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Chapter 1

Introduction

It is well known in the scienti�c community that in the past years a steadily
growing amount of complete genomes of cellular organisms has become
available. Alongside, the wish to understand the metabolism of those
life-forms grew. A paradigm shift, necessary to comprehend the metabolic
interactions, is going through biology: research moves from reductionist
approaches, which take the single units as a basis, to holistic, system-based
concepts (Kau�man et al., 2003).
This shift can be seen in �wet-lab� biology as well as bioinformatics. Investi-
gations carried out in laboratories e. g. move from e�orts to �nd out as much
as possible about a single enzyme to system based methods like metabolic
pro�ling (compare 2.5). Within bioinformatics, in recent years, the �eld of
theoretical systems biology evolved. Prior areas are often focused on single
molecules, their structures, properties, and interactions. Examples stretch
from ab initio protein structure prediction (Osguthorpe, 1999, 2000) to ho-
mology modeling, which takes advantage of structural information available
in databases (Al-Lazikani et al., 2001); from protein-protein docking (Vajda
& Camacho, 2004) to genome annotation (Reed et al., 2006), which describes
the connection between the genomic sequence and the function of the coded
protein.
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CHAPTER 1. INTRODUCTION

The methods used in theoretical systems biology vary. Petri nets (see e. g.
(Pinney et al., 2003; Hartmann, 2006)), for instance, are an approach that
has to be classi�ed more reductionist: modeling the network as a compo-
sition of single reactions, the latter are the simulated units. In parallel,
strategies exist that take pathways rather than reactions as the basic units.
Examples are shortest path analyses (e. g. (Rahman et al., 2005)) or the
concept of elementary modes (Schuster et al., 1999). One level up, �ux
balance analysis (e. g. (Kau�man et al., 2003)) simulates the metabolism as
a whole, yielding information about the constituting reactions from above
rather than simulating them separately. And of course hybrid methods have
been developed, like the combination of �ux balance analysis (FBA) and a
subset of the elementary modes called extreme pathways (Schilling et al.,
2000, 2001).

Flux balance analysis, as a fully systemic approach, is solely based on the
topology of the metabolic network. This is expressed as a stoichiometric
matrix and is set into a steady state. Mathematically, this procedure yields
a simple linear equation system in which the vector of the reaction rates
contains the unknown variables (see chapter 2.6 for details). By imposing
additional constraints this system can eventually be solved, resulting in a
�ux distribution for the network under investigation. Edwards et al. showed
that FBA yields results that are in accordance with nature (Edwards et al.,
2001). Daniel Beard and his colleagues re�ned the method and called it
energy balance analysis (EBA). They added rules derived from the funda-
mental laws of thermodynamics (2.1.1). Details about EBA can be found in
chapter 2.7.

Knowledge of the current �ux pattern within a cellular network provides
information about the way the organism operates. Especially comparisons
of �ux vectors derived under di�erent constraints enable biologists to un-
derstand the respondence of life to varying environmental circumstances.

2



CHAPTER 1. INTRODUCTION

Thereby, the powerful adaptability of bacteria can be further elucidated. We
may understand how exactly some bacteria metabolize given carbon sources
in excess amino acids, which are then excreted. And by predicting the adap-
tion to perturbances or changes in the nutrimental supplies, scientists are
able to gain knowledge usable to improve biotechnological production yields.
Of course, there exist methods to determine �ux distributions experimentally
(e. g. (Wendisch et al., 2000)). But these su�er from being slower and more
costly than predictive approaches. Additionally, certain constellations of
metabolic reactions and pathways are necessary to determine the desired
�ux rates. In consequence, experimental approaches usually only cover small
parts of the investigated reaction networks.

Unfortunately, all current methods used to predict metabolic �ux patterns
result in intervals for each �ux, not in discrete values. The smaller the inter-
vals are, the more distinct and the more valuable is the information gained.
This work aims at the reduction of these intervals. We will take advantage of
available data and unite systemic approaches from bioinformatics with those
from �wet-lab� work. Namely, a method will be developed which integrates
metabolic pro�ling data into EBA analyses. To accomplish this an idea that
bases on thermodynamics is employed: the same network is analyzed under
di�erent environmental conditions. Thereby, the information gathered from
the corresponding pro�ling experiments is used to implement a �greater
than / less than� relation between the same reactions under the alternative
conditions. This shall narrow the gap between nature and prediction and
reduce the size of the �ux space that remains after an energy balance analysis.

To test and validate the developed concept, we must employ a model of a
bacterial organism. There is a variety of genome based reaction networks
available. The bacterium modeled in most detail is certainly Escherichia coli
(see e. g. (Reed & Palsson, 2003)). Other examples include Helicobacter
pylori (Thiele et al., 2005; Schilling et al., 2002; J.F. et al., 1997) and the

3



CHAPTER 1. INTRODUCTION

eukaryotic Saccharomyces cervisiae (Förster et al., 2003; Mewes et al., 1997).
A more detailed discussion can be found in chapter 5.1.
We are in need of experimental metabolic pro�ling data. In CUBIC1

research laboratories an organism called Corynebacterium glutamicum is
under referring investigation. C. glutamicum is a gram-positive, aerobic,
and non-pathogenous soil bacterium. Discovered in 1957 at the research
institute of Kyowa Hakko in Tokyo, the genome was sequenced more than 40
years later, see e. g. (Ikeda & Nakagawa, 2003) and (Kalinowski et al., 2003).
In the meantime the biotechnological industry learned to use C. glutamicum
as a means to produce various amino acids and vitamins in noticeable
amounts. Most important is the production of the L-amino acids glutamate
and lysine. The exact quantities given in literature vary slightly. According
to Silberbach et al. more than 106 t of L-glutamate and around 5.6·105 t
of L-lysine are produced by this bacterium annually worldwide (Silberbach
et al., 2005). Hüser and coworkers give the same amount of L-glutamate
but a slightly lower amount of L-lysine (4.5 · 105 t / year) in (Hüser et al.,
2003)2.

In the �rst part of this thesis a genome based model of the Corynebacterium
glutamicum metabolism is built. It is supported by the use of DNA microar-
ray analyses data. We veri�ed the model by comparison to experimental �ux
data. In the second part, the concept to unite the metabolic pro�ling data
and the energy balance analysis is introduced. It is shown that this combi-
nation leads to a further reduction of the acquired steady state �ux space.
Further on, we performed a complete single knock out mutation study of the
constructed model. The metabolic network, its veri�cation, the new concept
and its application, and the knock out study are discussed in detail.

1CUBIC = Cologne University BioInformatics Center
2The di�erences in the stated amounts of L-lysine produced by C. glutamicum may be

related to the times the articles were published (2003 and 2005).
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Chapter 2

Theory

This chapter will provide the necessary background to understand what is
described in the methods, results, and discussion.

2.1 Thermodynamics

In the following, the very basic ideas of (bio)chemical thermodynamics will
be explained. To follow the procedures taken within this thesis, one does not
need detailed knowledge of thermodynamics. Thus, what is to be explained,
will be introduced on a high level of abstraction. The interested reader
will �nd more detailed information in every standard textbook of physical
chemistry. We suggest the lecture of (Atkins, 1990) at this point.

2.1.1 The fundamental laws of thermodynamics
The behavior of all processes occuring in the universe is governed by three
fundamental laws. The �rst two of them are needed to follow this work.

2.1.1.1 The �rst law of thermodynamics

P.W. Atkins states the �rst law of thermodynamics as: �The internal energy
of a system is constant unless it is changed by doing work or by heating�

5



CHAPTER 2. THEORY

(Atkins, 1990, page 31). If we view the universe as the mentioned system,
and express the law in a more colloquial way, it states: energy can neither
disappear into nor be created out of nothing.
Written as an equation the �rst law of thermodynamics reads:

∆U = q + w (2.1)
where ∆U denotes the change in internal energy of a closed system, q is the
amount of heat passing through its boundary, and w is the amount of work passing
through the system's boundary.

The point of view, when talking about internal energies as well as energies
at all, is within the system under investigation. It follows that energy
supplied to the system has a positive sign and energy leaving the system has
a negative sign.
Further on, one has to know that the internal energy is a state function.
This means changes in U are only dependent on the states of the starting
and endpoint of a process; they are independent of the way the process
takes. In other words: the change in U is the same no matter how energy is
supplied to the system.

2.1.1.2 The second law of thermodynamics

The second law of thermodynamics concerns the direction of spontaneous
processes. Originally it says that spontaneous processes are always accompa-
nied by an increase in entropy (entropy is a measure of chaos). By traversing
some transformations, which are explained in detail in (Atkins, 1990, p. 82
�.), one arrives at the following equation:

dGT,p ≤ 0 (2.2)
dG is the change in the Gibbs free energy (also called the free enthalpy) during the
process

6



CHAPTER 2. THEORY

2.1.2 The Gibbs free energy or free enthalpy
The free enthalpy G is dependent on the enthalpy H, which again depends
on the internal energy U (see equation 2.1). The correlations are:

H = U + p · V (2.3)
G = H − T · S (2.4)

Here, p denotes the actual pressure, V the volume, T the temperature and S is
the before-mentioned entropy.

The Gibbs free energy can be classi�ed into di�erent divisions. The ones
relevant for this thesis are

1. the Gibbs free energy of formation: Gf

2. the Gibbs free energy of reaction: Gr

2.1.2.1 Gibbs free energy of formation

Gf is the energy that is needed to build a molecule from its atoms. Since
it is a very extensive process to determine this for each molecule ex-
perimentally, Mavrovouniotis developed a group contribution method in
(Mavrovouniotis, 1998). Basically, the free enthalpy of reaction (see below)
is calculated by equation 2.5. Educts and products are split into their
constituent groups. After doing this for a set of reactions, one gains a linear
equation system, which can be solved by multiple regression. As a result Gf

values are gained for parts of molecules. In a �nal step these Gf values may
be summed up in order to calculate free enthalpies for new molecules.
The above cited article determines the Gibbs free energies for increments in
aqueous solution at a pH of seven. As explained in 2.1.3 this is the natural
environment for biochemical reactions.
The programming and calculation of the Gf values for all molecules in this

7



CHAPTER 2. THEORY

work has been accomplished by Kai Hartmann (Hartmann, 2006).

2.1.2.2 Gibbs free energy of reaction

The Gibbs free energy of reaction is simply de�ned as the free enthalpy of
all products minus the free enthalpy of all educts

∆Gr =
∑

products

Gi −
∑

educts

Gj (2.5)

If referring to reactions in aqueous solution (like usual in biochemistry) and
to standard states, the free enthalpy of a reaction can be calculated as

∆Gr = ∆Gr
o−RT · lnK (2.6)

∆Gr
o, R and T denote the reaction free enthalpy under standard conditions, the

gas constant1 and the actual temperature, respectively.

In the above equation K states the equilibrium constant, which in detail is
written as:

K =

∏
p[p]νp∏
e[e]νe

(2.7)
p are the products, e the educts of the reaction; ν denotes the order of the reaction
in the referring metabolite2.

Spontaneous (bio)chemical reactions are always accompanied by a negative
Gibbs free energy of reaction, which is calculated by equation 2.6 !

2.1.3 Standard states in chemistry and biology
When comparing any thermodynamical values one must adjoin information
of the states these values were derived under. In order to normalize this,

1R = 8.31451 J
K·mol2About the order of reactions read (Atkins, 1990, p. 782 �.)
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chemists have de�ned standard states, which are mostly used when pub-
lishing thermodynamical data. There are two sets of data currently used
as standard values. The standard temperature and pressure (STP) and the
standard ambient temperature and pressure (SATP). See table 2.1.

Table: 2.1: Standard States in Chemistry and Biology
The standards states used in chemistry and biology. STP = standard tem-
perature and pressure. SATP = standard ambient temperature and pressure.
BIO = standard states used in biology. For STP/SATP compare (Atkins,
1990, page 11), for BIO see (Voet & Voet, 1992, page 51). For states used
in this work also compare (Mavrovouniotis, 1998). Variables derived under
SATP conditions are signed by a (o), BIO-based variables by a prime (′).

STP T = 0◦C = 273.15 K
p = 1 atm = 101.325 kPa
pH = 0

SATP To = 25◦C = 298.15 K
po = 1 bar = 100 kPa
pHo = 0

BIO T′ = 25◦C = 298.15 K
p′ = 1 bar = 100 kPa
pH′ = 7

All values used in this work refer to the state called BIO in the above table.

2.2 Biochemical reaction networks

This section shall brie�y describe the specialties of biochemical networks. At
�rst the important terms are explained. Then a short comparison between
biochemical networks and other networks will be given. At last a discussion
of thermodynamic aspects follows.

9
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GATTACACTAATGT
CTAATGTGATTACA

Figure 2.1: Complementary DNA strands
DNA molecules consist of two strands that are complementary to each other.
In four available bases there exist two complementary pairs, which are A /T
and G/C. (A) adenine, (T) thymine, (G) guanine, (C) cytosine.

2.2.1 Genes - Enzymes - Metabolites
The examination of biochemical networks usually starts at genome level.
The DNA, as the carrier of the genetic information, states the genome. This
consists of genes, each of which encodes a protein. Looking at the DNA as a
molecule, it basically consists of four di�erent nucleotides (often also called
bases): adenine (A) and thymine (T), guanine (G) and cytosine (C). There
exist some more, but due to their minor appearances they shall be neglected
now. Accordingly, a strand of DNA can be represented by a line of the four
letters ATGC. However, DNA consists of two complementary strands that
connect to each other. Thereby A and T are complementary and G and
C are. Representing the DNA as a line of letters, an example is given in
�gure 2.1.
When a gene gets expressed3 - meaning a protein is built out of the included
information - it happens in two steps. During transcription the DNA double
strand gets temporarily split and the complementary strand of one of the
DNA strands is built. Thereby only a part of the DNA (e. g. one gene)
is transcribed. The resulting molecule is one-stranded and termed RNA.
During translation this RNA molecule is used to construct a protein. The
coherences are summarized in the central dogma of molecular biology, which

3The term expression may either refer to the combination of transcription and trans-
lation, in which case the term protein-expression would be more appropriate, or it may
refer to gene-expression, which describes the transcription of one gene, in contrast to the
whole genome.
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replication

DNA

RNA Protein

transcription

translation

Figure 2.2: Central dogma of molecular biology
The arrows show the transfer of genetic information. There is no transfer of
such from proteins to DNA, RNA or Proteins. In other words: proteins can
only be products of genetic information.

is shown in �gure 2.2.

Proteins are macromolecules which consist of 300 amino acids in average.
These in turn are built of 19 - 29 atoms. Proteins are the workers of a cell.
They carry out functions like membrane-crossing transport, conversion of
molecules, or construction of other proteins. A special subgroup of the pro-
teins is called enzymes which catalyze biochemical reactions. The molecules
participating in those reactions are called metabolites.

When analyzing metabolic networks4, the focus of interest may be laid on
the metabolites or the enzymes. Within the thesis at hand we strongly
concentrate on the metabolites. This induces some special aspects, that have

4The terms metabolic network, reaction network or biochemical network are inter-
changeable in this context.
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to be taken care of, during the inspection of such networks. The following
sections explain those aspects.

2.2.2 Biochemical networks - bipartite graphs
Networks can be expressed as graphs: the DNS-servers within the internet,
the wastewater canal system under a city, or the atoms of a molecule that
are connected via chemical bonds. There are lots of other examples.
A graph consists of nodes and edges. In the examples mentioned, the nodes
would be the servers, the canal junctions, or the atoms, and the edges would
be the phone lines, the canals, and the bonds, respectively. In all these
networks the following facts are given:

• All nodes are on the same hierarchic level. In other words: there exists
only one kind of nodes.

• Edges do connect exactly two nodes (which may be identical).

Regarding metabolic networks, the nodes are the metabolites and the edges
refer to the reactions. But by using this analogy, problems arise. Most
biochemical reactions do not convert one molecule into one other. Usually
two or more metabolites are transformed into two or more other metabolites.
This would mean that edges need to connect more than two nodes. This
is indeed the usual way chemical reactions are written in textbooks as is
depicted in �gure 2.3
Additionally, stoichiometric coe�cients complicate the matter. In a reaction
like [2A + B → C] two metabolites of type A participate. Since there only
may exist one node of type A, we have to attach a weight to an edge. Using
the way shown in �gure 2.3 (B), the weight of �two� has to be attached to
the edge leading from A to enzyme.
When analyzing metabolic networks, one should keep the characteristics dis-
cussed above in mind.

12
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A

B

C

D

A

B

C

D

Enzyme

(A) (B)

Figure 2.3: Biochemical networks are bipartite graphs
A) shows the way biochemical reactions are usually depicted. B) shows
the underlying bipartite graph. This knows two kinds of nodes. In case of
metabolic networks these refer to metabolites and reactions.

2.2.3 Thermodynamic aspects
In section 2.1.1.2 it was said that ∆G has to be negative, if a reaction is to
take place spontaneously. It is possible to reverse spontaneous reactions, e. g.
by heating. In this thesis we assume the model to exist under the standards
usual in biology (25◦C, 1 atm, pH 7; compare table 2.1). All reactions are
to occur spontaneously (∆G < 0) and additionally we presume that there
exist no other ways of energy transport within the cell than by metabolites.
Zooming out to the whole network, it follows that also the energy balance of
the network itself has to be negative. Thereby, �energy balance� only refers
to the energy of compounds entering or leaving the cell. Energy transported
into the cell by heat, light, or other means is excluded at this point.

The aspects above are included in the thesis at hand. Energy balance analysis
(2.7) is used when referring to single reactions. The external energy balance
(3.5) depicts the energy proportions �owing into and out of the system as a
whole.
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2.3 Enzyme and reaction kinetics

It was already stated on page 11 that enzymes are molecules which catalyze
(bio)chemical reactions. Put in simple words, they lower energetic barri-
ers that have to be overcome in order for a reaction to take place. Thereby,
enzymes facilitate reactions which would otherwise be blocked by these barri-
ers. Details about the method of operation and underlying thermodynamical
issues can be found in (Voet & Voet, 1992). Usually, enzyme-catalyzed re-
actions do not follow simple chemical reaction kinetics (see below). E.g.,
Michaelis and Menten state the kinetic law for an enzyme-catalyzed reaction
with one substrate, in absence of a reverse reaction, (see e. g. (Voet & Voet,
1992)) as:

v0 =
vmax[S]

KM + [S] (2.8)
v0: initial velocity, vmax: maximal velocity, [S]: concentration of substrate, KM :
Michaelis constant.

Athel Cornish-Bowden describes the more complicated laws for multi-
substrate reactions, which may include reverse reactions, in (Cornish-
Bowden, 1995). Within the scope of this thesis we will assume linear reaction
kinetics (i.e. chemical kinetics) for enzyme-catalyzed reactions. Under cer-
tain constraints (compare chapters 3.6.2.2 and 5.4.1 for assumed constraints
and discussion) this is reasonable.
Ruled by linear reaction kinetics, a reaction velocity becomes dependent on
its substrates and products in the following way
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v = v1 − v2 (2.9)
with

v1 = k1 ∗
∏
i

[i]νi (2.10)

v2 = k2 ∗
∏
j

[j]νj (2.11)

v states the overall reaction velocity, v1 is the reaction rate in forward direction,
k1 the referring kinetic constant, v2 and k2 refer to backward direction. [i] is the
concentration of substrate i, [j] the one of product j and νi and νj are the orders
of the reactions in metabolites i and j respectively (compare (Atkins, 1990, p. 782
�.)).

Additionally, some words have to be said concerning enzyme catalysis. Most
enzymes are able to catalyze one chemical transformation at a time. There
are exceptions, but they are rare. Thus, one can imagine a situation where
lots of substrates need to be transformed by one enzyme molecule, which
would not be able to accomplish that workload. This situation would be re-
ferred to as saturation. In general, saturation means that an increase in the
substrate concentration does not result in an increase of the reaction rate.
Enzymes are themselves complex biological molecules for which regulatory
mechanisms exist, e. g. feedback mechanisms. There are two general types
of feedback: activation and inhibition. Both may be triggered by chemical
compounds interacting with the enzyme.
Since enzymes are biological molecules, they may be digested by other en-
zymes. Also disintegration by external factors (e. g. by heat) may play a
role. This in turn could change the overall �ux through the catalyzed reac-
tion. If disintegration occurs faster than expression, we will move closer to
saturation.
More details on all of the above topics can be found in any standard bio-
chemistry textbook (e. g. (Voet & Voet, 1992)).
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2.4 DNA microarrays

DNA microarray analyses give a crude quantitative determination of the
expression (2.2.1) of certain genes.
Individual DNA samples representing the genes of a genome are arrayed on
membranes or glass plates. The RNA from a speci�c organism is taken,
�uorescently labeled and brought onto the array. If a complementary gene
fragment exists on the plate, the RNA will bind to it. Then all free RNA
molecules left are washed away. By usage of a laser the marked RNA can be
visualized. Since it is known which spot refers to which gene, the expressed
genes can be identi�ed. The relative intensity of the �uorescence refers to
the amount of RNA molecules existent within the examined tissue.
So all genes that are transcribed from the genome at hand can be identi�ed
and relatively quanti�ed. Of course �all� only includes those genes which
are represented on the microarray. Interested persons are referred to (Hüser
et al., 2003) for further reading.

2.5 Metabolic pro�ling

Metabolic pro�ling experiments enable scientist to characterize the pheno-
types of organisms on an experimental basis. A metabolic pro�le can be
established along two dimensions. The term either represents the measured
concentration of one metabolite versus time or the concentrations of all
metabolites at one discrete point of time. Within the work at hand we
usually refer to the latter variant.

2.5.1 Metabolic pro�ling - experiments
The metabolic pro�ling data implemented in this thesis was derived by a
method that has been established by Sergey Strelkov et al. in (Strelkov
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et al., 2004). Strelkov used a combination of gas chromatography and mass
spectrometry (GC/MS) to quantify the metabolites in bacterial probes.

The chain of experiments starts with raising C. glutamicum under de�ned
conditions. Thereby, fermenter technology is given the preference over shak-
ing �asks, due to the possibility to control the pH value and to keep the
oxygen saturation constant. Nutrition, however, is only supplied once at the
beginning of the experiment. This method is referred to as batch cultiva-
tion, contrary to fed-batch (feed at the beginning and afterwards whenever
nutrient limitation arises) or continuous supply of feeding materials. After
starting the growth by initial feeding, in given time intervals probes are taken
from the culture. The bacteria therein are lysed and the metabolic content
is analyzed.
In a �rst step, the mixture is separated with the help of gas chromatography.
The GC peak areas are used to quantify the individual components. In a sec-
ond step, mass spectrometric analyses shall help to identify the metabolites.
It must be known that the identi�cation is usually carried out by comparing
the retention time from the GC as well as the mass spectrum to the data
retrieved by usage of commercially available standards. Databases may help
at this point (Schauer et al., 2005).
If neither standards are purchasable nor database entries exist, identi�cation
becomes complicated.

2.5.2 Metabolic pro�ling - interpretability
In principle, it is possible to perform quantitative analyses that yield discrete
amounts. One needs to measure calibration curves for all components in ad-
vance. But, since this is a rather time consuming task, it has not been done
for the data used in the work at hand. Thus, only a relative interpretation of
the experimental data is allowed. Additionally, this relativity is only valid in
one dimension. If the concentration of a speci�c metabolite changes between
di�erent measurements (e. g. between cultivation on glucose or acetate), it
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can be determined that it doubles, bisects etc. Di�erences between diverse
components, however, cannot be interpreted. E.g., there may be the result
that ATP concentration doubles if the organism is raised on excess nitro-
gen, contrary to nitrogen starvation. But there will be no result as: ATP
concentration is half of NADH concentration.

2.6 Flux balance analysis

FBA - an acronym of �ux balance analysis - starts with the mass balance for
a single metabolite x:

d[x]

dt
= ~s · ~v (2.12)

[x] denotes the concentration of the metabolite; t is the time; ~s is called the
stoichiometric vector, which contains the stoichiometric coe�cients of x in all
reactions of the network; ~v is the �ux vector containing the �ux values of all the
network's reactions.

By zooming out to the whole network, [x] becomes the concentration vector
~c and ~s becomes the stoichiometric matrix S. Within S, each row refers to
one metabolite and each column to one reaction.

d~c

dt
= S · ~v (2.13)

During a �ux balance analysis only a very short time slice dt is considered.
This leads to the assumption of the metabolic network existing in a steady
state. The e�ect is that the concentrations of all metabolites do not change
over time. Expressed mathematically:

~0 = S · ~v (2.14)

The result is an under-determined, homogeneous, linear system of equations,
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Figure 2.4: FBA basics
A) shows an example network with four metabolites, six internal and three
membrane-crossing reactions. B) gives the referring basic equation of �ux
balance analysis (compare eq. 2.14). Note that membrane-crossing reactions
(also called external) are de�ned to lead from the cytoplasm to a no deeper
de�ned environment, hence their stoichiometric coe�cients are always -1.
Di�erentiation between in�uxes and e�uxes is accomplished by imposition
of constraints onto the �uxes (contrary to the reactions).

since natural metabolic networks normally own more reactions than metabo-
lites (see also (Kau�man et al., 2003; Schilling et al., 2000, 2001)). Compare
also �gure 2.4.
As a consequence we are not able to obtain a discrete solution, but will
get a solution space. Due to its biochemical background and its shape, this
solution space is called the steady state �ux cone. The cone is convex and,
if no further constraints are imposed on the system, open at the top (see
�gure 2.5).
In general, there are side constraints made that in�uence those �uxes which
refer to membrane transport reactions; e. g. the carbon source in�ux should
be limited. According to the biochemical and environmental conditions,
which are to be represented by the model, additional constraints may be
imposed. For instance, the nitrogen in�ux could be limited to simulate the
behavior under referring starvation. To analyze �uxes in an anaerobic en-
vironment, oxygen uptake can be prohibited. Any side constraints can be
introduced as inequalities:
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v1

v2

v3
discrete solution

Figure 2.5: Steady state �ux cone
The result of equation 2.14 is a polyhedral cone emanating from the origin
and stretching into the metabolic �ux space. Due to its biochemical back-
ground it is called the steady state �ux cone. Figure cloned from (Schilling
et al., 2000).

αi ≤ vi ≤ βi (2.15)
with αi and βi being arbitrary numbers.

In order to obtain interpretable results, at least as many constraints have to
be imposed as are necessary to close the steady state �ux cone.

All possible �ux distributions (i.e.: vectors ~v) the system can achieve lie
within the cone. Thus, its analysis presents the metabolic phenotypes the
system is able to achieve.
To pick a discrete solution out of the �ux cone, a sound objective function
is stated and a linear optimization applied. Scientists agreed in regarding
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the production of biomass as a reasonable objective function, at least for
unicellular organisms (Segrè et al., 2002).

Maximize
∑
j

cj · vj

subject to
∑
ij

Sij · vj = 0 | α ≤ vj ≤ β (2.16)

i: metabolites, j: reactions; ci: coe�cients in objective; Sij : stoichiometric coe�-
cients; vj : �uxes.

