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Abstract

Sperm cells are propelled in a fluid by an active, snake-like motion of their

tail, the flagellum. It is known for some time that sperm cells accumulate at

the walls of a container, swimming mostly in clockwise circles. Cilia are hair-

like extensions of some cells that propel fluid over its surface by performing

a whip-like motion. Cilia appear in many places in nature, e.g. to remove

mucus out from the human respiratory system, or on the surface of swimming

Paramecium. One of the puzzling phenomena observed in large arrays of cilia,

is the metachronal wave; neighboring cilia beat with a certain phase difference

that leads to wave-like patterns, similar to those observed when the wind blows

over a wheat field. Both structures, the flagellum and the cilium, have a very

similar underlying structure, the axoneme. This similarity suggests a combined

theoretical study.

We constructed a model axoneme that is used for simulations of sperm and

cilia. It is modeled as a semi-flexible polymer, on which an active bending can

be imposed. Hydrodynamic interactions, which are responsible for the directed

motion of the cell and the metachronal wave of cilia, are taken into account

by a particle-based, mesoscopic simulation technique (multi-particle collision

dynamics). In sperm simulations, the axoneme is subjected to a sinusoidal

bending force. The sperm head is modeled as a sphere, chirally displaced from

the beat plane of the tail. Arrays of cilia are modeled by attaching several

axoneme models to a wall. The activity is imposed by a geometry-dependent

bending force.

We demonstrate that the highly simplified sperm model captures the main fea-

tures of cell motion described above. We unveil how hydrodynamic interactions

lead to adhesion to a wall, and we are able to explain this apparent attraction by

a combination of thrust and hydrodynamic repulsion of the tail. Furthermore,

we find that the chirality is the cause of the directed circular motion. Tuning

this chirality, we find two regimes of motion. In one regime sperm swim in tight

circles very close to the wall. Without rotation around the longitudinal axis of
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the sperm cell, the beating plane stays perpendicular to the wall. In the other

regime, the sperm follows large circles and rotates around its own longitudinal

axis. In this case the beating plane is on average parallel to the wall. We explain

the transition between these two regimes of motion by a dynamic change of the

shape of the flagellum.

For cilia, we present, for the first time, a two-dimensional array of autonomously

beating cilia, solely coupled by hydrodynamic interactions, that develop a metachronal

wave. We show that the metachronal wave enhances velocity and efficiency of

solute transport compared to synchronously beating cilia. The transport ve-

locity increases up to a factor of 3.2, when the cilia are packed more densely,

while transport efficiency increases almost an order of magnitude. Furthermore,

we characterize transport and wave properties as functions of the viscosity, ef-

fective stroke direction and cilia spacing. For example, we show that the main

correlation direction roughly coincides with the effective stroke direction, and

that the beat frequency decreases through metachronal coordination while the

energy consumption per beat is largely independent of cilia spacing, effective

stroke direction, and metachronal coordination. We believe, that for the fitness

of the cell, both the efficiency and especially the transport velocity are essential.

The metachronal wave pattern is thus of great functional significance for ciliated

cells.

8



1 Introduction

1.1 Motivation

Life, as we see it, is deeply connected to motion. Motion is commonly consid-

ered to be a “sign of life”. Movement is important from single cells, to higher

organisms. There are many kinds of cell motility:

Cell crawling, for example, is used by fibroblasts to move across a surface to

repair a wound. White blood cells adhere to the wall of the blood vessel and

crawl through tissue to combat an infection. Amoebae crawl across surfaces

in their search for food. Typical velocities of crawling cells are on the order

of 10 µm/s. The basic mechanisms of cell crawling are known [2]. First, the

cell pushes filopodia, finger-like extensions, in the foreword direction. These

filopodia adhere to the surface via adhesion molecules (integrin for example).

Thereafter, the cell body is dragged across the surface. How exactly these indi-

vidual steps are performed, however is subject of ongoing research (see Ref. [72]

for a review).

Some bacteria use rotating flagella to swim through a fluid to find food; Es-

cherichia coli is probably the best-known example. This rod-like bacterium has a

bunch of roughly 20 µm long helical threads connected to motor proteins. When

the threads rotate counterclockwise, they form a bundle and act as a propeller

that moves the bacterium foreward. On the other hand, when the rotation of

the flagella is clockwise, E.coli starts to tumble and to reorientate. The motor

creating the necessary torque [84, 80] and the formation of bundles [70, 48] were

examined in recent years.

The bacterial flagella should not be mistaken with the eukaryotic flagella de-

scribed below. In this work the term flagellum always refers to the eukaryotic

flagellum.

Sperm use a beating flagellum to swim towards the egg. Paramecium, a uni-

cellular organism, is covered by thousands of beating cilia to propel it through a

fluid. Both, cilia and flagella, are built from an axoneme, which is a very univer-
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1 Introduction

sal structure throughout the animal kingdom. Sperm tails, propelling hairs on a

Paramecium, small hairs in the respiratory system and many other examples are

all constructed essentially in the same way. Furthermore, flagella are of interest

for engineering [50] e.g. for micro machines [18]. For example, Dreyfus et al.

[18] constructed a chain of magnetic colloids that are moved by an external field

in a sinusoidal pattern, and thus create thrust on an attached red blood cell.

The common axoneme structure, its wide appearance in eukaryotic cells, and

its potential for engineering makes the understanding the dynamics of cilia and

flagella, the hydrodynamics around them, the propulsive forces and collective

phenomena a field of research of fundamental interest. We develop a coarse-

grained model with only a few parameters. Using computer simulations, we are

able to reproduce and study large-scale phenomena of motility. This will be the

theme of this work.

1.2 Axoneme

The structure underlying cilia and flagella is called the axoneme. The axoneme

is constructed from approximately 250 different proteins [42]. Small differences

occur between the axonemes of different organisms, but the basic design is the

same, which is the ”9+2 Structure”. Two central microtubules (stiff polymers,

the “bones” of the cytoskeleton) are surrounded by 9 double microtubules (see

Fig. 1.1). These microtubules are connected by many proteins to create the ap-

propriate elastic properties. At one end, the doublet microtubules emerge from

a basal body (see Fig. 1.1) where they form triplets with another microtubule.

Motor proteins (dyneins) cause an active bending of the structure by sliding

microtubules along each other. The generation of motion is illustrated in Fig.

1.2.

It is not yet fully understood how these motor proteins are controlled. Several

models have been proposed (see Sec. 1.5). The “9+2 structure” is enclosed by

an extension of the cell membrane, in contrast to bacterial flagella which are

bare protein threads extending from the cell.

In the following, the key components of the axoneme are described in more

detail.

• Microtubules are long and stiff polymers that are found in several other

structural units of a cell. Together with other protein filaments, they form

10



1.2 Axoneme

Figure 1.1: Structure of the axoneme

Left: Schematic figure of the axoneme, from

http://www.nyu.edu/classes/ytchang/book/e003.html

Right: Micrographs of a cilium, from

http://www.cytochemistry.net/Cell-biology/cilia_intro.htm

11



1 Introduction

Figure 1.2: Microtubule sliding leads to bending. On the left side is a relaxed two

dimensional model of the axoneme, in black the two microtubules

and in red the motor proteins. The green arrows indicate that the

motor proteins will move along the left microtubule upwards about

10% of their current distance from the base. Because the microtubule

is attached at the lower end, it is bend as pictured on the right hand

side.

the cytoskeleton of the cell. They consist of tubulin monomers that are ar-

ranged in a helical fashion to form a hollow tube (see Fig. 1.3). These tubes

are about 24 nm thick and can be up to millimeters long. Microtubules

are rather stiff with a persistence length of several millimeters. Inside a

cell, microtubules may be dynamically unstable, constantly polymerizing

and depolymerizing. This dynamic instability is used, for example, to

form the meiotic spindle [13, 28]. In the axoneme, special proteins keep

the microtubules from falling apart. The outer ring of microtubules in the

axoneme is formed by doublet microtubules, always two microtubules are

interlaced into each other. In a cross section view, doublet microtubules

look like three quarters of a circle that is attached to the full circle of a

normal microtubule (see the micrograph in Fig. 1.3).

• Dyneins are motor proteins that use ATP hydrolysis to move along a

microtubule. They are the key active component of the axoneme. More

precisely: cilia and flagella have so-called axonemal dyneins that have two

different arms extending clockwise from one doublet microtubule to the

next.

12



1.2 Axoneme

Figure 1.3: Microtubule structure.

Left: 3-D reconstruction of a microtubule from

http://en.wikipedia.org/wiki/Microtubule

Right: An electron micrograph of a cross section of a cilium, from

http://www.cytochemistry.net/Cell-biology/cilia_intro.htm

In a cell, a large variety of motor proteins is present to fulfill many different

tasks. Motor proteins have been studied intensively in recent years. In

a typical experiment, a colloidal particle is attached to one end of the

motor protein. In an appropriate solution, the motor proteins run along a

microtubule, while a laser tweezer can exert a well-defined force onto the

colloid. Thus a velocity versus force measurement is possible [21]. Motor

proteins have been described as “Brownian ratchets” [73]. In a spatially

periodic yet asymmetric potential, which switches periodically directed

motion is possible - even against a net force.

• Radial spokes form a class of proteins (about 22 have been identified) that

connect the central pair with the outer ring. It is speculated that some of

these radial spokes act as regulators for the inner dynein arms [42], but

their precise function is still unresolved.

• Membranes can self assemble from a solution of amphiphilic molecules.

A simple artificial membrane is a lipid bilayer that forms in an aqueous

solution by the hydrophobic effect. In cells, membranes are much more

complex. Many different kinds of lipids, proteins, glycolipids, cholesterol

and other ingredients are embedded into the membrane. A schematic

view is shown in Fig. 1.4. In the cell, the main function of membranes is

13



1 Introduction

Figure 1.4: Cell Membrane [5].

to provide a barrier between the cytoplasm (the interior of the cell) and

the surrounding fluid, but it is also essential for many other processes [2],

including ATP synthesis, transport (endocytosis, exocytosis) and adhesion.

The membrane seems not to be essential for axoneme dynamics and the

generation of flow; Brokaw [7] showed that sperm can swim without a

membrane.

