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Some years ago I had a conversation with a layman about flying saucers - because I am scientific I know all
about flying saucers! I said "I don’t think there are flying saucers." So my antagonist said, "Is it impossible that
there are flying saucers? Can you prove that it’s impossible?". "No", I said, "I can’t prove it’s impossible. It’s just
very unlikely". At that he said, "You are very unscientific. If you can’t prove it impossible then how can you say
that it’s unlikely?" But that is the way that is scientific. It is scientific only to say what is more likely and what
less likely, and not to be proving all the time the possible and impossible. To define what I mean, I might have
said to him, "Listen, I mean that from my knowledge of the world that I see around me, I think that it is much
more likely that the reports of flying saucers are the results of the known irrational characteristics of terrestrial
intelligence than of the unknown rational efforts of extra-terrestrial intelligence." It is just more likely. That is all.

R.P. Feynman

Für Anja
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1. Introduction

Transition-metal oxides with perovskite- and related structures are well known for their un-
usual physical properties arising from strong correlations. La2CuO4 is a parent compound of
high-temperature superconductors [1]. LaMnO3 shows the colossal magnetoresistance upon
doping [2]. In LaCoO3, the rare example of a temperature-induced spin-state transition is
realized. The interpretation of the complex phenomena observed in these compounds is diffi-
cult and often controversially discussed in the literature. A useful tool is to investigate, how
the properties of the systems change, if the La ion is replaced by a smaller rare-earth ion.
The resulting structural changes often give additional information, since the key parameters
determining the physical properties are tuned. The interpretation of the results obtained
from these compounds is often complicated by the presence of the rare-earth 4f moments.
A key for the data interpretation is therefore a reliable distinction of the effects caused by
the rare-earth ions and the transition-metal complex. Moreover, interactions between these
different magnetic subsystems may lead to additional phenomena. The thermal conductivity
of transition-metal oxides often reflects the complex properties of these systems. Frequently,
unusual temperature- and magnetic-field dependences are observed. There are various reasons
for these phenomena: In the quasi one-dimensional spin-ladder systems large contributions to
the heat transport are caused by magnetic excitations [3, 4]. In magnetic systems with large
spin-phonon coupling an unusual suppression of the thermal conductivity is observed [5]. The
thermal conductivity is a powerful tool to investigate these phenomena arsing from phononic,
electronic, and spin excitations and their interactions

The unusual behavior of the thermal conductivity of La2CuO4 was discovered already more
than one decade ago [6]. In this publication the possibility of a magnetic contribution to the
heat transport was discussed. However, the mechanism of the heat transport in La2CuO4
is still under debate [7–9]. One aim of the present work is to clarify this issue. Therefore,
a systematic study of the thermal conductivity of the related rare-earth cuprates R2CuO4
with R = La, Pr, Nd, Sm, Eu, and Gd will be presented. It will be shown that a magnetic
contribution to the heat transport is a very fundamental property of the layered cuprates.
The results will be compared to one-dimensional systems, and the principal differences of the
magnetic contribution to the heat transport between 1D and 2D will be discussed. Moreover,
the low-temperature behavior under application of large magnetic fields will be addressed. It
has been proposed in the literature that at low temperatures an additional magnetic contri-
bution of Nd spin waves to the heat conductivity of Nd2CuO4 is induced by the application
of magnetic fields [10, 11]. The magnetic-field dependences of the thermal conductivity for
the R2CuO4 compounds will be presented. The analysis of the data gives new insight, since
another mechanism causing the field-dependences is preferred.

The spin-state transition in LaCoO3 is a long-standing issue in solid-state physics since the
1950’s. The question, whether a high-spin state or an intermediate spin-state is thermally
populated, is discussed controversially up to now. Whereas initially a high-spin state was
proposed, an intermediate-spin state scenario became popular during the last decade [12].

1



1. Introduction

However, very recent results indicate that a high-spin scenario taking into account large spin-
orbit coupling effects is a more appropriate description [13]. The thermal conductivity of
LaCoO3 has shown to be quite sensitive to the spin-state transition [9]. However, a quantita-
tive analysis of this phenomenon lacks so far. This work presents a systematic study of the
thermal conductivity on several LaCoO3 single crystals, to obtain a clear picture of the intrin-
sic features. A detailed quantitative treatment of the influence of the spin-state transition to
the thermal conductivity is carried out. A consistent picture will be obtained, including the
related compounds where La is replaced by the rare-earth ions Pr, Nd, or Eu. In addition,
the reason for the observed complex field-dependent low-temperature behavior of the thermal
conductivity will be clarified.

Upon charge-carrier doping the physical properties of LaCoO3 substantially change. We
present a systematic study of the thermal conductivity κ and the thermopower S of single
crystals of La1-xSrxCoO3 with 0 ≤ x ≤ 0.3. For all Sr concentrations La1-xSrxCoO3 has rather
low κ values, whereas S strongly changes as a function of x. We discuss the influence of the
temperature- and the doping-induced spin-state transitions of the Co3+ ions on both, S and
κ. From S, κ, and the electrical resistivity ρ we derive the thermoelectric figure of merit
Z = S2 / κρ. A high figure of merit is a pre-condition for the applicability in thermoelectric
devices. Moreover, the influence of an additional replacement of La by Eu is investigated.

The orthorhombic manganates RMnO3 with R = La. . . Ho have attracted much interest,
since in GdMnO3, TbMnO3, and DyMnO3 ferroelectric ordering phenomena embedded in
a magnetically ordered phase are observed[14, 15]. This phenomenon is often referred to as
multiferroism. Since ferroelectricity is a structural phenomenon and therefore strongly coupled
to the lattice, thermal conductivity is expected to be a useful probe to obtain new insights
in the multiferroic properties of these compounds. This work presents thermal conductivity
measurements of NdMnO3, GdMnO3, and TbMnO3. The experimental focus is a systematic
investigation of the magnetic-field dependence of the heat transport by applying the field along
the different crystallographic axes. In combination with thermal expansion and magnetization
measurements it will be shown that resonant scattering by the 4f orbitals has, however, a
much larger influence on the thermal conductivity, than the magnetic and electric ordering
transitions at low temperatures.

This thesis is organized in the following way: In chapter 2, a brief introduction to the
theoretical framework is given. Chapter 3 gives a description of the used setup and experi-
mental methods. In chapter 4 a systematic study of the thermal conductivity of the rare-earth
cuprates will be presented. Chapter 5 is devoted to the thermal conductivity of rare-earth
cobaltates with spin-state transitions. Chapter 6 deals with the thermoelectric properties of Sr
doped Cobaltates. The topic of chapter 7 is the heat transport in perovskite-type manganates.
In the appendix the results of additional measurements are documented.
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2. Theory

In this chapter a brief introduction into the thermal conductivity and the thermopower of
solids will be given. The focus will be to give an overview about conventional mechanisms
established in the literature, and to quote some important basic relations. For a more detailed
introduction see Refs. [16–20]. Finally, we will present a short introduction into the treatment
of the 4f orbitals of the rare-earth ions in low-symmetry crystals.

2.1. Thermal Conductivity

In a crystal, the thermal conductivity is determined by heat carrying quasiparticles. The
thermal conductivity κ can be generally expressed by the equation [16]:

κ =
1
d
cv` (2.1)

where d denotes the dimensionality, c the specific heat, v the group velocity, and ` the mean
free path of the respective heat carrying excitations. In most cases two kinds of excitations
are responsible for the heat transport: phonons and electrons. The theoretical description is
usually based on the Debye model in the first case, and on the electronic gas theory for the
latter case.

2.1.1. Lattice Contribution

The heat carrying excitations in an insulating crystal lattice are phonons. For T � ΘD,
where ΘD denotes the Debye temperature, the specific heat can be calculated by the Debye
formula [16]

cV =
3kB

2π2v3

(
kB

~

)3

T 3

∫ θD/T

0

x4ex

(ex − 1)2
dx. (2.2)

Here, v is the sound velocity, which is identical to the group velocity in Eq. 2.1. The main
problem in the calculation of the lattice contribution to κ is the estimation of the mean free
path `. Three kind of scattering processes usually determine `, scattering of phonons by
phonons, scattering by lattice imperfections, and scattering at the crystal surface.

At very low temperatures only the latter process is relevant. Then ` is given by a constant
which is determined by the sample dimension L0. In this case1, it follows from Eqs. 2.1 and
2.2:

κ =
2
15

π2kB

(
kBT

~

)3 L0

v2
. (2.3)

According to Ref. [17], here the averaged sound velocity can be calculated via

v = vl

(
2(

vl

vt
)2 + 1

)
/

(
2(

vl

vt
)3 + 1

)
(2.4)

1At low temperatures the integrand gets small for large x. Therefore one sets ΘD/T → ∞ and usesR∞
0

x4ex

(ex−1)2
dx = 4π4

15
.
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Figure 2.1.: Thermal conductivity of
LiF (Berman et al. [21]) and NdGaO3

(Schnelle et al. [22]). Lines are fits
by Eq. 2.5. The parameters were
L = 7 (1)mm, ΘD = 700(680) K, v =
6000 (4800)m/s, P = 0.07 (3.3) 10−43 s3,
U = 2.2 (6.8) 10−18 s, and u = 6(5.6) for
LiF (NdGaO3). [22, 23].

from the measured longitudinal and transverse sound velocities vl and vt, respectively. In
this limit the thermal conductivity follows the T 3 dependence of the specific heat. At high
temperatures ` is mainly determined by Umklapp processes, which result from phonon-phonon
interactions. Since at high temperatures the number of excited phonons is proportional to
T ,` ∼ 1/T follows. The specific heat becomes temperature independent for T → ΘD. Thus,
κ ≈ 1/T follows at high temperatures.

2.1.2. Extended Debye Model

To describe the thermal conductivity more quantitatively, Eqs. 2.1 and 2.2 can be written as

κph =
kB

2π2vs

(
kB

~

)3

T 3

∫ θD/T

0

x4exτ(ω, T )
(ex − 1)2

dx (2.5)

where τ(ω, T ) = v/` is a temperature and frequency dependent scattering rate. Under the
assumption that the different scattering processes act independently, one can write τ−1 as a
sum of the different scattering rates:

τ−1 = τ−1
bd + τ−1

pt + τ−1
um + τ−1

D + . . . . (2.6)

The used scattering rates have the following meanings:

• τ−1
bd = v/L: This is the boundary scattering term, which describes the reflection of

phonons by the crystal surface.

• τ−1
pt = Pω4: This term describes point defect scattering, and is the most effective

term in the temperature range, where the phononic maximum of κ occurs. At lower
temperatures, phonons with larger wave length and therefore small ω are the dominant
heat carriers, and τ−1

pt is less effective. The physical picture is, that the long wave length
phonons do not ”see” the small point defects. At high temperatures τ−1

pt is less important,
because Umklapp scattering is much more effective. In the data analysis we use P as
an adjustable parameter describing the scattering strength.

• τ−1
um = UT exp(ΘD/uT ). This term describes Umklapp scattering. The factor U gives

the scattering strength, the parameter u determines at which temperature Umklapp
scattering sets in.

4



2.1. Thermal Conductivity

• In some cases other scattering rates may be introduced, as e.g. scattering on planar de-
fects τ−1

D = Dω2, which is useful for systems with layered structures (e.g. the cuprates).

For a detailed survey of different scattering rates see e.g. Ref. [24].
To illustrate the data analysis by Eqs. 2.5 and 2.6, Fig. 2.1 shows literature data for LiF

and, closer to the compounds investigated in this thesis, NdGaO3 [21, 22]. The Debye temper-
atures and sound velocities where taken from the literature [22, 23], and the other parameters
were adjusted to the data. For LiF the general temperature dependence is modelled very
well, particularly the low-temperature T 3 behavior. Around the maximum larger deviations
between the fit and the data are observed, which come from the oversimplification of the used
scattering terms. In NdGaO3 the temperature dependence above the maximum is modeled
well, but the fit is much too high for lower temperatures. Here, additional scattering mecha-
nisms, like e.g. scattering on spin waves, paramagnetic impurities, etc. play also a role, which
are not included in Eq. 2.6.

2.1.3. Electronic Contribution

Electrons carry a specific heat which is proportional to kBT . Eq. 2.1 is valid for electronic
heat transport, too. Here, the Fermi velocity vf is used for the velocity of the electrons, which
yields [16]

κel =
π2nk2

BT`

3mvf
. (2.7)

Here, n is the electron density and m the electron mass. Because the electron carries charge
and heat simultaneously, usually the Wiedemann-Franz law holds, which connects electrical
and thermal conductivity:

κ = LσT, (2.8)

where L denotes the Lorenz number. The free electron gas theory yields the value L0 =
2.45 · 10−8W/ΩK2. The Wiedemann-Franz law is valid, if only elastic scattering processes
occur, which is usually the case for low temperatures (only boundary scattering) and for high
temperatures. For intermediate temperatures charge carriers are mainly scattered by phonons
which lowers the value of L.

In good metals, only the electronic contribution to κ is relevant. The reason is that the
absolute values of κel are large, and that phonons are strongly scattered by the electrons. For
bad metals electronic and phononic contributions can be of the same size. For bad insulators
often only the phononic contribution is relevant at low temperatures, but through the thermal
activation of electrons the electronic contribution becomes more and more important for high
temperatures.

2.1.4. Other Contributions to κ

In principle, every quasiparticle carrying specific heat and a non-vanishing group velocity
can contribute to the heat transport. Often, the latter condition is the limiting factor, as it
is e.g. the case for optical phonons which have only a small dispersion. Furthermore, the
additional quasiparticles can scatter phonons, or are scattered by phonons, which may even
overcompensate the additional contribution to the heat transport.
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Figure 2.2.: Frequency dependent ther-
mal conductivity without resonant scat-
tering or ∆ = 0 (dashed line) and for res-
onant scattering with different level spac-
ings ∆ (solid lines). Inset: Sketch of the
resulting thermal conductivity κ(∆).

2.1.5. Minimum Thermal Conductivity

In the Debye model discussed above, ` is not limited to a lowest value, and the 1/T behavior
of κ continues up to highest temperatures. In reality, however, the interatomic distances give
a lower limit to `. It follows, that κ will not drop below a minimum value κmin. In this
limit, the concept of well defined phonons is no longer a good approximation, and therefore
other treatments of the minimum thermal conductivity were carried out in the literature. In
Ref. [25] the authors discuss a model originally based on Einstein, which uses coupled local
oscillators to describe κ. The physical picture is that the energy makes ”random walks”, with
energy exchange between nearest and next-nearest neighbors. This treatment results in

κmin =
(π

6

)1/3
kBn2/3

∑
i

vi

(
T

Θi

)2 ∫ θD/T

0

x3ex

(ex − 1)2
dx, (2.9)

where n = N/V denotes the atomic density and i sums up the different polarizations. The
Debye temperatures Θi for the different polarization directions i are given by

Θi = (~vi/kB)(6π2n)1/3. (2.10)

The comparison of the calculated values κmin to the measured κ at high temperatures yields
an underestimation of κmin up to a factor of 2 [25]. The minimum thermal conductivity can
be taken into account in Eq. 2.5 by introducing a minimum mean free path `min, and replacing
τ(ω, T ) by max{τΣ(ω, T ), lmin/vs}.

2.1.6. Resonant Phonon Scattering

Resonant scattering processes can further suppress the phononic heat transport, in addition
to the already discussed mechanisms. For resonant processes a two (or multi) -level system is
necessary. The idea is that a phonon with an energy exactly equal to the level splitting ∆ is
absorbed by stimulating a transition, and later on it is remitted. This process is also possible
for the excited state, then a de-excitation process absorbs the incoming phonon. Because the
direction of the re-emitted phonon is not correlated to the absorbed phonon, both processes
suppress the heat transport. A quantum mechanical treatment of this mechanism [27] gives
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2.1. Thermal Conductivity

Figure 2.3.: Left panel: Thermal resistance W = 1/κ for Holmium ethylsulfate at Helium
temperature. The data are taken from Ref. [26]. Right panel: Level scheme of the paramagnetic
impurities in Holmium ethylsulfate. The upper level is a singlet and the lower level a doublet
which splits in a magnetic field due to the Zeeman effect.

the scattering rate of such a resonant scattering process:

τ−1
res = R

4ω4∆4

(∆2 − ω2)2
· (N0 + N1) . (2.11)

Here, R gives the overall coupling strength, ∆ the energy splitting and N0 and N1 the popu-
lation factors of the resonating levels. For a two-level system it directly follows N0 + N1 = 1,
which means that τ−1

res becomes temperature independent. The effect of Eq. 2.11 is illustrated
in Fig. 2.2. The ω dependent thermal conductivity is 0 for ω = 0 and for ω → ∞, and
shows a maximum inbetween. The resonance term is effective in a narrow frequency range.
Fig 2.2 illustrates the influence of a resonant process for the case of a two level system, with
an increasing gap ∆. For ∆ = 0 no resonance occurs, and with increasing ∆ the resonance
suppresses κ(ω), leading to a suppression of κ(∆) (see inset). If ∆ reaches the maximum
of κ(ω) the suppression is most effective again, and for further increasing ∆ the resonance
becomes less effective, and κ(∆) increases again. There are various possible origins of the
resonance processes. In Refs. [27, 28] a double-peak structure of κ in SrCu2(BO3)2 could be
successfully explained by resonant scattering of phonons by magnetic excitations. Another
frequent source of resonances is the presence of paramagnetic impurity levels [26, 29, 30]. A
prominent example in this context is holmium ethylsulphate [26]. Fig. 2.3 shows the thermal
resistance (1/κ) of holmium ethylsulphate at 4.25K in magnetic fields up to 5.3T. A strong
nonmonotonic field dependence is observed. The resonant process is caused by phonons induc-
ing transitions of the paramagnetic ions. The level scheme of holmium ethylsulphate contains
a singlet and a doublet, the latter splits in a magnetic field by the Zeeman effect. Because of
the four different transitions, which all have a field-dependent energy gap, the complex field
dependence of κ arises. Note, that Eq. 2.11 describes only the simplest case of a so-called
direct resonance process. Processes of higher order, where e.g. two phonons are involved, an
inelastic processes, where incoming and outcoming phonons have different energies, are also
possible [31].
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2.2. Thermopower

The thermopower S is defined by

S =
~E
∇T

(2.12)

and describes the electrical field2 caused by a heat gradient, with the additional condition
that no electrical current is allowed to flow. This effect can be reverted. The generation of a
heat gradient by an electrical current is called Peltier effect. The Peltier constant Π and the
thermopower S are connected via the Onsager relation

Π = ST. (2.13)

A simple picture of the thermopower in metals can be given as follows: In principle, electrons
and holes contribute to charge transport. First, we regard only electrons. If a temperature
gradient is applied along the sample, the electrons are faster in the hot side of the sample.
Therefore, electrons coming from the hot side of the sample have a larger velocity, which causes
an electron diffusion from the hot side to the cold side. Since no current flows, a voltage is
generated which leads to a steady state.

If electrons and holes are present, the thermovoltage would vanish, if both types of charge
carriers move in the same way. This is not the case in reality because of the different mobilities
of the quasiparticles. For metals an estimation of the thermopower can be given by

SD = −
π2k2

BT

3q

(
∂(lnσ(E))

∂E

)
E=EF

(2.14)

where σ(E) is the electrical conductivity [32]. The thermopower vanishes for T → 0, which
follows from the vanishing of the entropy according to the third law of thermodynamics. A
complication occurs, since the mean free path is generally energy dependent, which causes
a different scattering for the electrons coming from the hot end of the sample compared to
the electrons with the opposite direction. The energy dependence of the mean free path is
not known well in general, and can cause a complex behavior of S. At low temperatures a
further effect becomes important: the phonon drag. The considerations above assume random
scattering centers for the electrons. In fact, the temperature gradient over the sample leads
to a phonon flow from the hot end to the cold end of the sample, because in the hot end more
phonons are excited. Although the phonons itself do not contribute to the thermopower, they
can ”drag” charge carriers by the phonon-electron interaction, and enhance the thermopower
in this way. At high temperatures this effect is negligible, because phonon-phonon interaction
dominates.

The measurement of the thermopower is not straightforward, since the usual setup (see
Chp. 3) always measures the sum of the thermopower of the sample and the wires used to
measure the voltage:

Smeas = SSample − Swire (2.15)

Note, that the thermopower of the wires has a negative sign (see e.g. Ref. [33]. At low
temperatures one can avoid this problem by the use of superconducting wires, which have a
vanishing thermopower. It is, however, possible to measure the absolute S directly by the use

2~E = ~E + (1/e)~∇µ is the sum of the electrostatic field ~E and the gradient of the chemical potential µ [32].
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2.3. Figure of Merit

of the Thompson effect [18]. Herefore, the heating power of a wire is measured, with a heat
current and a electrical current applied at the same time. The heating power is given by [32]:

P =
dq

dt
ρj2 +

dκ

dT
(∇T )2 − T

dS

dT
(∇T ) · j (2.16)

The Thompson heating of the wire can be distinguished from Joule heating, since it changes
sign, if the sign of the electrical current is changed. Since only the derivative of S is determined,
one has to integrate dS/dT and to measure one absolute value to obtain the integration
constant. This can be done at low temperatures by the use of superconducting wires. This
method is complex, and has to be performed very accurately, since the integration of dS/dT
is very sensitive to measurement uncertainties. Therefore one usually uses the literature data
for the thermopower of Pb estimated by this method in the literature, and calibrates the used
wires against Pb [18]. For a detailed introduction to the thermopower I refer to Refs. [18–20]

2.3. Figure of Merit

The thermoelectric figure of merit ZT gives a measure for the efficiency of a material for
thermoelectric cooling. A simple derivation can be given as follows: A thermoelectric cooler
transports heat from a cold to a hot reservoir. The total heat removal rate is given by [19]

qc = STcI −
1
2
I2R−K∆T, (2.17)

where S is the thermopower, Tc the temperature of the cold reservoir, I the current, R =
ρl/A the resistivity, K = κA/l the thermal conductance, and ∆T the temperature difference
between the two reservoirs. The first term of Eq. 2.17 is the heat flow caused by the Peltier
effect. The second term is the Joule heating, which has a negative sign, since it warms the
cold reservoir. The factor 1/2 comes from the fact that one half of the heat flows to the warm
reservoir. The third term describes the zero-current heat transport, which is determind by
the thermal conductivity, and also counteracts the Peltier effect. From Eq. 2.17 it is directly
clear that S has to be maximized, and κ and ρ to be minimized to obtain a high efficiency.
Furthermore, an optimal current can be obtained by resolving Eq. 2.17 with respect to ∆T (I)
and calculating the maximum value

∆T (I)max =
(ST )2

2R − qc

K
(2.18)

with the optimum current I = ST/R. Finally one obtains from Eq. 2.18 the relation

qmax
c ∼ S2

KR
(2.19)

which motivates the definition of the dimensionless figure merit

ZT =
S2T

κρ
. (2.20)

For a more detailed introduction into the efficiency of thermoelectric devices, see Ref. [19].
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Figure 2.4.: Schematic level splittings of a 4f2 system due to electron-electron repulsion,
spin-orbit (SO) coupling and crystal field (CF). Note, that the order of the levels of the split
J = 4 multiplet in the crystal field is exemplary.

2.4. 4f Orbitals in the Crystal Field

The dimension D of the Hamiltonian of a fn level system is given by
(

14
14−n

)
, which can reach

values up to D = 4004 for n = 7. This means also a degeneracy D of the energy levels without
any interaction. In a crystal (without magnetic field) the Hamiltonian consists of three parts,

H = Hel−el + Hζ +HCF. (2.21)

The first two terms are the same as for a free ion and describe the electron-electron interaction
and the spin-orbit (SO) coupling. The third term gives the influence of the crystal field. The
el-el interaction is usually described by Slater integrals Ai=0,2,4,6, and the SO coupling by
the energy ζ. In most cases the relation F i(> 5eV) � ζ(≈ 0.1eV) � ECF(≈ meV) holds,
which allows to take into account only a small sub-space of the original Hamiltonian. This is
illustrated for a 4f2 system in Fig. 2.4. Without interaction, one starts with 91 degenerate
levels. The dominant energy scale of the el-el interaction gives a S = 1, L = 5 state according
to Hunds rules, with 11 × 3 = 33 degenerate energy levels. If SO coupling is turned on, the
levels further split into three levels with J = 4, 5, 6. The level spacing between the J = 4 and
J = 5 state3 is ≈ 0.3 eV≈ 3000K, and usually only the lowest 3H4 state has to be taken into
account. However, in many systems (e.g. Sm3+) the higher multiplets are important, too.

In a crystal, the ligand-field further splits the 3H4 multiplet. The energy scales are hereby
much smaller than in the d systems, since the 4f states are highly screened. The crystal field
Hamilton can be written as [34]:

HCf =
∑
m

m∑
k=−m

Ak
mCk

m, k, m = 0, 2, 4, 6 (2.22)

with the crystal field parameters Ak
m and the tensor operators Ck

m. The parameters Ak
m can

be complex for m 6= 0, further the relation Ak
−m = (−1m)(Ak

m)∗ generally holds. For higher
3Calculated for a Pr3+ ion.
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2.4. 4f Orbitals in the Crystal Field

symmetries most of the parameters Ak
m vanish, or depend on each other. For the cubic Oh

symmetry 2 independent energies remain. In the tetragonal D4h symmetry one has to deal
with 5 and for the orthorhombic Cs symmetry with 15 independent parameters. The splitting
of the ground state multiplet is different for systems with odd and with even 2J . If 2J is odd,
the Kramer’s degeneracy tells, that the J multiplets splits into quartets and doublets. In the
lowest symmetry only doublets are realized. If 2J is even, the multiplet splits into singlets,
doublets and triplets. Here, only singlets are realized for the lowest symmetry. For a given
4f i system and a given symmetry one can determine the principle splitting of the ground
state multiplet. Tab. 2.2 shows these results for the rare earth ions R3+ [35]. Note, that these
results reflect only the symmetry of the system, and give no information about the order of
the different levels.

The data analysis was performed with the Mathematica4 package ”CrystalFieldTheory”
(CFT) developed by M. Haverkort [36]. This package solves the Hamiltonian Eq. 2.21 by
exact diagonalization of the full multiplet. The used Slater integrals F i and the SO coupling
constant ζ obtained from Hartree-Fock calculations by M. Haverkort are listed in Tab. 2.3.

The crystal field is usually investigated by neutron scattering. These measurements yield
the level scheme, since the transitions between different CF levels are measured. To get the
parameters Ak

m, a CF model has to be used and the Ak
m values are usually fitted to obtain

the best description of the energy level scheme. Here, the analysis is often simplified by
only taking the ground state multiplet into account. In this case, so-called Stevens operators
are frequently used, which yield a different parameterization of the CF Hamiltonian. The
conversion of the parameters of the Stevens formalism to the Ak

m parameters is complex in
lower symmetry systems.

In this work, tetragonal and orthorhombic systems with R3+ ions were investigated. The
crystal field was studied in detail in the literature for the tetragonal cuprates, which will be
discussed in more detail in Chp. 4.

2.4.1. Orthorhombic Perovskites

In the orthorhombic perovskites one has to deal with 15 independent CF parameters, but
usually only a few energy levels are present for the fitting of the Ak

m values. Therefore,
usually additional assumptions are made in the data analysis, which restrict the number of free
parameters (see e.g. Refs. [37, 38]). To my knowledge no systematic crystal field investigations
of orthorhombic cobaltates and manganates are available5. However, such investigations have
been made for related compounds RMO3, with R = Pr, Nd, and Eu; and M =Al, Ga, Fe,
and Ni. The structural distortions are similar in these compounds, which leads to similar CF
effects for the same R and different M . We will explore this for the comparison of the available
data of CF splitting energies for various PrMO3 and NdMO3 compounds.

In PrMO3, the 3H4 multiplet of the Pr3+ ion splits into 9 singlets (see Tab. 2.3). The
measured crystal-field splitting is indeed very similar for different orthorhombic PrMO3 com-
pounds. In Tab. 2.1 the energy levels for various PrMO3 compounds measured by neutron
scattering experiments are listed. Note, that because of the different sizes of the scattering
cross section, only 5 or 6 energies can be resolved. According to Tab. 2.1, the energies E2 to
E5 are almost identical for M =Fe, Ga and Ni. Larger differences mainly occur for the first

4Mathematica 5.2, Wolfram Research.
5In Ref. [39] the authors observe some CF excitations in their investigation of the spin-wave spectrum of

TbMnO3 and PrMnO3.
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excited level, the energy E1 ranges from 23K to 74K. To resolve this issue, the M -O-M bond
angle is also listed in Tab. 2.1. This parameter is useful to characterize the distortion (see
also Chp. 7). From the comparison with E1 a direct correlation can be made, E1 increases
with increasing bond angle M -O-M . This systematic also holds for PrCoO3 and PrMnO3,
where the energies of the first (second) excited level is known from other measurements, see
Tab. 2.1.

In NdMO3, the 4H9/2 multiplet of Nd3+ splits into 5 doublets. Here, all transitions are
observed, and the energy splitting is very similar for the different compounds, too. The
smaller value of E1 in NdFeO3 may indicate a similar dependence on the M -O-M angle as
in PrMO3, but this is not clear from the available data. No direct information of the level
schemes of NdCoO3 and NdMnO3 is available.

2.4.2. Specific Heat and Susceptibility

From the eigensystem calculated from Eq. 2.21 the specific heat and the magnetic susceptibility
of the 4f i system is calculated straightforwardly:

Cf i(T ) =
∂

∂E

∑Di
n=1 En exp(− En

kBT )

Z
(2.23)

with

Z =
Di∑

n=1

exp(− En

kBT
). (2.24)

and

χ(T,H) =
M(T,H)

H
=

∑Di
n=1 Mn(H) exp(− En

kBT )

ZH
(2.25)

with
Mn(H) = 〈n|(Lz + 2Sz)|n〉. (2.26)

Note, that usually the specific heat is much less sensitive to the CF, since here only the energies
are relevant.
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RM M -O-M E1 E2 E3 E4 E5 E6 Ref.
(Å) (◦) (K) (K) (K) (K) (K) (K)

PrFeO3 0.645 152 [40] 23 171 270 418 673 [41]
PrGaO3 0.62 154 [42] 55 171 232 429 754 [41]
PrGaO3 59 186 249 441 777 908 [38]
PrNiO3 0.56 159 [43] 74 174 235 440 696 [44]
PrCoO3 0.545 159 [45] 70 ∗
PrMnO3 0.645 150 19 †
PrMnO3 20 ‡ 185 ‡

NdGaO3 0.62 153 [46] 132 261 611 789 [47]
NdGaO3 153 132 262 606 788 [48]
NdFeO3 0.645 151 [49] 120 263 526 705 [37, 50]
NdNiO3 0.56 156 [51] 129 220 765 835 [44]
NdCoO3 0.545 156 [52]
NdMnO3 0.645 150 [53]

Table 2.1.: Ionic radii M [54], M -O-M bond angles, and crystal field energies of PrMO3 and
NdMO3. *) Value estimated by thermal expansion, see Sec. 5.4.10. †) Value estimated by
specific heat [55]. ‡) Value estimated by neutron scattering from Ref. [39].

R3+ S L J GS D dfree dcubic dtet dlow

sg db tr qt sg db sg db

Ce 1/2 3 5/2 2F5/2 14 6 1 1 3 3
Pr 1 5 4 3H4 91 9 1 1 2 5 2 9
Nd 3/2 6 9/2 4I9/2 364 10 1 2 5 5
Pm 2 6 4 5I4 1001 9 1 1 2 5 2 9
Sm 5/2 5 5/2 6H5/2 2002 6 1 1 3 3
Eu 3 3 0 7F0 3003 1 1 1 1
Gd 7/2 0 7/2 8S7/2 3432 8 2 1 4 4
Tb 3 3 6 7F6 3003 13 2 1 3 7 3 13
Dy 5/2 5 15/2 6H15/2 2002 16 2 3 8 8
Ho 2 6 8 5I8 1001 17 1 2 4 9 4 17
Er 3/2 6 15/2 4I15/2 364 16 2 3 8 8
Tm 1 5 6 3H6 91 13 2 1 3 7 3 13
Yb 1/2 3 7/2 2F7/2 14 8 2 1 4 4

Table 2.2.: S, L, J , ground state multiplet (GS), dimensionality of the full multiplet D,
degeneracies of the ground multiplet for the free ion, cubic, tetragonal, and lower symmetry
(sg: singlet, db: doublet, tr: triplet, qt: quartet) [35].
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Atom# Atom Conf r2 r4 r6 ζ F 0 F 2 F 4 F 6

R3+ (Å2) (Å4) (Å6) (eV) (eV) (eV) (eV) (eV)

58 Ce 4f1 0.367 0.312 1.208 0.087 0.000 0.000 0.000 0.000
59 Pr 4f2 0.337 0.265 1.230 0.102 25.711 12.221 7.666 5.515
60 Nd 4f3 0.312 0.229 1.252 0.119 26.739 12.719 7.981 5.742
61 Pm 4f4 0.291 0.200 1.274 0.136 27.719 13.191 8.278 5.956
62 Sm 4f5 0.273 0.177 1.296 0.155 28.665 13.643 8.562 6.161
63 Eu 4f6 0.257 0.158 1.318 0.175 29.581 14.079 8.836 6.357
64 Gd 4f7 0.243 0.143 1.339 0.197 30.474 14.501 9.100 6.548
65 Tb 4f8 0.230 0.129 1.361 0.221 31.344 14.911 9.357 6.732
66 Dy 4f9 0.219 0.118 1.383 0.246 32.200 15.312 9.608 6.912
67 Ho 4f10 0.208 0.108 1.405 0.273 33.040 15.704 9.853 7.088
68 Er 4f11 0.199 0.099 1.427 0.302 33.865 16.089 10.093 7.260
69 Tm 4f12 0.190 0.092 1.449 0.333 34.679 16.467 10.328 7.429
70 Yb 4f13 0.182 0.085 1.471 0.366 35.483 16.839 10.560 7.596

Table 2.3.: Radial distributions r2,4,6, SO coupling constants ζ, and Slater integrals F i for the
rare earth ions R3+, calculated by a Hartree-Fock approximation [56].
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In this section the used experimental methods will be introduced. The general setup will be
discussed only briefly, since it is the same as used in Ref. [57], where a detailed description is
given. Extensions of the setup, as the use of a new sample holder for measurements of κ down
to 250mK in a 3He system, will be described in more detail. Furthermore, test measurements
to check the used thermocouple calibration will be presented.

3.1. Measurement of Transport Properties

In this thesis measurements of thermal conductivity, thermopower, and resistivity were per-
formed. Generally, transport measurements are done providing an external perturbation to
the sample and measuring the response of the sample. In our case, the external perturbation
is either an electrical current, or a heat supply. The response is either an electrical voltage or
a heat gradient over the sample. Here, only longitudinal effects are regarded, so the response
of the samples is measured in the same spacial direction as the perturbation.

3.1.1. Experimental Framework

The main purpose of the experimental setup is to provide the desired control parameters, as
pressure, temperature and magnetic field. Here, pressure is no adjustable control parameter1.

The temperature / the magnetic field is usually either kept fixed, or changed with a constant
rate. The control of the magnetic field is in principle easy, since it is based on the control of
electrical currents, and so static magnetic fields, or magnetic field sweeps are possible simply
by giving the magnet power supply the right commands (within the limits given by the used
magnet and magnet control system). No further measurement of the field is necessary. In
contrast, the temperature needs a control loop, usually realized by a temperature controller
using a PID algorithm. This requires the measurement of the temperature, and for measure-
ments with fixed temperature it has to be checked, if the temperature is stable enough. For
temperature sweeps, a stabilization is only needed for the starting value, a constant rate is
then achieved by the controller.

One can group the measurements in those where the data points are taken with fixed tem-
perature and magnetic field, and those where one of these quantities is continuously changed
during the measurement.

3.1.2. Measurements with fixed Temperature and Field

Thermal conductivity is usually measured with fixed temperature and field. The procedure is
here as follows: First, the required magnetic field and temperature are set, with the external

1Resistivity measurements are usually done in a gas atmosphere, since here no vacuum is needed, and a faster
temperature control and a better thermalization of the sample is possible. The influence of the atmospheric
pressure is, however, negligible.
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perturbation of the sample (sample heater) turned off. Then it is waited until certain stability
criteria are fullfilled, while data points are continuously taken. This is achieved by taking
the last n (usually n = 150) points and calculating the average, the slope, and the standard
deviation. For the measurement signal(s) the slope and the standard deviation are checked,
for the temperature additionally the set point deviation. If all criteria are fullfilled, average
values of all measured quantities are calculated over the n points. Then the sample heater
is turned on, and again it is waited for all stabilization criteria to be fullfilled, yielding a
second set of values. From the two sets one can calculate the measured quantities, either
by averaging both values (temperature) or by taking the difference. The latter procedure
eliminates the offset values, which are always present due to thermovoltages in the wiring
and in the plug connections. This is especially important for the low-voltage signals, as the
thermocouple voltage. This procedure is basically the same for all measurements with fixed
temperatures and fields. Resistivity could be performed in the same way, however a factor of√

2 in the resolution can be gained if the current is switched between positive and negative
values, instead of just turning it off.

3.1.3. Measurements with Temperatures and Field Sweeps

The disadvantage of measurements with fixed temperature and field is, that they are very
time consuming. An accurate temperature stabilization can take a lot of time. Furthermore,
only a small amount of the measurement time is used to take actual data points. Therefore
it is desirable to stabilize only temperature or field, and to sweep the other quantity with a
constant rate, taking the measured values continuously. This requires that the response time
of the sample is not too slow and that the correction of offset values is still possible. Therefore
the offset values should not change too fast as a function of temperature / magnetic field. For
the regarded transport properties, this requirements are usually only fullfilled for resistivity
measurements. Here, the offsets can be either neglected (insulators), or are taken into account
be changing the sign of the current periodically in blocks of typically 10− 20 s [33].

3.1.4. Probes

For the thermal transport properties six basically identical probes are available, which allow
measurements between room temperature and ≈ 5K. The lowest achievable temperature can
be improved to ≈ 2.5 . . . 3K by pumping on the lambda plate. The probes are described in
detail in Ref. [57]. For the resistivity measurements either a quick measurement device [33],
or a variable temperature insert was used. For the latter a new probe was built up which
covers the temperature range of 1.5 − 300K and allows the measurement of two samples
simultaneously.

3.2. Thermal Conductivity

The setup used for the thermal conductivity measurements is sketched in Fig. 3.1. The sample
holder is kept on a temperature T0. A chip heater is mounted on the top of the sample, which
can produce a heat gradient over the sample. This heat gradient is measured by a thermocouple
attached to the sample. The thermal conductivity is calculated with the following equation

16
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Figure 3.1.: Left: Setup for thermal conductivity measurements. Right: geometry used for
the estimation of the radiation losses.

[57]:

κ =
UH · IH ·S(T,B)

∆UTE

l

A
. (3.1)

Here, UH denotes the Voltage of the sample heater, IH the current of the sample heater, S(T,B)
the temperature and field dependent calibration curve of the thermocouple, UTE the voltage
of the thermocouple, l the distance between the thermocouple ends, and A the cross section of
the sample. S(T,B) was determined carefully in Ref. [57], and checked with several reference
samples, see Sec. 3.6.1. The used thermocouples were in most cases Chromel-Au+0.07%Fe,
which are perferably used at low temperatures, and in some cases Constantan-Chromel, which
have a higher sensitivity at high temperatures.

3.2.1. Error Sources

Whereas the voltage and current measurements are very precisely, the determination of the
geometric factors l and A is affected by a large error of ≈ 5− 20%, depending on the sample
geometry. This can be neglected in most cases, since the qualitative behavior of the curves is
not affected. Furthermore, the thermopower of the used thermocouples gives an error up to
5%, see Sec. 3.6.1. More crucial are, however, systematic errors which can cause large effects.
These are mainly caused by thermal shortcuts by the wiring, or by radiation losses at high
temperatures. Both effects are discussed in detail in Ref. [57]. The error through thermal
shortcuts can be minimized by the use of proper wiring, in most cases manganin wires by a
diameter of 50 µm. For the measured samples in this thesis the influence of thermal shortcuts
has been carefully checked and can be neglected in all cases. Radiation losses depend on the
thermal conductivity of the samples and the geometry, and are usually large for samples with
a small κ and a large ratio of sample length and cross section, L/A. The latter parameters
are often restricted, and therefore radiation losses are often not to avoid. An estimation of
the radiation losses was e.g. done in [58]. In this reference only the sample surface and the
heater surface are taken into account. However, this is not sufficient because the wiring is a
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Figure 3.2.: Influence of radi-
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sample had a length of 3 mm. The
cross section of the small sample
was modified by lapping the sam-
ple and is given in the plot.

radiating surface, too. If one considers a typical sample with a× b× c = 1× 1× 2mm3, one
obtains a surface of 9mm2 (without the bottom side). If heater wires with a length of 5 cm
and a diameter of 50 µm are taken, these have a surface of 2 ∗ 50 ∗ 0.05 ∗ π = 15.7mm2, which
is larger than the sample surface. This shows, that the wiring has to be taken into account for
an estimation of the radiation losses. Fig. 3.2 shows test measurements of small samples with
different setups using different wire length. The radiation effects cause large errors at high
temperatures2. A similar estimation as for the sample heater wires can be made for the other
used wires. This can be easily done by extending the approach used in Ref. [58]. Herefore,
it has to be taken into account that the thermocouple is not under the influence of the total
heat gradient. One obtains the following relations:

κR = 4σSBT 3
0

L

A

∑
i

Si. (3.2)

Here, σSB is the Stefan Boltzmann constant. The radiation losses lead to an additional term
proportional to T 3 to the measured thermal conductivity, i.e. κmeas = κreal + κR. The factors
Si are determined by the surface areas Si and the absorption coefficients εi of the different
radiating surfaces. Summing over all contributions S =

∑
i Si we obtain:

S = (a + b)LεP

+ SHεH

+ dHw lHwπεHw

+
l1 + l2

2L
dTp lTpπεTp

+
l1 + l2

2L
d

Chr
l
Chr

πε
ch

+
l

2L
dAuFe lAuFeπεAuFe .

