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1 Introduction

1.1 Motivation

Traffic or traffic related transport systems are ubiquitous in nearly any part
of nature and everyday life. First systematic investigations of vehicular traf-
fic were carried out at about the middle of the 20th century (following [60]).
In recent years studies are extended from the classical field of vehicular traf-
fic [19, 34, 60] to pedestrians dynamics [48, 75], routing of different kinds of
load like data, passengers, packages, [8] or even to transport within a living
cell [20,37,59]. Like in vehicular traffic concepts known from statistical physics
are applied to those systems. Especially microscopic models implemented as
computer simulations (e.g. [3, 14, 18, 19]) have attracted a lot of interest. They
allow to incorporate directly the microscopic rules of interaction between the
agents of the modelled system [5,65,87]. If different choices for particular sets of
parameters like the number of lanes on a highway or a speed limit are available
these models can be simulated faster than realtime. With respect to practical
application this is probably the most striking feature as it allows to adapt to a
dynamically changing situation. Examples are emergency situations like evac-
uation in pedestrian dynamics or the routing of vehicular- or data-traffic in a
network. Nevertheless for gaining deeper insights the physics of the systems
has to be explored. Unlike in pure physical systems a description based on first
principles is hardly possible. For example the so-called social force between car
drivers or pedestrians does not obey Newton’s third axiom (e.g. [48,75]). So the
microscopic rules of interaction have to be included directly into the underly-
ing description. Additionally modelling often has to incorporate some degree of
stochasticity (e.g. [65]). This is done mainly for two reasons. First, the rules for
interacting are only valid on average as not all microscopic details are known.
Therefore fluctuations have to be expected. But also systems might exhibit an
intrinsic stochasticity [5,6,36]. In vehicular traffic for example different drivers
might react differently in the same situation. Resulting collective phenomena
due to these fluctuations like phantom jams are a widely known [19,65]. Fluc-
tuations have a different impact in different situations [22]. For high densities
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of cars, e.g. caused by a bottleneck like construction works or an accident, the
system is more susceptible to phantom jams as the average distance headway
is decreased. From that point of view even phantom jams exhibit some deter-
ministic components. Nevertheless they might also emerge without any directly
visible cause [19].

Besides the wish to understand the physics or to improve the description
the main aim still is the optimisation of the traffic systems. In recent years
different kinds of biologically inspired approaches have been applied to various
systems [6,7,7,21]. Especially the social insect metaphor is used quite frequently
(e.g. [8,55]). One takes the aspects of the biological system resembling to those
of the artificial system one seeks to optimise. Then one tries to adapt properties
or strategies from the biological system. Basically one makes use of solutions
to problems which have already been solved by nature.

From evolutionary and behavioural biology different kinds of optimisation
are known. Prominent examples are found among the group of the so-called
eusocial insects 1. Due to evolutionary pressure properties crucial for the sur-
vival of a species can be assumed to be optimised. For example ant colonies
are competing for limited food sources. Ineffective foraging strategies of one
colony in comparison to the other competitors, namely other colonies, would
very likely result in the death of that colony. As a solution all ants belonging to
one colony cooperate to a very high degree. The employed behavioural patterns
depend to a large extend [36] on the particular species. So the same mechanism
from this example is also found in the competition between different species.
Optimisation in that context means to be better adapted to the problem than
the other competitors.

Due to the cooperative nature of social insects (see Fig. 1.1, left) a sys-
tem optimum can be expected. Especially in systems without living agents like
package routing in networks this is reasonable. For a system composed out of
self-conscious individuals also the user optimum plays a role. Here the more ego-
istic interests of the agents have to be taken into account. In traffic engineering
this is known as the level of service provided to the driver (e.g. minimisation
of travel time) whereas the system optimum corresponds to an optimisation of
capacity (maximisation of flow) [60].

The present work applies the formalism from traffic engineering and statisti-
cal physics to a traffic system of social insects namely to those of ants. Belonging
to the group of eusocial insects traffic flow at least for some particular species
can be expected to exhibit some kind of optimisation [11,12,25,26,36]. From be-
havioural biology different degrees of intrinsic stochasticity are known [36,84].
This stochasticity is a crucial part e.g. of raiding or routing strategies [6,7,13].
Therefore microscopic stochastic cellular automaton models are well suited for
simulating traffic flow on preexisting trails. Like in most traffic systems flow
has only one direction. This is also reflected in the corresponding transition
rates from one configuration of the system to another. The rates are such that
for example all cars or ants move into the same direction. With respect to the

1 truly social in a narrow sense
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underlying master-equation, stationarity can not be realised by detailed bal-
ance. Overall ant traffic as well as the corresponding models are generically
stochastic and far from equilibrium systems.

1 bl

Fig. 1.1. The left photography shows cooperative transport of prey on a trail of
Oecophylla smaragdina, a weaver ant species. On the right an ant belonging to the
species Leptogenys processionalis is shown. Antennas touch the ground in search for
pheromones. As this species is monomorphic the bodysize can be used as a natural
scale.

1.2 Outline

Originally the present work was intended mainly to discuss the physics of
stochastic cellular automaton models inspired by the traffic flow of real ants on
their trails. Therefore the models incorporate only the most essential interac-
tions [16,41,76]. So in contrast to high-fidelity models, e.g. in traffic engineering
or behavioural biology, tractability of the mathematical description was given
priority. For first investigations this approach has the advantage that the main
features of the models emerge quite clearly. Once those have been understood
the next step towards more realistic and thus more complex models is still pos-
sible. But this is not always necessary. It is known from experience that not all
the details of interaction contribute to the emergence of a particular collective
pattern (e.g. [13]).

The employed models basically show some analogy to those of vehicular
traffic [65] as well as to pedestrians dynamics [48]. Overall the main focus lies
on the organisation of traffic flow rather than on the patterns exhibited by the
trail system itself which have already been investigated extensively (e.g. [13]).
All models are based on the TASEP (Totally Asymmetric Simple Exclusion
Process). Due to its paradigmatic status for non-equilibrium systems a huge
amount of analytical and numerical results is available [23,38,70,72,73,78]. An
overview of some results for a later comparison to the ant trail models will be
given in chapter 2.
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In chapters 3 and 4 models for traffic flow on preexisting uni- and bidirec-
tional ant trails are discussed. The unidirectional ant trail model is basically
a direct extension of the TASEP [16, 66]. The incorporated means of interac-
tion between the ants induce dynamical particlewise disorder. Analogies to the
TASEP with static particlewise disorder are drawn. In chapter 4 the unidirec-
tional model is extended to the next step of complexity namely the multilane
case [45,76]. Unlike for example in models of vehicular traffic [3] an additional
lane in counterdirection is added. Different variants are discussed and common
and particular features are being identified [41, 43, 56]. Generally the models
show some kind of dynamically induced latticewise disorder. Again the phys-
ical properties in analogy to the TASEP are emphasised. In comparison to
reality the models appear quite simple. One advantage of this simplicity is also
flexibility. Like demonstrated for the TASEP also the ant trail models might
be used in a different context like pedestrians dynamics or a network of bus
stops [68, 69]. For application to non-biological systems it is also necessary to
add some kind of artificial flavour up to a certain degree [46]. In this context
modelling is not given priority. Instead the aim is to solve a problem in an artifi-
cial system. Therefore some aspects of the biological system which are assumed
not to be important are neglected.

Complementary to the theoretical investigations empirical field studies have
been carried out. In chapter 5 an experimental setup for collecting ant-traffic
data is discussed. Employing tools from traffic engineering [60,83] velocity- and
distance headway distributions as well as fundamental diagrams are extracted
for the uni- and the bidirectional case. Till now only few investigations of that
kind have been carried out [10, 12, 47]. Besides data-collection a comparison
between the properties of the ants on a real trail and the models is drawn. By
preparing a strict experimental setup even the simple models can be applied
to certain trail-scenarios. Concluding the discussion the empirical results are
compared to the theoretical predictions of the models in chapter 6. The observed
patterns will also be discussed from a more biological point of view. Finally
the question concerning the assumed optimisation of flow in ant-traffic will be
addressed for a particular group of species.
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The ASEP (Asymmetric Simple Exclusion Process) is a one-dimensional stochas-
tic process of particle hopping. Originally it was intended as a simple model for
the dynamics of biopolyermization [59] in 1968. Later in 1970, a more general
version for mathematical studies of Markov processes [79] was introduced. Al-
though quite simple the ASEP in its different variants exhibits a wide range of
interesting physics. Like the Ising-chain in equilibrium physics the ASEP has
reached a paradigmatic status for non-equilibrium physics [27, 78].

This chapter starts with a brief introduction to the ASEP. Different variants
regarding dynamics and boundary conditions have been developed. Due to its
simplicity the ASEP is quite flexible and has become the basis for many cellular
automaton models. Some of them, like the Nagel-Schreckenberg model [65] for
vehicular traffic and a model for surface growth [27, 78], are discussed in this
chapter. Finally for practical application the more general case of disordered
ASEP turns out to be very useful.

2.1 Definition

The name ASEP itself originates from the description of the underlying process.
Particles move along a one-dimensional lattice by hopping to one of the two
next-neighboring sites (see Fig. 2.1) under time evolution (process). Each site
can only be occupied by one particle. So hopping takes place to a site not
already being occupied (simple exclusion). Hopping can be describes just by
incorporating the occupation of two lattice sites i and i + 1:

(1|0) ⇄ (0|1) with probability p (right), q (left)

(1|1) → (1|1) deterministic
(2.1)

Hereby ”1” denotes an occupied site whereas ”0” means that the site is
empty. Depending on direction two different hopping rates are used. Generally
this induces an asymmetry (asymmetric) leading to an effective current in the
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direction of the higher rate. In case of equal hopping rates for both directions
the effective current vanishes and an equilibrium state is reached. Nevertheless
also the general case can be described by an appropriate mapping of the master-
equation to a stochastic Hamiltonian defining a time-evolution operator. For
analytical calculations this technique has turned out to be very useful [23, 78].
The state of the system at a particular instance of time is thereby given by
the occupation of the lattice. This is in analogy to a spin chain with si = 1

2
where each of the two possible states is associated with the spin direction at
a particular lattice site i. For implementing the ASEP different variants exist.
They basically differ in the choice of boundary conditions and update scheme.
Depending on the particular purpose of modelling boundary conditions and
dynamics are chosen.

bp

1     2      3     4     5     6 L-3  L-2  L-1    L

a p pq

Fig. 2.1. Definition of the ASEP: In case of open boundary conditions particles are
injected e.g. at the left and ejected at the right boundary. On the non-boundary sites
of the lattice, particles move to the left with rate q and to the right with rate p. This
can lead to ambiguities especially in case of time-parallel dynamics. The particles at
sites 3 and 5 would attempt to hop to site 4 at the same time. Obviously additional
rules are needed in order to preserve the simple exclusion principle.

2.1.1 Boundary Conditions

Particles occupying the non-boundary sites (sites i ∈ [2, L − 1]) are treated
according to the rules already described. The two ends (sites i = 1 and i = L)
have to be treated with an additional set of rules. Mainly two frequently used
variants exist. The first is the use of so called periodic boundary conditions
where both ends of the lattice are connected to a ring. So the two next nearest
neighbouring sites of a particle at site 1 are sites 2 and L. Analogous a par-
ticle at site L has the nearest neighbouring sites L − 1 and 1. The local rules
for hopping are applied to the corresponding sites, leading to an translational
invariant lattice. Although similar with respect to translational invariance, a
lattice with such a geometry is still different from an infinitely large one. For
implementing the ASEP or an ASEP-based model finite-size effects have to
be taken into account [38]. Due to the ring-like geometry particles in principle
might effectively interact with themselves. Also in case of non-ring-like geome-
tries effects arising from a finite system size are known. But if the lattice-size
is large enough such effects can be neglected.

Nevertheless also the natural systems one seeks to describe are of finite size
so those effects might be a generic part of the system. Quite frequently only the
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bulk of the system is incorporated for which effects arising from the boundaries
can often be neglected.

For practical application, especially for modelling traffic systems, so-called
open boundary conditions are frequently used [71]. On one end of the lattice,
e.g. the left one, a particle reservoir is placed, injecting particles to site 1 with
rate α if this site is not already occupied. On the other end, e.g. the right one, a
particle drain is placed. A particle at site L will hop into this drain with rate β
(see Fig. 2.1). Commonly one also finds an alternative formulation of these rules.
The hopping rules for the lattice (sites i ∈ [1, L]) are also applied to the source
(site 0) and the drain (site L+1). For incorporating the injection or ejection rate
one defines fixed densities for these sites. At the source ρ+ := α and ρ− := 1−β
at the drain will realise the corresponding rates α and β. Generally translational
invariance is broken. As discussed later one still recovers the occupation known
from periodic boundary conditions for an appropriate choice of parameters. But
overall boundary conditions are well known to have a strong influence on the
system. So a rich phase diagram with boundary-induced phase transitions is
known [1, 23, 27, 52, 78].

2.1.2 Update Schemes

Besides boundary conditions also the choice of the update scheme is known to
influence the physics [74] by inducing additional correlations. The rules defin-
ing the ASEP only describe a process in time by setting some local rules for
hopping. But the way e.g. the order of applying these rules to the sites of the
lattice is not defined by that. Two quite extreme variants for implementing the
update of the actual lattice-occupation are frequently used.

The first one is the so-called random-sequential dynamics. At each up-
date, one lattice site is chosen at random. The local rules for particle hopping
(e.g. (2.1)) are applied to that site and its neighbours. This happens sequen-
tially for succeeding updates in random order. Nevertheless the same site might
be selected at two immediately succeeding updates. With respect to the effi-
ciency of implementation this appears to be quite ineffective as random num-
bers have to be generated just for choosing a site. On average it takes T = L
procedures to ensure that all sites have been updated. Random-sequential dy-
namics describe a process in continuous time. Two updates are separated by
∆T = T+1

L − T
L . For a system of infinite length time becomes continuous as

∆T −→ 0 for L −→ ∞. One additional property of random-sequential dy-
namics is the missing of dynamically induced correlations in the ASEP (with
periodic boundary conditions). As discussed later on this is also part of the
modelling of particular systems.

Unlike for random-sequential dynamics it is also possible to apply the lo-
cal rules for hopping to all lattice sites at one update step. So all sites are
updated in parallel giving rise to the name (time-) parallel or synchronous up-
date. With respect to practical implementation only Tp = 1 instead of T = L
updates are needed on average for incorporating all lattice sites. Obviously the
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stochastic element of choosing one site at random for updating is missing. As
a result time-parallel updates in the (T)ASEP are known to induce particle-
hole attraction [74]. Generally an analytical treatment becomes more difficult.
Nevertheless these correlations are part of the Nagel-Schreckenberg model for
vehicular traffic [19,65]. Here one makes use of the existence of a shortest pos-
sible time-scale originating from the parallel update procedure. In comparison
to the random-sequential update the parallel update is discrete in time with
time scale Tp.

Between both update schemes a huge variety of combinations such as sub-
lattice forward- or backward-sequential exists [74]. One recently proposed up-
date does not fit into that scheme namely the so-called shuffled update [88].
For each update the order of sites being updated is set at random for one up-
date of all sites. In contrast to the random-sequential update, the same site can
not be updated at two succeeding updates of a single site. That new kind of
update has been introduced in the context of simulating pedestrians dynam-
ics [88]. For example the situation that two particles try to hop to the same site
would not occurred due to the shuffled update (see Fig. 2.1). Nevertheless this
ambiguity might also be part of the model. Models with time-parallel update
are widely used. In order to resolve the ambiguity additional rules for decid-
ing which particle namely which pedestrian is allowed to occupy the vacant
site [48,75] are used. This is not only done for resolving the ambiguity but also
for incorporating certain aspects of the observed behaviour of pedestrians.

2.2 The TASEP

One of the most commonly encountered variants of the ASEP is the special
case q = 0. Now hopping takes place only in one direction giving rise to the
Totally Asymmetric Simple Exclusion Process (see Fig. 2.2). The special case
of equal hopping rates p = q is no longer possible (except for the uninteresting
case p = 0). So the TASEP can be expected to be far from equilibrium as a
non-vanishing particle flow only exists for one particular direction. Although
this is a restriction of the general case it is an quite important one, for example
for describing traffic flow.

bp

1     2      3     4     5 L-3  L-2  L-1    L

a p

Fig. 2.2. Definition of the TASEP: Particles are still injected at the left and ejected
at the right boundary. But on the non-boundary sites of the lattice, particles are
only allowed to move in one direction with rate p. In contrast to the ASEP case,
time-parallel updating causes no ambiguity.
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For characterising the actual state of the lattice a binary variable ci ∈ {0, 1}
with i ∈ {1, ..., N} describes the occupation of each site. An occupied site
corresponds to ci = 1 whereas ci = 0 denotes an empty site which is also
called ”hole”. Averaging over time-evolution with different histories leads to the
occupation probability 〈ci(t)〉 for one particular site i. Incorporating the local
rules for hopping the ASEP in continuous time (random-sequential dynamics)
is described by:

ci(t + dt) =







ci(t) with prob. (1 − 2p) · dt
ci(t) + [1 − ci(t)]ci−1(t) with prob. p · dt
ci(t)ci+1(t) with prob. p · dt

(2.2)

Hereby the time for updating one site is of infinitesimal length dt. Due to
the structure of the equations the hopping probability p can be absorbed into
dt. Obviously the description of the process is not affected by rescaling time
which turns out to be equivalent to changing the bulk hopping rate p. The first
line of (2.2) describes the case in which the occupation of site i is not changed
by any of the other two possible cases. In the second line the coupling to site
i− 1 is incorporated. If site i is not occupied a particle can hop from site i− 1
to site i thereby changing the occupation of site i. The same might also happen
from site i as described by the third line. If site i + 1 is not occupied a particle
can hop from site i to site i + 1. As a result the occupation of site i becomes
zero. If site i + 1 is occupied blocking takes place therefore the occupation of
site i stays unchanged. Generally only the actual occupation of the two next
neighboring sites i − 1 and i + 1 needs to be incorporated.

Making use of the formal definition of the TASEP (2.2) one derives equations
of motion for the occupation of each lattice site:

d 〈ci〉
dt

= 〈ci−1(1 − ci)〉 − 〈ci(1 − ci+1)〉 Bulk i ∈ {1, ..., L}

d 〈c1〉
dt

= 〈α(1 − c1)〉 − 〈c1(1 − c2)〉 Injection at i = 1

d 〈cL〉
dt

= 〈cL−1(1 − cL)〉 − 〈cLβ〉 Ejection i = L

(2.3)

The first equation describes the time evolution of occupation for each bulk
site. For incorporating particle injection and ejection, occupation probability
is set to 〈c0〉 := α and 〈cL+1〉 := 1 − β. So the second and third equation are
just a special case of the first one. In the same way on defines 〈c0〉 := 〈cL+1〉
for periodic boundary conditions. One observes that only correlations between
nearest neighboring sites i− 1, i and i + 1 are important for the time-evolution
of 〈ci〉. So flow in the stationary state is of the following structure:

Fin = 〈α(1 − c1)〉 = ... = 〈ci(1 − ci+1)〉 = ... = Fout = 〈ciβ〉 (2.4)
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For other update procedures flow is roughly of the same structure. But
correlations like e.g. the particle-hole attraction for a time-parallel update have
to be incorporated [19]. By definition density is constant in the stationary state
forcing the flow to be the same at each sites.

If long-ranged correlations can be neglected mean-field descriptions are fre-
quently used. Generally these descriptions are not exact but show a good agree-
ment with simulations. They are especially used because usually an exact an-
alytical treatment is quite difficult. As discussed later on the mean-field ap-
proximation becomes exact for an appropriate choices of boundary conditions.
More sophisticated calculations [23] also justify this approach:

F = 〈ci(1 − ci+1)〉 ≈ 〈ci〉 〈1 − ci+1〉 (2.5)

Making use of the factorisation of expectation values one obtains a recursion
relation for the occupation probabilities namely the density profile (〈ci〉 vs. i):

〈ci+1〉 = 1 − F

〈ci〉
(2.6)

As already mentioned flow F is independent from the particular site i due
to the continuity equation. In general 〈ci〉 and 〈ci+1〉 can be expected to have
different values depending on the choice of the boundaries 〈c0〉 and 〈cL+1〉.
Nevertheless for α = 1 − β a flat density profile < ci >=< ci+1 > ∀i ∈
[0, L+1] as for periodic boundary conditions is found. It can be shown that the
mean-field treatment becomes exact for that particular choice of parameters
[23].

From (2.6) one derives the density profile for each choice of boundary rates
once flow is known. One way of determining flow is the so-called extremal
principle [52, 72]. According to that principle the flow in the open system can
be determined from the flow (F (ρ) = ρ(1 − ρ)) of the system with periodic
boundary conditions:

F = max
ρ∈[ρ

−
,ρ+]

F (ρ) for ρ+ > ρ− (2.7)

F = min
ρ∈[ρ+,ρ

−
]
F (ρ) for ρ+ < ρ− (2.8)

One obtains the current inside a system with open boundaries as the max-
imum or minimum (depending on the choice of boundary rates ρ+ = α and
ρ− = 1 − β) of flow in the system with periodic boundary conditions. The
principle is quite stable and has been proven to be valid for more complicated
lattice-gas models [72]. Even if flow is known only numerically for periodic
boundary conditions the flow for the open system can be obtained. Obviously
the extrema of the periodic system (see (2.7) and (2.8)) determine the topology
of the phase-diagram for the open system.

Overall the whole mean-field phase diagram of the TASEP has been derived.
With respect to flow three phases can be distinguished. Generally one finds a
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flat density profile 〈ci〉 = ρbulk within the bulk of the system for the high-
and low density phase. In the maximal current phase even in the bulk no flat
density-profile is found [23] due to the algebraic decay of 〈ci〉.

A. Low-density phase: (α < β, α < 1
2 ):

The input rate α controls the bulk density and also flow: Particles are ejected
at a higher rate than they are injected.

F (ρ) = α(1 − α) with ρbulk = α

B. High-density phase: (α > β, β < 1
2 ):

The ejection rate β controls the bulk density and also flow: Particles are
injected at a higher rate than they are ejected.

F (ρ) = (1 − β)β with ρbulk = 1 − β

C. Maximal current phase: (α ≥ 1
2 , β ≥ 1

2 ):

The flow reaches its maximal bulk value (see (2.5)) and becomes independent
from the injection and ejection rate [78].

F (ρ) = 1
2 (1 − 1

2 ) = 1
4 with ρL

2
= 1

2

More sophisticated techniques reveal the division of phases A and B into two
subphase AI/AII and BI/BII (see Fig. 2.3). Those phases can be distinguished
by the asymptotic behaviour of the density profile.

It has been shown that the actual shape of the phase-diagram can be under-
stood by the underlying shock dynamics [51,72]. A jump in the density profile
say from ρ− to ρ+ is called as a shock. It can be shown that for α = β < 1

2
the shock performs a random walk along the lattice with a vanishing effective
velocity (see (2.12)). Any position of the density jump has the same probability
finally leading to a linearly increasing density profile say from ρ− at site i = 1
to ρ+ at site i = L. For other values of ρ+ and ρ− the effective shock velocity
is non-zero and the shocks move to one of the boundaries an vanish.

One way of tracing the actual position of the shock are so-called second-
class particles (e.g. [38, 39]). They move passively on the lattice and do not
affect the original ”first-class” particles (“1“). By definition they (“2“) behave
like holes (unoccupied sites) in exchange with particles and like particles in
exchange with holes (“0“):

(1|2) −→ (1|2) with probability p

(2|0) −→ (0|2) with probability p
(2.9)
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Fig. 2.3. The left figure shows the time-evolution of the particle distribution for p = 1
and ρ = 0.2. On average particles are distributed homogeneously on the lattice. On
the right the phase-diagram is shown. The dashed line α + β = 1 corresponds to the
flat density-profile where the mean-field treatment becomes exact. On the coexistence
line α = β < 1

2
the density profile shows a linear increase. Generally the transition

point is found at p

2
and a flat density profile emerges for α + β = p. Rescaling time is

obviously equivalent to choosing p = 1.

In a high density region the second-class particle will predominantly move
to the left as first-class particles exchange their position with the position of
holes. When no first-class particles are around in a low-density area second-class
particles are not blocked and move to the right. Generally they will move with
a domain-wall separating the low- from the high-density area. The velocity of
movement is just given by:

Vcoll =
∂F (ρ)

∂ρ
= ρp − (1 − ρ)p = (1 − 2ρ)p. (2.10)

Hereby Vcoll describes the velocity at which the centre of mass [51] of the
first-class particles moves. Again the results can be understood in terms of
a mean-field picture. Consider a second-class particle sitting at site i. In the
TASEP case it will find a first-class particle to its right with probability ρ.
Both particle will exchange positions with probability p leading to one step to
the left for the second-class particle. On the other hand an empty site is found
with probability 1− ρ on the right of the second-class particle. By definition it
will hop to that site with probability p.

For further investigations it is useful to describe the movement of the second-
class particle or equivalently that of the domain-wall in a more coarse-grained
picture. It can be shown that some kind of homogeneous density regime exists
near the boundaries. So one finds a flat density profile with ρ+ = α and ρ− =
1 − β at the corresponding ends of the lattice. Making use of the fact that the
continuity equation

∂ρ

∂t
+

∂F

∂x
= 0 with ρ = ρ(x − vt) (2.11)
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has a travelling wave solution one obtains by integrating over the whole lattice:

vd =
F− − F+

ρ− − ρ+
(2.12)

Hereby F± = ρ±(1 − ρ±) denotes the flow within each region. As (2.12) is
quite general the same picture also applies for example in traffic engineering.
A slow car induces a domain-wall. Cars are accumulating behind it (ρ+) and
only few (ρ−) are found ahead of it. The velocity of the domain-wall is positive
as the position of the slow car is identical with the position of the domain
wall. If the slow car is removed the traffic jam dissolves leading to a domain-
wall travelling upstream 1. As a result the effective velocity of the domain-wall
becomes negative (changes sign).

Due to the stochasticity of the process vd is the effective velocity of a biased
random walk performed by the domain-wall. Generally fluctuations are found
leading to diffusion. For incorporating fluctuations (2.12) is decomposed into
direction dependent diffusion constants:

D± =
F±

ρ− − ρ+
and D =

1

2
(D− + D+) (2.13)

2.2.1 Models based on the TASEP

Two examples for models based on the TASEP show its huge versatility. The
first one is a mapping of the TASEP to a model for surface growth [61]. In
the second part a model for vehicular traffic is discussed [65]. Although some
extensions are necessary the TASEP-case is still recovered for an appropriate
choice of parameters.

Surface Growth

Instead of modelling a stream of particles also an exact mapping to a model
of surface growth exists. Although not discussed here the (T)ASEP has also
been studied extensively in this context in connection with the KPZ-equation
[27, 64, 78]. The configuration of particles on the one-dimensional lattice used
for the (T)ASEP is mapped onto the slope of stacks of particles on a two-
dimensional lattice (see Fig. 2.4). The presence of a particle at site i leads to a
decrease of slope from one particle stack to another:

mi(t) = hi+1(t) − hi(t) = 1 − 2ci(t). (2.14)

As ci(t) ∈ {1, 0} slope mi(t) might only change from +1 to −1 or vice versa.
Although height might locally increase by 2 the height difference between two
neighboring sites only changes by one. In that sense the mapping leads to a

1 opposite to driving direction
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single-step growth model [61,78]. The boundary conditions from the (T)ASEP
can be chosen accordingly to those of the surface.

