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Abstract

γ-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis
(PSA) of multiple γ-interactions. For this purpose, a simple and fast procedure was
developed which enabled the first full characterization of a segmented large volume
HPGe detector.

An analytical model for the hole mobility in a Ge crystal lattice was developed to
describe the hole drift anisotropy with experimental velocity values along the crystal
axis as parameters. The new model is based on the drifted Maxwellian hole dis-
tribution in Ge. It is verified by reproducing successfully experimental longitudinal
hole anisotropy data. A comparison between electron and hole mobility shows large
differences for the longitudinal and tangential velocity anisotropy as a function of
the electrical field orientation.

Measurements on a 12 fold segmented, n-type, large volume, irregular shaped
HPGe detector were performed in order to determine the parameters of anisotropic
mobility for electrons and holes as charge carriers created by γ-ray interactions. To
characterize the electron mobility the complete outer detector surface was scanned
in small steps employing photopeak interactions at 60 keV. A precise measurement
of the hole drift anisotropy was performed with 356 keV rays. The drift velocity
anisotropy and crystal geometry cause considerable rise time differences in pulse
shapes depending on the position of the spatial charge carrier creation. Pulse shapes
of direct and transient signals are reproduced by weighting potential calculations
with high precision. The measured angular dependence of rise times is caused by
the anisotropic mobility, crystal geometry, changing field strength and space charge
effects. Preamplified signals were processed employing digital spectroscopy electron-
ics. Response functions, crosstalk contributions and averaging procedures were taken
into account implying novel methods due to the segmentation of the Ge-crystal and
the digital electronics. The results are relevant for the future γ-ray tracking de-
tectors where high precision of position information of single γ-ray interactions is
required.

The high accuracy in simulation enabled very high position resolution using
PSA. The first application of this technique in a real experiment aimed at the correc-
tion for crystal bending imperfections in a Bragg-spectrometer. A position resolution
of σx =1.4mm was achieved with 184 keV γ-rays employing the fully characterized
detector. By careful characterization of the electronic noise, this result is expected
to improve further upon use of optimized filters.





Zusammenfassung

In zukünftigen HPGe-Anordnungen wie AGATA wird die Spurenanalyse von γ-
Strahlen auf der Pulsformanalyse für Mehrfachwechselwirkungen von γ-Quanten
beruhen. Aus diesem Grunde wurde ein einfaches, zugleich aber schnelles Verfahren
entwickelt, das erstmalig eine vollständige Charakterisierung segmentierter, groß-
volumiger HPGe-Detektoren ermöglicht.

Es wurde ein analytisches Modell für die Löcherbeweglichkeit in einem Ger-
maniumkristall entwickelt, um die Anisotropie der Löcherdrift mit experimentellen
Geschwindigkeitswerten entlang der Kristallachse als Parametern zu beschreiben.
Dieses neue Modell beruht auf der verschobenen Maxwellverteilung der Löcher im
Germanium. Es konnte durch die erfolgreiche Reproduktion von experimentellen
Ergebnissen der longitudinalen Löcheranisotropie verifiziert werden. Ein Vergleich
der Elektronen- mit der Löcherbeweglichkeit zeigt große Unterschiede für longitu-
dinale und tangentiale Geschwindigkeitsanisotropien als Funktion der Orientierung
des elektrischen Feldes.

Es wurden Messungen an einem 12-fach segmentierten, großvolumigen und un-
gleichmäßig geformten n-Typ HPGe-Detektor durchgeführt, um die Parameter für
anisotrope Beweglichkeit für Elektronen und Löcher zu bestimmen. Um die Elek-
tronenbeweglichkeit zu charakterisieren, wurde die gesamte äußere Oberfläche des
Detektors in kleinen Schritten mit 60 keV γ-Quanten gescannt, die durch den Pho-
toeffekt wechselwirken. Eine präzise Messung der Löcherdriftanisotropie wurde mit
356 keV-Quanten durchgeführt. Die Anisotropie in der Driftgeschwindigkeit und
die Kristallgeometrie verursachen beträchtliche Unterschiede der Anstiegszeiten in
der Pulsform abhängig von der Position der räumlichen Ladungsträgerbildung. Die
Pulsform direkter und transienter Signale wird mit Hilfe von Berechnungen gewich-
teter Potentiale sehr präzise wiedergegeben. Die gemessene Winkelverteilung der
Anstiegszeiten wird durch anisotrope Mobilität, Kristallgeometrie, wechselnde Feld-
stärken und Raumladungseffekte hervorgerufen.

Die Vorverstärkersignale wurden mit digitaler Elektronik weiterverarbeitet. Über-
tragungsfunktionen, Crosstalk-Verteilungen und Mittelungsprozeduren wurden be-
rücksichtigt, indem neuartige Methoden aufgrund der Segmentierung des Germanium-
Kristalls und digitaler Elektronik einbezogen wurden. Diese Ergebnisse sind für zu-
künftige Detektoren zur Spurenanalyse der γ-Strahlen relevant, in denen eine sehr
genaue Ortsinformation für einzelne γ-Quantenwechselwirkungen benötigt wird.

Die hohe Genauigkeit der Simulation ermöglicht mit hilfe der Pulsformanalyse



viii Zusammenfassung

eine sehr gute Ortsauflösung. Das Ziel der ersten Anwendung dieses Verfahrens
in einem Experiment war die Korrektur von Fehlstellen der Kristall-Krümmung in
einem Bragg-Spektrometer. Am vollständig charakterisierten Detektor wurde mit γ-
Quanten der Energie Eγ = 184 keV eine Ortsauflösung von σx = 1.4mm erzielt.
Sorgfältige Untersuchungen des elektronischen Rauschens lassen erwarten, dass die-
ses Ergebnis durch optimierte Filter noch stark verbessert werden kann.
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Chapter 1

Introduction – Motivation

Since germanium detectors became available in the 1960’s, they have taken in
a key position in the field of nuclear spectroscopy. These detectors combine
excellent energy resolution with good timing resolution in the energy range rel-
evant for nuclear spectroscopy. The present state-of-the-art is represented by
the EUROBALL and Gammasphere spectrometers. This role will be taken over
in the future by the Advanced GAmma-ray Tracking Array (AGATA) [1] and
the Gamma Ray Energy Tracking Array GRETA [2] which are now under devel-
opment. The AGATA project is supported by over 40 European institutes and
is developed – to some extend – in collaboration with the American GRETA
project [3, 4]. The work presented here deals with the development of highly
segmented, large volume HPGe detectors which will be employed to localize
individual γ-ray interactions as basic information for a γ-ray tracking spectrom-
eter. In one word, it deals with the characterization problem of such detectors.
The motivation for the work is shortly introduced in this chapter.

1.1 AGATA

1.1.1 The concept of AGATA

The AGATA spectrometer is mainly intended for high-resolution γ-ray spec-
troscopy with exotic beams at future European accelerator facilities provid-
ing heavy ion beams of unstable rare isotopes. The project is aiming for the
construction of the first real 4π gamma-ray spectrometer solely built from
germanium detectors. In its final stage, AGATA will comprise 180 highly
segmented High-Purity Germanium (HPGe) detectors, which will be con-
centrated around the target providing optimal conditions for a wide range
of nuclear structure experiments (see Fig. 1.1). Coupled to a high intensity
radioactive beam facility, this project will enable the investigation of the
nuclear landscape at its very limits.

The design of the AGATA spectrometer requires the optimization of



2 Introduction – Motivation

Figure 1.1: AGATA: The 4π, 180 detector configuration. The germanium
shell is covered with three types of semi-hexagonal, asymmetric shaped
diodes (colored red, green and blue in the picture). each cluster detector
will contain one diode of each type of asymmetry (Picture taken from [5]).

several, partially conflicting properties simultaneously: A 4π, 9 cm thick
germanium shell will provide the highest photopeak efficiency for energies
up to 10 MeV. This will enable to study the weakest exotic reaction channels.
Such exotic beams are often contaminated by more abundant but less exotic
elements and therefore require high count rate capability and photo peak
efficiency.

A high peak-to-total ratio (the ratio between the photopeak efficiency
and the total interaction efficiency) is essential for any spectrometer in order
to provide high quality spectra. Presently, the most powerful spectrometers,
EUROBALL [6] and Gammasphere [7], rely on anti-Compton shields to
achieve a high peak-to-total ratio. This always presents a trade-off between
efficiency and acceptance.

To be able to resolve high multiplicity gamma ray cascades, a large seg-
mentation of the germanium shell is necessary in order to minimize summing
effects. High angular segmentation is also required when dealing with fast
radioactive beams (v/c ≥ 10%) as a good angular resolution in the first inter-
action of Doppler broadened γ-quanta is mandatory. This enables Doppler
correction which restores the line width and hence the spectrometers re-
solving power. On the other hand, a high fragmentation of the germanium
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shell combined with high gamma multiplicities increases the identification
problem due to Compton events scattered into different segments.

1.1.2 Tracking

The key in solving these problems lies in the introduction of a new concept
called gamma ray tracking. This technique will exploit fully the high position
sensitivity of these detector arrays and is expected to improve substantially
on the resolving power. Especially when high multiplicity γ-ray cascades
are observed, where improvements of more than two orders of magnitude
over existing detector arrays are estimated (the probability of detecting a
multiplicity n event scales with the n-th power of the efficiency).

The method will evaluate the spatial correlation between the time co-
incident γ interactions in the germanium shell using the Compton relation
and taking into account the possibility of pair production. This will allow to
reconstruct the path of the emitted γ-rays. The peak-to-total ratio and the
γ multiplicity therefore are depending on the correct sorting of the individ-
ual observed γ interactions into clusters. This idea is illustrated in Fig. 1.2.
Each cluster should finally contain all interaction positions caused by an
individual γ-ray track. The credibility of a proposed cluster is maximized
by an optimization of the probability assigned with the anticipated γ-ray
track. Several such tracking schemes have been developed [8, 9], and the
realization of fast online tracking algorithms is still an ongoing subject of
research.

Doppler correction depends on the right assignment of the first inter-
action position in each cluster (Marked blue in Fig. 1.2). This problem is
inferior to the solution of the full γ-ray track and hence it is implicitly solved
by the latter.

1.1.3 Pulse Shape Analysis

The spatial localization of the interaction positions will rely completely on
detailed pulse shape analysis. In order to achieve a good tracking efficiency,
position information with an accuracy of a few millimeter is required.

The position information will be obtained from raw detector pulses by
comparing the pulse shapes to simulated detector responses. This requires
a detailed library of simulated traces including positions mapping the whole
detector volume. Such method is described in detail in chapter 11.

The final position resolution obtainable through pulse shape analysis will
be restricted by the realism of the simulated library. Therefore, a detailed
understanding of the principles behind the origin of the detectors pulse shape
is crucial.
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θ

φ sin(θ)

Figure 1.2: World map representation of an Eγ = 1.0MeV, multiplicity 30
event for illustration of the tracking concept. Correct reconstructed γ-rays
are shown as red clusters. Wrongly reconstructed γ-rays are represented as
green clusters. The picture was taken from [10].

1.1.4 Characterization

Along with the demand for precise position information comes the complex-
ity in preparation of these newly developed detector types. The fact that
from these detectors also position information is demanded invokes that
each detector, besides the traditional energy calibration, now also needs a
calibration for the position space. Consequently, detailed characterization
of the detector is mandatory. Unfortunately, no simple position calibration
procedure is available yet.

The characterization of a large volume segmented Ge detector should
lead to the detailed knowledge on how the detector and the acquisition sys-
tem will respond to an interaction at any point in the detector. One way to
obtain the needed detector single interaction response information is based
on a Compton scattering technique [11, 12, 13, 14, 15]. This method re-
quires heavy collimation and coincidence detection of rare compton scatter-
ing processes. Therefore the scanning rate becomes extremely slow (up to a
few days per point) for interactions deep inside the detector volume. Hence,
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a more time-efficient characterization technique was developed within this
project which relies on procedures to extract realistic input for detector re-
sponse simulation. A short introduction will be given on how the detector
response can be calculated with the purpose to identify which parameters
are needed for a detailed detector response simulation.

For a good agreement between a detector’s calculated and its true ex-
perimental response, a principal requirement is a detailed knowledge on the
amount of mirror charge that is induced in a specific electrode due to a
charge present at any point inside the detector. This question is answered
by the notion of the weighting potential in the Shockley-Ramo theorem,
which is extensively described in chapter 3.

Secondly, the dynamics of the charges created in the detector has to be
understood and exact data on the mobility of the electrons and hole clouds
on their path towards their collecting electrode are mandatory. This allows
to simulate the electron and hole paths in the detector as function of the
time elapsed during their collection process. The resulting induced charge in
a specific electrode is calculated by evaluating the corresponding weighting
potential at the time dependent position of electrons and holes.

Finally, the analog frontend electronic circuitry deforms the signals pro-
duced in the charge collection process. These response functions have to
be determined. The calculated charge signals are convoluted with the ap-
propriate response functions. Also crosstalk has to be taken into account.
A special technique for crosstalk determination in segmented detectors was
developed and applied in chapter 5.

A detector becomes fully characterized by specifying the ingredients
needed for a detailed detector response simulation: charge carrier
mobilities and the behavior of crosstalk and response functions.

In this way, one obtains a pragmatic definition for the term charac-
terization. The amount of parameters that need to be specified for a full
characterization can become quite elaborate. This set of parameters can be
sorted into two categories. One category of parameters characterizes the
detector crystal. It comprises specification of the crystal orientation, space
charge, electron mobility and hole mobility. The second category character-
izes the influence of the analog front end electronics. It includes response
functions and crosstalk.

Theoretically both sets of parameters are independent, however in reality
information on the mobility cannot be obtained without a proper knowledge
on the influence of the measuring circuitry. A good implementation in the
simulation of the properties of the analog front-end electronics is therefore
essential to derive meaningful conclusions on the detector crystal properties.
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The new developed techniques regarding mobility and crosstalk detec-
tion described in this work made it possible that for the first time a full
characterization of a segmented HPGe detector was established. All data
for a full characterization was experimentally determined for a 12 fold seg-
mented MINIBALL detector. In the near future, these procedures will be
applied to the first AGATA detectors now becoming available.



Chapter 2

MINIBALL

The precision and effectiveness of the new characterization method was devel-
oped for and is demonstrated on a 12-fold segmented HPGe MINIBALL detector
[16, 17] because no AGATA detector existed yet at the time. It goes without
saying that any characterization procedure developed in this work can be equally
well applied to 36-fold segmented AGATA detectors.

2.1 Construction of a MINIBALL detector

The MINIBALL detector array is optimized for low γ-multiplicity experi-
ments. It consists of six-fold angular segmented Ge detectors which allow
for the localization of the direction of the emitted γ-rays.

The mechanical construction of the detector is shown in Fig. 2.1. The
figure shows a modern MINIBALL detector as it was used in the character-
ization procedure. A single encapsulated germanium crystal was mounted
on a cold finger which brings it in thermal contact with the liquid nitrogen
dewar. The dewar is constructed to maintain the Ge detector operational
for 12 hours. The temperature of the crystal is monitored over a PT100 [18].

The good vacuum (in the lower 10−6 mbar) inside the detector construc-
tion guarantees the thermal isolation of the detector crystal from the outer
detector mantle at room temperature [19]. The vacuum is maintained over
a long period using three molecular getters. These chemical getter materials
trap all restgas atoms when cooled at liquid nitrogen. A carbon getter is
build into the dewar itself. Zeolite is used between dewar and cold finger.
Finally, palladium is used as a hydrogen catcher. For maintenance, a Cad-
dock (a power resistor) can be used to accelerate the warming up of the
detector, or to heat out the cryostat assembly.

Care is taken to minimize the thermal contact of the mechanical support
of the cold inner part with the outer part at room temperature. The cold
finger is centered using triangular shaped plastic parts at both ends of the
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Detector end cap

Encapsulated germanium crystal

Cold FET motherboard

PT100

Cable guide

Cold finger

Sieve with molecular getter

Labyrinth

Suspension

Dewar

Vacuum valve

Caddock

Cable feedthroughs

Preamplifiers

Figure 2.1: Layout of a modern MINIBALL detector. See text for descrip-
tion.

cold finger and a labyrinth-shaped connection made out of PTFCE1. This
special teflon material has very low thermal conductivity. The shape of this
material serves two purposes. First, it elongates the connection between cold
and warm and thus decreases the thermal conductivity. Secondly, it keeps
the system shock resistive. The dewar is also flexibly connected with the cold
finger using thick wire-like copper strands. This provides a buffer against
thermal expansion of the system and decouples the detector vibrationally
from the dewar and thus reduces the effect of microphonics.

The motherboard including the cold FET’s (see Fig. 2.4A) is connected
directly on the crystals encapsulation to decrease the signal path between
detector and preamplifier. The electronic cabling (HV, ground and cold
FET signals) is guided along the cold finger to the feedthroughs where the
connection is made with the warm part of the preamplifiers (Fig. 2.4B). To
reduce thermal conductivity, the connection with the feedthroughs is made
with very thin wires. The preamplifiers are closely packed together in a
separate box, electromagnetically shielded from the outside.

1abbreviation for polytrifluorchlorethylene



2.2 The MINIBALL detector crystal 9

2.2 The MINIBALL detector crystal

Figure 2.2: Picture of a 12-
fold segmented encapsulated
MINIBALL crystal.

Different to the standard MINIBALL
detector, the detector studied here has a
six fold angular segmentation of the outer
contact and a single segmentation line in
depth (see Fig. 2.3). The detector thus ful-
fills the minimum requirement for giving
full 3D information on the position of an
interaction. This extra segmentation line
is positioned at a depth of 26 mm, dividing
the crystal’s length in two unequal parts
of which the smallest, the six front seg-
ments, have just halve the length in depth
of their six back neighbors. The detector
has inherited the semi-hexagonal cut en-
capsulated crystal from the Euroball de-
tectors, which allows for close packing into
cluster detectors.

A picture of a 12-fold segmented MINI-
BALL diode is shown in Fig. 2.2. The twelve
segments are connected to 12 terminals distributed over three feedthroughs.
The core electrode is connected to the central contact, which is strongly
isolated as it has to withstand high voltages up to 5000 V.

Figure 2.3: Measures of the 12-fold segmented MINIBALL diode geometry.
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2.3 The MINIBALL front-end electronics

The core as well as the 12 segments are equipped with HeKo2 preamplifiers
[16, 20] which were specially designed for MINIBALL. The front-end of the
HeKo preamps is cooled down to about −150◦ for optimum noise perfor-
mance. The printed circuit boards (PCB) containing the cooled electronics
(one FET and one RC-feed back loop pro channel) are shown in Fig. 2.4A.
The coupling between detector and the cold PCB’s will be described in detail
in chapter 4.

The HeKo preamplifier (Fig. 2.4B) is designed with two stages. The first
stage consists of a current integrator build around an operational amplifier
(OpAmp) with single-ended input and an open loop gain of 2 · 104. Since
low noise is of extreme importance here, best results up to date are still
achieved building the first amplifier stage out of discrete components. This
first stage is based on a cascode amplifier. Its amplification factor depends
among others on the drain current through the FET, which can be adjusted
with a potentiometer. The band width and consequently the rise time of
this stage can be tuned with a variable capacity to prevent oscillation. This
first stage realizes a charge to voltage conversion of 52 mV/MeV.

At the output of the first stage, the voltage signals have an exponential
decay time τ determined by the feed back impedance: τ = RfbCfb

∼= 1ms.
In the second stage of the preamplifier, this is converted into a signal with
a 50µs decay time which prevents pile-up. This is realized by a pole-zero
cancelation network buffered between two OpAmps. The second stage only
realizes a total amplification of 4 but it provides also the necessary 50Ω
output impedance and allows the DC output level to be adjusted.

A more detailed explanation on the operation of a classical preamplifier
can be obtained in [21, 22]. The HeKo preamplifier, briefly described here,
is treated in more detail in [23, p.141].

The twelve segment signals plus the core signal were read out using four
DGF-4C ADC’s [24] (see Fig. 2.5). Such modules have each 4 channels pro-
viding 12 bit precision at 40MHz sampling rate. One module was reserved
for the core signal. This module was configured as master and was triggering
the other modules receiving the segment signals.

2A preamplifier originated from a collaboration between the universities Heidelberg
and Köln (HeKo). More precisely, the commercially available PSC823 version build by
Eurisys was used, which has a slightly worse rise time performance than the original.
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Figure 2.4: Electronics build into a MINIBALL Ge detector. A: The cold
FET motherboards for core and segments. B: A one-channel MINIBALL
preamplifier. Potentiometers are used to adjust individually: drain current,
pole zero and DC offset. Connections for the cold PCB’s (GND, Drain and
Feed back) are indicated. The bandwidth can be modified by changing a
variable capacity (Rise time).
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COLD WARM

DGF-4C

Preamp

Clock & Trigger

Nyquist
filter

40 Mhz
12bit

Figure 2.5: A schematic overview of the front-end electronics as used in this
work to operate the 12-fold segmented MINIBALL detector. The pream-
plifiers are equipped with cold FET’s. Their signals are digitized into 12
bit using four DGF-4C ADC’s. In this process, frequencies above half the
sampling frequency need to be suppressed by a Nyquist filter. All modules
are operated with common clock (40Mhz) and react upon common core
triggers.



Chapter 3

About weighting potentials

In this chapter, it is described in detail how the pulses at each terminal of the
segmented electrodes are related to the movement of the charge carriers inside
the bulk of the detector. The nature of this problem is quite universal. In fact
the theorem which Shockley [25] and Ramo [26] discovered independently, was
developed to describe the behavior of vacuum tubes. In time, several extensions
to the theorem were developed. Among others, it was proven [27] that the
theorem still holds under the presence of space charge in the device. For a
recent review on the subject, check out [28, 29, 30].

