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Abstract

Schur functions and their q-analogs constitute an interesting branch of combinatorial
representation theory. For Schur functions one knows several combinatorial formulas
regarding their expansion in terms of monomial symmetric functions, their structure
constants and their branching coefficients. In this thesis we prove q-analogs of these
formulas for Hall–Littlewood polynomials. We give combinatorial formulas for the
expansion of Hall–Littlewood polynomials in terms of monomial symmetric functions,
for their structure constants and their branching coefficients. Specializing these formulas
we get new proofs for the formulas involving Schur functions. As a combinatorial tool
we use the gallery model introduced by Gaussent and Littelmann and show its relation
to the affine Hecke algebra. All assertions are then proven in the more general context
of the Macdonald basis of the spherical Hecke algebra.

We show a commutation formula in the affine Hecke algebra with which we obtain a
Demazure character formula involving galleries. We give a geometric interpretation of
Kostka numbers and Demazure multiplicities of a complex reductive algebraic group
using the affine Grassmanian of its Langlands dual group. As a further application we
prove some first results regarding the positivity of Kostka–Foulkes coefficients.

Kurzzusammenfassung

Schur Polynome und ihre q-Analoga sind ein interessantes Gebiet der kombinatorischen
Darstellungstheorie. Kombinatorische Formeln für die Koeffizienten der Schur Poly-
nome bezüglich der monomialen symmetrischen Funktionen, für ihre Strukturkonstan-
ten und für die Verzweigungskoeffizienten sind wohlbekannt. In dieser Dissertation
werden q-Analoga dieser Formeln für die Hall–Littlewood Polynome bewiesen. Es
werden kombinatorische Formeln für die Koeffizienten der Hall–Littlewood Polynome
bezüglich der monomialen symmetrischen Polynome, für ihre Strukturkonstanten und
ihre Verzweigungskoeffizienten gezeigt. Spezialisiert man diese Formeln, erhält man
neue Beweise für die klassischen Formeln bezüglich der Schur Polynome. Als kombi-
natorisches Hilfsmittel wird das Galerienmodell von Gaussent und Littelmann benutzt
und mit der affinen Hecke Algebra in Verbindung gebracht. Die Aussagen über die
Hall–Littlewood Polynome werden allgemeiner für die Macdonald Basis der sphärischen
Hecke Algebra bewiesen.

Es wird eine Vertauschungsformel in der affinen Hecke Algebra gezeigt, die sich zu einer
Demazure Charakterfomel spezialisieren lässt. Kostka Zahlen und Demazure Multi-
plizitäten von komplexen reduktiven algebraischen Gruppen werden mit Hilfe der affinen
Grassmannschen der Langlands dualen Gruppe geometrisch interpretiert. Auch werden
erste Resultate hinsichtlich der Positivität der Kostka–Foulkes Koeffizienten erzielt.
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Introduction

The symmetries of many systems in mathematics and physics are governed by the rep-
resentation theory of groups and algebras. The aim of combinatorial representation
theory is to give combinatorial models for such representations and to obtain combina-
torial formulas for interesting invariants. This both gives a way for calculating these
invariants and leads to a better understanding of the representations. A detailed expo-
sition of this area of mathematics can be found in the survey article [BR99] of Barcelo
and Ram.

One interesting class of representations which is quite well understood and where there
are good combinatorial models is the category of finite dimensional complex represen-
tations of a complex reductive algebraic group G∨. Here one is interested in weight
multiplicities, tensor product decompositions and branching rules for the restriction to
a Levi subgroup. Applying the character with respect to a maximal torus yields an
isomorphism from the representation ring to the algebra of symmetric functions of the
associated root datum. This isomorphism sends irreducible representations to Schur
polynomials. So the above mentioned problems transform in giving formulas for the
expansion of Schur polynomials with respect to monomial symmetric functions, calcu-
lating the structure constants with respect to Schur polynomials and describing their
coefficients with respect to Schur polynomials of smaller rank.

For the special case of the general linear group the combinatorics of Young tableaus
solves all these problems. All the mentioned entities are expressed as number of tableaus
with certain additional properties. The path model of Littelmann [Lit94] is a model
for general G∨. It replaces tableaus with piecewise linear paths in the dual of a Cartan
subalgebra of the Lie algebra of G∨.

Many modern developments in combinatorics, representation theory and in the theory of
reductive groups over local fields yield q-analogs of symmetric functions which specialize
for certain values of q to the Schur polynomials. So it is a natural question to ask for
generalizations of the combinatorial models to these q-analogs.

In [GL05] Gaussent and Littelmann introduce the gallery model as a tool for the
geometric-combinatorial analysis of the affine Grassmanian associated to the Langlands
dual group G of G∨. They show that it is a combinatorial model of the representa-
tions of G∨ equivalent to the path model. Moreover, they associate to these galleries
explicitly given subsets of Mirković–Vilonen cycles, which by the work of Mirković and
Vilonen [MV00, MV04] on the geometric Langlands duality are geometric models for
the representations of G∨. As a byproduct of their work one gets a combinatorially de-
fined polynomial for each gallery which reflects the geometric structure of the associated
subset.

In this thesis we show that the gallery model together with these polynomials yields
a combinatorial model for certain q-analogs of Schur polynomials, the Hall–Littlewood
polynomials. To be more precise, we describe the expansion of Hall–Littlewood polyno-
mials in terms of monomial symmetric functions, we calculate their structure constants
and describe their coefficients with respect to Hall–Littlewood polynomials of smaller
rank. The moral of this should be that the gallery model is a good model to calculate
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q-analogs, not only the ones considered here in this thesis.

Specializing our results we get new proofs for the formulas involving Schur functions
in [GL05]. In contrast to their approach (and the approach in [Lit94] based on paths) we
do not use the combinatorics of root operators. But we show that their root operators
are in some sense compatible with our approach. All of our arguments are based on
calculations in affine Hecke algebras and certain specialization arguments and do not
rely on results of [GL05]. It should be mentioned that our approach, despite of giving
formulas for the Schur polynomials, does not work without introducing q-analogs. So
in some sense working with q-analogs is easier than the classical case.

We use the Satake isomorphism to identify q-analogs of symmetric functions with
the spherical Hecke algebra with equal parameters. Under this isomorphism, Hall–
Littlewood polynomials correspond (up to some factor) to the Macdonald basis and the
monomial symmetric functions correspond to the monomial basis of the spherical Hecke
algebra. All assertions are then proven in the more general setting of spherical Hecke
algebras with arbitrary parameters. We calculate the expansion of the Macdonald basis
in terms of the monomial basis, the structure constants of the spherical Hecke algebra
with respect to the Macdonald basis and their restriction coefficients. For doing this
we introduce the alcove basis of the affine Hecke algebra and show its intimate relation
to galleries.

In type A the expansion of (modified) two parameter Macdonald polynomials in terms of
monomial symmetric functions for equal parameters was described by Haglund, Haiman
and Loehr in [HHL05] using Young diagrams. Specializing their formula yields the
expansion of Hall–Littlewood polynomials in this case.

It is well known that the Satake coefficients form a triangular matrix. With our combi-
natorial description of the Satake coefficients we can show that all remaining entries are
in fact nonzero. This yields a new proof of a positivity result of Rapoport [Rap00] in
the case of a spherical Hecke algebra of a reductive group over a local field since these
geometrically defined spherical Hecke algebras arise as specializations of the combina-
torially defined ones.

There are various other attempts to calculate the structure constants with respect to
Hall–Littlewood polynomials (respectively to the Macdonald basis) when all parameters
are specialized to a power of some prime number p. In type A, where up to normalization
the Hall–Littlewood polynomials are the Hall polynomials known from the theory of
p-groups, there exists an algorithm due to Macdonald [Mac95] calculating them using
certain sequences of Young diagrams. But this algorithm is not very explicit. An
improved version is given by Malley in [Mal96]. In [KM04] Kapovic and Millson proved
the saturation conjecture. As a byproduct of their investigation [KM04, corollary 6.16]
they prove a formula similar to ours (for equal parameters) for general type using
folded geodesics in an affine building of G. As part of his thesis Parkinson [Par06]
showed that for arbitrary parameters these structure constants can be interpreted as the
number of certain intersections in a regular building. Using a geometric interpretation
as the number of points in certain intersections in the affine Grassmanian of G Haines
calculated the degree and the leading coefficients of the structure constants in [Hai03].
Using our results they can be expressed by a statistic very similar to the one used
in [GL05]. This suggests that these intersections can be parameterized by galleries in
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the same way as in [GL05].

Calculating Demazure characters for G∨ was another challenge for combinatorial rep-
resentation theory which was solved by the path model. Using our approach we can
explicitly determine subsets of the galleries describing a Schur character which describe
the corresponding Demazure characters and thus arrive at an explicit Demazure char-
acter formula involving galleries.

In [BD94] Billig and Dyer describe intersections of Iwahori and Iwasawa orbits in the
affine flag variety of G. Their results can be formulated using galleries as in [GL05].
Using these results we show that the entries of the transition matrix from the alcove
basis to the standard basis of the affine Hecke algebra (specialized at some prime power)
can be described as the number of points of these intersections over a finite field.
Using specialization arguments we give explicit formulas for the dimension of certain
intersections in the complex affine Grassmanian of G and we show that Demazure
multiplicities of G∨ are given by the number of top dimensional irreducible components
of these intersections. This is a slight extension of the results in [GL05]. We get an
indexing of these irreducible components by galleries counting Demazure multiplicities
as in [GL05] for Kostka numbers. In contrast to [MV04] we have only a numerical
coincidence and we do not prove (or conjecture) any deeper result explaining this. We
compare our result with a similar result of Ion [Ion04, Ion05] obtained by specializing
nonsymmetric two parameter Macdonald polynomials.

As a further result we get a commutation rule for the Bernstein representation of
the affine Hecke algebra. This is a q-analog of a commutation formula of Pittie and
Ram [PR99] in terms of galleries. As an application one recovers by specialization their
Pieri–Chevalley rule in the equivariant K-theory of the generalized flag variety of G∨.
This specialized formula is the same as the one obtained by Lenart and Postnikov [LP04]
by different methods.

One of the most interesting q-analogs of weight multiplicities occurring in combinatorial
representation theory are the Kostka–Foulkes polynomials. In our context they can be
defined as entries of the transition matrix from Hall–Littlewood symmetric functions
to Schur polynomials. But they have various other interpretations: For instance, they
are special Kazhdan–Lusztig polynomials for the extended affine Weyl group and they
encode the local intersection cohomology of the affine Grassmanian (see Lusztig’s arti-
cle [Lus83]). In particular, they have nonnegative coefficients. A combinatorial proof
for type A of this nonnegativity was obtained by Lascoux and Schützenberger [LS78]
using the charge function on tableaus. It is conjectured, that such a function exists
for all types. We do not get such a function for the gallery model. But we calculate
the expansion of certain sums of Schur polynomials with respect to Hall–Littlewood
polynomials and show how it supports this conjecture.

Parts of the results of this thesis are available in the preprint [Sch05]. A more conceptual
treatment of galleries and their relation to the affine Hecke algebra and q-analogs is
given by Ram [Ram06]. The formulas for the structure constants and the restriction
coefficients are there proven by introducing q-crystals.

This thesis is organized as follows: In section 1 we give a brief overview on symmetric
functions, their q-analogs and the relation to representation theory. We give a precise
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definition of the coefficients we want to calculate and a first statement of some of our
results. In section 2 we introduce the concept of generalized alcoves and show its
relation to the extended affine Weyl group. In the following section several versions of
affine Hecke algebras and their relation to Hall–Littlewood polynomials are discussed.
Then we introduce galleries and various polynomials associated to them. This enables
us to state the above mentioned formulas in the theorems 4.5, 4.10 and 4.13. We prove
these theorems in the sections 5, 7 and 8. The commutation formula for the affine
Hecke algebra and its specialization are proven in 6.1 being followed by the proof of the
Demazure character formula. In section 9 we show that the root operators of [GL05]
are compatible with our approach, at least after specialization. In the following two
sections we show what happens when one regards the affine Hecke algebra as Hecke
algebra of a reductive group over a local field. First we show that we do get these
geometrically defined Hecke algebras and thus prove the above mentioned result of
Rapoport in 10.2. Then we restrict to the case of split groups and give the geometric
interpretations promised above. In the last section we give some first results relating
the gallery model to the positivity of Kostka–Foulkes coefficients.

Acknowlegdements. I want to thank everyone who made this thesis possible. I am
profoundly grateful to my advisor Prof. Dr. Peter Littelmann for his interest in my
research and encouraging support. I want to express my gratitude to the Cusanuswerk
for their (not only financial) support.
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1 Symmetric functions 2

1 Symmetric functions

In this section we introduce the algebra of symmetric functions associated to a root
datum. We describe its relations to the representation theory of complex algebraic
reductive groups and give a more precise meaning to our results.

Let Φ = (X,φ, X∨, φ∨) be a reduced root datum, i.e.

• X and X∨ are finitely generated free abelian groups with given subsets φ ⊂ X
and φ∨ ⊂ X∨.

• We have a perfect pairing 〈·, ·〉 : X ×X∨ → Z.

• There is a bijection φ → φ∨, α 7→ α∨ such that for each α ∈ φ we have 〈α, α∨〉 = 2.

• For any α ∈ φ the reflection sα : X∨ → X∨, x 7→ x−〈α, x〉α∨ leaves φ∨ invariant.

• For any α∨ ∈ φ∨ the reflection sα∨ : X → X, x 7→ x− 〈x, α∨〉α leaves φ invariant.

• If α ∈ φ then the only other multiple of α in φ is −α.

Let V = X ⊗ R and V ∗ ∼= X∨ ⊗ R such that the natural pairing 〈·, ·〉 : V × V ∗ → R is
induced by the pairing between X and X∨. Let Q ⊂ X (respectively Q∨ ⊂ X∨) be the
subgroup generated by φ (respectively φ∨). Then (Q⊗R, φ) and (Q∨⊗R, φ∨) are dual
root systems in the sense of [Bou81]. For details on the combinatorics of root systems
and Coxeter groups see also Humphreys’ book [Hum90].

The Weyl group W of Φ is the subgroup of GL(V ∗) generated by the reflections sα for
α ∈ φ. Choose a set of simple roots ∆ and denote by φ+ ⊂ φ the positive roots with
respect to ∆. Denote by S = {sα |α ∈ ∆} ⊂ W the set of simple reflections. Then
(W, S) is a Coxeter system. Denote the corresponding length function by l : W → N.

A fundamental domain for the W -action on X∨ is given by the dominant cone

X∨
+ = {x ∈ X∨ | 〈α, x〉 ≥ 0 for all α ∈ φ+}.

The W -action on X∨ induces a natural action on the group algebra Z[X∨]. For µ ∈ X∨

denote by xµ ∈ Z[X∨] the corresponding basis element. The algebra of symmetric
polynomials Λ = Z[X∨]W is the algebra of invariants under this action. If the underlying
root system of Φ is of type An, then Λ consists of symmetric Laurent polynomials in
the usual sense.

Now let ∆J ⊂ ∆ and denote by φJ ⊂ φ its span. Then ΦJ = (X,φJ , X∨, φ∨J ) is a sub
root datum of Φ. All entities with index J are the induced ones for ΦJ of the ones
with the same name for Φ. We get an inclusion of algebras Λ ↪→ ΛJ and WJ ⊂ W is a
parabolic subgroup.

1.1 Classical situation

There are many interesting bases of Λ (as Z-module) indexed by X∨
+. The simplest one

is given by the monomial symmetric functions {mλ}, where mλ =
∑

µ∈Wλ xµ is just the
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orbit sum. Another one is given by the Schur polynomials {sλ}. They are defined as
follows: Define J : Z[X∨] → Z[X∨] by J (xµ) =

∑
w∈W (−1)l(w)xwµ. Then one has

sλ = J (xλ+ρ∨)/J (xρ∨)

where ρ∨ = 1
2

∑
α∈φ α∨. Replacing W by WJ in the definitions yields monomial sym-

metric functions mJ
λ and Schur polynomials sJ

λ for all λ ∈ JX∨
+ where

JX∨
+ = {x ∈ X∨ | 〈α, x〉 ≥ 0 for all α ∈ ∆J}.

Now define integers kλµ for λ, µ ∈ X∨
+ (the Kostka numbers), cν

λµ for λ, µ, ν ∈ X∨
+ (the

Littlewood–Richardson coefficients) and bJ
λµ for λ ∈ X∨

+ and µ ∈ JX∨
+ (the branching

coefficients) by

• sλ =
∑

µ∈X∨
+

kλµmµ,

• sλsµ =
∑

ν∈X∨
+

cν
λµsν and

• sλ =
∑

µ∈ JX∨
+

bJ
λµs

J
µ.

So the Kostka numbers are the entries of the transition matrix from monomial sym-
metric functions to Schur polynomials, the Littlewood–Richardson coefficients are the
structure constants of Λ with respect to the Schur polynomials and the branching coef-
ficients give the expansion of the sλ with respect to Schur polynomials of the sub root
datum ΦJ .

The relation to representation theory is as follows (see [Hum75]). Let G∨ be the unique
complex reductive linear algebraic group with Borel subgroup B∨ and maximal torus T∨

such that the associated root datum together with the choice of simple roots is the dual
of Φ. One is interested in the category of finite dimensional complex representations
of G∨. It is well known that this category is semisimple and that the irreducible objects
are given by highest weight modules V (λ) with highest weight λ ∈ X∨

+. Assigning to
such a representation its T∨-character yields an isomorphism from the Grothendieck
ring of finite dimensional representations of G∨ to Λ. In the same way the whole
algebra Z[X∨] is the representation ring of T∨. By Weyl’s character formula the Schur
polynomial sλ for λ ∈ X∨

+ is the character of V (λ).

The Kostka number kλµ for λ, µ ∈ X∨
+ is the weight multiplicity of µ in V (λ), i.e.

the dimension of the µ-weight space V (λ)µ. The Littlewood–Richardson coefficient cν
λµ

for λ, µ, ν ∈ X∨
+ is the multiplicity of V (ν) in V (λ) ⊗ V (µ), i.e. the dimension of

HomG∨(V (ν), V (µ)⊗ V (λ)).

Now let P∨
J ⊂ G∨ be the standard parabolic subgroup of type ∆J and denote by

L∨
J its Levi part. Then B∨ ∩ L∨

J is a Borel subgroup of L∨
J and T∨ a maximal torus

of L∨
J . The root datum associated to this choice is ΦJ with simple roots ∆J . Now any

representation of G∨ restricts to a representation of L∨
J . The branching coefficient bJ

λµ

for λ ∈ X∨
+ and µ ∈ JX∨

+ is the multiplicity (as a L∨
J representation) of V J(µ) in V (λ),

i.e. the dimension of HomL∨J
(V J(µ), V (λ)).

Other numbers of representation theoretical interest are weight multiplicities of De-
mazure modules. Let w ∈ W and denote by V (λ)wλ ⊂ V (λ) the one dimensional
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extremal weight space with weight wλ. Let Vw(λ) ⊂ V (λ) be the B∨-module generated
by V (λ)wλ. It is called the Demazure module associated to λ and w. Again one is
interested in its T∨-character which is in general only an element of Z[X∨] and not
of Λ. Denote by dw

λµ for µ ∈ X∨ the weight multiplicity of µ in Vw(λ). Of course we
have Vw0(λ) = V (λ) and thus dw0

λµ = kλµ for the longest element w0 ∈ W . There is a
formula (the Demazure character formula [Dem74]) describing this character. But it it
is more convenient to introduce it in the context of the nil affine Hecke algebra so we
postpone it to section 3.

As already mentioned in the introduction it was one of the main tasks of combinatorial
representation theory to give combinatorial formulas for all these coefficients and it was
solved in [Lit94].

1.2 q-analogs

Extending the base ring to L− := Z[q−1] one gets new interesting bases. The Hall–
Littlewood polynomials {Pλ(q

−1)} are a basis for Λq := L−[X∨]W (as L−-module). For
λ ∈ X∨

+ they are defined by

Pλ(q
−1) =

1

Wλ(q−1)
J

(
xλ+ρ∨

∏
α∈φ+

(1− q−1x−α∨)
)
/J (xρ∨)

where Wλ ⊂ W is the stabilizer of λ and Wλ(q
−1) =

∑
w∈Wλ

q−l(w) is its Poincaré
polynomial. From the definition it is not clear that Pλ(q

−1) is indeed an element of Λq.
For this and other properties see the survey article [NR03] of Nelsen and Ram. But it
is clear that the Hall–Littlewood polynomials are q-analogs of the Schur polynomials
in the sense that Pλ(0) = sλ. Moreover, one has Pλ(1) = mλ. As above, we get the
Hall–Littlewood polynomials P J

λ (q−1) of ΦJ by replacing W by WJ in all the definitions.