(3.3)

Here, εi, di , and li denote the absorption coefficients, diameters and length of the heater wires
(Hw), thermopower wires (Tp), Chromel wires of the thermocouple (Chr), and the gold-iron

2The peaks at low temperatures, and the field dependences are systematic errors due to the use of copper
wires, which cause thermal shortcuts (see Ref. [57]).
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3.2. Thermal Conductivity

Sample lTp κrad(300 K)(W/Km) κrad(300 K)/κ(300 K)

LaCoO3 Mar5a_08 × 0.7 15%
LaCoO3 Mar5b_07 × 0.6 16%
LaCoO3 Mar5_09 × 0.6 19%
LaCoO3 Zo104 × 0.7 33%
LaCoO3 EKParis × 0.7 18%
TbMnO3 S1 × 0.2 6%
TbMnO3 S2 2.0 51%
Nd2CuO4 1.1 9%

Table 3.1.: Estimated radiation losses for various samples calculated by Eq. 3.2 and the used
parameters. Additional parameters are: lAuFe = lChr = 0.05 m, lHw = 0.1 m, dHw = 50 · 10−6 m,
dChr = dChr = 78 · 10−6 m. The parameter lTp tells, if thermopower wires were used. No
thermopower was measured in S1 of TbMnO3, but a similar wiring for the voltage wires was
used (see Sec. 7.5.1).

wire of the thermocouple (AuFe). SH is the surface are of the heater. For the meaning of
the other geometric factors see Fig. 3.1. In Tab. 3.1 estimations made for the samples with
the worst geometric factors for the different series are shown. Herefore the individual sample
dimensions and wire thicknesses are used. Since the exact length of the wiring was not known,
so typical values were used. The absorption coefficients were set so 1 to obtain an upper limit.
In most cases the radiation losses are below 10% at room temperature. Larger radiation losses
occur for the LaCoO3 samples, which have a very low high-temperature thermal conductivity,
and for one sample of TbMnO3. For TbMnO3, some of the measurements were corrected.
Herefore the factor

∑
Si was estimated by the comparison with the reference measurement

of the larger sample (see Chp. 7 and Fig. A.6). The difference of κrad for the two TbMnO3
samples is estimated to 1.8W/KM, which is equal to the observed difference of κ(300K) for the
different samples. This shows, that the estimation with Eq. 3.2 gives a good estimate of the
radiation losses. However, since most of the parameters were not exactly known (e.g typical
wire length), the result should not be taken too literally. Without a reference measurement
the correction of radiation losses is affected by a large uncertainty, and is not recommended.
Another error which is relevant at low-temperatures is the heating of the sample with respect
to the sample holder, which can get large due to a bad thermal anchoring of the sample [57].
If magnetic-field dependent measurements are performed in a transverse-field cryostat (see
e.g. Ref. [59]) the probe has to be oriented with respect to the field. Due to the construction
of the probe, this error can be up to 20% if the probe is oriented by visual judgement. This
error can be reduced by mounting a Hall probe close to the sample. If only measurements
along two axes perpendicular to each other are performend, it is sufficient to determine the
minimum / maximum of the hall voltage to orient the sample, which can be easily done.

3.2.2. Thermal Conductivity Measurements in the Heliox 3He Insert

The lowest temperature of the used setup is restricted to ≈ 2.5− 3K, and the measurements
below 5K are extensive, since pumping on the lambda plate is required. To extent the mea-
surement range to lower temperatures, a Heliox3 3He evaporation insert was used. The Heliox

3Oxford Instruments
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Figure 3.3.: Setup low-temperature thermal conductivity measurements.

has a temperature range from ≈ 250mK to 60K [60]. T. Zabel and O. Heyer have built up
a sample holder for transport measurements [60, 61]. The sample holder basically consists of
a copper plate with a calibrated sample thermometer, and contains 16 pins for the electrical
connections, see Fig. 3.4. Below 3K, the use of two thermometers is required to determine
the temperature gradient. This has two main reasons. First, the thermopower vanishes for
T → 0, and the signal of the thermocouples gets to small. Second, heating of the sample
requires an exact determination of the sample temperature, because large differences between
sample holder and sample can occur [57]. Note, that radiation losses are negligible in the
relevant temperature range, and therefore the much larger surfaces of the thermometers /
wires play no role.

The used setup is sketched in Fig. 3.5. Two short pieces of copper wires are attached to the
sample with silver epoxy. Small Ruthenium oxide thermometers are used, which are glued to
the copper wires with silver paint. The thermometers are conducted with a 4-wire setup using
thin (30 µm) manganin wires. For the measurement of the thermometer resistivity an AVS-47
resistance bridge is used. The bridge measures the resistivity by an AC method which gives
the required high accuracy. Since only one bridge was available, the built-in scanner of the
AVS-47 was used, and the thermometers are measured consecutively.

A data point is taken as follows: First, the lower thermometer is chosen via the scanner,
and it is waited until both, the sample holder and the sample thermometer are stable, and
n (usually n = 50 . . . 100) data points are taken. Then the scanner is switched to the upper
thermometer, and immediately another set of n values is taken. These two values of the
thermometer resistivity are used for an in-situ calibration of the thermometers, since with
the sample heater turned off, the sample thermometers have the same temperature as the
sample holder. Then it is switched again to the lower thermometer, and the sample heater is
turned on. Again it is waited until the temperature is stable, and the n values of the lower,
and afterwards the upper thermometer are taken. From these two values the temperature
gradient is calculated, using the in-situ calibration. The average of these two temperatures
gives the temperature to which κ is assigned, what rules out errors due to samples heating.
This method requires a stable base temperature. The used temperature gradients are in the
order of a few percent of the absolute temperature. For the in-situ calibration a function
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3.3. Thermopower

Figure 3.4.: Heliox samples holder
with a LaCoO3 sample prepared
for a thermal conductivity measure-
ment [62].

T (R) = exp(
6∑

i=1

ci · log(R)i) (3.4)

is used, what gives a good approximation [63]. If no calibration values are available for
new thermometers, one first has to perform a run without using the sample heater to get a
preliminary calibration. This is necessary for two reasons: First, the appropriate currents
are calculated from the previous temperature gradient, which requires the knowledge of the
calibration. This is important, because the thermal conductivity at low temperatures changes
drastically with the temperature. For a useful temperature gradient, the thermal conductivity
has to be known, and the best approximation is to use the thermal conductivity of the previous
measurement point. Second, an estimate of the thermal conductivity is necessary, to plan the
further measurements. For thermometers, which have been already used, one can take a
calibration curve from a previous curve, even if these may have slightly changed, since for the
final data analysis the in-situ calibration is used.

For field dependent measurements at fixed temperatures one has to take into account the
field dependence of the thermometers. Since a complete calibration would be very time con-
suming, a different way was chosen: The field dependent resistivity was measured at the
required temperature and at a slightly higher temperature, and for the calibration a linear
interpolation was used, which is a good approximation in a narrow temperature range. A
comparison with points of the temperature dependent measurements proved the validity of
this method.

3.3. Thermopower

To measure the thermopower two additional wires are attached to the sample. For the mea-
surements in this thesis copper wires were used. The thermopower is calculated by

STP = UTP/∆T + SCu (3.5)

where ∆T = UTC/STC is measured analogously to the thermal conductivity measurements.
The thermopower of the copper wires has to be added to get the pure sample contribution, see
Sec. 2.2. Therefore calibrated copper wires were used [64]. In most cases the thermocouples
were attached to the thermopower wires close to the sample, which turned out to give very re-
liable contacts. The validity of this method was checked by a comparison with a measurement
of the same sample with the thermocouple attached directly to the sample.
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Figure 3.5.: Setup for the thermal conductivity measurements in electrical field performed
for TbMnO3 (see Chp. 7). The same setup was used for the measurement of the electrical
polarization shown in Fig. 7.21.

3.4. Figure of Merit

The thermoelectric figure of merit ZT is calculated from thermal conductivity, thermopower,
and resistivity of the sample via (see Sec. 2.3)

ZT =
S2 T

κρ
. (3.6)

Usually the thermal conductivity and the thermopower are measured simultaneously in one
setup, whereas the resistivity is measured in a different setup and in most cases on a different
sample. This enlarges the experimental error, which can be estimated as follows: The different
quantities are calculated by

S =
UTP

UTC
·STC ·

lTC

lTP

κ =
UH IH

UTC
· lTC

ATP
·STC

ρ =
UR

IR
· AR

lR
.

(3.7)

From Eqs. 3.6 and 3.7 it follows

ZT =
U2

TP STC lTC IR lR ATP

UTC AR l2TP URUH IH
. (3.8)

We assume an error of 10% for all geometric quantities, and an error of 5% for STC, and
neglect the errors of the voltage and current measurements. Error propagation gives an error
of ∆ZT/ZT ≈ 25%. If the thermocouples are mounted on the thermopower wires, it follows
lTC = l, which reduces the error to ≈ 20%. A more precise determination of the thermoelectric
figure of merit is possible with a setup which directly measures ZT , see e.g. Ref. [65].
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3.5. Electrical Polarization and κ in an Electrical Field
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3.5. Electrical Polarization and κ in an Electrical Field

In Chp. 7 the thermal conductivity of TbMnO3 measured under application of electrical fields
will be presented. The used setup is shown in Fig. 3.5. An electrical field E = U/d is obtained
by applying a voltage U on two capacitor plates with a distance d. As capacitor plates gold
was sputtered on two opposite surfaces of the sample. To avoid shortcuts with the sample
holder and the thermocouples, a small margin was left. The resistivities between the capacitor
plates and sample holder, thermocouple, and heater were checked and were not detectable.
In principle the gold surfaces cause a thermal shortcut, which could cause an error for the
κ measurement. However, the gold surfaces are very thin and a comparison with a previous
measurement yielded identical results. During the experiment voltages up to 1000V were
applied.

The same setup was used to determine the electrical polarization. Herefore, the pyroelectric
current was measured by using a Keithley 6517A electrometer in the current mode. From the
pyroelectric current, the electrical polarization is calculated via

P =
Q

A
=

∫
I(t)dt

A
. (3.9)

For the integration over the time it is necessary to save also the time in the result file. The
data analysis will be explained in more detail on an example curve: a measurement of the
polarization of TbMnO3 along the c axis with H = 6T || b. In this configuration a polariza-
tion should be present for TFE(10K) < T < Tc(35K) [14]. Fig. 3.6 a) shows the measured
pyrocurrent, which is already averaged over 5 points. Note that the measured currents are
extremely small (≈ 10−11 A). This makes these measurements very sensitive to any kind of
external influences. Usually the measurements could not be performed, if persons were in the
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3. Experimental

A L

Graphite, M1&M2 0.6× 0.74 = 0.44 mm2 5 mm
Graphite, M3 1.5× 0.9 = 1.4 mm2 5 mm
Electrolytic iron, thin sample 0.2× 0.6 = 0.12 mm2 5.2 mm
Electrolytic iron, thick sample φ = 6.37 mm A = 32mm2 11.6 mm

Table 3.2.: Sample dimensions of the used reference samples. The ”thick sample” was directly
cu from the cylinder formed rod, the other samples where cut to cuboids.

laboratory. The measured signal is superposed by a periodic signal, which was present all
the time. The source of this signal could not be identified. Panel b) shows the signal after
the integration over the time t, which gives the charge Q. A problem is the occurrence of an
offset of Ipyro which leads to an additional linear term in Q. Under the assumption that for
T > 35K no polarization is present, this linear contribution is estimated by a linear fit as
shown and subtracted. Panel c) finally shows the calculated polarization P , with and without
the offset correction. The assumption of a time-independent offset is not perfectly fullfilled,
since a residual signal of P remains below T = 10K. The problem of a changing offset was
always present, especially for measurements in a poling field4. In this case, it took usually
several hours until a stable current was obtained.

3.6. Check of the Thermocouple Calibration

The used thermocouples were recalibrated as discussed in detail in Ref. [57]. The calibration
was checked by measurements of reference samples. The sample sizes of the used specimens
are listed in Tab. 3.2. Here, the geometric error is much smaller than usual, because long
samples which large distances between the thermocouple ends could be used, and the material
properties (e.g. hardness) allow a precise cutting. In Ref. [57] the measurement of graphite
yield only a fair agreement of the measured thermal conductivity with the reference values.
One reason is that the reference thermal conductivity of the graphite reference sample has to
be corrected based on the resistivity and the density of the individual sample, which was not
taken into account in Ref. [57]. In Ref. [66] relations for the corrections are given. For the
used sample the values d0 = 1719 kg/m3 and ρ0 = 1.2446Ωm were measured. Fig. 3.7a shows
the reference values, the corrected reference values, and three measurements with the Chromel-
Au+0.07%Fe thermocouples. Fig. 3.7b shows the ratio κmeas/κref , with the corrected reference
values taken. The measurements M1 and M2 suffer from low-temperature thermal shortcuts,
because copper wires were used as heater wires (these are the measurements presented in
Ref. [57]). Therefore K. Kordonis repeated this measurement with the appropriate use of
manganin heater wires. The resulting curve (solid symbols) is in a good agreement with the
reference value (κmeas/κref <≈ 5% in the whole temperature range). As a further check, a
second sample was measured, electrolytic iron [67]. Here, the reference thermal conductivity
also has to be corrected with respect to the residual resistivity which was estimated5 as

4Usually P is measured by cooling the sample under the application of a polling field to avoid domain
formature.

5This was done by measuring the residual resistivity ratio and calculating ρ0 according to Ref. [67] to avoid
geometric errors.
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Figure 3.7.: Thermal conductivity κ of reference samples. a) κ of graphite: Reference val-
ues, corrected reference values and three sets of measurements using Chromel-Au+0.07%Fe
thermocouples b) Ratio κmeas/κref for the measurements of graphite. c) κ of electrolytic iron.
The reference values of κ, two sets of measurements with Chromel-Au+0.07%Fe thermocouples
and one set with a Constantan-Chromel thermocouple are shown. d) Ratio κmeas/κref for the
measurements of electrolytic iron.

ρ0 = 4.249 · 10−9 Ωm. In comparison to graphite, the correction is only small and only affects
the low-temperature range. Fig. 3.7c shows the corrected reference curve, and two sets of
measurements taken with Chromel-Au+0.07%Fe thermocouples performed with two samples.
The first sample (”thin sample”) had a small cross section (see tab Tab. 3.2), which allowed
the measurement down to 6K. This measurement shows a good agreement between 6K and
≈ 200K (κmeas/κref / 5%). However, at higher temperatures an upturn of the measured
curve occurs, which is due to radiation losses. Therefore a second sample was cut with a
large cross section (”thick sample”), which gives a good agreement at high temperatures. For
lower temperatures this measurements does not give good results, because the temperature
gradients were to small. Combining the two sets of measurements again an error below ≈ 5%
is estimated.

The Constantan-Chromel thermocouple was only tested with the thick electrolytic iron
sample, which gives a good agreement down to 50K. Because these thermocouples are used
for measurements at higher temperatures, the agreement is satisfactory.
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3.6.1. Magnetic Field Dependence

To check the magnetic-field dependence of the thermocouple calibration, thermal conductivity
measurements of a quartz-glass sample was performed. Quartz is a purely phononic heat
conductor, and therefore shows a negligible magnetic field-dependence. A further advantage
is that the thermal conductivity at low temperatures has very low absolute values, and shows
no pronounced temperature dependence. This ensures that no heating of the samples with
respect to the sample holder occurs.

Fig. 3.8 shows the results of these measurements. Panel a) shows the results from tem-
perature dependent measurements. The ratio κ(H)/κ(0T) is shown for 8T and 14T for two
different thermocouples. The field dependence is below ≈ 4% in the whole investigated tem-
perature range. In panel b) measurements with fixed temperatures are shown. Except for
5K and 3K the measured field dependence is below 2%. For 5K and 3K and H > 10T
it increases to ≈ 6%, which is rather small, but one has to keep this error in mind for low
temperatures / high fields.

For the Constantan-Chromel thermocouples the field dependence was not checked, since
it is almost negligible at higher temperatures, and these thermocouples where not used for
low-temperature field-dependent measurements.
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4. Thermal Conductivity in R2CuO4

La2CuO4 is well known as parent compound for high-temperature superconductors, which is
an intense field of research since more than twenty years [1, 68]. La2CuO4 becomes super-
conducting by hole doping, which can be done by e.g. Sr doping. It was discovered only
a short time later, that another class of superconductors exists, based on the compounds
R2CuO4, where the La is replaced by rare earth R = Pr, Nd, Sm, Eu [69, 70]1. In contrast
to La2CuO4, superconductivity is created by electron doping here, e.g. with Ce. The simi-
larities and differences in the mechanisms of superconductivity between these two classes of
high-temperature superconductors puzzle the researchers up to now, and the coupling mecha-
nism is not yet understood. Apart from becoming superconductors upon doping, the undoped
mother compounds also show a lot of other interesting physics [71, 72]. Although La2CuO4
and the R2CuO4 compounds crystallize in different structures, the physics in both compounds
is dominated by the CuO2 square lattice, realizing a two-dimensional spin-system with a large
exchange constant J , which makes these compounds to ideal model systems to investigate
two-dimensional physics. In contrast to La2CuO4, most of the R2CuO4 compounds contain a
second magnetic subsystem formed by the R ions, which rises a lot of new properties, caused
by the additional interactions between the Cu and R magnetic moments, and by the R-R
interactions itself.

One aspect of such a low-dimensional spin-structure is the question, whether magnetic
heat transport plays an important role. This is discussed for many compounds, and several
publications investigate this question for La2CuO4 [6–8, 11]. For the rare-earth cuprates,
however, there was no systematic investigation of κ up to now.

In this chapter I will first give a brief overview of low-dimensional spin systems, where mag-
netic heat transport was observed. Then I will discuss the structural and magnetic properties
of the investigated R2CuO4 compounds. After a more detailed view on the available literature
of thermal conductivity data of the cuprates, I will present measurements of κab for R = Pr,
Nd, Sm, Eu, and Gd and of κc for R = Pr and Gd in zero field from 5 . . . 300K. The question,
if a magnetic contribution to the heat transport is present, will be discussed. In the second
part the focus will be on the low-temperature data and the influence of magnetic fields. Parts
of the results presented in this chapter have been published in Refs. [57, 73, 74].

4.1. Heat Transport by Magnetic Excitations

For insulators, only one low-temperature phononic peak of the thermal conductivity κ is
expected, see Sec. 2.1.2. In contrast, various low-dimensional spin systems show an unusual
thermal conductivity κ with a double-peak structure for a heat flow along the low-dimensional
direction (or directions in 2D) as a function of temperature. There is growing evidence that this
anomalous behavior arises from magnetic excitations contributing to the heat transport. The
most clear experimental evidence is found in the spin-ladder compounds, where a double-peak

1Gd2CuO4 does not become superconducting [70].
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4. Thermal Conductivity in R2CuO4

structure with a huge high-temperature maximum of κ is present for a heat current parallel
to the ladder direction, but absent for a heat current perpendicular to the ladders [3, 4]. For
one-dimensional spin-chain systems the experimental results are less clear. For the spin-chain
compounds SrCuO2 and Sr2CuO3 Sologubenko et al. find a sizeable extra contribution to κ
along the chain direction, which is missing in the other directions [75]. In the spin-Peierls
compound CuGeO3 κ along the chain direction has two low-temperature maxima and one of
them was attributed to a magnetic contribution in Ref. [76]. However, this interpretation is
questionable, because a similar double peak is also present in κ perpendicular to the chain
direction [5, 27]. In the Haldane-chain (S = 1) System AgVP2S6, a magnetic contribution
plays a role, too [77], but the absolute values are much smaller than in the S = 1/2 systems,
Recently, a magnetic contribution to heat transport was discovered in the Haldane-spin system
Y2BaNiO5 [78]. The results in 1D systems raise the question whether a sizeable heat current
due to magnetic excitations is also present in two-dimensional magnets. This was discussed for
the low-temperature thermal conductivity of K2V3O8 and Nd2CuO4 [10, 79, 80]. As already
mentioned, the latter is one of the insulating parent compounds of high-temperature supercon-
ductors containing CuO2 planes, which represent the perhaps most studied two-dimensional
antiferromagnets so far [71]. Whereas the studies on Nd2CuO4 (Refs. [10, 80]) mainly concern
the magnetism of the Nd3+ moments, the influence of the Cu2+ moments on κ is present at
higher temperature. In the layered perovskite La2CuO4, the thermal conductivity κab for a
heat current along the CuO2 planes exhibits a pronounced double-peak structure with a low-
temperature maximum around 25 K and a second one around 250 K. In contrast, the thermal
conductivity κc perpendicular to the CuO2 planes has only one low-temperature peak [6–
8, 11]. These findings have been interpreted in terms of an additional heat transport parallel
to the CuO2 planes due to magnetic excitations. However, a double-peak structure can also
be explained by phonons only. Any additional scattering mechanism which acts in a narrow
temperature range suppresses κ in that temperature window and as a result κ may exhibit
two peaks. For example, in SrCu2(BO3)2 a double-peak structure is caused by resonant scat-
tering of acoustic phonons by magnetic excitations [27, 28]. Such a mechanism does not apply
for La2CuO4. However, La2CuO4 has a structural instability with low-lying optical phonon
branches, which could also serve as scatterers for the acoustic phonons. Such an explanation
has been proposed by Cohn et al. for the heat transport data of YBaCuO6+δ, which show a
similar temperature dependence of κab as La2CuO4 [81]. M. Hofmann et al. investigated κab

of Sr2CuO2Cl2, which is almost isostructural to La2CuO4, but shows no structural instabil-
ity [27, 82]. A second high-temperature maximum in κab was taken as evidence for the second
peak of the in-plane heat conductivity being caused by magnetic excitations. Basing on this
observation it was suggested that a pronounced magnetic contribution to the thermal conduc-
tivity is a common feature of the layered cuprates. However, the high-temperature peak of
κab of La2CuO4 is significantly larger and its low-temperature peak is much smaller than the
corresponding peaks observed in Sr2CuO2Cl2. These quantitative differences could arise from
the absence or presence of a structural instability and/or weak charge carrier doping in the
different samples. These findings motivated the systematic study of κab on single crystals of
R2CuO4 with different rare earths R.
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a × b × c TN ΘD vs P D U u
(mm3) (K) (K) (m/s) (10−43s3) (10−18s) (10−31s2/K)

La2CuO4 ab (Ref. 6) 316 21 26 22 4.4
La2CuO4 ab (Ref. 11) 323 1.5 11.8 23 5.3
La2CuO4 ab (Ref. 11) 313 23.8 4.6 14.1 7
La2CuO4 ab (Ref. 7) 308 25.8 26.2 15.3 4.4
La2CuO4 c (Ref. 6) 316 15.4 14.6 17.3 6.4
La2CuO4 c (Ref. 11) 325

385 [ 83] 5200[ 84]

1.9 15.1 18.8 5.5
La2CuO4+δ 0.6 × 3 × 2.5 245
Pr2CuO4 ab 7.1 1 8.5 5.8
Pr2CuO4 c

1.7 × 1.6 × 1.4 250 361 [ 85] 6000 [ 86]
10.3 2.0 13.0 5

Nd2CuO4 ab 2 × 1 × 0.3 5 10.7 11.0 4.9
Nd2CuO4 ab (Ref. 80) 275

319 [ 85] 5900 [ 86]
0.27 11.1 9.6 4

Sm2CuO4 ab 3.2 × 3.7 × 0.4 353[ 85] 5900 1.2 16.5 21.2 5.2
Eu2CuO4 ab 2.6 × 2 × 0.3
Gd2CuO4 ab A 11 17.5 2.4 5
Gd2CuO4 c A

2 × 0.7 × 1.1 285
7.6 40.1 3.5 3.1

Gd2CuO4 ab B 1.6 × 0.9 × 0.4 290
350 5900

8.3 10.6 2.6 5

Table 4.1.: Sample sizes, Néel temperatures TN (see text and the respective references). P , D,
U and u are fit parameters for the fits of the phononic contribution of κ. P and D describe the
scattering on point defects and planar defects, respectively, whereas U and u model Umklapp
scattering (for details see Sec. 2.1.2). If available, the Debye temperatures ΘD and sound
velocities vs are taken from literature2, otherwise similar values have been used for the fits.

4.2. Structural and Magnetic Properties of R2CuO4

A common feature of La2CuO4 and R2CuO4, with R = Pr, Nd, Sm, Eu, and Gd is the layered
structure with planes consisting of a CuO2 square lattice. These planes are a good realization
of a two-dimensional antiferromagnetic S = 1

2 Heisenberg square lattice. Bi-magnon Raman
scattering [87] yields exchange constants J between ≈ 1200 − 1400K for T = 300K given
in Table 4.2. Here, only room-temperature values are listed because temperature-dependent
values are not available for all samples. Note that these values are slightly larger then the low-
temperature data, obtained by bi-magnon-plus-phonon absorption from infrared spectroscopy
for La2CuO4 and Sr2CuO2Cl2 [88, 89]. These values have been used in Refs. [27, 57, 82].

Finite inter-plane couplings J⊥ cause three-dimensional antiferromagnetic ordering with
Néel temperatures TN ≈ 250 . . . 320K (see Tab. 4.1 and 4.2). In general, the ordering temper-
ature is determined by the ratio of the inter- and the intra-plane coupling. However, crystal
quality and the oxygen stoichiometry strongly influence TN, too. For example, very small
amounts δ of excess oxygen drastically suppress TN of La2CuO4+δ [90]. Apart from the mag-
netic Cu subsystem, the compounds with magnetic rare earth ions R contain another magnetic
subsystem. In all these compounds the behavior of the Cu subsystem is very similar. However,
the details of the magnetic structure are determined by the competition between the different
couplings (Cu-Cu, R-R, R-Cu). The main consequences to the magnetic properties are as
follows:

• The two spin lattices allow various magnetic structures, with different relative orien-
2Here, the longitudinal sound velocities have been used. The value of the sound velocity is, however, irrelevant

for the used high-temperature extrapolations of the Debye fits. This is easily seen by neglecting L in Eq. 2.5:
A change of the sound velocity just rescales the pre-factors P , D, and U .
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4. Thermal Conductivity in R2CuO4

Figure 4.1.: Crystal structure of the R2CuO4 compounds. Left: The T Phase, which is realized
for La2CuO4. Here, the Cu ions are surrounded by oxygen octahedra. Right: The T’ phase for
R = Pr, Nd, Sm, Eu, and Gd. Here, the Cu ions are surrounded by oxygen plaquettes, but
have no apex oxygens.

tions of the spins. In the case of Nd2CuO4 there are temperature-dependent transitions
between different magnetic structures.

• For R = Sm and Gd the R-sublattice orders antiferromagnetically itself for low temper-
atures (T . 7K). For R = Nd a peak observed in the specific heat at ≈ 1.5K is due to
a Schottky contribution, see Sec. 4.2.2.

• The spin-wave spectrum is more complex, the R spins cause additional branches.

In the following sections these effects will be discussed. For a review of the R2CuO4 compounds
see Ref. [72].

4.2.1. Crystal Structure

La2CuO4 crystallizes in the so-called T-phase structure (also called K2NiF4 structure type),
see left panel of Fig. 4.1. The CuO4 plaquettes of the planes and the apex oxygen ions form
CuO6 octahedra. At high temperatures La2CuO4 is in the high-temperature tetragonal phase
(HTT phase). At 530K a structural phase transition takes place [91], where the octahedra
tilt, leading to the low-temperature orthorhombic phase (LTO), which is stable down to lowest
temperatures. Due to the octahedron tilt the point bisecting the nearest neighbor Cu-Cu
distance is no longer a center of inversion symmetry giving rise to a Dzyaloshinski-Moriya
(DM) type interaction. Sr2CuO2Cl2 is almost isostructural to La2CuO4 with the La3+ ions
being substituted by Sr2+ and the apex O2− by Cl− ions. In Sr2CuO2Cl2 the HTT phase is
stable down to the lowest temperature and due to inversion symmetry no DM exchange and
consequently no spin canting occurs. The R2CuO4 compounds crystallize in the tetragonal so-
called T’-structure (right panel of Fig. 4.1). While the T structure may be viewed as a stacking
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R J [K] TCu
N [K] TR

N [K] 4f GS

La 1465 250− 324 [11, 71, 72] − 1S
Pr 1243 250− 280 [92–95] − 3H4

Nd 1248 250− 277 [80, 94–103] −1 4I9/2

Sm 1300 280 [104] 4.9− 6.0 [85, 105–108] 6H5/2

Eu 1300 265 [109] − 7F0

Gd 1292 285− 295 [73, 108, 110–113] 6.4− 7.5 [106, 108, 111, 112, 114] 8S7/2

Sr2CuO2Cl2 1220 245 [71, 72, 89] − −

Table 4.2.: Exchange constants J at 300 K (Ref. [87]), Néel temperatures for various crystals
from the literature, magnetic ground state (for a free atom).

of one CuO2 layer followed by two LaO (or SrCl) layers, the stacking of the T’ structure is one
CuO2 layer followed by a layer of R3+ ions, a layer of O2− ions, and finally another layer of R3+

ions. Consequently, there are no apex oxygen ions present in the T’ structure and the basic
building blocks are CuO4 plaquettes instead of the CuO6 octahedra of the T structure. For
R = Pr, Nd, and Sm the T’ structure is stable over the entire temperature range. Eu2CuO4
and Gd2CuO4 show structural instabilities, which will be discussed in Sec. 4.2.3.

4.2.2. Cu Magnetism in R2CuO4 for R = Pr, Nd, Sm, Eu, and Gd

The antiferromagnetic ordering of the Cu2+ spins is confirmed by neutron diffraction for
R = Pr, Nd, Sm, Eu, and Gd. In Tab. 4.2 the Néel temperatures taken from various references
are listed. The transition temperatures range from TCu

N ≈ 245−295K. Details of the magnetic
structure differ depending on R. For Pr2CuO4 a non-collinear ordering of the Cu2+ spins is
observed. In this type of ordering the spins are aligned in the planes, and the orientation of
the spins in the planes alternates along the [100] and [010] direction, moving along the c axis.
Further an induced Pr ordering arises, when the temperature is lowered. However, there is no
antiferromagnetic transition of the Pr 4f spins, they order with the same propagation vector
as Cu [94]. In contrast, the magnetic structure for R = Nd is more complex. Two transitions
of the magnetic structure at T = 75 and 30K are found, where the magnetic structure switches
between different noncollinear structures[94]. Below 1.5K an increase of the Nd 4f moment
was observed [99]. A peak in the specific heat at the same temperature was attributed to an
antiferromagnetic transition of Nd driven by the Nd-Nd exchange interaction [106]. However,
as pointed out in Refs. [115, 116], the Nd moments do not order, but are polarized by the Cu
ordering. The peak in the specific heat can be attributed to a Schottky anomaly due to the Nd
level splitting. It follows that the Nd moment continuously gets larger if the temperature is
lowered, as for Pr. The noncollinear spin structure in Nd2CuO4 can be changed by applying a
magnetic field. For H ‖ [100] a spin-flop transition at Hc = 4.5T turns the magnetic structure
into a collinear state [117].

For Sm2CuO4 the spin structure is collinear with no reorientation transitions of the Cu2+

spins. However, a Néel transition of the R ions is observed at 5.9K, which will be discussed in
detail in Sec. 4.2.4. Eu2CuO4 is the first compound of the series, where a structural distortion

1The observed transition in the specific heat at 1.5 K discussed in Ref. [106] turned out to be a Schottky
peak, see Sec. 4.2.4 and 4.6.2.
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4. Thermal Conductivity in R2CuO4

occurs, see Sec. 4.2.3. In Eu2CuO4, the 4f moments of the Eu3+ ion have a 4f6 configuration
leading to an nonmagnetic J = 0 ground state, and the Eu magnetism is dominated by a
van Vleck contribution. Consequently, there is no 4f moment, and the magnetic structure is
determined by the Cu solely [118]. In Ref. [109] the authors proposed two possible magnetic
structures, a collinear and a non-collinear one. For R = Gd the structural distortion gets
stronger, and leads to a complex magnetic behavior of the Cu subsystem, see also Sec. 4.2.3.
Further, as will be discussed in Sec. 4.2.4, as for R = Sm, a low-temperature Néel ordering of
the Gd moments occurs.

4.2.3. Structural Distortions and Magnetism for R = Gd, Eu

In Eu2CuO4 and Gd2CuO4 structural phase transitions are observed with transition tempera-
tures of 170K and 685K, respectively [119, 120]. The structural changes can be described by
an alternating rotation of the CuO4 plaquettes around the c axis. The rotation angles amount
to 2.3◦ at 20K for R = Eu and to 5.2 ◦ at 300 K for R = Gd [119, 120]. The occurrence
of the phase transition is interpreted as a consequence of an increasing mismatch of different
bond lengths which develops with decreasing size of the R3+ ions. These structural transitions
transform the T’ structure into an orthorhombic structure. However, these crystals are usually
strongly twinned with respect to the a and the b axes.

Because of the distorted phase at low temperatures, weak ferromagnetism caused by the
DM interaction, is possible. Weak ferromagnetism means, that a collective canting of the
Cu2+ spins leads to a finite macroscopic magnetic moment.

In Gd2CuO4 weak ferromagnetism is established, and was investigated by several groups [112,
121–126]. Below TCu

N ≈ 287K a spontaneous magnetic moment arises. The measured moment
is mainly caused by the Gd 4f moments, which are polarized by the canted Cu spins (for the
data of our crystals see Fig. 4.7). In principle, one would expect that the weak ferromag-
netic moment remains down to lowest temperatures. However, the interactions with the Cu
sublattice leads to a more complex behavior. If the temperature is lowered, the magnetic
moment monotonously increases, but suddenly dispears at Tc = 20K. This was interpreted
as a disappearance of the weak ferromagnetism by. Ref. [121]. The authors find by magneti-
zation measurements, that the weak ferromagnetism between TGd

N and Tc is restored in small
in-plane magnetic fields & 0.4T. The Néel ordering of Gd at 6.5K will be discussed in the
next section.

For Eu2CuO4 weak ferromagnetism was not seen in Ref. [118], but as pointed out in
Ref. [127] occurrence of weak ferromagnetism is in principle possible, and depends on the
sample preparation, e.g. on the used crucibles. For our sample, however, no weak ferro-
magnetic moment is observed, the magnetic susceptibility shows no anomalies in the relevant
temperature range (see Sec. 4.4). The observed anomaly at TCu

N in Ref. [127] requires an
already distorted structure at TCu

N ≈ 240K, which is above the observed phase transition tem-
perature [120]. A possible reason to explain this contradiction is that the sample in Ref. [127]
is already distorted at TCu

N , what seems reasonable, because the investigated sample is not
pure Eu2CuO4, but contains a small amount of Gd, which may drive the structural transition
to a higher temperature.
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Figure 4.2.: Left: Specific heat of Gd2CuO4 taken from Ref. [128]. For H = 0 T a peak
at TGd

N = 6.5 K can be attributed to a Néel transition of the Gd moments. TGd
N is strongly

suppressed by large magnetic fields. Right: Specific heat of Sm2CuO4 taken from Ref. [129]. For
zero field a similar peak as for Gd2CuO4 is observed, which can be attributed to T Sm

N = 5.9 K.
In contrast to Gd2CuO4, a magnetic field of 11 T has only a small effect to the transition
temperature.

Figure 4.3.: Magnetic structure of R2CuO4 with R=Sm, Gd. The R moments are ferromag-
netically aligned in the planes, and antiferromagnetically ordered along the c direction. The
propagation vector of the R ordering is k = (0, 0, 0), in contrast to the ( 1

2 , 1
2 , 0) ordering of Cu.

For R=Gd the spins are oriented along the [110] direction, for R=Sm along [001]. The graphs
are taken from Ref. [130].
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4.2.4. Néel Ordering of the R-Moments at low Temperatures

At low temperatures antiferromagnetic Néel ordering of the R moments occurs for R = Gd and
Sm. Here, the ordering of the 4f moments is a symmetry breaking phase transition, which is
different to e.g. Pr2CuO4, where the ordering of the R moments is induced by the Cu ordering.
The transition is driven by the R -R exchange interaction. The Néel temperatures are 6.5K
for Gd, and 5.9K for Sm, for references see Tab. 4.2. Specific heat data, see Fig. 4.2, clearly
show that a phase transition occurs. The propagation vector of the ordering is k = (0, 0, 0).
This might be confusing, since this is a ferromagnetic wave vector. The reason is that there
are two spins in each unit cell with opposite signs. Their moments cancel each other. Even
if the Néel temperatures are almost the same, the nature of the ordering is different for the
two compounds. Gd2CuO4 is a so-called easy-plane antiferromagnet, whereas Sm2CuO4 is an
easy-axis antiferromagnet. In Gd2CuO4 the R spins form ferromagnetic planes parallel to the
CuO2 planes, which are ordered antiferromagnetically along the c direction and are aligned
along the [110] direction, see Fig. 4.3a and Refs. [130, 131]. The corresponding magnetic point
group changes from mmm to mm′m. This means that for a mirror symmetry operation along
the (orthorhombic) b axis the time has to be reversed, too. This is not the case for the other
directions3. In Sm2CuO4 the magnetic structure looks similar, with the difference that the
spins are oriented along the [001] direction, Fig. 4.3b. Here, the magnetic point group denotes
m′m′m′. If a magnetic field is applied, for R = Gd the antiferromagnetic transition is almost
suppressed by a field of 11T, whereas for R = Sm the shift of the transition temperature
is only about 100mK, see the specific heat data in Fig. 4.2 (Refs. [128, 129]). The origin
of the different behavior is based on the different orbital states (see Tab. 4.2). Gd2CuO4
has a vanishing orbital moment which causes only a weak coupling to the crystal field. The
competition of different weak anisotropy interactions causes the observed spin orientation. If
an external magnetic field H > Hc is applied, the Zeeman energy leads to a destruction of
the antiferromagnetic order. This is the spin-flip transition, and above Hc all Gd spins are
ferromagnetically aligned. At 1.5K magnetization measurements give Hc = 11T [130, 131].
Now, the strong suppression of TGd

N can be understood, the value of Hc = 11T corresponds
to TGd

N (11 T) ≈ 1.5 K in the temperature-dependent measurement of the specific heat.
In Sm2CuO4 the strong orbital moment causes a large single-ion anisotropy, which on the

one hand leads to the orientation of the Sm spins along the c direction, on the other hand
explains the observed weak magnetic-field dependence. For a phenomenological description of
the R ordering in Gd2CuO4 and Sm2CuO4 see e.g. Ref. [130].

4.2.5. Spin Waves

Collective excitations of an ordered antiferromagnet are called spin waves. Because of the two
magnetic subsystems in R2CuO4 different branches are expected for Cu and R. The spin-
wave spectrum has been studied experimentally and theoretically for R = Nd and Pr. The
main findings are several low-energy branches, which are associated with the Nd moments
(E < 1meV), whereas the Cu branches have higher energies (E > 5meV). It is important
to notice that the spin-wave differs in the different magnetic phases. Sachidanandam et al.
proposed a model for the spin-wave spectrum in Nd2CuO4. One prediction is a low-energy

3Note that a spin does not change its sign in a mirror operation, if the direction of the spin is parallel to the
normal vector of the plane. If the spin is oriented parallel to the plane, the sign changes. A simple picture
for this can be drawn by representing the spin as small circuit currents, and mirror these currents.
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acoustic mode, with a very small gap. This gap can be closed by experimentally accessible
magnetic fields. Petitgrand et al. investigated experimentally and theoretically mainly the
spin-wave spectrum of Pr2CuO4 [132] with similar results.

For the other rare-earth cuprates there are to my knowledge no investigations concerning
the spin-wave excitations. The main reason is the difficulty of neutron-scattering experiments,
because of the large neutron absorption cross section of these elements.

4.3. Thermal Conductivity of R2CuO4: Literature Data

The first observation of an unusual temperature dependence of the thermal conductivity κ
in cuprates was published by Morelli et al. in 1989 [133]. These authors observed a strong
increase of thermal conductivity with increasing temperature after a minimum at about 30K,
and attributed this feature to unusual phonon scattering. The first systematic investigation
including in- and out-of-plane data was published by Nakamura et al. in 1991 [6]. In this
paper the thermal conductivity of La2-xSrxCuO4 was investigated for different crystallographic
directions on single crystals for various Sr-doping levels. Figure 4.4 shows this data. The most
surprising feature of these curves is the occurrence of a double-peak structure of κ for the ab
direction (left panel), which is missing for a heat current along the c direction. Nakamura et al.
already suggested the possibility of a magnetic contribution within the ab planes, which was
denied by Morelli et al. [133]. As already mentioned in the introduction, the interpretation
in terms of a magnetic origin was further questioned by Cohn et al. [81]. These authors
investigated the in-plane thermal conductivity of YBa2Cu3O7 − x, also showing a double peak
structure, and proposed an explanation based on phonon scattering by optical phonons. Since
then several publications which address the thermal conductivity of La2CuO4 single crystals
have been published [7, 8, 11]. In Ref. [7] the authors systematically investigated the influence
of Zn and Sr doping for small doping levels. Another focus in the literature is the low-
temperature phononic contribution to investigate e.g. superconductivity and stripe phases.
In this respect, mainly doped crystals have been measured [11, 134–142].

Compared to the broad database for La2CuO4, literature data of R2CuO4 are scarce. For
Pr2CuO4, Inyushkin et al. [143] published in-plane data, but the high-temperature depen-
dence of κ is not discussed in this publication. Sologubenko et al. published data of Zn-doped
Pr2CuO4 polycrystals. Sun et al. investigated the in-plane an out-of-plane thermal conduc-
tivity of Pr1.3La0.7CuO4 for 0.3 ≤ T ≤ 300K [139, 144]. In the first paper the focus is the
influence of Ce doping, whereas in the second paper magnetic-field dependent measurements
at low temperatures are presented. Further literature data is available for Nd2CuO4 [10, 80].
In these publications the authors focus on the low-temperature thermal conductivity and
the influence of magnetic fields (see next section). However, the paper of Jin et al. shows
the in-plane thermal conductivity of Nd2CuO4 up to room-temperature. To my knowledge,
no literature data are available for R = Sm, Eu, and Gd as well as for out-of-plane thermal
conductivity data for all R2CuO4 compounds.

4.3.1. Thermal conductivity by Nd Spin Waves in Nd2CuO4?

In Ref. [80] Jin et al. investigated the in-plane thermal conductivity of Nd2CuO4 down to
2K in magnetic fields applied along different in-plane directions. Fig. 4.5 shows the κab vs.
field data of these authors. For the magnetic field applied along the [100] direction and a
temperature of 10K, κab first decreases, up to a field Hc = 4.5T, and then increases again.
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4. Thermal Conductivity in R2CuO4

Figure 4.4.: Thermal conductivity data κab (left panel) and κc (right panel) for La2-xSrxCuO4
taken from Ref. [6]. For x = 0, a broad maximum is observed in κab at T ≈ 290 K which is
absent for κc. For Sr doping κ is strongly suppressed.

This increase gets stronger at lower temperatures, and is attributed to a magnetic contribution
to κab by thermal Nd spin waves. We will call this a ”magnon” contribution, to distinct this
kind of magnetic thermal conductivity from the high-temperature magnetic contribution which
will be discussed in Sec. 4.5.4. The decrease is attributed to phonon-magnon scattering, and
the authors estimate the magnon contribution to κab by subtracting a linear fit of the low-
field thermal conductivity, as depicted in the figure. In this picture the magnetic contribution
is only present in a magnetic field, which is attributed to a small spin-wave gap, which is
closed at the critical field Hc, coincident with a spin-flop transition. The authors develop a
phenomenological model based on the calculated spin-wave dispersion from Ref. [132].

Li et al. performed a similar investigation, however, they present κab from 10K down to
50mK and applied the magnetic field along the a and the c direction [10]. Below ≈ 0.5K the
thermal transport becomes ballistic and the heat carrying excitations are only scattered by the
crystal boundaries. The authors argue that below 500mK the thermal conductivity in zero
field is purely phononic due to the spin-wave gap. In a magnetic field of 10T, H ‖ ab, a drastic
enhancement of κ is observed. The possible magnon contribution is extracted via κmag =
κab(10 T ‖ a) − κab(0T). The extracted magnon contribution is shown in Fig. 4.6. A closer
inspection yields a T 2.6 dependence of the phononic part due to specular scattering [145], and
a T 3 dependence of the magnetic contribution, what allows a distinction of both contributions
to κab. For higher temperatures the authors conclude from the field dependence of κ with
respect to the direction of the magnetic field that both magnons and phonons scatter strongly
on each other.