As the mapping is exact some relations between quantities characterising
the particle movement and the surface growth exist. A particle leaving an empty
site always increases height hi by two as it has to decrease mi by one. This
leads to

hi(t + 1) = hi(t) + 2. (2.15)

As the number of particles passing site i in a time-interval ∆T is given by
∆T ·F , this relates the velocity of surface growth to the flow F in the TASEP:

∆h = vsf · ∆T = 2N = 2 · ∆T · F ⇒ vsf = 2F. (2.16)

The particle number N and the corresponding number of holes L−N (un-
occupied sites) can be used to calculate the average slope of the surface:

M =
(L − N)(+1) + (N)(−1)

L
= 1 − 2

N

L
= 1 − 2̺. (2.17)

Obviously the average slope is identical to the average velocity found for the
second-class particles. By definition these particles sit at a domain-wall from
a low- to a high-density region which corresponds to a local maximum of the
surface. The domain-wall corresponding to a change in the density-profile from
a high- to a low-density area is obviously equivalent to a local minimum. Making
use of another kind of passive particle invented in the context of surface-growth
models one is able to trace both kinds of domain-walls in the TASEP [64].

1     2      3     4     5     6     7      8     9    10   111     2      3     4     5     6     7      8     9    10   11 1     2      3     4     5     6     7      8     9    10   111     2      3     4     5     6     7      8     9    10   11

Fig. 2.4. The TASEP mapped to surface growth: The left part of this figure shows the
surface corresponding to a homogeneous distribution of particles on the (T)ASEP-
lattice. As only local slopes of ±1 are possible, the surface is slightly rough. The
hopping of two particles at succeeding updates results in the surface shown on the
right.

The Nagel-Schreckenberg Model

One of the prominent examples for modelling based on an extended TASEP
is the Nagel-Schreckenberg model of highway traffic [65]. Basically the model
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consists of a one-dimensional TASEP with time-parallel update. In fact full
equivalence is recovered for an appropriate choice of parameters.

The model of Nagel and Schreckenberg belongs to the class of probabilis-
tic cellular automaton models. N cars move along a one-dimensional lattice
of length L (see Fig. 2.5). The state of each car is characterised by its po-
sition xn ∈ {1, ..., L} and velocity vn ∈ {0, ..., vmax}. So obviously the state
variables as well as the derived quantities like density ̺ = N

L or the distance
dn = xn+1−xn−1 between two succeeding cars are discrete. Nearly all interac-
tions are incorporated into determining the number of cells vn(t + 1) by which
the nth car is moved, during the next update step. Different rules are applied
leading to a structure of substeps. As a parallel update is used, the rules are
applied synchronously to all cars.

Step 1: Acceleration
If vn < vmax, increase velocity by one:

vn(t + 1
4 ) = min {vn + 1, vmax}

Step 2: Braking
If dn ≤ vn, reduce velocity to dn − 1:

vn(t + 2
4 ) = min {vn, dn − 1}

Step 3: Noise
If vn > 0, reduce velocity to vn − 1 with probability p:

vn(t + 3
4 ) = max {vn − 1, 0} with probability p

Step 4: Driving
Move car with velocity vn(t + 1):

xn(t + 1) = xn + vn(t + 1)

The first step just increases velocity by one unit as long as the maximum
velocity vmax is not reached which is one of the models parameters. As this is the
same for all cars, it corresponds to a speed limit rather than to the maximum of
attainable speed which might be different for different vehicles. Overall this step
reflects the wish of the drivers to move as fast as possible. The wish is of course
restricted by the desire to avoid collisions. So in the second step, velocity is
decreased such that collisions are avoided. For incorporating time latencies, only
distance dn at time t is incorporated. It turns out, that this is already sufficient



16 2 The ASEP and its Variants

for reproducing basic properties of real traffic flow [19]. The third step describes
some randomness in the drivers’ behaviour by introducing a stochastic element
namely the braking noise p. One reason is just that even on an uncrowded
road where in principle driving is possible at an exactly constant speed vmax,
small fluctuations are observed. But as density is low, the resulting effect will
be small. The main effect of this step is the introduction of an asymmetry
between acceleration and deceleration. Acceleration (if possible) takes place
with probability 1−p whereas deceleration occurs with probability p. This kind
of asymmetry is also observed empirically (e.g. [34]). It originates just from the
fact that braking leads to a stronger change in velocity than accelerating. So in
the worst case a car brakes due to step 2 and slows down further due to step
3. The result might be the reduction of velocity by two units at one update
whereas velocity can just increase by one unit per update. After applying the
first three steps, velocity at time t + 1 results in the movement of cars in step
4 by vn(t + 1) sites.

Initial State

1 21

Step 1: Acceleration

2 32

Step 2: Braking

1 22

Step 3: Noise

0 12

Step 4: Driving

0 12

Fig. 2.5. Nagel-Schreckenberg model: The figures show the update procedure which
basically consists of the application of the hopping rules to all cars at the same time.
For this particular example the maximum velocity was set to vmax = 3. In case of
vmax = 1 the model turns out to be equivalent to the TASEP with time-parallel
dynamics.

In comparison to the TASEP hopping now is allowed by more than one cell
in a particular direction at one update. The number of cells for hopping is set
according to the rules incorporating the drivers’ behaviour. As the cars ability
to accelerate (and decelerate) is limited by inertia velocity can only increase
by one unit per update. This induces some kind of memory to the process as
the actual velocity depends on the velocity before the last update at t−1. Also
velocity itself is limited by vmax. With respect to reality a time-parallel update
appears most realistic. It has been shown that some of the main features like



2.2 The TASEP 17

the occurrence of phantom jams [19, 65] depend on the use of that particular
update procedure and also on the choice of vmax > 1.

For simulating real traffic flow parameters have to be chosen in accordance
with the traffic system. A size of 7.5 meters for each cell is widely used. Although
this is not the actual length of a normal car also larger vehicles like trucks are
incorporated. Using that cell size leads to a density of one for (non-moving)
vehicles forming a traffic jam. Typically vehicles are not waiting ”bumper to
bumper” so the cell size also incorporates some kind of minimal distance.

As already mentioned velocity is limited to vmax for example by a speed
limit. Also here a finer discretisation of velocity steps would be possible. For
a German freeway the maximal velocity is frequently assumed to be 120km

h .

So one identifies vmax = 5 with 120km
h . The randomisation parameter p is

frequently set to p = 0.5. Overall the length of one timestep using the latter
set of parameters is given by:

7.5m

cell
× [5 − (0.5 × 1)] cell

time − step
× 3.6sec

120m
≈ 1

sec

time− step
(2.18)

For calculating the time-scale the maximum velocity reduced by one unit
through randomisation has been used. In comparison to reality the duration of
one time-step is of the same order of magnitude as the typical reaction time of a
driver. So this is in good agreement with the interpretation of the time-parallel
update for incorporating time-latencies.

Simulation results from the Nagel-Schreckenberg model show some resem-
blance to real traffic data [19]. The fundamental diagram for vmax = 5 exhibits
features like the freeflow and the jammed state (see Fig. 2.7). At low densities
flow shows a linear increase. Cars in principle can move at their desired velocity
vmax. In the deterministic case of vanishing braking noise p = 0 no fluctuations
in the drivers behaviour occur2. Due to the model’s rules cars will distribute
homogeneously on the road (lattice). As long as the distance to the precededing
car is large enough (dn ≥ vmax) cars are able to move constantly at vmax. The
density at which cars begin to block each other therefore depends on vmax:

ρmax =
N

L
=

N

N(vmax + 1)
=

1

vmax + 1
. (2.19)

For ρ > ρmax the average distance per car is given by d̄ = 1
ρ − 1 = v̄ and is

equal to the average velocity v̄. Overall flow in both regimes is given by:

F (ρ) =

{

vmaxρ for ρ < ρmax

1 − ρ else
(2.20)

For 0 < p < 1 roughly the same behaviour is observed. One finds that due
to fluctuations the transition to the jammed state occurs for ρ < ρmax. The
corresponding spatial pattern of the jammed state is shown at (see Fig. 2.7).

2 In case of p = 1 a car is not able to increase velocity once vn = 0 has been reached.
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High density areas namely jams caused by fluctuations emerge and start trav-
elling against the driving direction. But also due to fluctuations they dissolve
again.

Fig. 2.6. Space-time plot and fundamental diagram: The space-time plot shows the
lattice configuration for ρ = 0.2, p = 0.25 and vmax = 5. The fundamental diagram
shows flow for different values of vmax and p = 0.25. For vmax = 1 the TASEP with
time-parallel update is recovered (taken from [18]).

As shown above the distance between cars is a crucial quantity for char-
acterising traffic states. So additionally distance headway distributions are of
interest. In case of vmax = 1 basically the TASEP is recovered (see Fig. 2.6). At
low densities distances show a quite broad distribution. With increasing den-
sity or equivalently decreasing available space the distribution gets less broad.
The probability for dn = 0 obviously corresponds to mutual blocking leading
to vn = 0. So the probability for dn = 0 increases with increasing density. Us-
ing analytical results originating from investigations of the TASEP with time-
parallel update the probability for dn is exactly known (e.g. [19]). For dn > 0 one
observes a monotonic decrease. For large velocities in case of vmax = 5 roughly
the same behaviour is found. A local maximum of probability at vmax = 5
reflects the fact that cars try to attain dn ≤ 5.

Besides distance headways also time headways and single-car velocity dis-
tributions are used for a microscopic characterisation of traffic flow [34, 50].
Each of the latter quantities has a corresponding macroscopic one [60]. Dis-
tance headways correspond to density, time headways to flow and single-car
velocities contribute to the average velocity. Some of them will be used for the
investigations of ant-traffic in chapter 5.

2.3 The TASEP with Static Disorder

Another way of extending the TASEP for describing real systems is to incor-
porate different kinds of quenched disorder. Two choices appear to be natural.
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Fig. 2.7. Distance headway distribution: For different values of ρ and vmax =
1(left), 5(right) at p = 0.5 the distribution of distance headways has been measured.
On the left basically the distribution for the TASEP case is shown. For a larger range
of attainable velocities maximums are shifted to higher densities (taken from [18]).

First one can introduce hopping rates depending on the particle i itself (par-
ticlewise disorder). So one sets hopping rates according to p = pi which are
independent of the particles’ position or time evolution. Complementary the
second kind of disorder assigns hopping rates depending on the particles’ posi-
tion xi (latticewise disorder). So hopping rates are set according to p = p(xi). In
this case the modified hopping rate of each particle is time independent in the
sense that p only depends on the position xi itself. Generally all particles are
affected in the same way. As a common feature of both types of disorder phase
separation depending on the global particle density is observed. The emerging
high- and low-density areas are in analogy to the shocks already known from
plain TASEP with open boundaries. Basically the time evolution towards sta-
tionarity as well as the stationary state itself are of interest. The formation of
these high-density regions the so-called coarsening, during time evolution from
a random initial distribution, has been studied in great detail [15, 38, 39, 53].
In the stationary state one is interested in the spatial distribution of particles
depending on the global density.

Both kinds of disorder are encountered quite frequently. For example in
vehicular traffic vehicles are generally not identical (e.g. different drivers, cars,
trucks), leading to different driving characteristics. The resulting distribution
of velocities can be used to assign different hopping rates. But also latticewise
disorder is found quite frequently. Accidents or construction works, different
local slopes of the road but also other inhomogeneities like different speed limits
or on- and off-ramps might change the behaviour of the vehicles depending on
the environment (e.g. [49]).

2.3.1 Particlewise Disorder

The TASEP with particlewise disorder has been studied in great detail. This
was done for a random distribution of hopping rates [53,54]. Also a mapping to
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the zero-range process [54, 78] and models of coalescence [27] has been shown.
Basically the formation of phase-separation as well as the dependence on the
global density have been investigated. For a later comparison to the ant trail
models a brief summary of the properties of the stationary state will be given.

Generally the particles tend to move with an average velocity vi = pi if
they are not blocked by another one. Due to the simple exclusion principle
the ”faster” particles accumulate behind the slower ones which determine the
average velocity of all other particles:

v = min
i∈[1,N ]

{pi} for ρ < ρc. (2.21)

In the stationary state a platoon moving with velocity v is formed (see
Fig. 2.8). Like in the TASEP a characterisation using the density profile is
possible. But the system is still translational invariant so phase-separations
will not be localised. Therefore densities have to be measured relative to the
moving system. Otherwise one just obtains a flat density profile as the platoon
moves along the lattice with constant average velocity. By definition a second-
class particle will follow the left end of the moving high-density area namely
the platoon as this is just a domain-wall from ρ− = 0 to ρ+ > 0. Measuring
densities seen from that position will be used for characterising the structure
of the particle distribution.

Fig. 2.8. Space-time plot: On the left the coarsening process out of a homogeneous
distribution of particles in the initial state is shown. In the stationary state particles
have accumulated behind the slowest one, forming a platoon. For that particular
example only one ”slow” particle with p1 = 0.1 and ” fast” particles with pi = 1 ∀i ∈
{2, ..., N} have been used.

The density 〈ci〉 := ρi at the site in front of the ith particle now defines the
density profile. So densities are measured with respect to the moving particles.

Under the assumption that a mean-field description is still reasonable one
finds
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(1 − ρi)pi = v = const. ∀i ∈ [1, N ] (2.22)

as all particles within the platoon have to move with the same average
velocity v. As long as the global density ρ is low enough this regime exists.
For a later comparison to the ant trail models it is sufficient to restrict to
pi =: p > I ∀i ∈ {2, ..., N} and p1 := I = v. In case of ρ = 1 − I

p = ρc

obviously no difference between the high- and low-density area can be made.
The first particle leading the platoon is also blocked with probability ρ like
all the other particles. The two different regimes can be distinguished using
second-class particles (see Fig. 2.9, right). In the jammed phase the second-class
particle moves with the velocity of the platoon. As ρ− = 0 there is only drift
and no diffusion. At high densities particles are distributed homogeneously.
The velocity of the second-class particle now depends on the global density
according to (2.10).

The density profile seen from the moving system can also be used for mea-
suring the cluster length. By definition the cluster is the number of consecutive
sites (particles) with ρi > ρ thus belonging to the high-density area:

l := max
i∈[1,N ]

#

{

sites i | (ρi, ρi+1) > ρ =
N

L

}

(2.23)

In the stationary state only one cluster exists comprising all particles of the
system. Depending on the impurity hopping rate I a linear increase is observed
(see Fig. 2.9, left). From (2.22) one also would have expected that kind of
behaviour as the mean-field platoon length is given by:

ρi = 1 − I

pi
=

N

l
leading to l = L

(

ρ

1 − I
p

)

for pi =: p (2.24)

From (2.24) one observes that the density ρi is independent of the particle
number N . So an increase of the global density is compensated by an increase
of the cluster length and thus does not lead to an increase of ρi. The platoon
length increases until the global density ρ reaches the density within the moving
platoon ρi. As a result no difference between the densities ρi and ρ = N

L can be

made anymore as ρi = 1 − I
p = ρ. The cluster length reaches the system size.

Now also the leading particle becomes blocked and flow recovers the TASEP
case. Nevertheless also the limitations of the mean-field picture become visible.
From (2.24) the cluster dissolves for l = L. But one observes that depending on
I the cluster dissolves even for ρ < ρc (see Fig. 2.9, left) before l = L is reached.
With increasing defect hopping rate obviously fluctuations also increase which
are not incorporated by the mean-field approximation.

It has been pointed out that the transition from particles distributed homo-
geneously on the lattice ρ > ρc to the platoon ρ < ρc exhibits some analogy to
the Bose-Einstein condensation [54]. The unoccupied sites, namely the holes,
are considered as bosons and the particles as states. For ρ > ρc most holes
are distributed homogeneously. Each state is occupied with probability (1− ρ)
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Fig. 2.9. Cluster length and velocity of the second-class particle: (Q = 1, I = 0.1 (◦),
0.2(△), 0.3(▽), 0.4(⊳), 0.5(⊲), 0.6(×), 0.7(⋄), 0.8(∗), 0.9(•)). On the left the increase
of the platoon length with increasing global density ρ is shown. At a sufficiently high
density ρc = 1 − I (inset) the platoon vanishes. On the right the velocity of the
second-class particle is shown. For ρ < ρc the particle performs drift following the
platoon. At ρ > ρc the TASEP is recovered.

at least for the TASEP with random-sequential dynamics. By reducing global
density below ρc platoon formation takes place. Holes are distributed within
the platoon with probability (1−ρi) = I

pi
. Depending on the platoon length the

leading particle or equivalently the ground state has an occupation number of
N1 = L−l. In comparison to the others the leading particle has the largest num-
ber of holes in front of it. Bosons obviously are condensed in the corresponding
state. This has also been found in case of time-parallel update [27]. Never-
theless this analogy is of a formal nature as bosons within an ideal Bose gas
are non-interacting. They also condensate in real-space instead of momentum-
space. But as particles in the TASEP are interacting this is also true for holes.
Even the choice of the update-procedure can induce interaction. A time-parallel
update induces particle-hole attraction or equivalently hole-hole repulsion.

The stationary state is characterised using fundamental diagrams. Accord-
ing to the already observed behaviour the average velocity stays constant for
ρ ∈ [0, ρc(I)]. Flow shows a linear increase. For ρ ∈ [ρc(I), 1] all particles have
the same probability of being blocked. Obviously the TASEP case is recovered
as mutual blocking dominates over different hopping rates.

2.3.2 Latticewise Disorder

Also the TASEP with quenched latticewise disorder has been studied in great
detail [38,39,81,82]. In comparison to particlewise disorder a larger number of
variations has been introduced. With respect to a comparison to the features
of the ant trail model we will focus here only on two of them. The most simple
case is just one defect site i0. Particles hopping from i0 to i0 +1 have a reduced
hopping rate I < p. At all other sites hopping takes place with rate p. With
respect to reality also the case of extended defects p(xi) = I ∀i ∈ {i1, ..., i2}
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Fig. 2.10. Fundamental diagrams: (Q = 1, I = 0.1 (◦), 0.2(△), 0.3(▽), 0.4(⊳), 0.5(⊲),
0.6(×), 0.7(⋄), 0.8(∗), 0.9(•)). For ρ < ρc the average velocity stays constant and flow
increases linearly. At sufficiently high densities finally the TASEP case is recovered.

will be of interest. Other variants not being discussed here are for example a
random distribution of defect sites [81, 82].

Starting from the spatial pattern exhibited by a system with one defect site
one again observes a separation into a high- and low-density phase. Unlike in
the case of particlewise disorder the areas are localised (see Fig. 2.11).

Fig. 2.11. Space-time plot: The left figure shows the formation of high- and low-
density areas. On the right the stationary state has been reached. On the left of the
defect site xi0 = 500 a high density area has formed.

As the density areas are static besides fluctuations at the boundaries [38,39]
this should also be visible in the second-class particles velocity (see Fig. 2.13,
left). Depending on the global density one observes three regimes. Fluctuations
obviously increase with increasing defect rate I (see Fig. 2.13, left, inset). Like
in the case of particlewise disorder phase separation takes places starting at
a density ρ− and ending at ρ+(see Fig. 2.13, right, lower inset). One observes
a particle-hole symmetry ρ− = 1 − ρ+. This can also be seen in measuring
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the length of the localised particle cluster namely the high-density regime. The
cluster length obviously increases linearly with the global density (see Fig. 2.13,
right). Investigating the density profile directly shows that this linear increase
compensates additional particles originating from increasing the global density
in such a way that the density in the high-density area stays constant (see
Fig. 2.13, right, upper inset). This is possible until the cluster length reaches
a critical value. Then an increase of the particle number can no longer be
compensated. As a result the global density exceeds the density inside the high-
density area ρ+ which obviously ceases to exist. In a similar way the existence
of a lower bound ρ− for the regime can be explained. As long as the global
density is below ρ− the system obviously is not able to segregate into a high-
and a low-density area.

The fundamental diagrams also exhibit the three regimes already identified.
The average velocity shows a strict monotonic decrease. But flow exhibits a
characteristic feature (see Fig. 2.12 left). Depending on the defect rate I flow
becomes independent from density. The so-called plateau regime extends from
ρ− to ρ+. For densities smaller than ρ− and larger than ρ+ the behaviour
known from TASEP is recovered.
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Fig. 2.12. Fundamental diagrams: On the left for one defect site with Q = 1, I = 0.1
(◦), 0.2(�), 0.3(⋄), 0.4(△), 0.5(∗), 0.6(▽), 1 (solid line). The right figure shows flow
for sitewise defects (Q = 1, I = 0.3) extending over ld

L
= 1(•), 0.5(×), 0.1(⊲), 0.0003

(⊳) 0.0001 (△) , 0 (◦). As a common features plateaus in flow exist.

Incorporating the described mechanisms a phenomenological approach has
been developed for the case of random-sequential dynamics. Assuming a flat
density profile within the macroscopic high- and low-density area flow is given
by:

F−(ρ−) = ρ−(1 − ρ−)p and F+(ρ+) = ρ+(1 − ρ+)p (2.25)

In accordance to the previous observations (see Fig. 2.13 right, upper inset)
the particles can be assumed to be distributed homogeneously within the high-
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and low-density region. As the global density stays constant in time by defi-
nition flow must be conserved due to the continuity equation: F− = F+. This
leads to the already observed property of the density profile: ρ+ = 1 − ρ−.

Assuming that the region of decrease from ρ+ to ρ− at the defect site is
negligible, the flow trough the defect is given by:

Fd(ρ−, ρ+) = ρ+(1 − ρ−)I = ρ2
+I = (1 − ρ−)2I (2.26)

As discussed the homogeneous distribution of particles namely the TASEP
case is recovered for ρ < ρ− and ρ > ρ+. The corresponding flow is then given
by (2.25). For densities ρ− < ρ < ρ+ flow stays constant. Incorporating the
flow through the defect site, the conservation of particles leads to:

ρ+ =
p

I + p
and ρ− =

I

I + p
(2.27)

So overall the boundaries of the density regimes as well as the constant
value of flow within the plateau regime (e.g. F = ρ+(I, p) [1 − ρ+(I, p)]) are
given by the two hopping rates I and p.

Making use of the latter results the length l of the high-density regime can
be calculated. For a total number of N particles one finds:

N = lρ+ + (L − l)ρ− leading to l(ρ) = L

(

ρ − ρ−
ρ+ − ρ−

)

(2.28)

For ρ < ρ− the cluster length becomes negative. It reaches the system length
for ρ = ρ+. This is in analogy to a system with particlewise disorder where
the leading particle becomes blocked as the platoon length reaches the system
size. Overall the cluster-regime extends from l(ρ−) = 0 to ρ+ = L. Again the
mean-field picture fails to incorporate fluctuations (see Fig. 2.13 right). With
increasing defect rate I the measured cluster length at the boundaries of the
cluster-regime is above zero and below the system size L.

As an extension also multiple impurity-sites can be treated. One also finds
the same basic properties like particle-hole symmetry as in the previously dis-
cussed case (see Fig. 2.12 right). With increasing number of defect sites or
defect-length in case of consecutive defects the plateau value decreases. A lower
bound is given by the flow for a system with homogeneous hopping rate equiv-
alent to the defect rate. Finally the plateau breaks down as approximately the
TASEP case with hopping rate I is recovered.

Applying the same approach to multiple sites [81,82] is also in good agree-
ment with the simulations. As multiple shocks from ρ− to ρ+ exist the approx-
imation is not as good as in the discussed case where only the increase for one
shock has been neglected.
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Fig. 2.13. Cluster-length and velocity of the second-class particle: (Q = 1, I = 0.1
(◦), 0.2(�), 0.3(⋄), 0.4(△), 0.5(∗), 0.6(▽), 1 (solid line)). For intermediate densities
ρ
−

< ρ < ρ+ the domain-wall separating ρ
−

and ρ+ performs no drift as v = 0.
Nevertheless fluctuations occur with increasing defect rate as shown by the inset. The
length of the high-density area is measured analogous to the preceding section. For
ρ
−

< ρ < ρ+ a linear increase is found. The density profiles corresponding to that
regime have the same value ρ+ as shown in the inset. For ρ < ρ

−
and ρ > ρ+ a flat

density profile like in the TASEP is recovered (see upper inset).



3 The Unidirectional Model

Based on the TASEP we have developed models for traffic on preexisting uni-
[16] and bidirectional ant trails [45, 56, 76]. Both cases will be discussed in the
following two chapters. The plain TASEP has been extended such that the most
important or universal features of real ant-traffic are captured. So the terms
agent, particle and ant will be used interchangeably depending on the actual
context. The model for uni- as well as the models for bidirectional traffic will
be discussed in comparison to reality in chapter 5. The focus of the next two
chapters therefore will be on the physics exhibited by the models. Generally the
incorporated means of interaction induce some kind of disorder similar to the
kinds already discussed (see chapter 2). This will be subject of the subsequent
investigations which can be divided into two parts. In the initial state particles
are distributed homogeneously on the lattice. Due to different mechanisms of
particle-particle interaction they will form clusters. Like in the case of static
particlewise disorder phase separation into low- and high-density areas namely
the emergence of clusters is observed. The formation of clusters or equivalently
the coarsening behaviour will be discussed. At the end of this process the system
has evolved into the stationary state. This state will be characterised by the
corresponding fundamental diagrams which are closely related to the spatial
distribution of particles.

3.1 Definition

The unidirectional ant trail model (ATM) was introduced [16] as an extension
of the TASEP. Ants move strictly in one direction on a lattice with L sites.
Each site may be occupied by one of the N ants or is empty. Extending the
TASEP, ants leave marks, so-called pheromones, at sites they occupy. So each
site might also be marked or not by a pheromone (see Fig. 3.1). If a site is not
occupied by an ant but by a mark also evaporation, namely the removal of the
mark with rate f , takes place. Otherwise in presence of an ant at that site the
mark is not removed. Unlike in the TASEP, the hopping rate p of particles is
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not constant but depends on the presence or absence of pheromone marks at
the next nearest neighbour site i + 1. If a mark is present, the hopping rate
is p = Q, whereas in absence of a mark it is p = q < Q. So the presence of
pheromone marks leads to an increase of the hopping rate from q to Q.

1     2      3     4      5     6     7     8     9    10   11

Q qQ

f f ff

Fig. 3.1. Definition of the unidirectional ATM: The hopping probability p depends on
the presence (p = Q) or absence (p = q) of a pheromone-mark at site i + 1. As q < Q
the presence of marks leads to some kind of particle-particle attraction. In comparison
to the TASEP the marks induce different hopping rates, depending on the distance
to the preceding particle. Generally particlewise disorder is induced dynamically.

For first investigations we use periodic boundary conditions. Employing
the extremal principle (see (2.7) and (2.8)) one easily obtains the flow for the
open system. It has been shown by direct numerical investigations [57] that
the main feature of the unidirectional ATM does not depend much on the
boundary conditions. For simplicity random-sequential dynamics are used due
to the absence of update-induced correlations. But also here the main features
are not much affected by the choice of an particular update procedure. This has
been confirmed by direct numerical investigations for the case of a time-parallel
update [16, 45].

