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Abstract
A four-dimensional variational data assimilation system for stratospheric
trace gas observations has been developed and operated. The system of-
fers the flexibility to make use of data from different instruments and it was
designed (1) to enforce chemical consistency by constraining the analyses to
a state of the art stratospheric model, (2) to provide realistic estimates of
anisotropic and inhomogeneous background error covariances, and (3) to be
sufficiently efficient for application in near real time. The assimilating model
has been assembled from scratch to allow for a couple of novel features:
The meteorological fields are computed online by the global forecast model
GME of German Weather Service, leading to an improved numerical repre-
sentation of wind fields compared to traditional offline chemistry-transport
models, which use spatially and temporally interpolated meteorological anal-
yses. A number of 155 photolysis, gas phase, and heterogeneous reaction of 41
stratospheric trace gases is considered by the chemistry module. Since spatial
correlations between background errors evolve according to the atmospheric
flow, a flow dependent formulation of the background error covariance ma-
trix has been devised by means of a diffusion approach. It can be shown
that this measure considerably improves the analysis quality particularly in
regions where large gradients of potential vorticity prevail. The governing
equations are discretised on an icosahedral grid, as this significantly reduces
the computational cost. Therefore, it is possible to operate the model with
a relatively fine spatial resolution without violating the near real time con-
straint. A comprehensive set of case studies has been conducted in order
to test and evaluate the new system. Trace gas profiles derived from mea-
surements of the Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) have been assimilated. Comparison with independent (not assimi-
lated) control data sets and statistical evaluation demonstrates an excellent
performance of the new assimilation system.



Kurzzusammenfassung
Ein System zur Assimilation stratosphärischer Spurengasmessungen basie-
rend auf der vierdimensionalen variationellen Methode wurde entwickelt und
angewandt. Dieses neue System bietet die Möglichkeit, Messdaten verschie-
denster Sensoren zu verwenden, und zeichnet sich durch (1) chemische Kon-
sistenz der analysierten Felder im Sinne eines umfassenden stratosphärischen
Modells sowie (2) realistische Modellierung von anisotropen und inhomoge-
nen Hintergrundfehler-Kovarianzen aus und ermöglicht (3) aufgrund seiner
hohen nummerische Effizienz einen operationellen Einsatz. Das für die Assi-
milation verwendete Modell wurde neu entwickelt und weist eine Reihe von
vorteilhaften Eigenschaften auf. Die meteorologischen Felder werden mithil-
fe des globalen Wettervorhersagemodells GME des Deutschen Wetterdiens-
tes direkt erzeugt. Dadurch wird, im Vergleich zu herkömmlichen Chemie-
Transport-Modellen, die zeitlich und räumlich interpolierte meteorologische
Analysen verwenden, die Darstellung der Windfelder im Modell entscheidend
verbessert. Das Chemiemodul berücksichtigt 155 Photolyse-, Gasphasen-,
und heterogene Reaktionen zwischen 41 stratosphärischen Spurengasen. Da
die räumlichen Korrelationen von Hintergrundfehlern an die Dynamik der
atmosphärischen Strömung gekoppelt sind, wurde eine strömungsabhängige
Formulierung der Hintergrundfehler-Kovarianzmatrix mithilfe eines Diffusi-
onsansatzes realisiert. Es lässt sich zeigen, dass dadurch die Qualität der Ana-
lysen deutlich verbessern werden kann, insbesondere in Gebieten, in denen
die potentielle Vorticity starke Gradienten aufweist. Die Lösung der Modell-
gleichungen erfolgt auf einem Ikosaedergitter, durch dessen Verwendung der
Rechenaufwand signifikant verringert wird. Aus diesem Grund ist es möglich,
das Modell auch im operationellen Einsatz mit einer relativ hohen räumlichen
Auflösung zu betreiben. Anhand von umfangreichen Fallstudien konnte das
neue System getestet und evaluiert werden. Dazu wurden Spurengasprofile,
abgeleitet aus Messungen des Michelson Interferometer for Passive Atmo-
spheric Sounding (MIPAS), assimiliert. Vergleiche mit unabhängigen (nicht
assimilierten) Beobachtungen und statistische Auswertungen zeigen, dass das
neue Assimilationssystem hervorragend arbeitet.
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CHAPTER 1

Introduction

The term data assimilation originates from meteorology. With the advent
of numerical weather prediction in the 1950s it became necessary to provide
initial conditions for the computer models in order to obtain a numerical
forecast. To this end, an objective analysis of the atmospheric state on regular
model grids had to be derived from a set of sparse and spatially scattered
weather observations. It soon became apparent that the numerical model
can contribute valuable information to the analysis process, as it includes
the physical laws governing the atmospheric flow. According to Talagrand
[1997],

assimilation of meteorological or oceanographical observations can be de-
scribed as the process through which all the available information is used
in order to estimate as accurately as possible the state of the atmospheric
or oceanic flow. The available information essentially consists of the ob-
servation proper, and of the physical laws which govern the evolution of
the flow. The latter are available in practice under the form of a numer-
ical model.

Assimilation of atmospheric trace gas observations is closely related to me-
teorological data assimilation, as the numerical models are similar in terms
of complexity and the large dimension of the state vector.

Stratospheric processes have been recognised to be of utmost importance for
the earth system in recent years. The discovery of the ozone hole in the
1980s and, later on, the question how human activity influences the earth’s



2 Introduction

climate system has led to an increased interest in a thourough understanding
of the complex interaction between chemistry, radiation, and dynamics of the
stratosphere. Stratospheric trace gases play a key role in the radiation bud-
get of the earth and their distribution influences the atmospheric circulation.
Conversely, atmospheric conditions determine the rate of chemical reactions
as well as the redistribution of trace gases by advection and turbulent diffu-
sion (World Meteorological Organization [1999], Intergovernmental Panel on
Climate Change [2001]).

For a long time only sparse stratospheric observational data was available.
The lower stratosphere up to a height of approximately 32 km is being ob-
served by a more or less dense network of ozone sondes, while for larger alti-
tudes instruments mounted on research rockets were the only source of in situ
observational data. With the advent of space borne remote sounding devices,
information about stratospheric trace gases can be derived from emitted,
scattered, or transmitted radiation, which is recorded by these instruments.
In March 2002 the European research satellite EnviSat was launched into a
polar orbit carrying the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) and the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) aboard, which are delivering an
unprecedented wealth of observations of a number of stratospheric trace gases
with global coverage.

However, satellite observations are, by nature, scattered in space and time,
whereas the vast majority of applications require spatially and temporally
uniform and consistent fields of atmospheric constituents. These applications
include operational weather forcasting (e. g. Derber and Wu [1998], Geer
et al. [2006]), ozone forecasting (Eskes et al. [2002], Eskes et al. [2004]),
process studies (e. g. Hoffmann and Riese [2004]), and initialisation of climate
models. Hence, advanced data assimilation techniques, must be applied to
draw full advantage of stratospheric remote sounding data. For stratospheric
constituent assimilation these techniques should ideally be able

1. to combine all available observational data from different sensors in an
optimal way according to their error statistics, thereby

2. producing a comprehensive and chemically consistent picture of the
atmospheric state, and

3. to reveal information about unobserved species, which are chemically
coupled with observed constituents.

Furthermore, data assimilation can be used to identify inconsistencies be-
tween atmospheric models and observational data. It should be emphasised
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that this task cannot be accomplished by comparing an unconstrained model
integration with measurements, as even a perfect model is not expected to re-
produce observations, unless adequate initial conditions are supplied. Hence,
advancements in the understanding of atmospheric processes require a con-
frontation of models with data by employing assimilation techniques, which
are rigorously based on statistical theory. In this spirit, data assimilation
has been used, for example, to test chemical theories (Lary et al. [2003]) and
to monitor observation errors (Stajner et al. [2004]).

Data assimilation of stratospheric constituents is a complex and computa-
tionally expensive endeavour. The elaborate model is only one part of the
whole assimilation system and often considerable simplifications have been
introduced in oder to reduce the computational cost. In this regard, the im-
plementation of the background error covariance matrix (BECM) is a crucial
issue: Since an optimal analysis requires a realistic representation of error
statistics, the BECM constitutes a core element of the assimilation system.
Especially if data is sparse, the analysis quality largely depends on the back-
ground error correlations encoded in the BECM. However, the dimension
of this this matrix is enormous for comprehensive three-dimensional mod-
els and, consequently, it can only be handled in parameterised form. As
the background field is invariably given by a short range forecast in present
assimilation systems, it is the error statistics of this forecast that is to be
approximated. Several approaches to this problem with differing degrees of
sophistication exist (see Riishøjgaard [1998] for a detailed discussion). De-
spite the necessary simplicity, a skillful parameterisation should be capable of
representing the relevant structures of the background error covariances. This
includes the possibility of modelling inhomogeneous (varying with location)
and anisotropic (varying with direction) correlations length scales. Until now
all approaches that have been adopted for stratospheric constituent assimila-
tion suffer from the fact that they are either overly simplified or prohibitively
expensive in conjunction with three-dimensional models.

Among the algorithms to be considered for assimilation of stratospheric con-
stituents there are only two candidates, which are able to comply with all of
the three requirements mentioned above, namely the Kalman filter (Kalman
[1960], Cohn [1997]) and the four-dimensional variational (4D-var) method
(Talagrand and Courtier [1987], Elbern et al. [1997]). The former is a sequen-
tial method, i. e. the model state is corrected at times when observations are
encountered. It possesses the theoretical advantage that the background er-
ror covariances are evolved according to the model dynamics and analysis
error covariances are provided together with the analysed fields. However,
the implementation of the full Kalman filter algorithm is not feasible for
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large problems. Moreover, the costly analysis step cannot, in practise, be
performed every time observations are encountered. Instead, measurements
falling into a certain time interval, the assimilation window, are collected and
assimilated together. This particularly hampers the assimilation of photo-
chemically active species, which show a diurnal cycle. Unlike the Kalman
filter, the 4D-var algorithm acts as a smoother, as it adjusts the initial val-
ues of the assimilating model, such that differences between observations and
model state within a predefined time interval are minimised in a root-mean-
square sense. The 4D-var method is sufficiently efficient to be implemented
without serious simplifications. A drawback, however, is that there is no
simple strategy to derive an analysis error estimate.

A first application of the 4D-var method to a small stratospheric reaction
mechanism in connection with a trajectory model has been presented by
Fisher and Lary [1995]. This was the first study considering the assimila-
tion of chemically active stratospheric constituents. In the following years
a number of studies on stratospheric trace gas assimilation has been pub-
lished. Lyster et al. [1997] presented an implementation of the full Kalman
filter atop a two-dimensional isentropic tracer transport model. The same
system was used by Ménard et al. [2000a] and Ménard et al. [2000b] to assim-
ilate methane observations. These studies together with the work presented
by El Serafy et al. [2002] have been the only considering a rigorous treat-
ment of the BECM including the time evolution of the error variances and
covariances. This, however, was only possible at the cost of employing a
model with strongly reduced complexity. Levelt et al. [1998] and, later on,
Khattatov et al. [2000] and Chipperfield et al. [2002] assimilated observa-
tions of long-lived tracers into three-dimensional chemistry transport models
(CTMs) with a detailed representation of stratospheric chemistry. A simpli-
fied (suboptimal) Kalman filter was employed together with an isotropic and
homogeneous parameterisation of the BECM and the models were operated
with relatively low resolution. The first application of the 4D-var algorithm
together with a comprehensive stratospheric CTM was presented by Errera
and Fonteyn [2001]. By virtue of the relative numerical efficiency of 4D-var
these authors have been able to assimilate a large number of trace gas profiles
obtained by the Cryogenic Infrared Spectrometers and Telescopes (CRISTA).
Besides ozone, the set of assimilated species comprised the chemically more
active constituents HNO3 and ClONO2. The CRISTA instrument provided a
global coverage within 24 hours with exception of the polar regions, which re-
mained unobserved. Therefore, it proved acceptable to implement the BECM
as a diagonal matrix, neglecting background error correlations, allthough this
approach is not expected to work well in general. The benefit of an aniso-
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tropic flow dependent background error covariance formulation, which was
proposed by Riishøjgaard [1998], was demonstrated by Fierli et al. [2002]. In
conjunction with a high-resolution two-dimensional tracer transport model
it was possible to preserve fine scale structures in the analysed ozone field.

Without exception, all models employed in the studies mentioned above use
external analyses to provide the meteorological fields for the solution of the
reaction-advection equation. While this reduces the complexity of the model,
the meteorological fields have to be interpolated in space and time, leading
to a poor representation of wind fields, especially of the vertical wind. An
alternative approach has been taken in recent years by numerical weather
prediction centres: Ozone assimilation capabilities are being added to their
operational data assimilation schemes (Derber and Wu [1998], Struthers et al.
[2002], Geer et al. [2006], Bormann et al. [2005]). This is motivated by the
fact that a realistic distribution of ozone must be known to improve the
derivation of temperature information from space borne remote sounding
data. Furthermore, it can be hoped that a better representation of ozone
will improve medium- and long-range weather forecasts, since the feedback
between atmospheric dynamics and ozone distribution can be accounted for.
With the latter solution the consistent, high quality wind fields of the me-
teorological models are used for the transport of ozone. However, as it is
not intended to deliver a comprehensive analysis of atmospheric trace gases,
no or only a linearised chemistry schemes are included. A model with full
coupling of radiation, chemistry, and dynamics –such models are usually
called General Circulation Models or GCMs, (Lahoz [2003])– has been re-
cently presented by Polavarapu et al. [2005]. A three-dimensional variational
assimilation scheme has been operated with this model and it is foreseen to
add ozone assimilation capabilities. A GCM is the most complex among the
models describing the atmosphere, and a number of benefits can be expected
from this approach. Advanced stratospheric constituent assimilation with a
full GCM, however, is still a distant prospect.

The work presented here addresses some of the shortcomings of present as-
similation systems for stratospheric constituents. The SACADA (Synoptic
Analysis of Chemical Constituents by Advanced Data Assimilation) system
has been assembled from scratch to allow for a couple of novel features. The
four-dimensional variational approach, which is outlined in Chapter 2 along
with an introduction to data assimilation theory, has been selected for the
new system. A key issue was the development of a sophisticated background
error covariance parameterisation. It was decided to follow a diffusion ap-
proach proposed by Weaver and Courtier [2001], which is, in some detail,
described in Chapter 3. The resulting backround error covariance operator
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is well suited for the application with large models and allows for anisotropic
and inhomogeneous background error correlations, a feature that was utilised
to devise a flow dependent formulation of the BECM.

The chemistry-transport module has been build atop the global weather fore-
cast model GME of German Weather Service, as described in Chapter 4. By
virtue of this concept, the use of numerically consistent wind fields for the
solution of the reaction-advection equation is guaranteed. Furthermore, this
can be seen as a first step towards a full General Circulation Model, as fu-
ture extensions of the model aiming to capture the feedback between chem-
istry, radiation and dynamics are conceivable. The icosahedral model grid,
which has been adopted from GME, reduces the computational effort for
the chemistry-transport calculation by about 25% compared to traditional
CTMs with comparable spatial resolution. Aditionally, the assimilation soft-
ware has been designed for parallel compute environments, leading to an
excellent efficiency of the new system. Therefore, it possible to operate the
model with a relatively high spatial resolution, such that –particularly in
combination with the flow dependent BECM formulation– filament struc-
tures of constituent fields can be analysed with the new system.

A comprehensive set of case studies has been accomplished to evaluate and
test the SACADA assimilation system. Profiles of various stratospheric trace
gases derived from MIPAS spectra have been assimilated. Observational
data from the Stratospheric Aerosol and Gas Experiment II (SAGE II), the
Halogen Occultation Experiment (HALOE), and SCIAMACHY served as
independent control data sets. Chapter 5 provides an overview about these
instruments and the respective data products. The results presented in Chap-
ter 6 confirm that the new SACADA system is able to efficiently deliver high
quality analyses of stratospheric constituents. A statistical evaluation of
analysed, background, and observational profiles is performed, which proves
the fully satisfying skill of the new system. It is demonstrated that ozone
analyses can be employed to cross validate ozone retrievals from different
sensors. The benefit of a flow dependent background error covariance for-
mulation could be objectively quantified for the first time in the context of
trace gas assimilation. A summary of the present work and a discussion of
results is given in Chapter 7.



CHAPTER 2

Data assimilation and the 4D-var technique

Estimation theory provides the theoretical foundations of advanced data as-
similation methods that are nowadays used in atmospheric modelling. This
theory deals with the question how to estimate a quantity in a manner that is
optimal in some sense, using information from different sources with different
error characteristics. As all available information on the atmospheric state is
imperfect, that is, afflicted with errors, an estimate of the true atmospheric
state will be stochastic in nature. In this context, the data assimilation
problem can be formulated as follows (see Cohn [1997] for a comprehensive
discussion): Assume that a probability density function (PDF) p(x) of the
discrete atmospheric state x is available. This PDF may be based on a cli-
matology, but usually it is derived from a short term forecast of a computer
model initialised with previous analyses. Further assume that additional in-
formation is provided by observations y. If the error characteristics of y is
known, it is possible to formulate a PDF p(y|x), which describes the prob-
ability of taking a measurement y under a given atmospheric state x. Data
assimilations aims to update the a priori PDF p(x) with incoming new in-
formation to yield the a posteriori PDF p(x|y) of the atmospheric state,
given the observations y. The solution can be obtained by applying Bayes’
theorem:

p(x|y) =
p(y|x) p(x)∫
p(y|x) p(x) dx

. (2.1)

This theorem is very general and no constraints on the nature of the involved
PDFs are imposed. Note however, that, as the dimension of x is as large
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as 106–107 for state of the art atmospheric models, a complete numerical
representation of the these PDFs is not possible, allthough the a posteriori
PDF may be sampled by means of an ensemble integration, as recently shown
by van Leeuwen [2003]. This technique is not yet very well established,
but it is a promising approach for problems with strongly non-linear model
dynamics and in cases where no simple approximation of p(x) and p(y|x)
can be devised.

2.1 Maximum likelihood and minimum vari-

ance estimates

Usually it is not possible to obtain p(x|y) or a suitable approximation thereof,
and hence, an atmospheric state xa may be selected, which represents some
optimum, for example the state having the maximum likelihood or the mini-
mum variance. If it is justified to approximate p(x) and p(y|x) by Gaussian
PDFs, and if observations are not scattered in time, the a posteriori proba-
bility density reads

p(x|y) = A exp

{
−1

2
[y −H(x)]T R−1 [y −H(x)]

}
×

exp

{
−1

2

[
x− xb

]T
B−1

[
x− xb

]}
,

(2.2)

where A is a normalisation factor arising from the denominator in (2.1). The
background state xb is the expected value of the a priori PDF p(x). R and B
are the observation and background error covariance matrices, respectively,
and H is an operator which maps from the n-dimensional space of model
variables into the p-dimensional observation space. In the simplest case H
performs a linear interpolation of model values from the grid point domain
to the location of observations, but H also may contain radiative transfer
calculations, for example, if the observed quantity is atmospheric radiance
recorded by a remote sounding instrument. The maximum of the a posteriori
PDF can be found by minimising the cost function

J(x) :=
1

2
[y −H(x)]TR−1 [y −H(x)] +

1

2

[
x− xb

]T
B−1

[
x− xb

]
.

(2.3)

If the observation operator is linear (H = H), the minimum of J can be
easily obtained (see e. g. Rodgers [2000], Kalnay [2003]) by

xa = xb +
[
B−1 + HTR−1H

]−1
HTR−1

(
y −Hxb

)
, (2.4)
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and the error covariance matrix of the analysis state is given by

Pa =
[
B−1 + HTR−1H

]−1
. (2.5)

Equation (2.4) can be derived in a different way, in the context of linear
optimal estimation. Thereby, no assumptions have to be made about the
error statistics encoded in R and B apart from the requirement that xb and
y have to be unbiased against the true state xt. Then, xa turns out to be
the minimum variance estimate (see e. g. Talagrand [1997]). This estimate
is also called Best Linear Unbiased Estimate (BLUE), which, as we have
seen, is equivalent to the maximum likelihood estimate in the linear case
with Gaussian error statistics. Equation (2.4) is the basis of the optimal
interpolation algorithm and it constitutes the analysis step of the Kalman
filter1.

In the non-linear case, the formal solution of the problem of minimising the
cost function (2.3) can be found by applying a Gauss-Newton iteration (see
Rodgers [2000] for details)

xi+1 = xb + Wi

(
y −H(xi) + H′

i(xi − xb)
)
,

with Wi =
[
B−1 + H′T

i R−1H′
i

]−1
H′T
i R−1 ,

(2.6)

and H′
i being the linearisation of the observation operator around the state

xi. The analysis error covariance matrix now contains the linearisation H′
a

of H at the analysis point:

Pa =
[
B−1 + H′T

a R−1H′
a+
]−1

. (2.7)

Note that (2.7) is a close approximation to the Hessian matrix of J at x = xa.
A wide range of applications in different areas of geosciences is based on (2.6),
for example, the retrival of atmospheric trace gas profiles from spectral data
recorded by remote sounding instruments, as described in Chapter 5.