Mahadevan and Schilling explain in (Mahadevan & Schilling, 2003) that even
after performing a linear optimization, in most cases, there is no single dis-
crete solution. On the contrary, there are more than one possible �ux dis-
tributions which yield the exact same biomass production rate. Figure 2.6
shows how variable �uxes constitute in general.
If only one of the depicted elements exists in the analyzed model, after op-
timization not one, but in�nite solutions exist, which lead to the same opti-
mum.

2.7 Energy balance analysis

The research group of Daniel Beard noted, that, by application of FBA only,
�ux distributions may occur which lack thermodynamic feasibility (Beard
et al., 2002). The �rst law of thermodynamics (2.1.1.1) states the conserva-
tion of energy. Applied to metabolic networks, it can be deduced that the
sum of the reaction free enthalpies over a closed loop is zero. The second
law (2.1.1.2) says that spontaneous chemical reactions are accompanied by a
negative reaction free enthalpy (2.1.2.2).
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Figure 2.6: How do variable �uxes occur ?
a) The �ux towards A is �xed, so all others are �xed, too. b) The �ux towards
A is �xed. Then it can divert, with the sum of both possibilities being 10,
always. c) If the �ux towards A is variable itself, this has to be added. d)
Also stoichiometric coe�cients have to be taken into account (A → 2·B).
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~0 = C ·∆ ~Gr (�rst law) (2.17)
0 ≤ vi ·∆Gi , ∀i (second law) (2.18)

C: full cycle basis of the system; ∆ ~Gr: vector of Gibbs energies of reactions; vi:
�ux of reaction i.

By combining these statements, it follows that no cyclic �uxes are allowed,
because the equal sign in eq. 2.18 only holds true if vi = 0. On his website
(Beard, 2005) Beard o�ers programs for download that accomplish the
inclusion of equations 2.17 and 2.18. Matlab (The MathWorks, 2005) is em-
ployed as programming environment. Due to the thermodynamic / energetic
background of the theory, Beard et al. termed it energy balance analysis
(EBA).

The step from FBA to EBA further constraints the feasible solution space
of equation 2.14. But it also necessitates the employment of nonlinear pro-
gramming, because the additional constraints cannot be stated in a linear
way. As a consequence, the typical problems attached to nonlinear programs
enter the analysis. In a nutshell: the optimization routines may get stuck
at local optima, rather than �nding the global optimum. Additionally, it
can be hard to �nd out whether the denoted result in fact is a local or the
global optimum. A possibility to overcome this obstacle is explained in the
following chapter

2.7.1 Ab initio prediction of reaction directions
In (Yang et al., 2005), Feng Yang introduced the possibility to calculate
thermodynamically feasible reaction directions ab initio. This is done by
�xing some necessary external �uxes (e. g. carbon source in�ux and biomass
production rate) and, afterwards, successively minimizing and maximizing
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each �ux of the network under the constraints of EBA. If thereby a valid
positive value for a �ux is found, it is obvious that the forward direction is
feasible. The opposite holds true for minimization and negative �ux values.
The point is: the optimum found does not have to be the global optimum.
If only one positive value is found, it is enough to state that the forward
direction is allowed. After determination of all feasible reaction directions,
linear optimization is applied once more to �nd the global optimum of the
systemic objective. The above delineated procedure was used in this work,
as explained in 3.4.

2.8 Databanks

2.8.1 BRENDA
The Braunschweiger Enzym Datenbank (BRENDA) is the main collection
of enzyme functional data available (Schomburg et al., 2004). Started in
1987, BRENDA now covers around 4200 EC numbers representing more than
83000 di�erent enzyme molecules. The information supplied covers enzyme
nomenclature, interaction to ligands and information regarding those, func-
tional parameters like KM values and turnover numbers, organism related
information, enzyme structure and molecular properties, as well as links to
referring literature (compare (Schomburg, 1987)).

2.8.2 KEGG
The Kyoto Encyclopedia of Genes and Genomes (KEGG) is the second bi-
ological database used throughout the thesis at hand (Kanehisha & Goto,
2000). Contrary to BRENDA, it emphasizes the systemic point of view,
while only covering basic information about enzymes and the reactions cat-
alyzed by them. KEGG contains graphical depictions of metabolic pathways
(Kanehisha, 2005), similar to the well known wall charts by Gerhard Michal
(Gerhard, 1999). Additionally, it provides an unambiguous coding of all re-
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actions and metabolites, which proves very helpful when processing the data
with a computer. Compounds which can be addressed by multiple names
in di�erent reactions (which again may be addressed by varying names) are
always addressed by the same identi�er.
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Chapter 3

Methods

All computational calculations described in this work have been carried out
on a standard personal computer, Intel Pentium 4 CPU 2.4 GHz, 1 GB
RAM.
As operating systems we used mainly the mandriva (formerly mandrake)
linux distribution (Mandriva, 2003). Additionally, Microsoft Windows XP
(Microsoft Corporation, 2003) was used when employing the company's o�ce
package.
Programming languages used throughout this work are C/C++ (Stroustrup,
1997), Matlab scripting (The MathWorks, 2005), and Perl (Wall et al., 2000).

3.1 CMP

CMP is an acronym of Cubic Metabolome Project. This is a C/C++ pro-
gramming library, which has been developed to solve problems related to
biochemical networks. All programming work accomplished in C/C++ in
this thesis is based on the CMP library. Interested persons can download the
CMP source code under the following web address:
http://www.biotool.uni-koeln.de
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3.1.1 CMP details
As shown in �gure 3.1, the structure of CMP is hierarchic. Data is stored
within CMP in a metabolic network. This network consists of reactions. Each
reaction owns educts and products, which are stored as sets of molecules.
Obviously, these consist of molecules, which are build of atoms. Each level
is designed to store the appropriate data, as well as to provide functions
necessary to handle this data. E.g., along with a reaction, information about
its reversibility is stored and can be changed easily at any time. For detailed
information see the above-mentioned website.

Atoms

Molecules

Sets of Molecules

Reactions

Metabolic Network

Figure 3.1: CMP Structure
The comprehensive structure of the CMP programming library. Each
depicted level is implemented as a class of its own, supplied with appropriate
functions and data-storage solutions.
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3.2 The C. glutamicum model

In the following, the process of modeling the metabolism of C. glutamicum
is explained. At �rst we will describe which assumptions and abstractions
have to be made. Next, the actual procedure will be depicted, including the
usage of DNA microarray data and the reasons for implementing reactions
with non-annotated genes. At last some additional comments will be made.

3.2.1 Underlying assumptions
Basic genome-based modeling can be described very brie�y as annotating
the genome and looking up all possibly occurring reactions in databases
like KEGG (Kanehisha, 1997) or BRENDA (Schomburg et al., 2004) (com-
pare 2.8). Therefrom, directly a metabolic model can be established. Doing
so, one must be aware of some generalizations hidden in this procedure:

• if one is not using microarray data (compare 3.2.3), it is assumed that
each coding gene is expressed

• and each gene expression product (i.e. protein) is available in su�cient
amount, so enzyme saturation is not an issue (see also 3.6.2.2).

• also, each enzyme is available everywhere, at any time

• the same holds true for all metabolites

• usually, no enzyme speci�c properties are modeled (e. g. activation or
inhibition; also compare 3.6.2.2)

Most of the time, compartmentation is neglected. This holds true for our
model, since C. glutamicum is a prokaryotic bacterium. Another point, which
shall be mentioned explicitly though being obvious, is: processes not modeled
are considered to have no in�uence on the modeled part of the organism.
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3.2.2 The modeling process
The C. glutamicum reaction network designed in this thesis is based on the
bacterial genome. Though the annotation of the genome has been published
by now (compare (Ikeda & Nakagawa, 2003) and (Kalinowski et al., 2003)),
we used an in-house annotation, performed between 2002 and 2004 by
Dr.Urte Wendt. This is due to the fact that the publishing date of the an-
notations just cited lies after the date the model-building process took place.
Later on, we included the published annotations during re�nement processes.

The modeling process is depicted in the �owchart diagram 3.2 on page 31.
We started with the genome annotation and connected the resulting list
of EC-numbers to the KEGG database (Kanehisha, 1997; Kanehisha &
Goto, 2000; Kanehisha, 2005). In constant alignment with literature (Takaç
et al., 1998) a list of reactions was achieved. Since the KEGG database is
sometimes erroneous, a manual check for correctness of all reactions used in
our network has been performed. This check included the examination of
the reaction's mass-, redox-, and charge-balance.
At a later stage of the work, the set of reactions has been adapted to an
assumed intracellular pH of 7. This has been performed by Kai Hartmann.

The re�nement process, following the initial reaction network, included
closing gaps in pathways as well as removing loose ends. To achieve the
latter, either a reaction crossing the cellular membrane has been added or the
reaction-sequence leading to the dead end has been removed. In this context,
we tried to allow only metabolites to cross the membrane which are known
to do so (i.e. sources for carbon, phosphate, nitrogen, or sulfur and oxygen
or carbon dioxide). Additionally, biomass components are modeled to be
able to leave the cell, but in fact they do not pass the cellular membrane but
constitute it.
It has to be emphasized that the procedure of re�nement and expansion
has been an ongoing process throughout the whole work. At some stages,
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only the �ux analysis (see 2.6) of the system at hand revealed existing de�-
ciencies. Even though the model construction chronologically has to come
before the �ux analysis, this work cannot be split into two parts, but has to
be understood as consisting of two tasks, which are highly interconnected.

To learn which irreversibility information has initially been used, the reader
is referred to section 3.4.2.

3.2.3 Using DNA microarray analyses data
For background theory to DNA microarray analysis see 2.4.

Within the research group of Prof. Dr. Reinhard Krämer at the Cologne
University, Dr.Maike Silberbach et al. carried out DNA microarray analyses
of the Corynebacterium glutamicum. Details about the methods applied
are published in (Silberbach et al., 2005; Silberbach, 2005). In a nutshell,
Silberbach et al. used reverse transcription to transform RNA molecules into
cDNA, which has subsequently been quanti�ed by microarray analyses.
In the thesis at hand, we used this data to further improve and justify the
C. glutamicum model constructed. Therefore, we calculated the R-value,
that is de�ned in (Hüser et al., 2003) as

R =
signal mean− background mean
background standard deviation (3.1)

and is suitable to discriminate between signi�cant and nonsigni�cant tran-
scription. Then we connected the expressed genes to enzymes, if possible.
This was accomplished by using our annotation (compare 3.2.2, page 29) as
well as the genome annotation published by Kalinowski et al. (Kalinowski
et al., 2003).
The reader should know, that Hüser et al. claimed R-values ≥ 2 to state a
signi�cant transcription.
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Figure 3.2: Process of building the model
Flowchart of the model building process. Genome annotation performed by
Dr. Urte Wendt, (Ikeda & Nakagawa, 2003), and (Kalinowski et al., 2003).
All reactions have been manually checked for correctness in terms of mass-,
redox-, and charge-balance. All reactions have later on been adapted to an
intracellular pH of 7 by Kai Hartmann.
See the following references for KEGG: (Kanehisha, 1997; Kanehisha & Goto,
2000; Kanehisha, 2005) , Literature used in comparison: (Takaç et al., 1998).
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During the process of establishing the connections between a gene and an
enzyme, the following redundancies could be observed:

1. there may be more than one gene coding the same enzyme.

2. there may be more than one enzyme annotated to one gene.
Since we only needed to know if a gene is expressed, and were not interested
in the exact amount, for us it was su�cient to identify at least one gene that
is expressed in a signi�cant amount. Thus, the �rst-mentioned redundancy
states no obstacle.
Concerning the second one, we had no means to rank the enzymes annotated
to one gene. In order to act scienti�cally, it was not possible to decide
manually which enzyme is coded by the referring gene. In consequence,
we could either neglect the genes coding more than one possible enzyme or
take all enzymes as expressed, if the gene is transcribed. We assumed all
genes coded to be expressed, otherwise too many genes would have been
omitted. But only those enzymes were added to the network that �tted into
its structure. E.g. enzymes coding reactions which are not connected to the
model were neglected.

3.2.4 Non-annotated reactions
During the process of model building, it was sometimes necessary to add
reactions which are either not annotated or which additionally do not exist
within KEGG (Kanehisha, 2005). Thereby, the non-annotated reactions can
be divided in two types:

1. reactions which are catalyzed by an enzyme, but this enzyme is not
annotated within the C. glutamicum genome.

2. reactions which are not attached to a catalyzing enzyme.
The reason to include reactions like those were

• to close gaps in obvious pathways
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• to cross the cellular membrane

Most of the gap-closing reactions are isomeric transformations1. We only in-
troduced transformations between conformational isomers or con�gurational
isomers, if the latter can be achieved at low costs and with the help of wa-
ter only. In these cases we assumed that no help of an enzyme is needed
to accomplish the reaction. An example, very popular in this work, is the
transformation between the open chain and closed ring form of sugars.

3.2.5 Biomass constitution
Basically, we used the biomass as de�ned in (Takaç et al., 1998). But to
satisfy the genome annotation (see 3.2.2, page 29 �.) we had to neglect
certain molecules. There was no hint, that pathways producing them exist
in Corynebacterium glutamicum. Table 4.6 in the results section on page 71
shows the detailed composition of biomass as used in this work.

3.2.6 State of the metabolites
It has been mentioned before (3.2.2, page 29) that all molecules have been
adapted to an intracellular pH of 7. The according process was accomplished
manually by Kai Hartmann (Hartmann, 2006).

3.2.7 Storage of the C. glutamicum model
The model derived is stored within two text-�les.
The main reaction �le contains information about the enzymes catalyzing a
reaction (2.3), the pathways the reaction belongs to, and the reaction equa-
tion itself. This �le has the KEGG reaction �le format (Goto et al., 2004,
section 2.1). We extended this format, in a consistent way, by an identi�er

1Isomers are molecules which consist of the same atoms being arranged di�erently in
space. For more details about the di�erent kinds of isomeries, see e. g. (Hollemann &
Wiberg, 1995, p. 322 �.)
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called METABOLISM, which is followed by the part of the metabolism the
reaction belongs to in our model.
The second �le used to store the network has the format of the KEGG reac-
tion_main.lst-�le (Goto et al., 2004, section 5.10). It only contains informa-
tion about the reversibilities of the reactions used (see 3.4.2, too).

3.3 Flux Balance Analysis (FBA)

For details about the theory of �ux balance analysis see chapter 2.6.

The implementation of the FBA, as performed in this work, is based on the
CMP library (see 3.1).
To carry out the linear optimization, we used a C/C++ library from IBM
called OSL, which is short for Optimization Subroutine Library. OSL was
freely available for academic purposes and is a subroutine library able to
solve linear optimization problems in an acceptable time (i.e. below one
second for the current model (see 4.1)). Unfortunately, IBM has ended
support for this product during the time of our work, but interested persons
can have a look at the manual online at (IBM, 1995).

The data, necessary to carry out a �ux balance analysis, are the ones given
in the theory chapter (2.6). In a nutshell these are:

• the stoichiometric reaction equations

• information on the reactions' (ir)reversibilities

• information about bounds on �uxes. This includes external �uxes as
well as internal ones (see 2.6, especially �g. 2.4).

The software package programmed to perform the �ux balance analysis has
to be given the information stated in the last item of the above list via an
additional �le. The format of the output �les, containing the optimal �ux
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distributions, is de�ned by the optimization subroutine library.
Scripts in the Perl programming language (Wall et al., 2000) have been
written to transform these into various formats, e. g. to be read by Microsoft
Excel (Microsoft Corporation, 2003) or the Open O�ce package (SUN Mi-
crosystems, 2004).

Most of the literature concerning �ux balance analysis (e. g. (Schilling et al.,
2002; Edwards & Palsson, 1999, 2000)) describes the objective function as
the production of biomass. In case of E. coli, it has also been shown that
predictions based on this assumption are in accordance with experimental
data (Edwards et al., 2001). Using the biomass constitution described in
3.2.5, we will show that optimizing biomass allows us to reproduce experi-
mental results in theory (compare results in chapter 4.2).

In this work, the simplex algorithm (Lawler, 2001, p. 43 �.) was used to
compute all linear optimizations.

3.4 Energy Balance Analysis (EBA)

For details about the theory of energy balance analysis see chapter 2.7.

The program to perform the EBA was written in the Matlab programming
language (The MathWorks, 2005). We used and adapted the programs
placed at disposal by Daniel Beard under (Beard, 2005).
As explained in 2.7 and 2.7.1, there are two ways of carrying out the energy
balance analysis. One is to perform a nonlinear analysis which includes the
necessary constraints (Beard et al., 2002). The other is to calculate the
feasible reaction directions in advance as explained in (Yang et al., 2005).
We tried the �rst-mentioned method, but encountered severe problems in
�nding the optimum within the nonlinear optimization problem at hand
(see 2.7). Thus, we switched to the ab initio prediction of thermodynam-
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ically feasible reaction directions. Trying to use the whole matrix while
calculating the complete cycle basis (see eq. 2.17 & 2.18, page 23) made the
task uneconomic, because the calculation time easily exceeded days, without
the computing getting �nished. Since the directions of all outer reactions
are known in advance, a shift to the prediction of only the internal reaction
directions followed.
Calculation time was reduced to hours rather than days by this step.

This is what was done:

• extract the part of the stoichiometric matrix containing only the inter-
nal reactions

• calculate the full cycle basis (compare equation 2.17,p. 23) using the
matlab cycle function supplied by Daniel Beard (Beard, 2005)

• use the optimization method described in (Yang et al., 2005). We
changed this method as described below (3.4.1).

• achieve a prediction of all reaction directions for thermodynamically
feasible �ux distributions

As a result of this procedure we obtained a new �le, supplying constraints
on all internal reactions, so the �uxes within the system were only allowed
to distribute according to thermodynamic feasibility. As Feng Yang explains
in (Yang et al., 2005) and Daniel Beard also states on his website (Beard,
2005), one has to check whether there are any possible cycles left after the
prediction of the �ux directions.
In all analyses presented in this work under the label of EBA, no cycles
were left after the initial prediction of the reaction directions (at this point
see also 3.4.2, concerning the initially given reaction irreversibilities). Thus,
thermodynamic feasibility was indeed ensured for all �ux distributions
gained under the constraints of EBA.
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As for all �ux balance analyses (see 3.3), we used biomass (compare 3.2.5)
production as the objective function and the simplex algorithm (Lawler, 2001,
p. 43 �.) to compute all linear optimization problems. To compute the non-
linear optimizations the Matlab (The MathWorks, 2005) function fmincon
was used.

3.4.1 Applied changes to the optimization method
Yang et al. suggest to impose all necessary constraints on a network and then
to minimize and maximize each �ux within, in order to achieve information
about the thermodynamically reasonable reaction directions (compare (Yang
et al., 2005)). As explained in 2.7.1, this procedure does not need to �nd
the global optimum of the nonlinear optimization problem at hand, but it
is su�cient to reach a point other than zero to state that a correspondingly
signed �ux exists.

After implementing this method, we found the predicted reaction directions
di�ering slightly between varying calculations. This is caused by the op-
timizer sometimes getting stuck on a negative value, regarding it as the
optimum even though a positive optimum exists. Since we tried random ini-
tial guesses (starting points) for the optimizer until he found any optimum,
sometimes a negative (local) optimum was found, sometimes a positive was.

Our changes were not only to analyze the reaction currently optimized, but
to do so for the whole achieved �ux vector. It might happen, while optimiz-
ing reaction x, a positive value was found for reaction y. Since the whole
�ux vector has to be reasonable in a thermodynamic sense, obviously there
are solutions containing a positive �ux through reaction y. But, while max-
imizing vy explicitly, a negative optimum was found, suggesting no positive
�ux exists for reaction y. We �gured this to be an e�ect of the optimizer
getting stuck in a local (negative) optimum. Thus, we considered the whole
�ux vector at each optimization. Additionally, sometimes a �ux is predicted
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to equal zero. This happens if minimization as well as maximization result
in zero as the particular optimal value. In these cases, we asked the result
to be con�rmed 20 times, meaning we tried 20 di�erent, randomly chosen,
starting points for the very same optimization. That brute approach showed
to be necessary after a �ux was predicted to be zero which was lying within
the central carbon metabolism.
The whole process is included in the �owchart 3.4 on page 41.

3.4.2 Identi�cation of initial irreversibilities
As shown in �gure 3.4, we started with a network consisting only of reversible
reactions. It was tried next to predict all feasible reaction directions from
scratch. As expected, this did not result in a network with totally feasible
reaction directions. The check whether there are still cycles left (compare
3.4) turned out positive. Now, the reaction which was most common in the
existing cycles was identi�ed. A search in the KEGG database (Kanehisha,
2005) was performed, retrieving eventually existing information about this
reaction's irreversibility. If such information was found, it was implemented
and a new ab initio prediction of the feasible reaction directions was com-
puted. If no such information was found, the next most common reaction
was identi�ed and used. This procedure was repeated until there were no
more cycles left after the �ux direction prediction.
This way, we ensured to use as few initial information as possible in the
most e�ective way possible. There have been a few exceptions to the method
described. Details about that can be found in section 3.4.3.

3.4.3 Special cases
The reactions listed in table 3.1 have been added to the network as a �nal
step of the model building process. Integrating them made the calculation
of the full cycle basis (see eq. 2.17, p. 23) too costly, concerning calculation
time. Including additional irreversibility information did not help here,
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Table: 3.1: Reactions not included in irreversibility prediction
The following reactions have not been included during the prediction of the
thermodynamically feasible reaction directions. They have been added af-
terwards with the irreversibilities shown. See text (3.4.3) for details.
reaction 134 ATP + Glycerol => ADP + sn-Glycerol 3-phosphate
reaction 135 Glycerol + NADP+ <=> D-Glyceraldehyde + NADPH + H+
reaction 137 D-Glyceraldehyde + NAD+ + H2O <=> D-Glycerate + NADH + 2 H+
reaction 136 ATP + D-Glycerate <=> ADP + 3-Phospho-D-glycerate

because the algorithm used (Beard, 2005) calculates the cycle basis from the
internal stoichiometric matrix (compare 2.6, especially �g. 2.4,p. 19) without
taking the irreversibility information into account. Irreversibilities are added
later, while performing the optimization method explained in (Yang et al.,
2005).

As a consequence, we followed the chain of arguments stated next and inte-
grated the reactions without any further test if the energy balance analysis
constraints are ful�lled:

1. before adding the above mentioned reactions, sn-Glycerol 3-phosphate
could only be produced and was directly converted to biomass after-
wards.

2. if the reactions 134, 135, 137 and 136 are added, including irreversibility
information which only allows another way of producing sn-Glycerol 3-
phosphate, no additional cycles can occur.

3. KEGG database (Kanehisha, 2005) says reaction 134 is irreversible in
the according way.

Figure 3.3 depicts the situation.
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Figure 3.3: Reactions not included in irreversibility prediction
The EBA predicted reaction 133 to be irreversible towards sn-Glycerol 3-
phosphate. The reactions 136,137,135 and 134 (bold lines or arrows) have
not been included during the prediction of thermodynamically feasible re-
action directions (see table 3.1). They have been added afterwards with
irreversibilities (arrows) shown.
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Figure 3.4: EBA �owchart
A �owchart diagram of the energy balance analysis process. For the theory
of EBA see 2.7. The procedure shown includes matlab code as well as C++
code based on CMP (3.1)
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3.5 External Energy Balance (EEB)

The idea behind developing the external energy balance is the following:
besides a thermodynamic feasible arrangement of the �uxes within the sim-
ulated network, one has to analyze thoroughly the energy balance spanning
the cellular system as a whole.

This is a simple consequence of the �rst law of thermodynamics (see 2.1.1.2),
which states that energy can neither vanish nor appear spontaneously. But
since a living organism dissipates energy as heat, and we are not able to
measure its amount, the condition that has to be ful�lled is:
the amount of energy leaving the system as metabolites must be smaller
than or equal to the amount of energy entering the system in metabolic form.

∑
i=in

∆Gi ∗ |vi| ≥
∑

j=out

∆Gj ∗ |vj| (3.2)

vi and vj are the reaction velocities of the incoming and outgoing reactions,
respectively.

The greater -part of the 'greater or equal' sign refers to the energy dissipated
by the system. The value of the free enthalpy of formation ∆Gf is de�ned
as the free enthalpy of a reaction building a molecule from the elements in
standard state (compare table 2.1). The ∆Gf values have been calculated
as described in the theory chapter 2.1.2.1. The software accomplishing this
task has been developed by Kai Hartmann.
After imposing the above equation to the system, we introduced the next
step -�EEB - Analysis�- which is explained in the following section.

3.5.1 EEB- Analysis
A living system is not able to metabolize all entering molecules into other
molecules, which are leaving, without loss of energy. For a reaction to
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actually occur, there has to be a drop in energy from the educts to the
products. As a consequence of this, in combination with the second law of
thermodynamics (section 2.1.1.2), a living system dissipates energy as heat.
Since we can calculate the energy entering or leaving the system, by summing
up each side of equation 3.2, we know the amount of energy consumed by
the metabolism. The task at hand now is to relate this amount to the model
analyzed. Stated di�erent: how much energy could the bacterium gain from
the sources it consumes ?

The reader should be aware, that this is not the total amount contained
within the incoming chemical molecules. This would mean, that the organ-
ism digests the molecules down to elemental level, and this does not happen.
But what is the maximum energy �hidden� within the compounds used ?

We suggest, that the total conversion of all carbon entering the cell into
carbon dioxide leaving it frees the maximum possible amount of energy.

Thus, in order to attach a biologically relevant meaning to the amount of
heat actually dissipated, one has to relate it to the amount of heat dissi-
pated if the organism completely transfers the available carbon into carbon
dioxide. The latter has been computed by simply subtracting the left side
of equation 3.2 from it's right side, after optimizing the system on carbon
dioxide production. It is obvious, that one has to use the same amount of
carbon �owing into the cell in both cases.

In a nutshell:

1. optimize the model on carbon dioxide production
2. calculate the amount of heat dissipated (HD) as:

HDCO2 =
∑

j=out

∆Gj ∗ |vj| −
∑
i=in

∆Gi ∗ |vi|
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3. optimize the model on another objective (usually biomass production
(compare 2.6))

4. again calculate the amount of heat dissipated (HD) as:

HDBiomass =
∑

j=out

∆Gj ∗ |vj| −
∑
i=in

∆Gi ∗ |vi|

5. relate HDBiomass to HDCO2

3.6 Metabolic pro�ling

The procedure of metabolic pro�ling experiments has been explained in 2.5.
The following sections show the core idea of this thesis. We will explain the
developed method of implementing the pro�ling-data into the FBA/ EBA-
analyses. This contains the underlying idea, the method of implementation,
and the procedure to choose the correct metabolic pro�les to use.

3.6.1 Metabolic pro�les and reaction �uxes
The following sentence states the basic idea of this work:

The higher the concentration of a reaction's substrate, the faster the reaction.

Readers educated in chemistry will note two things:

1. due to greatly varying kinetic constants between di�erent reactions
(compare eqs. 2.10 & 2.11) this only holds true if comparing the same
reaction under di�erent circumstances

2. the reaction's velocity depends on the amounts of educts as well as of
products (2.3)

Because of this and of some arguments founded in biochemistry we had to
make the assumptions outlined in the following section.
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3.6.2 Prerequisites and assumptions
3.6.2.1 About metabolic concentrations

Up to the time this thesis has been written, the determination of the
metabolic pro�les (see 2.5) has not been complete. There have been some
metabolites our pro�ling team was able to measure, but not yet to identify.
Other metabolites could not be measured for various reasons (2.5.1).
Thus, we made the following assumption:

All metabolites whose concentration could not be determined are assumed to
have the same concentration under all circumstances taken into account.