3.1.1 Some Aspects Concerning Reality

This section gives a brief survey of some basic aspects of modelling employing
the introduced unidirectional ATM. Most of the discussion is also valid for the
other traffic models which are compared to the unidirectional ATM. Also the
bidirectional ATMs are based on the unidirectional one (see chapter 4). For a
more detailed discussion of the ant trail models vs. reality we refer to chapter
5. Finally the results will be used for constructing an experimental setup.

Trail Topology

The unidirectional ATM obviously assumes a preexisting trail with only one
lane. So like in vehicular traffic a single lane road already exists. Although
ant trails are known to be highly dynamic and generally have more than one
lane [13,21] quasi one-dimensional situations are found quite frequently on real
trails [36].
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Properties of the Moving Agents

Like in vehicular traffic the modelled agents namely the ants might differ quite
strongly in size. This property of ant species known as polymorphism [36] can
lead to much larger differences in size than encountered in vehicular traffic.
Nevertheless an appropriate choice of cell-size with respect to reality can be
made if the differences are not too large or the observed species is monomorphic.
More severely with respect to reality a possible load is neglected. Depending
on the carried load or the direction of movement (e.g. nestbound or outbound)
different behavioural patterns are likely to emerge [11, 12, 36]. But for first
investigations we will neglect this. The only kind of interaction besides mutual
blocking is just the attraction via pheromone marks.

Velocity of the Moving Agents

Taking the Nagel-Schreckenberg model as some kind of prototype for mod-
elling vehicular traffic some crucial differences become visible. In comparison
to the Nagel-Schreckenberg model the ATM uses vmax = 1. As a result there
is nothing like a velocity memory. Ants accelerate within one update to the
desired velocity which is described by the hopping rate p. This incorporates
the fact that ants can change velocity on much shorter time-scales than cars.
For that reason the velocity distribution can be expected to be more narrow.
The Nagel-Schreckenberg model as well as the ATMs both do not incorporate
any overtaking. Like in vehicular traffic this is also reasonable for certain traffic
scenarios found on ant trails.

Due to vmax = 1 the modeled ants perception can be limited to the next
neighboring site. So with respect to reaction time the random-sequential up-
date does not incorporate any time-latencies. In comparison to cars, ants tend
to interact ”bumper to bumper” [11, 31, 36]. One crucial difference is also the
absence of a deterministic limit due to the random-sequential dynamics. But
also velocity is modeled in a completely stochastic way. One reason is the un-
certainty about the mechanisms involved. By employing stochastic hopping one
expects some kind of behaviour on average but also some fluctuations around
the expectation values. The second reason is the intrinsic stochasticity found
in ant behaviour [6, 13].

3.1.2 Exact Mapping to Other Models

The crucial difference of the unidirectional ATM to the TASEP is the use of dif-
ferent hopping rates. But the evaporation probability f can be chosen such that
the TASEP is recovered. In case of instantaneously evaporating pheromones
(f = 1) all particles hop with rate p = q. For (f = 0) no evaporation takes
place and all particles hop with p = Q in the stationary state.

But also without restricting the choice of parameters an exact equivalence
to a well-established model namely the bus route model (BRM) exists. After
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reinterpretating the variables, the unidirectional ATM can be used for describ-
ing traffic of busses picking up passengers at a line of bus stops [68, 69] which
constitute the L sites of a one-dimensional lattice. Passengers arrive at the bus
stops with rate λ if no bus is already there. A bus reaching a site occupied by
passengers has to stop and thus moves with a reduced hopping rate β. At an
unoccupied site the hopping rate is α > β. For simplicity no difference between
the number of passengers waiting at a bus-stop is made.

The equivalence to the unidirectional ATM can be seen by identifying busses
with ants and busstops as already mentioned with lattice sites (see Fig. 3.2).
The absence of passengers at a site leads to a higher hopping rate α, unoc-
cupied sites therefore correspond to a marked site in the ATM. So the arrival
of passengers is equivalent to the evaporation of pheromone marks. Therefore
the arrival rate λ of passengers is equivalent to the evaporation rate f of the
pheromones.

Originally the bus route model was formulated with random-sequential dy-
namics and periodic boundary conditions. Due to the equivalence to the uni-
directional ATM, also the effects observed in the BRM are stable against the
particular choice of dynamics and boundary conditions (e.g. [45, 57]).

a ba

1     2      3     4      5     6     7     8     9    10   11

lll

Fig. 3.2. Definition of the BRM: This figure shows the definition of the bus route
model. In comparison to the unidirectional ATM hopping rates are related over α = Q,
β = q, f = λ. The presence of passengers leads to a lower hopping rate and is therefore
equivalent to the absence of pheromone marks in the unidirectional ATM and vice
versa.

Due to its simplicity one might wonder how realistic the BRM can be. For
example no difference between the number of waiting passengers is made. The
waiting-time and the hopping rates are independent from the number of waiting
passengers. Although the construction was based rather on theoretical interest
than on the intention to describe reality (stated in [68]) some basic features
are already captured. One aim in that context is to have a minimal waiting
time of passengers for all bus stops. This can be achieved only by a homoge-
neous distribution of busses. So one would like to avoid the clustering of busses
emerging for a particular choice of arriving rate of passengers and number of
busses. The same feature with a different interpretation is also exhibited by
the ATM and will be discussed later on. In the context of ants clustering is
a commonly observed phenomenon [21, 36]. Extensions of the bus route model
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have been developed. One possibility is to incorporate the limited capacity of
busses as well as the number of waiting passengers [40].

3.2 Properties of the Unidirectional ATM

For investigating the properties of the unidirectional ATM we start with the
spatio-temporal distribution of particles. This is done for the system evolving
out of a homogeneous distribution of particles and for the stationary state.
The characteristic features of the model can already be observed. But also with
respect to reality first empirical observations will concern with the directly
observable traffic patterns (see chapter 5).

Therefore the discussion is divided into two parts. First a description of
the time evolution towards the stationary state will be given. The stationary
state itself will be characterised employing the same tools already used for
investigating the TASEP.

3.2.1 Observed Patterns

Starting from the initial state particles are distributed homogeneously on the
lattice (see Fig. 3.3 left). During time evolution particles form clusters while
still moving. Those clusters are not compact with a local density of 1 as oth-
erwise nearly no movement would be possible. The term ”loose cluster” has
therefore been established [66]. Particles finally form one large cluster compris-
ing all particles of the system (see Fig. 3.3 right). As the number of particles
is still finite, dissolving due to the stochastic nature of the system can be ex-
pected. Nevertheless only minor dissolving on short time scales are observed
(see Fig. 3.3 right, inset).

Generally patterns resembling those known from the TASEP with particle-
wise disorder are found [53,54]. The mechanism of cluster formation is obviously
based on the different hopping rates induced by the pheromone marks. So one
observes a decrease in the slope of the particles’ trajectories catching up to
preceding ones. This decrease corresponds to an increase of speed of the par-
ticles catching up. Finally particles will accumulate behind the one with the
lowest hopping rate. During the coarsening process this obviously happens lo-
cally for few particles leading to small clusters. Finally at late times all small
clusters have merged into one single cluster. From that point of view even a
single particle behaves like a cluster of unit-length.

For the mechanism of inducing different hopping rates the following picture
turned out to be useful. Each particle is followed by a trace of pheromones. As
the pheromones are evaporated this trace is of finite length determined by the
evaporation rate f . Due to the stochasticity of the process particles might even
approach each other just like in the TASEP due to fluctuations. A particle i
not perceiving a pheromone trace will move with average velocity vi = q. If
the directly following particle i − 1 gets close enough its average velocity is
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increased to vi−1 > vi = q by the presence of the pheromones. Finally it will
catch up with the slower one forming a platoon. Generally the velocity depends
on the distance to the preceeding cluster.

In a finite system this cluster can also dissolve due to fluctuations and reform
at a different position.

As already mentioned the unidirectional ATM reduces to the TASEP for
an appropriate choice of the evaporation rate. For f = 1 pheromones are evap-
orated instantaneously once the corresponding site has been chosen leading to
pi = q ∀i ∈ {1, ..., N}. If no evaporation takes place (f = 0) all sites will be
marked in the stationary state leading to pi = Q ∀i ∈ {1, ..., N}. The corre-
sponding spatial distribution of particles is homogeneous as known from the
TASEP (see Fig. 2.3 left). A similar effect can also be achieved by increasing
density above a critical value for f 6= 1 or f 6= 0.

Fig. 3.3. Space-time plots for the unidirectional ATM (Q = 0.9, q = 0.2, f = 0.002):
On the left the formation of small moving clusters can be seen. The plot on the right
shows the stationary state. All particles are comprised in one large moving cluster.
But also dissolving on short time scales is possible (see inset).

3.2.2 Coarsening Behaviour

A quantitative characterisation of the coarsening process is obtained from mea-
suring equal-time density-density correlations. Following a method already used
in [15] one defines

G(r, t) =
1

L

L
∑

i=1

〈n(i, t)(n(i + r, t)〉 − ρ2 (3.1)

and evaluates the correlation function numerically by averaging over differ-
ent initial conditions. Here n(i, t) = {0, 1} denotes the occupation number of
site i at time t. For a comparison of G(r, t) at different densities ρ it is useful
to work with the normalised correlation function C(r, t):
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C(r, t) =
1

G(0, t)
G(r, t) =

1

ρ(1 − ρ)
G(r, t). (3.2)

The density-density correlation function will be used for gathering infor-
mation about the time-dependent coarsening process and the stationary state.
By definition deviations from the uncorrelated occupation of two lattice sites
separated by distance r are measured. As no particular site or particle exists
averaging is done over all particles.

Following [15] density-density correlations are measured at different densi-
ties under time evolution. For each density the zero crossings R(t) of C(r, t)
are measured vs. time. Generally more than one zero crossing of C(r, t) at an
particular instance of time is observed. The first zero crossing R1(t) for a fixed
density and time is interpreted as the minimum distance between uncorrelated
high density areas. Generally such a crossing corresponds to a change of sign of
C(r, t). Within high-density areas C(r, t) > 0 is found whereas in low-density
areas one observes C(r, t) < 0. During time evolution the high-density areas
namely the already observed clusters form larger clusters. As a result the av-
erage distance between the clusters increases. This increase will be measured
by the time evolution of the first zero crossings R1(t). Also the number of
clusters is related to R1(t). This is indicated by taking into account the non-
first-zero-crossings of the density-density correlation function. Using the first
zero crossings one obtains the minimum average distance of uncorrelated clus-
ters. This implies the existence of some kind of periodic structure. So in general,
zero crossings can be expected at Rn(t) = n(t)R1(t) with nǫ[1, L

2R ] (Rn < L
2 ),

with n being interpreted as the average number of clusters at a given instance
of time. So one finds n(t) ∼ 1

R1(t) .

The density-density correlation function shows a strong time dependence.
At early times (see Fig. 3.4 left) only short-ranged correlations are present as
only high-density areas of short lengths exist. Under time evolution the range
of correlations interpreted as the average length of clusters increases. Finally
the constant minimal value Cmin(ρ) = C(l, t) is reached for distances larger
than the cluster length (r > l).

Plotting the first zero crossings vs. time reveals that coarsening follows a
power law (see Figs. 3.4 right, 3.5 right). As suggested in [15] coarsening is
described by:

R1(t) = A1 + B1t
1
3 at early times,

R1(t) = A2 + B2t
1
2 at later times.

(3.3)

Depending on the time scale one finds different dynamical exponents. The
parameters are determined numerically by fitting the appropriate power law. In
the initial state particels are distributed randomly. So averaging over different
initial states at t = 0 will lead to A1 = 0. The existence of a power law is also
in accordance with the already observed self-similar spatio-temporal pattern
(see Fig. 2.3 left). Independent of the actual time-scale no difference is made.
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(dashed line).

Coarsening between single particles at early times follows the same principle
as the merging of clusters at later times at least for the particular temporal
regime with respect to the dynamical exponent. So even single particles can be
treated as some kind of cluster with a length one.

From investigations of systems with static particlewise disorder [53,54] rela-
tions between the distribution of hopping rates and the dynamic exponent are
known. In chapter 4 some additional features in comparison to the bidirectional
model are discussed.

An explanation for the existence of two different dynamical exponents is
given in [68]. At early times particles did not had enough time to form clusters.
So the average distance between particles is small enough for the pheromones to
induce particlewise disorder. At later times multiple small clusters have formed.
The average distance between clusters now is so large that the pheromone
marks have only little influence. The length of the pheromone trace following
each cluster or particles is short in comparison to the average distance between
the moving entities. Therefore cluster formation is mainly caused by random
fluctuations which reduce the distance between two clusters or particles. Once
the distance is small enough the pheromone marks will induce disorder finally
leading to the coalescence of the two clusters. Iterating this scheme the system
finally reaches the stationary state. All particles are comprised in one large
cluster. So zero crossings become constant in time and are all of first order.
The crossing separates distances r < l within the cluster (high-density area
C(r, t) > 0) from distances r > l outside the cluster (low-density area C(r, t) <
0). Assuming a continuous behaviour of C(r, t) only one zero-crossing exists.
Since no other high-density areas outside of this cluster exist, C(r, t) reaches
its minimum
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Fig. 3.5. Density-density correlation functions (Q = 1, q = 0.2 and f = 0.005): On
the left double-logarithmic plots of the time evolution of R(t) for different densities
ρ = 0.1 (◦), 0.2 (⋄) , 0.3 (△), 0.4 (∗) are shown. The two constant slopes correspond
to the two regimes of dynamic exponents. The right figure shows the density-density
correlation function C(r, t) in the stationary state for different densities. C(r, t) in the
stationary state. For ρ = 0.4 the beginning of the regime with C(r, t) = Cmin(ρ) does
not correspond to the cluster length.

Cmin =
−ρ

1 − ρ
for r > l (3.4)

for values of r larger than the cluster size l. But as C(r, t) is symmetric
with respect to r = L/2, this method is limited to cluster sizes l < L/2. An
example is found in (see Fig. 3.5 left). For ρ = 0.4 the beginning of the interval
with C(r, t) = Cmin does not correspond to r = l as for the other densities. In
the next section the cluster length will be measured according to the method
introduced in chapter 2. In fact it turns out that the cluster length for ρ = 0.4
is larger than L

2 .

3.2.3 The Stationary State

At the end of the described coarsening process the system finally settles into a
stationary state. The particles have formed one single moving cluster. Never-
theless as the system size is finite this state has a finite lifetime. As no dissolv-
ing is observed the lifetime obviously is much larger than the times accessible
by computer simulations. Fundamental diagrams are used to characterise the
traffic-like properties. With respect to density two regimes can be distinguished
(see Fig. 3.6) at least for an appropriate choice of the evaporation probability
f . At low to intermediate densities velocity stays constant and is given by the
minimal hopping rate p = q. This behaviour is analogous to systems with static
particlewise disorder (see chapter 2). The flow shows the corresponding linear
increase with density in accordance with the hydrodynamic relation. With in-
creasing density a sharp but continuous increase exhibited by velocity as well as
by flow is observed. Both quantities finally merge into the curves corresponding
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to the TASEP with hopping rate p = Q. This behaviour is quite different from
the one observed in case of static particlewise disorder where the transition to
the TASEP-regime is not accompanied by a non-monotonicity in the average
velocity.

The properties of the fundamental diagrams in each regime as well as the
transition again can be understood employing the same tools invented for the
case of static particlewise disorder. As already mentioned each particle is fol-
lowed by a trace of pheromone marks. Due to evaporation the length is finite
and depends on the evaporation rate f . So particles in general can be expected
to have different hopping rates pi. A mark which was set at a particular site will
decay during Ti timesteps until it is renewed by the succeeding ant. Therefore
the probability of finding a pheromone at a particular site depends on the time
headway of two succeeding ants:

pi(Ti) = q + (Q − q) (1 − f)
Ti (3.5)

On the other hand, the time-headway Ti is given by the distance headway
xi of the ith particle to the preceding one:

Ti =
xi

pi
. (3.6)

Basically the hopping rate of the ith particle pi depends on the distance xi

to the preceding one:

pi(xi) = q + (Q − q) (1 − f)
xi
pi (3.7)

So the particle i with the maximal distance xmax will also be the one with
the lowest hopping rate:

pmin = min
i∈[1,N ]

{pi = p(xi)} = p(xmax) with xmax = max
i∈[1,N ]

{xi} (3.8)

The particles will follow the one with the largest gap in front of it forming a
cluster (see Fig. 3.3 right). Since hopping rates pi depend only on the gap-size
xi a mapping to the Zero-Range Process is possible, as in the case of static
particlewise disorder [57, 68, 69].

LCA Approximation

Also a phenomenological approach has been developed [66]. One assumes that
the system has reached the stationary state and all particles are comprised in
one single loose cluster. Therefore the approach has been named ”Loose Cluster
Approximation” (LCA). The leading particle is characterised by a large gap of
length x1 = L − l in front of it. For determing its hopping rate p1 := h the
corresponding time headway Th = L−l

h is used. Particles within the cluster are
assumed to have all the same hopping probability H (pi := H ∀i ∈ {2, ..., N}).
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Fig. 3.6. Fundamental diagrams for the unidirectional ATM (Q = 1, q = 0.2 and
f=0(◦), 0.0002(△), 0.0008(▽), 0.002(⊳), 0.008(⊲), 0.02 (×), 0.08(⋄), 0.2(∗), 1(•)). For
f = 1 and f = 0 the TASEP with hopping probabilities p = q and p = Q is recovered.
Depending on the particular choice of f one observes a regime with constant average
velocity and a corresponding linear increase in flow.

Like in case of static particlewise disorder (2.22) is applied. Again all particles
have to move with the same average velocity (1 − ρi)H = h. So the distance
headway xi within the cluster is given by xi = h

H . Thus the corresponding time

headway is TH = h
H2 . Together with (3.7) Th and TH lead to:

h = q + (Q − q) (1 − f)
L−l

h and H = q + (Q − q) (1 − f)
h

H2 . (3.9)

The LCA obviously assumes a flat density profile within the moving system
due to the use of (2.22). Measuring the density profile seen from the second-class
particle one also observes a flat density profile within the cluster (see Fig. 3.7
right, upper inset). At the boundaries of the profile the LCA obviously is not
valid as no flat profile is observed. In analogy to the TASEP the approximation
is strictly valid only for the bulk of the cluster.

Like in the case of static particlewise disorder an analogy to the TASEP with
open boundary conditions can be drawn. Holes are injected into the cluster at
the head with rate h by exchanging the position with that one of the leading
particle. All other particle exchange their positions with holes at rate H . So the
density of holes is given by α = h ≈ q leading to ρhole

i = h
H ≈ q

Q . With respect
to the TASEP the moving system is in the low-density phase where the density
of holes and thus also the one of particles is determinded by the injection rate
α. The ejection rate is given by β = H . So in general no flat density profile can
be expected. This is also observed directly by measuring the density profile of
the moving system (see Fig. 3.7 right, upper inset). But the bulk density is in
good agreement with ρi = 1 − h

H ≈ 1 − q
Q .

Evaluating (3.9) numerically also shows good agreement with the simula-
tions [66]. With increasing density the TASEP-like regime is reached where
particlewise disorder dissolves. From (3.9) one finds that h depends on the sys-
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tem size L whereas l only depends on the number of particles N (2.24). So the
density where the cluster dissolves depends on the system size. This has also
been observed directly in computer simulations 1.

HMFA Approximation

For densities above the critical value all particles can be assumed to be homoge-
neously distributed. So a ”Homogeneous Mean-Field Approximation” (HMFA)
is applied [16, 66]. In contrast to the LCA, distance headways for all particles
are assumed to be the same x = L−N

N and are just given by the average number
of empty sites in front of each particle. Therefore also the hopping rates p are
assumed to be the same, leading to Tp = (L−N

N ) 1
p and finally to:

p = q + (Q − q) (1 − f)
( L−N

N
) 1

p (3.10)

The employed picture is also in agreement with the behaviour observed
for the second-class particle. In the cluster regime only drift is present (see
Fig. 3.7 left). At increasing density pheromones increase the velocity of the
leading particle and also drift-velocity is increased to h > q. At sufficiently high
densities pheromones become present at every site leading to a translational
invariant state of the lattice. With respect to the second-class particles drift is
replaced by diffusion according to (2.10).

3.3 Discussion

A model for unidirectional traffic on preexisting ant trails has been introduced.
Although it is quite simple the characteristic features of ant traffic have been
incorporated (see Fig. 3.1). Differences and similarities to already established
models were discussed. The main feature is the formation of a single mov-
ing particle cluster. This feature is based on dynamically induced particlewise
disorder due to pheromone marks. The formation of the cluster namely the
coarsening and the stationary state have been investigated. Power laws with
different dynamic exponents depending on the time scale were found to describe
the coarsening process (see Fig. 3.4).

In the stationary state analogies to systems with static particlewise disorder
are drawn. Unlike in systems with static particlewise disorder the transition
from the cluster regime to the homogeneous distribution takes place at lower
densities. The cluster length in the ATM is still below L and the density within
the cluster is still below the global density ρ = N

L (see Fig. 3.7 right, upper
inset) when the homogeneous distribution of particles is reached. In the static
case (see chapter 2) that transition takes place for l = L at ρc = N

L . The upper
inset of (see Fig. 3.7 right) shows the growth of the extend of the density profile
in the moving system. From (2.23) it is clear that this extend is equivalent to

1 Observed during investigations for [41], unpublished
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the cluster length. Finally the homogeneous distribution (grey line) is reached.
Obviously the global density ρ is still below the density ρi within the cluster.
This is a crucial difference to the results for static particlewise disorder. The
increase of the cluster length is still well described by using I := q and p = Q
(see Fig. 3.7 right) as in the static case.

Obviously the pheromones marks lead to the formation of the cluster in a
way very similar to the one which would emerge in a system with static parti-
clewise disorder (I := q, p := Q). The homogeneous regime is reached at lower
densities which is a result of the pheromones. With increasing global density
or decreasing evaporation rate the distance between the leading particle and
the pheromone trace becomes smaller. Finally it is small enough to dissolve
the particlewise disorder. In the static case this is achieved for higher densi-
ties by mutual blocking as ρi −→ ρ. The non-monotonicity observed for the
ATM which does not exist in case of static particlewise disorder originates just
from the two different hopping rates. In the cluster regime particles move with
constant average velocity q. This is equivalent to the case of static particlewise
disorder. In the homogeneous regime particles hop at an increased rate Q due to
the pheromones causing a non-monotonicity in the average velocity. Like in the
case of static disorder particles are homogeneously distributed, finally recover-
ing the TASEP case. Depending on the critical density the non-monotonicity
can be completely suppressed.
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Fig. 3.7. Cluster properties for the unidirectional ATM (Q = 1, q = 0.2 and f =
0.0002 (△), 0.0008(◦), 0.002(⋄), 0.005(+), 0.008(�)). On the left the average velocity of
the second-class particle is shown. Clearly the change from drift to diffusion indicating
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measured cluster length is compared to the one calculated according to (2.24) in case of
static particlewise disorder (dashed line). For different evaporation rates, ρc extracted
from simulations is shown on the lower inset. In a system with static particlewise
disorder one would expect ρc = 0.8. According to this the upper inset shows the
growth of length l(ρ) of the density profile with ρi > 0. In the homogeneous regime
the global density ρ (grey) is still below the density ρi within the moving cluster.





4 The Bidirectional Models

For extending the unidirectional model to the bidirectional case several variants
have been proposed [43, 56]. As a common feature they should reduce to the
unidirectional model in absence of counterflow. Overall three variants of the
bidirectional model appear to be useful. They share common features with each
other as well as with the unidirectional one. Nevertheless each model might be
most realistic for a particular trail topology within a certain ecological context.

A brief survey over the different variants including their common and par-
ticular features will be given. It will turn out that the generic features of all
variants are basically the same. They emerge for different sets of parameters
depending on the choice of the model. Generally they do not depend much on
the complexity of the employed model itself. So a detailed discussion will be
given only for one particular variant. Nevertheless for modelling a certain trail
topology leading to the emergence of a particularly preferred pattern it is still
necessary to distinguish between the models.

Generally all bidirectional models are the first step towards extending the
unidirectional model to the multi-lane case. In vehicular traffic two lanes in
the same direction would be chosen (e.g. [3,19]). But unlike in vehicular traffic
there is also interaction with ants moving in counterdirection [11, 12, 21]. This
has great similarity to behaviour observed in pedestrians dynamics. Analogies
between ants and pedestrians with respect to the coupling of lanes in opposite
directions for example in narrow corridors have already been drawn [25, 26,
77]. So the extension to bidirectional lanes will be proposed. A more detailed
discussion with respect to reality is given in chapter 5.

4.1 Definitions and Properties

The bidirectional models being discussed in the following differ basically in
two ways. One is the way ants facing each other in opposite directions pass by
(see Fig. 4.1). This can be done in an asynchronous (ATMs 1 and 2) [41, 43]
or an synchronous (ATM 3) [43, 56] way. The second difference between the
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models is the interaction with the pheromone marks. Also here two choices
are possible. Ants moving in both directions can share a common trail for
pheromones (ATMs 2 and 3) or they have an own trail for each direction (ATM
1). The first two models assume two kinds of pheromones whereas the last
one assumes just one kind. So overall four models can be expected. A model
with synchronous exchange of ants and separated lattices for pheromones will
not be considered. Although one could in principle define such a model severe
difficulties arise with respect to reality.

ATM 1

1     2      3     4      5     6     7     8     9    10   11

qQ k K

f

f f

ATM 2

1     2      3     4      5     6     7     8     9    10    11

Q q K

f f

ATM 3

1     2      3     4      5     6     7     8     9    10    11

Q qK

ff

Fig. 4.1. Survey of bidirectional models: In the first two models ants moving in op-
posite directions exchange their positions in an asynchronous way at different update-
steps. This would not be possible in the third model in order to preserve the simple-
exclusion principle. Ants moving in both directions share one common lattice. So
two ants have to exchange positions at the same time (update step). Regarding the
pheromones only the first model uses two different kinds depending on the direction.

All models will be discussed with respect to the emerging spatial patterns
and the fundamental diagrams. For first investigations the same number of ants
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will be used for each direction. Also the hopping rules are the same for each
direction. Results for different particle numbers and hopping rates are briefly
discussed at the end of this chapter.

4.1.1 Bidirectional Trail with Separated Pheromone Lattices

This model is probably the most natural extension of the unidirectional one. It
consists of two coupled full unidirectional models [41]. Ants in each direction
have their own lattice for moving and for pheromone marks (see Fig. 4.1 ATM
1). Coupling is achieved by incorporating the occupation of the lattice for ants
in counterdirection. Again only the occupation of the nearest neighboring site
i + 1 in hopping direction is important. If there is an ant in counterdirection
two additional hopping probabilities are used. In presence of an ant in counter-
direction and also of a mark on the lattice for pheromones in the own direction
hopping takes place with hopping rate K. In case of counterflow and absence
of a pheromone mark, the hopping rate is set to k. Obviously ants facing each
other in opposite directions exchange their positions at different update-steps
and thus at different times. Mutual blocking is still incorporated but only by
ants moving in the same direction.

With respect to real trails this model corresponds to a species employing at
least two kinds of trail-pheromones. Even in case of counterflow the interaction
via pheromones leading to particlewise disorder still exists [85,86]. This will be
the dominating form of interaction in this model. Generally hopping rates in
case of counterflow k and K are smaller than in the unidirectional case. So the
mutual slowing down by counterflowing ants is also incorporated.