For the data assimilation problem however, neither (2.4) nor (2.6) can be
applied without simplifications, due to the large dimension of the state vec-
tor x. The three-dimensional variational method for example, circumvents

the direct computation of the expression
[
B−1 + H′T

i R−1H′
i

]−1
by employing

minimisation algorithms which rely on the gradient of J only (and possibly on
some coarse approximation of the Hessian). Variants of optimal estimation,
which have been used in operational data assimilation schemes are described
in Daley [1991] and Kalnay [2003].

1The Kalman filter analysis step is usually written using the equivalent formulation
xa = xb + BHT

[
HBHT + R

]−1 (y − Hxb)
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2.2 Four-dimensional variational data assim-

ilation

Observations of atmospheric quantities are usually distributed in time and
Equation (2.2) can be generalised such that the evolution of the atmospheric
state is accounted for. Let Mi denote the non-linear model operator that
propagates the atmospheric state x0 at time t0 to time ti. An a posteri-
ori PDF considering all observations within the time interval [t0, tN ] can be
constructed by defining

p(x0|y) = A exp

{
−1

2

N∑
i=0

[yi −H (Mi(x0))]
T R−1 [yi −H (Mi(x0))]

}
×

exp

{
−1

2

[
x0 − xb

]T
B−1

[
x0 − xb

]}
.

(2.8)

Here, yi is the vector of observations available within time step i. Equa-
tion (2.8) implements the model M as a strong constraint, that is, the model
is assumed to reproduce the evolution of the atmosphere without errors (per-
fect model assumption). Weak constraint formulations of (2.8) are possible,
as outlined by van Leeuwen and Evensen [1996], however, the computational
effort needed to find the maximum of the a posteriori PDF increases consid-
erably.

The four-dimensional variational method finds the maximum of the PDF
(2.8) by minimising the following cost function:

J(x0) = Jb + Jo =

1

2

[
x0 − xb

]T
B−1

[
x0 − xb

]
+

1

2

N∑
i=0

[H (Mi(x0)) − yi]T R−1 [H (Mi(x0)) − yi] .
(2.9)

Efficient minimisation algorithms like quasi-Newton or Conjugate-Gradient
methods require the gradient of the cost function with respect to the con-
trol variables x0 in order to find the minimum of J . The gradient of the
background portion Jb of the cost function is readily obtained by

∇x0J
b = B−1

[
x0 − xb

]
, (2.10)

but the gradient of Jo with respect to the initial model values is more difficult
to calculate. Allthough it is easy to express the gradient of Jo with respect
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to the model variables at time ti, namely

∇xi
Jo = H′TR−1 [H(xi) − yi] , (2.11)

it is the calculation of ∇x0J
o that is the computationally most demanding

task of 4D-var data assimilation. As the number of control variables in
atmospheric models is of the order 106–107, the only feasible strategy to
accomplish this calculation is given by utilising the adjoint model operator.

Let 〈· , ·〉 be the canonical scalar product. Then, the variation of a scalar
function f : R

n → R in response to a small variation δx about x can be
approximated to the first order by

δf ≈ 〈∇xf , δx〉 .

Consequently, due to the linearity of the scalar product, the variation of Jo

is given by

δJo ≈
N∑
i=0

〈∇xi
Jo , δxi〉 , (2.12)

where δxi := Mi(x0 + δx0) −Mi(x0) ≈ M′
i δx0.

In other words, δxi is linked to the variation of the initial model values δx0

by the tangent linear model M′, that is, the Jacobian of the model operator
M . Using (2.12), the variation of the cost function can be expressed as

δJo ≈
N∑
i=0

〈∇xi
Jo , M′

i δx0〉 =

N∑
i=0

〈M∗
i∇xi

Jo , δx0〉 . (2.13)

M∗ is the adjoint model operator, which is the transpose of the tangent linear
M′ (see Talagrand and Courtier [1987] for a detailed discussion). From (2.13)
and considering (2.11), it can be concluded that the gradient of Jo with
respect to the initial model values x0 is given by

∇x0J
o =

N∑
i=0

M∗
i∇xi

Jo =
N∑
i=0

M∗
iH

′TR−1 [H(xi) − yi] .

Hence, the complete gradient of the cost function with respect to the control
variables x0 can be written as

∇x0
J = B−1

[
x0 − xb

]
+

N∑
i=0

M∗
iH

TR−1 [H(xi) − yi] . (2.14)
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2.2.1 Properties of the adjoint model

A numerical model integration over a time interval [t0, ti] is subdivided into
a number of timesteps:

xi = Mi,i−1 ◦ · · · ◦M2,1 ◦M1,0(x0) .

Consequently, the tangent linear M′
i of this sequence of operators is given by

M′
i = M′

i,i−1 · · ·M′
2,1M

′
1,0 .

As the model is non-linear, each of the linearised operators M′
l,l−1 explicitly

depends on the current atmospheric state xl−1. By forming the transpose of
the tangent linear in order to obtain the adjoint, the sequence of operators
is reversed:

M∗
i = M∗

1,0 · · ·M∗
i−1,i−2M

∗
i,i−1 .

Hence, the adjoint model operator M∗
i propagates the gradient of the cost

function with respect to xi backwards in time, to deliver the gradient of the
cost function with respect to the vector of control variables x0. Note that, as
each adjoint operator M∗

l,l−1 depends on xl−1, the sequence of atmospheric
states must be available in reverse order. To this end, all intermediate model
states xl must be stored for l = 0, · · · , i during a forward integration of the
model M , or, alternatively, they have to be recomputed during the course of
adjoint integration.

The adjoint model can be created from the computer code implementing
the model M .2 A short example should illustrate this approach: Suppose
the statement x = y**2+a*z is given in your source code, where a is an
arbitrary constant. This instruction can be interpreted as a function

F : R
3 → R

3,

⎛
⎝xy
z

⎞
⎠ �→

⎛
⎝y2 + az

y
z

⎞
⎠ .

The transpose Jacobian of F and the corresponding adjoint mapping are
given by

M∗ =

⎛
⎝ 0 0 0

2y 1 0
a 0 1

⎞
⎠ F ∗ :

⎛
⎝x∗y∗
z∗

⎞
⎠ �→ M∗

⎛
⎝x∗y∗
z∗

⎞
⎠ =

⎛
⎝ 0

2yx∗ + y∗

ax∗ + z∗

⎞
⎠ .

2There are other possible approaches. See Giering and Kaminski [1998] and references
therein for details.
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F ∗ can be implemented as the corresponding piece of adjoint code taking
care that the instruction x∗ = 0 is the one to come last, of course. By
examining the whole program unit in reverse order the adjoint code can be
constructed statement by statement. A detailed description of this technique
is given in Giering and Kaminski [1998]. Clearly this approach would not
be suited very well for comprehensive atmospheric models, which consist of
thousands of lines of code. However, the extensive and cumbersome coding
work can be alleviated, because the task can be partly automated by using
adjoint compilers like TAMC (Giering [1999]) or O∂yssée (Faure and Papegay
[1998]).





CHAPTER 3

Background error covariances

Given a single observation at a certain location, an assimilation system pro-
duces an analysis, which is a compromise between the observation and the
respective background value. Both pieces of information are weighted ac-
cording to the error covariances, specified in the observation error covariance
matrix R and the background error covariance matrix B. If the background
error variances were the only information provided to the system (i. e. B is
a diagonal matrix), the analysed quantity would have a singular peak at the
location of the observation, as shown in Figure 3.1a. Such an atmospheric
state is usually not prohibited by physical or chemical laws, but it is known
to be highly improbable. Atmospheric trace gases are subject to mixing with
ambient air, for example, due to turbulent diffusion. Thus, sharp peaks in
concentration are not expected to be found. In other words, the errors of the
background field are spatially correlated, such that B is a matrix with non-
diagonal entries. If an observation indicates that the background differs from
the observed atmospheric state, a correction must be applied to neighboring
locations as well (Figure 3.1b).

Note that any error covariance matrix P can be decomposed into a correlation
matrix

C =

⎛
⎜⎜⎜⎝

1 ρ1,2 · · · ρ1,n

ρ1,2 1 · · · ρ2,n
...

...
...

ρ1,n ρ2,n · · · 1

⎞
⎟⎟⎟⎠ ,
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a) B is diagonal

b) B with non−diagonal elements

AnalysisBackground

Background Analysis

backround errors

Analysis increment

Analysis increments
due to correlated

Figure 3.1: Effect of background error covariances on the analysis. a) If there
are only error variances encoded in B, the analysis will show singular peaks at
the location of observations. b) Known or estimated error covariances of the back-
ground field encoded in B lead to a more probable atmospheric analysis state.

containing the error correlations ρi,j = E [ (εi −E[εi])(εj − E[εj ]) ] /σiσj , and
diagonal matrices Σ = diag(σ1, . . . , σn) containing the standard deviations:

P = ΣCΣ. (3.1)

Consequently, the problem of constructing an error covariance matrix can
be split into two separate tasks: The estimation of the variances σ for each
control variable and the specification of error correlations between them.

Covariances restricted to a single model variable, for example ozone volume
mixing ratios at different locations, form the univariate part of B, which has
a block diagonal structure. The remaining elements, the multivariate com-
ponent of B, represent cross-covariances between different model variables.
For atmospheric trace gases however, such multivariate error covariances are
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even more difficult to estimate than the univariate components, and until
now no approach towards a multivariate BECM has been undertaken in this
field. Furthermore, in contrast to meteorological data assimilation, where
imbalances between different control variables can cause severe problems, for
example, the generation of unrealistic strong gravity waves, the multivariate
formulation of B can be assumed to be of less importance for a chemical
4D-var assimilation system. Here, the chemical equilibrium is attained af-
ter a short period of time and the analysis renders a chemically consistent
atmospheric state. Thus, multivariate background error correlations are not
considered in this work and B reduces to a block-diagonal matrix, a single
block representing the background error covariances between one particular
model variable.

In practice of atmospheric data assimilation, the straightforward implemen-
tation of the background error covariance matrix is hampered by two facts:

1. The number of control variables in atmospheric models is large. Even if
cross-correlations between different model variables are neglected, the
number of matrix elements is too large to be handled. In the SACADA
assimilation system with its 32 × 10 242 grid points, the resulting di-
mension for one model variable is N ≈ 3 × 105. The corresponding
univariate BECM would be of size (N2 + N)/2 ≈ 5 × 1010 (B is sym-
metric). Storing a matrix of this size for each of the 41 model species
would require approximately 8 Terrabytes of memory, which is still not
feasible with today’s available computational resources.

2. The statistical information to be encoded in the BECM is difficult to
obtain. In principle, a sufficiently large set of realisations of the back-
ground field must be compared to the corresponding true atmospheric
states to derive the background error statistics. Certainly, the true
state is unknown and the best that may be available is an estimate
thereof.

Consequently, as the background error covariances can neither be calculated
exactly nor stored explicitly, it is necessary to develop a suitable parameter-
isation of B, which captures the relevant features of the backround error co-
variances. Often it is assumed that the spatial background error correlations
can be expressed by a correlation function f(r) depending on the separation
r between grid points only (isotropy), and that the same dependence is valid
all over the globe (homogeneity). Examples for various variants of correla-
tion functions used in data assimilation can be found in Daley [1991]. All of
them, however, require treatment of the explicitly stored matrix B and do
not allow for inhomogeneous, that is, location dependent, formulation.
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The approach adopted for the BECM parameterisation within the SACADA
assimilation system, was proposed by Weaver and Courtier [2001]. They
express the cost function in terms of an incremental variable v0, which cir-
cumvents the need to compute the inverse B−1, as described in Section 3.1,
and that provides an efficient preconditioning for the minimisation procedure.
B is modelled using a generalised diffusion operator and a square root decom-
position B1/2 and BT/2 of the BECM can be easily obtained (Section 3.2).
The realisation of inhomogeneous and anisotropic correlations using a set of
local coordinate stretching factors is outlined in Section 3.3.

3.1 An incremental formulation of the cost

function

Since B is non-singular, one can introduce a new vector of control variables

v0 := B−1/2 δx0 with δx0 := x0 − xb, (3.2)

where the square root of the background error covariance matrix is taken
to be any square root decomposition of B such that B = B1/2 BT/2 holds
(Weaver and Courtier [2001]). The relation of x0 to the new incremental
variable is given by

x0 = B1/2 v0 + xb. (3.3)

The cost function remains invariant under this transformation, i. e. J(x0) =
J(v0), while the gradient of the background cost portion simplifies to

∇v0 J
b = ∇v0

[
1

2
vT0 v0

]
= v0 . (3.4)

Calculating the gradient of the observational part of the cost function with
respect to the new vector of control variable is accomplished in the same way
as shown in Section 2.2, taking into account that, by definition, v0 represents
a small variation around zero, with v0 = 0 corresponding to x0 = xb:

δJo = 〈∇x0J
o , δx0〉 =

〈∇x0J
o , B1/2v0

〉
=
〈
BT/2∇x0J

o , v0

〉
.

Therefore, the gradient of Jo with respect to v0 is obtained by multiplying
the gradient of Jo with respect to x0 from the left by the transposed square
root of B:

∇v0J
o = BT/2∇x0J

o . (3.5)
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Note that the quantity v0 is the vector of control variables and the gradient
of Jb(v0) at the same time. Consequently, there is no need to recalculate
∇v0J

b by means of (3.2) for each iteration, because v0 is the output of
the minimisation algorithm at the preceeding iteration. Moreover, a real
world assimilation system will start the iterative process of minimising J by
choosing x0 = xb as a first guess atmospheric state, resulting in v0 = 0 at
the first iteration. Consequently, the transformation (3.2), and hence B−1/2,
is never needed explicitly. The initial values for the next forward run are
obtained from

x0 = B1/2v0 + xb (3.6)

using the improved v0 as computed by the minimisation algorithm.

3.2 Correlation modelling using a diffusion

approach

As shown in the previous section, a 4D-var assimilation system using the
incremental control variable v0 requires a square root decomposition

B = B1/2 BT/2 = ΣC1/2 CT/2 Σ

instead of the inverse BECM. As it is not feasible to implement a correlation
matrix C directly, a correlation operator has to be devised, which replaces
the matrix-vector multiplications needed for the computation of the the cost
function and its gradient ∇v0J . Furthermore, it is desirable that a square
root decomposition of this operator can be obtained easily. Weaver and
Courtier [2001] point out that the solution ψ(z, t) of the one-dimensional
diffusion equation

∂ψ

∂t
− κ

∂2ψ

∂z2
= 0 (3.7)

is given by the convolution of ψ(z, 0) with a Gaussian function:

ψ(z, t) =
1√

4πκt

∫
exp

(
−(z − z′)2

4κt

)
ψ(z′, 0) dz′.

It is well known that a Gaussian defines a valid correlation function, if it is
normalised to the value one at the origin. Therefore, a correlation operator
may be obtained by multiplying ψ(z, t) by the constant factor

λ :=
√

4πκt . (3.8)
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The product L2 := 2κt can be interpreted as the square of a correlation
length-scale, meaning that the correlation between two locations z and z′

decreases to a value of exp(−1/2) at a separation of L.

The same considerations apply for the solution of the two-dimensional diffu-
sion equation

∂ψ

∂t
− κ∇2ψ = 0 (3.9)

on the sphere S2 := {(x, y, z) :
√
x2 + y2 + z2 = a} with radius a. As

in the one-dimensional case, the solution ψ(λ, φ, t) at time t is given by
a convolution of ψ(λ, φ, 0) with a quasi-Gaussian function f(θ, κt), which
depends on the angular separation θ between two points (λ, φ) and (λ′, φ′) on
the sphere (see Weaver and Courtier [2001] for a comprehensive discussion).
The term quasi-Gaussian refers to the fact that f(θ, κt) closely approximates
a Gaussian function provided that the involved length-scale is small compared
to the radius of the sphere (L 
 a), which is the case for scales relevant in
atmospheric modelling. Under this condition the correlation length-scale can,
again in analogy with the one dimensional case, be approximated by

L2 ≈ 2κt . (3.10)

The essence of what has been outlined so far is that a Gaussian or quasi-
Gaussian covariance operator is readily available in atmospheric models in
form of a diffusion operator L, which solves (3.7) and (3.9) numerically.
Weaver and Courtier [2001] extend their approach to a larger class of isotropic
correlation functions on the sphere, derived from the solution of a generalised
diffusion equation (involving higher order spatial derivatives), which allow for
negative correlations at particular angular separations θ. Backround errors
of meteorological variables derived from climatologies often display such neg-
ative correlations at distances of about a few thousand kilometers (see e. g.
Daley [1991]). However, this is not further considered in the work presented
here, because very little is known yet about the spatial background error cor-
relations within the new SACADA assimilation system and thus, the simple
quasi-Gaussian assumption is a good point to start from.

The Laplacian operator, showing up in Equations 3.7 and 3.9, has the impor-
tant property of being, under certain conditions, self-adjoint with respect to
the scalar product < f(x), g(x) >=

∫
fg dx for functions f, g : D ⊂ R

n →
R, that is,

< ∇2f, g >=< f,∇2g > . (3.11)

In the one dimensional case this can be seen as follows:∫ b

a

(
f
d2g

dx2
− g

d2f

dx2

)
dx =

[
f
dg

dx

]b
a

−
[
g
df

dx

]b
a

. (3.12)
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If –among other possibilities– the derivatives of f and g vanish at the interval
boundaries a and b, the integral (3.12) equals zero and (3.11) holds. In
general, the property (3.11) is a consequence of Green’s second theorem, again
under the condition that the partial derivatives of f and g normal to the
boundary of D vanish.

3.2.1 Discrete formulation

In atmospheric models the one-dimensional diffusion equation (3.7) is solved
along each column of grid points to represent vertical diffusion processes,
while horizontal diffusion is accounted for by the solution of the two-di-
mensional equation (3.9) along the sphere. These horizontal and vertical
diffusion operators can be utilised to devise a horizontal and a vertical cor-
relation operator, respectively. An appropriate combination of both leads
to a three-dimensional correlation model, as will be shown in the following
section.

The discrete solution of the diffusion equations for a vector ψ of model vari-
ables may be obtained by

ψ(tn) = ψ(tn−1) + κΔt Dψ(tn−1) , (3.13a)

or alternatively, in implicit form1

ψ(tn) = ψ(tn−1) + κΔt Dψ(tn) . (3.13b)

Here, D denotes a discrete representation of either the horizontal or vertical
Laplacian operator. The corresponding discrete diffusion operator L which
calculates the diffusion of ψ over M timesteps is given by

ψ(tM) = Lψ(t0) = {I + κΔt D }M ψ(t0) and (3.14a)

ψ(tM) = Lψ(t0) = {I− κΔt D }−M ψ(t0) , (3.14b)

respectively. Note that D, and hence L, can be thought of as matrices
allthough their realisation in terms of computer code has a different form.
The implicit discretisation (3.14b) is not well suited for the horizontal diffu-
sion operator, because the inverse of the expression {I − κΔtD} would be
too difficult to obtain. However, the implementation for the vertical diffusion

1For convenience, allthough the implicit and the explicit formulation are different ap-
proximations to the true solution, no notational difference will be made between them
in the following text. Hence, ψ(tn) refers to any approximate solution of the diffusion
equation at time tn, which was obtained by either an implicit or an explicit scheme.
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is easy (see Appendix B) and –apart from the superior numerical stability–
has the appealing advantage, that the transpose diffusion operator can be
simply constructed by transposing the resulting system of linear equations.

The Laplacian’s property (3.11) of being self adjoint can be translated into
discrete form:

〈WDψ1,ψ2〉 = 〈ψ1,WDψ2〉 ,
where W := diag(Δs1, · · · ,Δsn) is a diagonal matrix containing the area (or
line) elements of the corresponding grid cells, and < · , · > now denotes the
canonical scalar product. It can be concluded that

WD = DTW ⇔ D = W−1DTW ⇔ D−1 = W−1D−TW, (3.15)

and this property of D opens the possibility to find a square root decompo-
sition of the discrete diffusion operator L. Without loss of generality, it can
be assumed that M denotes an even number of timesteps. Hence, L can be
factored as follows (Weaver and Courtier [2001]):

L = L1/2L1/2 = {I + κΔtD}M/2 {I + κΔtD}M/2

=
{
I + κΔtW−1DTW

}M/2 {I + κΔtD}M/2

= W−1
{
I + κΔtDT

}M/2
W {I + κΔtD}M/2

= W−1LT/2WL1/2

= L1/2W−1LT/2W .

(3.16)

Obviously, the same factorisation applies for the implicit definition (3.14b)
of the diffusion operator L.

