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Zusammenfassung

Die reinen Elemente Wasserstoff, Fluor und Sauerstoff sowie die Mischungen Wasser-

stoff-Sauerstoff und Wasserstoff-Fluor besitzen zahlreiche industrielle Anwendungen.

Wasserstoff könnte ein erneuerbarer Energieträger bei Brennstoffzellen-Technologien

werden und könnte die anderen wichtigen Brennstoffe verdrängen. Daher ist die

Berechnung der thermodynamischen Daten der oben genannten Systeme ein wichtiges

Anliegen für die praktische Anwendung.

Diese Arbeit enthält die Ergebnisse der Berechnungen der vier Ab-initio-Paarpoten-

tiale für die Dimere H2-H2, H2-O2, F2-F2 und H2-F2, der daraus abgeleiteten zweiten

Virialkoeffizienten einschließlich der Quantenkorrekturen 1. Ordnung sowie der ther-

modynamischen Phasengleichgewichtsdaten der Reinstoffe Wasserstoff und Fluor,

wobei letztere mit der Gibbs-Ensemble-Monte-Carlo-Methode (GEMC) berechnet

wurden.

Die neuen intermolekularen Wechselwirkungspotentiale der Dimere H2-H2, H2-O2,

F2-F2 und H2-F2 wurden mit quantenmechanischen Methoden berechnet, und zwar

mit Hilfe der Coupled-cluster-Theorie CCSD(T) und unter Verwendung korrelations-

konsistenter Basissätze aug-cc-pVmZ (m = 2, 3, 4); die Ergebnisse wurden zum Ba-

sissatzlimit extrapoliert (hier mit aug-cc-pV23Z bezeichnet) und bezüglich des “basis

set superposition error” (BSSE) korrigiert. Die so erhaltene Potentialhyperfläche für

das H2-H2-Dimer stimmt gut mit der von Diep und Johnson [25] vorgeschlagenen

Hyperfläche überein. Zum Vergleich wurden auch störungstheoretische Rechnungen

mit der Møller–Plesset-Theorie zweiter und vierter Ordnung angestellt sowie Rech-

nungen mit den Basissätzen 6-31G und 6-311G, aber die Ergebnisse waren schlechter.

Für die Abschätzung der Genauigkeiten der theoretischen Methoden und der Ba-

sissätze wurden verschiedene molekulare Parameter berechnet.
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Die quantenmechanischen Ergebnisse wurden für die Erstellung von vier neuen ana-

lytischen Paarpotential-Funktionen verwendet. Die anpassbaren Parameter dieser

Funktionen wurden durch Anpassung an die Ab-initio-Wechselwirkungsenergien durch

eine globale Minimierung der Fehlerquadrate bestimmt, und zwar durch eine Kom-

bination des Levenberg-Marquardt-Verfahrens und eines genetischen Algorithmus.

Aus diesen Funktionen wurden die zweiten Virialkoeffizienten von Wasserstoff und

Fluor sowie die Kreuz-Virialkoeffizienten der Systeme Wasserstoff–Sauerstoff und

Wasserstoff–Fluor durch Integration ermittelt; dabei wurden Quantenkorrekturen

berücksichtigt. Die Ergebnisse stimmen mit experimentellen Daten—soweit vorhan-

den—oder mit empirischen Korrelationen überein.

Monte-Carlo-Simulationen unter Verwendung der Gibbs-Ensemble-Technik (GEMC)

wurden eingesetzt, um mit Hilfe der analytischen Paarpotentiale den Dampfdruck

von Wasserstoff und Fluor, die Dichten der koexistierenden flüssigen und gasförmigen

Phasen, die Verdampfungsenthalpie und -entropie im Temperaturbereich 18–32 K

für Wasserstoff und 60–140 K für Fluor zu berechnen. Diese Temperaturintervalle

reichen nahe an die kritischen Gebiete der Substanzen heran. Aus den berechneten

orthobaren Dichten konnten die kritische Temperatur, der kritische Druck und das

kritische Molvolumen abgeschätzt werden. Die Ergebnisse stimmen gut mit ex-

perimentellen Daten sowie mit Berechnungen mit Hilfe von Zustandsgleichungen

überein. Ferner wurden zur Charakterisierung der Strukturen von Wasserstoff und

Fluor die Site-site-Paarkorrelationsfunktionen g(r) ermittelt.



Abstract

The pure elements hydrogen, fluorine and oxygen and the mixtures hydrogen-oxygen

and hydrogen-fluorine are used in several industrial applications nowadays. Hydro-

gen might become a renewable energy carries in fuel cell technologies [122, 16].

Hydrogen is considered a fuel which can replace all the major fuels [46, 95]. Con-

sequently, the estimation of thermodynamic data for the mentioned systems over a

wide range of temperature and pressure is a need for future practical applications.

This thesis presents the results of the calculations of four new ab initio intermolecular

pair potentials, the second virial coefficients with first-order quantum corrections of

the dimers H2-H2, H2-O2, F2-F2 and H2-F2, and thermodynamic properties of phase

equilibria for the pure fluids hydrogen and fluorine derived from the Gibbs ensemble

Monte-Carlo simulation techniques.

The new intermolecular interaction potentials of the dimers H2-H2, H2-O2, F2-F2

and H2-F2 were developed from quantum mechanics, using coupled-cluster theory

CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3, 4); the

results were extrapolated to the complete basis set limit (denoted aug-cc-pV23Z).

The constructed potential energy surface of the dimer H2-H2 turned out to be in

good agreement with that proposed by Diep [25]. The interaction energies were cor-

rected for the basis set superposition error (BSSE) with the counterpoise scheme.

For comparison also Møller-Plesset perturbation theory (at levels 2 to 4) as well as

the basis sets 6-31G and 6-311G were investigated, but the results proved inferior.

Molecular properties were calculated for assessing the accuracy level of each the-

oretical method and the basis set, respectively. The quantum mechanical results

were used to establish four new analytical pair potential functions. The adjustable

parameters of these functions were determined by global least square fits to the ab
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initio interaction energy values by means of the Levenberg-Marquardt (LM) and

the Genetic algorithm (GA). From these functions the second virial coefficients of

hydrogen and fluorine as well as the cross virial coefficients of the systems hydrogen-

oxygen and hydrogen-fluorine were obtained by integration; corrections for quantum

effects were included. The results agree well with experimental data, if available, or

with empirical correlations.

Gibbs ensemble Monte Carlo (GEMC) simulation techniques were used to exam-

ine the ability of analytical intermolecular pair potential functions constructed from

quantum mechanical calculations. Four intermolecular potential functions of hydro-

gen and fluorine developed in present thesis, were used for these GEMC-simulations

to obtain the densities of the vapor-liquid coexisting phases, the vapor pressure, the

enthalpy of vaporization, the entropy of vaporization and the boiling temperature

in the temperature range from 18 K to 32 K for hydrogen and from 60 K to 140

K for fluorine. These temperature ranges come close to the critical region of the

substances. The structural properties of the pure fluid hydrogen and fluorine were

characterized with the site-site pair correlation functions g(r). The critical temper-

ature, density, pressure and volume of hydrogen and fluorine were estimated from

the densities of vapor-liquid equilibria, and the vapor pressures were derived from

the GEMC-NVT simulations. The obtained results agree with experimental data

and with computed data resulting from the equations of state and the simulations

using the Lennard-Jones potentials.
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Chapter 1

Introduction

Hydrogen, fluorine and the mixtures hydrogen-oxygen and hydrogen-fluorine are

used in several industrial areas. Hydrogen in its liquid form has been used as a fuel

in space vehicles for years [95]. It could become the most important energy carrier

of tomorrow [59]. Liquid hydrogen, oxygen and fluorine are the usual liquid fuels

for rocket engines [122, 58, 2, 3]. The National Aeronautics and Space Adminis-

tration (NASA) is the largest user of liquid hydrogen in the world [16, 41]. The

knowledge of thermodynamic properties of the pure substances hydrogen, fluorine

and the mixtures hydrogen-oxygen and hydrogen-fluorine are important for practi-

cal applications. It is also necessary for their safe use [46, 76].

Computer simulations have expanded in number, complexity, and importance over

the last many years [4]. Computers permit the study of systems for which ana-

lytical solutions are not available or require approximation techniques. Molecular

simulations have been used for various studies [35]. The properties of the stud-

ied systems are determined solely by the intermolecular forces and energies [35, 4].

Therefore, simulations have become a necessary tool for studying fluids and fluid

mixtures. They can generate structural and thermodynamic as well as transport

properties consistently without the need to introduce artificial simplifications as re-

quired by integral equation techniques, and statistical thermodynamic perturbation

theory [35, 4]. Computer simulation techniques, Monte Carlo as well as Molecular

Dynamics, cannot work without some input. It is necessary to know the interaction

potentials of the systems under study.

1
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Monte Carlo simulation is used to calculate widely phase equilibria of both poly-

meric and low molecular organic substances. The field of phase equilibria simulation

is now highly developed and very broad in techniques and applications. Some re-

cently published works, are de Pablo et al. (1998 and 2000) [87, 86], Delhommelle et

al. (2000) [123], Martin and Siepmann (1998 and 1999) [71, 72] and Spyriouni et al.

(1998) [112]. Gibbs ensemble simulation had been developed by Panagiotopoulos

(1987) [91]. The basic idea in the Gibbs ensemble method is to simulate phase co-

existence properties by following the evolution in phase space of a system composed

of two distinct regions. The two regions in the simulation system represent the two

coexistence phases, e.g. a vapor in equilibrium with a liquid at saturation. However,

there are no physical interfaces between the two regions. In general, the two regions

have different densities and compositions, while they are at thermodynamic equilib-

rium with each other. Although the Gibbs ensemble simulation considers chemical

equilibria between coexisting phases, it does not require an explicit calculation of

the chemical potential. Due to its simplicity, the Gibbs ensemble method became

the choice for simulating phase equilibria in the past decade.

Gibbs Ensemble Monte Carlo simulation has become a useful tool to estimate the

phase equilibria of several pure substances and their binary and ternary mixtures.

Gibbs ensemble Monte Carlo simulation technique was used for

• Pure components: It permits simulation of vapor-liquid coexistence points for

any pure component system at a given temperature.

• Mixtures: It permits simulation of vapor-liquid and liquid-liquid coexistence

points for binary and ternary systems at any given temperature and pressure.

• Critical constants: It permits prediction of critical points based on a supplied

set of pure component coexistence points.

Vapor-liquid equilibria can also be estimated with several equations of state and

with Monte Carlo simulation using analytic potential functions, in which the usual

procedure is to assume a simple model potential, e.g., the Lennard-Jones pair po-

tential (1924) [63] and the Morse potential (1929) [81], fit its parameters to suitable

experimental data, and then to perform the simulation. Such a simulation is no

longer predictive, because it requires an experimental input of the same kind that it
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produces. This can sometimes be a severe limitation, namely if experimental data

are scarce.

Recently an alternative approach has become feasible, for which the name “global

simulation” has been coined by H. Popkie et al. (1973) [97]. It consists of a cal-

culation of intermolecular potentials by quantum mechanical methods, followed by

computer simulations and eventually calculations with equations of state fitted to

the simulation results, in order to obtain properties that are not accessible to sim-

ulations. Such global simulations have been reported for the noble gases, where it

is now possible to predict the vapor-liquid phase equilibria without recourse to ex-

perimental data with an accuracy comparable to the experimental uncertainty. One

of the first attempts that achieved near-experimental accuracy was that of Deiters,

Hloucha and Leonhard (1999) [23] for neon. Further global simulation attempts for

noble gases were published by the groups of Eggenberger and Huber [29, 126, 96],

Sandler [37], and Malijevský [69]. Using a functional form for the dispersion poten-

tials of argon and krypton proposed by Korona et al. [56], Nasrabad and Deiters

(2003, 2004) even predicted phase high-pressure vapour–liquid phase equilibria of

noble-gas mixtures [84, 85]. Other mixed-dimer pair potentials for noble gases were

published by López Cacheiro et al. (2004) [7], but they were not used for phase

equilibria predictions, yet.

The development of ab initio pair potentials for molecules is much more complicated

because of the angular degrees of freedom of molecular motion, but for some sim-

ple molecules such potentials have already been constructed: Leonhard and Deiters

(2002) used a 5-site Morse potential to represent the pair potential of nitrogen [65]

and were able to predict vapour pressures and orthobaric densities. Bock et al.

(2000) also used a 5-site pair potential for carbon dioxide [5]. There have been

other attempts to develop a pair potential function for hydrogen. Recently such a

potential was published by Diep and Johnson (2000) [25, 26], who performed cal-

culations with post-SCF methods MP2, MP3, MP4, and CCSD(T) and with the

basis sets aug-cc-pVmZ (m=2, 3, 4), including extrapolation to the basis set limit.

This pair potential, however, uses a spherical harmonics expansion to account for

the anisotropy of interaction. Such an approach can become problematic, however,

if repulsion at short ranges becomes the dominant feature of a fluid, e.g., in a dense
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liquid state; they furthermore applied the first-order quantum correction to the 2nd

virial coefficients developed by Pack (1983) [89] and Wang Chang [45]. Naicker et

al. (2003) [83] used SAPT (symmetry-adapted perturbation theory) to develop a 3-

site pair potential for hydrogen chloride, based on Korona’s function and a modified

Morse potential; they then successfully predicted the vapour–liquid phase equilibria

of hydrogen chloride with GEMC (Gibbs ensemble Monte Carlo [92]) simulations.

Research objectives

The ab initio intermolecular pair potentials of the dimers H2-H2, F2-F2, H2-O2

and H2-F2 should be calculated from quantum mechanics, using the level of theory

CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3, 4). Then

the quantum mechanical results should be used to construct four new analytical

potential functions of these dimers. The second virial coefficients of the dimers H2-

H2, F2-F2 and the cross second virial coefficients of the dimers H2-O2 and H2-F2

have to be determined by integration of these functions. The thermodynamics of

vapor-liquid equilibria as well as the structural properties of pure fluids hydrogen

and fluorine should be derived from GEMC simulations using those potentials.

To achieve these goals, the thesis has the following four specific objectives:

• Calculations from quantum mechanics: Constructing the angular orientations

of the dimers H2-H2, H2-O2, F2-F2 and H2-F2; calculating the ab initio inter-

molecular energies for all built orientations, and single-molecule properties of

some representational orientations from quantum chemical methods CCSD(T),

MPn (n =2, 3, 4) and basis sets; correcting the energy results for the basis set

superposition error (BSSE) with the counterpoise method; extrapolating the

interaction energies to the complete basis set limit aug-cc-pV23Z.

• Construction of analytical potential functions: Developing four new 5-site ab

initio intermolecular potentials of the dimers H2-H2, H2-O2, F2-F2 and H2-F2

along the proposed potentials of carbon dioxide [5], nitrogen [65] and hydrogen

chloride [83]; estimating the adjustable parameters of these analytical poten-

tial functions with the fit to ab initio intermolecular energies combining the

Levenberg-Marquardt (LM) and the Genetic Algorithm (GA); evaluating the

accuracy of the fit upon the statistical results of analysis.
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• Prediction of virial coefficients: Calculating the second virial coefficients of

hydrogen, fluorine and the cross second virial coefficients of the dimers hy-

drogen–oxygen and hydrogen-fluorine by 4D numerical integrals for the con-

structed potential functions; eventually including corrections for quantum ef-

fects; comparing the accuracy of the obtained virial coefficients of this work

with the experimental data and with results from the correlation equations

and equations of state.

• Simulation of the phase equilibria: Carrying out GEMC-NPT and NVT sim-

ulations using the four developed ab initio 5-site intermolecular potentials of

hydrogen and fluorine for the temperature range from 18 K to 32 K for hy-

drogen and from 60 K to 140 K for fluorine; calculating the thermodynamic

properties and the critical point of the fluids hydrogen and fluorine from the

obtained densities of coexisting phases and vapor pressures; comparing the

results in this work with experimental data and with results from equations

of state.

Outline of the thesis

This thesis consists of five chapters and five appendices.

Chapter 1: This chapter gives an introduction to important applications and proper-

ties of hydrogen, oxygen and fluorine, and their mixtures; it presents the simulation

methods are being used recently for the prediction of the thermodynamic properties

of several systems; also the major objectives of this thesis are shown in here.

Chapter 2: This chapter describes the theoretical background for the ab initio calcu-

lations, the basis sets and the intermolecular pair potentials, for the calculations of

the second virial coefficients with quantum effects, the equations of state, Levenberg-

Marquardt (LM) and the Genetic Algorithm (GA) used for the least-square fit, the

Metropolis algorithm, and the Gibbs ensemble Monte Carlo simulations.

Chapter 3: This chapter contains the methodologies, requirements and means of
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calculation, in which all are extracted upon the theoretical background; the com-

puter programs and materials used for this thesis are shown here; the four new in-

termolecular potentials used for the calculation of the virial coefficients and GEMC

simulations are shown here too; this chapter also contains the simulation details

which are needed for the prediction of the vapor liquid equilibria.

Chapter 4: This chapter presents the discussion following the calculation results

which have been obtained from the performing stages. The results are compared

with experimental data.

Chapter 5: This chapter summarizes and discusses the achievements of the the-

sis, and gives recommendation for future work.



Chapter 2

Theoretical Background

2.1 Ab initio implementations

Quantum mechanics (QM) provides an accurate mathematical description of the

behavior of electrons. QM is used in chemistry to predict many properties of an

individual atom or molecule. In practice, the QM equations can only be solved ex-

actly for one-electron systems. QM methods have been developed for approximating

the solutions for multiple-electron systems. The energies and wave-functions of a

system are given by the solutions of the Schrödinger Equation [43, 14]:

ĤΨ = EΨ (2.1)

where Ĥ is the Hamiltonian operator, which in this case gives the kinetic and po-

tential energies of atomic nuclei and electrons. The wave-function Ψ depends on the

coordinates of the electrons and the nuclei. The Hamiltonian consists of kinetic and

potential energy terms, in general,

Ĥ = −
h2

8π2

particles∑

i

1

mi

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
+

1

4πε0

particles∑ ∑

i<j

qiqj

rij

(2.2)

where mi and qi are the mass and charge of particle i, and rij is the distance of be-

tween particles. The first term gives the kinetic energy of the particle. The second

term represents the Coulombic attraction or repulsion of particles.

The Born-Oppenheimer approximation simplifies Eq. 2.3 by separating the nuclear

7
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and electron motions. The Hamiltonian for a molecule with stationary nuclei is

Ĥ = −
1

2

electrons∑

i

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)2

−

nuclei∑

i

electrons∑

j<i

Zi

rij

+
electrons∑ ∑

i<j

1

rij

(2.3)

Here the first term corresponds to the kinetic energy of the electrons, the second to

the attraction of electrons to nuclei, and the third to the repulsion between electrons.

The repulsion between nuclei is defined at the end of the calculation [43, 14, 13, 48].

2.1.1 Electron correlation methods

The Hartree-Fock method provides approximate solutions to the Schrödinger equa-

tion by replacing the real electron-electron interaction with an average interaction.

The Electron Correlation (EC) energy is the energy difference between the HF and

the lowest possible energy in each basis set. It is due to a correlation between the

motion of electrons. For systems and states where correlation effects are important,

the Hartree-Fock results will not be satisfactory [34]. QM methods have been de-

veloped to include some effects of electron correlation [13, 48, 34].

Three main correlation correction methods are Configuration Interaction (CI), Many

Body Perturbation Theory (MBPT), and Coupled-Cluster (CC). The Coupled-

Cluster method presents the most successful approach to accurate many-electron

molecular solutions. It might applied to relatively large systems and is capable of

recovering a large part of the correlation energy [13, 48, 34].

In practice the Coupled-Cluster method is restricted to large systems with multi-

electron configurations. However the Coupled-Cluster wave function provides an

accurate correlation to the Hartree-Fock description [13, 48, 34].

Configuration Interaction (CI)

Configuration Interaction (CI) methods constructed by replacing one or more occu-

pied orbitals in Hartree-Fock determinant with a virtual orbital. The wave function
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of the system is represented as the linear combination of these multiple determi-

nants [13].

Ψ = c0ΨHF + c1Ψ1 + c2Ψ2 + ... (2.4)

Here the coefficients ci are the weights of each determinant in the expansion and

ensure normalization.

The full CI method builds wave-functions by the linear combination of the Hartree-

Fock determinant and all possible substituted determinants [48, 13];

Ψ = c0ΨHF +
∑

s>0

csΨs (2.5)

Here the first term in right side is the Hartree-Fock determinant, and s runs over

all possible substitutions.

Møller–Plesset perturbation theory

Møller and Plesset (1934) [48, 13] proposed a convection for correlation as a pertur-

bation from the Hartree-Fock wave-function. It is called Møller–Plesset perturbation

theory. The minimal correlation is the second-order MP2 method. Third-order MP3

and fourth-order MP4 calculations are also possible. The results of an MP4 calcu-

lation is equivalent to a CISD calculation. MP5 and higher calculations are seldom

carried out due to the high computation time [62, 48].

In the Møller–Plesset perturbation theory the perturbed Hamiltonian, Hλ is defined

as

Hλ = H0 +
∞∑

i=1

λiHi (2.6)

Here λ is an expansion coefficient. The n-electron integral over H0 is equal to the

sum over the one-electron eigenvalues of the Fock Operator.

The exact ground-state wave function and energy Ψλ and Eλ of a system described
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by the full Hamiltonian Hλ can be expanded in powers of λ [62, 34].

Ψλ = Ψ(0) + λΨ(1) + λ2Ψ(2) + ...

Eλ = E(0) + λE(1) + λ2E(2) + ...
(2.7)

Insertion of the exact wave function and energy into the Schrödinger equation yields

(H0 + λV )(Ψ(0) + λΨ(1) + ...) = (E(0) + λE(1) + ...)(Ψ(0) + λΨ(1) + ...) (2.8)

After expanding the results, the coefficients on each side of the equation can be

equated for each power of λ, leading to a set of relations representing successively

higher orders of perturbation.

(H0 + λE(0))Ψ(0) = 0

(H0 + E(0))Ψ(1) = (E(1) − V )Ψ(0)

(H0 + E(0))Ψ(2) = (E(1) − V )Ψ(1) + E(2)Ψ0

(2.9)

The correction of energy and wave function at corresponding order can be obtained

by solving the equation for each order of λ, [13, 34].

Coupled-Cluster theory

Today, Coupled-Cluster (CC) theory is probably the most accurate and best appli-

cable approach for the treatment of molecular systems. The Coupled Cluster (CC)

method was developed in the late 1960s by Cizek (1966) [11, 13, 48], but it was not

until the late 1970s that the practical implementation began to take place and until

1982 that the key stone of modern implementation, CCSD (Coupled Cluster with

single and double excitation) [98], was presented.

The size consistency problem of CI is solved by using the CC method to form a

wave-function where the excitation operators are exponentiated [11, 13, 48]

ψCC = exp(T )ψC (2.10)

The cluster operator T is defined as T = T1 + T2 + T3 + ... + Tn

and Tn is a linear combination of all n-type excitations. n the total number of
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electrons and the various Ti operators generate all possible determinants having i

excitations from the reference.

T1ΨC =
∑

i

∑

a

Ca
i Ψi

T2ΨC =
∑

i>j

∑

a>b

Cab
ij Ψab

ij

(2.11)

Here Ca
i and Cab

ij are the coefficients to be determined

ΨCCSD = Ψ0 +
∑

a

∑

i

Ca
i Ψ

c
i +

∑

i>j

∑

a>b

Cab
ij Ψab

ij

+
1

2

∑

cb

∑

ij

Cc
iC

b
jΨ

cb
ij +

1

2

∑

a>b

∑

c>d

∑

i>j

∑

k>l

Cij
abC

kl
cdΨ

abcd
ijkl + . . .

(2.12)

This appears to be the advantage of CC theory: Higher excitations are included,

but their coefficients may be determined by the excitations of lower order. The

coefficients are determined by projecting Schrödinger’s equation on the left with the

configurations generated by the T̂ operator. This replaces the eigenvalue problem

by a non-linear simultaneous system [39].

Coupled cluster calculations can be similar to configuration interaction calculations,

in which the wave function is a linear combination of many determinants [13, 34, 48].

The method used in this work, CCSD(T), includes triple excitations perturbatively

rather than exactly. Coupled Cluster calculations give variational energies as long

as the excitations are included successively [13, 34, 48].

2.1.2 Basis sets

Ab initio methods try to get accurate information by solving the Schrödinger equa-

tion without fitting parameters to experimental data. Actually, ab initio methods

also make use of experimental data in a rather subtle way. These methods use

several approximations for solving the Schrödinger equation. One of the approxi-

mations inherent in essentially all ab initio methods is the use of basis sets [13, 48].
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An individual molecular orbital is defined as [34]:

ψi =
N∑

µ=1

cµiΦµ (2.13)

here the coefficients cµi are known as the molecular orbital expansion coefficients.

The basis functions Φ1...N are assumed to be normalized. Thus Φµ refers to an

arbitrary basis function in the same way that ψi refers to an molecular orbital.

In HF calculations the wave function need to be described by mathematical func-

tions, which are known well for a few one-electron systems only. This is the second

approximation of the HF calculation. The functions used most often are linear com-

binations of Gaussian-type orbitals exp(−ar2), denoted GTO. Amongst the used

split-valence basis sets are those of Pople et al. [13] including the basis sets 3-21G,

6-21G, 4-31G, 6-31G, and 6-311G. The first number indicates the number of primi-

tives used in the contracted core functions. The numbers after the hyphen indicate

the numbers of primitives used in the valence functions. If there are two numbers,

it is a valence-double-ζ basis, is there are three, valence-triple-ζ [13, 34, 48].

Split-valence basis set: the 6-31G basis sets

For the basis set 6-31G the core orbitals are a contraction of six primitive GTOs

(PGTOs), the inner part of the valence orbitals is a contraction of three PGTOs and

outer part of the valence is represented by one PGTO. The designation of the car-

bon/hydrogen 6-31G basis is (10s4p/4s) → [3s2p/2s]. This basis set is only strictly

defined for hydrogen through fluorine [48, 13].

The basis set 6-31G(p1,p2) where p1 can be d, 2d, 3d, f, df, 2df or 3df and p2

can be p, 2p, 3p, d, pd, 2pd or 3pd. 6-31G* can be used instead of 6-31G(d) and

6-31G** is the same as 6-31G(d,p). The 6-31+G basis will add diffuse s- and p-

orbitals on all non-hydrogen atoms and 6-31++G also adds diffuse s-functions on

all hydrogen atoms [48].
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Split-valence basis set: the 6-311G basis sets

For the basis set 6-311G the core orbitals are also a contraction of six primitive

GTOs (PGTOs); This basis set is only strictly defined for hydrogen through fluo-

rine [48, 13].

The general form of the basis set is 6-311G(p1,p2) where p1 can be d, 2d, 3d, f,

df, 2df or 3df and p2 can be p, 2p, 3p, d, pd, 2pd or 3pd. 6-311G* can be used

instead of 6-311G(d) and 6-311G** is the same as 6-311G(d,p). The 6-311+G basis

will add diffuse s- and p- orbitals on all non-hydrogen atoms and 6-311++G also

adds diffuse s-functions on all hydrogen atoms [48, 13].

Correlation consistent basis sets

A set of basis sets for correlated calculations has also been developed by Dunning

et al (1970) [51, 52, 53]. These basis sets are called as correlation consistent (or cc)

and are designed as a base set of sp functions combined with correlation functions.

Several basis sets of different sizes are available. These are known by their ab-

breviation: cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z, where D, T and Q indicate

the number of contracted functions. The terms of primitive and contracted functions

are shown below [48, 13].

Basis Primitive functions Contracted functions

cc-pVDZ 9s,4p,1d/4s,1p 3s,2p,1d/2s,1p

cc-pVTZ 10s,5p,2d,1f/5s,2p,1d 4s,3p,2d,1f/3s,2p,1d

cc-pVQZ 12s,6p,3d,2f,1g/6s,3p,2d,1f 5s,4p,3d,2f,1g/4s,3p,2d,1f

cc-pV5Z 14s,9p,4d,3f,2g,1h/8s,4p,3d,2f,1g 6s,5p,4d,3f,2g,1h/5s,4p,3d,2f,1g

The energy–optimized cc basis sets are augmented by additional diffuse functions,

denoted by the prefix aug- to the abbreviation. The augmentation involves inserting

one extra function with a smaller exponent for each angular momentum [48].