Having these q-analogs one asks the same questions as in the classical case, i.e. one looks
for a combinatorial description of the transition matrix from the monomial symmetric
functions to the Hall–Littlewood functions, for the structure constants of Λq with respect
to them and for their branching coefficients. Specialization at q−1 = 0 then yields new
proofs for the classical formula regarding the kλµ, the cν

λµ and the bJ
λµ.

Define Laurent polynomials Lλµ for λ, µ ∈ X∨
+ by

Pλ(q
−1) =

∑
µ∈X∨

+

q−〈ρ,λ+µ〉Lλµmµ,

where ρ := 1
2

∑
α∈φ+ α. Since Pλ(0) = sλ we have q−〈ρ,λ+µ〉Lλµ ∈ L− and the constant

term of q−〈ρ,λ+µ〉Lλµ is kλµ. For non-dominant µ ∈ X∨ we define Lλµ = q〈ρ,µ−µ+〉Lλµ+ ,
where µ+ ∈ X∨

+ is the unique dominant element in the W -orbit of µ. In section 4 we
introduce galleries and a monic polynomial Lσ for each positively folded gallery σ. We
prove in section 5:

Theorem 1.1. For λ ∈ X∨
+ and µ ∈ X∨ we have Lλµ = q−l(wλ)

∑
σ ql(w0ι(σ))Lσ, where

the sum is over all positively folded galleries σ of type tλ and weight µ with ι(σ) ∈ W λ.
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Remark 1.2. For λ, µ ∈ X∨
+ the exponent 〈ρ, λ + µ〉 is not always in Z. But it follows

from the definition of galleries, that if Lλµ 6= 0 then λ − µ ∈ Q∨. And under this
hypothesis one has 〈ρ, λ + µ〉 ∈ Z since 2ρ ∈ Q.

From this we get a description of the kλµ in terms of galleries by evaluation at q−1 = 0.
We introduce LS-galleries (roughly speaking these are the galleries which survive the
specialization q−1 = 0) and get as in [GL05]

Corollary 1.3. For λ, µ ∈ X∨
+ the Kostka number kλµ is the number of LS-galleries of

type tλ and weight µ.

In section 4 we also introduce a second monic polynomial Cσ for each gallery σ which is
closely related to Lσ. We prove that with this statistic one can calculate the structure
constants of Λq with respect to the Hall–Littlewood polynomials. More precisely, define
Cν

λµ for λ, µ, ν ∈ X∨
+ by

Pλ(q
−1)Pµ(q−1) =

∑
ν∈X∨

+

q−〈ρ,µ−λ+ν〉Cν
λµPν(q

−1).

Theorem 1.4. Let λ, µ, ν ∈ X∨
+. Then Cν

λµ = q−l(wµ)
∑

σ ql(w0ι(σ))CσW
ε(σ)
µν . Here the

sum is over all positively folded galleries of type tµ and weight ν starting in λ such that
they are contained in the dominant chamber and ε(σ) ∈ WνW

w0µ. The correction factor

W
ε(σ)
µν is contained in L−.

For q−1 = 0 this yields a Littlewood-Richardson rule in terms of galleries.

Corollary 1.5. For λ, µ, ν in X∨
+ the Littlewood–Richardson coefficient cν

λµ is the num-
ber of LS-galleries σ of type tµ and weight ν − λ such that the translated gallery λ + σ
is contained in the dominant chamber C.

Remark 1.6. From [GL05] one would expect that the sum is over all galleries which
are contained in the interior of the translated dominant chamber −ρ∨ + C. But the
galleries leaving C are not LS. This is explained in remark 4.12.

We also introduce monic polynomials CJ
σ for each gallery σ which specialize to the

above Cσ for ∆J = ∆. This statistic describes the branching coefficients of the Hall–
Littlewood polynomials. Define BJ

λµ for λ ∈ X∨
J and µ ∈ JX∨

+ by

Pλ(q
−1) =

∑
µ∈JX∨

+

q−〈ρ,λ+µ〉BJ
λµP

J
µ (q−1).

Theorem 1.7. For λ ∈ X∨
+ and µ ∈ JX∨

+ we have BJ
λµ = q−l(wλ)

∑
σ qw0ι(σ)CJ

σ
JW

ε(σ)
λµ ,

where the sum is over all positively folded galleries of type tλ and weight ν contained
in the dominant chamber CJ with respect to ΦJ such that ε(σ) ∈ W J

µ Ww0λ. Again the

correction factor JW
ε(σ)
λµ is in L−.

As above we can specialize at q−1 = 0 and get the following formula for the classical
branching coefficients (where a remark similar to the one above applies).
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Corollary 1.8. For λ ∈ X∨
+ and µ ∈ JX∨

+ the branching coefficient bJ
λµ is given as the

number of all LS-galleries of type tλ contained in CJ .

Remark 1.9. Now one might ask why the Lλµ are not called Kλµ. But the last symbol
is in general reserved for the Kostka–Foulkes polynomials which describe the transition
matrix from Hall–Littlewood polynomials to Schur polynomials. See section 12.

The combinatorial descriptions in the corollaries 1.3, 1.5 and 1.8 are more or less the
same as the above mentioned descriptions in [GL05]. Although the results on the
Littlewood–Richardson coefficients and the branching coefficients are not stated explic-
itly there, they follow quite immediately from the description of the crystal operators.

By our approach one also gets q-analogs of the Demazure characters dw
λµ in 6.2 which

one can describe using galleries. Specialization yields

Corollary 1.10. Let λ ∈ X∨
+, µ ∈ X∨ and w ∈ W . Then dw

λµ is the number of

LS-galleries of type tλ and weight µ such that ι(σ) ≤ w.

The condition on the initial alcove seems not to reflect the fact that Vv(λ) = Vvw(λ) for
any w ∈ Wλ. But from the precise definition of LS-galleries and remark 5.10 it follows
that the condition indeed depends only on wWλ.

2 Affine Weyl group and alcoves

In this section we recall some facts on the (extended) affine Weyl group and on alcoves
as in [Bou81, Hum90]. Furthermore, we introduce the notion of generalized alcoves.

The group Q∨ acts on V ∗ by translations. The affine Weyl group is defined as the
semidirect product W a = W nQ∨. It acts on V ∗ by affine transformations. For λ ∈ Q∨

denote by τλ ∈ W a the associated translation. The affine Weyl group is generated by
its affine reflections. Let Ha be the union of all reflection hyperplanes of reflections
in W a. Then Ha =

⋃
α∈φ+,m∈Z Hα,m, where Hα,m = {x ∈ V ∗ | 〈α, x〉 = m}. Let

H±
α,m = {x ∈ V ∗ | 〈α, x〉 ≷ m} be the associated affine half spaces.

The connected components of V ∗ \Ha are called open alcoves. Their closures are the
alcoves in V ∗. Denote by A the set of all alcoves. The action of W a on A is free and
transitive. The fundamental alcove Af = {x ∈ V ∗|0 ≤ 〈α, x〉 ≤ 1 for all α ∈ φ+} ∈ A
is a fundamental domain for the W a-action on V ∗. We get a bijection W a → A, w 7→
Aw := wAf . One also writes λ + A for the alcove τλA where λ ∈ Q∨ and A ∈ A.

A face F of an alcove A is an intersection F = A∩H such that H ⊂ Ha is a reflection
hyperplane and 〈F 〉aff = H. Here 〈F 〉aff is the affine subspace spanned by F . A wall of
A is some hyperplane H ⊂ Ha such that H ∩ A is a face of A.

The walls of Af are of particular interest. They are given as follows: For each α ∈ ∆
one has the wall Hα,0∩Af . Let Θ ⊂ Φ+ be the set of maximal elements with respect to
the usual dominance ordering on X∨. By this we mean µ ≤ λ iff λ− µ =

∑
α∈∆ nαα∨

for nonnegative integers nα. So the number of elements in Θ equals the number of
irreducible components of the Dynkin diagram of Φ. Then each intersection Hθ,1 ∩ Af
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with θ ∈ Θ is a wall of Af . For θ ∈ Θ let sθ,1 be the affine reflection at Hθ,1. Then we
have the following

Lemma 2.1. The group W a is generated by the reflections Sa at the walls of Af . One
has Sa = S ∪ {sθ,1 | θ ∈ Θ}. Moreover, (W a, Sa) is a Coxeter system.

Let F be a face of Af . The type of F is the reflection at 〈F 〉aff. Extend this definition
to all faces by demanding that the W a-action preserves types.

Remark 2.2. More generally, the hyperplanes Hα,m define the structure of a labelled
chamber complex on Q∨ ⊗R which is a realization of the Coxeter complex of (W a, Sa).

Right multiplication of W a induces an action of W a on A from the right. For A ∈ A
and s ∈ Sa the alcove As is the unique alcove not equal to A having a common face of
type s with A. Let Fs ⊂ A be the face of type s and 〈Fs〉aff = Hα,m for some α ∈ φ+

and m ∈ Z. The hyperplane Hα,m is called the separating hyperplane between A and
As. Call A negative with respect to s if A is contained in H−

α,m and denote this by
A ≺ As. Of course A is called positive with respect to s if As is negative with respect
to s. We have A ≺ As iff λ + A ≺ λ + As for all λ ∈ Q∨.

Example 2.3. • For Aw and Aws in the dominant chamber Aw ≺ Aws iff w < ws,
where ’≤’ is the usual Bruhat order on W a.

• Let w ∈ W and s ∈ S. Then Aw ≺ Aws iff w > ws.

• Let w ∈ W and s = sθ,1 with θ ∈ Θ. Then Aw ≺ Aws iff wθ ∈ φ+. The wall H in
Aw belonging to the face of type s is Hwθ,1 and Aw ∈ H−

wθ,1. This is the negative
half space of H iff wθ ∈ φ+ and this is equivalent to Aw ≺ Aws.

There is also a natural action of X∨ on V ∗ by translations. So we can extend the above
definition and get the extended affine Weyl group W̃ a := W n X∨. Extending the
above notation write τµ for the translation by µ ∈ X∨. The action of W̃ a on A is no
longer free and type preserving. The stabilizer Ω of Af is isomorphic to X∨/Q∨. The
isomorphism is given by sending g ∈ Ω to the class of g(0). So a set of representatives
is given by X∨ ∩ Af . We have W̃ a ∼= Ω n W a and every element v ∈ W̃ a can be
written as v = wg for unique w ∈ W a and g ∈ Ω. Although W̃ a is no longer a Coxeter
group, we can extend the definition of the length function by setting l(v) = l(w). So
multiplication by elements of Ω does not change the length. This length function has
many of the important properties of the length function of a Coxeter group. We have
l(vw) ≤ l(v)+ l(w) for any v, w ∈ W̃ a and l(ws) = l(w)±1 for any w ∈ W̃ a and s ∈ Sa.
We also can extend the Bruhat order on W̃ a as follows: Let v = wg and v′ = w′g′ ∈ W̃ a

such that w, w′ ∈ W a and g, g′ ∈ Ω. Then define v ≤ v′ iff g = g′ and w ≤ w′ (in the
usual Bruhat order on W a).

As mentioned above, the action of W̃ a on A is no longer free. So we have to introduce
the new notion of a generalized alcove in order to work with the extended affine Weyl
group. This can be done as follows: Take an alcove A ∈ A. Then some conjugate of
Ω acts transitively on A ∩ X∨ and this intersection is in natural bijection to X∨/Q∨.
So if we define Ã = {(A, µ) ∈ A × X∨ |µ ∈ A} ∼= A × Ω then there is a natural free
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W̃ a-action on Ã. In the same way as above we also get a right W̃ a-action on Ã where
Ω acts only on the second factor. The action of W a on Ã changes just the first factor
but depends also on the second. The definitions of face and type of a face carry over
to this situation by demanding that W̃ a acts type preserving. The elements of Ã are
called generalized alcoves. Every generalized alcove is of the form µ + Aw for unique
µ ∈ X∨ and w ∈ W . Then µ is called the weight of A and w its direction. Denote
this by wt(A) := µ and δ(A) := w. The alcoves A can then be identified with the
generalized alcoves with weight in Q∨.

Here one has to be a aware of the fact that the type of a wall of a generalized alcove
(A, µ) depends not only on the wall itself (as a subset of V ∗), but also on the chosen µ.
But the right multiplication of Sa on Ã has the same geometrical interpretation in V ∗

as before and one has in general wt(As) = wt(A) iff s ∈ S.

Example 2.4. In order to give an idea how generalized alcoves look like we include a
description of the rank one case. So let V = R2 with standard basis {e1, e2} and dual
basis {ε1, ε2}. Define α = e1 − e2 ∈ V and α∨ = ε1 − ε2 ∈ V ∗. Define d = ε1 + ε2 ∈ V ∗.
Let X = Zα ⊂ V and X∨ = Zα∨/2 ⊂ V ∗/Rd. Then Φ = (X, {±α}, X∨, {±α∨})
is a root datum with pairing induced by the standard pairing between V and V ∗. The
corresponding algebraic group G∨ is SL2(C). As usual we identify V and V ∗ via the
standard scalar product on V . So we can and will identify roots and coroots. The simple
reflections are Sa = {s1, s0} where s1 = sα ∈ S and s0 = sα,1 is the additional affine
reflection. Moreover, Ω = {id, g} ∼= Z/2 where g = sα,1/2 is the affine reflection at the

affine hyperplane α/4 and W̃ a = W a tW ag. One has gs1g = s0. The extended affine
Weyl group, the generalized alcoves and the types of their walls can be visualized as in
the following picture.

Any open unit interval in this picture is a generalized alcove. Above each generalized
alcove we have its representation as usual alcove together with an element in X∨. We
abbreviated the elements of W a in the indexing of the alcoves by a sequence of 0 and 1
corresponding to a reduced expression. Under each generalized alcove there is the cor-
responding element in W̃ a. The thick endpoints are the ones of type s0. The bottom
row consists of the alcoves respectively W a. The top row consists of the coset W ag. It
represents the alcoves (A, µ) with µ ∈ ρ + Q∨. We also indicated the right cosets τλW
for λ ∈ X∨.

(A101,−3ρ) (A10,−ρ) (A1,−ρ) (Af , ρ) (A0, ρ) (A01, 3ρ)
gs0s1s0 gs0s1 gs0 g gs1 gs1s0

τρWτ−ρW

s1s0s1 s1s0 s1 id s0 s0s1

(A101,−α) (A10,−α) (A1, 0) (Af , 0) (A0, α) (A01, α)

−α 0 ρ α

ταWWτ−αW

One may replace Φ by the root datum Φ̃ = (1
2
X, {±α}, 2X∨, {±α∨}). In this case the
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extended affine Weyl group coincides with the affine Weyl group. The corresponding
group is PGL2(C). There is one great difference which will be important later on: In
W a the simple affine reflections s0 and s1 are not conjugate, whereas they are in the
extended affine Weyl group of Φ as noted above.

Replacing SL2(C) by GL2(C) we get the root datum Φ′ = (Z2, {±α}, Z2, {±α∨}) where
α and α∨ are as above. The inclusion of SL2(C) in GL2(C) induces a morphism of
root data Φ → Φ′ which is the inclusion X ⊂ Z2 and the projection Z2 → X∨ induced
by V ∗ → V ∗/Rd. The picture now is as follows: Alcoves are of the form A×Rd for an
alcove A of Φ and Ω is the free group generated by g = sα,1τe1. Observe that g2 = τd

and l(τd) = 0.

This is the general picture: Alcoves for the root datum of a reductive group G∨ are
always products of alcoves of its derived group by Rk where k is the rank difference
between G∨ and its derived group.

In various circumstances we will deal with stabilizer subgroups of W . We use the
following notation for some notions related to them.

Definition 2.5. Let µ ∈ X∨ and Wµ ⊂ W its stabilizer. The maximal element of Wµ is
denoted by wµ, the minimal representatives of W/Wµ by W µ and the minimal element
in the coset τµW by nµ.

In particular, W = W0 and w0 is the longest element in W .

The dominant Weyl chamber is defined as C = {x ∈ V ∗ | 〈α, x〉 ≥ 0 for all α ∈ φ+}, the
ΦJ -dominant chamber is given by CJ = {x ∈ V ∗ | 〈α, x〉 ≥ 0 for all α ∈ φ+

J }.

We will frequently use some facts about the length function on W̃ a summarized in

Lemma 2.6. Let λ ∈ X∨
+.

(i) We have l(τλ) = 2〈ρ, λ〉. In particular, l is additive on X∨
+.

(ii) One has τλwλ = nλw0 and l(τλ) + l(wλ) = l(nλ) + l(w0). Moreover, nλ ∈ WτλW
is minimal.

Remark 2.7. The inclusion of Coxeter systems (WJ , SJ) ⊂ (W, S) induces an inclusion
W̃ a

J ⊂ W̃ a. But the last inclusion is not an inclusion of Coxeter systems. The affine
simple reflections Sa

J of ΦJ are not necessarily contained in Sa. In particular, the length
function on W̃ a is not induced by the one of W̃ a.

Remark 2.8. At the beginning we started with a reduced root datum. Of course the
construction makes sense also for any nonreduced root datum Φ = (X, φ, X∨, φ∨), i.e.
there exists α ∈ φ such that 1

2
α ∈ φ. As above one constructs the affine Weyl group

and the extended affine Weyl group with explicitly given generators.

But there exists a reduced root datum leading to the same extended affine Weyl group
as follows: Let φ̃∨ = {α∨ ∈ φ∨ | 1

2
α /∈ φ∨} be the set of indivisible coroots of Φ. Define

φ̃ = {α ∈ φ |α∨ ∈ φ̃∨} = {α ∈ φ | 2α /∈ φ}. In particular, all the maximal roots of φ are
contained in φ̃. Then Φ̃ = (X, φ̃,X∨, φ̃∨) is a reduced root datum (see [Bou81]) having
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the same Weyl group as Φ. Moreover, the Coxeter generators for Φ are also Coxeter
generators for Φ̃ and Q∨(Φ) = Q∨(Φ̃). One gets an isomorphism of Coxeter systems
(W a(Φ), Sa(Φ)) ∼= (W a(Φ̃), Sa(Φ̃)) and an isomorphism of the corresponding extended
affine Weyl groups. So in order to study affine Hecke algebras of arbitrary root datums
it is enough to consider reduced root datums.

Be aware that this works only since we allowed root data and not only root systems in
which case X = Q and X∨ is the set of coweights. Here one gets more extended affine
Weyl groups when one allows non reduced root systems. The choice of X∨ essentially
gives more freedom in choosing the parameters of the affine Hecke algebra.

3 Hecke algebras

In this section we introduce the various Hecke algebras (extended affine Hecke algebra,
spherical Hecke algebra and nil affine Hecke algebra) we want to work with. Details on
affine Hecke algebras with unequal parameters can be found in Lusztig’s article [Lus89].
For the spherical Hecke algebra (with equal parameters) and relations to Kazhdan–
Lusztig polynomials see the survey article [NR03] of Nelsen and Ram where a slightly
different notation is used. For the relation between the nil affine Hecke algebra and
Demazure operators see [GR04] of Griffeth and Ram.

3.1 Affine Hecke algebra

We first have to fix parameters. Let d : Sa → N be invariant under conjugation by
elements of W̃ a. Let L := Z

[
q±

1
2

]
and define qs = qd(s) for s ∈ Sa. For v ∈ W a we set

qv =
∏k

j=1 qsij
where v = si1 · . . . · sik is a reduced decomposition of v. For arbitrary

v ∈ W̃ a let qv = qv′ where v = v′g with v′ ∈ W a and g ∈ Ω.

Often we will need some normalization factors. So define H(q) =
∑

w∈H qw and
H(q−1) =

∑
w∈H q−1

w for a subset H ⊂ W .

The standard representation of the extended affine Hecke algebra H̃a associated to the
root datum Φ and the above choice of d is as follows: As a L-module it is free with
basis {Tw}w∈W̃ a and multiplication is given by

• T 2
s = qsTid + (qs − 1)Ts for all s ∈ Sa and

• TvTw = Tvw for all v, w ∈ W̃ a such that l(vw) = l(v) + l(w).

From this it follows immediately that for any w ∈ W̃ a and s ∈ Sa we have

TwTs =

{
Tws if l(ws) = l(w) + 1

qsTws + (qs − 1)Tw if l(ws) = l(w)− 1.