As L realises the diffusion of a physical quantity averaged over the area
of a particular grid cell, it will in general not be symmetric (cf. Equation
(3.16)). A valid correlation operator has the fundamental property of being
symmetric, reflecting the fact that ρi,j = ρj,i. By inspection of (3.16) it can
be seen that a symmetric operator can be obtained by multiplying L either
to the left by W or to the right by W−1. Here, we choose the first possibility

LW−1 = L1/2W−1LT/2 = W−1LT , (3.17)

in other words, the quantity to be diffused is weighted by the inverse area of
the corresponding grid cells before applying the diffusion operator.

Another fundamental property of a correlation matrix is that the auto-
correlations ρi,i equal one, a property that, in analogy to (3.8), can be intro-
duced by applying a diagonal normalisation matrix and defining

C := ΛL1/2W−1LT/2Λ = (ΛL1/2W−1/2)(W−1/2LT/2Λ)

= C1/2CT/2 .
(3.18)
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The action of the normalisation matrix can be understood by applying the
correlation operator C to the unit vector ei := (0, · · · , 0, 1, 0, · · · , 0)T having
a unit value at grid point i and zero values elsewhere. The result of the
operation C ei is the discrete correlation function for grid point i. With-
out normalisation the value ρi,i would clearly be less than unity because
the diffusion operator L conserves the total ‘mass’ of the input field, and
accordingly all other values ρi,j would be too small as well. The normalisa-
tion factor (3.8) derived from the analytical solution can be applied yielding
Λ = diag(

√
2πL2). If anisotropic and/or inhomogeneous correlations are

considered, as discussed below, computationally more expensive methods to
calculate the normalisation matrix are needed.

3.2.2 Three-dimensional correlations

In atmospheric data assimilation it is often assumed that the background
error correlations are separable in that they are a product of a horizontal
and a vertical correlation function (see e. g. Daley [1991]). It is possible
to construct a separable 3-dimensional diffusion operator and a square root
decomposition, by combining the vertical and horizontal diffusion operator
LhW

−1
h and LvW

−1
v , respectively. The resulting operator remains symmetric

by construction, however, a few restrictions arise, namely:

(a) κh must not depend on z and κv must not depend on λ or φ.

(b) The elements of Wh have to be constant for all levels at a given location
(λ, φ) and the elements Wv must not vary horizontally.

Given the condition (a) the operators Lh and Lv commute because the hori-
zontal and vertical Laplacian operators do (∂2/∂z2 ∇2

h = ∇2
h ∂

2/∂z2)2:

{I + κhΔthDh} {I + κvΔtvDv} ψ
= {I + κvΔtvDv + κhΔthDh + κhΔthDhκvΔtvDv} ψ
= {I + κvΔtvDv + κhΔthDh + κvΔtvDvκhΔthDh} ψ
= {I + κvΔtvDv} {I + κhΔthDh} ψ .

(3.19a)

By repeated application of (3.19a) it follows that LvLh = LhLv. Obviously

the same is true for L
1/2
v and L

1/2
h as well as for the transpose operators.

2This is only true because the dependence of ∇h on the vertical coordinate is usually
neglected in atmospheric models (see for example Kalnay [2003]).
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Condition (b) ensures that the matrices Wv and Wh commute with the
horizontal and vertical Laplacian operators, respectively:

DhW
−1
v = W−1

v Dh and DvW
−1
h = W−1

h Dv . (3.19b)

Note that the first part of condition (b) is usually fulfilled in practise, as the
area elements of grid cells do not depend on the vertical coordinate. If σ or
hybrid coordinate systems are used, the layer thickness (in terms of pressure
or distance) depends on the meteorological situation and orography. Hence,
Wv is different from one column of grid points to the next, thereby violating
condition (b) to some extent. Now, given (3.19), the symmetry of LhW

−1
h

and LvW
−1
v can be inherited to a separable 3d diffusion operator

LW−1 := LvLhW
−1
v W−1

h = W−1
h W−1

v LT
hL

T
v = W−1LT ,

and a square root decomposition of this operator can be obtained by

LW−1 = LvW
−1
v LhW

−1
h = L1/2

v W−1
v LT/2

v L
1/2
h W−1

h L
T/2
h

= L1/2
v L

1/2
h W−1L

T/2
h LT/2

v

= L1/2W−1LT/2 .

(3.20)

Finally, the full three-dimensional background error covariance matrix in its
operator form reads:

B = (ΣΛL1/2W−1/2) (W−1/2LT/2ΛΣ) = B1/2BT/2. (3.21)

The free parameters of this covariance model are the background error vari-
ances for each grid cell, which are encoded in the diagonal matrix Σ, as well
as a vertical and a horizontal correlation length scale Lv and Lh. The dif-
fusion coefficients κh and κv and the diffusion times th and tv are calculated
according to (3.10). Then, the number of timesteps Mh, Mv together with
Δth and Δtv are chosen such that stability criteria for the respective schemes
are fulfilled.

The conditions that allow for the application of the separable three-dimen-
sional covariance operator are rather restrictive and only simple covariance
structures can be considered. If a more elaborate estimate of background
error covariances is available, a self adjoint, non separable three-dimensional
operator can be constructed by applying an operator splitting approach (see
Chapter 4):

L := { {I + κvΔtDv}{I + κhΔtDh} }M (3.22)

Now, the more unstable of the two schemes determines the steplength Δt.
Special care has to be taken, because, in contrast to the separable case, the
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operator LW−1 is not symmetric by construction. This is a further limita-
tion of the step length, as M has to be chosen greater than some minimum
number of steps to ensure an approximate symmetry of the resulting co-
variance operator. There is no simple strategy to calculate the necessary
minimum number of steps, and property (3.15) has to be tested numerically.
The square root decomposition of LW−1 can then be derived according to
(3.16).

3.3 Flow dependent inhomogeneous and an-

isotropic correlations

Allthough it is a good point to start from in practise, there is no reason to as-
sume that the background error correlations are homogeneous and isotropic.
Advanced data assimilation methods use a short-range forecast initialised
with the previous analysis as a background. Consequently, the backround
error covariance structure is given by the analysis error covariance of the
previous analysis, advanced in time according to the model dynamics. Addi-
tionally, errors in the model also contribute to the background error covari-
ances. Unlike Kalman filters, which, at least theoretically, take full account of
error evolution, variational methods usually neither estimate the analysis er-
ror covariances nor propagate them explicitly. Hence, an alternative solution
had to be devised for the SACADA system to account for this deficiency. Due
to the linkage between model dynamics and backround error covariances, it
is reasonable to assume, that background errors show a stronger correlation
between air parcels belonging to the same air mass (Riishøjgaard [1998]). A
way to distinguish between different air masses is due to Ertel’s potential
vorticity (PV), which is defined by

P = (∇× v + 2Ω) · ∇θ = ζ · ∇θ , (3.23)

where θ is the potential temperature and ζ the vector of absolute vorticity
(see e. g. Pichler [1997]). Note that the potential vorticity can be approxi-
mated by

P ≈ k · ζ ∂θ
∂p

, (3.24)

that is, the vertical component of the absolute vorticity multiplied by the
vertical component of the potential temperature gradient. This is justified
because for stratospheric conditions ∇θ is nearly aligned with the vertical
direction. In the lower stratosphere larger deviation may occur, but Elbern
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et al. [1998] found, even in this region, approximation (3.24) to be accurate
within 15%. It can be shown (see e. g. Pichler [1997]) that the potential
vorticity is conserved for adiabatic and frictionless motion. Hence, it can be
concluded that the chemical composition of individual air parcels is correlated
along lines of constant potential vorticity, as long as there is negligible energy
exchange with the environment. An example is shown in Figure 3.2, where
the potential vorticity for 28 October 2003 at the 100 hPa pressure level (top
panel) is shown together with an ozone analysis for the same date. To a
large extend, the distribution of ozone is governed by the PV field and it
is clearly desirable to devise a flow dependent background error covariance
parameterisation. Obviously, the correlations will neither be homogeneous
nor isotropic in this case.

The diffusion approach described above can be generalised to account for
anisotropic and inhomogeneous background error correlations. Following
Weaver and Courtier [2001], this is accomplished by introducing a symmet-
ric coordinate stretching tensor S in the horizontal two-dimensional diffusion
equation:

∂ψ

∂t
− κhdiv (S gradhψ) = 0 . (3.25)

Tensor S is composed of a diagonal tensor S̃ containing stretching factors
s̃1 and s̃2 and a rotation tensor which rotates the local coordinate system
such that the stretching can be applied along the two coordinate axes of the
rotated system:

S = T(α)S̃TT (α) =

(
cosα sinα
− sinα cosα

)(
s̃1 0
0 s̃2

)(
cosα − sinα
sinα cosα

)
. (3.26)

The discrete three-dimensional diffusion operator takes the same form as
the isotropic scheme (3.22) with the exception that the horizontal Laplacian
operator Dh is replaced by a discrete representation of div (S gradh). The
implementation of diffusion schemes for the SACADA system is described in
Chapter 4 and in Appendix B.

3.3.1 The normalisation matrix

If the anisotropic diffusion operator is to be employed, no simple analytic
expression for the elements λi of the normalisation matrix Λ can be derived.
Consequently, a numerical method for the evaluation of λi must be applied.
The straightforward method would be to directly evaluate the diagonal ele-
ments of the diffusion operator li := eTi LW

−1ei and setting λi = 1/
√
li. This
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Figure 3.2: Potential vorticity (absolute values in K m2

s kg , top) and analysed ozone
volume mixing ratio (bottom) fields for 28 October 2003 at the 100 hPa pressure
level.
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approach, however, is computationally far too expensive in practise, as the
full diffusion operator has to be applied for each grid point of the model. An
alternative algorithm, which calculates an approximation of the normalisa-
tion factors, has been proposed by Weaver and Courtier [2001]: An ensemble
of Q random vectors vq having zero mean and unit variance is generated, and
the transformed ensemble

ṽq := L1/2W−1/2vq

is calculated. Since E[v] = 0 and E[vvT ] = I, the diagonal elements l̃i may
be estimated from

LW−1 ≈ 1

Q

Q∑
q=1

ṽqṽ
T
q =

1

Q

Q∑
q=1

(
L1/2W1/2vq

) (
L1/2W1/2vq

)T
. (3.27)

The standard deviation of the l̃i derived on the basis of (3.27) can be shown
to be 1/

√
2Q if v is a Gaussian random vector (see Weaver and Courtier

[2001] and references therein). Hence, an efficient way to approximate the

normalisation matrix is given by setting Λ = diag(1/
√
l̃1, · · · , 1/

√
l̃n).



CHAPTER 4

Description of the SACADA assimilation system

This chapter gives an overview of the main components of the SACADA
system, particularly of the computer code that realises the model operator
M in the cost function (Section 4.1) and the corresponding adjoint model
(Section 4.2). The implementation of the background error covariance op-
erator is described in Section 4.3. Finally, the assimilation system set-up is
summarised in Section 4.4. As outlined in the introduction, a main focus was
placed on a sophisticated representation of the background error covariance
matrix within the assimilation system, as this can drastically improve the
quality of the analyses, particularly if data are sparse. The SACADA system
is designed to analyse operationally the chemical state of the stratosphere
and lower mesosphere region in near real time. The near real time require-
ment implies that the system must be able to keep pace with the incoming
observational data, in other words, observations that have been collected dur-
ing the past 24 hours have to be processed within a timespan shorter than
one day. Efficiency therefore was an important criterion taken into account
during the development.

4.1 The SACADA model

A model M that is employed within a four-dimensional variational data as-
similation system has to satisfy different conflicting requirements. On the
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one hand the model has to be fast and efficient to allow the computationally
expensive method to be applied in real time, on the other hand the model
error should be kept as small as possible over the time span of the assim-
ilation window, as M is assumed to be perfect, that is, to reproduce the
time evolution of a given initial state with negligible error. As traditional
Chemistry Transport Models (CTMs) are usually driven offline by external
meteorological analyses, enforcing temporal and spatial interpolation, the
meteorological parameters, particularly the vertical wind fields, are often
poorly represented. It has therefore been decided to keep the meteorological
driver online in the assimilation system. This approach uses a state of the
art meteorological forecast model to compute the meteorological fields at the
same temporal and spatial locations where they are needed by the chemistry
module. Note that the SACADA model is the first model designed for 4D-
var data assimilation of stratospheric constituents that combines a state of
the art meteorological model and a comprehensive stratospheric chemistry
module. However, the possibility to include the feedback of changing con-
stituent concentrations on the meteorological forecast was not implemented
for the work presented here. The term SACADA-CTM is used throughout
this text to denote the chemistry-transport module only, which is the part of
the SACADA model that computes the transport and chemical transforma-
tions of atmospheric trace gases.

A key issue concerning the efficiency of atmospheric models is the spatial
discretisation used for the solution of the governing equations. Traditional
grid structures of global atmospheric models are aligned to lines of equal lati-
tude and longitude. These grids suffer from the poleward convergence of grid
points, introducing unwanted high zonal resolution. Spectral methods do not
show this so called pole problem (Kalnay [2003]), but the necessary transfor-
mations between spectral space and grid point space make these methods less
efficient for increasing resolution. This is especially true, if costly chemistry
calculations are involved, as these have to be accomplished in the grid point
domain, where the poleward convergence is still present. As an alternative,
the icosahedral grid preserves an almost isotropic grid point distribution all
over the globe while, at the same time, requiring approximately 25% less grid
cells than a latitude/longitude grid of comparable resolution.

The requirement of producing analyses of stratospheric trace gases in near
real time is difficult to satisfy, because state of the art atmospheric models
tend to absorb all available computational power, leaving few resources for
the actual assimilation procedure. The use of parallel computing environ-
ments can ease this conflict. Especially models including complex chemistry
encounter most computational burden at each grid point, due to the solu-
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tion of the ordinary differential equations of the chemical reaction mecha-
nism. As this solution can be obtained independently from neighboring grid
points, these models can draw above-average advantage of parallel compute
platforms.

4.1.1 Theoretical background

The atmospheric state, which is to be forecasted by a General Circulation
Model, is determined by the wind field v, temperature T , pressure p, density
ρ, the mixing ratio of water in its various phases q and the mixing ratio c of
trace gases. The partial differential equations (PDEs) that govern the time
evolution of these quantities are given by (see e. g. Kalnay [2003]):1

dv

dt
= −α∇p−∇φ+ F − 2Ω × v (4.1a)

∂ρ

∂t
= −∇(vρ) (4.1b)

∂q

∂t
= −v∇q + (E −C) (4.1c)

∂c

∂t
= −v∇c+ (P −L) (4.1d)

Q = Cp
dT

dt
− α

dp

dt
(4.1e)

Here, α = 1/ρ is the specific volume of air, φ the geopotential, F represents
frictional forces, and Ω is the angular velocity of the earth. Equation (4.1c)
is the continuity equation for atmospheric water with E and C being the
rate of change due to phase transitions between liquid, solid and gas phase.
For atmospheric trace gases the continuity equation (4.1d) applies with P
and L denoting production and loss due to chemical reactions. The cou-
pling between (4.1c) and (4.1d) and the other governing equations is via the
thermodynamic energy equation (4.1e), as the rate of heating Q is strongly
influenced by cloud and radiation processes which in turn are determined by
the amount of liquid and solid water and the mixing ratio of absorbing trace
gases. Note that for the SACADA assimilation system in its current version
equations (4.1d) and (4.1e) are decoupled, because the radiation scheme uses
a climatological ozone distribution. Thus equations (4.1a) - (4.1c) and (4.1e)

1Troughout this text no notational difference is made between the continuous atmo-
spheric quantities, which are functions of time and three spatial coordinates and their
approximate discrete counterparts. The correct interpretation will always be clear from
the respective context.
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Figure 4.1: Icosahedral grid with a resolution of ni = 32 (left hand side).
The distance between neighbouring grid points is about 240 km. The boundaries of
diamonds (see text) are marked by red lines. A conventional latitude-longitude grid
with a resolution of 2.0o × 2.4o is shown on the right hand side for comparison.

can independently be solved by the meteorological module followed by the
integration of (4.1d) using the precomputed meteorological fields.

4.1.2 Meteorological module, icosahedral grid and par-

allelisation

By courtesy of the German Weather Service, the global forecast model GME,
which is the only operational meteorological model utilising an icosahedral
grid structure, was made available (model version 1.22) and has been im-
plemented as the meteorological driver module of the SACADA assimilation
system. Care has been taken, to introduce as little modifications as possible
to the GME software, to make a later update feasible without laborious revi-
sion of the whole assimilation system. Since the new parts of the SACADA
model, which have been developed in the framework of this study, adopt some
of the numerical concepts, it is necessary to introduce the principal features
of GME in this section. The reader may refer to Majewski et al. [2001] for a
more detailed description of the GME model.

The icosahedral grid is constructed as follows: An icosahedron, that is, the
highest Platonic body with 20 equilateral triangles, is placed into a sphere
with the 12 vertices connected to theirs neighbours along the sphere. As
shown in Figure 4.1, the resulting sections of great circles are equally sub-
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Figure 4.2: Geometry of grid cells in the icosahedral grid. The area of repre-
sentativeness assigned to each grid cell is a hexagon or a pentagon at the twelve
special points, respectively.

divided into a number of ni intervals each, to form an almost isotropic grid.
Each grid point has six nearest neighbours with the exception of the twelve
points located at the vertices of the original icosahedron (called special points
hereafter), which have only five direct neighbours. The area of representa-
tiveness for a grid cell is a hexagon and pentagon at the twelve special points,
respectively (see Figure 4.2). This approach results in a mesh with virtually
constant mesh size all over the globe, with the minimum and maximum sep-
aration between neighbouring grid points Δmin and Δmax varying about 20%
only. For the SACADA system it has been decided that ni = 32 gives a suffi-
cient resolution, resulting in 10 242 grid points per level. The minimum and
maximum distances are Δmin = 220 km and Δmax = 263 km, respectively,
and the average area of representativeness is about 50 000 km2. A compa-
rable traditional latitude-longitude grid, that is, a grid with the same area
represented by one grid cell at the equator (where the resolution is coarsest),
requires a grid spacing of 2.0o × 2.4o resulting in 13 500 grid points per level
which is about 30% more than the icosahedral grid. To obtain a rectangular
data structure, two adjacent spherical triangles are combined to form a dia-
mond, partitioning the grid into ten logically rectangular sub-grid domains
as marked by the thick red lines in Figure 4.1.

An orthonormal system (x0, eλ, eφ) is attached to each grid point of the GME
mesh, where x0 is the position vector of the grid point on the unit sphere and
eλ, eφ are unit vectors aligned with the east and north direction, respectively.
Local spherical coordinates (η, χ) are used to describe the position of an
arbitrary unit vector x relative to (x0, eλ, eφ), as illustrated in Figure 4.3.
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Figure 4.3: Definition of local coordi-
nates (η, χ) relative to the orthonormal
unit vectors x0,eλ,eφ attached to each
grid point of the GME mesh.
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Hence, grid points are located at the intersection of the ‘equator’ (χ = 0)
and the ‘zero meridian’ (η = 0) of their own spherical system. Thereby, the
singularities, which are present at the poles of spherical coordinate systems,
are removed from the neighbourhood of each grid point. The zonal wind
component u and the meridional wind component v are given by

u = RE cosχ
dη

dt
v = RE

dχ

dt
, (4.2)

where RE is the radius of earth. The GME grid is horizontally unstaggered,
i. e. all variables are defined at the centre of each grid cell (Arakawa A-grid).
The meteorological equations are formulated and solved in the (η, χ) local
coordinate system. To this end the first and second order spatial derivatives
with respect to the local coordinates, which are needed for the gradient and
Laplacian operators, must be constructed. A discrete representation of these
derivatives for an arbitrary scalar function ψ, which takes into account the
six (five) nearest neighbours of a grid point, is given by

∂ψ

∂η

∣∣∣∣
ψ0

≈
6∑
i=1

Gη,i(ψi − ψ0)
∂ψ

∂χ

∣∣∣∣
ψ0

≈
6∑
i=1

Gχ,i(ψi − ψ0)

∂2ψ

∂η2

∣∣∣∣
ψ0

≈
6∑
i=1

Lη,i(ψi − ψ0)
∂2ψ

∂χ2

∣∣∣∣
ψ0

≈
6∑
i=1

Lχ,i(ψi − ψ0)

∂2ψ

∂η∂χ

∣∣∣∣
ψ0

≈
6∑
i=1

Mi(ψi − ψ0) .