The interpretation of the unusual field dependences in terms of magnon contributions /
magnon-phonon scattering used in Refs. [10, 80] was questioned by Sun et al. [144]. These
authors observed magnetic-field dependences at low temperatures in Pr1.3La0.7CuO4 samples,
for measurements along the a and the c axis with magnetic fields applied along different di-
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Figure 4.5.: Magnetic field depen-
dent in-plane thermal conductivity of
Nd2CuO4 at fixed temperatures from 2
to 18 K taken from Ref. [80]. In panel
a) H is applied along the [100] direction,
in panel b) along [110]. The lines are
estimated phononic contributions assum-
ing phonon-magnon scattering linearly
suppressing κ vs H. In Ref. [80] the
difference of the measured κab and the
lines (above Hc = 4.5 T) is attributed
to a magnon contribution to κab by spin
waves.

rections. The authors argue that because of the dilution of the Pr moments the magnon
contribution should be negligible. A further argument against a magnon contribution comes
from the comparison of the temperature of the field Hmin, where the field-dependent mea-
surements show the minimum with the spin-flop field Hsf taken from Ref. [146]. Jin et al.
attributed the minima in κ(H) to the spin-flop transition, which should give a similar temper-
ature dependence of Hmin and Hsf . Sun et al. further argue, that the minimum of κ is caused
by resonant scattering process on free S = 1/2 spin moments.

Figure 4.6.: κmag = κab(10 T ‖
ab)−κab(0T) vs. T 3 for Nd2CuO4
from Ref. [10]. The authors at-
tribute the observed T 3 depen-
dence to 3D magnons and ar-
gue, that the magnon contribu-
tion can be distinguished from the
phononic contribution (≡ κ(0T)),
which has a T 2.6 temperature de-
pendence.

37



4. Thermal Conductivity in R2CuO4

0 100 200 300
0.0

0.2

0.4

0.6

200 220 240 260 280 300
1.0

1.5

2.0

2.5

270 280 290 300
0.00

0.02

0.04

0 100 200 300
0

500

1000

1500

2000

0 10 20 30
0.2

0.3

0.4

0.5

0.6

 Sample A
 Sample B

Gd
2
CuO

4

 

 

 (e
m
u/

m
ol

) p
ro

 G
d

T (K)

a)
bg

d)

Pr
2
CuO

4

 (1
0-4

em
u/

m
ol

)

 

 (1
0-4

em
u/

m
ol

)

T (K)

La
2
CuO

4+

T
N

b)

Gd
2
CuO

4

-
bg

 (e
m
u/

m
ol

 G
d)

 

 

T (K)

 Sample A
 Sample B

Sample A:    a = 0.15   T
N
 = 290K    = 0.5

Sample B:    a = 0.18   T
N
 = 285K   = 0.6

c)

 

 

In
te

ns
ity

 (a
.u
.)

T (K)

  

 

 

TGd
N

Figure 4.7.: a) Susceptibility for two Gd2CuO4 crystals [147]. There are three anomalies, at
TGd

N ≈ 6.5 K, 20 K, and TCu
N ≈ 290 K. Inset: The same data up to 30 K. b) Susceptibility of

Gd2CuO4 around TCu
N and fits of the weak ferromagnetic moment (lines). c) Neutron scat-

tering intensity of the magnetic ( 1
2 , 1

2 , 0) reflection of Pr2CuO4 [148]. d) Susceptibility of the
La2CuO4 + δ crystal. The Néel temperature is at the peak position [149].

4.4. Samples

The R2CuO4 single crystals have been grown by S. Barilo from the Institute of Solid State &
Semiconductor Physics in Minsk. They were grown in Pt crucibles by the top-seeded solution
method as described in Ref. [152]. The La2CuO4 crystal is from F. Nakamura, Department
of Quantum Matter, ADSM, Hiroshima University. It is grown by a traveling-solvent floating-
zone method.

All crystals have been oriented using a Laue camera and cut into rectangular pieces. Sample
sizes are listed in Table 4.1. The accuracy of the orientation with respect to the crystal axes
is about 2◦. Since the Sm2CuO4 crystal has approximately the shape of a cuboid, it has not
been cut. Here, the misalignment with respect to the c axis amounts to ' 10◦. The shape of
Pr2CuO4 and Gd2CuO4 allowed measurements of κc with a heat current jH parallel to the c
axis, i. e. perpendicular to the CuO2 planes, and of κab with jH within the CuO2 planes. For
R = Nd, Sm, and Eu, we could only measure κab, because these crystals were very thin with
lengths of less 0.4mm parallel to the c axis. For R = Pr, Nd, and Gd we measured κab with
jH parallel to the a′ axis of the HTT phase, which has an angle of ' 45◦ with respect to the
orthorhombic a and b axes. For R = Eu and Sm jH had an arbitrary orientation with respect
to the a and b axes. Therefore the magnetic field direction in the latter compounds was also
in an arbitrary in-plane direction for the measurements with H 6= 0T.

The finite DM interaction for R = La and Gd causes a weak ferromagnetic moment, which
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4.4. Samples

Figure 4.8.: 4f level scheme
for Pr2CuO4, Nd2CuO4, and
Sm2CuO4, taken from Ref. [150].
Energies are given in meV. The
level schemes are shown for the
tetragonal crystal field. The cubic
level scheme is obtained by setting
the non-cubic part of the crystal
field to zero.

allows an easy determination of the Néel temperatures TN by measurements of the magnetic
susceptibility χ. For Gd2CuO4, J. Baier and H. Roth performed measurements of χ(H||ab) on
two different crystals (labeled Sample A and Sample B) in a SQUID-magnetometer (Cryogen-
ics). The curves are measured in a magnetic field of 50mT with increasing temperature after
cooling the samples in the field (field cooled, FC). Fig. 4.7a shows the measured susceptibility
for both crystals. The low-temperature behavior is complex as discussed in Sec. 4.2.3. At
T ≈ 290K one can see the spontaneous increase of χ with decreasing temperature which is
caused by the weak ferromagnetic moment. Panel b) of Fig. 4.7 shows this temperature range
in more detail. To determine TCu

N , the data are fitted by

χ(T ) = a

(
1− T

Tc

)β

+ χ0, (4.1)

what describes a ferromagnetic moment near the transition for T < Tc [16]. The background
contribution is estimated as χ0 = 0.025 emu/mole and is mainly due to the paramagnetic
signal of the Gd 4f moments4. The fits yields the values of TN listed in Tab. 4.15, the other
fit parameters are listed in Fig. 4.7. The value TN ' 288K is in agreement with the highest
values reported for Gd2CuO4 [123, 153].

For R = Pr, Nd, Sm, and Eu susceptibility measurements were performed by M. Kriener
in a vibrating sample magnetometer (VSM). The results of these measurements are shown in
Fig. 4.9. The susceptibilities were also calculated using the CFT Mathematica package[36] (see
Sec. 2.4 for details). The crystal field parameters were taken from Refs. [150, 154, 155]. The
theoretical results were compared to calculations from Ref. [150]. These authors calculated
the susceptibility for R = Pr, Nd, and Sm, based on the crystal field splitting of the 4f

4We use a temperature independent background contribution χ0, since the weak temperature dependence of
χ0 has no influence on TN.

5These values are slightly smaller than in Ref. [73], since there the background contribution χ0 was neglected.
However, the difference of the estimated TN is very small.
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Figure 4.9.: Magnetic susceptibility of R2CuO4 with R =Pr, Nd, Sm, and Eu. Shown are
data measured by M. Kriener in a VSM in FC configuration in 50 mT (open symbols) and
literature data (close symbols) taken from Refs. [85, 118]. Lines for R = Pr, Nd, and Sm: Our
calculations of χ. Dotted line for Sm2CuO4: Calculation from Ref. [150]. Line for Eu2CuO4:
Fit according to Ref. [151], see text.

multiplet. This calculation is restricted to the Hund’s rule J ground state multiplet, whereas
our calculation includes all multiplets. Fig. 4.8 shows the calculated splitting of the (2J + 1)-
fold degenerate ground state. Here, the level schemes in the tetragonal and cubic crystal field
are shown6. The results of our calculations are plotted as solid lines in Fig. 4.7.

Fig. 4.7a shows the data of Pr2CuO4. Here, χ‖ with H ‖ a and χ⊥ with H ‖ c were mea-
sured (closed symbols). For comparison data obtained by Hundley et al. [85] are also shown
(open symbols) and are in very good agreement with our data. The susceptibility is strongly
anisotropic. The calculated susceptibility χ‖ is somewhat too high, but gives a good descrip-
tion of the data, taking into account, that the calculation is based on the experimentally
obtained crystal field energies, with no additional fit parameters. Panel b) presents the results
of χ‖ for Nd2CuO4. The agreement with the literature and the calculation is also good. Our
calculated susceptibilities for R = Pr and Nd are in good agreement with the results from
Ref. [150]. For Sm2CuO4 (panel c) χ‖ was measured. Here the data are smaller than the data
taken from the literature. This may be partly caused by a misalignment of the sample (see
Sec. 4.4), since χ⊥ is smaller in Sm2CuO4 [85]. Our calculation gives a good description of the
data, in contrast to the calculation taken from Ref. [150]. The reason herefore is an additional
van Vleck contribution to χ‖ due to level mixing with the J = 7/2 excited state [150]. This

6According to Ref. [150], the tetragonal crystal field is a unique linear combination of cubic and non-cubic
elements. It follows, that the cubic components can be obtained by switching off the noncubic elements.
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effect is negligible for R = Pr and Nd, where the excited states have much higher energies.
In Eu2CuO4 (panel d) the van Vleck term of Eu3+ dominates. The data agree qualitatively
with the literature [118]. However, the low-temperature data are too small, and there is an
unexpected minimum at T ≈ 50K. The increase at lowest temperatures can be attributed to
paramagnetic impurities, but the reason for the minimum is not clear, and has most likely an
experimental reason. At present, the 4f6 Hamiltonian is not implemented in the CFT Math-
ematica package[36], so another approach is used. In Eu2CuO4 (Fig. 4.7d) the susceptibility
is also highly anisotropic due to the tetragonal crystal field. M. Hücker performed a detailed
analysis of the anisotropic van Vleck magnetism of Eu3+ in a tetragonal crystal field [151].
The Eu3+ van Vleck susceptibility is determined by three parameters, the crystal field param-
eter BJ=1

20 , and the level splitting of the 7F0 ground multiplet to the higher J multiplets 7F0

(splitting E1) and 7F2 (splitting E2 = 3E1). A fit by Eq. 8.7 from Ref. [151] yields the values
BJ=1

20 = −39K and E1 = 590K, and gives a good description of the data7.
For La2CuO4+δ, TCu

N can easily be determined by the maximum of the susceptibility [156].
H. Hartmann measured the susceptibility χ⊥ in a VSM, in a magnetic field of 0.1T in a
FC configuration. Panel d) of Fig. 4.7 shows the data and we obtain TN = 245K, which is
comparatively low (TN (δ = 0) ≈ 325K [11]). This suppression is due to a significant amount
of excess oxygen, which the samples adopt automatically if they are stored in air. Usually
La2CuO4 + δ samples are annealed in vacuum to obtain a good stoichiometry (δ ≈ 0), but
here the purpose was to measure a sample with a low TN , and the sample was not annealed.
Because of phase separation effects, the Néel temperature is not sufficient to determine the
oxygen content, this will be discussed in Sec. 4.5.1. The determination of TN from χ(T )
does neither work in the undistorted samples with R = Pr, Nd, and Sm, since there is no
weak ferromagnetism nor for R = Eu, where the structural transition takes place below TN.
According to Ref. [80] there is a slope change of χab at TN in Nd2CuO4. However, we could not
reproduce such a feature in χab of our crystal. For Pr2CuO4, D. Senff determined TN ' 250K
at the Laboratoire Leon Brillouin, Saclay by neutron diffraction, see Fig. 4.7c. This value is
well below the maximum values up to TN ' 280K reported for this compound (see Tab. 4.2).

Unfortunately, the Nd2CuO4 crystal is too small for neutron diffraction and this method
cannot be applied for R = Eu and Sm because of the large neutron absorption cross section
of these elements.

4.4.1. Contributions by Paramagnetic Impurities

At low temperatures an additional contribution due to paramagnetic impurities is possible.
In the following we will estimate the impurity contents of our samples, because paramagnetic
impurities can play an important role for the thermal conductivity. If the intrinsic suscepti-
bility becomes temperature independent for T → 0, an additional Curie-like behavior of the
susceptibility can be observed. This is the case for Pr2CuO4 and Eu2CuO4, see Fig. 4.9. Here
the Curie contribution can be obtained by fitting the low-temperature susceptibility by

χP (T ) = χ0 + C/(T −Θ), (4.2)

where χ0 is the temperature-independent contribution, C the Curie constant and Θ the Curie-
Weiss temperature. These fits were performed up to 25K, and the results are listed in Tab. 4.3.

7In Ref. [151] the values E1 = 545K and BJ=1
20 = −165K were obtained for Sr doped La1.8Eu0.2CuO4 (which

has a different structure).
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Figure 4.10.: Thermal ex-
pansion of R2CuO4 with R
= Sm, Eu, and Gd. For
R = Sm αab (�) and αc

(�) show large anomalies at
T Sm

N , whereas the anomaly
in αab for TGd

N (N) is much
smaller (see Inset). For
R = Eu (◦) no anomalies
are observed [157, 158].

χ(T ) M(H)

H C χ0 Θ n χ0 g n C

10−3 emuK
mole 10−3 emu

mole K 10−3 10−3 emu
mole 10−3 10−3 emuK

mole

Pr2CuO4 ab 11.0 26 −0.76 2.9
Pr2CuO4 c 5.0 4.0 −0.38 1.3
Eu2CuO4 ab 3.2 11.0 2.1 0.9 11.0 2.0 0.40 1.6

2.4 0.33 1.8
Sm2CuO4 ab 3.6 2.0 0.9 3.4

3.0 0.6 5.0
Sr2CuO2Cl2 ab 1.24 −4.6 0.3
Sr2CuO2Cl2 ab 6.95 0.0 0.2

Table 4.3.: Parameters for the low-temperature paramagnetic susceptibility for R2CuO4 with
R = Pr, Sm, and Eu; and Sr2CuO2Cl2. The left side of the table shows the values extracted
from the temperature-dependent susceptibility measurements (Fig. 4.9); the right sight the
values estimated by the magnetization curves (Fig. 4.11). If no other values is listed, a g factor
of 2 was used for the estimations. The values for Sr2CuO2Cl2 are taken from Ref. [146].

The accuracy of the determination of C is limited, because the assumption of a constant
χ0 is not perfectly fullfilled. The g factor of the impurities seems to be anisotropic, from
g||/g⊥ =

√
C||/C⊥ it follows an anisotropy of 1.3 . . . 1.5. An other way to estimate the para-

magnetic contribution, is to analyze the magnetization at low temperatures. Fig. 4.11 shows
the magnetization curves at ≈ 2K up to 14T for Eu2CuO4 and Sm2CuO4. In Eu2CuO4, see
the upper panel, M(T ) is almost linear, since the paramagnetic Eu contribution dominates.
The paramagnetic impurity contribution MP is extracted by a linear fit MEu = χ0 ∗H + M0

for high magnetic fields, which is subtracted from the data. The total magnetization data are
scaled by a factor of 50. The resulting curve is fitted by a Brillouin function

M(H) = NgJµBBJ(x) and x = gJmBH/kBT. (4.3)

N = n ·NA is the amount, J the total momentum and g the g factor of the paramagnetic
moments. The size of the Curie constant makes it unlikely that the Curie contribution is
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Figure 4.11.: a): Magnetization of Eu2CuO4. The paramagnetic contribution is extracted
by subtracting a linear high-field fit. Lines are calculated magnetization curves according to
Eq. 5.6. b): The same for Sm2CuO4.

caused by foreign atoms. Further in Ref. [144] χP showed an annealing dependence, which
is not expected if it is caused by foreign atoms. In this paper an amount n ≈ 1% of free
S = 1/2 moments is estimated. Because C is of the same order of magnitude for Pr2CuO4,
Pr1.3La0.7CuO4, Sr2CuO2Cl2, and Eu2CuO4, the most likely origin of χP is the occurrence of
nearly free Cu2+ moments due to crystal imperfections or impurity phase inclusions, yielding
J = 1/2. This explanation was proposed in Sr2CuO2Cl2 [146], where similar values of C were
observed. The g factor is also not known, so it was either set to 2.0 or fitted. The fits are
shown as solid lines in Fig. 4.11. The description of the data is good, with slightly better
fits if g is fitted, too. However, one has to keep in mind the large ”background” from the R
moments, which makes it likely that MP has an large uncertainty. Therefore the value for the
g factor should not be taken to litterally. For Eu2CuO4 the difference of the Curie constant
obtained from M(H) and χ(T ) is considerably large (a factor of two), which is due to the
uncertainty of the background estimation for both cases.

4.4.2. Thermal Expansion

To check, if the antiferromagnetic Néel transitions of the Sm and Gd moments are present
and to determine the Néel temperatures, the zero-field thermal expansion was measured by
M. Kriener. Fig. 4.10 shows the low-temperature data. In the main panel αab and αc for
Sm2CuO4 are shown. In Sm2CuO4 for both directions a large peak is seen at TN = 5.9K,
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Figure 4.12.: In-plane
(κc) and out-of-plane
(κab) thermal conductivity
of Gd2CuO4. κab was
measured on two different
crystals. Solid lines are
fits by the Debye model
and the dashed line is κc

multiplied by a factor of
1.25 (see text) [57, 73, 74].

which is typical for a second-order phase transition. In comparison to αc, the anomalies of αab

are much smaller in Sm2CuO4, and plotted enlarged in the inset of Fig. 4.10. For Gd2CuO4
a small anomaly is seen at TN ≈ 6.7K, which shows that the Néel transition is present.

The thermal expansion of Eu2CuO4 was measured as a reference by J. Baier. Here, the
lattice contribution is dominant, which is much smaller then the effects caused by the Néel
transition. Unfortunately no information about the structural phase transition could be ob-
tained in this measurement, because the used dilatometer does not work well for temperatures
higher than ≈ 150K.

4.5. Experimental Results: Zero Field

4.5.1. Gd2CuO4 and Pr2CuO4

Fig. 4.12 shows the thermal conductivity of Gd2CuO4 measured on two different crystals.
Sample A allowed to measure κab and κc, whereas Sample B was too thin to measure κc.
In Fig. 4.13 we display κab and κc of Pr2CuO4. Apart from differences around the low-
temperature maximum, which is very sensitive to the sample quality, the data agree well to
the previously reported κab of Pr2CuO4 [143]. For both compounds κc follows the typical
temperature dependence of the thermal conductivity of acoustic phonons. As shown by the
solid lines, κc can be reasonably well described within a Debye model. The fits are done using
Eqs. 2.5 and 2.6, see Sec. 2.1.2 and the corresponding fit parameters are given in Table 4.1.

In both crystals κab exceeds κc over the entire temperature range. The low-temperature
maxima of κab and κc for Gd2CuO4 are slightly shifted in temperature. The most striking
anisotropy is, however, the additional, broad maximum of κab around 250 K. Although the
low-temperature maxima of κab strongly differ for the two crystals with R = Gd indicating
differences in the crystal quality, the magnitudes of their high-temperature maxima are almost
identical. In Pr2CuO4 κab also shows an additional high-temperature maximum, but its
magnitude is less pronounced (see section 4.5.4).

The double-peak structures of κab cannot be modeled by the usual Debye model, but it
is possible to describe the low-temperature maxima up to about 50 K. Comparing the cor-
responding fit parameters of κab and κc (see Tab. 4.1), the largest differences are found for
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mal conductivity of Pr2CuO4.
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the parameter D, which is significantly larger for the fits of κc than for those of κab. This
parameter gives the strength of phonon scattering by planar defects and it appears reasonable
that due to the layered structure of R2CuO4 scattering by planar defects should be more
effective for a heat current perpendicular to the planes than for jH within the planes. Thus
the different magnitudes of the low-temperature maxima of κc and κab can be interpreted as
a consequence of the layered structure. The high-temperature maxima of κab around 250 K
will be discussed in section 4.5.4.

4.5.2. Nd2CuO4, Sm2CuO4, and Eu2CuO4

In Fig. 4.14 the in-plane thermal conductivities κab of Nd2CuO4, Sm2CuO4, and Eu2CuO4 are
shown. The data of R = Nd and Sm are very similar to each other and also to those of R = Pr
and Gd. In all crystals κab exhibits a well defined low-temperature peak around 20 K and an
additional broad maximum around 250 K. For R = Nd similar results have been obtained by
Jin et al. [80], but κab of our crystal is systematically lower in the entire temperature range
(see inset of Fig. 4.14). For Eu2CuO4, the low-temperature peak of κab is almost completely
suppressed. As described above, for R = Eu a structural transition takes place at around
170K. The suppression of the low-temperature peak is most probably a consequence of this
structural instability, which prevents a strong increase of the phonon mean free path at low
temperatures. In contrast, however, the high-temperature maximum of κab is hardly affected
by this structural transition. The high-temperature maximum for Eu2CuO4 is even more
pronounced than for the structurally stable crystals with R = Nd and Sm.

4.5.3. La2CuO4 + δ

In contrast to the rare earth cuprates, La2CuO4 can be easily doped by a significant amount
of oxygen. For small oxygen doping levels, the main effect is a suppression of TCu

N already for
very small amounts of oxygen [159, 160]. For higher oxygen doping levels, however, the phase
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Figure 4.14.: In-plane
thermal conductivity of
Nd2CuO4, Sm2CuO4, and
Eu2CuO4. For R = Eu the
low-temperature maximum
is suppressed [57, 73]. The
inset compares κab (•) of
our Nd2CuO4 crystal with
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diagram turns out to be very complex. This is because of a phase separation in oxygen-rich
and oxygen-poor regions [72, 161] occurs. Temperature-dependent resistivity measurements
show various transitions, with a complex doping and temperature dependence [162]. The in-
plane electrical conductivity σab for our crystal is shown in Fig. 4.15b. Four transitions can
be observed in the measurements, which are clearly seen in the derivative of σab, Fig. 4.15c.
The transition at 35K is the superconducting transition. The three transitions at high tem-
peratures are labeled Tf , Tm, and Ts in analogy to Ref. [162]. The anomalies at Tf and Tm

are hysteretic. These findings agree with the literature data from Ref. [162]. Comparison of
the in-plane resistivity with Ref. [162] yields δ ≈ 0.01 for our crystal. The temperature of
the transition at Ts, was taken as a reference for the comparison.

Fig. 4.15a shows the thermal conductivity results for the ab plane and for the c direction.
The qualitative behavior of κab is the same as for La2CuO4 + δ with δ ≈ 0 (Fig. 4.4), a
double-peak structure of κab as a function of temperature. However, the absolute values of
the low-temperature maximum as well as the high-temperature maximum of κab are smaller
for our sample. An additional anomaly is observed at T = 290K for κab, which is absent for
κc. We conclude that the anomaly is due to a change of the magnetic contribution to κab. A
similar feature was observed in [142] and attributed to the Néel temperature. However, this
turned out not to be the case [162, 163]. The comparison of κab and σab clearly shows that
the transition in κab can be attributed to the transition at TS , which is much higher than TCu

N

for our crystal, in agreement with Refs. [162, 163].
In contrast to TS , the other anomalies seen in σab do not cause any anomalies in the thermal

conductivity.

4.5.4. Discussion: Zero Field

The results of κc of Pr2CuO4 and Gd2CuO4 together with κc of La2CuO4 (Refs. [6–8, 11])
clearly reveal that, on the one hand, the out-of-plane thermal conductivities of all these
compounds of slightly different structures (tetragonal and orthorhombic T’, and orthorhombic
T) do not exhibit any indications of an anomalous high-temperature behavior. On the other
hand, all in-plane conductivities clearly show additional broad high-temperature maxima.
The fact that these high-temperature maxima are present in crystals without (R2CuO4 with
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is seen in κab. The transitions at 200 K and 250 K are hysteretic, but are not seen in κab. c)
Temperature derivative of σab.

R = Pr, Nd, Sm, and Sr2CuO2Cl2) or with (different) structural instabilities (T: R = La;
T’: R = Eu and Gd) unambiguously shows that the anomalous contribution to κab does not
depend on the existence of structural instabilities. This complements the previous suggestion
based on a comparative study of κ of Sr2CuO2Cl2 and La2CuO4 (Refs. [27, 82]). The most
natural explanation for the high-temperature maximum of κab is an additional contribution
to the heat transport caused by magnetic excitations.

The similar behavior of κ for all R2CuO4 confirms that such a magnetic contribution κmag

to the in-plane heat transport is an intrinsic property of the CuO2 planes. It remains, however,
to be clarified what determines the magnitude of κmag. For a quantitative analysis the in-plane
thermal conductivity is considered as the sum of a phononic and a magnetic contribution

κab = κph + κmag, (4.4)

which are only weakly coupled to each other. In general, such an Ansatz can be used when
the characteristic energy scales for the two contributions are well separated from each other.
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For example, this is usually the case for electronic and phononic heat transport since the
Fermi temperature is much larger than the Debye temperature, i.e. TF � ΘD. In the case
of R2CuO4 it is a priori not clear whether the assumption of weakly coupled phononic and
magnetic contributions is fulfilled, since the magnetic coupling J is only about four times
as large as ΘD (see Table 4.1). However, the experimental observation that κab shows two
characteristic maxima, which are well separated from each other, encourages to use Eq. (4.4).

In order to separate κmag from κab the assumption is made that in the region of the low-
temperature peak κmag is negligibly small. We fit the data for T < 50K (Gd2CuO4: T < 85K)
by the Debye model (see Eq. 2.5) and subtract the extrapolation of the fit from the measured
data up to room temperature, i. e. κmag = κab−κfit

ph. For the fit θD, vs and L are not taken as
free fit parameters, but experimentally determined values are used. If no experimental values
are available as e. g. for Gd2CuO4, values similar to those obtained in the other compounds
(see Table 4.1) were taken. The resulting fits hardly change when the upper boundary of the
temperature range is varied by ±10K. This analysis is not possible for Eu2CuO4, because
the low-temperature maximum is not well-enough pronounced. However, even without a
fit rather similar values of κmag for R = Nd, Sm, and Eu are expected, because the high-
temperature data of κab are very similar for these crystals (see Fig. 4.14). One can check the
applicability of the Debye model to describe the phononic contribution by corresponding fits
of κc, i.e. the temperature range of the fit is restricted to the low-temperature maxima and
then the high-temperature extrapolations of the fits are compared to the measured κc. As
shown in Figs. 4.12 and 4.13 these fits yield a good description of κc for R = Gd over the
entire temperature range, whereas in the case of Pr the high-temperature values of κc are
slightly underestimated by the fit. This probably arises from the sharper low-temperature
peak for R = Pr. Since the low-temperature peaks of κab for R = Pr, Nd, and Sm are also
rather sharp, one may expect that the corresponding Debye fits will also underestimate the
high-temperature values of the phononic contribution of κab and consequently the magnetic
contributions κmag may be overestimated to some extent. For the La2CuO4 + δ crystal the
low-temperature maximum is small, and a Debye fit may be not so accurate, so the difference
κmag = κab − κc/1.14 is also plotted, with basically the same result, see Fig. 4.15.

The upper panel of Fig. 4.16 gives a comparison of the resulting κmag of all our R2CuO4

crystals, the previous result of Sr2CuO2Cl2 (Ref. [82]), and κmag obtained from an analysis of
κab measured on Nd2CuO4 (Ref. [80]). For comparison, κmag obtained from the literature data
of various La2CuO4 crystals [6, 7, 11] are also shown. Obviously, the temperature dependence
of κmag is very similar for all crystals, but the magnitude of the broad maximum varies
between about 7 and 10 W/Km for our Sr2CuO2Cl2 and R2CuO4 crystals and from about
12 to 25 W/Km for the various crystals from literature with R = La and Nd [6, 7, 11, 80].
Although these differences are not too large, it is unlikely that they simply arise from the
experimental uncertainty in the quantitative determination of κmag.

Because the magnetic properties are rather similar for the different crystals, one expects
that the different κmag mainly arise from differences in the scattering of the magnetic ex-
citations. Possible scattering mechanisms are scattering between magnetic excitations and
scattering by defects, phonons, and charge carriers. One may suspect that scattering between
magnetic excitations, comparable e. g. to phonon-phonon Umklapp scattering, plays the most
important role with respect to the temperature dependence of κmag. A deeper analysis of this
scattering requires a detailed theoretical model for the dynamics of magnetic excitations, but
even without such a model one may conclude that the similar magnetic properties naturally
explain the similar temperature dependences of κmag of the different compounds.
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Figure 4.16.: Magnetic
contributions to the in-plane
thermal conductivity, calcu-
lated via κmag = κab −
κph, where κph is determined
by a Debye fit of the low-
temperature maximum. Up-
per panel: Values calculated
from the measurements of κab

of R2CuO4 and from the data
from Ref. [80]. Lower panel:
The same analysis for various
data of La2CuO4+δ taken from
Ref. [6, 7, 11] and of our crys-
tal with TN = 245 K. Inset:
The maximum of the calcu-
lated κmag vs. the Néel temper-
ature for La2CuO4+δ [57, 73].

The influence of defects and charge carriers on the thermal conductivity has been inves-
tigated in Zn- and Sr-doped La2CuO4 [7, 8]. It has been found that Sr doping suppresses
kmag much stronger than Zn doping and kmag vanishes almost completely above about 1%
Sr. For both dopands the magnetic system is diluted, either by replacing magnetic Cu2+

by nonmagnetic Zn2+ ions or by the formation of Zhang-Rice singlets due to the introduced
holes. However, the mobility of the holes strongly enhances the effect of charge-carrier doping,
what is also reflected in a much stronger suppression of TN by Sr doping as compared to Zn
doping [164]. As shown in the lower panel of Fig. 4.16, the magnitude of κmag for the various
nominally undoped La2CuO4 crystals varies by about a factor of two. Since it is known that
La2CuO4+δ is likely to have some excess oxygen, the maximum of κmag is plotted as a function
of TN, which is very sensitive to small amounts of δ (Inset of Fig. 4.16). The observed correla-
tion between the magnitude of κmag and TN is a clear indication that the different magnitudes
of κmag arise from small amounts of charge carriers in the different crystals [11].

One may suspect that the higher values of κmag of R2CuO4 with R = La and Nd from
Refs. [6, 7, 11, 80] in comparison to our crystals could result from a weak charge carrier
doping in our crystals. The rather low TN ' 250K of our Pr2CuO4 crystal compared to the
TN values up to ' 280K reported in literature [93, 94, 165] supports this view. However, this
argumentation can neither explain the low κmag of our Gd2CuO4 with a large TN ' 292K
nor does it hold for Sr2CuO2Cl2, which is commonly believed to be very stable with respect
to charge carrier doping. Unfortunately, not much is known about possible variations of the
oxygen content in R2CuO4. Irrespective of the question of the exact oxygen stoichiometry,
our finding that κmag is very similar in crystals with and without structural instabilities leads
to the conclusion that scattering by phonons seems to play a minor role for the magnetic heat
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length. Right: Magnetic spe-
cific heat [82].

transport in the CuO2 planes. This is most clearly seen in Eu2CuO4 where the phononic
low-temperature peak of Eu2CuO4 is strongly suppressed by a structural instability whereas
its magnetic high-temperature maximum is hardly affected.

4.5.5. Mean Free Path and Magnetic Correlation Length

To check, whether the magnitude of the estimated magnetic contribution is reasonable, we
consider Eq. 2.1 applied for the 2D spin lattice:

κmag =
1
2
cmvm`m. (4.5)

The magnetic specific heat cm is calculated by an extrapolation of the high-temperature series
for the partition sum, see Ref. [82]. In Fig. 4.17 the result of this calculation is shown. cm

shows a maximum cmax = 0.4613NkB at Tmax = 0.5956J , which is located at about 800K for
the large exchange constants in the cuprates, and therefore far above the temperature range
in which κ was investigated. The group velocity

vm =
√

8SZckBJa/~ (4.6)

is calculated via spin-wave theory [57, 82]. Here, a is the lattice constant (in the tetragonal
notation) and Zc the so-called Oguchi correction [167]. The calculated values are in the range
vm ≈ 1..1.2× 105 m/s. The fact that these values are much larger in comparison to the sound
velocity, results from J � ΘD. Eq. 4.6 may be used to calculate `m(T ) by using the estimated
κmag. Fig. 4.17 shows the calculated mean free path for R2CuO4, with R = La, Pr, Nd, and
for Sr2CuO2Cl2. At room temperature (T/J = 0.2 . . . 0.3) `m/a ranges between 16 for the
La2CuO4 + δ crystal and 100 for La2CuO4 from Ref. [11]. This is much smaller than the
values observed in 1D systems [3, 4, 75]. Lowering the temperature, `m strongly increases.
Below T/J ≈ 0.07 (≈ 100K) `m cannot be determined because the experimental uncertainty
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4.5. Experimental Results: Zero Field

of κmag becomes too large. The temperature dependence of `m explains, why the maximum
in κmag is observed at a much lower temperature than the maximum in cm, since the decrease
of `m with increasing temperature overcompensates the increase of cm.

To obtain more insight, the mean free path `m/a can be compared to the magnetic corre-
lation length ξm, determined by neutron diffraction. In an ideal 2D AFM ξm = ∞ only holds
for T = 0. For finite temperatures excited magnons will lower ξm. In the quasi 2D system of
the cuprates ξm is still large above TN , because TN is mainly determined by the interplane
interaction, and much smaller then J . Note that this also explains why no anomalies are
observed in cm and κmag [168] at TN . At TN , ξm diverges, and below TN , ξm = ∞ is realized.
Fig. 4.17 shows the magnetic correlation length ξm(T ) taken from the Refs. [71, 95]. ξm(T ) is
still large above room temperature, but then strongly decreases. In principle the ξm(T ) curves
for the different compounds should scale to one curve. One reason, that this is not the case is
the large uncertainty of the experimental ξm(T ). From the comparison of `m and ξm one can
see that `m < ξm holds, which is expected for an ordered state since ξm should conventionally
give an upper boundary for `m. For a comparison to the intrinsic two-dimensional correlation
length, we show a calculation of ξm(T ) given by[72]

ξm(T )
a

= 0.5061 exp(1.12J/T )
(

1− 0.4464
T

J

)
. (4.7)

This calculation systematically underestimates the measured ξm(T ) above TN, but describes
the temperature dependence very well. The calculated value ξm(T ) is almost exactly equal
to the value of `/a for La2CuO4 at room temperature (x ≈ 0.2). From the exponential
temperature dependence of ξm(T ) the relation `(T ) � ξm(T ) holds for all temperatures below
room temperature. In this sense, the heat transport in the cuprates is rather conventional.

4.5.6. Comparison to 1D systems

In this section we will compare our results concerning the magnetic heat transport in a S = 1/2
square lattice with 1D systems. In 1D chains with S = 1 (Haldane chain) the dispersion is
gapped, leading to a temperature-dependent group velocity. This is a disadvantage, because
the group velocity is needed for the calculation of the mean free path. Therefore we will
follow the idea worked out in Ref. [78], and calculate the energy diffusion constants DE(T ) =
κm(T )/cm(T )a2. Here, only the calculated magnetic specific heat is needed, which is available
in high accuracy. The constant a is the spin-spin distance and is used to get dimensionless
scales by plotting DE~/J vs. T/J . Fig. 4.18 shows DE~/J vs. T/J for the spin 1/2 chains
Sr2CuO3, SrCuO2, and BaCu2Si2O7 (from Refs. [75, 169]) and for the spin 1 chains AgVP2S6

and Y2BaNiO5 (from Refs. [77, 78]). The principle shape of the curves is different depending
on S: For S = 1/2, an increase of DE(T ) with decreasing temperature and a saturation at
low temperatures is observed. In contrast, for S = 1 the values of DE(T ) are much lower and
show a maximum. The dotted lines (1D) and the dashed line (2D) are theoretical estimations
calculated via

a2DE(T ) =
1
d
vm(T )ξm(T ) (4.8)

using Eq. 2.1. Here, calculations of the correlation length ξm(T ) are used, which is the expected
upper limit for `(T ) (see Ref. [78] for details). The calculations lead to a power-law behavior
for S = 1/2 and a curve showing a maximum for S = 1. The principle shape of these curves
is the same as observed in the experimental data of the S = 1/2 and S = 1 chains. However,
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Figure 4.18.: The energy diffu-
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lated from the thermal conduc-
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the experimental energy diffusion constants show much higher values, than those calculated
by Eq. 4.8. This clearly shows that the heat transport in 1D systems is anomalous.

To calculate DE(T ) for the 2D cuprates, we use the estimated κmag of La2CuO4 from
Ref. [11], since these data show the highest magnetic contribution. The same specific heat
calculation as shown in the previous section is used. The resulting energy diffusion constant
increases with decreasing temperature and saturates at low temperatures (closed circles).
This result is very similar to the spin 1/2 chains. For the determination of DE(T ) the same
calculations as in the previous section are used. The temperature dependence of DE(T ) is,
however, very different to the 1D systems, since it diverges exponentionally. The calculated
values of DE(T ) (dashed line) are equal to the experimental DE(T ) at T/J = 0.22. For lower
temperatures, DE(T ) increases much faster than the experimental values of DE(T ). This is
exactly the same observation as already obtained from the comparison of the mean free path
and the correlation length: The thermal transport in the 2D lattice is rather conventional,
in contrast to an unconventional behavior of the 1D systems. The unusual experimental
observation of the magnetic heat transport in 2D is therefore just a consequence of two facts:
First, the exchange constant J is very large, which causes a considerable contribution to κ.
Second, the exchange constant J is much larger than the Debye temperature, which allows
the observation of κmag, since it can be distinguished from the phononic contribution.

4.6. Magnetic-Field Dependence of κ

In this section, magnetic-field dependent measurements of κ are presented. For some of the
measurements the temperature range was extended to ≈ 3K. Except for Pr2CuO4 the zero-

52



4.6. Magnetic-Field Dependence of κ

4 10 20 50
8
10

20

30
8
10

20

30
36

b)

0T 8T

8T
8T

 

 

 (W
/K

m
)

T (K)

9T

 

 
 (W

/K
m

)

Nd
2
CuO

4
 || ab

, : H a  j
H

: H  b ||  j
H

:  H || c  j
H

14T

0T

a)

Figure 4.19.: κ vs. tempera-
ture for Nd2CuO4 in various mag-
netic fields along all three crys-
tallographic axes. a): Zero field
(�), H ‖ a⊥ jH(◦,•). b): Zero
field (�), H ‖ a⊥ jH(•), H ‖ b ‖
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curves were measured with the
same setup. The sketch points up
the alignments of the heat current
and the magnetic fields [57, 73].

field data are the same as already shown in the previous section. Again, the different com-
pounds are discussed consecutively. All measurements have been done with the magnetic field
perpendicular to the heat flow, except for Nd2CuO4, where also other configurations were
measured.

Nd2CuO4

Fig. 4.19 shows the thermal conductivity of Nd2CuO4 in various magnetic fields. The mea-
surements were first performed with H ‖ a ⊥ jH in fields up to 14T. Then the same setup
was measured in a 8T transverse-field cryostat. Unfortunately, during these measurements
the cooling stage did not work properly8, and the lowest achievable temperature was 4.5K
for H ‖ a, and even higher for the transverse-field measurements. For H = 9T ‖ a, κab is
suppressed by 10% at the maximum. Lowering the temperature, the suppression reduces and
the field dependence changes sign at T ≈ 6K. At 14T the suppression at the maximum is
weaker and the sign change the field dependence shifts up to 14K. The relative increase of
κab with respect to the zero-field measurement increases up to about 60% at 5K. For the field
along the b and c axis, the thermal conductivity is monotonously suppressed by a field of 8T,
for H ‖ b by about 20% and for H ‖ c by about 30% at the maximum. Further, these maxima
shift slightly to higher temperatures. The curves for 8T, H ‖ a and H ‖ b are qualitatively
similar, but differ by about 10% at 10K. This can be partly caused by the misalignement
in the transverse-field measurements. According to Chp. 3, this misalignement can be up to
≈ 20◦ for the used setup (without Hall probe). If the magnetic field is misaligned, one can
calculate via

κα(H) =
√

κa(H||a)2 cos α2 + κa(H||c)2 sinα2 (4.9)

8This problem occurred with a newly setup probe, and was later solved by improving the thermal anchoring
of the copper wires to the cooling stage, see Ref. [57].
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Figure 4.20.: a): κ vs. magnetic field for Nd2CuO4. For T = 10K, 20 K, and 30 K the field
was applied along all crystallographic axes; H ‖ a⊥ jH (•), H ‖ b ‖ jH (4), H ‖ c⊥ jH (�).
b) κ(H)/κ(0 T) vs. H. c) Hmin vs. T . (H)

for the thermal conductivity measured with an angle α of the magnetic field with respect to
the a plane. If the probe is not aligned perfectly in the transverse-field cryostat it follows that
κ(H||b) may be lowered due to the admixture of a κ(H||c) component; as well the measured
κc increases due to a κa component. For this reason we do not discuss the small difference
between both in-plane directions.

Field-dependent measurements with constant temperatures are presented in Fig. 4.20. For
κa(H ‖ a) almost the same principal behavior is observed at all measured temperatures below
30K. The thermal conductivity first decreases, up to a field Hmin, and then strongly increases
again with further increasing magnetic field. For 6K and 4K an onset of a saturation at about
12T is indicated, however this is not clear from the available field range. For κab(H ‖ b) at
20K and 10K an onset of a minimum is visible in the data, however the maximum field of
8T is too small to observe a possible increase. In contrast, κab behaves differently for H ‖ c,
and monotonously decreases up to 8T, and no indication for a saturation is seen.

Fig. 4.20b shows the normalized thermal conductivity κ(H)/κ(0T). The minimum of κa(H)
monotonously shifts to higher fields at higher temperatures and broadens. Hmin vs. T is shown

54



4.6. Magnetic-Field Dependence of κ

2 10 20 30
20

30

40

20

40

60

c
   H || ab  0T

 14T

 

 

 (W
/K

m
)

T (K)

b)

0T
4T
 9T
 14T

 

 
 (W

/K
m

)

Pr
2
CuO

4

ab
   H || ab

a)

Figure 4.21.: a) κab vs.
T for Pr2CuO4 in 0 T
(N), 4 T (•), 9 T (�),
and 14 T (H) with the
field applied along the
in-plane direction. b) κc

for H = 0 T (4) and
H = 14 T (5) with the
same field direction.

in Fig. 4.20c, and Hmin increases roughly linearly with temperature. A detailed discussion
and a comparison with literature data will follow in Sec. 4.6.2.