2.1.3 Supermolecule approach

In calculations for dimers, basis functions of one molecule can be contribute to the

basis set of the other. The effect is known as Basis Set Superposition Error (BSSE).
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In the limit of a complete basis set, the BSSE would be zero [48, 13, 43]. An

approximate method of assessing BSSE is the counterpoise (CP) correction. The

BSSE is estimated from the monomer energies with the regular basis and the energies

calculated with the full set of basis functions for the whole complex. The geometries

of the two separated molecules A and B, and the complex AB are optimized. The

energy difference between those is calculated with following formula [48, 13, 60, 43]

∆E = E(AB)∗ab − E(A)a − E(B)b (2.14)

Here basis set a for A and basis set b for B, and basis set ab for complex AB. Two

energy calculations of the fragments in the complex are carried out with the full ab

basis set. The energy of A is calculated in the presence of both the normal a basis

functions and with the b basis functions of fragment B located at the corresponding

nuclear positions, but without the B nucleus present. Such basis functions located

at fixed points in space are referred to as ghost orbitals. The CP correction is

calculated as [48, 13, 43]

∆ECP = E(A)∗ab + E(B)∗ab − E(A)∗a − E(B)∗b (2.15)

The counterpoise corrected ∆E energy is given as ∆E − ∆ECP [48, 13, 43].

2.1.4 Symmetry-adapted perturbation theory

This perturbational method was proposed by Jeziorski et al. [49, 50, 120]. It com-

putes the interaction energy Eint directly from a sum of physical contributions

Eint = E
(1)
pol + E

(1)
exch + E

(2)
pol + E

(2)
exch + · · · (2.16)

where E
(1)
pol is the damped classical electrostatic interaction energy, E

(2)
pol is a sum of

the damped classical induction and quantum mechanical dispersion energies

E
(2)
pol = E

(2)
ind + E

(2)
disp (2.17)

and E
(n)
exch, n = 1,2, are exchange corrections defined by the symmetry-adapted

perturbation theory (SAPT) [49, 50, 120].
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2.1.5 Extrapolation to the basis set limit

Many attempts were to extrapolate the interaction energies of weakly bound molec-

ular system at the basis set limit from correlation-consistent basis sets and an ex-

trapolation scheme. The relationship between the correlation-consistent energies

and the energy in the basis-set limit may now be written as [43, 138, 55, 10]

∆Eexact = ∆EX + AX−3 (2.18)

Using this formula, the correlation energy Eexact can be extrapolated from the

correlation-consistent energies EX for small cardinal numbers X. To apply Eq. 2.18,

only two energies are needed. From the cardinal numbers X and Y, the energies

EX and EY can be obtained. From these energies, the extrapolated basis-set limit

E∗
XY and the parameter AXY can be determined with the following two equations

satisfied [43, 138, 55, 10, 33]

E∗
XY = EX + AXY X−3 (2.19)

E∗
XY = EY + AXY Y −3 (2.20)

The extrapolated correlation energy and the linear parameter AXY can be calculated

from the following formulae [43, 10]:

E∗
XY =

X3EX − Y 3EY

X3 − Y 3
and AXY =

EX − EY

X−3 − Y −3
(2.21)

2.1.6 Electrostatic interactions

Electrostatics is the study of interactions between charged positions. It is necessary

for understanding the interactions of electrons, which is described by a wave func-

tion or electron density. The Coulomb’s law equation for the energy of interaction

between two particles with charges ea and eb at a distance rab is [114]

E =
1

4πε0

∑

a∈A

∑

b∈B

eaeb

rab
(2.22)
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2.2 Intermolecular potential functions

2.2.1 Lennard-Jones potential

The total intermolecular pair potential is obtained by summing the attractive and

repulsive potentials. One of them is the Lennard-Jones (1924) 6-12 potential [63].

This potential function was used successfully for noble gases, but also in simulations

of molecules, by using 2-site models [9, 79] by adding quadrupole moments [8, 57].

The Lennard-Jones potential can be written as

Eij = 4ε

[(
σ

rij

)12

−

(
σ

rij

)6
]

(2.23)

where ε characterises the well depth of the pair interaction and σ is the hard sphere

radius of the atom (the distance at which Eij is zero). rij is the distance between i

and j (rij = |~ri − ~rj|).

In 1987 the Gibbs ensemble Monte Carlo technique was proposed by Panagiotopou-

los [91]. The phase properties of several systems have been obtained successfully by

these techniques using Lennard-Jones 6-12 potentials.

2.2.2 Morse potential

The harmonic potential is a starting point for a discussion of vibrating molecules.

A potential that is suitable for cases when attractive interaction comes from the

formation of a chemical bond was proposed by Morse (1930) [81]:

Eij = D

[
e
−2α

(
rij−re

re

)

− 2e
−α

(
rij−re

re

)]
, (2.24)

The Morse potential is usually written as [44]

Eij = D(1 − exp(−αrij))
2 (2.25)

where D is the depth of the interaction potential, rij is the interaction distance

and α denotes the range of the interaction. This potential is widely used to model

covalently diatomic molecules. Both potentials Eq. 2.23 and 2.24 are scalable. The
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total energy scales linearly with ε or D, and the distances scale linearly with σ and re.

The Morse potential therefore has an important parameter, α, which can be used to

study the effect of the range of the potential on the properties of a molecular system.

In recent years the Morse potential were modified in several ways to study the effects

of intermolecular interactions. The modified Morse functions can be constructed us-

ing either experimental measurements or theoretical calculations. They were used

successfully for the prediction of thermodynamic properties of several systems.

2.2.3 Korona potential

Korona et al. (1997) [56] worked out an analytical representation for helium dimers

which includes a repulsive exponential component and an attractive damped disper-

sion component of the form

E(r) = Ae−αr+βr2

+
8∑

n=3

f2n(r, b)
C2n

r2n
(2.26)

where A,α, β and b denote adjustable parameters, the C2n denote dispersion coef-

ficient, and f2n is the damping function of Tang and Toennies [121]

f2n(r, b) = 1 − e−br

2n∑

k=0

(br)k

k!
(2.27)

2.2.4 Special potentials

For the prediction of the thermodynamic properties for hydrogen chloride and fluori-

nated compounds with Monte Carlo simulation, pair potentials were developed from

symmetry-adapted perturbation theory (SAPT) by Naicker (2002) [117, 118, 83], one

of them was written as

E int
AB =

∑

a∈A

∑

b∈B

[
αabe

−βabrab + fm(δab
n rab)

( ∑

n=6,8,10,12

Cab
n

rn
ab

+
qaqb

rab

)]
(2.28)

Where fm(δab
n rab) (m = 10) is a damping function proposed by Tang and Toennies

(1984) [121] and has form like Eq. 2.27. The second virial coefficients, vapor pres-

sure and the phase coexistence diagram for halogenated compounds obtained with
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this potential function, were in a good agreement with experimental data.

A new four-dimensional intermolecular pair potential for dimer carbon dioxide was

proposed by Bock (2000) [5]:

E(rij) = Dij exp(−αijrij) +

[
C

(12)
ij

r12
ij

+
C

(10)
ij

r10
ij

+
C

(8)
ij

r8
ij

+
C

(6)
ij

r6
ij

+
qiqj

rij

]
f(rij) (2.29)

Here f(rij) = (1 + e−2(δijrij−2))−15 is a damping function. The results of the virial

coefficients for the dimer carbon dioxide agreed well with experimental data.

For prediction also of thermodynamic properties of vapour liquid equilibria for nitro-

gen using Gibbs ensemble Monte Carlo simulation a new ab initio pair potential was

developed at the CCSD(T) level of theory with aug-cc-pVmZ (m = 2, 3) correlation-

consistent basis sets by Leonhard and Deiters. (2001) [65]:

Ess =
5∑

i=1

5∑

j=1

(EM6
ij + DCC(rij)

qiqj

4πε0rij

)

with

Eij = De,ij{(1 − e−αij(r−rm,ij))2 − 1} + DM6
ij (r)

C6ij

r6

DM6
ij (r) = e−fd

ij(1−rg)2

rg = r/(rd
ijrm,ij); DCC(r) = 1 − e−rij

(2.30)

where DCC(r) and DM6
ij (r) are damping functions. This potential used successfully

for the prediction of the thermodynamic behavior of phase equilibria of nitrogen.

2.2.5 Damping functions

Damping is important for site-site potentials in which the sites can get much closer

than the center of mass separation used in the angular expansion while the dimer is

still in an important region.
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The theory gives the dispersion energy between two atoms as [114]

Edisp = −
C6

r6
−

C8

r8
−

C10

r10
− . . . (2.31)

This cannot be correct with r → 0. The electronic energy remains finite in limit
−→r 0, and the nucleus-nucleus repulsion behaves correctly as 1/r.

For atoms the dispersion energy can be described by a modified expression [114]:

Edisp = −f6(r)
C6

r6
− f8(r)

C8

r8
− f10(r)

C10

r10
− . . . (2.32)

where the fn(r) are damping functions. These functions must satisfy the following

conditions:

• fn(r) → 1 as r → ∞, to recover the long-range formula.

• fn(r) → Rn as r → 0, to suppress the singularity

2.2.6 Fitting the potential energy surface

Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm provides a numerical solution to the mathe-

matical problem for minimizing a sum of squares of several nonlinear functions that

depend on a common set of parameters. This minimization problem occurs espe-

cially in least-squares curve fitting [135]. It is assumed that there are m functions

f1, .., fm of n parameters p1, ...,pn with m ≥ n can be written in vector notation

fT = (f1, ..., fm) and pT = (p1, ...,pn) (2.33)

The least-squares problem is to find the parameter vector p which minimizes the

function

S(p) = fT f =
m∑

i=1

[fi(p)]2 (2.34)
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Given a set of observation data pairs (ti, yi), and a model c(t|p) the residuals fi(p)

are defined as

fi(p) = yi − c(ti|p) (2.35)

For the Levenberg-Marquardt algorithm it is necessary to provide an initial value

for the parameter vector p. In most cases, an standard value like pT = (1, 1, ..., 1)

is appropriate for the curve fits; in other cases, the initial guess has to be already

close to the final solution. The Levenberg-Marquardt algorithm then iteratively

constructs new vectors. In each iteration, the parameter vector p is replaced by a

new evaluation p + q. The functions fi(p + q) are approximated to determine q

f(p + q) ≈ f(p) + Jq (2.36)

where J is the Jacobian of f at p. At a minimum of the sum of squares S, its

gradient with respect to q, ∇qS, is equal to zero. Differentiating the square of the

right hand side of the equation above and setting the results to zero gives

(JTJ)q = −JT f (2.37)

From this equation q can be obtained by inverting JTJ. The idea of the Levenberg-

Marquardt algoritm is to replace this equation by a damped version

(JTJ + λI)q = −JT f (2.38)

The damping factor λ is adjusted at each iteration step. A large value makes the

Levenberg-Marquardt algorithm behave like the gradient method (method of Steep-

est Descent), which converges slowly, but with high probability; a value of zero

makes the Levenberg-Marquardt algorithm behave like the Gauss-Newton method,

which converges quickly, but also tends to diverge instead.

Genetic algorithm

Genetic algorithms are global optimization methods which are based on the mecha-

nisms of natural selection described by genetics and the Darwinian theory of evolu-

tion. This is especially useful for searching parameter spaces in which there are many
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local minima. The Genetic algorithm (GA) proposed by D. A. Goldberg (1989) [38]

has been applied successfully to the description of a variety of global minimization

problems. In 1998 the potential energy surfaces were fitted with genetic program-

ming in searching the function space proposed by Makarov and Metiu [68]. In recent

years the genetic algorithm has been used to find the solutions for many chemistry

problems.

The GA was proposed by Wiliam Ferreira (2005) [134]. It is assumed that there is

a function V ([a], ~r) in some set of np points (~rp, ep). The least-square problem is to

find the parameter vectors [a] = [a1, a2, .., am] which minimizes function

S =

np∑

p

δ2
p =

np∑

p

(ep − ēp)
2 (2.39)

with ēp ≡ V ([a], ~rp).

Wiliam Ferreira (2005) [134] successfully fitted potential energy surfaces of reac-

tive systems with this Genetic algorithm.

2.3 Second virial coefficients

The virial equation is a power series for the compressibility factor in the reciprocal

molar volume, 1/Vn [42, 129, 136].

z =
PVn

RT
= 1 +

B2

Vn

+
B3

V 2
n

+ . . . (2.40)

where z is the compressibility factor, B2 is the second virial coefficient, and B3 is

the third virial coefficient. In a mixture the second virial coefficient has the form

B(T ) = Baax
2
a + 2Babxaxb + Bbbx

2
b (2.41)

where the xi are mole fractions, Bii are the virial coefficients of pure components,

and Bab is the cross second virial coefficient.
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The virial coefficient can be calculated with the integral as [45]

B(T ) = −2π

∫ ∞

0

[e−E(r)/kT − 1]r2dr (2.42)

where E(r) is a spherically symmetric inter-particle potential obtained by integration

over the angular coordinates.

2.3.1 Empirical correlation methods

For second virial coefficients a reliable correlation was proposed by Vetere (1999,

2005) [128, 129]. Its results agree well with experimental data for many substances.

It can be derived from an eight-parameter equation of state as [128, 129]

B =

(
a

1.987T
exp(b − KT )

)
−

(
a

1.987TB0

)
exp(b − KTB0

) (2.43)

where the second term on the right-hand site makes it possible to calculate B up to

the Boyle temperature, TB0
, and beyond. At temperatures appreciably below TB0

,

roughly T ≤ 0.85 − 0.9TB0
, Eq.2.43 reduces to

B =

(
a

1.987T
exp(b − KT )

)
(2.44)

without loss of reliability. Eq. 2.44 can correlate with good accuracy all the ex-

perimental range of B for fluids, both polar and non-polar, using two empirical

parameters. An equation for the cross second virial coefficient was proposed by

Martin(1979) [70]

Bij(Pc)ij

R(Tc)ij

= K1(Tb)ij

{
exp[((Tb)ij − T )]

T
−

exp[K((Tb)ij − TB0
)ij]

(TB0
)ij

}
(2.45)

where K1 and K are two empirical constants. The Tc, Pc and Tb are the critical

temperature and pressure, and the boiling temperature.

Recently Estela-Uribe and Jaramillo (2002, 2005) [31, 30] published empirical corre-

lation equations for second virial coefficients which are based on the corresponding-

states approach of Lee and Kesler [61]. In their work, the proposed correlations for
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the second virial coefficients of binary interactions as

B =

(
RTc

pc

)
[B0(Tr) + (ω − ω0)B1(Tr) (2.46)

where B0 the reduced second virial coefficient, B1 represents for the contribution due

to the non-spherical geometry of the fluid of interest and ω and ω0 are, respectively,

the acentric factors of the fluid of interest and the reference fluid. The second cross

virial coefficient, Bij can be calculated from Eq. 2.46 by replacing Tc, pc and ω in

Eq. 2.46 with Tc,ij , pc,ij and ωij, respectively, and use Tr,ij = T/Tc,ij . The empiri-

cal correlation equations are characterized by pseudo-critical parameters, which are

interpolations of the pure-fluid critical temperatures and densities [30]:

p
−1/3
c,ij =

1 + dij

2
(ρ

−1/3
c,i + ρ

−1/3
c,j ); Tc,ij =

(1 − kij)(Tc,iTc,j)
1/2

1 + c/(MijT )

with M−1
ij =

1

2
(M−1

i + M−1
j ) and kij = 1 −

aijρc,ij

(ρc,iρc,j)1/2

(2.47)

Here the Mi denote molar masses of the pure components, Mij an interaction molar

mass, and c is a constant (21.8 K g/mol). It turns out that the adjustable parameters

aij and dij are very close to zero for a large number of chemical compounds.

2.3.2 Calculation from Equations of State

For the second virial coefficients of several non-polar and polar substances a two-

parameter corresponding-states model has been proposed by Mathias (2003) [73],

which relates the reduced second virial coefficient to the critical properties Tc and

Pc. This model is based on the Redlich-Kwong EOS [136] as

P =
RT

v − b
−

acα(T )

v(v + b)

with b = 0.08664035
RTc

Pc

ac = 0.42748025
R2T 2

c

Pc

(2.48)

where the α-function improved to Redlich-Kwong EOS proposed by Mathias (2003)

[73]. The result at the critical temperature agrees with experimental data.
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In years (1981, 1981a, 1982) [19, 20, 21] Deiters constructed an EOS (equation

of state) from perturbed hard chain theory with the aim to obtain an EOS which

yields correct critical temperatures, pressures, and densities of pure components,

because calculations of phase equilibria of mixtures under elevated pressure may

be affected by the wrong representation of the critical points for pure components.

However, the application of this EOS to mixtures is difficult—leading at first to an

implementation for pure components, only. Deiters (1982) proposed an extension to

binary mixtures, by exchanging a part of the equation of state by a polynomial series.

The Deiters equation of state (denoted D1) has been coded in program Ther-

moC [18, 22] and can be used to calculate the second virial coefficients, vapor

pressure and vapor-liquid equilibria of pure components. This equation contains an

ideal gas part, a hard-sphere term with the quantum correction and an attraction

term:

Am = + µª − RT ln
Vm

V ª
m

− RT + RTcc0
4ξ − 3ξ2

(1 − ξ)2
+ ∆Aqc

m

−
NA

c2
ξ
[
h0χ(ρ, c)T̃ (e1/T̃ − 1) +

3∑

k=0

6∑

j=0

10∑

i=0

fijk(c − 1)kT̃−jξi
]

with ξ =
NAπσ3

6Vm

, T̃ =
ckBT

ε

(2.49)

The symbol ª refers to the reference state of the equation of state. The parameters

ε (potential well depth), σ (hard-core diameter), and c (anisotropy parameter) are

substance specific. The fijk are (universal) expansion coefficients, h0 and c0 are

constants, χ(ρ, c) is a function of density, and NA is Avogadro’s constant.

2.3.3 Quantum corrections

In 1944 Chang [45] studied the influence of quantum effects on virial coefficients of

linear molecules. Such molecules can be represented as rigid rotators, with three

degrees of translational and two degrees of rotational freedom. The interaction po-

tential for molecules is a function of the intermolecular distance and three angles

which describe the relative orientation of the molecules.



2.3. SECOND VIRIAL COEFFICIENTS 25

The Hamiltonian of N rigid rotators of mass m and moment of inertia I is

H(qN , pN) =
∑

i

1

2m
p2

i +
∑

i

1

2I

(
p2

θi
+

p2
φi

sin2 θi

)
+ Φ(qN) (2.50)

in which q represents the collection of five coordinates, x, y, z, φ, and q necessary to

specify the location and orientation of a single molecule. The quantities pθ and pφ

are the momenta conjugate to the coordinates θ and φ. The partition function is

ZN =
1

N !h5N

∫
. . .

∫
e−H(qN ,pN )/kT dpx1

dpy1
dpz1

dpθ1
dpφ1

× dx1dy1dz1dθ1dφ1 . . .

(2.51)

Integration over the momenta leads to the expression

ZN =
1

N !λ3N
tr λ2N

rot

∫
. . .

∫
e−Φ(qN )/kT{sinθ1sinθ2 . . .}

× dθ1dφ1dx1dy1dz1 . . . dθNdφNdxNdyNdzN

(2.52)

in which λ2
tr = h2/2πmkT and λ2

rot = h2/2πIkT . This expression is written in

ZN =
(4π)N

N !λ3N
tr λ2N

rot

∫
. . .

∫
WN(qN)dq1 . . . dqN (2.53)

in which WN(qN) is the classical Boltzmann factor furthermore

dqi =
1

4π
dxidyidzisinθidθidϕi (2.54)

The formulas for the virial coefficients for angle dependent potentials are

B(T ) =
−N

32π2V

∫ ∫
f12dq1dq2

=
N

4

∫ ∞

0

∫ 2π

0

∫ π

0

∫ π

0

f12sinθ1dθ1sinθ2dθ2d(φ2 − φ1)r
2
12dr12

(2.55)

C(T ) = −
N2

192π3V

∫ ∫ ∫
f12f13f23dq1dq2dq3 (2.56)
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fij = {exp[−(ϕij/kT )] − 1}. The fij are functions not only of the intermolecu-

lar distance, but also of the three angles needed to specify the orientation of two

molecules. From the quantum statistical theory Chang (1944) [45] showed that the

diatomic molecules may be represented by rigid three-dimensional rotators of mass

m and moment of inertia I, each with five degrees of freedom: three translational

and two rotational.

The Hamiltonian operator for a system of N such molecules is given in Eq. 2.50.

The quantum effects on the virial coefficients of diatomic gases was obtained as

B(T ) = Bcl +

[(
h2

m

)
Btr

I +

(
h2

m

)2

Btr
II + ...

]

+

[(
h2

I

)
Brot

I +

(
h2

I

)2

Brot
II + ...

] (2.57)

in which

Bcl(T ) = −
N

4

∫ ∫
(e−ϕ/kT − 1)r2drdΩ (2.58)

Btr
I (T ) = +

N

4

(
1

48π2k3T 3

) ∫ ∫
e−ϕ/kT

(
∂ϕ

dr

)
r2drdΩ (2.59)

Brot
I (T ) = +

N

4

(
1

96π2k3T 3

) ∫ ∫
e−ϕ/kT

[(
∂ϕ

∂θ1

)2

+

(
∂ϕ

∂θ2

)2

+ csc2θ1

(
∂ϕ

∂φ1

)2

+ csc2θ2

(
∂ϕ

∂φ2

)2]
r2drdΩ

(2.60)

In this expressions:

ϕ = ϕ(r, θ1, θ2, φ2 − φ1)
∫

...dΩ =

∫ 2π

0

∫ π

0

∫ π

0

...sinθ1dθ1sinθ2dθ2d(φ2 − φ1)
(2.61)
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In 1984 Gray and Gubbins [40] proposed a semiclassical expansion in orders of ~ for

the first-order translational and rotational quantum corrections

Btrans
QM (T ) =

~
2

24(kBT )3
×

〈F 2〉0
2Mr

(2.62)

Brot
QM(T ) =

~
2

24(kBT )3
×

∑

α=x,y,z

〈T 2
α〉0
Iα

(2.63)

where F is the force on each molecule, Mr is the reduced mass of the system, and

Tα is the torque about the local molecular axis α with moment of inertia Iα. The

notations 〈F 2〉0 and 〈T 2
α〉0 represent integrations weighted with the zero-density

pair distribution function. The rotational correction for a mixed system is the av-

erage of the two fragment contributions. The total first-order quantum-corrected

second virial coefficient, B
(1)
QM(T ), is defined as the sum of the contributions from

Eqs. 2.66, 2.62 and 2.63.

The first-order quantum correction to the virial coefficient of linear molecules was

proposed by Pack (1983) [89] and Wang (2003) [132]. Recently the quantum cor-

rection has been presented in Wormer’s work (2005) too [137]. Following the latter,

the virial coefficient up to first order can be written

B(T ) =
NA

2u
∫∫

dΩ1dΩ2

∫∫∫∫ {
1 − exp(−u/kBT )

[
1 +

1

12(kBT )2
H0u

]}

× dr1dr2dΩ1dΩ2

(2.64)

Here NA is Avogadro’s constant, kB Boltzmann’s constant, T the temperature, and

u(r, α, β, φ) the pair potential; its parameters, the center-center distance and the

relative orientation angles are calculated from the center vectors −→ri and the abso-

lute orientations Ωi. H0 is the translation-rotation Hamiltonian of a molecular pair.

Eq. 2.64 can be broken down into a zeroth order (classical) term and first-order

quantum corrections (radial part, angular part proportional to I−1 (moment of in-

ertia), angular part proportional to µ−1 (reduced mass)):

B(T ) = B0
cl(T ) + B1

r (T ) + B1
aI(T ) + B1

aµ(T ) (2.65)
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The classical part is given by

B0
cl(T ) = −

NA

4

2π∫

0

dφ

π∫

0

sin β dβ

π∫

0

sin α dα

∞∫

0

(
exp

(
−

u

kBT

)
−1

)
r2 dr (2.66)

The first-order correction terms can be written as:

B(1)
r (T ) =

NA~
2

96µ(kBT )3

2π∫

0

π∫

0

sin β

π∫

0

sin α

∞∫

0

exp

(
−

u

kBT

)(
∂u

∂r

)2

× r2 dr dα dβ dφ

(2.67)

B
(1)
a,I (T ) = −

NA~
2

48(kBT )2

2π∫

0

π∫

0

sin β

π∫

0

sin α

∞∫

0

exp

(
−

u

kBT

)

×
∑

l1l2l

ul1l2l(r)Al1l2l(α, β, φ)

(
l1(l1 + 1)

2I1

+
l2(l2 + 1)

2I2

)
r2 dr dα dβ dφ

(2.68)

B(1)
a,µ(T ) = −

NA~
2

48(kBT )2

2π∫

0

π∫

0

sin β

π∫

0

sin α

∞∫

0

exp

(
−

u

kBT

)

×
∑

l1l2l

ul1l2l(r)Al1l2l(α, β, φ)
l(l + 1)

2µr2
r2 dr dα dβ dφ

(2.69)

The terms ul1l2l(r)Al1l2l(α, β, φ) represent a spherical harmonics expansion of the

interaction potential.

2.3.4 Numerical calculation of integrals

The Gauss quadrature method is an approximative numerical integration technique.

The value of a one-dimensional integral is calculated as a weighted sum of integrand

values. With each xi there is an associated weight, wi [67, 1, 15, 135, 99, 113].

∫ b

a

f(x)dx '

n∑

i=1

wif(xi) (2.70)
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The points xi within the interval [a, b] are the abscissae, and the wi are the

weights [1]. Calculating a two-dimensional integral with the Gauss quadrature rule

can be similarly described as

∫ b1

a1

∫ b2

a2

f(x, y)dydx '

n∑

i=1

wi

( ∫ b2

a2

f(xi, y)dy

)
(2.71)

∫ b1

a1

∫ b2

a2

f(x, y)dydx '

n∑

i=1

n∑

j=1

wivjf(xi, yj) (2.72)

where (wi, xi) and (vi, yj) are the weights and abscissae of the rules used in the

respective dimensions. The one-dimensional rule may also be used similarly for

multi-dimensional integral forms

∫ b1

a1

∫ b2

a2

· · ·

∫ bn

an

f(x1, x2, . . . , xn)dxndxn−1 · · · dx1 (2.73)

In this work, 4D integrations were carried out with such a Gauss-Legendre quadra-

ture method [113, 135, 67, 99]

2.4 Monte Carlo Simulation

2.4.1 Metropolis method

The Metropolis method is regarded as one of the 10 greatest numerical methods

developed of the 20th Century [78]. In this method, points in the configuration

space ψ(l) can be generated randomly according to the probability distribution

exp(Eψ(l)/(kBT )). This means that, on average, the number of points generated

per unit volume around a point ψ(l) is

〈A〉 =
1

M

M∑

l=1

h(ψ(l)) (2.74)
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where M is the total number of points generated, so-called number of Monte Carlo

cycles. In the case of random samples the suitable laws of large numbers was pro-

posed by Markov chains [127]

〈A〉 =
1

M

M∑

l=1

h(ψ(l)) →

∫

<

h(ψ)π(ψ)dψ (2.75)

Another reason for the interest in Metropolis methods is that, it is rather straight-

forward to construct one or more Markov chains [127] whose limiting invariant dis-

tribution is the desired target distribution. In equilibrium, the average number of

accepted moves from a state to any other state is equalled by the number of re-

verse moves. The advantage of this theory is that the algorithm to generate the

configurations permits also the reverse moves.

uipij = ujpji

ui : configurational probability i

pij : transition probability from state i to state j

(2.76)

If X(i) is the number of states:

pij =





0 for ψj /∈ X(i);
1
M

for ψj ∈ X(i) and ρ(ψj) ≥ ρ(ψi);
1
M

ρ(ψj)

ρ(ψi)
for ψj ∈ X(i) and ρ(ψj) < ρ(ψi)

(2.77)

The reversibility can be demonstrated as follows:

• When ψj /∈ X(i) is, then ψi /∈ X(j) and pij = 0 = pji

• When ρ(ψj) ≥ ρ(ψi) then pij = 1
M

and pji = 1
M

ρ(ψj)

ρ(ψi)
= 1

M
ui

uj
⇒ ujpji = uipij

and vice versa. To accept a move with the probability p =
ρ(ψj)

ρ(ψi)
, one evaluates p

and compares this value with a random number x ∈ [0, 1]. If p > x, the move is

accepted and otherwise rejected.

