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Abstract 
 
 
Tight regulation of APC/C activity is essential for cell cycle progression. An important class 

of negative APC/C regulators are the Rca1/Emi1 family proteins. All members of the 

Rca1/Emi1 family share a conserved zinc binding region (ZBR) which is essential for their 

inhibitory activity. The Rca1/Emi1 proteins belong to the class of F-box proteins that are 

known to act as substrate recognition subunits in SCF-E3-ligase complexes. Emi1 and Rca1 

interact in vitro with members of the Skp family via the F-box. However, no F-box 

dependent function has been ascribed to these proteins. In Drosophila, Rca1 is required in G2 

to prevent premature activation of the APC/C by Fzr. Loss of Rca1 results in an arrest during 

G2 of the 16th embryonic cell cycle due to premature cyclin degradation. In order to map the 

essential domains for Rca1 function, a series of deletion constructs was tested for their ability 

to inhibit APC/C-Fzr activity  in vivo. A C-terminal Rca1 fragment including the ZBR was 

sufficient to restore mitosis 16 in rca1 mutant embryos. This observation confirms that the 

ZBR is the only protein motif essential for APC/C-Fzr inhibition by Emi1/Rca1. Moreover, 

this result indicates that the F-box is dispensable for APC/C-Fzr inhibition during 

embryogenesis. However, analysis of Rca1 function during larval development revealed that 

Rca1 has a secondary role as an F-box protein. Using the MARCM technique, wing disc cells 

were generated in which endogenous Rca1 was replaced by an Rca1 construct lacking the F-

box. These cells displayed a reduced proliferation rate and  prolonged G1-phase. Conversely, 

overexpression of Rca1 accelerates the G1-S transition in imaginal discs in an F-box 

dependent manner. Hence, it is likely that Rca1 regulates S-phase entry as part of a yet 

uncharacterized SCF-complex. In addition, the effect of Rca1 on endoreplication was 

analyzed. Overexpression of Rca1 during salivary gland development leads to a reduction of 

polyploidization. This phenotype also depends on a functional F-box. Endoreplication cycles 

are driven by oscillating waves of Cyclin E/Cdk2 activity, whereas Cdk1 and the mitotic 

cyclins are transcriptionally downregulated. Furthermore, APC/C-Fzr activity seems not to be 

required once the endoreplication program has been initiated. Cells overexpressing Rca1 

displayed elevated levels of Cyclin E, although Cyclin E is not a target of the APC/C-Fzr 

complex. It has been shown that continuous expression of Cyclin E interferes with DNA-

licensing. Thus, the reduced DNA content in Rca1 overexpressing cells might be due to 

elevated Cyclin E levels. Additionally, Rca1 overexpressing cells displayed markers for 

mitotic cells such as Cdk1 and nuclear Cyclin A. The accumulation of Cdk1, Cyclin A and 

Cyclin E cannot simply be explained by APC/C inhibition. It rather appears that Rca1 
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activates the transcription of these genes by an unknown mechanism. Nevertheless it cannot 

be excluded that the APC/C-Fzr complex indirectly contributes to this process. Altogether, 

Rca1 might act as an F-box protein in an SCF complex that is involved in maintaining 

diploidy. 
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1. Introduction 
 
All living organisms are comprised of cells that reproduce by the interplay of cell growth and 

cell division. Division of already existing cells is the only possibility to generate novel cells 

and consequently the only way to inherit the genome of the progenitor cell. Thus, the 

capability of cell division is a fundamental prerequisite for the continuance of life. In 

unicellular organisms each cell division results in the production of an entire new organism. 

In multicellular organisms, however, it requires numerous divisions to create a novel 

organism from a fertilized oocyte. Since cell division and cell differentiation cannot occur 

simultaneously, cell division has to be tightly coordinated with the developmental program. 

In multicellular organisms, cell division occurs not only during development but is rather 

required throughout the whole lifespan. Continuous replacement of dead and degenerated 

cells is a fundamental process to maintain the health of an organism. Hence, impaired cell 

division can result in severe defects during development as well as in adult organisms. 

 

In principle, cell division requires two different steps that have to be orchestrated. In the first 

step, cells duplicate their DNA, which is equally distributed between both daughter cells 

during the actual division step. Since both events occur in an ordered fashion and cannot be 

separated from each other, the reproduction process of a eukaryotic cell is generally referred 

as cell cycle (for a general review see Morgan, 2006). The eukaryotic standard cell cycle is 

divided into four distinct phases, which are named G1, S, G2 and M-phase. The actual 

division process takes places during M-phase, which is subdivided into mitosis and 

cytokinisis. The period between two subsequent divisions is termed interphase and is 

comprised of the three remaining phases. Interphase begins in G1, where the cells are highly 

metabolic active and increase their cell mass. After completion of this gap phase, cells 

undergo S-phase to duplicate their DNA. DNA-replication results in the generation of two 

sister chromatids that will be evenly distributed during mitosis. Before initiation of mitosis, 

cells enter the G2-phase, in which they undergo further growth. Mitosis is also referred as 

nuclear division since it only results in the formation of two new nuclei. In the following 

cytokinisis, these daughter nuclei are then distributed into separate cells. 

 

Based on morphological criteria, mitosis is subdivided into five sections: The first part of 

mitosis, where the DNA begins to condensate, is named prophase. It is followed by 

prometaphase and correlates with the initiation of nuclear envelope breakdown. During 
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metaphase, sister chromatids are attached to the mitotic spindle and form the metaphase plate  

in the middle of the cell. In the following anaphase, sisterchromatids separate and are 

subsequently pulled towards the spindle poles. The formation of new nuclei marks the 

terminal phase of mitosis and is termed telophase. At this time the DNA starts to 

decondensate, a process that persists till onset of interphase. 

 

 
Figure 1 The eukaryotic standard cell cycle (adapted from Morgan, 2006). The standard cell cycle 
is comprised of four phases. In S-phase the DNA of the cell becomes duplicated. During M-phase, the 
replicated DNA is equally distributed between both daughter cells. S and M-phase are separated by 
two Gap-phases (G1 and G2) in which the cell increases their mass by growth. The M-phase is dived 
into two sections, mitosis and cytokinisis. During mitosis sisterchromatids are distributed into two 
daughter nuclei which become, in the following cytokinisis separated, by a new cell wand. Mitosis is 
subdivided into five phases, whereby metaphase and anaphase are of particular interest. During 
metaphase, sister chromatids are held in the middle of the cell by the mitotic spindle. In the following 
anaphase, sister chromatids fall apart and are drawn to opposite poles of the cell.   

 

1.1. Cell cycle regulation during Drosophila development 
 

The eukaryotic standard cell cycle is not the only of cell cycle mode that is applied. The cells 

of multicellular organisms rather display different types of cell cycle regulation. This 

plasticity is necessary to adapt the cell cycle to the different demands of a certain tissue or a 

particular developmental process. The fruit fly, Drosophila melanogaster is an outstanding 

model organism to study the mechanisms coordinating cell proliferation with the 

developmental program (for review see Edgar and Lehner, 1996; Lee and Orr-Weaver, 2003; 

Swanhart et al., 2005). During the course of Drosophila development, cells exhibit a variety 

of different cell cycle types. Even during the short period of embryogenesis, the cells have to 

undergo three different modes of cell cycle regulation (Figure 2). After completion of 
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embryogenesis a feeding larvae arises from the embryo. The larvae grows dramatically, but 

instead of increasing cell numbers, most cells of the larval tissues undergo a specialized cell 

cycle called endocycle. Most of the adult structures derive from imaginal discs which divide 

mitotically during the larval period. Of particular interest are the imaginal discs that comprise 

of the prospective eye (Figure 3) and wing (Figure 4), since they display a cell cycle mode 

that resembles the standard cell cycle. Finally, nurse and follicle cells of the Drosophila ovary 

have been proofed as very useful for the investigation of DNA replication and 

endoreplication, respectively. 

 

1.1.1. Adaptation of cell cycle regulation during Drosophila embryogenesis 
  

The first ten cell cycles during Drosophila embryogenesis are nuclear divisions that occur in 

a common cytoplasm and give rise to a syncytium. These syncytial cell cycles are very rapid, 

since they consist only of S and M-phases without intervening Gap-phases. At the onset of 

embryogenesis, all nuclei are located in the centre of the syncytium. However, at the end of 

the seventh division cycle three-quarters of the nuclei start to migrate to the surface. The 

remaining nuclei, by contrast, develop into yolk nuclei that exit the cell cycle after 

completion of the tenth cycle and then initiate endoreplication. During endoreplication, 

mitosis is bypassed resulting in an increased DNA content (for review see Edgar and Orr-

Weaver, 2001; Lilly and Duronio, 2005). In the course of the ninth division cycle, the first  

migrating nuclei arrive at the posterior pole of the zygote. During the following cell cycle, 

cellularization becomes initiated and thereby these nuclei lose their synchrony with the 

remainder of the nuclei. These early forming posterior cells are termed as pole cells and give 

rise to the germ cells. The remaining nuclei reach the surface at the beginning of the tenth cell 

cycle. These nuclei undergo four additional syncytial divisions until they initiate 

cellularization. These divisions originate at the poles and spread then wavelike to the middle 

of the embryo. Similar to the first ten divisions, these cell cycles (10-13) lack any intervening 

Gap-phases, but are a bit slower.     
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Figure 2 Cell cycle regulation during Drosophila embryogenesis. The first thirteen cell cycles are very 
rapid and only consist of S- and M-phases. At the stage of cellularization, the midblastula transition occurs 
and thereby cells change from maternal to zygotic transcription. The following three divisions are termed  
postblastoderm cell cycles. During these stages, cells undergo a distinct G2-phase, but enter S-phase without 
an intervening G1-phase. Most of the epidermal cells persist in this terminal G1-phase until the end of 
embryonic development, while the cells of certain internal tissues such as the gut or the salivary glands enter 
endocycles. An exception are the cells of the developing nervous system which remain mitotic. The drawings 
of embryonic stages on the right side are adapted from Hartenstein (1993).  

 

During the 14th embryonic cell cycle the remaining nuclei initiate cellularization, a stage that 

is called cellular blastula. With the onset of cell cycle 14, the nuclei lose their synchrony and 

the divisions occur in an invariant spatiotemporal  pattern of 25 mitotic domains (Foe, 1989). 

The first 13 divisions are driven by maternal stockpiles. At the cellular blastula stage these 

maternal transcripts are exhausted and zygotic gene expression becomes essential (Merrill et 
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al., 1988; Wieschaus and Sweeton, 1988). The initiation of zygotic transition is called 

midblastula transcription and results in the introduction of the first G2-phase (Edgar and 

O'Farrell, 1989; Edgar and O'Farrell, 1990). The first G1-phase is established after 

completion of mitosis16 (Edgar and O'Farrell, 1990). Most of the epidermal cells reside in 

this terminal G1 phase until the end of embryogenesis. Groups of 10-50 imaginal cells that 

develop into adult structures are separated from the remainder of cells and re-initiate 

proliferation only upon onset of larval development. By contrast, cells that give rise to the 

larva proper (e.g. gut, fat body and salivary glands) initiate endoreplication cycles and 

become polyploid (Smith and Orr-Weaver, 1991). The cells of the developing nervous system 

are an exception, because they continue to proliferate mitotically during late embryogenesis.  

 

1.1.2. Third instar eye imaginal disc display a linear arrangement of cell 
cycle stages 

 

The imaginal discs of Drosophila are monolayered epithelial sacs that undergo extensive 

proliferation during the larval stages. The adult eyes as well as some structures of the head 

originate from the posterior part of the eye-antenna disc. Eye imaginal discs are an excellent 

system to study cell cycle control during organ development. A major advantage of the eye 

imaginal disc is that alterations of the cell cycle often results in aberrant eye morphology (de 

Nooij and Hariharan, 1995). Eye phenotypes are easy recognizable and therefore facilitate the 

identification of defects in the cell cycle program. During the first two larval stages, eye 

imaginal disc cells proliferate in a unpatterned manner that resembles the standard cell cycle. 

However, during the third instar stage the differentiation of eye disc cells is initiated. The 

differentiation into photoreceptor cells is coordinated by the movement of the morphogenetic 

furrow. The morphogenetic furrow sweeps from anterior to posterior and thereby creates a 

linear arrangement of cell cycle stages (Figure 3). Undifferentiated cells anterior to the 

morphogenetic furrow divide asynchronously, whereas cells in the posterior part initiate 

differentiation. The cells within the morphogenetic furrow are synchronized in G1.  A subset 

of these cells, termed as preclusters, exits the cell cycle  and differentiates into the 

photoreceptor cells R8, R2, R5, R3 and R4 (Ready et al., 1976; Wolff and Ready, 1991a). 

The remainder of cells enter a terminal cell cycle called second mitotic wave. The cells of this 

second mitotic wave give rise to the photoreceptor cells R1, R6, R7, the cone cells, the 

pigment cells as well as the precursors of the mechanosensory bristles (Ready et al., 1976; 

Wolff and Ready, 1991a). The remaining undifferentiated cells undergo apoptosis (Wolff and 

Ready, 1991b).  
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Figure 3 Eye imaginal disc cells exhibit morphologically distinguishable G1-S transition. The eye imaginal 
disc represents the posterior part of the eye-antenna disc. During the third instar stage the morphogenetic furrow 
(MF) moves from posterior to anterior and thereby initiates the differentiation into photoreceptor cells (PRC). 
Cells in the posterior part of the disc divide asynchronously until they become synchronized in G1 by the 
anterior sweeping furrow. The cells within the morphogenetic furrow subsequently separate into two 
subpopulations. One fraction terminates proliferation and initiates differentiation immediately, while the 
remaining cells enter a terminal cell cycle called second mitotic wave (SMW).   
 

1.1.3. Cell cycle regulation in wing imaginal discs  
 

Wing imaginal discs gives rise to two different adult structures. The ventral part of the disc 

develops into the wing, whereas the dorsal part differentiates into the notum. Wing imaginal 

disc cells exhibit a mode of cell cycle regulation that resembles the proliferation behaviour of 

vertebrate cells. Cells in wing imaginal disc undergo a standard cell cycle with four distinct 

phases. Moreover, unlike embryonic divisions, these cell cycles are accompanied with cell 

growth ensuring that these cells maintain a constant size during proliferation.  Wing imaginal 

disc cells undergo apoptosis only occasionally, therefore it is thought that most of the disc 

growth results from proliferation (James and Bryant, 1981).  In contrast to the cells of the 

developing eye, cell division in wing imaginal discs occurs in a largely unpatterned fashion 

(for review see Milan, 1998). Wing disc cells rather divide in clusters of synchronized cells 

that are randomly distributed through out the disc. However at the end of larval development, 

a stripe of cells at the dorso-ventral boundary enter a developmentally programmed cell cycle 

arrest  (O'Brochta and Bryant, 1985) and therefore this region of the disc was named “zone of 

none proliferating cells” ( ZNC; Figure 4). Cells of the ZNC cease proliferation around 30 
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hours earlier than remaining cells, but re-initiate the cell cycle for a couple of division during 

the pupal stage (Hartenstein and Posakony, 1989; O'Brochta and Bryant, 1985). The zone of 

none proliferating cells is subdivided into four domains (Figure 4; Johnston and Edgar, 1998). 

Cells in the centre of the anterior part as well as the whole posterior part of the ZNC undergo 

a G1 arrest, whereas the two outer cell rows of the anterior part stay in the G2-phase. 

 
 
Figure 4 Cell division during wing 
development. Cells in wing imaginal 
discs proliferate extensively during the 
larval period. Thereby, these cells 
undergo a standard cell cycle with four 
distinct phases. Cell division occurs in 
an asynchronous and unpatterned man-
ner. Only at the end of larval develop-
ment cells of the ZNC undergo a de-
velopmentally programmed cycle 
arrest. The cells in the middle of the 
anterior part of the ZNC arrest in G1, 
while the adjacent cell rows undergo a 
G2 arrest. Cells in the posterior domain 
of the ZNC uniformly arrest in G1.  
 
 
 
 

 

1.1.4. Endoreplication cycles 
 
The endoreplication cycle or endocycle is a cell cycle variant that is employed by various 

tissues in Drosophila (for review see Edgar and Orr-Weaver, 2001; Lilly and Duronio, 2005). 

During endoreplication, cells undergo repeated rounds of DNA replication without 

intervening mitosis which result in increased DNA contents. Endocycling cells exhibit a 

distinct Gap-phase, in which no DNA-replication occurs. Endoreplication is an effective 

strategy of cell growth  and is therefore frequently found in cells that give rise to tissues with 

high metabolic activity (for review see Edgar and Nijhout, 2004). Cells of several internal 

organs such as the gut, fat body, malipighian tubules and salivary glands, initiate 

endoreplication cycles during late embryogenesis and maintain endoreplication cycles during 

the larval period (Smith and Orr-Weaver, 1991). In addition, several adult tissues like the gut 

and the ovary harbor endoreplicating cells (Micchelli and Perrimon, 2006; Ohlstein and 

Spradling, 2006). Endoreplication results in multiple copies of the genome that can be 

organized in different chromosomal arrangements. Generally, it is distinguished between 

polyploidy and polyteny. Polyploid cells contain multiple copies of their chromosomes that 
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are clearly distinguishable from each other. In polytene cells, by contrast, sisterchromatids 

remain closely associated. A well known example of polyteny, are the giant chromosomes of 

the larval salivary gland that exhibit a DNA content of 1024-2048C. The border between 

polyploidy and polyteny is uncertain and numerous intermediate configurations can be 

observed. An interesting example for the plasticity of the chromosome arrangement is found 

in the nurse cells of the Drosophila ovary, which switch from polyteny to polyploidy. In the 

first five endoreplication cycles during nurse cell development the chromosomes remain 

aligned to each other (Dej and Spradling, 1999). After S-phase of the fifth cycle, however, the 

chromosomes condense and separate from each other. From this point on the chromosomes of 

the nurse cells maintain the polyploid configuration and continue endoreplication until they 

reach a DNA content of 1024 C. Besides the nurse cells, the Drosophila ovary harbors 

another cell type that becomes polyploid. During oogenesis, the somatic follicle cells first 

undergo five mitotic divisions and then initiate endoreplication. Follicle cells execute five 

endocycles that give rise to DNA content of 16C. However, DNA replication stops 

completely at this stage. Several loci maintain DNA replication and become amplified. 

Among these amplified loci are genes required for the formation the chorion of the eggshell. 

Therefore, this process was termed chorion gene amplification (Calvi et al., 1998). 

 

1.2. The cell cycle control system 
 

During cell division the cell is confronted with numerous problems challenging the correct 

inheritance of the genetic information of the progenitor cell. Cells have to ensure that the 

genome is only duplicated once per cell cycle. Then, the chromosomes must be distributed 

evenly between both daughter cells and thereby each cell must receive a full copy of the 

genome.  I most cases, the cell cycle must be coordinated with cell growth to maintain a 

constant cell size.  In order to prevent the inheritance of severe chromosomal defects, 

safeguard mechanisms have to interrupt cell cycle progression after genomic damage.  In 

multicellular organisms proliferation must be coordinated with the demands of the 

developmental program and the housekeeping mechanisms, respectively. Finally, it must be 

ensured that these events occur in a ordered manner and that the cell cycle proceeds only in 

one direction. To achieve all these tasks eukaryotic cells have evolved a tightly regulated cell 

cycle control system that is basically conserved throughout the animal kingdom (for review 

see Morgan, 2006; Murray, 2004). The heart of the cell cycle control system are the Cyclin 

dependent kinases (Cdk) and their regulators, the cyclins. At certain stages of the cell cycle, 
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Cdk’s become activated by interaction with a particular Cyclin. Cdk levels remain constant 

throughout the cell cycle, whereas cyclin levels oscillate. Thus, it is achieved that Cyclin/Cdk 

activity peaks at specific points of the cell cycle and thereby initiates the next series of cell 

cycle event. Generally, it is distinguished between two types of cyclins. Cyclins involved in 

mitosis are referred as mitotic cyclins, whereas cyclins implicated in the initiation of DNA 

replication are termed G1 cyclins. In Drosophila,  mitotic cyclins A, B and B3 as well as the 

G1 cyclins D and E have been identified. Moreover, orthologues of Cdk1, Cdk2 and Cdk2/4 

are know in Drosophila (for review see Edgar and Lehner, 1996; Lee and Orr-Weaver, 2003; 

Swanhart et al., 2005).  

 

1.2.1. Initiation and execution of mitosis 
 

Mitosis is initiated in late G2 by the activation of Cyclin/Cdk1 complexes (Minshull et al., 

1989; Murray and Kirschner, 1989). Cdk1 only forms complexes with a subset of cyclins, 

which were generally referred as mitotic cyclins.  In Drosophila, entry into mitosis is 

regulated by Cdk1 and the mitotic cyclins A, B and B3 (Jacobs et al., 1998; Knoblich and 

Lehner, 1993; Lehner and O'Farrell, 1989; Lehner and O'Farrell, 1990a; Lehner and O'Farrell, 

1990b). It is thought that the mitotic cyclins partly overlap in their functions, since only loss 

of cyclin A results in embryonic lethality (Jacobs et al., 1998; Knoblich and Lehner, 1993; 

Lehner and O'Farrell, 1989; Lehner and O'Farrell, 1990b). Transcription of mitotic cyclins is 

initiated during late S-phase and results in the accumulation of cyclin/Cdk1 complexes during 

G2. To prevent premature entry into mitosis, Cdk1 activity is restrained by inhibitory 

phosphorylation at threonine residue 14 and tyrosine residue 15. These phosphorylations are 

mediated by kinases of the conserved Wee1/Myt1 family (Morgan, 1995). To initiate mitotic 

entry, these inhibitory phosphorylations are removed by a Cdc25 phosphatase (Russell and 

Nurse, 1986). The Drosophila genome bears two different isoforms of Cdc25, named string 

and twine. String activity becomes essential for the first time after midblastula transition and 

is then required for all mitotic divisions throughout development (Edgar et al., 1994a; Edgar 

and O'Farrell, 1990). By contrast, the activity of Twine is restricted to meiosis (Edgar and 

Datar, 1996) 

 

After mitotic entry, the Cyclin/Cdk1 complex must be inactivated to allow proper progression 

through mitosis (Murray et al., 1989). The downregulation of Cdk1 activity is achieved by 

degradation of the Cyclin subunit (Glotzer et al., 1991). In Drosophila, mitotic cyclins are 
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sequentially degraded (Figure 5; Sigrist et al., 1995). Cyclin A degradation is initiated in 

metaphase just before chromosome separation. Cyclin B degradation occurs in early anaphase 

when the chromosomes are separated. Cyclin B3 gets degraded in late anaphase after 

chromosome segregation. The degradation of B-type cyclins depends on a conserved protein 

motif named destruction box (Glotzer et al., 1991; King et al., 1996). Deletion of this 

destruction box (D-box) results in a stable Cyclin B protein. Overexpression of this stable 

Cyclin B in Drosophila embryos leads to an arrest in early anaphase (Sigrist et al., 1995). 

Moreover, overexpression of a stable version of Cyclin B3 specifically arrest the cell cycle in 

late anaphase (Sigrist et al., 1995). So far no particular motif that mediates Cyclin A 

destruction has been identified. However, a N-terminal truncated version of Cyclin A is 

refractory to degradation and overexpression of this fragment results in an metaphase arrest 

(Sigrist et al., 1995).  Based on these observations, it has been proposed that the successive 

steps required for the completion of  mitosis are ordered by the sequential degradation of 

mitotic cyclins (Sigrist et al., 1995).  

 

 
Figure 5 Regulation of the anaphase promoting complex/cyclosome (APC/C). To initiate 
mitosis, Cyclin/Cdk1 is activated by the phosphatase String/Cdc25. The APC/C gets subsequently 
phosphorylated and thereby activated through Cdc20/Fzy binding. The activated APC/C-Cdc20 
complex initiates in turn the sequential degradation of mitotic cyclins and thus the downregulation 
of Cdk1 activity. After depletion of Cdk1 activity the APC/C forms a complex with another 
activator protein, Cdh1/Fzr. The activity of APC/C-Cdh1complex is crucial for the initiation of the 
following G1-phase.  
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The degradation of mitotic cyclins and numerous other proteins is mediated by the 26S 

proteasome, a multi-subunit protease specific for multi-ubiquitinated substrates (for review 

see Baumeister et al., 1998; Coux et al., 1996; Hochstrasser, 1996). In order to mark proteins 

for proteasomal degradation, multi-ubiquitin chains are transferred in a three-step reaction to 

the substrate. In the first step, ubiquitin is activated by forming a high-energy thioester 

between a cysteine of its active site and the C-terminus of ubiquitin. The activated ubiquitin is 

subsequently transferred to one of several ubiquitin-conjugating enzymes that are also named 

E2-enzymes. Finally, the ubiquitin is covalently attached to the substrate protein by an 

ubiquitin-protein ligase or E3-enzyme, respectively. The ubiquitin ligase mediating the 

proteasomal degradation of mitotic cyclins is called anaphase promoting complex or 

cyclosome (for review see Peters, 2006; Pines, 2006; Zachariae and Nasmyth, 1999). The 

anaphase promoting complex (APC/C) is a high molecular weight complex that consists of at 

least eleven subunits (Gieffers et al., 2001; Passmore et al., 2005). The activity of the APC/C 

depends of its phosphorylation state and the abundance of two WD40 activator proteins, 

Cdc20 and Cdh1 (Schwab et al., 1997; Visintin et al., 1997). The APC/C-Cdc20 complex gets 

only activated during mitosis to mediate the proteasomal degradation of mitotic cyclins and 

other cell cycle regulators. The activation of the APC/C by Cdc20 depends on the 

phosphorylation state of the APC/C (Kraft et al., 2003; Peters et al., 1996). Cdc20 can only 

bind to the APC/C once several APC/C subunits have been phosphorylated (Kramer et al., 

2000) (Kramer et al., 1998). In vertebrates, APC/C phosphorylation is achieved by mitotic 

kinases such as Cyclin/Cdk1 and polo like kinase 1 (Descombes and Nigg, 1998; Patra and 

Dunphy, 1998). Hence, APC/C-Cdc20 activity is restricted to early mitosis. By contrast, 

Cdh1 can only activate the APC/C at stages with low Cdk activity (Kramer et al., 2000; 

Zachariae et al., 1998). It is thought that Cdk1 and Cdk2 phosphorylate Cdh1 thereby 

preventing  APC/C activation (Kramer et al., 2000; Sorensen et al., 2000; Zachariae et al., 

1998). Thus, the APC/C-Cdh1 complex is only active during late mitosis and G1, when 

Cyclin/Cdk activity is dampened. In addition to a destruction box, substrates of the APC/C-

Fzr complex frequently contain a KEN-box (Burton and Solomon, 2001; Hilioti et al., 2001; 

Pfleger et al., 2001). The Drosophila orthologues of Cdc20 and Cdh1 are encoded by the 

genes fizzy (fzy) and fizzy-related (fzr), respectively. Cells in  fizzy mutant embryos fail to 

downregulate mitotic cyclins and subsequently arrest in metaphase (Dawson et al., 1993; 

Dawson et al., 1995; Sigrist et al., 1995). Epidermal cells of embryos lacking fizzy-related 

cannot establish the terminal G1-phase and undergo an additional seventeenth mitosis (Sigrist 

and Lehner, 1997). Closer inspection of fizzy-related mutants revealed that completion of this 
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additional mitosis (including cyclin degradation) does not require fizzy-related (Jacobs et al., 

2002). Moreover, cells in eye discs derived from hypomorphic fizzy-related mutants fail to 

become synchronized in G1 and enter ectopic S-phases (Pimentel and Venkatesh, 2005). 

Therefore APC/C-Fzr activity is thought to be only required for establishment and 

maintenance of the G1 state (Figure 5). 
    

1.2.2. Regulation of  the G1-S transition 
 

In vertebrates, the transition from G1 to S-phase is regulated by three different kinases, Cdk2, 

Cdk4 and Cdk6. In response to external growth signals Cyclin D expression is stimulated 

(Matsushime et al., 1994; Sherr, 1993). Cyclin D activates Cdk4/6 and members of 

retinoblastoma (Rb) tumour suppressor family are subsequently inhibited. The  inhibition of 

Rb leads to the release of a transcription factor of the E2F family (Attwooll et al., 2004; Blais 

and Dynlacht, 2004; Kato et al., 1993). E2F stimulates the transcription of Cyclin E and 

Cyclin A (DeGregori et al., 1995; Pagano et al., 1992). Besides these cyclins, E2F activates 

the transcription of numerous other genes required for DNA replication such as 

ribonucleotide reductase (RNR) and the DNA polymerase δ accessory subunit, PCNA 

(DeGregori et al., 1995). Cyclin E and Cyclin A activate Cdk2 and initiate in turn DNA 

replication (Dutta and Stillman, 1992; Pagano et al., 1992). Moreover, Cdk2 also 

phosphorylates Rb and enhances thereby its own activation by increased Cyclin E and A 

transcription. In Drosophila, single genes for Cdk4 and Cyclin D have been identified (Datar 

et al., 2000; Meyer et al., 2000; Sauer et al., 1996). Drosophila Cyclin D/Cdk4 is not directly 

implicated in the transition from G1 to S-phase, although it can phosphorylate Rb (Datar et 

al., 2000; Meyer et al., 2000; Xin et al., 2002). It rather appears that the Cyclin D/Cdk4 

complex is involved in growth regulation, but it remains to be clarified how this function is 

achieved (Datar et al., 2000; Meyer et al., 2000). Recently it has been demonstrated that this 

pathway requires mitochondrial activity and Hph, a hydroxylase implicated  in  the cellular 

response to low oxygen (Frei and Edgar, 2004; Frei et al., 2005). In Drosophila, S-phase 

induction mainly relies on Cyclin E/Cdk2 activity (Knoblich et al., 1994; Richardson et al., 

1995). Cyclin E/Cdk2 phosphorylates the sole Rb ortholog in Drosophila (Rbf) and 

stimulates thereby transcription of S-phase genes via E2F1 (Du et al., 1996; Duronio and 

O'Farrell, 1994; Duronio and O'Farrell, 1995; Duronio et al., 1995). In addition, S-phase can 

be induced by Cyclin A overexpression or by loss of the Cyclin A/Cdk1 inhibitor Roughex, 

respectively   (Foley et al., 1999; Sprenger et al., 1997; Thomas et al., 1997). Exit from S-
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phase is facilitated by downregulation of Cyclin E dependent kinase activity. After 

autophosphorylation, Cyclin E is therefore targeted for degradation by an SCF ubiquitin 

ligase complex (Koepp et al., 2001; Moberg et al., 2001; Schwab and Tyers, 2001). In 

Drosophila, Cyclin E degradation is mediated by the F-box protein Archipelago that was 

initially identified in a screen for mutants causing overproliferation (Moberg et al., 2001). 

 

The SCF ubiquitin ligases are named by their core subunits Skp, Cullin, and F-box protein 

(for review see Ang and Wade Harper, 2005; Jackson et al., 2000; Vodermaier, 2004). Apart 

from the three core subunits, SCF complexes contain a RING finger protein as well as an E2-

enzyme (Jackson et al., 2000).  SCF complexes are implicated in a plethora of processes such 

as cell cycle regulation, signalling pathways, circadian rhythms and apoptosis (Grima et al., 

2002; Koepp et al., 1999; Maniatis, 1999; Nateri et al., 2004). SCF complexes are only 

distinguishable by their F-box proteins that confer substrate specificity (Skowyra et al., 1997). 