Pr2CuO4

In Fig. 4.21a the in-plane thermal conductivity of Pr2CuO4 is shown9 in 0, 4, 9, and 14T.
For a field of 4T there is almost no effect, but for H = 9 and 14T the thermal conductivity
is suppressed by the field below T ≈ 25K. The magnetic-field dependence is much smaller
than in Nd2CuO4; about 10% at the maximum. In Fig. 4.22a the magnetic-field dependent
measurements at fixed temperatures are shown. At 10K, the κ vs. H curve first decreases and
then stays constant above about 12T. For lower temperatures a minimum occurs which shifts
slightly to lower fields for lower T . In comparison to Nd2CuO4 (Fig. 4.22b), the magnetic-field
dependence is weaker. Particularly the strong increase observed in Nd2CuO4 at higher fields
is missing in Pr2CuO4. In the paper of Jin et al. [80] the authors claim, that they see the
same behavior for κ of Pr2CuO4 and for Nd2CuO4. However, no data are shown10. Fig. 4.22b
shows κc with H ‖ a. Here, κ is weakly suppressed by a field of 14T. The effect is only 5%
at the maximum of κc, which is close to the experimental resolution for the field-dependence
of κ and will therefore not be discussed further.

9The low-temperature maximum has a slightly higher absolute value as the data presented in Fig. 4.13, which
is due to the experimental uncertainty. The data presented here were measured in a different setup as the
data used for the zero-field analysis.

10The same authors published a preprint, containing a field dependent curve for Pr2CuO4 at 2 K and H ‖ a,
which shows a strong increase of κ [170]. Since no systematic data are available, however, a comparison is
not possible.
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Figure 4.22.: a): κ vs. magnetic field for Pr2CuO4 at fixed temperatures. b): κ vs. magnetic
field for Nd2CuO4 (for comparison).

Sm2CuO4

Fig. 4.23a presents the thermal conductivity of Sm2CuO4 from 3K to 300K in magnetic fields
of 0 and 14T. At 6K a kink is observed, which can be attributed to the Néel transition of the
Sm moments. Such an additional small suppression of κ at low temperatures is known from
other antiferromagnets [171]. In a magnetic field of 14T the Néel transition is only shifted
by ≈ 300mK to lower temperatures (see Sec. 4.2.4). This is consistent with the thermal
conductivity data, where the dip shifts slightly in a field of 14T. Except this small anomaly,
there is no magnetic-field dependence in the whole temperature range within the experimental
uncertainty. The field independence at low temperatures for magnetic fields between 0T and
14T is verified by measurements at constant temperatures (see inset of Fig. 4.23).

Gd2CuO4

In Fig. 4.24 the temperature-dependent measurements of the thermal conductivity of Gd2CuO4
in magnetic fields of 0T and 14T (c direction: 9T) are presented. For the c direction there
is no detectable magnetic-field dependence above ≈ 25K. For the in-plane direction the low-
temperature maximum is suppressed by about 6% in both samples. A surprising new finding
is, that the field dependence of κab remains visible up to high temperatures, a feature which
is found in both Gd2CuO4 samples. We will discuss this aspect later in comparison with the
other samples.

Next, we consider the low-temperature behavior of κ. Fig. 4.26 shows the temperature-
dependent measurements of κab and κc in magnetic fields. For H = 0T a small change of the
slope is visible in κab at TGd

N , similar to that observed in Sm2CuO4. Applying a magnetic field
of 4T, the kink is still visible, but for higher fields no anomaly is identifiable in the κ vs. T
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cate the spin-flip field Hc. b) H-T phase diagram of the Gd Néel transition as derived from
magnetization (�) from Ref. [131] and specific heat (•) from Ref. [128]. c) κ(H)/κ(0 T) vs.
T. for Gd2CuO4. Arrows point to the spin-flip field determined from the magnetization (see
panel b).

curves. In contrast to Sm2CuO4, the Néel-transition is suppressed drastically in Gd2CuO4 by
magnetic fields, as shown in Sec. 4.2.4. Fig 4.26b shows the field-dependent Néel-temperature
extracted from the specific heat and magnetization data of Refs. [129] and [131], respectively.
The curvature of the phase boundary explains that the kink in κ does not shift much for 4T.
Fig. 4.26a shows the measurements of κab vs. field. Here, the Néel transition is seen as small
slope changes. The corresponding spin-flip fields from Ref. [131] are plotted as arrows. In
Fig. 4.26c, normalized κ(H)/κ(0) curves are shown. The dip in the temperature-dependent
zero-field curve is caused scattering of phonons by spin-waves. The κ vs. H curves are almost
field independent below the spin-flip field. Because of the small anisotropy, the spin-flop
field in Gd2CuO4 is below 1T at all temperatures[172]. It follows, that for all investigated
fields the CF anisotropy plays no role. For small fields the Gd moments are aligned almost
perpendicular to the applied field. With increasing field, the moments cant towards the field
direction, until a full alignment is reached at the spin-flip field of HSF = 11T. Because in the
canted phase the moments can precess around the axis of the external field, gapless spin-wave
excitations are possible. This is the reason why the suppression of the thermal conductivity
in the AFM phase does not change with field. Above the spin-flip field, an energy gap of
the spin-wave excitations opens, which becomes larger with increasing field. This presumably
explains, why the thermal conductivity increases above TSF. The increase of the gap freezes
out this scattering channel. Considering the field dependence at higher temperature, the data
resemble to the Nd2CuO4 curves. A magnetic field causes a minimum in κ vs. H. In contrast
to Nd2CuO4 and Pr2CuO4, a field Hmin can only be determined for T ≥ 10K.

The total field dependence is large, at 3K κ increases by about 50% between 9T and 14T.
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Figure 4.27.: Thermal
conductivity of
Eu2CuO4 in mag-
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10 K.

For κc in H ≤ 9T, the field dependence appears to be less pronounced (see Fig. 4.24), but a
quantitative comparison of the anisotropy would require higher-field data.

Eu2CuO4

Fig. 4.27 shows κab of Eu2CuO4 in magnetic fields of 0T and 14T. At low temperatures no
significant field dependence is observed, which is confirmed by measurements of κ vs. H at
5K and 10K. A closer inspection of the field dependence shows, however, that a small field
dependence is present up to high temperatures, what will be discussed in the following section.

4.6.1. Magnetic Field Dependence at High Temperatures

To analyze the field dependence at high temperatures in more detail, Fig. 4.28 shows the
ratio κ(14T)/κ(0T) for R = Pr, Sm, Eu and Gd. As shown in Fig. 4.24, a considerably
large field dependence is present up to room temperatures for R = Gd and a weaker one for
R = Eu. For R = Pr and Sm, no field dependence11 is observed above 50K. Because κc does
not change in a field for Gd2CuO4 above T ≈ 30K (see Fig. 4.24), we conclude that it is
the magnetic contribution which is field dependent. In Gd2CuO4, κ(14T)/κ(0T) reaches the
value 1 at about 300K, which is close to the Néel transition. This makes it likely that the field
dependence is only present in the Néel ordered state. The difference to TN may be caused by
the experimental uncertainty of the field-dependent measurements12. The disappearance of
the field dependence in Eu2CuO4 could be either attributed to the structural phase transition
or to the Néel transition, since we do not know these transition temperatures for our sample.
Because in Gd2CuO4 both, the Néel ordered state and the distorted structure are present
when the field dependence arises, and no effect is observed in the undistorted compounds,
we suspect that both, the distorted structure and the Néel ordered state are related to the
magnetic-field dependence of κab.
11For Nd2CuO4, the magnetic-field dependence was only measured up to 60 K. However, in Ref. [80] no field

dependence was detectable between T ≈ 80 K and room temperature.
12For R = Pr and Sm the deviation of κ(14T)/κ(0T) from 1 is about 0.5%, whereas κ(14T)/κ(0T) of Gd2CuO4

has to be scaled by about 1% to become 1 at TCu
N .
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Figure 4.28.: a): κ(14 T)/κ(0T) for R2CuO4 with R= Pr (4), Sm (�), Eu (5), and Gd
(◦,•) as a function of T . Whereas for Sm and Pr no field dependence is observed to higher
temperatures, a small field dependence remains visible up to 200 K for R = Eu and up to
≈ 300 K for R = Gd. For the latter, the temperature dependence is exactly the same for both
samples. b): κab(H)/κab( T) vs. H of Gd2CuO4 at high temperatures.

The reason for these field dependences is unclear. The effect of domains can be ruled out,
since the WF moment is saturated at much lower fields in Gd2CuO4 [126].

4.6.2. Discussion: Low-temperature Magnetic-Field Dependence of κ

In this section, we will compare our results to the literature data. Furthermore we will analyze
the different methods used in Refs. [10, 80] to extract a possible magnon contribution to κ
of Nd2CuO4. We will apply the same analysis to our data and compare the different results.
Finally, we will discuss other possible mechanisms to explain the observed magnetic-field
dependences.

Comparison with the Literature Data

Fig. 4.29a shows selected results of κab of Nd2CuO4 in combination with data taken from
the literature. Jin et al. measured κab down to ≈ 2K in fields of 0 and 9T||a. They do not
specify the relative field direction with respect to the heat flow. Their data are plotted as
dashed lines. Li et al. performed measurements of κab down to 50mK in zero field and with
a magnetic field of 10T along the a and c direction, applied perpendicular to the heat flow
(solid lines) [10]. The absolute value of the thermal conductivity at low temperatures strongly
depends on the sample quality. At 5K the absolute value of κ is 11W/Km for our crystal,
5.1W/Km for the sample from Li et al., and 15W/Km for the sample from Jin et al., what
means that the quality of our samples lies between the ones used in Refs. [10, 80].
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Figure 4.29.: a) Thermal conductivity of Nd2CuO4 in zero field (•), H = 9 T‖ a ⊥ jH (N),
and H = 8T‖ c ⊥ jH (�) in combination with literature data from Ref. [80] (dashed lines) and
Ref. [10] (solid lines) [57, 73]. b) The data of Li et al. shown to lower temperatures, and zero
field data of our measuremens and from Jin et al.. The line is a low-temperature estimation of
κ, see text.

As in our sample, a sign change of the magnetic-field dependence is present in the data of
Jin et al. at ≈ 10K. The data of Li et al. are only shown up to 8K, however a sign change of
the field dependence is suggested by the temperature dependences of the curves. The change
from a strong enhancement of κab for H ‖ ab at low temperatures to a weak suppression at
higher temperatures seems to be a general feature of Nd2CuO4. However, the strength and
temperature dependence of these effects is strongly sample dependent. In the interpretation
of Jin et al., this feature is caused by the competition of magnon-phonon scattering and a
sizeable magnon contribution: At lower temperatures the suppression due to magnon-phonon
scattering is overcompensated by the magnon contribution, whereas at higher temperatures
κmag is too small, and only the effect of magnon-phonon scattering is seen (see Fig. 4.5).

The observed sharp dip at 5K in the data of Jin et al. is neither reproduced in the sample
of Li et al. nor in our sample. From our measurement we cannot exclude, that this effect is
just shifted to a lower temperature. Li et al. do not observe such a feature down to 50mK,
but since the absolute values of their data are much lower, on cannot rule out that the effect
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Figure 4.30.: a) κlin
mag = κ(H ‖)−κ(H ‖)lin from Ref. [80] and for our data. b) κan
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fits as indicated. The insets sketch how the different ∆κ were determined. c) Compilation of a)
and b). The huge sensitivity of the proposed magnon contribution κmag on both, the method
of its determination and the different samples, is evident.

is just smeared out.

Estimation of a possible Magnon Contribution

Jin et al. estimated the possible magnon contribution to κ by linear fitting κab(H) for low
fields and subtracting the fits from the data (∆κlin, see Fig. 4.5a. Performing this analysis
for our data, a much smaller ∆κlin is obtained. The reason for this deviation can be seen
in the magnetic-field dependent measurements (Fig. 4.19): The data for H ‖ a are already
larger than for H ‖ c below Hmin, leading to an overestimation of the phononic contribution.
This is not contradictory to the proposed model, since the magnon branch could be already
thermally populated at these temperatures, even if the spin gap is not fully closed. However,
this shows that this kind of estimation of a possible magnon contribution is not very accurate,
particularly at higher temperatures.
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4.6. Magnetic-Field Dependence of κ

Fig. 4.29b shows the data of Li et al. above ≈ 200mK.13 An enhancement of κab for a
magnetic field applied along the ab plane, and a suppression of κab for H ‖ c is observed above
≈ 1K. At low temperature the suppression of κc vanishes. The data analysis of Li et al.
is as follows: As discussed in Sec. 4.3.1 the enhancement of κ for H ‖ a is attributed to a
magnon contribution and the suppression of κ for H ‖ c to scattering of phonons by magnons.
Assuming that the suppression of κ is caused by an isotropic phonon-magnon scattering, it
follows that

∆κan = κab(H ‖ ab)− κab(H ‖ c). (4.10)

For their data below 0.5K, Li et al. estimate ∆κan by the difference

∆κLT
an = κab(H ‖ ab)− κab(0T), (4.11)

arguing that the field dependence for H ‖ c vanishes below 1K. The resulting ∆κan is plotted
in Fig. 4.29b and shows a maximum at ≈ 3K. To describe the temperature dependence of
∆κan, the following model is introduced. Based on the assumption that the specific heat
of the heat-carrying magnons is nearly saturated at the temperature of the maximum, the
decrease above 3K is attributed to the magnon scattering rate Γm, which is written as a sum
of boundary scattering and magnon-phonon scattering:

Γm = Γ0 + ΓP . (4.12)

The first term gives a constant and the latter one is written as ΓP = AP T 3. The fit of the data
of Li et al. yields the values Γ0 = 0.2 and AP = 3.7 · 10−4. The interpretation is that above
3K the magnon contribution is strongly suppressed by the phonons, which are populated by
the conventional T 3 dependence of acoustic phonons. Fig. 4.29b shows ∆κan calculated by
Eq. 4.10 for our data14, and a fit by Eq. 4.12. The calculated ∆κan is much larger for our
sample. The comparison of the different ∆κan raises the following questions, if we follow the
argumentation of Li et al.:

• A broad maximum occurs at ≈ 11K, which is about 4 times higher in temperature than
the maximum observed by Li et al.. Li et al. argue that the maximum of ∆κan at 3 K
exactly corresponds to the averaged optical magnon energy of kBT ∗ = 0.25meV= 3K.
However, our result yields a four times higher value of T ∗.

• The fit of our data gives a fair description of ∆κan and yields the values Γ0 = 0.1 and
ΓP = 6.0 · 10−6. The first value is a factor of two smaller in our sample. According to
Li et al. the characteristic sample length is given by l0 = 2

√
A/π = 0.24mm for their

sample. The value Γ0 should be proportional to l0. For our sample the same estimation
gives a larger value of l0 = 0.6mm. Therefore the different values for the boundary
scattering are consistent with the respective sample sizes.

• ΓP is much smaller in our sample, which would yield a much less effective phonon-
magnon scattering for our sample. This is not expected, because magnon-phonon scat-
tering should be an intrinsic property only depending on the population of the phonon
spectrum.

13The data of Li et al. are measured down to 50 mK. However, the digitalization of the data was not possible
at the lowest temperatures.

14Since a 9 T curve is not available for H ‖ c, the 8 T curve was extrapolated to 9 T. This is appropriate,
because of the almost linear behavior of κ vs. field for this field direction.
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4. Thermal Conductivity in R2CuO4

A further argument of Li et al. towards a magnon contribution to κ is based on power-law
fits of the thermal conductivity at low temperatures. Herefore the low-temperature estimation
of κ (Eq. 2.3) is used with l = 2

√
A/π. Li et al. argue that κ in zero field is purely phononic

below T ≈ 0.4K. They observe a T 2.6 dependence of κ(0T) and a T 3 dependence of ∆κan.
The different exponents are taken as an argument that κ(0T) is of phononic origin, since a
T 2.6 dependence of a phononic κ is known to occur due to specular scattering.15 A second
argument comes from the sound velocity v = 3500m/s estimated from Eq. 2.3, since it is of the
order of the experimentally determined values.16 However, both arguments are questionable.
First, κ(10T||a) shows a T 2.8 dependence17, what indicates that specular scattering is present
for this curve, too. Second, specular scattering increases the thermal conductivity, since the
mean free path becomes larger than the transverse sample dimensions. Fig. 4.29 shows a
low-temperature estimation of κ using a pure T 3 dependence. The averaged sound velocity is
calculated by Eq. 2.4, using the experimental values of v, yielding v = 2550m/s. The resulting
curve is only a factor of two smaller than κab with H = 10T||a. In Ref. [173] an increase by
κ of more than a factor of 3 was observed in Al2O3 in the same temperature range due to
specular scattering. This clearly shows, that the use of l0 to get an upper limit for κphon is
not possible. Because the extrapolation of the T 3 curve to higher temperature is far above
our data and the data of Jin et al. (Fig. 4.29b), no further conclusion can be made here.

The uncertainty of the used separation methods is evident from Fig. 4.30c. Here, the
different ∆κ from the literature and for our data estimated via the different methods are
plotted together. The large spread of the curves shows, that even if the general assumptions
would be right, a reliable extraction of a possible magnon contribution is not possible in the
considered temperature range.

Phonon-scattering

All the considerations discussed above do not take into account that there may be also other
magnetic-field dependent phonon-scattering mechanisms. Resonant scattering processes can
drastically influence κ. In Chp. 7 it is shown that phonon scattering by the 4f moments
causes a strong suppression and large field dependences of κ of NdMnO3 at low temperatures.
This may be important for the field dependence of κ of the R2CuO4 samples, too. The
magnetic-field dependence of Nd2CuO4 with a minimum at about 5T may be explained by
the simplest kind of a resonance, namely resonant scattering on a magnetic doublet (see inset
of Fig. 4.31). If the doublet is degenerate, no scattering occurs. If the levels are split by the
Zeeman effect and /or exchange splitting, resonant processes become possible (see Sec. 2.1.6
for more details). A resonant scattering process is most effective, if the energy splitting is equal
to the frequency of the peak in κ(ω), and becomes weaker for further increasing splitting. At
very low temperatures an estimate can be made by[17]

~ωmax = 4kBT
!= ~ωres, (4.13)

15Specular scattering means reflexion of phonons at the sample boundaries. This increases the mean free path of
the phonons. Eq. 2.3 is in principle only valid, if all phonons are scattered diffusely at the sample boundaries.
Specular scattering enhances the thermal conductivity and leads to a low-temperature dependence κ ∼ T j

with j < 3[17, 173].
16vt = 6050m/s, vt = 2550m/s[86].
17This value was estimated from the T 2.6 and T 3 power laws in the relevant temperature range, since the

low-temperature data of κ(10T||a) are not available.
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Figure 4.31.: Relative magnetic-field dependence κ(H)/κ(0 T) vs. H at 5 K for Nd2CuO4,
Pr2CuO4, Sm2CuO4, Eu2CuO4, and Gd2CuO4. The inset shows the principle shape of κ(ω)
at low temperatures, showing a maximum at 4kBT . The shaded area symbolizes a resonant
process suppressing κ.

where ωmax is the position of the maximum in the ω dependent thermal conductivity. If the
resonance energy is given by the Zeeman splitting we can rewrite Eq. 4.13 a

4kBT
!= gµBHmin. (4.14)

The same equation can be used to get an rough estimate of the minimum caused in the
temperature-dependent measurements. The 4f level splitting of the R2CuO4 cuprates is well
known, see Secs. 2.4 and 4.4. For the magnetic-field dependence of κ only the ground-state
multiplet is relevant, since the excited levels are energetically too high to be significantly
excited in the relevant temperature range (see Fig. 4.8). In Eu2CuO4 and Pr2CuO4, the
ground state is a singlet, whereas for Nd2CuO4, Sm2CuO4, and Gd2CuO4 a doublet is realized.
The doublets can be split by the Cu-R exchange field, as observed in Nd2CuO4 [174], and
by external magnetic fields. Note that the treatment of the 4f moments as free moments
for R = Gd and Sm is only possible above TR

N . In order to obtain a better comparability,
Fig. 4.31 shows the relative magnetic-field dependences κrel = κ(H)/κ(0T) for the different
samples at 5K. From the direct comparison, the conclusion can be drawn, that only for
Nd2CuO4 and Gd2CuO4 larger field dependences of κ are observed. These are two of the
three doublet systems, where the ground state splitting could play a role. In Ref. [174] the
specific heat of Nd2CuO4 was investigated at low temperatures. A Schottky peak is observed
in zero field, which can be described with a gap ∆0 ≈ 5K. The influence of magnetic fields
is strongly anisotropic, for H ‖ c almost no effect is observed up to 4T, whereas for H ‖ a
the anomaly shifts to higher temperatures in fields up to 8T. This behavior arises from a
complex interplay of the external field and internal exchange fields. Unfortunately the specific
heat data have not been measured up to the field of 10T, to allow a direct comparison to
the results of Li et al.. However, we may assume that the observed anisotropy of the specific
heat gives the correct trend for higher fields. Such a behavior could in principle explain the
observed behavior of κ observed by Li et al.. Herefore, we consider the temperature-dependent

65



4. Thermal Conductivity in R2CuO4

measurements shown in Fig. 4.29b. We assume that a resonant scattering processes causes the
dip observed in κ(0T) vs T . According to Eq. 4.13, a gap ∆0 ≈ 5K would cause the strongest
suppression around 1.3K, which is close to that experimentally observed. If the magnetic
field is applied along the in-plane direction, the dip shifts to higher temperatures, as expected
from an increase of the Nd ground-state gap. For H ‖ c, the position of the dip reamins more
or less unchanged, which is consistent to the insensibility of the gap to a field applied along
the c direction. In Gd2CuO4 we observed an additional field-independent scattering due to
spin waves in the Néel ordered state. At higher temperature the field dependence is similar
to Nd2CuO4 and the same scattering mechanisms may apply. In Sm2CuO4, κ is practically
field-independent. However, this can be understood since the large uniaxial anisotropy along
the c axis is a much stronger than the effect of an external field applied within the planes.
Now, we consider the singlet systems. In Pr2CuO4, a small field dependence of κ is observed.
Because of the singlet ground state the 4f orbitals have no influence to κ at low temperatures.
In Chp. 5 it is shown that paramagnetic impurities can also act as resonant scatterers. The
impurity levels are also split by the Zeemann effect, if a magnetic field is applied, and are
therefore possible resonant scatterers. Here, the scattering strength depends on the impurity
amount. In Sec. 4.4.1 we estimated significant impurity amounts in Eu2CuO4, Sm2CuO4,
and Pr2CuO4. We may attribute the small observed field dependences for the systems with
a singlet ground state to the influence of the paramagnetic impurities. Since for Eu2CuO4
no significant field dependences is observed, we conclude that the general influence of these
moments is much smaller than the influence of the 4f orbitals. The fact that Pr2CuO4 has
the largest content of impurities (Tab. 4.3) shows that the small field dependence in Pr2CuO4
may indeed be caused by scattering by paramagnetic impurities. The small magnetic-field
dependences observed in Pr1.3La0.7CuO4 [139] have presumably the same origin.

4.7. Conclusions

In this chapter we presented measurements of the thermal conductivity of R2CuO4 with
R = La, Pr, Nd, Sm, Eu, and Gd. In the first part the zero-field thermal conductivity was
studied in the temperature range 5 K ≤ T ≤ 300K for both, a heat current perpendicular
(R = Pr and Gd) and parallel (R = Pr, Nd, Sm, Eu, and Gd) to the CuO2 planes. The out-
of-plane thermal conductivity shows the typical temperature dependence of a purely phononic
thermal conductivity with a low-temperature maximum, whose magnitude depends on the
crystal quality. In contrast, the in-plane conductivity for all crystal exhibits a pronounced
double-peak structure consisting (i) of a low-temperature peak similar to that of the out-of-
plane thermal conductivity and (ii) of an anomalous high-temperature contribution with a
broad maximum around 250 K. Such an anisotropy between the in-plane and the out-of-plane
thermal conductivity is also found in La2CuO4. [6–8, 11] The fact that the double-peak is
present in the structurally stable R2CuO4 with R = Pr, Nd, and Sm unambiguously rules out
the possibility that the double-peak structure is caused by a structural instability, which is
present for R = La, Eu, and Gd. The qualitative anisotropy between the in-plane and the
out-of-plane thermal conductivity and the rather similar high-temperature behavior of the
out-of-plane thermal conductivity for all the different crystals gives clear evidence that this
additional high-temperature contribution arises from a sizeable heat transport by magnetic
excitations within the CuO2 planes. Our analysis yields a magnetic contribution to the in-plane
thermal conductivity between about 7 to 25 W/Km depending on the R system. In weakly
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doped La2CuO4 this magnetic contribution is strongly suppressed showing that scattering
of magnetic excitations by mobile charge carriers plays an important role. In contrast, the
structural instability does hardly influence the magnetic thermal conductivity indicating that
scattering of magnetic excitations by soft or anharmonic phonons plays a minor role. To
compare the principle behavior of the thermal conductivity of the 2D square lattice with 1D
systems, the energy diffusion constant DE(T ) was calculated for La2CuO4[9] and compared
with DE(T ) obtained for 1D chains with S = 1/2 and S = 1. The heat transport in the 1D
systems is anomalously enhanced, since the estimated DE(T ) is much larger than an estimate
using the calculated correlation length[78]. In contrast, a rather conventional behavior of the
thermal transport in the 2D square lattice is found. The observation of a large magnetic
contribution to the heat transport is just a consequence of the large coupling constant J ,
which causes a sizeable contribution to κ, and the fact that J � ΘD, allowing the distinction
of κmag from the phononic heat conductivity.

A second focus was the influence of magnetic fields on κ. At low temperatures we observed
large magnetic-field effects of κab in Nd2CuO4 and Gd2CuO4, a smaller effect in Pr2CuO4,
and no magnetic-field dependences in Sm2CuO4 and Eu2CuO4. We showed that resonant
scattering by the 4f orbitals can in principle consistently describe the observed behavior. This
conclusion is in contrast to the magnon heat transport proposed in Refs. [10, 80]. A detailed
analysis revealed, that the methods used to extract the possible magnon contributions are
affected with large uncertainties, particularly at higher temperatures as done in Ref. [80]. We
further showed, that the argumentation used in Ref. [10] is not consistent with our data. Our
scenario based on phonon scattering can in principle also explain the findings of Ref. [10]. The
observed magnetic-field dependences of κ are much smaller than observed e.g. in NdMnO3,
where the effect is unambiguously caused by the 4f orbitals. Therefore, we conclude that the
proposed observation of a magnon contribution to the heat transport is highly questionable.
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5. Thermal Conductivity in Cubic
Cobaltates

Among transition-metal oxides cobalt compounds are of particular interest due to the possi-
bility of the Co ions to occur in different spin states. LaCoO3 is one of the most prominent
examples, which is in the focus of researchers since several decades [175, 176], and still the na-
ture of the spin-state transition is to be clarified. The spin-state transition is visible in various
quantities, like e.g. susceptibility, thermal expansion and specific heat. Recently, it was found
that the low-temperature thermal conductivity of LaCoO3 is also very unusual [9, 33, 57],
which was also attributed to the spin-state transition. However, the mechanism responsi-
ble for the observed unusual thermal conductivity is not clear. In this chapter a detailed
investigation of the thermal conductivity in LaCoO3, PrCoO3, NdCoO3, and EuCoO3 will
be presented. The aim is to develop a consistent picture of the influence of the spin-state
transition on the thermal conductivity. The measurements of κ in PrCoO3 and NdCoO3 were
performed by H. Anapa [177]. Some of the thermal conductivity data have been already shown
in Refs. [33, 57, 166].

5.1. The Spin-state Transition in RCoO3 with R = La, Pr, Nd,
and Eu

R3+ Co3+ O2-

Figure 5.1.: Structure of RCoO3 in the cubic
notation. The Co3+ is surrounded by an oxygen
octahedron.

The RCoO3 compounds with R = La, Pr, Nd, and Eu crystallize in a AMO3-type perovskite
structure, see Fig. 5.1. LaCoO3 is slightly rhomboedrally distorted, which is often referred
to as pseudo cubic. For the smaller rare-earth ions the type of the distortion changes, and
an orthorhombic structure is realized [178–181]. Rare earth ionic radii, lattice constants
and volumes of the unit cells (in cubic notation) with the respective references are listed in
Tab. 5.2. Resistivity measurements show that all RCoO3 compounds are insulating below
room temperature [177, 182]. For all RCoO3 the Co3+ ion has a 3d6 configuration, which
is five-fold degenerate for a free ion. In the cubic crystal field these five levels split into
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3d6

t2g (dxy,dyz,dxz)

∆CF

eg (d3z2-r2, dx2-y2)
∆JT

LS (S=0) HS (S=2)IS (S=1)

strongly         weakly
Jahn-Teller active           

Figure 5.2.: Splitting of the 3d orbitals in a cubic crystal field and possible spin states for a
3d6 configuration. Both, the eg and the t2g levels can be Jahn-Teller active.

the three-fold degenerate t2g and the two-fold degenerate eg level, where the level spacing
denotes ∆cf (see Fig. 5.2) [183]. The eg levels consist of the dx2−y2 and d3z2−r2 orbitals, which
directly point to the surrounding oxygen ions. The dxy, dxz, and dyz orbitals of the t2g levels
point inbetween the oxygen orbitals, yielding a lower energy for the t2g and a higher energy
for the eg levels. The second important energy scale is the Hunds rule energy JH [16]. If
JH is the dominant energy scale (JH � ∆cf), the six electrons of the Co3+ ion will have
parallel spin according to Hunds first rule [16], what leads to the high-spin (HS) state with
S = 2, see Fig. 5.2. In the other case, JH � ∆cf , the crystal field energy will not allow that
electrons occupy the eg orbitals. Therefore the low-spin (LS) state (S = 0) with 6 electrons
in the t2g levels is realized [183]. In recent years several authors proposed another possible
low-lying spin-state, the so-called intermediate (IS) spin-state with S = 1 [184–201]. In
LaCoO3 the unusual situation is realized, that JH and ∆cf are so close that temperature can
induce transitions between different spin states [176]. Fig. 5.3 shows the Co3+ susceptibility of
LaCoO3 and EuCoO3 [202].1 For LaCoO3, at low temperatures, the system is nonmagnetic,
and the LS state is realized. The sudden increase of χ for temperatures above ≈ 25K is due
to the thermally driven spin-state transition, where spin states with a magnetic moment get
populated. The question, if this spin state is an IS or a HS state, has been widely discussed
in the literature, and is still under debate [184–201, 203, 204]. The LS-IS state scenario
gives a better description of the thermodynamic properties in an analysis based on a two-level
system [12, 205]. This analysis works well with a g factor of ≈ 2.3, which is much smaller than
the g factor recently measured by ESR measurements, g = 3.5. Such a high g factor does not
allow a description of the susceptibility in a simple LS-IS or LS-HS model, since the calculated
susceptibility is much too high. For the description of other thermodynamic properties, like
thermal expansion or specific heat, the g factor plays no role. As pointed out in Refs. [13, 204],
a way out is the introduction of a spin-orbit coupled HS state (SOcHS). The idea hereby is
that the usual assumption of a quenched orbital moment [16] is not valid, and then the
S = 2 HS state couples with a l̃ = 1 orbital moment to an effective moment J̃ = 1 [205].
However, the description of the susceptibility only works if a temperature-dependent gap is
introduced [178, 205], see Sec. 5.3.2. None of these models gives an unambiguous picture of
the spin-state transition in LaCoO3. The newest results [13] prefer a SOcHS scenario. Since
the IS model gives the best thermodynamic description with a fixed gap (but with the wrong

1The other contributions to the susceptibility are subtracted, this procedure will be discussed in Sec. 5.3.

70



5.1. The Spin-state Transition in RCoO3 with R = La, Pr, Nd, and Eu

0 200 400 600 800
0

1

2

3

4
 

C
o3+

 (1
0-3

 e
m

u 
/ m

ol
)

T (K)

 

 

LaCoO
3

EuCoO
3

Figure 5.3.: Co3+ susceptibility
of LaCoO3 and EuCoO3. Back-
ground contributions have been
subtracted (see Fig. 5.4). [202]

g factor), we will perform the data analysis using both, the IS model with ∆Co = 185 K,
ν = 1 and the SOcHS model2. The energy gaps are taken from the susceptibility and thermal
expansion fits of Ref. [205]. The aim hereby is to keep as many parameters as possible fixed.
The spin-orbit coupled HS model will also be analyzed, herefore the temperature-dependent
energy gap will be calculated in Sec. 5.3.2.

If La is replaced by the smaller Eu, the LS state is stabilized, which causes a shift of
the spin-state transition to much higher temperatures, as seen in the susceptibility data for
EuCoO3 (Fig. 5.3). A detailed investigation of the evolution of the spin-state transition of
La1-xEuxCoO3 crystals with 0 ≤ x ≤ 1 can be found in Refs. [178, 206]. However, these
mixed crystals have several disadvantages, in particular in terms of thermal conductivity
measurements [177]3. This motivated the growth and investigation of RCoO3 single crystals
with R= Pr and Nd [205, 207]. In these compounds the spin gap lies inbetween those of
LaCoO3 and EuCoO3 [205]. For the data analysis of the rare-earth compounds, the IS model
will be used with the parameters derived from thermal expansion and susceptibility [205].

5.1.1. Jahn-Teller Effect

The Jahn-Teller effect causes a spontaneous distortion of the crystal symmetry, when the
energy gain through lifting the degeneracy of an energy level is bigger than the elastic energy
which is needed to distort the crystal [208]. The eg orbitals split into two singlets, while the
center of mass remains unchanged (see Fig. 5.2). It follows that for a high-spin state no Jahn-
Teller effect is possible for the eg orbital, since the energy gain and loss of the two electrons
in the eg orbital exactly cancel each other. The t2g orbital splits into a doublet with the lower
energy and a singlet. Here, the energy gain is less than for the eg orbital, and the Jahn-Teller
effect is less effective.

As long as the octahedral distortions fluctuate, one speaks of a dynamical Jahn-Teller effect.
The other possibility is that the distorted octahedra form a long-range ordered state, which
is called the collective Jahn-Teller effect. The possible influence of the Jahn-Teller effect in
LaCoO3 is discussed in Refs. [9, 12, 197, 201, 209–212].

2ν describes an additional orbital degeneracy, see Refs. [12, 205, 206].
3The mixed compounds are only available as polycrystals. Moreover, the additional effect of the disorder on

the R site suppresses κ.
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A[mm2] L[mm]

LaCoO3 Zo104 0.8× 1.5 3.7
LaCoO3 Mar5b_07 0.8× 1.4 2.6
LaCoO3 Mar5a_08 1.4× 0.8 3.4
LaCoO3 Mar5_09 1.1× 0.8 2.3
LaCoO3 EKParis 2.3∗ 4.7
PrCoO3 1.0× 3.8 2.5
NdCoO3 1.7× 2.0 2.8
EuCoO3 0.3× 0.9 2

Table 5.1.: Sample sizes of the investigated RCoO3 samples. *) The EKParis crystal has a
half-moon shaped cross section.

5.2. Samples

All investigated RCoO3 samples are single crystals grown in a floating-zone furnace. The
measurements of the thermal conductivity of LaCoO3 were performed on five different single
crystals. The crystal Zo104 was grown by C. Zobel [33] and was used for several investigations,
e.g. thermal expansion, susceptibility, and specific heat measurements. [12, 178, 205, 213]
The crystal labeled EKParis was grown by G. Dhalenne (Université Paris Sud). The other
three samples were grown by M. Reuther [214], and are labeled as Mar5a_8, Mar5b_07,
and Mar5_09. The EuCoO3 crystal (AR11) was grown by A. Reichl [179], and the PrCoO3
(MB15) and NdCoO3 (MB16) crystals by M. Benomar [207].

All measurements have been performed along arbitrary directions. The LaCoO3 crystals
are heavily twinned, so no pronounced direction dependence is expected. The twinning in the
rare-earth cobaltates was not investigated. Because of the larger anisotropy twinning may be
less important.

5.3. Susceptibility Analysis

Fig. 5.4a shows the measured susceptibilities of RCoO3 with R = La, Pr, Nd, and Eu. For
LaCoO3 the measured susceptibility contains the background contributions

χbg = χCW + χvV + χdia, (5.1)

where the first part χCW is a paramagnetic impurity contribution, and the latter consists of
a temperature independent van Vleck contribution χvV of the Co3+ ions and the diamagnetic
susceptibility of closed shells χdia. The paramagnetic low-temperature contribution is com-
paratively large, which is possibly related to the occurrence of so-called HS polarons [215], as
will be discussed later. In EuCoO3 the van Vleck contribution of the Eu3+ ions becomes large
and temperature dependent [216], what has to be taken into account in Eq. 5.1. Replacing La
by a rare-earth ion, whose ionic radius lies inbetween those of La and Eu, leads to a spin gap
inbetween those of LaCoO3 and EuCoO3. Complications arise from the 4f magnetism, which
dominates the measured susceptibility in NdCoO3 and PrCoO3 (see Fig. 5.4). However, a
separation was successfully done in Ref. [205]. The lower panel shows the Co3+ susceptibility,
and as expected the onset temperature of the spin-state transition for R = Pr and Nd lies
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R ∆IS
Co(χ) ∆IS

Co(α) ν acubic Vuc rR C
(K) (K) (K) (Å) (Å3) (Å)

(
emuK
mole

)
La 185 180 1 3.825 [200] 55.98 [200] 1.160 0.033 [178]
Pr 1100 1200 3 3.788 [45] 54.38 [45] 1.126 0.018
Nd 1400 1750 3 3.775 [52] 53.78 [52] 1.109
Eu 1900 3 3.750 [178, 179] 52.75 [178, 179] 1.066 0.003 [178]

Table 5.2.: Co3+ spin gap ∆Co as derived from susceptibility and thermal expansion in
Ref. [205] (with degeneracy ν used for the analysis), cubic lattice constant a, cubic unit cell vol-
ume Vuc, ionic radii (from Ref. [54]), and Curie constants of the paramagnetic low-temperature
contribution (see text).

inbetween those for R = La and Eu. The analysis of the susceptibility was done in Ref. [205]
based on a two-level system which gives the relation

χCo =
NAµ2

Bg2

3kBT
· S(S + 1) · ν(2S + 1) · exp(−∆/T )

1 + ν(2S + 1) · exp(−∆/T )
. (5.2)

The model dependent parameters are the g factor, the spin S (S = 1 for IS and S = 2 for
HS), the spin gap ∆, and an additional orbital degeneracy ν, which can be 1 or 3. For the
LS-IS and LS-HS model the values are listed in Tab. 5.2. Except for LaCoO3 only the LS-IS
model with ν = 1 has been considered (see Ref. [205]). Note that for a SOcHS model, the
formula is the same, if one replaces S by J̃ and sets ν = 1.

5.3.1. CF Analysis of the Susceptibility of PrCoO3 and NdCoO3

In principle the susceptibility of the R3+ ions in PrCoO3 and NdCoO3 can be calculated
if the CF parameters are known. No CF investigations are available for these compounds,
but as shown in Sec. 2.4 the CF is expected to be very similar in PrNiO3 and NdGaO3.
Fig. 5.5 shows the calculated4 inverse susceptibilities and magnetization curves for PrCoO3
and NdCoO3 using the CF parameters from Refs. [44, 47]. The general temperature and
field dependences of the R3+ moments are well described by the calculations. In PrCoO3,
the calculated susceptibility is anisotropic (panel a). The best agreement between data and
calculation is given for the b direction. The deviations at low temperatures are due to the
paramagnetic impurities, and at high temperatures due to the Co3+ susceptibility. Note, that
the slopes of the different χ−1 curves are nearly identical. This shows that the fit used in
Ref. [205] to determine the Co3+ susceptibility is a good approximation. Fig. 5.5b shows
magnetization curves a 1.8K. Again, a large anisotropy and a good agreement of the data
to the calculated curve for H ‖ b is observed. Fig. 5.5c and d show the results for NdCoO3,
with basically the same conclusions. Here, the best agreement is given for the calculation with
H ‖ a.

5.3.2. Spin-State Transition with variable Energy Gap

By using the measured g factor of g ≈ 3.5 [204] in Eq. 5.2, the description of the susceptibility
gets worse. A possible way out is the introduction of an effective interaction between the

4The directions are given in the Pbmn notation (see Chp. 7).
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Figure 5.4.: a) Measured susceptibility for RCoO3 with R=La, Pr, Nd, and Eu. For PrCoO3
and NdCoO3 the 4f contribution is dominant. b) Estimation of the background contribution
to χ. For EuCoO3 a large Eu van Vleck contribution is present. c) Co3+ contributions to
the susceptibility. The spin-state transition shifts successively to higher temperatures with
decreasing rare earth size. [202, 217]

Co3+ sites, what can be described by a temperature-dependent energy gap [178, 205]. The
underlying idea is that the population of an excited state hinders the surrounding Co3+ ions
to get excited, what effectively increases the spin gap ∆Co. The temperature-dependent gap
can be calculated by reverting Eq. 5.2, what leads to

∆Co(T ) = T ln
(

NAg2µ2
BS(S + 1)

3kBT

ν(2S + 1)
χCo(T )

− ν(2S + 1)
)

. (5.3)

Setting J̃ = ν = 1, the temperature-dependent gap shown in Fig. 5.6a is calculated. Note
that the gap should get temperature independent at low temperatures, when the distance
between excited sites gets large. However, here the gap cannot be determined exactly because
of the uncertainty of the background contribution below ≈ 25K. This model is supported
by recent experimental results based on soft x-ray absorption spectroscopy and magnetic
circular dichroism, where an energy dependent gap with the same temperature dependence is
obtained [13]. In Ref. [205] a combined analysis of the susceptibility and thermal expansion
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the CF parameters of PrNiO3 and NdGaO3 [44, 47] in comparison to the data of PrCoO3 and
NdCoO3. The arrows labeled SST show where the Co3+ susceptibility starts to contribute due
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was performed with the LS-IS model. Using the same Ansatz the formula

αCo =
3d exp

(
∆(T )

T

) (
∆(T )− T ∂∆(T )

∂T

)
(
3 + exp

(
∆(T )

T

))2
T 2

(5.4)

is obtained for the additional thermal expansion, if the energy gap is temperature dependent.
Using the values of ∆(T ) from Fig. 5.6, the thermal expansion can be calculated. The result
is shown in Fig. 5.6b , and is in good agreement with the measured thermal expansion. The
value d = 1.8% is obtained. By scaling the thermal expansion and the susceptibility curves
with the scaling procedure from Ref. [205], a scaling factor of 170 emuK/mole is obtained,
which is in good agreement with the experimental observation of 180 emuK/mole [205].

5.3.3. Impurity Contribution in LaCoO3

In this section a detailed analysis of the paramagnetic impurity contribution to the susceptibil-
ity will be given, with the purpose to analyze the influence of these impurities to the thermal
conductivity. Therefore the magnetization measurements were performed on the identical
samples which were used for the thermal conductivity measurements.

