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Abstract 
In the single middle leg preparation of the stick insect, leg motoneurons were recorded 

intracellularly during stepping movements on a treadmill. This preparation allows 

investigating the synaptic drive from local sense organs and central pattern generating 

networks to motoneurons. The synaptic drive comprises rhythmic (‘phasic’) excitation and 

inhibition and a sustained (‘tonic’) depolarization. This general scheme was found to be true 

for all motoneurons innervating the muscles of the three major leg joints. A comparison e.g. 

with results obtained from deafferented and pharmacologically activated preparations of the 

stick insect suggests that both tonic depolarization and phasic inhibition originate from central 

networks, while the phasic excitation is mainly generated by local sense organs.  

Recruitment of motoneurons was studied on the flexor tibiae muscle as an example of a 

complexly innervated muscle. It is innervated by ~14 slow, semifast and fast motoneurons 

that are firing action potentials during the stance phase of the step cycle. During slow steps or 

steps under small load, less motoneurons are recruited than during fast steps or steps under 

high load. Fast flexor motoneurons are recruited later during stance phase than slow 

motoneurons. All motoneurons receive substantial common synaptic drive during walking. 

They are recruited in an orderly fashion due to the more negative resting membrane potential 

of the fast motoneurons, which thus require a larger and longer lasting depolarization to reach 

the threshold for the generation of action potentials. 

Because walking is not invariable but needs to be adjusted to the behavioral requirements, it 

was investigated how these adjustments are implemented at the motoneuronal level. The 

activity of flexor and extensor tibiae motoneurons was analyzed during steps with different 

velocities. Extensor motoneuron activity during the extension phase of the step cycle (i.e. 

swing phase) is rather stereotypic and invariant with stance velocity. Flexor motoneurons 

show two distinct periods of depolarization at the beginning of stance. The initial 

depolarization is also stereotypic and most likely generated by a release from inhibition that 

allows the underlying tonic excitation to depolarize the neuron. The subsequent depolarization 

is larger and faster during fast steps than during slow steps. This indicates that in the single 

insect leg during walking, mechanisms for altering stepping velocity are becoming effective 

only during already ongoing stance phase motor output. Since a large portion of the phasic 

excitation arises from sense organs, it is conceivable that for the generation of different 

stepping velocities the effectiveness of these pathways are centrally modulated, for example 

by variations in the degree of presynaptic inhibition. 
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Zusammenfassung 
In der Mittelbein-Einbeinpräparation der Stabheuschrecke wurden während 

Schreitbewegungen auf einem Laufband Motorneurone der Beinmuskeln intrazellulär 

abgeleitet. Diese Präparation ermöglicht eine Analyse der synaptischen Eingänge die 

Motorneurone von lokalen Sinnesorganen und zentralen rhythmusgenerierenden Netzwerken 

erhalten. Diese Eingänge bestehen aus einer rhythmischen (phasischen) Erregung und 

Hemmung und einer persistierenden (tonischen) Depolarisation. Dieses Grundmuster wurde 

in allen Motorneurongruppen gefunden die die Muskeln der drei wichtigsten Beingelenke 

innervieren. Ein Vergleich z.B. mit Ergebnissen von deafferentierten oder pharmakologisch 

aktivierten Präparationen der Stabheuschrecke deutet darauf hin, dass sowohl die tonische 

Depolarisation als auch die phasische Hemmung in zentralen Netzwerken generiert wird, 

während die phasische Erregung auf Signalen von lokalen Sinnesorganen beruht.  

Die Rekrutierung von Motorneuronen wurde am Flexor tibiae als Beispiel für einen komplex 

innervierten Muskel untersucht. Er wird von ~14 sog. langsamen, intermediären und 

schnellen Motorneuronen innerviert, die Aktionspotentiale während der Stemmphase des 

Schrittes erzeugen. Während langsamer Schritte oder Schritten mit geringer Last werden 

weniger Motorneurone rekrutiert als bei schnellen Schritten oder solchen mit hoher Last. 

Schnelle Flexor-Motorneurone werden später während der Stemmphase rekrutiert als 

langsame Motorneurone. Alle Motorneurone erhalten zum großen Teil gemeinsame 

synaptische Eingänge während der Schreitbewegungen. Die geordnete Rekrutierung erfolgt 

durch das negativere Ruhemembranpotential der schnellen Neurone, die dadurch eine längere 

und stärkere Depolarisationsphase benötigen um das Schwellenpotential zur Erzeugung von 

Aktionspotentialen zu erreichen 

Weil es sich beim Laufen nicht um ein invariantes Bewegungsmuster handelt, sondern 

ständige Anpassungen an Umwelt und Verhaltenssituation erforderlich sind, wurde untersucht 

wie diese Anpassungen auf der Ebene der Motorneurone verwirklicht werden. Die Aktivität 

von Flexor- und Extensor tibiae-Motorneuronen wurde während Schritten mit 

unterschiedlichen Schreitgeschwindigkeiten verglichen. Die Aktivität der Extensor-

Motorneurone während der Schwingphase ist stereotyp und invariant mit der 

Bandgeschwindigkeit während der Stemmphase. Flexor-Motorneurone zeigen zwei 

Depolarisationsphasen zum Beginn der Stemmphase. Die anfängliche Depolarisation ist auch 

stereotyp und wird wahrscheinlich durch das Ende der phasischen Hemmung bei 

gleichzeitiger tonischer Depolarisation erzeugt. Die darauf folgende Depolarisation hat 

während schneller Schritte eine größere Amplitude und einen schnelleren Zeitverlauf als 
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während langsamer Schritte. Dies deutet darauf hin, dass während der Schreitbewegungen 

Mechanismen zur Erzeugung unterschiedlicher Stemmgeschwindigkeiten erst dann effektiv 

werden, wenn die Muskelkontraktion schon begonnen hat. Weil ein Großteil der phasischen 

Erregung von sensorischen Bahnen erzeugt wird ist es denkbar, dass zur Erzeugung 

unterschiedlicher Schreitgeschwindigkeiten die Effektivität dieser Bahnen zentral moduliert 

wird, z.B. durch Variationen im Grad der präsynaptischen Inhibition. 
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1. Introduction 

Animals locomote through muscle contractions that move legs, wings or fins or change the 

body shape. In some cases, especially in “lower” invertebrates, muscles are antagonized by a 

hydroskeleton (e.g. pseudocoel of nematodes) or the body wall (e.g. mesoglea of medusae 

[Cnidaria]). In most invertebrates as well as vertebrates however, locomotion requires 

coordinated, rhythmical contractions of antagonistic, striated muscles that often move multi-

jointed limbs and appendages. With the exception of myogenic mechanisms, e.g. in 

asynchronous flight muscles of dipteran and hymenopteran insects, contractions in striated 

muscle are elicited by one or more action potentials in the associated motoneurons. In 

extreme cases, in invertebrates just one excitatory motoneuron innervates a muscle (crayfish: 

opener muscle of walking legs, Cooper & Ruffner, 1998; locust: coxal adductor and levator 

tarsi muscle, Sasaki & Burrows, 1998), but usually it is 2-15 motoneurons. In vertebrates the 

number of motoneurons is much higher (13 in the human eye muscle rectus lateralis to 750 in 

the human biceps brachii; Blickhan, 1996). All motoneurons that innervate the same muscle 

belong to a common motor pool; a single motoneuron in conjunction with the innervated 

muscle fibers is termed a motor unit. In order to control the speed and amplitude of a 

contraction, there has to be an orderly recruitment of the motor units within the motor pool, 

and the action potential frequency of each motoneuron has to be well-tuned. 

 

1.1. Synaptic drive to motoneurons 

The motoneurons represent the ultimate site of integration for signals from the central nervous 

system and the periphery. The main sources of synaptic inputs (directly or indirectly via 

intercalated interneurons) are central pattern generating networks, sense organs and higher 

brain centers. Broadly spoken, synaptic drive to motoneurons can either persist over several 

locomotor cycles (tonic drive) or be confined to a certain phase of the locomotor cycle (phasic 

drive). For a motor output that is underlying rhythmic movements like swimming, walking 

flying, chewing, breathing, swallowing etc. (reviewed in Stein et al., 1997), motoneurons 
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innervating antagonistic muscles are required to fire one or more action potentials (in the 

latter case termed a burst) followed by a quiescent period during which antagonistic 

motoneurons are firing. Such a firing pattern is often based on rhythmical alternation of 

phasic excitatory and inhibitory synaptic to motoneurons (lamprey: Russel & Wallén, 1983; 

Dale, 1986; zebrafish: Buss & Drapeau, 2001; rodent: Cazalets et al., 1996; cat: Orsal et al., 

1986; stick insect: Büschges et al., 2004). A tonic depolarization of motoneurons is also a 

prominent feature of many preparations (Xenopus: Soffe & Roberts, 1982; Tritonia: Getting 

& Dekin, 1985; stick insect: Büschges et al., 2004).  

 

 

1.1.1. Central pattern generators 

At the core of the neuronal architecture that generates a rhythmic motor pattern in many cases 

one or more neuronal ensembles termed “central pattern generator” (CPG; Grillner & 

Zangger, 1975) have been identified. Brown (1911) first suggested that central circuits are 

generating the alternating flexion and extension of leg muscles in the cat. Since then such 

networks have been discovered in a large number of motor systems. In the absence of sensory 

feedback or descending inputs from higher brain centers, CPGs can generate rhythmic activity 

in motoneurons (reviewed in Pearson, 1993; Stein et al., 1997). In some preparations the 

rhythmic activity is very close to the pattern observed in the intact animal (crayfish 

stomatogastric nervous system: Selverston, 1977; leech heartbeat: Stent et al., 1979). In other 

systems, the rhythm generated in the isolated nervous system is still similar to that in the 

intact animal, but shows clear differences, e.g. a longer cycle period (Grillner, 1981; Chrachri 

& Clarac, 1990; Johnston & Levine, 1996), which has been explained with the lack of 

excitation from sense organs (Grillner, 1981; Pearson & Wolf, 1987; Chrachri & Clarac, 

1990; cf. Cruse, 2002). It is generally assumed that in motor systems and under situations 

with small contribution of sensory feedback (e.g. due to very quick movements) the centrally 

generated rhythm is more similar to and of greater significance for the rhythm observed in the 

intact animal (Prochazka & Yakovenko, 2001; Cruse, 2002). 

In the deafferented nervous system of the stick insect, CPG-like networks that control 

motoneuron activity can be activated by tactile stimulation of the head or abdomen (Bässler & 

Wegener, 1983; Büschges et al., 2004) or by application of the muscarinic agonist pilocarpine 

(Büschges et al., 1995). The motor pattern that was generated showed only some features of 

intact locomotor patterns, like switching between antagonistic motoneuron pools. No cycle-

to-cycle coupling between neighboring leg joints or segments (Bässler & Wegener, 1983; 
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Büschges et al., 1995) was observed. This indicates that in the stick insect there may exist an 

individual CPG for each joint (a concept termed unit-burst generator by Grillner [1981] to 

describe the modular organization of pattern generating networks in the cat hind limb) which 

are coupled through central pathways and/or peripheral signals to ensure interjoint as well as 

intersegmental coordination (Cruse, 1990; Büschges, 2005; see below). 

 

 

1.1.2. Afferent signals from sense organs 

The experiments on the deafferented thoracic nerve cord of the stick insect mentioned in 

chapter 1.1.1 (Bässler & Wegener, 1983; Büschges et al., 1995; Büschges et al., 2004) show 

that in this system sensory signals are necessary for the cycle-to-cycle coupling of individual 

joint oscillators. Many influences that serve interjoint coordination have been identified (Hess 

& Büschges, 1997, 1999; Akay et al., 2001; Bucher et al., 2003; Akay et al., 2004) which 

together are sufficient to generate coordinated stepping movements of a stick insect middle 

leg when implemented in a neuro-mechanical simulation (Ekeberg et al., 2004; Büschges, 

2005). Also, afferent signals from neighboring segments are an important mechanism to 

ensure a proper intersegmental coordination of leg movements (Cruse et al., 2003; Ludwar, 

2003; Ludwar et al., 2005a). In order to maximally benefit an animal, the motor rhythm has to 

meet two prerequisites. It has to be stable and regular, but also flexible enough to allow 

compensations for sudden perturbations and also variations in walking gait, speed and 

direction. To ensure both stability and flexibility, proprioceptors play an important role. They 

signal joint position, load to a leg, muscle length or muscle strain to the CPG and/or directly 

to the motoneurons (monosynaptic reflex; human: Mendell & Hennemann, 1971; crayfish: Le 

Ray et al., 1997) and thereby influence the strength and timing of muscle contractions. Thus, 

signals from sense organs can e.g. lengthen step phases or facilitate phase transitions 

(reviewed in Pearson, 1993) or serve intersegmental coordination (Hill et al., 2003) as it is 

required for an effective locomotion (Marder & Calabrese, 1996; McCrea, 2001).  

