Thallium als Pseudoalkalimetall in Verbindungen mit Makrocyclen und mit Chalkogenen in den Systemen Tl-Te-O und Tl-Te-S

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Dipl.-Ing. Franziska Rieger aus Heidelberg

Köln 2006

Berichterstatter:

Priv.-Doz. A.-V. Mudring Prof. Dr. G. Meyer

Tag der mündlichen Prüfung:

12. Dezember 2006

Die vorliegende Arbeit wurde in der Zeit von September 2003 bis September 2006 unter der Leitung von Priv.-Doz. A.-V. Mudring am Institut für Anorganische Chemie der Universität zu Köln angefertigt.

Frau Priv.-Doz. A.-V. Mudring sowie Herrn Prof. Dr. G. Meyer danke ich herzlich für die großzügige Unterstützung, Förderung und Unterstützung und das Interesse an dieser Arbeit.

Inhaltsübersicht

Um den stereochemischen Einfluss des freien $6s^2$ -Elektronenpaars in Thallium(I)-Verbindungen zu untersuchen, wurden neue Verbindungen von Thallium(I) mit organischen Makrocyclen wie Coronanden, Kryptanden und Podanden synthetisiert. Die Kristallstrukturen der Verbindungen Tl(18-Krone-6)TlI4, Tl(Dibenzo-24-Krone-8)TlI4, Tl(Kryptofix 5)TlI4, Tl(Kryptofix 222)TlI4 sowie der drei isotypen Verbindungen [A(18-Krone-6)₂]TlI4 · 2 H₂O mit A = Tl, NH4/NH3, H₃O/H₂O wurden bestimmt und gegebenenfalls IR/Ramanspektroskopisch untersucht. Um die Auswirkung des im Gegensatz zu den Alkalimetallen vorhandenen $6s^2$ -Elektronenpaars auf die Koordinationssphäre des Thalliums zu untersuchen, wurden *Ab initio*-Rechnungen durchgeführt. Die Geometrieoptimierung der Metall-Kronenetherkomplexe zeigt eine Auslenkung des Thalliumkations aus der Mitte des Kronenethers von 66 pm. Die ungünstigen antibindende Wechselwirkungen der Tl-6s-Orbitale mit den 2p-Orbitalen der Sauerstoffatome des Kronenethers werden minimiert, indem das Thallium-Kation so weit aus dem Zentrum des Kronenethermoleküls ausgelenkt wird, wie es die Coulomb-Anziehung erlaubt.

In den ternären Thallium-Chalkogen-Systemen Tl-Te-O und Tl-Te-S konnten die Kristallstrukturen von drei Verbindungen bestimmt werden. Mit der Verbindung β -Tl₂TeO₃ wurde eine neue, metastabile Phase der bereits bekannten orthorhombischen Modifikation α -Tl₂TeO₃ synthetisiert. Die β -Form wandelt sich bei ca. 430 °C in die α -Form um. Im System Tl-Te-S wurden die Kristallstrukturen der Thiotellurate Tl₂TeS₃ und Tl₂TeS₂, deren (ungefähre) Zusammensetzungen bereits bekannt waren [37], anhand von Einkristallstrukturanalysen aufgeklärt. Das Thallium(I)thiotellurat mit dem TeS_2^2 -Anion, welches der 8-N-Regel folgt, kann als Zintl-Phase betrachtet werden. Sowohl im Tl₂TeS₃ als auch im Tl₂TeS₂ sind die Te-S-Bindungen im Vergleich zu anologen oder ähnlichen Alkaliverbindungen deutlich länger, was eine abnehmende Ionizität der Thalliumchalkogenide aufgrund des weniger elektropositiven Charakters des Thalliums zeigt. Die Verbindungen wurden außerdem mit Hilfe der IR/Raman-Spektroskopie und der Dynamischen Differenzkalometrie (DSC) untersucht. Die elektronische Struktur von Tl₂TeS₃ wurde berechnet und mit Hilfe der UV/Vis/NIR-Absorptionsspektroskopie und Messung des spezifischen elektrischen Widerstands bestätigt.

Darüberhinaus lassen sich Aussagen über glasartige Zustände im System Tl-Te-S machen, die

auch Rückschlüsse auf die Beschaffenheit der Schmelzen erlauben. Durch den Vergleich der Schwingungsspektren der kristallinen und glasartigen Phasen kann man davon ausgehen, dass TeS₂-Einheiten zu einem regellosen Netzwerk mit einem relativ weiten Bereich von Bindungslängen miteinander verknüpft sind und dass keine isolierten TeS₃-Einheiten oder Polysulfidketten vorliegen. Durch ein Erhöhen des Tl-Anteils im Glas wird die TeS₂-Teilstuktur weitgehend zerstört.

Abstract

New compounds of thallium(I) with organic macrocycles such as coronands, cryptands and podands were sythesized in order to investigate the stereochemical influence of the $6s^2$ electron pair. The crystal structures of Tl(18-Krone-6)TlI₄, Tl(Dibenzo-24-Krone-8)TlI₄, Tl(Kryptofix 5)TlI₄, Tl(Kryptofix 222)TlI₄ as well as the three isotypic compounds [A(18-Krone-6)₂]TlI₄ · 2 H₂O with A = Tl, NH₄/NH₃, H₃O/H₂O were determined and investigated by IR/Raman-spectroscopy. In order to study the effect of the inert $6s^2$ electron pair on the coordination sphere of thallium(I), *ab initio* calculations were carried out. Geometry optimization of the metal-crown-ether complexes shows a displacement of the cation of 66 pm from the crown ether cavity. In this way, the unfavourable antibonding interactions of the 6s orbitals with the 2p orbitals of the oxygen atoms are minimized by driving the thallium cation out of the center as far as the counteracting electrostatic forces allow.

In the ternary thallium-chalcogen systems Tl-Te-O and Tl-Te-S, the crystal structures of three compounds were determined. Monoclinic β -Tl₂TeO₃ is a new metastable phase of the orthorhombic modification α -Tl₂TeO₃. The monoclinic performs an irreversible phase transition at 430 °C into the higher symmetric α -form. In the Tl-Te-S system the crystal structures of thalllium(I)thiotellurate (IV), Tl₂TeS₃, und and thallium(I)thiotellurate(II), Tl₂TeS₂, were determined. Tl₂TeS₂ with TeS₂²⁻-anions is a Zintl phase of the alkali analogue thallium. In both structures the Te-S distances in the anions Tl₂TeS₃ und Tl₂TeS₂ are significantly longer than in comparable alkali compounds, which reflects the decreasing ionicity of the thallium compunds. All obtained thallium(thio)tellurates were investigated by IR/Raman-spectroscopy and their thermal benaviour was studied. The electronic structure of Tl₂TeS₃ was calculated and verified by UV/Vis/NIR absorption spectroscopy and measurement of the electrical conductivity.

In addition, information about vitreous states in the Tl-Te-S system was obtained, reflecting the properties of the polychalogenide fluxes. Probes of vitreous material in different compositions were investigated by IR/Raman-spectrosopy and their thermal behaviour was studied. By comparing the spectra with the crystalline phases, it is assumed that in the studied glasses TeS₂ units are connected to each other in a manner similar to the crystalline phase Tl₂TeS₂. By increasing the Tl content the TeS₂ part of the structure is destroyed.

Inhaltsverzeichnis

Abkürzungen und Synonyme	
l Einleitung	
? Verbindungen des Thalliums in komplexen Salzen mit makrocyclischen Ligand	den
2.1 Tl(18-Krone-6)Tll₄	
2.1.1 Herstellung	
2.1.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	
2.1.3 Kristallstruktur	
2.2 Tl(Dibenzo-24-Krone-8)TlI ₄	
2.2.1 Herstellung	
2.2.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	
2.2.3 Pulverdiffraktometrie	
2.2.4 Kristallstruktur	
2.2.5 IR/Raman-spektroskopische Untersuchungen an Tl(Dibenzo-24-Krone-8	$)TlI_4_$
2.3 Tl(Kryptofix 5)TlI ₄	
2.3.1 Herstellung	
2.3.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	
2.3.3 Kristallstruktur	
2.4 Tl(Kryptofix 222)TlI ₄	
2.4.1 Herstellung	
2.4.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	
2.4.3 Kristallstruktur	
2.5 [A(18-Krone-6) ₂]TII ₄ · 2 H ₂ O mit A = Tl, NH ₄ /NH ₃ , H ₃ O/H ₂ O	
2.5.1 Herstellung	
2.5.1.1 [Tl(18-Krone-6) ₂]TlI ₄ \cdot 2 H ₂ O	
$2.5.1.2 [(NH_4/NH_3)(18-Krone-6)_2]TII_4 \cdot 2 H_2O$	
$2.5.1.3 [(H_3O/H_2O)18$ -Krone-6) ₂]TlI ₄ · 2 H ₂ O	
2.5.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	
$2.5.2.1 [Tl(18-Krone-6)_2]TlI_4 \cdot 2 H_2O$.
2.5.2.2 [(NH ₄ /NH ₃)(18-Krone-6) ₂]TII ₄ \cdot 2 H ₂ O	.
$2.5.1.3 [(H_3O/H_2O)18$ -Krone-6) ₂]TII ₄ · 2 H ₂ O	
2.5.3 Pulverdiffraktometrie	
$2.5.3.1 [Tl(18-Krone-6)_2TlI_4] \cdot 2H_2O$.
2.5.3.2 [(NH ₄ /NH ₃)(18-Krone-6) ₂]TII ₄ \cdot 2 H ₂ O	
$2.5.3.3 [(H_3O/H_2O)18$ -Krone-6) ₂]TII ₄ · 2 H ₂ O	.
2.5.4 Kristallstrukturen von $[A(18\text{-}Krone-6)_2]TII_4 \cdot 2 H_2O$ mit $A = Tl, NH_4/NI_4$	H3,
H_3O/H_2O	.
2.5.5 Elementaranalyse	
2.5.6. IR/Raman-spektroskopische Untersuchungen an $[A(18-Krone-6)_2]TlI_4$	$2 H_2 O$
$A = II, NH_4/NH_3, H_3O/H_2O$	
2.5.6.1 [(H_3O/H_2O)(18-Krone-6) ₂]TII ₄ · 2 H_2O	
2.5.6.2 $[TI(18-Krone-6)_2]TII_4 \cdot 2 H_2O$	
2.5.6.3 [(NH ₄ /NH ₃)(18-Krone-6) ₂]III ₄ ·2 H ₂ O	

2.5.6.4 Vergleich der Schwingungsspektren von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ mit A = T1 NH /NH, H.O/H.O	16
2.5.6.5 Vergleich der Schwingungsspektren von [A(18-Krone-6) ₂]TlI ₄ · 2 H ₂ O und 18-Krone-6	40 47
2.6 Vergleich und Diskussion	52
2.6.1 Koordination des Thalliums mit makrocyclischen Liganden	<u> </u>
2.6.2 Einfluss des 6s ² -Elektronenpaars des Thalliums	56
3 Verbindungen in den Systemen Tl-Te-O und Tl-Te-S	58
3.1 Thalliumverbindungen als Kandidaten für TE-Materialien	60
3.2 Präparation von Thalliumchalkogeniden	61
3.2.1 Apparative Methoden	63
3.3 Thallium(I)oxotellurat(IV) B-Tl ₂ TeO ₃	64
3.3.1 Herstellung	64
3.3.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	64
3.3.3 Kristallstruktur	66
3.3.4 Pulverdiffraktometrie	68
3.3.5 Infrarot-/Ramanspektroskopie	68
3.3.6 Phasenübergang von monoklinem β -Tl ₂ TeO ₃ in orthorhombisches α -Tl ₂ TeO) ₃ _72
3.3.6.1 Kristallstruktur von α -Tl ₂ TeO ₃	72
3.3.6.2 Phasenumwandlung	74
3.4 Thallium(I)thiotellurat(IV) Tl ₂ TeS ₃	81
3.4.1. Herstellung	81
3.4.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	$-\frac{82}{22}$
3.4.3 Chemische Eigenschaften	83
3.4.4 Kristalistruktur von Inallium(1)thiotellural(1V)	84 07
3.4.5 Pulveruijjrukiometrie	0/ 88
3.4.0 Infrarot/Raman-Spektroskopie	00 88
3.4.8 Optische und elektrische Eigenschaften von Tl ₂ TeS ₃	-90
3.4.8.1 UV/Vis/NIR-Absorptionsspektroskopie	- 90
3.4.8.2 Messung des spezifischen elektrischen Widerstands	90
3.4.8.3 Elektronische Struktur von Tl ₂ TeS ₃	91
3.5 Thallium(I)thiotellurat(II) Tl ₂ TeS ₂	94
3.5.1 Herstellung	<u> </u>
3.5.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung	94
3.5.3 Kristallstruktur	96
3.5.4 Pulverdiffraktometrie	99
3.5.5 Thermische Analyse	_ 100
3.5.6 Infrarot- und Ramanspektroskopie	_ 101
3.6 Vergleich der Kristallstrukturen von Tl ₂ TeS ₃ und Tl ₂ TeS ₂	_ 103
3.7 Glasartige Verbindungen im System Tl-Te-S	105
3.7.1 Herstellung der glasartigen Verbindung $Tl_{2,3}TeS_2$ (" $Tl_7Te_3S_6$ ")	_ 105
3.7.2 Herstellung der glasartigen Verbindung $Tl_{2,6}TeS_2$ (" $Tl_8Te_3S_6$ ")	_ 106
3.7.3 Herstellung der glasartigen Verbindung Tl_3TeS_2 (" $Tl_9Te_3S_6$ ")	_ 106
3./.4 EDX-Analyse	$-\frac{106}{107}$
5./.J Injrarot/Kaman-Spektroskopie	_ 107

3.7.5.1 Vergleich der Schwingungsspektren des glasartigen Zustands mit den	100
3 7 5 2 Einfluss des TL-Gebalts auf die Glasstruktur	<u> </u>
3 7 6 Thermische Analyse	-112
3.7.7 Zusammenfassung und Diskussion	114
3.8 Zusammenfassung und Ausblick	116
4 Methoden zur Produktcharakterisierung	118
4.1 Röntgenographische Methoden	118
4.1.1 Röntgenpulverdiffraktometrie	118
4.1.2 Einkristallstrukturuntersuchungen	118
4.1.2.1 Theoretische Grundlagen	118
4.1.2.2 Strukturlösung und -verfeinerung	119
4.1.2.3 Auslenkungsparameter	-120
4.1.2.4 Datensammlung	-121
4.1.5 Hochiemperatur-Einkristallstrukturanalyse	122
4.2 Infraret und Demon Schwingungspektroskopie	122 122
4.2 Infrarot- und Kaman-Schwingungspektroskopie	123
4.3 Differential Scanning Calorimetry (DSC)	123
4.4 UV/Vis/NIR-Absorptionsspektroskopie	124
4.5 Energiedispersive Röntgenfluoreszensanalyse (EDAX)	125
4.6 Elementaranalyse	125
4.7 Messung des spezifischen elektrischen Widerstands	126
4.8 Verzeichnis der verwendeten Geräte	126
4.9 Verzeichnis der verwendeten Computerprogramme	127
4.10 Verzeichnis der verwendeten Chemikalien	129
5 Toxikologie des Thalliums und Arbeitssicherheit	130
6 Literaturverzeichnis	133

Abkürzungen und Synonyme

<i>a</i> , <i>b</i> , <i>c</i>	Gitterkonstanten /pm
α, β, γ	Winkel der Elementarzelle /°
α	Seebeck-Koeffizient /(VC ⁻¹)
СОНР	Crystal orbital Hamiltonian population
d	Abstand /pm
DOS	Density of states
ΔE	Bandlücke /eV
DSC	Differential Scanning Calorimetry
DMSO	Dimethylsulfoxid
EDAX	Energy-dispersive X-Ray Analysis
FP-LAPW	Full-potential linear augmented plane wave
GooF	Goodness of Fit
IPDS	Image Plate Diffraction System
ICOHP	Integrated crystal orbital Hamiltonian population
FIR	ferner Infrarot-Bereich
IR	Infrarot
К	Wärmeleitfähigkeit /(JK ⁻¹ m ⁻¹ s ⁻¹)
Kronenether:	
Dibenzo-24-Krone-8	1,4,7,10,17,20,23,26-Octaoxa[10.1]orthocyclophan
18-Krone-6	1,4,7,10,13,16-Hexaoxacyclooctadecan
Kryptofix 5	1,13-Bis(8-chinolyl)-1,4,7,10,13-pentaoxatridecan
Kryptofix 222	4,7,13,16,21,24-Hexaoxa-1,10-diazobicyclo[8.8.8]hexacosan
MIR	mittlerer Infrarot-Bereich
NIR	naher Infrarot-Bereich
ρ	spezifischer elektrischer Widerstand /(Ωm),
UV	ultraviolettes Licht
Vis	sichtbares Licht
θ	Beugungswinkel /°
TE	thermoelektrisch

1 Einleitung

Thallium kann wegen seines (kristall)chemischen Verhaltens als *Pseudoalkalimetall* oder als *relativistisches Alkalimetall* [1] bezeichnet werden. Die starke Bevorzugung der Oxidationsstufe +I ist neben Schalenstruktureffekten auf die durch relativistische Effekte bedingte starke energetische Absenkung des 6s²-Elektronenpaars zurückzuführen. Diese Tatsache ist auch als "Inert Pair Effekt" [2] bekannt.

Zugleich zeigt das Element aufgrund der energetischen Absenkung seines 6s²-Elektronenpaars in seinem (kristall)chemischen Verhalten starke Ähnlichkeiten zu den Münzmetallen (Cu, Ag, Au). Die chemische Ähnlichkeit des Thalliums zum Silber äußert sich beispielsweise bei den Thalliummonohalogeniden, die ähnlich schwerlöslich wie die Silberhalogenide sind und ähnliche Farben zeigen. Andererseits verhalten sich einige Thallium(I)-Verbindungen chemisch wie Alkalimetallverbindungen. Beispielsweise bildet Thallium(I) ein leichtlösliches Carbonat, Tl(I)-Oxid absorbiert leicht CO₂. Beispiele für kristallchemische Analogien zwischen Alkalimetallen und Thallium sind die Salze K₂SO₄ und K₂[PtCl₆], die zu den entsprechenden Thallium(I)-Salzen isomorph sind. Allerdings weisen aber auch zahlreiche Thalliumverbindungen deutliche Abweichungem in ihrem strukturellem Aufbau von den Alkalimetallanaloga auf. Thallium(I)fluorid kristallisiert nicht im NaCl-Typ wie Kalium- und Rubidiumfluorid, sondern zeigt eine Schicht-Struktur, in der die Thalliumatome eine einseitige Koordination zeigen, was die stereochemische Aktivität des 6s²-Elektronenpaars nahelegt.

Obwohl Thalliumverbindungen in der Technik nur begrenzt Verwendung finden (weltweiter Thalliumbedarf im Jahre 1988 nur 5 - 15 t/a [3]), zeichnen seine Eigenschaften das Metall für spezielle Anwendungen aus. Oft sind diese Eigenschaften auf die Anwesenheit des freien 6s²-Elektronenpaar am Thallium(I)-Kations zurückführen.

Das Vorhandensein solcher freien Elektronenpaare kann z. B. eine Erhöhung des nichtlinearen Brechungsindex, wie in Telluritgläsern (Gläser auf der Basis von TeO₂), bewirken. Die größten nichtlinaren Effekte der dritten Ordnung zeigen Gläser, die Te⁴⁺, Bi³⁺, Pb²⁺ und Tl⁺-Kationen mit einem ns^2 -Elektronenpaar enthalten [4].

In den Systemen Tl-As-S und Tl-As-Se findet man niedrigschmelzende Spezialgläser mit hoher Lichtbrechung. Sie zeigen verhältnismäßig hohe chemische Beständigkeiten, günstige Benetzungseigenschaften gegenüber zahlreichen Metallen bei gleichzeitiger chemischer Undurchlässigkeit. Ein Einsatzbereich für diese Gläser ist das hermetische Abschließen von empfindlichen Elektronikbauteilen, wie Kondensatoren, Widerständen oder Halbleitern [5]. In jüngerer Zeit hat man erkannt, dass Thalliumverbindungen interessante Kandidaten für neue thermoelektrische Materialien darstellen [6]. Einen gewichtigen Nachteil stellt jedoch zweifellos die Giftigkeit des Thalliums dar, weshalb solche Materialien eher "Nischen-Anwendungen" bleiben werden. Allerdings könnte deren Untersuchung zu einem besseren allgemeinen Verständnis der thermoelektrischen Eigenschaften von Festkörpern führen.

Diese Arbeit besteht aus zwei Teilen, in denen das Verhalten des Thalliums mit dem der Alkalimetalle verglichen werden kann. Der erste Teil behandelt Kristallstrukturen von Thallium(I) mit organischen Makrocyclen wie Coronanden, Kryptanden und Podanden. Im zweiten Teil werden neue Verbindungen in den ternären Systemen Tl-Te-O und Tl-Te-S behandelt.

2 Verbindungen des Thalliums in komplexen Salzen mit makrocyclischen Liganden

Vergleicht man das Verhalten von K^+ und Tl^+ in komplexen Salzen, fällt auf, dass sie in einer Vielzahl von Fällen nicht isotyp kristallisieren. In biologischen Systemen ist Tl^+ in der Lage, K^+ zu ersetzen, wobei das Thallium eine bis zu 10 mal so starke Affinität wie Kalium aufweist [7].

In Anwesenheit von Komplexbildnern wie Coronanden, Podanden und Kryptanden kann Tl⁺ sehr einfach in seine dreiwertige Oxidationsstufe überführt werden [8]. Als Oxidationsmittel können dabei der Luftsauerstoff oder milde Oxidationsmittel wie Iod dienen, die in wässriger Lösung bei Abwesenheit der Komplexbildner, nicht in der Lage sind, Thallium(I)- zu Thallium(III)-Kationen zu oxidieren.

Die Redoxkomplexierung von Thallium-Kationen mit Hilfe von Kronenethern in wässriger Lösung wurde in einigen Arbeiten untersucht [9]. Dies war in den 90er Jahren mit der Entdeckung von thalliumhaltigen supraleitenden Oxidkeramiken [10] hinsichtlich der anfallenden Mengen an thalliumhaltigen Abfällen von großer Bedeutung, wobei man nach einer Abtrennung oder möglichen Wiedergewinnung des Thalliums aus den Kupferoxid-Keramiken suchte.

Nach [9] werden aus den thallium- und chloridhaltigen Lösungen durch eine Redox-Komplexierung Verbindungen des Typs [Tl(18-Krone-6)₄CuCl₄][TlCl₄]₂·2H₂O gebildet, wenn Cu²⁺ zur Verfügung steht [9]. In dieser Struktur wird das CuCl₄²⁻-Anion "in einer ersten Schale,, von vier Kronenethermolekülen tetraedrisch umgeben, die wiederum von einer "zweiten Schale" aus TlCl₄⁻-Aionen umgeben sind. Bei dieser Verbindungsklasse handelt es sich um Einschlussverbindungen, die in der Lage sind, während der Kristallisation in dem durch die 18-Krone-6-Moleküle aufgespannten Hohlraum Tetrahalogeno-Anionen der Übergangsmetalle einzuschließen.

Der Vergleich, insbesondere der Kristallstrukturen, von Thalliumverbindungen mit den entsprechenden Alkalimetallverbindungen kann dabei wichtige Hinweise auf das Zusammenspiel von relativistischen Effekten und Schalenstruktureffekte liefern.

Kronenether als cyclische Makromoleküle weisen hierfür einige interessante Eigenschaften auf. Einmal haben sie auf Grund ihrer Sauerstoffatome, unabhängig von der Größe des Hohlraums eine hohe Affinität zu den Alkalimetallen. Andererseits bieten die Makrocyclen in ihren großen Hohlräumen theoretisch Platz für mehrere Kationen, wie es beispielsweise in $[Hg_2(Kryptofix 5)(ClO_4)]$ [11], $[Na_2(Dibenzo-24-Krone-8)(o-nitrophenolat)]$ [12] beobachtet wurde. Eine solche Verbindung von Thallium ist interessant, da man hier Closed-Shell-Wechselwirkungen (6s²-6s²) zwischen zwei Thalliumatomen erwarten könnte.

2.1 TI(18-Krone-6)TII₄

2.1.1 Herstellung

0,033 g $(9,96 \cdot 10^{-5} \text{ mol})$ TII wurden mit 0,053 g $(2,09 \cdot 10^{-4} \text{ mol})$ Iod bei Anwesenheit von 0,025 g $(9,46 \cdot 10^{-5} \text{ mol})$ 18-Krone-6 in 20 ml in Ethanol zum Sieden erhitzt bis sich der Bodensatz aufgelöst hatte und die tiefrote Farbe der Lösung nach orange umgeschlug. Die Reaktionsmischung wurde mit Hilfe eines Dewars langsam abgekühlt, wobei sich orange, quaderförmige Kristalle mit einer Ausbeute bzgl. Tl von ca. 50 % bildeten.

2.1.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

Verbindung	Tl(18-Krone-6)TII ₄
Summenformel	$C_6H_{12}O_6I_4Tl_2$
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/c$ (Nr. 14)
<i>a</i> /pm	840,90(7)
<i>b</i> /pm	2110,4(2)
c /pm	1464,4(1)
β /°	101,968(7)
Zellvolumen /Å ³	2542,4(3)
Ζ	4
F(000)	326
$M/(\text{g mol}^{-1})$	1156,48
berechnete Dichte /(g cm ⁻¹)	3.0213 g/cm^3
Kristallabmessungen /mm	$0.2 \times 0.3 \times 0.2$
Temperatur /K	298
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	175,4
Extinktionskoeffizient	-
Wichtung <i>a/b</i>	0,065200/0,000000
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,0413/0,2288
Scan-Methode	<i>w</i> -Scan
2 <i>θ</i> -Messbereich /°	3,6 bis 54,6
(<i>hkl</i>)-Messbereich	(-10,-27,-18) bis (10,27,18)
Reflexe gemessen	27992
unabhängig	5660
beobachtet $[I \ge 2\sigma(I)]$	4467
R _{int}	0,0788
Anzahl Parameter	217
R_1	0,0395
R_1 (alle Daten)	0,0530
wR_2	0,0964
wR_2 (alle Daten)	0,1048
S	1,009
Restelektronendichte /(eÅ ⁻³) max./min.	0,993/ -2,074

Tabelle	 Kris 	stall	ograph	ische	Angal	ben zur	Einl	kristal	lstru	kturanal	lvse	von	Tl(18	-Krone-6)Tl	I ₄.
			<i>L</i> / L													/	

Atom	Wyckhoff-Lage	Besetzung	x/a	y/b	z/c	U _{eq}
T11	4e	1	0,65765(4)	0,91713(2)	0,70671(2)	0,0374(1)
T12	4e	1	0,68578(4)	0,79532(2)	0,96739(2)	0,0404(1)
I1	4e	1	0,32482(8)	0,94634(3)	0,68190(4)	0,0446(2)
I2	4e	1	0,6893(1)	0,78717(3)	0,68901(5)	0,0518(2)
13	4e	1	0,78196(9)	0,98827(3)	0,59481(5)	0,0492(2)
I4	4e	1	0,84008(8)	0,94697(3)	0,89204(4)	0,0439(2)
01	4e	1	0,0008(7)	0,7723(3)	0,5250(4)	0,040(1)
02	4e	1	0,6902(8)	0,8368(3)	0,4362(4)	0,042(1)
03	4e	1	0,3773(7)	0,7738)	0,3711(4)	0,041(1)
O4	4e	1	0,3554(8)	0,6611(3)	0,47191(4)	0,043(1)
05	4e	1	0,6622(9)	0,5982(4)	0,57882(5)	0,047(2)
06	4e	1	0,9704(8)	0,6693(3)	0,6396(5)	0,045(2)
C1	4e	1	0,846(1)	0,8560(5)	0,4234(7)	0,047(2)
C2	4e	1	0,545(1)	0,8624(5)	0,3668(7)	0,048(2)
C3	4e	1	0,389(1)	0,8408(5)	0,3863(7)	0,047(2)
C4	4e	1	0,223(1)	0,7508(5)	0,3819(7)	0,045(2)
C5	4e	1	0,229(1)	0,6789(5)	0,3858(7)	0,048(2)
C6	4e	1	0,370(1)	0,5942(5)	0,4847(8)	0,053(3)
C7	4e	1	0,498(1)	0,5808(6)	0,5797(8)	0,053(3)
C8	4e	1	0,7928(2)	0,5896(5)	0,6678(6)	0,054(3)
C9	4e	1	0,962(1)	0,6035(5)	0,6571(7)	0,051(2)
C10	4e	1	0,125(1)	0,6863(6)	0,6241(7)	0,049(2)
C11	4e	1	0,127(1)	0,7560(6)	0,6121(7)	0,050(3)
C12	4e	1	0,990(1)	0,8400(5)	0,5115(6)	0,043(2)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	U_{12}
T11	0,04180(19)	0,03504(19)	0,03499(16)	-0,00067(13)	0,01304(13)	0,00045(14)
T12	0,03921(19)	0,0374(2)	0,04496(18)	-0,00400(14)	0,01528(14)	-0,00360(14
I1	0,0399(3)	0,0458(4)	0,0473(3)	-0,0023(3)	0,0141(2)	-0,0015(3)
I2	0,0684(4)	0,0346(3)	0,0554(4)	-0,0019(3)	0,0253(3)	0,0045(3)
I3	0,0652(4)	0,0420(4)	0,0501(3)	0,0020(3)	0,0324(3)	0,0025(3)
I4	0,0496(3)	0,0424(4)	0,0348(3)	-0,0001(2)	0,0085(2)	-0,0027(3)
01	0,034(3)	0,050(4)	0,034(3)	0,003(3)	0,009(2)	-0,001(3)
02	0,041(3)	0,042(4)	0,042(3)	0,004(3)	0,013(3)	-0,002(3)
O3	0,033(3)	0,044(4)	0,045(3)	0,006(3)	0,016(2)	0,005(3)
04	0,048(4)	0,037(4)	0,047(3)	0,005(3)	0,019(3)	0,000(3)
05	0,056(4)	0,047(4)	0,045(3)	0,007(3)	0,024(3)	0,003(3)
06	0,049(4)	0,042(4)	0,047(3)	0,010(3)	0,021(3)	0,011(3)
C1	0,051(5)	0,045(6)	0,049(5)	-0,004(4)	0,023(4)	-0,001(4)
C2	0,047(5)	0,043(6)	0,046(5)	0,008(4)	0,009(4)	0,004(4)
C3	0,050(5)	0,031(5)	0,053(5)	0,005(4)	0,010(4)	0,012(4)
C4	0,039(5)	0,050(6)	0,047(5)	0,004(4)	0,019(4)	0,001(4)
C5	0,047(5)	0,047(6)	0,045(5)	0,001(4)	0,011(4)	-0,003(5)
C6	0,051(6)	0,039(6)	0,070(7)	0,001(5)	0,021(5)	-0,007(5)
C7	0,054(6)	0,051(7)	0,061(6)	0,016(5)	0,029(5)	0,004(5)
C8	0,077(7)	0,049(6)	0,031(4	0,017(4)	0,012(4)	-0,004(5)
C9	0,062(6)	0,040(6)	0,042(5)	-0,006(4)	0,009(4)	0,008(5)
C10	0,037(5)	0,059(7)	0,048(5)	0,008(5)	0,013(4)	0,011(5)
C11	0,035(5)	0,064(7)	0,042(5)	0,007(5)	0,001(4)	-0,007(5)
C12	0,045(5)	0,038(5)	0,042(4)	-0,008(4)	0,012(4)	-0,004(4)

Tabelle 3. Koeffizienten der anisotropen Auslenkungsparameter $U_{ij}/(10^{-4} \text{ pm}^2)$ von Tl(18-Krone-6)TlI₄.

2.1.3 Kristallstruktur

Die salzartige Verbindung kristallisiert monoklin in der Raumgruppe $P2_1/c$ (Nr. 14). In der asymetrischen Einheit liegt das komplexe Kation $[Tl(18-Krone-6)]^+$ neben dem Tetraiodothallat-Anion mit dreiwertigem Thallium vor (s. Abb. 1). Das TlI_4^- -Anion zeigt dabei eine merkliche Abweichung von der idealen Tetraedergestalt (s. Tab. 4), wie die betreffenden Tl-I-Abstände und besonders die I-Tl-I-Winkel erkennen lassen.

Abbildung 1. Kristallstruktur von Tl(18-Krone-6)TlI₄ entlang [100].

Die intermolekularen Tl-I-Abstände betragen 378,28(8) und 380,24(9) pm (s. Abb. 2). Die kürzesten intermolekularen I-I-Abstände betragen 411,31(8) und 423,9(1) pm (s. Tab. 4). Unter Berücksichtigung des kleineren Abstands verknüpfen die TlI₄-Einheiten zu Dimeren die unter Berücksichtigung des letztgenannten Abstands zu gewinkelten Ketten verknüpfen. Die kürzesten I-I-Abstände zwischen den Ketten betragen 437,3(1) pm und liegen oberhalb des Van-der-Waals-Abstandes in der Gasphase von 430 pm [13], weshalb von keiner Wechselwirkung der komplexen Anionen auszugehen ist. Die Kronenethermoleküle sind zwischen den nebeneinander verlaufenden TlI₄-"Ketten" so angeordnet, dass sich insgesamt ein an Schichten erinnernder Aufbau der Struktur ergibt, wie Abb. 1 zeigt.

Das Kation zeigt die für Thallium typische "Sunrise"-Konformation, bei der das Tl(I)-Kation eine Position oberhalb der Ausgleichsebene durch die sechs Sauerstoffatome eines Kronenethermoleküls einnimmt (s. Abb. 2). Der Abstand des Thalliums von dieser Ebene beträgt 65,8 pm.

Abbildung 2. Sunrise-Konformation des $[Tl(18-Krone-6)]^+$ -Ions.