The paramagnetic impurity content can be determined either by temperature-dependent
susceptibility measurements or from the magnetic-field dependent magnetization at low tem-
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peratures. The magnetization measurements were carried out by H. Hartmann [218] at a
fixed temperature of 3K in a vibrating sample magnetometer (VSM). Because the popula-
tion of the IS/HS state is negligible at this temperature, the magnetization contains only two
contributions:

M(H) = Mpara(H) + M0(H), (5.5)

where Mpara is the paramagnetic impurity contribution, and M0(H) is the background. M0(H)
consists of the diamagnetic contribution of the core electrons and the paramagnetic van Vleck
susceptibility of the Co3+ electrons,and gives a simple linear contribution M0(H) = χ0 ∗H.
The paramagnetic part Mpara(H) is usually described by

Mpara(H) = NgJµBBJ(x) with x = gJµBH/kBT (5.6)

and the so-called Brillouin function BJ(x) [16]. Here, N denotes the number of the paramag-
netic moments with spin J . Fig. 5.8 shows the magnetization curves at 3K for the sample
Zo104. The linear part of M(H) is obtained by a fit for H > 12T, and the subtraction yields
the curves for the paramagnetic contribution in Fig. 5.8 (dashed line). The calculation of
M(H) with Eq. 5.6 does reproduce the field dependence only qualitatively. If the fit range is
restricted to low fields (H ≤ 0.1T), a value J = 5 is obtained (with g = 2). This fit leads to
a good description of the initial slope of M(H). The two fit parameters of the linear fit give
the values of Msat and χ0 listed in Tab. 5.3. The paramagnetic part of the susceptibility from
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the temperature-dependent measurements can be determined by fitting the low-temperature
range by5

χ(T ) = χ0 + C/(T −Θ). (5.7)

The estimation of C from the temperature-dependent susceptibility requires measurements at
the low-field limes, since the paramagnetic impurity part is suppressed in higher fields. χ(T )
was measured for all samples in a magnetic field of 1T (see Fig. 5.7). The magnetization
measurements (Fig. 5.8) show that M(H) is beyond the linear behavior at 1T. However, for
large x the Brillouin function BJ(x) goes to 1 and Eq. 5.6 can be replaced by

M(µBH � kBT ) = NgJµB. (5.8)

It follows that the saturation magnetization is proportional to N and can therefore be used
as a measure of the impurity content.

A magnetization measurement is not available for the EKParis sample. For this sample
M sat

imp was estimated from the temperature-dependent susceptibility, which was measured in a
field of 1T in all samples. Herefore the fact is used, that the shape of all magnetization curves
is almost identical in all samples. It follows that the magnetization at 1T determined from
the temperature-dependent measurement can be extrapolated to the saturation magnetization
via

M̃ sat
imp = [χ(3K, 1T)− χ0] ·M(14T)/M(1T). (5.9)

5A more reliable estimation of C can be achieved by determining χ0 from the high-field slope of M(T ).
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Specimen χ(3K) Msat
imp χ0 M14 T

para/M1 T
para M̃sat

imp ∆M̃sat
imp

10−3( emu
mole

) (10−3 µB
f.u.

) (10−4 emu
mole

) (10−3 µB
f.u.)

10−3 µB
f.u.)

Zo104 7.6 22.3 2.6 1.7 21.7 0.6
Mar5b_07 2.5 6.5 1.7 1.62 6.6 0.1
Mar5a_08 3.9 9.8 4.1 1.51 10.9 1.1
Mar5_09 1.7 4.8 1.9 1.85 4.4 0.4
EKParis 1.5 3.6

Table 5.3.: Parameters for the estimation of the impurity contribution for the different LaCoO3
samples, see text.

Here, M(14T)/M(1T) = 1.7 and χ0 = 2.6 · 10−4emu/mole are averaged over the four samples,
where magnetization measurements were available. The application of Eq. 5.9 to these four
samples yields values which only slightly deviate from the measured M sat

imp (see Tab. 5.3). This
ensures, that a confident value of M sat

imp is obtained for the sample EKParis with Eq. 5.9.
In Ref. [215] the authors investigated the influence of so-called high-spin polarons with S =

10 . . . 16 for slightly Sr-doped La1-xSrxCoO3 crystals (x ≤ 0.01). This analysis is performed by
the use of Eq. 5.6. The idea is that the divalent Sr2+ ions nominally cause the same amount
of Co4+ ions, and that these magnetic ions induce a spin-state transition of the neighboring
Co3+ ions from LS to IS or HS states. These sites then couple to a high-spin polaron with
S = 10 . . . 16. The samples investigated here were Sr free, however, if the samples contain
additional oxygen, the same effect may be achieved. An indication herefore is that the value
of J obtained by the Brillouin fits ranges from J = 5 . . . 9.5, if the criteria is to fit the initial
slope of the M(T ) curves. This is consistent with Ref. [215], because J decreases for a smaller
Sr content, and the amount of additional oxygen is presumably very small. The question
remains, why the measured magnetization deviates from a Brillouin function. A possible
explanation is another kind of magnetic defects contributing significantly to M(H). Moreover,
interactions between the magnetic moments can explain such a behavior. In the next chapter
the thermopower of the LaCoO3 crystals will be investigated. The sign of the thermopower
gives an information about the sign of the dominant charge carriers. Interestingly, only two
of the samples show a positive thermopower at room temperature, Mar5b_07 and Mar5_09.
These are the samples, which have the smallest values of P sat

imp.
The concept of magnetic polarons explains the considerably high paramagnetic contribution

to M(H) in LaCoO3. The induction of surrounding ions into the HS/IS state gets less favor-
able, if the spin gap is increased. As a consequence, the paramagnetic contribution should
weaken with increasing energy gap. Therefore we expect a successively decreasing Curie con-
stant for RCoO3 with R = Pr, Nd, and Eu. In EuCoO3 the Curie constant is indeed about an
order of magnitude smaller, than in LaCoO3. For R = Pr the estimation of the paramagnetic
contribution is shown in Fig. 5.10a. Because of the non-magnetic ground state of the Pr3+ ion
(see Sec. 5.3.1), a Curie fit with Eq. 5.7 is possible. χ0 is the temperature independent sum of
the van Vleck contributions of Co3+ and Pr3+. The fit yields the values χ0 = 0.017 emu/mole,
Θ = −0.73K and Cimp = 0.015 emu/moleK. The pure PrCoO3 susceptibility obtained by sub-
tracting the impurity contribution is shown as solid line. The inset shows the magnetization of
PrCoO3 at 1.8K. Here, the impurity contribution is estimated as in LaCoO3 by subtracting
a high-field linear fit, and analyzing the residual magnetization by Eq. 5.6. The resulting
impurity magnetization is much smaller than the magnetization of the Pr3+ ions (note the
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Figure 5.10.: a) Susceptibility of PrCoO3 and calculated Pr3+ contribution by subtraction of
the low-temperature Curie term caused by paramagnetic impurities. Inset: Magnetization at
1.8 K and extracted impurity contribution. Note the different scales. b) Low-temperature mag-
netization measurements of NdCoO3 at various temperatures. Lines are calculated according
to Eq. 5.6 taking into account a linear van Vleck contribution.

different scales). The best fit using J = 0.5 for a two-level impurity system yields the values
nimp = 0.02 and gimp = 2.37. The resulting C = 0.019 emu/moleK is in good agreement with
the result from the analysis of the temperature dependent measurement. The value of C lies
inbetween those of LaCoO3 and EuCoO3, which shows indeed the correlation between spin
gap and paramagnetic impurities.

For R = Nd, Fig. 5.10b, the ground state of the Nd3+ ion is a Kramer’s doublet (see
Sec. 5.3.1). The magnetization at low temperatures is determined by the Nd contribution,
consistent of a Brillouin and a van Vleck term. The magnetization curves have been fitted6 by
Eq. 5.6 and an additional term MvV

Nd = 1.5 · 10−6H µB/f.u., estimated from a high-field fit at
1.8K. The other values used are J = 0.5, nNd = 1 and the gNd factor is the only adjustable pa-
rameter. The resulting g factor is almost constant between 1.8K and 40K, (2.12 ≤ g ≤ 2.19),
yielding an average value g = 2.15. Note that the absolute values of the magnetization is much
larger than the impurity contributions determined for the other compounds. A determination
of the impurity Curie constant C is therefore not possible for NdCoO3.

5.4. Results

5.4.1. LaCoO3

In Fig. 5.11 the thermal conductivity of LaCoO3 is shown (sample Zo104). [57] At first glance
κ seems to be consistent with usual phononic heat transport (see Sec. 2). However, a closer
inspection of the data reveals several anomalous features. The thermal conductivity above
about 100 K is anomalously small and its temperature dependence is very unusual, since above
150 K the thermal conductivity slightly increases with increasing temperature. The small
absolute values cannot be attributed to strong defect scattering, since conventional defect
scattering does not vanish below 100 K so that κ would not increase and show a maximum

6The deviations at low temperatures are likely to be caused by fluctuations of the Nd ordering, which occurs
at 1.2 K [219].
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Specimen Tmax κmax κ(300K) S(300K)
(K) (W/Km) (W/Km) µV/K

Zo104 28 10 2.2 −700
Mar5b_07 28 20 3.5 1000
Mar5a_08 32 8 4.4 −600
Mar5_09 25 34 3.3 1000
EKParis 29 27 4.4 −300
PrCoO3 26 26 3.0 −400
NdCoO3 23 53 4.8 −400
EuCoO3 19 266 8.1 −500

Table 5.4.: RCoO3: Low-temperature maxima and room-temperature values of thermal con-
ductivity κ and thermopower S.

below 100 K. Therefore, the small κ and its unusual temperature dependence indicate that
an unusual, additional scattering mechanism is active above about 25K. It is, in principle,
possible that low-lying optical phonons cause resonant scattering of acoustic phonons and
therefore suppress the heat current in a certain temperature range. A softening of optical
phonon branches has been observed in Ref. [220]. However, in LaAlO3, having the same
structure, has a conventional thermal conductivity [22]. T it is unlikely that the unusual
thermal conductivity is an intrinsic feature of the phonon modes of LaCoO3.

Another source of additional phonon scattering could be the spin-state transition. The idea
is that the thermal population of the excited spin state causes additional disorder due to the
random distribution of the populated sites. To motivate this picture, the Co3+ susceptibility of
LaCoO3 is plotted in Fig. 5.11 (right scale). The temperature-dependent spin-state transition
implies an increasing lattice disorder above 25 K, and therefore an additional suppression of
the thermal conductivity. The disorder and thus the suppression of κ is most pronounced for
an equal number of LS and IS (HS) ions. For an energy gap ∆ ' 185K between the LS and
IS/HS states an equal occupation of LS and IS ions is expected around T ' 165K. Therefore
the strong reduction of κ above 25K, its small absolute values and the weak minimum around
150 K can arise from temperature-induced LS-IS/HS disorder.

If a magnetic field of 14T is applied, the thermal conductivity is significantly changed below
50K. That is not expected for a conventional phononic heat transport, since phonons are not
expected to be field dependent. Furthermore, the energy gap ∆Co is too large to be affected
by a magnetic field in a significant way. Moreover, the field dependence remains below 5K,
where practically all Co3+ sites are in the LS state. This suggests that another scattering
mechanism is present at low temperatures, which is magnetic-field dependent.

5.4.2. RCoO3 with R = La, Pr, Nd, and Eu

As shown in Sec. 5.1, the spin-state transition shifts to higher temperature if La is replaced
by smaller R ions. This should have an influence on the thermal conductivity, if the picture
depicted above is valid. Fig. 5.12 shows the thermal conductivity in zero field for RCoO3
with R = La, Pr, Nd, and Eu. [57, 221]. First, the compound with the smallest ion Eu will
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be discussed. In contrast to LaCoO3, the thermal conductivity shows comparatively large
absolute values, and a general temperature dependence as expected for a purely phononic
heat conductor. This is confirmed by a Debye fit according to Eq. 2.5. The fit parameters
are listed in Tab. 5.5. The low-temperature maximum reaches a value of 250W/Km at 18K,
which is about an order of magnitude larger than for LaCoO3. In NdCoO3, κ is lowered in the
whole temperature range in comparison to EuCoO3, but still consistent with a conventional
phononic picture. At the onset temperature of the spin-state transition (see Fig. 5.4) a slight
change of the curvature to a steeper slope is visible. In contrast to NdCoO3, PrCoO3 shows an
unusual temperature dependence of κ, which reminds of κ of LaCoO3. The low-temperature
peak decreases very strongly with increasing temperature. Between 50K and 200K, κ is
more or less temperature independent with a low absolute value κ ≈ 3.5W/Km. Because
the Co3+ spin gap is too large to account for this anomaly, another explanation is needed
for this behavior. As will be discussed in detail in Sec. 5.4.10, multiplet transitions of the 4f
orbitals can cause the additional scattering. Above 200K, κ starts to decrease again, with a
comparatively sudden slope change. According to the susceptibility measurements (Fig. 5.4)
this is the temperature range where the higher spin state becomes excited. This is a further
hint that the same scattering mechanism is present here, which suppresses κ in LaCoO3 above
25K.

Comparing all curves, it is clearly seen that the thermal conductivity is monotonously
suppressed with increasing rare earth size in the whole temperature range (not taking into
account the additional effect for R=Pr). This systematic trend at low temperatures cannot
directly be attributed to the additional disorder scattering caused by the spin-state transition,
because here the population of the excited spin states is negligible. If the suppression of κ
due to the spin-state transition would be the only difference between LaCoO3 and EuCoO3,
one would expect that the thermal conductivity should not be affected below ≈ 25K. This
contradicts the experimental observation. In principle, this finding could arise from a different
sample quality. However, there is no indication for an significantly better crystal quality in
EuCoO3 than in LaCoO3. Furthermore, the low-temperature behavior of LaCoO3 is unusual.
This is confirmed by the shown Debye fit, which is obtained by keeping all parameters fixed at
the values obtained for EuCoO3, and adjusting the factor P for the point defect scattering to
obtain the height of the low-temperature maximum. This gives a hint that usual point defect
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scattering is not the only source of the strong suppression of the low-temperature thermal
conductivity, since P is the only adjustable parameter which is effective in this temperature
region.7

5.4.3. RCoO3: Comparison to the Literature

To my knowledge, only Yan et al. have published low-temperature thermal conductivity data
of undoped RCoO3 compounds with R = La, Pr, and Nd [9]. These results are shown in
Fig. 5.13. Above ≈ 50K these data show the same qualitative and quantitative behavior like
our samples. The broad minima for R = La and Pr are present, showing that these are intrinsic
features of the compounds. Differences occur in the heights of the low-temperature maxima,
ranging from only 10% for R = Pr up to a factor of 2 for R = Nd and of 5 for LaCoO3. Such
differences generally reflect different sample qualities. It follows that the height of the low-
temperature peak does not follow such a systematic behavior like in our samples. However,
above 100K there is the same monotonous decrease of κ with the ionic size of the rare earth.
Furthermore, all absolute values are well below the data from our EuCoO3 crystal.

In Ref. [222, 223] the thermal conductivity of LaCoO3 was investigated above room temper-
ature. Here, the interpretation becomes even more difficult. The Debye approximation is no
longer valid, and electronic scattering mechanisms and electronic contributions get relevant.
Furthermore, additional effects like excitonic or radiative heat transport may play a role [223].

5.4.4. LaCoO3: Low Temperatures

In this section we present a detailed study of the zero-field thermal conductivity of LaCoO3
for five crystals. Furthermore the influence of magnetic fields up to 14T (in some cases 16T)
was investigated for all samples. The motivation was to study the unusual low-temperature-
and field dependence of κ. In particular, the detailed analysis of the magnetic susceptibility
allows to correlate the influence of the sample-dependent content of paramagnetic impurities
to κ. For the samples Zo104 and MAR5b_07 the measurement range was extended down to
≈ 300mK with the new setup for the Heliox 3He insert (see Sec. 3.2.2).

7It is possible to get a much better fit by using a very small value of L for the sample size, L ≈ 1 · 10−5 [57].
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Figure 5.13.: Thermal conductivity
data for LaCoO3, PrCoO3, and NdCoO3
taken from Ref. [9].

In order to analyze the whole temperature range, these data are plotted together with the
measurements performed in the conventional setup. In Fig. 5.14a the results for the sample
Zo104 are shown.8 In zero field, the temperature dependence follows a T 2 dependence below
≈ 10K. In a magnetic field of 14T the thermal conductivity is strongly enhanced below
≈ 20K up to almost a factor of 3 at ≈ 2.5K. By further lowering the temperature, the field
dependence becomes smaller and vanishes around 600mK. In field, the slope of κ shows a T 3

behavior below 1K. However, the temperature window is too small to unambiguously confirm
a power-law behavior. In Fig. 5.14b the data for crystal Mar5b_07 are shown. The most
striking feature is the occurrence of a pronounced dip in zero field around 2K, which contrasts
the T 2 dependence of specimen Zo104. For the fields of 6T and 10T, κ is strongly enhanced
below ≈ 5K, with almost no difference between these two curves. At 14T, κ suddenly
decreases again, and shows the same temperature dependence as specimen Zo104. The 14T
curve crosses the zero-field curve at 1K, and with decreasing temperature κ decreases much
stronger than κ in zero field.

Fig. 5.15 shows the thermal conductivity vs. magnetic field for the sample Mar5b_07.
For a better comparison, all values are normalized to the zero field values. At 3K, κ first
increases, reaches a maximum at 9T, and then decreases again. Above 13T, κ is almost field
independent up to 16T. By lowering the temperature the maximum shifts to lower fields and
strongly increases. At 1.85K the thermal conductivity is enhanced by a factor of 8 at 8T
in comparison to the zero-field value.9 At 330mK, the maximum is much smaller, and κ at
higher fields is smaller than in zero field.

From the onset of a T 3 behavior for 14T below 1.5K one may suspect that the temperature
region is reached, where only boundary scattering is effective. However, two observations
contradict this interpretation: On the one hand, the boundary scattering gives an upper limit
of κ, meaning that all other κ values should be below the 14T curve, which is obviously
not the case in sample Mar5b_07. Furthermore, the estimation of L from Eq. 2.3 yields a
value of L = 2.5 · 10−5m, which is much smaller than the real sample dimension. The non-
monotonous complex field dependence in sample Mar5_07 clearly shows that defect scattering

However, the physical meaning of such a fit is questionable.
8For sample Zo104, the 0 T and 14 T curves could only be measured above ≈ 500mK. The strong increase of

the thermometer resistance of the used Cernox thermometers restricted the measurement range. For sample
Mar5b_07, RuO thermometers were used. Here, all measurements extend to 300mK(see Sec. 3.2.2).

9The 3He measurements have been only measured up to 14 T.
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temperature data to cover the whole temperature range. The lines show power laws with
different exponents. b) The same measurements for sample Mar5b_07.

is not sufficient to explain the data. The dip observed in κ(0T) in sample Mar5b_07 is typical
for a resonant scattering process [5, 27]. It is well known that paramagnetic impurities can
cause such resonant scattering processes at low temperatures leading to complex temperature
and field dependences of κ (see e.g. Sec. 2.1.6) [26, 29, 224].

The simplest case of one resonance can only explain a minimum in κ vs. H, but not a
maximum (see Sec. 2.1.6). This leads to the conclusion that at least two resonances are
responsible for the suppression of κ. This is supported by regarding the field-dependent
thermal conductivity at 3K in sample Mar5b_07. The sudden stop of the decrease of κ at
≈ 13T suggests that here a second resonance occurs (since the first resonance is already seen
in the zero-field curve). With this knowledge, the following scenario can be proposed: At
zero field one resonance causes a dip in κ at 2K. This resonance shifts to higher energies
in magnetic fields, what explains the increase of κ for low fields and low temperatures. A
second resonance belongs to a transition initially having an energy which is too high to lead
to significant scattering. This gap becomes smaller at high fields leading to the maximum and
sudden decrease of κ. A possible level scheme causing such a behavior is shown in Fig. 5.14b.
Since, we do not know the level scheme for the impurities in LaCoO3, this scenario should not
be taken too litterally. In the next section the other samples will be considered, to see if a
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consistent picture can be drawn.

5.4.5. LaCoO3: Field Dependence of κ

Fig. 5.16 shows the field-dependent measurements for four samples at fixed temperatures
between 3K and 50K. Some general features can be seen:

• At the highest temperatures, κ(H) weakly decreases with increasing magnetic field.

• At low temperatures and below 8T, κ(H) increases approximately linearly. The slope of
κ(H) increases with decreasing temperature, and is different for the different samples.

• For two of the samples the additional effect of a suppression of κ for T < 3K and
H > 8T occurs, the specimens Mar5b_07 and Mar5_09. These are the only two
specimens, which have a positive thermopower at room temperature (see Tab. 5.4; the
thermopower measurements of LaCoO3 will be presented in Chp. 6).

In the temperature-dependent measurements, see Fig. 5.17, the additional resonance leads to
a more complex structure for the samples Mar5b_07 and Mar5_09. This provides a further
hint that at least two resonances are responsible for the suppression of κ. One, which becomes
weaker in magnetic fields, and a second one, which is only present in the samples Mar5b_07
and Mar5_09.

5.4.6. LaCoO3: Comparison Zero Field

In this section, all zero-field measurements of κ of LaCoO3 will be compared. Fig. 5.18 shows
κ vs. T for all samples in the temperature range of 3 ≤ T ≤ 300K.10 First, we will regard κ at
higher temperatures. All samples show the broad minimum with Tmin = 120 . . . 190K. This
seems to be a large range, however, one has to keep in mind that the position of such a broad
minimum is shifted easily by e.g. differences of the tail of the low-temperature maximum. The
large differences at room temperature are surprising, in particular the low values for sample
Zo104. Geometry errors and radiation losses may be responsible for the differences between
10The sample EKParis was only measured above 5 K.
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Figure 5.16.: Thermal conductivity of LaCoO3 vs. magnetic field for various samples down
to 3 K. The data are shown normalized to the zero-field value. Note the different scales of the
y axes.

most of the samples (see Sec. 3.2.1), but the reason for the low values of sample Zo104 remains
unclear.

At low temperatures a strong sample dependence of κ is observed. The height of the low-
temperature peak varies from 8 to 34W/Km, and the position shifts between 24 and 34K,
see Tab. 5.4. Interestingly, below ≈ 20K all samples grown in cologne show nearly the same
temperature dependence, whereas sample EKParis has a steeper slope, which could be related
to either the used constituents, or details of the growing method. As discussed above, the
suppression of κ at low temperatures is most likely largely determined by resonant scattering
on paramagnetic impurity levels. Therefore the height of the low-temperature peak should
correlate with the estimated paramagnetic impurity level Pimp. In a simple approach we
neglect all other scattering mechanisms at Tmax and get

κmax ∼
1

τres
∼ 1

Pimp
. (5.10)

In the inset of Fig. 5.18, κmax is plotted vs. Pimp. A fit by Eq. 5.10 describes the general
trend quite well. The question may arise, why the field dependences do not correlate in the
same way with Pimp. The explanation is that the conventional defect scattering is different for
the different samples. To illustrate this, Fig. 5.19 shows a sketch of the frequency dependent
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thermal conductivity. Defect scattering mainly suppresses κ(ω) at high frequencies with a
ω4 dependence (dotted line). If we assume that a field-dependent resonance acts in the left
shaded are, it will have a strong influence on κ. This suppression is not so much influenced
by the defect scattering, since ω is too low. On the other hand, if a field-dependent resonance
acts in the right shaded area, it is less effective, since this part of the frequency spectrum of
κ is suppressed anyway by point defect scattering. The influence of the conventional defect
scattering is supported by the fact that the two samples with the smallest field dependences,
Mar5a_8 and EKParis, are those where κmax lies below the fit according to Eq. 5.10.

5.4.7. LaCoO3: Influence of the Spin-State Transition on κ

Because the sample Mar5_09 has a low content of paramagnetic impurities, and the highest
low-temperature peak of κ, the data of this sample will be used for the further analysis. This
has the advantage that the effects caused by the spin-state transition can be better separated
from the low-temperature scattering processes. We will perform the analysis for the LS/IS
model with a fixed gap of 185K and for the SOcHS scenario.

Before the data will be analyzed more quantitatively, the low absolute value of κ at high
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temperature has to be addressed. As shown in Sec. 2.1.5, the Debye approximation (Eq. 2.5)
is not a good approximation anymore, if the mean free path is of the order of the lattice
constant. Applying the Ansatz from Cahill et al. [25](Eq. 2.9), we calculate a value κmin =
1.2W/Km, summing over all three branches with the averaged sound velocity vs = 3900m/s
from Ref. [225] and the volume density n = 9.1 · 1022 /cm3. The calculated κmin is about a
factor 3 smaller than the observed κ(300K). This is close to the usual underestimation of this
model of a factor of two [25], which shows that limiting effects have to be taken into account.

Because the data will be modeled by Eq. 2.5, an estimate has to be made when limiting
effects will play a role in this model. Therefore we calculate κ = 1

3cvlmin where lmin is
a constant. If the assumption is made that κ already reaches a minimum value, lmin can be
calculated by taking the room temperature value of κ, which yields a value of lmin = 5.3Å. The
resulting temperature-dependent curve, calculated according to Eq. 2.5, is plotted together
with κ for LaCoO3 in Fig. 5.20. From the comparison of the temperature dependence, the
conclusion can be drawn that limiting effects are significant above 200K, and may extend to
ever lower temperatures. Therefore the following analysis gets worse for temperatures above
150K.

As discussed in Sec. 5.4.1, the additional disorder caused by the spin-state transition can
in principle explain the suppression of the thermal conductivity, what will be discussed more
quantitatively now.

For the analysis EuCoO3 is taken as a reference compound, with the assumption that
almost all additional scattering in LaCoO3 for T & 50K is due to the spin-state transition.
To illustrate the principle idea, Fig. 5.21 shows the thermal resistivity w = 1/κ for LaCoO3
and EuCoO3. Assuming that the additional thermal resistance at high temperatures is totally
determined by the disorder scattering induced by the spin-state transition, one may write:

τdis ∝ wdis ∝ wLa − wEu. (5.11)

This is of course a very crude estimation, since it totally neglects the ω dependence of κ.
However, from the temperature dependence of wdis it is seen that the scattering significantly
changes above 35K. The steep increase of wdis below 35K can be attributed to the various
low-temperature scattering processes which have been discussed in Sec. 5.4.4. The assumption
that these scattering processes vanish for higher temperatures is supported by the temperature
dependence of w(T ) below 35K.
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A successful approach to describe the thermal conductivity in disordered mixed alloys, is
the so-called Nordheim-rule [226], which tells that the additional scattering is proportional to
x(x − 1), where x is the number fraction of one of the constituents. For the disorder caused
by the population of the IS/HS states this reads:

τdis ∼ nIS/HS ·nLS ∼
t exp(−∆Co/T )

(1 + t exp(−∆Co/T ))2
, (5.12)

where t is the total degeneracy of the excited level. Fig 5.22 shows the calculated curves for
τdis in the LS-IS scenario, with ∆Co = 185K taken from the susceptibility analysis [205]. The
temperature dependence of wdis is described well in a temperature range from ≈ 40 . . . 150K
This finding gives a strong indication that the thermal conductivity is indeed suppressed by
the spin-state transition.

A better data analysis should include the ω dependence of κ, what can be done in the
following way: The scattering rate

1
τEu

=
1

τbd
+

1
τpt

+
1

τum
(5.13)

is calculated by fitting the thermal conductivity of the reference compound EuCoO3 (for the
fit parameters see Tab. 5.5). Here, θD = 600K and vs = 3900m/s are the literature values for
LaCoO3 [188, 225]. With these values the fit already shown in Fig. 5.12 is obtained. Next, we
assume that the thermal conductivity of LaCoO3 is determined by the scattering rate

1
τLa

=
1

τbd
+

1
τbd

+
1

τum
+

1
τdis

(5.14)

with
1

τdis
= C(T ) ·ω4, (5.15)

where the conventional scattering rates are not changed.11 Using the parameters obtained by
the fit of EuCoO3 we can calculate C(T ) by determining the 1/τdis(T ) which is necessary to
11This assumes the ω4 dependence of point defect scatterers. In principle, other ω dependences are possible.

A analysis performed with ω2 and ω0 is shown in the appendix (Fig. A.25)
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describe the LaCoO3 data. The resulting C(T ) starts to increase at about 40K and shows a
maximum at T ≈ 130K. Next, we calculate the temperature-dependent prefactor C(T ). We
assume

C(T ) = C0 ·nLS ·nIS/HS, (5.16)

where C0 is a temperature independent prefactor describing the scattering strength. The
resulting curves for C(T ) calculated for ∆Co = 185 K and ν = 1 in the LS-IS scenario, and
the SOcHS scenario are shown as lines in Fig. 5.22. The only adjustable parameter is the
constant C0, which was fitted in a range from 30K to 150K. With the LS-IS model a good
agreement of measured and calculated scattering rate is obtained up to 150K. The deviation
for T & 150K should not be taken into account, because here limiting effects start to play a
role. The second fit is obtained by the SOcHS model, here the temperature-dependent energy
gap was used in Eq. 5.12. The calculated curves for the LS/IS and the SOcHS scenario are
nearly identical below 100K. Above the calculated values of the SOcHS model give larger
values than for the IS model.

We conclude that the calculated scattering rate which is necessary to model the thermal
conductivity for LaCoO3, with EuCoO3 as a reference compound, can be described assuming a
ω4 dependence of the scattering term. The temperature-dependent prefactor can be modeled
by a two-level system for the spin-state transition for both, either the LS-IS or SOcHS model.

∆ P Cm=4 lmin

(K) (10−43 s3) (10−40s3) (Å)

Fig. 5.12 EuCoO3 3.7 0
LaCoO3 300 0

Fig. 5.23 LaCoO3 185 23.6 5.3 0/2.3
LaCoO3 ∆(T ) 28.6 12 0/1.5

Table 5.5.: Fit parameters for the Debye fits of LaCoO3 shown in Fig. 5.23. The other
parameters are taken from EuCoO3 and the same for all fits: U = 4.9 · 10−31s2/K, and u = 7.6.

As shown above, an additional scattering rate τdiss according to Eq. 5.12 is strongly sup-
ported by comparing the temperature dependence to the estimated scattering rates using
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Figure 5.23.: Modelation of κ for LaCoO3 in the extended Debye model. a) Fits obtained by
the LS-IS model with fixed energy gap. b) Fits with the temperature-dependent energy gap
from the SOcHS model.

EuCoO3 as a reference. In the following, this knowledge will be used to describe the thermal
conductivity of LaCoO3 with an additional scattering rate τdiss. Again, we restrict our anal-
ysis to temperatures above ≈ 35K, and keep most of the parameters fixed by the Debye fit
of EuCoO3. However, we will also fit the prefactor P of the point-defect scattering, since the
number of point defects of course varies in different crystals, and the effect on the thermal
conductivity is not negligible above 35K. However, there are only two free parameters for the
fits, P and C0. Again, the results will be presented for the LS-IS as well as for the SOcHS
model. Fig. 5.23a shows κ of specimen Mar5_09 on double-logarithmic scales. The fit for
the LS-IS is shown as a solid line, and gives a good description of the data from 30 . . . 200K.
The deviation at high temperatures can be explained by the very small mean free path, and
the mentioned limiting of κ. A simple way is to limit the frequency-dependent scattering
rate 1/τ to a value vs/lmin, as discussed in Sec. 2.1.5. This way is different to the estimation
used above, since it also takes into account the frequency dependence of κ. lmin was adapted
without changing the other parameters. The calculated κ including lmin is shown as dashed
line in Fig. 5.23a. In Fig. 5.23b the results using the SOcHS scenario are shown. Both models
describe the thermal conductivity well over a large temperature range. The difference of the
resulting curves is very small, and none of the models is preferred by the thermal conductivity
measurements.
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Scattering Strength

The anomalous temperature dependence of κ can be understood by the scattering caused by
the spin-state transition. However, the question remains if the scattering strength can be
analyzed in a quantitative way. Therefore we assume that the scattering is caused by the
volume differences of the Co3+ ions in different spin states. Such an analysis was successfully
done for mixed semiconductor alloys of the Form AxB1−x in Ref. [227]. The scattering rate
by point defects is given in Ref. [24]:

1
τP

=
a3Γ
4πv3

s

·ω4 ≡ Ccalc
0 ·ω4, (5.17)

where a denotes the lattice constant and vs the sound velocity. For Γ we write

Γ = x(x− 1)

[
(∆M/M)2 + 2

(
∆B

B
− 6.4γ

∆R

R

)2
]

(5.18)

following the notation of Ref. [227]. Here, ∆M/M , ∆B/B, and ∆R/R denote the relative
differences of the mass, the bulk modulus, and the radii of the different pure compounds A
and B. In our case this corresponds to LaCoO3 in the LS or in a hypothetical pure IS/HS
state. The bulk modulus is defined as

B = −V
∂V

∂p
. (5.19)

The constant γ is the Grüneisen parameter defined by

γ = −∂(lnωD)
∂(lnV )

, (5.20)

which is a measure of the lattice anharmonicity. In the semiconductor mixed alloy of Ref. [227]
values of γ = 0.25 . . . 0.5 are obtained. In LaCoO3 the thermal expansion is mainly due to the
spin-state transition. Therefore we use EuCoO3 as a reference. The Grüneisen parameter can
be obtained by scaling the thermal expansion and the specific heat using the data of Ref. [205]
and

α =
γcV

3B
. (5.21)

We do not now the bulk modulus B of EuCoO3 and therefore use the value of B = 230GPa
of NdCoO3 from Ref. [228]. Fig. 5.24 shows the thermal expansion and the scaled specific
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O2-

Co3+

R = rO+rCoa Figure 5.25.: Geometry used
for the estimation of ∆R/R in
LaCoO3.

heat. The curves can be scaled by the value γ = 2.3. ∆M/M plays no role in our case. The
temperature dependence of the bulk modulus of LaCoO3 (B = 122GPa [228]) was investigated
in Ref. [225]. Between 5 and 200K a relative change of approximately 20% is observed. At
200K a the population of the HS/IS state is of the order of 50% , yielding a value ∆B/B ≈ 0.4.
This term can be neglected, since the resulting values of the ∆R/R term will be much larger.

Next, we turn to the question, how ∆R/R is calculated. The principle idea is sketched in
Fig. 5.25. We neglect the La ions, since they are irrelevant for the disorder scattering. The
CoO6 octahedra are treated as ”balls”. This leads to a simple cubic lattice with a = 3.82Å.
The ”ionic” radius is given by the Co-O bond length in this treatment. The ionic radii of the
Co3+ ions in the different spin states, taken from Ref. [54], are 0.545Å for the LS, and 0.61Å
for the HS state12. To obtain the relative length change of the bond length, we use the oxygen
bond length of 1.35Å, yielding the values listed in Tab. 5.6. In Ref. [229] a value of 0.56Å
for the IS radius has been derived. The ionic radii from Ref. [54] are derived from real bond
length of Co3+ systems in the LS or HS system. In contrast, the value for the IS state is based
on a model calculation for LaCoO3, since no system with an unambiguous IS of Co3+ state is
known. This means that the value of 0.56Å cannot directly be compared to the HS/IS radii of
Ref. [54]. Therefore we show for comparison also results obtained by the simple assumption
rIS = (rLS + rHS)/2 = 0.578Å. In Tab. 5.6 the resulting values of ∆R/R are listed.

Another way to treat the problem, is to regard the virtual change of the cubic lattice
constant if all spins are excited in the higher spin state. This value is given by the parameter
d resulting from the susceptibility / thermal expansion scaling analysis in Ref. [205]. In
Tab. 5.6 the values of d for both scenarios are listed. The value for the IS scenario is taken
from Ref. [205], the value for the SOcHS scenario was derived in Sec. 5.3.2.

From the prefactor Ccalc
0 for the scattering rate from the thermal conductivity fits we cal-

culate γ. We obtain values between 13 . . . 43, depending on the model and the term used for
∆R/R. These values are larger than the estimated value for EuCoO3, but of the right order
of magnitude. The exact value is very sensitive to the used parameters and the details of the
model, since some of the parameters are quadratic or cubic in Eqs. 5.18 and 5.17. Therefore
we will not discuss the differences of the different estimations . Yan. et al. [9] who measured
the thermal conductivity of LaCoO3, PrCoO3, and NdCoO3 and attributed the suppression
of κ in LaCoO3 to the spin-state transition. They suggested that the dynamical Jahn-Teller
fluctuations strongly enhance the scattering strength. The proposed idea is that fluctuat-
ing octahedra distortions provide much more effectice scatterers, than static ones. Such an
explanation has been proposed by the same authors to explain the thermal conductivity in
manganates. Our data show, that there is no need to involve the dynamics. The static scat-

12The ionic radii listed in Ref. [54] are calculated from Co-O bond lengths by subtracting the O bond length
r0 = 1.45Å.
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model rIS lCoLS−O lCoHS/IS−O long ∆l/l γfit
l d γfit

d Cfit
0

Å Å Å % % 10−40s3

LS-IS 0.56 1.895 1.91 0.8 37 0.7 43 5.3
LS-IS 0.578 1.895 1.928 1.7 16
SOcHS 1.895 1.96 3.4 13 1.8 25 12

Table 5.6.: Parameters for the estimation of the scattering strength caused by volume differences of
the Co3+ ions.

tering caused by the volume changes of the Co3+ ions is sufficient to explain the suppression
of κ. A possible way to resolve this issue, is to investigate a related system with only static
disorder. A system which is promising for this purpose is LaAlO3, which has the same crys-
tal structure. In Ref. [22] it was shown that LaAlO3 has a conventional high-temperature
dependence of κ, which large absolute values, comparatively to LaAlO3. The ionic radius of
Al3+ is r = 0.535Å. As dopands one could use Ga, with a ionic radius of r = 0.62Å. This is
very similar to the ionic radii of Co3+ in the different spin states. However, of course here the
mass difference of the different dopands plays a role.

5.4.8. RCoO3 with R=Pr, Nd, and Eu: Low Temperatures

In Fig. 5.26 field-dependent measurements of κ for EuCoO3, PrCoO3, and NdCoO3 are pre-
sented. The principle behavior is the same for all three samples: the low-temperature maxi-
mum is monotonously suppressed with increasing magnetic field. The largest effect is observed
in NdCoO3, here at Tmax = 24K and 14T κ is reduced by 37%. For PrCoO3 the suppression
is smaller, 25% at Tmax = 15K. For EuCoO3 the reduction amounts only to 5%, which is close
to the experimental uncertainty for the measurements in magnetic field. Several mechanisms
could play a role for the field dependence of κ. First, resonant scattering by paramagnetic
impurities may also apply here. In LaCoO3, κ always is enhanced for low temperatures and
low fields, whereas κ is always suppressed in the other RCoO3 compounds. In contrast to
LaCoO3, here also the 4f orbitals of the rare-earth ions are present. This may lead to an
additional field-dependent scattering in NdCoO3, where the ground-state doublet splits in the
magnetic field.

In Sec. 5.3.3 we argued that the paramagnetic impurity content systematically decreases
with the smaller rare-earth ions. The reason herefore is presumably that induced spin-state
transitions (polarons) are less likely, if the spin gap increases. The intrinsic spin-state transi-
tion cannot be responsible for the systematic increase of κ with R at low temperatures, since
no thermal population is present. From the correspondence of the increase of κ and Cimp with
R the influence of paramagnetic impurities seems indeed to dominate the phonon scattering
at low temperatures. This is a further hint that the defect-induced magnetic polarons are a
general feature of these compounds.

5.4.9. PrCoO3 and NdCoO3: Influence of the Spin-State Transition on κ

To analyze κ of PrCoO3 and NdCoO3, the same procedure as for LaCoO3 was used to obtain
the temperature-dependent prefactor C(T ) for the additional scattering (see Sec. 5.4.7). In
Fig. 5.27a, C(T ) for NdCoO3 is shown. The absolute values are of course smaller than for
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Figure 5.26.: Thermal conductivity of RCoO3 as a function of temperature in different mag-
netic fields. The insets show field-dependent measurements at fixed temperatures.

LaCoO3, because κ is larger. C(T) increases for T > 20K, reaches a plateau around 150K,
but then increases again above 230K. The reason for the second increase is likely to be
the onset of the spin-state transition. To show this, we use again Eq. 5.12 to calculate the
contribution of the scattering which is produced by the spin-state transition, using the LS-IS
model. Herefore, we only change the energy gap ∆, and leave the prefactor C0 the same as
in LaCoO3. It turns out that the value of the energy gap is crucial. For the calculation,
the value ∆Co = 1750K from thermal expansion is taken. If the resulting scattering rate is
subtracted from the measured scattering rate, the additional increase disappears completely.
This clearly indicates that the increase of C(T ) above 200K is indeed caused by the spin-state
transition. Using the prefactor of C(T ) obtained from the SOcHS model13 for LaCoO3, the
result is basically the same, if the energy gap is slightly shifted to 1900K.

Regarding PrCoO3, a peak at 80K is observed, which is caused by an additional effect,
as will be discussed in Sec. 5.4.10. For further increasing T , again a saturation of C(T )
is observed. Here, the values of the spin gap determined from susceptibility and thermal
expansion only differ by about 100K. By subtracting the calculated C(T) with the energy
gap determined from χ, a smooth curve is obtained, which is approximately linear with T . Of
13Note, that here no temperature-dependent gap has to be used, since the amount of excited spins states is

still small, and the interactions leading to the temperature-dependent gap may be neglected.
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Figure 5.27.: a) Calculated scattering rates for NdCoO3 (closed symbols), together with the
scattering rate estimated by Eq. 5.12 (line), and the difference of both (open symbols). b) The
same for PrCoO3.

course, the residual scattering rate is not known, but again the change of the curvature is at
the temperature where the spin-state transition develops. Using C0 from the SOcHS model,
the different prefactor of C(T ) would give the same results with an energy gap of 1400K,
which is still reasonable. The fact that for all compounds only the energy gap is changed,
and the prefactor for the scattering strength is the same, is clear evidence that the spin-state
transition suppresses κ of PrCoO3 and NdCoO3 in the same way as in LaCoO3.

5.4.10. Resonant Scattering in PrCoO3

In PrCoO3 an additional scattering mechanism must be present below 200K, since in the rele-
vant temperature range the Co3+ IS/HS spin states are not significantly populated. The origin
for an additional scattering channel is most probably scattering by the 4f orbitals. The effect
of 4f orbitals to the thermal conductivity is known e.g. from rare earth garnets [230], where
an additional suppression of κ was observed. The idea is again based on resonant scattering
processes: A phonon is absorbed by causing a transition between different multiplet levels of
an 4f multiplet, and then re-emitted in an arbitrary direction (see Sec. 2.1.6), causing addi-
tional thermal resistance. A mechanism based on random ionic volume changes as proposed
for LaCoO3 seems not likely because the 4f orbitals are inner shells. As discussed in Sec. 2.4,
the 3H4 multiplet of the Pr3+ ions splits into 9 singlets in the orthorhombic CF. To my knowl-
edge there are no experimental investigations of the 4f CF splitting for PrCoO3 and NdCoO3.
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From the analysis of the susceptibility measurements (see Sec. 5.3.1) we know that the CF
parameters of NdGaO3 and PrNiO3 are good approximations for NdCoO3 and PrCoO3. The
energy splitting to the first excited 4f level in PrCoO3 can be obtained by the analysis of
the low-temperature thermal expansion. Fig. 5.28a shows the zero-field thermal expansion
α [205]. α shows a maximum at 30K, which can be attributed to a Schottky contribution.
The calculated14 Schottky contribution of a two-level system with non-degenerate levels yields
an energy gap ∆ = 70K which is slightly lower than the value observed in PrNiO3 [44].

