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“¿Dices que nada se crea? 

No te importe. Con el barro 

de la tierra haz una copa 

para dar de beber a tu hermano. 

 

¿Dices que nada se crea? 

Alfarero a tus cacharros. 

Haz tu copa y no te importe 

que no puedas hacer barro.” 

 

      Antonio Machado. 
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1. Introduction   1

1. Introduction 
 

Many secondary active transporter proteins belong to the Drug and Metabolite 

transporters superfamily. This diverse cluster that includes prokaryotic and 

eukaryotic proteins known to mediate efflux of drugs, export of nutrients and 

metabolites, nutrient uptake, and exchange of metabolites across intraorganellar 

membranes (Jack et al., 2001). Fourteen families of transporters are differentiated 

within this superfamily. Six families contain prokaryotic proteins and just a few of 

them are fully characterized as transporters of cationic drugs, metabolites and 

nutrients. The other eight families contain exclusively eukaryotic members, some 

of them known as noduline-like proteins, purine/pyrimidine permeases, phosphate 

transporters of the inner membrane of plastids (pPT), and nucleotide sugars 

transporters (NST) (reviewed in Jack et al., 2001).  

 

The eukaryotic proteins of the Drug and Metabolite transporter superfamily 

generally contain 8-10 transmembrane domains (TMDs). These proteins 

supposedly originated from gene duplication of bacterial proteins with 4 or 5 TMDs 

(Jack et al., 2001). In addition, the members of the NST and the pPT families 

share remarkable sequence and structural similarities and were thefore recently 

classified as a single family, the NST/pPT family (Ward, 2001; Knappe et al., 

2003a). The size of the NST/pPT proteins ranges from 320-340 amino acids and 

they are thought to assemble in homodimers for proper function. Transport occurs 

in an antiport manner, exchanging substrates in a strict 1:1 ratio (Capasso and 

Hirschberg, 1984; Wagner et al., 1989; Gao and Dean, 2000). Despite their 

similitude, the NST and pPT proteins are specific in their localization and the 

substrates they transport.  

 

The well characterized pPTs are located in the inner-membrane of plastids and 

subdivided into four groups based on their function and substrate affinity. The 

triose phosphate/phosphate transporter (TPT), the first pPT characterized at the 

molecular level (Flügge et al., 1989), mediates the excretion of photoassimilates 

like triose phosphate and 3-phosphoglycerate from chloroplasts (Fliege et al., 

1978). This protein exports the carbon fixed in chloroplasts during the day to the 

cytosol, where it is used for the synthesis of sucrose and other metabolites 
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(Flügge, 1999; Flügge et al., 2003). The second group of 

phosphoenolpyruvate/phosphate transporters (PPT) imports C3 compounds 

phosphorylated at the second carbon, i.e. phosphoenolpyruvate and 2-

phosphoglycerate, from the cytosol into plastids. In plastids the 

phosphoenolpyruvate is needed for the synthesis of fatty acids and secondary 

metabolites of the shikimic acid pathway (Fischer et al., 1997). This was confirmed 

in Arabidopsis ppt1 knock-out plants that are unable to produce anthocyanins 

(Streatfield et al., 1999). Uptake of C3, C5 or C6-phosphorylated compounds, 

used by plastids upon high demand of substrates and in heterotrophic tissues (e.g. 

for the synthesis of starch, fatty acids and the oxidative pentose phosphate 

pathway), is mediated by the third and fourth group of pPT, the glucose 6-

phosphate/phosphate transporters (GPT, Kammerer et al., 1998; Niewiadomsky et 

al., 2005) and the xylulose 5-phosphate/phosphate transporter (XPT, Eicks et al., 

2002). Complete absence of GPT1, the predominant functional GPT in 

Arabidopsis, generates unviable plants due to its critical role in embryo sac 

development and pollen maturation (Niewiadomsky et al., 2005).  

 

NSTs, however, are localized in the membranes of the endoplasmic reticulum 

(ER) or the Golgi apparatus. They mediate the transport of nucleotide sugars into 

the lumenal side of the ER and Golgi, supplying glycosyltransferases with sugar 

donors for the subsequent modification of proteins and lipids (Hirschberg et al., 

1998; Kawakita et al., 1998; Abeijon et al., 1989) (Figure 1). Several NSTs have 

been characterized from yeasts, animals and plants (Abeijon, et al., 1996; 

Eckhardt et al., 1996; Miura et al., 1996; Baldwin et al., 2001). The NSTs have 

been recently classified into three subfamilies based on sequence similarity, 

intracellular localization and substrate affinity (Martinez-Duncker et al., 2003) 

(Figure 1). NST subfamily 1 comprises transporters of UDP-coupled sugars (UDP-

Galactose (UDP-Gal) and UDP-N-acetyl glucosamine (UDP-GlcNAc)) and CMP-

Sialic acid (CMP-Sia). NST subfamily 2 includes transporters of UDP-sugars; 

some of them located in the ER membrane (Norambuena et al., 2002; Reyes et 

al., 2006). The NST subfamily 3 shows the broadest substrate specificity. This 

family includes transporters of UDP- coupled sugars (e.g. UDP-glucose (UDP-

Glc), UDP-Gal, UDP-GlcNAc and UDP-Xylose (UDP-Xyl)) and GDP-coupled 

sugars (GDP-Mannose (GDP-Man), GDP-Fucose (GDP-Fuc) and GDP-Arabinose 
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(GDP-Ara)). These proteins are thought to be an evolutionary intermediate 

between NST subfamilies 1 and 2 (Martinez-Duncker et al., 2003).  

 

 
Figure 1. General transport mechanism of NSTs. 

The NST mediates the transport of XDP-sugars in exchange for the monophosphate 

nucleoside XMP, which is formed by the action of pyrophosphatases over the diphosphate 

nucleotide XDP. This XDP is generated as a byproduct of the transfer reaction of the 

sugar group to an acceptor molecule (oval structure) by glycosyltransferases in the lumen 

of the organelle. Adapted from Martinez-Duncker et al. (2003). 

 

Generally, each NST displays high substrate specificity, which is preferentially 

defined by the base coupled to the sugar nucleotide (guanidine, G, citidine, C or 

uridine, U) (Martinez-Duncker et al., 2003; Capasso and Hirschberg, 1984; 

Chiaramonte et al., 2001). However, in which way the transporters recognize a 

specific sugar group among compounds coupled to the same nucleotide 

diphosphate is still unknown. Moreover, similarities between protein sequences do 

not necessarily reflect substrate specificity or function. For example, mammalian 

UDP-GlcNAc transporters share a higher sequence identity with mammalian UDP-

Gal and CMP-Sia transporters than with the yeast UDP-GlcNAc transporter. On 

the other hand, the sequence similarity among GDP-activated sugar transporters 

seems to be more significant for function and specificity (Baldwin et al., 2001; 

Lühn et al., 2001).  
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Recently, numerous novel proteins have been identified based on sequence 

similarity searches with pPT and NST protein sequences (Knappe et al., 2003a; 

Handford et al., 2004, Bakker et al., 2005). The homologous NST/pPT protein 

family includes the products of 16 genes of Caenorhabditis elegans (Gerardy-

Schahn and Eckhardt, 2004), 15 of humans (Ashikov et al., 2005), 2 of yeast and 

more than 40 genes of Arabidopsis (Knappe et al., 2003a; Bakker et al., 2005). 

The role of the majority of the newly identified NST/pPT proteins is still to be 

determined and the reason for the existence of this large number of homologous 

proteins, especially in plants, is still unclear.  

 

The NST/pPT homologous proteins share no more than 20-25% amino acid 

identity with known NST and pPT proteins, but the common structural 

characteristics are conserved among them. The NST/pPT like proteins contain 7 to 

10 predicted TMDs, positioned in similar regions as the TMDs of known NSTs and 

pPTs. In addition, several residues are preserved among these proteins, including 

two conserved lysines (K41 and K273, numbered according to the sequence of the 

spinach triose phosphate/phosphate transporter), that are presumably required for 

substrate binding (Knappe et al., 2003a; Handford et al., 2004; Bakker et al., 

2005). Lysine273 belongs to the conserved GALNK motif that is required for GDP-

Man binding and seems to be specific for GDP-sugar transporters (Gao et al., 

2001). The NST/pPT homologous proteins do not contain the whole conserved 

motif, except for the lysine.  

 

Sequence comparisons between the NST, pPT and NST/pPT homologous 

proteins revealed discrete subfamilies (Knappe et al., 2003a; Bakker et al., 2005). 

Protein sequence alignments (shown as a phylogenetic tree) of 30 of the 

Arabidopsis NST/pPT homologous proteins and representative members from the 

NST and pPT families are presented in Figure 2. These closely related 

Arabidopsis NST/pPT homologous proteins clearly split in three subfamilies: the 

KV/A/G, KT and KD families. The names of these subfamilies refer to the 

presence of the conserved lysine273 residue, followed by a valine, an alanine or a 

glycine (V/A/G) in the KV/A/G subfamily, a threonine (T) in the KT subfamily, or an 

asparagine (D) in the KD subfamily. Because the residue at position 274 is 
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characteristic of each subfamily, it supposedly has a role in the determination of 

the substrate specificity of these transporters (Knappe et al., 2003a). 

 

 
Figure 2. Phylogenetic tree of NST/pPT proteins. 

Novel Arabidopsis proteins homologous to NST and pPT (presented in gray boxes) were 

aligned with Arabidopsis pPTs and with NSTs from yeast (Sp, Saccharomyces pombe, 

Sc, Saccharomyces cerevisiae), Homo sapiens (Hs), Drosophila melanogaster (Dm), 

Leishmania mexicana (Lm) and Arabidopsis thaliana (At). The homologous proteins 

cluster in three differentiated subfamilies, named KV/A/G, KD and KT (Knappe et al., 

2003a). 
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Only recently, studies on plant NST/pPT homologous proteins have led to the 

characterization of novel UDP-Gal and GDP-Man transporters (Bakker et al., 

2005; Handford et al., 2004; Norambuena et al., 2005) that are presumably 

involved in the synthesis of cell wall components. The Arabidopsis UDP-Gal 

transporter 1 (UDP-GalT1) and UDP-Gal transporter 2 (UDP-GalT2) were 

identified by expression cloning in a Chinese hamster ovary cell line lacking UDP-

Gal transport activity (CHO-Lec8, Bakker et al., 2005). These proteins were 

heterologously expressed in yeast and showed high affinity for UDP-Gal but 

almost no affinity for other nucleotide sugars. A third Arabidopsis UDP-Gal 

transporter, AtUTr2, was identified by sequence similarity with AtUTr1, and was 

found to be specific for UDP-Gal transport in vitro and in vivo (Norambuena et al., 

2005). A group of Arabidopsis Golgi nucleotide sugar transporters (GONST2-5) 

were identified due to similarities with GONST1, and all were shown to transport 

GDP-Man by complementation of the manosylation defects present in the vrg4 

yeast mutant (i.e. hypersensitivity to hygromicin and reduced manosylation of 

matrix glycoproteins) (Handford et al., 2004). Interestingly, GONST5 shares high 

similarity (91% amino acid identity) with UDP-GalT1, although they transport 

different base-coupled nucleotide substrates (GDP-Man for GONST5 and UDP-

Gal for UDP-GalT1). This is unusual compared to other GDP-sugar transporters, 

which appear to be more conserved in sequence and function than the UDP-sugar 

transporters (Martinez-Duncker et al., 2003, Bakker et al., 2005). 

 

The identification of more than 20 putative NST/pPT proteins in the genome of 

Arabidopsis raises questions regarding their role in plant metabolism (i.e. supply of 

precursors for protein, lipid and polysaccharide glycosylation). Most of the NSTs 

characterized so far are likely located in the Golgi apparatus, including two 

members of the KV/A/G subfamily and one of the KT subfamily (UDP-GalT1, UDP-

GalT2; Bakker et al., 2005, and GONST5, Handford et al., 2004). However, two of 

the KVAG proteins (KVAG1 and KVAG2) present putative plastid targeting 

sequences (Aramemnon database, Schwacke et al., 2003). The remaining 

homologous proteins contain signals for the secretory pathway, ambiguous 

targeting peptides or no signals detected by computer prediction programs 

(Knappe et al., 2003a). The main goal of the work presented here was to analyze 

the physiological role of KVAG1 and KVAG2 in plants. 
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In animals and yeast, deleterious defects in NSTs have tremendous negative 

consequences on the metabolism of these organisms, in many cases resulting in 

lethality (Dean et al., 1997; Freeze, 2001; Lübke et al., 2001; Hirschberg, 2001). 

However, there are no NST mutants identified in plants that display such drastic 

characteristics. Therefore, the role of KVAG1 and KVAG2 was investigated by 

analyzing T-DNA insertion mutants which presented a reduction in leaf 

phospholipids. Transport measurements were performed using heterelogously 

expressed proteins and a panel of potentially activated substrates was tested.  
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2.1 Materials 
 

2.1.1 Vectors 
The vectors used for the different processes of cloning, listed in Table 1, were 

Gateway™ compatible plasmids (see 2.2.1). The construct used for labelling the 

Golgi apparatus contained the mouse sialyltransferase (ST) cDNA coupled to the 

cDNA for the green fluorescent protein (GFP), driven by the CaMV 35S promoter 

(35S-ST::GFP, Lee et al., 2002). This and the construct employed for labelling the 

ER (35S-mGFP fused to an ER retention signal), were kindly provided by Dr. 

Martin Hülskamp. 

 
Table 1. Vectors employed in cloning and organelle labeling. 

Vector Source Cloning purpose 
pENTR D-
TOPO 

Invitrogen Entry cloning of PCR fragments for further 
delivery into an expression vector. 

pGWB3 Dr. T. Nakagawa, 
Shimane University 

Expression of GUS in planta driven by the 
cloned promoter. 

pGWB5 Dr. T. Nakagawa, 
Shimane University 

Expression of GFP in planta fused to the 
cloned cDNA, driven by 35S CaMV 
promoter. 

pYES-
DEST52 

Invitrogen Protein expression in Saccharomyces 
cerevisiae containing a 6X histidine fusion 
tag. 

35S-ST::GFP Lee et al., 2002; 
Dr. M. Hülskamp 

Expression of ST fused to GFP as a 
marker for Golgi protein localization. 

35S-mGFP-
ER 

Dr. M. Hülskamp Expression of GFP tagged to the ER as a 
marker for ER protein localization. 

 

2.1.2 Bacteria and Yeast Strains 
Escherichia coli (E. coli) DH5α,  for plasmid DNA amplification   

supE44 lacU169 (Φ80, lacZ M15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 

 

Agrobacterium tumefaciens (A. tumefaciens) 

 strain GV3101, RifR GmR,  for Arabidopsis transformation 

 strain GV2260, RifR CarbR, for tobacco transformation. 

 

Saccharomyces cerevisiae (S. cerevisiae) InvSC1, for protein expression. 

his3∆1 leu2 trp1-287 ura3-52 
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2.1.3 Plant Material 
Arabidopsis thaliana (L.) Heynh. (Arabidopsis)   

Ecotype Columbia (Col-0),  as source of wild type (WT) DNA, mRNA 

and for control when compared to mutant 

lines. 

Col-0 T-DNA insetion lines, for studies on plant development in the 

absence of a single protein. Salk and 

GabiKat Lines were obtained from the 

Nottingham Arabidopsis Stock Center 

(NASC, Alonso et al., 2003). 

pho1.2 mutant line, phosphate deficient shoot, for crossings 

with KVAG mutant lines (Hamburger et al., 

2002)  

 

Tobacco  Nicotiana benthamiana (N. benthamiana) 

   Bright Yellow 2 culture cells (BY2) 

   Variety Samsun 

For subcellular localization of proteins fused to GFP. BY2 and 

Samsun cells were employed as protoplasts. The leaves of N. 

benthamiana were directly infiltrated with Agrobacteria. 

 

2.1.4 Plant Procedures 
2.1.4.1 Arabidopsis Seed Sterilization 
Sterilization Solution 
 Na-hypochlorite    15% (v/v) 

 Tween 20    0.5% (v/v) 

 

Seeds were distributed in eppendorf tubes (200-300 seeds) and rinsed shortly with 

70% ethanol, following incubation in 1 ml of sterilization solution for 20 min with 

agitation. The solution was removed and the seeds were rinsed 4-5 times with 

double distilled (dd) sterile water. Alternatively, for sterilization of several sets of 

seeds chloride-gas was employed. For this, eppendorf tubes containing the seeds 

were placed into a glass desiccator along with a beaker containing 100 ml of Na-

hypochlorite. Three ml of HCl were carefully added to the Na-hypochlorite and the 
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chamber was closed tightly. The seeds were incubated 4-6 hours with the 

chloride-gas. Before sowing, the remnant chloride-gas was allowed to evaporate 

from the seeds under sterile conditions (15-20 min). 

 

2.1.4.2 Pollen Staining 
Alexander Stain 
 Ethanol 95%    10% (v/v)    

 Malachite green   100 mg/l 

 Glycerol    25% (v/v) 

 Phenol         50 g/l 

 Chloral hydrate        50 g/l 

 Acid fuchsine   500 mg/l 

 Orange G         50 g/l 

 Acetic acid (glacial)    1% (v/v) 

 

The procedure was as described by Alexander (1969), preparing the stain by 

mixing the reagents in the order given (with addition of ½ total volume of water 

after malachite green). The solution was stored at room temperature (RT) in a 

light-protected bottle. Pollen was placed over a microscope glass slide and 

covered with a few drops of stain. The slide was briefly heated on the flame of a 

burner, preventing the stain from boiling. The coloured pollen grains were 

observed under the light microscope.  

 
2.2 Molecular Biology Techniques 

 
2.2.1 GatewayTM Cloning 
This cloning system uses the specific recombination properties of the 

bacteriophage lambda to facilitate transfer of a DNA fragment of interest into 

multiple expression vectors conserving its orientation and open-reading-frame 

(ORF). The vectors used in Gateway cloning contain recombination sites framing 

the insertion region (att sites, in entry vectors, 100 bp; in expression vectors, 25 

bp) which allow specific recombination among them, exchanging the inserts 

between the entry and destination vectors. The results include an expression 

clone containing the DNA of interest and a byproduct clone having the entry clone 
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backbone and the ccdB gene, previously enclosed within the destination vector att 

sites, for strong negative selection. 

 

Cloning into pENTR/D-TOPO Vector 

The directional cloning of DNA fragments into the pENTR/D-TOPO vector 

(Invitrogen) was achieved by designing the forward primer with a 5’ extension 

(CACC) that anneals to an overhang sequence present in the vector (GTGG), and 

promotes the directional joining of the fragment by the action of topoisomerases. 

The cloning reaction contained 10-20 ng of insert DNA (fresh PCR product), 0.3 µl 

salt solution and 0.3 µl of TOPO vector (final volume 2-5 µl), and was incubated at 

RT for 1 hour. E. coli competent cells were transformed with 2 µl of the reaction.  

 

Recombination of Entry and Destination Vectors 

Site specific recombination of entry and destination vectors was accomplished by 

incubation with a mixture of integrase and excisionase enzymes (LR Clonase 

MixTM, Invitrogen) that catalyzed the reaction. Equal amounts (30-50 ng) of both 

plasmid DNAs were incubated overnight (O/N) at RT with 1X LR reaction buffer 

and 0.4 µl of LR clonase mix (final volume 3-4 µl). The enzymes were inactivated 

by addition of 1 µg proteinase K and incubation at 37°C for 10 min. Two µl of the 

recombination reaction were used for transforming E. coli competent cells. 

 

2.2.2 E. coli Transformation 
2.2.2.1 Preparation of E. coli Competent Cells for Heat-shock Transformation 
TSS Solution 
 PEG 8000    10% (w/v) 

 MgCl2          40 mM 

 Dimethyl-sulfoxide (DMSO)    5% (v/v) 

 

The TSS procedure described by Chung and Miller (1993) was initiated with an 

O/N culture of E. coli DH5α grown at 37°C. A 600 µl aliquot was diluted in 100 ml 

of LB medium (Appendix 8.2) and cultured until reaching an optical densitiy 

(OD)600 of 0.3-0.4. The bacteria were transferred to sterile 50 ml Falcon tubes and 

pelleted at 2500 xg, 4°C for 5 min. The cell pellet was resuspended softly in 4 ml 
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of cold TSS solution. The cells were aliquoted in 100 µl fractions and quick frozen 

in an ice/ethanol bath. The cells were stored at -80°C. 

 

2.2.2.2 E. coli Heat-shock Transformation 
For one transformation 50-100 µl of competent cells were thawed on ice and 

gently mixed with 200 ng of plasmid DNA. After 10 min incubation on ice the cells 

were heat-shocked by incubation at 42°C for 30-60 sec, and immediately brought 

back to ice. The cells were recovered in the presence of 900 µl SOC medium 

(Appendix 8.2) for one hour at 37°C. For selection of recombinant clones the 

transformed cells were pelleted at 2000 rpm for 2 min, resuspended in 200 µl of 

SOC and an aliquot plated on solid medium with suitable antibiotics.  

 

2.2.3 A. tumefaciens Transformation 
2.2.3.1 Preparation of A. tumefaciens Competent Cells for Electro-
transformation 
MGL Medium 
 Bacto-Trypton     0.5% (w/v) 

 Yeast extract    0.25% (w/v) 

 NaCl       0.5% (w/v) 

 Mannitol      0.5% (w/v) 

 Na-Glutamate   0.12% (w/v) 

 KH2PO4    0.02% (w/v) 

 MgSO4    0.01% (w/v) 

 Biotin            1 µg/ml 

 

One colony of A. tumefaciens was pre-cultured for 1-2 days in 5 ml of MGL 

medium with the corresponding antibiotics under vigorous shaking at 28°C. The 

culture was diluted in 100 ml of MGL medium and grown until reaching an OD600 of 

0.5 (4-6 hours). The bacteria were transferred to cold and sterile 50 ml Falcon 

tubes and centrifuged at 3000 rpm, 4°C for 10 min. All further steps were 

performed on ice. The cells were resuspended in 40 ml cold 1 mM HEPES pH 7.0 

and centrifuged again. The cell pellet was resuspended in 40 ml of cold storing 

solution (1 mM HEPES pH 7.0 / 10% glycerin) and centrifuged again. The cells 

were resuspended in subsequently reduced volumes of cold storing solution (2 ml 
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and 200 µl), and finally 50 µl aliquots were frozen in liquid nitrogen and kept at -

80°C. 

