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Abbreviations 
 
Abbreviation Full Form 

Ist Gen. AdV First generation adenoviral vector 

IInd Gen. AdV Second generation adenoviral vectors 

Ad2 Human Adenovirus Serotype 2 

Ad5 Human Adenovirus Serotype 5 

Ad12 Human Adenovirus Serotype 12 

AdV Adenoviral vector 

AAV Adeno Associated Virus 

bp Base pairs 

CIP Calf intestinal phosphatase 

Chr Chromosome 

DNA Deoxyribonucleic acid 

ds Double stranded 

DSB Double stranded breaks 

DBP DNA binding protein 

EDTA Ethylenediaminotetraacetic acid 

FAH Fumarylacetoacetate hydrolase 

Fah+ve Fah positive 

Fah-ve Fah negative 

FAA Fumarylacetoacetate 

FCS Fetal calf serum 

HC-Ad vector High capacity adenoviral vector 

HR Homologous recombination 

ITR Inverted terminal repeat of the adenoviral genome 

i.u. Infectious Units 

Kbp Kilo base pairs 

LITR Left ITR of the adenoviral genome 

moi Multiplicity of infection 

NHEJ Non Homologous end joining 

dNTPs  Deoxribonucleotides 

OD Optical density 

p.f.u. Plaque forming units 

PCR Polymerase chain reaction 

pTP Pre terminal protein 

RITR Right ITR of the adenoviral genome 

RV Retro virus 

SDS Sodium dodedcyl sulphate 
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ssDNA Single stranded DNA 

TBS Tris buffered saline 

TP Terminal Protein 

Tris Tris-(hydroxylmethyl)aminomethane 

wt Wild type 
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I Introduction 
I.1 Scope of the work 
“Nothing in life is to be feared; it is only to be understood.” So wrote Prof. Maria 

Sklodowska-Curie in her Diary (Caporale, 2002).  Viruses are greatly feared as 

harbingers of death, with fears that influenza pandemic may cause hundred thousand 

deaths in an outbreak in the USA alone (Lee & Krilov, 2005), and had claimed 20- 40 

million human lives in the past (Perez et al., 2005). Like the impartial death that 

ensnares both kings and the common people, referred to in the famous poem “Death 

the Leveller” by James Shirley (Quiller-Couch, 1919), viruses have often been the 

bane of humans, time and again in the course of our history, have been accused of 

taking millions of paupers and princes, like King Rameses V in 1157 BC, to the grave 

(Mahalingam et al., 2004).  The recent threats of terrorists who may use biological 

warfare as means to achieve their ends, have only added more fuel to these fears 

(Agarwal et al., 2004). However, the idea that these agents can be used for beneficial 

purposes to help humanity has not escaped the notice of science and that has been put 

into action. The fact remains that viruses can also be used for therapeutic purposes for 

humankind and so far offers the best gene delivery system to treat acquired and 

inherited genetic disorders (Verma & Weitzman, 2005). 

Gene therapy, which has been labelled as the “twenty first century medicine”, seems 

to be ideal for the treatment of inherited and acquired diseases.  The fundamental idea 

of gene therapy is to introduce to the target diseased cells a fragment of genetic 

material that will at least slow down the progression of the disease or better still cure 

it outright (Verma & Weitzman, 2005). To deliver the genetic material to the target 

cells, gene transfer systems have been developed that can be classified as non-viral or 

viral gene delivery systems (Kootstra & Verma, 2003).  Non-viral methods used in 

gene therapy include liposomes (Stern et al., 2003), nano particles (Yamada et al., 

2003), plasmid DNA (Liu et al., 1999), chimeric RNA:DNA oligonucleotides (Kren 

et al., 2002) and transposable elements (Montini et al., 2002) [reviewed in (Glover et 

al., 2005, Griesenbach et al., 2004, Li & Huang, 2000)].    

Viral gene delivery systems (except in the case of suicide gene delivery (Campbell & 

Gromeier, 2005) use replication deficient viral vectors, where part or the complete 

coding region of the viral genome is replaced by the genetic material of the 

therapeutic gene.  The cis-acting regulatory sequences essential for the packaging of 



 11

the vector genomes and, in certain viruses, responsible for the integration into the 

host, are left intact. Non-replicating viral vectors are produced when the viral vector is 

introduced into a producer cell, which by itself, or by the aid of another system, is 

able to provide the viral structural proteins essential for the growth. Currently, the 

viral vectors used for gene therapy are based on retrovirus, adeno-associated virus, 

herpes simplex virus type-1 and adenovirus [reviewed in (Kootstra & Verma, 2003)]. 

Gene therapy was first used in humans subjects in 1989 (Rosenberg et al., 1990) and 

had its first taste of success in the pioneering experiments in 1992 in which two girls 

suffering from a from a type of SCID caused by a deficiency in the enzyme adenosine 

deaminase (ADA) were treated successfully (Anderson, 1992). The first subject used 

in the trial has maintained a circulating level of 20 to 25% gene-corrected T cells and 

a normal life-style with amelioration of her disease symptoms (Anderson, 2000). 

Further successes have been observed in the treatment of a small number of 

individuals with other diseases and clinical trials are going on [reviewed in (Edelstein 

et al., 2004, Selkirk, 2004)].  However, leukaemia induction was observed in an 

animal model of retroviral gene marking following the retroviral vector integration 

into the murine gene ecotropic viral integration site-1 (Evi 1) (Li et al., 2002). Gene 

therapy received a setback at the death of an ornithine transcarbamylase (OTC) 

deficient human subject during the clinical trials (Raper et al., 2003).  The risks of 

insertional mutagenesis were put into the spotlight during the SCID trials conducted 

in France (Hacein-Bey-Abina et al., 2003a), (Fischer et al., 2004) (Hacein-Bey-Abina 

et al., 2003b), (Woods et al., 2003). The recent work on viral vectors seems to suggest 

that an integration pattern exists even in the integration of viruses that were 

previously thought to integrate very randomly into the genome (Bushman, 2003) 

(Mitchell et al., 2004). 

The work done on Adenoviruses and adenoviral vectors suggested that the 

Adenoviruses remain as episomal DNA, albeit with rare integration events which 

were observed since the late 1960s (Doerfler, 1968), (Doerfler, 1970), (Doerfler et al., 

1975), (Doerfler et al., 1989), (Knoblauch et al., 1996), (Muller et al., 2001), 

(McDongall et al., 1975), (Sambrook et al., 1975), (Harui et al., 1999).  In background 

of the recent developments during gene therapy trials, it is imperative that a thorough 

study of the integration patterns of high capacity adenoviral vectors (HC-AdV) be 

carried out before they could be safely used for gene therapy.  In particular, the 

integration of HC-AdV into the genome in vitro and in vivo has to be characterised to 
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allow a prediction of potential insertional mutagenesis of HC-AdV when applied in 

clinical gene therapy trials.  This evaluation of the biosafety of the HC-AdV was the 

aim of the work presented in this thesis.  

 

I.2 Adenovirus  
I.2.1 Adenovirus classification 

Adenoviruses were first isolated from surgically removed adenoidal tissue while 

establishing tissue culture lines and during the investigations into the causative agent 

of respiratory illnesses among military recruits (Rowe et al., 1953),  (Hilleman & 

Werner, 1954), (Huebner et al., 1954).  Adenoviruses are also responsible for 

epidemic keratoconjunctivitis, acute haemorrhagic cystitis and gastroenteritis 

(Garnoff A, 1999).  The Adenoviridae family of viruses are comprised of the genus 

Aviadenovirus, Mastadenovirus, Atadenovirus, Siadenovirus and possibly a yet 

unnamed genus isolated from fish (Davison et al., 2003, Kovacs et al., 2003). Based 

on the resistance to neutralisation by antisera to other known adenovirus serotypes 

and recently on the DNA sequence data, 51 human adenoviral serotypes have been 

identified (Verma & Weitzman, 2005).  Based on their ability to agglutinate red blood 

cells and the resistance to neutralisation to antisera, these serotypes are categorized 

into 6 subgroups (Davison et al., 2003, Kootstra & Verma, 2003) (See Table 1). 

Serotypes 5 and 2 of subgroup C Adenoviruses have been used mainly as the basis for 

the generation of gene transfer vectors. 

 
Species Serotype Haemagglutination groups 

A 12, 18, 31 IV (no or little agglutination) 

B 3, 7, 11, 14, 16, 21, 34, 

35 

I (complete agglutination of monkey erythrocytes) 

C 1, 2, 5, 6 III  (Partial agglutination of rat erythrocytes) 

D 8, 9, 10, 13, 15, 17, 19, 

20, 22-30, 32, 33, 36-

39, 42-49 

II (Complete agglutination of rat erythrocytes) 

E 4 III 

F 40, 41 III 

 
Table 1. The classification of Adenoviruses [based on (Davison et al., 2003, Shenk, 2000)] 
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I.2.2 Adenovirus structure 

Adenovirus is a double stranded DNA virus. The nonenveloped icosahedrally shaped 

virion has 20 triangular facets and 12 vertices and is 60-90 nm in diameter comprising 

of an inner DNA-protein core complex surrounded by an outer protein shell, the 

capsid, which is made up of 240 hexons, 12 pentameric penton bases and 12 trimeric 

fiber  proteins.   

Fig. 1. Structure of Adenovirus obtained from (Volpers & Kochanek, 2004) 

 

Each of the triangular facets is composed of 12 copies of the hexon trimer.  The 

trimeric hexon (polypeptide II) is the most abundant of the structural proteins and 

makes up 63% of the total protein mass (Burnett, 1985, van Oostrum & Burnett, 

1985).  The facets are rounded to bring hexons from adjoining facets into close 

contact at the edges.  The capsid is sealed at each of the 12 virion vertices by the 

Penton complex, composed of the pentameric Penton base (polypeptide III) and the 

trimeric fiber proteins.  The Penton base has a 30- Å diameter filled by the fiber 

protein.  The monomeric polypeptide IIIa acts as a rivet to stabilize the interface 

between two adjacent capsid facets.  The hexameric Polypeptide VI acts as a 

cementing protein that anchors the five peripentonal hexons and connects the capsid 

to the core (Stewart & Burnett, 1995).  It is also a cofactor for the adenovirus 

protease.  Polypeptide VIII is present inside the capsid along the edges where it might 

act as a “measuring rod” to determine the size of the virion.  The trimeric Polypeptide 

IX acts as a cement to hold the central nine hexons in each facet together as a unit.  

The viral genome, composed of a linear double stranded DNA, 30-40 kb long, and 4 
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virus-coded proteins all together comprise the core.  The function of the Polypeptide 

X (μ protein) is yet to be elucidated.  The major core protein, Polypeptide VII acts as 

a histone-like center around which the viral DNA is wrapped.  Polypeptide V binds to 

the penton base and acts as a bridge between the core and the capsid.  The terminal 

protein, which is covalently attached to the ends of the viral DNA, is involved in the 

attachment of the viral genome to the nuclear matrix and acts as the primer for DNA 

replication (See Fig. 1). Ad protease, a cysteine endopeptidase that is involved in the 

maturation of the viral particle, is also present in the virions [reviewed by (McConnell 

& Imperiale, 2004, Nicklin et al., 2005, Rux & Burnett, 2004, San Martin, 2003, 

Shenk, 1995, Volpers & Kochanek, 2004)].  

 

I.2.3 Adenovirus life cycle 

The Ad penton and fiber capsid proteins play an important role in Ad infection.  The 

carboxy terminal part of the fiber folds into a knob that contains a reception-binding 

region and a trimerization domain (Henry et al., 1994).  The coxsackievirus-

adenovirus receptor (CAR) cell surface protein binds with high affinity to the fiber 

protein (Bergelson et al., 1997).  CAR might act as a pathfinder protein during 

embryogenesis directing the organ formation, and also in the formation of cell 

aggregates and in cell adhesion (Fechner et al., 2003), (Noutsias et al., 2001).  The 

permissivity of various cell lines to adenovirus may differ and many factors such as 

the expression of CAR may be responsible for this (Carson et al., 1999, Hidaka et al., 

1999, Kibbe et al., 2000, Leon et al., 1998).  CAR may not be the only receptor 

recognized by the Ad fiber.  The expression levels of other molecules such as heparin 

sulphate proteoglycans (Dechecchi et al., 2000), MHC class I (Hong et al., 1997), the 

αv integrins (Wickham et al., 1993), the actin cytoskeleton (Patterson & Russell, 

1983), phosphatidylinositol –3-OH kinase (Li et al., 1998b), CD46 (Segerman et al., 

2003), the Rho family GTPases (Li et al., 1998a) might also play a part in the 

permissivity of the individual cell lines to Adenovirus.   

  Following the docking of the Adenovirus to the cell membrane, the penton proteins 

bind to αvβ3 and αvβ5 integrins through a Arg-Gly-Asp (RGD) consensus motif 

(Goldman & Wilson, 1995, Karayan et al., 1997, Mathias et al., 1994).  Following 

this, the fiber trimer is released and the penton structure gets altered (Nakano et al., 

2000, Schoehn et al., 1996).  This leads to integrin clustering where up to 5 integrin 
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molecules bind to each homopentamer, and this integrin ligation triggers cytoskeletal 

changes, leading to the local formation of clathrin-coated pits (Chiu et al., 1999).  Ad 

Penton - integrin binding results in the activation of phosphatidylinositol-3-OH kinase 

(PI3K).  PI3K activates Rac and CDC42 GTPases, leading to the polymerization of 

actin and viral endocytosis into the clathrin-coated pits (Lamaze et al., 1997, Li et al., 

1998a).  During this process, all of the fiber proteins get detached.  As the endosome 

matures, the vesicular pH goes down and at pH 6 the virus breaks out of the 

endosome into the cytosol (Greber et al., 1993).  Up to recent times, the mechanism 

by which Ad capsid penetrates the endosomal membrane was not quite clear.  The 

penton was believed to be involved in this process, because at low pH the 

conformation of the protein changes, exposing hydrophobic regions that bind 

nonionic detergents (Seth et al., 1985). The Ad protease too was thought to have been 

responsbile; for though it is inactivated after capsid release from the cell, it is 

reactivated after entry into acidified endosomes (Greber, 1998).  Recent work has 

suggested another model.  According to this, partial disassembly of the capsid is 

triggered by the endosome acidification.  The capsid disassembly liberates 

peripentonal hexons, penton base, IIIa and VI proteins from the structure.  The free 

protein VI associates with the endosomal membrane and ruptures it (Wiethoff et al., 

2005). 

Following the escape from the endosome, Ad capsids are trafficked to the cell nucleus 

periphery via the microtubules by a signaling pathways mediated by the cAMP-

dependent PKA.  The integrin binding activates PKA and the intracellular cAMP 

levels regulate microtubule dependent vesicle transport towards the nucleus (Reese & 

Haimo, 2000, Reilein et al., 1998).  The Penton might still be involved in this too, 

since the fiber-binding site, which matches the sorting signal found in trafficking 

proteins, the dileucine motif, might bind to clathrin-associated adaptor protein 

complexes that mediate endocytic and secretory pathways (Heilker et al., 1999, Hong 

& Boulanger, 1995, Kirchhausen, 1999).  At the nuclear pore complex, the Ad capsids 

are dismantled and the internal protein VI is degraded.  The nuclear pore complex 

glycoproteins themselves might also be involved in the dismantling of the capsid 

(Greber et al., 1997, Greber et al., 1996).  Once this happens, the viral DNA and 

protein VII pass through the nuclear pore into the nucleus (Greber et al., 1993), but 

the method by which this takes places is still unclear [reviewed by (Medina-Kauwe, 

2003, Nemerow, 2002)].  On reaching the nucleus, the Adenovirus manipulates the 



 16

cell into i. entering the S phase of the cell cycle, so as to enable the optimal viral DNA 

replication; ii. shutting down the anti-viral host response; iii. using the cellular 

proteins together with the viral gene products to carry out the viral DNA replication. 

The Ad genome is a linear double stranded DNA genome of 30 to 40 kb.  At each end 

of the genome are the ≅120 bp inverted terminal repeats (ITR), the first 50 bps of 

which contain the replication origins.  At each 5’ terminus of the genome, the terminal 

protein is covalently attached.  At the left end (the 5’ end in the left to right 

orientation) of the genome, a cis-acting packaging element that enables the polar 

encapsidation of viral genome into capsids is present. The Ad genome contains one 

immediate- early region, the E1A region, four early transcription regions, the E1B, the 

E2, the E3 and the E4 regions, two delayed early regions, the IX and the IVa2 regions 

and one late region that encodes five families of mRNA, the L1, the L2, the L3, the 

L4 and the L5 families (see Table 2).  The early regions have their own individual 

promoters, and the late transcripts are initiated from the major late promoter.  The 

genome is transcribed from both ends.  A ≅ 200-nt leader sequence (tripartite leader), 

that directs efficient specific translation of Ad late mRNAs independent of the host 

cell initiation factor eIF4F, is present in the 5’ ends of all late mRNAs (see Fig. 2). 
 

ITR ψ

E1A  E1B pIX   MLP  L1    L2     L3               L4    E3     L5

Iva2     E2b                         E2a                             E4
ITR

 

Fig. 2: Scheme of the transcription of the Ad genome [adapted from (Evans, 2002)] 

 

Region Function Action 

E1A Transactivates 

 

Modulates host cell 

gene expression and 

proliferation 

Activates transcription from other early promoter regions. 

Interacts with i. Retinoblastoma tumour suppressor pRb and related 

family members ii. Sequesters p300, the transcriptional coactivator for 

p53- dependent gene expression iii. transcription factors such as TATA 

binding protein (TBP), ATF family and the Srb mediator complex iv. 

E2F, resulting in the promotion of G1 and S phase progression  

E1B Inhibits apoptosis 

 

 

Increases viral 

protein production 

Inhibits p53-induced transcription. E1B19K is a functional homolog of 

Bcl-2 and also blocks the oligomerization of death-inducing 

complexes. 

Complexes with E4OFR6 and selectively stabilizes and transports viral 

mRNA, while inhibiting host cell mRNA transport. 
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E2 Ad DNA replication Encodes Ad DNA polymerase (Ad Pol), preterminal protein (pTP) and 

DNA binding protein (DBP). 

E3 Counteracts host 

immune response 

 

Cell death 

E3gp19K tethers MHC I to the Endoplasmic reticulum. 

E3 RID and 14.7K clears Fas and TNFR1 and other proteins involved 

in the apoptotic pathway. 

E3 11.6K promotes cell death later in the life cycle 

E4 Viral DNA 

replication, viral 

mRNA transport and 

splicing, regulation of 

apoptosis. 

E4 ORF 6 inhibits p53 and targets it for degradation and together with 

E4ORF3 inhibits DNA-protein kinase, blocking the formation of viral 

DNA concatomers. 

E4 ORF4 regulates mRNA splicing 

E4 ORF6/7 enhances production of E2 products. 

IV a Packaging IVa2 product is responsible for the recognition of the packaging signal. 

L1-5 Structural proteins. 

Host mRNA 

translation inhibition 

Assembly of viral 

particles 

 

 

100K late protein binds to eIF4, and shuts off translation of any mRNA 

lacking the tripartite leader sequence. 

 

 

Table 2:  Ad viral gene products and their function  [reviewed by (Evans, 2002, Shenk, 2000)]. 
 

In the Ad life cycle, the Ad DNA replication starts after the expression of the Ad early 

genes.  Ad Pol, pTP, and DBP are essential for Ad DNA synthesis. The cellular 

proteins NFI/CTF, NFII and NFIII/Oct-1 increase the replication rate (de Jong & van 

der Vliet, 1999, Hay et al., 1995, Van der Vliet, 1995).  The minimal replication 

origin (core origin) is located in the terminal 18 bp and contains an essential triplet 

repeat at the ends (5’-CATCAT in Ad5).  The next 32 bps constitute the auxiliary 

replication origin region and contain binding sites for NFI/CTF and NFIII/Oct-1.  

Taken together, the first 50 bps constitute the origin of Ad DNA replication. 

The DNA replication can be divided into two phases.  In the first phase, DNA 

synthesis starts at either termini and proceeds to the corresponding end of the genome, 

producing a duplex consisting of a parental and daughter strand, and one single strand 

of DNA.  In the second phase, the complementary strand to the single strand is 

produced.   

The pre-initiation complex consisting of Ad Pol-pTP, DBP, NFI/CTF and Oct-1 form 

at the origin, and the DNA is bound by the DBP.  NFI/CTF and Oct-1 interacts with 

the auxiliary region (enhanced by DBP) and stabilizes the interaction of the Ad Pol-

pTP heterodimer complex with the core origin (Mul et al., 1990, Stuiver & van der 
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Vliet, 1990).  The TP, covalently bound to the genome, enhances this complex.  The 

first dCTP is covalently coupled to the Ser-580 residue of the pTP by the pol, forming 

a pTP-dCMP complex essential for the protein priming.  The conserved Asp-578 and 

Asp-582 are essential to the maintenance of the optimally functioning active site of 

the pol leading to effective initiation (Mysiak et al., 2004).  The origin is unwound by 

the DBP and the Ad Pol-pTP complex forms a pTP trinucleotide intermediate. The 

complementary sequence from bp 4-6 (3’GTA) is used to synthesize the pTP-CAT.  

The NFI/CTF then unbinds from the binding site and the pTP-CAT moves back from 

position 4-6 and binds to the 1-3 GTA.  Ad Pol unbinds from the pTP and the 

elongation starts.  The replication is carried out by the Ad Pol, and the DBP not only 

unwinds the DNA but also binds to ssDNA to protect it from nucleases.  The single 

stranded DNA is used as the template at the next stage.  The left and right ITRs anneal 

to form a loop structure (pan handle) that appears as the terminus of the actual 

genome and contains the covalently linked TP and the cycle continues [reviewed in 

(Evans, 2002)]. 

A cis-acting packaging domain located between ≅ 200 and 400 bp, containing 7 

redundant elements (the A repeats), most of which share a bipartite consensus motif 

5’TTTGN8CG-‘3, packs the Ad DNA in a polar manner from left to right into the 

virus particles (Grable & Hearing, 1990, Grable & Hearing, 1992, Schmid & Hearing, 

1995, Schmid & Hearing, 1997).  Trans acting packaging components too have been 

reported (Schmid & Hearing, 1998).  The empty capsid (light particle) is the first 

stage of the assembly.  The viral DNA and core proteins are packaged into this as they 

mature into heavy intermediate particles.  The protease cleaves numerous proteins 

within the particle and it matures into the infectious virus (Weber, 1995).  The E3-

11K protein, which is synthesized only in low amounts during the early stage from the 

E3 promoter, is expressed in large amounts from the Ad MLP.  The Adenovirus Death 

Protein (ADP) kills and lyses the cell (Doronin et al., 2003, Tollefson et al., 1996).  

The Ad virions are liberated and the life cycle is completed [reviewed in (Evans, 

2002, Shenk, 2000)]. 

 

I.2.4 Gene transfer vectors based on adenovirus 

E1A gene products are not only essential for the expression of the early and late viral 

genes, but also encode the oncogenic transforming functions of the virus and so the 
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first successful adenovirus based vectors for gene therapy had deletions in the E1 

gene.  The E1 gene region was replaced by the transgene and the vector could not 

replicate in its absence (Fig. 3). The E1 functions necessary for the replication were 

provided in trans by cell lines like the 293 cells which contain the left end (bp 1 to 

4344) of the Ad5 genome including the left ITR, packaging signal sequences (Ψ), 

E1A, E1B, IX and a part of the IVa2 regions  (Graham et al., 1977, Morsy & Caskey, 

1999, Rosenfeld et al., 1991, Stratford-Perricaudet et al., 1990, Zabner et al., 1993).  

The sheared Ad5 DNA had, after the transfection, integrated into Chr 19q13.2 into the 

pregnancy specific β-1 glycoprotein 4 (PSG 4 gene) (Louis et al., 1997).  In this 

method, up to 5 kb of transgene could be accommodated in the first generation 

adenoviral vectors (Ist gen AdV) (Bett et al., 1993).  Many of the Ist gen AdV had 

additional deletions in the E3 region and up to 8 kb of foreign DNA can be 

accommodated in these vectors [reviewed by (Shenk, 1995)].  The vector plasmid 

with the deletions in the genome is linearised and transfected into the cell line and an 

agarose overlay is plated over the monolayer.  The successfully generated AdV 

appear as plaques in the plate, which are picked and further seeded and isolated by 

another round of plaque purification.  The AdV is then grown on a larger number of 

cells.  When the cells display a cytopathic effect (CPE), they are collected and 

disrupted by repeated freezing and thawing and the vectors purified by 

ultracentrifugation on a Cesium Chloride (CsCl) density gradient (for the detailed 

protocol, see the Materials and Methods section). These vectors could be produced in 

titers up to 1013 vector particles/ml and can transduce proliferating and quiescent cells 

[reviewed by (Volpers & Kochanek, 2004)].  Nevertheless, Ist gen AdV are not the 

ideal vector for long term gene therapy for inherited diseases.  Recombinant 

replication competent Adenovirus (RCA) can arise as a result of the recombination 

between the adenoviral sequences in the cell line and homologous sequences in the 

vector (Lochmuller et al., 1994).  Furthermore, it was observed that in vitro, the early 

and late AdV genes were expressed, albeit in a low level, from the Ist gen AdV (Christ 

et al., 1997).  Some of the late viral proteins themselves are toxic, and in addition, the 

expression of the viral proteins results in the stimulation of a cellular immune 

response in vivo, leading to the transduced cells being cleared from the body (Yang et 

al., 1995, Yang et al., 1994).  Inflammation reaction to the Ad was observed in in vivo 

experiments involving mice and baboons (Schiedner et al., 1998, Simon et al., 1993, 
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Yang et al., 1994).  Therefore, only a transient transgene expression was observed in 

immuno-competent test animals following gene transfer with Ist gen AdV.  The 

second generation Adenoviral vectors (IInd gen AdV) were developed to 

circumnavigate the immune response generated by the Ist gen AdV.  Deletions in the 

E2 and/or E4 regions were introduced and the functions were provided in trans by cell 

lines stably expressing DBP, pTP, Ad Pol or all the three (Armentano et al., 1995, 

Engelhardt et al., 1994, Gao et al., 1996, Wang et al., 1997).   

 

 
Fig. 3: Schematic representation of the different types of adenoviral vectors used for gene transfer. 
Owing to the ambiguous nature of the efficiency of the IInd gen AdV (McConnell & 

Imperiale, 2004, Volpers & Kochanek, 2004), adenoviral vectors with larger deletions 

in the genome were developed (Clemens et al., 1996, Fisher et al., 1996, Kochanek et 

al., 1996, Mitani et al., 1995a) (see Fig. 3).  The term high capacity adenoviral vectors 

(HC-AdV) is used in this study to describe these vectors.  HC-AdVs contain only the 

cis viral elements essential for propagation and packaging, the Ad ITRS and the Ψ 

signal, with a transgene carrying capacity between 26 to 36 kb.  The necessary viral 

proteins, apart from E1, are provided in trans by a replication deficient Ist gen AdV 

helper Virus (HV).  The Ψ of the helper virus is flanked by two lox P sites (Floxed) 

[reviewed by (Branda & Dymecki, 2004)] and when it is  
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HC-AdV plasmid Ψ      Helper virusΨ

Lox P    Lox P
Transfection Infection

293 Cre cellCre

HC-AdV DNA

Helper virus DNA

Cells are freeze-thawed
 to release the virus

Virus particles
 run on a CsCl 
gradient

HC-AdV
Helper virus

 
Fig. 4 Schematic diagram of the production of HC-AdV 

 

transduced into a cell line that expresses both E1 and Cre like 293 Cre, then, although 

all of the viral proteins are expressed, the Cre mediated excision of the Ψ prevents the 

helper virus itself  from getting packaged into the virions.  For production, the HC-

AdV vector plasmid is linearised and transfected into the cell line, which is then 

infected with the HV.  The cells are collected when they start exhibiting the CPE and 
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the virus is harvested and used to transduce a larger amount of cells, which are co-

infected with the helper virus.  Thus, through successive rounds of transduction, the 

vector is serially amplified and can be finally isolated from any helper virus 

contamination in the preparation by ultracentrifugation in a CsCl density gradient (for 

the detailed protocol, see Materials and Methods) (see Fig. 4).  

Adenoviral vectors have been used in gene therapy trials involving the liver, muscle, 

brain, lungs and eye [reviewed by (Alba et al., 2005, Kochanek, 1999, Morsy & 

Caskey, 1999, Palmer & Ng, 2005, Volpers & Kochanek, 2004)].  As of date (Sept 

2006), of all the viral vector systems, the largest number of clinical trials are carried 

out using vectors based on Adenovirus (n = 305), 26 % of the total number of clinical 

trials worldwide (visit http://www.wiley.co.uk/genmed/clinical/ for more details).  

The advantages that HC-AdV offers to gene therapy of inherited diseases are evident.  

Transgenes up to 37 kb in size can be accommodated in the vector in comparison to 

the 8 kb limit in the size of the transgene that can be delivered using the Ist gen AdV.  

In in vivo experiments, in contrast to the effects observed when Ist gen AdV were 

used, the HC-AdV did not elicit the immune response directed against the production 

of the viral proteins in the cell. Furthermore, the acute and chronic hepatotoxicity, 

which was the hallmark of the in vivo experiments conducted with Ist Gen AdV, was 

absent following injection with HC-AdV (Kim et al., 2001, Morral et al., 1998, 

O'Neal et al., 2000, Schiedner et al., 1998).   

However, the toxicity conferred by the incoming Ad capsid itself, cannot be 

overlooked in a gene therapy trial.  The innate immunity is initiated shortly after 

vector injection, before the viral genes themselves might be expressed, and also even 

when transcriptionally inactive vector had been injected (Muruve et al., 1999, Muruve 

et al., 2004, Zhang et al., 2001).  This was confirmed when baboons were injected 

with HC-AdV. On the injection of 5.6x1012 VP/kg, the immune response subsided 

after 24 hrs, but on the injection of 1.1 x1013 VP/kg, the animal had to be euthanized, 

as a result of the severe toxicity (Brunetti-Pierri et al., 2004).  The amount used in the 

ornithine transcarbamylase (OTC) gene therapy trial using IInd Gen AdV, that resulted 

in the death of one of the participants was 6 x1011 VP/kg (Raper et al., 2003). 

As opposed to the short term expression of the transgene following gene therapy with 

Ist gen AdV, experimental animals injected with HC-AdV displayed long term 

expression of the transgene.  Human α-1 antitrypsin (hAAT) was expressed for more 

http://www.wiley.co.uk/genmed/clinical/
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than 1 year in baboons (Morral et al., 1999), transgene expression was maintained for 

about 2 years in baboons (Brunetti-Pierri et al., 2006), and Apolipoprotein E (Apo E) 

was expressed for practically the whole life (2.5 years) in ApoE deficient mice (Kim 

et al., 2001) following injections with HC-AdV.  Phenotypical correction was 

demonstrated in the hemophilia B dog model for about 2 years (Brunetti-Pierri et al., 

2005), and for about a year in a mouse model of glycogen storage disease type II 

(Kiang et al., 2006).  A life term correction of hyperbilirubinemia in a rat model, with 

negligible levels of toxicity was also reported (Toietta et al., 2005) and long term 

correction coupled with similar levels of toxicity was observed in the mouse model of 

the disorder (Mian et al., 2004).  These results suffice to demonstrate the promise that 

HC-AdV offer in the field of gene therapy. 

 

I.3 Vector DNA –chromosomal DNA recombination during gene 

transfer with viral vectors 
I.3.1 Recombination and DNA repair mechanism 

The ancient Greek myths spoke of terrible monsters like the Chimera whose body was 

composed of parts of 3 different animals, or the Hydra that had many heads grafted on 

to a single body.  Myths apart, the various methods of recombination and DNA repair 

are present to protect the cellular DNA that gets continuously damaged by external 

sources such as mutagens, ultraviolet rays and internal reactions such as methylation, 

oxidation and hydrolysis. According to the current model, DNA recombination and 

DNA repair are no longer considered as two separate systems but as components of a 

single system that maintains the DNA integrity (Volodin et al., 2005).  

Repair via Homologous Recombination (HR) occurs more frequently in the lower 

forms of life, whereas the repair of DNA by non homologous end joining (NHEJ) 

repair is preferred by the cells of the higher forms of life. It has been proposed that 

two protein family complexes, the Rad52 and Ku compete for the broken ends of the 

DNA and based on the protein that binds first, the repair would take place via HR or 

NEHJ (Van Dyck et al., 1999).  The latest model suggests that in mammals, repair by 

HR involves an array of gene products from the RAD family.  ATM kinase acts as a 

sensor of the broken ends leading to the binding of the MRE11-RAD50-NBS1 (MRN) 

complex to the DNA ends. Single stranded overhangs are obtained by the resection of 

the DNA, either by the MRN complex or replication protein A (RPA). If the double 
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strand breaks (DSB) had occurred in between repeats, and the cell is in G1 phase of 

the cell cycle, then the Single Strand Annealing (SSA) of DNA takes place.  RAD52 

binds the complementary single strands together, and the ssDNA overhangs are 

removed by ERCC1/XPF, resulting in the deletion of the region between the 

complementary ssDNA.  In the case of the classical HR, which occurs when the cell is 

in S or G2 phase of the cell cycle, the RPA are replaced by BRCA2, which in turn, 

recruits RAD51 to the site as the XRCC3/RAD51C complex.  RAD51 binds to 

ssDNA, and crosses over and pairs with the homologous sequences with the aid of 

RAD54.  The break is repaired either by using the intact DNA as a donor or with a 

classical crossing over of the strands. 