Spatial Patterns

In absence of counterflow hopping takes place with rates q and Q depending on
the presence of pheromone marks. So the same mechanism of cluster formation
known from the unidirectional model is present. In case of counterflow an addi-
tional mechanism is found. Both ant clusters moving in opposite directions will
have to pass each other. As the hopping rates are reduced by counterflow the
clusters generally get deformed (see Fig. 4.2). The counterflow disturbs the par-
ticlewise disorder known to be the mechanism for the formation of the cluster in
the strictly unidirectional case. As the cluster can be completely destroyed this
process has been named ”shredding” [56]. Nevertheless under certain conditions
a reformation or recoarsening is still possible (Fig. 4.2).

As in the unidirectional case the cluster comprises all particles in one direc-
tion. So an increase of density leads to an increase of the cluster length l. On
the other hand the time between the passing of the clusters is roughly given by

T =
1
2L − l

v
(4.1)

Here L denotes the length of the lattice and v is the average velocity in ab-
sence of counterflow. Like in the unidirectional model one finds v = q. During
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Fig. 4.2. Space-time plots for ATM 1 (Q = 1, q = 0.6, K = 0.5, k = 0.2 , f = 0.002
and ρ = 0.1): The formation of moving clusters at low densities is shown on the
left. Counterflow obviously disturbs the formation. Under certain conditions finally
one moving cluster with the same properties known from the strictly unidirectional
case is formed for each direction. The figure on the right shows the shredding and
recoarsening of this cluster.

Fig. 4.3. Space-time plots for ATM 1 (Q = 1, q = 0.6, K = 0.5, k = 0.2 , f = 0.002
and ρ = 0.33): On the left the formation of localised clusters is shown. Ants moving in
opposite directions effectively form an extended defects for the other direction shown
on the right. For clarity only the occupation for the LR-direction is shown.

the time T recoarsening takes places. For simplicity the time for recoarsening
is assumed to be independent of density. So an increase of density reduces the
time for recoarsening due to l ∼ N . As a result the time T between two en-
counters of the clusters is not sufficient anymore for the recoarsening of a single
unidirectional cluster. So the system is in a permanent state of coarsening and
shredding without being able to form a single moving cluster for each direction.
The particle distribution resembles that one found during the coarsening at
very low densities (Fig. 4.2 left). At intermediate densities multiple small but
moving clusters exist [56].
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Fig. 4.4. Fundamental diagram for ATM 1: (Q = 1, q = 0.6, K = 0.5, k = 0.1
and f = 0(◦), 0.0008(△), 0.002(▽), 0.008(⊳), 0.02(⊲), 0.08 (×), 0.2(⋄), 1(•). At low
densities roughly the same behaviour known from the unidirectional model is found.
For intermediate to high densities flow shows a plateau known from systems with
latticewise disorder.

With increasing density the pheromone marks cannot induce particlewise
disorder anymore. They become present at any site with the same probability.
Effectively only two hopping rates depending on the presence or absence of
counterflow exist. Obviously this induces effectively quenched latticewise disor-
der with ants moving in the opposite direction forming the defects (see Fig. 4.3).
The emerging clusters now are localised high-density areas. This is also true in
the case where the counterflow even increases the hopping rate. Then holes in
counterdirection form the defects for particles moving in the opposite direction.

Fundamental Diagram

The fundamental diagrams exhibit properties reflecting the observed spatio-
temporal patterns. At low densities velocity shows a non-monotonicity (Fig. 4.4
left). This is in accordance to the moving clusters already discussed. The corre-
sponding density regime is comparably small. At intermediate to high densities
velocity shows a strictly monotonic decrease. The reason is the increasing mu-
tual hindrance by counterflow which also affects the mutual blocking by ants
moving in the same direction. Overall one observes three distinct regimes of
flow. In accordance to the formation of localised clusters namely defects flow
exhibits a plateau (Fig. 4.4 right). The value of constant flow obviously depends
on the evaporation probability f .

4.1.2 Bidirectional Trail with Common Pheromone Lattice

Modifying ATM 1 leads to the second possible bidirectional model [45, 76].
Instead of using an own pheromone lattice for each direction both directions
share a common lattice for pheromones (see Fig. 4.1 ATM 2). Therefore only
one additional hopping rate K is needed. In presence of an counterflowing ant
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Fig. 4.5. Space-time plots for ATM 2 (Q = 1, q = 0.2, K = 0.2, f = 0.002 and
ρ = 0.08): The left plot shows the formation of moving clusters. Finally one cluster
for each direction has formed. In comparison to ATM 1 the density is very small.

at the nearest nighboring site i + 1, hopping takes place with rate K. As the
presence of an ant at site i + 1 always implies the existence of a pheromone-
mark at the same site, the case leading to hopping probability k (see ATM
1) does not exist. Again ants in opposite directions exchange their positions
asynchronously. In absence of counterflow the unidirectional case with rates q
and Q depending on the presence of absence of pheromones is recovered.

With respect to reality counterflow is dominating over the ant-pheromone
interaction. The presence of an ant at a particular site prevents the pheromone
at that site from being evaporated. So the effective lifetime of pheromones
is higher than in ATM 1 as ants in both directions renew the same kind of
pheromone. Therefore particlewise disorder can only be induced at very low
densities. But in case of unidirectional traffic ant-pheromone interaction is still
present. So this model would be employed for species with only one kind of
trail-pheromone [36].

Spatial Patterns

Ants from both directions set their marks on the same lattice. So the mean time
till reoccupying a particular site and thereby renewing or setting a pheromone
mark is only half of the time of ATM 1. Therefore the translational invariant
state of the pheromone lattice is reached for comparably low densities. Unlike in
ATM 1 this induces a second kind of coupling between the opposite directions.
Nevertheless moving clusters are formed (see Fig. 4.5 left). If the time for
recoarsening is sufficient finally one single moving cluster emerges (see Fig. 4.5
right). Again the cyclic process of recoarsening and shredding is found.

At sufficiently high densities small localised clusters emerge (see Fig. 4.6
left). They exist at the same sites for each direction. Obviously their lifetime
depends on the cluster size. In the stationary state only one large localised
cluster exists. Unlike in the unidirectional model not all particles are comprised
in this kind of cluster (see Fig. 4.6 right).
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Fig. 4.6. Space-time plots for ATM 2:(Q = 1, q = 0.2, K = 0.2, f = 0.002 and
ρ = 0.3): The left plot shows the formation of small localised clusters. On the right
one large localised cluster is shown.

Fundamental Diagram

Again the a non-monotonicity of the average velocity is found at low densities
(see Fig. 4.7 left). Due to the common pheromone lattice the translational
invariant state depending on the pheromones is reached at very low densities.
One also observes the occurrence of density regimes with constant flow (see
Fig. 4.7 right). The value of constant flow again depends on the evaporation
rate f . But also the boundaries of the regime depend on f . At low evaporation
rates the regime begins at lower densities than for higher evaporation rates.
This is also in analogy to systems with latticewise disorder. At intermediate
to high densities effectively only two hopping rates exist. The rate in case of
counterflow does not depend on the pheromones. But in absence of counterflow
the hopping rate is determined by f . Overall one finds:

p ≈
{

Q > K for f −→ 0
q < K for f −→ 1

(4.2)

In the first case (f ≈ 0) ants in counterdirection form the defects. On
the other hand for (f ≈ 1) holes in counterdirection act as defects. So the
evaporation probability is used to choose between the impact of counterflow.
This can also be used to reducing the coupling to counterflow (f = 0.08).

4.1.3 Single-lane Bidirectional Ant Trail Model

A further reduction of the model’s complexity is possible if one also uses just one
common lattice for both directions of ant movement [56]. Unlike the first two
models already discussed it basically consists of just one unidirectional model.
As an extension to the unidirectional case ants moving in both directions share
one common lattice (see Fig. 4.1 ATM 3). In case of vanishing ant-pheromone
coupling the so-called bridge-model introduced in the context of spontaneous
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Fig. 4.7. Fundamental diagrams for ATM 2: (Q = 1, q = 0.2, K = 0.5 and f = 0(◦),
0.0002(△), 0.002(▽), 0.008(⊳), 0.02(⊲), 0.08 (×), 0.2(⋄), 1(•). On the left average ve-
locity shows the characteristics known from the moving cluster regime. Flow exhibits
plateaus which are characteristic for systems with static latticewise disorder. Depend-
ing on the evaporation rate f particles or holes form some kind of dynamic latticewise
defect.

symmetry breaking in one-dimensional non-equilibrium systems is recovered
[28]. As basically two kinds of particles (left- and right-moving ants) 1 share
the same lattice the total density is given by:

ρ =
NR + NL

L
and ρi =

Ni

L
i ∈ {L, R} (4.3)

Each lattice site still can be occupied only by one ant. In case of counterflow
ants facing each other in opposite directions exchange their positions with rate
K. Like in the unidirectional model, mutual blocking is achieved by ants moving
in the same direction. Pheromone marks are also set on the same lattice used
by the ants. So each lattice site can either be occupied by a right- or left-
moving ant or a pheromone mark. In comparison to the unidirectional model
one observes that the unidirectional model makes use of an extra lattice for
pheromones. This is in principle not necessary and originates just from the
original definition of the unidirectional model with time-parallel dynamics [16].

As a consequence of using only one lattice for ants and preserving the hard-
core exclusion principle, ants facing each other in opposite directions have to
exchange their positions at the same time. The movements of one ant thus auto-
matically forces the other ant to move either. A separate lattice for pheromone
marks like in ATM 2 would not make any difference between directions in that
case as hopping rates could not be chosen independently. One would have to
distinguish between four possible cases for the synchronous exchange depending
on the possible local configurations (sites i and i + 1) of the three lattices.

The synchronous exchange of counterflowing ants appears to be a very spe-
cial case. Nevertheless in situations with limited space this model is applicable

1 not incorporating holes and pheromone marks
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Fig. 4.8. Both photographies show a trail which is defined by spatial restrictions.
On the right two platoons pass each other. As there is only little space available one
platoon moves to the right and the other one to the left. After passing by both platoons
will move back to the centre of the cable. The left photography shows an extremer
example. If space is even too little for the latter scenario ants move temporally to the
downside of the cable to make way (upper left corner of the right photography).

Fig. 4.9. Space-time plots for ATM 3 (Q = 1, q = 0.2, K = 0.05, f = 0.002 and
ρ = 0.1): The left plot shows the formation of small but moving clusters out of the
homogeneous distribution of particles in the initial state. At late times singel and
moving cluster have formed in each direction.

(see Fig. 4.8). Recent investigations show [25] that this situation is also of prac-
tical interest in other systems [43, 56]. An analogy can be drawn to the move-
ment of pedestrians for example in a narrow corridor. In that case the platoon
formation bears some advantages arising from some kind of follow-the-leader
behaviour (e.g. [25, 48]).

Spatial Patterns

Also here moving clusters are formed at sufficiently low densities. As pheromones
are dropped on a common lattice the translational invariant state for the marks
again is reached at very low densities (see Fig. 4.9) .
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Fig. 4.10. Space-time plots for ATM 3: (Q = 1, q = 1, K = 0.05, f = 0 and ρ = 0.4):
On the left the formation of multiple small and localised clusters is shown. In the
stationary state only a few large clusters exist shown on the right.

Like in ATMs 1 and 2 localised clusters emerge (see Fig. 4.10) for higher
densities. But the stationary state consists of two large localised clusters. Also
the choice of K = 0.05 is quite extreme in comparison to the other models.
Overall due to the synchronous exchange blocking by counterflow is not the
dominating mechanism even at very high densities. Thus coarsening and shred-
ding turn out to be the main features of the model. Both processes have been
studied in great detail in [56].

Fundamental Diagram

At low to intermediate densities the average velocity is independent from den-
sity. So the characteristics of the moving clusters are also found here. Additionly
the non-monotonic behaviour of the average velocity is found which is caused by
dissolving particlewise disorder. But also for vanishing ant-pheromone coupling,
e.g. for f = 0, one observes a strictly monotonic increase of velocity. Unlike in
the other models also ants share a common lattice. So at very high densities
pairwise exchange of counterflowing ants dominates over mutual blocking by
ants moving in the same direction. Finally at ρ = 1 the TASEP-case for each
direction is recovered. Generally ants moving in one direction are equivalent to
holes for the ants of the opposite direction:

Fi(1) = ρi(1 − ρj)K i, j ∈ {L, R} (4.4)

But also a mean-field description neglecting the ant-pheromone coupling
has been developed [56]. Except for the cluster regime the results are in good
agreement with the fundamental diagrams obtained from computer simulations.
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Fig. 4.11. Fundamental diagrams for model 3: (Q = 1, q = 0.2, K = 0.5 and
f = 0(◦), 0.0002(△), 0.0008(▽), 0.002(⊳), 0.008(⊲), 0.02 (×), 0.08(⋄), 0.2(∗), 1(•).
Even for ρ ≈ 1 velocity and flow are non-vanishing. The reason is just the recovering
of the TASEP.

4.2 Common Features

The three bidirectional ATMs basically exhibit the same two features. As al-
ready observed they emerge for different choices of parameters depending on
the model. Also each model has a preference towards a particular feature. The
first one is the coarsening and shredding at low densities. By construction all
bidirectional models reduce to the unidirectional ATM in absence of counter-
flow. So at sufficiently low densities ants form moving clusters. Clusters passing
by are mutually affected by the cluster of counterflowing ants. Especially ATM
3 exhibits that feature even at comparably high densities.

The second common feature emerges at intermediate to high densities. As
already noticed flow exhibits plateaus. These plateaus are known from models
with static latticewise disorder. The corresponding spatial pattern is a large
localised cluster forming the defect for the opposite direction. The first two
models have a preference toward that pattern. As ants in opposite directions
facing each other pass by asynchronously hindrace is increased by counterflow.
This obviously leads to the formation of large localised clusters. This is quite
different from ATM 3 where even for a very low exchange rate K hardly such
patterns can be produced.

Like for the unidirectional model the coarsening behaviour as well as the
stationary state are investigated for both features in the following. Effects of
shredding have already been investigated extensively for ATM 3 [56]. The for-
mation of the localised cluster is known from ATMs 1 and 2 [41, 44]. Both
models become completely identical for f = 0 and f = 1. Especially the forma-
tion of localised clusters originates from mutual hindrance by counterflow and
does not originate from the ant-pheromone coupling. So (re)coarsening and
shredding as well as the coarsening and the stationary state of the localised
clusters are studied for ATM 2 in the following.
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4.2.1 Moving Clusters

One of the main results from the discussion in chapter 2 it is that the mov-
ing clusters are formed due to the dynamic particlewise disorder induced by
the pheromones. As already observed this mechanism are also present in case
of counterflow at sufficiently low densities. In case of counterflow the cluster
structure becomes disturbed. As ATMs 2 and 3 are closely related the effects
of (re)coarsening and shredding will be investigated for ATM 2. Nevertheless
the same techniques would also work out for the other models.

(Re)coarsening and Shredding

At low densities pheromones induce particlewise disorder leading to the forma-
tion of moving clusters. Counterflowing ants disturb this coarsening process.
First by affecting the hopping rate directly due to p = K. A second kind of cou-
pling to ants in counterdirection is the pheromone lattice. Two clusters passing
by each other in opposite directions are followed by their own pheromone trace
on a common lattice. So the ant at the head of the cluster finds pheromone. Ob-
viously the passing by of clusters temporally dissolves the particlewise disorder
which is crucial for the cluster formation. As a result the shredding prevents
the formation of one single moving cluster. This is also observed in the first zero
crossings (see Fig. 4.12, left). Even in the stationary state strong fluctuations
occurred. The clusters are in a permanent state of recoarsening and shredding.
If clusters already exist in the initial state these oscillations are even stronger.
Two clusters pass each other and recoarse to one single cluster for each direc-
tion after shredding. The zero crossings reflect this periodicity (see Fig. 4.12,
right). Although shredding prevents the formation of the single cluster it does
not prevent the recoarsening once a single cluster has been prepared in the
initial state.

From these observations it is very likely that also for a random initial config-
uration of particles a single cluster for each direction will emerge. Correspond-
ingly the Fourier transform S(T) of C(r, t) exhibits a peak (see Fig. 4.12 right,
inset). The reason why this is observed only for a particular initial configuration
is just the limitation of the observed period of time.

4.2.2 Localised Clusters

At sufficiently high densities the large localised cluster emerges for each direc-
tion at the same sites. The main mechanism is dynamically induced latticewise
disorder by counterflowing ants. So the mechanism basically does not depend
on the pheromones. Previous investigations showed that also for f = 1 and
f = 0 localised clusters are formed. In that case only two different hopping
rates depending on the presence or absence of counterflow exist. So for further
investigations the ant-pheromone coupling can be neglected.
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Fig. 4.12. Density-density correlation function of ATM 2 (Q = 1, q = 0.2, K = 0.2,
f = 0.002 and ρ = 0.1): Both figure show the first zero-crossings at a low density
for different initial conditions. On the left the density-density correlation function
was averaged over different initial states. On the right particles were already set to
one single cluster for each direction in the initial state. The inset shows the Fourier
transform S(T ) of R(t).

Coarsening Behaviour

The formation of the localised cluster is investigated analogous to the unidirec-
tional case. Two-point equal time density-density correlations were measured
under time evolution towards the stationary state. As the density-density corre-
lation function is taken at an particular instance of time, no difference is made
between moving and localised high-density areas. So one roughly observes the
same behaviour (see Fig. 4.13) as for the unidirectional case.

At early times only short ranged correlations exist (see Fig. 4.13, left). The
correlation function is non-zero only for short distances. With increasing time
the correlation function becomes non-zero for a growing range of distance r.
Overall this reflects the fact that the high-density areas grow with increasing
time. This is also in accordance with the behaviour observed in the space-
time plots of the preceding section. Finally the stationary state is reached.
The correlation function shows the same behaviour as observed for the uni-
directional case. One also observes a qualitative change in the behaviour for
t > tm = 20 × 103. Before tm the minima of the correlation functions at dif-
ferent times are nearly the same. For times later tm the minimum values start
to decrease further. The functions C(r, t) with t > tm shows a linear decrease
with increasing r and a minimal value Cmin which is independent of r is finally
reached.

Like in the unidirectional model zero crossings were measured (see Fig. 4.13,
right). Again the first zero crossings separate the length scales of high- and low-
density areas. Also power laws describing the time evolution of R(t) according
to 3.3 are observed. At early times one finds z = 1

3 and for late times z = 1
2 .

This is exactly the same result as for the unidirectional model. The constant
value for the zero crossing namely the stationary state is reached comparably
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Fig. 4.13. Density-density correlation function of the bidirectional model 2 (Q = 1,
q = 0.2, K = 0.2, f = 0.002 and ρ = 0.4) at different times t: t = 1×103(◦), 2×103(�),
5× 103(△), 10× 103(⋄), 20× 103(▽), 35× 103(∗), 66× 103 (⊳), 300× 103 (•). On the
left, the time evolution of the density-density correlations is depicted. The figure on
the right shows first zero crossings vs. time. Later crossings are also depicted. The
inset shows the fitted power laws for different values of the dynamic exponent z = 1

3

(solid line) and z = 1

2
(dashed line). Finally a constant value is reaches (grey line).

fast. Also the higher order zero crossings being interpreted as small localised
clusters vanish faster.

This can be explained by the nature of the coarsening process which basi-
cally relies on mutual hindrance by counterflow. Particles in opposite directions
get stuck at each other due to the reduced hopping rate K < Q. This happens
for different particles at different times. Due to fluctuations succeeding particles
in the same direction accumulate behind a particle slowed down in counterdi-
rection. Even if that one passes by the accumulated particles still have to pass.
In comparison to the unidirectional model the density is effectively twice as
high which accelerates the coarsening process.

But still the dynamic exponents of the power laws are the same for the
uni- as well as for the bidirectional ATM 2. As already mentioned this cannot
be explained by the pheromones 2. So the different exponents might be due to
some kind of memory effect arising form the initial state which would be present
in both models. But as averaging of C(r, t) was done over about 1000 different
initial states this is very unlikely. In comparison to the unidirectional model an
additional lattice for ants is used. So a memory effect would be much stronger as
more initial states are possible. More reasonable seems to be that the different
exponents are related to the different qualitative behaviour observed for the
density-density correlation function with respect to tm = 20 × 103. The two
regimes of the dynamical exponents are roughly separated by tm (see Fig. 4.13
right, inset). So z = 1

3 describes the coarsening of multiple small localised
clusters. At later times z = 1

2 corresponds to the coarsening of the single large
localised cluster. This is also in accordance to the explanation given for the

2 since the same results are obtained without pheromones.
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Fig. 4.14. Flow vs. density and velocity of the second-class particle: dynamic lattice-
wise disorder (Q = 1, I = 0.1 (◦), 0.2(△), 0.3(▽), 0.4(⊳), 0.5(⊲), 0.6(×), 0.7(⋄), 0.8(∗),
0.9(•)). On the left flow vs. density exhibits plateaus known from static latticewise
disorder. Obviously flow does not exhibit particle-hole symmetry anymore. Different
regimes again can be characterised by the velocity of the second-class particle. The
regime of phase separation namely that one of the localised cluster corresponds to
the vanishing of the average velocity. One also observed that roughly at ρ = 0.54
independently from K the cluster dissolves which is indicated by v < 0.

unidirectional model [68]. There the density-density correlation function also
shows a qualitative different behaviour for t < tm and t > tm . At early times
multiple small moving clusters exist. The average distance is low so coarsening
is affected by pheromones. At later times few large moving clusters exist. The
average distance between clusters therefore is also large. So clusters coalescent
due to fluctuations. This finally corresponds to the growth of the single moving
cluster.

The Stationary State

Like in the case of static latticewise disorder the traffic-like properties of the
stationary state are characterised by the fundamental diagram (see Fig. 4.14,
left). Again flow exhibits characteristic plateaus which are caused by the for-
mation of dynamically induced high-density areas. As already pointed out the
high-density areas in one direction act like a localised defect for particles mov-
ing in the opposite direction. In case of static latticewise disorder one observes
a particle-hole symmetry (see chapter 2). Therefore the plateaus appear for
ρ ≥ ρ− and vanish again for ρ ≥ ρ+ = 1 − ρ−. Obviously the symmetry is
broken in the dynamic case. For measuring the extend of the plateau regime
again second-class particles are employed (see Fig. 4.14, right). In the plateau
regime ρ ∈ [ρ−(K), ρ+(K)] the second-class particle’s effectice velocity is zero
corresponding to the emergence of a localised high-density area. As a new cru-
cial feature ρ+ = 1

2 is independent from K. Unlike in the static case the upper
boundary is nearly independ from the impurity hopping rate K. The diffusion
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Fig. 4.15. Cluster length for Q = 1, K = 0.1 (◦), 0.2(△), 0.3(▽), 0.4(⊳), 0.5(⊲),
0.6(×), 0.7(⋄), 0.8(•)). On the left a linear increase of the cluster length for ρ ∈ [ρ

−
, ρ+]

is found. This is also observed for the static case. But independent from the impurity
rate K the cluster dissolves at ρ+ ≈ 1

2
(see inset). The beginning of the cluster regime

ρ
−

shows a linear dependence on the impurity rate K. On the right the density profiles
for the LR-direction at different global densities is shown. In the cluster regime the
high- and the low-density areas are of constant density like in the static case.

constant D characterising the fluctuations (see Fig. 4.14 right, inset) shows a
linear dependence on K. This is also different from the static case.

Like for static disorder the cluster length is defined as the number of consec-
utive sites with ρi > ρ = N

L . Again a linear increase is observed (see Fig. 4.15
left). Correspondingly the length of the high-density area grows linearly (see
Fig. 4.15 right). As already indicated by the behaviour observed for the second-
class particles the cluster breaks down for ρ > 1

2 . Like for static disorder the
cluster-length should reach the system-size L at ρc = 1

2 . But obviously fluctu-
ations play a role so that the measured cluster length effectively never reaches
the system size at ρc (see Fig. 4.15 left).

Due to the absence of particle-hole symmetry the same approach as in the
static case cannot be applied (see chapter 2). Therefore a closer investigation
of the cluster structure becomes necessary. This is done by investigating the
density profile seen from the same second-class particles for both directions
(see Fig. 4.16 left). As already observed in the space-time plots one single high-
density area exists for each direction at the same sites for each direction. As
indicated by the vanishing effective velocity of the second-class particle this
areas are localised besides minor fluctuations (see Fig. 4.14 right). Like in the
case of static disorder phase separation is observed. The density-profile for the
low-density area is flat at a constant value ρ−. But the density-profiles for the
high-density areas exhibit a slope (see Fig. 4.16 left). Employing the TASEP
picture the high-density areas exhibit density profiles corresponding to those
found on the coexistence-line α = β. Overall the average density within the
cluster can be calculated using the cluster length l and the number of particels
N+ inside the cluster ρ+ = N+

l .



4.2 Common Features 57

0 200 400 600 800 1000

Site i

0

0.2

0.4

0.6

0.8

1

O
cc

up
at

io
n 

Pr
ob

ab
ili

ty
 ρ

i

l(ρ)

C

right

left

0 0.2 0.4 0.6 0.8 1

Impurity hopping rate K

0

0.05

0.1

0.15

0.2

0.25

Pl
at

ea
u 

V
al

ue
 F

P(K
)

F(K)=K/4

F(K)=(K+Q)/8

Fig. 4.16. Density profile and flow measured in the plateau regime: On the left the
density profile for both directions seen from the same second-class particle is shown.
Again phase separation into a high- and a low-density area is observed. Within the
high-density area additionally two symmetries exist. On the right flow within the
plateau region Fp(K) depending on K is shown (∗) for Q = 1. The solid grey line
corresponds to F = 1

4
K whereas the dotted line describes F = 1

8
(K + Q).

A point symmetry to the middle of the clusters can be expected. This sym-
metry arises from two other underlying symmetries. As observed the slopes
of the density profiles mR/L for both directions are related by mR = −mL.
Generally particles in counterdirection decrease the hopping rate of particles
moving in the other direction. Therefore a high-density area in one direction
leads to a low-density area in the opposite one:

C = ρR
+(i) + ρL

+(i) (4.5)

If an occupied site i in one direction would exactly lead to an unoccupied
site i in the opposite direction a perfect particle-hole symmetry corresponding
to C = 1

2 would be found. This is obviously not exactly the case but later cal-
culations will show that assuming a perfect particle-hole symmetry is a good
approximation. The second symmetry arises from the fact that both directions
are completely equivalent. Therefore the spatial patterns should exhibit a sym-
metry to the middle i0 of the high-density area:

ρR
+(i0 − i) = ρL

+(i0 + i) (4.6)

Overall both symmetries give rise to a point (i = i0) symmetry of the density
profiles:

ρR
+(i0 − i) = C − ρR

+(i0 + i) (4.7)

This is also observed directly (see Fig. 4.16 left) in the density profile.
Making use of the two symmetries on derives the flow FR within the high-
density region say for the RL-direction. Again a mean-field picture is employed.
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Although the density-profile is not flat we work with average densities within
that region:

FR = ρR
+(1 − ρR

+)p = ρR
+(1 − ρR

+)[ρL
+K + (1 − ρL

+)Q] (4.8)

The hopping rate p is decomposed into the probabilities of finding a particle
in counterdirection or not. Depending on those probabilities the hopping rate
is K or Q. Obviously no coupling between both directions is assumed. Due to
the previous investigations of the density profile we assume ρR

+ = ρL
+ ≈ 1

2 to be
valid. Then flow is given by:

FR =
1

4
p =

1

8
(K + Q) (4.9)

A comparison with the measured values of flow confirms the already ob-
served symmetry (see Fig. 4.16 right). Using (4.9) obviously is not a good
approximation. Using the hopping rate p, given by p = ρL

+K + (1− ρL
+)Q, does

not incorporate the symmetries of the cluster. The density profile shows that a
high-density area in one direction leads to a low-density area in the other one
and vice versa. Therefore the following local configurations of sites i and i + 1
in both directions are favoured (see Tab. 4.1).