 

2.2.3.2 Electrotransformation of A. tumefaciens 
Competent A. tumefaciens cells were thawed on ice and mixed with 200-500 ng of 

plasmid DNA (preferably desalted). After 5 min incubation on ice the bacteria-DNA 

mixture was transferred to a cold electroporation chamber and subjected to an 

electroshock (conditions: 25 µF; 400 Ω; 2.5 kV pulse for 2 sec). One ml of YEB 

medium (Appendix 8.2) at RT was immediately added and the cells were 

incubated 2 hours at 28°C. The transformed cells were shortly centrifuged at 2000 

rpm and resuspended in 200 µl of YEB medium. An aliquot was plated on solid 

YEB medium, containing suitable antibiotics, and incubated at 28°C for 2 days.  

 

2.2.4 S. cerevisiae Transformation 
The transformation of yeast strain InvSC1 was performed following the 

recommendations of InvitrogenTM Instruction Manual for pYES-DEST52 

GatewayTM Vector. Briefly, an O/N culture was diluted to an OD600 of 0.4 in 50 ml 

of YPD medium (Appendix 8.3) and grown for additional 2-4 hours at 30°C. The 

cells were centrifuged at 2500 rpm and washed in 40 ml 1X TE (100 mM Tris-HCl, 

pH 7.5; 10 mM EDTA, pH 8.0). The cell pellet was resuspended in 2 ml 1X 

LiAc/0.5X TE (pH 7.5) and incubated at RT for 10 min. For each transformation 

100 µl of the yeast suspension was mixed with 0.5-1 µg of plasmid DNA and 100 

µg of denatured sheared salmon sperm DNA. This was mixed with 700 µl of 1X 

LiAc/40% PEG-3350/1X TE (pH 7.5, prepared fresh and filter-sterilized) and 

incubated at 30°C for 30 min. Finally, 88 µl of DMSO were added and the cells 

were heat shocked at 42°C for 7 min. After a short centrifugation, the cells were 

washed with 1 ml 1X TE, re-pelleted and resuspended in 50-100 µl of 1x TE and 

platted on selective medium (SC without uracil, Appendix 8.3). The positive 

transformed colonies were distinguishable after 3-4 days of incubation at 30°C. 
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2.2.5 Isolation and Transformation of Tobacco Protoplasts 
Washing Solution 

 BSA Bovine Albumin   0.5% (w/v) 

2-Mercaptoethanol   0.01% (v/v) 

CaCl2            50 mM 

Na-Acetate, pH 5.8          10 mM  

Mannitol           0.25 M 

The solution was filter-sterilized and kept at 4°C. 

Digestion Solution  

Cellulase Onozuka RS      1% (w/v) 

 Macerozyme Onozuka RS   0.5% (w/v)  

 Pectinase     0.1% (w/v) 

The enzymes were dissolved in 50 ml of washing solution and mixed with a stirrer 

for 20-30 min. Prepared fresh every time and filter-sterilized prior to use. 

W5 Solution 
 NaCl      154 mM 

 CaCl2     125 mM  

 KCl         5 mM   

 Glucose        5 mM   

The pH was adjusted to 5.8-6.0 with KOH. It was filter-sterilized and kept at 4°C. 

MMM Solution 

 MgCl2          15 mM 

 MES-KOH, pH 5.8   0.1% (w/v) 

 Mannitol           0.5 M 

The solution was filter-sterilized and kept protected from light at 4°C. 

PEG Solution 
 PEG 4000 or 6000   40% (w/v) 

 Mannitol          0.4 M 

 Ca(NO3)        20.1 M 

The pH was adjusted to 8.0-9.0 with KOH and autoclaved. It was stored at -20°C 

and thawed at 37°C, 2-3 hours prior to use. 
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K3- Medium 0.4 M 
The medium was prepared by diluting all component stocks to 1X following 

addition of 12.6 mg/ml Ca-phosphate, 1 mg/ml myo-Inositol, 2.5 mg/ml D(+)-

Xylose, 1.37 g/ml of sucrose and adjusting the pH to 5.6. Finally, 0.01 mg/ml of 

NAA and Kinetin were added and the medium was filter-sterilized. 

Macroelements 10X Stock 

NaH2PO4        1.5 mg/ml 

CaCl2            9 mg/ml 

KNO3          25 mg/ml 

NH4 NO3        2.5 mg/ml 

(NH4) 2SO4      1.34 mg/ml 

MgSO4        2.5 mg/ml  

Microelements 100X Stock 

KI         0.7 mg/ml 

H3BO3            3 mg/ml 

MnSO4      0.01 mg/ml  

ZnSO4           2 mg/ml 

Na2-MoO2      0.25 mg/ml 

CuSO4    0.025 mg/ml 

Vitamins 100X Stock 

Nicotinacid          1 mg/ml 

Pyridoxin-HCl         1 mg/ml 

Thiamin-HCl     0.01 mg/ml 

EDTA/Fe 500X Stock: 

EDTA        7.5 mg/ml 

Fe(II)SO4       5.5 mg/ml 

The EDTA and Fe(II)SO were dissolved by heating separately in dd water. 

The two components were subsequently mixed and autoclaved. 
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Ca-phosphate: 

CaHPO4     1.26 mg/ml 

Dissolved in dd water, pH adjusted to 3.0 with 25% HCl and autoclaved. 

 

Naphtyl-acetic acid (NAA)       1 mg/ml 

Dissolved in dd water adding a few drops of NaOH, and filter-sterilized. 

 

Kinetin      0.5 mg/ml 

Dissolved in 0.1 M HCl and filter sterilized. 

 

Cell wall digestion 

The procedure followed the indications of Ros and Kunze (2001) with some 

modifications. All steps were performed under maximum sterile conditions. A pre-

culture of BY2 cells 3-4 days old or leaves from 3-4 weeks old tobacco Samsun 

var. sterile plants were used for protoplasts preparation. The BY2 cell suspension 

(25 ml) was centrifuged at 100 xg at RT for 5 min, and the supernatant was 

carefully discarded afterwards. The cell pellet was gently resuspended in 25 ml of 

washing solution and centrifuged again. The supernatant was removed and 10-13 

ml of digestion solution was slowly added. The suspension was incubated O/N 

inside a Petri dish at RT in the dark. To obtain “green protoplasts” the Samsun 

leaves (4 g) were finely sliced with a scalpel inside a Petri dish, covered with 

digestion solution (20 ml) and incubated O/N in the darkness. 

 

Cell wall debris removal and PEG mediated transformation 

The Petri dish was gently shaken (3-4 times) to improve cell wall removal from the 

protoplasts. The cell suspension was transferred to a sterile 50 ml Falcon tube and 

centrifuged without brake at 50 xg at RT for 5 min. The supernatant from BY2 

protoplasts was removed and 25 ml of washing solution was slowly added. The 

cells were centrifuged as mentioned before; the supernatant removed and 10 ml 

W5 solution was gently added. In the case of Samsun cells, after the first 

centrifugation the middle phase was transferred to a new Falcon tube (the upper 

phase contained floating cells while the bottom phase cell debris) and 8 ml of W5 

was slowly added.  
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Both cells suspensions, BY2 and Samsun protoplasts, were pelleted again and 

after supernatant removal 5-10 ml of W5 solution was softly added. An aliquot was 

observed under the microscope to check the quantity and quality of the protoplasts 

(total approximately expected: 106 viable protoplasts). The protoplast suspension 

was incubated 1 hour at 4°C. The supernatant was completely removed and 10 ml 

of MMM solution was added very slowly until complete resuspension. The cells 

were centrifuged (without brake at 50 xg, RT for 5 min), and the supernatant was 

exchanged by 1 ml of MMM solution (in order to obtain 1x106 viable 

protoplasts/ml). For one transformation, 300 µl of protoplast suspension was 

mixed with 30 µg of plasmid DNA (maximum 30 µl in volume), and 300 µl of PEG 

solution was added drop-by-drop. The protoplasts-DNA-PEG suspension was 

incubated 20 min at RT, prior gently addition of 10 ml of W5 solution. The 

protoplasts were centrifuged (without brake at 50 xg at RT for 5 min) and the 

supernatant removed. Gently, 4 ml of K3 medium was added in 1 ml aliquots, and 

the cell suspension was transferred to a small Petri dish. The cells were incubated 

in the dark at 24-26°C O/N, and the expression of the reporter protein was 

followed 18, 24, 38, and 44 hours after transformation. 

 

2.2.6 N. benthamiana Leaf Epidermal Cell Transformation 
Agro-mix Solution 10X 
 MgCl2     100 mM 

 MES, pH 5.6    100 mM 

The pH was adjusted to 5.6 with KOH and autoclaved. 

Acetosyringone (3’,5’-Dimethoxy-4’-hydroxyacetophenone, 97%) 
 Acetosyringone    15 mM 

Dissolved in 100% ethanol (3 mg/ml) and stored at 4°C. 

 

N. benthamiana plants were 1-2 month old (before flowering). A fresh colony or 

liquid culture of A. tumefaciens strain 2260, containing the binary vector of interest, 

was grown O/N at 28°C in 50 ml of YEB (Appendix 8.2) with antibiotics. In parallel, 

the helper agrobacteria strain 19K (RifR, KanR) was also grown. The cells were 

centrifuged at 3000 rpm for 15 min, the supernatant discarded and the cell pellet 

was resuspended in 1.5 ml of 1X Agro-mix solution (with 0.15 mM 

Acetosyringone). The cells were incubated at RT for 2-6 hours. The recombinant 
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Agrobacteria were mixed with the helper strain (1:1 volume) and using a syringe 

(without needle) were infiltrated into the abaxial surface of the leaf. The expression 

of the reporter protein was monitored 2-4 days after inoculation. 

 

2.2.7 Arabidopsis Stable Transformation 
Infiltration Medium 
 Sucrose        5% (w/v) 

 Silwete    0.03% (v/v) 

The sucrose was dissolved in water and the pH was adjusted to 5.7. The bacteria 

were resuspended in the sucrose solution and silwete was added just before plant 

inflorescence transformation. 

 

The floral dip method for Arabidopsis transformation was performed as described 

by Clough and Bent (1998), employing Arabidopsis plants on the onset of 

flowering (6-8 weeks old). A preculture of transformed agrobacteria (2 ml) was 

diluted in 200 ml of YEB medium (in the presence of suitable antibiotics, Appendix 

8.2) and grown O/N at 28°C. The culture was centrifuged at 3000 rpm for 10 min 

and the cell pellet was resuspended in infiltration medium to an OD600 of 0.8. 

Flowers of Arabidopsis were dipped in the bacterial solution for 20 sec and the 

plants were laid horizontally for 2 days avoiding direct light at 22-25°C. The plants 

were transferred to the greenhouse and the transformed seeds were collected a 

few weeks later. 

 

2.2.8 Reporter Protein Detection in planta 
2.2.8.1 GUS Staining 
Staining Solution 
 NaPO4, pH 7.2     100 mM 

 EDTA         10 mM 

 K-Ferricyanide      0.5 mM 

 K-Ferrocyanide      0.5 mM 

 Triton X-100    0.1% (v/v) 

 D-Glucuronic acid (X-Gluc)       1 mM 
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The procedure was as described by Gallager Ed. (1992). The substrate X-Gluc 

was prepared as a stock at 20 mM in N’-N’-Dimethylformamide (DMF), and added 

to the staining solution just prior tissue immersion. For protein fixation in the tissue 

it was first imbedded in 2% para-formaldehyde, 100 mM Na-phosphate pH7.0, and 

1 mM EDTA and incubated on ice for 30 min. The material was rinsed in 100 mM 

of Na-phosphate buffer, covered with sufficient staining solution and vacuum 

infiltrated for 15-20 min. The tissue was incubated at 37°C for some hours (or 

O/N). The staining solution was discarded and replaced by 50% ethanol, 5% 

acetic acid and 3.7% formaldehyde, to fix the stained tissues. It was incubated at 

60°C for 30 min, following several washes with 80% ethanol, necessary for 

chlorophyll removal. To prevent browning of tissues like flowers or fruits, 10 mM of 

ascorbic acid was added to the staining solution. 

 

2.2.8.2 GFP Visualization 
Transforming cells or tissues expressing a protein of interest fused to the Green 

Fluorescent Protein (GFP) were observed under an epi-fluorescence microscope 

(Nikon, Eclipse E800) with a filter GFP (R) – BP (EX 460-500, DM 505, BA 420). 

The image data were acquired by a digital camera (Nikon Coolpix 995) coupled to 

the microscope and analyzed using the DISKUS v.4.30.20 (2002) program.  

 

2.2.9 DNA Extraction 
2.2.9.1 E. coli Plasmid DNA Isolation 
Solution I 
 Tris-HCl, pH 8.0     25 mM 

 Glucose      50 mM 

 EDTA       10 mM 

Solution II 
 NaOH         0.2 M 

 SDS     1% (w/v) 

Solution III 
 Potassium acetate, pH 4.5         3 M 

 

This protocol was performed after Birnboim and Doly (1979). An O/N culture of 

recombinant bacteria (3-5 ml in LB with antibiotic, Appendix 8.2) was centrifuged 
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at 3000 rpm at 4°C for 10 min, following resuspension of the cell pellet in 750 µl of 

50 mM Tris-HCl pH 8.0. The cells were pelleted again and resuspended in 100 µl 

of solution I, following incubation for 5 min at RT. 200 µl of solution II were added 

and mixed strongly, and the cell lysate was incubated at RT for 10 min. For 

neutralization 150 µl of solution III were added, mixed gently by inversion and 

incubated 10 min on ice. Plasmid DNA was separated from cell debris and 

genomic DNA by centrifugation (14000 rpm at 4°C for 15 min), transferring the 

supernatant to a new eppendorf tube. One volume of phenol and one of 

chloroform:isoamyl alcohol (24:1) were added to remove protein contaminants, 

shaking vigorously until an emulsion was formed. After centrifugation at 12000 rpm 

for 10 min, the upper phase was transferred to a new tube where the DNA was 

precipitated by adding 1 ml of 100% ethanol and centrifugation at 14000 rpm for 

20 min. The nucleic acid pellet was rinsed with 70% ethanol and air dried before 

resuspending in 50 µl of TE containing 10 µg/ml of RNAse. 

 

An alternative protocol for E. coli plasmid isolation employing diatomaceous earth 

as binding matrix was also used (BioRad): 

Cell Resuspension Buffer (Solution 1) 
 Glucose        50 mM 

 Tris-HCl, pH 8.0       25 mM 

 EDTA, pH 8.0       10 mM 

 RNAse A     20 µg/ml 

Alkaline Lysis Solution (Solution 2) 
 NaOH           0.2 N 

 SDS      1% (w/v) 

Neutralization Solution (Solution 3) 
 Guanidine-HCl         5.3 M 

 Potassium acetate, pH 5.0        0.7 M 

Binding Matrix 
 Guanidine-HCl         5.3 M 

 Tris-HCl, pH 8.0       20 mM 

 Diatomaceous earth  0.15 g/ml 
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Washing Buffer 
 Tris-HCl, pH 8.0       20 mM 

 EDTA, pH 8.0         2 mM 

 NaCl           0.2 M 

 Ethanol     50% (v/v) 

 

From an O/N bacterial culture 1.5 ml were centrifuged at 13000 rpm for 30 sec. 

The cell pellet was resuspended by vortexing in 200 µl of solution 1 following 

addition of 200 µl of solution 2 and gently mixed by inversion (10 times). The 

suspension was incubated at RT for 5 min; solution 3 was added (200 µl) and 

mixed in by inversion (10 times). The cell debris was precipitated by centrifugation 

(13000 rpm for 5 min) and the supernatant was transferred to a filter column 

placed in a 2 ml eppendorf tube. The binding matrix (200 µl) and plasmid DNA 

containing solution were mixed by pipetting, and the column was centrifuged at 

13000 rpm for 30 sec, discarding the flow through afterwards. 500 µl of washing 

buffer were added to the column, centrifuged (13000 rpm for 30 sec) and the flow 

through discarded. Additional washing buffer was added (500 µl) and centrifuged 

for 2 min (13000 rpm) this time, removing all traces of ethanol. For DNA elution the 

column was placed in a new eppendorf tube and 50-100 µl of 10 mM Tris-HCl pH 

8.0 were added, following centrifugation for 1 min (13000 rpm).  

 

2.2.9.2 Arabidopsis DNA Isolation 
2X Buffer 
 NaCl         0.6 M 

 Tris-HCl, pH 7.5   100 mM 

 EDTA       40 mM 

 Sarcosyl    4% (w/v) 

 SDS     1% (w/v) 

Extraction Buffer I 
 2X Buffer           1X 

 Urea        4.8 M 

 Phenol    5% (v/v) 
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This protocol was used for obtaining high amounts of good quality DNA from 

inflorescences. Three to four inflorescences were frozen in liquid nitrogen and 

grinded with a pestle. 500 µl of extraction solution were added and mixed well with 

the tissue powder. To remove proteins and carbohydrates, 400 µl of 

phenol:chloroform:isoamylalcohol (25:24:1) were added and the probe was 

vigorously shaken forming an emulsion, followed by centrifugation at 3500 rpm for 

10 min. The upper phase was transferred to a new eppendof tube and 0.8 

volumes of isopropanol were added to precipitate the nucleic acids. After 10 min 

incubation at -20°C the samples were centrifuged again (3500 rpm for 10 min) and 

the pellet was washed twice with 70% ethanol. The DNA precipitate was air dried 

and resuspended in 50 µl of TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA) containing 

10 µg/ml of boiled RNAse. 

 

A second and quicker protocol for DNA extraction was employed when DNA was 

required for regular amplifications. It rendered DNA with lower quality than the 

previous protocol but was sufficient for PCR. 

Extraction Buffer II 
 Tris-HCl, pH 7.5      200 mM 

 NaCl        250 mM 

 EDTA          25 mM 

 SDS     0.5% (w/v) 

 

Rosette leaves from Arabidopsis (2-3) were collected in an eppendorf tube, frozen 

into liquid nitrogen and grinded with a pestle. 400 µl of extraction buffer were 

added and mixed vigorously by vortexing. The proteins were removed by adding 

150 µl of potassium acetate (3M, pH 6.0) and centrifugation at 13000 rpm for 2 

min. The supernatant was transferred to a new tube and 1 volume of isopropanol 

was added. The sample was mixed by inversion and incubated at RT for 10 min, 

following centrifugation at 13000 rpm for 10 min. The nucleic acid pellet was 

washed twice with 70% ethanol and air dried before resuspension in 50-100 µl of 

TE. 
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2.2.10 Genomic DNA Southern Blotting 
Denaturing Solution 
 NaCl       1.5 M 

 NaOH       0.5 M 

Neutralization Solution 
 Ammonium acetate (NH4Ac)      1 M 

 NaOH     10 mM 

 

The DNA of interest (10-20 µg) was fully digested with suitable restriction enzymes 

for 6-16 hours and the genomic fragments were slowly separated by 

electrophoresis on 0.8% agarose gels (25 volts/cm). The DNA containing gel was 

submerged in denaturing solution for 30 min with gentle agitation, following 

immersion in neutralization solution for 30 min.  

Transfer of separated DNA fragments from the gel to a nylon membrane (Hybond-

N+, Amersham) was achieved by capillar transfer. A blotting system was arranged 

placing a tray with sodium saline citrate (SSC, 20X) as the liquid phase, a glass 

plate covering the tray and a stripe of Whatman paper pre-wet on SSC laid on top 

of the glass. The paper stripe was long enough to immerse both ends in the SSC 

and as wide as the gel. Two more pre-wet sheets of Whatman paper, the size of 

the gel, were stacked on top of the first stripe. The gel was briefly rinsed in dd 

water and placed on top of the papers with its bottom side facing up. The 

membrane was damped in SSC and placed on top of the gel, avoiding the 

formation of air bubbles. Two more sheets of Whatman paper (pre-soaked on 

SSC) covered the membrane and these were peaked by a thick stack of absorbent 

paper. A 0.5-1 kg weight on top of the structure enhanced the transfer and after 16 

hours the blot was dismounted. The membrane was briefly rinsed on 2X SSC and 

the DNA was cross linked by ultraviolet light (UV). 

 

Hybridization Buffer 
 Sodium phosphate buffer, pH 7.2      0.5 M 

 SDS      7% (w/v) 

 Salmon sperm DNA  (denatured)   1 µg/ml 

 

Alternatively Roti-Hybri-Quick Buffer (Roth) was used. 
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For pre-hybridization the membrane filter was incubated on a rotating flask with 

hybridization buffer (1 ml/cm2) for 2-6 hours at 65°C. The radioactive labeled probe 

(see below) was denatured for 10 min at 96°C, added to the buffer and incubated 

O/N at 62-65°C. The filter was washed once with non-radioactive hybridization 

buffer (30 min at 65°C) and twice with 2X SSC, 0.1% SDS (30 min at 65°C). A last, 

more stringent wash, was performed with 0.2X SSC, 0.1% SDS (10 min at 65°C), 

and the filter was briefly allowed to dry before wrapping it in plastic foil. The 

radioactivity on the blot was detected by a phosphor-image screen (Kodak Storage 

Phosphor Sreen SO230) after several hours of incubation at RT, and the image 

was acquired using a phosphor-imager scanner device (Storm 860, Molecular 

Dynamics).  

 

Probe Labelling Solution A 
 Tris-HCl, pH 8.2             1.2 M 

 MgCl2           0.125 M 

 2-Mercaptoethanol          2% (v/v) 

 dCTP, dGTP, dTTP   0.5 M (each) 

Probe Labelling Solution B 
 HEPES/NaOH, pH 6.6              2 M 

Probe Labelling Mix A (5X) 
 Solution A        20% (v/v) 

 Solution B        50% (v/v) 

 Random hexa-nucleotides      3.6 µg/ml 

 

The radioactive labeled probe was prepared by first denaturing 300 µg template 

DNA (plasmid DNA or PCR product) with 10 µl of 5X mix A for 5 min at 96°C. BSA 

(2 µl from 1 mg/ml), 20-30 µCi (α-P32)-dATP and 3 U of Klenow fragment were 

added (final volume 25 µl) and incubated for 1-2 hours at 37°C. The labeled 

fragments were separated from non-integrated (α-P32)-dATP by passing through 

Sephacryl MicroSpin Columns S-200 (Pharmacia Biotech) and collected in a new 

eppendorf tube. 
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2.2.11 Plant RNA Extraction 
All tools and containers employed were cleaned to remove RNAses (with 2% SDS 

or sterilized) prior to be in contact with the material and solutions used in the 

extraction of RNA. The solutions were prepared with Diethylpyrocarbonate (DEPC) 

treated dd water (autoclaved twice). 

Extraction Solution 
 Sodium acetate (NaAc)  100 mM 

 Na-EDTA        1 mM 

 SDS     4% (w/v) 

Prepared fresh every time, and the pH was adjusted to 5.0 with acetic acid. 