3.0.1 The quasi-steady state approximation

The problem consists in the detection of a small charge q at position ~x0(t)
that moves under influence of field ~E, between an arrangement of electrodes
with surfaces Sj , j = 1 . . . n and held at fixed potentials Vj . The important
question – since it is related to the sole observable quantity – is then: how
much current is the movement of the q producing on a specific electrode i ?
The answer to this forms the key to a correct evaluation of the observed
mirror charges and makes it possible to distillate information on ~x0(t = 0),
which remains the leading question.

We will investigate this problem in the quasi-steady state approximation:
we suppose that the movement of the charge is slow enough to assume that
the momentary fields can be well approximated as being in electrostatic
equilibrium. This can be easily verified by comparing the velocities involved.
The speed of light in germanium is 750·107 cm/s (germanium has a refraction
index of 4.0) while the mobility of electrons and holes in germanium is less
or comparable to 1·107 cm/s. Further, it is assumed that the influence of the
charge q on the field ~E is small enough such that its motion is not influenced
under the small changes in ~E.

Under these approximations, we can decouple the problem: The field ~E
is calculated neglecting the presence of q. When the dependence of the drift
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velocity of the charge q on the field strength is known, we can predict its path
between the electrodes. The description of the mobility of electrons and holes
as function of the field is far from trivial and will be extensively studied in
chapters 6,7,8. The remaining problem, to reconstruct the time dependence
of the charge signal induced on each electrode, is therefore reduced to:

Problem 3.0.1 Find the surplus of charge that is induced in elec-
trode i by the presence of charge q at any position ~x0 along its tra-
jectory.

As we only refer to this problem in the quasi-steady state approximation,
we can omit here the time dependence of ~x0.

In the specific case of our segmented detector, we have the following
situation: The detector has the core electrode biased at high voltage and
the segments virtually grounded such that the detector is fully depleted. The
ionized impurities present at fixed positions in the germanium crystal lattice
form a stationary space charge density ρ(~x) [31, p.369], which has a strong
influence1 on the electrical field strength. Finally, we are only interested in
the image charges created by the free charge carriers q created in the bulk
of the germanium material by ionizing radiation.

3.1 The Shockley-Ramo theorem

The total charge Qi induced on an electrode i with surface Si can be calcu-
lated by integration of the normal component of the electrical field ~E outside
this surface (see Gauss’s law [32, p.688],[33, p.32]):

Qi =
∮

Si

ε ~E · d~Si (3.1)

in which ε represents the dielectric constant of the medium (16 · ε0 for ger-
manium).

The total field ~E(~x) = −∇φ(~x) is obtained through solution of the Pois-
son equation with Dirichelet boundary conditions:

∇2φ(~x) = −[ρ(~x) + qδ(~x− ~x0)]/ε φ|Sj = Vj

The linearity of the Poisson equation and the applied boundary conditions
allow us to separate the total potential φ(~x) into the contributions from
the steady state potentials φ0(~x) created by the applied voltages and the

1In the worst case, its influence could cause that the detector is not fully depleted.
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space charge and the quasi-steady state potential φq(~x) created by the point
charge at position ~x0:

φ(~x) = φ0(~x) + φq(~x) with
∇2φ0(~x) = −ρ(~x)/ε φ|Sj = Vj

∇2φq(~x) = −qδ(~x− ~x0)/ε φ|Sj = 0 (3.2)

The separation of potentials invokes an analogous separation of the total
electrical field into the parts: ~E(~x) = ~E0(~x) + ~Eq(~x). Applying formula 3.1
then yields

Qi = Q0i + Qqi with

Q0i =
∮

Si

ε ~E0 · d~Si

Qqi =
∮

Si

ε ~Eq · d~Si (3.3)

The fractions Q0i are time-independent and are related to the capacity be-
tween the electrodes. The fraction of interest is the extra charge Qqi created
on the electrode i by the point charge q. The quasi-steady state requires
that Qqi ¿ Q0i. Observe that in For. 3.2, 3.3 the potentials Vi and the space
charge ρ(~x) do not show up. From this, we can state that:

Corollary 3.1.1 The charges induced by charge q do not depend on
the applied potentials nor on the space charge in between electrodes.

Unfortunately the independence on space charge has been questioned in
the past by several authors. Although their criticism was unjustified [34, 35],
this has added to the mystification of the subject such that even in standard
work on radiation detection2, violations against this theorem have subsisted.

For moving charges, Gauss’s law (For. 3.3) is not very useful as it would
require to calculate the potential φq again when the position of q has changed.
Luckily, there exist a very elegant way to work around this problem:

2In Knoll [31, p.423], a space charge dependent model for the induced charges is derived
although the author is obviously aware of the correct version, see [31, Appendix D].
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The Schockley-Ramo theorem 3.1.1 The induced charge Qqi

on electrode i by a point charge q located at ~x0 is given by

Qqi = −q · ψi(~x0) (3.4)

with ψi defined by:

∇2ψi(~x) = 0 φ|Sj = δi,j (3.5)

The momentary current Iqi induced by the movement of q is:

Iqi(t) = q ~Eψi(~x0(t)) · ~v(t) (3.6)

with ~v(t) the momentary drift velocity of q.

ψi is called the weighting potential related to electrode i and ~Eψi = −∇ψi

is the corresponding weighting field. The advantage compared to For. 3.3
is clear: the weighting potentials need to be calculated only once. State-
ment 3.6 follows directly from For. 3.5 by taking the time derivative of the
latter and using the chain rule: d

dt = ∂
∂x

dx
dt + ∂

∂y
dy
dt + ∂

∂z
dz
dt . An elegant way

to prove For. 3.5 is by making use of Green´s second identity:

Greens second identity 3.1.1 Between two arbitrary scalar fields
Φ, Ψ and for an arbitrary volume V bounded by surface S, the follow
identity holds:

∫

V
Φ∆Ψ−Ψ∆ΦdV =

∮

S
Φ

∂Ψ
∂n

−Ψ
∂Φ
∂n

dA (3.7)

Let us now take as a special case Φ = φq as defined by For. 3.2 and
Ψ = ψi as defined by For. 3.5. Further select the volume V as the volume
excluding any electrode interior (The volume is bounded by and includes
the electrode surfaces). For this special case, we thus obtain:

(Φ|Sj , ∆Φ,
∂Φ
∂n
|Sj ) = (0, −qδ(~x− ~x0)/ε, −σq,j/ε) (3.8)

(Ψ|Sj , ∆Ψ,
∂Ψ
∂n
|Sj ) = (δi,j , 0, −σi,j/ε) (3.9)

With σq,j , σi,j the surface charge distributions on electrode j due to the
potentials φq and ψi, respectively. With this result, we obtain for Greens
second identity:

∫

V
ψi · qδ(~x− ~x0)dV = −

∑

j

∮

Si

δi,j · σq,jdA

Which leads immediately to statement 3.5.
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3.1.1 Weighting potentials for the detector

For our detector, the twelve electrodes are fully covering the front and the
side surface of the detector. The gap between segments – the segmentation
line – is only about 100µm thick. The backside of the detector is covered
with a passivated layer, which acts as an electrostatic mirror. The active
volume of the detector therefore behaves as if it was fully surrounded by the
segment electrodes, the core electrode and their mirrored images.

If we make the surface of this enclosed volume an equipotential surface,
the resulting potential throughout the volume will be constant. The sum
Ψ =

∑
i ψi of all the weighting potentials has this property as is easily

verified using eq. 3.5. Therefore, we obtain that:

Corollary 3.1.1 For a set of electrodes Si which completely enclose
the active volume V , we have that:

Ψ(~x) =
∑

i

ψi(~x) = 1 ∀~x ∈ V (3.10)

Itot(t) =
∑

i

Ii(t) = −q∇Ψ · ~v(t) = 0 ∀t (3.11)

Qtot(t) =
∑

i

Qi(t) = 0 ∀t (3.12)

Eq. 3.12 states that the core will always register the same as observed by the
segment sum, only inverted.

3.2 Pulse formation

3.2.1 The nature of single interaction events

In an event, we usually have more than one interaction instantaneously cre-
ated in the detector. True events are most of the time linear superpositions
of single interaction events. Such superpositions create charge signals with
a complex time dependency. The time dependency of charge signals from
single interactions on the other hand, is fixed by the momentary position ~xe

of the electron cloud with charge −q and the position ~xh of the hole cloud
with charge +q3. The time dependent charge signal induced in segment i

3The amount of holes created always equals the amount of electrons created. In the
case of neutron damage, this balance can be destroyed during the collection process and
time dependent charge distributions might be more appropriate. However, according to
[36, 37], such effects are unimportant for position spectroscopy
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can then be written according to For. 3.4 as:

Qqi(t) = q[ψi(~xe(t))− ψi(~xh(t))] (3.13)

At the time t0 when the interaction took place, ~xe(t0) = ~xh(t0) and
therefore Qqi(t0) = 0. The next few hundred nanoseconds, these charges
are separated and travel in opposite directions towards their collecting elec-
trodes. For our detector, the electrons will travel towards the positively
biased core electrode, while the holes will be collected by one of the seg-
ments.

When such a charge cloud has reached its collecting electrode, these
charges will recombine with their mirror charges. At that moment a dis-
continuity in the current signals occurs. The charge signals however never
show a discontinuity, as these signals are the result of an integration of the
current flowing to the electrodes. To correctly describe the observed charge
signals, we have to extend Eq. 3.4 and assume that:

Corollary 3.2.1 The charge Qqj after collection of charge q by elec-
trode i and as registered by electrode j is observed as

Qqj = −qδi,j (3.14)

This means that the charge q is virtually staying at electrode i. This assump-
tion is necessary to secure that the calculated charge signals after collection
of the free charges are constant4 and proportional to the total charge col-
lected by the individual electrodes. For an n-type detector, hit segments
will therefore always deliver negative charge signals as they collect positive
charges (see e.g. Knoll [31, p.409]), while the core will produce positive sig-
nals. Segments that are not hit will only show transient charge signals,
which are only non-zero as long as the charge collection process takes place.

The drop in current that occurs when a charge carrier is recombined at an
electrode can be calculated from Eq. 3.6, evaluated at the position where the
charge is collected. This discontinuity in the current signals will show up as
a kink in the slope of the charge signals. In particular for the core electrode,
this kink is expected to be more pronounced when electrons are collected
than when an equal amount of holes are collected. This is mainly because
of the cylindrical geometry of the core weighting field (see Eq. 3.16) which
weight is rmax/rmin times less when holes are being collected compared to
when electrons are being collected.

4In this statement, the 50 µs decay time of the signals characteristic for these pream-
plifiers used was neglected. At the time window of interest for position resolution, this is
a safe approximation.
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For single interaction events, the time between the biggest kink in the
core signal and the event trigger time thus corresponds to the electrons
time-of-flight. This time interval is a measure for the radial distance at
which the ionization took place. This principle is exploited by the steepest
slope method [23, p.87] (see also chapter 11.1). The total number of kinks in
the core or hit segment signals – as far as they all can be resolved – are an
indication for the total number of interactions that happened in the detector
or segment, respectively. Pulse shape analysis based on this idea has also
been investigated [38].

3.3 A two-dimensional playground

It is now tried to put some of the theory described so far in praxis. The
illustration presented in the next few sections formed the first step in the
direction of the precise detector characterization techniques which will be
presented later. Its purpose was originally intended to obtain direct informa-
tion on the mobility of the charge carriers. Although the method is outdated,
it works very instructive as it gives a clear insight in the mechanism behind
pulse generation.

To investigate the feasibility of some of the ideas on characterization,
existing data on a 6-fold segmented MINIBALL detector was used. This
detector has no segmentation in depth, such that the weighting potentials
in the coaxial part of the detector can be well approximated by a two-
dimensional system.

The presented experimental data was taken by Weißhaar [20, 10] using
a collimated 137Cs source. Sorted and averaged data on detector responses
were provided corresponding to known (x, y) coordinates in the coaxial part
of the detector.

3.3.1 Coaxial weighting potentials

The weighting potentials in the coaxial part of the detector have the ad-
vantage that they have a relative simple mathematical description. The
weighting potential corresponding to a segment is shown in Fig. 3.1 and can
be expanded in cylindrical harmonics5 as:

ψ1(r, θ) =
ln(r/rmin)

6 ln (rmax/rmin)
+

∞∑

n=1

Bn

[(rmin

r

)n
−

(
r

rmin

)n]
cos(nθ)

with Bn =
2 sin(nπ/6)

nπ
[(

rmin
rmax

)n
−

(
rmax
rmin

)n] (3.15)

5To prove this, use e.g. the general solution, expressed in cylindrical harmonics as
given in [39] and determine the coefficients to match the boundary conditions given by
definition 3.5.
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10 … 90%
1   … 9%
0.1 … 0.9%

Figure 3.1: Weighting potential ψ1 for a segment of a 6-fold segmented
MINIBALL detector in the coaxial region of the detector.

The constants rmin and rmax represent radius of respectively the core and
the segment electrodes. The weighting potential of the neighboring segments
is just a rotated copy of ψ1: ψj(r, θ) = ψ1(r, θ + (j − 1)π/3). The core
weighting potential ψ0 is independent on θ and is given by

ψ0(r) = 1− ln(r/rmin)/ ln(rmax/rmin) (3.16)

3.3.2 Locating the electrons

For our two-dimensional system, For. 3.13 gives us for a specific time a set
of seven nonlinear equations (one for each segment plus the core) to solve
for the position of only 4 coordinates ~xe(r, θ) and ~xh(t)(r, θ). However, for
single interactions, only three segments really provide useful independent
information: According to For. 3.12, the core signal can be constructed from
the segment signals and only the hit segment and its two closest neighbors
provide us with signals of a reasonably amplitude. We therefore do not have
enough information to triangulate both the position of the electron and the
hole cloud simultaneously. However, if one of the charge carriers is collected,
we do have enough information to track down the position of the remaining
free charge carrier, and so, to measure its velocity.

We will demonstrate this principle by taking averaged trace data on re-
sponses originating from collimated positions close to segment 4. In this
case the holes will be immediately collected and the shape of the charge sig-
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Figure 3.2: An illustration of the procedure to trace electrons in the bulk
of the germanium crystal. a): Observed charge signals in segment 4 and its
neighbors for a single event close to segment 4. b): The electrons temporary
position deduced from the traces in a) by combining information of segments
3,4,5.
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nals is only depending on the path the electrons follow as they are traveling
towards the core electrode. The corresponding normalized charge signals of
segment 4 and the transients in the neighboring segments 3 and 5 are shown
in Fig. 3.2a). Remark that the y-scale for the negative transients is blown
up by a factor of 10 compared to the positive scale. The different channels
were sampled synchronously every 25 ns. Assuming the holes are collected,
the momentary coordinate of the electron cloud will be given for a specific
time sample t by

Qqi(t)/q + δi,4 = ψi(~xe(t)) i = 3, 4, 5 (3.17)

According to this formula, we find the momentary position of the electrons at
the crossing of three weighting-equipotential lines. The weighting potentials
are used here in a fashion as if they were distance measures to a specific
electrode. In this way, the electron path can be reconstructed as illustrated
in Fig. 3.2b).

In this way, the path of the electrons was calculated for several collimator
positions. These paths, together with the corresponding collimator positions
(marked with a black full square) are shown in Fig. 3.3. The background used
in this picture was taken from [20, p.33] and reveals the position of core
and segment electrodes. It was obtained by measuring the time-normalized
amount of observed single interactions as function of the collimator position.

3.3.3 Limitations of the method

The derived trajectories agree well with the true collimator positions. How-
ever, the analysis leading to the results shown in Fig. 3.3 up to now has been
deliberately presented in a simplified way. To obtain these results, effects of
real electronic measuring equipment had to be taken into account. Doing
so, it turned out that a phenomenon called crosstalk, the fact that signals of
different segments can be influenced by each other, plays an important role.
In the next chapter, the origin of this effect is explained.

Another important effect is caused by the finite reaction time of the elec-
tronics: Any measurable signal has a finite rise time. This causes that sharp
details in the traces, such as the beginning and ending of the traces shown
in Fig. 3.2a, are blurred. How one can deal with these effects is discussed
in chapter 5. For these reasons, the characterization methods discussed in
chapters 5, 9 and 10 offer a more elegant way to derive information on mo-
bilities.
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Figure 3.3: The electron path in the bulk of the germanium crystal. The
resulting trajectories are shown with open squares. (the time between points
is fixed at 25 ns). The collimator position assigned with the obtained trajec-
tories are indicated with full squares. The background was taken from [20,
p.33] and reveals the location of the electrodes: It shows the time-normalized
amount of observed single interactions as function of the collimator position.





Chapter 4

The detector-preamplifier
connection

The need for low noise, high amplification of the detector signals over a broad
bandwidth in the high frequency domain has created a big challenge for the
construction of charge sensitive preamplifiers suited for position sensitive HPGe
detectors. Combined with the spatial limitations caused by the high segmen-
tation of these detectors, severe construction challenges were created for the
wiring of these preamplifiers with the crosstalk, shortly introduced in the previ-
ous chapter, as consequence. However, crosstalk is not necessarily the result of
construction errors. In fact, it will be shown here that there exist a theoretical
limit upon which crosstalk cannot be improved on.

4.1 Small signal equivalent for the detector

In the description of electronic devices, the signals can often be regarded as
a superposition of a small AC signal, carrying the actual information, super-
posed on time invariant DC currents and potentials. The DC components
are only necessary to bring the electronic components in the wanted working
point. An example is the DC bias potential that is applied on a detector
diode, such that the diode becomes fully depleted.

If only the small, time dependent variations in currents and potential
are of interest, it is advantageous to make a small signal equivalent scheme
(or AC equivalent scheme) of the true circuit. For this, the DC potential
and currents are disregarded and all components are replaced by a suitable
substitute, describing the behavior of that particular component near the
working point as defined by the DC currents and potentials. The AC equiv-
alent scheme is then able to describe the information of interest, but loses
any information on DC components.

A small signal equivalent circuitry for a detector, without the presence
of the preamplifier is shown in Fig. 4.1. For simplicity, we assumed only two
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Figure 4.1: The small signal equivalent scheme of a segmented detector.

segment electrodes labeled 1,2. The core electrode is indicated with label
0. As discussed, the bias potential to deplete the detector is disregarded in
such schemes. The electrodes are surrounded by the encapsulating material
which is at ground potential.

As documented by Gatti et al. [40], in the AC equivalent scheme, the
depleted detector can be described by a network of capacities: Each electrode
i is coupled to ground by the capacity Cii and to each of the other electrodes j
by a capacity Cij which is typically of the order of a few pF. These capacities
are resulting from the crystal geometry and the encapsulation. The current
induced on electrode i by movement of free charge carriers inside the detector
is given by For. 3.6 and is incorporated in the model by an AC current source
ii generated between ground and electrode i. These currents cause that the
electrode potentials differ from ground and will take on the value vi. The
relation between these voltages and the currents is given by Kirchhoff’s law:

i0 = v0/Z00 + (v0 − v1)/Z01 + (v0 − v2)/Z02

i1 = v1/Z11 + (v1 − v0)/Z01 + (v1 − v2)/Z12

i2 = v2/Z22 + (v2 − v0)/Z02 + (v2 − v1)/Z12

with impedance Zij = sCij
−1 as written in Laplace1 transformed space.

1Use the substitution s = iω if the Fourier transformed space is preferred.
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This can be more elegantly casted into a matrix form:

~i =




i0
i1
i2


 =




∑
i Z

−1
0i −Z−1

01 −Z−1
02

−Z−1
01

∑
i Z

−1
1i −Z−1

12

−Z−1
02 −Z−1

12

∑
i Z

−1
2i


 ·




v0

v1

v2


 = Z−1 · ~v (4.1)

The non-diagonal matrix elements of Z−1 couple the potentials to cur-
rents induced on other electrodes. These elements are thus responsible for
the appearance of crosstalk. Their influence can only be reduced by de-
creasing the segment to ground impedances, such that off-diagonal elements
become negligible. This has to be realized in the interface between detector
and preamplifier.

4.2 The detector-preamplifier interface

When the detector is coupled to the preamplifiers, For. 4.1 remains valid,
provided we adapt the impedances accordingly. In reality, the detector is
connected to the preamplifiers as shown in Fig. 4.2. This picture differs
from Fig. 2.5 in the point that the cold FET is not explicitly shown as it
is principally a part of the amplifier. The detector is biased over the load
resistor Rl. The core is AC coupled to its preamplifier using a large capacity
Cac, while the segments are DC coupled.

The AC equivalent circuits for the calculation of the impedances in
For. 4.1 are shown in Fig. 4.3. The capacities Cii and CFET are normally
matched in order to optimize on the preamplifiers noise performance (see
[21, 41],[22, p.72]). Therefore they are both in the lower pF range. For our
detector, the following values are realized:

Rl = Rfb = 1.2GΩ
Cii ≈ CFET ¿ Cac = 1200 pF < ACfb ≈ 20 nF

In both AC and DC schemes, the feedback loop has been replaced by
their Miller2 equivalents. For the DC coupled segments (see Fig. 4.3b.),
this causes that the detectors intrinsic capacity Cii between segment i and
ground and the FET input capacity CFET is quasi short connected by the
much larger Miller capacity ACfb. We therefore identified that

∀i > 0, Zii = Zfb = [sACfb + A/Rfb]−1 (4.2)

For the AC coupled core electrode (Fig. 4.3a.), the situation is slightly more
complicated. The impedances Rfb and 1/sC00 are effectively short connected

2For a comprehensive introduction to the Miller effect, see [42], which also includes the
original paper.
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Figure 4.2: A schematic layout of the coupling between detector and pream-
plifiers.

by the series circuit of Cac with Zfb. The capacity CFET can again be
neglected with respect to ACfb. The impedance between core and ground
therefore becomes

Z00 = 1/sCac + Zfb (4.3)

Since typically Cac < ACfb, Z00 ≈ 1/sCac and thus the core is less effectively
coupled to ground than the segments, for which we have Zfb ≈ 1/sACfb.
This will cause that an AC connected preamplifier is more contributing to
crosstalk than a DC connected preamplifier.