 

 

1.1.3. Higher brain centers 

Descending signals from higher brain areas play an important role in the selection, initiation 

and adaptation of the motor pattern. Descending neurons can make direct connections with 

motoneurons (e.g. vertebrate corticospinal neurons; Preston & Whitlock, 1961) or have an 

indirect action by influencing CPG networks (Pagget et al., 2004). The segmental spinal 

networks in vertebrates are the target of descending supraspinal drive from higher brain 



 11 

centers. In cats it has been shown that electrical stimulation of a site in the midbrain that has 

been termed mesencephalic locomotor region (MLR) can evoke locomotion (Shik et al., 1966; 

reviewed in Jordan, 1998). As in command systems of invertebrates (see below), the rhythm 

of the locomotor pattern is unrelated to the pattern of MLR stimulation. Similar experiments 

suggest the existence of a MLR in all vertebrates, since it has been found in birds, tetrapods, 

fish and cyclostomes (reviewed in Grillner et al., 1997). Neurons in the MLR and in another 

locomotor region in the lateral hypothalamus project to reticulospinal neurons that activate the 

locomotor CPGs. Obviously, the relatively simple, tonic activity pattern in the brain stem 

nuclei cannot account for all subtleties of vertebrate locomotion. For example for goal-

directed locomotion, the participation of cortical (motor cortex) and subcortical structures 

(basal ganglia, cerebellum) is required (Gordon, 1991). In invertebrates, command neurons in 

the brain have been found that can evoke coordinated motor activity (e.g. crayfish swimmeret 

beating: Wiersma & Ikeda, 1964; cricket stridulation: Bentley, 1977; locust flight: Pearson et 

al., 1985; Heinrich, 2002). For example, in the cricket an identified interneuron in the 

protocerebrum can activate the pattern generator for stridulation when it is tonically firing 

action potentials (Hedwig, 2000). It is again important to note that activity in command 

neurons is unrelated to the motor rhythm itself (Bentley, 1977), which is produced by the 

pattern generating networks that are actuated. However, descending neurons can integrate 

sensory information of different modalities and convey this information to the thoracic pattern 

generating networks (Heinrich, 2002). 

In the stick insect, cutting the circumesophageal connectives increases walking activity 

without substantially altering walking movements (Graham, 1979a,b; reviewed in Bässler, 

1983; Graham, 1985), suggesting an inhibitory influence of the supraesophageal ganglion. 

After cutting of the neck connectives the animals show no organized walking movements, 

suggesting an excitatory influence of the subesophageal ganglion (Graham, 1979a; reviewed 

in Bässler, 1983; Graham, 1985). Similar to the command neurons that are involved in 

stridulation of the cricket, neurons in the subesophageal ganglion seem to have a “nonspecific 

stimulatory effect”, since their influence can be replaced by an especially strong abdominal 

stimulation (Bässler, 1983). Also, studies in locusts found that descending interneurons 

originating in the subesophageal ganglion are active during leg movements, but show 

extensive variability in their response properties (Altman & Kiehn 1979; discussion in Ridgel 

& Ritzmann, 2005). It has been suggested that descending inputs from the brain partly act to 

release neuromodulators that activate thoracic neuronal networks (Johnston et al., 1999; 

Ridgel & Ritzmann, 2005). 
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1.2. Intrinsic properties of motoneurons 

1.2.1. Significance for recruitment 

Motoneurons in vertebrates and invertebrates comprise a very variable population of neurons 

that differ in intrinsic properties such as size, membrane currents, amount and probability of 

transmitter release etc. In invertebrates, so-called slow, semifast and fast motoneurons can be 

distinguished that often innervate different sections of the muscle (Bässler et al., 1996; Sasaki 

& Burrows, 1998). Although vertebrate motoneurons are usually not termed fast or slow 

motoneurons, they also have different sizes and intrinsic properties that are important for the 

generation of a functional motor pattern. Intrinsic properties determine the neurons’ response 

to synaptic inputs. For example, different thresholds for action potential generation (Burrows, 

1996) can be responsible for one neuron firing action potentials while another one is not as a 

reaction to identical synaptic inputs. Another mechanism that has been discovered in 

vertebrates is termed the ‘size principle’ (Henneman et al., 1965), which states that 

differences in membrane resistance due to corresponding differences in cell body size are 

responsible for the differential consecutive recruitment of neurons from a motor pool that 

receive common synaptic inputs. 

 

 

1.2.2. Bistable properties 

In some cases, the motoneurons themselves possess the array of different ion channels that is 

required to generate the oscillations that underlie rhythmic motor pattern. For example in the 

stomatogastric ganglion of decapod crustaceans (STG), motoneurons can act as endogenous 

bursters (Bal et al., 1988, reviewed in Hooper & DiCaprio, 2004). In other cases, 

motoneurons can generate some features of the oscillations (reviewed in Nusbaum & 

Beenhakker, 2002). Among these features are the ability of motoneurons to sustain a 

depolarization in the absence of excitatory inputs (plateau potential; Llinas & Sugimori, 

1980; Hounsgaard et al., 1984; reviewed in Kiehn & Eken, 1998), an increased excitability 

after inhibition (post-inhibitory rebound; Friesen, 1994; Angstadt et al., 2005) or the escape 

from inhibition (Kiehn et al., 2000). In vertebrate motoneurons, persistent inward currents 

have been found that increase the excitability for synaptic inputs (reviewed in Heckmann et 

al., 2005).  
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1.3. Control of stepping velocity 

In a diverse and often non-predictable environment, the motor output of an animal needs to be 

adjusted at all time in order to fulfill the current requirements of a behavioral task. In walking, 

for example, such adjustments include changing the direction and the speed of locomotion. At 

present detailed knowledge exists on the generation of a basic locomotor output for a variety 

of locomotor behaviors, like swimming (reviewed in Friesen, 1994; Arshavsky et al., 1998; 

Grillner, 2003), walking (reviewed in Bässler & Büschges, 1998; Pearson & Gordon, 2000) 

and flying (reviewed in Robertson, 2003). However, when it comes to the neural mechanisms 

that underlie the patterning of motoneuron activity during modifications of the motor output, 

e.g. changing the speed of locomotion, the picture is less clear. 

 

 

1.3.1. Mechanisms for changing swimming speed 

For swimming in vertebrates and invertebrates considerable information is available on the 

mediation of changes in speed of locomotion. An increase in swimming speed results from an 

increase in the frequency of the rhythmic tail, fin or body movements. The lamprey, for 

example, swims by means of undulatory trunk movements that are generated by alternating 

contractions of the myotomes along its body axis. Within each body segment there is a CPG 

network that receives tonic glutamatergic excitation from reticulospinal neurons in the 

brainstem (Buchanan et al., 1987, reviewed in Grillner et al., 1997). The more tonic excitatory 

drive the CPG interneurons receive, the faster the networks oscillate which in turn provide 

alternating excitation and inhibition to the motoneurons (summary in Orlovsky et al., 1999). 

With increasing locomotor output not only the frequency, but to some extent also the 

magnitude of motoneuron activation and muscle contractions increases (Sirota et al., 2000), 

which in a freely moving animal would lead to an increase of swimming velocity. Results on 

fictive swimming in the Xenopus embryo (Sillar & Roberts, 1993; Roberts et al., 1998) and 

the marine mollusc Clione (Satterlie 1993; reviewed in Orlovsky et al., 1999) point in a 

similar direction. 

 

 

1.3.2. Mechanisms for changing walking speed 

For walking, less is known about the neural mechanisms in charge of modifying the activation 

pattern of motoneurons. In general walking systems are multi-legged with two, four, six or 
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more limbs. With changing speed interlimb coordination changes (Wendler, 1964; Graham, 

1972; Cruse et al., 1994). In quadrupeds, for example, there is a change in gait from walk to 

trot to gallop when the speed of locomotion increases (summary in Orlovsky et al., 1999). The 

walking pattern of the single limb can contribute to an increase in locomotor speed in 

different ways, e.g. by an increase of step length, a decrease of cycle period or a combination 

of both. Although for example in the cat stride length of the stance phase increases to some 

extent with faster speeds of locomotion, it is primarily the decrease in cycle period that is 

responsible for the increase in speed (Halbertsma, 1983; Yakovenko et al., 2005, reviewed in 

Orlovsky et al., 1999). The same is true for walking in arthropods, e.g. in crayfish (Clarac & 

Chasserat, 1986) and stick insects (Wendler, 1964; Graham, 1972; Graham & Cruse, 1981). 

In turn, the decrease in cycle period is generally achieved by a decrease in stance phase 

duration, while swing duration varies little or not at all (stick insect: Wendler, 1964; Graham, 

1972; locust: Burns, 1973; lobster: Ayers & Davis; 1974; cat: Halbertsma, 1983; reviewed in 

Orlovsky et al., 1999). 

In insects it has been suggested that descending drive from the brain provides tonic excitation, 

the strength of which can influence walking speed (Roeder, 1937; Ridgel & Ritzmann, 2005). 

Similarly, in the cat the cycle period of the walking motor output changes with tonic 

background excitation from the brainstem. It is noteworthy that these descending signals 

appear not to directly control cycle period but instead determine the intensity of muscle 

contractions (Shik et al. 1966), suggesting that the changing afferent feedback from the limb 

is responsible for changing the cycle period (Yakovenko et al., 2005). 

 

 

1.3.3. Advantages of the single leg preparation 

How exactly the synaptic drive to motoneurons and their activity pattern in a walking animal 

are affected in the course of changes in walking speed, in particular in vivo is however still a 

largely unknown issue. Compared to the investigations reported above, the semi-intact single 

leg preparation of the stick insect endogenously expresses a locomotor rhythm varying in 

cycle period, speed or strength (Bässler, 1993; Fischer et al. 2001). The findings provide 

insights into the neural mechanisms that may be responsible for the generation of different 

walking speeds in vivo, and which also have implications for the design of robots utilizing 

biological principles of locomotion (Dürr et al., 2002; Ritzmann et al., 2004) or behavior-

based computer simulations (Cruse et al., 1998; Dürr et al., 2004). The results may allow 

conclusions on the modifications in the premotor network that contribute to changes in 
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walking speed and enable us to develop specific hypotheses that can be tested in subsequent 

sets of experiments under more reduced conditions.  

 

 

1.4. Objectives  

As the interface between nervous system and musculature, motoneurons are the site of 

integration for synaptic drive from the CPG, afferent signals from sense organs and 

descending information from higher brain centers. Their intrinsic properties are responsible 

for the translation of these inputs into an appropriate firing pattern to drive the muscles. The 

single middle leg preparation of the stick insect (Bässler, 1993; Fischer et al. 2001) allows an 

in-depth intracellular analysis of the activity pattern of leg motoneurons during the execution 

of stepping movement in order to answer the following questions:  

• What is the synaptic drive the motoneurons receive during the execution of 

rhythmic locomotor activity? 

• Do the neurons in one motor pool receive similar or different synaptic drive 

during walking? 

• What are the mechanisms that are responsible for an orderly recruitment of 

motoneurons? Do intrinsic properties play a role in this? 

• What are the mechanisms that act at the level of the motoneurons to produce 

variations in motor output, e.g. different stepping velocities? 
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2. Materials & Methods 

2.1. Preparation 

The experiments were performed on adult female individuals of the stick insect species 

Cuniculina impigra (syn. Baculum impigrum) from a colony maintained at the University of 

Cologne (Fig.1a). All legs except one middle leg were severed at the level of mid-coxa. The 

thorax was glued to a foam platform dorsal side up with dental cement (Protemp II, 3M 

ESPE, Seefeld, Germany). Pro- and retraction of the remaining leg was blocked also with 

dental cement. A window was cut dorsally through the cuticle spanning from the middle of 

the meso- to the middle of the metathorax. The gut was moved aside and fat and connective 

tissue were removed in order to expose the mesothoracic ganglion and the lateral nerves. Care 

was taken to leave the main trachea intact. The lateral nerves 2 and 5 (nl2/nl5, nomenclature 

according to Marquardt, 1940) on the ipsilateral side of the remaining leg, innervating the 

pro- and retractor coxae muscles, respectively, were crushed with a fine forceps. The 

mesothoracic ganglion was lifted on a movable waxed platform and the surrounding 

connective tissue was pinned down with small cactus spines. To improve electrode 

penetration, small crystals of a proteolytic enzyme (Pronase E, MERCK, Darmstadt, 

Germany) were placed on the ganglionic sheath for 60-90s. The enzyme was thoroughly 

washed out and the thoracic cavity was filled with saline (NaCl 180mM; sucrose 30mM; 

HEPES 10mM; CaCl2 5mM; KCl 4mM; MgCl2 1mM).  

 

 

2.2. Treadmill 

The treadmill consisted of two styrofoam drums (diameter 40mm; width 28mm) each 

mounted on a micro DC-motor (DC1516, FAULHABER, Schönaich, Germany) that had a 

center distance of 50mm. Around them a belt made of light crepe paper (35g/m2) was placed. 

The tangential force that had to be applied to overcome belt friction was 4.0 ± 0.3mN. The 
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moment of inertia of the system, which is determined by the effective mass of the treadmill, 

was 1.1g and thus equal to the mass of an adult animal (1.1 ± 0.3g; N=10; mean ± SD). One 

of the DC-motors served as a tachometer. The output voltage, which was proportional to belt 

velocity, was smoothed (first order low-pass filter, time constant 20ms) in order to eliminate 

voltage spikes. With the other motor, belt friction could be varied. By a computer-controlled 

voltage-current converter (Peter Heinecke, self-construction) a current could be applied that 

generated a torque and thereby changed the force required to move the belt without moving 

the belt itself. By this, belt friction could be altered in a range from 1.5 to 6.5mN. The 

treadmill was positioned below the leg perpendicularly to the longitudinal axis of the animal. 

The height was adjusted so that the angle of the joint between femur and tibia was ~90° in 

mid-stance (Fig.1b). 
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2.3.  Electrophysiology 

2.3.1. Extracellular recordings 

Recordings were carried out under dimmed light conditions at room temperature (20-22°C). 

Both animal and electrodes were placed on an air table that dampened vibrations and 

minimized movement especially of the intracellular recording electrode relative to the animal. 

Electromyogramms (EMGs) of the femoral muscles were recorded by inserting two copper 

wires (diameter 50µm, insulated except for the tips) closely together through the cuticle of the 

proximal femur. Depending on the insertion site, muscle potentials from the flexor tibiae were 

recorded individually or (due to the vicinity of both muscles) together with extensor tibiae 

potentials. Potentials from these antagonists could be distinguished by amplitude and 

correlation with leg movements on the treadmill (cf. Fischer et al., 2001). In some figures, the 

flexor EMG was displayed twice: one on full scale (EMG ‘Flex’) and one on an enlarged 

scale to show the extensor potentials more clearly (EMG ‘Ext’; see arrows in Fig.3a). 