 

This protocol was as described by Eggermont et al. (1996). Collected tissue (0.5-1 

g) was grinded in liquid nitrogen and 1-2 ml of extraction solution was added to the 

pulverized material. As the solution started to thaw 1 volume of 

phenol:chloroform:isoamylalcohol (25:24:1) was added and mixed vigorously until 

an emulsion was formed, transferring it to a new tube and centrifuged at 10000 xg 

for 10 min.  The supernatant was placed in a new eppendorf tube adding 0.5 

volumes of lithium chloride (LiCl, 8M) and incubated on ice for 1 hour. After 

centrifugation at 10000 xg for 10 min, the RNA pellet was rinsed 3-4 times with 

70% ethanol and allowed to air dry for 15 min. It was finally resuspended in 50-100 

µl of dd DEPC-water. 

 

Trizol Protocol 
RNA from small quantities of tissue (50-100 mg) was extracted using the Trizol 

(Invitrogen) protocol. The tissue was collected in an eppendorf tube, frozen in 

liquid nitrogen and disrupted with a pestle. Trizol reagent was added (0.8-1 ml), 

mixed vigorously and incubated for 5 min at RT. Chloroform (0.2 ml) was added 

and shaken until forming an emulsion. After 2-3 min of RT incubation the 

suspension was centrifuged at 12000 xg,  4°C for 15 min and the upper phase was 

transferred to a new tube. For RNA precipitation 0.5 ml of isopropanol was added, 

mixed by inversion and incubated 10 min on ice, following centrifugation (12000 

xg, 4°C for 10 min). The nucleic acid pellet was washed twice with 75% ethanol 

and centrifuged at 7500 xg, 4°C for 5 min. After the pellet was air dried it was 

dissolved in 30 µl of dd DEPC-water by incubating at 55°C for 10 min. 
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2.2.11.1 Analysis of RNA Quality  
The quality of the extracted RNA was assayed by electrophoresis on 

agarose/formaldehyde gels, while quantification of the RNA was performed by 

spectrophotometric analyzes. 

10X Running Buffer 
 MOPS, pH 7.0      200 mM 

 Sodium acetate (NaAc)       50 mM 

 EDTA            5 mM 

Agarose/Formaldehyde Gel 
 Agarose      1% (w/v) 

 Running buffer              1X 

 Formaldehyde      2% (v/v) 

RNA Sample Preparation 
 RNA           1-2 µl 

 Running buffer              1X 

 Formaldehyde   4.4% (v/v) 

 Formamide     40% (v/v) 

 

The agarose was dissolved in warm dd DEPC-water and running buffer and 

formaldehyde were added under a gas extraction chamber, following pouring on 

the gel cast and allowing it to solidify. The RNA sample was denatured at 65°C for 

10 min and immediately incubated on ice. Ethidium bromide was added to the 

sample (final concentration of 0.04 mg/ml) before loading the gel, and the 

electrophoresis was run with 1X running buffer at 150 volts for 2-3 hours. The RNA 

was monitored by observation under UV. 

 

2.2.11.2 Synthesis of First Strand cDNA 
Messenger RNA (mRNA) present in the total RNA extraction was reverse 

transcribed by SuperscriptTM II RNAse H- Reverse Transcriptase (Invitrogen) using 

oligos poly-dT that anneal to the poly-A region of mRNA and prime the reaction. 

Total RNA (2 µg) was treated with DNAse (10 U, Roche) at 37°C for 15 min, to 

remove contaminating DNA, following DNAse inactivation by adding EDTA (2.27 

mM final concentration) and heating at 65°C for 10 min. The reverse transcription 

reaction contained 1X reaction buffer, 20 ng/µl oligo poly-dT, 0.5 mM dNTPs, 10 
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mM Di-thiotreitol (DTT) and 200 U of reverse transcriptase. The reaction was 

incubated at 42°C for 1 hour followed by enzyme inactivation by heating at 70°C 

for 15 min. This first strand cDNA product was stored at -20°C and used as 

template for PCR (reverse transcribed-PCR, RT-PCR). 

 

2.2.12 Polymerase Chain Reaction (PCR) 
The Polymerase Chain Reaction or PCR is a method for the enzymatic 

amplification of specific sequences of DNA (Mullis et al., 1986), consisting in the 

repetition of a cycle of 1st . DNA heat-denaturation, 2nd . primer annealing and 3rd . 

copy of the template DNA chain or extension. The steps within the cycle are 

determined by changes in temperature: 94°C for double strand DNA denaturation, 

50-60°C for primer annealing, and 72°C for extension. The synthesis of new DNA 

strands is generated by the activity of Taq DNA polymerase, with optimal 

performance at 72°C and high tolerance to elevated temperatures. During every 

cycle the number of DNA strands duplicates, resulting in an exponential production 

of the sequences defined by the primers. In general, a PCR involved 1-10 ng of 

template DNA, 0.2 µM of each primer, 0.5 mM dNTPs, 1X of reaction buffer and 2-

5 U of Taq polymerase, and the cycles were controlled using a thermocycler 

machine (Perkin Elmer). 

Identification of homozygous T-DNA insertion mutants was accomplished by PCR. 

The DNA of each individual was assayed in two parallel PCR reactions per plant: 

(i) the wild type reaction amplified a fragment of the gene using primers flanking 

the region of the T-DNA insertion; (ii) and the mutant reaction amplified one border 

of the T-DNA together with the gene flanking fragment. The combination of PCR 

products indicated the genotype of individual plants for the T-DNA insertion and 

the gene of interest. The primers used for genotyping the T-DNA insertion lines 

are listed on Appendix 8.5. 

 

2.2.12.1 High-fidelity PCR for Cloning 
With the purpose of cloning functional genes or promoters, a polymerase with high 

copy fidelity and a 3’ exonuclease proofreading activity (Platinum Pfx DNA 

polymerase, Invitrogen, or Pfu Turbo DNA polymerase, Promega) was used for 

generating the PCR products. The reactions contained 10 ng of genomic DNA, 1X 

of reaction buffer, 1 mM MgCl2 or MgSO4, 0.5 mM dNTPs, 0.3 µM primers and 1-2 
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U high fidelity DNA polymerases. The extension step for Pfx polymerase was at 

68°C. 

The generation of cDNA and promoter inserts for in vivo analysis was achieved by 

PCR using proofreading polymerases and specific primers (Appendix 8.5). The 

cDNA inserts were obtained from reversed transcribed mRNA from seedlings, 

flowers and roots (see 2.2.11). The exception were KVAG1 and UDP-GalT1 full-

length cDNAs that were amplified from the cDNA clones pda10276 and pda01968 

(RAFL clones), obtained from the Riken Tsukuba Institute, Japan. 

 

2.2.12.2 Colony PCR 
A fast method to identify positive clones containing the desired insert was to 

perform a colony PCR. A regular PCR mixture was prepared (see 2.2.12, lacking 

template DNA) including one primer laying in the insert and another one in the 

vector backbone, aliquoted in 0.2 ml PCR tubes (or plates) and kept on ice. Using 

a sterile toothpick one transformed bacterial colony was picked from a selective 

plate and placed into one tube containing the PCR mix. The same was done with 

all selected colonies, followed by 30-35 cycles of PCR. The products were 

analyzed by agarose electrophoresis and clones presenting bands of the expected 

size were inoculated for subsequent plasmid DNA isolation, sequence analysis or 

cell transformation.  

 

2.2.12.3 Plant Touch-and-Go PCR 
This protocol for fast PCR analysis of plants (Berendzen et al., 2005) was used to 

determine the zygotic state of T-DNA insertion lines when several dozens of 

individuals were analyzed in parallel (i.e. F2 progenies from crosses). The method 

is comparable to the colony PCR, since the template for Taq DNA polymerase was 

a small piece of plant leaf instead of genomic DNA solution. A PCR mix was 

prepared (2.5 µM each gene specific primers, 2.5 mM dNTPs, 5-10 U Taq 

polymerase, 1X reaction buffer, 1 mM MgCl2) and 50 µl aliquots were distributed in 

0.2 ml PCR tubes or plates and kept on ice. Using a yellow pipette tip, a leaf was 

punctured against a firm surface (e.g. a finger covered with glove) and the tissue 

was transferred to the PCR mix by pipetting up and down. The samples were 

subjected to 40 cycles of PCR with extended annealing time (45 sec). The 

products were analyzed by agarose electrophoresis and putative homozygous 



2. Materials and Methods   29

plants identified. The gene dose of the selected individuals was confirmed by PCR 

using as template genomic DNA isolated through the procedures described above 

(see 2.2.9.2). 

 

2.2.13 Sequencing 
Sequencing reactions were performed using a mixture of sequenase and 

fluorochrome-labeled terminators contained in the BigDye® Terminator v1.1 & 

v3.1 Cycle Sequencing Kit (Applied Biosystems). The reaction, similar to a PCR, 

included 100-200 ng of plasmid DNA, 10 µM of primer (one primer per reaction), 

1X sequencing buffer and 2 µl sequencing PreMix, in a final volume of 10 µl. The 

sequencing reaction was subjected to 30-35 cycles of 10 sec denaturation (94°C), 

12 sec of annealing (50°C) and 4 min extension (60°C). The products were 

analyzed in an automated sequencer ABI PRISM™ 310 Genetic Analyzer, and the 

results were edited using the EditView and AutoAssembler programs (Perkin 

Elmer Corp.). 

 

2.3. Protein Techniques 
2.3.1 Protein Expression in the Yeast Heterologous System 
The native expression of NST and related proteins in planta is relatively low which 

represents a constraint for functional studies. To overcome this bottleneck, over 

expression of the protein in an organism with simpler cultivation methods is usually 

helpful, and can also minimize the background activity or interference from similar 

endogenous proteins. 

 

2.3.1.1 Yeast Membrane Extraction 
An O/N culture (20 ml) of transformed yeast cells was pelleted by centrifugation 

(2500 rpm) and resuspended in 50 ml of induction medium (SC-galactose lacking 

uracil, Appendix 8.3). The culture was further incubated 3 to 8 hours, depending 

on the optimal time for protein expression (individually studied for each protein). 

The induced cells were centrifuged and the pellet was resuspended in 200 µl of 

pre-chilled 1x TE containing 100 mM of protease inhibitor Phenyl-methyl-sulfonyl-

fluoride (PMSF).  
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The entire procedure from here on was performed at 4°C. The cells were broken 

using 0.4 mm glass beads (400 mg) and strong shaking for 10 min. The cell debris 

was separated from the membranes by adding 700 µl of 1x TE+PMSF and 

centrifuging at 8000 rpm. The milky supernatant was transferred to a new 

eppendorf tube. Three rounds of low speed centrifugation (8000-10000 rpm) were 

performed, to remove contaminants from the membrane suspension. The 

supernatant from the last cleaning step was subjected to ultra-centrifugation at 

42000 rpm for 20 min, and the pellet was immediately frozen in liquid nitrogen. 

The membrane pellets were stored at -80°C until needed. 

 
2.3.1.2 SDS-Polyacrylamide Protein Gels (SDS-PAGE) 
Concentrating gel (upper part)  

Concentrating buffer                1X 

Acrylamide/Bisacrylamide solution    4.5/ 0.1% 

N,N,N’,N’-Tetramethylethyldiamine (Temed) 0.13% (v/v) 

Ammoniumpersulfate (APS)   0.03%(w/v) 

4X Concentrating buffer 
Tris-HCl, pH 6.8            0.5 M  

SDS       0.4% (w/v) 

Separating gel (lower part)  
Separating buffer         1X 

Acrylamide / Bisacrylamide solution  12.5/0.33% 

Temed       0.05% (v/v) 

APS         0.05% (w/v) 

4X Separating buffer 
Tris-HCl, pH 8.8            1.5 M 

SDS       0.4% (w/v) 

10X Electrophoresis Laemmli buffer 
Tris          250 mM 

Glycine         192 mM 

SDS       0.5% (w/v) 
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2X Sample buffer 
Tris-HCl, pH 6.8          0.125 M 

SDS            4% (w/v) 

Glycerin          20% (v/v) 

2-Mercaptoethanol         10% (v/v) 

Bromo-phenol blue     0.01%  (w/v) 

 

Gel preparation and electrophoresis  

The protein gels were prepared in a Mini-gel device System 2050 Midget 

(Pharmacia-LKB, Freiburg) and mounted as recommended. The SDS-PAGE 

preparation was done following the Laemmli (1970) protocol. First, the separating 

gel was prepared and allowed to polymerize on the bottom of the cast before 

pouring the concentrating gel (2-3 cm) on top. After complete polymerization the 

gels were used for electrophoresis. The chamber was assembled and sufficient 

electrophoresis buffer (1X) was poured in the bottom as well as in the vertical 

buffer collector, in contact with the gel.  

The protein samples were thawed on ice and resuspended in 1X TE or 

solubilisation buffer (100 mM phosphate buffer, 50 mM NaCl, pH 7.8) and sample 

buffer (to a final concentration of 1X). After complete resuspension of the samples 

5 to 30 µl were placed in each slot. In parallel, 5 µl of protein marker (Fermentas 

Prestained Protein Molecular Weight Marker, apparent molecular weights between 

20-118 kDa) were also loaded. The first 20 min of electrophoresis, through the 

concentrating gel, were run at 20 mA. The current was then increased to 30 mA 

for additional 40-60 min (electrophoresis through the separating gel) until the 

bromo-phenol blue line reached the bottom. 

 
2.3.1.3 Protein Visualization Using Coomassie-Brilliant Blue Stain 
Staining solution I 

Coomassie-Brilliant blue          0.5% (w/v) 

Staining solution II 
Acetic acid    20% (v/v) 

Distaining solution 
Acetic acid    10% (v/v) 

Methanol    40% (v/v) 
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The procedure followed the directions of Weber and Osborn (1969). The staining 

solutions I and II were mixed in a 1:1 ratio. The gel was incubated in the combined 

staining solutions for 1 hour (or O/N) with gentle agitation.  The staining solution 

was removed and the gel was incubated in distaining solution until the protein 

signals were clearly distinguishable from the background (2-4 hours). The gel was 

then covered by plastic foil or alternatively, vacuum dried and scanned for data 

compilation. 

 

2.3.1.4 Protein Visualization Using Silver Staining 

Fixing solution I 
 Methanol              50% (v/v) 

 Acetic acid             12% (v/v) 

 Formaldehyde   0.019% (v/v) 

Washing solution II 
 Ethanol        50% (v/v) 

Solution III 
 Sodium thyosulfate         615 mM 

Silver staining solution 
 Silver nitrate        0.2% (w/v) 

 Formaldehyde   0.075% (v/v) 

Developing solution 
 Sodium carbonate            0.57 M 

 Formaldehyde   0.019% (v/v) 

 Sodium thyosulfate          17.3 µM 

Stop solution 
 Methanol        50% (v/v) 

 Acetic acid        12% (v/v) 

 

The staining of proteins with silver nitrate is more sensitive and therefore is 

recommended for detection of low amounts of protein in the sample. The method 

was used as described by Blum et al. (1987). The gel was fixed in solution I for 30 

min and washed three times with solution II (10 min per wash). Then, it was 

incubated for 1 min in solution III (65 µl in 50 ml of H2O) and rinsed three times in 
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H2O. The gel was immersed in silver staining solution (5 ml in 45 ml of H2O) and 

incubated for 20 min. The solution was removed (for disposal in a separate 

container) and the gel was rinsed twice in H2O. Developing solution (10 ml 7x5 in 

40 ml H2O + 10 µl solution III) was added and the gel was inspected until the 

bands were clearly visible. Then, it was rinsed twice in H2O and incubated for 10-

15 min in the stop solution. For later disposal, the staining solution was treated 

with salt (NaCl) to precipitate the silver nitrate and separate it from the water. 

 
2.3.1.5 Transfer of Proteins to PVDF Membranes (Western Blot) 
The proteins separated by SDS-PAGE were transferred to PVDF membranes 

(BioRad) using an electric transfer chamber (Carboglass, Schleicher & Schuell) in 

a semi-dry-blot manner (Khyse-Andersen, 1984). The blot was built by lying on the 

anode side 4 sheets of Whatman paper soaked in 1X anode buffer (Roti-Blot, 

buffer 2A, Roth). The transfer membrane was wetted in methanol and laid on top 

of the Whatman paper. The SDS-PAGE was laid over the membrane and it was 

covered by 4 more sheets of Whatman paper imbibed in 1X cathode buffer (Roti-

Blot, buffer 2K, Roth). The system was closed with a weight of 1-2 kg placed on 

top of the system, and current was applied for 2 hours (1 mA / cm2 of membrane). 

 
2.3.1.6 Immune-Visualization of Recombinant Proteins 
Blocking buffer 

Milk powder    4 % (w/v) 

10X TBS buffer            1 X 

Stored at 4°C. 

10X TBS buffer 
Tris-HCl, pH 7.5    100 mM 

NaCl          1.5 M 

TBST-T buffer 
10X TBS buffer           3 X 

Tween 20         0.05% (v/v) 

Triton X-100           0.2% (v/v) 
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Staining solution (prepared fresh, light-protected) 
Buffer A      10 ml 

NBT-stock (5% (w/v) NBT in 70% DMF)   66 µl 

BCIP-stock (5% (w/v) BCIP in 70% DMF)  33 µl 

Buffer A 
Tris-HCl, pH 9.5         100 mM 

NaCl           100 mM 

MgCl2                   5 mM 

NBT-stock (p-Nitro-blue-tetrazolium-chloride) stored at -20°C. 

BCIP-stock (5-Bromo-4-chloro-3-indoylphosphate) stored at -20°C. 

 

CSPD (Roche) Detection buffer  
 Tris-HCl, pH 9.5          100 mM 

 NaCl            100 mM 

 CSPD      1:100 dilution from stock 

Used up to 2 times when kept cold (2-8°C), sterile and in dark conditions. 

 

The western blot membrane was washed twice in TBS solution and incubated 2 

hours or O/N in blocking solution (4% (w/v) milk powder in TBS). Then, it was 

washed twice (10 min each) in TBST-T solution and once in TBS for 10 min, 

before incubating for 2 hours in the first antibody solution (6x His-antibody, 1:2000 

dilution in blocking solution, reused up to 10 times). The membrane was washed 

twice in TBST-T and TBS as indicated before, prior incubation with the second 

antibody (goat anti-mouse IgG, Alkaline Phosphatase-coupled, 1:2500 dilution in 

blocking solution, reused up to 10 times) for 1-2 hours. Then it was washed four 

times in TBST-T and incubated in staining solution until the signals were visible 

(BCIP is hydrolyzed and an indigo precipitate is formed after oxidation with NBT). 

The blot was briefly rinsed in water, incubated for 5 min in 3% trichloracetic acid, 

rinsed again in water and finally dried on absorbent paper. The processed 

membranes were photographed and stored protected from light. 

Alternatively, instead of NBT and BCIP for signal detection, the chemiluminescent 

substrate CSPD (Disodium 3-[4-methoxyspiro {l, 2-dioxetane-3, 2´-(5´chloro) 

tricyclo [3.3.1.13,7] decan} -4-yl] phenyl phosphate, Roche) was also used. It 

allowed more sensitive detection of biomolecules since the dephosphorylation of 
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the substrate produces visible light that can be recorded by few minutes exposure 

to an X-ray film. 

 
2.3.2 Transport Activity Measurements 
2.3.2.1 Purification of Phosphatidylcholine for Liposome Preparation 
Phosphatidylcholine (30 g, Sigma) was first dissolved in 100 ml chloroform and 

later on separated by adding 540 ml of ice-cold acetone with continuous mixing for 

2 hours at RT. The lipids were precipitated O/N at 4°C. After supernatant removal 

the precipitate was dissolved in diethyl ether (50-100 ml), which was later 

extracted under vacuum on a rotting flask. The lipids were dried on filter paper 

until the ether was completely evaporated. The purified phospholipids (without free 

fatty acids) were stored at -20°C. 

 
2.3.2.2 Preparation of Liposomes  
For one transport activity measurement (kinetic) 120 mg (or 12% w/v) of purified 

lipids were used. Additionally, the liposome buffer contained 20 mM potassium-

phosphate buffer, pH 7.6 (KH2PO4), 50 mM of K-gluconate and 0.2 mM of 

substrate (CDP-choline, CDP-ethanolamine or different nucleotide sugar 

diphosphates). Using an ultrasonic pulse-echo instrument (Branson Sonifier 250, 

Branson Ultrasonics, Danbury/USA) the lipids were broken into small spheres 

(liposomes) by pulsing 3 min at 50% duty cycle on ice. 750 µl of liposomes was 

transferred to a new 1.5 ml tube, and kept on ice until mixed with the membrane 

proteins. 

The liposomes used for reconstitution of Ni-NTA isolated proteins (see 2.2.6) were 

prepared in a concentrated manner because of the high volume resulting from the 

isolated proteins (500 µl). Nevertheless, the proportions of phospholipids, KH2PO4, 

K-gluconate and substrate were maintained in the final volume (120 mg, 20 mM, 

50 mM and 0.2 mM, respectively in 1 ml), and four rounds of 30 sonication pulses 

(50% duty cycle) dissolved the lipids. 

 
2.3.2.3 Membrane Proteins Solubilisation and Preparation of 
Proteoliposomes  
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One membrane fraction obtained via expression in a heterologous system (i.e. S. 

cerevisiae) was thawed on ice and resuspended in 50-100 µl of H2O. When 

performing several experiments with the same protein, the corresponding number 

of membrane pellets was thawed and mixed together in order to standardize the 

amount and quality of proteins in all experiments. The proteins were solubilized 

from the membranes by adding a detergent (1-2% Triton-X100, n-Dodecyl-β-D-

maltoside (DM) or any other shown to dissolve the protein properly). 

Approximately 100 µl of the protein suspension were added to the liposomes, 

mixed gently by inversion and centrifuged shortly. The mixture was frozen in liquid 

nitrogen and subsequently thawed slowly on ice, which allowed the proteins to 

reconstitute into the liposome artificial membranes (Kasahara and Hinkle, 1977). A 

second round of sonication was performed applying 30 pulses at 20% duty cycle 

on ice, in order to maximize the proportion of intact proteoliposomes. 

 
2.3.2.4 Purification of Proteoliposomes through PD-10 Gel Filtration 
Columns 
PD-10 columns (Pharmacia Biotech) contain Sephadex G-25 for size exclusion 

chromatography, which permits the separation of proteoliposomes preloaded with 

a substrate from the external solution that also contains the substrate. The 

columns were equilibrated with PD-10 buffer (3 times) before pouring the 

proteoliposomes. Depending on the characteristics of the proteins (e.g. stability) 

the PD-10 buffer could contain Tricine-KOH or KH2PO4 (pH 7.6). 