Tabelle 4. Ausgew	ante Atomaostanue		18-KI011C-0)1114.
Atome	Abstand	Atome	Abstand/Winkel
Tl2 O1	286,2(6)	C8 C9	152(2)
Tl2 O2	283,1(6)	C10 C11	149(2)
Tl2 O3	291,9(6)	I3 T11 I1	112,46(2)
Tl2 O4	295,0(7)	I3 T11 I2	114,12(2)
Tl2 O5	286,9(8)	I1 T11 I2	109,55(2)
Tl2 O6	296,6(6)	I3 T11 I4	108,51(2)
T11 I3	274,50(7)	I1 T11 I4	105,04(2)
Tl1 I1	275,88(7)	I2 T11 I4	106,59(2)
T11 I2	277,79(8)	C11 O1 C12	111,2(8)
Tl1 I4	278,13(7)	C2 O2 C1	112,0(7)
O1 C11	142(1)	C4 O3 C3	111,3(8)
O1 C12	144(1)	C5 O4 C6	112,9(8)
O2 C2	142(1)	C8 O5 C7	112,3(8)
O2 C1	145(1)	C9 O6 C10	112,3(8)
O3 C4	141(1)	O2 C1 C12	107,5(8)
O3 C3	142(1)	O2 C2 C3	108,3(8)
O4 C5	142(1)	O3 C3 C2	108,3(8)
O4 C6	142(1)	O3 C4 C5	109,3(8)
O5 C8	143(1)	O4 C5 C4	107,7(8)
O5 C7	144(1)	O4 C6 C7	108,5(9)
O6 C9	142(1)	O5 C7 C6	107,9(8)
O6 C10	144(1)	O5 C8 C9	108,0(8)
C1 C12	150(1)	O6 C9 C8	108,6(9)
C2 C3	152(2)	O6 C10 C11	108,7(8)
C4 C5	152(2)	O1 C11 C10	108,5(8)
C6 C7	150(2)	O1 C12 C1	109,9(8)

Tabelle 4. Ausgewählte Atomabstände /pr	m und Winkel /° in Tl(18-I	-Krone-6)TlI ₄
---	----------------------------	---------------------------

2.2 TI(Dibenzo-24-Krone-8)TII₄

2.2.1 Herstellung

0,033 g $(9,96 \cdot 10^{-5} \text{ mol})$ TII wurden mit 0,025 g $(9,85 \cdot 10^{-5} \text{ mol})$ I₂ bei Anwesenheit von 0,092 g $(2,05 \cdot 10^{-4} \text{ mmol})$ Dibenzo-24-Krone-8 in 20 ml in einer (3:1) Dichlormethan-Ethanol-Mischung zum Sieden erhitzt bis sich der Bodensatz aufgelöst hatte und die Lösung sich dunkelrot färbte. Das Reaktionsgefäß wurde mit perforiertem Parafilm abgedeckt. Nach 10 Tagen bildeten sich rote transparente nadelförmige Kristalle.

2.2.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

Verbindung	Tl(Dibenzo-24-Krone-8)TlI ₄
Summenformel	$C_{24}H_{12}I_4O_8Tl_2$
Kristallsystem	triklin
Raumgruppe	<i>P</i> 1 (Nr. 14)
<i>a</i> /pm	1058,4(1)
<i>b</i> /pm	1116,8(1)
<i>c</i> /pm	1583,7(2)
α /°	99,996(9)
$\beta/^{\circ}$	109,100(8)
$\gamma /^{\circ}$	95,188(9)
Zellvolumen /Å ³	1720,1(3)
Ζ	2
<i>F</i> (000)	1164,0
$M/(g \text{ mol}^{-1})$	1343,58
berechnete Dichte $/(g \text{ cm}^{-1})$	2,573
Kristallabmessungen /mm	0,03 x 0,1 x 0,2
Temperatur /K	75 K
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	129,82
Extinktionskoeffizient	0,003072
Wichtung <i>a</i> / <i>b</i>	0,067700/0,994800
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,0775/0,4466
Scan-Methode	ω-Scan
2θ -Messbereich /°	2 bis 55
(hkl)-Messbereich	(-10,-27,-18) bis (10,27,18)
Reflexe gemessen	22754
unabhängig	7582
beobachtet $[I \ge 2\sigma(I)]$	6141
R _{int}	0,0707
Anzahl Parameter	344
R_1	0,0410
R_1 (alle Daten)	0,0524
wR_2	0,1075
wR_2 (alle Daten)	0,1146
S	1,044
Restelektronendichte /(eÅ ⁻³) max./min.	1,875/ -1,572

Tabelle 5. Kristallographische Angaben zur Einkristallstrukturanalyse von Tl(Dibenzo-24-Krone-8)TlI₄.

Atom	Wyckhoff-Lage	Besetzung	x/a	y/b	z/c	U _{eq}
T11	2i	1	0,16560(3)	-0,59634(3)	-0,73568(2)	0,0391(1)
T12	2i	1	0,59145(3)	-0,15494(3)	-0,76168(2)	0,0448(1)
I1	2i	1	0,02883(7)	-0,52917(6)	-0,61821(5)	0,0577(2)
I2	2i	1	0,10799(7)	-0,45785(6)	-0,86738(4)	0,0565(2)
13	2i	1	0,43497(7)	-0,57051(7)	-0,63415(5)	0,0586(2)
I4	2i	1	0,08216(7)	-0,84001(5)	-0,82508(6)	0,0662(2)
01	2i	1	0,6332(6)	-0,2567(5)	-0,9411(4)	0,043(1)
02	2i	1	0,8469(6)	-0,1273(6)	-0,7745(6)	0,064(2)
03	2i	1	0,798(1)	-0,2684(9)	-0,6554(6)	0,077(2)
04	2i	1	0,6769(8)	-0,1310(6)	-0,5535(5)	0,059(2)
05	2i	1	0,7043(8)	0,0766(6)	-0,6049(5)	0,056(2)
06	2i	1	0,6335(7)	0,0830(6)	-0,7920(4)	0,052(2)
O7	2i	1	0,3642(7)	-0,0392(6)	-0,8547(5)	0,056(2)
08	2i	1	0,3793(6)	-0,2575(6)	-0,9609(5)	0,050(1)
C1	2i	1	0,5389(9)	-0,3398(7)	-1,0153(6)	0,041(2)
C2	2i	1	0,775(1)	-0,2494(8)	-0,9304(9)	0,060(3)
C3	2i	1	0,848(1)	-0,1318(9)	-0,864(1)	0,072(4)
C4	2i	1	0,9551(9)	-0,185(1)	-0,718(1)	0,096(5)
C5	2i	1	0,904(2)	-0,1983(9)	-0,6304(8)	0,073(4)
C6	2i	1	0,752(2)	-0,3151(1)	-0,585(1)	0,095(5)
C7	2i	1	0,756(1)	-0,219(1)	-0,514(1)	0,075(4)
C8	2i	1	0,6797(9)	-0,0261(9)	-0,4926(7)	0,051(2)
C9	2i	1	0,667(1)	-0,029(1)	-0,4079(7)	0,056(2)
C10	2i	1	0,665(1)	0,0800(1)	-0,3516(8)	0,061(3)
C11	2i	1	0,673(1)	0,189(1)	-0,3794(8)	0,063(3)
C12	2i	1	0,683(1)	0,192(1)	-0,4646(8)	0,065(3)
C13	2i	1	0,688(1)	0,0832(9)	-0,5207(7)	0,050(2)
C14	2i	1	0,730(1)	0,1903(8)	-0,6310(8)	0,059(3)
C15	2i	1	0,750(1)	0,158(1)	-0,7210(8)	0,062(3)
C16	2i	1	0,517(1)	0,1444(8)	-0,8169(8)	0,059(3)
C17	2i	1	0,405(1)	0,057(1)	-0,8941(8)	0,067(3)
C18	2i	1	0,244(1)	-0,127(1)	-0,9101(9)	0,071(3)
C19	2i	1	0,256(1)	-0,206(0)	-0,9902(9)	0,071(3)
C20	2i	1	0,4034(9)	-0,3369(7)	-1,0281(6)	0,043(2)
C21	2i	1	0,303(1)	-0,4100(8)	-1,1028(7)	0,055(2)
C22	2i	1	0,341()	-0,4895(9)	-1,1666(7)	0,066(3)
C23	2i	1	0,475(1)	-0,4956(9)	-1,1528(7)	0,064(3)
C24	2i	1	0,576(1)	-0,4219(8)	-1,0771(7)	0,055(2)

 Tabelle 6. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /(10⁻⁴ pm²) für Tl(Dibenzo-24-Krone-8)TlI₄.

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	<i>U</i> ₁₃	U_{12}
T11	0,0440(2)	0,0359(2)	0,0365(2)	0,0066(1)	0,0135(1)	0,0061(2)
T12	0,0453(2)	0,0407(2)	0,0455(2)	0,0109(1)	0,0112(2)	0,0078(1)
I1	0,0710(4)	0,0574(3)	0,0580(4)	0,0124(3)	0,0388(3)	0,0147(3)
I2	0,0687(4)	0,0644(4)	0,0498(4)	0,0270(3)	0,0265(3)	0,0277(3)
13	0,0468(3)	0,0722(4)	0,0455(4)	0,0115(3)	0,0040(3)	0,0018(3)
I4	0,0553(4)	0,0374(3)	0,0905(6)	-0,0062(3)	0,0166(4)	0,0025(3)
01	0,041(3)	0,042(3)	0,049(4)	0,010(3)	0,021(3)	0,009(2)
02	0,036(3)	0,048(3)	0,099(6)	0,012(4)	0,011(4)	0,012(3)
O3	0,087(6)	0,080(5)	0,071(6)	0,022(5)	0,028(5)	0,039(5)
O4	0,076(5)	0,063(4)	0,060(4)	0,031(4)	0,037(4)	0,038(4)
05	0,077(5)	0,042(3)	0,052(4)	0,013(3)	0,025(4)	0,004(3)
06	0,063(4)	0,046(3)	0,046(4)	0,011(3)	0,018(3)	0,011(3)
O7	0,049(4)	0,050(3)	0,061(4)	0,008(3)	0,010(3)	0,015(3)
08	0,037(3)	0,053(3)	0,051(4)	-0,001(3)	0,011(3)	0,016(3)
C1	0,050(5)	0,036(4)	0,047(5)	0,015(4)	0,024(4)	0,010(3)
C2	0,047(5)	0,044(4)	0,099(9)	0,024(5)	0,035(5)	0,007(4)
C3	0,044(5)	0,044(5)	0,13(1)	0,026(6)	0,035(7)	-0,001(4)
C4	0,022(4)	0,060(6)	0,20(2)	0,039(8)	0,022(7)	0,017(4)
C5	0,124(11)	0,037(4)	0,042(6)	0,001(4)	0,013(7)	0,010(6)
C6	0,166(16)	0,062(7)	0,09(1)	0,036(7)	0,07(1)	0,039(9)
C7	0,089(8)	0,057(6)	0,11(1)	0,051(7)	0,052(8)	0,037(6)
C8	0,050(5)	0,064(5)	0,050(5)	0,025(5)	0,023(4)	0,027(4)
C9	0,047(5)	0,078(6)	0,055(6)	0,022(5)	0,026(5)	0,023(5)
C10	0,040(5)	0,090(7)	0,049(6)	0,009(5)	0,014(4)	0,011(5)
C11	0,045(5)	0,077(7)	0,053(6)	-0,005(5)	0,010(5)	-0,001(5)
C12	0,069(7)	0,055(5)	0,054(7)	-0,009(5)	0,016(6)	-0,010(5)
C13	0,047(5)	0,055(5)	0,047(5)	0,010(4)	0,016(4)	0,003(4)
C14	0,078(7)	0,042(4)	0,056(6)	0,014(4)	0,023(5)	-0,003(4)
C15	0,068(7)	0,058(5)	0,057(7)	0,018(5)	0,019(5)	-0,003(5)
C16	0,075(7)	0,047(5)	0,076(7)	0,035(5)	0,040(6)	0,025(5)
C17	0,069(7)	0,090(8)	0,047(6)	0,025(6)	0,017(5)	0,028(6)
C18	0,054(6)	0,089(8)	0,066(8)	-0,004(6)	0,025(6)	0,009(6)
C19	0,046(5)	0,068(6)	0,077(8)	-0,006(6)	0,000(5)	0,022(5)
C20	0,052(5)	0,036(4)	0,044(5)	0,010(3)	0,019(4)	0,012(4)
C21	0,070(6)	0,044(4)	0,042(5)	0,008(4)	0,007(5)	0,005(4)
C22	0,11(1)	0,045(5)	0,048(6)	0,015(4)	0,033(6	0,010(5)
C23	0,11(1)	0,043(4)	0,051(6)	0,012(4)	0,045(6)	0,011(5)
C24	0,086(7)	0,041(4)	0,058(6)	0,020(4)	0,044(6)	0,017(5)

 $\label{eq:constraint} \underline{Tabelle~7}.~Koeffizienten~der~anisotropen~Auslenkungsparameter~U_{ij}~/(10^{-4}~pm^2)~von~Tl(Dibenzo-24-Krone-8)TlI_4.$

2.2.3 Pulverdiffraktometrie

Die Richtigkeit der Einkristallstrukturanalyse sowie die röntgenographische Phasenreinheit des Produkts lassen sich pulverdiffraktometrisch bestätigen (s. Abb. 3).

Abbildung 3. Gemessenes (oben) und simuliertes (unten) Pulverdiffraktogramm (CuK α_1) von Tl(Dibenzo-24-Krone-8)]TII₄.

2.2.4 Kristallstruktur

Tl(Dibenzo-24-Krone-8)TlI₄ kristallisiert triklin in der Raumgruppe $P\overline{1}$ (Nr. 2). In der Kristallstruktur liegen [Tl(Dibenzo-24-Krone-8)]⁺-Kationen neben Tetraiodothallat(III)-Anionen vor (s. Abb. 4) Wie die Tl-I-Abstände und I-Tl-I-Bindungswinkel in Tab. 8 zeigen, weicht die Form des TlI₄⁻-Anions von der idealen Tetraedergestalt ab.

Die kürzesten intermolekularen I-I-Abstände liegen zwischen 394,2(1) und 398,6(1) pm, was unterhalb des Van-der-Waals-Abstands in der Gasphase von 430 pm [13] liegt, weshalb man von schwachen Wechselwirkungen zwischen diesen Baueinheiten ausgehen kann. TlI₄-Einheiten sind auf diese Weise zu einem schichtartigen Aufbau verknüpft, wobei die kationischen Tl(Dibenzo-24-Krone-8)⁺-Einheiten zwischen diesen Schichten angeordnet sind. Die Benzolringe eines Kronenethermoleküls sind um 90° gegeneinander verdreht. Die Benzolringe von verschiedenen Kronenethermolekülen sind parallel in Abständen von 338,18 und 348,06 pm ausgerichtet und zeigen eine Verschiebung um etwa einen halben Benzolring gegeneinander. Sie zeigen damit eine geometrische Anordnung, die typisch für π - π -Wechselwirkungen zwischen den aromatischen Ringsystemen ist (" π -Stacking") [14].

Abbildung 4. Projektion der Kristallstruktur von Tl(Dibenzo-24-Krone-8)TlI₄ entlang [100].

Das Tl^+ -Ion wird im komplexen Kation $[Tl(Dibenzo-24-Krone-8)]^+$ von acht Sauerstoffatomen im Abstand von 277,1(7) bis 315,5(6) koordiniert (s. Abb. 5 und Tab. 8).

Abbildung 5. Thalliumkoordination durch Dibenzo-24-Krone-8 in zwei verschiedenen Ansichten.

Atome	Abstand/Winkel	Atome	Abstand/Winkel
Tl2 O1	305,8(7)	I3 T11 I1	108,17(3)
T12 O2	277,1(7)	I2 Tl1 I1	108,76(2)
T12 O3	284(1)	I3 T11 I4	107,27(3)
Tl2 O4	307,6(8)	I2 T11 I4	107,13(3)
Tl2 O5	309,0(6)	I1 T11 I4	111,33(3)
Tl2 O6	280,34(7)	C1 O1 C2	118.6(7)
T12 O7	292.1(7)	C3 O2 C4	113.4(9)
T12 O8	315.5(6)	C3 O2 T102	114.9(6)
T11 I3	273 63(8)	C4 O2 T12	1202(7)
T11 12	275 18(7)	C5 O3 C6	119(1)
T11 I1	275 57(7)	C8 O4 C7	115 2(8)
T11 I4	275 67(8)	C13 05 C14	117 5(8)
01 C1	139(1)	C16 O6 C15	113 6(8)
01C2	145(1)	C_{17}^{10} C_{18}^{10}	117 9(8)
0102	141(2)	$C_{20}^{-0.08} C_{19}^{-0.010}$	115 5(8)
02 C3	141(2) 148(1)	$C_{20} C_{10} C_{10}$	117,3(0) 117,2(7)
03 C5	170(1)	$C_{20} C_{1} C_{24}$	1200(9)
03 C6	122(2) 151(2)	01 C1 C24	120,0(9) 122,8(8)
04 C8	131(2) 127(1)	01 C2 C3	107 5(8)
04C7	137(1) 144(1)	$O_1 C_2 C_3$	107, 3(8) 114 0(8)
04 C7 05 C12	144(1) 120(1)	02 C3 C2	1010(0)
05 C14	139(1) 142(1)	02 C4 C3	101,9(9)
05 C14	143(1)	03 C3 C4	111(1) 112(1)
06 C15	144(1) 144(1)	$C/C_{0}O_{3}$	112(1) 100(1)
06 C15	144(1)	$C_0 C_7 O_4$	109(1)
0/01/	144(1)	04 08 013	116,9(8)
0/ 018	145(1)	04 08 09	122,7(8)
08 C20	137(1)		120(1)
08 C19	145(1)		119,7(9)
C1 C20	139(1)	C11 C10 C9	120(1)
C1 C24	140(1)	C10 C11 C12	121(1)
C2 C3	150(2)	C11 C12 C13	119(1)
C4 C5	167(2)	C8 C13 O5	116,0(8)
C6 C7	140(2)	C8 C13 C12	120,0(9)
C8 C13	138(1)	O5 C13 C12	124,0(8)
C8 C9	139(1)	O5 C14 C15	106,9(8)
C9 C10	138(2)	O6 C15 C14	113,3(9)
C10 C11	137(2)	O6 C16 C17	108,1(8)
C11 C12	139(2)	O7 C17 C16	105,9(7)
C12 C13	139(1)	O7 C18 C19	115(1)
C14 C15	149(2)	O8 C19 C18	108,0(9)
C16 C17	151(2)	C21 C20 O8	123,8(8)
C18 C19	146(2)	C21 C20 C1	121,2(9)
C20 C21	137(1)	O8 C20 C1	115,0(8)
C21 C22	141(2)	C20 C21 C22	118(1)
C22 C23	137(2)	C23 C22 C21	120(1)
C23 C24	138(2)	C22 C23 C24	120(1)
I3 T11 1I2	114,22(2)	C23 C24 C1	119(1)

Tabelle 8. Ausgewählte Atomabstände /pm und Winkel /° in Tl(Dibenzo-24-Krone-8)TlI4.

2.2.5 IR/Raman-spektroskopische Untersuchungen an TI(Dibenzo-24-Krone-8)TII₄

Die Raman- und IR-Schwingungsspektren von Tl(Dibenzo-24-Krone-8)TlI4 sind in den Abbn. 6 und 7 dargestellt. In den Abbn. 8 und 9 werden die IR/Raman-Spektren mit denen des reinen kristallinen Kronenethers Dibenzo-24-Krone-8 verglichen, wobei hier nur die IR-Spektren betrachtet werden und die Raman-Banden zur Identifizierung der Schwingungen dienen. Die Banden von 1381 bis 1310 cm⁻¹ der CH₂-Deformationsschwingungen werden in der Verbindung Tl(Dibenzo-24-Krone-8)TlI₄ nicht beobachtet. Ebenso erfährt die Bandengruppe von 960 cm⁻¹ bis 898 cm⁻¹, die den CH₂-Deformationsschwingungen zuzuordnen ist, eine leichte Verschiebung zu kleineren Wellenzahlen. Die Bande bei 960 cm⁻¹ ist in der Thalliumverbindung nur noch als Schulter bei ca. 950 cm⁻¹ erkennbar. Eine Verschiebung der Banden der COC-Streckschwingungen im Bereich von 1106 cm⁻¹ zu kleineren Wellenzahlen aufgrund einer gelockerten C-O-Bindung durch ein koordiniertes Kation ist nicht zu beobachten, wohl aber eine größere Aufspaltung dieser Banden, wie in Abb.8 dargestellt. Dies weist auf eine niedrigere Symmetrie des Moleküls im Vergleich zum reinen Dibenzo-24-Krone-8 hin. Ein weiterer Unterschied zeigt sich im Fehlen der Banden für die COC-Deformationsschwingungen von 620 bis 559 cm⁻¹ in der Verbindung Tl(Dibenzo-24-Krone-8)TlI₄.

Abbildung 6. Raman- (unten) und MIR-Spektrum (oben) von Tl(Dibenzo-24-Krone-8)TlI₄ im Wellenzahlenbereich von 2000 bis 500 cm⁻¹.

Abbildung 7. Raman- (unten) und FIR-Spektrum (oben) von Tl(Dibenzo-24-Krone-8)TlI₄ im Wellenzahlenbereich von 500 bis 50 cm⁻¹.

	IR		Rama	n
Wellenzahl /cm ⁻¹	Intensität	Zuordnung	Wellenzahl /cm ⁻¹	Intensität
1592	W	C-C, ν (aromat.)	1594	S
1500	S	C-C, ν (aromat.)	-	-
1456	m	CH_2, δ	1460	m
-	-	CH_2, δ	1439	m
1285	W	СН ₂ , ω	1289	m, br
-	-	СН ₂ , ω	1265	m
1251	S	СН ₂ , ω	1250	m,sh
1202	m	$v_{\rm as}$ (C _B -O-C)	1215	VW
-	-	δ, СН	1163	m
1137	m	v, COC	1135	m
1125	m	$v_{\rm as}, {\rm COC}$	-	-
1106	m	v, COC	1106	VW
1049	m	δ , CH (aromat.)	1052	m
935	m	CH_2, ρ	-	-
913	W	CH_2, ρ	913	W
895	W	CH_2, ρ	-	-
824	W	CH_2, ρ	839	m
745	m	δ CH (aromat.)	748	m
151	m	Tl-I, $v_{\rm as;} \delta_{\rm as}$	155	VS
-	-	Tl-I, $\delta_{\rm s}$	131	VS

Tabelle 9. Zuordnung der Schwingungsbanden im IR/Raman-Spektrum vonTl(Dibenzo-24-Krone-8)TlI4.

Tabelle 10. Vergleich der Schwingungsbanden in den IR-Spektren vonTl(Dibenzo-24-Krone-8)TlI₄ im Bereich von 2000 bis 500 cm⁻¹.

Tl(Diben	zo-24-Krone-8)Tll ₄			Dibenzo-24-K	rone-8
Wellenzahl /cm ⁻¹	Intensität	Zuordni	ing	Wellenzahl /cm ⁻¹	Intensität
1592	W	C-C (aro	mat.)	1592	s
1500	S	C-C (aro	mat.)	1505	S
1456	m	CH_2, δ		1449	m
-	-	CH_2, δ		1381	W
-				1335	m
-				1310	W
1285	W	СН ₂ , <i>w</i>		1289	m
1251	S	СН ₂ , ω		1257	VS
1202	m	С _в -О-С,	$V_{\rm as}$	1225	S
1137	m	COC, v		-	-
1125	m	COC, v_{as}	3	1126	vs, sh
1106	m	COC, v		1102	S
1049	m, sh	C_{B} -O-C,	Vs	1056	m
	-		-	1033	m
-	-	Γ-		960	m
935	m	CH_2, ρ		937	m
913	W	CH_2, ρ		920	m
895	W	CH_2, ρ		898	W
824	W	CH_2, ρ		824	m, br
745	m	C-C (aro	mat.)	777	m
				739	s
-		<u> </u>		728	S
-	-	\overline{COC}, δ		620	W
-	-	COC, δ		597	W
-	-	COC, δ		559	W

Abbildung. 8. Vergleich der MIR-Spektren von Dibenzo-Krone-8 (rot) und von Tl(Dibenzo-24-Krone-8)TlI₄ (schwarz) im Wellenzahlenbereich von 2000 bis 500 cm⁻¹.

Abbildung 9. Vergleich der Raman-Spektren von Tl(Dibenzo-24-Krone-8)TlI₄ (schwarz) und Dibenzo-24-Krone-8 (rot) im Bereich von 2000 bis 20 cm⁻¹.

2.3 TI(Kryptofix 5)TII₄

2.3.1 Herstellung

0,033 g (9,96 \cdot 10⁻⁵ mol) TII wurden mit 0,025 g (9,85 \cdot 10⁻⁵ mol) Iod bei Anwesenheit von 0,089 g (1,86 \cdot 10⁻⁴ mol) Kryptofix 5 in 20 ml in Ethanol zum Sieden erhitzt bis sich der Bodensatz aufgelöst hatte und sich die anfangs gebildete tiefrote Lösung orange färbte. Das Reaktionsgefäß wurde mit perforiertem Parafilm abgedeckt. Nach 10 Tagen bildeten sich leuchtend orange nadelförmige Kristalle mit einer Ausbeute bzgl. Thallium von ca 40 %.

2.3.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

Verbindung	Tl(Kryptofix 5)TlI ₄
Summenformel	$C_{26}H_{28}I_4N_2O_5Tl_2$
Kristallsystem	monoklin
Raumgruppe	$P 2_1/c$ (Nr. 14)
<i>a</i> /pm	7,9028(10)
<i>b</i> /pm	22,330(2)
c/pm	20,608(2)
$\beta/^{\circ}$	108,636(9)
Zellvolumen /Å ³	3446,0(6)
Ζ	4
F(000)	2335
$M/(\text{g mol}^{-1})$	1364,895
berechnete Dichte /(g cm ⁻¹)	2,576
Kristallabmessungen /mm	0,2 x 0,02 x 0,1
Temperatur /K	75 K
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	129,57
Extinktionskoeffizient	-
Wichtung <i>a</i> / <i>b</i>	0,04660/0,00000
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,1333/0,2316
Scan-Methode	<i>w</i> -Scan
2θ-Messbereich /°	2,8 bis 54,8
(<i>hkl</i>)-Messbereich	(-10,-27,-26) bis (9,28,26)
Reflexe gemessen	29455
unabhängig	7652
beobachtet $[I \ge 2\sigma(I)]$	4420
R _{int}	0,0741
Anzahl Parameter	379
R_1	0,0425
R_1 (alle Daten)	0,0927
wR_2	0,1016
wR_2 (alle Daten)	0,1146
S	0,906
Restelektronendichte $/(eÅ^{-3})$ max./min.	1,114/ -1,902

Tabelle 11. Kristallographische Angaben zur Einkristallstrukturanalyse von Tl(Kryptofix 5)TlI₄.

Atom	Wyckhofflage	x/a	<i>y/b</i>	z/c	U _{eq}
T11	4e	0,19318(6)	-0,034581(19)	-0,15804(2)	0,0454(1)
T12	4e	0,53900(6)	-0,286905(19)	-0,43473(2)	0,048(1)
I1	4e	0,6497(1)	-0,22053(4)	-0,52714(4)	0,0573(2)
12	4e	0,2006(1)	-0,25524(4)	-0,43630(5)	0,0610(2)
13	4e	0,5331(1)	-0,40747(3)	-0,46826(4)	0,0549(2)
I4	4e	0,7889(1)	-0,26258(4)	-0,30908(4)	0,0641(2)
01	4e	0,031(1)	-0,4354(4)	-0,2776(4)	0,056(2)
O21	4e	0,058(2)	-0,4792(8)	-0,4008(8)	0,064(5)
O22	4e	0,147(6)	-0,492(1)	-0,366(2)	0,050(7)
03	4e	-0,060(2)	-0,1064(5)	-0,1202(7)	0,093(3)
O4	4e	0,161(1)	-0,1678(3)	-0,1840(4)	0,053(2)
05	4e	0,391(1)	-0,1027(3)	-0,2387(4)	0,049(2)
N1	4e	0,027(1)	-0,5364(4)	-0,2074(4)	0,042(2)
N2	4e	0,369(1)	0,0172(4)	-0,2453(4)	0,044(2)
C1	4e	0,025(2)	-0,5861(5)	-0,1724(6)	0,053(3)
C2	4e	0,058(2)	-0,5868(6)	-0,1007(7)	0,060(3)
C3	4e	0,091(2)	-0,5345(6)	-0,0659(6)	0,053(3)
C4	4e	0,097(1)	-0,4793(5)	-0,1001(5)	0,046(3)
C5	4e	0,065(1)	-0,4834(5)	-0,1720(5)	0,039(2)
C6	4e	0,141(2)	-0,4242(6)	-0,0651(6)	0,055(3)
C7	4e	0,153(2)	-0,3738(5)	-0,1033(7)	0,059(3)
C8	4e	0,117(2)	-0,3769(5)	-0,1745(6)	0,051(3)
C9	4e	0,073(2)	-0,4293(5)	-0,2069(6)	0,048(3)
C10	4e	0,133(2)	-0,4014(6)	-0,3116(7)	0,062(3)
C111	4e	0,106(3)	-0,4238(8)	-0,3807(9)	0,096(7)
C121	4e	-0,226(5)	-0,019(3)	-0,126(3)	0,088(14)
C122	4e	-0,162(5)	-0,021(1)	-0,071(2)	0,089(9)
C121	4e	-0,226(5)	-0,019(3)	-0,126(3)	0,09(1)
C13	4e	-0,194(2)	-0,0805(9)	-0,101(1)	0,099(6)
C14	4e	-0,074(2)	-0,1691(7)	-0,1356(8)	0,077(4)
C15	4e	0,107(2)	-0,1923(6)	-0,1297(7)	0,074(4)
C16	4e	0,338(2)	-0,1873(5)	-0,1781(7)	0,058(3)
C17	4e	0,384(2)	-0,1680(5)	-0,2402(7)	0,058(3)
C18	4e	0,421(1)	-0,0757(5)	-0,2934(6)	0,043(2)
C19	4e	0,466(2)	-0,1075(5)	-0,3437(6)	0,054(3)
C20	4e	0,493(2)	-0,0768(8)	-0,3997(7)	0,067(4)
C21	4e	0,480(2)	-0,0151(8)	-0,4049(7)	0,069(4)

Tabelle 12. Koeffizienten der anisotropen Auslenkungsparameter U_{ij} /(10⁻⁴ pm²) von Tl(Kryptofix 5)TlI₄.

Atom	Wyckhofflage	x/a	<i>y/b</i>	z/c	U _{eq}
C22	4e	0,435(1)	0,0173(5)	-0,3535(6)	0,050(3)
C23	4e	0,408(1)	-0,0126(5)	-0,2971(5)	0,040(2)
C24	4e	0,415(2)	0,0804(6)	-0,3566(7)	0,060(3)
C25	4e	0,376(2)	0,1100(5)	-0,3045(7)	0,058(3)
C26	4e	0,355(2)	0,0771(5)	-0,2497(6)	0,050(3)

Tabelle 12. (Forts.) Koeffizienten der anisotropen Auslenkungsparameter U_{ij} /(10⁻⁴ pm²) von Tl(Kryptofix 5)TlI₄.

2.3.3 Kristallstruktur

Tl(Kryptofix 5)TlI₄ kristallisiert monoklin in der Raumgruppe $P2_1/c$ (Nr. 14). In der Kristallstruktur liegen [Tl(Kryptofix 5)]⁺-Kationen neben Tetraiodothallat(III)-Anionen vor. Wie die Tl-I-Abstände und I-Tl-I-Bindungswinkel in Tab. 13 zeigen, weicht die Form des TlI₄⁻-Anions von der idealen Tetraedergestalt ab. Der kürzeste I-I-Abstände zwischen zwei TlI₄⁻-Einheiten beträgt 422,51(6) pm. Wenn man schwache Wechselwirkungen zwischen diesen Einheiten annimmt, ergibt sich eine kettenförmige Anordnung entlang [100]. Der kürzeste Abstand zwischen diesen Ketten ist 431,56(4), was knapp oberhalb des I-I-Van-der-Waals-Abstandes von 430 [13] pm liegt. Die aromatischen Ringsysteme sind entlang [100] übereinandergestapelt, wobei sie in einem Winkel von 22° gegeneinander verkippt sind. Der kürzeste Abstand eines Atoms eines aromatischen System zum darüberliegenden Ringsystem aus dem selben Kronenethermolekül beträgt 298,02 pm, derjenige zu dem nächsten Kronenethermolekül 333,32 pm.

Wie Abb. 11 zeigt, wird das Thallium-Kation in der komplexen Einheit [Tl(Kryptofix 5)]⁺ von fünf Sauerstoffatomen im Abstand von 286(1) bis 303,1(1) pm und von zwei Stickstoffatomen mit Abständen von 276,2(8) und 284,3(8) koordiniert (s. Tab. 13).

Abbildung 10. Projektion der Kristallstruktur von Tl(Kryptofix 5)TlI₄ entlang [100].

Abbildung 11. Tl-Koordination in Tl(Kryptofix 5)TlI4.