2.4.2 The Gibbs ensemble

Gibbs ensemble simulations are carried out in two microscopic regions. Simulation is

performed in each region within standard boundary conditions. Each region should
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be in internal equilibrium, and temperature, pressure and the chemical potentials of

all components should be the same in the two regions. In Monte Carlo simulations

the system temperature is specified in advance. The remaining three conditions are

satisfied by carrying out three types of moves, which are displacements of particles

within each region, fluctuations in the volume of the two regions and transfers of

particles [35, 4].

For theory foundations the Gibbs ensemble techniques have also been described

the detail by Panagiotopoulos in the publication (1987, 1988) [91, 94]. The predic-

tion and simulation of phase transitions in complex fluids were proposed by Pana-

giotopoulos (1994) [93]. In the following years a full development of the statistical

mechanical definition of the ensemble was proposed by Smit et al. (1989) [109] and

Smit (1989) and Frenkel (2002) [108, 35]. The main lines of reasoning were repro-

duced by Smit et al. (1988) [94] and Smit (1993) [107].

Figure 2.1: Scheme of the Gibbs ensemble technique [93]. Dotted lines indicate
periodic boundary conditions.

For a system at constant temperature T, total volume V, and total number of par-

ticles N the system is divided into two regions with volumes VI and VII(= V − VI)
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and number of particles NI and NII(= N − NI). The partition function is

QNV T =
1

Λ3NN !

N∑

NI=0

(N
NI

)

∫ V

0

dVIV
NI

I V NII

II

∫
dξNI

I exp[−βUI(NI)]

+

∫
dξNII

II exp[−βUII(NII)]

(2.78)

where Λ is the de Broglie wavelength, β = 1/kBT, ξI and ξII are the scaled coordinates

of the particles in the two regions. U(NI) is the total intermolecular potential of NI

particles. Eq. 2.78 represents an ensemble with probability

℘(NI, VI; N, V, T ) ∝
N !

N !NII!
exp(NIlnVI +NIIlnVII −βUI(NI)−βUII(NII)) (2.79)

The partition function Eq. 2.78 was used by Smit et al. [110] for a system with

a first-order phase transition. In a Gibbs ensemble simulation the two regions are

expected to reach the correct equilibrium densities. The acceptance criteria for the

three types of moves can be obtained from Eq. 2.79.

For a displacement step in one of the regions, the probability of acceptance is the

same for conventional NVT simulations:

℘(move) = min[1, exp(−β∆U)] (2.80)

where ∆U is the internal energy change resulting from the displacement.

For a volume change step the volume of region I is increased by ∆V with a corre-

sponding decrease of the volume of region II,

℘(move) = min

[
1, exp

(
−β∆UI−β∆UII+NIln

VI + ∆V

VI

+NIIln
VII − ∆V

VII

)]
(2.81)

Eq. 2.81 indicates that sampling is performed uniformly in the volume. Such sam-

pling is performed by generating a uniformly distributed random number between

0 and 1, ξ, and obtaining ∆V as

∆V = ξδνmaxmin(VI, VII) (2.82)
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where δνmax is the maximum fractional volume change. A parameter adjusted to

obtain the desired acceptance rate of the volume changes. The acceptance criterion

for particle transfers is written for transfer from region II to region I is

℘change = min

[
1,

NIIVI

(NI + 1)VII

exp(−β∆UI − β∆UII)

]
(2.83)

Eq. 2.83 can be readily applied to multi-component systems. Eq. 2.83 indicates that

the probability of transfer out of an empty region is zero, which is the mathematical

limit of the transfer probability, ℘transfer, as NII is continuously reduced towards zero.

In such case, for all unsuccessful steps, the old configuration is counted once more

for the calculation of any system property.

For pure component systems, one intensive, usually the temperature, variable can

be independently specified when two phases coexist. The vapor pressure is then

obtained from the simulation. For multi-component systems the pressure can be

specified in advance, so that the total system is considered at NPT condition. The

probability for this case is

℘(NI, VI; N,P, T ) ∝
N !

NINII!
exp

(
NIlnVI + NIIlnVII − βUI(NI)

− βUII(NII) − βP (VI + VII)

) (2.84)

The volume changes in the two regions are done independently. The acceptance

criterion for a volume change of region I is ∆VI and of region II by ∆VII is

℘volume = min

[
1, exp

(
− β∆UI − β∆UII + NIln

VI + ∆VI

VI

+

NIIln
VII − ∆VII

VII

− βP (∆VI + ∆VII)

)] (2.85)

For a binary mixture with components A and B, in which B is much large the A, only

component A is transferred directly between regions. Component B is transferred

indirectly, by changing a particle of type A into one of type B in one of the two

regions with a simultaneous reverse change in the other region. The move is accepted
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with a probability (for a change of A into B in region II ),

℘change = min

[
1,

NA
II N

B
I

(NA
I + 1)(NB

II + 1)
exp(−β∆UI − β∆UII)

]
(2.86)

The chemical potentials of the two components in the two regions satisfied by these

two sets of moves are

µA
I = µA

II

µB
I − µA

I = µB
II − µA

II

(2.87)

This calculation is readily generalized for systems with more than two components.

Simulations of phase equilibria in the Gibbs ensemble do not require prior knowl-

edge or calculation of the chemical potentials of components in a system. During the

particle transfer steps, the change in internal energy of a region caused by addition

of a particle is clearly related to the energies, U+, used in the Widom equation for

calculation of chemical potentials in NVT simulations:

µi = −kBT ln〈exp(−β∆U+)〉 + kBT lnρi (2.88)

where µi is the chemical potential of component i and β = 1/kBT , and ρi is the

density of component i (ρi = Ni/V ). Smit and Frenkel [109] obtained a similar

expression for Gibbs ensemble simulations in region I:

µi = −kBT ln〈
VI

NI,1 + 1
exp(−β∆U+

1 )〉 (2.89)

where U+
1 is the internal energy change of region I during attempted transfers of

particles of species i. The values of the chemical potentials resulting from Eqs. 2.88

and 2.89 differ less than simulation uncertainty [109], except when very few particles

are present in one of the two regions.

2.4.3 Structural quantities

The structure of simple fluids is characterized by a set of distribution functions, the

simplest of which is the site-site distribution function g(rij) or g(r). It gives the
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probability of finding a pair of atoms at a distance r, relative to the probability

expected for a completely random distribution at the same density [4]. The site-

site distribution functions, g(r) are defined by integrating over the positions of all

atoms, and applying appropriate normalization factors. Obviously the choice i and

j is arbitrary in a system of identical atoms. A equivalent expression is defined in [4]

g(r) = ρ−2

( ∑

i

∑

j 6=i

δ(ri)δ(rj − r)

)
=

V

N2

( ∑

i

∑

j 6=j

δ(r − rij)

)
(2.90)

This formula could be used in the evaluation of g(r) by computer simulation. The

ensemble average, 〈a(ri, rj)〉 of any site-site function may be expressed in

〈a(ri, rj)〉 =
1

V 2

∫
dridrjg(ri, rj)a(ri, rj) (2.91)

A set of site-site distribution function gab(rab) can be calculated in same way as

the atomic g(r) for each type of site. The coordination number of atoms can be

calculated by the following expression

Nc = 4πρ

∫ rmin

0

r2g(r)dr (2.92)

where Nc is the coordination number, and ρ is the density.

2.4.4 Boundary conditions

Monte Carlo and Molecular Dynamics simulations of a molecular system are to

provide the properties of a macroscopic system. Most simulations investigate the

structural and thermodynamic properties of a system with a few hundreds parti-

cles. In periodic boundary conditions, the simulation is carried out in a cubic box

throughout space to form an infinite lattice. In the course of the simulation, when

a molecule moves in the central box, its periodic image in every one of the other

boxes moves with exactly the same orientation in exactly the same way. Thus, a

molecule leaves the central box, one of its images will enter through the opposite

face. There are no walls at the boundary of the central box, and the system has

no surface [35, 4]. Boundary conditions are usually used in conjunction with the

minimum image convention for short ranged forces. Here interactions between each
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Figure 2.2: Periodic boundary conditions. The central box is outlined by a bolder
line with blue background. The circle represents a potential cutoff.

molecule and the closest periodic image of its neighbors are considered.

Short ranged forces are often truncated to increase computational efficiency. For

consistency with the minimum image convention, this cut-off distance must be less

than or equal to half the box length. Boundary conditions can have an effect on the

system. This is especially pronounced for small system sizes and for properties with

a large long-range contributions, such as light scattering factors. They also inhibit

long wavelength fluctuations that are important near phase transitions [35, 4].

2.4.5 Thermodynamic properties

In Gibbs ensemble simulation, the thermodynamic properties of a system resulting

from the simulation results are the enthalpy, the internal energy, the boiling tem-

perature and the critical point. The enthalpy is calculated by equation H = U + pV

or H = E + pV from the configurational energy U or internal energy E , pressure p

and volume V . The enthalpy of vaporization ∆vapH and the internal energy ∆vapU

are estimated readily as the difference in heat content between coexisting liquid and

vapor (∆vapH = Hv - Hl) and (∆vapU = Uv - Ul). The entropy of vaporization is

then ∆vapS = ∆vapH/T . The chemical potential of each species can be calculated
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using the Widom equation Eq. 2.88 [133].

The form of the coexistence curve obtained from Gibbs ensemble simulations has

been examined by Mon and Binder [80] for the two-dimensional Ising model, by

Recht and Panagiotopoulos (1993) [100] and Smit (1993) [107] for a continuous-

space binary mixture in two and three dimensions and by Panagiotopoulos [101]

for truncated Lennard-Jones potentials in two and three dimensions. Smit et al.

(1995) [110] showed that the Ising scaling exponent can also fit the experimental

data. Smit and Williams (1990) [111] also showed that the critical point can be cal-

culated by fitting the coexistence densities to the density scaling law equation 2.93

along with the law of rectilinear diameters [104]:

ρl − ρv

2
= ρc + A(Tc − T )

ρl − ρv = B(T − Tc)
β

(2.93)

where ρl is the coexistence liquid density, ρv is the coexistence vapor density, ρc is

the critical density. Tc is the critical temperature, β is the critical exponent here a

non-classical value (β ≈ 0.325) is used. A and B are constants. Eq. 2.93 is solved

using a least-squares fit to the vapor-liquid coexistence data.

The Antoine equation is a simple empirical 3-parameter equation that for vapor

pressures. It is used here to correlate the vapor pressures obtained from GEMC

simulations [136, 102]:

ln P = A −
B

T + C
(2.94)

where A, B, and C are Antoine constants. P is vapor pressure and T is tempera-

ture. The parameters A, B, C were compared with the experimental parameters.

The enthalpy of vaporization is a characteristic parameter that reflects the amount

of heat energy required to vaporize one mole of the substance. The relation between
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vapor pressure, heat of vaporization, and temperature is given by the Clausius-

Clapeyron equation [136, 102].

ln

(
P1

P2

)
= −

∆vapH

R

(
1

T1

−
1

T2

)
(2.95)

For the standard state P 0 = 0.1 MPa this relation is rewritten as

ln

(
P

P 0

)
=

(
−

∆vapH

R

)(
1

T

)
+

∆vapS

R
(2.96)

Here T1 and T2 are the temperatures at the pressure P1 and P2, ∆vapS is the entropy

of vaporization (J/K.mol) at P 0. The slope of lnP with respect to 1/T is propor-

tional to the enthalpy of vaporization, and it is found to be nearly constant except

in the critical area. From the slop of a plot of lnPv vs. 1/T therefore ∆vapH can be

obtained and from the intercept ∆vapS can be calculated too.
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Calculation Methods

This chapter describes the calculation techniques for ab initio intermolecular inter-

action pair potentials, the virial coefficients of the dimers H2-H2, H2-O2, F2-F2 and

H2-F2 as well as the GEMC-NVT and NPT simulation and the calculations of the

thermodynamic properties for the vapor-liquid equilibria of the pure fluids hydrogen

and fluorine.

3.1 Program and Resources

3.1.1 Calculation program

Program packages

• Gaussian03 TM [36] was used to calculate the molecular properties of the single

molecules hydrogen, oxygen and fluorine, and the ab initio intermolecular

energies of the dimers H2-H2, H2-O2, F2-F2 and H2-F2 at the levels of theory

MPn (n = 2, 3, 4) and CCSD(T) with basis sets 6-31G, 6-311G and aug-cc-

pVmZ (m = 2, 3, 4).

• Auto2Fit v3.0 [12] estimates the adjustable parameters of the analytical po-

tential functions by fitting them to the ab initio intermolecular energies with

the Genetic Algorithm (GA).

• ThermoC program [18, 22] calculates the second virial coefficients, vapor pres-

sure, vapor-liquid equilibria and the thermodynamic properties of the pure

fluids with several equations of state.

39
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Programs and utilities in Code C and Fortran

The programs below have been coded in C and Fortran 77.

• Fitting program with the Levenberg-Marquardt algorithm

• BSSE (Basis Set Superposition Error) program

• Virial program for multi-dimensional integrals

• First-order quantum correction program (Fortran)

• Extrapolation program to complete basis set limit

• Start configuration program

• GEMC-NVT program

• GEMC-NPT program

3.1.2 Data and Resources

Computations were carried out on computers of the group of Prof. Deiters at the

Institute of Physical Chemistry as well as in the computer center of the University

of Cologne. Experimental data used for this work were taken mostly from the

compilations [17, 124, 119, 66, 28, 75, 47] as well as from other sources listed in the

bibliography.

3.2 Ab initio quantum chemical calculations

3.2.1 Molecular orientation

In this work the linear molecules hydrogen, oxygen and fluorine are represented as

5-site models, with two sites placed on the atoms (H, O or F), one site in the center

of gravity (M), and two sites half-ways between the atoms and the center (N). The

molecules are treated as rigid; the interatomic distances are set to 0.74130 Å for

hydrogen, 1.20741 Å for oxygen and 1.418 Å for fluorine [119, 66].

As these molecules are linear, the intermolecular pair potential is a function of
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Figure 3.1: The block diagram of research process.

the distance r between the centers of gravity and the three angular coordinates, α,

β, and φ, which are explained in Fig. 3.2.

Intermolecular energies were calculated for all values of r from 2.6 Å to 15.0 Å with

an increment of 0.2 Å; the angles α, β, and φ were varied from 0 to 180◦ with an

increment of 45◦. Care was taken to recognize identical configurations in order to re-

duce the computational workload. Fig. 3.2 describes also four special orientations,

which were used to check the performance of the interaction potential functions

created in this work.

3.2.2 Ab initio calculations

Predicting single-molecule properties

The accuracy of computations depends on the theoretical method and the basis set.

Consequently they need to be reexamined before carrying out any calculation. The

basic molecular quantities which were considered are the dissociation energies, the

vibrational frequencies and the bond lengths.
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L :  a   =  0 ,  b   =  0 ,  f  =  0 T :  a   =  9 0 ,  b   =  0 ,  f  =  0

H :  a   =  9 0 ,  b   =   9 0 ,  f  =  0 X :  a   =  9 0 ,  b   =  9 0 ,  f  =  9 0
N

N

N

N
M

M

b

fa

Figure 3.2: A 5-site model of a diatomic molecule and selected orientations for
quantum chemical approaches.

The dissociation energy is defined as the energy difference between a molecule and

its component atoms [36, 34, 10]. For the molecules hydrogen, oxygen and fluorine,

because of molecular symmetry, it can be calculated as

∆E = 2Ea − Em (3.1)

Here Ea and Em are the energies of an atom and a molecule, respectively. The

molecular energy is corrected for zero-point energy (ZPE). The molecular energy is

calculated from carrying out molecular optimization. The vibrational frequency and

the bond lengths of the molecules hydrogen, oxygen and fluorine are derived from

such an optimization. Two single point energy calculations for the atoms and the

molecule itself are carried out, too [34].

Calculating ab initio interaction energies

The Hartree–Fock SCF method is a widely used method in quantum chemistry; it

had proven to be useful for the calculation of chemical bond energies and even of

hydrogen bonding energies. Dispersion forces, however, are caused by electron cor-

relations, and these effects are excluded in pure SCF calculations [34].

A full configuration interaction treatment (CI) for electron correlations requires

enormous computational resources and is usually not practical, as shown in Sec-

tion 2.1.1. The post-SCF methods based on Møller–Plesset perturbation theory
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MPn (n = 2, 3, 4) and coupled-cluster method CCSD(T) are useful to capture at

least a part of the electron correlation effects. Due to the diffuse, wide-range nature

of dispersion force fields, it is necessary to adopt appropriate basis sets as presented

in Section 2.1.2. The basis sets used here for calculating the ab initio intermolecular

energies are aug-cc-pVDZ (for oxygen: 10s5p2d/4s3p2d, for hydrogen: 5s2p/3s2p,

for fluorine: 10s5p2d/4s3p2d), aug-cc-pVTZ (for oxygen: 12s6p3d2f/5s4p3d2f, for

hydrogen: 6s3p2d/4s3p2d, for fluorine: 11s6p3d2f/5s4p3d2f) and aug-cc-pVQZ(for

oxygen: 12s6p3d2f1g/5s4p3d2f1g, for hydrogen: 6s3p2d1f/4s3p2d1f, for fluorine:

12s6p3d2f1g/5s4p3d2f1g) proposed by Dunning et al. [54, 13] and the small po-

lar basis sets: 6-31G (for oxygen: 10s4p/ 6s4p, for hydrogen: 4s/3s, for fluorine:

10s4p/6s4p) and 6-311G (for oxygen: 11s5p/ 6s5p, for hydrogen: 5s/3s, for fluorine:

11s5p/ 6s5p) [13, 48].

The ab initio energy results were corrected for the basis set superposition error

with the counterpoise correction method proposed by Boys and Bernardi [6, 10] in

Section 2.1.3.

Extrapolating to the basis set limit

The electronic energies are extrapolated to the basis set limit with the extrapolation

scheme described in Section 2.1.5,

∆E(m) = ∆E(∞) + cm−3 (3.2)

with m = 2 (for aug-cc-pVDZ basis set) or 3 (for aug-cc-pVTZ). If results for two

different basis sets are available, it is possible to calculate the energy value for

an infinite basis set from Eq. 3.2; this result is referred to as aug-cc-pV23Z. The

extrapolation scheme is adequate for our ab initio energy calculations here.

3.2.3 Building the pair potential functions

The analytical potential functions consist of terms for the repulsive and the dis-

persive interaction forces and the charge interaction. These are very universal.

Modelling the molecular anisotropy by spherical harmonics is possible in principle,

too. But it was not attempted here for reasons explained in Chapter 1 and Sec-

tion 2.2. Instead, multi-center potential functions as proposed in Section 2.2.3 and
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Section 2.2.4 were better suited for modelling a molecular system. 2-site or even

3-site molecular models did not represent the ab initio data well, but 5-site models

were sufficient [5, 65].

For the dimer hydrogen and the mixture hydrogen-oxygen two pair potential func-

tions were constructed by incorporating the repulsive and the dispersive part, which

were combined from parts of the site-site pair potential functions Eq. 2.29, Eq. 2.28

and Eq. 2.30 as shown in Section 2.2.4. The other two were also built up similarly for

the dimer fluorine and the mixture hydrogen-fluorine. The damping functions were

used for these analytical potential functions demonstrated with Eq. 2.29, Eq. 2.30,

and Eq. 2.27.

In principle such a 5-site model leads to an ab initio pair potential function con-

sisting of 25 spherical site-site interactions. But because of molecular symmetry

only six different site-site potentials have to be fitted for the dimers hydrogen and

fluorine, and eight for the dimers hydrogen–oxygen and hydrogen-fluorine. The new

ab initio intermolecular interaction potential functions developed within this thesis

are set up according to Eq. 3.3, Eq. 3.4, Eq. 3.5 and Eq. 3.6.

The first two of them are used for the dimers H2-H2, and H2-O2.

u =
5∑

i=1

5∑

i=1

[
Dij

e e−αijrij + f1(rij)
∑

n=6,8,10

C ij
n

rn
ij

+ f2(rij)
qiqj

4πε0rij

]

with f1(rij) = (1 + e−2(δijrij−2))−15 and f2(rij) = 1 − e−βijrij

(3.3)

u =
5∑

i=1

5∑

i=1

[
Dij

e e−αijrij + f1(rij)
∑

n=6,8,10,12

C ij
n

rn
ij

+ f2(rij)
qiqj

4πε0rij

]

with f1(rij) = 1 − e−δijrij

10∑

k=0

(δijrij)
k

k!
and f2(rij) = 1 − e−βijrij

(3.4)
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The other two are used for the dimers F2-F2 and H2-F2

u =
5∑

i=1

5∑

j=1

[
Dij

e ((1 − e−αij(rij−βij))2 − 1) + f(rij)
( ∑

n=6,8,10

Cij,n

rn
ij

+
qiqj

4πε0rij

)]

with f(rij) = (1 + e−2(δijrij−2))−15

(3.5)

u =
5∑

i=1

5∑

i=1

[
Dij

e ((1 − e−αij(rij−βij))2 − 1) + f(rij)
( ∑

n=6,8,10,12

Cij,n

rn
ij

+
qiqj

4πε0rij

)]

with f(rij) = 1 − e−δijrij

10∑

k=0

(δijrij)
k

k!

(3.6)

Here the rij denote site-site distances, qi and qj are electric charges of sites, and Cij,n

are dispersion coefficients; the leading dispersion term is always proportional to r−n
ij .

The site charges qi and qj are evaluated by fitting to the electrostatic potential of

the molecule shown in Section 2.1.6. In the 5-site model (Fig. 3.2) the auxiliary sites

N, placed on the molecular axis half-ways between the outer sites (H, O or F) and

the center M, bear each a charge of +q, and the central site M a charge of -2q. The

outer sites have no electric charge.

3.3 Analytical potential fit

The adjustable parameters of the ab initio intermolecular pair potential functions

can be estimated by nonlinear least-square fitting to the ab initio interaction en-

ergy values resulting from the ab initio calculations. But this fit proved to be very

difficult, because of the object potential functions of the fitting problem have many

local minima. Consequently the fit process has to be carried out by two steps. For

the first step the global minima are coarsely located by means of the genetic algo-

rithm. Then these initial parameters are optimized with the Marquardt-Levenberg

algorithm (Section 2.2.6). The fit programs were described in Section 3.1.1.
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3.4 Calculating the virial coefficients

3.4.1 Integral calculations

Virial coefficients are related to intermolecular potentials by rigorous statistical ther-

modynamic theory; the second virial coefficient depends on the pair potential only.

On the other hand, at least second virial coefficients have been determined exper-

imentally for many gases. The calculation of the second virial coefficients from ab

initio potential functions is a stringent and necessary test for the usefulness of such

ab initio potentials. Computer simulations of some of the properties of the liquid

state might fail to give satisfactory results because multi-body potentials could not

be accounted for, or because these properties are difficult to sample by simulations.

But a failure to reproduce second virial coefficients points to an inadequacy of the

pair potential used.

Figure 3.3: The block diagram for calculating the virial coefficients B2.
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The prediction of the second virial coefficients for the dimers H2-H2, H2-O2, F2-

F2 and H2-F2 was done as outlined in the block diagram Fig. 3.3. The case of these

gases is more complicated because of quantum effects, in which the interaction con-

sists of atoms or molecules with small masses or small moments of inertia. These

can in principle be obtained from a perturbation expansion of Planck’s constant

as given in Section 2.3.3. The first order quantum corrections to the second virial

coefficients of linear molecules can be calculated with Eq. 2.57, Eq. 2.62, Eq. 2.63,

and Eq. 2.64 shown in Section 2.3.3.

In this work Eq. 2.64 is used for calculating the quantum corrections to the virial

coefficients of the dimers H2-H2, H2-O2, F2-F2 and H2-F2. It is broken down into

Eq. 2.65. The virial coefficients can be computed by the two following steps: first the

classical second virial coefficients B0
cl are calculated from equation Eq. 2.66. Second

the first-order correction terms B
(1)
r , B

(1)
a,I and B

(1)
a,µ are calculated using the equa-

tions Eq. 2.67, Eq. 2.68 and Eq. 2.69. The total quantum-corrected second virial

coefficient B2(T ) is defined as the sum of the contributions from the expressions

Eq. 2.66, Eq. 2.67, Eq. 2.68 and Eq. 2.69.

All integrals of the virial expressions as mentioned above were estimated numerically

with a 4-dimensional Gauss–Legendre quadrature method described in section 2.3.4.

The second virial coefficients were calculated using the programs listed Section 3.1.1.

3.4.2 Correlation equation calculations

In this thesis the empirical correlation equations Eq.2.46 and Eq. 2.47 of Estela-Uribe

and Jaramillo (Section 2.3.1) were used to calculate the second virial coefficients of

the dimers hydrogen and fluorine and especially the cross second virial coefficents of

the binary mixtures hydrogen-oxygen and hydrogen-fluorine. The obtained results

with these correlation equations are compared with the virial coefficients resulting

from the ab initio potential functions. The experimental critical parameters of the

hydrogen, oxygen and fluorine were used as input for these correlation equations.

The two correlation parameters included in Eq. 2.47 were set to zero for the binary

interactions hydrogen–oxygen and hydrogen-fluorine.
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3.4.3 Calculation from equations of state

The Deiters equation of state (denoted D1) Eq. 2.49 described in Section 2.3.2 was

used here to calculate the virial coefficients of the dimer F2-F2. The thermodynamic

properties of vapor-liquid equilibria for the pure fluid fluorine were also calculated by

this equation. The results from this equation were compared with those calculated

from ab initio pair potentials Eq. 3.5 and Eq. 3.6, as well as those resulting from

GEMC-NVT simulation. This task is also to test the accuracy of the potentials

Eq. 3.5 and Eq. 3.6. The Deiters equation of state (D1) is contained in program

ThermoC, described in Section 3.1.1.

3.5 Gibbs ensemble Monte Carlo Simulation

3.5.1 Simulation details

The thermodynamic properties of the pure fluids hydrogen and fluorine studied here

are the orthobaric densities, the vapor pressures, the enthalpy of vaporization, the

entropy of vaporization, the boiling temperature, and the critical parameters, which

can be calculated with the Gibbs ensemble Monte Carlo simulation techniques ex-

plained in Section 2.4.2.

The NPT-GEMC simulation was used to calculate the density, and the internal

energy of fluid hydrogen and fluorine to examine the accuracy of the pair potentials.

For hydrogen this simulation was investigated on isobars at 1.0 MPa and 5.0 MPa

and for temperatures from 26.0 K to 250 K, respectively. Similarly for fluorine it

was performed also on isobars at the pressures 1.0 MPa and 10.0 MPa for temper-

atures range from 90.0 K to 270 K; NVT-GEMC simulations were performed to

obtained coexisting liquid and vapor densities, and vapor pressures. They were in

the temperature range 18.0 K to 32.0 K with an increment 2.0 K for hydrogen, and

from 60.0 K to 140.0 K with an increment 10.0 K for fluorine.