The impedances between electrodes are not affected by the coupling with
the preamplifiers. Summarizing for our twofold segmented detector model,
we can therefore in good approximation write:

Z−1 =




Z00
−1 −sC01 −sC02

−sC01 Zfb
−1 −sC12

−sC02 −sC12 Zfb
−1


 (4.4)

4.3 General solution

To calculate the potentials ~v = Z ·~i on the electrodes, we need a method
to invert the matrix Z−1 for the general case. We have that the diagonal
matrix elements in Z−1 are big compared to the off-diagonal elements, as
we expect only a small crosstalk. On top, this matrix is symmetric, which
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Figure 4.3: AC equivalent of the coupling between detector and preamplifier.
a). AC equivalent for an AC coupled amplifier. b). AC equivalent for a DC
coupled amplifier.

makes that its inverse Z will also be symmetric: Observed at the electrodes,
the crosstalk from segment i to j is equal to the crosstalk from segment j
to i. The off diagonal matrix elements of Z will again be small compared to
its diagonal elements. We can therefore write that

Z−1 = Zd
−1 + ε

Z = Zd + δ

Z−1 · Z = 1 + ε · Zd + Zd
−1 · δ + ε · δ (4.5)

Such that the matrix Zd
−1 only contains the relatively big diagonal matrix

elements of Z−1 and has the simple (diagonal) inverse Zd. The term ε · δ in
For. 4.5 is of second order compared to the other terms, and can therefore
be neglected. We thus obtain a simple formula for δ:

δ = −Zd · ε · Zd

Since Zd is diagonal, the matrix multiplication turns out to be of a very
elementary form:

δij = −Zdii εij Zdjj



30 The detector-preamplifier connection

For a general quasi-diagonal system, therefore the simple inverse is obtained:

Z =




Z00 −Z00Z11
Z01

−Z00Z22
Z02

· · ·

−Z00Z11
Z01

Z11 −Z11Z22
Z12

· · ·

−Z00Z22
Z02

−Z11Z22
Z12

Z22 · · ·
...

...
...

. . .




(4.6)

4.4 The transfer function

For the DC coupled segment i, the voltage at the preamplifier output, ac-
cording to the AC equivalent scheme Fig. 4.3b, is simply vouti = Avi. For the
AC coupled core, the voltage is reduced by a voltage divider. The correct
relation is therefore vout0 = AZfbv0/Z00. The relation between ~vout and ~v
can therefore be written as:

~vout = A ·



Zfb

Z00
0 0

0 1 0
0 0 1


 · ~v

Combined with For. 4.6, we obtain a transfer function for the detector-
preamplifier system:

~vout = AZfb ·



1 −sC01Zfb −sC02Zfb

−sC01Z00 1 −sC12Zfb

−sC02Z00 −sC12Zfb 1


 ·~i (4.7)

Remark that the transfer matrix is no longer symmetric. The total
registered charge is therefore different from zero. All channels will suffer
from baseline shifts as soon as any segment is hit. The amplitude of these
shifts will depend on the specific hit pattern of the event. Consequently,
a simple calibration for a segmented detector can become rather complex
when looked at in detail.

4.5 Back in time(-domain)

The diagonal elements of matrix 4.7 describe a charge integration. This is
easily verified using the inverse laplace transform L −1 [43],[44, p.1019]. In
the time domain, AZfb ·~i becomes a convolution of ~i(t) with the transfer
function L −1(AZfb):

L −1(AZfb) =

{
1

Cfb
e−t/τ if (t ≥ 0)

0 elsewhere
(4.8)
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Figure 4.4: Comparison of the time dependence of crosstalk, equations 4.9
and 4.10 to the main response, Eq. 4.8. The signals were normalized at t = 0.
For Eq. 4.9, a ratio C01/ACfb = 20 was used.

The exponential decay has a time constant τ = RfbCfb
∼= 1ms. This corre-

sponds to the characteristic decay time of the first stage of the preamplifier
(see chapter 2.3).

The biggest crosstalk components are caused by the off-diagonal ele-
ments sC0iZ00 ≈ C0i/Cac. This causes crosstalk on the promille level in the
segment signals, of which the shape is proportional to the core signal. More
exact, by back transformation we obtain the response function:

L −1(AZfbsC0iZ00) =
[

C0i

Cac
+

C0i

ACfb
(1− t/τ)

]
·L −1(AZfb) (4.9)

The crosstalk induced by segments is given by the off-diagonal terms
sCijZfb ≈ Cij/ACfb. These amplitudes are typically below the promille
level. The exact line shape of segment-to-segments induced crosstalk is
predicted as:

L −1(AZfb
2sCij) =

Cij

ACfb
(1− t/τ) ·L −1(AZfb) (4.10)

The time dependency of the induced crosstalk is summarized in Fig. 4.4.
Since the amplitudes of these functions is evaluated in the lower µs range
(t ¿ τ), the differences in line shape will not be observed.

The effect the core decoupling capacity has on the crosstalk was exper-
imentally verified by Weißhaar [45]. The results are shown in Fig. 4.5. The
effect of crosstalk was analyzed by observation of the energy shifts it causes
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on the segment sum of multiply hit segments with respect to single hits. The
observed shifts clearly show an inverse proportional behavior as expected
from For. 4.9. Similar crosstalk measurements were recently performed on
an AGATA detector. The obtained data shows remarkable resemblance with
the model [46]. It demonstrated that (proportional3) crosstalk can be con-
trolled down to the promille level such that first order effects as described
by this model become visible.

Figure 4.5: Crosstalk observed in segments as function of the decoupling
capacity (Figure taken from [45]).

3see next chapter



Chapter 5

Response Functions

Looking at the schematic overview in Fig. 2.5 of the front-end electronics, one
realizes that the signals digitized in the ADC’s differ considerably from the cur-
rent signals produced in the detector. Using an appropriate description of the
charge dynamics and weighting potentials, the charge signals are calculated as
they appear on the electrode surfaces of our detector (see chapter 3). To com-
pare these calculations with the signals as registered by the ADC’s, one has two
options. The simulation either has to be convoluted with the response functions
of the preamplifier, the Nyquist filter and the amplifier stage in the DGF, or the
measurement needs to be deconvoluted with these responses. Since the second
option is a mathematical ill-posed problem, the first option is preferred.

5.1 The Analog Front-end Response

The straight forward way to measure these responses is to use a pulse gen-
erator. Unfortunately, in the cryostat of the detector under measurement
(as well as in all MINIBALL’s detector cryostats) there is no test input
available. Therefore the response of the detector/preamplifier stage was
simulated with a PB-4 Pulse Generator with 50 ns (measured 46.5-49 ns)
rise time and 50µs fall time, values very close to the real transfer function
of the PSC823 charge sensitive preamplifier. This pulser signal P (t) was fed
directly into the DGF’s. The derivative of the pulser signal as recorded by
the DGF can then be taken as the combined response function of preampli-
fier and DGF.

Since in the final characterization method an averaging procedure is ap-
plied to the traces, also the influence of this procedure in the simulation has
to be taken into account. A simple way to deal with this is by absorbing
the effect of the averaging procedure in the response function. Therefore
about a thousand of these pulser signals were recorded for each channel of
the DGF’s. The average of these traces was taken analogously to the pro-
cedures the real data analysis is submitted to. In this way, the influence of
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Figure 5.1: Comparison between the theoretical (equation 5.1) and a mea-
sured response function. The integrals of the responses were normalized to
an arbitrary number. The insert shows a zoom on the long tail observed in
the measured response.

the averaging procedure is passed onto the response function.
The averaged response functions were found to be in good agreement

with theoretical expectations for the electronics shown in Fig. 2.5. The
theoretical model for the response function R(t) consist of the derivative
of the pulser signal P (t), as measured by a high quality oscilloscope, four
times convoluted with the response of a first order Nyquist filter to obtain
the forth order anti-aliasing filter present in the DGF’s (corner frequency
Fc = 20MHz) and finally convoluted with the response of the averaging
procedure. The latter is shown in the next section to correspond to a sym-
metrical triangular function C(t; Ts) of which the FWHM value equals the
sampling period Ts = 25 ns. The theoretical expression for the response
function R(t) therefore becomes:

R(t) =
dP (t)

dt
⊗ C(t; Ts) ⊗

{
(1− 2πFct)3e−2πFct if (t ≥ 0)
0 elsewhere

(5.1)

This function is compared in Fig. 5.1 with a typical response obtained
using a pulse generator. Its FWHM = 80ns is in good agreement with the
measured width. However, the measured traces show a long tail, which has
a small negative part as seen in the insert in Fig. 5.1. This part causes an
overshoot in the measured traces and therefore demonstrates the necessity
for the implementation of measured response functions in the simulation
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Figure 5.2: Comparison of raw 60 keV data (sampled at 40 MHz) with its
average. The picture shows an event at 1 cm depth, near the segmentation
line between segment 1 and 6 (for labeling of segments see Fig. 5.3)

rather than to rely on theoretical models. Response functions with a time
basis longer than 1.5µs were employed to account for the observed effect.

5.2 Averaging routine

Single events usually contain too much noise to extract qualitative mobility
data and therefore the noise has to be averaged out. It is evident that
the influence of this averaging procedure has to be accounted for and the
inclusion of its effect in the total response function is very attractive because
of its simplicity. Averaging becomes necessary particulary when working
with low energy γ-rays as is the case in the characterization of the electron
mobility (chapter 9). An example of a single 60 keV event is shown in Fig. 5.2.
Without averaging, the noise in such events would dominate the traces fine
structure. However, the noise reduction is not the only motivation for the
averaging procedure. Using a collimator setup, the region in which the
crystal interacts with the collimated beam cannot be infinitesimally small. In
cases where the influence of this finite volume is not negligible, the averaging
produces an event which is a statistically better defined representative for
the selected volume. This property is especially of use for the hole mobility
characterization as will be discussed in chapter 10.

As the digital electronics is based on a 40MHz sampling frequency, av-
eraging has to take into account that all the pulses are distributed along
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wide 25 ns intervals in time and a time alignment is needed. The averaging
routine runs a single time through the data set and systematically updates
the average when it finds an acceptable event. For the update, the core
or the active segment is fitted with the average in order to obtain the best
possible time alignment of this segment before this event is absorbed into
the average. In this procedure, the time shift is not limited to be a multi-
ple of a 25 ns DGF time tick. A linear interpolation is used to transform
the shifted sampling of the event to time ticks that are coincident with the
average Tav(t).

The influence of the average procedure can now be understood as follows.
A single event only possesses information on the ideally measured trace T (t)
sampled at distinct intervals ∆T (=25 ns). Suppose that the last sample
point before time t lies a distance y before this time t. The value T (t) is
then approximated using a linear interpolation of the samples T (t− y) and
T (t−y+∆T ). The trace T (t) can be measured several times independently.
Each new event will give a different y. Statistically, these time shifts y are
homogeneously distributed in the interval [0 · · ·∆T ] and the statistic average
Tav becomes

Tav(t) =
1

∆T

∫ ∆T

0
T (t− y) +

y

∆T
(T (t− y + ∆T )− T (t− y))dy (5.2)

This expression can be rewritten in the form of a convolution1:

Tav(t) = C(t)⊗ T (t) (5.3)

C(t) =





1 + t/∆T if −∆T ≤ t ≤ 0
1− t/∆T if 0 ≤ t ≤ ∆T
0 elsewhere

(5.4)

in which C(t) has a triangular symmetric shape and contains the influence
of the sampling period ∆T . In this way the average Tav(t) is not restricted
to the sampling rate, but the signal can be reconstructed at any time t. The
averages that were built and shown e.g. in Fig. 5.2 are built at an equivalent
sampling rate of 400MHz rather than the original 40 MHz.

5.3 Crosstalk

Crosstalk is another component of the signal deformation which has to be
described precisely and corrections for its existence need performed. Some
crosstalk is inherently connected with the use of an AC coupled core pream-
plifier as pointed out in chapter 4. However, the existence of other types

1The penalty of the extra convolution could in principle be reduced by using a his-
togramming procedure of the shifts y instead of the interpolation. Such procedure however
would need much more statistics and turned out more complicated to realize in practice.
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of crosstalk is not excluded. For these highly segmented detectors crosstalk
has been observed [47, 48] to consist of two components. One component
is directly proportional to the inducing signal. We will refer to this type as
proportional crosstalk. It is obvious that proportional crosstalk is particu-
larly harmful to energy resolution. The second component is proportional
to the derivative of the induced signal and will be addressed as derivative
crosstalk. Since the derivatives of charge signals are only non-zero during the
rise time of the inducing signal, derivative crosstalk is especially important
for position spectroscopy.

5.3.1 Proportional Crosstalk

1 2

345

6

7 812

Figure 5.3: Schematic view
of the crystal indicating the
labeling of the 12 segments
of the detector. Observed
crosstalk induced by a seg-
ment is only picked up by its
three closest neighbors. Two
examples illustrate this behav-
ior: a charge signal in front
segment 1 induces crosstalk
signals in segments 2, 6 and
7; a charge signal in back seg-
ment 7 induces crosstalk sig-
nals in segments 1, 8 and 12.

The proportional fraction will cause shifts
in energy whenever two neighboring seg-
ments are hit. It is therefore also of im-
portance in building energy add-back spec-
tra. Fig. 5.4 shows the typical proportional
crosstalk amplitudes in segments as func-
tion of the angle as a 60 keV source is moved
at constant depth, 1 cm behind the front
surface, around the detector. All segments
suffer from a lowering of the baseline, inde-
pendently on which segment is hit. These
crosstalk fractions are induced by the core
such as the mechanism described in chap-
ter 4. The lowering is less for front seg-
ments than for back segments. Propor-
tional crosstalk induced by the core (see
Fig. 5.4) is −0.66% of the core signal for
a segment in the back and −0.30% for a
segment in the front2.

Besides the common fractions caused
by the core signal, an additional shift of
the baseline can be observed when a direct
neighboring segment is hit. This is caused
by the proportional crosstalk coming from
the neighbor segment. Data from direct
neighboring segments to hit segments were
therefore excluded from Fig. 5.4 and shown
separately in Fig. 5.5. Observed propor-
tional crosstalk between segments always

2Amplitudes will always be quoted relative to the core signals amplitude
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existed between direct neighbors as shown in Fig. 5.3.
An average value of−0.77% was measured between proportional crosstalk

going from front to back as can also be deduced from Fig. 5.5. Other
segment-to-segment crosstalk was observed to be less. Such crosstalk is
attributed to a weak capacitive (on the order of fF!) coupling between a
drain and a source of different amplifiers as explained by Pullia [49].

The segment-to-segment proportional crosstalk still visible in Fig. 5.5 was
consequently reduced to below 0.1% after building the same detector into a
new cryostat with better shielding between FET’s. Also the core to segment
proportional crosstalk was slightly reduced. This proportional crosstalk is
in agreement with the values reported by Weißhaar [45] for the first AGATA
detectors.

5.3.2 Derivative Crosstalk

The difficulty in detecting derivative crosstalk is to distinguish between
crosstalk and transient components of the signal. Taking advantage of the
high segmentation of the detector, a method was developed to isolate deriv-
ative crosstalk and to cancel all transient information from a combination
of traces from different events.

The novel method to determine the derivative crosstalk exploiting the
segmentation of the detector is based on two neighboring events consisting
both of single interactions within a very close range, e.g. interactions at
point A and point B in Fig. 5.6. The charge carriers of interactions from
both points will be collected by separate segment electrodes, SegA and SegB.
Since all other segment electrodes besides SegA and SegB cannot resolve the
small difference in position, the transient signals induced in any electrode
SegX besides SegA and SegB primarily do not depend on a very small po-
sition difference between A and B. The signals symmetrically change as
indicated in Fig. 5.6 when changing from events at point A to events at
point B. As a consequence, when both normalized charge signals are sub-
tracted, the same residual in SegA will show up but inverted in SegB. The
residuals in all other segments will be zero.

In case of crosstalk from SegA or SegB to SegX , nonzero residuals will
appear in SegX . The difference in sign between the residuals in SegA and
SegB contains information on whether the crosstalk is caused by the signal
in SegA or by SegB. By investigation of all possible combinations of SegA

and SegB, it was observed that derivative crosstalk appears only in direct
neighboring segments to SegA or SegB and behaves also as indicated in
Fig. 5.3.

A typical experimental result of the described crosstalk analysis is shown
in Fig. 5.7. In this case, a collimated 241Am source was placed on the seg-
mentation line between SegA=1 and SegB=6. All the trace residues A − B
after subtraction of the normalized events are shown. Including the response
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Figure 5.6: A novel method to extract derivative crosstalk in segments SegX

is based on the charge pulses which are caused by interactions close to the
segmentation line between SegA and SegB. To illustrate the procedure only
schematic pulses and subtracted pulses are shown. Ideal pulses from mea-
surements done at position A and B are subtracted. Derivative crosstalk
contributions would be determined from non-vanishing pulses in segments
SegX in row c (details see text).

function of the analog electronics, the measured signals in Fig. 5.7a,b com-
pare very well to the residuals in Fig. 5.6a,b. The events A, B are built by
averaging all events that hit Seg1 and Seg6, respectively. The signal in Seg6

is the inverse of Seg1 as expected. The residues in all segments, excluding
direct neighbors to Seg1 or Seg6, are summarized in Fig. 5.7c. They do not
reveal any significant crosstalk. However, the direct neighbors to Seg1 and
Seg6 – grouped together in Fig. 5.7d and Fig. 5.7e respectively – obviously
show crosstalk: Seg2 and Seg7 have the sign of a derivative crosstalk from
Seg1, while Seg5 and Seg12 follow the sign of the signal in Seg6. This is
in agreement with the assumptions made that the derivative crosstalk is
only propagating to direct neighboring segments as illustrated in Fig. 5.3.
In Fig. 5.7f, the amplitudes of the proportional and derivative fractions in
the crosstalk induced by Seg6 in Seg12, as shown in Fig. 5.7e, are fit by using
the shape of Seg6. The optimum fit to the crosstalk consists of 0.72% Seg6

+ 503%ns dSeg6/dt. The maximum induced derivative crosstalk amplitude
in Seg12 amounts to 4%.

The derivative crosstalk is depending on the rise time of the inducing
signal. Their amplitudes are therefore expressed in %ns. An inducing signal
with a rise time of 200 ns would thus on average induce a 1% amplitude
if the derivative crosstalk amplitude is 200%ns. The measured derivative
crosstalk amplitude is typically about 700% ns for a crosstalk going from
front to its neighboring back and around 500%ns in the opposite direction.
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Figure 5.7: Measured results on the residues using the crosstalk detection
method. The graphs a),b),c) shows the corresponding residue pulses to
Fig. 5.6. Figure c) contains the pulses of no direct neighbor segment to Seg1
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respectively. f): The residue in Seg12 is fitted exploiting the shape of the
inducing signal (Seg6).



42 Response Functions

-4000

-3000

-2000

-1000

0

1000

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ns]

am
p

li
tu

d
e

Sum

Crosstalk corrected sum

Total Proportional Crosstalk: 5.3%

Maximum residue : 4.2%

Figure 5.8: The segment signal sum after subtracting the core signal before
and after crosstalk correction.

Other segment to neighbor crosstalk is smaller (<300%ns).
Unlike the proportional crosstalk, the origin of this crosstalk is attributed

to construction compromises imposed by practical limitations. Similar am-
plitudes are expected in the new AGATA detectors. Such crosstalk could be
due to bad determined grounds as discussed by Pullia [50]. The use of coax-
ial or twisted pair cables for the return grounds around drain and feed-back
should diminish this effect. At the same time, it is expected to improve on
the stability of the preamplifiers against oscillation.

The quality of the crosstalk correction was checked by comparing the sum
of all segment signals with the core signal, which should be equal according
to For. 3.12. After crosstalk correction and subtracting the core, a residue
of typically 4.0% was observed. Since this residue is the sum of 13 signals,
it is expected that in every channel the crosstalk is corrected on average to
less than 0.4%. This remaining part may be caused by derivative crosstalk
induced by or picked up by the core which is not isolated by this method.

In the theoretical introduction and Fig. 5.6, the residuals after subtrac-
tion in SegA and SegB were depicted as true step functions. Instead of giv-
ing a mathematical proof, experimental evidence is given by comparing the
derivative of the residuals with the measured response function. The com-
parison shown in Fig. 5.9 clearly demonstrates that the residuals are thus as
close to a true step function as the analog front-end electronics allow. This
has the advantage that the amplitude of the derivative is maximized, which
facilitates the detection of the derivative crosstalk in noisy signals.
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demonstrating that the residuals in Fig. 5.6a,b can be indeed described by
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Chapter 6

Introduction to Mobilities

The final properties we need to know to understand the measurable charge
pulses are the electron and hole drift velocities and this throughout the whole
volume of the detector. These drift velocities are proportional to the applied
field. The proportionality constant is called the mobility. At high field strengths,
this coefficient becomes dependent on the field strength itself and moreover, in
germanium, it develops from a scalar quantity into a tensor. Problems related
to finding the electrical field inside the detector are more of practical nature and
will be explained in this chapter. To describe the mobility with high precision is
a challenge both for theory (chapters 7,8) as in practice (chapters 9,10).

