposition (respectively
solvent accessibility) along with further criteria such as the interface propensity
of individual residue types, electrostatics, hydrophobicity and surface topography
to train a Support Vector Machine (SVM) on this classification problem. For 76%
of the interfaces of a selected dataset of homo- and heterodimeric complexes, a
surface patch could be correctly predicted, showing at least 20% of correctly

predicted interface residues while covering a minimum of 50% of the interface.

e Prediction of the complex structure

Since the experimental determination of the complex structure (cf. 1.3.1.2 on
page 14) is often disproportionate in difficulty to the determination of the
protomers, the computational prediction of the 3D structure of a protein-protein
complex from structural information of the protomers is of great interest. The
process of the computational prediction of the complex structure, respectively to
the prediction of the orientation of the complex subunits relative to each other in
3D space, starting from the structures of the protomers is called protein-protein
docking. The search for candidate solutions in a docking problem is addressed in

two essentially different approaches:

(1) full solution space search

This approach scans the entire solution space in a predefined systematic
manner. Since an exhaustive search in the six dimensional conformational
space (three degrees of freedom for rotation and translation each) using fully
detailed information would be computationally too expensive, all existing

approaches rely on reduced representations of the individual proteins.

(2) gradual guided progression through solution space

Only a part of the solution space is scanned in a partially random and par-
tially criteria-guided manner. This approach consists mainly of simulations
using Monte Carlo (MC), simulated annealing, molecular dynamics (MD),

as well as evolutionary algorithms such as genetic algorithms (GA) and Tabu
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search. Again, the simulation of many particle systems such as a protein-
protein complex in solution over a sufficient amount of time is limited by

currently available computation power.

Despite the high computational cost for these two general approaches above, all
those methods rely on scoring or fitness functions to either evaluate the generated

conformations (1) or guide the search (2).

Protein-protein docking using a full solution space search is particularly impor-
tant for this work and is thus decribed in greater detail in the next section
(section 1.4).

1.4 Protein-protein docking

The term protein-protein docking refers to the computational prediction of how two
proteins interact; more precisely to the prediction of the orientation of the complex
subunits relative to each other in 3D space. The fundamental basis from which all
docking approaches emerged and still vastly rely on is the assumption of complementar-
ity. Besides the question which properties complement each other, the usability of such
complementaries in a docking procedure heavily depends on their nature. Of particular
importane is the question whether the respective complementarity is implicitly present
before the formation of the complex structure or whether it is induced by or during

the association of the complex partners (see also subsection 1.4.2.3 on page 26).

1.4.1 The rigid body approach

Although there is no doubt that proteins are dynamical biological macromolecules,
a large number of docking procedures published so far treat the individual proteins
as rigid bodies in what is known as the rigid body approach or rigid body docking.
Docking is computationally difficult because there are various ways of assembling two
molecules (three translational and three rotational degrees of freedom). The number
of possibilities grows exponentially with the size of the components. This is because
a similar exponential growth is given for every additional degree of freedom that is

introduced into the molecule in order to allow for internal movements, thus representing
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protein flexibility. The combinatorial problem increases rapidly to such an amount that
implementing full conformational flexibility into a search stage of a docking process is
infeasible. The computational problem is even more profound when considering protein
flexibility and the increasing demand to screen large databases.

There have been various approaches to incorporate protein flexibility into docking

procedures which will be discussed in section 1.4.3 on page 31.

1.4.2 Principle steps of a docking procedure

Each docking method can be divided into four major steps (Halperin et al., 2002)

consisting of
(i) representation of the system,
(ii) conformational space search,
(iii) scoring and ranking of potential solutions and
(iv) refinement of accepted solutions

which will be individually addressed to in the following subsections.

1.4.2.1 Representation of the system

Since interactions between proteins are mainly transmitted by those amino acids lying
on the surface of the complex partners, any representation for the docking problem
likewise focuses on descriptions of the protein surface. The basic description of the
protein surface is given by the atomic representation of exposed residues. Such a
representation in "atomic detail" is generally avoided because most algorithms scale
with the number of representative points in three dimensional space and therefore,
mathematical models of surface representation have been developed which offer a sparse
distribution of surface points while simultaneously storing as much information as
possible.

One frequently used approach originated from the pioneering work of Katchalski-
Katzir et al. (1992) and Jiang and Kim (1991), where the proteins in question are
mapped on a three dimensional grid of defined spacing with the spacing of the grid
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determining the level of detail of the resulting lattice representation of the protein.
Another popular approach is the surface represented by its geometric features for which
Connolly (Connolly, 1983) laid the foundation with the developed method of protein
surface analysis that bears his name since. The Connolly surface consists of that part
of the van der Waals surface of the atoms that is accessible to the probe sphere (contact
surface) connected by a network of convex, concave, and saddle shape surfaces that
smooths over the crevices and pits between the atoms. Based on the Connolly analysis,
the surface may be described by sparse critical points(Lin et al., 1994), defined as the
projection of the gravity center of a Connolly face.

Parallel slices of the Connolly analysis can be transformed into a polygon to be used
in a rigid surface matching (Ausiello et al., 1997). Jiang and Kim (1991) combine
two representations of the molecule: surface dots with attached surface normals as
proposed by Connolly, and volume (interior) and surface cubes, the latter containing

two to three surface dots each.

Furthermore, volumetric and surface-based techniques for computing shape properties
of molecular surfaces can be used. Several scalar and vector surface properties are
gained, such as the Gaussian and mean curvature, principal curvatures, and principal
curvature directions (Duncan and Olson, 1993). An extension to these methods is
given by the description of protein surfaces using spherical harmonic functions where
each protein surface shape is represented by a "double skin" model that describes thin
regions of space exterior and interior to the molecular surface. Each skin is represented
as a Fourier series expansion of real orthogonal radial and spherical harmonic basis
functions (Ritchie and Kemp, 2000).

1.4.2.2 Conformational space search

Once the proteins, or rather their surfaces have been transformed into a mathematical
surface representation, all possible orientations of the two individual subunits to each
other have to be generated. The 3D structures of protein complexes reveal a close
geometric and chemical match between those parts of the molecular surfaces that are
in contact. Hence, the shape and other physical characteristics of the surfaces largely
determine the nature of the specific interaction. Furthermore, in many cases the 3D

structures of the components of the complex closely resemble those of the molecules in
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their uncomplexed state (Lo Conte et al., 1999). Geometric matching is therefore likely
to play an important part in determining the structure of the complex. All docking
algorithms therefore search the conformational space for those structures revealing high

correlations respectively complementaries of the adjacent surface areas.

e FFT-docking

Fast Fourier Transformations (FFT) were first applied to the docking problem
by Katchalski-Katzir et al. (1992) who also introduced the grid representations
for proteins together with Jiang and Kim (1991) (cf. section 1.4.2.1 on page 23).
The conformational space is searched for conformations in which the 3D grids
representing the proteins are overlapping. Numerical values are assigned to
the individual grid cells in order to control the desired overlap (cf. section
2.2.1 on page 41). The transformation of the proteins, respectively the established
surface representations, into Fourier space reduces the dimensionality for the
conformational space search from 6N to 3N. All possible conformations can be
calculated in three dimensions simultaneously in Fourier space, thus reducing
the computational cost effectively and making the effort of transforming each
proposed conformation in the first 3N coordinates into Fourier space and back
worthwhile. FFT docking algorithms are used in a large variety of docking
programs nowadays (e.g. CKORDO (Zimmermann, 2002), MOLFIT (Ben-Zeev
et al., 2005), DOT (Mandell et al., 2001), ZDOCK (Chen et al., 2003a), BDOCK
(Huang and Schroeder, 2005), GRAMM (Vakser et al., 1999), FTDock (Gabb
et al., 1997)). They rely on a grid representation of the protein subunits and can
be considered as extensions of the initial approach by Katchalski-Katzir et al.
(1992).

e Geometric hashing

Conformational space search via geometric hashing is the transfer of a tech-
nique originally developed for object recognition problems in computer vision
(Norel et al., 1994), in which the geometric hashing paradigm is adapted to a
central problem in molecular biology. Using an indexing approach based on a
transformation invariant representation, the algorithm efficiently scans groups of

surface dots (or atoms) and detects optimally matched surfaces. Main advantage
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for such a method is the ability to pre-calculate and store the transformation
invariant representation - basically a transformation of the entire system into
internal coordinates for every relevant set and combination of regarded surface

points - such that the actual conformational space search is comparably fast.

1.4.2.3 Scoring and ranking of potential solutions

The search of the conformational space, be it complete or partially guided, typically
yields a vast number of proposed complex conformations. From these proposed
conformations ideally those have to be selected that show the highest similarity to the
native complex conformation. This is the task of the so called scoring or ranking step of
protein-protein docking. During this step, a numerical value is assigned to each of the
proposed conformations according to a mathematical scheme and the individual cases
are thereafter resorted according to their assigned numerical values. Theoretically, free-
energy simulation can be a reliable discrimination to check the solutions. However, it
is not practical to use such an approach in docking searches (Pearlman and Charifson,
2001) due to the vast computational effort of such calculations. Instead, ranking
schemes are mostly used to distinguish between near-native solutions and others within
a reasonable computation time. Two types of ranking schemes can generally be
distinguished according to their sorting order. If high numerical values represent the
desired outcome, the ranking scheme is classified as a scoring function, while energy or
cost functions use low numerical values (often of negative sign) to represent the desired
outcome. In the following, a list of possible criteria will be given that can be used to

establish ranking schemes for protein-protein docking.

e Geometric complementarity /correlation

As stated previously (cf. section 1.4 on page 22), docking methods vastly rely on
the assumption of complementarity. Usually, geometric shape complementarity
constitutes the first and most important scoring scheme and is generally the
one which is directly computed while performing the scan of the conformational
space. The main reason for this is the assumption that large parts of the energy
gained upon complex formation result from the hydrophobic effect (Honig and
Nicholls, 1995). Since hydrophobic forces are of short ranged nature, the complex

partners should be in short distance to each other. Furthermore, as few gaps as
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possible should be present in the interface area, which in consequence leads to the
precondition that the two complex partners should exhibit corresponding radii
of curvature on macroscopic and microscopic scale on their surfaces. Only then
the geometric fit - the confrontation of concavities on one side of the interface
with convexities on the other - will be established. Such predefined maps of the
complex partner on the surface of a protomer can indeed be identified on a series
of protein-protein complexes already in the unbound state (Betts and Sternberg,
1999). For some selected problems in docking, geometric shape complementarity
is already sufficient in order to establish a scoring function that sorts and yields
near native conformations in the top rank(s) (see subsection 1.4.4 on page 33).
However, these cases clearly are the exception and so further ranking/scoring

criteria have to be considered.
e Physico-chemical complementarities/correlations

— Electrostatics
All electric charges in a protein contribute to the characteristic field of charge
on the protein surface. During the transition from the unbound to the
complexed state, the interface area moves from an (in vivo usually aqueous)
environment with a rather high dielectric constant to an environment with
a much lower dielectric constant which resembles more the protein core
than the surface. This requires that the geometric fit of the contact area
is tight enough to exclude solvent molecules. This drastic change in the
dielectric constant leads to an increased loss in energy for every charge
that is not compensated by its counterpart and explains the need for
charge complementarity across interfaces (Gabb et al., 1997; Sheinerman
and Honig, 2002). Studies have shown, that charge complementarity is
nevertheless insignificantly small in a number of protein-protein interfaces
and that rather the electrostatic correlation of the surface electrostatic
potential is of significance (McCoy et al., 1997). The easiest approach for the
calculation of electrostatic potentials in protein-protein interactions takes
only the sum of the potentials of individual point charges into account,
using force fields primarily based on the classical Coulomb potential and

extensions to the latter. A more correct but also computationally much
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more expensive way is to calculate the complete field of charge of the proteins
using continuum electrostatic models e.g. via Poisson-Boltzmann approaches
(Jackson and Sternberg, 1995; Gabdoulline and Wade, 1998; Mandell et al.,
2001; Neves-Petersen and Petersen, 2003).

— Hydrophobicity
Formation of hydrophobic contacts across a newly formed interface is
energetically favourable, especially when the drastic change in the dielectric
constant in the interface area upon complex formation (see above) is
taken into account (Scarsi et al., 1999). The extent of such hydrophobic
complementarity depends on the size of the interface. Thus, the non-polar
portions of large interfaces are more often juxtaposed to each other than

non-polar portions of small interfaces (Berchanski et al., 2004).

— Desolvation

The desolvation free energies required to transfer atoms from the surface
of a protein to a protein’s interior (e.g. the interface of a protein-protein
complex) are particularly hard to calculate analytically, since large parts of
the desolvation free energy will actually be contributed by entropic terms.
Appropriate estimations and empirical measures for desolvation free energies
are such used as scoring functions (Miyazawa and Jernigan, 1996; Zhang
et al., 1997; Wang and Wade, 2003).

— Hydrogen bonds
Especially charged interfaces are known to show certain hydrogen bonding
patterns. Based on the assumption that these hydrogen bonding patterns
of complementary hydrogen bond donors and acceptors on the surface
or the protomers are predefined already in the uncomplexed state, this
complementarity can be used in order to score proposed docking solutions
(Meyer et al., 1996; Kréamer, 2001; Fernandez and Scheraga, 2003).

e empirical scoring schemes

— Knowledge based scoring functions
Especially electrostatic as well as hydrophobic complementarities can be

implicitly expressed by the distribution patterns of aminoacids or atoms
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on a proteins surface. By assuming a Boltzmann relation between the
frequency of occurrence and the energy of a certain state of the molecule
as well as an additive relation for individual contributions to the overall
energy, the binding free energy of a complex can be estimated (Sippl,
1990). The resulting pseudo-energies can be used to score docking solutions.
Thus a large variety of these empiric interaction potentials, sometimes also
described as probability density functions (PDF), have been developed via
calculation of frequencies of occurrences of interaction pairs (be that amino
acids, atom groups or atoms) (Miyazawa and Jernigan, 1996; Melo and
Feytmans, 1997; Moont et al., 1999; Verdonk et al., 2001; Grimm, 2003;
Zhang et al., 2004).

— "Biological" scoring functions
Besides the derivation of probability density functions from biological
observations there exist various other methods that allow the usage of
such knowledge for the scoring of docking results. In principle, all the
methods described previously for the computational prediction of protein-
protein interaction can be utilised as scoring functions for docking (see

section 1.3.2 on page 17). Examples are:

x the use of evolutionary information by the adoption of sequence conser-
vations to re-rank docking solutions (Halperin et al., 2004; Duan et al.,
2005; Heuser et al., 2005; Tress et al., 2005; Aytuna et al., 2005),

x the utilisation of sequence to structure relations to identify homologous
domains known to interact (Heuser et al., 2005) or establish protein
family specific residue interface propensities (Huang and Schroeder,
2005),

* considering the buried surface area and the gap volume in order to
estimate the tightness of binding (Gardiner et al., 2003; Gottschalk
et al., 2004; Huang and Schroeder, 2005).

Besides the application of scoring schemes to docking solutions, the incorporation of
external knowledge into docking becomes more and more important. Such external
knowledge, e.g. the knowledge derived from H/D labeling mass spectrometry experi-

ments that a certain residue in one of the protomers has to be part of the interface
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(cf. 1.3.1.1 on page 12), can be efficiently used not only to score docking solutions
but also to guide the conformational space search efficiently (Ben-Zeev and Eisenstein,
2003). If external knowledge provided can tell which areas of the proteins surface are
definitely participating in the interaction or which areas can be generally ruled out,
the complete docking process as well as the subsequent re-ranking can be shortened

and eased drastically.

1.4.2.4 Refinement of accepted solutions

Predictions generated by a rigid body docking algorithm can only be as good as
the underlying assumption. Proteins are no rigid bodies and thus are likely to
undergo conformational changes when transferred from one environment (protomer
in solvent) to another (complex). The range of such changes reaches from mere
side chain rearrangement via movement of flexible loop regions to shear and hinge
bending between domains (Betts and Sternberg, 1999; Smith et al., 2005b). These
conformational changes upon complex formation cannot be captured effectively by
most docking algorithms. A divide-and-conquer strategy is widely accepted in the field
of docking, with initial-stage algorithms focused on retaining near-native structures
(also called hits) (cf. 1.4.2.2 on page 24) in a reasonably short list of predictions and
scoring functions (cf. 1.4.2.3 on page 26) aimed at ranking a hit at the top of the list.
The actual task of a refinement algorithm for rigid-body docking is to allow for a finer
re-ranking of those near-native structures that ranged on the top of the list in the
previous scoring step.

If the native complex and the individual subunits submitted to a docking procedure are
structurally not identical (see section 1.4.4 on page 33), the rigid body approach poses
a severe limit on how close a near native docking solution can actually be brought to the
ideal solution, respectively the native complex. Thus modern refinement algorithms
focus on the simulation and approximation of possible conformational changes that
occur upon complex formation. Since the refinement step is consequently only applied
to a very limited number of docking solutions, more time consuming computational
methods can be used. Among these methods are short position restrained molecular
dynamics simulations (Gillilan and Lilien, 2004; Griinberg et al., 2004; Smith et al.,
2005a,b), energy minimisation procedures (Jackson et al., 1998; Li et al., 2003b; Wiche
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et al., 2005; Carter et al., 2005) and the use of rotamer libraries (Jackson et al., 1998;
Koch et al., 2002; Althaus et al., 2002; Carter et al., 2005) that explicitly account
for possible conformational changes of side chains. Afterward, highly specific scoring
functions are applied to evaluate the interaction energy. These steps are then repeated

until convergence of the resulting (pseudo-)energy.

1.4.3 Incorporation of flexibility into protein-protein docking

Protein-protein association is often accompanied by changes in receptor and ligand
structure. This interplay between protein flexibility and protein-protein recognition is
currently the largest obstacle both to the understanding and to the reliable prediction
of protein complexes. Besides of the incorporation of flexibility treatment in the final
refinement step of a docking procedure (as described in the previous section), it is most
sensible to include flexibility in the critical step of docking, the conformational space
search. Only thus, protein assemblies which do not exhibit a predefined geometric fit
and rather follow a transfer of the induced fit model to protein complexes than the
"key and lock" hypothesis as originally proposed by Emil Fischer (Fischer, 1894) for
enzyme substrate binding, can be correctly predicted.

Various approaches exist in order to integrate flexibility into docking algorithms while
searching the conformational space based on the fact that flexibility can be adressed

at several levels.

e Implicit treatment of flexibility in docking
On an implicit level, flexibility can be treated by smoothing the protein surfaces or
allowing some degree of interpenetration (soft docking) or by performing multiple

docking runs from various conformations (cross- or ensemble docking)(Bonvin,
2006).

— Soft docking
Within the framework of the rigid body treatment, side chain flexibility
is typically handled only implicitly by surface variability, with a soft belt
of allowed (though sometimes penalised) intermolecular surface atom pen-
etration. There also exist approaches to evade the problem of side chain

reorientation by submitting rather coarse and simplified protein models to
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the search step that do not contain side chain atoms at all (Vakser, 1996,
1995) or provide only partial information about the side chains, e.g. by
cutting them off according to certain rules (Li et al., 2003a; Schneidman-
Duhovny et al., 2005a) or replacing them by a limited number of pseudo
atoms (Zacharias, 2003). However, these methods are rather auxiliary

constructions for the problem of flexibility in protein-protein docking.

— Cross- or Ensemble docking

Implementing full conformational flexibility into a search stage, separately
docking a large number of conformers, is infeasible. A reasonable approach is
to take account of ensembles of populations, generated prior to the docking,
and dock the ensemble rather than single conformers. Depending on the
strategy, docking an ensemble highlights the more conserved regions by,
for example, assigning these larger weights, whereas lower weights may be
given to regions of space visited more rarely. Experimentally, ensembles
can be assembled by collecting all crystal structures binding to a certain
ligand, or using NMR conformers (Halperin et al., 2002). Unfortunately,
data fundamentals are quite low for protein-protein docking such that this
approach is only feasible for a very limited number of examples. Neverthe-
less, it is possible to generate an ensemble of hypothetical conformations
of the individual complex subunits prior to the docking. The creation
of theoretical ensembles can be achieved via genetic algorithms (Taylor
and Burnett, 2000), Monte Carlo algorithms (Gray et al., 2003), molecular
dynamics methods (Smith et al., 2005a), multi-conformational superposition
(Ma et al., 2005) or the detection of hinge regions (Schneidman-Duhovny
et al., 2003, 2005a).

e Explicit treatment of flexibility in docking
The inclusion of flexibility in docking is only possible when molecules are
explicitly represented rather than via a mathematical simplified model (e.g. a
grid). Since most of the currently used docking methods do not use a full repre-
sentation of the molecule during the search of the conformational space, explicit
treatment of flexibility in docking is typically handled during the refinement
step(s) (see 1.4.2.4 on page 30). Generally, one can distinguish between the
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incorporation of side chain and backbone flexibility.

— Amino acid side chain flexibility
The general methods available are energy minimisations, often coupled with
the use of position restrainied simulation methods and rotamer libraries.
A few examples of methods along with the corresponding docking software

names are listed below.

x Monte Carlo optimization of sidechains
(ICM-Disco, (Fernandez-Recio et al., 2003))

* Molecular Dynamics simulated annealing (HADDOCK, (Dominguez
et al., 2003))

* Energy minimisation and multiple sidechain conformations using ro-
tamer libraries (ATTRACT, (Zacharias, 2005))

x Monte Carlo search that includes rigid-body displacements using ro-

tamer libraries (ROSETTADOCK, Gray et al. (2003))

— Backbone flexibility
Dealing with backbone flexibility in protein-protein docking is still an
open challenge. The incorporation of explicit backbone conformational
changes currently relies on molecular dynamics simulation techniques. A
few examples of methods along with the corresponding docking software

names are listed below.

* Molecular Dynamics simulated annealing (HADDOCK, (Dominguez
et al., 2003))

x Guided docking which allows for some degree of backbone rearrange-
ment ((Fitzjohn and Bates, 2003))

1.4.4 Docking problems and challenges

There are two different general case studies of protein-protein docking at different levels
of complexity, for which the terminology of bound docking and unbound docking are
commonly used.

Bound docking denotes the attempt of the computational reassembly of the subunits

of a complex of known structure, often a cocrystallised complex structure, which have
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previously been taken apart. The bound docking problem is generally regarded as
solved, since most rigid body docking methods are able to find the native complex
structure or an appropriate near-native solution with high accuracy (Vajda and
Camacho, 2004). This is mostly due to the well established geometric fit between
the binding partners.

Unbound docking, sometimes also called predictive docking, refers to the prediction of
the native complex state from the unbound subunits. The structures of the unbound
subunits have to be solved in a solvent accessible state (at least in the respective
interface region; for a more detailed definition of an unbound docking case, see section
2.1 on page 36). Predictive docking is far more complex than bound docking. The
additional complexity derives from conformational changes that take place between
the bound and unbound structures.