Fig. 5: The various DNA repair pathways present in mammalian cells [from (Vasileva & Jessberger, 

2005)} 
However, in mammalian cells, the non mutagenic effects of rate of repair via HR is 

masked by the rate of repair by NHEJ, which occurs predominantly in the G1 phase, 

by a 1000 to 10000 fold (Wurtele et al., 2003).  Inositol 6 Phosphate (IP6) binds to the 

KU70/KU86 complex, which in turn envelopes the end of the DNA, and recruits 
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protein kinase, DNA-activated, catalytic polypeptide PRKDC (DNA-PKCS) which 

bridge the DNA ends.  There is evidence to believe that short homologous sequences 

of 1-4 bps at or near the site of break influence the alignment of the broken ends.  

DNA-PKCS recruits the nuclease Arthemis that processes the DNA ends.  Pol X 

family members Pol µ and Pol λ fills in the small gaps in the DNA generated during 

the alignment and nucleolytic processing of the DNA ends. DNA-PKCS also forms a 

complex with DNA ligase IV/ XRCC4 complex that ligates the broken ends.  

When ds DNA breaks are repaired via HR, no mutations take place in the DNA.  

During SSA, the region between the repeats involved in the repair will be deleted and 

during NHEJ, massive mutations can take place [reviewed by (Haber, 1999, Hefferin 

& Tomkinson, 2005, Helleday, 2003, Jeggo, 1998, O'Driscoll & Jeggo, 2006, Taylor 

& Lehmann, 1998, Valerie & Povirk, 2003, Vasileva & Jessberger, 2005, West, 

2003)] (see Fig. 5). 

 

I.3.2 Recombination between chromosomal and viral/viral vector DNA derived 

from wt Ad and AdVs 

Within just 9 years of the first publication about adenoviruses, it was demonstrated 

that adenoviruses could induce tumour formation in hamsters (Yabe et al., 1962).  Six 

years later, it was proved that adenovirus DNA could integrate into the host genome 

in semi and non permissive cells where the lytic part of the Ad life cycle could not 

take place.  Infact it, along with a paper on SV40 DNA integration published in the 

same year, were the first instances of viral DNA integration into the genome 

(Doerfler, 1968, Sambrook et al., 1968).  Ad2 was observed to integrate as simple 

copies or in a rearranged form, where the viral sequences of the junction site could be 

amplified.  The integrations into the genome appeared to have taken place in a 

random manner (Sambrook et al., 1980a, Sambrook et al., 1980b).  It was observed 

that the integrated Ad2 DNA could undergo rearrangements and deletions after 

integration in 8617 rat embryo fibroblasts (Sharp et al., 1974).  In hamster cells, Ad7 

was observed to integrate as multiple (≅25) copies, which had undergone 

rearrangements and fragmentation (Fujinaga et al., 1975).  Deletions were also 

observed in the viral genome in Ad5 and Ad2 infected hamster cells (Vardimon & 

Doerfler, 1981, Visser et al., 1980).  In contrast, Ad12 genome had integrated into 

mouse and hamster genome without the internal deletions (Fanning & Doerfler, 1976, 
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Stabel et al., 1980, Starzinski-Powitz et al., 1982).  Three types of patterns of 

integration of AdV into the genome were proposed.  i. Multiple integrations in 

different locations.  ii. Multiple integrations present in a single site as a tandem, which 

could arise from repeated replication of a single monomer, or integrated directly as a 

multimer.  iii. A single integrated copy that had undergone multiple rounds of 

initiation of DNA replication to form a railroad structure (Sambrook et al., 1975).  

Ad2 and Ad12 were observed to cause chromosomal aberrations in rat and 

mouse/human hybrid cells (McDongall et al., 1975).   

Data on the detailed analysis of Ad integration junction sites in the genome were 

available from the early 1980s.  In the Ad2 transformed rat embryo brain line F4, the 

virus had integrated with deletion of the last 2 (5’-CA) bps of the viral right terminus.  

In the Ad12 induced hamster tumour line CLAC3, where 4-5 viral genomic molecules 

had integrated into the cellular genome, a 45 bp deletion of the viral left terminus was 

observed.  In the Ad2 transformed hamster cell line HE5, two copies of the viral 

genome were present.  No mutations were introduced in the cellular sequence, but 10 

and 8 bps deletions were observed in the left and right termini respectively.  The site 

of linkage between the two Ad2 DNA fragments was analysed, a novel dinucleotide 

was observed to be present between the two recombining molecules.  The Ad12 

induced tumour cell line CLAC1 had 10-13 copies of integrated viral genomes and on 

analysis of a left terminus, the first 174 bps of the terminus were absent.  A much 

larger deletion of 572 bps was observed in the Ad5-DNA transformed hamster cell 

line BHK268-C31.  A direct linkage of the 108th bp of the right terminus and the 63rd 

bp of the left terminus was seen in site of linkage between the left and right termini of 

the Ad5 DNA transformed rat line 5RK20.  In the hamster based Ad12- induced 

tumour T1111(2), which had 10-11 copies of the Ad genome, a deletion of the 

terminal 64 bps of the LITR was observed.  The 135 bps of cellular DNA was 

sandwiched by another left terminus, with a deletion of 1296 bps, suggesting that 

complicated rearrangements of sequences can also take place during the integration of 

Ad DNA into the cellular genome.  A deletion of the first 9 bps was observed in the 

left terminus sequence obtained from the mouse based Ad12 tumour CBA-12-1-T, 

which had 20-30 adenovirus genomes.  Limited homology (patchy 

homology/microhomology) extending up to 18 bps between the virus and cellular 

DNA was observed in almost all cases.  The analysis of all of these cell lines and 

tumours demonstrated that the Ad integrates through the termini, and that deletions in 



 27

the termini do occur during the process, which seems to be influenced by the limited 

homology between the cellular and viral DNAs [reviewed by (Doerfler et al., 1984)].  

The data presented in that paper agreed with those already published about the 

integrations sites of the cell-Ad2 DNA junction where rearrangements of the viral 

DNA was observed (Sambrook et al., 1980a).  The integrations could occur without 

modifying the cellular DNA (Gahlmann & Doerfler, 1983) or with deletions in the 

cellular genome of up to 1.6 kb (Schulz & Doerfler, 1984).  Sequence data from the 

“os2” RITR of the Ad in the cell line T637 showed that the terminus was present with 

a deletion of the first 2 bps and the first 6 bps of the junction were the same in both 

the cellular DNA and the Ad terminus.  In the “os3” junction of the same clone, the 

LITR with a deletion of 7 bps was joined to a RITR with a 14bp deletion via cellular 

DNA bridge suggesting that Ad12 genome can integrate in a non true tandem manner, 

but interspersed with cellular DNA.  In the Ad12 induced tumor T191, the left 

terminus of one Ad genome recombined with the left terminus of another with cellular 

and internal Ad12 DNA in between (Knoblauch et al., 1996).  In a cell free system, 

using a fragment of Ad12, it was demonstrated that the recombination took place 

between two short stretches of homology, with the first partner being at or near the 

site of recombination and the second partner could be remote from the site of the first 

cross over in a recombination that may not be conservative (Wronka et al., 2002).   

The rates of transformation of rat CREF cells by wt Ad5 and of the temperature 

sensitive mutant H5ts125 were calculated to be around 2x10-4 for wt Ad and 2 x10-3 

for the mutant.  Almost all the isolated clones of the cell line had the complete Ad5 

genome integrated in the cellular genome (Fisher et al., 1982).  Fowl Adenovirus type 

1 also did not have any specificity towards any particular chromosome in a rat cell 

line during integration into the genome, but nevertheless, integrations were observed 

in regions where genomic rearrangement had taken place.  These mutations might 

have been responsible for the transformation (Ishibashi et al., 1987). 

Some of the cellular sites at or around the junction of integration between the viral 

and the cellular genome were observed to be transcriptionally active (Doerfler et al., 

1984, Schulz et al., 1987), with significant alterations in the patterns of cellular 

methylation.  In certain cases, not only some neighboring genes, but also ones located 

remote from the integration site had alterations in the methylation pattern, which were 

caused by factors other than transgene transcripts from the integrated virus 

(Lichtenberg et al., 1988, Remus et al., 1999), [reviewed by (Hohlweg et al., 2004)].  
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Ad DNA was found to be associated with chromosomal DNA within 2 hrs post 

infection.  When Ad12 DNA covalently linked to the TP was added to the medium, it 

was 20 fold more efficient in reaching the nucleus as apposed to the naked Ad12 

DNA (Schroer et al., 1997).        

To summarize, the wt Ad genome does integrate at a low rate, in a random manner 

(Wronka et al., 2004), through the termini, with deletions occurring in the termini.  

Multiple copies of the virus may be present in the cellular genome, but not necessarily 

in a truly tandem manner. Rearrangements and deletions of the viral and cellular DNA 

too can occur.  Short sequences of homology between the viral and cellular DNA are 

present in and around the site of recombination.  Many of the integrations had taken 

place into transcriptionally active regions of the cellular genome [reviewed by 

(Fechteler et al., 1995)].    

The first study of the rates of integration of a adenoviral vector involved the 

transduction of simian CV1 and Rat2 cells with a Ist Gen AdV carrying a neo-R gene. 

The vector DNA was shown to integrate at rates of 2x10-6 to 8.5x10-5 in Rat2 cells 

and 5x10-5 to 2x10-4 in CV1 cells at mois between 1 to 20 per pfu of virus.  At a 

higher moi of 200, the vector DNA integrated at 4x10-3 and 7.5x10-3 in Rat2 and CV1 

cells, respectively.  The CV1 cells contained single copies of full length viral 

genomes and the Rat2 cells contained also tandemly repeated viral DNA where the 

left and the right termini were joined together (Van Doren et al., 1984).  A Ist Gen 

AdV encoding a β-gal marker gene was found to integrate at rates of 1.5x10-1, when 

ionizing radiation was used, in mouse NIH3, human A549 and primary human cells 

(Zeng et al., 1997). 

Stable integration into the genome into zona free eggs by a Ist Gen, Ad5 based AdV, 

was demonstrated in mice.  Expression of a LacZ gene tagged with a nuclear 

localization signal under the control of a CAG (chicken β-actin and CMV-IE) 

promoter was demonstrated even in the F1 progeny.  Almost the entire vector DNA 

had integrated as single copies, randomly throughout the genome, though the terminal 

fragments at both ends were missing in the integrants (Tsukui et al., 1996).  

Integration by a Ist Gen AdV expressing β-gal, into the genome in vivo, was also 

demonstrated using immunocompromised  B6D2F1 mice transplanted with congenic 

splenocytes and bone marrow cells.  When 2x109 to 1x1010 viral particles were 

injected, transgene expression was observed for over 6 months in colonic epithelial 
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cells, but not in the liver, lung, kidney or spleen (Brown et al., 1997).  When Ist Gen 

AdV was injected with doses of 1x108 to 2x1010 viral particles into 14-15 day’s 

gestation Balb/c mice fetuses, integration was observed at the site of injection and in 

the liver.  Integration was also observed in the lung, bone marrow, and spinal nerves 

(Yang et al., 1999).  The fumarylacetoacetate hydrolase (FAH) knockout mice were 

injected a Ist gen AdV encoding the FAH cDNA at mois of 5x109 pfu, and integration 

of the vector was observed in the liver (Overturf et al., 1997).  In an in vivo study 

using Ist Gen AdV on a transgenic mouse system, the rate of gene targeting via 

homologous recombination was observed to be less than 1/20,000, and not 

significantly different from the controls (Ino et al., 2005). 

When a Chinese hamster ovary (CHO) cell line deficient for the adenine 

phosphoribosyl transferase (aprt) was transduced with a moi of 10 by a Ist Gen AdV, 

gene correction via homologous recombination of the vector into the genome, 

resulting in the regeneration of the APRT phenotype, was observed in the range of  

10-6 to 10-7.  The correction was of a classical replacement type homologous 

recombination with no sequences derived from the viral vector or the Moloney 

Murine Sarcoma Virus (MoMSV) promoter present in the region of correction (Wang 

& Taylor, 1993).  An inserted mutant neo gene in a self replicating extrachromosomal 

plasmid DNA in the mouse cell line C127 was targeted with a Ist gen AdV carrying 

the correct copy.  At a moi of 400, the rate of homologous recombination was as high 

as 8.3x10-4 with respect to the number of cells used. At a moi of 4, the rate of G418 

resistant colony formation was 7.3x10-5.  The gene was corrected in all of the clones; 

however in 25 % of the cases, non homologous recombination was observed outside 

the region of homology.  The rate of homologous recombination with AdV was 3 logs 

higher than that with calcium phosphate transfection and electroporation.  It was 

suggested that a part of the nonhomologous recombination observed might have been 

mediated by homologous recombination between the DNA partners (Fujita et al., 

1995).  The rate of homologous recombination of Ist gen AdV on mouse embryonic 

stem cells at the fgr locus ranged from 1.4x10-6 to 1.2x10-5 at mois of 100 and 1000 

respectively.  The rates of integration ranged from 5.2x10-6 to 2.1x10-4 under the same 

mois.  Each of the recombination event analysed by Southern Blot had only one copy 

of integrated vector.  In 7/12 clones analysed, Ad sequences too were present.  In 

certain experiments, the targeting efficiency (homologous recombination 

rate/integration rate) percentage was up to 40 % (Mitani et al., 1995b).   



 30

The rates of integration of HC-AdV and Ist Gen AdV into the host genome, analysed 

on the human cell lines HeLa, HT1080, and KB, the simian cell lines CV-1 and Vero 

and the rodent cell lines BHK, CHO and NIH 3T3 with a fusion β-geo marker (fusion 

of β-galactosidase and the neo genes) infected at a moi of 10, were in the range of 10-3 

to 10-5 per cell, depending on the cell line, with slightly higher rates for the HC-AdV. 

In HT1080 cells, the Ist Gen AdV integrated at rates between 3.3 x10-4 to 2.4 x10-3 

and the HC-AdV integrated at rates between 2.9x10-4 to 1.8x10-3.  The rates of 

integration in HeLa cell for the Ist gen AdV ranged from 3x10-5 to 3.1x10-4 and those 

for the HC-AdV ranged from 5.5x10-5 to 9.3x10-4.  In the clones analysed by Southern 

Blot, multiple integrations of the right terminus, and possibly one case of a rearranged 

right terminus, were observed.  These were observed in clones where only one copy 

of transgene was detected.  Interestingly, in a clone (clone 4) where 2 copies of the 

transgene were observed, only one terminus was seen.  No internal deletion was 

observed in the majority of the clones generated via HC-AdV integration, but in one 

(clone 5), rearrangement of the vector was detected (Harui et al., 1999).  

HC-AdV and Ist Gen AdV carrying a neo transgene showed rates of integration of 

1.7x10-4/ cell and 2.6x10-5/cell respectively, in the human glioblastoma cell line U87-

MG when infected at a moi of 0.1.  Integration had taken place randomly with the 

vector integrating as a monomer through the termini.  In 50 % (n=16) of the clones, 

both the termini were present, and in 81 %, the integration had taken place with little 

or no loss of termini sequences.  The HC-AdV contained a 27 kb stuffer DNA from 

the X chromosome and no event of homologous recombination was observed in the 

200 clones analysed (Hillgenberg et al., 2001). 

During the preparation of this thesis, two new papers on the rates of recombination of 

HC-AdV into the genome, have been published.  In the first paper, Ist gen AdV and 

HC-AdVs, carrying varying lengths of hprt stuffer DNA (from 1.7 kb to 18.6 kb) 

were used to transduce male mouse ES cells with a known mutation in the hprt exon 

3.  In the HC-AdV carrying the 18.6 kb hprt stuffer, the rate of homologous 

recombination was 2 x10-4/cell at a moi of 1000.   The rate of random integration was 

in the range of 10-3 to 10-4/cell at mois of 10, 100 and 1000.  Of the 20 clones 

analysed, 3 junction sites from both termini were obtained, the other gave sequences 

from only one of the terminus. 72 % of the integrations took place in non coding 

regions.  Deletions ranging from 1-99 bps in the termini and a case of inversion of the 
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chromosomal DNA were reported.  Limited homologies between the termini and the 

chromosomal DNA and insertions of novel sequences up to 30 bp were also observed 

in the junction sites (Ohbayashi et al., 2005).   

In the second paper, HC-AdV-AAV hybrids were used in human MO7e cells and in 

cord derived human CD34+ cells.  Two of the hybrid vectors contained the β-globin 

locus control region, derived from Chr 11.  Most of the clones had multiple integrants.  

33 % (11/33) of the integrations had taken place in the chr 11, out of which 4 were in 

the LCR.  30 % (10/33) of the integrations had occurred in active genes.  Deletions 

from 2 to 205 bps were observed in the integration events that had integrated through 

the Ad terminus. In 3 clones, both the 5’ and 3’ junctions of the clones were 

sequenced and deletions of 14, 24 and 567 bps were observed in the chromosomal 

DNA of the junction sites.  Transposition of the chromosomal DNA was observed in 

many of the integrants with the AAV terminus.  A HC-AdV-AAV hybrid vector with 

a 18.1 kb X chr stuffer DNA was also used.  41.6 % (10/24) of the integrations were 

in active genes, including one in the vav2 oncogene.  One integration had taken place 

in the X chr.  Deletions were observed in the terminal sequences (Wang et al., 2005).    

The gist of all of these publications is that it can be concluded that adenoviral vectors 

can recombine into the host genome via homologous or random recombination at low 

frequencies, and the structure of the junction sites between the vector and the cellular 

DNA are very similar to those observed during wt Ad integration.  The integrations 

seem to occur through the termini, though deletions in the termini are also observed.  

The vectors use limited homology between the termini and the chromosomal target to 

guide the process and deletions and rearrangements also may occur in the host 

genome during the process.  

 

I.3.3 Recombination between chromosomal and vector DNA during gene 

transfer with vectors derived from the family Retroviridae  

The family Retroviridae consists of enveloped RNA viruses in whose life cycles an 

obligatory integration of the provirus into the genome takes place.  Integration takes 

place through the termini and they are left intact, apart from the last 2 bps of each 

terminus, which gets deleted.  The only modification to the cellular DNA involves the 

first 5 bps of the junction site.  The first 5 bps of the cellular DNA from the 5’ LTR 
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junction site is duplicated at the 3’ LTR junction site, and thus serves as a marker to 

identify the validity of the junction site (Vincent et al., 1990).   

Though it was earlier believed that viral vectors based on the Retroviridae family 

integrate randomly into the genome, it was demonstrated that the integration pattern 

of retroviral gene transfer vectors (RVV) into human stem cell genome was not as 

random as expected (Laufs et al., 2003).  The partiality of a hybrid RVV to integrate 

into transcription start regions was observed in the 186 integration sites analysed 

(Laufs et al., 2004).  When 903 murine leukemia virus (MLV) and 379 human 

immunodeficiency virus (HIV) integration sites were studied, it was observed that the 

region near the transcriptional start was preferentially targeted by the MLV, whereas 

the HIV integrated throughout active genes, but not upstream of the transcriptional 

start (Wu et al., 2003).  After analyzing 3127 integration sites from vectors based on 

HIV, MLV and avian sarcoma-leukosis virus (ASLV), it was reported that the pattern 

of integration of HIV based gene transfer vectors displayed a bias towards active 

genes. MLV based gene transfer vectors (MLVV) displayed a preference for 

integrating into the transcription start sites, while ASLV based gene transfer vectors 

showed a weak preference for active genes and no preference for the transcriptional 

start site (Mitchell et al., 2004).  This was reconfirmed in a study where 491 MLVV 

and 501 Simian immunodeficiency virus (SIV) vector integration sites were analysed.  

MLVV integrations were observed more around the transcription start sites and SIV 

based gene transfer vector integration sites were observed in active genes and gene 

rich areas of the genome (Hematti et al., 2004).  The correlation between the retroviral 

based gene transfer vector integration sites and the active genes was published 

(Wagner et al., 2005).  Analysis of foamy viral (FV) vector integration sites showed 

that the virus preferred not to integrate in active genes.  Nevertheless, integrations in 

active genes too were observed near transcription start sites and in CpG islands 

(Trobridge et al., 2006). 

To summarize, retrovirus based gene transfer vectors display a strong tendency to 

integrate into active genes, with no rearrangement of the vector and cellular sequences 

apart from the deletion of the first 2 bps of each terminus and the duplication of the 5 

bps of the cellular DNA.     
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I.3.4 Recombination between chromosomal and vector DNA during gene 

transfer with vectors derived from the family Parvoviridae  

Parvoviruses consist of non enveloped small viruses with linear single stranded DNA 

packaged into a 18-25 nm icosahedral capsid.  Wt Adeno Associated virus (AAV) 

integrates preferentially into a specific locus in Chr 19q13.3 (AAVS1) into the slow 

skeletal troponin T gene.  Studies with gene transfer vectors derived from AAV 

(AAVV) demonstrated intregration frequencies of 0.2-1x10-3 per vector genome.  The 

integrations seem to take place through the termini, with small deletions in the termini 

(Rutledge & Russell, 1997).  Limited homology of 2-5 bps between the cellular and 

viral DNA were observed at the junction.  During the analysis of  977 AAVV 

integration sites, it was noticed that a larger number of integrations took place in 

active genes.  A significantly higher proportion of integrations took place in CpG 

islands, within the first 1 kb of genes and in ribosomal DNA repeats.  Deletions of up 

to 2 kb of the cellular DNA, and insertions of novel sequences of up to 13 bps were 

observed at the junction sites (Miller et al., 2005).  Chromosomal translocations at the 

junction sites too have been reported [reviewed in (McCarty et al., 2004)].  In vivo 

data suggested a much more higher percentage (72.5 %) of AAVV integration into 

genes, which were active in the liver (Nakai et al., 2003).  Concatomerisation of the 

vector and deletions and amplifications of viral and cellular DNA were also observed 

(Miller et al., 2002, Nakai et al., 1999).  The preference of AAVV for integration into 

CpG islands in the genome was observed in 347 AAV1 junction sites analysed.  3.5 % 

of the integrations took place in cancer related genes (Nakai et al., 2005). AAV 

integrations had occured around chromosome breakage sites (Miller et al., 2004). 

The rate of gene targeting via homologous recombination of AAVV into the cellular 

genome was reported as 8x10-3 at an moi of 40,000 and 2.7x10-2 at mois of 400,000 

(Russell & Hirata, 1998).  Ten individual mutations (up to around 20 bps) were 

corrected by gene targeting using AAVV in a different experiment.  However, 

rearrangements at the 5’ end of the homology was reported in one of the events (Inoue 

et al., 1999). Transgenes of up to 1 kb was introduced via homologous recombination 

of AAVV with rates of gene targeting going up to 7x10-3 at mois of 20,000 (Hirata et 

al., 2002).  The effects of random integration of the vector into the genome at these 

mois were not discussed in these papers.  

Vectors based on Parvo Minute Virus of Mice recombine via homologous 

recombination and random integration at the same rates as AAVV (Hendrie et al., 
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2003).  It has also been reported that the invertebrate parvovirus Junonia coenia 

Desnovirus (JcDNV) based vectors integrate in a similar manner as AAVV into the 

genome, with concatomerization and rearrangements of the vector (Bossin et al., 

2003). 

 When the recombination potential of parvovirus based vectors is studied, it can be 

concluded that they integrate at frequencies of up to 1x10-3 into the genome.  A higher 

proportion of the integrations takes place in active genes and rearrangements and 

modifications of the genomic DNA may accompany such events.  Under certain 

conditions, AAVV genome can undergo homologous recombination with the cellular 

genome at rates of 2.7x10-2. 

 

I.3.5 Recombination between chromosomal and vector DNA during gene 

transfer with vectors derived from the family Papillomaviridae 

Papilloma viruses are non enveloped DNA viruses with a dsDNA genome of 8 kb and 

an icosahedral capsid. Vectors based on bovine papilloma virus (BPV), which can be 

grown in vitro, were tested as early as 1987 (Elbrecht et al., 1987).  It has been 

reported that wt BPV and BPV vector remain as episomes (Amtmann et al., 1980, 

Tammur et al., 2002), nevertheless, integrations of BPV into the genome with small 

deletions in the termini of the viral DNA has been reported (Agrawal et al., 1992). In 

fact, an equine skin tumor has been associated with BPV (Chambers et al., 2003).  

Though there is not a lot of published data regarding the integration of Papilloma 

vectors, wt human papilloma virus (HPV) was associated with cervical cancer and 

was observed to integrate frequently into the genome (Gilles et al., 1996).  During 

integration into the genome, the E1 and the E2 regions, which span 4 kb of the 

genome from the 5’ side, were found to be frequently deleted (reviewd in 

(Yoshinouchi et al., 1999).  Random integration of the HPV genome into the cellular 

DNA with minor deletions in the viral DNA was observed (Kalantari et al., 2001, Luft 

et al., 2001).  It was observed that HPV integrates into active genes, especially genes 

involved in cellular growth and differentiation (Klimov et al., 2002).  HPV16 

integrations were observed near fragile sites in the genome (Thorland et al., 2003), 

whereas HPV18 not only displayed a similar preference for the fragile sites, but 30% 

of the integrations took place in a specific location at Chr 8q24 (Ferber et al., 2003b).   
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To summarize, papilloma viruses display a tendency to integrate non randomly into 

active genes, near protooncogenes or at fragile sites in the genome. Parts of the 

terminal sequences of the virus might get deleted during the process. 

 

I.3.6 Recombination between chromosomal and vector DNA during gene 

transfer with vectors derived from the family Herpesviridae  

Herpesviridae are large enveloped viruses with an icosahedral capsid that is located in 

the tegument inside the envelope and a ds DNA genome of about 150 to 230 kbps.  

Vectors based on Herpes Simplex Virus (HSV) and Epstein Barr Virus (EBV) are 

currently in use in in vitro and in vivo studies (Basu & Banerjee, 2004, Glorioso & 

Fink, 2004, Hellebrand et al., 2006, Ren et al., 2006, Tomiyasu et al., 1998).  During 

the latent infection in the life cycle of the virus, the genome remains as a circular 

episome through the joining of the termini.  Nevertheless, integration of the virus into 

the host genome through intact termini has been observed [reviewed in (Chang et al., 

2002)].  Translocation of a chromosome at the integration site of the viral DNA into 

human genome (Debiec-Rychter et al., 2003) and integration via intact termini at a 

fragile site near a protooncogene and the subsequent expression of that gene (Luo et 

al., 2004) has been reported during integration of EBV into the genome.  The virus 

was present as tandem repeats (Takakuwa et al., 2005).  Site specific integration into 

chr 19 was achieved using hybrid HSV-AAV vectors (Bakowska et al., 2003, Liu et 

al., 2006, Wang et al., 2002). 

Though in the latent infection most of the Herpesviridae viral genomes remain as 

episomes, there is a possibility that integration of the virus in a random manner into 

the host genome, possibly as concatamers, can occur through the termini sequences. 

 

I.3.7 Recombination between chromosomal and vector DNA during gene 

transfer with vectors derived from the family Hepadnaviridae  

Hepadnaviridae are small enveloped viruses with an icosahedral capsid and a circular 

dsDNA genome of 3.5 kb.  15-20% of one of the strands of the Hepatitis B virus 

(HBV) DNA is single stranded.  Vectors based on HBV have been developed 

(Untergasser & Protzer, 2004).  During the life cycle, the viral DNA remains as a 

covalently closed circular duplex DNA.  However, integration of the viral genome 

with rearrangements such as deletions, chromosomal translocations and duplication in 

the cellular DNA, and activation of cellular genes has been observed [reviewed in     
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(Wang et al., 2001)].  The integration was observed throughout the genome, with a 

number of integrations near protooncogenes [reviewed in (Ferber et al., 2003a)].  It 

was suggested that HBV DNA integration takes place in regions of chromosomal 

DNA breaks via non homologous end joining (Bill & Summers, 2004).  Deletion of 

viral DNA during integration was reported (Kimbi et al., 2005).  Analysis of junction 

sites of viral integration showed that 90 % of integrations took place into cellular 

genes that could confer growth advantage.  Mutations in the viral DNA (Koike et al., 

1983, Mizusawa et al., 1985) and chromosomal DNA (Tokino et al., 1987) have been 

reported. Integration was also mapped into tumour supressors and apoptosis genes 

(Murakami et al., 2005). 

It can be concluded that HBV viral DNA can integrate into the genome and the events 

are marked with mutations in the cellular DNA. The data published so far suggests 

that the viral DNA can integrate in genes that may have oncogenic potential.  

 

I.3.8 Recombination between chromosomal and vector DNA during gene 

transfer with vectors derived from the family Polyomaviridae  

Polyomaviridae are small non-enveloped viruses with an icosahedral capsid and a 

circular ds DNA genome of around 5 kb, that lacks terminal repeats.  During the life 

cycle of wt Simian Virus 40 (SV40), the virus may exist either as a minichromosome 

or in an integrated form. Wt SV40 DNA integrates randomly into the genome, with no 

apparent hotspot within the viral DNA for integration. Vectors based on SV40 have 

been developed (Zern et al., 1999), used in in vitro and in vivo experiments [reviewed 

by (Vera & Fortes, 2004)] and were found to integrate randomly into the genome with 

loss of viral DNA (Strayer et al., 2002, Strayer, 1999). During the integration of a 

vector based on polyoma virus integrated into the rat genome deletions of the cellular 

DNA was reported (Wallenburg et al., 1987).  The upregulation of gene expression 

due to polyomaviral integration in mouse tumors was also reported (Hollanderova et 

al., 2003).  Integration of wt SV40 has also been recorded in human tumors 

(Shivapurkar et al., 2002, Vilchez et al., 2003).  Polyoma JC virus was linked to 

colorectal cancer and was shown to induce chromosomal mutations in colonic cells 

(Ricciardiello et al., 2003).   

From the available data, it may be concluded that polyoma viruses integrates 

randomly into the host genome, with deletions observed in the viral DNA, and 

mutations in the host genome.  
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Some viruses used as gene thransfer vectors integrate into the genome as a part of 

their life cycle.  Though it was once thought to occur in a random manner into the 

chromosomal DNA, the data compiled here display a strong bias displayed towards 

integration into active genes.  In the case of viral vectors that may not necessarily 

integrate into the genome as a part of the viral life cycle, integrations have been 

observed, and they display all the hallmarks of the canonical NHEJ pathway.  
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II Objectives  
Gene transfer with adenoviral vectors has now been well established and currently 

clinical trials using this vector type are ongoing. Adenoviral vectors are currently 

perceived as non-integrating vectors, although earlier work demonstrated that 

adenovirus DNA can integrate into chromosomal DNA under certain circumstances. 

HC-AdVs represent a more recent adenovirus-based vector version with several 

advantages over earlier generation adenoviral vectors and have, therefore, 

considerable potential for clinical application. However, very little information on the 

fate of adenoviral vector genomes following gene transfer is available. Very limited 

work with Ist Gen AdV pointed to rare chromosomal integration events. However, 

when this thesis work was started, there were no data available on the recombination 

potential of HC-AdVs.  

The development of leukaemia in several subjects during a clinical trial using a 

retroviral vector reiterated the importance of studies on the insertional mutagenesis 

potential of gene transfer vectors used in the clinic. Therefore, the overall aim of this 

thesis project was to gain scientific information on the recombination potential of HC-

AdV DNA with the chromosomal DNA. The first specific aim was to determine the 

rates of heterologous and homologous recombination of the HC-AdV DNA with the 

chromosomal DNA in vitro in primary cells and in established cell lines. To address 

this question, two well established models were chosen. The hprt model, which has 

been extensively used in DNA recombination studies, was used to study homologous 

recombination of HC-AdV DNA with the chromosomal DNA. The second model 

involved the use of a selection marker expressed from the vector, which allowed for 

the investigation of random integration events into the chromosomal DNA.  

The second specific aim of this project was to investigate heterologous and 

homologous recombination events of HC-AdV DNA with chromosomal DNA in vivo. 

Here, the Fah∆ exon 5 knockout mouse was chosen as an excellent model that allows to 

monitor recombination events in hepatocytes in vivo. The final aim of this project was 

to analyse integration events of HC-AdV DNA at the molecular level, so that precise 

information on the integrity of the vector genomes and the junctions between vector 

DNA and the chromosomal DNA was obtained. This would then also allow the 

analysis of potential integration preferences of HC-Ad vector genomes.  
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Taken together, these studies were designed to provide detailed safety-related 

information on rates of recombination of HC-AdV DNA with chromosomal DNA, the 

insertional mutagenesis potential of HC-AdVs, and the integration patterns of the 

vector DNA. 
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III Materials and Methods 
III.1 Materials and Instruments 
III.1.1 Materials 

All chemicals, unless specially mentioned, were purchased from the company 

Applichem GmbH (Germany). The solutions were prepared using water obtained 

from EASY pure instrument (Werner Water Purification System, (Germany). The 

bacterial media and agar was purchased from Invitrogen (Germany). The Enzymes 

were purchased from NEB (Germany). Oligonucleotides were purchased from 

Invitrogen, Qiagen or MWG Biotech (Germany). Cell culture media when not 

specially mentioned were purchased from Invitrogen (Germany). All cell culture 

materials (cell culture dishes, pipettes etc.) were purchased from Renner (Germany).  