6.1 A Poisson Solver

The rather complex geometry of the MINIBALL detector crystal (see Fig. 2.3)
– but also future tapered, polygonal Ge detectors – require numerical so-
lution both for the weighting potentials discussed in chapter 3 as for the
electrical field. The weighting fields are actually the properties of the detec-
tor which can be calculated most accurately because they are not influenced
by space charge. The space charge created by the ionized donor impurities
in the depleted region of the detector greatly influences the electric field in
the detector. Hence, to come to a detailed understanding of the charge col-
lection process in such a detector, a numerical program to solve the Poisson
equation (a Poisson solver) is necessary.

Such a numerical Poisson solver was developed according to the princi-
ples described in [51] and is conform with the commercially available pro-
gram Simion 7.0 [52]. The 3D calculation of the potentials are based on a
rectangular grid. To test the performance and reliability of the novel calcula-
tion, a true coaxial segmented detector was simulated. From the comparison
with an expansion in cylindrical harmonics (For. 3.15), it was found that a
0.5mm grid distance was sufficient to simulate the weighting potentials of
the true coaxial detector with a relative error of less than 1%.
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According to Mihailescu [53], the passivated surface at the back of the
detector should act ideally like an electrostatic mirror. Homogeneous Neu-
mann boundary conditions were applied to these surfaces in order that the
equipotential lines would end up perpendicular to the passivated surface.
The true field however could suffer from field inhomogeneities near the edges
of the detector due to the limited knowledge on the real boundary.

A cylindrically symmetric space charge ρ(r, z) is assumed with a distri-
bution that varies linearly in radius and depth. The whole space charge
potential is then specified by means of four values. These values were de-
rived from electron mobility data as discussed in chapter 9.4 to be (in units
of 1010 impurities/cm3):

ρ(r = 0, front) = 0.0 ρ(r = 37mm, front) = 2.0
ρ(r = 0, back) = 2.0 ρ(r = 37mm, back) = 1.0

The results of the calculations for this type of detector are shown in
Fig. 6.1. The electric field strengths with and without space charge are com-
pared. Note how the space charge relocates the high field regions. Without
space charge, the highest fields can be found near the core. By inclusion
of space charge, the high field regions are redistributed towards the outer
contacts as indicated by the arrows in Fig. 6.1.

6.2 Modeling the Mobility

[100]

[010]

[001]

Figure 6.2: The diamond lattice struc-
ture of germanium. The lattice con-
stant a equals 5.66 Å. [54, p.76]

Once the electrical field is speci-
fied, the electron and hole drift ve-
locity can be mapped throughout
the detector volume using the mo-
bility models described in the next
chapters. In mapping the drift ve-
locities, the crystal orientation turns
out to play an important role. A
discussion of germanium crystal pro-
perties and related terminology is
thus of use. Germanium has a dia-
mond lattice structure as shown in
Fig. 6.2. If one corner of a unit cell
of this crystal is placed in the ori-
gin of a Cartesian coordinate sys-

tem, such that the positions (1, 0, 0), (0, 1, 0) and (0, 0, 1) are occupied by
other corners of the same unit cell, this coordinate system is aligned with
the principal 〈100〉 directions. Because the detector has a single-crystalline
structure, the crystal orientation is fixed throughout the detector volume.
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Such single-crystalline germanium structures are manufactured using the
Czochralski technique [55]. In this process a seed crystal is dipped into
molten germanium and then slowly withdrawn, while the temperature of
the melt is just maintained above the freezing point. The depth direction of
the final detector therefore inherits the direction of the initial seed in which
the crystal was withdrawn, which is a 〈100〉 direction.

As long as the electron and hole temperatures do not differ much from
the lattice temperature, the drift velocity is proportional to the electrical
field and the lattice orientation has no influence. In this case the ratio be-
tween drift velocity and electrical field strength is given by the mobility
coefficient µ0. When the temperature of the electrons rises above the lat-
tice temperature – so called hot electrons – the electron drift velocity in a
semiconductor will not be parallel to the applied electrical field but will be
influenced and determined by the crystal lattice orientation. One speaks
here from an anisotropic mobility. This effect was first discovered by Sasaki
et al. [56] and is observed for electrons as well as for holes. Also germanium
detectors cooled at liquid nitrogen temperature are affected by the effect.

That the average motion of the electrons is not aligned with the applied
external field might be surprising and is demonstrating that the internal
fields cannot be neglected. In absence of the external field, the systems
Hamiltonian describes the interaction of the electrons with the ion lattice and
the electron-electron interactions. The complicated many electron system
can be approximated by an effective Hamiltonian, in which the electrons
behave independently (Bloch electrons). The effective Hamiltonian inherits
the periodicity of the underlying lattice structure. The behavior of electrons
under action of such periodic potentials can be studied with Bloch functions
[54, p.133]. These state that the eigenfunctions of such systems can be
found under the form of plane waves, modulated by a function u(~r ) with
the periodicity of the lattice:

Ψ
n,~k

(~r ) = exp(i~k · ~r ) · u
n,~k

(~r ) (6.1)

The first index n is called band index and the second discrete index ~k is
obviously a wave vector. The possible wave vectors can be limited within
the first Brillouin zone of this lattice. For germanium, this turns out to be
a Wigner-Seitz cell as shown in Fig. 6.3a. Standard labels of the symmetry
points and axis of this particular type of cell are indicated.

The ~k-dependence of the energy εn(~k) associated with a fixed index n
varies continuously with ~k and is a periodic function over the reciprocal
lattice. This explains the origin of the energy band structure indexed with
n. A part of the band structure of germanium is shown in Fig. 6.3b (see
also [54, p.570]). The whole band structure would be a 4D graph. Therefore
the band structure is traditionally only shown at symmetry points of the
Brillouin zone and on the line in ~k space which connects them. The labels
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on the k-axis correspond to the symmetry points indicated in Fig. 6.3a.
Even for high external fields, interactions with the lattice vibrations

(phonons) will prevent that energy levels can be reached far from equilib-
rium. In Fig. 6.3b, only the band structure in the close vicinity of the energy
gap is of importance (locations where free electrons and holes are situated are
indicated). The particular shape of these energy bands near these extrema
predict preferential directions in which the electrons and holes are easier to
accelerate by external fields through effective masses [54, p.228, 568]. It is
the dependency of these effective masses upon the lattice orientation which
forms the basis for the observed anisotropic mobilities.

For a fixed electrical field strength, both the projection of the drift veloc-
ity in the field direction and the drift component perpendicular to the field
is depending on the field orientation with respect to the crystal lattice. The
drift velocity anisotropy in both components are referred to as longitudinal
anisotropy and transverse anisotropy respectively.

Due to the crystal lattice symmetry in germanium, in three directions –
the crystallographic 〈100〉, 〈110〉 and 〈111〉 directions – the mobility however
always has to be aligned with the electrical field: If the electrical field is
oriented along a symmetry axis, the crystal plus field becomes invariant
under a specific rotation. Therefore, the drift velocity necessarily also has
to show this invariance. Consequently, the drift velocity has to be aligned
with the symmetry axis.

Along symmetry directions, we therefore obtain direct information on the
longitudinal anisotropy. Experimental data on the longitudinal anisotropy
vl in these specific directions can be found in literature. This mobility data
can be well fitted in any principal crystallographic direction l with the para-
metrization reported by Knoll [31, p.423]:

vl =
µ0E

(1 + ( E
E0

)β)
1
β

− µnE (6.2)

At low fields, the mobility becomes isotropic and therefore the mobility fit
parameter µ0 is expected to become independent of the crystallographic
direction. For hot electrons, the departure from a linear vl − E relation
is modeled through the parameters E0 and β. At high fields, Mihailescu
et al. [58] have added the term µnE to account for the Gunn effect that
was observed by Ottaviani et al. [59] for field strengths above 3 kV/cm at
80K. However, this effect is insignificant in our detector operating with
field strengths (0.1-3 kV/cm) below the critical field strength as seen from
Fig. 6.1. Therefore, this term is not necessary. Parametrization values on
experimental longitudinal anisotropy data are summarized in Table 6.1.

The parametrization given in Table 6.1 does not only fix the mobility in
two distinct directions of the electrical field but it determines the mobility
in any direction. The anisotropy in the general case is related to the longi-
tudinal anisotropy in the 〈111〉 and 〈100〉 direction and is in fact completely



6.2 Modeling the Mobility 49

specified by the latter. For the electron mobility, this relationship will be
subject of the next chapter. For the hole mobility, a new model is presented
in chapter 8 which establishes a similar relation.

Electron mobility parameters (µ in [ cm2

V s ])
〈100〉 direction 〈111〉 direction

Ref. µ0 β E0[ V
cm ] µn µ0 β E0[ V

cm ] µn

A: [58] 40180 0.72 493 589 42420 0.87 251 62
B: ch. 9 38609 0.805 511 -171 38536 0.641 538 510

Hole mobility parameters (µ in [ cm2

V s ])
〈100〉 direction 〈111〉 direction

Ref. µ0 β E0[ V
cm ] µn µ0 β E0[ V

cm ] µn

C: [60] 66333 0.744 181 - 107270 0.580 100 -
D: ch. 10 61824 0.942 185 - 61215 0.662 182 -

Table 6.1: An overview of charge carrier mobility data in Ge at 78 K. The fit
parameters to Eq. 6.2 for the electron and hole mobility along the 〈100〉 and
the 〈111〉 direction are presented. The parameters obtained from the data
by Reggiani et al. [60] correspond to the fit shown in Fig. 8.3. Also data
obtained through the characterization methods explained in chapters 9, 10
are listed.
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Figure 6.1: Calculated electrical field and potential in a MINIBALL de-
tector. Top: Comparison between the electrical field strength with and
without space charge. The arrows indicate the reversal in the gradient of
the electrical field strength by the space charge. Bottom: The corresponding
equipotential lines demonstrating the influence of the space charge on the
potential.
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Figure 6.3: a): The first Brillouin zone in germanium. Standard labels
of symmetry points and axis of the cell are indicated (see [57, p.199]). b):
The germanium band structure. Band gap, conduction band minimum and
valence band maximum are indicated [57, p.229]. a corresponds to the lattice
constant of 5.66 Å.





Chapter 7

Electron Mobility Model

In this chapter, it will be described how the electron mobility parametrization
for specific crystallographic directions can be used to predict the electron drift
velocity at any field strength and at any orientation of the field with respect to
the crystal lattice orientation. The model described here is owing to Nathan
[61] and dates back to the 1960’s. As presented here, it deviates slightly from
the implementation as described by Mihailescu et al. [58] with regard to the
treatment of the valley population.

7.1 Layout of the model

<010>

<001>

<111>

Figure 7.1: Germanium has eight
equivalent minima in the conduc-
tion band, situated at the edge of
the Brillouin zone. A surface of
constant energy is shown to reveal
the ellipsoidal shape of the valleys
around these minima.

For the germanium band structure,
the electrons are populating eight half
ellipsoidal shaped valleys near the edge
of the Brillouin zone along the four equiv-
alent 〈111〉 directions as shown in Fig. 7.1
and Fig. 6.3b. With a suitable choice
of primitive cell in k-space these can
be represented as four valleys, the half
ellipsoids on opposite faces in Fig. 7.1
being joint together [54, p.570]. For
each of these four valleys i ∈ [1 · · · 4],
one can apply a linear transformation
~k∗i = αi

1/2~k on the wave vectors ~k such
that in the new coordinate system the
ellipsoid valley i is converted into a spher-
ical valley. The tensor αi is called the
electron effective mass tensor. This ten-
sor becomes diagonal when the coordi-
nate axis is chosen to coincide with the
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principal axis of the elliptic valley under consideration. In general the tensor
αi is given in terms of the rotation matrices Ri, responsible for aligning the
y-axis of the lab system with the i-th 〈111〉 axis by:

αi = RT
i ·




m−1
t 0 0
0 m−1

l 0
0 0 m−1

t


 ·Ri (7.1)

The mass values for ml = 1.64 and mt = 0.0819 were taken according to
Mihailescu et al. [58]. The electrical field and the drift velocity transform
then as ~E∗

i = αi
1/2 ~E and ~v∗i = αi

−1/2~v (see [62, p.187]).
Since in ~k∗i -space, the valley i becomes spherical, the mobility relation for

this valley in its mass-transformed frame takes on the isotropic form [62, 63]

~v∗i ( ~E) = −µ∗(E∗
i ) ~E∗

i (7.2)

in which µ∗(E∗) is a scalar quantity only depending on the amplitude of the
effective field strength E∗. The minus sign makes the electrons flow in the
opposite direction of the applied electrical field.

In ~k-space, the total drift velocity ~vd becomes the weighted average of the
drift velocities associated with the individual valleys. The drift velocity ~vi of
valley i contributes ~vi = −µ∗(E∗

i ) αi
~E, weighted by the relative population

ni of this valley (
∑4

i=1 ni = 1). The total drift velocity thus yields:

~vd( ~E) = −
4∑

i=1

ni µ
∗(E∗

i ) αi
~E (7.3)

7.2 Parametrization of the model

It is now possible to identify the effective mobility with the v100 drift velocity.
When the field is oriented along the 〈100〉 axis, all four valleys are identically
oriented with respect to the field as seen in Fig. 7.1. Due to this symmetry,
all ni are thus equal to 1/4. Identifying v100 with Eq. 7.3 for this specific
direction then yields

µ∗(E) =
v100(E/Γ0)

Γ0E
(7.4)

in which the constant Γ0 = 2.888 is defined by the mass tensor elements in
Eq. 7.1.

In general, the population of the valleys is governed by the intervalley
scattering rate ν(E∗

i ). The equilibrium valley population can be expressed
as

ni =
ν(E∗

i )−1

∑4
k=1 ν(E∗

k)−1
(7.5)
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Nathan [61] experimentally observed at intermediate field strengths the
power dependence

ν(E) ∝ Eη (7.6)

with η = 0.87, while Reik et al. [64] derived for Maxwellian electron distribu-
tions the theoretical upper limit η = 1. For its parametrization, a log-linear
electric field dependence is satisfactory:

η(E) = η0 + b ln(E/Eref ) (7.7)

The parameters η0 and b in Eq. 7.7, together with the parametrization
of the v100 through Eq. 7.4 completely defines the electron mobility vari-
ation given by Eq. 7.3. The values obtained from our detector yielded:
η0 = 0.496, b = 0.0296 for Eref = 1200V/cm while the v111 experimen-
tal data from Mihailescu et al. [58] could be well reproduced in the region
of interest (100-3000V/cm) with the fit parameters η0 = 0.422, b = 0.201
for Eref = 1200V/cm.

The rather large differences in η predicted by the different data suggest
the necessity for experimental determination of these parameters for detec-
tors with different purity separately rather than to rely on literature data.
The same conclusion can be drawn from Schweitzer et al. [65], which studied
the excess n1 of the cold valley 1 over a uniform distribution ni = n0 = 1/4
for the case in which the field is aligned with the 〈111〉 direction of val-
ley 1. In this case, the three hot valleys are equally strong populated with
an amount of (1 − n1)/3. Identification of Eq. 7.3, in specific for the 〈111〉
direction of valley 1, yields an expression for n1(E):

n1(E) =
v111(E)− Γ2

2 µ∗(Γ2E) · E
Γ2

1 µ∗(Γ1E) · E − Γ2
2 µ∗(Γ2E) · E (7.8)

In which again Γ1 = 0.7809 and Γ2 = 3.305 are constants defined by the mass
tensor elements in Eq. 7.1. The study of Schweitzer et al. was performed on
n-type germanium samples with varying purity. The results – also including
new data from [58] and chapter 9 – are shown in Fig. 7.2. The new n1−n0

n0

values were extracted from the electron mobility data parameters in Table 6.1
using Eq. 7.8.

The drift velocity as function of the orientation of the electrical field (for
E fixed at 1200 V/cm and using the parametrization of a 12-fold segmented
HPGe detector) is shown in Fig. 7.3. For the radial component, the major
deviation from uniformity comes from the strong difference of the mobil-
ity along the 〈111〉 direction. Here it is worth mentioning that the θ and φ
components behave differently than for the hole mobility (see for comparison
Fig. 8.5). In the coaxial part of the detector, the electrical field is restricted
to the θ = π/2 plane. For such fields, the vθ component of the drift velocity
is always zero, while the vφ component will always point towards the near-
est 〈100〉 direction when following the drift velocity direction. Since electron
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Figure 7.2: The excess in population of the cool valley 1 over a uniform pop-
ulation (n0 = 1/4) for the case the field is aligned with the 〈111〉 direction.
The data is taken from Schweitzer et al. [65] and corresponds to samples at
85K. The room temperature resistivities of the samples are shown to indi-
cate the difference in impurity concentration. Also the data from Nathan
[61], Mihailescu et al. [58] and this work (Table 6.1B) are shown for compar-
ison. The dashed line corresponds to the theoretical limit η = 1 from Reik
et al. [64].

drift velocity and electrical field are opposed, the vφ component will always
point towards the nearest 〈110〉 direction when following the electrical field
direction. The vectors in Fig. 7.3f illustrate this behavior. The counterclock-
wise orientation of the vector near 30◦ compared to the clockwise directed
vectors at 60◦ and 330◦ is caused by the opposite sign of the vθ component
as shown in Fig. 7.3f.
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Figure 7.3: Illustration of the electron velocity components in spherical coor-
dinates. a)-c): The radial and angular components of the total drift velocity,
Eq. 7.3, plotted as function of the orientation of the electrical field. The am-
plitude of the electrical field was fixed at E = 1200V/cm and the electron
mobility parameters were taken from Table 6.1B. Projections are shown in
the right part d)-f). Plus and minus symbols indicate the sign of the function
at a specific angle.





Chapter 8

The Hole Mobility Model

In contrast to the electrons, for holes no direct applicable description of the
anisotropic mobility exists in literature. This is due to the rather complicated
mathematical description of the valence band near the maxima. Therefore,
in the past it was more attractive to investigate the hole mobility by means of
Monte-Carlo techniques. As a consequence, a model had to be developed which
is applicable to our purpose.

8.1 Layout of the model

X Y, Z,

<001>

<010>

<100>

Figure 8.1: The hole mobility in
germanium is governed by the re-
gion near the maximum in the
heavy hole band situated at k = 0.
A surface of constant energy of the
heavy hole band is shown in k-
space to reveal the warped spher-
ical shape of this region. This
surface is described by ε(~k) =
constant using equation 8.2.

The maximum energy attainable in
the valence band is found at the center
of the Brillouin zone (Fig. 6.3b). The
band structure in that point is twofold
degenerated into a light hole (0.04m0,
with m0 the free-electron mass) and a
heavy hole band (0.3m0) [62]. The
heavy hole band has a warped spher-
ical shape as shown in Fig. 8.1. Due to
its smaller density of states the light
hole band does not contribute substan-
tially to the mobility. This causes that
at thermal equilibrium, the hole pop-
ulation consists of only 4% light holes
compared to 96% heavy holes (see Con-
well [62, p.61]). The light hole band is
close to spherical and would only con-
tribute with an isotropic drift term. The
next maximum in the valence band lies
0.29 eV lower in energy. These states cannot be populated as this energy lies
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far above the threshold for emitting optical phonons. In addition, a good cor-
respondence between simulation and experiment is achieved by only taking
into account the heavy hole band in the Monte Carlo calculation performed
by Reggiani et al. [60]. Therefore it is well justified that the heavy hole band
is solely responsible for the anisotropic mobility.

Our new model is backed by experiments by Pinson et al. [66] and Alba et
al. [67]. Since germanium has the property of being transparent to infrared
light, the population of the heavy hole band could be studied by measuring
the amount of light that is absorbed as a function of its wavelength. This
led to the conclusion that the heavy holes, accelerated by an electric field,
are trapped in the so called streaming motion: Since the energy loss to
acoustical phonon modes are negligible, the holes are accelerated in the field
until their energy becomes 0.037 eV. At that point their energy is sufficiently
large to emit an optical phonon, a process which is very likely to happen. By
emitting an optical phonon, the hole typically loses most of its energy as it
scatters back into the near-k = 0 region from where it resumes acceleration
in the field direction and a new cycle is started.

From this picture of streaming motion, the properties of the probability
distribution function for finding a heavy hole in a specific ~k-state can be
predicted. The distribution should be peaking in the direction in which ~k
is parallel to the electrical field. As will be shown, this does not exclude
the existence of a transversal anisotropy. Secondly, this distribution should
drop fast to zero above the energy of the optical phonon branch at 0.037 eV.

Empirically it is found that a drifted Maxwellian distribution offers a
good description for the measured wave vector distributions of heavy holes at
field strengths in the range of 130-2150V/cm, relevant for our Ge-detectors.
This distribution takes on the form (e.g. Conwell [62, p.71])

f(~k;~k0) = a · exp(−~2(~k − ~k0)2/2mkbTh) (8.1)

in which a is a normalization constant and m the heavy hole effective mass.
The temperature of the holes is Th and the mean wave vector is ~k0. Th was
observed to be less than the lattice temperature of 77 K. The term hot holes
is therefore somewhat misleading. The kinetic energy ~2k2

0/2m associated
with k0 exceeded the thermal energy from 1.2 kbTh at 130 V/cm to 4.1 kbTh

at 2150 V/cm. From the model on the streaming motion, we assume that
~k0(k0, θ0, φ0) will be aligned with the applied field. Therefore the complete
distribution Eq. 8.1 is defined by only two parameters, k0 and Th, which will
again be obtained from the v100 and v111 hole mobility data.