In order to specify the nature of the docking problem in more detail, it is common for
the usually binary dockings of receptor versus ligand to use a composed terminology.
It denotes the binding states in which both the subunit structures are situated in
the moment of their structures’ solution, mostly in the order of receptor (usually the
larger of the two protomers) followed by the ligand state. This leads to four different
notations, listed here in the order of complexity of the problem: bound-bound, bound-
unbound, unbound-bound and unbound-unbound docking.

The bound-unbound versions of docking result if only one of the subunits of the complex
is actually available as individually crystallised structure. This often is the case since
data fundamentals for docking are quite low and represent a problem presumably easier
than unbound- but more difficult than bound docking. These cases are also known as
crossbound-docking.

While bound docking is only of academic use that will allow for a fundamental answer
to the question whether protein-protein interaction prediction is possible using a certain
algorithm, unbound docking is much closer to a real world application. Since existing
approaches to the unbound docking problem are quite diverse while the number of
known test cases is relatively small, there is the risk of those methods being geared to
the limited data fundamentals used in their design. In order to asses the quality of
existing docking methods and provide an overview of the status quo of current research
and performance in protein-protein interaction prediction, a comparative academic

challenge has been brought to life. Role model for this docking challenge was the CASP
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(Critical Assessment of protein Structure Prediction) challenge (Moult, 2005) which
now exists for about a decade and focuses on the evaluation of predictions of protein
structures from sequence information. In 2001, the CAPRI (Critical Assessment of
PRedicted Interactions) challenge (Janin et al., 2003) was established offering an
assessment of blind docking predictions to the research community. The results of
the CAPRI challenge are published and summarised in a special issue of the journal
PROTEINS (Méndez et al., 2003, 2005; Janin, 2005) every two years.

1.5 Aim of work

This work deals with the ranking or scoring problem of a protein-protein docking
procedure. A protein-protein docking algorithm typically yields a vast number of
potential solutions during the conformational space search. Tt is the aim of this
work to establish new scoring functions for protein-protein docking as well as to
find a way to sensibly combine these functions such that near-native solutions can
be accurately detected and selected. The scoring scheme(s) should specifically be
applicable to challenging unbound-unbound docking problems, where the geometric
fit and its primary correlation functions are unsufficient or fail in the ranking of
prospective candidates. Primary goal is to reduce the number of candidates for any
further refinement steps. The method should be applicable to any underlying method of
conformational space search while ensuring easy extensibility for future incorporation
of further scoring schemes. The protein-protein docking calculations were executed
with the docking software CKORDO developed in the workgroup. This work will focus

on an extension and improvement of the software for a future postfiltering step.
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"Though this be madness, yet there is method in it." [Hamlet]

William Shakespeare, 1564-1616.

2.1 Data fundamentals

From the currently more than 35,000 protein structures deposited in the Protein Data
Bank (PDB) (March 2006), only very few (<1%) fulfil the criteria necessary for an

unbound-unbound protein-protein docking test case. The relevant criteria are:

1. All subunits of the complex should also be found as individually crystallised
structures in the PDB, with at least the required interface region in a solvent

accessible state,
2. the co-crystallised complex should be a heteromultimeric complex,
3. the protein structures should not be hypothetical or modelled,

4. the resolution of the interface area should be complete and qualitatively as high

as possible.

The search for suitable unbound docking test cases for a docking algorithm in the PDB
is difficult since the PDB is a collection of flat files, each containing information about
a single structure, with an insufficient number of attributes and without any relation
between the files. A manual collection of known unbound-unbound docking examples
from the literature was therefore performed.

Table 2.1 on the facing page gives an overview of the collected examples along with
the reference in which this docking test case has previously been used. For each of the
binary docking test cases, the PDB identifier for the complex and the unbound units
are given. Furthermore, the chains involved are specified along with the number of

residues in the respective chain(s).
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The resulting collection of test cases was checked for redundancy. This was done
by deriving the sequences from the structures and performing a full factorial BLAST
(Altschul et al., 1990) search. Only those unbound-unbound docking test cases were
retained that showed a maximum of 75% sequence positives to any other complex in
the dataset while exhibiting a minimum of 75% positives between the complex and
the respective unbound units. This resulted in a total of 33 test cases which classify
into 21 Enzyme-Inhibitor complexes, four Antibody-Antigen complexes, four "other"
complexes (not belonging to either of the previous groups) and four "difficult" test
cases. The test cases classified as difficult are those that undergo drastic conformational
changes upon complex formation and thus represent the biggest challenge to a rigid-
body docking algorithm. This collection of unbound-unbound docking test cases repre-
sents a on sequence level non-redundant version of the first ever published benchmark

for protein-protein docking (Chen et al., 2003b), using the same classification scheme.

Table 2.1: Unbound-unbound protein-protein docking examples as collected from

the literature.

co-crystallised complex unbound 1 (receptor) unbound 2 (ligand)
PDB-ID chain(s) PDB-ID  Chain(s) #Res PDB-ID  Chain(s) #Res Ref.
Enzyme-Inhibitor /Enzyme-Substrate complexes (21)
1ACB B 5CHA A 237 1CSE I 63 i
1AVW A:B 2PTN - 223 1BA7 A 165 i
1BRC E:I 1BRA - 223 1AAP A 56 1
1BRS A:D 1A2P B 108 1A19 A 89 a,¢,e,1,]
1BVN P:T 1PIF - 495 2AIT - 74 i
1CGI E:I 1CHG - 230 1HPT - 56 b,c,d,e,i,j
1CHO E:I 5CHA A 237 20V0 - 56 2,c,e,8,1,]
1CSE E:I 1SCD - 274 1ACB I 63 i
1DFJ LE 2BNH - 456 7RSA - 124 1)
1FSS A:B 2ACE - 527 1FSC - 61 a,c,e,fi,
1IMAH AF IMAA B 536 1FSC - 61 c,h.i
1PPF E:I 1PPG E 218 20V0 - 56 a
1TGS Z:1 2PTN - 223 1HPT - 56 i
1UGH E:I 1AKZ - 223 1UGI A 83 b
2KAI AB:I 2PKA XY 232 6PTI - 57 ¢,d,i,j
2PTC E:I 2PTN - 223 6PTI - 57 a,¢,d,1,]
281C E:I 1SUP - 275 3881 - 108 ¢,d,i,j
28NI B 1SUP - 275 2012 I 65 c,d,e,i,j
2MTA LH:A 2BBK LH 480 1AAN - 105 i

...continued on next page
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Table 2.1 — continued from previous page

co-crystallised complex unbound 1 (receptor) unbound 2 (ligand)

PDB-ID chain(s) PDB-ID  Chain(s) #Res PDB-ID  Chain(s) #Res Ref.
2PCB A:B 1CCP - 293 1HRC - 105 e
2PCC A:B 1CCA - 291 1YCC - 107 b

Antibody-antigen complexes (4)
1AHW DE:F 1FGN LH 428 1BOY - 211 L
1DQJ AB:C 1DQQ AB 494 3LZT - 129 i
1VFB AB:C 1VFA AB 224 1LZA - 129  b.osfy
1WEJ LH:F 1QBL LH 433 1HRC - 105 b

’Other’ complexes (4)
1AVZ B:C 1AVV - 99 1SHF A 59 i
1L0Y A:B 1BEC - 238 1B1Z A 218 i
1WQ1 G:R 1WER - 324 5P21 - 166 i
1BDJ A:B 3CHY - 128 2A0B - 118 i

’Difficult test cases’ (4)
1BTH LH:P 2HNT LCEF 292 6PTI - 57 i
1FIN A:B 1HCL - 294 1VIN - 252 i
1FQ1 B:A 1B39 A 290 1FPZ F 178 i
1GOT BG:A 1TBG AE 408 1TAG - 314 i

These examples were collected from a total of ten different literature resources 2.

During the course of this work, a new, much larger protein-protein docking benchmark
was published (Mintseris et al., 2005). For this benchmark, the PDB has been parsed
for putative docking test cases using new quality and redundancy criteria. This
benchmark now holds a total of 84 non-redundant docking test cases. These test
cases consist of transient native complexes, which are structurally non-redundant,
along with those unbound structures that have the highest possible sequence identity
to the bound interactors, while consisting of those crystal structures with the lowest
possible resolution and the fewest residues with missing electron density. Structural
redundancy was avoided by using the Structural Classification Of Proteins SCOP

(Andreeva et al., 2004) hierarchical domain classifications, taking family-family pairs

2Camacho and Vajda (2001)
bGardiner et al. (2001)
¢Chen and Weng (2002)
dGabb et al. (1997)

¢Palma et al. (2000)
fHeifetz et al. (2002)
8Lorber et al. (2002)
hMandell et al. (2001)
Halperin et al. (2002)
JChen et al. (2003b)
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as non-redundant unit. For the obtained 84 complexes, Mintseris et al. performed an
FFT-docking in order to classify them according to their expected difficulty for most
docking methods. The number of high-quality hits, defined by interface root mean
square deviation (RMSD) and the fractions of native and non-native contacts as used in
the CAPRI challenge (Méndez et al., 2003), were employed for the classification. 63 test
cases have been classified as "rigid-body" docking problems, 13 are listed as "medium-
difficulty" while eight "difficult" examples are given. Besides this classification, the
docking test cases are grouped into Enzyme-Inhibitor/Enzyme-Substrate complexes,
Antibody-Antigen complexes and "Other" complexes for those not belonging to either

of the two previous groups.

Table 2.2: Protein-protein docking benchmark 2.0 (Mintseris et al., 2005).

co-crystallised complex unbound 1 (receptor) unbound 2 (ligand)

PDB-ID chain(s) PDB-ID  Chain(s) #Res PDB-ID  Chain(s) #Res

Rigid-body (63)

Enzyme-inhibitor / Enzyme-substrate complexes (21)

1AVX A:B 1QQU A 223 1BAT B 169
1AY7 A:B 1RGH B 96 1A19 B 89
1BVN P:T 1PIG - 495 1HOE - 74
1CGI E:1 2CGA B 245 1HPT - 56
1D6R A:l 2TGT - 223 1K9B A 58
1DFJ I:E 2BNH - 456 9RSA B 124
1E6E A:B 1EIN A 455 1CJE D 107
1EAW A:B 1EAX A 241 9PTI - 58
1EWY A:C 1GJR A 295 1CZP A 98
1EZU AB:C 1ECZ AB 284 1TRM A 223
1F34 A:B 4PEP - 326 1F32 A 127
1HIA AB:I 2PKA XY 232 1BX8 - 49
1MAH A:F 1J06 B 533 1FSC - 61
1PPE E:I 1BTP - 223 1LUO0 A 29
1TMQ A:B 1JAE - 470 1B1U A 117
1UDI E:1 1UDH - 228 2UGI B 83
2MTA HL:A 2BBK JM 480 2RAC A 105
2PCC A:B 1CCP - 293 1YCC - 107
25IC E:1 1SUP - 275 3S5SI - 108
2SNI E:l 1UBN A 274 2CI2 I 65
7CEI B:A 1MO08 B 131 1UNK D 87

Antibody-antigen complexes (9)

1AHW AB:C 1FGN LH 428 1TFH A 202

...continued on next page
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Table 2.2 — continued from previous page

co-crystallised complex unbound 1 (receptor) unbound 2 (ligand)
PDB-ID chain(s) PDB-ID  Chain(s) #Res PDB-ID  Chain(s) #Res
1BVK DE:F 1BVL BA 224 3LZT - 129
1DQJ AB:C 1DQQ CD 424 3LZT . 129
1E6J HL:P 1E60 HL 429 1A43 - 72
1JPS HL:T 1JPT HL 425 1TFH B 182
1IMLC AB:E 1MLB AB 432 3LZT - 129
1VFB AB:C 1VFA AB 224 8LYZ - 129
1WEJ HL:F 1QBL HL 433 1HRC - 105
2VIS AB:C 1GIG LH 431 2VIU ACE 960
"Other" complexes (22)
1A2K AB:C 10UN AB 246 1QG4 A 202
1AK4 A:D 2CPL - 164 1E6J P 210
1AKJ AB:DE 2CLR DE 375 1CD8 AB 228
1B6C B:A 1IAS A 330 1D60 A 107
1BUH A:B 1HCL - 294 1DKS A 76
1E96 B:A 1HHS8 A 192 1MH1 - 183
1F51 AB:E 1IXM AB 343 1SRR C 121
1FC2 D:C 1FC1 AB 414 1BDD - 60
1FQJ A:B 1TND C 316 1FQI A 133
1GCQ C:B 1GCP B 67 1GRI B 211
1GHQ A:B 1C3D - 294 1LY?2 A 130
1HE1 C:A 1MH1 - 183 1HE9 A 131
114D AB:D 1149 AB 402 1MH1 - 183
1KAC A:B INOB I 185 1F5W B 121
1KLU AB:D 1H15 AB 369 1STE - 238
1KTZ B:A 1M9Z A 105 1TGK - 112
1KXP D:A 1KW2 B 453 1137 B 371
1MLO AB:D 1MKF AB 742 1DOL - 71
1QA9 A:B 1HNF - 179 1CCZ A 171
1RLB ABCD:E 2PAB ABCD 456 1HBP - 175
1SBB B:A 1SE4 - 239 1BEC - 238
2BTF AP 11JJ B 371 1PNE - 140
Antibody-antigen complexes (Crossbound) (11)
1BJ1 HL:VW 1BJ1 HL 431 2VPF GH 189
1FSK BC:A 1FSK BC 434 1BV1 - 159
1I9R HL:ABC 1I9R HL 434 1ALY ABC 438
1I1QD AB:C 11QD AB 408 1D7P M 159
1K4C AB:C 1K4C AB 431 1JVM ABCD 394
1KXQ A:H 1PPI - 496 1KXQ H 120
INCA HL:N INCA HL 435 TNN9 - 388
INSN HL:S INSN HL 427 1KDC - 137
1QFW HL:AB 1QFW HL 224 1HRP AB 196
1QFW IM:AB 1QFW IM 229 1HRP AB 196
2JEL HL:P 2JEL HL 435 1POH - 85

Medium-difficulty (12)

...continued on next page
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Table 2.2 — continued from previous page

co-crystallised complex unbound 1 (receptor) unbound 2 (ligand)
PDB-ID chain(s) PDB-ID  Chain(s) #Res PDB-ID  Chain(s) #Res
Enzyme-inhibitor / Enzyme-substrate complexes (2)
1ACB B 2CGA B 245 1EGL - 70
1KKL ABC:H 1JB1 ABC 471 2HPR - 87
Antibody-antigen complexes (Crossbound) (1)
1BGX T:HL 1CMW A 817 1AY1 HL 423
"Other" complexes (9)
1GP2 BG:A 1TBG DH 405 1GIA - 310
1GRN B:A 1RGP - 189 1A4R A 190
1HES A:B 1587 A 839 821P - 166
112M B:A 1A12 A 401 1QG4 A 202
11B1 AB:E 1QJB AB 460 1KUY A 166
11JK BC:A 1FVU AB 254 1AUQ - 208
1K5D AB:C 1RRP AB 338 1YRG B 343
1M10 B:A 1MO0Z B 266 1AUQ - 208
1IN2C ABCD:EF 3MIN ABCD 491 2NIP AB 289
1WQ1 G:R IWER - 324 6Q21 D 171

Difficult (8)
"Other" complexes (7)

1ATN A:D 11JJ B 371 3DNI - 258
1DE4 CF:AB 1CX8 AB 1278 1A67Z AB 371
1EER BC:A 1ERN AB 416 1BUY A 166
1FAK HL:T 1QFK HL 348 1TFH B 182
1FQ1 B:A 1B39 A 290 1FPZ F 178
1IBR B:A 1F59 A 440 1QG4 A 202
2HMI AB:CD 1S6P AB 979 2HMI CD 434
Antibody-Antigen complexes (1)
1H1V A:G 11JJ B 371 1DON B 729

2.2 Docking algorithm

2.2.1 CKORDO

All the docking calculations in this work have been conducted using the CKORDO dock-
ing software as developed by Zimmermann (2002). The algorithm is an enhancement of
the KORDO algorithm (Meyer et al., 1996) which itself is based on a method developed
by Katchalski-Katzir et al. (1992) during which the correlation of two discretised
protein surfaces is calculated in Fourier space with increased efficiency as compared
to the calculation in direct space. This rigid-body docking algorithm is suitable only
for binary docking problems. The two subunits to be docked are mapped on a three

dimensional grid. The receptor, typically the larger of the subunits to be docked, is
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position restrained in space, while the ligand, respectively the grid representation of
the ligand, is rotated by discrete angle increments for a full search of the rotational
space. CKORDO calculates the surface geometry correlation as well as a hydrophobic
and an electrostatic potential for every orientation/conformation.

In order to calculate the geometric correlation scores, single integer values are assigned
to every grid cell in the 3D grid representations. The position restrained protein A
(receptor) is mapped on three different types of grid cells (equation (2.1)), with a
defined protein interior, surface layer and those cells not explicitly occupied by any
atom of the protein (free space in the grid beyond the proteins measurements). For
moving protein B (ligand), only two cell types are distinguished: protein interior cells

and cells "outside” of the protein (see equation (2.2)).

1 surface layer
fa,,. = p protein interior (2.1)
0 otherwise

1 protein interior
IBij = : (2.2)
0 otherwise
where:
fa, B : numerical values assigned to regarded grid cell
1,7,k : internal coordinates of the 3D grid

The final geometric correlation is calculated by multiplication of overlapping grid cells

of the two individual grids according to equation (2.3). In order to punish undesired

N M L

feap, = Z Z Z Faisn IBivasionin (2.3)

i=1 j=1 k=1

where:
JCo s :  geometric correlation score for given orientation (rotation fixed, only
translational dependencies included)
1,7,k : internal coordinates of the 3D grid
N,M,L : maximum dimensions of the grid in direction of i,j,k, respectively
a, B, : components of translation vector in internal units of grid
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orientations which lead to a large overlap of the two proteins, especially an overlap of
protein B with the interior of protein A, p is usually a negative integer value. In this
work, the CKORDO default value of p = —6 is used. An overlap of protein B with the
surface layer of protein A will lead to positive contributions, an overlap of protein B with
the interior of protein A to negative contributions while orientations without overlap
will lead to zero values. It is important to note here, that the correlation function as
described above is uni-directional. The ligand is not surrounded by a surface layer in
the grid representation, thus the problem is not symmetric. Interchanging receptor
with ligand and vice versa will not lead to identical results.

The calculation of the geometric correlation score in Fourier space reduces the algo-
rithmic complexity of the underlying problem from O(N®) to O(N3log(N?)).
Electrostatic and hydrophobic correlation terms are calculated in a likewise manner.
Herefore, pseudo coulomb potentials as well as hydrophobicity terms taken from the
AMBER95 (Pearlman et al., 1995) force field are mapped to separate grid representa-
tions of the proteins and the correlation scores calculated in Fourier space.

For the maxima of geometric correlation the value for a pairwise atom-atom contact
potential is calculated as well as optionally the buried surface area and the gap volume
via the external programs Dssp (Kabsch and Sander, 1983) and SURFNET (Laskowski,
1995).

2.2.2 RMSD calculations

The main quality criterion for any docking calculation is the root mean square deviation
(RMSD) as a measure for structural similarity calculated between the putative complex
orientations yielded by the docking software and a reference state. For unbound
docking this reference state can either be the native complex or the unbound units
as fitted on the native complex. Since the primary sequence of the unbound units
often differs from the corresponding native complex, a structural alignment algorithm
is necessary to assign corresponding residues between unbound and native complex.
The CKORDO algorithm does not facilitate a structural alignment, such that the RMSD
calculations can only be conducted when using the unbound units as fitted on the native
complex as a reference state. Consequently, all the RMSD calculations in this work are

executed in the same manner. The calculation of the RMSD with respect to the fitted
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unbound complex is reasonalble since the unbound units fitted on the native complex
represent the best possible solution for a rigid body docking, where flexibility is not
explicitly handled in the conformational space search. For identification of a near-native
protein complex structure, structural similarity in the interface or contact region of the
protomers is of far greater importance than structural similarity in regions which are
not in contact with each other. Therefore, only the RMSD of interface atoms is used
in this work, where all those atoms are defined as interface atoms for which an atom of
the complex partner can be found within a threshold of 6A euclidean distance. Since
flexible side chains are likely to undergo conformational changes when transferred from
one environment (unbound subunit as crystallised in solution) to another (interface of
a protein-protein complex), only C-alpha atoms are taken into account.

The root mean square deviation of interface C-alpha atoms (RMSD,;C,,) calculated
between a putative complex orientation and the unbound units as fitted on the native
complex will be the major criterion to judge the quality of protein-protein docking

results in this work.

2.3 The GRID software package

The term GRID specifies a software package which is widely used especially in pharma
industry. It has been initially developed by Peter Goodford (Goodford, 1985) for
the identification of non-covalent interaction forces between a molecule of known 3D-
structure (target), usually a biological macromolecule, and a user defined chemical
group (probe). Various energetic potential hyperplanes can such be generated and used
for the identification of binding sites for the respective probe in the target structure.
The program GRID advanced to a standard tool for the use of macromolecular structure
information, mostly of protein structures, in the development of new therapeutical
agents. Drug molecules should be designed such that they exactly match the structure
of a desired target molecule geometrically and also chemically. GRID offers the
possibility to judge the energetic and geometric correlation of a protein-pharmacophore-
system.

For this, the target molecule is wrapped in a three dimensional grid of defined spacing
which expands beyond the maximum extensions of the target by a predefined measure.

For every grid point that does not explicitly collide with the van der Waals radius of one
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of the target atoms, an interaction energy is calculated for the user defined chemical
probe (usually a relatively small molecular fragment, often just single atoms).