• Many other proteins and structures can be found in the axoneme. Among

others, there are nexin links, protein kinases, fibers, pores, ion channels,

receptors etc. Their function varies from beat pattern control and sensory

functions to elastic stiffening.

For a more detailed description of the structure of the axoneme, see Ref. [42].

1.3 Sperm

Sperm motility has been studied for a long time. Rothschild’s review [78] on

the sea urchin spermatozoon in 1951 covered the first 27 pages of “Biological

Review”, while a search for “sperm” in the Web of Science leads to over 50 000

hits. From a physics point of view, the motility of sperm is probably one of

the most interesting topics of research. An essay by Brokaw [8] provides a lucid

review of the history of sea urchin sperm motility, subtitled “My Favorite Cell”.

Although sperm cells from different species look different, they have a similar

structure from a theoretical point of view: A long flagellum is attached to a

relatively small head (see Fig. 1.5).

14



1.3 Sperm

Figure 1.5: Diagram of human sperm,

from http://en.wikipedia.org/wiki/Sperm

Many substructures are present in sperm (see Fig. 1.5). Starting from the

tip of the head, called acrosome (used to “dig” into the egg) to the nucleus,

where the haploid genetic information is stored, to the flagellum, where in the

axoneme many mitochondria are wrapped around the “9+2 structure” to provide

ATP as energy source. Chemotaxis, the directed motion in a chemical gradient,

is accomplished by a combination of complicated sensory responses involving

a cascade of protein-protein interactions. The flagellum is separated into (at

least) three parts: the mid piece, the principal piece (which can be subdivided

in further pieces), and the end piece.

It is instructive to take a look at the characteristic length scales of, for ex-

ample, sea urchin sperm [26]. The head appears triangular or conical in shape,

about 3 µm long and 1 µm thick. The flagellum is much larger; it has a length

of roughly 50 µm. At the surface of the cover slip, the sperm swims with a di-

ameter of 50 µm [46] (see Fig. 1.6) at a velocity of roughly 220 µm/s (although

these values depend somewhat on the degree of activity).

Motion of sperm is created by beating of the tail. The beat pattern is, like

the overall structure, species-dependent, but on a more global level, the peat

patterns are similar [83, 6]. The beat pattern has the form of a traveling bend-

15



1 Introduction

Figure 1.6: Sea urchin sperm, swimming at a surface (from Ref. [46], scale bar

is 50 µm).

ing wave, usually from the head to the tip of the tail, but the reverse is also

reported. This bending wave can be sinusoidal, but also half circles in opposing

directions or meander-like beat patterns have been reported. Typically the flag-

ellum beats essentially in a single plane, although some form of a small aplanar

beat component is reported for many species while others might even display an

almost helical beat pattern.

In bulk fluid, sperm usually swim on helical trajectories. In confined ge-

ometries, like in the droplet between the cover slides under a microscope, sur-

prisingly sperm accumulate at the walls. In 1963, Rothschild [79] observed this

phenomenon quantitatively and concluded that some hydrodynamic interactions

capture the sperm at the surface. This basic observation is not yet understood.

More recently the problem of sperm adhesion was addressed by Cosson et al.

[12] and Woolley [94]. Cosson et al. [12] studied sea urchin sperm using high-

speed video microscopy. They observed that parts of the sperm tail close to

the surface are out of focus. This was interpreted as an out-of-plane component

in the beating pattern. It was further argued that this out-of-plane component

generates a force that pushes the sperm towards the surface.

Woolley [94] distinguishes two different forms of surface adhesion of sperm

displaying either a planar or a three-dimensional beat pattern. For planar beat-

ing sperm, the key observation is the “left-hand rule”: sperm only adhere to a

16



1.3 Sperm

surface if the left side of the head touches the wall. Woolley assumes that, due to

asymmetries, the head acts as a hydrofoil and thereby creates a pressure against

the surface in one direction. Sperm with a three-dimensional beat pattern on

the other hand adhere if the beating envelope is conically shaped. If one side of

the cone is close to the wall, the thrust points towards the surface, thus keeping

the sperm at the surface.

Furthermore, once captured at the surface, sperm swim in a circle with a

preferred direction of rotation. This circular motion is not just the projection

of the helical bulk trajectory. Woolley [94] proposed that the preferred circling

direction arises because only one side (“left”) of the head adheres to the surface.

In the case of a three-dimensional beating pattern Woolley argues that, while

the sperm is rotating, the head experiences higher viscous friction close to the

wall. Thus the resulting forces are turning the sperm in the same direction of

its rotation (if observed from the front of the sperm’s head / from outside the

observation chamber).

An important question that is beyond of the scope of this work is how chemo-

taxis induces directed motion of sperm. The group of Kaupp [46, 35, 45, 85] has

made significant progress by understanding how binding of a chemical attrac-

tant released by the sea urchin egg, leads to changes in the sperm trajectory and

thus to chemotaxis. While swimming in circles, the sperm senses the chemo-

attractant concentration. A calcium influx causes an increase in the curvature

of the trajectory after some time delay. Thereafter, the sperm swims straight

for a while before swimming in circles again. With the correct match of the

velocities and delay times, the sperm is able to swim up gradient, towards the

egg.

Although many models that describe the beat pattern of the flagellum have

been developed (see Sec. 1.5), no consistent model explaining the different

dynamical phenomena on larger length scales has been proposed. In this thesis,

we provide a simple model, only considering some basic characteristics of a sperm

cell. We are able to reproduce sperm behavior in a qualitative form in bulk fluid

as well as in confined geometries. In particular we are able to explain how sperm

adhere to a wall due to hydrodynamic repulsion of their tail. Furthermore, our

model is flexible enough to implement specific beat patterns and geometries in

future studies.
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1 Introduction

1.4 Cilia

Cilia are active hair-like extensions from the cell that can, by performing a whip-

like motion, move fluid across the cell surface. They are typically 5-20 µm long

and about 250 - 1000 nm thick.

Probably cilia have already been discovered in 1675 [82] and described as

little legs used for propulsion of a unicellular organism. Over the years, more

and more details were discovered. Cilia appear in many different forms. For

cilia

Figure 1.7: Stentor ciliate, from wikipedia,

http://en.wikipedia.org/wiki/stentor%28genus%29

example Stentor (see Fig. 1.7) is a group of filter feeding ciliates named after the

Greek herald Stentor due to their trumpet-shaped body. Around the “mouth”, a

ring of cilia bundles moves fluid and nutrition inside the body. The Paramecium

(“Pantoffeltierchen”) is one of the most famous unicellular eukaryotes. Cilia, on

Figure 1.8: Transmission electron microscope image of the lung (mouse). From

http://remf.dartmouth.edu/images/mammalianLungTEM/source/12.html

18



1.4 Cilia

the surface of Paramecium are used for propulsion of the cell through aqueous

medium. In the female reproductive tract, the oviduct, large arrays of cilia move

the egg. In the lungs of mammals (see Fig. 1.8), cilia propel mucus out of the

respiratory system. All these different cilia have a remarkably similar structure,

the axoneme. The differences are mainly in size and beating pattern (see Fig.

1.9). While the beat pattern of sperm is relatively symmetric, cilia have clearly

distinguishable effective and recovery strokes. The relatively fast effective stroke

(also called power stroke) happens in a plane perpendicular to the surface while

the cilium is rather straight. In the recovery stroke, the cilium slowly returns

back to the initial position, moving more closely at the surface in a plane tilted

towards the surface. Due to the asymmetry of this beat pattern, fluid is moved

in the effective stroke direction (ESD).

Effective Stroke
2

1

3

4

5
6 7

8
9

10 11
12

Figure 1.9: Cilium beat pattern, schematic drawing. The effective stroke (1-4)

is much faster than the recovery stroke (5-12). Redrawn from [82].

Ciliated cells are often much larger than the cilia itself (see Fig. 1.8). Typi-

cally, cilia appear in large arrays. A single organism, like Paramecium, is covered

by thousands of cilia (see Fig. 1.11). Cilia do not beat randomly or uncoordi-

nated. Instead, they beat in a coordinated wave-like pattern which is called a

metachronal wave (see Fig. 1.10). The metachronal waves look similar to those

when wind blows offer a wheat field.
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1 Introduction

Figure 1.10: Metachronal waves of cilia in Opalina, from [86]. (a) Bar=100 µm,

(b) Bar=10 µm, (c) Bar=10 µm. Waves travel in the direction of

the arrows.
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1.4 Cilia

Figure 1.11: Paramecium covered with cilia,

from http://www.biomedia.cellbiology.ubc.ca

The properties of the metachronal wave of the cilia depend strongly on the

system. One distinguishes symplectic metachronism where the wave propagates

in the direction of the effective stroke, antiplectic metachronism, where the wave

travels in the opposite direction, and dexioplectic and laeoplectic metachronism,

where it travels perpendicular to the effective stroke [82]. It is known that for

certain cilia increased viscosity of the fluid decreases the beat frequency but can

also cause erratic behavior [22].

As an example for metachronal waves, consider the work of Gheber et al.

[22, 23, 24]. The authors study a monolayer of tissue culture of frog esophagus

(the tube that leads from the frog’s mouth to the stomach) using optical fibers

to get simultaneous data from different points. These mucus propelling cilia are

5-7 µm long and about 600 nm thick. They beat with about 15 Hz and form a

metachronal wave traveling at 90-125◦ clockwise to the effective stroke direction

with a wavelength of 5-9 µm.
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1 Introduction

1.5 Theory

One of the earliest theoretical works on sperm motility is the article by Gray

and Hancock (1955) on “The propulsion of sea-urchin spermatozoa” [27]. The

propulsive speed of the whole sperm is calculated as a function of the shape

and the speed of propagation of the bending waves that are generated by the

tail (see Sec. 1.5.2). Several more complex theories have been developed later

on. We will discuss a selection in theory of The Beating Axoneme (Sec. 1.5.1),

Sperm Motility (Sec. 1.5.2), and Cilia Dynamics (Sec. 1.5.3).