The model for the energy ε(~k) dependence of heavy holes in germanium
is taken from Reggiani et al. [60, 63]:

ε(~k) = A · ~
2k2

2m0
· [1− q(θ, φ)] (8.2)
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in which m0 is the free-electron mass and A = 13.35 is a germanium-specific
constant. q(θ, φ) describes the warping of the constant energy surfaces, and
θ and φ are the polar and azimuthal angles of ~k with respect to the frame
defined by the three equivalent 〈100〉 axis:

q(θ, φ) = [b2 +
c2

4
· (sin(θ)4 sin(2φ)2 + sin(2θ)2)]1/2 (8.3)

With b = 0.6367 and c = 0.9820 germanium specific parameters. Eq. 8.2,
and Eq. 8.3 describe mathematically the constant energy surface shown in
Fig. 8.1. The drift velocity can then be expressed by combining the distribu-
tion function of the heavy hole concentration (Eq. 8.1) and the ~k dependence
of a specific energy state (Eq. 8.2) yielding

~vd =
~

aπ3/2
√

2mkbTh

∫
~v(~k) f(~k;~k0) d~k (8.4)

in which ~v(~k) is the velocity associated with a specific ~k-state:

~v(~k) =
1
~

~∇kε(~k) (8.5)

The gradient ~∇kε(~k) is thus according to Eq. 8.5 in its spherical coordi-
nates given by:

~∇εk =
A~2k

m0
(1− q(θ, φ))

~∇εθ =
−c2A~2k

8m0q(θ, φ)
(2 sin(θ)3 cos(θ) sin(2φ)2 + sin(4θ)) (8.6)

~∇εφ =
−c2A~2k

8m0q(θ, φ)
sin(θ)3 sin(4φ)

8.2 Theoretical results on the hole model

The numerical evaluation of the three dimensional integral in Eq. 8.4 is still
very computer time consuming. Fortunately, the k-dependence can be inte-
grated over explicitly and only a double integration remains to be performed.
To simplify the notation, the constant factor ~/

√
2mkbTh in Eq. 8.1 will be

absorbed in the definition of k and k0 throughout the rest of the text. In
this way, k0 could be physically interpreted as a solid-state equivalent to the
Mach number in fluid mechanics.

In order to perform the integration in Eq. 8.4, the integrand need to
be expressed in Cartesian coordinates. Eq. 8.4 can then be written more
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explicitly as:

vx(~k0) =
v100(k0)
n(k0)

∫ 2π

0

∫ π

0
X(θ, φ) exp[k2

0(R
2 − 1)]I3(k0R) sin(θ)dθdφ

vy(~k0) =
v100(k0)
n(k0)

∫ 2π

0

∫ π

0
Y (θ, φ) exp[k2

0(R
2 − 1)]I3(k0R) sin(θ)dθdφ

(8.7)

vz(~k0) =
v100(k0)
n(k0)

∫ 2π

0

∫ π

0
Z(θ, φ) exp[k2

0(R
2 − 1)]I3(k0R) sin(θ)dθdφ

of which the functions n(k0), R, (X, Y, Z) and I3 are defined as follows:
The common first factor was written in a special form to indicate that the
normalization constant n(k0) can be found by identification of vx(k0, θ =
π/2, φ = 0) with the v100(k0) mobility. R is used as an abbreviation for the
cosine of the angle between ~k and ~k0:

R(θ, φ; θ0, φ0) =
~k

k
·
~k0

k0
= sin(θ0) sin(θ) cos(φ− φ0) + cos(θ0) cos(θ) (8.8)

and the vector k[X(θ, φ), Y (θ, φ), Z(θ, φ)] represents the gradient ~∇k ε(~k)
expressed in Cartesian coordinates. Its k-dependence is absorbed in the
integral I3. For completeness, the expression for X,Y, Z then takes the
form:

kX(θ, φ) = ~∇εk cos(φ) sin(θ) + ~∇εθ cos(φ) cos(θ)− ~∇εφ sin(φ)

kY (θ, φ) = ~∇εk sin(φ) sin(θ) + ~∇εθ sin(φ) cos(θ) + ~∇εφ cos(φ) (8.9)

kZ(θ, φ) = ~∇εk cos(θ)− ~∇εθ sin(θ)

The function I3(k0R) includes all k-dependency of the integration. This
type of integral is a special case of the family of integrals given in Eq. 8.10
for which an explicit solution is derived. A simple solution to the family of
integrals of the type

In(x) =
∫ ∞

0
kn exp(−(k − x)2)dk (8.10)

was found by taking the derivative of Eq. 8.10 on both sides, which yields
the iterative relation:

In+1(x) = xIn(x) +
1
2

d

dx
In(x) (8.11)

By employing the error function erf(x), the first component is identified
with I0(x) =

√
π/2(1 + erf(x)) and dI0(x)/dx = exp(−x2). The following
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explicit expressions for the first members of the solution to integral Eq. 8.10
are obtained:

I0(x) =
√

π

2
(1 + erf(x))

I1(x) =
√

π

2
x(1 + erf(x)) +

1
2

exp(−x2)

I2(x) =
√

π

2
(x2 +

1
2
)(1 + erf(x)) +

1
2
x exp(−x2)

I3(x) =
√

π

2
(x3 +

3x

2
)(1 + erf(x)) +

1
2
(x2 + 1) exp(−x2) (8.12)

I4(x) =
√

π

2
(x4 + 3x2 +

3
4
)(1 + erf(x)) +

1
2
(x3 +

5x

2
) exp(−x2)

An alternative and non-recursive solution to Eq. 8.10 was found by sub-
stitution of y = k − x and by expanding the term (y + x)n in its binomial
form. The following general solution is obtained:

In(x) =
1
2

n∑

m=0

(
n

m

)
xn−m[Γ(

m + 1
2

)+(−1)m · sgn(x) ·γ(
m + 1

2
, x2)] (8.13)

which expresses that, using the sign function sgn, the integral can be ex-
panded in terms of the complete and incomplete gamma functions Γ(x) and
γ(x, y), respectively.

Besides the integral I3, also other integrals of the type In show up nat-
urally when taking other momenta of the distribution Eq. 8.1. For example
in calculating the average hole energy, the integral I4 would be needed.

8.3 A practical approximation

Although the numerical evaluation of the two-dimensional integral in Eq. 8.7
is feasible, its implementation in a simulation code would still slow down
the computation considerably. Therefore a fit function had to be found for
this integral. The following functions, inspired by Eq. 8.6, provide a good
approximation for Eq. 8.7 for k0 in the range of interest (k0 < 3) using
the ~k0(k0, θ0, φ0) components of the mean wave vector (which has the same
orientation as the electrical field ~E(E, θ0, φ0)):

vr = v100(E)[1− Λ(k0)(sin(θ0)4 sin(2φ0)2 + sin(2θ0)2)]

vθ = v100(E)Ω(k0)[2 sin(θ0)3 cos(θ0) sin(2φ0)2 + sin(4θ0)] (8.14)

vφ = v100(E)Ω(k0)sin(θ0)3 sin(4φ0)

The functions Λ and Ω correspond to the relative difference in radial ve-
locity Λ = [v100 − v110]/v100 and the relative tangential velocity Ω =
vφ(φ0 = π

8 ; θ0 = π
2 )/v100. They govern the amplitude of the anisotropy.
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Their dependence on the mean wave number k0 was obtained by fitting
Eq. 8.14 to the true solution, Eq. 8.7. This yielded:

Λ(k0) = −0.01322k0 + 0.41145k2
0 − 0.23657k3

0 + 0.04077k4
0 (8.15)

Ω(k0) = 0.006550k0 − 0.19946k2
0 + 0.09859k3

0 − 0.01559k4
0 (8.16)

The choice of the reduced k0 value still has to be related to the experi-
mentally observed longitudinal anisotropy. To do so, it is assumed that for
fixed electrical field strengths, k0 is independent of the field orientation such
that to first order, k0 is function of |E| only. Indications for this are the rel-
atively small differences observed by Pinson et al. [66, Fig.13] at 800V/cm
between the experimentally determined distributions for fields aligned with
the 〈111〉 and 〈100〉 directions. Also the nearly orientation independent
power loss [66, Fig.16] to both acoustical and optical phonons is a further
indication. By evaluating the coordinates for the special case of the 〈111〉
direction in Eq. 8.14, the expression

1.33Λ(k0) = [v100 − v111]/v100 (8.17)

is obtained. Eq. 8.17, in combination with Eq. 8.15 gives us implicitly k0 as
function of vrel = v111/v100. For the region of interest (the fit was performed
for k0 in the range between 0.3 and 1.5), this dependence can be expressed
explicitly by:

k0(vrel) = 9.2652− 26.3467vrel + 29.6137v2
rel − 12.3689v3

rel (8.18)

This provides a usefull relationship to deduce k0 from experimental values
as listed in Table 6.1.

The low field isotropic limit is well predicted by the model. For low
fields, Λ and Ω approach zero in Fig. 8.2 as k0 becomes small and therefore
the model becomes isotropic as the distribution Eq. 8.1 becomes Maxwellian
again (k0 = 0). The mobility behavior at high fields can be tested on the
experimental v110 data. The ratio between Λ and Eq. 8.17 in the approxi-
mation to the true solution becomes independent of k0:

v100 − v111

v100 − v110
= 1.33 (8.19)

This relation was verified in Fig. 8.3 where the models prediction on the
v110 is compared to the experimental data from Reggiani et al. [60]. Also
the best fit corresponding to the values in Table 6.1B are shown for the
other two crystallographic directions. Good agreement is achieved between
experiment and the model description.

It is worth mentioning that the data from Reggiani et al. was obtained
under optimized laboratory conditions employing thin germanium samples
(0.2 . . . 0.8mm) which were specially prepared and cut with respect to their
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Figure 8.2: The relative velocity −Λ = [v110− v100]/v100 and Ω = vφ(φ0 =
π
8 ; θ0 = π

2 )/v100 as function of the reduced parameter k0 demonstrating the
increase of anisotropy as a function of k0.

crystallographic axes. A dedicated measuring technique using a pulsed-bias
voltage was applied. Such conditions are very different from the situation
applicable to the characterization of a HPGe detector. Also the analysis
method using Monte-Carlo techniques is inapplicable to data obtained from
a tapered, large volume HPGe detector crystal. For that purpose, analytical
solutions as described here remain useful.

Huge differences between the two hole velocity parametrizations from
Table 6.1 are obvious by comparing the k0 dependence as a function of the
electrical field strength Eq. 8.18 (see Fig. 8.4). The corresponding k0 values
to the experimental data by Alba [67] were also included in the graph. The
large differences in Fig. 8.4 illustrate that hole mobility literature data may
not be adequate for simulation of a specific detector to high precision. There
is clearly a need for detector specific measurements.

8.4 Comparison with the electron mobility model

To demonstrate the differences between the hole mobility model and the
electron mobility model, the variation of Eq. 8.14 with electrical field orien-
tation is shown in Fig. 8.5. The value k0 was taken to be 0.8, which according
to Fig. 8.4 corresponds to E = 1200V/cm for a large volume HPGe detector.
For holes, mainly the drift velocity along the 〈100〉 is faster than in other
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Figure 8.3: Experimental data on the drift velocity along the three crystal
symmetry axis as taken from [60]. The longitudinal velocity component is
clearly anisotropic. The solid lines to the v100 and v111 data correspond to
the optimum fit obtained using Eq. 6.2. The values obtained by the fit are
listed in Table 6.1. The solid line through the v110 data is the prediction by
our model and using the v100 and v111 fitted curves.
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Figure 8.4: The reduced k0 parameter as function of the field strength ac-
cording to the data taken from [60] (solid line) and from Table 6.1D (dashed
line). The single points correspond to the five values quoted in [67].

directions, which gives rise to the cubic shape of the radial drift velocity
component in Fig. 8.5a. Compared to Fig. 7.3a, this is a major difference
between hole and electron longitudinal anisotropy.

Also the tangential velocity anisotropy vt =
√

v2
θ + v2

φ behaves remark-
ably different. The electron and hole tangential velocity anisotropy is plotted
as a function of the field orientation in Fig. 8.6. The amplitude variations of
the hole tangential components are oriented along the 〈100〉 directions, while
for the electron tangential anisotropy, the 〈111〉 directions play a similar role.

In the coaxial part of the detector, the hole tangential velocity component
behaves identical to the electron tangential velocity component. In both
cases, the vθ component is zero and, when following the direction of the drift
velocity, a vφ component is present, which in both cases points towards the
nearest 〈100〉 direction. The inversions in graph Fig. 8.5b,c,e,f with respect
to Fig. 7.3b,c,e,f is due to the fact that holes and electrons move in the
opposite directions.

Both the electron and hole velocity anisotropy in HPGe detectors cre-
ate measurable rise time effects and are therefore relevant to pulse shape
analysis.
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Figure 8.5: The angular dependence of the hole velocity on the electrical field
orientation. a-c: The radial and angular velocity components of Eq. 8.14
plotted as a function of the orientation of the electrical field. The amplitude
of the electrical field was fixed at E = 1200 V/cm and the hole mobility
parameters were taken from Table 6.1D, which yield k0 = 0.8 (see Fig. 8.4).
Projections are shown in the lower part d-f. Plus and minus symbols indicate
the sign of the function for a specific angle.
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Chapter 9

Electron Mobility Results

In this chapter, it will be described how the electron mobility in the detector
and the space charge distribution can be characterized. The detector crystal
orientation has traditionally been derived from electron rise time measurements,
performed for source positions at a fixed radius at the front side of the detec-
tor. Our interests lie beyond the determination of the crystal orientation only.
Consequently, the data acquisition, employing time resolved digital electronics
and data analysis, is more involved.

9.1 The Measurement

0cm

1cm

2cm

3cm

4cm

5cm

6cm

7cm

Depth

Figure 9.1: Data points taken
for the electron mobility char-
acterization. Eight depths
were scanned in steps of 10◦.
The data in the square are
shown in Fig. 9.6.

To obtain information on the electron
mobility, trace data was taken using 59.5 keV
γ-rays from a 241Am source at the outer
surface of the germanium crystal. A small
7mm thick collimator with a 1.5mm hole
was used. This was adapted to fit the cylin-
drical detector end cap and to facilitate
precise positioning of the collimator holder.
Since 59.5 keV γ-rays only penetrate the
germanium about 1mm before the gamma
is absorbed, these events offer a way to cre-
ate well localized photopeak interactions
close to the outer electrodes using a light
and easy to handle collimator setup. For
these events the holes will be collected im-
mediately such that the charge signals ob-
tained only provide information on the elec-
tron movement towards the core. The draw-
back of the procedure is the very low γ-ray energy and the considerable noise
in these signals requiring the averaging procedure described in chapter 5.2.
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The electron mobility data set consist of a scan of the detector surface
in steps of 10◦ around its axis of symmetry for fixed depths as shown in
Fig. 9.1. The depth of the scans was varied in steps of 10 mm starting from
the detector front (0mm depth). This yielded a total amount of 42 averaged
traces (positions at segmentation lines can be evaluated twice) at 8 depths.
This scanning procedure is very fast. Averages are built on several thousand
events per position.

9.2 Rise Time Fit Functions

First the rise time variation with respect to the angle was studied, as shown
in Fig. 9.3. To treat the data in a quantitative way, simple fit functions were
introduced with a clear physical interpretation. An observable for the time
elapsed between creation and collection of the electrons is the 10% − 90%
rise time for the core signal. This is a good measure for the average radial
drift velocity. The variation of the rise times with angle behaves like

∆t = A(1 + Ran cos(4(θ − θ0))(1 + Rgeo cos(6θ)) (9.1)

The first factor describes the effects due to the electron mobility anisotropy,
which should have a four fold symmetry and a phase shift θ0 relative to the
second term defining the crystal orientation. The second term accounts for
the semi-hexagonal cut shape of the detector and is expected to show a six
fold symmetry.

For some data, a very small and barely measurable dipole seemed to
be present in the data. Therefore Eq. 9.1 was extended with the additional
factor (1 + Rdi cos(2(θ − θdi))). Such effect could be due to a misalignment
of the core electrode, an off axis mounting of the crystal in the end cap or,
as was observed for the holes, an anisotropy enhanced space charge effect.
The measured amplitudes Rdi in the electron rise time data however were
so small (usually < 2%) that the results will not be discussed further.

To detect possible radial gradients in the drift velocity, partial rise times
were investigated. As the core weighting field is reduced to about 30% in
the middle between core and segment electrodes as shown in Fig. 9.2a), the
5%− 30% rise times and the 40%− 90% rise times of the core signals were
separately investigated. These partial rise times were well described and
fitted using Eq. 9.1.

However, the partial rise times observed on the collecting segments be-
have different as a result of the strong angular dependence of the weighting
potential. In Fig. 9.2 the weighting equipotential lines for the segments are
compared to corresponding core lines. Due to the difference in weighting
potential, the segment partial rise times are shifted with respect to the
core partial rise times and corresponding segment rise times are given by
the 10% − 60% and 70% − 95% amplitude references. Since the segment
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Figure 9.2: a): Calculation of ten equidistant equipotential lines of the core
weighting potential in the coaxial part of the detector. b): A calculation
for the hit segments. For an electron, starting at the detector surface (po-
sition 1), the rise time profiles of core and hit segment will resemble c).
The core and segment signal value in the mid-detector region (position 2)
reach respectively 30% and 60% of their maximum amplitude due to the
corresponding weighting potential values in a), b).

equipotential lines are modulated more as | sin(3θ)| rather than the cos(6θ)
geometrical dependence, the 10% − 60% and 70% − 95% rise times of the
segment were found to be well described by the function

∆t = A(1 + Ran cos(4(θ − θ0))(1 + Rgeo| sin(3θ)|) (9.2)

This causes the segment rise times to have a discontinuous derivative close to
the segmentation lines. Remark that Rgeo in Eq. 9.2 no longer represents the
crystal geometry effect, but the geometry of the segment weighting potential
shown in Fig. 9.2b.

9.3 Rise Time Profiles

The rise time variation (10% − 90%) as a function of angle and depth for
core and active segment signals are shown in Fig. 9.3. In the front part of
the detector (see the data for 0 cm and 1 cm), a huge anisotropy is present
since the electrons velocity contains a considerable component in the 〈111〉
direction. Two centimeter lower, this effect is strongly reduced. Here the
electrons move in the coaxial part of the detector where only mobilities in
the 〈100〉 and 〈110〉 direction are in play, which do not differ much. The
anisotropy in this region is comparable to the geometrical effect, seen most
clearly at a depth of 3 cm in the segment rise time data of Fig. 9.3. Here, a
six fold symmetry from the geometrical size is dominant rather than a four
fold one.
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Since core and collecting segment witness the creation and collection
of the electrons simultaneously, both core and segment should experience
the same total rise time. However, in the front part of the detector the
10% − 90% core rise times do not coincide with the segment data and the
rise times poorly reflect the average radial velocity in the non-coaxial part
of the detector. This is caused by the fact that the core weighting potential
is very shallow in the corners at the front of the crystal. This means that
the 0%− 10% rise time (which is not measurable in praxis) is considerably
longer than for the active segment signals. The 10% reference therefore
badly represents the real start of the trace in these cases.

Best fit values to Eq. 9.1 for the 10%− 90% rise times are shown in Ta-
ble 9.1. For the crystal orientation angle θ0 the same values are obtained
independently from the geometry amplitude. This demonstrates that the
analysis fit functions provide consistent results. The core rise time variation
Ran due to the electron anisotropic mobility is in good agreement with the
variations found in the active hit segments. In the coaxial part, this causes
a 8% peak-to-peak effect. Considering the large difference in weighting po-
tential, it is not surprising that the Rgeo values of core and segment do not
correspond.

It is worth mentioning that the obtained parameters are also of practical
use for the steepest slope method discussed in chapters 3.2.1 and 11.1 to
determine the radial position of a γ-ray interaction. For this technique
a conversion of the steepest slope time into a radial distance is required.
The parameters in Table 9.1 demonstrate the dependence of the conversion
on the angle and the depth of the interaction. Eq. 9.1 provides a tool to
correct these effects when angle and depth of the interaction are determined
independently e.g. by the investigation of the transient signals in the nearest
neighbor segments.

Table 9.1: 10%− 90% rise time fit parameters to Eq. 9.1 for core and active
hit segment.

Core 10%− 90% Segment 10%− 90%
depth A[ns] θ0[◦] Ran[%] Rgeo[%] A[ns] θ0[◦] Ran[%] Rgeo[%]
0cm 205.5 40.0 -10.9 -3.7 262.0 40.7 -11.0 -1.1
1cm 213.6 40.9 -12.1 -1.6 260.0 41.7 -12.3 -1.2
2cm 204.2 40.1 -5.7 -2.5 225.3 42.1 -6.6 -4.6
3cm 205.0 39.8 -4.0 -2.5 214.6 39.2 -3.4 -5.7
4cm 213.6 40.1 -3.8 -2.2 223.9 38.9 -3.6 -1.9
5cm 220.5 40.7 -3.9 -1.9 230.8 39.6 -3.7 -0.7
6cm 226.5 41.0 -3.8 -1.1 234.3 39.8 -3.7 0.4
7cm 232.5 40.2 -4.4 -0.6 233.5 40.2 -4.2 0.8
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The fit parameters of the 5%− 30% and 40%− 90% core rise times are
summarized in Table 9.2. In contrast to a strong dependency on the geom-
etry of up to 7.9% near the outer electrodes the differences are completely
vanishing near the core electrode as can be seen from the 40% − 90% core
rise time fit values.