The pair potential functions Eq. 3.3 and Eq. 3.4 for hydrogen, and Eq. 3.5 and

Eq. 3.6 for fluorine were used for both simulation cases. Total number of particles N

= 512 were used in both GEMC-simulations with the standard periodic boundary

conditions and the minimum image convention. For NVT-GEMC simulation runs
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Figure 3.4: The block diagram for predicting the phase behavior.

the equilibration between two phase required 1 − 2 × 106 cycles. The simulation

parameters were set for 50% acceptance ratios for translations and volume fluctu-

ations. All movements were performed randomly with defined probabilities. The

accumulative averages of desired quantities were established within 1.0× 103 cycles,

after initial equilibration had been reached within 5.0 × 104 cycles. The simulation

data were exported using block averages with 1000 cycles per block. The statistical

errors in the simulation runs were estimated by dividing each run into 100 blocks

and taking the largest deviation of a block mean from the total mean as error. The

simulations were started with equal densities in two phases. The simulation systems

were equilibrated for about 1.0 × 106 cycles. The cut-off radius rc was set to 7.5

Å for hydrogen and 8.5 Å for fluorine. Corrections for long-range interactions for

the internal energy were computed by the standard relations [4].

3.5.2 Structural properties

The structural properties of the fluids hydrogen and fluorine were studied for the

liquid phase at different temperatures with the NVT- and NPT-GEMC simulations,
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respectively; in both cases the temperature dependence is shown by site-site pair

distribution functions g(r) (Section 2.4.3). The site-site pair correlation functions

for the interactions H-H, F-F, N-N, M-M, H-M and F-M for the fluids hydrogen and

fluorine were achieved by simulations shown in Section 9.2 and 10.2. The structural

properties of each fluid were compared with experimental data and with data from

literature, if available.

3.5.3 Calculating the phase coexistence properties

The critical temperatures Tc/K, densities ρc/gcm
−3 and volumes Vc/cm

3mol−1 of

the pure fluids hydrogen and fluorine were derived from a least-squares fits to the

densities of coexisting phases using the relations Eq. 2.93 of the rectilinear diameter

law shown in Section 2.4.5.

The critical pressures Pc/MPa of hydrogen and fluorine were calculated with the

Antoine equation Eq. 2.94, which had been fitted to the vapor pressure curves. The

enthalpy of vaporization ∆vapH, entropy of vaporization ∆vapS and the boiling tem-

perature Tb of these fluids at the standard state P = 0.101 MPa were estimated

by the Clausius-Clapeyron equation Eq. 2.95 and Eq. 2.95, which was also fitted

to the simulation vapor pressure values of hydrogen and fluorine. In all cases the

comparisons with literature data are also included [18, 90, 76, 74, 66, 17].



Chapter 4

Results and Discussion

This chapter describes the results of the methods as mentioned in (Chapter 3), which

are the ab initio intermolecular pair potentials, the second virial coefficients of the

dimers H2-H2, F2-F2, H2-O2 and H2-F2, and the vapor-liquid equilibria for the pure

fluids hydrogen and fluorine.

4.1 Ab initio quantum chemical calculations

4.1.1 Predicting single-molecule properties

The dissociation energies, the vibrational frequencies and the bond lengths of the

molecules hydrogen, oxygen and fluorine were chosen for assessing to the accuracy of

the ab initio quantum chemical methods MPn (at levels 2 to 4) and CCSD(T) with

the basis sets, discussed in (Section 3.2.2), because these properties are close, related

to the intermolecular pair potential. The comparison of the dissociation energies of

these molecules is shown in Table 6.2 as well as Figures 4.1, 4.2 and 4.3. The vi-

brational frequencies and bond lengths are given in Tables 6.1 and 6.3 (Chapter 6).

These turned out to depend very much on the various levels of theory and the basis

sets. The Møller-Plesset perturbation method MPn (n = 2, 3, 4) was not appro-

priate for the dimer interaction calculations of this work. The results shows that

especially the methods MP2, MP3 usually underestimated the interaction energies.

This was also shown in the recent publications of Diep et al. [25] and Deiters [65, 85].

On the other hand the single-molecule properties resulting from the method CCSD(T)

51
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using the extrapolated basis set limit aug-cc-pV23Z were rather close to experimen-

tal data. With a much larger basis set it might be possible to obtain more accurate

results, but the computational cost would be too high. Even the use of a larger basis

sets aug-cc-pVQZ or aug-cc-pV5Z in calculations for the molecules oxygen and flu-

orine proved to be difficult. Nevertheless, the extrapolation scheme could be shown

to work quite well (Section 2.1.5 and 3.2.2). Patton et al (1999) investigated the

use of infinite basis set limits in electronic structure theory [33]; they obtained the

dissociation energies of 457.741 kJ/mol for H2 and 500.0 kJ/mol for O2, which is

not far different from the experimental data and the calculated results in Table 6.2.

Tables 6.2, 6.1 and 6.3 show that the CCSD(T) calculations with the extrapolated

basis sets gave the results within 0.5-1.0% of the experimental values. This was also

proven by a series of further studies using the extrapolation scheme [84, 85, 65, 64]

for the rare gases and nitrogen. The monomer properties of nitrogen quadruple

moment, mean polarizability, anisotropic part of the polarizability and bond length

were estimated with this extrapolation scheme, and were found to be satisfyingly

close to experimental data [65]. The CCSD(T) method appeared to account for

the most significant electron correlation effects. It was used for this computational

work.

Figure 4.1: Comparison of dissociation energies in kJ/mol of the molecule H2.
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Figure 4.2: Comparison of dissociation energies in kJ/mol of the molecule O2.

Figure 4.3: Comparison of dissociation energies in kJ/mol of the molecule F2.
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4.1.2 Ab initio calculations for dimers

To compare the new potential energy surfaces with existing ones, the interaction

energy versus the distance of the centers of gravity was plotted for the four special

orientations (Fig. 3.2) illustrated in Sections 6.2 and 6.3. In ab initio calculations

the experimental bond lengths were taken from the experimental sources [66, 119].

Table 4.1 shows the comparison of intermolecular energies for the two special orien-

tations T and H of the dimer hydrogen between the results of Diep et al. [25] and

those of this work. It is found that the interaction energies of both orientations at a

Table 4.1: Convergence of interaction energy for the two represented configurations
T and H (Fig. 3.2) of the dimer hydrogen at 3.4 Å center of gravity distance using
the theoretical level CCSD(T) with complete basis set limit.

Configuration Interaction energy/µEH basis set ref.

α = 90, β=0, φ = 0 -160.58920 CBS limit [25]
-171.82481 aug-cc-pV23Z this work

α = 90, β=90, φ = 0 -46.17217 CBS limit [25]
-48.83019 aug-cc-pV23Z this work

3.4 Å center of gravity separation resulting from the level of theory CCSD(T) with

basis set limit aug-cc-pV23Z were lower. This difference might be caused by the ex-

perimental bond length used. But these effects are insignificant. This is illustrated

in Fig. 4.4 for T orientation of the dimer H2-H2. Post-SCF calculations of electron

correlation effects at the levels MPn (n = 2, 3, 4) and CCSD(T) are depicted in

Figures 6.1, 6.2, 6.3 and 6.4. The ab initio intermolecular energies of the four special

configurations (Fig. 3.2) of hydrogen are also compared with the results of Diep and

Johnson [25] see in Fig. 6.1. One can see that the interaction energies converged

rapidly with the level of theory. Going from the methods MPn (n = 2, 3, 4) to

CCSD(T), the energy changes are significant, although the MP3 and MP4 are very

close to CCSD(T). The potential energy surface of hydrogen is shown in Figure 4.5.

Recently a new four-dimensional potential energy surface for the dimer CO-CO has
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Figure 4.4: Comparison of interaction energies in µEH for T orientation of the dimer
H2-H2 at CCSD(T) level of theory. —, with basis set aug-cc-pV23Z (this work);
◦, results using basis set limit CBS of Diep and Johnson [25].

been obtained from symmetry adapted perturbation theory (SAPT) calculations by

Vissers et al. (2005) [130]. They show that two possible reasons for the inaccura-

cies of the potentials are the use of the multipole approximation and the neglect

of electronic correlation effects on the exchange repulsion energy. The high-order

electronic correlation effects are very important. Furthermore, larger basis sets are

needed for an accurate description of the potential energy surface. All these results

show that the performance of MP2 is rather system dependent, and that it might be

appropriate to use CCSD(T), if possible, perhaps even with a smaller basis set. So

the method CCSD(T) is adequately accurate for describing the electron correlation.

In a recent publication Noorbala and Sabzyan [105, 88] calculated the intermolecular

potential energy surface for the system F2-F2 using the MP2/6-31G* level of theory.

Their results also included the BSSE corrections. But there was a large difference

between their calculated results and these obtained with CCSD(T)/aug-cc-pVmZ

(m= 2, 3, 23). The accuracy of the levels of theory with the small polar basis sets

was also proven in Section 6.2 and Section 6.3, and also appeared at the calculation
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Figure 4.5: Intermolecular potential energy surface for the dimer H2-H2 built from
the intermolecular energies using CCSD(T)/aug-cc-pV23Z as shown in Table 6.5;
◦, results for T orientation using basis set limit CBS of Diep and Johnson [25].

of the single-molecule properties in Section 4.1.1.

In 1994 Domanski et al. published ab initio quantum chemical calculations for

the carbon dioxide dimer and from them established a pair potential function us-

able in molecular simulations [27]. In their study the 6-31G* basis set was used and

the electron correlations were taken into account by the 2nd order Møller-Plesset

theory. However, the small basis 6-31G* cannot yield accurate results as shown by

Bock [5]. Therefore the level of theory MP2/6-31G* proved insufficient for ab initio

calculations.

A comparison of the influence of the size of basis sets is also given in Figures 6.5,

6.6, 6.7 and 6.8. These figures show that the interaction energy significantly de-

pends on the size of basis set. An increase of the size of the basis set also shifts

the repulsive wall to the left. A comparison of minimal interaction energies for the

four orientations of Fig. 3.2 of the four dimers are shown in Table 6.4. Figure 4.4

confirms that the pair potentials aug-cc-pV23Z are indeed of high quality, and that
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the 1/m3 extrapolation method is a reliable way to evaluate the basis set limit. In

contrast to the new pair potential energy surfaces the methods MPn (n = 2, 3, 4)

resulted in interaction energies having larger deviations of the well depths and well

positions. This was also shown by Diep and Johnson [25]. The interaction energy

points were generated to represent the 4-dimensional potential energy surfaces of

the dimers H2-H2, F2-F2, H2-O2 and H2-F2 also shown in Tables 6.5 and 6.8.

4.1.3 Fitting the potential energy surface

For computer simulations it is necessary to have analytical pair potential functions.

Their adjustable parameters were estimated by combining the Genetic algorithm

and the Marquardt-Levenberg algorithm. For simplification a few of the damping

parameters (δij), exponents (βij) were set to fixed values as shown in Tables 7.1,

7.2, 7.3 and 7.4.

Each of the new pair potential functions of this work (Section 3.2.3) were fitted

to a set of 930 interaction energy points calculated for the dimers H2-H2, F2-F2, H2-

O2 and H2-F2. There were from 36 to 64 adjustable parameters in total for each pair

potential. The correlation between the fitted versus ab initio energies is depicted in

Figures 4.6, 7.1 for hydrogen, Figures 7.2, 7.3 for hydrogen-oxygen, Figures 4.7, 7.4

for fluorine, and Figures 7.5, 7.6 for hydrogen-fluorine.

The values of root mean-square deviations (rms), multiple correlation coefficients

(R2), and average residuals of the fitted analytical potential functions are given in

Tables 4.2 and 4.3, These are used to test the correlation between the ab initio en-

ergies and the predicted energies from the potential models. The estimates of the

errors here are important for assessing the quality of the fit. These values determine

the range where the actual responses can be found with a given probability. The

statistical values in Tables 4.2 and 4.3 are calculated with the following formulae:

The root mean square deviation (rms) for a set of N residuals (Ŷi − Yi) is

rms =

√∑N
i=1(Ŷi − Yi)2

N
(4.1)
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Table 4.2: The statistical results for fitting the intermolecular potentials Eq. 3.3
and Eq. 3.4 for the dimers hydrogen and hydrogen-oxygen. The values are in µEH .

H2-H2

potential residual
R2 rms min max

Eq. 3.3 0.9999 0.2329 -6.311 6.284
Eq. 3.4 0.9999 0.4258 -7.449 7.911

H2-O2

potential residual
R2 rms min max

Eq. 3.3 0.9981 6.3268 -7.903 7.347
Eq. 3.4 0.9978 6.5214 -8.742 5.106

Table 4.3: The statistical results for fitting the intermolecular potentials Eq. 3.5
and Eq. 3.6 for the dimers fluorine and hydrogen-fluorine. The values are in µEH .

F2-F2

potential residual
R2 rms min max

Eq. 3.5 0.9997 27.042 -8.836 7.713
Eq. 3.6 0.9998 20.294 -9.386 6.454

H2-F2

potential residual
R2 rms min max

Eq. 3.5 0.9999 4.564 -5.854 5.577
Eq. 3.6 0.9999 3.992 -8.579 8.732



4.1. AB INITIO QUANTUM CHEMICAL CALCULATIONS 59

Figure 4.6: Quality of the 5-site ab initio analytical potential fit Eq. 3.3 for hydrogen
at the theoretical level CCSD(T)/aug-cc-pV23Z.

The multiple correlation coefficient (R2) shows the correlation quality between the

ab initio energies and the predicted energies. It can only lie between 0 and 1.

R2 =

∑N
i=1(Ŷi − Y )2

∑N
i=1(Yi − Y )2

; with Y =
Y1 + Y2 + ... + YN

N
(4.2)

Yi and Ŷi are the ab initio energies and the predicted energies.

In this work residual analysis is also accomplished with plots of the residuals vs.

the predicted energies as shown in Figures 4.6, and 4.7. The plots of the residuals

in Figures 4.6, and 4.7 show a proportion of the predicted energies on both sides of

the expected average for the residuals between -4.0 and 4.0 for hydrogen, and -8.0

and 8.5 for fluorine. These show that the residual area of the potential Eq. 3.3 for

hydrogen resulting from the least-square fit is narrower than the residual area of the

potential Eq. 3.3 for fluorine. So the quality of the fit for Eq. 3.3 is better, but this

difference is insignificant for the 930 interaction energy points over energy potential

surface too. The correlation plots between the ab initio energies vs. the predicted
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Figure 4.7: Quality of the 5-site ab initio analytical potential fit Eq. 3.5 for fluorine
at the theoretical level CCSD(T)/aug-cc-pV23Z.

energies and the plots of the residuals in Figures 4.6, 7.1, and 7.2, 7.3, and 4.7, 7.4,

and 7.5, 7.6 are another way of assessing the quality of the fit.

All optimized parameters of these models are given in Tables 7.1, 7.2, 7.3, and 7.4.

These pair potential functions turned out to be difficult to achieve, because of many

local minima that could snare easily the Marquardt-Levenberg algorithm. However,

the Genetic algorithm proved good for overcoming this problem. It was used to

locate the global minima for potential energy surfaces coarsely, then the parame-

ters were tuned accurately with the Marquardt-Levenberg algorithm. The quality

of the fits turned out to be quite and satisfactory, as shown in Section 7. The new

5-site intermolecular potential functions ab initio of this work are able to surpass

the accuracy of the 2- and 3-site potential functions.



4.2. PREDICTION OF VIRIAL COEFFICIENTS 61

Figure 4.8: Second virial coefficients B0
cl of hydrogen using the pair potential Eq. 3.3

resulting from CCSD(T) level of theory; - - -: aug-cc-pVDZ; − · − · −: aug-cc-
pVTZ; · · · : aug-cc-pVQZ; —: aug-cc-pV23Z; •: experimental data [28, 66]; ◦:
Lennard-Jones potential by Wang [132]; ∗: spherical harmonic potential by Etters
and Diep [32, 25, 26].

4.2 Prediction of virial coefficients

4.2.1 Comparison with the pair potentials

The classical virial coefficients B0
cl of hydrogen and fluorine computed from the

equation Eq. 2.66 using the ab initio 5-site pair potentials Eq.(3.3-3.6), are listed

in Tables 8.1 and 8.4, and plotted in Figures 4.8, 4.9, 4.10 and 4.11, respectively.

Figures show the experimental 2nd virial coefficients [28, 66, 17] of hydrogen and

fluorine and those calculated for the 3 different basis sets aug-cc-pVmZ (m = 2, 3, 4)

and for the extrapolated ab initio results (denoted aug-cc-pV23Z), respectively. Of

course, these ab initio calculations were performed at the level of theory CCSD(T).

Furthermore, for the hydrogen dimer the 2nd virial coefficients were also calcu-

lated from the spherical harmonic potentials worked out by Etters et al [32], and

Diep and Johnson [25, 26]. Diep and Johnson computed the second virial coefficients
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Figure 4.9: Second virial coefficients B0
cl of hydrogen using the pair potential Eq. 3.4

resulting from CCSD(T) level of theory; for an explanation of the symbols see
Fig. 4.8 and text.

at level of theory CCSD(T) with complete basis set limit (CBS), using the path in-

tegral and semiclassical method in the temperature ranges from 15-100 K [25] and

from 100-500 K [26], respectively. They obtained that the interaction between two

H2 molecules can be very different, depending on their relative orientation; hence

a description of the relative molecular orientations during collision period is essen-

tial. In recent publication the second virial coefficients of hydrogen were predicted

by Wang [132] using the site-site Lennard-Jones 6-12 interaction potential function

form, depicted also in Figures 4.8 and 4.9. All their results included the quantum

corrections, too.

The virial coefficients B0
cl of hydrogen estimated directly from the new pair po-

tentials Eq. 3.3 and Eq. 3.4, did not involve the quantum corrections. But the

agreement between the calculated virial coefficients and experimental data is very

good, as can be seen from Table 8.1 and Figures 4.8 and 4.9. Figures 4.10 and 4.11

show similar calculation results for the 2nd virial coefficients of fluorine. They also

show predictions with the Deiters equation of state (D1 EOS). This equation was

chosen, because it is able to fit the critical parameters for fluorine. It has also been
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Figure 4.10: Second virial coefficients B0
cl of fluorine using the pair potential Eq. 3.5

resulting from CCSD(T) level of theory; - - -: aug-cc-pVDZ; − · − · −: aug-cc-
pVTZ; —: aug-cc-pV23Z; •: experimental data [17, 28]; ◦: calculated with Deiters
equation of state (D1) [18].

used to calculate the virial coefficients, the vapor-liquid equilibrium and thermody-

namic properties of heavy molecules [18, 22, 85] as mentioned in Section 2.3.2. In

this case it is also a suitable way for testing the accuracy of the 5-site pair potentials

Eq. 3.5 and Eq. 3.6 resulting from the ab initio calculations.

The 2nd virial coefficients resulting from the level of theory CCSD(T)/aug-cc-pV23Z

using the pair potentials Eq. 3.5 and Eq. 3.6 were found to be very close to exper-

imental data and with those calculated by Deiters equation of state (D1). With

basis sets aug-cc-pVDZ or aug-cc-pVTZ (without extrapolation) the results were

not as good. Significant improvements are obtained if the cardinal number m of

aug-cc-pVmZ is increased. The double-zeta basis sets are inadequate, as the quality

of the prediction charges very much when going from aug-cc-pVDZ to aug-cc-pVTZ.

In contrast to this, the changes observed when going to aug-cc-pVQZ are small. The

change of the second virial coefficients is also very obvious in Figures 4.10 and 4.11

for fluorine. Still the classical virial coefficients resulting from the pair potentials

differ slightly from experimental data. The quantum effects need to be considered.
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Figure 4.11: Second virial coefficients B0
cl of fluorine using the pair potential Eq. 3.6

resulting from CCSD(T) level of theory; for an explanation of the symbols see
Fig. 4.10 and text.

4.2.2 Virial coefficients of dimers H2-H2 and H2-O2

The resulting second virial coefficients of hydrogen from the ab initio 5-site pair po-

tentials shown in Tables 8.1 without the quantum effects, seem to be in reasonably

good agreement with the experimental data and with those calculated by different

methods. However for light molecules such hydrogen the de Broglie wavelengths of

particles are the order of magnitude of the interacting distance. Hence quantum

effects can be important over a wide range of temperature. In this Section the ab

initio pair potential functions Eq. 3.3 and Eq. 3.4 resulting from the level of the-

ory CCSD(T) with complete basis set limit aug-cc-pV23Z for hydrogen are used

for computing the first-order quantum corrections. The cross second virial coeffi-

cients of the dimer hydrogen-oxygen are also considered here over the temperature

range from 49.8 K to 400 K for the quantum effects. The total first-order quantum-

corrected second virial coefficient of these systems B2(T ) is defined as the sum of

the contributions from Eqs. 2.66, 2.67, 2.68 and 2.69 (Section 2.3.3).

The second virial coefficients of the dimer H2-H2 including the first-order quantum

corrections at the temperature range from 60 K to 400 K are shown in Table 8.2.
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Figure 4.12: Second virial coefficients of hydrogen are calculated using the pair
potentials (this work): —: pair potential Eq. 3.3; · · · : pair potential Eq. 3.4; •:
experimental data [28, 66]; ◦: path integral, and ¤: semi-classical method (Diep [25,
26]); ∗: Lennard-Jones 6-12 potential [79].

It appears that the results obtained with the pair potential functions Eq. 3.3 are

marginally better than those obtained with Eq. 3.4, although the latter function has

more adjustable parameters. But the differences are insignificant. More important

here is the fact that an accurate prediction of second virial coefficients from an ab

initio pair potential without recourse to experimental data is possible, and that

the CCSD(T) method, applied to basis sets aug-cc-pVDZ and aug-cc-pVTZ, and

followed by an extrapolation to the basis set limit aug-cc-pV23Z, is evidently able

to generate virial coefficients almost within the uncertainties of the experiments as

one can see in Fig. 4.12. The results of this work also agree well with the results

of the spherical harmonic potential [25, 26] and Lennard-Jones 6-12 potential [79];

although the deviations from the latter are larger.

From Table 8.2 it is worth noting that quantum corrections contribute significantly

to the second virial coefficient of hydrogen even at high temperatures. Of these

corrections, only the radial term is important; the angular terms are usually much
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Figure 4.13: Cross second virial coefficient of the hydrogen-oxygen system. —: ab
initio prediction (this work) based on Eq. (3.3), · · · : prediction based on Eq. (3.4), M:
calculated from empirical correlation [31, 30], •: interpolation from neon mixtures
(see section 4.2.2); other symbols: experimental data (see Table 8.3).

smaller in size. The calculated values of cross second virial coefficients of hydrogen-

oxygen are given in Table 8.3.

Experimental values of the hydrogen–oxygen interaction are difficult to find in the

literature. There are some experiments, however, from which these virial coefficients

can be calculated:

• Van Itterbeek and van Doninck measured the speed of sound in (hydrogen

+ oxygen) mixtures at low temperatures and pressures [124]. The pressure

dependence of this property is related to the virial coefficients. The values

of the cross virial coefficient obtained by these authors lie reasonably close

to our predictions (see Table 8.3); it should be noted, however, that their

evaluation method involved several simplifications (linearizations, neglect of

temperature derivatives of the virial coefficient), and that their results exhibit

an uncertainty of about 20%.

• McKinley et al. measured solid–fluid equilibria of the (hydrogen + oxygen)
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system [77]. With the usual assumptions and simplifications (no hydrogen

dissolved in the solid oxygen, neglect of higher virial coefficients) it is possible

to estimate cross second virial coefficients from these data. The result agrees

reasonably well with the ab initio prediction. The sublimation pressure of γ-

oxygen, which is required for the equilibrium calculation, was taken from the

work of Roder [103].

In an earlier publication on high-pressure phase equilibria of the (hydrogen + oxy-

gen) system it had been suggested that the parameters of the hydrogen–oxygen

interaction could be interpolated from those of the the systems (hydrogen + nitro-

gen), (neon + nitrogen), and (neon + oxygen) (Deiters et al. (1993) [24]). This idea

can be extended to second virial coefficients as follows: Eq. 2.66 can be simplified—

although with some loss of accuracy—by performing the integrations over the ori-

entation variables:

B(0)(T ) = −2πNA

∫ ∞

0

[
exp

(
−

u(r, T )

kBT

)
− 1

]
r2dr (4.3)

Here u(r; T ) denotes an angle-averaged pair potential. For small molecules like the

ones studied here the assumption of conformal pair potentials is usually acceptable,

i.e., pair potentials can be written as

u(r, T ) = εũ(r̃, T̃ ) with r̃ =
r

σ
and T̃ =

kBT

ε
(4.4)

where ũ(r̃, T̃ ) is a universal (reduced) pair potential function. Then Eq. 4.3 becomes

B(0)(T ) = −2πNAσ3

∫ ∞

0

[
exp

(
−

ũ(r̃, T̃ )

T̃

)
− 1

]
r̃2dr̃ (4.5)

This equation is used for the cross virial coefficient of the hydrogen–oxygen system,

assuming εH2;O2
= εH2;N2

+ ∆εO2;N2
, where the last term is supposed to be small.

Taylor expansion of the Boltzmann factor of this term, truncation after the linear

term, and rearrangement yield

B
(0)
H2,O2

(T )

NAσH2,O2

≈
B

(0)
H2,N2

(T )

NAσH2,O2

−2π
∆εO2,N2

T̃H2,N2

∫ ∞

0

ũ(r̃, T̃H2,N2
)

[
exp

(
−

ũ(r̃, T̃H2,N2
)

T̃H2,N2

)
−1

]
r̃2dr̃

(4.6)
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where the integral is a function of the reduced temperature T only. A similar equa-

tion holds for the cross virial coefficients of the (neon + oxygen) and (neon + ni-

trogen) systems, for which experimental data are available [28]. Therefore ∆εO2;N2

can be determined from the neon data and then substituted into Eq. 4.6 to give

the second virial coefficient of (hydrogen + oxygen) at the same reduced temper-

ature as the (neon + oxygen) system (tacitly assuming that this value also holds

for the hydrogen systems). For the parameters ε and σ usual Lennard-Jones pa-

rameters [45] and Berthelot–Lorentz combining rules were used. It turns out that

the hydrogen–oxygen cross virial coefficient obtained from this interpolation (-58.1

cm3/mol) agrees reasonably well with the ab initio predictions as well as with the

experimental values (see Fig. 4.13).

Recently Estela-Uribe and Jaramillo (2005) [30] published empirical correlation

equations for second virial coefficients which are based on the corresponding-states

approach of Lee and Kesler [61]. In their work, binary interactions are characterized

by so-called pseudocritical parameters, which are interpolations of the pure-fluid

critical temperatures and densities as shown in Section 2.3.1. These two correlation

parameters were set to zero for the hydrogen–oxygen interaction, and the correla-

tions of Estela-Uribe and Jaramillo used to predict cross second virial coefficients.

The results, presented in Table 8.3, show a remarkably good agreement with the

predictions from quantum mechanics.

4.2.3 Virial coefficients of dimers F2-F2 and H2-F2

For the dimer F2-F2 the second virial coefficients B2(T) were also calculated in the

temperature range from 90 K to 300 K using the level of theory CCSD(T) with the

basis set limit aug-cc-pV23Z. The results without quantum effects are shown in Ta-

ble 8.4, and Figures 4.10 and 4.11. It turned out that the results derived from Eq. 3.5

and Eq. 3.6, were close to the experimental data as mentioned in Section 4.2.1.

The 2nd virial coefficients B2(T) resulting from such pair potential functions are

also close to those obtained with Deiters equation of state (D1), as can be seen in

Figures 4.10 and 4.11. But there are still some differences. Consequently, quantum

effects are also considered here for the dimers F2-F2 and H2-F2. Especially the cross

second virial coefficients of the hydrogen-fluorine interaction are not found in the
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Figure 4.14: Second virial coefficient of fluorine. —: calculated by Eq. 3.5 and
- - -: calculated by Eq. 3.6 (this work), ◦: calculated with Deiters equation of state
(D1) [18], •: experimental data [17, 28].

literature. Those are calculated here in the temperature range 49.8-400 K including

the quantum effects.