F-box proteins are characterized by a conserved motif that was first identified in Cyclin F and 

thus named F-box (Bai et al., 1996). In addition F-box proteins frequently contain protein 

motifs involved in protein-protein interaction (Jin et al., 2004; Winston et al., 1999). It is 

thought that these domains are required for substrate binding. Substrate recognition by many 

F-box proteins depends on phosphorylation of the substrate, thereby allowing temporal 

control of degradation (Orlicky et al., 2003; Skowyra et al., 1997). The F-box protein is 

attached to the cullin scaffold by an Skp protein that recognizes the F-box (Schulman et al., 

2000; Zheng et al., 2002). Mammals and yeast have only a single Skp gene (Skp1), while six 

Skp proteins (SkpA-F) have been identified in Drosophila (Nayak et al., 2002; Yamanaka et 

al., 2002). So far only SkpA has been characterized in greater detail (Murphy, 2003) and it 

remains to be elucidated whether the other homologues are implicated in SCF complexes. 

 

1.2.3. Initiation and regulation of DNA replication 
  

At the transition from G1 to S-phase, DNA replication is initiated  by increasing Cdk activity. 

DNA synthesis occurs at specific sites of the chromosomes which are named origins of 

replication. During late mitosis and early G1 the pre-replicative complex (pre-RC) gets 

recruited to the replication origins. This process is also known as DNA licensing. Upon S-

phase entry the pre-RC gets activated and subsequently triggers DNA replication. The pre-RC 

contains the helicase that unwinds the DNA and promotes assembly of the actual replication 

machinery. The formation of the pre-RC relies on the origin recognition complex (ORC). The 
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ORC complex consists of six subunits and is constantly bound to the replication origins. The 

ORC can only promote pre-RC formation during late G1 (Figure 6; Bell and Dutta, 2002; 

Chesnokov et al., 1999; Gossen et al., 1995). In late mitosis and early G1, the actual licensing 

process begins with binding of Cdt1 and Cdc6 to the ORC complex (Figure 6). After 

recruitment of Cdt1 and Cdc6 to the ORC, minichromosome maintenance (MCM) proteins 

are loaded onto the DNA and remain associated with the DNA until S-phase (Figure 6). The 

MCM2-7 proteins are arranged in a bilobed hexameric structure that surrounds the DNA 

(Fletcher et al., 2003; Pape et al., 2003). Once the MCM2-7  complex is associated with the 

DNA the licensing process is completed and the pre-RC can be activated. The components of 

the pre-RC, namely ORC1-6, Cdt1, Cdc6 and MCM2-7, are conserved among all eukaryotes, 

including Drosophila (Bell and Dutta, 2002; Chesnokov et al., 1999; Gossen et al., 1995; Su 

et al., 1996). The Drosophila ortholog of Cdt1 is also known as double-parked (dup) (Thomer 

et al., 2004; Whittaker et al., 2000).   

 
Figure 6 Assembly of the pre-replicative complex 
(adapted from Morgan, 2006). DNA replication begins 
at specific sites on the chromosomes  named origins. The 
ORC1-6 complex binds constantly to the replication 
origins and serves as scaffold for the formation of  the 
pre-replicative complex (pre-RC). In late mitosis and 
early G1, Cdt1 and Cdc6 are recruited to the ORC 
complex. Upon binding of Cdt1 and Cdc6,  the MCM2-7 
helicases are loaded to the DNA.  
 

 

 

 

 

 

 

 

 

 

The precise duplication of the genome is crucial for the survival of an organism. In 

multicellular organisms any genome instability potentially gives rise to cancer and thus 

compromises the life of the whole organism. Therefore, several safeguard mechanisms have 

been evolved ensuring that the DNA is only replicated once per cell cycle (for review see Bell 

and Dutta, 2002; Blow and Dutta, 2005). After initiation of DNA replication, the MCM2-7 
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complexes are release from the replication origin and move with the replication fork along the 

DNA. The release of the MCM2-7 complexes results in inactivation of the pre-RC. Thus, new 

MCM2-7 complexes cannot be recruited until formation of a novel pre-RC. The assembly of 

pre-RCs is restricted to late mitosis and early G1, thereby ensuring that mitosis proceeds 

DNA-replication. In multicellular organisms this is largely achieved by two mechanisms. In 

late G1, Geminin binds to Cdt1 and prevents the formation of pre-RCs (McGarry and 

Kirschner, 1998). Geminin is a target of the APC/C which mediates its proteasomal 

degradation during late mitosis and G1 (McGarry and Kirschner, 1998). At the end of the G1 

phase, the APC/C is inactivated, resulting in accumulation of Geminin and subsequent 

inhibition of Cdt1. A Drosophila orthologue of Geminin has been identified, but it remains to 

be clarified whether Drosophila Geminin levels oscillate throughout the cell cycle (Quinn et 

al., 2001). Since APC/C activity depends on Cdk phosphorylation, the assembly of pre-RCs is 

indirectly coupled to Cyclin/Cdk activity. However, Cyclin dependent kinase activity 

contributes also directly to the formation pre-RC. It is assumed that APC/C activity is 

dispensable for the endoreplication cycles  in Drosophila (Edgar and Orr-Weaver, 2001; Lilly 

and Duronio, 2005). However, overexpression of Cyclin E promotes MCM2-7 loading and 

prevents thereby endoreplication (Follette et al., 1998; Su and O'Farrell, 1998; Weiss et al., 

1998). Although phosphorylation of pre-RC subunits appears to be important to inhibit pre-

RC assembly, the mechanisms are only poorly understood. In higher eukaryotes (including 

Drosophila), Cdt1 protein levels fluctuate throughout the cell cycle (Nishitani et al., 2001; 

Thomer et al., 2004). Evidence from several organisms suggest that two different ubiquitin-

ligase complexes contribute to the proteasomal degradation of Cdt1. In human cells, a Skp2 

containing SCF-complex interacts with Cdt1, whereby Cdt1 binding requires phosphorylation 

by Cdk2 or Cdk4 (Li et al., 2003; Liu et al., 2004; Nishitani et al., 2001; Sugimoto et al., 

2004). In C. elegans, an SCF-like complex based on Cullin 4 has been identified that is 

required to downregulate Cdt1 at the end of G1 (Zhong et al., 2003). In Drosophila Dup/Cdt1 

degradation seems to be Cyclin E/Cdk1 dependend, but it remains to be clarified whether  

SCF-E3 ligases are implicated in this process (Thomer et al., 2004). 
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1.3. The cell cycle regulator Rca1 
 
Tight regulation of APC/C activity is crucial to ensure normal cell cycle progression (for 

review see Peters, 2006; Pines, 2006; Zachariae and Nasmyth, 1999). The activity of the 

APC/C depends on its phosphorylation state and the presence of the WD40 activator proteins 

Fzy/Cdc20 and Fzr/Cdh1 (Schwab et al., 1997; Visintin et al., 1997). During mitosis, 

phosphorylation of APC/C subunits is prerequisite for its interaction with Fzy, whereas 

activation of APC/C by Fzr is prevented via phosphorylation (Kramer et al., 2000; Sorensen 

et al., 2000; Zachariae et al., 1998). Therefore, APC/C-Fzr activity is restricted to later 

mitotic stages and G1 when Cdk activity is low. Several additional molecules have been 

identified that regulate APC/C activity by other mechanisms (for review see Peters, 2006; 

Pines, 2006). Prominent members among these regulators are the vertebrate Emi proteins that 

restrict APC/C activity at different cell cycle stages (for review see Schmidt et al., 2006). The 

Drosophila rca1 gene encodes an APC/C-Fzr inhibitor that is related to the Emi1 proteins  

(Grosskortenhaus and Sprenger, 2002). Embryos homozygous mutant for rca1, fail to execute 

the 16th mitosis of Drosophila embryogenesis. Due to this G2 arrest, rca1 mutants display a 

reduced number of epidermal cells compared to wild-type (Dong et al., 1997). Since this 

phenotype resembles mutants for Cyclin A (Lehner and O'Farrell, 1989), the gene was named 

regulator of Cyclin A 1 (rca1). The G2 arrest in rca1 mutants is caused by premature 

degradation of the mitotic cyclins A and B (Grosskortenhaus and Sprenger, 2002). In 

Drosophila, degradation of mitotic cyclins is mediated by the APC/C and the two activator 

proteins, Fizzy (Fzy) and Fizzy-related (Fzr) (Dawson et al., 1995; Sigrist et al., 1995; Sigrist 

and Lehner, 1997).  Mutants for  fzr fail to establish the terminal G1-phase and execute an 

extra cell cycle (Sigrist and Lehner, 1997). Since overexpression of Cyclin A abolishes the 

terminal G1 arrest (Sprenger et al., 1997), this additional mitosis 17 is probably due to 

accumulation of Cyclin A. By contrast, overexpression of Fzr prevents accumulation of 

mitotic cyclin and entry into mitosis 16 (Sigrist and Lehner, 1997). Double mutants for rca1 

and fzr display epidermal cell numbers similar to wild-type, indicating that mitosis 16 occurs 

normally in these embryos (Grosskortenhaus and Sprenger, 2002). Moreover, simultaneous 

overexpression of Fzr and Rca1 allows normal cyclin accumulation and execution of mitosis 

16 (Grosskortenhaus and Sprenger, 2002). Hence, these experiments demonstrated that Rca1 

has a negative effect on Fzr. In addition, co-immunoprecipitation experiments revealed that 

Rca1 and Fzr also interact physically (Grosskortenhaus and Sprenger, 2002). Altogether, 

these data give rise to the model that Rca1 restrains APC/C-Fzr  activity during G2 of cell 

cycle 16 to allow cyclin accumulation and subsequent entry into terminal mitosis (Figure 7). 
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Moreover, overexpression of Rca1 can overcome the G2 arrest in Cyclin A mutant embryos 

(Dienemann and Sprenger, 2004). This suggests that Cyclin A/Cdk1 activity also contributes 

to APC/C-Fzr inhibition in G2 of cell cycle 16 (Figure 7). 

 

 
Figure 7 Rca1 prevents untimely activation of APC/C-Fzr complex. APC/C activity is crucial for execution 
of mitosis and the establishment of the G1-phase. At the metaphase-anaphase transition the APC/C is activated 
by Fzy and mediates the degradation of mitotic regulators such as cyclins. Since APC/C activation by Fzy 
requires high kinase activity, APC/C-Fzy activity is restricted to mitosis. By contrast, Fzr can only bind to the 
APC/C at stages with low kinase activity as found in late mitosis, G1 and G2. During G2, APC/C-Fzr activity is 
dampened  by Rca1 to allow the accumulation of Cyclin/Cdk1 activity and entry into mitosis. In addition, recent 
evidences suggest that Cyclin/Cdk1 activity also contributes to APC/C-Fzr inhibition in G2. In G1, Rca1 activity 
has to be restricted to allow APC/C-Fzr activity.  
 

Rca1 was initially identified in a screen for suppressors of the roughex eye phenotype (Dong 

et al., 1997). Roughex is an inhibitor of Cyclin A depend kinase activity (Foley et al., 1999). 

Flies carrying weak alleles of roughex display a rough eye phenotype (Thomas et al., 1994). 

In roughex mutants, cells of eye imaginal discs enter S-phase prematurely because they fail to 

downregulate Cyclin A/Cdk1 activity in G1 (Thomas et al., 1997). Moreover, eye imaginal 

disc cells in hypomorphic fzr mutants fail to undergo the G1 arrest in the morphogenetic 

furrow and display elevated levels of mitotic cyclins (Pimentel and Venkatesh, 2005). Hence, 

demonstrating that two different mechanisms contribute to the inhibition of Cyclin A/Cdk1 

activity in G1. On the one hand, Cdk1 activity is restricted by the action of the Cdk1 inhibitor 

Roughex (Sprenger et al., 1997; Thomas et al., 1997). On the other hand, S-phase entry is 

prevented by APC/C-Fzr complex which mediates the destruction of Cyclin A. Mitotic 

cyclins accumulate upon entry into S-phase, suggesting that APC/C-Fzr activity is 
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downregulated after progression through G1. It has been demonstrated that Cyclin A/Cdk1 

acts negatively on APC/C-Fzr activity (Dienemann and Sprenger, 2004). However, if APC/C-

Fzr inactivation is required for Cyclin A accumulation, this rises the question how Cyclin 

A/Cdk1 activity can accumulate and inactivate Fzr. In human cell culture, it has been shown 

that Emi1, the vertebrate ortholog of Rca1, promotes S-phase entry by inhibiting the APC/C-

Cdh1 complex (Hsu et al., 2002).  In late G1-phase, E2F stimulates the transcription of Emi1 

to allow Cyclin A accumulation and subsequent entry into S-phase (Hsu et al., 2002). 

Depletion of Emi1 levels by RNAi prevents S-phase entry while cells overexpressing Emi1 

progress faster through G1 (Hsu et al., 2002). Overexpression of Rca1 also drives cells into 

ectopic S-phases (Dong et al., 1997). Furthermore, the premature entry into S-phase in 

roughex mutants can be suppressed by reduced activity of Rca1 (Dong et al., 1997). 

Therefore, it seems conceivable that Rca1 might have a similar function at the G1-S transition 

as Emi1. Moreover, a recent study proposed that Emi1 might have a secondary function at the 

G1-S transition beyond APC/C inhibition and this could be possible for Rca1 (Rape and 

Kirschner, 2004). 

  

1.3.1. The Rca1/Emi1 family 
 
Rca1 shares limited homology (18% identity) to the vertebrate Emi1 proteins (Reimann et al., 

2001a). Emi1 was initially identified as an APC/C inhibitor specific for early mitotic stages, 

but further work revealed that Emi1 is also implicated in the transition from G1 to S-phase 

(Hsu et al., 2002; Reimann et al., 2001a). In contrast to Rca1, the Emi1 proteins are able to 

inhibit Cdc20 and Cdh1 dependent APC/C activity (Hsu et al., 2002; Reimann et al., 2001a; 

Reimann et al., 2001b). Despite their low identity, Rca1 and Emi1 display an intriguingly 

similar arrangement of their functional domains (Figure 8). All Rca1/Emi1 proteins contain 

an F-box in their central region followed by a zinc binding region (ZBR) in the C-terminal 

part. The ZBR is assumed to be involved in protein-protein interaction. Additionally, they 

harbor different putative nuclear localization signals as well as several sequence motifs that 

might be involved in degradation. Finally, they contain several potential Cdk1 

phosphorylation sites distributed throughout the protein. Two recent reports described the 

identification of a novel meiosis specific homologue of Emi1 called Emi2/XErp1 (Schmidt et 

al., 2005; Tung et al., 2005). Emi2/XErp1 is an inhibitor of the APC/C-Fzy complex that 

seems to be required for maintenance of the cyctostatic factor (CSF) arrest during Xenopus 

oocyte maturation (Rauh et al., 2005; Schmidt et al., 2005; Tung et al., 2005). The C-terminal 
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part of Emi2/XErp1 shows significant homology to Emi1 and display a ZBR as well as an F-

box domain (Schmidt et al., 2005; Tung et al., 2005).  

 
Figure 8 Rca1 is related to APC/C 
inhibitors of the Emi1/Emi2 family. 
(A) Overview of the conserved motifs 
in Rca1 and Xenopus Emi1. Both pro-
teins contain an F-Box and a C-
terminal zinc binding region (ZBR). 
The N-terminal part of the xlEmi1 
harbours a conserved DSGxxS that is 
crucial for Emi1 degradation. Rca1 
displays a similar motif and a KEN-
box in its central region. Finally, both 
proteins contain various numbers of 
putative Cdk phosphorylation sites  
marked by an asterisk. xlEmi1 was 
used as showcase and the features 
described for xlEmi1 apply basically to 
all Emi1/Emi2 proteins. (B) Rca1 is a 
distant relative of the Emi1/Emi2 
family. The phylogenetic tree was 
generated by the ClustalW multiple 
sequence alignment tool.  

 

All Rca1/Emi family members belong to the class of F-box proteins. F-box proteins are part 

of SCF (Skp-Cullin-F-box) ubiquitin ligases that are involved in targeting of numerous 

substrates for degradation (Ang and Wade Harper, 2005; Kipreos and Pagano, 2000; 

Maniatis, 1999). Emi1 was identified in a screen for Skp1 interaction partners and deletion of 

the F-box prevents Skp1 binding in vitro (Reimann et al., 2001a). In addition, yeast two-

hybrid data indicated that Emi2/XErp1 interacts also with Skp1 in a F-box dependent manner 

(Schmidt et al., 2005). A genome wide yeast two-hybrid analysis demonstrated that Rca1 

interacts with Drosophila SkpA and B (Giot et al., 2003). These observations indicate that the 

Rca1/Emi proteins contain functional F-box domains. However, several studies demonstrated 

that the F-box of the Emi1 proteins is dispensable for its inhibitory effect on the APC/C 

(Reimann et al., 2001a; Schmidt et al., 2005). Thus, the in vivo function of the F-box remains 

unclear. It has to be elucidated whether Rca1/Emi proteins act as classical F-box proteins in 

an SCF complex that targets proteins for proteasomal degradation.   

 
1.3.2. Regulation of Rca1/Emi1 activity 
 
Since APC/C-Fzr activity is crucial for the establishment of the G1-phase (Jacobs et al., 2002; 

Pimentel and Venkatesh, 2005), Rca1 activity has to be eliminated at this stage. During 

embryogenesis, Rca1 is degraded specifically at the stage when the epidermal cell enter the 
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terminal G1-phase (Grosskortenhaus and Sprenger, 2002). At the moment it is unclear which 

pathways mediates Rca1 degradation in G1 and how this is regulated. However, much more 

is known about the regulation of Emi1 and these mechanisms could also apply to Rca1 

(Figure 9).  

 

 
Figure 9 Emi1 degradation is regulated at multiple levels. During early mitosis, Emi1 inhibits APC/C-Cdc20 
activity and enables thereby the accumulation of mitotic cyclins. In addition, Emi1 promotes S-phase entry by 
APC/C-Cdh1 inhibition. The stabilizing factor Evi5 accumulates in late G1 and maintains Emi1 levels during 
S/G2. During prophase Evi5 is phosphorylated by polo like kinase 1 (plk1) and becomes subsequently degraded. 
After Cdk1 phosphorylation, Emi1 is then also phosphorylated by Plk1 1. Phosphorylated Emi1 is recognized by 
the SCF/ßTRPC complex, which subsequently targets Emi1 for proteasomal degradation.   
 

Emi1 activity is necessary for normal progression through mitosis and promotes the transition 

from G1 to S-phase (Hsu et al., 2002; Reimann et al., 2001a). In early mitosis Emi1 prevents 

premature APC/C-Cdc20 activation to facilitate the increase of Cyclin/ Cdk1 activity 

(Reimann et al., 2001a). To allow normal cyclin destruction in mitosis, Emi1 is degraded 

during prophase (Reimann et al., 2001a). The proteasomal degradation of Emi1 is mediated 

by the SCF/ßTRCP complex and persists until G1 (Guardavaccaro et al., 2003; Margottin-

Goguet et al., 2003). The F-box protein ßTRCP specifically recognizes a DSGxxS consensus 

site in Emi1. ßTRCP can only bind to the DSGxxS degron when both serines have been 

phosphorylated by polo like kinase 1 (Plk1) (Hansen et al., 2004; Moshe et al., 2004).  Plk1 

activity originates in G2 and persists until early G1. Therefore, premature activation of Emi1 

degradation must be prevented in early mitosis. The initiation of Emi1 degradation by Plk1 

requires the previous phosphorylation by Cyclin/Cdk1 and is thereby directed to later mitotic 
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stages (Margottin-Goguet et al., 2003; Reimann et al., 2001a). In addition, the Evi5 oncogene 

has been identified as a stabilizing factor for Emi1 (Eldridge et al., 2006). Evi5 accumulates 

in early G1 and shields Emi1 from Plk1 phosphorylation by binding to a site adjacent to the 

DSGxxS degron. After progression through early mitosis, Evi5 degradation is triggered by 

Plk1 and Emi1 is then accessible for Plk1. The basic components of this pathway such as 

ßTRCP and Plk1 are conserved in Drosophila (Barr et al., 2004; Jiang and Struhl, 1998). 

Moreover, Rca1 also contains a putative DSGxxS degron in its central region (Figure 8). 

Therefore it is conceivable that Rca1 degradation is achieved in a similar manner. 
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2. Aim  
APC/C activity is crucial for normal progression through mitosis and establishment of the G1-

phase. During mitosis, APC/C activity depends on the WD40 proteins Cdc20/Fzy, while in 

G1 the APC/C is activated by Fzr. Previous work has shown that Rca1 is an inhibitor of the 

APC/C-Fzr complex. During G2 of the terminal cell cycle of Drosophila embryogenesis, 

Rca1 prevents the untimely activation of the APC/C-Fzr complex . At this stage APC/C-Fzr 

activity is also antagonized by Cyclin A/Cdk activity. Using different genetic approaches, it 

should be addressed whether this also applies to earlier cell cycles. Moreover, it should be 

elucidated whether other Cyclin dependent kinases contribute to APC/C-Fzr inhibition. 

Overexpression of Rca1 during eye development promotes S-phase entry, suggesting that 

Rca1 might be implicated in the transition from G1 to S-phase. A major goal of this study is 

to determine whether Rca1 has a second function at the G1-S transition and whether this 

function relies on its inhibitory effect on the APC/C-Fzr complex. Furthermore, Rca1 contains 

several conserved protein motifs. The role of these domains for Rca1 function and regulation 

should be elucidated in a structure/function analysis. Since Rca1 contains a conserved F-Box 

with so far unknown function,  this analysis should be particularly focused on this F-box 

motif. 
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3. Results 
 
3.1. Rca1 regulates mitotic entry in postblastoderm embryos in 

concert with Cyclin/Cdk complexes 
 

The last three embryonic cell cycles (14-16) which take place just before most of the 

epidermal cells become quiescent are generally referred as postblastoderm cell cycles. During 

this stage cell division occurs in an invariant spatiotemporal pattern that is tightly linked to the 

developmental program (Edgar et al., 1994a; Edgar et al., 1994b; Foe, 1989; Hartenstein and 

Campos-Ortega, 1986). These divisions are the first cell cycles that rely on zygotic gene 

expression. The postblastoderm cell cycles are G2-M controlled and lack a distinct G1-phase, 

since the mediators of S-phase entry are still expressed constitutively (Edgar and O'Farrell, 

1990; Sauer et al., 1995). The decision to enter mitosis at the G2-M transition is mainly 

regulated by Cdk1/cyclin complexes (Edgar et al., 1994a; Minshull et al., 1989; Murray and 

Kirschner, 1989). The spatiotemporal pattern of mitosis originates from the differential 

expression of the phosphatase String/Cdc25 which is crucial for Cdk1 activation (Edgar et al., 

1994a; Edgar et al., 1994b; Edgar and O'Farrell, 1989). Due to large maternal stocks, the 

amount of Cdk1 and mitotic cyclins is not limiting for mitotic entry until interphase 16 

(Knoblich and Lehner, 1993; Lehner and O'Farrell, 1989). Following mitosis 16, the 

developmental program introduces a major transition of the cell cycle program by preparing 

cells to enter a terminal G1-phase (Edgar and O'Farrell, 1990). This G1 arrest is achieved by 

the developmentally programmed downregulation of Cyclin E dependent kinase activity 

(Knoblich et al., 1994).  

 
3.1.1. Cyclin E dependent kinase activity contributes to downregulation 

APC/C-Fzr activity during G2 
 
In most multicellular organisms mitosis is controlled generally by two classes of cyclins, 

which are named A- and B-type cyclins.  In addition, certain species display also a third class 

of mitotic cyclins, named Cyclin B3-type that is less important for progression through 

mitosis (Humbert et al., 2004).  In Drosophila and several other species, loss of Cyclin B and 

Cyclin B3 respectively does not affect viability, whereas mutants for Cyclin A are embryonic  

lethal (Humbert et al., 2004; Jacobs et al., 1998; Knoblich and Lehner, 1993; Lehner and 

O'Farrell, 1989; Lehner and O'Farrell, 1990b). Epidermal cells of Cyclin A mutant embryos 

fail to execute the 16th mitotic division resulting in reduced numbers of epidermal cells. A 
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phenotype that is also found in embryos mutant for the rca1 (regulator of Cyclin A 1) gene 

(Dong et al., 1997; Grosskortenhaus and Sprenger, 2002). Rca1 is an inhibitor of the APC/C-

Fzr-complex in G2 and mitotic cyclins become prematurely degraded in rca1 mutants (Dong 

et al., 1997; Grosskortenhaus and Sprenger, 2002). Interestingly, Cyclin B disappears in 

Cyclin A mutants just before entry into mitosis 16 (Dienemann and Sprenger, 2004; Lehner 

and O'Farrell, 1990b). This observation raised the idea that in cycA mutants APC/C-Fzr 

activity might be upregulated as well. The premature disappearance of Cyclin B in cycA 

mutants can be prevented by Rca1 overexpression (Dienemann and Sprenger, 2004). 

Therefore it has been proposed that APC/C-Fzr activity is also restricted by inhibitory 

phosphorylation mediated by the Cdk1/Cyclin A complex (Dienemann and Sprenger, 2004). 

This function can apparently not be fulfilled by Cdk1/Cyclin B, providing a reasonable 

explanation why Cyclin A is the only mitotic cyclin with a lethal phenotype.  

 

Previous studies in human cell culture suggested that in G2 APC/C-Fzr activity is inhibited by 

Cdk2 mediated phosphorylation (Kramer et al., 2000; Lukas et al., 1999; Sorensen et al., 

2001). In Drosophila, Cdk2 only forms complexes with Cyclin E (Knoblich et al., 1994), 

whereas in vertebrates it was shown that Cdk2 inhibits APC/C-Fzr activity only in 

conjunction with Cyclin A and not with Cyclin E (Lukas et al., 1999). However, 

overexpression of Cyclin E suppresses the rca12 mutant phenotype (Grosskortenhaus and 

Sprenger, 2002), suggesting  that APC/C-Fzr activity is also negatively regulated by Cyclin 

E/Cdk2. To test this hypothesis, Cyclin E was overexpressed in cycAC8LR1 mutant embryos 

utilizing the paired-Gal4 driver-line. Quantification of epidermal cell numbers indicated that 

Cyclin E overexpression in cycAC8LR1 mutants results in an increase of epidermal cell numbers 

(Figure 10A-D). Furthermore, inspection of cyclin B levels in these embryos revealed that 

Cyclin E overexpression prevents premature degradation of Cyclin B (Figure 10E&F). Hence, 

these results demonstrate that overexpression of Cyclin E restores mitosis 16 in cycAC8LR1 

mutants. The stabilization of Cyclin B suggests moreover that the APC/C-Fzr complex is also 

negatively regulated by Cyclin E dependent kinase activity. 
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Figure 10 Cyclin E overexpression restores mitosis 16 in cycAC8LR1 mutants. UAS-Cyclin E was 
overexpressed in the cycAC8LR1 mutant background using the paired-Gal4 driver-line. Scale bar: 50µm 
(A-D) Cyclin E overexpressing segments display increased epidermal cell numbers, demonstrating that excess 
Cyclin E rescues entry into mitosis 16 in cycAC8LR1 mutant embryos. Cells were visualized with antibodies 
against p-Tyr as well as DNA staining. The diagram on the right side shows a comparison of epidermal cell 
numbers determined in the indicated genotypes. Epidermal cell numbers were quantified in the first two 
abdominal segments as described in Figure 11.  
(E&F) Overexpression of Cyclin E stabilizes Cyclin B levels in cycAC8LR1 mutants, suggesting that Cyclin 
E/Cdk2 prevents upregulation of APC/C-Fzr activity. 
 

3.1.2. The Cyclin A phenotype is enhanced by downregulation of Cyclin 
E/Cdk2 activity 

 

The observations that entry into mitosis 16 in cycA mutant embryos can be rescued by 

overexpression of Cyclin E, suggests that APC/C-Fzr activity is also inhibited by Cyclin 

E/Cdk2. However, at this stage Cyclin E/Cdk2 activity decays due to upregulation of the CKI 

Dacapo and downregulation of Cyclin E transcription (de Nooij et al., 1996; Knoblich et al., 

1994; Lane et al., 1996), raising the question whether this is a general mechanism or an 

artefact due to overexpression. APC/C-Fzr activity is thought to be required for cell cycle exit, 

since Fzr expression culminates at the end of cell cycle 16 (Sigrist and Lehner, 1997). 

However, examination of Fzr levels in embryo extracts revealed that Fzr is also abundant at 

earlier stages (Raff et al., 2002). Furthermore, rca12; cycAC8LR1 double mutants displayed a 
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dramatically reduced number of epidermal cells, even compared to single mutants for rca12 

and cycAC8LR1, respectively (Figure 11; Grosskortenhaus and Sprenger, 2002). It is therefore 

assumed that APC/C-Fzr activity is also present during cell cycle 15.  

 

 

 

Figure 11 APC/C-Fzr is ac-
tive during cell cycle 15 of 
Drosophila embryogenesis.  
To compare cell cycle progres-
sion in the indicated genotypes 
epidermal cell numbers were 
quantified (H). The number of 
epidermal cells were deter-
mined in defined regions of the 
first two abdominal segments 
in stage 13 embryos (n≥10).
Cells were visualized with 
antibodies against p-Tyr as 
well as DNA staining. An 
example of each genotype is 
depicted in the upper part of 
the Figure. Scale bar : 50µm 
(A-H) Due to the G2 arrest in 
cell cycle 16, rca12 mutant em-
bryos (D) contain a reduced 
number of epidermal cells 
compared to wild-type (E)
embryos of the same stage. 
cycAC8LR1 embryos (C) display 
slightly reduced numbers of 
epidermal cells compared to 
rca12 mutants, but it appears 
that they also arrest during the 
16th cell cycle. In rca12; 
cycAC8LR1 mutants (F) the epi-
dermal cell number is re-
markably reduced compared to 
rca12 mutant embryos (D), 
indicating that the epidermal
cells of this embryos arrest 
already during the 15th cell 
cycle. Genetic elimination of 
Cyclin E in rca12 and rca12; 
cycAC8LR1 mutants has no sig-
nificant effect on epidermal 
cell numbers (E&G), suggest-
ing that either Cyclin E/Cdk2 
activity is not required at this 
stage or that Cyclin E/Cdk2 is 
no completely removed in 
cycEAR95 mutants. 
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To test whether Rca1, Cyclin A/Cdk1 and Cyclin E/Cdk2 act in concert to restrain Fzr-

activity at earlier stages, rca12, cycEAR95 double mutants as well as rca12, cycEAR95; cycAC8LR1 

triple mutants were generated. In cycEAR95 mutant embryos, the amount of Cyclin E is 

remarkable reduced, but the maternal supply is sufficient to drive the cells through mitosis 16  

(Knoblich et al., 1994; Vidwans et al., 2002). Consistently, the epidermal cells in Cyclin E 

deficient embryos proliferate normally, resulting in equal epidermal cell numbers as in wild-

type embryos (Figure 11A&B). The slight reduction of Cyclin E activity does neither enhance 

the rca12 mutant nor the rca12; cycAC8LR1 double mutant phenotype, indicated by of epidermal 

cell numbers comparable to the origin stocks (Figure 11). Thus, it remains unclear whether 

Cyclin E/Cdk2 activity contributes to the downregulation of APC/C-Fzr activity in 

postblastoderm embryos.  

 

The investigation whether Cyclin E/Cdk2 restrains APC/C-Fzr activity during cell cycle 15, 

was mainly impeded by the presence of large amounts maternally derived Cyclin E protein. 