 

III.1.2 Instruments and equipment 

Autoclave     Systec (Wettenberg)  

Cell culture hood    Clean Air Technique. (Netherlands) 

Cell culture Incubator    Forma Scientific, (U.S.A) 

Centrifuges     Biofuge fresco (Germany) 

      Eppendorf 5417C (Germany) 

      Sigma 6K15 (Germany) 

Heating block      VWR (Germany) 

Incubator (Bacterial culture, 

enzyme reactions, pipette sterilization) VWR (Germany) 

Mini hybridization oven   Biometra Biomedizinische Analytik          

                                                                        GmbH (Germany) 

PCR thermocycler Uno II   Biometra Biomedizinische Analytik  

                                                                        GmbH (Germany) 

pH-meter pH526    WTW GmbH (Germany) 

Spectrophotometer    Pharmacia Biotech (Germany) 

Ultracentrifuge     Beckman, L7-65 with SW41- Rotor  

                                                                        (USA) 
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III.1.3 Buffer and Solutions 

 

DNA-loading buffer (6x) 

30%       Glycerin 

60 mM       EDTA 

0.1%      Bromophenol Blue 

0.1%       Xylene cyanol Blue 

 

HBS-Buffer (2x) 

50 mM      HEPES 

280 mM     NaCl 

1.5 mM     Na2HPO4 

pH      7.13 

 

Hybridization buffer for slot blot and Southern blot 

2x      SSC 

10 %      Milk powder solution 

0.5 mg/ml     Herring sperm 

10 %      Dextran sulfate  

 

Transfer buffer for Southern blot analysis 

0.4 N        NaOH 

 

Wash Buffer I for Southern blot 

2x                                                                    SSC 

0.1 %                                                               SDS  

 

Wash Buffer II for Southen blot 

0.1x                                                                 SSC 

0.1 %                                                               SDS 

 

Milk powder solution for the above work 

5.0 %       Milk powder 

10 %      SDS 



 42

PCR-Mix 

DNA      Plasmid DNA at 1-10 ng concentration 

       Genomic DNA at 1-2 µg concentration 

Taq polymerase buffer    1x 

Taq polymerase    1.25 units [Stratagene (Netherland)] 

dNTP-Mix     40 nmol [( La Roche (Germany)] 

dH20         up to a volume of 50 µl 

 

Sodium phosphate-buffer pH 8.0 (100 mM) 

46.6 ml     1M Na2HPO4 

3.4   ml     1M  NaH2PO4 

8.8   gm      NaCl 

500  ml     dH2O 

 

SSC Solution (20x) 

3 M      NaCl (sodium chloride) 

0.3 M      C6H507 Na3 2H2O  (tri-sodium citrate) 

pH       7.0 (adjusted with NaOH) 

 

TAE-Buffer (50x) 

2.0 M      Tris-Base 

0.05 M       Acetic acid 

0.05 M      EDTA 

0.225 M     Tris base  

0.225 M     Boric acid 

0.02 M      EDTA 

 

TBS-Buffer (1x) for resuspension of virus 

137 mM      NaCl 

2.7 mM     KCl 

25 mM       Tris-Base 

pH      7.4 (adjusted with HCl) 

(The solution was sterilized by autoclaving)  
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TE Buffer (1x) 

10 mM      Tris-HCl, pH 7.5 

1 mM      EDTA 

 

TELT Buffer 

50 mM      Tris-HCl, pH 8.0 

62.5 mM     EDTA 

2.5 M      LiCl 

0.6 %      Triton X-100 

One spatula of Lysozyme 

 

Lysis Buffer for DNA isolation 

10mM                                                              Tris.Cl (pH 7.4) 

10mM                                                              EDTA 

10mM                                                               NaCl   

0.5 %                                                                Saodium Lauryl Sarcosinate 

1mg/ml                                                              Proteinase K 

 

Suspension medium (S.M.) for Lambda DNA isolation 

1.5 mM                                                               NaCl 

2 gm                                                                   MgSO4.H2O 

50 ml                                                                 1 M Tris.HCl pH. 7.5 

5 ml                                                                   2% Gelatin Solution 

To 1 lit                                                              H2O  

 

Soln I for hepatocyte isolation 

Earles basic Salt Solution (EBSS) without Ca and Mg, [Gibco 310-4150 AJ]  

0.5 mM                                                           EGTA [Sigma 4378] 

 

 Soln II for hepatocyte isolation  

EBSS with Ca and Mg [Gibco 310-4010 G]  

10mM                                                            Hepes, pH 7.4  
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Soln III for hepatocyte isolation  

High Glucose DMEM [Gibco 320-1960 AJ] complete 

0.3 mg/ml                                                  Collagenase [Boehringer, grade D] soln 

0.04 mg/ml                                                Soybean trypsin inhibitor [Sigma T9128] 

10mM                                                        Hepes and Mg,  

 

III.1.4 Oligodeoxyribonucleotides 

The oligodeoxyribonucleotides were purchased from Invitrogen, Qiagen and MWG 

Biotech. The lyophilized oligonucleotides were dissolved in 1xTE buffer and were 

stored at –20οC.  Oligodeoxyribonucleotides used for ligation were dissolved in 10 

mM Tris buffer.  The details are given in Table 3. 

 

Name Sequence 5’- ‘3 Binds to/Comments 
Fiber I ATGAAGCGCGCAAGACCGTCTG 31042-31063, Ad 5  

Fiber II CCAGATATTGGAGCCAAACTGCC 32368-32390, Ad 5 

ITR I AACGCCAACTTTGACCCGGAACGCGG 438-413, Ad 5 

ITR II CATCATCAATAATATACCTTATTTTG 1-26, Ad 5 

SamStephenI CAGTATCACCAGGTTATGACCTTTGAT

ATCTTTTGCATACCTAATCATTATGC 

13480-13525, SLS 11 

T nucleotide + Eco RV site 

SamStephen II ATTCAATACCAGGTAAGGTTT 13977-13957, SLS 11 

InvPCR LITR1 CGCCCAGGTGTTTTTCTCAGGT 399-420, SLS 11 

InvPCR LITR2 GCAACATCACACTTCCGCCAC 141-121, SLS 11 

InvPCR RITR1 CATCACTCCGCCCTAAAACCTA 30224-30247, SLS 11 

InvPCR RITR2 TTGATTTAATTAAGGCCGGCCC 30191-30170, SLS 11 

AdRITR new GCTTATCGATACCGTCGAGACCTCG 30192-30216, SLS 11 

AdRITR2 CGTCACCCGCCCCGTTCCCACGC 30247-30269, SLS 11 

AdLITR new CCGTCGCTTACATGTGTTCCGC 170-149, SLS 11 

AdLTR2 CTACTACGTCACCCGCCCCGT 119-99, SLS 11 

Ad11LITRnew CGTCGCTTACATGTGTTCCGCCAC 169-146, SLS 11 

LITRnested TACTACGTCACCCGCCCCGT 117 to 99, SLS 11 

Inv LITR new CGCCCAGGTGTTTTTCTCAGGT 399-420, SLS 11 

InvPCRLITR2nest CCGCGTTCCGGGTCAAAGTTGGC 426-449, SLS 11 

InvLITR1new GCAACATCACACTTCCGCCAC 141-121, SLS 11 

SLS16RsvFah1 GACAGGTCTGACATGGATTGG 484-504, FAH cDNA cassette 

SLS16RsvFah2 CTCCTTCCATGCAGCTTGACC 881-861, FAH cDNA cassette 

RITR1 CATCACTCCGCCCTAAAACCT 30225-30245, SLS 11 

RITR1nest TAAAACCTACGTCACCCGCC 30238-30258, SLS 11 
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RITR2 GGTCTCGACGGTATCGATAAGC 30211-30192, SLS 11 

RITR2 nest TTGATTTAATTAAGGCCGGCCC 30190-30170, SLS 11 

RITR4Tsp CCCTCGAGGTCTCGACGGTAT 30220-30200, SLS 11 

RITR4nestTsp CGACGGTATCGATAAGCTTGA 30208-30188, SLS 11 

LITRx TCCGTCGCTTACATGTGTTCC 171-151, SLS 11 

LITR1 GCAACATCACACTTCCGCCAC 140-129, SLS 11 

LITR1nest TACTACGTCACCCGCCCCGT 118-99, SLS 11 

LITR2 CGCCCAGGTGTTTTTCTCAGGT 398-420, SLS 11 

LITR2nest GCGTTCCGGGTCAAAGTTGG 428-446, SLS 11 

LITR4Tsp TGACGTTTTTGGTGTGCGCCG 183-203, SLS 11 

LITR4nestTsp GCCGGTGTACACAGGAAGTGA 200-220, SLS 11 

SSHPRT1 GTATCCTGTAATGCTCTCATTG 13421-13442, SLS 11 

SSHPRT2 AGCATTCAATACCAGGTAAGG 13979-13960, SLS 11 

Fah A CTAGGTCAATGGCTGTTTGG 6571-6590, m FAH gene 

Fah B GGACATACCAATTTGGCAAC 6705-6686, m FAH gene 

Fah C TAAAATGAGGAAATTGCATCG 3911-3931 pcDNA3 

  

Table 3: List of oligonucleotides used in this study   

 

III.2 Bacterial Methods 
III.2.1 Bacterial culture techniques 

a) Culture of bacteria in Luria Broth Base 

E.coli was cultured in Luria Broth Base in the presence of the antibiotic ampicillin at 

a concentration of 100 μg/ml.  For small-scale preparation (1.5 ml) eppendorf tubes 

with a capacity of 2.0 ml were used. For large scale preparation (200 ml), Erlenmeyer 

flask with a capacity of 500 ml were used.  The cultures were incubated for 12h with 

shaking at 250-300 rpm at 37οC.   

b) Culture of bacteria in Luria Broth Agar 

E.coli was cultured in 10 cm plates containing 20 ml of Luria Broth Agar containing 

ampicillin at a concentration of 100 μg/ml.   

c) Culture of Bacteria in NZYCM medium 

E.Coli XL1 Blue MRA P2 [Stratagene] was cultured in 50 ml NCYZM + 0.1 gm 

Maltose 
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III.2.2 Transformation of E.Coli 

Transformation with plasmid DNA 

Transformation of E.coli with plasmid DNA was performed by incubating 20 μl of 

XL-2 blue ultra competent bacteria (Stratagene, Germany) with 10-100 ng of plasmid 

in a 1.5 ml Eppendorf reaction tube for 5 min in ice. After five minutes incubation in 

ice, the bacteria were placed in a water bath at a temperature of 42ο C for 45 seconds. 

The bacteria were then immediately placed in ice for 2 min and SOC medium was 

added. The bacteria were incubated for 1h at 37°C. After 1h the bacteria were 

transferred to LBA plates containing antibiotic ampicillin and were incubated for 12h. 

Transformation with plasmid DNA from ligation 

To transform bacteria using a ligation mix, 50 μl of XL-2 blue ultra competent 

bacteria (Stratagene, Heidelberg) were incubated with 0.5 μl of 2-Mercaptoethanol 

(1.42 M) for 10 minutes on ice. After 10 minutes, 2 μl of ligation mix was added and 

the bacteria were further incubated for 30 min in ice. The bacteria were placed in a 

water bath having a temperature of 42ο C for 45 seconds. The bacteria were then 

immediately placed in ice for 2 min and 200 μl of SOC medium was added. The 

bacteria were incubated for 1h at 37° C before being transferred to LBA plates 

containing antibiotic and were incubated for 12h 

 

III.2.3 Isolation of plasmid DNA 

Analytical plasmid isolation (“Mini prep”) 

Mini prep of DNA was performed to analyze the integrity of DNA by restriction 

digestion. Isolated bacterial clones picked from Luria Broth Agar plates were grown 

over night (12-14h) in 1.5 ml of LB shaker culture containing ampicillin at 100 μg 

/ml. The bacteria were pelleted by centrifuging at 5000 RPM for 3 minutes at RT. The 

bacterial pellet was re-suspended in a volume of 200 μl of TELT buffer. The re-

suspended bacterial pellet was incubated at 96ºC for 3 min followed by incubation in 

ice for 5 minutes. The supernatant containing DNA was collected by centrifugation at 

14,000 RPM for 10 minutes. The DNA present in the collected supernatant was 

precipitated by mixing the supernatant with equal volume of isopropanol and 

centrifuging at 20000 g for 10 minutes. The precipitated DNA was washed once with 

300 μl of 70 % ethanol. The DNA was finally suspended in a volume of 30 μl of TE 

and was stored at 4ºC until further use.  3 μl of the re-suspended DNA was used for 

restriction digestion.  
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Preparative plasmid Isolation. (“Maxi prep”) 

Maxi prep of DNA was performed to obtain large quantities of DNA for transfection, 

cloning etc. The DNA was prepared using the Qiagen Maxi Plasmid Kit (Qiagen). 

The protocol prescribed by the manufacturer was followed. 

 

III.3 Molecular Biology Methods 
III.3.1 Purification of the DNA cloned into Lambda Phage Vectors 

a. Preparation of the plating bacteria. 

The bacterial host XL1 Blue MRA P2 [Stratagene] was streaked on to a LB plate and 

incubated at 370C overnight.  A colony was inoculated on to 50 ml of sterile LB 

medium, supplemented by 0.2 % maltose and incubated overnight.  The bacteria was 

centrifuged down and resuspended in 20 ml 0.01 M MgSO4 and store at 40C. 

b. Plating the bacteria onto the LB plates with the phage. 

0.7% LB agar was made in suspension medium and incubated at 470C water bath. 

Ten fold serial dilutions of the λ stock in SM was made.  100 ml of plating bacteria 

was added to each of the dilutions and incubated at 370C for 20 mins.  3 ml of the agar 

was poured into each tube, and the plate was incubated at 370C overnight. 

c. Picking of the λ plaques: 

A drop of chloroform was added in 1 ml of SM.  The plaques were jabbed with a 

micopipette tip, the agar in the region was pipetted into an eppendorf tube.  1 ml of 

SM was added to it and the tube was stored at  40C. 

d. Preparation of plate lysate stock. 

Dilutions of the picked plaque were made and mixed with 100 ml of plating bacteria 

each and incubated 370C for 20 mins.  3 ml of molten top agar was added and the 

plate incubated at RT for 5 mins before incubating it at 370C for 10 hrs.  5 ml of SM 

was added on to the plate and was store at 40C overnight with intermittent shaking.  

The SM was harvested and 0.1 ml of CHCL3 added and the centrifuged.  The 

supernatant was collected and stored at 40C with a 1 drop of CHCL3.  

e. Large scale preparation of the λ vector. 

A starter culture of the bacterial host in 50 ml of NCYZM + 0.1 gm maltose was 

produced till the O.D.600 nm reached 5 (approx. 2.5 hrs).  Different diluations of the 

starter culture was added to 50 ml of NCYZM + 0.1 gm maltose and incubated at 
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370C till the medium cleared and fine splintery precipitate or stringy clumps was 

observed.  A drop of CHCL3 was added and the supernatent were harvested and 

stored at 40C. 

f. Preparation of the Lambda DNA using Qiagen Lambda Kit. 

100µl of Buffer L1 was added to the pellet and mixed 10 ml of Buffer L2 was added 

and the reaction and the pellet resupended in 3 ml of Buffer L3.  3 ml of Buffer L4 

was added and the reaction incubated at 700C water bath for 10 mins.  3 ml of L5 was 

added, the reaction centrigufed and the supernatnat poured into a Qiagen tip 100 

equilibrated with buffer QBT.  The tip was washed with Buffer QC and the DNA 

eluted with Buffer QF.  DNA precipitation was carried out as in a standard Mediprep. 

 

III.3.2 Isolation of DNA from mammalian cell lines 

1x107 cells were spun down and resuspended in 500 μl of Lysis Buffer and incubated 

overnight at 600C.  1250 μl of precipitation buffer (3 μl 2.5 M NaCl / 100 μl Ethanol) 

was added and centrifuged to obtain the DNA pellet that was washed three times with 

70% ethanol before being resuspended in TE. 

 

III.3.3 Determination of the concentration of DNA 

The concentration of DNA was determined using spectrophotometry. The 

concentration of the DNA present in the solution was calculated using Lambert Beers 

Law which states concentration of double stranded DNA in mg/ml= A260 x 50 x 

dilution factor, whereby A is the adsorption coefficient of DNA at 260 nm. The 

solution was also measured to determine the absorption at 280 nm for proteins. DNA 

samples containing A260/A280 values of 1.7-2.0 were used for experiments. 

 

III.3.4 Storage of DNA 

For routine use, plasmid DNA was stored in TE buffer, pH 8 at 4οC.  For long-term 

storage, plasmid DNA was dissolved in 70% ethanol and was stored at –20οC. 

Oligodeoxynucleotides and vector inserts used for ligation were stored in 10 mM Tris 

buffer.   
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III.3.5 Precipitation of DNA 

Ethanol precipitation 

Ethanol precipitation of solution containing DNA was performed by mixing 0.1 

volume of sodium acetate solution (3 M, pH 5.2) and 2 volumes of 100 % ethanol.  

After mixing, DNA was collected by centrifuging at 20,000 g for 30 min at 4οC.  The 

supernatant was discarded and the pellet was washed with 70 % ethanol by 

centrifuging at 20,000g for 30 min at 4οC.  The supernatant was discarded and the 

pellet was air dried at RT for 5-10 min. The pellet was dissolved in TE buffer. Vector 

inserts and oligodeoxynucleotides were dissolved in 10 mM Tris buffer. 

Isopropanol precipitation 

Isopropanol precipitation of solution containing DNA was performed by mixing the 

DNA solution with 0.5 volume of isopropanol. After mixing, the DNA was pelleted 

by centrifuging at 20.000 g for 20 min at RT.  After discarding the supernatant, the 

pellet was washed with 70 % ethanol for 30 min at 4 οC. The supernatant was 

discarded and the DNA was air dried at RT for 5 min before being resuspended in TE 

buffer. 

 

III.3.6 Phenol chloroform extraction of DNA 

Phenol-chloroform extraction of DNA was performed when DNA was used for 

ligation or for transfection of cells. 200 μl of DNA containing solution was mixed 

with an equal volume of TE equilibrated phenol (Invitrogen, Germany). After mixing 

the aqueous and organic phase were separated by centrifugation at 20,000 g for 4 min 

at RT and the organic phase was discarded. The aqueous phase was once again mixed 

with equal volume of chloroform/isoamyl alcohol (24:1) and the aqueous phase was 

separated by centrifuging at 20.000 g for 4 min at RT. The DNA present in the 

aqueous phase was finally precipitated by using ethanol.  

 

III.3.7 Restriction digestion of DNA and agarose gel electrophoresis  

The restriction analysis was performed with 10 μg or 200 ng of DNA for preparative 

or analytical digest respectively. DNA was digested with restriction enzyme (5 IU/μg 

of DNA) in the prescribed buffer for 2h.  DNA was digested in a total volume of 20 µl 

or 200 μl.  In the case of double digestion of DNA with enzymes having different 

prescribed buffers, the digested DNA was precipitated with ethanol and was re-

suspended in Tris-HCl (pH 8.5), before being re-digested. The digested DNA 
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fragments were dissolved in DNA loading buffer, and were separated in a 0.8 % 

agarose gel. The agarose gel used for the separation of DNA bands contains ethidium 

bromide for visualizing the DNA. TBE running buffer was used for analytical 

preparation of DNA. TAE running buffer was used for preparative digests of DNA. 

 

III.3.8 Isolation of DNA fragments from agarose gels 

Digested DNA for preparative analysis was separated by agarose gel electrophoresis. 

The separated DNA was visualized under U.V. light. The desired DNA band was cut 

out using a sharp scalpel. DNA bands having a size of less than 5 kb were isolated 

using QIAEX II Gel extraction kit. DNA bands having a size of more than 5 kb were 

isolated by electroelution using the Elu trap electrophoretic system (Schleicher & 

Schuell, Germany). The isolated DNA was precipitated using ethanol and was re-

suspended in 20 of μl 1x TE buffer. 

 

III.3.9 Filling up of 5´ends (Klenowing) 

Filling up of 5´ends of DNA fragments was performed to ligate non-cohesive ends. 

Klenowing of DNA was done by incubating DNA (50 ng/ μl) with 2 units of Klenow 

enzyme for 15 minutes in Klenow buffer. After 15 min, the Klenow enzyme was 

inactivated by the addition of 5 mM EDTA and incubation at 75ºC for 10 min. The 

dephosphorylated DNA was extracted with an equal volume of phenol followed by 

chloroform: isoamylalcohol mix (24:1). The DNA was finally extracted with 

chloroform and was precipitated with twice the volume of 100 % ethanol and 1/10 

amount of 3 M sodium acetate (pH 5.2). The precipitated DNA was re-suspended 

with 20 μl of 10 mM Tris-HCl (pH 8.5).  

 

III.3.10 Dephosphorylation of DNA fragments 

Dephosphorylation of the digested vector DNA was performed to prevent self-

ligation.  Dephosphorylation was done by incubating 1-2 μg of DNA with 1U of calf 

intestinal phosphatase (CIP) at 37ºC for 1h at 50 ng/µl concentration.  CIP was 

inactivated by the addition of 5 mM EDTA and incubation at 75 ºC for 10 min. The 

dephosphorylated DNA was extracted with an equal volume of phenol followed by 

chloroform: isoamylalcohol (24:1). The DNA was finally extracted with chloroform 

and was precipitated with twice the volume of 100 % ethanol and 1/10 amount of 3 M 
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sodium acetate. The precipitated DNA was re-suspended with 20 μl of 10 mM Tris-

HCl (pH 8.5).  

 

III.3.11 Ligation of DNA fragments 

Ligation of DNA fragments and dephosphorylated vector DNA was performed in 1x 

T4 ligase buffer overnight at room temperature in the presence of T4 DNA ligase (6 

Weiss units). The amount of vector DNA and DNA fragments were in a molar ratio of 

1:1 and 1: 3.   The entire reaction was assembled on ice untill the ligase was mixed 

into the solution.  The total volume of the ligation mix was 10 μl. The specific ligation 

conditions for inverse PCR is given separately.  

 

III.3.12 Polymerase chain reaction 

Construction of primers for PCR 

The primers used for PCR had generally 18-21 nucleotides. The melting temperature 

for the oligonucleotide primer used in PCR was determined using the formula used by 

MWG biotech, Germany Tm[C] = 69.3 + 41 [(nG + nC)/n ]– (650/5n) 

T represents thymine base, G represents guanine base, C represent cytosine base and 

A represent adenine base. 

a. Standard PCR 

Polymerase chain reaction was performed in a total volume of 100 μl. The equipment 

used for PCR was a PCR – Automat Uno II (Biometra, Götingen). The dNTPs were 

used in a concentration of 200 μM, primers at a concentration of 300 nM and MgCl2 

at an end concentration of 1.5 mM. When not specially mentioned Hot Star Taq 

polymerase (Quiagen, Germany) was used for preparation of probes and pfu 

polymerase (Stratagene, Germany) was used for sequencing and for cloning purposes. 

Genomic DNA was used at a concentration of 1-2 μg and plasmid DNA was used at a 

concentration of 1-10 ng. The denaturing temperature was set at 95°C for 15 min. The 

annealing temperature was set at 5°C below the melting temperature of the primers. In 

general 25 –31 cycles were used for amplification of desired fragments. 

b. Inverse PCR 

1μg of DNA was digested with the enzyme and purified using Qiagen PCR 

purification kit as per manufactarer’s protocol.  200 μg of the digested DNA was used 

for ligation in 500μl volume on the thermocycler with 800 rounds of 30 seconds each 

at 12 and 19 degree celsius.  The product was purified using YM-30 Microcon 
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columns, and ½ of the product was used for the PCR, which was run uder standard 

conditions. 1/100 of the product was used for the nested PCR and 1/20 of the product 

was used for analysis.  30 μl of the nested PCR product was run on a 2% gel TAE 

agorose gel and the band of interest was excised and purified on a Qiagen Gel 

purification kit column as per manufacterer’s protocol and cloned into TOPO Cloning 

kit (Invitrogen) and transformed on TOP-10 E.coli (Invitrogen) as per their protocol.  

The miniprep of the clones was carried out using Qiagen Mini prep kit as per their 

protocol and 1/10 of the product was sent for sequencing. 

 

III.3.13 Purification of PCR product 

PCR products were purified using a PCR purification kit (Qiagen). The PCR product 

was checked using agarose gel electrophoresis.  

 

III.3.14 Southern blot analysis of DNA 

15µg of the cellular DNA and the controls, (+ve has spiked plasmid at 1, 2 and 4 

copies/cell), were digested in 50 μl and loaded on to a TAE agarose gel of appropriate 

concentration and run on a low voltage.  The gel was stained with ethidium bromide 

and photographed with a fluorescent ruler for noting the position of the marker bands.  

The gel was shaken in 0.25 N HCl to depurinate the DNA.  Then the gel was washed 

with water followed by shaking in 0.4 N NaOH to denature the DNA.  The blotting 

apparatus was preapared using a tray filled with 0.4 N NaOH and plastic plates placed 

horizontally across it. The bridge of wartman paper was placed on the plate and the 

gel and the membrane (Hybond N+ from Amersham) were sandwiched between two 

strips of wartman paper soaked in 0.4 N NaOH.  The bale of absorbent paper towels 

was placed on the top and the sides were insulated with Saran wrap.  Another plastic 

plate along with a small weight was placed on the top.  Transfer of the DNA to the 

membrane was carried out overnight and the membrane was neutralised in 2X SSC 

prior to baking at 800C for 45 minutes to complete the cross linking.  The 

prehybridisation mix was made with 3 ml 20X SSC, 3 ml 10X milk powder mix, 1 ml 

salmon sperm DNA, 6 ml of 50 % dextran sulphate solution and filled up with water 

to 30 ml, and boiled for 15 minutes and snap cooled on ice-water mix.  The membrane 

was pre-hybridised at 680C overnight.  The probe was radioactively labeled with 50 

μCi 32[P] dCTP (Amersham Pharmacia, Germany) using the Ready to go DNA 
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Labeling Kit (Amersham Pharmacia, Germany).  The membrane was hybridized using 

the radioactive probe overnight at 68 ºC and washed at 680C with buffer I for 15 

minutes followed by a second wash with wash buffer II for 20 minutes.  The 

membrane was dried on Whartmann paper and exposed to a Kodak film at –800C and 

the film was exposed as per standard conditions. 

 

III.3.15 Generation of DNA probes for slot blot and Southern blot analysis 

The probes for slot blot analysis namely the ITR and the fiber probes were prepared 

using PCR. The 438 bp long ITR probe binds to the Ad-ITR (nucleotide 1 to 438). 

The primers used for the generation of ITR probe were the ITR and ITR II. The 1348 

bp long fiber probe binds to the Ad–fiber DNA (nucleotide 31042 to 32390). The 

primers used for the generation of the fiber probe were fiber I and fiber II. PCR 

amplification was carried out for 2 min at 94ºC followed by 20 cycles of 1 minute at 

940C, 1 minute at 550C, 1 minute at 72ºC and a final extension of 10 minutes at 720C. 

The probes for the different Southern blot experiments were generated by digesting 

the target DNA with the appropriate enzyme.  The probes generated by PCR were 

purified using the QIA quick PCR purification Kit (Qiagen). The probes were stored 

at –20 ºC. The concentration of the probes was determined spectroscopically and by 

agarose gel electrophoresis.  

 

III.4 Cell culture techniques 
III.4.1 Cell lines and media 

The cell culture media and foetal calf serum (FCS), when not otherwise mentioned, 

were purchased from Invitrogen (Germany). Hygromycin B (10687-010) and HAT 

(21060-017) supplement were purchased from Invitrogen and 6TG (A4882) was 

purchased from Sigma Aldrich.  Minimum essential medium (MEM) and α-MEM 

powder were dissolved at room temperature in 4.5 L of water. 11 g of NaHCO3 was 

added to the prepared media and the medium was adjusted to pH 7.1 with 1 N HCl. 

The media was made up to a volume of 5L and was filtered through a 0.2 μm filter. 

All cell culture and viral techniques were performed in the S2 laboratory facility. The 

cells were harvested by centrifugation at 250g. The cell lines were passaged once or 

twice per week. For passaging of cells plated in 15 cm cell culture dishes, the medium 

was aspirated, and the cells were washed once with 10 ml of PBS. After washing, the 
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PBS was aspirated and the cells were detached using 3.0 ml of Trypsin-EDTA 

solution. After detachment, the trypsin was neutralized with 10 ml of medium 

containing 10% FCS. The cells were centrifuged and were resuspended in new 

medium for passaging. 

 

293 : This cell line is a hypotriploid embryonic kidney cell line with a integrated 4.34 

kb of adenoviral DNA (Graham et al., 1977) located in chromosome 19q-30.  The cell 

line was cultured in αMEM/10 % FCS/ 1x penicillin-streptomycin and was passaged 

1:3, twice every week. 

 

293 Cre 66:  The cell line was based on HEK 293.  293 Cre 66 expresses the Cre 

recombinase constitutively. The cell line was used for the amplification of high 

capacity adenoviral vectors. It was a kind gift of Dr. G. Schiedner. The cell line was 

cultured in MEM/10 % FCS/ 1x penicillin-streptomycin and was passaged 1:3, twice 

every week. 

 

HeLa: The cell line is a cervical carcinoma cell line derived from a female patient 

(Gey et. al., 1952). The cell line was purchased from Cell line services, Heidelberg. 

The cell line was used for transduction with HC-Ad vector to estimate the levels of 

transgene expression in vitro. The cell line was cultured in αMEM/10 % FCS/ 1x 

penicillin-streptomycin and was passaged 1:3 once every week. 

 

HT1080: The cell line is a fibrosarcoma cell line derived from a male, containing a 

single X chromosome (Rasheed et al., 1974). The cell line was cultured in αMEM/10 

% FCS/ 1x penicillin-streptomycin and was passaged 1:6 twice every week. 

 

C-32: The cell line is a melanoma cell line, derived from a male, containing a single 

X chromosome (Chen & Shaw, 1973), (Chen, 1983).  The cell line was cultured in 

αMEM/10 % FCS/ 1x penicillin-streptomycin and was passaged 1:3 twice every 

week. 

 

FF-95: These cells are primary human fibroblasts derived from a male patient in the 

Department of Dermatology, Universität zu Köln and is a generous gift of Prof. K. 
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Scharffetter-Kochanek.  These cells were cultured in αMEM/10 % FCS/ 1x 

penicillin-streptomycin and were passaged 1:3 twice every week. 

 

 Human Retinal Pigmented Epithelium (HRPE): These cells are primary human 

cells derived from the eye and are a generous gift of Dr. I. Semkova, Augenklinik, 

Universität zu Köln.  These cells were cultured in αMEM/10 % FCS/ 1x penicillin-

streptomycin and were passaged 1:3 twice every week. 

 

III.4.2 Freezing of eukaryotic cells for long term storage 

For freezing, early passages of cells were used. The cells were washed twice with 

PBS and were detached using trypsin-EDTA solution. The cells were pelleted and 

resuspended using freezing mix. The freezing mix was aliquoted in 2 ml cryotubes 

(Nunc, Wiesbaden). The cryotubes were placed at RT for 15 min and were placed in a 

isopropanol bath, which was frozen at –80οC for overnight. The cryotubes were 

placed in a liquid nitrogen container until further use. The freezing mix used was 90 

% FCS, 10 % DMSO (Sigma-Aldrich, Germany). 

 

III.4.3 Transfection of eukaryotic cells 

The transfection of eucaryotic cells was performed using Fugene transfection reagent 

(Roche, Germany) as described by manufacturer. The cell lines were plated at a 

density of 50 – 80% confluency for 24h before transfection. The DNA used for 

transfection was purified using phenol-chloroform extraction method (Chapter 

III.3.6). For transfecting cells in 6 well plates, 1.5 μg of DNA was added to 

transfection solution containing 6 μl of Fugene transfection reagent diluted in 100 μl 

of serum free medium. The transfection solution was incubated at RT for 15 min for 

complex formation. The transfection solution was added drop wise on the cells and 

the cells were swirled to equally distribute the DNA complex. The volume of the 

culture supernatant was made to 1 ml.  The medium containing the expressed 

transgene was collected at 48 h post transfection.  
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III.5 Adenovirus methods 
III.5.1 Storage of virus 

Adenoviral vectors were purified using PD10 Sepahdex 25 columns (Amersham) after 

double cesium chloride centrifugation.  The viral vectors were eluted in TBS and 

mixed with 10 % glycerol. The vectors were stored at –80οC deep freezer until further 

use.  

 

III.5.2 Agarose overlay and isolation of plaques 

Agarose overlay medium 

0.5    %  autoclaved agarose (FMC products, USA) 

1x   MEM 

0.5    %  penicillin/streptomycin 

0.05 %   yeast extract 

5.0    %  FCS 

Isolation of the plaques 

293 cells were plated at 60-70 % confluency in a 6 well plate. 24 h after seeding, the 

cells were either transfected with a plasmid used for the generation of first generation 

virus or infected with the first generation vector.  After 16 h, the transfected or 

infected cells were overlaid with agarose and were incubated at 37 ºC in a cell 

incubator containing 5 % CO2 for a maximum period of two weeks. The cells were 

observed for two weeks under a light microscope for focal areas of lysed cells called 

plaques. Individual plaques representing single rescue events of vector are caused by 

a single clone of virus and were picked using sterile Pasteur pipettes The plaques were 

re-suspended in 1 ml of TBS and were frozen at –80οC. 

 

III.5.3 Generation of high capacity adenoviral (HC-Ad) vectors 

 Cre 66 cells were used for the generation of HC-Ad vectors. The plasmid used for the 

generation of the HC-Ad vector was digested with Pme I to release the ITRs. For the 

first amplification, the Cre66 cells (2x106 cells in a 6 cm plate) were transfected with 

the plasmid using effectene reagent (Qiagen). 16 h after transfection, the cells were 

infected with 5 moi of helper virus. The infected cells showing CPE at 48 h were 

harvested. The harvested Cre 66 cells were re-suspended in 2 ml of TBS followed by 

three times freeze thawing to release the vector particles.  During the second and the 
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third amplification, Cre 66 cells (3x106 cells in 6 cm plate) were infected with half the 

supernatant from the cell lysate of the earlier amplification, and 5 moi of helper virus.  

During the fourth and fifth amplifications, Cre 66 cells were plated at a density of 

3x107 cells in 15 cm plates were infected with half the supernatant (from the cell 

lysate of the earlier amplifications) and 5 moi of helper virus. For a large-scale 

preparation, Cre66 (ten 15 cm plates, each with 3x107 cells) were infected with the 

supernatant (containing the virus) from the fifth amplification or 10 MOI of HC-Ad 

vector (if the titre has been previously determined) and 5 moi of helper virus. The 

infected cells were harvested after 48 h and were re-suspended in TBS containing 

glycerol. 