The results (chapter 4) show this assumption to be reasonable.

3.6.2.2 About (enzyme-) kinetics

We assume the network's reactions to occur at conditions that approximate
chemical rather than enzyme kinetics. In other words: enzyme kinetics are
linear with respect to each metabolite. This means :

• the order of the reactions is one in each metabolite (i.e. the stoichio-
metric coe�cient, if that metabolite appears more than once in the
reaction)

• enzyme expression is no limiting factor and is the same in all networks
considered.

• enzyme kinetics is far from saturation. E.g. for Michaelis-Menten ki-
netics this means [S] � KM ⇒ v ≈ Vmax[S]

KM
(see 2.3)

• we do not consider any e�ects changing the reactions' kinetics, such as
inhibition, activation, enzyme-disintegration, or others
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If the reaction rate is linearly dependent on the substrate concentrations

v = k ∗
∏
i

[i]νi | νi = 1 ∀ i (3.3)

k: kinetic constant, [i]: concentration of metabolite i, νi: order of reaction in i

it is easy to understand that the (forward) �ux grows with growing substrate
amount. But, as said in 3.6.1, considering this is not su�cient. The �ux of
the backward reaction cannot be neglected, because its change may exceed
the change of the forward reaction's �ux.
An example may further illuminate the matter: suppose a reaction the
forward �ux of grows from 10 to 15 mmol

g(DW )·h and the �ux in backward
direction from 5 to 12 mmol

g(DW )·h; then the overall reaction velocity (see
eq. 2.9) decreases even though the forward �ux increases.

Compare the same arbitrary reaction 'A ⇀↽ B' under two di�erent circum-
stances and call it R and R', respectively. It shall be, that the concentration
of A is higher for R than for R' : [A] > [A′]. Then obviously the �ux v for
reaction R is greater than v′ for R'. For this to hold true, while additionally
considering the backward �ux, we must compare three cases:

1. [B] < [B′]

2. [B] = [B′]

3. [B] > [B′]

Case 1: the overall reaction �ux increases from R' to R, because the
forward �ux increases while the backward �ux decreases
Case 2: the overall �ux increases, too. The forward �ux increases while
the backward �ux stays the same. This is the case e. g. for all reactions of
which we do not know the product concentrations. (In 3.6.2.1 we said all
unknown concentrations are assumed to be constant.)
Case 3: this is the more complicated case, because the increase of the
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backward �ux may outbalance the increase of the forward �ux. In order for
the overall velocity to increase, the following condition must hold true:

[A]

[A′]
>

[B]

[B′]
(3.4)

For any reaction this transforms into
∏

i [i]νi∏
i′ [i′]νi′

>

∏
j [j]νj∏

j′ [j′]νj′ (3.5)

with i denoting all educts and j all products of the reaction (ν are the orders
of the reactions in the referring metabolites).

The interested reader can �nd the mathematical proof, that equation 3.5 is
su�cient to ensure a growing overall �ux, in appendix C.

3.6.3 Method of implementation
To be able to neglect kinetic constants, the same reaction under alternate
circumstances needs to be compared (see 3.6.1). In CUBIC laboratories this
is realized by raising Corynebacterium glutamicum using di�erent carbon
sources. These feeding conditions have then been reproduced in the work
at hand. Namely, we simulate, analyze, and compare the C. glutamicum
metabolism while being raised on

• acetate (NaAc) and

• glucose (Glc)

In the following, we will add the shortcuts NaAc and Glc as indices to
e.g. metabolic concentrations to indicate the conditions used during the
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determination of the referring values.

If the concentration of a reaction's substrate [S]Glc is greater than [S]NaAc,
with all assumptions stated in 3.6.2 being ful�lled, we know from section 3.6.1
that the �ux through the reaction following the substrate is greater for Glc
than for NaAc conditions: vGlc > vNaAc.
In order to improve the results available from a �ux balance analysis or
energy balance analysis, we introduce the above condition into the opti-
mization process. This is done by optimizing both systems (under Glc or
NaAc conditions) at the same time and simultaneously imposing the new
constraint.

The task of optimizing the systems in parallel was accomplished by extend-
ing the stoichiometric matrix (see �g. 2.4, p. 19) in a way shown below.
Let SGlc be the matrix for the glucose-fed organism and SNaAc the one for
acetate conditions. They are combined to Sc, as:

Sc =



SNaAc · · · 0 · · ·
... . . . ... . . .
0 · · · SGlc · · ·
... . . . ... . . .

 (3.6)

To add new constraints of the type vNaAc > vGlc (v being the same reaction
in both cases) we appended additional rows to Sc. These rows only carried
entries in the columns referring to v and stated a �greater than� equation.
In terms of reactions and metabolites, we introduced an arti�cial metabolite
to the system, which built the link between the two parts of it (refer to
chapter 2.6 about the set-up of the stoichiometric matrix).
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It has to be noted, that the range of the method outlined above does not
stop with the combination of two cases (for us: NaAc and Glc). The same
procedure can be extended to implement data from three or more di�erent
data sets. Also, it is not necessary that the partial matrices look exactly
the same. The only prerequisite that must be ful�lled is, that the reactions
which are used to add new constraints are identical. This is because only
then the kinetic constants can be reduced, as said in section 3.6.1.

3.6.3.1 Notes about the method of optimization

While optimizing two matrices, which are not connected, at the same time,
the combined objective function (see 2.6) can simply be the sum of the two
partial ones. But, if the matrices are connected, we may run into problems.
The newly integrated, combinatorial constraint can make the solution space
become concave (compare chapter 2.6, especially �gure 2.5 on page 20). In
that case, the optimization will reach a point where the algorithm would
have to make a decision: point d in �gure 3.5. The optimal solution in the
concave space lies either at b or c. Since both are totally equal regarding
the summed objectives, merely chance determines which result will be shown.

Biologically, there is no reason that both parts of the system must own a
maximized objective simultaneously. It su�ces that one �ux distribution is
optimized while the other is merely feasible and the combinatorial constraints
are satis�ed. Thus, we optimized one part of the matrix after the other,
including the new constraints in all runs.

3.6.4 Selecting the metabolic pro�les
The reader should be aware of the types of data obtained from metabolic
pro�ling experiments before proceeding this chapter. Information on this
can be found in section 2.5.
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Figure 3.5: Convex and concave space
Solid line = convex, gray area = concave space. The task be, to optimize
objective 1 + objective 2. Within the convex space, the optimum lies at a.
Within the concave space the optimum can either be at b or c.

In chapter 3.3 (page 35), it was said that the C. glutamicum model is opti-
mized on biomass production. To connect this to experimental results, we
must identify data that has been received from organisms actually producing
the maximum possible biomass.
For bacteria grown in a fermenter, like described in 2.5.1, this refers to the
period of exponential growth. Thus, the �rst assignment was to identify the
phases of exponential growth. After this, the data had to be normalized.
Last but not least, we needed to identify the metabolic pro�les that showed
the highest correlation to each other (NaAc vs. Glc).
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3.6.4.1 Identi�cation of the period of exponential growth

The �rst step during the identi�cation of the period of exponential growth
was to set inner and outer bounds on the possible range. To explain this, we
will anticipate a �gure from the results section (4.3.1).
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Figure 3.6: Growth curve for glucose fed C. glutamicum (1)
Boxed line = optical density, triangulared line = natural logarithm of OD.
Dashed areas show start and end ranges of the period of exponential growth.

In the above �gure, the dashed lines enclose possible ranges for the start-
and endpoint of the period of exponential growth. Within these ranges, for
all possible combinations of data points:

1. from the curve ln(optical density) over time take one point from the
start- and end-range each. Thereby, take care that there is at least one
data point between the start- and endpoint.
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2. calculate the square of the correlation coe�cient as de�ned by Pearson2.

The combination of start- and endpoint that gave the highest squared Pear-
son Coe�cient was chosen.
We aimed for the identi�cation of the phase of exponential growth. This
means, the natural logarithm of the chosen data should have a linear depen-
dence on time during this period. Thus, we tried to �nd the particular start-
and endpoint, that allow the best possible linear regression on the data in
between.
It showed to be necessary to de�ne possible start- and end-ranges manually,
because sometimes the linear regression improved by adding points which def-
initely lie beyond the period of exponential growth (like e. g. (31; 915 min)
in �gure 3.6).
Obviously, the linear regression of a set of two neighboring data points would
be perfect. In consequence, the determined phase of exponential growth must
at least include three data points.

3.6.4.2 Normalizations

What may be called a data set in the following, refers to a metabolic pro�le
of all metabolites at one point in time.

The normalization included two steps, which will be explained in detail next:

• adjust all data sets to include the same data only

• normalize data sets to the same total amount of metabolites

Adjust data sets to include the same data
Of course, this is not to be understood as: �the data sets should not dif-
fer�. The point is, not all metabolites could be detected in all experiments

2 The squared Pearson correlation coe�cient r2
p (compare eq. 3.8, p. 53) is the usual

means to quantify the quality of a linear regression (the closer to one, the better). See e.g.
(Koehler et al., 2002) for further details.
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(see 2.5.1). What we needed at the end of the day was a relation between the
concentrations of the same metabolite for di�erent environmental conditions.
Thus, this metabolite must occur in all data sets. Also, the normalization
explained next would not make sense if we had considered metabolites only
occurring in some pro�les.

Normalize data sets to the same total amount of metabolites

∑
x

[x]i =
∑
x

[x]j =
∑
x

[x]k = . . . (3.7)

x = metabolites, i,j,k,... = pro�les

The biological idea behind this is that a cell only has a limited space available.
Thus, it is a reasonable assumption that the total amount of metabolites is
the same for all cells.

3.6.4.3 Identifying the highest correlating pro�les

The means used to identify the highest correlating pro�les has been the
Pearson correlation coe�cient :

rp =

∑
(xi − x)

∑
(yi − y)√ ∑

(xi − x)2 ·∑(yi − y)2
(3.8)

We calculated the coe�cient for all NaAc-pro�les against all Glc-pro�les.
The combination showing the maximal correlation has been used further
on. In terms of systems biology, it is reasonable to compare only those
systems which are most similar. Only then, a meaning can be attached to
the di�erences between those systems. For systems being highly diverse from
the very beginning, the single di�erence has less impact.
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3.6.5 Selecting the metabolites
After having de�ned the metabolic pro�les that shall be used, the distinct
metabolites need to be selected. If one aims for the deduction of new con-
straints from the concentration ratio of one metabolite in di�erent systems,
the ratio has to have a signi�cant size. What exactly signi�cant means, has
to be de�ned by the scientist. In case of this thesis, a ratio of

[S]NaAc

[S]Glc

≥ 5

or (3.9)
[S]NaAc

[S]Glc

≤ 0.2

was considered to be signi�cant.
Additionally, two other conditions had to be ful�lled. One was stated in
equation 3.5 on page 47 and concerned the ratio of the reaction's products
and thus the backward reaction. Secondly, the reaction using S as a substrate
de�nitely needs to have a major �ux in forward direction. If this is not given,
we do not know if the molecule S, we are looking at, is in fact a substrate or
a product. Since the result of the whole process is a constraint of the type
vNaAc ≥ vGlc, we cannot deduce such a statement, if we do not know that both
reactions (under NaAc or Glc feeding) show the same direction. This can
be veri�ed by performing the robustness analysis explained in the following
section (3.7). Only if network topology and thermodynamics constricted the
�ux through the referring reaction to be forward, the possible combinatorial
constraint was imposed on the system.
The whole process of choosing the pro�les, normalization, and metabolite-
selection is shown in �gure 3.7.
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Optical Density
curves metabolic profiling data

choose possible start 
and end ranges

for all combinations of
start and endpoints:
find max. squared pearson
coefficient

identify periods of
exponential growth

normalization

max. correlated profiles identify forward only fluxes
by variability analysis

new constraint:
vNaAc � vGlc

neglect2 times "yes" ?

[S]NaAc / [S]Glc � 5 ? 

or

[S]NaAc / [S]Glc � 0.2 ?

S educt ?

yes

no

yes/no

yes/no

Figure 3.7: Process of identi�cation and implementation of new com-
binatorial constraints
The above �gure shows the process of identifying and implementing new
combinatorial constraints. The procedure is explained in detail throughout
section 3.6.
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3.7 Robustness Analysis

In chapter 2.6 it was explained that a �ux balance analysis probably never
reaches one distinct solution. When analyzing a model of a living organism,
we will always end up with a solution space. But, how to estimate the size
and shape of this solution space?
In this work, we used a robustness analysis, which is the opposite of a sensi-
tivity analysis. The procedure is simple:

• optimize the system on biomass production

• introduce a new constraint: biomass production be at least 90% of its
maximal possible rate

• while keeping the carbon in�ux constant, minimize and maximize each
�ux successively

The outcome are the intervals each �ux can vary in while biomass production
levels at its maximum. Thus, this data can be interpreted as showing the
robustness of the metabolic network against changes in the single �uxes.

3.8 Imposed constraints

3.8.1 Biomass / CO2 ratio
Preliminary analyses during the process of model-building showed that it is
not su�cient to constrain the carbon in�ux and maximize the biomass pro-
duction rate to achieve biologically reasonable results. This leads to a nearly
complete transformation of all carbon into biomass. The carbon dioxide pro-
duction, which was found to be approximately one third of the incoming
carbon in experiments, nearly drops to zero in the simulation.
As a consequence, we adopted the ratio between the biomass and CO2 e�ux
from literature (Wendisch et al., 2000). Thereby, this ratio was assumed to
stay the same, independent of the actual �ux distribution. Also, slightly
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di�erent ratios for glucose respectively acetate fed organisms were used. See
above cited article and tables 4.7, 4.9, and 4.11 on pages 72, 80, and 83 for
details.

3.8.2 Carbon related constraints
3.8.2.1 The biomass production rate

In (Schlegel, 1985, p. 195) the de�nition of the growth rate µ is given as

µ =
lnOD− lnOD0

t− t0

[
1

h
]

(3.10)

To obtain µ from experiments, the period of exponential growth is determined
as described in section 3.6.4.1. Following, the growth rate is calculated, using
the start- and endpoint data in the above de�nition.
Turning to the simulation, the e�ux of biomass can be calculated from equa-
tion 3.10:

vBM = µ · 1

M(BM)

 1

hg(DryWeight)

mol(BM)

 (3.11)

Thereby, M(BM) denotes the molar mass of biomass, which can be derived
as the sum of all biomass components times their respective stoichiometric
factors.

M(BM) =
∑

i

νi M(i) (3.12)

i: biomass components, ν: stoichiometric factor

(see reaction 145 in appendix A)
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3.8.2.2 How to calculate carbon related constraints

The procedure to determine the carbon related constraints was the same
for all analyses, though the exact values di�ered. To de�ne all constraints
connected to carbon �uxes, three steps have been undertaken:

1. calculate the (experimental) biomass production rate and de�ne the
biomass e�ux accordingly (see 3.8.2.1)

2. by using the biomass / CO2 ratio, mentioned in section 3.8.1, calculate
the CO2 e�ux

3. since biomass and carbon dioxide are the only ways for carbon to �ow
out of the system, calculate the necessary in�ux of the carbon source
as

vin
C = xBM

mmol(C)

mmol(BM)
· vout

BM

mmol
g(DryWeight)·h

+ xCO2

mmol(C)

mmol(CO2)
· vout

CO2

mmol
g(DryWeight)·h (3.13)

v denotes a �ux and x the content of carbon in either biomass (BM) or CO2.

To calculate the in�ux of the actual carbon source, the reciprocal of its carbon
content has to be multiplied with vin

C . As said before (3.7), during all analyses
the carbon source in�ux was kept constant, while the biomass e�ux had to
reach at least 90% of its maximum possible value. Also the CO2 e�ux has
not been �xed, but was given a lower bound.

3.8.3 Non-carbon related constraints
The non-carbon metabolites which were allowed to cross the cellular mem-
brane are listed in table 3.2. The bounds imposed on the referring trans-
membrane reactions are given, too.
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Table: 3.2: Non-carbon transmembrane
�uxes
The bounds shown refer to outgoing reaction di-
rections.

Metabolite lower bound upper bound

Water −∞ ∞
Proton (H+) −∞ ∞
Ammonia −∞ 0

Oxygen −∞ 0

Phosphate −∞ 0

3.9 Model validation

3.9.1 Preceding adaptions
The model, build in this thesis, was validated by reproduction of experi-
mentally derived �ux distributions (Wendisch et al., 2000). To be able to do
this, we had to perform some calculations in order to adapt the �ux units.
Based on (Takaç et al., 1998) we used

[ mmol
g(DryWeight)·h

]
(3.14)

as �ux units. In contrast, the �ux units given in (Wendisch et al., 2000) are:
[ nmol
mg(Protein)· min

]
(3.15)

Additionally, Wendisch et al. used a factor of

0.5
g(Protein)

g(DryWeight) (3.16)

for their calculations (compare (Marx et al., 1996)).
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The �gures 4.3 and 4.4 in section 4.2 (p. 72 �.) show the �uxes measured by
Wendisch and his colleagues after adaption to our �ux units (equation 3.14).

3.9.2 Method and required accuracy
It was impractical to try to come as close to the experimental values as
possible, because problems, similar to those shown in �gure 3.5 on page 50,
arose. In a nutshell, due to joint minimization there exist several minima, one
of which would need to be chosen. While minimizing the di�erence between
the predicted �uxes and the published ones, eventually one reaches a point
where a deviation-reduction of one �ux entails a deviation-increase of another
�ux. To decide which way to take, a weight would have to be attached to
these �uxes. But, there is no biochemical reason to rank one reaction more
important than any other. Thus, we set the same limit for all measured
�uxes: the reproduction of the reaction rates determined by Wendisch et al.
had to be accomplished with an accuracy of less than 30% deviation. The
method to test this shall be described next:

1. maximize biomass production, while disregarding experimental values

2. impose constraints on all �uxes that have been measured by Wendisch
and coworkers:

• lower bound = vi(measured) · 70%

• upper bound = vi(measured) · 130%

3. maximize biomass production again and see if its value changed

We considered the ability to produce the same amount of biomass under the
new constraints (item 2) to be su�cient to call our model validated.
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3.10 Special analyses methods

3.10.1 Estimation of the �ux space size
Flux balance analysis does not leave us with a single solution, but with
a solution space (compare chapter 2.6). When performing a robustness
analysis, as described in 3.7, we get a �rst glance at the solution space of
the problem at hand. Another, less detailed view of the solution space is
explained in the following.

If we look at two �uxes, which can vary like shown in �gure 3.8, we do know
nothing about the connection between those �uxes. It may be, that 'v1 = v2'
always has to be satis�ed. That would leave the part of line a that lies inside
the dotted box as the solution space. It may also be, that the two �uxes
v1 and v2 are totally independent. In this case, the solution space would be
∆v1 ·∆v2.

a
v2

∆v1

∆v2

v1

Figure 3.8: Estimation of the �ux space size
See text (3.10.1) for details.

In any case, the area of the �ux space, that can be covered by those two
�uxes, will be smaller than or equal to the dotted rectangle.
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Flux Space ≤ ∆v1 ·∆v2 (3.17)

If we zoom to more than two dimensions, the structure we build is a cuboid
for three dimensions and a hypercuboid for more than three dimensions.
The volume of that hypercuboid can be taken as an upper estimation of the
solution space's size:

Flux Space =
∏
i

vi ∀ vi 6= 0 (3.18)

vi refer to reaction rates

In order to get meaningful results, we must only take those �uxes into ac-
count, that are di�erent from zero. Also, to be able to compare results of
di�erent analyses, only those �uxes can be used that are non-zero in all
analyses.

3.10.1.1 Flux space development graphs

Equation 3.18 gives an upper estimate of the size of the �ux space. To make
the development visible, we may sort all �ux variabilities, then build their
product consecutively, and plot the development over the reactions. In order
to scale down the usually large interval covered, we use half logarithmic
plotting.

The idea is, to visualize the way the �ux variabilities work together to build
the solution space. An outstanding, low or highly variable �ux would cause
a jump in this graph. A smooth curve, on the contrary, hints to a sound
distribution of �ux variabilities.

One must be aware that the �nal value of this analysis is an upper estimation
of the size of the solution space. Even if this estimate is high, it may be, that
the real size is much smaller, due to the coherences outlined in �gure 3.8.
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3.11 Knock out study

We calculated all possible single knock out mutants of the modeled organism.
Thereby, we used the energy balance analysis as described in section 3.4.
To be able to compare the results, the initial irreversibilities (see 3.4.2)
determined for the wild-type model were used. The analysis of the knock
out mutants focused on the biomass production rate.

For all reactions that are not catalyzed by an enzyme, the knock out mutants
were constructed as if each of those reactions were catalyzed by a single
enzyme. We included these reactions, because in some cases we could not
assume the reactions to take place without enzymatic help, but no enzyme
had yet been attached to them. A more detailed inspection can be found
in the discussion (5.5). Reactions which are catalyzed by more than one
possible enzyme have not been included in this study, since only single knock
out mutants were computed.
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Results

4.1 The Corynebacterium glutamicum

metabolism model

Building a genome based model of the investigated organism, like described
in section 3.2.2, was one of the main parts of this work.

The metabolic network of the investigated bacterium, as used throughout
this thesis, consists of the central carbon metabolism as well as all produc-
tion pathways necessary to synthesize amino acids, fatty acids, and all other
metabolites needed to build biomass as de�ned in (Takaç et al., 1998). A
detailed depiction of the model would either be too large or too confusing if
pressed onto one or two pages. Thus, we only provide a schematic overview in
�gure 4.2 and a complete list of all reactions and metabolites is located within
appendix A. The abbreviations used in �gure 4.2 are given in table 4.1. The
representing stoichiometric matrix (see 2.6) owns the dimensions 225 · 244,
compare also �gure 4.1.
For a list of the initially given reversibilities see table 4.3.3.2 on page 83.
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Number of reactions 244
thereof internal 206
thereof external 38

Number of metabolites 225
thereof internal 206
thereof external 19

Figure 4.1: Stoichiometrix Matrix Overview
The stoichiometric matrix of the C. glutamicum model.

4.1.1 DNA microarray analyses data
About background theory concerning DNA transcription and microar-
rays the reader is referred to sections 2.2.1 and 2.4. Special information
about how DNA array data is used within this work is given in 3.2.3, page 30.

Table 4.2 shows a statistical overview of the data derived from the microar-
ray experiments and the annotation. As shown in this table, there are 11
enzymes for which no gene is expressed with an R-value ≥ 2 (compare equa-
tion 3.1, page 30). Table 4.3 lists those enzymes and the reactions catalyzed
by them, explicitly. For details about the change of the systemic responses
when neglecting those enzymes see the knock out section 4.5.

The interested reader can �nd an additional table (B.1), listing all enzymes
separated into the classes expressed, weakly expressed, and non-annotated, in
appendix B.
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Figure 4.2: Overview of the C. glutamicum model
A schematic overview of the model used throughout this work. Bold arrows
depict entries for the carbon sources glucose and acetate. All italic metabo-
lites are part of the biomass. Bold and italic are metabolic pools that
�ow into biomass, or pathway names. The abbreviations used are given in
table 4.1. A complete list of all reactions and metabolites can be found in
appendix A.
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Table: 4.1: Abbreviations used in �gure 4.2
The abbreviations that are used in �gure 4.2, arranged in alphabetical order.
Abbr. Name Abbr. Name

2OG 2-Oxoglutarate Ile L-Isoleucine
3MOB 3-methyl-2-oxobutanoate Lac (S)-Lactate
3PG 3-Phospho-D-glycerate Leu L-Leucine
AcCoa Acetyl-CoA Lys L-Lysine
Ala L-Alanine Mal (S)-Malate
Arg L-Arginine mDAP meso-2,6-Diaminoheptanedioate
Asn L-Asparagine Met L-Methionine
Asp L-Aspartate NaAc Sodium Acetate

AspSA L-Aspartate 4-semialdehyde OA Oxaloacetate
Chor Chorismate Orn L-Ornithin
Cit Citrate PEP Phosphoenolpyruvate
Citr L-Citrulline Phe L-Phenylalanine
Cys L-Cysteine Pro L-Proline
E4P D-Erythrose 4-phosphate Pyr Pyruvate
F6P D-Fructose 6-phosphate R5P D-Ribulose 5-phosphate
Fum Fumarate Rib5P D-Ribose 5-phosphate
G3P Glyceraldehyde 3-phosphate S7P Sedoheptulose 7-phosphate
G6P D-Glucose 6-phosphate Ser L-Serine
Glc D-Glucose Shik Shikimate
Gln L-Glutamine Suc Succinate
Glu L-Glutamate SucCoA Succinyl-Co

Gluc6P 6-Phospho-D-gluconate Thr L-Threonine
Gly Glycine Trp L-Tryptophan
GO Glyoxylate Tyr L-Tyrosine
His L-Histidine Val L-Valine
HSer L-Homoserine Xyl5P D-Xylulose 5-phosphat
ICit Isocitrate
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Table: 4.2: DNA microarray analyses and annotation data
Statistical analysis of the data derived from DNA microarray experiments.
The Model column shows data referring only to the C. glutamicum model
used in this work. The Annotations column refers to data derived from the
combination of our inhouse annotation (see 3.2.2) and the one performed by
Kalinowski and coworkers (Kalinowski et al., 2003).
Description Model Annotations

Number of genes 302 3002
Number of enzyme coding genes 302 953
Number of enzymes (incl. 23 non-annotated in model) 186 610
Number of genes expressed with an R-value < 2 44 520
Number of enzymes with no encoding gene
expressed with an R-value ≥ 2 11 69

Above as percentage of all enzymes 5.9% 11.3%
Number of genes not measured on microarrays 20 207
Above as percentage of all genes 6.6% 6.9%

Table: 4.3: Weakly expressed genes
All enzymes used within the scope of this work's C. glutamicum model that
have no encoding gene expressed with an R-value ≥ 2 (see 3.2.3, p. 30).

Enzyme Reaction(s) reaction(s) also Enzyme Reaction(s) reaction(s) also

catalyzed by* catalyzed by*

1.1.1.1 reaction 135 1.1.1.2 2.7.1.71 reaction 107 �
1.2.1.11 reaction 85 � reaction 187 �
1.2.1.59 reaction 11 1.2.1.12 2.7.4.9 reaction 188 �
2.1.2.3 reaction 175 � 3.1.3.12 reaction 151 �
2.1.3.2 reaction 182 � 4.2.3.5 reaction 104 �
2.3.1.12 reaction 38 1.8.1.4 & 1.2.4.1 5.4.99.16 reaction 146 �
*the referring genes are expressed with an R-value ≥ 2
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4.1.2 Non-annotated reactions
For the reasons stated in 3.2.4 there was a number of reactions that were
added to the model without being connected to an enzyme that is known to
exists in C. glutamicum. These can be separated into two species:

1. reactions which are catalyzed by an enzyme, according to KEGG
(Kanehisha & Goto, 2000), but the enzyme has not been annotated
(see table 4.4).