PD-10 Buffer 
Na-gluconate    100 mM 

K-gluconate       50 mM 

KH2PO4 / Tricine-KOH (pH 7.6)    10 mM 

 

The proteoliposomes (850 µl) were loaded onto the PD-10 column, and washed 

with 1.7 ml of PD-10 buffer. When the flow-through drops became milky, 950 µl of 

PD-10 buffer were added and the liposomes were collected in a new tube. The 

proteoliposomes were directly used for transport activity measurements and the 

PD-10 columns were washed several times with water, and finally stored in the 

presence of 0.1% (w/v) sodium azide (NaN3). 
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2.3.2.5 Protein Transport Activity Measurements in Proteoliposomes 
The proteins reconstituted in liposomes were assayed for its transport activity 

using a radiolabeled counter substrate (i.e. nucleoside monophosphates, UMP, 

GMP or CMP). In a new tube 850 µl of proteoliposomes were briefly mixed with 45 

µl of counter substrate (16.6 µM final concentration). The transport was evaluated 

at 25°C and stopped at different time points (10 sec, 30 sec, 60 sec, 120 sec) by 

passing an aliquot (200 µl) through an anion exchange column (Dowex AG 1-X8, 

mesh size 100-200, BioRad, equilibrated with sodium fluoride (NaF)). The 

liposomes on each column were recovered by elution with 0.4 M Sorbitol (1100 µl) 

while the radiolabeled counter substrate outside the liposomes remained bound to 

the resin. The elution was mixed with 4.5 ml of scintillation buffer (Rotiszint eco 

Plus, Roth) and the radioactivity inside the liposomes was measured using a 

scintillation counter (LS-6000TA, Beckman). 

 

Radiolabeled counter substrate mix 

Three commercially available radiolabeled nucleoside monophosphates (UMP, 

GMP and CMP) were used for testing the transport activity of the KVAG proteins. 

These substrates were 33P labeled, with 10 µCi/µl activity. 

 

Radiolabeled counter substrate  150000-200000 cpm 

No radiolabeled counter substrate  0.3 mM 

 

2.3.2.5.1 Assembly of the Anion Exchange Columns  
The column material was supported on Pasteur pipettes plugged with cotton. The 

pipettes were filled to 1/3 of their height with the resin (Dowex AG 1-X8, BioRad) 

and equilibrated (3-4 runs through) with 0.4 M Sorbitol (when resin equilibrated 

with fluoride was used). Sorbitol binds weakly to the resin and can be easily 

exchanged against ions that bind more strongly, such as phosphate (Pi).  

 

2.3.2.5.2 Reconstitution of Anion Exchange Resin 
The anion exchange resin (Dowex AG 1-X8, mesh size 100-200, BioRad) was 

reused several times after complete removal of the radiolabeled substrate. For this 

purpose, the columns were washed 3-4 times with 1 M HCl (the flow through 

discarded as radioactive waste). Then, it was saturated with 1 M NaOH and 
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several washes with NaF (0.6-1 M) were performed in order to exchange the OH- 

ions against the F- (until the pH was near to neutral). The resin was stored at 4°C. 

 
2.3.2.6 Isolation of Proteins Using Ni2+-nitrilotriacetic acid (Ni-NTA) Agarose 
Beads 
The translational fusion of a protein cDNA with a sequence encoding a poly-

histidine tag allowed the isolation and purification of the corresponding protein for 

further functional studies. 

 

2.3.2.6.1 Ni-NTA Agarose Beads Equilibration 
The Ni-NTA agarose beads mixture (# 30230, QIAGENE) was placed  into a 2 ml 

tube (150 µl for 2 kinetics), and mixed well with 150 µl of equilibration buffer 

(Buffer II).  After 1 min centrifugation at 10000 rpm the supernatant was discarded 

and the agarose was kept on ice. 

Buffer II 
Na-phosphate buffer, pH 7.8 100 mM 

NaCl       50 mM 

 

3.2.6.2 Membrane Pellets Solubilization and Protein-Ni-NTA Binding 
For each kinetic (transport activity assay) 3 membrane pellets were used. Each 

pellet was dissolved in 140 µl of solubilisation buffer (Buffer I) and combined in a 2 

ml tube (end volume of 450 µl). 

Buffer I 
Na-phosphate buffer, pH 7.8 100 mM 

NaCl        50 mM 

Imidazol         8 mM 

        

To solubilize the proteins from the membranes 75 µl of 20% (w/v) DM were added, 

mixed softly and incubated on ice for 2 min. One volume of Buffer I was added, 

incubated 4 minutes on ice and centrifuged 2 min at 10000 rpm. The supernatant 

was transferred to the previously equilibrated Ni-NTA agarose, and mixed by 

gently rotation at 4°C for at least 2 hours.  
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2.3.2.6.3 Isolation of His-tag-bound Proteins from the Ni-NTA Resin 
 

Buffer III 
Na-phosphate buffer, pH 7.8         100 mM 

Imidazol                     8 mM 

Dodecylmaltoside   0.06% (w/v)  

Buffer IV 

Na-phosphate buffer, pH 7.8        50 mM 

Imidazol         150 mM    

Dodecylmatosid   0.06% (w/v)  

 

The procedure was performed at 4°C. The protein-Ni-NTA mixture was poured into 

a Pasteur pipette stocked with cotton at the shrinkage. The resin remaining in the 

pipette was rinsed 2-3 times with 500 µl of Buffer III, to remove unbound proteins. 

The histidine-tag coupled proteins were recovered in a new tube by elution in 500 

µl of buffer IV. The isolated proteins are unstable and therefore were immediately 

mixed with the liposomes, in a 1:1 volume proportion, and frozen in liquid nitrogen. 

Small aliquots (50 µl) from the cleaning and elution fractions were subjected to 

electrophoresis to verify the presence of the expected protein. 

 
2.3.2.7 Isolation of Golgi-enriched Microsomes from Yeast Cells 
Spheroplast solution 

Sorbitol      1.4 M 

K-phosphate, pH 7.5  50 mM 

2-mercatoethanol   40 mM 

NaN3      10 mM 

Lysis buffer           

HEPES-Tris (KOH), pH 7.4 10 mM     

 Sorbitol      0.8 M 

EDTA       1 mM 

  

Following the procedure described by Aoki et al. (2003) the induced yeast cells 

(500 ml) were centrifuged at 3000-4500 rpm at 4°C for 5 min and washed twice in 

ice-cold 10 mM NaN3. The cell pellet was resuspended in 20 ml spheroplast 
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solution containing 2 mg of zymolyase 100T per g of packed cells, and incubated 

at 37°C for 40 min with occasional mixing. The spheroplasts were collected by 

centrifugation at 1000 xg for 5 min at 4°C, resuspended in 20 ml of cold lysis buffer 

containing a cocktail of protease inhibitors (Mini tablets, EDTA-free, Boehringer 

Mannheim), and disrupted by pottering 20 times at 4°C. The homogenate was 

centrifuged at 3500 rpm at 4°C for 5 min to remove cell debris. The supernatant 

was centrifuged at high speed, 26000 rpm for 45 min at 4°C, and the pellet was 

finally resuspended in 200-300 µl of lysis buffer (0.8 ml/g cells). The microsomal 

fraction was used immediately in transport activity assays. 

 

Transport Activity Measurements in vitro 

The microsomal preparation (50 µl) was added to the reaction mixture (0.8 M 

sorbitol, 10 mM Tris-HCl pH 7.0, 1 mM MgCl2, 20 µmol of the radiolabeled 

monophosphate counter substrate) and incubated at 30°C. To stop the reaction 1 

ml of ice-cold stop buffer was added (0.8 M sorbitol, 10 mM Tris-HCl pH 7.0 and 

1mM MgCl2) and passed through a Dowex ion-exchange column. The flow-

through containing the microsome vesicles was collected in a scintillation vial and 

the radioactivity incorporated was measured by a scintillation counter. 

When preloading the Golgi vesicles they were incubated with 0.2 mM of substrate 

(i.e. UDP-Gal) and 10-20 sonication pulses (20%) were applied on ice. High speed 

centrifugation for 10-15 min at 42000 rpm at 4°C was performed in order to 

remove the non-integrated extra substrate. The microsomal pellet was 

resuspended in 50 µl of lysis buffer. 
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3. RESULTS 
 

3.1 Description of the KV/A/G Subfamily 
 

3.1.1 Molecular and Protein Characterization of the KV/A/G Subfamily using 
in silico approaches 
 
The KV/A/G subfamily of NST/pPT homologues comprises seven putative 

proteins: KVAG1 (At1g12500), KVAG2 (At3g10290), KVAG3 (At5g04160), KVAG4 

(At5g05820), KVAG5 (At3g11320), GONST5 (At1g21870) and UDP-GalT1 

(At1g77610) in Arabidopsis. The deduced KVAG protein sequences share 

between 33-95% of amino acid identity (Table 2). The most similar proteins are 

KVAG2, KVAG3, KVAG4 and KVAG5 have more than 70% sequence identity, 

which is reflected in the conserved exon/intron structure of the genes (Figure 3). 

These four genes contain four exons, as inferred from cDNA sequence analyses. 

However, the second predicted exon of KVAG5 was neither observed in plant 

mRNA nor in ESTs reported in TAIR (see section 3.4). Comparisons between the 

KVAG and other NST/pPT proteins showed that only KVAG5 contains an insertion 

of 34 amino acids in the third highly similar region (Figure 4). Moreover, a 

sequence similar to the predicted second exon of KVAG5 was found within the first 

intron of KVAG2, KVAG3 and KVAG4 indicating that the gene was misannotated. 

 

In the Arabidopsis genome the KVAG2 and KVAG5 genes are located on 

chromosome III while KVAG3 and KVAG4 reside on chromosome V. GONST5 

and UDP-GalT1 are very similar in their deduced amino acid sequence (Table 2). 

Both possess a similar gene structure, with five exons and conserved intron 

positions. These two genes are present on the Arabidopsis chromosome I, as well 

as KVAG1, which is the only gene harbouring a single intron (Figure 3). 
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Table 2. Amino acid identity within the KV/A/G subfamily. 

Percentage of identical amino acids shared between the deduced protein sequences of 

the KVAG proteins (data from the Aramemnon database, Schwacke et al., 2003).  

Protein Amino acid identity (%) 

 KVAG2 KVAG3 KVAG4 KVAG5 GONST5 UDP-GalT1 

KVAG1 56 58 68 65 34 34 

KVAG2  94 71 72 34 34 

KVAG3   71 73 36 36 

KVAG4    95 34 34 

KVAG5     35 33 

GONST5      91 

 

 

 
Figure 3. Schematic exon/intron representation of the structure of the KVAG genes. 

Exon sequences are represented by filled boxes and introns by the lines connecting the 

exons. Objects are drawn in a comparable scale. The second lighter box in KVAG5 stands 

for a predicted exon, not observed in the cDNA (see section 3.4). 
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Analysis of the results from 16 different transmembrane helix prediction programs 

suggests that the KVAG proteins contain 8 to 10 TMDs (Figure 4) (Aramemnon 

database, Schwacke et al., 2003). Therefore, they are thought to be highly 

hydrophobic and integrated into membranes. This is in accordance with other pPT 

and NST proteins which also contain a similar number of TMDs (Figure 4). The 

topology of the mammalian CMP-Sia transporter, the only NST that has been 

studied in detail so far (Eckhardt et al., 1999), revealed 10 TMDs with the amino 

and carboxyl terminal ends facing the cytosol. The positions of the TMDs within 

the KVAG proteins match those of the CMP-Sia transporter and of other NST and 

pPT members (Figure 4).  

 

The protein sequences of KVAG1 and KVAG2 display amino terminal extensions 

(~50 amino acids long) that contain 27-28% of serine/threonine residues and a 

similar percentage of basic amino acids (histidine, lysine and arginine). These 

sequence stretches are predicted as plastid targeting peptides by the TargetP_v1, 

ChloroP_v1.1 and PCLR_v0.9 algorithms (Aramemnon database, Schwacke et al., 

2003). Therefore, these two proteins might play roles as metabolite transporters in 

plastids. Uptake of solutes synthesized in the cytosol (like nucleotide sugars) have 

been recognized to be required in plastids (Capasso and Hirschberg, 1984; 

Knappe et al., 2003a; Kelly and Dörmann, 2004), but the proteins mediating such 

transport have not been identified yet.  

 

Several residues are conserved between the KVAG and known pPT and NST 

proteins (Figure 4). These residues are more frequently found inside the five 

regions of high similarity previously described in the pPTs (Knappe et al., 2003a), 

including two lysines proposed to be involved in substrate binding (K41 and K273, 

Figure 4). However, the identification of sequence similarities with well 

characterized transporters does not reveal specific information about function or 

substrate affinity of the KVAG proteins. 
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Figure 4. Multiple alignment of KVAG proteins and members of the NST/pPT family. 

TMDs for each protein are highlighted in grey. The sequence regions labelled I-V indicate 

the five regions of high similarity between the pPT proteins. Conserved residues are 

highlighted in dark gray. Two lysines, K41 and K273, depicted with stars (*), are 

presumably involved in substrate binding. PPT1 is presented as a mature protein 

sequence. Sc, Saccharomyces cerevisiae; Hs, Homo sapiens; Lm, Leishmania mexicana.   
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3.1.2 in silico Expression of KVAG Genes  
 

Publicly available databases containing microarrays hybridization results are 

useful tools to obtain information about the expression features of many genes. 

Genevestigator (www.genevestigator.org, Zimmermann et al., 2004) comprises 

gene expression results from experiments performed with a standardized platform 

as the Affymetrix microarrays. The expression is presented as absolute 

normalized signal intensities obtained for each gene in all the microarray chips 

(1330 in total). The data can be visualized in a heat colour code. Dark blue marks 

the organ(s) with high expression while white represents the organ(s) with low 

expression of the gene. This facilitates comparisons between expression in 

different organs for a single gene. 

 

Examination of the expression of the KVAG genes in the Genevestigator database 

showed nearly ubiquitous expression in all organs and tissues of Arabidopsis 

(Figure 5). However, the KVAG3 and GONST5 genes yielded higher expression in 

the inflorescence, especially in stamina and pollen, while expression of UDP-

GalT1 is higher in the stigma. High levels of expression in roots were observed for 

KVAG5 and KVAG4 genes, the latter gene also showing high expression signals 

in hypocotyls, stamina and stems. High expression in stems was also observed for 

the KVAG1 gene (Figure 5).  The KVAG2 cDNA is not reported in the Affymetrix 

chips, most likely because of the high similarity with KVAG3 (87% cDNA 

nucleotide identity). Due to this high identity between the coding regions of the two 

genes, it is possible that microarray hybridizations cross react with both KVAG3 

and KVAG2 cDNAs, detecting the combined expression of both genes (Figure 5). 

 

Analysis of expression of the other members of the NST/pPT homologous genes 

(from the KT and KD subfamilies) also revealed broad organ and tissue 

expression (Figure 6). Nevertheless, differences in expression profiles of some 

genes were also observed. Two main groups of genes could be distinguished 

based on these expression data: (i) a group of highly expressed genes in the 

inflorescence, including genes also expressed in stems, roots and cultured cells; 

and (ii) a group of more ubiquitously expressed genes (Figure 6). Thus, the 



3. Results   46

presence of some proteins may overlap in certain organs, principally in leaves, 

roots and stamina.  

 

 
Figure 5. Organ and tissue expression of the KVAG genes evidenced by microarray 

experiments (Genevestigator). 

The numbers inside the cells indicate the intensities data, shown as the log2(n). KVAG3* 

= KVAG3 expression data might be combined with the expression of KVAG2 due to high 

similarity between both cDNAs. 

 

 
Figure 6. Organ and tissue expression of NST/pPT homologous genes evidenced by 

microarray experiments (Genevestigator). 

The numbers inside the cells indicate the intensities data, shown as the log2(n). KD and 

KT indicate the NST/pPT homologous subfamily to which the indicated genes belong to. 

 

 

3.2 Expression of KVAG genes in planta 
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3.2.1 Expression Analysis of KVAG Genes by Semi-quantitative RT-PCR 
 

The expression of KVAG1 and KVAG2 genes was evaluated by semi-quantitative 

RT-PCR using RNA isolated from different wild type (Col-0) plant organs. 

Reference PCRs were performed with primers for Arabidopsis Actin2 and the 

same templates in order to compare the level of KVAG expression to a 

constitutively expressed gene. The results from RT-PCR were reproducible with 

RNA extracted from several biological replicates. 

 

The expression of KVAG1 and KVAG2, examined by 28 and 30 RT-PCR cycles 

respectively, rendered transcripts in all Arabidopsis tissues with minor variations in 

the intensities of the bands. Both genes were expressed at relatively high levels 

compared to Actin2 (29 RT-PCR cycles) (Figure 7). The major differences in 

expression were observed in the inflorescence and rosette leaves. The transcript 

amount of KVAG1 was reduced in flowers from elderly plants in comparison to the 

same gene expression in other organs. In contrast, KVAG2 transcripts were 

increased in the inflorescence, but diminished in old rosette leaves (Figure 7).  

 

The expression of KVAG3 and KVAG5 genes was also inspected following the 

same approach. Expression of KVAG5 was relatively high in all evaluated organs 

except in rosette leaves from young mature plants. Transcripts were detected in 

the latter but in reduced amounts compared to expression in other organs (Figure 

7). An increase in KVAG3 mRNA was detected in young inflorescences, in 

contrast to a drastic reduction of expression in the vegetative organs of the mature 

plants (Figure 7). From these patterns of expression, the KVAG1, KVAG2 and 

KVAG5 genes are ubiquitously expressed, while expression of the KVAG3 gene 

appears to be differentially regulated in reproductive and vegetative organs. In 

general, these data confirmed the expression patterns observed in the microarray 

experiments, including that of the KVAG3 gene. 
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Figure 7. Expression analysis of KVAG genes by semiquantitative RT-PCR. 

Semiquantitative RT-PCR: KVAG1, 28 cycles; KVAG2, 29 cycles; KVAG3, 32 cycles; 

KVAG5, 30 cycles; Actin2, 30 cycles. Actin2 as control for constitutive expression. CP = 

complete plants, RL = rosette leaves, R = roots, F = flowers, Si = siliques, St = stems, CL 

= cauline leaves.  

 

3.2.2 Promoter Analysis of KVAG1 and KVAG2 Genes 
 

To investigate the promoter activity of KVAG1 and KVAG2 genes in vivo, 

translational fusions with the uidA gene, encoding the E. coli β-glucuronidase 

protein (GUS, Jefferson, 1987) were performed. The expression of the reporter 

GUS protein driven by each promoter gave a more refined view of the tissue and 

cell specific expression of these putative plastidic KVAG proteins. 

 

The promoter regions of KVAG1 (promKVAG1) and KVAG2 (promKVAG2) 

included 1062 and 1641 bp upstream of the start codon, respectively, and part of 

the 5’ coding region of each gene. Stable Arabidopsis transformations were 

achieved employing A. tumefaciens. Transformed plants were selected with 
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kanamycin. More than 50 antibiotic resistant seedlings were obtained for 

promKVAG1::GUS and 20 for promKVAG2::GUS. Preliminary GUS histochemical 

assays of these T1 plants revealed high promKVAG1::GUS activity in cotyledons, 

young leaves and root tips, while GUS expression was restricted to the stipules of 

promKVAG2::GUS plants. T2 plants derived from several of the GUS T1 lines 

were studied in more detail. 

 

GUS expression driven by the promKVAG1 was strongly detected in the aerial 

parts of young plants, including hypocotyls, cotyledons and developing leaves 

(Figure 8). Fainter GUS staining was observed in organs that reached maturity, 

with remains of activity in the vasculature of leaves (Figure 8, E and F). The GUS 

activity was high in young developing tissues throughout plant development 

(Figure 8C). In the inflorescences, GUS staining was observed in stems and 

flowers, the latter particularly in the filaments of stamen, the carpel and the 

vasculature of petals (Figure 8, G and H). GUS expression was also detected in 

the procambium zone near the root tip but not in the columella, lateral cap and root 

epidermis cells (Figure 8D). The expression of GUS was also evident in the 

transition zone between root and hypocotyl, and furthermore in defined areas 

along the primary root that represent groups of pericycle cells, later developing 

secondary roots (Figure 8, A and B). 

 

The promKVAG2 yielded a different GUS expression pattern in planta compared 

to that of promKVAG1. Histochemical GUS staining assays showed activity only in 

defined aerial organs of Arabidopsis. The stipules, at the base of rosette leaves, 

and the anthers and ovaries in the flowers presented GUS staining (Figure 9). 

GUS activity was completely absent in roots and leaves. Young anthers presented 

GUS expression in the epidermis, tapetum cells and pollen sacs, while in 

dehiscent anthers GUS staining was limited to the cytoplasm of pollen grains 

(Figure 9, E and F). In the ovaries GUS activity was observed particularly in the 

embryonic sac, where the ovule, the synergids and the central cell reside (Figure 

9, G and H).  
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Figure 8. Expression analysis of promKVAG1::GUS in Arabidopsis plants. 

Histochemical GUS staining shows the expression of the reporter protein in blue. A, 

cotyledons and young roots; B, hypocotyl and primary root fusion; C, young developing 

leaves; D, root tip; E, old cotyledons and young rosette leaves; F, mature and young 

rosette leaves; G, inflorescence stem; H, mature flower; A to D, 12-day-old seedlings; E, 

20-day-old plant; F, 30-day-old plant; G and H, 45-day-old plant. 

 

 

The observed patterns of GUS expression were reproducible in the progeny (T2) 

of at least five independent T1 lines for each construct. These results indicate that 

despite the similarities between the KVAG1 and KVAG2 proteins, their promoter 

activities appear rather different and contrasting. 
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Figure 9. Expression analysis of promKVAG2::GUS in Arabidopsis plants. 

Histochemical GUS staining shows the expression of the reporter protein in blue. A, 

stipules in young rosette leaves; 15-day-old plant; B, enlargment of one stipule; C, young 

developing flower; D, mature flower; E, developing anther; F, mature pollen grain ; G, 

carpel section showing 3 ovaries; H, enlargement of an ovary, GUS expression in the 

embryonic sac; C to H, 45-day-old plants. The magnification was: E, 20X; B and G, 40X; F 

and H, 100X.  

 

3.3 Analysis of KVAG T-DNA Insertion Lines 

 
3.3.1 Identification of Homozygous T-DNA Insertion Plants 
 

Reverse genetics has proven to be a powerful tool to elucidate the role of a protein 

in specific metabolic pathways (like synthesis of secondary metabolites) or 

developmental processes (e.g. Ronen et al., 1999; Schumacher et al., 1999). T-

DNA insertion lines for all the KV/A/G subfamily genes, except GONST5, were 

obtained from the Arabidopsis Biological Resource Centre, ABRC (Nottingham 

Arabidopsis Stock Centre, NASC, Alonso et al., 2003) (Table 3). 
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Table 3. T-DNA insertion lines of the KVAG genes.  