The accurate prediction of cross second virial coefficients from an ab initio pair

potential function also without recourse to experimental data is important, and the

method CCSD(T), applied to basis set limit, is positively able to calculate the sec-

ond virial coefficients of fluorine almost within uncertainties of the experiments as

can see in Figure 4.14. The resulting virial coefficients of fluorine also included the

first-order quantum corrections, due to the effects of relative translational motions,

and the molecular rotations.

The formulae Eq. 2.66-Eq. 2.69 were used directly for the linear molecules fluorine

and hydrogen as proposed by Pack [89]. The values of second virial coefficients for

fluorine with the quantum effects shown in Table 8.5 too. It turns out that quantum

corrections contribute significantly to the second virial coefficients of fluorine over a

wide temperature range. Table 8.5 shows that the contribution of translational mo-

tions in the corrections is more important; the molecular rotations (i.e the angular
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Figure 4.15: Cross second virial coefficient of the hydrogen-fluorine system. —:
calculated from Eq. 3.5 and - - -: calculated from Eq. 3.6 (this work); ◦: calculated
from empirical correlation [30, 31].

terms) are usually much smaller in size. The calculated virial coefficients resulting

from the ab initio pair potentials were also compared with those predicted with

Deiters equation of state (D1 EOS) [18] and with the experimental data [17, 28].

It appeared that the differences are very small. The results derived from Deiters

equation of state [18], are in excellent agreement with the experimental data. This

is also a suitable way for testing the accuracy of the results resulting from the pair

potentials, respectively.

The empirical correlation equations of Estela-Uribe and Jaramillo [30] were also

applied to system hydrogen-fluorine too. The results, presented in Table 8.6, show

a remarkably good agreement with the predictions from quantum mechanics.

We conclude that our newly developed ab initio intermolecular pair potential func-

tions for the dimers H2-H2, H2-O2, F2-F2 and H2-F2, derived from four very accurate

potential energy surfaces at the high level of theory CCSD(T) with basis set limit

aug-cc-pV23Z, are reliable and usable for the prediction of virial coefficients.
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4.3 Gibbs ensemble Monte Carlo simulation

4.3.1 Comparison of thermodynamic properties

This section describes the comparison of the liquid phase densities which resulted

from NPT simulations using the ab initio pair potentials Eq. 3.3 and Eq. 3.4 for

hydrogen, and Eq. 3.5 and Eq. 3.6 for fluorine at two different constant pressures.

The results are given in Table 9.1 and Figures 9.1, 10.1. The comparisons between

these results and those derived from the equations of state were also included.

For the pure fluid hydrogen the liquid phase densities were predicted at two con-

stant pressures of 1.0 MPa and 5.0 MPa, in the temperature range 26–250 K. The

experimental values [76] and those derived from the modified Benedict-Webb-Rubin

equation of state for hydrogen [139] were used for comparison with these simulation

results. In general the liquid phase densities of hydrogen resulting from both ab ini-

tio pair potentials Eq. 3.3 and Eq. 3.4, are very close to the experimental data and

those obtained from the empirical equation of state [139]. The ab initio pair poten-

tial Eq. 3.3 gave very similar results with experimental data, although the potential

Eq. 3.3 has gotten fewer adjustable parameters. The absolute average deviations in

liquid phase density are 1.538, 3.548 and 3.277 kg/m3 at 1.0 MPa, and 1.005, 0.575

and 3.162 kg/m3 at 5.0 MPa, computed with the ab initio pair potentials Eq. 3.3,

Eq. 3.4, and Benedict-Webb-Rubin equation of state [139], respectively. This proves

that ab initio pair potentials developed for hydrogen are accurate and reliable.

In recent publications the thermodynamic properties and phase equilibria of the

pure fluid normal and para-hydrogen were predicted with path integral hybrid Monte

Carlo simulation technique developed by Wang and Johnson (1996) [131]. The pair

potentials used in their work were Lennard-Jones 6-12 potentials with parameters

obtained from Silvera-Goldman, Buck, Buch and Dondi. The different potentials

were compared with each other by Wang and Johnson and then used in NVT canon-

ical and NPT Monte Carlo simulations. In the isobar diagram Figure 9.1, there is

no visible the difference between the results of this work and those of Wang and

Johnson [131].

For fluorine the liquid phase densities were estimated similarly at two constant
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pressures of 1.0 MPa and 10.0 MPa, over the temperature range from 90 K to 270

K with NPT simulation using ab initio pair potentials Eq. 3.5 and Eq. 3.6. The re-

sults derived from these ab initio pair potentials, were compared with experimental

values [17]. Furthermore NPT simulations were also performed at different temper-

atures and pressures. The results are shown in Table 9.1 and Figure 10.1. It turned

out that the densities obtained from the simulations are in good agreement with

experimental data and those resulting from the Deiters equation of state (D1) [18].

This equation of state may be an appropriate way to assess the accuracy of the ob-

tained results from the GEMC simulation. The absolute average deviations in liquid

phase density resulted in 4.70, 5.01 and 4.61 kg/m3 at 1.0 MPa, and 13.73, 38.85

and 13.38 kg/m3 at 10.0 MPa, calculated using the pair potentials Eq. 3.3, Eq. 3.4,

and Deiters equation of state [18], respectively. These results show that the results

obtained from the ab initio pair potentials are almost within the uncertainties of

experimental values.

4.3.2 Structural properties

This section describes the features of the site-site pair distribution functions re-

sulting from two GEMC-NVT and NPT simulation techniques for the pure fluids

hydrogen and fluorine. The ab initio pair potentials Eq. 3.3, Eq. 3.4 of hydrogen,

and Eq. 3.5, Eq. 3.6 of fluorine, respectively, were used for those simulations.

The temperature dependence of the radial distribution functions at two different

pressures is depicted in Figures 9.2-9.17 for hydrogen and Figures 9.2-9.17 for flu-

orine. As 5-site potential models were used, the interactions of ghost sites N, M

on the molecules were also represented here by site-site correlation functions. The

height of site-site pair correlation functions decreased with increasing temperature

from 26.0 K to 250.0 K at 1.0 MPa and 5.0 MPa for hydrogen and from 90.0 K to

270.0 K at 1.0 MPa and 10.0 MPa for fluorine. In general the peaks for the inter-

action of sites including an atomic nucleus were higher than those without a nucleus.

For the pure fluids hydrogen and fluorine the peaks of gH−H and gF−F were highest.

The gH−M and gF−M were lower. But the peaks of gN−N were smallest. The height of

peaks decreases distinctively when the temperature increases. All first peaks of the

site-site correlation functions for hydrogen are located between 2.893 Å and 3.205
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Table 4.4: The height of first peaks of the site-site distribution functions of pure
fluid hydrogen calculated with NPT simulation using the ab initio pair potential
Eq. 3.3 at different temperatures and constant pressures of 1.0 MPa and 5.0 MPa.

at 1.0 MPa at 5.0 MPa
T/K gH−H gN−N gM−M gH−M gH−H gN−N gM−M gH−M

26.0 2.92 1.97 2.53 2.69 2.79 1.85 2.40 2.56
30.0 2.69 1.87 2.37 2.51 2.55 1.76 2.24 2.39
60.0 1.75 1.51 1.67 1.71 1.67 1.44 1.59 1.62
90.0 1.49 1.35 1.44 1.47 1.42 1.28 1.37 1.40

120.0 1.35 1.25 1.33 1.33 1.28 1.21 1.26 1.29
250.0 1.16 1.13 1.14 1.15 1.12 1.07 1.09 1.11

Table 4.5: The height of first peaks of the site-site distribution functions of pure fluid
hydrogen derived with NPT simulation using the ab initio pair potential Eq. 3.4 at
different temperatures and constant pressures of 1.0 MPa and 5.0 MPa.

at 1.0 MPa at 5.0 MPa
T/K gH−H gN−N gM−M gH−M gH−H gN−N gM−M gH−M

26.0 2.88 1.94 2.51 2.67 2.74 1.84 2.37 2.53
30.0 2.79 1.90 2.44 2.59 2.67 1.80 2.32 2.46
60.0 2.41 1.74 2.15 2.27 2.27 1.65 2.04 2.14
90.0 2.20 1.66 2.01 2.09 2.11 1.57 1.91 1.99

120.0 2.07 1.61 1.92 1.99 1.98 1.54 1.82 1.89
250.0 1.83 1.49 1.73 1.77 1.75 1.42 1.64 1.69

Å. The second peaks are located between 6.081 Å and 6.234 Å. For the pure fluid

fluorine the first peaks of site-site correlation functions are located between 4.01

Å and 4.861 Å. The second peaks are located between 5.256 Å and 5.717 Å. The

results are shown in Tables 4.4-4.6.

The structural properties of the liquid phases hydrogen and fluorine were also ob-

tained from GEMC-NVT simulation. The heights of peaks of the site-site radial

distribution functions obtained from the GEMC-NVT simulation are approximately,

the same as those resulting from NPT simulation. The first strongly peaks are also

located in the range 3.21 Å to 3.29 Å using pair potential Eq. 3.3 and in the range
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Table 4.6: The height of first peaks of the site-site distribution functions of pure
fluid fluorine derived with NPT simulation using the ab initio pair potential Eq. 3.5
at different temperatures and constant pressures of 1.0 MPa and 10.0 MPa.

at 1.0 MPa at 10.0 MPa
T/K gF−F gN−N gM−M gF−M gF−F gN−N gM−M gF−M

90.0 4.28 3.41 3.75 4.01 4.07 3.23 3.55 3.80
120.0 4.12 3.22 3.62 3.69 3.92 3.07 3.44 3.52
150.0 3.89 3.05 3.41 3.58 3.69 2.88 3.21 3.40
180.0 3.68 2.88 3.22 3.41 3.50 2.73 3.04 3.23
210.0 3.51 2.67 3.06 3.27 3.34 2.50 2.90 3.10
270.0 3.24 2.48 2.81 2.91 3.05 2.33 2.65 2.79

Table 4.7: The height of first peaks of the site-site distribution functions of pure
fluid fluorine derived with NPT simulation using the ab initio pair potential Eq. 3.6
at different temperatures and constant pressures of 1.0 MPa and 10.0 MPa.

at 1.0 MPa at 10.0 MPa
T/K gF−F gN−N gM−M gF−M gF−F gN−N gM−M gF−M

90.0 4.09 3.22 3.56 3.69 3.79 2.89 3.20 3.60
120.0 3.89 3.04 3.41 3.56 3.66 2.74 3.06 3.48
150.0 3.69 2.87 3.22 3.43 3.43 2.58 2.89 3.35
180.0 3.49 2.74 3.03 3.28 3.24 2.43 2.72 3.19
210.0 3.33 2.51 2.91 3.14 3.10 2.24 2.60 3.06
270.0 3.04 2.31 2.66 2.97 2.81 2.08 2.37 2.91

3.18 Å to 3.39 Å using pair potential Eq. 3.4 for hydrogen. For fluorine they are

located in the range 3.98 Å to 4.87 Å and 3.87 Å to 4.86 Å using pair potentials

Eq. 3.5 and Eq. 3.6. The radial correlation functions resulting from NVT simulation

are depicted in Figures 9.18-9.25 for hydrogen, and 10.18-10.25 for fluorine.

In a recent publication (1998) [82] Nagel et al. calculated the proton-proton pair

distribution function gHH(r) in dense fluid hydrogen by an efficient quantum me-

chanical simulation scheme, wave-packet molecular dynamics (WPMD), and found

a strong first peak with an estimated height of 3.0. This is in good agreement with

the results derived from ab initio pair potentials Eq. 3.3 and 3.4.
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In 1995 Santis et al. [106] also calculated the thermodynamic and structural prop-

erties of the pure liquid fluorine analysing the experimental atom-atom pair dis-

tribution functions and using molecular dynamics calculations. Their results were

different from experimental g(r) of fluorine around 5.0 Å. However there were some

oscillations below 2.0 Å, indicating that significant experimental uncertainties might

have affected the experimental data. The first peaks of the site-site pair correlation

functions for pure liquid fluorine resulting from the GEMC-NVT and NPT sim-

ulations are located between 3.86 Å and 4.88 Å. Thus our results, exhibited in

Figures 10.2-10.25, agree well with literature results within the uncertainties of the

experimental data.

4.3.3 The thermodynamic properties of hydrogen

The simulation results are shown in Tables 9.2 and 9.3 together with their esti-

mated statistical uncertainties. The vapor-liquid coexisting phase and the vapor

pressure curves of hydrogen are displayed in Figure 4.16 and Figure 4.17. Experi-

mental data [76, 66], values from the modified empirical equation of state [139] as

well as from Wang and Johnson using the Silvera and Goldman (SG) potential [131]

are also included.

The vapor pressures and enthalpies of vaporization derived from the same simula-

tions are depicted in Figures 4.17 and 4.18. These vapor pressures differ on absolute

average from the experimental data typically by about 3.49% and 9.14%. These

differences is small within statistical uncertainties of experimental resources and a

few previous publications [139, 131].

The critical temperature, density and volume of the pure fluid hydrogen could not

be calculated directly from the simulations, but they could be obtained from the

densities of vapor-liquid equilibria by the least-square fit to the formulas Eq. 2.93,

as shown in Table 4.8 and Figure 4.16. The critical pressure of hydrogen was calcu-

lated from the Antoine equation Eq. 2.94. The results agreed reasonable well with

experimental data.
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Figure 4.16: Vapor-liquid coexistence diagram of hydrogen. Symbols: —, experi-
mental data [76, 75]; ◦, modified Benedict-Webb-Rubin equation of state [139]; ¦,
simulated by Wang and Johnson using Silvera and Goldman (SG) potential [131]; •,
∗: ab initio pair potentials Eq. 3.3 and Eq. 3.4.

Figure 4.17: Vapor pressure of hydrogen. Symbols: —, experimental data [76,
66]; ◦, modified Benedict-Webb-Rubin equation of state [139]; •, and ∗ : ab initio
pair potentials Eq. 3.3 and Eq. 3.4.
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Figure 4.18: Vaporization enthalpy of hydrogen. Symbols: —, experimental
data [76, 66]; ◦, modified Benedict-Webb-Rubin equation of state [139]; •, ∗: ab
initio pair potentials Eq. 3.3 and Eq. 3.4.

However there are still some discrepancies between the simulation results and ei-

ther experimental data or the values obtained from Benedict-Webb-Rubin equation

of state [139]. This can be caused by either neglecting 3-body interactions or by

using a too small number of particles used for simulations. Even so, the simulation

results obtained with the GEMC-NVT simulation are within statistical uncertain-

ties of different experimental sources. However, the simulation results that were

predicted from pair potential Eq. 3.3 are usually different from the results of pair

potential Eq. 3.4 by about 2.5%. The critical parameters and the thermodynamic

properties differed by about 1.0% from the experimental values, respectively.

The accuracy of the simulation results for pure fluid hydrogen can be appreciated

more by using the Clausius-Clapeyron equations Eq. 2.95 and 2.96 (Section 2.4.5)

to calculate the enthalpy of vaporization ∆vapH, entropy of vaporization ∆vapS and

boiling temperature Tb Table 4.9. These thermodynamic properties are in good

agreement with the published experimental data [76, 66], as exhibited in Table 4.9.

The adjustable constants A, B, C of the Antoine equation Eq. 2.94 are used to
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Table 4.8: Critical properties of pure fluid hydrogen resulting from the GEMC-
NVT simulation using ab initio pair potentials Eq. 3.3 and Eq. 3.4; EOS : empirical
equation of state [139]; Exp.: experimental values.

method T c/K ρc/g cm−3 P c/MPa Vc/cm
3mol−1 ref.

Eq. 3.3 33.2162 0.0313 1.1258 64.3806 this work
Eq. 3.4 33.0236 0.0311 1.0990 64.7907 this work
EOS 32.9718 0.0312 1.2837 64.1539 [139]
Exp. 33.1900 0.0312 1.2928 64.1026 [76]
Exp. 33.0 0.0310 1.2930 64.5677 [66]

Table 4.9: Enthalpy of vaporization ∆vapH, entropy of vaporization ∆vapS and
boiling temperature Tb of pure fluid hydrogen at the standard state P = 0.1013
MPa predicted from simulation vapor pressures.

method ∆vapH/kJmol−1 ∆vapS/kJ/mol.K T b/K ref.
Eq. 3.3 1.17148 0.05608 20.8911 this work
Eq. 3.4 1.21621 0.05717 21.2740 this work
EOS 1.07399 0.05305 20.2457 [139]
Exp. 1.07786 0.05299 20.3900 [76]
Exp. 1.07752 0.05314 20.2754 [66]

Table 4.10: The parameters A, B, β of Ising relations Eq. 2.93, and constants A,
B, C of Antoine equation Eq. 2.94 for pure fluid hydrogen obtained from fits to the
simulation results.

Ising parameter Antoine constant
method A B β ref. A B C ref.
Eq. 3.3 -0.000400994 0.292517 0.325 3.63014 99.118 6.363
Eq. 3.4 -0.000460265 0.390985 0.325 3.65736 99.484 5.862
EOS. -0.000395786 0.386943 0.320 [139] 3.40068 90.054 6.229 [139]
Exp. -0.000426230 0.397981 0.320 [76] 3.54314 99.395 7.726 [125]
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assess the accuracy of the simulation results resulting in the temperature range

18.0-32.0 K too. Those were compared to the experimental constants of the Antoine

equation [125] in temperature range 21.01-32.27 K for hydrogen, as presented in Ta-

ble 4.10. The discrepancies are insignificant. It turns out that the thermodynamic

properties of vapor-liquid coexisting phase for pure fluid hydrogen resulting from

the GEMC-NVT simulation are in good agreement with experimental data.

4.3.4 The thermodynamic properties of fluorine

For the pure fluid fluorine the GEMC-NVT simulation was also used here to deter-

mine the thermodynamic properties of vapor-liquid equilibria. The simulation runs

were carried out over the temperature range 60–140 K, which is near to the critical

point of fluorine. At each temperature the system was equilibrated for 105 cycles,

which were then followed by production cycles. The simulation results are shown

in Tables 10.1, and 10.2 as well in Figure 4.19, where the simulation results are

compared with experimental values [17] and with values obtained from the GEMC

simulations using a Lennard-Jones potential.

The results obtained with the Deiters equation of state (D1-EOS) [18] were compared

to the simulation results too. This equation of state has the ability of reproducing

accurately the phase equilibria of the pure fluid fluorine over wide range of tem-

perature and pressure. The results derived from this equation of state are close to

the experimental data [17]. Figures 4.19 and 4.20 show that the simulation values

resulting from the GEMC-NVT simulation using ab initio pair potentials Eq. 3.5

and Eq. 3.6 agree well with the experimental data [17] and with those calculated

with the Deiters equation of state [18].

The vapor pressures are shown in Figure 4.20. From Tables 10.1 and 10.2 it can be

seen that the vapor pressures of liquid phase are lower than those of vapor phase. In

principle both phases should have the same pressure. This difference may have been

caused a too number small of particles in the simulations. It is, however, within

the statistical uncertainties for these ab initio pair potential types. The influences

between the simulation vapor pressures and experimental data [17] are about 3.49%

and 9.14% with the ab initio pair potentials Eq. 3.5 and Eq. 3.6.
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Figure 4.19: Vapor-liquid coexistence diagram of fluorine. Symbols: —, experi-
mental data [17]; ◦, Lennard-Jones potential [90]; · · · , Deiters equation of state (D1
EOS) [18]; •, ∗: ab initio pair potentials Eq. 3.5 and Eq. 3.6.

The critical temperature, density and volume were determined directly from the

least-square fit of the related formulas of the rectilinear diameter law Eq. 2.93 to

the orthobaric densities.

The critical properties of the pure fluid fluorine were given in Table 4.11, which

contains the corresponding experimental data [17], and those resulting from the

Deiters equation of state [18] and from simulations by Panagiotopoulos [90] using a

Lennard-Jones 6-12 potential. The critical pressure was calculated from the Antoine

equation 2.94 shown in Table 4.11. The experimental critical values of Table 4.11

can be either directly taken from the cited literature [17, 66] or estimated from

the vapor-liquid coexisting phase densities of Panagiotopoulos [90] using the least-

square fit of the relations Eq. 2.93. The simulation results are in good agreement

with experimental data. Nevertheless there are still some discrepancies. The esti-

mated critical properties in Table 4.11 are higher than the experimental values by

about 1.4%-5.8% for the pair potential Eq. 3.5 and 1.2%-4.0% for the pair potential

Eq. 3.6. But these discrepancies are not large.
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Figure 4.20: Vapor pressure of fluorine. Symbols: —, experimental
data [17]; ◦, Lennard-Jones potential [90]; · · · , Deiters equation of state (D1
EOS) [18]; •, ∗: ab initio pair potentials Eq. 3.5 and Eq. 3.6.

Figure 4.21: Vaporization enthalpy of fluorine. Symbols: —, experimental
data [17]; •, ∗: ab initio pair potentials Eq. 3.5 and Eq. 3.6.
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Table 4.11: Critical properties of pure fluid fluorine resulting from the simulation re-
sults using potentials Eq. 3.5 and Eq. 3.6; D1-EOS : empirical equation of state [18];
Lennard-Jones potential (LJ) [90]; Exp.: experimental values.

method T c/K ρc/g cm−3 P c/MPa Vc/cm
3mol−1 ref.

Eq. 3.5 146.405 0.5918 4.9110 64.2073 this work
Eq. 3.6 147.652 0.5646 5.3797 67.2980 this work
Lennard-Jones 143.630 0.5672 5.0386 66.9955 [90]
D1-EOS 144.157 0.5675 5.0493 66.9539 [18]
Exp. 144.300 0.5740 5.2150 66.2003 [66]
Exp. 144.121 0.5710 5.1724 66.5451 [17]

Table 4.12: Enthalpy of vaporization ∆vapH, entropy of vaporization ∆vapS and
boiling temperature Tb of the pure fluid fluorine at the standard state P = 0.1013
MPa predicted from simulation vapor pressures.

method ∆vapH/kJmol−1 ∆vapS/(kJ/mol.K) T b/K ref.
Eq. 3.5 6.8045 0.07914 85.9782 this work
Eq. 3.6 7.1596 0.08212 87.1808 this work
Lennard-Jones 7.6461 0.08712 87.7677 [90]
D1-EOS 7.1312 0.08212 86.8353 [18]
Exp. 6.9208 0.08085 85.5970 [66]
Exp. 6.9411 0.08112 85.5695 [17]

Table 4.13: The parameters A, B, β of Ising relations Eq. 2.93, and constants of the
Antoine equation Eq. 2.94 for pure fluid fluorine obtained from fits to the simulation
results.

Ising parameter Antoine constant
method A B β ref. A B C ref.
Eq. 3.5 -0.00050392 0.601798 0.281 3.95617 322.468 -4.035
Eq. 3.6 -0.00045976 0.718544 0.320 4.02876 326.511 -5.567
LJ -0.00052532 0.950152 0.325 [90] 3.46712 198.468 -31.171 [90]
D1-EOS -0.00060993 0.493808 0.320 [18] 4.07770 325.253 -7.178 [18]
Exp. -0.00036374 0.605529 0.320 [17] 3.98692 317.191 -5.436 [17]
Exp. -0.00030476 0.660996 0.320 [116] 4.02355 322.067 -4.748 [115]
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Furthermore the enthalpy of vaporization ∆vapH, entropy of vaporization ∆vapS and

boiling temperature Tb were calculated here from the simulation vapor pressures.

The Clausius-Clapeyron equation was also used to test the accuracy of simulation

results. These thermodynamic properties were estimated by the least-square fit to

the simulation vapor pressures values shown in Table 4.12. The enthalpy of vaporiza-

tion ∆vapH and the entropy of vaporization ∆vapS agreed well with the experimental

data and data compilations.





Chapter 5

Conclusions

5.1 Conclusions

New potential energy surfaces for the dimers H2-H2, H2-O2, F2-F2 and H2-F2 have

been constructed, using Møller-Plesset perturbation theory at different levels MPn

(n =2, 3, 4) and the coupled-cluster method CCSD(T). The perturbation theory

at all levels MPn (n =2, 3, 4) were found to be inadequate for the present compu-

tational work. The supermolecular approach was used for calculating the basis set

superposition error (BSSE).

The basis sets used for this work were the correlation-consistent sets of Dunning,

aug-cc-pVmZ (m = 2, 3, 4, 23) for hydrogen and the three basis sets aug-cc-pVmZ

(m = 2, 3, 23) for fluorine, hydrogen-oxygen and hydrogen-fluorine. The potential

energy surfaces were built from the extrapolation to the complete basis set limit,

which had a significant effect on the convergence of the interaction energies. The

interaction energies at 930 different configurations for each of the dimers were com-

puted to determine the 30, 40, 36 and 48 adjustable parameters of the analytical

potential functions Eq. 3.3 and Eq. 3.4 used for the dimers H2-H2 and H2-O2, and

the 36, 48, 42, and 56 adjustable parameters of the analytical potential functions

Eq. 3.5 and Eq. 3.6 used for the dimers F2-F2 and H2-F2, respectively, by least-

square fits. These fits were carried out combining the Genetic algorithm (GA) and

the Levenberg-Marquardt algorithm (LM). The four new ab initio analytical poten-

tial functions were constructed as 4-dimensional site-site potential functions with

five centers per molecule.

85
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The second virial coefficients for the dimers H2-H2, F2-F2, H2-O2 and H2-F2 were

obtained from the analytical potential functions over a wide range of temperature.

It turned out that results agreed very well with the experimental data as well as

with the data derived from the empirical correlation equations of Estela-Uribe and

the Deiters equation of state. For all dimers containing H2 the quantum effects were

included.

The four accurate ab initio pair potential functions were used then to predict the

vapor-liquid equilibria of the pure fluids hydrogen and fluorine using global sim-

ulation techniques. Computer simulation programs were developed to carry out

standard GEMC-NVT and NPT simulations. For hydrogen the phase equilibrium

results predicted from the simulations were compared with literature data [139]. In

the case of fluorine the Deiters equation of state [18] was used to calculate the phase

equilibria. These comparisons were carried out to show the discrepancies of the

different simulations. The predicted phase diagrams, critical parameters and ther-

modynamic properties of the two pure fluids hydrogen and fluorine were in good

agreement with experimental data. This also confirmed that the four developed

new ab initio analytical potential functions of this work are of high quality, accurate

and reliable.

5.2 Limitations

Ab initio calculations at high levels of theory with large basis sets require much com-

putation time even on modern large computers; moreover, the requirement of RAM

and disk space are high and in some cases caused program and hardware failures.

A extension of this work towards larger molecules is therefore difficult at present.

The second limit is that the 5-site analytical potential functions are not simple po-

tential functions. Therefore it was very difficult to fit these potential function to the

ab initio interaction energies; these fits required very much computation time. The

global Monte Carlo simulations in this work using such 5-site analytical potential

functions also needed much computation time.
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5.3 Suggestion for further work

The ab initio quantum chemical methods used in this computational work might

be used to construct the intermolecular energy surface of the dimer oxygen. The

second virial coefficients of the dimer oxygen should be calculated with the ab initio

potential functions developed in this thesis. The difficulty is, of cause, that O2 is a

diradical, which introduces some complications into the quantum mechanical com-

putations.

The prediction of thermodynamic behaviors for the phase equilibria for the pure

fluid oxygen as well as of the binary mixtures hydrogen-oxygen and hydrogen-fluorine

should be then become possible with Gibbs Ensemble Monte Carlo simulations using

our ab initio potential functions.





Chapter 6

Appendix A

This appendix describes the results of ab initio quantum chemical calculations for

the dimers H2-H2, H2-O2, F2-F2 and H2-F2.