Each probe is characterised in its chemical and physical properties by the following
parameters: The van der Waals radius r, the effective number of electrons Ny, the
polarisability «, the electrostatic charge ), the minimum energy value FE,,;, in the
energy function Ejy, that calculates the hydrogen bonding energy, the maximal number
of donated hydrogen bonds JD, the maximal number of accepted hydrogen bonds JA
as well as a numerical value JTYPE, the “hydrogen bonding type”, which provides
information about the preferred hydrogen bonding geometry (preferred angles between
accepted and donated hydrogen bonds) of the probe. In a likewise manner, every
single surface atom of the target is characterised by the parameters described. The
interaction energy at a certain grid point with the coordinates z, y, z is calculated

using the empirical energy functions (2.4 - 2.7):

Ezyz = Z Elj + Z Eel + Z Ehb (24)
A B

k= a2 (2.5)
pg |1 9
Bg=+1 |24y &9 2.6
' KC [d \/m] 26)
c D] .
Wb = {E - ﬁ} cos™ 0 (2.7)

Equation (2.5) represents the well known Lennard-Jones-potential. In this equation,
d is the euclidean distance between two non covalently bound atoms for which the
(Lenard-Jones) energy Ej; is described by parameters A and B. The values for A and
B are calculated according to Hopfinger (1973) from the effective number of electrons
Ncyys, the polarisability o and the van der Waals radius r of the interacting atoms. Only
those pairs of probe and target atoms are regarded for which the Lenard-Jones potential
is negative and the resulting interaction consequently attractive. Only exceptions:
should Ej; be positive and repulsive forces predominating, but a favourable hydrogen
bonding interaction between the two atoms be abundant, Fj; is set to zero. Should

the distance between the two atoms exceed 8A, Fy; also set to zero (cut-off radius).
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Equation (2.6) describes the electrostatic fraction of the interaction energy. In this
equation p and q are the electrostatic charges of the target and the interacting probe,
which are separated in space by distance d; K is a combination of geometric factor and
natural constants. It is assumed that a planar interface is separating a homogeneous
target phase of dielectricity ¢ from a likewise homogeneous solvent phase of dielectricity
€. The nominal depth s, of each target atom in the target phase as well as the
nominal depth s, of every single atom of the probe in solvent phase are determined by
counting of all those neighbouring atoms for which the center is not further away than
4A from the currently regarded atom. Equation (2.6) poses a compromise between the
costly method of electrostatics calculation of a system according to the algorithm of
Warwicker and Watson (Warwicker and Watson, 1982) and classical functions for which
the shortcoming in the application to interactions with proteins was already discussed
by Hopfinger (1973).

Equation (2.7) describes the fraction of the interaction energy contributed by hydrogen
bonds. This directional 6-4 potential as postulated by Brooks et al. (Brooks et al.,
1983) includes the tabulated constants C and D, which constitute of the hydrogen
bonding parameters J of the atoms involved. If the target atom is acting as hydrogen
donor, the direction of binding is determined by the position of the hydrogen atom,
as emanating from the coordinates of the heavy atoms of the target. 6 depicts the
angle between the target donor atom to which the hydrogen is covalently bound and
the probe atom acting as an acceptor. If a probe atom is acting as donor, it is assumed
that the probe will orient in a way such that the most effective hydrogen bonding
interaction with the acceptor can be established and cos(#) is set to one.

This basic concept of GRID as created in 1985 has been under continuous and consistent
development since. Terms which account for the influence of a temperature factor
on hydrogen bonds have been added to Ej, (Boobbyer et al., 1989). Further probe
molecules have been added and the energy function was adapted to handle probes
which can form multiple hydrogen bonds at once (Wade and Goodford, 1993; Wade
et al., 1993; Wade and Goodford, 1989). Such it became possible to include water as
the dominating medium in which the vast majority of natural processes takes place
into the list of probes. This enables to account for a competitive effect between water

and the probe and such include entropic terms into the energy function.
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2.4 Employed scoring schemes

2.4.1 GRID based scoring schemes

The scoring scheme described here uses the GRID method as developed by P. Goodford
(Goodford, 1985) (cf. section 2.3 on page 44). Up to eighteen different energy contour
surfaces accounting for the binding properties of various small molecular fragments (as
typically presented on a protein surface) are calculated for each of the complex partners.
This is done by empirically parameterised physical potentials specially designed to
represent binding properties of protein molecules. Besides the fifteen protein-like small
chemical probes, three solvents were selected in order to allow the calculation of solvent
effects emerging from the competition of atoms of the binding partner with solvent
molecules. For a list of the selected probes see table 2.3 on the following page. All atoms
have previously been labelled according to one of the 40 atom groups as proposed by
Melo and Feytmans (1997) (see figure 2.1). Table 2.4 yields correlations, i.e. matching
properties between the selected probes and the atom groups. According to this, one
or more atom group number(s) have been assigned to each of the probes as defined by
GRID.

Each complex conformation -as proposed by a rigid-body FFT docking algorithm- is
subsequently evaluated by summation of those energy values where an atom matching
the properties and requirements of the respective energy function is found in close prox-
imity. This is done for each of the eighteen specialised force-fields used. Additionally
the solvent effects for water, a hydrophilic and an amphiphilic solvent are calculated
whenever atoms of the binding partner would displace or replace a solvent molecule.

This yields up to 21 different scoring schemes.

In detail, the developed scoring scheme sums up the energy for every probe used to
describe a protein’s surface energetically - and thereby its possible binding preferences
for another protein ligand. Basically, the GRID energy values for all the 18 different

probes are calculated for both receptor and ligand of a complex using a grid spacing
of 1A.

The actual program sets up a score value for every probe and in addition three further
scoring factors that account for solvent effects, based on the energy values for the probes

defining water, an amphiphatic and a hydrophobic probe. Each complex conformation
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Table 2.3: List of selected protein-like probes together with their directive symbols

as used by GRID.

Probe GRID- chemical characterisation corresponds in protein
directive
Single atom probes (12)
—CHs; C3 methyl group (A, V,L, I, M)
=CH- Cl— aromatic or vinyl methine group (F, W, H,Y)
—NH-— N1 neutral flat NH group e.g. amide (backbone, W, H)
=NHt Ni1= sp2-hybridised imine cation (H)
—NH> N2 neutral flat NH2 group e.g. amide (N, Q, R)
= NHS N2= sp2 hybridised imine cation (R)
—NH;r N3+ sp3 hybridised amine cation (K, N-Terminus)
—OH O1 alkyl hydroxy group (S, T)
—OH OH phenyl or carboxyl hydroxy group (D,E,N,Q,Y)
=0 O sp2 hybridised carbonyl oxygen (backbone)
=0 O:: sp2 hybridised carboxyl oxygen (D,E,N, Q)
-0~ O- sp2 hybridised phenolate oxygen anion (Y)
Multi atom probes (3)
—-COO0~ COO- aliphatic carboxylate group (D, E, C-Terminus)
—CONH; CONH2 aliphatic neutral amidine group (N, Q)
—~CN>H AMIDINE aliphatic cationic amidine group (R)
Solvent probes (3)
H2O OH2 water as hydrophilic probe
777 BOTH amphiphatic probe (purely hypothetic)
CsHe DRY benzene like hydrophobic probe

as proposed by the algorithm of CKORDO (Zimmermann, 2002) is generated from
the input structure and the individual atoms of the protein transformed during the
docking process are then mapped onto the grid of the static protein. Every atom
of the transformed protein is assigned to a single grid point on the static protein,
which represents an energy vector in the dimensions of the number of probes used. As
uncertainty /search radius for this mapping 1.6A was chosen, representing the average
van der Waals radius of the four most abundant elements in a protein (C, O, N, S).
Depending on the atom group of the assigned atom, the corresponding probe(s) is/are
retrieved from a lookup table similar to table 2.4. The respective energy value as
computed by GRID for this point of the grid is then added to the total probe score for
this conformation. Not only are the appropriate energies summed up to a total score

for each probe, but also, whenever such a summation is performed, simultaneously the
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Figure 2.1: Classification of amino acid atoms in 40 atom types as proposed by
Melo and Feytmans (1997).

respective energy values for the probes OH2, BOTH and DRY are added to the three
score values for the solvent effects (cf. figure 2.3 on page 52). Thus, a competitive
effect can be taken into account measuring the energy that will be lost or gained if the
solvent at this point on the surface of the static protein is replaced by an atom of the

transformed protein.

A more descriptive and schematic overview of the working procedure described above

is depicted in figure 2.3 on a single step example.

GRID reportedly gives reliable energy values for unfavourable interactions only up to
a value of bkcal/mol (higher values are usually the result of clashes)(Goodford, 1985).
Any occurrence of energy values above this threshold was not taken into account for the
calculation of the scores described above. Whenever a corresponding atom was placed

in immediate neighbourhood of such a highly unfavourable grid point, this occurrence
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Figure 2.2: Schematic illustration of the scoring method: Preparation steps for the
score calculation. For a given complex orientation (1) a grid is wrapped around each
of the complex partners (2a: ligand, 2b: receptor). For every grid point, the energy
is calculated for various small chemical probe molecules using GRID (3a,b). All grid
points with a distance above a certain threshold to any of the protein atoms are
discarded (4a,b). The complex partner is now placed in the respective GRID field.
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Table 2.4: Correlations between atom groups according to Melo and Feytmans
(1997) and probes as used by GRID.

Probe(Grip-directive)  assigned atom groups corresponding  chemical
environment

C3 6 Ala, Val, Leu, Ile, Met

Cl= 12 Phe, Trp, His, Tyr

N1 3 Backbone, Trp, His

N1= 38 His

N2 18 Asn, Gln, Arg

N2= 22 Arg

N3+ 20 Lys, N-Terminus

01 16 Ser, Thr

OH 28 Asp, Glu, Asn, Gln, Tyr

(0] 5 Backbone

O:: 28 Asp, Glu, Asn, Gln

O- 40 Tyr

COO- 27, 28 Asp, Glu, C-Terminus

CONH2 18, 33, 34 Asn, Gln

AMIDINE 21, 22 Arg

OH2 10, 19, 25, 36, 39 hydrophilic, solvent

BOTH 1,2,4,9,14,15,17,23,24, amphiphatic, solvent
26, 29, 30, 31, 32, 35, 37

DRY 7,8,11,12,13 hydrophobic, solvent

was counted. This count can optionally be used as a penalty score for the respective
probe.

Since the GRID calculations can be computed in advance, the actual calculation step is
extremely fast, as a very fast and efficient algorithm for approximate nearest neighbour
searching based on binary kd-trees (Arya et al., 1998) was used for the grid mapping.
The general working scheme of a geometric rigid body FFT based docking algorithm
remains unchanged since its first development by Katchalski-Katzir et al. (1992). This
involves depicting the larger unit, the receptor, as static and not to be moved in space,
while the smaller unit, the ligand, is rotated and translated around the receptor. This
implies, that the resulting complex conformations as proposed by the docking procedure
can be generated by applying the respective transformation rules to the orientation
of receptor and ligand in space that was used as a starting point. Since the receptor
position is kept fixed, only the transformation rules for the ligand are needed to generate
any proposed orientation.

In order to allow score calculations for both sides of the interface as seen from the
viewpoint of the ligand in the field of the receptor as well as the receptor in the field

of the ligand, it would normally be necessary to rotate the complete grid with the
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Figure 2.3: Schematic illustration of the score calculation. The picture is a two
step zoom into figure 2.2, (5a) depicting the detailed working scheme of the score
calculation. Whenever an atom matching the properties of the respective probe used
to calculate the energy values on the grid points is found in close proximity (search
radius - green) to such a point of the grid (cross - yellow), the energy value at this
point is added to the respective score value. Simultaneously, the difference between
this energy value to the one of any of the solvents at this point is added to the
respective solvent’s score.

individual force field energies for the ligand unit of a docking procedure. This is due
to the fact that only transformation rules for the ligand are produced and given by the
docking procedure. For each transformation which maps a vector y in space to a new
position Zy.qns (equation (2.8)) an inverse transformation exists which will map Zyqns

back on 7 (equation (2.9)).

Transfered to docking this means that for each transformation which, if applied to the

coordinates of a body L, maps L (the ligand) to a new position relative to body R (the
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ftrans - E : f(] + { (28)
f0 = ET : j’troms - { 29)

where:
Tirans : transformed position vector in 3D space
o : position vector in 3D space
R : Rossman rotation matrix
RT : transposed Rossman rotation matrix
F : translation vector

receptor), there exists an inverse transformation which, if applied to the coordinates of

R, will map R to an identical relative orientation to body L as illustrated in figure 2.4.

Using this mathematical relation allows for score
calculation for and from the respective viewpoint
of both sides of the complex interface for each
individual probe/force field according to equations
(2.11) - (2.12). This is computationally much more
efficient, since only the atom coordinates have to
be transformed (the number of atoms in a molecule
will always be several magnitudes smaller than
the number of grid points for the respective GRID
force-field).

Each probe-specific score calculation is performed
for the ligand in the immobile field of the receptor
as well as the receptor in the immobile field of the
ligand. The total probe specific score for a complex
conformation is the sum of the scores derived for

each side of the interface.

2.4.2 Residue interface propensities
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identiical relative orientations of R in relation to L

Figure 2.4: Schematic il-

lustration of the application

of "regular" and "inverse"

transformations to the two

binding partners of a binary

protein-protein complex.

Various studies (Chakrabarti and Janin, 2002; Jones et al., 2000; Lo Conte et al., 1999;

Jones and Thornton, 1997), mainly of statistical nature, have been conducted in order
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1 & 1 &
Oprobe = %7 Z Eprobei + = Z Eprobe- (210)
Np 4 Np 4 ’
=0 7=0
1 & 1 &
C'sol = N_R Z(Eprobei — Esoh) + FL Z(Eprobej — Esolj) (211)
i=0 §=0
il r kcal
Sprobepen = ZZ + Z] if Eprobem Eprobej >50 — (212)
; : mol
=0 7=0
where:
Cprobe :  energy cost function for probe (as taken from table 2.3 on page 48)
Eprobe;; :  energy as calculted by GRID for regarded grid point and respective probe
in correlation with atoms i, j
i,] : interface atoms of receptor / ligand
Ng :  total number of atoms correlating with probe (cf. table 2.4 on page 51) on
receptor side of interface
Ny, :  total number of atoms correlating with probe on ligand side of interface
Ciol : energy cost function for solvent effect
Eso, ; :  energy as calculated by GRID for regarded grid point and respective solvent
probe in correlation with atoms i, j
Sprobe,., ¢ penalty score for regarded probe

to determine, whether certain amino acids have a higher frequency of occurrence in
or around the interface regions of co-crystallized complexes. Methods and results as
obtained by Lo Conte et al. (1999) seemed most suitable to be integrated into the
algorithm. Their proposed residue interface propensities have been derived from an
analysis of the atomic structure of the recognition sites seen in 75 protein-protein
complexes of known three-dimensional structure. Among these complexes were 24
protease-inhibitor, 19 antibody-antigen and 32 other complexes, including nine enzyme-
inhibitor and 11 that are involved in signal transduction. The area-based composition
of these 75 complexes has been analysed and was used to derive the propensities for a
residue to be part of a protein-protein interface as listed in table 2.5 on the facing page,
named P,,;. Two more interface propensity scales have been integrated which, unlike
the rather universal scale for P,,,;, have been derived from protein families and represent,
specialised propensities for the classes of Enzyme-Inhibitor (Pg;) and Antibody-
Antigen complexes (P44). These family specific residue interface propensities have
been derived by Huang and Schroeder (2005) from the PSIMAP database (Park et al.,
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2001), which holds the contact information for more than 40,000 interfaces derived
from over 8,000 PDB structures. In detail, residue interface propensities were derived
from 747 interactions belonging to the SCOP (Andreeva et al., 2004) family b41.1.2
(trypsin-like serine proteases) and 612 interactions which are classified according to
family b1.1.2 (C1 set domains; antibody constant domain like) using a simple mole-
fraction method. In order to make the three different propensity scales comparable as
well as to put an emphasis on those residues with high interface propensities in the
calculation of an average residue propensity score for the interface region, the natural

logarithm of the mole-fraction values was calculated as displayed in table 2.5.

Table 2.5: Propensity for a residue to be part of a protein-protein interface according
to Lo Conte et al. (1999)! and Huang and Schroeder (2005)23

aminoacid  Pyni' Pgr? Paa® aminoacid Puyni'  Pgr?  Paa®

ALA -0.43 -0.63 0.15 LEU 0.29 0.05  -0.26
ARG 0.13 -0.33  -0.08 LYS -0.57 -0.65  -0.29
ASN -0.12 -0.67  -0.67 MET 0.98 -0.08 0.23
ASP -0.31 -0.05 0.12 PHE 0.79 0.66 1.00
CYS 0.76 2.20 0.00 PRO -0.24 -0.37 0.28
GLN -0.36 -0.45  -0.17 SER -0.42 0.22 -0.29
GLU -0.47 -0.60  -0.17 THR -0.36 -0.06  -0.49
GLY 0.02 -0.03  -0.37 TRP 1.24 1.43 0.68
HIS 0.64 0.72 0.01 TYR 1.05 0.41 1.27
ILE 0.56 -0.12  -0.15 VAL 0.08 0.07  -0.09

All those residues were defined as interface residues for which at least one of their
atoms is within an euclidean distance of 6A to any atom of a respective residue of
the interaction partner. For every interface residue, the respective interface propensity
is retrieved and the mean value for the complete interface is calculated according to
equation (2.13). Since three different propensity scales can be used, three different
scoring schemes based on residue interface propensities (Sgyp) have been set up;
one which should be generally applicable (Sgsp,,,), a second which is specialised for
Enzyme-Inhibitor complexes (Sgrp,,) and a third one which focuses on Antibody-

Antigen complexes (Sgrp,,)-

2.4.3 Residue-residue pair potential

In order to extend the current version of the docking algorithm CKORDO, an empirical

residue level pair potential has been added to the list of scoring schemes used in this
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SR]PUNI/EI/AA = Z P+ — Z P (2.13)
j70
where:
SRIPyN1 5144 Residue interface propensity score
i,J . interface residue of receptor / ligand
Ng :  total number of residues on receptor side of interface
Ny, : total number of residues on ligand side of interface
P ; . interface propensity for regarded residue i,j according to table 2.5

work. The choice fell upon the method developed by Moont et al. (1999) named
RPSCORE. This residue-residue potential was derived from 103 non-homologous
interfaces found in the PDB via the aid of Scop, version 1.53. The individual scores
for the possible residue pairings have been calculated using a mole fraction method
according to equation (2.14) - (2.18) from a total of 10,929 residue pairings issuing
from 32,439 interface residues. A pair of interface residues was defined as contacting if

the distance of any of the respective atoms was below a distance cutoff of 4.5A.

This allows for a 20x20 scoring matrix to be set up. The final value for this scoring
function is calculated as the sum of the individual scores s;; for a residue contact pair

of types i,j within the distance cutoff of 4.5A according to equation (2.19).

2.4.4 Tightness of fit

The tightness of fit scoring scheme as proposed by Gottschalk et al. (2004) is based
on a normalised average minimum distance of the predicted interfacial C-alpha atoms
of a protein to any of the C-alpha atoms of the binding partner. It can be calculated
according to equation (2.20). A C-alpha atom was counted as a predicted interface
C-alpha atom if the exponential value of the interface propensity of a residue P; as
given in table 2.5 reaches a minimum value of 1.5. Since three different scales for the
residue interface propensities are employed, three different scores (T'0F,,;, ToFg; and

ToF44) can be calculated.
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CA .
Sij = Sji = lOgﬂ (214)
eij
7=20
C; — E Cij (215)
j=1
=20
c=Y ¢ (2.16)
=1
1=20
=1
n; Ny
e.. =0 . —=2.2 2.18
v N N ( )
where:
i,7 : interface residue of type i, j
sij : score value for residue pairing between i and j
n;; : total occurrences of residues i, j
N : . total number of residues
C; : occurrence of residues i and in contact pair c;;
C :  total number of occurrences of residues in contact pairs
eij : expected number of pairs between residues i and j according to mole fraction
method
20 20
SRPscore = E E SijCij (2.19)
i=0 j=0
where:
Srpscore : residue potential score
i, 1 interface residue of type i.j
Sij :  score value for residue pairing between i and j
Cij :  total occurrences of residues pairing ij

2.4.5 Atom-atom pair potential

In order to judge the probability whether or not the distribution of atomic contacts in a
proposed complex conformation is close to the native one, Grimm (2003) developed an
empirical atom-atom pair potential. This potential is based on the distance dependent
statistical evaluation of atom-atom contacts in protein-protein complexes. Atoms are

classified into 40 atom types (see 2.1 on page 49) and contacts up to a maximal distance
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ToF = —d”“fe; - ai (2.20)
a
1 <= Dinger.
dinter - E Z % (221)
i=1 v
1 = Day,
= (2:22)
j=1 -/
where:
ToF 1 tightness of fit at the predicted binding site normalised by the size of the
protein
dinter : average minimum distance of the predicted interfacial C, atoms of protein
1 to any of the C, atoms of the binding partner
dall 1 average minimum distance of all C, atoms of protein 1 to any of the C,,
atoms of the binding partner
Dinter, @ minimum distance of the C, of residue i, predicted to be interface, of protein
1 to any C,, of protein 2
Dy, :  minimum distance of the C, atom of surface residue j, which is either

interface or not, of protein 1 to any C, atom of protein 2
n number of predicted interfacial residues (threshold: P; > 1.5)
m 1 total number of surface residues
P :  exponential value of residue interface propensity as given in table 2.5

of 8A partitioned in 23 different distance bins. A trapeze function is used to smooth
the discrete distribution function and hydrogen bonds and contacts between functional
groups are taken into account as weighting factors while a repulsive part penalises steric
overlaps. The observed frequencies of occurrence are transferred into pseudo energies
using an empirical function. The potential is derived from a curated non-redundant
dataset consisting mainly of the COMBASE database (Vakser and Sali, 1999). This
knowledge based atom pair potential is integrated in the current version of CKORDO
but had to be reimplemented to allow for an examination of complex candidates which
are not or cannot be created by the docking procedure (due to the nature of the Fourier

transformation).

2.4.6 Atomic contact energies

Based on the work of Miyazawa and Jernigan (1985), Zhang et al. (1997) computed

atomic desolvation energies for 18 different atom types (cf. figure 2.5) based on a non-
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redundant (maximum 25% sequence homology), high-resolution (resolution < 2.0A )
data set of 89 protein complexes. Two atoms are defined to be in contact if their
centers are within 6 A of each other. The normalised energy values for each possible

contact pair can be stored in an 18x18 matrix. An implementation for the calculation of
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Figure 2.5: Classification of amino acid atoms in 18 atom types as proposed by
Zhang et al. (1997).

these effective atomic contact energies (ACE), the desolvation free energies required to
transfer atoms from water to a protein’s interior, has been integrated into the software.
This specialised atom-atom pair potential is known to predict the desolvation energies
upon complex formation well and has already been successfully used in other docking
algorithms like for example ZDOCK (Chen and Weng, 2002). In order to calculate the
desolvation energy upon complex formation F¢ according to the method above for an
exemplary complex A-B, one has to calculate E¢ for both subunits in the unbound state

as well as for the complex A-B, each time considering all intramolecular atom pairs
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18 18
i=0 j=0
where:
Ec . effective contact energy of a molecule
i,j : atom types as seen in figure 2.5 on the page before
E;; . effective atomic contact energy between two atoms of type i and j in contact
(distance < 6A)
n;; : total number of atoms of type i forming contact pair with atom of type j

within 6A. The atomic contact energy of complex formation would then be calculated
according to Ec,, ., = Ec(A — B) — Ec(A) — Ec(B) using the formula given
in equation (2.23). The current implementation uses a computationally much more
efficient approach for the calculation of the desolvation energy of complex formation
via the direct calculation of intermolecular atom contacts only, giving direct access to
the energy term resulting from Ec(A — B) — Ec(A) — Ec(B).