Configuration (i|i + 1) 1. 2. 3. 4.

RL-direction (1|0) (0|1) (0|0) (1|1)
LR-direction (0|1) (1|0) (1|1) (0|0)

Table 4.1. Due to the symmetries within the cluster certain configurations are
favoured on average. Here all relevant configurations which have to be taken into
account for particle hopping are shown. Especially configurations 1 and 2 are impor-
tant. A particle not blocked by another one in the own direction will probably find a
particle in counterdirection. Therefore its hopping rate is p = K.

Obviously the case that a particle at site i is not blocked is equivalent to
an occupied site i + 1 in counterdirection. The hopping rate therefore is p = K
and flow is given by F = 1

4K. Incorporating the symmetries leads a good
approximation of flow (see Fig. 4.16 right). Also some similarity to ATM 3 for
NR = NL = 1

2L is observed.
Measurements of the density profile (see Fig. 4.16 left) show a flat profile

in the low-density region. Using the conservation of flow and neglecting the
coupling to counterflow one assumes 1

4K = ρ−(1 − ρ−)Q, finally leading to:

ρ1
− =

1

2
+

1

2

√

1 − K

Q
and ρ2

− =
1

2
− 1

2

√

1 − K

Q
(4.10)

As ρ− < ρ+ = 1
2 has been observed only ρ− = 1

2 − 1
2

√
1 − K is a valid

solution. Overall one obtains the flow for all density regimes:
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F (ρ) = ρ(1 − ρ)Q for ρ ≤ ρ−

F (ρ) = 1
4K for ρ ∈ [ρ−, 1

2 ]

F (ρ) = ρ(1 − ρ)K for ρ ≥ 1
2 .

(4.11)

4.3 Extending the Parameter Regime

The variety of bidirectional models turned out to exhibit basically the same
features. Depending on the employed model a particular feature is dominating.
The same is also true for some extensions of the models leading to additional
parameters. The investigations thus far made no difference between the two
directions of movement. So two extensions are possible. Assuming that different
directions have different behavioural patterns one introduces different hopping
rates depending on the direction [2]. Further differences may arise just by the
number of ants travelling in one particular direction [42].

4.3.1 Different Hopping Rates

Different hopping rates are most likely to occur if some asymmetry between
directions can be expected. This might be at the end or beginning of a swarm
raid or migration when a particular direction is favoured. But also in an in-
termediate state like the exploitation of a food source an asymmetry can be
expected. Ants carrying prey probably move differently from ants without any
load [10–12,36]. An extension to different hopping rates with respect to coun-
terflow is only possible for models with an asynchronous exchange of positions
like in ATMs 1 and 2. The choice of a synchronous exchange always implies
the same hopping rate K in case of counterflow. Nevertheless one still could
assume different rates for the unidirectional case.

4.3.2 Different Particle Numbers

For simplicity an equal number of ants for both directions was used for the
previous investigations. In general this cannot be expected in a natural scenario.
So different densities ρR and ρL for each direction are introduced.

The hopping rates are the same for each direction. Therefore flow F only
depends on the densities (ρL, ρR) ∈ [0, 1]× [0, 1]:

F (ρL, ρR) = FL(ρL, ρR)

F (ρR, ρL) = FR(ρL, ρR)
(4.12)

So it is sufficient to measure flow say F (ρL, ρR) = FL in one direction for all
densities . The corresponding flow in the opposite direction say F (ρR, ρL) = FR
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Fig. 4.17. Fundamental diagrams for ATM 2 (Q = q = 1, K = 0.1 and ρL, ρR ∈
[0, 1]): The figure on the left shows the flow in one particular direction say FR for
different densities (ρL, ρR). On the right the total flow is shown for different densities
(ρL, ρR).

is found in the same diagram (see Fig. 4.17 left). Like in the special case ρR = ρL

already discussed flow shows only a slight density dependence. Although not
exactly a constant plateau is attained the main feature of the counterflow model
still exists.

As a consequence of using the same hopping rates for both directions the
total flow FT = FL + FR is symmetric under the exchange of ρL and ρR:

FT (ρL, ρR) = F (ρL, ρR) + F (ρR, ρL) = FT (ρR, ρL) (4.13)

This symmetry is also observed directly in the fundamental diagram (see
Fig. 4.17 right). The total flow will be of interest especially in the ecological
context of collective transport like foraging [10, 12].

4.4 Discussion

This chapter introduced different extensions of the unidirectional ATM to the
multilane case. Unlike for example in vehicular traffic an extension to the bidi-
rectional case was chosen. Depending on the particular kind of trail different
bidirectional models are introduced (see Fig. 4.1). All models exhibited the
features known from the unidirectional ATM at sufficiently low densities. In-
corporating counterflow leads to additional features namely the recoarsening
and shredding of the moving cluster (see Fig. 4.12). This feature was exhib-
ited by all three models. At intermediate densities especially the models with
asynchronous exchange of particles exhibited a new feature. Due to the mutual
hindrance by counterflow one large localised cluster emerged (see Fig. 4.15).
It was shown that this feature does not originate from the pheromone-marks.
Again coarsening follows power laws with the same dynamical exponents as for
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the unidirectional model (see Fig. 4.13). The stationary state exhibited phase
separation similar to the case of static latticewise disorder.

Analogies to systems with static latticewise disorder (see chapter 2) were
drawn. Unlike in the static case high- and low-density areas exhibit no particle-
hole symmetry (see Fig. 4.14). Instead the high-density areas for both direc-
tions exhibit particle-hole symmetry. Making use of the symmetries within the
localised cluster a mean-field description was developed. Unlike in the static
case a common threshold density ρ+ ≈ 1

2 was found. Again the cluster length
showed a linear increase. The constant density ρ+ within the clusters is inde-
pendent from the impurity rate K. Therefore the cluster length is not used for
indicating the transition to the homogeneous distribution for ρ > ρ+.

Generalisations of the bidirectional models with asynchronous exchange of
counterflowing particles were introduced. They also exhibited the same charac-
teristic features discussed for the special case of equal particle numbers in both
directions.





5 Empirical Results

The preceding chapters gave a survey over different models for traffic- and
traffic-related systems. Those models made several qualitative and also quan-
titative predictions for traffic on real ant trails. This chapter seeks to draw
a comparison between the models’ predictions and the behaviour of the real
system at least for one particular species based on empirical investigations.

5.1 Experimental Scenario

The models being discussed are quite simple as they incorporate only the most
important (basic) features of the real system. So in comparison to the more
complex reality they are quite restrictive [21, 36, 62]. For example they do not
describe the trail formation itself. Also ants moving on the already existing trail
are assumed to have all the same properties like the size of load or behavioural
patterns. These properties are completely neglected in the following (see chap-
ters 3 and 4). As no functional difference in the behaviour is incorporated the
term ”ant” will be used to refer to all moving agents in the system.

Also the choice of an ecological context for the observations has to be quite
specific. A natural scenario was supposed to be less difficult to establish than
a scenario that has to be built up artificially in a laboratory. If some kind of
evolutionary generated optimisation is assumed it is more likely to be found in
a natural situation [10, 85, 86].

On the other hand a natural system is more susceptible to disturbances
which could be excluded in a laboratory. Nevertheless a key feature of self-
organised systems in biology is some kind of robustness of patterns [6, 7, 13].
So a suspected optimisation pattern should be quite stable against natural
disturbances. But in general the situation can be assumed to be more complex
than in an experiment performed in a laboratory. As a compromise between
a completely controlled artificial environment and a completely free natural
environment we have focused on specific natural situations. They should already
incorporate the main features of traffic organisation. Additionally they can be
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treated even by simple models which can be extended later on once the key
features have been identified.

5.1.1 Observed Species

The choice of the observed species appears to be the most important part.
Meeting the already described requirements we used the trails of Leptogenys
processionalis for our observations. Belonging to the so called army ants (in
the broader sense) a whole set of features is associated with that species. Fol-
lowing [36] one definition would be:

Army ant: Any species of ant that goes out in search of food in companies,
particularly the driver and legionary ants. (Webster’s New International Dic-
tionary 2nd ed., taken from [36])

Although the real behaviour is found to be more complex with respect to
raiding and migration this definition will be sufficient as more detailed prop-
erties of that species are not used. Our species belongs to the processionalis
group within the subfamily ponerinae which exhibits army-ant behaviour in a
broader sense [36]. Till now especially the topological structure of the trails has
been investigated [32].

Swarming behaviour in army ants is known to be a highly coordinated
process [24, 36, 86]. Means of interaction are tactile as well as chemical ones.
The system of trail pheromones is quite complex and yet not completely un-
derstood [86]. One main property is that the trails are defined by some of
those pheromones. But the high degree of dynamics exhibited by the coordi-
nation of swarming can not be understood by incorporating just one kind of
pheromone [13, 85, 86]. Extensive studies have been carried out for Leptogenys
distinguenda [85,86] but most results can be assumed to be also valid for Lep-
togenys processionalis1. Another species close to Leptogenys mutabilis which
also belongs to the processionalis group consists of approximately 30 × 103

workers per colony. Up to two third of them are known to take part in foraging
raids [36]. Those raids are not controlled by leader-ants or scouts.

As one common feature the described species are nomadic. If one assumes
some kind of evolutionary optimise traffic pattern this is most likely to be
found in a species which frequently performs migrations. In fact swarm raids
have been found to turn into migrations [86]. For that reason experiments inside
a lab are nearly impossible and would influence the natural behaviour [86].

5.1.2 Environment and Ecological Context

Most of the advantages of observing in a natural environment have already
been pointed out. Nevertheless there are also some disadvantages. One might

1 R. Gadagkar and T. Varghese, personal communication
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be the climate. As trails are known to be defined by chemical marking, heavy
rainfall will destroy them. A prominent example is known from the army ants
species Labidus praedator [36] where a larger group of workers was cut off
from the trail system through rainfall. The group kept on moving, forming a
circular mill and died finally due to starvation. So during periods of heavy
rainfall hardly any trails of Leptogenys processionalis could be observed. Also
movement along the trail appeared to be less coordinated when the ground
was still wet. Additional requirements would be that the surface should be as
smooth as possible. Leafs and tweaks are found quite frequently on the ground.
They are leading to additional patterns like bifurcation into two different routes
which have already been investigated extensively [6–8, 26]. Also bottleneck-
situations are found which have also been investigated [25] drawing analogies to
pedestrians dynamics. Although interesting both situations disturb the traffic
situation we want to observe. For the same reason also surfaces with slopes
defining a preferred direction were avoided.

The described lack of control in a natural situation can partially be com-
pensated by the choice of an appropriate environment. Only environments with
as less disturbances as possible were used for data collection.

The actual situation of the colony is also part of the observation. Ants on
raiding trails have been observed to exhibit different behavioural patterns from
those observed on migration trails [10, 86]. Additionally the trail structure is
known to be highly dynamic in response to new requirements (e.g. [36,85,86]).
The purpose of the trails can be shifted quite continuously from raiding to
migration. So for data collection only trails exhibiting some constant temporal
patterns were used. An additional characterisation was tried by distinguishing
the trails by the carried load. Workers were carrying pieces of termites in a raid
or larvae or pupae while migrating.

Observations were carried out on three different colonies living on the cam-
pus of the Indian Institute of Science (IISc) in Bangalore, India. The colonies
were separated by more than three kilometres each. With respect to the dis-
tances a colony moves within the raid-migration cycle [36] it was ensured that
three different colonies were observed independently.

5.1.3 Mapping the Model to Real Trails

Employing the latter restrictions mapping a real trail to the models becomes
possible. At a first step this can even be done without any simplification. The
trail itself might exhibit some curvatures and therefore appears to be topolog-
ically two dimensional (see Fig. 5.1 left). Nevertheless movement itself takes
place in just one dimension although possibly in opposite directions along the
trail. For describing the position of the ants, we follow the standard mapping
also employed in vehicular traffic [22,27].The trail is subdivided into sections of
equal length. Each section corresponds to a cell in the cellular automaton. The
section length is approximately of one body length to ensure the hard-core ex-
clusion principle (see Fig. 5.1 right). As Leptogenys processionalis is monomor-
phic with a body size of approximately 15 − 20mm this can be done quite
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easily (see Fig. 1.1 right). More sophisticated considerations would be needed
in case of highly polymorphic species like for example leaf-cutting ants. They
differ in size even stronger than cars from trucks [12, 36]. But for Leptogenys
processionalis all ants have the same physical abilities. This is obviously quite
different from vehicular traffic. Different vehicles exhibit different behaviour
due to construction or just caused by the driver (see chapter 2). In our case
the ”cars” are all identical and the ”driving-behaviour” can be expected to be
cooperative instead of being competitive [7, 11, 36]. Unlike in vehicular traffic
the lanes can be supposed to be quite flexible. Depending on the actual situ-
ation they might just change their shape. As only the position along the lane
itself is incorporated into the models this should not lead to any major diffi-
culties. Nevertheless observations were carried out on trail-sections exhibiting
a stationary shape.

1
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8 9
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Fig. 5.1. The photograph (not drawn to scale) on the left shows an unidirectional
single-lane trail. Obviously movement takes place along a one-dimensional chain. On
the right the corresponding sectioning is shown. Each section is of the same length
and equivalent to one cell in the cellular automaton model.

For implementing the model in a computer simulation, one also has to treat
both ends or boundaries of the simulated trail section. Extensive empirical as
well as theoretical investigations have been carried out. In vehicular traffic the
boundaries would be equivalent to on- and off-ramps on a highway system [71].
But also in simulations of the ASEP and derived traffic models based on it,
a severe influence of the boundaries on the whole system is found [1, 52, 72].
As a common feature the boundaries effectively set the density realised by the
bulk of the system. Investigations of the ASEP showed that the bulk of the
open system (see chapter 2) is characterised by a ring-like behaviour (periodic
boundary conditions) for an appropriate choice of boundary conditions. So for
the empirical measurements on real trails only the bulk of the system was used
(see Fig. 5.2 up). Also intersections with other trails which would effectively
act as on- and off-ramps were excluded from the observed section (see Fig. 5.2
down).

All properties of ant traffic discussed so far in case of Leptogenys proces-
sionalis did not make use of any approximations besides assigning the ants’
position along the trail to a certain cell. But still some underlying properties
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of the models need empirical validation first. None of the models incorporates
overtaking. Also the mechanisms of interaction have to be extracted from empir-
ical observations. The uni- as well as the bidirectional model assume some kind
of pheromone-mediated interaction. Additionally some coupling to counterflow-
ing ants via tactile stimuli is assumed in the bidirectional case. Additionally
the choice of an appropriate update procedure is part of the models and is
known to be connected to the way of incorporating different kinds of percep-
tion [11,12,36,62]. All of these mechanisms will be subject to first observations
discussed in the following section.

5.2 Methodology of Observations

Qualitative as well as quantitative observations were carried out on the traffic
flow of ants moving on the kind of trail fullfilling the discussed requirements.
Qualitative observations mainly serve for two purposes. First they give a clue
towards the main mechanisms of interaction which will have to be incorporated
by the models. Also the feasibility of the necessary assumptions regarding the
trail topology are investigated. The second purpose is just the observation of
certain traffic patterns which should also be reflected in the subsequent more
detailed quantitative measurements.

5.2.1 Qualitative Observations and Preliminary Results

First observations concerned with the trail itself which is obviously defined by
some kind of marking. Generally curvatures were observed (see Fig. 5.1 left)
so ants are not just moving in a straight line say from A to B. Although some
kind of ”follow the leader” behaviour has been found, this is very unlikely to
define the trail in the sense that ants form some kind of continuous chain. Even
if the trail has been empty for up to one minute, ants were following exactly
the same path as their predecessors. Also spatial restrictions forcing a trail
of the observed particular shape have not been observed. So nearly all other
possibilities like learning e.g. by tandem recruiting [31] or visual clues known
from other species [36] can be excluded. Obviously the trail itself is defined
by chemical marking employing the so-called trail-pheromones from the highly
evolved pheromone system known in Leptogenys [36, 85, 86].

Multi- as well as single-lane trails have been found (see Fig. 5.3 left). Char-
acterising them by the carried load (nesting material, larvae or pupae) multi-
lane trails seems to occur during migration. Nevertheless also raids can shift
to migration [85] so a final characterisation is difficult. As one common feature
different lanes seems to be roughly independent from each other. For example
no hopping between lanes was observed. But sometimes ants moving on one
lane temporarily jumped into a gap on one of the other neighboring lanes. In
order to minimise complexity we focus here on single-lane situations. In case of
bidirectional traffic this means one lane for each direction.
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Fig. 5.2. The upper photography shows a whole trail including the observed section
within points A and B. For data-collection the section was chosen to lie within the
bulk. On the lower photography the observed section itself is shown. Ants entering
the section in a particular direction say from right to left (�) were labelled with the
corresponding number of entering. The same was done for ants moving from left to
right (©) .

The Unidirectional Case

Already the single-lane unidirectional trails show a variety of interesting be-
haviour. One is the apparent absence of overtaking. Even at a high density of
ants no overtaking has been observed. Under certain conditions ants might just
slow down, probably due to a lack of orientation and temporarily leave their
lane. In that case the succeeding ant(s) might just pass the preceding one. Nev-
ertheless such events were mainly observed at low densities and are comparably
rare. Also abandoning the trail completely appears to happen similarly rare.
A second interesting phenomenon is the occurrence of platoons of ants (see
Figs. 5.2 down, 5.1 left). Platoons of several workers, separated by roughly up
to three body-lengths on average were entering the observed section and left
it in the same structure. Also solitary ants have been observed, but predomi-
nantly movement in platoons was found. A more precise definition of a platoon
used for quantitative measurements will be given in the next section. One also
observes events of platoon formation. Single or multiple ants move at a speed
allowing them to catch up with a preceding platoon or a singel ant. Generally
those ants did not seem to form a platoon by themselves but preferred to join
an existing one. Once they managed to catch up they slowed down and followed
as a part of the already existing platoon. In case of slowing down of a preceding
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Fig. 5.3. The left photography shows an unidirectional multi-lane trail. Only little
interaction between the different lanes was observed. An empty gap in one lane might
temporarily be filled with an ant of one of the two neighboring lanes. On the right
the main form of communication on bidirectional trails is shown. So called head-on
encounters happen almost anytime two workers face each other in opposite directions.
Information is exchanged via the so-called antenna language using tactile stimulili.

ant the following ones also slowed down and increase speed again, preserving
the platoon. So distances within the platoons can be expected to be fluctuating.

The Bidirectional Case

The bidirectional trail shows all the behavioural patterns and properties of the
unidirectional one. In absence of counterflow the full unidirectional behaviour
is recovered. So the bidirectional trail can be regarded as a superposition of
both cases. But in presence of counterflowing ants some additional behavioural
patterns emerge. The most important one is the occurrence so-called head-
on encounters. Ants facing each other in opposite directions slow down and
exchange information via their antennas (see Fig. 5.3 right). This was predom-
inantly observed for any encounter of counterflowing ants and has been inves-
tigated in the context of ant-traffic for leaf cutting ant Atta cephalotes [11,12].
The resulting slowing down affects the structure of the platoons. One additional
feature completely different from unidirectional traffic seems to be the occur-
rence of U-turns. Ants moving in one direction suddenly reverse their course
and join the movement into the opposite direction. The number of such events
is comparably small but will also be subject of further investigations.

5.2.2 Quantitative Observations

For a comparison with traffic flow in other systems like for example vehicular
traffic or pedestrians more detailed data is desirable. Also the already described
behavioural patterns need some quantitative validation. Due to the obvious sim-
ilarities to vehicular traffic, techniques from traffic engineering [34, 60, 83] will
be employed for characterising the traffic flow of ants on a preexisting trail.
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At a first step single-ant velocities and the actual number of ants within the
observed section will be measured. Derived from time headways and single-ant
velocities, distance headways will be calculated. The corresponding distribu-
tions of distances and velocities will also be of interest. As mutual blocking can
be assumed to depend on the number of ants within the observed section, also
fundamental diagrams will be extracted.

For observations video recordings of a particular trail section are used. So
analysis can be repeated in order to avoid major errors ensuring the repro-
ducibility of data. Also the investigation of directly observable macroscopic
traffic patterns and individual behaviour is possible. In addition the carried
load can be analysed as well, which will be helpful for identifying the ecological
context [85, 86]. A direct comparison between the measured or derived quan-
tities and the observed patterns finally concludes the discusson. As various
automatic video tracking systems failed, measuring which is basically reduced
to counting, had to be done by hand.

Cumulative Counting

For measuring so-called cumulative counting is used (e.g. [63]). An ant entering
the observed section (see Fig. 5.2 right) was assigned to the time of passing say
at point A. One obtains a data point (t+, n) for the time of entering t+(n) and
the actual number n. The same is done when the nth ant leaves the observed
section again say at point B producing a datapoint (t−, n). If no overtaking
or U-turns occur, the nth ant entering is also the nth ant leaving. Obviously
the labelling of datapoints depends on the number (n − 1) of ants which have
already passed (see Fig. 5.4). Thus labelling by counting is done cumulatively.
Based on the two datapoints for one ant all other quantities will be calculated.
Nevertheless some correction of systematical errors had to be done. A discussion
of systematical (see App. A.1) and statistical (see App. A.2) errors can be found
in the appendix.

Travel Time and Single-Ant Velocity

Single-ant travel times and velocities are calculated for each ant passing the
observed section. The nth ant entering at t+(n) leaves the section at t−(n).
So one obtains the time dT (n) it took the nth ant for travelling through the
observed section (see Figs. 5.4, 5.5 left):

dT (n) = t−(n) − t+(n) (5.1)

Incorporating the known length L of the section one obtains the average
single-ant velocity between points A and B:

v(n) =
L

dT (n)
=

L

t−(n) − t+(n)
(5.2)
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In the succeeding discussions some averaging over individual measurements
will be done. For the average velocity two definitions have been established in
traffic engineering [60]. The space-mean speed is basically defined as the average
over n0 travel times:

VS =
L

Tav
= L

(

1

n0

n0
∑

n=1

dT (n)

)−1

(5.3)

As an alternative averaging over n0 single-ant velocities leads to the time-
mean speed :

VT =
1

n0

n0
∑

n=1

v(n) =
1

n0

n0
∑

n=1

L

dT (n)
(5.4)

A comparison of both definitions shows that the average over travel times
dT (n) is related to the average over velocities v(n). An exact relation between
both, depending on the variance of the space-mean speed has been shown (e.g.
[60]). In case of vanishing variance, like in the discussed computer simulations
(see chapters 3 and 4) both velocities turn out to be exactly the same. Although
this is not the case in our experiments we will make use of the time-mean speed.
As one advantage of using time-mean speed one directly calculates flow making
use of the hydrodynamic relation. In case of cooperative traffic, flow appears to
be a crucial quantity related to a system optimum (see chapter 1). Travel times
instead are related to a user optimum (see chapter 1). A brief discussion of the
different quantities in the context of ant-traffic is given in [12, 41, 45].

Instantaneous Number of Ants

The method employed for measuring travel times makes use of the observation,
that the nth ant entering the observed section will also be the nth one leaving
it. But determining the instantaneous number N(t) of ants between points A
and B at a particular time t only makes use of particle- or mass conservation.
Thus N(t) is just given by the difference between the number of ants which
have entered n+(t) and left n−(t) the section at time t (see Figs. 5.4, 5.5 right):

N(t) = n+(t) − n−(t) (5.5)

Obviously N(t) stays constant till n+(t) or n−(t) is changed. An ant entering
at t̃ > t leads to n+(t̃) = n+(t) + 1 therefore increasing N(t) by one unit. In
the same way a leaving ant at t̃ > t will decrease n−(t) by one unit leading to
N(t̃) = N(t) − 1.

For determining the fundamental diagram one is interested in the relation
of the single-ant velocities vs. density or equivalently flow vs. density. The nth
ant passing from A to B spends the period dT (n) between t+(n) and t−(n)
within the observed section. This ant will be affected by various changing in-
stantaneous particle numbers N(t) (with t ∈ [t+, t−]). Therefore it is necessary
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Fig. 5.4. Cumulative counting (video 13): The figure shows the cumulative counting
of entering (©) and leaving (�) ants. The times of entering t+(n) and leaving t

−
(n)

for each ant n are shown. Based on this, the time for crossing the observed section
dT (n) as well a the instantaneous number of ants in the section N(t) can be calculated
(see lower inset). The time headway dt+(n) for the nth ant is shown on the upper
inset.

to incorporate those changes by using a time average over N(t) rather than
using the instantaneous number of ants at time t+ within the observed section.

Nav(n) =
1

dT (n)

i
−

∑

i=i+

N(ti)(ti+1 − ti) with dT (n) =

i
−

∑

i=i+

(ti+1 − ti) (5.6)

Summation is done over all instantaneous particle numbers N(t) and the
time-period of their existence ti+1− ti. Hereby ti denotes the time at which one
particle number N(t) is attained. At time ti+1 one ant leaves or enters the trail
changing N(t) by one unit 2. By summing up N(t) like this one obtains the area
enclosed by both curves between t+ and t−. The sum is finally averaged over
the travel time dT (n). So for each ant one obtains a velocity v(n) = L

dT (n) and

a corresponding particle number Nav(n) both averaged over the same time-
interval dT (n). Other approaches using instantaneous particle numbers and

2 Data points for entering (t+, n) and leaving (t
−

, n) are collected. Sorting them by
time leads to a chronological order of entering and leaving events (ti, ni) changing
N(t) by one unit.
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Fig. 5.5. Derived quantities (video 13): Both figures show the directly derived quan-
tities. On the left the travel time dT (n) for the nth ant entering the observed section
at t+(n) is shown. The average of dT is given by dTav = 1

Vs
. On the right the instan-

taneous number of ants N(t) within the observed section is shown. Each ant entering
or leaving the section changes N(t) at time ti. Hereby ti denotes the actual time of
that event ti = min {t+(n), t

−
(n)|n ∈ [1, N ]} with ti ≥ ti−1 and t1 := t+(1).

single-ant velocities hardly showed any functional relation between single-ant
velocities and density [12, 47].

Measuring Lengths and Densities

For determining time-mean-speed and densities, the length of the observed sec-
tion L had to be measured. As the trail and also the observed section exhibit
some curvature direct measurements appear to be quite difficult. One would
have to measure a still populated trail. Also marking the underground (e.g. [29])
for making the trail visible permanently would affect the ants’ behaviour and
probably destroy the observed part of the trail. So measuring the length of
the observed section is based on the videos using the body-size of the ants as
a natural scale (see Fig. 1.1). Tracing the path of one singel ant, sections of
one body length (1bl) were marked (see Fig. 5.1 right). Making use of the fact
that Leptogenys processionalis is monomorphic one obtains the section length
in units of the body size which can easily be converted into other length scales
(1bl ≈ 18mm with L ≈ 19bl). One additional advantage of this method is, that
it is free from errors arising from the perspective of the camera.