(4.3)

The coefficients Gη,i, Gχ,i, Lη,i Lχ,i and Mi depend on the relative position
of grid points only and are computed during the grid generation process of
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the GME software as described by Majewski et al. [2001]. Note that for the
twelve special points the coefficients for i = 6 are set to zero. Components
of vector valued quantities like the zonal or meridional wind u and v have
to be rotated into the local coordinate system of the centre node before the
spatial derivatives (4.3) are formed. Time derivatives of prognostic fields are
discretised using a three time level leapfrog scheme, which reads

ψ(tn+1) − ψ̄(tn−1)

2Δt
= F (ψ(tn)) (4.4)

for an arbitrary prognostic variable ψ. To avoid separation of time levels, a
phenomenon typically occurring when using leapfrog time stepping schemes
(Kalnay [2003]), an Asselin time filter is applied after each time step:

ψ̄(tn) = ψ(tn) + α
[
ψ(tn+1) − 2ψ(tn) + ψ̄(tn−1)

]
. (4.5)

The GME uses two different algorithms for horizontal advection. Cloud
water and cloud ice are advected by a semi-Lagrangeian scheme (Staniforth
and Côté [1991], Kalnay [2003]) as monotonicity and positive definiteness is
particularly easy to obtain with a scheme of this kind, while advection of all
other prognostic variables is done by an Eulerian scheme (Majewski et al.
[2001]). The departure points of the semi-Lagrange trajectories are found by
a two step iterative procedure. After temporal discretisation (4.2) gives

Δη1 = −u(tn)
RE

Δt Δχ1 = −v(tn)
RE

Δt ,

taking into account cosχ = 1, because the trajectory starts at the grid cell
centre with (η, χ) = 0. The trajectory midpoint is computed at a second and
final iteration

Δη2 = − Il(u(tn))

RE cos Δχ1
Δt Δχ2 = −Il(v(tn))

RE
Δt , (4.6)

where I is an operator that interpolates the wind fields to the position
(Δη1,Δχ1). The departure point of the trajectory is then approximated
by (2Δη2, 2Δχ2). Note that the wind field at time level n is used to com-
pute the semi-Lagrangian trajectory connecting the grid point at time n+ 1
with the departure point at time level n − 1. Once the departure point has
been found, the new value of the advected quantity is found by interpolating
the values corresponding to time level n − 1 from surrounding grid points
to the departure point. Two different interpolation operators are available:
A linear operator Il, taking into account the three nearest neighbours of the
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departure point, and an operator Iq performing quadratic interpolation us-
ing the values at twelve neighbouring grid points (see Majewski et al. [2001]
for details). The interpolation of wind fields in (4.6) is performed using the
linear operator Il.

In the vertical direction the GME utilises a hybrid σ-pressure coordinate sys-
tem and an advection scheme that was proposed by Simmons and Burridge
[1981]. The pressure for each level is given by a set of two parameters

pf,k = af,k + bf,k ps for k = ls, . . . , le

pk = ak + bk ps for k = ls, . . . , le + 1 ,
(4.7)

where pf is the pressure at the centre of each layer, p the pressure at the layer
boundaries and ps is the surface pressure. The coefficients ak, bk and af,k, bf,k
determine the vertical structure of the grid. A staggered (Charney-Phillips)
grid is used with the geopotential and the vertical wind specified at the
boundaries of layers. Following the focus being placed on the stratosphere,
the number of model layers has been increased from 32 to 42 for the SACADA
assimilation system compared to the operational GME (version 1.22), and
the top level pressure has been reduced from 10.0 hPa to 0.1 hPa. The
coefficients for the vertical grid are listedt in Appendix C, Table C.1; the
resulting pressure values together with the corresponding heights are shown
in Figure 4.4.

To facilitate the use of the model on parallel computers a diamond-wise
domain decomposition is performed as shown in Figure 4.5. Each processor
works on one portion of each diamond. This is a simple yet effective strategy
to achieve a good load balancing between processors. Each domain has a halo
of two rows and columns of grid points that have to be exchanged among
processors. To this end the MPICH library (Gropp et al. [1996]), which
implements the Message Passing Interface (MPI) standard is used. On a
parallel computer system representing the state of technology at the time of
writing, the assimilation of observational data collected during 24 hours can
be accomplished in less than four hours, provided twelve or more processors
are available (see Figure 4.5).

4.1.3 Chemistry transport module

The SACADA chemistry transport module solves equation (4.1d), which
reads, in the local coordinate system of the icosahedral grid

∂c

∂t
= − u

RE

∂c

∂η
− v

RE

∂c

∂χ
− w

∂c

∂p
+ (P −L) . (4.8)
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Figure 4.4: Pressure (top scale, green line) and height (bottom scale, red line)
of SACADA model layers. On the right hand side the resulting layer thickness is
shown. Values are valid for standard sea level surface pressure (1013.25 hPa) and
heights have been computed from pressure according to the U.S. Standard Atmo-
sphere from 1976. Chemistry computations and consequently the assimilation of
trace gas observations is restricted to the grey shaded region in the work presented
here.

The discrete approximate solution of this partial differential equation is ob-
tained using an operator splitting approach (McRae et al. [1982]), which
is common practice in atmospheric modelling. The PDE (4.8) is split into
subproblems which describe the rate of change in volume mixing ratio due
to horizontal advection, vertical advection and chemical production or loss,
denoted by the superscripts h, v and c respectively:

(
∂c

∂t

)h
= − u

RE

∂c

∂η
− v

RE

∂c

∂χ
(4.9a)(

∂c

∂t

)v
= −w∂c

∂p
(4.9b)(

∂c

∂t

)c
= (P −L) . (4.9c)
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Figure 4.5: Left hand side: Domain decomposition for six processors. Each
colour indicates a region that is assigned to one processor. Right hand side: Run
time for the meteorological module (GME) and the data assimilation part of the
SACADA software (four iterations + analysis run) on a SUN PC-Cluster with
AMD-Opteron processors and INFINIBAND network. Note that the GME run
time is in seconds.

These subproblems are sequentially solved by dedicated algorithms. Each
scheme may be explicit or implicit and a different number of intermediate
time steps may be chosen. This is of particular importance for the operator
that treats the chemical reactions, because the differential equations describ-
ing this process are know to be stiff and an elaborate, preferably implicit
scheme with an adaptive step size control should be employed. Let Mh,Mv

and M c be the generally non-linear discrete operators that solve (4.9a) –
(4.9c). Then, an approximate solution of (4.8) may be obtained by

c(tn+1) =
[
M c(tn) ◦Mv(tn) ◦Mh(tn)

]
c(tn−1) . (4.10)

Here, n is the time step index as used by the meteorological module, and the
meteorological data at time tn is used to compute the new volume mixing
ratio c(tn+1) from c(tn−1) using the same leapfrog time stepping as the mete-
orological module (see equation (4.4)). Note however, that in the case of the
SACADA-CTM all operators at the right hand side of equation (4.10) are
two time level schemes as they do not depend on c(tn). Consequently, there
is no need to compute this quantity. Hence, equation (4.10) describes an
ordinary forward time stepping using twice the meteorological time step and
the meteorological data at the centre of the time interval. This is advanta-
geous as the outer time step of the chemistry-transport module is effectively
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doubled in comparison to the meteorological time step and only two time
levels of the field of chemical constituents have to be stored.

Note that a symmetric operator splitting Mh/2 ◦Mv/2 ◦M c ◦Mv/2 ◦Mh/2

would reduce the splitting error at only little additional computational cost.
The storage and recomputation strategy for the adjoint model (see Sec-
tion 4.2), however, becomes significantly more demanding in this case. For
the SACADA assimilation system the simpler and more efficient scheme
(4.10) is considered to be sufficient.

Horizontal and vertical advection

Semi-Lagrangian algorithms are very efficient for models with complex chem-
istry, where about 50 different species are to be transported, as the departure
points have to be computed only once. For this reason, the semi-Lagrangian
scheme from GME has been adopted as the horizontal transport scheme for
the CTM. Departure points are computed according to (4.6) and saved to-
gether with the meteorological data during the GME run. Consequently, the
operator Mh is remarkably simple:

c(tn+1) = Mh c(tn−1) = Iq(c(tn−1)) . (4.11)

The interpolation operator Iq performs a quadratic interpolation using the
twelve nearest grid points surrounding the departure point. Optionally the
operator is available in a positive definite and a monotonic form. To suppress
negative volume mixing ratios, the SACADA-CTM employs the operator in
its positive definite form. It should be noted that the semi-Lagrangian scheme
is not conservative, as no measures are taken to ensure that the total mass
remains constant before and after one advection step. While this would
be a severe deficiency for long term integrations, as necessary for climate
modelling, this is fully acceptable in the context of 4D-var data assimilation.
Since the total mass of constituents is continuously updated from day to day
by the assimilation procedure, a comparatively small gain or loss due to the
transport scheme does not degrade the quality of analyses.

The vertical transport equation is solved by means of a simple and efficient
implicit upwind algorithm:

c(tn+1) = Mv c(tn−1) = [I + 2ΔtA]−1 c(tn−1) . (4.12)

Matrix A depends on the vertical wind given in the hybrid vertical coor-
dinate system and the pressure differences between adjacent layers. As A
is tridiagonal, the scheme can be implemented such that a tridiagonal lin-
ear system has to be solved for each column of grid points. Details can be
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found in Appendix A. The scheme is unconditionally stable because of its
implicit time stepping, thus no constraints regarding the magnitude of Δt
are imposed. Furthermore the scheme is linear, which has the advantage that
the adjoint operator Mv∗ does not depend on c(tn−1) and, consequently, this
quantity has neither to be saved during the forward model integration nor
to be recomputed during the course of adjoint computations. The drawback,
however, is that the scheme shows a relatively strong numerical diffusion, a
fact that can be problematic in regions where sharp vertical gradients of vol-
ume mixing ratios occur. In the tropopause region, where the mixing ratio
of H2O drops by several orders of magnitude, the scheme may show artificial
’transport’ of water vapour into the lower stratosphere.

The vertical wind at the surface and at the top of the model domain are zero.
Therefore, no boundary conditions for equation (4.9b) have to be provided.
However, the SACADA assimilation system offers the flexibility to restrict
the vertical domain of the chemistry-transport module. As the focus of the
system is the stratosphere and, consequently, the chemistry-scheme has been
developed to represent stratospheric processes, computational effort may be
saved by excluding the middle and lower troposphere from the chemistry-
transport module. In this case the question of how to choose the boundary
conditions for the vertical advection scheme arises. Dirichlet conditions could
be used by specifying fixed (e. g. climatological) volume mixing ratios at the
boundary, but these climatological values are difficult to obtain for at least
the most important among the 41 constituents that are treated within the
chemistry scheme. In the case of a ‘free’ model run (a model integration
without data assimilation) over an extended period of time, this would be the
mandatory solution, because the boundary values would have a considerable
influence on the whole model domain. This also implies that the model skill
would depend partly on the quality of the chosen boundary values. If the
model, however, is assimilating observational data, which is sufficiently dense
in space and time, the impact of the boundary values becomes negligible.
Hence, the need for climatological boundary values can be circumvented in
this case by using von Neumann boundary conditions and prescribing that
the spatial derivative of c normal to the boundary vanishes. The latter
concept has been adopted for the SACADA assimilation system and details
on the implementation can be found in Appendix A.

Chemistry scheme and solver

The set of reactions that are included in the SACADA chemistry-transport
module comprises 148 gas phase and 7 heterogeneous reactions on surfaces of
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Polar Stratospheric Cloud (PSC) particles and in sulphate aerosol droplets.
The treatment of these solid and liquid stratospheric particles is discussed
below. For a detailed description of the reaction mechanism, the reader may
refer to Hendricks et al. [2001]. The reaction equations together with their
rate constants are listed in Tables C.2 and C.3. An evaluation of this scheme
in comparison with other state of the art mechanisms has been presented by
Krämer et al. [2003]. The current implementation uses updated values for
gas phase reaction rates taken from Sander et al. [2003].

A second order Rosenbrock method is applied to solve the chemistry sub-
problem (4.9c). It is a two stage linear-implicit scheme, which reads for an
arbitrary autonomous differential equation dx/dt = f(x) with f : R

m → R
m:

x(t+ τ) = x(t) +
3

2
τk1 +

1

2
τk2

(I − γτJ)k1 = f(x(t))

(I − γτJ)k2 = f(x(t) + τk1) − 2k1 ,

(4.13)

where γ = 1 + 1/
√

2 and τ is the step length. Details on this solver and its
properties can be found in Verwer et al. [1997]. In contrast to fully implicit
schemes, which require the solution of a non-linear system of equations at
each stage, the Rosenbrock stages k1 and k2 can be computed by solving a
system of linear equations involving the Jacobian J = ∂f/∂x at x(t). If ap-
propriate measures are taken and the sparsity of J is exploited, Rosenbrock
methods outperform other types of implicit solvers (Sandu et al. [1997a],
Sandu et al. [1997b]). The KPP chemical solver tool (Sandu et al. [2003])
was employed to implement (4.13) for f := P − L including a sparse rep-
resentation of J. Generally, a number of adaptive intermediate time steps
has to be taken when propagating the volume mixing ratio c(tn−1) over the
time span 2Δt to yield c(tn+1). As the meteorological parameters (pres-
sure and temperature) as well as the photolysis rates are kept fixed at their
values for tn, the production and loss rates P and L are not explicitly time-
dependent and the autonomous scheme (4.13) can be used. Observe that
x̃(t + τ) := x(t) + τk1 is a first order consistent approximation of the true
solution and can be employed to provide a cheap estimate of the local trun-
cation error for the adaptive step size control (see e. g. Stoer and Bulirsch
[1990]):

τnext = α τ

(
1

m

m∑
l=1

[
x̃l(t+ τ) − xl(t+ τ)

εa + εb |xl(t+ τ)|
]2
)−1/2

(4.14)

The factor α = 0.9 is introduced to avoid overoptimistic estimates of the new
stepsize and εa, εb are some prescribed absolute and relative error tolerances.
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If the expression in brackets on the right hand side of (4.14) is greater than
one, the current step is rejected and repeated with the reduced stepsize τnext.

Stratospheric particles

Three kinds of stratospheric particles are included in the SACADA chemistry-
transport module, namely sulfate aerosol droplets, solid nitric acid trihydrate
particles (NAT, type Ia PSC) and water-ice (type II PSC). In contrast to
sulfate aerosol particles, which are present throughout the lower and middle
stratosphere, occurrence of PSC particles is restricted to the polar winter
stratosphere, where temperature can reach extremely low values, especially
over the Antarctic region. Heterogeneous reactions take place at the surfaces
of or, in the case of liquid droplets, within these particles. The reaction rates
are determined by

k =
1

4
γ(r, T, cH2O, cHCl) v̄NS , (4.15)

where N is the number density and v̄ the mean molecular velocity of the
reacting species in the gas phase. S is the surface area density of parti-
cles in units of m2/m3. The factor γ is called uptake coefficient and can be
interpreted as the fraction of molecule-particle collisions, that lead to an ir-
reversible uptake of molecules from the gas phase into the solid/liquid phase.
The uptake coefficient generally is a complicated function of particle radius,
temperature and, for certain reactions, the gas phase concentrations of H2O
and HCl. The set of heterogenous reaction considered within the SACADA
CTM is listed together with the respective uptake coefficients in Table C.4.
A comprehensive discussion of the treatment of heterogenous reactions can
be found in Hendricks [1997], Hendricks et al. [1999] and references therein.
As a consequence of (4.15), the surface area density S and some representa-
tive radius r of stratospheric particles must be known in order to calculate
the rates of heterogeneous reactions.

Since circa 1997 up to the present time, the stratospheric aerosol layer can
be considered as undisturbed by the influence of major volcanic eruptions2

(Thomason et al. [1997], Deshler et al. [2003]). Hence, it was decided that
a single reference profile of aerosol surface area and median radius was suf-
ficient for uptake coefficient calculations. This reference profile, as shown in
Figure 4.6, was calculated using data from 20 balloon-borne measurements
made between 1997 and 2002 at Laramie, Wyoming (Deshler et al. [2003]).

2The eruption of Mt Pinatubo in 1991 was the last one with considerable impact on
stratospheric aerosol.
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Figure 4.6: Reference profiles of sulfate aerosol surface area density (left) and
median particle radius (right), derived for undisturbed stratospheric conditions
from balloon-borne measurements over Laramie, Wyoming between 1997 and 2002.

Surface area densities and radii for PSC particles are calculated using ther-
modynamic equilibrium constraints for H2O and HNO3 over ice and NAT
surfaces, as specified by Marti and Mauersberger [1993] and Hanson and
Mauersberger [1988]. Following Hendricks et al. [2001], a constant number
density Nice = 1 cm−3 and NNAT = 0.01 cm−3 for ice and NAT particles is
assumed. If the number of H2O or HNO3 molecules is larger/smaller than
predetermined by the saturation vapour pressure, the appropriate number
of molecules is condensed/evaporated. Surface area and radius are inferred
using Nice and NNAT. It should be noted that the formation of PSC par-
ticles is still not very well understood (see World Meteorological Organiza-
tion [1999] and references therein). Thermodynamic considerations allow for
ice and NAT particles below a threshold temperature of Tice ≈ 189 K and
TNAT ≈ 195 K under stratospheric conditions. However, observations in-
dicate that a substantial supercooling may occur before the onset of PSC
formation. The SACADA PSC-module therefore uses reduced temperature
thresholds Tice,s = 187 K and TNAT,s = 191 K. Furthermore a time constant
τ = 5 hours was introduced, such that only a fraction Δt/τ of the theo-
retically possible number of molecules may condense or evaporate per time
interval Δt.
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4.2 The adjoint model

The adjoint model operator M∗, which is needed for the computation of
the gradient ∇c0J of the cost function with respect to the initial volume
mixing ratios c0 (compare Equation 2.14), has been constructed starting from
the forward code, detailed above. The transpose of the tangent-linear (or
Jacobian) of the operators Mh and M c is obtained by forming the tangent-
linear of each individual line of code and transposing it, as described in
Section 2.2. In the case of the linear operator Mv, the adjoint is particularly
easy to obtain, as the Jacobian

∂Mv

∂c
= [I + 2ΔtA]−1

is the operator itself and hence,

Mv∗ = [I + 2ΔtA]−T .

Note that, in contrast to Mv∗, Mc∗ and Mh∗ involve the recomputation of
required variables starting from the volume mixing ratios values before the
respective forward operator was applied. These values are saved to disk at
each time step as shown in Figure 4.7. During the course of adjoint model
integration, the gradient due to observations yn+1, which are available within
the time interval [tn, tn+2], is added to the adjoint variable c̃∗(tn+1), which
then is propagated backward in time by means of the adjoint model:

c∗(tn+1) = c̃∗(tn+1) + HTR−1[yn+1 −Hc(tn+1)]

c∗(tn−1) = [Mh∗ ◦ Mv∗ ◦ Mc∗] c∗(tn+1)
(4.16)

Finally, at n − 1 = 0, the gradient of Jo with respect to the initial volume
mixing ratios c(t0) has been obtained:

∇c0J
o = c∗(t0) .

4.3 BECM implementation

Two background error covariance parameterisations, an isotropic and a gener-
alised scheme based on (3.25) have been developed for the SACADA system.
The core of both schemes is the diffusion operator

L =
{ {I − κvΔtDv}−1{I + κhΔtDh}

}M
(4.17)
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Figure 4.7: Storage strategy of the SACADA assimilation system. Volume mixing
ratios are saved to disk before the horizontal advection and chemistry routines
are called. These model states serve as a starting point for the recomputation of
required variables during the course of adjoint integration. Note that the vertical
advection scheme is linear and does not require any recomputations.

utilising an implicit vertical diffusion algorithm. The only difference between
the two schemes is the formulation of the horizontal Laplacian operator Dh.
The practical implementation, including the derivation of stability criteria for
the horizontal operators, is detailed in Appendix B. Normalisation factors for
the anisotropic scheme are computed according to the random method (3.27).
The distribution of relative differences between the random normalisation
factors and the exact solution is shown in Figure 4.8 for different numbers
of ensemble members Q. Standard deviations of the three tested realisations
of random normalisation factors are in good accordance with the theoretical
value 1/

√
2Q (see Chapter 3). For Q = 5000, which was the ensemble size

selected for subsequent tests, the resulting standard deviation is 1% and
hence, the probability is less than 1% that a single normalisation factor
differs more than 3% from the exact value. The computational effort that
has to be spend on the generation of an ensemble of this size depends on the
diffusion length scale Lh and the stretching factors s̃1, s̃2, but is generally
less than the time consumed by one iteration of the assimilation algorithm.

The rotation angle α is calculated at each grid point as the angle between
the gradient of the potential vorticity and the north-direction of the local
coordinate system. Hence, according to (3.26), TT∇hψ is the gradient of an
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Figure 4.8: Distribution of
relative differences between
random and exact normali-
sation factors for 1000 (dot-
ted), 5000 (solid) and 10 000
(dashed) ensemble members
Q. The standard deviations
of the three distributions are
2.25%, 1.0% and 0.71%, re-
spectively.

arbitrary scalar field ψ transformed into a (η̃, χ̃) coordinate system, where
the χ̃-axis is aligned to the direction of the PV-gradient. Consequently, the
stretching factors s̃1 and s̃2 specify the stretching or shrinking of coordinates
(η̃, χ̃) in the direction perpendicular and parallel to the PV-gradient, respec-
tively. In the current version of the SACADA system, the full stretching
is applied for PV-gradients greater than 0.2(∇P )max, where (∇P )max is the
maximum PV-gradient at the corresponding model level. Below this value
there is a linear decrease of stretching factors, and finally at locations where
the PV-gradient equals zero, no coordinate stretching is applied.