Protein AGI T-DNA insertion line Designation 

KVAG1 At1g12500 Salk_034139 kvag1-1 

Salk_080551 kvag2-1 KVAG2 At3g10290 

Salk_010795 kvag2-2 

Salk_105023 kvag3-1 KVAG3 At5g04160 

E-trap1967 kvag3-2 

KVAG4 At5g05820 GabiKat_380D03 kvag4-1 

KVAG5 At3g11320 GabiKat_498B04 kvag5-1 

UDP-GalT1 At1g77610 GabiKat_229E08 ugt1-1 

 

 

The transgenic seeds obtained from the stock centre were segregating lines that 

contained the indicated T-DNA insertion. Therefore, they were screened in order 

to identify individual plants possessing the predicted insertion in a homozygous 

state. The screening was made by evaluating two parallel PCR reactions per plant. 

The first reaction was designed to amplify a fragment of the original gene, using 

primers flanking the region of the T-DNA insertion (wild type reaction). The second 

reaction amplifies one border of the T-DNA together with the original gene’s 

flanking region (mutant reaction). There are three possible results according to the 

genotype of the plant: (i) a PCR fragment only in the wild type reaction and none in 

the mutant reaction corresponds to a homozygous genotype for the wild type allele 

of the gene; (ii) a PCR product in the wild type reaction and also in the mutant 

reaction indicates a heterozygous genotype where the wild type allele of the gene 

is present in one of the chromatids while a second allele, containing the T-DNA 

insertion, is present in the second chromatid; (iii) a PCR fragment only in the 

mutant reaction and not in the wild type reaction corresponds to a homozygous 

genotype for the mutant allele. These plants are the putative candidates for 

carrying a gene knock-out.   
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Figure 10. Identification of homozygous T-DNA insertion plants by PCR.  

A, PCR reactions were performed with primers specific for wild type alleles or T-DNA 

insertion mutant alleles. WT = Col-0 wild type genomic DNA; H = homozygous individual; 

w = wild type reaction; a = 1st mutant reaction, primers: gene specific forward and T-DNA 

left border; b = 2nd mutant reaction, primers: gene specific forward and T-DNA right 

border; c = 3rd mutant reaction, primers: gene specific reverse and T-DNA left border; B, 

position of the T-DNA insertions in KVAG genes displaying T-DNA border characteristics 

in each mutant line. The T-DNA insertion of kvag3-2 was not detected by PCR. ? = not 

determined. 

 

For each line, plants carrying the T-DNA in a homozygous state could be identified 

(Figure 10 A). The position of the T-DNA insertion in each line was verified by 

sequence analysis of the T-DNA PCR product (the mutant reaction used in 

genotyping, Figure 10 B and Table 4). However, for the kvag3-2 line the T-DNA 

insertion was not identified in the predicted region (third exon of KVAG3). This 

specific line is part of an enhancer traps project (S. Poething, 
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http://enhancertraps.bio.upenn.edu) which aims at detecting the expression of 

individual genes by monitoring a reporter gene (UAS::mGFP5-ER) located within 

the insertion. Furthermore, no GFP expression could be observed in these plants. 

However, the putative kvag3-2 plants are characterized by dwarfish growth and 

yellowish leaves, with only one shoot and short and frail inflorescences (Figure 

11). The failure of identifying the T-DNA insertion in the KVAG3 gene of these 

mutant plants, in addition to absence of GFP expression, strongly suggests that 

the phenotype is caused by a second site mutation. Therefore the work on this line 

was suspended. 

 

 
Figure 11. Phenotype of kvag3-2 mutant plants. 

Plants grown on soil under greenhouse conditions (16/8 hours light/dark cycle). A, two-

week-old plants; B, four-week-old plants. 

 

3.3.2 Verification of the Gene Knock-out by RT-PCR 
 

The presence of a long insertion within a gene usually generates its disruption and 

leads to a loss-of-function mutation. The gene knock-out in the homozygous plants 

was assayed by RT-PCR with specific primers for each gene that enclosed the site 

of T-DNA insertion and were located on coding regions. The quality of the 

template RNA was checked by amplification of the housekeeping gene Actin2. 
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Figure 12. Analysis of homozygous KVAG T-DNA insertion lines by RT-PCR.  

C = Col-0 wild type cDNA; WT = Col-0 wild type genomic DNA; H1-H6 = homozygous 

individual plants. Actin2 as control for a housekeeping gene.  

 

The absence of RT-PCR products in the reactions for kvag1-1, kvag2-1, kvag3-1, 

kvag4-1 and kvag5-1 indicated that the corresponding genes in these mutant 

plants were knocked-out (Figure 12). In contrast, the RT-PCR from the lines 

kvag2-2 and ugt1-1 showed transcript amplification (Figure 12). The transcript 

from kvag2-2 had the same length as the original KVAG2 mRNA. In this case the 

T-DNA insertion was located within the first intron of this gene (Figure 10 and 

Table 4). The amplification of an mRNA product from the T-DNA insertion line 

equally sized to that of the wild type mRNA (Col-0) suggests a normal intron 

excision and correct arrangement of the exons. This is surprising, as the T-DNA 
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characteristics of the kvag2-1 line are similar but no transcript was detected. 

However, work on the kvag2-2 line was stopped and the study of a KVAG2 knock-

out was further investigated in the kvag2-1 mutant line. 

 

The transcript amplified from ugt1-1 was shorter in size than that expected from 

the wild type gene (Figure 12). In addition, this transcript contained a short 

deletion (183 bp) and a 47 bp insertion with similarity to an Arabidopsis T-DNA 

insertion (Forsbach et al., 2003). Analysis of the whole transcript sequence 

disclosed an early stop codon, which most likely produces a truncated protein. If 

this is the case, the first half of the protein (184 aa) might still be present in planta.  

 

3.3.3 Determination of the Number of T-DNA Insertions by Southern-Blots 

 
Mutant plants generated by A. tumefaciens T-DNA transformation are likely to 

integrate more than one copy of the T-DNA (Gelvin, 2003). Therefore, it is 

recommendable to analyze the number of T-DNA insertions present in the mutant 

genome to rule out the presence of multiple insertions that can lead to 

misinterpretations (i.e phenotypes). For this purpose, Southern blot hybridizations 

with the genomic DNA of the mutants and a probe specific for the left border of the 

T-DNA were performed.  

 
The mutant lines kvag4-1 and ugt1-1 yielded a single T-DNA hybridization band 

(Figure 13 A) suggesting a single copy T-DNA insertion. Two T-DNA bands were 

observed in the genome of kvag2-1 (Figure 13 A). These bands resulted from 

hybridization of the probe with the two left borders previously detected in the 

insertion in KVAG2 (Figure 10). Thus, kvag2-1 also contains a single but complex 

T-DNA insertion. The Southern hybridization patterns of kvag1-1, kvag3-1 and 

kvag5-1 revealed multiple bands (Figure 13 A). Those bands could be the result of 

linked T-DNA insertions containing several left borders in one locus or due to 

second site insertions. Therefore, the kvag1-1 mutant was backcrossed to the wild 

type in order to search for plants that have lost second site T-DNA insertions in the 

segregating population. Several individual plants of the F2 progeny, homozygous 

for the insertion, showed the same hybridization pattern as the mutant parent 

(Figure 13 B). This indicated close segregation of the T-DNAs and pointed to a 
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single, complex T-DNA insertion. Backcrosses for kvag3-1 and kvag5-1 were 

performed and are still under investigation. 

 

 

 
Figure 13. Determination of the number of T-DNA insertions in the KVAG mutant lines by 

Southern blot hybridizations.  

A, genomic DNA of the KVAG mutants (kvag1-1 Eco RI digested; kvag2-1 Eco RI 

digested; kvag3-1 Sac I digested; kvag4-1 Hind III digested; kvag5-1 Hind III digested; 

ugt1-1 Sac I digested); B, genomic DNA of F2 plants from the kvag1-1 backcrossed to 

Col-0 (Eco RI digested). Arrowheads indicate the parental bands. 

 
3.3.4 Generation and Verification of kvag1-1 x kvag2-1 Double Knock-out 
Plants 

 

Mutant plants with alterations in both putative plastidic proteins (KVAG1 and 

KVAG2) might encounter greater metabolic and/or developmental limitations than 

plants mutated in one of these carriers, especially when both proteins are involved 



3. Results   58

in similar processes. Double kvag1-1 x kvag2-1 knock-out plants were generated 

by cross pollination to investigate whether this situation could be evidenced. 

Double homozygous plants from the F2 generation were identified by PCR 

analysis (Figure 14 A) and the presence of the corresponding mRNAs was 

evaluated by RT-PCR (Figure 14 B). 

 

 
Figure 14. Identification of homozygous kvag1-1 x kvag2-1 mutant plants and verification 

of double knock-outs.  

A, identification of double homozygous plants by PCR (depicted with arrowheads). WT = 

Col-0 wild type genomic DNA; w = wild type reaction; a = 1st. mutant reaction, primers: 

gene specific forward and T-DNA left border; B, confirmation of kvag1-1 x kvag2-1 double 

knock-out plants by RT-PCR. Actin2, as control for a housekeeping gene; C = cDNA Col-0 

wild type; RT-PCR 40 cycles. M = 1kb DNA molecular weight marker (Fermentas).  

 

The double homozygous plants (in Figure 14 A, samples 12, 42, 54 and 68) did 

not show transcripts for the KVAG2 gene. Unexpectedly, a RT-PCR product was 

detected for the KVAG1 gene in all selected plants (Figure 14 B). This was an 

intriguing outcome because all plants appeared homozygous for the T-DNA 

insertion in both genes. Moreover, the single T-DNA insertion mutants for KVAG1 

were also confirmed as knock-outs (Figure 12). However, the F2 individual plant 

54 presented just a faint product after 40 cycles of RT-PCR, indicating highly 

reduced KVAG1 transcript level (Figure 14 B). Analysis of the F2 progeny obtained 

from plant 54, after self-pollination, distinguished three individual plants that 
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revealed almost no KVAG1 transcript (Figure 15, F3 plant samples 2, 3 and 7) and 

were therefore chosen for phenotypic analyses. 

 

 
Figure 15. Confirmation of kvag1-1 x kvag2-1 F3 double knock-out plants by RT-PCR.  

The arrows mark individual plants with reduced KVAG1 transcript. RT-PCR 40 cycles; 

Actin2 as control for a housekeeping gene; C = cDNA Col-0 wild type; WT = Col-0 wild 

type genomic DNA. M = 1kb DNA molecular weight marker (Fermentas).  

 

3.3.5 Phenotypical Characterization of KVAG Knock-out Lines 
 

As only one T-DNA insertion was detected in the kvag1-1, kvag2-1 and kvag3-1 

knock-out lines (Figure 13), possible alterations of the phenotype or fitness of 

these plants were expected to be directly related to the loss-of-function of the 

corresponding gene. To evaluate their phenotype and development in comparison 

to the wild type background (Col-0) the knock-out lines were grown on both, ½ MS 

medium and soil, under regular conditions (22-25°C, 16/8 hours light/dark cycle). 

All individual knock-out plants showed resembled the wild type in performance and 

morphological characteristics (not shown). The germination, growth and 

developmental characteristics of the ugt1-1, kvag4-1 and kvag5-1 lines also 

resembled that of wild type plants. In the case of ugt1-1, the presence of a C-

terminally truncated UDP-GalT1 protein, as indicated by the RT-PCR results, may 
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partially mask a potential mutant phenotype. The homozygous kvag4-1 and kvag5-

1 lines may contain second site T-DNA insertions in other genes that could affect 

the mutants phenotype. However, neither the insertion in the respective KVAG 

gene nor in other loci appeared to alter the morphology or development of these 

plants significantly. 

 

The kvag1-1 x kvag2-1 double knock-out plants grown on ½ MS medium and soil 

under regular conditions, displayed developmental and morphological 

characteristics similar to the Col-0 wild type control. The germination rate of 

kvag1-1 x kvag2-1 double knock-out plants was analyzed and yielded comparable 

results to the germination rate of the wild type (98% and 95%, respectively, 

n=120). Both results suggest that the KVAG1 and KVAG2 proteins are not 

essential for plant development under regular conditions.  

 

3.3.5.1 Analysis of Lipid Composition of kvag1-1 and kvag2-1 Plants 
 

There is a vast diversity of distinct lipids that build the membranes of plant cells, 

and within a single membrane each class of lipids has different fatty acid 

composition. Current knowledge explaining this is still limited. It is known that 

important developmental processes and responses to environmental factors are 

affected by the lipid composition of membranes. Specifically, some membrane 

proteins are functionally sustained by a certain ratio of characteristic lipids 

(Buchanan et al., 2000). The de novo synthesis of fatty acids in plants occurs 

inside the plastids. A significant portion of fatty acids is exported to the cytoplasm 

and further processed in the ER through the so called eurkaryotic lipid synthesis 

pathway. However, a glycerol-3-phosphate lipid biosynthesis pathway also exists 

in plastids, by which specific plastidial glycolipids are synthesized (Millar et al., 

2000; Dowhan, 1997).  

 

The precursors for glycosylation of plastidial glycolipids are imported from the 

cytosol (Miège et al., 1999; Tietje and Heinz, 1998), and the putative plastidic 

KVAG transporters were proposed to be involved in this task (Knappe et al., 

2003a). The lipid composition of leaves from the wild type and the kvag1-1 and 

kvag2-1 mutants was determined in collaboration with Dr. Dörmann (MPI for 
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Molecular Plant Physiology, Golm) to investigate whether these two mutants 

synthesize reduced amounts of specific plastid glycolipids, in response to a 

decreased plastid import of sugar donors caused by alterations in this specific 

transport machinery. 

 

The results showed that the amount of plastidic or prokaryotic lipids 

(monogalactosyl-diacylglycerol, MGDG; digalactosyl-diacylglycerol, DGDG; 

sulfoquinovosyl-diacylglycerol, SQDG) was not reduced with respect to the wild 

type levels (Figure 16). In contrast, there was a small but significant reduction of 

the phospholipid levels, i.e. phosphatidyl-choline and phosphatidyl-ethanolamine, 

in comparison to the wild type (Figure 16). This observation rather indicated a 

defect in the synthesis of eukaryotic lipids in the lumen of the ER than in the 

plastid localized prokaryotic pathway. The total amount of fatty acids was also 

reduced in the kvag2-1 mutant (Table 4) reflecting this disturbance in phospholipid 

biosynthesis. Furthermore, the ratio between the C16 and C18 fatty acid chains 

was slightly increased in the kvag2-1 plants (0.65) compared to wild type (0.52), 

sustaining diminished amounts of ER lipids. The C16/C18 fatty acids ratio from 

kvag1-1 plants was 0.55, similar to the wild type value.  

 

These results indicate that the process of phospholipid synthesis in leaves is 

slightly affected in the two putative plastidic KVAG knock-out plants. It is still 

unclear how the phospholipid synthesis in the organs where the genes are highly 

expressed (pollen in kvag2-1, and stems or roots in kvag1-1, section 3.2.2) is 

affected by the mutations. Lipid composition analyses of the kvag1-1 x kvag2-1 

double mutants are currently in progress. Whether this defect in lipid biosynthesis 

occurs also in the other gene mutants (kvag3-1, kvag4-1, kvag5-1 and ugt1-1) is 

unknown.  
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Figure 16. Lipid composition of leaves from kvag1-1 and kvag2-1.  

Content (in mol %) of individual polar lipids present in leaves from Col-0, kvag1-1 and 

kvag2-1. n = three independent measurements. MGDG = monogalactosyl-diacylglycerol, 

DGDG = digalactosyl-diacylglycerol, SQDG = sulfoquinovosyl-diacylglycerol, PG = 

phosphatidyl-glycerol, PI = phosphatidyl-inositol, PC = phosphatidyl-choline, PE = 

phosphatidyl-ethanolamine.  

 
Table 4. Total fatty acid content of kvag1-1 and kvag2-1 leaves. 

Total fatty acid content and amount of C16, C18 fatty acids were measured in leaves. n = 

three independent measurements. 

Plant 
genotype 

Total fatty acid content
(mg/g-1 fresh weight) 

Total C16 
mol% 

Total C18 
mol% 

Wild type Col-0 4.33 +/- 0.21 33.70 ± 0.36 64.80 ± 0.92

kvag1-1 4.45 +/- 0.19 34.93 ± 0.40 63.70 ± 0.34

kvag2-1 3.45 +/- 0.19 38.81 ± 0.89 59.45 ± 0.67

 

3.3.5.2 Analysis of kvag1-1 and kvag2-1 Plants on a Phosphate Deficient 
Background: Crosses with pho1.2  
 

Single knock-out plants for KVAG1 and KVAG2 showed that these gene products 

are putatively involved in phospholipid biosynthesis. To study the performance of 
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mutants lacking these NST/pPT carriers in a phosphate-starved background 

crosses between the shoot-phosphate deficient mutant pho1.2, and the kvag1-1 

and kvag2-1 single mutants were performed. pho1.2 plants are unable to mobilize 

phosphate from the roots to the shoots because of a point mutation leading to a 

truncated version of the PHO1 protein. PHO1 is crucial for phosphate efflux out 

the stellar cells of the roots facilitating phosphate transport into the xylem vessels 

(Hamburger et al., 2002). The phenotype of the pho1.2 mutant is typical for plants 

under phosphate starvation displaying dark green leaves, stunted growth and late 

flowering (Figure 18). 

 

Double knock-out individuals from the crosses were identified by PCR specific for 

the kvag1-1 and kvag2-1 (Figure 17) and by sequence analyses of the pho1.2 

gene (containing a premature stop codon). Approximately 100 F2 individuals were 

screened in the pho1.2 x kvag1-1 and pho1.2 x kvag2-1 populations. Three pho1.2 

x kvag1-1 and seven pho1.2 x kvag2-1 double homozygous T-DNA insertion 

plants could be identified. 

 

 
Figure 17. Identification of homozygous pho1.2 x kvag1-1 and pho1.2 x kvag2-1 plant 

mutants by PCR.  

WT = Col-0 wild type genomic DNA; w = wild type reaction; a = 1st. mutant reaction, 

primers: gene specific forward and T-DNA left border. M = 1kb DNA molecular weight 

marker (Fermentas). The pho1.2 mutation was confirmed by sequencing the gene in the 

mutants (arrowheads mark the pho1.2 x kvag1-1homozygous plants; all seven pho1.2 x 

kvag2-1plants were homozygous). 
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The homozygous double knock-out plants pho1.2 x kvag2-1 developed similarly to 

the pho1.2 single mutants whereas the pho1.2 x kvag1-1 plants revealed more 

severe developmental defects than the pho1.2 mutant. Principally, they showed 

pronounced dwarfism and delayed flowering time (more than twice the time to 

reach reproductive maturity, Figure 18). Despite this, all plants produced fewer but 

normal siliques. The seeds from both, pho1.2 x kvag1-1 and pho1.2 x kvag2-1 

plants, did not display distinguishable morphological anomalies whereas the 

germination rates changed significantly. Approximately 70% of pho1.2 seeds 

germinated on ½ MS medium, while the double mutants reached levels similar to 

the wild type (wild type Col-0 98%, pho1.2 x kvag1-1 94%, pho1.2 x kvag2-2 96%, 

n=120). The distinguished phenotype of pho1.2 x kvag1-1 mutants suggests that 

the KVAG1 protein is involved in processes where phosphate is required for plant 

development. 

 

 
Figure 18. Phenotype of pho1.2 x kvag1-1 double knock-out plants.  

kvag1-1 and pho1.2 plants, 7-week-old; pho1.2 x kvag1 double knock-out F2 progeny, 14-

week-old plants. 
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3.3.5.3 Analysis of Growth Properties of Single kvag1-1 and kvag2-1 Mutants 
under Phosphate Limiting Conditions 
 

The results observed in section 3.2.5.1 indicate that KVAG1 and KVAG2 are 

putatively involved in phospholipid biosynthesis. In addition, lack of KVAG1 in the 

pho1.2 background showed increased dwarfism in comparison to pho1.2 plants. 

Therefore, it was interesting to assess the performance of kvag2-1 and especially 

kvag1-1 single knock-out plants, in response to phosphate limitation. Mutants and 

wild type (Col-0) plants were grown on ½ MS media containing varying 

concentrations of phosphate (0.75 mM, 0.4 mM, 0.2 mM, 0.1 mM and 0.0 mM), 

and their development and morphological characteristics were analysed. 

 

In general, the single mutants and the wild type exhibited similar developmental 

characteristics. They exhibited retarded growth, small dark green rosette leaves, 

bushy root architecture (Figure 19) and retarded flowering, with one shoot and few 

siliques. These features were more severe in plants grown under phosphate 

starvation, in media with 0.1 and 0.0 mM phosphate concentrations. Grown on 

such phosphate deficiency conditions, the plants overall size was severely 

reduced (Figure 19). There were no detectable differences in root length, length or 

number of secondary roots, or number of leaves between the wild type and the 

knock-out plants. Under phosphate starvation (0.2, 0.1 and 0.0 mM phosphate) 

both wild type and mutants died before reaching reproductive maturity.  
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Figure 19. Growth of kvag1-1 and kvag 2-1 under phosphate deficiency. 

Wild type Col-0 and single kvag1-1 and kvag2-1 knock-out plants grown under different 

phosphate concentrations; 15-day-old plants. 

 

3.3.5.4. Analysis of KVAG1 and KVAG2 Gene Expression under Phosphate 
Limiting Conditions by RT-PCR 

 

To inspect a possible deregulation of expression of KVAG1 and KVAG2 under 

phosphate limitation, a semi-quantitative RT-PCR was performed using total RNA 

extracted from wild type plants grown under different phosphate concentrations. 

The results demonstrated that KVAG1 and KVAG2 transcripts in root tissues 

under phosphate deficiency (0.4 and 0.2 mM phosphate) closely match the 

transcript levels in roots from plants grown on sufficient phosphate (0.75 mM, 

Figure 20). The amount of KVAG transcripts from phosphate starved roots (0.1 

mM) was fainter, and also the amount of actin transcript in this condition, indicating 

that the RNA template had a lower quality. Similarly, plants grown on 0.0 mM 

phosphate were very small and the RNA extracted from them was not suitable for 
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cDNA synthesis. In the shoots, KVAG1 and KVAG2 transcripts behaved similarly, 

showing increase at the onset of phosphate deficiency (0.4 mM, Figure 20). 