 

III.5.4 Purification of adenoviral vectors using CSCl density gradient 

ultracentrifuation 

 The re-suspended cells were freeze thawed for vector release. The vector containing 

supernatant was collected by centrifugation at 200g to remove the cell debris. The 

supernatant was made up to a volume of 20 ml and CsCl was added at a concentration 

of 0.5 gm/ml. The virus was centrifuged twice at 32,000 RPM at 4ºC for 22 h in an 

ultracentrifuge (Ultracentrifuge L7-65 with SW41- Rotor, Beckman, USA) The 

adenoviral vector floats as a ring in the CsCl gradient at a density of 1.34 gm/cm3. 

The virus was aspirated using a 2 ml syringe fitted to a needle. After the second 

gradient, the virus was desalted in PD 100 columns using TBS buffer. Glycerol was 

added to the eluted vector at a concentration of 10 %. The virus was stored at -800C. 

 

III.5.5 Titration of helper virus or first generation adenoviral vectors 

HeLa cells were used for determining the titer of first generation vectors and helper 

virus vectors. The cells were plated at a density of 2x106 in 6 cm plates. The plated 

cells were infected with different dilutions of the vector. 16h after infection the cells 

were overlaid with 10 ml of agarose overlay medium for 15 minutes at room 

temperature. The cells were incubated at 370C in cell incubator containing 5 % CO2 

for 5-14 days. The plates were observed under light microscope for plaques. The 

average number of plaques at a given dilution represents the plaque forming units 

(pfu) of the virus.    
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III.5.6 Titration of HC-Ad vector using slot blot analysis 

 The slot blot method was used to determine the infectious units, total particle and the 

helper virus contamination titers. HeLa cells were used for the determination of 

infectious units of the HC-Ad vectors. The cells were plated for overnight at a density 

of 1x105 cells in a 24 well plate before infection with HC-Ad vector. HC-Ad vectors 

were diluted at 1:20 in TBS, and 4 to 20 μl of the diluted HC-Ad vector was used to 

infect HeLa cells in duplicates. 16 h after infection, the cells were washed intensively 

with PBS and were incubated with 200 μl of PBS/5mM EDTA for 15 minutes to 

detach the cells from the plate. The detached cells were incubated with 200 μl of 0.8 

N NaOH for 30 minutes to lyse the cells. The plasmid p GS46, added to the 

uninfected cells at copy numbers ranging from 1x106 to 1x108, acted as the standard. 

The total particle titre of HC-Ad vectors was determined using a cell free system. The 

HC-Ad vector was diluted 1: 400 in TBS buffer.  Four to 20 µl of the diluted HC-Ad 

vector was made up to a volume of 200 μl of TBS and was lysed with 200 μl of 0.8 N 

NaOH for 30 min at room temperature. The plasmid p GS46 was used as the standard 

and, was diluted in TBS (to a volume of 200 μl) to represent copy numbers ranging 

from 1x106 to and 1x108. The diluted standards were mixed with 200 μl of 0.8 N 

NaOH and were incubated for 30 min at room temperature.   

The helper viral contamination was determined using a cell free system. The HC-Ad 

vector was diluted 1: 200 in TBS. Four 20 μls of the diluted virus was made up to a 

volume of 200 μl of TBS and was lysed with 200 μl of 0.8 NaOH for 30 min at room 

temperature. The plasmid pGS 46 was used as the standard and, was diluted in TBS 

(to a volume of 200 μl) to represent the copy numbers ranging from 1x106 to and 

1x108. The diluted standards were mixed with 200 μl of 0.8 N NaOH and were 

incubated for 30 min at room temperature.    

300 μl of cell or particle lysate was transferred to a nylon membrane Bio Dyne 

membrane (PALL Corporation, USA) using the slot blot apparatus (Hoefer PR 648, 

Bio-Rad Laboratories, Munich). After transfer, the membrane was washed with 2 x 

SSC buffer followed by baking at 1200C for 30 minutes. The baked membrane was 

pre-hybridized with hybridization buffer for 4h at 680C.  The probe used for the 

determination of infectious units and total particle binds to the left ITR of the 

adenovirus (nucleotide 1- 438).  The probe used for the determination of the helper 

virus particle binds to the fiber (nucleotide 31042 to 32390) The PCR probe was 

radioactively labeled with 50 μCi 32[P] dCTP (Amersham Pharmacia, Germany) using 
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the Ready to go DNA Labeling Kit (Amersham Pharmacia,Germany).  The membrane 

was hybridized using the radioactive probe for 16 h at 680C. The membrane was 

washed at 680C with buffer I followed by a second wash with wash buffer II for 20 

minutes. The membrane was transferred to a phospho-imager cassette and the signal 

was read using a Phospho imager 445SSI (Molecular Dynamics,USA). The titer of the 

HC-Ad vector was estimated by comparing the signal intensity between the HC-Ad 

vector and the plasmid standards.  

 

III.6 Animal handling techniques  

129SvJ Fah Δexon5 (5-8 week old) mice were used for all the experiments. The animals 

were maintained under pathogen free conditions at the animal facility of the Oregon 

Health Sciences University. The mice were fed with standard diet (B&K universal) 

and sterilized water with or without the recommended dosage of NTBC. All mice 

were cared for in compliance with the guidance prescribed by OSHU.  

 

III.6.1 Harvesting of the mouse liver 

The animal was anaesthetised and then killed by cervical dislocation. Four limb 

immobilization was carried out using tape on a moisture absorbing surface.  The 

abdomen was opened, the liver removed and placed on a glass slide.  The smaller 

lobes 4, 5 and 6 (behind the gall bladder) were identified, and each was cut 

individually and placed along with the larger lobes 1, 2 and 3 on glass slides. Each 

lobe was sliced lengthwise into 3 pieces.  The middle piece was stored in the solution 

for histology.  The bottom piece for was used for DNA extraction and the top piece 

was quick frozen and stored. 

 

III.6.2 Isolation and serial transplantation of hepatocytes into recipient livers 

The peristaltic pump tubing was rinsed with 70 % ETOH and then with PBS, and all 

the solutions were prewarmed to 370C.  The i.v. infusion set was attached and Soln I 

was run through it. The donor mouse was anaesthetised, and four limb immobilization 

carried out using tape on a moisture absorbing surface inside a tissue culture hood.  

The abdomen was cut open and the inferior vena cava and the portal vessels located 

under the liver were located.  The i.v. catheter was rinsed with Soln I and then the 

inferior vena cava was cannulated.  The i.v. tubing was attached to the catheter and 
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the pump was started.  When the liver filled up with the solution, the portal vein was 

cut.  The chest of the mouse was opened and the superior vena cava was clamped.  

The peristaltic pump was run at a rate of 5 ml/minute.  After 3 minutes of perfusion 

with Soln I, the liver was perfused with Soln II for 2 minutes and then with Soln II.  

When the liver was digested, the catheter was removed, and the liver was transferred 

to a petri dish in a second tissue culture hood.  The liver capsule was disrupted with 

forceps in 5 ml of Soln III and the hepatocytes washed out.  The cells were filtered 

through the nylon mesh into a 50 ml tube that contained 10 ml prewarmed DMEM 

with serum.  Cells were pelleted and resuspended in 50 ml high glucose DMEM plus 

serum.  The washes were repeated three times and the cells resuspended in plating 

medium (high glucose DMEM with serum).  The recipient mouse was anaesthetised 

and had the abdominal fur shaved off, and the region sterilized with 70% ETOH.  The 

abdomen was cut, the spleen located, and the syringe needle containing the 

hepatocytes was inserted into the spleen and the region above the point of entry of the 

needle was clamped and the hepatocytes injected.  The peritoneum and the skin were 

sewn back, and the mouse was allowed to recover. 

 

III.6. 3 Calculation of the rates of recombination HC AdV in vivo 

The histology slides containing the liver samples were scanned on a Canon Flat bed 

scanner along with a size standard.  The software NIH Image was used to determine 

the size of the liver samples and the cell numbers as described in (Wang et al., 2002), 

from which the correction factor was also used.  The number of vector molecules 

reaching the hepatocytes were calculated as described in pg 137.  The slides were 

checked for brown (Fah+ve) cells and nodules.  Photos were taken using a Zeiss 

PVCAM Inverted Microscope and a PCIAIA camera from Hamamatsu (Open lab 

3.03 software).  

 

For example, in mouse 301, the rate of recombination was calculated as follows. 

Total amount of cells (obtained by calculating the total surface area in the liver 

sections using NIH Image J) = 9.4 x105  

Amount of virus reaching these cells after the injection (for 1x1010 inf.units, see pg 

138) = 10 viruses/cell 

∴, total number of virus in the hepatocytes analysed from mouse 301 = 9.4 x106 
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Number of nodules observed in the liver sections from mouse 301 = 30 

∴, rate of recombination = 1/313333 

Correction factor (Wang et al., 2002) = 5 

∴, actual rate of recombination = 1/1566666.7 

                                                       = 6.4x 10-7 

 

Ensembl Version 

Human and mouse genome releases 38, April 2006 were used in this study. 

 

III.7 Hprt model 
Nucleotides are synthesized either totally from the beginning from amino acids, 

tetrahydofolates, CO2 and NH4
+ (de novo synthesis pathway) or are reused from 

existing nucleotides (salvage pathway).  The central molecule in both pathways is 5-

phosphoribosyl-1-pyrophosphate (PRPP) (see Fig. 6). 

Fig. 6:  Fig.ure of PRPP (from http://www-medlib.med.utah.edu/NetBiochem/pupyr/pp.htm) 

 

In the de novo pathway, the first stage is the synthesis of a closed ring 5-

Aminoimidazole ribonucleotide from PRPP.  The gist of the pathway is as follows: 

The amino group from a glutamine replaces the Ppi, and a glycine is added to it. A 

formyl group is added to the α-amino terminal of glycine by N10-

formyltetrahydrofolate. A glycine donor converts the amide group of the compound 

into an amidine group and the ring is closed to form the 5 membered ring of the 

purine skeleton, 5-aminoimidazoleribonucleotide.  Following carboxylation, an 

aspartate is added to the ring.  The fumarate part of the moiety is removed leaving 

only the amino group.  Another formyl group is donated by the N10-
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formyltetrahydrofolate, a water molecule is removed and the ring is closed to generate 

inosinate (IMP), from which adenylate (AMP) and guanylate (GMP) are synthesised 

(see Fig. 9).  

In the purine salvage pathway, the ribose phosphate moiety of PRPP is transferred on 

to the free purine bases obtained during the degradation of nucleic acids and 

nucleotides.  The formation of adenylate from adenine is catalysed by Adenine 

phosphoribosyl transferase (APRT), and the conversion of hypoxanthine and guanine 

to inosinate and guanylate are catalysed by hypoxanthine-guanine phosphoribosyl 

transferase (HGPRT) (See Fig. 7). 

 
Fig. 7.  Schematic diagram of purine salvage pathway based on (Nyhan, 2005) 

 

 
Fig. 8.  Schematic diagram of the human Hprt gene based on (Stout & Caskey, 1985) 
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Fig. 9. Diagram of the Purine de novo synthesis, based on (Stryer, 1998) 

 

The enzyme dihydrofolate reductase (DHFR) converts 7,8-Dihydrofolate to 5,6,7,8,-

Tetrahydrate folate.  The drug aminopterin is an analogue of Dihydrofolate and 

competitively inhibits DHFR.  When combined with hypoxanthine and  

thymidine, the drug (HAT) is used to select for cells that are HPRT positive 

(Szybalski & Szybalska, 1962).  HPRT itself can bind and ribosylate toxic purine 

analogues such as 6-Thioguanine (6TG) with toxic results for the cell.  So HPRT- 

cells can be selected for by the addition of 6TG to the medium (Stutts & Brockman, 

1963). 

HPRT is a housekeeping gene.  In humans, the gene encoding HPRT is 44 kb long, 

consists of 9 exons and is located on the q arm of the X chromosome between bps 

133421923 to 133462354 [reviewed in (Caskey & Stout, 1989, Stout & Caskey, 

1985)] (see Fig. 8).  Deficiency of HPRT leads to Lesh Nyhan Syndrome in humans 

(Nyhan, 2005, Schepis et al., 1996).  Of the various mutations in the HPRT gene that 

result in the syndrome, HPRT CHICAGO, where the insertion of a single T nucleotide 
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resulted in the formation of a stop codon (Davidson et al., 1989) was of particular 

interest in this study. 

The HPRT locus has been used extensively for studies on gene targeting.  In 

pioneering studies using plasmids, the rates of homologous recombination was 

observed to be in the range of 10-6 and the rate of random integration in the range of 

10-3 with respect to the number of cells.  The rate of homologous recombination was 

also observed to increase in proportion to the amount of homology between the DNA 

fragments (Capecchi, 1989, Deng & Capecchi, 1992, Doetschman et al., 1987, Hasty 

et al., 1991, Manivasakam et al., 2001, Thomas & Capecchi, 1987, Wade-Martins et 

al., 2000, Yun et al., 2004, Zheng et al., 1991).  The results published with work using 

viral vectors on the HPRT locus have been mentioned earlier.  

  

III.8 Fumarylacetoacetate hydrolase (Fah) mouse model 
In the pioneering work that linked metabolic disorders to genetics, Archibald Garrod 

postulated the relationship between genes and enzymes when he published his 

findings on alcaptonuria, a condition caused by the absence of homogentisate oxidase.   

It is a part of the phenylalanie and tyrosine degradation pathways, where an aromatic 

ring is broken by molecular oxygen and the products are passed on into the citric acid 

cycle.  Phenylalanine is hydroxylated into tyrosine, which is converted into 4-

hydroxyphenylpyruvic acid, which reacts with O2 to form homogentisic acid.  O2 

cleaves the aromtic ring producing maleylacetoacetic acid.  It is converted into its 

isomer fumarylacetoacetic acid (FAA) by fumarylacetoacetate hydrolase (FAH), 

which is hydrolysed into fumaric acid and acetoacetic acid, which are passed on into 

the citric acid cycle [reviewed in (Tanguay et al., 1996)] (see Fig. 10). 

Deficiency of the enzymes in the pathway results in various forms of 

hypertyrosinemia. The loss of FAH enzyme results in tyrosinemia type 1, 

characterized by progressive liver and renal damage.  The compartmentalization of 

FAA, and its subsequent reaction to glutathione and protein thiol groups lead to 

mutagenic, cytostatic, and apoptogenic activites in cells (Endo & Sun, 2002, Jorquera 

& Tanguay, 1997, Jorquera & Tanguay, 1999, Kubo et al., 1998, Tanguay et al., 

1996).  FAA was proven to induce mitotic abnormality and genomic instability by 

activating the extracellular signal-regulated protein kinase (ERK) pathway, and this 
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was postulated to be responsible for the hepatic cancer developing in 37 % of the 

human cases (Jorquera & Tanguay, 2001).  

In competing with other plants, certain members of the Myrtaceae family and the 

symbionts, the lichens, produce diketone and triketone alkaloids that specifically 

inhibit the 4-hydroxyphenylpyruvate dioxygenase (HPPD) of the neighbouring plants.  

One such competitive inhibitor of HPPD, triketone, 2-[2-nitro-4-

(trifluromethyl)benzoyl]-1,3-cyclohexanedione (NTBC), that binds strongly to the 

HPPD and FeII complex, was used to treat the patients (Holme & Lindstedt, 1998, 

Kavana & Moran, 2003).  Tyrosinemic livers were found to be not only FAH-ve 

tissue, but mosaics with FAH+ve tissues where the actual reversion of the original 

mutation had occurred.  The nodular growth of the FAH+ve cells pointed out to the 

selective advantage those cells have in a FAH-ve liver (Kvittingen et al., 1993). 
 

 
 

Fig. 10. Diagram of the Tyrosine metabolism pathway adapted from (Grompe et al., 1995) 
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Fig. 11.  Schematic diagram of the murine FAH gene 

 

In the mouse, the FAH gene, consisting of 14 exons, is located in Chr 7 between bps 

80506746- 80527407 (see Fig. 11).  The C14CoS albino mouse, with a large deletion in 

Chr 7, including the Fah gene (Klebig et al., 1992), displays neonatal death 

(Gluecksohn-Waelsch, 1979).  This phenotype was shown to arise from the lack of 

FAH (Kelsey et al., 1993).  Knockout mice (FAH-/- mice) with a targeted insertion of 

a neo cassette into the exon 5 of the FAH gene, displayed the same phenotype 

(Grompe et al., 1993).  The use of NTBC alleviated the neonatal lethal phenotype in 

the mice for up to 2 years (Al-Dhalimy et al., 2002, Grompe et al., 1995).  Correction 

of the phenotype was observed when liver cells transduced with a retroviral vector 

carrying the FAH cDNA were injected on recipient mice (Overturf et al., 1998).  As 

expected, given the regeneration capacity of the liver [reviewed by (Michalopoulos & 

Khan, 2005)], as few as 1000 transplanted wt FAH +ve cells were able to repopulate a 

FAH-ve liver in knockout mice, with normal liver function (Grompe et al., 1998, 

Overturf et al., 1996).  The work done on the model using a Ist gen AdV carrying the 

FAH cDNA under the control of a RSV promoter, and an AAV vector carrying the 

cDNA, have been mentioned in the introduction.          
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III.9 Plasmids 
III.9.1 Construction of plasmid p SLS 11 

The aim of generating this plasmid was to generate a high capacity adenoviral vector 

capable of both disrupting exon 2 of the human hprt gene in the event of the vector 

DNA undergoing homologous recombination in the genome, and also inserting a 

selection cassette into the genome in the event of random recombination.  To disrupt 

the hprt gene, the clinical mutation hprt Chicago (Davidson et al., 1989) was utilised. 

A T nucleotide was incorporated at the 30th bp of exon 2 (nucleotide 13162 of hprt 

gene), resulting in the generation of a stop codon and an unique Eco RV site was 

engineered downstream of the mutation by substituting the T at nucleotide 4 and A at 

nucleotide 6 with A and C nucleotides respectively (Fig. 23). 

The plasmid p SLS 1 was constructed to introduce a Swa I site into the multiple 

cloning site of plasmid pBluescript II KS (p BSIIKS). p BSIIKS (Stratagene) was cut 

with Eco RV and the oligonucleotide 24129/24130, carrying a Swa I site (donated by 

Dr. Schiedner) was cloned into the site to generate p SLS 1.  

The plasmid p SLS 2 was constructed to sublone the 11.5 kb of the Hprt fragment 

from p STK 129.  p STK 129 was digested with Swa I and Not I and the fragment 

(base pairs 8913 –20424 of pSTK129) was purified. p SLS 1 was digested with Swa I 

and Not I and the electroeluted insert was cloned in to generate p SLS 2. 

The plasmid p SLS 3 was constructed to remove the exon 2 of the hprt from p SLS 2. 

Plasmid p SLS 2 was grown in a dcm- strain (GM 2163, NEB), digested with Sex AI 

to excise out the 484 base pair Sex AI fragment containing the exon 2 (base pairs 

133,435,071- 133,434,587 of the hprt gene) and was religated to generate p SLS 3. 

The plasmid p SLS 4 was constructed to generate a stop codon within the exon 2 of 

the hprt and to alter its reading frame. PCR was performed on p SLS 2 template using 

the primers Sam Stephen I and Sam Stephen II to generate a 493 base pair fragment 

containing an insertion of a T nucleotide and an Eco RV site into the exon 2 of the 

hprt gene. p BSIIKS was digested with Eco RV and this pfu PCR generated product 

was cloned into the site to generate p SLS 4. 

The plasmid p SLS 5 was constructed to generate a stop codon within the exon 2 and 

to alter its reading frame of the hprt fragment contained in p SLS 3. p SLS 4 was 

digested with Sex AI, and the electroeluted fragment was cloned into the Sex AI site of 

p SLS 3 to generate p SLS5. 
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The plasmid p SLS 6 was constructed to introduce the stop codon and the altered 

reading frame of the hprt into the stuffer DNA of p STK129.  p STK 129 was digested 

with Swa I and Not I and CIPed.  p SLS5 was double digested with Swa I and Not I 

and the 11.5 kb fragment was cloned into the above mentioned p STK 129 to generate 

p SLS 6. 

The plasmid p SLS 11 was constructed to include a Hygromycin-EGFP (Enhanced 

Green Fluorescent Protein) fusion cassette into the p SLS 6 so as to generate a vector 

plasmid capable of introducing the stop codon into the exon 2 of the hprt gene as well 

as inserting a Hyg-EGFP cassette into the genome. p SLS 6 was digested with Not I 

and klenowed. p HygEGFP (Clontech) was double digested with Bgl II and Cla I.  

The 3.1 kb fragment containing the expression cassette including the promoter and the 

poly A signal was cloned into the above mentioned vector.   

The cloning scheme for the construction of the plasmid is shown in Fig. 12.   
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Fig. 12: Scheme showing the construction of p SLS 11 
 

III.9.2 Construction of plasmid p SLS 14 

This plasmid was generated to produce a HC-AdV capable of replacing the mutated 

exon 5 of the fah gene in the Fah-/- mouse with the wild type Fah exon 5, thereby 

restoring the gene function.  The exons 2 to 9 were cloned into the plasmid. 

p SLS 13 was generated to create a viral vector plasmid that can be rescued using Sna 

BI instead of the standard Pme I, due to the presence of a Pme I site in the intron 5-6 
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of the murine fah gene.  p STK 68  and p STK 5 were digested with Pme I and the 16 

kb fragment of p STK 68 was cloned into the digested p STK 5 to generate p SLS 13. 

p SLS 9 was created to subclone the 16.4 kb fragment from the murine fah gene 

including the exons 1-5 from the λ Dash II phage vector.  λmFAH6 was digested with 

Not I and Cla I and the 12.3 kb fragment of the fah gene containing exons 2, 3, 4 and 

5 was ligated onto p BKRSV (Stratagene) cut with the same enzymes to generate p 

SLS 9.  

p SLS 14 was generated to create the vector plasmid.  p SLS13 was cut with Eco RV 

and p SLS 9 was cut with Cla I and Not I, and the 12.3 kb fah fragment was cloned 

into the vector to generate p SLS 14.   

The cloning scheme for the construction of the plasmid is shown in Fig. 13. 
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Fig. 13: Scheme showing the construction of p SLS 14 
 

III.9.3 Construction of plasmid p SLS 16 

This plasmid was generated to produce a HC-AdV carrying a murine fah cDNA under 

the control of a RSV promoter, to restore the fah gene function in Fah-ve cells. 

p SLS 15 was generated to clone the murine FAH cDNA into the MCS of the p 

Rc/RSV so as to enable it to be expressed from the RSV promoter.  p mFAH4AR1 

(donated by Prof. Grompe) was digested with Eco RI, ends blunted using Klenow 

enzyme and purified by gel electoelution and cloned into the Hind III site of p 

Rc/RSV that had been made blunt using the Klenow enzyme to generate p SLS15. 

The vector plasmid p SLS 16 was produced by cloning in the RSV-mFAH cDNA-

BGH polyA cassette into p STK 120.  p SLS 15 was digested with Nru I and Pvu II, 

and the DNA termini were made blunt using Klenow enzyme.  The cassette was 
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purified using electroelution and cloned into p STK120 that had been digested with 

Swa I and the ends made blunt with Klenow enzyme to generate p SLS 16. 

The cloning scheme for the construction of the plasmid is shown in Fig. 14. 

 

 
Fig. 14: Scheme showing the construction of p SLS 16 
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IV Results 
IV.1 Calculation of the amount of Hygromycin B required to select 

out untransduced cells 
Hygromycin B (C20H37N3O13) is an aminoglycoside antibiotic, produced by 

Streptomyces hygroscopicus, and inhibits the growth of prokaryotic and eukaryotic 

cells by inducing the mistranslation of the mRNA (Moazed & Noller, 1987, Spahn & 

Prescott, 1996), the mistranslocation of the mRNA (Cabanas et al., 1978, Hausner et 

al., 1988) and the inhibition of 75-80 % of the ATPase activity of the 70S ribosomes 

(Ganoza & Kiel, 2001).  The E.coli hph gene encodes Hygromycin 

phosphotransferase (Gritz & Davies, 1983).  The phosphorylation of the 4-OH group 

results in the alteration of the stereostructure of Hygromycin B (Hyg B), resulting in a 

loss of its ability to bind to the ribosome.     

 

Experimental setup: 

 
Fig. 16: Scheme of the vitality curve experiments. Cells were plated on to 6 well plates and grown on 

medium supplemented with varying amounts of Hyg B, and the number of living cells, based on 

Trypan Blue exclusion was calculated. 

 

To determine the optimal amount of Hygromycin B to be used in the experiments for 

the determination of the rates of random integration in vitro, vitality curves of the 

different cell lines were plotted in different concentrations of Hygromycin B (see Fig. 



 75

16).  1x105 cells of each cell line were plated in 6 well plates and were maintained in 

one of the following mediums with α-MEM as the base (see Table 4). 

 
Code number Amount of Hygromycin B (mg/ml) in α-MEM 

a 0 

b 0.1 

c 0.15 

d 0.2 

e 0.25 

f 0.3 

g 0.5 

 

Table 4: List of the amount of Hygromycin B (mg/ml) used in the experiment 
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Fig. 17: Vitality Curve of 293 cells in medium supplemented with varying amounts of Hyg B.  Cells 

were grown in 6 well plates and were selected in Hyg B containing medium. The number of cells was 

counted with a haemocytometer on Trypan Blue exclusion, and the data was mapped on to the graph 

above. 

 

Cell count using Trypan Blue staining was taken once in three days and the number of 

the viable cells, counted using a Haemocytometer, was plotted in a graph which was 
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used to determine the optimal amount of Hygromycin B to be used.  Six cell lines 

were used in the study.  The vitality curve of 293 cells in Hyg B is shown here as an 

example (See Fig. 17).  The following cell lines were used:   

1.  293 cells 

2.  HT1080 cells 

3.  C-32 cells 

4.  FF-95 cells 

5.  HeLa cells 

6.  Human Retinal Pigmented Epithelium (HRPE) cells 

 

The aim of the experiment was to optimise the amount of Hygromycin B to be added 

to the medium for selection. In all of the cell lines used, a concentration of 0.25 

mg/ml of Hygromycin B was sufficient to kill all of the non-resistant cells by day 12 

of the experiment and this concentration was used in the in vitro experiments. 

 

IV.2 Determination of the permissivity of different cell lines to 

transduction with HC-AdV 
 

Before the rates of integration and homologous recombination of HC-AdVs in vitro 

could be determined accurately, it was imperative that a calculation on the 

permissivity of the cell lines used in the study was carried out so that the number of 

recombination events per infection unit of the vector could be accurately calculated. 

The permissivity of various cell lines to adenovirus may differ and many factors such 

as the expression of CAR may be responsible for this (Carson et al., 1999, Hidaka et 

al., 1999, Kibbe et al., 2000, Leon et al., 1998).  The expression levels of other 

molecules such as heparin sulphate proteoglycans (Dechecchi et al., 2000), MHC 

class I (Hong et al., 1997), the αv integrins (Wickham et al., 1993), the actin 

cytoskeleton (Patterson & Russell, 1983), phosphatidylinositol –3-OH kinase (Li et 

al., 1998b), the Rho family GTPases (Li et al., 1998a) might also play a part in the 

permissivity of the individual cell lines to adenovirus.  To determine the permissivity 

of the cell lines used in the in vitro experiments, a modification of the slot blot 

experiment (Kreppel et al., 2002), the same that is used in the titration of the stocks of 

the HC-AdVs produced, was carried out.  Cells of each of the cell lines were plated at 
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1x105 cells per well of a 24 well tissue culture plate.  A HC-AdV of characterised 

titre, was used to infect the cell lines at various multiplicities of infection (moi) and 

the infectivity on the various cells was calculated using the above mentioned method, 

against that measured for HeLa cells (Fig. 18).  The moi of HC-AdV in a given cell 

line, that gave a radioactive signal that corresponded to the moi 1 in Hela was taken as 

moi 1 for that particular cell line.  

 

Experimental Setup 

 
Fig. 18: Scheme of the experiment to determine the permissivity of the cell lines to AdV.  Cells were 

plated on 24 well plates and infected with different dilutions of the vector and the viral load was 

calculated as per slot blot procedure.  The left terminus of Ad5 was used as the probe. 

 

The results obtained from the experiment are summarised in the following table (Fig. 

19).  

The aim of the experiment was to calculate the amount of viral vector needed to infect 

the various cell lines used the experiment at such an moi so as to obtain one vector 

copy per cell. During the experiment, it was found out that different cell lines needed 

different mois, summarised above, so as to obtain a single vector copy per cell. 
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Fig. 19: Graph showing the permissivity of the different cell lines to adenovirus.  Cells were transduced 

with varying mois with an AdV of a known titer and the copy load of vector DNA per cell was 

calculated using the slot blot method and plotted as the graph above. 
 

IV.3 Determination of the rate of integration of HC-AdV in vitro 
This series of experiments were carried out to determine the rate of integration of HC-

AdVs in vitro.  The vector used was Ad SLS 11, based on the plasmid p SLS 11.  The 

structure of the vector is shown in Fig. 20 and the full details of the cloning procedure 

have been given on pg 65.  In Ad SLS11, the exon 2 of the Hprt gene has been 

mutated to generate a stop codon.  This mutation was designed to mimic the mutation 

that has been observed in a patient with Lesh Nyhan Syndrome (Davidson et al., 

1989).  A novel Eco RV site was designed downstream of the above mentioned 

mutation by substituting two nucleotides.  In addition, a Hyg-EGFP expression 

cassette was cloned into the plasmid outside the Hprt fragment. 
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ITR ψ Hprt fragment              CMV HygEGFP   c346           ITR

1st Intron   Exon 2      Exon 3 3rd Intron
                  mutation  

Fig. 20: Diagram of the HC-AdV vector Ad SLS 11, detailing the location of the various components. 

 

The vector was designed to generate Hprt negative clones on the event of the vector 

DNA undergoing homologous recombination into the genome of normal Hprt positive 

cells.  The vector was also designed to confer resistance to Hygromycin B in all of the 

transduced cells, and to form hygromycin resistant colonies in the event of the 

integration of the vector DNA into the cellular genome. 

The plasmid was rescued with helper virus and serially amplified and purified using a 

CsCl gradient. The titre of the vector was determined using Slot Blot procedure. 

 

Experimental setup: 

HT1080, C-32, FF 95, HRPE and HeLa cells were infected at a moi of 1 with Ad SLS 

11 on day 0 in 6 cm tissue culture dishes.  On day 2, the cells were trypsinised, diluted 

and replated on to 15 cm tissue culture dishes. Cells infected with Ad SLS21 (that 

does not carry the EGFP-Hyg fusion cassette, and used in another project) and TBS 

treated cells were used as controls.  On day 3, the cells were grown in medium 

containing 0.25 mg/ml of Hygromycin B, and were selected untill all the cells in the 

controls died out (Fig. 21). The number of hygromycin resistant colonies from each 

experiment was counted and is summarised in Table 5. 

 
Cell line Number of experiments Mean of the frequencies SD 

HT 1080 n = 9 5.43 x 10-3 4.6 x10-4 

C 32 n = 12 1.47 x10-3 7.3 x10-5 

FF 95 n =10 3.51 x10-3 3.4 x10-4 

HRPE n = 8 1.1 x10-4 2 x10-5 

HeLa n = 7 4.66 x10-3 3.01 x10-4 

Table 5: The data obtained from the experiment for calculating the rate of random integration of the 

HC-AdV into the cellular genome. 

 

The results obtained from all of the experiments were plotted as a graph in Fig. 22. 
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Ad SLS 11Ad SLS 21/TBS

Cells replated and 
grown in medium 
supplemented with
Hyg

Any Chromosome in the cells

Hyg R gene integrates into the genome following random integration

Ad SLS 11

No Hyg R.
Cells die

Cells where the integration has 
taken place form Hyg R colonies

Cells

Hyg EGP fusion cassette

 
 

Fig. 21: Scheme of the experiment used to calculate the rate of random integration of the HC-AdV in 

vitro.  Cells were infected at 1 moi either with Ad SLS 11, raised in medium supplemented with Hyg 

B, and the number of Hyg resistant colonies was taken when the control cells (1X TBS treated or 

infected with Ad SLS 21) had died out. 

 

Significant differences in the rates of integration of the HC-AdV in between different 

cell lines were observed when One-way Analysis of Variance (ANOVA) was carried 

out on the means.  The P value obtained was < 0.0001, which is considered highly 

significant, indicating that the variation among column means is significantly greater 

than expected by chance.  

To summarise, the rate of integration of the HC-AdV DNA into the genome varied in 

different established and primary cell lines and was found to be between 5.43x10-3 to 

1.1x10-4 events per vector that enters the cell. 
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Fig. 22: Graph showing the rate of random integration of HC-AdV into the genome in vitro.  The 

results from Table 5 were plotted on to the graph. 

 

IV.4 Determination of the rate of homologous recombination of HC-

AdV DNA in vitro 
This series of experiments were carried out to determine the rate of integration of HC-

AdVs in vitro.  Ad SLS 11 was designed to carry a T insertion (nucleotide 13162 of 

hprt gene) in the exon 2 of the HPRT fragment resulting in the formation of a stop 

codon mimicking the published mutation HPRT CHICAGO (Davidson et al., 1989) 

observed in a human subject. A novel Eco RV restriction site was also engineered into 

the region by two substitutions (Fig. 23). 

The rationale of the experiment was that the vector, on undergoing homologous 

recombination in a cell carrying a single X chromosome, would introduce a stop 

codon in the hprt gene, thereby shutting it off. This in turn would shut off the purine 

salvage pathway, thereby preventing the incorporation of the toxic purine analogue 6-
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Thioguanine (6TG). Thus a successful homologous recombination event would lead 

to the formation of a 6TG resistant clone (Fig. 24). 