As an example, the horizontal correlations generated by the two schemes are
shown in Figure 4.9. Isotropic correlations with a horizontal length scale of
500 km are displayed at the top, and the outcome of the anisotropic scheme
using the settings Lh = 500 km, s̃1 = 2 and s̃2 = 0.25 is shown at the bottom.
The meteorological situation from 28 October 2003 was taken to compute the
anisotropic correlations; the corresponding PV-field is shown in Figure 3.2.
The larger correlation between grid cells along the edge of the polar vortex
is clearly visible.

4.4 Assimilation system set-up

The main components of the SACADA assimilation system are the mete-
orological module, the forward model M , its adjoint version M∗ and the
BECM module as described above. A limited memory BFGS (L-BFGS,
limited-memory Broyden Fletcher Goldfarb Shanno) algorithm, which was
devised by Nocedal [1980] and Liu and Nocedal [1989], is employed for the
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Figure 4.9: Example of a discrete correlation function at the 100 hPa level for a
grid point located at 72oS and 130oW, as calculated by the isotropic scheme (top)
and the anisotropic scheme (bottom, PV field as shown in Figure 3.2).
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Figure 4.10: SACADA system set-up.

minimisation of the cost function. The interplay of all components within
the SACADA system is shown in Figure 4.10. The first link in the process
chain is the generation of meteorological data by GME. Observational data
are collected by a preprocessing tool PREP, which provides data from dif-
ferent sources in a unified format. If necessary, i. e. if data quality is poor,
data may be filtered at this step. The first iteration of the minimisation
process is started with the background field cb, which is the analysis result
from the previous day, as a first guess. The chemistry-transport module
performs a forward integration, thereby storing the chemical state twice at
each timestep, as described in Section 4.2, for subsequent use by the adjoint
CTM. Outcome of the adjoint calculations are the cost function and its gra-
dient with respect to the initial volume mixing ratios. The resulting gradient
is transformed according to (3.5), as the minimisation is performed with re-
spect to the incremental variable v0. Improved values for v0 are delivered by
the L-BFGS routine, which are transformed back by multiplying with B1/2

and adding the background volume mixing ratios according to (3.6). It was
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found, that twelve iterations of this procedure suffice to approximate the
minimum of J(c0) adequately well.





CHAPTER 5

Observational basis

Space borne remote sounding instruments measure electromagnetic radiation
that is emitted, scattered or transmitted by the earth’s atmosphere. Infor-
mation on atmospheric particles, temperature, pressure and the amount of
various trace gases can be derived from the spectra recorded by these in-
struments. This process, which involves the inversion of a radiative transfer
model, is called retrieval. Instruments differ in their viewing geometry and
the spectral range of radiation that they are able to analyse. Nadir viewing
instruments have a relatively small field of view, which is generally directed
downwards, but may be scanned slightly away from the nadir direction. The
horizontal resolution can be refined down to approximately 1×1 km for recent
instruments with special high resolution observation modes. However, the
information, that can be infered on vertical atmospheric structures remains
limited. In contrast, the limb viewing geometry, as depicted in Figure 5.1,
offers an improved vertical resolution at the cost of a limited information
content along the line of sight. Instruments that analyse emitted radiation
can operate on both, day- and night-side of the earth, while instruments
recording scattered sunlight can take their measurements at the sunlit side
of their orbit only. Some instruments use occultation techniques, recording
spectra of sunlight that is transmitted through the atmosphere during sun-
rise or sunset. Occultation measurements are also possible with the moon or
bright stars as a source of radiation.

From the data assimilation point of view several implications arise from the
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Atmosphere
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Figure 5.1: A limb viewing space borne remote sounding instrument is recording
a sequence of spectra scanning through the atmosphere as seen from the orbit. The
information contained in these spectra mainly comes from the region around the
tangent point, where the atmospheric density reaches its maximum along the line
of sight.

fact that retrieved profiles are not direct measurements of the atmospheric
state, but rather a derivation through a complex inversion process is required.
Therefore, the basic facts about retrieval methods for atmospheric sounding
will be summarised in Section 5.1. A detailed discussion of this topic can
be found in the textbook of Rodgers [2000]. In the work presented here,
the SACADA assimilation system has been tested and evaluated by means
of three case studies. Data from four different limb viewing instruments,
namely MIPAS, SCIAMACHY, HALOE, and SAGE II, have been used for
this purpose. A short description of each instrument and the respective data
products will be given in Section 5.2.

5.1 Retrieval methods

From a theoretical point of view, the retrieval process is in no way different
from the data assimilation problem. A radiative transfer model H calcu-
lates the radiance y that a certain instrument would measure for a given
atmospheric state x:

y = H(x) + εr + εs .

The measurement error εr is usually regarded as a Gaussian distributed ran-
dom quantity. Thus, it is called random error or instrument noise. In prac-
tice, additional errors εs arise from the fact that a numerical model has to
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be employed for the forward mapping to measurement space. Such error
components originate from sources like uncertain spectral data, instrument
calibration parameters or simplifying assumptions in the model H relative to
the true physics. As these errors lead to differences between the retrieval and
the true state, which are correlated in space and time, they are traditionally
called systematic errors in the remote sounding literature. For the deriva-
tion of an optimal inverse method, systematic errors are neglected, which
is the perfect model assumption already encountered in Chapter 2. Due to
the relative smallness of the profile retrieval problem, compared to the enor-
mous number of control variables that is encountered in atmospheric data
assimilation, it is possible to a posteriori calculate the sensitivity of the re-
trieved profile to variations in uncertain model parameters. By this measure
an estimate of the systematic error component εs can be derived as outlined
in Rodgers [2000]. However, by their nature, the systematic errors are not
Gaussian distributed and therefore, the inclusion of these components in the
observation error covariance matrix of the assimilation system violates the
underlying statistical asumptions to some extent. On the other hand, the
random component of the total retrieval error is often comparatively small
and hence, the retrieved profiles recieve an unrealistic large weight, if the
systematic error is neglected.

Most practical retrieval algorithms consider a one dimensional atmosphere,
which composition varies with height only. The retrieval method solves the
problem of finding an atmospheric profile xa, which combines optimally the
information content of the measurements and some background state xb. The
Bayesian approach, as described in Chapter 2, may be applied and under the
common Gaussian assumption the maximum of the posteriori PDF can be
found by minimising the cost function (2.3). The Gauss-Newton iteration
(2.6) may be used to find the minimum of J and the error covariance matrix
of the retrieval is given by (2.7) (Rodgers [2000]). As systematic error sources
have been neglected, Pa does not characterise the total retrieval error, but
the contributions due to background error and instrument noise only. Note,
that even if the measurement errors were uncorrelated, i. e. R is diagonal,
the contribution of measurement noise to the analysis error covariance is
correlated due to the retrieval.

Most inverse methods for atmospheric sounding are based on (2.6) or variants
thereof. Sometimes, a Levenberg-Marquardt method is used, which employs
slightly modified weights

W̃i =
[
B−1 + H′T

i R−1H′
i + γiI

]−1
H′T
i R−1 , (5.1)

a measure that stabilises the matrix inversion and effectively restricts the
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magnitude of the update added at each iteration. Several strategies of choos-
ing γi for each iteration step are discussed by Rodgers [2000]. Another com-
mon modification is to introduce some constraints on the smoothness of the
retrieved profile in addition to or instead of the a priori information. This is
done by including a term [

x− xb]T Hr

[
x− xb]

in the cost function (2.3). Hr is called regularisation matrix, which may
encode different kinds of constraints. For example, the matrix Hr := STS
with

S =

⎛
⎜⎜⎜⎝

0 0 . . . . . . . . . 0
−1 1 0 . . . . . . 0
...

...
0 . . . . 0 −1 1

⎞
⎟⎟⎟⎠

constraints the variability of the retrieved profile. In practical applications
the regularisation constraint must be properly weighted against the obser-
vational part of the cost function and more sophisticated constraints can be
applied (Rodgers [2000]). Note, that a regularisation matrix cannot be inter-
preted, in general, as the inverse of some covariance matrix, as Hr is usually
singular.

5.1.1 Averaging kernels

An important characteristic of any inverse method is its sensitivity to varia-
tions in the state vector x. Let R be the retrieval method, which produces
an analysis from a given set of observations:

xa = R(y) .

Now consider a retrieval that is carried out with a simulated vector of obser-
vations y = H(x). This will yield

xa = R(H(x))

and the sensitivity of the retrieval xa with respect to a small variation about
the atmospheric state xl can be computed as

xa − xa
l ≈ A(x− xl)

with A :=
∂xa

∂x

∣∣∣∣
xl

=
∂R

∂y

∣∣∣∣
H(xl)

∂H

∂x

∣∣∣∣
xl

.
(5.2)
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Figure 5.2: Averaging kernels for an O3 retrieval based on MIPAS spectra as
calculated by Institut für Meteorologie und Klimaforschung (IMK), Forschungszen-
trum Karlsruhe. Note that for clarity reasons only a subset of kernels has been
plotted. The IMK retrieval grid has a spacing between 1 and 10 kilometres and the
horizontal dashed lines mark the heights for which kernels have been plotted.

A is called averaging kernel matrix or sensitivity matrix. Considering the
rows ai of A as discrete functions of height, ai(hj) quantifys the response
of the retrieval at level i to a perturbation Δxj = xj − xj,l at height hj, as
shown in Figure 5.2. For a perfect retrieval method, A would be the unit
matrix, but in reality the functions ai are peaked around the level i. The
half-width of these peaks is often taken as a measure of the spatial resolution
of the observing system. The area of the averaging kernel rows indicates how
much information in the retrieved profile at a certain height originates from
the observations. If the area of ai is small, the actual atmospheric state has
only little influence on the retrieved profile. Consequently, the analysis xa

i is
mainly determined by the a priori profile or smoothing constraints.

5.1.2 Assimilation of retrievals vs. assimilation of ra-

diance

The assimilation of retrived profiles into an atmospheric model has a few
drawbacks from the theoretical point of view. The vector xa which is the
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outcome of a complex retrieval algorithm, as outlined above, becomes a part
of the vector of ‘observations’ y in the assimilation system. An independent
a priori profile has been used within the retrieval process to constrain the
solution, and often the retrieval grid spacing is much finer than the actual
resolution of the observing system. Hence, taking the retrieved profile as a di-
rect observation of the quantity, which is to be assimilated, will overestimate
the information content of y.

For this reason weather prediction centres use observed radiances directly for
the assimilation process. In this case the observation operator H involves a
radiative transfer model, which calculates the radiance that a certain instru-
ment would observe, given the atmospheric state computed by the assimilat-
ing model. The background field of the data assimilation system is superior
to the climatological profiles, which usually represent the background in the
retrieval, and it is possible to take into account a full three dimensional state
of the atmosphere in the radiative transfer model. However, the effort to be
spend on the development and implementation of a radiative transfer model
(and its adjoint) suitable for the use in an atmospheric data assimilation
system is considerable, and each different instrument and each trace gas re-
quires its own specific treatment. Recently, a fast radiative transfer model
intended for the assimilation of MIPAS limb radiances has been presented
by Bormann et al. [2005].

A promising strategy to escape this dilemma is the use of averaging kernel
information in the H-operator of an atmospheric data assimilation system
instead of the full radiative transfer model. The observation increment due
to a single retrieved trace gas profile1 yr can be computed according to (5.2)
as

yr −H(xm) ≈ yr − [yrl + A(G(xm) − xrl )] . (5.3)

The superscripts m and r have been introduced to distinguish quantities that
are defined on different grids, namely the grid of the assimilating model (m)
and the retrival grid (r). Operator G calculates the model equivalent on
the retrieval grid, and yrl is the retrieval at the linearisation point xrl , for
which the averaging kernel matrix has been calculated. Provided the model
state xm is close enough to xrl , such that the linear assumption underlying
(5.2) is valid, it is possible to compute what would have been retrieved under
the atmospheric conditions xm given by the assimilating model. Segers et al.
[2005] have successfully applied (5.3) in their Kalman filter based assimilation

1The similarity of retrieval algorithms and data assimilation methods has been empha-
sised by denoting retrieved profiles with xa until here. To maintain notational consistency,
the vector of observations within the data assimilation system, which may consist of re-
trieved profiles, is refered to as y again, as introduced in Chapter 2.
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of GOME profile data. Unfortunately, only few data products exist at the
time of writing that provide full averaging kernel information. Hence, in the
work presented here the approach outlined above could not be used because
no or only incomplete averaging kernel information was available from the
respective data provider.

5.2 Instrument and data product description

On 1 March 2002 MIPAS and SCIAMACHY were launched on board of
ESA’s Environmental Satellite (EnviSat) into a sun-synchronous polar orbit
with an inclination of 98.55o. The orbit is almost circular at about 800 km
altitude resulting in a total of 14.3 orbits that are performed each day. The
descending node of the orbit (crossing of the equatorial plane from north
to south) is located at 10 a.m. local time. MIPAS has been the main data
source for assimilation case studies presented in this work. Data from SCIA-
MACHY, SAGE II and HALOE have been kept back as independent (not
assimilated) control data sets. A cross validation of the MIPAS instrument
with data from the latter sensors can be performed, as outlined in Chap-
ter 6. The most important characteristics of the different MIPAS and SCIA-
MACHY data products are summarised in Table 5.1.

5.2.1 MIPAS

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is
a Fourier-transform spectrometer measuring high resolution emission spectra
in the mid-infrared from 4.1 to 14.7 μm wavelength in a limb viewing mode.
The instrument’s field of view is about 30 km in the horizontal and 3 km
along the vertical direction at the tangent point. A single limb-scan covers an
altitude range from approximately 6 to 68 km by 17 steps. A detailed descrip-
tion of the instrument design can be found in Fischer and Oelhaf [1996]. Two
different data products derived from MIPAS spectra have been assimilated,
namely the trace gas profiles that are operationally delivered by ESA as de-
scribed by Ridolfi et al. [2000], called MPE herafter, and retrievals that have
been produced by the Institut für Meteorologie und Klimaforschung (IMK),
Forschungszentrum Karlsruhe, referred to as MPI in this text. More detailed
information about the latter data product can be found in von Clarmann
et al. [2003], Glatthor et al. [2004], Höpfner et al. [2004], Funke et al. [2005]
and Mengistu Tsidu et al. [2005]. Profiles of O3, NO2, CH4, HNO3, H2O
and N2O are contained in both of these data products. The set of retrieved



58 Observational basis

species available from IMK additionally comprises HNO4, ClONO2, N2O5,
ClO, NO, CFC-11 and CFC-12. The IMK and ESA retrieval algorithms are
based on the Levenberg-Marquardt formula (5.1), however, without using an
explicit a priori profile but a smoothing constraint instead.

The retrieval grid of the MPI data product is fixed with a 1–2 km spacing in
the region where the retrieval is sensitive to the respective target species. A
detailed error characterisation of the profile data comprising the full retrieval
noise error covariance matrix, a total error estimate, and the averaging kernel
matrix is provided, however, only for two of the three case study periods.
Note, that the linearisation profile xl for the averaging kernel matrix is not
regularly distributed with the data. Hence, the approach (5.3) cannot be
used.

Retrievals that are delivered by ESA are sampled on a grid, the spacing
of which varies from one profile to the next, as the volume mixing ratios
are given at the tangent location of the respective scan. Thus, the retrieval
grid has approximately the same spatial resolution as the observing system.
Retrieval noise error covariance matrices (but no systematic error estimates)
as well as averaging kernels are part of the data product. Unfortunately, the
averaging kernel matrices are provided for nominal (fixed) tangent altitudes,
which makes the practical application of (5.3) complicated, if feasible at all
(compare Migliorini et al. [2004]).

5.2.2 SCIAMACHY

The Scanning Imaging Absorption Spectrometer for Atmospheric Chartogra-
phy (SCIAMACHY) measures sunlight transmitted, reflected and scattered
by the earth’s atmosphere or surface. The spectral range of the instrument
covers the ultraviolet, visible and near infrared wavelength region between
240 and 2380 nm. SCIAMACHY can be operated in three different measure-
ment modes, a nadir viewing, a limb viewing and a solar/lunar occultation
mode. A description of the instrument and viewing modes can be found in
Bovensmann et al. [1999]. Limb and solar occultation profiles retrieved by
Institut für Umweltphysik, Universität Bremen have been used for the case
study based evaluation of the SACADA assimilation system.

The solar occultation technique and the retrieval aspects are described in full
detail by Meyer [2004]. As a solar occultation takes place only once per orbit,
a maximum of 14 profiles per day can be obtained. Due to EnviSat’s special
orbit geometry the location of these profiles is confined to a relatively small
latitude band between approximately 50oN and 70oN. The main advantages
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of the solar occultation method arise from the facts that the sun is a strong
source of radiation leading to a favourable signal to noise ratio, and that
reference spectra of the sun well above the atmosphere can be recorded.
Hence, this technique is self-calibrating. For these reasons, profiles retrieved
from solar occultation measurements are considered to be more precise than
profiles derived using other viewing geometries. Because of the sparse spatial
coverage on the one hand, and the superior quality of these data on the other
hand, profiles from solar occultation measurements have not been assimilated
but have been retained to serve as independent data for the assessment of
the quality of the analysed atmospheric fields.

The Bremen solar occultation and limb data products (denoted SCO and
SCL, respectively) contain profiles of O3 and NO2 while the limb data ad-
ditionally provides profiles of BrO. Due to the nature of the measurement
process, SCIAMACHY limb profiles can only be retrieved at the sunlit side
of the orbit. Consequently, spatial coverage is less dense compared to MIPAS
data. Global estimates of the absolute retrieval error are provided for both
data products. Averaging kernels are not distributed, but the retrieval is
reported to have a good sensitivity between 15 and 40 km altitude (Meyer
[2004]).

5.2.3 SAGE II and HALOE

The Stratospheric Aerosol and Gas Experiment II (SAGE II) and the Halogen
Occultation Experiment (HALOE) provide a long term record of important
stratospheric constituents. Their data has been compared to and validated
against a wealth of direct and indirect measurements from other instruments
(see Wang et al. [2002], Nazaryan et al. [2005] and references therein). The
retrieval algorithms and data quality have been improved continuously over
the years. Trace gas profiles from SAGE II and HALOE can therefore be con-
sidered to be the best validated stratospheric remote sounding data available
at the time of writing.

The SAGE II instrument was launched in October 1984 on board the ERBS
spacecraft. The instrument operated in the UV, visible and near-infrared
(385-1020 nm) wavelength region employing the solar occultation technique.
In contrast to SCIAMACHY, SAGE II was able to take measurements during
sunrise and sunset, leading to a maximum of 30 profiles per day. After
technical problems in July 2000, the instrument was operated at a 50% duty
cycle and about 15 retrievals per day are available. Due to the orbit geometry,
tangent point locations vary slowly from 60oN to 60oS within approximately
one month. Retrieved profiles of aerosol extinction, O3, NO2 and H2O are
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MPE MPI SCO SCL

Data product version 4.61 V1 / V2 / V3 1.0

Available species

15-40 km 15-40 km

Retrieval grid variable, ~3 km spacing fixed, 1-2 km spacing fixed, 1 km spacing

Vertical resolution 3-5 km 3-5 km

Error estimates

Averaging kernel available (see text) available not available not available
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3-5 km depending on 
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random error 
covariance matrix
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estimate 

global absolute error 
estimate
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regularisation
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regularisation
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regularisation
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regularisation

Table 5.1: Summary of MIPAS and SCIAMACHY data product characteristics.
MPE and MPI trace gas profiles are derived from MIPAS spectra by ESA and
by Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe,
respectively. SCO and SCL are the SCIAMCHY solar occultaion and limb data
product, which have been provided by Institut für Umweltphysik, Universität Bre-
men.

provided by the NASA Langley Radiation and Aerosol Branch. Recently, a
new data product version 6.2 (referred to as SG2 in the following text) was
released with improvements mainly concerning the water vapour retrieval
(Thomason et al. [2004]). SAGE II was switched off in August 2005 after
almost 21 years of nearly continuous operation.

HALOE was in operation from October 1991 to November 2005. On board
the Upper Atmosphere Research Satellite (UARS) it performed solar occul-
tation measurements at sunrise and sunset in the infrared wavelength region.
Profiles of O3, HCl, CH4, H2O, NO, NO2, HF, temperature and aerosol ex-
tinction have been derived routinely. During nominal operation, about 30
occultation events per day have been recorded. As in the case of SAGE II,
the latitude of tangent point location changes slowly from day to day, cover-
ing a range of 80oN to 80oS within approximately one month. The latest data
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product release (version 19, abbreviated HLO hereafter) has been obtained
from the NASA Langley Research Center in Hampton, Virginia.





CHAPTER 6

Case studies

Three periods of time in 2002 and 2003 each spanning about one and a half
month have been selected to test and evaluate the new SACADA assimilation
system. There have been dedicated assimilation runs for each of the data
products MPE and MPI, while the SCL, SCO, SG2 and HLO data served
as independent control data sets (see Chapter 5 for the definition of data
product acronyms). The three case study periods are:

CS1 1 September 2002 – 15 October 2002

CS2 1 July 2003 – 15 August 2003

CS3 21 October 2003 – 30 November 2003.