Without converting lengths one easily obtains the density of ants within the
observed section:

ρ(n) =
Nav(n)

L
(5.7)

Again the average number of ants Nav(n) is used (see 5.6). In the fundamen-
tal diagram single-ant velocities and flow are plotted vs. density. For the nth
ant density and velocity are both averaged over the same time-interval given
by the travel time dT (n).
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Time- and Distance Headways

For characterising traffic patterns time- and distance headways have proved to
be very useful [60]. The time difference of two succeeding ants passing the same
point say at the entrance of the observed section at point A is given by:

dt+(n) = t+(n + 1) − t+(n) and also f =
1

dt+
=

1

t+(n + 1) − t+(n)
(5.8)

Also instantaneous flow f is given by the time headway which can directly be
observed as the local slope of the cumulative plot n(t) (see Fig. 5.4). Under the
assumption that the single-ant velocity v(n) stays constant within the observed
section one directly derives the corresponding distance headway:

d+(n) = dt+(n)v(n − 1) = [t+(n) − t+(n − 1)] v(n − 1) (5.9)

5.3 Results of Quantitative Observations

Videos from several trails were recorded. Those fullfilling the requirements al-
ready discussed in the preceding section were chosen as some kind of prototype.
The observed behavioural patterns will also be found on the other trails be-
longing to the same class. Therefore it is most likely that all trails belonging to
the same class will exhibit similar properties also reflected in the quantitative
measurements.

We start by investigating an ideal unidirectional trail (video 13). No error
correction had to be done. But traffic flow ceases after only five minutes. A more
complex situation is found for the second investigated unidirectional trail (video
19). The observed time-period extends up to 13 minutes. Due to the comparably
large number of ant-countings slight error correction had to be done. The third
class of trails will finally be a bidirectional trail which was observed over 25
minutes (video 6A, B, C). Nevertheless also periods of unidirectional traffic
exist. Due to U-turns extensive error correction became necessary.

5.3.1 The Simple Unidirectional Trail (Video 13)

Although only 85 ants have been passing the observed section, some of the
main features of unidirectional traffic are already visible. As no disturbances
occurred they emerge very clearly. Also some basic techniques for investigating
will be exemplified in this less complex case.

Single-ant Velocities

Measuring velocities vs. time shows oscillations around the average value (see
Fig. 5.6 left). Some kind of clustering of datapoints in time is found which
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results from the already observed feature that ants tend to move in platoons.
In accordance with the already described behaviour no overtaking occurred.
Like in vehicular traffic [34, 60] a normal distribution of singel-ant velocities
can be expected:

P (v) =
1

σ
√

2π
exp

(

− (v(n) − V )2

2σ2

)

(5.10)

Fitting (5.10) to the single-ant velocities one obtains the mean velocity V =
6.40[bl/sec] with a standard deviation of σ = 0.94[bl/sec] (see Fig. 5.6 right).
A slight asymmetry towards small densities is found. This can be explained
by directly observing the ants behaviour during the measurements. At low
densities ants struggling to stay on the trail are found. Those ants had to slow
down moving temporarily at a lower speed. This illustrates one advantage of
extracting data from videos as measured data can be compared directly to the
observable behaviour later on.

In this case the observed behaviour is also reflected in the dynamics of the
singel-ant velocities (see Fig. 5.6 left). A few datapoints show a strong devia-
tion from the mean value. Although the deviations are comparably rare (see
Fig. 5.6 right) they seem to be contradicting the fact that no overtaking has
been observed. But this can be explained by incorporating the clustering of
datapoints (see Fig. 5.6 left). Ants with a small time headway also show little
differences in their velocities. So the velocity of the whole platoon deviates from
the mean value. Ants within the platoon itself obviously do not overtake each
other. Also the observed section is of finite length. So single-ant velocities are
only measured for a comparably short time. Ants with velocities strongly devi-
ating from the mean value might attain V again outside the observed section
without any events of overtaking.

Distance Headways

Single-ant velocities can be assumed to be constant at least within one cluster of
ants characterised by small time headways. From (5.9) this might also indicate
some spatial clustering. Distances between ants, namely the distance headways
d(n), should reflect the already observed spatial clustering of ants to platoons.
A first sign of platoon formation are the peaks observed for the instantaneous
particle number N(t) vs. time (see Fig. 5.5 right). Ants moving within a platoon
lead to a sharp increase while entering and lead to a sharp decrease of N(t)
while leaving the observed section.

By measuring time headways at the entrance of the observed section one ob-
tains the distance headway of the nth ant (see Fig. 5.7 left). While crossing the
observed section distance headways are only slightly changed. So the platoons
are quite stable regarding their structure like the length or the number of ants
forming the platoon. A small time headway obviously also leads to a small dis-
tance headway due to the narrow distribution of velocities (see 5.9). From (5.9)
the distance headway distribution is obviously dominated by the distribution
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Fig. 5.6. On the left single-ant velocities as a function of time are shown. Some
clustering of datapoints is observed. Ants with a small time-headway roughly move
at the same speed. On the right the distribution of single-ant velocities v(n) is shown.
Velocities v(n) exhibit a normal distribution with V = 6.40 bl

sec
and a variance of

σ = 0.94 bl

sec
(χ2

ν
= 2.25−4, bin = 0.5) depicted on the right. A small asymmetry

towards lower velocities is found.

of time headways. The time headways are the inverse of the instantaneous flow
and are therefore mainly controlled by the in- and outflow at the boundaries
of the observed section (see Fig. 5.4). Overall no normal distribution is found
(see Fig. 5.7 right). Due to the lack of datapoints this is observed more clearly
in video 19 (see Fig. 5.12 right).

Basically two regimes can be distinguished. The distribution of small dis-
tances of ants within (intra) a platoon and the distribution of large distances
between (inter) platoons themselves. The intra-platoon distances show a small
average value in comparison to their large asymmetric variance. As distance-
headways cannot become negative this gives rise to a so-called skewed distri-
bution [9, 58]. This was to be expected as ants can not come arbitrarily close
to each other. On the other hand large inter-platoon distances are found. One
common choice for fitting in such a case is the log-normal distribution:

P (d) =
1

dσL

√
2π

exp

(

− (µL − log (d))2

2σ2
L

)

(5.11)

Due to its close relation to the normal distribution one obtains the mean-
value D and the variance σ2 as log-transformed quantities:

D = exp

(

µL +
σ2

L

2

)

; σ2 =
(

exp
(

σ2
L

)

− 1
)

exp
(

2µL + σ2
L

)

. (5.12)

For the larger inter-platoon distances the negative-exponential distribution
is applied. In traffic-engineering this distribution corresponds to the random-
headway state (e.g. [60]):
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P (d) =
1

λ
exp

(

− d

λ

)

(5.13)

The movement of the platoons is assumed to be uncorrelated when distances
are large. Therefore the probability-density P (d) decays with a constant λ.

Overall two kinds of ants can be distinguished. Ants with a short distance
headway are moving inside a platoon whereas ants with a large distance head-
way are at the head of it. This is also true if only one ant forms the platoon.
The term platoon therefore applies for all ants with a large distance headway.
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Fig. 5.7. On the left distance headways vs. time are shown. Headways were measured
for entering � and × leaving ants. Obviously distances do not changes much while
passing the observed section (L = 21bl). As already suspected ants with a small
time headway are very likely to have also a small distance headway. On the right the
distance headway distribution is shown. Although there are only few datapoints two
regimes can be distinguished. At low distances a skewed distribution is found. Larger
distances show a different kind of distribution.

For investigating intra- and inter-platoon headways a cut-off distance dc for
assigning distances to one of the two regimes is used. Ants with d(n) ≤ dc are
assigned to the inside of a platoon whereas ants with d(n) > dc are not. The
number of those ants with d(n) > dc corresponds to the number of platoons
even if that one is formed by one single ant. The choice of the cut-off dc depends
on the average distance of the actual number of ants in the section (A.3). For
practical reasons also a upper bound for large distances is used which is twice
of the length of the observe section. Making use of that classification one finds
Nplatoon = 49 ants within platoons and Nant = 27 outside (see Tab. 5.2). So
each cluster consists of 1.43 ants on average. Obviously there are several solitary
ants separated by large distances (see Fig. 5.7 left).

Fundamental Diagram

The previous discussion dealt with distributions of microscopic quantities like
single-ant velocities and distance headways. As established in traffic engineering
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effects like mutual blocking or other kinds of interaction can be assumed to
depend on the average distance of the moving agents or equivalently on density.
The functional relation between average velocity V (ρ) or flow F (ρ) vs. density
ρ, known as the fundamental diagram, is widely used for characterising traffic
flow. Due to the hydrodynamic relation V (ρ) = ρF (ρ) both descriptions V vs. ρ
and F vs. ρ are basically equivalent. Nevertheless as already observed in the
previous chapters 2 and 3 particular features (e.g. like the plateau in flow) are
clearly visible only in one of the two descriptions.

The already observed patterns in the distributions of single-ant velocities
and distance headways should also be reflected in the fundamental diagram. Al-
though only small densities ρmax ≈ 0.33ant

bl are found for the investigated trail
section (video 13) some basic features already emerge. Velocities stay nearly
constant and show a decreasing width of scattering around the average value
with increasing density. As a consequence flow shows a linear dependence on
density (see Fig. 5.8).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density ρ
0

2

4

6

8

10

12

14

16

18

20

V
el

oc
ity

 V
 [

bl
/s

ec
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density ρ
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Fl
ow

 [
an

t/s
ec

]

Fig. 5.8. The figures show the fundamental diagram obtained for the observed section
of video 13. The single ant-velocities on the left show nearly no density dependence.
The width of scattering around the mean-value nevertheless depends on density. In
accordance to the hydrodynamic relation flow increases linearly with density. The
solid line corresponds to the average value in each description.

As velocities stay nearly constant one might assume the traffic system to
be in the so-called free-flow state. In vehicular traffic this state also exhibits a
nearly constant single-vehicle velocity at low densities. Vehicles are separated
at distances such that they are able to drive at their desired speed. In the
case of ant-traffic investigated here this seems to be quite different. The pre-
vious investigations of distance headways and direct observations revealed the
movement in platoons. Nevertheless some analogies can be drawn (see chapter
6).

A more detailed description could be obtained from the ”Optimal Velocity
(OV)”-curve. Single-ant velocities vs. distance headways are investigated. This
is mainly done as any kind of interaction is assumed to depend on the distance
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headway. For investigating ant-ant interaction the OV-curve will be used in
Sec. 5.4.

5.3.2 The Complex Unidirectional Trail (Video 19)

The previous trail showed only light traffic with little interaction. As a result
only datapoints within a limited density regime were obtained. In order to
investigate the density dependence of the average velocity or flow a trail with
heavy traffic (ρmax ≈ 0.8ant

bl ) was chosen. The exhibited pattern are more
complex than in the previous case and some error correction became necessary
(see A.1). But the number of datapoints is sufficient for more detailed analysis
(see A.1).

Single-ant Velocities

Investigating single-ant velocities vs. time one observes strong oscillations (see
Fig. 5.9 left). Especially at early and later times velocities lie above the confi-
dence interval. For those times only few ants are moving on the trail (see A.1).
At the beginning of the observed period of time only little but non-vanishing
flow is observed. This is indicated by the slope of the cumulative count. Ap-
proaching the end of the observed time flow continuously vanishes (see A.1).
Obviously some density dependence of velocities exists. But still a clustering
of datapoints in time is found (see Fig. 5.9 left). So again no overtaking takes
place.
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Fig. 5.9. The left figure shows strong oscillations around the mean values of single-
ant velocities vs. time. The centre of oscillation is somewhat shifted to velocities
larger than the average value. Therefore the corresponding distribution on the right
shows a slight asymmetry towards larger velocities. Vtot = 4.80 bl

sec
, σ = 0.86 bl

sec
,

χ2

ν
= 5.77 × 10−4 and bin = 0.4

The strong oscillations of velocities in time are also found in the distribu-
tion of single-ant velocities (see Fig. 5.9 right). For some times the centre of
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oscillation is slightly shifted above the average value Vtot = 4.80 bl
sec . Although

the corresponding distribution is approximately symmetric a slight asymmetry
towards very high single-ant velocities is found. As a threshold value velocities
above Vth = 2Vtot = 9.8 bl

sec can be considered to be unrealistic. They most
probably arise from some kind of error (see A.1). But still the number of ve-
locities above the threshold value is comparably small (see Fig. 5.9 right). So
for further investigations they will be neglected.

Fitting a normal distribution leads to the already used average velocity
V = 4.80 bl

sec and a variance of σ = 0.86 bl
sec . In comparison to the simple unidi-

rectional trail the average velocity is significantly lower whereas the variance is
nearly the same. Overall this might indicate a density dependence of single-ant
velocities or flow on density. So velocity distributions were measured for three
different density regimes (see Tab. 5.1).

ρ ∈ n[ant] V [blsec−1] σ [blsec−1] χ2

ν

[0, 0.8] (complex) 721 4.80 0.86 5.77 × 10−4

[0, 0.2] 125 (17.3%) 6.20 1.58 7.37 × 10−4

[0.2, 0.4] 329 (45.6%) 5.10 0.95 2.00 × 10−4

[0.4, 0.8] 267 (37.0%) 4.64 0.60 0.88 × 10−4

[0, 0.3] (simple) 85 6.40 0.94 2.25 × 10−4

Table 5.1. Single-ant velocities were measured for three different density regimes of
the complex unidirectional trail. The regimes are roughly found in the corresponding
fundamental diagram (see next section). Average velocity decreases slightly with den-
sity. Also the variance decreases with density. The last line shows the data obtained
for the simple unidirectional trail.

The regimes were chosen such that they can roughly be distinguished in the
fundamental diagram (see Tab. 5.1) which will be discussed in the next section.
With increasing density the average single-ant velocity V decrease slightly. More
striking is the decrease of variance with increasing density (see Fig. 5.10). At
low to intermediate densities again a slight asymmetry to higher velocities is
found which does not exist in the very narrow distribution at high densities.
So this feature already observed for the total distribution (see Fig. 5.9 right)
originates from the ants’ behaviour at low to intermediate densities. The total
average velocity Vtot is determined by the ants behaviour at intermediate to
high densities. Average velocities in these regimes are nearly the same as Vtot =
4.80 bl

sec (see Tab. 5.1). At very low densities the average velocity of the complex
and the simple trail are nearly identical. Negligible differences arise from the
slightly different density regimes used for measuring. This might also account
for the comparably large difference in the variance which shows a stronger
density dependence than the average velocity.
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Fig. 5.10. From left to right the velocity distributions of the three density regimes
for the complex unidirectional trail are shown. Normal distributions were fitted. At
very low densities ρ ∈ [0, 2] (left) variance is quite high. At intermediate ρ ∈ [0.2, 0.4]
(middle) and high ρ ∈ [0.4, 0.8] (right) densities, the mean value of velocity is nearly
the same. Note that for very high densities (right) the scale of the y-axis has been
changed. The most striking feature is obviously the strong density dependence of
variance. The average velocity shows only little density dependence for intermediate
to high densities.

Fundamental Diagram

The fundamental diagram gives a more detailed picture of the density depen-
dence of the single-ant velocities or flow. From velocity one identifies the three
density regimes already used for the previous discussion of velocity distribu-
tions (see Fig. 5.11 left). At low densities the average velocity and variance are
quite high. For intermediate to high densities the average velocity stays nearly
constant. Only the variance changes significantly with density (see Tab. 5.1).

As already indicated by the velocity distributions the average velocity de-
creases slightly with increasing density (see Fig. 5.11 left). Also flow shows a
nearly linear increase (see Fig. 5.11 right). At very high densities flow exhibits
some non-linearity. But the number of datapoints in that regime are quite low.
Nevertheless a slight curvature is visible. This might indicate that effects of
mutual blocking start to set in.

Concerning the variance, single ant velocities show an asymmetric scattering
to higher values of velocity especially at low densities. With increasing density
the width of scattering decreases and becomes symmetric.

Overall the fundamental diagram shows two interesting effects. In compar-
ison to vehicular traffic velocity stays nearly constant. Even at high densities
only slight effects arising from mutual blocking are found. As a second feature
variance exhibits a strong density dependence. The asymmetry of the single-ant
velocity distributions to higher values clearly depends on density.
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Fig. 5.11. Single-ant velocities and flow vs. density are shown. The solid black line
corresponds to the average value. Unrealistic velocities v(n) > 2Vtot were not incorpo-
rated. The average velocity shows only a slight decrease with increasing density. Flow
exhibits a slight curvature at high densities indicating slowing down due to mutual
blocking.

Distance Headways

The discussed properties exhibited by the fundamental diagram can be assumed
to originate form the spatial distribution of ants within the observed section.
So distance headways are measured according to (5.9).

Distance headways vs. time show the same properties already observed for
the simple trail (see Fig. 5.12 left). Most datapoints for entering and leaving
ants cluster at low distances. Comparably few datapoints are found at larger
distances. The headways for entering and leaving differ stronger than in the
simple case. Obviously the spatial structure of the platoons is changing while
passing the observed section. Nevertheless platoons exist which is also indi-
cated by the peak-like structure of the instantaneous particle number N(t) (see
Fig. A.1).

The total headway distribution clearly shows a division into two parts (see
Fig. 5.12 right). For low distances a skewed distribution is found. Variance is
high in comparison to the low mean value. Analogous to the preceding section
a log-normal distribution (5.11) appears to be appropriate. Unlike in the simple
case a continuous distribution of the larger distances is found, which is a conse-
quence of the larger amount of datapoints. Following the argumentation of the
preceding section a negative-exponential distribution (5.13) can be assumed.

For a more detailed investigation of the spatial distribution distance head-
ways are measured for each of the three density regimes (see Fig. 5.13). At
low densities a very broad distribution is found. The average distances between
ants are so large that hardly any interaction takes place. Therefore the random
headway state can be expected. Correspondingly the negative exponential dis-
tribution instead of the log-normal distribution fits best for all distances. At
intermediate densities the distribution can be divided into smaller and larger
distances. Smaller distances follow a log-normal distribution whereas larger
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Fig. 5.12. The left figure shows distance headways vs. time. Unlike on the simple
trail entering + and leaving � ants can have quite different headways. Nevertheless
most headways are clustered at small distances. On the right the distribution of
distance headways shows a peak at low distances and an exponential decay at growing
distances.

distances are distributed according to the random-headway state. At very high
densities a narrow log-normal distribution is found for all distances. Distance
headways obviously are highly correlated indicated by the vanishing of larger
distances leading to the random-headway state.
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Fig. 5.13. For different density regimes distance headway distributions are shown.
A broad distribution (left) is found for low densities. At intermidiate densities (mid-
dle) the distribution gets sharper. For high densities (right) only short distances are
found. Depending on the particular density regime the distributions follow a negative
exponential- or a log-normal distribution.

Quantitative measurements also confirm the clustering of ants to platoons
(see Tab. 5.2). The average available distance per ant decreases with increas-
ing density (see A.3). Therefore at low densities only half of the ants move in
platoons. At intermediate densities this does not changed much. But for high
densities nearly all ants are moving in platoons. The mean value of the dis-
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tance headways D extracted from the log-normal distributions also decreases
with increasing density. Nevertheless this value generally does not correspond
to the average distance of ants within a platoon. The intra-platoon distance
depends on the mechanism of platoon formation. But as already observed dis-
tance headways show some clustering at small values (see Fig. 5.12 left) which
is obviously independent from density. At high densities all ants can be assumed
to be affected by moving in platoons. Therefore the average distance headway
within a platoon is given by D = 1.66[bl] in that case. This is also in accordance
with the observations from Fig. 5.12 left.

ρ ∈ dc Nant Nplatoon D[bl] σ[bl] λ[bl]

[0, 1] (complex) 2.45 394(56.0%) 309(44.0%) 2.59 1.77 3.58

[0, 0.2] 8.34 59(54.6%) 49(45.4%) 8.83 8.50 10.00
[0.2, 0.4] 2.60 167(50.9%) 161(49.1%) 3.11 1.81 4.56
[0.4, 0.8] 0.68 26(9.7%) 241(90.3%) 1.66 0.84 2.32

[0, 3] (simple) 5.8 49(64.5%) 27(35.5%) 4.83 2.57 6.88

Table 5.2. Quantities extracted from fitting log-normal- and negative-exponential
distributions are shown for different density-regimes of the complex trail. The last
line shows the values for the simple trail. Overall the mean-value and the variance
of the log-normal distribution decrease with increasing density. Also the constant λ
describing the decay of the probability density in the random-headway state decreases.
Nevertheless each distribution only applies for a certain regime of distance headways
depending on density.

5.3.3 The Bidirectional Trail (Videos 6a, b, c)

The previous investigations all concerned with unidirectional trails. For further
investigations multi-lane traffic is the obvious choice. Basically the same ar-
guments apply as for the multi-lane extension of the unidirectional ATM (see
chapter 4). So two-lane bidirectional traffic will be investigated in the following
section.

Quantities like velocity and flow generally depend on the density of ants in
one particular direction or lane. But due to the coupling between lanes also the
density in counterdirection can be expected to have some influence. Basically
the density in counterdirection determines the number of ants being encoun-
tered by one ant passing the observed section in the opposite direction. This is
a consequence of the observation that ants passing each other in opposite di-
rections nearly always slowed down during a head-on encounter. Unlike for the
unidirectional case no microscopic quantity like a distance headway for counter-
flowing ants is available. Therefore only density will be used for distinguishing
between uni- and bidirectional traffic on a macroscopic scale.
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Unidirectional traffic still can be found on the bidirectional trail. When the
flow in one particular directions temporarily ceased periods of unidirectional
traffic are found (see Figs. A.2, A.3, A.4). So the subsequent analysis will dis-
tinguish between the uni- and bidirectional case of a basically bidirectional
trail.

Analogous to the previous investigations the number of ants within the
observed section during the crossing of the nth ant is averaged according to
(5.6). For each crossing one obtains the average number of ants in the own
Nav(n) and in counter direction N cf

av (n). Densities are defined correspondingly.
For Nav(n) ≤ 1 traffic is assigned to the unidirectional case otherwise the
bidirectional case applies:

N cf
av (n)

{

≤ 1 unidirectional case; v(n) = v(ρ)
> 1 bidirectional case; v(n) = v(ρ, ρcf )

(5.14)

Obviously this choice is somewhat arbitrary. It seems to be more reason-
able to require N cf

av = 0 for strict unidirectional traffic. But a single ant in
counter direction will not have much impact. So the threshold was chosen such
that effects of counterflow can be identified quite clearly. More detailed data
could be obtained by distinguishing between the total occupation of the trail
(ρav(n), ρcf

av(n)) ∈ [0, 1] × [0.1] leading to v(n) = v(ρav(n), ρcf
av(n)). But obvi-

ously the number of datapoints required for such an analysis is quite high.
Basic traffic data were measured for the uni- and bidirectional case. Three

consecutive observations (video 6, parts a, b, c) of the same trail section (see
Figs. A.2,A.3,A.4) were carried out. Each observation is separated from the
preceding one by approximately 60 seconds.

Single-ant Velocities

Single-ant velocities exhibit a normal distribution for both directions. Gener-
ally the RL-direction shows a larger variance (see Figs. 5.14,5.15). Like for the
complex unidirectional trail (video 19) some asymmetry depending on the par-
ticular direction is found. For the uni- as well as for the bidirectional case the
variance is higher than for the strictly unidirectional trail. This was to be ex-
pected especially in the bidirectional case as velocity depends on densities in
both directions (see 5.14).

On a qualitative level one can only distinguish between directions but hardly
between the uni- and the bidirectional case (see Figs. 5.14,5.15). The reason
is the finite length of the observed section. Basically the whole trail exhibits
bidirectional traffic. Ants passing the observed section without any counterflow
might have nevertheless been affected by counterflow on the outside of the
section. If the travel time dT (n) for passing the section is small in comparison
to the time it takes for the unidirectional pattern to emerge the unidirectional
case still will resemble the bidirectional one.

Depending on the particular direction different features are found in the
velocity distributions. The distributions for the LR-direction are more narrow
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than those for the RL-direction (see Figs. 5.14, 5.15). Also the average velocities
differ slightly. The distributions for the LR-direction show slight asymmetries
towards higher velocities whereas slight asymmetries towards lower velocities
are found for the RL-direction.

Overall the features of each direction are visible more clearly on a quanti-
tative level. The average velocities for both directions are nearly the same in
the unidirectional case (see Tab. 5.3). Also the average velocities for the uni-
directional case are somewhat larger than those for the strictly unidirectional
trails of the previous section (see Tab. 5.1). The variance of the strictly unidi-
rectional trails is smaller than the one for the bidirectional trail especially for
the RL-direction. In case of bidirectional traffic the average velocity is lower
than the one for the unidirectional case. Especially for the RL-direction the
difference is significant. But variance obviously depends more on the particular
direction than on the kind of traffic.

n[ant] V [blsec−1] σ [blsec−1] χ2

ν

LR 935 5.83 1.16 3.98 × 10−4

uni 726 (77.65%) 5.87 1.14 6.16 × 10−4

bi 209 (22.35%) 5.68 1.17 1.44 × 10−4

RL 368 5.45 1.70 0.84 × 10−4

uni 201 (55.62%) 5.86 1.73 2.08 × 10−4

bi 167 (45.38%) 4.92 1.55 1.82 × 10−4

Table 5.3. Normal distributions were fitted for single-ant velocity distributions ex-
tracted for both directions. Generally both directions exhibit particular features. The
average velocity in the unidirectional case is nearly the same. For the bidirectional
case the RL-direction shows a stronger decrease of the average velocity. Also the
variance of the velocity distributions in RL-direction is higher than in LR-direction.

Overall the LR-direction is not affected as much by counterflow as the RL-
direction. The reason is probably the comparably heavy traffic flow in LR-
direction. This is also indicated by the time-series analysis of the basic traffic
data (see Figs. A.2, A.3, A.4). At the beginning of the first part (A) (t ≤
200sec) and during the whole last part (C), flow in both directions is nearly
the same. Beginning from the second third of the first part (A) and during
the whole second part (B) flow in LR-direction increases finally leading to
the dominance of that direction. Therefore 45% of the ants in the RL-direction
experience bidirectional traffic whereas only 22% of the ants in the LR-direction
are affected by counterflow (see Tab. 5.3).

Fundamental Diagrams

The already observed dominance of the LR-direction is also found in the fun-
damental diagrams. This is most clearly seen for the bidirectional cases which
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Fig. 5.14. The velocity distributions for the LR-direction are shown. On the left
the broad total distribution and in the middle the less broader unidirectional one is
shown. Finally variance is quite low for bidirectional traffic depicted on the right.
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Fig. 5.15. The velocity distributions for the RL-direction are shown. The variance
of the total distribution is much higher than for the LR-direction. For unidirectional
traffic variance decreases further. Finally the distribution on the right for bidirectional
traffic has the smallest variance.

will be discussed later on. In comparison only slight differences are observed for
the unidirectional case. The fundamental diagrams for that case of the bidirec-
tional trail exhibit the same features found for the strictly unidirectional case
at least in LR-direction.