 

 
 

 
Fig. 23 A. Diagram comparing the mutations introduced into the mutant Hprt gene via Ad SLS 11 to 

the sequence in the wt Hprt gene 

Fig. 23 B. Diagram showing the translation of the Hprt gene at the site of the introduced mutation and 

the introduction of the stop codon. 

 

Ad SLS 11
ITR Hprt Ex2* Ex3 Hprt  HygEGFP c346 ITR

X X
Hprt gene 
on 
Chr X q26

Mutated Hprt
 gene on 
Chr X q26

Ex1            E2   E3            E4  E5     E6        E7 E8   E9 

Ex1            E2*  E3            E4  E5     E6        E7 E8   E9 

HR

Stop codon introduced in Hprt exon 2 as a result of HR
 with Ad SLS 11

19.5 kb homology

 
Fig. 24 : Scheme showing the formation of 6TG resistant cells following HR with Ad SLS 11 DNA. 

 

Experimental set up: 

HT1080, C-32 and FF 95 were infected at 1 moi with Ad SLS 11 on day 0 in 6 cm 

tissue culture dishes.  On day 2, the cells were trypsinised, diluted and replated onto 

15 cm tissue culture dishes. Cells infected with AdSLS 21 that does not posses the 

A 

B 



 83

Hprt fragment, and TBS treated cells were used as controls. From day 3 onwards, the 

cells were grown on medium containing 0.2 mg/ml of 6TG, and were selected till all 

the cells in the controls died out (Fig. 25). The number of 6TG resistant colonies from 

each experiment was counted, the mean was calculated and the experiment is 

summarised in Table 6. 

Ad SLS 11

6 TG

S

Ad SLS 21/TBS

Cells replated and 
grown in medium 
supplemented with
6TG

Ex1   2  3  4  5  6  7   8   9

Ex1  2* 3  4  5   6  7  8   9

Ex1   2  3  4  5  6   7  8   9

Ex1   2  3  4  5  6  7   8   9

Hprt gene in the cells

Hprt gene structure resulting from HR of the vector

Ad SLS 11
2* 3

Hprt gene intact
Cells die

Cells where the HR has 
taken place disrupting
the Hprt gene form colonies

Cells

 
Fig. 25: Scheme of the experiment to determine the rate of HR of HC-AdV DNA with the 

chromosomal DNA in vitro.  

 

Cell line Number of experiments Mean of the frequencies SD 

HT 1080 n =9 1.197 x10-6 6.7 x10-7 

C 32 n = 9 2.02 x10-5 3.2 x10-6 

FF 95 n = 10 1.05 x10-5 1.18 x10-6 

 
Table 6: The data obtained from the experiment for calculating the rate of homologous recombination 
of the HC-AdV into the cellular genome in vitro.  Cells were infected at 1 moi, raised in medium 
supplemented with 6TG, and the number of 6TG resistant colonies was taken when the control cells 
(1X TBS treated or infected with Ad SLS 21) had died out. 
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The means obtained from all of the experiments were plotted on to a graph below. 

Fig. 26: Graph showing the rate of homologous recombination of HC-AdV DNA with the 

chromosomal DNA in vitro.  The results from Table 6 were plotted on to the graph. 

 

Significant differences in the rates of homologous recombination of the HC-AdV in 

between different cell lines were observed when One-way Analysis of Variance 

(ANOVA) was carried out on the means.  The P value obtained was < 0.0001, which 

is considered highly significant, indicating that the variation among column means is 

significantly greater than expected by chance.  

Taken together, the rate of homologous recombination of HC-AdV DNA into the 

chromosomal DNA varied in different cell lines and primary cells and was calculated 

to be between 2.02x10-5 to 1.197x10-6 events per vector that enters the cell, depending 

on the cell line. 

 

IV.5 Molecular analysis of the DNA from the isolated clones 
To analyse the molecular structure of the integrated HC-AdV DNA, individual clones 

from the experiments described above were isolated and propagated. DNA was 

isolated from 2 x107 cells. Southern blot experiments and PCR reactions were 

performed on the DNA, as described in the materials and methods section.  In the 

Southern blot photos, -c refers to the negative control (cellular DNA), +c1 refers to 
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the positive control of the cellular DNA spiked with 1 copy of vector plasmid per 6 pg 

of DNA, +c2 refers to the positive control of the cellular DNA spiked with 2 copies of 

vector plasmid per 6 pg of DNA, +c4 refers to the positive control of the cellular 

DNA spiked with 4 copies of vector plasmid per 6 pg of DNA, +c5 refers to the 

positive control of the cellular DNA spiked with 5 copies of vector plasmid per 6 pg 

of DNA, cp refers to the positive control of the plasmid DNA. 

 

IV.5.1 Randomness of integration 

To ascertain whether the HC-AdV DNA integrated in a random manner during the 

events that conferred the individual cell lines their resistance to Hygromycin B, this 

series of Southern blots were performed on the DNA obtained from the clones 

isolated after the experiments described above. The DNA from the 6TG resistant 

clones was also used in the experiment to determine whether the homologous 

recombination that had taken place was of a replacement type or an insertion event. 

 

IV.5.1.A Southern blot of the HT 1080 based clones, digested with Sac I  

The DNA was extracted from the clones derived from the cell line HT 1080 followed 

by digestion with the restriction endonuclease Sac I. The vector DNA does not posses 

a Sac I site downstream of the HygEGFP cassette. The digested DNA was run in a 0.8 

% TBE gel, blotted onto a nitrocellulose membrane and hybridized with a 2.3 kb 

probe derived from pHygEGFP and containing the whole of the Hygromycin EGFP 

fusion cassette, including the promoter (Fig. 27).  Since the right terminus was 9 kb 

downstream of the Sac I site that was located upstream of the hygromycin EGFP 

cassette, following an event of random integration, the size of the DNA fragment 

which would cross hybridize with the probe, was expected to be above 9 kb of size, 

dependent on the location of the next Sac I restriction site downstream of the 

integration site in the genomic locus. However, the sizes of the individual bands were 

expected to be different from one another in the event of random integration.  And no 

hybridization with the probe, to the DNA extracted from the 6TG resistant clones, 

was expected in the case of events of a classic replacement homologous 

recombination. 
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ITR ψ Hprt fragment              CMV HygEGFP   c346        ITR Chromosomal 
                                                                                                     DNA

Sac I                    9 kb +

Hyg EGFP probe

 

 
Fig. 27: Scheme and the Southern blots of the HT 1080 derived clones.   DNA was digested with Sac I, 

run on a 0.8 % 1X TBE gel, blotted on to a nitrocellulose membrane and hybridized with the 2.3 Hyg 

EGFP probe. 1a to 9a denote the 6TG resistant clones. M stands for marker, -c denotes 20 µg of 

HT1080 DNA, +c1 stands for 20 µg of HT1080 DNA spiked with 1 copy/cell of p SLS 11 digested 

with Pme I, +c2 stands for 20 µg of HT1080 DNA spiked with 2 copies/cell of p SLS 11 digested with 

Pme I, +c4 stands for 20 µg of HT1080 DNA spiked with 4 copies/cell of p SLS 11 digested with Pme 

I.   

From these Southern blots, it was evident that the integration of the vector in the 

genome had taken place in a random manner.  Integrations of multiple Ad SLS 11 

copies were observed in some clones and no evidence of random integration was 
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observed in the 6TG resistant cell lines.  More details of the data have been 

summarised on pg 92. 

 

IV.5.1.B Southern blot of the HT 1080 based clones, digested with Kpn I  

To reconfirm the above result, the DNA extracted from the clones derived from the 

cell line HT 1080, was digested with the restriction endonuclease Kpn I.  The digested 

DNA was run for a longer period in a 0.6 % TBE gel, blotted onto a nitrocellulose 

membrane and hybridized with a 1.8 kb probe derived from pHygEGFP and 

containing the just the whole of the Hygromycin EGFP fusion cassette (without the 

promoter).  The sizes of the hybridised bands were expected to be greater than 9 kb, 

since the Kpn I upstream of the cassette was 9 kb away from the right terminus. 

Following an event of random integration, the size of the DNA fragment which would 

cross hybridize with the probe, was expected to be above 9 kb of size, dependent on 

the location of the next Kpn I restriction site downstream of the integration site in the 

genomic locus (Fig. 28). However, the sizes of the individual bands were expected to 

be different from one another in the event of random integration. And no 

hybridization with the probe, to the DNA extracted from the 6TG resistant clones, 

was expected in the case of events of actual homologous recombination. 

From these two Southern blots, and those described on pg 83 it was observed 

integration of the vector in the genome had taken place in a random manner and no 

evidence of random integration was observed in the 6TG resistant cell lines.  More 

details of the data have been summarised on pg 92. 

 

IV.5.1.C Southern Blot of the C 32 based clones, digested with Kpn I 

The DNA extracted from the clones derived from the cell line C 32, was digested with 

the restriction endonuclease Kpn I.  The digested DNA was run for a longer period in 

a 0.6 % TBE gel, blotted onto a nitrocellulose membrane and hybridized with a 1.8 kb 

probe derived from pHygEGFP and containing the just the whole of the Hygromycin 

EGFP fusion cassette (without the promoter).  The sizes of the hybridised bands were 

expected to be greater than 9 kb, since the Kpn I upstream of the cassette was 9 kb 

away from the right terminus.  Following an event of random integration, the size of 

the DNA fragment which would cross hybridize with the probe, was expected to be 

above 9 kb of size, dependent on the location of the next Kpn I restriction site 

downstream of the integration site in the genomic locus (Fig. 29). However, the sizes 
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of the individual bands were expected to be different from one another in the event of 

random integration. And no hybridization with the probe, to the DNA extracted from 

the 6TG resistant clones, was expected in the case of events of actual homologous 

recombination. 

The presence of the smaller second band was not expected.  It can also be visualised 

in the controls in Fig. 28.  This might be due to star activity.  Though the enzyme 

supplier, New England Biolabs, does not report any star activity for Kpn I, the 

supplier Fermentas has reported it. http://www.fermentas.com/catalog/re/kpni.htm 

From these Southern blots, it was evident that the integration of the vector in the 

genome had taken place in a random manner.  Integrations of multiple Ad SLS 11 

copies were observed in some clones and no evidence of random integration was 

observed in the 6TG resistant cell lines.  More details of the data have been 

summarised in pg 92. 

 

IV.5.2 Presence of the terminus in the clones  

This series of Southern Blots were performed on the DNA obtained from the isolated 

from the isolated colonies, to determine whether the termini of the vector were present 

in the molecules that underwent integration or homologous recombination into the 

cellular genome.  

The DNA extracted from the clones derived from the cell lines HT1080 and C 32, was 

digested with the restriction endonuclease Sau 3A1.  The digested DNA was run for a 

longer period in a 1 % TBE gel, blotted onto a nitrocellulose membrane and labeled 

with a   PCR fragment of the Adenoviral vector, which produces a 350 bp probe 

containing the whole of the terminus of the Adenovirus type 5.  The sizes of the bands 

expected were greater than 457 bp and 190 bp on the left and right termini 

respectively, since a Sau 3 AI site was 457 bp downstream of bp1 of the left terminus, 

and a Sau 3 AI site was present 190 bps upstream of the last bp of the right terminus. 

Following an event of random integration, the sizes of the DNA fragment which 

would cross hybridize with the probe, was expected to be above 457 bp and 190 bp of 

size, dependent on the location of the next Sau 3 AI restriction site upstream or 

downstream of the integration site in the genomic locus (Fig. 30). As in the 

experiment described in earlier, the sizes of the individual bands would be different 

from one another in the event of random integration. The DNA extracted from the 
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6TG resistant clones, would not be expected to hybridize with the probes in the case 

of an event of a classical replacement homologous recombination. 

 

ITR ψ Hprt fragment              CMV HygEGFP   c346        ITR Chromosomal 
                                                                                                     DNA

Kpn  I                    9 kb +
Hyg EGFP probe

 

 
Fig. 28: Scheme and the Southern blots of the HT 1080 derived clones.   DNA was digested with Kpn I, 

run on a 0.6 % 1X TBE gel, blotted on to a nitrocellulose membrane and hybridized with the 2.3 Hyg 

EGFP probe. 1a to 9a denote the 6TG resistant clones. M stands for marker, -c denotes 20 µg of 

HT1080 DNA, +c1 stands for 20 µg of HT1080 DNA spiked with 1 copy/cell of p SLS 11 digested 
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with Pme I, +c2 stands for 20 µg of HT1080 DNA spiked with 2 copies/cell of p SLS 11 digested with 

Pme I, +c3 stands for 20 µg of HT1080 DNA spiked with 3 copies/cell of p SLS 11 digested with Pme 

I.  +cp stands for plasmid DNA 

 

ITR ψ Hprt fragment              CMV HygEGFP   c346        ITR Chromosomal 
                                                                                                     DNA

Kpn  I                    9 kb +
Hyg EGFP probe

 

 

 

Fig. 29: Scheme and the Southern blots of the C 32 derived clones.   DNA was digested with Kpn I, run 

on a 0.6 % 1X TBE gel, blotted on to a nitrocellulose membrane and hybridized with the 1.8 Hyg 

EGFP probe. 10a to 13c denote the 6TG resistant clones. M stands for marker, -c denotes 20 µg of C32 

DNA, +c1 stands for 20 µg of C32 DNA spiked with 1 copy/cell of p SLS 11 digested with Pme I, +c2 

stands for 20 µg of C32 DNA spiked with 2 copies/cell of p SLS 11 digested with Pme I, +c3 stands for 

20 µg of C32 DNA spiked with 3 copies/cell of p SLS 11 digested with Pme I.  +cp stands for plasmid 

DNA. 
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ITR ψ Hprt fragment              CMV HygEGFP   c346        ITR Chromosomal 
                                                                                                     DNA

Sau 3AI                                                                             Sau 3AI
457 bp + 190 bp +

Ad 5 terminus probe                                            Ad 5 terminus probe
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Fig. 30: Scheme and the Southern blots of the C 32 and HT 1080 derived clones.   DNA was digested 
with Sau 3A I, run on a 1 % 1X TBE gel, blotted on to a nitrocellulose membrane and hybridized with 
the Ad5 terminus probe. 1a to 9a and 10a to 12e denote the 6TG resistant clones. M stands for marker, 
-c denotes 20 µg of HT1080/ C32 DNA, +c1 stands for 20 µg of HT1080/ C32 DNA spiked with 1 
copy/cell of p SLS 11 digested with Pme I, +c2 stands for 20 µg of HT1080/ C32 DNA spiked with 2 
copies/cell of p SLS 11 digested with Pme I, +c4 stands for 20 µg of HT1080/ C32 DNA spiked with 4 
copies/cell of p SLS 11 digested with Pme I. 
 

From these Southern blots, it was evident that the integration of the vector in the 

genome had taken place in a random manner.  Integrations of multiple Ad SLS 11 

copies were observed in some clones and no evidence of random integration was 

observed in the 6TG resistant cell lines.  More details of the data have been 

summarised on pg 92. 
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IV.5.3 Structural integrity of the integrated vector  

This Southern Blot was carried out to ascertain whether during the process of 

integration, the structural integrity of the vector had been compromised.  

The DNA extracted from the clones derived from the cell line HT 1080, was digested 

with the restriction endonuclease Pac I.  The digested DNA was run for a longer 

period in a 0.6 % 1X TBE gel, blotted onto a nitrocellulose membrane and hybridized 

with the 1.8 kb probe containing the whole of the Hygromycin EGFP fusion cassette.  

If the vector had integrated as an intact molecule, then the band size expected would 

be 22.5 kb, and if deletions had been present in the genome, the size would be less 

(Fig. 31). 

 

ITR ψ Hprt fragment              CMV HygEGFP   c346        ITR Chromosomal 
                                                                                                     DNA

Pac  I Pac I                              22.5 kb                           
Hyg EGFP probe

 

 

Fig. 31: Scheme and the Southern blots of HT1080 derived clones.   DNA was digested with Pac I, run 

on a 0.6 % 1X TBE gel, blotted on to a nitrocellulose membrane and hybridized with the 1.8 Hyg 

EGFP probe. M stands for marker, -c denotes 20 µg of HT1080 DNA, +c1 stands for 20 µg of HT1080 

DNA spiked with 1 copy/cell of p SLS 11 digested with Pme I, +c2 stands for 20 µg of HT1080 DNA 

spiked with 2 copies/cell of p SLS 11 digested with Pme I. 

 

From this Southern blot, it was evident that in most of the clones, the internal 22.5 kb 

fragment was intact.  More details of the data have been summarised on pg 92. 
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IV.5.4 Summary of the results obtained from the Southern blot experiments on 

the isolated clones 

The results from the Southern blot have been summarized in the following tables.  

Details are given only from the Hyg resistant clones, since the 6TG resistant clones 

did not give any bands, as expected. 

 
Name of  

clone 

Sac I digest 

9 kb + 

Kpn I digest 

9 kb + 

Sau 3AI  

0.5 kb + and 0.2 kb + 

Pac I digest 

22.5 kb 

Probe Hyg  Hyg Terminus Hyg 

3a 1 1 1 strong band at 0.45 kb 1 

3b 0 1 - 1 

3c 2 2 1 weak band 500 bp;  

1 weak band 0.7 kp;  

1 weak band 0.8 kb 

1 

3d 1 2 (1 strong, 

1 weak 

1 strong band 0.45 kp;  

1 weak band about 1.2 kb 

1 

3e 1 1 1 strong band close to 1 kb;  

1 weak band about 0.65 kb;  

1 weak band at 0.45 kb 

2? 

4a 1 1 1 weak band at 0.6 kb;  

1 weak band at 0.8 kb 

- 

4b 1 1 1 very weak band at 0.5 kb - 

4c 1 1 1 strong band at 0.6 kbs;  

1 weak band about 1 kb 

- 

4d 2? 1 1 weak band at 0.6 kb;  

1 very weak band at 0.65 kb;  

1 very weak band at 0.8 kb. 

- 

6a 1 2 1 strong band above 0.5 kp; 

1 weak band at 0.4 kb;  

1 weak band at 0.7 kb;  

1 very weak band at1.2 kb 

- 

6b - 1 1 weak band at 0.6 kb,  

1 very weak band at 1 kb;  

1 very weak band at 0.7 kb 

1  

6c 1 2 1 strong band at 0.6 kb;  

1 very weak at 0.5 kb 

1 (smaller) 

6d 1 1 1 strong band at 0.5 kb;  

1 very weak band at 1 kb;  

1 
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1 weak band at 1.5 kb 

6e 1 2 1 weak band at 0.65 kb;  

1 weak band at 0.55 kb 

1 

6f 1? 1 - 1 

7a 1 1 1 strong band at 0.55 kb 1 

7b 1 1 1 strong band at 0.55 kb;  

1 weaker band at 0.6 kb 

1 

7c 1 1 1 strong band at 0.5 kb;  

1 strong band > 2 kb 

1 

7d 1 1 1 weak band at 0.6 kb;  

1 strong band at 1.2 kb;  

1 weak band at 1.5 kb 

- 

7e 1 1 1 weak band at 0.5 kb 1 

7g 1? 1 - 2? 

 
 
Name of 

the clone 

Kpn I digest 

9 kb + 

Sau 3AI  

0.5 kb + and 0.2 kb + 

Probe Hyg Terminus 

8a 1 1 strong band, 0.6 kb 

17b 1 1 strong band, 0.6 kb 

17c 2-3 1 strong band, 0.6 kb; 1 weak band 0.5 kb   

17d 1 1 strong band, 0.5 kb; 1 strong band 1.2 kb 

17e 1 1 strong band, 0.6 kb; I very weak band at 0.3 kb 

17f 1 - 

22a 1 1 weak band, 2 kb; 1 weak band 2.5 kb 

22b 1-2 1 strong band 1.3 kb; 1 weak band 0.5 kb; 1 v.weak band, 

0.7 kb; 1 veryweak band 1.2 kb 

22c 2 1 weak band 0.5 kb, 1 very weak band ,1 kb (?) 

22d - - 

22e 1 1 very weak band, 1 kb? 

22f 2 0 

22g 2 1 weak band 1.1 kb; 1 weak band 1.2 kb 

22h ? 1 strong band, 1.9 kb; 1 weak band 1.4 kb; 1 weak band 0.7 

kb 

22i 2 1 weak band, 0.6 kb; 1 weak band 1 kb 

22k 1-2 1 strong band, 0.7 kb; 1 weak band 0.4 kb; 1 weak band 1.1 

kb 

Tables 7: Data regarding the number and size of bands, obtained from the Southern Blot experiments 

on C 32 and HT 1080 derived clones 
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From the Southern blot experiments carried out the following results can be inferred: 

i. The integration of the vector took place in a random manner 

(difference in sizes of the bands.) 

ii. In all of the 16 6TG resistant clones analysed, no presence of the 

adenovirus terminus was detected, as was expected in the case of 

homologous recombination between the vector and the genomic 

DNA. 

iii. In all of the 18 6TG resistant clones analysed, no presence of the 

HygEGFP cassette was observed as was expected in the case of 

homologous recombination between the vector and the genomic 

DNA. 

iv. In 9 confirmed and 14 possible (very weak bands) clones out of the 

37 Hyg resistant clones (24 – 38%), more than one copy of the 

transgene was present, suggesting multiple integration events. 

v. In only one of the 15 Hyg resistant clones analysed does the vector 

molecule seem to have undergone an internal deletion. 

vi. At least in 8 out of the 37 (21 %) Hyg resistant clones analysed, there 

were more number of Ad termini than expected for the number of 

transgenes detected in the clone. 

 

IV.5.5 Analysis of the junction sites of integration of HC-AdV DNA 

These series of experiments were conducted to determine the sites within the human 

genome where the Ad SLS 11 DNA had integrated.   Three methods, viz the LAM 

PCR method (Schmidt et al., 2001), Splinkerette PCR (Mikkers et al., 2002), (Devon 

et al., 1995), Inverse PCR (Triglia et al., 1988) was tested on the DNA that was 

extracted.  The best results were obtained with the modified inverse PCR as described 

in the materials and methods section.  Basically, the DNA was digested with a 4 base 

pair cutting enzyme and religated to form circular molecules. A modification of the 

ligation reaction (Lund et al., 1996) was used. wt DNA and wt DNA spiked with 

varying amounts of the plasmid were used as controls. 0.5 % of the product was used 

as a template in the nested PCR. The products were separated on a high percentage (2 

%) TAE agarose gel, and the bands were cut out, cleaned and subcloned into the 

TOPO TA cloning vector (Invitrogen). The DNA was sequenced. The sequences were 
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analysed for the TOPO TA vector DNA sequences and they, the primers, the termini 

sequences and restriction site that were used were marked and separated. The flanking 

sequences were subjected to NCBI BLAST search and the locations of high 

percentage matches were plotted. Holding the mouse over the plot in the map viewer, 

over the component master map (CMM), the co-ordinates of the genomic DNA clone 

identified uying the BLAST search was located at the chromosomal level.  The co-

ordinates were used to confirm the results obtained when the DNA sequences were 

subjected to ENSMBL BLAST search, and the exact location of the integrated Ad 

SLS 11 was determined, right up to the exact nucleotide. Possible locations of the 

sequences involved in the actual recombination event (patchy homologies) were also 

identified.  Chromosomal locations were denoted by the exact words used in the 

databases. 

 

Inverse PCR 

A modification of the inverse PCR protocol reported in (Silver & Keerikatte, 1989, 

Triglia et al., 1988) was re-adapted to fit in with the conditions of amplification of the 

adenoviral terminus junction sites.  A modification of the ligation procedure reported 

in (Lund et al., 1996) was used for the ligation experiment. The full details of the 

protocol are given in the materials and methods section of the thesis (Fig. 32).  

Inverse PCR using a different enzyme Tsp 509L was carried out on 18 of the junction 

sites to reconfirm the sites. 

 

Junction sites obtained: 

Due to space constraints, the sequences obtained from one clones, clone 17e is 

exhibited as an example to demonstrate how the full calculation was carried out.  

Only the processed data from all the remaining clones is given.  

By convention, when the same nucleotides were found in the junction that 

corresponded to the Ad5 and the genomic DNA, it was taken as having originated 

from the AdV terminus.  In the sequences that are presented, the Ad5 ITR sequences 

are given in the first line, the junction site sequences in the second line and the 

genomic DNA sequence where the integration had taken place is given in the third 

line. The junction site sequences with homology to the Ad5 ITR sequence and their 

counterpart in the Ad5 terminus, is denoted by a gray box; whereas the junction site 

sequences with homology to the genomic DNA sequences, and their counterparts in 



 98

the genomic DNA, are marked by a yellow box.  In the junction sequences, (-) refers 

to positions in the sequences derived from viral temius and (+) to the positions 

derived from chromosomal DNA. 

 
Sau 3 AI                      Sau 3 AI

Chromosomal DNA  Integrated Ad SLS 11

Total cellular DNA 
digested with enzyme

P3    P1             P2  P4 Digested DNA
purified

P2P1 DNA ligated to form
intramolecular
circle.  PCR with 
primer pair P1 and 
P2

P3 P4

AdV DNA                   AdV DNA
    chromosomal DNAunknown

Nested PCR with 
primer pairs P3
and P4

Product sequenced  
Fig. 32: Scheme of the Inverse PCR carried out on the clones derived from C 32 and HT 1080 cells to 

determine the sequence of the junction sites of integration of the HC-AdV and the cellular DNA. 

 

In the sequence from the two clones given below, underlined text denotes the primers, 

bold text denotes the ITR sequence, plain text denotes the genomic sequence, and the 

text in bold and italic characters denotes the restriction endonuclease recognition site. 
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Analysis of clone 17e 

Clone 17e is a C32 derived Hyg resistant cell line. The Southern blot data 

(summarized in pg 92) revealed the presence of one single copy of the vector, with a 

size between 10 and 12 kb.  On analysis of the clone following Inverse PCR, a single 

Kpn I site was found at 1397 bps downstream of the integration site.  This would give 

rise to a 11.3 kb band on the above mentioned Southern blot, validating the result.  

Hybridisation with the terminus probe revealed the presence of one strong band less 

than 600 bps, and a very weak band less than 300 bps in size.  This correlates with the 

data obtained following the inverse PCR and sequencing of the DNA obtained from 

17e, where a Sau 3A1 site was observed at 85 bps upstream of the integration site of 

the left terminus, giving any band obtained from that integration a size of 549 bps.  A 

Sau 3AI site was also observed 91 bps downstream of the integration site of the right 

terminus of the vector, giving any band resulting from that integration a size of 281 

bps. This tallies with the Southern blot data.  The sequence obtained from the Inverse 

PCR product using the primers for the left terminus is given below. 

 

GCAACATCACACTTCCGCCACACTACTACGTCACCCGCCCCGTTCCCAC

GCCCCGCGCCACGTCACAAACTCCACCCCCTCATTATCATATTGGCTT

CAATCCAAAATAAGGTATATTATTGATAAAACAAAGGGGCCGGGCGCG

GTGGCTCACGCCTGCAATCCCAGCACTTTGGGAGGCTGAGGCGGGCAGAC

CACGAGGTCAGGAGATCAAATGATATCAAAACGCCAACTTTGACCCGG

AACGCGGAAAACACCTGAGAAAAACACCTGGGCG 

 

NCBI BLAST search was used to align the sequence with the human genome and the 

integration was observed to have happened in the chromosome 20q13+3, in the 1st 

intron of the BTPD4 gene.  The last 4 bps of the Ad terminus were deleted.  The 

sequence was analysed in the ENSEMBL database to verify the location.  The 

location of the integration in the genome was mapped in the 61876780 bp (numbering 

based on the ENSEMBL database) of the chr 20.  
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Fig. 33: Analysis of the junction between HC-AdV DNA and chromosomal DNA: clone 17e. 
A. Sequence of the junction site.  B. Map of chr 20, showing the integration that took place in 20q13.3.  

C. Closer view of 20q13.3, showing the region where the vector had integrated.  D. Map of the BTBD4 

gene, showing the integration of the vector in the intron 1-2.  The sequence data from the right 

terminus too was used to obtain the picture. 

 

The sequences obtained from the Inverse PCR product using the primers for the right 

terminus is given below. 

 

 

 

 

A 

B

C

D 
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CATCACTCCGCCCTAAAACCTACGTCACCCGCCCCGTTCCCACGCCCCG

CGCCACGTCACAAACTCCACCCCCTCATTATCATATTGGCTTCAATCC

TGCCTCAGCCTCCTGAGTAGCTGGGACTACAGGGCGCCTGCCACCACACC

TGGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCA

AGATGGTCTCGATCGCGCCCCTAGGGGCCGGCCTTAATTAAATCAAGC

TTATCGATACCGTCGAGACC 

 

NCBI BLAST search was used to align the sequence with the human genome and the 

integration was observed to have happened in the chromosome 20q13+3.  The last 25 

bps of the right terminus of the Ad DNA were deleted.  The sequence was analysed in 

the ENSMBL database to certify the location, and the integration was mapped to bp 

61881299 in chr 20 q13.3, in the 1st intron of the BTBD4 gene, 4.5 kb downstream of 

the left terminus integration. 

 
Since all the bands observed in the Southern blotting (summarized in pg 92) can be 

accounted for, it can be assumed that there was only one event of vector integration in 

the cellular genome, and during the event, 4519 bps of the cellular DNA were deleted. 

 

IV.5.5.A HT1080 derived cell lines 

Clone 3a 

A deletion of 9 base pairs was observed in the terminus at the junction site.  The 

integration had taken place in the chromosomal location 7p21, at the 17859816 bp.  

However, a fusion of sequences from 4q22 was observed 75 bps downstream of the 

integration site. 
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Clone 3c 

A substitution of a G to C was observed in the terminus at the –3 bp location, where 

the last bp was missing.  The integration was mapped to chromosome 4p21 at the 

136793983 bp, but sequences different from those expected from the database were 

observed for the first 31 bps down stream of the junction site in the genomic region. 

 
 

When the sequences are analysed, it looked as if the DNA at the junction site had 

formed a hairpin structure. 

     3c left terminus 

     G 
   T-A 

   A-T 
    G-C 
     T-A 
     T-A 
     A-T 
     T-A 
     T-A 
                       5’-ATCA-TAT-’3  
Clone 4a 

The inverse PCR yielded three sequences, two from the left terminus and one from 

the right terminus of the integrated vector.   

 

Left terminus sequence 1: 

15 base pairs were observed to have been deleted from the terminus. The 

chromosomal location of the integration was 3p22, in the base pair 32977598.  

 
 

 



 103

The possibility of the DNA at the junction site forming a stem loop was also noticed 

in this junction site. 

4a left terminus I 

5’- CAAAGAGGCAAAGAAGGCTGCAATGACCTTATTTTGGATTGAA-‘3 
 

 
         

  Left terminus sequence 2  

A deletion of the last 7 bps of the terminus was observed and the integration was 

mapped to 13923835 bp in chromosome 5p15.2, in the DNAH5 (dynein, axonemal, 

heavy polypeptide 5) gene, in the 23rd intron.  

 
 

Right terminus sequence: 

The last 6 bps of the terminus was absent in the sequence and the vector had 

integrated into the 14466138 bp of the 5p15.1-p14, in the TRIO (triple functional 

domain, PTPRF interacting) gene, in the 33rd intron. The integration is at a site 

542303 bps downstream from that of the above-mentioned left terminus. 
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Clone 4b 

In the left terminus sequence, a deletion of the last 4 base pairs, and a possible 

duplication (underlined) of the last 10 base pairs of the terminus present in the 

junction, and a deletion of a C at the 4th bp from the genomic sequence, was observed. 

The integration site was mapped as the 125388250 bp of the chromosome 11q 24.2 

into the CDON (cell adhesion molecule-related/down-regulated by oncogenes) gene, 

in the 7th intron. 

 
In the right terminus sequence, a deletion of the last 3 bps of the terminus, a 

duplication (underlined) of the last 8 bps of the terminus present in the junction, and 

the introduction of two novel base pairs in the junction site, was observed. The 

integration had taken place in chromosome 11q24 in the124920889 bp, 467361 bps 

upstream of the left terminus. 

 
Clone 4c 
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In the left terminus sequence, the 4th bp from the end of the terminus was 

deleted and 4 novel bps were inserted in that site. The integration site was mapped as 

the 149348992 of the Xq28, into the intron 4-5 of the CXorf6 gene.  In the vector Ad 

SLS11, this corresponded to bp 29081, located in the c346 cosmid derived stuffer 

DNA. 

In the right terminus sequence, the last 14 base pairs of the terminus were deleted. Of 

the 64 genomic DNA bps obtained during sequencing, the first 40 bps matched 100% 

with cDNAs from 11 different genes, with 2 of the genes located in 14 q 23-24 region, 

the remaining 24 bps did not find matches during BLAST searches. Sequence analysis 

in Ensembl suggests that the integration took place in chromosome 14 q23, in 

66874487 bp in the ATP6V1D gene, and the “unmapped” 24 bps are from the 

136554664 bp from 6q23 in PDE7B gene.  

The first part matches also in part (17/29) with 130035841 bp in chromosome 6q22.3.  

 
      

Clone 4d 

The left terminus sequence had a deletion of the last 17 base pairs. The site of 

integration was mapped into chr 2p24, into non coding area in the 14295915 bp. 

 
The right terminus sequence had a deletion of the last 68 base pairs. The site of 

integration was mapped into chr 2p24, into non coding area in the 14311184 bp, 20 

bps upstream of the left terminus integration. 
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Comparison of the junction site 

 
 
 
Clone 6a 

The last 6 base pairs of the left terminus were found to be deleted and the integration 

was observed to have happened in the chromosome 17q24, bp 68279602, in the 

SLC39A11 solute carrier family 39 (metal ion transporter), member 11 in the 8th  

intron. 

 
The last 6 base pairs of the right terminus were missing and the integration was 

observed to have happened in the chromosome 17q24, in the bp 68326313 bp, in the 

SLC39A11 solute carrier family 39 (metal ion transporter), member 11 in the 8th 

intron, 46711 bps upstream of the left terminus. 