2.4.7 Evolutionary relationship

The degree of conservation at each amino acid site is similar to the inverse of
the site’s rate of evolution; slowly evolving sites are evolutionarily conserved, while
rapidly evolving sites are variable. With respect to the evolution of protein-protein
interactions being optimised for functional efficacy, this concept can be used to possibly
distinguish native from non-native interaction sites. The method used to quantify the
evolutionary relationship in this work is the one established by Glaser et al. (2003).
This method, accessible via the CONSURF web-server or the standalone program
RATE4SITE, extracts the sequence from the PDB structure data file and automatically
carries out a search for close homologous sequences of the protein of known structure.
It then multiply aligns the sequences, builds a phylogenetic tree consistent with the
multiple sequence alignment, and calculates the conservation scores using a Maximum
Likelihood approach. In detail, the PSI-BLAST (Altschul et al., 1997) heuristic
algorithm with default parameters is used to collect homologous sequences from the
Swiss-PROT database (Boeckmann et al., 2003) via a single interaction of PSI-BLAST
with an E-value cutoff of 0.001. The E-value or expectation value is a parameter

describing the number of hits one can expect by chance when searching a database of a
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particular size. The higher the E-value, the more hits will be expected, but the pairwise
distance between them and the query sequence will increase. The minimum number
of unique sequences required is set to five while a maximum of 50 unique sequences is
used for further steps - falling back to those 50 with the highest E-value if more unique
sequences could be detected. The multiple sequence alignment of the homologues
extracted from the PSI-BLAST output is performed by CrLusTAL W (Thompson
et al., 1994) using default parameters. The program constructs evolutionary trees
consistent with the resulting multiple sequence alignment and calculates the rate of
evolution at each site using the maximum likelihood paradigm (Pupko et al., 2002).
This allows taking into account the stochastic process underlying sequence evolution
within protein families and the phylogenetic tree of the proteins in the family. The
conservation score at a site corresponds to the site’s evolutionary rate. The conservation
scores are normalised to a mean of zero and a standard deviation of one. The scoring
function calculates the sum of the mean values for the interfaces of receptor and ligand
of the proposed complex structure according to equation (2.24), giving a conservation
index in the interacting region. The relevant criterion for a residue to be part of the
interface is a euclidean distance of less than 6A of any of its atoms to an atom of the

interaction partner.

Ng N,
1 1
Scons = — E Ci + — E C;j (2.24)
Np“ Np 4
=0 7=0
where:

Scons @ conservation score (average conservation index)
1,7 : interface residue of receptor / ligand
Ng :  total number of residues on receptor side of interface
Ny, :  total number of residues on ligand side of interface
Cij : conservation score for regarded residue 1i,j

A recent quantitative analysis of interfacial amino acid conservation in protein-protein
hetero complexes (Reddy and Kaznessis, 2005) indicates that the average conservation
index of interface patches is not necessarily higher compared with other surface regions
of the protein structures. Instead, the study reveals that the surface density of
highly conserved positions is significantly higher in interface regions of protein-protein

complexes which do not belong to the class of Antibody-Antigen complexes. This
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is to be expected since the variable region of the antibody represents the interacting
region with the antigen. These findings demonstrated that the number of conserved
residues in the interacting region is a potentially more appropriate indicator for the
prediction of protein-protein binding sites in most cases, while the number of non-
conserved residues would be an appropriate indicator for binding-site prediction in the
case of Antibody-Antigen complexes. In this work the number of highly conserved
interface residues as well as the number of highly variable residues was counted for
every complex conformation as proposed by the docking algorithm, where residues
with a conservation score ¢ < —0.65 were defined as highly conserved and those with

conservation scores ¢ > (.65 defined as highly variable.

2.4.8 Temperature factors

Reportedly, interface sites tend to have lower B-Factors already in the unbound state
(Yuan et al., 2003; Neuvirth et al., 2004). This easily accessible criterion has, along with
others, successfully been applied to re-rank docking solutions (Gottschalk et al., 2004).
Since the B-Factors, as given for a protein structure in the PDB-file are experimentally
determined values which are not calculated to a standardised reference state, these
values are prone to outliers and require normalisation. A median based method to
detect outliers (Smith et al., 2003) was used. Therefore, the median of the B-factors in a
molecule was calculated and the median of absolute displacements (MAD) determined.
This allows for a so called M-value to be calculated for each B-Factor according to
equation (2.25). An M; value of > 3.5 was used to define an outlier. After removal
of the outliers, the remaining B-factors were normalised using Z-scores (2.26) such
that the normalised B-factors have a zero mean value and unit variance. The current
implementation calculates the mean value for the normalised temperature factors (after

removal of outliers) of all interface atoms Srp according to equation (2.27).

2.4.9 Approximation of the buried surface area

The buried surface area can be defined as the area of the protein surface of a complex
subunit that is freely accessible to solvent molecules in the unbound state while
becoming inaccessible to solvent upon complex formation. Usually the buried surface

area is calculated as the sum of the solvent accessible surface areas of the complex
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(z; — Z)
M; =0.6745 - ~———~ 2.25
€T, — T
zi = 2.26
= (2.26)
where:
M; : M-value at atom position i
T; :  B-Factor at atom position i
z :  median of the B-factors
MAD : median of absolute displacements (absolute displacement: z; — )
Zi . Z-score for measured value x;
T mean value for all x;
o :  standard deviation for all z;
1 & 1 &
St = — b + — b; 2.27
™ N Z ‘N Z ! (2.27)
=0 7=0
where:
1,7 : interface atom of receptor / ligand
Nir : total number of atoms on receptor side of interface
Nr : total number of atoms on ligand side of interface
b;; : normalised B-factor for regarded atom i,j

components minus the solvent accessible surface area of the complex. The calculation
of the solvent accessible surface however is non-trivial since it affords a complete
mathematical description of the protein surface, e.g. via triangulation. The current
version of the CKORDO program avoids this with the help of the time consuming call
of the external program Dssp for every proposed conformation. As an alternative to
this usage of an external program, a simple but effective method to approximate the
buried surface area has been implemented which allows to completely dispense with

the calculation of solvent accessibilities for proposed complex conformations.

The atomic solvent accessibilities are precomputed once only for the subunit structures
using NACCESS (Hubbard and Thornton, 1993a) and stored in a modified PDB format
which has been used as a standard for all the calculations in this work. In order to
be solvent accessible, there is the need for sufficient space in the proximity around a
regarded atom that can be occupied by a solvent molecule, usually water, without steric

hindrance. Using a simplified representation of a water molecule as a sphere with a
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radius of 1.4A leads to the approximation that only those atoms will contribute to the
buried surface area with their solvent accessibility assigned in the unbound state, which
do not allow a sphere of 2.8A diameter to be fit in between their van der Waals surfaces.
Assuming a maximal van der Waals radius of 1.9A for a protein atom, the upper limit
for the distance of the centres of two atoms forming an inter molecular atom contact
pair across the complex interface equals 6.6A. All inter molecular atom contact pairs
above this distance threshold do not contribute to the approximated buried surface
area. Since this method is not able to detect cavities which are large enough to contain
solvent molecules but are still occluded from the solvent since the surrounding areas
are in close contact with an interaction partner, it rather resembles a contact surface
than the true buried surface area. The final score for the approximated buried surface

area is computed according to equation (2.28).

1 NR NL
Sbursurf = 5 (Z asa’(iref) + Z asa(jref)) (228)
i=0 J=0

where:
Shursurf :  score value for approximated buried surface area (contact surface)
1,7 . interface atom in distance d, < 6.6A and with surface distance
d, > 2.84
Ng, Ny, 1 total number of interface atoms of receptor and ligand, respectively
asa(iref, jref) @ accessible surface area of atoms i or j in unbound reference state

2.4.10 Calculation of the gap volume

CKORDO offers the possibility to calculate the volume in between the interacting
subunits. This is done via the external program SURFNET (Laskowski, 1995) and the
subsequent parsing of the relevant output. Since such a procedure is time consuming,
an algorithm for the computation of the gap volume for each complex conformation as
proposed by a docking algorithm has been implemented for this work.

The gap volume definition implemented is based on the SURFNET methodology through
which the gap regions are built up by fitting of spheres into the spaces between atoms,
considering all relevant pairs of atoms in turn and placing a sphere midway in between

each pair, reducing its size if it clashes with any neighbouring atom.
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(a) final set of gap spheres (b) gap volume flooded by grid

Figure 2.6: Illustration of the gap volume calculation method shows native confor-
mation of enzyme inhibitor complex between alpha-chymotrypsin with eglin C from
oxen (Bos taurus) and leech (Hirudo medicinalis) (PDB-ID 1ACB): (a) molecules
shown as cartoon representation with translucent van der Waals surface (enzyme in
green, inhibitor in red) including the final set of gap spheres (blue) (b) molecules
shown as cartoon representation with centres of grid cubes used to flood volume
captured by spheres from (a) shown as crosses.

In detail, all intermolecular atom pairs in contact distance d = 2 - Tspherennn + TvdWinas
have to be retrieved, where rgppere,,.. 15 the maximal radius of the initially placed gap
sphere and r,qw,,,, the maximal van der Waals radius for any atom of the molecules.
In the case of proteins (Phosphorus is excluded in calculations), ryaw,,.. equals the
van der Waals radius of Carbon and is set to 1.87A. The maximal radius for initial
gap spheres is set to 4.0A as default, allowing for a maximal distance of two interface
atoms’ surfaces of 8A. By the initial placement of "trial spheres" of a defined maximal
size between every contacting atom pair of the subunits, the problem of setting distinct
boundaries for the posterior volume calculation can be handled. Subsequently, the radii
of the initial spheres are then reduced whenever any neighbouring atoms are found to
penetrate it until all neighbouring atoms of inter- and intramolecular nature have been
considered and one is left with a final, possibly shrunken gap sphere. If the sphere is
still above some minimum size (default of 1.0A), the position for its centre is stored

along with its radius. This procedure is repeated until all possible pairs of atoms have
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been considered and one is left with a set of gap spheres filling the region between the
molecules (see figure 2.6 on the preceding page, (a)). Since the resulting final set of
gap spheres is highly overlapping, the actual calculation of the volume captured by the
spheres is not performed analytically due to the complexity of the problem, but rather
an iterative approach is chosen. Hereby, the final set of gap spheres is placed in a three
dimensional grid of defined spacing and the total volume captured inside the spheres
is "flooded" with individual cubes of the grid (see figure 2.6 on the page before, (b)).
The accuracy of this approach can be adjusted via the chosen grid spacing (a default

value of 1A yielded reliable results).

2.5 Comprehensive scoring of protein-protein dock-

ing solutions

2.5.1 Theoretical approaches to the merging (combination and

parameterisation) of individual postfilter scoring schemes

The methods described in the previous chapter 2.4 offer a potentially large number of
individually calculated score values. These scores need to be combined in a sensible
way with the objective of an optimal discrimination of near-native and inacceptable
complex conformations as proposed by a docking algorithm. Ideally this is achieved by
the creation of a single scoring scheme which allows for a fast and efficient re-ranking
of docking primary results. This is generally possible in a variety of ways, three of

which will be explained in detail in the following subsections.

2.5.1.1 Consecutive application of the individual scores

One possibility for the combination of individual scores is the consecutive application
of the individual scores, where each score basically works as an independent ranking
scheme. Only the top ranking scores are passed on to the next ranking scheme and so
on. This method bears the risk of actually loosing true positive solutions at an early
stage, so that even the best possible filtering methods at stages that are down the chain
have no chance of retrieving these near-native solutions. However, since each step will

filter out a certain number of proposed complex structures, the search space is gradually
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reduced, thus bearing the possibility of saving computational resources which either
could make such a scoring scheme faster and might even allow for computationally
intensive filtering and scoring steps to be applied at the end of the chain. In order
to achieve optimal results for a consecutive application of individual scoring schemes,
decision /classification trees or recursive partitioning (Susnow and Dixon, 2003) can be

applied.

2.5.1.2 Combined application of the individual scores

When using the combined application of the individual scores, a total score is generated
which holds the information from all the individual scores in a consensus manner. The
simple, straightforward way to do this is to produce a comprehensive scoring function

via linear combination of the individual parameters (equation (2.29)). The advantage

N
Stot = E ;- S; (229)
i=0
where:
Stot : comprehensive score
Si : individual score
N : number of individual scores s;
Q; : linear coefficient

of such a linear combination of scores is that it is easily extensible. Parameterisation
can be achieved via a simple linear regression by optimisation of the linear coefficients.
The large disadvantage of such a method is the implicit assumption that the individual
scores are linear independent, which will most likely not be the case (but might still be a
reasonable approximation). Optimisation would be driven such that either the docking
results will be optimised for the true native or nearest-native structure to be ranked on
position one or at least close for as many examples as possible or, such that the number
of true positive, near-native structures (e.g. those with an interface-RMSD of less than
4A) is enriched in the depicted area while the number of false positive solutions will

have to be decreased.
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2.5.1.3 Using machine learning methods to combine the individual scores

In order to combine multiple individual scores for a simultaneous application of all
these filtering aspects, a machine learning approach can be used. Neuronal Networks
or Support Vector Machines (Scholkopf et al., 2003; Burges, 2002; Mangasarian, 2001,
Vert, 2001) can be trained on classification and ranking problems such as the one on
hand. The clear advantage of such a method would be that in contrary to the approach
described in the previous section 2.5.1.2 no restrictive assumption of independency of
the individual variables has to be assumed, while leading to a single step comprehensive
scoring function.

Due to the high number of possible scoring criteria and obvious dependencies, especially
among the GRID based cost functions, the method of choice for this work involves a
machine learning approach, based on a classification of putative complex conformations

as proposed by a docking algorithm (see sections 2.6 and 2.8).

2.6 Classification of docking results

The scoring schemes implemented could now be optimised and combined to a "clas-
sical" scoring function for the evaluation and re-ranking of complex conformations as
proposed by a docking procedure (Fernandez-Recio et al., 2004), aiming for a regression
of the major quality criterion, the RMSD. An alternative approach is the classification
of docking solutions into acceptable, true solutions and unacceptable, false solutions on
the basis of these scoring schemes. This is sensible since a direct correlation between the
root mean square deviation (RMSD) of a proposed orientation to the native structure
is only useful for those solutions which can be depicted as near-native. A docking
solution with an RMSD of 1A to the native structure is more desirable than a solution
with an RMSD of 5A to the native structure, while solutions of 64 RMSD or more can
be considered as inacceptable, no matter whether the actual derivation to the native
structure sums up to 10, 20 or 50A.

Usually solutions with an RMSD larger than 4-5A to the native complex are regarded
as false solutions (Halperin et al., 2002). This criterion can be complemented by the
rate of correctly matched residue pairings as compared to the native state (Janin et al.,
2003). In this work a borderline is drawn at 54 RMSD of interface C-alpha atoms to
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the fitted complex, because it is highly probable that these solutions will end up closely
to the native solution after a final refinement step is applied. In order to distinguish
near-native complex conformations from false solutions, machine learning algorithms
can be trained on the classification of these cases.

Two-state classification problems for machine learning require equipartition between
the two classifiers for the training data. However, rigid-body docking usually yields
few acceptable solutions among a theoretically unlimited number of unacceptable ones.
This problem was handled by the artificial enrichment of existing true solutions through
trial-and-error application of slight, random rotational and translational movements to
these conformations. Each such generated solution was carefully checked for clashes and
the minimum number of required residue-residue pairings before the RMSD was finally
recalculated in order to judge whether this complex orientation could be accepted as

new, artificially enriched true solution.

2.7 Postfilter software development

Figure 2.7 depicts the general workflow of the developed protein-protein docking
postfilter software. Starting from structural data of the two units of a dimeric docking
case along with the respective output of a docking algorithm (CKORDO), the required
additional information is assigned to the molecules hierarchies (on atom, residue, chain,
model and molecule level). For each set of transformational parameters as listed in the
docking output the respective complex conformation is generated and can be compared
to a reference complex. This reference complex is optionally given for the case that
the input data for the subunits to be docked are not or cannot be given in the same
orientation in space as the original input structures for the docking procedure. The
RMSD, the number of soft and hard clashes as well as the percentage rate of residue
pairings as compared to the reference complex are then calculated. If the options
for an artificial enrichment have been set and the respective conformation generated
fulfills the necessary conditions for an acceptable docking solution, random changes are
applied to the transformational parameters used for its generation in order to create
a new, similar but not identical complex conformation which again is evaluated for
being an acceptable or inacceptable docking solution. This process is repeated until

the required amount of artificially enriched near native complex conformations has
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Figure 2.7: Flowchart of the developed protein-protein docking postfilter software.
The individual scoring functions are described in detail in the chapters listed in the

scheme.
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been reached. For each of the generated complex conformations - the ones as listed
in the docking output as well as the generated artificially enriched ones - the scoring
values as described in chapter 2.4 are consecutively calculated.

The software is written in the C++ programming language and consists of more than
15,000 lines of code. It is intensively documented using the DOXYGEN documentation
system providing availability of the documentation in a number of output formats
including HTML, Man pages, RTF, XML and PDF'. The handling of protein molecules,
from the reading/writing of various input/output formats as provided by the PDB
to the browsing and manipulation of molecular hierarchies is based on the CCP4
COORDINATE LIBRARY (Krissinel et al., 2004). The time critical procedure for the
matching of GRID energy points with the atoms of the protein is accomplished using
the ANN library for approximate nearest neighbour searching (Arya et al., 1998) (see

also section 2.4.1 on page 47).

2.8 Machine learning

The field of machine learning studies the design of computer programs able to induce
patterns, regularities, or rules from past experiences. The learner (a computer program)
processes data representing past experiences and tries to either develop an appropriate
response to future data, or describe in some meaningful way the data seen (Alpaydin,

2004). One can generally distinguish three different types of machine learning:

e Supervised learning

Learning a mapping between an input x and a desired output y

e Unsupervised learning

Understanding the relationships between data components

e Reinforcement learning

Learning to act in the environment based on the delayed rewards

The machine learning methods applied in this work are algorithms for supervised
machine learning. Supervised learning is a machine learning technique for creating
a function from training data. The training data consist of pairs of input objects

(typically vectors) and desired outputs. The output of the function can be a continuous
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value (called regression), or can predict a class label of the input object (called
classification). The task of the supervised learner is to predict the value of the function
for any valid input object after having seen only a small number of training examples
(i.e. pairs of input and target output). To achieve this, the learner has to generalise
from the presented data to unseen situations in a reasonable way.

Machine learning has a wide spectrum of applications including search engines, medical
diagnosis, detecting credit card fraud, stock market analysis, speech and handwriting
recognition, game playing and robot locomotion. In bioinformatics, the usage of ma-
chine learning methods has become popular for a broad range of applications. Examples
for this are DNA classification, prediction of gene function, subcellular localisation,
extraction of biological relations via text mining and many more (cf. section 1.3.2). A
general survey of the applications of machine learning methods in bioinformatics can
be found in Baldi and Brunak (1998) and Bhaskar et al. (2005).

2.8.1 Support Vector Machines

Support vector machines (SVMs) are a set of related supervised learning methods used
for classification and regression. Two principles constitute the basis for the success of
Support Vector Machines: the mazimal margin hyperplane and the kernel trick (Boser
and Vapnik, 1992). The central ideas of support vector learning will be described in
the follwing by means of a very simple toy example.

Within a simple idealised binary classification problem of linear separable data, the
two data classes can be separated by a series of hyperplanes. Among all hyperplanes
separating the data, there exists a unique optimal hyperplane, distinguished by the
maximum margin of separation between any data point and the hyperplane. This
optimal hyperplane can be constructed by maximising the margins from the hyperplane
to the nearest data point of each class (also called support vectors). All data points
lying to one side of the plane would then ideally be of the same class, while those points
lying to the other side of the optimal hyperplane would belong to the opposite class
(see figure 2.8 (a)).

In practice, an ideal separating hyperplane may not exist (see figure 2.8 (b)), e.g. if
a high noise level causes a large overlap of the classes. Calculation of the optimal

hyperplane can also be expanded for the case of non-separable training sets. For the
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Figure 2.8: A binary classification toy problem: separate balls from diamonds. The
optimal hyperplane is shown as a solid line and the maximal margin is drawn in. For
the linear separable case (a), the optimal hyperplane clearly distinguishes balls from
diamonds. For the linear inseparable case (b), the optimal hyperplane has to allow
for the possibilities of examples violating by introduction of slack variables &.

example above this would mean to use linear separation while admitting training errors.
Training errors are covered by introduction of an error penalty value, expressed by the
distance of the erroneous data instance to the hyperplane multiplied by an error cost.
This approach is called the soft margin hyperplane.

The second basic principle of SVMs, the so called kernel trick allows for the mapping of
the data from the input space into an adequate higher dimensional space called feature
space in which the separation of the data via an optimal hyperplane may become
substantially easier. This is illustrated for another toy example in figure 2.9 where a
linearly inseparable classification in input space (left hand side of the figure, data only
separable by elliptical function) becomes linearly separable after mapping to a higher
dimensional feature space. This approach becomes feasible since the mapping does
not have to be carried out explicitly. For the calculation of the optimal hyperplane
only the dot product of two feature vectors has to be calculated which is given via the
application of a so called kernel function directly on the input data.

Mathematically the working principle of a binary classification SVM can be expressed

as following: Given a training set of instance-label pairs (z;,y;) with ¢ = 1,...,l where
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Figure 2.9: The kernel trick as basic idea of SVMs: map the training data into a
higher dimensional feature space via a kernel function ® and construct a separating
hyperplane with maximum margin. The example on the left side involves a nonlinear
decision boundary in input space to separate balls from diamonds. This complex
problem in low dimension may become simpler in higher dimensions as shown on
the right hand side of the picture. By the use of a kernel function, it is possible
to compute the separating hyperplane without explicitly carrying out the map into
feature space.

r; € R and y € {+1, -1}, there exists a weight vector w and a threshold b such that
yi ((w,z;) +b) >0 (¢ =1,...,1). Rescaling w and b such that the point(s) closest to
the hyperplane satisfy |(w,z;) + b] = 1, a canonical form (w, b) of the hyperplane can
be obtained, satisfying y; ((w, z;) +b) > 1 respectively y; ((w,z;) +0) > 1 — &, in the
case of a soft margin hyperplane. To construct the optimal hyperplane, the following

optimisation problem has to be solved:

l
1
: T
min —w'w+ C ; 2.30
w,b 2 + Zl SZ ( )
1=
subject to  y; (W ®(z;) +b) >1—¢& forall i=1,....1; &>0; C>0.
(2.31)
where:
w : N-dimensional vector
w” : transposed N-dimensional vector
C : penalty parameter of error term
& : slack variable accounting for training error
) : kernel function

This represents a quadratic programming problem (equation (2.30)) which can be
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solved efficiently and globally using the respective constraints (equation (2.31)).