	Abstand/Winkel	Atome	Abstand/Winkel
Atome			
T12 I2	275 7(1)	04 C16 C17	109 5(9)
T12 12 T12 14	276 3(1)	05 C18 C19	123(1)
T12 I4	276,5(1)	05 C18 C23	117 1(9)
T12 I1 T12 I3	270,0(1) 277,62(0)	C23C10 C18	120(1)
TI 1 01	277,02(9) 288 0(7)	$C_{18} C_{19} C_{10} C_{20}$	120(1)
	288,0(7)	$C_{18} C_{19} C_{20} C_{19} C_{20} C_{10}$	120(1) 121(1)
TL1 02	290(1)	$C_{21} C_{20} C_{13}$	121(1) 110(1)
TL1 03	200(1)	05 C17 C16	107(1)
TL1 04	301,7(7) 202 1(1)	$C_{22} C_{22} C_{24}$	10/(1) 119(1)
TLI 05 TH N1	303,1(1)	$C_{23} C_{22} C_{24}$	110(1) 121(1)
T11 N1 T11 N2	204,3(0)	$C_{23} C_{22} C_{21}$	121(1) 122(1)
$\frac{111}{102}$	2/0,2(8) 124(1)	N2 C22 C21	122(1) 118(1)
01 C10	134(1) 145(1)	N2 C22 C22	110(1) 122(1)
O1 C10	143(1) 127(2)	N2 C23 C22	123(1) 110(1)
$O_{2}C_{14}$	137(2) 142(2)	C18 C23 C22	119(1)
04 C15	143(2) 142(2)	$C_{23}C_{24}C_{22}$	119(1) 110(1)
04 C16	143(2)	C24 C25 C26	119(1)
04 C10	143(2) 12((1))	N2 C26 C25	123(1)
05 C17	130(1)	C13 C122 021	11/(2)
US CI/	140(1)	022 0121 0122	95(3)
NI CI	133(1)	022 C121 C122	95(5) 120(5)
NI CS	13/(1)		129(3)
C26 N2	134(1)		112(3)
N2 C23	138(1)	C9 OI CIU	118,0(9)
C13 C122	140(4)	CINICS CINITII	118(1) 116(4(7))
	147(6)	CINI III C5 NI T11	110,4(7)
	149(2)	C5 NT TH N1 C1 C2	118,7(6) 122(1)
C10 C17	130(2) 120(1)	$\begin{array}{c} N I C I C 2 \\ C 2 C 2 C 1 \end{array}$	123(1) 110(1)
	139(1)	$C_3 C_2 C_1$	119(1) 121(1)
C18 C23	141(1) 142(2)	$C_2 C_3 C_4$	121(1) 121(1)
C19C20	142(2) 128(2)	C6C4C3	121(1) 122(1)
C20 C21	138(2)	C0C4C3	123(1)
C21 C22	142(2)	C3 C3 C4	120(1)
C22 C23	141(2) 142(2)	NI C5 C4	120(1) 122(1)
C22 C24 C24 C25	142(2) 120(2)	$\begin{array}{c} N1 C3 C4 \\ C0 C5 C4 \end{array}$	123(1) 117(1)
C24 C23	139(2)	$C_{9}C_{5}C_{4}$	11/(1) 118(1)
C122 C121	140(2) 108(5)	C/C0C4	110(1) 122(1)
C122 C121 C122 O21	108(3) 147(2)	C0C7C8	122(1) 120(1)
C122 021 C122 022	147(3) 148(5)	$C_{2}C_{2}C_{1}$	120(1) 122(1)
C122 022	148(3)	$C_{0}^{0}C_{0}^{0}C_{0}^{0}$	123(1) 122(1)
C121 022 C121 021	92(4)	$C_{0}C_{0}C_{0}$	123(1) 114 2(0)
C121 021 C1 C2	134(3) 142(2)	$C_{112} C_{10} C_{10}$	00(1)
C1C2	142(2) 125(2)	01 C10 C111	90(1)
$C_2 C_3$	133(2) 142(2)	01 C10 C111 021 C111 C10	111(1) 124(2)
	143(2) 141(2)	C10 C111 C10	124(2) 101(2)
C4C6	141(2) 1421(1)	C10 C111 022	101(2) 07(0)
$C_{4}C_{5}$	1421(1) 142(2)	C111 C112 021	$\frac{9}{(9)}$
	142(2) 120(2)	C111 C112 C12	80(6)
C7C8	139(2) 141(2)	O21 C112 C10	07(0) 175(5)
C/C_{0}	141(2) 124(2)	021 C112 C10 12 T12 14	1/3(3) 111 15(2)
$C_0 C_7$	134(2) 125(7)	12 112 14 12 T12 11	111,13(3) 111,02(2)
C10 C112 C10 C111	133(7) 146(2)	12 112 11 14 T12 11	111,93(3) 104,56(2)
	140(2)	14 112 11 12 T12 12	104,30(3) 107.86(2)
C111 C112 C111 O21	J9(0) 122(2)	12 112 13 14 T12 12	107,00(3) 111.07(2)
C111 021 C111 022	152(2) 156(4)	14 112 13 11 T12 12	111,9/(3) 100,40(2)
C111 022 C112 021	130(4) 111(7)	$\begin{array}{c} 11 & 112 & 13 \\ 0.022 & 0.021 & 0.112 \end{array}$	109,40(3) 72(0)
U112 U21	111(/)	022 021 0112	14(2)

Tabelle 13. Ausgewählte Atomabstände /pm und Bindungswinkel /° in Tl(Kryptofix 5)TlI₄.

• •			
Atome	Abstand/Winkel	Atome	Abstand/Winkel
C112 O22	119(9)	O22 O21 C111	88(3)
O21 O22	087(4)	O22 O21 C122	74(3)
O21 C122	147(3)	C112 O21 C122	134(7)
O21 C121	154(5)	C111 O21 C122	125(2)
O22 C121	92(4)	C112 O21 C121	100(9)
O22 C122	148(5)	C111 O21 C121	107(3)
C13 O3 C14	118(1)	C122 O21 C121	42(2)
C15 O4 C16	110(1)	O21 O22 C121	118(5)
C18 O5 C17	116,2(9)	C121 O22 C112	153(6)
C26 N2 C23	117(1)	O21 O22 C122	72(3)
O3 C13 C122	117(2)	C112 O22 C122	126(6)
O3 C13 C121	111(2)	C111C121 O22	135(4)
O3 C14 C15	108(1)	C122 O22C111	109(3)
O4 C15 C14	109(1)		

Tabelle 14. (Forts.) Ausgewählte Atomabstände /pm und Bindungswinkel /° in Tl(Kryptofix 5)TlI4.

2.4 TI(Kryptofix 222)TII₄

2.4.1 Herstellung

0,033 g (9,96·10⁻⁵ mol) TII wurden mit 0,034 g (9,03·10⁻⁵ mol) Kryptofix 222 und 0,054 g (2,13·10⁻⁴ mol) I₂ in ein Becherglas eingewogen und in 20 ml DMSO auf ca. 120 °C erhitzt bis sich der Bodensatz aufgelöst hatte und eine tiefrote Lösung entstand. Nach ca. 2 Wochen hatten sich wenige rotorange plättchenförmige Kristalle in der Mutterlösung gebildet.

2.4.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

Tabelle 15. Kristallographische Angaben zur Einkrist	abene 15. Kristanographische Angaben zur Einkristanstrukturanaryse von [11(Kryptonx 222)]111 ₄ .			
Verbindung	[Tl(Kryptofix222]TII ₄			
Summenformel	$C_{40} H_8 N_2 O_6 I_4 T l_2$			
Kristallsystem	trigonal			
Raumgruppe	<i>R</i> 3 (Nr. 148)			
<i>a</i> /pm	1211,93(9)			
<i>b</i> /pm	1211,93(9)			
c /pm	3689,20(43)			
$\gamma /^{\circ}$	120			
Zellvolumen /Å ³	4692,7(7)			
Ζ	6			
<i>F</i> (000)	5640			
$M/(\text{g mol}^{-1})$	1601,458			
berechnete Dichte /(g cm ⁻¹)	4,476			
Kristallabmessungen /mm	0,08 x 0,07 x 0,06			
Temperatur /K	298			
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	237,73			
Extinktionskoeffizient	0,000426			

Tabelle 15. Kristallographische Angaben zur Einkristallstrukturanalyse von [Tl(Kryptofix 222)]TII₄.

Fabelle 15. (Forts.) Kristallographische Angaben zu Einkristallstrukturanalyse von [Tl(Kryptofix 222)]TlI4.			
Wichtung <i>a</i> / <i>b</i>	0,070600/10,596200		
Absorptionskorrektur	numerisch		
Min./Max. Transmission	0,1774,/0,5868		
Scan-Methode	ω-Scan		
2 <i>θ</i> -Messbereich /°	3,3 bis 54,8		
(hkl)-Messbereich	(-15,-15,-47) bis (14,15,47)		
Reflexe gemessen	15630		
unabhängig	2351		
beobachtet [I> $2\sigma(I)$]	1848		
R _{int}	0,0605		
Anzahl Parameter	98		
R_1	0,0403		
R_1 (alle Daten)	0,0530		
wR_2	0,1053		
wR_2 (alle Daten)	0,1146		
S	1,069		
Restelektronendichte /(eÅ ⁻³) max./min.	1,718,/-1,139		

 Tabelle 16. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /pm² für

 [Tl(Kryptofix222)]TII₄.

Atom	Wyckhofflage	Besetzung	x/a	y/b	z/c	$U_{ m eq}$
T11	6c	1	0,0000	0,0000	0,1296(2)	0,0449(2)
T12	6c	1	0,0000	0,0000	0,34614(2)	0,0363(2)
I1	6c	1	0,0000	0,0000	0,05393(3)	0,0464(3)
I2	18f	1	0,19613(7)	0,23177(6)	0,15335(2)	0,0630(3)
01	18f	1	-0,0486(6)	0,1788(5)	0,3098(2)	0,052(2)
02	18f	1	0,2049(6)	-0,0166(6)	0,3845(2)	0,052(2)
N1	6c	1	0,0000	0,0000	0,2665(4)	0,064(4)
N2	6c	1	0,0000	0,0000	0,4272(4)	0,063(4)
C1	18f	1	-0,070(1)	-0,133(1)	0,2536(3)	0,073(3)
C2	18f	1	-0,017(1)	0,198(1)	0,2718(4)	0,071(3)
C3	18f	1	-0,012(1)	0,2950(9)	0,3268(4)	0,067(3)
C4	18f	1	0,3242(8)	0,052(1)	0,3659(4)	0,065(3)
C5	18f	1	0,218(1)	0,026(1)	0,4218(3)	0,073(3)
C6	18f	1	0,088(2)	-0,042(2)	0,4401(3)	0,087(4)
	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	<i>U</i> ₁₂
-----	------------------------	-----------	-----------------	-----------	-----------------	------------------------
TL1	0,0472(2)	0,0472(2)	0,0405(4)	0,000	0,000	0,0236(1)
T12	0,0356(2)	0,0356(2)	0,0377(3)	0,000	0,000	0,0178(1)
I1	0,0498(3)	0,0498(3)	0,0398(6)	0,000	0,000	0,0249(2)
I2	0,0682(4)	0,0502(4)	0,0491(4)	0,0046(3)	-0,0117(3)	0,0135(3)
01	0,061(4)	0,034(3)	0,060(4)	-0,001(3)	-0,019(3)	0,024(3)
02	0,038(3)	0,050(3)	0,060(4)	0,007(3)	-0,009(3)	0,016(3)
N1	0,083(7)	0,083(7)	0,026(7)	0,000	0,000	0,042(3)
N2	0,075(6)	0,075(6)	0,039(9)	0,000	0,000	0,037(3)
C1	0,089(8)	0,085(8)	0,038(6)	-0,025(6)	0,000(5)	0,040(7)
C2	0,091(8)	0,060(6)	0,064(8)	0,019(6)	-0,010(6)	0,040(6)
C3	0,071(6)	0,043(5)	0,10(1)	-0,004(5)	-0,034(7)	0,037(5)
C4	0,031(4)	0,050(5)	0,11(1)	0,022(6)	-0,015(5)	0,014(4)
C5	0,078(7)	0,088(8)	0,056(7)	-0,016(6)	-0,039(6)	0,043(7)
C6	0,10(1)	0,12(1)	0,037(6)	0,016(7)	-0,008(6)	0,053(9)

Tabelle 17. Koeffizienten der anisotropen Auslenkungsparameter U_{ii} /(10⁻⁴ pm²) von [Tl(Kryptofix222)]TII₄.

2.4.3 Kristallstruktur

Tl(Kryptofix 222)TlI₄ kristallisiert trigonal in der Raumgruppe $R\bar{3}$ (Nr.148). In der Kristallstruktur liegen [Tl(Kryptofix 222)]⁺-Kationen neben Tetraiodothallat(III)-Anionen vor. Die Anionen und Kationen sind in der Struktur weitgehend voneinander getrennt (s. Abb. 12). Wie die Tl-I-Abstände und I-Tl-I-Bindungswinkel in Tab. 18 zeigen, weicht die Form des TlI₄⁻-Anions von der idealen Tetraedergestalt ab. Die intermolekularen I-I-Abstände liegen mit 397,9(4) pm unterhalb des Van-der-Waals-Abstandes, weshalb eine schwache I-I-Wechselwirkung entlang der gestrichelten Linie in Abb. 12 angenommen werden kann.

Abbildung 12. Projektion der Kristallstruktur von Tl(Kryptofix 222)TlI₄ entlang [010].

Abbildung 13. Tl-Koordination in Tl(Kryptofix 222)TlI_{4.}

Tabelle 18. Ausgewählte Atomabstände /pm und Winkel /° in [Tl(Kryptofix222)]TII4

Tablene 18. Ausgewahnte Atomaostande /pin und winker / in [11(Kryptonx222)]114.						
Atome	Abstand/Winkel	Atome	Abstand/Winkel			
T11 I2	276,24(7)	C5 C6	153(2)			
Tl1 I1	279,1(1)	I2 T11 I2	110,43(2)			
T12 N2	294 (1)	I2 T11 I1	108,50(2)			
Tl2 N1	299(1)	C3 O1 C2	110,4(8)			
Tl2 O1	284,8(6)	C4 O2 C5	110,4(9)			
T12 O2	295,1(6)	C1 N1 C1	110,1(7)			
01C3	140(1)	C6 N2 C6	110,0(8)			
01C2	144(2)	N1 C1 C2	114,1(9)			
O2 C4	143(1)	O1 C2 C1	109,3(8)			
O2 C5	145(2)	O1 C3 C4	109,7(8)			
N1 C1	148(1)	O2 C4 C3	109,8(8)			
N2 C6	147(2)	O2 C5 C6	109,0(9)			
C1 C2	152(2)	N2 C6 C5	114(1)			
C4 C3	150(2)					

2.5 $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O mit A = TI, NH_4/NH_3, H_3O/H_2O$

2.5.1 Herstellung

2.5.1.1 [TI(18-Krone-6)₂]TII₄ · 2 H₂O

0,0331 g $(1,00\cdot10^{-4} \text{ mol})$ TII wurden mit 0,0528 g $(2,00 \ 10^{-4} \text{ mol})$ 18-Krone-6 und 0,0381 g $(1,50\cdot10^{-4} \text{ mol})$ Iod in ein Becherglas eingewogen und bei Anwesenheit von 0,001 g $(5,25\cdot10^{-6} \text{ mol})$ CuI in 20 ml Acetonitril zum Sieden erhitzt, bis sich der Bodensatz aufgelöst hatte und eine tiefrote Lösung entstand. Nach einigen Tagen bildeten sich rubinrote, sechseckige Kristalle mit gut ausgebildeten Flächen (Ausbeute bzgl. Thallium ca. 70 %)

2.5.1.2 [(NH₄/NH₃)(18-Krone-6)₂]TII₄ · 2 H₂O

0,0186 g $(5,61\cdot10^{-5} \text{ mol})$ TII und 0,0075 g $(5,17\cdot10^{-4} \text{ mol})$ Ammoniumiodid wurden mit 0,0559 g $(2,114\cdot10^{-4} \text{ mol})$ 18-Krone-6 und 0,0381 g $(1,50\cdot10^{-4} \text{ mol})$ I₂ in ein Becherglas eingewogen und bei Anwesenheit von 0,001 g $(5,3\cdot10^{-4} \text{ mol})$ CuI in 20 ml Acetonitril zum Sieden erhitzt, bis sich der Bodensatz aufgelöst hatte und eine tiefrote Lösung entstand. Nach einigen Tagen bildeten sich rubinrote Kristalle mit gut ausgebildeten Flächen (Ausbeute bzgl. Thallium ca. 70%).

2.5.1.3 [(H₃O/H₂O)18-Krone-6)₂]TII₄ · 2 H₂O

0,0331 g (1,00·10⁻⁴ mol) TII, 0,0528 g (2,00·10⁻⁴ mol) 18-Krone-6 und 0,001 g (1,50·10⁻⁴ mol) Cu(I)iodid wurden in einem Becherglas mit 20 ml Acetonitril und danach mit 1 Tropfen Iodwasserstoffsäure versetzt. Nach Zugabe von 0,0381 g (5,25·10⁻⁶ mol) I₂ wird bis zum Siedepunkt erhitzt, bis sich der Bodensatz auflöste und eine tiefrote Lösung entstand. Nach einigen Tagen bildeten sich rubinrote, sechseckige Kristalle mit einem maximalen Durchmesser von bis zu 0,3 cm mit gut ausgebildeten Flächen. Wurden die Kristalle von der Mutterlauge getrennt, zersetzen sich diese unter Braunfärbung (Ausbeute bzgl. Thallium ca. 70 %)

2.5.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

2.5.2.1 [TI(18-Krone-6)₂]TII₄·2 H₂O

Verbindung	[Tl(18-Krone-6) ₂]TII ₄ ·2 H ₂ O
Summenformel	$C_{24}H_{52}O_{14}I_4TI_2$
Kristallsystem	kubisch
Raumgruppe	$Fd\overline{3}$
Gitterkonstante (IPDS): <i>a</i> /pm	21,228(1)
Gitterkonstante (Pulver): <i>a</i> /pm	21,312(7)
Indizierte Linien	31
FOM	19,7
Zellvolumen /Å ³	9566,1
Ζ	8
<i>F</i> (000)	5296
$M/(\text{g mol}^{-1})$	1481,046
berechnete Dichte $/(g \text{ cm}^{-1})$	$2,007 \text{ g/cm}^3$
Kristallabmessungen /mm	0,03 x 0,02 x 0,04
Temperatur /K	298
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	93,51
Extinktionskoeffizient	0,000316
Wichtung <i>a</i> / <i>b</i>	0,053400/294,090302
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,1575/0,3244
Scan-Methode	ω-Scan
2 <i>θ</i> -Messbereich /°	3,3 bis 54,5
(<i>hkl</i>)-Messbereich	(-27,-27,-27) bis (27,27,26)
Reflexe gemessen	35523
unabhängig	912
beobachtet $/I \ge 2\sigma(I)$]	860
R _{int}	0,0626
Anzahl Parameter	42
R_1	0,0383
R_1 (alle Daten)	0,0403
wR_2	0,1015
wR_2 (alle Daten)	0,1027
S	1,046
Restelektronendichte /(eÅ ⁻³) max./min.	1,282/-1,034

Tabelle 19. Kristallographische Angaben zur Einkristallstrukturanalyse von [Tl(18-Krone-6)₂]TII₄·2 H₂O.

Tabelle 20. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /pm² für [Tl(18-Krone-6)₂]TII₄·2 H₂O.

	[11(10-K100-0)2]1114 2 1120.					
Atom	Wyckhofflage	x/a	<i>y/b</i>	z/c	$U_{ m eq}$	Atom
T11	8a	1	0,1250	0,1250	0,1250	0,0258(3)
T12	32e	0,25	-0,03659(6)	0,46341(6)	-0,03659(6)	0,0410(5)
I1	32e	1	0,20003(2)	0,20003(2)	0,04998(2)	0,0365(3)
OW1	32e	0,25	-0,057(2)	0,443(12)	-0,057(2)	0,08(1)
OW2	32e	0,25	-0,065(2)	0,315(2)	-0,065(2)	0,08(1)
01	96g	1	-0,0306(2)	0,5984(2)	-0,0842(3)	0,0461(12)
C1	96g	1	0,1187(4)	0,4782(4)	-0,1213(4)	0,051(2)
C2	96g	1	0,0546(4)	0,5654(4)	-0,1484(4)	0,052(2)

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂
T11	0,0258(3)	0,0258(3)	0,0258(3)	0,000	0,000	0,000
T12	0,0410(5)	0,0410(5)	0,0410(5)	0,0039(5)	0,0039(5)	0,0039(5)
I1	0,0365(3)	0,0365(3)	0,0365(3)	0,0060(1)	0,0060(1)	-0,0060(1)
01	0,045(3)	0,042(3)	0,052(3)	0,011(2)	0,012(2)	0,007(2)
OW1	0,08(1)	0,08(1)	0,08(1)	-0,01(2)	-0,01(2)	-0,01(2)
OW1	0,08(1)	0,08(1)	0,08(1)	-0,01(2)	-0,01(2)	-0,01(2)
C1	0,057(5)	0,050(4)	0,045(4)	0,010(3)	0,018(3)	0,017(4)
C2	0,056(5)	0,056(5)	0,043(4)	0,018(3)	0,014(3)	0,014(4)

Tabelle 21. Koeffizienten der anisotropen Auslenkungsparameter U_{ij} /(10⁻⁴ pm²) von [Tl(18-Krone-6)₂]TII₄.

Tabelle 22. Ausgewählte Atomabstände /pm und Winkel /° in [Tl(18-Krone-6)2]TII4.

Atome	Abstand/Winkel	Atome	Abstand/Winkel
T11 I2	275,85(7)	C1 O1	141,9(9)
Tl1 O1	303,9(9)	C1 C2	151,4(11)
Tl1 O1	321,2(2)	I1 T11 I1	109,5
Tl2 OW1	75(6)	C1 O1 C2	112,0(6)
O1 C1	141,9(9)	O1 C1 C2	107,8(6)
O1 C2	143,7(9)	O1 C2 C1	107,2(6)

2.5.2.2 [(NH₄/NH₃)(18-Krone-6)₂]TII₄ · 2 H₂O

Tabelle 23.	Kristallographi	ische Angabe	n zur Eink	ristallstrul	kturanal	yse von
	$[(NH_4/NH_2)(18)]$	3-Krone-6)]T]	$I_4 \cdot 2 H_2O_1$			

Verbindung	[(NH ₄ /NH ₃)(18-Krone-6) ₂]TII ₄ ·2H ₂ O
Summenformel	$C_{24}H_{59}N_2O_{14}I_4Tl$
Kristallsystem	kubisch
Raumgruppe	$Fd\overline{3}$
Gitterkonstanten (IPDS): <i>a</i> /pm	21,231(2)
Gitterkonstanten (Pulver): <i>a</i> /pm	21,336(4)
Indizierte Linien	31
FOM	19,7
Zellvolumen /Å ³	9569(1)
Ζ	8
<i>F</i> (000)	4376
$M/(g \text{ mol}^{-1})$	1156,48
berechnete Dichte /(g cm ⁻¹)	$1,694 \text{ g/cm}^3$
Kristallabmessungen /mm	0,08 x 0,07 x 0,06
Temperatur /K	298
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	59,96
Extinktionskoeffizient	0,000155
Wichtung <i>a</i> / <i>b</i>	0,062800/62,804600
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,2431/0,4843
Scan-Methode	ω-Scan
2 <i>θ</i> -Messbereich /°	3,3 bis 54,5
(<i>hkl</i>)-Messbereich	(-27,-27,-26) bis (27,27,27)

$[(NH_4/NH_3) (18-Krone-6)]TII_4.$	
Reflexe gemessen	26435
unabhängig	912
beobachtet $[I \ge 2\sigma(I)]$	772
R _{int}	0,0496
Anzahl Parameter	42
R_1	0,0365
R_1 (alle Daten)	0,0435
wR_2	0,0979
wR_2 (alle Daten)	0,1006
S	1,100
Restelektronendichte /(eÅ ⁻³) max./min.	1,052/ -0,885

Tabelle 24. (Forts.)Kristallographische Angaben zu Einkristallstrukturanalyse von [(NH₄/NH₃) (18-Krone-6)]TII₄.

Tabelle 25. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /pm² für [(NH₄/NH₃)(18-Krone-6)₂]TII₄·2H₂O.

Atom	Wyckhofflage	Besetzung	x/a	<i>y/b</i>	z/c	U _{eq}
T11	8b	1	0,6250	0,1250	0,1250	0,0270(2)
I1	32e	1	0,70004(2)	0,20004(2)	0,049957(17	0,0371(3)
01	96g	1	0,7195(2)	0,4016(2)	0,1655(2)	0,048(1)
N1	32e	0,5	0,4625(6)	0,4625(6)	-0,0375(6)	0,028(4)
C1	96g	1	0,8811(4)	0,2282(4)	0,1288(4)	0,055(2)
C2	96g	1	0,6951(4)	0,0648(4)	-0,1012(4)	0,053(2)
OW1	32e	0,25	0,4449(8)	0,4449(8)	-0,0551(8)	0,05(1)
OW2	32e	0,25	0,435(1)	0,315(1)	-0,065(1)	0,10(2)

Tabelle 26. Koeffizienten der anisotropen Auslenkungsparameter $U_{ij} / (10^{-4} \text{ pm}^2)$ von ______[(NH_4/NH_3)(18-Krone-6)_2]TII_4 · 2H_2O.

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	<i>U</i> ₁₂
T11	0,0270(2)	0,0270(2)	0,0270(2)	0,000	0,000	0,000
I1	0,0371(3)	0,0371(3)	0,0371(3)	0,0059(1)	0,0059(1)	-0,0059(1)
01	0,049(3)	0,044(2)	0,050(3)	-0,012(2)	0,014(2)	-0,011(2)
N1	0,028(4)	0,028(4)	0,028(4)	0,006(5)	0,006(5)	0,006(5)
C1	0,060(4)	0,055(4)	0,050(4)	0,015(4)	-0,019(3)	-0,016(4)
C2	0,056(4)	0,058(4)	0,046(4)	-0,019(3)	0,015(3)	-0,021(4)
OW1	0,05(1)	0,051(13)	0,051(13)	-0,025(9)	-0,025(9)	-0,025(9)
OW2	0,01(2)	0,01(2)	0,01(2)	0,04(1)	-0,04(1)	0,04(1)

Atome	Abstand/Winkel	Atome	Abstand/Winkel
T11 I2	275,95(7)	I2 T11 I2	109,5
O1 C1	141,6(9)	C1 O1 C2	111,6(5)
O1 C2	143,9(8)	O1 C1 C2	107,9(6)
N1 OW1	65(3)	O1 C2 C1	106,8(6)
C1 C2	153(1)		

Tabelle 27. Ausgewählte Atomabstände /pm und Winkel /° in [(NH₄/NH₃)(18-Krone-6)₂]TII₄·2H₂O.

2.5.1.3 [(H₃O/H₂O)18-Krone-6)₂]TII₄ · 2 H₂O

Tabelle 28. Kristallographische Angaben zu Einkristallstrukturanalyse von [(H₃O/H₂O)(18-Krone-6)]TII₄·2H₂O.

Verbindung	[(H ₃ O/H ₂ O)(18-Krone-6) ₂]TII ₄ ·2H ₂ O
Summenformel	C ₂₄ H ₅₇ O ₁₆ I ₄ Tl
Kristallsystem	kubisch
Raumgruppe	$Fd\overline{3}$
Gitterkonstante (IPDS): a/pm	21,379(2)
Gitterkonstante (Pulver): <i>a</i> /pm	21,365(5)
Indizierte Linien:	39
FOM	37,3
Zellvolumen /Å ³	9771,5(14)
Ζ	8
<i>F</i> (000)	7224
$M/(g \text{ mol}^{-1})$	1313,701
berechnete Dichte $/(g \text{ cm}^{-1})$	2,605
Kristallabmessungen /mm	0,1 x 0,07 x 0,09
Temperatur /K	298
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	88,16
Extinktionskoeffizient	0,000113
Wichtung <i>a</i> / <i>b</i>	0,05801/0,71243
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,2064/0,3401
Scan-Methode	<i>w</i> -Scan
2 <i>θ</i> -Messbereich /°	5,4 bis 56,2
(<i>hkl</i>)-Messbereich	(-28,-28,-28) bis (28,28,28)
Reflexe gemessen	28467
unabhängig	1011
beobachtet $[I \ge 2\sigma(I)]$	648
R _{int}	0,1579
Anzahl Parameter	37
R_1	0,0561
R_1 (alle Daten)	0,0999
wR_2	0,1264
wR_2 (alle Daten)	0,1437
S	1,025
Restelektronendichte /(eÅ ⁻³) max./min.	0,949/-0,970

Atom	Wyckhofflage	Besetzung	x/a	y/b	z/c	U _{eq}
T11	8b	1	0,5000	0,0000	0,0000	0,0380(4)
I1	32e	1	0,42541(3)	-0,07459(3)	0,07459(3)	0,0600(4)
01	96g	1	0,5406(4)	-0,2770(4)	0,0942(4)	0,083(3)
OW1	32e	1	0,5863(6)	-0,4137(6)	0,0863(6)	0,104(6)
C1	96g	1	0,5068(7)	-0,2541(7)	0,1464(7)	0,093(5)
C2	96g	1	0,5719(7)	-0,2265(6)	0,0605(7)	0,090(5)

Tabelle 29. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /pm² für [(H₃O/H₂O)(18-Krone-6)₂]TII₄·2H₂O.

Tabelle 30. Koeffizienten der anisotropen Auslenkungsparameter U_{ij} /(10⁻⁴ pm²) von [(H₃O/H₂O)(18-Krone-6)₂]TII₄·2H₂O.

Atom	U ₁₁	U_{22}	U_{33}	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
T11	0,0380(4)	0,0380(4)	0,0380(4)	0,000	0,000	0,000
I1	0,0600(4)	0,0600(4)	0,0600(4)	0,0111(3)	0,0111(3)	-0,0111(3)
01	0,089(6)	0,071(5)	0,089(6)	0,010(5)	0,021(5)	0,018(5)
OW1	0,104(6)	0,104(6)	0,104(6)	0,038(7)	0,038(7)	0,038(7)
C1	0,10(1)	0,081(8)	0,1(1)	0,020(8)	0,040(8)	0,042(8)
C2	0,1(1)	0,065(8)	0,11(1)	0,025(8)	0,032(9)	0,019(7)

Tabelle 31. Ausgewählte Atomabstände /pm und Winkel /° in [(H₃O/H₂O)(18-Krone-6)₂]TII₄·2H₂O.

Atome	Abstand	Atome	Winkel	
T11 I1	276,19	I1 Tl1 I1	109,5	
O1 C1	142(2)	C1 O1 C2	112(1)	
O1 C2	146(2)	O1 C1 C2	107(1)	
C1 C2	142(2)	O1 C2 C1	106(1)	

2.5.3 Pulverdiffraktometrie

2.5.3.1 [TI(18-Krone-6)₂TII₄]·2H₂O

Das Pulverdiffraktogramm zeigt eine geringe Verunreinigung (schwarze Pfeile), die sich nicht als Edukt indizieren lässt, bestätigt aber ansonsonsten die Richtigkeit der Strukturlösung.

Abbildung 14. Gemessenes (oben) und simuliertes (unten) Pulverdiffraktogramm (CuK α_1) von [Tl(18-Krone-6)₂]TII₄·2 H₂O.

2.5.3.2 [(NH₄/NH₃)(18-Krone-6)₂]TII₄ · 2 H₂O

Das Pulverdiffraktogramm bestätigt die Richtigkeit der Ergebnisse Einkristallstrukturanalyse und zeigt die röntgenographische Phasenreinheit des Produkts.

Abbildung 15. Gemessenes (oben) und simuliertes (unten) Pulverdiffraktogramm (CuK α_1) von [(NH₄/NH₃)(18-Krone-6)₂]TII₄·2 H₂O.

2.5.3.3 [(H₃O/H₂O)18-Krone-6)₂]TII₄ · 2 H₂O

Die röntgenographische Phasenreinheit des Produkts sowie die Richtigkeit der Strukturlösung lassen sich anhand des Pulverdiffraktogramms bestätigen.

Abbildung 16. Gemessenes (oben) und simuliertes (unten) Pulverdiffraktogramm (MoK α_1) von [(H₃O/H₂O)(18-Krone-6)₂]TII₄·2 H₂O.

2.5.4 Kristallstrukturen von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O mit$ $A = TI, NH_4/NH_3, H_3O/H_2O$

Die Verbindungen [A(18-Krone-6)₂]TlI₄·2H₂O mit A = Tl, NH₄/NH₃, H₃O/H₂O sind isotyp und kristallisieren kubisch in der Raumgruppe $Fd\bar{3}$ (Nr. 203).

In der Struktur liegen tetraedrische TII₄⁻-Baueinheiten neben von der Einheit A koordinierten Kronenethermolekülen vor (s. Abb. 17). Die TII₄⁻-Anionen weisen mit einem I-TI-I-Winkel von 109,4° eine ideale Tetraedersymmetrie auf, was durch die Lagesymmetrie der Iodatome auf der Lage 32e in den drei isotypen Strukturen bedingt ist. Es liegen tetraedrische Hohlräume vor, die von jeweils vier Kronenethermolekülen durch ihre Schwerpunkte aufgespannt werden. Die 18-Krone-6-Moleküle sind von einer "zweiten Schale" aus TII₄⁻-

Aionen in einer adamantanartigen Anordnung umgeben (s. Abb. 18). Die Thalliumatome der TII₄-Einheiten bilden somit eine diamantartige Netzstruktur, auf deren Verbindungslinien jeweils zwei Iodatome liegen (s. Abb. 18). Die I-I-Abstände liegen für A = Tl, (NH₄/NH₃) und (H₂O/H₃O) bei 367,5(1) bzw. bei 366,95(2) und 373,3(6). Diese Abstände sind mit den kürzesten intermolekularen Abständen in elementarem Iod vergleichbar und deuten auf Wechselwirkungen der TII₄-Einheiten hin. Die von Tl koordinierten Kronenethermoleküle sind so angeordnet, dass ihre Schwerpunkte ein Tetraeder bilden. Die Schwerpunkte dieser Tetraeder (genauer die Schwerpunkte von jeweils vier Kronenethermolekülen) bilden ebenfalls ein diamantartiges Netzwerk. Die beiden Netzwerke durchdringen sich gegenseitig wie im NaTl [15]. Betrachtet man die Schwerpunkte der einzelnen Kronenethermoleküle, so gelangt man zum MgCu₂-Typ [16] wie in Abb. 19 gezeigt. Das Kristallwasser ist über die Ecken eines verzerrten Würfels, der durch die Kronenethermoleküle aufgespannt wird, fehlgeordnet (s. Abb. 21).

Abbildung 17. Kristallstruktur von $[A(18\text{-Krone-6})_2]TII_4 \cdot 2 H_2O$ am Beispiel von A = Tl entlang [001].

Abbildung 18. Tetraedrische Anordnung von 18-Krone-6-Molekülen umgeben von einer Adamantan-artigen Anordnung von TII_4 - Einheiten am Beispiel von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ mit $A = NH_4/NH_3$.

Abbildung 19. MgCu₂-artige Anordnung der TlI₄⁻-Anionen (Mg) und der Schwerpunkte der 18-Krone-6-Moleküle (Cu).

A besetzt in allen drei Verbindungen die Wyckhoff-Position 32e mit einer Besetzung von 0,25, 0,5 und 1 für A = Tl bzw. NH₄/NH₃ und H₃O/H₂O wie in Abb. 20 gezeigt. Dabei ist diese Einheit im Falle unvollständiger Besetzung auf beiden Seiten der 18-Krone-6-Moleküle fehlgeordnet. Im ersten Fall koordinieren die Hälfte der Kronenethermoleküle die Tl⁺-Kationen. Für A = NH₄/NH₃ koordiniert die eine Hälfte der Kronenethermoleküle NH₄⁺, die andere Hälfte muss aufgrund der Ladungsneutralität Ammoniakmoleküle koordinieren. Entsprechend ist in [(H₃O/H₂O)(18-Krone-6)₂]TlI₄·2H₂O jedes Kronenethermolekül zweifach koordiniert und zwar zu ¹/₄ durch H₃O⁺ und zu ³/₄ durch H₂O. Die Abstände von A zur Schwerpunktsebene durch die sechs Sauerstoffatome eines Kronenethermoleküls betragen 134,6 pm (Tl), 138,0 pm (NH₄/NH₃) und 143,2 pm (H₃O/H₂O).

Abbildung 20. Koordination von A = Tl bzw. NH_4/NH_3 und H_3O/H_2O durch die Kronenethermoleküle (von links nach rechts).

Die Kristallwassermoleküle sind im Innenraum der Tetraeder, die von jeweils vier Kronenethermolekülen (durch ihre Schwerpunkten) aufgespannt werden, fehlgeordnet. Die Sauerstoffatome der Wassermoleküle bilden dabei einen verzerrten Würfel (s. Abb. 21) mit einer Kantenlänge von 274(3) pm für A = Tl und 278,96(2) pm für A = NH₄/NH₃. Da für die Sauerstoffatome des Kristallwassers eine Besetzung von $\frac{1}{4}$ gefunden wird, sind durchschnittlich zwei Ecken des Würfels besetzt. OW1 liegt für die Tl-Verbindung 209,63 pm über der durch die sechs Sauerstoffatome des Kronenethers aufgespannten Ebene, im Falle des Ammoniumsalzes sind es 203,2 pm. Der Abstand von OW2 zu Tl bzw. NH₄ beträgt 322,66 pm und 324,77(2) pm. Im Falle des Ammonium-Ions liegt dieser Abstand innerhalb der beobachteten N-O-Abstände bei einer Verbrückung durch ein Wasserstoffatom.