So H̃a is a q-deformation of the group algebra of W̃ a which we get by specializing at
q = 1, i.e. taking the quotient by the ideal generated by q − 1.
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Remark 3.1. Usually Hecke algebras are only defined for Coxeter systems. But it is
enough to have a set of generators together with a compatible length function as in the
case of W̃ a.

On H̃a there is a natural Z-algebra involution · : H̃a → H̃a. It is given by Tw = T−1
w−1

for w ∈ W̃ a and qj = q−j. Later on we will use the following formulas:

• For s ∈ Sa we have T s = q−1
s (Ts + (1− qs)Tid).

• For s ∈ Sa and w ∈ W̃ a we have

TwTs =

{
qsTws + (qs − 1)Tw if l(ws) = l(w) + 1

Tws if l(ws) = l(w)− 1.

For λ ∈ X∨
+ define qλ = q

1
2

Pk
j=1 d(sij

) where τλ = si1 · . . . ·sikg is a reduced decomposition
with g ∈ Ω. So we have q2

λ = qτλ
. For arbitrary µ ∈ X∨ define qµ := qλq

−1
λ′ where

λ, λ′ ∈ X∨
+ such that µ = λ − λ′. Clearly qµ is independent of the particular choice of

λ, λ′ because of the additivity of the length function on X∨
+ (see lemma 2.6).

There is a second presentation of H̃a due to Bernstein which is closer to the definition of
W̃ a as a semi-direct product and also yields a large commutative subalgebra. For each
µ ∈ X∨ define an element Xµ ∈ H̃a by Xµ := q−1

µ Tτλ
T−1

τλ′
where as above µ = λ − λ′

with λ, λ′ ∈ X∨
+. So for dominant λ we have Xλ = q−1

λ Tτλ
. By the same reason as

above Xµ does not depend on the choice of λ and λ′ and we have XλXµ = Xλ+µ for
λ, µ in X∨. Using this, H̃a is generated (as a L-algebra) by {Xµ} for µ ∈ X∨ together
with {Tw} for w ∈ W . There are formulas relating the two presentations (see [Lus89,
proposition 3.6] for details). But they are quite technical to state in the case of unequal
parameters, for the case of equal parameters see below. However, they can be proven
by our approach with galleries, see 6.1.

Using the commutativity of the Xµ one gets an inclusion of L-algebras

L[X∨] ↪→ H̃a.

xν 7→ Xν

We identify L[X∨] with its image. The image of L[X∨]W under this inclusion is the
center of H̃a (see [Lus89, proposition 3.1]).

3.2 Spherical Hecke algebra

In H̃a one has the symmetrizer 10 =
∑

w∈W Tw. It has the following properties:

• For w ∈ W we have Tw10 = qw10 and 12
0 = W(q)10.

• 10 = q−1
w0

10.
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The spherical Hecke algebra Hsph is defined by

Hsph = {h ∈ 1

W(q)
H̃a |Twh = hTw = qwh for all w ∈ W}.

The Macdonald basis of Hsph is given by {Mλ}λ∈X∨
+

where

Mλ :=
1

W(q)

∑
w∈WτλW

Tw =
1

W(q)Wλ(q)
10Tnλ10

=
qλq

−1
w0

W(q)Wλ(q−1)
10Xλ10.

For the second equality observe that by lemma 2.6 we have Xλ = q−λTnλTw0Twλ
and

Wλ(q
−1) = q−1

wλ
Wλ(q). One obtains an isomorphism

L[X∨]
∼=−→ 1

W(q)
H10

x 7→ 1

W(q)
x10.

The restriction of this morphism to L[X∨]W yields an isomorphism to Hsph, the com-
binatorial Satake isomorphism. In particular, Hsph is commutative. For λ ∈ X∨

+ define
Yλ to be the image of mλ under this isomorphism.

So we have two bases forHsph: The Macdonald basis and the monomial basis {Yλ} given
by the images of the monomial symmetric functions under the Satake isomorphism.
We are interested in the transition matrix from the monomial basis to the Macdonald
basis. (Re)define Lλµ for λ, µ ∈ X∨

+ as modified entries of this transition matrix. More
precisely, we have

Mλ =
∑

µ∈X∨
+

q−µLλµYµ.

For arbitrary µ ∈ X∨ and dominant λ ∈ X∨
+ we set Lλµ = qµ−µ+Lλµ+ where as before

µ+ is the unique dominant element in the W -orbit of µ.

Of course one can also ask for the structure constants of the spherical Hecke algebra with
respect to the Macdonald basis. For this, (re)define Cν

λµ for λ, µ, ν ∈ X∨
+ as modified

structure constants by

MλMµ =
∑

ν∈X∨
+

q2
λ−νC

ν
λµMν .

As for symmetric functions one can also ask for the branching coefficients. For this one
first has to define restricted versions MJ

λ for λ ∈ JX∨
+ of the Macdonald basis. Define

them by

MJ
λ :=

qJ
λq−1

wJ

W(q)W J
λ (q−1)

1JXλ10.

Here qJ
λ is the J-analog of qλ defined starting with a reduced decomposition of τλ in

W̃ a
J , 1J =

∑
w∈WJ

Tw and wJ ∈ WJ is the element of maximal length. By definition we
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have MJ
λ ∈ 1

W(q)
H̃a10. Now (re)define BJ

λµ for λ ∈ X∨
+ and µ ∈ JX∨

+ by

Mλ =
∑

µ∈JX∨
+

q−µq
J
−µB

J
λµM

J
µ .

In the next section we give a description of the coefficients Lλµ, Cν
λµ and BJ

λµ using
galleries.

Remark 3.2. Now we want to clarify the relations of this section to symmetric polyno-
mials and their q-analogs. In particular, we describe the relation between the coefficients
defined above and the ones with the same names in section 1.

For this regard the case of equal parameters, i.e. d(s) = 1 for all s ∈ Sa. In this
case we have qv = ql(v) for v ∈ W̃ a and qµ = q〈ρ,µ〉 for µ ∈ X∨. It is known (see for
example [NR03, theorem 2.9]) that the image of Pλ(q

−1) under the Satake isomorphism
is q−λMλ. This is Macdonald’s formula. So comparing the definitions of the Lλµ and
Cν

λµ in section 1 with the ones given here shows that the first ones are special cases of
the latter ones. So the theorems stated there will follow from theorems 4.5 and 4.10
given in the next section.

For the branching coefficients one has to be more careful. We can identify the Hecke
algebra H̃a

J of ΦJ with the subalgebra of H̃a generated by Tw for w ∈ WJ and Xλ for
λ ∈ X∨. The Satake morphisms of H̃a and H̃a

J are compatible in the sense that the
diagram

L[X∨]WJ � � // L[X∨]
∼= // 1

WJ (q)
H̃a

J1J

��

L[X∨]W
?�

OO

� � // L[X∨]
∼= // 1

W(q)
H̃a10

commutes. Here the rightmost arrow from top to bottom is given by sending 1
WJ (q)

Xµ1J

to 1
W(q)

Xµ10, i.e by right multiplication with WJ (q)
W(q)

∑
w∈W J Tw−1 where W J is the set of

minimal representatives of W/WJ . So the image of P J
λ in 1

W(q)
H̃a10 is given by qJ

−λM
J
λ

and the MJ
λ are the images of the Macdonald basis of ΦJ . In particular, the branching

coefficients BJ
λµ of this section coincide with the ones of section 1.

Remark 3.3. This is not the most general choice of parameters the affine Hecke algebra
is defined for and where theorems 4.5 and 4.10 are true. One important example is the
following: Replace L by the image of the morphism L → C evaluating the variable q at
some fixed prime power. Hecke algebras of reductive groups over local fields are of this
form (see sections 10 and 11 for more details on this).

3.3 Nil affine Hecke algebra

In this section we introduce the nil affine Hecke algebra and its relations to the repre-
sentation theory of G∨ and to the extended affine Hecke algebra.
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For doing this we start with the affine Hecke algebra with equal parameters. Let α ∈ ∆
and s = sα. Then the commutation formula between the Ts and the Xλ is well known.
We have

TsXλ = XsλTs + (q − 1)
Xλ −Xsλ

1−X−α∨
. (3.1)

Remark 3.4. The quotient Xλ−Xsλ

1−X−α∨
is in Z[X∨]. This can be seen easily by looking at

the geometric series 1
1−X−α∨

=
∑∞

k=0 X−kα∨. Setting k = 〈α, λ〉 one gets the explicit

relations

• If k ≥ 0 then TsXλ = XsλTs + (q − 1)
∑k−1

j=0 Xλ−jα∨.

• If k < 0 then TsXλ = XsλTs − (q − 1)
∑k−1

j=0 Xsλ−jα∨.

Now we change the generators to obtain the nil affine Hecke algebra. For doing this let
T̃w = q−1

w Tw for w ∈ W . Then we get the relations

T̃ 2
s = q−1T̃id + (1− q−1)T̃s

for s ∈ S and

T̃sXλ = XsλT̃s + (1− q−1)
Xλ −Xsλ

1−X−α∨

for s ∈ S and λ ∈ X∨. These relations involve only negative powers of q.

So we can define H̃a
− ⊂ H̃a to be the L− = Z[q−1]-module with basis XµT̃w for µ ∈ X∨

and w ∈ W . By the above relations it is a L−-algebra and T̃wXµ for µ ∈ X∨ and
w ∈ W is also a L−-basis. The nil affine Hecke algebra Hnil is the specialization of H̃a

−
at q−1 = 0, i.e. the quotient of H̃a

− by the principal ideal generated by q−1. Thus in
Hnil we get the relations

• T̃ 2
s = T̃s for s ∈ S and

• T̃sXλ = XsλT̃s + Xλ−Xsλ

1−X−α∨
.

As in the case of the affine Hecke algebra we get an inclusion of algebras Z[X∨] ↪→ Hnil,
xµ 7→ Xµ. This inclusion commutes with the various projections, i.e the diagram

L−[X∨]

π−

�� $$JJJJJJJJJJ
� � // L[X∨]

""EE
EE

EE
EE

E

Z[X∨]

%%JJJJJJJJJJ
H̃a
−

π−

��

� � // H̃a

Hnil

is commutative. Here π− denotes both the projection L− → Z and H̃a
− → Hnil.
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Similar to the morphism above we get an isomorphism

Z[X∨] → HnilT̃w0

x 7→ xT̃w0 .

whose restriction to Λ yields an isomorphism to T̃w0HnilT̃w0 .

So we get two diagrams where the vertical arrows are the respective Satake isomor-
phisms.

∆
� � //

∼=
��

Z[X∨]

∼=
��

∆q
� � //

∼=
��

L[X∨]

∼=
��

T̃w0HnilT̃w0

� � // HnilT̃w0 Hsph � � // H̃a10

These two diagrams commute in the sense of the above diagram thanks to the following
observation which also explains the normalizing factor 1

W(q)
: Since W(q) = qw0W(q−1)

we get
1

W(q)
10 =

q−1
w0

W(q−1)

∑
w∈W

qwT̃w =
1

W(q−1)

∑
w∈W

q−1
w0wT̃w.

Thus we have 1
W(q)

10 ∈ H̃a
− and its image in Hnil is T̃w0 .

Let w ∈ W and λ ∈ X∨
+. As promised in section 1 we also give combinatorial formulas

for the Demazure weight multiplicities dw
λµ. For this we first identify these numbers

with coefficients appearing in Hnil. We claim that

T̃wXλT̃w0 =
∑

µ∈X∨

dw
λµXµT̃w0 .

This can be seen as follows: Via the isomorphism Z[X∨] → HnilT̃w0 left multiplication
by T̃s for s ∈ S induces operators on Z[X∨]. By the explicit description above one
sees that they are nothing else than the usual Demazure operators on Z[X∨] and the
statement made is nothing else than the Demazure character formula. For calculating
the dw

λµ in 6.2 we calculate the coefficient of Xµ10 in the expansion of TwXλ10 and
specialize at q−1 = 0.

Remark 3.5. For s = sθ,1 ∈ Sa we have Ts = Tτθ∨
T sθ

= q〈ρ,θ∨〉Xθ∨T sθ
. So q−1Ts ∈ H̃a

−
iff 〈ρ, θ∨〉 = 1 i.e. θ ∈ ∆. But this is only the case if the irreducible component of Φ
containing θ is of rank one.

There is a second way to specialize at q−1 = 0. Therefore define T̃v = q−l(v)Tv for any
v ∈ W̃ a (and not only for elements of W ). Then one can define the L−-subalgebra of
H̃a generated by the T̃v. This is in general not H̃a

− since T̃s for s ∈ Sa would always be
in this subalgebra.

Bringing this together we can conclude: For Hnil we do not have a good standard basis
labelled by W̃ a which behaves nicely with respect to multiplication by the basis elements
labelled by Sa. The lack of such a basis is why our approach using galleries does not
work directly in Hnil.
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4 Galleries

In this section we introduce galleries and some polynomials associated to them. We
then give a precise meaning to the theorems stated in the introduction in the general
setting of the last section. The galleries used here are a slight generalization of the usual
galleries in a Coxeter complex since we regard generalized alcoves instead of alcoves.

Definition 4.1. Let t = (t1, . . . , tk) with ti ∈ Sa ∪ Ω. Let s ∈ Sa.

• A gallery σ of type t connecting generalized alcoves A and B is a sequence (A =
A0, . . . , B = Ak) of generalized alcoves such that Ai+1 = Aiti+1 if ti+1 ∈ Ω and
Ai+1 ∈ {Ai, Aiti+1} if ti+1 ∈ Sa. In the case of ti+1 ∈ Sa this means that Ai and
Ai+1 have a common face of type ti+1.

• The initial direction ι(σ) is defined to be the direction δ(A0) of the first generalized
alcove. The weight wt(σ) of σ is wt(Ak), the ending e(σ) is Ak and the final
direction ε(σ) is δ(Ak).

• The gallery σ has a positive s-direction at i if ti+1 = s, Ai+1 = Ais and Ai is
negative with respect to s, i.e. Ai ≺ Ai+1. The separating hyperplane is the wall
of Ai corresponding to the face of type s.

• The gallery σ is s-folded at i if ti+1 = s and Ai+1 = Ai. The folding hyperplane
is the wall of Ai corresponding to the face of type s. The folding is positive if
Ai � Ais.

We call σ positively folded, if all foldings occurring are positive. A gallery is said to be
minimal if it is of minimal length among all galleries connecting the same generalized
alcoves.

For the precise statement on the Lλµ, the Cν
λµ and the BJ

λµ we need some statistics on
galleries.

Definition 4.2. Let σ be a positively folded gallery of type t. For s ∈ Sa define

• ms(σ) the number of positive s-directions.

• ns(σ) the number of positive s-folds.

• rs(σ) the number of positive s-folds such that the folding hyperplane is not a wall
of the dominant chamber C.

• ps(σ) the number of positive s-folds such that the folding hyperplane is a wall of C.

• rJ
s (σ) the number of positive s-folds such that the folding hyperplane is not a wall

of the J-dominant chamber CJ .

• pJ
s (σ) the number of positive s-folds such that the folding hyperplane is a wall

of CJ .
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In particular, rs(σ) + ps(σ) = ns(σ). Now we can define

• Lσ =
∏

s∈Sa q
ms(σ)
s (qs − 1)ns(σ),

• Cσ =
∏

s∈Sa q
ms(σ)+ps(σ)
s (qs − 1)rs(σ) and

• CJ
σ =

∏
s∈Sa q

ms(σ)+pJ
s (σ)

s (qs − 1)rJ
s (σ).

The polynomials CJ
σ somehow interpolate between the Lσ and the Cσ: For ∆J = ∅ we

have CJ
σ = Lσ and for ∆J = ∆ we have CJ

σ = Cσ. By definition we have (in the case of
equal parameters) deg Lσ = deg Cσ = deg CJ

σ .

Fix some type t = (t1, . . . , tk). For A ∈ Ã and µ ∈ X∨ let Γ+
t (A, µ) be the set

of all positively folded galleries of type t starting in A with weight µ. Further let
Γ+

t (µ) =
∐

w∈W Γ+
t (Aw, µ) be the set of all positively folded galleries of weight µ starting

in the origin and let Γ+
t be the set of all positively folded galleries starting in the origin.

Define
Lt(µ) :=

∑
σ∈Γ+

t (µ)

qw0ι(σ)Lσ.

So there is an additional contribution measuring the distance from −Af to the initial
alcove.

Remark 4.3. There is an alternative way of defining Lt(µ): For any w ∈ W choose
a minimal gallery σw of type tw which connects −Af and Aw. Then σw is a nonfolded
gallery of length l(w0w) = l(w0)−l(w) and it has only positive directions. The positively
folded galleries of type t′w = (tw, t) beginning in −Af correspond to the positively folded
galleries of type t starting in Aw. We get

Lt(µ) =
∑
w∈W

( ∑
σ∈Γ+

t′w
(−Af ,µ)

Lσ

)
.

Remark 4.4. Let w ∈ W a. The choice of a minimal gallery σ connecting Af and Aw

is equivalent to the choice of a reduced expression for w. Let t = (t1, . . . , tk) be the
type of σ. Then we have the reduced expression w = t1 · . . . · tk. In particular, the
length of a minimal gallery connecting Af and Aw is l(w). This is no longer true if we
allow w ∈ W̃ a: Take for example w = g ∈ Ω. Then a minimal gallery from Af to Ag

has type (g) and thus is of length length 1 but l(w) = 0. But this example reflects the
general behavior: The length of a minimal gallery connecting Af and Aw is either l(w)
or l(w) + 1. Moreover, since any w ∈ W̃ a has a unique expression w = vg with v ∈ W a

and g ∈ Ω, one can always arrange that at most the last entry of its type is in Ω.

Now we can give the formula for the Lλµ. Let λ ∈ X∨
+ and nλ be the element of minimal

length in τλW . Denote by W λ the minimal representatives of W/Wλ as introduced
in 2.5. Let σλ be a minimal gallery connecting Af and Anλ and denote its type by tλ.
Using the last definition we get polynomials Ltλ(µ) for all µ ∈ X∨. Up to some factor
these are the Lλµ. More precisely we prove in section 5:
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Theorem 4.5. For µ ∈ X∨ we have

Lλµ =
1

Wλ(q)
Ltλ(µ).

Furthermore,

Lλµ = q−1
wλ

∑
σ∈Γ+

tλ
(µ)

ι(σ)∈W λ

qw0ι(σ)Lσ.

In particular the Ltλ(µ) do not depend on the choice of the minimal gallery σλ and
Ltλ(µ) = qµ−wµLtλ(wµ) for all w ∈ W .

Remark 4.6. One of the surprising implications of the last theorem is the W -invariance
of the Ltλ(µ) up to some power of q. This is surprising because even the cardinality of
the sets Γ+

tλ
(wµ) depends on w.

Now it is quite natural to ask when Γ+
tλ

(µ) 6= ∅. Although the definition of galleries is a
combinatorial one, it seems hard to give a combinatorial proof for the existence (or non
existence) of a gallery of given type and weight. Let σ be any gallery of type tλ starting
in 0, ending in Av of weight µ. Since the folding hyperplanes are root hyperplanes we
always have λ− wt(Av) ∈ Q∨. Moreover, v ≤ ι(σ)nλ by definition of the Bruhat order
on W̃ a. This implies µ+ ≤ λ. This also follows from the well known fact that the
transition matrix from the monomial basis to the Macdonald basis is triangular with
respect to the dominance ordering on X∨

+.

The question of the existence of a gallery in Γ+
tλ

(µ) does not depend on the choice of
parameters d. So we can take d = 1 as in remark 3.2. Since Pλ and mµ are contained
in Λq we have q−〈ρ,λ+µ〉Lλµ ∈ L−. Moreover, q−l(wλ)Wλ(q) = Wλ(q

−1) ∈ L− and thus
q−〈ρ,λ+µ〉−l(wλ)Ltλ(µ) ∈ L−. So we get the upper bound

deg(Lσ) + l(w0ι(σ)) ≤ 〈ρ, µ + λ〉+ l(wλ) (4.1)

for all σ ∈ Γ+
tλ

(µ). The galleries with maximal degree are of special interest. So define

Definition 4.7. A gallery σ ∈ Γ+
tλ

is a LS-gallery if we have equality in the above
equation, i.e. deg(Lσ) + l(w0ι(σ)) = 〈ρ, wt(σ) + λ〉+ l(wλ).