2. reactions which are not connected to a catalyzing enzyme. These reac-
tions are marked by '0.0.0.0' as a catalyzing enzyme in table A.1
and are explicitly listed in table 4.5

Table: 4.4: Non-annotated reactions
All non-annotated enzymes used in this work's C. glutamicum model and the
reactions catalyzed by them.

Enzyme Number Reaction Enzyme Number Reaction
1.3.5.1 part of reaction 198 2.6.1.2 reaction 45
1.3.99.11 reaction 183 2.7.1.3 reaction 7

reaction 200 2.7.2.12 reaction 421.6.1.1 part of reaction 196 2.7.7.38 reaction 139
reaction 140 3.1.3.15 reaction 611.6.1.2 & reaction 141 3.1.3.45 reaction 1381.8.1.9 & reaction 142 3.5.4.9 reaction 1941.17.4.2 reaction 189 part of reaction 197

1.8.2.1 part of reaction 196 3.6.1.5 part of reaction 198
2.3.1.1 reaction 96 3.6.1.8 reaction 158
2.3.1.157 reaction 157 4.1.1.3 reaction 39
2.5.1.55 & 5.4.99.5 reaction 105
5.3.1.13 reaction 143 6.3.4.16 reaction 46
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Table: 4.5: Non-catalyzed reactions All reactions present in the C. glu-
tamicum model that are not attached to a catalyzing enzyme. In table A.1,
appendix A these reactions are marked by '0.0.0.0' as a catalyzing enzyme.
Membrane transport is modeled without cost. Source / Sink reactions are
arti�cial reactions that do not represent any real reaction.

Reaction Comment

77 : reaction marked spontaneous in KEGG
115 : reaction marked non enzymatic in KEGG
144 : reaction taken from (Takaç et al., 1998),

lumps 4 steps together, which do not have complete
EC numbers attached to them

145 : biomass production (generic reaction)
Isomeric conversions

Reactions : 203, 204, 205, 206, 207
Membrane transport

Reactions : 202, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,
218, 219, 220, 221, 222, 223, 224, 225

Source / Sink

Reactions : 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 240, 239, 241, 242, 243, 244
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4.1.3 Biomass constitution
As noted in 3.2.5 we adapted the biomass constitution given in (Takaç et al.,
1998). Table 4.6 shows how biomass is constituted in this work.

Table: 4.6: Biomass constitution
The metabolites and their corresponding stoichiometric factors building up
biomass are shown. This corresponds directly to reaction 244 given in ap-
pendix A, table A.1.

Stoichiometric Metabolite Stoichiometric Metabolite

factor factor

0.0235 ADP-D-glycero- 0.27 L-Isoleucine
D-manno-heptose 0.42 L-Leucine

0.185 ATP 0.32 L-Lysine
0.0235 CMP-3-deoxy- 0.14 L-Methionine

D-manno-octulosonate 0.0593 L-Ornithine
0.12 CTP 0.17 L-Phenylalanine
0.02 dATP 0.2 L-Proline
0.02 dCTP 0.377 L-Serine
0.02 dGTP 0.24 L-Threonine
0.02 dTTP 0.05 L-Tryptophan
0.258 Fatty Acid 0.13 L-Tyrosine
0.58 Glycine 0.4 L-Valine
0.2 GTP 0.0276 meso-2,6-

0.5352 L-Alanine Diaminoheptanedioate
0.28 L-Arginine 0.0235 Myristic Acid
0.22 L-Asparagine 0.0235 Myristoleic Acid
0.22 L-Aspartate 0.129 sn-Glycerol 3-phosphate
0.09 L-Cysteine 0.1697 UDPglucose
0.2776 L-Glutamate 0.0433 UDP-N-acetyl-D-glucosamine
0.25 L-Glutamine 0.0276 UDP-N-acetylmuramate
0.09 L-Histidine 0.13 UTP
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4.2 Model validation

The method used to validate the established model has been described in sec-
tion 3.9 (p. 58 �.). Figures 4.3 and 4.4 show the �uxes measured by Wendisch
and coworkers in (Wendisch et al., 2000). As said in section 3.9.2, we were
able to achieve these �uxes with an accuracy of ± 30% by using the same
carbon input and the given biomass /CO2 ratio (see 3.8.1), only. Table 4.7
details the imposed constraints.
The results of a robustness analysis, as described in 3.7, are shown in �g-
ure 4.5.

Table: 4.7: Imposed constraints for model validation
These are the constraints imposed to reproduce the �ux distribution pub-
lished in (Wendisch et al., 2000) and shown in �gures 4.3 and 4.4.
Methods used

EBA (see 3.4)
EEB (see 3.5)

Constraints imposed

In�ux CO2 e�ux Biomass e�ux ≥ 90% of
Carbon source [

mmol
g(DryWeight)·h

] [
mmol

g(DryWeight)·h

] [
mmol

g(DryWeight)·h

]
Acetate 16.2 ≥ 23 0.2236333
Glucose 4.44 ≥ 15.72 0.2597953
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Figure 4.3: Metabolic �uxes in C. glutamicum during growth on
acetate
See table 4.7 for constraints used to reproduce displayed reaction rates.
Fluxes given in mmol

g(DW )·h. All �uxes have been measured and previously
published by Wendisch and coworkers in (Wendisch et al., 2000). Figure
cloned from above reference.
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Figure 4.4: Metabolic �uxes in C. glutamicum during growth on
glucose
See table 4.7 for constraints used to reproduce displayed reaction rates.
Fluxes given in mmol

g(DW )·h. All �uxes have been measured and previously
published by Wendisch and coworkers in (Wendisch et al., 2000). Figure
cloned from above reference.
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Figure 4.5: Robustness analysis of the C. glutamicum metabolism
during model validation
Analysis performed with constraints given in table 4.7. Figure shows the
predicted reaction variabilities for constraints imposed to reproduce the �ux
distribution published in (Wendisch et al., 2000) and shown in �gures 4.3
and 4.4.
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4.3 Using laboratory conditions

In the metabolic pro�ling experiments, carried out in CUBIC laboratories,
we achieved growth-rates di�erent from those found by Wendisch et al.
(Wendisch et al., 2000). Since no carbon dioxide production rates have
been determined, in all following calculations we reproduced the labora-
tory conditions by using the growth rates found and thereby assumed, the
CO2 /Biomass ratio equals the one given in (Wendisch et al., 2000). The
determination of the growth-rates is described in detail in section 3.6.4.1,
page 51 �.

The �gures 4.6 to 4.9 in the next section show the OD-curves measured.
Table 4.8 provides an overview of the determined growth rates.

The following chapters show the results obtained by using di�erent sets of
constraints.

All metabolic pro�ling experiments using glucose as carbon source have
been carried out by Dr. Sebastian Buchinger. All metabolic pro�ling ex-
periments using acetate as carbon source have been carried out by Eliane
Hornemann. The latter data has also been published in the diploma thesis
of Ms.Hornemann (Hornemann, 2005).

4.3.1 Identi�cation of periods of exponential growth
The method referring to the �gures shown below is described in sec-
tion 3.6.4.1, page 51 �. Table 4.8 gathers all important data from these
�gures.
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Figure 4.6: Growth curve for glucose fed C. glutamicum (1)
Boxed line = optical density, triangulared line = natural logarithm of OD.
Dashed areas show start and end ranges of the period of exponential growth.
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Figure 4.7: Growth curve for glucose fed C. glutamicum (2)
Boxed line = optical density, triangulared line = natural logarithm of OD.
Dashed areas show start and end ranges of the period of exponential growth.
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Figure 4.8: Growth curve for acetate fed C. glutamicum (1)
Boxed line = optical density, triangulared line = natural logarithm of OD.
Dashed areas show start and end ranges of the period of exponential growth.
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Figure 4.9: Growth curve for acetate fed C. glutamicum (2)
Boxed line = optical density, triangulared line = natural logarithm of OD.
Dashed areas show start and end ranges of the period of exponential growth.
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Table: 4.8: Growth rate data
Overview of the growth rates of the periods of exponential growth, derived
as described in section 3.6.4.1, page 51 �.
Carbon source Figure Growth rate [/h] Mean [/h] Ratio (Glc/NaAc)

Glucose (1) 4.6 0.293
Glucose (2) 4.7 0.265 0.279 ± 0.014

Acetate (1) 4.8 0.333 0.734

Acetate (2) 4.9 0.427 0.380 ± 0.047

4.3.2 Flux Balance Analysis
The results shown next have been obtained by a �ux balance analysis, as
outlined in section 3.3.

Table 4.9 shows the constraints imposed during the �ux balance analysis
of the Corynebacterium glutamicum model. Figure 4.10 shows the referring
robustness analysis. Particular attention shall be directed to the two bars at
the very right of the diagram. They show that a rather large fraction of all
�uxes levels at their upper bound1, meaning they would be unbound if the
constraint was not placed. All reactions are considered reversible during a
�ux balance analysis.

1The upper and lower bounds are arbitrarily set, for the only reason that the optimizer
would fail, if they were in�nity.
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Table: 4.9: Constraints imposed on FBA

These are the constraints imposed during a �ux balance analysis of the C. glu-
tamicum metabolism. The biomass production rates translate into the mean
growth rates shown in table 4.8, if a biomass constitution as de�ned in ta-
ble 4.6 on page 71 is used.
Methods used

FBA (see 3.3)
Constraints imposed

In�ux CO2 e�ux Biomass e�ux ≥ 90% of
Carbon source [

mmol
g(DryWeight)·h

] [
mmol

g(DryWeight)·h

] [
mmol

g(DryWeight)·h

]
Acetate 21.27 ≥ 30.2 0.2935782
Glucose 3.68 ≥ 13.04 0.2150686
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Figure 4.10: Robustness analysis under FBA conditions
Analysis performed under constraints given in table 4.9. The �gure shows the
predicted reaction variabilities for constraints imposed to reproduce growth
rates measured in CUBIC laboratories (compare 4.3.1). All reactions are
considered reversible.
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4.3.3 Energy Balance Analysis
The reader is referred to section 3.4 for details about energy balance analyses.
On page 37 it was explained, that we used an adapted optimization method
(3.4.1) to determine the feasible reaction directions in terms of EBA. Also,
in section 3.4.2 we explained how the initial irreversibilities were calculated.
After predicting the allowed reaction directions, we identi�ed all remaining
cyclic �uxes and successively introduced initial irreversibilities for the reac-
tions most common in the cycles until all cycles were eliminated.
The following sections show the results concerning the initially used irre-
versibilities and the results of an energy balance analysis.

4.3.3.1 EBA - initial irreversibilities

To be able to calculate thermodynamically feasible constraints on all reaction
directions, it was necessary to give initial irreversibilities for 24 reactions (see
above or section 3.4.2). Otherwise cyclic �uxes could occur, undermining
thermodynamic feasibility. Table 4.10 lists those reactions in detail.

Table: 4.10: Initial irreversibilities
All reactions for which an initial direction information had to be given (see
text and compare 3.4.2, page 38).

No. Reaction Reaction details

1. reaction 4 D-Fructose 1,6-bisphosphate + H2O => D-
Fructose 6-phosphate + Orthophosphate

2. reaction 7 ATP + D-Fructose => ADP + D-Fructose 1-
phosphate + H+

3. reaction 8 ATP + D-Fructose => ADP + beta-D-Fructose
6-phosphate + H+

4. reaction 27 Citrate + CoA + H+ <= Acetyl-CoA + H2O
+ Oxaloacetate

Continued on next page . . .
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Table: 4.10 . . . Continued from previous page
5. reaction 33 2-Oxoglutarate + Lipoamide + H+ => S-

Succinyldihydrolipoamide + CO2
6. reaction 36 Isocitrate => Succinate + Glyoxylate
7. reaction 38 Pyruvate + CoA + NAD+ => Acetyl-CoA +

CO2 + NADH
8. reaction 39 Oxaloacetate + H+ => Pyruvate + CO2
9. reaction 54 2 L-Glutamate + NADP+ <= L-Glutamine +

2-Oxoglutarate + NADPH + H+
10. reaction 56 ATP + L-Glutamate + NH3 => ADP + Or-

thophosphate + L-Glutamine + H+
11. reaction 57 L-Glutamine + H2O => L-Glutamate + NH3
12. reaction 97 N2-Acetyl-L-ornithine + H2O => Acetate + L-

Ornithine
13. reaction 112 ATP + L-Glutamate => ADP + L-Glutamyl

5-phosphate
14. reaction 133 sn-Glycerol 3-phosphate + NAD+ <= Glyc-

erone phosphate + NADH + H+
15. reaction 134 ATP + Glycerol => ADP + sn-Glycerol 3-

phosphate
16. reaction 148 (1,4-alpha-D-Glucosyl)n + alpha-D-Glucose <=

Maltose
17. reaction 149 UTP + D-Glucose 1-phosphate + H+ => Py-

rophosphate + UDPglucose
18. reaction 151 alpha,alpha'-Trehalose 6-phosphate + H2O =>

alpha,alpha-Trehalose + Orthophosphate
19. reaction 158 ATP + H2O => AMP + Pyrophosphate + H+
20. reaction 159 ATP + NAD+ => ADP + NADP+ + H+
21. reaction 197 2 NADH + 4 ADP + 4 Orthophosphate + Oxy-

gen + 6 H+ => 2 NAD+ + 4 ATP + 6 H2O
22. reaction 198 2 FADH2 + 2 ADP + 2 Orthophosphate + Oxy-

gen + 2 H+ => 2 FAD + 2 ATP + 4 H2O
Continued on next page . . .

82



CHAPTER 4. RESULTS

Table: 4.10 . . . Continued from previous page
23. reaction 199 Pyrophosphate + H2O => 2 Orthophosphate +

H+
24. reaction 201 NADP+ + H2O => Orthophosphate + NAD+

4.3.3.2 EBA - robustness analyses

Table 4.11 shows the constraints imposed on the energy balance analysis.
The corresponding robustness analysis is shown in �gure 4.11. The initial
irreversibilities shown in the previous section have been used herein.

Table: 4.11: Constraints imposed on EBA

Constraints imposed to perform an energy balance analysis of the C. glu-
tamicum metabolism. External energy balance related constraints are im-
posed, too. The biomass production rates translate into the mean growth
rates shown in table 4.8, if a biomass constitution as de�ned in table 4.6 on
page 71 is used.
Methods used

EBA (see 3.4)
EEB (see 3.5)

Constraints imposed

In�ux CO2 e�ux Biomass e�ux ≥ 90% of
Carbon source [

mmol
g(DryWeight)·h

] [
mmol

g(DryWeight)·h

] [
mmol

g(DryWeight)·h

]
Acetate 21.27 ≥ 30.2 0.2935782
Glucose 3.68 ≥ 13.04 0.2150686
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Figure 4.11: Robustness analysis under EBA conditions
Analysis performed under constraints given in table 4.11. The �gure shows
the predicted reaction variabilities for constraints imposed to reproduce
growth rates measured in CUBIC laboratories (compare 4.3.1). For reac-
tion irreversibilities see 4.3.3.2.
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4.3.4 Comparison of FBA and EBA
The details about FBA and EBA are described in sections 3.3 and 3.4.

Figure 4.12 shows a comparison of the results of the two methods. We set
the variability of each �ux of the FBA to 100% and afterwards calculated
the EBA-variabilities as percentages with respect to them. In �gure 4.13
a �ux space development graph (see 3.10.1.1) for both, FBA and EBA, is
shown.
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Figure 4.12: Comparison of robustness analyses under FBA and EBA
conditions
The variabilities of the robustness analysis in �gure 4.11 (EBA) are calculated
as percentage values with respect to the the data shown in �gure 4.10 (FBA).
The referring constraints are given in table 4.11 and table 4.9, respectively.

85



CHAPTER 4. RESULTS

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

0 20 40 60 80 100 120 140 160 180 200

lo
g 

10
 (f

lu
x 

sp
ac

e 
si

ze
) reactions

10 -231.39 Glc   (EBA)

10 74.04 Glc   (FBA)

10 -196.89 HAc (EBA)

10 93.22 HAc (FBA)

Figure 4.13: Flux space development
A comparison of the �ux space development (compare 3.10.1.1) of both car-
bon sources (NaAc=acetate, Glc= glucose) under FBA and EBA conditions.
The whole data set has been sorted for increasing variabilitites of acetate feed-
ing under FBA constraints. Numbers given to the right are absolute values
of upper estimates of �ux space sizes in units of

[ mmol
g(DryWeight)·h

]216

. For
details about the constraints imposed, see tables 4.9 and 4.11.
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Table: 4.12: EEB-Analysis
External energy balance analysis of acetate and glucose as carbon sources,
under constraints given in table 4.11 on page 83. Numbers shown are ∆G0

values (compare 2.1.2), calculated as explained in section 3.5.
Acetate as Glucose as

carbon source carbon source

∆G0
BM -11334.24 -5581.49

[
J

g(DryWeight)·h

]
∆G0

CO2
-16442.56 -9323.72

[
J

g(DryWeight)·h

]

∆∆G0 = ∆G0
CO2

−∆G0
BM -5108.32 -3742.23

[
J

g(DryWeight)·h

]
∆∆G0 in % of ∆G0

CO2
31.07% 40.14%

4.3.5 External energy balance analysis
Section 3.5.1 explains the method of an external energy balance analysis. In
a nutshell: we suppose the energy the system can gain from metabolizing
all in�owing carbon into CO2 states the energy maximally available to
the system. Thus, the di�erence between this energy and the drop in free
enthalpy (compare 2.1.2) related to biomass production shows the amount
of Gibbs free energy disposed to biomass.

Table 4.12 shows the energies dissipated for both carbon sources (acetate
and glucose) under the constraints of table 4.11 on page 83. Special focus
shall be laid on the bottom line, which shows the percentage of the energy
available to the system that is transferred into biomass. The values of the
free enthalpies used for the calculation of the external energy balance are
given in table B.2, appendix B. A detailed explanation and discussion of the
EEB results can be found in section 5.3.4.
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4.4 Metabolic pro�ling

Chapter 3.6 gives a detailed description of the methods to implement
metabolic pro�ling data that have been developed in this work.
In the following, we will at �rst present the metabolic pro�ling data used.
Then, we will show the results obtained by using this data and the di�erences
to the results obtained without the metabolic pro�ling data.

4.4.1 Metabolic pro�ling data
Table 4.13 shows the metabolic pro�ling data used in the work at hand. This
data has been obtained after

• the identi�cation of the periods of exponential growth. For method
see 3.6.4.1, results are displayed in section 4.3.1.

• all normalizations described in section 3.6.4.2.

• identi�cation of the highest correlating pro�les as described in 3.6.4.3.

• selecting the metabolites as described in 3.6.5.

The reactions for which we introduced new constraints (compare 3.6.3), based
on the data shown in table 4.13, are listed in table 4.14.
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Table: 4.13: Metabolic pro�ling data
The metabolic pro�ling data implemented in this work. Only relevant
metabolites are shown (compare 3.6.5). Acetate fed pro�le refers to data-
point at 600 minutes in �gure 4.9; glucose fed pro�le refers to datapoint at
630 minutes in �gure 4.6. These pro�les correlated with a Pearson coe�cient
(see eq. 3.8, page 53) of 0.9102. As said in section 2.5.2 the measured values
are pseudo-concentrations. Thus, no units can be given. For each data-
point 3 probes have been measured. Abbreviations: CS= carbon source,
SD= standard-deviation, NaAc=acetate, Glc= glucose.
Metabolite Concentration SD [%] Concentration SD [%] Ratio

(CS = NaAc) (CS = Glc) NaAc /Glc

Glycerone phosphate 1125.51 14.63 12926.32 36.87 0.09
L-Valine 520318.08 19.01 3803855.93 16.63 0.14
Alanine 152335.93 1.57 974248.18 16.20 0.16
Glucose 36018.17 21.52 178445.68 30.52 0.20
Shikimate 6368.78 5.70 1167.76 54.76 5.45
Pyruvate 52213.84 33.21 9412.97 24.01 5.55

L-Proline/D-Proline 4312791.00 5.23 660870.64 10.66 6.53
Glucose 6-phosphate 63758.09 13.28 9598.33 51.70 6.64

Phenylalanine 52098.86 18.07 6694.11 40.59 7.78
Ribose 5-phosphate 57243.76 7.08 6512.81 50.23 8.79
N-Acetyl-L-glutamate 395504.81 2.83 29016.78 27.66 13.63
D-Fructose 6-phosphate 90374.43 3.07 6047.76 59.80 14.94

Fumarate 146132.19 26.36 8427.08 18.21 17.34
Fructose 12775.36 37.80 276.25 69.03 46.25

3-Phospho-D-glycerate 32709.30 12.48 475.32 49.10 68.82
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Table: 4.14: Reactions a�ected by metabolic pro�ling data
The reactions a�ected by the data shown in table 4.13. Reactions' educts
must at least have a ratio of 5 between acetate fed and glucose fed pro�le
(equation 3.9, page 54). Also, the condition stated in equation 3.5 on page 47
is ful�lled for all reactions below.

Metabolite Reaction Direction

Glycerone phosphate reaction 133 backward
L-Valine none �
Alanine none �

reaction 1 forward
Glucose reaction 204 backward
Shikimate reaction 107 forward

reaction 73 backward
reaction 38 forward
reaction 39 backward

Pyruvate reaction 45 backward
reaction 86 forward
reaction 72 forward

L-Proline /D-Proline none �
reaction 150 forward

Glucose 6-phosphate reaction 206 forward
reaction 9 backward

Phenylalanine none �
Ribose 5-phosphate reaction 17 forward
N-Acetyl-L-glutamate reaction 100 forward
D-Fructose 6-phosphate reaction 154 forward

Fumarate reaction 30 backward
Fructose none �

reaction 117 forward
3-Phospho-D-glycerate reaction 136 backward
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4.4.2 Energy balance analysis
The results in this section are based on the theory of EBA (3.4) as well as on
the developed method of implementation for metabolic pro�ling data (3.6).

Figure 4.14 shows a robustness analysis under the constraints shown in
table 4.15. The reader should note, that the data for the model fed on
glucose looks the same as in �gure 4.11. The data for the acetate fed model
is di�erent, though.

Table: 4.15: Constraints imposed on EBA including metabolic pro-
�ling data Constraints imposed to perform an energy balance analysis of
the C. glutamicum metabolism. External energy balance related constraints
are imposed, too. Constraints deduced from metabolic pro�ling data (see ta-
ble 4.13) are implemented. The biomass production rates translate into the
mean growth rates shown in table 4.8, if a biomass constitution as de�ned in
table 4.6 on page 71 is used.
Methods used

EBA (see 3.4)
EEB (see 3.5)

Constraints imposed

In�ux CO2 e�ux Biomass e�ux ≥ 90% of
Carbon source [

mmol
g(DryWeight)·h

] [
mmol

g(DryWeight)·h

] [
mmol

g(DryWeight)·h

]
Acetate 21.27 ≥ 30.2 0.2935782
Glucose 3.68 ≥ 13.04 0.2150686

Constraints from metabolic pro�ling data

Combinatorial constraint Reactions

Acetate ≤ Glucose 1, 9, 30, 39, 45, 73, 136
Glucose ≤ Acetate 17, 38, 72, 86, 100, 107, 117, 133, 150,

154, 204, 206
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Figure 4.14: Robustness analysis under EBA and metabolic pro�ling
deduced conditions
Analysis performed with constraints given in table 4.15. The �gure shows
the predicted reaction variabilities for constraints imposed to reproduce
growth rates measured in CUBIC laboratories (compare 4.3.1) and con-
straints deduced from metabolic pro�les (see 4.4). For reaction irreversibili-
ties see 4.3.3.2.
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4.4.3 Comparison of EBA excluding and including com-
binatorial constraints

Figure 4.15 gives a representation of the changes between the simulations
based only on the rules of EBA (3.4) and EEB (3.5), on the one hand, and
the simulations including the rules deduced from the metabolic pro�ling data
(tab. 4.13), on the other hand.
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Figure 4.15: Comparison of robustness analyses under EBA condi-
tions alone and EBA including metabolic pro�ling deduced con-
straints
The changes in the solution space, based on the additional constraints derived
from metabolic pro�ling experiments (compare table 4.15). The compared
analyses are shown individually in �gures 4.11, p. 84 (EBA) and 4.14, p. 92
(EBA, metabolic pro�ling).

Only the solution space of the acetate fed model is reduced compared to its
shape outlined in �gure 4.11. The solution space based on glucose as carbon
source stays the same. Figure 4.16 shows the development of the �ux space,
as introduced in section 3.10.1.1. The change of the upper estimate of its
size, after implementing the combinatorial constraints, is only marginal here.
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Figure 4.16: Comparison of the �ux space developments under EBA
conditions alone and EBA including metabolic pro�ling deduced
constraints
A comparison of the �ux space development (see 3.10.1.1) of both carbon
sources (NaAc=acetate, Glc= glucose) under EBA/EEB conditions exclud-
ing and including combinatorial constraints. The whole data set has been
sorted for increasing variabilitites of acetate feeding under EBA/EEB con-
straints. Numbers given to the right are absolute values of upper estimates
of �ux space sizes in units of

[ mmol
g(DryWeight)·h

]216

. For details about the
constraints imposed, see table 4.11 and 4.15.

4.4.4 External energy balance analysis
The results for the external energy balance analysis do not di�er from the ones
shown in table 4.12 on page 87. In other words: by imposing combinatorial
constraints, derived from metabolic pro�ling data, the external �uxes do not
change at all.
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Table: 4.16: Knock out study results
Overview of the results of a knock out study using single knock out mutations.
No. of mutations that ...

65 ... do not a�ect the ability to produce biomass
3 ... only make biomass production impossible for glucose feeding

conditions, but still allow a thermodynamically feasible �ux
distribution*

123 ... make biomass production impossible for glucose and acetate feed-
ing conditions, but still allow a thermodynamically feasible �ux
distribution*

17 ... do not allow any feasible �ux distribution (classi�ed as lethal)
*the model is unable to produce biomass, but can still metabolize carbon into CO2

4.5 Knock out study

We performed an energy balance analysis (see 3.4) for all possible single
knock out mutants of the modeled organism, as described in section 3.11.
Table 4.16 shows an overview of the mutations' e�ects. A detailed listing
of the mutations that e�ect those enzymes whose referring genes are weakly
expressed (compare results in table 4.3 on page 68) is given in the following
section.
The constraints imposed during this study are the ones listed in table 4.11 on
page 83. For comparability with the results of the wild-type analyses, during
the EBA, the initial irreversibilities determined for the C. glutamicum wild
type (table 4.3.3.2, p. 83) were used.

4.5.1 Knock out study details
Table 4.17 shows the e�ects of the knock outs of all genes that are only
weakly expressed within C. glutamicum (compare table 4.3, page 68).
For all knock outs listed in table 4.17, there still is a possibility to metabolize
in�owing carbon into CO2, although the ability to produce biomass (i.e. to
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Table: 4.17: Knock out study details - weakly expressed genes
E�ects of knock out mutations a�ecting genes which are only weakly ex-
pressed, according to DNA microarray experiments (see table 4.3 on page 68).