Because of the innervation by several excitatory motoneurons (MNs) (~14 in the closely 

related species Carausius morosus; Storrer et al., 1986; Debrodt & Bässler, 1989), it was not 

possible to discriminate single motor units in the EMG recordings of the flexor tibiae muscle. 

However, intracellular recordings verified that the muscle potentials with the largest 

amplitude could be attributed to the fast (fFlex) MNs, while spike activity of the slow (sFlex) 

MNs produced muscle potentials with smaller amplitude. Potentials of semifast (sfFlex) MNs 

of the flexor tibiae could not always be distinguished from potentials of slow or fast motor 

units by amplitude.  

In some experiments, an EMG from the levator trochanteris muscle was recorded by inserting 

wires dorsally into the coxa. Also, hook electrodes were used to extracellularly record the 

action potentials of protractor coxae MNs from the nerve nl2 and retractor coxae MNs from 

nl5 proximal to the site where they had been crushed. All extracellular recordings were 

amplified and band-pass filtered (50Hz-10kHz).  

 

 

2.3.2. Intracellular recordings 

Intracellular recordings of MNs were made from their arborizations in the neuropil of the 

mesothoracic ganglion. Glass micropipettes (GB100-TF8P, SCIENCE PRODUCTS, 

Hofheim, Germany) were pulled on a P-97 filament puller (SUTTER INSRUMENTS, 

Novato, USA) and filled with 3M KAc/0,05M KCl tip solution (electrode resistance 15-
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25MO). The signals were amplified with a SEC-10L intracellular amplifier (NPI 

ELECTRONICS, Tamm, Germany) in bridge, discontinuous current-clamp (DCC) or 

discontinuous single-electrode voltage-clamp (SEVC) mode. During recordings in switched 

mode (DCC, SEVC), switching frequency of >12 kHz were used and electrode potential was 

monitored on an oscilloscope. MNs were identified by leg movements evoked by firing of 

action potentials upon injection of depolarizing current and by correlation with muscle 

potentials in the EMG recordings. In case of the flexor tibiae, slow, fast and semifast MNs 

differed in the amplitude of flexion of the FT-joint during injection of depolarizing current. 

Each action potential in an fFlex-MN evoked a clearly visible twitching movement, while a 

single spike in a sfFlex-MN and a sFlex-MN caused a barely detectable movement. In these 

neurons, a train of action potentials at high frequency caused a smooth flexion of the FT-joint 

that was always faster in case of the sfFlex-MN. Also in the sfFlex-MNs, a clearly visible leg 

movement was evoked at lower spike frequencies than in the sFlex-MNs. Similarly, extensor, 

depressor and levator motoneurons were identified. Because nl2 and nl5 had been crushed, 

there was no leg movement upon action potential firing in pro- and retractor MNs. In this 

case, the correlation of action potential firing with an extracellularly recorded action potential 

in the nerves nl2 or nl5 was used for identification. 

Recordings where no stable resting membrane potential was reached were discarded. A total 

of 25 flexor MNs, 17 extensor MNs, 10 depressor MNs, 7 levator MNs, 2 retractor MNs and 

3 protractor MNs were recorded in 54 animals. 

 

 

2.4. Data recording and evaluation 

The electrophysiological data and the voltage output of the treadmill tachometer were 

digitized with a MICRO1401 A/D converter and recorded with SPIKE2 software (both 

CAMBRIDGE ELECTRONIC DESIGN, Cambridge, UK) on a personal computer. The other 

DC-motor of the treadmill was connected to the voltage-current converter, and a SPIKE2 

sequencer program was written to apply a continuous current to the motor (Fig.1b). For 

further data evaluation custom SPIKE2 script programs were written. In order to estimate the 

gross activity of the flexor muscle at a certain time the EMG data were rectified and smoothed 

(first order low-pass filter, time constant 20ms). The area under this smoothed rectified EMG 

(SR-EMG) was used as a measure of the work performed by the flexor muscle (Lippold, 

1952; Winter, 1990). For averaging of the membrane potential of Flex- and Ext-MNs the 
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spikes were eliminated from the intracellular recordings by substitution with a straight line 

(maximal 5ms before to 5ms after peak of action potential). 

 

 

2.5. Statistics 

Mean values were compared using a t-test. Means and samples were regarded as significantly 

different at P<0.05. Likewise in a regression analysis, a correlation was assumed at P<0.05. 

The following symbols show the level of statistical significance: (-) not significant; (*) 

0.01<P<0.05; (**) 0.001<P= 0.01; (***) P= 0.001. In the text, N gives the number of 

experiments or animals while n gives the sample size. Values are shown as mean ± standard 

deviation (SD). 
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3. Results 

3.1. Basic description of walking movements and motor pattern 

3.1.1. Leg anatomy 

A photograph of the middle leg is shown in Fig.2a with arrows symbolizing the movement 

around the major leg joints. These are 

• the femur-tibia (FT-) joint, where the tibia was flexed and extended by 

contraction of the flexor and extensor tibiae (Flex/Ext) muscles. 

• the coxa-trochanter (CT-) joint, where the trochantero-femur was moved up- and 

downward by contraction of the levator and depressor trochanteris (Lev/DepTr) 

muscles. 

• the thorax-coxa (TC-) joint where in the freely moving animal the coxa and thus 

the whole leg is pro- and retracted by contraction of the pro- and retractor coxae 

(Pro/RetCx) muscles. In the present experiments, this joint was deafferented, 

fixed with glue (see Materials & Methods) and thus unable to move. 

 

 

3.1.2. Walking movements 

When the animal was glued to the holder and positioned above the treadmill after the 

dissection, it was usually resting. A brief puff of air or tactile stimulation with a soft paint 

brush of the abdomen or antennae was applied to elicit walking episodes (see also Bässler, 

1983). Upon stimulation, the animal started to perform walking and/or tapping movements 

with the middle leg and showed other signs of arousal (searching movements of the antennae, 

bending of the abdomen). After walking movements were initiated, the stimulation was 

terminated. Walking episodes typically consisted of three to ten steps, after long recording 

sessions sometimes only single steps could be elicited even upon strong tactile stimulation. 

The longest walking episode that was recorded consisted of 39 consecutive steps. In most 

cases the arousal of the animal slowly ebbed away after stimulation, and both maximum and 

mean belt velocity decreased toward the end of a stepping sequence while cycle period 
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increased (Fig.2b, left). In other instances the animal walked with a fairly constant maximum 

belt velocity over a long time (Fig.2b, middle) or increased the motor output during the 

sequence (Fig.2b, right). A more detailed and quantitative description of the velocity of 

walking movements will be given in chapter 3.4. 
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3.1.3. Motor pattern 

The activity of motoneurons (MNs) innervating the major leg muscles was recorded 

extracellularly from the lateral motor nerves carrying their axons or by EMG recordings from 

the muscles. During walking, there was alternating activity in antagonistic MN pools that is 

described in more detail below. In all figures, if present, grey bars mark the resting state of the 

animal. Within a stepping sequence, horizontal black bars mark the duration of the stance 

phase, while white bars indicate the swing phase. Tapping movements or uncoordinated 

muscle activities (co-contraction, erratic activity) are labeled with asterisks.  

 

FT-joint 

The flexor and extensor muscles were recorded by EMG wires inserted into the flexor 

(Fig.3a). Due to the vicinity of the extensor, potentials from this muscle could be recorded 

simultaneously and distinguished by their smaller, more stereotypic amplitude and the time of 

occurrence. In Fig.3a and some of the following, the EMG recording from the flexor muscle 

is drawn twice with the enlarged trace showing the extensor muscle potentials more clearly 

(arrows in Fig.3a; see Materials & Methods, chapter 2.3.1). 

During stance the belt was moved by flexion of the tibia. Stance phase was defined as the 

time of flexor tibiae (flexor) motoneuron (MN) activity recorded with the EMG. It should be 

noted that the onset of EMG activity occurred on average 126 ± 151ms (mean ± SD; N=4; 

n=282) before the contraction force of the flexor muscle was strong enough to move the belt 

(Fig.3b). Swing phase was defined as the rest of the step cycle. During swing, the tibia was 

extended. Extensor tibiae (extensor) MN activity started at the beginning of swing phase. 

Sometimes there was a short pause between the last extensor action potential and the 

beginning of the next stance phase (Fischer et al., 2001; see below). 

 

CT-joint 

EMG recordings from the levator (Figs.3a; 4) show that in this specific experiment the 

muscle was starting to contract at the transition from stance to swing phase and was lifting the 

leg when it was returned to the starting position for a new stance phase. The pattern of activity 

of levator and depressor showed considerable variation between preparations. Probably due to 

small differences in treadmill height, leg geometry or because of intrinsic variability, in 4 of 7 

animals the levator was starting to contract early in stance phase (cf. Fig.16). 
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The antagonistic depressor tibiae MNs were recorded only intracellularly (see chapter 3.2) 

and showed antiphasic activity with respect to levator MNs. 

 

TC-joint 

Protractor and retractor MNs were recorded with extracellular hook electrodes from the lateral 

nerves nl2 and nl5, respectively (Fig.4). Although the TC-joint was immobilized and 

deafferented (for details see Materials & Methods, chapter 2.1), there was alternating activity 

in protractor and retractor MNs (Akay et al., 2004). Furthermore, like in intact walking 

animals, the motor pattern in this joint was coupled to that of the more distal leg joints. After 

tactile stimulation of the abdomen, retractor MNs were active during stance phase (Figs.3a; 

4a). This resembles the situation in a freely moving animal, where in the stance phase of the 

middle leg during forward walking the propulsion is mainly generated by retraction of the leg 

around the TC-joint (Cruse, 1976). Interestingly, after tactile stimulation of the antennae, 

protractor MNs were active during stance, resembling the situation in a freely moving animal 

walking backward (Fig.4b). These results show that, albeit the somewhat artificial walking 

situation of the single middle leg on the treadmill, the interjoint coordination of the motor 

pattern generated bears similarities to the situation in the intact animal. 
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3.2. Synaptic drive to flexor tibiae MNs 

An analysis of the inputs to MNs can give insights into the role of the premotor elements 

(CPG, sense organs). Intracellular recordings of MNs (TC-joint: pro- and retractor coxae 

MNs; CT-joint: levator and depressor trochanteris MNs; FT-joint: flexor and extensor tibiae 

MNs) were performed to elucidate the nature of the synaptic drive they receive from premotor 

sources. Different protocols for current injection were applied that will be described below in 

more detail. Most recordings were performed from flexor MNs, and in the first part of this 

chapter only flexor MNs will be discussed. Later in this chapter the results from other MNs 

will be presented. 

 

 

3.2.1. Modulation of membrane potential during stepping 

A total of 25 flexor MNs (14 slow, 4 semifast, 7 fast) were recorded. The activity of a 

semifast flexor MN during a stepping sequence is shown in Fig.5a (left). When a stepping 

sequence was induced by stimulation of the animal (arrow in Fig.5a, left and following), the 

membrane potential of flexor MNs depolarized (N=25). Shortly after the stimulation there 

was a brief tapping movement visible that consisted of a weak flexion and extension of the 

tibia that was not accompanied by belt movement; another tapping movement occurred at the 

end of the stepping sequence (asterisks in Fig.5a, left and following).  

 

Phasic modulation  

During the flexion phase of the steps (i.e. stance phase) and tapping movements the neuron 

depolarized, while it repolarized throughout the extension (swing) phase, causing rhythmic 

membrane potential modulations of 17.9 ± 4.2mV (peak to trough; range: 8.1 to 27.7mV; 

N=11, n=263) that correlated with the step cycles (Fig.5a, left). Of 25 recorded flexor MNs, 

15 MNs (60%; 11 of 14 slow MNs; 2 of 4 semifast MNs, 3 of 7 fast MNs) were depolarized 

above threshold and fired action potentials during stance. Especially during slow steps in 10 

of 25 flexor MNs (40%; 3 of 14 slow MNs, 2 of 4 semifast MNs, 4 of 7 fast MNs) no action 

potentials were generated during stance (Fig.5a, right). 
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Tonic depolarization 

Throughout the stepping sequence, the membrane potential remained more depolarized than 

during rest in 18 of 25 MNs (72%), revealing a tonic depolarization (Fig.5a,b). In detail, 9 of  

14 slow MNs (64%), 3 of 4 semifast MNs (75%) and 6 of 7 fast MNs (86%) were tonically 

depolarized. During stepping, the concurrent phasic modulation complicated the measurement 

of the amplitude of the tonic depolarization alone. Fig.5b shows a recording of a flexor MN 

during a stepping cycle that included a short pause between two steps (box in Fig.5b, left). 

This pause is displayed in Fig.5b (right) on an enlarged timescale, showing that there was no 

activity visible in the flexor and extensor tibiae EMG and thus supposedly no contamination 

by phasic inputs acting on the flexor MN. During this time, the amplitude of the tonic 

depolarization was 3.9 ± 2.2mV (range: 1.3 to 9.5mV; N=18, n=28). 

 

Hypothetical synaptic drive 

In theory, there are different types of synaptic drive that could lead to the observed 

modulation (Fig.5c): 

1. In addition to a tonic excitation that lasted throughout the stepping sequence, there 

could have been a phasic excitation during stance that ceased during swing, 

repolarizing the neuron. 

2. A tonic excitation could have been shaped by phasic inhibitory inputs (Büschges, 

1998; Büschges et al., 2004) that repolarized the neuron during swing. 

3. Both a phasic excitation during stance and a phasic inhibition during swing could have 

been superimposed on a tonic excitation. 