However, transcript amounts decreased, near control levels, in more phosphate 

deprived plants (grown at 0.2 and 0.1 mM). This shows that mainly moderate 

phosphate deficiency might alter transcript regulation of the KVAG1 and KVAG2 

gene products in the shoots. Interestingly, severe reduction of phosphate seems to 

have little impact on the expression of both genes.  

 

 
Figure 20. Analysis of KVAG1 and KVAG2 expression in wild type plants grown under 

phosphate deficiency.  

Semi-quantitative RT-PCR, 28 cycles, performed with mRNA from 15-day-old wild type 

(Col-0) plants grown under phosphate limiting conditions. 1 = 0.75 mM, 2 = 0.4 mM, 3 = 

0.2 mM, 4 = 0.1 mM phosphate concentration in the media. Actin2 as control for a 

housekeeping gene.  

 

The characteristics of the mutants are sumarized in Table 5. Essentially, plants 

that lack functional members of the KV/A/G subfamily of NST/pPT carriers display 

phenotypes that resemble the wild type (i.e. leaf, root and flower morphologies and 

developmental characteristics). Investigation of the lipid composition in leaves 

from the kvag1-1 and kvag2-1 mutants, lacking one putative plastidic KVAG 

transporter each, indicated a possible association of these two proteins in the 

biosynthesis of phospholipids. Further studies regarding the lipid and fatty acid 

properties of double knock-out mutants from these two genes, and knock-outs 

from the other members of the KV/A/G subfamily, are expected to reveal whether 

this family might be involved in the synthesis of lipids of eukaryotic origin.  

 



3. Results   68

Table 5. Characteristics of the KVAG T-DNA insertion lines.  

Summary of the molecular and phenotypic characterization of KVAG mutants. a = RT-

PCR product in homozygous plants (refer to section 3.3.4). n.d. = not determined. 

T-DNA 
insertion 

Line 

Homozy-
gosity 

Position of 
T-DNA 

insertion  

Knock-
out (by 

RT-PCR) 

No. of T-
DNA 

insertions 

Phenotype 

kvag1-1 Yes Intron +853 Yes 1 Reduced 
phospholipid 

content in 
leaves  

kvag2-1 Yes Intron +898 Yes 1 Reduced 
phospholipid 

content in 
leaves 

kvag2-2 Yes n.d. No n.d. Like wild type 
kvag3-1 Yes Intron +869 Yes More than 

1 
Like wild type 

kvag3-2 No n.d. n.d. n.d. Dwarfish, 
yellowish 

leaves 
kvag4-1 Yes Intron +1444 Yes 1 Like wild type 
kvag5-1 Yes Exon +304 Yes More than 

1 
Like wild type 

ugt1-1 Yes Exon +1332 No 1 Like wild type 
kvag2-1 

x 
kvag1-1 

Yes 
 

Yes 

Intron +898 
 

Intron +853 

Yes 
 

Noa 

1 
 

1 

 
Like wild type 

 
pho1.2 

 
Yes 

Premature 
stop codon 
in 5th exon 

 
Yes 

 
No T-DNA 

Dwarfish, dark 
green leaves, 
few siliques 

 
pho1.2 

x 
kvag1-1 

 
Yes 

 
Yes 

 
5th exon 

 
Intron +853 

 
Yes 

 
n.d. 

 
No T-DNA 

 
1 

Stunted 
growth, dark 
green leaves, 

retarded 
development 

pho1.2 
x 

kvag2-1 

Yes 
 

Yes 

5th exon 
 

Intron +898 

Yes 
 

Yes 

No T-DNA 
 

1 

Dwarfish, dark 
green leaves, 

like pho1.2 
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3.4 Intracellular Localization of KVAG Proteins: Expression of KVAG::GFP 
Fusions in planta 
 

The in silico analysis of the deduced amino acid sequences of KVAG1 and KVAG2 

predicted plastidic targeting signals for these two proteins (section 3.1.1). In order 

to assess this putative plastidial signal peptide for its effective organellar targeting 

role in both proteins, analyses of plant cells transiently expressing these KVAG 

proteins fused to the reporter GFP were carried out. In addition, the same 

approach was employed for studying the intracellular localization of other 

members of the KV/A/G subfamily.  

 

The amino terminal region of KVAG2 (the first 161 amino acids comprising the 

predicted plastid target) was amplified from cDNA and cloned into the pGWB5 

vector, thereby fusing it to the amino terminus of GFP. Transient expression of this 

N161-KVAG2::GFP construct rendered a diffused cytoplasmic fluorescence in 

tobacco BY2 protoplasts (Figure 21). This GFP expression was repeatedly 

observed in several transformed cells and thus clearly contradicted the expression 

results of specific plastid labelling in protoplasts transformed with the triose 

phosphate/phosphate transporter (TPT::GFP) (Figure 21). Thus, the KVAG2 

amino terminal region by itself was not able to target the reporter protein to the 

plastids. This indicated that the KVAG2 predicted plastid signal might not be 

functional in tobacco or is insufficient for targeting the reporter protein to this 

organelle.  
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Figure 21. Intracellular localization of N161-KVAG2::GFP. 

Tobacco BY2 protoplasts transiently expressing the amino terminal region of KVAG2 (first 

161 residues) fused to GFP. For comparison the expression of the plastidic TPT protein 

fused to GFP in protoplasts from tobacco Samsun plants. Bright field = white light, GFP = 

blue light, Autofluorescence = green light. Bars = 50 µm. 

 

Consequently, the full length cDNA of KVAG2 was amplified and cloned into the 

pGWB5 vector (35S-KVAG2::GFP). This construct was transiently expressed in 

tobacco Samsun protoplasts as they present clearly distinguishable chloroplasts. 

The GFP reporter protein was not observed in plastids; instead, it labeled small 

vesicles dispersed across the cytoplasm forming a dotted pattern (Figure 23). 

These vesicles were highly motile and moved along defined narrow paths through 

the cytoplasm. This kind of pattern is comparable to reports of Golgi apparatus 

labeling (Abe et al., 2004; Gilson et al., 2004; Handford et al., 2004; Baldwin et al., 

2001). Moreover, expression of a mouse sialyltransferase (ST), a Golgi resident 

protein, fused to GFP (35S-ST::GFP) in BY2 protoplasts presented a similar 

expression pattern with vesicles of comparable size (Figure 23). Labeling of the 

ER, accomplished by expression of GFP tagged with an ER retention signal (35S-

mGFP-ER) in tobacco leaf epidermal cells (Figure 23) and protoplasts, showed a 

network of fibers across the cytoplasm differing from the Golgi dotted pattern. 

Therefore, the localization of KVAG2 fused to GFP matched the labeling patterns 

observed for the Golgi apparatus and not the ER.  
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The localization of GFP fused to the putative KVAG1 plastidic signal peptide alone 

was not determined. Instead, the full KVAG1 cDNA was amplified and cloned into 

the pGWB5 vector to determine the intracellular localization of this protein. In 

addition, the cDNAs from KVAG3, KVAG4 and KVAG5 were also cloned in order 

to analyze their intracellular localization following the same procedure. 

Interestingly, the amplification product of the KVAG5 cDNA was approximately 100 

bp shorter than the annotated model cDNA (920 bp observed versus 1025 bp 

expected, Figure 22). Sequence analysis revealed that this fragment lacks the 

second predicted exon (Figure 3). This further supports the previous 

misannotation of the KVAG5 gene. The transient expression of 35S-KVAG1::GFP, 

35S-KVAG3::GFP, 35S-KVAG4::GFP and 35S-KVAG5::GFP in tobacco 

(protoplasts or leaf epidermal cells) showed a similar pattern to that observed for 

35S-KVAG2::GFP and the ST Golgi marker (Figure 23). 

 

 
Figure 22. Amplification of KVAG5 cDNA. 

The KVAG5 cDNA product (920 bp) is 100 bp shorter than predicted by annotation 

models (1025 bp). M = DNA molecular weight marker (Fermentas). 
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Figure 23. Intracellular localization of 35S-KVAG::GFP proteins in planta. 

35S-ST::GFP, 35S-KVAG2::GFP and 35S-KVAG5::GFP constructs expressed in tobacco 

protoplasts (BY2 or Samsun). 35S-KVAG1::GFP, 35S-KVAG3::GFP, 35S-KVAG4::GFP 

and 35S-mGFP-ER constructs expressed in N. benthamiana epidermal cells. 35S-

ST::GFP = mouse ST as Golgi marker protein. 35S-mGFP-ER = GFP targeted to the ER. 

Bright field = white light, GFP = blue light, Autofluorescence = green light. Bars = 50 µm, 

except when differently stated. 
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To verify the Golgi localization of the KVAG proteins, tobacco cells expressing the 

GFP fusion proteins were treated with Brefeldin A (BFA, 100 µg/ml). BFA is a 

fungal toxin that affects specifically the structural stability of the Golgi apparatus. It 

causes disassembly of the Golgi, with most of the cisterna being absorbed into the 

ER and the fusion of the trans-Golgi network with elements of the endocytic 

pathway (Nebenfuehr et al., 2002). After BFA treatment the 35S-KVAG::GFP 

labeled structures showed severe distortion of the dotted pattern (Figure 24). The 

GFP signal was seen dispersed in the cytoplasm. Furthermore, it was also 

detected in bigger and less motile structures forming clear aggregates. Protoplasts 

transiently expressing the mammalian ST behaved in the same manner upon BFA 

treatment, while there was no change on the fluorescence pattern of 35S-mGFP-

ER transfected cells (Figure 24). The stability of other cellular compartments, i.e. 

plastids, was unaffected by BFA.  

 

The intracellular BFA sensitivity displayed by the GFP-labelled compartment 

suggested that all KVAG proteins, including KVAG1 and KVAG2 initially predicted 

as plastid localized proteins, are located in the Golgi apparatus.  
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Figure 24. Distribution of 35S-KVAG::GFP proteins after BFA treatment. 

Transiently transformed cells treated with BFA. BY2 protoplasts transfected with 35S-

ST::GFP, 35S-KVAG5::GFP and 35S-mGFP-ER; N. benthamiana leaf epidermal cells 

transfected with 35S-KVAG1::GFP, 35S-KVAG2::GFP, 35S-KVAG3::GFP and 35S-

KVAG4::GFP. Untreated cells (Without BFA) are shown for comparison. 35S-ST::GFP = 

mouse ST as Golgi marker protein; 35S-mGFP-ER = GFP targeted to the ER. Bright field 

= white light, GFP = blue light, Autofluorescence = green light. Bars = 50 µm, except when 

differently stated. 
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3.5 Expression of KVAG Proteins in a Heterologous System and 
Measurements of Transport Activity 
 

To investigate the transport activity of KVAG1 and KVAG2, high amounts of the 

proteins were required. For this purpose, the proteins were heterologously 

overexpressed in the heterologous system of S. cerevisiae, strain InvSC1. The 

cDNA entry clones (employed for GFP fusions and intracellular localization in 

planta, section 3.4) were recombined into the pYES-DEST52 yeast expression 

vector and thereby fused to a C terminal histidine tag (6 x histidine). This tag 

permitted the purification of the expressed proteins by Ni-NTA affinity 

chromatography and detection by a histidine-tag specific antibody. Transformed 

yeasts were selected and grown in SC medium lacking uracil, and protein 

overexpression was induced by galactose. For transport experiments the proteins 

were reconstituted into phosphatidylcholine membranes or liposomes. These 

artificial proteoliposomes were submitted to transport measurements using 

radiolabeled substrates. 

 

As a positive control for transport of nucleotide sugars (UDP-Gal), the full length 

cDNA of UDP-GalT1 was also cloned into pYES-DEST52 in addition to KVAG1 

and KVAG2.  UDP-GalT1 is a specific UDP-Gal transporter that also belongs to 

the KV/A/G subfamily of NST/pPT homologous proteins (Bakker et al., 2005). 

Recently, UDP-GalT3 (At4g39390) a member of the KT subfamily, was identified 

as a highly specific UDP-Gal/UMP antiporter (Rollwitz et al., in prep.). Therefore, 

the UDP-GalT3 protein overexpressed in yeast was employed as a second 

positive control for transport measurements. The full cDNAs of KVAG4 and 

KVAG5 (from section 3.4) were also cloned into pYES-DEST52, and transformed 

yeast clones were identified. A summary of the cDNAs cloned for protein 

expression is presented in Table 6. 
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Table 6. Characteristics of the KVAG cDNAs cloned for protein expression in yeast. 

The plasmid template was obtained from the Riken Institute.  

Protein cDNA size
(bp) 

Protein 
size (kDa)

mRNA / cDNA 
source 

KVAG1 1077 36 Plasmid 

KVAG2 1065 35 Flower 

KVAG4 918 30 Seedling 

KVAG5 918 30 Root 

UDP-GalT1 1005 33 Plasmid 

UDP-GalT3 1011 33 Seedling 

 

3.5.1 Analysis of KVAG Heterologous Protein Expression 
 

To evaluate the heterologous overexpression of KVAG proteins in yeast, the cells 

were grown in the presence of galactose and harvested at different time points, 

ranging from 4 to 24 hours after induction. Yeast membrane proteins were 

separated by SDS-PAGE and analyzed by Coomassie staining and western blots. 

The western blots, visualized by immune-localization with an anti-histidine-tag 

antibody, showed clear protein expression upon induction for KVAG1, KVAG2 and 

UDP-GalT1 in isolated membranes (Figure 25). The expressed proteins were 

detected between 4 to 8 hours after induction.  UDP-GalT3 was also expressed in 

yeast membranes upon induction (Figure 25). As expected, no signal was 

detected in either protein fractions from un-induced cells (time point 0 hours, 

Figure 25) or from cells transformed with an empty vector (not shown).  
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Figure 25. SDS polyacrylamide gel electrophoresis and western blots of heterologously 

expressed membrane proteins. 

Induction time (I.t): 0 hours, before protein induction; 4, 6 and 8 hours, after galactose 

induction. Western blots immune-visualized with anti-histidine-tag antibody.  

 

Yeast clones containing the KVAG4 and KVAG5 constructs did not express the 

recombinant protein after induction (10 clones analyzed for each construct, one 

representative example in Figure 25). The soluble protein fractions revealed no 
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detectable signals for histidine tagged proteins either, indicating that the 

recombinant proteins were not lost during the process of membrane isolation. 

What might cause the lack of expression of these two proteins in yeast is 

unknown. Since KVAG4 and KVAG5 could not be expressed heterologously, the 

subsequent functional assays were performed solely with the KVAG1, KVAG2, 

UDP-GalT1 and UDP-GalT3.  

 

3.5.2 Measurements of Transport Activity of the Heterologously Expressed 
KVAG Proteins 
 

In the last years, the reconstitution of proteins into artificial membranes or 

liposomes became a powerful and commonly used tool to investigate the transport 

activity of proteins imbedded in cellular membranes (Flügge, 1998; Hanke et al., 

1999; Eicks et al., 2002; Knappe et al., 2003b; Segawa et al. 2005). In the current 

study it was used to assay transport activity of proteins by measuring the import of 

a radiolabeled substrate into the lumen of liposomes. Because NSTs and pPTs 

have been described as antiporter proteins (Capasso and Hirschberg, 1984; 

Flügge, 1999; Bakker et al., 2005), the substrate/counter-substrate transport 

activity was also evaluated.  

 

3.5.2.1 Protein Solubilization from the Yeast Membrane Fraction 
 

Reconstitution of hydrophobic proteins into liposomes requires separation of the 

proteins from surrounding membranes first. Thus, the solubilzation of the KVAG 

proteins was surveyed to optimize protein isolation. Different detergents were 

tested for their capacity to solubilize the proteins imbibed in the membranes (1% 

final concentration of detergents; nonionic: Triton X-100, Tween20, DM; anionic: 

sodium deoxycholate (DOC); and zwiterionic: CHAPSO). After detergent 

treatment, the samples were centrifuged to separate the protein solution 

(supernatant fraction) from the remaining membranes (pellet fraction). The 

supernatant and pellet fractions were analyzed by western blot and the 

solubilization behavior of the protein of interest was evaluated (Figure 26 for 

KVAG2).   
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Figure 26. KVAG2 protein solubilization using different detergents. 

P = pellet fraction containing membranes, S = supernatant fraction containing solubilized 

proteins. Control = sample without detergent treatment, Triton X = Triton X-100, DM = n-

Dodecyl-β-D-maltoside, DOC = sodium deoxycholate. 

 

The recombinant protein remained entirely in the pellet fraction in the absence of 

detergents (control lanes in Figure 26). The KVAG2 protein was partially 

solubilized with all detergents tested. However, DM, CHAPSO and DOC rendered 

higher amounts of soluble recombinant protein than Triton X-100 and Tween20 

(compare the supernatant vs. pellet signals in each treated sample, Figure 26). 

DM solubilized most of the recombinant protein as demonstrated by the faint 

signal that was detected in the pellet (Figure 26), while considerable amounts of 

protein were still found in the pellet fraction from CHAPSO and DOC treated 

samples. Consequently, DM was further used for protein solubilization prior to 

protein reconstitution into liposomes. 

 

3.5.2.2 Measurements of Transport Activity Using Whole Yeast Membrane 
Proteins Reconstituted into Liposomes 

 

The yeast membrane fractions enriched with UDP-GalT1, UDP-GalT3, KVAG1 

and KVAG2 were reconstituted into liposomes and subjected to transport kinetic 

assays. The liposomes were preloaded with buffer with or without a putative 

substrate (CDP-choline, CDP-ethanolamine or nucleotide sugar diphosphates) 

prior to protein reconstitution. The transport activity of the protein was determined 

by measuring the incorporation of a radiolabeled nucleoside monophosphate 

(CMP, UMP or GMP) into the liposomes. As negative control yeast membrane 

fractions from cells transformed with an empty vector were used. The radioactivity 

incorporated into these proteoliposomes corresponds to the background transport 
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activity of endogenous yeast proteins. As another negative control, Liposomes 

without reconstituted proteins were treated identically but yielded no radioactive 

incorporation, confirming the lack of protein unrelated substrate transport into the 

artificial vesicles.  

 

The two positive controls, UDP-GalT1 and UDP-GalT3, were assayed for UMP 

and UDP-Gal/UMP transport. Uniport transport of radiolabeled UMP was low in 

UDP-GalT1 and UDP-GalT3 proteoliposomes. These uptake levels were similar to 

the values observed for the empty vector control (Figure 27). The transport of 

radiolabeled UMP in exchange for UDP-Gal in UDP-GalT1 liposomes was even 

reduced compared to the empty vector control (Figure 27). Thus, no activity 

associated with UDP-GalT1 was detected although UDP-GalT1 was previously 

characterized as a selective UDP-Gal transporter (Bakker et al., 2005). Similar 

transport experiments performed in our laboratory using UDP-GalT2, another 

UDP-Gal/UMP transporter (Bakker et al., 2005) and member of the KT subfamily, 

also did not show UDP-Gal/UMP transport activity (I. Rollwitz, pers. comm.). In 

contrast, UDP-GalT3 revealed high UDP-Gal/UMP transport activity (24.76 

nmol/min, average from 5 experiments, Figure 27). This transport was five times 

higher than the empty vector control indicating that the overexpressed carrier 

mainly transports the substrate and that the method itself is functioning. This 

activity was also significantly higher (near 12 fold increase) when compared to 

UMP unitransport, confirming UDP-GalT3 as a highly specific UDP-Gal/UMP 

antiporter (Figure 27).  

 

The characterization of the loss-of-function mutants for KVAG1 and KVAG2 

indicated a possible involvement of these proteins in the phospholipid biosynthesis 

pathway (section 3.3.5.1). Activated choline and ethanolamine are the precursors 

for phospholipid biosynthesis in the lumen of the ER. It is known that their 

activation (coupling to cytidine diphosphate) occurs in the cytosol (Buchanan et al., 

2000) and thus requires an import mechanism into the endomembrane system. 

The two activated phospholipid precursors, CDP-choline and CDP-ethanolamine, 

were used for transport experiments by the KVAG2 protein. Radiolabeled CMP 

was used as counter-substrate. Similar experiments using KVAG1 are currently 

under progress.  
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Figure 27. Transport activity of UDP-GalT1 and UDP-GalT3 reconstituted into liposomes. 

Empty vector and UDP-GalT3, n = five independent experiments; UDP-GalT1, n = three 

independent experiments. UMP* = 33P radiolabeled UMP. 

 

The transport activity of phospholipid precursors by KVAG2 were comparable to 

the transport measured in the background control (empty vector, Figure 28). There 

was no significant import of CMP or exchange of CDP-choline against CMP 

displayed by KVAG2 (Figure 28). Transport of CDP-ethanolamine/CMP (1.31 

nmol/min) was higher in comparison to the empty vector (0.6 nmol/min), but still 

below uptake of CMP in the absence of a counter substrate (2.12 nmol/min). Thus, 

the results indicate that KVAG2 does not transport CMP, CDP-choline or CDP-

ethanolamine under these conditions. 
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Figure 28. Transport activity of phospholipid precursors by KVAG2 reconstituted into 

liposomes. 

Two independent experiments. CMP* = 33P radiolabeled CMP. 

 

Nucleotide sugars are the usual substrates of NSTs. These metabolites serve as 

sugar donors for the glycosyltransferases in the Golgi and ER to modify a wide 

array of proteins, polysaccharides and lipids. Due to the structural similarities of 

KVAG proteins with NSTs, the transport activity of KVAG1 and KVAG2 

reconstituted into liposomes was assayed with a panel of nucleotide sugars. 

These substrates were chosen based on their natural occurrence in plants, and 

included UDP- and GDP- activated sugars (UDP-Glc, UDP-Gal, UDP-GlcNAc, 

UDP-N-acetyl galactosamine (UDP-GalNAc), UDP-Glucuronic acid (UDP-GlcA), 

UDP-Arabinose (UPD-Ara), UDP-Xyl, GDP-Glucose (GDP-Glc), GDP-Fuc, and 

GDP-Man).  

 

Comparisons with the specific UDP-Gal/UMP activity of UDP-GalT3 showed that 

neither KVAG1 nor KVAG2 presented high specific transport rates for any of the 

nucleotide sugars tested (Figure 29). The exchange of nucleotide sugars for 

radiolabeled monophosphates in KVAG liposomes ranged between 1.5 and 11 

nmol/min, compared to >25 nmol/min in UDP-GalT3 proteoliposomes (Figure 29). 
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UMP or GMP unitransport was also not significantly high in liposomes containing 

KVAG proteins. The transport of most nucleotide sugars by KVAG1 and KVAG2 

did not significantly surpass the background transport activities (compared to the 

empty vector, Figure 29). The exceptions were transport of UDP-GlcA/UMP and 

GDP-Fuc/GMP by KVAG2. In both cases, the KVAG2 transport of these 

nucleotide sugars represented a two fold increase compared to the same 

substrates transported by proteins from yeast transformed with the empty vector 

(Figure 29). However, the significance of these data is affected by considerable 

experimental variability, indicated by high standard deviation (sd ±4.32). Thus, the 

evidence supporting UDP-GlcA/UMP mediated transport by KVAG2 is weak. 