Therefore, an alternative approach had to be found to avoid this problem. In order to introduce 

a G1 state,  Cyclin E/Cdk2 activity becomes inhibited by the CKI Dacapo (de Nooij et al., 

1996; Lane et al., 1996). Overexpression of Dacapo in otherwise wild-type embryos using 

paired-Gal4, prevents entry into mitosis, evidenced by reduced numbers of epidermal cells in 

the overexpressing segments (Figure 12; Lane et al., 1996). Dacapo overexpression has no 

influence on progression through mitosis 15 and execution of the subsequent S-phase, 

although the protein is readily detectable (Lane et al., 1996). This approach can therefore be 

used to reduce Cyclin E/Cdk2 activity during cell cycle 15, without interfering with entry into 

S-phase 16. Overexpression of Dacapo in cycAC8LR1 embryos using paired-Gal4 results in a 

significant reduction of epidermal cell numbers in the overexpressing segments (Figure 12), 

suggesting that these cells arrest at an earlier point. Furthermore, examination of Cyclin B 

levels in these embryos, revealed premature disappearance of Cyclin B in Dacapo 

overexpressing segments. Hence, these experiments demonstrate that Cyclin E dependent 

kinase activity is necessary to prevent premature activation of the APC/C-Fzr complex during 

cell cycle 15. Furthermore, these results indicate that Rca1, Cyclin A/Cdk1 and Cyclin 

E/Cdk2 cooperate to restrain APC/C-Fzr activity in postblastoderm embryos. 
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Figure 12 Overexpression of 
Dacapo prevents execution 
of cell cycle 15. UAS-Dacapo 
was overexpressed in wild-
type or in the cycAC8LR1 
mutant background using the 
paired-Gal4 driver-line. Cells 
were visualized with 
antibodies against p-Tyr as 
well as DNA staining. The 
diagram in (E) shows a com-
parison of epidermal cell 
numbers determined in the 
indicated genotypes. Epider-
mal cell numbers were quanti-
fied in the first two abdominal 
segments as described in 
Figure 11. Scale bar: 50µm. 
(A&E) Dacapo overexpress-
ing segments display a re-
duced number of epidermal 
cells compared to the 
neighbouring wild-type seg-
ments.  Comparison of epi-
dermal cell numbers reveals 
that these cells arrest at the 
same stage as cycAC8LR1 mu-
tants (E), indicating that pro-
gression through cell cycle 15 
is not affected by Dacapo 
overexpression. 
(B&E) Overexpression of 
Dacapo in cycAC8LR1 mutants 

results in a further reduction 
of epidermal cells in the 
overexpressing segments, 

demonstrating that these cells arrest at an even earlier point than the adjacent cycAC8LR1 cells. The number of 
epidermal cells in these segments is comparable to cell numbers found in rca12; cycAC8LR1 double mutants, 
suggesting that reduction of Cyclin E/Cdk2 activity in cycAC8LR1 mutants prevents completion of cell cycle 15. 
(C) Cyclin B expression in wild-type embryos. (D) Cyclin B disappears prematurely in Dacapo overexpressing 
segments, suggesting that downregulation of Cyclin E dependent kinase activity results in upregulation of 
APC/C-Fzr activity. 
 

3.1.3. Downregulation of Dacapo activity is not sufficient to restore mitosis 
16 in Cyclin A mutants  

 

To establish the first G1-pase, Cyclin E dependent kinase activity becomes downregulated 

during cell cycle 16 by two different mechanisms (Knoblich et al., 1994). At one hand Cyclin 

E transcription becomes terminated and at the other hand Cyclin E/Cdk2 is inhibited by 

upregulation of Dacapo (de Nooij et al., 1996; Lane et al., 1996). Epidermal cells in dap4 

mutants divide normally until the end of mitosis 16, but fail then to arrest in G1 and enter an 

additional S-phase (de Nooij et al., 1996; Lane et al., 1996). The additional S-phase observed 

in dap4 mutants is followed by an additional mitosis, indicated by mitotic figures at a stage 
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when epidermal cell have normally ceased proliferation (de Nooij et al., 1996; Lane et al., 

1996). Since Cyclin E/Cdk2 activity contributes to APC/C-Fzr inhibition during cell cycle 15, 

the question emerges whether loss of Cyclin A/Cdk1 activity can be compensated by extended 

Cyclin E/Cdk2 activity. To address this question, the phase of Cyclin E/Cdk2 activity was 

prolonged until mitosis 16, by generating dap4; cycAC8LR1 double mutants. Unexpectedly, 

mitosis 16 was not restored in dap4; cycAC8LR1 double mutants as evidenced by epidermal cell 

numbers similar to cycAC8LR1 single mutants (Figure 13), suggesting that downregulation of 

Cyclin E/Cdk2 activity by Dacapo cannot occur before entry into mitosis 16. Furthermore, 

this observation implies that termination of Cyclin E transcription is of greater importance for 

establishment of G1 state than downregulation of Cyclin E dependent kinase activity by 

Dacapo.   

 
Figure 13 Dacapo; Cyclin 
A double mutants fail to 
execute mitosis 16. Cells 
were visualized with 
antibodies against p-Tyr as 
well as DNA staining. The 
diagram in (E) shows a com-
parison of epidermal cell 
numbers determined in the 
indicated genotypes. Epider-
mal cell numbers were 
quantified in the first two 
abdominal segments as 
described in Figure 11. Scale 
bar: 50µm. 
(A&B) CycAC8LR1 mutants 
fail to enter mitosis 16 as 
evidenced by reduced 
number of epidermal cells 
compared to wild-type 
embryos. 
 (C) Dap4 single mutants 
progress normal through 
mitosis 16, but fail to 
establish the subsequent G1 
phase. Cells in dap4 mutants 
undergo an additional cell 
cycle, evidenced by mitotic 
figures (insert) in embryos in 
that epidermal cells are 
normally quiescent. The 
encircled region indicates the 
depicted in the insert.  P-Tyr 
is shown in green and DNA 
in red.   
(D) Dap4; cycAC8LR1 double 
mutants display epithelial 

cell numbers comparable to cycAC8LR1 single mutants, demonstrating that these cells fail to enter mitosis 16. 
Thus, premature APC/C-Fzr activation in cycAC8LR1 mutants cannot be compensated by extended Cyclin E/Cdk2 
activity. 
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In summary, these experiments demonstrate that Rca1, Cyclin A/Cdk1 and Cyclin E/Cdk2 

cooperate to prevent premature APC/C-Fzr activation during postblastoderm cell cycles. After 

downregulation of Cyclin E/Cdk2-activity, APC/C-Fzr activity is restricted only by Rca1 and 

Cyclin A/Cdk1. Loss of one of these factors results in premature APC/C-Fzr activation and a 

subsequent failure to execute mitosis 16. Thus, these experiments explain why rca12 mutants 

arrest specifically in G2 of cell cycle 16 and not directly after switching to G2-M control 

during cell cycle 14.   
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3.2. Functional analysis of the Rca1 protein 
 
The Rca1 protein contains several conserved motifs (Figure 14A). The N-terminal half of 

Rca1 contains a bipartite nuclear localization signal (NLS), whereas  the central part of Rca1 

harbors three conserved sequence elements: the F-box, a KEN-box and a DSGxxS motif that 

has been implicated in Emi1 destruction (Guardavaccaro et al., 2003; Margottin-Goguet et al., 

2003). The C-terminus contains the ZBR, a sequence motif with a characteristic cysteine-

spacing that is conserved among all Rca1/Emi members (Reimann et al., 2001a). 

Additionally, ten putative Cdk1 phosphorylation sites (S/T-P) are distributed throughout the 

protein. In order to analyze the function of these protein motifs in vivo, we have generated a 

series of transgenic flies expressing different deletion constructs under control of a UAS-

promoter (Rorth, 1998). All constructs were equipped with an N-terminal hemagglutinin 

(HA)-tag to facilitate their detection. 

 
3.2.1. Rca1 inhibits APC/C-Fzr activity in G2 by an F-box independent 

mechanism  
 
The rca12 phenotype is characterized by premature activation of APC/C-Fzr complex during 

G2. During embryogenesis rca12 mutants fail to execute the 16th mitosis resulting in fewer 

cells compared to wild-type embryos (Figure 14B). In order to determine the structural 

requirements for APC/C-Fzr inhibition, different Rca1 constructs were tested for their ability 

to replace endogenous Rca1 during embryogenesis. The Rca1 constructs shown in Figure 14A 

were expressed in rca1 mutant embryos using the paired-Gal4 driver line. The resulting 

expression in alternating segments allows direct comparison of rca1 mutant cells (A2 

segment) and those expressing a certain Rca1 deletion construct (A1 segment). Expression of 

HA-Rca1 restores cell numbers to wild-type levels in rca1 mutants (Figure 14B). Each 

construct has been tested in this assay and the results are summarized in Figure 14B. N-

terminal truncations up to residue 203 were able to restore mitosis 16 in rca1 mutant 

segments. The deleted region includes the NLS and the F-box as well as 7 potential Cdk 

phosphorylation sites indicating that these motifs are dispensable for inhibition of the APC/C-

Fzr complex in G2. A further deletion up to residue 255 abolished the activity of the Rca1 

protein. In addition, mutation of a conserved cysteine residue (C346S) in the ZBR eliminated 

Rca1 activity. Internal deletions removing only one protein domain did not impair the 

functionality during cell cycle 16. Finally, Rca1 activity is not affected by simultaneous 

mutation of all ten putative Cdk1 phosphorylation sites to alanine. Thus, a C-terminal Rca1 

fragment including an intact ZBR is sufficient to restrict of APC/C-Fzr activity. To verify the 
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observation that the F-box is dispensable for APC/C-Fzr inhibition, both constructs lacking 

the F-box (HA-Rca1Δ203 and HA-Rca1ΔF-box) were tested for their ability to prevent 

premature degradation of Cyclin A in rca12 mutants. Similar to the full-length protein 

(Grosskortenhaus and Sprenger, 2002), both constructs were able to stabilize Cyclin A in 

rca12 embryos (Figure 14C&D). In summary, these experiments indicate that Rca1 inhibits 

APC/C-Fzr activity in G2 by an F-box independent mechanism. 
 

 

 

Figure 14 Functional analysis of the 
Rca1 protein.  
(A) Schematic representation of the 
analyzed Rca1 constructs. All con-
structs were tested for their ability to 
restore mitosis 16. In addition, the 
stability of a certain construct during
G1 was determined. The asterisks 
indicate putative Cdk1 phosphorylation 
sites (S/T-P).  
(B) A functional assay for Rca1 activity 
during embryogenesis. Epidermal cells
were counted in a given region (marked 
by the white box) of stage 13 rca12

embryos. For quantification cells were 
visualized with P-Tyr antibodies and 
DNA staining. In the A1 segment, the 
expression of different constructs was 
induced by the paired-Gal4 driver line. 
Cell numbers in segments A1 and A2 
were quantified after expression of the 
indicated Rca1 constructs and compared 
to wt and rca12 mutants (n≥10). rca12

mutants display fewer epidermal cells 
compared to wild-type embryos. 
Expression of several Rca1 constructs 
results in the restoration of epidermal
cell number in the A1 segment of rca12

mutants. In summary, these experiments 
reveal that a C-terminal fragment of 
Rca1 is sufficient for APC/C-Fzr inhi-
bition during embryogenesis.  
 (C&D) The F-box of Rca1 is not es-
sential for stabilization of Cyclin A in 
rca12 embryos. HA-Rca1Δ203 (C) and 
HA-Rca1ΔF-box (D) were expressed in 
rca12 mutants using paired-Gal4. In 
both cases, Cyclin A degradation, that is 
apparent in the rca12 mutant segments, 
is suppressed in the paired expressing 
regions. Scale bar: 50µm. 
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3.2.2. Rca1 gets degraded by different mechanisms than Emi1 
 
During Drosophila development, the first G1 phase occurs after mitosis 16 and most 

epidermal cells persist in that G1 phase until the end of embryogenesis. Previously, it was 

shown that Rca1 becomes degraded during this G1 phase (Grosskortenhaus and Sprenger, 

2002). In order to identify elements that regulate Rca1 degradation, different Rca1 deletion 

constructs (Figure 14) were expressed in wild-type embryos using paired-Gal4. At stage 11 of 

Drosophila embryogenesis, most of the epidermal cells are in interphase of cell cycle 16 and 

contain mitotic cyclins, like Cyclin A. At this stage, full-length HA-Rca1 is able to stably 

accumulate (Figure 15A). In embryos at developmental stage 13, most of the epidermal cells 

reside in G1 as indicated by the absence of Cyclin A (Figure 15B). Confocal sections reveal 

that HA-Rca1 is not detectable in these epidermal cells (Figure 15B). However, HA-Rca1 is 

visible in trace amounts in the proliferating cells of the developing nervous system (Figure 

15B). Like the full-length protein, HA-Rca1Δ203 which lacks the whole N-terminal region 

gets degraded in G1 (Figure 15C) demonstrating that the N-terminus is dispensable for Rca1 

degradation. In contrast, further deletion up to amino acid 255 results in a stable protein, 

which is detectable even in epidermal cells that reside in G1 (Figure 15D). These observations 

suggest that the region between amino acid 203 and 255 is involved in Rca1 destruction. This 

part of Rca1 contains two putative destruction elements: the KEN-box, a destruction element 

recognized by Fzr (Pfleger and Kirschner, 2000) and the DSGxxS motif, which is implicated 

in the turnover of Emi1. During prometaphase degradation of Emi1 is initiated by polo like 

kinase 1 (Plk1) that phosphorylates the DSGxxS motif (Hansen et al., 2004; Moshe et al., 

2004). The SCF/ß-TRCP ubiquitin ligase subsequently recognizes the phosphorylated 

DSGxxS motif and targets Emi1 for proteasomal degradation (Guardavaccaro et al., 2003; 

Margottin-Goguet et al., 2003). In order to test whether the DSGxxS degron is also involved 

in Rca1 destruction the serine residues in the DSGxxS motif were mutated (S253A, S256A 

S257A). In contrast to Emi1, this triple mutant gets degraded like full length Rca1 (Figure 

15E). In addition, deletion of the KEN-box does not increase the halftime of the Rca1 protein 

(Figure 15F). These observations indicate that the region between amino acid 203 and 255 

might harbor a so far unknown degradation element. For Emi1 it was furthermore shown that 

Cdk1 phosphorylation is required to initiate Emi1 destruction (Margottin-Goguet et al., 2003; 

Reimann et al., 2001a). In Rca1, simultaneous mutation of all putative Cdk1 phosphorylation 

sites does not stabilize the protein (Figure 15G). Altogether, these observations show that 

Rca1 degradation is achieved by other mechanisms than those described for Emi1. 
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Figure 15 Stability of Rca1 in embryonic G1 cells. Certain HA-tagged Rca1 constructs (Figure 14A) were 
expressed in stripes in otherwise wild-type embryos using prd-Gal4 and stained for HA, Cyclin A and DNA. The 
box marks the region of the embryo magnified to the right. Scale bar: 50µm.  
(A) In stage 10 embryos most cells are in G2 indicated by high levels of Cyclin A and can accumulate HA-Rca1. 
(B) During stage 13, most epidermal cells are in G1 and lack Cyclin A. Here HA-Rca1 is unstable and fails to 
accumulate. The Cyclin A staining seen in lower magnifications results from cells of the nervous system that 
reside in deeper levels of the embryo.   
(C&D) HA-Rca1Δ203 which lacks the complete N-terminal region gets degraded during G1 like full-length 
Rca1 (C). In contrast, HA-Rca1Δ255 is refractory to degradation in G1 (D), suggesting that the region between 
amino acid 203 and 255 is essential for Rca1 turnover. 
 (E&F) Neither, deletion of the DSGxxS motif (E) nor mutation of the KEN-box (F) stabilizes Rca1 in G1. Al-
though, these putative destructions elements are located in the region between amino acid 203 and 255, these 
results demonstrate that both motifs are not essential for Rca1 degradation.  
(G) Mutation of the ten putative Cdk1 phosphorylation site does not affect the stability of Rca1. 
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3.3. Rca1 is implicated in the G1-S transition during imaginal 
disc development 

 
Previous studies revealed that Emi1, the vertebrate ortholog of Rca1 is implicated in the 

transition from G1 to S-phase (Hsu et al., 2002; Rape and Kirschner, 2004) raising the idea 

that Rca1 might have a similar function beside its requirement during G2. Up to this point all 

experiments were done in postblastoderm embryos that never undergo a G1-S transition. To 

elucidate whether Rca1 has an additional function at the G1-S transition, it was therefore 

necessary to switch to a cell type that displays a cell cycle mode with all four phases. Imaginal 

disc cells are an ideal model system to address this question since they proliferate 

continuously during larval development and undergo a standard cell cycle with a distinct G1-

S transition. 

 
3.3.1. Rca1 and Fzr are expressed in complementary domains during eye 

imaginal disc development 
 
Eye imaginal discs display a morphological defined G1-S transition (Figure 3), so that they 

are an appropriate model to study S-phase entry. During the third instar stage the 

morphogenetic furrow sweeps from posterior to anterior. Cells in front of the morphogenetic 

furrow are undifferentiated and proliferate asynchronously, whereas cells within the 

morphogenetic furrow are synchronized in G1. Cells posterior to the furrow separate into two 

subpopulations. One group stays in G1 and differentiates into photoreceptor cells, whereas the 

remaining cells enter a terminal cell cycle called second mitotic wave (Thomas et al., 1994). 

Previous work revealed that Emi1 gets upregulated in late G1 by E2F dependent transcription 

(Hsu et al., 2002). A well characterized E2F1 target in Drosophila is PCNA, a gene essential 

for DNA replication (Thacker et al., 2003). The expression pattern of PCNA, that can be 

visualized by a GFP-reporter construct (Figure 16A-C), therefore reflects the spatial 

distribution of E2F1 activity. In situ hybridization experiments were performed to test 

whether Rca1 transcription gets upregulated in an E2F1 dependent manner prior to S-phase. 

However, these experiments revealed no match with the PCNA reporter construct. Rca1 is 

rather uniformly expressed in the proliferating cells in the anterior half of the eye disc (Figure 

16 A-C), suggesting that its transcription does not depend on E2F1 activity. Interestingly, 

these in situ hybridization experiments indicated that Rca1 is expressed in a pattern 

complementary to that of Fzr. In situ hybridization experiments as well as antibody staining 

showed that Fzr is only detectable in the morphogenetic furrow as well as in the postmitotic 

photoreceptor cells in the posterior part of the disc (Figure 16D-F; Pimentel and Venkatesh, 
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2005). Fzr activity is thought to be required for cell cycle exit (Sigrist and Lehner, 1997). It 

seems therefore reasonable that the expression of its antagonist Rca1 is terminated in the 

quiescent photoreceptor cells. 

 

 
Figure 16  Rca1 and Fzr are expressed in complementary patterns during eye development.  
(A-C) Expression of Rca1 visualized in third instar eye imaginal discs by in situ hybridization. (A) Rca1 is 
ubiquitously expressed in the proliferating part of third instar eye discs anterior to the morphogenetic 
furrow. Control in situs with a sense probe (B) and (C) with the antisense probe after overexpression of HA-
Rca1 using GMR-Gal4.  
(D-F) Fzr expression was determined by antibody staining of eye imaginal disc expressing the S-phase 
marker PCNA-GFP. Fzr is detectable at low levels within the morphogenetic furrow, whereas it is absent in 
the remaining proliferating cells. Consistent with is implication in cell cycle exit, Fzr is readily detectable 
in the differentiating photoreceptor cells in the posterior part of the disc.  

 
3.3.2. Overexpression of Rca1 promotes S-phase entry in eye imaginal discs 
 
A previous study showed that expression of Rca1 during eye development causes ectopic S-

phases and a rough eye phenotype (Dong et al., 1997). In contrast, a more recent study failed 

to show ectopic BrdU labeling after expression of Rca1 (Araki et al., 2003). In order to verify 

this observations, HA-Rca1 was overexpressed in all cells posterior to the morphogenetic 

furrow using GMR-Gal4 driver line. In agreement with the first study, overexpression of HA-

Rca1 resulted in a rough eye phenotype (Figure 17B). Moreover, BrdU labeling (Figure 17A) 

and FACS analysis (Figure 18D) revealed that misexpression of Rca1 drives cells posterior to 

the second mitotic wave into ectopic S-phases. Finally, phosphohistone 3 staining revealed 

mitotic cells posterior to the second mitotic wave (Figure 18D). This suggests that excess 
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Rca1 activity not only speeds up the cell cycle, it rather drives the cells in at least one extra 

cell cycle.   

 

 
3.3.3. The F-box is essential to drive cells prematurely into S-phase 
 

Previous work demonstrated that APC/C-Fzr activity is required to maintain the G1 state. 

Hypomorphic fzr mutants display aberrant BrdU incorporation in the eye disc and a rough eye 

phenotype in the adult. This raises the idea that the ectopic S-phases as well as the rough eye 

phenotype induced by Rca1 could be due to APC/C-Fzr inhibition. In this case, the induction 

of the rough eye phenotype would rely on the same parts of the Rca1 protein that are required 

for APC/C-Fzr inhibition during embryogenesis. All constructs tested for functionality in the 

embryo, were therefore examined also for their ability to induce rough eyes after 

overexpression with GMR-Gal4. In most of the cases, the ability to promote S-phase entry, 

correlated with the capability to restrict APC/C-Fzr activity in G2. For instance, the NLS is 

dispensable for restriction of APC/C-Fzr activity as well as for induction of the rough eye 

phenotype. Furthermore, HA-Rca1Δ255 and HA-Rca1C351S that were unable to inhibit the 

Figure 17 Overexpression of HA-Rca1 results in rough eyes due to ectopic S-phases.  
(A&B) BrdU pattern and eye morphology in wild-type. The brackets indicate the second mitotic wave and the 
arrowhead the morphogenetic furrow.   
(D&E) Overexpression of HA-Rca1 using GMR-Gal4 induces ectopic S-phases indicated by BrdU incor-
poration in the posterior part of the eye disc and a rough eye phenotype.  
(E&F) Overexpression of HA-Rca1Δ203 or HA-Rca1ΔF-box using GMR-Gal4 does not affect eye morphol-
ogy. 
(G) Structural requirements for S-phase induction by Rca1. All constructs tested in the embryo were examined 
for their ability to induce rough eyes after overexpression with GMR-Gal4. The induction of the rough eye 
phenotype requires basically the structural elements that were necessary for APC/C-Fzr inhibition during 
embryogenesis. However, HA-Rca1Δ203 or HA-Rca1ΔF-box which were able to rescue mitosis 16 in rca12

mutant embryos failed to induce rough eyes.  



Functional analysis of the cell cycle regulator Rca1                     Results 
 

40 

APC/C-Fzr complex during embryogenesis, failed also to induce rough eyes. Interestingly, 

both constructs lacking the F-box (HA-Rca1Δ203 and HA-Rca1ΔF-box) had no effect on eye 

morphology after overexpression with GMR-Gal4. Moreover, both constructs failed to 

promote S-phase entry as indicated by FACS analysis (Figure 18J&M), suggesting that S-

phase induction by Rca1 relies on an F-box dependent mechanism.  

 

The failure of HA-Rca1Δ203 and HA-Rca1ΔF-box to promote S-phase entry might be rather 

due to a dose effect than to a requirement of the F-box. In order to exclude this possibility, 

expression levels of these deletion constructs were compared to those of full-length Rca1. 

Antibody staining against the HA-tag demonstrates that HA-Rca1Δ203 and full-length HA-

Rca1 accumulate to comparable levels (Figure 18E&H), whereas HA-Rca1∆F-box displays a 

reduced expression level (Figure 18K). To rule out that the failure of HA-Rca1∆F-box to 

induce S-phase results from its reduced expression level, two copies of HA-Rca1∆F-box were 

crossed together. Although, simultaneously overexpression of two copies of HA-Rca1∆F-box 

results in expression levels comparable to HA-Rca1 (Figure 18P), these flies display normal 

eye morphology (Figure 18O). Thus, these experiments lead to the conclusion that S-phase 

induction by Rca1 requires a functional F-box. 
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Figure 18 Rca1 overexpres-
sion in eye imaginal discs 
promotes S-phases entry in 
an F-box dependent 
manner. All constructs were 
coexpressed with GFP 
posterior to the morpho-
genetic furrow using GMR-
Gal4. To monitor the effect of 
Rca1 overexpression, the cell 
cycle profile of the GFP 
positive cells was analyzed by 
flow cytometry. In addition, 
mitotic cells were visualized 
by PH3 staining.  In order to 
compare expression levels, 
discs were stained against 
HA. The brackets indicate the 
second mitotic wave and the 
arrowhead the morphogenetic 
furrow.  
(A, C&D) Cell cycle profile 
and PH3 staining in control 
(GFP only) eye imaginal 
discs.  
(B, E-H) Overexpression of 
HA-Rca1 results in a 
remarkable increase of cells in 
S-phase, whereas the G1 
population declines (H).  
(G-N) Overexpression of both 
constructs lacking the F-box
(HA-Rca1∆203 and HA-
Rca1∆F-box) does not affect 
cell cycle progression in eye 
imaginal discs indicated by 
cell cycle profiles and PH3 
patterns similar to controls. 
HA staining reveals that HA-
Rca1∆203 accumulates to 
similar amounts as full length 
Rca1 (E&H), whereas HA-
Rca1∆F-box displays a re-
duced expression level (K).  
(O-Q) To exclude that the 
failure of HA-Rca1∆F-box to 
induce S-phase is due to its 
reduced expression levels, we 
have overexpressed two 

copies of HA-Rca1∆F-box. However, even with two copies of HA-Rca1∆F-box the flies displayed normal eye 
morphology (N&O) and a PH3 pattern similar to wild-type (Q). HA staining indicates that HA-Rca1∆F-box now 
reaches the level of full length Rca1 (P), arguing against a dose effect. In addition, HA staining reveals a
reduced number of HA positive cells compared to discs overexpressing HA-Rca1. This observation reflects the 
failure of HA-Rca1∆F-box to induce S-phase, since both proteins are unstable in G1. In conclusion, these 
experiments demonstrate that Rca1 requires the F-box to accelerate S-phase entry.  
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3.3.4. Excess Rca1 activity accelerates G1-S transition in wing imaginal 
discs 

 
To determine if Rca1 can induce G1-S transitions in other imaginal discs as well, clones that 

continuously express GFP and HA-Rca1 were generated in wing imaginal discs by the use of 

the „flpout“ technique (Ito et al., 1997). Flow cytometric analysis of late third instar wing 

discs (Neufeld et al., 1998) revealed a significant decrease of G1 cells after Rca1 

overexpression, whereas the amount of cells in S/G2 simultaneously increased (Figure 19A). 

The decline of G1 cells indicates that the Rca1 overexpressing cells progress faster through 

G1. The concomitant increase in G2 cells is likely due to a recently discovered compensatory 

mechanism that keeps the overall cell cycle duration constant (Reis and Edgar, 2004). In 

agreement with this, forward scattering revealed no significant change in cell size in Rca1 

overexpressing cells (Figure 19A). These results demonstrate that excess Rca1 protein can 

change the cell cycle profile also in wing imaginal discs by accelerating the transition from 

G1 into S-phase, suggesting that this a general effect of Rca1 overexpression. 

 
 

Figure 19 Wing disc cells 
overexpressing Rca1 progress 
faster through G1. To confirm 
the results obtained in eye disc, 
HA-Rca1 and both constructs 
lacking the F-box were overex-
pressed in wing imaginal disc 
using the “flpout” technique
and analyzed by flow 
cytometry. The green curve 
represents the overexpressing 
cells whereas wild-type cells are 
shown in black.  
(A) Overexpression of HA-
Rca1 leads to a decrease of cells 
residing in G1, indicating that 
these cells progress faster 
through G1. Simultaneously, 
the fraction of G2 cells in-
creases suggesting that these 
cells undergo cell cycle length 
compensation. Forward scat-
tering (FCS) reveals only slight 
size differences between GFP 
positive and negative cells.   
(B&C) Overexpression of HA-
Rca1Δ203 or HA-Rca1ΔF-box 
does not affect the cell cycle 
profile, confirming the obser-
vation that a functional F-box is 
necessary to drive cells ec-
topically into S-phase.  
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Furthermore, both constructs lacking the F-box were tested in the same manner. Consistent to 

the results obtained in the eye, neither HA-Rca1Δ203 (Figure 19B) nor HA-Rca1ΔF-box 

(Figure 19C) affected the cell cycle profile in wing discs, further supporting the idea that S-

phase induction by Rca1 depends on a functional F-box. In both cases forward scattering 

revealed no size difference between wild-type and overexpressing cells (Figure 19B&C), 

suggesting that the marginal size shift observed in the HA-Rca1 overexpressing cells (Figure 

19A) is most likely due to the increased number of G2 cells, which are slightly bigger.   

 
3.3.5. Rca1 overexpression stabilizes mitotic cyclins in G1 
  
The expression pattern of mitotic cyclins reflects the different cell cycle modes within third 

instar eye imaginal discs. Many of the asynchronously dividing cells ahead of the 

morphogenetic furrow and the cells of the second mitotic wave display high levels of mitotic 

cyclins. Within the morphogenetic furrow, cells are synchronized in G1 and mitotic cyclins 

are downregulated (Figure 20B&G). Fzr expression is upregulated within the morphogenetic 

furrow (Figure 16D) and hypomorphic fzr mutants display elevated levels of Cyclin B protein 

(Pimentel and Venkatesh, 2005), suggesting that mitotic cyclins become degraded within the 

morphogenetic furrow by the APC/C-Fzr complex. Moreover, previous studies demonstrated 

that premature activation of Cyclin A/Cdk1 in G1 results in ectopic S-phases (Dong et al., 

1997; Sprenger et al., 1997; Thomas et al., 1994; Thomas et al., 1997). Hence, accumulation 

of Cyclin A due to APC/C-Fzr inhibition could be an explanation for the ectopic S-phases 

observed in Rca1 overexpressing cells. To determine whether overexpression of Rca1 leads to 

stabilization of mitotic cyclins, “flpout“ clones were generated within the morphogenetic 

furrow. S-phase cells were visualized by a GFP-reporter construct that reflects PCNA 

expression (Figure 20A), a gene essential for DNA replication (Thacker et al., 2003). 

Overexpression of Rca1 results in ectopic activation of this reporter, confirming that excess 

Rca1 activity promotes S-phase entry (Figure 20E). Furthermore, these cells showed high 

levels of Cyclin A (Figure 20E) and Cyclin B (Figure 20E). Since both cyclins are targets of 

the APC/C-Fzr complex, these results suggest that APC/C activity gets downregulated in 

Rca1 overexpressing cells. This inactivation of the APC/C could be the direct cause of the 

inhibitory activity of Rca1. Alternatively, it could be a secondary consequence of the induced 

S-phase in which the APC/C is normally inactive.  
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Figure 20 Overexpression of Rca1 stabilizes mitotic cyclins within the morphogenetic furrow. HA-Rca1 
was overexpressed under control of the actin promoter using the “flpout“ method. Clones were visualized by 
GFP expression or anti-HA staining. The arrowheads indicate the morphogenetic furrow. 
(A-C&G) Expression pattern of PCNA-GFP, Cyclin A and Cyclin B in wild-type eye discs highlight the 
downregulation of mitotic cyclins in the morphogenetic furrow and their subsequent accumulation in cells that 
undergo S-phase.  
(D-F) HA-Rca1 overexpression results in ectopic PCNA-staining and accumulation of Cyclin A within the MF.  
(H-J) Cyclin B can also accumulate in clones overexpressing HA-Rca1.  
 