In addition, intrinsic cellular properties of the motoneurons like plateau potentials or 

postinhibitory rebound could play a role in generating the membrane potential modulations of 

the flexor MNs. 

 

 

3.2.2. Input resistance shows synaptic drive 

Method 

When a MN receives synaptic inputs, ion channels in the membrane open, causing a decrease 

in membrane resistance. Membrane resistance of a MN, the so-called input resistance, can be 

measured by injection of short hyperpolarizing current pulses (e.g. -0.5 to -1.5nA, 50-150ms 

duration) through the intracellular microelectrode. According to Ohm’s law ( IRU ⋅= ), the 

amplitude of the voltage deflection (U) upon current (I) injection is a measure of the 
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membrane resistance (R). In the bridge or current-clamp mode of the intracellular amplifier 

this means that if input resistance decreases because synaptic inputs (excitatory or inhibitory) 

cause an opening of ion channels, the voltage deflection upon injection of current pulses 

decreases (Fig.6a). Since not every synaptic input leads to a modulation of membrane 

potential (e.g. de- and hyperpolarizing inputs that cancel each other out or an ionic 

conductance with a reversal potential that is equal to the membrane potential at a given time), 

an analysis of the input resistance is valuable for determining the occurrence and strength of 

synaptic inputs. Also it can help to determine for example whether a depolarization of a 

neuron is due to a synaptic excitation or a release from inhibition. 

 

Phasic conductance(s) 

Hyperpolarizing current pulses were injected into an fFlex MN (Fig.6b, left). The voltage 

deflection that was a response to the current pulse, and thus the input resistance of the neuron, 

was greatest during rest prior to stimulation. The amplitude of the voltage deflection that was 

caused by the current pulses decreased during stance as well as during swing. In Fig.6b 

(right), ten individual responses are shown in grey together with the averaged response 

(black). Input resistance was 4.6 ± 0.3MΩ during rest (range: 4.1 to 5.2MΩ, N=1, n=18). 

Because of strong fluctuations of the membrane potential during stance and swing, only the 

averaged trace of 18 individual current pulses could be used to calculate input resistance, 

which was 2.6MΩ during stance and 1.4MΩ during swing. In all 8 flexor MNs where 

hyperpolarizing current pulses were injected, a qualitative analysis showed that input 

resistance decreased during stance and even more during swing compared to rest. The smaller 

input resistance shows that there were conductances due to synaptic inputs during both stance 

and swing phase and that the conductance was largest during swing. This infers that the 

observed membrane potential modulations were not caused by a combination of a tonic 

excitation throughout the stepping sequence and a phasic excitation during stance (hypothesis 

1; Fig.5c), because in this case input resistance during swing would have been larger than 

during stance. 
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The depolarization of flexor MNs started at the end of swing phase (Fig.7a). A close 

observation of the membrane resistance during swing revealed that the inhibitory conductance 

was large during the beginning of swing phase and then ebbed, because the voltage deflection 

became larger as swing phase proceeds (Fig.7b). While the inhibition ceased, the membrane 

potential depolarized only slightly, suggesting that 

1. The reversal potential of the inhibition was close to the membrane potential during 

swing, so that both a strong and a weak inhibition brought the membrane potential to 

similar values. 

2. Phasic inhibition was strongest during the first 30% of swing. At the end of swing, the 

amplitude of the tonic depolarization could be estimated, because the phasic inhibition 

was weak while the phasic excitation had not started yet. This was consistent with the 

extracellular data that showed that there was a short pause between extensor and flexor 

activity at the transition from swing to stance (Fig.3b). 

3. The phasic depolarization of flexor MNs during stance was not entirely caused by a 

release from inhibition that allowed an underlying tonic excitation to depolarize the 

neuron (hypothesis 2; Fig.5c), because in this case there should have been a strong 

depolarization of the membrane potential during the time when the inhibition became 

weaker. 

In conclusion, there must act both a phasic excitation during stance and a phasic inhibition 

during swing on the flexor MNs that caused the rhythmic membrane potential modulations. 
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Tonic depolarization 

In addition to the phasic modulation, in 18 of 25 flexor MNs (72%) a tonic depolarization 

throughout the stepping sequence was observed that ebbed after the last step (Fig.8a). This 

tonic depolarization was also accompanied by an increase in membrane conductance. After 

activity in the tibial muscles had ceased (vertical dotted line), the membrane potential slowly 

hyperpolarized toward the resting value. Simultaneously with the ebbing depolarizing input, 

the membrane resistance significantly (P=0.0013) increased from 7.7 ± 5.2MΩ (range 3.4 to 

22.8MΩ) to 8.8 ± 6.1MΩ (range 3.8 to 27.1MΩ) (N=8, n=15), which corresponded to a 

conductance increase of 26% due to the tonic depolarization (Fig.8b). 

 

Conclusion 

Measurements of input resistance showed that the membrane potential modulations of flexor 

MNs during stepping were caused by phasic excitatory and inhibitory synaptic inputs that 

were superimposed on an underlying tonic depolarization (Fig.9). 

 

 

3.2.3. Current injection shows reversal potentials 

In previous experiments in the stick insect by Ludwar et al. (2005b) as well, a tonic 

depolarization of MNs in the deafferented mesothoracic ganglion was observed during front 

leg walking. Their data show a reversal potential of the tonic depolarization of -47 to -32mV 

for different leg MNs (-39mV and -38mV for flexor MNs in the ipsi- and contralateral 

mesothoracic ganglion, respectively). The present study aimed at determining whether similar 

observations could be made in the single middle leg preparation, when the segmental 

networks for locomotion were operating. 

 

Method 

Injection of constant de- or hyperpolarizing current changes the membrane potential of a 

neuron to a different value that is either closer or further away from the reversal potential of 

an excitatory or inhibitory current elicited e.g. by synaptic inputs (Fig.10). Because this 

changes the electromotive force (EMF) that acts on the participating ions (the EMF is 

proportional to the difference between the membrane potential and the reversal potential), the 

amplitude of the voltage deflection during the phase of excitatory or inhibitory synaptic inputs 

will also change.  



 33 

 



 34 

 
 

 

 
 



 35 

An excitatory current is either caused by an inflow of Na+-ions into the cell or by a mixed 

Na+/K+[/Ca2+]-current, both of which currents have a reversal potential that is more 

depolarized than the resting membrane potential. If the neuron is depolarized, the voltage 

deflection will be smaller because the imposed membrane potential is closer to the reversal 

potential of the excitation. Reversely, if the neuron is hyperpolarized, the excitatory current 

will cause a larger voltage deflection than at rest, because the imposed membrane potential is 

further away from the reversal potential of the excitation. An excitation can also be caused by 

cessation of a persistent outward current. In this case the input resistance will increase, which 

has however never been observed. 

An inhibitory current is either caused by an inflow of Cl--ions into the cell or by an outflow of 

K+-ions; the reversal potential of both of these currents is more hyperpolarized than the 

resting potential. If the neuron is depolarized, the voltage deflection will be larger because the 

imposed membrane potential is further away from the reversal potential of the inhibition. 

Reversely, if the neuron is hyperpolarized, the inhibitory current will cause a smaller voltage 

deflection than at rest, because the imposed membrane potential is closer to the reversal 

potential of the inhibition. If the neuron is hyperpolarized to a value that is more negative than 

the reversal potential of the inhibitory current, the inhibition will switch sign. An inhibition 

can also be caused by cessation of a persistent inward current. In this case the input resistance 

will increase, which has however never been observed. 

Thus, by constantly de- or hyperpolarizing the neuron, conclusions about the nature and the 

reversal potential of synaptic currents can be drawn. 

 

Hypothetical considerations 

Through injection of constant de- or hyperpolarizing current, a different membrane potential 

can be imposed (see above). Fig.11a shows a schematic drawing of the activity of a flexor 

MN during a series of steps. The bar labelled A1 symbolizes the amplitude of the tonic 

depolarization, while the bar labelled A2 symbolizes the amplitude of the phasic modulation. 

If the tonic modulation A1 were caused by an excitation with a reversal potential slightly more 

depolarized than the resting membrane potential, the difference between the reversal potential 

and the imposed new resting potential would be larger when the neuron is hyperpolarized 

(left). In this case, A1 would become larger. Correspondingly when the neuron is depolarized, 

the imposed new resting potential would be closer to (and maybe more depolarized than) the 

reversal potential, so the amplitude A1 of the tonic depolarization would become smaller or 

switch sign and turn into a tonic hyperpolarization (see above). While the amplitude of the 
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tonic depolarization would vary when the neuron is de- or hyperpolarized by current injection, 

the amplitude of the phasic modulation (A2), which is caused by a transition between phasic 

excitation and inhibition should remain more constant, because the opposite influences of the 

current injection on the modulation during excitation and inhibition would cancel each other 

out. 

 

Tonic depolarization 

The amplitude of the tonic depolarization could be estimated from the membrane potential at 

the end of swing phase, because here the phasic inputs were small (see chapter 3.2.2) or 

during short pauses within a stepping cycle (Fig.5b). In a fast flexor MN with a resting 

membrane potential of -68.3mV, the membrane potential at the end of swing phase was 

-65mV, so the amplitude of the tonic depolarization was approximately 3-4mV without 

current injection (Fig.11b, middle). During injection of constant hyperpolarizing current the 

membrane potential during rest changed to -92.9mV and the amplitude of the tonic 

depolarization increased to 13-14mV (Fig.11b, left). This is due to the fact that the imposed 

resting potential of the neuron was further away from the reversal potential of the tonic 

depolarization. During injection of constant depolarizing current the membrane potential 

during rest changed to -50.4mV (Fig.11b, right). There was no tonic depolarization visible, 

suggesting that the reversal potential of the tonic conductance in the neuron shown in Fig.11 

was ~-50mV. The amplitude of the tonic modulation measured in 5 flexor MNs (2 slow, 2 

semifast, 1 fast) during intracellular injection of de- and hyperpolarizing current is shown in 

Fig.11c. The data points can be fitted with a regression line (P<0.0001; N=5, n=27) that gives 

a reversal potential of -49.0mV. 

 

Phasic excitation 

During injection of depolarizing current, the phasic depolarization was clearly visible while 

the tonic depolarization was not (Fig.11b, right). This shows that the reversal potential of the 

phasic excitatory current in this neuron was more depolarized than that of the tonic 

depolarization. The amplitude of the phasic excitation was measured in 5 flexor MNs (2 slow, 

2 semifast, 1 fast) during intracellular injection of de- and hyperpolarizing current (Fig.11d). 

The amplitude of the tonic excitation decreased when the neuron was depolarized (P=0.0002; 

N=5, n=90). Even at the most depolarized membrane potential values around -20mV, the 

tonic excitation did not change sign. The variability of the data does not allow a calculation of 
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the reversal potential. It is likely to be caused by the fact that the peak potential of flexor MNs 

varies with belt velocity (see chapter 3.4). Also, every action potential creates a shunt across

the membrane that especially at high action potential frequencies may have opposed further 

depolarizations. 

 

Phasic inhibition 

The phasic inhibition was strongest during the first 30% of swing (see Fig.7b). In a fast flexor 

MN, the membrane potential during this time was approximately -65mV when no current was 

injected (Fig.11b, middle). By injection of constant current through the micropipette into the 

cell the amplitude and sign of the phasic inhibition could be influenced. When the neuron was 

hyperpolarized by current injection, the phasic inhibition switched sign and became a 

depolarizing ‘hump’ with a peak around -75mV (Fig.11b, left), indicating that the reversal 

potential of the phasic inhibition in this neuron lay between -65 and -75mV.  

The amplitude of the phasic inhibition was measured in 5 flexor MNs (2 slow, 2 semifast, 1 

fast) during intracellular injection of de- and hyperpolarizing current (Fig.11d). The data 

points can be fitted with a regression line (P<0.0001; N=5, n=90) that gives a reversal 

potential of -79.5mV. 

The phasic inhibition was mediated by inhibitory postsynaptic potentials (IPSPs) that could be 

detected in the intracellular recordings during swing (Fig.12a). Under the assumption that the 

majority of the membrane potential fluctuations during swing were caused by IPSPs, the 

amplitude of this “jitter” allows predictions about IPSP amplitude. To determine the 

amplitude of the jitter, the intracellular recording of a flexor MN was high-pass filtered 

(frequency 71Hz) in order to eliminate slow modulations and the root mean square value 

(RMS) of the filtered trace was determined (Fig.12b). When no current was passed through 

the electrode, the membrane potential during swing hyperpolarized to a potential of -66.0mV 

and the RMS value of a 0.25s time interval during swing was 0.31mV (Fig.12b, middle). 

When the neuron was hyperpolarized, the membrane potential during swing depolarized to a 

potential of -71.8mV and the RMS value was 0.25mV (Fig.12b, left). When the neuron was 

depolarized, the membrane potential during swing strongly hyperpolarized to a potential of -

31.5mV and the RMS value was 0.49mV (Fig.12b, right). This again shows that the reversal 

potential of the phasic inhibitory current in this neuron was between -66.0 and -71.8mV and 

was closer to -71.8mV, because the RMS value was smaller at this potential. 
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Conclusions 

The experiments involving current injection show that  

1. The tonic depolarization was caused by a conductance with a reversal potential of 

-49mV. This would be expected from a mixed Na+/K+-current (Ludwar et al. 2005b). 

2. The phasic excitation was caused by a conductance with a reversal potential that was 

more depolarized than -20mV. This would be expected from a Na+- or a mixed 

Na+/Ca+-current. 

3. The phasic inhibition was caused by a conductance with a reversal potential of 

-79.5mV, which is consistent with both a K+- and a Cl--current. 