Enzyme Reaction(s) E�ect on biomass production

1.1.1.1 reaction 135 no e�ect*
1.2.1.11 reaction 85 growth impossible†

1.2.1.59 reaction 11 no e�ect*
2.1.2.3 reaction 175 growth impossible†

2.1.3.2 reaction 182 growth impossible†

2.3.1.12 reaction 38 no e�ect*
2.7.1.71 reaction 107 growth impossible†

reaction 187
2.7.4.9 reaction 188 growth impossible†

3.1.3.12 reaction 151 no e�ect
4.2.3.5 reaction 104 growth impossible†

5.4.99.16 reaction 146 no e�ect
*there are other -stronger expressed- enzymes attached to the reaction
†the model is unable to produce biomass, but can still metabolize carbon into CO2

grow) is destroyed in some cases.

The e�ects of theoretically knocking out those enzymes which are not anno-
tated (see tab. 4.4, p. 69) are shown in table 4.18.

For most of the reactions not attached to a catalyzing enzyme (compare
table 4.5 on page 70) there is no evidence these reactions are in need of an
enzyme. The only reaction that might require enzymatic help is reaction 144:

Sedoheptulose 7-phosphate + ATP + H+ ↔ ADP-D-glycero-D-manno-heptose
+ Pyrophosphate

The knock out of the potential enzyme catalyzing the above reaction would
lead to the incapability to grow, but the ability to metabolize carbon into
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CO2 would remain.

Of further interest are the 17 knock outs, that are classi�ed as lethal to the
organism, i.e. that prevent any valid �ux distribution. They are listed in
table 4.19. As can be seen there, it is vital that most of the metabolites
which are modeled to cross the membrane also are allowed to do so. Closing
the passage for H2O, O2, CO2 and H+ will be as lethal as preventing the
carbon sources from entering. Inhibition of the other common external �uxes
(Pi, SO2−

4 , NH3) leads to the inability to grow while still carbon consumption
in combination with carbon dioxide production is possible.
All other knock out mutations with deadly e�ects are a�ecting internal
reactions. They will be discussed on page 123 �.

Table: 4.18: Knock out study details - non-annotated enzymes
E�ects of theoretical knock out mutations a�ecting genes which have not
been annotated (compare tab. 4.4, p. 69). Growth impossible refers to the
incapability to produce biomass, but a remaining ability to metabolize in�ow-
ing carbon into CO2. Lethal represents the complete lack of the capability
to metabolize in�owing carbon.

Enzyme Number Reaction(s) E�ect on biomass production

1.3.5.1 part of reaction 198 lethal
1.3.99.11 reaction 183 growth impossible

reaction 200
1.6.1.1 part of reaction 196 growth impossible

reaction 140
1.6.1.2 & reaction 141
1.8.1.9 & reaction 142 growth impossible
1.17.4.2 reaction 189
1.8.2.1 part of reaction 196 growth impossible
2.3.1.1 reaction 96 no e�ect
2.3.1.157 reaction 157 growth impossible

Continued on next page . . .
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Table: 4.18 . . . Continued from previous page
2.5.1.55 &
5.3.1.13 reaction 143 growth impossible

2.6.1.2 reaction 45 growth impossible
2.7.1.3 reaction 7 no e�ect
2.7.2.12 reaction 42 no e�ect
2.7.7.38 reaction 139 growth impossible
3.1.3.15 reaction 61 growth impossible
3.1.3.45 reaction 138 growth impossible
3.5.4.9 reaction 194 growth impossible

part of reaction 197
3.6.1.5 part of reaction 198 lethal

3.6.1.8 reaction 158 no e�ect
4.1.1.3 reaction 39 no e�ect
5.4.99.5 reaction 105 growth impossible
6.3.4.16 reaction 46 growth impossible
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Table: 4.19: Knock out study details - lethal knock outs
All knock out mutations that prevent any valid �ux distribution.
Enzyme Number Reaction(s)

Membrane transport reactions

-.-.-.-* reaction 226, 227, 229, 232, 233 & 238
Internal reactions

1.1.1.37 reaction 26
1.3.5.1 reaction 198
1.3.99.1 reaction 29 & 198
1.9.3.1 reaction 197 & 198
1.10.2.2 reaction 196, 197 & 198
2.3.1.8 reaction 40
2.3.3.1 reaction 27
2.7.1.2 reaction 1
3.6.1.5 reaction 197 & 198
4.2.1.2 reaction 30
4.2.1.3 reaction 31

*Membrane transport has been modeled without enzymatic help
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Chapter 5

Discussion

5.1 The Corynebacterium glutamicum

metabolism model

The model we constructed and used afterward contains all reactions that
constitute the central carbon metabolism. Also all pathways necessary to
metabolize supplied carbon sources into biomass are present; so the model
is able to grow (see results section 4.1). Comparing this capability with the
data shown in table 4.2 on page 68, we have to say that the model, on the
one hand, contains all important reactions. Since there are only 302 out of
2489 annotated genes used within this model, on the other hand, we may
not call this a genome scale model.
A closer look at the model shows a detailed modeling of the central carbon
metabolism. Namely, this includes the glycolysis, the pentose phosphate
pathway, and the citric acid cycle. Examining the pathways that produce
amino acids, fatty acids, and other biomass components, the level of detail
declines. The network supplies the ability to produce biomass, but lacks the
provision of variances to do so.
Nevertheless, to our knowledge this is the largest model of the Corynebac-
terium glutamicum that has been constructed so far. Examples of C. glu-
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tamicum reaction networks built before have been published.

Wendisch and his coworkers measured �uxes in the central carbon
metabolism in (Wendisch et al., 2000) and thereby used a model estab-
lished in the same research group before (Marx et al., 1996). This model
only describes the central carbon metabolism and contains 16 reactions.
Kiefer, Wittmann and Zelder published experimentally determined �ux
distributions during growth on glucose or fructose together with Elmar
Heinzle in (Kiefer et al., 2004) . Later in 2004 they published analyses using
a similar model during growth on sucrose (Wittmann et al., 2004). In the
�rst cited article they describe the model as containing 42 reactions in total.
The largest model constructed by now has been published by Takaç et al. in
1998 in (Takaç et al., 1998). It consists of 115 reactions. But one has to be
aware, that this model has been designed far in advance of the publishing
of the C. glutamicum genome, which was in 2003 (Ikeda & Nakagawa, 2003;
Kalinowski et al., 2003). It was based on the E. coli metabolic network and
described by the authors as �a comprehensive metabolic network [...] pro-
posed for glutamic acid bacteria and used in a stoichiometrically based �ux
balance model for L-glutamate production� (Takaç et al., 1998, Abstract, 1st
sentence).

In comparison to other organisms modeled, we might have a look at
Escherichia coli �rst. The E. coli genome (Blattner et al., 1997) has a similar
size, compared to C. glutamicum: 4288 protein coding genes against 3002.
But, since more than �Thirteen Years of Building Constraint-Based In Silico
Models of Escherichia coli � (Reed & Palsson, 2003) have passed, the corre-
sponding in silico models grew up to a network of 931 reactions (Reed et al.,
2003), whereof 720 have already been published by Edwards and Palsson in
2000 (Edwards & Palsson, 2000).
Other organisms, genome based metabolic networks have been modeled for,
are Haemophilus in�uenzae Rd. (Edwards & Palsson, 1999; Fleischmann
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Table: 5.1: Examples of genome based models
An overview of the sizes of genomes and in silico metabolic networks of some
organisms. Except yeast, these all are prokayotic bacteria. Annotations:
1)Kalinowski et al. (2003), 2)Blattner et al. (1997), 3) Fleischmann et al.
(1995), 4)Tatusov et al. (1996), 5) J.F. et al. (1997), 6)Mewes et al. (1997).

Organism Base pairs protein- annotated Enzymes Reactions

coding genes genes in model

C. glutamicum 3282708 3002 2489 197 234 1)
E. coli 4639221 4288 2659 904 931 2)

H. in�uenzae 1830137 1749 1610 293 488 3), 4)
H. pylori 1667867 1590 1091 341 554 5)
S. cervisiae ≥ 12 Mill. 6000 2598 708 1175 6)

et al., 1995), Helicobacter pylori (Thiele et al., 2005; Schilling et al., 2002;
J.F. et al., 1997) and also Saccharomyces cervisiae (Förster et al., 2003;
Mewes et al., 1997) as an example of an eukaryotic organism. Table 5.1 gives
a comparative overview of the genome and model sizes.

5.1.1 DNA microarray analyses data
We used the data derived from DNA microarray analyses by Silberbach et al.
(Silberbach et al., 2005; Silberbach, 2005) to justify and improve the C. glu-
tamicum network. But there are some issues which have to be considered
when supporting the model of a metabolic network by microarray experi-
ments.

• A researcher can make a good con�rmation of gene-expression
(see 2.2.1) by �nding values that de�nitely rise above the experimental
noise. But a value inside the noise does not necessarily represent a
non-existent expression. In other words: an apparently non-existent
transcription does not proof a non-existence of the coded protein.

• Transcription 6= translation. A gene transcribed into mRNA and a
piece of mRNA translated into a protein are separated steps, which
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occur independent of each other. Thus, measuring the transcription
only, provides hints which enzymes might exist inside the cell, but is
no proof of it. In other words: An apparently present transcription
does not proof the availability of the referring protein.

Despite the items stated above, DNA transcription levels may very well be
used as a clue to whether an enzyme exists or does not.
First, although there are some very stable RNA molecules, usually RNA is
metabolized rather fast. Therefore, a very low transcription rate may indeed
be interpreted as a low protein expression, because nearly non-existing RNA
obviously cannot be translated into protein. Second, a high occurrence of
RNA hints to an ongoing translation. In consequence this may be interpreted
as the protein being expressed.

It shall be emphasized that we did not use the DNA microarray analyses as
a proof of protein expression. We considered them to be hints which should
be followed further. Concerning the data pointing to weakly expressed genes,
we analyzed the necessity of the referring enzymes in the knock out study
(see section 3.11 for methods and 4.5 for results).

5.1.2 Non-annotated reactions
The reasons for implementing non-annotated reactions have been discussed
in section 3.2.4. Either we needed to close gaps in obvious pathways or
membrane transport had to be modeled. We distinguished two types of non-
annotated reactions. On the one hand, reactions exist which are occuring
spontaneously and are not catalyzed by an enzyme at all. On the other
hand, we have reactions being enzyme dependent, but the referring enzyme
is not annotated from the C. glutamicum genome.
Concerning the �rst, there is no reason not to use these reactions in our
model, because they may occur as soon as the transformed metabolites are
present. The latter ones, on the other hand, have to be examined more
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closely. This has been done in context of the knock out studies; the referring
discussion starts on page 120.

5.1.3 Biomass constitution
The reader should notice, that the components that create biomass and are
listed in table 4.6 (p. 71) are considered to be precursors, not the biomass
itself. Takaç and colleagues de�ned a biomass composition that they used
for the analysis of glutamic acid producing bacteria (Takaç et al., 1998).
We adapted this slightly, according to the knowledge we have, based on the
bacterial genome (Ikeda & Nakagawa, 2003; Kalinowski et al., 2003). Within
the biomass used in the work at hand, there exist precursors to build nucleic
acids, proteins, the bacterial plasma-membrane, and the cell wall.
The substrates used to produce nucleic acids can be separated into these
leading to DNA: dATP, dCTP, dGTP, dTTP and those leading to RNA:
ATP, CTP, GTP, UTP. All amino acids listed in table 4.6 are included
as protein constituents. Further on, the bacterial membrane can be build
from fatty acids and lipopolysaccharides. The fatty acids are represented
by myristic and myristoleic acid as well as by the generic �fatty acid�,
which is a statistical mean of saturated and non-saturated fatty acids.
ADP-D-glycero-D-manno-heptose and CMP-3-deoxy-D-manno-octulosonate
are employed to synthesize lipopolysaccharides. The outermost layer of
the hull of gram-positive bacteria is the cell wall. The molecules meso-
2,6-Diaminoheptanedioate, UDPglucose, UDP-N-acetyl-D-glucosamine and
UDP-N-acetylmuramate are listed as the necessary precursors.

The biomass published in (Takaç et al., 1998) is based on the composition
determined for E. coli . As already mentioned, we adapted this based on
the genome. Additionally, even though the DNA and the protein network of
the two prokaryotic bacteria are di�erent, the statistical distribution of the
biomass precursor molecules can be assumed to be the same.
It shall be mentioned at this point, that a more detailed biomass composition
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exists for E. coli and can be downloaded from the website of the research
group of Bernhard Palsson (Palsson, 2005). It is part of the sophisticated
model published in (Reed et al., 2003).

Studies concerning the robustness of the network against changes in biomass
constitution would go beyond the scope of this work. But Varma and Palsson
published corresponding studies in 1995 for the E. coli bacterium (Varma &
Palsson, 1995). They remarked a robustness of the �ux balance analysis
results against minor changes in biomass constitution. We may also claim,
that we were able to reproduce experimental results with our model, using
the biomass constitution given in table 4.6 on page 71.

5.2 Model validation

The method to validate the constructed reaction network has been described
in section 3.9 on page 58 �. In table 4.7, page 72, it is shown, that we
used the EBA method (chapter 3.4) while a�rming the model. Obviously,
it has to be able to reproduce real-life situations with thermodynamically
necessary constraints being imposed.

By using restrictions derived from the work of Wendisch and colleagues
(Wendisch et al., 2000), after preceding adaptions1 (see 3.9.1), we have been
able to reproduce the measured �ux distributions within a range of ± 30%.
This value includes experimental errors as well as shortcomings in the com-
parison of two models not being identical. Volker Wendisch and his coworkers
deduced metabolic �uxes from the enrichment of labeled carbon atoms (13C)
in various metabolites. Thereby they used a model of the central metabolism
of the Corynebacterium glutamicum, which contains 16 reactions. Experi-
mental errors can be found during the determination of growth rates, biomass

1The adaptions we made result in a simple factor, which is the same for all �uxes.
Thus, they do not change the relative �ux distributions found.
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yields, carbon consumption rates and 13C enrichment. Details are given in
(Wendisch et al., 2000).
Taking the given arguments into account, we consider an accuracy of ± 30%
close enough to experimentally determined values to claim our model vali-
dated.

5.3 Using laboratory conditions

Ideally, one would know the growth rates as well as the amount of carbon
that is metabolized into CO2 by the organism. We only had the growth
rates at disposal. Thus, we had to use a published ratio between biomass
and carbon dioxide production. It seemed reasonable to adapt that ratio
from the same literature we used before to verify our model (Wendisch et al.,
2000). The assumption here is, that a decrease or increase of the growth
rate is founded in a referring change of the carbon consumption. We do not
think, that major changes of the biomass production rate may be following
a greater change of the ratio between CO2 and biomass creation, along with
a constant carbon in�ux.
The determination of the experimental growth rates shall be discussed next.

5.3.1 Identi�cation of periods of exponential growth
The bacterial cultures raised on acetate grow faster than the ones raised on
glucose, during their periods of exponential growth, as can be seen from ta-
ble 4.8 on page 79. The di�erence between the mean values is approximately
30%. Even though only two values are available per nutrient, we consider
this enough to be taken as a fact, not a coincidence that may change in a
greater data set.
In case of glucose as a carbon provider, a smaller deviation between the
values can be observed, than in case of acetate. This, on the contrary, may
very well be an artifact, which probably vanishes in a greater data set.
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It needs to be mentioned, that the identi�cation of the periods of exponential
growth is more substantiated in case of glucose. The reader is referred to
�gures 4.6 to 4.9 on page 77 �. It can be seen that especially the start of the
interesting phase is hard to identify in those graphs where acetate is used as
energy source. In consequence, we used a wider range to identify the starting
points, trusting the method described in section 3.6.4.1 (page 51).

5.3.2 Flux Balance Analysis
In �gure 4.10 (page 80) we observe around 80 �uxes that touch the upper
limit imposed on all �uxes. This behavior indicates them being unbounded2.
It stems from the possibility of biochemical information - basically the type
and arrangement of chemical bonds - �owing in circles.
To rearrange chemical bonds needs free enthalpy (∆G), if this process is
to occur spontaneously (compare 2.1.1.2). Thus, a cyclic �ux has to be
connected to a loss of ∆G, which is not considered during a �ux balance
analysis. Otherwise cyclic �uxes would not be possible.
As a consequence, using a �ux balance analysis approach in combination
with a completely reversible reaction system yields results which are not
realistic. We observed exactly what Daniel Beard, Shou-dan Liang and Hong
Qian discussed in (Beard et al., 2002). FBA alone is not su�cient to obtain
thermodynamically feasible results. Accordingly, we implemented the energy
balance analysis, which is described in the above cited article among others
(Beard et al., 2004; Qian et al., 2003; Yang et al., 2005; Beard & Qian, 2005).

5.3.3 Energy Balance Analysis
Overviewing the energy balance analysis of the Corynebacterium glutamicum
metabolism we can claim to be able to predict a meaningful �ux vector;
�meaningful� in the sense of thermodynamics. What initial information had

2The mentioned limits are arbitrarily set, for the only reason that the optimizer would
fail, if they were in�nity.
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to be given to achieve this and the comparison to the results of the �ux
balance analysis will be discussed next.

5.3.3.1 EBA- initial irreversibilities

Initial irreversibilities have to be given for 24 reactions. Otherwise, the
energy balance analysis would not yield a thermodynamically feasible �ux
distribution, but would still allow cyclic �uxes. From a systemic point of
view, only one possible cyclic �ux would corrupt the whole �ux vector. A
possible constriction of some reaction directions may lead to a reduction of
the amount of unconstrained reactions, followed by a reduction of the �ux
space size. But, if we are looking at the whole cell at a time, either the �ux
distribution is thermodynamically sound or it is not. And if there are �uxes
left which are unbounded, then it is not a feasible solution.

We started to identify the reactions to be irreversible from the beginning by
calculating the matrix of all internal cycles (2.7). A subsequent prediction of
feasible reaction directions revealed which cycles were still left. The reaction
most common in these cycles was identi�ed and its irreversibility information
retrieved from the KEGG database (Kanehisha & Goto, 2000). Again, a
prediction of feasible reaction directions followed. The procedure was applied
iteratively until cyclic �uxes were completely prevented. A more detailed
description can be found in section 3.4.2.
Thus, the choice of reactions, we used the reversibility information of, is
only dependent on the procedure, which ensures the usage of as few initial
information as possible while providing the necessary e�ect. There is no
biological meaning whatsoever attached to it.

5.3.3.2 EBA- robustness analysis and comparison to FBA

The constraints on the external �uxes during the energy balance analysis
(table 4.11, page 83) have to be the same as those being imposed during
the �ux balance analysis (table 4.9, page 80). By inspection of �gure 4.11,
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page 84, a much more detailed distribution of �ux variances than in the refer-
ring FBA �gure 4.10 is recognizable. A very important fact is the complete
lack of unconstrained �uxes. The one �ux which is able to vary in an inter-
val greater 200 has its limits at -273.7 and +38.7. This is the �ux through
a phosphor interchange-reaction between NADH and NADPH (reaction 200).

Figure 4.12 on page 85 shows a direct comparison of the variabilities of
all �uxes, FBA versus EBA. The comparing method is explained brie�y
on page 85. It can be observed that about 70-80 reactions are much more
constrained after taking thermodynamic feasibility into account. When
analyzing that �gure, one has to be aware of the following:
The variability of the highly variable FBA �uxes is only dependent on the
upper and lower bounds imposed. Remembering that these are arbitrary
(compare 4.3.2), the amount of reduction from FBA to EBA is insigni�cant.
Signi�cant is only the fact that a lot of �uxes are further constrained and
the amount of them.

The last �gure comparing the �ux and energy balance analyses is �gure 4.13
on page 86, which shows the �ux space development as described in 3.10.1.1.
It illustrates that energy balance analysis indeed scales down the �ux cone
in a large amount. The estimated size drops from 10 93.22 for acetate feeding
and 10 74.04 for glucose feeding to 10 -196.89 and 10 -231.39, respectively.
For both types of analysis, the reactions are sorted the same way. Thus, we
may deduce from the graph that those reactions which are already bound
under FBA conditions have the same variabilities under EBA conditions.
This is because the lines exactly overlap in the left part of the �gure. Also,
it is obvious that the reactions which seem to be unbounded under FBA
(right part of the graph) are much more constrained, when thermodynamical
aspects are considered (EBA).
Finally, for both methods one can compare the behavior of the metabolism
when it is fed with di�erent carbon sources. In case of FBA as well as in case
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of EBA the total size of the solution space is smaller if the bacterium grows
on glucose. The di�erence grows from FBA to EBA. This is understandable,
since all FBA reaction variabilities on the right side of �gure 4.12 have
the same maximal value (for acetate and glucose conditions)3. Thus, the
development of the acetate related solution space parallels the one related
to glucose, when looking at these unbounded reactions. Contrary, the EBA
variabilities develop di�erently, allowing the gap between the size of the
acetate and the glucose �ux cone to increase.

Summed up, we de�nitely observe a large con�nement, when applying con-
straints which meet the thermodynamic requirements of an energy balance
analysis against those referring to FBA alone.

5.3.3.2.1 A closer look Contrary to �ux balance analysis, during an
energy balance analysis cyclic �uxes are prevented (compare 2.7). If matter
is allowed to �ow in closed loops, the �ux through these loops may rise up
to in�nity without breaking any of the FBA constraints. But even when
prohibiting cyclic �uxes, high variabilities still may occur.

As said above, the most variable �ux belongs to reaction 200, which is a
shuttle between NADH and NADPH:

NADPH + NAD+ ↔ NADP+ + NADH

According to table 4.4, the NADH transhydrogenase (1.6.1.1), which cat-
alyzes this reaction, is not annotated from the genome. But a knock out
of it leads to the incapability to grow (compare table 4.18). Thus, it was
necessary to include the enzyme into the model.
The reason for the high variability of reaction 200 will be another possibility
to perform its transformation, hidden within the network. This will probably

3As mentioned before, this maximal value is arbitrarily set to prevent programming
related problems.
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be a chain of reactions that cycles carbon while shifting the phosphor. Ther-
modynamically, this is not breaking the laws constituting the energy balance
analysis, since there is in fact a reaction attached to that �cycle�. Another
thing worth considering is: the system might direct a higher carbon �ow
through the pentose phosphate pathway. That will oxidize one carbon to
CO2 while producing two molecules of NADPH. The alternative is, to direct
that carbon through the glycolysis and produce NADH, instead. Later on,
the carbon would be oxidized during the citric acid cycle. Depending on the
pathway taken, the NADH/NADPH shuttle will work the desired direction.

The next most variable reaction lies in the heart of the glycolysis
and describes the phosphorylation of fructose-6-phosphate to fructose-1,6-
bisphosphate by use of ATP (reaction 3). But, there is a reaction (no. 4)
that can restore fructose-6-phosphate from fructose-1,6-bisphosphate while
setting free one of the phosphates. Summed up, those two reactions can be
used to split ATP into ADP and phosphate (compare �gure 5.1).
The same can be achieved by summing up:

reaction 158 ATP + H2O ↔ AMP + PPi
reaction 160 ATP + AMP ↔ ADP + ADP
reaction 199 PPi + H2O ↔ Pi + Pi∑

/2 ATP + H2O ↔ ADP + Pi

Thus, there exist two alternate pathways to decompose ATP. Hence reac-
tion 3 is highly variable. If the situation depicted in �gure 5.1 stated the
only possibility to dephosphorylate ATP, a certain �ux through the futile
cycle4 would always be necessary. In consequence the variability of reaction 3
would be lower.
The �ux through reaction 3 & 4's substitutes may rise up to nearly half
the value of reaction 3. This is reasonable, because the latter one needs to
run two times to achieve the same as its alternative pathway. That this

4The example shown in �gure 5.1 is called a futile cycle. That is a cyclic �ux that
serves the decomposition of some metabolites, attached to the cycle, which are not needed
by the cell.
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�:    ATP + H2O � ADP + Pi

Glc

G6P

F6P

G3P

3PG
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Figure 5.1: Phosphorylation of fructose 6-phosphate
If the reactions 3 & 4 run in the directions shown, their sum will be the hydrol-
ysis of ATP. A cyclic �ux that serves the decomposition of some metabolites,
attached to the cycle, which are not needed by the cell is called a futile cycle.

alternative way does not reach up to exactly half the value tells us there is
a �ux that has to go through reaction 3; very probably, this is the carbon
�owing through the glycolysis.
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CO2

is considered to be the maximal energy the organism can gain from
the carbon source; it is connected to the optimization of the model on CO2

production. ∆G0
BM is the energy dissipated if the organism produces biomass

(BM) and CO2. Accordingly, ∆∆G0 is the amount of energy the bacterium
transfers into biomass.

5.3.4 External energy balance analysis
The results, this part of the discussion refers to, are shown in table 4.12 on
page 87. As a reminder (compare section 3.5.1): we regard the amount of
heat that is set free during the total conversion of in�owing carbon into CO2

as the maximal amount of heat that is hidden in the metabolites entering
the system. The bottom line of table 4.12 shows how much of this energy is
converted into biomass for the two carbon sources analyzed throughout this
work. Figure 5.2 demonstrates the coherences.
Interestingly, even though the Corynebacterium glutamicum grows faster if
raised on acetate than on glucose (see table 4.8, p. 79), it is able to make
better use of the latter. Ca. 40% of the available energy are transferred into
biomass, contrary to about 30% in case of acetate. Examined from another
angle, raised on glucose, the bacterium dissipates about 60% of the available
energy, whereas approximately 70% are dissipated if raised on acetate.
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5.3.5 General considerations
If we constrain all external �uxes to speci�c values, they obviously do not
generate variable internal �uxes. In this case, variability generally appears
if there is more than one possible pathway able to accomplish a certain task.
In case of the studies at hand, we did �x the amount of carbon �owing into
the cell. But we allowed a certain tolerance to the way this carbon may
leave the system (compare tables 4.9 and 4.11). This adds up to the possible
variabilities already present. Taking the stoichiometric factors (which may
even be fraction numbers) into account will eventually end up with the
variabilities summarized in �gure 4.11. The correlations are also explained
in chapter 2.6 and are shown in �gure 2.6 on page 22.

In (Mahadevan & Schilling, 2003), Mahadevan and Schilling performed an
analysis, similar to our robustness analysis (3.7), for the E. coli metabolic
network published by Edwards and Palsson in (Edwards & Palsson, 2000);
concerning the E. coli model also compare 5.1. Contrary to the analyses
throughout this work, they �xed the carbon in�ux and biomass out�ux to
certain values. Next, they minimized and maximized each �ux through-
out the network. Doing so, 29 reactions showing a higher variability than
10−5

[ mmol
g(DryWeight)·h

]
for E. coli being raised on glucose were found. Us-

ing acetate and lactate as carbon sources, they found 19 and 28 variable
reactions. When comparing these results to the ones shown in sections 4.3.2
and 4.3.3, one must be aware of the following:

• As said above, Mahadevan and Schilling �xed the value of the biomass
formation rate, while we demanded it to be ≥ 90 % of its maximum.