3.3.6. Cyclin A accumulation accompanied with Rca1 overexpression relies 

on a functional F-box 
 
In order to determine whether stabilization of Cyclin A within the morphogenetic furrow 

requires a functional F-box, Cyclin A levels were analyzed in cell clones overexpressing HA-

Rca1Δ203. Although, HA-Rca1Δ203 is an effective inhibitor of APC/C-Fzr activity (Figure 

14C), the cells of the morphogenetic furrow displayed no ectopic Cyclin A staining (Figure 

21E-H). This result shows that these cells remain in G1 and explains why HA-Rca1Δ203 fails 

to induce the rough eye phenotype. Furthermore, this experiment demonstrates that the 

ectopic S-phase induced by Rca1 cannot be simply explained by its inhibitory effect on the 

APC/C-Fzr complex. F-box proteins are part of SCF (Skp-Cullin-F-box)-ubiquitin-ligases that 

mediate degradation of numerous substrates. In such an SCF complex, F-box proteins are 

attached to the Cullin scaffold by a Skp protein and act as substrate recognition subunits 

(Vodermaier, 2004). A genome wide yeast two-hybrid screen demonstrated that Rca1 

interacts with Drosophila SkpA and B (Giot et al., 2003) suggesting that Rca1 might be part 

of an SCF complex. Hence, a reasonable explanation for the requirement of the F-box in G1, 

could be that Rca1 gets incorporated in a SCF-complex which inhibits APC/C-Fzr, resulting 

in accumulation of mitotic Cyclin A and subsequent entry into S-phase. Alternatively, 
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SCF/Rca1 could promote S-phase entry by a yet unknown mechanism and thereby inactivate 

APC/C-Fzr indirectly. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21 The F-box of Rca1 is required for Cyclin A stabilization in the morphoge-
netic furrow. Certain Rca1 constructs were overexpressed under control of the actin pro-
moter using the “flpout“ method. Clones were positively marked by GFP. The arrowheads 
indicate the morphogenetic furrow. 
(A-D) Overexpression of HA-Rca1 results in ectopic Cyclin A staining within the morpho-
genetic furrow. HA-Rca1 is detectable throughout the clone.  
(E-H) Overexpression of HA-Rca1Δ203 does not stabilize Cyclin A within the morphoge-
netic furrow. HA staining reveals that HA-Rca1Δ203 is instable within the morphogenetic 
furrow.  
(I-L) HA-Rca1Δ255 is stable within the MF, but has no effect on Cyclin A.  

 
3.3.7. Rca1 gets degraded within the morphogenetic furrow 
 
In situ hybridization experiments showed that Rca1 mRNA is expressed ubiquitously in the 

anterior part of eye imaginal discs (Figure 16A). Moreover, it was previously  demonstrated 

that Fzr accumulates within the morphogenetic furrow and that APC/C-Fzr activity is required 

to maintain the G1 state (Pimentel and Venkatesh, 2005). These experiments revealed that 

both expression patterns overlap within the morphogenetic furrow, raising the problem how 

Fzr can activate the APC/C in presence of Rca1. To examine whether Rca1 gets 
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posttranscriptional inactivated to allow APC/C-Fzr activity, certain constructs were 

overexpressed in clones spanning the morphogenetic furrow. HA-Rca1Δ203 gets degraded in 

the G1 cells of the morphogenetic furrow and accumulates again once cells enter S-phase 

(Figure 21E-H). Furthermore, HA-Rca1Δ255, which is stable in the embryo, is also refractory 

to degradation within the MF (Figure 21I-L). These observations imply that Rca1 gets 

degraded in the morphogenetic furrow by the same mechanisms that also mediate Rca1 

destruction in G1 cells of postblastoderm embryos. Interestingly, full-length HA-Rca1, which 

is subject to degradation in G1, can accumulate in cell clones within the morphogenetic 

furrow (Figure 21A-B). However, these cells have been shifted from G1 into S-phase where 

Rca1 degradation is switched off, explaining why HA-Rca1 appears stable. Hence, G1 

degradation within the morphogenetic furrow can only be observed for constructs lacking the 

F-box since they cannot promote S-phase entry.   

 
3.3.8. Rca1 lacking the F-box fails to restore the proliferation disadvantage 

of rca1 mutant clones  
 

To test whether the F-box dependent function of Rca1 is required for proliferation in general, 

endogenous Rca1 was replaced by Rca1 constructs lacking the F-box. Therefore, rca12 mutant 

clones expressing appropriate transgenes were generated in wing imaginal discs and examined 

for their proliferation potential. As reported previously, cells in rca12 clones display a severe 

proliferation disadvantage compared to wild-type cells indicated by a dramatically reduced 

average clone size (Figure 22A-D, K and Grosskortenhaus and Sprenger, 2002). 

Overexpression of HA-Rca1 in rca12 clones using the MARCM-System (Lee and Luo, 1999) 

rescues this proliferation disadvantage evidenced by an average clone size similar to wild-type 

(Figure 22E&F, K). Remarkably, neither HA-Rca1Δ203 nor HA-Rca1ΔF-box were able to 

completely restore the proliferation potential of rca12 mutant cells (Figure 22G-J), although 

they perfectly restored mitosis 16 in rca12 mutant embryos (Figure 14). In both cases the 

average clone size was only a third of wild-type levels (Figure 22K). This indicates that these 

cells can only undergo limited number of divisions, demonstrating that the F-box function of 

Rca1 is required for normal proliferation of wing disc cells.  
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Figure 22 Rca1 lacking the F-box fails to restore 
the proliferation disadvantage of rca12 mutant 
cells. rca12 mutant clones positively marked with GFP 
were generated by the MARCM-technique which 
allows the simultaneous overexpression of UAS-con-
structs under control of the tubulin-Gal4 driver line. 
The proliferation rate was determined by counting the 
number of cells per clone in the ventral part of wing 
imaginal discs (n=25). An example for each genotype 
is shown on the left side. The right side shows the 
distribution of the number of cells per clone. The 
diagram in (K) shows the average clone size for each 
genotype. Scale bar: 100µm. 
(A&B) Control (GFP only) clones exhibit a broad 
range of clone sizes varying from small clones that 
contain only few cells up to large clones with more 
than 250 cells per clone. In average, these clones 
contained 57.1 cells per clone.  
(C&D) rca12 mutant clones barely reach sizes of more 
than 25 cells (4.0 cells in average) indicating that loss 
of rca12 results in a severe proliferation disadvantage. 
(E&F) Expression of HA-Rca1 in rca12 mutant clones 
using tubulin-Gal4 overcomes the proliferation 
disadvantage, indicated by a size distribution and 
average clone size (59.3) similar to controls. The 
proliferation rate does not exceed the wild-type level 
since wing disc cells overexpressing HA-Rca1 can 
compensate the accelerated G1-S transition by a 
prolonged G2 phase (Figure 19A).  
(G-J) Expression of constructs lacking the F-box 
(HA-Rca1∆203 and HA-Rca1∆F-box) stimulates 
proliferation of rca12 mutant cells, indicated by the 
appearance of clones with more than 50 cells. 
However, these cells cease proliferation after a certain 
time , thus cells with more than 150 cells per clone
were never found. The limited proliferation potential 
of these cells results in average clone sizes (∆203: 
23.9, ∆F-box: 21.4) between control (57.1) and rca12

mutant cells (4.0).  
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In agreement with its function as an inhibitor of Fzr dependent APC/C activity, rca12 clones 

display reduced amounts of Cyclin A protein. Additionally, these cells displayed increased 

DNA levels indicating that they underwent DNA endoreplication (Figure 23A-C; 

Grosskortenhaus and Sprenger, 2002).  Examination of rca12 clones rescued by expression of 

HA-Rca1 revealed cells with normal DNA content and wild-type levels of Cyclin A. (Figure 

23D-F). In contrast, rca12 mutant clones that overexpress HA-Rca1Δ203 exhibited 

significantly reduced levels of Cyclin A and normal DNA content (Figure 23G-I). In rare 

cases, cells with higher DNA content were observed within these clones (Figure 23J-L). In 

addition, HA-Rca1∆203 was absent in large regions of the clones (Figure 23I&L). 

Considering that HA-Rca1Δ203 and Cyclin A are unstable in G1 (Figure 20B&G), this 

suggests that these cells persist longer in G1. In summary, these findings demonstrate that 

HA-Rca1Δ203 cannot completely replace endogenous Rca1 in proliferating wing disc cells. 

This result is surprising since HA-Rca1Δ203 can inhibit APC/C-Fzr activity during the G2 of 

the 16th embryonic cell cycle. The major difference between both cell cycle types is the 

presence of a G1 state in imaginal disc cells, suggesting that the F-box function of Rca1 is 

necessary for an effective G1-S-transition.  
 

  
 

Figure 23 Cells lacking the F-box function 
of Rca1 reside longer in G1. Areas of wing 
imaginal discs containing MARCM-clones 
(marked with GFP) of the indicated genotypes.
Discs were stained for Cyclin A, DNA and 
HA.  
(A-C) rca12 mutant clones fail to maintain 
Cyclin A levels and undergo endocycles, sug-
gested by the increased nuclear size.  
(D-F) Expression of HA-Rca1 in rca12 mutant 
clones prevents premature degradation of 
Cyclin A and allows normal proliferation. HA-
Rca1 is readily detectable in all cells of the 
clone.  
(G-L) Most rca12 mutant clones that express 
HA-Rca1Δ203 display reduced amounts of 
Cyclin A. Moreover, HA-Rca1Δ203 itself is 
unstable in these cells (I&L). Since both 
proteins are unstable in G1 cells, this suggests 
that these cells persist longer in a G1-state. 
Occasionally these clones exhibit cells with in-
creased DNA level (J). 
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3.3.9. Rca1 promotes S-phase by a mechanism independent of Cyclin 
E/Cdk2 

 
The G1-S transition in Drosophila eye discs is normally mediated by Cyclin E/Cdk2 

(Knoblich et al., 1994; Richardson et al., 1995). To discriminate whether Rca1 requires Cyclin 

E/Cdk2 activity or whether Rca1 can drive cells into S-phase independently from Cyclin E, 

HA-Rca1 was coexpressed with the Cyclin E inhibitor Dacapo (dap).  As showed above, the 

overexpression of HA-Rca1 results alone in ectopic BrdU labeling within the morphogenetic 

furrow (Figure 24B&C). Overexpression of dap should completely inhibit Cyclin E dependent 

kinase activity regardless of other upstream inputs (de Nooij et al., 1996; Reis and Edgar, 

2004). According to this model, Dap overexpression prevents BrdU incorporation in cells of 

the second mitotic wave, indicating that these cells cannot enter S-phase when Cdk2 activity 

is suppressed (Figure 24D&E). Interestingly, clones that coexpress Dap and HA-Rca1 show 

ectopic BrdU incorporation ahead of the second mitotic wave (Figure 24F&G; de Nooij et al., 

1996). Thus, overexpression of DAP cannot suppress S-phase induction by HA-Rca1, 

suggesting that Rca1 promotes S-phase entry by an alternative pathway.  

 

F-box proteins are part of SCF complexes and mediate the degradation of target proteins. The 

F-box dependent S-phase induction by Rca1 suggests that SCF/Rca1 might mediate 

degradation of a negative regulator of S-phase entry. Hence, Dap might be a good candidate 

for a target of the putative SCF/Rca1 complex. Excess SCF/Rca1 activity could force Dap 

turnover, explaining why Dap fails to prevent S-phase entry after coexpression with HA-

Rca1. In wild-type eye imaginal discs, endogenous Dap protein can be detected at low levels 

in the posterior part of the morphogenetic furrow (de Nooij et al., 2000; de Nooij et al., 1996). 

However, Dap levels were not altered in Rca1 overexpressing clones spanning the 

morphogenetic furrow (Figure 24H-K), thus demonstrating that Dap stability is not regulated 

by SCF/Rca1. In summary, these experiments demonstrate that ectopic Rca1 expression 

accelerates the G1-S transition independently from Cyclin E/Cdk2 and that Dap protein 

becomes not targeted for degradation by the SCF/Rca1 complex. 
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Figure 24 Rca1 overexpression can induce S-phase independent from Cyclin E/Cdk2. 
HA-Rca1 and Dacapo (dap) were overexpressed under control of the actin promoter using 
the “flpout“ method. Clones were positively marked by GFP. The arrowheads indicate the 
morphogenetic furrow and the brackets mark the second mitotic wave. 
(A) BrdU expression in wild-type eye discs. The brackets indicate the second mitotic 
wave and the arrowheads the morphogenetic furrow. 
(B&C) HA-Rca1 overexpression results in ectopic S-phases within the morphogenetic 
furrow.  
(D&E) Overexpression of Dap blocks S-phase entry in the second mitotic wave indicated 
by the absence of BrdU-incorporation in the clone area.  
(F&G) Coexpression of Dap and HA-Rca1 does not affect Rca1’s ability to induce S-
phases.  
(H-K) Endogenous Dap levels were not influenced by overexpression of Rca1, 
demonstrating that Dap is not a target of the putative SCF/Rca1 complex. 

 
3.3.10. Fzr is not a target of the SCF/Rca1 complex 
 
The experiments described above showed that Rca1 promotes S-phase entry independently 

from the main S-phase inducer Cyclin E/Cdk2, suggesting that Rca1 acts through an 

alternative pathway. Previous work revealed that Cyclin A/Cdk1 can trigger S-phase in 

Drosophila. However, the S-phase inducing activity of CyclinA/Cdk1 is normally diminished 

by at least three mechanisms (Pimentel and Venkatesh, 2005). On the one hand, S-phase entry 

is prevented by activation of the APC/C-Fzr complex which mediates the destruction of 

Cyclin A. On the other hand, Cdk1 activity becomes restricted by the action of the CKI 

roughex as well as inhibitory phosphorylation (Sprenger et al., 1997; Thomas et al., 1997). 

Since Rca1 interacts physically with Fzr and the APC/C it was assumed that Rca1 inhibits 

APC/C-Fzr activity in a competitive manner (Grosskortenhaus and Sprenger, 2002), a model 

that is further supported by recent work on Emi1 (Miller et al., 2006). However, ectopic S-

phases induced by Rca1 cannot simply be explained by competitive APC/C-Fzr inhibition, 

since cyclin accumulation and S-phase entry induced by Rca1 requires a functional F-box 

although this motif is dispensable for APC/C-Fzr inhibition. Therefore, a reasonable model 
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how Rca1 mediates S-phase entry could be that Rca1 rather mediates the degradation of Fzr in 

G1 cells. To test this hypothesis, HA-Fzr and Rca1 were coexpressed in eye imaginal discs. 

BrdU-labelling reveals that coexpression of HA-Fzr blocks the ability of Rca1 to induce 

ectopic S-phases (Figure 25), whereas HA-Fzr overexpressed alone had no effect on S-phase 

entry in the second mitotic wave. However, HA-Fzr levels were not changed upon 

coexpression with Rca1 in eye imaginal discs (Figure 25L-O), indicating that Rca1 does not 

target Fzr for degradation. Therefore, the absence of ectopic S-phases after coexpression of 

Rca1 and HA-Fzr is likely caused by a competitive effect of Fzr.  

 

 
Figure 25 Fzr is not a target of the SCF/Rca1-complex. Rca1 and HA-Fzr were 
overexpressed under control of the actin promoter using the “flpout“ method. The 
brackets indicate the second mitotic wave and the arrowheads the morphogenetic furrow. 
(A) BrdU incorporation in wild-type eye discs.  
(B&C) Rca1 overexpression promotes S-phase entry shown by ectopic BrdU-labelling.  
(D&E) HA-Fzr overexpression does not affect S-phase entry in the second mitotic wave.  
(F&G) Coexpression of Rca1 and HA-Fzr blocks Rca1 ability to accelerate S-phase 
entry.   
(H-K) Clones expressing both, Rca1 and HA-Fzr fail to accumulate Cyclin A 
demonstrating that HA-Fzr overexpression can neutralize the effects of Rca1 
overexpression.  
(L-O) HA-Fzr is readily detectable in clones coexpressing Rca1 and HA-Fzr suggesting 
that Fzr is not a target of the putative SCF/Rca1-complex. 
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3.4. Investigation of the S-phase promoting activity of Rca1 in 
endoreplicating cells 

 

In Drosophila larvae, cells of many tissues like the gut, the fat body or the salivary glands 

pass through a specialized cell cycle called endoreplication cycle or endocycle (Edgar and 

Orr-Weaver, 2001; Lilly and Duronio, 2005). Endoreplicating cells undergo multiple rounds 

of DNA replication without intervening mitosis. Recent studies have demonstrated that the 

G1/S regulatory machinery that is present in mitotic cells is also involved in regulation of 

endoreplication cycles (Edgar and Orr-Weaver, 2001; Lilly and Duronio, 2005; Sauer et al., 

1995). Several studies have demonstrated that Cyclin E/ Cdk2 activity is essential for 

endocycle progression (Knoblich et al., 1994; Lilly and Spradling, 1996). Furthermore, it has 

been shown that the activities of the Cyclin E/ Cdk2 inhibitor Dacapo as well as the 

transcription factor E2F1 are particularly important during endoreplication (de Nooij et al., 

2000; Duronio and O'Farrell, 1995). Since mitosis is bypassed in endoreplicating cells, 

transcription of mitotic regulators such as String/Cdc25, Cdk1, as well as mitotic cyclins has 

been terminated in these tissues (Klebes et al., 2002; Sauer et al., 1995). The endocycle 

resembles therefore a mitotic cycle in which the S-phase controls are maintained, but the cells 

are no longer forced to enter mitosis (Lilly and Duronio, 2005). Thus, endocycling cells are a 

valuable model to study S-phase entry without interfering with mitotic controls, a feature that 

greatly facilitates further analysis of Rca1 function.  

 
3.4.1. Rca1 is not required for endocycle progression  
 
The experiments described above, suggest that Rca1 is implicated in the transition from G1 to 

S-phase, at least in imaginal discs. This observation raised the question whether Rca1 activity 

contributes also to S-phase entry in endocycling tissues. Since mitosis is bypassed and the 

cells cannot arrest at the G2/M transition, this celltype enables to study S-phase entry in 

absence of Rca1. To test whether loss of Rca1 activity perturbs endocycle progression, clones 

mutant for rca12 were generated in salivary glands by the MARCM technique (Lee and Luo, 

1999). Since mitotic recombination does not occur in polytene cells, clones were induced 

during embryogenesis within the salivary placode. However, at the third instar stage rca12 

mutant cells did not show any abnormalities in their DNA content (Figure 26). This 

observation indicates that rca12 mutant cells underwent the same number of endoreplication 

cycles as the surrounding control cells and demonstrates furthermore that Rca1 activity is not 

essential for endocycle progression in salivary glands.  
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3.4.2. Overexpression of Rca1 perturbs endocycle progression in a F-box 
dependent manner 

 
Rca1 activity is apparently not essential for S-phase entry in endoreplicating tissues. 

However, this observation does not exclude that Rca1 overexpression affects S-phase entry in 

endocycling cells in a similar manner than in imaginal discs. To test this hypothesis HA-Rca1 

was continuously overexpressed in salivary glands using the “flpout“ method (Ito et al., 

1997). Previously, it has been shown that APC/C-Fzr activity is essential for the switch from 

mitotic to endoreplication cycles during embryogenesis (Sigrist and Lehner, 1997), suggesting 

that Rca1 overexpression might affect endocycle initiation rather than S-phase entry. 

Therefore, expression of HA-Rca1 was induced during first the instar stage when cells of the 

salivary gland had already entered the endoreplication program. To monitor the effects of 

Rca1 misexpression, the DNA content in salivary glands from third instar larvae was 

determined by fluorescence microscopy. Cells continuously expressing HA-Rca1 display a 

significant reduction of the DNA content compared to the adjacent wild-type cells (Figure 

27A). At first glance, this result appears be contrary to the accelerated S-phase entry observed 

in imaginal discs after Rca1 overexpression. However, it has previously been shown that 

continuous expression of the S-phase inducer Cyclin E prevents endocycle progression 

(Follette et al., 1998; Weiss et al., 1998). Hence, the reduced DNA content found in Rca1 

overexpressing cells might be caused by the S-phase promoting function of Rca1.  

Figure 26 Endocycle progression is not 
affected in rca12 mutant clones. Sec-
tion of a third instar salivary gland 
containing cells  mutant  for rca12.. 
Clones mutant for rca12 were generated 
in the embryonic salivary placode by the 
MARCM technique. rca12 mutant cells 
are marked by GFP expression. 
Furthermore, salivary glands were 
stained for  DNA to monitor endocycle 
progression. Scale bar : 100µm 
(A-C) Cells lacking Rca1 display similar 
DNA content than the surrounding con-
trol cells, indicating that Rca1 is not 
essential for endocycle progression in 
salivary glands. 
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Figure 27 Rca1 overexpression prevents polyploidization in an F-box dependent manner. Certain Rca1 
constructs were overexpressed in larval salivary glands under control of the actin promoter using the “flpout“ 
method. Overexpressing cells were visualized by coexpression of GFP and antibody staining against the HA-tag. 
DNA contents of nuclei from at least 10 different salivary glands were quantified by fluorescence microscopy 
(C). Scale bar: 100µm. 
(A) Salivary gland cells overexpressing HA-Rca1 display reduced DNA levels compared to wild-type cells, 
demonstrating that excess Rca1 activity blocks endoreplication.  
(B-D) Overexpression of Rca1 constructs lacking the F-box (HA-Rca1∆203 and HA-Rca1∆F-box) does not 
perturb endocycle progression indicated by DNA contents similar to wild-type cells (B&C). Both proteins are 
functional since they are capable to rescue the embryonic phenotype of rca1 (D). Moreover, HA-Rca1 and HA-
Rca1∆F-box accumulate to similar levels, demonstrating that the failure of HA-Rca1∆F-box to impair 
endoreplication is not due to a dose effect (A&B). Hence, these results lead to the conclusion that the F-box is 
essential for Rca1´s effect on endocycle progression, suggesting that Rca1 is part of a yet uncharacterized SCF-
complex. A construct with a point mutation in the ZBR (C351S), that does not prevent SkpA binding, fails to 
block endoreplication, indicating that the effect of Rca1 overexpression does not result from a dominant negative 
effect.  
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The endocycle breakdown upon Rca1 overexpression might be due to the S-phase inducing 

function of Rca1, thus raising the question whether the structural elements required for S-

phase induction in mitotic cells are also essential for endocycle disruption. Therefore, salivary 

glands overexpressing certain Rca1 constructs in scattered cells were inspected for their DNA 

content (Figure 27C). Remarkably, these experiments revealed that the block of 

endoreplication caused by Rca1 overexpression relies like S-phase induction in imaginal discs 

on a functional F-box. Overexpression of both Rca1 constructs lacking the F-box (HA-

Rca1Δ203 and HA-Rca1ΔF-box) did not affect the DNA content in third instar salivary 

glands (Figure 27B&C), although both proteins are potent inhibitors of the APC/C-Fzr 

complex in the embryo (Figure 14). Furthermore, expression levels were compared to exclude 

that the inactivity of HA-Rca1ΔF-box is due to a dose effect. However, staining with 

antibodies against the HA-tag, revealed that HA-Rca1 and HA-Rca1ΔF-box were expressed in 

similar amounts (Figure 27B&C), so that the failure of HA-Rca1∆F-box to block 

endoreplication cannot be explained by a dose effect. Rca1 activity is normally not required in 

endoreplicating cells raising the problem that the phenotype observed upon Rca1 

overexpression might be due to a dominant negative effect. Rca1 could perturb endocycle 

progression by sequestering the SkpA subunit of an SCF-complex that is essential for 

endoreplication. To exclude this possibility, a construct (HA-Rca1C351S) was used that is 

inactive due to a pointmutation in its ZBR, but still binds SkpA (S. Querings, personal 

communication). Overexpression of HA-Rca1C351S has no influence on endocycle 

progression in salivary glands (Figure 27C&D), so that a dominant negative effect can be 

ruled out. In summary, these findings demonstrate that excess Rca1 activity can promote S-

Phase entry also in endoreplicating salivary gland cells and that this occurs most likely by the 

same F-box dependent mechanism as in imaginal discs. 

 

3.4.3. Continuous expression of Rca1 increases Cyclin E levels in salivary 
glands  

 
In the recent years, comprehensive research on endoreplication discovered that the re-

replication controls that ensure that each DNA sequence is only replicated once per cycle are 

also present in endocycling cells (Edgar and Orr-Weaver, 2001; Lilly and Duronio, 2005). In 

this regard the interplay between Cdk´s and the machinery that mediates the licensing of DNA 

replicating origins was of particular interest. During a replication cycle, the cell is faced with 

two contrary requirements. DNA licensing or more precisely the formation of pre-replication 

complexes can only occur at stages with low Cyclin/Cdk activity, whereas the actual initiation 



Functional analysis of the cell cycle regulator Rca1                     Results 
 

56 

of DNA replication requires high levels of Cyclin/Cdk activity (Bell and Dutta, 2002; Blow 

and Dutta, 2005). In Drosophila, initiation of DNA replication mainly relies on Cyclin 

E/Cdk2 activity (Knoblich et al., 1994; Lane et al., 2000). Several studies revealed that Cyclin 

E levels oscillate in endoreplicating tissues (de Nooij et al., 2000; Lilly and Spradling, 1996; 

Weng et al., 2003). Moreover, continuous expression of  Cyclin E resulted in endocycle 

breakdown due to interference with the DNA licensing machinery (Follette et al., 1998; Su 

and O'Farrell, 1998; Weiss et al., 1998). The phenotype observed after continuous Rca1 

expression (Figure 27A) appeared very similar to that resulting from Cyclin E overexpression 

(Figure 32), although the impaired DNA replication was not analyzed in detail. This 

correlation raised the question whether Rca1 misexpression affects Cyclin E oscillation. 

Therefore, Cyclin E levels were examined in third instar salivary glands that express HA-

Rca1 in scattered cells. The amount of Cyclin E protein was significantly increased in cells 

continuously expressing Rca1 (Figure 28A-D), suggesting that the diminished DNA 

replication is due to the elevated Cyclin E levels. The abundance of Cyclin E protein does not 

rely on APC/C activity, therefore this result supports the notion that Rca1 has additional 

functions besides its role as an inhibitor of the APC/C-Fzr.   

 

In endoreplicating cells, the levels of Cyclin E oscillate not only at the protein level, but also 

on the level of transcription (Duronio and O'Farrell, 1995; Sauer et al., 1995). To investigate 

whether the upregulation of Cyclin E levels by Rca1 is due to increased transcription, 

expression of Cyclin E was monitored by a reporter construct that contains 16.4 kb of the 

regulatory region of the Cyclin E gene fused to lacZ (Jones et al., 2000; Wu et al., 2003). 

Inspection of third instar salivary glands that overexpress Rca1 in scattered cells revealed that 

the Cyclin E reporter construct is highly activated in the Rca1 expressing cells (Figure 28E-

H). At the first glance this result suggests that Rca1 activates the transcription of Cyclin E. 

However, in endoreplicating cells, Cyclin E and the transcription factor E2F1/Dp cooperate in 

an autoregulatory feedback loop which ensures that the accumulation of Cyclin E peaks prior 

to S-phase entry (Duronio and O'Farrell, 1995; Sauer et al., 1995). Cyclin E/Cdk2 activates 

E2F1 by phosphorylation of its inhibitor Rbf. E2F1 in turn promotes transcription of Cyclin E. 

Since, Cyclin E can indirectly stimulate its own transcription by derepressing E2F1, the 

enhanced Cyclin E transcription observed after Rca1 overexpression must not necessarily 

result from a direct effect of Rca1 on Cyclin E transcription. Hence, it remains unclear 

whether the upregulation of Cyclin E by Rca1 occurs at transcriptional or posttranscriptional 

level, but it confirms the result obtained by staining with antibodies against Cyclin E. 
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3.4.4. Rca1 expression forces endoreplicating cells to re-enter a mitotic state 
 

In Drosophila, the commitment of Cyclin A and its kinase partner Cdk1 is crucial for entry 

into mitosis (Lehner and O'Farrell, 1989; Stern et al., 1993). Cells lacking either of these 

genes fail to accomplish mitosis and enter endoreplication cycles instead (Grosskortenhaus 

and Sprenger, 2002; Smith and Orr-Weaver, 1991; Stern et al., 1993; Weigmann et al., 1997). 

Several studies revealed moreover that entry into the endocycle is accompanied with 

transcriptional downregulation of several mitotic regulators including Cyclin A, Cyclin B, 

Cyclin B3, Cdk1 and String/Cdc25 (Klebes et al., 2002; Sauer et al., 1995; Shcherbata et al., 

Figure 28 Rca1 overex-
pression results in in-
creased Cyclin E levels.
HA-Rca1 was overex-
pressed in larval salivary 
glands under control of the 
actin promoter using the 
“flpout“ method. Cells 
overexpressing HA-Rca1 
were visualized by coex-
pression of GFP and anti-
body staining against the 
HA-tag. Scale bar : 100µm.
(A-D) Excess Rca1 leads to 
stabilization of Cyclin E 
protein (B). Since continu-
ous Cyclin E activity 
perturbs endocycle pro-
gression, the reduced DNA 
content (C) observed in 
Rca1 overexpressing 
clones is likely due to the 
elevated levels of Cyclin E. 
(E-F) Overexpression of 
Rca1 leads to increased 
transcription of Cyclin E 
mRNA, visualized by a 
CycE-lacZ reporter con-
struct. Cyclin E is part of 
an autoregulatory feedback 
loop. Therefore, it remains 
unclear whether Rca1 
stimulates Cyclin E tran-
scription directly or indi-
rectly by increasing Cyclin 
E level posttranscriptional. 
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2004). Concomitantly to the transcriptional downregulation of mitotic regulators, transcription 

of the APC/C activator fizzy-related (Fzr) gets upregulated (Schaeffer et al., 2004; Sigrist and 

Lehner, 1997). In fzr mutants, embryonic salivary gland cells fail to enter endoreplication, 

demonstrating that proteasomal degradation of mitotic cyclins by the APC/C-Fzr complex is 

absolutely crucial for endocycle entry (Sigrist and Lehner, 1997). The activation of the 

APC/C-Fzr complex results in rapid degradation of mitotic cyclins and thereby creates a sharp 

drop of Cdk1 activity that drives the cells into the endocycle. Hence, it is thought that 

activation of the APC/C-Fzr is the actual trigger for endocycle entry. The transcriptional 

downregulation of mitotic cyclins seems to be rather required to maintain the endocycle by 

preventing re-entry into mitosis. It is assumed that APC/C-Fzr activity is not required once the 

endoreplication program has been initiated (Edgar and Orr-Weaver, 2001; Lilly and Duronio, 

2005). However, both mechanisms may also cooperate after endocycle entry to sustain low 

levels of Cdk1 activity. Inhibition of APC/C-Fzr activity and subsequent accumulation of 

mitotic cyclins might therefore be a reasonable explanation for the endocycle block observed 

after Rca1 overexpression. In order to test this hypothesis, the levels of Cyclin A and Cyclin B 

in third instar salivary glands that overexpress HA-Rca1 were analyzed by fluorescence 

microscopy and Western blotting (Figure 29). Interestingly, only Cyclin A accumulates after 

Rca1 overexpression (Figure 29B&I), whereas Cyclin B levels are unaffected (Figure 29I). If 

Rca1 inhibits APC/C-Fzr activity one would expect that both proteins accumulate 

simultaneously. Moreover, if Cyclin A protein accumulates due to APC/C-Fzr inhibition, this 

would at least require the abundance basal levels of Cyclin A transcript. However, several 

studies  have demonstrated that Cyclin A transcription is turned off in endoreplicating cells 

(Klebes et al., 2002; Sauer et al., 1995). Finally, the accumulation of Cyclin E in Rca1 

overexpressing cells argues against this model, since Cyclin E is not a target of the APC/C-

Fzr complex. Thus, the impaired endoreplication upon Rca1 overexpression cannot be simply 

explained by downregulation of APC/C-Fzr activity. It seems that Rca1 overexpression rather 

stimulates Cyclin A transcription.  