 

 

3.2.4. Voltage-clamp recordings 

Method 

When analyzing bridge- or current-clamp data, voltage-dependent membrane properties have 

to be considered. For example, due to a voltage-gated opening and closing of ion channels 

cell membranes do not have a linear current-voltage (I-V) relationship over the whole 

potential range, causing an error in measurements of input resistance when the potential 

changes. Also, when the membrane potential has reached the reversal potential of a given 

conductance, there is no more voltage change detectable although the channels are still open. 

In order to circumvent these problems, measurements were performed in the discontinuous 

single-electrode voltage-clamp mode (dSEVC, short: VC) of the amplifier. However, due to 

the large membrane area of the dendritic tree, the whole neuron could not be clamped to the 

holding potential, i.e. no space-clamp could be obtained (Spruston et al., 1993). Thus, often 

action potentials were still generated, presumably because the membrane potential at the spike 

generating zone was not equal to the holding potential. This problem has to be kept in mind 

when analyzing data from VC recordings. 

Analogously to the current-clamp recordings, measurements of membrane resistance were 

performed in voltage-clamp mode by analyzing the current that flows across the membrane as 

a response to an imposed short hyperpolarizing voltage step. Also, the cell membrane could 

be clamped at different holding potentials, allowing conclusions about the reversal potentials 

of the underlying ionic currents. 
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Tonic depolarization 

Measurements of input resistance were performed in voltage-clamp mode (Fig.13a), showing 

that when the tonic depolarization ebbed the input resistance in this slow flexor MN increased 

from 28.2 ± 3.77MΩ to 36.6 ± 2.54MΩ (N=1, n=18).  

 

Phasic modulation 

The VC recordings were well suited to reveal the underlying synaptic drive to MNs. In 

Fig13b, the membrane potential of a semifast flexor MN showed little modulation during 

swing in the CC recording (left); probably because the value of -56 to -57mV was close to the 

reversal potential of the inhibitory conductance in this neuron. In the VC recording at a 

depolarized holding potential (middle), an outward current was visible during swing (arrow). 

This suggests that the reversal potential of the inhibitory conductance in this neuron was more 

hyperpolarized than the holding potential of -42.3mV. At a slightly hyperpolarized holding 

potential (right), an inward current during swing was visible (arrow). The current switched 

sign between -42.3 and -65.3mV, suggesting that the reversal potential of the inhibitory 

conductance in this neuron was more depolarized than -65.3mV. 

Together, these examples show that the data obtained from voltage clamp recordings 

qualitatively substantiate the results from current-clamp experiments. 

 

3.2.5. Functional significance of the tonic depolarization 

Susceptibility to other inputs 

The role of a depolarizing current in a MN is usually to bring the membrane potential above 

spike threshold or closer to the threshold in order to cause spiking or facilitate spiking upon a 

different excitatory input. It has to be kept in mind however, that if a large depolarizing 

conductance has a reversal potential below spike threshold, there is a shunt across the 

membrane that makes the neuron insensitive for other inputs. In general, the shunting effect 

and the depolarizing effect of the conductance compete, and the reversal potential of the tonic 

conductance determines which influence prevails (Brizzi et al., 2004).  

In case of the leg MNs recorded in the stick insect, the reversal potential (-49mV, see above) 

was more depolarized than the resting potential (-62 to -67mV, see chapter 3.4) and very 

close to spike threshold (-50 to -51mV, see chapter 3.4). Thus, theoretically the shunting 

effect could impair spike generation. This was tested by injection of short, depolarizing 

current pulses into a slow flexor MN that were just sub-threshold prior to tactile 
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stimulation of the animal. After leg movements had stopped, in 4 of 6 flexor MNs the pulses 

were sufficient to elicit spike activity in the MN (Fig.14a). This suggests that the tonic 

depolarization acted to make the neuron more susceptible to excitatory inputs. 
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Reversal potential 

When a neuron was held at a depolarized value by current injection, the tonic conductance 

produced a hyperpolarization (Figs.11d; 14b). Interestingly, while the tonic hyperpolarization 

was ebbing in Fig.14b, the neuron was firing action potentials although it was more 

hyperpolarized than at rest. This suggests that depolarization is not the only mechanism 

through which the tonic conductance increased the neuron’s excitability, but that second 

messenger pathways might be involved (Trimmer, 1994; Heinrich et al., 2001). This idea is 

also consistent with the slow time-course of decay of the tonic depolarization, which lasted up 

to several seconds (Figs.5b; 6b). 

 

 

3.2.6. Other leg motoneurons 

Extensor MNs 

A total of 17 extensor MNs were recorded, in 7 of which (41%) a tonic depolarization could 

be observed without current injection. Fig.15 shows an example of the activity of a fast 

extensor MN (FETi) during a stepping sequence. The extensor MN depolarized and was firing 

action potentials during swing and repolarized during stance. This caused a phasic modulation 

of the membrane potential, but in this case no tonic depolarization was visible.  

Hyperpolarizing current pulses were injected into a FETi MN (Fig.15b, left). As in case of 

the flexor neurons, the voltage deflection that was a response to the current pulse (as a 

measure of the input resistance) was greatest prior to stimulation during rest. The amplitude 

of the voltage deflection that was caused by the current pulses decreased during stance as well 

as during swing. In Fig.15b (right), 24 individual responses are shown in grey together with 

the average (black). The input resistance was 3.6 ± 0.44MΩ at rest (range 2.9 to 4.5 MΩ; 

N=1, n=24). Because of strong fluctuations of the membrane potential during stance and 

swing, only the averaged trace of 24 individual current pulses could be used to calculate input 

resistance, which was 1.9MΩ during stance and 2.0MΩ during swing. The smaller input 

resistance compared to rest shows that there were conductances due to synaptic inputs during 

both stance and swing phase. 

In a slow extensor MN, there was no tonic depolarization visible without current injection at a 

resting potential of -54.8mV, while the amplitude of the phasic modulation was 15-19mV 

(Fig.15c, middle). During injection of constant hyperpolarizing current (Fig.15c, left) the 

membrane potential during rest changed to -90.3mV. A tonic depolarization became visible 

with an amplitude of 15mV while the amplitude of the phasic modulation slightly decreased 



  

 
to 14-18mV. The hyperpolarization during stance did not reverse sign. During injection of 

constant depolarizing current (Fig.15c, right) the membrane potential during rest changed to

-35.9mV. Again, there was no more tonic depolarization visible, suggesting that the reversal 

potential of the tonic depolarization was close to this value. The amplitude of the phasic 

modulation was 13-16mV. Also, during extensor activity the potential hyperpolarized below 

the altered resting potential, indicating an active inhibition during swing instead of a cessation 

of excitation. 
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Levator MNs 

A total of 7 levator MNs were recorded, in 3 of which (43%) a tonic depolarization could be 

observed without current injection. Fig.16 shows a recording of a fast levator motoneuron 

during a sequence of steps that is interrupted by two tapping movements (asterisks). The 

variability of levator activity has been discussed before (chapter 3.1.3). In this example, the 

levator was phasically depolarized and firing action potentials throughout stance phase and 

the initial part of swing phase. After that, the neuron repolarized. Throughout the stepping 

sequence, a tonic depolarization of 6-7mV was visible. 

In the same levator MN, a tonic depolarization of 5-6mV was visible without current injection 

at a resting potential of -63.8mV, while the amplitude of the phasic modulation was 7-13mV 

(Fig.16b, middle). During injection of constant hyperpolarizing current (Fig.16b, left) the 

membrane potential during rest changed to -96.7mV. The amplitude of the tonic 

depolarization increased to 9-10mV while the amplitude of the phasic modulation was 9-

12mV. The hyperpolarization during stance did not reverse sign. During injection of constant 

depolarizing current (Fig.16b, right) the membrane potential during rest changed to -25.0mV. 

Again, there was no more tonic depolarization visible. The amplitude of the phasic 

modulation was 9-15mV. Also, probably during activity of the antagonistic depressor MNs 

the potential hyperpolarized below the altered resting potential, indicating an active inhibition 

instead of a cessation of excitation. 

 

Depressor MNs 

A total of 10 depressor MNs were recorded, in 8 of which (80%) a tonic depolarization could 

be observed without current injection. The activity of a slow depressor MN (sDepr MN) 

during a series of steps is shown in Fig.17. A comparison of the depressor activity with the 

levator EMG showed that fast levator potentials (large units in EMG Lev) never occur during 

sDepr firing, indicating the antagonistic nature of levator and depressor MNs. Sometimes, 

small units in the levator EMG were co-active with low-frequency spikes in the depressor, 

which was hyperpolarized by a few millivolts during this episode of co-contraction (dotted 

boxes in Fig.17). 

In a slow depressor MN, there was a tonic depolarization of ~2mV visible without current 

injection at a resting potential of -62.1mV, while the amplitude of the phasic modulation was 

~9mV (Fig.17b, middle). During injection of constant hyperpolarizing current (Fig.17b, left) 

the membrane potential during rest changed to -76.6mV. The tonic depolarization increased to 

an amplitude of ~7mV while the amplitude of the phasic modulation increased to 13-16mV. 



  

 
 

The hyperpolarization during early swing did not reverse sign. During injection of constant 

depolarizing current (Fig.17b, right) the membrane potential during rest changed to -55.3mV. 

There was no more tonic depolarization visible. The amplitude of the phasic modulation was 

~16mV. Also, during levator activity the potential hyperpolarized below the altered resting 

potential, indicating an active inhibition instead of a cessation of excitation. 

 

Protractor MNs 

A total of 3 protractor MNs were recorded, in 2 of which (67%) a tonic depolarization could 

be observed without current injection. An intracellular recording of a protractor MN is shown 

in Fig.18a. As in a freely moving animal walking forward, there was protractor activity 

during swing phase (Akay et al., 2004). A large tonic depolarization of 9-13mV was visible 

that slowly decayed after the stepping sequence. 
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Retractor MNs 

A total of 2 retractor MNs were recorded, in 1 of which a tonic depolarization could be 

observed without current injection. Fig.18b shows a recording of a retractor MN that was 

active during stance, resembling forward walking.  
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3.2.7. Summary 

A tonic excitation and phasic excitation and inhibition were shown for flexor MNs (Figs.6b; 

9; 11b). Experiments involving measurements of input resistance and current injection 

showed that the same was true for extensor MNs (Fig.15).  

For levator and depressor MNs, no measurements of input resistance were performed. In both 

neuron populations a tonic depolarization could be observed, although in some cases only 

during injection of constant hyperpolarizing current (Figs.16a;17a). A phasic inhibition could 

be shown by the fact that during activity of the respective antagonist the membrane potential 

hyperpolarized below resting value during injection of depolarizing current (Figs.16b, right; 

17b, right). Although it could not be ruled out that the synaptic drive to levator and depressor 

MNs was caused by a combination of tonic excitation and phasic inhibition (Fig.5c, middle), 

the similarity of the activity pattern during walking with flexor and extensor MNs suggested 

that there also was a phasic excitation. 

Due to a small number of recorded cells, no experiments involving current injections or 

measurements of input resistance were performed on protractor and retractor MNs. However, 

the general pattern of synaptic drive appeared to be similar in protractor and retractor MNs as 

for the other MNs.  
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3.3. Recruitment of slow and fast flexor MNs 

3.3.1. Muscle structure 

In most insect skeletal muscles, the muscle fibers can be classified in slow, intermediate and 

fast types that differ in their metabolism and contractile properties. Correspondingly, there are 

slow, intermediate and fast MNs that differ for example in the amount of transmitter that is 

released at the neuromuscular junction (Rathmayer, 1996) or their axon diameter (Gewecke, 

1995). Each of these neurons can innervate muscle fibers with different properties, and 

individual muscle fibers are mostly innervated by MNs with different properties (Bässler et 

al., 1996; Sasaki & Burrows, 1998). Thus, MNs can generate fast twitches or slow continuous 

muscle contractions. Many insect muscles do not have a homogenous fiber type distribution. 

For example, the stick insect extensor tibiae muscle (Bässler & Storrer, 1980; Bässler et al., 

1996; Bässler & Stein, 1996) and the flexor tibiae muscle of the locust (Theophilidis & Burns, 

1983; Sasaki & Burrows, 1998) have a proximal part that is innervated almost exclusively by 

fast MNs and a distal part that is innervated mostly by slow MNs.  

The flexor tibiae is one of the most complexly innervated muscles in the stick insect and in 

invertebrates in general. In the phylogenetically close species Carausius morosus, it is 

innervated by at least 14 excitatory MNs with slow, fast and intermediate characteristics 

(Debrodt & Bässler 1989; Storrer et al., 1986). In EMG recordings, muscle potentials from 

different fibers can be distinguished by amplitude; fast MNs produce large muscle potentials 

and slow MNs produce small muscle potentials (Cruse & Pflüger, 1981). However, because 

the amplitude of the recorded muscle potentials also depends on parameters like the distance 

of the fiber from the recording site, intracellular recordings are required to be certain about 

the identity of the MNs. 

 

 

3.3.2. Functional requirements 

As in any other muscle contraction, for contractions during walking it is required that the 

neurons in a motor pool are recruited in an orderly fashion, i.e. muscle fibers that generate 

small forces must be activated earlier than those generating large forces. It has been shown in 

the previous chapter that the basic features of the synaptic drive from premotor elements are 

similar for both the MNs within a motor pool and within different motor pools. In case of the 

flexor tibiae, this leads to the question of whether there is a recruitment order from slow to 
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fast MNs during walking and (if so) what the mechanisms are that are responsible for this 

recruitment. 

 

 

3.3.3. Consecutive recruitment 

As a first step it was investigated how fast and slow motor units of the flexor tibiae muscle 

were activated during the stance phase of the single leg preparation. An example of an EMG 

recording of the flexor tibiae during a typical series of steps on the treadmill is given in 

Fig.19a. The muscle potentials with large amplitudes, attributable to activity of the fFlex-

MNs, occurred 0.40 ± 0.26s (N=3, n=63) after the first small amplitude muscle potentials, 

which were evoked by activity of the sFlex-MNs. Once active, fFlex-MNs fired action 

potentials until the end of stance phase. However during slower (smaller maximum and mean 

belt velocity) or smaller steps (smaller step width), no fast motor units were activated. 