The most common basic kernel functions are listed in equations (2.33) - (2.35).

linear: K(z;,xj) = x; x; (2.32)

polynomial: K(zi,2;) = (yzlzj+ 1) , v>0 (2.33)

radial basis function (RBF): K (i, z;) = exp (—||lz —a5])?) , v>0 (2.34)

sigmoidal: K (z;,2;) = tanh (ya] z; +r) (2.35)
where:

v,d,r : kernel parameters

This work uses Support Vector Machines in order to distinguish near-native orientations
of protein-protein interfaces as proposed by a docking algorithm from non-native ones
(cf. section 2.6 on page 68).

All but the linear kernel from equations (2.33) - (2.35) are dependent of at least
two kernel parameters. To get good generalisation ability, a validation procedure is
conducted to decide parameters: Considering a grid space of (C, ) of defined range and
spacing, for each hyperparameter pair in the search space, an X-fold cross validation
on the training data set is conducted. This procedure can be iteratively repeated
for various discrete values of the third possible kernel parameter r, if required by
the respective kernel function, thus adding a new dimension to the grid search and
optimisation problem.

Those combinations of (C, v, r) are subsequently chosen that lead to the lowest balanced
error rate in cross validation and used to create a model as the predictor.

The tool of choice in this work has been the LIBSVM library (Chang and Lin, 2005),
a C++-library offering various classes, methods and state of the art tools for efficient

training of SVM models as well as their application.

2.8.1.1 Probabilistic Support Vector Machines

In their standard formulation Support Vector Machines output hard decisions rather

than conditional properties (Scholkopf, 1997; Smola et al., 2000). The decision function
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associated with an SVM is based on the sign of the distance from the separating

hyperplane (see equation (2.36).

N
fl@) = v K(x,2;) (2.36)
i=1
where:
f(x) :  SVM decision function
x : input vector
{z1,...,z,} : set of support vectors
Yi :  class of the i-th support vector (+1 or -1 for positive and negative

examples, respectively)
number of support vectors

«; :  weighting factor for support vector i
kernel function

However, margins can be converted into conditional probabilities in different ways
(Platt, 2000) for classification problems. This can be done by mapping margins into
conditional probabilities using a logistic function (equation (2.37)) parameterised by
an offset B and a slope A and adjusting these according to the maximum likelihood

principle, assuming a Bernoulli model for the class variable C;.

P(Ci = 1fz) = 5 pr(_if(x) 5 (2.37)

Aim of this work is the discrimination of near-native solutions from non-native ones
in the ensemble of proposed complex conformations resulting from a protein-protein
docking algorithm. Applying a classification approach using a probabilistic SVM

provides the framework for the creation of a continuous scoring function.

2.8.2 Performance measures for machine learning

In order to assess and finally judge the quality of a model trained by a machine
learning algorithm, it is not only important that the data on which the final prediction
is performed is chosen carefully, but also that the results of the prediction can be

quantified in some way. Therefore, the values returned by the predictor have to be
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compared to the real data values. Figure 2.10 illustrates the usual terminology used
for a binary classification problem.

The most important since most obvious and
thus most widely used quality measure for

predicted 1 predicted O
binary classification is the so called prediction

5 accuracy (cf. equation (2.38)). Prediction
2 tp fn accuracy is the percentage rate of correctly
_ predicted cases, when comparing the results
i fp tn of a machine learning predictor to the actual

real-case(s). Using prediction accuracy alone
as a single quality measure can be misleading

Fi 2.10: Sch tic illustra- . .
lgure chematic tHustra though, especially if the data that the pre-

tion of denotations used in qualit L . o
] ) q ) Y diction is performed on is imbalanced. E.g.
measures for binary classification.

if icti 1 fi i l-
A binary classification problem is if predictions would be performed on imba

assumed with a 0 value represent- anced data with very few true examples, like

ing false and a value of 1 repre- it is the case for a realistic docking procedure,

senting true solutions. (tp: true a classifier which simply classifies every single
positive, tn: true negative, fp: case as false would lead to a relatively high
false positive, fn: false negative.) prediction accuracy value, while at the same
time being totally over-trained and such of

no use at all. This simple example explains the need for further quality measures
for machine learning. For a regression problem, a widely used quality measure is
the correlation coefficient. Such a correlation coefficient is, in its original definition,
not applicable to binary classification problems. Matthews correlation coefficient (see
equation (2.39)) poses an adaption of this quality measure to two-state classifications.
Accuracy and Matthews correlation coefficient can be used to judge the overall

performance of a binary prediction method.

Using further quality measures, it is possible to distinguish, dissect and quantify the
performance for the individual cases (true/false) further. The sensitivity or recall value
(see equation (2.42)) describes the partition of correctly identified true solutions. The
specificity or precision value can be defined in two ways. The common definition via
positive cases describes to which amount positive/true predictions are actually correct,

i.e. the reliability of a positive/true prediction (cf. equation (2.40)).



78 Methods

tp+in

acc = 2.38
tp+tn+ fp+ fn (2.38)
tp-tn) — -Jn
V(tp+ fp)(tp + fn)(tn + fp)(tn + fn)
tp
+
spec’ = (2.40)
tp+ fp
tn
specT = ——— 2.41
b tn+ fp (2.41)
t
sens = — b (2.42)
tp+ fn
2 - (spec - sens
po2p ) (2.43)
spec + sens
where:
acc : prediction accuracy
mec : Matthews correlation coefficient
spec™ : specificity or precision; positive prediction value (PPV)
spec™ : specificity or precision; negative prediction value (NPV)
sens : sensitivity or recall
f : f-value, harmonic average between precision and recall

This value is also known as positive prediction value (PPV). An alternative definition
via negative cases, the negative prediction value (NPV), describes the partition of
correctly identified negative/false solutions (equation (2.41)). The so called f-value
(equation (2.43)) represents a harmonic average between precision and recall.

Specificity /precision and sensitivity /recall should ideally equal to one. This would only
be the case for an ideal or perfect predictor. In order to compare different predictors
and their performance among each other, a plot of precision against recall, known as

Receiver Operate Characteristics (ROC) is commonly used.

2.8.3 Feature selection strategies

Since the scoring schemes as described in section 2.4 will not all be of similar
discrimination power, respectively will not provide strictly independent information,
it might not be necessary to train machine learning algorithms on a combination of

all features in order to reach the best possible results for a classification of putative
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protein interactions as given by a docking algorithm.

Therefore, a feature selection approach was chosen in order to find the best possible
combination of features, respectively scoring functions, for the problem at hand.
Typical feature selection strategies like sequential forward- or backward selection or
genetic algorithms involve numerous repeats of the actual training procedure with
various feature combinations. Due to the high number of features and the amount of
input (training) data instances, such an iterative feature selection procedure becomes
infeasible in terms of computational effort for support vector machines using a kernel
function other than the linear kernel in application to the problem. A relatively simple
and fast feature selection procedure based on F-scores as presented by Chen and Lin
(2004) is applied. F-score is a simple technique which measures the discrimination of

two sets of real numbers:

—+ _\2 ___ —\2
, T, —x;) + T, —
F(i) = o ( )+ = ) (2.44)
—1\2 _ __\2
n+1—12(x2_1 - a:f) +3 1—12(%,1' - )
k=1 k=1
where:
F(7) : F-score value for i-th feature
T, k=1,...,m : set of m training vectors
Mg, M :  number of positive and negative training instances
T, ij‘, z; : average of the ith feature of the whole, positive, and negative data
sets, respectively

xzi, Ty, :ith feature of the kth positive, and negative instance

The numerator of equation (2.44) indicates the discrimination between the positive
and negative sets, and the denominator indicates the discrimination within each of the
two sets. The larger the F-score is, the more likely this feature is more discriminative.

Therefore, this score can be used as a feature selection criterion.

2.9 Evaluation of scoring performance

The general aim of every scoring function for protein-protein docking is the discrimina-
tion between acceptable, near-native solutions and erroneous complex conformations.

When the scoring scheme is applied, the re-ranking process should sort as many
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acceptable solutions, sometimes also called hits, as possible among the top ranks of the
list of possible solutions. The primary quality criterion used to distinguish acceptable,
near-native solutions from erroneous ones is the root mean square deviation to either
the native complex or the fitted unbound units. The quality criterion that is most
often used in order to judge the performance of a scoring function is the total rank of
the first truly acceptable solution - usually defined by setting an RMSD threshold -
often accompanied by the absolute rank of the best possible solution; the one with the
lowest RMSD. However, these listings of absolute ranks only give insight into part of
the performance of a scoring function, by picking selected information. Furthermore,
the total number of solutions submitted to a re-ranking procedure may vary, such that
results expressed by listings of absolute ranks are hardly comparable.

This problem can be overcome by relating the number of acceptable solutions found
to the number of solutions that have to be screened therefore using percentage values
instead of absolute rank numberings. Plotting the percentage of acceptable solutions
that have been found against the percentage of ranks that have to be searched therefore
in a so called enrichment plot allows for a direct visual comparison between two or more
rankings as they emanate from the underlying scoring schemes.

Since a realistic scoring function is hardly likely to perform perfectly, some acceptable
near-native structures can be filtered out or lowered in rank together with erroneous,
non-native ones in the ensemble. For the direct comparison of two different rankings,
the improvement factor (IF) (Huang and Schroeder, 2005) can be calculated according
to equation (2.45).

N2 /N2
IF = —jcc/ Lot (2.45)
Nacc/Ntot
where:
N}l..,N2.. : number of acceptable solutions (hits) according to ranking 1,2
NL, N2, : total number of solutions according to ranking 1,2

The improvement factor is especially useful if scoring functions are applied in a
consecutive manner (see section 2.5.1.1 on page 66), explicitly excluding erroneous
solutions by defined threshold values from the population of putative solutions in each
step. It can also be applied to a classification approach under the presumption that all

docking solutions classified as inacceptable are to be excluded for further steps.
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where:
m :  total number of complexes subject to re-ranking (ensemble size)
n : rank of the first near-native (acceptable) solution; if no acceptable
solution is found n is set to the rank of the best structure in the
ensemble
r total number of acceptable solutions in the ensemble
a=1 : at least one acceptable solution is to be found
r ifn>r
b=<n ifn<r : wupper limit of possible number of near-native structures when
1 ifr=0 picking n times

A probabilistic approach to the evaluation of scoring performance is given by calculating
the chance of obtaining a result as good or better than that obtained by the scoring
function by randomly picking complexes out of the pool of generated complexes as
proposed by Gottschalk et al. (2004). This scoring probability P is described by the
hypergeometric distribution and can be calculated according to equation (2.46).

Equation (2.46) calculates the probability of obtaining at least one near-native complex
and at maximum all possible acceptable solutions by chance when picking n times. The

lower this probability is, the better the scoring performance.



3 Results

"Experience does not ever err. It is only your judgment that errs in

promising itself results which are not caused by your experiments.”

Leonardo da Vinci, 1452 - 1519.

3.1 Primary docking and postfilter results

For all docking test cases listed in tables 2.1 on page 37 and 2.2 on page 39, CKORDO
docking runs have been performed starting from the unbound units as fitted on
the native complex, using a 12 degree rotational angle increment, while storing the
best 5 translations for every sampled rotation step. This yielded a total of 43,080
conformations for every test case examined. The unbound docking test case for the
native complex of 1IN2C in table 2.2, a medium-difficulty docking case of type "Other",
turned out to exceed the size limitations (in terms of total number of atoms) that the
current version of CKORDO is able to handle and therefore had to be omitted.

CKORDO provides the option of using predefined rotational transformations, for which
subsequently all possible translations are calculated and those of highest geometric
correlation stored. Such, a much closer sampling of the conformational space can
be simulated for a region of special interest. If random changes of the rotational
parameters within a range smaller than the rotational angle increment are applied to
the conformation of the fitted complex, chances are high that near-native conformations
are found by the docking procedure. Since the native solution for the benchmarked
cases is known, it is possible to increase the number of near-native solutions found by
the docking algorithm in this manner. A set of 5,000 predefined rotational parameter
combinations, each randomly changed by a maximum of £10 degrees, has been used in
the way described above. The results for the individual docking runs and the number
of near-native conformations respectively are listed in tables 3.1 on the facing page
and 3.2 on page 85 for two different cutoff values (4 and 5A RMSD of the interface

C-alpha atoms) along with the changes in accessible surface area (ASA) upon complex
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formation for native and fitted unbound complex as calculated with the use of the
program NACCESS (Hubbard and Thornton, 1993b).

Table 3.1: Assorted properties and number of near native solutions as found by

CKORDO for the test cases of protein-protein docking benchmark 2.0 (Mintseris et al.,

2005).

native ~ AASA* AASAP  %ASAc RMSDY # < 4Ae # < B5Ae scopf
PDB-1D nat. fit. IF iCq 12dg rRot 12dg rRot classification
Rigid-body (63)
Enzyme-inhibitor / Enzyme-substrate complexes (21)
1AVX 1585.1 1417.6 8.04 0.47 17 1908 54 1940 b.47.1.2 b.42.4.1
1AY7 1237.2 1288.4 12.08 0.54 23 2146 45 2146 d.1.1.2 c.9.1.1
1BVN 2221.7 2185.8 9.97 0.87 15 1570 30 1814 b.71.1.1 b.5.1.1
1CGI 2052.6 1849.1 12.47 2.02 29 684 103 2544 b.47.1.2 g.68.1.1
1D6R 1408.1 1229.4 8.86 1.14 60 256 110 258  b.47.1.2 g.3.13.1
1DFJ 2582.0 2619.7 10.28 1.02 2 341 5 843 c¢.10.1.1 d.5.1.1
1E6E 2315.2 1789.7 6.70 1.33 13 2299 24 2541 c¢.3.1.1 d.15.4.1
1EAW 1866.2 1843.5 12.62 0.54 27 318 85 318 b.47.1.2 g.8.1.1
1EWY 1501.9 1253.5 6.58 0.8 38 4744 78 5419  b.43.4.2 d.15.4.1
1EZU 2751.2 2625.1 10.19 1.21 0 0 0 23 b.16.1.1 b.16.1.1
1F34 3038.2 2381.1 11.20 0.93 11 3556 18 3765 b.50.1.2 d.62.1.1
1HIA 1736.8 1551.7 10.80 1.4 15 0 86 0 b47.1.2 g.3.15.1
1MAH 2145.5 1876.9 7.85 0.61 14 2459 23 2464 c.69.1.1 g.7.1.1
1PPE 1687.8 1731.8 14.70 0.44 92 1503 380 1523 b.47.1.2 g.3.2.1
1TMQ 2401.0 2146.2 9.71 0.86 23 4550 37 5358 b.71.1.1 a.52.1.2
1UDI 2021.9 2097.7 12.99 0.9 15 615 24 615 c¢.18.1.1 d.17.5.1
2MTA 1461.4 1466.9 6.08 0.41 26 3313 42 3465 Db.69.2.1, b.6.1.1

g.21.1.1

2PCC 1140.9 1102.2 5.83 0.39 5 715 13 1013 a.93.1.1 a.3.1.1
251C 1616.8 1603.1 10.11 0.36 28 1814 60 1815 «c.41.1.1 d.84.1.1
2SNI 1627.9 1348.8 9.42 0.35 28 175 102 175 c41.1.1 d.40.1.1
7CEI 1383.9 1152.8 8.61 0.7 15 1505 30 2460 d.4.1.1 a.28.2.1
Antibody-antigen complexes (9)
1AHW 1899.0 1976.3 6.32 0.69 17 3673 28 4060 b.1.1.1 b.1.2.1
1BVK 1321.0 900.5 5.46 1.24 16 429 35 599  Db.1.1.1 d.2.1.2
1DQJ 1765.0 1502.0 5.88 0.75 4 1031 15 1453 b.l.1.1 d.2.1.2
1E6J 1245.5 1090.4 4.49 1.05 38 4361 61 4422 b.1.1.1 a.28.3.1
1JPS 1852.3 1923.5 6.44 0.51 18 4717 29 4779 b.1.1.1 b.1.2.1
1IMLC 1392.0 1225.0 4.80 0.6 6 190 6 190 b.1.1.1 d.2.1.2
1VFB 1382.7 1163.2 6.97 1.02 7 605 23 605 b.1.1.1 d.2.1.2
1WEJ 1177.5 1069.0 4.24 0.31 7 967 14 967 b.1.1.1 a.3.1.1
2VIS 1296.3 869.8 1.33 0.8 0 0 0 0 b.l.1.1 b.19.1.2

...continued on next page
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Table 3.1 — continued from previous page

native =~ AASA® AASA®  %ASA° RMSDA # < 4Ae # < 5Ae SCoPf
PDB-ID nat. fit. IF iCq 12dg rRot 12dg rRot classification
"Other" complexes (22)
1A2K 1602.7 1429.4 6.27 1.11 9 0 29 0 d.17.4.2 c.37.1.8
1AK4 1028.7 1090.9 5.23 1.33 26 513 57 1152  b.62.1.1 a.73.1.1
1AKJ 1995.1 1232.2 4.13 1.14 17 2806 31 2855 b.1.1.2 b.1.1.1
1B6C 1752.4 1688.2 7.85 1.96 8 2164 15 2445 d.144.1.7 d.26.1.1
1BUH 1323.9 1302.9 6.52 0.75 4 1173 11 1335 d.144.1.7 d.97.1.1
1E96 1178.8 1179.8 6.04 0.71 7 53 16 81 a.118.8.1 c.37.1.8
1F51 2407.2 1680.6 7.48 0.74 24 3078 38 3184 d.123.1.1 c.23.1.1
1FC2 1307.1 1085.1 4.10 1.69 8 88 14 88 a.8.1.1 b.1.1.2
1FQJ 1806.4 1681.5 7.03 0.91 1105 10 1319 a.66.1.1 a91.1.1
1GCQ 1207.7 1063.6 6.31 0.92 16 2098 28 2396 b.34.2.1 b.34.2.1
1GHQ 799.9 687.0 3.38 0.34 10 511 23 511  a.102.4.4 g.18.1.1
1HE1 2112.8 1773.4 10.82 0.93 2095 14 2147 ¢.37.1.8 a.24.11.1
114D 1657.2 1445.4 4.64 1.41 0 27 0 84 h.4.7.1 c.37.1.8
1KAC 1455.7 1555.1 10.33 0.95 16 2652 30 5076 b.21.1.1 b.1.1.1
1KLU 1253.9 1191.2 4.00 0.43 4 8 6 8 b.l.1.2 b.40.2.2
1KTZ 989.0 853.8 6.49 0.39 7 432 9 432 g.7.1.3 g.17.1.2
1KXP 3341.3 3045.2 7.55 1.12 10 4440 17 5359 a.126.1.1 ¢.55.1.1
1MLO 2069.4 1362.0 3.64 1.02 3 0 9 190 b.116.1.1 d.9.1.1
1QA9 1352.5 995.9 4.81 0.73 7 2990 14 3040 b.l.1.1 b.1.1.1
1RLB 1438.8 1531.3 5.21 0.66 0 10 0 b.3.4.1 b.60.1.1
1SBB 1064.1 1225.3 5.08 0.37 26 4255 38 4319 b.40.2.2 b.1.1.1
2BTF 2062.5 1708.4 7.21 0.75 0 16 9 363 c¢.55.1.1 d.110.1.1
Antibody-antigen complexes (Crossbound) (11)
1BJ1 1730.7 1731.7 5.65 0.5 5 2014 5 2068 b.l.l.1 g.17.1.1
1FSK 1622.7 1642.1 5.81 0.45 16 4052 25 4052 b.1.1.1 d.129.3.1
1I9R 1497.8 1413.8 4.04 1.3 13 4039 21 4205 b.l.1.1 b.22.1.1
11QD 1975.9 1897.0 7.10 0.48 8 222 9 222 b.l.1.1 b.18.1.2
1K4C 1600.8 1547.0 4.21 0.53 0 1 0 b.l.1.1 f14.1.1
1KXQ 2171.6 2303.9 9.70 0.72 15 2361 31 2476 b.71.1.1 b.1.1.1
INCA 1953.4 1809.7 5.32 0.24 11 4543 16 4545 b.l.1.1 b.68.1.1
INSN 1776.5 1695.7 6.27 0.35 9 2689 17 2967 b.l.1.1 b.40.1.1
1QFWA4 1580.5 1382.6 6.05 1.31 10 2381 18 2381 b.l.1.1 gl17.1.4
1QFWE 1636.6 1530.9 7.01 0.73 16 3264 23 3290 b.l.1.1 g17.1.4
2JEL 1500.7 1393.3 5.75 0.17 1 4 5 43  b.l.1.1 d.94.1.1
Medium-difficulty (12)
Enzyme-inhibitor / Enzyme-substrate complexes (2)
1ACB 1544.0 1735.6 10.83 2.26 12 237 46 265 b.47.1.2 d.40.1.1
1KKL 1641.1 1261.4 4.56 2.2 7 920 27 920 c¢.91.1.2 d.94.1.1
Antibody-antigen complexes (Crossbound) (1)
1BGX 5813.7 5419.1 9.69 1.48 0 0 0 0 a.60.7.1 b.1.1.1
"Other" complexes (9)
1GP2 2286.6 689.6 2.17 1.65 5 0 13 0 b.69.4.1,

a.137.3.1 a06.1.1

...continued on next page
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Table 3.1 — continued from previous page

native ~ AASA®  AASA®  %ASAS RMSDA4 4 < 4Ae 4 < 5Ae scopf
PDB-ID nat. fit. IF iCq 12dg rRot 12dg rRot classification
1GRN 2332.2 1570.9 7.88 1.22 19 4331 29 4591 a.l16.1.1 :  ¢.37.1.8
1HES 1304.9 1086.0 2.39 0.92 3 862 6 1036 a.118.1.6 : ¢.37.1.8
112M 2779.4 2575.6 9.74 2.12 11 3089 27 4390 b.69.5.1  : ¢.37.1.8
1IB1 2807.9 2781.5 8.76 2.09 0 0 0 4 al1187.1 : d.108.1.1
1IJK 1647.9 1322.5 5.87 0.68 8 22 22 32 d.169.1.1  :  c.62.1.1
1K5D 2526.6 1944.7 6.27 1.19 1 83 4 222 ¢.37.1.8, 1019
b.55.1.3

1M10 2096.6 2246.5 9.85 2.1 0 89 0 129 ¢.10.2.7 :c.62.1.1
1WQ1 2913.2 2502.0 9.95 1.16 7 1786 16 2013 a.116.1.2 : ¢.37.1.8

Difficult (8)
"Other" complexes (7)