1.5.1 The Beating Axoneme

In 1994, Lindemann introduced the “geometric clutch” hypothesis [56]. It has

been developed further recently (see for example Ref. [58] and Lindemann’s

review [57]). In this model, transverse forces, due to active or passive bending,

move adjacent microtubules further apart or closer together. Because in this

model the dynein activation probability depends on the distance between the

microtubules, a geometrical feedback from the configuration of the axoneme to

the active bending force is achieved. Hence the name “geometric clutch”. By

adjusting the mechanical properties of the model, different cilia and flagella can

be simulated. After further adjustment the model reproduced experiments in

which the outer dynein arms were removed, and even predicted two types of

arrest behavior that were subsequently experimentally verified.

Brokaw [11] developed a curvature-controlled mechanism for the axoneme.

Dyneins are modeled as groups which are switched off whenever the local cur-

vature exceeds a certain preset value. Thereafter, the group on the opposite

side is activated. In a series of studies, he was able to describe many different

phenomena such as sinusoidal beat patterns of arrest behavior [9, 10, 11]. Both

Lindemann [58] and Brokaw [11] implemented hydrodynamics only at the level

of an anisotropic friction (see Sec. 1.5.2).

Dillon et al. [16] simulated a two-dimensional axoneme with the immersed

boundary method for hydrodynamics. The authors simulated the axoneme as

an elastic structure, and dyneins as springs within. The dynein activation is also

curvature controlled. The authors do not attempt to reproduce the exact beat

pattern of cilia from a specific organism, but define parameter ranges in which

beat patterns of both, cilia and flagella, are observed.

The immersed boundary method was introduced by Peskin [68] to model blood
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flow in the heart. Here the Navier-Stokes equations are solved numerically on a

grid, boundaries are taken into account by δ-function forces. The main idea is

that the object is modeled by a volume of fluid, and its movement is produced

by forces on its surface (see Ref. [69] for details).

Jülicher and Prost [44] showed that competing forces produced by motor pro-

teins lead to instability and oscillations. Hilfinger and Jülicher [36] used this

ability of a collection of molecular motors to exhibit spontaneous oscillations

[44] and rigorously calculated the dynamics of an actively bending rod [36].

These studies provide a detailed and impressive comparison between theory and

experiments on sperm.

To conclude, the overall beat pattern is well reproduced by different models,

whereas the details of the beating strongly depend on the individual features of

the axoneme. Often the models are able to describe many different beat patterns

of different cilia or flagella by small changes in a few parameters.

1.5.2 Sperm Motility

Gray and Hancock [27] calculated the swimming velocity of sperm cells. Using

the fact that the two friction coefficients for a rod dragged parallel (γ‖) or perpen-

dicular (γ⊥) to its orientation are different, they calculated the force generated

by a moving element of the tail. After assuming a sine-shaped beat-pattern,

γ⊥ = 2γ‖, and some other approximations, they calculated the swimming speed

as,

v̄x =
ωπb2

λ

(

1 +
4π2b2

λ2
−
√

1 +
2π2b2

λ2

CH

nλγ‖

)−1

(1.1)

where ω is the angular frequency, λ the wavelength and b the amplitude of the

beat. The number of waves present on the tail is denoted by n, CH is the drag

coefficient of the head. For a spherical head of radius a and a thin tail of radius

d, it is possible to approximate

CH

γ‖
= 3a

[(

log
d

2λ

)

+
1

2

]

. (1.2)

Because a pre-defined beat shape has been used, the viscosity η does not influ-

ence the swimming speed.

Fauci and McDonald [20] simulated a two-dimensional sperm in thin films with

the immersed boundary method. They conclude that the sperm’s swimming
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speed is inversely proportional to the width of the film d,

v̄x =
1

A
(

d
b

)
+ B

(1.3)

where b is the beat amplitude and A and B are constants. They also observe an

effective attraction to the wall. The results strongly depend on the dimension-

ality. In three dimensions, the fluid can flow around a slender filament, whereas

in two dimensions it is confined to one side.

1.5.3 Cilia Dynamics

Netz and coworkers [49, 62] studied a cilia-related model in form of an elastic

rod. In the study by Netz and Manghi [62], the rod is grafted to a rotary motor.

Due to the hydrodynamic drag the rod bends and thus creates a flow away from

the plane to which it is attached.

The study by Kim and Netz [49] is more closely related to cilia. The rods are

attached to an angular motor. During the effective stroke, a rather weak torque

forces the rod to move in one direction while its shape is essentially a straight

rod. The high torque during the recovery stroke bends the rod, and thus less

fluid is transported than during the effective stroke. This is in contrast to the

biological situation, but it might be helpful for engineering of micropumps.

Kim and Netz [49] define a dimensionless efficiency

ǫ = (D/a)/(E/kbT ) = (v̄/a)/(∂tE/kbT ) (1.4)

where D and E are the pumping distance and energy per beat cycle, respectively,

and a is the rod diameter. They find a line of highest efficiency in the persistence-

length versus torque parameter space.

Jülicher and Vilfan [91] presented a model where a cilium is represented by

a single sphere on a tilted elliptical path near a planar surface. The sphere

is driven by a predefined tangential force while hydrodynamic interactions are

taken into account by Oseen tensor calculations. Because wall friction reduces

the amount of pumped fluid when the sphere is closer to the wall, a net fluid

flow results. Modeling two cilia, they were able to identify areas in parameter

space where synchronization occurs and calculate the phase lag explicitly.

Lagomarsino, Jona and Bassetti [51] simplified the cilium to a rower. A rower

can be considered as a point particle with a power and recovery stroke. In the

effective stroke, its hydrodynamic drag coefficient is increased and the potential
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is switched to move the particle in another direction compared to the recovery

stroke. This way the rowers can generate a net flow. A geometric feedback is

achieved by switching between the two strokes when a certain displacement is

reached. Hydrodynamic interactions are modeled by the Oseen tensor, but no

walls are taken into account. The hydrodynamic interactions and the geometric

feedback together allow a coupling and synchronization of the rowers. In the

continuum limit, in which the model can be studied analytically, the authors only

find a stable metachronal wave if the hydrodynamic interaction is negative (i.e.

hydrodynamic forces are attractive). But in simulations they find also short-

wavelength traveling wave packets where neighbors beat in an anti-correlated

fashion.

Gueron and Levit-Gurevich [32, 33, 31, 30] modeled the cilium as a slender,

elastic filament. Switching between effective and recovery strokes is defined by

the curvature of the cilium. Hydrodynamic interactions are taken into account

by a slender body theory [34], which in turn incorporates hydrodynamics with

a Oseen tensor approximation. In two dimensional studies [30], where all move-

ment is restricted to one plane, they find an antiplectic metachronal wave; the

beat frequency decreases with increasing viscosity and distance between cilia.

Furthermore they calculated the energy expenditure per effective stroke to be

9 · 10−16 J which decreases to 3 · 10−16 J for 100 densely packed cilia in a row.

During the recovery stroke the energy expenditure is 2 · 10−16 J [31], indepen-

dent of the number of cilia. The three-dimensional model also includes effects

of ATP concentration [32], but the cilium is not allowed to twist. Simulations

of 5 × 5 cilia arrays show a metachronal pattern, but a detailed analysis of the

metachronal wave was not presented. In the most recent model [33], a twist of

the cilium is introduced and singularities in the equations of motion are removed.

This model has not yet been used to study cilia dynamics systematically.
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Our goal is to find a rather universal model to simulate the large scale dynamics

of flagella and cilia. The beat pattern is treated as an input parameter, and we

study the large scale dynamics resulting from it. We do not simulate flagellar

beating on a molecular level, but prefer a coarse grained description. Therefore,

we treat the axoneme as an active crane-like polymer and the fluid around it

with the mesoscale simulation technique MPCD. Details, like the beat pattern,

axoneme length, boundary interaction, etc. can be subsequently adjusted to the

specific system or model.

2.1 Molecular Dynamics

In a coarse-grained description, a group of atoms is represented by a bead or

monomer, a point particle with a certain mass and well defined interactions. The

movement of this particle is treated classically, i.e. it follows Newton’s equations

of motion,

mi
d2

dt2
~ri = ~Fi. (2.1)

where mi, ~ri and ~Fi are the mass, position, and force of monomer i respectively,

and t denotes the time. In molecular dynamics, these equations are solved in

discrete time steps. The straightforward discretization (known as the Euler

algorithm) is known to be inefficient. Very small time steps are needed to get

reasonably accurate results. Many algorithms have been proposed with different

success. Here we use the well established Velocity Verlet Algorithm. Velocities

and particle positions are updated according to the rule (see for example Ref.

[4]):

~ri(t + ∆t) = ~ri(t) + ~vi(t)∆t +
∆t2

2mi

~Fi(t) (2.2)

~vi(t + ∆t) = ~vi(t) +
(

~Fi(t) + ~Fi(t + ∆t)
) ∆t

2mi
. (2.3)
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This algorithm has proven to be rather stable and efficient. Its main advantage

is the time reversal symmetry and accuracy of O(∆t4). The time step ∆t has

to be sufficiently small to guarantee energy conservation. In our simulation,

energy conservation is not so critical, because we couple the system to a heat

bath thus long term energy stability is not as critical. The time step ∆t must

be small enough to allow correct integration of Newton’s equations. We used

∆t = 0.001 in most simulations presented here, and used the energy fluctuations

of the molecular dynamics to ascertain that the time step is sufficiently small.

2.2 Mesoscopic Hydrodynamics

Hydrodynamic interactions are forces mediated by a surrounding fluid (or gas,

then also called aerodynamics). In principle they arise from the movements of

fluid particles and their interactions. We encounter them frequently in every

day life. Whether it is wind slowing down a cyclist, pumping of the heart, water

sprinkling from the garden hose or birds flying in the air, its all hydrodynam-

ics. In many biological systems hydrodynamics play an important rule, and is

essential in this work.

2.2.1 Navier-Stokes equation

The macroscopic hydrodynamics have been intensively studied on the basis of

the Navier-Stokes equation1 [54]:

ρ
∂~v

∂t
+ ρ(~v~∇)~v = η∇2~v −∇p + ~fext (2.4)

where ρ and ~v are the fluid density and velocity field. p is the pressure and ~fext

is the external force density. The Navier-Stokes equation is derived explicitly

from the standard Newtonian equations of motion, assuming that different “fluid

particles” moving beside each other experience friction depending on the velocity

gradient and the viscosity η (the “friction coefficient” of the fluid). Together with

the continuity equation these equations fully determine the flow of an isothermal

incompressible fluid. Thermal fluctuations however are not included.