Since all Lσ are monic we get the following corollary by evaluating theorem 4.5 at
q−1 = 0 which answers the above question, proves corollary 1.3 and sharpens the
triangularity.

Corollary 4.8. The number of LS-galleries in Γ+
tλ

(µ) is kλµ+. In particular we have
Γ+

tλ
(µ) 6= ∅ iff µ occurs as a weight in V (λ), i.e. µ+ ≤ λ. Moreover, we have (for

arbitrary parameters) Lλµ 6= 0 iff µ ≤ λ.

The assertion on the triangularity (for the case of spherical Hecke algebras of a reductive
group over a local field) was shown by Rapoport [Rap00].



4 Galleries 19

Remark 4.9. For regular λ the definition of galleries coincides with the one given
in [GL05]. Instead of using generalized alcoves they regard galleries of alcoves together
with an initial and final weight in X∨ contained in the first respectively last alcove. This
is equivalent to our definition since we can always arrange such that at most the last
component of tλ is in Ω (compare remark 4.4). For nonregular λ they regard degenerate
alcoves. This is more or less the same as our choice of the initial direction. See also
remark 5.10 and section 9 for a discussion of this choice.

We now give the formula for the Cν
λµ replacing Lσ with Cσ. So let λ ∈ X∨

+ and t be

any type. Define Γd
t,λ as the set of all positively folded galleries of type t starting in λ

which are contained in the dominant chamber. Here we allow that folding hyperplanes
are contained in the walls of C. For ν ∈ X∨

+ let Γd
t,λ(ν) ⊂ Γd

t,λ be the subset of galleries
ending in ν. Define

Cλt(ν) =
∑

Γd
t,λ(ν)

qw0ι(σ)Cσ.

Now let λ, µ ∈ X∨
+ and let tµ be the type of a minimal gallery connecting Af and Anµ

where nµ ∈ τµW is the minimal representative in τµW . The above definition yields
Cλtµ(ν) for any ν ∈ X∨

+. Define Ww
µν := qw

∑
v∈W w0µ∩Wνw q−1

v for µ, ν ∈ X∨
+ and w ∈ W .

In section 7 we prove:

Theorem 4.10. For λ, µ, ν ∈ X∨
+ we have

Cν
λµ =

Wν(q
−1)

Wµ(q)
Cλtµ(ν).

Furthermore,

Cν
λµ = q−1

wµ

∑
σ∈Γd

tµ,λ
(ν)

qw0ι(σ)CσW
ε(σ)
µν .

In particular, the Cλtµ(ν) do not depend on the choice of the minimal gallery.

So in contrast to theorem 4.5 we have a condition on the final direction since Ww
µν = 0

iff w /∈ WνW
w0µ.

It does not follow immediately from the theorem that the structure constants of Hsph

are indeed polynomials in q. This is shown in theorem 6.4.

As above we can give an estimate for the degree of the Cλtν (ν) and prove corollary 1.5.
From the last theorem we get q−〈ρ,µ−λ+ν〉−l(wµ)Cλtµ(ν) ∈ L− and thus for any σ ∈ Γd

tµ,λ(ν)
we have

deg Cσ + l(w0ι(σ)) ≤ 〈ρ, µ− λ + ν〉+ l(wµ).

Since deg Lσ = deg Cσ and translating a gallery by an element of X∨ does not change Lσ

and the initial direction, corollary 1.5 is proven and we get

Corollary 4.11. For λ, µ, ν ∈ X∨
+ we have Cν

λµ 6= 0 if cν
λµ 6= 0.

For equal parameters the last corollary was proven by Haines in [Hai03] by geometric
arguments using the affine Grassmanian of the Langlands dual G of G∨ to calculate the
degree and the leading coefficients of Cν

λµ.
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Remark 4.12. Looking at the results in [GL05] one would expect the following: cν
λµ is

the number of LS-galleries σ in Γ+
tµ(ν − λ) such that the translated gallery is contained

in the interior of −ρ∨ +C which means that the folding hyperplanes are not of the form
Hα,−1 for some α ∈ ∆. But a gallery σ leaving C with this property is not LS. In fact,
one can apply one of the operators ẽα from [GL05] to σ (compare section 9).

In the same way we now proceed for the branching coefficients replacing Cσ with CJ
σ .

So again let t be any type and let λ ∈ X∨
+. Let ΓJ

t ⊂ Γ+
t by the subset of galleries

contained in CJ and for µ ∈ JX∨
+ define ΓJ

t (µ) ⊂ ΓJ
t to be the subset of galleries with

weight µ. Define Bt(µ) =
∑

σ∈ΓJ
t (µ) CJ

σ . Define JWw
λµ := qw

∑
v∈W w0λ∩W J

µ w q−1
v where

W J
µ ⊂ WJ is the stabilizer of µ in WJ . We prove in section 8 (where tλ is as above)

Theorem 4.13. For λ ∈ X∨
+ and µ ∈ JX∨

+ we have

BJ
λµ =

W J
µ (q−1)

Wλ(q)
Btλ(µ).

Furthermore,

BJ
λµ = q−1

wλ

∑
σ∈ΓJ

tλ
(µ)

qw0ι(σ)C
J
σ

JW
ε(σ)
λµ

and the Btλ(µ) do not depend on the choice of tλ.

Since Wλ(q) = qwλ
Wλ(q

−1) one gets corollary 1.8 by specialization at q−1 = 0.

Example 4.14. In this example we want to illustrate theorem 4.5 in the case of not
necessary equal parameters. So let Φ̃ be of rank one as in 2.4 and thus W̃ a = W a. As
observed there, s0 and s1 are not conjugate in W a. So we have two parameters q0 := qs0

and q1 := qs1. Let σ = (Af , As0) be the minimal gallery of type (s0) from 0 to α∨. Then
Γ+

(s0) and the corresponding qw0ι(σ)Lσ can be seen in the following picture.

−α 0 α

q0q1

q0 − 1

1

Since qα∨ = q
1
2
0 q

1
2
1 we get

q−α∨Mα∨ = Xα∨10 + q
− 1

2
1 (q

1
2
0 − q

− 1
2

0 )X010 + X−α∨10

This shows that if one defines Pλ for arbitrary parameters as in the case of equal param-
eters, then the resulting symmetric polynomials are in general not in Λq. See Knop’s
article [Kno05, section 6] for a discussion of the relation between the choice of d and
the existence and uniqueness of Kahzdan–Lusztig elements.

Example 4.15. In the following we are in the case of equal parameters. Let λ ∈ X∨
+.

Then Γ+
tλ

is more or less as in the last example. There are two nonfolded galleries of
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weight λ and −λ and for any −λ < µ < λ we have a gallery σ(µ) starting in −Af of
weight µ with one positive fold and Lσ(µ) = (q − 1)q〈ρ,λ+µ〉−1. This yields

q−〈ρ,λ〉Mλ = Pλ = mλ +
∑

µ∈X∨
+,µ<λ

(1− q−1)mµ.

In this case all galleries are LS-galleries and we get the well known sλ =
∑

µ∈X∨
+,µ≤λ mµ.

5 Satake coefficients

In this section we introduce the alcove basis of the extended affine Hecke algebra and
show that right multiplication of this alcove basis by elements of the standard basis can
be calculated using positively folded galleries. From this theorem 4.5 follows. We also
show that one can replace positively folded galleries by negatively folded galleries.

Definition 5.1. Let A ∈ Ã. Define XA = q−wt(A)qδ(A)Xwt(A)T δ(A).

The set {XA}A∈Ã is a basis of H̃a. Before we proceed, we need some properties of this

basis. First let λ ∈ X∨ and A ∈ Ã. One calculates

XλXA = qλXλ+A. (5.1)

Now assume A = Av to be dominant such that λ := wt(A) is regular. Then v = τλδ(A).
Moreover, τλ is of maximal length in τλW by lemma 2.6 and l(v) = l(τλ)− l(δ(A)). So
we get Tτλ

T δ(A) = Tτλδ(A) = Tv and thus

XA = q−λqδ(A)XλT δ(A) = q−1
τλ

qδ(A)Tτλ
T σ(A) = q−1

v Tv. (5.2)

Multiplying the elements of the alcove basis with Ts from the right can be expressed in
terms of the alcove order. It is a q-analog of the W̃ a-action on Ã.

Lemma 5.2. Let A ∈ Ã. In H̃a we have

XATs =

{
qsXAs if A ≺ As

XAs + (qs − 1)XA if A � As.

Proof. By (5.1) the assertion is invariant under translation, i.e. under left multiplication
with some Xµ. So it is enough to show the assertion for generalized alcoves A = Av such
that wt(A)− α∨ is dominant and regular for all α ∈ φ. By (5.2) we have XA = q−1

v Tv

and the multiplication law in H̃a yields

TvTs =

{
Tvs if l(v) < l(vs)

qsTvs + (qs − 1)Tv if l(v) > l(vs).

But for generalized alcoves in the dominant chamber increasing in the alcove order is
equivalent to increasing the length of the corresponding elements of W̃ a (see exam-
ple 2.3). Moreover, by the choice of A we get XAs = q−1

vs Tvs as elements in H̃a again
by (5.2) and the assertion follows.
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Remark 5.3. The last lemma can also be restated as follows. In [Lus80] Lusztig intro-
duced the periodic Hecke module with equal parameters. It has a basis indexed by alcoves
and the multiplication is given (up to some power of the parameters) by the relations
of the last lemma. So what we really did was the following: We extended the periodic
Hecke module to generalized alcoves and to arbitrary parameters and gave an explicit
realization of an isomorphism (of right H̃a-modules) from the periodic Hecke module
to H̃a.

Using the same arguments and the fact that multiplying by Tg for g ∈ Ω does not
change the length we get

Lemma 5.4. For A ∈ Ã we have XATg = XAg as elements in H̃a.

For later use we need the following: For w ∈ W̃ a define q
1
2
w by replacing qs with q

1
2
s

in the definition of qw. For A ∈ Ã define qA = q−wt(A)q
1
2

δ(A). Since qλ+A = q−λqA for

λ ∈ X∨ and A ∈ Ã and q2
Av

= q−1
v for Av dominant with wt(Av) regular we get with

the same arguments as in the proof of lemma 5.2

Lemma 5.5. For A ∈ Ã and s ∈ Sa one has

qAs =

{
qAq

− 1
2

s if A ≺ As

qAq
1
2
s if A � As.

Now we can connect the multiplication in H̃a to the L-polynomials. For generalized
alcoves A and B and any type t define Γ+

t (A, B) to be the set of all positively folded
galleries of type t connecting A and B and set Lt(A, B) =

∑
σ∈Γ+

t (A,B) Lσ.

Lemma 5.6. Let t = (t1, . . . , tk), s ∈ Sa, t′ = (t1, . . . , tk, s), and fix generalized alcoves
A and B. We have

Lt′(A, Bs) =

{
Lt(A, B) if B � Bs

qsLt(A, B) + (qs − 1)Lt(A, Bs) if B ≺ Bs.

Proof. Let σ′ = (A, . . . , C, Bs) ∈ Γ+
t′ (A, Bs). Then C ∈ {B, Bs}. We have C = Bs iff

σ′ is s-folded at k + 1. Let σ = (A, . . . , C) and distinguish two cases:
B � Bs: We then have C = B and σ′ is negative at k + 1. So σ ∈ Γ+

t (A, B) and
Lσ′ = Lσ. Moreover, all galleries in Γ+

t (A, B) are obtained this way.
B ≺ Bs: If C = B we have σ ∈ Γ+

t (A, B) and σ′ is positive at k + 1. So Lσ′ = qsLσ

and one gets all galleries in Γ+
t (A, B) this way. If C = Bs we have σ ∈ Γ+

t (A, Bs),
Lσ′ = (qs − 1)Lσ and one obtains all galleries in Γ+

t (A, Bs) this way.
The lemma follows.

Let v ∈ W̃ a and σ be a minimal gallery of type t connecting Af and Av.

Theorem 5.7. Given A ∈ Ã one has XATv =
∑

B∈Ã Lt(A, B)XB.
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Proof. Because of lemma 5.4 and since the L-polynomials are not affected by elements
of Ω in the type it is enough to show the theorem for v ∈ W a. The proof is done by
induction on l(v).
Let first v = s ∈ Sa: Distinguish two cases.
A ≺ As: In this case L(s)(A, A) = 0, L(s)(A, As) = qs and L(s)(A, B) = 0 for all other
B and XATs = qsXAs.
A � As: In this case L(s)(A, A) = qs − 1, L(s)(A, As) = 1 and L(s)(A, B) = 0 for all
other B and XATs = XAs + (qs − 1)XA.
Now let v ∈ W a, s ∈ Sa such that l(v) < l(vs) and σ′ = (A0, . . . , Av, Avs) is a minimal
gallery of type t′. Using the last lemma we get

XATvs = XATvTs =
( ∑

B∈W a

Lt(A, B)XB

)
Ts

=
∑

B≺Bs

qsLt(A, B)XBs +
∑

B�Bs

Lt(A, B)XBs +
∑

B�Bs

(qs − 1)Lt(A, B)XB

=
∑

B≺Bs

(
qsLt(A, B) + (qs − 1)Lt(A, Bs)

)
XBs +

∑
B�Bs

Lt(A, B)XBs

=
∑
B∈Ã

Lt′(A, Bs)XBs =
∑
B∈Ã

Lt′(A, B)XB

In particular we get that Lt(A, B) does not depend on σ and t but only on v. So
we define Lv(A, B) := Lt(A, B). For later use we also define Γ+

v to be the set of all
positively folded galleries starting in the origin of the type of some minimal gallery
joining Af and Av.

From this we get as a corollary (by setting A = Af ) the expansion of the standard basis
in terms of the alcove basis.

Corollary 5.8. Let v ∈ W̃ a and fix some minimal gallery of type t connecting Af and
Av. Then

Tv =
∑

σ∈Γ+
t ,ι(σ)=id

LσXe(σ) =
∑

σ∈Γ+
t ,ι(σ)=id

q−1
wt(σ)qε(σ)LσXwt(σ)T ε(σ).

With these results we now can prove proposition 4.5.

Lemma 5.9. For λ ∈ X∨
+ we have

10Tnλ10 =
∑

µ∈X∨

q−µLtλ(µ)Xµ10.

Proof. We use the last theorem and the facts that 10 = q−1
w0

10 and Tw10 = q−1
w 10 for
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all w ∈ W . So one calculates

10Tnλ10 = qw0

∑
w∈W

TwTnλ10 = qw0

∑
w∈W

q−1
w XAwTnλ10

= qw0

∑
w∈W

q−1
w

∑
σ∈Γ+

tλ
,ι(σ)=w

q−wt(σ)qε(σ)LσXwt(σ)T ε(σ)10

=
∑
w∈W

qw0w

∑
σ∈Γ+

tλ
,ι(σ)=w

q−wt(σ)LσXwt(σ)10

=
∑

σ∈Γ+

tλ

qw0ι(σ)q−wt(σ)LσXwt(σ)10 =
∑

µ∈X∨

q−µLtλ(µ)Xµ10

where the last equality holds by the definition of Ltλ(µ) in section 4.

From this we get

Mλ =
1

W(q)Wλ(q)

∑
µ∈X∨

q−µLtλ(µ)Xµ10.

But on the other hand q−µLλµ for dominant µ is the coefficient of Mλ with respect to
Yµ. Moreover, for arbitrary ν ∈ X∨ we defined Lλν = qν−ν+Lλν+ . So we get

Mλ =
∑

µ∈X∨
+

q−µLλµYµ =
1

W(q)

∑
µ∈X∨

+

( ∑
ν∈Wµ

q−νLλνXν10

)
=

1

W(q)

∑
µ∈X∨

q−µLλµXµ10.

Comparing coefficients of these two expansions we get

Lλµ =
1

Wλ(q)
Ltλ(µ)

which proves the first statement in 4.5. The second statement can be obtained as
follows: Every w ∈ W can be written as w = w1w2 for unique w1 ∈ W λ and w2 ∈ Wλ

such that l(w) = l(w1) + l(w2) (using the notation introduced in definition 2.5). Define
1λ =

∑
w∈Wλ

Tw. Since T vTw = T vw for v, w ∈ W with l(v) + l(w) = l(vw) and

1λ = q−1
wλ

1λ we get

10 = qw0

∑
w∈W λ

Tw1λ = qw0wλ

∑
w∈W λ

Tw1λ.

If v ∈ Wλ we have l(v) + l(nλ) = l(vnλ). Moreover, vnλ = vτλwλw0 = τλvwλw0 = nλv′

with v′ = w0wλvwλw0 by lemma 2.6. Then l(v′) = l(v) and qv = qv′ . Thus TvTnλ10 =
TnλTv′10 = qvTnλ10 and we get

10Tnλ10 = qw0wλ
Wλ(q)

∑
w∈W λ

Tw Tnλ10.

Now the second statement follows the same way as in the proof of lemma 5.9 using
qw0wλ

∑
w∈W λ Tw = q−1

wλ

∑
w∈W λ qw0wXAw .
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Remark 5.10. In the above considerations there are various other choices for the con-
dition on the initial alcove. Let v ∈ Wλ. We have 10 = qw0wλv

∑
w∈W λ Twv1λ since

T v1λ = q−1
v 1λ and the last equation becomes 10Tnλ10 = qw0wλvWλ(q)

∑
w∈W λv Tw Tnλ10.

Thus one gets

Lλµ = q−1
wλv

∑
σ∈Γ+

tλ
(µ)

ι(σ)∈W λv

qw0ι(σ)Lσ.

The case considered above was v = id. In the case of equal parameters we get for any
gallery σ ∈ Γ+

tλ
such that ι(σ) ∈ W λv the upper bound

deg Lσ + l(w0ι(σ)) ≤ 〈ρ, λ + wt(σ)〉+ l(wλv).

One could define LS-galleries to be the ones such that ι(σ) ∈ W λv and where there is
equality in the last equation. But only with the choice v = id it is enough to impose this
equality. The condition on the initial direction follows from this. In particular, for a
LS-gallery σ we have ι(σ) ∈ W λ. See also section 9 for a connection of this choice to
the crystal operators defined in [GL05].

For the definition of the Ltλ(µ) we started with the minimal representative nλ and we
showed that Ltλ(µ) is independent of the initially chosen minimal gallery. One can
allow even more freedom in this initial choice. Let v ∈ WτλW and let w, w′ ∈ Wλ such
that v = wnλw

′
and l(w) + l(nλ) + l(w′) = l(v). If instead of tλ we use the type t of a

minimal gallery from Af to Av we get from the proof of 5.9 that Lt(µ) = qwqw′Ltλ(µ) for
any µ ∈ X∨. It is clear that the number of LS-galleries in Γ+

t (µ) (with the appropriate
changes of the degree condition in the definition) is the same as in Γ+

tλ
(µ) since they

always encode sλ. One also has a canonical bijection between these different sets of
LS-galleries. But the total number of galleries in Γ+

t (µ) really depends on the choice
of v and this number is minimal if we choose nλ. There is another fact that singles
out nλ: All the nonfolded galleries are LS-galleries, which is false if we replace nλ by v
as can be seen in the following example.

Example 5.11. As an example for this we regard the case of a rank one root datum
Φ as in example 2.4 and continue the example 4.15. So let again λ = α and take
t = (s0, s1). Instead of the three galleries in the picture there we now have four galleries
in Γ+

t , two of them of weight −α: The nonfolded gallery σ0 starting in −Af and the
gallery σ1 starting in −Af and having a s1-fold. Then Lσ0 = 0 and Lσ1 = q − 1, so σ1

is LS and σ0 is not despite of being nonfolded.

This is also the smallest example where one can see that |Γ+
t (µ)| is not W -invariant in

contrast to |LSt(µ)| and |Γt(µ)|.

Remark 5.12. In definition 4.1 one can replace positive (respectively positively folded)
by negative (respectively negatively folded), i.e. one gets m−

s (σ) and n−s (σ) for each
negatively folded gallery σ. With the obvious changes this yields polynomials L−

σ nonzero
only for negatively folded galleries. Going further, one gets Γ−t (A, B), L−

t (A, B) and
recursions (using the same notations as in 5.6)

L−
t′ (A, Bs) =

{
L−

t (A, B) if B ≺ Bs

qsL
−
t (A, B) + (qs − 1)L−

t (A, Bs) if B � Bs.
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Since T s = q−1
s (Ts + (1− qs)Tid) for s ∈ Sa we get from lemma 5.2 that

XAT s =

{
XAs + (q−1

s − 1) if A ≺ As

q−1
s XAs if A � As

for any A ∈ Ã and s ∈ Sa. Under the hypotheses of theorem 5.7 we get

XAT v =
∑
B∈A

L−
t (A, B)XB.