To describe the distribution of action potentials of fFlex and sFlex-MNs during steps on the 

light treadmill, the stance phase was normalized with respect to its duration and divided into 

20 bins. The number of intracellularly recorded action potentials in each bin was normalized 

to the maximum value and the mean value for all investigated fast and slow neurons (N=4 and 

5, respectively) was calculated (Fig.19b). It became evident that spike frequency rose more 

rapidly and earlier during stance phase in sFlex-MNs compared to fFlex-MNs. The half-

maximal spike frequency (slow: normalized spike count = 0.41, fast: 0.48) was reached after 

10 to 15% of stance phase for the sFlex-MNs, while for the fFlex-MNs it was reached as late 

as after 50 to 60% of stance phase. 

 

 

3.3.4. Membrane potential depolarization in slow and fast flexor 

motoneurons 

In order to find out whether the different firing pattern of the MNs resulted from a different 

time course of membrane potential during stance phase, intracellular recordings of fast and 

slow MNs were compared (Fig.20a). In both sFlex- and fFlex-MNs the membrane potential 

depolarization started with the beginning of stance phase. The slow MN fired action potentials 

throughout the whole stance phase. In the fast MN the membrane potential steadily 

depolarized beginning at the start of the stance phase on and reached the threshold for the 

initiation of action potentials later during stance phase. Please note the more hyperpolarized 

membrane potential of the fast MN. 
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Intracellular recordings from fast and slow flexor MNs were averaged during the normalized 

stance phase after the action potentials had been eliminated from the intracellular recording 

(Fig.20b, see Materials & Methods, chapter 2.4). In addition to the mean values the most 



  

depolarized and the most hyperpolarized MNs analyzed were also included in the figure. It 

became evident that fast and slow MNs were constantly depolarized throughout the whole 

stance phase with a similar time course. The membrane potential of fFlex-MNs was relatively 

more hyperpolarized than that of sFlex-MNs. 
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3.3.5. Common synaptic inputs 

Despite the difference in the pattern of spike activity both types of MNs received similar 

activation patterns from their premotor network. I investigated this by comparing the time 

course of membrane potential of fast flexor MNs during steps with no fast MN activity with 

the EMG activity of the whole flexor muscle, which was described by rectifying and low-pass 

filtering of the EMG recording (Lippold, 1952) with a time constant of 20ms (see Materials & 

Methods, chapter 2.4). The value of this smoothed rectified EMG (SR-EMG) was used as an 

approximation of the overall EMG activity at the recording site (Fig.21). In all cells 

investigated (N=7), the time course of the SR-EMG resembled the membrane potential 

fluctuations in the recorded fFlex-MN very closely. The observation that the membrane 

potential of individual fFlex-MNs that were not firing action potentials was modulated in the 

same way as the activity of the subpopulation of sFlex-MNs that was recruited during the 

steps indicated that both MN populations were driven by similar, if not common, synaptic 

inputs. 
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3.3.6. Activity at different frictional levels 

Finally, I was interested in the question how the activity of the flexor tibiae muscle and its 

MNs during stance phase was adapted to different load situations mimicked by a variation in 

belt friction. In order to answer this question I induced stepping sequences and varied belt 

friction of the treadmill from reduced to enlarged values compared to control while recording 

flexor muscle and MN activity. The area under the SR-EMG during stance phase was used as 

a measure of the activity of the flexor muscle (Lippold, 1952; Winter, 1990). For all animals 

tested the normalized area under the SR-EMG increased with belt friction. The regression 

lines for the relationship between belt friction and the area under the SR-EMG for six 

different animals are shown in Fig.22a. The regression lines for the relationship between belt 

friction and the area under the SR-EMG showed a positive slope in all six cases examined, 

with the relationship being statistically significant (P<0.05) in three out of six cases. 

The question arises whether both slow and fast MN activity was altered with changing load 

conditions. Therefore, the activity, i.e. the number of action potentials generated in individual 

flexor MNs and the mean action potential frequency during stance phase, was evaluated under 

conditions of varying belt friction (Fig.22b). A quantitative analysis showed a common 

change in activity in slow, semifast and fast MNs of the flexor tibiae under conditions of 

modified belt friction (Fig.22c). This means that not only recruitment of flexor MNs adapts to 

load conditions, but also each individual MN was contributing to flexor force under varying 

conditions.  

 

3.3.7. Resting membrane potential and spike threshold 

The resting membrane potential of slow and fast flexor MNs prior to tactile stimulation and 

the value of the membrane potential threshold at which action potentials were initiated was 

determined (Fig.23a). The average resting membrane potentials of the slow and the fast flexor 

MN populations were significantly different (P=0.0262). While it was -61.8 ± 7.5mV for the 

sFlex-MNs (N=20) it was -67.2 ± 4.3mV for the fFlex-MNs (N=13). [The higher sample size 

compared to other experiments was due to the fact that intracellular recordings from older 

experiments with a heavier treadwheel were included.] In both subsets of MNs the membrane 

potential for action potential generation was not significantly different (-51.2 ± 7.2mV for the 

slow flexor MNs and -50.1 ± 3.9mV for the fast flexor MNs; P=0.6485). Thus the threshold 

depolarization (the difference between resting membrane potential and spike threshold) was 

significantly different in slow and fast MNs 10.6 ± 5.0mV and 17.0 ± 3.8mV, respectively; 

P=0.0004).  
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3.3.8. Conclusions 

Both fast and slow flexor MNs depolarized throughout stance phase with a similar time 

course, suggesting that they received substantial common synaptic excitation. Fast flexor 

MNs had a more hyperpolarized resting membrane potential. During slow steps, the 

depolarization of fast flexor MNs was not large enough to reach spike threshold (Fig.23b, 

left). During faster steps fast MNs were recruited, with the more negative resting membrane 

potential at least partly responsible for their late recruitment during stance (Fig.23b, right). 
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3.4. Control of stepping velocity 

3.4.1. Correlation of cycle period and belt velocity  

A section of a stepping sequence that consisted of a total of 12 steps is shown in Fig.24a. The 

activity of the flexor muscle during stance is visible from the EMG and the intracellular 

recording of a fast flexor (fFlex) MN. During long stepping sequences, cycle period often 

increased while mean and maximum belt velocity decreased (Fig.24b). In other cases, belt 

velocity did not decline but also increased within a sequence (cf. Fig.2b). In general there was 

a negative correlation between cycle period and mean belt velocity (Fig.24c). Both a short 

cycle period and a high mean belt velocity, i.e. a stronger and faster phase stance muscle 

contraction, would in freely walking animals contribute to a high walking velocity. Therefore, 

steps with short cycle period and high mean belt velocity will be called ‘fast’ steps, while 

steps with long cycle period and low mean belt velocity will be called ‘slow’ steps. 

 

 

3.4.2. Amplitude of membrane potential modulation and spike frequency 

As shown in chapter 3.2, in the stick insect the membrane potential modulations of flexor 

MNs during stepping were generated by phasic excitatory and inhibitory synaptic inputs. In 

addition, leg MNs were depolarized tonically throughout stepping sequences (see also 

Büschges et al., 2004; Ludwar et al., 2005b). During stance, flexor MNs were excited and 

their suprathreshold activity was responsible for the belt movement, while they were 

inactivated by inhibition during swing. Thus, the maximal depolarization (peak potential) in 

flexor MNs occurred during stance and the minimal (trough potential) during swing. When 

comparing steps of different velocity it was obvious that more flexor MNs were recruited 

during faster steps (e.g. Fig.27b) and that activation of flexor MNs increased (Fig.25a). 

Flexor MNs had a more depolarized peak potential and were firing more action potentials 

during fast steps than during slow steps (Figs.25a,b). The values of peak potentials showed 

the same modulation as both, maximum and mean belt velocity throughout the stepping 

sequence. Trough potential was not modulated and appeared to be independent of variations 

in mean belt velocity (Fig.25b). This was true for all recorded flexor MNs (N=25). 

The membrane potential of extensor MNs reached a peak during swing and a trough during 

stance. Contrary to the flexor MNs, the activity of extensor MNs was independent of mean 

belt velocity during the previous stance phase (Fig.25c). Neither peak potential nor trough 
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potential showed systematic changes in parallel to maximum and mean belt velocity during 

the stepping sequence (Fig.25d). The same was true in all recorded extensor MNs. 

The relationship between mean belt velocity and peak and trough potential in flexor MNs is 

drawn in Fig.26a. Recordings from four slow flexor MNs were selected that included a large 

number of steps over a large mean belt velocity range. There was a positive correlation 

between peak potential of flexor MNs and mean belt velocity, while trough potential was 

correlated with mean belt velocity only in 1 of 4 neurons. In addition, maximum and mean 

action potential frequency of flexor MNs was correlated with mean belt velocity (Fig.26b). 

This was observed in all 25 recorded flexor MNs; no difference between slow, semifast and 

fast MNs was detected. 

In nearly all recordings, stepping sequences started with a stance phase and ended with a 

swing phase (not shown). I compared the activity of extensor MNs to the mean belt velocity 

of the previous stance phase. Four recordings from extensor MNs (2 SETi, 2 FETi) were 

selected that included a large number of steps, 3 of which included steps that covered a large 

mean belt velocity range. There was no consistent correlation of peak or trough potential 

(Fig.26c) with mean belt velocity. This was observed in all 15 recorded extensor MNs; no 

difference between SETi and FETi MNs was detected. In addition, maximum and mean 

action potential frequency during swing was not correlated with mean belt velocity during the 

previous stance phase (Fig.26d). This is supported by 15 FETi recordings in the closely 

related stick insect species Carausius morosus (v. Uckermann, 2004). 

In walking, flexor and extensor MNs receive phasic inhibition during the activity of their 

respective antagonistic MNs (see chapter 3.2). As stated above, there was no correlation of 

trough potential of extensor MNs with mean belt velocity and therefore not with flexor 

activity (Fig.26c). Only in one neuron where steps with exceptionally high flexor activity 

were compared to ones with very low flexor activity could I observe that the strength of 

inhibition of extensor MNs during stance, as concluded from the level of hyperpolarization, 

was somewhat correlated to the level of flexor activity (Fig.26e). 
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3.4.3. Time course of membrane potential modulation in flexor 

motoneurons 

The activity of a flexor MN during a walking sequence with steps of varying velocity is 

shown in Fig.27a. In order to analyze the changes in time course of membrane potential 

modulation that accompanied variations in belt velocity I compared steps with high mean belt 

velocity (Fig.27b, left) to those with low velocity (Fig.27b, right). When the intracellular 

traces were aligned at the time of the beginning of flexor EMG activity (Fig.27c) it became 

apparent that flexor MNs depolarized in a similar way at the beginning of stance during both 

slow and fast steps (see arrows in Fig.27b-d). After this initial depolarization the membrane 

potential quickly depolarized to its maximal value during fast steps, while the depolarization 

ebbed before a second depolarization to the maximal value could be observed during slow 

steps. The same was true when comparing the average membrane potentials recorded during 

the ten steps with the highest mean belt velocity with those that showed the lowest mean belt 

velocity for a given recording (Fig.27c, bottom left). At the end of flexor EMG activity (i.e. 

the transition from stance to swing phase) the membrane potential rapidly hyperpolarized both 

in fast and slow steps (Fig.27c, top right; averages bottom right). Please note that the 

depolarization at the transition from swing to stance was in general slower than the 

hyperpolarization at the transition from stance to swing. The results described above were true 

for all flexor MN recordings. 

The depolarization at the beginning of stance phase was further analyzed by averaging the 

membrane potential of flexor MNs during steps with intermediate mean belt velocity. In all 

cases, the time course of the initial depolarization was similar, while its amplitude appeared to 

be slightly smaller during slow steps as compared to faster steps (~3.3mV compared to 
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3.9mV). During slow steps, the second depolarization to the maximal value appeared late 

(~0.35s after the beginning of stance) and with a slow time course and smaller amplitude

(~7.6mV). It appeared sooner (~0.06s after the beginning of stance phase) and had a faster 

time course and larger amplitude (~11.7mV) during fast steps (Fig.27d). 

As mentioned before, flexor MNs are tonically depolarized throughout stepping (Ludwar et 

al., 2005b; see above) and phasically inhibited during swing (see chapter 3.2). I was interested 

to know whether the initial depolarization could be the result of the termination of this 

inhibition. In Fig.28a, an intracellular recording of a flexor MN is shown together with the 

extensor EMG (see materials and methods, same recording as in Fig.8b). Please note that 

extensor activity was highest during the first half of swing and then slowly decreased. The 

membrane potential of the flexor MN showed little modulation during swing. Injection of 

short hyperpolarizing current pulses revealed that while extensor activity decreased the input 

resistance of flexor MNs increased (N=13). Fig.28b shows quantitatively that the voltage 

deflections as a response to hyperpolarizing current pulses (a measure for the input resistance, 

see above) steadily increased during the end of swing and the beginning of stance phase. The 

solid vertical line marks the beginning of the initial depolarization (0.07 ± 0.061s before the 

beginning of stance; N=4, n=128), the dashed vertical line marks the standard deviation. The 

stereotypic initial depolarization occurs during an increase in input resistance, indicating that 

a release from inhibition may be involved in its generation. This assumption is supported by 

the fact that the amplitude of the underlying tonic depolarization (3.9 ± 2.2 mV; range: 1.3 to 

9.5mV; observed in N=18 of 25 MNs, n=28) was also stereotypic and not correlated with 

mean belt velocity (Figs.24b; 25a; 27a). 
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3.4.4. Time course of membrane potential modulation in extensor 

motoneurons 

All 17 recorded extensor MNs rapidly depolarized at the transition from stance to swing phase 

and fired action potentials within 5-30ms (Fig.29a,b). The membrane potential modulation 

recorded during steps with high mean belt velocity (Fig.29b, left) was compared to that 

during steps with low mean belt velocity (Fig.29b, right). Both the hyperpolarization at the 

beginning of stance and the depolarization at the beginning of swing were similar during fast 
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and slow steps (Fig.29c, top), with the hyperpolarization being slower than the 

depolarization. The averaged membrane potential modulation during the four steps with the 

highest mean belt velocity and the four steps with the lowest mean belt velocity recorded 

from this neuron (Fig.29c, bottom) confirm this finding. The results described above were 

true for all extensor MN recordings. 