Two noteworthy events took place during the periods CS1 and CS3. At the
end of September 2002, a major stratospheric warming occurred at southern
latitudes, which caused the antarctic polar vortex to split into two fragments
around 25 September. It was for the first time since the beginning of ob-
servations in 1958 that a major stratospheric warming event occurred in the
southern hemisphere. This event is clearly visible in the assimilated trace
gas fields as will be shown in Section 6.2. Furthermore, a series of excep-
tionally strong solar proton events was observed during late October and
early November 2003. Energetic particles penetrated the atmosphere at high
geomagnetic latitudes and caused an enhancement of NOx together with de-
pletion of ozone and various other effects in the polar upper stratosphere and
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lower mesosphere (see López-Puertas et al. [2005a] and López-Puertas et al.
[2005b] and references therein). The occurrence of the latter events is not
optimal for the purpose of testing and evaluating the new assimilation sys-
tem, since the energetic particles act as sources of chemical constituents and
these processes are not accounted for in the SACADA chemistry module and
its adjoint. However, it was found that the performance of the assimilation
system was generally not degraded as discussed in Section 6.4.

An interesting application of 4D-var data assimilation is the possibility to
cross validate retrieved profiles from different instruments. Usually this task
is accomplished by comparing an ensemble of collocated profiles, which are
separated by not more than some predefined maximum distance and a max-
imum time interval. This technique is common practise, but the selection of
collocation criteria is somewhat arbitrary and problematic: If strict colloca-
tion criteria are chosen, only few coincident profiles will be found and the
statistical basis for cross validation remains poor. If, however, the criteria are
relaxed, the two instruments may have sounded different air masses, which
makes a comparison worthless. The use of chemically consistent constituent
fields obtained by 4D-var data assimilation offers a more satisfying approach
to the cross validation challenge. Without applying any artificial criteria, a
global analysis produced by processing observations of one instrument can
be compared to profiles of another sensor, which have not been used within
the assimilation procedure. Naturally, this approach requires the errors of
the analysed field to be small enough in order to enable a useful compari-
son. Unfortunately, the 4D-var method does not provide for estimates of the
analysis error, but it can be argued that if the analysis is based on sufficiently
dense data sets –as it is the case for MIPAS observations– the analysis error
will be small enough for cross validation purposes. A few results of cross
validation between MIPAS and SCIAMACHY, SAGE II as well as HALOE
ozone profiles are presented in Section 6.4. An in-depth discussion of this
issue, however, is beyond the scope of this work.

Note, that not all case study periods are completely covered by all data sets.
Data availability is summarised in Figure 6.1. For notational convenience,
different configurations of the assimilation system will be referred to as fol-
lowing the scheme CSn-ins-v , where n is the case study number ranging
from 1 to 3, ins is the instrument/data product acronym of the assimilated
data set and v is a version number distinguishing assimilation runs with dif-
ferent BECM parameter settings. For example, CS2-MPE-1 denotes an
assimilation run where MIPAS data processed by ESA have been assimilated
with BECM parameter settings as detailed in the corresponding column of
Table 6.1.
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Figure 6.1: Data availability for the three case study periods. Red colour indicates
that no data from the respective instrument is available at the particular day.
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6.1 System set-up

Initial values for the first day of each of the case study periods have been
derived from the two dimensional atmospheric model SOCRATES (Brasseur
et al. [1995]). The output of this model contains latitude/height distributions
of zonal mean volume mixing ratios of all stratospheric constituents included
in the SACADA reaction mechanism, except for HNO4, for which a constant
volume mixing ratio of 1.0×10−3 ppb was assumed. After distributing these
data to the icosahedral grid, a 48 hour model spin-up run was performed to
relax the chemical constituents towards their equilibrium state. As the esti-
mate of the atmospheric state represented by these initial values is relatively
coarse, a spin-up assimilation covering the first week of each case study pe-
riod has been performed. For the first six days, the PSC-scheme has been
turned off, and a large relative background error εb as well as large correla-
tion length scales Lh, Lv have been assumed. At day seven the PSC-scheme
was switched on and reduced values for εb, Lh and Lv have been inserted,
which were the settings for the rest of the case study periods. The defini-
tion of BECM parameter values for different configurations of the system
can be found in Table 6.1. Note that during September/October 2002 and
July/August 2003 only limited MPI data were available. Therefore, the con-
figurations CS1-MPI-n and CS2-MPI-n have been run with a three day
spin-up assimilation, which was initialised using the assimilation result from
CS1-MPE-1 and CS2-MPE-1 for 12 September 2002 and 21 July 2003,
respectively. The standard set of species, which comprises O3, NO2, CH4,
N2O, HNO3 and H2O, has been assimilated in all but the CS3-MPE-2/3
configurations presented here. Furthermore, all configurations involving the
MPI data product, additionally included the assimilation of N2O5, ClONO2,
CFC-11 and CFC-12. In order to enable a comparison between the analyses
attained with the assimilating model and a free model run, a control model
run without data assimilation starting from the final analysis of the spin-up
assimilation has been accomplished.

To investigate the benefits of the anisotropic background error covariance for-
mulation, two pairs of assimilation experiments have been conducted. The
first experiment with anisotropic correlations (CS3-MPE-3) was carried out
with the domain of the chemistry-transport module restricted to model levels
10–25 (2–100 hPa) and the assimilation confined to ozone only. The local
coordinate stretching factors have been set to s̃1 = 4 and s̃2 = 0.25, cor-
responding to halving the correlation length scale in the direction aligned
with the local PV-gradient, and doubling it in the perpendicular direction.
As the results have been very encouraging, case study CS1-MPE-5 used



6.2 General results 67

Configuration 1 2 3 4 5

Lh (spin-up) 600 km 1200 km 1200 km 800 km 800 km
Lh 300 km 800 km 800 km 500 km 500 km
Lv (spin-up) 2 km 2 km 2 km 2 km 2 km
Lv 1.5 km 1.5 km 1.5 km 1.5 km 1.5 km
εb (spin-up) 100% 100% 100% 80% 80%
εb 50% 50% 50% 40% 40%
s̃1 1.0 1.0 4.0 1.0 4.0
s̃2 1.0 1.0 0.25 1.0 0.25

Table 6.1: BECM parameter settings for the different configurations of the as-
similation system.

the same settings for s̃1 and s̃2, but the standard set of species was assimi-
lated within the full domain of the chemistry-transport module. Case studies
CS3-MPE-2 and CS1-MPE-4, for which assimilation was performed with
isotropic background error covariance settings, serve as a reference. The
results can be found in Section 6.3.

The observation error covariance matrix R has been assumed to be diagonal
with the variances taken from the respective data products. If, however, only
random (instrument noise) errors were available, the error margins had to be
increased in order to account for the systematic error components (see dis-
cussion in Section 5.1). Furthermore, some of the MPI error estimates turned
out to be unrealistic small, even allthough the systematic error component
was included. As observations with unrealistic small errors receive too much
weight within the data assimilation procedure, it has been decided to assume
some minimum relative error for the MPE and MPI data products. Different
values for the minimum relative error margin have been tested and the results
presented here, have been obtained with the MPI and MPE error margins
increased to 7% and 10%, respectively. The statistical evaluation below indi-
cates that even the latter value is presumably too optimistic. Additionally,
the operational ESA data MPE had to be filtered for extreme outliers before
they could be used for assimilation.

6.2 General results

The evolution of the cost function during the course of the three case studies
for configurations CS3-MPI-1, CS1-MPE-1 and CS2-MPE-1 is shown
in Figures 6.2, 6.3 and 6.4, respectively. The cost function values are divided
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Figure 6.2: Evolution of the normalised cost function (cost divided by the number
of observations) for configuration CS3-MPI-1. The x-axis gives the iteration
count, and the number of observations available at a particular day is displayed at
the right hand side of each plot.

by the number of available observations p to make the results comparable
among different days. Further, it can be shown (Talagrand [1998]) that at
the minimum of the cost function the expected value of Ja

p := J(xa)/p is
0.5, if the true covariance matrices Rt and Bt had been used. Consequently,
a mean value of Ja

p = 0.5 constitutes a necessary condition for B and R to
approximate the true covariances adequately well. The analysis cost function
value Ja

p stays slightly above the optimal value of 0.5. This may indicate,
among other possible causes, that the observations error margins are still
too small, as the background with its large error margins does not contribut
significantly to the total cost. Results for the remaining configurations (not
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Figure 6.3: As Figure 6.2 for configuration CS1-MPE-1.



70 Case studies

Figure 6.4: As Figure 6.2 for configuration CS2-MPE-1.
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shown) are very similar.

During the spin-up assimilation of seven days (Figures 6.2–6.4, top panel),
the normalised cost function value at iteration one

J f
p := J(xb)/p =

1

2p

N∑
i=0

[
H
(
Mi(x

b)
)− yi]T R−1

[
H
(
Mi(x

b)
)− yi]

rapidly decreases within the first few days. During the rest of the period
(middle and bottom panel) the cost function is reduced by a factor of ap-
proximately three with little day to day variation. Note that J f

p gives the
mean square difference between the first iteration forward run and observa-
tions, weighted by the observation error covariances. Hence, this quantity
can be regarded as a measure of forecast skill: The first forward integration
of the model, initialised with the analysis from the previous day, has not been
corrected towards the current observations. Hence, it is a pure one-day fore-
cast, the skill of which depends on both, the quality of the previous analysis,
and the model skill, particularly if data is sparse in time or space.

Observe that during CS1-MPE-1 there are two data gaps of 3 and 13 days.
To bridge these gaps, the model has been operated in forecast mode starting
from the last available analysis. Consequently, J f

p at 12 September 2002 and
12 October 2002 (Figure 6.3) reflect the forecast skill of a four-day and a
two-week forecast, respectively. The factor by which J f

p is larger for the four-
day forecast in comparison to the J f

p value at other days is less than two,
and even after bridging the data gap of 14 days this factor is not larger than
four, which is a fully satisfying result.

Assimilated ozone fields for the vortex split case study CS1-MPE-1, to-
gether with the corresponding ozone distribution from the control run are
shown in Figures 6.5–6.7 for model level 21, corresponding to a pressure of
36 hPa. At 20 September 2002 the polar vortex is still intact, but already
distorted. The vortex split occurs around 25 September and the smaller of
the two fragments rapidly mixes with mid-latitude air masses. A comprehen-
sive discussion of the vortex split event can be found in Allen et al. [2003].
The control model run basically captures the relevant features of the ozone
field during the September/October 2002 period. However, the ozone values,
especially within the polar vortex and the two vortex fragments, are much
too high. Another noticeable feature is, that the analysed ozone fields show
a noisy structure in some regions. Since the parameters of the backround
error covariance matrix, i. e. the relative backround error εb as well as the
length scales Lh and Lv, have been chosen very conservatively, an overfitting
of single observations may have occurred.
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Figure 6.5: CS1-MPE-1 ozone analysis for 20 September 2002 (bottom) and
ozone control run distribution (top) at model level 21, corresponding to 36 hPa.
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Figure 6.6: CS1-MPE-1 ozone analysis for 25 September 2002 (bottom) and
ozone control run distribution (top) at model level 21, corresponding to 36 hPa.
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Figure 6.7: CS1-MPE-1 ozone analysis for 28 September 2002 (bottom) and
ozone control run distribution (top) at model level 21, corresponding to 36 hPa.
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Figure 6.8: CS1-MPE-4 ozone analysis for 20 September 2002 at model level
21, corresponding to 36 hPa. The effect of smaller background errors and larger
correlation length scales is most pronounced in high southern latitudes (compare
Figure 6.5).

Consequently, due to the good performance of the assimilating model, it
seemed to be justified to further reduce the value of εb and to assume larger
horizontal correlation length scales for the configuration CS1-MPE-4. The
resulting ozone analysis at 20 September 2002, as shown in Figure 6.8, is
smoother and the signature of individual observations is less obvious (com-
pare Figure 6.5). In order to decide if the latter analysis is objectively bet-
ter, the cost function values J f

p can serve as a measure of analysis quality.
Thereby, as outlined above, analysis quality is quantified in terms of the
weighted mean square difference between the subsequent forecast and obser-
vations. Figure 6.9 clearly indicates that the J f

p values are generally lower
for the CS1-MPE-4 configuration. Even after the data gap of 13 days, J f

p

is smaller by 8% with the CS1-MPE-4 BECM settings. This demonstrates
that the choice of the covariance parameters has considerable influence on
the analysis quality. As will be shown in the next section, further improve-
ment can be achieved by employing the more sophisticated flow dependend
background error covariance parameterisation.
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Figure 6.9: Evolution of the normalised cost function (cost divided by the number
of observations) for configuration CS1-MPE-4. The x-axis gives the iteration
count, and the number of observations available at a particular day is displayed
at the right hand side of each plot. Observe the lower J f

p values compared to
CS1-MPE-1 shown in Figure 6.3 (bottom).

6.3 Flow dependent BECM parameterisation

The benefit of the flow dependent, anisotropic and inhomogeneous back-
ground error covariance formulation is demonstrated by Figure 6.11. As-
similated ozone for 27 October 2003 at 28 hPa obtained with the isotropic
BECM parameterisation (CS3-MPE-2, top panel) is shown together with
the ozone analysis for CS3-MPE-3 (bottom). The corresponding potential
vorticity distribution can be found in Figure 6.10. Clearly, the gradient of the
ozone field at the edge of the polar vortex remains steeper if the anisotropic
BECM formulation is applied, and the collar of high ozone volume mixing
ratios around the vortex does not show a noisy structure.

A second example taken from CS1-MPE-4 and CS1-MPE-5 is given in
Figure 6.12. Again, an obvious feature of the analysis utilising the flow de-
pendent background error covariances is the better representation of filament
structures in the ozone field. Note that here, in contrast to CS3-MPE-2/3,
the complete set of standard species has been assimilated on the full domain
of the chemistry-transport module, which poses a greater challenge to the
assimilation system. The relative difference of J f

p values between the two
configurations (Figure 6.14) reveals an overall positive impact of the aniso-
tropic BECM scheme. The only notable exception is for 2 September (day
245) where J f

p is about 10% larger for configuration CS1-MPE-5. This,
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Figure 6.10: Potential vorticity distribution [K m2

s kg ], 27 October 2003 at 28 hPa.

however, is not a deficiency of the anisotropic configuration, as at the sec-
ond day of the spin-up assimilation a positive impact of the flow dependent
BECM parameterisation cannot be expected. Here, the background field
has still large errors with correlations, which are not governed by the model
dynamics.

It should be noted that the estimate of parameters for the diffusion scheme
is still relatively coarse: The basic correlation length scales Lh and Lv as well
as the relative background error εb, are not varied within the model domain
and the coordinate stretching factors s̃1 and s̃2 are calculated using a simple
dependence on the gradient of potential vorticity. A closer inspection of
J f
p relative differences for individual species and different parts of the model

domain shows that there is considerable variation. In Figure 6.15 the ozone J f
p

relative differences in the latitude bands [−90o,−60o] and [30o, 60o] are shown
for different altitude regions. Between approximately 100 and 15 hPa (model
levels 25–18) the current choice of parameters for the anisotropic diffusion
scheme leads to a consistently positive impact at high southern latitudes.
However, this is not the case for northern mid-latitudes where no significant
changes are visible within this altitude region. Hence, further improvements
of analysis quality can be expected, if the parameters Lh, Lv, εb, s̃1 and s̃2

are calculated location dependent and based on rigorous statistics.
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Figure 6.11: CS3-MPE-2 (top) and CS3-MPE-3 (bottom) ozone analysis
for 27 October 2003 at 28 hPa. The benefit of the anisotropic BECM formulation
is clearly visible in the region around the polar vortex. The corresponding PV-
distribution is shown in Figure 6.10.
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Figure 6.12: CS1-MPE-4 (top) and CS1-MPE-5 (bottom) ozone analysis for
13 September 2002 at 80 hPa. The benefit of the anisotropic BECM formulation
is clearly visible in the region around the polar vortex. The corresponding PV-
distribution is shown in Figure 6.13.
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Figure 6.13: Potential vorticity distribution [K m2

s kg ], 13 September 2002 at
80 hPa.

Figure 6.14: Relative difference between the J f
p value for CS1-MPE-4 and

CS1-MPE-5. A positive difference indicates that the J f
p cost function value for

the anisotropic scheme has been smaller than for the isotropic configuration.
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Figure 6.15: Relative difference between the ozone J f
p value for CS1-MPE-4

and CS1-MPE-5 in the latitude bands [−90o,−60o] (top) and [30o, 60o] (bottom).
Positive differences indicates that the J f

p cost function value for the anisotropic
scheme has been smaller than for the isotropic configuration.



82 Case studies

6.4 Statistical evaluation and cross validation

Validation of assimilation results is presented in this setion. A detailed dis-
cussion is devoted to ozone, including the cross validation of ozone retrievals
originating from different sensors. A statistical analysis of differences between
background field and observations (O−B) is presented in order to assess the
validity of the Gaussian assumption, which the derivation of the cost function
(2.9) was based on.

6.4.1 Ozone

Ozone profiles, zonally averaged over five latitude bands are presented in Fig-
ures 6.16–6.21 for CS1-MPI-1 and in Figures 6.22–6.26 for CS2-MPE-1.
All profile data present within two adjacent model layers and the respective
latitude range have been averaged to form the corresponding mean profile
value. Note that the altitude intervals of 3–5 km, over which has been av-
eraged, are comparable to the vertical resolution of the MIPAS instrument.
The mean retrieved profiles are plotted together with the mean error mar-
gins, the corresponding analysis and the control run data. The grey shaded
area marks the standard deviation of the ensemble of averaged observational
profiles.

The mean analysis profiles show a perfect compliance with the MPE data up
to approximately 3 hPa and a small bias towards lower volume mixing ratios
above (Figure 6.22). The analysis produced with the MPI data product addi-
tionally shows a small positive bias in the region of the ozone volume mixing
ratio maximum at tropical and mid latitudes, which is most pronounced be-
tween 30oS and 30oN (Figure 6.16). Note that the profile values are given
in ppm. The ozone maximum in units of molecules/cm3, usually referred to
as the ozone layer, is located at approximately 30 hPa in the tropics and at
about 90 hPa over the poles. The negative bias at the top of the model do-
main points to an inconsistency between the model and observational data.
An evaluation of retrieved profiles with independent in-situ data is not pos-
sible at this altitude range and hence, it is not undoubtedly clear, wether
the observed bias is due to systematic errors in the retrieved profiles or due
to a bias in the assimilating model. However, as a matter of fact, the bias
is not only present with respect to the assimilated data, but is also seen in
comparison to the control data from HALOE (see Figures 6.18 and 6.24) and
SAGE II (see Figures 6.19 and 6.25). An inspection of the time evolution of
ozone analysis and control run biases, as shown in Figure 6.27, reveals similar
results. Biases are completely removed by the assimilation procedure in the
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Figure 6.16: CS1-MPI-1 mean ozone profiles. MIPAS IMK retrieved profiles
(assimilated) are given in red, the control run is the black dashed line, the analysis
the dash-dotted blue line. The grey-shaded area indicates values within the standard
deviation of observations.
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Figure 6.17: CS1-MPI-1 mean MPE ozone profiles (not assimilated) compared
to analysis and control run.
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Figure 6.18: CS1-MPI-1 mean HALOE ozone profiles (not assimilated) com-
pared to analysis and control run. No HALOE observations took place in the
latitude range [−90o,−30o] during the CS1 period.
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Figure 6.19: CS1-MPI-1 mean SAGE II ozone profiles (not assimilated) com-
pared to analysis and control run. No SAGE II observations took place in the
latitude ranges [−90o,−60o] and [−30o, 30o] during the CS1 period.
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Figure 6.20: CS1-MPI-1 mean Sciamachy limb ozone profiles (not assimilated)
compared to analysis and control run.
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Figure 6.21: CS1-MPI-1 mean SCO ozone profile (not assimilated) compared
to analysis and control run. Note that SCIAMACHY solar occultaion measure-
ments are confined to a latitude band between approximately 50oN and 70oN.

model domain covering the region of the ozone layer and clearly reduced in
the altitude range above. However, as a bias remains in the analysed ozone
field, a process, which proceeds on timescales shorter than one day –the
length of the assimilation window used in this study– must be responsible.
The photochemical lifetime of ozone decreases from about 3 years at 15 km
altitude to about one day at 40 km in equatorial regions (Seinfeld and Pan-
dis [1998]). The latter altitude corresponds to a pressure of approximately
3 hPa. Therefore, it can be suspected that the photochemical equilibrium is
represented not entirely correct by the model above about 3 hPa.