6.1 Predicting single-molecule properties

Table 6.1: Vibrational frequencies, cm−1 of the molecules H2, O2 and F2 calculated
with different methods and basis sets, respectively. Experimental vibrational data
for H2: 4401.2; O2: 1580.2 and F2: 916.6 [47]. The labels pVDZ, pVTZ, pVQZ
and pV23Z denote the basis sets aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ and
extrapolated energies aug-cc-pV23Z, respectively.

method 6-31G 6-311G pVDZ pVTZ pVQZ pV23Z
MP2 4533.6 4458.1 4463.7 4517.7 4515.0 4540.4

H2 MP3 4459.7 4366.4 4406.0 4464.5 4463.2 4489.1
MP4 4414.9 4317.5 4380.0 4435.6 4433.7 4459.0
CCSD(T) 4370.3 4270.6 4347.6 4404.0 4402.8 4427.7
MP2 918.5 1005.4 1428.2 1454.7 1479.7 1465.9

O2 MP3 1483.7 1550.3 1721.8 1734.2 1735.5 1739.4
MP4 1052.5 1104.3 1450.2 1443.5 1464.4 1440.7
CCSD(T) 1271.8 1339.1 1564.6 1575.4 1596.2 1579.9
MP2 893.4 838.2 933.4 1003.1 1003.4 1032.4

F2 MP3 886.8 842.3 957.2 1037.7 1040.3 1071.6
MP4 773.1 708.7 835.2 908.8 911.6 939.8
CCSD(T) 729.8 673.7 823.7 914.8 919.9 953.2
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Table 6.2: Dissociation energies in kJ/mol of the molecules calculated at 298.15 K
and 1.013 bar. Experimental dissociation energy is 432.1 kJ/mol for H2; O2: 498.4
kJ/mol and for F2: 154.5 kJ/mol [47].

method 6-31G 6-311G pVDZ pVTZ pVQZ pV23Z
MP2 360.605 357.346 386.943 407.185 411.041 415.708

H2 MP3 374.704 371.349 404.070 422.040 424.553 429.607
MP4 379.204 376.027 408.571 426.069 428.607 433.436
CCSD(T) 381.422 378.466 410.434 427.552 430.427 434.760
MP2 363.220 361.309 491.236 522.568 534.662 535.761

O2 MP3 345.162 254.424 478.678 429.310 443.135 408.523
MP4 309.107 331.340 457.246 491.022 504.741 505.243
CCSD(T) 290.970 307.720 436.379 476.347 489.748 493.175
MP2 87.112 81.942 140.184 169.108 175.029 181.287

F2 MP3 46.294 46.625 87.058 109.784 114.654 119.353
MP4 85.422 84.921 125.186 157.772 163.551 171.493
CCSD(T) 88.569 81.885 120.000 146.776 151.818 158.051

Table 6.3: Bond lengths/Å of the dimers H2-O2 and H2-F2 in an optimized T configu-
ration, calculated with different methods and basis sets. Experimental bond lengths
are 0.7413 Å, 1.2074 Å and 1.418 Å for hydrogen, oxygen and fluorine, respectively
[119].

MP2 MP3
Basis set rH−H/Å rO−O/Å rF−F/Å rH−H/Å rO−O/Å rF−F/Å
6-31G 0.7375 1.3428 1.5034 0.7418 1.2509 1.4974
6-311G 0.7372 1.3245 1.5054 0.7418 1.2437 1.4928
pVDZ 0.7549 1.2337 1.4269 0.7587 1.2013 1.4137
pVTZ 0.7374 1.2244 1.4014 0.7401 1.1926 1.3874
pVQZ 0.7363 1.2189 1.3975 0.7390 1.1880 1.3828
pV23Z 0.7300 1.2205 1.3907 0.7323 1.1889 1.3763

MP4 CCSD(T)
Basis set rH−H/Å rO−O/Å rF−F/Å rH−H/Å rO−O/Å rF−F/Å
6-31G 0.7441 1.3134 1.5342 0.7460 1.2832 1.5460
6-311G 0.7442 1.3054 1.5424 0.7463 1.2748 1.5512
pVDZ 0.7600 1.2312 1.4499 0.7617 1.2334 1.4507
pVTZ 0.7414 1.2267 1.4223 0.7430 1.2234 1.4186
pVQZ 0.7404 1.2216 1.4178 0.7418 1.2081 1.4135
pV23Z 0.7336 1.2248 1.4107 0.7351 1.2192 1.4050
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Table 6.4: Potential energies, 106Emin/EH and equilibrium distances, rmin/Å of the
dimers at selected orientations (α, β, φ), calculated with CCSD(T) method and basis
sets aug-cc-pVmZ (m = 2, 3, 4, 23). The labels pVDZ, pVTZ, pVQZ and pV23Z
denote the basis sets aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ and extrapolated
energies aug-cc-pV23Z, respectively.

angle/degree
H2-H2

pVDZ pVTZ pVQZ pV23Z
α β φ rmin Emin rmin Emin rmin Emin rmin Emin

0 0 0 3.8 -42.355 3.8 -37.490 3.8 -41.713 3.8 -35.444
90 0 0 3.6 -110.267 3.4 -152.745 3.4 -162.130 3.4 -171.825
90 90 0 3.8 -32.638 3.6 -47.309 3.6 -53.117 3.6 -55.246
90 90 90 3.8 -42.715 3.6 -66.931 3.6 -72.606 3.4 -78.158

angle/degree
H2-O2

pVDZ pVTZ pV23Z
α β φ rmin Emin rmin Emin rmin Emin

0 0 0 4.0 -176.903 4.0 -225.514 3.8 -247.957
90 0 0 4.0 -167.764 3.8 -237.364 3.8 -268.209
90 90 0 3.4 -200.841 3.2 -332.693 3.0 -398.079
90 90 90 3.6 -84.217 3.4 -156.328 3.2 -196.486

angle/degree
F2-F2

pVDZ pVTZ pV23Z
α β φ rmin Emin rmin Emin rmin Emin

0 0 0 4.8 -7.730 4.4 -132.120 4.4 -202.000
90 0 0 3.8 -398.390 3.6 -547.080 3.6 -616.926
90 90 0 3.4 -250.900 3.2 -410.000 3.2 -501.941
90 90 90 3.2 -313.590 3.0 -513.590 3.0 -637.511

angle/degree
H2-F2

pVDZ pVTZ pV23Z
α β φ rmin Emin rmin Emin rmin Emin

0 0 0 4.2 -48.392 4.0 -87.010 4.0 -105.413
90 0 0 3.6 -277.244 3.6 -412.361 3.4 -487.530
90 90 0 3.4 -122.528 3.2 -206.950 3.2 -252.737
90 90 90 3.4 -119.035 3.2 -195.925 3.2 -240.953
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6.2 Comparison of theoretical levels

Figure 6.1: Intermolecular potentials of H2-H2 calculated with the basis set aug-cc-
pV23Z with different post-SCF techniques: +, MP2; M, MP3; ¤, MP4; —, CCSD(T)
(this work); · · · : CCSD(T)/CBS limit by Diep and Johnson [25]; the configurations,
L, T, H and X correspond to (a), (b), (c), and (d) in Fig. 3.2.
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Figure 6.2: Intermolecular potentials of H2-O2; for an explanation see Fig. 6.1.
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Figure 6.3: Intermolecular potentials of F2-F2; for an explanation see Fig. 6.1.
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Figure 6.4: Intermolecular potentials of H2-F2; for an explanation see Fig. 6.1.
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6.3 Comparison of basis sets

Figure 6.5: Intermolecular potentials of H2-H2 calculated with the CCSD(T)
method for different basis sets: ×, 6-31G; +, 6-311G; *, aug-cc-pVDZ; M, aug-
cc-pVTZ; ¥, aug-cc-pVQZ; —, aug-cc-pV23Z; · · · : basis set CBS for T configura-
tion [25]; the configurations L, T, H and X correspond to (a), (b), (c) and (d) in
Fig. 3.2.
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Figure 6.6: Intermolecular potentials of H2-O2; for an explanation see Fig. 6.5.
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Figure 6.7: Intermolecular potentials of F2-F2; for an explanation see Fig. 6.5.
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Figure 6.8: Intermolecular potentials of H2-F2; for an explanation see Fig. 6.5.
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Table 6.5: Pair interaction energies of dimers H2-H2 and H2-O2 calculated with the
CCSD(T) method and the basis sets aug-cc-pVmZ (m = 2, 3, 23) (23 denotes the
extrapolation from sets 2 and 3).

α β φ r/Å 106u /EH H2-H2 r/Å 106u /EH H2-O2

pVDZ pVTZ pVQZ pV23Z pVDZ pVTZ pV23Z
0 0 0 2.8 978.17 877.59 844.38 835.30 3.4 473.71 291.25 214.42
0 0 0 3.0 398.31 342.95 321.76 319.67 3.6 17.12 -98.00 -146.47
0 0 0 3.4 11.64 2.86 -6.19 -0.83 3.8 -142.28 -216.65 -247.96
0 0 0 3.6 -31.77 -31.20 -37.32 -30.96 4.0 -176.90 -225.51 -245.98
0 0 0 3.8 -42.35 -37.49 -41.71 -35.44 4.2 -164.03 -196.57 -210.27
0 0 0 5.0 -10.94 -7.15 -7.58 -12.23 5.0 -67.83 -76.03 -79.48
0 0 0 9.0 0.10 0.31 0.30 -8.36 9.0 -1.82 -2.06 -2.16
0 0 0 10.0 0.10 0.22 0.21 -5.55 10.0 -0.98 -1.10 -1.15
45 0 0 3.0 238.21 144.38 124.32 104.93 3.4 287.21 115.78 43.59
45 0 0 3.2 31.66 -22.89 -35.73 -45.82 3.6 -50.97 -162.59 -209.59
45 0 0 3.4 -49.09 -79.91 -88.17 -92.87 3.8 -160.79 -233.45 -264.04
45 0 0 3.6 -71.87 -89.00 -94.34 -96.20 4.0 -176.12 -223.52 -243.48
45 0 0 4.0 -60.52 -65.57 -67.83 -52.80 4.2 -157.10 -188.29 -201.43
45 0 0 5.0 -18.13 -18.14 -18.30 -23.67 5.0 -62.67 -69.64 -72.58
45 0 0 9.0 -0.38 -0.34 -0.34 -18.14 9.0 -1.21 -1.71 -1.92
45 0 0 10.0 -0.19 -0.16 -0.16 -5.29 10.0 -0.62 -0.67 -0.69
90 0 0 2.8 449.78 265.06 231.32 187.40 3.2 807.44 556.85 451.34
90 0 0 3.0 87.81 -27.16 -49.06 -75.50 3.4 159.81 -11.82 -84.08
90 0 0 3.2 -60.56 -131.85 -146.13 -152.87 3.6 -89.41 -203.25 -251.18
90 0 0 3.4 -107.37 -152.75 -162.13 -100.72 3.8 -164.11 -237.36 -268.21
90 0 0 3.6 -110.27 -140.26 -146.46 -79.08 4.0 -167.76 -213.85 -233.25
90 0 0 3.8 -97.07 -117.62 -121.69 -61.77 4.2 -146.14 -174.93 -187.05
90 0 0 5.0 -24.89 -28.44 -28.54 -10.31 5.0 -57.05 -62.49 -64.78
90 0 0 9.0 -0.84 -0.97 -0.96 -1.02 9.0 -1.34 -1.36 -1.37
90 0 0 10.0 -0.47 -0.54 -0.53 -0.57 10.0 -0.70 -0.25 -0.05
135 45 0 2.8 492.22 292.59 258.77 208.66 3.2 703.34 491.60 402.45
135 45 0 3.0 118.26 -5.71 -28.09 -57.84 3.4 165.69 21.23 -39.59
135 45 0 3.2 -38.94 -115.77 -130.31 -145.14 3.6 -59.89 -156.40 -197.04
135 45 0 3.4 -92.51 -141.03 -150.23 -120.49 3.8 -138.56 -201.86 -228.51
135 45 0 3.6 -100.34 -131.88 -137.53 -96.30 4.0 -151.61 -192.60 -209.85
135 45 0 3.8 -90.50 -111.61 -114.98 -75.57 4.2 -138.06 -164.98 -176.32
135 45 0 4.0 -23.87 -27.03 -27.05 -28.36 5.0 -61.12 -66.61 -68.93
135 45 0 5.0 -0.78 -0.89 -0.88 -0.93 9.0 -1.97 -2.15 -2.23
135 45 0 9.0 -0.43 -0.49 -0.49 -0.51 10.0 -1.07 -1.10 -1.11
90 45 0 2.8 160.83 59.21 34.76 16.48 3.4 401.94 235.32 165.16
90 45 0 3.0 4.84 -56.20 -72.11 -81.87 3.6 125.17 19.35 -25.21
90 45 0 3.2 -52.98 -90.72 -100.88 -106.59 3.8 4.99 -61.15 -89.00
90 45 0 3.4 -66.99 -91.14 -97.54 -101.29 4.0 -40.54 -81.96 -99.40



6.3. COMPARISON OF BASIS SETS 101

Table 6.6: Table 6.5 continued

α β φ r/Å 106u /EH H2-H2 r/Å 106u /EH H2-O2

pVDZ pVTZ pVQZ pV23Z pVDZ pVTZ pV23Z
90 45 0 3.6 -63.37 -79.31 -83.29 -86.02 4.2 -52.23 -78.68 -89.81
90 45 0 3.8 -54.00 -64.82 -67.25 -69.37 5.0 -28.77 -34.09 -36.33
90 45 0 5.0 -0.49 -0.53 -0.53 -0.55 9.0 -0.66 -0.71 -0.73
90 45 0 9.0 -0.26 -0.28 -0.28 -0.29 10.0 -0.33 -0.33 -0.33
45 45 0 2.8 739.82 595.17 562.62 534.36 3.2 810.42 586.92 492.81
45 45 0 3.0 288.53 205.82 183.92 171.04 3.4 223.04 72.17 8.65
45 45 0 3.2 81.12 36.46 21.83 17.69 3.6 -22.84 -125.08 -168.12
45 45 0 3.4 -5.82 -28.77 -38.40 -38.42 3.8 -110.71 -179.48 -208.43
45 45 0 3.6 -36.22 -47.39 -53.62 -52.09 4.0 -128.82 -175.01 -194.46
45 45 0 3.8 -41.97 -46.92 -50.90 -49.01 4.2 -118.98 -149.99 -163.05
45 45 0 4.0 -38.20 -39.93 -42.44 -40.66 5.0 -50.57 -57.96 -61.07
45 45 0 5.0 -11.35 -10.29 -10.55 -9.85 9.0 -1.21 -1.51 -1.63
45 45 0 10.0 -0.02 0.04 0.04 0.07 10.0 -0.63 -0.72 -0.76
90 90 0 3.0 214.91 132.94 107.33 98.47 2.6 1027.94 576.30 386.14
90 90 0 3.2 58.37 9.44 -6.45 -11.14 2.8 229.37 -91.39 -226.45
90 90 0 3.4 -6.08 -36.17 -45.81 -48.83 3.0 -90.33 -306.90 -398.08
90 90 0 3.6 -28.43 -47.31 -53.12 -55.25 3.2 -192.28 -332.69 -391.81
90 90 0 3.8 -32.64 -44.62 -48.14 -49.66 3.4 -200.84 -290.20 -327.82
90 90 0 4.0 -29.91 -37.48 -39.65 -40.66 3.8 -140.24 -177.70 -193.47
90 90 0 5.0 -9.46 -10.23 -10.55 -10.56 5.0 -27.11 -31.82 -33.80
90 90 0 9.0 -0.15 -0.11 -0.11 -0.09 9.0 -0.38 -0.47 -0.51
90 90 0 10.0 -0.06 -0.03 -0.04 -0.02 10.0 -0.14 -0.19 -0.21
90 45 45 2.8 506.51 330.85 294.77 256.99 3.2 947.10 727.25 634.67
90 45 45 3.2 -2.17 -66.13 -81.70 -93.02 3.4 426.61 244.04 167.17
90 45 45 3.4 -57.96 -97.96 -107.90 -114.78 3.6 145.35 22.64 -29.03
90 45 45 3.6 -70.65 -96.55 -102.79 -107.43 3.8 21.45 -61.22 -96.03
90 45 45 3.8 -66.14 -83.43 -87.29 -90.70 4.0 -26.61 -83.38 -107.28
90 45 45 4.0 -56.14 -68.00 -70.35 -72.98 4.4 -44.83 -66.70 -75.90
90 45 45 5.0 -17.74 -20.14 -20.33 -21.15 5.0 -26.00 -30.60 -32.54
90 45 45 9.0 -0.54 -0.59 -0.59 -0.61 9.0 -0.72 -0.91 -1.00
90 45 45 10.0 -0.29 -0.32 -0.32 -0.33 10.0 -0.31 -0.65 -0.80
45 45 45 3.0 258.05 166.13 144.82 127.49 3.2 680.09 464.30 373.43
45 45 45 3.2 59.68 8.16 -6.05 -13.50 3.4 174.49 28.34 -33.20
45 45 45 3.4 -21.31 -49.49 -58.80 -61.34 3.6 -43.30 -160.77 -210.23
45 45 45 3.6 -47.68 -62.90 -68.86 -69.29 3.8 -119.69 -205.85 -242.13
45 45 45 3.8 -50.64 -58.74 -62.50 -62.15 4.0 -132.43 -196.64 -223.68
45 45 45 4.0 -44.89 -49.08 -51.41 -50.84 4.2 -119.75 -169.44 -190.37
45 45 45 5.0 -13.57 -13.30 -13.51 -13.18 5.0 -53.29 -66.35 -71.84
45 45 45 9.0 -0.22 -0.15 -0.15 -0.12 9.0 -0.78 -2.34 -2.99
45 45 45 10.0 -0.09 -0.05 -0.05 -0.03 10.0 -0.27 -1.30 -1.73
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Table 6.7: Table 6.6 continued

α β φ r/Å 106u /EH H2-H2 r/Å 106u /EH H2-O2

pVDZ pVTZ pVQZ pV23Z pVDZ pVTZ pV23Z
90 90 45 2.8 534.90 387.27 348.44 325.20 2.8 445.33 123.89 -11.46
90 90 45 3.2 45.22 -8.38 -23.91 -30.91 3.0 49.63 -164.90 -255.23
90 90 45 3.4 -15.32 -49.32 -58.79 -63.62 3.2 -98.90 -236.46 -294.37
90 90 45 3.6 -35.15 -57.18 -62.92 -66.44 3.4 -136.78 -223.35 -259.81
90 90 45 3.8 -37.67 -52.14 -55.65 -58.23 3.6 -129.43 -184.36 -207.49
90 90 45 4.0 -33.69 -43.29 -45.48 -47.33 4.0 -84.07 -107.88 -117.90
90 90 45 5.0 -10.82 -12.16 -12.48 -12.73 5.0 -20.44 -24.70 -26.49
90 90 45 9.0 -0.23 -0.22 -0.22 -0.21 9.0 -0.12 -0.18 -0.20
90 90 45 10.0 -0.11 -0.10 -0.10 -0.09 10.0 0.01 -0.02 -0.04
90 45 90 2.8 491.26 310.36 275.19 234.30 3.4 444.91 281.94 213.31
90 45 90 3.2 -9.18 -76.07 -91.31 -104.20 3.6 158.97 56.32 13.09
90 45 90 3.4 -62.94 -105.21 -114.93 -122.98 3.8 31.49 -31.62 -58.20
90 45 90 3.6 -74.31 -101.95 -108.04 -113.57 4.0 -19.30 -58.20 -74.58
90 45 90 4.0 -58.29 -71.17 -73.44 -76.58 4.4 -36.08 -51.65 -58.20
90 45 90 5.0 -18.48 -21.17 -21.35 -22.30 5.0 -20.70 -25.18 -27.07
90 45 90 10.0 -0.31 -0.35 -0.35 -0.37 10.0 -0.03 0.00 0.01
45 45 90 2.8 598.82 418.30 387.06 342.40 3.2 558.82 353.11 266.49
45 45 90 3.2 13.24 -51.63 -65.35 -78.90 3.4 120.11 -37.47 -103.82
45 45 90 3.4 -54.81 -93.45 -102.31 -109.70 3.6 -71.12 -185.13 -233.13
45 45 90 3.6 -72.45 -95.90 -101.46 -105.75 3.8 -136.31 -219.43 -254.43
45 45 90 3.8 -69.39 -83.95 -87.37 -90.07 4.0 -143.45 -205.58 -231.74
45 45 90 4.0 -59.36 -68.63 -70.68 -72.53 4.2 -127.99 -174.87 -194.61
45 45 90 5.0 -18.40 -19.77 -19.88 -20.35 5.0 -56.16 -66.44 -70.77
45 45 90 9.0 -0.48 -0.49 -0.49 -0.50 9.0 -1.20 -2.51 -3.06
45 45 90 10.0 -0.25 -0.26 -0.26 -0.26 10.0 -0.54 -0.73 -0.81
90 90 90 2.8 507.94 353.01 314.74 287.87 2.8 661.35 339.17 203.51
90 90 90 3.2 32.44 -25.85 -41.13 -50.35 3.0 189.43 -22.78 -112.13
90 90 90 3.4 -24.45 -62.26 -71.59 -78.16 3.2 -5.97 -140.04 -196.49
90 90 90 3.6 -41.85 -66.93 -72.61 -77.48 3.4 -72.74 -156.33 -191.52
90 90 90 3.8 -42.71 -59.60 -63.09 -66.70 3.6 -84.22 -136.70 -158.80
90 90 90 5.0 -12.18 -14.09 -14.41 -14.89 4.0 -60.13 -82.43 -91.82
90 90 90 9.0 -0.31 -0.33 -0.33 -0.33 5.0 -13.79 -17.56 -19.15
90 90 90 10.0 -0.16 -0.16 -0.16 -0.17 10.0 0.16 0.15 0.14
45 135 45 2.8 519.90 324.36 291.53 242.14 3.2 630.41 423.82 336.84
45 135 45 3.0 137.53 16.77 -4.95 -34.00 3.4 142.78 -15.45 -82.07
45 135 45 3.2 -25.28 -99.40 -113.55 -130.56 3.6 -66.19 -179.49 -227.19
45 135 45 3.4 -82.64 -128.83 -137.83 -148.25 3.8 -138.13 -220.15 -254.68
45 135 45 3.6 -93.04 -122.62 -128.17 -135.05 4.0 -148.27 -208.14 -233.34
45 135 45 3.8 -84.97 -104.47 -107.80 -112.67 4.2 -133.30 -178.43 -197.43
45 135 45 5.0 -22.43 -25.14 -25.17 -26.27 5.0 -60.49 -68.31 -71.61
45 135 45 9.0 -0.70 -0.78 -0.78 -0.82 10.0 -0.99 -0.02 0.39
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Table 6.8: Pair interaction energies of dimers F2-F2 and H2-F2 calculated with the
CCSD(T) method and the basis sets aug-cc-pVmZ (m = 2, 3, 23) (23 denotes the
extrapolation from sets 2 and 3).

α β φ r/Å 106u /EH F2-F2 r/Å 106u /EH H2-F2

pVDZ pVTZ pV23Z pVDZ pVTZ pV23Z
0 0 0 3.8 1507.75 1057.70 868.47 3.4 505.38 335.88 264.52
0 0 0 4.0 499.98 187.76 56.49 3.6 136.96 28.50 -17.17
0 0 0 4.2 148.60 -79.44 -175.32 3.8 -1.18 -70.33 -99.44
0 0 0 4.4 34.08 -132.12 -202.00 4.0 -43.31 -87.01 -105.41
0 0 0 4.6 0.01 -118.41 -168.20 4.2 -48.39 -75.99 -87.61
0 0 0 4.8 -7.73 -91.01 -126.03 4.4 -41.16 -58.85 -66.30
0 0 0 5.2 -4.55 -47.23 -65.18 4.6 -31.47 -43.10 -48.00
0 0 0 5.4 -1.90 -33.84 -47.27 5.0 -16.05 -21.53 -23.84
0 0 0 5.6 0.19 -24.33 -34.64 6.5 -0.43 -0.97 -1.20
0 0 0 15.0 0.02 -0.03 -0.05 15.0 0.08 0.08 0.08
45 0 0 3.6 536.43 289.26 185.34 3.2 681.25 412.55 299.41
45 0 0 3.8 -182.98 -365.50 -442.24 3.4 116.64 -67.83 -145.50
45 0 0 4.0 -349.40 -490.75 -550.18 3.6 -89.38 -212.51 -264.36
45 0 0 4.2 -334.09 -439.45 -483.75 3.8 -144.70 -224.31 -257.82
45 0 0 4.4 -273.87 -347.76 -378.83 4.0 -141.62 -192.02 -213.24
45 0 0 4.6 -212.72 -262.29 -283.13 4.2 -119.69 -151.53 -164.93
45 0 0 5.0 -122.17 -144.62 -154.06 4.8 -55.62 -64.95 -68.88
45 0 0 8.0 -4.14 -5.02 -5.39 8.0 -1.64 -1.82 -1.90
45 0 0 15.0 -0.17 -0.18 -0.18 15.0 -0.01 -0.01 -0.01
90 0 0 3.2 776.13 472.78 345.24 3.0 965.21 591.55 434.22
90 0 0 3.4 -132.78 -356.72 -450.88 3.2 115.51 -173.79 -295.60
90 0 0 3.6 -380.96 -547.08 -616.93 3.4 -194.63 -400.75 -487.53
90 0 0 3.8 -398.39 -513.15 -561.40 3.6 -277.24 -412.36 -469.25
90 0 0 4.0 -346.68 -420.02 -450.86 3.8 -269.03 -352.55 -387.72
90 0 0 4.2 -282.41 -326.86 -345.55 4.0 -229.62 -280.14 -301.40
90 0 0 4.4 -223.71 -250.28 -261.45 4.2 -184.64 -215.80 -228.92
90 0 0 4.6 -175.26 -191.46 -198.27 4.4 -144.24 -164.44 -172.94
90 0 0 5.4 -67.88 -71.08 -72.43 5.0 -66.65 -73.91 -76.97
90 0 0 8.0 -6.93 -6.79 -6.73 9.0 -1.88 -1.99 -2.03
90 0 0 15.0 -0.34 -0.30 -0.28 15.0 -0.09 -0.10 -0.11
135 45 0 3.5 633.37 382.63 277.21 3.0 1175.25 879.42 754.86
135 45 0 3.7 49.58 -128.62 -203.55 3.2 343.85 137.76 50.99
135 45 0 3.8 -84.33 -230.99 -292.65 3.4 -5.84 -143.00 -200.75
135 45 0 4.0 -198.40 -292.81 -332.51 3.6 -132.56 -220.86 -258.04
135 45 0 4.2 -213.62 -271.31 -295.57 3.8 -161.05 -217.03 -240.60
135 45 0 4.4 -192.62 -227.04 -241.51 4.0 -150.16 -185.87 -200.91
135 45 0 4.6 -161.68 -182.38 -191.08 4.2 -126.84 -150.14 -159.95
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Table 6.9: Table 6.8 continued