Abbildung 21. Verzerrt würfelförmige Anordnung der Sauerstoffatome OW1 (grün) und OW2 (violett) des Kristallwassers am Beispiel von [Tl(18-Krone-6)₂]TlI₄·2H₂O.

Für die Verbindung mit $A = H_3O/H_2O$ findet man im Vergleich für die entsprechende Ammoniumverbindung, dass statt den drei unterschiedlichen Lagen für N1, OW1 und OW2 nur eine einzige Lage (32e) mit Sauerstoff vollbesetzt ist.

2.5.5 Elementaranalyse

Die Summenformeln der Verbindungen der Reihe [A(18-Krone-6)₂]TlI₄·2H₂O] können durch Elementaranalysen bestätigt werden.

	, , 2		
[A(18-Krone-6) ₂]TlI ₄ ·2H ₂ O	Anteil C /Gew%	Anteil H /Gew%	Anteil N /Gew%
A = Tl (ber.)	19,4	3,5	0
A = Tl (exp.)	22,9	3,6	0,2
$A = NH_4/NH_3$ (ber.)	22,5	4,2	2,1
$A = NH_4/NH_3 (exp.)$	22,0	4,5	2,1
$A = H_3O/H_2O \text{ (ber.)}$	22,3	4,4	0
$A = H_3O/H_2O \text{ (exp.)}$	22,3	22,3	0,1

Tabelle 32. Ergebnisse der Elementaranalyse der Verbindungsreihe $[A(18-Krone-6)_2]TII_4 \cdot 2H_2O$ mit A = Tl, NH₄/NH₃, H₃O/H₂O.

2.5.6. IR/Raman-spektroskopische Untersuchungen an $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O mit A = TI, NH_4/NH_3, H_3O/H_2O$

Die Zuordnung der Schwingungsbanden in den Verbindungen $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ erfolgte nach [17] und [18], im Bereich von 1232 bis 805 cm⁻¹ aufgrund der Banden von berechneten harmonischen Schwingungen für das $[(H_3O/H_2O)(18-Krone-6)]^+$ -Anion mit C_{3v}-Symmetrie am Beispiel der Verbindung mit A = H₃O/H₂O (s. Tab. 33) nach [19].

0,20 1,0 2881 1231 0,8 0,15 Raman-Intensität 1972 2242 836 1753 ' 1720 0,6 1453 1245 960 . 3191 1279 0,10 1634 1055 3432 0,4 1407 1270 1140 1360 1240 0,05 830 1478 2247 107⁸⁶³ 0,2 945 1085 1066 0,00 0,0 3000 2500 2000 3500 1500 1000 500 Wellenzahl /cm⁻¹

2.5.6.1 [(H₃O/H₂O)(18-Krone-6)₂]TII₄ \cdot 2 H₂O

Abbildung 22. MIR- (oben) und Raman-Spektrum (unten) von [(H₃O/H₂O)(18-Krone-6)₂]TII₄·2 H₂O.

Fransmission / %

Abbildung 23. FIR- (oben) und Raman-Spektrum (unten) von [(H₃O/H₂O)(18-Krone-6)₂]TII₄·2 H₂O.

berechnet **			experim	entell	
Wellenzahl /cm ⁻¹		Wellenzahl /cm ⁻¹			
IR	Intensität	Zuordnung	Raman	Intensität	Zuordnung*
3432	m br	$v_{\rm as}, {\rm OH}_2$	-	-	-
3191	w, br	$v_{\rm s}, {\rm OH}_2$	-	-	-
2875	st, br	$v_{\rm as}, {\rm CH}_2$	2881	st	
2243	W	MeCN	2247	W	
1972	W	COC, $2 v_{as}$	-	-	-
1753	w, br	E, H ₃ O ⁺ , δ	-	-	-
1720	w, br	E, H ₃ O ⁺ , δ	-	-	-
1634	w, br	$ ext{OH}_2,\delta$	-	-	-
1478	m	$ ext{CH}_2,\delta$	1478	m	
1453	m	$ ext{CH}_2,\delta$	1453	VW	
1428	m	$ ext{CH}_2,\delta$	1407	m	
1349	m	$ ext{CH}_2,\delta$	1360	m	
1282	m	Ε, CH ₂ , <i>ρ</i>	1270	st	
1243	m	Ε, CH ₂ , <i>ρ</i>	1240	m	
1232	W	A_1, CH_2, ρ	-	-	-

Tabelle 33. Zuordnung der IR/Raman-Banden von $[(H_3O/H_2O)(18$ -Krone-6)₂]TII₄·2H₂O nach [17], im Bereich
von 1232 bis 805 cm⁻¹ nach [19] und ab 521 cm⁻¹ [18].

berechnet **				experim	entell
Wellenzahl /cm ⁻¹			Wellenza	hl /cm ⁻¹	
1132	sh von 1111	A_1 , CH_2 , δ	1140	m	
1111	st	E, v_{as} , COC	1107	VW	
-	-	-	1085	VW	E, CH ₂ , δ
1055	m	E, v_{as} , COC + v_{as} (CC)	1066	VW	
960	m	E, v_{as} , CC + δ , COC	945	VW	
928	sh von 960, w	E, CH ₂ , δ	-	-	-
-	-	-	863	m	A ₁ , CH ₂ , $\delta + \delta$ (COC)
836	m	$E (H_3O^+), \rho + CH_2, \delta$	830	m,sh	
805	sh von 836	A_1 , CH_2 , δ	-	-	-
521	W	C-O-C, δ	548	m	
148	st, sh	Tl-I, $v_{\rm as;} \delta_{\rm as}$	158	st	Tl-I, v _s
-	-	-	131	st	Tl-I, $\delta_{\rm s}$

Tabelle 33. (Forts.) Zuordnung der Banden im IR/Raman-Spektrum von [(H₃O/H₂O)(18-Krone-6)₂]TII₄·2H₂O nach [17], im Bereich von 1232 bis 805 cm⁻¹ nach [19] und ab 521 cm⁻¹ [18].

* zusätzlich zu IR-Spektrum im Raman-Spektrum beobachtet

** im Bereich von 1232 bis 800 cm⁻¹

2.5.6.2 [TI(18-Krone-6)₂]TII₄ · 2 H₂O

Abbildung 24. MIR-Spektrum (oben) und Raman-Spektrum (unten) von [Tl(18-Krone-6)₂]TII₄·2 H₂O (schwarz) und 18-Krone-6 (rot).

Abbildung 25. FIR- (oben) und Raman-Spektrum (unten) von [Tl(18-Krone-6)₂]TII₄·2 H₂O.

2.5.6.3 [(NH₄/NH₃)(18-Krone-6)₂]TII₄·2 H₂O

Abbildung 26. MIR- (oben) und Raman-Spektrum (unten) von [(NH₄/NH₃)(18-Krone-6)₂]TII₄·2 H₂O.

Abbildung 27. FIR- (oben) und Raman-Spektrum (unten) von [(NH₄/NH₃)(18-Krone-6)₂]TII₄·2 H₂O.

2.5.6.4 Vergleich der Schwingungsspektren von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ mit A = TI, NH₄/NH₃, H₃O/H₂O

Von allen Verbindungen wurden sowohl IR- als auch Raman-Spektren aufgenommen. An dieser Stelle sollen hauptsächlich die IR-Spektren diskutiert werden, wobei die Raman-Spektren zur Identifizierung der Banden dienen und in Abb. 29. dargestellt sind.

Die IR-Spektren von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ und 18-Krone-6 (s. Abb. 28) sind sich in ihren Grundzügen ähnlich. Allerdings zeigen die Spektren von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ einige individuelle Merkmale, die zur Unterscheidung von A in den drei isotypen Verbindungen beitragen. Eine Gegenüberstellung des Spektrums im Vergleich zum Spektrum des reinen Kronenethers und den theoretisch berechneten Spektren für die kristalline Verbindung 18-Krone-6 zeigt, dass das Molekül 18-Krone-6 in seinem Kristallgitter C_i-Symmetrie und in den Verbindungen $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O C_{3v}$ -Symmetrie hat.

Im Vergleich der MIR-Spektren der Verbindungen [A(18-Krone-6)₂]TII₄·2H₂O untereinander zeigt sich für [(NH₄/NH₃)(18-Krone-6)₂]TII₄·2 H₂O und [Tl(18-Krone-6)₂]TII₄·2 H₂O ein fast

identisches Bild. Im Wellenzahlen-Bereich von 1480 bis 1400 cm⁻¹, in dem die CH₂-Deformationsschwingungen zu finden sind, wird eine zusätzliche Bande bei 1402 cm⁻¹ beobachtet, die auschließlich im IR-Spektrum von $[(NH_4/NH_3)(18-Krone-6)_2]TII_4\cdot 2 H_2O$ zu sehen ist, wobei es sich um die Deformationsschwingung δ_{as} des NH₄⁺-Kations handelt [17]. Das MIR-Spektrum der Verbindung $[(H_3O/H_2O)(18-Krone-6)_2]TII_4\cdot 2 H_2O$ ist ebenfalls dem Spektrum von $[TI(18-Krone-6)_2]TII_4\cdot 2 H_2O$ ähnlich, allerdings zeigt sich die im Vergleich zu den anderen beiden Verbindungen verstärkte H-Brückenbildung durch das Auftreten von zwei zusätzlichen breiten Banden bei 1753 und 1720 cm⁻¹ schwacher Intensität, die im MIR-Spektrum des reinen Kronenethers zwar vorhanden, doch nur schwach ausgeprägt sind. Bei diesen Banden muss es sich um H₃O⁺-Deformatiosschwingungen handeln, die im Vergleich zu den Deformationsschwingungen des H₂O-Moleküls (1634 cm⁻¹) aufgrund der positiven Ladung zu höheren Wellenzahlen verschoben sind müssen und zudem vergleichbar mit der Lage der enstprechenden Bande im festen (OH₃)I bei 1705 cm⁻¹ sind [18].

Die FIR-Spektren der Verbindungsreihe (s. Abb. 23, 25 und 27) zeigen im IR-Spektrum eine aufgelöste Bande bei 146 cm⁻¹ (Tl-I, v_{as}) und im Raman-Spektrum bei etwa 156 (Tl-I, v_s) und 132 cm⁻¹ (Tl-I, δ_{as}).

2.5.6.5 Vergleich der Schwingungsspektren von [A(18-Krone-6)₂]TII₄ · 2 H₂O und 18-Krone-6

Beim Vergleich der Spektren der drei isotypen Verbindungen und dem des reinen Kronenethers untereinander fallen besonders fünf Punkte auf:

1) Das Fehlen einer breiten Bande bei ca. 3200 cm⁻¹ bei $[Tl(18-Krone-6)_2]TII_4\cdot 2$ H₂O bestätigt, dass keine ausgeprägte Wasserstoffbrückenbildung zwischen Kristallwasser und dem Kation vorhanden ist, wie es bei den anderen beiden Verbindungen, die Ammoniumbzw. Oxoniumionen enthalten, der Fall ist.

2) Die H₂O-Deformationsschwingung Im Bereich von ca. 1630 cm⁻¹ der Verbindungsreihe $[A(18-Krone-6)_2]TII_4\cdot 2$ H₂O ist im Vergleich zum reinen Kronenether deutlich stärker ausgeprägt und erscheint als breite Bande schwacher bis mittlerer Intensität, was das Vorhandensein von Kristallwasser anzeigt.

3) Der Bereich von 1500 bis 1410 cm⁻¹ unterscheidet sich in $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$, wo er nicht von der NH₄⁺-Bande überlagert wird, durch schärfere Peaks mit veränderten relativen Intensitäten. Bei den Schwingungen in diesem Bereich handelt es sich um CH₂-Deformationsschwingungen, deren Änderungen auf eine unterschiedliche Konformation des Kronenethermoleküls im Vergleich zum reinen Kronenether hinweisen.

4) Die asymmetrische Streckschwingung der COC-Gruppe bei 1111 cm⁻¹ ist in den drei isotypen Verbindungen deutlich weniger verbreitert, was auf eine Änderung der Konformation mit einer höheren Symmetrie des 18-Krone-6-Moleküls im Kristallgitter der Verbindungsreihe hinweist. Eine Verschiebung der C-O-C-Schwingung zu kleineren Wellenzahlen aufgrund einer Aufweitung der C-O-Bindung durch das koordinierende A-Kation ist nicht zu beobachten, was auf eine schwache Wechselwirkung des Kations mit dem Kronenethermolekül im Kristall zurückzuführen ist.

5) Die Aufspaltung der den C-C-Deformationsschwingungen entsprechenden Banden bei 992 und 963 cm⁻¹ bzw. 861 und 839 cm⁻¹ im Spektrum von 18-Krone-6 verschwindet in den Koordinationsverbindungen, wo nur noch einzelne scharfe Banden bei 960 und 836 cm⁻¹ beobachtet werden. Genauso wird in letzteren Spektren nur eine Bande bei 523 cm⁻¹ (z. B. bei $A = H_3O/H_2O$) beobachtet, dagegen findet man im IR-Spektrum von 18-Krone-6 drei Banden für die C-O-C-Deformationsschwingungen bei 569, 538 und 462 cm⁻¹.

Der Vergleich der berechneten Schwingungen für C_i-, C_{3v}- und D_{3d}-Symmetrie des Kronenethers 18-Krone-6 zeigt, dass der reine kristalline Kronenether C_i-Symmetrie hat, da sich die experimentell bestimmten aufgespaltenen Banden mit sehr guter Übereinstimmung den berechneten Werten zuordnen lassen [20]. In Tab. 35 sind die theoretischen und experimentell bestimmten IR-Schwingungsbanden gegenüber gestellt. Im theoretischen Spektrum von [H₃O(18-Krone-6)⁺] mit C_{3v}-Symmetrie fehlt diese Aufspaltung der Banden (s. grau unterlegte Felder in Tab. 35), wobei die experimentell bestimmten Spektren der Verbindung [A(18-Krone-6)₂]TII₄ · 2 H₂O mit A = Tl, NH₄/NH₃, H₃O/H₂O im Bereich von 1200 bis 800 cm⁻¹ gut mit diesen Werten übereinstimmen, was die C_{3v}-Symmetrie für das koordinierte 18-Krone-6-Molekül in den isotypen Verbindungen [A(18-Krone-6)₂]TII₄ · 2 H₂O bestätigt.

Abbildung 28. Vergleich der IR-Schwingungsspektren von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ mit A = Tl, NH₄/NH₃, H₃O/H₂Oim Bereich von 2000 bis 500 cm⁻¹.

Abbildung 29. Vergleich der Raman-Spektren von $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ mit A = Tl, NH₄/NH₃, H₃O/H₂O und 18-Krone-6.

Abbildung. 30. MIR- (oben) und Ramanspektrum (unten) von 18-Krone-6 im Wellenzahlen-Bereich von 2000 bis 500 cm⁻¹.

IR				Raman	
Wellenzahl /cm ⁻¹	Intensität	Zuordnung		Wellenzahl /cm ⁻¹	Intensität
3428	m, br	H ₂ C)	-	-
2897	st, br	CH ₂ , v	$V_{\rm s,} V_{\rm as}$	2892	st
1968	W	COC,	$2 v_{as}$	-	-
1629	w, br	OH ₂	, δ	-	-
1471	m	CH ₂	, δ	1497	m
1355	m	CH ₂	, δ	-	-
1279	m	CH ₂ ,	ω	1279	m
1248	m	CH ₂ ,	ω	-	-
1106*	st,br	C-O-C	$C, V_{\rm as}$	1137	m
-	-	-		1056	m
995	W	C-C, <i>v</i>		989	m
960*	st	E, $v_{a\sigma}$, CC +	$+\delta COC^*$	-	-
889	W	С-С,	ν	888	m
860*	W	A_1, CH_2, δ	+ COC, δ	863	m
832	m	C-O-C, <i>v</i> _s		822	m
569	W	С-О-С, б		570	W
538	W	C-O-C, δ		-	-
462	W	C-O-(Ζ, δ	-	-
*nach [19]	•	•			•

Tabelle 34. Zuordung der Banden im IR- und Raman-Spektrum von 18-Krone-6.

	18-Krone-6			-Krone-6) ⁺]
berechnet (C _i)	berechnet (D _{3d})	experimentell*	berechnet (C _{3v})	experimentell*
1147	-	ca. 1161, sh	-	-
1134	-	ca. 1130, sh	-	1128,sh
1114	-	1106, st, br	1113	1111
1110	-		-	
1103	1105		-	
1092	1095		1098	
1062	-	1055	1054	1055
1030	-	1041	-	-
1011	-	995	-	-
963	-	960	965	960
932	-	947	930	928 als sh
868	949	890	-	-
845	-	861	-	-
-	835	839	828	836
822	826	Nicht beob.	-	-
810	814	Nicht beob.	810	Nicht beob.

Tabelle 35. Berechnete IR-Spektren von 18-Krone-6 mit C_i-, sowie mit D_{3d}- Symmetrie, von $[H_3O(18-Krone-6)^+]$ mit C_{3v}-Symmetrie[19] und experimentell bestimmte IR-Spektren von 18-Krone-6 und $[H_3O/H_2O)(18-Krone-6)_2$]TII₄ · 2 H₂O im Bereich von 1150 bis 800 cm⁻¹.

* exp. Werte stimmen gut mit den in [20] bestimmten exp. Werten überein.

2.6 Vergleich und Diskussion

In den untersuchten Verbindungen hat das Thallium(I)-Kation die Koordinationszahlen 6–8 und weist in allen Fällen bis auf die Verbindung Tl(Kryptofix 222)TlI₄ mit einer KZ von 8 unsymmetrische Koordinationspolyeder auf, an dessen Spitze Tl⁺ sitzt.

Alle untersuchten Kristallstrukturen weisen intermolekulare I-I-Abstände zwischen verschiedenen TII₄⁻-Einheiten auf (s. Tab. 36), die unterhalb des doppelten Van-der-Waals-Abstandes von 430 pm liegen. Abstände unterhalb dieser Grenze können prinzipiell als bindende Wechselwirkungen diskutiert werden. Aus einer Häufigkeitsverteilung der Bindungsabstände in Pentaiodiden [13] lässt sich die Art der Wechselwirkung abschätzen (s. Tab. 37). In elementarem Iod beträgt der kürzeste intermolekulare I-I-Abstand 349,6 pm.

Verbindung	KZ	d(A-O) /pm	<i>d</i> (Tl-6O)	Min. I-I	Farbe
	(Tl ⁺)		/pm	(intermol.)/ pm	
Tl(18-Krone-6)TlI ₄	6	283,1(6) -	66	411,31(8),	orange
		296,6(6)		423,9(1)	
Tl(Dibenzo-24-Krone-8)TlI ₄	8	277,1(7) -	-	394,1(1),	orange-
		315,5(6)		396,37(4),	rot
				398,6(1)	
Tl(Kryptofix 5)TlI ₄	7	286(1) -	-	422,51(6)	orange
		303,1(1)			
Tl(Kryptofix 222)TlI ₄	8	284,8(6) -	-	397,9(4)	rot
		295,1(6)			
$[Tl(18-Krone-6)_2]TlI_4 \cdot 2 H_2O$	6	303,9(9) -	134,6	367,5(0)	tiefrot
		321,2(2)			
$[(NH_4/NH_3)(18-Krone-6)_2]TII_4 \cdot 2 H_2O$	6	305,63(2) -	131,2	366,95(2)	tiefrot
		323,43(2)			
$[(H_3O/H_2O)(18-Krone-6)_2]TII_4 \cdot 2 H_2O$	6	305,86(2) -	143,5	373,3(6)	tiefrot
		327,67(2)			

Tabelle 36. Vergleich einiger geometrischer Merkmale der untersuchten Verbindungen.

Auffallend nahe daran liegen die in den Verbindungen $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ auftretenden kurzen intermolekularen I-I-Abstände von z. B. 366,95(2) bei A = NH₄/NH₃. Aus diesem Grund kann man davon ausgehen, dass die Kristallstruktur durch diese Wechselwirkungen eine wesentliche Stabilisierung erhält. In den übrigen Fällen kann man allenfalls von schwachen Wechselwirkungen ausgehen. Im Falle der Liganden mit aromatischen Systemen tragen auch π - π -Wechselwirkungen der aromatischen Ringe zur Stabilisierung der Kristallstruktur bei.

Der Abstand zwischen Iodatomen der TII₄⁻-Einheiten wirkt sich offenbar auch auf die Farbe der Verbindung aus: die Verbindungsreihe $[A(18-Krone-6)_2]TII_4 \cdot 2 H_2O$ mit A = Tl, NH₄/NH₃, H₃O/H₂O hat eine tiefrote Färbung, während sich die Farbe bei der Verbindung Tl(18-Krone-6)TII₄ mit relativ großen Abständen zwischen den TII₄⁻-Einheiten nach orange verschiebt (s. Tab. 36). Eine intermolekulare I-I-Wechselwirkung in Abhängigkeit der I-I-Abstands muss jedoch durch UV/Vis-Absorbtionsspektroskopie bestätigt werden.

Abstandsbereich /pm	Vernetzungsart
~ 320	vernetzende Kontake I ⁻ ····· I_2 und I_3^- ····· I_2
~ 340	schwache Kontake I_2 ······ I_2 und I_3 ······ I_3
ab ~ 385 - 430	kurze Van-der-Waals-Kontakte - ungerichtete Wechselwirkungen

 Tabelle 37. Abstandsbereich und Bindungsart der Polyiodide [13]

Im Vergleich zu den bekannten Verbindungen des Typs $[Tl(18-Krone-6)_4MeCl_4]TlCl_4·2H_2O$ mit Me = Co, Cu, Zn stellen die Verbindungen $[A(18-Krone-6)_2]TlI_4 \cdot 2 H_2O$ mit A = Tl, NH₄/NH₃, H₃O/H₂O eine Variante der ersten Einschlussverbindung dar, in dem jedoch kein MeX₄⁻-Gastmolekül im tetraedrischen Hohlraum von vier Kronenethermolekülen eingelagert wird. Tatsächlich wurde bei der Kristallstrukturverfeinerung bei keiner der drei Verbindungen Elektronendichte in diesem Hohlraum beobachtet. Allerdings bleibt unklar, wie die anionische Gastspezies das Gitter verlassen kann, so dass die Ladungsneutralität erhalten bleibt. Dies könnte durch Protonierung und Deprotonierung der Kristallwassermoleküle erfolgen. In diesem Sinne kann die Verbindung strenggenommen nicht als ein echtes Clathrat bezeichnet werden.

Es ist wahrscheinlich, dass die tetraedrischen MeX₄-Anionen als Templat fungieren. Für diese These spricht auch die Tatsache, dass die in dieser Arbeit hergestellten Verbindungen nur bei Anwesenheit einer geringen Menge an CuI gebildet wurden, die in Lösung CuI₄²⁻-Anionen bilden. Wenn ein tetraedrisch koordiniertes Übergangsmetallanion nicht zugegen ist, entstehen gemischtvalente Verbindungen des Typs Tl(Ligand)TlI₄, die nicht den beschriebenen Strukturtyp ausbilden. Dabei muss Cu²⁺ nicht zwingenderweise als Oxidationsmittel dienen, wie es in [9] beschrieben wurde. Man muss vielmehr annehmen, dass die Oxidation durch Luftsauerstoff in diesem System eine wichtige Rolle spielt, da selbst ohne Iodzugabe eine Redoxkomplexierung von Tl⁺ beschrieben wurde [21]. Die treibende Kraft für diese Reaktion scheint die hohe (thermodynamische) Stabilität der gebildeten TIX4-Anionen (X = Cl, Br, I) zu sein, welche zu stabilen gemischtvalenten (I/III)-Verbindungen des Typs $[Tl(18-Krone-6)_4CuCl_4][TlCl_4]_2 \cdot 2H_2O$ mit Me = Co, Cu, Zn führen. Dafür spricht die Tatsache, dass auch umgekehrt - bei der Behandlung von halogenidhaltigen Tl³⁺-Lösungen mit 18-Krone-6 – eine Komplexierung mit einer gleichzeitigen Reduktion zu Tl^+ erfolgt, welche ebenfalls gemischtvalente Verbindungen des Typs [Tl(Kronenether)_x][TlI₄]·2H₂O liefern [9].

2.6.1 Koordination des Thalliums mit makrocyclischen Liganden

In den hier beschriebenen Verbindungen Tl(18-Krone-6)TlI₄, Tl(Dibenzo-24-Krone-8)TlI₄, Tl(Kryptofix 5)TlI₄ und [A(18-Krone-6)₂]TlI₄ · 2 H₂O mit A = Tl, NH₄/NH₃, H₃O/H₂O nimmt das Tl⁺-Kation eine sogenannte Sunrise-Konformation ein, bei der es 65,8 bis 134,6 pm

oberhalb der Ausgleichsebene durch die sechs Sauerstoffatome eines Kronenethermoleküls liegt. Auch in den komplexen Kationen [Tl(Kryptofix 5)]⁺ und [Tl(Dibenzo-24-Krone-8)]⁺ weist Thallium(I) ein unsymmetrisches Koordinationspolyeder auf, an dessen Spitze das Thalliumatom sitzt, so dass man die Ursache in der stereochemischen Aktivität des freien Elektronenpaars am Thallium vermuten würde. In der Literatur ist dieses Phänomen bekannt, wo die für das Kation zu geringe Größe des Hohlraums des Kronenethers als Ursache diskutiert wird [22]. Im Gegensatz zum K⁺-Ion , das aufgrund seines Ionenradius von 138 pm genau in den Hohlraum des 18-Krone-6-Moleküls passt, zeigen die größeren Kationen TI⁺ (164 pm) und Rb⁺ (166 pm) im Vergleich zu K⁺ (152 pm) [23] eine deutliche Auslenkung aus dem Zentrum des Kronenethers. Es sind allerdings auch andere Beispiele bekannt. In Rb(18-Krone-6)AuCl₄ [24] nimmt das Rb⁺-Ion tatsächlich die Position im Zentrum der sechs Sauerstoffatome von 18-Krone-6 ein. Es wird auch die Möglichkeit diskutiert, dass die Wechselwirkung mit dem Anion die Anziehung zum neutralen Kronenethermolekül schwächt [25]. Abb. 31 zeigt die möglichen Koordinationsarten eines Metallkations an das Kronenethermolekül.

Abbildung 31. Verschiedene Koordinationen im System M(18-Krone-6)⁺ [26].

Die unsymmetrische Koordinationsumgebung des Thallium-Kations wird auch auf die Anwesenheit eines stereochemisch aktiven freien 6*s*-Elektronenpaars zurückgeführt. Dies ist besonders ausgeprägt in Verbindungen mit kleinen Koordinationszahlen [27], aber auch in einigen makrocyclischen Verbindungen mit hohen Koordinationszahlen zu beobachten. Ein eindrucksvolles Beispiel ist die Downcast-Koordination aus Abb. 31 der Verbindung Tl(18-Krone-6)Cu[N(CN₂)]₂ [7].

2.6.2 Einfluss des 6s²-Elektronenpaars des Thalliums [28]

Um die Auswirkung des 6s²-Elektronenpaars auf die Koordinationssphäre des Thalliums zu untersuchen, wurden *Ab initio*-Rechnungen durchgeführt. Die Berechnungen erfolgten sowohl auf MP2- als auch auf DFT-Level in Kombination mit dem B3LYP-Funktional mittels des Computerprogramms GAMESS [29]. Für C, H, und O wurde der Basissatz 6-31G verwendet. Für Tl, Rb und K wurden die SBKJC VDZ relativistischen effektiven Core-Potentiale sowie die Potentiale für die Valenzelektronen benutzt.

Die Geometrieoptimierung der Metall-Kronenetherkomplexe zeigt tatsächlich eine Auslenkung des Thalliumkations aus der Mitte des Kronenethers von 66 pm (MP2-Level) bzw. 77 pm (DFT/B3LYP level). Die Gesamtenergie des Systems für Tl⁺ oberhalb der sechs Sauerstoffatome von 18-Krone-6 liegt ca 1,6 kcal/mol (MP2) und 4,1 kcal/mol (B3LYP) tiefer als für ein hypothetisches Tl(18-Krone-6)⁺-Kation mit Tl⁺ im Zentrum des Kronenethers.

Die Molekülorbitale zeigen bindende wie antibindende Wechselwirkungen der TI-6s-Orbitale mit den 2p-Orbitalen der Sauerstoffatome des Kronenethers (s. Abb. 32). Die ungünstigen antibindenden Wechselwirkungen werden minimiert, indem das Thallium-Kation so weit ausgelenkt wird, wie es die elektrostatische Coulomb-Anziehung der Sauerstoffatome erlaubt. Eine Mulliken-Populationsanalyse für die betreffenden Orbitale ergibt, dass sich die antibindenen O p/TI s-Orbitale wie folgt zusammensetzen: TI (81%), O (14,3 %), H (4,7 %). Für TI wird 97,7 % s-, 1,8 % p- und 0,5 % d-Charakter gefunden. Die Edminston-Ruedenberg-Lokalisierung zeigt die erwartete Verzerrung für das 6s²-Orbital am TI (s. Abb. 33).

Dagegen zeigen entsprechende Rechnungen mit Kalium und sogar mit Rubidium eine symmetrische Koordination des Metallkations im Zentrum der sechs Sauerstoffatome des 18-Krone-6-Moleküls.

Abbildung 32. Antibindende Tl s/O p-Orbitale (links) und bindende Tl s/O p-Orbitale (rechts) im Tl(18-Krone-6)⁺-Kation.

Abbildung 33. Tl s-Orbital (Edminston-Ruedenberg-Lokalisierung).

Da keine nennenswerten Beiträge der *p*-Orbitale (oder *sp*-Hybridisierung) gefunden werden, lässt sich die stereochemische Aktivität des freien Elektronenpaars auf eine antibindende Wechselwirkung der 6*s*²-Orbitale mit der Umgebung zurückführen. Durch eine "Verzerrung" der Koordinationsspähre minimiert das System die ungünstigen antibindenden Kontakte. Schließlich muss man beachten, dass diese Betrachtung zuerst nur für ein gasförmiges Tl(18-Krone-6)⁺-Kation gültig ist, bei dem Wechselwirkungen mit den Anionen ausgeschlossen werden können. Strenggenommen ist dies aber in einem Kristall nicht der Fall. Bei der hier gemachten Betrachtung wurde die Wechselwirkung zu den schwach koordinierenden Anionen mit Abständen zum Thallium größer als der Van-der-Waals-Abstand (Tl-I) von 370 pm vernachlässigt.

3 Verbindungen in den Systemen TI-Te-O und TI-Te-S

Fast alle Thalliummineralien sind Chalkogenide: Sulfide, Thioarsenide, Thioantimonide oder Selenide. Häufige Begleitelemente sind Cu, Pb, Fe, Hg, Ag und Sn. Thallium kommt in der Natur, mit der Ausnahme des Minerals Avicennit, Tl₂O₃, ausschließlich in der einwertigen Oxidationsstufe vor. Als ein typisches Spurenelement in sulfidischen Erzen, die bei niedrigen Temperaturen gebildet wurden, kommt dem toxischen Metall damit eine wichtige ökologische Bedeutung zu [30].

Abbildung 34. Lorandit [31].

Der tiefrote Lorandit in Abb. 34 ist das am weitesten verbreitete thalliumhaltige Mineral und ist ein interessantes Beispiel für die Verbindungsklasse der Thalliumthiosalze. Ein Merkmal der Kristallstruktur sind spiralförmige AsS₂-Ketten mit einer formalen negativen Ladung pro AsS₂, die sich als aus eckenverknüpften AsS₃-Pyramiden aufgebaut betrachten lassen, wobei das Thallium die Plätze zwischen den Spiralketten einnimmt. Zahlreiche mineralische sowie synthetische Thalliumthiosalze mit Elementen der 5. HG wurden strukturell charakterisiert. Erstaunlicherweise sind sehr wenige solcher Verbindungen mit Elementen der 6. HG, und insbesondere des Tellurs, untersucht. Nur sehr wenige Mineralien wie beispielsweise der Tellurohauchecornit Ni₉BiTeS₈ [32] und der Tetradymit Bi₂TeS [33] sind bekannt. Dies ist möglicherweise der Grund dafür, dass die Tl-Te-Systeme bis heute wenig untersucht worden sind.

Eine Untersuchung der gebildeten Strukturtypen von Metallen mit den Chalkogenen zeigt, dass die Sulfide den Seleniden sehr ähnlich sind, sich aber von den Telluriden deutlich unterscheiden. Beispielsweise bilden die beiden gemischtvalenten Phasen Tl₂S₂ und Tl₂Se₂ sowie Tl₂S und Tl₂Se in einen breiten Gebiet Mischkristalle [34]. Tl₂Te₂ hingegen nimmt einen anderen Strukturtyp ein. Ebenso lässt sich feststellen, dass eine relativ große Anzahl von kristallchemisch charakterisierten Verbindungen Polysulfid- oder Polyselenidketten, z. B. mit elf Chalkogenatomen in der Kette enthalten [35]. Dagegen wurden in den entsprechenden Tellur-Systemen meist das Ditellurid-Anion Te₂²⁻ [36, 37] und selten die Te₃²⁻Einheit gefunden. Allerdings verhalten sich die Telluride kristallschemisch nicht immer unterschiedlich zu den Sulfiden. Neue Polytelluride mit größeren Polytellurid-Baueinheiten wie die kettenförmigen Te₆²⁻ und Te₁₃²⁻-Anionen konnten mittels methanolothermaler Synthese hergestellt werden [38]. Genauso lassen sich in der Gruppe der II-VI-Verbindungen in breiten

Bereichen feste Lösungen wie z. B. CdS_{1-x}Te_x erhalten [39].