For the LR-direction the average velocity shows only a slight density depen-
dence. At low densities single-ant velocities are scattered with an asymmetry
towards higher velocities (see Fig. 5.16). In comparison to the strictly unidirec-
tional case the same features are found (see Fig. 5.11). For the RL-direction the
average velocity shows fluctuations depending on density (see Fig. 5.18). Even
a decrease with increasing density is observed. Also variance is higher as for
the LR-direction and the scattering of velocities shows an asymmetry towards
lower values. These features are quite different from the unidirectional case of
the LR-direction and also from the features of the strictly unidirectional trail.
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Fig. 5.16. Single-ant velocities and flow vs. density are shown for the unidirectional
case of the LR-direction. Nearly the same behaviour as for the strictly unidirectional
trails is found. The average velocity stays constant. Correspondingly flow shows a lin-
ear increase. Single-ant velocities show a density-dependent scattering towards higher
velocities.
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Fig. 5.17. Single-ant velocities and flow vs. density are shown for the bidirectional
case of the LR-direction. At very high densities even a slight increase of the average
velocity and flow is observed. Although only few datapoints for high-densities are
found the scattering around the average value is quite low. Therefore the observed
increase is most likely a consequence of the suppression of counterflow.

Even stronger differences between the directions are found for the bidirec-
tional case. Especially flow exhibits different features. For the LR-direction flow
increases linearly (see Fig. 5.19). At higher densities flow increases even non-
linearly. Although only comparably few datapoints exist for those densities they
exhibit only very slight scattering around the average value of flow. Therefore
this is most likely a generic feature of the trail instead of being a consequence
of random fluctuations. On the other hand flow in RL-direction decreases non-
linearly (see Fig. 5.19). Again only few datapoints are available close to the
maximum of the attained density. Nevertheless a quantitatively different be-
haviour is observed. Unfortunately datapoints are too few to confirm whether
flow really attains a constant value (see Fig. 5.19).
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Fig. 5.18. Single-ant velocities and flow vs. density are shown for the unidirectional
case of the RL-direction. Even in absence of counterflow no constant value of the
average velocity is attained. The average velocity decreases with increasing density.
Variance is quite high and scattering is slightly asymmetric towards lower velocities.
Overall the observed features differ strongly from the unidirectional case of the LR-
direction and the strictly unidirectional trail.
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Fig. 5.19. Single-ant velocities and flow vs. density are shown for the bidirectional
case of the RL-direction. Average velocity and flow decrease with increasing density.
Unlike for the bidirectional case of the LR-direction flow reaches roughly a constant
value. Again only few datapoints are available. Nevertheless scattering is quite low
which indicates that the observed plateau is a generic effect of counterflow.

Overall flow in the RL-direction seems to be suppressed by the heavy coun-
terflow in the LR-direction. The unidirectional case resembles the one for the
strictly unidirectional trail. But the features found for the RL-direction like
the platoon formation are hardly visible. As already mentioned this is a con-
sequence of the finite length of the observed section. Therefore the patterns
found for the bidirectional case differ even stronger. An increase in flow for
the LR-direction at high densities is observed whereas flow in the RL-direction
decreases with density. This might indicate some kind of ”follow the leader”
behaviour. High densities lead to an increase of flow in that direction and to a
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suppression of flow in the opposite one. This can also be observed directly on
the videos. A nearly uninterrupted stream of ants in one direction passes the
observed section. Ants moving in the opposite direction have to leave the cen-
tre of the trail. Besides head-on encounters this leads to an additional slowing
down as the ants have to find back to the centre of the trail. But still another
interesting feature can be observed. For higher densities flow reaches a constant
value (see Fig. 5.19). Due to the lack of datapoints it is hard to decide whether
this is a generic effect of counterflow or just caused by random fluctuations.
As the scattering around the constant value is quite low this might indicate a
generic effect.

Distance Headways

Distance headways are in accordance with the different features already ob-
served. Basically they indicate a change in the spatial patterns known from the
unidirectional trails. For the LR-direction different distributions depending on
the actual case (see Fig. 5.20) emerge. For the unidirectional case clearly the
devision into a log-normal- and a negative-exponential distribution is visible.
As discussed for the strictly unidirectional trails this is a characteristic feature
of the spatial distribution in that case. Ants are moving in platoons which is
also confirmed by direct observations. In the bidirectional case the log-normal
distribution exhibits an increased variance (see Tab. 5.4). Also the average dis-
tance between ants increases. Qualitatively the threshold distance separating
the regimes of the two distributions has shifted to lower distances (see Fig.
5.20). Also the number of ants above the threshold distance has increased (see
Tab. 5.4). The spatial pattern corresponding to a random-headway state is
dominating at intermediate to large distances. In the unidirectional case about
50% of the ants were moving with a large distance headway. For the coun-
terflow case about 60% have a large distance headway. Together with direct
observations this indicates a change in the spatial distribution of ants in case
of counterflow. Obviously a more homogeneous spatial distribution is favoured.

As already emphasised the impact of counterflow is even stronger for the
RL-direction. Qualitatively no difference can be made between the uni- and
the bidirectional case. The average value D and the variance σ of the log-
normal distribution are so large that for nearly all distances no difference to
the negative-exponential distribution can be found (see Fig. 5.21). Quantitative
measurements show that more than 60% of all ants move outside of platoons.
Together with direct observations this confirms the total suppression of clus-
terformation. Therefore the random-headway state described by the negative-
exponential distribution is found.

5.4 Discussion

The previous sections gave an introduction to the experimental setup and the
employed techniques for extracting ant-traffic data. Observations were carried
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dc Nant Nplatoon D[bl] σ[bl] λ[bl]

LR 2.99 424 435 3.45 2.55 3.53
uni 2.99 353(52.2%) 323(47.8%) 3.24 2.18 3.13
bi 2.99 71(38.8%) 112(61.2%) 4.50 3.84 3.58

RL 4.02 101 183 6.78 6.75 5.32
uni 4.02 53(34.0%) 103(66.0%) 6.11 8.50 5.35
bi 4.02 48(37.5%) 80(62.5%) 7.77 6.81 5.28

Table 5.4. Quantities extracted from fitting log-normal- and negative-exponential
distributions are shown for the uni- and the bidirectional case. Generally the average
value and variance are quite high for the RL-direction. Overall the RL-direction is
in a random-headway state for the uni- as well as for the bidirectional case. But the
LR-direction shows a clear devision into the uni- and the bidirectional case.
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Fig. 5.20. The distance headway distributions for the LR-direction are shown. For
this direction slight differences in case of uni- and bidirectional traffic are found. In
absence of counterflow (middel) the same features as in the strictly unidirectional case
are found. Couterflow (right) obviously disturbs the platoon formation.

out for a species exhibiting a certain set of behavioural patterns known as
army-ant behaviour. For the investigated trails some restrictions were neces-
sary. Nevertheless it has been shown that these restrictions are not essential
and arise mainly out of practical reasons. Qualitative and quantitative data
were extracted from video observations. Directly observable patterns have been
identified which were also subject to quantitative measurements. Basically three
kinds of trails have been investigated. The complexity of the observed traffic
patterns ranged form a simple unidirectional trail with low traffic to a complex
highly populated bidirectional trail. Although the three trails appear to be
quite different the complex bidirectional trail shares elementary features with
the simpler trails. Overall a step-like structure by increasing the complexity of
the investigated trail is used. Depending on the particular trail characteristic
features were identified. So the validity of identifying the particular features of
each trail is ensured as they should also be visible for the more complex trails.
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Fig. 5.21. The distance headway distributions for the RL-direction are shown. The
distributions are nearly the same for all cases. Ants moving in this directions are
obviously in the random-headway state.

5.4.1 The Simple Unidirectional Trail (Video 13)

The simple unidirectional trail (see Sec. 5.3.1) showed only little traffic at quite
low densities ρmax = 0.33. Nevertheless some elementary patterns of unidirec-
tional traffic are already visible. The basic data like the instantaneous particle
number shows some peaks (see Fig. 5.5 right). This is a first sign of the ten-
dency of ants to move in platoons. The distribution of single-ant velocities
shows a comparably narrow normal-distribution (see Fig. 5.6 right). This is
in agreement with the qualitative observation that ants on this trail did not
overtake.

5.4.2 The Complex Unidirectional Trail (Video 19)

A unidirectional trail with heavy traffic was used to investigate the density-
dependence of the already observed features like platoon formation or the ab-
sence of overtaking. The maximum of attained densities is quite high ρmax =
0.8. Overall the average velocity showed only a weak density dependence (see
Fig. 5.11). Even at very high densities no significant decrease of the average
velocity is observed. This feature is quite different for example from vehicular
traffic [34, 60] where an increasing density is always accompanied by a notice-
able decrease of the average velocity due to mutual blocking. One exception is
the so-called free-flow state. Nevertheless the variance of single-ant velocities
exhibits a strong density dependence (see Fig. 5.10). Additionally one observes
an asymmetry in the velocity distribution towards higher velocities. Neverthe-
less no overtaking is observed. As discussed in more detail later on this is part
of the mechanism of platoon formation.

Distance headway distributions exhibit a strong density dependence (see
Fig. 5.13). Basically one distinguishes inter- and intra-platoon distances. Intra-
platoon distances exhibit a skewed distribution (see Fig. 5.12 right). Due to the
low average distance headway and the comparably large variance a log-normal



5.4 Discussion 93

distribution was assumed. Although variance changes with density a constant
average intra-platoon distance can be identified (see Fig. 5.12 left). Also the
position of the peaks of the log-normal distributions does not change much
with density (see Fig. 5.13). So for very small intra-platoon distances a normal
distribution might be more appropriate. The intra-platoon structure is obvi-
ously independent from density. For larger inter-platoon distances a negative-
exponential distribution is used. Platoons themselves are distributed according
to the random-headway state. For distinguishing between ants within platoons
and platoons themselves the average distance headway depending on density
was used (see A.3). Fitting distributions according to the distance-regimes leads
to quite high uncertainties due to the lack of data. Therefore both kinds of dis-
tributions were fitted over the whole range of distance headways. Overall the
density dependence of the spatial distribution of ants allows them to keep on
moving at an approximately constant average velocity which is nearly indepen-
dent from density.

5.4.3 The Bidirectional Trail (Videos 6a, b, c)

The investigations of the bidirectional trail were divided into the uni- and the
bidirectional case. Basically the LR-direction was the dominating one which
lead to additional features depending on the direction. For the LR-direction
the unidirectional case exhibited the same features already observed for the
strictly unidirectional trails. This is indicated by the fundamental diagrams
(see Fig. 5.16) as well as by the distance headways (see Fig. 5.20) and velocity
distributions (see Figs. 5.14).

The bidirectional case of the LR-direction exhibits crucial differences to the
unidirectional one. With increasing density the average velocity also increases.
This is most clearly visible in flow 5.17). The distributions of single-ant veloc-
ities and intra-platoon distances are broader than in the unidirectional case.
Counterflow obviously affects the characteristic features of unidirectional traf-
fic.

For the RL-direction the effect is even stronger. The fundamental diagram
shows an decrease of the average velocity with density. Also the distributions of
single-ant velocities (see Figs. 5.15) and distance headways (see Fig. 5.21) are
comparably broad. Hardly any difference between the uni- and bidirectional
case can be made. Overall this is explained by the dominance of the flow in
LR-direction. As a result the RL-direction is in a permanent bidirectional state
even in absence of counterflow. Due to the finite length of the observed section
only slight differences are detectable. One observes that the main lane of the
trail is predominantly occupied by ants moving in the LR-direction. Therefore
ants moving in RL-direction have to move off the trail centre. The correspond-
ing spatial pattern is the random-headway state. As no platoon formation is
possible velocity decreases with density. The velocity in LR-direction on the
other hand increases with increasing density as ants in the opposite direction
are less frequently encountered on the central part of the trail.
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5.4.4 Mechanisms of Platoon Formation

The striking feature of unidirectional traffic is the independence of the average
velocity from density. Even at high densities nearly no decrease was observed.
Flow therefore increases linearly up to high densities. From other systems like
freeway traffic one would expect a monotonic decrease with increasing density.
As effects like mutual blocking generally depend on density (average distance
headway) this is quite surprising. The investigated ant species obviously em-
ploys mechanisms preventing such a decrease. Additionally the spatial distri-
bution of ants in platoons originates from these mechanisms.

For the complex unidirectional trail (see Sec. 5.3.2) and the unidirectional
case (LR-direction) of the bidirectional trail (see Sec. 5.3.3) platoons are found.
Direct investigations of the time-series also indicate some change in distance
headways while passing the observed section. Therefore also platoon formation
is found. Direct observations from videos showed ants catching up to preceeding
ones. After catching up they move with the same velocity as the preceding ant.

This behaviour is also reflected in the single-ant velocity distributions and
the fundamental diagrams. Although the average velocity Vav stays nearly con-
stant density-dependend scattering of single-ant velocities towards higher ve-
locities is found.

Both observations can be explained by assuming some kind of collective
velocity Vav for ants moving within platoons and a higher velocity for ants
catching up Vct to a platoon. When encountering a slow ant, the succeeding
one reduces speed in order not to overtake. As a result the succeeding ant follows
the slower one as part of the platoon with velocity Vav. Due to the finite length
L of the observed section this leads to a dependence of measured velocities on
the initial distance headway d(n + 1) of the two ants (see Fig. 5.22).

Vct Vav

dT V1 ct dT V2 av

d(n+1)

V Vav av

dT V2 av

Fig. 5.22. This figure illustrates the mechanism of platoon formation. Initially two
ants are separated by a distance headway d(n + 1). The n + 1th ant catches up with
the nth one moving with velocity Vct > Vav. If the initial distance headway is not too
large, catching up takes place within the observed section. As a result the velocity of
the n+1th ant while passing the observed section decreases form Vct to the measured
value v(n + 1).

Overall one assumes two constant intrinsic velocities. The lower one is the
average velocity Vav measured in the fundamental diagrams and the single-ant
velocity distributions. For ants catching up a higher velocity Vct is assumed.
As already shown due to the slowing down by ants moving at Vct this velocity
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cannot by observed directly like Vav. Nevertheless an experimental validation
is possible.

The whole process of catching up can be divided into two parts. During the
time interval dT1 the n + 1th ant is catching up. Obviously both ants have to
move at differnet velocities Vct > Vav. After catching up both ants move with
the same velocity during the time-interval dT2.

dT1 =
d(n + 1)

Vct − Vav
, dT2 =

L − (dT 1 · Vct)

Vav
. (5.15)

Overall one calculates the travel-time dT (n + 1) = dT1 + dT2 of the n + 1th
ant. Therefore the measured non-constant velocity of the n + 1th ant is given
by:

v(n + 1) =
L

dT (n + 1)
= Vav

(

1 − d(n + 1)

L

)−1

(5.16)

This result could have already been guessed in advance. The whole process
starts with the nth ant entering the observed section and ends with the n+1th
ant leaving the section again (see Fig. 5.22).

In order to detect the catching up it has to take place within the observed
section. So the n + 1th ant may not leave the section before having caught up.
This is equivalent to dT1 · Vct ≤ L leading to an upper threshold value dth for
the initial distance headway:

d(n + 1) ≤ dth = L

(

1 − Vav

Vct

)

(5.17)

The measured data are found to be in accordance with (5.16). Especially
for the unidirectional trails single-ant velocity vs. distance headway shows the
behaviour expected from (5.16). At very short distances ant-ant interaction is
quite strong leading to a scattering of datapoints (see Fig. 5.23). Also for the
bidirectional trail strong scattering is found (see Fig. 5.24). As already pointed
out the platoon formation is affected by counterflow. By fitting (5.16) to the
traffic data one obtains the average velocity Vav (see Tab. 5.5).

Video 13 Video 19 Video 6-LR Video 6-RL

Vav[bl/sec] 4.75(uni) 4.14(uni) 4.7(uni), 4.7(bi) 4.36(uni),3.78(bi)

Table 5.5. Average velocities are obtained by fitting (5.16) to the traffic data. Es-
pecially the unidirectional trails show even a quantitative agreement with the data
extracted from measuring velocity distributions.

Also the existence of a maximum velocity Vct is observed. For initial distance
headways d > dc velocity v(n + 1) shows oscillation around a mean value.
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This is most clearly visible for the unidirectional trails (see Fig. 5.23). For the
bidirectional case roughly the same feature is found (see Fig. 5.24).
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Fig. 5.23. The figures shows distance headways vs. velocity for the unidirectional
trails. On the left the curve for the simple trail (video 13) is shown. The same pattern
is less clearly visible for the more complex situation shown on the right (video 19). The
horizontal lines correspond to the average velocity at low densities. At low densities
the average distance headways can be expected to be above dth. Therefore ants will
approximately move with Vct.
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Fig. 5.24. The figures show distance headway vs. velocity for the uni- and bidi-
rectional case of video 6. The LR-direction (left) shows heavy traffic. Therefore the
pattern emerges less clearly. As already shown the platoon formation is suppressed
by counterflow.
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6.1 Summary and Discussion of Results

The main aim of the present work is the investigation of the dynamical proper-
ties of traffic on preexisting ant trails. It is mainly divided into two parts which
are based on the interplay between theory and experiment. Both parts are
developed independently and compared later on in the succeeding discussion.

Methods from statistical and non-equilibrium physics were employed for the-
oretical studies. New models for bidirectional traffic on preexisting ant trails
were introduced [45, 56]. Also the understanding of the already existing unidi-
rectional ant trail model was improved [16, 43].

The results of the empirical studies are compared with the models predic-
tions. Ant-traffic data are extracted using methods from traffic engineering and
behavioural biology. Similar approaches have already been employed success-
fully in the context of vehicular traffic. Nevertheless crucial differences between
the already investigated systems and ant-traffic are the main motivation of the
present study [43, 46].

6.1.1 Theoretical Results

Based on stochastic non-equilibrium systems of particle flow models for traffic
on preexisting ant trails are constructed. Therefore chapter 2 gives an intro-
duction to driven non-equilibrium systems in the context of traffic flow. As
an elementary example the TASEP is discussed (see 2.2). Although quite sim-
ple many models are actually based on the TASEP. One of the TASEP-based
models is the Nagel-Schreckenberg model for freeway traffic (see 2.2.1). This
model can be regarded as some kind of prototype for cellular automaton based
traffic models. The discussions shows that the introduced ant trail models are
quite different due to the different properties of the moving agents (see 3.1.1
and 5.1.3). It turns out that the ant trail models exhibit more similarity to the
TASEP with static disorder (see chapters 3 and 4). Therefore static particlewise
(see 2.3.1) and latticewise disorder (see 2.3.2) are discussed. The main features
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are being identified already employing some new techniques developed for in-
vestigating the ant-trail-models [15,44]. Generally phase-separation is observed.
As established for investigating the TASEP the density-profile contains nearly
all the necessary information. By definition so-called second-class particles will
follow high-density areas. The density profile seen from the second-class par-
ticle is measured. Especially in the case of particlewise disorder analogies to
the phases found in the TASEP are drawn as now density-profiles are available
even in the case of particlewise disorder (see 2.3.1).

Chapters 3 and 4 introduce models for uni- and bidirectional traffic on
preexisting ant trails. For the unidirectional model introduced in chapter 3
pheromone marks are the main mechanism of interaction between ants. The
pheromone marks lead to some kind of dynamically induced particlewise dis-
order (see 3.3). Unlike in the disordered TASEP hopping rates depend on the
distance headway to the preceding ant [57,68]. Therefore disorder emerges dy-
namically depending on the particular choice of parameters. A moving particle
cluster emerges and average velocity vs. density shows a non-monotonicity.
As pointed out this effect is based on the pheromone marks when particle-
wise disorder is dissolved with increasing density (see 3.3). A phenomenological
theory namely the ”Loose Cluster Approximation” is discussed (see 3.2.3) and
compared to the case of static particlewise disorder. A crucial difference in
the critical density is found. Due to the pheromone marks the jamming transi-
tion generally occurs at lower densities than for static particlewise disorder [54].
Generally the cluster length instead of the cluster density is the crucial quantity
for determining the transition (see 3.2.3). Employing the method of measur-
ing the density-profile seen from the second-class particle the cluster length is
obtained. As hopping rates depend on the pheromone marks, the second-class
particle has been modified in accordance to (see 2.2).

The coarsening process leading to phase-separation was investigated nu-
merically by measuring density-density correlation functions. In analogy to the
Bus Route Model coarsening follows a power law with two different dynamical
exponents depending on the particular regime with respect to time (see 3.2.2).
The same exponents as in the already investigated case of time-parallel update
are found [15]. This indicates the universality of the observed exponents. The
techniques for measuring the coarsening process were extended such that also
the number of moving clusters can be estimated [44]. Also the cluster length
can be measured for a certain parameter regime.

In chapter 4 the extension of the unidirectional ant trail model to the mul-
tilane case is discussed [43,45,56]. Several extensions especially the use of bidi-
rectional instead of unidirectional multilane models are discussed. The bidi-
rectional models being introduced basically can be divided into two classes.
Models with synchronous or asynchronous exchange of counterflowing ants are
distinguished (see 4.1). In case of asynchronous exchange the main feature does
not depend on the pheromone marks. Like on real ant trails counterflowing ants
lead to a lower hopping rate due to mutual slowing down. Caused by fluctu-
ations this effectively induces dynamic latticewise disorder. In contrast to the



6.1 Summary and Discussion of Results 99

unidirectional model one now observes a large localised particle cluster. The
coarsening behaviour is investigated analogous to the unidirectional model. Al-
though the models are quite different the same dynamic exponents are found
(see 4.2.2). Obviously the dynamics of phase separation in the discussed cases is
independent from particular features like the choice of the update procedure or
the origin of dynamic disorder [44]. For the stationary state a phenomenological
description based on symmetries observed in the density profile of the localised
cluster is developed (see 4.2.2). As no pheromone marks are incorporated the
effect is just based on an extension of the plain TASEP to counterflow. There-
fore this extension might also be of interest for other models incorporating
the same basic mechanism [43, 46]. At very low densities an additional fea-
tures namely the alternation of coarsening and shredding is found (see 4.2.1).
The moving particle cluster is shredded by counterflowing ants. Obviously this
feature depends on the pheromones. Although this has already been investi-
gated extensively for the model with synchronous particle exchange [56] a new
technique for measuring the periodicity of the process is introduced (see 4.2.1).

6.1.2 Empirical Results

In chapter 5 finally an experimental setup for measuring traffic data on real ant
trails is proposed. It is designed such that measured quantities allow a direct
comparison to the models’ predictions. The assumed improvement or even some
kind of optimisation of traffic flow by evolution is most likely to emerge within
a natural ecological context. With respect to the measurements quantities and
techniques from traffic engineering have been used (e.g. [34, 60, 83]). Due to
the nature of ant trails some modifications were necessary. Making use of the
fact that nearly no overtaking is observed so-called cumulative counting was
used for extracting the average velocity and density. As one crucial difference to
vehicular traffic also the agents moving in counterdirection interact with each
other [12, 45] and therefore had to be taken into account (see 5.2.2).

The measured quantities allow a qualitative and quantitative comparison to
the models’ predictions. On a more technical level it was shown that techniques
from traffic engineering can successfully be adapted and applied to ant-traffic.
This has been doubtful and only few studies concerned with the organisation
of traffic flow itself [12, 47]. For example it was concluded in [47] that no func-
tional relation between the average velocity (or flow) and density exists. In that
particular case heavy bidirectional traffic has been investigated without taking
into account the density in counterdirection.

Even the existence of a somehow ordered traffic stream appeared to be
doubtful. From the point of view of behavioural biology this is less surprising.
Even without having a direct proof like the present field study (see chapter
5) this was to be expected from the collective nature of ants [36]. Also the
lacking of self-consciousness in contrast to other multi-agent systems [19,65] is
a vital part (see 3.1.1 and [43, 45]). Cooperativity is a consequence of natural
selection. To an ant colony traffic flow is probably as much as vital as to human
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societies and analogies have been proposed recently [10] for leaf-cutting ants.
Nevertheless the selective pressure for foraging situations can be expected to be
quite high. A colony suffering from traffic jams will most probably just starve.
Especially nomadic species like Leptogenys processionalis frequently have to
move to new raiding-grounds [32,85,86]. An inefficient transport of the nesting
material or the brood would most probably be fatal. Spending more energy
on retrieving prey back to the nest than gaining by consuming it obviously is
inefficient. Overall traffic is crucial to survival for most ant colonies and can
therefore be expected to exhibit evolutionary generated optimisation [6, 7, 32].

For the present study data collection itself turned out to be highly non-
trivial as automatic digital image processing devices failed. The videos of
the observed section were recorded in a natural environment. Therefore even
monomorphic ants are difficult to detect as the underground changes colour or
twigs are blocking a direct view. Depending on the duration of observation also
light conditions are changing (see 5.2.1).

6.1.3 A Comparison between Theory and Empiricism

The main result of the present experimental and theoretical study is the detec-
tion of certain patterns found in ant-traffic at least for one particular species.
By choosing an ant species exhibiting army ant behaviour the observed patterns
are most likely also found for a larger number of other species.

The Unidirectional Case

Ants on an unidirectional trail tend to move in platoons. Succeeding ants catch-
ing up to preceding ones were observed. This is reflected in the distance head-
way distribution which shows two distinct regimes (see 5.3.2). Short distances
exhibit a skewed distribution. Overall observations are consistent with a log-
normal distribution. Ants within the platoons move at a constant average dis-
tance independent from density. Hardly any distances smaller than that are
found. But platoons themselves can be separated by very large distances. Over-
all this induces some kind of asymmetry. At very large distances platoons can
be assumed to be uncorrelated leading to a negative-exponential distribution
of the larger distance headways. No clear threshold between both regimes of
short and large distances could be identified. Generally density determines the
average distance headway (see A.3). Using this average distance headway as
some kind of threshold the number of ants inside and outside of the platoons
was determined.

Unlike in vehicular traffic hardly any events of overtaking are observed. As a
result the velocity distribution is comparably narrow for all density regimes (see
5.3.2). Also the fundamental diagrams reflect this behaviour (see 5.3.2). Overall
the observations in case of unidirectional traffic show the characteristic features
of particlewise disorder. Ants moving at the lower average velocity correspond
to the defect-particle. Faster ants catch up with the slower ones forming a
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platoon (see 5.4.4). Some asymmetric scattering to higher velocities is also
observed. The velocities of upcatching ants Vct have been measured. Finally the
observations justify the assumptions made for constructing the unidirectional
ant-trail-model (see 3.1.1). Therefore overtaking is not incorporated and two
intrinsic velocities corresponding to the parameters Q and q are used.

Finally the question regarding the advantage of organising traffic in the
observed way arises. In the unidirectional case the average velocity has been
observed to be nearly independent from density over a large regime (see 5.3.2).
As demonstrated by the models and also observed empirically this is a conse-
quence of platoon formation (see 3.2). The platoons move roughly as uncor-
related entities along the trail indicated by the random-headway distribution
for larger distances. As a result mutual blocking is suppressed in contrast to a
homogeneous distribution of ants.

Further investigations will have to address the structure of the platoons
themselves. One important point is the number of ants within a platoon de-
pending on density. Obviously the platoons cannot reach an arbitrary size with-
out any mutual blocking. If a large number of ants would be comprised by one
platoon a nearly homogeneous distribution would be reached. Also very high
densities showed first signs of mutual blocking (see 5.3.2 and 5.3.2) indicating
the vanishing of platoons. The introduced methods are basically capable of
measuring the lengths of the platoons. This can be done by counting the num-
ber of succeeding ants below a certain threshold value of the distance headway.
But like for a more detailed analysis of distance headway distributions more
data is needed.