• The metabolic network constructed by Palsson and his colleagues uses
irreversibility information based on biological databases. Additionally,
Mahadevan and Schilling eliminated some reactions (or set irreversibil-
ity constraints) to remove futile cycles (see �g. 5.1, p. 111).
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Due to the �rst item, we will get greater �ux intervals for all �uxes, as
explained above. We required a 90% biomass production to allow a cer-
tain �exibility between biomass and CO2 production. Since we adapted the
biomass /CO2 ratio from literature (compare 3.8.1), this takes experimental
errors into account (see also section 5.2). Due to the second item, Mahade-
van and Schilling probably received a smaller solution space. The more con-
straints one imposes on a constraint-based analysis, the smaller the solution
space becomes. Contrarily, we used the minimum amount of irreversibility
constraints needed, by applying energy balance analysis. First, this makes
the results shown in the thesis at hand ab initio results, with the exception
of the initially given irreversibilities (compare 4.3.3.2). Second, elimination
of futile cycles, as performed by Mahadevan and his colleague, is not enough
to ensure thermodynamic feasibility, as Beard, Liang, and Qian explain in
(Beard et al., 2002). Centralized, we may have slightly higher variabilities
than expected when comparing to related publications, but we only use as
few information as necessary to predict thermodynamically feasible �ux dis-
tributions.

115



CHAPTER 5. DISCUSSION

5.4 Metabolic pro�ling

The main idea of the work at hand is the development of a method to im-
plement data from metabolic pro�ling experiments (compare 3.6) in order
to further constrain the metabolic �ux space. Thus, we will at �rst discuss
the assumptions made in advance of the implementation. The pro�ling data
and the results obtained after implementing them will be considered next.
Thereby, it will become clear that we were indeed able to invent a sound
method which leads to the expected reduction of the metabolic �ux space.

5.4.1 Prerequisites and Assumptions
This section refers to the assumptions that have been laid out in 3.6.2,
page 45. First we regarded the concentrations of all metabolites whose pro-
�les could not be measured as constant under all circumstances (p. 45). Since
we used the pro�les (NaAc and Glc) showing the highest correlation (com-
pare section 3.6.4.3), this is a reasonable hypothesis. Ongoing research in the
�eld of experimental metabolic pro�ling should decrease the amount of un-
known concentrations in the near future. Second, we assumed linear enzyme
kinetics (3.6.2.2). Concerning the four points stated on page 45 the following
can be said:

• the order of the reaction in each metabolite equals the corresponding
stoichiometric coe�cient:
we consider the in�uence of all molecules on the reaction rate to be the
same. Even though a connection between the reaction's mechanism
and its order in the individual educts is given, since we do have no
information about the mechanism, we assign the same importance to
each molecule.

• enzyme expression is the same in all networks (here: Glc & NaAc)
considered:
this is one of the assumptions that underlie the whole modeling process
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(see 3.2.1). Thus, it is a logical consequence to assume this for all
networks considered.

• enzyme kinetics is far from saturation:
suppose we had a saturated enzyme in our network. Then its substrates
would have accumulated. This is not conform to the assumption of a
steady state �ux distribution, which is the basic idea of FBA (see 2.6).

• there are no e�ects changing the reaction kinetics:
�ux balance analysis as well as its enhancement energy balance analysis
is a systemic method that is not dynamic. In consequence, e�ects
like inhibition, enzyme-disintegration, and others are supposed to be
covered by the analysis itself. These are properties that cannot be
modeled on a local scale while using �ux balance methods.

In closing it can be said, the assumptions made are as well reasonable as
necessary for the analyses.

5.4.2 Metabolic pro�ling data
The metabolites which could be used to further constrain the �ux space
(compare 3.6.5), as well as their measured concentrations, are shown in ta-
ble 4.13 on page 89 . They gather from various parts of the metabolism and
no focus on any special pathway can be assessed. Thus, the e�ects of the
new conditions also a�ect the whole model and results will be seen globally,
rather than locally.
Table 4.14, page 90, shows the reactions that are a�ected by the data. The
�rst thing to be noticed is, that there may be more than one reaction af-
fected by each metabolite. On the other hand, the constraints that could be
deduced from the metabolic concentration data of valine, alanine, proline,
phenylalanine and fructose did not lead to any change in the possible �ux
patterns.
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The reason is simple: if the new, combinatorial requirement is
vNaAc ≤ vGlc

and the bounds on vNaAc and vGlc are
a ≤ vNaAc ≤ b

and
a ≤ vGlc ≤ c

with
b ≤ c

before adding the new constraint, then no e�ect can be observed. The original
bounds a, b and c hold true even after imposing the new restriction. While
interpreting this, we must be aware that - using the robustness analysis (3.7)
and the �ux space development graphs (3.10.1.1) - no e�ect can be observed.
But there is an e�ect hidden, nevertheless.

a
vHAc

∆vHAc

∆vGlc

vGlc

Figure 5.3: Hidden e�ect of combinatorial constraints
If the constraint is vNaAc ≤ vGlc, then ∆vNaAc and ∆vGlc remain. But the
real possible solution space left, is only the dotted area, in contrast to the
dashed rectangle, that constituted it before.

Figure 5.3 clari�es the issue. The possible ranges ∆vNaAc and ∆vGlc can still
be used to full capacity. Thus, the results of the analyses mentioned above

118



CHAPTER 5. DISCUSSION

show no di�erence. But the �ux space is in fact restricted. The reason why
these hidden e�ects are not analyzed further is simply a matter of calculation
time. We would have to �x one of the �uxes and test the other's variability
against di�erent �xed values. And since there may be more than two �uxes
in�uencing each other, we would have to do this analogously for 3, 4, 5, ...
all �uxes.

The combinatorial constraints, derived from the metabolic pro�ling data, and
their e�ects are discussed within the context of the energy balance analysis
in the following section.

5.4.3 Energy balance analysis excluding and including
combinatorial constraints

In �gure 4.14 on page 92 the results of an energy balance analysis under
the constraints of table 4.15 (page 91, incl. combinatorial constraints) are
shown. A closer comparison of this �gure to the EBA �gure derived without
the additional conditions (�g. 4.11, p. 84) reveals that the �ux variabilities
referring to the acetate fed metabolism are further constricted, while the
ones connected to glucose as a carbon source remain unchanged. These
di�erences are explicitly expressed in �gure 4.15 on page 93.

We see around 25% of all reaction variabilities shrink to a di�erent degree
when the new constraints are imposed on the system. This means, by
considering further thermodynamical issues (compare section 3.6.1), we are
able to reduce the possible �ux space.
This reduction is also visible in the �ux space development graph 4.16 on
page 94. The values at the right show a reduction of the upper estimate of
the �ux space size (see 3.10.1) by a factor of ca. 100. More precisely, the
solution space is diminished to 5.25% of its original value. As said in the
previous section, one also has to take into account that there is a further
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reduction hidden within the constraints imposed (see �gure 5.3).

In conclusion it can be said that we achieved our goal of reducing the steady
state �ux cone by implementing metabolic pro�ling data (compare intro-
duction, page 3). To accomplish that, we developed a new concept which
can be combined with any other enhancement of the �ux balance analysis
(e. g. EBA). Linear programming only is needed as a means to carry out
the computing, circumventing the problems usually attached to nonlinear
programming problems (compare 2.7).

5.4.4 External energy balance analysis
The fact that external �uxes do not change when applying additional con-
straints (see 4.4.4, page 94) very probably is related to the limitedness of the
model. Since the only carbon-related reactions crossing the cellular mem-
brane are transporting the carbon source, CO2, or biomass, we do not expect
any change therein as long as we do not change the carbon in�ux.
This behavior will very probably change when opening more systemic gates
that allow carbon to cross the cellular membrane.

5.5 Knock out study

From table 4.16 (page 95) we learn, that the C. glutamicum metabolism is
robust against a number of knock out mutations, referring to the ability to
grow. Considering our model, 65 of the 302 genes may be knocked out and
it will still be able to produce biomass. On the other hand, there are 123
knock out mutations, that bar the system from growth, while still valid �ux
distributions exist. These remaining possibilities to metabolize in�owing
nutrients channel all carbon into the production of carbon dioxide. Further
on, there exist 17 knock outs we classify as lethal, meaning they circumvent
any valid �ux distribution.
The mutations that only leave the ability to produce CO2 obviously prevent
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the growth of the model. In terms of biology, this is lethal. But, the
metabolism keeps the ability to gain energy from in�owing nutrients (it is
able to degrade them to CO2). It �just� is not able to produce biomass out
of them. Thus, a more detailed model or a slightly altered biomass com-
position might restore the power to grow. Knock out mutations classi�ed
lethal inhibit any �ux distributions. Their damage is severe and - probably -
cannot be easily overcome.

Nevertheless, generally speaking it may be presumed that a more detailed
model will result in more alternate pathways, which are able to ful�ll the
same systemic task. As a consequence, the robustness against genes becoming
unavailable should rise. Also, right now we are only observing three types of
consequences after gene knock outs. Either the capability to grow remains
unchanged or the system completely lacks it. In the latter case either the
model still provides active pathways, which are able to metabolize in�owing
carbon into CO2, or the mutations are lethal. A more detailed model might
soften this hard separation. In real life organisms a mutation which makes
a gene unusable may reduce the growth rate, but does not have to be either
lethal or without e�ect. Imaginable is even a biomass production increasing
e�ect of a knock out mutation if it entails the disappearance of an inhibitor.
But this behavior cannot be simulated using the model at hand.

5.5.1 Knock out study details
Some of the genes used to construct the C. glutamicum model shall be
discussed in detail. On the one hand, those genes which are only weakly
expressed (4.1.1) need to be examined. On the other hand, we have to take
a closer look at the enzymes which have no annotated gene attached (4.1.2).
It also seems reasonable to explore the reactions that have no catalyzing
enzyme assigned. Of further interest are �nally those knock outs that are
lethal to the organism.
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Weak gene-expression
Table 4.17 on page 96 shows 11 enzymes whose genes are only weakly
transcribed according to the DNA microarray analyses, performed in chap-
ter 4.1.1 (compare also table 4.3, page 68). Five of them can be knocked out
without a�ecting the ability to grow in any way. It should be remarked, that
three of those �ve genes have substitutes available. That means a knock
out of those genes may only result in a lower amount of the coded enzyme,
but will not remove it completely from the organism. Since we assume all
enzymes, which are available in any amount, to be available in su�cient
amount (compare page 28), no e�ect on the system can be observed.
The remaining six mutations lead to an incapability to produce biomass,
while still metabolic pathways leading to carbon dioxide are active. As said
above, this represents a model that is able to gain energy from supplied
nutrients, but lacks the ability to make use of the available matter.
Remarkably, none of the genes which are only weakly expressed is vital to
the organism (i.e. none of their knock outs is classi�ed lethal). Thus it
seems reasonable to assume that a genome scale model will even show less
impact of the six mutations last-mentioned.

Non-annotated enzymes
Table 4.18 (p. 97) displays the results of removing those enzyme, which could
not be annotated from the given genome. Most of the reactions listed cannot
be neglected without consequence. The �ve reactions marked no e�ect in
the table mentioned may in fact be neglected, but have been included to
close obvious gaps.
This behavior - the necessity of most of the non-annotated reactions -
very probably roots in the incompleteness of our model. As said before
(page 100), though the model used is the largest C. glutamicum model con-
structed so far, it is far from being complete when referring to the genome.
A more detailed examination and - consecutively - delineation of possible
pathways may very well lead to alternate chains of reactions from one node
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(metabolite) to another. In consequence, the reactions now being vital may
become one of several possibilities and thereby may become negligible.

Non-catalyzed reactions
Only one of the reactions that do not have an enzyme attached might be in
need of a catalyst: reaction 144, which is the only one producing the biomass
component ADP-D-glycero-D-manno-heptose (compare table 4.6, page 71).
Its removal entails a limited metabolism (no biomass production), but does
not have to be classi�ed lethal (see above).
The metabolite is included in the biomass as a precursor for the lipopolysac-
charid synthesis. Since there is only CMP-3-deoxy-D-manno-octulosonate
available as a substitute, we �gured ADP-D-glycero-D-manno-heptose to be
essential and included reaction 144 in the model. Additionally, the KEGG
database does not provide full EC numbers of the reactions leading to
the above heptose-derivative. Thus we could not determine if the relevant
enzymes are annotated from the C. glutamicum genome.

Lethal knock outs
We explained on page 97 that there are only three common membrane
transports which can be closed without lethal e�ects. Namely, the external
�uxes for Pi, SO2−

4 or NH3 may be constricted to zero while the metabolism
remains active but incapable to grow.
Looking at the deadly internal knock outs, 5 of the 11 enzymes are needed
within the respiratory chain: 1.10.2.2, 1.3.5.1, 1.3.99.1, 1.9.3.1, and 3.6.1.5.
Taking away the ability to breath will naturally kill the organism.
The enzyme 1.1.1.37 is responsible for the conversion of malate to oxaloac-
etate within the citric acid cycle. It seems reasonable that it is not possible
to destroy such a central gene without consequences. The same holds true
for the following enzymes, which all catalyze parts of the same pathway:
2.3.3.1 (acetyl-CoA + oxaloacetate→ citrate), 4.2.1.3 (citrate→ isocitrate),
and 4.2.1.2 (fumarate → malate).
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The remaining enzymes are 2.3.1.8 and 2.7.1.2, the latter of which is respon-
sible for the conversion of glucose to glucose-6-phosphate by use of ATP. The
protein carrying the EC number 2.3.1.8 is used by Corynebacterium glutam-
icum to build acetyl-CoA from acetate. Both of them are understandably
important reactions for the bacterium, considering the fundamentality of
their products.

Re�ection
We observe 3 general kinds of e�ects following single knock out mutations:

• no e�ect at all

• incapability to grow, but remaining activity of other metabolic
pathways, which transform in�owing carbon into CO2.

• lethality

There exist only a few lethal knock outs, whereas there are a lot of knock
outs preventing growth. But, these data have to be considered with pre-
caution. The case of reaction 144 described above is not uncommon (see
non-catalyzed reactions). A knock out necessarily inhibits the production
of biomass, if the referring reaction is the only one producing a metabolite
which is part of the biomass. This may be di�erent, if there are more
reactions added to the network, which build this speci�c compound.

Also it should be taken into consideration to �soften� the biomass constitu-
tion. The components of biomass listed on page 71 are considered as the
precursors (see 5.1.3) that are needed to build the cell. It may be possible
to replace some of them by other metabolites; or to use ranges rather than
discrete stoichiometric factors for some of the molecules. In consequence the
model should react more robust against minor changes a�ecting the biomass
production and/or constitution.
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5.6 Conclusions

The established model has been discussed and classi�ed within section 5.1.
It consists of the main biochemical pathways and all additional reactions
necessary to produce biomass. The model is able to grow on varying carbon
sources, two of which have been considered within the work at hand (acetate
and glucose).

Flux balance analyses have been carried out for a variety of organisms, some
are listed in table 5.1 on page 102. Along publishing the largest model for
glutamate producing bacteria up to now (Takaç et al., 1998), Takaç and
colleagues also performed FBA analyses under varying constraints. The
C. glutamicum model described in section 4.1 is able to reproduce those
results. Since we used a larger and more detailed model, naturally we
achieved more in-depth results. Also - contrary to the workgroup from
Ankara University - we employed a systemic approach to calculate possible
reaction directions (3.4). To our knowledge, we are the �rst group besides
D. Beard et al., who are the authors of the energy balance analysis, which
used this framework on a metabolic network model.

A research group also very active on the �eld of �ux balance analysis is
the Systems Biology Research Group from the University of California, San
Diego (Palsson, 2005), led by Prof. Bernhard Palsson. Their FBA related
research directs into developing new methods for result interpretation. One
of the achievements was the publication of the so-called extreme pathways
(Schilling et al., 2000, 2001). They are a unique subset of the elementary
�ux modes introduced by Schuster et al. in (Schuster et al., 1999, 2000). An
elementary �ux mode is a minimal combination of reactions, that can provide
active �ux through the network. It is found by consecutively eliminating
reactions from the network while still valid �ux distributions are possible.
Eventually, one reaches a point where the elimination of one more reaction
would be lethal, meaning no valid �ux arrangement can be found any more.
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The set of all possible pathways that are just one step away from break-
down is called the set of elementary modes. The before mentioned extreme
pathways are a proper subset of those, which is unique by the algorithm
calculating them (Schilling et al., 2000). A more detailed comparison of the
two concepts can be found elsewhere (Jason et al., 2004).
Another method, which has to be mentioned here, is the phenotype phase
plane analysis. Phenotype phase planes are areas demarcated by the projec-
tion of the extreme pathways onto relevant subspaces. An example would
be the carbon source uptake rate against the oxygen uptake rate. By pheno-
type phase plane analysis di�erent regions, each of which describes another
phenotype, can be established on this coordinate system. The theory is
described brie�y in (Schilling et al., 2001) and in more detail in (Edwards
et al., 2002).

Contrary to focusing on the interpretation, we focused on the analyzing
methods. First, we considered it necessary to implement the energy balance
analysis (3.4) in order to achieve a thermodynamically sound �ux distribu-
tion. On this basis only, we have been able to introduce new constraints,
also based on thermodynamics. Metabolic pro�ling data was employed to
further smallen the solution space. Compare sections 3.6, 4.4, and 5.4 for
method, results, and discussion, respectively. As far as we know, there
haven't been any other attempts of implementing metabolic pro�ling data
into the systemic simulation of metabolic networks. Also, other approaches
than EBA to improve the results of FBA are unknown to us.
Flux balance analysis does not deliver a unique solution, even after optimiz-
ing an objective function (Mahadevan & Schilling, 2003). Energy balance
analysis is able to reduce the possible solution space signi�cantly (compare
�gure 4.12 on page 85), but nevertheless it does not yield a discrete value.
We aimed at a further reduction of the remaining �ux space. Even by con-
sidering thermodynamical aspects imposed onto the model by the metabolic
pro�ling data, we did not reduce the valid solutions to one vector. But we
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did further reduce the available solution space.

As said in the introduction, our work aimed at closing the gap between
prediction and nature and at the reduction of the valid �ux space. There-
fore, we planned to build a genome based model of the Corynebacterium
glutamicum metabolism and to validate that model by experimental data.
In section 4.1 we introduced the model. It has been validated as planned in
section 4.2. Using a newly developed method to unite metabolic pro�ling
with energy balance analysis (chapter 3.6) we also have indeed been able
to further reduce the available solution space. The referring results and
discussion can be found in sections 4.4.3 and 5.4.3.
Along the way, we analyzed the external energy balance (see 3.5, 4.3.5
and 5.3.4) and performed a single knock out mutation study (see 3.11, 4.5
and 5.5) to further elucidate the modeled organism.

Centralized, it can be said that we have created a new concept to com-
bine knowledge gained from systemic laboratory approaches with an estab-
lished method to analyze and simulate metabolic networks. This concept has
been demonstrated on the example of the C. glutamicum metabolism and we
thereby showed that we accomplished our goals.
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Outlook

The concept presented in this work brings together data from metabolite
pro�ling experiments (2.5) and a theoretical systems biology approach (EBA,
see 2.7). One drawback during the development was the incompleteness
of the data from the metabolic pro�ling (compare 3.6.2.1). Even though
we discussed the amount of unknown concentrations to be declining on
page 116, there will always be metabolites left that cannot be measured. To
quantify metabolites like described in 2.5.2, either the compound needs to
be purchasable or available in databases. This is not given for around 30%
of the molecules listed in table A.2 (appendix A). If we consider, that the
reactions used in the constructed model mainly constitute the central carbon
metabolism, this percentage will probably be higher when zooming out to
the whole cellular network. Also, larger molecules cannot be measured,
since it is not possible to evaporate them during the gas chromatography
(compare 2.5.1). Examples include such important substances as ATP or
NADH. Currently, research at CUBIC starts to develop LC-MS1 methods to
be able to expand the range of detectable molecules. But very probably, we
will never be able to quantify all of them that exist within the C. glutamicum
metabolism. And we de�nitely won't be within the next few years.

1Liquid Chromatography - Mass Spectrometry
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The same problems will be faced when analyzing a di�erent organism. Thus,
it is reasonable to start generating concepts to predict unknown metabolic
concentrations. These, in turn, can be used to further reduce the solution
space of the energy balance analysis. Daniel Beard and Hong Qian published
a study on the hepatocyte metabolism in (Beard & Qian, 2005) in which they
determined unknown metabolic concentrations by minimizing the enzyme
activity di�erences between two operational modes of the cell. This could be
translated to the Corynebacterium glutamicum network. E.g., it is possible
to parallel the work at hand and interpret the external conditions (the
feeding with di�erent nutrients) as �operational modes�. A minimization of
the di�erence of the total amount of metabolic concentrations may be the
�rst step towards a more detailed objective function.

There have been approaches developed, which base on �ux balance analysis,
but move to di�erent objective functions. In (Holzhütter, 2004) Herman-
Georg Holzhütter introduces the idea of a minimization of the sum of all
�uxes in a metabolic network, while keeping some �target �uxes� constant
or within small intervals. Since already Segrè noted in 2002 (Segrè et al.,
2002) that optimal biomass production is not necessarily a sound target
for all models, it is de�nitely worth considering objective functions di�er-
ent from that. Also, Holzhütter stated that optimal biomass production
can be regarded as a special case of �ux minimization: there is a relation
between trying to achieve a certain biomass production at minimal costs
and achieving maximal biomass production at given costs. A successive
application of both objectives seems promising, too. First, the biomass pro-
duction will be optimized. Second, it is tried to achieve this at minimal costs.

Another idea is called MOMA and was published in (Segrè et al., 2002).
MOMA is an acronym of minimization of metabolic adjustments and is fo-
cused on the analysis of perturbed metabolic networks; the most common
perturbation being a knock out mutation. The underlying thesis of MOMA
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is that random knock outs - like performed in laboratories - did not occur
under the pressure of evolution. Thus, there is no reason to assume these
mutants to be optimized on biomass production anymore. Instead, the au-
thors suggest the optimal �ux distribution of perturbed networks being the
one that is as close to the wild type results as possible. In consequence, for
knock out mutants, they do not optimize the biomass production rate, but
minimize the distance between the wild type and the mutant �ux distribu-
tion:

D(~w, ~v) =
√∑

i

(wi − vi)2 (6.1)

D: distance in �ux space; ~w: wild type �ux vector; ~v: mutant �ux vector

So the task is to �nd the vector ~v such that D(~w, ~v) is minimized. In the
above cited article, the authors claim to be able to reach results better than
FBA alone, while analyzing mutants. The drawback is: the �ux distribution
of the wild type organism must be known in order to �nd the most similar
one from the mutant's �ux space. While this method does not help in
determining the �ux vector of the C. glutamicum wild type, it may be
helpful when analyzing the knock out organisms that are raised in CUBIC
laboratories. It should be considered as well to adapt the approach to map
experimental results (e. g. (Wendisch et al., 2000)) as best as possible. This
may help in identifying the �ux rates of reactions not covered in experiments.

In order to gain more biological knowledge, focus should also be laid on the
interpretation of the results. At �rst, an application of enhanced methods
that already exist should be performed. Expressing the �ux distribution in
terms of extreme pathways (Schilling et al., 2000, 2001) or analyzing di�erent
phenotype phase planes (Schilling et al., 2001; Edwards et al., 2002) might
lead to new insights. After that, it should be considered to take advantage
of the available concentration data, in combination with predictions of the
missing data, if available. One approach is currently under development by
Asad Rahman from CUBIC. His idea is to rank cellular pathways by the
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amount of Gibbs free energy (2.1.2) that is lost or gained while traveling
them. Since di�erent molecules are involved in di�erent pathways, the ∆G

varies, dependent on the particular way that is taken. The ∆G values
can easily be re�ned by using the available concentration data. Further
improvement can be gained by employing predicted concentration data to
�ll empty variables.

At this point, a last suggestion shall be the combination of pathway analyses
with �ux prediction. One idea is to rank pathways by the �ux through them.
Another concept will be brie�y outlined next.
A �ux gives the velocity of a reaction. The units usually are[ mmol
g(DryWeight)·h

]
. The reciprocal gives information about the time it

takes to convert one mmol of a compound. If this is united with a shortest
path analysis, the result could be called a fastest path analysis. It could
answer questions like: which is the fastest way to convert one mol of A into
one mol of B?

A closing remark: there is a really wide spectrum of possible applications
and concepts that can be developed within systems biology. It will de�nitely
go beyond the scope of this work to discuss them all. The thesis at hand is
a �rst step into uniting metabolic pro�ling experiments with the framework
of �ux prediction methods. And we think it is de�nitely worth it, to further
follow this path.
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Appendix A

Reactions and Metabolites

Table: A.1: Classi�cation of the Networks Reactions
The classi�cation of the networks reactions into di�erent pathways is not
unambiguous. It is meant to be a hint.