1ATN 1774.3 1310.7 4.75 3.28 1 2 3 13 ¢.55.1.1 ¢ d.151.1.1

1DE4 2065.5 2032.4 3.07 2.59 1 1199 2 1294 a.48.2.1 : b.l.1.2

1EER 3346.6 2909.5 8.79 2.44 0 80 5 325 b.l.2.1 T a.26.1.2

1FAK 3363.1 1833.4 6.66 6.18 0 0 0 0 b47.1.2, b1.2.1
g.3.11.1

1FQ1 1831.6 1014.6 4.38 3.41 2 1 5 1 d.144.1.7 : c451.1

1IBR 2070.8 4283.1 13.99 6.62 0 0 0 0 a.l181.1 : ¢37.1.8

2HMI 3370.4 1206.7 1.79 2.54 0 0 0 0 ¢.55.3.1, b111
e.8.1.2

Antibody-Antigen complexes (1)

1H1V 1234.0 5423.0 10.99 2.26 0 0 0 0 ¢b55.1.1 ¢ d.109.1.1

Table 3.2: Assorted properties and number of near native solutions as found by

CKORDO for the test cases as collected from the literature.

native  AASA*  AASAP  %ASAS  RMSDA # < 4Ae # < 5Ae sCcopf
PDB-ID nat. fit. IF iCq 12dg rRot 12dg rRot classification

Enzyme-Inhibitor /Enzyme-Substrate complexes (21)

1ACB 14701.04 13157.04 10.5 0.62 42 2749 90 2841 Db.47.1.2 : d.40.1.1
1AVW 17611.63 15871.16 9.88 0.46 31 2001 81 2094 Db.47.1.2 : b4d24.1
1BRC 12972.12  11655.27 10.15 0.42 34 15 221 15 b47.1.2 : g8.1.1
1BRS 10763.4 9207.46 14.46 0.47 16 1007 48 1007 d.1.1.2 o c9.1.1
1BVN 22188.9 19967.18 10.01 0.77 30 1122 88 1122 b.71.1.1  : b.5.1.1
1CGI 14632.4 12579.83 14.03 1.13 27 940 100 1891 b.47.1.2 : g.68.1.1
1CHO 13704.27 12237.98 10.7 0.63 53 4266 118 4767 b.47.1.2 : g.68.1.1
1CSE 13961.98 12473.9 10.66 0.50 87 3350 159 3353 c.4l1.1.1  : d.40.1.1
1DFJ 25794.72  23212.72 10.01 1.02 1 0 5 385 ¢.10.1.1  : d.5.1.1
1FSS 24100.11 22133.4 8.16 0.64 13 3656 32 3755 «¢.69.1.1 : g.7.1.1
1MAH 24273.2 22127.73 8.84 0.67 24 4210 53 4210 c¢.69.1.1 : g.7.1.1
1PPF 14162.62 12838.18 9.35 0.47 26 1175 118 2303 b.47.1.2 : g.68.1.1
1TGS 13489.14 11766.44 12.77 1.19 82 4899 197 4925 b.47.1.2 : g.68.1.1
1UGH 15375.55 13182.73 14.26 0.52 15 3084 33 4029 c.1811 : d.17.5.1

...continued on next page
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Table 3.2 — continued from previous page

native ~ AASA® AASAP  %ASA° RMSDY # < 4Ae # < 5Ae scopt
PDB-ID nat. fit. IF iCq 12dg rRot 12dg rRot classification
2KAI 14368.5 12946.66 9.9 0.58 53 1014 263 1014 b.47.1.2 : g8.l.1
2MTA 25441.56 23980.17 5.74 0.52 23 3381 50 3400 g.21.1.1, b.6.11
b.69.2.1
2PCB 19238.35 18208.58 5.35 0.48 2 305 13 1318 a.93.1.1 a3l
2PCC 19259.97 18119.07 5.92 0.42 2 45 13 627 a.93.1.1 a3l
2PTC 13069.55 11640.39 10.94 0.35 99 1709 266 1709 b.47.1.2 . g8.l1.1
25IC 15829.68 14212.91 10.21 0.45 36 1261 75 1261 c.41.1.1 o d.84.1.1
25NI 14304.33 12676.4 11.38 0.36 18 333 86 333  c.d4l.ll : d.40.1.1
’Other’ complexes (4)
1AVZ 10020.05 8760.5 12.57 0.55 2 0 8 3 d.102.1.1 :  b.34.2.1
1BDJ 13366.1 12600.77 5.73 0.84 19 726 44 808 c¢.23.1.1 : o a.24.10.1
1LOY 22358.78  21226.42 5.06 0.96 11 4040 21 4045 b.1.1.1 : b.40.2.2
1WQ1 24311.82 21398.67 11.98 0.73 9 568 31 578 a.116.1.2 : c¢.37.1.8
Antibody-antigen complexes (4)
1AHW 29739.47 27772 6.62 0.78 19 3478 30 3823 b.1.1.1 : b.l.21
1VFB 16604.66 15221.99 8.33 0.80 13 1168 33 1168 b.1.1.1 : d.2.1.2
1WEJ 25715.69 24538.23 4.58 0.63 4 1715 6 1791 b.l.1.1 o a3dll
1DQJ 25477.66 23712.95 6.93 0.90 1 26 2 29 b.l.l.1 o d.2.1.2
Difficult (4)
1BTH 17254.59 14884.37 13.74 0.86 2 0 22 0 Db47.1.2 a4l
1FIN 26390.25 22985.95 12.9 1.26 0 0 0 0 d.144.1.7 : c.45.1.1
1FQ1 24450.57 22618.93 7.49 1.33 2 1 d.144.1.7 : a.137.3.1
1GOT 34520.26 32023 7.23 1.04 0 0 18 Db.69.4.1, a.66.1.1
a.137.3.

Additionally the percentage ratio of the interfacial contact surface as compared to the
complete surface of the respective complex is given. Furthermore, the SCOP (Andreeva
et al., 2004) (release 1.69 of July 2005) classifications have been retrieved for every
distinct chain in the complexes to provide a measure for structural similarity. In tables

3.1 and 3.2 the Scop distinct classes present in each native complex are listed. These

aChange in solvent accessible surface area upon complex formation for the native complex
PChange in solvent accessible surface upon complex formation for the conformation of unbound

units fitted on the native complex
“Percentage ratio of total solvent accessible surface area buried at interface formation
dRMSD of interface C-alpha atoms
¢ Number of near native conformations within range of given cutoff (RMSD of interface C,) found

by CKORDO in a) docking run with 12 dg rotational angle sampling (12dg) and b) sampling of 5000
rotations in the range of +£10dg deviation from the conformation of the unbound units as fitted on

the native complex (rRot)
fSCOP structure classes as present in the complex (classification code(s) in the order of recep-

tor:ligand)
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classification codes are identical for the corresponding unbound chains involved.

For the docking benchmark 2.0, the docking algorithm failed to find any near-native
conformations in nine cases: Three cases each for the rigid-body, the medium difficulty
and the difficult docking categories. For the second, smaller dataset, only one difficult
test case did not yield acceptable putative complex orientation below the used cutoff
value of 5A RMSD of interface C,, atoms.

The conformations as listed in the output of CKORDO have subsequently been used
to calculate the corresponding values of the employed scoring schemes as listed in
section 2.4 via the developed postfilter software. Within the scope of the postfiltering,
the number of conformations below a value of 44 RMSD of interface C-alpha atoms
was further increased by the application of slight random movements to already
existing conformations within the respectable range of interface C-alpha RMSD. This
artificial enrichment of near-native conformations was carried out such that an equal
number of several thousand near-native solutions for every test case of the two datasets
described was reached. This is of critical importance for the next step: the training of

probabilistic Support Vector Machines.

3.2 Training and testing of probabilistic Support Vec-

tor Machines

3.2.1 Selection of training and testing data

With the existence of two datasets of protein-protein docking test cases as depicted in
tables 2.2 and 2.1 along with the respective results from docking experiments (tables 3.1
and 3.2) and the calculated values for the scoring schemes as described in section 2.4,
final sets of training and testing data have been selected. Since the docking benchmark
2.0 represents the far larger, structurally more diverse and non-redundant data, this
dataset was used to compose the relevant training data.

The second dataset as collected from various literature resources and manually curated
offers docking test cases, which are in large parts structurally similar to those used for
training, but not identical to them. Some of the native complexes for the unbound

dockings overlap in both datasets, but for the smaller dataset, the unbound units differ
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from those used in docking benchmark 2.0 with the exception of the two Enzyme-
Inhibitor test cases for 2SNI and 2SIC. This is the case, since Mintseris et al. (2005)
selected the highest quality structure for each of the unbound units, implying that
multiple alternatives exist. Additionally, the dockings for the testing data have been
conducted starting from randomised starting positions (complex conformations) thus
further limiting the chance that any of the interfaces as generated by the docking
algorithm are structurally identical to any used as a training instance. The interface
structure determines the relative atomic positions as used for the calculation of the
scoring schemes which again are used as feature input for training and testing data
instances for the supervised machine learning.

The dataset for the docking benchmark 2.0 is divided into three classes of complexes:
Enzyme-Inhibitor and Enzyme-Substrate complexes form the first class, Antibody-
Antigen complexes form the second, while every test case not belonging to either of the
classes is assigned to the third class depicted as "Other" complexes. This classification
has been utilised for the setup of training and testing datasets as well, based on the
reasonable assumption that different binding properties distinguish these classes. The
functional efficacy of structurally heterogeneous enzymes relies on the specific binding
of a rather limited range of substrates/inhibitors while antibodies, a protein class which
shares a high structural similarity, bind to a large and diverse set of antigens.

The general strategy for an optimal training of SVMs and sincere testing of their

prediction abilities is specified as following:

e Training data
Constitutes of randomly chosen conformations as taken from docking and post-
filter runs of subsets of docking benchmark 2.0 (cf. table 2.2). Subsets are chosen
as defined by the three classes of Enzyme-Inhibitor /Substrate, Antibody-Antigen
and "Other" complexes. Data instances included in any of the testing data sets

(see next item) are explicitly excluded from the training data.

e Testing data
Three sets of testing data will be used in order to judge the performance of the

trained predictor on unknown data:

1. Prediction on decoys of docking benchmark 2.0:
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In order to asses the prediction abilities on those decoys which will pre-

sumably be of highest similarity to those used for training, a second set

of decoys is randomly chosen from the same pool of conformations as the

training data, carefully ensuring that none of the cases used for training is

also used for testing.

2. Prediction on decoys of docking examples as collected from various literature

resources (cf. table 2.1):

These test sets are deduced of proposed conformations which have been

generated by docking methods of structures that are similar to those used

in training. Explicitly, the SCOP classifications as listed in tables 3.1 and 3.2

show a large but no full overlap. Hence this data represents a test set, which

is likely to exhibit similarities but no perfect matches to the training data

while also including data instances which have been derived from structural

data with low or no similarity to the one used for training.

3. Prediction on decoys of docking examples from docking benchmark 2.0

explicitly excluded from training and previous testing:

For each of the three docking classes, few complexes have explicitly been

excluded from previous training and testing to provide the data for a realistic

blind prediction on totally unknown data. Therefore, those complexes have

been picked, which share no structural similarity on SCOP superfamily level

with any of the complexes used in previous training or testing examples.

Table 3.3: Number of docking test cases and decoys contributing to each of the
training and test sets used.

dockine class train test 1 test 2 test 3

& #c.® #decoy #c. #decoy #c. Fdecoy F#Hc. # decoy
Enzyme-Inhibitor/Substrate 23 50,000 23 50,000 21 100,000 2 10,000
Antibody-Antigen 21 50,000 21 50,000 4 20,000 2 10,000
"Other" 29 50,000 29 50,000 4 20,000 2 10,000

number of complexes for which putative complex conformations as resulting from

docking calculations are contributing to the decoy sets

For all the data sets described above, the calculated values for the employed scoring

schemes have been normalised using Z-scores (see equation (2.26)). The individual data
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sets for training and testing purposes have been generated by collecting all normalised
feature values for each decoy (putative conformation) resulting from the docking runs
of the complexes included in the dataset, into a single pool. Data instances within the
pool are shuffled and randomly drawn from the ensemble to constitute the training and
testing data sets. For all the data sets used in final training and testing, equipartition
between near-native and non-near-native (i.e. acceptable and inacceptable) docking
solutions was assured. Docking test cases classified as "difficult" test cases were not
included into the training or testing data since these proteins are likely to undergo
drastic conformational changes upon complex formation which might eventually lead to
noisy data for the calculated feature values. Docking test cases for which no near-native
conformation could be detected during the docking process have been included into the
training data, since also negative or false examples (non-native complex orientations)
provide valuable information. The borderline between acceptable, near-native and
inacceptable, non-native docking solutions is drawn at 4A RMSD of interface C-alpha
atoms as compared to the unbound units fitted on the native complex.

Table 3.3 gives an overview on the number of docking test cases contributing to each

of the training and test sets used.

3.2.2 Feature selection

For each of the training data sets as described in the previous section, a feature selection
has been performed in order to achieve best possible training results. Therefore, F-
scores have been calculated according to equation 2.44 on page 79. Features have been
sorted according to the values obtained and the resulting feature numbers (the feature
with the highest F-score values was also assigned the highest feature number during
sorting) have been plotted against their F-scores (see figure 3.1). On the basis of these
plots, cutoff values were manually chosen. Features with F-scores below the cutoff were
not included into the training data.

As cutoff for the feature selection according to F-scores, the values 0.02 for the data
as originated from Enzyme-Inhibitor/Substrate complexes, 0.03 for the data from
Antibody-Antigen complexes and 0.025 for the training set used for "Other" complexes
have been selected. This resulted in a total of 21, 20 and 16 features, respectively.

Table 3.4 on page 92 gives an overview of the selected features (highlighted in bold)
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Figure 3.1: F-scores as used for feature selection for the individual training datasets.

The green line depicts the manually chosen
excluded from training.

cutoff value below which features are

along with the corresponding F-scores calculated. The individual scoring schemes are

described in this table using the abbreviations

as given in the subscript for each scoring

value in section 2.4. The probe specific scorings for the GRID-based cost functions are

represented by the corresponding directive as used by the GRID software (cf. table 2.3)

with a "SE" prefix standing for "solvent effect” (see figure 2.3 and equations (2.11) -

(2.12)).
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Table 3.4: Feature names and their corresponding F-score values (in order of

importance, selected features printed in bold).

Enzyme-Inh./Substr. Antib.-Antigen Other
#  feat. F-score feat. F-score feat. F-score
1 RPscore 0.701 ToFgr 0.991 RPscore 0.339
2 NhcR 0.540 RIP 44 0.887 RIPynNs 0.239
3 RIPynNT 0.430 ToF 4 4 0.837 COO- 0.138
4 BurSurf 0.232 RIPg; 0.698 RIPg; 0.117
5 RIPE[ 0.189 TOFUN] 0.651 RIPAA 0.106
6 GapVol 0.179 RPscore 0.520 ACE 0.098
7 ACE 0.129 Cons 0.295 N2= 0.065
8 RIP44 0.115 O- 0.268 AMIDINE 0.062
9 AMIDINE 0.088 ConOE 0.259 O:: 0.054
10 ToF 44 0.087 RIPg; 0.151 NhcR 0.054
11 N2= 0.084 NhcR 0.113 N3+ 0.052
12 ToFyns 0.068 NhvR 0.090 O- 0.046
13 Cons 0.054 N3+ 0.074 ToFyns 0.042
14 ToFgs 0.047 GapVol 0.068 01 0.034
15 O- 0.043 ACE 0.060 CONH2 0.027
16 N2 0.043 AMIDINE 0.050 OH2 0.025
17 (0] 0.037 CONH2 0.045 Nl= 0.023
18 OH2 0.035 COO- 0.038 Cons 0.023
19 CONH2 0.031 N2= 0.037 BOTH 0.019
20 NhvR 0.028 avgTF 0.036 OH 0.016
21 PairPot 0.026 N1 0.014 SE BOTH 0.016
22 Nl1= 0.019 DRY 0.009 avgTF 0.015
23 BOTH 0.014 Nl1= 0.009 SE_DRY 0.013
24 N1 0.010 O 0.004 ConOE 0.010
25 SE_DRY 0.009 O 0.004 N2 0.010
26 OH 0.006 N2 0.003 SE OH2 0.010
27 O 0.005 SE_DRY 0.003 GapVol 0.009
28 ConOE 0.004 C3 0.002 ToFgr 0.007
29 O1 0.003 O1 0.001  PairPot 0.004
30 Cl= 0.003 OH2 0.001 DRY 0.004
31 COO- 0.003 OH 0.001 O 0.003
32 C3 0.002 SE_OH2 0.000 NhvR 0.002
33 N3+ 0.002 BOTH 0.000 Cil= 0.001
34 SE_BOTH 0.002  BurSurf 0.000 N1 0.001
35 SE OH2 0.002 SE BOTH 0.000 ToF 44 0.001
36 avgTF 0.001  PairPot 0.000 BurSurf 0.000
37 DRY 0.000 Cl1= 0.000 C3 0.000

3.2.3 Results on training and testing data sets

For each of the training data sets as described in table 3.3 on page 89, Support Vector

Machines have been trained using various kernel functions (see equation 2.8.1). For all

training data sets, the sigmoidal kernel function provided best possible results. The

kernel parameters C' and v have been determined in a grid search procedure using
10-fold cross validation (CV).

Table 3.5 gives an overview of the relevant characteristics and quality measures for the
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SVM trainings. The F-score cutoff value, the number of features, the values determined
for the kernel parameters C' and ~ as well as the accuracy reached in the 10-fold cross
validation procedure are listed. Additionally, the total number of Support Vectors (SV)
and the number of Bounded Support Vectors (BSV) is given. The higher the percentage
of Bounded Support Vectors (given in the rightmost column of table 3.5), the stronger

the indication that no overtraining has taken place.

Table 3.5: SVM training characteristics.

docking F-score

class cutoff # feat. C ¥ CV-acc. # SV # BSV % BSV
E.-1./S.@ 0.02 21 1048576  0.000004 93.83 8669 8638 99.64
Ab.-Ag.b 0.03 20 32768  0.000977 94.07 8881 8856 99.72
Other® 0.025 16 1048576  0.000008 83.02 20532 20507 99.88

“Training data for Enzyme-Inhibitor/Substrate complexes
Training data for Antibody-Antigen complexes
“Training data for "Other" complexes

SVM training performance has also been assessed by plotting the rate of true positive
against the rate of false negative predicted instances in so called Receiver Operator
Characteristic (ROC) plot and calculating the area under the curve. The steeper
the curve and the larger the area under the curve (AUC), the better the training
performance, respectively. Figure 3.2 shows the ROC plots for the training of SVMs
on the three selected complex classes. The corresponding value for the area under the
curve are given as well, scaled to a total area of one indicating a perfect predictor,
while random guessing would yield an AUC value of 0.5.

All three trained SVM models have been thoroughly tested on the selected testing
datasets as described in section 3.2.1. For each test set, predictions have been
performed and the quality measures for machine learning as described in section 2.8.2 on
page 76 have been calculated according to equations (2.38) - (2.43). Table 3.6 on
page 95 gives an overview of the performance of the trained predictors on the testing
datasets. Training and testing quality measures attest a very good performance
for the SVM models created for Enzyme-Inhibitor/Substrate and Antibody-Antigen
complexes, while the performance for the SVM model trained for the complex class of

“Other” complexes is lower relative to the one for the remaining classes.
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Figure 3.2: Receiver Operating Characteristics (ROC) curves for the training of
SVMs on the individual classes of complexes.

These datasets consist of an equal number of true and false solutions each. One has
to keep in mind that this is a necessary prerequisite for the significance of some of the
relevant performance measures like the Mathews correlation coefficient or the specificity
(spec™). On the other hand, this does hardly represent a realistic docking application,
where the number of false solutions will always be several orders of magnitude higher

than the number of true solutions.
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Table 3.6: Quality measures for SVM testing.

Test set acc TP TN FP FN mec  spect  spec™  sens  fval

SVM trained on Enzyme-Inhibitor/Substrate complexes (SVMg;)
Test 1 92.43 22450 23764 1236 2550 0.85 0.95 0.95 0.90 0.92

Test 2 83.79 43115 40674 9326 6885  0.68 0.82 0.81 0.86 0.84
Test 3 91.37 4913 4224 776 87 0.84 0.86 0.84 0.98 0.92

SVM trained on Antibody-Antigen complexes (SVM 4444)
Test 1 90.91 22019 23437 1563 2980 0.82 0.93 0.94 0.88 0.91

Test 2 85.88 9982 7193 2807 18 0.75 0.78 0.72 1.00 0.88
Test 3 91.82 5000 4182 818 0 0.85 0.86 0.84 1.00 0.92

SVM trained on "Other" complexes (SVMoyp)

Test 1 83.14 22067 19501 5499 2933 0.67 0.80 0.78 0.88 0.84
Test 2 51.57 1418 8895 1105 8582 0.05 0.56 0.89 0.14 0.23
Test 3 75.72 4990 2582 2418 10 0.59 0.67 0.52 1.00 0.8

3.3 Scoring protein-protein docking results using
probabilistic SVM-classifiers

The three SVM prediction models emerging from the training as described in section
3.2 have been applied to score docked protein complexes. The three predictors have
been applied to all the unbound-unbound protein-protein docking test cases from the
two benchmarks used in this work with the normalised feature values as calculated
by the postfilter software as input. Since probabilistic SVMs are employed, a contin-
uous re-ranking of putative complex conformations yielded by docking calculations is
facilitated. Aim of this scoring is the identification of near-native complexes within
the top ranks, while inacceptable solutions should emerge on the lower ranks. The
borderline for acceptable conformations is drawn at 5A RMSD of interface C-alpha
atoms (RMSD;¢,) compared to the unbound units fitted on the native complex.
Complexes with an RMSD,c, below this cutoff values are denoted as "hit”. These hits
are those complex candidates which can be subjected to a final refinement step. The
quality of the SVM-based scoring functions is assessed in the following subsections.
A scoring function can only detect a near-native docked complex and subsequently
improve the ranking if at least one acceptable solution is present in the decoy set.
Consequently, docking test cases for which no near-native solution could be detected

were excluded from scoring and evaluation.
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3.3.1 Performance of SVM-based scoring functions on desig-

nated target complexes

Three SVM-based scoring functions have been developed for specific classes of docking
problems each. Consequently, the scoring of docked complexes of the designated target

class constitutes the main application focus.