Further evidence for the correctness of this approach comes from the specific heat. Fig. 5.28b
shows C/T for PrCoO3, NdCoO3, and EuCoO3, from Ref. [205]. In EuCoO3, C/T has the
lowest values, which are purely phononic at low temperatures. Above ≈ 100K a contribution
of the first excited multiplet appears. The additional specific heat for R = Pr and Nd is due
to the Schottky contribution of the 4f orbitals. The low-temperature increase of C/T in
NdCoO3 below ≈ 10K is due to fluctuations, which are precursors of a Néel ordering of the
Nd moments at T = 1.2K [219]. The Schottky contribution to C/T was calculated with the
CF parameters of PrNiO3 and NdGaO3 (see Sec. 5.3.1). Since we know the energy of the first
excited level of PrCoO3 from the thermal expansion, we corrected this energy.

Fig. 5.29a shows the thermal conductivity of PrCoO3 together with the thermal expansion.
To model the data, Eq. 2.11 is used to calculate the scattering rate for a direct resonant process.
For the fits the Debye temperature, sound velocity and sample length are kept fixed, whereas
P , U , and u are adjusted to fit the data. The fits have been restricted to T ≥ 20K, since
at low temperatures other processes may be relevant, as discussed in the previous sections.
The fit parameters are listed in the caption of Fig. 5.29. For the partition sum, the energy
levels up to E4 have been taken into account. In a first attempt, resonant scattering between
the ground state level E0 = 0 and E1 = 70K is considered, yielding the fit labeled F01.

14For details of the calculation of the splitting of a Schottky contribution to the thermal expansion see
Sec. 7.4.2.
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Figure 5.29.: a) Thermal conductivity and thermal expansion of PrCoO3. Lines are calculated
thermal conductivities assuming different resonant scattering processes. The Debye fit parme-
ters used are: ΘD = 600 K, vs = 3900 m/s, P = 5 · 10−43 s3, U = 4.85 · 10−18 s2/K. The energy
levels used were E1 = 70K, E2 = 151K, E3 = 174K. The prefactors of the resonant scattering
rates are RC01 = 3.1 · 10−40s3, RC02 = 7 · 10−40s3 and RC12 = 3.8 · 10−40s3. b) Symmetry of
the energy levels [44]

This fit does not describe the data at all, the scattering strength C needed to describe the
high-temperature behavior totally suppresses the low-temperatures maximum. Basically the
same result is achieved by considering the process E0 → E2 (F02).

A good description of the data is obtained by considering the process E1 → E2 solely
(F12). This seems suprising, but is consistent with the observation that the maximum of
the Schottky contribution of α is at a much lower temperature than the minimum of κ. The
transition E1 → E2 seems to be the dominant scattering channel of the phonons in PrCoO3.
To understand this, the have to consider the symmetry of the relevant levels. These are taken
from Ref. [44] and are shown in Fig. 5.29b. Because of the low-symmetry point group Cs

the states have only two different symmetries, A’ and A” [231]. The levels E2 and E3 have
both the symmetry A”, but the ground state the symmetry A’. This explains, why only the
scattering process between E2 and E3 is relevant.

5.5. Conclusions

The thermal conductivity of RCoO3, with R = La, Pr, Nd, and Eu was measured. LaCoO3
shows an unconventional thermal conductivity in the whole temperature range, which is caused
by the spin-state transition of Co3+. At low temperatures, a maximum with an unusual
temperature and magnetic-field dependence is observed. The low-temperature behavior of the
thermal conductivity was systematically investigated on five different samples. We showed
that non-intrinsic strong scattering processes caused by paramagnetic impurity levels governs
the heat transport in this temperature range. The measured thermal conductivity could be
correlated to the paramagnetic impurity content of the samples obtained via magnetization
measurements. The effectiveness of these processes may be enhanced due to the formation of
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magnetic polarons. Concerning the whole RCoO3 series, we observed a systematic increase of
the thermal conductivity from R = La to Eu. At low temperatures, this observation cannot
directly be attributed to the spin-state transition. The analysis of the thermal conductivity in
combination with susceptibility measurements suggests a scenario, where magnetic polarons
significantly scatter phonons at low temperatures. Because the polaron formation becomes
less likely when the spin gap is increased, the systematic increase of the thermal conductivity
from La to Eu results.

Above T ≈ 30K, a strong suppression of the thermal conductivity is observed in all samples.
The resulting very low absolute value of the thermal conductivity up to room temperature is an
intrinsic feature of the thermal conductivity of LaCoO3. We showed that this unusual behavior
of the heat transport is a consequence of the spin-state transition. The Co3+ ion has a larger
ionic radius in the thermally activated IS/HS state than in the LS ground state. The random
distribution of the LS and IS/HS states causes an additional lattice disorder which strongly
suppresses the thermal conductivity. To check this scenario also quantitatively, we estimated
the additional scattering-rate due to the spin-state transition. Herefore we used EuCoO3
as a reference compound, where the influence of the spin-state transition is negligible below
room temperature. We were able to describe the temperature dependence of the additional
phonon scattering by a model based on the Nordheim rule. Such a model was successfully
used in the literature to describe the thermal conductivity of mixed semiconductor alloys.
Our model works with the LS-IS scenario with a spin gap of 185K estimated by susceptibility
measurements [12] as well as with the recently proposed model based on a spin-orbit coupled
high-spin state [13]. In PrCoO3 and NdCoO3, the spin-state transition shifts gradually to
higher temperatures. In PrCoO3, an additional scattering mechanism could be identified,
which is attributed to resonant scattering by the 4f orbitals of Pr3+.

Despite the additional effect in PrCoO3, we could show that the spin-state transition in-
fluences the thermal conductivity at high temperatures in PrCoO3 and NdCoO3 in the same
way as in LaCoO3. The change of the scattering rates due to the spin-state transition could
be modeled using the parameters estimated from LaCoO3. This is clear evidence that the
spin-state transition indeed causes the suppression of the thermal conductivity due to the
additional disorder. We explored the scattering mechanism in detail and quantitatively inves-
tigated the scattering strength for LaCoO3. Our results show, that the static volume changes
of the Co3+ ions caused by the spin-state transition are sufficient to explain the observed
behavior of the thermal conductivity. This is in contrast to the scenerio proposed in Ref. [9],
which proposes that dynamical fluctuations are responsible for the strong suppression of the
thermal conductivity.

100



6. Thermal Conductivity, Thermopower,
and Figure of Merit of La1-xSrxCoO3 and
La0.75-xEu0.25SrxCoO3

In this chapter measurements of the thermal conductivity and the thermopower of La1-xSrxCoO3
with 0 ≤ x ≤ 0.3 and La0.75-xEu0.25SrxCoO3 with 0 ≤ x ≤ 0.4 will be presented. From these
results and the electrical resistivity the thermoelectric figure of merit will be calculated, which
is of interest for the applicability for thermoelectric devices. The zero- field measurements for
La1-xSrxCoO3 are partly from C. Zobel [33], the measurements of the thermal conductivity and
the thermopower of La0.75-xEu0.25SrxCoO3 were performed by H. Anapa [177]. The resistivity
measurements were carried out by C. Zobel and C. Hanebeck [33, 232]. The experimental
methods used in this section are described in the Secs. 3.2, 3.3, and 3.4. The main results of
this chapter have been published in Ref. [166].

6.1. Introduction

In Sec. 5.1 the thermally driven spin-state transition in LaCoO3 was discussed [12, 176, 185,
189, 190, 205, 233, 234]. During the last years cobaltates with layered CoO structures have
also become subject of intense studies. [203, 235–242] It has been proposed that various of
these compounds would also show temperature-dependent spin-state transitions of the Co3+

and/or Co2+ ions, but an unambiguous proof of such spin-state transitions is still missing (see
e. g. Ref. [203]).

Recently, the observation of superconductivity in NaxCoO2 · y H2O has attracted much at-
tention. [243] The water-free parent compound NaxCoO2 became prominent some years ago
already in a different context. [244] It was found that NaxCoO2 with x = 0.6 has a metallic
electrical conductivity σ, but a low thermal conductivity κ and, in addition, a large ther-
mopower S. The combination of large σ, small κ, and large S values is a precondition for
effective thermoelectric cooling. The performance of thermoelectric devices depends on the
so-called thermoelectric figure of merit Z = S2 / κρ where ρ = 1/σ denotes the electrical
resistivity. For an effective cooling, ZT values (T is the absolute temperature) of order unity
should be reached and are found for instance in Bi-based alloys, some thin-film devices or
quantum dot superlattices. [245, 246] For comparison, typical metals have much smaller ZT
values of order 10−4. In this respect it was quite surprising that NaxCoO2 has ZT' 0.03 for
150 K ≤ T ≤ 300K. The enhanced figure of merit of NaxCoO2 mainly arises from an enhanced
thermopower. [247] Based on a study of the magnetic-field dependence S(H) of NaxCoO2 it
has been argued that the spin entropy is the likely source for the large thermopower. [248]

A large thermopower occurs also in La1-xSrxCoO3. [249] This motivated the study of the
transport properties of this series in order to determine experimentally the ZT values and
their dependence on temperature and doping. Another motivation for this study was that
the previous results do not give a consistent picture of the transport properties. For example,
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x δ x δ

0 0.005 0.125 -0.006
0.002 0.003 0.15 -0.017
0.01 0.002 0.18 0.000
0.04 -0.001 0.25 -0.025
0.08 0.000 0.3 -0.004

Table 6.1.: Oxygen content δ of the
La1-xSrxCoO3 + δ crystals determined by
thermogravimetric analysis. [166, 253]

from various anomalous features in the temperature dependences of S, ρ, and the magnetic
susceptibility χ a complex phase diagram was proposed for the La1-xSrxCoO3 system. [249] It
has, however, been argued that the occurrence of some of these anomalous features depends
on the preparation technique of the polycrystals. [250] In fact, the phase diagram derived from
ρ(T ) and χ(T ) measured on La1-xSrxCoO3 single crystals [205, 213, 251] is much less complex
than the previous one [249]. Moreover, the temperature dependences of S for undoped LaCoO3
reported in Refs. [176] and [252] are contradictory. For T > 400K both reports find a positive
thermopower of order +50µV/K, which slightly increases with decreasing temperature. For
T < 400K, however, a further increase of S with a maximum of about +1200µV/K around
100 K is found in Ref. [176], whereas a sign change of S and a decrease to about −400 µV/K
for T ' 200K is reported in Ref. [252]. The thermal conductivity of the La1-xSrxCoO3 system
has to my knowledge not yet been studied at all.

6.2. Samples

The single crystals of La1-xSrxCoO3 with x > 0 used in this study have been grown by a
floating-zone technique in an image furnace by C. Zobel [33]. For further details of the sample
characterization by X-ray diffraction, magnetization, and resistivity measurements see also
Refs. [12, 178, 205, 205, 213, 213, 254] For discussion of the thermal conductivity of undoped
LaCoO3 see Chp. 5. The thermopower for LaCoO3 was measured on the same five specimens
used for the thermal conductivity measurements. As a reference for the thermal conductivity
of the undoped LaCoO3 the specimen ZO104 is used1. The La0.75-xEu0.25SrxCoO3 samples,
with x = 0, 0.1, 0.2, 0.3, and 0.4, are polycrystals prepared by a standard solid-state reaction
by A. Reichl, see Ref. [179]. For further details of the characterization of these samples see
also Ref. [232].

The nominal valence of the Co ions does not only depend on the Sr content, but also on
the oxygen concentration, i. e. the amount n of charge carriers in La1-xSrxCoO3 + δ is given
by n = x + 2δ. Positive (negative) values of n mean hole (electron) doping and formally
an amount n of the Co3+ ions is transformed into Co4+ (Co2+). In the case of hole doping
this formal description must not be taken literally, because due to the high oxidation state
of Co4+ the holes are likely to enter the oxygen 2p states. Note that depending on the spin
states of the various Co ions hole and electron doping may be strongly different with respect
to charge transport due to the so-called spin-blockade effect [255, 256]. Because of the high
oxidation state of Co4+, one may suspect that with increasing Sr concentration the amount
of oxygen vacancies also increases, i. e. an increasing x could be partially compensated by a
decreasing δ. In order to check this the oxygen content of the entire series La1-xSrxCoO3 + δ

1This crystal was grown at the same time like the rest of the La1-xSrxCoO3 series.

102



6.3. Experimental Results

0 200 400 600
10-4

10-2

100

102

104

106

108  La
1-x
Sr

x
CoO

3

x = 0 0.01
0.02 0.04
0.08 0.125
0.18 0.25

0.3  

 

 (
cm

)

T (K)

0 100 200
0.0

1.0

 0T
 15T

 (1
0-3

cm
) 

x = 0.18
      0.25
      0.3

 

T (K)

Figure 6.1.:
Resistivity of La1-xSrxCoO3. for
0 ≤ x ≤ 0.3. For consecutive dop-
ing an insulator-metal transition
occurs for x ≈ 0.18 [213, 260]. In-
set: Resistivity of La1-xSrxCoO3
for x ≥ 0.18 below 300 K. Here,
the ferromagnetic order is seen at
157, 209, and 227 K for x = 0.18,
0.25, and 0.3, respectively [205,
213]. For x = 0.25 the resistivity
is also shown in a magnetic field of
15 T (Dotted line) [261].

was determined by thermogravimetric analysis (TGA/SDTA851, Mettler-Toledo). Pieces of
about 50 mg of the single crystals have been ground and heated up to 900◦C in a reducing
atmosphere (N2 with 5 % H2) in order to decompose La1-xSrxCoO3 + δ into La2O3, SrO and
elementary Co. [257–259] The value of δ is then calculated from the measured weight loss.
The reproducibility of this method was tested by repeatedly measuring amounts of about
50 mg from the same badge of a LaCoO3 polycrystal. The different results agree to each other
within ±0.01, which is comparable to the uncertainty of the same and alternative methods
of oxygen-content determination in cobaltates. [257–259] A scatter of ±0.01 is also present in
the determined oxygen contents of the La1-xSrxCoO3 + δ crystals (see Table 6.1). A linear fit
of δ(x) yields a weak decrease dδ/dx = −0.05. The analysis reveals a 10% reduction of the
charge-carrier content with respect to the Sr content. We do not calculate n = x+2δ for each
crystal individually, because the scatter of δ would correspond to a scatter of the charge carrier
content of ±0.02, which can be excluded for the studied crystals from the measurements of
the magnetization and resistivity (see Ref. [205, 213]). Both quantities vary monotonously
as a function of x for 0 ≤ x ≤ 0.3. Thus the scatter of n between samples with neighboring
x is much smaller than their difference ∆x, which amounts e. g. to only 0.01 for the lowest
concentrations. This conclusion is also confirmed by the data presented in this chapter. The
only exception is the thermopower of nominally undoped LaCoO3, which will be discussed in
more detail below.

6.3. Experimental Results

6.4. La1-xSrxCoO3

6.4.1. Resistivity

The temperature and doping dependent resistivity of LaCoO3 is shown in Fig. 6.1 [260].
Undoped LaCoO3 is an insulator2. With increasing Sr doping, the resistivity drastically de-

2The additional transition above room-temperature is discussed in Refs. [33, 213], and not the scope of this
investigation.
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Figure 6.2.: Thermal conduc-
tivity of LaCoO3 as a func-
tion of temperature for differ-
ent doping x. [33, 166, 262]

creases, and an insulator-metal (IM) transition occurs at x ≈ 0.18. For the metallic samples
ferromagnetic order is observed, [205, 213] which causes an anomaly in the resistivity at the
ferromagnetic transition temperature Tc. The lowered resistivity in the ferromagnetic state
can be explained by the double-exchange interaction, hopping between neighboring ferromag-
netically aligned sites lowers the energy of the system and increases the conductivity. If a
magnetic field is applied, the ferromagnetic state is stabilized, the consequence is that the
transition shifts to a higher temperature and smears out, as seen in the inset of Fig. 6.1. The
magnetic field is most effective around the transition temperature, see Sec. 6.4.3.

6.4.2. Thermal Conductivity

Fig. 6.2 shows the thermal conductivity of La1-xSrxCoO3. For x = 0 the data for the crystal
ZO104 are shown. In Chp. 2 the thermal conductivity of insulators was discussed. The main
results was that an T 3 dependence of κ for T → 0K is expected . At intermediate temperatures
a maximum of κ occurs, and at high temperatures κ follows roughly a 1/T dependence.

As discussed in detail in Chp. 5, the thermal conductivity of LaCoO3 is quite unusual. The
main result is that strong additional scattering due to the spin-state transition suppresses κ
in the whole temperature range investigated. The thermal conductivity of the crystal with
x = 0.002 is similar to that of pure LaCoO3, but the low-temperature maximum of κ is already
strongly suppressed. For higher Sr doping this maximum is almost completely absent and κ
increases continuously with increasing temperature. The room temperature values of κ lie
between 2 and 3 W/Km for all crystals with x ≤ 0.18. We attribute the drastic suppression
of κ at low temperatures to a Sr-induced disorder, which hinders a strong increase of ` for
T → 0K. Probably this disorder does not solely arise from the bare difference between La3+

and Sr2+ ions. From magnetization measurements it is found that for x ≤ 0.01 so-called
magnetic polarons with high spin values (S = 10− 16) are formed, [215] see Sec. 5.3.3.

Due to such a polaron formation the disorder is strongly enhanced for the lowest Sr con-
centrations, whereas for larger x the polarons start to overlap and the enhancement becomes
less effective. Samples with x > 0.18 show metallic conductivity and ferromagnetic order at
low temperatures, see Inset of Fig. 6.1. In this concentration range one expects that mag-
netic polarons become much less important. However, the low-temperature peak of κ remains
absent, since the Sr concentration is so large that the bare doping-induced lattice disorder
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Figure 6.3.: Thermal conductivity κ of La1-xSrxCoO3 with x = 0.25 as a function of temper-
ature measured in 15 T (◦) and in zero magnetic field (− ·−). The solid line is the phononic
contribution κph of the x = 0.25 crystal, which is obtained by κph = κ(B) − LT σ(B)
using the electrical conductivity σ and the Lorenz number L. For comparison κ of the
x = 0.04 sample (O) is also depicted. The Inset shows the magnetic-field dependences
∆κ(B) = κ(B) − κ(B = 0) (◦, left y scale) and T ∆σ(B) = T [σ(B)− σ(B = 0)] (—, right
y scale) for B = 5, 10, and 15T, respectively. The value of the Lorenz number is obtained
from the field- and temperature-independent scaling factor between both quantities, i. e. via
L = ∆κ(B) / [T ∆σ(B)] = 2.9 · 10−8 V2/K2. [33, 166, 262]

is sufficient to suppress the low-temperature peak. Moreover, the Sr doping induces mobile
charge carriers, which serve as additional scatterers for the phonons.

The mobile charge carriers for larger x are expected to transport heat, too. The total
thermal conductivity therefore consists of a phononic contribution and a contribution of mo-
bile charge carriers, i. e. κ = κph + κch. Usually, κch can be estimated by the Wiedemann-
Franz law, which relates κch to the electrical conductivity according to κch ' L0 σ T . Here,
L0 = 2.44 · 10−8 V2/K2 denotes the Sommerfeld value of the Lorenz number. From the
room temperature values of ρ κch(300K) ' 0.4, 0.9, 1.6 and 2.7 W/Km is estimated for
x = 0.125, 0.18, 0.25 and 0.3, respectively, and κch � κ for smaller x. Additional heat
conduction by charge carriers is therefore relevant for metallic La1-xSrxCoO3 only and ex-
plains why the crystals with x ≥ 0.25 have significantly larger κ(T ) values for T > 100K
than the insulating samples with x < 0.18. For x = 0.25 and 0.3 anomalies of κ occur
around 200 K and 230 K, respectively, i. e. close to the respective ferromagnetic ordering tem-
peratures Tc = 209, 227K. [205, 213]. Below Tc, κ increases and we attribute this to the
decrease of ρ below Tc, [205, 213] which leads to a corresponding increase of κch. Since the
charge transport close to Tc depends on a magnetic field in La1-xSrxCoO3, [263] one may an-
alyze κch for x = 0.25 in more detail by comparing the magnetic-field dependences of κ and
σ = 1/ρ (Fig. 6.3). An increase of κ with increasing field is found, that is most pronounced
around 200 K where the strongest magnetic-field induced suppression of ρ is observed, too,
see Fig. 6.1 [263] Under the reasonable assumption of a negligible field dependence of κph we
obtain ∆κ(T,B) = κ(T,B)−κ(T, 0) = κch(T,B)−κch(T, 0), and the Lorenz number is given
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Figure 6.4.: Thermopower S of La1-xSrxCoO3 as a function of temperature for different doping
x > 0. For x = 0.25 S(T ) is also shown for different magnetic fields. [33, 166, 264]

by the relation L = ∆κ(T,B) / T∆σ(T,B) with ∆σ(T,B) = σ(T,B) − σ(T, 0). As shown
in the inset of Fig. 6.3 the scaling relation between ∆κ and T∆σ(T,B) is well fulfilled over
the entire temperature and magnetic-field range studied here. From this scaling the value
L = 2.9 · 10−8 V2/K2 is estimated, which is about 20% larger than L0. The phononic thermal
conductivity for x = 0.25 is then obtained by κph = κ(B)−LT σ(B) and found to agree well
with those of the low-doped samples.

6.4.3. Thermopower

The thermopower measurements of the La1-xSrxCoO3 series for x > 0 are presented in Fig. 6.4.
For the crystal with the lowest Sr content x = 0.002 a large positive thermopower which in-
creases with decreasing temperature is found. We could not determine S for highly insulating
crystals with ρ & 109 Ωcm as it is the case for this crystal below about 100 K. With increas-
ing Sr content S systematically decreases and for 0.01 ≤ x ≤ 0.18 all S(T ) curves show
maxima which become less pronounced and slightly shift towards higher temperature. Note
that additional anomalies observed in the temperature dependence S(T ) of polycrystalline
La1-xSrxCoO3 (Ref. [249]) are not reproduced by the single-crystal data. Such a difference
has already been observed in magnetization data, and gives further evidence that these ad-
ditional anomalies are not an intrinsic feature of La1-xSrxCoO3. For the metallic samples
with x ≥ 0.25 S(T ) varies only weakly with temperature between 300 K and Tc. Around Tc
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a sharp kink occurs and S strongly decreases. For x = 0.3 there is even a sign change and
S becomes negative for T < 170K. The sensitivity of S to the magnetic ordering indicates
that a considerable contribution of S arises from magnetic entropy. Therefore, one may also
expect a pronounced magnetic-field dependence S(B) as has been pointed out recently. [248]
As shown in Fig. 6.4 indeed a strong magnetic-field induced suppression of S is found, that
is most pronounced around Tc. This arises from the fact that the magnetic entropy may be
strongly reduced by available magnetic-field strengths only around Tc. For higher temper-
atures thermal disorder becomes too large (kBT � gµBB) and for T � Tc the magnetic
entropy is already frozen by the magnetic exchange coupling.

At high enough temperatures the thermopower is expected to be determined by the so-called
Heikes formula (see e. g. Ref. [266]). This general expression has been refined for the case of
doped cobaltates in Ref. [267] to

S = −kB

e

[
ln

(
n

1− n

)
+ ln

(
g3

g4

)]
. (6.1)

Here, n denotes the content of Co4+ ions and g3 (g4) is the number of possible configurations of
the Co3+ (Co4+) ions, which is, in general, given by the product of orbital and spin degeneracy.
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If different spin states of the Co3+/4+ ions are close enough in energy, the number of possible
configurations may further increase. [267]
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In the lower panel of Fig. 6.4.3 the room-temperature values of S for La1-xSrxCoO3 are shown
(open symbols, x > 0) as a function of the charge carrier content n = 0.9 ·x as determined by
thermogravimetric analysis (see Sec. 6.2). A fit of the experimental data via Eq. 6.1 with the
ratio g3/g4 as the only fit parameter yields g3/g4 ' 1.8. The saturation magnetization of the
samples showing ferromagnetic order (x > 0.18) is best described by assuming an S = 1/2
low-spin state for Co4+ and an S = 1 intermediate-spin state for Co3+. [205, 213] For this
combination of spin states a ratio g3/g4 = 3/2 is expected, which is independent from the
possible orbital degeneracies ν = 1 or 3 as long as both, the Co4+ LS and Co3+ IS state have
the same ν. If one assumes that the energy of the Co3+ LS state is close to that of the Co3+

IS state, the ratio increases to g3/g4 = 2 and 5/3 for ν = 1 and 3, respectively. For all of
these cases the experimental data are reasonably well described by Eq. 6.1. However, this does
not exclude other spin-state combinations, since Eq. 6.1 is derived for the high-temperature
limit, whereas in Fig. 6.4 the room-temperature values of S are considered and at least for
the samples with x < 0.25 the S(T ) curves have a more or less pronounced negative slope at
300 K. Thus, it is possible that for higher temperatures a larger g3/g4 ratio would be obtained
in the fit. In addition, there are also other combinations of spin states yielding g3/g4 ratios
close to 1.8, but these are not supported by the measured saturation magnetization. Despite
these uncertainties we interpret the doping dependence of S(300 K) as further evidence for
the Co4+

LS/Co3+
IS combination suggested from the magnetization and resistivity data. [213]

According to Eq. 6.1 the thermopower is expected to diverge for a vanishing hole content,
i. e., when the nominally undoped LaCoO3 is approached. For electron doping one may still
apply Eq. 6.1, but with a positive sign and g4 for the degeneracy of Co2+. The dashed line
in Fig. 6.4 is calculated for g4 = 4 as expected for Co2+ in a HS state. A large negative ther-
mopower has been observed recently in electron-doped La1−xCexCoO3. [255] For nominally
undoped LaCoO3, a different sign of S for different crystals is found. This is shown in the
upper panel of Fig. 6.4. Although these crystals have been grown under the same conditions,
either a large negative or a large positive thermopower can be obtained. We suspect that this
extreme sensitivity of S results from weak deviations in the oxygen content of LaCoO3 + δ,
which cause small concentrations 2δ of hole or electron doping depending on the sign of δ.
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Already extremely small values of |δ| < 0.002, which are well below the accuracy of oxygen
determination in cobaltates, would be sufficient to explain the observed thermopower values
with |S| > 500 µV/K in LaCoO3 + δ. We also suspect that there are weak inhomogeneities of
the oxygen content in each sample, which can strongly influence the sign and also the tem-
perature dependence of the measured thermopower. Most probably, this is also the reason
for the contradictory results for S(T ) obtained in Refs. [176, 252]. It should be mentioned
that this extreme sensitivity S(δ) is expected only for the (almost) undoped LaCoO3, whereas
for samples with a finite Sr content the drastic influence of such small variations of δ rapidly
decreases with increasing x.

6.4.4. Figure of Merit

In Fig. 6.6 the thermoelectric figure of merit of La1-xSrxCoO3 is presented. Since the thermal
conductivity for all x is rather low, one precondition for large ZT values is already fulfilled
for the entire La1-xSrxCoO3 series. The very low-doped samples show in addition very large
thermopower values, but their resistivities are also large and thus prevent large ZT values.
Small resistivities are obtained for large x, but these samples also have smaller thermopower
values. Thus the optimum figure of merit is obtained in the intermediate doping range. A
maximum ZT ' 0.035 around 225 K is found for x = 0.125, which is as large as the value
observed in NaxCoO2. [244] These values are among the largest observed in transition metal
oxides so far, but are still too small for technical applications. This raises the question, how
an improvement of ZT is possible. One possibility, additional substitution of La by Eu, will
be discussed in the next section.

6.5. La0.75-xEu0.25SrxCoO3

A way to tune the physical properties of the La1-xSrxCoO3 system is doping with Eu, which
is isovalent to La and so does not change the nominal valence of the system. The main effect
is chemical pressure due to the smaller Eu ion size. [54] The Sr-free series La1-xEuxCoO3 has
been investigated by resistivity and susceptibility measurements in the whole doping range
0 ≤ x ≤ 100. [178, 179, 206] The measurements of the magnetic susceptibility reveal that the
spin gap to the IS/HS state increases from ∆Co ≈ 188K for LaCoO3 to ∆Co > 1900K for
EuCoO3. [178, 206] For La0.75Eu0.25CoO3, the spin gap is determined as ∆Co ≈ 440K, more
than twice as large as in LaCoO3. [178, 206] The influence of Sr doping was investigated on
samples of the series La0.75-xEu0.25SrxCoO3 with x = 0.1, 0.2, 0.3, and 0.4 (see Ref. [179]). As
already mentioned, these samples are polycrystalline, in contrast to the La1-xSrxCoO3 samples.
The lower panel of Fig. 6.7 shows the zero field resistivities [271]. As for La1-xSrxCoO3,
increasing Sr doping causes an insulator-metal transition. In contrast to La1-xSrxCoO3, the
absolute values of the resistivity are higher for the same doping level3, and a higher doping
level is required to induce the IM transition. [232]

As shown in the previous section, the large values of ZT are mainly due to the increased spin
entropy which causes a large thermopower. In the Eu-doped samples the spin gap is larger.
As a consequence, a higher doping level is required in La0.75-xEu0.25SrxCoO3 in comparison
to La1-xSrxCoO3 to obtain the same population of the LS- IS/HS states and therefore the

3A quantitative comparison is difficult for two reasons: There are no crystals available with the same doping
in both series. [232]. Further polycrystals are compared with single crystals.
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Lower panel: Resistivity of La0.75-xEu0.25SrxCoO3. for 0.1 ≤ x ≤ 0.4. For consecutive doping
an insulator-metal transition occurs for x ≈ 0.3 [268]. Upper panel: resistivity for x = 0.3 and
x = 0.4 in magnetic fields of 0 and 14 T. Inset: room temperature values of ρ vs. Sr doping x
for La1-xSrxCoO3 and La0.75-xEu0.25SrxCoO3.

same entropy at a given temperature. It follows, that the enhancement of the thermopower is
shifted to a higher Sr doping x for Eu doped samples. This could increase the figure of merit
and motivated to determine ZT

Fig. 6.9 shows the thermal conductivity data [270] for La0.75-xEu0.25SrxCoO3 with x =
0 . . . 0.4. For x = 0 the thermal conductivity is almost identical to LaCoO3, which seems
suprising, since the disorder introduced by the Eu should suppress the thermal conductiv-
ity. This shows, that the suppression of the low-temperature maximum of La1-xSrxCoO3 for
higher doping levels mainly arises from scattering by charge carriers. With Sr doping, the
low-temperature maximum is suppressed as in La1-xSrxCoO3, and the thermal conductivity
monotonously increases with temperature. The absolute values of the lattice contribution at
room temperature, calculated by the Sommerfeld value L0, denote 2.2, 3.8, 3.4, and 1.5W/Km
for 0.1 ≤ x ≤ 0.4. Performing the same scaling procedure as for La1-xSrxCoO3 for the field
dependent thermal conductivity curves (see Ref. [177]), one gets L = 2.0 · 10−8 V2/K2. In
contrast to LaCoO3, where the estimated L is ≈ 20% higher than L0, here L is about 20%
lower. The inset of Fig. 6.9 shows the electronic contribution to the thermal conductivity,
calculated with the value of L from the scaling analysis. However, the estimated room tem-
perature lattice contributions do not show a systematic behavior, [177] which may be related
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values of the thermopower vs. Sr doping x for La1-xSrxCoO3 and La0.75-xEu0.25SrxCoO3. [269]
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Figure 6.10.: Upper Panel: Figure of Merit of La0.75-xEu0.25SrxCoO3 for 0.1 ≤ x ≤ 0.4
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are shown (lines). Lower Panel: Room temperature values of ZT for La1-xSrxCoO3 and
La0.75-xEu0.25SrxCoO3 vs. Sr doping level x. Errorbars are drawn assuming a relative error of
30%.

to the polycrystal nature of the crystals, and does not allow a more detailed analysis. How-
ever, the absolute values of the lattice contribution are of the same order of magnitude as for
La1-xSrxCoO3 (≈ 2.5W/Km).

Fig. 6.8 shows the thermopower. In the lower panel the zero field data are shown. The
general findings are the same as for La1-xSrxCoO3, a large positive thermopower which is
strongly suppressed for the higher doping levels. The inset shows the room-temperature values
vs. Sr doping x for both series, the Eu doped crystals have indeed a higher thermopower at
the same Sr doping level. The upper panel of Fig. 6.8 shows the thermopower for x = 0.3 and
x = 0.4, which show the same behavior as La1-xSrxCoO3 with x = 0.25 and x = 0.3, taking
into account the differences in Tc. Consequently, the explanation for the anomaly at Tc of the
ferromagnetic transition and the field dependence is the same as for e.g. La0.75Sr0.25CoO3,
see e.g. Sec. 6.4.1. [232]

Calculating the thermoelectric figure of merit, we find the results shown in Fig. 6.10, together
with some results from the La1-xSrxCoO3 crystals for comparison. The main result is that ZT
does not change significantly with Eu doping. The absolute value at the maximum is smaller,
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ZT= 0.02 at 300K instead of x = 0.025 at 250K. However, it is likely that the maximum
values of ZT is achieved for x inbetween 0.1 and 0.2, and approximately the same as observed
in LaCoO3. Here one has to keep in mind, that the uncertainty of ZT is comparatively high,
since it is calculated from three independent measurements (In Sec. 3.4 a relative error of
≈ 20 . . . 25% was derived). In order to get an better estimate of the doping dependence of
ZT , the room temperature values vs. doping level x are shown in the lower panel of Fig. 6.10.
The figure shows that the maximum of ZT is shifted to a higher doping level, but does not
significantly change the absolute value at room temperature.

6.6. Conclusions

We have presented a systematic study of the thermal conductivity and the thermopower of a
series of single crystals of La1-xSrxCoO3 + δ. The thermal conductivity is strongly suppressed
for the entire doping range. In pure LaCoO3 this suppression most probably arises from local
lattice distortions due to a temperature-induced spin-state transition of the Co3+ ions. For
small finite x, a spin-state transition of the Co3+ ions may be induced by the neighboring
magnetic Co4+ ions, and so-called high-spin polarons can be formed, which also cause lattice
disorder. For larger x this effect becomes less important, and scattering of phonons by mobile
charge carriers plays the main role for the suppression of the thermal conductivity. This
conclusion can be drawn, since in Sr-free La1-xEuxCoO3 the low-temperature peak is still
present. The static disorder caused by the different ion sizes of La and Sr seems to play a minor
role. For finite doping a large, positive thermopower, which strongly depends on temperature
and doping, is found. The room temperature values of the thermopower follow a doping
dependence that is expected from a modified Heikes formula, [267] if an intermediate-spin state
for Co3+ and a low-spin state for Co4+ is assumed as it is suggested from magnetization and
resistivity data. [213] In nominally undoped LaCoO3 for different crystals either a large positive
or a large negative thermopower is observed. This is likely a consequence of weak deviations
(|δ| < 0.002) from the nominal oxygen content causing small amounts of hole or electron
doping. Most probably, a weak oxygen off-stoichiometry is also the reason for the contradictory
results of the thermopower reported for LaCoO3 previously. [176, 252] For the crystal with
x = 0.25 both, the thermal conductivity and the thermopower show a significant magnetic-
field dependence in the temperature range around the ferromagnetic ordering temperature.
The field dependence of the thermal conductivity can be traced back to a field-dependent
charge carrier contribution to the heat current, and the field dependence of the thermopower
indicates that it contains a sizeable contribution arising from magnetic entropy. From the
resistivity ρ, the thermopower S and the thermal conductivity κ the thermoelectric figure of
merit Z = S2 / κρ was calculated, which strongly depends on both, doping and temperature.
A maximum of ZT ' 0.035 is obtained for x = 0.125 and 200 K ≤ T ≤ 250K. This value
is large, but yet too small for technical applications. Additional Eu increases the resistivity
and the thermopower at a given Sr doping level, what shifts the maximum of ZT to a higher
doping level. However, within the experimental error no change in the maximum value of ZT
is observed.
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7. Thermal Conductivity of Orthorhombic
Manganites

The search for magnetoelectric materials, with the possibility to induce magnetic ordering
by electric fields and vice versa, has increased the interest in so-called multiferroic materials,
in which magnetic and ferroelectric ordering phenomena coexist [14]. The orthorhombic rare
earth manganites of the form RMnO3 are of particular interest in this focus, since for R = Gd,
Tb, and Dy a ferroelectric phase develops in a magnetically ordered phase. These compounds
show complex magnetic structures driven by frustration effects, and there are indications that
the ferroelectric order is driven by the complex magnetic ordering phenomena. In this chapter
a brief introduction into the RMnO3 series will be given. Then the results of the thermal
conductivity measurements on NdMnO3, GdMnO3, and TbMnO3 will be presented. We will
compare our results to recent literature of Zhou et al. [272]. These authors proposed a general
scenario to explain the thermal conductivity in the orthorhombic manganates. By a detailed
analysis of the thermal conductivity of NdMnO3 and TbMnO3 in combination with results
from thermal expansion we will show that the explanation given in Ref. [272] et al. may be
doubted.

7.1. Orthorhombic RMnO3 Perovskites

(a)

ab

c

O

La/RE

Mn

Figure 7.1.: Structure of RMnO3. The Per-
ovskite structure has an orthorhombic distortion
of the GdFeO3 type, which increases with decreas-
ing rare earth size. The degree of this distortion
can be characterized by the averaged Mn-O-Mn
bond angle.

The mother compound of the RMnO3 series, LaMnO3, crystallizes in an orthorhombic
crystal structure. The orthorhombic unit cell has the symmetry Pbmn1. With respect to the
cubic perovskite structure, the distortion is of the GdFeO3 type. It arises from the fact that
the La-O bond length is ”too small” in comparison to the Mn-O bond length. The GdFeO3
distortion is characterized by a tilting of the MnO6 octahedra, where b is the tilting axis, and a

1In the Pbnm notation the a axis is the smallest, and the c axis the longest axis. An alternative notation is
the space group Pnma, with the transformations: Pbnm → Pnma: a → b, b → c, and c → a.
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7. Thermal Conductivity of Orthorhombic Manganites

Figure 7.2.: Phase diagram
of RMnO3 as a function of
the planar Mn-O-Mn bond an-
gle, which characterizes the
GdFeO3 type distortion. For
the smaller distortions an A-
type antiferromagnet is real-
ized. The Néel temperature
is successively suppressed with
decreasing Mn-O-Mn bond an-
gle. For R = Gd, Tb, and
Dy complex magnetic struc-
tures are realized. Taken from
Refs. [15, 273, 274].

rotation around the c axis, see Fig. 7.1. The electronic structure of LaMnO3 is determined by
the five-fold degenerate 3d orbitals, which split up in the (locally) cubic crystal field into the
energetically lower t2g orbital (three-fold degenerate) and the energetically higher eg orbital
(two-fold degenerate). The spin state is fully determined by the dominating Hund’s rule
energy, leading to a t42ge

1
g configuration. This means that one electron occupies the eg orbital

leading to a Jahn-Teller distortion. In LaMnO3, a Jahn-Teller ordered state is realized below
TJT ≈ 750K [275]. The Jahn-Teller ordering is of the d type [276], which means that the
elongation axes of the octahedra alternate within the ab plane, and a ferro-type ordering is
present along the c axis.

If La is replaced by smaller rare earth ions, the GdFeO3 distortion increases, which can be
characterized by the Mn-O-Mn bond angle. For the smaller rare earth the ordered Jahn-Teller
state is stabilized, and TJT increases, up to ≈ 1500K [277–279] (not shown). Fig. 7.2 shows
the Mn-O-Mn T phase diagram of RMnO3 with R = Nd, . . ., Ho.

At low temperatures, the orbital ordering leads to an A type antiferromagnetic ordering of
Mn below TMn

N ≈ 140K in LaMnO3. This type of ordering is characterized by a ferromagnetic
ordering within the ab planes, and an antiferromagnetic ordering along the c axis [280–282].
The Hamiltonian of the magnetic system denotes

H =
∑
i,j

Jij(SiSj)− Λ
∑

i

Sz
i
2. (7.1)

Here, Jij are the coupling constants. The nearest neighbor (NN) couplings can be grouped
into the ferromagnetic nearest-neighbor coupling JFM

NN in the ab plane with the coordination
number z = 4 and the antiferromagnetic coupling constant JAFM

NN along the c direction with
z = 2. The second term of Eq. 7.1 takes the single-ion anisotropy into account [283]. Note,
that the summation in Eq. 7.1 counts every bond twice, what has to be considered when
the absolute values of the different J are discussed. By applying spin-wave theory the values
JFM

NN = −9.6K and JAFM
NN = 6.7K are obtained in Ref. [284]. From these values a mean-field
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7.1. Orthorhombic RMnO3 Perovskites

JFM
NN JAFM

NN JAFM
NNN /JFM

NN Λ T calc
N (K) Θcalc (K) T exp

N (K)

−0.83 meV 0.58 meV 0.17 meVLaMnO3 [284] −9.6 K 6.7 K 1.8 K
207 100 140 [55]

−0.84 meV 0.61 meV 0.15 meVLaMnO3 [286] −9.7 K 7 K 1.8 K
211 99 140 [55]

−0.56 meV 0.6 meV 0.08 meVPrMnO3 [39] −6.5 K 7 K 0.9 K
160 48 100 [55]

−0.15 meV 0.5 meV 0.13 meVTbMnO3 [39] −1.7 K 5.8 K 1.5 K
74 18.6 42 [287]

−0.14 meV 0.58 meV 0.14 meVTbMnO3 [285] −1.6 K 6.6 K
80%

1.6 K
78 27 42 [287]

Table 7.1.: Exchange fields of various RMnO3 compounds, single-ion anisotropy Λ, mean-field
values for TN and Θ, frustration, TN from experiment. Note that the different authors use
different definitions of J and Λ. The values have been converted to the Hamiltonian Eq. 7.1,
which is the convention used in Ref. [284]

calculation [32, 284] yields

TN
N =

2
3
S(S + 1)

∑
i

zi|Ji| =
2
3
S(S + 1)(4JFE

NN + 2JFE
NN) (7.2)

Θ =
2
3
S(S + 1)

∑
i

ziJi (7.3)

for the Néel and the Curie-Weiss temperature. In Tab. 7.1 I compare the values of TN and Θ,
calculated via Eqs. 7.1 and 7.3 from the exchange constants determined by inelastic neutron
scattering [39, 284–286] to the experimentally determined TN. The calculated Néel temper-
ature for LaMnO3 overestimates the measured TN by ≈ 40%. The mean-field calculation
describes the suppression of TN, which shows that the main reason for the suppression is the
weakening of the exchange constant JFM

NN within the planes. The overestimation of TN by the
MF calculation is similar for all compounds.

The spin-orbit coupling causes a Dzyaloshinski-Moriya type interaction. The consequence
is a canting of the spins along the c direction causing a weak ferromagnetic (WF) moment in
the AFM ordered state. In LaMnO3 and PrMnO3 values of M0 ≈ 0.1µB of the WF moment
have been determined in the literature [55, 288].

Furthermore, a larger distortion suppresses the NN antiferromagnetic exchange interaction,
whereas the NNN ferromagnetic exchange interaction remains more or less constant, which
destabilizes the A type ferromagnetic ordering. The resulting frustration leads to complex
order phenomena for R = Gd, Tb and Dy [14, 206, 274, 289–296].