Glycolysis/Glyconeogenesis

1 ATP + D-Glucose <=> ADP + D-Glucose 6-phosphate + H+ 2.7.1.2
2 2-Phospho-D-glycerate <=> Phosphoenolpyruvate + H2O 4.2.1.11
3 ATP + D-Fructose 6-phosphate <=> ADP + D-Fructose 1,6-

bisphosphate + H+
2.7.1.11

4 D-Fructose 1,6-bisphosphate + H2O <=> D-Fructose 6-phosphate +
Orthophosphate

3.1.3.11

5 D-Glucose 6-phosphate <=> D-Fructose 6-phosphate 5.3.1.9
6 Sucrose + H2O <=> D-Fructose + D-Glucose 3.2.1.20
7 ATP + D-Fructose <=> ADP + D-Fructose 1-phosphate + H+ 2.7.1.3
8 ATP + D-Fructose <=> ADP + beta-D-Fructose 6-phosphate + H+ 2.7.1.4
9 D-Glucose 1-phosphate <=> alpha-D-Glucose 6-phosphate 5.4.2.2
10 (2R)-2-Hydroxy-3-(phosphonooxy)-propanal <=> Glycerone phosphate 5.3.1.1
11 (2R)-2-Hydroxy-3-(phosphonooxy)-propanal + Orthophosphate +

NAD+ <=> 3-Phospho-D-glyceroyl phosphate + NADH + H+
1.2.1.12
1.2.1.59

12 beta-D-Fructose 1,6-bisphosphate <=> Glycerone phosphate + (2R)-2-
Hydroxy-3-(phosphonooxy)-propanal

4.1.2.13

Continued on next page . . .
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13 ATP + 3-Phospho-D-glycerate <=> ADP + 3-Phospho-D-glyceroyl

phosphate
2.7.2.3

14 2-Phospho-D-glycerate <=> 3-Phospho-D-glycerate 5.4.2.1
15 ATP + D-Fructose 1-phosphate <=> ADP + beta-D-Fructose 1,6-

bisphosphate + H+
2.7.1.56

Pentose Phosphate Pathway

16 D-Glucose 6-phosphate + NADP+ <=> D-Glucono-1,5-lactone 6-
phosphate + NADPH + H+

1.1.1.49

17 ATP + D-Ribose 5-phosphate <=> AMP + 5-Phospho-alpha-D-ribose
1-diphosphate + H+

2.7.6.1

18 D-Ribose 5-phosphate <=> D-Ribulose 5-phosphate 5.3.1.6
19 6-Phospho-D-gluconate + NADP+ <=> D-Ribulose 5-phosphate +

CO2 + NADPH
1.1.1.44

20 D-Ribulose 5-phosphate <=> D-Xylulose 5-phosphate 5.1.3.1
21 Sedoheptulose 7-phosphate + (2R)-2-Hydroxy-3-(phosphonooxy)-

propanal <=> D-Ribose 5-phosphate + D-Xylulose 5-phosphate
2.2.1.1

22 Sedoheptulose 7-phosphate + (2R)-2-Hydroxy-3-(phosphonooxy)-
propanal <=> D-Erythrose 4-phosphate + D-Fructose 6-phosphate

2.2.1.2

23 beta-D-Fructose 6-phosphate + (2R)-2-Hydroxy-3-(phosphonooxy)-
propanal <=> D-Erythrose 4-phosphate + D-Xylulose 5-phosphate

2.2.1.1

24 D-Glucono-1,5-lactone 6-phosphate + H2O <=> 6-Phospho-D-
gluconate + H+

3.1.1.31

Tricarboxylic Acid Cycle

25 Isocitrate + NADP+ <=> 2-Oxoglutarate + CO2 + NADPH 1.1.1.42
26 (S)-Malate + NAD+ <=> Oxaloacetate + NADH + H+ 1.1.1.37
27 Citrate + CoA + H+ <=> Acetyl-CoA + H2O + Oxaloacetate 2.3.3.1
28 ATP + Succinate + CoA <=> ADP + Orthophosphate + Succinyl-CoA 6.2.1.5
29 Succinate + FAD <=> FADH2 + Fumarate 1.3.99.1
30 (S)-Malate <=> Fumarate + H2O 4.2.1.2
31 Citrate <=> Isocitrate 4.2.1.3
32 Dihydrolipoamide + NAD+ <=> Lipoamide + NADH + H+ 1.8.1.4

Continued on next page . . .
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33 2-Oxoglutarate + Lipoamide + H+ <=> S-Succinyldihydrolipoamide +

CO2
1.2.4.2

34 Succinyl-CoA + Dihydrolipoamide <=> CoA + S-
Succinyldihydrolipoamide

2.3.1.61

Glyoxylate Shunt

35 (S)-Malate + CoA + H+ <=> Acetyl-CoA + H2O + Glyoxylate 2.3.3.9
36 Isocitrate <=> Succinate + Glyoxylate 4.1.3.1
Pyruvate Metabolism

37 ATP + Pyruvate <=> ADP + Phosphoenolpyruvate + H+ 2.7.1.40
38 Pyruvate + CoA + NAD+ <=> Acetyl-CoA + CO2 + NADH 2.3.1.12

1.8.1.4
1.2.4.1

39 Oxaloacetate + H+ <=> Pyruvate + CO2 4.1.1.3
40 Acetyl-CoA + Orthophosphate <=> CoA + Acetyl phosphate 2.3.1.8
41 ATP + Acetate <=> ADP + Acetyl phosphate 2.7.2.1
42 Pyrophosphate + Acetate <=> Orthophosphate + Acetyl phosphate 2.7.2.12
43 Orthophosphate + Oxaloacetate + H+ <=> H2O + Phosphoenolpyru-

vate + CO2
4.1.1.31

44 (S)-Lactate + NAD+ <=> Pyruvate + NADH + H+ 1.1.1.27
Alanine Biosynthesis

45 L-Alanine + 2-Oxoglutarate <=> Pyruvate + L-Glutamate 2.6.1.2
Arginine Biosynthesis

46 2 ATP + NH3 + CO2 + H2O <=> 2 ADP + Orthophosphate + Car-
bamoyl phosphate + 3 H+

6.3.4.16

47 N-(L-Arginino)succinate <=> Fumarate + L-Arginine 4.3.2.1
48 Carbamoyl phosphate + L-Ornithine <=> Orthophosphate + L-

Citrulline + H+
2.1.3.3

49 ATP + L-Citrulline + L-Aspartate <=> AMP + Pyrophosphate + N-
(L-Arginino)succinate + H+

6.3.4.5

Asparagine/Aspartate Metabolism

50 L-Aspartate + 2-Oxoglutarate <=> Oxaloacetate + L-Glutamate 2.6.1.1
Continued on next page . . .
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51 ATP + L-Aspartate + L-Glutamine + H2O <=> AMP + Pyrophos-

phate + L-Asparagine + L-Glutamate + H+
6.3.5.4

Cysteine Biosynthesis

52 L-Serine + Acetyl-CoA <=> O-Acetyl-L-serine + CoA 2.3.1.30
53 O-Acetyl-L-serine + Hydrogen sul�de <=> L-Cysteine + Acetate + H+ 2.5.1.47
Glutamine/Glutamate Metabolism

54 2 L-Glutamate + NADP+ <=> L-Glutamine + 2-Oxoglutarate +
NADPH + H+

1.4.1.13

55 L-Glutamate + NADP++H2O <=> 2-Oxoglutarate + NH3 + NADPH
+ H+

1.4.1.4

56 ATP + L-Glutamate + NH3 <=> ADP + Orthophosphate + L-
Glutamine + H+

6.3.1.2

57 L-Glutamine + H2O <=> L-Glutamate + NH3 3.5.1.2
Glycine Biosynthesis

58 Glycine + Tetrahydrofolate + NAD+ <=> 5,10-
Methylenetetrahydrofolate + NH3 + CO2 + NADH

2.1.2.10

Histidine Biosynthesis

59 Phosphoribosyl-ATP + Pyrophosphate <=> ATP + 5-Phospho-alpha-
D-ribose 1-diphosphate

2.4.2.17

60 L-Histidinol + 2 NAD+ + H2O <=> L-Histidine + 2 NADH + 3 H+ 1.1.1.23
61 L-Histidinol phosphate + H2O <=> L-Histidinol + Orthophosphate 3.1.3.15
62 L-Histidinol phosphate + 2-Oxoglutarate <=> 3-(Imidazol-4-yl)-2-

oxopropyl phosphate + L-Glutamate
2.6.1.9

63 D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate <=> 3-(Imidazol-4-yl)-
2-oxopropyl phosphate + H2O

4.2.1.19

64 Phosphoribosyl-ATP + H2O <=> Phosphoribosyl-AMP + Pyrophos-
phate + H+

3.6.1.31

65 Phosphoribosyl-AMP + H2O + H+ <=> 5-(5-Phospho-D-
ribosylaminoformimino)-1-(5-phosphoribosyl)-imidazole-4-carboxamide

3.5.4.19

Continued on next page . . .

135



APPENDIX A. REACTIONS AND METABOLITES

Table: A.1 . . . Continued from previous page
66 1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide + L-Glutamate

+ D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate + H+ <=>
N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-(5�-phospho-D-
ribosyl)-4-imidazolecarboxamide + L-Glutamine

2.4.2.-

67 5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-
imidazole-4-carboxamide <=> N-(5'-Phospho-D-1'-
ribulosylformimino)-5-amino-1-(5�-phospho-D-ribosyl)-4-
imidazolecarboxamide

5.3.1.16

Isoleucine Biosynthesis

68 L-Isoleucine + 2-Oxoglutarate <=> (R)-2-Oxo-3-methylpentanoate +
L-Glutamate

2.6.1.42

69 (R)-2,3-Dihydroxy-3-methylpentanoate + NADP+ <=> (S)-2-Hydroxy-
3-methyl-3-oxopentanoate + NADPH + H+

1.1.1.86

70 (S)-2-Aceto-2-hydroxybutanoate <=> (S)-2-Hydroxy-3-methyl-3-
oxopentanoate

1.1.1.86

71 (R)-2,3-Dihydroxy-3-methylpentanoate <=> (R)-2-Oxo-3-
methylpentanoate + H2O

4.2.1.9

72 2-Oxobutanoate + Pyruvate + H+ <=> (S)-2-Aceto-2-
hydroxybutanoate + CO2

2.2.1.6

Leucine Biosynthesis

73 2-Acetolactate + CO2 <=> 2 Pyruvate + H+ 2.2.1.6
74 L-Leucine + 2-Oxoglutarate <=> 4-Methyl-2-oxopentanoate + L-

Glutamate
2.6.1.42

75 2,3-Dihydroxy-3-methylbutanoate <=> 3-Methyl-2-oxobutanoate +
H2O

4.2.1.9

76 2-Isopropylmalate + CoA + H+ <=> Acetyl-CoA + 3-Methyl-2-
oxobutanoate + H2O

2.3.3.13

77 4-Methyl-2-oxopentanoate + CO2 <=> 3-Carboxy-4-methyl-2-
oxopentanoate + H+

0.0.0.0

78 2-Acetolactate + NADPH + H+ <=> 2,3-Dihydroxy-3-
methylbutanoate + NADP+

1.1.1.86

Continued on next page . . .
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79 2-Isopropylmalate <=> 2-Isopropylmaleate + H2O 4.2.1.33
80 3-Isopropylmalate <=> 2-Isopropylmaleate + H2O 4.2.1.33
81 3-Isopropylmalate + NAD+ <=> 3-Carboxy-4-methyl-2-oxopentanoate

+ NADH + H+
1.1.1.85

Lysine Biosynthesis

82 meso-2,6-Diaminoheptanedioate + H+ <=> L-Lysine + CO2 4.1.1.20
83 ATP + L-Aspartate <=> ADP + 4-Phospho-L-aspartate 2.7.2.4
84 L-Homoserine + NADP+ <=> L-Aspartate 4-semialdehyde + NADPH

+ H+
1.1.1.3

85 L-Aspartate 4-semialdehyde + Orthophosphate + NADP+ <=> 4-
Phospho-L-aspartate + NADPH + H+

1.2.1.11

86 L-Aspartate 4-semialdehyde + Pyruvate <=> 2,3-Dihydrodipicolinate
+ 2 H2O + H+

4.2.1.52

87 N-Succinyl-LL-2,6-diaminoheptanedioate + H2O <=> Succinate + LL-
2,6-Diaminoheptanedioate

3.5.1.18

88 LL-2,6-Diaminoheptanedioate <=> meso-2,6-Diaminoheptanedioate 5.1.1.7
89 2,3,4,5-Tetrahydrodipicolinate + NADP+ <=> 2,3-Dihydrodipicolinate

+ NADPH + H+
1.3.1.26

90 Succinyl-CoA + 2,3,4,5-Tetrahydrodipicolinate + H2O <=> CoA + N-
Succinyl-2-L-amino-6-oxoheptanedioate

2.3.1.117

91 N-Succinyl-LL-2,6-diaminoheptanedioate + 2-Oxoglutarate <=> N-
Succinyl-2-L-amino-6-oxoheptanedioate + L-Glutamate

2.6.1.17

Methionine Biosynthesis

92 5-Methyltetrahydrofolate + L-Homocysteine <=> Tetrahydrofolate +
L-Methionine

2.1.1.13

93 L-Cystathionine + H2O <=> L-Homocysteine + NH3 + Pyruvate 4.4.1.8
94 Acetyl-CoA + L-Homoserine <=> CoA + O-Acetyl-L-homoserine 2.3.1.31
95 O-Acetyl-L-homoserine + L-Cysteine <=> L-Cystathionine + Acetate

+ H+
2.5.1.49

Ornithine Biosynthesis

96 Acetyl-CoA + L-Glutamate <=> CoA + N-Acetyl-L-glutamate + H+ 2.3.1.1
Continued on next page . . .
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97 N2-Acetyl-L-ornithine + H2O <=> Acetate + L-Ornithine 3.5.1.14
98 L-Ornithine <=> L-Proline + NH3 4.3.1.12
99 N2-Acetyl-L-ornithine + 2-Oxoglutarate <=> N-Acetyl-L-glutamate 5-

semialdehyde + L-Glutamate
2.6.1.11

100 ATP + N-Acetyl-L-glutamate <=> ADP + N-Acetyl-L-glutamate 5-
phosphate

2.7.2.8

101 N-Acetyl-L-glutamate 5-semialdehyde + Orthophosphate + NADP+
<=> N-Acetyl-L-glutamate 5-phosphate + NADPH + H+

1.2.1.38

Phenylalanine Biosynthesis

102 L-Phenylalanine + 2-Oxoglutarate <=> Phenylpyruvate + L-Glutamate 2.6.1.9
2.6.1.1

103 Prephenate + H+ <=> Phenylpyruvate + H2O + CO2 4.2.1.51
104 5-O-(1-Carboxyvinyl)-3-phosphoshikimate <=> Chorismate + Or-

thophosphate
4.2.3.5

105 Chorismate <=> Prephenate 5.4.99.5
106 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate + Orthophos-

phate <=> Phosphoenolpyruvate + D-Erythrose 4-phosphate + H2O
2.5.1.54

107 ATP + Shikimate <=> ADP + Shikimate 3-phosphate + H+ 2.7.1.71
108 Shikimate + NADP+ <=> 3-Dehydroshikimate + NADPH + H+ 1.1.1.25
109 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate <=> 3-

Dehydroquinate + Orthophosphate
4.2.3.4

110 3-Dehydroquinate <=> 3-Dehydroshikimate + H2O 4.2.1.10
4.2.1.11

111 Phosphoenolpyruvate + Shikimate 3-phosphate <=> Orthophosphate
+ 5-O-(1-Carboxyvinyl)-3-phosphoshikimate

2.5.1.19

Proline Biosynthesis

112 ATP + L-Glutamate <=> ADP + L-Glutamyl 5-phosphate 2.7.2.11
113 L-Proline + NADP+ <=> (S)-1-Pyrroline-5-carboxylate + NADPH +

H+
1.5.1.2

114 L-Glutamate 5-semialdehyde + Orthophosphate + NADP+ <=> L-
Glutamyl 5-phosphate + NADPH + H+

1.2.1.41

Continued on next page . . .
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115 L-Glutamate 5-semialdehyde <=> (S)-1-Pyrroline-5-carboxylate + H2O 0.0.0.0
Serine Biosynthesis

116 O-Phospho-L-serine + H2O <=> L-Serine + Orthophosphate 3.1.3.3
117 3-Phospho-D-glycerate + NAD+ <=> 3-Phosphonooxypyruvate +

NADH + H+
1.1.1.95

118 O-Phospho-L-serine + 2-Oxoglutarate <=> 3-Phosphonooxypyruvate +
L-Glutamate

2.6.1.52

Threonine Biosynthesis

119 L-Threonine <=> 2-Oxobutanoate + NH3 4.3.1.19
120 O-Phospho-L-homoserine + H2O <=> L-Threonine + Orthophosphate 4.2.3.1
121 ATP + L-Homoserine <=> ADP + O-Phospho-L-homoserine + H+ 2.7.1.39
Tryptophane Biosynthesis

122 Chorismate + L-Glutamine <=> Anthranilate + Pyruvate + L-
Glutamate + H+

4.1.3.27

123 N-(5-Phospho-D-ribosyl)anthranilate + Pyrophosphate <=> Anthrani-
late + 5-Phospho-alpha-D-ribose 1-diphosphate

2.4.2.18

124 L-Serine + Indoleglycerol phosphate <=> L-Tryptophan + Glyceralde-
hyde 3-phosphate + H2O

4.2.1.20

125 1-(2-Carboxyphenylamino)-1'-deoxy-D-ribulose 5'-phosphate + H+
<=> Indoleglycerol phosphate + CO2 + H2O

4.1.1.48

126 N-(5-Phospho-D-ribosyl)anthranilate <=> 1-(2-Carboxyphenylamino)-
1'-deoxy-D-ribulose 5'-phosphate

5.3.1.24

Tyrosine Biosynthesis

127 L-Tyrosine + 2-Oxoglutarate <=> 3-(4-Hydroxyphenyl)pyruvate + L-
Glutamate

2.6.1.9
2.6.1.1

128 Prephenate + NAD+ <=> 3-(4-Hydroxyphenyl)pyruvate + CO2 +
NADH

1.3.1.12

Valine Biosynthesis

129 L-Valine + 2-Oxoglutarate <=> 3-Methyl-2-oxobutanoate + L-
Glutamate

2.6.1.42

Continued on next page . . .
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Fatty Acid Production

130 7 Acetyl-CoA + 12 NADPH + 6 ATP + 5 H+ + H2O <=> 7 CoA +
Myristic Acid + 12 NADP+ + 6 ADP + 6 Orthophosphate

2.3.1.85

131 7 Acetyl-CoA + 11 NADPH + 6 ATP + 4 H+ + H2O <=> 7 CoA +
Myristoleic Acid + 11 NADP+ + 6 ADP + 6 Orthophosphate

2.3.1.85

132 8.2 Acetyl-CoA + 14 NADPH + 7.2 ATP + 6 H+ + H2O <=> 8.2 CoA
+ Fatty Acid + 14 NADP+ + 7.2 ADP + 7.2 Orthophosphate

2.3.1.85

Other Biomass Components

133 sn-Glycerol 3-phosphate + NAD+ <=> Glycerone phosphate + NADH
+ H+

1.1.1.94

134 ATP + Glycerol <=> ADP + sn-Glycerol 3-phosphate 2.7.1.30
135 Glycerol + NADP+ <=> D-Glyceraldehyde + NADPH + H+ 1.1.1.1

1.1.1.2
136 ATP + D-Glycerate <=> ADP + 3-Phospho-D-glycerate 2.7.1.31
137 D-Glyceraldehyde + NAD+ + H2O <=> D-Glycerate + NADH + 2

H+
1.2.1.3

138 3-Deoxy-D-manno-octulosonate 8-phosphate + H2O <=> 3-Deoxy-D-
manno-octulosonate + Orthophosphate

3.1.3.45

139 CTP + 3-Deoxy-D-manno-octulosonate <=> Pyrophosphate + CMP-
3-deoxy-D-manno-octulosonate

2.7.7.38

140 ATP + NADH + H+ <=> dATP + NAD+ + H2O 1.6.1.2
1.17.4.2
1.8.1.9

141 GTP + NADPH + H+ <=> dGTP + NADP+ + H2O 1.6.1.2
1.17.4.2
1.8.1.9

142 CTP + NADPH + H+ <=> dCTP + NADP+ + H2O 1.6.1.2
1.17.4.2
1.8.1.9

143 3-Deoxy-D-manno-octulosonate 8-phosphate + Orthophosphate <=>
Phosphoenolpyruvate + D-Ribulose 5-phosphate + H2O

5.3.1.13
2.5.1.55

Continued on next page . . .
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144 Sedoheptulose 7-phosphate + ATP + H+ <=> ADP-D-glycero-D-

manno-heptose + Pyrophosphate
0.0.0.0

Biomass Production

145 41.139 H2O + 41.139 ATP + 0.58 Glycine + 0.25 L-Glutamate
+ 0.25 L-Glutamine + 0.17 L-Phenylalanine + 0.13 L-Tyrosine +
0.2 L-Serine + 0.05 L-Tryptophan + 0.22 L-Aspartate + 0.22 L-
Asparagine + 0.32 L-Lysine + 0.09 L-Cysteine + 0.14 L-Methionine
+ 0.24 L-Threonine + 0.27 L-Isoleucine + 0.2 L-Proline + 0.28
L-Arginine + 0.48 L-Alanine + 0.4 L-Valine + 0.42 L-Leucine +
0.09 L-Histidine + 0.185 ATP + 0.2 GTP + 0.13 UTP + 0.12
CTP + 0.02 dATP + 0.02 dGTP + 0.02 dCTP + 0.02 dTTP +
0.129 sn-Glycerol 3-phosphate + 0.129 L-Serine + 0.258 Fatty Acid
+ 0.0157 UDPglucose + 0.0235 Myristic Acid + 0.0235 Myristoleic
Acid + 0.0235 CMP-3-deoxy-D-manno-octulosonate + 0.0235 ADP-
D-glycero-D-manno-heptose + 0.0157 UDP-N-acetyl-D-glucosamine +
0.0276 UDP-N-acetyl-D-glucosamine + 0.0276 UDP-N-acetylmuramate
+ 0.0552 L-Alanine + 0.0276 meso-2,6-Diaminoheptanedioate + 0.0276
L-Glutamate + 0.154 UDPglucose + 0.048 L-Serine + 0.0593 L-
Ornithine <=> 1.0 Biomass + 41.139 ADP + 41.139 Orthophosphate
+ 41.139 H+

0.0.0.0

Sugars Metabolism

146 Maltose <=> alpha,alpha-Trehalose 5.4.99.16
147 (1,4-alpha-D-Glucosyl)n + Orthophosphate <=> D-Glucose 1-

phosphate
2.4.1.1

148 (1,4-alpha-D-Glucosyl)n + alpha-D-Glucose <=> Maltose 2.4.1.25
Trehalose Biosynthesis

149 UTP + D-Glucose 1-phosphate + H+ <=> Pyrophosphate + UDPglu-
cose

2.7.7.9

150 UDPglucose + D-Glucose 6-phosphate <=> UDP + alpha,alpha'-
Trehalose 6-phosphate + H+

2.4.1.15

Continued on next page . . .
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151 alpha,alpha'-Trehalose 6-phosphate + H2O <=> alpha,alpha-Trehalose

+ Orthophosphate
3.1.3.12

Aminosugars Metabolism

152 UTP + N-Acetyl-D-glucosamine 1-phosphate + H+ <=> Pyrophos-
phate + UDP-N-acetyl-D-glucosamine

2.7.7.23

153 Phosphoenolpyruvate + UDP-N-acetyl-D-glucosamine <=> UDP-N-
acetyl-3-(1-carboxyvinyl)-D-glucosamine + Orthophosphate

2.5.1.7

154 L-Glutamine + D-Fructose 6-phosphate <=> L-Glutamate + D-
Glucosamine 6-phosphate

2.6.1.16

155 D-Glucosamine 1-phosphate <=> D-Glucosamine 6-phosphate 5.4.2.2
156 UDP-N-acetylmuramate + NADP+ <=> UDP-N-acetyl-3-(1-

carboxyvinyl)-D-glucosamine + NADPH + H+
1.1.1.158

157 Acetyl-CoA + D-Glucosamine 1-phosphate <=> CoA + N-Acetyl-D-
glucosamine 1-phosphate + H+

2.3.1.157

Purine Metabolism

158 ATP + H2O <=> AMP + Pyrophosphate + H+ 3.6.1.8
159 ATP + NAD+ <=> ADP + NADP+ + H+ 2.7.1.23
160 ATP + AMP <=> ADP + ADP 2.7.4.3
161 ATP + GDP <=> ADP + GTP 2.7.4.6
162 ATP + GMP <=> ADP + GDP 2.7.4.8
163 5-Phosphoribosylamine + Pyrophosphate + L-Glutamate <=> L-

Glutamine + 5-Phospho-alpha-D-ribose 1-diphosphate + H2O
2.4.2.14

164 N6-(1,2-Dicarboxyethyl)-AMP <=> Fumarate + AMP 4.3.2.2
165 IMP + H2O <=> 1-(5'-Phosphoribosyl)-5-formamido-4-

imidazolecarboxamide
3.5.4.10

166 IMP + NAD+ + H2O <=> Xanthosine 5'-phosphate + NADH + H+ 1.1.1.205
167 GTP + IMP + L-Aspartate <=> GDP + Orthophosphate + N6-(1,2-

Dicarboxyethyl)-AMP + 2 H+
6.3.4.4

168 ATP + Xanthosine 5'-phosphate + L-Glutamine + H2O <=> AMP +
Pyrophosphate + GMP + L-Glutamate + 2 H+

6.3.5.2

Continued on next page . . .
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169 ATP + 5-Phosphoribosylamine + Glycine <=> ADP + Orthophosphate

+ 5'-Phosphoribosylglycinamide + H+
6.3.4.13

170 ATP + 2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine <=> ADP
+ Orthophosphate + Aminoimidazole ribotide + 2 H+

6.3.3.1

171 1-(5-Phospho-D-ribosyl)-5-amino-4-imidazolecarboxylate + H+ <=>
Aminoimidazole ribotide + CO2

4.1.1.21

172 10-Formyltetrahydrofolate + 5'-Phosphoribosylglycinamide <=>
Tetrahydrofolate + 5'-Phosphoribosyl-N-formylglycinamide + H+

2.1.2.2

173 ATP + 5'-Phosphoribosyl-N-formylglycinamide + L-Glutamine +
H2O <=> ADP + Orthophosphate + 2-(Formamido)-N1-(5'-
phosphoribosyl)acetamidine + L-Glutamate + H+

6.3.5.3

174 1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-
imidazole <=> Fumarate + 1-(5'-Phosphoribosyl)-5-amino-4-
imidazolecarboxamide

4.3.2.2

175 10-Formyltetrahydrofolate + 1-(5'-Phosphoribosyl)-5-amino-4-
imidazolecarboxamide <=> Tetrahydrofolate + 1-(5'-Phosphoribosyl)-
5-formamido-4-imidazolecarboxamide

2.1.2.3

176 ATP + 1-(5-Phospho-D-ribosyl)-5-amino-4-imidazolecarboxylate + L-
Aspartate <=> ADP + Orthophosphate + 1-(5'-Phosphoribosyl)-5-
amino-4-(N-succinocarboxamide)-imidazole + H+

6.3.2.6

Pyrimidine Metabolism

177 ATP + UDP <=> ADP + UTP 2.7.4.6
178 ATP + UMP <=> ADP + UDP 2.7.4.14
179 ATP + CDP <=> ADP + CTP 2.7.4.6
180 ATP + UTP + L-Glutamine + H2O <=> ADP + Orthophosphate +

CTP + L-Glutamate + 2 H+
6.3.4.2

181 Orotidine 5'-phosphate + H+ <=> UMP + CO2 4.1.1.23
182 Carbamoyl phosphate + L-Aspartate <=> Orthophosphate + N-

Carbamoyl-L-aspartate + H+
2.1.3.2

183 (S)-Dihydroorotate + NAD+ <=> Orotate + H+ + NADH 1.3.99.11
Continued on next page . . .
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184 Orotidine 5'-phosphate + Pyrophosphate <=> Orotate + 5-Phospho-

alpha-D-ribose 1-diphosphate
2.4.2.10

185 (S)-Dihydroorotate + H2O <=> N-Carbamoyl-L-aspartate + H+ 3.5.2.3
186 ATP + dTDP <=> ADP + dTTP 2.7.4.6
187 ATP + dTMP <=> ADP + dTDP 2.7.4.9
188 ATP + dUMP <=> ADP + dUDP 2.7.4.9
189 UDP + NADPH + H+ <=> dUDP + NADP+ + H2O 1.6.1.2

1.17.4.2
1.8.1.9

Tetrahydrofolate Metabolism

190 Tetrahydrofolate + NADP+ <=> Dihydrofolate + NADPH + H+ 1.5.1.3
191 5,10-Methylenetetrahydrofolate + Glycine + H2O <=> Tetrahydrofo-

late + L-Serine
2.1.2.1

192 5,10-Methylenetetrahydrofolate + NADP+ <=> 5,10-
Methenyltetrahydrofolate + NADPH

1.5.1.5

193 5-Methyltetrahydrofolate + NAD+ <=> 5,10-
Methylenetetrahydrofolate + NADH + H+