α β φ r/Å 106u /EH F2-F2 r/Å 106u /EH H2-F2

pVDZ pVTZ pV23Z pVDZ pVTZ pV23Z
135 45 0 5.0 -105.09 -113.48 -117.01 4.6 -81.36 -92.09 -96.61
135 45 0 6.0 -35.89 -37.09 -37.59 6.0 -16.99 -18.35 -18.92
135 45 0 15.0 -0.32 -0.28 -0.26 15.0 -0.08 -0.08 -0.08
90 45 0 3.0 1343.97 926.04 750.32 3.2 511.89 289.83 196.34
90 45 0 3.2 202.20 -110.38 -241.81 3.4 134.73 -5.71 -64.84
90 45 0 3.4 -182.10 -406.71 -501.15 3.6 -20.27 -106.10 -142.25
90 45 0 3.6 -275.86 -427.25 -490.90 3.8 -72.91 -125.41 -147.51
90 45 0 3.8 -265.86 -363.21 -404.14 4.0 -81.59 -114.64 -128.55
90 45 0 4.0 -224.67 -286.41 -312.37 4.2 -73.79 -95.45 -104.57
90 45 0 4.2 -179.48 -219.45 -236.26 4.4 -61.54 -76.26 -82.46
90 45 0 4.4 -139.68 -166.62 -177.95 4.6 -49.60 -59.84 -64.16
90 45 0 6.0 -20.42 -23.38 -24.62 6.0 -10.19 -11.65 -12.26
90 45 0 15.0 -0.22 -0.20 -0.19 15.0 -0.03 -0.04 -0.05
45 45 0 3.6 1040.07 716.93 581.06 3.2 643.66 452.70 372.30
45 45 0 3.8 302.81 70.83 -26.71 3.4 193.19 64.38 10.15
45 45 0 4.0 31.59 -132.59 -201.62 3.6 9.81 -75.03 -110.75
45 45 0 4.2 -57.02 -169.79 -217.20 3.8 -54.34 -109.17 -132.25
45 45 0 4.4 -76.43 -152.49 -184.47 4.0 -67.93 -103.19 -118.04
45 45 0 4.6 -71.20 -122.86 -144.58 4.2 -62.28 -85.14 -94.76
45 45 0 4.8 -58.88 -94.96 -110.13 4.4 -51.07 -66.18 -72.55
45 45 0 5.0 -46.07 -72.35 -83.40 4.6 -39.84 -50.05 -54.35
45 45 0 6.0 -11.63 -19.21 -22.40 6.0 -5.71 -6.88 -7.38
45 45 0 15.0 -0.07 -0.10 -0.11 15.0 0.04 0.03 0.02
90 90 0 2.8 885.84 394.61 188.07 2.6 1063.97 636.37 456.32
90 90 0 3.0 79.38 -260.74 -403.75 2.8 327.46 45.28 -73.53
90 90 0 3.2 -191.33 -410.00 -501.94 3.0 14.57 -162.09 -236.47
90 90 0 3.4 -250.90 -386.33 -443.27 3.2 -98.21 -206.95 -252.74
90 90 0 3.6 -232.91 -317.69 -353.34 3.4 -122.53 -190.64 -219.31
90 90 0 3.8 -192.13 -247.82 -271.24 3.6 -112.55 -156.73 -175.33
90 90 0 4.0 -150.36 -189.15 -205.46 3.8 -92.74 -122.35 -134.82
90 90 0 4.2 -114.97 -143.25 -155.14 4.0 -72.83 -93.17 -101.74
90 90 0 5.0 -38.78 -48.68 -52.84 5.0 -18.67 -22.85 -24.61
90 90 0 9.0 -0.64 -1.03 -1.19 9.0 -0.22 -0.32 -0.36
90 90 0 15.0 -0.12 -0.12 -0.12 15.0 0.02 0.02 0.02
90 45 45 3.0 1415.68 995.73 819.16 3.0 1260.06 926.92 786.65
90 45 45 3.2 259.31 -54.81 -186.88 3.2 452.07 228.21 133.95
90 45 45 3.4 -147.62 -370.27 -463.88 3.4 94.91 -46.71 -106.35
90 45 45 3.6 -258.25 -405.65 -467.63 3.6 -47.68 -134.33 -170.82
90 45 45 3.8 -258.35 -351.56 -390.75 3.8 -92.26 -145.39 -167.76
90 45 45 4.0 -222.58 -280.90 -305.42 4.0 -95.52 -129.11 -143.25
90 45 45 4.2 -180.06 -217.39 -233.09 4.2 -84.02 -106.14 -115.46



6.3. COMPARISON OF BASIS SETS 105

Table 6.10: Table 6.9 continued

α β φ r/Å 106u /EH F2-F2 r/Å 106u /EH H2-F2

pVDZ pVTZ pV23Z pVDZ pVTZ pV23Z
90 45 45 4.4 -141.42 -166.49 -177.03 4.4 -69.19 -84.27 -90.62
90 45 45 5.0 -66.47 -76.02 -80.04 5.0 -34.53 -40.19 -42.57
90 45 45 9.0 -2.03 -2.18 -2.24 9.0 -1.00 -1.09 -1.13
90 45 45 15.0 -0.23 -0.20 -0.19 15.0 -0.04 -0.04 -0.04
45 45 45 3.6 703.39 424.76 307.61 3.0 1536.77 1251.85 1131.88
45 45 45 3.8 113.40 -89.12 -174.27 3.2 560.19 365.30 283.24
45 45 45 4.0 -85.14 -227.93 -287.97 3.4 138.73 7.30 -48.04
45 45 45 4.2 -134.25 -231.07 -271.78 3.6 -27.95 -114.36 -150.75
45 45 45 4.4 -130.08 -194.39 -221.43 3.8 -81.66 -137.45 -160.93
45 45 45 4.6 -109.84 -152.88 -170.98 4.0 -88.27 -124.17 -139.29
45 45 45 4.8 -87.44 -117.16 -129.66 4.2 -77.74 -101.09 -110.93
45 45 45 6.0 -18.36 -24.45 -27.01 5.0 -28.93 -34.19 -36.41
45 45 45 9.0 -0.89 -1.45 -1.69 6.0 -7.99 -9.24 -9.76
45 45 45 15.0 -0.12 -0.13 -0.13 15.0 0.02 0.01 0.00
90 90 45 2.6 2058.68 1433.27 1170.31 2.6 1096.04 667.26 486.72
90 90 45 2.8 492.05 29.64 -164.78 2.8 345.28 64.31 -53.99
90 90 45 3.0 -85.33 -400.63 -533.20 3.0 23.76 -151.43 -225.19
90 90 45 3.2 -261.58 -462.23 -546.59 3.2 -93.89 -201.77 -247.19
90 90 45 3.4 -281.30 -405.51 -457.73 3.4 -120.93 -188.80 -217.38
90 90 45 3.6 -246.39 -324.64 -357.54 3.6 -112.53 -156.84 -175.49
90 90 45 3.8 -198.61 -250.41 -272.19 3.8 -93.59 -123.48 -136.06
90 90 45 4.0 -154.02 -190.26 -205.50 4.0 -74.12 -94.77 -103.46
90 90 45 5.0 -40.43 -49.54 -53.37 5.0 -20.04 -24.25 -26.02
90 90 45 9.0 -0.89 -1.21 -1.34 9.0 -0.37 -0.46 -0.50
90 90 45 15.0 -0.14 -0.14 -0.14 15.0 0.00 0.00 0.00
90 45 90 3.0 1516.76 1091.11 912.14 3.0 1167.15 832.18 691.14
90 45 90 3.2 333.99 16.44 -117.08 3.2 392.89 167.47 72.56
90 45 90 3.4 -102.53 -324.38 -417.66 3.4 55.46 -87.24 -147.33
90 45 90 3.6 -234.12 -378.27 -438.88 3.6 -74.88 -162.30 -199.11
90 45 90 3.8 -246.79 -336.34 -373.99 3.8 -111.47 -165.22 -187.85
90 45 90 4.0 -217.93 -273.09 -296.28 4.0 -109.39 -143.49 -157.85
90 45 90 4.2 -179.00 -213.96 -228.66 4.2 -94.20 -116.76 -126.26
90 45 90 4.4 -142.16 -165.43 -175.21 4.4 -76.81 -92.26 -98.76
90 45 90 6.0 -22.98 -25.10 -25.99 6.0 -12.57 -14.13 -14.79
90 45 90 15.0 -0.25 -0.23 -0.22 15.0 -0.05 -0.05 -0.05
45 45 90 3.4 1535.92 1230.87 1102.61 3.0 1302.96 1011.88 889.32
45 45 90 3.6 349.40 124.03 29.27 3.2 418.89 217.25 132.34
45 45 90 3.8 -80.62 -243.68 -312.24 3.4 45.50 -90.18 -147.31
45 45 90 4.0 -207.10 -318.40 -365.20 3.6 -93.77 -182.38 -219.69
45 45 90 4.2 -219.01 -291.14 -321.47 3.8 -130.22 -187.12 -211.07
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Table 6.11: Table 6.10 continued

α β φ r/Å 106u /EH F2-F2 r/Å 106u /EH H2-F2

pVDZ pVTZ pV23Z pVDZ pVTZ pV23Z
45 45 90 4.4 -192.67 -238.30 -257.49 4.0 -125.11 -161.67 -177.06
45 45 90 5.0 -97.49 -111.03 -116.72 5.0 -40.60 -46.09 -48.40
45 45 90 6.0 -29.46 -32.79 -34.19 6.0 -12.63 -13.95 -14.50
45 45 90 15.0 -0.22 -0.21 -0.21 15.0 -0.03 -0.03 -0.03
90 90 90 2.6 1213.39 622.63 374.24 2.6 1131.78 701.21 519.91
90 90 90 2.8 155.26 -282.02 -465.88 2.8 365.19 85.18 -32.72
90 90 90 3.0 -218.86 -513.59 -637.51 3.0 34.06 -139.66 -212.80
90 90 90 3.2 -313.59 -499.45 -577.60 3.2 -88.98 -195.93 -240.95
90 90 90 3.4 -300.68 -415.54 -463.83 3.4 -119.04 -186.59 -215.03
90 90 90 3.6 -253.00 -325.76 -356.35 3.6 -112.35 -156.70 -175.38
90 90 90 3.8 -200.62 -249.13 -269.53 3.8 -94.36 -124.45 -137.12
90 90 90 4.0 -154.72 -188.82 -203.16 4.0 -75.39 -96.26 -105.04
90 90 90 5.0 -41.59 -49.98 -53.51 5.0 -21.29 -25.64 -27.47
90 90 90 6.0 -13.33 -16.18 -17.38 6.0 -6.82 -8.09 -8.63
90 90 90 15.0 -0.17 -0.16 -0.16 15.0 -0.01 -0.01 -0.01
45 135 45 3.4 1278.50 988.09 865.99 3.0 1190.62 895.85 771.73
45 135 45 3.6 280.21 67.43 -22.03 3.2 352.03 146.78 60.36
45 135 45 3.8 -95.39 -244.21 -306.78 3.4 0.14 -136.98 -194.71
45 135 45 4.0 -210.68 -307.94 -348.83 3.6 -127.35 -216.06 -253.42
45 135 45 4.2 -222.89 -283.13 -308.46 3.8 -156.35 -212.83 -236.61
45 135 45 4.4 -198.65 -235.03 -250.33 4.0 -145.94 -182.07 -197.28
45 135 45 4.6 -165.19 -187.34 -196.65 4.2 -123.10 -146.69 -156.62
45 135 45 6.0 -34.89 -36.53 -37.22 6.0 -15.97 -17.32 -17.89
45 135 45 15.0 -0.30 -0.30 -0.30 15.0 -0.07 -0.07 -0.07
180 135 45 3.6 536.43 289.26 185.34 3.2 453.84 282.23 209.98
180 135 45 3.8 -182.98 -365.50 -442.24 3.4 32.52 -86.41 -136.49
180 135 45 4.0 -349.40 -490.75 -550.18 3.6 -118.49 -198.81 -232.63
180 135 45 4.2 -334.09 -439.45 -483.75 3.8 -153.93 -206.93 -229.25
180 135 45 4.4 -273.87 -347.76 -378.83 4.0 -144.13 -178.95 -193.61
180 135 45 4.6 -212.72 -262.29 -283.13 4.2 -120.20 -143.29 -153.01
180 135 45 4.8 -161.79 -194.75 -208.61 4.6 -73.49 -84.23 -88.75
180 135 45 6.0 -32.12 -37.77 -40.15 6.0 -12.56 -13.73 -14.22
180 135 45 15.0 -0.17 -0.18 -0.18 15.0 -0.01 -0.01 -0.01



Chapter 7

Appendix B

This appendix describes the fitting results of ab initio 5-site pair potential functions

for the dimers H2-H2, H2-O2, F2-F2 and H2-F2.

7.1 Fitting pair potentials of dimers H2-H2, H2-O2

Figure 7.1: Quality of the 5-site ab initio analytical potential fit Eq. 3.4 for hydrogen
at the theory level CCSD(T)/aug-cc-pV23Z.
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Figure 7.2: Quality of the 5-site ab initio analytical potential fit Eq. 3.3 for hydrogen-
oxygen at the theory level CCSD(T)/aug-cc-pV23Z.

Figure 7.3: Quality of the 5-site ab initio analytical potential fit Eq. 3.4 for hydrogen-
oxygen at the theory level CCSD(T)/aug-cc-pV23Z.
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Table 7.1: Optimized parameters of the 5-site potential function Eq. 3.3 for the dimers H2-H2 and H2-O2. For all
interactions δij = 2.0 Å−1 and β = 1.0 Å−1 were assumed. Partial charges: hydrogen: qN/e = -0.07833, qH = 0; oxygen:
qN/e = -0.98630; qM = -2qN. EH = 4.359782 × 10−18J (Hartree energy unit).

De/EH α/Å−1 (C6/EH)/Å6 (C8/EH)/Å8 (C10/EH)/Å10

H-H 1.0227960 × 10−1 0.572624 1.3331335 × 101 -6.0552638 × 101 1.1426530 × 102

H-N -7.6904291 × 10−1 2.833929 -4.8925193 × 101 2.2518041 × 102 -4.1995086 × 102

H-M -1.9218850 × 10−1 0.571454 7.0555940 × 101 -3.2310401 × 102 6.0228738 × 102

M-M -4.9351615 × 10−2 0.577347 -2.9215876 × 102 1.3811359 × 103 -2.5920488 × 103

M-N 4.1656272 × 100 3.034345 1.9573909 × 102 -9.2093494 × 102 1.7194907 × 103

N-N 5.5668718 × 10−1 0.572581 4.4157578 × 102 -2.1135278 × 103 3.9998766× 103

H-O 7.1344072 × 101 2.224363 4.2837184 × 101 -1.7077254 × 102 1.8833419 × 102

H-N -8.2853629 × 102 3.063894 -4.8770389 × 102 2.5555354 × 103 -3.9233150 × 103

H-M 7.9803402 × 103 3.424206 9.2825459 × 102 -7.7164750 × 103 1.0264176 × 104

N-O -2.4782492 × 102 2.325012 4.9110956 × 100 -1.2536655 × 102 3.6964806 × 102

N-N 3.1923965 × 102 2.376826 -2.1482107 × 102 2.6808196 × 103 -4.1720911 × 103

N-M -4.3465863 × 103 3.615596 6.6574171 × 102 -5.8167896 × 103 1.0538800 × 104

M-O 4.0478281 × 102 2.580552 7.6550470 × 101 -1.8143994× 102 3.2133610 × 102

M-M -9.4272238 × 102 2.401622 -2.0533920 × 103 1.9203419 × 104 -3.1259521 × 104
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Table 7.2: Optimized parameters of the 5-site potential function Eq. 3.4 for the dimers H2-H2 and H2-O2. For all
interactions δij = 5.0 Å−1 and β = 1.0 Å−1 were assumed. See Table 7.1 for the partial charges.

De/EH α/Å−1 (C6/EH)/Å6 (C8/EH)/Å8 (C10/EH)/Å10 (C12/EH)/Å12

H-H -6.7840793 × 100 1.923067 4.2622953 × 101 -3.1534347 × 101 2.1629628 × 102 -1.6550872 × 102

H-N -5.8195070 × 101 2.392939 -7.3078210 × 101 2.9865985 × 102 -3.5496098 × 102 6.2763187 × 102

H-M 8.1963312 × 101 2.150854 3.6798154 × 101 -2.8631558 × 102 -1.4576096 × 102 -2.1335450 × 102

M-M -9.5207702 ×101 2.106373 -8.1992347 × 102 4.3234831 × 103 -1.6093781 × 104 2.5157521 × 104

M-N 1.1101172 × 102 2.355682 5.2084251 × 102 -2.4776371 × 103 8.0867352 × 103 -1.1975862 × 104

N-N 8.1942167 × 101 1.959511 1.4635001 × 103 -8.5495684 × 103 3.5233328 × 104 -5.7733649 × 104

H-O 8.0308925 × 102 2.544218 -2.4132460 × 102 -6.7476151 × 102 -5.0921066 × 103 2.8012113 × 103

H-N -2.4427742 × 104 3.971425 6.4791331 × 102 -1.0353963 × 104 5.6572612 × 104 -3.3143922 × 104

H-M 9.7726177 × 104 3.889565 -1.0595428 × 103 2.3569137 × 104 -1.9681587 × 105 9.8966862 × 104

N-O -3.7381800 × 103 2.600285 5.7004391 × 102 7.7424748 × 103 6.1319897 × 103 7.7395300 × 103

N-N 2.7755945 × 103 2.897540 -6.9532173 × 102 -7.3659667 × 102 6.7221266 × 103 -3.0543881 × 104

N-M -2.5348859 × 104 3.751627 8.3082816 × 102 7.7658214 × 103 -7.0829484 × 103 8.5697641 × 104

M-O 4.9501410 × 103 2.596322 -7.9205831 × 102 -1.0988081 × 104 -4.7931859 × 103 -1.4496810 × 104

M-M -5.6542124 × 103 2.820828 -7.4164112 × 102 -1.2615712 × 104 1.8484688 × 105 -3.0812949 × 105
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Figure 7.5: Quality of the 5-site ab initio analytical potential fit Eq. 3.5 for hydrogen-
fluorine at the theory level CCSD(T)/aug-cc-pV23Z.

Figure 7.6: Quality of the 5-site ab initio analytical potential fit Eq. 3.6 for hydrogen-
fluorine at the theory level CCSD(T)/aug-cc-pV23Z.
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Table 7.3: Optimized parameters of the 5-site potential function Eq. 3.5 for the dimers F2-F2 and H2-F2. For all
interactions δij = 2.0 Å−1 was assumed. Partial charges: hydrogen: qN/e = -0.078329, qH = 0; fluorine: qN/e =
-0.781897132, qF = 0; qM = -2qN. EH = 4.359782 × 10−18J (Hartree energy unit).

De/EH α/Å−1 β/Å−1 (C6/EH)Å6 (C8/EH)Å8 (C10/EH)Å10

F-F 4.5974720 × 100 5.278793 1.617556 6.9533045 × 101 -7.8174045 × 102 3.8360409 × 103

F-N -9.0747157 × 102 5.019366 0.652754 -1.2637218 ×102 1.1234232 × 103 -6.1458463 × 103

F-M 6.6992723 × 101 5.019574 1.245679 1.4521977 × 102 -1.3652884 × 103 8.3442391 × 103

M-M 1.5869262 × 102 3.483313 0.434485 1.5231052 × 101 -1.5841515 × 103 3.6390746 × 103

M-N -7.6586901 × 101 5.252010 0.688880 5.0245981 × 101 1.0743838 × 103 -2.1705318 × 103

N-N -3.4793023 × 102 3.431624 0.558077 -1.1051724 × 102 1.6178480 × 103 -5.3087935 × 103

H-F -1.2998526 × 100 1.359765 -0.081002 -2.5762236 × 100 1.4264490 × 101 -3.5028153 × 101

H-N -5.6494975 × 10−2 1.286156 -5.148780 -7.1318146 × 101 3.7611779 × 102 -6.5142385 × 102

H-M 2.7802594 × 100 1.070086 -2.073589 1.0897255 × 102 -6.4494812 × 102 1.1979607 × 103

N-F 2.0745652 × 101 1.400898 -1.051550 5.3696452 × 101 -2.5941110 × 102 5.3928707 × 102

N-N 3.1915920 × 101 1.951238 -0.688997 1.7431585 × 102 -9.4371444 × 102 1.5560964 × 103

N-M -1.6196579 × 101 1.978559 -0.342494 -1.2215049 × 102 7.7225795 × 102 -1.0487256 × 103

M-F -1.5630681 × 101 1.437144 -0.489872 -1.0978703 × 102 5.2659459 × 102 -1.0794681 × 103

M-M -4.2454722 × 100 1.095669 -1.479315 -1.2777729 × 102 4.2169046 × 102 -1.6846562 × 103
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Table 7.4: Optimized parameters of the 5-site potential function Eq. 3.6 for the dimers F2-F2 and H2-F2. For all
interactions δij = 5.0 Å−1 was assumed. See Table 7.3 for the partial charges.

De/EH α/Å−1 β/Å−1 (C6/EH)Å6 (C8/EH)Å8 (C10/EH)Å10 (C12/EH)Å12

F-F 8.8171786×102 3.244041 0.077961 -6.2157865×101 1.2321451×103 5.4513393×103 -1.2697245×103

F-N -1.1827787×102 3.159481 0.921714 1.3397431×102 -3.3368060×103 -1.1509838×104 6.9397783×103

F-M 3.1679473×102 3.119872 0.670539 -1.9821670×102 4.9441767×103 1.1566430×104 -3.8524907×103

M-M 6.7764210×101 2.580436 -0.261325 -5.8754971×102 6.4076016×103 -5.0988435×104 1.0700619×105

M-N 6.8749639×102 3.241169 0.330852 2.8958183×102 -1.9917828×103 4.2916608×104 -7.1733704×104

N-N -2.9343556×102 3.121165 0.803472 1.1596520×103 -1.5773995×104 6.3144928×104 -1.6208326×105

H-F 3.0463804×101 2.520069 -0.224604 5.0474996×101 -2.7938515×101 3.6422180×102 -2.1159364×102

H-N -2.7806721×101 2.269005 -0.042749 -1.7030307×102 3.3526431×102 -1.5002802×103 1.5374112×103

H-M 6.5239690×101 2.938248 0.279555 1.4483963×102 -1.2399348×102 2.0678809×103 -2.1851258×103

N-F 4.2020099×101 2.054421 -0.487799 -5.8550342×101 3.1625056×102 -2.1594953×102 2.5251962×102

N-N 5.1162888×101 2.141455 -0.254528 3.1633506×102 -2.6568174×102 -2.2587158×102 1.4039026×103

N-M -4.4667507×101 2.852174 0.128157 -1.9092711×102 -6.6195414×102 5.2222878×103 -8.6454961×103

M-F -2.4889589×101 2.104182 0.313304 -8.1709626×100 -4.3286727×102 -5.4342203×102 4.2248237×102

M-M -2.5535101×101 1.980672 -0.033874 -6.1411549×101 2.2612488×103 -1.6238287×104 2.4340458×104
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Table 8.2: Second virial coefficients of hydrogen as a function of temperature (given
in cm3/mol). B0

cl: classical result obtained from pair potentials; B1
r , B1

a,I , B1
a,µ:

quantum corrections; B: total virial coefficient; Sph.harm: ab initio prediction of
Diep and Johnson [25, 26] and Etters et al. [32]; exp.: experimental data.

T/K Method B
(0)
cl B

(1)
r B

(1)
a,I B

(1)
a,µ B ref.

Eq. 3.3 -23.65376 0.33886 0.23818 0.08891 -22.98781
60.0 Eq. 3.4 -23.13453 0.44618 0.16819 0.10622 -22.41395

Sph.harm -21.3 [32]
Exp. -24.0 [66]
Eq. 3.3 -15.10032 0.82164 0.21554 0.06926 -13.99389

70.0 Eq. 3.4 -14.66783 0.64801 0.03147 0.01434 -13.97401
Sph.harm -14.11 [32]
Exp. -16.0 [66]
Eq. 3.3 -12.01632 0.46978 0.14782 0.04058 -11.35814

75.0 Eq. 3.4 -11.54848 0.34957 0.11663 0.02498 -11.05729
Sph.harm -11.93840 [25]
Exp. -12.0 [66]
Eq. 3.3 -9.43967 0.10774 0.04736 0.00877 -9.27580

80.0 Eq. 3.4 -8.94676 0.16611 0.11432 0.05549 -8.61084
Sph.harm -8.94 [32]
Exp. -11.0 [66]
Eq. 3.3 -5.32774 0.24869 0.03753 0.02708 -5.01445

90.0 Eq. 3.4 -4.86315 0.09058 0.04461 0.04257 -4.68539
Sph.harm -5.04 [32]
Exp. -7.0 [66]
Eq. 3.3 -2.13663 1.00789 0.30780 0.03499 -0.78595

100.0 Eq. 3.4 -1.79898 0.95604 0.25957 0.02334 -0.56002
Sph.harm -1.20776 [26]
Exp. -1.9±1.0 [28]
Eq. 3.3 7.16159 0.46291 0.19352 0.05909 7.87712

150.0 Eq. 3.4 6.59670 0.58708 0.22251 0.07541 7.48170
Sph.harm 7.61891 [26]
Exp. 7.1±0.5 [28]
Eq. 3.3 11.18517 0.21872 0.08462 0.02026 11.50877

200.0 Eq. 3.4 10.22962 0.66563 0.19718 0.05211 11.14455
Sph.harm 11.52550 [26]
Exp. 11.3±0.5 [28]
Eq. 3.3 13.76118 0.37335 0.24436 0.00739 14.38629

300.0 Eq. 3.4 12.75553 1.24404 0.44549 0.04092 14.48598
Sph.harm 14.78800 [26]
Exp. 14.8±0.5 [28]
Eq. 3.3 14.26859 0.89985 0.42168 0.03695 15.62707

400.0 Eq. 3.4 13.32682 1.53453 0.61004 0.06834 15.53973
Sph.harm 15.96840 [26]
Exp. 15.2±0.5 [28]
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Table 8.3: Cross second virial coefficient (given in cm3/mol) of the mixture hydro-
gen–oxygen; correl.: empirical correlation [30]; exp.: experimental data. For an
explanation of the other properties see Table 8.2.

T/K method B(0) B
(1)
r B

(1)
a,I B

(1)
aµ B ref.

Eq. 3.3 -138.33772 0.26696 0.19886 0.01531 -137.85659
49.8 Eq. 3.4 -136.92058 0.05736 0.03702 0.02815 -136.79804

correl. -142.09728
exp. -110.0 [77]
Eq. 3.3 -100.68668 0.20949 0.10404 0.04190 -100.33125

60.0 Eq. 3.4 -99.64381 0.02042 0.01906 0.00957 -99.59477
correl. -106.39316
Eq. 3.3 -61.87517 0.28309 0.22841 0.05662 -61.30705

80.0 Eq. 3.4 -60.90565 0.08494 0.03695 0.03241 -60.75136
correl. -63.88700
exp. -72.9 [124]
Eq. 3.3 -55.74469 0.40514 0.38766 0.07753 -54.87436

85.0 Eq. 3.4 -54.67789 0.32468 0.07273 0.05714 -54.22335
correl. -56.80610
exp. -54.0 [124]
Eq. 3.3 -54.07285 0.31435 0.17659 0.04671 -53.53520

86.5 Eq. 3.4 -52.97568 0.12753 0.07273 0.01429 -52.76113
correl. -54.88163
interpolation -58.1 Eq. (4.6)
Eq. 3.3 -50.42771 0.35160 0.34420 0.07032 -49.66159

90.0 Eq. 3.4 -49.26103 0.19092 0.05388 0.04550 -48.97073
correl. -50.66400
exp. -32.5 [124]
Eq. 3.3 -41.60513 0.42705 0.40062 0.08012 -40.69733

100.0 Eq. 3.4 -40.27439 0.29924 0.06562 0.05491 -39.85462
correl. -40.59072
Eq. 3.3 -15.83443 0.44923 0.41374 0.08275 -14.88871

150.0 Eq. 3.4 -14.58003 0.34345 0.07797 0.05879 -14.09982
correl. -13.80439
Eq. 3.3 -3.64660 0.42646 0.40027 0.08005 -2.73982

200.0 Eq. 3.4 -2.74036 0.32290 0.07223 0.05699 -2.28824
correl. -2.78858
Eq. 3.3 4.25375 0.40567 0.38797 0.07759 5.12497

273.15 Eq. 3.4 5.03061 0.30245 0.06652 0.05519 5.45477
correl. 4.65614
Eq. 3.3 8.11890 0.44770 0.25992 0.08169 8.90821

400.0 Eq. 3.4 8.98165 0.34470 0.07832 0.05890 9.46358
correl. 9.93124
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8.2 Virial coefficients of dimers F2-F2, H2-F2

Table 8.4: Second virial coefficients, B0
cl of fluorine (given in cm3/mol) calculated

from pair potentials at the level CCSD(T)/aug-cc-pVmZ (m = 2, 3, 23).