 
 
When the sequences are analysed, it looked as if the DNA at the junction site had 

formed a hairpin structure, possibly in the manner depicted below. 
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Clone 6b 

The last 3 bps of the left terminus was missing.  A substitution was noticed at the 

position +3 of the integrations. The integration was mapped to chromosome 18q24 in 

bp 74665084, located in non coding area. 

 
The last 2 bps of the right terminus was absent and the G at –2 position was 

substituted by a C.  Novel 9 bps were introduced at the junction. The integration was 

mapped to non coding region of chromosome 18q11, in the bp 20386721. 

 
  

When the sequences are analysed, it looked as if the DNA at the junction site had 

formed a hairpin structure, possibly in the manner depicted below. 

 

   A  
 C-G 
 T-T 
 A-A 
 G-C 
 T-A 
 T-A 
 A-T 
 5’- ATT-ATG-‘3 
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Clone 6c 

In the left terminus, the last bp was missing.  The novel 4 (or possibly 7 bps) bps at 

the junction of the viral and genomic sequences might be a duplication (underlined) of 

bps from –12 position relative to the junction.  The integration took place the 4325726 

bp of chromosome 3p26.1 in the SET domain and mariner transposase fusion gene, in 

the 1st intron. 

 
 

Clone 6e 

The entire left terminus was present. The integration was mapped to chromosome 

11q22.1, in the 100761198 bp. 

 
 

The last 10 bps of the right terminus were absent in the integration that took place in 

chromosome 21q in the 39152777 bp, located in non coding region. 

 
 

Clone 6f 

The last 7 bps of the left terminus was deleted and the integration was mapped into 

alpha satellite DNA.  A substitution was observed at +3 bp in the genomic DNA in 

the junction. 
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A deletion of the last 29 bps of the right terminus, and in the junction site sequences 

derived from the genomic DNA, and two substitutions at bp +5 and +10 were 

observed. The integration was mapped into the 65543774 bp in chromosome 9q12. 

 
Clone 7a 

The last 6 bps of the left terminus were deleted. The vector was found to have been 

integrated into the 67405840 bp of the chromosome 18q22.3. 

                                                       
The last 22 bps of the right terminus were missing.  The sequence showed similarity 

to three separate loci, all in chromosome 16p11 region, one in non-coding region 

(29461478 bp), and two in the same gene (30201478 bp and 29359713 bp).                                               

 
  

Clone 7b 

Left terimus sequence I. 

The last 80 bps of the left terminus was missing and the integration had taken place in 

the 121699946bp of Chr 10q25. 
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In the second sequence obtained from the left terminus, the last 21 bps of the terminus 

were missing.  The location of the integration in the genome was mapped in the 

58075708 bp of the chromosome 15q22.2 

 
The entire right terminus was observed to be present.  The integration had taken place 

in the chromosome 15q24, in an Alu repeat region in between coding genes at 

53144052 bp of the chromosome, 4931656 bps downstream of the observed left 

terminus. 

 
Clone 7c 

A deletion of 81 bps of the left terminus was observed the integration, which was 

mapped into chromosome 3p11 at 68177382 bp, in the FAM 19A1 gene, in the 1st 

intron. 

 
The right terminus integration was mapped in the same locus as the left terminus, 598 

bps upstream of the left terminus integration. The last bp of the terminus was missing 
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Clone 7e 

In the left terminus, the last 3 bases were found missing.  The integration was mapped 

into 13q14.11 in the NP_001009814.1 gene into 24th intron in the 41194735 bp. 

 
A deletion of the last 20 bps of the right terminus were observed.  The integration 

occurred at the 109261928 bp in chromosome 12q24.11. 

 
Clone 7g 

The last 26 bps of the left terminus were observed to be deleted in junction site, and 

the integration was localised possibly to chromosome 14q24 into the ATP6V1D gene 

in the 66874695 bp in exon 9. 

 
In the right terminus sequence, a deletion of the last 14 bps was observed. The 

integration was in 14q24 into the ATP6V1D gene in the 66874458 bp. 
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IV.5.5.B C32 derived cell lines 

 
Clone 8a 

The last 26 bps of the left terminus were missing and the integration was mapped to 

chromosome 8q24 into 144983689 bp 

 
The last 49 bps of the right terminus were missing and the integration had taken place 

in the 136554715 bp of 6q22.3 into exon 13 of the PDETB gene. 

 
Clone 17a 

The last 3 bps of the first left terminus were missing and the integration was mapped 

to chr Xq26.2 into the 133321215 bp, in the 1st intron of HPRT gene, which also 

corresponds to the bp 1723 of the Ad SLS 11 vector used in the study. 

 
In the second left terminus band the presence of the full terminus, with a substitution 

of a T to C at bp -6 from the junction, was observed. At +18 bps into the genomic 

sequence from the junction, an A was substituted by a G.  The integration had 

occurred in 24908960 bp of chr 6p22.2. 
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The last 49 bps were found deleted in the right terminus, and the integration was 

mapped to Chr 10, in repetitive DNA. 

 
Clone 17c 

The last 7 bps of the left terminus were missing and the integration was mapped to the 

44962757 bp in chr 16q11.2, a novel A was inserted at the junction site 

 
 

Clone 17d  

Two bands were sequenced from the left terminus. 

Left terminus sequence, band I: 

The last 17 bps of the terminus were deleted and the integration was mapped to 

133320237 bp chr Xq26.2, in the 1st intron of the HPRT gene, which also corresponds 

to the bp 709 of the Ad SLS 11 vector used in the study. 

 
Left terminus sequence, band II  

The last 49 bps of the terminus were found missing and the integration had taken 

place in 170477721 bp of chr 1q25.1in the KLHL20 gene, in the 10th intron. 
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Clone 22a 

The last 24 bps of the right terminus were deleted and the integration was localized to 

sequences similar to satellite 3 mRNA. 

 
Clone 22b 

The entire left terminus was present in the integration, which had taken place in 

175256298 bp in Chr 3q26+3, in the NLGN1 gene, in the 5th intron. 

 
103 bps of the right terminus was deleted and the integration was mapped to Chr 

3q26.3 in the bp179409396.  

 
 
Clone 22c 

The last 2 bps of the left terminus were deleted and a novel T was inserted in the 

junction, which was mapped to the 89017534 bp in Chr 11q15. 

  
Clone 22d 

The last 23 bps of the left terminus were deleted and the integration was mapped to 

the 70744517 bp of Chr 7q11, in the 3rd intron of the CALN1 gene. 
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Two sequences were obtained from the right terminus. 

 

The last 3 bps of the Ist right terminus were deleted and the integration was localized 

to an Alu Y repeat element at the 194954088 bp of Chr 3q29. 

  

The last 28 bps of the IInd right terminus were deleted and the integration was 

localized to an alphoid repetitive DNA region.  

 

 
 

Clone 22e 

A deletion of the last 17 bps of the left terminus and the substitution of an A to G in 

the genomic DNA, at the +10 bp from the junction, were observed and the integration 

was mapped to Chr 3q13 to the 117218961 bp, in the 3rd intron of the LSAMP gene. 
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Clone 22f 

The full left terminus was observed to be present and the integration occurred in chr 

7q31 in the bp 111008662 in the 34th intron in the DOCK4 gene.  

 
 

The last 57 bps of the right terminus were missing and the integration was in bp 

110989851 of chr 7q31, in intron 39-40 of the DOCK4 gene, 18811 bps upstream of 

the left terminus, in the event that both of the integrations taken place in the same 

chromosome. 

 
Clone 22 g 

Two sequences were obtained from the left terminus.   

In the first left terminus sequence, the last 27 bps were found deleted and the 

integration had occurred in Chr Xp11.1-11.4 in 45359319 bp. An A to T substitution 

at bp +1 in the genomic DNA at the junction site was also noted. 

  

The last 16 bps of the IInd left terminus were deleted and the integration was mapped 

to the 144984259 bp of Chr 8 q24+3. 
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The last 5 bps of the right terminus were missing and the integration was mapped to 

Chr. 8q23, integration in 108870353 bp. 105 bps downstream of the junction site, the 

sequences were from Chr 9q12.  Owing to the strange nature of the junction, this was 

reconfirmed by inverse PCR using two different enzymes. 

 
 

Clone 22h 

The presence of the entire left terminus and the introduction/substitution of 1 bp at the 

junction site were observed and the integration was mapped to Chr 9p12 in the 

43592419 bp. 

  
 
The full right terminus was present and 2 substitutions, G to T at +1 bp and a C to G 

at +25 bp from the junction site in the genomic sequence, were observed.  The 

integration has taken place in chr 9p12 at position 42373494, in a novel predicted 

gene.          

 
 

Clone 22i 

Two sequences were obtained from the left terminus.  

The last 15 bps of the Ist left terminus were missing and the integration was mapped 

to 44947706 bp of Chr 22q 13, in the 6th intron of the PPARA gene.  
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A deletion of 43 bps was observed in the IInd left terminus and the integration had 

taken place in Chr Xq26.2  in the bp 133321664, corresponding to Hprt 1st intron, and 

the 2136 bp of the vector used.  

 

 

 

The last 59 bps of the right terminus were deleted and the integration was mapped 

into the 141523423 bp in Chr 7q35 in a novel gene. 

 
Clone 22k 

 

The last 17 bps of the left terminus were deleted and the integration had taken place in 

Chr 20p12.1 in the 14643087 bp. A T to C substitution was observed -28 bps 

upstream of the junction site in the viral terminus. 
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The full right terminus was present and the integration had taken place in the 

integration had taken place in Chr 20p12.1 in the 14643056  bp, 81 bps downstream 

of the left terminus, had both of the integrations taken place in the same arm. 

 
 

The locations of the HC-AdV termini integrated into the cellular genome are mapped 

here in Fig. 34. 
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Fig. 34: locations of the HC-AdV termini integrations in the cellular genome.  The approximate 

location of each integration as obtained from the sequence data was mapped on to a map of the 

genome. 

 

 

 



 121

The results obtained in the above section were summarised in Table 8. 
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3a L 7p 21 

17859816 bp  

 11 N Integrated in a junction of 4q22 and 7p 21 

3c L 4 q 28 
 
136793983 bp   

 1 N A G to C substitution at –3 of the terminus, 

rearrangements in the first 31 bps downstream of the 

integration. 

4a L 3p22 
 
32977598 bp 

 15 N  

4a L 5p15.2 

13923835 bp 

 7 Y DNAH5 gene, 3’ 

4a R 5p15 

14466138 bp 

 7 Y TRIO gene, 3’ 

4b L 11q24.2 

125388250 bp 

 4 Y CDON gene, MID. Deletion in +3 from the terminus in 

the genomic sequence. 

4b R 11q24 

124920889 bp 

 3 N  Last 8 bps duplicated, 2 additional bps introduced. 

4c L Xq28 
 
149348992 bp 
 

  0 Y 4 bp insertion at the junction. 
CXorf6 gene 

4c R 14 q23 

66874487 bp 

 14 Y 14q23-6q23 junction from +40 bps onwards.ATP6V1D 

gene 

4d L 2p24 

14295915 bp 

 17 N  

4d R 2p24 
 
14311184 bp 
 

 68 N  

6a L 17q24 

68279602 bp, 

44670 bps 

away 

 6 Y SLC39A11  solute carrier family 39 gene 

6a R 17q24 

68326313 bp 

 6 Y SLC39A11  solute carrier family 39 gene 
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6b L 18q24 

74665084 bp 

 3 N -2 to -6 of terminus duplicated 

6b R 18q11 

20386721 bp 

 2 N -3 from terminus is substituted, 9 unknown bps at 

junction 

6c L 3p26.1 

4325726 bp 

 1 Y 4 unknown bps in the junction. SETMARgene 

6e L 11q21 

100761198 bp 

 0 N  

6e R 21q22 

39152777 bp 

 10 N  

6F L Alpha satellite 

repeated DNA 

NA 7 N 3 novel bps introduced in the junction. 

6F R 9q12 

65543774 bp 

 29 N 2 substitutions in the genomic region 

7a L 18q22.3 

67405840 bp 

 6 N  

7a R 16p11  22 ? In –3 position, an A to G substitution. Integration in 3 

different loci possible (2 active genes). 

7b L 10q25 

121699946 bp 

 80 N  

7b L 15q26 

58075708 bp 

 21 N  

7b R 15q24 

53144052 bp 

 0 N  

7c L 3p11 

68177382 bp 

 81 Y FAM19A1 

7c R 3p11 

68176784 bp 

 1 Y FAM19A1 

7e L 13q 14.11 

41194735 bp 

 3 Y NP_001009814.1 gene 

7e R 12 q24.11 

109261928 bp 

 20 N  

7g L 14q24 

66874695 bp 

 26 Y  
ATP6V1D gene 

7g R 14q24 

66874458 bp 

 14 Y ATP6V1D gene 

8a L 8q24 

144983689 bp 

 26 N  

8a R 6q22.3 

136554715 bp 

 49 Y PDE7B 
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17a L X q26.2 

133321215 bp 

 3 Y HPRT 

17a L 6p22.2 

24908960 bp 

 0 N A T to C and A to G substitutions in –5 and + 18 

positions, respectively. 

17a R 10 ? NA 49 ? Repetitive  DNA 

17c L 16q11.2 

44962757 bp 

 7 N A novel A introduced at the junction site. 

17d L X q26.2 

133320237 bp 

 17 Y HPRT 

17d L 1q24 

170477721 bp 

 49 Y KLHL20 

17e L 20q13+3 

61876780 bp 

 4 Y BTBD4  gene 

17e R 20q13+3 

61881299 bp 

 25 Y “, 4519 bps downstream of the L 

22a R ? NA 24 Y Satellite mRNA 

22b L 3q26+3 

175256298 bp 

 0 Y A novel G introduced at the junction site. NLGN1 gene 

22b R 3q26+3 

179409396 bp 

 105 N  

22c L 11q15 

89017534 bp 

 2 N A novel A introduced in the junction. 

22d L 7q11 

70744517 bp 

 23 Y CALN1 

22d R 3q29 

194954088 bp 

 3 N Part of integration into an Alu Y region 

22d R ? NA 28 N Alphoid repetitive DNA 

22e L 3q13 

117218961 bp 

 17 Y A T-C substitution in + 10 bps. LSAMP gene. 

22f L 7q31 

111008662 bp 

 0 Y DOCK4  

22f R 7q31 

110989851 bp 

 57 Y “18811 bps upstream of the left terminus 

22g L Xp11.1-11.4 in 

45359319 bp 

 27 N A T-A substituion at Bp +1. 

22g L 8 q24+3 in 

144984259 bp 

 16 N  

22g R 8q23 

108870353 bp 

 5 N* Chromosomal joining into chr 19 (into a LOC388526 

gene, 105 bps downstream of the junction site) 

22h L 9 p 12 in  0 N Deletion of 2 bps at +2 bp from junction. 
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43592419 bp 

22h R 9 p12 

42373494 bp 

 0 Y A C to A substitution at +2 bp from the junction. Novel 

gene. ENST00000355214 

22i L 22q13 

44947706 bp 

 15 Y PPARA 

22i L X q26.2 

133321664 bp 

 43 Y HPRT 

22i R 7q35 

141523423 bp 

 59 Y Novel gene 

ENSG00000197962 

22k L 20p12.1 

14643087 bp 

 17 N A T to C substitution at -28 bps 

22k R 20p12 

14643056 bp 

 0 N  

 
Table 8: Table listing the integration of the vector, the direction of the integration with respect to the 

chromosome, and the consequences thereof to the cellular and viral DNA.  The BLAST searches on 

NCBI and ENSMBL databases were performed on the sequence obtained from the Inverse PCR. 

 

The HC-AdV Ad SLS 11 appeared to integrate in a random manner in the 

chromosomal DNA.  In all chromosomes, except Chr 19, integrations of the vector 

were observed. 

 

IV.5.5.C Sequence from both termini of the vector molecule 

As mentioned in pg 90, the bands observed in the Southern blots conducted on clone 

17e can be correlated with the sequence data obtained from the same clone via Inverse 

PCR.  The sequence data on some other clones suggest that both of the termini of the 

same molecule have been sequenced.  These “probable both termini”, observed when 

the left and the right termini of the vector were found in the same chromosome, are 

given in the table below, Table 9.  

 
Clone Left Terminus 

integrated in bp 

Right terminus 

integrated in bp 

Probable deletion in the 

genomic DNA in bp 

4a 5p15.2, 13923835 5p15, 14466138 542,303  

4b 11q24.2, 125388250 11q24, 124920889 467,361 

4d 2p24, 14295915 2p24, 14311184 15,269 

6a 17q24, 68279602 17q24, 68326313 46,711 

6b 18q24, 74665084 18q11, 20386721 54,278,363 
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7b 15q26, 58075708 15q24, 53144052 4,931,656 

7c 3p11, 68177382 3p11, 68176784 598 

7g 14q24, 66874695 14q24, 66874458 237 

17e 20q13+3, 61876780 20q13+3, 61881299 4519 

22b 3q26+3, 175256298 3q26+3, 179409396 4,153,088, possible concatomer 

22f 7q31, 111008662 7q31, 110989851 18,811 

22g 8q24+3, 144984259 8q23, 108870353 36,113,906 

22h 9p12, 43592419 9p12, 42373494 1,218,925 

22k 20p12.1, 14643087 20p12, 14643056 31 

 

Table 9: Data showing the probable integration of both the left and right termini of the vector into the 

same chromosome.  

However, it is not possible to state dogmatically that the sequence obtained did come 

from both of the termini of the same vector molecule instead of two individual termini 

from two different vectors, due to the fact that the bands cannot be corroborated 

totally by the Southern blot data and in the absence of FISH data.  So it must be 

interpreted with caution. 

 

IV.5.5.D Integration of the vector DNA into genes 

Of a total of 61 clones from which the data is presented, 29 integrations were in genes 

(chromosomal regions identified as genes in the ENSEMBL database), 30 integrations 

were in non-coding region and the sites of 2 integrations could not be determined.  

The data was plotted on the following Pie diagram, Fig. 35. 

This suggests that HC-AdV integrated in both coding as well as non coding genetic 

regions, and there seemed not to be any specific preference to either of them. 

 

IV.5.5.E Integration of the vector DNA into common insertional sites 

The genes in which the integrations had taken place were compared against the 

known Common Insertional Sites (CIS) for Retroviral Vectors in the mouse genome 

to analyse whether HC-AdV preferred integration into certain genes that were 

commonly targeted by retroviral vectors, given that the genes had the same names in 

both human and mice genomes.  Individual genes were searched for matches the CIS 

in the Copeland Database http://rtcgd.ncifcrf.gov/ . No matches were found to the CIS 

in the mouse genome to the genes in which integrations of HC-AdV had taken place. 

http://rtcgd.ncifcrf.gov/
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Fig. 35:  Pie diagram showing the distribution of integration sites of HC-AdV in the cellular genome.  

The ENSMBL database was used to verify whether the integration had taken place in a gene or a non 

coding region 
 

IV.5.5.F Integration of the vector DNA into genes of any particular ontology 

To check if the HC-AdV DNA favoured integrations into genes of any particular 

function, the molecular ontology of the genes involved were analysed using the Swiss 

prot tool found at http://ca.expasy.org/sprot/ or the ENSEMBL database.  The gene 

ontology of any gene is subdivided into molecular function, biological process and 

cellular function and the individual results were rechecked using the GO tool at 

http://www.geneontology.org/GO.doc.shtml.  The two insertions into genes from the 

in vivo data given in pg 145 are also included in table 10.  

 
Gene Molecular functions Biological processes 

DNAH5 i. Microtubule motor activity. i. Microtubule-based 

movement. 

TRIO i. Guanyl-nucleotide exchange  

  factor activity. 

ii. Protein serine/threonine kinase         

   activity 

i. Transmembrane receptor 

protein tyrosine phosphatase 

signaling pathway 

ii. protein amino acid 

phosphorylation 

Diagram showing the distribution of integration 
sites in the genome

48%

49%

3%

Genes
Non coding region
Undetermined

http://ca.expasy.org/sprot/
http://www.geneontology.org/GO.doc.shtml
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CDON i. Protein binding i. Cell adhesion 

ii. Positive regulation of 

myoblast differentiatio 

Cxorf6 ? ? 

ATP6V1D i. Hydrogen-transporting ATPase activity 

ii. Rotational mechanism 

i. Vacuolar acidification 

ii. ATP biosynthesis 

SLC39A11 i. Metal ion transporter activity i. Metal ion transport 

SETMAR i. DNA binding 

ii. Histone-lysine N-   

    methyltransferase activity 

iii. Zinc ion binding 

i. Chromatin modification 

ii. Regulation of transcription 

FAM19A1 ? ? 

NP_001009814.1 i. ATP binding 

ii. Hydrolase activity, acting on   

    acid anhydrides. 

 

PDE7B i. 3',5'-cyclic-AMP phosphodiesterase 

activity 

i. Signal transduction 

ii. Synaptic transmission 

HPRT i. Hypoxanthine 

phosphoribosyltransferase activity 

i. Purine ribonucleoside salvage 

ii. Behavior 

KLHL20 i. Actin binding 

ii. Protein binding 

i. Cytoskeleton organization and 

biogenesis 

BTBD4 i. Nucleic acid binding 

ii. Protein binding 

iii. Zinc ion binding 

i. Transcription 

ii. Regulation of transcription 

NLGN1 i. Carboxylic ester hydrolase activity 

ii. Neurexin binding 

i. Calcium-dependent cell-cell 

adhesion 

ii. Neuronal ion channel 

clustering 

iii. Protein targeting 

iv. Regulation of neuron 

differentiation 

v. Synaptic vesicle targeting 

vi. Synaptogenesis 

CALN1 i. Calcium ion binding  

LSAMP i. Protein binding i. Nervous system development 

ii. Cell adhesion 

DOCK4 i. Guanyl-nucleotide exchange factor 

activity. 

ii. GTP binding 
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iii. GTPase binding 

ENST00000355214 ? ? 

PPARA i. Protein binding 

ii. Transcription factor activity 

i. Fatty acid metabolism 

ii. Lipid metabolism 

iii. Transcription from RNA 

polymerase II promoter 

ENSG00000197962 ? ? 

Bfsp2 i. Structural molecule activity 

ii. Structural constituent of eye lens 

i. Cytoskeleton organization and 

biogenesis 

Gmeb2 i. DNA binding 

ii. Transcription regulatory function 

i. Transcription 

 
Table 10: List of the molecular ontology of the genes where the HC-AdV integrations had taken place.   

 

The aim of conducting this part of the study was to determine whether the HC-AdV 

favoured integration into genes of any particular molecular function or biological 

process.  There was a special interest to determine whether AdV preferentially 

integrates into genes that are protooncogenic or those genes that might have 

oncogenic potential, like the ones involved in cell cycle.  In the molecular ontology of 

the genes analysed, no integration was observed in such genes (two integrations were 

observed in genes involved in transcription), and HC-AdVs did not seem to exhibit 

any obvious affinity to integrate into genes of any given ontology. 

 

IV.5.5.G Influence of genes on the integration of the vector DNA into non-coding 

region 

To determine if the integrations of the HC-AdV DNA into the non coding region of 

the genome was influenced by the presence of neighbouring genes, the site of 

integration was analysed for the distance between it and the closest gene. Two 

parameters were selected.  The integrations were mapped for 10 kb upstream and 

down stream and then for 25 kb upstream and downstream of the integration site. 10 

(32.3 %) of the integrations that had taken place into the non-coding region, had taken 

place within 25 kb of genes, 5 integrations (16.2 %) had taken place within the 10 kb 

window. In three cases (viz 8a L, 22g L, and 17a L), integrations had taken place in 

regions of gene clusters where there were four, four and two genes within the 25 kb 

window.  The data was formulated into table 11. 
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Clone Neighbouring gene Distance (in Kb) 

3a L PRPS1L1 20.13 

4a L CCR4 6.2 

4b R E124 23 

6f R Novel ENSESTG00000033857 11 

7b L SEP32IP 8.3 

7b L FOXB1 8.7 

7e R ANAPC7 2.9 

8a L ENST00000327830 

NRBP32 

NP_510965.1 

SCRIB 

11.2 

12.5 

12.7 

14.3 

17a L Q5VV38 

GMNN 

5.7 

14.7 

22g L ENST00000327830 

NRBP32 

NP_510965.1 

SCRIB 

11.1 

12.4 

12.8 

14.4 

 

Table 11: List of the genes located within a 30 kb window of the integration of the HC-AdV into the 

non coding region of the genome. 

 

This study was carried out to check if in the case of integrations in the noncoding 

region of the genome, whether the integration would have any possible effects on the 

transcription of any genes.  33% of the integrations in the “harmless” regions of the 

genome had occurred within 25 kb of coding regions.  
 

IV.5.5.H Deletions in the adenoviral terminus 

The deletions in the terminus were studied, and of the 61 junction sites observed, 

14.76 % (n = 9) had no deletions in the termini. In 68.9 % (n = 42) the termini had 

deletions in the region between 1 and 30 bps, and in 9.8 % (n = 6), the termini had 

deletions between 31 to 60 bps.  In 4.9 % (n = 3), the termini had deletions between 

61 and 90 bps. Only one single terminus with a deletion of 105 bps was observed.  

The deletions from the termini sequences were plotted as Fig. 36. 

From the data analysed, it was observed that in the majority of HC-AdV integrations, 

the vector integrated through the viral termini.  The viral terminus seemed to have had 
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undergone random integration into the chromosomal DNA in the region of the first 30 

nucleotides. 
 

 

Fig. 36: Graph comparing the number of junction sites to the deletions in the Ad terminus in those 

junctions. 

 

IV.5.5.I Role of homologous sequences in the random integration of the vector 

DNA into chromosomal DNA 

The role of “patchy homologies/ micro homologies” [eg. (Wronka et al., 2002)] in the 

integration of the vector DNA into chromosomal DNA was analysed.  Four 

integrations were observed to occur in a homology mediated manner, three in the 

HPRT gene, and one in the c346 cosmid region.  In 36/61 junctions (59 %), patchy 

homologies between the termini and the genomic DNA of 3 bps or above were 

observed. The homologies were calculated only from the sense strand. In many cases, 

overlaps between individual “patchy homologies” were observed.  Only homologies 

to 3 or more bps within the first 30 bps in the junction have been presented as “patchy 

homologies” (Table 12). 

No. of junction site with deletions in the termini

9

13

8

5

6

5 5

0 0

1

3

0

2

0

1

0

1 1

0 0 0

1

0
0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 10
0

11
0

Bps deleted from the terminus

N
o.

 o
f j

un
ct

io
n 

si
te

s



 131

The sequence obtained from the left terminus of the HT1080 derived cell line 6c is 

given as an example (Fig. 37). 

 
 

Fig. 37: Patchy homologies between AdV terminus DNA and chromosomal DNA in the junction site in 

the HT1080 based cell line 6c. 

 
Junction site 

Id 

Homologous patches in number 

of bp 

Distance of the beginning of the patch from 

the junction 

3a L 3, 4, 4 3, 6, 15 

4a L 4 3 

4a R 3, 4 0, 11 

4a L 3, 4, 3, 4, 3, 3 1, 7, 9, 12, 15, 24 

4b L 7, 4, 4 1, 3, 8 

4b R 4, 3,  7,5 

4c L 3, 3, 3, 3 1, 10, 15, 20 

4d R 3, 3, 3, 4, 3 0, 2, 12, 18, 22 

6a L 3, 4 0, 2 

6b L 3, 5 4, 7 

6b R 3,3 7, 10 

6c L 3, 4, 5, 6 25, 20, 7, 1 

6e L 4, 7, 3, 4 18, 9, 4, 1 

6f R 3, 5 2, 9 

7a L 4, 4 4, 9 

7b L 4, 4, 4 1, 5, 15 

7b L (II) 3, 3 0, 5 

7c L 5 13 

7c R 4 13 

7e L 4, 3, 2 0, 8, 14 

8a L 3 8 

8a R 4 0 
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17a L 3, 5 0, 14 

17a L (II) 3 13 

17a R 5 16  

17d L 5 2 

17e L  3 2 

17e R  4, 4 0, 4 

22b L 3, 3 1, 7 

22 b R 4 5 

22d R 5 1 

22f L 5 3 

22g L 3, 3, 3 2, 5, 11 

22g L (II) 4, 3, 4 6, 1, 8 

22 h R 3 1 

22i L 3 2 

 

Table 12: List of microhomologies between the Ad5 terminus and the site in the cellular genome where 

the integration had taken place. 

 

From the data analysed, it was observed that the HC-AdV DNA, like wt Ad DNA, can 

use limited homologies of up to 7 bps between the terminus and the genomic DNA 

sequence during integration. The homologous patches could be right at the junction 

site or up to 24 bps away from it.  

Three integrations were observed in the Hprt gene, two (22gL and 8aL) in different 

loci in chr 8q24, three (4cR, 7gL and 7g R) were found integrated in different loci in 

the ATP6V1D gene in Chr 14q24.  In the last case, it is possible that the integrations 

in 7gL and 7gR are from both the arms of one single vector molecule, though in the 

absence of FISH analysis, this can only be postulated and not proved. Apart from that, 

no particular site in the genome was targeted more than once during integration by the 

vector.  

 
IV.5.5.K Mutations observed at the junction sites of the vector DNA into the 

chromosomal DNA 

To determine whether mutations were associated with the integration of the HC-AdV 

vector into the genome, the sequences of the terminus and the genomic DNA were 

studied. By convention, the sequences found in the databases were taken as that for 

the genomic DNA of HT 1080 and C 32 cells.  The deletions in the terminus exactly 

at the junction site, which occurred during the integration of the vector into the 
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genome were not considered as mutations in this study.  In the sixty one junction sites 

analysed, there were twenty two junctions with mutations associated either in the part 

of the viral terminus DNA that had integrated or in the cellular DNA.  Eight of these 

mutations were observed in the genomic region (including those three clones where 

chromosomal joining was observed), nine had taken place in the junction of the 

integration and five were observed in the termini.  Three junctions had mutations in 

both the terminus derived sequences and the genomic sequences, and two had 

mutations in the terminus derived sequences and the junction derived sequences.  The 

data was plotted on to the following Pie diagram (Fig. 39). 

 

 
Fig. 39: Pie diagram showing the mutations in the junction site of the region where the HC-AdV had 

integrated into the genome. 

 

From the data, it was clear that vector DNA integrated in 64% of the cases without 

causing any mutations.  Though no experiments were carried out to eliminate the 

possibility that some or many of the mutations observed may have been a result of the 

chromosome instability of the cell lines and may have nothing whatsoever to do with 

the vector, and should the case be that the mutations were all induced by the 

integration of the vector, no evidence was seen in the present study to suggest that the 

mutations observed during vector integration was any different than those described 

during the non homologous end joining of DNA. 

Mutations in the junction site

64.2
14.7

8

13.1
no mutations

mutations in the
junction
mutations in the viral
terminus
mutations in the
genomic sequence
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IV.5.5.L Conclusions reached from the study of the junction sites isolated after 

the random integration of HC-AdV DNA into the chromosomal DNA 

The aim of these set of experiments was to determine the nature of the integration of 

the HC-AdV in vitro. Following the molecular analysis of the clones, the following 

conclusions were reached.  

 

i. Despite the 1 moi used, more than one vector copy had integrated in some 

(up to 38 %) of the clones studied. 

ii. The vector had integrated mainly as a full intact vector molecule (93.3 %), 

in the studied clones. 

iii. The integration of the vector seemed to have taken place through the 

termini. 

iv. The vector did not show any preferential integration into genes of any 

particular molecular function or biological process. 

v. The vector utilized “patchy homologies” during the integration (in 60.7 % 

of the integrations). 

vi. In 6.6 % of the integrations, the event was “homology mediated”. 

vii. In the ATP6VID gene in Chr 14q24, and Chr 8q24, more than one 

independent integration of the vector DNA into the gene was observed.  

viii. The termini were present either in total, or had deletions up to 105 bps. 

When deletions had taken place in the termini during integration, 80.7 % 

of them had occurred within the first 30 bps of the terminus.  No specific 

relationship was observed between the deletions in the terminus and the 

integrations into active genes. 

ix. In 37.7 % of the studied junction sites, mutations in the host genomic 

sequences or in the termini or right at the junction site were observed.  

x. Integrations had taken place in both active as well as non active genes, 

with no apparent preference. 
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IV.5.6.A Vitality curve of the 6TG resistant cell lines in medium supplemented 

with HAT 

This series of experiments were carried out to analyze if there was a reversion in the 

homologous recombination that had taken place and to reconfirm that the 

recombination was genuine.  

1x105 cells of each of the 6TG resistant cell lines based on both HT1080 and C 32, 

were plated in 6 well plates and were maintained in α MEM medium supplemented 

with 1 X HAT supplement. HAT supplement is comprised of hypoxanthine, 

aminopterin and thymidine. Aminopterin (C19H20N8O5) is a folic acid antagonistic 

that blocks the de novo synthesis of purine, and hypoxanthine and tymidine are purine 

analogs.  6TG resistant cells were expected to die in medium containing HAT 

supplement while revertants were expected to survive. Cell count using Trypan Blue 

staining was taken once in three days and the numbers of the viable cells, counted 

using a Haemocytometer were plotted in a graph (Fig. 39).   

Based on these results it was concluded that no revertants were present in the number 

of cells used in the selection experiments and that in these cells, the homologous 

recombination between the vector and the genomic DNA was likely to be a genuine 

one. 

 

IV.5.6.B Reconfirmation of the homologous recombination using PCR 

These experiments were carried out to reconfirm the events of homologous 

recombination that had taken place between the vector and the genomic DNA.  The 

DNA isolated from the 6TG resistant clones was used as the template for PCR 

reactions with primers SSHPRT1 and SSHPRT2 and the product size was expected to 

be 558 bps.  The PCR products were digested with the restriction endonuclease Eco 

RV (fragments of 82 and 476 bps expected) and were run on a 2% 1X TAE gel.  The 

enzyme was expected to cut in the novel Eco RV site that had been generated due to 

homologous recombination between the vector and the genomic DNA. In the case of 

homology mediated insertional recombination, then the digested and the undigested 

forms of the product was expected. Plasmid p STK129 that had the original 

unmutated exon 2 of Hprt was used as the negative control (p2) (Fig. 40). 