Table 9.2: Core partial rise time fit parameters to Eq. 9.1

Core 5%− 30% Core 40%− 90%
depth A[ns] θ0[◦] Ran[%] Rgeo[%] A[ns] θ0[◦] Ran[%] Rgeo[%]
0cm 131.7 40.0 -14.9 -6.2 90.9 40.1 -5.3 -0.9
1cm 134.8 41.0 -17.5 -5.5 92.2 41.1 -4.5 -0.3
2cm 109.0 40.2 -8.2 -7.7 97.0 39.4 -2.3 -0.2
3cm 98.3 40.3 -5.0 -7.9 104.0 39.3 -2.7 -0.1
4cm 98.6 40.7 -4.3 -7.3 110.8 39.3 -3.1 0.1
5cm 98.7 40.8 -4.1 -6.0 116.3 41.3 -3.3 0.0
6cm 96.3 41.7 -3.7 -4.0 124.0 40.9 -3.4 0.2
7cm 89.9 40.6 -4.1 -2.4 137.4 39.6 -4.2 0.2

The anisotropy effect in the coaxial region is on average an 8% effect
peak to peak, and is least pronounced near the core electrode. In the front
region, this effect increases to over 30% due to the much lower mobility
in the 〈111〉 direction. A similar behavior is observed for the anisotropy
amplitudes measured on the segment partial rise times.

The 10% − 60% and 70% − 95% segment rise time data are shown in
Fig. 9.5. The fit results using Eq. 9.2 are summarized in Table 9.3. In par-
ticular for the fit values for the 10%− 60% rise times of the segment data in
Table 9.3, the large amplitude oscillations of Rgeo are remarkable, which e.g.
enables a very precise measurement of the angular position of the interac-
tion. This information would be disregarded when only core and transient
signals are used to determine the angle and depth of an interaction (see e.g.
steepest slope and asymmetry 11.1).

9.4 Electron Mobility Parameters

To extract the electron mobility parameters from the 336 averaged traces
measured along the detector surface, a large scale χ2 minimization procedure
was set up. This compared the core, the active segment and its three closest
transient neighbor signals of all measured detector responses with data from
simulation. The data at 0 cm depth was expected to show larger deviations
from simulation. Since the unknown bulletization of the crystal was not
included in the simulation, the rise times should be shorter than simulated
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Table 9.3: Segment partial rise time fit parameters to Eq. 9.2.

Segment 10%− 60% Segment 70%− 95%
depth A[ns] θ0[◦] Ran[%] Rgeo[%] A[ns] θ0[◦] Ran[%] Rgeo[%]
0cm 159.1 40.5 -11.5 2.5 108.4 44.6 -6.0 -6.3
1cm 132.3 41.2 -12.7 24.0 120.9 46.6 -6.2 -10.9
2cm 90.1 41.9 -7.1 39.1 127.6 48.4 -3.1 -12.6
3cm 74.2 37.5 -2.5 46.8 134.5 38.6 -3.4 -14.9
4cm 96.4 39.1 -3.5 31.8 121.9 34.0 -2.5 -13.8
5cm 105.3 39.3 -3.6 25.7 120.7 37.0 -2.3 -12.9
6cm 107.4 39.9 -3.7 21.8 125.3 35.9 -2.6 -13.5
7cm 103.8 39.7 -3.6 19.7 137.3 38.2 -3.4 -13.1

at 0 cm depth. So, as not to dominate the optimization procedure, the 0 cm
data was excluded from the fit.

The response functions and crosstalk amplitudes were implemented in
the simulation as measured by the methods described in chapter 5. The mo-
bility and space charge can be parameterized with 6 parameters for electron
mobility (see chapter 7) and 4 for space charge, creating a final χ2 optimiza-
tion involving 10 parameters. It is assumed that the mobility parameters do
not vary along the detector, and that the space charge varies linearly within
the detector (see chapter 6). The last assumption is probably the boldest,
since no parametrization for the space charge variation in such detectors is
known and only average values of the space charge over the front and back
surfaces are given by the manufacturer. The minimization routine was based
on the sequential quadratic programming routine DONLP2 [68] which was
developed for medium sized optimization problems (up to about 300 free
parameters).

Requiring a cylindrically symmetric space charge distribution which varies
linearly in radius and depth, the optimum space charge distribution was
searched. The solution was discussed in chapter 6.1. The average impurity
concentration was deduced to be 1.0 at the front plane and 1.5 at the back
plane of the detector. These values compare to the values 1.47 (front) and
1.85 (back) as supplied by the manufacturer 1.

Including the space charge values it was shown in Fig. 6.1 that the field
strength ranges in the detector from 100-3000V/cm. Obtained information
on the mobility parameters will be obviously limited to this range of field
strengths. The results on the extracted mobility parameters on the longi-
tudinal anisotropy described by equation 6.2 are shown in Table 9.4. The

1According to the manufacturer, the quoted numbers are the mean values between the
concentrations measured at the center and on the outer radius of the crystal
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Table 9.4: The optimum values found for the fit function For. 6.2 for the elec-
tron mobility data as obtained from the electron mobility characterization
procedure.

Electron mobility parameters
direction µ0[ cm2

V s ] β E0[ V
cm ] µn[ cm

2

V s ]
〈100〉 38609 0.805 511 -171
〈111〉 38536 0.641 538 510

parameters on the 〈111〉 electron mobility were obtained from a fit to the
electron mobility model described in chapter 7 using the 〈100〉 fit parameters
of Table 9.4 and the values η0 = 0.496, b = 0.0296 for Eref = 1200V/cm
which were obtained from the χ2 fit as optimum for the parametrization of
the electron intervalley scattering rate. These mobilities differ substantially
from the literature values reported by Mihailescu et al. [58].

In order to demonstrate the high precision and good quality of the new
values, results of the simulation (open squares) and the best fit are compared
to experiment in Fig. 9.3, 9.4 and 9.5. It shows that the worse comparison
with experiment is at the very front side of the detector at 0 cm depth.
Besides the constant off-set due to bulletization (not taken into account in
the simulation), the simulation at 0 cm depth might be improved at the
segmentation lines.

One observes in the 70% − 95% segment rise times that the 3cm-7cm
simulated data show a stronger discrepancy between 240◦ and 300◦. This is
attributed to a badly measured response function in segment 11.

A quantitative comparison between the simulated and measured traces
for the positions marked in Fig. 9.1 shows a very high agreement in Fig. 9.6.
The maximum discrepancy between the various points of the traces is on
average below 2%2 as shown in Fig. 9.7. From the neighboring transients,
one observes usually that the simulation is overestimating the maxima in
the transients. The average maximum discrepancy however is less for the
transient signals than for the core and hit segments.

9.5 Timing Measurement

So far only the signal pulse shape was object of discussion. In practice a very
important quantity is the timing resolution. Also here pulse shape analy-
sis can be of hand. By aligning experimental traces with their simulated
counterpart, one also obtains information on the true trigger time, since the

2Amplitudes expressed in percentages are always quoted relative to the core signal
amplitude.
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to positions 0,10,20,30 degrees in segment 1, at 2 cm depth (see Fig. 9.1).
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Figure 9.8: All relative delays of hit segments with respect to the core signals
as obtained through a comparison with the optimized simulation.

underlying trigger time of the simulation is known.
Also in the minimization procedure described above, each channel was

time shifted in order to maximize the overlap between simulation and ex-
perimental traces. In principle, one expects then that every channel has a
fixed delay with respect to the core. The distribution of the relative time
shifts to the core should therefore give information on the optimum timing
resolution attainable by pulse shape analysis. This method should have bet-
ter properties than standard analog techniques because it is walk-free3 and
rise time independent.

To investigate the performance of such method, the optimum relative
time delays from the hit segments of the 294 averaged events included in
the fit procedure described above are shown in Fig. 9.8. One sees that there
is not only a constant delay, depending on the specific segment, but also a
variation with depth and angle shows up. The delays of the transients show
a similar structure, however since transients are easier to misalign (e.g. small
or zero transients are invariant under translation), they are more difficult to
interpret and therefore are excluded from the discussion here.

To correct for the individual constant delays from electronics (cable
length, rise time differences etc.) for each channel, an angle averaged de-
lay was calculated for each segment at each depth. These 42 averages were

3For an introduction on the germanium related problems arising with timing, see [69,
p.325]
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Figure 9.9: The depth dependent fraction of the delays shown in Fig. 9.8.
This fraction is independent on the segment number.

further corrected for the total average time shift of each segment. Fig. 9.9
shows these corrected delays. One observes that a delay profile turns up
which is only depending on the depth of the interaction and not on the
segment number. Its effect varies over a range of 10 ns in total.

The residues, obtained after correction for the constant delays and depth
depending delays, are still angle dependent. This can be seen from Fig. 9.10,
where the variance of the residues is shown as function of angular position
relative to the boundary of the hit segment. The variance was taken over
all 42 data points sharing (relative) identical source positions. The vari-
ance turns out to be small inside the segments, but increases quadratically
towards the edge of the segments. At the edge, the variance reaches a max-
imum of about 4 ns.

A possible explanation for the position dependent delay could therefore
be that the time shifts are due to the extra path the current has to flow
between the point where the cables are connected to the electrodes and the
centers of mirror charge that are induced on these electrodes. However,
it has to be pointed out that to achieve this accuracy in timing the de-
mands on the simulation precision is very high (Remark that the original
sampling rate amounted 25 ns). To show this, let us assume that the differ-
ence between the obtained average Tav(t) and the simulation S(t) is given
by S(t) = Tav(t) + N(t). When the trigger time t0 is obtained through χ2

fitting, it is found as the value y which minimizes:

min
y

∑

i

(Tav(ti + y)− S(ti))2 ∼= min
y

∑

i

(y
d

dt
Tav(ti)−N(ti))2 (9.3)

The fraction in N(t) that in χ2 sense resembles the derivative of the trace
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Figure 9.10: The variance of delays as function of angle after correction for
the constant delays and depth dependent delays. This variance increases
quadratically with angle.

will therefore cause a time shift. For rise times of the order of 200 ns, a
derivative-like fraction in N(t) of 1% would result in an error on t0 of 2 ns.
Such effects could therefore also form a possible explanation for the observed
position dependencies of the time shifts.



Chapter 10

Hole Mobility Results

Measurements on the hole mobility in large volume HPGe n-type detectors have
to cope with the experimental fact that only signals from γ-ray interactions
very close to the inner contact at the central part of the crystal are exclusively
determined by the holes as charge carriers. For a p-type detector, hole mobil-
ity measurements could be performed by applying the same method described
above for the electrons. Indeed, such an investigation was done recently [70]
on a p-type closed-end coaxial HPGe detector. A 13% hole anisotropy effect
was observed on the rise times measured at fixed radial source positions in the
coaxial part of the detector. For an n-type detector, it becomes much more dif-
ficult to demonstrate the anisotropy. The hole mobility characterization method
described here provides for the first time detailed results on the hole mobility
anisotropy and its parameters in a large volume, tapered n-type Ge detector.

10.1 The Measurement

Following the same reasoning as for the electrons in the previous chapter,
information on the hole mobility is deduced from γ-ray interactions close to
the core electrode. In these cases the electrons are immediately collected
and the information on the holes travel towards the outer contacts can be
extracted from the pulse shape. To reach the inner part of the crystal
(radius of the detector is 35 mm) a higher initial γ-ray energy is required.
The 356 keV line from 133Ba was used for this purpose due to reasonably high
yields at the center combined with a good photo peak to Compton scattering
ratio. A 5 cm thick collimator with a 1 mm hole diameter was positioned at a
depth of 7 cm with respect to the front of the detector (schematically shown
in Fig. 10.1). At this depth, the crystal is nearly cylindrical and the semi-
hexagonal crystal shape does not influence the measurements. By triggering
on events with full energy deposition inside the segment positioned at 90◦

with respect to the collimator, Seg(i) in Fig. 10.1, the interesting events were
selected online.
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Collimator

Seg(i)

Seg(i-1)

Seg(i+1)

Figure 10.1: Setup of the col-
limator as used for creating
events near the core. By gat-
ing on Seg(i), a region near the
core could be selected.

To suppress Compton scattering events
inside the selected segment, three condi-
tions were applied to the recorded traces.
First the transients in the neighboring
segments have to be positive since only a
positive charge is participating in the col-
lection process. Crosstalk contributions
however could make zero transients be-
come negative, such that small negative
transients were allowed. Second, long col-
lection times are required because the hole
mobility is smaller than the electron mo-
bility, and thus the expected rise times
are the largest possible in the detector.
The core current signal for the events of
interest is maximum at the trigger time,
while the current through the hit segment
will increase during the collection process
till the holes are collected. Therefore the

time difference between both maxima was taken as reference for the collec-
tion time. A lower limit of 200 ns to this time difference was required, which
typically reduced the events by 50%. This is in agreement with the expecta-
tion from the ratio between photo absorption and Compton scattered events.
Events surviving this requirement generally also fulfill the first requirement.
Third, a lower limit was applied to the 10%− 50% rise time of the core sig-
nals allowing for a good discrimination between traces with a short electron
current contribution which reduces the 10% − 50% rise time considerably.
Only 20% of the above events do not fulfill this requirement. An analysis of
these rejected events showed that this condition very selectively cleaned out
the region less than 6 mm from the core electrode.

10.2 Rise Time Profiles

In order to obtain a refined position information for the interaction point
of the charge carriers, offline analysis was applied to extract the path the
holes were following. The angular information on the trajectory is obtained
from the maxima of the transients (see also section 11.1) in the neighboring
segments (Seg(i − 1) and Seg(i + 1) in Fig. 10.1). The difference between
both maxima has an equivalent function as the angle in Fig. 9.3 and gives
values in the range of −30% till about 30% depending on which neighboring
electrode was closest to the trajectory. Therefore, a pseudo-angle calibration
is performed by mapping the range [−30%, 30%] linearly into [0◦, 60◦].

The rise time of the individual events are plotted as a function of the
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Figure 10.2: Rise time measurements at 7 cm depth of core and hit segments
revealing the hole anisotropy. Dots correspond to single events. The thick
line corresponds to the result of simulation calculations.

pseudo-angle in Fig. 10.2. The events shown were selected by the first two
conditions. One can avoid here the third selection criterium by only showing
the 30%−90% rise time. This makes the plot insensitive to any small electron
current that might have been present during the 0% − 30% rise time. The
30% − 90% rise time reveals a nice continuity over the segment borders in
the core data. From this, a hole mobility anisotropy effect of the order of
10% is deduced. For the rise times of the active segments, interestingly
there is no continuity of the profile near segment crossings. This is due
to transverse anisotropy as proven by simulation. By simulating the data
with only the radial drift velocity component activated, this discontinuity
was strongly reduced. The good agreement with experiment provides strong
evidence that the applied hole mobility model can reproduce the transverse
drift components correctly. The narrow width in the distribution of the
events shown in Fig. 10.2 demonstrates the high angle selectivity obtained
through this specific measuring technique. Such precision would be hard to
achieve with the conventional Compton scattering technique alone.

To extract mobility parameters from this data, averaged traces were
created and compared to simulation. Therefore, the pseudo-angle range of
every segment was divided into 7 sectors. For each sector, a representative
event was built out of the average of all the events in the sector. Analogously
to the electron data, these 42 representative averages were then compared to
the results of the simulation. The angular spread between events belonging
to a specific sector still amounts up to 10◦. This spread also has to be taken
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Figure 10.3: Comparison between measured (solid lines) and simulated
(dashed lines) hole charge pulses. The pulses correspond to an averaged
response near positions 0,10,20,30 degrees in segment 7, at 7 cm depth. Like
in the electron case the deviations between simulation and experiment are
on average below 2%.

into account when the representative averages are compared with simulation.

The simulation used for the holes employ the space charge distribution,
crosstalk corrections and response functions as derived from the electron
mobility characterization procedure. The model described in chapter 8 was
employed to fully describe the hole mobility in the detector crystal using
only 6 parameters which have to be determined from the fitting procedure.
To simulate the 42 representative averages, 3600 traces were calculated from
starting positions every 0.1◦ around the core. These traces were then sorted
into the 42 sectors according to their calculated pseudo- angle. The average
of every sector can then be compared to the experimental counterpart. Due
to this elaborated procedure, this optimization took about ten times longer
than for the electron mobility optimization.

The optimum hole mobility fit parameters are summarized in Table 10.1.
With these values, the rise time dependence was simulated and compared
with the experimental findings in Fig. 10.2. A direct comparison between
four of the experimental averages and the simulation is shown in Fig. 10.3.
The maximum deviations between simulation and experiment are on average
below 2%; An accuracy which is comparable with the errors obtained for the
electron mobility measurement at 7 cm depth.
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Table 10.1: Optimum values for the fit function of Eq. 6.2 (with µn = 0) for
the hole mobility parameter as obtained from the hole mobility characteri-
zation procedure.

Hole mobility parameters
direction µ0[ cm2

V s ] β E0[ V
cm ]

〈100〉 61824 0.942 185
〈111〉 61215 0.662 182

10.3 Anisotropy Enhanced Space Charge Effects

Since the measurements in the coaxial part of the detector in principle pro-
vided information in the crystal plane of 〈100〉 and 〈110〉 it is useful to
investigate the pulses closer to the front part, e.g. at 2.1 cm depth, where
the 〈111〉 mobility will also be important. Already during the acquisition,
a striking difference in event yield was observed. While in some segments
comparable yields as in the case of 7 cm depth were found, in other segments
far more time was needed to collect the same amount of data. This is il-
lustrated by the clustering of individual events in the core rise time profiles
shown in Fig. 10.4A.

Simulation made clear what was driving this effect. Using the mobility
parameters as derived from the 7 cm depth hole mobility data, events were
simulated near the core electrode at 2.1 cm depth. These trajectories are
shown in Fig. 10.5. At 2.1 cm, the trajectories are either going to the front
of the detector or to the side. One millimeter above, all trajectories will end
on the front side of the detector, while one millimeter below, all trajectories
end on the detector side. This explains the large range in rise times that was
observed as function of pseudo-angle in Fig. 10.4B. Since the shortest rise
times originate from the positions created near 2.2 cm depth, the simulation
of the 2.2 cm depth rise time profile creates a lower limit for the rise times
shown in Fig. 10.4B.

To explain the clustering in Fig. 10.4A, a projection of the simulated
trajectories at 2.2 cm depth is shown in Fig. 10.6. As shown in Fig. 8.5,
tangential components in the drift velocity exist which grow to a maximum
in-between the 〈100〉 and the 〈110〉 direction. This component always points
into the direction of the nearest 〈100〉 direction as indicated by the arrows
in the graph causing the contracted hole flow pattern in the regions near the
〈100〉 direction.

However, it is also demonstrated that the holes are trying to circumvent
the crystal corners (points A, B and C in Fig. 10.6). This can be explained
by the net effect the space charge has on the holes. If the detector geometry
would be cylindrical symmetric, the space charge would only act on the holes
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Figure 10.4: Rise time measurements at 2.1 cm depth. Dots correspond to
single events. The thick dots correspond to the rise time simulation at 2.2 cm
depth, which should give a lower limit to the observed rise times.

through radial forces. Due to the extra charge in such corners, this force
will also have non-radial components. The repelling force in corner A is now
enhanced due to the fact that also a 〈110〉 axis is going through this corner.
The other 〈110〉 axis runs through the middle of corners B and C. Along
this axis only a radial space charge repulsion can be felt due to symmetry.
Enhanced spreading between the trajectories is therefore not observed along
this axis. Anisotropy enhanced space charge effects therefore show up with
a twofold angular symmetry.

The gaps and pile-ups created by this effect explain the clustering in the
observed rise time profiles. In practice, the measured yield cannot be nor-
malized easily since it will sensitively depend on the experimental conditions.
For this reason, a direct comparison between the simulated hole current den-
sity (Fig. 10.7) and the experimentally obtained density (Fig. 10.4) cannot
be made. However, similarities between both are present.
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Figure 10.5: Simulated hole trajectories, radius vs. depth, for starting posi-
tions distributed in steps of 1◦ around the core at 2.1 cm depth. Dots along
the curves correspond to 25 ns time steps. The holes are divided between
collection on the front surface and collection at the side surface of the de-
tector. The side surface is hexagonally shaped. This causes that the end of
the trajectories are distributed over an interval of about 0.5mm in radius
(light gray area)
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Figure 10.6: Simulated trajectories for starting positions near the core at
2.2 cm depth. The simulation was sampled every 25 ns. The crystal sym-
metry axis are indicated. The direction of the tangential anisotropic hole
mobility component is indicated with vectors. This component, together
with the net repulsion from the corners A,B,C cause the strong repulsion in
corner A. A twofold symmetric pattern results.
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Figure 10.7: The hole current density as function of pseudo-angle for the
simulation shown in Fig. 10.6. To be compared with the experimentally
observed density distribution shown in Fig. 10.4.



Chapter 11

Pulse Shape Analysis

In this chapter, the problem of pulse shape analysis (PSA) is addressed. Past and
future PSA methods are introduced. A simple PSA algorithm using simulated
libraries will be established. This method was developed for the analysis of an
experiment at ILL, which will be discussed in detail in chapter 12.

11.1 Steepest Slope & Asymmetry

Conventionally, MINIBALL relies on the steepest slope method (see sec-
tion 3.2.1) to find the radial position of the main interaction. The time-to-
steepest-slope Tss can be expressed as [20, p.31] [23, p.87] [71, p.57]

Tss = min
t

∂2

∂t2
Core(t)− t0 (11.1)

with t0 the trigger time and Core(t) the core charge signal. For a single
interaction, Tss corresponds to the collection time of the electrons. This
time is thus related to the distance of the interaction to the core electrode.