In der Verbindungsklasse der Thiotellurate, die in der Mineralogie zu den "Sulfosalzen" zählen [40], besetzen die Schwefel- und Telluratome definierte kristallographische Plätze. In dieser Verbindungsklasse sind die Thiotellurat-Anionen TeS_x^{2-} mit x = 2, 3, welche als Polychalkogenid-Anionen, im Falle von x = 2 als Polychalkognidkette augefasst werden können, die bestimmende Baueinheit. In ihnen nimmt das Tellur stets die zentrale Position ein. Dabei stellen die TeSx²⁻-Anionen in vieler Hinsicht interessante Polychalkogenid-Liganden dar. Sie sind wie diese mehrzähnige Liganden, die ein oder mehrere Schwefelatome zur Koordination anbieten können, zeigen im Gegensatz zu den Polychalkogeniden jedoch eine höhere thermische Stabilität. Thiotellurate sind aus schwefelreichen tellurhaltigen Schmelzen, aber auch aus wässriger Lösung unter solvothermalen Bedingungen zugänglich*. Die Verbindungsklasse der Thiotellurate ist im Gegensatz zu den gut untersuchten Thiopnictiden wenig untersucht. Unter den wenigen bekannten synthetischen Verbindungen wie z. B. BaTeS₃ [41], K_2 TeS₃ [42] oder des Typs AMTeS₃ (A = K, Rb, Cs; M= Cu, Ag) [43], enthalten alle die formale TeS_3^{2-} -Einheit, lediglich ein Beispiel eines radikalischen TeS_2^{-} -Polyanions neben einem TeS_2^{2} -Anion war bisher bekannt [44]. Bemerkenswert ist auch, dass die TeS_x-Einheiten in allen bekannten Verbindungen isoliert auftreten und bisher keine Verknüpfung über Ecken oder Kanten zu größeren Baugruppen gefunden wurde, wie es bei den Thioarseniden oder -antimoniden beobachtet wurde. In jüngerer Zeit erfahren die Thalliumchalkogenide als Halbleiter jedoch ein wachsenden Interesse als viel-versprechende Kandidaten für thermoelektrische Materialien.

Dagegen sind die Oxotellurate weitaus besser untersucht, da Tellurit-Gläser anwendungstechnisch interessante Eigenschaften aufweisen. Tellurit-Gläser haben eine gute

^{*}Es wurde berichtet, dass die TeS_3^{2-} -Einheit in wässrigem Medium nur unter Lichtausschluss stabil ist [43].

Durchlässigkeit im sichtbaren sowie im Infrarot-Bereich und zeigen außergewöhnlich hohe nichtlineare optische Brechungsindices n_2 . In TeO₂-Gläsern wurde bisher der größte n_2 -Wert in oxidischen Gläsern gefunden, der hundertmal größer als der von SiO₂-Gläsern ist [45,46].

3.1 Thalliumverbindungen als Kandidaten für TE-Materialien

Ein häufig begangener Weg, um zu neuen TE-Materialien zu gelangen, ist die Synthese von neuen Halbleitern mit kleinen Bandlücken (< 0,5 eV). Die "Güte" eines Thermoelektrikums wird durch die Figure of Merit $Z = \alpha^2/(\kappa \rho)$ beschrieben. Die Schwierigkeit besteht in der Tatsache, dass der Seebeck-Koeffizient (α), die thermische (κ) und elektrische Leitfähigkeit (ρ) miteinander korreliert sind. Je größer die Bandlücke und damit der Seebeck-Koeffizient α , desto größer der elektrische Widerstand ρ , welcher sich durch Dotierung (Erhöhung der Ladungsträgerdichte) verringern lässt. Die thermische Leitfähigkeit setzt sich aus zwei Anteilen zusammen: dem Anteil aus dem Elektronengas, κ_{el} , und dem Anteil der Gitterschwingungen (Phononen), κ_{ph} . In den meisten Halbleitern ist jedoch der von Phononen herrührende Anteil viel größer, weshalb sich für die Suche nach neuen Materialien die Elemente der 5. und 6. Periode eignen, welche mit tiefen Frequenzen schwingen.

Insgesamt lässt sich sagen, dass ein großes Z wahrscheinlich in Verbindungen erhalten wird, die möglichst die folgenden Eigenschaften aufweisen [6]: eine hohe Kristallsymmetrie, eine große Anzahl von Schweratomen in der Elementarzelle (kleines κ_{Ph}), "rattling"-Schwingungen (ein Bauelement schwingt in einem Käfig von anderen Elementen, führt zu einer geringeren Gitterwärmleitfähigkeit), geringe Elektronegativitätsdifferenzen zwischen den Elementen (hohe Mobilität der Ladungsträger), eine Ladungsträgerkonzentration in der Größenordnung von 10¹⁹/cm³, was meist durch Dotierung erreicht wird.

Ein Hauptgebiet der derzeitigen Forschung auf dem Gebiet der thermoelektrischen Materialien ist die Herstellung und die Charakterisierung von neuen Alkalimetall-Chalkogeniden. Diese Verbindungsklasse, weist eine große Strukturvielfalt auf [47]. Problematisch bei diesen halbleitenden Verbindungen ist jedoch der verhältnismäßig große elektrische Widerstand, bedingt durch die geringe Elektronegativität der Alkalimetalle und die daraus resultierende große Bandlücke. Zusätzlich wirkt sich die Streuung der Ladungsträger an den elektropositiven Atomrümpfen im Kristall nachteilig auf die Leitfähigkeit einer solchen Verbindung aus. Trotz dieser Aspekte sind auch einige Alkalimetall-Chalkogenide

mit vielversprechenden Eigenschaften synthetisiert worden, wie z. B. die Verbindung CsBi₄Te₆ [48].

Die große Ähnlichkeit des (kristall)chemischen Verhaltens des Thalliums zu den Alkalimetallen macht dessen Einsatz in thermoelektrischen Materialien reizvoll. Zum Einen erscheint das Ersetzen der Alkalimetalle durch Thallium im Hinblick auf das Erreichen eines großen Z plausibel. Andererseits wirkt sich die deutlich größere Elektronegativität des Pseudo-Alkalimetalls vorteilhaft aus, um eine deutlich größere Mobilität der Ladungsträger und damit eine größere Leitfähigkeit zu erreichen. Weiterhin ist der Einbau von Schweratomen, die kleine Schwingungsfrequenzen haben, eine gängige Methode, um Verbindungen mit einer geringen Gitterwärmeleitfähigkeit herzustellen [6]. Zum Anderen könnte man eine ebenso große Strukturvielfalt für die Thalliumchalkogenide erwarten wie dies für die Alkalimetalle der Fall ist. Hier ist auch der Einfluss des freien 6s²-Elektronenpaars zu berücksichtigen, welches stereochemisch aktiv sein kann und zu weiterer Strukturvielfalt führt. wichtiger technischer Aspekt ist die Tatsache, dass die Ein entsprechenden Thalliumverbindungen weitaus weniger hydrolyseempfindlich als ihre Alkalimetall-Analoga sind.

3.2 Präparation von Thalliumchalkogeniden

Thalliumchalkogenide lassen sich hauptsächlich auf drei verschiedenen Wegen synthetisieren:

1. Synthese aus gemischten Polychalkogenid-Schmelzen

Anorganische Schmelzen mit heteropolarem Charakter zeichnen sich durch ein gutes Lösungsvermögen für zahlreiche Substanzen aus. Das Schmelzen von Thalliumchalkogeniden zusammen mit einem weiteren Chalkogen oder die Schmelzen aus den entsprechenden Elementen führt zur Bildung von Polychalkogenidschmelzen nach Rgl. (1) und (2), die als Flussmittel für die Reaktion dienen, wobei das Flussmittel selbst an der Reaktion teilnehmen kann. Die Polychalkogenidschmelzen können auch durch das Zusammenschmelzen des elementaren Metalls mit den Chalkogenen erhalten werden [43].

$$Tl_2Te + n S \longrightarrow Tl_2S_nTe$$
 (1)

$$x Tl + Te + n S \longrightarrow Tl_x S_n Te$$
 (2)

In den S/Te-Schmelzen wird meist das TeS_3^{2-} -Anion gebildet, was bedeutet, dass eine gemischte S/Te-Polychalkogenidkette weniger begünstigt wird, was auf das unterschiedliche Redoxpotential beider Elemente zurückgeführt wird. Dies ist in Schema (1) veranschaulicht:

Schema 1. Redox-Reaktion zwischen Te und S in einer gemischten Polychalkogenid-Schmelze [43].

2. Hydrothermalsynthese ausgehend von sulfidhaltigen Lösungen

Polysulfide lösen sich gut im wässrigen Medium. Um die Reaktionsgeschwindigkeit weiter zu erhöhen, wird das entsprechende Metallsulfid bei Anwesenheit von Chalkogenen oder Chalkogeniden, (s. Rgl. 3), mit Wasser in einem Autoklaven oder in einer Glasampulle über den Siedepunkt erhitzt [49]. Je nach Lage im p-T-Diagramm kann das Lösungsmittel "überhitzt", in einem "nahkritischen" oder "überkritischen" Bereich sein. Diffusionsprozesse der in Lösung befindlichen Spezies werden durch die stark verringerte Viskosität des Lösungsmittels deutlich beschleunigt. Erfahrungsgemäß ist ein Minimum der Löslichkeit von etwa 2 bis 5 % notwendig.

$$Tl_2S + As_2S_3 \xrightarrow{L\"osungsmittel} 2 TlAsS_2$$
 (3)

3. Solvothermalsynthese mittels Mineralisatoren

Durch die Verwendung eines Mineralisators kann die Löslichkeit der Ausgangsverbindungen, z. B. in Form von Alkalicarbonaten weiter erhöht werden, s. Rgl. (4) [38]. Häufig eingesetzte Mineralisatoren sind anorganische Ionen wie OH⁻, Cl, S_x^{2-} , etc.

$$3 A_2 CO_3 + 2 (n+1) E \xrightarrow{\text{Lösungsmittel}} 2 E_n^{2-} + E_2 O_3^{2-} + 3 CO_2 + 6A^+$$
(4)

Dies ist besonders von Vorteil, wenn Lösungsmittel verwendet werden, die eine geringere Polarität als Wasser, wie z. B. Alkohole, aufweisen und damit ein schwächeres Lösungsvermögen von anorganischen Salzen besitzen.

3.2.1 Apparative Methoden

Da Thallium an der Luft schnell unter Bildung von Tl_2O_3 anläuft, werden die Präparationsschritte, wie das Einwiegen und Befüllen der Ampullen mit Thallium in einem mit Argon gefüllten Handschuhkasten durchgeführt. Um den luftempfindliche Reaktionsansatz auch außerhalb der Argon-Box handhaben zu können, wird eine Vakuum-Schutzgasapparatur benutzt, die wechselweise das Evakuieren und Fluten mit dem Schutzgas Argon erlaubt, welches aus der handelsüblichen Stahlflasche zunächst über ein Reinigungssystem geleitet wird. Die Apparatur dient auch zum Abschmelzen von evakuierten Ampullen. Das Vakuum (p~10⁻³ mbar) wird durch eine Drehschieberpumpe erzeugt.

Die Synthese der in diesem Teil der Arbeit untersuchten Verbindungen erfolgt einerseits durch die Umsetzung der elementaren Edukte in Quarzglasampullen. Diese werden unter dynamischem Vakuum abgeschmolzen und einem Temperaturprogramm unterworfen. Dabei werden überwiegend pulverförmige Produkte erhalten.

Andererseits werden die Thiotellurate auch durch solvothermale Reaktion herstellgestellt, wobei meist Kristalle der Verbindung erhalten werden konnten. In dieser Arbeit wurde für die Solvothermalsynthesen stets Thallium(I)carbonat als Ausgangsverbindung verwendet, die als Nebenprodukte anfallenden Sulfate können mit Wasser aus dem Produktgemisch ausgewaschen werden.
3.3 Thallium(I)oxotellurat(IV) β-TI₂TeO₃

3.3.1 Herstellung

Die Verbindung entstand bei der Umsetzung von Tl₂CO₃ mit Te in absolutiertem Methanol zunächst als Nebenprodukt in geringer Menge. Ein röngtenographisch phasenreines Produkt lässt sich aus Thallium(I)carbonat und Tellurdioxid im Verhältnis 1:1 herstellen. Die Verwendung von absolutiertem Lösungsmittel ist wichtig, da sonst Tl₂Te₂O₅ gebildet wird, in welchem kondensierte TeO₃-Einheiten vorliegen.

130,0 mg (2,77 \cdot 10⁻⁴ mol) Thallium(I)carbonat und 44,3 mg (2,77 \cdot 10⁻⁴ mol) TeO₂ werden in einer Duranglasampulle mit 0,5 ml absolutiertem Methanol versetzt. Die Ampulle wird mehrmals unter Kühlung mit flüssigem Stickstoff evakuiert und mit Argon gespült und schließlich unter Vakuum zugeschmolzen. Die Ampulle wird mit 10 °C/h auf 60 °C und anschließend mit 2 °C/h auf 160 °C aufgeheizt. Nach 96 Stunden wird mit 1 °C/h auf Raumtemperatur abgekühlt. Man erhält bräunliche, teils knollige Kristallaggregate von β-Tl₂TeO₃.

3.3.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

Verbindung	β-Thallium(I)tellurat(IV)
Summenformel	Tl ₂ TeO ₃
Kristallsystem	monoklin
Raumgruppe	$P 2_1/c$ (Nr. 14)
Gitterkonstanten (IPDS) a /pm	897,5(2)
<i>b</i> /pm	485,34(6)
<i>c /</i> pm	1188,4(2)
eta /°	109,67(2)
Gitterkonstanten (Pulver) a /pm	896,0(8)
<i>b</i> /pm	486,8(9)
c /pm	1188(1)
β^{\prime}	109,54(9)
Indizierte Linien	12
Zellvolumen /Å ⁻³	487,5
Ζ	4
<i>F</i> (000)	952
$M/(\text{g mol}^{-1})$	584,43
berechnete Dichte $/(g \text{ cm}^{-1})$	7,962
Kristallabmessungen /mm	0,2 x 0,1 x 0,7
Temperatur /K	298
Absorptionskoeffizient μ (MoK α)/cm ⁻¹	717,6
Extinktionskoeffizient	0,00398

Tabelle 38. Kristallographische	Angaben zur Einkristallstrukturanaly	vse von	B-Thalliumtellurat(IV)).
		J ~ ~ · ~	/	<u>ر ج</u>

Tabelle 38. (Forts.) Kristallographische Angaben zur I	Einkristallstrukturanalyse von β -Thalliumtellurat(IV).
Wichtung <i>a</i> / <i>b</i>	0,069500/0,000000
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,0409 / 0,2852
Scan-Methode	ω-Scan
2θ -Messbereich /°	4,8 bis 56,3
(<i>hkl</i>)-Messbereich	(-11,-6,-15) bis (11,6,15)
Reflexe gemessen	4363
unabhängig	1178
beobachtet $[I \ge 2\sigma(I)]$	817
$R_{ m int}$	0,0788
Anzahl Parameter	56
R_1	0,0410
R_1 (alle Daten)	0,0594
wR_2	0,1072
wR_2 (alle Daten)	0,1146
S	0,962
Restelektronendichte /(eÅ ⁻³) max./min.	3,92/-4,75

aballa 29 (Ear ta) Kristellaarankische Angeben zur Einkristelletruktureneluse von R Thelliumtellur (11 7)

Tabelle 39. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /pm² für β -Tl₂TeO₃.

Atom	Wyckhofflage	Besetzung	x/a	y/b	z/c	$U_{ m eq}$
T11	8a	1	0,50524(6)	0,2351(2)	0,88413(6)	0,0216(2)
T12	32e	1	0,1894(1)	0,7322(2)	0,81325(6)	0,0223(2)
Te1	96g	1	0,1674(1)	0,2503(2)	0,57483(9)	0,0155(3)
01	96g	1	0,0941(1)	0,198(2)	0,7034(1)	0,029(3)
O2	96g	1	0,3859(1)	0,199(2)	0,6600(1)	0,026(2)
03	96g	1	0,1698(1)	0,635(2)	0,5744(1)	0,032(3)

Tabelle 40. Koeffizienten der anisotropen Auslenkungsparameter U_{ii} /(10⁻⁴ pm²) von β -Tl₂TeO₃.

Atom	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	<i>U</i> ₁₂
Tl1	0,0220(4)	0,0225(4)	0,0213(4)	0,010(2)	0,0087(3)	-0,0007(2)
T12	0,0175(3)	0,0234(4)	0,0248(4)	0,0001(2)	0,0058(3)	0,0010(2)
Tel	0,0157(4)	0,0131(5)	0,0176(6)	-0,0005(4)	0,0055(4)	0,0006(3)
01	0,028(6)	0,038(7)	0,023(6)	0,008(5)	0,012(5)	0,000(5)
02	0,010(4)	0,033(6)	0,037(7)	0,004(3)	0,010(5)	0,003(4)
03	0,037(7)	0,018(6)	0,040(8)	0,003(5)	0,013(6)	-0,004(5)

3.3.3 Kristallstruktur

 β -Tl₂TeO₃ kristallisiert monoklin in der Raumgruppe $P2_1/c$ (Nr. 14). Die Kristallstruktur lässt sich formal durch Tl⁺-Kationen und isolierte TeO₃²⁻-Anionen beschreiben (s. Abb. 35). Die TeO₃²⁻-Anionen können als trigonale Pyramiden mit Tellur an der Spitze aufgefasst werden. Mit fast identischen Te-O-Bindungslängen und mit O-Te-O-Winkeln von 97,0(5)° bis 98,3(5)° hat das komplexe Anion annähernd C_{3v}-Symmetrie.

Die zwei kristallographisch unterschiedlichen Tl-Atome haben jeweils 4 O-Atome mit Abständen von 248,94(5) bis 289,78(3) pm als nächste Nachbarn, mit welchen sie TlO₄-Baueinheiten bilden. Die TeO3²⁻-Anionen können dabei mit einem oder mit zwei Sauerstoffatomen (chelatisierend) an ein Thalliumzentrum koordinieren (s. Abb. 36 rechts). Die so entstehenden verzerrten quadratischen Pyramiden mit Tl an der Spitze sind mit den TeO3- Einheiten über gemeinsame Ecken und Kanten zu gewellten schichtartigen Anordnungen von Tl₂TeO₃ parallel [110] verknüpft (s. Abb. 36 links). Bei einem Van-der-Waals-Abstand von 290 pm für die Tl-O-Bindung [23] kann man für die Tl(2)-Atome eine [4+1]-Koordination annehmen, da es im Abstand von 323,26(6) ein weiteres O-Atom koordiniert, welches der kürzeste Abstand zwischen Tl und O Atomen aus verschiedenen Schichten ist. Somit werden die beschriebenen Schichten entlang [001] zu einem dreidimensionalen Netzwerk verknüpft. In den Raum zwischen den Schichten ragen vermutlich die freien Elektronenpaare der Tellur- und Thalliumatome. Die kürzesten Thallium-Thallium-Abstände innerhalb einer gewellten Schicht betragen 359,96(6) und 362,32(5) pm, zwischen zwei Atomen aus benachbarten Schichten 360,49(6) und 372,2(1) pm.

Die Sauerstoffatome sind jeweils von 3 Thalliumkationen umgeben, im Fall von O3 handelt es sich um eine [2+1]-Koordination (s. Abb. 45 in Abschnitt 3.3.6.2).

Abbildung 35. Projektion der Kristallstruktur von β -Tl₂TeO₃ entlang [010].

Abbildung 36. links: Aufsicht auf die ecken- und kantenverknüpften TeO₃- und der TlO₄-Baueinheiten zu Schichten parallel [110] in β -Tl₂TeO₃; rechts: Tl-Koordination durch die Sauerstoffatome der TeO₃-Einheiten.

3.3.4 Pulverdiffraktometrie

Die Phasenreinheit sowie die Richtigkeit der Einkristallstrukturanalyse kann pulverdiffraktometrisch bestätigt werden (s. Abb. 37).

Abbildung. 37. Vergleich des gemessenen (schwarz) und theoretisch berechneten (rot) Pulverdiffraktogramms (MoK α_1) von β -Tl₂TeO₃.

3.3.5 Infrarot-/Ramanspektroskopie

 β -Tl₂TeO₃ zeigt ein ähnliches Raman-Spektrum wie α -Tl₂TeO₃ [50]. In Tab. 42 sind die Schwingungsbanden der Raman-Spektren für beide Modifikationen gegenübergestellt.

Abbildung 38. Raman- (unten) und MIR-Spektrum (oben) von β-Tl₂TeO₃.

Abbildung 39. Raman- (unten) und FIR-Spektrum (oben) von β-Tl₂TeO₃.

Wellenzahl /cm ⁻¹ *	Intensität	Zuordnung
704	W	<i>v</i> _s (Te-O)
652	m, br	v _{as} (Te-O)
623	m, br	v _{as} (Te-O)

Tabelle 41. Zuordnung der Schwingungsbanden im MIR-Spektrum von β -Tl₂TeO₃.

* Die schwachen Banden im Bereich von 833 bis 753 cm⁻¹ stammen wahrscheinlich von geringen Mengen Carbonat in der Probe.

Tabelle 42. Zuordung der Schwingungsbanden im Raman-Spektrum von β -Tl₂TeO₃ analog α -Tl₂TeO₃ nach [50].

β -Tl ₂	ГеО ₃	α-Tl₂TeO ₃				
Wellenzahl /cm ⁻¹	Intensität	Wellenzahl /cm ⁻¹	Intensität	Zuordnung		
708	s	724	s	v _s (Te-O), aufgespaltene	ν (Te-O), A _g	
		705	m	A ₁ -Mode	v (Te-O), B_{1g} , B_{2g} , B_{3g}	
646	m	677	vw	v_{as} (Te-O), aufgespaltene E-Mode		
624	vw	650	W			
		635	m			
346	W	300-370	br, w	δ (O-Te-O)	δ (O-Te-O), A _g	
307	sh	-				
296	m	292	m			
173	sh	189	W		Tl-O	
150	m, br	150	w, br	-		
117	m	100	sh			
93	m	92	m, br			
66	W					

Tabelle 43. Zuordnung der Schwingungsbanden im FIR-Spektrum von β-Tl₂TeO₃.

Wellenzahl /cm ⁻¹	Intensität	Zuordnung
343	m, sh	δ (O-Te-O)
308	m	δ (O-Te-O)
286	m	δ (O-Te-O)
203	m	Tl-O
185	m	Tl-O
163	m	Tl-O
111-74	m, br	Tl-O
56	m	Tl-Te
46	m	Tl-Te

Die pyramidale TeO₃²⁻-Einheit hat annähernd C_{3v}-Symmetrie. Die Abweichungen von der idealen pyramidalen Gestalt nur gering, so dass die Streck- und Deformationsschwingungen des Anions durch die A₁ + E Schwingungsmoden eines pyramidalen Moleküls. Im Raman-Spektrum liegen die A- und die E-Moden bei 708 cm⁻¹ and 624 cm⁻¹, wobei sich letztere Schwingung nur als eine schwache Schulter bemerkbar macht. Dagegen sind im MIR-Spektrum in diesem Bereich 3 Banden deutlich aufgelöst. Aus gittterdynamischen Rechnungen [50] resultieren die folgenden Symmetrieeigenschaften für das Raman-Spektrum von α -Tl₂TeO₃: 18 A_g + 18 B_{1g} + 18 B_{2g} + 18 B_{3g} + 18 A_u + 17 B_{1u} + 17 B_{2u} + 17 B_{3u}. Das Raman-Spektrum von β -Tl₂TeO₃ sieht ähnlich aus, jedoch lassen sich nicht alle Banden entsprechend der α -Modifikation zuordnen. Als Unterschiede sind zu erwähnen:

1) Die intensivste sowie hochfrequenteste Bande bei 724 cm⁻¹, die man der symmetrischen Streckschwingung der TeO₃-Einheit zuordnen kann, findet man in der β -Modifikation bei einer etwas tieferen Wellenzahl von 708 cm⁻¹, wobei die Bande keine Aufspaltung zeigt wie im α -Tl₂TeO₃. Dies spiegelt sich in der geringeren Abweichung der TeO₃²⁻-Einheit von der C_{3v}-Symmetrie in der β -Modifikation im Vergleich zur α -Form wider. Dazu kommt, dass die Sauerstoffatome in der β -Modifikation jeweils von drei Thalliumkationen umgeben sind, während im α -Tl₂TeO₃ die Koordinationszahl 4 (O1 und O2) und 2 (O3) ist (s. Abb. 45 in Abschnitt 3.3.6.2).

2) Die Raman-Banden bei 346 cm⁻¹ und 296 cm⁻¹ (343 cm⁻¹, 308 cm⁻¹ und 286 cm⁻¹ im FIR-Spektrum) stammen von Te-O-Deformationsschwingungen der TeO₃-Pyramiden. Im Bereich von 200 bis 120 cm⁻¹ liegen die Tl-O-Schwingungen. Ein deutlicher Unterschied zum Raman-Spektrum des α -Tl₂TeO₃ ist, dass unterhalb von 200 cm⁻¹ der Bereich, in den die Tl-O-Banden fallen, verbreitert ist. Tatsächlich variieren die Tl-O-Abstände im thermodynamisch stabilen α -Tl₂TeO₃ im Bereich von 250,8(8) bis 306(1)1 pm, wohingegen sie im β -Tl₂TeO₃ in einem weiteren Bereich von 248,94(5) und 323,26(6) liegen. Die Schwingungen unterhalb von 100 cm⁻¹ sind den Tl-Te-Schwingungen oder interpyramidalen O-O-Schwingungen zuzuordnen.

3.3.6 Phasenübergang von monoklinem β -Tl₂TeO₃ in orthorhombisches α -Tl₂TeO₃

Die monokline Modifikation ist bei Raumtemperatur metastabil, bei 430 ± 10 °C wird am Einkristall eine Phasenumwandlung in die höhersymmetrische orthorhombische α -Form beobachtet.

3.3.6.1 Kristallstruktur von α -TI₂TeO₃ [50]

 α -Tl₂TeO₃ kristallisiert orthorhombisch in der Raumgruppe *Pban* (Nr. 50) mit *a* = 16,60(1) Å, *b* = 11,078(6) Å, *c* = 5,238(8) Å, *Z* = 8 und einer berechneten Dichte δ (ber.) = 8,059 g/cm³, wie in Abb. 40 gezeigt. In der Verbindung sind TlO_x-Polyeder und TeO₃²⁻-Einheiten wie im β -Tl₂TeO₃ über Ecken und Kanten zu gewellten Schichten verknüpft. Die Thallium-Kationen liegen hier sowohl dreifach als auch vierfach koordiniert als Tl(1)O₄- bzw. als Tl(2)O₃-Einheiten vor (s. Abb. 41). Die TeO₃-Pyramiden unterscheiden sich in ihren interatomaren Abständen und Winkeln nur geringfügig von denen im β -Tl₂TeO₃. Die Geometrie der TlO₃/TlO₄-Einheiten zeigt jedoch einige deutliche Unterschiede. Ähnlich wie im β -Tl₂TeO₃ sind die TlO₄- und TlO₃-Einheiten sind über gemeinsame Ecken und Kanten mit den TeO₃-Einheiten zu Tl₂TeO₃-Schichten verknüpft. Die Sauerstofflagen haben in der α -Modifikation unterschiedliche Koordinationszahlen bezogen auf Tl. O1 und O2 sind von 4 Tl-Atomen verzerrt quadratisch-planar umgeben. Dem O1-Atom lässt sich eine [3+1]-Koordination und O2 eine [2+2]-Koordination zuschreiben. O3 hat eine Koordinationszahl bezüglich Tl von 2.

Abbildung. 40. Kristallstruktur von α -Tl₂TeO₃ entlang [001].

Abbildung 41. Links: Kristallstruktur von α-Tl₂TeO₃ entlang [010] mit Blick auf die gewellten Schichten; rechts: Tl-Koordination mit Tl-O-Abständen in pm.

3.3.6.2 Phasenumwandlung

Es handelt sich um einen monotropen Phasenübergang, da die α -Form beim Abkühlen bestehen bleibt. Am Pulver konnte mittels DSC kein Phasenübergang detektiert werden, da die Substanz auch bei geringen Heizraten schon bei ca. 380 °C schmilzt und anschließend in der orthorhombischen Modifikation auskristallisiert. Möglicherweise liegt die Ursache in der mechanischen Vorbehandlung beim Zerteilen und Verreiben der Kristallzusammenschlüsse, wie es für Trydimit beschrieben wurde [51], oder es liegt eine geringe Verunreinigung mit Edukten vor, die im Pulverdiffraktogramm nicht nachzuweisen sind. Die Entwicklung der Gitterkonstanten *a*, *b* und *c* und des molaren Volumens V/Z mit der Temperatur ist in Abb. 44 dargestellt. Das molare Volumen lässt sich durch zwei Geraden anpassen, allerdings wurde am Knickpunkt keine Phasenumwandlung beobachtet. Die Unstetigkeit bei 430 °C zeigt deutlich eine Phasenumwandlung an. Die Entwicklung der anisotropen Temperaturfaktoren ist in Abb. 47 dargestellt. Die orthorhombische Modifikation von Tl₂TeO₃ in einkristalliner Form schmilzt oberhalb von 510 °C.

Temperatur /°C	<i>a</i> /pm	b /pm	c /pm	β /°	V/A^3	$(V/Z)/A^3$
25	897,5(2)	485,34(6)	11,885(2)	109,68(2)	487,5(2)	121,9
75	898,1(2)	485,72(6)	1189,5(3)	109,68(2)	488,6(2)	122,2
150	898,4(2)	486,22(6)	1191,5(2)	109,58(2)	490,4(1)	122,6
225	899,5(9)	487,09(6)	1193,1(3)	109,56(2)	492,6(1)	123,2
300	901,0(3)	488,41(7)	1196,1(3)	109,73(3)	495,5(2)	123,9
350	901,8(2)	489,35(6)	1197,1(3)	109,62(3)	497,06(2)	124,4
375	902,2(2)	489,76(6)	1198,0(3)	109,58(3)	498,7(2)	124,7
400	902,5(2)	490,09(7)	1198,97(0)	109,55(3)	499,7(1)	124,9
410	903,1(2)	490,42(7)	1199,0(3)	109,62(3)	500,2(2)	125,1
420	902,4(5)	490,2(1)	1201,1(5)	109,44(5)	501,0(9)	125,3
430	903,1(3)	490,7(1)	1201,0(5)	109,68(5)	501,1(3)	125,3
440	528,8(1)	1124,4(3)	1679,5(2)	90	998,55(4)	124,8
450	528,9(1)	1125,5(3)	1677,8(3)	90	998,7(3)	124,8
25	524,17(8)	1109,4(2)	1664,6(2)	90	968,0(3)	121,0

Tabelle 44. Entwicklung der Gitterkonstanten, des Volumens V und des Verhältnisses V/Z mit der Temperatur beim Phasenübergang von β -Tl₂TeO₃ in α -Tl₂TeO₃ aus der Einkristallstrukturanalyse.

Abbildung 42. Entwicklung der Gitterparameter in β -Tl₂TeO₃ und des molaren Volumens mit der Temperatur.

Die interatomaren Abstände und Winkel innerhalb der TeO₃-Einheiten bleiben während des Phasenübergangs praktisch erhalten (s. Tab. 45). Die Umwandlung kann formal durch eine relative Bewegung der Ebenen ($-^{1}/_{4}$ 0 1), ($-^{1}/_{3}$ 0 $^{4}/_{3}$), ($-^{1}/_{2}$ 0 2) und (-1 0 4) in der monoklinen Elementarzelle beschrieben werden. In Abb. 43 sind beispielhaft zwei dieser Ebenen eingezeichnet. Die gegenseitige Bewegung der Ebenen kann dabei auf zwei Arten erfolgen, einmal durch gegenseitige horizontale Verschiebung der Ebenen (schwarze Pfeile in Abb. 44) oder andererseits durch gegenseitiges Durchdringen von zwei übereinanderliegenden Schichten, (z.B. die Ebenen 2 und 3), wie die blauen Pfeile in Abb. 44 zeigen, während die anderen beiden relativ zu ihnen in Ruhe bleiben, so dass die in der schematischen Abb. 44 rechts dargestellte Anordnung erreicht wird. Die Anordnung der in *c*-Richtung aufgereihten TeO₃²⁻-Einheiten in der α -Modifikation, so dass die Spitzen der Tellurateinheiten von vier benachbarten TeO₃²⁻-Reihen entlang [001] auf die gemeinsame Achse der Reihen ausgerichtet sind, kann durch eine gegenseitige räumliche Umorientierung der Tellurat-Einheiten durch Rotation erfolgen.

Abbildung 43. Phasenübergang von β -Tl₂TeO₃ (links) in α -Tl₂TeO₃ (rechts).

Abbildung 44. Schematische Anordnung der Tl- (hellblau) und Te-Atome (grau) in β -Tl₂TeO₃ (oben) in α - Tl₂TeO₃ (unten) entlang der *b*- bzw. *c*-Achse.

Deutliche Veränderungen sind in der Tl-Koordinationssphäre zu beobachten. In der monoklinen β -Modifikation sind die Tl-Kationen von jeweils 4 Sauerstoffatomen im Abstand von 252,09(7) bis 289,78(3) pm (durchschnittl. 270,3 pm). Im Fall der Tl(2)-Atome kann man eine [4+1]-Koordination annehmen, da es von vier Sauerstoff-Atomen mit Abständen von 248,94(5) pm bis 289,78(3) pm (durchschnittl. 270,4 pm) und einem Sauerstoffatom im Abstand von 322,6(6) pm umgeben ist. Die Umwandlung in die orthorhombische α -Modifikation findet unter Erhöhung der Koordinationszahl am Thallium bei gleichzeitiger Vergrößerung der Tl-O-Abstände statt. Für die Thalliumatome ergeben sich dann, unter Berücksichtigung des Van-der-Waals-Abstandes von 290 pm, $Tl(1)O_4$ - sowie $Tl(2)O_3$ -Einheiten. Die durchschnittlichen Tl-O-Abstände liegen bei 267,0 bzw. bei 270,1 pm. Bezieht man die drei nächsten Nachbarn in Abständen von 306,1, 317,6 und 324,8 pm ein, ergibt sich für Tl(2) in der orthorhombischen Modifikation eine [3+3]-Koordination mit einem durchschnittlichen Tl-O-Abstand von 290,9 pm (s. Abb. 45).

Bei der Umwandlung von der monoklinen Tieftemperaturmodifikation erfährt die erste Koordinationssphäre der Tl-Kationen eine deutliche Änderung. Beim Übergang von einer 4und einer [4+1]-Koordination in eine 4- und eine [3+3]-Koordination müssen Bindungen getrennt und an anderer Stelle neu gebildet werden. Für einen derartigen Übergang ist mit einer großen Aktivierungsenergie zu rechnen, was sich in der verhältnismäßig hohen Umwandlungstemperatur, welche bei ca. 85 % der Schmelztemperatur liegt, bestätigt. Dass es sich um eine irreversible Phasenumwandlung handelt, bei der die Symmetrie nicht erhalten bleibt, zeigt auch die Tatsache, dass die Raumgruppen *Pban* (Nr. 50) und $P2_1/n$ (Nr.14) in keiner direkten Gruppe-Untergruppe-Beziehung miteinander stehen.

Die Koordination der Sauerstoffatome durch Thallium ändert sich beim Übergang von der monoklinen in die orthorhombische Form von 3 auf 4 (für O1 und O2) und 2 (für O3), wie in Abb. 45 gezeigt.

Abbildung 45. Sauerstoffkoordination in monoklinem β -Tl₂TeO₃ (links) und orthorhombischen α -(rechts).