1for incompressible flow and without thermal fluctuations
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By rescaling with a typical length scale l and velocity scale u,

t′ = tv/l

v′ = v/u x′ = x/l

p′ =
lp

ηu
f ′ =

l2f

ηu

the Navier-Stokes equation can be rewritten to a dimensionless form.

Re

(
∂~v

∂t
+ (~v~∇)~v

)

= ∇2~v −∇p + ~fext (2.5)

The primes ′ have been omitted for simplicity. The dimensionless Reynolds

number

Re =
ρul

η
(2.6)

describes the ratio between viscous and inertia forces. It is an important param-

eter to characterize the type of flow; if the boundary conditions and the Reynolds

number are the same, the flows are similar. The higher the Reynolds number,

the more important are the kinetic, nonlinear terms, therefore the transition to

turbulence is characterized by a system-specific Reynolds number.

Solving the Navier-Stokes equation for complex fluids and biological systems

can be nearly impossible because of the complications that arise from coupling

the Navier-Stokes equation to the immersed particles and complex boundary

conditions. Thus other approaches are needed.

2.2.2 Low Reynolds-Number Hydrodynamics

In typical mesoscale systems, length scales are in the order of micrometers,

velocities in the order of a few hundred µm per second. With the viscosity

of water of 0.001 kg/ms, the Reynolds number is in the order of 10−4. Thus

the kinetic term
(

∂~v
∂t

+ (~v~∇)~v
)

in eq.(2.4) can be omitted, which simplifies the

Navier-Stokes equation to the Stokes equation (or creeping flow equation):

~∇p − η∇2~v = ~fext (2.7)

Because the equation is now linear, solutions can be superimposed. The Oseen

tensor T and the pressure vector ~g are the Green’s functions for the creeping flow
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equation (2.7). If the Oseen tensor is known, the velocity field can be calculated

via

~v(~r) =

∫

T(~r − ~r′)~fext(~r′)d~r′ (2.8)

and the pressure via,

p(r) =

∫

~g(~r − ~r′) · ~fext(~r′)d~r′. (2.9)

For the bulk fluid, and for a single wall, the Oseen tensor is known. The explicit

expression for the bulk fluid Oseen tensor [15]

T(~r) =
1

8πη

1

r

(

1 +
~r ⊗ ~r

r2

)

(2.10)

shows the long range 1/r dependence of hydrodynamic interactions. (Here ⊗
represents the dyadic product, the result is therefore a tensor with the com-

ponents (~r ⊗ ~r)ij = rirj .) Thermal fluctuations can be included for Brownian

dynamics simulations [64], but require the inversion of the Oseen tensor to sat-

isfy the fluctuation-dissipation relation. This approach is widely used in many

mesoscale hydrodynamic simulations.

But also Oseen tensor calculations have their disadvantages. The main disad-

vantage is that, computation times due to the matrix inversion are of the order

N3 (where N is the number of beads) which limits Brownian dynamics simu-

lations with Oseen tensor hydrodynamics to date to a few hundred particles.

Because we want to model large arrays of cilia, and probably several interacting

sperm, we used a more suited algorithm presented below.

In order to overcome such problems, many mesoscopic simulation techniques

have been developed. Here a distinction can be made between lattice methods

(e.g. Lattice Boltzman [63, 52]) and continuum methods (dissipative particle

dynamics (DPD) [37, 19, 29], MPCD (as introduced below) and others, see Ref.

[74] for an instructive description). Without going into detail of the advantages

and disadvantages of all these methods, we will explain our method of choice,

multi particle collision dynamics (MPCD). Its main advantages are explicit local

energy and momentum conservation, straightforward coupling to immersed ob-

jects, easy implementation of complex boundary conditions and computational

efficiency.

On the other end of the description of complex systems are atomistic simula-

tions with explicit solvent. However, due to the size of micro biological systems,
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typically several µm, the number of particles (1010−1016) makes this impossible.

Atomistic simulations can be a good option for smaller length scales.

2.2.3 Multi Particle Collision Dynamics

Multi-particle collision dynamics (MPCD) was introduced by Malevanets and

Kapral in 1999 [60]. MPCD is a particle-based off-lattice method to simulate a

hydrodynamic solvent.

The fluid is represented by a number n of point particles with positions ri

and velocities vi that vary continously in phase space. The dynamics of these

particles evolve in two steps:

• The streaming step, in which particles propagate freely according to their

velocities for a collision time step h

~ri(t + h) = ~ri(t) + h~vi(t). (2.11)

• The collision step, where the particles are sorted into boxes and their

relative velocities to the center of mass are rotated in a random direction

by a preset angle,

~vi(t + h) = ~vcm(t) + R(~vi(t) − ~vcm(t)), (2.12)

where R is the random rotation matrix and vcm is the center of mass

velocity of the box containing particle i. The box lattice constant is called

a.

The random rotation matrix rotates a vector by a constant angle α around a

random direction. This direction can either be chosen randomly from one of

the six coordinate axes (this work) or form the surface of the unit sphere. Both

lead to very similar transport coefficients [90]. Ripoll, Mussawisade, Winkler

and Gompper [75, 76] showed that α ≈ 130◦ in combination with a small time

step h leads to high Schmidt numbers (the ratio between viscous and diffusive

momentum transport), i.e. fluid-like behavior. Thus we chose α = 130◦ in all

our MPCD simulations.

From the algorithm, we see that energy and momentum are conserved. The

streaming step obviously does not change either momentum or energy. The same
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can be shown for the collision step by a short calculation. For the momentum

in each box:

~P (t + h) =
∑

i in box

mi~vi(t + h) (2.13)

=
∑

i in box

mi

[

~vcm(t) + R(~vi(t) − ~vcm(t))
]

(2.14)

=
∑

i in box

mi~vcm(t) + R

∑

i in box

mi (~vi(t) − ~vcm(t))

︸ ︷︷ ︸

=0

(2.15)

= ~P (t) (2.16)

Similary, we can deduce the energy E conservation:

E(t + h) =
∑

i in box

mi

2
v2

i (t + h) (2.17)

=
∑

i in box

mi

2
(vcm(t) + R(vi(t) − vcm(t)))2 (2.18)

(2.19)

using the orthogonality of R

E(t + h) =
∑

i in box

mi

2
vi(t)

2 (2.20)

= E(t) (2.21)

The collision step, being on a lattice, breaks Galilean invariance. Translational

symmetry is via the Noether theorem connected to Galilean invariance, but the

lattice breaks this symmetry. Another way to phrase this is that two particles,

being in the same box in one frame of reference, are in a different box in a

different frame of reference. To restore symmetry, and thus Galilean invariance,

Ihle and Kroll [39] introduced a “random shift” - a displacement of the grid of

collision boxes by a random vector where each component is chosen from the

interval [0, a). Thus for the two particles to be in different boxes due to motion

relative to the lattice just resembles a different result in drawing the random

vector. Ihle and Kroll proved in Ref. [40] that this addition restores Galilean

invariance to the MPCD algorithm.

For the implementation of walls, i.e. no-slip boundary conditions, particles

are bounced back, i.e. their velocity is inverted when they hit a wall. However
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this procedure is not sufficient to create no-slip boundary conditions [53]. The

wall has to be considered in the collision step as well. If the wall cuts a box

in half, only half as many particles are inside the box on average. During the

collision step, these particles should somehow collide with some of the particles

of the wall. This can be done in the following way:

If during the collision step boundary cells are only partially filled (i.e. the

number of particles in the cell ρ(i) is less than the average number of particles ρ

in the cell), virtual particles are added. Because the wall particles should have

a finite temperature, these virtual particles have Gaussian distributed velocities

(i.e. energies distributed according to a Maxwell-Boltzmann distribution) and

are generated independently for each step. Because the sum of Gaussians is

again a Gaussian distribution this can be simplified by adding a random vector

whose components are drawn from a Gaussian distribution of zero average and

variance (ρ(i)−ρ)kBT . This scheme, introduced by Lamura, Gompper, Ihle and

Kroll [53], has proven to provide nearly perfect no-slip walls.

The viscosity can be calculated analytically with a molecular-chaos assump-

tion [47, 41, 90],

η = ηcoll + ηkin (2.22)

ηcoll =
m(1 − cos α)

18ha
(ρ − 1) (2.23)

ηkin =
kBThρ

a3

(
5ρ

(4 − 2 cos(α) − 2 cos(2α))(ρ − 1)
− 1

2

)

, (2.24)

where ηcoll is the collisional, and ηkin the kinetic contribution to the total viscos-

ity. These analytic expressions allow to test the implementation of the algorithm.

Besides checking the obvious conservation of energy and momentum, the viscos-

ity can be measured. We perform this test in the Poiseuille flow (see Sec. 2.2.6).

For a more detailed description of the method see e.g. Refs. [93, 76].

Coupling of the fluid to polymers or other immersed particles is straightfor-

ward. Polymers, modeled on a coarse-grained level by monomer beads connected

by harmonic springs, are simulated by standard molecular dynamics described

above. The polymers can be coupled readily to the MPCD fluid by including the

monomers in the collision step [61]. This has been shown [93, 76] to reproduce

the hydrodynamic behavior of polymers as described by Zimm dynamics.

Furthermore, with MPCD hydrodynamics can be turned off and on easily.

This is useful to extract the effects of hydrodynamics in a given system. Sim-

ulations without hydrodynamics are performed by assigning each monomer an
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individual collision box. Within each of these collision boxes are ρ particles

with Gaussian distributed velocities similar to the virtual particles used for no-

slip walls. The collision step and the molecular dynamics for the monomers are

not altered. With this scheme, hydrodynamic interactions are not present, but

the thermodynamic properties are the similar. Thus, we are able to simulate

the same systems with and without hydrodynamics.