The Bidirectional Case

For the bidirectional model the results are less clear. The dominating direction
generally shows the characteristic features known from the unidirectional trail
(see 5.4.3). In absence of counterflow platoons are formed. This is clearly visible
on the videos as well as in the velocity- and distance headway distributions
(see 5.3.3 and 5.3.3). Also the fundamental diagram exhibits the same features
observed for the strictly bidirectional trails (see 5.3.3).

In case of counterflow these features are slightly changed. As the LR-
direction was identified to be the dominating one some kind of ”follow the
leader behaviour” is observed. This is indicated by a non-linear increase of flow
in case of counterflow. In comparison to the unidirectional case the average
velocity is only slightly decreased. But still platoons are found.

As already pointed out the RL-direction is affected quite strongly by coun-
terflow. So the uni- and the bidirectional case are hardly distinguishable. This
is consequence of the finite length of the observed section. The characteristics
of platoon formation are strongly suppressed. This is reflected in the distribu-
tion of distance headways (see 5.3.3). The random-headway state is dominating
over the whole range of distance headways. Also the velocity distribution has
a much higher variance than the one for the opposite direction (see 5.3.3).
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The RL-direction also shows a decrease in velocity with increasing density (see
5.3.3). Correspondingly a kink in flow is observed. This resembles the plateau
in flow due to latticewise disorder induced by counterflow.

It is quite difficult to discuss the possible advantage of the observed traffic
patterns in case of counterflow as in principle two characteristic patterns have
been observed. The ”follow the leader” behaviour clearly favours the direction
of heavier flow. This leads to an self-amplification and prevents congestion in
the more frequented direction. Also platoon formation is found. The second
feature resembles the one also observed in the bidirectional models. At suffi-
ciently high densities flow reaches a nearly constant plateau value. This might
be advantageous in case of roughly symmetric traffic flow in both directions.
The same number of ants per time would reach or leave a certain destination
like a foodsource or the nest as long as the actual density stays in a certain
regime. A constant flow of food or workers could be ensured. This scenario
might be appropriate during the exploitation of a food source. On the other
hand at the beginning or at the end of a raid, the ”follow the leader” pattern
would be more reasonabel [46].

6.2 Outlook

Based on the presented results new questions and approaches are motivated.
The theoretical framework as well as the experimental setup now can be ex-
tended in order to capture more general situations. But also some applications
might be interesting. Overall the strategies developed for the present study can
also be applied to more complex scenarios.

6.2.1 Theoretical Studies

For the unidirectional trail platoons are observed. Although the characteristics
of particlewise disorder emerge the mechanisms of formation are still unknown.
The unidirectional ant trail model predicts a non-monotonicity in the average
velocity due to the pheromones. This is not observed in the present field study.
Nevertheless depending on the evaporation rate the non-monotonicity can be
suppressed to an order of magnitude not detectable with the employed setup.
But still the constant average velocity and not the non-monotonicity is the
main feature. A maximum of average velocity attained at ρc would lead to
strong fluctuations as density can not be expected to be constant. Still other
mechanisms like some kind of pushing by following ants could be incorporated.
Tactile stimuli from behind might be the key mechanism leading to platoon
formation. Simulations incorporating this effect show the emergence of some
kind of platoon which is nevertheless quite unstable.

For bidirectional trails the beginning of a plateau in flow has been observed
in RL-direction. Unfortunately the number of datapoints in that particular
density regime is quite small. Overall a scenario with a symmetric traffic flow



6.2 Outlook 103

in both directions will be of interest. Further investigations might address the
question of the existence of plateaus in flow. Nevertheless the mutual hindrance
due to counterflow is not restricted to ants. Pedestrians moving in opposite
directions are also affected by the same mechanism. In that particular example
ant trails exhibit more common feature with pedestrians than with cars on a
road (see Fig. 6.1). Due to these similarities the next step of extension would be
a two-dimensional ant trail model. Here also the formation of trails themselves
will be incorporated. Extensive theoretical and empirical investigations have
already been carried out with respect to structure formation (e.g. [21, 32]) of
trail networks. Nevertheless a connection between these patterns and traffic
flow itself seems to be missing. Also the extension to different kinds of multilane
traffic could be incorporated more naturally.

But also analogies to artificial systems exist. Recently the unidirectional
ant trail model has been implemented as a robotic system [67, 80]. Overall
concepts like swarm intelligence are successfully applied to various artificial
systems [46, 55].

Fig. 6.1. Both photographies show traffic jams in quite different systems. On the
left a multi-lane road is crowded with many different vehicles. Unlike in ant-traffic no
coupling between lanes in opposite directions exists. Obviously only the road in one
direction is blocked. On the right a traffic jam of monomorphic workers of Oecophylla
smaragdina is shown. Due to the cooperative transport of large prey a queue has been
accumulated.

6.2.2 Experiments

Further studies might address more complex situations in the field. The videos
used for data collection within the present field-study showed first elementary
examples of ant-traffic in a natural ecological context. But also videos with
unidirectional multi-lane traffic have been recorded. Data extraction could lead
to interesting results as a comparison to multi-lane vehicular traffic becomes
possible. For the observed cases of heavy multi-lane traffic also different kinds
of load were carried by the ants. This might also be interesting for assigning
certain traffic patterns to a particular ecological context.
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But still laboratory experiments are the next crucial step. Basically they
are complementary to the field studies. Field studies have the advantage that
evolutionary generated patterns will most likely emerge in the natural situ-
ations they originate from. On the other hand environmental conditions and
natural situations are never exactly the same. Here the laboratory offers a rea-
sonable alternative. Once the basic patterns known from field studies have been
reproduced more detailed quantitative investigations become possible. As the
environment can be controlled better certain patterns for solving problems can
be tested in situations not found in the field. One interesting example would be
the crossing of two traffic streams. Overall the flexibility of direct behavioural
adaption could be investigated. Additionally one would be sure that the traffic
stream does not react dynamically on a changing ecological context. At least
the whole trail is observable.

Nevertheless not all species are suitable for laboratory experiments. Leaf-
cutting ants exhibit a huge variety of interesting traffic patterns [11,12]. But the
required space would be quite enormous in order to ensure natural conditions. In
a natural environment the raiding grounds can extend up to a few square miles.
The observed trails are of corresponding length and complexity [11, 12, 36].
Also the species chosen for the field studies of the present work (Leptogenys
processionalis) can hardly be kept in a laboratory environment 1. As this species
is nomadic one would have to ensure that the suppression of migration does
not affect the behavioural patterns one seeks to investigate.

Fig. 6.2. The photographies show a controlled experimental setup in a laboratory
situation. A colony of the weaver ant species Polyrachis dives is kept in a plastic box.
Inside a nearly natural environment has been constructed. For implementing a trail
an arena is used. The underground is pure sand which can be manipulated easily.

For first laboratory experiments we chose Polyrhachis dives a weaver-
ant species. Weaver ants are widely known for building conspicuous nests
and exhibiting a wide range of highly evolved cooperativity [36]. Colonies of
Polyrhachis dives are comparably small and can easily be kept in an artifi-
cial environment (see Fig. 6.2). Although natural habitats are found mainly in

1 R. Gadagkar and T. Varghese, personal communication
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south-east Asia environmental conditions and temperature can be reproduced.
Our colony is kept inside a plastic box of sufficient size (see Fig. 6.2). The box
also provides nesting material like leafs and twigs. Natural nutrition like maden
and water is also made available. A suitable nesting site at one corner of the
box together with plants and natural ground are also provided.

Traffic experiments are conducted within an arena of comparably small di-
mensions (1m× 1m). The whole experimental setup is of the size of a desktop.
Collective foraging was triggered by starving the colony for five days. Food was
offered within the arena which was made accessible by a small ramp. For accel-
erating the process the activity level was raised by increasing the temperature
inside of the box with a heating lamp (see Fig. 6.2).

Ants entered the arena in search for food and returned back to the nest.
Although the colony size is still small by that time first ordered traffic lanes
were visible. Nevertheless for investigating a collective effect still a collective
is necessary. Once the colony size is large enough, more detailed investigations
are possible. Also some automatisation of counting might be possible as ants
are clearly visible on the white sand used for covering the ground of the arena.
The ramp connecting the box and the arena has to be passed by any ant
in search for food. This will be a suitable place for a video camera. Digital
data collection should be possible by employing software available for counting
pedestrians. In a laboratory scenario this should be comparably easy. The traffic
lane is restricted by the ramp. Even between the ramp and the food source a
static traffic lane emerged. Unlike for example in pedestrians the employed
species Polyrhachis dives is monomorphic which makes the ants comparably
easy to detect. Overall an automatistion of measurements would lead to an
enormous increase of available data. Especially for analysing distance headway
distributions and cluster sizes this will be advantageous.

Overall future studies will make use of the concepts and strategies demon-
strated to be effective in the present study. Optimisation strategies in ants can
obviously also be found in the organisation of traffic flow. So a detailed com-
parison to human traffic systems and possible adaptions offer an interesting
perspective. One example might be the formation of platoons of cars on a high-
way. By coupling several cars to a platoon the required space will be decreased
drastically. The results should be comparable to those of the computersimula-
tions of the unidirectional ant trail models or to the empirical observations for
the unidirectional trails. In case of bidirectional traffic the exchange of informa-
tion with cars in counterdirection might be advantageous. Information about
the road condition or traffic flow could be exchanged via strictly local inter-
action. These aspects are not incorporated in the present study. Nevertheless
coupling to counterflow for ensuring a constant flow in both directions which
is independent from density might also be desirable in artificial systems like
communication networks.





A Appendix

A.1 Error Correction

Although the method of cumulative counting used for quantitative measure-
ments is in principle exact some error correction had to be done. Errors are
mainly caused for two reasons. At first there are the random mistakes aris-
ing from counting by hand which will be discussed in the next section (see
App. A.2). A second source of error is systematically involved and arises out
of the assumption that ants do not change their order or do not vanish within
the observed section.

A.1.1 Detectable Errors

Data points (t±, n) are labelled by the number of entering n which should also
be the same as for leaving. Two kinds of events can disturb the labelling. An
ant n0 entering the section at point A produces a datapoint (t+, n0). If this ant
leaves the section somewhere between A and B no corresponding datapoint for
leaving exists. So datapoints for entering are shifted by one place upwards in
comparison to the datapoints for leaving. Also ants leaving the section thereby
producing a datapoint (t−, n0) without having entered the section at point A
disturb the order. The datapoints for leaving are shifted one place upwards in
comparison to the datapoints for entering:

(t+(n), n) −→ (t+(n), n + 1) ∀n≥no
cause: leaving

(t−(n), n) −→ (t−(n), n + 1) ∀n≥no
cause: entering

(A.1)

As a result travel-time is calculated based on wrong datapoints. If time
headways are small the difference between t(n) and t(n+1) is small and there-
fore also the travel-time is only affected slightly. But at large time headways,
travel times and also velocities are heavily affected. The same is also true for
the instantaneous particle number N(t) which can even get negative.

Both kinds of error occur as a result of the method when the underlying
assumptions about traffic flow are not valid. Ants leaving the section between
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points A and B were mainly observed in case of nearly vanishing traffic when
time headways and thus the impact of miscountings was large. Ants entering the
section between points A and B have not been observed in case of unidirectional
traffic. But in case of bidirectional traffic so called U-turns lead to both kinds of
error. An ant leaving the lane say from left to right leads to a missing datapoint
for leaving in that direction. But at the same time a datapoint for leaving in
the opposite direction is added. Obviously the datasets for both directions
are affected. Besides the behaviourally induced errors there is also always the
possibility of miscounting by hand.

A.1.2 Correction of Detectable Errors

The impact of the discussed errors is obviously quite strong. But for that reason
they are also easy to detect. Basically the curve (t+, n+) for entering ants should
resemble the curve (t−, n−) for the leaving ones. The curve for entering should
roughly look like the one for leaving just shifted to the right by the travel-time.
Due to the movement of ants in platoons one can make use of the corresponding
clustering of datapoints. The number of datapoints should be the same for every
platoon. Additionally one can also count the events of disturbing in order to
localise the superfluous datapoints. This might also give additional information
about the real system.

In order to reestablish the correct pairwise structure of datapoints the su-
perfluous points are deleted from the data set. Once the wrong point n0 has
been identified, this is done by shifting all the following points n ≥ n0:

(t+(n + 1), n + 1) −→ (t+(n + 1), n) ∀n≥no
correction: leaving

(t−(n + 1), n + 1) −→ (t−(n + 1), n) ∀n≥no
correction: entering

(A.2)

The solution thus is just to ignore the event causing the error and deleting
the corresponding datapoint. Nevertheless this completely neglects the con-
tribution of the leaving or entering ants to flow or density. Investigating the
number of those events shows that they are negligible for the trail sections
investigated here. Nevertheless with increasing efforts one could use a finer
sectioning of the trail with each section contributing to the global density.

A.1.3 Hidden Errors

Errors not causing a superfluous or missing datapoint are harder to detect.
One example is the swapping of datapoints. As discussed, some rare events
of overtaking have been observed. A disoriented ant (n0) might temporarily
leave the trail and is passed by the succeeding one (n0 + 1). As the labelling of
datapoints depends on the order of ants datapoints get swapped:

(t−(n + 1), n + 1) −→ (t−(n), n) ∀n≥no
succeeding ant

(t−(n), n) −→ (t−(n + 1), n + 1) ∀n≥no
passed ant

(A.3)
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In case of x overtaking ants, the leaving ant will move to index n + x. The
index of all overtaking ant is decreased by one. The resulting error will be of
the order of the corresponding time headway. But unlike in the cases of missing
datapoints the effect for velocity measurements is restricted to the swapped
points. Also the instantaneous particle number is hardly affected.

A.2 Statistical Errors

Measuring times for counting is affected by statistical (normally distributed)
errors. A brief discussion of their order of magnitude is given here.

A.2.1 Average Velocity

Measuring the average velocity for passing the observed section involves mea-
suring times and lengths.

v(n) =
L

dT (n)
=

L

t−(n) − t+(n)
(A.4)

Errors of measuring time can be assumed to be normally distributed. The
same also holds for measuring the sections length L as multiple measurements
were carried out.
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(A.5)

The length L of the observed section is the same for all single-ant velocities
v(n). Therefore ∆L is a systematic error and will be neglected in the following.

∆v(n) = C(L)v(n)2 with C(L) =
√

2
∆t

L
(A.6)

Counting is done by watching the videos at 50 percent of real time. So
assuming an error of half a second leads to an error of ∆t = 0.25[sec] in real
time.

A.2.2 Time- and Distance Headway

The definition of time headway used here is the time it takes two succeeding
ants (ant n and ant n+1) to pass a certain point. Time headways were measured
for ants entering the observed section (t+) at point A and leaving the observed
section (t−) at point B:
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Video 13 Video 19 Video 6

L[bl] 21 17 14
C(L)[sec · bl−1] 1.68 × 10−2 2.08 × 10−2 2.53 × 10−2

Table A.1. This tabular gives a brief survey over the order of magnitude of the
statistical errors. Although one finds ∆v(n) ∼ v(n)2 the factor C(L) determines the
effective numerical value.

dt± = t±(n + 1) − t±(n). (A.7)

Together with ∆t = 0.25[sec] one finds a comparably small statistical error
for measuring time headways:

∆(dt±) =
√

∆t±(n + 1)2 + ∆t±(n)2 =
√

2 · ∆t ≈ 0.35[sec]. (A.8)

Obviously ∆(dt) only depends on the error for measuring time which is
assumed to be independent of the measuring point (entering or leaving) or the
particular time headway dt±(n).

For calculating the distance headway measuring time is also involved. Under
the same assumptions as for the time headway one finds:

d+(n) = dt+(n)v(n) = (t+(n + 1) − t+(n)) v(n) ,

∆d+(n) =

√

2 ((v(n)∆t)2 + (dt∆v(n))2.

(A.9)

A.3 Distance Headway Cut-Off

Given the number of ants N and the length L of the observed section in body
lengths one finds for the average distance headway:

d(N) =
L − N

N
(A.10)

Averaging over particle numbers from N1 to N2 leads to:

d̄c(N1, N2) =

∫ N2

N1

dNd(N) =
L

N2 − N1
log

(

N2

N1

)

− 1 (A.11)
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A.4 Supplementary Data

A.4.1 Video 13

Type: unidirectional
Path length: 21bl

Observed time interval: 0:00:10 - 0:05:45 (335sec)
Number of datapoints: 85

Carried load: none
U-turns: none
Departures: none

Table A.2. Video 13 shows an unidirectional trail with only light traffic. Although
ant densities are comparably low, no ant left the trail within the observed section. As
no load was observed the trail is probably in the final state of a migration or a raid.

Techniques of data extraction are exemplified for the cumulative counting
of video 13. The basic- and derived quantities are shown in chapter 5 (see
Figs. 5.4, 5.5).

A.4.2 Video 19

Type: unidirectional with minimal counterflow
Path length: 17bl

Observed time interval: 00:01:02 - 00:13:20 (738sec)
Number of datapoints: 723

Carried load: larvae and pupae (rare)
U-turns: 2
Departures: approx. 4

Table A.3. Video 19 shows an unidirectional trail with heavy traffic and light coun-
terflow. Based on the few observations of carried load a migration takes place. As
traffic ceased after approximately 12 minutes, migration was nearly finished.
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Basic Data Video 19:
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Fig. A.1. The figures show the basic data extracted from video 19 by cumulative
counting. Due to the large number of counts the clustering of datapoints can not
be seen. Travel time shows oscillation around the mean value. The instantaneous
particle number shows some peaks corresponding to the movement of platoons. A
closer investigation shows the same features already observed for the more simple
case (video 13).
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A.4.3 Video 6 (Parts A, B, C)

Type: full bidirectional trail
Path length: 14bl
Carried load: none

Observed time interval: 0:00:01 - 0:10:04 (602sec)
Number of datapoints (LR): 517
Number of datapoints (RL): 172

U-turns (LR): 23
U-turns (RL): 11

Departures (LR): 1
Departures (RL): 5

Table A.4. Video 6a shows a bidirectional trail with heavy traffic in LR-direction.
No load was observed. But U-turns happen at a relatively high frequency.

Observed time interval: 0:00:11 - 00:09:35 (564sec)
Number of datapoints (LR): 362
Number of datapoints (RL): 131

U-turns (LR): 14
U-turns (RL): 11

Departures (LR): 0
Departures (RL): 1

Table A.5. Video 6b shows a bidirectional trail. Traffic from left to right is still
dominant but U-turns happen less frequently.

Observed time interval: 0:00:11 - 0:04:52 (278sec)
Number of datapoints (LR): 122
Number of datapoints (RL): 93

U-turns (LR): 9
U-turns (RL): 7

Departures (LR): 0
Departures (RL): 2

Table A.6. Video 6c shows roughly symmetric bidirectional traffic. Traffic flow is
nearly the same for both directions. Also the number of U-turns is nearly the same.
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Basic Data Video 6A:
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Fig. A.2. The figures show the basic data extracted from video 6a by cumulative
counting. After t = 200sec flow from left to right becomes dominant.
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Basic Data Video 6B:
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Fig. A.3. The figures show the basic data extracted from video 6b by cumulative
counting. Traffic flow from left to right is still dominant but not as much as observed
in part A.
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Basic Data Video 6C:
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Fig. A.4. The figures show the basic data extracted from video 6c by cumulative
counting. Obviously traffic is symmetric for both directions. The slope of the countings
which is equivalent to the instantaneous flow is roughly constant.
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Abstract

The main aim of the present work is the investigation of the dynamical properties
of traffic on preexisting ant trails. It is mainly divided into two parts which are
based on the interplay between theory and experiment. Both parts are developed
independently and compared later on in a final discussion. Methods from statistical
and non-equilibrium physics were employed for theoretical studies. New models for
bidirectional traffic on preexisting ant trails were introduced. Also the understanding
of the already existing unidirectional ant trail model was improved. The results of the
presented empirical studies are compared to the models predictions. Ant-traffic data
are extracted using methods from traffic engineering and behavioural biology. Similar
approaches have already been employed successfully for vehicular traffic. Nevertheless
the crucial differences between the already investigated systems and ant-traffic are the
main motivation of the present study.
Chapters 2,3 and 4 cover the theoretical part. In chapter 2 a broad intoduction
to driven non-equilibrium systems in the context of traffic flow is given. Standard
models like the TASEP and the Nagel-Schreckenberg model for vehicular traffic are
introduced. As the ant trail models are based on the TASEP with dynamically induced
disorder, a review of the TASEP with static particlewise- and latticewise disorder is
given.
Chapter 3 introduces a model for unidirectional traffic on ant trails. Pheromone marks
lead to different hopping rates depending on the distance headway to the preceding
ant. As a result dynamically induced particlewise disorder emerges. Phase separation
namely the formation of moving particle clusters is observed. The fundamental dia-
gram exhibits a non-monotoncity in the average velocity when particlewise disorder is
dissolved at high densities. New techniques like measuring the density profile within
the moving system seen from a modified second-class particle are applied and analogies
to the static case are drawn. Also the coarsening behaviour is investigated. Obviously
the process is describe by a power-law with two dynamic exponents depending on the
particular temporal regime.
Chapter 4 discusses different extensions of the unidirectional model to the multi-lane
case. Bidirectional models incorporating the coupling to counterflow are introduced.
A large localised particle cluster emerges due to mutual hindrance by counterflow.
Effectively latticewise disorder is induced dynamically. The same tools as for the
unidirectional model are applied and a mean-field description based on symmetries
of the large localised cluster is developed. Coarsening is investigated and the same
dynamic exponents as for the unidirectional model are found. At low densities also
the periodic process of coarsening and shredding is investigated.
The empirical part of the present study is discussed in chapter 5. Techniques and
strategies for collecting ant-traffic data are introduced. Also an experimental setup is
described. Uni- as well as bidirectional trails are investigated. Qualitative observations
are carried out and compared to quantitative data. Distance headways and single-ant
velocities are extracted. The corresponding distributions as well as the fundamental
diagrams are discussed. As a main result platoon formation and coupling to counter-
flow is found. Also comparisons between the models’ predictions and the empirical
data are drawn.
A review of theoretical and empirical results is given in chapter 6. Main results from
both parts are compared in a final discussion. Also an outlook to future studies is
given.
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Zusammenfassung

Ziel der vorliegenden Arbeit ist die Untersuchung der dynamischen Eigenschaften
des Verkehrs auf Ameisenpfaden. Basierend auf dem Wechselspiel zwischen Theorie
und Empirie gliedert sich die Arbeit in zwei Teile. Beide Teile werden unabhängig
voneinander entwickelt und in einer abschlieenden Diskussion verglichen. Für die
theoretischen Untersuchungen werden Methoden aus der Statistischen- und Nicht-
gleichgewichtsphysik verwandt. Es werden neue Modelle für bidirektionalen Verkehr
auf bereits bestehenden Ameisenpfaden eingeführt. Zusätzlich wird das bereits be-
stehende unidirektionale Modell untersucht und zum besseren Verständnis detailliert
diskutiert. Die Ergebnisse der empirischen Untersuchungen werden mit den Vorhersa-
gen der Modelle verglichen. Durch die Anwendung von Methoden aus der Verhaltens-
biologie und des Verkehrsingenieurwesens werden Daten zum Verkehrsfluss gewonnen.
Grundsätzlich sind ähnliche Methoden schon erfolgreich auf Fahrzeugverkehr ange-
wendet worden. Dennoch motiviert der grundlegende Unterschied zwischen den bereits
untersuchten Systemen und dem Verkehr auf Ameisenstraßen die vorliegende Studie.
Die Kapitel 2, 3 und 4 bilden den theoretischen Teil. Kapitel 2 gibt eine breite
Übersicht zu getriebenen Nichtgleichgewichtssystemen im Zusammenhang mit dem
Flußin Verkehrssystemen. Standardmodelle zur Beschreibumg von Straßenverkehr,
wie das Nagel-Schreckenberg Modell, werden diskutiert. Die Modelle zur Beschreibung
des Verkehrs auf Ameisenstraßen basieren auf dem TASEP mit dynamisch-induzierter
Unordnung. Daher wird der TASEP mit statischer teilchen- und gitterartiger Unor-
dung besprochen.
In Kapitel 3 wird das Modell für einspurige Ameisenpfade eingeführt. Pheromon-
markierungen induzieren unterschiedliche Hüpfraten, die vom Abstand zur voraus-
laufenden Ameise abhängen. Dies führt zu dynamisch-erzeugter teilchenartiger Un-
ordnung. Eine Phasenseparation tritt ein, bei der die Ameisen sich in Kolonnen über
den Pfad bewegen. Die Fundamentaldiagramme zeigen eine Nicht-Monotonizität bei
der Dichte, bei der die teilchenartige Unordnung aufgelöst wird. Neue Untersuchungs-
methoden, wie die Messung des Dichteprofils, das von einem modifizierten passiven
Teilchen gesehen wird, werden angewandt. Dadurch werden Analogien zum statischen
Fall ermöglicht. Darüber hinaus wird die zeitliche Entwicklung der Phasenseparation
untersucht. Offenbar wird diese durch ein Potenzgesetz beschrieben. Abhängig vom
jeweiligen Bereich findet man zwei dynamische Exponenten.
Kapitel 4 diskutiert die Erweiterung des Einspur-Modells zu einem Mehrspur-Modell.
Drei Modelle, die eine Koppelung zum Gegenverkehr als zusätzliche Wechselwirkung
beinhalten, werden eingeführt. Diese Koppelung führt durch gegenseitige Behinderung
zur Bildung einer lokalisierten Kolonne von Ameisen. Grundsätzlich werden die glei-
chen Untersuchungsmethoden wie für das Einspur-Modell verwendet. Basierend auf
den so nachgewiesenen Symmetrien wird eine Molekularfeld-Beschreibung des stati-
onären Zustandes entwickelt. Auch hier wird die Entstehung der Phasenseparation
untersucht. Diese folgt wieder einem Potenzgesetz mit den gleichen dynamischen Ex-
ponenten wie auch das Einspur-Modell. Für niedrige Dichten wird zusätzlich das pe-
riodische Zerstören und Neubilden der sich bewegenden Ameisenkolonne untersucht.
In Kapitel 5 werden schließlich die empirischen Ergebnisse dargestellt. Die Methoden
und Techniken zur Datengewinnung sowie die Konstruktion der Experimente wer-
den beschrieben. Uni- und bidirektionale Pfade werden untersucht. Zusätzich werden
qualitative Untersuchungen durchgeführt und mit den Ergebnissen der Messungen
verglichen. Die Einzelgeschwindigkeiten der Ameisen und der Abstand zur vorauslau-



128

fenden Ameise werden gemessen. Die dazugehörigen Verteilungen wie auch die Fun-
damentaldiagramme werden diskutiert. Als ein wesentliches Ergebnis stellt sich die
Kolonnenbildung und deren Störung durch Gegenverkehr heraus. Schließlich werden
die empirischen Ergebnisse mit den Vorhersagen der Modelle verglichen.
Kapitel 6 gibt eine Übersicht der wichtigsten Ergebnisse - sowohl des theoretischen als
auch des empirischen Teils. Abschließend wir ein Ausblick auf zukünftige Untersuchen
diskutiert.
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