Since the assimilation system shows a fully satisfying performance, it can be
concluded that the assimilated ozone fields can be used to cross-validate dif-
ferent instruments at least up to about 3 hPa. Mean profiles of the HALOE,
SAGE II and SCIAMACHY instruments have been compared to analyses
obtained with MIPAS MPE and MPI data products. There is a reasonable
agreement between the assimilated ozone fields and the HALOE profiles with
the tendency of the MIPAS analyses to higher ozone volume mixing ratios
(Figures 6.18 and 6.24). The maximum differences are found around the
peak of the ozone volume mixing ratio, in good accordance with the results
of Wang et al. [2005], who compared collocated HALOE and MPI profiles for
the September/October 2002 period. They reported maximum differences of
0.4 ppm at the ozone volume mixing ratio maximum in tropical latitudes. An
even better compliance can be observed between SAGE II mean ozone pro-
files and the corresponding MIPAS analyses based on either the MPI or the
MPE data product up to an pressure of about 3 hPa (Figures 6.19 and 6.25).



6.4 Statistical evaluation and cross validation 89

Figure 6.22: CS2-MPE-1 mean ozone profiles. Mipas MPE retrieved profiles
(assimilated) are given in red, the control run is the black dashed line, the analysis
the dash-dotted blue line. The grey-shaded area indicates values within the standard
deviation of observations.
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Figure 6.23: CS2-MPE-1 mean MPI ozone profiles (not assimilated) compared
to analysis and control run.
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Figure 6.24: CS2-MPE-1 mean HALOE ozone profiles (not assimilated) com-
pared to analysis and control run. No HALOE observations took place in the
latitude range [−90o,−60o] during the CS2 period.
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Figure 6.25: CS2-MPE-1 mean SAGE II ozone profiles (not assimilated) com-
pared to analysis and control run. No SAGE II observations took place in the
latitude ranges [−90o,−60o] and [60o, 90o] during the CS2 period.
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Figure 6.26: CS1-MPE-1 mean Sciamachy limb ozone profiles (not assimi-
lated) compared to analysis and control run. No SCIAMACHY limb observations
took place in the latitude range [−90o,−60o] during the CS2 period.
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Figure 6.27: Bias of ozone with respect to MPE observations for CS2-MPE-1.
Solid lines (top panel) show the bias of O3 analyses for each day of the CS2 period
against the assimilated MPE observations for different height ranges. Dashed lines
(bottom panel) give the control run bias.
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Larger differences with respect to the analysed mean O3 profiles are visible
in the case of the Sciamachy limb retrival SCL, as shown in Figures 6.20
and 6.26, especially above approximately 10 hPa. Here, the retrived ozone
mixing ratios are significantly higher than the analysed fields with differ-
ences up to 3 ppm in the region of the maximum ozone volume mixing ratio.
The Sciamachy occultation data product shows an ozone peak of about the
same magnitude as the analysed mean profiles, but shifted downwards by
approximately 5 km (Figure 6.21).
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6.4.2 CH4, N2O, NO2, H2O and HNO3

Mean profiles of the remaining MIPAS standard species are shown in Fig-
ures 6.28–6.34 for the configuration CS3-MPI-1. Mean assimilated profiles
of CH4, N2O and HNO3 (see Figures 6.28, 6.29, and 6.30, respectively) per-
fectly match the observation mean profiles. HNO3 analyses show a small
negative bias relative to the observations in the region between 1 and 3 hPa
at tropical and mid latitudes.

H2O analyses, shown in Figure 6.31, are generally very good in the lower and
middle stratosphere and show a slight positive bias against the MPI observa-
tions above approximately 5 hPa. In the tropopause region and below, water
vapour has a very large natural variability and space borne remote sounding
instruments have a weak sensitivity, leading to large error bars there. Conse-
quently, the H2O observational mean profiles show a large standard deviation
in this region and the mean analysis profiles stay close to the control run.
Note that the SACADA system in its current set-up has not been intended
to analyse water vapour in the tropopause region. A higher horizontal and
vertical model resolution has to be used for a fully satisfying H2O-analysis
in this altitude range.

Mean profiles of NO2 (see Figure 6.32) have been additionally separated into
nighttime and daytime profiles, as NO2 shows a strong diurnal cycle with
higher values occurring at night. Note that the sunset at the top of the
model domain (65 km) occurs at zenith angles of about 100o. To exclude
twilight observations, a nighttime profile was defined to have a zenith angle
greater than 110o while a daytime observation was assumed at zenith angles
smaller than 90o. The assimilation of highly reactive species is generally more
challenging than the assimilation of more inert gases, as the linear approxi-
mation, which is implied by the use of the adjoint model, may become invalid,
especially if an observation took place during daylight and the analysis at
the beginning of the assimilation window is valid for local nighttime condi-
tions, or vice versa. Nevertheless, the analyses of both, night- and daytime
NO2 show a good agreement with observations, as can be seen in Figure 6.33
and Figure 6.34, respectively. A notable exception is the nighttime profile
at high northern latitudes, where the mean retrieved NO2 profile shows sub-
stantially larger values than the analyses above 3 hPa. The reason for this
discrepancy can be identified to be the solar proton event. An inspection of
the time evolution of the NO2 analysis bias, shown in Figure 6.35, reveals
that the bias begins to rise at 27 October 2003, exactly at the time where
the first solar proton event was recorded (see López-Puertas et al. [2005a]).
It can be demonstrated (see Figure 6.36) that a corresponding bias is absent
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Figure 6.28: CS3-MPI-1 mean methane profiles. MIPAS IMK retrieved pro-
files (assimilated) are given in red, the control run is the black dashed line, the
analysis the dash-dotted blue line. The grey-shaded area indicates values within
the standard deviation of observations.
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Figure 6.29: CS3-MPI-1 mean MPI N2O profiles (assimilated) compared to
analysis and control run.
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Figure 6.30: CS3-MPI-1 mean MPI HNO3 profiles (assimilated) compared to
analysis and control run.
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Figure 6.31: CS3-MPI-1 mean MPI H2O profiles (assimilated) compared to
analysis and control run.
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Figure 6.32: CS3-MPI-1 mean MPI NO2 profiles (assimilated) compared to
analysis and control run.
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Figure 6.33: CS3-MPI-1 mean MPI nightime NO2 profiles (assimilated) com-
pared to analysis and control run.
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Figure 6.34: CS3-MPI-1 mean MPI daytime NO2 profiles (assimilated) com-
pared to analysis and control run.
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Figure 6.35: Bias of analysed NO2 against MPI observations (assimilated) for
CS3-MPI-1 at high northern latitudes. The sharp increase after 27 October 2003
at upper model layers is due to a series of exceptional strong solar proton events.
This feature is absent at tropical latitudes (compare Figure 6.36, note the different
scales).

at tropical latitudes, where the NOx budget was not influenced by the solar
proton events.
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Figure 6.36: Bias of analysed NO2 against MPI observations (assimilated) for
CS3-MPI-1 at tropical latitudes. Here, the NOx budget is not influenced by the
solar proton events (compare Figure 6.35, note the different scales).
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Figure 6.37: CS3-MPE-2 O−B
distribution for O3 at 27 October
2003. The dashed curve is a Gaus-
sian with the same variance as the
data centred about the maximum data
value. The standard deviation σ and
the mean a are given in the upper right
corner of the plot.

6.4.3 Statistical evaluation

A means to test the consistency of the assumption that the probability den-
sity functions of the background field and observations are Gaussian, is given
by inspecting the differences between observations and backround (O−B).
The difference between two uncorrelated Gaussian distributed random quan-
tities is likewise Gaussian distributed, and consequently a necessary condi-
tion for the correctness of the underlying statistical assumptions is that the
O−B PDF is Gaussian. The distribution of this quantity for configurations
CS3-MPE-2 and CS2-MPI-1 are shown in Figure 6.37 and Figures 6.38 –
6.39, respectively.

All distributions are peaked around zero and are approximately symmetric,
whereas the most pronounced deviations from symmetry occur for O3 and
N2O5, which have a small tail of positive O−B differences. The reason for
these deviations is the bias of modelled ozone against the observations, which
is present in the upper stratosphere and lower mesosphere region, as discussed
above. The fact that the distributions are generally more peaked than a
Gaussian with the same variance, which is shown as a dashed line, is a
well known phenomenon. It is caused partly by observational data with
gross errors (see e. g. Kalnay [2003]) and to some extent by inconsistencies
between data and the model physics. Observe that, as could be expected,
the Gaussian fit matches much closer for configuration CS3-MPE-2, where
ozone only has been assimilated within the restricted domain between 100
and 2 hPa.

It can be concluded, that the underlying Gaussian assumptions are at least
not grossly violated. Improvements can be expected from a more rigorous
quality control of observational data, and from future model updates, which
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Figure 6.38: CS2-MPI-1 O−B distribution for N2O, CFCl2, N2O5, HNO3,
ClONO2 and O3 at 28 July 2003. The dashed curve is a Gaussian with the same
variance as the data, centred about the maximum data value. The standard devia-
tion σ and the mean a are given in the upper right corner of each plot.
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Figure 6.39: As Figure 6.38 for CH4, H2O and NO2.

will have to aim for a removal of ozone and related biases in the upper model
domain.



CHAPTER 7

Summary and Conclusions

A new 4D-var data assimilation system for stratospheric trace gas obser-
vations has been developed from scratch, aiming to address some of the
shortcomings of presently existing assimilation systems.

Particular efforts were devoted to the development of a sophisticated param-
eterisation of the background error covariance matrix. A diffusion approach
following Weaver and Courtier [2001] was implemented, as this solution is
not only efficient, but also allows for anisotropic and inhomogeneous cor-
relations by inserting a local coordinate stretching tensor into the diffusion
operator. This feature was employed to devise a flow dependent BECM for-
mulation, since the model dynamics and the evolution of background errors
are coupled. This approach remedies a cardinal dilemma of data assimila-
tion: While Kalman filter based methods, which account for evolving error
covariances, cannot be implemented for the large problem of stratospheric
trace gas assimilation unless the complexity of the problem is severely re-
duced, the efficient 4D-var method provides no means of estimating error
covariances. The solution presented in this work assumes larger background
error correlations along isopleths of potential vorticity, as proposed by Ri-
ishøjgaard [1998]. The feasibility of this idea in the context of 4D-var has
been investigated and it was found that –in combination with the diffusion
approach– very encouraging results can be achieved.

The kernel of the assimilation system is a novel stratospheric chemistry-
transport model, which uses the global forecast model GME of German
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Weather Service as an online meteorological driver. This concept improves
the model skill, since a consistent representation of wind fields is available for
the solution of the advection-reaction equation. The icosahedral grid, which
provides a nearly uniform distribution of grid cells over the globe, has been
adopted from GME to overcome the problem of poleward convergence and
zonal crowding of grid cells. Thereby, the computational cost is reduced by
about 25%, compared to CTMs employing a traditional latitude-longitude
grid. Furthermore, a semi-Lagrange horizontal transport scheme together
with a parallel implementation of the model lead to an excellent efficency of
the new system. The chemical differential equations are solved by means of
an accurate second order Rosenbrock solver without any simplifying assump-
tions. Heterogeneous reactions on PSC and aerosol surfaces are included in
the reaction mechanism and its adjoint. The efficient system design enables
the application of the computationally costly 4D-var technique in near real
time. Actually, the new system exceeded all expectations in this respect:
Given that twelve or more processors are available on a state of the technol-
ogy parallel computer, an analysis can be calculated within less than four
hours.

A comprehensive set of case studies based on EnviSat-MIPAS data products
was accomplished and the assimilation results have been validated with inde-
pendent (not assimilated) data from SCIAMACHY, SAGE II, and HALOE.
Based on statistical a posteriori evaluation, the system proved to run stable
producing fully satisfying results. Different BECM parameter settings have
been tested and compared. Analysis quality has been objectively quantified
on the basis of weighted mean square differences between a model forecast
starting from analysed fields and observations. It was shown that the aniso-
tropic formulation of background error covariances can have a considerable
benefit, especially in regions where large gradients of potential vorticity pre-
vail. It can be expected that a more sophisticated estimation of the BECM
parameters used in the diffusion scheme will further improve the quality of
analysed trace gas fields.

The 4D-var assimilation technique has been used to identify inconsistencies
between the model and observational data. A bias of assimilated ozone fields
against retrieved profiles in the upper stratosphere and lower mesosphere
has been detected. This problem can most probably be attributed to a
slight misrepresentation of the photochemical equilibrium in the upper model
domain of the SACADA CTM. A cross validation of ozone profiles obtained
from different remote sounding devices has been performed. The use of
assimilated ozone fields for this task is a natural solution and circumvents
the need to select colocated profiles for comparison. A drawback of the 4D-
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var method in this context, is the fact that no analysis error estimates are
provided. Hence, it is not possible to quantify a deviation from the analysis
as ‘large’ or ‘small’. Furthermore, a profound cross validation will require
the use of averaging kernel information to account for different instrument
characteristics. It is therefore highly desirable that suitable averaging kernel
information becomes an integral part of each satellite data product. Despite
these shortcomings, it has been demonstrated that data assimilation is a
valuable tool for cross validation of different satellite data products.

Future applications, like the assimilation of water vapour in the tropopause
region, will require a further refinement of spatial resolution, which is clearly
possible due to the efficient system design. However, it will be advantageous
–if not necessary– to reduce the computational cost and the amount of data
to be stored for adjoint integrations. This may be achieved by employing
approximate implementations of the adjoint operators, which circumvent the
need of recomputations. A similar approach, which is already used in opera-
tional meteorological data assimilation, is the incremental variant of 4D-var.
There, a lower resolution model is used for parts of the iterative process, as
described by Courtier et al. [1994].

The SACADA system has been delivered to the German Remote Sounding
Data Centre for operational application. The assimilation of total ozone
columns from the Global Ozone Monitoring Experiment II (GOME II) is
being prepared there.
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Vertical advection scheme: Implementation
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Figure A.1: Definition of quantities for
the vertical advection scheme

The scheme that is applied to solve
the vertical advection subproblem
(4.9b) is an implicit upwind scheme,
which was developed by R. Botcho-
risvili (Fraunhofer-Institute for Al-
gorithms and Scientific Computing)
in the framework of the SACADA
project, and implemented with slight
modifications for the SACADA as-
similation system. Remember that
the vertical wind w in units of Pa/s
is defined in the hybrid σ-pressure
coordinate system at the boundary of layers. If the movement is directed
upwards towards lower pressure values w is negative. Volume mixing ratios
are defined at the centre of layers, which are separated by pressure differ-
ences Δpi−1/2 := pi − pi−1 and Δpi+1/2 := pi+1 − pi. The scheme offers the
flexibility to be applied on a subset of model layers i = ls, · · · , le only. The
numbering of layers is from top to bottom. This configuration is shown in
Figure A.1. The characteristic property of an upwind scheme is that the
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spatial discretisation of the term ∂c/∂p depends on the wind direction:

∂c

∂p
≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

(
ci+1−ci
Δpi+1/2

+ ci−ci−1

Δpi−1/2

)
if wi−1/2 > 0 and wi+1/2 < 0

ci−ci−1

Δpi−1/2
if wi−1/2 > 0 and wi+1/2 > 0

ci+1−ci
Δpi+1/2

if wi−1/2 < 0 and wi+1/2 < 0

∂c

∂p
= 0 if wi−1/2 < 0 and wi+1/2 > 0

The last condition, which applies in the case of divergent vertical wind, may
seem inconsistent at a first glance. However, it is just a natural consequence
of the three dimensional continuity equation together with the fact that this
discretisation is applied within an operator splitting environment. The di-
vergent vertical wind implies a convergence in the horizontal wind, and any
changes in volume mixing ratio at this point must be due to horizontal ad-
vection. Observe that the horizontal semi-Lagrangian transport scheme has
the same property for a divergent horizontal wind field.

The time discretisation is chosen to be implicit. Let c and ĉ denote volume
mixing ratios at times tn and tn+1 := tn + Δt, respectively. A compact
notation can be introduced by defining

w+
i−1/2 =

1

2

(
wi−1/2 − |wi−1/2|

) ≥ 0

w−
i+1/2 =

1

2

(
wi+1/2 − |wi+1/2|

) ≤ 0

and κ =

⎧⎪⎨
⎪⎩

1/2 if sign(w+) sign(w−) < 0

1 if w+ > 0 or w− < 0

0 otherwise

.

With these abbreviations the scheme reads

ĉi − ci
Δt

+ κi

(
w+
i−1/2

ĉi − ĉi−1

Δpi−1/2
+ w−

i+1/2

ĉi+1 − ĉi
Δpi+1/2

)
= 0 , (A.1)

leading to a linear system of equations

Δt biĉi+1 + (1 + Δt di)ĉi + Δt aiĉi−1 = ci , (A.2)
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with the coefficients ai, bi and di given by

ai := −κi
w+
i−1/2

Δpi−1/2

bi := κi
w−
i+1/2

Δpi+1/2

di := −(ai + bi) .

(A.3)

At the boundary points i = ls and i = le von Neumann boundary conditions
∂c/∂p = 0 are introduced by setting

ĉls − cls
Δt

+ κlsw
−
ls+1/2

ĉls+1 − ĉls
Δpls+1/2

= 0

ĉle − cle
Δt

+ κlew
+
le−1/2

ĉle − ĉle−1

Δple−1/2

= 0 ,

(A.4)

leading to als = 0 and ble = 0. The same does hold if w+
ls−1/2 = 0 and

w−
le+1/2 = 0 is assumed, so the numerical treatment of boundaries is the same

for both cases. To calculate ĉ for a column of grid points a tridiagonal linear
system [I + ΔtA] ĉ = c of equations has to be solved, where A is given by

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dls bls 0 . . . . . . . . . . . . . . . . . . 0
als+1 dls+1 bls+1 0 . . . . . . . . . . . . . . . 0
. .
. .
. 0
0 . . . . . . . . . . . . . . 0 anle−1 dle−1 ble−1

0 . . . . . . . . . . . . . . . . . 0 ale dle

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The solution of this system can be easily obtained with numerically efficient
recursive schemes (see Press et al. [1992]).
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Implementation of diffusion schemes

B.1 Horizontal diffusion

As outlined in Chapter 3 both, an isotropic and an anisotropic diffusion
scheme is available within the SACADA system, differing in the form of the
horizontal Laplacian operator. In the isotropic case, the Laplacian of an
arbitrary scalar field ψ defined on the icosahedral grid is given, according to
(4.3), by

∇2
h ψ0 =

6∑
1=1

[Lη,i + Lχ,i] (ψi − ψ0) =
6∑

1=1

Liψi −
6∑
i=1

Liψ0 (B.1)

with Li = Lη,i + Lχ,i. In analogy to the one dimensional case (see Kalnay
[2003]), a stability criterion for the resulting diffusion scheme can be derived
as follows: At each grid point the solution at time n+ 1

ψn+1
0 = ψn0 + κΔt

6∑
i=1

Liψ
n
i − κΔt

6∑
i=1

Liψ
n
0

must be bounded, i. e. |ψn+1
0 | ≤ |ψn0 |, in oder to ensure stability. Taking

ψnmax := max {ψni |i = 0, . . . , 6} and defining μ := κΔt
∑6

i=1 Li, such that

|ψn+1
0 | ≤ (|1 − μ| + |μ|) |ψnmax| (B.2)
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holds, it turns out that the necessary condition for stability of the horizontal
diffusion scheme is 0 < μ ≤ 1. A descriptive interpretation of this criterion
can be given in the case that ψi = 0 for i = 1, . . . , 6 and ψ0 �= 0. Then
0 < μ ≤ 1 ensures that the total diffusive outflow is not greater than the
current content of the respective grid cell.

The anisotropic Laplacian operator ∇̃2
hψ = div (S gradhψ) in the local coor-

dinate system of the icosahedral grid reads

∇̃2
hψ =

(
∂
∂η

∂
∂χ

)
·
(
s1 s3

s3 s2

)(∂ψ
∂η

∂ψ
∂χ

)
, (B.3)

where the coordinate stretching matrix S has been computed from stretching
factors s̃1, s̃2 and a rotation angle α as described in Chapter 3. Using the
expressions (4.3) for the spatial derivatives yields

∇̃2
hψ0 =

6∑
i=1

[(
∂s1

∂η
+
∂s3

∂χ

)
Gη,i +

(
∂s2

∂χ
+
∂s3

∂η

)
Gχ,i

+ s1Lη,i + s2Lχ,i + 2s3Lη,χ,i

]
(ψi − ψ0) =

6∑
i=1

L̃i (ψi − ψ0) . (B.4)

The spatial derivatives of the stretching tensor components are evaluated
according to (4.3). However, because the elements of S are valid in the local
coordinate system of each grid point only, the stretching tensor has to be
expressed in terms of the local coordinates of the centre node as

Ŝ = T(βi)STT (βi) ,

before the differences ŝi− s0 can be computed. Here, βi is the rotation angle
between the local (η, χ) system at the centre node and the local coordinate
system at the neighbouring grid point i. These angles are calculated during
the grid generation process of the GME software.

A stability criterion can be derived in exactly the same way as for the isotropic
case, yielding 0 < μ̃ ≤ 1 as a necessary condition for stability, with μ̃ :=
κΔt

∑6
i=1 L̃i.