Because its introduction in 1999 [60], MPCD has been successfully applied

to study different physical systems. Ripoll, Winkler and Gompper examined

the behavior of star polymers in shear flow [77], and together with Mussawisade

they studied rod-like colloids in shear flow [92]. Noguchi and Gompper used

MPCD to investigate vesicles in shear flow [65] and red blood cells in capillary

flows [66]. Ali, Marenduzzo and Yeomans applied MPCD to the packing of

polymers in viral capsids [3]. To analyze the influence of hydrodynamics on

sedimentation of colloids, Padding and Louis [67] also used MPCD. Tucci and

Kapral expanded the method to study reaction-diffusion fronts [88]. The group

of Ohashi extended MPCD to multiphase fluids [43] and ternary amphiphilic

fluids [81]. To describe a fluid with a non-ideal equation of state, MPCD was

expanded by Tüzel, Ihle, and Kroll [89].

2.2.4 Units

For convenience, we rescaled time and distances to dimensionless units via x′ =

x/a and t′ = t
√

kbT/ma2. This is equivalent to choosing a = 1, kBT = 1,

m = 1, resulting in the mean free path λp = h
√

kbT/m = h. All simulation

results will be given in these dimensionless units.

The dynamic regimes of the MPCD fluid depends on the input parameters,

especially the rotation angle α, the particle density ρ and the collision time h.

We choose α = 130◦, 0.01 ≤ h ≤ 0.1, and ρ = 10, because it has been shown

[76] that this leads to fluid-like behavior.

2.2.5 Thermostat

The computational advantage of MPCD arises from the reduced number of de-

grees of freedom; however, this causes a lower heat capacity. Thus, a relatively

small energy input can lead to a large temperature increase. To avoid this

problem, we couple the particles to a heat bath.
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In spatially homogeneous simulations, like the one for sperm, we simply rescale

the velocities by a global factor, so that

~vi → ~vi

√

T0/T (2.25)

where T0 is the desired temperature, T the calculated temperature of the system,

defined by (in 3 dimensions)

kBT =
2

3N

∑

i

mi

2
v2

i . (2.26)

The simulations of beating cilia produce a relatively constant input of energy to

some parts of the total fluid. A global thermostat would thus lead to an unphys-

ical temperature and density gradient. This problem can be avoided by applying

a layered thermostat. The velocities are rescaled as above, but the temperature

is determined independently for each fluid layer. Typically the temperature

rescaling is done after a few collision steps, such that the temperature increases

no more than a few percent between the rescaling.

2.2.6 Poiseuille Flow

As an example for a MPCD simulation, we consider Poiseuille flow. Between

two infinite parallel plates (at z = d/2 and z = −d/2) with distance d, a

stationary flow follows a constant pressure gradient ∂xp = −ρg in x direction,

where g = −∂xp/ρ is the acceleration due to the pressure gradient. g can be

considered as a gravitational field providing the pressure gradient. The flow can

be calculated analytically assuming stationary, non-turbulent flow.

For the analytical solution, we use the Navier-Stokes equation (2.4) and thus

neglect thermal and density fluctuations. In a stationary flow, ∂~v
∂t

= 0. Due to

symmetry, all velocity components in y and z direction are vanishing. Also due

to symmetry, vx only depends on the distance from the wall ~v = vx(z). Thus

(~v~∇)~v = vx∂xvx = 0 (2.27)

This simplifies the Navier-Stokes equation (2.4) to

η∆vx = ∂xp (2.28)

The solution is a parabolic flow profile

vx(z) =
ρg

2η

((
d

2

)2

− z2

)

(2.29)
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where the origin is located in the middle between the plates in the x− y plane.

Thus, the flow profile of the Poiseuille flow can be used to determine the viscosity.

Figure 2.1 shows a plot of the velocity profile measured in a simulation with

a fitted parabolic flow profile (fit to Eq. (2.29) via η and d). Even with virtual

particles, there is still a small slip at the walls. This small slip is also visible

in Fig. 2.1; for determining viscosity, the slip has to be taken into account by

allowing to fit via the channel width d. In Fig. 2.2 we compare the resulting

viscosity η (as a function of the time step h), with the theoretical prediction

of Eq.(2.22). It is noteworthy, that the excellent match between theory and

simulation results was obtained without adjusting parameters.
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Figure 2.1: vx as a function of z for the Poiseuille flow. Simulation performed

with a system size of 203 boxes, ρ = 10, h = 0.05, g = 0.005.

From Eq.(2.29) further quantities can be calculated and compared with the

simulation. We will use these quantities when studying fluid transport by cilia.

The average velocity v̄ in x direction in the channel is

v̄ =
1

d/2

∫ d/2

0

v(z)dz =
ρg

12η
d2 =

fx

12η
d2. (2.30)

where fx = ρg as the x-component of the force density ~f . The power consump-

tion P per volume can be obtained as

P =

∫

~f · ~v dV. (2.31)

⇒ 1

V
P =

1

V

∫

~f(~r)~v(~r) dV =
~f

d

∫ d

0

~v(z) dz = 12ηv̄2d−2 (2.32)

Eqs.(2.30) and (2.32) also agree well with simulation results (not shown).
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Figure 2.2: Viscosity η as a function of the time step. System size is 203 boxes,

g = 0.005, theory is a plot of eq.(2.22), without fitting parameters.

2.2.7 Partially Driven Flow

As another example, we consider a flow that is a more realistic model of the flow

generated by beating cilia. In this flow between walls at z = 0 and z = d, the

fluid is only accelerated in a layer at the bottom (and again only in x-direction),

i.e. fext(z) = g Θ(da − z), where Θ(x) is the Heaviside function and da is the

width of the acceleration layer. The idea is that the cilia at the bottom of the

fluid film propel the fluid, while the layer above just drags along, thus da can be

interpreted as the cilia length.

Making the same assumptions as for the Poiseuille flow, we can simplify the

Navier-Stokes equation to

η∂2
zvx = −fext = −g Θ(da − z) (2.33)

Integration leads to

∂zvx(z) =
−g

η
[(z − da) Θ(da − z) + C1] (2.34)

vx(z) =
−g

η

[
(z − da)

2

2
Θ(da − z) + C1z + C2

]

(2.35)

Applying the boundary conditions v(0) = 0 and v(d) = 0, we obtain

vx(z) =
g

η

[−(z − da)
2

2
Θ(da − z) − d2

a

2d
z +

d2
a

2

]

(2.36)
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Thus, the average velocity becomes

v̄ =
1

d

∫ d

0

v(z)dz =
gd2

a(3 − 2da/d)

12η
(2.37)

The power consumption per area A is

P

A
=

∫

~f~v dz =
g2d3

a

12η

[

4 − 3
da

d

]

(2.38)

The limit d → da is the Poiseuille flow. The limit d → ∞ is a semi-infinite

system, where P/A can be calculated to be

P

A
=

16

3

v̄2η

da
. (2.39)

Figure 2.3 shows the velocity and force space dependence for da/d = 1
2
.
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Figure 2.3: Schematic drawing of a partially driven flow with da

d
= 1

2
. The arrows

on the left-hand depict the force’s space dependence; the resulting

velocity profile is indicated on the right hand.

2.2.8 Dimensionless Efficiency

In both, the Poiseuille flow and the partially driven flow, the average velocity

scales with g, and the power consumption per area is proportional to v̄2η/da.

We use the result from the partially driven flow for the limit d → ∞, Eq. (2.39),

to define a dimensionless efficiency

ǫ =
16

3

v̄2ηA

daP
. (2.40)
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When applied to cilia, we take da to be the cilia length.

This definition of efficiency has several advantages:

• It is dimensionless; therefore it is invariant under all transformations of

length and time scales.

• It fulfills the expectations that the efficiency should increase with velocity

and decrease with power consumption.

• It is independent of the area covered by cilia.

Thus the efficiency depends only on the type of flow. For example, the efficiency

of the partially driven flow only depends on the ratio da/d

ǫ =

(
2 − 4

3
da

d

)2

(
4 − 3da

d

) . (2.41)

This leads to ǫ = 1 in the limit of d → ∞, and ǫ = 4/9 in the limit of the

Poiseuille flow.

When interpreting this efficiency for cilia systems, it is important to note that

it leads to rather low efficiencies because ǫ = 1 is defined by a semi-infinite

system, where the flow is generated by an artificial gravitational field parallel to

the wall.

2.2.9 Rod Friction

As mentioned in Sec. 1.5.2, it is important for the sperm propulsion that the

friction of a slender rod or filament is lower parallel to its orientation than

perpendicular. Intuitively it is obvious that dragging a rod perpendicular rather

than parallel to its orientation is more difficult, and the physical origin of this

behavior is easy to understand. If moved parallel to its orientation, most of the

rod can travel in the wake of the tip, thus reducing friction.

We define rod-drag coefficients for Stokes flow by

F‖ = γ‖v‖ (2.42)

F⊥ = γ⊥v⊥ (2.43)

with the subscript ‖ for vector components parallel to the rod, and ⊥ for per-

pendicular components. These friction coefficients are related to the diffusion

39



2 Method

coefficients D‖,⊥ via

γ‖,⊥ =
kBT

D‖,⊥
(2.44)

Calculating the diffusion coefficients for a rod-like colloid of finite length is not

trivial, but approximations can be found in the literature. Tirado, Martinez

and Garcia de la Torre [87] reviewed some theoretical approaches. The different

theories agree on

2πηLrD‖
kBT

= ln(Lr/dr) + ν‖ (2.45)

4πηLrD⊥
kBT

= ln(Lr/dr) + ν⊥. (2.46)

wherein Lr is the length, and dr the diameter of the rod. Differences between

theories are found concerning the correciton functions ν⊥/‖. One approximation

for 2 < Lr/dr < 30 which has been used for simulations of rods in the nematic

phase [59], is

ν⊥ = 0.839 + 0.185dr/Lr + 0.233 (dr/Lr)
2 (2.47)

ν‖ = −0.207 + 0.980dr/Lr − 0.133 (dr/Lr)
2 (2.48)

For understanding simulation results and construction of simulations without

hydrodynamics, but with anisotropic friction, we performed simulations to cal-

culate γ⊥ and γ‖.

For this purpose we kept the structure in the center of a simulation box

and exposed the structure to a constant flow. The friction coefficients were

determined by averaging the momentum that is transfered onto the structure.