3.3.1.1 Scoring of docked Enzyme-Inhibitor/Substrate complexes

All putative complexes as emerging from docking calculations for the class of Enzyme-
Inhibitor/Substrate complexes have been subjected to scoring applying the developed
specific SVM-predictor (SVMg;) and subsequent re-ranking. A total of 43 test cases,
22 of the docking benchmark 2.0 (table 2.2) and 21 taken from the manually collected
dataset (table 2.1), have been examined. The absolute ranks after scoring according
to geometric fit and SVMpg; for the complex conformation with the lowest rank (first
near-native found) and the complex with the lowest RMSD,¢, value (best near-native
found) for the 43 test cases are given in table 3.7. Furthermore, relative performance
measures for the SVM-based scoring are listed. This includes the reduction of search
space if all putative complexes classified as “false” by the predictor are excluded, the
number of false positive solutions per true positive solution, the scoring probability

and the improvement factor (see section 2.9 on page 79).

For all 43 test cases, a significant improvement in absolute rank can be noted for both
the first near-native complex found as well as the best possible (in terms of RMSD,¢,,)
acceptable solution found. For two of the 43 test cases, a near-native solution could be
found within the top ten ranks using the geometric fit as scoring function, while the
SVM predictor was able to find an acceptable solution in 21 cases within the top ten
ranks. For the top 25 ranks, this ratio totals to five compared to 30 , while in the top
100, 15 compared to 36 cases show a native solution using the geometric and SVMpg;
scoring, respectively. The average rank could be raised from 827 (1.92% of total ranks)
to 84 (0.19%) for the first true and 14,052 (32.62%) to 1,123 (2.61%) for the best true
solution comparing geometric to SVM-based ranking.

The mean value for the scoring probability has a rather low value of 0.0639. Compared

to the mean scoring probability for the ranking according to geometric fit (0.3820) this



3.3 SVM-based scoring functions 97
Table 3.7: Performance measures for SVM-based scoring scheme SVMgr on desig-
nated target complex class (cyan/magenta: test cases from tables 2.2/2.1).

native rank 1°¢ near-native rank best near-native red.a @” PI‘Ob.C IFd
PDB-ID geo® rmsd/ pred? rmsd geo rmsd pred  rmsd R

1AVX 1791 4.91 14 425 30801  1.52 201  1.52 563 3554 0.0174 2.24
1AY7 1477 4.62 24 3.72 32948 1.39 155 1.39 175  789.7 0.0248 1.21
IBVN 61  4.88 2 1.81 370 1.81 2 1.81 719 4175 0.0014 3.43
1CGI 86  4.47 27 4.36 3367  2.74 211 274 605 1652 0.0626 2.52
1D6R 591 3.02 768  3.33 41703 1.24 984  1.24 824 84.9 0.8621 4.56
IDFJ 3627  3.90 168 3.90 32098 2.77 776 277 169 7158.0 0.0193  1.20
IE6F 359  3.93 5 221 8220 2.01 1503  2.01  36.4 1141.9 0.0028 1.57
1EAW 253 3.48 29 3.39 33867 223 3022 223 473 267.0 0.0557 1.89
IEWY 132 2.15 5 215 3662 1.44 44 144 706 1624 0.0090 3.38
1F34 51 1.29 1 1.29 51 1.29 1 1.29 49.8 1202.1 0.0004 1.99
1HTA 52 4.43 4 451 22393  3.25 12838 3.25 588  216.6 0.0079 2.33
IMAH 1175 3.41 3 341 8421  1.60 48 1.60 45.1 1029.1 0.0016 1.82
IPPE 151 2.74 1 274 10940  1.50 25 150 756 28.4  0.0088 3.85
ITMQ 19 1.05 3 1.05 19  1.05 3 1.05 240 884.9 0.0026 1.31
1UDI 92 3.89 1 3.89 14521  2.03 106 2.03  32.0 12205 0.0006 1.47
2MTA 1036 4.92 19 4.92 28712 0.99 317 099 208 8122 0.0184 1.26
2PCC 1740 4.17 129 3.90 31193 1.65 497  1.65 164 2771.3  0.0382 1.20
281C 109  3.01 4 389 9457  1.05 22 1.05 38.6  441.1 0.0056 1.62
2SNI 669  4.84 1 3.65 8346  1.95 16 1.95 779  101.3 0.0024 4.13
7CEI 60  3.72 13 2.8 6343  1.23 190 123  49.8  720.7 0.0090 1.99
1ACB 956 4.57 14 279 6349  2.54 532 254 797 190.5 0.0148 4.89
IKKL 6140  4.81 1250  3.60 16255  1.39 7111 1.39  39.4 1003.6 0.5350 1.65
1ACB 48 0.93 5 093 48 0.93 5 093 794 98.8 0.0104 4.80
1IAVW 1440  3.33 6 3.33 24322 1.59 122 159 557 2385  0.0297 2.22
1BRC 3 442 7 2.56 2236 1.01 13 1.01  63.6 72.3  0.0501  2.66
1BRS 484 4.20 8 224 11036 1.97 831 1.97 18.1  766.5 0.0823 1.17
1BVN 32 3.98 9  4.62 3391 1.72 58 1.72  80.2 99.2  0.0282 4.88
1CGI 21 4.54 10 4.81 8506  1.65 75  1.65 675  140.0 0.0252 3.05
1CHO 33 1.02 11 1.02 209 081 7 081 744 93.3  0.0055 3.87
10SE 431 2.26 12 3.53 5107  0.61 124 061 61.5 107.6 0.0679 2.50
1DFJ 3634 4.17 192 4.17 18906  3.89 535 3.8  12.1 9463.5 0.0177 1.14
1FSS 2688 1.62 386 4.42 4709 1.09 5037  1.09 265  990.0 0.2503 1.36
IMAH 485 451 42 243 4311 1.18 621 1.18 25.6  604.8 0.0504 1.34
1PPF 164  4.59 5 3.46 23766 245 8 245 814 72.3  0.0136  4.98
1TGS 55  4.21 24 453 310 0.85 31 0.85 42,9 1255 0.1047 1.72
1UGH 127 271 3 271 31615  2.04 81 204 522 6429 0.0022 2.09
2K AT 1 4.63 1 4.63 16772 1.34 1065  1.34 314 111.9  0.0061 1.45
2MTA 469 474 33 4.27 7905  1.11 165 1.11 225 6679 0.0376 1.29
2PCB 1358 4.49 266 4.43 10399  3.18 8761  3.18  26.3 2644.1 0.0716 1.36
2PCC 1863 4.91 68 4.91 28189  2.88 1096  2.88  10.3 29725 0.0203 1.11
2PTC 177 3.81 27 4.23 11774 1.45 764 1.45 9.3  150.3 0.1508 1.10
2SIC 18 3.03 2 3.90 15726 1.08 30  1.08 341 4172 0.0032 151
28NT 1389 4.66 13 4.93 24969  2.87 145 2,87 451  353.0 0.0206 1.76
Avg. 827  3.70 84  3.42 14052  1.73 1123  1.73 462  976.7 0.0639 2.30

%Reduction of data if all conformations classified as "false" are excluded.
®Number of flase positive solutions selected per true positive solution.

¢Scoring probability according to equation (2.46).
YImprovement factor according to equation (2.45).
¢Rank in scoring according to geometric fit.

TRMSD of interface C-alpha atoms.

9Rank in scoring according to SVMg; predictor.
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Figure 3.3: Enrichment plots depicting the prediction performance of the SVMg;
scoring function (green) as compared to the geometric fit (red) on complexes of the
target class.
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is an improvement by a factor of six. This implies that the chance of obtaining a result
as good or better than that obtained by the scoring function by randomly picking
complexes out of the pool of generated complexes is six times lower for the SVM-based

scoring function than for the scoring according to geometric fit.

For a direct visual comparison of the SVM-based scoring function with the geometric
fit, enrichment plots are shown in figure 3.3. Figure 3.3 (a) and (b) illustrate the
performance on the complexes of the designated target class of benchmark 2.0. It can
clearly be seen that the SVMpg; scoring function outperforms the ranking according
to geometric fit, accumulating more than 65% of all acceptable solutions within the
first 5% of ranks. More than 20% of the near-native solutions can already be detected
within the first 0.5% of ranks. The results for the second dataset as collected from
the literature (figure 3.3 (c), (d)) are almost identical to those of benchmark 2.0. The
performance in blind predictions on test cases of benchmark 2.0 deliberately excluded
from training is depicted in figure 3.3 (e), (f). Also here, the developed scoring scheme
outperforms the ranking according to geometric fit, with the larger difference in slope of
the enrichment curve for example ITEWY, where all acceptable solutions can be found
by searching 30% of the data using the SVM-based ranking, while a search of 90%
of the data is required if the geometric fit is the primary ranking criterion. For the
example of the protein complex 1F34, the total number of acceptable solutions is much
smaller and both ranking schemes seem to rank acceptable solutions within the first
percentages of the data. The percentage rate of data to be searched in order to find
all possible acceptable solutions equals 25% for the SVMg; and 65% for the geometric

fit scoring, respectively.

3.3.1.2 Scoring of docked Antibody-Antigen complexes

All putative complexes as emerging from docking calculations for the class of Antibody-
Antigen complexes have been subjected to a scoring and re-ranking applying the
developed specific SVM-predictor for Antibody-Antigen complexes (SVM 454,). A total
of 23 test cases, 19 of the docking benchmark 2.0 (table 2.2) - including 11 cross-bound
dockings - and four taken from the manually collected dataset (table 2.1), have been
examined. The absolute ranks after scoring according to geometric fit and SVM 454,

for the first near-native complex conformation found and the complex with the lowest
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RMSD,¢, value for the 23 test cases are given in table 3.8.

Table 3.8: Performance measures for SVM-based scoring scheme SVM 4,4, on
designated target complex class (cyan/magenta: test cases from tables 2.2/2.1).

native rank 1%t near-native rank best near-native red. fp Prob. P
PDB-ID geo rmsd pred rmsd geo rmsd pred rmsd tp
1AHW 179 1.89 3 0.91 445 0.91 3 091 76.0 382.3 0.0019 4.01
I1BVK 1572 4.73 166 3.08 9957 2.23 1808 2.23 41.7 717.0 0.1264 1.71
1DQJ 1965 3.93 606 3.50 39234 3.50 606 3.50 45.0 1578.5 0.1915 1.82
1E6J 453 3.86 46 3.17 16260 1.51 956 1.51 67.9 226.8 0.0631 3.10
1JPS 331 2.01 4 2.01 3362 0.91 12 0.91 81.9 268.6  0.0027 5.51
1IMLC 11066 1.93 2053 0.91 20746 0.91 2053 0.91 51.1 3513.8 0.2540 2.04
1VFB 439 4.91 124 4.25 41757 2.50 836 2.50 57.6 795.0 0.0642 2.35
1WEJ 5963 3.77 360 3.51 39767 0.88 489 0.88 759 742.8 0.1109 4.14
1BJ1 21571 3.56 244 2.75 24768 2.75 244 275 724 2373.8  0.0280 3.63
1FSK 1376 2.71 4 1.75 5150 1.75 137 1.75  69.2 530.2 0.0023 3.24
119R 468 3.71 15 3.23 2769 1.44 348 1.44  50.0 1024.8 0.0073  2.00
11QD 4644 3.96 16 3.96 13418 1.22 43 1.22  75.2 1187.8 0.0033 4.03
1K4C 33579 243 1081 2.43 33579 2.43 1081 243 81.5 7959.0 0.0251 5.41
1KXQ 10 1.90 1306 4.88 1135 1.42 5634 1.42  79.5 440.1  0.6267 3.05
INCA 1336 3.09 243 2.02 1478 0.73 519 0.73 89.8 293.7 0.0814 9.74
INSN 815 2.10 12 2.10 23999 1.21 374 1.21  46.1 1221.7 0.0053 1.85
1QFWA 9338 1.60 189 1.60 35118 1.01 839 1.01  72.7 653.7 0.0761  3.66
1QFWE 1893 3.66 95 2.36 14017 0.74 257 0.74 52.3 892.9 0.0495 2.10
2JEL 4922 4.47 87 4.25 5173 3.64 386 3.64 824 1517.8 0.0101 5.67
1AHW 20 1.62 1 1.62 2237 1.07 16 1.07 67.1 471.9 0.0007 3.04
1VFB 864 4.89 46 4.76 34295 1.48 679 1.48 68.4 412.3 0.0347 3.16
1WEJ 4306 4.02 213 1.66 21516 0.92 293 0.92 76.2 1707.5 0.0293 4.20
1DQJ 34381 4.39 937 3.98 41524 3.98 937 3.98 35.9 13797.0 0.0430 1.56
Avg. 6152 3.27 341 2.81 18770 1.70 807 1.70  65.9 1856.9 0.0799 3.52

For all but one of the 23 test cases, a significant improvement in absolute rank can
be noted for both the first near-native complex found as well as the best possible (in
terms of RMSD;¢,) acceptable solution. The only exception is the test case 1KXQ
of docking benchmark 2.0 for which both criteria experience a significant depletion in
absolute rank. For only one of the 23 test cases, a near-native solution could be found
within the top ten ranks using the geometric fit as scoring function, while the SVM
predictor was able to find an acceptable solution in four cases within the top ten ranks.
For the top 25 ranks, this ratio totals to two compared to seven, while in the top 100,
two compared to eleven cases show a native solution using the geometric and SVM 4544
scoring, respectively. The average rank could be raised from 6,152 (14.28% of total
ranks) to 341 (0.79%) for the first true and 18,770 (43.57%) to 807 (1.87%) for the best

true solution comparing geometric to SVM-based ranking.
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Figure 3.4: Enrichment plots illustrating the prediction performance of the
SVM 4p44 scoring function (green) as compared to the geometric fit (red) on complexes
of the target class.
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The mean value for the scoring probability of the SVM-based scoring equals 0.0799.
Compared to the mean scoring probability for the ranking according to geometric
fit (0.5126) this is an improvement by a factor of 6.4. This implies that the chance
of obtaining a result as good or better than that obtained by the scoring function
by randomly picking complexes out of the pool of generated complexes is more than
six times lower for the SVM-based scoring function than for the scoring according to
geometric fit.

Compared to the scoring function developed for the class of FEnzyme-
Inhibitor/Substrate complexes, the mean improvement factor is higher for the
SVM apag-scoring, though this is mainly due to the fact that the geometric correlation

scoring seems to perform worse in the case of Antibody-Antigen complexes.

For a direct visual comparison of the SVM-based scoring function with the geometric
fit, enrichment plots are shown in figure 3.4. Figure 3.4 (a) and (b) illustrate the
performance on the complexes of the designated target class of benchmark 2.0. The
SVM 4344 scoring function clearly outperforms the ranking according to geometric fit,
accumulating more than 75% of all acceptable solutions within the first 5% of ranks.
More than 15% of the near-native solutions can already be detected within the first
0.5% of ranks. The results for the second dataset as collected from the literature
(figure 3.4 (c), (d)) are comparable to those of benchmark 2.0. The performance in
blind predictions on test cases of benchmark 2.0 deliberately excluded from training is
depicted in figure 3.4 (e), (f). The developed scoring scheme outperforms the ranking
according to geometric fit for the test cases 1E6J and 1NCA significantly, ranking all
acceptable solutions in the first 10% of the data using the SVM-based ranking, while a
search of at least 90% of the data is required if the geometric fit is the primary ranking

criterion.

3.3.1.3 Scoring of docked complexes of type "Other" (non-Enzyme-
Inhibitor/Substrate and non-Antibody-Antigen complexes)

All putative complexes as emerging from docking calculations for the class of “Other”
complexes have been subjected to a scoring and re-ranking applying the developed
specific SVM-predictor (SVMey,). A total of 33 test cases, 29 of the docking benchmark
2.0 (table 2.2) and four taken from the manually collected dataset (table 2.1), have been
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examined. The absolute ranks after scoring according to geometric fit and SVM,, for
the first near-native complex conformation found and the complex with the lowest

RMSD;¢, value for the 33 test cases are given in table 3.9.

Table 3.9: Performance measures for SVM-based scoring scheme SVMgy, on
designated target complex class (cyan/magenta: test cases from tables 2.2/2.1).

native rank 15! near-native rank best near-native f

red. = Prob. IF
PDB-ID geo rmsd pred rmsd geo rmsd pred rmsd ks
1A2K 1463 4.60 139 4.32 10937 3.06 888 3.57  94.6 288.8  0.0895 5.13
1AK4 1787  3.23 29 3.15 9591 2.62 606 2.75  98.2 25.1  0.0377  28.95
1AKJ 733 2.96 167 2.20 3027 2.20 167 2.20 92.1 141.2  0.1135 9.77
1B6C 2464 3.96 1495 3.96 11694 2.36 3603 2.68 85.0 647.4 0.4113 4.43
1BUH 6491 3.83 - - 15167 2.20 4927 8.19 86.5 - 0.7371 -
1E96 1423 3.91 128 4.69 19389 2.24 865 3.08 78.0 728.5  0.0437 3.94
1F51 1702 1.85 2844 1.99 10180 1.41 6180 1.41 14.8 965.6  0.9255 1.17
1FC2 8020 3.68 3622 3.19 8888 3.19 3622 3.19  79.4 985.9 0.7076 3.12
1FQJ 764 4.69 595 3.59 28966 3.22 733 3.22 729 1169.4 0.1299 3.68
1GCQ 2468 2.06 34 4.41 36969 1.33 668 1.33  97.5 74.6  0.0219  20.36
1GHQ 7089 4.83 837 4.90 30490 2.07 6655 2.71 80.2 1066.0 0.3633 1.76
1HE1 691 3.58 35 1.83 6518 1.39 49 1.39  97.0 91.4 0.0113 33.29
1KAC 41 4.17 16 2.96 6735 2.47 74 2,59  92.7 779.2  0.0111 1.84
1KLU 16242 4.66 128 3.37 20504 3.37 128 3.37 616 2759.3 0.0177 2.60
1KTZ 14728 3.19 149 2.84 23402 0.82 402 0.82 93.4 317.7  0.0307 15.02
1KXP 14 3.49 11 4.98 54 1.29 29 1.29 779 633.9  0.0043 3.99
1MLO 1053 4.47 54 4.47 11339 2.44 848 2.44 259 3546.0 0.0112 1.35
1QA9 6412 1.40 71 2.36 6412 1.40 2744 1.40 88.5 352.6  0.0228 8.70
IRLB 5741 4.48 785 3.44 18818 3.44 785 3.44 79.5 981.2  0.1680 4.39
1SBB 876 2.84 - - 1548 1.22 340 5.70  98.5 - 0.2601 -
2BTF 5849 4.70 168 4.11 19262 3.98 420 3.98 86.8 632.4  0.0346 7.56
1GP2 2018 4.85 238 3.65 35332 1.84 2019 1.84 84.8 502.9  0.0695 6.58
1GRN 195 4.54 551 4.28 9235 1.47 3109 1.47  92.7 195.4 0.3116 7.56
1HE8 1791 4.98 912 4.46 16585 1.67 2780 1.67 88.8 1203.2 0.1205 5.96
112M 10 3.80 209 2.41 16582 2.41 209 241 844 258.5 0.1231 6.15
ITJK 266 4.80 852 4.79 26934 1.70 1062 1.70  60.5 774.1  0.3557 2.53
1K5D 9897 4.97 835 3.35 22980 3.35 835 3.35 36.1 6876.8 0.0753 1.57
1M10 - - - - 37588 5.26 3172 5.26 92.3 - - -
1WQ1 909 4.50 286 4.10 21489 1.60 1274 1.60 89.0 338.7 0.1011 7.93
1AVZ 13278 4.51 - - 21250 3.89 1452 5.74 91.6 - 0.2399 -
1BDJ 186 2.79 703 4.95 6724 1.98 20727 2.08 40.0 957.3  0.5153 1.02
1L0Y 504  2.61 - - 20301 1.63 635 13.96 98.0 - 0.2680 -
1WQ1 1 3.40 1 2.75 3234 1.71 280 1.71  90.4 138.0  0.0007 10.00
Avg. 3597 3.82 568 3.63 16307 2.31 2191 3.14  79.7 979.6  0.0352 7.51

For 24 of the 33 test cases, a significant improvement in absolute rank can be noted
for both the first near-native complex found as well as the best possible acceptable
solution. For three test cases (1F51, 112M and 1BDJ), the first near-native solution
is lowered in rank, while the best near-native solution again is raised in rank. For
four test cases (1BUH, 1SBB, 1AVZ, 1L0Y), the SVM predictor fails to classify any



104 Results

acceptable solution as such. For one further test case in the list (1M10), no near-native
solution is found by the docking algorithm and consequently the scoring schemes are
destined to “fail”. This test is nonetheless listed here in order to show that even if no
near-native solution with an RMSD,;C,, of less than 5A can be found, the SVM-based
scoring scheme still provides an improvement in ranking as compared to the geometric
fit. For two of the 33 test cases, a near-native solution could be found within the top
ten ranks using the geometric fit as scoring function, while the SVM predictor was only
able to find an acceptable solution in one case within the top ten ranks. For the top 25
ranks, both scorings succeed in 3 cases, while in the top 100, four compared to eight
cases show a native solution using the geometric and SVMgy, scoring, respectively.
The average rank could be raised from 3,597 (8.35% of total ranks) to 568 (1.32%) for
the first true and 16,307 (37.85%) to 2191 (5.09%) for the best true solution comparing

geometric correlation to SVM-based ranking.

The mean value for the scoring probability of the SVM-based scoring equals to 0.0352.
Compared to the mean scoring probability for the ranking according to geometric fit
(0.5701) this is an improvement by a factor of 16.2. This implies that the chance
of obtaining a result as good or better than that obtained by the scoring function
by randomly picking complexes out of the pool of generated complexes is more than
16 times lower for the SVM-based scoring function than for the scoring according to
geometric fit. Since the SVMgyy, scoring scheme fails completely for four of the 33 test
cases, this value can only be accepted under reserve, since the high specificity of the
scoring is seemingly paid with a lowered sensitivity, explaining the number of test cases

for which the scoring scheme fails completely.

For a direct visual comparison of the SVM-based scoring function with the geometric
fit, enrichment plots are shown in figure 3.5 on the facing page. Figure 3.5 (a) and (b)
illustrate the performance on the complexes of the designated target class of benchmark
2.0. It can clearly be seen that the SVMpy, scoring function outperforms the ranking
according to geometric fit, accumulating 45% of all acceptable solutions within the first
5% of ranks. 10% of the near-native solutions can already be detected within the first
0.5% of ranks. The results for the second dataset as collected from the literature (figure
3.5 (¢), (d)) show a significantly worse performance on the four "Other" complexes of
table 2.1. Here the discrepancy between SVM-based ranking and geometric correlation
is far smaller than the one in plots (a) and (b), though the SVM-based scoring still
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Figure 3.5: Enrichment plots illustrating the prediction performance of the SVMoyp,
scoring function (green) as compared to the geometric fit (red) on complexes of the
target class.
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slightly surpasses the geometric fit. The performance in blind predictions on test cases
of benchmark 2.0 deliberately excluded from training is depicted in figure 3.5 (e), (f).
For test case 1A2K, SVMpy, is working well and clearly superior, while for test case
1F51 it is inferior to the geometric ranking, even if this is only the case for the first
12% of the data.