In these experiments, the earlier results obtained about the 6TG resistant cell lines 

were reconfirmed. It was evident that the recombinations were all of the classic 



 136

replacement type, formed by two recombination events, one upstream and one 

downstream of exon 2. 

 

IV.5.6.C Nucleotide sequence of the corrected region 

The PCR products obtained in the above-mentioned experiments were cloned on a 

TOPO plasmid and were sent for sequencing and were checked against the controls. 

In the sequences analysed, the replacement of the wild type exon 2 with the mutated 

form was observed.  The sequence of one of the 6TG mutuants is compared below 

with the parental control. 

 

2a sequence 

CGCCCTTGTATCCTGTAATGCTCTCATTGAAACAGCTATATTTCTTTTTCAG

ATTAGTGATGATGAACCAGGTTATGACCTTTGATATCTTTTGCATACCTAA

TCATTATGCTGAGGATTTGGAAAGGGTGTTTATTCCTCATGGACTAATTAT

GGACAGGTAAGTAA                       

 

HT1080 sequence 
CGCCCTTGTATCCTGTAATGCTCTCATTGAAACAGCTATATTTCTTTTTCAG

ATTAGTGATGATGAACCAGGTTATGACCTTGATTTATTTTGCATACCTAAT

CATTATGCTGAGGATTTGGAAAGGGTGTTTATTCCTCATGGACTAATTATG

GACAGGTAAGTAA                     

 

Sequence legend: 

Standard font: hprt sequence 

Bold font: T insertion and novel Eco RV site/ corresponding bps in parental cell 

Underlined font : Topo TA vector 
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Fig. 39: Vitality curve of 6TG resistant HT 1080 (A) and C32 (B) based clones in HAT medium.  Cells 
were grown in 6 well plates in medium supplemented with HAT, and cell count was taken and plotted 
on to the graph above.  
 

A 

B 
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Fig.40. Scheme (A) and the gel electrophoresis photo of the PCR to confirm the event of homologous 

recombination of the HC-AdV DNA with the cellular genomic DNA.  DNA from HT 1080 derived 

6TG resistant cells (B) or C 32 derived 6TG resistant cells (C) were amplified with the primers 

SSHPRT1 and SSHPRT2 and the products were purified, digested with Eco RV and run on a 2% gel. 

M- marker, p1- p SLS 11 DNA (positive control), p2- p STK 129 DNA (negative control), HT- 

HT1080 DNA, c32- C32 DNA, 1a to 9a- DNA from HT1080 derived 6TG resistant clones, 10a to 13e- 

DNA from c32 derived 6TG resistant clones 

A 

B 

C 
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This experiment was carried out to confirm the recombination at the sequence level 

and from the obtained sequences, it was evident that the cases of recombination of the 

vector DNA with the Hprt locus were genuine events. 

 

IV.5.6.D Conclusions reached from the molecular analysis of clones obtained 

through the homologous recombination events of HC-AdV DNA with the Hprt 

locus 

The aim of these experiments was to analyse homologous recombination of the vector 

DNA with the chromosomal DNA a molecular level. From the results, it was 

concluded that 

 

i. The cases of homologous recombination observed were all genuine and of 

the classical double cross over replacement type instead of the single event 

insertion type. 

ii. No terminus of the vector DNA was present in the genome (pg 92). 

iii. The sequences downstream of the hprt stuffer, in particular, the HygEGFP 

expression cassette, were not present in the integrated molecule. (pg 92). 

iv. No revertants back to the hprt +ve state were observed. 
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IV.6 Analysis of the homologous and heterologous rcombination of 

vector DNA into chromosomal DNA following HC-AdV mediated 

gene transfer in vivo 
 

IV.6.1 Determination of the amount of viral vector particles reaching 

the mouse liver after a given dose 
As a requirement to determine recombination frequencies of HC-AdV DNA in 

hepatocytes, an accurate determination of the amount of vector DNA present in the 

hepatocytes following a given dose into the tail vein was essential and this experiment 

was carried out to determine the amount of viral particles that reach the hepatocytes 

following the injection of a given dose into the tail vein 

As reviewed in (Kuzmin et al., 1997, Overturf et al., 1997, Stein et al., 1998, Wolff et 

al., 1997, Worgall et al., 1997), the vast majority of the vector injected fails to reach 

the liver since they are phagocytocised by Kupffer cells and macrophages. So the 

rationale was that, after injecting a HC-AdV into mice, harvesting the liver 10 days 

p.i. should allow only the vector molecules present in the hepatocytes to be detected.  

The HC-AdV Ad SLS 16, carrying the murine FAH cDNA in a RSV promoter BGH 

poly A cassette was used for the study. Vector was injected via the tail vein into 

FahΔexon5 mice in doses ranging from 1x1010 to 5x108 inf. units per mouse, and the 

subjects were sacrificed 10 days post injection.  A total of 13 mice were used for the 

study (including the control).  The livers were harvested, the DNA was extracted and 

the vector DNA load was titered per 3µg and 6µg of DNA using the slot blot method 

(Fig. 41). 

The results are summarised in Table 13.  A diploid mouse cell has 6 pg of DNA and 

so the number of cells used was calculated from the amount of DNA used. 

 
Dose Slot blot value No: cells No: of copies reaching each nucleus 

1x1010 10.4 x106 1x106 10 

2x109 3.2 x 106 1x106 3.2 

1x109 1.1 x 106 1x106 1.1 

5x108 0.45 x106 1x106 0.45 

1x108 N.D. 1x106 N.D. 

 

Table 13: Data showing the number of copies of HC-AdV per hepatocyte as per Slot blot method 
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Fig.41. Schematic representation of the experiments carried out to determine the number of HC-AdV 

molecules reaching the liver following tail vein injection.  Mice were injected with different amounts 

of the vector, sacrificed, the livers harvested and the DNA isolated.  Viral load was measured using the 

Slot blot procedure. 

 

The aim of this experiment was to determine the exact number of HC-AdV vector 

molecules reaching each hepatocyte following the injection of a given dose, so as to 

facilitate the calculation of the frequencies of integration and homologous 

recombination of the HC-AdV in vivo.  From the experiment, it was evident that the 

amount of vector reaching the liver is dose dependent and ranges from 10 copies per 
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hepatocyte following and injection of 1x1010 inf. Units (in contrast to the expected 

300 copies) to 1 copy in 2 hepatocytes following an injection of 5x108 inf. units.  

 

IV.6.2 Determination of the rate of random recombination of HC-

AdV in vivo and molecular analysis of the junction sites of integration 
 
VI.VII.1. Determination of the rate of integration of the vector 
 
 
This experiment was carried out to determine the rate with which the HC-AdV 

integrates into the genome in vivo.  

ITR ψ stuffer       FAH cDNA expression cassette stuffer       ITR

RSV mFAH  BGH
        cDNA   poly A  

Fig. 42: Diagram of Ad SLS 16 

The vector used in this study was Ad SLS16, which expresses the murine FAH cDNA 

from the RSV promoter (Fig. 42).  The FahΔexon 5 knockout mouse was used as the 

model in which the vector was tested. The full details of the cloning of the vector are 

given in the Materials and Methods section. 

As explained in the Materials and Methods section, the production of the fumaryl 

acetoacetate hydroalse transgene was expected to confer resistance to the hepatocytes 

where the vector would be present.  The vector, which remained as an episome, was 

expected to be gradually lost during the turn over of the hepatocytes.  However, on 

the event of the integration of the vector into the genome, the FAH +ve cell would 

have a growth advantage in the liver, and given the regenerative capacity of the liver, 

would give rise to a nodule of Fah +ve cells, which could be visualized following 

immunohistochemical analysis of the mouse liver with a Fah specific antibody. When 

such a mouse liver containing a mixture of Fah +ve and negative cells was perfused 

and the isolated hepatocytes transplanted onto a second recipient, the above-

mentioned Fah +ve cells from the donor, were expected to have the growth advantage 

and repopulate a part of the recipient liver, provided the vector integrated into the 

genomic DNA. 

Fah Δ exon 5 strain mice (n = 10, including control) were injected with Ad SLS 16 via 

tail vein injection. Pilot studies with varying doses of the vector had shown that the 
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optimal amount of vector required to count the Fah +ve nodules was 5x108 inf. units 

and so that dose was favoured. 

 The mice were allowed to recover after the injection and were kept for 2 weeks off 

NTBC.  NTBC was then added to the drinking water at a concentration of 7.6 

mg/litre, and the mice were kept on the diet for a further two weeks and were 

sacrificed at predefined time-points, unless specifically mentioned. For the mice 

predestined for the immunohistochemical analysis of the liver alone, the animals were 

sacrificed by cervical dislocation and the livers were harvested and fixed in 10% 

phosphate buffered formalin (Fig. 43).  The tissues were dehydrated in 100% ethanol 

and embedded in paraffin wax and sliced using a microtone.  Four-micron sections 

were selected and rehydrated.  The sections were stained with haemotoxylin and eosin 

and with a polyclonal rabbit antibody to rat FAH, and viewed through a Zeiss 

Axiovert 135 microscope (Fig. 44 & 45).   

A collection of cells in an ellipsoidal block was taken as a Fah +ve nodule (Fig. 46), 

and number of nodules and the number of cells per nodule was noted. The slides 

containing the sections were scanned on a flat bed Canon scanner along with a size 

standard at 300 dpi resolution, the images were opened with NIH image J programme 

and the surface area of the sections was calculated and in accordance to the methods, 

the total number of hepatocytes per slide was calculated as in (Wang et al., 2002). The 

number of viral vector genome per hepatocyte after the mouse was given a particular 

dose was calculated as mentioned in section VI.VI.  The rate of integration of the 

vector DNA into the chromosomal DNA was calculated as on pg 57. The rate of 

integration of the viral vector was calculated on the basis of vector molecules as 

4.0275x10-5 (S.E.M = 1.76 x10-5) in n = 9 mice (Table 14). 

 
No: of mice 

injected 

Dose of Ad SLS 

16, inf. units 

Rate of integration (mean, corrected to the number of 

vector molecules reaching the hepatocytes) 

6 5 x108 6.2075 +/- 2.49, x10-5 

2 2 x108 3.335 +/- 1.185, x10-5 

1 1 x109 2.54 x 10-5 

 

Table 14: The data obtained from the experiment for calculating the rate of random integration of the 

HC-AdV into the cellular genome in vivo. 
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Fig. 44: Schematic representation of the experiments carried out to determine the rate of random 

integration of HC-AdV in vivo.  Mice were injected with different amounts of the vector, cycled on and 

off the NTBC diet to allow them to recover and were sacrificed.  The livers were harvested and the 

immunohistochemistry carried out with an anti-Fah antibody. 

 

 

 

 

 

 

 

 

 
 

Cycle on
and off NTBC

Livers 
harvested

Immunohistochemical analysis 

1x10E9 to 
2x10E7 inf. units
Ad SLS 16 

Murine FAH cDNA
Ad SLS 16

Any murine chromosome

Fah +ve nodules developed in
Fah -ve liver following NHR
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Fig. 44: Liver sections from mice that had been injected with a dose of 1x109 inf. units of Ad SLS 16 

 

 

 

 

 

 

 

 
 

 

 

Fig. 45: Liver sections from mice that had received a dose of 5 x108 inf. units of Ad SLS 16. 

 

The FAH +ve nodules can be visualized more clearly in these liver sections. 
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Fig. 46: Liver sections from mice that had received a dose of 5 x108 inf. units of Ad SLS 16. 

 

 

 

 

 
 

 

 

 

 

 

Fig. 47: Liver sections from mice that had received the serial transplantation injections of hepatocytes 

from the mice injected with Ad SLS 16. 

 

In the serial transplantation experiments (Fig. 47), the mice were anaesthetised, and 

two lobes of the liver were tied off from the rest, cut out and treated as in the ones 

mentioned above. The remaining part of the liver was perfused using collagenase, and 

the prefused liver was filter sterilized and 1x106 viable hepatocytes were isolated.  

Recipient mice were anaesthetized, and the isolated hepatocytes were injected into the 

spleen, the flesh and the skin were stitched back, and the mice were allowed to 

recover with NTBC containing drinking water.  The mice were sacrificed at set times, 

the livers were harvested and the DNA was isolated. Standard PCR was carried out to 

confirm the presence of the vector derived DNA in the recipient liver DNA.  Inverse 

PCR was carried out and the PCR fragments were cloned into TOPO cloning vector 

and were sequenced.  

This series of experiments were carried out to calculate the rate by which the HC-

AdV integrates randomly into the genome in vivo. This was found out to be 4.0275 x 

10-5 (S.E.M = 1.76 x10-5) in n = 9 mice, based on the number of infectious units of 

HC-AdV per cell. 

 

IV.6.2.A PCR to test for the presence of the transgene in the liver of the 

experimental animals 

The DNA obtained from the adenovirus injected and serially transplanted mice were 

analysed using PCR. A primer pair was used whereby P1 was designed from the RSV 
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promoter sequence and the P2 from the mFah CDNA.  A band of 481 bps was 

expected to be amplified only in the presence of the entire cassette (Fig. 48 & 49).  
 

ITR ψ RSV mFAH                     ITR   Chromosomal
         cDNA                                DNA

481 bps
P1   P2

 
 

Fig. 48: Scheme of the PCR to test for the presence of the RSV-FahcDNA cassette in the serially 

transplanted liver. 
 

The DNA bands were cut out and cloned into a TOPO TA cloning vector and the 

DNA sequences were detemined. The sequences were as expected, showing the RSV 

promoter sequence and the murine FAH cDNA sequence. 

 

 
Gel i.d. Mouse i.d comments Gel i.d. Mouse i.d comments 

1 16.2 Serial transplant 11 Serial 23 Serial transplant 

2 16.3 Serial transplant 12 Serial 24 Serial transplant 

3 410 injection 13 Serial 511 Serial transplant 

4 410 (hep) injection 14 Serial 524 Serial transplant 

5 411 injection 15 16#2 Serial transplant 

6 412 injection 16 Fah-/- control 

7 412 (hep) injection 17 Wt control 

8 415 injection 18 p SLS 16  10000 copies 

9 416 injection 19 p SLS 16 1 copy 

10 Serial 21 Serial transplant 20 H2O water 

 

Legend: Serial transplant: subjects that received the serial transplantation 

10000 copies: 10000 copies of the vector molecule/mouse genome, spiked in mouse 

DNA 

1 copy: 1 copy of the vector molecule/mouse genome, spiked in mouse DNA. 

 

A 
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Fig. 49: A. Table with details about the samples used in the PCR.  B. PCR experiment carried out on 

the liver extracted from the liver of mice injected with Ad SLS16 or serially transplanted with viable 

hepatocytes that had been transduced by that vector.  The DNA was amplified with the primers and run 

on a 2 % 1XTAE agarose gel.  See 49.A for details about the samples in each lane. 

 

AATTCGCCCTTGACAGGTCTGACATGGATTGGACGAACCACTGAATTC

CGCATTGCAGAGATATTGTATTTAAGTGCCTAGCTCGATACAATAAAC

GCCATTTGACCATTCACCACATTGGTGTGCACCTCCAAGCTAATTCCG

TAGGGGGCTCTGCTGCCCGGTGCTCGTCAGCATGTCCTTTATTCCAGTGGC

CGAGGACTCCGACTTTCCCATCCAAAACCTGCCCTATGGTGTTTTCTCCAC

TCAAAGCAACCCAAAGCCACGGATTGGTGTAGCCATCGGTGACCAGATCT

TGGACCTGAGTGTCATTAAACACCTCTTTACCGGACCTGCCCTTTCCAAAC

ATCAACATGTCTTCGATGAGACAACTCTCAATAACTTCATGGGTCTGGGTC

AAGCTGCATGGAAGGAGAAGGGCGAATT 

 

Sequence code: 

Standard font: TOPO TA vector, Bold font: RSV promoter,  

Underlined font : FAH cDNA 

 

This PCR reaction and the related sequencing reaction were carried out to check for 

the presence of the transgene in the DNA of the liver of the injected and the serially 

B 
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transplanted test animals, and the results confirm its presence.  However, the vector 

was lost in some of the serially transplated mice.  This was also expected, since the 

NTBC diet was restored to the experimental animals once they started appearing 

unhealthy, and so, though under the experimental conditions the mice with FAH 

positive cells had a selective advantage, mice with FAH negative livers could also 

survive. 

 

IV.6.2.B Sequence analysis of the junction sites between the Ad SLS 16 DNA and 

the chromosomal DNA  

In the serial transplantation experiments, the mice were anaesthetized, and a part of 

the liver was harvested and fixed for immunohistochemical staining.  The remaining 

part of the liver was perfused using collagenase, the perfused liver was filter 

sterilized, 1x106 viable heptocytes were isolated and injected into the spleen of Fah -/- 

recipient mice, which were then allowed to recover with NTBC containing drinking 

water.  The mice were sacrificed at set times, the livers were harvested and the DNA 

was isolated.  Inverse PCR was carried out using the restriction endonuclease Tsp 

509L and the PCR fragments were cloned into TOPO cloning vector followed by 

sequencing.  

 

Sequence of the junction site from mouse 16#2 

Mouse 16#2 had received a splenic injection of 1x106 viable hepatocytes from mouse 

41, which had been injected with 5x108 inf. units of Ad SLS 16, and had been allowed 

to recover from the injection with one cycle on and off NTBC.  Mouse 41 was 

sacrificed 4 weeks after the injection.  Mouse 16 too was kept on one round on and off 

NTBC and was sacrificed 4 weeks after it was injected. 

 

  
A deletion of 31 bps in the right terminus and a T to C substitution was observed at 

the -9 bp of the terminus. Though the location of the sequence was found to originate 
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from a clone that contained the preribosomal RNA gene, the exact location is not yet 

available in the database 

 

Sequence of the junction site from mouse 511 

Mouse 511 had been injected with 5x108 inf. units of Ad SLS 16, had been allowed to 

recover from the injection with one cycle on and off NTBC and was sacrificed 8 

months after it was injected.  

 
 
The last 15 bps were found deleted from the left terminus and the integration was 

mapped to the 63673236 bp of Chr 5 C.3 in a non coding region. 

 

Sequence of the junction site from mouse 327 

Mouse 3 had received a splenic injection of 1x106 viable hepatocytes from mouse 41, 

which had been injected with 5 x108 inf. units of Ad SLS 16, and had been allowed to 

recover from the injection with one cycle one and off NTBC (4 weeks post injection).  

Mouse 3 was kept on one round on and off NTBC and was sacrificed 4 weeks after it 

had received the hepatocytes. 1x106 viable hepatocytes from the perfused liver were 

injected into mouse 327 via the spleen.  After a cycle on and off NTBC, mouse 327 

was sacrificed, the liver harvested and the DNA prepared. 

 
  

The last bp of the left terminus was missing in the integration event that was mapped 

to the 37088008 bp in chromosome 10B1. 
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The entire right terminus was present in junction site that was located in the 

103407545 bp of Chr 9, corresponding to the 5th intron of the beaded filament 

structural protein 2, phakinin (Bfsp2). 

 
Sequence of the junction site from mouse S21 

Mouse S21 had received a splenic injection of 1x106 viable hepatocytes from mouse 

410, which had been injected with 5x108 inf. units of Ad SLS 16, and had been 

allowed to recover from the injection with one cycle one and off NTBC.  Mouse 410 

was sacrificed 4 weeks after the injection.  Mouse S21 was kept on one round on and 

off NTBC and was sacrificed 4 weeks after it was injected.  

 
 

The last 10 bps of the right terminus were missing and the integration was mapped to 

bp 89372401 in chr 2E1. 

 

Sequence of the junction site from mouse S23 

Mouse S23 had received a splenic injection of 1x106 viable hepatocytes from mouse 

410, which had been injected with 5x108 inf. units of Ad SLS 16, and had been 

allowed to recover from the injection with one cycle one and off NTBC.  Mouse 410 

was sacrificed 4 weeks after the injection.  Mouse S23 was kept on one round on and 

off NTBC and was sacrificed 4 weeks after it was injected.  

 



 152

The last 64 bps were found deleted from the left terminus in the integration which had 

taken place in the 2nd intron of the glucocorticoid modulatory element binding protein 

2 (Gmeb2), in the 180986861 bp of chromosome 2H1. 
 

 
In the integration that took place in the 107788894 bp of Chr 12 in a predicted gene, 

the last 16 bps of the right terminus was found deleted. 

 

Sequence of the junction site from mouse S24 

Mouse S24 had received a splenic injection of 1x106 viable hepatocytes from mouse 

410, which had been injected with 5x108 inf. units of Ad SLS 16, and had been 

allowed to recover from the injection with one cycle one and off NTBC.  Mouse 410 

was sacrificed 4 weeks after the injection.  Mouse S24 was kept on one round on and 

off NTBC and was sacrificed 4 weeks after it was injected.  

 
The last 78 bps of the right terminus were deleted in the integration that took place in 

a non coding region of Chr 18 d4 in the bp 60650359 bp. 

 

The results have been summarized in Table 15. 

 
Mouse 

ID 

Terminus Integration 

in  

chr 

Direction of the 

vector in relation 

to the chr 

Deletion 

from the 

termini 

Integration in 

gene 
Comments 

16.2 R  ? ? 31 ? Deletion at –9 

bp 

511 L  5c 

636732361 
bp 

 15 N . 
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327 L 10B1 

37088008 
bp 

 1 N  

327 R 9 
103407545 

 0 Y 

Bfsp2 

 

S21 R 2E1 
89372401 
bp 

 10 N  

S23 L 2H1 
18098686 
bp1 

 64 Y 

Gmeb2 

 

S23 R 12 
107788894 
bp 

 16 Y 

predicted 

 

S24 R 18D4 
60650359 
bp 

 78 N  

 

Table 15 Table listing the integration of the vector, the direction of the integration with respect to the 

chromosome. 

 

This series of experiments was carried out to directly demonstrate integration events 

in the mouse liver by determining the sequences of the junctions of integration 

between vector and cellular DNA.  

 

IV.6.3 Determination of the rate of homologous recombination of 

HC-AdV in vivo 
This experiment was carried out to determine the rate with which the HC-AdV 

recombines with genome in vivo via homologous recombination. 

The vector used in this study was Ad SLS 14 (Fig. 50), which carries a 12.3 kb 

fragment of the murine Fah gene spanning the region between the 1st intron and the 

10th intron.  The Fah Δexon5 knockout mouse was used as the model in which the vector 

was tested.  The full details of the cloning of the vector are given in the Materials and 

Methods section. 
 

ITR ψ Murine FAH gene, Ist intron to 10th intron       Hprt stuffer     ITR

    E2   E3  E4         E5     E6 E7         E8  E9  
Fig. 50. Diagram of the HC-AdV SLS 16 
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As explained in the introduction, the Fah enzyme was not produced in the liver of the 

knockout mice.  Since the vector lacks the promoter and exons 1, 10, 11, 12, 13 and 

14, it would not confer any selective advantage on the cells where it remained as an 

episome.  However, in the event of the homologous recombination of the vector with 

the Fah locus, and the subsequent correction of the mutated exon 5 (Fig. 51), the Fah 

+ve cell would have a growth advantage in the liver, would give rise to a nodule of 

Fah +ve cells, which could be visualized following immunohistochemical analysis of 

the mouse liver with the Fah specific antibody. As in the work with Ad SLS 16, when 

such a mouse liver containing a mixture of Fah +ve and negative cells was perfused 

and the isolated hepatocytes transplanted onto a second recipient, the above-

mentioned Fah +ve cells from the donor were expected to have a growth advantage 

and repopulate a part of the recipient liver, provided the vector integrated into the 

genomic DNA. 

The FahΔ exon 5 strain mice (n = 10, including control) were injected with Ad SLS 14, 

via the tail vein. Pilot studies with varying doses of the vector had shown that the 

optimal amount of vector required to count the Fah +ve nodules was 2x109 inf. units 

and so that dose was favoured.  The mice were allowed to recover after the injection 

and were kept for 2 weeks off NTBC and the rest of the experiment [treatment of 

animals and immunohistochemistry (Fig. 53)] was exactly as in the earlier experiment 

with Ad SLS 16 (Fig. 52).  The same method was used to determine the rate of 

homologous recombination which was calculated on the basis of vector molecules as 

5.651x10-7 (S.E.M = 1.7x10-7) in n = 11 mice (Table 16). 

 
    E2    E3 E4        E5       E6 E7        E8  E9
                

E1    E2   E3   E4       E5      E6  E7       E8  E9        E10 E11     E12  E13         E14

E1    E2   E3   E4       E5      E6  E7       E8  E9        E10 E11     E12  E13         E14

12.3 kb homology

Neo cassette insertion in E5

Corrected E5

Ad SLS 14

Fah locus
with neo 
insertion in E5

Fah gene
corrected
following
HR with
Ad SLS 14

 Fig. 51: Schematic representation of the homologous recombination of HC-AdV DNA with the Fah 

locus in thechromosomal DNA of the  FahΔexon 5 mouse to generate a Fah +ve cell.  
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Cycle on 
and off NTBC

Livers 
harvested

Immunohistochemical analysis

1x10E10 to 
4x10E8 inf. Units
Ad SLS 14

Ex 2 3 4     5   6 7     8 9 Ad SLS 14

Ex1  2 3 4     5* 6 7   8 9   10 11 12 13  14

Ex 1  2 3 4     5   6 7    8  9  10 11 12 13 14

Fah locus with
neo insertion in 
exon 5

Corrected gene
following HR

Fah +ve nodules developed in 
Fah-ve liver following HR

 
 
Fig.52. Experimental animals were injected with different doses of vector and maintained on a diet 

with and without NTBC supplement to allow them to recover.  They were sacrificed, the livers 

harvested and immunohistochemical analysis was carried out with Fah antibody. 
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Fig. 53: Liver sections from mice that had received the dose of 1x1010 inf. units of Ad SLS 14  
 

No: of mice 

injected 

Dose of Ad SLS 14, 

inf. units 

Rate of integration (mean, corrected to the number of 

vector molecules reaching the hepatocytes) 

2 1 x1010 7.34 +/- 1.95, x10-7 

7 2 x109 4.99 +/- 2.9, x10-7 

2 1 x109 6.24 +/- 0.23, x 10-7 

 

Table 16: The data obtained from the experiment for calculating the rate of homologous recombination 

of the HC-AdV with the Fah locus in vivo.   
  

Taken together, the in vivo rate of homologous recombination was found to be  

5.7x10-7. 

 

IV.6.3.A PCR to confirm the correction of exon 5 in the mice 
The serial transplantation of the hepatocytes was carried out as described in the earlier 

experiment with Ad SLS 16.  The immunohistochemical analysis revealed the 

presence of Fah +ve cells and to confirm the correction of exon 5 in the Fah locus of 

the mice following homologous recombination between the vector DNA and 

chromosomal DNA, DNA extracted from Ad SLS 14 injected and serially 

transplanted mice were analysed using PCR. The primers used in the reaction were as 

follows: Fah A was designed from the 4th intron sequence, Fah B from the neomycin 

cassette, and Fah C from the Fah exon 5 sequence downstream of the site of the neo 

insertion.  A band of 243 bps was expected to be amplified between Fah A and Fah B 

primer pairs, and a band of 187 between Fah A and Fah C primer pairs in the presence 
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of the corrected band or the episome.  No product was expected between primer pairs 

Fah A and Fah C in the non corrected liver under the conditions used (Fig. 54) 

 

 

Gel i.d. Mouse i.d Comments 

1 401 injection 

2 403 injection 

3 406 injection 

4 14 serial1 Serial transplantation 

5 14 serial 2 Serial transplantation 

6 14 serial 3 Serial transplantation 

7 14 serial 4 Serial transplantation 

8 14 serial 5 Serial transplantation 

9 16#2 Serial transplantation 

10 25.505 Injection, Ist generation AdV Ad SLS25 

Fah - Mouse - Control, Fah -/- Knockout mouse 

p P SLS 14 Control, Vector plasmid 

fah  + Mouse + Control, Wt mouse, 129 strain 

fah+* Mouse + Control, Wt mouse, C57/Bl6 strain. 

-ve H20  

-ve H20  

 

 

Fah locus

Knocked out gene                    Corrected gene

Fah A  Fah B       Fah C Fah A   Fah C
251 bp 135 bps  

 

 

 

 

 

 

A 

B 
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Fig. 54: A. Table detailing the samples used in the PCR.  B. The scheme of the PCR.  C. The PCR 

experiment carried out on the DNA extracted from the liver of mice injected with the Ad SLS 14.  

DNA was amplified with the three primers and run on a 2 % TAE agarose gel.   

 

Sequence from the 135 bp band (corrected band) 

 

AATTCGCCCTTCTAGGTCAATGGCTGTTTGGGGTGTTCCCTCTGCAGG

AGACTACACGGACTTCTACTCTTCTCGGCAGCATGCCACCAATGTTGG

CATTATGTTCAGAGGCAAGGAGAATGCGCTGTTGCCAAATTGGTATG

TCCAAGGGCGAATT 
 

Sequence from the 251 bp band (non corrected) 

 

AATTCGCCCTTTAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTC

ATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTG

GGAAGACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCTG

AGGCGGAAAGAACCAGCTGGGGCTCGAGATCCACTAGTTCTAGCCTCGAC

C 
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CACCAATGTTGGCATTATGTTCAGAGGCAAGGAGAATGCGCTGTTGC

CAAATTGGTATGTCCAAGGGCGAATT 

 

Sequence code: 

Standard font: CMV 

 Bold font: Fah gene 

Underlined font : TOPO TA vector  

 

This PCR was carried out to confirm that the Fah exon 5 had been corrected in the 

serially transplanted mice.  Though the chances of the 135 bp band arising from the 

episomal Ad SLS 14 could not be totally ruled out, it was unlikely after the multiple 

cell divisions arising from the serial transplantation process and therefore, taken 

together with the immunohistochemical data, it can be safely concluded that the 

vector had corrected exon 5. 

 

IV.6.4 Conclusions reached from the in vivo experiments 
 At the time of the preparation of the manuscript, the mouse genome has been 

sequenced, but the data that is available in the database is not as much as compared to 

the human genome.  The following conclusions have been reached from this study. 

i. In this experiment, HC-AdV genome underwent integration in vivo with 

the chromosomal DNA at a rate of 4.0275x10-5. 

ii. From the available data, it can be stated that HC-AdV display no specific 

predisposition (37.5 %) to integrate into genes in vivo, similar to the results 

obtained in vitro. 

iii. As in the in vitro data, deletions were observed in the termini of the AdV.  

50 % of the deletions took place within the first 30 bps of the ITR. 

iv. In this experiment, HC-AdV genome underwent homologous 

recombination in vivo with the chromosomal DNA at a rate of 5.651x10-7.  
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V Discussion 
 
At the time the project has started, no study had been performed on the fate of high 

capacity adenoviral vectors.  The risk posed of insertional mutagenesis of the vectors 

became visibly apparent only after the ill-fated trial in France (Li et al., 2002).  By the 

time of the completion of the lab work, no work had been published on the site of 

integration of HC-AdV in the genome and as of date, no work has been published 

about the rate of integration of HC-AdV in vivo.   

 

V.1 Selection of the models 
In the experiments involving the fate of the HC-AdV genome following gene 

thransfer in vitro, it was of paramount interest to select a system that was very well 

characterized.  The Hprt model has been successfully used since the mid 1980s to 

study site directed mutagenesis events [for example, see (Lin et al., 1985)], and the 

positive and negative selections using 6TG and HAT mediums have been very well 

studied [for example, see (Sharp et al., 1973)], and so that model was chosen.  At the 

time of the experiments, the FAH-/- mouse model was a more characterized knockout 

model than the urokinase-/- mouse model [reviewed in (Michalopoulos & DeFrances, 

1997)] and so it was selected.  The drawback of the model was that surgical extraction 

of single FAH+ve nodules from a FAH-ve liver, without any contamination 

whatsoever, was not technically feasible; to circumvent this, the system of serial 

transplantation of the hepatocytes into FahΔexon5 mice, was utilized to select for a 

subset of the Fah+ve cells in the donor mouse’s liver, and was carried out with the 

intention of elucidating some of the sequences of the sites of integration between the 

vector genome and the mouse genome.  Also, when the rate of random integration of 

the vector was tested, the proof for a case of integration was taken as a clear 

ellipsoidal Fah +ve nodule.   

 

V.2 Recombination rates of HC-AdV DNA with chromosomal DNA in vitro 
Cell types may vary with respect to their permissivity for adenoviral infection and that 

was the rationale behind the testing of the permissivity of the cell types to adenovirus 

vector transduction.  Two of the cell lines used in the study described here, viz., HeLa 

and HT1080 were used in a similar study in which the rates of integration of HC-AdV 
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and Ist Gen AdV were compared (Harui et al., 1999).  The rate of integration of HC-

AdV in HeLa was between 2.6 and 0.5x10-4, and that of HT1080 was between 1.8 and 

0.29x10-3, at 10 moi per cell.  Ist Gen AdV integrated at slightly higher rates.  The 

rates of HC-AdV integration, observed for the same cell lines in this present study 

were 3.01x10-4 and 4.6x10-4 respectively.  In the above mentioned work involving 

KB, CHO, CV-1, cells, the authors had observed HC-AdV DNA integration at rates 

between 1 to 0.01x10-2, at a moi of 10. (Hillgenberg et al., 2001) had published that 

the rate of integration of HC-AdV DNA into the genomic DNA of U87-MG cells was 

1.6x10-4 at a moi of 0.1, as opposed to the rates observed in current study between 5 

to 0.1x10-3 at a moi of 1 in different cell lines.  In the study by (Hillgenberg et al., 

2001), the permissivtiy of the cells to AdV was not tested.  The authours had also not 

observed any instances of homologous recombination of the vector into the genome.  