A constant flow is achieved by assigning Gaussian-distributed velocities, with

an average of v̄ in x direction, to particles in the front of the simulation box.

First, we checked whether the force was linear in v̄. Figure 2.4 shows that the

force is linear with v̄ at least up to v̄ ≈ 0.3. We chose v̄ = 0.1, well within the

linear regime for the remaining simulations.

Figure 2.5 shows as an example the parallel friction coefficient γ‖ as a function

of scaled inverse linear system size (Lr/sx). To determine friction coefficients,

we fitted a simple linear function to the data (see Fig. 2.5), and used the

extrapolation to (Lr/sx) = 0, which is equivalent to the infinite system. It is not

obvious that the friction coefficients should be linear in system size, therefore,

error bars are difficult to estimate, but in the order of 5% (better for γ⊥).
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Figure 2.4: The force is linear in the velocity up to v̄ ≈ 0.3. System size is

(10 a)3, h = 0.05, rod length is 5a and measurements have been

averaged over 100 000 MPCD steps.
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Figure 2.5: γ‖ as a function of inverse linear system size Lr/sx. System size sx

varying between (10 a)3 and (50 a)3. h = 0.05, rod length is 5 a and

results have been averaged over 100 000 MPCD steps.
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Considering the strong finite-size effects, and that the polymer rods are pen-

etrable for the fluid, the agreement with theory is surprisingly good (see Fig.

2.6). The fit in Fig. 2.6 resulted in a rod diameter of dr ≈ 1.8, which is quite

 300
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γ

Lr

γ⊥ 
γ||
fit

Figure 2.6: γ‖ and γ⊥ as a function of rod length Lr. The blue line is a fit of the

theory (Eq.(2.45) and Eq.(2.46)). dr ≈ 1.8 was optained by fitting

Eq.(2.46) to γ⊥, this value was then used to plot Eq.(2.45). Points

are results of finite size fits, see text.

reasonable, considering that the monomers have roughly a hydrodynamic diam-

eter of 1a. Furthermore, we see from Fig. 2.6 that at these low aspect ratios the

approximation γ⊥/γ‖ = 2 does not hold.

2.3 Sperm Model

In this section, we describe how we simulate sperm motility. This model incor-

porates hydrodynamics by coupling it to an MPCD solvent as explained in Sec.

2.2.3. Furthermore, we explain how the model is simulated without hydrody-

namics, and a further simplification, the so-called rocket model.

2.3.1 Sperm Structure

Using the method described above for polymers, we simulate the axoneme as a

crane-like structure (see Fig 2.7). Three semi-flexible rods, each consisting of

100 monomers, are arranged in a triangular cross section. The distance between

the rods and the distance between monomers within a rod is half a box length
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Figure 2.7: Model axoneme. The axoneme is modeled as three polymer rods,

interconnected by harmonic springs. The bond lengths in one rod,

marked red, are changed to introduce local bending moment.

(bond length lb = 0.5 a). The rod length is kept nearly constant by a strong

harmonic potential between neighboring monomers,

U =
1

2
K1(|~ri,i+1| − lb)

2.

with K1 = 200 000 kBT/a2. The stiffness is taken into account by a bending

potential,

U = −Kb

∑

i

∆~ri · ∆ ~ri+1

where ∆~ri = ~ri+1 − ~ri are the bond vectors. Furthermore, the rods are intercon-

nected by harmonic springs

U =
1

2
K2(|~ri,j| − lb/c)

2.

with K2 = 20 000 kBT/a2 between neighbors (bond length lb = 0.5 a) and next-

nearest neighbors (bond length lc =
√

2lb) as indicated in Fig. 2.7.

In a real axoneme, active bending is generated by motor proteins (dynein), i.e.

connecting proteins that move along a neighboring microtubule (see Sec. 1.2).

This movement is translated into a change in the length of bonds on one side of

the structure (the red rod in Fig. 2.7) thus imposing a local bending moment.

In the simulation of sperm, the propulsion is achieved by imposing a sinusoidal

propagating bending wave along the axoneme,

l(t, x) = lb + A sin(kx − ωt)
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where

lb = relaxed bond length

A = amplitude of length change, i.e. beat strength

k = wave number

x = distance along the axoneme

ω = beat frequency

t = time

This treatment is equivalent to a sinusoidal beat pattern, as used in other models

[27]. The activity parameters are chosen such that a natural beating pattern was

roughly reproduced. MPCD resolves hydrodynamics roughly on the length scale

or the box size a. This is why lb = 0.5a provides a sufficiently dense distribution

of monomers along the rod.

In order for our model to be reasonably realistic, we used the parameters

of sea urchin sperm as a guide. The sperm is roughly 50 µm long and has a

beating amplitude of roughly 4 µm. Typically about 1.5 waves are present on

the axoneme at a given time. Therefore we chose A = 0.1lb and k = 0.15/lb such

the beating amplitude is about 2.5a and 1.5 waves are present on the tail.

The time scale of the simulation is set by ω = 0.1
√

kBT/ma2 (the higher ω,

the faster the sperm will move); at the same time ω sets the rate of energy input

at the sperm tail. Therefore, ω has to be a compromise between computational

efficiency and constant temperature throughout the system.

The head of the sperm is modeled by a sphere, constructed of 163 monomers,

which is attached to the front of the axoneme structure. The sphere has a radius

of rh = 2 a and is held together by harmonic springs (with Kh1 = 10 000 kBT/a2

between center and head monomers, and Kh2 = 100 000 kBT/a2 between neigh-

boring monomers). Furthermore, we bend the front part (first 15 bonds) of the

axoneme along a different rod than the beating rod to introduce chirality. The

simulation input parameter is the length ∆l by which the bonds are shortened,

but for simplicity we convert it to the angle formed by the bend between the

tangent to the structure at the head and after the bend. This is called the

bending parameter b. In Fig. 2.8, different bending parameters are illustrated.

A short calculation leads to a simple linear dependence of the bending param-
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Figure 2.8: Sperm with bending parameters b = 0◦, 20◦, 40◦, and 60◦. For

clarity, only one rod is displayed, plus the sperm head for b = 0◦ and

b = 60◦. Visualization using VMD [38].

eter on the length change,

b =
2l

sin(π/3)lb
∆l (2.49)

which implies b = 34.6∆l.

Finally, the “relaxed” (ω = 0) structure looks like a sperm. Figure 2.9 shows

a snapshot of the relaxed sperm.

To summarize, we model the sperm by a crane-like structure that enables us

to impose active bending. In front is a spherical head of 2a radius, thus covering

the first 5 monomers of the rod structure, one more bond is left undisturbed

for straight attachment. Along the following 15 bonds, we bent the structure

for chirality, while a sinusoidal bending wave propagates along the rest of the

tail. The bending parameter will turn out to be of great importance, strongly

affecting the sperm behavior.

2.3.2 Importance of Asymmetry

Obviously, the helical motion is caused by the chiriality of the sperm. It is im-

portant to note that not just any asymmetrical beating is sufficient to cause a

helical trajectory, i.e. the sperm has to have a handedness. A sperm only asym-

metric inside the beating plane would swim in a circle within the beating plane,

whereas sperm only asymmetric in z-direction would follow a circle perpendic-

ular to the beating plane. The combination of both causes the helical motion.

This asymmetry does not necessary require to be an asymmetric attachment of
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Figure 2.9: Complete sperm model. In this picture, the monomers are repre-

sented by small spheres. The dark blue monomers represent the rod

where bond lengths are periodically changed to impose a propagat-

ing bending wave along the axoneme. In a different rod, the first 15

bonds (gray) are shortened to introduce chirality. In parts of rods

where the bond length is not altered, the monomers are colored cyan.

Visualization using VMD [38].

the head. Asymmetry within the beating pattern (including an out of the plane

beat) for example could lead to a similar behavior.

The orientated circular motion at the walls also requires chirality. Achiral

sperm will still be captured by the surface, but the handedness of the circular

path (in our case clockwise when viewed from inside the observation chamber,

but this can be reversed by changing the direction of the chirality) is only possible

with chiral sperm.

2.3.3 Sperm Simulations without Hydrodynamics

In order to identify the role of hydrodynamic interactions, we also performed

simulations without MPCD. For the propulsion of sperm, the friction coefficient

of a rod has to be anisotropic, i.e. a rod slides more easily along its orientation

than perpendicular to it, i.e. γ‖ < γ⊥ (see Secs. 1.5.2 and 2.2.9 for details).

As explained in Sec. 2.2.9, this is a hydrodynamic effect. However, in the

way presented below, we can separate the anisotropic friction from other, more

complicated, hydrodynamic effects.

Therefore, we model the sperm as before, but, instead of the MPCD fluid,

we add a friction force proportional to the particle velocity obtained from Eq.
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(2.42),

~F = −γ ~v⊥ +
γ‖
γ⊥

γ ~v‖, (2.50)

wherein the parallel direction is defined by the difference vector between the

adjacent monomers in the rod. In order to distinguish between magnitude of

friction (γ) and friction anisotropy (γ‖/γ⊥), we separated the two parameters in

Eq. (2.50). We have seen in Sec. 2.2.9 that the ratio γ‖/γ⊥ strongly depends on

the length of the structure. This implementation allows us to use ratios derived

from the MPCD simulation, or the theoretical value for long slender filaments

lim
l/d→∞

γ⊥/γ‖ = 2. (2.51)

In Sec. 2.2.9 we have determined the total friction coefficients of a rod, γ‖ and

γ⊥. For these simulations, γ is the effective friction coefficient of a monomer.

Because γ‖ and γ⊥ roughly scale with the rod length L, and thus with the

number of monomers N , we simply divide γ⊥ by N and obtain γ ≈ 10 as an

order of magnitude value for the friction coefficient.

The friction on the head monomers can be estimated by dividing the friction

coefficient of a sphere 6πηrh, divided by the number of monomers. Because this

approximation leads to the same order of magnitude, we use

~F = −γ~v. (2.52)

A difference in the quantitative behavior to simulations with hydrodynamics

is expected because MPCD takes into account the curvature of the tail, ther-

mal fluctuations and hydrodynamic interaction with the wall. Furthermore, the

model without hydrodynamics assumes, due to its way of implementation, a dif-

ferent ratio between the drag of the head and the tail compared to the MPCD

version.