3.3.2 Specificity of SVM-based scoring functions

The developed SVM-based scoring schemes have been specifically selected and trained
for best performance on a designated class of target complexes or rather the docking
calculations on these complex classes. In order to assess the specificity of the SVM-
based scoring functions for the designated target complex class, each scoring was also
applied to those two classes of complexes that were not considered in the training
process. Figure 3.6 illustrates a direct comparison of the performance of the specific
SVM-based scoring schemes developed on the individual classes of target complexes
using enrichment plots.

It can be clearly seen, that for each of the selected complex classes, the SVM-based
scoring scheme that has been specifically designed and trained for the appropriate class
performs best. Remarkably, all three developed scoring schemes also clearly surpass

the scoring according to geometric fit for all complex classes.

3.3.3 Comparison of SVM-based re-ranking to other scoring

functions

So far, the developed scoring schemes have only been compared among each other or
to the geometric fit in terms of their performance on the selected classes of complexes
or unbound-unbound protein-protein docking test cases, respectively. In order to
evaluate the developed SVM-based scoring functions further, a direct comparison of
their performance with other common scoring functions was conducted. In total, each
complex class specific SVM-based scoring scheme has been compared to five other
scoring functions. Namely these are the Atomic Contact Energies (ACE, (Zhang et al.,
1997)), a residue-residue potential (RPscore, (Moont et al., 1999)), an atom-atom

pair potential (Grimm, 2003) and the class specific scorings using residue interface
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Figure 3.6: Enrichment plot illustrating the prediction performance of the three
SVM-based scoring functions and the geometric fit for the complexes of benchmark
2.0 (see tables 2.2 and 3.1). The geometric fit is shown as crosses (red), SVMpg; as
diamonds (green), SVMapaq as circles (cyan) and SVMoy, as triangles (magenta).

propensities (Huang and Schroeder, 2005) and Tightness of Fit (Gottschalk et al.,
2004; Huang and Schroeder, 2005). The results of this comparison of a series of scoring
schemes are depicted in figure 3.7 in form of enrichment plots for the three selected

classes of docking test cases.

For two of the three classes of docking test cases, the SVM-based scoring scheme

features superior performance over all other scoring functions tested. For the classes



108

Results

+ OxN 4
+ 3 W

%W 100 FT

oA
ol B
X
O x4
o W

ACE +
SVMg,
PairPot
RPsicore
ToFg
RIPg,

near-native solutions found [%]
B 2
[T
=
-
[
near-native solutions found [%]
2

4 ¥ PO o

o IS Y S S T T T T T T T Lo o 0

5 10 1520 2530 35 40 45 50 55 80 65 7O 75 80 85 90 95100 5
data searchad [%]

S T T T T T T T T E— TR TR L

ST LAMIEEL AN

X
B
-

o ACE +
@ SVMg,
o PairFot
t o RPsicore
+ o o] ToF g
RIP,

4 ¥ PO o

10 15 20 25 30 35 40 45 50 55 @0 &5 7O 75 80 85 90 95100
data searchad [%]

(a) Enzyme-Inhibitor/Substrate complexes (b) Antibody-Antigen complexes

QX + A€
0 x4 AR
(= -2

=
20 -

QX+ .

near-native solutions found [%]
oK + M

[

0 ——r TR - T— TR N N T

5 10 1520 25 30 35 40 45 50 55 @0 &5 70 75 20 &5 90 95100

data searched [%]

S S B S TR

ACE +
VM an
PairPot
FPscore
TR
RIF py

4% pe o

(c) "Other" complexes

Figure 3.7: Enrichment plot illustrating the performance of a series of scoring
functions for the complexes of benchmark 2.0 (see tables 2.2 and 3.1). The per-
formance of the Atomic Contact Energies (ACE) scoring is shown as crosses (red),
SVMEgr as diamonds (green), the atomic pair potential (PairPot) as circles (cyan),
the residue potential (RPscore) as triangles (magenta), the Tightness of Fit measure
as used together with the residue interface propensities for the specified class of
complexes (ToF) in the shape of the letter 'x’ (orange), while the mean residue

interface propensities for the specified complex class
triangles (black) .

(RIP) are shown as filled inverted

of Enzyme-Inhibitor/Substrate complexes and "Other" complexes, the discrepancy is

quite high. For the class of Antibody-Antigen complexes, all those scoring schemes

using residue interface propensities (TOF 44, RPscore, RIP44) show a general good
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performance, with the SVM 4544 and the Tightness of Fit measure surpassing the others.
Within the first 10% of ranks, the ToF 44 scoring scheme is able to accumulate slightly
more near-native solutions than SVM 4p4,. In general, the atom based scoring schemes
like Atomic Contact Energies (ACE) and the atom-atom pair potential (PairPot)
exhibit inferior performance for all three classes of test cases as compared to the other

four (residue-level based) scoring functions.
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"It 1s the mark of an educated mind to be able

to entertain a thought without accepting it."
Aristotle, 384-322 B.C.

Efficient comprehensive scoring functions have been developed using probabilistic
Support Vector Machines in combination with a series of chemical, biological and
physical properties. These scoring functions are shown to be specific for certain types
of protein-protein complexes and are able to detect near-native complex conformations
from large sets of decoys with high sensitivity. The ranking of near-native structures
can be drastically improved, leading to a massive enrichment of near-native complex
conformations in the top ranks. It could be shown that the developed scoring schemes

outperform five other previously published scoring functions.

4.1 General comparability of docking results

There exists no standardised format for the output, display and evaluation of docking
results. Halperin et al. (2002) suggested a unified format for docking results and called
it DRUF, the Docking Results Unified Format, but this format has so far not become
widely accepted in the scientific community. Within the CAPRI challenge, there exists
a standardised submission format and a semi-automatic evaluation procedure (Méndez
et al., 2003), but these are only usable for and during the actual submission rounds of
the challenge.

The obstacles for a standardised docking results format that would allow for a direct
comparison of several docking and/or scoring methods arise as early as in the actual
setup of the docking test cases. The three dimensional fitting procedure which generates
the structural alignment of the unbound units to the native complex is here of critical
importance. During the course of this structural alignment, residues of the template
have to be assigned to residues in the target structure. This is achieved by a form

of structure driven sequence alignment which simultaneously aims for an optimal
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matching of residues from the target on those of the template while minimising the
overall RMSD. As there is apparently no unique solution to the structural alignment
problem (Godzik, 1996), the approaches the methods vary, ranging from fragment
based approaches (CE (Shindyalov and Bourne, 1998), PROTEIN3DFIT (Lessel and
Schomburg, 1994)) via distance matrices (DALI (Holm and Park, 2000)) to the matching
of secondary structure elements (SSM (Krissinel and Henrick, 2004)), just to mention
a few. As the methods vary, so do the results in terms of the residue matching between
target and template structure (especially in regions where possible gaps have to be
introduced), which again influence the calculated overall RMSD. These discrepancies
might be small, but for every single step in docking, the RMSD represents the major
and most widely used quality criterion, such that eventual discrepancies might add up.
Another critical issue is the starting point of the dockings. If the complex conformation
used as input structure for the docking procedure corresponds to the structure of the
unbound units as fitted on the native complex, a docking algorithm will be more likely
to encounter this conformation again during the computation process. Such a near-
native solution might be found more easy than if the docking is started from random
orientations of the complex partners. Besides the potential discrepancies introduced
by methodical variations, many of the definitions used during the quality assessment
of docking results are arbitrarily drawn based on empirical knowledge. Examples for
this are the setting of borderlines that divide acceptable near-native solutions from
inacceptable, non-native ones. Is a docking solution with an RMSD of 3A, 4A or
5A indicated as near native? Is the RMSD calculated with respective to the native
complex or rather to the unbound units as fitted on the native complex? Are all atoms
used for the calculation of the RMSD or only backbone atoms, eventually only C-alpha
atoms? Is the RMSD calculated for the complete protein or rather only the interface
region? If so, how is the interface region defined? Another frequently used quality
criterion is the number of native and non-native contacts on residue or atom level,
where again one has to ask "how these are defined". In order to compare various
scoring or re-ranking methods for protein-protein docking solutions, it is not only
important that the parameters as described above are in agreement but also that
they are applied to a possibly identical set of decoys. Only if the number of putative
complex conformations produced by a docking algorithm is identical for the docking

targets considered, absolute rank numbers, as allocated sometimes, can be directly
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compared. This problem has been addressed in this work by the utilisation of relative
scoring performance criteria such as enrichment plots, improvement factors and scoring

probabilities.

4.2 Limitations of data fundamentals and docking

software

For this work, the largest currently available dataset for protein-protein docking has
been employed. Still the number of complexes used in the studies comes to 118, 83 of
which can be considered as structurally non-redundant interactions. This represents
only a very limited fraction of the currently available structural data. These 83
complexes are constituted of 101 unique SCOP domains, originating from 82 folds
of eight distinct folding classes, with 94 superfamilies and 101 families represented.
Compared to SCOP version 1.69, which is based on a hierarchical clustering of 25,973
PDB entries, this only covers 8.68% of the folds, 5.90% of the superfamilies and 3.55%
of the families of non-redundant structural data available at the time (October 2004).
Consequently, there can be no guarantee that any knowledge derived from studies of
such limited data fundamental as the docking research community relies on can be
successfully transferred to future examples.

Another major issue is of course not only the quantity of the data but also its quality as
seen in combination with the weak spots of the docking methods/software used. While
reconstructing the data as listed in the protein-protein docking benchmark 2.0, namely
generating the conformation of the unbound units as fitted on the native complex
using the structures as deposited in the Protein Data Bank, it became obvious that
the authors had to manually curate at least some of the files in order to transform
them into a suitable docking test case.

For seven test cases, multimers were created from the PDB files, four of which (1EZU,
1K4C, 1IB1, 1BGX) lead to docking problems with (), symmetry axes involving
multiple symmetric solutions. Currently, few of the available docking programs (e.g. M-
ZDpOocK (Pierce et al., 2005) and SYMMDOCK (Schneidman-Duhovny et al., 2005b))
are able to handle such symmetric multimer dockings. Unfortunately, CKORDO is in

the existing version not able to cope with such problems and will therefore only be
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able to identify the %th part of the near native solutions of a (), symmetric multimer

docking test case.

(c) 1K4C (d) 1GP2

Figure 4.1: Problematic docking test cases from benchmark 2.0.

The dataset further contains test cases for which the interface area as seen in relation to
the total surface of the complex is relatively small. For 20 of the 83 examined test cases

the contact surface covers less than 5% of the total surface of the complex, whereas the
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value drops below 3% for four test cases. CKORDO seems to give poor results in terms
of the absolute number of near-native solutions listed for these docking runs. Since the
docking software used represents plain rigid-body docking, all those test cases which
either undergo drastic conformational changes during complex formation or which
exhibit a large number of steric clashes for the fitted complex pose a problem. Examples
for conformational changes are hinge movements (as in 1FAK), loop movements in the
interface area (1EZU) or also conformational changes on an implicit level, caused by
atoms which contribute to the interaction in the native complex but are missing in
the respective unbound units (1GP2). An aggregation of steric clashes (for the fitted
unbound units) in the interface region can be noted with the test cases for IH1V and
1BGX.

Figure 4.1 on the page before illustrates the problems described on selected examples:
Figure 4.1 (a) and (b) show the docking test case for IEZU from the docking benchmark
2.0, a docking test case labeled as rigid-body. The native complex (gray) and the
fitted unbound units (brown) differ critically on the receptor side of the interface.
A pair of loops exhibits a bad fit or loop movement respectively between the native
(highlighted in blue) and unbound state (highlighted in red) as can be clearly seen in
the detail enlargement (figure 4.1 (b)). Figure 4.1 (c) shows the docking test case for
1K4C from the docking benchmark 2.0, a multimeric docking test case. For the co-
crystallised complex (ligand: orange, receptor: magenta), a single interface is visible,
while for the unbound units, a multimer has been generated in order to simulate the
biological unit. The unbound receptor (cyan) exhibits a Cy symmetry, providing for
four identical docking site or four equally correct docking solutions, respectively. Of
these four solutions, CKORDO is only able to recognize one, since the reference complex
for RMSD calculations only exhibits a single "native" interface and symmetries cannot
be considered in the current version. In figure 4.1 (d), the medium difficulty docking
test case for 1GP2 is depicted with the native complex in blue (cartoon and surface
view) and the fitted unbound units in green (cartoon representation only). The native
receptor exhibits an additional long alpha helix (surface highlighted in orange) which
contributes to the interface. This helix is missing in the unbound receptor, presumably
since this part of the structure is likely to be either highly flexible or most definitely

no to be found in an orientation similar to the one of the bound state.
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4.3 Quality of the developed comprehensive scoring

functions

It has been the aim of this work to develop methods for the efficient and accurate
detection of near-native conformations in the scoring or ranking process of docked
protein-protein complexes. For best possible performance, the scoring function(s) have
been developed specifically for distinct classes of protein-protein complexes based on the
assumption, that distinct binding preferences distinguish the corresponding complex

classes.

4.3.1 Effects of feature selection on the specificity of the SVM-

based scoring functions

The results of the performance comparison of the SVM-based scoring functions on
the distinct classes of protein complexes (see section 3.3.2) clearly show, that each
developed scoring function performs best in the ranking of docked complexes of the
class it has been specifically developed for. This substantiates the hypothesis that the
determining properties for binding differ between the complex classes in their relevancy
and magnitude. Certain conclusions on those binding properties might be drawn from
the F-score values as calculated during the feature selection process (cf. table 3.4).
Comparing the F-score values for the individual complex classes, it is apparent that
the number of highly conserved residues is seemingly of higher importance for the
class of Enzyme-Inhibitor/Substrate than for Antibody-Antigen complexes. This is in
agreement with the findings of Reddy and Kaznessis (2005) that the surface density of
highly conserved positions is significantly higher in interface regions of protein-protein
complexes which do not belong to the class of Antibody-Antigen complexes. This is to
be expected since the variable region of the antibody represents the interacting region
with the antigen and indeed, the number of highly variably residues reaches its largest
F-score value for the class of Antibody-Antigen complexes.

Furthermore, the residue interface propensity scores using propensity values as deter-
mined for specific classes of complexes correlate well in their relevance for the prediction
of binding sites according to the calculated F-score values with the classes of complexes

they have been calculated for. The residue interface propensity score using propensities
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deducted from Enzyme-Inhibitor complexes (RIP ;) is of larger importance for the class
of Enzyme-Inhibitor/Substrate than for the other two complex classes, while the residue
interface propensity score for Antibody-Antigen complexes (RIP 44) dominates in the
feature selection of Antibody-Antigen complexes and the universal residue interface
propensity score (RIPy ), using interface propensities deducted from a heterogeneous
data set, works best for the most heterogeneous class of docking test cases labeled as
“Other” complexes.

The atom-atom pair potential only plays an important role for the training of Enzyme-
Inhibitor/Substrate complexes. This is explicable since the potential has been de-
veloped using the COMBASE (Vakser and Sali, 1999) dataset, in which the class of
Enzyme-Inhibitor complexes is clearly overrepresented.

The buried surface area and the gap volume are used by the existing version of CKORDO
to calculate the gap index as a measure for the tightness of binding. It has been tested
mainly on Enzyme-Inhibitor complexes so far and also in this work, the scores for gap
volume and buried surface area have the biggest influence in terms of F-score values
for the class of Enzyme-Inhibitor/Substrate complexes.

Regarding the GRID based scoring schemes, it is apparent that for all three docking
complex classes examined, a minimum set of probes has been selected. Such a
minimum set contains at least one positively charged group (AMINDINE, N3+) and
one negatively charged group (COO-, O-), one hydrogen donor (N2=, N2, CONH2)
and one hydrogen acceptor group (CONH2, O, O::;, O1). A minimum set of probes
is consequently able to account for the most important electrostatic and hydrogen
bonding forces. Additionally, the solvent probes for water (0H2) and a hydrophilic
solvent (DRY) are usually part of a minimum set of probes. The solvent probe for water
is only part of the selected features for the classes of Enzyme-Inhibitor/Substrate and
“Other” complexes, but is not included for the class of Antibody-Antigen complexes.
Interestingly, for none of the complex classes, a hydrophobic probe (DRY, C1=, C3) has
been selected due to the low F-score values. This means that the created predictors
do not account for purely hydrophobic interaction forces directly and might pose a

potential weakness of the trained SVM-based scoring functions.
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4.3.2 Effects of training data selection on the quality of the

SVM-based scoring functions

Since protein-protein docking calculations typically yield a very low number of accept-
able solutions among a large number of false solutions, it is of utmost importance that
any developed scoring function misses to identify as few near-native conformations as
possible. This means that not only the specificity of a scoring function should be a
decisive quality criterion but also its sensitivity. While the SVM-based scoring functions
trained for the scoring of docked Enzyme-Inhibitor/Substrate and Antibody-Antigen
complexes show almost perfect sensitivity in training and testing (see sections 3.2.3
and 3.3.1), the sensitivity of the SVM-based scoring function for the class of “Other”
complexes clearly has deficits concerning the sensitivity. The most likely reason for this
lack of sensitivity is the heterogeneity of the complex structures grouped as “Other”
complexes and used as input data. This becomes already obvious during the feature
selection and SVM training procedure. The average F-score value of the 37 features
used lies 60% below the mean values reached for the other two classes, indicating
a far weaker descriptive power for the classification of the features for the class of
“Other” complexes. While approximately 15% of the data instances are transformed
into Support Vectors for the classes of Enzyme-Inhibitor/Substrate and Antibody-
Antigen complexes, the total number of Support Vectors reaches > 40% of the training
data instances in the case of “Other” complexes without indication of an eventual
overtraining (cf. table 3.5). An eventual improvement of the sensitivity of the SVMoyy,
scoring function could be achieved by increasing the number of training instances,

which again is limited by the low data fundamentals.

4.4 Support Vector Machines as black box

As with every machine learning technique, one has to be aware, that the algorithm
will learn to distinguish the given datasets on the basis of the provided descriptors
only. In this case, this implies that the SVM procedure has learned to distinguish
near-native from inacceptable docking solutions on the basis of the scoring schemes
used as descriptors. It is possible but not essential that the machine learning has

thereby implicitly learned about phenomena that govern the principles of protein-
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protein interaction. Considering the limitations of the raw data as discussed above,
this is a legitimate concern. Since there is no way of judging from an SVM model
(i.e. the number and sizes of the support vectors) on what actually happens in the
high dimensional feature space, Support Vector Machines act as the proverbial black
boz.

Another important point to keep in mind is the relatively simple feature selection
method that had to be chosen due to the high computational effort of the SVM training
caused by the kernel function utilised and the number of parameters and training
instances. Feature selection via F-scores is a fast method but bears the disadvantage
that it does not reveal mutual information among features. This mutual information
can only be revealed if SVMs are actually trained on a combination of the respective
features, like it would have been possible by the application e.g. of a genetic algorithm

for feature selection.

4.5 Versatility of the developed method

During the development of the method described in this work, special attention has
been paid to the the versatility with respect to future applications. Therefore a bias by
CKORDO and its parameters was possibly avoided. The developed postfiltering method
deliberately passes on any direct shape complementarity scores or other scorings as
calculated by the FF'T methods. It should therefore be independent of the underlying

method of conformational space search and insensitive to eventual changes to the latter.
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It has been the aim of this work to develop methods for the efficient and accurate
detection of near-native conformations in the scoring or ranking process of docked
protein-protein complexes. A series of structural, chemical, biological and physical
properties are employed to score docked protein-protein complexes. These scoring
schemes include specialised probe specific energy functions, evolutionary relationship,
class specific residue interface propensities, the gap volume, buried surface area, empiric
pair potentials on residue and atom level as well as measures for the tightness of fit.
Using the largest currently available benchmark of protein-protein docking test cases,
supervised machine learning algorithms in the form of probabilistic Support Vector
Machines have been trained after feature selection to establish efficient comprehensive
scoring functions specific for three different classes of protein-protein complexes.
These docking classes are Enzyme-Inhibitor/Substrate complexes, Antibody-Antigen
complexes and a third class covering all those complexes not belonging to either of the
two previous classes. The three specific scoring functions were tested on the docking
results of 43, 23 and 33 complexes in their unbound form for the above mentioned
complex classes and are shown to be specific for the individual types of complexes.
Defining success as scoring a ’true’ result with a p value of better than 0.1, the scoring
schemes were found to be successful in 93%, 78% and 63% of the examined cases,
respectively. A comparison with five previously published scoring schemes showed the
developed class specific comprehensive scoring functions to be superior to the individual

scoring functions and illustrated the synergetic effect.

5.1 Future developments

In the era of structural genomic initiatives which expedite the worldwide effort
of automised high throughput structure elucidation, the number of known protein
sequences is still growing much faster than the number of known structures. Therefore,
vast interest is focused on methods which are able to predict protein structures with

high accuracy on one hand as well as algorithms for interaction prediction such as
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docking programs which facilitate reliable results using modelled structures on the
other hand. Another center of attention is focused on data integration trying to relate
information about proteins from heterogeneous experimental and theoretical resources
aiming for a final complete detailed description of protein interaction networks.

As recent developments of the CAPRI docking prediction challenge show, where first
dockings with modelled structures are currently assessed, docking has come of age. It
has evolved from a purely academic experiment, being solely able to reliably predict
bound docking test cases, to a promising field of practical (research) applications.
The methodology developed in this work is in its current version applicable as a protein-
protein docking post filter. Since special attention has been paid to the versatility of
the method (see 4.5), one further aim should be the integration of the primary docking
software and the developed post filter together with other developments into a fully
functional docking software suite. In order to be practically applicable to a wide range
of docking problems, such a software should allow for the integration of various external

data resources. Examples are:

e on macroscopic level:
Informations concerning complex symmetries (e.g. from sequence or structural
homologies, Electron Microscopy or low resolution X-ray experiments etc.) lead-

ing to multimer docking algorithms,

e on microscopic level:
Integration of information on interaction restraints (e.g. information identifying
interface residues (e.g. from cross-linking, mutagenesis, NMR or Mass Spectrom-

etry experiments etc.) or non-interface residues.

The currently biggest challenge in docking software development is the integration of
flexibility into the docking methods in order to account for potentially large structural
changes upon complex formation. At the same time, methods should still be accurate
on atomic level while being tolerant against structural deviations as emerging from
modelled structures. This is only possible if sophisticated simulation and refinement
methods are combined and integrated into a docking application which preferably
should be able to dock, evaluate and refine whole ensembles of structures in a reasonable
amount of time. Utilisation of recent threading and parallelisation techniques can

facilitate such costly computations.
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