However, as observed in the experiments described here, the rate of HR is three logs 

lower than the rate of NHEJ, and so they might have not noticed it.  (Ohbayashi et al., 

2005) report that in experiments with male ES cells transduced by HC-AdV at a moi 

of 10, the rate of homologous recombination of the vector DNA into the chromosomal 

DNA was between 2 to 0.67x10-3, and the rate of random integration of the vector 

DNA into the chromosomal DNA was between 1.5 to 0.5x10-3.  In the experiments 

described in this study, the rate of homologous recombination of the vector into the 

genome ranged from 2 to 0.1 x10-5 at a moi of 1.  The differences between the cell 

types might be the reason behind the higher rate of homologous recombination 

reported by that group.  Human cells are reported to be 30-100 times less tolerant of 

integrations of exogenous DNA into their genome as compared with rodent cells 

(Colbere-Garapin et al., 1986, Hoeijmakers et al., 1987, Lohrer et al., 1988, Mayne et 

al., 1988), though in the case of established cell lines, there was no significant 

difference between the rates of integration of the vector in human and non human 

cells (Harui et al., 1999).  The integration patterns of DNA in normal cells are simpler 

than in transformed cells (Hoglund et al., 1992), though it remains to be seen whether 

this would result in a significant difference in the rates of homologous recombination.  

In work involving targeting of the Hprt locus using AAV vectors, Russel et.al. 

(Russell & Hirata, 1998) report that the rate of integration of the vector in HT1080 

was 2x10-4 at a moi of 50,000 and the rate of spontaneous mutation of the Hprt gene 

was 2x10-5.  The rate of homologous recombination of HC-AdV in HT1080 cells 

observed in this present study was 1.1x10-6, and in the experiments involving early 
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passage cells that were either infected with Ad SLS 21 or PBS treated, no 

spontaneous mutation was observed under the conditions used.  This contrast may be 

due to the difference of protocols between the labs.  Since due to genomic instability 

(Hanson & Caisander, 2005) the expression level of the proteins involved in cellular 

DNA repair mechanism can vary between cell lines (Wang et al., 2005), the range in 

the difference of random integration of the vector into the genome can also be 

expected.  HC-AdV do not code for any proteins involved in DNA repair and 

recombination and so are dependent on the cellular machinery to carry out the 

process.  Recombination via homologous or non homologous end joining (NHEJ) can 

be linked to the levels of Rad family proteins and Ku70/Ku80, which compete for the 

broken ends of the DNA to channel them into the respective pathways (Haber, 1999).  

The inverse correlation between the rates of random integration and homologous 

recombination of the HC-AdV DNA observed in this present study in HT1080, C32 

and FF-95 cells seem to suggest this.  The progression into cell cycle also determines 

where DNA repair takes place by HR or NHEJ; genes coding for HR machinery are 

more expressed during the G2 and S phase of the cell cycle, whereas those supporting 

NHEJ are present throughout the cycle [reviewed in (Takata et al., 1998, Wurtele et 

al., 2003)].  The HT1080 cell line grows much faster than the C32 and FF-95 cells 

and have to be passaged more often (see Materials and Methods), and so the 

difference in the rates of recombination in these cell lines may be linked to the cell 

cycle.  The plans in this study to test for the expression of these proteins were 

hindered by time constraints.  

 Earlier work done on the Hprt model using plasmid transfection had suggested 

that the rate of random integration of plasmid DNA into the genome is 10-4 to 10-5 and 

the rate of HR is 10-6 to 10-8, and the greater the amount of homology, the higher the 

rate of HR (Doetschman et al., 1987, Lin et al., 1985, Thomas & Capecchi, 1987, 

Thomas et al., 1986).  The rates at which DNA molecules reach the nuclei are low, 

being less than 10% in the CaPO3 method (Orrantia & Chang, 1990) and only     1 % 

and 0.1 % in the case of  the DNA complexed with polyethylenimine and cationic 

lipids respectively (Pollard et al., 1998), and even after that, a large proportion of the 

DNA gets degraded (Liang & Jasin, 1996).  So the amount of DNA used for 

transfection cannot be directly correlated with the rate of integration as was done in 

(Harui et al., 1999), but nevertheless, the recombination rates of AdV seem to be 

higher than that of plasmid DNA.  The precursor terminal protein coupled to the ends 
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of the Ad termini is a DNA binding protein.  Two pTP molecules can bind co-

operatively to short DNA duplexes in a sequence independent manner. pTP also binds 

to ssDNA without sequence dependence, and simultaneous interaction of two DNA 

binding regions within a pTP molecule too has been demonstrated (de Jong et al., 

2003) but it remains to be seen if the smaller TP may have similar properties and 

serve not only in protecting the ends of the DNA, but also in tethering it to specific 

regions in the genome.  TP-linked Adenviral genomes have been used in other studies 

(Hartigan-O'Connor et al., 2002) and it would be very interesting to determine the 

rates of recombination of TP-linked Ad genomes, after calculations have been done to 

determine the number of DNA molecules reaching the nuclei, by Slot Blot Analysis of 

the transfected nucleii isolated using Hirt’s method, and compare them with the rates 

obtained in this study. 

 

V.3 Southern blot analysis of the clones 
 The Southern blot data obtained in this study demonstrated that in up to 38% 

of the clones, more than 1 copy of the vector was present and that in 21% of the 

clones, there were more Ad termini than expected from the number of transgenes 

integrated.  This agrees with the data presented in (Hillgenberg et al., 2001), where, 

though in 50 % of the clones both the Ad termini were observed, in 19 % of the 

clones descrepancies between the number of termini and integrated transgene were 

observed.  However, the Southern data that is presented in this study is handicapped 

by the fact that the adenoviral left terminus was used the probe.  The larger part of the 

probe hybridised with the packaging signal, but the probe had also cross-hybridised to 

a lesser extent with the adenovirus right terminus too.  In the paper mentioned above, 

the vector had a RSV-LacZ-SV40Poly A cassette at the right terminus and so in that 

case, unlike the study described here where a DNA fragment of the cosmid c346 

bordered the right terminus, it was possible for the researchers to perform a Southern 

blot exclusively for the right terminus of their vector using the SV40 PolyA probe.  

Discrepancies between the number of transgenes and the vector terminus were also 

reported in (Harui et al., 1999), where possible DNA rearrangements, including 

internal ones in the vector genome, were observed, also in agreement with the data 

presented in this present study.  The above mentioned study also reported that the 

integrated vector underwent rearrangements over time.  Chromosome instability has 

been reported in cell lines once past the Hayflick limit [reviewed in (Effros, 2004, 
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Hanson & Caisander, 2005)] and this might explain some of the data observed.  

Though 6TG resistant/ Hyg resistant clones were isolated from the primary cell lines 

FF-95 and HRPE, they failed to survive long enough to generate enough DNA needed 

for Southern blot and Inverse PCR protocols used in this study.  However, the 

developments of mini southern blot (Lan et al., 2002) and LAM PCR (Schmidt et al., 

2003), both of which need far less amount of DNA than that needed in conventional 

methods, can be used in any future work using primary cells to obtain the result.  The 

Southern blot data obtained in this study has demonstrated that in the clones where the 

HC-AdV DNA had undergone HR into the genome, viral termini or non homologous 

sequences such as the transgene were absent. This, along with the data obtained from 

the PCR analysis of the clones, demonstrates that the HR resulted in a proper 

exchange of the exon 2 of the Hprt gene and not in an insertion of the homologous 

sequences.  Nevertheless, FISH data on the clones could have pinpointed the data 

obtained from the Southern blot. 

 

V.4 Sequence analysis of the clones 
V.4.1 Mutations in the cellular genome 

In the experiments described here, the protocol of Inverse PCR was developed for use 

in the adenoviral integration system, where the entire Ad terminus may or may not be 

present.  Currently other PCR methods of determining the sequence of the junction of 

recombination, such as LAM PCR, PCR with various types of linkers, Alu PCR etc 

do exist, but the best results were obtained using Inverse PCR in the study.  However, 

under normal conditions, PCR tends to amplify the smaller fragments in a pool of 

DNA fragments of different sizes, and so not all of the junction sites could have been 

sequenced.  In work on HC-AdV DNA recombination into chromosomal DNA 

published by other labs using Adapter ligated PCR (Ohbayashi et al., 2005), 

sequences were obtained from both ends in two (possibly 3) out of the twenty clones 

analysed, and three out of forty three clones when Inverse PCR and Lam PCR were 

used (Wang et al., 2005).  In the work presented here, only in one clone, 17e, it can be 

stated that the sequences from all of the Ad termini detected in it using Southern blot, 

have been accounted for.  Even in this case, it would not be possible to rule out 

integrations of the adenoviral termini where extensive deletions had taken place, 

thereby nullifying the chances of detecting it in the Southern Blot.  Wt. AdV have 
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been reported as forming concatamers and repeats during integration into the genome; 

deletions of up to 175 bps have been reported in the termini of integrated wt AdV 

[reviewed by (Doerfler et al., 1984)].  The cell lines themselves were known to have 

gross chromosomal irregularities and rearrangements in the karyotype, including 

deletions, additions and translocations in the chromosomes (Chen, 1978, Chen, 1983, 

Chen & Shaw, 1973, Rasheed et al., 1974).  Therefore it is plausible that two 

independent vector DNA integration events are being coupled as one, when the 

sequence data from both the left and right termini of the integrated vector in one 

individual clone comes from the same region of the same chromosome.  In the 

absence of FISH data and of individual karyotyping of the cell lines both at the start 

and the close of the experiment, a dogmatic assertion cannot be made.  The 

integration events in these clones cannot be pinpointed by the Southern data due to 

unresolved bands.  Nevertheless, the chances of two separate vector DNA integrations 

taking place in very close regions are at least 1/6x10-9 (based on the size of diploid 

human and mouse genome).  However, it has also been demonstrated that it was 75 to 

470 fold more likely for one integration event to take place in a preintegrated locus 

(Merrihew et al., 1996), and the Southern blot data from this study has shown that in 

spite of using a low moi, multiple integrations can take place in the same clone.   So it 

must be treated with caution when the results from 7 clones (4d, 6a, 7c, 7g, 17 e, 22f 

and 22k) suggest that during the course of integration of the vector, deletions ranging 

from 31 bps to 46 kb (15 kb, 47 kb, 598 bp, 237 bp, 4.5 kb, 18 kb and 31 bp, 

respectively), were observed in the chromosomal DNA.  Should that be the case, it 

would not be a novel discovery.  Deletions of up to 1.6 kb in the genomic DNA have 

been reported during integration of Wt AdV (Schulz & Doerfler, 1984).  Deletions of 

14, 24 and 567 bps (Wang et al., 2005), 21 bp and at least 20 kb (Ohbayashi et al., 

2005) in the genomic DNA have been reported during integration of HC-AdV.  In the 

first paper cited above, possible larger deletions were observed in another three 

clones, though for reasons not published, the authors had determined that the 

individual 5’ and 3’ termini interspaced by larger deletions to those mentioned above, 

found integrated in same chromosome in these three clones did not come from the 

same vector DNA molecule. 
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V.4.2 Mutations in the vector genome 

Work done on wt AdV revealed that during the process of integration, mutations 

(deletions, insertions and substitutions) did frequently occur in the viral genome, 

especially in the termini. In this present study, the vast majority (68 %) of the 

deletions took place within the first 30 bps of the termini, and 15 % had no deletions 

in the termini.  In the study by Mitani et. al, (Ohbayashi et al., 2005) 86 % (18/21) of 

the vector termini had deletions up to 30 bps and 9.5 % (2/21) had no deletions in the 

termini, whereas in the work by Lieber et. al. (Wang et al., 2005), the data from their 

first series of experiments suggest that 82 % (19/23) had up to the first 30 bps and 14 

% (3/21) had no deletions in the termini.  The evidence for the use of patchy 

homology (micro homology) between the recombination partners was evident.  This 

has been reported for wt AdV (Doerfler et al., 1984, Doerfler et al., 1989) and for HC-

AdVs (Ohbayashi et al., 2005, Wang et al., 2005).  The crucial role played by Mre 11 

and the microhomology between the recombination partners during NHEJ has been 

well established (Paull & Gellert, 2000, Roth & Wilson, 1986), and so it is plausible 

that AdV DNA too may use cellular NHEJ pathways during integration into the 

genome. 

 

V.4.3 Is HC-AdV DNA mutagenic? 

In this present study, it was observed that in 64 % of the cases, HC-AdV DNA 

integrated without causing any mutations (deletions in the termini sequences are not 

included).  However in 14.7 % of the junction sites studied, mutations were present at 

the junction site in the form of insertions or substitutions.  In 13 % of the junction 

sequences, mutations were introduced in the genomic DNA. Deletions, insertions, 

duplications and chromosomal translocations too were observed and are consistent 

with the data from wt AdV DNA integration sites where mutations in and around the 

site of integration have been reported in genomic and viral DNA (Doerfler et al., 

1984, Schulz & Doerfler, 1984). Translocations of genomic DNA were also noticed in 

integration sites of HC-AdV (Ohbayashi et al., 2005).  Transposition of genomic 

DNA in 3 extra integration sites has been observed in integration of HC-AdV-AAV 

hybrid vector DNA into chromosomal DNA, at the AAV ITR, suggesting that those 

68 bps might be involved in the amplification and transposition of the vector copies 

during DNA replication (Wang et al., 2005).   
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Such aberrations in the DNA following integration are not unique to AdV.  Deletions 

of genomic DNA, chromosomal translocation, insertion of novel DNA at the junction 

site, deletions in the vector and the association of the integration site with 

chromosomal breaks have all been reported for AAV DNA integration (McCarty et 

al., 2004, Miller et al., 2004, Miller et al., 2002, Miller et al., 2005, Nakai et al., 

1999), and HBV DNA integration (Koike et al., 1983, Mizusawa et al., 1985, Tokino 

et al., 1987, Wang et al., 2001).  During integration by HPV DNA into the 

chromosomal DNA, deletions were observed in the HPV DNA (Kalantari et al., 2001, 

Luft et al., 2001, Yoshinouchi et al., 1999), translocation of the chromosomal DNA 

observed during EBV DNA integration (Debiec-Rychter et al., 2003) and integration 

of SV40 DNA into the genome can be accompanied by deletions in both viral and 

cellular DNA (Strayer et al., 2002, Strayer, 1999, Wallenburg et al., 1987).     

In fact, the modifications of the recipient chromosomal locus and of the integrating 

DNA are all hallmarks of NHEJ.  Point mutations, deletions, concatamer formation 

and rearrangements have been observed in the integrating DNA (Calos et al., 1983, 

Wake et al., 1984, Wilson et al., 1982).  Although the integration may not change the 

locus at which the event took place (McFarlane & Wilson, 1996), rearrangements 

including deletions, duplication, insertions and translocations have been reported 

(Covarrubias et al., 1986, Covarrubias et al., 1987, Hamada et al., 1993, Kato et al., 

1986, Mahon et al., 1988, Mark et al., 1992, Robins et al., 1981, Wilkie & Palmiter, 

1987).  Stem-loop and hairpin configurations of DNA at junction sites observed in 

this present study is in agreement with the data that had been observed during studies 

on wt Ad DNA integration into chromosomal DNA (Doerfler et al., 1984, Knoblauch 

et al., 1996), other viral DNA integration into chromosomal DNA (Bullock et al., 

1984, Romani et al., 1990) and other non homologous recombination events 

(Krawinkel et al., 1986, Nalbantoglu et al., 1988, Nicholls et al., 1987).  So, it can be 

stated that, as is expected, AdV DNA behaves like any other part of free DNA and the 

NHEJ mechanism treats it like any other part of the DNA to integrate it into the 

genome. 

 

V.4.4 A small level of selectiveness during random integration by the vector DNA 

into the chromosomal DNA? 

The study carried out revealed that the integration of HC-AdV DNA in the 

chromosomal DNA took place in a random manner.  However four individual 
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integrations had occurred in a homology mediated manner, three in the Hprt fragment 

DNA region, and one in the c346 stuffer DNA region of the X Chr of the vector 

AdSLS 11.  However, this is in agreement with existing data.  In the experiments 

involving a HC-AdV with stuffer DNA from human Chr X (Wang et al., 2005) 2/23 

integrations were in Chr X.  Interestingly in the above paper, the clone 18/2 integrated 

in the CXorf6 gene in Chr X, 49 kb upstream of the integration site observed in clone 

4c.  However, the CXorf6 gene may not point out to any hotspot for HC-AdV 

integration, since the sequences correspond to the c346 cosmid sequences present in 

Ad SLS 11 and so it might just be coincidence that both vectors integrated 

independently in the same gene. 

 

V.4.5 Integration of HC-AdV DNA into genes 

An important question is whether HC-AdV integration takes place into genes.  

According to the latest ENSEMBL release (Aug 2006) there are 22,205 known genes 

in 3,253,037,807 bps in a human haploid genome and 21,839 known genes in 

3,377,887,556 bps in a mouse haploid genome (for more details, visit 

http://www.ensembl.org/index.html).  The average gene length is conserved in 

eukaryotes (Kiang et al., 2006) and it can be calculated that genes may account for 

333,075,000 bps (1/9) of the human genome, based on the calculation that  the 

average size of a human gene is 10-15 kb ( for more details, visit 

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=hmg.table.686).  The DNA of the 

active genes is present in the unbound form and so may be more accessible to foreign 

DNA.  As reviewed in the introduction, retroviral, lentiviral and AAV gene transfer 

vectors tend to integrate in active genes.  Papillomavirus, and possibly HBV tend to 

integrate into active genes.  43.5 % (23/46) of the HC-AdV integrations had occurred 

in active genes in the study conducted by (Wang et al., 2005).  In contrast to this, 

(Ohbayashi et al., 2005) have reported that only 28 % of the 18 junction sites of the 

HC-AdV integrations look place in active genes.  The in vitro data from this study 

agrees with the former paper; 48 % (26/61) of the integrations had taken place in 

genes.  The in vivo data suggested that the rate of integration was 37.5 % (n = 8).  No 

gene of any specific ontology was targeted.  However, another 16.4 % (10/61) 

integrations had taken place within 30 kb of active genes.  Nevertheless, it is 

interesting to observe that about half of the integrations took place in noncoding 

regions of the genome, though the active genes are present in the unbound form and 

http://www.ensembl.org/index.html
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=hmg.table.686
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should be more accessible to the vector.  In the paper by (Ohbayashi et al., 2005), 44 

% (8/18) of the integrations had taken place within this frame, though only 28% had 

actually integrated into active genes.  In contrast to the data by (Wang et al., 2005), no 

integrations were observed in oncogenes.  The rate of integration of HC-AdV DNA 

into the chromosomal DNA is low compared to retroviral vectors and AAV vectors, 

and of those vector molecules that do integrate, only half of them integrate in genes.    

In other viral vector gene transfer systems in use, the rate of integration of the vector 

DNA into genes are much higher and the overall rate of integration of the vector DNA 

into the chromosomal DNA too is much higher than the rate of integration of HC-

AdV vector DNA into the genome. Taken together it can be concluded that HC-AdV 

shows less predisposition to integrate into genes than the other vector systems 

currently in use.  But data from more integration sites such as those published in (Wu 

et al., 2003) and (Mitchell et al., 2004) would be necessarybefore a dogmatic assertion 

can be issued about the chances of HC-AdV vector DNA integration in to genes.  

Though a read-through from the transgene through the gene where the 

integration has taken place, as in the case of retro and lentiviral vectors is unlikely due 

to the presence of the poly A in the HC-AdV construct, it may still be a reason for 

concern.  Perturbations of genome wide methylation patterns have been reported with 

wt AdV integration (Heller et al., 1995, Remus et al., 1999). Since promoter 

methylation can result in variations of gene expression (Bestor, 1998), this may have 

adverse results during the integration in and around active genes.  The limited 

promoter and enhancer activity of the ITR of certain Ad types have been published 

(Hatfield & Hearing, 1993, Matsumoto et al., 1989, Miralles et al., 1989, Xing & 

Tikoo, 2005).  It would be very interesting to investigate if the insertion of HC-AdV 

DNA at or near a gene can cause fluctuations in the gene expression.     

 

V.5 HC-AdV DNA recombination into chromosomal DNA in vivo 
As of date, this study furnishes the first proof of random integration and homologous 

recombination of HC-AdV DNA into chromosomal DNA in vivo.  There have been 

publications that on injecting 5x109 PFU of Ist gen AdV via tail vein, 14-28 copies 

were present per hepatocyte (Vrancken Peeters et al., 1996), and after and injection of  

2x109 PFU, 1-100 copies were present in the hepatocyte nuclei, with an average of 20 

copies (Schowalter et al., 1997).  This is contradictory with the data from this study, 
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where 10 copies reached the liver following an injection of 1x1010 infectious units of 

HC-AdV.  In the papers mentioned above FISH using the vector plasmid was carried 

out to determine the number of vector genomes per hepatocyte, and in the present 

study, slot blot procedure was used to calculate the amount of vector DNA reaching 

the hepatocytes and this could be one of the reasons for the differences in the results.  

The differences in the results could also be due to the differences in the methods in 

which the experiments were carried out. 

Every effort was made to be certain that when measuring the rate of random 

integration of the vector into the genome, only nodules resulting from an integration 

(circular, spherical shape) were counted.  This may have resulted in some genuine 

cases of integration that did not have the “correct” shape to be discarded as a clump of 

Fah+ cells.  It is quite possible that in some cases, the microtone had sliced off the 

nodule just at the top, leaving a few Fah+ve cells, that were not counted as an instance 

of HC-AdV integration.  However, it was better to err on the side of caution and as of 

date, this mouse model has the best phenotype that can be used in such an 

investigation.  The rate of random integration of HC-AdV DNA into the chromosomal 

DNA in vivo was calculated as 4x10-5 and the rate of homologous recombination of 

the vector DNA into the genome as 5.6x10-7.  Though serial transplantion of the 

corrected hepatocytes resulted in sufficient expansion so as to enable the sequencing 

of the junction sites, the sensitivity of the experiment had to be sacrificed.  More 

cycles of serial transplantion may finally result in single clonal repopulation of the 

liver, enabling the use of Southern blot experiments, but until then PCR must suffice 

to provide the evidence for the homologous recombination.  As of date, no proof has 

been presented about the rate of homologous recombination of Ist Gen AdV in vivo 

(Ino et al., 2005), though integration of the vector has been shown (reviewed in the  

introduction).  The limited data obtained from the junction sites suggest that the 

nature of integration of the HC-AdV DNA into chromosomal DNA in vitro is no 

different from that in vivo, with the same indifference to integration into genes, and 

with the introduction of mutations into the vector and chromosomal DNA.  Large 

mutations (such as chromosomal translocations and large deletions) were not 

observed in the integration sites in the work done in vitro. 
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V.6 Synopsis 
Taking everything in account, it is very tempting to propose that a picture is starting 

to emerge of HC-AdV integration into the genome. The TP might play a role in 

protecting the Adenoviral DNA termini and when broken DNA fragments are present, 

the NHEJ repair apparatus of the cell might treat the HC-AdV as any other fragment 

of cellular DNA and start the mechanisms ending in the integration of the vector into 

the genome. 

 Though Ad 12 has been implicated in the formation of tumours in rodents, 

Ad5 has not displayed any tumorigenic tendencies so far. The expression levels of of 

MHC class I (Nielsch et al., 1991), peptide transporter Tap-2, chaperone Tapasin, and 

the immunoproteosome complexes MECL-1, PA28-α, and PA28-β (Vertegaal et al., 

2003) were observed to be highly suppressed in Ad 12 than in Ad 5, and this may be 

one of the reasons contributing to the oncogenic potential of Ad 12.  In any case, the 

HC-AdV used in the current study is based on Ad 5 and so there is only low concern 

regarding the oncogenic potential with vectors based on this serotype.  

 So, from all of the data presented in the study, it has been demonstrated HC-

AdV does not remain only as an episome, it rarely integrates in vitro and in vivo in the 

genome.  Yet, of all the gene therapy viral vector systems that are currently available, 

it seems to be the safest option, seemingly unaffected by the presence of genes in the 

target DNA.  The mutations observed during the integration are to be expected in any 

case of NHEJ repair of DNA, and the viral vector, by itself, does not seem to induce 

any of them.  No evidence was observed for any preferred integration into potentially 

dangerous genes such as oncogenes, tumour supressors or those involved in the cell 

cycle.  To conclude, no signs of great risks due to HC-AdV vector DNA integration 

into the chromosomal DNA, compared to those posed by the other viral gene transfer 

vector systems currently in use, were detected during this work and this thesis 

suggests that HC-AdV may have potential to be a safe gene transfer vector system of 

low mutagenicity. 
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VI Outlook 
 As of date, this work is the first instance where HC-AdV integration in vivo 

has been well characterised and has the largest number of junction sequences of HC-

AdV in vitro.  It would be very interesting to see the characteristics of HC-AdV 

integration in primary cell lines.  The 1 moi /cell used in this study may not be 

feasible in real clinical gene therapy and so it would be worth examining the rates and 

nature of HC-AdV integration at much higher mois. 

 The rate of integration of the vector is not as high as that reported for other 

gene therapy vectors, but to establish this, it is essential to calculate the exact amounts 

of targeting molecules reaching the nucleus following transfection and then to 

compare the rates of recombination and integration following HC-AdV infection and 

transfection of the plasmid in the same cell line.  The role of the TP in the integration 

could also be examined in this study. 

 According to the current knowledge, the HC-AdV utilises the cellular repair 

pathway to undergo homologous recombination or random integration into the 

genome.  This could be further characterised and the effects of the key gene products 

on the rate and nature of integration can be examined. 

 Though the current work indicates that HC-AdV integrates without resulting 

in large deletions in the genomic DNA, to state dogmatically that HC-AdV integrates 

either with or without deletions in the genomic DNA, FISH of the cellular genome of 

the clones is a necessity.  Maybe the future work in the field could utilize the 

technique. 

 Following a single or double rounds of serial transplantation of the transduced 

hepatocytes into recipient subjects, it was possible to isolate the Ad-mouse junction 

sites.  However, the number obtained in this study was not sufficient for detailed 

statistical analysis of the results.  So it would be interesting, from a point of clinical 

gene therapy, to obtain more junction sites and also try to serially transplant the 

FAH+ve hepatocytes for more rounds, untill the repopulation of a liver from a single 

integration event can be obtained. 

 To conclude, the advantage of the HC-AdV viz that it does not seem to be as 

predisposed as other viral vector systems to integrate into the genome is also its bane.  

So it would be worthwhile to develop methods of making the vector more suitable so 

as to make it conform to the idea of the ideal gene therapy vector: to make the vector 
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undergo homologous recombination at the exact location in the genome where the 

researcher wants it to.  The knowledge in the pathways of integration and homologous 

recombination can be utilized for this.  If the vector can be made to undergo a much 

higher rate of homologous recombination in vivo, for example, by cloning cassettes 

expressing those genes outside the region of homology in the vector, then it can be 

used in the treatment of inherited genetic diseases and indeed can come closer to 

becoming the ideal vector for gene therapy. 
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VII.1 Summary 
Gene therapy trials using adenoviral vectors for gene delivery are currently underway. 

A clinical trial based on retrovirus-mediated gene transfer resulted in the development 

of leukaemia in some of the subjects due to insertional mutagenesis. This experience 

highlights the importance of an evaluation of the biosafety of gene transfer vectors 

prior to their use in humans. The overall aim of this research was to quantitatively and 

qualitatively analyse recombination between vector DNA and chromosomal DNA in 

vitro and in vivo following HC-Ad vector-mediated gene transfer.  

To study the rates, at which HC-AdV DNA underwent homologous recombination 

with chromosomal DNA following gene transfer in vitro, the Hprt model, a classical 

system in recombination studies, was utilized.  A vector was designed to target exon 2 

of the human Hprt gene by introducing a stop codon upon homologous 

recombination. In these experiments, which were performed in primary cells and in 

established cell lines, the frequency of homologous recombination of the HC-AdV 

DNA with the HPRT locus was found to be, depending on the cell type, between 

2x10-5 to 1.2x10-6. In a different set of experiments and using a selection marker 

strategy, the rate at which HC-AdV DNA integrated randomly into the chromosomal 

DNA was determined to be between 5.4x10-3 to 1.1x10-4. 

To more closely mimic the situation following therapeutic gene transfer, in vivo 

experiments were performed. The use of the FahΔexon 5 knockout model allowed to 

study homologous and heterologous recombination events following in vivo gene 

transfer to the liver. Correction of the pathological phenotype was achieved either by 

targeting exon 5 with an HC-AdV carrying a 12.3 kb targeting sequence (homologous 

recombination) or by measuring integration frequencies following gene transfer with 

an HC-AdV expressing the FAH cDNA (heterologous recombination). The targeting 

frequency of exon 5 was estimated to be 5.6x10-7, and the rate of random integration 

was found to be 4x10-5.  This study is the first to document evidence of recombination 

between HC-AdV DNA and chromosomal DNA in vivo.   

The analysis of the vector integrates following transduction of primary cells and cell 

lines indicated that HC-AdV DNA integrated as an intact molecule and via the termini 

in most cases.  About half of the vector DNA integrations took place inside genes and 

none were observed in protooncogenes.  Analysis of the junction sequences suggested 

that the HC-AdV DNA had integrated in a random manner throughout the genome 
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without an obvious preference for any particular chromosomal regions. Patchy 

homologies between the vector termini and the chromosomal DNA were observed at 

the site of integration.  Though the majority of the integrations had occurred without 

causing any mutations in the chromosomal DNA, cases of substitutions and insertions 

of nucleotides too were observed.  This study has established quantitative data on in 

vitro and in vivo recombination frequencies of adenoviral vector DNA with genomic 

DNA and has provided a molecular characterization of observed integration events. 

These results may contribute to a risk-benefit assessment of adenovirus-mediated 

gene transfer. 
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VII.2 Zusammenfassung 
Gentherapieversuche mit adenoviralen Vektoren befinden sich zurzeit in der 

klinischen Testphase. Nach Retrovirus-vermitteltem Gentransfer kam es bei einigen 

Probanden durch Insertionsmutagenese zur Entstehung von Leukämien. Diese 

Erfahrung unterstreicht die Bedeutung präklinischer Untersuchungen zur biologischen 

Sicherheit von Gentransfervektoren. Zielsetzung der vorliegenden Arbeit war die 

quantitative und qualitative Analyse von Rekombinationsereignissen  zwischen 

Vektor und chromosomaler DNA in vitro und in vivo nach HC-Ad Vektor-

vermitteltem Gentransfer. 

Zur Bestimmung der Häufigkeit homologer Rekombination zwischen HC-Ad Vektor 

DNA und chromosomaler DNA wurde das häufig in Rekombinationsstudien 

eingesetzte HPRT-Selektionsmodell verwendet. Ein adenoviraler Vektor wurde 

konstruiert, der das menschliche HPRT Gen durch Einführung eines Stop Codons in 

Exon 2 mittels homologer Rekombination inaktivierte. In primären Zellen und in 

etablierten Zellenlinien wurden zelltypabhängig Häufigkeiten homologer 

Rekombination zwischen 2x10-5 bis zu 1,2x10-6 ermittelt. Die Frequenz zufälliger 

Integrationsereignisse wurde durch HC-Ad Vektor-vermittelte Zelltransduktion unter 

Verwendung eines Selektionsmarkers ermittelt und lag innerhalb eines Bereiches von 

5,4x10-3 und 1,1x10-4. 

Zur besseren Nachahmung der klinischen Situation wurden in vivo Experimente in der 

Labormaus durchgeführt. Die Verwendung des FahΔexon 5 Modells erlaubte die 

Untersuchung homologer und heterologer Rekombinationsereignisse nach in vivo 

Lebergentransfer. Die Korrektur des pathologischen Phenotyps wurde erreicht 

entweder durch das Targeting von Exon 5 mit einem HC-Ad Vektor, der eine 12.3 kb 

Targetingsequenz trug (homologe Rekombination) oder durch Bestimmung der 

Integrationshäufigkeit nach Gentransfer mit einem die FAH cDNA exprimierenden 

HC-Ad Vektor (heterologe Rekombination). Die Targetinghäufigkeit des Exon 5 

wurde mit 4,6x10-7  bestimmt, die Häufigkeit der zufälligen Integration mit 4x10-5. 

Dies ist die erste Untersuchung, die in vivo Rekombination zwischen HC-Ad Vektor 

DNA und chromosomaler DNA dokumentiert. 

Analyse der Vektorintegrate nach Transduktion von primären Zellen und von 

Zelllinien ergab, dass in den meisten Fällen die HC Ad-Vektor DNA als intaktes 

Molekül und über die viralen Enden integrierte. Ungefähr die Hälfte der 
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Integrationsereignisse fand innerhalb von Genen statt. Keine Integration wurde in 

Protoonkogenen beobachtet. Die Analyse der Junktionssequenzen ergab, dass die HC-

Ad Vektor DNA zufällig im Genom integrierte und ohne offensichtliche Präferenz für 

bestimme chromosomale Regionen. Am Ort der Integration wurden häufig 

Mikrohomologien zwischen den Vektorenden und der chromosomalen DNA 

beobachtet. Obwohl die meisten Integrationen nicht zu Mutationen in der 

chromosomalen DNA führten, wurden einige Fälle von Nukleotidsubstitutionen und 

Insertionen beobachtet.  

In dieser Untersuchung wurden quantitative Daten bezüglich der Häufigkeit von in 

vitro und in vivo Rekombination zwischen adenoviraler Vektor DNA und 

genomischer DNA erhoben und die Integrationsereignisse wurden auf molekularer 

Ebene charakterisiert. Diese Ergebnisse tragen zu einer Risiko-Nutzen Abwägung 

nach Adenovirus-vermitteltem Gentransfer bei. 
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