 

Fluorescence microscopy indicated furthermore that Cyclin A accumulates in the nucleus 

upon Rca1 overexpression (Figure 29B&I), whereas Cyclin A expressed from a transgene is 

predominantly detectable in the cytoplasm (Figure 30B). In mitotic cells Cyclin A enters the 

nucleus just after entry into mitosis (Dienemann and Sprenger, 2004; Lehner and O'Farrell, 

1989), thus this observation strongly supports the idea that Rca1 overexpression promotes re-

entry into mitosis. After endocycle entry, transcription of Cdk1 becomes terminated as well,  
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Figure 29 Rca1 overex-
pression leads to re-
accumulation of mitotic 
proteins. HA-Rca1 was 
overexpressed in larval 
salivary glands under con-
trol of the actin promoter 
using the “flpout“ method. 
Cells overexpressing HA-
Rca1 were visualized by 
coexpression of GFP and 
antibody staining against 
HA. Scale bar : 100µm. 
(A-D) Rca1 overexpression 
results in accumulation of 
Cyclin A (B). This result is
surprising since Cyclin A
expression becomes termi-
nated upon endocycle en-
try. Interestingly, Cyclin A 
is accumulates in the 
nucleus, whereas Cyclin A 
derived from a transgene is 
predominantly cytoplasmic 
(Figure 30). Considering 
that Cyclin A enters the 
nucleus at the onset of 
mitosis (D), this suggests 
that Rca1 overexpressing 
cells try to re-enter a mi-
totic state. 
(E-H) Cdk1 protein ac-
cumulates in cells over-
expressing Rca1 demon-
strated by antibody staining
against the PSTAIRE motif 
of Cdk1.  
(I) Extracts derived from 
embryos of the indicated 
age and larval salivary 
glands were analyzed by 
Western blotting. Cyclin A, 
Cyclin B and Cdk1 are 
absent in  wild-type 
salivary glands. However, 
after expression of HA-
Rca1 Cyclin A and Cdk1 
were readily detectable, 
whereas Cyclin B was still 
absent. Since Cyclin A and 
B are substrates of the 
APC/C, this observation 
indicates that the block of 
endoreplication is not 
caused by Rca1's inhibitory 
effect on APC/C-Fzr. 
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raising the idea that Rca1 overexpression could also stimulate accumulation of Cdk1, which is 

not subject of APC/C mediated degradation. To investigate this idea, salivary glands 

overexpressing HA-Rca1 were inspected for Cdk1 protein (Figure 29). Fluorescence 

microscopy as well as Western blotting demonstrate that Cdk1 accumulates at high levels in 

salivary glands which overexpress HA-Rca1 (Figure 29). In summary, these findings suggest 

that Rca1 overexpression forces re-entry in mitosis by activating the transcription of mitotic 

regulators. However, it remains to be elucidated whether this occurs via downregulation of 

APC/C-Fzr activity or by employment of an alternative pathway.   

 
3.4.5. Overexpression of Cyclin A cannot impair endoreplication in larval 

salivary glands 
 
DNA replication in Drosophila is normally initiated by Cyclin E/Cdk2  (Knoblich et al., 1994; 

Lane et al., 2000), but several studies have demonstrated that under certain circumstances 

Cyclin A/Cdk1 can trigger DNA replication as well (Sprenger et al., 1997; Thomas et al., 

1994; Thomas et al., 1997). Upregulation of Cyclin A/Cdk1 activity should therefore block 

endoreplication in a similar manner than Cyclin E overexpression. To investigate whether 

Cyclin A overexpression can perturb endocycle progression, continuous expression of HA-

CycA was induced during the first instar stage. Inspection of DNA levels in third instar 

salivary glands revealed that misexpression of HA-CycA does not affect endoreplication 

(Figure 30D&F). Furthermore, antibody staining indicated that Cyclin E levels are not 

affected by overexpression of HA-CycA (Figure 30D&F). Thus, this experiment excludes that 

the accumulation of Cyclin A in Rca1 overexpressing cells enhances Cyclin E protein levels 

indirectly. During embryogenesis, when residual amounts of Cdk1 protein are still abundant, 

misexpression of Cyclin A can perturb endoreplication (F. Sprenger, personal communication; 

Follette et al., 1998). The incapability of Cyclin A to prevent endoreplication in larval salivary 

glands is therefore most probably due to the lack of its kinase partner Cdk1 at this stage. As 

mentioned above, HA-CycA is localized predominantly in the cytoplasm (Figure 30D&F), 

whereas endogenous Cyclin A accumulates in the nucleus after Rca1 overexpression. Since 

nuclear targeting of Cyclin A requires Cdk1 activity, this observation confirms that Cdk1 

protein is not abundant in larval salivary glands. Furthermore, this strongly supports the idea 

that Cyclin E, Cyclin A and Cdk1 levels are simultaneously increased after Rca1 

overexpression.    
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Figure 30 Excess Cyclin A does not affect endocycle progression. HA-Cyclin A was overexpressed in larval 
salivary glands under control of the actin promoter using the “flpout“ method. Cells overexpressing Cyclin E 
were visualized by coexpression of GFP. Scale bar: 100µm. 
(A-E) Overexpression of Cyclin A does not affect the DNA content (B&F), demonstrating that the endocycle 
program is not influenced by excess Cyclin A. Furthermore, the levels of Cyclin E are not influenced by Cyclin 
A overexpression (A). The failure of Cyclin A to block endoreplication is likely due to the absence of its kinase 
partner Cdk1 in salivary glands.  
(F) Quantification of DNA contents by fluorescence microscopy. Mean values of several nuclei of individual 
salivary glands are represented by each set of bars (n=10).  
 
3.4.6. The endocycle breakdown induced by Rca1 overexpression is due to 

impaired DNA licensing 
 
The simultaneous accumulation of Cyclin E, Cyclin A and Cdk1 upon Rca1 overexpression 

raises the question whether the endocycle breakdown is caused by the enhanced Cyclin E 

levels or it is due to the rise of Cyclin A/Cdk1 activity. Continuous Cyclin E  expression halts 

the endocycle by interfering with the DNA licensing machinery (Follette et al., 1998; Su and 

O'Farrell, 1998; Weiss et al., 1998). It is thought that Cyclin A/Cdk1 can perturb DNA 

licensing as well (F. Sprenger, personal communication; Follette et al., 1998). However, an 

alternative explanation might be that Cyclin A/Cdk1 drives the cells into a mitotic state and 

prevents thereby endoreplication. To discriminate between these possibilities, Rca1 and the 

Cdk1 inhibitor roughex (rux) were coexpressed in larval salivary glands. Although Cyclin 

A/Cdk1 activity was damped by Rux, HA-Rca1 was capable to disrupt endoreplication 

(Figure 31C-F), whereas overexpression of Rux alone has no effect on endocycle progression 

(Figure 31A&B). Hence, these results indicate that the endocycle breakdown observed upon 

Rca1 overexpression is due to impaired DNA licensing. If Cyclin E/Cdk2 prevents DNA 

licensing alone or both, Cyclin E/Cdk2 and Cyclin A/Cdk1 contribute to this process remains 

unclear. The latter explanation however seems to be more likely.  
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3.4.7. Continuous Cyclin E expression results in accumulation of Cyclin A 
and Cdk1  

 
Overexpression of Cyclin E rescues the G2 arrest in rca12 embryos (Grosskortenhaus and 

Sprenger, 2002), suggesting that Rca1 and Cyclin E have at least partly overlapping functions. 

Moreover, genetic epitasis experiments indicated that Rca1 and Cyclin E/Cdk2 act in concert 

to restrict APC/C-Fzr activity during postblastoderm cell cycles (Figure 10; Reber et al., 

2006; Sigrist and Lehner, 1997). Although APC/C-Fzr activity is assumed to be not required 

for endoreplication upon endocycle entry, Western blotting revealed that Fzr is present in 

larval salivary glands and that the amount of Fzr protein is comparable to that of 

postblastoderm embryos (C. Lehner, personal communication). The abundance of Fzr in 

larval salivary glands raises the question whether the APC/C-Fzr complex may have a 

function in larval salivary glands.  If the phenotype observed after Rca1 overexpression is due 

to downregulation of APC/C-Fzr activity, overexpression of Cyclin E should therefore have 

similar effects. To address if Cyclin E phenocopies the effect of Rca1 overexpression, third 

instar salivary glands that overexpress Cyclin E in scattered cells were inspected for Cyclin A 

Figure 31 The accumula-
tion of Cyclin A/Cdk1 is 
not crucial for endocycle 
breakdown induced by 
Rca1. HA-Rca1 and Rux 
were overexpressed in 
larval salivary glands 
under control of the actin 
promoter using the 
“flpout“ method. Overex-
pressing cells were visu-
alized by coexpression of 
GFP and antibody staining 
against the HA-tag. Scale
bar : 100µm 
(A-B) Overexpression of 
Rux does not impair 
endocycle progression 
evidenced by DNA 
contents similar to the 
surrounding wild-type 
cells. 
(C-F) Excess HA-Rca1 
blocks endocycle pro-
gression, although Cdk1 
activity is damped by 
coexpression of Rux. 
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and Cdk1 levels. Both proteins were readily detectable in Cyclin E overexpressing cells 

(Figure 32), demonstrating that the functions of Cyclin E and Rca1 overlap also in 

endoreplicating cells. However, it remains unclear whether Cyclin E stimulates transcription 

of Cyclin A and Cdk1 by downregulation of APC/C-Fzr activity. Nevertheless, a very 

attractive model might be that after endocycle entry, APC/C-Fzr mediates the degradation of a 

factor that regulates the transcription of Cyclin A and Cdk1. Hence, inhibition of APC/C-Fzr 

activity either by Rca1 or by phosphorylation through Cyclin E/Cdk2 would result in 

subsequent accumulation of Cyclin A and Cdk1.    

 

 

 

3.4.8. Oscillation of APC/C-Fzr activity is not required for endocycle 
progression 

 
Since Cyclin E activity is normally present in endoreplication, a general problem emerges 

challenging the idea that Cyclin E stimulates the transcription of Cyclin A and Cdk1 by 

inhibiting the APC/C-Fzr activity.  If Cyclin E dependent kinase activity is present in 

endoreplicating cells anyway, how can the APC/C-Fzr complex develop its full activity? A 

solution for this problem could be that Fzr activity oscillates out of phase with CyclinE/Cdk1 

activity. To test this idea HA-Fzr was continuously overexpressed in third instar salivary 

glands using the “flpout” technique (Ito et al., 1997). Examination of DNA content by 

fluorescence microscopy indicates that continuous expression of HA-Fzr does not influence 

endocycle progression (Figure 33). However, Cyclin E /Cdk2 could also inactivate the extra 

Figure 32 Cyclin A and its kinase 
partner Cdk1 accumulate after 
overexpression of Cyclin E. Cy-
clin E was overexpressed in larval 
salivary glands under control of the 
actin promoter using the “flpout“ 
method. Cells overexpressing Cy-
clin E were visualized by coex-
pression of GFP. Scale bar : 
100µm. 
(A) Continuous Cyclin E expres-
sion perturbs endocycle progres-
sion, evidenced by reduced DNA 
contents compared to the sur-
rounding wild-type cells. 
(B&C) Cyclin A and Cdk1, 
visualized with an antibody di-
rected against its PSTAIRE helix, 
accumulate in Rca1 overexpressing 
cells. The phenotype seems to be 

dose dependent, since Cdk1 and Cyclin A are only readily detectable in cells with dramatically reduced DNA
content. Since,  the use of the “flpout“ technique in polyploid cells produces a gradient of expression levels, these 
cells are most likely the cells with the highest Cyclin E levels.
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Fzr protein, so that the APC/C-Fzr complex becomes only hyper activated in phases with low 

Cyclin E /Cdk1. Furthermore, the amount of APC/C molecules that can be activated could be 

limiting, thus excess Fzr would not necessarily result in higher APC/C activity. Therefore, one 

can only exclude from this experiment that Fzr levels fluctuate in endoreplicating tissue since 

HA-Fzr is readily detectable in all cells that are supposed to express it (Figure 33D). 

 

 
 

Figure 33 Excess Fzr protein 
does not prevent endoreplication.
HA-Fzr was overexpressed in lar-
val salivary glands under control of 
the actin promoter using the 
“flpout“ method. Cells overex-
pressing HA-Rca1 were visualized 
by coexpression of GFP and anti-
body staining against the HA-tag. 
Scale bar : 100µm. 
(A-D) Continous expression of Fzr 
has no effect on endocycle 
progression, since cells over-
expressing HA-Fzr display DNA 
contents simarilar to the adjacent 
control cells. 
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4. Discussion  
4.1. Rca1 restrains APC/C-Fzr activity in postblastoderm 

embryos in concert with Cyclin/Cdk complexes 
 
The first thirteen divisions during Drosophila embryogenesis are very rapid since they lack 

intervening G1 and G2-phases. These cell cycles are driven by maternal supplies that persist 

until the cellular blastoderm stage. At this stage, the cells of the embryo establish the first G2-

phase. The following divisions (14-16), which are generally referred as postblastoderm cell 

cycles, are the first cycles that rely on zygotic transcription (Edgar and O'Farrell, 1989; Edgar 

and O'Farrell, 1990). Cells in the postblastoderm embryo enter S-phase subsequently after 

progression through mitosis without an intervening G1-phase. After completion of cell cycle 

16, epidermal cells for the first time enter a G1-phase (Edgar and O'Farrell, 1990). Since most 

epidermal cells persist in this G1-phase until the end of embryogenesis, the 16th cell division 

is also referred as terminal mitosis. The String/Cdc25 phosphatase controls entry into mitosis 

during postblastoderm cell cycles by removing inhibitory phosphorylations from Cyclin/Cdk1 

complexes (Edgar and O'Farrell, 1989; Edgar and O'Farrell, 1990). Upon activation by 

String/Cdc25, the Cyclin/Cdk1 complex triggers entry into mitosis (Edgar et al., 1994a; 

Minshull et al., 1989; Murray and Kirschner, 1989). Mutants that lack either Cyclin A or its 

kinase partner Cdk1 are not able to enter mitosis (Lehner and O'Farrell, 1989; Stern et al., 

1993). Epidermal cells in Cyclin A mutant embryos progress normally through the first two 

postblastoderm cycles but fail to execute the terminal mitosis 16 (Lehner and O'Farrell, 1989). 

This is a feature unique to Cyclin A, since mutants for Cyclin B and Cyclin B3 develop 

normally to adulthood (Jacobs et al., 1998; Knoblich and Lehner, 1993; Lehner and O'Farrell, 

1989; Lehner and O'Farrell, 1990b).  

 

In preparation of the terminal G1-phase, APC/C-Fzr activity becomes upregulated (Raff et al., 

2002; Sigrist and Lehner, 1997). Premature activation of the APC/C-Fzr complex, however, 

interferes with execution of the terminal mitosis (Grosskortenhaus and Sprenger, 2002; Sigrist 

and Lehner, 1997). In embryos lacking the APC/C-Fzr inhibitor Rca1, mitotic cyclins become 

prematurely degraded resulting in a G2 arrest during cell cycle 16 (Grosskortenhaus and 

Sprenger, 2002).  Furthermore, it has been demonstrated that APC/C-Fzr activity is also 

restricted by the Cyclin A/Cdk1 complex (Dienemann and Sprenger, 2004). This function 

appears to be unique to Cyclin A/Cdk1 and explains why only loss of Cyclin A results in 

embryonic lethality. Thus, Rca1 and Cyclin A have overlapping functions regarding negative 
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regulation of APC/C-Fzr activity. Double mutants that lack both genes, already arrest during 

cell cycle 15 (Grosskortenhaus and Sprenger, 2002), supporting the notion that APC/C-Fzr 

activity emerges during this stage (Raff et al., 2002). This experiment indicates furthermore 

that Rca1 and Cyclin A cooperate to restrain APC/C-Fzr activity during the last two 

postblastoderm cell cycles (Figure 34). Large amounts of maternally derived transcripts 

encoding for both proteins are present in the postblastoderm embryo. These maternal stocks 

persist till interphase 16, explaining why the preceding division occurs normal in single 

mutants for rca1 and cycA respectively.  However, only loss of either of these genes can be 

compensated during cell cycle 15. The amount of protein derived from maternal transcripts is 

apparently not sufficient to replace both genes, thus explaining why rca1; cycA double 

mutants arrest even earlier.  

 

In vertebrates, it has been shown that APC/C-Fzr activity is also restricted by Cyclin A 

dependent kinase activity (Kramer et al., 2000; Lukas et al., 1999; Sorensen et al., 2001). In 

this model system, Cyclin A restrains APC/C-Fzr activity in conjunction with Cdk2 (Lukas et 

al., 1999), a combination that is not found in Drosophila. In flies, however, Cdk2 forms only 

complexes with Cyclin E (Knoblich et al., 1994). This suggests that either Cdk2 dependent 

kinase activity is not necessary for APC/C-Fzr inhibition in Drosophila or that the APC/C-Fzr 

complex is also regulated by Cyclin E/Cdk2. The latter explanation is supported by the 

observation that overexpression of Cyclin E in rca1 mutants prevents premature degradation 

of mitotic cyclins and thereby rescues entry into terminal mitosis (Grosskortenhaus and 

Sprenger, 2002). Moreover, Cyclin B levels as well as entry into mitosis 16 can be rescued by 

overexpression of Cyclin E in cycA mutant embryos (Figure 10; Reber et al., 2006). Thus, 

providing further evidence for the idea that Cyclin E/Cdk2 is a negative regulator of APC/C-

Fzr activity besides Rca1 and Cyclin A/Cdk1.  

 

Cyclin E/Cdk2 activity decreases during cell cycle 16 when the epidermal cells prepare the 

terminal G1-phase (de Nooij et al., 1996; Knoblich et al., 1994; Lane et al., 1996). Hence, 

Cyclin E/Cdk2 activity cannot be required to restrain APC/C-Fzr activity to allow execution 

of mitosis 16. However, downregulation of Cyclin E dependent kinase activity in Cyclin A 

mutants by Dacapo overexpression results in premature Cyclin B degradation and a 

subsequent arrest during cell cycle 15 (Figure 12). This demonstrates that Cyclin E/Cdk2 

activity is necessary to prevent premature APC/C-Fzr activation.  Initially, rca1, cycE double 

mutants and rca1, cycE; cycA triple mutants were generated, to examine whether Cyclin 
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E/Cdk2 is involved in APC/C-Fzr inhibition during cell cycle 15. However, even combination 

with the strongest available Cyclin E allele did not enhance the phenotype of rca1 single 

mutants and rca1; cycA double mutants, respectively. Although, Cyclin E/Cdk2 activity is 

crucial for DNA replication epidermal cells in Cyclin E mutants progress normally through  

postblastoderm cell cycles (Knoblich et al., 1994). It is therefore assumed that loss of zygotic 

Cyclin E is compensated by maternal stocks (Knoblich et al., 1994; Vidwans and Su, 2001). 

The absence of an obvious phenotype in rca1, cycE double mutants and rca1, cycE; cycA 

triple mutants could be explained by maternally derived Cyclin E. Cells in rca1, cycE double 

mutants as well as cells in rca1, cycE; cycA triple mutants displayed increased DNA contents 

(Figure 11F&G), suggesting that these cells underwent endoreplication. Considering that 

Cyclin E/Cdk2 activity is essential for initiation of DNA replication (Knoblich et al., 1994; 

Lane et al., 2000), these findings support the notion that maternally derived Cyclin E protein 

is abundant in these mutants. This experiment stands in contrast to the observation that cycE; 

cycA double mutants arrest during cell cycle 15 (Reber et al., 2006). An explanation for this 

discrepancy might be that Cyclin A dependent kinase activity is of greater importance for 

APC/C-Fzr inhibition during cell cycle 15 than Rca1 function.  Altogether, these experiments 

suggest that Rca1, Cyclin A/Cdk1 and Cyclin E/Cdk2 cooperate to restrain APC/C-Fzr 

activity during cell cycle 15 (Figure 34). However, it remains to be elucidated whether 

downregulation of Cyclin E/Cdk2 activity enhances the rca1 phenotype as well. This 

experiment should confirm the model described in Figure 34 and maybe explains the 

discrepancies between rca1, cycE and cycE; cycA double mutants. 

 

In preparation of the terminal G1-pase, the Cdk2 inhibitor Dacapo becomes upregulated 

during cell cycle 16 (de Nooij et al., 1996; Lane et al., 1996). Beside termination of Cyclin E 

transcription, upregulation of Dacapo causes a decrease of Cyclin E /Cdk2 activity that is 

necessary to arrest the epidermal cells in the G1 state  (de Nooij et al., 1996; Knoblich et al., 

1994; Lane et al., 1996). Considering that Cyclin E/Cdk2 is a potent inhibitor of APC/C-Fzr 

activity, dap; cycA double mutants were generated to test whether loss of Cyclin A/Cdk1 

activity can be compensated by extended Cyclin E/Cdk2 activity. These mutants, however, 

failed to enter the terminal mitosis 16, suggesting that termination of Cyclin E transcription 

during cell cycle 16 is of higher impact than downregulation of Cyclin E dependent kinase 

activity by Dacapo. 
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Figure 34 Regulation of late 
embryonic cell cycles in 
Drosophila. Fzr protein 
emerges during cell cycle 15 
to establish the terminal G1 
phase that occurs after execu-
tion of mitosis 16.  During cell 
cycle 15 premature activation 
of the APC by Fzr becomes 
prevented by Rca1, Cyclin 
A/Cdk1 and Cyclin E/Cdk2. 
In the 16th cell cycle, Cyclin E 
dependent kinase activity 
decreases due to termination 
of Cyclin E transcription and 
upregulation of the Cdk2 
inhibitor Dacapo. In G2 of cell 
cycle 16 APC/C-Fzr activity is 
therefore only inhibited by 
Rca1 and Cyclin A/Cdk1. 
During progression through 
mitosis 16, Rca1 as well as 
Cyclin A become inactivated 
to allow APC/C-Fzr activity, 
which is necessary to exit the 
cell cycle as well as for 
initiation of endoreplication.  

 

In summary, these experiments demonstrate that during postblastoderm cell cycles Rca1, 

Cyclin A/Cdk1 and Cyclin E/Cdk2 act in concert to restrict APC/C-Fzr activity. In 

preparation of the terminal G1 state, Cyclin E/Cdk2 activity decreases and APC/C-Fzr 

inhibition relies only on Rca1 and Cyclin A/Cdk1. Loss of either of these genes causes 

therefore an arrest during interphase 16 due to premature APC/C-Fzr activation. These results 

indicate that multiple inputs regulate APC/C-Fzr activity and Rca1 function becomes essential 

when alternative mechanisms are inactivated by the developmental program. APC/C-Fzr 

activity is required for the establishment of  the first G1 phase in the epidermis as well as for 

the initiation of endoreplication cycles in internal tissues (Jacobs et al., 2002; Sigrist and 

Lehner, 1997) In order to enable Fzr dependent APC/C activity, Rca1 itself becomes 

transcriptionally downregulated and degraded after progression through mitosis 16 (Figure 34 

(Dong et al., 1997; Grosskortenhaus and Sprenger, 2002). To understand the function of Rca1 

completely it is therefore necessary to understand how Rca1 is regulated at the molecular 

level.  
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4.2. Structural requirements for APC/C-Fzr inhibition in G2 
 
Drosophila Rca1 is related to the vertebrate Emi proteins that are inhibitors of Cdc20/Fzy and 

Cdh1/Fzr dependent APC/C activity (for review see Schmidt et al., 2006). Although their 

overall identity is not very high, Rca1 and the Emi1 proteins share several structural elements 

(Figure 8). The N-terminal part of Rca1 contains a putative nuclear localization signal (NLS) 

and a potential F-box. The C-terminus harbors a so called zinc binding region (ZBR), a motif 

that is known to mediate protein-protein interactions (van der Reijden et al., 1999). In 

addition, Rca1 contains a KEN-box and a DSGxxS degron that both are located in the region 

between the F-box and the ZBR. Finally, the Rca1/Emi1 proteins several potential Cdk1 

phosphorylation sites (S/T-P), which are distributed throughout the protein. In order to map 

the structural elements essential for APC/C-Fzr inhibition, an in vivo structure/function 

analysis was conducted (Figure 14). Mutations in rca1 result in a failure to execute mitosis 16 

due to premature activation of the APC/C-Fzr complex in G2 (Grosskortenhaus and Sprenger, 

2002). This G2 arrest as well as the premature degradation of mitotic cyclins can be overcome 

by Rca1 expression. Thus, rescue of mitosis 16 in rca1 mutants can be used as an assay to 

monitor APC/C-Fzr activity in vivo. In the course of the structure/function analysis, this assay 

was utilized to test different Rca1 deletion constructs for APC/C-Fzr inhibition. A C-terminal 

fragment of Emi1 was shown to be sufficient for APC/C inhibition as revealed by in vitro 

ubiquitinylation experiments (Reimann et al., 2001a). Similar, the C-terminal half of Rca1 

(HA-Rca1Δ203) was sufficient for restriction of APC/C-Fzr activity in G2 evidenced by 

execution of mitosis 16 and normal Cyclin degradation (Figure 14). The deleted region 

contains the F-box suggesting that Rca1 and Emi1, respectively, do not require this motif for 

proper APC/C inhibition. In addition, an Rca1 construct just lacking the F-box was capable to 

rescue the G2 arrest in rca1 mutants (Figure 14). This supports the notion that Rca1 inhibits 

the APC/C-Fzr complex by an F-box independent mechanism during embryogenesis.  

 

By contrast, further truncation of the N-terminus (HA-Rca1Δ255) perturbed Rca1 activity 

suggesting that the region between amino acid 203 and 255 contains elements essential for 

APC/C-Fzr inhibition (Figure 14). Furthermore, point mutations in the ZBR abolished the 

inhibitory effect of Rca1 and Emi1, respectively (Figure 14; Reimann et al., 2001a; Reimann 

et al., 2001b). For Emi1, initially it was shown that the ZBR mediates physical interaction 

with Fzy/Cdc20 and Fzr/Cdh1, but not with components of the APC/C. Therefore it was 

postulated that Emi1 inhibits APC/C activity by blocking the substrate binding site in 

Fzy/Cdc20 (Reimann et al., 2001a; Reimann et al., 2001b). Rca1 co-immunoprecipitates with 
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Fzr suggesting that Rca1 also inhibits APC/C-Fzr activity by preventing substrate binding to 

Fzr (Grosskortenhaus and Sprenger, 2002). However, a more recent study indicates that Emi1 

interacts with subunits of the APC/C via a minimal destruction box (RxxL) (Miller et al., 

2006). The destruction box (D-box) is a conserved degron found in substrates of the APC/C 

(Glotzer et al., 1991; King et al., 1996). Initially it has been proposed  that an adaptor protein 

(Cdc20/Fzy and Cdh1/Fzr) recognizes the D-box and thereby promotes the APC/C dependent 

degradation of the target protein (Schwab et al., 1997; Visintin et al., 1997). However, recent 

studies have revealed that the APC/C core complex also contributes to substrate binding by 

recognizing the D-box even in the absence of an adaptor protein  (Carroll et al., 2005; 

Yamano et al., 2004). Although Emi1 contains a putative D-box, it has been demonstrated that 

it is not a substrate of the APC/C (Reimann et al., 2001a). Disruption of the ZBR, however, 

converts Emi1 into an APC/C substrate (Miller et al., 2006). Hence, it was proposed that 

Emi1 rather acts as a pseudosubstrate inhibitor instead of preventing substrate binding to the 

adaptor protein. In this model, the D-box mediates the interaction with the APC/Cdh1 

complex, whereas the ZBR seems to be required to prevent substrate access (Miller et al., 

2006). In the Emi1/Emi2 proteins, the D-box is located between F-box and ZBR (Figure 35). 

This particular region also seems to be crucial for APC/C inhibition by Rca1, suggesting that 

Rca1 might also act as pseudosubstrate inhibitor. The D-box is conserved among all 

Emi1/Emi2 proteins except Drosophila Rca1. However, closer inspection of the region 

between F-box and ZBR revealed that Rca1 also contains a minimal D-box that is located 

closer to the F-box (Figure 35). In addition, co-immunoprecipitation experiments revealed 

that Rca1 interacts also with the APC/C subunit Cdc27 (Grosskortenhaus and Sprenger, 

2002). Thus, it remains to be clarified whether Rca1 acts as a pseudosubstrate inhibitor of the 

APC/C-Fzr complex. In order to elucidate this question it should be tested if deletion of the 

D-box in Rca1 prevents APC/C-Fzr inhibition during Drosophila embryogenesis.  

 

Besides the D-box, the region between F-box and ZBR harbors a KEN-box (Figure 35). The 

KEN-box is another degron known from APC/C-Fzr substrates (Pfleger and Kirschner, 2000). 