Starting with R = Dy, RMnO3 can also crystallize in a hexagonal structure. For R = Er,
. . . , Lu only the hexagonal structure is realized by the usual growth methods. However,
recently the orthorhombic manganites with R = Er, . . . , Lu have also been prepared [297]
by high-pressure synthesis. This method is based on the fact that the perovskite structure
is more dense than the hexagonal structure and therefore favorable under high pressure. In
the perovskite RMnO3 compounds with R = Ho. . . Lu an E type antiferromagnetic ordering
is stabilized at low temperatures, with TN ≈ 40K. Note that the complex order phenomena
in GdMnO3, TbMnO3, and DyMnO3 are located in the region of the phase diagram, where
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a[mm] b[mm] c[mm]

NdMnO3 1.5 1.8 1.2
GdMnO3 1.7 2.0 1.45
TbMnO3 A 2.00 1.1 1.5
TbMnO3 B 2.00 1.6 0.14

Table 7.2.: Sample sizes of the investigated RMnO3 samples.

neither the A-type nor the E-type antiferromagnetism can be stabilized.

7.2. Samples

All samples were grown in a floating-solvent image furnace by A.M. Balbashov (see e.g.
Ref. [298]). The samples have been oriented by a Laue camera, and have been cut into
convenient forms. Samples sizes are listed in Tab. 7.2. The NdMnO3 sample was oriented
and cut into a cuboid by D. Meier (see Ref. [287]). The same specimen was used for the
zero-field thermal expansion measurements [287], and all measurements presented in this sec-
tion. The GdMnO3 sample was already cut, and had only an approximate cuboid-formed
shape. This sample is the same specimen used for the thermal expansion measurements in
Refs. [273, 287, 291]. For the measurements of TbMnO3 two samples were used. Sample A
broke into pieces while performing a measurement with a magnetic field of 11T along the c
axis. Such a destruction of the samples in the same magnetic field direction was also observed
in thermal expansion measurements [287], and is presumably caused by large torque forces
acting on the sample. Therefore another sample was oriented and cut, and used for the rest of
the measurements. The results were reproducible very well for the measurements at low tem-
peratures and in magnetic fields. Small samples dependences occurred for H = 0 below 10K
(see Sec. A.1). Because of the small cross section of sample B, the measurements at higher
temperatures had non-negligible radiation losses. These measurements had to be corrected,
as shown in Sec. A.1. For the temperature-dependent measurements the geometric error was
slightly corrected by scaling the curves, if measurements with different setups are shown, to
get a consistent data set. The corrections amount to only a few percent. As a reference the
measurements of sample A were taken.

7.3. Thermal Conductivity of RMnO3: Overview

Recently, Zhou et al. [272, 297] published thermal conductivity data of orthorhombic RMnO3
manganites2. The authors present zero-field data for R = La, Gd, Tb, Dy, Eu, Y, and Lu,
which are shown in Fig. 7.3a. Zhou et al. argue that TbMnO3 and DyMnO3 show a ”glassy-like”
thermal conductivity, whereas the other compounds are phonon-like. The latter argument is
based on the high-temperature slope of the thermal conductivity [297]: Whereas a decreasing
behavior of κ with decreasing temperature is observed above T ≈ 100K for R = Tb and Dy,
κ increases for the other RMnO3 compounds. The unusual temperature dependence of κ for

2Ref. [297] focuses on the hexagonal manganites. Here, the situation is completely different, since other
mechanisms, like ”rattling” of Mn ions may play a role. The data for the orthorhombic Perovskites LuMnO3

and YMnO3 shown in Ref. [297] are the same as in Ref. [272].
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Figure 7.3.: a) Literature data of κ in RMnO3 with R = La, Gd, Tb, Dy, Eu, Y, and Lu from
Ref. [272]. b) Our zero-field results of the thermal conductivity of NdMnO3, TbMnO3, and
GdMnO3. Note that the scale is the same as in a).

R = Tb and Dy is attributed to magnetic-coupling fluctuations due to the unusual ordering
phenomena in these compounds.

Fig. 7.3b presents our zero-field data for R = Nd, Gd, and Tb. For TbMnO3 the data are in
good agreement with the literature above ≈ 30K. In particular, the broad minimum around
100K seems to be an intrinsic feature of TbMnO3. At low temperatures, the literature data
have higher values. The sample used in Ref. [272] seems to have less impurity scattering than
our sample.

For GdMnO3 there is no good agreement with the literature data. The room-temperature
values are approximately the same. Zhou et al. observe an negative slope of κ at higher
temperatures, and a broad maximum around 100K. Further, at Tc a steep increase of κ is
observed with decreasing temperature. Our measurements also show an increase of κ when
the temperature is lowered. However, this increase is much weaker. We observe a maximum
of κ at around 120K, which is very broad and shows lower absolute values than the data
from Ref. [272]. At low temperatures the largest differences occur, since κ in our sample
strongly decreases to very low absolute values. The sharp anomaly of κ at Tc is missing.
Instead, κ drops to very low absolute values in our sample. This large differences show that
in our sample additional phonon-scattering is present. In principle, this can be caused by a
poor crystal quality or a large number of cracks. Another explanation could be the observed
low-temperature mixed-phase bahavior [273, 291]. At present, it is not clear if this is an
intrinsic feature of GdMnO3. Such effects may lead to the observed large suppression of κ at
low temperatures. In NdMnO3 we observe a decrease of κ with decreasing temperature. This
is in contrast to the proposed scenario of Zhou et al., since in NdMnO3 a conventional A-type
antiferromagnetic order is realized. At the Néel temperature a sharp minimum is observed,
and κ shows a maximum at around 30K.

From the results of NdMnO3 we conclude that the correlation between the high-temperature
behavior of κ to the type of the proposed ordering mechanism at low temperatures is not valid
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Figure 7.4.: a) Magnetization of NdMnO3 with H || a, b, and c. b) Specific heat of NdMnO3
in zero field and in H = 5T || c. From Ref. [55].

in general. To further resolve this issue, we will perform a detailed analysis of the thermal
conductivity of TbMnO3 and NdMnO3. Due to a possible non-intrinsic suppression of κ in
GdMnO3, we will not further consider these measurements3.

7.4. NdMnO3

Before the thermal conductivity of NdMnO3 will be discussed in more detail, a short introduc-
tion into the physical properties of NdMnO3 will be given. In NdMnO3, the Néel temperature
is shifted to ≈ 88K compared to LaMnO3 with TN= 140K. The Néel transition is observed
as a peak in the specific heat [55], see Fig. 7.4b. TN is hardly changed by a magnetic field
of 5T. The Néel transition also causes large anomalies in thermal-expansion measurements
along all crystallographic axes [287], see Fig. 7.5. The sign of the anomaly is positive in αb

and αc, whereas the anomaly is negative in αa. The sign of the anomaly in the uniaxial
thermal expansion corresponds to the sign of the uniaxial pressure dependence of TN, what
e.g. means that TMn

N shifts to higher temperatures for uniaxial pressure applied along the b
and c axis. The observed behavior for αa and αb correlates with the orthorhombic splitting
ε = (b − a)/(a + b). Pressure along the a axis decreases the orthorhombic splitting, leading
to an increase of the Mn-O-Mn bond angle, and therefore a suppression of TN. For pressure
along the b direction the effect is just the other way around. However, the positive sign of the
anomaly of αc is due to an enhancement of the inter-plane coupling constant JAFM

NN [273, 287].

As seen in both, specific heat and thermal expansion, an additional low-temperature peak
is present below ≈ 30K, which can be attributed to a Schottky contribution. The J = 9/2
ground state multiplet of the 4f shell of Nd is split into five doublets in the crystal field (see
Sec. 2.4). As shown in Refs. [55, 299] the doublet with the lowest energy further splits by
the Nd-Mn exchange interaction. The splitting amounts to ∆0 ≈ 20K. This explains the
comparatively low value of ∆0, since the next doublet is expected at a much higher energy.
The specific heat data [55] and spectroscopic measurements [299] yield values for the zero-
field splitting ∆0 of 21.6K and 20.0K, respectively. These values well agree with ∆0 = 19.6K

3The whole set of measurements of κ in GdMnO3 is shown in the appendix (Sec. A.2).
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Figure 7.5.: Thermal expansion
of NdMnO3 in zero field. Shown
are measurements along the crys-
tal axes a, b, and c [287].

obtained from the zero-field thermal expansion [287]. The Schottky contribution to the specific
heat (per site) of a two-level system is given by [205]

c
sch

= kB ·
∆2

T 2
· τ1τ2 exp(−∆/T )
(τ1 + τ2 exp(−∆/T ))2

, (7.4)

where τ1 and τ2 are the degeneracies of the levels, and ∆ is the energy splitting. It follows
that the height of the peak of the specific heat is solely determined by the degeneracies of
the two levels. The specific heat data from Ref. [55] are described best with τ1 = τ2 = 1,
which is consistent with to singlets generated by the splitting of the ground state doublet.
From the specific heat (Refs. [55, 300]) it is known that the Schottky peak is strongly field
dependent. The energy splitting shifts to higher temperature with increasing field. Hemberger
et al. determine a value of ∆ ≈ 30K in a magnetic field of 5T.

The magnetization at 5K is highly anisotropic. For H ‖ c, a spontaneous moment of ≈
1.7µB/f.u. for small H and an increase up to 2.6 µB/f.u. at 14T is observed. For H ‖ b, a
spin-flop transition occurs at H ≈ 11T. The interpretation of the magnetization is difficult,
because both Mn and Nd moments contribute, and the Mn-Nd interaction plays an important
role, see Sec. 7.4.4 and Ref. [55].

7.4.1. Thermal Conductivity of NdMnO3: Zero Field

Fig. 7.6 shows the thermal conductivity of NdMnO3 between 5K and 300K measured along
the b direction (symbols). At 25K, κ shows a maximum with a relatively low absolute value
of 6W/Km. With increasing temperature, κ decreases until a value of 4.6W/Km at the Néel
temperature TMn

N = 89K is reached. At TMn
N , a sudden change to a positive slope of κ is

observed, and above TMn
N the thermal conductivity monotonously increases up to an absolute

value of 6.4W/Km at room temperature. The correlation between the sharp minimum of κ
at TMn

N is clearly seen by the comparison with the specific heat, which is shown as a solid
line. A further small anomaly is observed below 20K, a small dip which seems to be related
to the Schottky contribution in the same temperature range. From Ref. [55] we know that
the Schottky peak shifts to a higher temperature in a field of 5T. Therefore, we will ex-
plore the field dependence of the Schottky contribution by thermal-expansion measurements
(Secs. 7.4.2 - 7.4.6) before we will proceed with the discussion of the magnetic-field dependent

121



7. Thermal Conductivity of Orthorhombic Manganites

4 10 100 300

5

6

7

10 100
0.2

0.4

0.6

0.8

1

NdMnO3  || b

 
 (W

/K
m

)

T (K)

 C
/T

 (J
/m

ol
eK

2 )

 

T (K)

C/T

T
N

Figure 7.6.: Thermal con-
ductivity and specific heat
C/T [55] of NdMnO3 in zero
field.

measurements of κ in Sec. 7.4.9. Furthermore we will analyze the magnetic contribution to
the specific heat (Sec. 7.4.7), which will be connected to the κ measurements in Sec. 7.4.8.

7.4.2. Thermal Expansion of NdMnO3 in Magnetic Fields

For a precise determination of the field dependence of the Schottky contribution and the inves-
tigation of the Mn-Nd exchange coupling, field-dependent thermal-expansion measurements
were performed. From the zero-field thermal expansion (Fig. 7.5) the b direction seemed to
be most promising, since the Schottky contribution is most pronounced along this direction.
The thermal expansion αb was measured with H ‖ c by using a low-temperature dilatome-
ter [61, 301] at temperatures between ≈ 500mK and 25K and magnetic fields of 0 . . . 14T.
Furthermore, the measurements of αc with H ‖ c were performed along the c direction with
the same setup.

The measurements with the other field directions turned out to be much more difficult.
Several runs, with different configurations were performed, which all showed large anoma-
lies, however, were not reproducible. These anomalies turned out to be artefacts due to the
large magnetic moment of the samples along the c direction causing a large torque (see e.g.
Ref. [287]). Therefore, the thermal expansion along the b direction with H ‖ b was measured
by J. Baier in another dilatometer [273]. This probe has the advantage that the sample is fixed
by a significantly higher contact pressure than in the low-temperature probe. The measure-
ments in this dilatometer gave reliable results and were performed between 5K and 25−35K.

Fig. 7.7a shows the thermal expansion αb of NdMnO3 in magnetic fields between 0T and
14T applied along the c direction. The curve for H = 0 is in good agreement with the zero-field
data from Fig. 7.5. With increasing magnetic field, the Schottky peak shifts monotonously to
higher temperatures, as expected from the specific heat measurements [55, 300]. For the data
analysis, Eq. 7.4 is used in combination with the Grüneisen scaling [287, 302], leading to

αsch =
kB

Vuc

∂ ln(∆)
∂p

(
∆
T

)2 e−∆/T

(1 + e−∆/T )2
(7.5)

in the case of two singlets. Here, Vuc is the volume of the unit cell (in cubic notation), and
∂ ln(∆)

∂p is the relative pressure dependence of the energy gap ∆. Note that this value can have
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The solid lines are calculated
Schottky contributions.

a positive or negative sign yielding a Schottky peak with a positive or negative sign. Fig. 7.7b
shows the fits performed via Eq. 7.5 for αb with H ‖ c. Here, it turned out that no background
substraction was necessary, since αb is almost totally determined by αsch in the investigated
temperature range.

Fig. 7.8a shows the thermal expansion αc with H ‖ c. Here, the Schottky contribution has
a negative sign. For H = 0T the absolute values of αc are much smaller than for αb, and the
background contribution αbg is no longer negligible. For the analysis it is assumed that αbg is
purely phononic and follows a T 3 behavior in the relevant temperature range. The estimation
of αbg was done by subtracting a function cT 3 from all curves, and optimizing c to get a good
description for all field values. The best results were obtained with αbg = 1.5 · 10−10T 3/K4,
the resulting curve is plotted as a solid line in Fig. 7.8a.

The rest of the analysis was done like for αb. The resulting fit parameters are listed in
Tab. 7.3. Fig. 7.9 shows the derived energy gap and the pressure dependence of the energy
gap vs. magnetic field. The values of ∆ are in excellent agreement for both measurement
directions, and show a linear field dependence.

The pressure dependence of the energy gap ∂ ln(∆)
∂pi

, however, shows a different behavior for

both measurement directions. For αb,
∂ ln(∆)

∂p decreases from 4.7%/GPa at 0T to 3%/GPa at
14T, whereas for αc an decrease from −1.2%/GPa at 0T to −3.6%/GPa at 14T is observed,
very similar to the decrease observed for αb. Fig. 7.10a shows the temperature-dependent
thermal expansion αb with H ‖ b for magnetic fields up to 8T. Here, the behavior of the
Schottky contribution is totally different to that observed for H ‖ c. For small fields (H ≤
3T) no effect is observed within the experimental resolution. For higher fields the peak is
suppressed, and disappears completely for H = 8T. The temperature of the maximum only
weakly shifts to higher temperature. Because of the decreasing size of the Schottky peak, the
uncertainty of the determination of the energy gap increases, as shown by the error bars. For
a magnetic field of 10T applied along the b direction a new anomaly arises with a maximum
at 10K. This peak shifts to higher temperatures with further increasing field, and develops a
more complex structure. The new anomaly is caused by the spin-flop transition and can be
better analyzed by measurements of the magnetostriction.
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7.4.3. Magnetostriction

The additional effects for H ≥ 8T can also be nicely seen in magnetostriction measurements.
Here, the temperature is kept fixed, and the relative length change of the sample ∆L/L
is measured while the magnetic field is changed with a constant rate of 100mT/min. The
resulting curves for T = 5, 10, 15, and 20K are shown in Fig. 7.11. No hysteresis effects
were observed, and therefore only the measurements with increasing field are shown. At 5K
the anomaly is located between 9 and 11T, which corresponds to the spin-flop transition
observed in the magnetization for H ‖ b (see Fig. 7.4). The transition itself shows an unusual
structure. There are presumably given by two peaks, a broader one with a negative sign, and
a sharp peak with positive sign. The latter peak is located at a slightly higher field, causing
an asymmetric shape of the curve. This ”double-peak” structure remains present when the
temperature is increased. However, the transition field increases faster for the broad peak with
the negative sign. This leads to a nearly symmetric structure at 10K, whereas at 20K the
peak with the positive sign occurs clearly at a lower field value. At 40K only the peak with
the negative sign is visible, and the onset of the downturn of the broader peak. The reason
for these additional structures is unclear up to now. We can not exclude that the complex
behavior of the magnetostriction is caused by a torque effect, which could be different below
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and above the spin-flop transition.
In order to get a measure of the temperature dependence of the spin-flop transition, in the

inset of Fig. 7.11a the peak position of the sharp peak is plotted versus temperature4. The
observed temperature dependence is unexpected. Conventionally, the spin-flop field decreases
with increasing temperature. From the almost linear behavior a zero-temperature spin-flop
field of H0T

SF = 9.5T can be extracted. The spin-flop transition will be treated quantitatively
in Sec. 7.4.5

αc H ‖ c αb H ‖ c αb H ‖ b

H ∆ ∂ ln(∆)
∂p ∆ ∂ ln(∆)

∂p ∆ ∂ ln(∆)
∂p

(T) (K) (%/GPa) (K) (%/GPa) (K) (%/GPa)

0 20.3 4.6 21.1 1.0 21.1 3.9
1 21.1 3.9
2 25.4 4.3 25.2 1.9 21.4 3.7
4 30.0 3.9 31.1 2.6 22.0 3.0
5 32.1 3.8
6 34.8 3.6 34.6 2.9 22.9 2.1
8 38.8 3.5 39.5 3.2
10 43.5 3.3
12 47.1 3.2
14 52.0 3.1 51.4 3.6

Table 7.3.: Fit-parameters for the Schottky contribution of NdMnO3.

125



7. Thermal Conductivity of Orthorhombic Manganites

5 10 15 20 25 30 35

0

5

10

0

2

4

b)

8T

 up
 down

 

 

b (1
0-6

/K
)

T (K)

14T

12T

10T

 up
 dw  

 

b(1
0-6

/K
)

8T

6T

4T

0T, 1T, 3T

NdMnO
3

 || b
H || b

a)

Figure 7.10.: Thermal expansion αb of NdMnO3 for H ‖ b. Panel a) shows the measurements
up to 8 T, panel b) from 8 T to 14 T. For 14 T only a measuremet with decreasing field was
performed.

7.4.4. Analysis: Thermal Expansion and Susceptibility

In this section a combined analysis of the thermal expansion and of the magnetization mea-
surements at 5K from Ref. [55] will be presented5. The different directions have to be treated
differently. The splitting of the Nd ground state doublet is determined by two parameters:
The external magnetic field Hi and the exchange interaction JMn-Nd

i , with i = a, b, c. The
external field Hi causes a linear term

∆(Hi) = gNd
i Hi (7.6)

of the energy splitting6. Note, that Eq. 7.6 is only valid if the energy splitting of the ground
state doublet is small in comparison to the energy of the first excited doublet ( ∆D2 ≈ 200K).

To take into account the exchange interaction, usually a mean-field approximation is used.
Herfore one approximates Eq. 7.1 by replacing all terms acting on a spin i by a term

HMF = J〈S〉Si, (7.7)
4The result would hardly change if we define TSF otherwise.
5The following calculations are performed in cgs units, with the convention 104 G= 1 T. Energies will be given

in Kelvin, and the magnetization is units of µB/f.u. (f.u = formula unit).
6We restrict the analysis to the main axes, so only the man axes components of the g tensor are needed. In

the following gi always means the g factor of the ground state Nd doublet for H||i.
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where 〈S〉 is the (constant) mean field, written as an expectation value 〈S〉. In contrast to an
external field the exchange interaction only acts on the spin [303]. To simplify the model we
introduce, however, an effective exchange field

Hex
c ∼ J〈S〉 ⇒ H = Hex

c · gµB(Lz + 2Sz) (7.8)

which is treated like an external magnetic field. An external field causes a linear splitting of
degenerate energy levels (Zeeman effect). Therefore, the use of an exchange field to model
the exchange interaction is only a good approximation, if the exchange interaction has also a
linear effect with respect to the magnetic field. The advantage of the use of an exchange field is
that the total effective field can be obtained by a vector addition of the different components.

Field Direction H ‖ b

Fig. 7.12a illustrates the situation for H ‖ b. Here, we restrict the analysis to fields below the
spin-flop transition (the spin-flop transition will be analyzed in Sec. 7.4.5). The exchange field
along the c direction is proportional to MMn

0,c ≡ M0 and can be written as

Hex
c = c̃M0 =

∆0kB

gcµB
(7.9)
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We assume that the exchange field is not changed by a magnetic field along b. The argument
herefore is that the energy gain and loss of the two sublattices of the AFM exactly cancel7. It
follows that the total effective field is given by

Heff =
√

(Hex
c )2 + H2

b . (7.10)

For the calculation of the susceptibility with the CFT Mathematica [36] package the crystal
field parameters Am

k are required8. To my knowledge, there are no such investigations available
in the literature for NdMnO3. However, as shown in Sec. 2.4, the CF is not so much different
for different NdAO3 compounds, and therefore the Am

k parameters of NdGaO3 from Ref. [48]
will be used. We will refer to this result as the CF calculation.

Since ~MMn(Hb) points along the c direction, Mb(Hb) is solely determined by the Nd suscep-
tibility. First Hex

c was determined by adjusting the field H = (0, 0,Hex
c ) to produce the ground

state splitting ∆0 ≈ 20K. This yields Hex
c = 12T. The magnetization Mb(Hb) was calculated

by using the field H = (0,Hb,H
ex
c ). The result of this calculation is shown as a dashed line

in Fig. 7.13a. The principal behavior of Mb(Hb) is described well. However, the calculated
values underestimate the data by a factor ≈ 1.5 in the whole investigated field range. We
conclude that the use of the CF parameters from NdGaO3 gives only a qualitative description
of Mb(H). Note, that the use of the magnetization data to adopt the CF parameters is not
useful, since we have to deal with 15 CF parameters, and do not know the real level scheme
of NdMnO3.

Mb(H) is given by the sum of the contribution of the localized spins and a van Vleck contri-
bution. We perform a model calculation similar to that of Ref. [55], where both contributions
are treated independently (this analysis will be called TM for thermal expansion /magnetiza-
tion). In reality, however, both parameters are determined by the same Hamiltonian, Eq. 2.21.
The usual Brillouin function [16] describing the magnetization of a doublet in a magnetic field

7This is only valid for T = 0. Because of 5 K�TN the parallel susceptibility is negligible.
8For the calculation of M the 4 R sites in a unit cell have in principle to be treated separately, see Sec. 2.4.

However, it turned out that all sites give the same contribution to M for the regarded cases.
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can be obtained by starting with the potential

Φ(H) = −kBT cosh
(

∆(H)
2T

)
, (7.11)

and calculating

M(H) = −∂Φ(H)
∂H

. (7.12)

To calculate Mb(Hb) one has to use the field-dependent energy gap ∆(Hb). From Eqs. 7.10
and 7.9 it follows:

∆(Hb) =

√
∆2

0 +
g2
bH

2
Bµ2

B

k2
B

. (7.13)

The resulting magnetization reads:

Mb(H) =
g2
bHbµB tanh

(√
∆2

0+g2
b H2

b µ2
B

k2
B

/2T

)
2kB

√
∆2

0 + g2
b H2

b µ2
B

k2
B

+ χvV
b ·Hb. (7.14)

Therefore three parameters determining M(H): ∆0, the g factor, and the van Vleck suscepti-
bility χvV

b . The determination of the parameters is done as follows: First the g factor is fixed
by fitting Eq. 7.13 to the ∆(Hb) curve derived from the thermal expansion data. The result of
this fit is shown in Fig. 7.9c and yields the value gb = 2.3. The uncertainty of this fit is rather
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H ‖ b H ‖ c
gb χvV

b gc χvV
c M0 χMn a

(10−6/G) (10−6/G) (µB /f.u.) (10−6/G) (105G)

TM TS 1.5 0.0 1.0 6.2 3.0
1.7 9.0 1.7 1.5 0.65 3.6 4.6

2.0 3.0 0.33 1.4 9.4
2.3 6.0 2.3 4.0 0.10 0.4 28

2.5 4.5 0.0 0.0 78
2.9 3.0

CF 2.5 0.62 CF 2.55 1.6 0.2 0.8
EM 2.2 0.65 2.5 4.7

Table 7.4.: Parameters for the susceptibility analysis in NdMnO3. TM: Combined analysis
thermal expansion / magnetization. CF: Analysis using the crystal field program. EM: Analysis
using single-site energy minimization.

large because of the large uncertainty of the determination of ∆(Hb) from the small Schottky
peaks in αb. Performing the fit with the upper and lower boundaries of the error bars of ∆(Hb)
the values gb = 1.7 and gb = 2.9 are obtained. Using Eq. 7.14, χvV

b is determined by fitting
the magnetization data. Fig. 7.13 shows the result for gb = 2.3 which gives a good description
of the data. The results for the other g values are not shown since the resulting Mb(H) is
nearly the same. In Tab. 7.4 the resulting parameters are listed. From the results of the CF
calculation we can also extract a g factor and a van Vleck contribution, also listed in Tab. 7.4.
The comparison of both methods shows that the g factor is the same within the resolution of
the TM method. The main difference is, that the Schottky contribution calculated with the
CF method is about an oder of magnitude too small to explain the magnetization. A possible
origin of this discrepancy is a lower lying first excited doublet, leading to a larger admixture
of the excited states and a higher van Vleck contribution.

Field Direction H ‖ c

The determination of Mc(H) is more complex. First, the field-dependent magnetic moment
of the Mn ions gives an additional contribution

Mc,Mn(Hc) = M0 + χMnHc (7.15)

to the magnetization. Second, the field dependence of Mc,Mn(H) leads to a field-dependent
exchange field Hex

c (H). Here, the exchange field and the applied field Hc add, since they
point in the same direction. The calculation of Mc,Nd with the CF program is similar to the
b direction. The zero field splitting is described by (0, 0,Hc

ex) = 12T. If a magnetic field of
Hc = 14T is turned on, the calculation gives a gap of 45K. The difference to the observed
gap of 52K is due to the enhancement of the exchange splitting. This can be included and
the field dependence of the energy gap is described by the field

H = (0, 0, 12T + Hc + g̃Hc) (7.16)
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with g̃ = 0.50. From the resulting Nd magnetization we can determine the Mn contribution
with MMn

0 = Mmeas
c (0T )−MNd

c = 0.22 and χMn = M0 · g̃
14T = 0.8 · 10−6/G. The resulting Mc(H)

is shown in Fig. 7.13b. Again, the principle behavior is described correct, but the increase of
the calculated magnetization is too small.

Therefore we will also calculate Mc(H) as we have done for H ‖ b. The field dependence of
the energy gap can be written as

∆(Hc) =
µB

kB
(aM0 + aχMnH + g

Nd
H) (7.17)

where a denotes the Nd-Mn exchange coupling constant, M0 the weak ferromagnetic moment of
the Mn moments in zero field, χMnH the field-dependent part of the WF moment, and g

Nd
≡ gc

the g factor of Nd along the c direction. The value a ·M0 = ∆0
kB
µB

= 3.1 · 105 G is calculated
from Eq. 7.17, using ∆0 = 20.5K from the zero-field thermal expansion. From the derivative of
Eq. 7.17 and the field dependence of the gap ∆(Hc) we obtain aχMn+gc = kB

µB
2.25 · 10−4 = 3.35.

The total magnetization along the c direction is calculated via Eq. 7.12 [55], leading to:

Mc(H) = M0 + MvV
0 +

1
2
gc tanh

(
∆(Hc)

2T

)
+ (χMn + χvV

c )Hc. (7.18)

χvV
c is the van Vleck term of Nd for H ‖ c. Using the magnetization data we find:

Mb(0) = 1.75 µB/f.u. = M0 + MvV
0 +

1
2
gc tanh

(
20.5 K
2 · 5 K

)
(7.19)

Mb(14T) = 2.65 µB/f.u. = M0 + MvV
0 +

1
2
gc tanh

(
52 K
2 · 5 K

)
+ χvV

c · 14T. (7.20)

for the spontaneous magnetization9 for H → 0 and H = 14T. The van Vleck contribution is
linear in the total effective field and is calculated by

χvV(H) = ṽ

(
aχMn

gc
Hc + Hc

)
(7.21)

and
MvV

0 = ṽ
∆0kB

µBgc
. (7.22)

The Eqs. 7.19 - 7.22 are fully determined, if one of the parameters a, M0, ṽ, χMn , or g
Nd

is
known. We take gc as a free parameter and calculate the other parameters by solving the given
equation system. The reasonable range of gc is limited by two conditions: If gc is too small,
M0 would become negative, and if gc is to large χvV would become negative. The results for
the different gc are listed in Tab. 7.4.

Another starting point to tackle the problem is to consider the single-site energy (referred
as EM for energy minimization). In LaMnO3 and PrMnO3 the value M0 ≈ 0.1µB/f.u. is
observed [55], which is due to the DM interaction. The DM interaction is presumably almost
the same in PrMnO3 and NdMnO3. In NdMnO3, however, one has to take into account that
the system can gain additional energy by the splitting of the Nd ground state due to the
Nd-Mn exchange interaction. It follows from JNd−Mn ∼ M0 that a further canting of the

9For small fields domain formation occurs. Therefore we take the linear extrapolation of Mc(H), H > 0.1 T
for H → 0.
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Mn spins is favorable. For the calculation the relevant energies will be parameterized by the
Mn canting angle α, see Fig. 7.14. Here, only JAFM

NN , the DM interaction, and the single-ion
anisotropy are taken into account. The latter term is not known for NdMnO3, so we take the
value Λ = 0.9K from PrMnO3 [304]. However, the result is only slightly influenced by the
values of Λ. The energy per Mn site for small angles α is given by

Eex,DM(α) = −E0 cos (2α)− 2D sin (α)− Λ[2 cos(α)]2 (7.23)

with
E0 = 2 · 2 ·J〈S〉 = 112K. (7.24)

Here, we use 〈S〉 = S2 = 4 and JAFM
NN = 7K from PrMnO3 [304]. This is reasonable, since

JAFM
NN does not change much with R (see Tab. 7.1). The first factor 2 takes the coordination

number z = 2 along the c direction into account. The second factor 2 is needed because of
the definition of J in Eq. 7.1. Assuming M0 = 0.1µB, we can calculate α = arctan(0.1/4)
and D by finding the minimum of Eq. 7.23. via the condition ∂E(α)/∂α = 0. As a result we
obtain D = 5.7K. In the next step we include the Zeeman energies of the Nd and Mn spins,
the exchange, and the single-ion anisotropy interactions which yields:

Etot(α, Hc) = −E0 cos (2α)− 2D sin (α)− µB

kB
MMn(α)Hc −

gcµB

2kB
Hc − Eex(α)− Λ[2 cos(α)]2

(7.25)
with

MMn(α) = gMnSMn sin(α) = 4 sin(α) (7.26)

Eex(α) =
µBa

2kB
MMn(α). (7.27)

For H = 0 we know the energy gain due to the exchange coupling:

EH=0
ex =

µBa

2kB
M0 = ∆0/2 = 10.3K (7.28)

The minimization of Eq. 7.25 is now straightforward: First ∂Etot(α)/∂α = 0 is solved for
H = 0 under the additional condition Eq. 7.28, yielding the values for M0, α0 and a. Then
Eq. 7.25 is minimized again for a field Hf

c > 0, yielding the values Mf and αf . Then, χMn is
calculated by

χMn = (Mf −M0)/Hf . (7.29)
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Finally, gc is calculated from Eq. 7.17 (setting Hc = 0). The resulting values are listed in
Tab. 7.4 in the line termed EM.

A comparison of the different results shows, that a unique set of parameters cannot be
established. Comparing the results from TM and EM, the TM results with smaller g values
give a better agreement with the other parameters. The g factor from CF is too large, which
is presumably caused by the difference of the CF of NdMnO3 to the used CF parameters from
NdGaO3. We suspect, that the van Vleck contribution coming from the CF calculation is also
too small, even if the discrepancy is not as large as in the H ‖ b configuration.

7.4.5. The Spin-Flop Transition

In a simple antiferromagnet with uniaxial anisotropy a spin-flop transition occurs when the
field is applied parallel to the spins. The reason is, that the energy gain through the canting
in the field is larger than the uniaxial anisotropy energy. In NdMnO3 the situation is more
complex, but the idea is the same: one has to compare the energies of both phases. Herefore
we adapt Eq. 7.25 for H ‖ b in the following cases:

• H < HSF: This is the situation shown in Fig. 7.15a. The angle α1 = 8◦ is determined by
the previously calculated zero-field canting due to the DM interaction. Since we assume
that the spin canting is parallel to the c direction, the magnetic field term cancels.
Further we do not include the Nd Zeeman term, since it is the same for both phases.

• H > HSF: This is the situation shown in Fig. 7.15b. Here, the DM term cancels, since
the spin canting has no c component. The sine of the single-ion anisotropy has to be
replaced by a cosine in the chosen angle parameterization. The angle α2Hb = 8.9◦ +
(3.9 · 10−5)◦/G, which depends on the magnetic field, has been calculated according to
the previous section, with the same modifications used in Eq. 7.30. We assume, that the
Mn-Nd exchange constant a is isotropic and end with the following equations:

∆H<HSF(Hb) = −E0 cos 2α1 − 2D sin(α1)−
µBa

2kB
·M0 − Λ[2 cos(α1)]2 (7.30)

∆H>HSF(Hb) = −E0 cos 2α2 −
4µB

kB
sin(α2)Hb −

µBa

2kB
·M(α2)− Λ[2 sin(α2]2 (7.31)
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In Fig. 7.15 the calculated values are shown. The term for H < HSF gives a constant offset.
The term for H > HSF starts at a higher value but has a negative slope. The value Λ =
0.9K is taken from PrMnO3 [304]. The intersection of the curves gives the spin-flop field of
HSF = 11T. This is in an good agreement with the expected zero-temperature spin-flop field
of ≈ 9.5T (see Sec. 7.4.2).

This considerations are only valid for T = 0. For larger temperatures, thermal activation
becomes important. In this case we expect a decrease of the angles αi. Furthermore the
parallel susceptibility of the Mn is no longer negligible, and the spontaneous moment M0 will
change. The unusual temperature dependence of TSF is likely to result from the complex
interplay of the different parameters.

7.4.6. Uniaxial Pressure Dependences

In this section the measured uniaxial pressure dependences of the energy gap (shown in
Fig. 7.9) will be analyzed quantitatively.10

Uniaxial Pressure Dependence: H ‖ b

For H ‖ b the field dependence of the energy gap is given by Eq. 7.13. We restrict the analysis
to the field range below the spin-flop transition. The uniaxial pressure dependence for the
energy gap along the b axis is given by

∂ ln (∆(Hb))
∂pb

=
∆0

∂∆0
∂pb

+ 2µ2
Bgb

k2
B

∂gb
∂pb

·H2
b

∆2
0 + µ2

Bg2
b

k2
B
·H2

b

(7.32)

This function depends on ∆0 and gb, which we calculated, and on the pressure dependences
∆0/∂pb and ∂gb/∂pb. Fig. 7.9 shows a fit of Eq. 7.32 to the measured uniaxial pressure
dependence. The data are described very well by the fit. The resulting uniaxial pressure
dependences are ∂∆0/∂pb = 4%/GPa and ∂gb/∂pb = −7.4%/GPa.

A B aM0 aχ
Mn

+ gc
∂ ln(∆0)

∂pi

(G/GPa) (10−7/GPa) (105G) () %/GPa

αb H ‖ c 0.144 6.8 3.1 3.35 4.7
αc H ‖ c −0.035 −18 3.1 3.35 −1

∆0
∂∆0
∂pb

2µ2
Bgb

k2
B

∂gb

∂pb
∆2

0
µ2

Bg2
b

k2
B

∂ ln(∆0)
∂pb

(10−4K2/GPa) (10−14K2/G2GPa) (K2) (10−8K2/G2) %/GPa

αb H ‖ b 1.7 −1.8 441 2.4 4.0

Table 7.5.: Parameters of the analysis of the Schottky contribution in NdMnO3. For H ‖ c
the measurement direction i of αi is either b or c.

10In the following Hb (Hc) means a field in b (c) direction, respectively.
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Uniaxial Pressure Dependence: H ‖ c

For H ‖ c the relative pressure dependence of the gap is given by

∂ ln∆(Hc)
∂pi

=
∂a
∂pi

M0 + a · ∂M0
∂pi

+
(

∂a
∂pi

·χMn + a · ∂χ
Mn

∂pi
+ ∂g

Nd
∂pi

)
·Hc

aM0 + (aχMn + g
Nd

) ·Hc
≡ A + B ·Hc

aM0 + (aχMn + g
Nd

) ·Hc

(7.33)
with

A =
∂a

∂pi
·M0 + a · ∂M0

∂pi
[G/GPa] (7.34)

B =
∂a

∂pi
·χMn + a · ∂χMn

∂pi
+

∂g
Nd

∂pi
[1/GPa] (7.35)

and i = b, c. The parameters A and B are obtained by fitting the ∂ ln(∆)
∂pi

(Hc) curves. The
fits are shown as solid lines in Fig. 7.9 and yield a good description for αb,c with H ‖ c. For
H = 0 the uniaxial pressure dependence of ∆0 follows from Eq. 7.33:

∂ ln∆0

∂pi
=

A

aM0
(7.36)

yielding the values ∂∆0/∂pb = 4.7%/GPa and ∂∆0/∂pc = −1%/GPa. Because ∆0 is inde-
pendent of the field direction, the measurements with H ‖ b and H ‖ c should give the same
result within the experimental uncertainty, which is the case.

The equations Eq. 7.34 and 7.35 contain five possible pressure dependent parameters. In
Eq. 7.34 ∂a/∂pi as well as ∂M0/∂pi are presumably pressure dependent since these parameters
are related to the structural distortion. Therefore it is not possible to further dissolve the
Eqs. 7.34 and 7.35.

7.4.7. Specific Heat

For a quantitative analysis of κ the magnetic contribution Cm to the specific heat is needed [305,
306]. To determine Cm, the other contributions to C have to be subtracted. The background
contribution Cbg in NdMnO3 is given by acoustic and optical phonons as well as the Schottky
specific heat of the Nd-doublet CF excitations. Because of Cbg � Cm, a calculation of Cbg

with the required precision is difficult. Therefore we will use NdGaO3 as a reference com-
pound. From Sec. 2.1.6 we know that the crystal field splitting is presumably very similar
in NdGaO3 and NdMnO3, except of the additional splitting of the ground state due to the
Mn exchange field. Fig. 7.16a shows the specific heat of NdMnO3 [307] and NdGaO3 [22].
At high temperatures the curves are nearly identical showing that the phononic and Schottky
contributions are indeed very similar for NdGaO3 and NdMnO3. Therefore we calculate

Cm = C(NdMnO3)− C(NdGaO3)− C∆0
sch . (7.37)

The latter term is calculated by Eq. 7.5 and takes the additional splitting of the Nd ground-
state doublet in NdMnO3 into account. The resulting Cm is shown in Fig. 7.16a and with
a logarithmic y scale in panel b). Cm monotonously increases up to TN where the peak of
the phase transition is visible. Above TN, still a sizeable contribution of Cm is present which
slowly decays. To check this analysis, we calculate

Sm(T ) =
∫ T

0

Cm

T
dT, (7.38)
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Figure 7.16.: a) Specific heat of NdMnO3 NdGaO3 and extracted magnetic contribution.
b) Magnetic contribution Cm to the specific heat in double-logarithmic scales. c) Calculated
magnetic entropy. The line is the estimated total entropy of the Mn moments.

which is the magnetic entropy of the Mn moments. The total entropy of the Mn moments is
given by R ln(2S + 1) = 13.4 J/MoleK, where R is the gas constant. This condition is well
fullfilled as seen in Fig. 7.16c.

7.4.8. Thermal Conductivity of NdMnO3: Scattering by Magnetic Excitations

From Fig. 7.6 it is obvious that the observed sharp dip in κ is related to the Néel transition.
The influence of the Néel transition on the thermal conductivity was investigated theoretically
in Refs. [305, 306]. An additional scattering rate

τ−1
m = MT 2Cm(T )ω4 (7.39)

is derived, where M gives the scattering strength, and Cm is the magnetic specific heat of
the system. Note, that fluctuations cause a sizeable contribution to Cm above TN. Fig. 7.17a
shows the thermal conductivity of NdMnO3 in zero field. For the fit the scattering rate Eq. 7.39
was included in the Debye formula Eq. 2.5. The fit parameters are listed in Tab. 7.6. The
fit gives an approximate description of the data for T > TN. Below TN a large increase of
the fit occurs. Thus the anomalous high-temperature behavior of the thermal conductivity
of NdMnO3 can be explained by a strong suppression of the phononic κ due to scattering
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Figure 7.17.: a) Thermal conductivity κb of NdMnO3. The solid line is a fit with the extended
Debye model, see text. The y axis is shown on a logarithmic scale. b) Thermal conductivity of
LaMnO3 from Ref. [272] and fit. Inset: κ of LaMnO3 on double-logarithmic scales.

by magnetic excitations of the antiferromagnetic ground state of Mn. This explains the de-
creasing temperature dependence from room temperature down to TMn

N and the following
increase. Since at lowest temperatures the magnetic excitations freeze out, an restoration of κ
is expected11. The absence of the increase at low temperatures will be addressed in the next
section.

For comparison, Fig. 7.17b shows the thermal conductivity of LaMnO3 taken from Ref. [308].
In contrast to NdMnO3 the anomaly at TMn

N is only very weak (see inset). The Debye fit ap-
plied without an additional scattering describes the data very well. This shows that the
influence of the antiferromagnetic transition acts differently for the different compounds.

P [10−43 s3] U [10−31 s2/K] u Ds[s] `min[Å] M [10−41m3s3/KJ]

LaMnO3 3.1 11.4 1 33 5.5
NdMnO3 10 2.5 13 5 2.8 2.8

Table 7.6.: Fit parameter Debye fits for LaMnO3 and NdMnO3. The Debye temperature
ΘD = 600K was determined from the specific heat [55]. The sound velocity vs = 4200m/s was
estimated with Eq. 2.10.
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7.4.9. Thermal Conductivity of NdMnO3: Influence of Magnetic Fields

Fig. 7.18 shows the magnetic-field dependent measurements of κ of NdMnO3. All curves
where obtained with one setup. The measurements for H ‖ a and H ‖ c where performed
in a transverse-field cryostat. For these field directions, a Hall probe mounted close to the
sample was used to orient the sample with respect to the magnetic field direction. This
restricts the misalignment error to a few percent. Fig. 7.18a shows the data with H ‖ c
in fields up to 14T. The influence of the magnetic field can be grouped into to regions:
Below 25K, κ monotonously increases with the field, causing a strong enhancement of κ
at the lowest temperature. At T ' 25K all curves intersect, and above this temperature
κ is gradually suppressed by the field. This suppression is most pronounced around 50K
and is monotonously lowered at higher temperatures, but is still present at TMn

N . The field
dependence at the lowest temperature (≈ 6K) can be understood as follows: In zero-field, κ
is suppressed by resonant scattering processes on the two-level system of the Nd ground-state
multiplet with the splitting ∆0 ≈ 20K. From the thermal expansion with H ‖ c we know, that
the splitting ∆(H) strongly increases, up to ≈ 50K at 14T. This decreases the probability

11Such a behavior is e.g. observed for GdFe3(BO3)4, see Sec. A.3.
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of the resonant processes and leads to an enhancement of κ with magnetic field. The large
absolute values of κ at 14T clearly show that the low zero-field values of κ are not related to a
poor sample quality. This also shows that the scattering by the 4f moments is the dominant
process at low temperatures.