β-Tl ₂ TeO ₃		α-Tl ₂ TeO ₃ [50]	
Tel Ol	187,61(4)	Tel O2	186,8(8)
Tel O2	189,62(5)	Tel O3	187,1(1)
Tel O3	186,58(2)	Tel Ol	187,7(9)
Tl1 O2	252,09(7)	Tl1 O1	250,8(8)
Tl1 O2	257,64(3)	Tl1 O1	264(1)
Tl1 O3 (chelat.)	282,39(6)	Tl1 O3	266(1)
Tl1 O2 (chelat.)	289,00(3)	T1101	287(1)
Tl2 O1	248,94(5)	Tl2 O2	254,8(9)
Tl2 O1	260,57(3)	T12 O3	274,6(8)
Tl2 O3 (chelat.)	282,39(6)	Tl2 O3	281(1)
Tl2 O1 (chelat.)	289,78(3)	Tl2 O3	306(1)
Tl2 O3	323,26(6)	Tl2 O3	308,2(9)
T11 T12	359,96(6)	T12 O3	320,3(8)
Tl1 Tl1 (zwischen Schichten)	360,49(6)	T11 T12	373,4(2)
T11 T12	362,32(5)	T11 T11	375,9(2)
Tl2 Tl1 (zwischen Schichten)	372,2(1)	T12 T12	358,2(2)
O3 Te1 O1	98,3(5)	Tl2 Tl2 (zwischen Schichten)	371,1(2)
O3 Te1 O2	97,0(5)	O2 Te O3	98,2(4)
O1 Te1 O2	97,5(5)	O2 Te O1	98,0(5)
O2 Tl1 O2	84,4(3)	O3 Te O1	96,3(5)
O1 Tl2 O1	82,1(3)	O1 Tl1 O1	74,3(4
O2 Tl2 O3	80,3(3)	O1 Tl1 O3	77,9(3

Tabelle 45. Ausgewählte Atomabstände /pm und -winkel /° in α - und β -Tl₂TeO₃.

* Summe des Tl-O-Van-der Waals-Radius: 290 pm [23]

Die Sauerstoffatome der TeO₃-Einheiten zeigen im Laufe der Temperaturerhöhung stark anisotrope Auslenkungsparameter (s. Abb. 47). Die Elektronendichte von O3 verteilt sich parallel zur (101)-Ebene, wobei sie in [100]-Richtung gestreckt ist. Die Elektronendichte am O1 ist in [010]-Richtung gestreckt. Das Auslenkungsellipsoid an O2 zeigt erst ab 200 °C zunehmend eine Streckung entlang [010]. Die Sauerstoffatome sind jeweils von drei Thalliumatomen umgeben. O1 und O2 haben dabei annähernd eine trigonal planare Umgebung, während O3 T-förmig von Tl-Atomen koordiniert ist (s. Abb. 46). Das Ellipsoid zeigt entsprechend die größte Auslenkung in die koordinativ ungesättigte Richtung. Ein Verkippen oder eine gegensinnige Rotation dieser Einheiten ist jedoch nicht eindeutig aus der Form und Lage der Ellipsoide zu erkennen. Die anisotropen Temperaturfaktoren bei 430 °C kurz vor dem Phasenübergang müssen mit Vorsicht betrachtet werden, da bei der Verfeinerung keine optimalen Gütefaktoren erreicht werden konnten. Die Thalliumatome zeigen bei einer Betrachtung von graphisch dargestellten Ellipsoiden eine anisotrope Elektronendichteverteilung. Diese verteilt sich für die Tl(1)-Atome mit zunehmender Temperatur in den beschriebenen Ebenen 1-4. Die Atome auf der Tl(2)-Lage hingegen, die leicht oberhalb und unterhalb der Ebenen sitzen, haben senkrecht dazu in Richtung [010] ausgedehnte Auslenkungsellipsoide.

Abbildung 46. Auslenkungsellipsoide der Sauerstoffatome und Sauerstoffkoordination in den TeO₃-Einheiten in β -Tl₂TeO₃. Die Ellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 50 %.

Abbildung 47. Entwicklung der anisotropen Auslenkungsparameter U_{11} , U_{22} und U_{33} mit der Temperatur in β -Tl₂TeO₃ von links oben nach rechts unten: Tl(1), Tl(2), Te, O(1), O(2), O(3).

3.4 Thallium(I)thiotellurat(IV) Tl₂TeS₃

3.4.1. Herstellung

0,300 g (1,47^{10^{-3}} mol) Thallium, 0,094 g (7,37 10⁻⁴ mol) Tellur und 0,701 g (2,19^{10^{-3}} mol) gelber Schwefel wurden in einer Quarzglasampulle mit 10 K/h auf 220 °C erhitzt und mit 2 °C/h auf Raumtemperatur abgekühlt. Als Produkt wurde ein graues Pulver von Tl₂TeS₃ erhalten, welches fein zerrieben einen braunvioletten Farbton hat.

Einkristalle der Verbindung wurden durch Reaktion von 0,050 g $(1,07\cdot10^{-4} \text{ mol})$ Tl₂CO₃, 0,200 g $(2,53\cdot10^{-4} \text{ mol})$ Tl₂Te₃ und 0,106 g $(33,1\cdot10^{-4} \text{ mol})$ Schwefel mit 0,4 ml Methanol versetzt in einer Duranglasampulle erhalten. Die Ampulle wird mehrmals unter Kühlung mit flüssigem Stickstoff evakuiert, mit Argon gespült und schließlich unter Vakuum zugeschmolzen. Die Ampulle wird mit 10 °C/h auf 60 °C, dann mit 1 °C/h auf 160 °C aufgeheizt und bei dieser Temperatur für 4 Tage belassen. Nach Abkühlen auf Raumtemperatur wurden rechteckige metallische, rötlich durchscheinende Kristalle von Tl₂TeS₃ erhalten. Als Nebenprodukt wird Tl₂S₂O₃, erhalten,welches sich mit 60 °C warmen Wasser aus dem Reaktionsprodukt auswaschen lässt, sowie gelbe Kristalle von überschüssigem Schwefel.

Abbildung 48. Rechteckige Tl₂TeS₃-Kristalle aus der solvothermalen Synthese mit den Nebenprodukten bzw. Edukten Tl₂S₂O₃ und gelbem Schwefel.

Tabelle 46. Kristallographi	sche Angaben zur Ei	nkristallstrukturanalyse von Thallium(I)thiotellurat(IV).			
Verbindung		Thallium(I)thiotellurat(IV)			
Summenformel		Tl_2TeS_3			
Kristallsystem		orthorhombisch			
Raumgruppe		<i>Pnma</i> (Nr. 62)			
Gitterkonstanten (IPDS)	<i>a</i> /pm	815,08(9)			
	<i>b</i> /pm	1349,8(2)			
	c /pm	597,8(2)			
	lpha /°	90			
	$\beta/^{\circ}$	90			
	$\gamma/^{\circ}$	90			
Gitterkonstanten (Pulver)	a /pm	816.0(4)			
	b /pm	13.477(7)			
	c /pm	5.974(3)			
	$\alpha / ^{\circ}$	90			
	$\beta / ^{\circ}$	90			
	γ/°	90			
Zellvolumen /Å ⁻³	71	657 7(2)			
7		Δ			
$E_{E(0,0,0)}$		1048			
$M/(a \text{ mol}^{-1})$		632 56			
berechnete Dichte /(g.cm	-1)	6 389			
Kristallahmessungen /mm)	0.307			
Temperatur /K	L	208			
Absorptionskoeffizient u	$(M_{O}K_{C})/cm^{-1}$	541.0			
Extinktionskoeffizient	(MORCe)/CIII	0.00878			
Wichtung <i>a</i> /b		0,00878			
Absorptionskorrektur		numerisch			
Min /Max Transmission		0.0169/0.0852			
Scan-Methode		0,0109/0,0052			
20 Magabaraiah /9		2.5 his 28			
(hk) Magharaiah		2,5 DIS 28			
(<i>nki</i>)-Wessbereich		-1 < n < 1			
		-10 < k < 10 17 < l < 17			
Defleve comescen		-1/ < l < 1/			
kellexe gellessen		/ 555 921			
unabhangig		631			
Deobachtet [1>20	(I)	012			
K_{int}		0,1296			
Anzani Parameter		32			
R_1		0,0400			
π_1 (alle Daten)		0,0025			
WR_2		0,0925			
$w\kappa_2$ (alle Daten)		0,074			
Destal al transmittal to 16	-3)	0,902			
Kestelektronendichte /(eA) max./min.	2,83/-2,38			

3.4.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

Atom	Wyckhofflage	Besetzung	x/a	<i>y</i> /b	z/c	$U_{ m eq}$
T11	8d	1	0,32068(8)	0,07958(5)	0,8148(1)	0,0297(2)
Te1	4c	1	0,1091(2)	0,2500	0,2573(2)	0,0181(3)
S 1	8d	1	-0,0542(5)	0,1099(3)	0,1676(7)	0,0248(8)
S2	4c	1	0,0732(6)	0,2500	0,6521(9)	0,025(1)

Tabelle 47. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /pm² für Tl₂TeS₃.

Tabelle 48. Koeffizienten der anisotropen Auslenkungsparameter U_{ij} /(10⁻⁴ pm²) von Tl₂TeS₃.

Atom	<i>U</i> ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
T11	0,0294(3)	0,0276(3)	0,0320(3)	-0,0009(3)	0,0002(3)	-0,0016(3)
Te1	0,0156(6)	0,0179(6)	0,0210(6)	0,000	0,0012(5)	0,000
S 1	0,023(2)	0,018(2)	0,02(2)	-0,003(2)	-0,004(2)	-0,004(2)
S2	0,026(3)	0,027(3)	0,021(3)	0,000	-0,003(2)	0,000

3.4.3 Chemische Eigenschaften

Thallium(I)thiotellurat(IV) ist luftstabil und in verdünnter Salz-, Phosphor- und Essigsäure in der Hitze unslöslich. Die Verbindung zersetzt sich allerdings in kalter verdünnter HNO₃ oder H_2SO_4 unter Bildung eines schwarzen, amorphen Bodensatz unbekannter Zusammensetzung. Die Verbindung schmilzt unter Luftausschluss kongruent bei 298 °C (s. Abb. 54), an der Luft reagiert die Schmelze mit Sauerstoff und bildet u. a. Thallium(I)sulfat.

Im Vakuum (ca 10^{-3} mbar) beginnt eine sichtbare Zersetzung von Tl₂TeS₃ bei ca. 180 °C, wobei sich am kälteren Ende der Apparatur Schwefel abscheidet und sich der so gebildete TlTe-Anteil in der Substanz erhöht.

3.4.4 Kristallstruktur von Thallium(I)thiotellurat(IV)

Thallium(I)thiotellurat(IV) kristallisiert orthorhombisch in der Raumgruppe *Pnma* (Nr. 62). Formal lässt sich die Verbindung in Tl^+ - Kationen und TeS_3^{2-} -Anionen zerlegen (s. Abb. 49).

Abbildung 49. Kristallstruktur von Tl₂TeS₃ entlang [001].

In der Kristallstruktur liegen isolierte pseudotetraedrische TeS₃-Einheiten vor, welche von Tl-Atomen in einer verzerrt-würfelförmigen Anordnung umgeben sind (s. Abb. 49). Vereinfacht man die TeS₃-Einheiten zu einem hypothetischen Atom A, wird die Verwandtschaft zur LaI₂-Struktur [52] deutlich, wobei Iod und Lanthan die Thallium- bzw. die TeS₃-Plätze besetzen. Die intramolekularen Te-S-Abstände einer TeS₃-Einheit sind praktisch identisch, allerdings weicht die TeS₃-Einheit hinsichtlich der S-Te-S-Winkel deutlich von einer idealen Pyramide ab (s. Tab. 49). Der Abstand des Tellurs von der durch die drei Schwefelatome aufgespannten Ebene beträgt 107,3 pm.

Abbildung 50. Verzerrt-würfelförmige Anordnung der Tl-Atome um die pseudotetraedrische TeS₃-Einheit.

Die Thalliumatome sind verzerrt oktaedrisch von 6 Schwefelatomen umgeben. Dabei kann die TeS_3^{2-} -Einheit sowohl ein S-Atom zur Verfügung stellen als auch chelatisierend an das Tl-Atom koordinieren (s. Abb. 51). Die Thallium-Schwefel-Abstände in dieser oktaedrischen Einheit liegen zwischen 3,086(4) und 335,7(3) pm (s. Tab. 49). Die Thiotellurat(IV)-Einheiten weisen drei weitere (intermolekulare) S-Kontakte im Abstand von zweimal 336,27(3) und 362,99(5) pm auf und bilden somit ebenfalls verzerrt-oktaedrische TeS₆-Bau-einheiten. Diese sind in [100]-Richtung miteinander kantenvernüpft und senkrecht dazu in [001]-Richtung über die Ecken mit weiteren kantenverknüpften Oktaederketten verknüpft (s. Abb. 52).

Abbildung 51. Verzerrt-oktaedrische Tl- und Te-Koordination durch die Schwefelatome der TeS₃²⁻-Einheiten in Tl₂TeS₃.

Atome	Abstand	Atome	Winkel
Tel Sl	237,4(4)	S1 Te1 S1	105,6(2)
Tel Sl	237,4(4)	S1 Te1 S2	98,9(1)
Tel S2	237,8(6)	S1 Te1 S2	98,9(1)
Te-S1 (intermol.)	336,3(3)	Te1 S1 Tl1	120,1(2)
Te-S3 (intermol.)	363,3(5)	Te1 S2 Tl1	98,4(1)
TI-S1	308,6(4)	Te1 S2 Tl1	98,4(1)
Tl-S1 (chelat.)	309,3(3)	Tl1 S2 Tl1	96,1(1)
Tl-S1	321,1(2)	S1 T11 S32	75,0(1)
Tl-S1 (chelat.)	328,4(4)		
Tl-S1	335,7(3)		
Tl-S1	330,7(3)		

Tabelle 49. Atomabstände /pm und Bindungswinkel /° in den oktaedrischen Baueinheiten TIS₆ und TeS₆.

Die TlS₆-Oktaeder sind parallel zur [110]-Ebene miteinander zu Doppelketten kantenverknüpft, die in Richtung [100] verlaufen. In [001] sind diese Oktaederdoppelketten zu darunter liegenden Doppelketten so miteinander kantenverknüpft, dass zwischen zwei solcher Doppelketten jeweils eine über Kanten verknüpfte TeS₆-Oktaederkette Raum hat (s. Abb. 52). Die Struktur lässt sich genauso als eine dichteste Kugelpackung von Schwefelatomen beschreiben, deren Oktaederlücken zu 2/3 mit Tl und zu 1/3 mit Te besetzt sind. Die Schwefelatome sind dabei in einer "ABCDA"-Abfolge entlang [011] gestapelt. Eine solche Stapelfolge wird durch die Verzerrung der hexagonalen Schwefelschichten verursacht.

Abbildung 52. Kantenverknüpfung der TIS₆- Oktaeder zu übereinandergestapelten Doppelketten und Anordnung der ecken- und kantenverknüpften TeS₆- Oktaeder, die durch die Telluratome (grau) markiert werden.

3.4.5 Pulverdiffraktometrie

Das Pulverdiffraktogramm bestätigt die Richtigkeit der Einkristallstrukturanalyse sowie die Phasenreinheit der erhaltenen Verbindung.

Abbildung 53. Vergleich des gemessenen (schwarz) und theoretisch berechneten Pulverdiffraktogramms von $Tl_2TeS_{3.}$

Abbildung 54. DSC-Kurve für Tl₂TeS₃ mit einem Schmelzpunkt von 299 °C; die Substanz zeigt bis -170 °C keinen Phasenübergang in eine andere Modifikation (DSC-Kurve für Tieftemperaturbereich nicht abgebildet).

3.4.7 Infrarot/Raman-Spektroskopie

Das $\text{TeS}_3^{2^2}$ -Anion in Tl₂TeS₃ weist eine Spiegelebene als Symmetrieelement auf und gehört deshalb der Punktgruppe C_s an. Im Schwingungsspektrum sollte man daher eine symmetrische und eine asymetrische Te-S1, sowie eine Te-S2-Streckschwingung innerhalb der Spiegelebene erwarten, deren Frequenz sich aufgrund gleicher Bindungslängen und damit Kraftkonstanten von den erstgenannten nur wenig unterscheidet. Aus diesem Grund kann man vereinfachend C_{3v}-Symmetrie für das Anion annehmen. Das Raman-Spektrum zeigt tatsächlich zwei Banden bei 338 und 309 cm⁻¹, von denen die erste, intensive, der v_s (Te-S)-Schwingung und die zweite, weniger intensive, der v_{as} (Te-S)-Schwingung zugeordnet werden kann. Entsprechend sind die Intensitätsverhältnisse der beiden Moden im FIR-Spektrum umgekehrt. Bei den Banden zwischen 200 und 100 cm⁻¹ handelt es sich um Te-S-Deformationsschwingungen. Die unterhalb von 100 cm⁻¹ liegenden Schwingungsmoden kann man den bei noch tieferen Frequenzen zu erwartenden Tl-S-Schwingungen (Tl-S-Abstände: 308,6(4) bis 335,7(3) pm) zuordnen.

Abbildung 55. Raman- und FIR-Spektrum von Tl₂TeS₃.

Raman		IR			
Wellenzahl /cm ⁻¹	Intensität	Wellenzahl /cm ⁻¹	Intensität	Zuordnung	
338	S	342	m	$v_{\rm s}$ (Te-S)	
309	m	315	s, sh	$v_{\rm as}$ (Te-S)	
180	m, br	189	m		
154	m	164	m	δ und ω -Schwing. (Te-S)	
114	w, br	125	m		
		97	w	T1-S	
67	VW	67	m	Tl-S	
48	VW	57	m	Tl-S	

Tabelle 50. Zuordung der Schwingungsbanden im Raman-und FIR-Spektrum von Tl₂TeS₃ nach [43].

3.4.8 Optische und elektrische Eigenschaften von Tl₂TeS₃

3.4.8.1 UV/Vis/NIR-Absorptionsspektroskopie

Das Absorptionsspektrum (s. Abb. 56) zeigt eine scharfe Absorptionskante bei 1,61 eV. Bei ca 0,9 eV ist eine deutlich schwächere Absorption zu beobachten, wobei es sich wohl um einen elektronischen Übergang mit $k \neq 0$ handelt. Der Sprung bei ca. 1,4 eV ist durch einen Wechsel des Detektors während der Messung bedingt.

Abbildung 56. UV/Vis/NIR-Absorptionsspektrum von Tl₂TeS₃.

3.4.8.2 Messung des spezifischen elektrischen Widerstands

Die Eigenleitung eines Halbleiters ist durch den Übergang thermisch angeregter Kristallelektronen aus dem Valenzband in das Leitungsband bedingt. Die Leitfähigkeit σ_i ist substanzcharakteristisch und zeigt die Temperaturabhängigkeit (Gl. 5):

$$\sigma_i = \sigma_{i0} e^{-\frac{\Delta E}{2k_B T}}$$
⁽⁵⁾

Aus der graphischen Auftragung von $\ln \sigma_i = f(1/T)$ muss sich nach Gl. (5) eine Gerade ergeben, deren Steigung die Bandlücke ΔE entnommen werden kann.

Für die Messung des elektrischen Widerstandes $(1/\sigma_i)$ wurde ein Pulverpressling von Tl₂TeS₃ in eine Duranglasampulle eingeschmolzen und zwei Tage lang bei 200 °C gesintert und anschließend zu einem Quader mit den Abmessungen 0,8 x 0,5 x 0,1 cm geschnitten. Die stromdurchflossene Querschnittsfläche der Probe beträgt 0,10 cm x 0,45 cm, der Abstand zwischen den Messkontakten 0,59 cm.

Die Messung des elektrischen Widerstands im Temperaturbereich von 294 bis 410 K verläuft nur im Temperaturbereich bis 333 K linear. Eine lineare Anpassung im 1/*T*-Bereich oberhalb von 0,0030 K⁻¹ liefert eine Bandlücke von $\Delta E = 0,93$ eV (s. Abb. 57).

Abbildung 57. Auftragung von $\ln \rho$ gegen 1/T zur Ermittlung der Bandlücke in Tl₂TeS₃.

3.4.8.3 Elektronische Struktur von Tl₂TeS₃

Die elektronische Struktur (s. Abb. 58) wurde mit DFT-Rechnungen mit der Full potential linearized augmented plane wave-Methode (FP-LAPW) untersucht. Nach den Bandstrukturrechnungen [53] sollte Tl_2TeS_3 ein Halbleiter sein, welcher eine direkte Bandlücke von 1,7 eV (roter Pfeil in Abb. 58) zeigt, wobei auch ein indirekter Übergang mit einer Energielücke von ca 1,1 eV (grüner Pfeil in Abb. 58) möglich ist.

Abbildung 58. Links: Bandstruktur von Tl₂TeS₃ (Full-potential LAPW). Rechts: gesamte und partielle Zustandsdichte (DOS) von Tl₂TeS₃: s-Zustände (gestrichelt), p-Zustände (durchgehende Linie): Tl (rot), Te (blau), S (grün).

Abbildung 59. COHP- (durchgehend) und ICOHP- Kurven (gestrichelt) für die Te-S- (links) und Tl-S-Bindungen (rechts).

Die Zustandsdichte an der Fermigrenze wird dabei im Wesentlichen durch Bänder mit Anteilen von 3*p*-Elektronen des Schwefels und mit geringen Anteilen von 6*p*-Zuständen von Tl verursacht. Die Einmischung von *s*-Zuständen ist in diesem Bereich sehr gering. Eine COHP- (Crystal orbital Hamiltonian population) Analyse auf Extended-Hückel-Niveau ist in Abb. 59 dargestellt. Anteile mit positiven Vorzeichen deuten auf bindende, Anteile mit negativem Vorzeichen auf antibindende Wechselwirkungen hin.

Die beobachtete optische Bandlücke entspricht den Übergängen ausgehend von Bändern, die hauptsächlich von *s-p*-Zuständen verursacht werden, in leere Tl- und Te-Bänder mit p-Charakter (s. Abb. 58)

Die Messung des spezifischen elektrischen Widerstands zeigt im Vergleich zum Absorptionsspektrum eine deutlich kleinere Bandlücke von etwa 0,9 eV, was auf einen indirekten Übergang zwischen dem Maximum des Valenzbandes und einem Minimum des Leitungsbandes zurückzuführen ist. Tatsächlich wird im Absorptionsspektrum neben der steilen und intensiven Absorptionskante eine zweite deutlich schwächere bei etwa 0,95 eV beobachtet.

Im Vergleich zur analogen Alkaliverbindung K_2TeS_3 zeigt Tl_2TeS_3 eine deutlich kleinere optische Bandlücke, was sich schon in der gelblich transparenten Farbe von K_2TeS_3 zeigt. Dies bestätigt den allgemeinen Befund, dass die Bandlücken von Thalliumverbindungen durchweg kleiner als die ihrer Alkalimetallanaloga sind [54].

In den Bandstrukturrechnungen für Tl₂TeS₃ beobachtet man unterhalb der Fermigrenze einen deutlichen Beitrag der Tl-Orbitale. DFT-Rechnungen von TlInTe₂ und KInTe₂ [55] zeigen z. B. ebenfalls einen Tl-Beitrag unterhalb der Fermigrenze, der bei der analogen Kaliumverbindung fehlt, was eine direkte Folge der weniger elektropositiven Eigenschaften von Tl im Vergleich zu den Alkalimetallen ist. Eine entsprechende Vergleichsrechnung für K₂TeS₃ wäre für eine tiefergehende Diskussion der elektronischen Struktur von Alkalimetallanaloga interessant.

3.5 Thallium(I)thiotellurat(II) TI₂TeS₂

3.5.1 Herstellung

0,500 g (1,067·10⁻³ mol) Thallium(I)carbonat wurden mit 0,354 g (1,066·10⁻³ mol) TITe und 0,080 g (2,50·10⁻³ mol) Schwefel in 5,0 ml Wasser in einem Autoklaven mit Tefloneinsatz mit 20 K/h auf 220 °C aufgeheizt, bei dieser Temperatur für vier Tage belassen und anschließend mit 1 °C/ h auf Raumtemperatur abgekühlt. Als Reaktionsprodukt wird ein Gemisch einen grau-metallischer Kuchen von Tl_2TeS_2 , aus dem sich Kristallstücke isolieren lassen, sowie einzelne gut ausgebildete transparente Kristalle von $Tl_2S_2O_3$ erhalten. Die Tl_2TeS_2 -Kristalle sind metallisch-silbrig mit einem bronzefarbenen Schimmer.

Abbildung 60. Reaktionsprodukt Tl₂TeS₂ nach Auswaschen der Sulfate.

3.5.2 Sammlung der Beugungsdaten, Strukturlösung und -verfeinerung

abelle 51. Kristallographische Angaben zur Einkristallstrukturanalyse von Thalluminloteilurat (II).					
Verbindung		Thallium(I)thiotellurat(II)			
Summenformel		Tl_2TeS_2			
Kristallsystem		Orthorhombisch			
Raumgruppe		<i>Pbca</i> (Nr. 61)			
Gitterkonstanten (IPDS)	<i>a</i> /pm	10,245(1)			
	<i>b</i> /pm	7,292(1)			
	c /pm	15,135(2)			
Gitterkonstanten (Pulver)	<i>a</i> /pm	10,238(8)			
	<i>b</i> /pm	7,272(5)			
	c /pm	15,11(11)			
	Indizierte Linien	13			
	FOM	12,8			
Zellvolumen /Å ⁻³		1130,6(3)			
Ζ		4			

Tabelle 51. Kristallographische Angaben zur Einkristallstrukturanalyse von Thalliumthiotellurat (II)

E(000)	10(7.1
F(000)	1967,1
$M/(g \text{ mol}^{-1})$	1201,0
berechnete Dichte /(g cm ⁻¹)	7,055
Kristallabmessungen /mm	0,04 x 0,03 x 0,02
Temperatur /K	298
Absorptionskoeffizient μ (MoK α) /cm ⁻¹	625,7
Extinktionskoeffizient	0,000615
Wichtung <i>a</i> / <i>b</i>	0,036100/0,000000
Absorptionskorrektur	numerisch
Min./Max. Transmission	0,0041/ 0,0273
Scan-Methode	ω-Scan
2 <i>θ</i> -Messbereich /°	2,5 bis 28
(<i>hkl</i>)-Messbereich	-9 < h < 9
	-13 < <i>k</i> < 19
	-19 < <i>l</i> < 19
Reflexe gemessen	9978
unabhängig	1370
beobachtet $[I \ge 2\sigma(I)]$	720
R _{int}	0,1625
Anzahl Parameter	47
R_1	0,0434
R_1 (alle Daten)	0,0978
wR_2	0,0828
wR_2 (alle Daten)	0,0963
S	0,800
Restelektronendichte /(eÅ ⁻³) max./min.	1,77/-2,71

Tabelle 51. (Forts.) Kristallographische Angaben zur Einkristallstrukturanalyse von Thalliumthiotellurat (II).

Tabelle 52. Lageparameter und Koeffizienten der äquivalenten Auslenkungsparameter /pm² für Tl₂TeS₂.

Atom	Wyckhofflage	Besetzung	x/a	<i>y</i> /b	z/c	$U_{ m eq}$
T11	8c	1	0,98854(9)	0,2062(1)	0,57614(6)	0,0338(3)
T12	8c	1	0,30693(9)	0,2420(2)	0,67046(6)	0,0379(3)
Tel	8c	1	0,1436(2)	0,2072(2)	0,86880(9)	0,0244(3)
S 1	8c	1	0,2030(6)	0,0013(9)	0,9873(4)	0,026(1)
S2	8c	1	0,0210(7)	-0,0027(9)	0,7741(4)	0,030(1)

Tabelle 53. Koeffizienten der anisotropen Auslenkungsparameter $U_{ij}/(10^{-4} \text{ pm}^2)$ von Tl_2TeS_2 .

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂
T11	0,0312(5)	0,0418(5)	0,0283(4)	-0,0015(5	0,0016(4)	0,0033(4)
T12	0,0330(5)	0,0503(6	0,0303(4)	0,0001(2)	-0,0014(5)	0,0000(5)
Te1	0,0254(7)	0,0302(8)	0,0177(6)	0,0006(6)	0,0010(6)	0,0014(7)
S 1	0,026(3)	0,031(3)	0,022(3)	0,004(2	-0,001(3)	0,0014(7)
S2	0,032(4)	0,036(3)	0,024(3)	-0,004(2)	-0,004(3)	0,005(3)

3.5.3 Kristallstruktur

Thallium(I)thiotellurat(II) kristallisiert orthorhombisch in der Raumgruppe *Pbca* (Nr. 61). Die Verbindung lässt sich formal in Tl^+ -Kationen und $TeS_2^{2^-}$ -Anionen zerlegen (s. Abb. 61).

Abbildung 61. Kristallstruktur von Tl₂TeS₂ entlang [001].

Die Thalliumatome werden von den Schwefelatomen aus den $\text{TeS}_2^{2^2}$ -Einheiten koordiniert, wobei letztere ein oder beide Schwefelatome zur Verfügung stellen (s. Abb. 62 links). Daraus resultiert für die Tl-Atome eine [3+3]-Koordination mit drei Schwefelkontakten unterhalb des Van-der-Waals-Abstandes [23]. Die entstehenden Koordinationspolyeder lassen sich am besten als verzerrte trigonale Prismen betrachten. Diese sind über ihre Dreiecksflächen in Richtung [010] kantenverknüpft, so dass sich die in Abb. 63 dargestellte Anordnung ergibt.

Abbildung 62. Koordination von Tl⁺ in Tl₂TeS₂: links: durch TeS₂²⁻- Anionen; verzerrt trigonal-prismatische Schwefelumgebung von Tl1 (Mitte) und Tl2 (rechts).

Abbildung 63. Flächen- und kantenverknüpfte TlS₆-Prismen (links); Stapelung der TlS₆-Polyederschichten entlang der *b*-Achse (rechts).

Die Struktur des Tl₂TeS₂ lässt sich als aus verzerrt hexagonalen Schichten von Thallium und Tellur aufgebaut betrachten, die sich mit Schwefel-Schichten entlang der kristallographischen *b*-Achse abwechseln. Diese Thallium/Tellur-Schichten bestehen aus einem Netz verzerrter kantenverknüpfter Sechsecken, deren Mitten ein Telluratom enthalten, woraus sich die Zusammensetzung Tl₂Te für die Schichten ergibt (s. Abb. 64). Zwischen diesen Schichten sind die Schwefelatome ebenfalls in verzerrten hexagonalen Schichten angeordnet. Es ist jedoch nur eine formale Betrachtung, da innerhalb der Schichten zwar die kürzesten Tl-Tl-und Tl-Te-Abstände auftreten, gleichzeitig aber auch Abstände beobachtet werden, die deutlich größer als die Tl-Te-Atomabstände von 379,50(5) pm zwischen den jeweiligen Schichten sind.

Das anionische Teilgitter bildet verzerrt-quadratische, gefaltete TeS₂-Schichten aus (s. Abb. 65). Die intermolekularen Abstände zwischen Te und S liegen bei 345,98(3) und 321,27(3) pm. Die S-Te-S-Winkel liegen zwischen 76,6 und 100,6°.

Abbildung 64. Tl₂Te-Schicht in Tl₂TeS₂ parallel zur (010)-Ebene.

Die Strukturlösung wurde durch die schlechte Qualität des Kristalls, dessen geringe Größe und die daraus resultierenden schwachen Reflexe beeinträchtigt. Die hohen Temperaturfaktoren für Tl1 und Tl2 könnten darauf zurückzuführen sein. Die Temperaturfaktoren U_{22} für Tl und Te sind besonders groß, was sich in einer Auslenkung senkrecht zu den beschriebenen

Tl₂Te-Schichten äußert. Die kürzesten Abstände der Atome zu anderen in der Schicht sind mit 357,2(4) pm (Tl-Tl) und 344,60(3) pm (Tl-Te) deutlich kleiner als die entsprechenden Abstände zwischen den Schichten. Diese betragen entsprechend 379,50(5) und 398,52(6) pm. Deshalb ist innerhalb der Schichten mit stärkeren Bindungen zu rechnen, die thermische Auslenkung in Richtung der Bindungen nicht erwarten lassen.

Atome	Abstand	Atome	Abstand/Winkel
Te S1	241,7(6)	T12 S2	300,6(7)
Te S2	244,4(7)	T12 S2	377,30(3)
Tl1 S1	306,6(6)	T12 S2	392,88(4)
Tl1 S1	334,1(0)	Tl1 Tl2 (in Schicht)	359,96(6)
Tl1 S1	342,57(3)	Tl1 Tl2 (zwischen Schichten)	379,50(5)
Tl1 S1	375,24(4)	Te Tl2	344,60(3)
Tl1 S2	310,7(7)	Te Tl2	350,9(2)
Tl1 S2	337,98(3)	Te Tl1	357,3(2)
Tl2 S1	328,75(3)	Te Tl1	363,06(4)
Tl2 S1	350,56(3)	S Te S	100,091(3)
T12 S2	294,9(7)		

Tabelle 54. Ausgewählte Atomabstände /pm und -winkel /° in Tl₂TeS₂.

3.5.4 Pulverdiffraktometrie

Das Pulverdiffraktogramm in Abb. 66 zeigt eine Verunreinigung durch TITe bei $2\theta = 14,3^{\circ}$, weshalb keine zuverlässigen physikalischen Messungen an diesem Pulver durchgeführt werden konnten, bestätigt aber ansonsten die Ergebnisse der Einkristallstrukturanalyse.

Abbildung 66. Vergleich des gemessenen (schwarz) und theoretisch berechneten Pulverdiffraktogramms $(MoK\alpha_1)$ von Tl_2TeS_2 .

3.5.5 Thermische Analyse

Die DSC-Kurve zeigt ein breites endothermes Signal bei 216 °C, was dem Schmelzen des verunreinigten Tl_2TeS_2 entspricht. Wie das Pulverdiffraktogramm in Abb. 67 zeigt, schmilzt die Substanz unter Zersetzung. Nach dem Erstarren lassen sich die Komponenten Tl_2TeS_3 und Tl_5Te_3 pulverdiffraktometrisch nachweisen (s. Abb. 68).

Abbildung 67. DSC-Kurve für Tl₂TeS₂ im Bereich von 20 bis 270 °C.

Abbildung 68. Pulverdiffraktogramm des Kristallisationsprodukts nach der thermischen Behandlung von Tl₂TeS₂; rot: Tl₂TeS₃, grün: Tl₅Te₃.