B.1.1 Transpose horizontal diffusion

The transpose operators DT and D̃T have been build by reversing and trans-
posing the code line-by-line as described in Chapter 2. Let dh := ∇hψ0 be the
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Laplacian of ψ0 according to (B.1). Then, the transpose of this instruction
is given by the mapping

DT :

⎛
⎜⎜⎜⎝
ψ0

ψ1
...
ψ6

⎞
⎟⎟⎟⎠ −→

⎛
⎜⎜⎜⎝
ψ0 − dh

∑6
i=1 Li

ψ1 + dhL1
...

ψ6 + dhL6

⎞
⎟⎟⎟⎠ , (B.5)

and the same is valid for the anisotropic scheme, replacing Li with L̃i.

B.2 Vertical diffusion

For the vertical diffusion scheme, a discrete solution of the one-dimensional
diffusion-equation

∂ψ(z, t)

∂t
− κ

∂2ψ(z, t)

∂z2
= 0 z ∈ [a, b], t ∈ [0, T ] (B.6)

is to be found, given the boundary conditions

∂ψ(z, t)

∂z

∣∣∣∣
z=a

=
∂ψ(z, t)

∂z

∣∣∣∣
z=b

= 0 (B.7)

on a vertical grid, which is not equally spaced. Equation (B.6) is valid if the
diffusion coefficient κ is assumed to be constant. As described in Chapter 4,
the vertical grid of GME is a hybrid σ-pressure grid and most quantities are
defined at the centre of pressure levels, which (in the lower part of the grid)
depend on surface pressure and thus on the current meteorological situation.
The diffusion module may be applied to a subset of model layers in the
same manner as the vertical advection algorithm described in Appendix A.
Geometric heights zi in meters are calculated for i = ls, . . . , le, using the
geopotential as computed by GME. Define Δzi := zi − zi+1 and Δzci :=
1
2
(Δzi−1+Δzi). Note that numbering of levels in GME is from top to bottom

leading to zi > zi+1. As the vertical diffusion is a purely one-dimensional
problem, it is easy to implement a discretisation that is implicit with respect
to the time derivative. Let ψi and ψ̂i be the discrete function values at time
tn and tn+1 := tn + Δt, respectively. At model layer i the one-dimensional
diffusion equation (B.6) can be discretised as follows:

ψ̂i − ψi
Δt

− κ

Δzci

(
ψ̂i−1 − ψ̂i

Δzi−1
− ψ̂i − ψ̂i+1

Δzi

)
= 0 (B.8)
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The second term is a symmetric discretisation of the Laplacian, using the
difference of the left handed derivative and the right handed derivative as an
discrete approximation for the curvature of ψ(z). The boundary conditions
given in (B.7) lead to ψ̂ls−1 = ψ̂ls and ψ̂le+1 = ψ̂le . The resulting system of
equations reads

[I − κΔtD] ψ̂ = ψ , (B.9)

where D is the discretised Laplacian whose matrix representation is given by

D :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

bls cls 0 . . . . . . . . . . . . . . . . . . 0
als+1 bls+1 cls+1 0 . . . . . . . . . . . . . . . 0
. .
. .
. 0
0 . . . . . . . . . . . . . . 0 anle−1 ble−1 cle−1

0 . . . . . . . . . . . . . . . . . 0 ale ble

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

ai :=
1

ΔzciΔzi−1
, ci :=

1

ΔzciΔzi
and bi := −(ai + ci) .

(B.10)

As D is tridiagonal matrix, the system (B.10) can easily be solved with
numerically efficient recursive schemes (see Press et al. [1992]).



APPENDIX C

Tables

C.1 Vertical grid parameters

Table C.1: Coefficients defining the vertical grid. k is the layer index, af,k and
bf,k are the coefficients defining the pressure at the centre of layer k according to
(4.7). The coeffients ak, bk define the pressure at the upper boundary and ak+1,
bk+1 the pressure at the bottom of layer k. The last column gives the height of the
centre of layer, computed from pressure according to the U. S. Standard Atmosphere
from 1976.

k ak [Pa] bk [-] af,k [Pa] bf,k [-] Height [km]

1 0.0 0.0 0.1 0.0 65.620
2 0.2 0.0 0.2240 0.0 59.850
3 0.2479 0.0 0.3053 0.0 57.540
4 0.3626 0.0 0.4173 0.0 55.150
5 0.4719 0.0 0.5430 0.0 53.080
6 0.6141 0.0 0.7066 0.0 50.980
7 0.7991 0.0 0.9195 0.0 48.860
8 1.0399 0.0 1.1966 0.0 46.740
9 1.3532 0.0 1.5571 0.0 44.660
10 1.7610 0.0 2.0263 0.0 42.620
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k ak [Pa] bk [-] af,k [Pa] bf,k [-] Height [km]

11 2.2916 0.0 2.6368 0.0 40.630
12 2.9820 0.0 3.4313 0.0 38.690
13 3.8805 0.0 4.4651 0.0 36.780
14 5.0498 0.0 5.8105 0.0 34.920
15 6.5713 0.0 7.5613 0.0 33.100
16 8.5513 0.0 9.8395 0.0 31.320
17 11.1278 0.0 12.8042 0.0 29.550
18 14.4807 0.0 16.6622 0.0 27.800
19 18.8438 0.0 21.6827 0.0 26.060
20 24.5216 0.0 28.2159 0.0 24.340
21 31.9102 0.0 36.7175 0.0 22.630
22 41.5249 0.0 47.7808 0.0 20.930
23 54.0367 0.0 61.5368 0.0 19.320
24 69.0369 0.0 78.2029 0.00005025 17.780
25 87.3690 0.00010049 97.8525 0.00061173 16.320
26 108.3360 0.00112296 119.1935 0.00363116 14.910
27 130.0510 0.00613936 139.5775 0.01323663 13.510
28 149.1040 0.02033390 155.6260 0.03568065 12.070
29 162.1480 0.05102740 163.0295 0.07848870 10.570
30 163.9110 0.10595000 159.6420 0.14116749 9.120
31 155.3730 0.17638499 146.2010 0.22071898 7.740
32 137.0290 0.26505297 124.3030 0.31453148 6.460
33 111.5770 0.36400998 97.4859 0.42082497 5.230
34 83.3948 0.47763997 70.6652 0.53588000 4.040
35 57.9356 0.59412003 46.9460 0.65086651 2.940
36 35.9564 0.70761299 27.7032 0.75972000 1.970
37 19.4500 0.81182700 12.9157 0.83839142 1.340
38 6.3815 0.86495584 4.5489 0.88633585 0.965
39 2.7163 0.90771586 1.7185 0.92596453 0.629
40 0.7206 0.94421321 0.3603 0.95859921 0.352
41 0.0000 0.97298521 0.0000 0.98263335 0.148
42 0.0000 0.99228150 0.0000 0.99614075 0.033
43 0.0000 1.0 - - -



C.2 Reaction equations and rate constants 123

C.2 Reaction equations and rate constants

Table C.2: Photolysis reactions included in the model. The term products rep-
resents constituents that are not considered in the present work.

Reaction

(J1) O2 + hν → 2O(3P)
(J2) O3 + hν → O(3P) + O2

(J3) O3 + hν → O(1D) + O2

(J4) HO2 + hν → O(3P) + OH
(J5) H2O + hν → H + OH
(J6) H2O2 + hν → 2OH
(J7) NO2 + hν → O(3P) + NO
(J8) NO3 + hν → NO2 + O(3P)
(J9) NO3 + hν → NO + O2

(J10) N2O + hν → N2 + O(1D)
(J11) N2O5 + hν → NO2 + NO3

(J12) HNO3 + hν → OH + NO2

(J13) HNO4 + hν → HO2 + NO2

(J14) Cl2O2 + hν (+ M) → 2Cl + O2 (+ M)
(J15) Cl2 + hν → 2Cl
(J16) OClO + hν → O(3P) + ClO
(J17) HCl + hν → Cl + H
(J18) HOCl + hν → Cl + OH
(J19) ClONO2 + hν → Cl + NO3

(J20) CH3Cl + hν → Cl + products
(J21) CCl4 + hν → 4Cl + products
(J22) CFCl3 + hν → 3Cl + products
(J23) CF2Cl2 + hν → 2Cl + products
(J24) CHF2Cl + hν → Cl + products
(J25) CF2ClCFCl2 + hν → 3Cl + products
(J26) CH3CCl3 + hν → 3Cl + products
(J27) BrO + hν → Br + O(3P)
(J28) BrCl + hν → Br + Cl
(J29) HBr + hν → Br + H
(J30) HOBr + hν → Br + OH
(J31) BrONO2 + hν → Br + NO3

(J32) CH3Br + hν → Br + products
(J33) CF2ClBr + hν → Cl + Br + products
(J34) CF3Br + hν → Br + products



124 Tables

Table C.3: Gas phase reactions that are included in the model. Rate constants for
first- and second-order reactions are given in units of s−1 and molecules−1cm3s−1,
respectively. Rate constants for third-order reactions are given as effective second-
order rate constants in units of molecules−1cm3s−1. M∈{N2, O2}. For third-order
reactions, f(k0, k∞) has to be evaluated according to Sander et al. [2003]:

f(k0, k∞) = (k0[M]/(1 + k0[M]/k∞)) × 0.6(1+(log10(k0[M]/k∞))2)−1
.

The term products represents constituents which are not considered in the reaction
scheme.

Reaction Rate constant

(R1) O(1D) + N2 → O(3P) + N2 1.8×10−11exp(110/T)
(R2) O(1D) + O2 → O(3P) + O2 3.2×10−11exp(70/T)
(R3) O(1D) + O3 → 2O2 1.2×10−10

(R4) O(3P) + O(3P) + M → O2 + M 4.7×10−33[M](T/300.)−2.0

(R5) O(3P) + O2 + M → O3 + M 6.0×10−34[M](T/300.)−2.4

(R6) O(3P) + O3 → 2O2 8.0×10−12exp(-2060/T)
(R7) O(1D) + H2O → 2OH 2.2×10−10

(R8) O(1D) + H2 → OH + H 1.1×10−10

(R9) H + O3 → OH + O2 1.4×10−10exp(-470/T)
(R10) H + O2 + M → HO2 + M f(k0, k∞),

k0=5.7×10−32(T/300)−1.6,
k∞=7.5×10−11

(R11) H + HO2 → 2OH 7.3×10−11

(R12) OH + O(3P) → H + O2 2.2×10−11exp(120/T)
(R13) OH + OH → H2O + O(3P) 4.2×10−12exp(-240/T)
(R14) OH + OH + M → H2O2 + M f(k0, k∞),

k0=6.2×10−31(T/300)−1.0,
k∞=2.6×10−11

(R15) OH + H2O2 → H2O + HO2 2.9×10−12exp(-160/T)
(R16) OH + H2 → H2O + H 5.5×10−12exp(-2000/T)
(R17) OH + O3 → HO2 + O2 1.7×10−12exp(-940/T)
(R18) OH + HO2 → H2O + O2 4.8×10−11exp(250/T)
(R19) HO2 + O(3P) → OH + O2 3.0×10−11exp(200/T)
(R20) HO2 + O3 → OH + 2O2 1.0×10−14exp(-490/T)
(R21) HO2 + HO2 → H2O2 + O2 2.3×10−13exp(600/T)
(R22) HO2 + HO2 + M → H2O2 + O2 + M 1.7×10−33[M]exp(1000./T)
(R23) H2O2 + O(3P) → HO2 + OH 1.4×10−12exp(-2000/T)
(R24) CH4 + OH → H2O + products 2.45×10−12exp(-1775/T)
(R25) CH4 + O(1D) → OH + products 1.125×10−10

(R26) N2O + O(1D) → N2 + O2 4.9×10−11

(R27) N2O + O(1D) → 2NO 6.7×10−11

(R28) N2 + O(1D) + M → N2O + M 3.5×10−37[M](T/300.)−0.6

(R29) NO + O3 → NO2 + O2 3.0×10−12exp(-1500/T)
(R30) NO + O(3P) + M → NO2 + M f(k0, k∞),

k0=9.0×10−32(T/300)−1.5,
k∞=3.0×10−11
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Table C.3: Gas phase reaction equations and rate constants (continued)

Reaction Rate constant

(R31) NO + HO2 → OH + NO2 3.5×10−12exp(250/T)
(R32) NO + NO3 → 2NO2 1.5×10−11exp(170/T)
(R33) NO2 + O(3P) → NO + O2 5.6×10−12exp(180/T)
(R34) NO2 + O(3P) + M → NO3 + M f(k0, k∞),

k0=9.0×10−32(T/300)−2.0,
k∞=2.2×10−11

(R35) NO2 + O3 → NO3 + O2 1.2×10−13exp(-2450/T)
(R36) NO2 + H → OH + NO 4.0×10−10exp(-340/T)
(R37) NO2 + OH + M → HNO3 + M f(k0, k∞),

k0=2.5×10−30(T/300)−4.4,
k∞=1.6×10−11(T/300)−1.7

(R38) NO2 + HO2 + M → HNO4 + M f(k0, k∞),
k0=1.8×10−31(T/300)−3.2,
k∞=4.7×10−12(T/300)−1.4

(R39) HNO4 + M → HO2 + NO2 + M kR38/(2.1×10−27exp(10900/T))
(R40) NO2 + NO3 + M → N2O5 + M f(k0, k∞),

k0=2.0×10−30(T/300)−4.4,
k∞=1.4×10−12(T/300)−0.7

(R41) N2O5 + M → NO3 + NO2 + M kR40/(3.0×10−27exp(10990/T))
(R42) NO3 + O(3P) → NO2 + O2 1.0×10−11

(R43) NO3 + OH → NO2 + HO2 2.2×10−11

(R44) NO3 + HO2 → HNO3 + O2 1.5×10−12

(R45) HNO3 + OH → NO3 + H2O k0+k3/(1+k3/k2),
k0=2.4×10−14exp(460/T),
k2=2.7×10−17[M]exp(2199/T),
k3=6.5×10−34exp(1335/T)

(R46) HNO4 + OH → NO2 + H2O + O2 1.3×10−12exp(380/T)
(R47) Cl + O3 → ClO + O2 2.3×10−11exp(-200/T)
(R48) Cl + OH → HCl + O(3P) 9.8×10−12exp(-2860/T)
(R49) Cl + HO2 → HCl + O2 1.8×10−11exp(170/T)
(R50) Cl + HO2 → OH + ClO 4.1×10−11exp(-450/T)
(R51) Cl + H2 → HCl + H 3.7×10−11exp(-2300/T)
(R52) Cl + CH4 → HCl + products 9.6×10−12exp(-1360/T)
(R53) Cl + H2O2 → HCl + HO2 1.1×10−11exp(-980/T)
(R54) Cl + H2O → HCl + OH 2.79×10−11exp(-8670/T)
(R55) Cl + NO3 → ClO + NO2 2.4×10−11

(R56) Cl + Cl + M → Cl2 +M 6.14×10−34[M]exp(906/T)
(R57) Cl + OClO → 2ClO 3.4×10−11exp(160/T)
(R58) Cl + HOCl → Cl2 + OH 6.0×10−13exp(-130/T)
(R59) Cl + Cl2O2 → Cl + Cl2 + O2 1.0×10−10

(R60) Cl + ClONO2 → Cl2 + NO3 6.5×10−12exp(135/T)
(R61) ClO + O(3P) → Cl + O2 3.0×10−11exp(70/T)
(R62) ClO + OH → Cl + HO2 7.4×10−12exp(270/T)
(R63) ClO + HO2 → HOCl + O2 2.7×10−12exp(220/T)
(R64) ClO + NO → Cl + NO2 6.4×10−12exp(290/T)
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Table C.3: Gas phase reaction equations and rate constants (continued)

Reaction Rate constant

(R65) ClO + NO2 + M → ClONO2 + M f(k0, k∞),
k0=1.8×10−31(T/300)−3.4,
k∞=1.5×10−11(T/300)−1.9

(R66) ClO + NO3 → Cl + NO2 + O2 4.7×10−13

(R67) ClO + ClO + M → Cl2O2 + M f(k0, k∞),
k0=1.6×10−32(T/300)−4.5,
k∞=2.0×10−12(T/300)−2.4

(R68) Cl2O2 + M → 2ClO + M kR67/(1.27×10−27exp(8744/T))
(R69) OClO + O(3P) → ClO + O2 2.4×10−12exp(-960/T)
(R70) OClO + OH → HOCl + O2 4.5×10−13exp(800/T)
(R71) OClO + NO → ClO + NO2 2.5×10−12exp(-600/T)
(R72) Cl2 + M → 2Cl + M exp(ln(3.85×10−11[M]) - 23630/T)
(R73) Cl2 + O(1D) → ClO + Cl 2.8×10−10 (25% quenching)
(R74) Cl2 + OH → HOCl + Cl 1.4×10−12exp(-900/T)
(R75) HCl + O(1D) → OH + Cl 1.0×10−10

(R76) HCl + O(1D) → H + ClO 3.6×10−11

(R77) HCl + O(3P) → Cl + OH 1.0×10−11exp(-3300/T)
(R78) HCl + OH → Cl + H2O 2.6×10−12exp(-350/T)
(R79) HOCl + O(3P) → ClO + OH 1.7×10−13

(R80) HOCl + OH → ClO + H2O 3.0×10−12exp(-500/T)
(R81) ClONO2 + O(3P) → ClO + NO3 2.9×10−12exp(-800/T)
(R82) ClONO2 + OH → HOCl + NO3 1.2×10−12exp(-330/T)
(R83) CH3Cl + O(1D) → ClO + products 4.0×10−10

(R84) CH3Cl + OH → H2O + products 2.4×10−12exp(-1250/T)
(R85) CCl4 + O(1D) → ClO + products 3.3×10−10 (14% quenching)
(R86) CFCl3 + O(1D) → ClO + products 2.3×10−10 (40% quenching)
(R87) CF2Cl2 + O(1D) → ClO + products 1.4×10−10 (14% quenching)
(R88) CHF2Cl + O(1D) → ClO + products 1.0×10−10 (28% quenching)
(R89) CHF2Cl + OH → H2O + products 1.05×10−12exp(-1600/T)
(R90) CF2ClCFCl2 + O(1D) →

ClO + products 2.0×10−10

(R91) CH3CCl3 + O(1D) → ClO + products 4.0×10−10

(R92) CH3CCl3 + OH → H2O + products 1.6×10−12exp(-1520/T)
(R93) Br + O3 → BrO + O2 1.7×10−11exp(-800/T)
(R94) Br + HO2 → HBr + O2 1.5×10−11exp(-600/T)
(R95) Br + OClO → BrO + ClO 2.6×10−11exp(-1300/T)
(R96) BrO + O(3P) → Br + O2 1.9×10−11exp(230/T)
(R97) BrO + OH → Br + HO2 7.5×10−11

(R98) BrO + HO2 → HOBr + O2 3.4×10−12exp(540/T)
(R99) BrO + NO → Br + NO2 8.8×10−12exp(260/T)
(R100) BrO + NO2 + M → BrONO2 + M f(k0, k∞),

k0=5.2×10−31(T/300)−3.2,
k∞=6.9×10−12(T/300)−2.9

(R101) BrO + ClO → Br + OClO 9.5×10−13exp(550/T)
(R102) BrO + ClO (+M) →
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Table C.3: Gas phase reaction equations and rate constants (continued)

Reaction Rate constant

Br + Cl + O2 (+M) 2.3×10−12exp(260/T)
(R103) BrO + ClO → BrCl + O2 4.1×10−13exp(290/T)
(R104) BrO + BrO → 2Br + O2 1.5×10−12exp(230/T)
(R105) HBr + O(1D) → OH + Br 1.5×10−10 (20% quenching)
(R106) HBr + O(3P) → Br + OH 5.8×10−12exp(-1500/T)
(R107) HBr + OH → Br + H2O 1.1×10−11

(R108) HOBr + O(3P) → OH + BrO 1.2×10−10exp(-430/T)
(R109) HOBr + OH → H2O + BrO 1.1×10−12

(R110) HOBr + Cl → HCl + BrO 1.1×10−10

(R111) CH3Br + O(1D) → BrO + products 1.8×10−10

(R112) CH3Br + OH → H2O + products 2.35×10−12exp(-1300/T)
(R113) CF2ClBr + O(1D) → BrO + products 1.5×10−10 (36% quenching)
(R114) CF3Br + O(1D) → BrO + products 1.0×10−10 (59% quenching)
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Stratospheric ozone depletion during the 1995-1996 Artic winter: 3-D sim-
ulations on the potential role of different PSC types, Ann. Geophysicae,
19, 163–1181, 2001.

Hoffmann, L. and M. Riese, Quantitative transport studies based on
trace gas assimilation, Adv. Space Res., 33, 1068–1072, 2004.
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Stellen der Arbeit –einschließlich Tabellen, Karten und Abbildungen–, die
anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem
Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation
noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat;
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