The additional resonant scattering explains, why the quantitative calculation of the previous
section is not able to explain κ below TN. For all fields, κ is far below the fit shown in Fig. 7.17.
In order to explain the observed field dependences at intermediate temperatures, the next
excited doublet of Nd may also play a significant role. This could e.g. explain the sign change
of the field dependence at T ≈ 35K: If the lower branch of the first excited doublet of the Nd
comes close to the upper branch of the ground state doublet, scattering between these levels
may become relevant (see the sketch in Fig. 7.18a. This process requires a thermal population
of the states and is therefore not effectice at low temperatures. However, the energy scheme
of the first excited level is not known. Furthermore, it is not know how the phonon scattering
by the magnetic excitations changes in a magnetic field. The consequence is that there are
too many uncertainties for a more elaborated analysis.

Fig. 7.18b shows κ for the other field directions. In contrast to H ‖ c, κ is monotonously
suppressed in the whole temperature range. The effect for H ‖ a and H ‖ b is almost the
same. Below ≈ 20K the suppression is stronger for H ‖ b. The gap ∆ increases only weakly
for H ‖ b. This would imply a weak increase of κ following the picture from above. Since this
is not the observed behavior, another mechanism seems to be present. For H ‖ b, a possible
origin is the presence of fluctuations as a precursor of the spin-flop transition. The onset of
the spin-flop transition is visible in the magnetostriction already above 6T, what supports
this picture. However, data above 8T are not available for this field-direction, so this is not
clear. Furthermore, the thermal conductivity is also suppressed for H ‖ a, where no spin-flop
occurs. Since the sample is weakly twinned [55], this could be a reason for the suppression
along the a direction.

7.5. TbMnO3

Before we will present the magnetic-field dependent measurements of κ, a short introduction
into the phase diagram of TbMnO3 will be given. TbMnO3 is the first compound of the
RMnO3 series in which ferroelectricity is established over a large temperature and magnetic-
field range. In Ref. [289] the phase diagram was explored via polarization and dielectric
measurements. In zero field the polarization points along the c direction. A refined phase
diagram based on thermal expansion measurements in Ref. [287] is shown in Fig. 7.19. In
zero field, the system transforms from a paramagnetic phase into an incommensurate anti-
ferromagnetic phase (HT-ICAFM) at TN = 41K. At Tc = 27K, a transition into another
incommensurate antiferromagnetic phase with a different propagation vector (LT-ICAFM)
occurs. These phase boundaries are hardly magnetic-field dependent. For H ‖ a and H ‖ b,
the application of magnetic fields leads to a transition into a commensurate canted antifer-
romagnetic phase (CAFM), which is accompanied by a polarization flop from P ||c to P ||a.
The thermal-expansion measurements show that no direct transition from the HT-ICAFM to
the CAFM phase occurs. Even at the highest fields, the system passes the LT-ICAFM phase.
The main difference between H ‖ a and H ‖ b (above 10K) is the much larger hysteresis of
the LT-ICAFM → CAFM transition for H ‖ a. The application of high magnetic fields along
the c axis leads to a transition into a paraelectric canted AFM phase, instead of a polarization
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Figure 7.19.: H − T phase diagram of TbMnO3 derived from thermal expansion and magne-
tostriction [273, 291]. For H||c > 8 T the phase boundaries are taken from Ref. [289].

flop. Note that thermal expansion for H ‖ c could only be measured for H ≤ 7T. Therefore
the phase boundaries with H > 8T shown in Fig. 7.19 are taken from Ref. [289].

For all magnetic field directions a very complex low-temperature and low-field behavior
with various transitions is observed below 10K. The reason for these effects is presumably
the interplay of different interactions (Tb-Mn, Tb-Nd, etc.) which have similar energy scales.
The details of these mechanisms are presently not understood. The thermal conductivity
measurements below 10K turned out to be very sensitive to these transitions. However, the
present knowledge does not allow a detailed interpretation of this low-temperature behavior
of κ. In this chapter only the results with T ≥ 10K will be discussed. The whole set of
measurements is shown in the appendix (Sec. A.1).

7.5.1. Thermal Conductivity

Fig. 7.20 presents the thermal conductivity κ of TbMnO3 along the b direction. In zero field,
κ monotonously decreases from a value of 5W/Km at room temperature down to a minimum
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Figure 7.20.: Thermal conductivity κa of TbMnO3. a) H ‖ a. b) H ‖ b. c) H ‖ c. d) Thermal
expansion αb in zero field, and with magnetic fields applied along a, b, and c.

at T ≈ 90K. Further lowering the temperature, κ increases and a maximum at T = 34K with
a relatively low absolute value κ ≈ 3W/Km is reached. Comparing the thermal conductivity
with the thermal expansion, see panel d), a maximum of αb is reached at the same temperatures
where κ runs through its minimum. The maximum in αb is presumably caused by a Schottky
contribution from the 4f states of Tb3+ [287]. The J = 6 state of Tb3+ splits into 13 singlets
in an orthorhombic crystal field. To my knowledge, the energy level scheme is not known12,
and there have also been no investigations of the crystal-field splitting of other orthorhombic
TbAO3 compounds in the literature. The analysis of the thermal expansion data by Eq. 7.5
yields an energy gap13 of ≈ 190K [287]. From the comparison with thermal expansion it is
likely that the minimum of κ at≈ 100K is caused by a resonant scattering process, as discussed

12In Ref. [304] a peak at 4 meV was observed in a neutron scattering experiment, which was attributed to a
CF excitation. These measurements are restricted to 10 meV.

13In principle, a mixture of several Schottky contributions, or a (approximate) degeneracy of the levels is also
possible.
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for PrCoO3 in Sec. 5.4.10. This scenario is supported by the magnetic field dependences of
κ and α. For H ‖ a and H ‖ c, κ is suppressed over a broad temperature range, whereas
for H ‖ b, an enhancement of κ is observed. In a field of 14T the field dependence of κ is
detectable up to a comparatively high temperature of 150K. To compare the field dependence
of κ to the Schottky peak in αb, Fig. 7.20 shows magnetic-field dependent measurements of
αb with the field applied along all crystallographic axes. Although the magnetic-field curves
of αb only extend to 50K, it is clearly seen that the Schottky contribution is either enhanced
or suppressed for the different field directions. From the comparison of the field dependences
of α and κ, we can derive the direct correlation: When αb increases, κ is suppressed, while κ
is enhanced, when αb decreases. This correlation clearly suggests that the suppression of κ is
a consequence of resonant scattering between CF levels of the 4f shell of Tb3+.

The influence of TN and TFE on κ is hardly detectable. Weak dips are observed at the tran-
sition temperatures (see arrows in Fig. 7.20). However, the shape of the thermal conductivity
curves is not changed. Because of the low absolute values of κ, we conclude that these effects
play almost no role, since the scattering by the 4f moments is dominant.

Below TFE one can distinguish the measurements with H parallel to the a and b axis, where
a transition from the LT-ICAFM to the cAFM phase occurs, from those with H ‖ c, where the
system turns from the LT-ICAFM to the paraelectric cAFM phase, if a large field is applied.
For the latter case, a sharp increase of κ is observed when the paraelectric cAFM phase is
reached, see Fig. 7.20c. The pronounced hysteresis of the 8T curve, shows the first order
nature of the transition. At 11T the transition shifts to a higher temperature, but the curves
at 8T and 11T are almost identical, if the system is in the same phase. For H = 8T||b, a
sudden increase is observed when the system goes from the LT-ICAFM phase to the cAFM
phase (see Fig. 7.20b). Since at the same time a polarization flop from P ||a to P ||c takes
place, one may suspect that this increase is related to the formation of ferroelectric domains.
However, we could rule out this possibility as will be shown in the next section. Another
possible explanation is that the additional suppression of the thermal conductivity in the LT-
ICAFM phase is cause by the incommensurability: The symmetry of the system is lowered,
causing additional thermal resistance.

Thermal Conductivity in Electric Fields

As in the magnetic equivalent, ferroelectric domains occur in the ferroelectric state, if the
system is cooled in zero electric field. To investigate, whether the additional disorder caused
by the domains has an influence on the thermal conductivity, measurements under application
of electric fields were performed, which will be presented in this section.

For the electric-field dependent measurements one needs two capacitor plates, which are
realized by sputtering gold on two opposite sides of the samples (see Sec. 3.5 for experimental
details). Since the electric field is given by E = U/d, where U is the applied voltage, and d
the distance between the capacitor plates, large fields may be achieved by making the samples
thin in the direction of E. The electric field was applied along the c direction. Therefore
sample B was cut with a small c length of 0.14mm.

To check the existence of domains, first the polarization Pc was measured. For the experi-
mental details of the polarization measurements see Sec. 3.5. Fig. 7.21a shows the results of
the measurements of Pc below 30K with H ‖ b. For H = 0T the transition to the polarized
state is clearly seen at 28K. Below, Pc increases until it reaches its saturation value at low
temperatures. For H = 3T no change is observed, except below 10K, which is due to the
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Figure 7.21.: a) Polarization P of TbMnO3. All measurements with H > 0 T were done
without a polling field. b) Thermal conductivity of TbMnO3 without (symbols) and with
application of electric fields (lines).

above-mentioned complex low-temperature phases. For H = 5.5T the polarization flop to the
P ||a phase is observed as expected from the phase diagram (Fig. 7.19). Below the transition
temperature the polarization P ||c drops to zero14.

The polarization of TbMnO3 was investigated in detail in [289]. The comparison to the
literature data yields lower values for our sample, which can be explained by the formation of
domains. The literature data were measured in a FC configuration. This means that a large
electric field is applied above the transition temperature, and then the sample is cooled to
the starting temperature of the measurement, which hinders the domain formation. Then the
electric field is turned off, and the measurements are performend without an applied field. In
contrast, the presented measurements were performed without the application of an electric
field. To prove the existence of domains, some zero-field measurements were performed with
a field cooled configuration. The dashed line in Fig. 7.21a shows P measured after cooling
the sample in a field of 1400V/mm, having about 30% larger absolute values. Further, the
application of a negative voltage aligns the electric polarization with a different sign, as seen
by the measurement in −1400V/mm. The application of electric fields (not shown) up to
7200V/mm did not cause a further change of P . We conclude that we are able to control
the domain structure. Fig. 7.21a shows κb with H = 0, 3, 5.5, and 8T applied along the b
direction. For the thermal conductivity, the application of electric fields up 1400V/mm yields
exactly the same results as for the measurements without electric field. We conclude that the
ferroelectric domain structure is not the reason for the increase of κ in the P ||c phase.

14The residual Polarization below 10 K and H > 5 T arises from the drift of the background signal, see Sec. 3.5.

143



7. Thermal Conductivity of Orthorhombic Manganites

7.6. Conclusions

In this chapter we presented thermal conductivity measurements of the orthorhombic man-
ganites RMnO3 with R = Nd, Gd, and Tb. The thermal conductivity of NdMnO3 shows a
very unusual behavior. The antiferromagnetic transition at TN= 81K leads to a strong sup-
pression of the thermal conductivity over a large temperature range. This is in contrast to
LaMnO3, where a much weaker influence of the Néel transition to the heat transport was ob-
served. The calculated scattering rates using the magnetic specific heat qualitatively describe
the observed behavior around TN and at higher temperatures. At low temperatures the ther-
mal conductivity is further suppressed by another scattering mechanism. The ground-state
doublet of Nd is split by ∆ ≈ 20K due to exchange interaction with the canted Mn moments.
Additional resonant scattering processes by this two-level system further suppress the thermal
conductivity. A systematic investigation of the thermal expansion in magnetic fields up to
14T shows that ∆ strongly increases in magnetic fields applied along the c axis. A detailed
analysis in combination with the magnetic susceptibility clarified details of this mechanism.
The increase of ∆ in magnetic fields has a large impact on the heat transport. With increasing
magnetic field, a strong increase of κ at low temperatures is observed. For higher tempera-
tures a gradual change to a suppression of κ with increasing magnetic field takes place. A
possible explanation of the sign change of the field dependence is that phonon-scattering by
the first excited Nd doublet becomes also important. However, the interplay of the scattering
mechanism of magnetic excitations and 4f moments as well as the lack of the knowledge of
the Nd energy scheme prevent a more quantitative analysis in this temperature range difficult.
In TbMnO3 a strongly suppressed thermal conductivity is observed in the whole temperature
range, too. As the main mechanism suppressing κ we identified resonant scattering by the
Tb 4f moments. This conclusion was drawn from the comparison of the temperature and
field dependences of κ with those of the thermal expansion α. In contrast, the transitions
at Tc and TFE only cause very weak anomalies in κ. At low temperatures complex field de-
pendences occur. The transition from the LT-ICAFM into the cAFM phase for H||a, b and
into the paraelectric canted AFM phase for H||c leads to an increase of the thermal conduc-
tivity. The ferroelectric domain structure has no influence on the heat transport, as shown
by measurements of the polarization and of the thermal conductivity under application of
electric fields. The additional suppression of κ seems to be caused by the incommensurability
of the LT-ICAFM phase, which lowers the lattice symmetry. In GdMnO3 κ shows very low
absolute values at low temperatures. This is in contrast to the literature data [272]. The
observed behavior seems to reflect non-intrinsic properties and we did not further consider
the measurements on this sample. In Ref. [272] Zhou et al. proposed that the low absolute
values of the thermal conductivity of TbMnO3 are caused by complex magnetic and electric
ordering phenomena. However, such an explanation is much too simplistic, since scattering
by the crystal-field split 4f orbitals of Tb3+ is neglected. Our results of κ of NdMnO3 and
TbMnO3 show that such resonant scattering strongly suppresses κ. All measurements not
discussed in this chapter, are shown in the appendix.

144



8. Summary

In this thesis the thermal transport properties of transition-metal oxides were investigated. In
the rare-earth cuprates R2CuO4 with R = La, Pr, Nd, Sm, Eu, and Gd the role of magnetic
excitations for the heat transport was studied. For the cobaltates RCoO3 with R = La, Pr, Nd,
and Eu the goal was to study the influence of the spin-state transition on the thermal conduc-
tivity κ. In the Sr-doped cobaltates La1-xSrxCoO3 with 0 ≤ x ≤ 0.3 and La0.75-xEu0.25SrxCoO3
with 0 ≤ x ≤ 0.4 the thermoelectric properties and the thermoelectric figure of merit were the
focus of the investigation. In the orthorhombic manganites RMnO3 with R = Nd, Gd, and
Tb the question was addressed, to which extent magnetic and electric ordering phenomena
influence the thermal conductivity.

The unconventional thermal conductivity of the layered cuprated has been controversially
discussed in the literature. Nakamura et al. [6] suggested a magnetic contribution of κ, whereas
Cohn et al. [81] proposed a purely phononic scenario. To clarify this issue, a systematic study
by thermal conductivity measurements of R2CuO4 with R = La, Pr, Nd, Sm, Eu, and Gd
was carried out. The zero-field thermal conductivity is studied in a temperature range of
5 K ≤ T ≤ 300K for both, a heat current perpendicular (R = Pr and Gd) and parallel
(R = Pr, Nd, Sm, Eu, and Gd) to the CuO2 planes. The out-of-plane thermal conductivity
shows the typical temperature dependence of a purely phononic thermal conductivity with a
low-temperature maximum, whose magnitude depends on the crystal quality. In contrast, the
in-plane conductivity for all crystal exhibits a pronounced double-peak structure consisting (i)
of a low-temperature peak similar to that of the out-of-plane thermal conductivity and (ii) of
an anomalous high-temperature contribution with a broad maximum around 250 K. Such an
anisotropy between the in-plane and the out-of-plane thermal conductivity is also observed in
La2CuO4 by several authors. The fact that the double-peak is present in the structurally stable
R2CuO4 with R = Pr, Nd, and Sm unambiguously rules out the possibility that the double-
peak structure is caused by a structural instability, which is present for R = La, Eu, and Gd.
The qualitative anisotropy between the in-plane and the out-of-plane thermal conductivity
and the rather similar high-temperature behavior of the out-of-plane thermal conductivity for
all the different crystals gives clear evidence that this additional high-temperature contribu-
tion arises from a sizeable heat transport by magnetic excitations within the CuO2 planes.
The data analysis yields a magnetic contribution to the in-plane thermal conductivity between
about 7 to 25 W/Km depending on the R system. In weakly charge-carrier doped La2CuO4,
this magnetic contribution is strongly suppressed showing that scattering of magnetic excita-
tions by mobile charge carriers plays an important role. In contrast, the structural instability
does hardly influence the magnetic thermal conductivity indicating that scattering of magnetic
excitations by soft or anharmonic phonons plays a minor role. To compare the principle be-
havior of the thermal conductivity of the two-dimensional square lattice with one-dimensional
systems, the energy diffusion constant DE(T ) is calculated for La2CuO4 and compared with
DE(T ) obtained for various one-dimensional chains with S = 1/2 and S = 1. The heat trans-
port in the one-dimensional systems is anomalously enhanced, since the estimated DE(T ) is
much larger than an estimate using the calculated correlation length. In contrast, a rather
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8. Summary

conventional behavior of the thermal transport in the two-dimensional square lattice is found.
The observation of a large magnetic contribution on the heat transport is just a consequence
of the large coupling constant J , which causes a sizeable contribution to κ, and the fact that
J � ΘD, allowing the distinction of κmag from the phononic heat conductivity.

A second focus is the influence of magnetic fields on the thermal conductivity. At low
temperatures large magnetic-field effects are observed for the in-plane thermal conductivity
of Nd2CuO4 and Gd2CuO4, a smaller effect in Pr2CuO4, and no magnetic-field dependences
in Sm2CuO4 and Eu2CuO4. It is shown, that resonant scattering processes by the 4f orbitals
can consistently describe the observed behavior. This conclusion is in contrast to the magnon
heat transport proposed for Nd2CuO4 by Jin et al. [80] and Li et al. [10]. A comparative
analysis of the different experimental results of Nd2CuO4 analysis reveals, that the proposed
methods to extract the possible magnon contributions are highly uncertain. Moreover, the
observed magnetic-field dependences in Nd2CuO4 are much smaller than those observed e.g.
in NdMnO3, where the effect is unambiguously caused by the 4f orbitals. This shows that
the attribution of the observed magnetic-field dependences to a magnon contribution to κ, as
proposed by by Li et al., is highly questionable.

The influence of the spin-state transition to the thermal conductivity of Cobaltates is in-
vestigated in RCoO3 with R = La, Pr, Nd, and Eu. A main result is that the unconventional
thermal conductivity of LaCoO3 can be attributed to the spin-state transition. At low tem-
peratures, a maximum of κ with an unusual temperature and magnetic-field dependence is
observed. The low-temperature behavior of the thermal conductivity is systematically inves-
tigated on five different LaCoO3 crystals. It is shown that non-intrinsic strong scattering
processes caused by paramagnetic impurity levels governs the heat transport in this temper-
ature range. The measured thermal conductivity could be correlated to the paramagnetic
impurity content of the samples obtained via magnetization measurements. The effectiveness
of these processes may be enhanced due to the formation of magnetic polarons. Concerning
the RCoO3 series, a systematic increase of the thermal conductivity from R = La to Eu is
observed. At low temperatures, this observation cannot directly be attributed to the spin-
state transition. The analysis of the thermal conductivity in combination with susceptibility
measurements suggests a scenario, where magnetic polarons significantly scatter phonons at
low temperatures. Because the polaron formation becomes less likely when the spin gap is
increased, the systematic increase of the thermal conductivity from La to Eu results. Above
T ≈ 30K, a strong suppression of the thermal conductivity is observed in all samples. The
resulting very low absolute value of the thermal conductivity up to room temperature is an
intrinsic feature of the thermal conductivity of LaCoO3. This unusual behavior of the heat
transport is a consequence of the spin-state transition. The Co3+ ion has a larger ionic radius
in the thermally activated higher-spin state than in the low-spin ground state. The random
distribution of the low-spin and the higher-spin states causes an additional lattice disorder
which strongly suppresses the thermal conductivity. To check this scenario also quantitatively,
the additional scattering-rate due to the spin-state transition is estimated. Herefore EuCoO3
is used as a reference compound, where the influence of the spin-state transition is negligible
below room temperature. The temperature dependence of the additional phonon scattering
can be described by a model based on the Nordheim rule. Such a model was successfully used
in the literature to describe the thermal conductivity of mixed semiconductor alloys. The
proposed model works well with both, the low-spin/intermediate-spin scenario with a spin
gap of 186K estimated by susceptibility measurements as well as with the recently proposed
model based on a spin-orbit coupled high-spin state.
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In PrCoO3 and NdCoO3, the spin-state transition shifts gradually to higher temperatures.
The spin-state transition influences the thermal conductivity at high temperatures in PrCoO3
and NdCoO3 in the same way as in LaCoO3. The change of the scattering rates due to the
spin-state transition can be modeled using the parameters estimated from LaCoO3. This
is clear evidence that the spin-state transition indeed causes the suppression of the thermal
conductivity due to the additional disorder. The scattering mechanism is explored in detail
and the scattering strength for LaCoO3 is quantitatively described. The results shows that
the static volume changes of the Co3+ ions caused by the spin-state transition are sufficient to
explain the observed behavior of the thermal conductivity. This is in contrast to the scenario
given by Yan et al.[9], which proposes that dynamic fluctuations are responsible for the strong
suppression of the thermal conductivity. In PrCoO3, an additional scattering mechanism could
be identified, which is attributed to resonant scattering by the 4f orbitals of Pr3+.

The thermal conductivity of La1-xSrxCoO3 for 0 ≤ x ≤ 0.3 is strongly suppressed for
all x. For small finite x, a spin-state transition of the Co3+ ions may be induced by the
neighboring magnetic Co4+ ions, and so-called high-spin polarons can be formed. For larger
x this effect becomes less important, but scattering of phonons by mobile charge carriers also
plays a role for the suppression of the thermal conductivity. For finite doping a large, positive
thermopower is observed, which strongly depends on temperature and doping. The room
temperature values of the thermopower follow a doping dependence that is expected from a
modified Heikes formula. In nominally pure LaCoO3 the different crystals either have a large
positive or a large negative thermopower. We suspect that this is a consequence of weak
deviations from the nominal oxygen content causing small amounts of hole or electron doping.
For the sample with x = 0.25 both, the thermal conductivity and the thermopower show
a significant magnetic-field dependence in the temperature range around the ferromagnetic
ordering temperature. The field dependence of the thermal conductivity can be traced back
to a field-dependent charge carrier contribution to the heat current, and the field dependence
of the thermopower indicates that it contains a sizeable contribution arising from magnetic
entropy. For the intermediate doping x = 0.125 rather large values of the thermoelectric
figure merit are found, which is calculated from the resistivity, thermopower and thermal
conductivity data. This value is large, but yet too small for technical applications.

The thermal conductivity of the orthorhombic manganites RMnO3 with R = Nd, Gd, and
Tb turned out to be very complex. In particular, the thermal conductivity of NdMnO3 shows a
very unusual behavior. The antiferromagnetic transition at TN= 81K causes a strong suppres-
sion of the thermal conductivity over a large temperature range. This is contrast to LaMnO3,
where a much weaker influence of the Néel transition to the heat transport was observed in
the literature. The calculated scattering rates using the magnetic specific heat qualitatively
describe the observed behavior of the thermal conductivity in NdMnO3 around TN and at
higher temperatures. At low temperatures the thermal conductivity is also influenced by an-
other scattering mechanism. The ground-state doublet of Nd is split by ∆ ≈ 20K due to
exchange interaction with the canted Mn moments. Additional resonant scattering processes
by this two-level system further suppress the thermal conductivity. A systematic investiga-
tion of the thermal expansion in magnetic fields up to 14T shows that ∆ strongly increases in
magnetic fields applied along the c axis. A detailed analysis in combination with the magnetic
susceptibility clarified details of this mechanism. The increase of ∆ in magnetic fields has a
large impact on the heat transport. With increasing magnetic field, a strong increase of κ at
low temperatures is observed. At higher temperatures, κ is determined by the interplay of
the scattering mechanism cause by the antiferromagnetic transitions and the 4f orbitals. In
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8. Summary

TbMnO3, a strongly suppressed thermal conductivity is observed in the whole temperature
range, too. As the main mechanism suppressing κ resonant scattering by the Tb 4f orbitals
can be identified. This conclusion is drawn from the comparison of the temperature and field
dependences of κ with those of thermal expansion α. In contrast, the transitions at Tc and TFE

only cause very weak anomalies in κ. At low temperatures complex field dependences occur.
The transition from the low-temperature incommensurate antiferromagnetic into the canted
antiferromagnetic phase for H||a, b and into the paraelectric canted antiferromagnetic phase
for H||c leads to an increase of the thermal conductivity. The electrical domain structure
has, however, no influence on the heat transport, as shown by measurements of the electri-
cal polarization and of the thermal conductivity under application of electrical fields. The
additional suppression of κ seems to be caused by the incommensurability of the low-field
low-temperature phase, which reduces the lattice symmetry. Zhou et al. [272] proposed that
the low absolute values of the thermal conductivity of TbMnO3 are caused by the complex
magnetic and electric ordering phenomena. However, such an explanation is much too sim-
plistic, since scattering by the crystal-field split 4f orbitals of Tb3+ is neglected. The results
of κ of NdMnO3 and TbMnO3 clearly show that such resonant scattering strongly suppresses
κ. Therefore, in TbMnO3 the ferroelectric and magnetic transitions at low temperature have
no additional effect.

In conclusion, complex temperature and magnetic-field dependences occurred in all inves-
tigated transition-metal oxide classes. Two important effects related to the transition-metal
ions have been found: Heat transport by magnetic excitations in the cuprates, and a large
suppression of the thermal conductivity in the cobaltates induced by the disorder due to the
spin-state transition. Moreover, complex low-temperature and field dependences arise as a
consequence of resonant scattering mechanisms, either by paramagnetic impurities, or by the
4f orbitals of the rare-earth ions. In some cases, mostly pronounced in NdMnO3, the interplay
of the transition-metal and rare-earth ions significantly influences the thermal conductivity,
too.
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A. Additional Measurements

A.1. TbMnO3
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Figure A.1.: Thermal conductivity of TbMnO3, κ||a, H ‖ b. a) Selected magnetic fields
between 0 T and 14 T. b) Magnetic fields between 0 T and 3 T. c) Magnetic fields between 3 T
and 8 T. (4,N): Measurements with increasing T . (5,H): Measurements with decreasing field.
The hysteretic bahavior of the field curves is shown in Fig. A.3. The sudden increase of κ with
decreasing temperature for H ≥ 5.5 T
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Figure A.2.: Thermal conductivity of TbMnO3, κ||a, H ‖ b. H = 0 . . . 14 T. Inset: Field
range up to 8 T in detail.
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Figure A.3.: Thermal conductivity of TbMnO3, κ||a, H ‖ b, hysteretic behavior of the mea-
surements in magnetic fields. (4,N): Measurements with increasing T . (5,H): Measurements
with decreasing field.
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Figure A.6.: Correction of the radiation losses of κb of the small TbMnO3 sample. The
reference is the measurement on the large sample (see Tab. 7.2).

152



A.1. TbMnO3

0 20 40
0

1

2

3

0

2

4

b)

k || b     H ||  c

6T 7T

0T

8T

 

 

 (W
/K

m
)

T (K)

8T

5.5T

 

 

 (W
/K

m
)

0T

3T

TbMnO
3

k || b     H ||  b

a)

Figure A.7.: Thermal conductivity of TbMnO3, κ||b. a) Measurements with H ‖ b. b) Mea-
surements with H ‖ c.

153



A. Additional Measurements

0 4 8 12
0

1

2

3

4

1

2

3

 H (T)

 

 

 (W
/K

m
)

3K
5K

10K
15K

 || a   H || b

H

T

0 14
0
5

10

50

H

T

0 14
0
5

10

50

Sample 2

TbMnO
3
 

 

 

 (W
/K

m
)

5K

10K

15K

20K44K
25K

40K

8K
6K

 || a   H || a

Sample 1

Figure A.8.: Thermal conductivity of TbMnO3, κ||a, H ‖ b. Measurements of κ(H) at fixed
temperatures. a) Measurements with H ‖ a. The data up to 8 T are from Sample S1, the data
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Figure A.11.: Thermal conductivity κb of TbMnO3 vs. H at fixed temperatures. a) Mea-
surements at 10 K, 15 K and 30 K. with H ‖ a. b) Measurements at 10 K, 15 K and 35 K. with
H ‖ b. To analyze the change of the thermal conductivity at the transition from the LT-ICAFM
to the cAFM phase, Fig. A.11 a) and b) shows κ vs. H with fields applied along the a and b
direction. We attribute the field dependencies above 20 K to the scattering by the 4f moments.
From the curve at 10 K with H ‖ b we conclude that in the LT-ICAFM phase an additional
scattering rate is present, which disappears at the transition field. Since at high fields the slope
of κ vs. H is the same like for T = 30 K, we conclude that the additional low-temperature
scattering mechanism totally disappears. Furthermore, the scattering due to the 4f moments
seems to change not much between 35 K and 10 K. This allows to calculate the relative change
of the thermal resistance due to the phase tansition by ∆w = 1/κ(H) − ∆w4f − wstatic The
thermal resistance change ∆w4f due to the 4f moments is estimated from the measurement
at 35 (30)K. The field-independent scattering by static effects is given by the constant wstatic,
based on the assumption that the additional low-field scattering vanishes at 14 T. The result of
this estimation is shown in Fig. A.11 c) and d). At the same temperature, the additional ther-
mal resistance of the LT-ICAFM phase is very similar for both field directions. The responsible
scattering mechanism disappears if the cAFM phase is reached. The only difference between
the both field directions is that for H ‖ a the transition is much broader than for H ‖ b. This
supports the results from the thermal expansion, where also a much broader transition was
observed for H ‖ a.
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A.2. GdMnO3

A.2. GdMnO3
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Figure A.12.: Zero-field thermal conductivity of GdMnO3 along the a direction. At room
temperature, κ has a value of 6 W/Km, which stay approximately constant down to 100 K.
Below 100 K, κ decreases linearly with temperature, and reaches very low absolute values. The
temperature dependence reminds to the thermal conductivity of highly disordered crystals,
where the low-temperature phonon peak is completely suppressed. At the transition from
the PM to the IC-AFM phase, a small anomaly is seen in κ. To resolve this in more detail,
the inset shows κ/T vs. T below 50 K. At the second transition from the IC-AFM phase
no anomaly is observed. However, as known from the thermal expansion measurements, for
the zero-field measurements no pure cAFM phase is present, and only a coexistence region
of both phases is realized. To examine the zero-field thermal conductivity in the pure cAFM
phase, the same idea like in Refs. [273, 291] was applied: The sample was cooled down to
12 K, then a magnetic field of 8 T with H ‖ a was applied and removed without changing the
temperature. Then κ was measured with increasing temperature. The resulting curve has an
anomaly at the transition temperature, and has higher absolute values in the cAFM phase.
This is consistent with the expectation, that the additional disorder in a mixed phase further
suppresses κ. However, the resulting thermal conductivity is still very low, and decreasing with
decreasing temperature. The conclusion is that still another very effective scattering mechanism
is present at low temperatures.
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Figure A.13.: Thermal conductivity vs. H of GdMnO3. Shown are measurements at 5 K
and 12 K with fields applied along all crystallographic axes. At 12 K with H ‖ a the thermal
conductivity of the zero field curve has a value of ≈ 0.8 W/Km, which increases to ≈ 1.3 W/Km
at 1 T. For higher fields only a small further increase is observed. Removing the field, κ does
not follow the curve with increasing field, instead the value of ≈ 1.3 W/Km remains down to
0 T. At 5 K the sudden increase is observed at about 2 T. Here the curve should drop down to
the zero-field value if the field is removed. Unfortunately the sample fell of the samples holder
at 8 T in two different setups when the field of 8 T with H ‖ a was applied. The reason is the
large torque moments acting on the sample. However, for H ‖ c in principle the same behavior
is expected from the phase diagram, just with a smaller coexistence region. The measurements
along this field direction show the expected behavior: At 12 K the sample remains in the cAFM
phase, whereas the this phase is (partly) left at 5 K, seen in a downturn of the curve with
decreasing field at 1 T.
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A.2. GdMnO3
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Figure A.14.: Thermal conductivity κ of GdMnO3 in magnetic fields. a) H ‖ a. Inset: Hys-
teresis at Tc for Ha = 2 T. b) H ‖ b Inset: κ/T . c) H ‖ c. For H ‖ a and H ‖ c the thermal
conductivity increases at the transition to the cAFM phase if the temperature is lowered. Fur-
ther decreasing the temperature, the decreasing behavior of κ is restored a few Kelvin lower.
For H ‖ a a hysteretic behavior is observed in all investigated fields, as shown exemplaryly in
the inset for H = 2T. For H ‖ c each magnetic field curve was only measured along one direc-
tion, but according to the phase diagram no pronounced hysteresis is expected. In contrast, for
H ‖ b the magnetic field dependence is less pronounced. At the transition to the cAFM phase in
magnetic fields, the anomaly is much weaker than for the other field directions. The inset shows
κ/T , where the weak anomaly at Tc is better resolved. In contrast to the other magnetic-field
directions, here the field curves cross the zero field curve and the following decrease is stronger.
Whereas the ferroelectric transitions produces sharp transitions in the thermal expansion, here,
below 10 K no anomalies are identifiable. This corresponds to the almost field independent
measurements at 5 K and 12 K in Fig. A.13. Here, only a small hysteretic behavior is observed
for fields below ≈ 2 T. From these observations one can summarize, that TN and TC can be
observed in small anomalies, which show the same hysteretic bahavior like observed in the ther-
mal expansion, especially the low-field coexistence region of the IC-AFM and the cAFM phase.
The ferroelectric phase transition, however, seems to have a minor influence on κ. However,
from the absolute values one can conclude that these are only minor effects and that a very
effective scattering mechanism suppresses κ in the whole temperature range.
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A.3. GdFe3(BO3)4
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Figure A.15.: Thermal conductivity of GdFe3(BO3)4 in zero field along the [010] and the [001]
axis. The GdFe3(BO3)4 crystal is from A. Vasiliev (Moskau State University). It was cutted
to a cuboid with the dimensions 1 × 1 × 2mm3. Note, that because of the trigonal structure
the following relations between direct and reciprocal space hold: [010]=(120), (001)=[001],
(100)=[2-10]. The thermal conductivity shows two anomalies: One caused by a structural
phase transition at 150 K and second caused by an transition to an antiferromagnetic ordered
state. For further information about the system see Refs. [309–316]. Line: Thermal expansion
measured by D. Meier [287].
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Figure A.16.: Thermal conductivity of GdFe3(BO3)4 with jH || [001]. Left panel: H|| [001].
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Figure A.17.: Thermal conductivity of GdFe3(BO3)4 with jH ||[010]. Left panel: H||[001].
Right panel: H||[010] and [2-10].
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Figure A.18.: Thermal conductivity κ vs H of GdFe3(BO3)4 at fixed temperatures with
jH ||[001] and H||[010], [001], and [2-10].
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Figure A.19.: Thermal conductivity κ vs H of GdFe3(BO3)4 at fixed temperatures with
jH ||[010] and jH ||[010], [001], and [2-10].
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Figure A.21.: Thermal conductivity of Bechgaard salts. The samples are from M. Dressel.
The thermal conductivity has been remeasured after it turned out that the data in [318,
319] suffer from large systematic errors due to the used wiring. The setup was extended by
the use of an electronic iron sample connected in series with the actual sample. From the
temperature gradient over the iron sample the heat current was calculated via the known
thermal conductivity. This allowed the estimation of the radiation losses by the subtraction of
the power applied to the sample heater, and the power which reached the iron sample.
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A.5. Spin Ladders
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samples were grown by M. Reuther [214]. In addition to the low-temperature maximum a huge
high-temperature maximum is observed. The qualitative agreement to the literature data from
Ref. [3] is well. The samples show an even larger high-temperature peak. No magnetic field
dependence is observed at low temperatures.
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unusual temperature dependence is observed.
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toire CRISMAT, France). The thermal shows a conventional phononic behavior.
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A.7. LaCoO3
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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Untersuchung der thermischen Transporteigen-
schaften dreier Klassen von Übergangsmetalloxiden: Kupraten, Kobaltaten und Manganaten.
Die geschichteten Kuprate R2CuO4 mit R = La, Pr, Nd, Sm, Eu und Gd zeigen eine unge-
wöhnliche Wärmeleitfähigkeit κ. Zwei Maxima werden für κ als Funktion der Temperatur für
einen Wärmestrom entlang der CuO2-Ebenen beobachtet, während für einen Wärmestrom
senkrecht zu den CuO2-Ebenen nur ein konventionelles phononisches Tieftemperaturemaxi-
mum auftritt. Es wird gezeigt, dass das Hochtemperaturmaximum durch Wärmetransport
magnetischer Anregungen auf dem CuO2 Quadratgitter verursacht wird. Ein weiteres Ergeb-
nis ist, dass das komplexe Tieftemperatur- und Magnetfeldverhalten von κ in Nd2CuO4 am
wahrscheinlichsten durch zusätzliche Phononenstreuung verursacht wird anstatt durch ma-
gnonischen Wärmetransport, wie es in der Literatur vorgeschlagen wurde. In den Kobaltaten
RCoO3 mit R = La, Pr, Nd und Eu wird ein temperaturgetriebener Spinübergang der Co3+-
Ionen beobachtet. Es wird gezeigt, dass die zusätzliche Gitterunordnung durch die zufällige
Verteilung der besetzten angeregten Spinzustände eine starke Unterdrückung der Wärmeleit-
fähigkeit von LaCoO3 für Temperaturen oberhalb von 25K verursacht. Dieser Effekt ist in
NdCoO3 und PrCoO3 wegen der größeren Spin-Anregungslücke viel schwächer ausgeprägt.
Eine quantitative Analyse wird durchgeführt, basierend auf EuCoO3 als Referenzsubstanz.
Ein wesentliches Ergebnis ist, dass statische Unordung ausreicht die Unterdrückung von κ zu
erklären. Eine dynamische Jahn-Teller Verzerrung, wie sie in der Literatur vorgeschlagen wur-
de, ist nicht notwendig um die Stärke der Streuung zu beschreiben. Unterhalb von 25K wird κ
im wesentlichen durch resonante Streuung an paramagnetischen Verunreinigungszuständen be-
stimmt, welche z.B. durch nicht stöchiometrischen Sauerstoffgehalt verursacht werden können.
Eine derartige Unterdrückung der Wärmeleitfähigkeit durch resonante Streuprozesse ist z.B.
von Holmiumethylsulfat bekannt. Dieser Effekt ist in LaCoO3 am ausgeprägtesten, vermutlich
durch die Bildung magnetischer Polaronen. In den dotierten La1-xSrxCoO3 Verbindungen mit
0 ≤ x ≤ 0.25 wird eine große Thermokraft, eine niedrige Wärmeleitfähigkeit und ein nennens-
werter thermoelektrischer Nutzfaktor gefunden. Hier wird κ in Folge der durch Sr-Substitution
induzierten magnetischen Polaronen stark unterdrückt, wogegen die große Thermokraft durch
einen großen Entropiebeitrag verursacht wird, der durch die unterschiedlichen Spinzustände
von Co3+ und Co4+ zustande kommt. In den orthorhombischen Manganaten NdMnO3 und
TbMnO3 werden komplexe Temperatur- und Magnetfeldabhängigkeiten von κ beobachtet.
In Kombination mit magnetfeldabhängigen Messungen der thermischen Ausdehnungs wird
gezeigt, dass der dominierende Effekt, der κ beeinflusst, durch resonante Streuung an 4f -
Momenten gegeben ist. Sowohl die komplexe magnetische Struktur von TbMnO3 bei tiefen
Temperaturen als auch die Ferroelektrizität scheinen nur einen schwachen Einfluss auf die
Wärmeleitfähigkeit zu haben.
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Abstract

The subject of this thesis is the investigation of the thermal transport properties of three
classes of transition-metal oxides: Cuprates, cobaltates, and manganites.

The layered cuprates R2CuO4 with R = La, Pr, Nd, Sm, Eu, and Gd show an anomalous
thermal conductivity κ. Two maxima of κ are observed as a function of temperature for a heat
current within the CuO2 planes, whereas for a heat current perpendicular to the CuO2 planes
only a conventional phononic low-temperature maximum of κ is present. Evidence is provi-
ded that the high-temperature maximum is caused by heat-carrying excitations on the CuO2

square lattice. Moreover, it is shown that the complex low-temperature and magnetic-field
behavior of κ in Nd2CuO4 is most likely caused by additional phonon scattering rather than
by heat-carrying Nd magnons, as it was proposed in the literature. In the cobaltates RCoO3
with R = La, Pr, Nd, and Eu, a temperature-induced spin-state transition of the Co3+ ions
occurs. It is shown that the additional lattice disorder caused by the random distribution of
populated higher spin states causes a large suppression of the thermal conductivity of LaCoO3
for T > 25K. The effect is much weaker in PrCoO3 and NdCoO3 due to the increased spin
gap. A quantitative analysis of the responsible mechanisms based on EuCoO3 as a reference
compound is provided. A main result is that the static disorder is sufficient to explain the sup-
pression of κ. No dynamical Jahn-Teller distortion, as proposed in the literature, is necessary
to enhance the scattering strength. Below 25K, κ is mainly determined by resonant phonon
scattering on paramagnetic impurity levels, e.g. caused by oxygen non-stoichiometry. Such a
suppression of the thermal conductivity by resonant scattering processes is e.g. known from
Holmium ethylsulfate. This effect is most pronounced in LaCoO3, presumably due to magnetic
polaron formation. In the doped compounds La1-xSrxCoO3 with 0 ≤ x ≤ 0.25, a large thermo-
power, a low thermal conductivity, and a considerable large thermoelectric figure of merit is
found. Here, κ is strongly suppressed by the Sr-induced magnetic polarons, whereas the large
thermopower arises from a large entropy contribution due to the different spin states of Co3+

and Co4+. In the orthorhombic manganites NdMnO3 and TbMnO3 complex temperature and
field dependencies of κ are observed. In combination with magnetic-field dependent thermal
expansion measurements it is shown that the dominating effect determining κ is resonant
phonon scattering by the 4f orbitals of the R3+ ions. The complicated magnetic structure of
TbMnO3 at low temperature as well as the ferroelectricity has only a minor influence on the
thermal conductivity.
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