In 50% of the steps at the end of swing phase there was a pause between the last extensor 

spike and the onset of flexor activity during which the neuron remained depolarized (Fig.29b; 

duration 0.42 ± 0.360s; 33 of 66 steps recorded in 6 animals). The duration of stance phase 

(i.e. flexor activity) and swing phase (i.e. the phase of extensor depolarization which lasted 

from the first extensor spike until the next flexor activity) was evaluated more closely 

(Fig.29d). As shown before in Fig.24c, cycle period was negatively correlated with mean belt 

velocity. While the duration of the stance phase also showed a negative correlation, the 

duration of swing phase was independent of mean belt velocity, which shows that extensor 

activity was more stereotypic than flexor activity in respect to both magnitude and duration. 
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4. Discussion 

4.1. Synaptic drive to leg MNs 

The synaptic drive to leg MNs (evaluated in detail in flexor MNs) consists of a tonic 

depolarization in combination with phasic excitatory and inhibitory inputs. This was 

investigated in experiments involving measurements of input resistance (Figs.6; 8) and 

intracellular current injection (Fig.11). In a previous study on the nature of the synaptic drive 

to MNs in the single leg preparation (Schmidt et al., 2001), no tonic depolarization of MNs 

has been reported. This is probably due to the more depolarized average resting membrane 

potential of flexor MNs (-47 to -61mV) reported by Schmidt et al. (2001). Therefore, the 

resting membrane potential was closer to the reversal potential of the tonic depolarization, 

such that it could only be observed when hyperpolarizing current was injected intracellularly 

(Schmidt et al., 2001; their Fig.4A). In general, the tonic depolarization was greatest when the 

neuron had a comparably hyperpolarized resting membrane potential. This is consistent with 

the finding than a tonic depolarization could be observed without current injection only in 

64% of the investigated slow MNs but in 86% of the fast MNs recorded from (see chapter 

3.2.1), because the latter ones have a more hyperpolarized resting membrane potential (see 

chapter 3.3.7). 

In many other animal model systems has a combination of a tonic depolarization and 

alternating phasic de- and hyperpolarization of motoneurons been shown to underlie rhythmic 

MN activity (locust flight: Hedwig & Pearson, 1984; lamprey: Wallén et al., 1985, 1993; 

tadpole: Soffe & Roberts, 1982; Roberts et al., 1985, 1986; rat: Cazalets et al., 1996; cat: 

Perreault, 2002). The results also complement earlier experiments investigating the synaptic 

drive to MNs in other (reduced) preparations of the stick insect (see below).  

 

 

4.1.1. Tonic depolarization 

In the single middle leg preparation of the stick insect, a tonic depolarization was effective in 

all recorded MN types (Figs.5; 15-18). The tonic depolarization began when walking 
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movements were initiated and ebbed away <1s to >10s after the last step was completed 

(Fig.8). In some cases no tonic depolarization could be observed at rest, while it became 

apparent when hyperpolarizing current was injected intracellularly. Without current injection, 

the amplitude of the tonic depolarization in flexor MNs was 3.9mV ± 2.2 mV (range:1.3 to 

9.5mV; N=18, n=28). The reversal potential of the tonic depolarization in flexor MNs was 

-49mV and thus more negative than the value of -47 to -32mV reported previously by Ludwar 

et al. (2005b) for the intersegmental preparation. It was associated with a decrease in input 

resistance by 26% (N=8, n=15). The value of the reversal potential suggests a mixed Na+/K+-

conductance as the ionic basis of the tonic depolarization. The same was suggested by 

Ludwar et al (2005b), who found a more depolarized reversal potential of -47 to-32mV in 

mesothoracic MNs during front leg walking. Both the values of the present study and those of 

Ludwar et al. (2005b) show that the reversal potential of the tonic depolarization is slightly 

more depolarized than the spike threshold of flexor MNs (-51.2 to -50.1mV, Fig.23a). 

Therefore, the likely role of the tonic depolarization is primarily to depolarize the membrane 

potential in order to bring the neuron closer to spike threshold and thus increase its 

excitability for excitatory inputs (Fig.14a, see also Ludwar et al., 2005b). Metabotropic 

effects may be responsible for increasing neuronal excitability, which is supported by the 

slow time course of decay of the tonic depolarization (up to >10s). Preliminary results by S. 

Westmark (personal communication) suggest a role of metabotropic acetylcholine receptors. 

This receptor type is involved in increasing MN excitability in MNs e.g. of the tobacco 

hornworm Manduca sexta (Trimmer & Weeks, 1993; Trimmer, 1994). Three sets of 

experiments suggest that the tonic depolarization of MNs does not originate from sensory 

organs but is an ubiquitous centrally generated mechanism to increase neuronal excitability: 

(i) In experiments where parts of the locomotor network were activated by topical application 

of the muscarinic agonist pilocarpine (Büschges et al., 1995; Büschges, 1998), a tonic 

depolarization of MNs that was sculpted by phasic inhibition was responsible for the observed 

membrane potential modulations. It was discussed that the tonic depolarization was mediated 

either by muscarinic acetylcholine receptors on the motoneurons (Bai & Sattelle, 1994; 

Büschges, 1998) or excitatory nonspiking interneurons, which also have been shown to be 

tonically depolarized during stepping, albeit with a small amplitude (Büschges, 1995; Ludwar 

et al., 2005b). (ii) In the deafferented thoracic nervous system, switching between antagonistic 

motoneuron pools can be elicited by tactile stimulation of head or abdomen (Büschges et al., 

2004). Also in this preparation, a tonic depolarizing and phasic inhibitory drive are provided 

by central pattern generating networks (Büschges et al., 2004). (iii) In the previously 
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described experiments by Ludwar et al. (2005b), a tonic depolarization of flexor motoneurons 

(~4mV at rest) could be observed in the deafferented mesothoracic ganglion during front leg 

walking. In summary, these experiments suggest that the tonic depolarization is generated 

during arousal of the animal by central networks and mediated at least partly by nonspiking 

interneurons (Ludwar et al., 2005b). 

 

 

4.1.2. Phasic modulation 

In the experiments mentioned above, both a tonic depolarization and phasic inhibition was 

shown to originate from central pattern generating networks. A phasic excitation was never 

observed in deafferented (Büschges et al., 2004) or pharmacologically activated preparations 

(Büschges, 1998), suggesting that it may originate from other sources, e.g. local sensory 

signals and coordinating pathways from other segments. In my experiments, the amplitude of 

phasic excitation of flexor MNs increased with stepping velocity, which is indicative of a 

contribution of afferent feedback (Figs.25a,b; 26a). A phasic excitation of motoneurons by 

local sense organs has been shown previously in the stick insect for the femoral campaniform 

sensilla (Schmitz & Stein, 2000; Akay et al., 2001) and the femoral chordotonal organ 

(Bässler, 1988). These pathways act either directly (monosynaptically) or via intercalated 

(spiking or nonspiking) interneurons on the MNs (reviewed in Burrows, 1996; Bässler & 

Büschges 1998; Zill et al., 2004). A phasic modulation originating from intersegmental 

pathways has also been identified in experiments where MNs were recorded in the 

deafferented mesothoracic ganglion during front leg walking, however with much smaller 

amplitude (0.5 to 3 mV; Ludwar et al., 2005b). Since pharmacological activation of the 

prothoracic CPG by pilocarpine does not lead to coupled phasic modulations in mesothoracic 

MNs (Ludwar et al., 2005a), the intersegmental phasic excitation, just like the local phasic 

excitation, seems to depend on signaling form sense organs and not on the CPG networks. In 

case of the intersegmental afferent pathways, no monosynaptic connections to MNs have been 

identified in the stick insect, but intersegmental interneurons have been identified 

morphologically and physiologically that receive inputs from the femoral chordotonal organ 

(Brunn & Dean, 1994; Büschges, 1989; see discussion in Ludwar et al., 2005b).  
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4.2. Recruitment of slow and fast flexor MNs 

In the single leg preparation of the stick insect Cuniculina impigra I studied the influence of 

friction of a treadmill on the activity of the flexor tibiae motoneurons. Under conditions of 

increased friction, the summed activity of the flexor tibiae muscle as well as the spike activity 

of individual slow, semifast and fast flexor motoneurons increased. Also, I collected evidence 

that motoneurons innervating the flexor tibiae muscle receive substantial common synaptic 

inputs from premotor interneurons during the walking-like movements investigated. 

 

 

4.2.1. Activity control in slow and fast Flex-MNs during stance 

Intracellular and electromyographic recordings show that fast motoneurons of the flexor tibiae 

were recruited later during stance phase than sFlex-MNs (Figs.19a,b; 20a). Albeit the 

delayed activation of the fFlex-MNs, individual intracellular recordings (Fig.20a) reveal that 

the membrane potential of both fast and slow motoneurons started to depolarize at the 

beginning of stance phase. The average membrane potential of fast and slow Flex-MNs 

during stance phase also shows a very similar time course (Fig.20b). This indicates that the 

two motoneuron populations were synchronously excited throughout stance phase, probably 

by common sources of synaptic drive. In the locust, common synaptic drive from premotor 

interneurons onto motoneurons has been shown during reflex movements as synchronized 

EPSPs in slow and fast motoneurons innervating the same muscle (Burrows & Horridge, 

1974; Wilson, 1979). Further evidence derives from the similarity between the SR-EMG and 

the time course of the membrane potential of the fFlex-MNs (Fig.21). In the example shown, 

no action potentials from fFlex-MNs were detectable in the EMG recording. Therefore, it can 

be assumed that the value of the SR-EMG was determined solely by the activity of slow and 

probably semifast motoneurons. Thus, the fFlex-MN must share common inputs with the 

motoneuron population contributing to the muscle contraction.  

Considering the similarity in membrane potential depolarization and the value of the spike 

threshold in fFlex and sFlex-MNs, the more negative resting membrane potential of the fFlex-

MNs (-67.2 ± 4.3mV compared to -61.8 ± 7.5mV; cf. Schmidt et al., 2001) is likely to 

contribute greatly to their delayed activation. In case of the fFlex-MNs, a stronger and longer 

lasting depolarization is required for the membrane potential to reach the threshold for the 

generation of action potentials. Thus, the difference in membrane potential provides a 

mechanism for successive recruitment of motoneurons in response to a common and 
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synchronous excitatory input due to a difference in intrinsic properties (cf. Burrows, 1996, pp. 

65-66). 

One cellular property known to influence the excitability of motoneurons in vertebrates as 

well as invertebrates is motoneuron size (‘size principle’; cat: Henneman et al., 1965; 

reviewed in Pinter, 1990; lobster: Davis, 1971). Also in invertebrates, fast motoneurons are 

known to be larger in size than slow motoneurons. For example, they have a larger soma size 

and axonal diameter than slow motoneurons (e.g. stick insect: Storrer et al., 1986; locust: 

Burrows & Hoyle, 1973; Hoyle & Burrows, 1973; lobster: Davis, 1971). Fast motoneurons 

have larger conduction velocities than slow motoneurons (stick insect: Bässler, 1984; Hess & 

Büschges, 1997). Because of their larger size, fast motoneurons are less susceptible to 

excitation either by intracellular current injection or natural synaptic input (stick insect: 

Debrodt & Bässler, 1990; locust: Burrows & Horridge, 1974; Burrows & Hoyle, 1973; 

Burrows, 1980; lobster: Davis, 1971; vertebrates: Henneman et al. 1965) than the slow 

motoneurons, which has been discussed as the primary reason for their delayed recruitment 

compared to slow motoneurons. The present data add to these differences a physiological 

factor that is capable of explaining the delay in activity of fast motoneurons. Future studies 

will have to deal with the intrinsic mechanisms underlying the different resting membrane 

potential. 

 

 

4.2.2. Influence of belt friction 

The activity of the flexor tibiae muscle as determined by the value of the SR-EMG increased 

under conditions of increased belt friction (Fig.22a). When motoneuron activity was 

compared during similar steps the elevated activity became most obvious (Fig.22b). An 

increase in the rate of action potentials in both slow and fast motoneurons of the flexor tibiae 

contributed to the elevated muscle activity (Fig.22c). In summary, under all conditions tested 

the motor output of the leg was adjusted to belt friction. The major factor appears to be 

alterations in the magnitude of synaptic drive to the whole population of flexor motoneurons 

investigated in the present study. Although individual premotor neurons are known in insects 

that make specific connections with only subset of motoneurons innervating a given leg 

muscle (e.g. locust: Burrows, 1980), such differential premotor innervation does not seem to 

result in differing synaptic drive to leg motoneurons during the execution of active leg 

movements (cf. deductions of Burrows & Hoyle, 1973). Consequently it currently appears 

that a large proportion of synaptic drive is shared by the whole population of flexor 
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motoneurons with intrinsic cellular properties being responsible for their differential, i.e. 

progressive recruitment.  