Most APC/C targets contain one or both of these sequences. The APC/C-Cdc20 complex 

prefers D-box containing substrates, whereas substrates of the APC/C-Fzr complex frequently 

contain a D-box as well as a KEN-box (Burton and Solomon, 2001; Hilioti et al., 2001; 

Pfleger et al., 2001). Emi1 inhibits both, APC/C-Cdc20 and APC/C-Cdh1, while Rca1 only 

affects APC/C-Fzr activity. Therefore, the presence of D-box and KEN-box could reflect the 

different substrate specificity of Rca1. However, a construct carrying point mutations in the 
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KEN-box was still capable to rescue the G2 arrest in rca1 mutants (Figure 14). This result 

suggests that APC/C-Fzr inhibition by Rca1 does not solely rely on this motif. It is not known 

whether the KEN-box is also recognized by the APC/C core complex. Hence, a conceivable 

explanation could be that the D-box mediates the interaction with the APC/C core complex, 

whereas the KEN-box is required for Fzr binding. Binding to the APC/C core could be 

sufficient for APC/C-Fzr inhibition and thus explaining why Rca1 can restrain APC/C activity 

even in absence of the KEN-box. To test this idea, an Rca1 construct that lacks both, D-box 

and KEN-box, should be tested for its capability to restrain APC/C-Fzr activity.  
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Figure 35 Comparison of the C-terminal region of the Rca1/Emi family. (A) Overview of the domain 
arrangement of xlEmi1 and dmRca1. The Emi1/Emi2 proteins contain a conserved D-Box (orange) located 
between F-box (yellow) and ZBR (red). This D-box is not conserved in Rca1. However, Rca1 contains a 
putative D-box (RxxL) adjacent to the F-Box. In addition, Rca1 contains a KEN-box (purple) close to the D-
box. The schematic drawings are derived from the sequence alignment shown in (B) and an earlier  alignment 
that  revealed general arrangement of the functional domains (Reimann et al., 2001a). (B) Alignment of the 
Rca1/Emi1 family generated with the T-Coffee multiple sequence alignment tool. Functional domains are 
visualized in the same colour code as in (A). Residues that are identical in all sequences are indicated by an 
asterisk “*” and a black bar (red in case of the cysteine residue of the ZBR). Highly similar regions are marked 
by an “:”, whereas semi-conserved regions are visualized by an “.”.  The triangle indicates the conserved 
cysteine residue that was substituted by an alanine to disrupt the ZBR in Rca1 and Emi1, respectively.   
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4.3. Rca1 degradation in G1 is achieved by a so far unknown 
mechanism 

 

In Drosophila and vertebrates, degradation of mitotic cyclins by the APC/C-Fzr complex is 

crucial for establishment and maintenance of the G1 state (Jacobs et al., 2002; Lukas et al., 

1999; Pimentel and Venkatesh, 2005). In order to allow APC/C activity during mitosis and 

G1, the inhibitors Rca1 and Emi1 have to be eliminated, respectively. Several experiments 

demonstrated that Rca1 gets degraded when cells enter a G1-state. During embryogenesis, 

epidermal cells establish the first G1-phase after progression through mitosis 16 and persist in 

this stage until onset of larval development. It has been shown previously, that Rca1 

disappears when the cells enter this terminal G1-phase (Figure 15; Grosskortenhaus and 

Sprenger, 2002). In third instar eye imaginal disc, cells within the morphogenetic furrow 

become synchronized in G1. As in the embryonic epidermis, Rca1 gets degraded in eye 

imaginal discs cells upon entry into G1 (Figure 21). Finally, Rca1 protein levels fluctuate 

within salivary gland clones (Figure 28), suggesting that the machinery mediating Rca1 

degradation is also present in salivary glands, although Rca1 itself is not necessary for 

endoreplication. In vertebrates, Emi1 degradation is initiated by Cdk1 phosphorylation that 

facilitates binding of Plk1 and causes subsequent phosphorylation of the DSGxxS motif. The 

SCF/ßTRCP ubiquitin ligase recognizes this degron and targets Emi1 for proteasomal 

degradation (Guardavaccaro et al., 2003; Hansen et al., 2004; Margottin-Goguet et al., 2003; 

Moshe et al., 2004). Emi1 can be stabilized by preventing Cdk1 phosphorylation or by 

mutating the DSGxxS degron (Margottin-Goguet et al., 2003). In order to map the structural 

requirements for Rca1 turnover, the stability of certain Rca1 constructs was determined in G1 

cells of the embryonic epidermis. This structure/function analysis demonstrated that the 

region between amino acid 203 and 255 is essential for Rca1 degradation in G1. In particular, 

a C-terminal fragment of Rca1 (HA-Rca1Δ255) was refractory to degradation in G1 cells of 

the late embryo (Figure 15) as well as in the morphogenetic furrow of eye imaginal discs 

(Figure 21). This construct was moreover readily detectable throughout clones generated in 

salivary glands (data not shown). Inspection of the region between amino acid 203 and 255 

indicated that Rca1 contains a DSGxxS motif as well (Figure 8). Surprisingly, Rca1 

degradation in embryonic G1 cells could not be prevented by mutating the DSGxxS motif 

(Figure 15) indicating that this sequence is not crucial for Rca1 turnover. In the Emi1 

proteins, the DSGxxS degron is found in the N-terminus, whereas in Rca1 this motif is 

located in the central part of the protein (Figure 8), suggesting that the actual DSGxxS degron 

is not conserved to Rca1. In addition, the instability of Rca1 in G1 was not affected by 
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simultaneous knockout of all putative Cdk1 phosphorylation sites (Figure 15). Hence, Rca1 

must be degraded by different mechanisms than Emi1. Beside the DSGxxS sequence, the 

region between amino acid 203 and 255 harbors a KEN-box (Figure 8). Proteins containing 

KEN-boxes are recognized by the APC/C-Fzr complex and become subsequently targeted for 

proteasomal degradation (Pfleger and Kirschner, 2000). In G2 cells, Rca1 is an inhibitor of 

APC/C-Fzr activity, but it is conceivable that in G1 Rca1 becomes converted into an APC/C-

Fzr substrate. Deletion of the KEN-box, however, did not prevent Rca1 degradation in G1 

cells, so that a mechanism which relies only on the KEN-box can be excluded. However, a 

mechanisms that exploits a combination of these motifs cannot be ruled out. Proteasomal 

degradation is furthermore mediated by SCF-complexes, another type of E3-ligases (Jackson 

et al., 2000; Vodermaier, 2004). These complexes are named after their three core components 

Cullin, Skp and F-box protein, whereby the F-box protein acts as substrate recognition 

subunit. Rca1 harbors an F-box motif in its N-terminus and moreover interacts physically with 

SCF components (S. Querings, personal communication). In principle, Rca1 could mediate its 

own degradation by an autocatalytic mechanism. Rca1 might bind to the SCF core complex 

via its F-box, but instead of sequestering target proteins, Rca1 itself could become 

ubiquinated and subsequently degraded. However, Rca1 gets degraded normally when the F-

box is deleted (data not shown), hence also this autocatalytic mechanism cannot be applied. 

Altogether, the structure/function analysis so far did not reveal by which mechanism Rca1 

could be degraded in G1 cells and it remains to be clarified how it is achieved. Since the 

region between amino acid 203 and 255 is crucial for Rca1 turnover, further deletion 

constructs covering this region should be analyzed. The identification of a pathway mediating 

Rca1 degradation could be facilitated, if a particular degron which is already known from 

other proteins could be determined. Further insights in Rca1 turnover could also be obtained 

by testing candidate genes involved in the degradation of other proteins. The 

SCF/Archipelago complex for instance, mediates the degradation of Cyclin E and dMyc 

within the morphogenetic furrow (Moberg et al., 2001; Moberg et al., 2004). Since Rca1 gets 

degraded in G1 cells of the morphogenetic furrow, SFC/Archipelago could be a candidate for 

mediating Rca1 degradation. 
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4.4. Rca1 promotes S-phase entry as part of an SCF-complex 
 
APC/C-Fzr activity is required for the establishment and maintenance of G1, but needs to be 

inactivated at the G1-S transition (Jacobs et al., 2002; Lukas et al., 1999; Pimentel and 

Venkatesh, 2005). In vertebrates, excess Emi1 activity accelerates S-phase entry, whereas 

depletion of Emi1 by RNAi results in a delay of the G1-S transition suggesting that APC/C 

inactivation by Emi1 contributes to S-phase entry (Hsu et al., 2002; Rape and Kirschner, 

2004). In order to investigate whether this applies also to Drosophila, the effect of Rca1 

overexpression on S-phase entry was examined. In eye imaginal discs, Rca1 overexpression 

results in ectopic S-phases demonstrated by BrdU incorporation in normally quiescent cells 

posterior to the morphogenetic furrow (Figure 17) as well as altered FACS profiles (Figure 

18). Moreover, phosphohistone 3 staining revealed mitotic cells among the differentiating 

photoreceptor cells (Figure 18), suggesting that these cells undergo an extra cell cycle and do 

not simply duplicate their DNA for another time. The effect of Rca1 on S-phase is not 

restricted to eye imaginal discs. Flow cytometric analysis of wing disc clones continuously 

expressing Rca1 indicated that Rca1 overexpressing cells progress faster through G1 (Figure 

19). The Rca1 overexpressing cells exhibited a concomitant increase of the G2/S fraction, 

suggesting that the accelerated S-phase entry upon Rca1 overexpression is compensated by a 

postponed G2-M transition (Figure 19). This is most likely due to an recently discovered 

mechanism which ensures that the overall cell cycle duration stays constant (Reis and Edgar, 

2004). By contrast, overexpression of Rca1 during embryogenesis did not promote S-phase 

entry (Grosskortenhaus and Sprenger, 2002). This result was unexpected because mutants for 

Fizzy-related enter an additional  S-phase 17, followed by an extra mitosis (Sigrist and 

Lehner, 1997). During the final cell cycle of embryogenesis, Fzr protein accumulates to high 

levels to introduce the terminal G1 phase (Sigrist and Lehner, 1997). By contrast, in eye 

imaginal discs Fzr is only barely detectable (Figure 16; Pimentel and Venkatesh, 2005). 

Hence, the inability of Rca1 to promote S-phase entry in the embryo might be because the 

amount of Fzr is too high to be inhibited. This is supported by the finding that in eye imaginal 

discs S-phase entry induced by Rca1 can be prevented by simultaneous overexpression of 

HA-Fzr (Figure 25). Recent studies have demonstrated that the G1/S regulatory machinery 

that is present in mitotic cells is also involved in regulation of endoreplication cycles (Edgar 

and Orr-Weaver, 2001; Lilly and Duronio, 2005; Sauer et al., 1995). Misexpression of Rca1 

in endoreplicating salivary cells prevents endocycle progression (Figure 27A). A similar 

endocycle breakdown was also observed after continuous expression of the S-phase inducer 
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Cyclin E (Follette et al., 1998; Weiss et al., 1998). This suggests that excess Rca1 activity 

promotes also S-phase entry in endoreplicating cells, although Rca1 itself is dispensable for 

endocycle progression (Figure 26).  

 

In Drosophila, S-phase is normally induced by the Cyclin E/Cdk2 complex (Knoblich et al., 

1994; Richardson et al., 1995).  In eye imaginal discs, however, S-phase induction by Rca1 

does not rely on Cyclin E dependent kinase activity, because coexpression of the Cdk2 

inhibitor Dacapo did not prevent premature S-phase entry (Figure 24). Overexpression of 

Cyclin A can induce ectopic S-phases. Therefore, it is thought that, besides Cyclin E/Cdk2, 

also Cyclin A/Cdk1 can trigger S-phase in Drosophila (Sprenger et al., 1997; Thomas et al., 

1997). Characterization of  hypomorphic fzr mutants revealed that downregulation of APC/C-

Fzr activity results in accumulation of mitotic cyclins and premature entry into S-phase 

(Pimentel and Venkatesh, 2005). Hence, accumulation of Cyclin A due to APC/C-Fzr 

inhibition could be a conceivable explanation for the ectopic S-phases observed in Rca1 

overexpressing cells. Inspection of mitotic cyclin levels indicated that Cyclin A and Cyclin B 

accumulate in eye disc clones overexpressing Rca1 (Figure 20). However, APC/C inhibition 

might not be the only mechanism by which Rca1 promotes S-phase. The C-terminal half of 

Rca1, which lacks the F-box, is sufficient for APC/C inhibition (Figure 14). Eye imaginal disc 

clones overexpressing this C-terminal fragment, fail to accumulate mitotic cyclins (Figure 

21). Furthermore, Rca1 lacking the F-box cannot induce ectopic S-phases in eye and wing 

imaginal disc, respectively (Figure 18). Hence in imaginal discs, S-phase induction by Rca1 

requires the F-box motif. Furthermore, endocycle breakdown induced by Rca1 overexpression 

relies on a functional F-box (Figure 27). This effect is probably caused by untimely activation 

of DNA replication, thus strongly supporting the notion that S-phase entry upon Rca1 

overexpression occurs by an F-box dependent mechanism. Conversely, substitution of 

endogenous Rca1 by a transgene lacking the F-box revealed that the F-box is crucial for 

endogenous Rca1 function. Rescue experiments have demonstrated that the F-box is 

dispensable for APC/C-Fzr inhibition during G2 of embryonic cell cycles (Figure 14). By 

contrast, Rca1 lacking the F-box failed to restore the proliferation disadvantage of rca1 

mutant clones in wing imaginal discs (Figure 22). These cells persist longer in G1 (Figure 23), 

confirming the notion that Rca1 has a function at the transition from G1 to S-phase. However, 

these cells did not cease proliferation completely suggesting that Rca1 is not absolutely 

required for G1-S transition, but apparently makes it more efficient.  

 



Functional analysis of the cell cycle regulator Rca1                   Discussion 
 

77 

F-box proteins are known to act as substrate recognition subunits in SCF-E3-ligases. The 

Emi1/Emi2 proteins interact with members of the Skp family via the F-box suggesting that 

they become incorporated into SCF-complexes (Reimann et al., 2001a; Schmidt et al., 2005). 

Moreover, a genome wide two-hybrid analysis revealed that Rca1 interacts with Drosophila 

SkpA and SkpB (Giot et al., 2003). Co-immunoprecipitation experiments demonstrated that 

Rca1 forms a complex with SkpA and Cullin 1, whereby both interactions depend on a 

functional F-box (S. Querings, personal communication). These results strongly support the 

idea that Rca1 has a second function in an SCF-complex mediating the degradation of a so far 

unknown target protein. Therefore, a conceivable model how Rca1 accelerates the G1-S 

transition could be that this putative SCF/Rca1 complex mediates the proteasomal degradation 

of a negative regulator of S-phase entry. The APC/C-Fzr complex is important for the 

establishment of G1 state (Pimentel and Venkatesh, 2005; Sigrist and Lehner, 1997). Since 

Rca1 is an inhibitor of the APC/C-Fzr complex in G2, a potential SCF/Rca1 target could be 

Fzr itself. However, overexpression of Rca1 did not change Fzr protein levels in eye imaginal 

disc cells. Nevertheless, SCF/Rca1 could modulate APC/C activity by targeting other APC/C 

subunits or regulators for degradation (Figure 36). Alternatively, Rca1 could have an 

additional role beside its function as an APC/C inhibitor. The SCF/Rca1 complex could 

promote degradation of a yet unidentified negative regulator of S-phase entry (Figure 36). 

Formally, this putative negative S-phase regulator could either restrain Cyclin A dependent 

kinase activity or might be directly involved in the transition from G1 to S-phase. 

Interestingly, such a mechanism was already proposed for Emi1 (Rape and Kirschner, 2004), 

but so far this APC/C-Cdh1 independent S-phase promoting function of Emi1 has not been 

identified. A negative effect of Rca1 on Cyclin E/Cdk2 activity, however, can be excluded. 

Cyclin E is part of an autocatalytic feedback loop (Duronio and O'Farrell, 1995; Sauer et al., 

1995), but Cyclin E protein levels as well as Cyclin E transcription were not enhanced in eye 

disc clones overexpressing Rca1 (data not shown).  

 

By contrast, Cyclin E accumulates to high levels in salivary gland cells overexpressing HA-

Rca1 (Figure 28). Cyclin E dependent kinase activity is absolutely crucial for endoreplication, 

since it is essential for initiation of DNA replication (Knoblich et al., 1994; Lane et al., 2000; 

Lilly and Spradling, 1996). Continuous Cyclin E expression, however, impairs endocycle 

progression by interfering with licensing of replication origins (Follette et al., 1998; Su and 

O'Farrell, 1998; Weiss et al., 1998). Hence, it seems likely that the endocycle breakdown 

induced by Rca1 is due to elevated Cyclin E levels. Although, for technical reasons it has not 
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been tested whether Rca1 overexpression results in aberrant localization of  MCM proteins as 

does continuous Cyclin E expression (Su and O'Farrell, 1998). Since Cyclin E is not an 

APC/C target, this finding strongly supports the notion that Rca1 has additional functions 

beside inhibition of the APC/C-Fzr complex. The observation that Cyclin E accumulates only 

in salivary glands also suggests that Rca1 is a general inducer of S-phase but has different 

downstream targets. However, an alternative explanation might be that Rca1 exploits different 

mechanisms to promote S-phase entry in imaginal discs and salivary glands, respectively. 

Generally, Cyclin E could accumulate either due to increased transcription or by employment 

of posttranscriptional mechanisms. However, at the moment there is any clue how Rca1 

overexpression causes upregulation of Cyclin E. 

 

 
Figure 36 Regulation of S-phase entry by the SCF/Rca1 complex. (A) In Drosophila, the G1-S transition is 
generally mediated by Cyclin E dependent kinase activity, but DNA replication can also be triggered by Cyclin 
A/Cdk1. In order to establish the G1-state, Cyclin E/Cdk2 activity is restrained by the CKI Dacapo and the 
SCF/Archipelago (Ago) complex.  Furthermore, Cyclin A dependent kinase activity is dampened by the CKI 
Roughex (Rux) and the APC/C-Fzr complex, which targets Cyclin A for proteasomal degradation. (B) When the 
cell proceeds from G1 to S-phase the SCF/Rca1 complex as well as Cyclin E dependent kinase activity which 
initiates DNA replication becomes upregulated. Due to upregulation of the SCF/Rca1 complex, Cyclin A/Cdk1 
complex also becomes released to assist the Cyclin E/Cdk2. The SCF/Rca1 might prevent APC/C-Fzr activity 
and subsequently activate Cyclin A/Cdk1 by targeting an APC/C core subunit for degradation by the proteasome.  
Alternatively or in parallel to its role as a competitive inhibitor of the APC/C-Fzr complex Rca1, could mediate 
the proteasomal degradation of a so far unknown negative regulator of S-phase (X). This inhibitor could either 
restrain Cyclin A/Cdk1 activity or affect S-phase entry directly.  
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In principle, the accelerated G1-S transition observed after Rca1 overexpression could be 

caused by a dominant negative effect. Excess Rca1 protein might titrate out the Skp subunit 

from other SCF complexes such as the SCF/Archipelago. Clones mutant for the F-box protein 

Archipelago fail to downregulate Cyclin E  protein resulting in premature entry into S-phase 

(Moberg et al., 2001). Archipelago is furthermore required for endocycle progression in 

follicle cells (Shcherbata et al., 2004). Therefore, at least the impaired endoreplication 

observed in salivary glands upon Rca1 overexpression could be explained by inactivation of 

SCF/Archipelago and subsequent accumulation of Cyclin E. An Rca1 construct with a single 

point mutation in the ZBR (HA-Rca1C351S) was unable to induce the rough eye phenotype 

(Figure 17), although it was capable to bind SkpA in vitro (S. Querings, communication). 

Furthermore, this construct was not capable to perturb endoreplication after overexpression in 

salivary glands (Figure 27), thus a dominant negative effect can be excluded. Altogether, an 

F-box dependent Rca1 function seems to be required for the transition from G1 to S-phase, 

but the targets of the SCF/Rca1 complex have not been identified yet.  

 

4.5. Rca1 might be required to maintain the mitotic state 
 
Endoreplicating cells duplicate their DNA, but are not obliged to enter mitosis resulting in 

polyploidy. In Drosophila, DNA replication is initiated by Cyclin E dependent kinase activity  

(Knoblich et al., 1994; Lilly and Spradling, 1996). Therefore, endoreplication relies on  

Cyclin E/Cdk2 and its regulatory network, which ensures that Cyclin E/Cdk2 activity peaks 

prior to S-phase (for review see Edgar and Orr-Weaver, 2001; Lilly and Duronio, 2005). By 

contrast, the machinery required for mitosis is downregulated upon endocycle entry (Klebes et 

al., 2002; Sauer et al., 1995). During mid embryogenesis, epidermal cells cease mitotic 

proliferation and enter a terminal G1 state (Edgar and O'Farrell, 1989),  whereas the cells of 

certain internal tissues such as the salivary glands and the gut initiate endoreplication (Smith 

and Orr-Weaver, 1991). Endocycle entry is mediated by the APC/C-Fzr complex that targets 

mitotic cyclins and probably also String/Cdc25 for proteasomal degradation (Reber et al., 

2006; Schaeffer et al., 2004; Sigrist and Lehner, 1997). Consistently, mitotic cells can be 

forced to enter endocycles by downregulation of  mitotic cyclins or  its kinase partner Cdk1 

(Hayashi, 1996; Weigmann et al., 1997). The initiation of endoreplication is furthermore 

accompanied with transcriptional downregulation of mitotic cyclins, Cdk1 and String/Cdc25  

(Klebes et al., 2002; Sauer et al., 1995; Shcherbata et al., 2004). It is assumed that APC/C-Fzr 

activity is not required for endocycle maintenance once the endoreplication program has been 
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initiated (Edgar and Orr-Weaver, 2001; Lilly and Duronio, 2005). However, Fzr protein is 

readily detectable in extracts derived from larval salivary glands (C. Lehner, personal 

communication), raising the idea that Rca1 could be required to prevent Fzr dependent APC/C 

activation upon endocycle entry. Examination of rca1 mutant clones generated in the diploid 

cells of the salivary placode revealed that Rca1 is dispensable for endocycle progression 

(Figure 26). Moreover, Rca1 transcription becomes terminated during mid embryogenesis 

when Fzr protein accumulates and the internal tissues subsequently enter endoreplication 

(Dong et al., 1997; Sigrist and Lehner, 1997). Similar, Rca1 transcription is restricted to the 

proliferating part of eye imaginal discs (Figure 16), whereas Fzr is upregulated in the 

differentiating photoreceptor cells that have exited the cell cycle program (Pimentel and 

Venkatesh, 2005). Thus, Rca1 activity seems to be mainly required in mitotic cells, whereas 

Fzr becomes upregulated in cells that exit the cell cycle and subsequently differentiate. 

Furthermore, wing disc cells mutant for rca1 display ectopic endoreplication 

(Grosskortenhaus and Sprenger, 2002), while overexpression of Fzr forces imaginal disc cells 

to enter endocycles (Sigrist and Lehner, 1997).  Hence, another function of Fzr beside its 

requirement during G1 could be initiation of differentiation, particularly if endoreplication is 

considered as a process of differentiation. Conversely, Rca1 could be regarded as a factor 

required for maintenance of proliferation, since it counteracts APC/C-Fzr activity.  

 

Although Rca1 itself is not crucial for endocycle progression, endoreplication was perturbed 

upon overexpression of HA-Rca1 (Figure 27). These cells exhibit elevated levels of cyclin E 

protein (Figure 28). Endocycles are driven by oscillating waves of Cyclin E dependent kinase 

activity, while constant cyclin E expression perturbs endoreplication (Follette et al., 1998; Su 

and O'Farrell, 1998; Weiss et al., 1998). Therefore, the endocycle breakdown observed upon 

Rca1 overexpression is likely due to Cyclin E accumulation. Since APC/C-Fzr activity is 

essential for endocycle initiation (Schaeffer et al., 2004; Sigrist and Lehner, 1997), Rca1 

expression was induced during the first instar stage when the cells of the salivary gland have 

already entered the endocycle program. Nevertheless, Cyclin A and Cdk1 can accumulate  in  

Rca1 overexpressing cells, while Cyclin B protein was not detectable (Figure 29). At first 

glance these observations imply that Rca1 overexpression results in ectopic APC/C-Fzr 

inhibition and subsequent accumulation of APC/C targets. However, if  Cyclin A accumulates 

due to APC/C-Fzr inhibition, Cyclin B should increase simultaneously. Moreover, Cdk1 is not 

a substrate of the APC/C-Fzr complex, hence the abundance of these proteins cannot simply 

be explained by ectopic APC/C-Fzr inhibition. The APC/C-Fzr complex is an ubiquitin-ligase 
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that can only regulate levels of proteins like mitotic cyclins and other regulators, respectively. 

Therefore, a prerequisite for protein accumulation upon APC/C-Fzr inhibition is that at least 

basal levels of the protein are present. Transcription of Cyclin A and Cdk1 is terminated upon 

initiation of endoreplication (Klebes et al., 2002; Sauer et al., 1995), thus Cyclin A and Cdk1 

proteins cannot arise even upon inhibition of the APC/C-Fzr complex.   

 

Interestingly,  upon Rca1 overexpression Cyclin A accumulates only in the nucleus (Figure 

29), whereas Cyclin A expressed from a transgene is predominantly localized in the 

cytoplasm (Figure 30). Cyclin A enters the nucleus just after onset of mitosis (Dienemann and 

Sprenger, 2004; Lehner and O'Farrell, 1989), suggesting that Rca1 expression cells gain some 

mitotic activity. Furthermore, it is assumed that nuclear targeting of Cyclin A requires Cdk1 

activity which is normally absent in endoreplicating tissues. The nuclear accumulation of 

Cyclin A is therefore a further hint supporting the notion that Rca1 overexpression stimulates 

also Cdk1 transcription. However, the idea that Rca1 overexpression leads accumulation of 

Cyclin A/Cdk1 should be confirmed by in vitro kinase assays of salivary gland extracts (Foley 

et al., 1999). In mitotic interphase cells, Cdk1 activity is normally dampened by the inhibitory 

kinase Wee1/Myt1 (Campbell et al., 1995; Morgan, 1995; Price et al., 2002). At the transition 

from G2 to mitosis this inhibitory phosphorylation is antagonized by the phosphatase 

String/Cdc25 (Edgar et al., 1994a; Minshull et al., 1989; Murray and Kirschner, 1989). If 

Wee1/Myt1 activity is present in endoreplicating tissue, this would imply that String/Cdc25 

levels rises concomitantly with Cyclin A and Cdk1. However, due to lack of appropriate 

antibodies this hypothesis could not be tested so far. Overexpression of Cyclin A cannot 

perturb endocycle progression in larval salivary glands, most likely due the absence of its 

kinase partner Cdk1 (Figure 30). In the late embryo, where residual amounts of Cdk1 protein 

are abundant, however, Cyclin A overexpression can impair endoreplication (F. Sprenger, 

personal communication; Follette et al., 1998). Cyclin A and Cdk1 accumulate simultaneously 

after Rca1 overexpression, suggesting that Cyclin A/Cdk1 might cause the perturbation of 

endoreplication. However, coexpression of the Cyclin A/Cdk1 inhibitor Roughex (Foley et 

al., 1999) did not prevent the endocycle breakdown induced by Rca1 (Figure 31). Hence, 

impaired endoreplication due to Rca1 overexpression is rather caused by enhanced Cyclin 

E/Cdk2 activity than by re-accumulation of Cyclin A/Cdk1 activity. 
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Generally, two different mechanisms are conceivable how Rca1 overexpression stimulates 

transcription: The first model implies that APC/C-Fzr activity is not only required to initiate 

endoreplication program but is also involved in the maintenance of the endocycle (Figure 

37A). It is well established that APC/C-Fzr activity is essential for the transition from mitotic 

division to endoreplication (Schaeffer et al., 2004; Sigrist and Lehner, 1997). In addition, 

APC/C-Fzr activity could be required to prevent re-entry into mitosis and thereby maintain 

the endocycle program. This idea is supported by the finding that Fzr protein is abundant in 

larval salivary glands (C. Lehner, personal communication). Upon endocycle initiation, 

transcription of mitotic regulators is terminated (Klebes et al., 2002; Sauer et al., 1995). This 

transcriptional downregulation could also be achieved by APC/C-Fzr activity. APC/C-Fzr 

could mediate the proteasomal degradation of an unknown transcription factor that stimulates 

the transcription of Cyclin A, Cdk1 and maybe String/Cdc25. Upon endocycle initiation, 

APC/C-Fzr dependent degradation of this transcription factor has to be maintained to prevent 

rise of Cyclin A dependent kinase activity. In addition, Cyclin A protein derived from basal 

transcription would be targeted for proteasomal degradation by the APC/C-Fzr complex and 

thus contribute to endocycle maintenance. Overexpression of Rca1 could inhibit the APC/C-

Fzr and thereby indirectly stimulate transcription of Cyclin A and Cdk1. Endocycle 

breakdown induced by Rca1 relies on the presence of a functional F-box, therefore, it is 

conceivable that Rca1 prevents APC/C-Fzr activity as part of an SCF-complex. This is no 

absolute necessity, since the F-box is dispensable for APC/C-Fzr inhibition and it is assumed 

that the endocycle breakdown is rather caused by Cyclin E accumulation. Interestingly, cells 

overexpressing Cyclin E also displayed elevated Cyclin A and Cdk1 levels.  It is thought that 

Cyclin E dependent kinase activity contributes to APC/C-Fzr inhibition during embryogenesis 

(Figure 10; Reber et al., 2006; Sigrist and Lehner, 1997). Hence, this observation supports the 

model that during larval stages APC/C-Fzr is required to maintain the endocycle (Figure 

37A). In analogy to the model proposed for Rca1, continuous cyclin E expression could result 

in ectopic APC/C-Fzr inhibition and thereby induce the accumulation of a transcriptional 

activator. This transcription factor in turn stimulates Cyclin A and Cdk1 transcription. The 

idea that APC/C-Fzr might be required to prevent re-entry into mitosis is further supported by 

the phenotype of the morula gene, the Drosophila ortholog of the APC/C subunit Apc2 

(Kashevsky et al., 2002; Reed and Orr-Weaver, 1997). During oogenesis, ovarian nurse cells 

first generate polytene chromosomes but later separate their sister chromatids and thereby 

become polyploid. In morula mutants nurse cells undergo several endocycles, but instead of 

becoming polyploid they accumulate Cyclin B and subsequently arrest in a mitosis like state 
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(Kashevsky et al., 2002; Reed and Orr-Weaver, 1997). Thus, these observations imply that at 

least in some endocycles APC/C activity is required to prevent re-entry into mitosis. 

However, an alternative explanation for the accumulation of Cyclin A and Cdk1 might be that 

the putative SCF/Rca1-complex mediates the degradation of a transcriptional repressor 

(Figure 37A). As in the first model, transcription of Cyclin A and Cdk1 again depends on an 

unknown transcriptional activator. At the transition from mitosis to endocycles, transcription 

of Cdk1 and Cyclin A ceases due to upregulation of a transcriptional repressor. In mitotic 

cells, however, the SCF/Rca1 complex could mediate the proteasomal degradation of this 

transcriptional repressor and thereby maintain the mitotic state. Therefore, overexpression of 

Rca1 in larval salivary glands would result in aberrant degradation of the repressor protein 

and subsequently stimulate the transcription of Cyclin A and Cdk1, respectively. Interestingly, 

wing disc cells enter endocycles when endogenous Rca1 was substituted by a transgene 

lacking the F-box. This supports the model that SCF/Rca1 is required to maintain the mitotic 

state. 

   

 
Figure 37 Rca1 overexpression could stimulate Cyclin A and Cdk1 expression by two different 
mechanisms. (A) Upon initiation of endoreplication, APC/C-Fzr activity might be required to suppress a 
transcriptional activator (X) which stimulates the transcription of Cyclin A and Cdk1 in mitotic cells. 
Overexpression of Rca1 prevents ubiquitination of this transcription factor and thereby promotes accumulation 
of Cyclin A, Cdk1 and maybe String/Cdc25 (stg). (B) Alternatively, the SCF/Rca1 complex could maintain 
diploidy in mitotic cells by mediating the proteasomal degradation of a transcriptional repressor (Y). In mitotic 
cells, expression of Cyclin A and Cdk1 depends on a transcriptional activator (X), while in endoreplicating 
tissues the activity of factor X is dampened by the repressor protein (Y). Therefore, overexpression of Rca1 
would result in aberrant degradation of the repressor protein and subsequent accumulation of Cyclin A and Cdk1.   
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At the moment, both mechanisms are highly speculative and there is no direct evidence for 

any of these models. Moreover, it is not clear how transcription of Cyclin A and Cdk1 is 

controlled and if both genes are co-regulated. However, a good candidate could be the 

transcription factor Escargot, which is required to maintain diploidy in imaginal tissues 

(Hayashi, 1996). Overexpression of Escargot blocks endoreplication in larval salivary glands 

as indicated by reduced DNA content and impaired BrdU incorporation (Fuse et al., 1994). 

Conversely, in larvae lacking escargot the abdominal histoblasts enter ectopic endocycles and 

become polyploid (Hayashi et al., 1993). A similar phenotype was also observed in histoblasts 

mutant for Cdk1 (Hayashi, 1996) suggesting that premature endocycle entry in escargot 

mutants is due to reduced Cdk1 activity. Moreover, these cells failed to maintain high level of 

Cyclin A expression, suggesting that Escargot regulates Cyclin A levels and thereby 

maintains diploidy (Hayashi, 1996). However, it remains to be elucidated whether Escargot is 

implicated in the transcriptional upregulation of Cyclin A and Cdk1 upon Rca1 

overexpression. 