1.7.99.5

194 5,10-Methenyltetrahydrofolate + H2O <=> 10-Formyltetrahydrofolate
+ H+

3.5.4.9

195 dUMP + 5,10-Methylenetetrahydrofolate <=> Dihydrofolate + dTMP 2.1.1.45
Sulfur metabolism

196 Sulfate + 4 NADPH + 6 H+ <=> Hydrogen sul�de + 4 NADP+ + 4
H2O

1.8.1.2
1.8.2.1
1.10.2.2
1.6.5.3
1.6.1.1

Respiratory Reactions

197 2 NADH + 4 ADP + 4 Orthophosphate + Oxygen + 6 H+ <=> 2
NAD+ + 4 ATP + 6 H2O

1.6.5.3
1.10.2.2
1.9.3.1
3.6.1.5

Continued on next page . . .
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198 2 FADH2 + 2 ADP + 2 Orthophosphate + Oxygen + 2 H+ <=> 2

FAD + 2 ATP + 4 H2O
1.3.5.1
1.3.99.1
1.10.2.2
1.9.3.1
3.6.1.5

Other Reactions

199 Pyrophosphate + H2O <=> 2 Orthophosphate + H+ 3.6.1.1
200 NADPH + NAD+ <=> NADP+ + NADH 1.6.1.1
201 NADP+ + H2O <=> Orthophosphate + NAD+ 3.1.3.-
Isomeric Conversions

202 Maltose <=> Maltose (external) 0.0.0.0
203 (2R)-2-Hydroxy-3-(phosphonooxy)-propanal <=> Glyceraldehyde 3-

phosphate
0.0.0.0

204 D-Glucose <=> alpha-D-Glucose 0.0.0.0
205 D-Fructose 6-phosphate <=> beta-D-Fructose 6-phosphate 0.0.0.0
206 D-Glucose 6-phosphate <=> alpha-D-Glucose 6-phosphate 0.0.0.0
207 beta-D-Fructose 1,6-bisphosphate <=> D-Fructose 1,6-bisphosphate 0.0.0.0
Membrane Transport Reactions

208 glutamate <=> glutamate (external) 0.0.0.0
209 lactate <=> lactate (external) 0.0.0.0
210 trehalose <=> trehalose (external) 0.0.0.0
211 lysine <=> lysine (external) 0.0.0.0
212 glucose <=> glucose (external) 0.0.0.0
213 phosphate <=> phosphate (external) 0.0.0.0
214 CO2 <=> CO2 (external) 0.0.0.0
215 H2O <=> H2O (external) 0.0.0.0
216 O2 <=> O2 (external) 0.0.0.0
217 L-Phenylalanine <=> L-Phenylalanin (external) 0.0.0.0
218 D-Fructose <=> D-Fructose (external) 0.0.0.0
219 H+ <=> H+ (external) 0.0.0.0
220 Saccharose <=> Saccharose (external) 0.0.0.0

Continued on next page . . .
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221 NH3 <=> NH3 (external) 0.0.0.0
222 Biomass <=> Biomass (external) 0.0.0.0
223 Sulfate <=> Sulfate (external) 0.0.0.0
224 Acetic acid <=> Acetic acid (external) 0.0.0.0
225 L-Gln <=> L-Gln (external) 0.0.0.0
226 external H2O <=> 0.0.0.0
227 external Oxygen <=> 0.0.0.0
228 external phosphate <=> 0.0.0.0
229 external CO2 <=> 0.0.0.0
230 external NH3 <=> 0.0.0.0
231 external glutamate <=> 0.0.0.0
232 external glucose <=> 0.0.0.0
233 external acetic acid <=> 0.0.0.0
234 external lysine <=> 0.0.0.0
235 external sulfate <=> 0.0.0.0
236 external glutamine <=> 0.0.0.0
237 external L-Phenylalanine <=> 0.0.0.0
238 external H+ <=> 0.0.0.0
239 external sucrose <=> 0.0.0.0
240 external fructose <=> 0.0.0.0
241 external lactate <=> 0.0.0.0
242 external maltose <=> 0.0.0.0
243 external trehalose <=> 0.0.0.0
244 external biomass <=> 0.0.0.0
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Table: A.2: Classi�cation of the Networks Metabolites
The classi�cation of the networks metabolites into di�erent pathways is not
unambiguous. It is meant to be a hint.

Glycolysis/Glyconeogenesis

1 (2R)-2-Hydroxy-3-(phosphonooxy)-propanal
2 2-Phospho-D-glycerate
3 3-Phospho-D-glycerate
4 3-Phospho-D-glyceroyl phosphate
5 D-Fructose
6 D-Fructose 1,6-bisphosphate
7 D-Fructose 1-phosphate
8 D-Fructose 6-phosphate
9 D-Glucose
10 D-Glucose 1-phosphate
11 D-Glucose 6-phosphate
12 Glycerone phosphate
13 Sucrose
14 alpha-D-Glucose 6-phosphate
15 beta-D-Fructose 1,6-bisphosphate
16 beta-D-Fructose 6-phosphate
Pentose Phosphate Pathway

17 5-Phospho-alpha-D-ribose 1-diphosphate
18 6-Phospho-D-gluconate
19 D-Erythrose 4-phosphate
20 D-Glucono-1,5-lactone 6-phosphate
21 D-Ribose 5-phosphate
22 D-Ribulose 5-phosphate
23 D-Xylulose 5-phosphate
24 Sedoheptulose 7-phosphate

Continued on next page . . .
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Tricarboxylic Acid Cycle

25 (S)-Malate
26 2-Oxoglutarate
27 Citrate
28 CoA
29 Dihydrolipoamide
30 FAD
31 FADH2
32 Fumarate
33 Isocitrate
34 Lipoamide
35 Oxaloacetate
36 S-Succinyldihydrolipoamide
37 Succinate
38 Succinyl-CoA
Glyoxylate Shunt

39 Glyoxylate
Pyruvate Metabolism

40 (S)-Lactate
41 Acetate
42 Acetyl phosphate
43 CO2
44 Phosphoenolpyruvate
45 Pyruvate
Alanine Biosynthesis

46 L-Alanine
Arginine Biosynthesis

47 Carbamoyl phosphate
48 L-Arginine
49 L-Citrulline
50 N-(L-Arginino)succinate

Continued on next page . . .
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Asparagine/Aspartate Metabolism

51 L-Asparagine
52 L-Aspartate
Cysteine Biosynthesis

53 Hydrogen sul�de
54 L-Cysteine
55 L-Serine
56 O-Acetyl-L-serine
Glutamine/Glutamate Metabolism

57 L-Glutamate
58 L-Glutamine
59 NH3
Glycine Biosynthesis

60 Glycine
Histidine Biosynthesis

61 3-(Imidazol-4-yl)-2-oxopropyl phosphate
62 5-(5-Phospho-D-ribosylaminoformimino)-1-(5-phosphoribosyl)-

imidazole-4-carboxamide
63 D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate
64 L-Histidine
65 L-Histidinol
66 L-Histidinol phosphate
67 N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-(5�-phospho-D-

ribosyl)-4-imidazolecarboxamide
68 Phosphoribosyl-AMP
69 Phosphoribosyl-ATP
Isoleucine Biosynthesis

70 (R)-2,3-Dihydroxy-3-methylpentanoate
71 (R)-2-Oxo-3-methylpentanoate
72 (S)-2-Aceto-2-hydroxybutanoate
73 (S)-2-Hydroxy-3-methyl-3-oxopentanoate
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74 2-Oxobutanoate
75 L-Isoleucine
Leucine Biosynthesis

76 2,3-Dihydroxy-3-methylbutanoate
77 2-Acetolactate
78 2-Isopropylmalate
79 2-Isopropylmaleate
80 3-Carboxy-4-methyl-2-oxopentanoate
81 3-Isopropylmalate
82 3-Methyl-2-oxobutanoate
83 4-Methyl-2-oxopentanoate
84 L-Leucine
Lysine Biosynthesis

85 2,3,4,5-Tetrahydrodipicolinate
86 2,3-Dihydrodipicolinate
87 4-Phospho-L-aspartate
88 L-Aspartate 4-semialdehyde
89 L-Homoserine
90 L-Lysine
91 LL-2,6-Diaminoheptanedioate
92 N-Succinyl-2-L-amino-6-oxoheptanedioate
93 N-Succinyl-LL-2,6-diaminoheptanedioate
94 NADP+
95 NADPH
96 meso-2,6-Diaminoheptanedioate
Methionine Biosynthesis

97 5-Methyltetrahydrofolate
98 L-Cystathionine
99 L-Homocysteine
100 L-Methionine
101 O-Acetyl-L-homoserine
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Ornithine Biosynthesis

102 L-Ornithine
103 L-Proline
104 N-Acetyl-L-glutamate
105 N-Acetyl-L-glutamate 5-phosphate
106 N-Acetyl-L-glutamate 5-semialdehyde
107 N2-Acetyl-L-ornithine
Phenylalanine Biosynthesis

108 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate
109 3-Dehydroquinate
110 3-Dehydroshikimate
111 5-O-(1-Carboxyvinyl)-3-phosphoshikimate
112 Chorismate
113 L-Phenylalanine
114 Phenylpyruvate
115 Prephenate
116 Shikimate
117 Shikimate 3-phosphate
Proline Biosynthesis

118 (S)-1-Pyrroline-5-carboxylate
119 L-Glutamate 5-semialdehyde
120 L-Glutamyl 5-phosphate
Serine Biosynthesis

121 3-Phosphonooxypyruvate
122 O-Phospho-L-serine
Threonine Biosynthesis

123 L-Threonine
124 O-Phospho-L-homoserine
Tryptophane Biosynthesis

125 1-(2-Carboxyphenylamino)-1'-deoxy-D-ribulose 5'-phosphate
126 Anthranilate
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127 Glyceraldehyde 3-phosphate
128 Indoleglycerol phosphate
129 L-Tryptophan
130 N-(5-Phospho-D-ribosyl)anthranilate
Tyrosine Biosynthesis

131 3-(4-Hydroxyphenyl)pyruvate
132 L-Tyrosine
Valine Biosynthesis

133 L-Valine
Fatty Acid Production

134 Acetyl-CoA
135 Fatty Acid
136 Myristic Acid
137 Myristoleic Acid
Other Biomass Components

138 3-Deoxy-D-manno-octulosonate
139 3-Deoxy-D-manno-octulosonate 8-phosphate
140 ADP-D-glycero-D-manno-heptose
141 CMP-3-deoxy-D-manno-octulosonate
142 CTP
143 D-Glyceraldehyde
144 D-Glycerate
145 Glycerol
146 H2O
147 NAD+
148 NADH
149 dATP
150 dCTP
151 dGTP
152 sn-Glycerol 3-phosphate
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Biomass Production

153 Biomass
Sugars Metabolism

154 (1,4-alpha-D-Glucosyl)n
155 Maltose
156 alpha,alpha-Trehalose
157 alpha-D-Glucose
Trehalose Biosynthesis

158 UDPglucose
159 alpha,alpha'-Trehalose 6-phosphate
Aminosugars Metabolism

160 D-Glucosamine 1-phosphate
161 D-Glucosamine 6-phosphate
162 N-Acetyl-D-glucosamine 1-phosphate
163 UDP-N-acetyl-3-(1-carboxyvinyl)-D-glucosamine
164 UDP-N-acetyl-D-glucosamine
165 UDP-N-acetylmuramate
Purine Metabolism

166 1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole
167 1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide
168 1-(5'-Phosphoribosyl)-5-formamido-4-imidazolecarboxamide
169 1-(5-Phospho-D-ribosyl)-5-amino-4-imidazolecarboxylate
170 10-Formyltetrahydrofolate
171 2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine
172 5'-Phosphoribosyl-N-formylglycinamide
173 5'-Phosphoribosylglycinamide
174 5-Phosphoribosylamine
175 ADP
176 AMP
177 ATP
178 Aminoimidazole ribotide
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179 GDP
180 GMP
181 GTP
182 H+
183 IMP
184 N6-(1,2-Dicarboxyethyl)-AMP
185 Orthophosphate
186 Pyrophosphate
187 Tetrahydrofolate
188 Xanthosine 5'-phosphate
Pyrimidine Metabolism

189 (S)-Dihydroorotate
190 CDP
191 N-Carbamoyl-L-aspartate
192 Orotate
193 Orotidine 5'-phosphate
194 UDP
195 UMP
196 UTP
197 dTDP
198 dTMP
199 dTTP
200 dUDP
201 dUMP
Tetrahydrofolate Metabolism

202 5,10-Methenyltetrahydrofolate
203 5,10-Methylenetetrahydrofolate
204 Dihydrofolate
Sulfur metabolism

205 Sulfate
Continued on next page . . .
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Respiratory Reactions

206 Oxygen
Membrane Transport Reactions

207 external CO2
208 external H+
209 external H2O
210 external L-Phenylalanine
211 external NH3
212 external Oxygen
213 external acetic acid
214 external biomass
215 external fructose
216 external glucose
217 external glutamate
218 external glutamine
219 external lactate
220 external lysine
221 external maltose
222 external phosphate
223 external sucrose
224 external sulfate
225 external trehalose
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Table: B.1: Enzyme data
All enzymes used in the Corynebacterium glutamicum model, separated into
the categories: expressed, weakly expresses, and non-annotated.
Enzymes expressed (R ≥ 2)

1.1.1.158, 1.1.1.2, 1.1.1.205, 1.1.1.23, 1.1.1.25, 1.1.1.27, 1.1.1.3, 1.1.1.37,
1.1.1.42, 1.1.1.44, 1.1.1.49, 1.1.1.85, 1.1.1.86, 1.1.1.94, 1.1.1.95, 1.10.2.2,
1.2.1.12, 1.2.1.3, 1.2.1.38, 1.2.1.41, 1.2.4.1, 1.2.4.2, 1.3.1.12, 1.3.1.26, 1.3.99.1,
1.4.1.13, 1.4.1.4, 1.5.1.2, 1.5.1.3, 1.5.1.5, 1.6.5.3, 1.7.99.5, 1.8.1.2, 1.8.1.4,
1.9.3.1, 2.1.1.13, 2.1.1.45, 2.1.2.1, 2.1.2.10, 2.1.2.2, 2.1.3.3, 2.2.1.1, 2.2.1.2,
2.2.1.6, 2.3.1.117, 2.3.1.30, 2.3.1.31, 2.3.1.61, 2.3.1.8, 2.3.1.85, 2.3.3.1, 2.3.3.13,
2.3.3.9, 2.4.1.1, 2.4.1.15, 2.4.1.25, 2.4.2.-, 2.4.2.10, 2.4.2.14, 2.4.2.17, 2.4.2.18,
2.5.1.19, 2.5.1.47, 2.5.1.49, 2.5.1.54, 2.5.1.7, 2.6.1.1, 2.6.1.11, 2.6.1.16, 2.6.1.17,
2.6.1.42, 2.6.1.52, 2.6.1.9, 2.7.1.11, 2.7.1.2, 2.7.1.23, 2.7.1.30, 2.7.1.31, 2.7.1.39,
2.7.1.4, 2.7.1.40, 2.7.1.56, 2.7.2.1, 2.7.2.11, 2.7.2.3, 2.7.2.4, 2.7.2.8, 2.7.4.14,
2.7.4.3, 2.7.4.6, 2.7.4.8, 2.7.6.1, 2.7.7.23, 2.7.7.9, 3.1.1.31, 3.1.3.-, 3.1.3.11,
3.1.3.3, 3.2.1.20, 3.5.1.14, 3.5.1.18, 3.5.1.2, 3.5.2.3, 3.5.4.10, 3.5.4.19, 3.6.1.1,
3.6.1.31, 4.1.1.20, 4.1.1.21, 4.1.1.23, 4.1.1.31, 4.1.1.48, 4.1.2.13, 4.1.3.1, 4.1.3.27,
4.2.1.10, 4.2.1.11, 4.2.1.19, 4.2.1.2, 4.2.1.20, 4.2.1.3, 4.2.1.33, 4.2.1.51, 4.2.1.52,
4.2.1.9, 4.2.3.1, 4.2.3.4, 4.3.1.12, 4.3.1.19, 4.3.2.1, 4.3.2.2, 4.4.1.8, 5.1.1.7,
5.1.3.1, 5.3.1.1, 5.3.1.16, 5.3.1.24, 5.3.1.6, 5.3.1.9, 5.4.2.1, 5.4.2.2, 6.2.1.5,
6.3.1.2, 6.3.2.6, 6.3.3.1, 6.3.4.13, 6.3.4.2, 6.3.4.4, 6.3.4.5, 6.3.5.2, 6.3.5.3, 6.3.5.4
Enzymes weakly expressed (R ≤ 2)

1.1.1.1, 1.2.1.11, 1.2.1.59, 2.1.2.3, 2.1.3.2, 2.3.1.12, 2.7.1.71, 2.7.4.9, 3.1.3.12,
4.2.3.5, 5.4.99.16
Enzymes non-annotated

1.3.5.1, 1.3.99.11, 1.6.1.1, 1.6.1.2, 1.8.1.9, 1.17.4.2, 1.8.2.1, 2.3.1.1, 2.3.1.157,
2.5.1.55, 5.3.1.13, 2.6.1.2, 2.7.1.3, 2.7.2.12, 2.7.7.38, 3.1.3.15, 3.1.3.45, 3.5.4.9,
3.6.1.5, 3.6.1.8, 4.1.1.3, 5.4.99.5, 6.3.4.16
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Table: B.2: Gibbs energies of external molecules
∆G0

f values of all metabolites able to cross the cellular membrane; calculated
by Kai Hartmann as described in 2.1.2.1. Since all amino acids are assumed
to form proteins, a correcting summand (18.8 KJ/mol) is added to their ∆G0

f

values, taking the resulting peptid-bonds into account. Water is assumed to
have an extracellular concentration of 55.5 mol/L.
Metabolite ∆G0

f

[ KJ
mol

]
Metabolite ∆G0

f

[ KJ
mol

]
Biomass molecules

ADP-D-glycero- L-Isoleucine -330.1
D-manno-heptose -1051.9 L-Leucine -330.1
ATP -193.3 L-Lysine -336.8
CMP-3-deoxy- L-Methionine -296.3
D-manno-octulosonate -1606.7 L-Ornithine -362.8
CTP -573.2 L-Phenylalanine -194.2
dATP -24.7 L-Proline -285.0
dCTP -404.6 L-Serine -498.8
dGTP -202.1 L-Threonine -504.2
dTTP -573.2 L-Tryptophan -95.8
Fatty Acid -366.9 L-Tyrosine -356.1
Glycine -356.1 L-Valine -337.3
GTP -370.7 meso-2,6-
L-Alanine -350.2 Diaminoheptanedioate -684.1

L-Arginine -364.5 Myristic Acid -281.6
L-Asparagine -490.4 Myristoleic Acid -202.9
L-Aspartate -677.4 sn-Glycerol 3-phosphate -484.5
L-Cysteine -320.1 UDPglucose -1473.6
L-Glutamate -670.3 UDP-N-acetyl-D-glucosamine -1432.2
L-Glutamine -483.3 UDP-N-acetylmuramate -1680.7
L-Histidine -210.5 UTP -769.0

Other molecules

Acetate -366.9 Oxygen +16.4
Ammonia -79.3 Phosphate -166.7
Carbon dioxide -326.4 Sulfate -744.53
Glucose -886.2 Water -227.17
H+ ±0
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Proof: required

concentration-ratios

Given the assumptions stated in chapter 3.6.2.2, reaction rates follow the
general law:

v1 = k1 ∗
∏
i

[i]νi (C.1)

where v1 is the actual reaction velocity of the forward reaction, k is the
kinetic constant, [i] are the concentrations of all metabolites i and νi is the
order of the reaction in the referring metabolite i (Atkins, 1990, p. 782 �.).
Accordingly

v2 = k2 ∗
∏
j

[j]νj (C.2)

states the rate-law for the backward direction.

In the following we will replace the parts
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∏
i

[i]νi by A

and (C.3)∏
j

[j]νj by B

From 2.3 we know that the total reaction rate is given as

v = v1 − v2 (C.4)
The only reactions taken into account are those which de�nitely have a for-
ward �ux attached to them:

v > 0 ⇔ v1 > v2 (C.5)
Now, we want to examine the ratio of the rates of the same reaction under
di�erent circumstances, the second of which shall be marked by a prime (′):
v and v′.
From equation C.1 and C.3 we directly can see that v1 > v′1 if A > A′.
As said in section 3.6.2.2, there is no problem if B ≤ B′. Otherwise, the
backward reaction rate increases due to an increasing B. In that case, it may
happen that the increase in v2 outruns the increase in v1 and the overall
reaction velocity decreases despite an increase in A against A′.

Our statement concerning this problem is:

Statement

The following conditions

A > A′

and (C.6)
A

A′ >
B

B′
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are su�cient to ensure a ratio
v

v′
> 1 (C.7)

even if B > B′.

Given

A

A′ > 1 (C.8)
B

B′ > 1 (C.9)
v1 > v2 ⇔ k1A > k2B (C.10)
v′1 > v′2 ⇔ k1A

′ > k2B
′ (C.11)

From basic chemistry it is known that rate constants are always positive.
A and B are replacement characters for products of metabolic concentra-
tions, which are positive by de�nition.

k1, k2, k
′
1, k

′
2 > 0 (C.12)

A, B, A′, B′ > 0 (C.13)

Proof

Inserting equation C.3 in C.1 and C.2, we get, with the help of equation C.4,
for the ratio v/v′:

v

v′
=

k1A− k2B

k1A′ − k2B′ (C.14)
reduce by k1A

′ + k2B
′
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v

v′
=

(k1A− k2B) ∗ (k1A
′ + k2B

′)

(k1A′ − k2B′) ∗ (k1A′ + k2B′)

=
k2

1AA′ − k2
2BB′ + k1k2(AB′ − A′B)

(k2
1A

′2 − k2
2B

′2)

=
k2

1AA′ − k2
2BB′

(k2
1A

′2 − k2
2B

′2)
+

k1k2(AB′ − A′B)

(k2
1A

′2 − k2
2B

′2)
(C.15)

To achieve equation C.7 it is su�cient, that the �rst part of C.15 is greater
one, while the second part is positive. Thus, it must be that:

k2
1AA′ − k2

2BB′

(k2
1A

′2 − k2
2B

′2)
> 1 (C.16)

⇔ k2
1AA′ − k2

2BB′ > k2
1A

′2 − k2
2B

′2 (C.17)

⇔ k2
1AA′A′

A′ − k2
1A

′2 >
k2

2BB′B′

B′ − k2
2B

′2 (C.18)

⇔ k2
1A

′2 ∗
(

A

A′ − 1
)

> k2
2B

′2 ∗
(

B

B′ − 1
)

(C.19)

Using squared equation C.11, it is su�cient that the following equation is
ful�lled for C.16 to hold true:

(
A

A′ − 1
)

>
(

B

B′ − 1
)

⇔ A

A′ >
B

B′ (C.20)
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As said above, additionally to C.16, the second part of equation C.15 must
be positive to ensure C.7:

k1k2(AB′ − A′B)

k2
1A

′2 − k2
2B

′2 > 0 (C.21)

The square of equation C.11 tells us, that the denominator of C.21 is always
positive. Then, obviously the condition of the numerator to be positive is
ample to �nish the proof.

k1k2(AB′ − A′B) > 0 (C.22)
⇔ AB′ > A′B (C.23)

⇔ A

A′ >
B

B′ (C.24)

The last transformation is possible, because A′, B′ > 0 (eq. C.13).
Equation C.24 is exactly the same as C.20 which again equals the statement
in C.6.

Thus, if equation C.6 is ful�lled, then C.7 is ensured.

q.e.d.
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Kurzzusammenfassung

In den letzten Jahren expandierte das Feld der Bioinformatik von seinem
bisherigen Fokus der proteinverwandten Themen zur Untersuchung ganzer,
zellulärer Organismen. Mittlerweile wurde eine ganze Zahl von Bakterien
modelliert, wobei das am detailliertesten untersuchte mit Sicherheit Es-
cherichia coli ist. Als systemische Untersuchungsmethode hat sich in der wis-
senschaftlichen Gemeinschaft die sogenannte Flux Balance Analysis (FBA)
etabliert. Darin wird das zu untersuchende, metabolische Netzwerk als Ma-
trix dargestellt, die �stöchiometrische Matrix�. Unter der Annahme dass
System befände sich in einem (temporären) Flieÿgleichgewicht erhält man
ein homogenes lineares Gleichungssystem, welches typischerweise unterbes-
timmt ist. Eine Zielfunktion wird ausgewählt und das entstehende lineare
Program gelöst. Als Ergebnis kann so eine diskrete Lösung aus dem Lö-
sungsraum ausgewählt werden. In der vorliegenden Arbeit wurde ein genom-
basiertes Modell des Corynebacterium glutamicum erstellt und mit Hilfe der
FBA analysiert. Wir haben eine Verbesserung der Flux Balance Analysis
implementiert, welche auch thermodynamische Aspekte in Betracht zieht,
die Energy Balance Analysis (EBA). Weiterhin verwendeten wir Daten aus
Metabolic-Pro�ling Experimenten, um den Analysen nach EBA zusätzliche
Beschränkungen aufzuerlegen. Der Vergleich des Organismus unter ver-
schiedenen Umweltbedingungen ermöglicht es, unbekannte kinetische Kon-
stanten zu eliminieren und neue Anforderungen während der Energy Balance
Analysis zu stellen. Die notwendigen Daten wurden durch Aufzucht des
Bakteriums auf Glukose oder Acetat gewonnen. Die Methodik führt zu einer
weiteren Verkleinerung des Lösungsraumes und hilft auf diese Weise die Lücke
zwischen Theorie und echtem Leben zu schlieÿen. Die übergeordnete Natur
der entwickelten Technik ermöglicht deren Anwendung mit jedem Modell und
deren Kombination mit allen weiteren, möglichen Verbesserungen der Flux
Balance Analysis.
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Abstract

Within the last years, bioinformatics expanded from its focus on protein re-
lated research to the investigation of whole organisms. Up to date, a variety
of bacteria has been modeled, in most detail Escherichia coli. As a systemic
approach, �ux balance analysis (FBA) has established itself in the scien-
ti�c community to analyze steady state �ux distributions. Within FBA the
metabolic network is expressed in terms of a matrix, called the stoichiomet-
ric matrix. The assumption of the system to exist in a (temporary) steady
state leads to a homogeneous linear system of equations, which is typically
underdetermined. By application of an objective function and computation
of the linear program that unfolds, one can select one discrete solution out
of the existing solution space. In this work, we built a genome based model
of the Corynebacterium glutamicum and analyzed it in terms of �ux balance
analysis. We implemented an enhancement of FBA, called energy balance
analysis, that considers thermodynamical issues. We further used metabolic
pro�ling data to impose more constraints on the analyses. By comparing
the organism under di�erent environmental conditions, we were able to ne-
glect unknown kinetic constants and to establish new requirements during
the energy balance analysis. Namely, we used data derived by raising the
C. glutamicum on acetate or glucose. This procedure leads to a further re-
duction of the solution space and thereby helps to close the gap between
predictions and real-life �ux distributions. The comprehensive nature of the
technique enables it to be applied to any model and to be combined with
any other enhancement of the �ux balance analysis.
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