If one defines

L−
t (µ) =

∑
σ∈Γ−t (µ)

qι(σ)L
−
σ

we also can express the Lλµ with negatively folded galleries. For this note that left
multiplication by w0 on Ã induces a type preserving bijection φ : Γ+

t → Γ−t for any
type t. Obviously we have L−

φ(σ) = Lσ and ι(φ(σ)) = w0ι(σ). In particular, we get the

equality Lt(µ) = L−
t (w0µ). Combining this with the semi-invariance of the Lλµ with

respect to µ we get

Lλµ = qµ−w0µLλ,w0µ =
q2
µ

Wλ(q)
Ltλ(w0µ) =

q2
µ

Wλ(q)
L−

tλ
(µ)

which gives an expression of Lλµ in terms of negatively folded galleries by the definition
of L−

tλ
(µ).

6 Commutation and Demazure character formula

In this section we prove a commutation rule for the affine Hecke algebra, i.e. a formula
in terms of galleries for the coefficients appearing in TwXλ =

∑
Rµv

λwXµTv. Specializing
this formula extends the Pieri–Chevalley formula of Pittie and Ram [PR99] using the
path model to the non-dominant case. This specialization is equivalent to the formula of
Lenart and Postnikov [LP04]. See the end of this section for the geometric significance
of these coefficients. In the same way we calculate q-analogs of Demazure multiplicities
and thus prove the Demazure character formula 1.10.

6.1 Commutation formula

Using corollary 5.8 we can express any element Tw of the standard basis in terms of
the alcove basis. So we get a formula for TwXλ = q−λTwTτλ

for dominant λ in terms of
the alcove basis. But this method does not work for non-dominant λ since only for the
dominant λ we have a good description of Xλ in terms of the standard generators Ts

(which we need to apply 5.8). Using remark 5.12 we could derive a similar formula for
antidominant λ using negatively folded galleries since there we have a description as a
product of T s. In the general case one has to mix these two notions.
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We first consider a slightly more general situation. Let t = (t1, . . . , tk) be a type and
let N ⊂ {j | tj ∈ Sa} be any subset. Define ε(j) = −1 if j ∈ N and ε(j) = 1 otherwise.

We then define Tt,N = T
ε(1)
t1 · . . . · T ε(k)

tk
and qt,N = q

ε(1)
t1 · . . . · qε(k)

tk
.

Let σ be a gallery of type t. Then σ is called N -folded if the following holds: If σ is
positively (respectively negatively) folded at j then j /∈ N (respectively j ∈ N). So
for N = ∅ we get positively folded galleries and for N = {j | j ∈ Sa} we get negatively
folded galleries. Define ΓN

t to be the set of N -folded galleries starting in the origin. For
a N -folded gallery σ and s ∈ Sa we define

• m+
s (σ) the number of j /∈ N such that σ is s-positive at j.

• m−
s (σ) the number of j ∈ N such that σ is s-negative at j.

• n+
s (σ) the number of j /∈ N such that σ has a positive s-fold at j.

• n−s (σ) the number of j ∈ N such that σ has a negative s-fold at j.

Of course all these entities depend on N , but in order to simplify notation we suppress
this dependency. The corresponding N should be clear from the context. Now define

LN
σ :=

∏
s∈Sa q

m+
s (σ)−m−

s (σ)
s (q − 1)n+

s (σ)(q−1 − 1)n−s (σ). In particular we have L∅
σ = Lσ.

Combining lemma 5.2, its negative counterpart in remark 5.12 and lemma 5.4 we get
by induction on k the following

Lemma 6.1. For A ∈ Ã we have

XATt,N =
∑

σ

LN
σ Xe(σ),

where the sum is over all N-folded galleries starting in A.

In particular we get the following: Let A, B ∈ Ã and σ a nonfolded gallery connecting
A and B. Denote its type by t and define N = {j |σ is negative at j} to be its set of
negative directions. Then the last lemma reads

XATt,N = LN
σ XB = qt,NXB (6.1)

since in this case no foldings are allowed and LN
σ = qt,N by definition of LN

σ . Moreover,
by lemma 5.5 we know that

qAq
− 1

2
t,N = qB (6.2)

where q
1
2
t,N is defined as qt,N replacing all qs by q

1
2
s .

Now we want to apply this to compute TwXλ for λ ∈ X∨ and w ∈ W . For doing this
choose a gallery γ connecting Aw0 with λ + Aw0 . Denote by t its type and define N as
above to be the set of negative directons of γ. By (6.1) we have XAw0

Tt,N = qt,NXλ+Aw0

and qt,N = q2
Aw0

q−2
λ+Aw0

= q2
λ by (6.2). Again using the last lemma we calculate

TwXλ+Aw0
= q−1

t,NTwXAw0
Tt,N = q−1

t,NqwXAww0
Tt,N = q−1

t,Nqw

∑
σ∈ΓN

t ,ι(σ)=ww0

LN
σ Xe(σ).
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Moreover, Xλ+Aw0
Tw0 = qw0Xλ+Af

= qw0q−λXλ. So multiplying from the right by Tw0

yields

qw0TwXλ = q−λqw

∑
σ

LN
σ Xe(σ)Tw0 = q−λqw

∑
σ

q−wt(σ)qε(σ)L
N
σ Xwt(σ)Tε(σ)w0

where the sum is over σ ∈ ΓN
t starting in Aww0 .

Summarizing we get

Theorem 6.2. Let w ∈ W and λ ∈ X∨. Let t be the type of a non-folded gallery γ
connecting Aw0 and λ + Aw0 and denote by N the set of negative directions of γ. Then

TwXλ = q−1
w0w

∑
µ∈X∨

q−λ−µ

∑
wt(σ)=µ

qε(σ)L
N
σ XµTε(σ)w0

where the sum is over all galleries σ ∈ ΓN
t starting in ww0.

Example 6.3. We include some examples which we will use subsequently. These results
are well known (see [Lus89, proposition 3.6]). The usual proofs (at least for unequal
parameters) use that H̃a is a quotient of the group algebra of the affine braid group.

Let α ∈ ∆ and λ ∈ X∨ such that 〈α, λ〉 = 0. Let s = sα. Then s ∈ Wλ. Let σ be
a minimal gallery from Aw0 to λ + Aw0 of type t and let N be as above. Then σ is
completely contained in H−

α,0 ∩ H+
α,−1. In particular, no separating hyperplane of σ is

of the form Hα,j. Let γ be the nonfolded gallery of type t starting in sw0, i.e. γ = sσ.
So wt(γ) = λ and ε(γ) = sw0. Since s only changes directions where the separating
hyperplane is of the form Hα,j, σ is positive at j iff γ is positive at j. In particular, in γ
no foldings are allowed and thus γ is the only gallery in ΓN

t starting in sw0. Moreover,
we have LN

γ = LN
σ = qt,N = q2

λ and so the last theorem yields TsXλ = XλTs.

Assume now 〈α, λ〉 = 1. Then sλ = λ − α∨. Define s′ = w0sw0 ∈ S. So we have
qs = qs′. Let σ′ be a minimal gallery from Aw0s′ to λ + Aw0 and denote by t′ its
type. Then σ′ is contained in H+

α,0 ∩H−
α,1. So again no separating hyperplane is of the

form Hα,j. Extend σ′ to a minimal gallery from Aw0 to λ + Aw0 by adding Aw0 at the
beginning. Then the type t of σ is the concatenation of s′ and t′. Denote by N the set
of negative directions of σ. This time there are two galleries in ΓN

t starting in sw0: As
above there is γ = sσ with wt(γ) = sλ and ε(σ) = sw0. In contrast to the situation
there γ has a negative s′-direction at the beginning whereas σ is positive there. All other
directions remain as in σ and thus LN

γ = q−1
s LN

σ = q−1
s q2

λ. Moreover, one can fold
between the first two alcoves Asw0 and Aw0 of γ and obtains γ′ with wt(γ′) = λ and
ε(γ) = w0. All other directions in γ′ are as in γ and so LN

γ′ = (qs−1)LN
γ = (1− q−1

s )q2
λ.

Using the last theorem we have TsXλ = qα∨q
−1
s XsλTs +(qs− 1)Xλ. In this case we have

qα∨ = qs which can be seen as follows: sσ′ is a nonfolded gallery of type t′ from Aw0 to
sλ + Asw0. Denote by N ′ its set of negative directions. Then qt′,N ′ = q−1

s qt,N = q−1
s q2

λ

by (6.2) and qAw0
q
− 1

2

t′,N ′ = qsλ+Asw0
= qα∨q

− 1
2

s q−λqAw0
. We obtain qα∨ = qs and thus

TsXλ = XsλTs + (qs − 1)Xλ.

In general it is not true that qα∨ = qs. See example 4.14.

A general formula for TsXλ can be obtained with the same methods. But in the case of
unequal parameters it is quite hard to get the correct coefficients. In the case of equal
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parameters it is merely a calculation as in the rank one case and one arrives easily at
the formula (3.1).

Before we proceed and specialize the last theorem to obtain a commutation rule in Hnil

we provide some results on the relation between positive and negative directions needed
for a more precise analysis of the structure constants of Hsph.

Let t be any type and σ ∈ Γ+
t . Define q+ :=

∏
s∈Sa q

m+
s (σ)

s and q− :=
∏

s∈Sa q
−m−

s (σ)
s . So

q+ is the contribution of the positive directions to Lσ and q− its negative counterpart.
Deleting all entries in t corresponding to foldings of σ yields a new type t′. Let σ′

be the nonfolded gallery of type t′ starting in the same alcove as σ and denote by
N ′ its negative directions. Then e(σ) = e(σ′) and qt′,N ′ = q+q−. Using (6.2) we get
q2
Aι(σ)

q−1
t′,N ′ = q2

e(σ) = q2
−wt(σ)qε(σ) and thus

q2
−wt(σ)qw0ι(σ)q+ = qw0ε(σ)q

−1
− ∈ Z[q]. (6.3)

Now let λ, µ, ν ∈ X∨
+ and tµ a minimal gallery from Af to Anµ as in the situa-

tion before theorem 4.10. Recall that the coefficient of Mν in MλMµ is given by

q−1
wµ

∑
σ∈Γd

tµ,λ
(ν) q2

λ−νqw0ι(σ)CσW
ε(σ)
µν where Ww

µν = qw

∑
v∈W w0µ∩Wνw q−1

v . Let σ ∈ Γd
tµ,λ(ν).

Then the translated gallery −λ+σ is in Γ+
tµ(−λ+ν). Since translation does not change

q+ and q− we get from (6.3) that

q−1
wµ

q2
λ−νqw0ι(σ)q+W ε(σ)

µν ∈ Z[q]

since q−1
wµ

qw0ε(σ)W
ε(σ)
µν = qw0wµ

∑
v∈W w0µ∩Wνε(σ) q−1

v ∈ Z[q]. So we get

Theorem 6.4. The structure constants of Hsph with respect to the Macdonald basis are
polynomials in q. Moreover, regarded as polynomials in the qs−1 they have nonnegative
coefficients.

This theorem is one of the results in [Par06]. He shows it by interpreting the structure
constants as intersections in a regular affine building but does not give a combinatorial
formula.

Now we want to specialize the commutation formula of H̃a to obtain a commutation
formula for the nil affine Hecke algebra. So we assume from now on that all parameters
are equal. Rewrite the assertion of theorem 6.2 as

T̃wXλ =
∑

µ∈X∨

q−〈ρ,λ+µ〉
∑

σ∈ΓN
t

ι(σ)=ww0

LN
σ XµT̃ε(σ)w0

The coefficients of the right hand side in the last equation are Laurent-polynomials in
q, i.e. we get the estimate

deg LN
σ ≤ 〈ρ, λ + wt(σ)〉.

In contrast to the case of positively folded galleries the leading term of LN
σ can be −1.

So before specializing one has to think about the sign. Since LN
σ is by definition of the

form q∗(q− 1)#(q−1− 1)n−(σ) where n−(σ) is the total number of negative foldings, the
leading term is (−1)n−(σ) if it is nonzero. So we get
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Theorem 6.5. Under the hypotheses of the last theorem

T̃wXλ =
∑

σ

(−1)n−(σ)Xwt(σ)T̃ε(σ)w0

where the sum is over all σ ∈ ΓN
t starting in ww0 such that deg Lσ = 〈ρ, λ + wt(σ)〉.

Remark 6.6. This formula is positive in the case where N = ∅. This can be achieved if
λ is dominant. In this case any minimal gallery from Aw0 to λ + Aw0 has only positive
directions. There is one special choice for this minimal gallery: First take a minimal
gallery from Af to Awλ

and then one (with type tλ) to λ + Aw0.

The assertion of the last theorem is exactly the commutation formula [LP04, theo-
rem 6.1]. The translation between these two formulations is given by introducing the
companion of a gallery defined in [GL05, definition 22]. For a discussion of the equiv-
alence between these formulas see the appendix of [LP04] and [GL05, remark 12]. But
their approach is quite different from ours. Instead of labeling the walls crossed by the
initial gallery with the simple affine reflections corresponding to right multiplication
they label them by the root of the separating hyperplane corresponding to left multi-
plication. Then they define operators Rβ for any root β, show that they satisfy certain
compatibility conditions and use this to calculate the coefficients of the last theorem.
They work entirely in the nil affine Hecke algebra and so do not get any q-analogs.

There is a close connection of this formula to the T∨-equivariant K-theory of the flag
variety G∨/B∨. It is an algebra over the representation ring R(T∨) = Z[X∨] and has a
natural basis over R(T∨) given by the classes of the structure sheaves Ow for w ∈ W of
the Schubert varieties. One is interested in the following question: Given the class of a
structure sheaf Ow with w ∈ W and a line bundle Lλ of weight λ. Then one asks for the
expansion of the class of the tensor product Lλ⊗Ow in terms of the structure sheaves.
By [PR99] the coefficients appearing are exactly the ones from the last corollary. So
these coefficients do have an interesting geometric interpretation.

Now one may ask for a geometric interpretation of the q-analogs of the last two theorems.
It is known by the work of Lusztig that there is an isomorphism from the affine Hecke
algebra to the equivariant K-theory of the Steinberg variety associated to G∨ and B∨.
But it is not clear, if there is any nice geometric interpretation for the coefficients in
this context.

6.2 Demazure character formula

In this section we calculate Demazure characters and thus give a proof for corollary 1.10.
For this we again regard H̃a with equal parameters. Of course we could multiply the
formula of theorem 6.5 from the right by T̃w0 . But in order to get the connection with
LS-galleries it is more convenient to restart.

Let λ ∈ X∨
+ and w ∈ W . By lemma 2.6 we have Tτλ

= TnλTw0wλ
. Using corollary 5.8

we get

TwXλ10 = q−〈ρ,λ〉TwTnλTw0wλ
10 = ql(w0wλ)

∑
σ∈Γ+

t
ι(σ)=id

q−〈ρ,λ+wt(σ)〉LσXwt(σ)10.
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where t = (tw, tλ) is the concatenation of a type tw of a minimal gallery from Af to Aw

and tλ. Rewriting this in terms of the basis T̃v one gets

T̃wXλ1̃0 = ql(w0wλ)−l(w)
∑
σ∈Γ+

t
ι(σ)=id

q−〈ρ,λ+wt(σ)〉LσXwt(σ)1̃0.

In particular we get the estimate

deg Lσ ≤ 〈ρ, λ + wt(σ)〉 − l(w0wλ) + l(w) (6.4)

for any σ ∈ Γ+
t with ι(σ) = id. We can regard the image of the equation above in Hnil

and get

T̃wXλT̃w0 =
∑

σ

Xwt(σ)T̃w0 , (6.5)

where the sum is over all galleries σ ∈ Γ+
t with ι(σ) = id such that the degree of Lσ is

maximal.

But we would like to get rid of the initial part of type tw to get formulas with galleries
of a type depending only on λ. This can be achieved as follows: Within the tw-part σ
stays at the origin, i.e. the alcoves A have wt(A) = 0. Let Av be the ending alcove of
the tw-part, i.e. v ∈ W . The tλ-part of σ thus starts at Av. The polynomial Lσ can be
split the same way to get Lσ = Ltw

σ Ltλ

σ . For the tw-part we have

Lemma 6.7. Let v ∈ W . Then ql(v)−l(w)Ltw(Af , Av) ∈ 1 + q−1L− if v ≤ w and 0
otherwise.

The proof is done by induction on l(w) using lemma 5.6. For v, w ∈ W the polynomials
Ltw(Af , Av) coincide with the R-polynomials Rw,v of Deodhar [Deo85] by example 2.3.

From the last lemma we get that for v ≤ w there is exactly one gallery σv of type tw
from Af to Av with deg Lσv = l(w)− l(v). But on the other hand we know from (4.1)

that deg Ltλ

σ ≤ 〈ρ, λ + wt(σ)〉 − l(w0wλ) + l(v) and that we have equality iff σ is a
LS-gallery. So in order to have equality in (6.4) the tw-part has to be σv and the tλ-part
has to be a LS-gallery. Bringing this together we get that in (6.5) it is enough to sum
over all LS-galleries σ in Γ+

tλ
such that ι(σ) ≤ w. This proves corollary 1.10.

Now we can refine the discussion on the existence of LS-galleries with a given weight.
Let σ ∈ Γ+

tλ
(µ) with ι(σ) ≤ w. Then wλ ≤ ι(σ)λ ≤ µ. But we also have the general

condition µ+ ≤ λ. These two conditions together are equivalent to dw
λµ > 0. So with

the last corollary we know that there is a gallery σ ∈ Γ+
tλ

(µ) with ι(σ) ≤ w iff dw
λµ > 0.

See also section 11 for a geometric interpretation of these multiplicities.

7 Structure constants

In this section we calculate the structure constants of the spherical Hecke algebra with
respect to the Macdonald basis and prove theorem 4.10 and thus theorem 1.4 and its
corollary.
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Therefore we need some preparation. For a generalized alcove A and a type t define
Γ+

t,A to be the set of all positively folded galleries of type t with initial alcove A.

Lemma 7.1. Let A = µ + Aw be a dominant generalized alcove such that As is no
longer dominant. Let Hα,0 be the hyperplane separating A and As with α ∈ ∆. Then
we have XATs = TsαXA.

Proof. We have sαA = As and A � As. So sα and s are conjugate in W̃ a and thus
qsα = qs. Distinguish two cases:
If s = sθ,1 with θ ∈ Θ we have 〈αi, µ〉 = 1 and thus sα(µ) = µ − α∨i and sαA =
sα(µ)+Asαw. But on the other hand we have As = (µ+wθ∨k )+Awsθ

and so wθ∨ = −α∨.
In particular, sαw < w. From example 6.3 we know that qα∨ = qs in this case and

TsαXµ = Xµ−α∨i
Tsα + (qsα − 1)Xµ.

Together with sαw < w this yields

TsαXµTw = Xµ−α∨i
T sαw + (qsα − 1)XµTw

and thus
TsαXA = XAs + (qsα − 1)XA = XATs

where the last equality follows from A � As.
If s = sβ ∈ S we have sα(µ) = µ and w−1(α) = β. So here sαw > w. Using
TsαXµ = XµTsα one obtains the desired equality as above.

We keep the notation of the last lemma and get 10XATs = 10TsαXA = qs10XA (recall
that qsα = qs).

Let t = (t1, . . . , tk) be a type and define Tt = Tt1 · . . . · Ttk . From theorem 5.7 we get

XATt =
∑

σ∈Γ+
t,A

LσXe(σ).

This yields

10XATt =
∑

σ∈Γ+
t,A

Lσ10Xe(σ).

Setting t′ = (s, t) we obtain by the same arguments

10XATsTt =
∑

σ∈Γ+
t′,A

Lσ10Xe(σ).

Since 10XATsTt = qs10XATt we get the following

Lemma 7.2. Let t be any type and let A be a dominant generalized alcove such that
As is no longer dominant. Setting t′ = (s, t) we have

qs

∑
σ∈Γ+

t,A

Lσ10Xe(σ) =
∑

σ∈Γ+
t′,A

Lσ10Xe(σ).
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Now let λ ∈ X∨
+. Then the generalized alcove A := λ + Aw is dominant iff w−1 ∈ W λ.

Let w−1 ∈ W λ and v ∈ Wλ. Then we get

T vXA = q−1
v Xλ+Avw = q−1

v XvA.

Since v ∈ Wλ we get the equality (using the notation introduced before the last lemma)

10XvATt = qv10T vXATt = 10XATt.