3.5.6 Infrarot- und Ramanspektroskopie

Das $\text{TeS}_2^{2^2}$ -Anion hat annähernd C_{2v}-Symmetrie, für die Zahl der Grundschwingungen kann daher 2 A₁ + 1 B₂ angenommen werden. Tatsächlich lassen sich die Raman-Banden (s. Abb. 69) bei 319 uns 292 cm⁻¹ den symmetrischen und asymmetrischen Streckschwingungen zuordnen. Die Bande bei 175 cm⁻¹ gehört zu den Deformationsschwingungen der TeS₂-Einheit. Das FIR-Spektrum (s. Abb. 69) zeigt im Bereich von 180 bis 120 cm⁻¹ drei aufgelöste Banden. Im Raman-Spektrum ist dieser Bereich durch eine breite Schulter der Bande bei 175 cm⁻¹ gekennzeichnet.

Die asymmetrische Streckschwingung des $\text{TeS}_2^{2^-}$ -Anions wird bei kleineren Frequenzen als die symmetrische Streckschwingung beobachtet. In den meisten vergleichbaren Verbindungen sind die Verhältnisse, aufgrund der Abhängigkeit der Schwingungsfrequenzen als Funktion des Bindungswinkels, umgekehrt, wobei das $\text{TeS}_2^{2^-}$ -Anion, genau wie O_3^- , F_2O und NO_2^- , Ausnahmen darstellen [17].

Abbildung 69. Raman- und FIR-Spektrum von Tl₂TeS₂.

Tabelle 55. Zuordnung	g der Schwingung	ssbanden im	Raman-Spektrum	von Tl ₂ TeS ₂ .
		<u></u>		

Wellenzahl [cm ⁻¹]	Intensität	Zuordnung
319	S	v _s (Te-S)
292	m	$v_{\rm as}({\rm Te-S})$
175	m, sh	δ (Te-S)
113	W	Tl-S
81	W	Tl-S

Tabelle 19. Zuordnung der Schwingungsbanden im FIR-Spektrum von Tl₂TeS₂.

Wellenzahl [cm ⁻¹]	Intensität	Zuordnung
323	m	v _s (Te-S)
295	s, br	$\nu_{\rm as}$ (Te-S)
182	m, br	δ (Te-S)
161	m, br	δ (Te-S)
131	m	δ (Te-S)
108	m	δ (Te-S)
81	m	Tl-S
60	m	T1-S

3.6 Vergleich der Kristallstrukturen von Tl₂TeS₃ und Tl₂TeS₂

In allen bislang bekannten Verbindungen mit TeS_3^{2-} Anionen, wie das K_2TeS_3 , findet man praktisch identische Te-S-Bindungslängen von 234 - 235 pm [41 - 43, 56], was auf eine starre isolierte Baueinheit schließen lässt. Demgegenüber sind im Thallium(I)thiotellurat(IV) die Te-S-Abstände des TeS_3^{2-} -Anions mit 237,4(4) (s. Tab. 56) im Vergleich zu anderen bekannten Verbindungen leicht vergrößert, was auf einen geringeren ionischen Charakter der Verbindung hindeutet. Auch die S-Te-S-Winkel im Thallium(I)thiotellurat zeigen mit 98,9° und 105,6° eine deutliche Abweichung von der C_{3v} -Symmetrie. Die S-Te-S-Winkel der TeS_3^{2-} -Einheit liegt bei der Mehrzahl der bekannten Verbindungen zwischen 101° und 102°. Die einzige der Verbindungen mit deutlichen Abweichungen ist BaTeS_3·2 H₂O mit Winkeln zwischen 99,3 und 111,3° [41]. Der Abstand von Tellur zu der von den drei Schwefelatomen aufgespannten Ebene liegt mit 107,3 pm im Rahmen der in K₂TeS₃ (102,3 pm), BaTeS₃ (108,0 pm) und Ag₂TeS₃ (114,5 pm) gefundenen Abständen. In Tabelle 54 sind ausgewählte physikalisch und geometrische Merkmale von Tl₃TeS₃, Tl₂TeS₂ sowie von K₂TeS₃ gegenübergestellt.

Verbindung	Tl ₂ TeS ₃	Tl ₂ TeS ₂	K_2TeS_3 [42]
Eigenschaften	metallisch, rot reflektierend, luftstabil	metallisch, bronzefarben reflektierend, luftstabil	hellgelb, transparent, luftempflindlich
Kristallsystem Raumgruppe Gitterkonstanten /pm	orthorhombisch <i>Pnma</i> (Nr. 62) <i>a</i> = 815,08(9) <i>b</i> = 1349,8(2) <i>c</i> = 597,8(2)	orthorhombisch Pbca (Nr. 61) a = 10,245(1) b = 7,292(1) c = 15,135(2)	monoklin, $P2_1/n$ (Nr. 14) a = 906(2) b = 1313,(2) c = 640(2) $\beta = 90,40(2)$
<i>d</i> (Te-S) /pm	237,4(4) - 237,8(6)	241,7(6) - 244,4(7)	2,341(1) - 235,0(4)
d (Te-S) (intermol.) /pm	336,3(3) - 363,3(5)	321,27(3) - 345,98(3)	368,0(2) - 406,3(2)
Winkel (S-Te-S)	98,9(1) - 105,6(2)	100,091(3)	102,14(3) - 103,09(3)
<i>d</i> (Tl-S) /pm	308,6(4)- 373,56(3)	294,9(7) - 392,88(4)	K-S: 313,6(2) - 353,6(2)
d (Tl-Tl) _{min}	385,71(4)	359,96(6)	-
KZ (Tl)	6, verzerrtes Oktaeder	[3+3], verzerrtes trig. Prisma	6, verzerrtes Oktaeder
KZ (S)	4, [3+1]	4	4
KZ (Te)	[3+3]	[3+3]	[3+3]

Tabelle 56. Vergleich der Kristallstrukturen von Tl₂TeS₃, K₂TeS₃ und Tl₂TeS₂.

Isolierte $\text{TeS}_2^{2^2}$ -Einheiten wurden bisher nur in der Verbindung CuBrCu_{1,2}TeS₂ [44] gefunden, wo sie zusammen mit dem Radikalanion TeS₂⁻⁻ vorliegen. Diese beiden anionischen Bausteine sind anhand ihrer Bindungslängen nicht voneinander zu unterscheiden und liegen im Bereich der Bindungslängen der TeS₃²⁻-Einheiten. Im Tl₂TeS₂ werden dagegen Te-S-Bindungen von bis zu 244,4(7) pm gefunden, was für einen abnehmenden heteropolaren Charakter der Verbindung spricht. Da TeS₂²⁻-Anion befolgt die 8-N-Regel, weshalb man von einer Zintl-Phase mit Tl als Alkalimetallanalogon sprechen kann.

Interessant ist auch, dass in Tl₂TeS₂ ein Tl-Tl-Abstand von 359,96(6) erreicht wird, der nahe an denen im hexagonalen Thallium (340 - 345 pm) realisierten Tl-Tl-Abständen liegt, weshalb eine Wechselwirkung zwischen den Atomen nicht auszuschließen ist. Solche kurzen Abstände sind in der Verbindungsklasse der Thalliumsulfiden und -thiosalzen häufig zu beobachten und zeigen sich auch in den Verbindungen α -Tl₃S₄ (351,6 pm), Tl₂S (Carlinit) (346,4 pm) oder TlAsS₂ (351,1 pm) [61].

3.7 Glasartige Verbindungen im System TI-Te-S

In manchen Fällen führten sowohl das langsame Abkühlen als auch das Abschrecken von Schmelzen zu glasartigen Verbindungen. Der Aufbau der erhaltenen Gläser lässt Rückschlüsse auf die Beschaffenheit der Schmelzen zu, was eine wichtige Information in Bezug auf die Wahl der optimalen Reaktionsbedingungen darstellt. Außerdem könnte man interessante (optische) Eigenschaften ähnlich wie bei den gut untersuchten Gläsern in den Systemen Tl-As-S/Se erwarten.

3.7.1 Herstellung der glasartigen Verbindung Tl_{2,3}TeS₂ ("Tl₇Te₃S₆")

0,300 g (1,47·10⁻³ mol) Tl, 0,080 (6,27·10⁻³ mol) Te und 0,040 (1,25·10⁻³ mol) gelber Schwefel wurden unter Argonschutzatomsphäre in eine Quarzampulle eingewogen und 5 h lang auf 350 °C erhitzt, wobei eine Schmelze erhalten wird. Mittels eines Rührmotors wurde die Ampulle während des Temperaturprogramms bewegt, um ein möglichst homogenes Produkt zu erhalten. Anschließend wurde für 4 Wochen bei 200 °C getempert. Man erhält ein schwarzes, bläulich schimmerndes Reaktionsprodukt von muscheligem Bruch und großer Härte, welches beim Verreiben laut knirscht (s. Abb. 70). Dieses Produkt wird in den folgenden Abschnitten als *langsam abgekühltes* Tl_{2,3}TeS₂ oder Tl₇Te₃S₆ bezeichnet.

Durch Wiederaufschmelzen des Glases und anschließendem Abschrecken in flüssigem Stickstoff wurde ein Glas der selben Zusammensetzung erhalten, welches im Folgenden als *abgeschrecktes* Tl_{2,3}TeS₂ oder Tl₇Te₃S₆ bezeichnet wird.

Die Pulverdiffraktogramme der Verbindungen zeigen keine Bragg-Peaks, was den amorphen Zustand des Reaktionsprodukts bestätigt.

Abbildung 70. Glasartige Verbindung der Zusammensetzung Tl₇Te₃S₆.

3.7.2 Herstellung der glasartigen Verbindung Tl_{2,6}TeS₂ ("Tl₈Te₃S₆")

0,300 g (1,47[·]10⁻³ mol) Tl, 0,070 g (5,49[·]10⁻³ mol) Te und 0,035 g (1,09[·]10⁻³ mol) gelber Schwefel wurden unter Argonschutzatomsphäre in eine Quarzampulle eingewogen und 5 h lang auf 350 °C erhitzt, während die Ampulle mittels eines Rührmotors bewegt wird. Die Schmelze wird in flüssigem Stickstoff abgeschreckt. Man erhält ein schwarzes, silbrig schimmerndes Reaktionsprodukt von muscheligem Bruch und großer Härte, welches beim Verreiben laut knirscht.

Das Pulverdiffraktogramm der Verbindungen zeigen keine Bragg-Peaks, was den amorphen Zustand des Reaktionsprodukts bestätigt.

3.7.3 Herstellung der glasartigen Verbindung TI₃TeS₂ ("TI₉Te₃S₆")

0,386 g (1,89[·]10⁻³ mol) Tl, 0,080 (6,27[·]10⁻³ mol) Te und 0,040 (1,25[·]10⁻³ mol) gelber Schwefel wurden unter Argonschutzatomsphäre in eine Quarzampulle eingewogen und 5 h lang auf 350 °C erhitzt, die Ampulle dabei mittels eines Rührmotors bewegt. Nach dem Abschrecken in flüssigem Stickstoff erhält man ein schwarzes, silbrig schimmerndes Reaktionsprodukt von muscheligem Bruch und großer Härte, welches beim Verreiben laut knirscht.

Das Pulverdiffraktogramm der Verbindungen zeigen keine Bragg-Peaks, was den amorphen Zustand des Reaktionsprodukts bestätigt.

3.7.4 EDX-Analyse

Unter dem Rasterelektronenmikroskop ist der muschelige Bruch eines Glases zu erkennen. Die EDX-Analyse bestätigt die Anwesenheit von Thallium, Tellur und Schwefel, jedoch ist die Bestimmung der prozentualen Anteile schwierig, da die Peaks für Tl und S nicht aufgelöst werden können und man in verschiedenen Messungen große Schwankungen der Messwerte beobachtet, so dass kein zuverlässiges Ergebnis erhalten werden konnte.

Abbildung 71. Rasterelektronenmikroskop-Aufnahme und EDX-Analyse, rechts: EDX-Untersuchung am Tl₇Te₃S₆-Glas (links) und an einem Bruchstück der kristallinen Verbindung Tl₂TeS₂.

3.7.5 Infrarot/Raman-Spektroskopie

Als lokale Methode eignet sich die Schwingungsspektroskopie, um durch den Vergleich mit entsprechenden kristallinen Phasen Hinweise auf die molekularen Baueinheiten eines Glases zu erhalten. Im den Abbn. 72 und 73 sind die Schwingungspektren des abgeschreckten sowie des langsam abgekühlten Glases mit der Zusammensetzung Tl_{2,3}TeS₂ dargestellt. In den folgenden Kapiteln werden die Raman-Spektren des abgeschreckten sowie des langsam abgekühlten Glases der Zusammensetzung Tl_{2,3}TeS₂ ("Tl₇Te₃S₆) mit denen der kristallinen Phasen verglichen und der Einfluss des Tl-Gehalts auf die Glasstruktur anhand der IR-Spektren untersucht.

Abbildung 72. Raman- (unten) und FIR-Spektrum (oben) der abgeschreckten glasartigen Verbindung $Tl_{2,3}TeS_2$ ($Tl_7Te_3S_6$).

Abbildung 73. Raman- (oben) und FIR-Spektrum (unten) der langsam abgekühlten glasartigen Verbindung $Tl_{2,3}TeS_2$ ($Tl_7Te_3S_6$).

3.7.5.1 Vergleich der Schwingungsspektren des glasartigen Zustands mit den kristallinen Phasen im System TI-Te-S

Nach dem Abschrecken der Schmelze mit der Zusammensetzung Tl₇Te₃S₆ (Tl_{2,3}TeS₂) wird ein Glas erhalten, welches im Aufbau im wesentlichen der kristallinen Phase Tl₂TeS₂ ähnelt (s. Abb. 74 und Tab. 57). Die Raman-Banden der glasartigen Phase sind durch die Verteilung der interatomaren Abstände im Glas verbreitert, decken sich aber prinzipiell mit den Banden der kristallinen Phase. Die symmetrische und asymmetrische Streckschwingung der TeS₂²⁻-Einheit werden beobachtet. Aufgrund der guten Übereinstimmung der Lage der Banden kann man davon ausgehen, dass in dem so erhaltenen Glas TeS₂-Einheiten die vorherrschenden Baueinheiten sind. Die Ähnlichkeit der Spektren der kristallinen und der glasartigen Phase legt die Annahme von netzartigen TeS₂-Schichten wie sie im kristallinen Tl₂TeS₂ beobachtet werden (s. Abb. 65 in Abschnitt 3.5.3), nahe. Im abgeschreckten Glas zeigt sich im Bereich unterhalb von 200 cm⁻¹ Verbreiterung der Te-S-Deformationsschwingung bei 175 cm⁻¹. Die generelle Verbreiterung der Banden ist eine Folge der Variation der Bindungsabständen und winkeln in der glasartigen Verbindung. In dem Sinne zeigt sich eine Änderung der Thalliumkoordination durch Schwefel mit einer geringeren Symmetrie unterhalb von 120 cm⁻¹ in der starken Verbreiterung der betreffenden Banden.

Kühlt man die Tl/Te/S-Schmelze langsam ab, so erhält man ein verändertes Bild. Die intensivste Raman-Bande, die einer symmetrischen TeS₂-Schwingung zugeordnet werden kann, ist stark verbreitert und das Maximum zu tieferen Wellenzahlen verschoben. Dennoch sind alle Te-S-Schwingungen des Tl₂TeS₂-Spektrums, zumindest als Schultern vorhanden. Zusätzlich lassen sich auch neue Banden bei tieferen Wellenzahlen beobachten. Neben der Variation der Bindungslängen bei gleichzeitiger Änderung der Koordinationszahl von Tellur durch Schwefel könnte dies auch eine Folge einer Änderung des S-Te-S-Bindungswinkels der TeS₂-Einheiten sein, da die relative Lage der symmetrischen und asymmetrischen Streckschwingung eines Moleküls vom Bindungswinkel abhängt [18]. Um genauere Aussagen zu erhalten, ist es notwendig, die Symmetrieeigenschaften für die Schwingungsspektren der kristallinen Verbindung Tl₂TeS₂ durch gitterdynamische Berechnungen zu bestimmen.

Die Lage der Te-S-Deformationsschwingung bei 175 cm⁻¹ ist in der getemperten Glasphase nicht eindeutig zu erkennen, genauso wie die Tl-S-Banden, die alle unterhalb von 120 cm⁻¹ liegen, schlecht aufgelöst sind und sich praktisch als eine einzige stark verbreiterte Bande zeigen. Tatsächlich ist dies eine Folge der Verringerung der Symmetrie durch einen größeren

Bereich an atomaren Abständen in der 1. Koordinationssphäre, wie es für eine glasartige Phase zu erwarten ist. Die FIR-Spektren zeigen generell schlechter aufgelöste Banden, zeigen aber prinzipiell die gleichen Peak-Gruppen wie die Raman-Spektren.

Abbildung 74. Vergleich der Raman-Spektren von kristallinem Tl_2TeS_2 in blau, glasartigem $Tl_7Te_3S_6$ (abgeschreckte Schmelze) in schwarz und $Tl_7Te_3S_6$ (langsames Abkühlen bzw. Tempern) in rot.

Tabelle 57. Zuordnung der	Schwingungsbanden im	n Tl7Te3S6-Glas mit	t Hilfe der Ramar	n-Banden der	kristallinen
Phase Tl_2TeS_2 .					

Wellenzahl /cm ⁻¹ , Intensität			
kristallines Tl ₂ TeS ₂	Zuordnung	glasartiges Tl ₇ Te ₃ S ₆ (abgeschreckt)	glasartiges Tl ₇ Te ₃ S ₆ (getempert)
319, s	$v_{\rm s}({\rm Te-S})$	318, m	318, w
292, m	v _{as} (Te-S)	297, w	298, m
275 sh, w	-	274, w	275, m
-	-	-	250, w
-	-	-	228, m
175, m sh	δ (Te-S)	189 w, 175 w, 159 w	200-50, vw
113, w	T1-S	113 w, sh	
81, w	T1-S	100-80, w	

3.7.5.2 Einfluss des TI-Gehalts auf die Glasstruktur

Im Vergleich der FIR-Spektren der drei Gläser mit unterschiedlichem Tl-Anteil und der kristallinen Phase Tl₂TeS₂ (s. Abb. 75) lässt sich erkennen, dass sich die Te-S-Streckschwingungsbanden mit zunehmenden Tl-Gehalt merklich verbreitert haben und die Aufspaltung der Banden in der kristallinen Phase verloren geht. Mit Erhöhung des Tl-Gehalts nimmt die Intensität der Tl-S-Schwingungen im Verhältnis zu den Te-S-Streckschwingungsbanden zu, wobei die Te-S-Deformationsschwingungen im breiten Bereich der Tl-S-Schwingungen liegen. Die Raman-Spektren der Gläser Tl_{2,3}TeS₂ und Tl₃TeS₂ ("Tl₉Te₃S₆") lässt sich nur noch eine schwache, breite Bande unterhalb von 200 cm⁻¹ im Bereich der Tl-S-Schwingungen detektieren. Die Zunahme des Tl-Gehalts im Glas hat offensichtlich eine Auflösung der TeS₂-Teilstruktur, wie sie im Glas mit der Zusammensetzung "Tl₇Te₃S₆" (Tl_{2,3}TeS₂) gefunden wird, zur Folge.

Abbildung 75. Vergleich der FIR-Spektren der Gläser mit den Zusammensetzungen Tl_{2,3}TeS₂, Tl_{2,6}TeS₂ und Tl₃TeS₂, die durch Abschrecken der Schmelzen erhalten wurden.

Abbildung 76. Vergleich der Raman-Spektren der Gläser mit den Zusammensetzungen Tl_{2,3}TeS₂ und Tl₃TeS₂, die durch Abschrecken der Schmelzen erhalten wurden.

3.7.6 Thermische Analyse

Die DSC-Diagramme der glasartigen Verbindungen zeigen prinzipiell das gleiche Bild. Das DSC-Diagramm von $Tl_{2,3}TeS_2$ (" $Tl_7Te_3S_6$ ") (s. Abb. 77) zeigt im Bereich von -5 °C bis 0 °C ein exothermes Signal sehr geringer Intensität. Danach beobachtet man ein relativ breites endothermes Signal und die Kurve nimmt einen typischen Verlauf für einen Übergang zwischen einer glasartigen Phase und ihrer Schmelze [57], wobei man hier von einem Glas-Glas-Übergang ausgehen muss, da bei dieser Temperatur kein flüssiger Zustand beobachtet wird.

Bei 101 °C tritt eine Kristallisation in mehreren Schritten ein (s. Abb. 78). Das Kristallisationsprodukt schmilzt bei 213,8 °C in einer Gruppe von 3 endothermen Signalen, was annähernd dem Schmelzverhalten von Tl_2TeS_2 entspricht (s. Abb. 67). Tatsächlich zeigt das Pulverdiffraktogramm (s. Abb. 73), dass das Kristallisationsprodukt hauptsächlich aus Tl_2TeS_2 sowie aus Tl_2S besteht. Der hohe Untergrund im Diffraktogramm weist dabei auf einen großen amorphen Anteil im untersuchten Pulver hin.

Der Verlauf der DSC-Kurve für alle untersuchten Gläser, die hier nicht abgebildet sind, zeigt die gleichen Merkmale wie für das Glas Tl_{2,3}TeS₂ ("Tl₇Te₃S₆"), jedoch mit unterschiedlichem Temperaturen für den beobachteten Glas-Glas-Übergang und die einsetzende Kristallisation. Diese sind für alle drei untersuchten Verbindungen in Tab. 58 dargestellt.

Abbildung 77. DSC-Diagramme (3 Zyklen) der glasartigen Verbindung Tl₇Te₃S₆ (langsam gekühlt).

Abbildung 78. DSC-Diagramme der glasartigen Verbindung Tl₇Te₃S₆ bei höheren Temperaturen.

Abbildung 79. Pulverdiffraktogramm des Kristallisationsproduktes des Glases mit der Zusammensetzung Tl_{2,3}TeS₂ (Tl₇Te₃S₆); Tl₂TeS₂ ist in der Datenbank PDF-2 [58] fälschlicherweise als Tl₇Te₃S₆ eingetragen.

Tabelle 58. Änderung der thermischen Eigenschaften der untersuchten Gläser mit dem Tl-Gehalt.

Glas	Temperatur des Glas-	Kristallisationspunkt
	Übergangs /°C	/°C
Tl _{2,3} TeS ₂	45	101
$Tl_{2,6}TeS_2$	45	91
Tl ₃ TeS ₂	58	95

3.7.7 Zusammenfassung und Diskussion

Durch Abschrecken einer Schmelze der Zusammensetzung Tl₇Te₃S₆ wird ein glasartiger Festkörper erhalten. Mithilfe der Raman-Spektroskopie lässt sich zeigen, dass das langsame Abkühlen einer Schmelze unterhalb des Transformationspunkts zu einer glasartigen Verbindung führt, deren Struktur sich im Vergleich zur abgeschreckten Phase unterscheidet. Das typische Relaxationsverhalten eines Glases ist auch in den DSC-Messungen sichtbar, da der endotherme Peak des ersten Zyklus (langsam abgekühltes Glas) eine Differenz von 4 °C zu den weiteren Signalen aufweist. Um die strukturellen Veränderungen bei diesem Übergang zu verfolgen, sind lokale Methoden, wie die (temperaturabhängige) Ramanspektroskopie oder bestenfalls NMR-Methoden geeignet.

Aus dem Vergleich der Schwingungs-, insbesondere der Raman-Spektren der glasartigen und kristallinen Verbindungen im System Tl-Te-S, geht hervor, dass im Glas TeS₂-Baueinheiten in einem regellosen Netzwerk, ähnlich wie im Tl₂TeS₂ (s. Abb. 65), angeordnet sind, welches

mit einem zunehmenden Anteil an Thallium zerstört wird, während die TI-S-Teilstruktur bei Erhöhung des TI-Gehalts mehr oder weniger erhalten bleibt. Die S-Te-Abstände variieren im Vergleich zur kristallinen Phase, was sich an der starken Verbreiterung der Banden und Verschiebungen zu kleineren Wellenzahlen festmachen lässt. Die Lockerung und Variation der Te-S-Bindung ist sicherlich die Folge einer Änderung der Schwefelkoordination durch die Thalliumatome. Umgekehrt ändert sich die Thalliumumgebung durch die Schwefelatome, was sich in den stark verbreiterten Banden unterhalb von 200 cm⁻¹ äußert. Diese Tendenzen sind im langsam abgekühlten Glas am stärksten ausgebildet. Die Verringerung der Symmetrie in den Gläsern äußert sich in der generellen starken Verbreiterung der beobacheten Banden im Vergleich zur kristallinen Phase. Die IR/Raman-Spektren der abgeschreckten und der langsam abgekühlten (getemperten) Schmelze der Zusammensetzung TI₇Te₃S₆ unterscheiden sich dabei deutlich und stellen zwei Zustände auf dem Weg ins thermodynamische Gleichgewicht dar.

Interessanterweise zeigen alle untersuchten Gläser, auch Tl_3TeS_2 , einen Glas-Glas-Übergang je nach Zusammensetzung zwischen 45 und 58 °C (s. Tab. 58), wenn sie auch keinen systematischen Gang mit dem steigendem Tl-Gehalt zeigen. Da die Schwingungsspektren von Tl_3TeS_2 eine zunehmende Zerstörung der TeS_2 -Teilstruktur mit steigendem Tl-Anteil anzeigen, die Tl-S-Schwingungen jedoch zu beobachten sind, muss man davon ausgehen, dass der Phasenübergang aufgrund von strukturellen Änderungen in der Tl-S-Teilstruktur erfolgt.

Es sind keine TeS₃-Baueinheiten im Glas enthalten, für die ν_s in der Nähe von 338 cm⁻¹ liegen müsste. Baugruppen, in denen Polysulfidketten vorliegen, können ebenfalls ausgeschlossen werden, da keine S-S-Schwingungen im Raman-Spektrum beobachtet werden.

3.8 Zusammenfassung und Ausblick

In den ternären Thallium-Chalkogen-Systemen Tl-Te-O und Tl-Te-S konnten drei neue kristalline Verbindungen dargestellt und deren Kristallstruktur bestimmt werden. Mit der Verbindung β -Tl₂TeO₃ wurde eine neue, metastabile Phase der bereits bekannten orthorhombischen Modifikation *a*-Tl₂TeO₃ synthetisiert. Die β -Form wandelt sich bei ca. 430 °C in die α -Form um.

Im System Tl-Te-S wurden die Kristallstrukturen der Thiotellurate Tl₂TeS₃ und Tl₂TeS₂, deren (ungefähre) Zusammensetzungen bereits bekannt waren [34], anhand von Einkristallstrukturanalysen aufgeklärt. Das Thallium(I)thiotellurat mit dem TeS₂²⁻-Anion, welches der 8-N-Regel folgt, kann als Zintl-Phase betrachtet werden. Sowohl im Tl₂TeS₃ als auch im Tl₂TeS₂ sind die Te-S-Bindungen im Vergleich zu anderen (Alkalimetall-) Verbindungen deutlich länger, was eine abnehmende Ionizität der Thalliumchalkogenide aufgrund des weniger elektropositiven Charakters des Thalliums zeigt. Die optisch bestimmte Bandlücke von Tl₂TeS₃ ist deutlich kleiner als diejenigen, die für ähnliche Alkalimetallthiotellurate bestimmt wurden [43]. Für Tl₂TeS₂ konnte aufgrund eines nicht phasenreinen Produkts kein aussagekräftiges Absorptionsspektrum gewonnen werden, wobei man aufgrund des geringeren Schwefelanteils und des metallischen Aussehens eine kleinere optische Bandlücke erwarten würde als für Tl₂TeS₃.

Darüberhinaus lassen sich Aussagen über glasartige Zustände im System Tl-Te-S machen, die auch Rückschlüsse auf die Schmelzen zulassen. Die Zusammensetzung $Tl_{2,3}TeS_2$ (" $Tl_7Te_3S_6$ ") erstarrte sowohl beim langsamen Abkühlen als auch beim Abschrecken glasartig. Die Schwingungsspektren der beiden Zustände unterscheiden sich durch eine Verschiebung und Verbreiterung der intensivsten Bande zu kleineren Wellenzahlen. Durch den Vergleich der Schwingungsspektren der kristallinen und glasartigen Phasen kann man davon ausgehen, dass TeS_2 -Einheiten zu einem regellosen Netzwerk mit einem relativ weiten Bereich von Bindungslängen miteinander verknüpft sind und dass bei den untersuchten Zusammensetzungen TeS_3 -Einheiten oder Polysulfidketten vorliegen.

Durch ein Erhöhen des Tl-Anteils im Glas wird die TeS₂-Teilstuktur weitgehend zerstört, wie man in den Schwingungsspektren des Glases Tl_3TeS_2 in den Abbn. 75 und 76 erkennen kann. Dennoch kann man im DSC-Diagramm auch bei diesem Glas eine Phasenumwandlung bei 58 °C entsprechend einem Glas-Glas-Übergang beobachten. Da alle untersuchten Gläser diese

117

Umwandlung bei leicht verschobener Temperatur mit ähnlicher Wärmetönung zeigen, lässt darauf schließen, dass in dieser Phasenumwandlung eine Umstrukturierung der TlS_x -Teilstruktur, nicht der TeS₂-Baueinheiten maßgeblich ist.

Der nächste Schritt besteht in der Untersuchung der optischen Eigenschaften von solchen Gläsern, die aufgrund eines im Vergleich zu den As-S/Se-Systemen relativ schmalen Glasbereichs bisher wenig Aufmerksamtkeit fanden. Andererseits könnten die Thiotellurat-Gläser einen interessanten Vergleich zu den Oxotelluratgläsern [4] liefern, die relativ gut untersucht wurden.

4 Methoden zur Produktcharakterisierung

4.1 Röntgenographische Methoden

4.1.1 Röntgenpulverdiffraktometrie

Zur Aufnahme von Pulverdiffraktogrammen mit dem Image Plate Guinier Camera (Huber G670) Diffraktometer (MoK α_i) wird die Probe fein zerrieben und etwa 1 cm hoch in eine Glaskapillare (Innendurchmesser: 0,2 mm) gefüllt und in die Mitte des Aufnahmekreises gesetzt. Die Auswertung der Pulverdiffraktogramme, erfolgt über die mitgelieferte Software STOE WinXPow 1.07 (s. Abschnitt 5.9) Die Identifizierung einer Substanz erfolgt durch den Vergleich des aufgenommenen Diffraktogramms mit den in der Datenbank PDF-2 [58] gespeicherten Daten, andererseits durch den Vergleich mit berechneten Diffraktogrammen.

4.1.2 Einkristallstrukturuntersuchungen

4.1.2.1 Theoretische Grundlagen

Die Streuwelle eines Atoms i ist als komplexe Größe zu beschreiben

$$F_{\rm c}(\text{Atom }i) = f_{\rm i} e^{i\Phi_{\rm i}}$$
(6)

mit der Phasenverschiebung
$$\Phi_i = 2\pi(hx_i + ky_i + lz_i)$$
 (7)

Die für die gesamte Struktur resultierende Streuwelle nennt man Strukturfaktor F_c . Er ergibt sich für jeden Reflex *hkl* aus der Summe aller *i* Atome der Elementarzelle unter Berücksichtigung ihrer einzelnen Phasenverschiebungen zu:

$$F_{o}(hkl) = \sum f_{i}[\cos 2\pi (hx_{i} + ky_{i} + lz_{i}) + i\sin 2\pi (hx_{i} + ky_{i} + lz_{i})$$
(8)

Sind alle Einzelwellen, die Strukturfaktoren F_0 (hkl), mit ihren Phasen bekannt, so lässt sich durch eine Fourier-Synthese die Elektronendichtefunktion δ (Gl. 4), also die Kristallstruktur, berechnen.

$$\rho(xyz) = \frac{1}{V} \sum_{hkl} F_{hkl} e^{-2\pi i (hx + ky + lz)}$$
(9)

$$\rho(xyz) = \frac{1}{V} \sum_{hkl} F_{hkl} \{ \cos[2\pi (hx + ky + lz)] + i \sin[2\pi (hx + ky + lz)] \}$$
(10)

Das zentrale Problem der Röntgenstrukturanalyse besteht darin, dass nur die Intensitäten und nicht die Amplituden experimentell zugänglich sind. Die Lösung dieses sogenannten Phasenproblems kann auf verschiedene Weise angegangen werden.

4.1.2.2 Strukturlösung und -verfeinerung

Aus der *Patterson-Synthese* erhält man vorwiegend das Teilgitter der Schweratome. Die Ableitung des Strukturmodells erfolgt über eine analoge Fourier-Synthese, wobei die gemessenen F_0^2 -Werte direkt in die Pattersonfunktion P_{uvw} eingesetzt werden

$$P(u, v, w) = \frac{1}{V} \sum_{hkl} F_{hkl}^{2} \cdot (\cos[2\pi(hu + kv + lw)]) + i\sin[2\pi(hu + kv + lw)]$$
(11)

Da in den F_0^2 -Werten keine Phaseninformation enthalten ist, lassen sich nur die interatomaren Abstandsvektoren u, v, w mit deren Intensitäten ermitteln.

Die *direkten Methoden* bedienen sich statistischer Methoden, um Zusammenhänge zwischen den Intensitäten innerhalb von Reflexgruppen und den Phasen zu ermitteln. Die erhaltenen Ergebnisse führen zu weiteren Phasen. Durch eine Fourier-Synthese erhält man daraus die Lageparameter der Atome.

Die *Differenz-Fouriersynthese* ist die übliche Methode, um ein Strukturmodell schrittweise zu vervollständigen. An jedem Punkt der Fourierdarstellung wird vom Ergebnis der Summation (mit den beobachteten F_0 -Werten) das Ergebnis einer Summation der berechneten F_c -Werten abgezogen. Auf diese Weise lassen sich Abbrucheffekte reduzieren und die Lagen der leichteren Atome bestimmen, die nun als deutliche Elektronendichte-Maxima auftreten.

Die Methode der kleinsten Fehlerquadrate wird das Strukturmodell durch Berechnung mehrerer Zyklen schrittweise optimiert, so dass die Differenzen der beobachteten und der berechneten Strukturfaktoren bzw. Intensitäten möglichst klein werden. Durch diese Vorgehensweise lassen sich die Lagen der einzelnen Atome sehr genau bestimmen. Zur Beurteilung der Güte eines Strukturmodells dient der konventionelle *R*-Wert, der gewichtete *R*-Wert, wR_2 , und der "Goodness of Fit" (GooF), *S* der sich berechnet zu:

$$R = \sqrt{\frac{\sum_{hkl} ||F_0| - |F_c||}{\sum_{hkl} |F_0|}}$$
(12)

 wR_2 beinhaltet die quadrierten Fehler und ist deshalb zwei- bis dreimal so groß wie bei der Verfeinerung gegen F_0 -Daten.

$$wR_{2} = \sqrt{\frac{\sum_{hkl} w \Delta_{2}^{2}}{\sum_{hkl} w (F_{0}^{2})^{2}}} = \sqrt{\frac{\sum_{hkl} w (F_{0}^{2} - F_{c}^{2})^{2}}{\sum_{hkl} w (F_{0}^{2})^{2}}}$$
(13)

In den GooF *S* geht auch der Grad der Überstimmung der Strukturparameter ein. *S* sollte bei einer korrekt bestimmten Struktur Werte um Eins annehmen.

$$S = \sqrt{\frac{\sum_{hkl} w \,\Delta^2}{m - n}} \tag{14}$$

mit *m*: Anzahl der Reflexe, *n*: Anzahl der Parameter.