The angular information on the trajectory is obtained by analysis of
the mirror charges Segi±1(t) observed in the direct neighbors to the hit
segment i. The maxima ML,MR of the absolute value of these transients
ML = maxt |Segi−1(t)| and MR = maxt | Segi+1(t)| are used to estimate the
distance of the interaction from the neighboring segments. The asymmetry
As in the mirror charges is then defined as [20, p.36]:

As =
ML −MR

ML + MR
(11.2)

Due to the normalization, As will take on values between -1 and 1. Events
with As = −1 happened close to the segmentation line between segment i+1
and i. Events with asymmetry As = 0 lie equally far from segment i + 1 as
from i − 1, while events with As = 1 happened close to the segmentation
line between segment i and i − 1. Instead of the asymmetry, the function
log(ML/MR) is sometimes used (see Gund [71, p.77]).
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A: FRONT B: BACK

Figure 11.1: Position reconstruction using steepest slope and asymmetry. A:
Reconstruction of events in the front part of the detector. B: Reconstruc-
tion in the coaxial part of the detector. Figures courtesy of Materna [74]:
Obtained on the 2167 keV γ-transition in the D(37Cl,n)38Ar reaction.

11.2 Doppler correction with MINIBALL

For the MINIBALL array, the combination of steepest slope with asymme-
try provides the necessary position information on the main interaction to
perform Doppler correction. True position information is not always needed
for this task. Events can be sorted according to their steepest slope and
asymmetry in a two-dimensional matrix. A spectrum obtained by gating
on an individual bin of this matrix will show less Doppler broadening than
the summed spectra. From the relative Doppler shift in the gated spectrum
with respect to the stopped fraction, the average emission angle of the gated
events can be obtained. For this, it is assumed that a γ-line of known energy
is available which can be used as reference (which is not always the case).

The true position associated with each of the bins is then not needed.
Therefore, systematic errors, created by nonlinearities in the conversion from
asymmetry to angle and time-to-steepest-slope to radius, can be omitted.
This method has the great advantage of being simple. The information
can be calculated on-line [72] and no characterization is needed. With this
method, it was demonstrated (Steinhardt [73]) that with an AGATA detec-
tor, a position determination of the main interaction to better than 5mm is
feasible.

Concerning tracking, this method cannot be applied. For tracking, the
true three-dimensional position coordinates of all interaction positions are
essential. Radius determination with this method is hindered as soon as
multiple interactions are in play: All radii need to be identified from a
single core signal. Obtaining depth information is hampered in the front and
back segments, as these segments have less neighbors. In case of multiple
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interactions, the necessary transients in neighboring segments can become
corrupted by transients induced by the other interactions.

Besides that, this Doppler correction method also shows some obvious
shortcomings when conversion from (Tss, As) into real position information
is unavoidable: In the non-coaxial part, the electrons move out of the plane
perpendicular to the core electrode. This hinders a straight forward interpre-
tation of the radial position. In this part of the detector, the steepest-slope-
to-radius conversion is further strong angle dependent due to the anisotropic
mobilities (see also chapter 9.3). For the 12-fold segmented detector, this
causes that the reconstruction of the interactions in the front part of the de-
tector is mapped into a square geometry (see Fig. 11.1A). As expected, in the
coaxial part of the detector, this effect is strongly reduced (see Fig. 11.1B).
Both graphs are affected by nonlinearities in the asymmetry-to-angle con-
version which seem to be radius dependent and are responsible for the gaps
between segmentation lines in Fig. 11.1A,B.

11.3 Future methods

Several new PSA methods are currently under development for the future
AGATA spectrometer (see [75]). These methods should not only deal with
the above listed problems. The aim for online analysis puts also stringent
conditions on the numerical tractability and on the processing speed of these
future computer codes.

The PSA codes can be divided into three categories. One category con-
sists of single-step algorithms. This group of methods aims at predicting
specific information in a non-iterative way, e.g. the number of interactions
in an event, which can provide valuable input for the second category of
algorithms: the iterative methods. As for position information, their ca-
pability is usually restricted to single interaction events. The conventional
MINIBALL method of chapter 11.1 is a typical example. Its limitations
were already discussed in detail in the previous section. Other examples are
Artificial Neural Networks [76],[77, p.38] and the Folding Algorithm [38].

The second branch of PSA codes consists of iterative methods aiming
at a decomposition of an event into single interactions. All of these codes
make use of libraries with precalculated single interactions. The main dif-
ference between these codes lies in the search algorithm used with which the
libraries are scanned. A second difference comes from the figure of merit
(FOM) which measures the quality of agreement between the measured and
reconstructed event. FOMs applied in the time domain are most common.
Examples are the Least Square Method [78, p.93], the Genetic Algorithm
[11, 79], its successor: the Particle Swarm method [80], Adaptive Grid Search
[81], and the simple method described in chapter 11.4. Some people however
prefer comparing events in a wavelet transformed space [53] (e.g. the Pattern
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Recognition algorithm and the Haar wavelet transformation based method
[82]). However, if time alignment as discussed in chapter 9.5 would turn out
as important, a comparison outside the time domain is a less evident choice.

The last group of methods consist of a hidden form of linear least square
fitting. They can be described as matrix methods. In this method, every
single element in the library is considered as a base vector. The problem
is then regarded as a decomposition of events in its basis. The method
distinguishes itself from others in the fact that not just a small number of
interactions is assumed, but one obtains a kind of probability distribution
for each of the base vectors from which the interaction positions have to be
distilled. The large number of parameters to determine makes this decom-
position process very susceptible for noise. A fair amount of regularization
is usually necessary, e.g. using singular value decomposition [51, p.59]. Since
only positive coefficients in the decomposition are allowed, nonlinear bound-
ary constraints are applied (see the Constrained Least Squares algorithm [83]
and the Singular Value Decomposition algorithm [84]).

11.4 A simple PSA method

11.4.1 Single interactions

For the experiment at GAMS5, which purpose is described in detail in chap-
ter 12, the fully characterized detector was for the first time brought into
play. For this purpose, a simple iterative PSA program was developed to
compare observed single interactions directly with the library. Libraries
with simulated detector responses corresponding to single interaction posi-
tions covering the whole detector volume with 1 and 2mm grid spacing were
created.

A simple χ2 value was implemented as FOM. The χ2 value was evalu-
ated over a region of interest (ROI) which contained the position-sensitive
information: The ROI consisted of a time window on the rising edges of the
charge signals and on transients and was further taken as small as possible
in order to optimize the signal to noise ratio. For the same reason, only the
χ2 values of the core, the hit segment and its three closest neighbors were
included in the FOM. Possible noise amplitude variations over different seg-
ments were not taken into account. It is obvious that this leaves room for
improvement. In appendixA, a better FOM will be represented with respect
to the signal to noise ratio.

However, before the FOM can be evaluated between the presumed single
interaction S(t) and an element in the library L(t), both traces have to be
normalized to each other and time-aligned (see the observed timing effects
described in section 9.5). The normalization cannot be performed before the
time alignment due to details in the structure of the acquisitions response
function (see chapter 5.1). This structure causes bad normalization if both
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traces involved are not perfectly aligned in advance. Therefore, the time
alignment had to be performed independent on the amplitude of the traces
involved. This time alignment procedure was based on the Cauchy-Schwarz
inequality:

The Cauchy-Schwarz inequality 11.4.1 Between two vectors ~S
and ~L in an n-dimensional space (i : 1 . . . n), the following inequality
holds: ( n∑

i=1

Si · Li

)2

≤
( n∑

i=1

S2
i

)
·
( n∑

i=1

L2
i

)
(11.3)

The equality holds if – and only if – S and L are linearly dependent.

The time alignment procedure therefore aims at maximizing the inequal-
ity in For. 11.3. Alternatively, the time alignment and normalization could
be obtained through least square fitting. This means that parameters ob-
tainable in a single step would be searched through iterative methods, which
has negative consequences on the processing speed.

Figure 11.2: A simple grid
search method: First the op-
timum (in red) is searched
on a coarse grid. Subse-
quently, a better local opti-
mum is searched in the red
square on the full grid.

To speed up the library search, first a
search on a coarse grid was performed to
find a first optimum (see Fig. 11.2). Sub-
sequently, a second local search was per-
formed near the first optimum on the full
grid. The grid size of the coarse grid was
optimized by comparison of the routines
performance to a full grid search. A wrong
selection of this parameter causes that this
procedure returns local minima rather than
global minima (a search in three stages rather
than two seemed also more critical with
this respect). A typical coarse grid size of
around 8mm was chosen. With this me-
thod, single interactions were analyzed at
a rate of 70 events per second, which was
sufficient to perform an off-line analysis of
the GAMS5 experiment.

No interpolation in the matrix was implemented yet, such that position
resolution is limited by the final library grid size. Such interpolation method
is described in detail in appendixA. Its performance is closely linked with
the final attainable position resolution.
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11.4.2 Multiple interactions

y

x

start
(x0,y0) (x1,y1)

Figure 11.3: Typical multidi-
mensional minimum search by
iteration over one-dimensional
problems (after [51, p.414]).

The single interaction scheme can be
extended in a natural way to handle mul-
tiple interactions. The typical way to find
a minimum of a function in a multidimen-
sional search, is by iteration over constrai-
ned one-dimensional searches. This is il-
lustrated in Fig. 11.3 for a minimum search
of an exemplary two-dimensional function
f(x, y): Starting from the initial guess val-
ues (x0, y0), a first optimum is searched us-
ing a one-dimensional minimization proce-
dure to find x1 = minx f(x, y = y0). A
second one-dimensional search along x =
x1 yields y1 = miny f(x = x1, y). This im-

proved guess value (x1, y1) is passed to the search program as the initial
guess value for a new iteration. Such procedure is repeated until the true
optimum is found.

From Fig. 11.3, it is further evident that a proper choice of the coordinate
system can speed up convergence considerably. By aligning the coordinate
axis with the principle axis of the valley, the optimum would have been
found after two iterations. Using such procedure, Powell [51, p.415] was
able to come up with a method which is able to find the true minimum
of a quadratic surface in n dimensions after exactly n · (n + 1) iterations.
As Powells method provides the fastest convergence known to date for the
described iterative method, a quadratic dependence of the CPU time on the
number of interactions is the best one can hope for.

Applied to PSA, for n interactions, the problem is first reduced to a one-
dimensional problem by isolating the contribution of the i-th interaction
from the measured event S:

Si = S −
∑

j 6=i

Ej · Lj (11.4)

In this process, the simulated trace Lj and corresponding energy Ej rep-
resent the best assumptions for all interactions j 6= i participating in the
event. An improved choice for Li and Ei can than be obtained by comparing
the single interaction Si with the library as described above. This procedure
has to be repeated for all the interactions i ∈ 1 · · ·n till the iteration has
converged.

At present, it is assumed that there can be maximally one hit per segment
resolved. This conclusion was drawn from the analysis in section 12.2.1.
The number of interactions therefore was taken equal to the number of hit
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segments. If multiple interactions happen within one segment, the energy-
weighted barycenter1 of the multiple interactions is returned.

This procedure, implemented in the simple PSA method, seems gener-
ally to converge to a minimum. However, even for double interactions, the
processing time turns out to be of the order of 1 s per event on an AMD
athlon 2.4Ghz processor (this compares to 14 ms per event for single inter-
actions). Iterative methods therefore become rapidly slow.

1The barycenter (from the fields of astronomy, astrophysics) is the center of mass of
two or more bodies which are orbiting each other. Related to PSA, it is used to address
the energy-weighted center of mass of multiple interaction positions.





Chapter 12

Gamma ray diffraction at
GAMS5

After the detector had been characterized as described in the previous chapters,
the detector was deployed in a test experiment at GAMS5 ILL, Grenoble. This
experiment provided the first real challenge for PSA under true experimental
conditions with a MINIBALL detector. A basic PSA method was for the first
time applied. Its performance was compared with the traditional method using
rise time and asymmetry.

12.1 GAMS5

12.1.1 About the spectrometer

At GAMS5, a Bragg-spectrometer augmented by a HPGe-detector is coupled
to a high flux reactor of the Institut Laue-Langevin (ILL) [85]. With this
experimental setup, the γ-rays produced by neutron capture are investigated
through study of their Bragg-reflection. This allows at present an energy
resolution which is unequalled by any other γ-spectroscopic method.

In a typical GAMS5 experiment, the line shape of the diffraction curve
around the Bragg angle is measured. The width of this curve constraints
the attainable energy resolution. Therefore, continuously efforts are under-
taken to reduce the intrinsic resolution of the spectrometer. State of the art
measurements allow energy resolutions of ∆E/E down to 10−6 using two
flat crystals. This technique was for example used to determine the mass
of the neutron [86], but also allows the study of short lifetimes (τ < 100 fs)
and interatomic potentials [87].

For experiments using such flat crystals, the most limiting factor is the
count rate (The efficiency using double flat crystals is as low as 10−12).
Problems arise with environmental background and background created by
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scattered gammas. Prolongation of the measuring time is no option as it
also makes the experiment more sensitive to systematic errors [88].

The efficiency can be boosted by two orders of magnitude when bent
crystals are used [89, 90, 91], although the resolving power of bent crystals is
inferior with respect to flat crystals. Cylindrical shapes can only be realized
with a precision of about 0.3-0.5 arcsec, while flat crystals have their surface
determined with a precision of 0.005 arcsec. Thus at present, the trade-off
for using bent crystals is a worsening of the resolution.

The requirement for a well defined bending is less stringent if the γ-
detection system allows tracing back every diffracted γ-ray to the location
at which it diffracted in the crystal. If the bending of the diffraction crystal
is known from point to point along the crystals surface, the spectrometers re-
sponse could be corrected for on an event by event basis. This concept is well
known and applied in optics and x-ray diffraction (see e.g. [92]). For γ-rays,
this is however not straightforward. The 12-fold segmented MINIBALL de-
tector came in very handy for that purpose. Besides for the needed position
sensitivity, it also provides good energy resolution to suppress background.

12.1.2 Setup of the experiment

A schematic overview of the setup is shown in Fig. 12.1 (see also [93, 94]).
One or two 2.5mm-thick Si-crystals in double bent mode were placed at
a distance of 17 meters from a thin (150µm) in-pile source, consisting of
natural erbium oxide. This source was situated at half a meter from the
reactor core where it was exposed to a flux of 5 · 1014 neutrons/cm s. This
target material provides a number of very strong γ-ray transitions. During
the experiment, the 184.285 keV, 284.655 keV and 815.900 keV γ-transitions
were addressed.

These γ-rays, created by thermal neutron capture in 167Er, were colli-
mated through a 3x8 cm2 opening before hitting the first bent crystal. The
trajectories of the diffracted γ-rays were subsequently sorted using a 1m-
long Soller collimator before they reached the segmented detector.

The low divergence of the γ-rays due to the large distance between the
in-pile source and the crystals as well as the use of the Soller collimator
makes it possible to correlate the position where the γ-ray hits the detector
to the diffracting area of the Si-crystal.

12.2 Obtained position resolution

The registered traces were saved for off-line analysis with the PSA code
described in section 11.4. Some of the data was acquired with only one slit –
2mm by 15 mm – of the Soller collimator opened (as indicated in Fig. 12.1).
From this data set, the obtained position resolution can be determined. In



12.2 Obtained position resolution 103

In-pile γ-source 
184.285keV

17
m

2.5 mm-thick 
Bent Si crystal 

1m
 s

ol
le

r
co

lli
m

at
or

12-fold MINIBALL Det.

2mm-open
2mm lead

Figure 12.1: Schematic overview of the experimental setup at GAMS5. Part
of the data was acquired with only one slit of the Soller collimator as indi-
cated to deduce the position resolution.
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REF ROI REF

750ns
375ns

Figure 12.2: A typical core signal as acquired during the experiment. Traces
of 750 ns were recorded. The ROI and REF time windows are indicated as
used for the analysis.

total, more than 20000 184 keV photopeak events were acquired with the
single slit.

12.2.1 Noise Analysis

The optimum position for each of these events was determined using the
simple PSA algorithm described in section 11.4 and assuming a single inter-
action per segment. The discrepancy between simulation and experiment at
this optimum was investigated. The noise was analyzed using a simple least
square FOM.

In Fig. 12.2, one of the treated 184 keV events is shown. The noise level
was measured twice: Once in the region of interest (ROI) and once in the
reference time windows (REF) next to the ROI. The total noise vector ~n in
the ROI with length |ROI| is expected to consists of two components: an
electronic noise component ~e and a component due to simulation imperfec-
tions ~c. From the χ2 value of the difference between the measured trace
and the optimum simulated single event, one obtains an estimate for the
variance σ2

n of the total observed noise:

σ2
n =

1
|ROI|

∑

ROI

E(ei + ci)2

= σ2
e + σ2

c (12.1)

with σ2
e , the variance of the electronic noise and E(.) the expectation oper-

ator. The simulation error σ2
c is not truly stochastic. Its influence on the

total χ2 FOM however behaves as a stochastic variable with variance σ2
c ,

which is not correlated with the electronic noise (E(ei · ci) = 0).
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Figure 12.3: Noise levels measured at ILL. The electronic noise level
amounted 8 keV. In the ROI, this value is increased due to characteriza-
tion inaccuracy. Under good conditions, electronic noise levels of 2.4 keV
can be achieved, in agreement with [41].

The electronic noise component can be measured directly in the REF
area. A histogram of σn is shown in Fig. 12.3. On average, the measured
electronic noise level during the experiment at ILL amounted 8 keV. Before
the detector was transported to ILL, an average noise level of 2.4 keV was
measured, which is in agreement with expectation from theory (Blair et al.
[41]). The rather high noise levels are therefore attributed to the exper-
imental conditions at the ILL site. The results on the obtained position
resolution reported below have to be seen with respect to this low signal to
noise ratio (E/σe = 23).

The measured noise level in the ROI is about σn = 9 keV . From the
characterization (see chapters 9.4, 10.2), one can expect an error which is
about 2% of the energy, in this case σc(184 keV ) = 3.6 keV . The expected
noise level using For. 12.1 yields σn = 8.8 keV . A value which is barely less
than the average value of the observed distribution in the ROI (see Fig. 12.3).

Remember that these values were obtained under assumption of single
interactions. That the observed value is close to our prediction indicates that
the difference between multiple interactions and a single interaction is too
small to observe using a simple χ2 FOM. This does not exclude that other
FOMs, dedicated to distinguish between single and multiple interactions,
could be more successful with this respect. Using the simple least square
comparison, multiple interactions happening inside one segment cannot be
distinguished from single interactions at this noise level.
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12.2.2 Image of a single slit aperture

The interaction distribution in the detector obtained with the single slit
data are shown in Fig. 12.4. In A), a front view of the slit image is shown,
as analyzed using a 1 mm and a 2 mm library. The 2mm data was rotated
by 180◦ around the core axis in order to facilitate the comparison of the
projections of these distributions along the depth of the crystal (B,C). In
the 2 mm data, the collimator is better visible. This is an effect of the higher
binning, which increases the statistics per bin with a factor of 8 compared
to the 1mm grid. The linewidth of the 1 mm data (see Fig. 12.7) is smaller
than for the 2mm data.

In the side view (Fig. 12.4B), one sees a low count rate near the corners of
the detector crystal. The reason for this effect was already observed during
the characterization. It is caused by a bulletization of the crystal at the
front of the detector. Although this effect was not included in the simulated
libraries, it shows up as a PSA result.

The traditional method using steepest slope and asymmetry was also
applied to the same data (see Fig. 12.4D). The method clearly performs
worse than the PSA code using a library. The main reason that this method
fails is the lack of depth information. Most events in this experiment lie in
the non-coaxial part of the detector where depth corrections for the time-to-
steepest-slope conversion are necessary. Such corrections are very difficult
to perform with the 12-fold segmented detector.

12.2.3 Analysis of the observed collimator line width

Number of interactions

As discussed in section 12.2.1, a discrimination between single interactions
and multiple interactions is impossible within the same segment using only
a basic least square FOM. Multiple interactions located in the same segment
will therefore be assigned to a single interaction coordinate by the PSA code
equal to the energy-weighted barycenter of the interaction positions involved.
To estimate to which amount this affects the observable line width of the
collimator, the probability for multiple interactions has to be estimated.

At 184 keV, one expects about 40% of the events as single interactions,
while 33% will undergo a single Compton scattering. Already 27% of the
events therefore will undergo multiple Compton scattering. To make a first
order estimate on the observable line width, these multiple Compton scat-
tered events will be neglected in the following discussion.

Distribution of the energy-weighted barycenter

The profile created by the single interactions is very easy: Its front view
resembles the shape of the collimator, while in depth, it creates an exponen-



12.2 Obtained position resolution 107

2m
m

lib
rar

y

1m
m

lib
rar

y

Tra
dit

ion
al 

me
tho

d u
sin

g
Ste

ep
est

 slo
pe

 +
 as

ym
me

try
(no

 de
pth

 in
for

ma
tio

n p
oss

ibl
e)

C
: S

id
e

vi
ew

 “
X

Z
”

D
: F

ro
nt

 v
ie

w
 “

X
Y

”
z

x

y

x

y

z

-1
50

-0 -3
50

-1
75

-0

-1
00

-0

y

x

A
: F

ro
nt

 v
ie

w
 “

X
Y

”
-3

00
B

: S
id

e 
vi

ew
 “

Z
Y

”
-2

00

F
ig

ur
e

12
.4

:
Im

ag
e

of
a

si
ng

le
sl

it
(2

m
m

by
15

m
m

)
m

ad
e

w
it
h

th
e

12
-f
ol

d
se

gm
en

te
d

de
te

ct
or

.
T

he
sa

m
e

da
ta

w
as

th
re

e
ti
m

es
an

al
yz

ed
.

A
:
P

SA
re

su
lt
s

us
in

g
lib

ra
ri

es
of

di
ffe

re
nt

gr
an

ul
ar

it
y.

T
he

2
m

m
lib

ra
ry

re
su

lt
s

w
er

e
ro

ta
te

d
by

18
0◦

ar
ou

nd
th

e
co

re
ax

is
su

ch
th

at
th

e
co

rr
es

po
nd

in
g

si
de

vi
ew

s
(B

,C
)

ar
e

ea
si

ly
co

m
pa

re
d

w
it
h

th
e

1
m

m
lib

ra
ry

re
su

lt
s.