For later use observe that vA = λ + Avw and thus vA is no longer dominant. We get

Lemma 7.3. Let λ ∈ X∨
+, w−1 ∈ W λ and v ∈ Wλ. Let A = λ + Aw. For any type t we

have ∑
σ∈Γ+

t,A

Lσ10Xe(σ) =
∑

σ∈Γ+
t,vA

Lσ10Xe(σ).

Now let λ, µ ∈ X∨
+. Let wµ ∈ Wµ and nµ ∈ τµW as in definition 2.5. Let tµ denote

the type of a minimal gallery from Af to Anµ . As in the proof of lemma 5.9 we get by
lemma 5.8

10Xλ 10Tnµ = 10Xλ

∑
σ∈Γ+

tµ

qw0ι(σ)LσXe(σ) (7.1)

= qλ

∑
σ∈Γ+

tµ,λ

qw0ι(σ)Lσ10Xe(σ). (7.2)

Here Γ+
tµ,λ is the set of all galleries of type tµ starting in λ and the last equality holds

since translating a gallery σ by λ does not change Lσ. So we have an expansion for
the product in terms of XA for A ∈ Ã. But we need the expansion in terms of XA for
dominant A to compute the structure constants.

Theorem 7.4. For λ, µ ∈ X∨
+ we have

10Xλ10Tnµ = qλWλ(q
−1)

∑
σ∈Γd

tµ,λ

qw0ι(σ)Cσ10Xe(σ).

Proof. For the proof of this theorem we use lemmas 7.2 and 7.3 to show that the
contribution of the galleries with non-dominant weights in the formula (7.1) is exactly
the contribution of the ps.
First assume λ is regular. Then the first generalized alcove of every gallery starting in
λ is dominant. Let η ∈ Γ+

tµ,λ be a gallery leaving the dominant chamber. Let γ be the
maximal initial subgallery of η contained in C and let A be e(γ). Then η is not folded
after A and the next generalized alcove in η is of the form As for some s ∈ Sa. Denote
by Γ+

γ ⊂ Γ+
tµ,λ the set of galleries starting with γ. By lemma 7.2 we have that

qs

qs − 1

∑
σ∈Γ+

γ ,σ folded at A

Lσ10Xe(σ) =
∑
σ∈Γ+

γ

Lσ10Xe(σ).
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So the contribution of all galleries starting with γ is the same as the contribution of the
galleries starting with γ and staying in C at A, if the contribution of the folding at A
is qs instead of qs − 1. Iteration of this procedure eventually yields∑

σ∈Γ+
γ

Lσ10Xe(σ) =
∑

σ∈Γ+
γ ,σ⊂C

Cσ10Xe(σ)

which proves the theorem for regular λ.
If λ is non-regular we have to apply lemma 7.3 to obtain the theorem because in this
case the first alcove of a gallery starting in λ can be non-dominant. In this case its
contribution has a part coming from the initial direction, which we did not need to
consider in the regular case. But lemma 7.3 tells us that the contribution arising from
these alcoves is the same as the contribution from the dominant ones. More precisely
we have for w−1 ∈ W λ and v ∈ Wλ∑

σ∈Γ+
tµ,λ

,ι(σ)=w

qw0wLσ10Xe(σ) = qv

∑
σ∈Γ+

tµ,λ
,ι(σ)=vw

qw0vwLσ10Xe(σ)

and thus

Wλ(q
−1)

∑
σ∈Γ+

tµ,λ
,ι(σ)=w

qw0wLσ10Xe(σ) =
∑

σ∈Γ+
tµ,λ

,ι(σ)∈Wλw

qw0ι(σ)10Xe(σ).

Since the sum over all w−1 ∈ W λ of the left hand side of the last equation is exactly
the contribution of the galleries starting in C, the theorem follows.

Remark 7.5. The proofs for multiplying Schur polynomials using paths are of a similar
type as above (see for example [Lit94, section 6]). First one gets a formula involving
also Schur polynomials associated to paths leaving the dominant chamber. Then one
shows that the contributions of the leaving paths cancel each other. This is done by
combinatorial arguments, i.e. one can see which paths cancel each other. In contrast to
this we do not have any concrete information about this cancellation process.

Now we can prove the first part of theorem 4.10 respectively theorem 1.4. We multiply
the equation of the last theorem from the right by 10 and get by the definition of the
Macdonald basis

MλMµ =
qλq

−1
w0

W (q)Wλ(q−1)

1

W(q)Wµ(q)
10Xλ10 10Tnµ10

=
q2
λq

−1
w0

W(q)Wµ(q)

∑
σ∈Γd

tµ,λ

qw0ι(σ)Cσ10Xe(σ)10

=
q2
λq

−1
w0

W(q)Wµ(q)

∑
σ∈Γd

tµ,λ

q−wt(σ)qw0ι(σ)Cσ10Xwt(σ)10

=
q2
λ

Wµ(q)

∑
σ∈Γd

tµ,λ

q2
−wt(σ)qw0ι(σ)CσWwt(σ)(q

−1)Mwt(σ)

=
q2
λ

Wµ(q)

∑
ν∈X∨

+

q2
−νWν(q

−1)Ctµ,λ(ν)Mν .
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To prove the second part of theorem 4.10 and thus theorem 1.4 we need one more step.
It is not possible to impose conditions on the initial direction as in theorem 4.5. Instead
we impose conditions on the final direction to get rid of the fraction 1

Wµ(q)
. For doing

this we need some preparation. The situation is more difficult than the case of Satake
coefficients since now two stabilizers instead of one are involved. So we first need some
information on the interplay between them.

We use the notation for stabilizer subgroups introduced in definition 2.5. Moreover,
for any ν ∈ X∨ let 1ν =

∑
w∈Wν

Tw be the corresponding symmetrizer. Note that
Ww0µ = w0Wµw0 and thus qwµ = qww0µ and Wµ(q) = Ww0µ(q).

Let Y =
∑

w∈W RwTw ∈ H̃a with Rw ∈ L. Assume Y ∈ H̃a1w0µ. Then Rw = Rwv for

any w ∈ W and v ∈ Ww0µ and thus Y = q−1
wµ

∑
w∈W w0µ RwTw1w0µ since for w ∈ Ww0µ

we have Tw1w0µ =
∑

v∈Ww0µ
Twv and 1w0µ = q−1

wµ
1w0µ.

Now let ν ∈ X∨ and take Y of a special form, namely let Y =
∑

w−1∈W ν Rw1νTw. For
w ∈ W denote by wν the minimal element of the coset Wνw. In particular (wν)−1 ∈ W ν .
Expanding Y in terms of the Tw yields

Y = qwν

∑
w∈W

RwνTw.

So if in addition Y ∈ H̃a1w0µ we get Y = qwνq
−1
wµ

∑
w∈W w0µ RwνTw1w0µ by the consider-

ations above.

We want to calculate Y 10. We get Y 10 = qwνq
−1
wµ

Wµ(q)
∑

w∈W w0µ q−1
w Rwν10 and thus

Y 10 = qwνWµ(q−1)
∑

w−1∈W ν

q−1
w Ww

µνRw10 (7.3)

where Ww
µν := qw

∑
v∈W w0µ∩Wνw q−1

v . Observe that Ww0µ ∩Wνw 6= ∅ iff w ∈ WνW
w0µ.

In particular, we get for regular ν that Ww
µν = 1 if w ∈ Ww0µ and 0 else.

Now we relate this to our problem. We have Wν(q)10Xν = 10Xν1ν since TwXν = XνTw

for any w ∈ Wµ. Moreover,

Wµ(q)10Tnµ = 101µTτµTwµTw0 = 10TτµTwµ1µTw0 = 10TnµTw01µTw0 .

But Tw0TwTw0 = Tw0ww0 for all w ∈ W and thus Tw01µTw0 = 1w0µ. So 10Tnµ ∈ H̃a1w0µ.

Consider the contribution of Xν in theorem 7.4 given by∑
σ∈Γd

tµ,λ
(ν)

qw0ι(σ)Cσ10Xe(σ) =
q−ν

Wν(q)
10Xν

∑
σ∈Γd

tµ,λ
(ν)

qw0ι(σ)qε(σ)Cσ1νT ε(σ).

As already observed before, ν + Av ⊂ C with v ∈ W iff v−1 ∈ W ν . So the final
directions of the galleries σ occurring in the last equation satisfy (ε(σ))−1 ∈ W ν . If we
define Y :=

∑
σ∈Γd

tµ,λ
(ν) qw0ι(σ)qε(σ)Cσ1νT ε(σ) then Y is of the kind considered above. So

we can apply (7.3) and get∑
σ∈Γd

tµ,λ
(ν)

qw0ι(σ)qε(σ)Cσ1νT ε(σ)10 = qwνWµ(q−1)
∑

σ∈Γd
tµ,λ

(ν)

qw0ι(σ)CσW
ε(σ)
µν 10.
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Bringing all this together we can multiply the assertion of theorem 7.4 from the right
by 10 and get

10Xλ10Tnµ10 = qλWλ(q
−1)Wµ(q−1)

∑
ν∈X∨

+

q−ν

Wν(q−1)

∑
σ∈Γd

tµ,λ
(ν)

qw0ι(σ)CσW
ε(σ)
µν 10Xν10.

Now we can calculate the coefficient of Mν in the product MλMµ as above. It is equal
to

q2
λ−νq

−1
wµ

∑
σ∈Γd

tµ,λ
(ν)

qw0ι(σ)CσW
ε(σ)
µν

which proves the second part of theorem 4.10 and thus 1.4.

Remark 7.6. Consider the case of equal parameters and let w−1 ∈ W ν. Then we
have Ww

µν = ql(w)
∑

v∈W w0µ∩Wνw q−l(v). By definition of W ν we have l(v) ≥ l(w) for all
v ∈ Wνw and thus Ww

µν ∈ L−. Moreover, the constant term of Ww
µν is 1 iff w ∈ Ww0µ.

Remark 7.7. One can proceed the same way to obtain a formula for the Satake coeffi-
cients as in the second part of theorem 4.5 with a condition on the final direction. For
stating the results we consider again the situation of section 5. So λ ∈ X∨

+ and tλ is
the type of a minimal gallery from Af to Anλ. Applying the above considerations (for
λ instead of µ) yields 10Tnλ ∈ H̃a1w0λ. A formula for 10Tnλ is given by (see the proof
of lemma 5.9)

∑
σ∈Γ+

tλ
q−wt(σ)qε(σ)qw0ι(σ)LσXwt(σ)T ε(σ). So we get

10Tnλ = q−1
wλ

∑
σ∈Γ+

tλ

ε(σ)∈W w0λ

q−wt(σ)qε(σ)qw0ι(σ)LσXwt(σ)T ε(σ)1w0λ.

Multiplying by 10 from the right then yields

Mλ =
q−1
wλ

W(q)

∑
µ∈X∨

q−µ

∑
σ∈Γ+

tλ
(µ)

ε(σ)∈W w0λ

qw0ι(σ)LσXµ10

and thus Lλµ = q−1
wλ

∑
σ∈Γ+

tλ
(µ)

ε(σ)∈W w0λ

qw0ι(σ)Lσ.

Moreover, we see that for a LS-gallery σ we have ε(σ) ∈ Ww0λ.

8 Restriction coefficients

In this section we prove theorem 4.13 and thus the restriction formula 1.7. The proof
is quite similar to the proof of 4.10 in the last section so we omit the details.

Let λ ∈ X∨
+ and denote by tλ the type of a minimal gallery from Af to Anλ as in

section 5. We start with the observation WJ(q)10 = 1J10. So we have

WJ(q)10Tnλ = 1J10Tnλ =
∑

σ∈Γ+

tλ

qw0ι(σ)Lσ1JXe(σ).
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As in the case of the Cν
λµ we now have to reduce the galleries appearing in the formula

to galleries having the final alcove in the J-dominant chamber by replacing Lσ with
some other polynomial. For this we use the lemmas 7.2 and 7.3 and apply them as in
the proof of theorem 7.4, but this time only for the walls of CJ , i.e. for the walls Hα,0

with α ∈ ∆J . Recall that ΓJ
tλ

is the set of positively folded galleries of type tλ contained
in CJ . Repeating the steps in this proof we eventually get

Theorem 8.1. For λ ∈ X∨
+ we have

10Tnλ = q−1
J

∑
σ∈ΓJ

tλ

qw0ι(σ)C
J
σ 1JXe(σ).

From this the first part of theorem 4.13 follows since (where as before W J
µ is the stabilizer

of µ in WJ)

Mλ =
1

W(q)Wλ(q)
10Tnλ10 =

q−1
J

W(q)Wλ(q)

∑
σ∈ΓJ

tλ

q−wt(σ)qw0ι(σ)C
J
σ 1JXwt(σ)10

=
1

Wλ(q)

∑
σ∈ΓJ

tλ

q−wt(σ)q
J
−wt(σ)C

J
σ W J

wt(σ)(q
−1)MJ

wt(σ).

Now observe that since e(σ) ⊂ CJ we have (ε(σ))−1 ∈ W
wt(σ)
J where by W

wt(σ)
J we

denote the minimal representatives of W/W J
wt(σ). Applying the considerations after

theorem 7.4 with Wλ instead of Wµ and W J
µ instead of Wν leads to

10Tnλ = q−1
wλ

q−1
J

∑
µ∈JX∨

+

q−µ

W J
µ (q−1)

∑
σ∈ΓJ

tλ
(µ)

ε(σ)∈W w0λ

qw0ι(σ)
JW

ε(σ)
λµ CJ

σ 1JXµ10.

where JWw
λµ := qw

∑
v∈W w0λ∩W J

µ w q−1
v . So the second part of theorem 4.13 and theo-

rem 1.7 follow as above.

Similar to the situation in the last section we have that JWw
λµ ∈ L− and the constant

term is 1 iff w ∈ Ww0λ.

9 Crystals

In this section we want to show the relationship between our approach and the root
operators defined in [GL05].

Let t be any type and denote by Γt the set of all galleries of type t starting in 0.
In [GL05, section 6] they define root operators eα and fα on Γt for any α ∈ ∆ and show
that this makes Γt into a crystal in the sense of Kashiwara [Kas95]. If t = tλ for regular
λ then the set of LS-galleries is closed under the root operators and it is the highest
weight crystal for λ. However, for non-regular λ they regard degenerate galleries, i.e.
not galleries of alcoves but of simplices of smaller dimension. But using some of their
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general results on properties of the root operators and the additional operators ẽα for
α ∈ ∆ one can show that the LS-galleries for non-regular λ are closed under the root
operators and define the highest weight crystal for λ.

For stating these results we recall the notion of dimension of a gallery. For σ ∈ Γt it is
defined by dim σ := l(w0ι(σ))+

∑
s∈Sa ms(σ)+ns(σ), i.e. if we regard the case of equal

parameters we have dim σ = l(w0ι(σ)) + deg Lσ.

Now let λ ∈ X∨
+. We know from section 4 that dim σ ≤ 〈ρ, λ+wt(σ)〉+l(wλ) for σ ∈ Γ+

tλ

and the galleries of maximal dimension are precisely the LS-galleries. The result we
need regarding the operators ẽα is the following.

Theorem 9.1 ([GL05, lemma 7]). Let σ ∈ Γ+
t and α ∈ ∆.

(i) If ẽα(σ) is defined, then wt(ẽα(σ)) = wt(σ). Moreover, ẽα(σ) ∈ Γ+
t and we have

dim ẽα(σ) = dim σ + 1.

(ii) If eα(σ) is defined, then wt(eα(σ)) = wt(σ) + α∨ and dim eα(σ) = dim σ + 1.

(iii) If ẽα(σ) is not defined but eα(σ) is, then eα(σ) is again positively folded.

Let σ ∈ Γ+
tλ

be a LS-gallery such that eα(σ) is defined. By (i) and the maximality of
dim σ one gets that ẽα(σ) is not defined. So (iii) yields that eα(σ) is again positively
folded and from (ii) we know that eα(σ) is again a LS-gallery. This shows that the set
of LS-galleries is closed under the root operators eα. Since the sum over the weights of
all LS-galleries is sλ by 1.3 they yield the highest weight crystal for λ.

Remark 9.2. This assertion makes the definition of LS-galleries more plausible. Recall
that we had many choices for the definition and we chose the ones having maximal di-
mension. For any other suitable definition of LS-galleries (in the sense of remark 5.10)
the last assertion does not have to be true. There exist choices, where the correspond-
ing LS-galleries are not closed under the root operators. In these cases the image of a
LS-gallery under a root operator is not necessarily positively folded.

We want to relate the root operators to Hnil. We recall the definition of the root
operator fα for α ∈ ∆. Let σ = (A0, . . . , Al) be a gallery of type t. For 1 ≤ i ≤ l with
ti ∈ Sa denote by Hi the wall of Ai of type ti and set H0 = wt(A0) and Hl+1 = wt(Al).
Let m ∈ Z be minimal such that there exists Hi ⊂ Hα,m. Let j be maximal with
Hj ⊂ Hα,m. If j = l + 1 then fασ is not defined. Else let k > j be minimal such that
Hk ⊂ Hα,m+1. Then

fασ := (A0, . . . , Aj−1, sα,mAj, . . . , sα,mAk−1,−α∨ + Ak, . . . ,−α∨ + Al).

A careful case by case analysis (we omit the details) yields the following

Lemma 9.3. Let σ ∈ Γ+
tλ

such that fα(σ) is defined. Let ε = ε(σ), εα = ε(fασ) and
s = sα.

(i) Assume m = 0. Let k < l + 1. Then we have εα = ε. If moreover j = 0, h = 1
and σ ∈ LStλ then sε > ε and f 2

ασ is not defined.
Let k = l + 1. In this case one has εα = sε < ε and f 2

ασ is not defined.
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(ii) Assume m < 0. If k < l + 1 then εα = ε. Moreover, h = m + 1 iff f 2
ασ is not

defined and if h = m + 1 then sε > ε.
If k = l + 1 then εα = sε < ε and f 2

ασ is not defined.

Now let σ be a LS-gallery such that eασ is not defined, i.e. m = 0. Define µ = wt(σ)
and w = ε(σ). Let h = 〈α, µ〉. Since eα(σ) is not defined we have h ≥ 0. The α-string
of σ is the set {σ, fασ, . . . , fh

ασ} and fh+1
α is not defined. From the last lemma we get

the following: ε(f i
ασ) = ε(σ) for all i < h and ε(fh

ασ) = ε(σ) if sαε(σ) > ε(σ) and
ε(fh

ασ) = sαε(σ) if sαε(σ) < ε(σ). By the multiplication rules in Hnil this yields

h∑
j=0

Xwt(fj
ασ)T̃ε(fj

ασ)w0
=

h−1∑
j=0

Xµ−jα∨T̃ww0 + XsµT̃sT̃ww0 .

which proves the following theorem using the commutation rule for T̃sXµ.

Theorem 9.4. Under the above hypotheses we have

T̃sXwt(σ)T̃ε(σ)w0 =
h∑

j=0

Xwt(fj
ασ)T̃ε(fj

ασ)w0
.

Here one should be aware of the fact that the last theorem does not follow immedi-
ately from the existence of root operators since from this existence one gets only the
expansions of the symmetrized versions T̃wXµT̃w0 .

Now one may ask for q-analogs for the last theorem using the Lσ and replacing T̃s by
Cs = q−1(Ts + 1) (so C2

s = Cs and the image of Cs in Hnil is T̃s) and thus for some
sort of q-analogs of the crystal operators. It does not follow from the commutation
rules in H̃a that such q-analogs exist. In general it is not true that (under the above
hypotheses)

Csq
l(w0ι(σ))LσXe(σ) =

h∑
j=0

ql(w0ι(fj
ασ))Lfj

ασXe(fj
ασ).

Multiplying this formula from the right by Tw0 and specializing it would imply the last
theorem. But it is almost true. If one examines the Lfj

ασ as in the lemma above one can
see, that if the formula does not hold, it can be corrected by adding summands at the
beginning or at the end of the α-string. By case by case considerations it can be shown
that these additional summands come from non LS-galleries. But it is far from being
clear how general q-analogs of root operators could be defined so we omit the details
and give just one example in the rank one case. Ram defines such q-analogs in [Ram06]
and introduces q-crystals.