Nevertheless, changes in the qualitative behavior should mainly be due to

hydrodynamic interactions. The model presented here does not include thermal

fluctuations, which also influence the trajectory. This provides the opportunity

to get sperm trajectories without fluctuations, making the trajectory analysis

easier. Additionally, the time saved by not computing MPCD steps allows us to

simulate a larger range of parameters.
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2.3.4 Rocket Model

In order to better understand the various effects contributing to sperm hydro-

dynamics we simplify the sperm even further by reducing it to a self-propelling

rod. No head is added to the crane like structure and it is propelled by adding

a predefined momentum increment, directed towards one end of the rod to each

monomer.

As this model is much simpler, it is also more general and it may also capture

dynamics of other self-propelling organisms or particles, which are of indepen-

dent current interest. Artificial microscopic swimmers [18] have been realized

experimentally by attaching magnetic colloids to a red blood cell. Theoreti-

cal studies include the formation of collective patterns [17] and kinetic phase

transition [14] or descriptions of possible realizations [25].

We simulated this rocket both with and without hydrodynamics. In the first

case momentum is conserved by subtracting the same momentum increment

added to the rod from the surrounding fluid particles. Because the rocket model

with hydrodynamics did not result in qualitative different behavior, only few

simulations where performed. In the simulations without hydrodynamics, we

used the scheme to turn off hydrodynamics described in Sec. 2.2.3.

2.4 Cilium

2.4.1 Cilia Structure

To model cilia we use the same axoneme structure as for the sperm (see Sec.

2.3), just shortened to a length of 20 monomers (10a). Figure 2.10 illustrates the

cilia model. The crane-like axoneme model represents a single cilium. Instead

of attaching a head, the cilia are grafted to a no-slip wall at z = 0 by fixing

the position of the lower two monomers of each rod. A second wall at z =

20a confines the simulation in z direction. In studies of multi-cilia arrays they

are arranged on a square lattice, with the lattice vectors pointing in x and y

direction.

The beat pattern of cilia is very different to that of sperm. We are interested

in studying metachrony, thus a feedback of the hydrodynamic flow to the beat

pattern is essential. As in the sperm simulations, we do not intend to model the

axoneme dynamics. The beat pattern, which is more complicated than in the
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Figure 2.10: Cilia model structure. The crane-like axoneme model represents a

single cilium. Lengths of red bonds are changed for activity, thus

determining the effective stroke direction (ESD, angle Θ). Position

of the lowest monomers (blue and thicker) is fixed. The first seven

bonds of the cyan rod are shortened during an aplanar recovery

stroke.

sperm simulation, is an input parameter; it is designed such as to closely mimic

the beat pattern observed experimentally.

As in the sperm model, the beat pattern is implemented by a local length

change of the bonds of one rod (see Fig. 2.10). We use the experimental results

and theoretical findings mentioned in Sec. 1.4 and 1.5 to develop a realistic beat

shape. The beat pattern is divided in two strokes, the effective stroke, and the

recovery stroke, as explained in the following.

The different strokes are controlled by the bending point i0. In the effective

stroke the bending point is at 2a from the bottom (5th monomer, i0 = 5), and

the bond length is

l(i)

a
=

lb
a
− 3

5(i − i0)2
(2.53)

where i is the monomer number, and lb/a = 0.5 is the bond length for the non-

active rod. This also shows why i0 is called the bending point, the spontaneous

curvature is maximal at i0, rapidly decreasing away from i0. The idea for arises

from pictures of the beat pattern of cilia, where in the effective stroke a strong

bent is seen at the bottom, and a relatively straight cilium otherwise.
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In the recovery stroke the bending point moves upwards along the cilium with

a constant speed of one monomer per 10 MPCD time units. Additionally, we

drive the cilium in the opposite direction as in the effective stroke. The active

rod is stretched according to

l(i) = lb + a1lb

(
nr − 1 − i

nr

)a2

(2.54)

for i < i0 − 1, where nr is the number of monomers in on rod, a1 = 0.3 and

a2 = 2.5 are parameters chosen such as to resemble a realistic beat. Combined

we obtain

l(i)

a
=







lb
a

+ a1
lb
a

(
nr−1−i

nr

)a2

if(i < i0 − 1)

lb
a
− 3

5(i−i0)2
if(i ≥ i0 − 1)

. (2.55)

Again this scheme is motivated by observations from real beat patterns. The

bent seen in the effective stroke moves upwards along the axoneme, and bent in

the opposite direction is located at the bottom.

Switching between different strokes is controlled by the curvature of the cilium.

The curvature of the cilium is measured by the contour-length difference between

the active rod and the passive rods,

∆l = 2lr1 − lr2 − lr3 (2.56)

where lr1 is the contour length of the active rod (i.e. the rod where the bond

lengths are changed) and lr2,3 the contour lengths of the two passive rods. If

during the effective stroke ∆l < ∆lmin the cilium is switched to recover stroke,

and the midpoint is moved to i0 = 7. Whereas in the recovery stroke ∆l > ∆lmax

switches the cilium back to the effective stroke. We chose ∆lmin = −1 and

∆lmax = 0.6. This bending-dependent switching is motivated by the theoretical

works presented in Sec. 1.5

Large stress can lead to a kink-like defect in the model cilium with strong

local curvature. Real motor proteins have a stall force, a force at which the

motor protein does not move foreword anymore. Implementing the analogue

of such a stall force into our model also solves the problem of kink defects.

Because length changes represent in our model the motor protein activity, the

stall force is represented by a maximum length change ∆lmax = 0.015. If the

newly calculated length differs more than ∆lmax from the actual length la, l(i)

is set to la ± ∆lmax.
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Because in the case of ∆l > ∆lmax we do not want the rods to slide backwards,

we have to compare l(i) from the last iteration (lold) with the new one before

(lnew) and after (lstall) the application of the stall mechanism:

• If lnew = lold the motor was not activated, thus l(i) = lold.

• If lnew > lold but lstall < lold (or vice versa) the motor proteins stall and the

bond length stays at its previous value. Thus also in this case l(i) = lold.

Fig. 2.11 shows the beat of a single cilium which results from this model. It

closely resembles the schematic experimental drawing (see Fig.1.9).

Figure 2.11: Beat cycle of isolated cilia. Each frame is 10 time units apart.

System size is 203 boxes, otherwise as in the reference sys-

tem.Visualization using VMD [38].

We also studied aplanar beating of the cilium. In this case we have shortened

the first seven bonds of a second rod during the recovery stroke by the aplanarity

parameter aapl, similar to the asymmetry parameter in sperm (see Fig. 2.10).

2.4.2 Control Parameters for Cilia

The cilia simulations have many different input parameters. Here we will focus

on the following:
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• System size is crucial in cilia simulations. Typically we simulate square

arrays of cilia with periodic boundary conditions in the x and y directions.

Because we also study long-range synchronization, finite-size effects are

expected. Also, because the cilia are arranged on a lattice, there are

lattice effects restricting the ~k vector. If not noted otherwise, system size

is 20 × 20 cilia, as in the reference system defined below.

• Θ is the angle between the effective stroke and the negative x direction.

In the reference system Θ = 45◦ (see Fig. 2.10).

• The fluid viscosity η changes the cilia behavior. For an experimental study

see Ref. [22]. The viscosity in MPCD can be changed by changing the

collision angle, or the time step. (See Poiseuille Flow, Sec. 2.2.6). In

the reference system, and most other simulations, we use the time step

h = 0.05, corresponding to η = 16.5
√

kBTm
a2 . Within this work we change

the viscosity solely by changing the time step h.

• The aplanarity parameter aapl measures how much the recovery stroke is

out of the beating plane of the effective stroke. Like the bending parameter

for sperm, it measures by how much the first seven bonds are shortened.

aapl = 0.05 in the reference system.

• Cilia spacing dc is the distance between neighboring cilia on the lattice.

A reference system is defined from which we deduce other simulations. Sim-

ulations presented here will have the same parameters as the reference system

except when mentioned otherwise. The reference system is a simulation of 20×20

cilia, 5 a apart. The system size in x and y direction is adapted to the number

of cilia and their spacing. The distance to the top wall is 20 a, thus the reference

system-size is 1002 × 20 boxes. With 10 fluid particles per box (ρ = 10) and a

time step of h = 0.05 , η = 16.5. The viscosity is changed by scaling the time

step h in MPCD appropriately. The aplanarity parameter is aapl = 0.05 and the

effective stroke direction Θ = 45◦.

2.5 Boundary Conditions

For the sperm simulations all particles (fluid and monomers) experience periodic

boundary conditions in x and y direction. In the case of a sperm in bulk solution,
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2.5 Boundary Conditions

we employ periodic boundary conditions also in z-direction. The confined case

is defined by solid walls at z = 0 a and z = 50 a. Here we apply no slip boundary

conditions at the walls. Furthermore the monomers experience a purely repul-

sive shifted and truncated Lennard-Jones potential (range σ = 0.223 a, cutoff

0.25 a) with the walls. Simulations with different boundary conditions have been

performed, but do not lead to qualitative different behavior. The size of the sim-

ulation box is 75 × 75 × 50 boxes (70 × 70 × 70 boxes in the free case), each

containing 10 solvent particles on average. So we have a total of 2.8 million (3.4

million) particles.

For the cilia simulations we always use periodic boundary conditions in x and

y direction and hard, no-slip, walls at z = 0 a and z = 20 a. The lateral system

size is adapted to fit the cilia with a given spacing.
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3 Sperm Results

In this chapter we present the results for the simulation of the hydrodynamic

behavior of sperm. We begin with defining important quantities, then we turn

our attention to the sperm motion in bulk fluid. Finally, we present the results

for the motility of sperm in confinement.

3.1 Important Observables

Several quantities are important to understand the results:

• The bending parameter b introduced in Sec. 2.3.1 represents the key control

parameter. It defines how much the head is bent compared to a straight

sperm (see Fig 2.8).

• The director ~d is defined as the vector from the end of the tail to the center

of the sperm’s head.

• The director angle αd is defined as the angle between the director and the

wall. A director angle αd = 0 indicates parallel alignment. With a positive

αd the director points towards the surface, with a negative αd away from

the surface.