 

4.6. Outlook 
 
The structure/function analysis of the Rca1 protein indicated that the region between amino 

acid 203 and 255 is crucial for Rca1 turnover and its inhibitory effect on the APC/C-Fzr 

complex. To identity a particular degron implicated in Rca1 turnover, additional deletion 

constructs covering this region should be generated and tested for their stability in G1. These 

deletion constructs should also provide more insights into the mechanism how Rca1 inhibits 

the APC/C-Fzr complex in G2. Since a putative D-box is located in this region (Figure 35), 

these experiments should shed light on the question whether Rca1 acts as a pseudosubstrate 

inhibitor as proposed for Emi1 (Miller et al., 2006). The structure/function analysis was 

basically initiated to examine the structural requirements for APC/C-Fzr inhibition in 

embryonic G2 cells. However, extension of this analysis to larval stages revealed that Rca1 

has a second function at the transition from G1 to S-phase. Overexpression of Rca1 promotes 

S-phase entry by an F-box dependent mechanism, suggesting that Rca1 becomes incorporated 

into an SCF-complex. At the moment it is absolutely unclear which protein is targeted by this 

Rca1 containing SCF-complex. A putative target might be Double-parked (Dup), the 

Drosophila ortholog of Cdt1 (Whittaker et al., 2000). Dup is degraded during late G1 and it is 

yet not known how this is achieved (Thomer et al., 2004; Whittaker et al., 2000). 

Overexpression of Dup in imaginal discs results in polyploidy (Thomer et al., 2004). 
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Moreover, the Dup overexpressing cells resemble the polyploid cells found in clones lacking 

the F-Box function of Rca1 (Figure 23). Therefore, it should be tested, by using antibodies, 

whether Dup accumulates in rca1 mutant clones overexpressing HA-Rca1Δ203 and HA-

Rca1ΔF-box, respectively. Since, the accelerated G1-S transition induced by Rca1 

overexpression is accompanied with a rough eye phenotype, a second site modifier screen 

should be conducted (for review see St Johnston, 2002). This screen could facilitate the 

identification of proteins targeted by the SCF/Rca1-complex and moreover provide further 

insights into the mechanism how Rca1 promotes S-phase entry. Considering that Rca1 

becomes also degraded during eye development, the screen for modifiers of the rough eye 

phonotype could also identify genes involved in Rca1 degradation.  

 

Co-immunoprecipitation experiments revealed that Rca1 interacts physically with SkpA and 

Cullin 1 (S. Querings, personal communication). Beside this two core subunits, the SCF-

complex also contains a RING finger protein of the Roc/Rbx family (for review see Jackson 

et al., 2000). The Drosophila genome bears three different Roc/Rbx family members named 

Roc1a, Roc1b and Roc2 (Donaldson et al., 2004; Noureddine et al., 2002). Genetic analysis 

revealed that these Roc proteins are not functionally equivalent (Donaldson et al., 2004). 

Cullin 1 interacts most strongly with Roc1a, suggesting that the majority of SCF-complexes 

utilize Roc1a (Donaldson et al., 2004). However, it cannot be excluded that Roc1b and Roc2 

function in SCF complexes, because both interact weakly with Cullin 1 (Donaldson et al., 

2004). Furthermore, Roc1b can suppress the accumulation of SCF/Slimb targets in Roc1a 

mutant cells (Donaldson et al., 2004). Specific interactions between E2-ubiquitin-activating 

enzymes and RING domains have been observed, suggesting that the Roc protein can 

influence which E2 becomes recruited to the complex. It is conceivable that the different Roc 

proteins recruit a unique set of E2-enzymes that each act on a different set of targets, thereby 

providing an additional level of substrate specificity (Donaldson et al., 2004). Therefore, it 

could be interesting to reveal which particular Roc1 protein is incorporated in the SCF/Rca1 

complex and which E2-enzyme is utilized for SCF/Rca1 dependent ubiquitination.  

 

Rca1 overexpression prevents endocycle progression in an F-box dependent manner, 

suggesting that Rca1 overexpression in larval salivary glands leads to ectopic activation of the 

SCF/Rca1-complex. To elucidate whether Rca1 overexpression perturbs endoreplication in 

general, it should be tested if Rca1 overexpression has the same effect in the polyploid follicle 

cells of the Drosophila ovary. The Rca1 overexpressing salivary gland cells exhibit elevated 
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levels of Cyclin E protein, suggesting that the endocycle breakdown is due to enhanced 

Cyclin E/Cdk2 activity, which is thought to interfere with DNA licensing. However, 

concomitantly to Cyclin E stabilization, the levels of Cyclin A and Cdk1 protein raise in Rca1 

overexpression cells. Since transcription of these proteins gets normally terminated upon 

endocycle initiation, accumulation of these proteins in larval salivary glands must be due to 

re-activation of transcription. So far this model is only based on the rise of protein levels and 

there is no direct evidence that misexpression of Rca1 stimulates the transcription of Cyclin A 

and Cdk1, respectively. Therefore, RT-PCR as well as microarray experiments should be 

conducted to confirm that Rca1 overexpression in salivary glands results in transcriptional 

upregulation of mitotic regulators, such as Cyclin A, Cdk1 and maybe String/Cdc25.  

Furthermore, Cdk1 activity should be measured to provide further evidence for the notion that 

Cyclin A and Cdk1 accumulate simultaneously upon Rca1 overexpression. Overexpression of 

Cyclin A cannot perturb endocycle progression probably because of the absence of its kinase 

partner Cdk1. Moreover, Cyclin A expressed from a transgene is predominantly found in the 

cytoplasm, while endogenous Cyclin A accumulates in the nucleus upon Rca1 

overexpression. It is thought that nuclear targeting of Cyclin A requires Cdk1 activity, 

therefore the cyctoplasmatic localization of exogenous Cyclin A is a further hint for the 

absence of Cdk1 protein in larval salivary glands. To confirm the hypothesis that Cyclin A 

fails to block endoreplication due to lack of Cdk1, Cyclin A dependent kinase activity could 

be reconstituted by coexpression of Cdk1. In case that Cdk1 is subject of inhibitory 

phosphorylation, this could be done by simultaneous coexpression of Cdk1 and String/Cdc25 

or a constitutive active form of Cdk1 (cdc2AF), respectively (Sprenger et al., 1997). Thereby, 

Cdk1 activity could be assayed by using endocycle progression as well as nuclear targeting of 

Cyclin A as read out. It is assumed that APC/C-Fzr activity is not required for endocycle 

progression once the endoreplication program has been initiated. However, considerable 

amounts of Fzr protein are abundant in larval salivary glands. Therefore, it cannot be excluded 

that APC/C-Fzr activity is present at that stage and that the effect of Rca1 overexpression is 

due to ectopic APC/C-Fzr inhibition. Hence, it would be very helpful to clarify whether 

APC/C-Fzr activity is present in larval salivary glands. After overexpression of HA-CycB in 

scattered cells, APC/C-Fzr activity could be monitored by examining whether Cyclin B can 

accumulate in all cells that are supposed to express it. Furthermore, a Fzr-RNAi construct 

should be generated to knock down Fzr protein in larval salivary glands. If Fzr depletion leads 

to the same phenotype as Rca1 overexpression, this would strongly suggest that the endocycle 

breakdown induced by Rca1 is due to downregulation of APC/C-Fzr.  Finally, the 
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transcription factor Escargot might be implicated in the transcriptional upregulation of mitotic 

regulators upon Rca1 overexpression. In order to test this idea, the expression levels of  

Cyclin A and Cdk1 should be determined in Escargot overexpressing cells.  



Functional analysis of the cell cycle regulator Rca1        Material & Methods 
 

88 

5. Material and Methods 
5.1. Material 
 
5.1.1. Chemicals 
 
Standard chemicals were purchased from following companies: Aldrich, Amersham, 

Applichem, Biomol, Biozym, Fluka, Roche, Riedel-de-Häen, Serva, Gibco-Invitrogen, 

Merck, Pharmacia, Roth and Sigma. 

 
5.1.2. Special chemicals and kits 
Altered Sites 2 in vitro Mutagenesis system Promega 
Big Dye Terminator V.3.1 Applied Biosystems 
Calf intestinal phosphatase (CIP) NEB 
DNA molecular weight marker Invitrogen 
DIG RNA Labeling Mix Roche 
EasyPure DNA Purification Kit  Biozym  
Expand High Fidelity PCR-System Roche 
Hoechst 33258 Sigma 
Hoechst 33342 Sigma 
Klenow fragment Roche 
Levamisole Sigma 
Normal Goat Serum (NGS) Dianova 
Nucleobond AX-100 (Midi Prep Kit) Machery & Nagel 
Platinum pfx DNA Polymerase Invitrogen 
Paraformaldehyde Electron Microscopy Sciences 
Precision Plus Protein - molecular weight marker  BioRad 
Propidium Iodide Sigma 
Proteinase K Solution Quiagen  
Restriction enzymes NEB, Roche 
Trypsin-EDTA (10X) Sigma 

 
5.1.3. Electronic equipment, computer and software 
 
This thesis was prepared on IBM compatible PC and Apple Macintosh Computers using 

Vector NTI (Invitrogen), Adobe PhotoShop (Adobe Systems), Canvas (Deneba Systems), 

Axiovision (Zeiss),  ImageJ (NIH), Cell Quest software (Becton Dickinson), Microsoft Word 

and Excel (Microsoft Corp.). 

 

Fluorescent images were captured on a Leica TCS-SP2 confocal microscope or on a Zeiss 

Axioplan Imaging2e microscope equipped with an Apotome slider module as well as a Zeiss 

AxioCam HRm CCD camera. Bright-field images were acquired on a Zeiss Axioplan fitted 

with a Zeiss AxioCam MR5c CCD camera. Pictures of fly eyes were taken on a Zeiss Stemi 

DRC stereomicroscope equipped with a ProgRes 3008 CCD camera (Kontron Elektronik). 
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Flowcytometric analyses were performed on a FACS-Vantage (Becton Dickinson) and 

processed using Cell Quest software (Becton Dickinson). 

 
Western blots were analyzed with the Odyssey infrared imaging system (Li-Cor Biosciences). 

 
DNA sequences were analyzed on an ABI 3730 sequencer (Applied Biosystems). 

 
5.1.4. Media, solutions and buffers 
 
Ampicillin stock solution 50mg/ml in 50% Ethanol, dilute to 50µg/ml final 

concentration 
 

APS 10% in H2O 
 

BCIP stock solution 10mg/ml 5-bromo-4-chloro-indolyl phosphate in 
Dimethylformamide 
 

BrdU stock solution 10mg/ml in 40% ethanol, store at -20°C 
 

Carbonate buffer (2X) 120mM Na2CO3 
80mM NaHCO3 
pH 10.2, store at -20°C  
 

Chloramphenicol stock solution 34mg/ml in Ethanol, dilute to 30µg/ml final 
concentration 
 

DNA loading buffer  
 

0.25% Bromophenol blue 
0.25% Xylene cyanol 
30% Glycerol in H2O 
 

Hoechst 33342 0,5mg/ml in H2O 
 

in situ staining solution 100mM NaCl 
25mM MgCl2 
100mM Tris-HCl   pH 9.5 
1mM Levamisole 
0.1% Tween-20 
in H2O 
 

in situ hybridization mix  50% Formamide 
25% 20X SSC 
100µg/ml tRNA 
100µg/ml ssDNA 
50µg/ml Heparin (in 4X SSC) 
0.001% Tween-20 
in H2O 
 

Kanamycin stock solution 10mg/ml in H2O, dilute to 30µg/ml final concentration 
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Laemmli buffer (4X) 8% SDS 
400mM DTT 
240mM Tris-HCl  pH6.8 
0.004% Bromophenol blue 
40% Glycerol 
 

LB-Medium (1L) 10g Bactotrypton 
5g Bacto-yeast-extract 
10g NaCl 
(for casting plates add 15g agar) 
 

Mini-Prep buffer Resuspension buffer 
50mM Glucose 
25mM Tris-HCl, pH 8,0 
10mM EDTA, pH 8,0 
100µg/ml RNAse 
5mg/ml Lysozyme 
 
Lysis buffer 
200mM NaOH 
1%SDS 
 
Neutralization buffer  
3M K-acetate, pH 5.5 
 

NBT stock solution 10mg/ml nitroblue-tetrazolium in 70% 
Dimethylformamide 
 

Paraformaldehyde (4%, 100ml)  4% Paraformaldehyde in PBS 
4g Paraformaldehyde 
80ml H2O 
8ml 10X PBS 
 
dissolve PFA on a stirrer/hotplate 
add 3 drops of 1M NaOH to help clear 
cool down to RT 
adjust pH to 7.2 with NaOH  
add 1x PBS to make 100 ml  
store at -20°C 
 

PBS 130mM NaCl 
2.7mM KCl 
7mM Na2HPO4 
3mM KH2PO4 
adjust pH to pH 7.4 
 

PBT (500ml) 0.2% Tween-20 in PBS  
50ml 10x PBS 
5ml  20% Tween-20  (in 50% Ethanol) 
add H2O to make 500ml 
 



Functional analysis of the cell cycle regulator Rca1        Material & Methods 
 

91 

PBTX  (500ml) 0.3% Triton-X100 in PBS  
50 ml 10x PBS 
7.5 ml  20% Triton-X100 (in 50% Ethanol) 
add H2O to make 500ml 
 

Ponceau S (10X) 2g Ponceau S 
30g Trichloracetic acid 
30g Sulfosalicyclic acid 
 

Propidium iodide 10mg/ml in PBS 
 

RNAse stock solution 10mg/ml in H2O 
boil for 10min to remove DNAse  
 

Running buffer for SDS-PAGE  
(10X, 10L) 

300g Tris base (0.25M) 
1440g Glycine (1.9M) 
1L 10% SDS 
 

Separating gel buffer (4X, 1L) 181.7g Tris base (1.5M) 
4ml 10% SDS 
adjust pH to 8.8 with HCl 
 
 8.5% 10% 12.5% 15% 
H2O (ml) 4.7 4.2 3.4 2.4 
30% Acrylamide 
(ml) 2.7 3.2 4 5 

4X Separating gel 
buffer (ml) 2.6 2.6 2.6 2.6 

APS (µl) 150 150 150 150 
TEMED (µl) 7 7 7 7 

Separating gels for SDS-PAGE 

 
the amount is sufficient for 2 mini gels. 

 
SSC (20X) 3M NaCl 

0.3M Na-citrate 
 
 

Stacking gel buffer (4X, 500ml)  30.3g Tris base (0,5M) 
20ml 10% SDS 
adjust pH to 6.8 with HCl 
 

 50ml 100ml 
H2O (ml) 28.65 57.3 
30% Acrylamide 
(ml) 8.6 17.2 

4X Stacking gel 
buffer (ml) 12.75 25.5 

Stacking gels for SDS-PAGE 
(4%) 

 
 for 2 mini gels take 10 ml of the prepared stacking gel 

mix and add 200 µl APS and 10 µl  TEMED.  
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Stop solution (RNA hydrolysis) 0.2M Na-acetate 
adjust pH to 6.0 with acetic acid 
   

TAE 242g Tris base (2M) 
57.1ml glacial acetic acid 
500mM EDTA 
 

TE 10mM Tris-HCl pH 8.0 
1mM EDTA pH 8.0 
 

Terrific broth Solution A  
12g Bactotrypton 
24g Bacto-yeast-extract 
4ml Glycerol 
adjust to 900ml with H2O 
 
Solution B  
2.31g KH2PO4 
12.54g K2HPO4 
adjust to 90ml with H2O 
 

Tetracycline stock solution 10mg/ml in 50% Ethanol, dilute to 20µg/ml final 
concentration 
 

Transfer buffer for western-
blotting (1L) 

5.82g Tris base (48mM) 
2.93g Glycine (39mM) 
3.75 ml 10% SDS 
200ml Methanol 

 

5.1.5. Bacterial strains 
 
DH5α 

supE44 ΔlacU169 (φ80lacZΔM15) hsdR17 recA1 endA1 

gyrA96 thi-1 relA1 

ES1301 mutS 
    lacZ53 mutS201::Tn5 thyA36 rha-5 metB1 deoC IN(rrnD-rrnE)  

 
JM109 

endA1 recA1 gyrA96 thi hsdR17(rκ-mκ
+) relA1 supE44 λ- 

Δ(lac-proAB) [F´ traD36proA+B+ lacIqZΔM15
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5.1.6. Oligonucleotides 
Oligonucleotides were purchased from the following manufacturers: Eurogentec, Sigma, 

Roth, and Invitrogen. 
 
Table 1 Oligonucleotides that have been utilized during this thesis. 

Name Sequence Application 
CO-125rca1B TCGGGATCCATGAGCGCCTATTATCGG sequencing of Rca1 

CO-126rca1X ATGTCTAGACTAAAAACAGAGCCGCTTGAG sequencing of Rca1 

CO-166rca1.1 GATGAACGAGTCTGGCTACACATC sequencing of Rca1 

CO-167rca1.2 CCAAGCGACGCAAGAAACACTTTC sequencing of Rca1 

CO-168rca1.3 CTAATGGACTCGGGCAACTCGAGCATC sequencing of Rca1 

CO-169rca1.4 CTAACCAAAGAGAATCCTCACCTGCC sequencing of Rca1 

CO-170rca1.5 CCTATTGGACGTACAACCAGCACATTC sequencing of Rca1 

CO-228 GTGTCATCTCCCAGTTTC GG site-directed mutagenesis C35S1 

CO-232 ATTACCCGGGCCATTGCGCCAGCTTGGCCAC site-directed mutagenesis Q164P, 

P165G  

CO-233 ATTACCGGGCGCCTACAGAACCACCGACTC site-directed mutagenesis R202P, 

L203G  

CO-265 GGATAACAATTTCACACAG sequencing from SP6 promotor 

CO-266 TTGAATCTAACCAAAGCGGCTCCTCACGTGCCCA

AGCGG 

site-directed mutagenesis  E215A, 

N216A 

CO-267 GAGGTCAGGACTGCACCGCAAGGACCGCC  site-directed mutagenesis S335A 

CO-268 CCGAACTGGACGCACCATCCAAATTGATG  site-directed mutagenesis T376A 

CO-269 GGGAGCGACTGGCGCCGCCACAACGTGCCCAG  site-directed mutagenesis T388A 

CO-278 CGCTGGACGTGATGACCAAGGTATCGCCGG sequencing of HA-Rca1ΔKEN  

CO-319 GTGATGACCAAGGTAGCGCCGGCCTGGAAGCAG

G 

site-directed mutagenesis S187A 

 

CO-326 CAATTCCACCGCGGAGGCGCCATTTTTATTGG site-directed mutagenesis T44A 

CO-327 GCAAGAAACACTTTCAAGCGCCACACAGTGCCCC

CAAGAAGTCC 

site-directed mutagenesis S123A, 

S127A 

CO-328 GGCGTTGCGGAAGAAGGCCCCAAGCCGAGGG site-directed mutagenesis S14A 

CO-329 CTTTCGGGGGCTGAACGCGCCCAGTGGCCACC site-directed mutagenesis T71A 

CO-330 GCCTTTCTCTATGGCTCCGCGTCTGCAGG site-directed mutagenesis T104A 

CO-357 GCCTCGCTAATGGACGCGGGCAACGCGGCCATCC

ACCTGATGG 

site-directed mutagenesis S253A, 

S256A, S257A  

CO-401 GTAATACGACTCACTATAGGGCG sequencing from T7 promotor 

CO-402 CAATTAACCCTCACTAAAGGG sequencing from T3 promotor 

AmpR GTTGCCATTGCTGCAGGCATCGTGGTG Altered Sites 2 

TetKO GCCGGGCCTCTTGCGGGCGTCCATTCC Altered Sites 2 

AmpKO GTTGCCATTGCGGCATCGTGG TGTCAC Altered Sites 2 

TetR GCCGGGCCTCTTGCGGGATATCGTCCA Altered Sites 2 
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5.1.7. Plasmids 
 

The following vectors (Figure 38) were utilized as matrix for molecular cloning:  

pAlter1 (Promega), pBluescript II SK(-) (Stratagene), pSP64 and pUASp (Rorth, 1998). 

 

 
Figure 38 Schematic representation of the vectors used in this study. (A) pAlter1 (B) pBluescript II 
SK(-)  (C) pSP64  

 
Table 2 Plasmids that have been used during this thesis. 

NR Insert Vector Matrix Purpose 
pRG26 HA-Rca1 pSP64 intermediate construct 

pRG28 HA-Rca1 pBluescript SK(-) intermediate construct 

pRG32 HA-Rca1ΔNLS(117-134) pBluescript SK(-) intermediate construct 

pRG36 Rca1 pBluescript SK(-) RNA probe for in situ hybridization 

pRG54 HA-Rca1Δ203(1-203) pSP64 intermediate construct 

pRG57 HA-Rca1Δ203(1-203) pBluescript SK(-) intermediate construct 

pRG58 HA-Rca1Δ203(1-203) pUASp transformation of Drosophila 

pNZ01 HA-Rca1 pAlter1 site-directed mutagenesis 

pNZ02 HA-Rca1 pSP64 intermediate construct 

pNZ03 HA-Rca1C351S pAlter1 intermediate construct 

pNZ05 HA-Rca1C351S pUASp transformation of Drosophila 

pNZ07 HA-Rca1Δ255(1-255) pSP64 intermediate construct 

pNZ08 HA-Rca1Δ133(1-133) pSP64 intermediate construct 
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NR Insert Vector Matrix Purpose 
pNZ12 HA-Rca1Δ255(1-255) pBluescript SK(-) intermediate construct 

pNZ13 HA-Rca1Δ133(1-133) pBluescript SK(-) intermediate construct 

pNZ17 HA-Rca1Δ255(1-255) pUASp transformation of Drosophila 

pNZ18 HA-Rca1Δ133(1-133) pUASp transformation of Drosophila 

pNZ21 HA-Rca1(Q164P, P165G, R202P, L203G) pAlter1 intermediate construct 

pNZ22 HA-Rca1ΔF-box(164-203) pAlter1 intermediate construct 

pNZ25 HA-Rca1 ΔF-box(164-203) pUASp transformation of Drosophila 

pNZ26 HA-Rca1ΔKENE215A, N216A pAlter1 intermediate construct 

pNZ27 HA-Rca1ΔNLS(117-134) pUASp transformation of Drosophila 

pNZ40 HA-Rca1ΔKENE215A, N216A pUASp transformation of Drosophila 

pNZ41 HA-Rca1S335A, T377A pAlter1 site-directed mutagenesis 

pNZ44 HA-Rca1 S187A, S335A, T377A, T388A pAlter1 site-directed mutagenesis 

pNZ46 
HA-Rca1ΔCdk1T44A, S123A, S127A, S187A,  

S335A,  T377A, T388A 
pAlter1 site-directed mutagenesis 

pNZ49 HA-Rca1ΔDSGxxSS253A, S256A S257A pAlter1 intermediate construct 

pNZ51 
HA-Rca1ΔCdk1T14A, T44A, T71A, T104A, S123A, 

S127A, S187A,  S335A,  T377A, T388A 
pAlter1 intermediate construct 

pNZ52 
HA-Rca1ΔCdk1T14A, T44A, T71A, T104A, S123A, 

S127A, S187A,  S335A,  T377A, T388A 
pUASp transformation of Drosophila 

pNZ56 HA-Rca1ΔDSGxxSS253A, S256A S257A pUASp transformation of Drosophila 

 

5.1.8. Fly Stocks 
Either OregonR or w1118 were used as wild-type controls. All used marker genes and balancer 

chromosomes are described in  (Lindsley and Zimm, 1992). 

 
Table 3 Fly Stocks that have been used during this thesis. 

NR Genotype Distributor 
F149 cycEAR95/CyO(wg-lacZ) Christian Lehner 

TAD018 cycAC8LR1/TM3(ubx-lacZ) Axel Dienemann 

TAD021 w; If/CyO(wg-lacZ); cycAC8LR1/TM3(ubx-lacZ) Axel Dienemann 

TF387 rca12/CyO(wg-lacZ) Ruth Grosskortenhaus 

TF389 rca12/CyO(wg-lacZ); cycAC8LR1/TM3(ubx-lacZ) Ruth Grosskortenhaus 

TNZ080 rca12, cycEAR95/CyO(wg-lacZ) Ruth Grosskortenhaus 

TNZ114 w; rca12, cycEAR95/CyO(wg-lacZ); MKRS/TM3(ubx-lacZ) own production 

TNZ194 w; rca12, cycEAR95/CyO(wg-lacZ); cycAC8LR1/TM3(ubx-lacZ) own production 

TNZ227 dap4/CyO Christian Lehner 

TAD19.3 cycAC8LR1, prd-Gal4 /TM3(ubx-lacZ) Axel Dienemann 

TNZ259 UAS-dap#660/CyO(wg-lacZ); cycAC8LR1/TM3(ubx-lacZ) own production 

TF102 UAS-CycE on 2nd Helena Richardson 

TF196 w; UAS-CycE/CyO(wg-lacZ); MKRS/TM6B own production 
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NR Genotype Distributor 
TNZ224 w; UAS-CycE /CyO(wg-lacZ); cycAC8LR1 /TM3(ubx-lacZ) own production 

TF383 w; UAS-HA-Rca1/CyO(wg-lacZ); MKRS/TM6B Ruth Grosskortenhaus 

TF450 w; If/CyO(wg-lacZ); UAS-HA-Rca1/TM6B Ruth Grosskortenhaus 

TF483 w; UAS-Rca1/CyO(wg-lacZ); MKRS/TM6B Ruth Grosskortenhaus 

TNZ118 w; If/CyO(wg-lacZ); UAS-HA-Rca1Δ133/TM6B own production 

TNZ120 w; UAS-HA-Rca1Δ203/CyO(wg-lacZ); MKRS/TM6B own production 

TNZ121 w; If/CyO(wg-lacZ); UAS-HA-Rca1Δ203/TM6B own production 

TNZ124 w; If/CyO(wg-lacZ); UAS-HA-Rca1Δ255/TM6B own production 

TNZ134 w; If/CyO(wg-lacZ); UAS-HA-Rca1ΔNLSTF134/TM6B own production 

TNZ059 w; UAS-HA-Rca1ΔF-box /CyO(wg-lacZ); MKRS/TM6B own production 

TNZ063 w; If/CyO(wg-lacZ); UAS-HA-Rca1ΔF-box/TM6B own production 

TNZ140 w; If/CyO(wg-lacZ); UAS-HA-Rca1ΔKEN/TM6B own production 

TNZ207 w; If/CyO(wg-lacZ); UAS-HA-Rca1ΔDSGxxS/TM6B own production 

TNZ001 w; If/CyO(wg-lacZ); UAS-HA-Rca1C351S/TM6B own production 

TNZ147 w; UAS-HA-Rca1ΔCdk1/CyO(wg-lacZ); MKRS/TM6B own production 

TNZ251 w; If/CyO(wg-lacZ); UAS-HA-Rca1ΔCdk1/TM6B own production 

TA224.4 w; If/CyO(wg-lacZ); UAS-HA-CycA/TM6B Axel Dienemann 

TF408 w; If/CyO(wg-lacZ); UAS-CycE/TM6B Ruth Grosskortenhaus 

TF470 w; UAS-HA-Fzr/CyO(wg-lacZ); MKRS/TM6B Ruth Grosskortenhaus 

TF473 w; If/CyO(wg-lacZ); UAS-HA-Fzr/TM6B Ruth Grosskortenhaus 

TNZ047 w; UAS-Rca1TF483;UAS-HA-FzrTF473/SM6-TM6 own production 

TF313 prd-Gal4/TM3(ftz-lacZ) Christian Lehner 

TF374 w; rca12/CyO(wg-lacZ); MKRS/TM6B, Ruth Grosskortenhaus 

TF378 w; rca12/CyO(wg-lacZ); prd-Gal4/TM6B Ruth Grosskortenhaus 

TF379 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1TF450/TM6B Ruth Grosskortenhaus 

TNZ005 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1Δ133TNZ118/TM6B own production 

TNZ006 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1Δ203TNZ121/TM6B own production 

TNZ007 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1Δ255TNZ124/TM6B own production 

TNZ147 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1ΔNLSTF134/TM6B own production 

TNZ069 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1ΔF-boxTNZ063/TM6B own production 

TNZ148 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1ΔKENTNZ140/TM6B own production 

TNZ223 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1ΔDSGxxSTNZ207/TM6B own production 

TNZ004 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1C351STNZ001/TM6B own production 

TNZ254 w; rca12/CyO(wg-lacZ); UAS-HA-Rca1ΔCdk1TNZ251/TM6B own production 

TNZ225 UAS-dap#660 on 2nd Christian Lehner 

TNZ228 w; UAS-dap#660/CyO(wg-lacZ); MKRS/TM6B own production 

 w; UAS-dap#660/CyO(wg-lacZ); UAS-HA-Rca1TF450/TM6B own production 

TF292 GMR-Gal4 on 2nd Ilan Davis 

TK282 w; UAS-GFP/CyO(wg-lacZ); MKRS/TM6B Thomas Klein 

TK351 w; If/CyO(wg-lacZ); UAS-GFP/TM6B Thomas Klein 
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NR Genotype Distributor 
F232 w; If/CyO(wg-lacZ); MKRS/TM6B Thomas Klein 

 W; If/SM6-TM6 Thomas Klein 

TNZ087 w; UAS-HA-Rca1TF383; UAS-GFP/SM6-TM6 own production 

  w; UAS-HA-Rca1Δ203TNZ120; UAS-GFP/SM6-TM6 own production 

 w; UAS-GFP; UAS-HA-ΔF-boxTNZ063/SM6-TM6 own production 

 w; UAS-HA-Rca1ΔF-boxTNZ059; UAS-HA-ΔF-boxTNZ063/SM6-TM6 own production 

TNZ113 w, hs-Flp1.22; AyGal4(25), UAS-GFP/SM6-TM6 Thomas Klein 

 w, hs-Flp1.22; AyGal4(25), UAS-lacZ/CyO Antonio Garcia-Belido 

TNZ031 PCNA-GFP on 3rd Robert Duronio 

TNZ064 w; If/CyO(wg-lacZ); PCNA-GFP/TM6B own production 

 w; UAS-HA-Rca1TF383; PCNA-GFP/SM6-TM6 own production 

TNZ155 CycE16.4kb-lacZ on 3rd Thomas Klein 

 w; If/CyO(wg-lacZ); CycE16.4kb-lacZ/TM6B own production 

 w; UAS-HA-Rca1TF383; CycE16.4kb-lacZ/SM6-TM6 own production 

TF179 UAS-ruxB1 on 2nd Barbara Thomas 

 w; UAS-ruxB1/CyO(wg-lacZ); MKRS/TM6B own production 

 w; UAS-ruxB1/CyO(wg-lacZ); UAS-HA-Rca1TF450/TM6B own production 

TNZ156 
w, hs-Flp1.22, tub-Gal4, UAS-GFP/FM7; Frt40A, tub-Gal80/CyO(wg-

lacZ) 
Thomas Klein 

TNZ180 FRT40A on 2nd Thomas Klein 

TF413 w; FRT40A, rca12/CyO(wg-lacZ) Ruth Grosskortenhaus 

TNZ158 w; FRT40A, rca12; UAS-HA-Rca1TF450/SM6-TM6  own production 

TNZ195 w; FRT40A, rca12; UAS-HA-Rca1Δ203TNZ121/SM6-TM6 own production 

TNZ159 w; FRT40A, rca12; UAS-HA-Rca1ΔF-boxTNZ063/SM6-TM6 own production 

 

5.1.9. Antibodies 
 
Table 4 Primary antibodies that have been for immunohistology and western blot analysis. 