This uniformity of synaptic inputs to slow and fast motoneurons may be state-dependent. In 

the stick insect two distinct behavioral states can be distinguished (‘active’ and ‘inactive’ 

animal; Bässler, 1993). Debrodt and Bässler (1990) found that fast motoneurons of the flexor 

tibiae in Extatosoma tiaratum were preferentially excited by fast stimuli applied to the 

femoral chordotonal organ (fCO), while slow motoneurons showed a larger response to slow 

stimulus velocities. In contrast to my experimental situation, these experiments were 

conducted in 'inactive animals'. Pfeiffer (1991) found that flexor motoneurons showed 

different responses to stimuli applied to the fCO in the ‘inactive’ animal, while in the ‘active’ 

animal the responses of slow and fast motoneurons were very similar. These findings suggest 

that in the resting animal differential premotor innervation may play an important role, while 

during locomotion common synaptic inputs may prevail. 
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4.3. Control of stepping velocity 

I analyzed the changes in step parameters and motoneuronal activity that occurred during 

variations in stepping velocity of the stick insect middle leg on a treadmill. As reported 

previously for the intact walking animal (Wendler, 1964; Graham, 1972), changes in stepping 

speed were accompanied by changes in cycle period, such that fast stepping velocities were 

correlated with short cycle periods. Intracellular recordings revealed that during fast steps 

flexor MNs showed a faster depolarization and stronger activation. Interestingly, alterations in 

time course of membrane potential related to changes in stepping velocity were almost 

exclusively limited to stance phase (i.e. flexor) MNs, while there were no systematic 

alterations detectable in swing phase (i.e. extensor) MNs. This indicates that stepping velocity 

is mediated by phasic neural mechanisms effective only during the generation of the stance 

phase motor output. Most importantly, I did not detect any evidence for both MN pools being 

affected in a similar way during changes in stepping velocity, for example by tonic 

background excitation that increases excitability of MNs during high motor output. It 

therefore appears that the mechanisms responsible for generating changes in stepping velocity 

specifically affect the neural subsystem generating stance phase motor output, but not (or only 

subtly) the part of the premotor network which generates the swing phase in the single middle 

leg. 

 

 

4.3.1. Cycle period of single leg stepping movements and varying 

stepping velocity 

During steps with high mean belt velocity, both the cycle period (Figs.24c; 29d) and the 

duration of flexor MN activity (i.e. stance) was short, while the duration of extensor activity 

(i.e. swing) remained unchanged (Fig.29d). Also in freely moving stick insects a short cycle 

period contributes to high walking speeds, and the decrease in cycle period is mainly due to a 

decrease in stance duration (Wendler, 1964; Graham, 1972). 

I have shown that swing duration did not correlate with mean belt velocity. As I have 

furthermore shown that mean belt velocity in the single middle leg correlates with cycle 

period, the data imply that swing phase duration is independent of cycle period. This result 

differs from Fischer et al (2001) who concluded on the basis of EMG recordings only that the 

duration of both stance phase and swing phase depended on cycle period (their Fig.3D). In a 

model calculation, Cruse (1983) discussed similar findings that were obtained on crustacean 
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walking. A model was put forward wherein the seemingly discrepant results were explained 

by differences in walking conditions. Under small load, swing duration in the model was 

proportional to cycle period. Under high load, a parameter called central excitation was high, 

such that the swing phase muscle activity saturated and swing duration was independent of 

cycle period (Cruse, 1983). However, the treadmill used in my investigation had a lower 

inertia than the one used by Fischer et al. (2001), so the independence of swing duration that I 

found cannot be explained with differences in load alone. A comparison of the results is 

further complicated by the fact that Fischer et al. (2001) did not monitor belt velocity. Since it 

has been shown that slower steps are generated on high inertia treadmills (Gabriel et al., 

2003) it is probable that belt velocities were shifted towards lower values in their 

investigation.  

 

 

4.3.2. Time course of membrane potential modulation of flexor 

motoneurons 

My analysis proceeded to determine constant and variable features in the time course of 

membrane potential modulation of flexor during walking movements. In all flexor MNs 

recorded the membrane potential depolarization as well as mean and maximum spike 

frequency was correlated with mean belt velocity (Fig.26a,b). This indicates that during 

stance flexor MNs receive common synaptic drive (cf. chapter 3.3.5) and (if they are activated 

above spike threshold) thereby contribute to the control of stepping velocity during stance 

phase. In this, the results are similar to the flexor MN activity under conditions of varying 

load (Fig.22). 

Interestingly, there appear to be two distinct phases of depolarization in the activation of 

flexor MNs during stance phase, i.e. an initial depolarization at the beginning of flexor 

activity and a subsequent fast and large depolarization that changes with stance velocity 

(Fig.27c,d). All flexor MNs recorded showed a similar initial depolarization, which for some 

MNs (i.e. the slow flexor MNs due to their earlier recruitment; see chapter 3.3) was sufficient 

to bring them above action potential threshold and initialized the flexor burst. For individual 

MNs the time course of this depolarization at the beginning of stance was similar during slow 

and fast steps. I could show that it occurred well after the maximal conductance in the flexor 

MNs during swing (Fig.28a,b). This maximal conductance is generated by inhibitory synaptic 

inputs (chapter 3.2). In this phase the input resistance in flexor MNs was still increasing 

(Fig.28b). On one hand excitatory synaptic inputs are conceivable that are related to touch 
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down of the leg, e.g. from tarsal receptors (Laurent & Hustert, 1988) or campaniform sensilla 

on the leg (Newland & Emptage, 1996; Akay et al., 2001). On the other hand however, some 

arguments point towards a different origin. I believe that the initial depolarization is the result 

of an interplay between a release from the inhibition that was active during leg swing, and the 

state-dependent tonic depolarization in leg MNs which persists during stepping activity 

(Büschges et al. 2004; Ludwar et al. 2005b; see chapter 3.2) for the following reasons. (i) The 

initial depolarization developed comparably slowly and, like the tonic depolarization, was 

independent of stance velocity (Figs.24a; 25a; 27a). (ii) It occurred although the input 

resistance of flexor MNs was still increasing from its minimal values during leg swing, 

indicating that it was not likely generated by an additional phasic synaptic conductance. Even 

though I do not know the cause of the initial depolarization of flexor MNs at the beginning of 

leg stance, the fact that it is independent of stepping velocity has important implications for 

the control of stance velocity. It indicates that at this time during the step cycle no neural 

inputs to the flexor MNs were active that caused a differentiation towards slow or fast stance 

phases. 

The second depolarization of flexor MNs varied with stepping velocity, i.e. it occurred earlier 

and was larger for fast steps compared to slower steps (Fig.27d). It was this depolarization by 

which fast flexor MNs were activated above action potential threshold and that therefore 

contributed mostly to alterations of stepping velocity. There are different possibilities for how 

this second depolarization is generated. Previous investigations show that sensory signals 

from strain and movement sensors reinforce flexor MN activation during voluntary and 

locomotor movements (Bässler, 1986, 1988; Schmitz et al., 1995; Akay et al., 2001; summary 

in Bässler & Büschges, 1998), as has been shown in a variety of walking systems (for 

summary see Pearson, 1993; Büschges & El Manira, 1998). At present it is not known what 

other sources of synaptic inputs are contributing to the control of flexor MN activity. No 

evidence exists for a contribution of phasic excitatory synaptic drive from central pattern 

generating networks of the FT-joint. On the contrary, only phasic inhibitory synaptic inputs 

from central sources are known that could contribute to patterning of MN activity (Büschges, 

1998; Büschges et al., 2004). Given that some of the synaptic drive that controls flexor MN 

activation arises from sense organs, it is quite conceivable that changes in the effectiveness of 

these pathways may alter rate and amplitude of activation in flexor MNs. Such alterations will 

occur automatically with changes in stance velocity, e.g. by faster flexion of the joint or 

greater forces generated by the flexor muscle. A mechanism would still be needed, however, 

through which the leg muscle control system can control the effectiveness or gain of these 
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sensory feedback pathways in order to achieve a stronger motor output. For changing cycle 

period in walking, similar solutions via sensory feedback from the limb have recently been 

discussed for the cat (Yakovenko et al., 2005). One possible mechanism is presynaptic 

inhibition of sensory afferents, which has been investigated in great detail with respect to its 

putative function in gain control (Burrows & Matheson, 1994; Sauer et al., 1997; for 

summary see Büschges & El Manira, 1998; Clarac et al., 2000; Nusbaum et al., 1997). It is 

conceivable that by a reduction in presynaptic inhibition the gain of the reinforcing sensory 

pathways during stance increases and larger, more rapid depolarizations of flexor MNs are 

generated. Further experiments involving recordings from the major sensory afferents, i.e. 

those of the campaniform sensilla and the femoral chordotonal organ, will be necessary for an 

unequivocal conclusion. In summary, my results strongly suggest that those synaptic inputs to 

leg motoneurons that determine the stance phase motor output and thereby the stepping 

velocity are only activated during an already ongoing stance phase motor output. 

 

 

4.3.3. Antagonistic synaptic drive to flexor and extensor MNs and 

organization of the leg muscle control system for the single leg 

During the transition of step phases, particular antagonistic features were observed in the 

membrane potential modulations of flexor and extensor MNs (Fig.30). At the transition from 

stance to swing phase, the membrane potential of both MN pools rapidly changed, i.e. flexor 

MNs were hyperpolarized and extensor MNs were depolarized rapidly. On the other hand, at 

the transition from swing to stance phase both the depolarization of flexor MNs and the 

hyperpolarization of extensor MNs was generally slower. Interestingly, in studies where 

vibration stimuli were applied to the femoral chordotonal organ in order to induce phase 

transitions, the latency for the transition from flexor to extensor activity was shorter than from 

extensor to flexor activity (Bässler et al., 2003). This suggests that neuronal mechanisms exist 

in the animal that facilitate a particularly fast transition from flexor to extensor activity, the 

functional meaning of which remains to be investigated. 

There was no close correlation between mean belt velocity (which represents the level of 

flexor activity) and trough potential of extensor MNs during stance (Fig.26c). This may be 

due to the small difference of the membrane potential to the reversal potential of the 

inhibitory conductance (cf. flexor MNs in chapter 3.2.3). Therefore, both weak and strong 

inhibition could hyperpolarize the extensor MNs to the same value. 
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The antagonistic nature of the synaptic drive to flexor and extensor MNs is supported by two 

observations: (i) For gross differences the flexor activation level during stance was correlated 

to some extent with the level of hyperpolarization of extensor MNs (Fig.26e). (ii) 

Measurements of input resistance qualitatively show that the level of inhibition of flexor MNs 

during swing was correlated with extensor activity (Fig.28a). Together, this raises the 

possibility that both antagonistic MN pools share common premotor elements that contribute 

to phase transitions. Indeed, in the stick insect mesothoracic ganglion local premotor 

nonspiking interneurons exist that provide excitatory drive to one pool of MNs, e.g. the 

extensor MNs and inhibitory synaptic drive to the antagonistic pool, i.e. the flexor MNs, and 

vice versa (Büschges, 1995; Büschges & Schmitz, 1991; Sauer et al., 1996). In another 

orthopteran insect (i.e. the locust), MNs of antagonistic pools have been shown to receive 

“mirror-image synaptic drive” from certain premotor interneurons (Burrows & Horridge, 

1974; summary in Burrows, 1996). In a functional context this may be useful, because co-

contractions of antagonistic muscles are both energetically unfavorable and potentially 

harmful for the animal (Cruse 2002). In order to further analyze the nature of the antagonistic 
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drive from premotor elements, paired recordings from flexor and extensor MNs will be 

necessary. 

Despite the basic antagonistic nature of the synaptic drive to tibial MNs during the generation 

of stepping movements (see above), there appears to be no influence between stance and 

swing phase generation in such a way that the magnitude of motor output during stance would 

influence the subsequent swing phase. While flexor activation was strongly modulated with 

changing step velocity, no correlated alterations were found in the pattern of extensor MN 

activation. The time course of the transitions between the stepping phases was not affected by 

stance phase velocity either. A possible explanation for this has already been mentioned 

above: in a computational study Cruse (1983) proposed that due to high central excitation 

under conditions of high load swing phase motor output is always maximal, implying that 

MN activity is also saturated and independent of cycle period and thus to step velocity. I 

cannot rule out this possibility. However, the treadmill used in my study has a rather low 

moment of inertia (see Materials and Methods, chapter 2.2). Also, in the single leg 

preparation both fast and very slow steps are generated (Fig.25a,c). Thus, the parameter that 

corresponds to the central excitation (Cruse, 1983), which together with load determines both 

stance and swing duration in his model, appears not always to be maximal but to be rather 

variable. I therefore assume that the stereotypic nature of extensor MN activity during swing 

is not due to saturation effects. 

The results are interesting also in the light of current conclusions concerning the organization 

of the stick insect walking system, as derived from behavioral studies on intact walking 

animals (e.g. Cruse & Müller, 1984; Schmitz et al., 2000; see also Cruse, 2002). It has been 

reported in the stick insect that, depending on the actual magnitude of motor output during 

stance, i.e. comparing uphill vs. downhill walking, the velocity of the subsequent swing phase 

was altered (Schmitz et al., 2000). This result corroborated considerations about a very close 

coupling of the neural networks in charge of generating stance and swing phase (Cruse, 

2002). My intracellular analysis of leg motoneuron activity in single leg stepping indicates 

that such influence of the magnitude of motor output during stance and the subsequent swing 

phase may be not a property of the local pattern generating networks of a leg, but rather arise 

from intersegmental sources. Both phasic and tonic influences are known to act between the 

legs of a walking stick insect (Cruse et al., 1998; Ludwar et al., 2005a,b). Thus, it may well be 

that the influence of stance phase on the subsequent swing phase arises from the cooperative 

action of the neural networks coordinating the walking movements of the six legs. 
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