Beim internen *R*-Wert R_{int} wird über symmetrieäquivalente Reflexe gemittelt, er gibt Hinweise auf die Richtigkeit der gewählten Raumgruppe.

4.1.2.3 Auslenkungsparameter

Der Atomformfaktor beschreibt das Streuvermögen ruhender Atome (in Abhängigkeit vom Beugungswinkel θ und von der Wellenlänge λ unter der Annahme, dass deren Schwerpunkte genau auf den Netzebenen liegen. Diese führen jedoch, in Folge von Wärmebewegungen, Schwingungen um ihre Ruhelagen aus mit dem Quadrat der Auslenkungsamplitude u_i^2 für das

Atom *i* senkrecht zur Netzebene. Die Atomformfaktoren erfahren auf diese Weise eine zusätzliche Schwächung (exponentieller Abfall) siehe Gl. (15).

$$f' = f \cdot e^{-8\pi^2 U \frac{\sin^2 \theta}{\lambda^2}}$$
(15)

mit

$$U = u^2 = \frac{B}{8\pi^2} \tag{16}$$

B: Debye-Waller-Faktor

In der Realität sind die Auslenkungsamplituden von der Raumrichtung abhängig und oftmals wirklichkeitsgetreuer durch ein Ellipsoid zu beschreiben. Diese anisotrope Auslenkung wird durch ein Auslenkungsellipsoid mit drei Hauptachsen U_1 , U_2 und U_3 beschrieben. Dessen Form und Lage wird durch die sechs U^{ij} -Parameter in Gl. (17) angegeben. Für schwere Atome sollten diese zwischen 0,005 und 0,02 Å² liegen.

$$f' = f \cdot e^{-2\pi^2 (U^{11}h^2 a^{*2} + U^{22}k^2 b^{*2} + U^{33}l^2 c^{*2} + 2 \cdot U^{23}klb^* c^* + 2 \cdot U^{13}hla^* c^* + 2 \cdot U^{12}hka^* b^*)}$$
(17)

4.1.2.4 Datensammlung

Die Registrierung der Reflexintensitäten erfolgt mit zwei IPDS Diffraktometern. Messungen bei Raumtemperatur werden am IPDS-1 durchgeführt, Tieftemperaturmessungen am IPDS-II, welches über ein Stickstoffkühlsystem verfügt. Die Messung der Reflexintensitäten erfolgt mit Bildplatten, wobei zweidimensionale Ausschnitte aus der Ewaldkugel vermessen werden. Während der Messung wird der Kristall um einen vorgegebenen Winkelbetrag um eine Achse gedreht, die aus Gründen der Informationsgewinnung nicht mit einer realen Achse zusammenfallen sollte. Das Belichten, Auslesen und Löschen wird für verschiedene Winkelstellungen wiederholt, bis genügend Informationen gesammelt sind. Für Aufnahme, Reflexsuche, Indizierung, Integration sowie Lorentz- und Polarisationskorrektur werden die entsprechenden Programme ds STOE-Software-Pakets [IPDS-Software: Programmpaket zur Messung und Auswertung von IPDS-Daten, STOE&Cie, Darmstadt **1998**] benutzt.

4.1.3 Hochtemperatur-Einkristallstrukturanalyse

Mit Hilfe dieser Methode ist es möglich, eine Datensammlung bei Temperaturen bis etwa 600 °C durchzuführen. Mit einer Heizwendel, am Goniometerkopf möglichst nahe am Messkristall befestigt wird, kann die Temperatur des Kristalls auf den gewünschten Wert eingestellt werden. Je nach Abstand des Messkristalls zu der Heizwendel muss für die Temperaturbestimmung ein Fehler von bis zu \pm 10 °C angenommen werden.

Abbildung 80. IPDS-Diffraktometer für die Hochtemperatur-Einkristallstrukturanalyse. Der Kristall wird mit einer Heizwendel, der auf dem Goniometerkopf befestigt ist, auf die gewünschte Messtemperatur gebracht.

4.1.4 Überprüfung der Kristallqualität mit Hilfe einer Präzessionskamera

Zur Überprüfung der Kristallqualität wird der Kristall in einer Glaskapillare auf einem Goniometerkopf befestigt und dieser auf eine Präzessionskamera montiert. Es wird eine unorientierte, stehende Aufnahme des Kristalls gemacht. Die Reflexe werden auf Bildplatten (image plates) aufgezeichnet und die Informationen mit einem Scanner ausgelesen. Die Aufnahme lässt Rückschlüsse auf die Symmetrie und auf die Einkristallinität eines Kristalls zu.

4.2 Infrarot- und Raman-Schwingungspektroskopie

Die IR/-Raman-Schwingungsspektroskopie ist eine geeignete lokale Methode, um kristalline Feststoffe zu untersuchen. Die Ramanspektroskopie ist zudem gut geeignet, um zur Strukturaufklärung von Gläsern beizutragen. Gläser unterscheiden sich vom kristallinen Festkörper durch die Abwesenheit von einer Fernordnung. Man kann jedoch in kurzer und mittlerer Reichweite Strukturelemente identifizieren, durch deren regellose Verknüpfung das gesamte Netzwerk aufgebaut ist. Oft lassen sich Baugruppen, die in den entsprechenden kristallinen Verbindungen auftreten, auch in der Glasstruktur antreffen. Dabei ist die unregelmäßige Vernetzung der Grund für eine Variation von Bindungswinkeln und -längen im Glas. Die Interpretation dieser Schwingungsspektren wird durch das Fehlen einer vereinfachenden Symmetrie erschwert, so dass keine theoretischen Berechnungen von Normalmoden der Strukturgruppen in Gläsern möglich sind. Dennoch lassen sich durch Vergleich mit den Raman-Spektren der kristallinen Phase im Glas wiederkehrende Signalkomponenten erkennen und somit zumindest bestimmte Baugruppen in der ungeordneten Struktur identifizieren (Fingerprint).

4.3 Differential Scanning Calorimetry (DSC)

Bei der Differenzthermischen Analyse wird die Temperatur einer Probe mit der eines inerten Referenzmaterials, während ein Temperaturprogramm durchlaufen wird, verglichen. Die Temperatur der Probe und der Referenz ist solange gleich bis in der Probe ein Wärmefluss (durch Schmelzen, Zersetzung, Fest-Fest-Phasenübergang usw.) stattfindet. Erfolgt eine endotherme Phasenumwandlung, ist die Temperatur der Probe geringer als die des Referenzmaterials. Entsprechend ist die Probentemperatur höher, wenn es sich um einen exothermen Prozess handelt. Bei der DSC wird das Messverfahren so modifiziert, dass die bei einem Vorgang freiwerdenden Wärmemenge direkt bestimmt werden kann. Als Tiegelmaterial stehen wahlweise kaltverschweißte Aluminiumtiegel oder Quarztiegel, welche sich mit einem Acetylenbrenner zuschmelzen lassen, zu Verfügung.

4.4 UV/Vis/NIR-Absorptionsspektroskopie

Die Messung der optischen Eigenschaften eines Materials gehört zu den wichtigsten Methoden, um die Bandlücke eines Halbleiters zu bestimmen. Liegt das Minimum des Leitungsband und das Maximum des Valenzbandes an der selben Stelle im *k*-Raum (*direkte Bandlücke*), lässt sich der Abstand zwischen ihnen direkt aus dem Einsetzen von Absorption elektromagnetischer Strahlung bestimmen. Sobald die Frequenz der einfallenden Photonen *hv* gleich der Größe der Bandlücke ist, kann man einen abrupten Anstieg der Absorption messen. Liegen Maximum und Minimum von Valenz- und Leitungsband an unterschiedlichen Stellen des *k*-Raums, muss auch ein Phonon am Absorptionsprozess teilnehmen (*indirekter Übergang*). Da das Phonon ebenfalls eine Energie *hv*(*k*) beisteuert, ist die Photonenenergie an der Absorptionsschwelle um diesen Betrag kleiner als die tatsächliche Energielücke (s. Abb. 81). Dieser Effekt macht typischweise nur einige 10^{-2} eV aus, und ist deshalb für Halbleiter mit sehr geringer Bandlücke (kleiner als 0,1 eV) von Bedeutung [59].

Die Probe wird fein zerrieben zwischen zwei Streifen von handelsüblichen transparenten Klebeband aufgebracht und anschließend in den Strahlengang gebracht.

Abbildung 81. Absorption eines Photons durch einen direkten (a) und einen indirekten (b) Übergang. Für den direkten Übergang entpricht diese Energie einer Frequenz $v = E_g/h$, beim indirekten Übergang entspricht diese Schwelle der Frequenz $v = E_g/h - v(q)$.

4.5 Energiedispersive Röntgenfluoreszensanalyse (EDAX)

Das EDAX-Verfahren bedient sich der Röntgenfluoreszenz zur Bestimmung der Zusammensetzung von Festkörpern. Die Auswertung der Röntgenspektren ermöglicht die Identifizierung einzelner Elemente anhahnd ihrer charakteristischen Röntgenstrahlung und deren Quantifizierung. Die Intensitäten der emittierten charakteristischen Röntgenstrahlung werden mit einem Si(Li)-Detektor erfasst. Unter gleichen Anregungsbediungen werden abhängig von der Zusammensetzung der Probe unterschiedliche Intensitäten I für die verschiedenen charakteristischen Spektrallinien gemessen.

Für eine quantitative Auswertung sind deshalb die gemessenen Intensitäten bezüglich der Probeneinflüsse zu korrigieren: Die Reflexion und Energieabnahme der Elektronen entlang ihrer Bahnen ist von der Matrix- bzw. Ordnungszahl abhängig. Da die emittierten Röntgenquanten auf dem Weg zur Probenoberfläche absorbiert werden, ist die Schichtdicke bzw. die Tiefenverteilung der generierten Strahlung von großer Bedeutung. Weiterhin können die emittierten Röntgenstrahlen wiederum charakteristische und kontinuierliche Fluoreszensstrahlung in der Probe anregen.

Der Fehler, der durch unterschiedliche Schichtdicken verursacht wird, kann durch eine automatische Rechner-Routine näherungsweise korrigiert wird. Um Absorptionseffekte gering zu halten sollten möglichst glatte Oberflächen ausgewählt werden. Der Meßfehler liegt dennoch zwischen 3% und 10%.

4.6 Elementaranalyse

Mit der CHNS-Elementaranalyse kann der gewichtsmäßige Anteil der Elemente Kohlenstoff, Wassestoff, Stickstoff und Schwefel in einer Probe bestimmt werden. Die Probe wird im Sauerstoffstrom bei 1010 °C verbrannt. Das entstehende Gasgemisch wird über einen Kupferkatalysator geleitet, um die Stickoxide zu reduzieren. Anschließend werden die Gase CO₂, H₂O, N₂ und SO₂ gaschromatographisch getrennt und detektiert.

4.7 Messung des spezifischen elektrischen Widerstands

Die Temperaturabhängigkeit des spezifischen elektrischen Widerstands der Verbindung wurde nach der 4-Punkt-Gleichstrommethode [60] gemessen. Zur Herstellung einer Probe wurden röntgenreine Pulverpresslinge hergestellt und bei der Herstellungstemperatur in einer Quarzglasampulle für 24 h gesintert. Die Kontaktierung des Pulverpresslings erfolgte mit Cu-Drähten, die mit einem speziellen Silberkleber auf der Probe angebracht wurden.

Abbildung 82. Links: Ofen für die temperaturabhängige Widerstandsmessung; rechts: Messlanze mit der kontaktierten Probe von Tl₂TeS₃.

4.8 Verzeichnis der verwendeten Geräte

- Argon-Glove-Box (M. Braun, D-Garching)
- Imaging-Plate-Diffraction-System, IPDS I (Stoe & Cie, D-Darmstadt)
- Imaging-Plate-Diffraction-System, IPDS II (Stoe & Cie, D-Darmstadt)
- Pulverdiffraktometer, Stadi P (Stoe & Cie, D-Darmstadt)
- Pulverdiffraktometer, G670 (Huber, D-Rimsting)
- UV-Vis-NIR-Absorptionsspektrometer (Varian, Palo Alto/USA)
- UV-Vis-Spektrophotometer, Cary 50, Varian, Palo Alto/USA
- DSC 204 F1 Phoenix (Netzsch GmbH, D-Selb)
- Rasterelektronenmikroskop/EDAX, XL 40 (Philips)
- IR-Spektrometer IFS/66v/S (Bruker)
- FUJI BAS 2500 Scanner, FUJI, Tokyo/J
- Euro Vektor CHNS-O-Elementaranalysator EuroEA 3000 (HEKAtech GmbH, D-

Wegberg)

- Säureaufschlußbomben, 4744 / 4749 (Parr Instrument Company, Moline / USA)
- Duranglasampullen (Boroclear-Rohr, Innendurchmesser: 9 mm; Wandstärke: 3,5mm) (Glas-Vertrieb Braun, D-Aachen)

4.9 Verzeichnis der verwendeten Computerprogramme

- X-SHAPE [X-SHAPE Version 1.06, Stoe&Cie GmbH, Darmstadt 2001] und X-RED [6 X-RED Version 1.22, Stoe&Cie GmbH, Darmstadt 2001]
 Programme zur Optimierung der Gestalt von Einkristallen und anschließender numerischer Absorptionskorrektur
- SHELXS-86/-97 [G.M. Sheldrick, SHELXS-86/-97, Programme zur Röntgenstrukturanalyse, Göttingen, 1986/1997]
 Programme zur Berechnung eines Strukturvorschlags aus Diffraktometerdaten unter Verwendung von Patterson- bzw. direkten Methoden
- SHELXL-93/-97 [G.M. Sheldrick, SHELXL-93/-97, Programme zur Verfeinerung von Kristallstrukturen, Göttingen, 1996/1997]
 Programme zur Strukturverfeinerung durch Differenz-Fourier-Synthese, "least-squares"-Verfeinerung und Wichtungsfunktion mit Darstellung von Bindungslängen und -winkeln
- Platon [A.L. Spek, *PLATON, A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, **1998**]
 Programm zur Raumgruppen- und Symmetrieanalyse
- Diamond 3.0 [Crystal Impact GbR, Bonn 2004.]
 Visualisierungs- und Archivierungsprogramm f
 ür Kristallstrukturen
- STOE WinXPow 1.07, Stoe&Cie GmbH, Darmstadt [[STOE & Cie GMBH, Visual X-POW 1.07, Darmstadt, 2000.] und STOE Win XPOW [STOE & Cie GMBH, Visual Win X-POW 1.04, Darmstadt, 1998]
 Programm zur Auswertung von Pulverdiffraktogrammen
- NETZSCH Proteus 4.7.0 [NETZSCH-Proteus 4.7.0 -Thermal Analysis-, Netzsch GmbH, Selb.]

Programm zur Auswertung von DSC/DTA-Messungen

 BasReader 3.01 [Control Software for FujiFilm Bas and FLA Scanners, Fuji, Tokyo/J 1999.]

Programm zur Steuerung des FUJI BAS 2500 Scanners

Origin 6.0 [Microcal Software Inc., *MicrocalTM Origin®*, *Version 6.0*, Northampton 1999.]

Programm zur graphischen Erstellung und Auswertung von Spektren.

Chemikalie	Reinheit	Hersteller
Thallium	99,9 %	Aldrich.
Tellurdioxid	> 98 %	Merck
Tellur	99.5 %,	Aldrich
Schwefel	99 %	Strem Chemicals
Thallium(I)carbonat	99,95	Strem Chemicals
Thallium(I)iodid	99,99	Chempur
Methanol	99,8 %	Riedel-de Haën
Acetonitril	>99,5 %	Merck
Iod	>99,8	Riedel-de Haën
18-Krone-6	99 %	Acros Organics
Dibenzo-24-Krone-6	> 99%	Merck
Kryptofix 222	> 99%	Merck
Kryptofix 5	>99 %	Merck
Iodwasserstoffsäure	57 %	Merck
Ammoniumiodid	99,5 %	Merck
Kupfer(I)iodid	98 %	Merck
Acetonitril	>99,5 %	Merck
Dichlormethan	99,8 %	Riedel-de Haën
Ethanol	99,8 %	Riedel-de Haën
Methanol	99,8 %	Riedel-de Haën

4.10 Verzeichnis der verwendeten Chemikalien

5 Toxikologie des Thalliums [61] und Arbeitssicherheit

Aufnahme und Verteilung im Körper

Thallium(I)-Ionen werden aus dem Atmungs- oder Verdauungstrakt praktisch vollständig resorbiert. Auch durch die Haut wird Thallium in den Organismus aufgenommen. Einmal in den Körper gelangt, verschwinden die Tl⁺-Ionen rasch wieder aus dem Blut, weil sie in die Zellen der Organe aufgenommen werden. Man geht davon aus, dass sie, wahrscheinlich aufgrund der physikalisch-chemischen Ähnlichkeiten zu den Alkalimetallen (Ionendradius, Oxidationsstufe etc.), die Transporteinrichtungen für K⁺-Ionen mitbenutzen. Bei der Maus wurde nachgewiesen, dass sich radioaktives Thallium nach intravenöser Eingabe in den Epithelien der Nieren und im Dickdarm anreichert. Auch in der Leber und in bestimmten Knochen und Knorpeln wurden hohe Konzentrationen gemessen. Thallium-Ionen werden über die Nieren und den Darmtrakt ausgeschieden. Die biologische Halbwertszeit beim Menschen beträgt ungefähr 30 Tage.

Akute und chronische Toxizität

Thallium weist eine hohe akute sowie chronische Toxizität auf. 0,8 bis 1 g bezogen auf das Element Thallium sind für den Erwachsenen tödlich, wobei geringere Dosen schwere Vergiftungen hervorrufen. In der Initialphase einer Vergiftung, die bis zu 4 Tage dauern kann, kommt es zu Beschwerden im Magen-Darm-Trakt. Auf der Kopfhaut lässt sich das Widysche Syndrom nachweisen, wobei es sich um schwärzliche Ablagerungen von Thalliumsulfid im Bereich der Haarwurzel handelt. Die Frühphase der Vergiftung zwischen dem 7. und 10. Tag nach der Thallium-Einnahme wird von unspezifischen Symptomen wie Schlafstörungen und psychischen Veränderungen begleitet. Nach 10 bis 20 Tagen wird die Maximalphase erreicht, bei der Haarausfall einsetzt. Es kommen Sehstörungen hinzu, die mit einer Lähmung der Hirnnerven bis zur teils irreversiblen Schädigung des Sehnerven führen können. Der Tod tritt entweder während einer Lähmung des verlängerten Rückenmarks oder aufgrund von Herzrhytmusstörungen ein. Unter den Spätschäden einer Vergiftung sind unter anderem Lähmungen der Extremitäten, einer verringerten Nervenleitgeschwindigkeit, sowie eines verstärkten Haarwachstums zu nennen. Thallium ist fetotoxisch und gelangt einfach durch die Plazenta in den Fetalkreislauf. Die Angaben über die Mutagenität von Thallium sind in der Literatur widersprüchlich. Tierexperimentelle Untersuchungen einer kanzerogenen Wirkung von Thalliumverbindungen existieren bisher nicht.

Wirkungsmechanismus

Bis heute gibt es in dieser Frage des Wirkungsmechanismus von TI^+ im Körper noch viele Ungereimtheiten. Festzustellen ist nach dem heutigen Wissensstand, dass TI^+ -Ionen in allen Zellen sowie an isolierten Enzymsystemen der Na⁺-K⁺-ATPase Kalium-Ionen ersetzen können. In bestimmten Konzentrationsbereichen, die nicht als niedrig bezeichnet werden können, kann Thallium sogar bestimmte Zellfunktionen aufrechterhalten. Am Herzen können TI^+ -Ionen die gleichen toxischen Wirkungen wie K⁺-Ionen hervorrufen, die in der Maximalphase einer Vergiftung Todesursache sein können. Auffallend für die Ausprägung der lebensbedrohlichen Giftwirkungen ist deren langsame Entwicklung. Dabei zeigen sich die Schäden vor allen Dingen an den Mitochondrien, die bis zu deren vollständiger Zerstörung reichen. Es ist ebenfalls ungeklärt, ob TI^+ die giftige Spezies des Metalls darstellt. Ein Erklärungsansatz geht von der langsamen Bildung von TI^{3+} -Ionen im Zellinnern aus, welche starke Oxidantien für Glutathion (ein an verschiedenen Stoffwechselvorgängen beteiligtes Tripeptid) sind. Eine vollständige Aufklärung ist bis heute nicht erfolgt, obwohl eine Oxidation von TI^+ zu TI^{3+} in Teilen der Mitochondrien von Hefezellen nachgewiesen wurde.

Therapie von Thalliumvergiftungen

Die gängigen Chelatbildner eignen sich nicht, um Thallium zu komplexieren und aus dem Körper auszuleiten. Deshalb versucht man, die Ionen über die Nieren auszuschwemmen, was durch eine zusätzliche K⁺-Ionen-Infusion unterstützt werden kann. Alternativ besteht die Möglichkeit, Thallium über den Darm nach einer Therapie von A. Catsch auszuschleusen, die in den 50er Jahren ursprünglich zur Ausschleusung von radioaktiven Cäsium entwickelt worden war. Hierzu verabreicht man dem Patienten oral das vom Körper nicht resorbierbare kolloidale Berliner Blau, welches in der Lage ist, einwertige Kationen bevorzugt mit großem Ionenradius zu binden. Auf diese Weise lässt sich auch das aus dem Blut in den Magen-Darm-Trakt abgesonderte Thallium abfangen und zur Ausscheidung bringen. Insbesondere in

den Niederlanden, wo die Berliner-Blau-Therapie konsequent angewendet wurde, sind keine Todesfälle mehr nach Thalliumvergiftungen aufgetreten.

Labor- und Arbeitssicherheit

Aufgrund der hohen Giftigkeit von Thalliumverbindungen ist es notwendig, neben den üblichen Sicherheitsvorkehrungen im Labor, auf folgende Punkte zu achten:

- Da Thalliumsalze über die Haut aufgenommen werden können, ist jeder Hautkontakt absolut zu vermeiden. Dies geschieht durch das Tragen geeigneter geschlossener Laborkleidung und Schutzhandschuhen.
- Besonderes Augenmerk sollte man auf die Gefahr der Aufnahme von Thallium durch die Lunge legen. Thalliumhaltige Stäube stellen ein großen Berufsrisiko z. B. in der zementverarbeitenden Industrie dar. Im Labor ist daher streng darauf zu achten, dass die Handhabung von Pulvern nicht in einem Bereich ausgeführt wird, wo ein starker Luftzug herrscht, da dies zur Aufwirbelung und Verteilung der Stäube führt. Außerdem sollte beim Umgang mit pulverförmigen Stoffen eine Feinstaub-Atemschutzmaske getragen werden. Ebenso müssen thalliumhaltige Reaktionsgemische z. B. durch eine Stahlbombe von der Umgebung getrennt werden, so dass bei einem etwaigen Zerbersten einer Ampulle keine Stäube in die Umgebung getragen werden können. Wenn bei einem Bruch des Reaktionsgefäßes mit der Freisetzung von Thalliumdämpfen zu rechnen ist, muss die Reaktion unter einer Abzugshaube durchgeführt werden.
- Eine orale Aufnahme ist bei Einhaltung der üblichen Laborsicherheit auszuschließen.

Die Überwachung von exponierten Personen erfolgt im arbeitsmedizinischen Bereich über Urinproben. Als normal wird die Ausscheidung von 0,05 bis 1,5 μ g/L Urin betrachtet. 300 μ g/L werden als Grenzwert für die kurzfristige Belastung von Beschäftigten in thalliumverarbeitenden Betrieben angegeben [61].

6 Literaturverzeichnis

- [1] P. Pyykkö, Acc. Chem. Res. 1979, 12, 276.
- [2] N. N. Greenwood, A. Earnshaw, *Chemie der Elemente*, VCH, Weinheim 1988.
- [3] L. Ottenschläger, *Umweltchemisches Seminar*, Institut für Mineralogie und Geochemie, Universität Karlsruhe **2003**.
- [4] B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard,
 T. Merle-Méjean, B. Frit, *J. Solid State Chem.* 1999, 146, 329.
- [5] Ullmann's Encyclopedia of Industrial Chemistry, 6. Aufl., Wiley-VCH, Weinheim 2003.
- [6] F. J. DiSalvo, *Science* **1999**, *285*, 703
- P. J. Gehring, P. B. Hammond, J. Pharmacol. Exp. Ther. 1967, 155, 187; C. E.
 Inturrisi, Biochim. Biophys. Acta 1969, 178, 630.
- [8] F. Rieger, A.-V. Mudring, Posterbeitrag, *Gemeinsame Jahrestagung der DGK*, Jena 2004.
- [9] I. A. Kahwa, D. Miller, M. Mitchel, F. R. Fronczek, R. G. Goodricht, D. J. Williams,
 C. A. O'Mahoney, A. M. Z. Slawin, S. V. Ley, C. J. Groombridge, *Inorg. Chem.* 1992, 31, 3963.
- [10] M. A. Subramanian, J. Calabrese, C. C. Torardi, J. Gopalakrishnan, T. R. Askew, R.
 B. Flippen, K. J. Morrisey, U. Chowdhry, A. W. Sleight, *Nature* 1988, *332*, 420.
- [11] K. Brodersen, J. Zimmerhackl, Z. Naturforsch. 1991, 46b, 1.
- [12] D. L. Hughes, J. Chem Soc. Dalton Trans. 1975, III, 2374.
- [13] I. Pantenburg, *Dissertation*, Köln 2001.
- [14] Supramolecular Chemistry, J. W. Steed, J. W. Atwood, Wiley, New York 2000.
- [15] E. Zintl, W. Dullenkopf, Z. Phys. Chem. B 1932, 16, 195.
- [16] K. H. Lieser, H. Witte, Z. Metallk. 1952, 43, 396.
- [17] K. Nakamoto, *Infrared Spectra of Inorganic Compounds*, 2. Aufl., Wiley, New York 1973.
- [18] J. Weidlein, U. Müller, K. Dehnicke, *Schwingungsspektroskopie Eine Einführung*, Thieme Verlag, Stuttgart 1988.
- [19] M. Bühl, R. Ludwig, R. Schurhammer, G. Wipff, J. Phys. Chem. A 2004, 108, 11463.
- [20] K. Fukuhura, K. Ikeda H. J. Matsuura, J. Mol. Struct 1990, 224, 203.
- [21] K. V. Domasevitch, J. A. Rusanova, J. Sieler, V. N. Kokozay, Inorg. Chim. Acta 1999,

293, 234.

- [22] F. R. Fronczek, R. D. Gandour, in Y. Inone, G. W. Gokel (Eds.): Cation Binding by Macrocycles: Complexation of Cationic Species by Crown Ethers, M. Dekker Inc., New York 1979.
- [23] R. D. Shannon, Acta Cryst. 1976, A32, 751.
- [24] J. A. Manskaya et al., Z. Naturforsch. B 1998, 53, 683.
- [25] C. Riche, C. Pascard-Billy, C. Cambillau, G. Bram., J. Chem. Soc., Chem. Commun. 1977, 183.
- [26] V. A. Trush, K. V. Domasevitch, V. M. Amirkhanov, J. Sieler, Z. Naturforsch. 1999, 54b, 451.
- [27] H. W. Roesky, M. Scholz, M. Noltemeyer, F. T. Edelmann, *Inorg. Chem.* 1989, 28, 3829; I. D. Brown, R. Faggiani, *Acta Crystallogr. B*, 1980, 36, 1802.
- [28] A.-V. Mudring, F. Rieger, *Inorg. Chem.* **2005**, *44*, 6240.
- [29] http://www.msg.ameslab.gov/GAMESS.html.
- [30] I. Gržetić, G. Moh, N. Jb. Miner. Abh. 1994, 167(2/3), 349.
- [31] www.webmineral.com
- [32] K. Kocman, E. W. Nuffield, Can. Mineral. 1974, 12, 269
- [33] D. Harker, Z. Kristallogr. 1934, 89, 175.
- [34] F. Daliran, G. Moh, N. Jb. Miner. Abh. 1995, 169 (3), 255.
- [35] Th. Doert, P. Böttcher, R. Cardoso-Gil, Z. Anorg. Allg. Chem. 1999, 625, 2160.
- [36] S. A. Sunshine, D. Kang, J. A, Ibers, J. Am. Chem. Soc. 1987, 109; M. G. Kanatzidis, Chem. Mater. 1990, 2, 253.
- [37] T. McCarthy, X. Zhang, M.G. Kanatzidis, *Inorg. Chem.* **1993**, *32*, 2944.
- [38] M. Wachhold, *Dissertation*, Herbert Utz Verlag Wissenschaft, München 1997.
- [39] E. Cruceanu, D. Niculescu, J. Phys. Soc. Japan 1973, 12, 1198.
- [40] W. Nowacki, A. Edenharter, P. Engel, M. Gostojić, A. Nagl, Special Publication of the Society for Geology Applied to Mineral Deposits 1982, 2, 689.
- [41] J.-C. Jumas, M. Ribes, M. Maurin, E. Philippot, Acta Cryst. 1976, B32, 444.
- [42] C. Rumpf, C. Näther, W. Bensch, Acta Crystallogr. 1999, C55, 1046.
- [43] X. Zhang, M.G. Kanatzidis, *Inorg. Chem.* **1994**, *33*, 1238.
- [44] A. Pfitzner, F. Baumann, W. Kaim, Angew. Chem. 1998, 110, 2057.
- [45] S. H. Kim, T. Yoko, S. Sakka, J. Am. Ceram. Soc. 1993, 76, 1061.
- [46] B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. X. Champarnaud-Mesjard,

T. Merle-Méjean, B. Frit, V. Nazbal, E. Fargin, G. Le Flem, M. O. Martin, B.
Bousquet, L. Canioni, S. Le Boiteux, P. Segonds, L. Sarger, *J. Sol. State Chem.* 1999, 146, 329.

- [47] A. Gutzmann, A. Näther, W. Bensch, Acta Cryst. C 2004, 60, i11.
- [48] D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis, *Science* 2000, 287, 1024.
- [49] A. Edenharter, Z. Kristallogr. 1979, 150, 169.
- [50] A. P. Mirgorododsky, T. Merle-Méjean, P. Thomas, J.-C. Champarnaud-Mesjard, B. Frit, J. Phys. Chem. Solids 2002, 63, 545.
- [51] D. Cellai, M. A. Carpenter, R. J. Kirkpatrick, E.K.H. Salje, M. Zhang, Phys. Chem. Miner. 1995, 50.
- [52] H. P. Beck, M. Schuster, J. Solid State Chem. 1992, 100, 301.
- [53] F. Rieger, A.-V. Mudring, Z. Anorg. Allgem. Chem. 2006, 632, 2113.
- [54] M. A. McGuire, T. K. Reynolds, F. J. DiSalvo, Chem. Mater. 2005, 17, 285.
- [55] M. A. McGuire, T. J. Scheidemantel, J. V. Badding, F. J. DiSalvo, *Chem. Mater.* 2005, 17, 6186.
- [56] X. Zhang, M.G. Kanatzidis, J. Am. Soc. 1994, 116, 1890.
- [57] G. W. H. Höhne, W. F. Hemminger, H. J. Flammersheim, *Differential Scanning Calorimetry*, Springer, Heidelberg Berlin 2003.
- [58] Powder Diffraction File, PDF-2 Database Sets 1-5: International Centre for Diffraction Data, The Newtown Square, PA (USA) 1995.
- [59] N.W. Ashcroft, N.D. Mermin, *Festkörperphysik*, Oldenbourg Verlag, München Wien 2005.
- [60] R. Mirgel, *Dissertation*, Köln 1986.
- [61] H. Marquardt, S. G. Schäfer (Eds.), *Lehrbuch der Toxikologie*, BI-Wissenschaftsverlag, Mannheim 1994.
Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jeden Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegt; dass sie noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der geltenden Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Frau Priv.-Doz. A.-V. Mudring betreut worden.

Köln, den 20. September 2006, Franziska Rieger

Zur Wahrung der Priorität wurden folgende Teile dieser Arbeit bereits publiziert:

- F. Rieger, A.-V. Mudring, Posterbeitrag, Gemeinsame Jahrestagung der DGK, Jena 2004.
- A.-V. Mudring, F. Rieger, Inorg. Chem. 2005, 44, 6240.
- F. Rieger, A.-V. Mudring, Inorg. Chem. 2005, 44, 9340.
- F. Rieger, A.-V. Mudring, Z. Anorg. Allgem. Chem. 2006, 632, 2113.

Danksagung

Herzlich danken möchte ich allen Personen, die direkt oder indirekt zum Gelingen dieser Arbeit beigetragen haben:

Frau Priv.-Doz. Anja-Verena Mudring danke ich für die Betreuung und Unterstützung dieser Arbeit mit Rat und Tat, für die Durchführung der theoretischen Rechnungen und für die angenehme freie Forschungsatmosphäre.

Herrn Prof. Dr. Gerd Meyer danke ich für die freundliche Aufnahme in seinem Arbeitskreis und für seine Unterstützung und Förderung der Arbeit.

Vielen Dank an meine Labor- und "Subgroup"-Kollegen Anna Getsis, Tudor Timofte und Arash Babai, auf deren Hilfsbereitschaft man sich in jeder Situation verlassen kann.

Allen Mitarbeitern des Arbeitskreises von Prof. Meyer danke ich, Dr. Ingo-Pantenburg und Ingrid Müller besonders für die IPDS-Hochtemperatur-Messungen, Dr. Angela Möller für die Unterstützung bei der Interpretation der Schwingungsspektren, Herrn S. Brandtl danke ich für seinen Einsatz, wenn hausmeisterliches Geschick benötigt wurde. Herrn H. Schumacher danke ich für die EDX-Messungen und zahlreichen Pulverdiffraktogramme, Frau R. Schulze und Peter Kliesen für die Messung der Schwingungsspektren. Frau Dipl.-Phys. Eva Rose danke ich für die Durchführung Leitfähigkeitsmessungen. Weiterhin geht mein Dank an Yassin Mokaddem und Dr. Leo Pak für die fachlichen Diskussionen und vielerlei nützlichen Ratschläge sowie Matthias Nolte, Muhamet Sehabi, Nazife Cesur, Timo Taetz und Heinz-Hubert Fischer für ihre Hilfsbereitschaft.

Danke schön an alle F-Praktikanten, die mit großem Engagement mitgearbeitet und zu dieser Arbeit beigetragen haben: Alexander Thiessen, Elena Albermann, Nico Slavov, André Uthe, Frank Heinrich, Peter Görzen, Michael Rolletter und Kristina Hackelöer.

Schließlich danke ich herzlich meinen lieben Eltern.