D
:F

or
co

m
pa

ri
so

n,
th

e
re

su
lt
s

us
in

g
th

e
tr

ad
it
io

na
l
m

et
ho

d
in

se
ct

io
n

11
.1

.



108 Gamma ray diffraction at GAMS5

PLOT

1 0 1 2 3
0

0.5

1

1.5

2

123... 4

-1             0             1             2 z [cm]

2

1.5

1

0.5

0
E0

E1

r = E1r1/(E0+E1)

r [cm]

r1

γ-rays

Figure 12.5: The probability in germanium for finding the second absorp-
tion event at position (r, z) from the scatter center (0, 0) for a single 184 keV
Compton scattered event originally incident along r = 0. Analyzing a comp-
ton scattered event by assuming a single interaction will yield the position
of the energy-weighted barycenter r.

tially decaying distribution with an average range of λ(184 keV ) = 1.0 cm
for germanium.

For the single Compton scattered fraction, let us first assume that the
first interaction in the detector happened at coordinate (r = 0, z = 0). The
probability of finding the location where the absorption took place is then
given by the Klein-Nishina formula, combined with the exponential absorp-
tion law. This results in Fig. 12.5. From this distribution, the distribution
of the energy-weighted barycenter of both interactions can be easily derived
as illustrated.

Finally, in case the collimator is a slit rather than a pinhole, the observed
distribution is the projection (integral) of the distribution of barycenters de-
duced from the probability distribution drawn in Fig. 12.5. The distribution
of these barycenters, integrated along the slit, is shown in Fig. 12.6.

At this energy, the distribution has a minimum width of 8.4mm FWHM
across the collimator slit. The distribution in depth does not show a maxi-
mum at 0, but is shifted by nearly 5mm along the initial γ direction. This
shape has to be convoluted with the exponential decaying probability for the
penetration of the first interaction in the germanium. The final distribution
of the Compton scattered fraction therefore does not behave exponential
along the detectors depth. Moreover, in the front, this distribution is low-
ered as more gammas can scatter out of the detector.
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(x, z) from the scatter center. The distribution was derived from the distri-
bution shown in Fig. 12.5.
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Comparison with the measured line width

Combining the results from the previous paragraph, one can estimate the
observed profile P (x) across the slit. This should mimic the following form:

P (x) ∼= [w1 · δx + w2 · C1(x)]⊗ S(x)⊗R(x) (12.2)

The weights w1 = 40
73 and w2 = 33

73 correspond to the probabilities for ob-
taining one and two interactions. C1(x) is given by the projection shown in
Fig. 12.6. S(x) is the profile given by the shape of the collimator (taken as
a gaussian with a FWHM of 2mm) and R(x) is the position resolution.

The function 12.2 is compared with the experimentally observed distri-
bution in Fig. 12.7. The ideal line width is shown with a red thick line.
The best fit through the observed distribution (black thin line) is obtained
assuming a gaussian R(x) with σ = 1.4mm for the analysis using a 1 mm
library. The results with the 2 mm library are slightly worse (σ = 1.8mm).
This is partly due to the missing interpolation routine such that the position
resolution is limited by the library grid size.

The distribution along the depth is shown in Fig. 12.7. An exponen-
tial function (λ(184 keV ) = 1.0 cm) was plotted through the distribution to
guide the eye. In the front part of the detector, the distribution does not
behave exponentially due to scattering out of the detector and the bulleti-
zation of the crystal. The same happens near the single segmentation line
in depth. This is because near segmentation lines one can better distinguish
between single and multiple interactions. The behavior near the end of the
crystal is caused by background.

12.3 Results

Once the position interactions in the detector are known, the further analysis
can be performed analogously to the traditional doppler correction method
explained in section 11.1. For a specific area at the detector front surface,
a diffraction curve can be created gating on all events that passed that
particular surface. Fig. 12.8 shows how the means of these gated spectra
vary with the position of the events registered in the detector. On average,
position corrected diffraction curves are 30 % smaller than the full diffraction
curve obtained without position correction.

For a single crystal the shifts shown in Fig. 12.8 can be directly related to
the local bending imperfections of the crystal. Therefore, these corrections
should be independent of the energy of the incident γ-ray. This hypothesis
was confirmed by the measurements at 284.655 keV and even with lower
statistics at 815.990 keV, which both yielded a similar diffraction correction
profile as shown in Fig. 12.8.
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Chapter 13

Conclusion

In chapters 7, 8 the problem of electron and hole mobility characterization
was addressed from a theoretical point of view. An alternative electron
mobility parametrization was presented, however, the more important con-
tribution is an applicable anisotropic hole mobility model. The validity of
this model was demonstrated using existing data from literature. The longi-
tudinal and tangential velocity anisotropy as a function of the electrical field
orientation for the hole mobility was compared to the electron mobility. The
large differences between them cause specific rise times and pulse shapes as
a function of the location where the charge carriers are created in the ger-
manium crystal. These measurable effects of the electron and hole mobility
are of pivotal interest for position determination and γ-ray tracking.

Both electron and hole mobility values in literature differ substantially
at the level of accuracy required for pulse shape simulations in future appli-
cations. For the electron mobility, the difference is due to the dependency
of the intervalley scattering rate on the purity of the crystal. A method for
experimental determination of these mobility parameters on HPGe detectors
was described in chapters 9, 10.

This allowed for the first time a full characterization of a large volume,
irregular shaped, segmented HPGe detector. The final event information
obtained by these methods is based solely on digitized preamplifier signals
enabling a very precise response function analysis. To eliminate the deriv-
ative crosstalk contributions in the pulse shapes the use of these digitized
pulses as a function of measuring time turned out to be a crucial prerequisite
for a novel crosstalk method for segmented HPGe detectors. Its function-
ality was demonstrated on real data and allows a detailed reconstruction of
the original signals. Besides the detection of these unwanted crosstalk phe-
nomena, the origin of these effects was investigated and partially explained.

Numerous measurements of charge pulses very close to the outer and
inner contact of the electrodes were utilized to measure the contributions
of electrons and holes as charge carriers independently. The interplay of
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Ge crystal properties and the response of the acquisition electronic was dis-
entangled. The basic Ge crystal characteristics: crystal orientation, space
charge distribution, electron mobility and hole mobility were extracted from
the experiments. Precise electron mobility measurements were performed
leading to a detailed knowledge on space charge and electron mobility pa-
rameters throughout the detector crystal. High precision in reproducing all
measured electron charge pulses of the detector was achieved in simulations.

Measurements on the hole mobility have led to the first hole anisotropy
measurements ever revealed in such large volume n-type Ge detectors. Both
electron and hole mobility characterization measurements have allowed a
precise description of the detector under study. High agreement between
simulation and experiment was obtained, on average to better than 2%. This
was achieved by implementation of anisotropic electron and hole mobility
models in the simulation. The consistency of the new hole mobility model
could be verified on the measured data. Non-trivial space charge enhanced
anisotropy effects are clarified by this investigation.

With aid of the good simulation performance, for the first time a MINI-
BALL detector was applied in an experiment using a simulated library based
PSA code. This enabled to overcome several limitations present in the tradi-
tional MINIBALL PSA codes based on steepest slope and asymmetry. The
good position sensitivity achieved in the GAMS5 experiment (chapter 12)
can be solely attributed to the high level of agreement achieved in the char-
acterization procedures. Careful analysis of the data revealed that a position
resolution of σ = 1.4mm was achieved with a 1 mm library for a signal to
noise ratio of E/σe = 23.

Correlations in the electronic noise turned out to be stronger than ex-
pected. As an outlook, a more powerful PSA method is described in appen-
dixA which is able to deal with correlated noise. The method is expected
to improve substantially on the resolution quoted above.



Appendix A

Position Resolution

The question on the obtainable position resolution is not so simple to answer,
as it depends on numerous factors such as the ratio between deposited energy
and electronic noise, the interaction position in the detector, the number of
interactions, the properties of the frontend electronics etc. It clearly also depends
on the pulse shape analysis (PSA) applied. A short introduction is given into
the complexity of the fitting procedures that result when high-precision PSA
is aimed at. Finally, the theoretical attainable position resolution is discussed
under application of such high-precision PSA algorithms.

A.1 The Multivariate Normal Distribution

A.1.1 Shape of the distribution

To be able to relate noise and resolution in a mathematically tractable fash-
ion, it is necessary to introduce a relevant statistical tool: the Multivariate
Normal Distribution [95]. This distribution is a generalization of the normal
distribution into higher dimensions:

N(~e; ~µe,Σe) =
1√

(2π)n det(Σe)
exp [−1

2
(~e− ~µ)T ·Σe

−1 · (~e− ~µ)] (A.1)

The distribution describes the probability of obtaining a vector ~e which has
mean (vector) ~µe. Its variance-covariance matrix Σe is the multivariate
version of the variance in a normal distribution. This matrix is defined as
Σeij = σij . The diagonal of this matrix consists of the variances σii = σ2

i of
~ei, while the off-diagonal elements allow to account for possible correlations
between the components of ~e.

A.1.2 Parameter Estimation

In a similar way as for Gaussian distributions, the mean ~µe and variance-
covariance matrix Σe, which describe a multivariate normal distribution
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completely, can be estimated from a statistic. Given a statistic of length
n: ~Bi, i ∈ 0 · · ·n, taken from a multivariate normal distribution N(~µe,Σe),
then

〈 ~B〉 =
1
n

∑

i

~Bi (A.2)

〈Σe〉 =
1

n− 1

∑

i

( ~Bi − 〈 ~B〉)¯ ( ~Bi − 〈 ~B〉)T (A.3)

are unbiased1, sufficient2 estimators for ~µe and Σe respectively. The Law of
Large Numbers also applies which guarantees that 〈 ~B〉 → ~µe and 〈Σe〉 → Σe

as n →∞. In Eq.A.3, the symbol ¯ denotes the matrix direct product and
is defined by [96]:

~a¯~b T = (a0, a1, a2, · · · )¯




b0

b1

b2
...


 =




a0b0 a0b1 a0b2 · · ·
a1b0 a1b1 a1b2 · · ·
a2b0 a2b1 a2b2 · · ·

...
...

...
. . .


 (A.4)

A.2 Measured noise properties

In ordinary least square (OLS) based fitting procedures, it is assumed that
the data being fitted are all acquired independently. Blair et al. [41] derived
the attainable position resolution under OLS conditions. This assumes the
electronic noise is white: No correlation exists between noise sampled at
dissimilar times.

How white the noise is in reality can be easily checked by measuring
correlations in noise samples. Electronic noise is in general multivariate
normal distributed. Along with the measurements described in chapter 5,
random baseline samples ~Bk, k ∈ 0 · · ·n were taken with a total length
of | ~Bk| = 30 × 25 ns to elicit the noise covariance matrix. The offset of
these samples was adjusted, which causes that the mean µe is zero. Such
procedure is commonly used in normalization procedures. The variance-
covariance matrix of the noise Σe can be estimated from this statistic using
equationA.3 as

Σe
∼= 1

n− 1

∑

k

( ~Bk ¯ ~BT
k ) (A.5)

The statistical nature of the electronic noise is expected to be time invariant.
The covariance matrix should therefore exhibit the property that σi,j =
σi+k,j+k. It can be shown with this property that every row of the covariance

1An estimator 〈 ~B〉 for ~µ is unbiased if E(〈 ~B〉)− ~µ = 0
2An estimator 〈 ~B〉 for ~µ is called sufficient if the (Fisher-)information about the para-

meter ~µ contained in 〈 ~B〉 equals the information in the statistic ~B: I〈~B〉(~µ) = I~B(~µ)
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Figure A.1: Left: Contour plot of the entire 30 × 30 covariance matrix
obtained using equationA.5. Right: Selected rows of the covariance matrix.
Every row is a time-shifted image of the noise autocorrelation function.
Average correlation coefficients for the most important matrix elements are
indicated. Observe the negative correlation (-16%) at long correlation times
induced by the normalization procedure.

matrix consists of a time-shifted window on the autocorrelation function3 of
the noise. For true white noise, the covariance matrix becomes Σe = σ2 ·In,
with In the identity matrix.

Realistic electronic noise, as observed through analysis of Eq.A.5, turns
out to be more colorful than expected. A typical example of a noise covari-
ance matrix for a single segment is shown in Fig.A.1. Three rows of this
covariance matrix are shown in detail. The matrix is clearly non-diagonal.
The observed noise shows relatively long memory effects. On all channels
of the detector, the autocorrelations FWHM amounted slightly less than
100 ns. Even more surprising was that the correlations do not vanish over
long times, but level of at a negative constant. This effect is produced by
the baseline normalization

∑
i Bki = 0 which causes that the sum of the

covariance matrix elements
∑

i Σei,j is zeroed for every column j:

∑

i

Σei,j =
1

n− 1

∑

k

(
∑

i

Bki ·Bkj) =
1

n− 1

∑

k

(0 ·Bkj) (A.6)

The described measurement demonstrate correlations in the noise within
a single segment. In chapter 4, it was shown that segments form a weakly
coupled network. It can therefore be expected that the noise, observed in

3Autocorrelation: see [21, p.124] or [97]
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one channel, is not entirely uncorrelated from the noise observed in other
channels either. Similar correlation measurements as described here have
revealed that indeed strong correlations exist, mainly between direct neigh-
boring segments. Such analysis could therefore provide an alternative way
to investigate the behavior of crosstalk. In conclusion, there are indeed rea-
sons enough re-evaluate the attainable position resolution applying realistic,
colored noise.

A.3 General Least Square Estimation

Using the knowledge on the statistical properties of the electronic noise,
obtainable as described in previous section, allows to make better predictions
on interaction positions. The fitting procedure which makes it possible to fit
safely with correlated data points is called General Least Square Estimation
(GLS). An introduction is given here, with omission of all details and proofs,
to illustrate how GLS and traditional OLS estimation compare. In this, the
notation used in chapter 11.4 is maintained here for convenience.

Suppose ~S(~p ) is a normalized measured event of an interaction at po-
sition ~p (represented by a vector which is the concatenation of the traces
measured in all the segments). Suppose that ~L(~p0) corresponds to the li-
brary event associated with position ~p0 in the vicinity of ~p. The difference
between ~S(~p ) and ~L(~p0) is due to the distance ∆~p between locations ~p and
~p0 and the electronic noise ~e (the simulation error is disregarded for the
moment).

In the neighborhood of ~p0, one can approximate the variation of the
events with position in first order by the model matrix

X(~p0) =
∂~L

∂~p
|~p0

(A.7)

as:
~S(~p )− ~L(~p0) ∼= X(~p0) · (~p− ~p0) + ~e (A.8)

The matrix in For.A.7 is sometimes called sensitivity matrix, for reasons
which will become clear later (see sectionA.4). In general, this matrix is not
square and thus not invertible such that a strict solution of the form

∆~p = X−1(~p0) · (~S(~p )− ~L(~p0)) (A.9)

does not exists, even when ~e is zero. This is where fitting comes in. The
PSA algorithm performs a regularization: it chooses the position which is
most likely. Such fitting procedure can in general be regarded as selecting a
pseudo- matrix inverse X+(~p0) [98] such that the best fit for ∆~p equals

∆~p = X+(~p0) · (~S(~p )− ~L(~p0)) (A.10)
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Such fitting procedure implicitly makes a decision on what part of ~S(~p )−
~L(~p0) is caused by the distance ∆~p between locations ~p and ~p0 and which
part is caused by noise ~e. Pseudo matrix inverses are not unique. Clearly
holds: The better the noise can be predicted, the more accurate will be the
obtained position information.

In the case of OLS fitting, the pseudo inverse in Eq.A.10 X+(~p0) becomes
the generalized matrix inverse [99] X+

OLS = (XTX)−1XT , which provides
the best guess to the solution of For.A.8, provided the noise is white. When
this is not true, the best estimator for ∆~p is obtained with the GLS matrix
inverse (see [100]):

X+
GLS = (XTΣe

−1X)−1XTΣe
−1 (A.11)

This definition of the matrix inverse has the advantage over the OLS in-
verse that correlations in the noise are correctly taken into account through
Σe

−1. This makes that the GLS estimator is more efficient4 than the OLS
estimator.

Multivariate normal distributions posses the property to transform un-
der affine transformations into other multivariate normal distributions. It is
therefore not surprising that by the linear transformation in equationA.10,
the multivariate electronic noise can be translated into a multivariate un-
certainty in position. For the GLS inverseA.10, the following results are
obtained (without proof):

Corollary A.3.1 The position errors induced by electronic noise
are multivariate normal distributed: ∆~p ∼ N(~µp,Σp). The optimum
attainable position resolution is defined by the covariance matrix

Σp = (XTΣe
−1X)−1 (A.12)

The optimum (GLS) estimator on the position, interpolated from the
library at point ~p0 is given by:

∆~p = X+
GLS(~p0) · (~S(~p )− ~L(~p0)) (A.13)

In practice, additionally to the electronic noise, an unknown simulation
error µe is present in Eq.A.8. This term is only depending on the position
p0 and leads, according to Eq.A.13, to a systematic position error ~µp of

~µp = X+
GLS · ~µe (A.14)

4Here, the statistical meaning of the word efficiency is intended (see [101]).
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A.4 Position sensitivity

EquationA.12 gives us information about the obtainable position resolution.
The errors on the position coordinates are given by the diagonal matrix
elements of Σp. Remark that from For.A.1, all positions satisfying

~p T ·Σ−1
p · ~p = constant (A.15)

are assigned equal probability. Eq.A.15 can therefore be used to draw ellip-
soidal confidence limits in position space. Such procedures are described in
detail in [51, p.695].

In the case of white noise Σe equals σ2 · In and equationA.12 reduces to
the OLS results published by Blair et al. [41]:

ΣOLS
p = σ2(XTX)−1 (A.16)

with
XTX ∼= 1

∆T

∫
∂L(~p0, t)

∂pi
· ∂L(~p0, t)

∂pj
dt (A.17)

and ∆T , the sampling period of the digitizers. The resolution obtained in
OLS sense could thus be defined as σ

√
tr[(XTX)−1]. The term Position

sensitivity is frequently used as synonym for position resolution. However,
the definition of the sensitivity seems to vary from author to author. A
definition for sensitivity proportional to tr(XTX) was used by Görgen in
[102] while the definition used by Kuhn [78] is inverse proportional to this.
It is not difficult to prove that in general from neither of these definitions
of sensitivity, the position resolution can be deduced: A fixed relation be-
tween sensitivity and resolution exists if, and only if the eigenvalues of XTX
are threefold degenerated. Position resolution however is in generally not
isotropic and sensitivities tend to lead to an overoptimistic approximation
of the attainable position resolution.

Sensitivities for an AGATA and a GRETA prototype detector were dis-
cussed in great detail within the references [78, 102]. Summarized, one can
state that these sensitivities predict that the resolution is highest near the
segmentation lines. The resolution is increased when the segment volume is
decreased. However, near the front and the back of the crystal, the resolution
is reduced due to the missing neighboring segments.

A.5 Improved Figure of Merit

Let us now apply the acquired knowledge on the system errors to construct
a good figure of merit (FOM). The evaluation of FOMs with a high signal
to noise ratio (SNR) has also been studied in parallel fields of research, such
as imaging with MRI [103] or as applied in radar technology, which could
serve as further sources of information.
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We will investigate a specific category of FOM’s, which are derived from
positive definite matrices F as:

FOM[~S(~p )− ~L(~p0)] = [~S(~p )− ~L(~p0)]T · F · [~S(~p )− ~L(~p0)] (A.18)

The aim is to use F as a smart filter such that the signal to noise ratio
is optimized. In section 11.4.1, a modest attempt to create such FOM was
introduced. This FOM is obtained by putting F = PTP, with P the matrix
which projects on the ROI-subspace. The shortcomings of this FOM were
already discussed before.

A good FOM should weight the trace residues (~S(~p )−~L(~p0))(t) according
to the information they contain at time t and inverse proportional to the
estimated noise level at that time. Such kind of filter can be derived as
follows: Consider the best FOM in position space. According to our know-
ledge on the error distribution (see For.A.12), the best FOM in position
space would be the error-weighted5 FOM:

FOM(~p− ~p0) = (~p− ~p0)T ·Σ−1
p · (~p− ~p0) (A.19)

This can now easily be converted into a FOM applicable to the library. Using
relationA.13 we get:

FOM = (~S(~p )− ~L(~p0))T ·X+
GLS

TΣp
−1X+

GLS · (~S(~p )− ~L(~p0)) (A.20)

The trace samples are thus being weighted according to the amount of in-
formation (through the presence of X in For.A.20) and inverse proportional
to the amount of noise (through the presence of Σe

−1 in For.A.20).
The performance of FOMA.20 was compared to the simple FOM de-

scribed in section 11.4.1 using test signals and simulated multivariate noise.
From comparison of the relative SNR values, improvements in SNR up to
two orders of magnitude were observed for the sophisticated FOM. However,
absolute numbers are difficult to quote, as the SNR values turned out quite
sensitive to the signal shapes under test.

Such sophisticated filters are depending on the local position ~p0 in the
library where the comparison is performed and are therefore computational
intensive. Therefore, it is not expected that simple and fast FOMs will dis-
appear completely from PSA. However, when high accuracy is requested,
e.g. for the analysis of multiple interactions inside a single segment, such
precise FOMs offer a more powerful alternative which cannot be overlooked.
Finally, any scan of the library should be completed with a GLS-based in-
terpolation as described by Eq.A.13, in order that the predicted position
resolution by Eq.A.12 is also realized.

5The FOM obtained with omission of Σ−1
p in For. A.19 was shown equally to produce

high SNR values.
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