However, the transport experiment of GDP-Fuc/GMP by KVAG2 yielded a 2.5 fold 

increase compared to the empty vector (sd ±1.2), although this activity is still low 

compared to the positive control UDP-GalT3 (Figure 29).  
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Figure 29. Transport activity of nucleotide sugars by KVAG1 and KVAG2 reconstituted 

into liposomes. 

n = two to four independent experiments. XMP*= 33P radio-labeled UMP and GMP. 
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3.5.2.3 Measurements of Transport Activity Using Purified KVAG2 Protein 
Reconstituted into Liposomes 
 
The KVAG2 protein overexpressed in yeast membranes and reconstituted into 

liposomes showed slight GDP-Fuc/GMP and UDP-GlcA/UMP transport activities. 

To verify this, the KVAG2 protein was isolated from yeast membrane proteins by 

affinity chromatography on Ni-NTA agarose matrix. Analysis of the flow-through, 

wash and elution fractions by SDS-PAGE confirmed efficient KVAG2 purification to 

homogeneity (Figure 30). The isolated protein was reconstituted into liposomes 

and used for transport activity measurements of nucleotide sugars. The results 

from these experiments reduced the background transport especially for 

radiolabeled GMP uptake (Figure 31). However, the transport of UDP-GlcA/UMP 

(1.55 ±0.39 nmol/min) and GDP-Fuc/GMP (1.87 ±1.39 nmol/min) did not reach the 

levels observed in the whole membrane protein liposomes (7.94 ±4.32 and 7.48 

±1.2 nmol/min, respectively, Figure 29). Transport of UDP-GlcA and GDP-Fuc was 

minimal and showed no difference with other nucleotide sugar transport activities 

(Figure 31). Moreover, the incorporated radioactivity in KVAG2 proteoliposomes 

remained ten times lower than the radiolabeled UMP measured in liposomes 

containing the purified UDP-GalT3. Thus, these results indicate that KVAG2 does 

not significantly transport UDP-GlcA, GDP-Fuc and no other nucleotide sugar in 

the conditions tested. 

 

 
Figure 30. SDS-polyacrylamide gel electrophoresis analysis of purified KVAG2. 

Analysis of the flow-through, wash and elution fractions obtained during KVAG2 Ni-NTA 

protein purification. 12% SDS polyacrylamide gel stained with silver nitrate and 

corresponding western blot. 
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Figure 31. Transport activity of nucleotide sugars by purified KVAG2 reconstituted into 

liposomes. 

KVAG2, n = at least two independent experiments; UDP-GalT3, n = three independent 

experiments. XMP* = 33P radio-labeled UMP and GMP. 

  

3.5.2.4 Measurements of Transport Activity Using Yeast Golgi Vesicles 
Enriched with KVAG Proteins 
 

The low substrate transport activity observed by the KVAG proteins might be a 

consequence of denaturing conditions used in the process of proteoliposome 

preparation. The action of detergents, used to separate proteins from the yeast 

membranes, might affect the three dimensional structure of the protein and thus 

impair its functional properties. To omit this potentially unfavorable step, the Golgi-

rich microsomal fractions from yeast cells overexpressing the recombinant 

proteins were isolated and used for transport measurements.  

 

Initially, import of the radiolabeled nucleoside monophosphates, UMP and GMP, 

into Golgi vesicles was measured. High concentration (20 µM) of these two 

substrates in the external solution was expected to induce a transporter mediated 

influx towards the lumen of the Golgi vesicles. However, the UDP-GalT3, KVAG1 
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and KVAG2 microsomal vesicles did not show increase in UMP or GMP uptake in 

comparison to control vesicles (empty vector, Figure 32). There was a general 

increase in UMP and GMP uptake in the microsomes when compared to the 

import measured in the proteoliposomes method (compare Figures 29 and 32), 

also detectable in the empty vector Golgi vesicles. Therefore, this increase in 

nucleoside monophosphates uptake appears to be the result of higher amounts of 

endogenous yeast Golgi-membrane associated proteins rather than to the actual 

activity of NST/pPT transporters.  
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Figure 32. Uptake of nucleoside monophosphates into Golgi microsomal vesicles 

enriched with KVAG proteins. 

Data from one representative experiment. XMP* = 33P radio-labeled UMP and GMP. 

 

Most nucleotide sugars naturally occur in the cytoplasm but are needed in the 

lumen of the ER and Golgi for glycosylation of different molecules. The uptake of 

nucleotide sugars into the Golgi apparatus has been shown in several cases as 

the result of exchanging these substrates with luminal nucleoside 

monophosphates (Capasso and Hirschberg, 1984; Segawa et al., 2005). Because 

the experiments performed here used the radiolabeled nucleoside 

monophosphates as substrates, availability of the specific counter-substrates (the 
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nucleotide sugars) in the luminal side became a major constraint for measuring 

KVAG transport activity. This fact may explain why UMP import by UDP-GalT3 

imbibed in Golgi membranes did not reflect its high UDP-Gal/UMP transport 

activity (compare with measurements in proteoliposomes transport, Figures 29 

and 31). To circumvent this limitation, preloading of the UDP-GalT3 and control 

microsomal vesicles with UDP-Gal was assayed. Transport measurements were 

performed by incubating the preloaded Golgi microsomes with the radiolabeled 

UMP (Figure 33). 

 

The nucleotide sugar preloading treatment of Golgi vesicles (brief sonication of 

microsomes in the presence of UDP-Gal, followed by high speed centrifugation 

and microsomal pellet resuspension) had negative consequences for uptake of 

radiolabeled UMP. This was evident by nearly 50% reduction of incorporated 

substrate in both the control and UDP-GalT3 vesicles (“Sonicated” in Figure 33). 

Nevertheless, Golgi vesicles preloaded with UDP-Gal recovered UMP uptake to 

untreated levels (“Sonicated+UDP-Gal/UMP” in Figure 33). This implied that 

preloading with the nucleotide sugar induced UDP-Gal/UMP transport to a certain 

extent although there were no significant differences between control and UDP-

GalT3 enriched Golgi vesicles (Figure 33).  

 

The amount of radiolabeled UMP transported inside UDP-GalT3 vesicles was 

more than threefold below the activity observed for the same UDP-GalT3 protein 

when isolated from the Golgi microsomes and reconstituted into liposomes 

(“Liposomes+UDP-Gal/UMP” in Figure 33). This fact indicates that the stability and 

integrity of the proteins within the Golgi membranes were conserved, and hence, 

their potential functions. However, employing a radiolabeled nucleoside 

monophosphate as the measurable substrate of transport appears to be 

inadequate in this microsomal system. The microsomal vesicles contain the Golgi 

machinery and carrier proteins in a natural manner. Consequently, the preloaded 

UDP-Gal is most likely used inside the Golgi by endogenous glycosyltransferases, 

again depleting the luminal source of counter-substrate. Moreover, after galactose 

release, UDP is likely dephosphorylated increasing the lumenal pool of UMP and 

thus preventing external UMP uptake. A more direct way to assess the putative 
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nucleotide sugar transport of these proteins would require the use the classical 

radiolabeled nucleotide sugars as the import substrates into the vesicles. 
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Figure 33. Uptake of UMP into UDP-GalT3 enriched Golgi vesicles preloaded with UDP-

Gal. 

n = three independent experiments (except for Liposomes+UDP-Gal/UMP where one 

representative experiment was performed). UMP* = 33P radio-labeled UMP. 
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4. Discussion 
 

Recently, many uncharacterized proteins from different organisms have been 

identified based on sequence similarities to NSTs and pPTs (Berninsone et al., 

2001; Norambuena, et al., 2002; Baldwin et al., 2001; Knappe et al., 2003a; 

Handford et al., 2004; Bakker et al., 2005). These proteins share common 

structural features like protein size, number of TMDs, and distribution and 

conservation of putative substrate binding residues (Jack et al., 2001; Martinez-

Duncker et al., 2003; Knappe et al., 2003a). Still, very little is known about the 

substrates they transport and their physiological function. Among these new 

NST/pPT homologous proteins, the KVAG1 and KVAG2 proteins, grouped within 

the KV/A/G subfamily of Arabidopsis proteins, are the only ones presenting 

putative plastid targeting sequences. Members of the pPT subfamily, the closest 

homologues of the KVAG proteins, are transporters of the inner membrane of 

plastids that perform the relocation of carbon metabolites (e.g. triose phosphate, 

phosphoenolpyruvate, glucose-6-phosphate) between the cytosol and plastids 

(Flügge, 1999; Flügge et al., 2003; Weber et al., 2005). The proposed function of 

the KVAG1 and KVAG2 proteins in plastids was to mediate the import of lipid 

precursors, like nucleotide sugars or sugar phosphates, used for the synthesis of 

plastid exclusive lipids like MGDG, DGDG or SQDG (Knappe et al., 2003a). These 

precursors are likely synthesized in the cytosol (Coates et al., 1980; Bonin et al., 

1997), which requires an import mechanism to supply the machinery of lipid 

synthesis in plastids with the appropriate substrates. 

 

Expression and Cellular Localization of the KVAG Proteins 
 

KVAG1 and KVAG2 contain amino terminal extensions that were predicted as 

plastidial targeting sequences by three prediction programs: TargetP_v1, 

ChloroP_v1.1, and PCLR_v0.9 (data compiled in Aramemnon database, 

Schwacke et al., 2003). However, in planta transient expression of chimeras, 

where GFP was fused to the full cDNA of KVAG1 and KVAG2, did not result in 

plastid labeling (Figure 23). Instead, highly motile small vesicles were GFP labeled 

across the cytoplasm. The predicted plastid signals in KVAG1 and KVAG2 contain 

high frequency of serine/threonine and basic residues, features generally found in 
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prototype transit peptides (Schein et al., 2001; Nassoury and Morse, 2005).  

However, related proteins from other species like rice (Oryza sativa) did not 

display plastidic targeting signals. Furthermore, the predicted KVAG plastid signals 

are shorter (20-35 less residues) in comparison to the targeting peptides from the 

known pPTs. Expression in planta of one of these predicted signals, the KVAG2 

signal fused to GFP, also did not render specific plastid labeling (Figure 21), thus 

indicating that this amino terminal extension is not functional as a plastidial 

targeting sequence.  

 

The numerous small vesicles observed in tobacco cells transiently expressing the 

KVAG::GFP fusion proteins formed a dotted pattern that resembled that of 

proteins localizing to the Golgi apparatus (Figure 23). This was inferred from the 

comparison with the expression pattern of a mammalian ST fused to GFP in 

tobacco cells. Furthermore, treatment with BFA displayed similar organellar 

sensitivity in 35S-KVAG::GFP and 35S-ST::GFP expressing cells, that revealed 

severe distortion of the dotted GFP pattern. Upon BFA treatment, the GFP labeled 

compartment formed clear aggregates that got dispersed through the cytoplasm 

after prolonged exposure to the toxin (Figure 24). This is in accordance with the 

reported effects of BFA in the Golgi apparatus of plant cells. BFA causes the loss 

of Golgi stacks as the result of continuous maturation of the trans-Golgi vesicles 

and the apparent fusion between the cis-Golgi with the ER (Ritzenthaler et al., 

2002; Baldwin et al., 2001; Handford et al., 2004; Norambuena et al., 2005). BFA 

treatment prevents the formation of new cis-Golgi from budding vesicles from the 

ER, it therefore it appears as if the Golgi apparatus blends to the ER (Nebenfuehr 

et al., 2002). Hence, the organelle behaviour in transfected tobacco cells treated 

with BFA confirmed localization of KVAG1 and KVAG2 proteins in the Golgi 

apparatus.  

 

Two additional members of the KV/A/G subfamily, GONST5 and UDP-GalT1, were 

previously reported to be located in the Golgi membranes. GONST5 fused to GFP, 

co-localized with GONST1::YFP in onion epidermal cells. In addition, the dotted 

pattern of expression of GONST5 was sensitive to BFA (Handford et al., 2004). 

UDP-GalT1 was indirectly shown to be expressed in the Golgi apparatus by 

complementation of CHO-Lec8 mutant cells defective in UDP-Gal import to the 
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Golgi lumen. UDP-Gal uptake experiments performed with Golgi microsomal 

fractions isolated from yeast cells expressing UDP-GalT1 also supported the Golgi 

localization of this protein (Bakker et al., 2005). In the present study the remaining 

proteins of the KV/A/G subfamily, KVAG3, KVAG4 and KVAG5, fused to GFP, 

revealed similar patterns of Golgi localization in planta (Figure 23). Furthermore, 

the GFP labeled organelle also showed sensitivity to BFA (Figure 24). This 

strongly indicates that all members from the KV/A/G subfamily of NST/pPT 

homologous proteins are localized in the Golgi apparatus. 

 

KVAG Transport of Nucleotide Sugars and Other Substrates 
 

During the last five years several plant NSTs have been identified, most of them 

are localized in the Golgi membranes (Baldwin et al., 2001; Norambuena et al., 

2002; Handford et al., 2004; Bakker et al., 2005; Norambuena et al., 2005). They 

are most likely involved in the supply of nucleotide sugars for the modification of 

different glycoconjugates. The substrate affinities of these transporters were 

typically determined by analysis of the nucleotide sugar uptake in microsomal 

Golgi fractions enriched with the NST. Because of its low background transport of 

nucleotide sugars, except for GDP-Man and UDP-Glc (Berninsone et al., 1997; 

Norambuena et al., 2002, Bakker et al., 2005), yeast has been chosen as a 

suitable heterologous system of NST protein analysis. However, the presence of 

additional endogenous proteins, like multifunctional glycosyltransferases, might 

interfere in the determination of the NSTs transport activity (Handford et al., 2004; 

Segawa et al., 2005). This limitation can be overcome by performing transport 

experiments using phosphatidylcholine vesicles that contain the isolated 

membrane proteins (proteoliposomes). This system facilitates the manipulation of 

both, substrate and counter-substrate concentrations, without interference from 

additional transporters and metabolic enzymes (i.e. glycosyltransferases or 

pyrophosphatases). This technique has been successfully applied to determine 

the substrate specificity of LPG2 in Leishmania donovani (Segawa et al., 2005), 

the rat UDP-GalNAc and GDP-Fuc transporters (Puglielli et al., 1999; Puglielli and 

Hirschberg, 1999) and that of different pPTs (Loddenkötter et al., 1993; Fischer et 

al., 1997; Eicks et al., 2002; Knappe et al., 2003b). 
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UDP-GalT3 was recently discovered as a NST with high affinity for UDP-Gal/UMP 

transport (Rollwitz et al., in prep., Figures 27 and 31). The experimental setting for 

functional characterization of UDP-GalT3 used proteoliposomes preloaded with 

UDP-Gal in exchange with external radiolabeled UMP. This substrate setting is 

opposite to the one used by Segawa and collaborators (2005), as they measured 

the LPG2 import of radiolabeled nucleotide sugars in exchange for the nucleoside 

monophosphates. These experimental settings and their corresponding results 

confirm the notion that the membrane proteins are randomly incorporated into 

liposomes, some facing the inside and some facing the outside of the vesicles 

(Segawa et al., 2005). Thus, the transport of substrates across liposomal 

membranes occurs in both directions, and labeling of either the nucleotide sugar 

or the monophosphate is therefore suitable for measuring protein transport activity.  

 

The Golgi localized KVAG1 and KVAG2 proteins might function as NSTs, as 

shown for their close homologues GONST5, UDP-GalT1, UDP-GalT2 and UDP-

GalT3 (Handford et al., 2004; Bakker et al., 2005; Rollwitz et al., in prep.). 

Moreover, the KVAG1 and UDP-GalT3 genes were recently found to co-express 

with primary cell wall and cellulose biosynthesis related genes (i.e. cellulose 

synthase 1, 3 and 6) (Persson et al., 2005). Plant primary cell wall components 

include polysaccharides and glycoproteins that are highly glycosylated. It is 

therefore assumed that high amounts of nucleotide sugars are needed inside the 

Golgi cisternae to support glycosylation (Fry, 2004). However, when 

proteoliposomes containing KVAG1 were subjected to transport experiments with 

nucleotide sugars, no specific affinity for any of the substrates was observed 

(Figure 29). Experiments with KVAG2 reconstituted into liposomes presented 

similar results (Figures 29 and 31). No significant transport activity was detected 

for either protein when using UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GalNAc, 

UDP-GlcA, UDP-Ara, UDP-Xyl, GDP-Glc, GDP-Fuc or GDP-Man in exchange to 

the corresponding nucleoside monophosphates.  

 

These results raised three crucial functional and methodological questions: Are the 

functional properties of the KVAG proteins severely affected during the process of 

protein solubilization and reconstitution into liposomes, thus impairing proper 

function? Do the two KVAG proteins transport different substrates that were not 
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included in the previous assays? Are there cofactors or protein partners missing in 

the liposome artificial system that prevent full activity of the KVAG proteins?  

 

In principle, it is reasonable to think that the KVAG proteins reconstituted into 

liposomes still conserve their functional characteristics based on comparisons with 

successful functional characterizations of related proteins (i.e. pPTs, LPG2 and 

UDP-GalT3) (Loddenkötter et al., 1993; Fischer et al., 1997; Eicks et al., 2002; 

Segawa et al., 2005; Rollwitz et al., in prep.). However, the failed attempts to 

measure KVAG activity in isolated microsomal vesicles using radiolabeled 

monophosphates (Figures 32 and 33), did not disclose if protein solubilization with 

detergents, prior to proteoliposomes generation, interfered with the stability and 

functional properties of the KVAG proteins. As inferred from the control 

experiments with UDP-GalT3, the direct microsomal nucleotide sugar transport 

can only be performed using the radiolabeled nucleotide sugars. This approach is 

therefore limited to substrates available as radiolabeled compounds. 

 

The investigation of the T-DNA insertional mutants suggested other possible 

substrates transported by KVAG1 and KVAG2. Analyses of leaf lipids from the 

kvag1-1 and kvag2-1 knock-out mutants revealed a small but significant reduction 

in the phospholipids content (Figure 16) accompanied by reductions in C18 fatty 

acid chains (Table 4). This phenotype indicated a possible deficiency in the 

synthesis of lipids that originate from the eukaryotic biosynthesis pathway. A 

decreased supply of the phospholipid precursors CDP-choline and/or CDP-

ethanolamine to the endomembrane lumen (i.e. ER), in the absence of specific 

transporters, might explain the reduced content of phospholipids in the mutants. 

However, the transport of these additional substrates, CDP-choline and CDP-

ethanolamine, by the KVAG2 protein in liposomes was low (~1.5 nmol/min). CDP-

ethanolamine/CMP transport was higher in KVAG2 proteoliposomes than in the 

control proteoliposomes (Figure 28), but the values were still very close to the 

unitransport of CMP displayed by the control. This indicates that KVAG2 alone 

does not present specificity for phospholipids precursors under these conditions. 

These findings also correlate with the association of this protein to the Golgi 

apparatus instead of the membranes of the ER.  
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Like KVAG2, KVAG1 was also present in the Golgi membranes and not the ER 

(Figure 23). The analysis of transport of CDP-choline and CDP-ethanolamine by 

this protein is nevertheless interesting since this carrier is expressed in actively 

developing organs where phospholipids and other components are highly needed 

for new membrane formation. This putative function of KVAG1 is also suggested 

by the pronounced dwarfism and retarded development observed in pho1.2 plants 

that additionally lack KVAG1 (Figure 18). Reduction of phospholipids from the cell 

membranes and corresponding functional replacement (to a limited extent) by non-

phosphorous galactolipids and sulfolipids, represents one of the numerous 

adaptations that plants have evolved to sustain survival under low phosphate 

availability (Essigmann et al., 1998; Doermann and Benning, 2002; Poirier and 

Bucher, 2002). Thus, the putative involvement of KVAG1 in phospholipid synthesis 

would impose further restrictions in the formation of new membranes (and overall 

plant growth) in the pho1.2 phosphate deprived shoots. However, analysis of the 

single kvag1-1 mutant grown under phosphate limitation showed plant architecture 

and development indistinguishable from wild type plants grown under identical 

conditions (Figure 19). Furthermore, the regulation of KVAG1 gene expression 

was not associated to phosphate depletion in the medium (Figure 20). These 

observations indicate that even if the KVAG1 transporter is involved in 

phospholipid biosynthesis it is not essential for this metabolic pathway.  

 

Whether NSTs require additional cofactors or protein partners for proper function 

is still obscure. However, experiments with LPG2 proteoliposomes and 

presence/absence of Mg2+ and Mn2+ in the assay buffer, showed that the transport 

of GDP-Man was unaffected by these ions (Segawa et al., 2005). Another NST, 

the yeast VRG4, also does not require metal ions for its activity (Gao et al., 2001). 

Furthermore, Segawa and collaborators (2005) showed that the higher uptake of 

nucleotide sugars detected in Golgi microsomes incubated with Mg2+ was due to 

the presence of endogenous protein contaminants (i.e. glycosyltransferases). 

Thus, it appears that NSTs do not require metal ions to perform transport.  

 

Although C-terminal protein tags have been speculated to be detrimental for the 

activity or assembly of proteins complexes like in the case of NSTs, the KVAG 

proteins were extended by a C-terminal histidine-tag to facilitate their recognition 



4. Discussion   95

and isolation. In a similar manner, the LPG2 and all plant NSTs that have been 

functionally characterized until now were attached to C-terminal tags (Segawa et 

al., 2005; Rollwitz et al., in prep.; Norambuena et al., 2002; Handford et al., 2004; 

Bakker et al., 2005; Norambuena et al., 2005). Thus, it does not seem likely that 

the histidine C-terminal extension interferes with KVAG transport assembly and/or 

activity. The possibility that KVAG1 and KVAG2 require additional protein partners 

for proper function (formation of functional heterodimers) is not very likely, 

considering the fact that the NSTs identified so far seem to work as homodimers. 

However, it cannot be completely ruled out. Testing this possibility in the future 

would involve carefully designed transport experiments in which two proteins are 

reconstituted together in the same liposomes. Putative partners should be chosen 

following criteria like expression patterns in planta rather than sequence identity, 

as it was shown that closely related proteins might be expressed in different 

organs. 

 

KVAG Mutant Analyses 
 

Arabidopsis T-DNA insertion knock-out plants were identified for six of the genes 

of the KV/A/G subfamily. Under ambient conditions, the single gene mutants and 

individual plants with double kvag1-1 x kvag2-1 gene knock-outs presented similar 

developmental and morphological characteristics in comparison to the wild type. 