T/K method aug-cc-pVDZ aug-cc-pVTZ aug-cc-pV23Z exp. ref.
90.0 Eq. 3.5 -78.3858 -135.459 -191.1797 -208.70 [17]

Eq. 3.6 -79.4597 -137.5410 -173.0646
100.0 Eq. 3.5 -63.4378 -111.381 -156.0938 -156.0 [28]

Eq. 3.6 -64.3069 -113.0929 -142.0271
110.0 Eq. 3.5 -51.8488 -93.2073 -129.9349 -134.30 [17]

Eq. 3.6 -52.5591 -94.6399 -119.0659
125.0 Eq. 3.5 -38.6615 -73.0314 -101.5889 -101.80 [17]

Eq. 3.6 -39.1912 -74.1539 -94.2294
140.0 Eq. 3.5 -28.8293 -58.3204 -81.4776 -81.50 [28]

Eq. 3.6 -29.2243 -59.2168 -76.5069
145.0 Eq. 3.5 -26.0883 -54.2675 -76.0106 -75.90 [28]

Eq. 3.6 -26.4457 -55.1016 -71.6566
150.0 Eq. 3.5 -23.5639 -50.5525 -71.0214 -70.90 [28]

Eq. 3.6 -23.8867 -51.3295 -67.2143
165.0 Eq. 3.5 -17.0652 -41.0644 -58.3449 -55.700 [17]

Eq. 3.6 -17.2990 -41.6956 -55.8495
200.0 Eq. 3.5 -6.2481 -25.4901 -37.6058 -35.900 [17]

Eq. 3.6 -6.3337 -25.8819 -37.0192
230.0 Eq. 3.5 0.0347 -16.5473 -25.7783 -25.100 [17]

Eq. 3.6 0.0352 -16.8016 -26.2051
250.0 Eq. 3.5 3.2611 -11.9754 -19.8561 -19.700 [17]

Eq. 3.6 3.3058 -12.1595 -20.7978
260.0 Eq. 3.5 4.6587 -9.9978 -17.3484 -17.300 [17]

Eq. 3.6 4.7225 -10.1515 -18.5141
300.0 Eq. 3.5 9.1755 -3.6096 -9.6341 -9.700 [17]

Eq. 3.6 9.3012 -3.6650 -11.5282
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Table 8.5: Second virial coefficients of fluorine (given in cm3/mol). D1 EOS.: Deiters
equation of state [18]. For an explanation of the other properties see Table 8.2.

T/K method B0
cl B1

r B1
a B1

µa B ref.

Eq. 3.5 -191.17969 0.18516 0.02538 0.00239 -190.96676
90.0 Eq. 3.6 -173.06457 0.14564 0.05156 0.00325 -172.86412

D1 EOS -191.50
exp. -208.7 [17]
Eq. 3.5 -156.09376 0.16025 0.03518 0.00251 -155.89582

100.0 Eq. 3.6 -142.02710 0.15576 0.02341 0.01064 -141.83729
D1 EOS -154.13
exp. -156 [28]
Eq. 3.5 -129.93488 0.14767 0.01764 0.00198 -129.76759

110.0 Eq. 3.6 -119.06590 0.13545 0.02680 0.00749 -118.89616
D1 EOS -126.88
exp. -134.3 [17]
Eq. 3.5 -101.58895 0.54453 0.05442 0.00301 -100.98699

125.0 Eq. 3.6 -94.22943 0.26773 0.03244 0.00212 -93.92714
D1 EOS -97.684
exp. -101.8 [17]
Eq. 3.5 -81.47758 0.79348 0.08608 0.00124 -80.59678

140.0 Eq. 3.6 -76.50689 0.19292 0.04030 0.00237 -76.27129
D1 EOS -77.164
exp. -81.5 [28]
Eq. 3.5 -71.02139 0.60294 0.06077 0.00299 -70.35468

150.0 Eq. 3.6 -67.21430 0.67348 0.04438 0.00554 -66.49090
D1 EOS -66.603
exp. -70.9 [28]
Eq. 3.5 -58.34490 0.84495 0.06283 0.00926 -57.42787

165.0 Eq. 3.6 -55.84945 0.18875 0.04876 0.00275 -55.60919
D1 EOS -53.971
exp. -55.7 [17]
Eq. 3.5 -37.60579 0.81083 0.02856 0.00183 -36.76456

200.0 Eq. 3.6 -37.01920 0.59788 0.01826 0.00137 -36.40170
D1 EOS -33.878
exp. -35.9 [17]
Eq. 3.5 -19.85605 0.13516 0.06470 0.00258 -19.65362

250.0 Eq. 3.6 -20.79783 0.31533 0.05762 0.00226 -20.42263
D1 EOS -17.068
exp. -19.7 [17]
Eq. 3.5 -9.63409 0.28788 0.07426 0.00247 -9.26948

300.0 Eq. 3.6 -11.52820 0.63636 0.02146 0.00119 -10.86919
D1 EOS -10.93136
exp. -9.7 [17]
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Table 8.6: Cross second virial coefficient (given in cm3/mol) of the mixture hydrogen-
fluorine; correl.: empirical correlation [30]. For an explanation of the other proper-
ties see Table 8.2.

T/K method B0
cl B1

r B1
a B1

µa B

Eq. 3.5 -127.16061 0.25665 0.04059 0.00936 -126.85402
50.0 Eq. 3.6 -130.27400 0.25984 0.02854 0.00122 -129.98440

correl. -129.68653
Eq. 3.5 -94.37193 0.94286 0.03580 0.00627 -93.38700

60.0 Eq. 3.6 -95.57771 0.65438 0.03717 0.00892 -94.87724
correl. -96.13747
Eq. 3.5 -72.52409 0.73608 0.07981 0.00454 -71.70367

70.0 Eq. 3.6 -73.42758 0.75490 0.06559 0.00257 -72.60452
correl. -73.03982
Eq. 3.5 -57.36159 0.84995 0.05766 0.00717 -56.44682

80.0 Eq. 3.6 -58.22628 0.59290 0.07121 0.00512 -57.55704
correl. -56.59350
Eq. 3.5 -46.37209 0.84180 0.09613 0.00919 -45.42496

90.0 Eq. 3.6 -47.30293 0.85496 0.07564 0.00716 -46.36517
correl. -44.48640
Eq. 3.5 -38.06140 0.92346 0.09564 0.00734 -37.03496

100.0 Eq. 3.6 -39.09347 0.81835 0.09038 0.00654 -38.17820
correl. -35.30930
Eq. 3.5 -31.53132 2.17599 0.04835 0.00289 -29.30408

110.0 Eq. 3.6 -32.67128 2.13952 0.09574 0.00619 -30.42984
correl. -28.17736
Eq. 3.5 -26.23363 2.29254 0.07961 0.00268 -23.85880

120.0 Eq. 3.6 -27.47822 2.09754 0.09299 0.00146 -25.28623
correl. -22.51585
Eq. 3.5 -14.88313 2.79728 0.08713 0.00214 -11.99658

150.0 Eq. 3.6 -16.40953 2.88428 0.04793 0.00245 -13.47487
correl. -11.05352
Eq. 3.5 -9.67362 2.32415 0.08126 0.00876 -7.25945

170.0 Eq. 3.6 -11.36799 2.89699 0.08965 0.00436 -8.37699
correl. -6.17663
Eq. 3.5 -4.02889 2.29647 0.08819 0.00190 -1.64233

200.0 Eq. 3.6 -5.95276 2.83244 0.07572 0.00351 -3.04110
correl. -1.12520
Eq. 3.5 1.72024 1.58046 0.04442 0.00192 3.34704

250.0 Eq. 3.6 -0.52143 2.66320 0.07062 0.00372 2.21611
correl. 3.99524
Eq. 3.5 4.81646 1.74384 0.07652 0.00842 6.64525

300.0 Eq. 3.6 2.34253 3.06065 0.09833 0.00733 5.50883
correl. 7.01982
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Appendix D

This appendix describes the simulation results of the pure fluid hydrogen using

global Gibbs ensemble simulations.

9.1 pVT data of fluid hydrogen

Figure 9.1: Densities of hydrogen at two pressures 1.0 MPa and 5.0 MPa as a
function of temperature. Experimental data [76, 75]: —, at 1.0 MPa, and · · · , at 5.0
MPa; equation of state (EOS) [139]: +, at 1.0 MPa, and ×, at 5.0 MPa; calculated
with Eq. 3.3 and Eq. 3.4: ¤, and ∗, at 1.0 MPa; ◦, and M, at 5.0 MPa.
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9.2 Site-site pair distribution functions

Figure 9.2: Temperature dependence of gH−H for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.

Figure 9.3: Temperature dependence of gN−N for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.
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Figure 9.4: Temperature dependence of gM−M for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.

Figure 9.5: Temperature dependence of gH−M for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.
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Figure 9.6: Temperature dependence of gH−H for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.

Figure 9.7: Temperature dependence of gN−N for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.
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Figure 9.8: Temperature dependence of gM−M for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.

Figure 9.9: Temperature dependence of gH−M for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.3.
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Figure 9.10: Temperature dependence of gH−H for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.

Figure 9.11: Temperature dependence of gN−N for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.
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Figure 9.12: Temperature dependence of gM−M for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.

Figure 9.13: Temperature dependence of gH−M for hydrogen at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.
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Figure 9.14: Temperature dependence of gH−H for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.

Figure 9.15: Temperature dependence of gN−N for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.
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Figure 9.16: Temperature dependence of gM−M for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.

Figure 9.17: Temperature dependence of gH−M for hydrogen at P = 5.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.4.
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Figure 9.18: Temperature dependence of gH−H for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.3.

Figure 9.19: Temperature dependence of gN−N for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.3.
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Figure 9.20: Temperature dependence of gM−M for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.3.

Figure 9.21: Temperature dependence of gH−M for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.3.
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Figure 9.22: Temperature dependence of gH−H for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.4.

Figure 9.23: Temperature dependence of gN−N for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.4.



9.2. SITE-SITE PAIR DISTRIBUTION FUNCTIONS 133

Figure 9.24: Temperature dependence of gM−M for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.4.

Figure 9.25: Temperature dependence of gH−M for the liquid phase hydrogen from
GEMC NVT simulation using pair potential Eq. 3.4.
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Table 9.1: Density results (given in g/cm3) for the pure liquid estimated at two
pressures 1.0 MPa and 5.0 MPa for hydrogen, and 1.0 MPa and 10.0 MPa for
fluorine using ab initio potentials, respectively; EOS : modified Benedict-Webb-
Rubin equation of state [139]; exp.: experimental data [17, 76]; D1 EOS: Deiters
equation of state [18].

H2-H2 F2-F2

T/K method 1MPa 5MPa ref. T/K method 1MPa 10MPa ref.
Eq. 3.3 0.06642 0.07092 Eq. 3.5 1.44592 1.47111
Eq. 3.4 0.07355 0.07078 Eq. 3.6 1.45897 1.53230

26.0 EOS 0.07570 0.08110 [139] 90.0 D1 EOS 1.49650 1.52210 [18]
Exp. 0.06442 0.07189 [76] Exp 1.46890 1.49450 [17]
Eq. 3.3 0.06113 0.06742 Eq. 3.5 0.04714 1.29150
Eq. 3.4 0.06602 0.06755 Eq. 3.6 0.03540 1.26885

30.0 EOS 0.06340 0.07420 [139] 120.0 D1 EOS 0.04348 1.28990 [18]
Exp. 0.05528 0.06652 [76] Exp 0.04346 1.27160 [17]
Eq. 3.3 0.00406 0.02349 Eq. 3.5 0.03184 0.90295
Eq. 3.4 0.00377 0.02564 150.0 Eq. 3.6 0.03091 0.86049

60.0 EOS 0.00408 0.02260 [139] D1 EOS 0.03239 0.90258 [18]
Exp. 0.00423 0.02381 [76] Exp 0.03235 0.91730 [17]
Eq. 3.3 0.00175 0.01377 Eq. 3.5 0.02663 0.39237
Eq. 3.4 0.00215 0.01380 180.0 Eq. 3.6 0.01866 0.29157

90.0 EOS 0.00264 0.01310 [139] D1 EOS 0.02624 0.39667 [18]
Exp. 0.00271 0.01359 [76] Exp 0.02622 0.38633 [17]
Eq. 3.3 0.00178 0.01087 Eq. 3.5 0.02183 0.27879

120 Eq. 3.4 0.00169 0.00807 210.0 Eq. 3.6 0.02087 0.23933
EOS 0.00198 0.00956 [139] D1 EOS 0.02218 0.27020 [18]
Exp. 0.00201 0.00985 [76] Exp 0.02218 0.26290 [17]
Eq. 3.3 0.00094 0.00463 Eq. 3.5 0.01678 0.17592

250 Eq. 3.4 0.00088 0.00462 270.0 Eq. 3.6 0.01880 0.19612
EOS 0.00095 0.00460 [139] D1 EOS 0.01704 0.18074 [18]
Exp. 0.00096 0.00469 [76] Exp 0.01704 0.17872 [17]
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Table 9.2: GEMC simulation results and statistical uncertainties for hydrogen calculated with the CCSD(T)/aug-cc-
pV23Z extrapolated potentials Eq. 3.3; exp.: experimental data [76]; EOS : equation of state [139]; the values of paren-
theses are the uncertainty of the last digits obtained from the simulations, e.g., 0.0746(31) = 0.0746 ± 0.031.

T/Kmethod ρl/gcm
−3 ρv/gcm

−3 µl/kJmol−1 µv/kJmol−1 P l(MPa) Pv(MPa) Hl/kJmol−1 Hv/kJmol−1

Eq. 3.3 0.07278(31) 0.00045(10) -2.1001(41) -2.1065(39) -0.0269(43) 0.0375(3) -0.2435(54) 0.6677(3)
18 EOS 0.07322 0.00069 0.0481 0.0481 -0.5581 0.3528

Exp. 0.07320 0.00069 0.0461 0.0461 0.5038 1.4154
Eq. 3.3 0.07173(30) 0.00107(2) -2.0488(43) -2.0667(57) -0.0183(7) 0.0703(42) -0.1968(21) 0.7041(1)

20 EOS 0.07111 0.00124 0.0933 0.0933 -0.5215 0.3788
Exp. 0.07109 0.00125 0.0901 0.0901 0.5409 1.4410
Eq. 3.3 0.06943(58) 0.00191(5) -2.0176(38) -2.0320(63) 0.0862(11) 0.1364(31) -0.0827(56) 0.7978(39)

22 EOS 0.06873 0.00207 0.1631 0.1631 -0.4793 0.3985
Exp. 0.06872 0.00207 0.1208 0.1208 0.5830 1.4603
Eq. 3.3 0.06672(40) 0.00295(85) -2.0625(23) -2.0692(34) 0.1726(183) 0.2465(23) -0.0624(79) 0.7842(17)

24 EOS 0.06600 0.00324 0.2641 0.2641 -0.4307 0.4102
Exp. 0.06601 0.00325 0.2579 0.2579 0.6316 1.4712
Eq. 3.3 0.06358(99) 0.00442(73) -2.0911(54) -2.0991(73) 0.2885(525) 0.3326(314) -0.0373(13) 0.7595(27)

26 EOS 0.06280 0.00490 0.4025 0.4025 -0.3743 0.4116
Exp. 0.06283 0.00492 0.3950 0.3950 0.6878 1.4720
Eq. 3.3 0.05796(3) 0.00718(62) -2.1056(61) -2.2641(56) 0.5411(484) 0.6196(93) 0.1833(82) 0.9085(31)

28 EOS 0.05892 0.00726 0.5852 0.5852 -0.3076 0.3989
Exp. 0.05897 0.00730 0.5770 0.5770 0.7545 1.4589
Eq. 3.3 0.05459(53) 0.01048(122)-2.1231(59) -2.1288(61) 0.7878(51) 0.8017(43) 0.0213(36) 0.6399(213)

30 EOS 0.05384 0.01081 0.8199 0.8199 -0.2248 0.3632
Exp. 0.05393 0.01089 0.8116 0.8116 0.8374 1.4230
Eq. 3.3 0.04748(75) 0.01654(56) -2.1458(60) -2.1483(58) 1.0386(68) 1.0754(75) 0.2988(37) 0.7329(28)

32 EOS 0.04564 0.01750 1.1168 1.1168 -0.1046 0.2726
Exp. 0.04599 0.01750 1.1068 1.1068 0.9569 1.3369
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Table 9.3: GEMC simulation results and statistical uncertainties for hydrogen calculated with the CCSD(T)/aug-cc-
pV23Z extrapolated potentials Eq. 3.4. For an explanation of the other properties see Table 9.2.

T/Kmethod ρl/gcm
−3 ρv/gcm

−3 µl/kJmol−1 µv/kJmol−1 P l(MPa) Pv(MPa) Hl/kJmol−1 Hv/kJmol−1

Eq. 3.4 0.07380(84) 0.00105(23) -2.0882(43) -2.0922(60) -0.0498(3) 0.0329(8) -0.2566(10) 0.6451(36)
18 EOS 0.07322 0.00069 0.0481 0.04808 -0.5581 0.3528

Exp. 0.07320 0.00069 0.0461 0.04610 0.5038 1.4154
Eq. 3.4 0.07046(85) 0.00126(20) -2.0384(40) -2.0498(67) -0.0109(53) 0.0578(20) -0.2116(35) 0.6773(152)

20 EOS 0.07109 0.00125 0.0933 0.09325 -0.5215 0.3788
Exp. 0.07109 0.00125 0.0901 0.09010 0.5409 1.4410
Eq. 3.4 0.07025(132)0.00231(16) -2.0037(37) -2.0201(63) 0.0216(31) 0.1194(39) 0.0246(43) 0.8881(491)

22 EOS 0.06873 0.00207 0.1631 0.16314 -0.4793 0.3985
Exp. 0.06872 0.00207 0.1208 0.12080 0.5830 1.4603
Eq. 3.4 0.06565(237)0.00314(11) -2.0472(35) -2.0606(41) 0.1926(132) 0.2178(348) -0.1259(94) 0.6956(486)

24 EOS 0.06600 0.00324 0.2641 0.26406 -0.4307 0.4102
Exp. 0.06601 0.00325 0.2579 0.25790 0.6316 1.4712
Eq. 3.4 0.06419(13) 0.00536(5) -2.0899(73) -2.0905(65) 0.3342(341) 0.3657(104) 0.0939(46) 0.8349(316)

26 EOS 0.06280 0.00490 0.4025 0.40250 -0.3743 0.4116
Exp. 0.06283 0.00492 0.3950 0.39500 0.6878 1.4720
Eq. 3.4 0.05813(117)0.00670(1) -2.0993(53) -2.2586(45) 0.4419(65) 0.5376(354) 0.0245(41) 0.6734(25)

28 EOS 0.05892 0.00726 0.5852 0.58524 -0.3076 0.3989
Exp. 0.05897 0.00730 0.5770 0.57700 0.7545 1.4589
Eq. 3.4 0.05311(37) 0.01088(18) -2.1149(60) -2.1141(87) 0.6655(7) 0.7535(110) 0.0716(25) 0.5805(784)

30 EOS 0.05384 0.01081 0.8199 0.81989 -0.2248 0.3632
Exp. 0.05393 0.01089 0.8116 0.81160 0.8374 1.4230
Eq. 3.4 0.04663(35) 0.01736(14) -2.1454(46) -2.1321(67) 1.0166(13) 1.0352(68) 0.2014(86) 0.5108(382)

32 EOS 0.04564 0.01750 1.1168 1.11680 -0.1046 0.2726
Exp. 0.04599 0.01750 1.1068 1.10680 0.9569 1.3369

ρl, ρv, µl, µv, ∆Hl, ∆Hv, Pl and Pv parameters of the liquid and vapor phase at the temperature, respectively.
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10.2 Site-site pair distribution functions

Figure 10.2: Temperature dependence of gF−F for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.

Figure 10.3: Temperature dependence of gN−N for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.
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Figure 10.4: Temperature dependence of gM−M for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.

Figure 10.5: Temperature dependence of gF−M for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.
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Figure 10.6: Temperature dependence of gF−F for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.

Figure 10.7: Temperature dependence of gN−N for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.
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Figure 10.8: Temperature dependence of gM−M for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.

Figure 10.9: Temperature dependence of gF−M for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.5.
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Figure 10.10: Temperature dependence of gF−F for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.

Figure 10.11: Temperature dependence of gN−N for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.
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Figure 10.12: Temperature dependence of gM−M for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.

Figure 10.13: Temperature dependence of gF−M for fluorine at P = 1.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.
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Figure 10.14: Temperature dependence of gF−F for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.

Figure 10.15: Temperature dependence of gN−N for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.
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Figure 10.16: Temperature dependence of gM−M for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.

Figure 10.17: Temperature dependence of gF−M for fluorine at P = 10.0 MPa from
GEMC NPT simulation using the pair potential Eq. 3.6.
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Figure 10.18: Temperature dependence of gF−F for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.5.

Figure 10.19: Temperature dependence of gN−N for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.5.
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Figure 10.20: Temperature dependence of gM−M for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.5.

Figure 10.21: Temperature dependence of gF−M for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.5.
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Figure 10.22: Temperature dependence of gF−F for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.6.

Figure 10.23: Temperature dependence of gN−N for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.6.
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Figure 10.24: Temperature dependence of gM−M for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.6.

Figure 10.25: Temperature dependence of gF−M for the liquid phase fluorine from
GEMC NVT simulation using pair potential Eq. 3.6.
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Table 10.1: GEMC simulation results and statistical uncertainties for fluorine calculated with the CCSD(T)/aug-cc-
pV23Z extrapolated potentials: Eq. 3.5; D1-EOS: Deiters equation of state [18]; exp.: experimental data [17]; the values
of parentheses are the uncertainty of the last digits obtained from the simulations, e.g., 1.6152(63) = 1.6152±0.063.

T/Kmethod ρl/gcm
−3 ρv/gcm

−3 µl/kJmol−1 µv/kJmol−1 P l(MPa) Pv(MPa) Hl/kJmol−1 Hv/kJmol−1

Eq. 3.5 1.61519(63) 0.00019(27) -8.8204(35) -10.8407(60) -0.0042(30) 0.0014(96) -5.4496(58) 1.9787(35)
60 D1-EOS 1.72234 0.00003 0.0004 0.0004 -0.0006

Exp. 1.6654 0.00011 0.0015 0.0015 -14.4730 -7.0847
Eq. 3.5 1.58789 0.00023 -8.8507 -10.9019 0.0092(10) 0.0198(51) -4.7651(31) 2.2106(19)

70 D1-EOS 1.64554 0.00041 0.0062 0.0062 -0.0065
Exp. 1.6023 0.00079 0.012 0.012 -13.9130 -6.8055
Eq. 3.5 1.51096(25) 0.00328(23) -9.3138(31) -10.9157(41) 0.0210(27) 0.0242(100) -4.3515(11) 2.4944(71)

80 D1-EOS 1.57021 0.00222 0.0383 0.0383 -7.9760
Exp. 1.5365 0.0032 0.0547 0.0547 -13.3470 -6.5489
Eq. 3.5 1.48944(5) 0.00477(22) -9.4682(91) -10.9205(61) 0.1842(11) 0.1948(82) -2.5156(19) 3.9791(89)

90 D1-EOS 1.49391 0.00744 0.1409 0.1409 -7.3171
Exp. 1.4663 0.00924 0.173 0.173 -12.7710 -6.3291
Eq. 3.5 1.39254(17) 0.02124(21) -9.8436(35) -10.9840(73) 0.5850(9) 0.5984(17) 0.2090(39) 6.3059(111)

100 D1-EOS 1.41382 0.0187 0.3778 0.3778 -6.7718
Exp. 1.39 0.02149 0.4275 0.4275 -12.1760 -6.1587
Eq. 3.5 1.34524(41) 0.03124(61) -10.0076(45) -10.9921(61) 0.6001(33) 0.6025(119) 1.2867(21) 6.7036(33)

110 D1-EOS 1.3263 0.03947 0.823 0.823 -6.2783
Exp. 1.3052 0.04334 0.8891 0.8891 -11.5540 -6.0512
Eq. 3.5 1.26821(69) 0.06494(15) -10.0472(72) -11.3155(83) 1.4848(20) 1.4919(312) -1.2886(73) 3.2402(18)

120 D1-EOS 1.22523 0.0752 1.5563 1.5563 -5.7855
Exp. 1.2074 0.08017 1.6342 1.6342 -10.8850 -6.0325
Eq. 3.5 1.13623(105)0.12716(10) -10.4162(45) -11.3946(23) 2.5770(9) 2.5798(72) 1.5523(23) 5.3061(51)

130 D1-EOS 1.09674 0.13828 2.6677 2.6677 -1.0499
Exp. 1.0848 0.14372 2.7475 2.7475 -10.1310 -6.1654
Eq. 3.5 0.92818(139)0.27524(3) -11.0212(40) -12.9982(81) 3.8628(22) 3.8680(102) 2.3925(87) 4.9666(13)

140 D1-EOS 0.88452 0.28238 4.2882 4.2882 -4.3746
Exp. 0.89017 0.27828 4.3357 4.3357 -5.9299 -6.6740
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Table 10.2: GEMC simulation results and statistical uncertainties for fluorine calculated with the CCSD(T)/aug-cc-pV23Z
extrapolated potentials Eq. 3.6. For an explanation of the other properties see Table 10.1

T/Kmethod ρl/gcm
−3 ρv/gcm

−3 µl/kJmol−1 µv/kJmol−1 P l(MPa) Pv(MPa) Hl/kJmol−1 Hv/kJmol−1

Eq. 3.6 1.69145(143)0.00014(160)-8.1897(52) -9.7181(16) -0.0185(21) 0.0013(84) -8.8349(52) -1.5660(84)
60 D1-EOS 1.72234 0.00003 0.0004 0.0004 -0.0006

Exp. 1.66540 0.00011 0.0015 0.0015 -14.4730 -7.0847
Eq. 3.6 1.55135(23) 0.00102(40) -8.6130(32) -9.6250(63) 0.0370(31) 0.0397(88) -4.1439(56) 2.5257(271)

80 D1-EOS 1.57021 0.00222 0.0383 0.0383 -7.9760
Exp. 1.53650 0.00320 0.0547 0.0547 -13.3470 -6.5489
Eq. 3.6 1.45475(247)0.00358(39) -8.8154(43) -9.5023(7) 0.1870(12) 0.2095(71) -0.9748(53) 5.5354(12)

90 D1-EOS 1.49391 0.00744 0.1409 0.1409 -7.3171
Exp. 1.46630 0.00924 0.1730 0.1730 -12.7710 -6.3291
Eq. 3.6 1.43215(128)0.00975(37) -8.8164(13) -10.9369(73) 0.4587(35) 0.4754(14) -2.7207(53) 3.1519(47)

100 D1-EOS 1.41382 0.01870 0.3778 0.3778 -6.7718
Exp. 1.39000 0.02149 0.4275 0.4275 -12.1760 -6.1587
Eq. 3.6 1.31980(4) 0.01798(31) -8.8441(78) -10.0485(93) 0.6858(43) 0.6938(28) -1.8011(71) 3.9569(10)

110 D1-EOS 1.32630 0.03947 0.8230 0.8230 -6.2783
Exp. 1.30520 0.04334 0.8891 0.8891 -11.5540 -6.0512
Eq. 3.6 1.23790(157)0.04778(24) -9.1228(25) -10.1876(8) 1.5565(7) 1.5745(30) -0.9526(84) 4.1848(64)

120 D1-EOS 1.22523 0.07520 1.5563 1.5563 -5.7855
Exp. 1.20740 0.08017 1.6342 1.6342 -10.8850 -6.0325
Eq. 3.6 1.11521(148)0.11410(9) -9.5307(51) -10.7251(9) 2.4091(51) 2.4199(221) -0.6153(13) 3.5110(131)

130 D1-EOS 1.09674 0.13828 2.6677 2.6677 -1.0499
Exp. 1.08480 0.14372 2.7475 2.7475 -10.1310 -6.1654
Eq. 3.6 0.98638(100)0.23747(21) -9.9894(34) -11.7404(7) 3.5516(37) 3.5814(199) -2.8499(36) -0.7263(15)

140 D1-EOS 0.88452 0.28238 4.2882 4.2882 -4.3746
Exp. 0.89017 0.27828 4.3357 4.3357 -1.6536 -6.6740

ρl, ρv, µl, µv, ∆Hl, ∆Hv, Pl and Pv parameters of the liquid and vapor phase at the temperature, respectively.
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