Example 9.5. We continue the examples 4.15 and 5.11. Let again λ ∈ X∨
+ and start

with t = tλ. Denote s = s1. Then the final direction of σ(µ) is s for µ 6= −λ and the
final direction of σ(−λ) is id. This yields

qCsXλT s = X−λ + (q − 1)
∑

−λ<µ<λ

XµT s + qXλT s.
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After multiplying by q〈ρ,λ〉 the left hand side gets Csq
w0ι(σ(λ))Lσ(λ)Xe(σ(λ)) and the right

hand side of this equation corresponds term by term to∑
σ∈Γ+

t

ql(w0ι(σ))LσXe(σ) = Lσ(−λ)Xe(σ(−λ)) +
∑

−λ<µ<λ

Lσ(µ)Xe(σ(µ)) + qLσ(λ)Xe(σ(λ).

So in this case the above equation really holds since all these galleries are LS-galleries
and constitute a single α-string.

Now start with a minimal gallery from Af to Aτλ
as in example 5.11. Then one has

for each −λ ≤ µ ≤ λ a LS-gallery σ(µ) as above and the additional gallery σ̃ which
is nonfolded of weight −λ. One has that the final direction of σ(µ) is id for all µ and
ε(σ̃) = s. The equation

qCsXλ = X−λ(qT s + (q − 1)T id) + (q − 1)
∑

−λ<µ<λ

Xµ + qXλ

then corresponds after multiplying by q〈ρ,λ〉+1 term by term to∑
σ∈Γ+

t

ql(w0ι(σ))LσXe(σ) = qLσ̃Xe(σ̃)+qLσ(−λ)Xe(σ(−λ))+
∑

−λ<µ<λ

Lσ(µ)Xe(σ(µ))+qLσ(λ)Xe(σ(λ)).

So in this case the above equation does not hold if we restrict to the α-string, i.e. to
LS-galleries. The q-α-string should include also σ̃.

10 Geometric spherical Hecke algebras

In this section we consider spherical Hecke algebras of reductive groups over local fields.
We show that these arise as spherical Hecke algebras of some root datum specialized
at a prime power q. So using theorem 4.5 we get a new proof of a positivity result
of Rapoport obtained in [Rap00]. For details on reductive groups over local fields see
Tits’ survey article [Tit79].

Let K be a local field with finite residue field k. Denote by ω its valuation and let q
be the cardinality of k. For any algebraic group H defined over K denote by H(K) the
group of K-valued points. Let G be a quasi-split connected reductive group over K, i.e.
there exists a Borel subgroup B defined over K. Let S ⊂ B be a maximal K-split torus
of G and denote by N its normalizer. Then T = ZG(S) ⊂ B is a maximal torus and
B = T n U where U ⊂ B is the unipotent radical. Let Φ̃ = (X(S), φ̃, X∨(S), φ̃∨) be
the restricted root datum of (G, S), i.e. X(S) = HomK(S, Gm) is the character group,
X∨(S) = HomK(Gm, S) the cocharacter group of S and 〈·, ·〉 : X(S)×X∨(S) → Z the
natural pairing. Denote by φ̃ (respectively φ̃∨) the roots (respectively coroots) of G
with respect to S and let V = X(S)⊗ R. In general, φ̃ may be non reduced.

Define X(T ) and X∨(T ) as above. Then X(T ) is a subgroup of finite index in X(S). We
get a map ν : T (K) → X∨(T ) by demanding that 〈β, ν(t)〉 = −ω(β(t)) for all t ∈ T (K)
and β ∈ X(T ). The image X∨ of ν is a free abelian group of rank dim S = dim V .
One has inclusions X∨(S) ⊂ X∨ ⊂ X∨(T ). If S is a maximal torus, i.e. G is split,
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then all inclusions are equalities. If G splits over some unramified extension of K then
X∨ = X∨(S). Define X = HomZ(X∨, Z) ⊂ X(S) and denote the pairing between X
and X∨ induced by 〈·, ·〉 with the same symbol.

The valuation ω induces a filtration on all root subgroups of G. Using this filtration one
gets a configurationH of hyperplanes in the affine space A underlying V ∗ which is locally
finite. The group W̃ generated by the affine reflections at the hyperplanes in H is called
the affine Weyl group of the pair (G, S). It can also be described as W̃ = N(K)/ker(ν)
and one has W̃ = W n X∨. Similar as in section 2 one gets a polysimplicial structure
on A. It is the apartment of the Bruhat–Tits building of G(K). Identify V ∗ with A
such that the origin gets a special point for the induced polysimplicial structure on V ∗.
The Borel subgroup B defines a fundamental alcove containing 0. One gets a set of
reflections S̃a which together with the stabilizer of the fundamental alcove generates W̃ .

In general W̃ is neither the extended affine Weyl group of the root datum of (G, S) nor
of the root datum (X, φ̃, X∨, φ̃∨). But there exists a unique reduced set of roots φ ⊂ X
such that the extended affine Weyl W̃ a group of (X,φ, X∨, φ∨) is isomorphic to W̃ , the
collection of hyperplanes H coincides with {Hα,m |α ∈ φ+, m ∈ Z} and the generators
Sa correspond to S̃a under this isomorphism.

Remark 10.1. Any coroot in φ∨ is a positive multiple of a coroot in φ̃∨. But this
multiple may depend on the coroot, even if φ̃ is reduced and irreducible. But φ and φ̃
give rise to an échelonnage in the sense of Bruhat and Tits [BT72] or an affine root
system in the sense of Macdonald [Mac03].

Let K ⊂ G(K) be the stabilizer of the origin of V ∗ in the Bruhat–Tits building of G(K).
It is a special, good, maximal compact subgroup of G. We have the Cartan decompo-
sition G(K) =

∐
λ∈X∨

+
KλK and the Iwasawa decomposition G(K) =

∐
µ∈X∨ U(K)µK.

The spherical Hecke algebra of (G(K), K) is the set of K-biinvariant functions on G(K)
with multiplication given by convolution using a Haar measure giving volume 1 to K.
As a consequence of the Cartan decomposition the spherical Hecke algebra is isomorphic
to the abstract spherical Hecke algebra of W̃ a specialized at q. In this setting Mλ is the
characteristic function on the double coset KλK. Up to some normalizing factor the
Satake isomorphism is given by integration over U(K) and so the coefficients Lλµ are
(up to normalization) the measure of the intersections KλK ∩U(K)µK. In particular,
KλK ∩ U(K)µ 6= ∅ iff Lλµ 6= 0. So by our considerations we get a new proof of the
following theorem [Rap00, theorem 1.1].

Theorem 10.2. Let λ, µ ∈ X∨
+ such that µ ≤ λ. Then Lλµ > 0. In particular,

KλK ∩ U(K)µ 6= ∅ in this case.

Moreover, our approach yields an algorithm to calculate the measure of KλK∩U(K)µK
explicitly. In contrast to the case of equal parameters we do not get an explicit formula
for the degree of this measure (as a polynomial in q).

Remark 10.3. In this geometric setting the parameters of the Hecke algebra have the
following interpretation: Let I ⊂ G be an Iwahori subgroup (i.e. I is the stabilizer of the
fundamental chamber as subset of the affine building of G). Choose a Haar measure on
G giving volume 1 to I. Then the double cosets IwI have measure qw for any w ∈ W̃ a.
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The structure constants of Hsph have the following interpretation in this setting: Let
λ, µ, ν ∈ X∨

+. Then the coefficient of Mν in MλMµ is the volume of the intersection
λKµK ∩KνK with respect to a Haar measure giving volume 1 to K. By theorem 6.4
it is given by a polynomial in q.

11 Geometric interpretations

In this section we give geometric interpretations of the L-polynomials with equal pa-
rameters and of Demazure multiplicities using the affine flag variety of the Langlands
dual group G of G∨. For this we regard a special case of the setting of the last section,
the split case, which in turn yields equal parameters. All Hecke algebras considered in
this section are specialized at a prime power q.

For any linear algebraic group H defined over some field F and any F -algebra A denote
by H(A) the group of its A-valued points. More explicitly let F [H] be the coordinate
algebra of H over F . Then H(A) = HomF−algebras(F [H], A). Let F ⊂ F ′ be a field
extension. Then denote by HF ′ the linear algebraic group over F ′ obtained from H.

Details of the following constructions and their relation to affine Kac-Moody algebras
can be found in Kumar’s book [Kum02]. Let k be any field and K its algebraic closure.
Let G be the connected reductive algebraic group over K with Borel subgroup B and
maximal torus T ⊂ B such that the associated root datum is Φ and the associated
simple roots are given by ∆. Let U− be the unipotent radical of the opposite Borel of
B. Assume that all groups are defined and split over k.

Let K = k((t)) be the field of Laurent series and denote by O = k[[t]] ⊂ K the ring
of formal power series. Then K is a local field with residue field k. The valuation
ω : K → Z is given by the order in 0. Moreover, O is the corresponding valuation
ring and t is a uniformizing element. The map O → k induces a morphism of groups
ev : G(O) → G(k). Define B = ev−1(B(k)). Further we set G = G(K) and let N ⊂ G
be the normalizer of T (k) in G. Then (G,B,N , T (k)) is a Tits system with Weyl group
W̃ a. For all α ∈ φ one has a root subgroup Uα of GK together with an isomorphism
ϕα : Ga → Uα defined over K from the additive group. For each n ∈ Z we denote by
Uα,n the image of ktn under ϕα(K).

The filtration on Uα(k) mentioned in the last section is given by the image of the
standard filtration on Ga(K) = K, i.e. Kn = {f | f ∈ tnO} which corresponds to
U+

α,n =
∏

m≥n Uα,m under φα. The hyperplane configuration of the last section in this
special case is really {Hα,m |α ∈ φ, m ∈ Z}.

There are two decompositions of G into double cosets. The first one is given by the
Iwahori decomposition G =

∐
w∈W̃ a BwB. In this case one has the additional property

that for each w ∈ W one gets a subgroup Uw ⊂ B as a product of certain Uα,n(K)
isomorphic to kl(w) such that for any x ∈ BwB there exist unique u ∈ Uw and b ∈ B
such that x = uwb. If s ∈ Sa then Us = Uα,0(K) if s ∈ S and Us = U−θ,1 if s = sθ,1

with θ ∈ Θ. We denote by ϕs : k → Us the corresponding isomorphism.

On the other hand there is the Iwasawa decomposition G =
∐

w∈W a U−(K)wB. Again
one can strengthen this decomposition to obtain uniqueness in the decomposition. But
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this time the resulting subgroups are affine spaces of infinite dimension. These two
decompositions are compared in [BD94].

Theorem 11.1 ([BD94]). For w ∈ W̃ a and s ∈ Sa one has

U−(K)wUssB =

{
U−(K)wsB if w ≺ ws

U−(K)wB t U−(K)wsB if w � ws.

More precisely for w � ws:

wϕs(x)sB ∈

{
U−(K)wsB if x = 0

U−(K)wB if x 6= 0.

Now we can connect these geometric results to the combinatorics. Let w ∈ W a and
let σ be a minimal gallery of type t = (t1, . . . , tk) which connects Af and Aw. Define a
map η : Uw → Γ+

t as follows: For u ∈ Uw define

η(u) = (Af , Aw1 , . . . , Awk
) iff ut1 · . . . · tj ∈ U−(K)wjB for all j ∈ {1, . . . , k}.

It follows from the last theorem that η is well defined. For a positively folded gallery σ
let m(σ) be the total number of positive directions and n(σ) the total number of positive
folds. The connection of our combinatorics with geometry is given by

Theorem 11.2 ([BD94]). (i) If σ ∈ Γ+
t then η−1(σ) ∼= km(σ) × (k∗)n(σ).

(ii) If v ∈ W a then Bw · B ∩ U−(K)v · B =
⊔

σ∈Γ+
t (Af ,Av) η−1(σ)w · B.

Remark 11.3. In [BD94] the cited results are shown for any Kac–Moody group and any
generalized system of positive roots. Theorem 11.1 is then formulated with distinguished
subexpressions instead of positively folded galleries. It should be mentioned that they
prove the above results just in the case that G is semisimple and simply connected since
in this case G(K) fits in the general theory of affine Kac–Moody groups. But the results
one needs for the proof are valid for any reductive group.

All the results above are more or less contained in [GL05] since one can lift their methods
from the affine Grassmanian to the affine flag variety. Compare also [GL05, section 3]
for a discussion of the reduction to the simply connected case.

11.1 Geometric interpretation of the L-polynomials

Now let q be any prime power and let k = Fq be the finite field with q elements. So we
have a special case (the split case) of the situation of the last section (with G there being
GK here). In this case K = G(O) and the resulting Hecke algebra is the specialization
at q of the abstract Hecke algebra of its root datum Φ with equal parameters. For any
subset M ⊂ G denote by M ·B its image in the quotient G/B and by |M ·B| the number
of elements. From the last theorem we get

Corollary 11.4. If v, w ∈ W̃ a then |Bw · B ∩ U−(K)v · B| = Lw(Af , Av).
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Remark 11.5. Looking at positively folded galleries starting in −Af one can calculate
the number of elements in the intersections B−w · B ∩ U−(K)v · B in the same way as
in the last corollary. Here B− is obtained from the opposite Borel B− of B in the same
way as B from B.

Now we want to give interpretations of the coefficients appearing in the expansion of
TwXλ10 for w ∈ W λ and λ ∈ X∨

+. Recall that Γ+
v is the set of all positively folded

galleries starting in 0 of the type of a minimal gallery joining Af and Av for v ∈ W̃ a.
We showed in 6.2 that

TwXλ10 = ql(w0wλ)
∑

µ∈X∨

q−〈ρ,λ+µ〉
∑

σ∈Γ+

wnλ (µ)

ι(σ)=id

LσXµ10. (11.1)

By corollary 11.4 we have∑
σ∈Γ+

wnλ (µ)

ι(σ)=id

Lσ = |
∐
v∈W

Bwnλ · B ∩ U−(K)τµv · B|.

The last equation can be stated better considering intersections in the affine Grassma-
nian G/G(O). For ν, µ ∈ X∨ define Xνµ = Bτν · G(O) ∩ U−(K)τµ · G(O). The group
G(O) is the parabolic subgroup of G associated to the classical Weyl group W ⊂ W a,
i.e. G(O) =

⊔
w∈W BwB. Let π : G/B → G/G(O) be the canonical projection. From

general theory of Tits systems we know that

π|Bv·B : Bv · B → Bv ·G(O)

is an isomorphism iff v is of minimal length in vW and that Bv · G(O) = Bvx · G(O)
for all x ∈ W . Moreover, we have

π−1(U−(K)τµ ·G(O)) =
∐
x∈W

U−(K)τµx · B.

Since w ∈ W λ we have that v = wnλ is minimal in vW . Moreover, τwλ ∈ vW and thus
we get an isomorphism

π|Bwnλ·B∩
‘

x∈W U−(K)τµx·B : Bwnλ · B ∩
∐
x∈W

U−(K)τµx · B → Xwλ,µ

and thus
|
∐
v∈W

Bwnλ · B ∩ U−(K)τµv · B| = |Xwλ,µ|.

Combining corollary 11.4 and (11.1) this yields

TwXλ10 = ql(w0wλ)
∑

µ∈X∨

q−〈ρ,λ+µ〉|Xwλ,µ|Xµ10.



11 Geometric interpretations 45

To give a geometric interpretation to the polynomials Lλµ we proceed as above. For
λ ∈ X∨

+ and µ ∈ X∨ define Zλµ = G(O)τλ ·G(O)∩U−(K)τµ ·G(O). Using remark 11.5
and G(O) =

∐
w∈W B−wB we get

|Zλµ| =
∑

w∈W λ

v∈W

|B−w0wnλ · B ∩ U−(K)τµv · B|

=
∑

w∈W λ

v∈W

Lwnλ(−Af , τµv) =
∑

w∈W λ

Lwnλ(−Af , µ)

=
∑

w0w∈W λ

ql(w0w)Lnλ(Aw0w, µ) =
∑

σ∈Γ+

tλ
(µ)

w0ι(σ)∈W λ

ql(w0ι(σ))Lσ = Lλµ.

The last equalities follow from the remarks 4.3 and 5.10 with v = wλ. So in this
geometric setting it is more natural to regard galleries σ ∈ Γ+

tλ
with ι(σ) ∈ W λwλ =

w0W
λ instead of ι(σ) ∈ W λ.

Here we also see the meaning of the correction factor 1
Wλ(q)

: The restriction of the

projection π induces a map G(O)τλ ·B → G(O)τλ ·G(O) with fibers isomorphic to Pλ/B
where Pλ is the parabolic subgroup of G associated to λ. By the Bruhat decomposition
for G we know that |Pλ/B| = Wλ(q).

So we obtain as in [GL05]

Corollary 11.6. For all λ ∈ X∨
+ and µ ∈ X∨ we have

|Zλµ| =
∑

σ∈Γ+

tλ
(µ)

ι(σ)∈W λwλ

ql(w0ι(σ))Lσ.

Of course we would not need the results of this section to prove this corollary. By the
very definition of the geometric Satake isomorphism given by integration over U−(K)
one knows that the coefficients Lλµ are given by the number of points in Zλµ.

11.2 Geometric interpretation of dw
λµ and kλµ

Now take k = K = C and identify varieties with their closed points. The affine
flag variety G/B and the affine Grassmanian X := G/G(O) can be interpreted as the
set of closed points of an ind-variety defined over C. All isomorphisms mentioned
above then become isomorphisms of complex algebraic varieties. A filtration of X by
finite dimensional projective varieties is given by the generalized Schubert varieties
Xλ = G(O)τλ ·G(O) for λ ∈ X∨

+. One knows that dim Xλ = 2〈ρ, λ〉. Using the
above results we now can give some information on the dimension and the number of
irreducible components of the intersections Xλµ and Zλµ and relate this to Demazure
multiplicities and Kostka numbers.

Let λ ∈ X∨
+ and w ∈ W λ. Recall the formula (11.1) for the expansion of TwXλ. We

associate the locally closed irreducible subvariety Xσ = π(η−1(σ)wnλ · B) of Xwλ,µ to a
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gallery σ ∈ Γ+
wnλ(µ). By theorem 11.2 we know that dim Xσ = deg Lσ. In particular,

the dimension of dim Xwλ,µ is given by the maximum of {deg Lσ |σ ∈ Γ+
wnλ(µ)} and

the irreducible components of maximal dimension are the closures of the Xσ such that
deg Lσ is maximal. But by (6.4) we know that for σ ∈ Γ+

wnλ(µ) we have

deg Lσ ≤ 〈ρ, λ + µ〉 − l(w0wλ) + l(w)

and the number of galleries where we have equality is the Demazure multiplicity dw
λµ.

Moreover, if dw
λµ = 0 then Γ+

tλ
(µ) = ∅. Bringing this together yields a proof of the

Theorem 11.7. For λ ∈ X∨
+, w ∈ W λ and µ ∈ X∨ the dimension of the intersection

Xwλ,µ is 〈ρ, λ+µ〉− l(w0wλ)+ l(w) and the Demazure multiplicity dw
λµ is the number of

top dimensional irreducible components of Xwλ,µ. These components are given by the
closures Xσ for σ ∈ Γ+

wnλ(µ) such that deg Lσ is maximal.

This theorem is some refinement of the geometric results in [GL05]. They associate to
each σ ∈ Γ+

tλ
(µ) a locally closed subset Yσ of Zλµ and they show that the closures of

the Yσ for σ a LS-gallery are the irreducible components of this intersection. Here one
does not have to emphasize the maximality of the dimension since these intersections
are of pure dimension by [MV04].

In 6.2 we have seen that there is a bijection between the galleries σ such that deg Lσ is
maximal (as in the last theorem) with LS-galleries σ′ such that ι(σ′) ≤ w. So one may
ask for the connection between Xσ and Yσ′ where σ′ is the corresponding LS-gallery. By
the construction of the bijection σ and σ′ are almost the same, they differ only at the
beginning. So it is enough to compare the contribution of the beginning part of σ with
the contribution of the initial direction y of σ and thus we work in G(O)/B which we
can identify with the flag variety G/B. Under this identification the contribution of y is
given by B−y ·B, an affine space of dimension l(w0y). If we take w ∈ W in corollary 11.4
then Bw ·B ⊂ G(O)/B and identifies to Bw ·B and the intersection Bw ·B∩U−(K)v ·B
for v ∈ W corresponds to Bw · B ∩ B−v · B. This again is the statement that the
L-polynomials for W are nothing else than Deodhar’s R-polynomials which calculate
the last intersection [Deo85]. Applying this to σ we get, that the contribution of its
initial part is contained in Bw ·B ∩B−y ·B. Moreover, it is open and dense there. So
we have Xσ ⊂ Yσ′ . In the case w = w0 we even get that Xσ is dense in Yσ′ .