Furthermore, the phenotype of the kvag1-1 and kvag2-1 single mutants grown on 

limited phosphate availability also resembled that of the wild type under the same 

stress conditions (Figure 19). As mentioned above, a potential defect in the 

synthesis of phospholipids in single kvag1-1 and kvag2-1 mutant plants was 

detected only through analyses of their lipid composition. One hypothesis is that 

KVAG1 and KVAG2 are transporters of the phospholipids precursors in the ER, 

but so far there is no functional evidence to support this possibility. Moreover, 

these proteins were found to localize in the Golgi apparatus, whereas the 

proposed function mainly takes place at the ER (Dowhan, 1997; Buchanan et al., 

2000).  

 

Most of the currently known NSTs are involved in the glycosylation of cell wall 

polysaccharides and glycoproteins in the Golgi apparatus (Ma et al., 1997; 
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Hirschberg et al., 1998; Baldwin et al., 2001; Norambuena et al., 2002; Handford 

et al., 2004; Norambuena et al., 2005). In this respect, quantitative analyses of the 

cell walls components from the different Arabidopsis mutants might reveal 

deficiencies in glycosyl residues and therefore provide insights on the putative 

substrate(s) of the corresponding NSTs.  
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5. Conclusion 
 

The characterization of several NSTs and pPTs proteins in animals, fungi and 

plants and the recent sequencing of genomes allowed the identification of new 

NST/pPT homologous proteins in different organisms. The newly identified 

putative proteins show similar structural characteristics to know NSTs and pPTs, 

including the number and distribution of TMDs and several conserved residues. 

Only few of these novel proteins have been characterized, and all are functional 

NSTs localized on the Golgi apparatus. In Arabidopsis there is a high number of 

these NST/pPT like proteins (more than 40 members) and functional studies have 

been performed for only a few of them. The majority of the Arabidopsis NST/pPT 

homologous proteins split into three subfamilies according to sequence similarity: 

the KT, KD and KV/A/G subfamilies. Recent work led to the identification of two 

members of the KT and two of the KV/A/G subfamilies as UDP-Gal and GDP-Man 

transporters. Interestingly, two proteins from the KV/A/G subfamily, KVAG1 and 

KVAG2, contain predicted plastid targeting signals and therefore were thought to 

transport nucleotide sugars to the lumen of plastids, supplying the sugar donors for 

specific plastidial lipid glycosylation.  

 

Expression of the cDNA of the two putative plastidic proteins, fused to GFP, in 

plant cells revealed the localization of both proteins in the Golgi apparatus and not 

in plastids. This was further confirmed by comparisons with the Golgi specific 

labeling pattern displayed by 35S-ST::GFP and the sensitivity to BFA of the 

labeled organelle. Similar expression studies revealed that all members of the 

KV/A/G family are located in the membranes of the Golgi apparatus. In 

accordance with the proteins intracellular localization and their putative role, the 

KVAG1 and KVAG2 mediated transport of different nucleotide sugars was 

assayed, after heterologous protein expression in yeast and reconstitution into 

liposomes. In these experiments no significant transport activity was detected for 

any of the substrates tested. It is unlikely that the functional properties of these 

proteins are affected through protein solubilization and liposome preparation, as 

the UDP-GalT3 displayed high transport rates of UDP-Gal, and other homologous 

proteins have also been studied following the same approach (LPG2, members of 
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the pPT). Therefore, different substrates must be transported by the KVAG1 and 

KVAG2 proteins. 

 

The analysis of leaf lipids from the single mutants kvag1-1 and kvag2-1 revealed a 

small reduction on the phospholipid levels. This suggested the putative 

involvement of KVAG1 and KVAG2 in the synthesis of phospholipids. 

Phospholipids are mainly synthesized in the lumen of the ER, and require the 

import from the cytosol of the phospholipid precursors CDP-choline and CDP-

ethanolamine. The phospholipid precursor molecules are similar to the nucleotide 

sugars and possible substrates for NST/pPT homologous proteins. However, 

transport experiments with KVAG2 and CDP-choline and CDP-ethanolamine as 

substrates did not show significant transport activity. The experiments have not 

been performed with KVAG1 yet, but these are of great interest as the lack of this 

protein in the pho1.2 phosphate shoot deficient mutant showed a more severe 

dwarfish phenotype and delay in development. Because the KVAG1 gene is more 

or less ubiquitously expressed in developing organs, the lack of it might cause 

considerable alterations in the growth and development of the double pho1.2 x 

kvag1-1 mutant. The knock-out mutants for the other members of the KV/A/G 

subfamily, kvag3-1, kvag4-1, kvag5-1 and ugt1-1, did not show major differences 

in phenotype and performance compared to the wild type. 
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6. Abbreviations 
 
A   Ampere 
A. tumefaciens Agrobacterium tumefaciens 
aa   amino acids  
AGI   Arabidopsis Genome Initiative number 
APS   Ammonium persulphate 
Arabidopsis  Arabidopsis thaliana 
AtUTr1 & 2  Arabidopsis UDP-Glucose transporter 1 & 2 
BCIP   5-Bromo-4-chloro-3-indoylphosphate 
BFA   Brefeldin A 
bp   base pairs 
BSA   Bovine serum albumin 
BY2   Bright yellow 2 
°C   Centigrade 
cDNA   complementary DNA 
CHO-Lec8 Chinese hamster ovary cell line deficient in UDP-Gal transport 

into the Golgi 
cm centimetre 
CMP Citidine monophosphate 
CMP-Sia CMP-Sialic acid 
Col-0 Columbia 0 
CSPD Disodium 3-[4-methoxyspiro {l, 2-dioxetane-3, 2´-(5´chloro) 

tricyclo [3.3.1.13,7] decan} -4-yl] phenyl phosphate 
DNA Desoxyribonucleic acid 
dd double distilled 
DEPC Diethylpyrocarbonate 
DGDG Digalactosyl-diacylglycerol 
DM n-Dodecyl-β-D-maltoside 
Dm Drosophila melanogaster 
DMF Dimethylformamide  
DMSO   Dimethyl-sulfoxide 
dNTPs  deoxynucleotides 
DOC   Deoxycholate 
DTT   Di-thiotreitol 
E. coli   Escherichia coli 
EDTA   Ethylendiaminetetraacetic acid 
ER   Endoplasmic reticulum 
ESTs   Expressed sequenced tags 
GDP-Ara  Guanidin diphosphate-Arabinose 
GDP-Fuc  Guanidin diphosphate-Fucose 
GDP-Glc  Guanidin diphosphate-Glucose 
GDP-Man  Guanidin diphosphate-Mannose 
GFP   Green fluorescent protein 
GMP   Guanidin monophosphate 
GONST1 to 5 Golgi nucleotide sugar transporter 1 to 5 
GPT   Glucose 6-phosphate/phosphate transporter 
GUS   β-glucuronidase 
HEPES  N-2-Hydroxyethylpiperazin-N´-2-ethansulfonic acid 
Hs   Homo sapiens 
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KD   Subfamily of NST/pPT homologous proteins 
kDa   kiloDaltons 
kg   kilograms 
KT   A subfamily of NST/pPT homologous proteins 
kV   kilovolt 
KVAG   A subfamily of NST/pPT homologous proteins 
LB   Luria-Bertani medium 
Lm   Leishmania mexicana 
M   molar 
MES   4-Morpholinoethan-sulphonic acid 
mg   milligram 
MGDG  Monogalactosyl-diacylglycerol 
µCi   microCurie 
µF   micro Faraday  
µg   microgram 
µl   microlitre 
min   minute 
ml   millilitre 
mM   millimolar 
MOPS   (3-N-Morpholin)propan-sulfonic acid 
mRNA   messenger RNA 
MS   Murashige and Skog 10 medium 
N. benthamiana Nicotiana benthamiana 
NAA   Napthyl-acetic acid 
NBT   p-Nitro-blue-tetrazolium-chloride 
ng   nanogram 
Ni-NTA  Ni2+-nitrilotriacetic acid 
NST   Nucleotide sugar transporter 
O/N   overnight 
Ω   Ohm 
ORF   Open reading frame 
PCR   Polymerase chain reaction 
PEG   Polyethylenglycol 
Pi   Inorganic phosphate 
PMSF   Phenyl-methyl-sulfonyl-fluoride 
pPT   Plastidic phosphate transporter 
PPT   Phosphoenolpyruvate-phosphate/phosphate transporter 
RNA   Ribonucleic acid 
rpm   Revolutions per minute 
RT   Room temperature 
RT-PCR  Reverse transcribed PCR 
S. cerevisiae  Saccharomyces cerevisiae 
SC   Synthetic complete medium 
sd   Standard deviation 
SDS   Sodium docecyl sulphate 
SDS-PAGE  SDS-polyacrylamide gel electrophoresis 
sec   seconds 
Sp   Saccharomyces pombe 
SQDG   Sufoquinovosyl-diacylglycerol 
SSC   Tri-sodium citrate 
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TBS   Tris buffer saline 
T-DNA  Transference DNA 
TE   Tris/EDTA 
Temed  N,N,N’,N’-Tetramethylethyldiamine 
TMD   Transmembrane domain 
Tris   Tris-(hydroxymethyl)-aminomethan 
TTP   Triose-phosphate/phosphate transporter 
U   Units (enzymatic) 
UDP-Ara  Uridine diphosphate-Arabinose 
UDP-Gal  Uridine diphosphate-Galactose 
UDP-GalT1 & 2 UDP-Galactose transporter 1 & 2 
UDP-Glc  Uridine diphosphate-Glucose 
UDP-GlcA  Uridine diphosphate-Glucuronic acid 
UDP-GlcNAc  Uridine diphosphate-N-acetyl-glucuronic acid 
UDP-Xyl  Uridine diphosphate-Xylose 
UMP   Uridine monophosphate 
UV   Ultraviolet 
v/v   volume/volume 
w/v   weight/volume 
WT   Wild type 
xg   times gravity  
X-Gluc   D-Glucuronic acid 
XPT   Xylulose-phosphate/phosphate transporter 
YFP   Yellow fluorescent protein 
YPD   Yeast extract peptone dextrose medium   
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8. Appendix 
 
8.1. Antibiotics 
 
The identification of recombinant organisms was facilitated with the use of 

antibiotics for positive selection. Table 7 lists the different antibiotics and the 

conditions used. 

 
Table 7. List of antibiotics employed to select transformed organisms. 

Antibiotic Organism Stock 
(mg/ml) 

Solvent Final concentration 
(µg/ml) 

Ampycilin A. tumefaciens 50 H2O 100 

 

Kanamycin 

E. coli 

A. tumefaciens 

Arabidopsis 

 

50 

 

H2O 

25 

50 

100 

Hygromycin E. coli 

A. tumefaciens 

50 H2O 25 

50 

Gentamycin A. tumefaciens 

GV3101 

25 H2O 25 

Rifampicin A. tumefaciens  

GV3101, GV2260 

30 DMSO 150 

Carbenicilin A. tumefaciens  

GV2260 

50 1M Tris 

pH8.0 

100 

 

8.2. Bacterial Growth Media  
 
Luria-Bertani Medium (LB) 
 Bacto-Tryptone      1% (w/v) 

 Yeast extract    0.5% (w/v) 

 Sodium chloride (NaCl)     1% (w/v) 

 

The pH was adjusted to 7.0 with NaOH and autoclaved. When preparing solid 

plates 1.5% (w/v) of agar was added before autoclaving. 
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SOC Medium 
 Tryptone         2% (w/v) 

 Yeast extract      0.5% (w/v) 

 NaCl     0.05% (w/v) 

 Magnesium (Mg++)           0.02 M 

 Sucrose            0.02 M 

 

The pH was adjusted to 7.0 with NaOH and autoclaved. This is a rich medium 

used for recovering cells after transformation. 

 

YEB Medium 
 Meat extract      0.5% (w/v) 

 Yeast extract      0.1% (w/v) 

 Peptone      0.5% (w/v) 

 Sucrose      0.5% (w/v) 

 Magnesium sulphate  0.05% (w/v) 

 

When preparing solid plates 1.5% of Bacto-agar was added and autoclaved. This 

medium was used for growing A. tumefaciens. 

 

8.3. Yeast Growth Media 
 

Yeast Extract Peptone Dextrose Medium (YPD) 
Yeast extract    1% (w/v) 

Peptone    2% (w/v) 

Dextrose (D-glucose)  2% (w/v) 

 

The reagents were dissolved in double distilled water and autoclaved. When 

preparing solid YPD medium 2% agar was added and dextrose was omitted 

before autoclaving. Filter-sterilized dextrose was mixed to the still warm 

autoclaved medium. 
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Synthetic Complete (SC) Minimal Medium for Yeast 
Yeast nitrogen base (without amino acids, with ammonium sulphate)   0.67% 

Carbon source (glucose, raffinose or galactose)    2% 

Amino acids 

 Threonine            0.020% 

 Valine             0.015% 

 Leucine            0.010% 

 Phenylalanine           0.005% 

 Isoleucine, Lysine           0.003% 

 Adenine, Arginine, Histidine, Methionine, Tryptophan      0.002% 

In selective medium Uracil (0.01%) was omitted. 

 

Stock solutions for the amino acids (10X Drop Out, autoclaved) and the carbon 

source (40%, filter-sterilized) were prepared in dd water. The nitrogen base was 

dissolved in 850 ml of water and autoclaved. When cooled to 50ºC, 100 ml of Drop 

Out and 50 ml of the carbon source were added to the nitrogen base. Glucose or 

raffinose was used for regular growth of transforming yeast, whereas galactose 

was used to induce the overexpression of the protein of interest. When preparing 

plates 2% agar was added to the nitrogen base prior sterilization. 

 

8.4. Plant Growth Media 
 

Half Strength Murashige and Skog 10 Medium (MS) 
MS Macro-nutrients I 

 KH4NO3      10.3 mM 

 KNO3         9.4 mM 

 MgSO4      0.75 mM 

 KH2PO4    0.625 mM 

MS Macro-nutrients II 

 CaCl2       1.49 mM 
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MS Micro-nutrients 

 H3BO3           50.1 µM 

 MnSO4       35.2 µM 

 ZnSO4     14.95 µM 

 Na2MoO4     0.517 µM 

 CuSO4       0.05 µM 

 CoCl2      0.077 µM 

 KI          2.5 µM 

Vitamins 

 Myo-inositol      100 mg/l 

 Nicotinic acid       0.5 mg/l 

 Pyridoxine-HCl      0.5 mg/l 

 Thiamine-HCl      1.0 mg/l 

 Gycine       2.0 mg/l 

FeNa EDTA         100 µM 
MES        500 mg/l 

Sucrose       1% (w/v) 

 
The Macro I and II were prepared as 10X stock solutions, the FeNaEDTA as 100X 

and the vitamins as 1000X. Alternatively, a commercially vitamin mixture was used 

(McCowns’s Woody Plant Vitamin Mixture, Duchefa). The reagents were dissolved 

in dd water, the pH was adjusted to 5.7 with KOH and autoclaved. When preparing 

solid plates 0.6% plant agar or 0.8% Gelrite (Duchefa) was added before 

autoclaving. A practical alternative was to use the commercially available 

Murashige and Skog medium (Duchefa, with modified vitamins, 0.4% (w/v)) 

complemented with sucrose (1% w/v), when the media did not required alteration 

of the macro-nutrients concentrations. In media with reduced phosphate 

concentrations proportional KCl was added, to compensate the reduction on 

potassium due to lack of KH2PO4.  
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BY2 Culture Medium 
 MS with basic salts   0.44% (w/v) 

 Sucrose         3% (w/v) 

 myo-Inositol         100 mg/l 

 Thiamine-HCl            1 mg/l 

 2,4-Dichlorphenoxyacetic acid       0.2 mg/l 

 KH2PO4         255 mg/l 

 

The pH was adjusted to 5.0 with KOH, autoclaved and stored in the dark. 

 

8.5 List of Primers 
 
Table 8. Primers used for genotyping the T-DNA mutant plants. 

T-DNA line Primer name Primer sequence (5’ - 3’) 
Salk_34139for CCGGCATCGTTCTTGCTTCTA kvag1-1 
Salk_34139rev TGCTCCCTACTTTTTCACTTTTG 

3g10290for CATGCTCGAGGTAAGGAGCTA kvag2-1 & 2-2 
3g10290rev AGCAATGACGGCTATTGGAG 

RT04160_35for ATCGACATTAATCATCTCATGG kvag3-1 
RT04160 R GCTCTTGCCGCAGTAGC 

Homoz04160for CATTAGTGCTACTGCGGCAA kvag3-2 
Homoz04160rev TATGGAGTACCCGCCAATTC 

GK380D03for TTGAAGGGAAAAGCTGAACTCCA kvag4-1 
GK380D03rev TGGCTTTGCTTCTCTGTTTCTGC 
GK498B04for TTGCTTCTTCATCTTCTTCTCCGA kvag5-1 
GK498B04rev TCAAGCTCAGGCAAATCCCAA 
GK229E08for AGCCGAATCTCTTCTTCATGG ugt1-1 
GK229E08rev CAGTCATGCCCTGACCACTAC 
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Table 9. Primers to amplify cDNA and promoter sequences. 

The start codons for the cDNA fragments are underlined in the forward primers. 

Gene Primer name Primer sequence (5’ – 3’) cDNA 
12500 for VI CACCAAATGGTTGAAGCTCAATCATGG +1 KVAG1 
12500 rev VI GTTTAGCAATTGGATCTCTTCC +1077

pYES10290 for CACCATAATGTCGTCCCATGCTCGA +1 KVAG2 
pYES10290 rev TCTAAACCTGCGTTTAGTCTCTC +1065

04160_GFP for 1 CACCATGTCGTCGTCTGCGAAGAAA +1 KVAG3 
04160_GFP rev 1 TCTAAATCTGCGTTTTGTCTCTCC +928 

pYES05820for CACCAAAATGAAGATGGCGACGAATGGC +1 KVAG4 
pYES05820rev TCGTTTCTTGGCTTCGCTGTA +918 
pYES11320for CACCAAAATGAAGATAGCGGCCAATGG +1 KVAG5 
pYES11320rev TCGTTTCTTGGCTTCGCTGTAG +1025
pYES10290 for CACCATAATGTCGTCCCATGCTCGA +1 N161-

KVAG2 At3g10290_483rev CGGCGTCGTAGCACCAAC +483 
77610full for CACCAAATGGAGGAAGGAAGTATGTTCAG

ATCT 
+1 UDP-

GalT1 
77610full rev TTTGCCTTCGAGTTTATCATTATTAAC +1005

12500prom:969 for CACCCATGCATGATCAGTGGGAAAA -1062 prom 
KVAG1 12500exon2_3182 

rev 
ATCCGTCCTCGCTTTCTCG +793 

10290-1545 for CCTAATCTGGGGGAAAAAGA -1641 prom 
KVAG2 10290-1844 rev GAGGTGTACCAGAGAATGA +203 
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Kurzzusammenfassung 
 

Die Nukleotid-Zuckertransporter (NSTs) und die plastidären 

Phosphattranslokatoren (pPTs) weisen strukturelle und funktionelle 

Gemeinsamkeiten auf. Sie katalysieren den Transport von mit Phosphatresten 

oder Nukleotiden verknüpften Metaboliten über verschiedene Membranen, zum 

Beispiel Membranen der Plastiden, des Golgi Apparates oder des ER. In den 

letzten Jahren ist eine große Zahl dieser NST/pPT Proteine in Arabidopsis 

identifiziert worden, von denen aber erst eine kleine Zahl funktionell charakterisiert 

worden ist. Ein Teil dieser Proteine lässt sich in drei Unterfamilien unterteilen, die 

als KVAG, KT und KD Unterfamilien bezeichnet wurden. Zwei Mitglieder der 

KVAG Unterfamilie, KVAG1 und KVAG2, besitzen eine putative plastidäre 

Transitsequenz, was eine Funktion dieser Transporter in der plastidären 

Glykolipidsynthese vermuten ließ. In dieser Arbeit wurde die intrazelluläre 

Lokalisation und die physiologische Funktion dieser beiden Transporter 

untersucht. Fusionen der Proteine mit GFP wurden verwendet, um die subzelluläre 

Lokalisation zu ermitteln. Es konnte gezeigt werden, dass beide Proteine und 

ebenso weitere Proteine dieser Subfamilie im Golgi Apparat und nicht in Plastiden 

lokalisiert sind. Die Substratspezifitäten der Transporter sollten durch Expression 

in Hefe und anschließende Rekonstitution der Proteine in Liposomen ermittelt 

werden. Es konnte aber weder ein Transport von Nukleotidzuckern noch von CDP-

Cholin oder CDP-Ethanolamin, beides Vorstufen der plastidären Lipidsynthese, 

nachgewiesen werden. Um die physiologische Funktion der Transporter der KVAG 

Unterfamilie zu bestimmen, wurden Arabidopsis Linien mit T-DNA Insertionen in 

den entsprechenden Genen identifiziert und analysiert. Alle Linien zeigten einen 

Phänotyp ähnlich dem der Wildtyp-Pflanzen. 
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Abstract 
 

The nucleotide sugar transporters (NST) and the plastidic phosphate transporters 

(pPT) proteins share structural and functional similarities. They mediate the 

transport of phosphorylated and nucleotide-coupled metabolites through the 

membranes of plastids, Golgi apparatus and endoplasmic reticulum (ER). 

Recently, a great number of proteins homologous to the NST/pPT proteins have 

been identified in Arabidopsis and only a few of them have been characterized. 

The majority of these homologous proteins cluster in three subfamilies, namely the 

KV/A/G, KT and KD subfamilies. Two members of the KV/A/G subfamily, KVAG1 

and KVAG2, have a putative plastidic targeting signal. This made them interesting 

candidates as putative providers of nucleotide sugars for the synthesis of specific 

plastid lipids. In this study, the intracellular localization and in planta expression of 

these proteins was analyzed. cDNA fusions to GFP revealed the localization of 

both proteins in the Golgi apparatus and not in plastids. Transport experiments 

using liposomes and the proteins heterologously expressed in yeast were 

performed; however no significant transport of nucleotide sugars was detected. 

Homozygous knock-out T-DNA lines, kvag1-1 and kvag2-1, presented general 

wild type phenotype and development, except for a small reduction in the 

phospholipid content in leaves. The transport of CDP-choline and CDP-

ethanolamine, precursors of phospholipid biosynthesis, by KVAG2 was also 

evaluated; however the transport rates were not significantly higher than the 

controls. Additional evidence is presented for the Golgi localization of other 

members of the KV/A/G subfamily. T-DNA knock-out mutants for these genes 

were identified and they all showed a similar wild type phenotype. 
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