NR Antigen Source Immuno staining Western Blot Distributor 
280 HA Rabbit 1:200 not working Santa Cruz Biotechnology 

282 HA Rat 1:100 1:3000 Roche 

284 Cyclin A Rabbit 1:250 1:3000 Frank Sprenger 

310 Cyclin B Mouse 1:40 1:2500 Developmental Studies Hybridoma Bank 

168 Cyclin B Rabbit 1:500 not tested Jordan Raff 

278 Cyclin E Guinea pig 1:800 not working Terry Orr-Weaver 

138 PSTAIRE Mouse 1:2500 1:50000 Sigma 

246 Rca1 Rat 1:1000 1:1000 Ruth Grosskortenhaus 

247 Fzr Rat 1:100 not tested Ruth Grosskortenhaus 

- Dap  1:4 not tested Iswar Hariharan 
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NR Antigen Source Immuno staining Western Blot Distributor 
318 actin Rabbit not tested 1:10000 Sigma 

041 tubulin Mouse not tested 1:10000 Amersham Life Science 

293 p-Histone 3 Rabbit 1:1000 not tested Upstate-Cell Signaling Solutions 

343 p-Histone 3 Mouse 1:2500 not tested Cell Signaling Technology  

102 p-Tyr Mouse 1:10 not tested Deborah Morrison 

327 BrdU Mouse 1:20 not tested Becton Dickinson 

059 ß-gal/lacZ Rabbit 1:500 not tested Cappel 

281 ß-gal/lacZ Mouse 1:500 not tested Sigma 

294 GFP Rabbit 1:500 1:1000 Torrey Pines Biolabs 

323 DIG-AP  1:2000 not tested Roche 

    
Table 5 Secondary antibodies that have been used for immunohistology. 

NR Antigen Source Flourochrome Dilution Distributor 
286 Mouse Goat Alexa-488 1:500 Invitrogen -Molecular Probes 

298 Mouse Goat Rhd-Red-X 1:500 Dianova 

227 Mouse Goat Alexa-568 1:500 Invitrogen -Molecular Probes 

297 Mouse Goat Alexa-647 1:500-1:250 MoBiTec 

184 Rat Goat Alexa-488 1:500 MoBiTec 

198 Rat Goat Alexa-568 1:500 MoBiTec 

169 Rat Goat Cy5 1:500-1:250 Dianova 

290 Rat Goat Alexa-647 1:500-1:250 Invitrogen -Molecular Probes 

267 Rabbit Goat Alexa-488 1:500 MoBiTec 

301 Rabbit Goat Alexa-568 1:500 Invitrogen -Molecular Probes 

182 Rabbit Goat Cy5 1:500-1:250 Dianova 

205 Guinea pig Donkey Texas-Red 1:500 Dianova 

 
Table 6 Secondary antibodies that have been used in combination with the Odyssey system to detect 
proteins on western blots.  

NR Antigen Source Flourochrome Dilution Distributor 
307 Mouse Goat Alexa-680 1:3000 Invitrogen -Molecular Probes 

315 Mouse Sheep IRdye-800 1:3000 Rockland Immunochemicals 

308 Rat Goat Alexa-680 1:3000 Invitrogen -Molecular Probes 

312 Rat Goat IRdye-700 1:3000 Rockland Immunochemicals 

317 Rat Donkey IRdye-800 1:3000 Rockland Immunochemicals 

306 Rabbit Goat Alexa-680 1:3000 Invitrogen -Molecular Probes 

313 Rabbit Goat IRdye-700 1:3000 Rockland Immunochemicals 

316 Rabbit Donkey IRdye-800 1:3000 Rockland Immunochemicals 

319 Guinea pig Goat IRdye-700 1:3000 Rockland Immunochemicals 

 

 



Functional analysis of the cell cycle regulator Rca1        Material & Methods 
 

99 

5.2. Molecular cloning 
 

5.2.1. Restriction digests of DNA 
 
Restriction digests were performed in buffers and at temperatures recommended by enzyme 

manufacturers for at least 2h and up to a maximum of 16h. 

 

5.2.2. Dephosphorylation of DNA ends 

 
After restriction digestion, vector ends were dephosphorylated to prevent self ligation. 

Therefore, 1µl CIP (calf intestinal phosphatase) was added to a restriction mix and incubated at 

37°C for 30min.  

 
5.2.3. Klenow fill in of DNA ends 

 
To fill 5’overhangs, 1U Klenow/μg DNA and 33µM dNTPs were added to a restriction mix 

and incubated at RT for 15min. The reaction was stopped by addition of 10mM EDTA and 

subsequent heating at 75°C for 10 min. 

 
5.2.4. Isolation of DNA fragments 

 
Restriction digests were separated on agarose gels. The fragments of interest were visualized 

on a UV lamp and excised using a sterile scalpel. DNA was then purified from gel pieces 

using the EasyPure DNA Purification Kit. 

 
5.2.5. Agarose gel electrophoresis 
 
Agarose gel electrophoresis was performed as described (Sambrook et al., 1989). DNA 

fragments were separated on a 1% agarose gels, with 10μl 10mg/ml Ethidiumbromide in 

100ml TAE buffer. 

 
 
5.2.6. DNA ligation 
 
Ligation reactions were carried out with a molar ratio of insert to vector of 5:1. The reaction 

was conducted in a volume of 15µl, whereby 1μl T4 DNA Ligase was added to each reaction. 

The ligation reactions were incubated overnight at 18°C.  
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5.2.7. Preparation of electro-competent cells 
 
DH5a, JM101 and ES1301 cells were plated out onto LB plates and grown overnight at 37°C. 

A colony was picked from this plate and grown overnight in 50ml LB. The following day 

these cells were diluted 1:100 with TB and grown until an OD600 of 0.5. Next, cells were 

cooled on ice for 30 min and then centrifuged at 4000rpm in a Sorvall GS3 rotor for 10min at 

4°C. The cells were resuspended on ice for 30min in 500ml Millipore water and then 

centrifuged at 8000rpm in a Sorvall GS3 rotor for 20min at 4°C. Cell were resuspended in ice 

cold 10% (w/v) glycerol and centrifuged in a Heraeus bench top centrifuge at 4000rpm for 

7min at 4°C. Cells were then resuspended in 1ml ice cold 10% glycerol. Finally resuspended 

cells were divided into 50μl aliquots, frozen in liquid nitrogen and stored at -70°C. 

 
5.2.8. Transformation of electro-competent E. coli 
 
0.5-1μl of plasmid DNA was mixed with a 40μl aliquot of electro-competent E. coli cells. 

Immediately after transformation cells were resuspended in 1ml LB. After incubation for 1h at 

37°C, 20-300μl were plated on LB-Agar plates containing appropriate antibiotics. Plates were 

incubated overnight at 37°C and individual colonies were picked. 

 
5.2.9. Transformation of chemically-competent E. coli 
 
Chemically-competent DH5α were purchased from Invitrogen and stored according to 

manufacturers instructions. 1-5μl of plasmid DNA was mixed with a 50μl aliquot of 

chemically-competent cells and chilled for 30min on ice. Cells were then heat-shocked for 

20sec at 37°C and transferred immediately on ice. After 2min recovery, cells were 

resuspended in 1ml LB and incubated for 1h at 37°C. From this point it was proceeded as 

described for electro-competent cells. 

 
5.2.10. Isolation of plasmid DNA 
 
To isolate small amounts of plasmid DNA applicable for restriction analysis and sequencing, 

the following protocol was used: 1.5ml of an overnight culture was centrifuged for 10min at 

4000 rpm. The pellet was then resuspended in 100µl resuspension buffer. Afterwards, 200μl 

lysis buffer were added to the resuspended bacteria, shaken and incubated for 5min at RT. 

Next, 150μl neutralization buffer were added, shaken and incubated for further 5min at RT. 

The mix was then centrifuged for 30min at 14000rpm in a bench top centrifuge. After 
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completion, the supernatant was transferred into a new sample tube, supplemented with 1ml 

100% ethanol and centrifuged again for 20min at 14000rpm. The supernatant was discarded, 

whereas the pellet was supplemented with 1ml 70% ethanol and centrifuged for 5min at 

14000rpm. Finally, the pellet was dried and resuspended in 20-50μl H2O. 

 

To obtain larger quantities of plasmid DNA, the Nucleobond AX-100 Midi Prep kit was used 

according to the manufacturers information. 

 
5.2.11. Amplification of DNA by PCR (Polymerase Chain Reaction) 
 
For standard PCR either the Expand High Fidelity PCR-System or Platinum pfx DNA 

polymerase were used. The reaction mix was composed according to manufacturers 

instructions, whereby the reaction was performed in a total volume of 50 µl.  

   

Standard PCR program: 
    start:  5min at 96°C 
 

start:  30sec at 96°C 
annealing:  30sec at 50°C  25 cycles 
extension: 1min/kb at 68/72°C 
 

end:  10min at 68/72°C 

 
5.2.12. Site directed mutagenesis 
 
Site directed mutagenesis was performed according to the Altered Sites 2 manual from 

Promega. 

 
5.2.13. DNA sequencing 

 
DNA sequencing was performed in the DNA sequencing facility at the University of Cologne. 

Details about the composition of the sequencing reactions are available at:  
http://www.uni-koeln.de/math-nat-fak/genetik/facilities/sequencer/index.html 

 
5.2.14. Preparation of RNA probes for in situ hybridization 
 
For preparation of RNA probes the DIG-RNA labelling kit was used. 200ng linearized 

plasmid DNA were used. The reaction mix was composed according to manufacturers 

instructions with the exception that only 200ng linearized plasmid DNA were used for a 
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reaction. The reaction mix was then incubated for 2h at 37°C. After completion, 2µl reaction 

mix were tested on an agarose gel, whereas the remaining reaction mix was hydrolysed. 

Therefore, 30µl H2O and 50µl 2X carbonate buffer were added to the reaction. After 

incubation for 40min at 70°C, the reaction was stopped by addition of 100µl stop solution 

supplemented with 1µl tRNA (100mg/ml). Next, the RNA was precipitated. Therefore, the 

sample was supplemented with 45µl LiCl (4M) and 1ml Ethanol. The sample was then chilled 

for 10min at -20° and subsequently centrifuged at 14000 rpm for 15 min in a bench top 

centrifuge cooled to 4°C. While the supernatant was removed, 1 ml 70% ethanol was added to 

the pellet. The sample was then centrifuged again for 15 min at 14000 rpm in a bench top 

centrifuge cooled to 4°C. Finally, the pellet was resuspended in 50µl hybridization mix. 

   
5.3. Drosophila techniques 
 
5.3.1. Maintenance of flies 
 
Flies were maintained under standard conditions (Ashburner, 1989; Wieschaus and Nüsslein-

Vollhard, 1986).  

 
5.3.2. Generation of transgenic flies 
 
For the production of transgenic flies the P-element-insertion-method after Rubin and 

Spradling was used (Rubin and Spradling, 1982). Transgenic flies were made by inserting the 

DNA sequence of interest into a transposon called P-element. P-elements are mobile genetic 

elements that occur naturally in Drosophila. The integration of the P-element into the genome 

is mediated by an enzyme called transposase. For the generation of transgenic flies, two 

modified P-elements, called carrier P-element and helper P-element were utilized. Both P-

elements were injected into the forming germ cells of w- embryos. The carrier P element 

contains the DNA sequence of interest and a mini w+ gene, which serves as marker. Since 

uncontrolled hopping of P-elements can cause genomic instability, the transposase of the 

carrier P-element is inactivated. The helper P element provides the transposase, but cannot be 

integrated into the genome. For transformation of Rca1-constructs, the pUASp vector was 

used as carrier P-element, which is adapted to the UAS/Gal4-System (Rorth, 1998). The 

plasmid Δ2.3 was used as helper P element (Rio and Rubin, 1985). 
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For injection, embryos were collected for 30min on apple juice agar plates and subsequently 

dechorionated in a 1:1 mixture of water and bleach. About 80 embryos were arranged on an 

agar block with anterior pole directed outwards. The arranged embryos were subsequently 

transferred on a coverslip prepared with heptane glue. The glued embryos were then dried for 

8-12min in a dessicator. During this drying step, the injection needle was loaded with 1µl 

injection mix and broken in a 45° angle. The injection mix contained the pUASp vector in a 

concentration of 400ng/µl and the helper plasmid Δ2.3 in a concentration of 100ng/µl. After 

drying, the coverslip was installed on a slide and covered with 10S Voltalef oil. The DNA was 

injected into the posterior pole just before the formation of pole cells. The coverslip with the 

injected embryos was then transferred to a Petri dish and covered with 3S Voltalef oil. The 

Petri dish was then placed humid chamber and incubated at 25°C for approximately 24 hours.  

The newly hatched larvae were transferred into a new vial containing standard fly food 

supplemented with baker yeast. After approximately 8-9 days, the newly hatched flies were 

crossed against the double-balancer stock F-232. Positive transformants were identified due to 

their red eye colour. To map the P-element insertion to a particular chromosome, the red eyed 

flies were then crossed again with the double-balancer stock F-232.  

 
5.3.3. Collection and fixation of embryos 
 
Embryos were collected at 18°C from overnight clutches. Flies were kept in laying cages 

fitted with apple juice agar plates. Embryos were dechorionated in a 1:1 mixture of water and 

bleach for 1-2min, poured through a sieve and washed several times with tap water. The 

embryos were then transferred into a 2ml sample tube containing 1ml heptane as well as 1ml 

4% Formaldehyde in PBS and shaken for 20min at 37°C. Afterwards the lower phase was 

removed and replaced by 1ml methanol. The embryos were devitellinized by shaking 

thoroughly for 30s. Finally, embryos were washed three times with methanol and stored at -

20°C. 

 
5.3.4. Antibody staining of embryos 
 
For antibody staining, embryos were rehydrated by washing several times in PBS. Rehydrated 

embryos were then blocked by rotating for 1hr at RT in blocking mix (4% NGS in PBT). 

Next, the embryos were incubated overnight at 4°C with the desired primary antibody (diluted 

in 4% NGS in PBT). On the following day, the primary antibody was removed and the 

embryos were washed three times for 10min in PBT. After washing, an appropriate secondary 



Functional analysis of the cell cycle regulator Rca1        Material & Methods 
 

104 

antibody (diluted in 4%NGS in PBT) was added to the embryos and incubated for 2h at RT. 

Afterwards, the embryos were washed three times for 10min in PBT and stained either with 

Hoechst or propidium iodide (0.2 µg/µl RNAse have to be added to the secondary antibody) 

for 4min RT. Finally, the embryos were transferred to a slide and mounted in Vecatshield.  

 
5.3.5. Induction of clones  
 
For clonal analysis two different systems were applied, that both rely on the Gal4/UAS 

system (Brand and Perrimon, 1993). To generate cell clones that overexpress a particular 

transgene, the “flpout” technique was utilized (Ito et al., 1997).In addition, the MARCM 

technique was applied  to generate overexpressing clones with a certain mutant background 

(Lee and Luo, 1999). For clonal analysis flies were harvested in big fly vials filled with fly 

food. Clones were induced 40-48h after egg deposition by heat shock at 37°C. In the case of 

”flpout“ experiments the heat shock was done for 10min, while in the case of MARCM 

experiments the heat shock had duration of 1h. Imaginal discs as well as salivary glands were 

analyzed 72h after clone induction. To generate MARCM clones in the salivary placode, 

embryos were collected for 8h at 25°C and subsequently heat shocked for 1h at 37°C (Hennig 

et al., 2006).  

 
5.3.6. Dissection of imaginal discs and salivary glands 
 
Imaginal discs and salivary glands were obtained from wandering larvae. Dissection of larval 

tissues was carried out under a stereomicroscope in a dissecting dish filled with cooled PBS.  

For dissecting wing imaginal discs, larvae were torn in half with a pair of tweezers. The 

anterior half of the larvae was then inverted, so that wing discs remained anchored to the body 

wall and cannot be lost during the staining procedure. For the same reason, eye imaginal discs 

and salivary glands were kept attached to the mouth hook. To dissect mouth hooks, larvae 

were hold in the middle with one set of forceps. With a second pair of forceps the mouth hook 

was then grasped and pulled out of the larvae. In each case, the dissected tissue was then 

transferred into a multi-well plate equipped with small sieves and immediately used for 

antibody staining. 
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5.3.7. Antibody staining of imaginal discs and salivary glands 
 
For antibody staining samples were fixed for 30min at RT in 4% paraformaldehyde. The 

samples were then washed several times in PBTX and blocked with gentle agitation for 1hr at 

RT in blocking mix (4% NGS in PBTX). Next, the desired primary antibody (diluted in 4% 

NGS in PBTX) was added to the samples and incubated overnight at 4°C. On the following 

day, the primary antibody was removed and the samples were washed three times for 10min 

in PBTX. After washing, an appropriate secondary antibody (diluted in 4% NGS in PBTX) 

was added and incubated for 2h at RT. Afterwards, samples were washed three times for 

10min in PBTX and stained either with Hoechst for 4min at RT. After completion, samples 

were transferred to a dissection dish, to separate imaginal discs/salivary glands from the 

remaining tissue. The dissected imaginal discs/salivary glands were then transferred to a slide 

and mounted in Vectashield.  

  
5.3.8. BrdU-labelling 
 
BrdU-labelling of eye imaginal discs was carried out according to standard protocols (Baker 

and Yu, 2001; de Nooij and Hariharan, 1995). The protocol described below enables the 

simultaneous detection of clones marked with GFP. If this is not necessary, the GFP staining 

and the Methanol fixation can be omitted. Third instar larvae were feed for 2.5h with yeast 

supplemented with BrdU (1mg/ml, Sigma). Afterwards, mouth hooks with attached eye 

imaginal discs were dissected as described above and subsequently fixed for 30min at RT in 

4% paraformaldehyde. After completion, the samples were washed several times in PBTX 

and blocked with gentle agitation for 1hr at RT in blocking mix (4% NGS in PBTX). Next, 

the samples were incubated overnight at 4°C with the rabbit-anti-GFP antibody (diluted 1:500 

in 4% NGS in PBTX). On the following day, the primary antibody was removed and the 

samples were washed three times for 10min in PBTX. After washing, the secondary antibody 

(goat-anti-rabbit-Alexa488, diluted 1:500 in 4% NGS in PBTX) was incubated for 2h at RT. 

After three washing steps (10min in PBTX), samples were fixed for 4min at -20°C in 

Methanol. The fixed samples were then washed several times in PBTX and denaturated for 1h 

in 2N HCl. After completion, samples were thoroughly washed and blocked again for 1h in 

blocking mix (4% NGS in PBTX). Next, the mouse-anti-BrdU antibody (diluted 1:20 in 4% 

NGS in PBTX) was added to the samples and incubated overnight at 4°C. After completion 

the samples were washed three times for 10min in PBTX and then supplemented with a 

further secondary antibody (goat-anti-mouse-Alexa568, diluted 1:500 in 4% NGS in PBTX). 
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This antibody was incubated for 2h at RT. Finally, samples were washed three times for 

10min in PBTX and transferred to a dissection dish, where imaginal discs were separated 

from the remaining tissue. The dissected imaginal discs were then transferred to a slide and 

mounted in Vectashield. 

 
5.3.9. Flow cytometry 
 
Flow cytometry was performed according (Neufeld et al., 1998; Reis and Edgar, 2004). 

Imaginal discs from wandering larvae were dissected as described above. Clones were 

induced 40-48h after egg deposition by heat shocking for 30min at 37°C. Without fixation, 

dissected discs were immediately transferred to a 6ml FACS tube filled with 500µl 10X 

Trypsin-EDTA supplemented with 0.5µg/ml Hoechst 33342. The discs were then dissociated 

for 2-4h at RT with gentle agitation. Occasionally, samples were shaken by hand to break up 

clones. To visualize dead cells, samples were supplemented with 10µl propidium iodide and 

subsequently analyzed on a FACS Vantage sorter. 

 
5.3.10. In situ hybridization of eye imaginal discs 
 
RNA in situ hybridizations were preformed according to (Sturtevant et al., 1996). Small 

batches of mouth hooks with attached eye imaginal discs were dissected from third instar 

larvae as described above. The dissected tissue was then transferred to a new 1.5ml sample 

tube and subsequently fixed for 20min at RT in 4% Formaldehyde. After four washing steps 

with Methanol several batches were pooled in a glass scinti vial, rinsed five times with 

Ethanol and stored at -20°C. 

  
For in situ hybridization, about 25 mouth hooks were transferred to a fresh sample tube and 

washed three times in Ethanol followed by a washing step in a 1:1 mixture of Ethanol and 

Xylene. Afterwards, samples were rinsed five times with Ethanol followed by two washing 

steps in Methanol. Now, samples were fixed again for 20min at RT in 8% Formaldehyde in 

PBS supplemented with 0.1% Triton-X100. After completion, samples were washed three 

times for 5min in PBT and digested for 1min at RT with Proteinase K (diluted 1:3000 in 

PBS). To inactivate the protease, samples were washed twice in glycine (2mg/ml in PBT) 

followed by two washing steps for 5min in PBT. The samples were then fixed once again in 

8% Formaldehyde in PBS and washed then five times for 5min in PBT. Next, the samples 

were rinsed once with a 1:1 mixture of hybridization mix and PBT and undiluted 

hybridization mix respectively. Afterwards, the samples were prehybridized for 1h at 55°C in 
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hybridization mix. During this time, 3µl of the hydrolyzed RNA probe was diluted in 300µl 

hybridization mix. The diluted probe was then denaturated by heating for 10min at 88°C and 

placed on ice till use. After prehybridization, most of the hybridization mix was discarded and 

replaced by the denaturated RNA probe. Hybridization was conducted overnight at 55°C.   

  
On the following day, the probe was discarded and samples were washed for 20min at 55°C in 

hybridization mix. The samples were then washed for 20min at 55°C with a 1:1 mixture of 

hybridization mix and PBT. After five washing steps in PBT (5min at RT), samples were 

incubated for 1h at RT with a Sheep-anti-DIG-AP antibody (diluted 1:2000 in PBT). Samples 

were then washed three times for 10 min in PBT. After rinsing with staining solution the 

samples were transferred to an dissection dish containing 500µl staining solution 

supplemented with 5µl NBT and 5µl BCIP. For staining, samples were kept in the dark for 4-

16h at 37°C. After completion, the reaction was stopped by washing in PBT. The samples 

were then successively rinsed with 30%, 50% and 80% Glycerol and transferred to a slide. 

Finally, the discs were freed from the remaining tissue and covered with a cover slip.  

 
5.3.11. Production of embryo extracts 
 
For western blot analysis 4-8 or 8-12h wild-type embryos were used.  Embryos were collected 

at 25°C on apple juice agar plates. Embryos were dechorionated in a 1:1 mixture of water and 

bleach for 1-2min, poured through a sieve and washed several times with tap water. The 

embryos were then transferred into a 2ml sample tube containing 1ml heptane as well as 1ml 

Methanol and shaken for 20min at RT. Afterwards, the embryos were washed three times with 

methanol and stored at –20°C. About 100 embryos were then sorted on an agar block and 

transferred into a new sample tube filled with 50µl 4x Laemmli buffer. The samples (2 

embryos/µl) were subsequently boiled for 10min at 96°C and stored at –80°C until analysis by 

Western blotting. 
  
5.3.12. Production of salivary gland extracts 
 
Salivary glands from wandering larvae were dissected as described above. “Flpout” clones 

were induced 40-48h after egg deposition by heat shocking for 30min at 37°C. About 50 

salivary glands were dissected in cooled PBS and freed of much fat body as possible. The 

dissected salivary glands were suspended in 25 µl 4x Laemmli buffer and heated for 10 min at 

96°C. Till analysis by Western blotting, samples were stored at –80°C. 
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5.3.13. SDS-Page and western blot analysis 
 
Samples were separated on 1mm thick polyacrylamide gels using the using the Mini Protean 3 

System (BioRad). Gels were run at constant current with a starting voltage of approximately 

100V. Gels were blotted onto Amersham Hybond Nitrocellulose membranes for ECL analysis 

using a dry blotting system (BioRad). Gels were blotted for 30 min at constant current with a 

starting voltage of approximately 10V. Blotted membranes were then stained for 5min 1X 

Ponceau S and subsequently destained in tap water. Next, the membrane was washed several 

times in PBT and blocked for 1h at RT in “Blocking Buffer for Fluorescent Western Blotting” 

(Rockland). The membrane was then incubated with the desired primary antibody 

(preabsorbed for 1hr at RT in 5% powdered milk in PBT) and shaken overnight at 4°C. After 

washing 3 times in PBT, an appropriate secondary antibody (diluted in 5% powdered milk in 

PBT) was added to the membrane and incubated for 2h at RT. Finally, the membrane was 

washed three times in PBT and proteins were detected using the Odyssey Infrared Imaging 

system. 
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Note added in proof 
Near completion of this work, certain experiments described in section 2.1. were  published 

independently (Reber et al., 2006). In particular, this publication included the observation that 

the cell cycle arrest in Cyclin A mutants can be rescued by Cyclin E overexpression (2.1.1.) as 

well as the characterisation of the Dacapo; Cyclin A double mutant (2.1.3.). 
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Abbreviations 

 
APC/C    Anaphase promoting complex / Cyclosome 

APS     Ammoniumperoxidisulfate 

ATP     Adenosine Triphosphate 

Cdk    Cyclin dependent kinase  

Cyc    Cyclin 

DMSO     Dimethylsulfoxide 

DNA     Desoxyribonucleic acid 

DTT    Dithiothreitol 

EDTA     Ethelyne Diamine Tetracetic Acid 

Fzr     Fizzy-related 

g      gram 

h      Hour 

hs     Homo sapiens 

l      liter 

M      mol per litre 

m      milli 

MF    Morphogenetic furrow 

mm    Mus musculus 

μ      micro 

min    minute 

mRNA     messenger RNA 

NGS     Normal goat serum 

NLS    Nuclear localization signal 

PAGE     Polyacrylamide gel electrophoresis 

PBS     Phosphate Buffered Saline 

PCR     Polymerase chain reaction 

PRC    Photoreceptor cell 

Rca1    Regulator of Cyclin A 1 

RNA     Ribonucleic acid 

rpm     rounds per minute 

RT     Room Temperature 

SDS     Sodium dodecyl sulfate 
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SMW    Second mitotic wave 

TEMED     N,N,N’,N’-Tetramethylendiamin 

U      Unit 

xl     Xenopus laevis 

ZBR    Zinc binding region 

ZNC    Zone of none proliferating cells 

 
Single and three letter code for amino acids 
 

A     Ala     Alanine 

C     Cys     Cysteine 

D     Asp     Aspartate 

E    Glu     Glutamate 

F     Phe     Phenylalanine 

G     Gly     Glycine 

H     His     Histidine 

I     Ile     Isoleucine 

K     Lys     Lysine 

L     Leu     Leucine 

M     Met    Methionine 

N     Asn     Asparagine 

P     Pro     Proline 

Q    Gln     Glutamine 

R     Arg     Arginine 

S     Ser     Serine 

T     Thr     Threonine 

V     Val    Valine 

W     Trp     Tryptophan 

Y     Tyr     Tyrosine 
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Zusammenfassung 
 

Für den korrekten Verlauf der Mitose ist ein strikte Kontrolle des APC/C notwendig. Eine 

wichtige Klasse von negativen APC/C Regulatoren sind die Proteine der Rca1/Emi1 Familie. 

Alle Mitglieder der Rca1/Emi1 Familie besitzen eine konservierte zink-bindende Region, 

welche für ihre Aktivität essentiell ist. Die Rca1/Emi1 Familie gehört zur Gruppe der F-Box 

Proteine, die als Substrat-Erkennungs Module der SCF-E3-Ligase fungieren. Emi1 und Rca1 

binden  in vitro mit Hilfe ihrer F-Box an Mitglieder der Skp Familie. Bisher wurde jedoch 

kein Kontext gefunden, in dem die F-Box benötigt wird. In der G2-Phase von Zellzyklus 16 

von Drosophila, verhindert Rca1 die frühzeitige Aktivierung des APC/C-Fzr Komplex. Der 

Verlust des rca1 Gens führt zu einem Arrest in der G2-Phase von Zellzyklus 16 und einem 

vorzeitigen Abbau der mitotischen Cycline. Rca1 enthält mehrere konservierte Proteinmotive 

deren Funktion mit Hilfe einer Deletionsanalyse aufgeklärt werden sollte. Diese Analyse 

zeigte, dass ein C-terminales Rca1 Fragment für die Rettung des Phänotyps von rca1 

Mutanten ausreichend ist. Diese Beobachtung bestätigt, dass die ZBR das einzige essentielle 

Proteinmotiv für die Inhibition des APC/C durch Mitglieder der Rca1/Emi1 familie ist. 

Außerdem wird deutlich, dass während der Embryogenese die F-Box nicht für die Inhibition 

des APC/C benötig wird. Weiterführende Untersuchungen zeigten jedoch, dass Rca1 eine 

zusätzliche Funktion hat und dass für diese die F-Box benötigt wird. Durch Verwendung der 

MARCM Technik konnte in Flügel-Imaginalscheibenzellen das endogene Rca1 Protein durch 

ein Konstrukt ohne F-Box ersetzt werden. Diese Zellen haben eine reduzierte 

Teilungsaktivität und benötigten länger für das Durchschreiten der G1-Phase. Umgekehrt 

führte die Überexpression von Rca1 zu einem vorzeitigen Eintritt in die S-Phase. Daher ist es 

wahrscheinlich das Rca1 Teil eines SCF-Komplexes ist, der den Übergang in die S-Phase 

reguliert. Zusäztlich dazu wurde der Effekt von Rca1 auf Endoreplikationszyklen untersucht. 

Die Überexpression von Rca1 im Verlauf der Speicheldrüsenentwicklung führte die zu einer 

verringerten Polyploidität, wobei dieser Phänotyp ebenfalls eine funktionale F-Box benötigt. 

Oszillierende Cyclin E/Cdk2 Aktivität ist essentiell für den korrekten  Ablauf von 

Endoreplikationszyklen. In Endoreplikationszyklen wird außerdem die Transkription von 

Cdk1 und der mitotischen Cyclin abgeschaltet. Weiterhin wurde postuliert dass die Aktivität 

des APC/C-Fzr Komplex nicht mehr erforderlich ist, sobald das Endoreplikations-Programm 

initiert wurde. Obwohl Cyclin E kein Substrat des APC/C-Fzr Komplex ist, zeigten Rca1 

überexprimierende Zellen erhöhte Mengen an Cyclin E. Es konnte in früheren Experimenten 

gezeigt werden, dass die kontinuierliche Expression von Cyclin E mit der Initiation der DNA 
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Replikation interferiert. Daher ist der reduzierte DNA-Gehalt in Rca1 überexprimierenden 

Zellen wahrscheinlich auf die erhöhte Menge an Cyclin E zurückzuführen. Die Rca1 

überexprimierenden Zellen zeigten außerdem Indikatoren für mitotische Zellen, wie Cdk1 und 

nukleares Cyclin A. Die Akkumulation von Cyclin E, Cyclin A und Cdk1 kann nicht durch 

Inhibition des APC/C-Fzr Komplexes erklärt werden. Rca1 scheint vielmehr die Transkription 

dieser Gene zu aktivieren, wobei jedoch nicht ausgeschlossen werden kann, dass der APC/C-

Fzr Komplex indirekt an diesem Vorgang beteiligt ist. Zusammengefasst deuten diese 

Resultate daraufhin, dass Rca1 Teil eines SCF-Komplexes ist, der für die Aufrechterhaltung 

des diploiden Zustands notwendig ist.    
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