Ion showed in [Ion05] a very similar result. Define Yνµ := G(O)τ−ν · B ∩ U−(K)τ−µ · B
for ν, µ ∈ X∨. He shows

Theorem 11.8 ([Ion05]). For λ ∈ X∨
+, w ∈ W λ and µ ∈ X the dimension of the

intersection Ywλ,µ is 〈ρ, λ− µ〉+ l(w) + l(wλ) and the Demazure multiplicity dw
λµ is the

number of top dimensional irreducible components of Ywλ,µ.

The approach in [Ion05] is quite different from ours. We are again in the case of a finite
residue field k with q elements. There he shows, using his results obtained in [Ion04],
that the numbers |Ywλ,µ| occur as coefficients of specialized non-symmetric Macdonald
polynomials. He calculates the asymptotic behavior of |Ywλ,µ| considered as a function
in q. Using the Lefschetz fixed point formula and results from Deligne’s proof of the
Weil conjectures he calculates the dimension and the number of irreducible components
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of maximal dimension. In contrast to our approach he does not get a description of the
irreducible components (or some open part of them).

How does this compare to the theorem before? In the same way as above one can
calculate |Ywλ,µ| using galleries. For this observe first that G(O)v · B = G(O)wv · B for
any v ∈ W̃ a and w ∈ W . Since τ−wλ = wwλw0(wnλ)−1 by lemma 2.6 we get

|Ywλ,µ| =
∑

σ∈Γ+

(wnλ)−1 (−µ)

ε(σ)=id

ql(w0ι(σ))Lσ.

Now let σ ∈ Γ+
wnλ(µ) with ι(σ) = id. Recall that these are the galleries describing the

coefficients of Xµ10 in TwXλ. Translate it by −µ and reverse its direction. This yields
a positively folded gallery σ′ of weight −µ with initial direction ε(σ). Moreover, the
type of σ′ is (wnλ)−1. We also have Lσ′ = q−2〈ρ,µ〉+l(ε(σ))Lσ which can be seen as follows:
The number of foldings is the same for σ and σ′, so it is enough to look at the positive
directions. But the positive directions of σ′ are the negative directions of σ. So if we
denote by m+ and m− the number of positive respectively negative directions of σ we
get Lσ′ = qm−−m+

Lσ. Applying (6.3) to σ we get

qm+−m−
= q2〈ρ,wt(σ)〉−l(ε(σ)) = q2〈ρ,µ〉−l(ε(σ)).

since ι(σ) = id.

We get a bijection {σ ∈ Γ+
wnλ(µ) | ι(σ) = id} → {γ ∈ Γ+

(wnλ)−1(−µ) | ε(γ) = id}, σ 7→ σ′

such that ∑
σ∈Γ+

wnλ (µ)

ι(σ)=id

Lσ = q2〈ρ,µ〉−l(w0)
∑

σ∈Γ+

(wnλ)−1 (−µ)

ε(σ)=id

ql(w0ι(σ))Lσ.

This yields (again for k = Fq) that |Xwλ,µ| = q2〈ρ,µ〉−l(w0)|Ywλ,µ| and thus it follows from
theorem 11.7 and (6.4) that q−〈ρ,λ−µ〉−l(w)−l(wλ)|Ywλ,µ| = dw

λµ + R(q) where R ∈ q−1L−.
This is the main ingredient in the proof of the last theorem in [Ion05].

Now one may ask for the dimension and the number of irreducible components of
maximal dimension of general intersections Bv · B ∩ U−(K)w · B. Using corollary 11.4
one can calculate these for given v and w by calculating all the corresponding galleries.
But one is interested in formulas not involving galleries as in 11.7. Such a formula was
asked for by Görtz, Haines, Kottwitz and Reuman [GHKR05] in the context of affine
Deligne–Lusztig varieties. Unfortunately, our approach cannot yield such a formula.
The difference of this general case to the ones consideres in 11.7 is as follows: There we
had an expansion in the affine Hecke algebra which we could specialize in the nil affine
Hecke algebra. This yields upper bounds on the degrees of the involved galleries (and
works in general). But then we used the fact (following from representation theory)
that a coefficient in H̃a is non-zero iff the corresponding coefficient in Hnil is non-zero
to show that there exist galleries attaining the maximal degree. And the last argument
fails in general.
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11.3 Geometric interpretation of the alcove basis

Now return to the situation k = Fq. In this case it is well known that the affine Hecke
algebra for specialized q can be interpreted as the algebra of B-invariant functions with
finite support on the affine flag variety with the convolution product (see [IM65]). Using
the second part of theorem 11.1 one can interpret the U−(K)-invariant functions as a
module over the Hecke algebra which is a known to be a free Ha-module of rank one.
This module can be identified explicitly with Ha using the alcove basis.

Let F = {f : X → Z} and define H ⊂ F as the subset of B-(left)-invariant functions
with finite support. There is a natural action of H on F by right convolution. More
precisely (f ∗ h)(x · B) =

∑
y∈G/B f(y)h(y−1x) for all f ∈ F and h ∈ H. Restricting

this action yields an algebra structure on H. Then it is known that H is isomorphic
to the affine Hecke algebra specialized at q. Under this isomorphism the generator Tw

corresponds to the characteristic function on Bw · B. Thus F gets a right Ha-module.

Let tw ∈ F be the characteristic function on U−(K)w · B (which in general does not
have finite support) and let M ⊂ F be the subspace spanned by all tw. Let s ∈ Sa.
In the same way as one uses the Bruhat decomposition for calculating the structure
constants of H one now can use the second part of theorem 11.1 to show that M is
closed under the right Ha-operation and that

tw ∗ Ts =

{
tws if w ≺ ws

qtws + (q− 1)tw if w � ws.

So by lemma 5.2 the map

M → Ha

tv 7→ q〈ρ,wt(Av)〉Xwt(Av)T δ(Av) = q−2
Av

XAv

is an isomorphism of right Ha-modules.

The realization of H̃a by functions was lifted (via the ’faisceaux-fonctions’ correspon-
dence of Grothendieck) by Springer [Spr82] to a algebra-geometric realization using
sheaves on G/B over C. The characteristic function Tw corresponds to the constant
sheaf on the Bruhat cell Bw · B which is a finite dimensional subvariety of G/B. A
similar construction for M is not known.

12 Kostka–Foulkes polynomials

In this section we want to describe a first result concerning the positivity of the co-
efficients of Kostka–Foulkes polynomials. It supports a conjecture concerning these
polynomials. This approach can be seen as a symmetrized version of the approach of
Deodhar in [Deo90]. Consider the case of equal parameters.

Before we proceed, let us shortly describe the conjecture. The Kostka–Foulkes poly-
nomials Kλµ for λ, µ ∈ X∨

+ are defined as the entries of the transition matrix from
Hall–Littlewood polynomials to Schur polynomials, i.e. sλ =

∑
µ∈X∨

+
KλµPµ(q−1). So
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we have Kλµ(1) = kλµ since Pµ(1) = mµ. It is known that the coefficients of the
Kλµ are nonnegative [Lus83]. Except for type A where there is the formula of Las-
coux and Schützenberger, there is no combinatorial proof showing this positivity. Since
Kλµ(1) = kλµ one is led to the following conjecture. Of course this can be stated using
any combinatorial model for the highest weight representations, but in our case it is
convenient to use galleries. For λ ∈ X∨

+ define LStλ to be the set of LS-galleries in Γ+
tλ

where tλ is the type of a minimal gallery from Af to Anλ as in section 4.

Conjecture 12.1. Let λ ∈ X∨
+. There exists a function c : LStλ → Z such that

Kλµ =
∑

σ∈LS
tλ

(µ) qc(σ) for any µ ∈ X∨
+.

In type A this conjecture is solved by Lascoux and Schützenberger using the charge
statistics on semistandard Young tableaus (for a detailed proof see [NR03]). However,
for general type this remains open. We do not solve this conjecture here, but we show
in theorem 12.4 that certain sums of the Kλµ are given as in the conjecture. However,
we do not have any idea how to split this up.

To state the theorem we need some preparation. Let t be any type. As already
mentioned before there is a crystal structure on Γt introduced in [GL05]. Denote by
HWt ⊂ Γt the set of highest weight galleries with respect to this crystal structure. So
for σ ∈ HWt we have that

∑
γ xwt(γ) = swt(σ) where the sum is over the irreducible

component of Γt containing σ. For the statement of the theorem we need one more
statistic on galleries introduced by Deodhar in [Deo90].

Definition 12.2. For a gallery σ = (A0, . . . , Ak) of type t the defect d(σ) is defined as
d(σ) = {j | tj ∈ Sa and Aj > Ajtj+1}.

Remark 12.3. If σ is completely contained in the interior of the dominant chamber,
then d(σ) is the number of positive foldings plus the number of negative directions of σ.
In [Deo90] the statistic is more generally defined on subexpressions of a reduced expres-
sion in a Coxeter group. But in our special case subexpressions are nothing else than
galleries of a fixed type.

For a gallery σ define p(σ) = l(e(σ)) − l(nwt(σ)). In particular, p(σ) = l(w0ε(σ)) if
wt(σ) is dominant and regular. We also need the dimension of a gallery as introduced
in section 4. Recall that dim(σ) = l(w0ι(σ)) + deg Lσ.

Now we can state the theorem. The proof will be given later.

Theorem 12.4. For λ, ν ∈ X∨
+ we have∑

σ∈HW
tλ

q−〈ρ,wt(σ)〉+dim(σ)Kwt(σ),ν = q〈ρ,ν〉
∑

σ∈Γ
tλ

(ν)

qp(σ)+d(σ).

This shows that the conjecture is true after replacing the Kλµ by an appropriate sum
and LS-galleries by all galleries. Now the problem remains to split up this equation,
i.e. to identify subsets of Γtλ such that the corresponding summands sum up to a Schur
polynomial.
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One might hope, that for a highest weight gallery σ one has

q−〈ρ,wt(σ)+ν〉+dim(σ)Kwt(σ),ν =
∑

γ

qp(σ)+d(σ) (12.1)

where the sum on the right hand side is over all galleries in Γtλ(ν) which are in the
irreducible component of σ in Γtλ . But this already fails in type A1.

But the theorem above gives us a reduction of the conjecture to the following

Conjecture 12.5. There is a second crystal structure on Γt such that (12.1) holds for
this new crystal structure.

As one can see already in type A1 this new structure is by no means unique. This
rephrases the statement that the function c asked for in the first conjecture is not
unique, too.

We now prove theorem 12.4. Define Cs := Ts + 1 for s ∈ Sa. This is up to a power of
q the Kahzdan–Lusztig element associated to s. For g ∈ Ω define Cg = Tg. Now let
t = (t1, . . . , tk) be any type. Define Ct = Ct1 · . . . · Ctk . We calculate the Schur and
Macdonald expansions of 10Ct10 using galleries. Setting t = tλ will prove the theorem.

Remark 12.6. Even if w = t1 · . . . · tk is a reduced expression, Ct does not depend
only on w but on t. Consider for example t = (s1, s2, s1) and t′ = (s2, s1, s2) in a root
system of type A2, i.e. W ∼= S3. Then t and t′ are both reduced expressions for w0,
but Ct = 10 + T 2

s1
and Ct′ = 10 + T 2

s2
. However, it is not yet clear, if the symmetrized

version does depend only on w. In the example, 10Ct10 = (W (q)2 + q2)10 = 10Ct′10.

We first calculate the Schur expansion of 10Ct10 using the crystal structure on Γt. For
a generalized alcove A ∈ Ã and s ∈ Sa we have (using lemma 5.2)

XACs =

{
qXAs + XA if A ≺ As

XAs + qXA if A � As.

By induction on the length of t we obtain

XACt =
∑

σ∈Γt,A

qm(σ)+n(σ)Xe(σ) (12.2)

where m(σ) =
∑

s∈Sa ms(σ) is the number of positive directions and n(σ) =
∑

s∈Sa ns(σ)
is the number of positive foldings. Thus we get as in the proof of lemma 5.9

10Ct10 = ql(w0)10Ct10 = ql(w0)
∑
w∈W

q−l(w)XAwCt10

=
∑
w∈W

ql(w0w)
∑

σ∈Γt,ι(σ)=w

qm(σ)+n(σ)Xe(σ)10

=
∑
σ∈Γt

q−〈ρ,wt(σ)〉+dim(σ)Xwt(σ)10.
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From theorem 9.1 we know that for any gallery σ and any α ∈ ∆ such that fα(σ) is
defined one has dim(fα(σ)) = dim σ − 1. Since we also have wt(fα(σ)) = wt(σ) − α∨

we conclude that −〈ρ, wt(σ)〉+dim(σ) is constant on the irreducible components of the
crystal Γt. We thus get

10Ct10 =
∑
σ∈Γt

q−〈ρ,wt(σ)〉+dim(σ)Xwt(σ)10 = W (q)
∑

σ∈HWt

q−〈ρ,wt(σ)〉+dim(σ)swt(σ)10. (12.3)

Now we calculate the expansion of 10Ct10 with respect to the Mµ. First observe that
for any v ∈ W̃ a we have

TvCi =

{
Tvsi

+ Tv if vsi > v

q(Tvsi
+ Tv) if vsi < v.

By induction on the length of t we get for v ∈ W̃ a that

TvCt =
∑
σ∈Γt

σ starting in Av

qd(σ)Te(σ) =
∑

x∈W̃ a

( ∑
σ∈Γt(v,x)

qd(σ)
)
Tx.

where by Γt(v, x) we mean the set of all galleries of type t connecting Av and Ax.

Remark 12.7. For v = id we have that
∑

σ∈Γt(id,x) qd(σ) is the number of points of the

fiber over x of the Bott–Samelson variety associated to t as stated in [Deo90, proposition
3.9]. A detailed proof can be found in [Gau01].

We calculate

10Ct10 =
∑
σ∈Γt

qd(σ)Te(σ)10 =
∑
σ∈Γt

qp(σ)+d(σ)Tnwt(σ)10 =
∑

µ∈X∨

( ∑
σ∈Γt(µ)

qp(σ)+d(σ)
)
Tnµ10.

But on the other hand 10Ct10 ∈ Hsph. So the coefficients of Tnµ10 have to be W -
invariant and we can rewrite the last equation as

10Ct10 =
∑

µ∈X∨
+

1

Wµ(q)

( ∑
σ∈Γt(µ)

qp(σ)+d(σ)
)
10Tnµ10

= W (q)
∑

µ∈X∨
+

( ∑
σ∈Γt(µ)

qp(σ)+d(σ)
)
Mµ.

Using the Schur expansion (12.3) we get the following equation in Λq for any type t:∑
σ∈HWt

q−〈ρ,wt(σ)〉+dim(σ)swt(σ) =
∑

σ∈Γt,wt(σ) dominant

q〈ρ,wt(σ)〉+p(σ)+d(σ)Pwt(σ)(q
−1). (12.4)

Setting t = tλ this yields theorem 12.4 by the definition of the Kµν .

In [Deo90] Deodhar regards the following general situation. He compares the expansion
of Ct in terms of Kahzdan–Lusztig polynomials with the expansion in terms of the
standard basis using subexpressions. In contrast to our situation he does not have
the combinatorial positivity result regarding the KL-expansion of Ct and one has no
formula for this expansion.
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Example 12.8. In type A1 the condition for a gallery to be a highest weight gallery is
quite simple. A gallery σ is a highest weight gallery iff σ is contained in the dominant
half line. In particular, it has to start in Af .

Let λ ∈ X∨
+ and define k = 〈ρ, λ〉. Denote by tλ the type of a minimal gallery joining

0 and nλ. One calculates that for any σ ∈ Γtλ we have −〈ρ, wt(σ)〉 + dim(σ) = k.
So (12.4) in this case is∑

σ∈HW
tλ

swt(σ) =
∑

σ∈Γ
tλ

,wt(σ) dominant

q−〈ρ,λ−wt(σ)〉+p(σ)+d(σ)Pwt(σ)(q
−1).

But we know sµ =
∑

0≤ν≤µ q−〈ρ,µ−ν〉Pν(q
−1). Now in the last equation there is only one

summand sλ on the left hand side. The corresponding summands on the right hand side
then must satisfy p(σ)+d(σ) = 0. But the galleries σ with p(σ)+d(σ) = 0 are precisely
the following: Either σ starts in Af , then σ has to have some consecutive foldings at the
beginning and no foldings afterwards. Or σ starts in −Af . Then it is non-folded. For
each weight in V (λ) there is exactly one such gallery ending there. So the summands
corresponding to them on the right hand side are exactly those summing up to sλ and
this is the only possible choice. Even in this case we do not get a good combinatorial
description of a possible new crystal structure in the sense of the last conjecture.

In [Dye88] Dyer showed a similar result (in the general setting mentioned above) for
universal Coxeter systems.

There is some geometric content hidden in (12.4). For this assume t = tλ for λ ∈ X∨
+. It

encodes two different ways to calculate the number of points (over k = Fq) in the fiber
over U−(K)ν · G(O) of the Bott–Samelson resolution associated to tλ. For explaining
this let πtλ : BSt → G/G(O) the Bott–Samelson resolution, i.e. BStλ is smooth, πtλ is
G(O)-equivariant and the image is Xλ. For more details see [GL05].

There are two ways to calculate this fiber: Since πtλ is G(O)-invariant, one can calculate
the fiber over all µ ∈ X∨

+ and multiply it with |Zµν | = Lµν . Then the sum over all µ of
these products gives the whole fiber. As mentioned above Gaussent showed in [Gau01]
that the number of points of the fiber π−1

tλ
(µ) is given by

∑
σ∈Γ

tλ
(µ) qd(σ)+p(σ). This way

of calculating the fiber is contained in the right hand side of (12.4) since the sum there
may be written as∑

µ∈X∨
+

( ∑
σ∈Γt(µ)

qd(σ)+p(σ)
)
Mµ =

∑
µ∈X∨

+

( ∑
σ∈Γ

tλ
(µ)

qd(σ)+p(σ)
)( ∑

ν≤µ

q−〈ρ,ν〉LµνYν

)
=

∑
ν∈X∨

+

q−〈ρ,ν〉
( ∑

µ≥ν

Lµν

∑
σ∈Γ

tλ
(µ)

qd(σ)+p(σ)
)
Yν =

∑
ν∈X∨

+

q−〈ρ,ν〉
( ∑

µ≥ν

|Zµν | |π−1
tλ

(µ)|
)
Yν

=
∑

ν∈X∨
+

q−〈ρ,ν〉|π−1
tλ

(U−(K)ν ·G(O))|Yν .

The second way to calculate the fiber is as follows: To each gallery σ ∈ Γtλ(ν) one can
associate an affine cell Bσ of dimension dim σ in the fiber over π−1

t (U−(K)ν ·G(O)) and
the whole fiber is the disjoint union all these cells [GL05]. So the left hand in (12.4)
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can be rewritten as∑
µ∈X∨

+

q−〈ρ,µ〉
∑

σ∈HWt(µ)

qdim(σ)sµ10 =
∑

µ∈X∨
+

q−〈ρ,µ〉
( ∑

σ∈HW
tλ

(µ)

qdim(σ)
)( ∑

ν≤µ

kµνYν

)
=

∑
ν∈X∨

+

q−〈ρ,ν〉
( ∑

µ≥ν

∑
σ∈HW

tλ
(µ)

qdim(σ)+〈ρ,ν−µ〉kµν

)
Yν =

∑
ν∈X∨

+

q−〈ρ,ν〉
( ∑

σ∈Γ
tλ

(ν)

qdim(σ)
)
Yν

=
∑

ν∈X∨
+

q−〈ρ,ν〉
( ∑

σ∈Γ
tλ

(ν)

|Bσ|
)
Yν =

∑
ν∈X∨

+

q−〈ρ,ν〉|π−1
tλ

(U−(K)ν ·G(O))|Yν .

This geometric interpretation seems quite interesting. It leads to he geometric coun-
terpart of the problem of the correct distribution of the summands above: The left
hand side in theorem 12.4 encodes the stalks of the push-forward of the constant sheaf
on BStλ . By the decomposition theorem it decomposes as a direct sum of intersection
cohomology complexes ICµ on Xµ ⊂ Xλ for µ ≤ λ whose stalks are given by Kostka–
Foulkes polynomials. Instead of looking at the stalks one can look at the cohomology
of the fiber. This has a natural basis indexed by galleries by [Gau01] coming from a
Bialynicki–Birula decomposition. Now the question is, if this basis is compatible with
the decomposition in intersection cohomology complexes and how it splits.
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