• The beating plane is the plane in which the tail performs its sinusoidal

motion. In Fig. 2.9, the beating plane is almost horizontal. Its normal

vector ~n is determined by averaging the difference vectors of equivalent

monomers of the two non-active rods. In Fig. 2.9. the normal vector ~n is

pointing upwards.

• The wall angle αw is the angle between the wall normal ~ez and the normal

of the beating plane ~n seen from behind the sperm, I.e. it is the angle

between ~ez and the projection of ~n onto the plane spanned by ~ez and

~ez × ~d and ~ez. This complicated construction has the advantage that the
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3 Sperm Results

result is independent of the constant tilt of the sperm towards the wall.

This allows us to determine the orientation of the beating plane towards

the wall, independent from the director angle αd.

3.2 Free Movement

In a bulk fluid, most sperm swim along helical trajectories [26], the handedness

depending on the species. In the following section, we will study the origin of

this helical movement.

3.2.1 Simulations with Hydrodynamics

In bulk fluid, we observe that sperm follow a right-handed helical trajectory

(see Fig. 3.1). This helical motion strongly depends on the bending parameter.

Figure 3.1 shows a typical simulation snapshot of a model sperm with a bending

parameter of 60◦. The trajectory of the sperm’s head clearly is helical.

Figure 3.1: Without walls the sperm swims in a helical motion. The sperm (in

cyan and red) has a bending parameter of 60◦, the gray helix is the

trajectory of the sperms head. Visualization using VMD [38].
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3.2 Free Movement

We observe two different kinds of trajectories. Weakly bent sperm swim on a

narrow helix. The tail is always close to the trajectory, just the head performs

some sideway motions. Strongly bent sperm swim in a larger helix with the

head near the center of the helix and the tail pointing outward (see Fig. 3.1).

To distinguish these two regimes, we fit a helix to the trajectory of the sperm’s

head, thus gaining access to all helix parameters. The trajectory is rather noisy

on all length scales, making a fit difficult and error prone. When the helix radius

is small, the fit is especially difficult, sometimes mistaking the wiggling of the

head for the helical movement. Thus, some parameters, especially the pitch and

curvature, can be only determined for stronger bent sperm, . The curvature

can be determined in other ways as well, but for weakly bent sperm, it is still

difficult because, due to the helix shape and thermal fluctuations, the curvature

depends strongly on the length scale used.

As by eye judgment, we find a “weakly bent regime” (b < 40◦) where the

trajectory is almost straight, just the head circles around a roughly straight line,

making the fit difficult and inaccurate. In the “strongly bent regime” (b > 40◦),

we obtain a helix whose radius increases with the bending parameter b. In Fig.

3.2, we plot the radius of the trajectory Rh as obtained by a helix fit. The finite

values for small bending parameters (Rh(0) ≈ 1 a) are, as mentioned above, due

to the oscillating movements of the head.
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Figure 3.2: Helix radius Rh as a function of bending parameter b as obtained

by a helix fit. The dashed line is a fit to a translated and stretched

hyperbolical tangent.

The curvature obtained from the helix fit is, due to fluctuations, prone to
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Figure 3.3: The radius of curvature Rc as a function of time interval ti for a

free-swimming sperm with bending parameter b = 50◦.

systematic errors. For weakly bent sperm, the helix fit results in narrow helix,

although it is just the wiggling head. The curvature of the trajectory, seen on

a larger length scale, has to be determined independently. For this purpose,

we used a three-point analysis. We choose a time interval ti and then averaged

the circles defined by the three points ~r(t − ti), ~r(t), ~r(t + ti). Performing this

average for several time intervals ti, provides a radius of curvature as a function

of the time scale. Fig. 3.3 shows a typical plot of the radius of curvature, Rc, as

a function of the time interval. On a short time scale, the radius of curvature is

determined by the fluctuations. The larger values of the radius of curvature for

long time scales are due to the helical shape of the trajectory. The intermediate

time scales can be used for estimates of the radius of curvature. In the regime

of bending parameters, where the curvature can also be determined from a helix

fit, the two estimates roughly agree. Errors are of the order of 10%.

These curvature estimates have been used in Fig. 3.4. The curvature also

shows the difference between weakly and strongly bent sperm. It increases mono-

tonically with the bending parameter b , with a stepwise increase at b ≈ 45◦.

The pitch lp of the helix can only be defined for b > 40◦. It is roughly constant

and about an order of magnitude larger than the helix radius (see Fig. 3.5). This

means that even at the highest bending parameter studied, the helix is rather

stretched. This fits well with velocity measurements (see Fig. 3.6): The velocity

along the center of the helix is not much smaller than the velocity along the

trajectory.

58



3.2 Free Movement

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 30  35  40  45  50  55  60  65  70  75  80

c

b

simulation data
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Figure 3.5: The pitch lp of the trajectory versus bending parameter b (degrees).

The pitch can only be defined for b > 40◦.
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Figure 3.6: Velocity along the center of the helix (blue) and along the trajectory

(red)

The two regimes of motion can be distinguished by the director auto-correlation

function.

Gs(t) =
< ~d(t0) · ~d(t0 + t) >t0

< ~d(t0)2 >t0

(3.1)

Typically, the sperm director points along the tangent of the trajectory as ex-

pected. In a perfect circular motion, the director autocorrelation function is

Gs(t) = cos(ωt). As the circular motion gets stretched to a helix, the amplitude

reduces and a constant term is added. Therefore, the amplitude of the autocor-

relation function oscillations provides a good measure how helical the movement

is.

As an example, consider a perfect helix. Under the assumption that the

director is parallel to the tangent of the curve, the director auto-correlation

function can be calculated analytically. Suppose, without loss of generality,

that the helix has the form

~r(t) =






Rh cos(ωt)

Rh sin(ωt)

vt




 (3.2)

Then Gs(t) is easily calculated to be

Gs(t) =
ω2R2

h cos(ωt) + v2

ω2R2
h + v2

=
cos(ωt) + 4π2c2

1 + 4π2c2
(3.3)
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3.2 Free Movement

wherein c = v
2πωRh

= lP
Rh

, which is the ratio between pitch lP and the helix

radius Rh. Of course these relations require that ~d is parallel to the tangent

vector of a helical trajectory.

Furthermore, thermal fluctuations influence the director auto-correlation func-

tion. Eventually fluctuations will change the path as well, decreasing the auto-

correlation function by a factor exp(−t/τ), where τ is a decay time. Combining

these contributions, we expect a director auto-correlation function of the form

Gs(t) = e−t/τ (AG cos(ωt) + c1) (3.4)

The amplitude AG of the oscillations of the director auto-correlation function

provides a good measure to distinguish the regimes of motion. For the helix

parametrization presented above in eq.(3.2), AG = (1 + 4π2c2)−1.

Figure 3.7 shows a plot of the director auto-correlation function for two dif-

ferent bending parameters. A small change from b = 33◦ to b = 40◦ causes

oscillations of Gs.
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Figure 3.7: Strongly bent sperm show oscillations of the auto-correlation func-

tion Gs, whereas weakly bent sperm do not.

To show the transition between narrow and wide helices, we fit Eq. (3.4) to

the simulation data via the decay time τ , the amplitude AG, and some constant

c1. A plot of the amplitude AG versus bending parameter shows the transition

very clearly (see Fig. 3.8).

The reason for this transition seems to be that when the bending of the sperm

is large enough, the force on the head is sufficient to bent it even more, thus

causing a rapid change in curvature. A more detailed discussion is given in Sec.

3.2.3 below.
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Figure 3.8: The amplitude Ag of the director auto-correlation function oscil-

lations show clearly the difference of the low-bent and high-bent

regime.

3.2.2 Simulations without Hydrodynamics

As mentioned in Sec. 2.3.3, simulations of sperm without hydrodynamics allows

to distinguish between “hydrodynamic interactions” and “friction effects”.

Without hydrodynamic interactions, the bulk motion shows an even more ex-

treme increase in its trajectory parameters as function of the bending parameter

(see Figs. 3.11 and 3.12). Again the amplitude of the director auto-correlation

function oscillations AG (Figs. 3.9 and 3.10) is suitable to distinguish whether

the sperm points generally in the direction of movement, or whether it follows

a large helix, with the tail pointing outward. Due to the lack of thermal fluc-

tuations trajectory parameters can be determined more precisely, especially it

is possible to determine the radius of the helix also in the weakly bent regime.

Due to the lack of fluctuations, the transition point can be determined with

higher accuracy. Qualitatively, we always observed a stepwise increase in the

helix radius, the radius being largest close to the transition point.

Interestingly, the helix shape also depends on the friction coefficient (see espe-

cially Fig. 3.13). In laminar flow, one expects that the viscosity only influences

the time scale, not the shape of the motion, if the forces are the same. However,

two important points have to be considered:

• The forces are predefined, but changing in time. Thus a different velocity

results in the same force acting at a different point in the trajectory, i.e.
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Figure 3.9: The amplitudes of the director auto-correlation function oscillations

for sperm simulations without hydrodynamics with γ⊥/γ‖ = 2, for

various friction coefficients as indicated.
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Figure 3.10: The amplitudes of the director auto-correlation function oscillations

for sperm simulations without hydrodynamics with γ⊥/γ‖ = 1.33,

for various friction coefficients as indicated.
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Figure 3.11: Radius of the helical trajectory vs bending parameter for sperm

simulations without hydrodynamics with γ⊥/γ‖ = 2, for various

friction coefficients as indicated.
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Figure 3.12: Radius of the helical trajectory vs bending parameter for sperm

simulations without hydrodynamics with γ⊥/γ‖ = 1.33, for various

friction coefficients as indicated.
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3.2 Free Movement

two time scales are present, one defined by the friction coefficient γ, the

other by the beat frequency ω.

• The model undergoes a change in shape under the force balance between

elastic forces in the sperm and the viscous drag on the head.
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Figure 3.13: Radius of the helical trajectory Rh as a function of friction coefficent

γ for sperm simulations without hydrodynamics with γ⊥/γ‖ = 2.

Bending parameter is b = 40◦

Finally, it is possible to determine the curvature of sperm trajectories in simu-

lations without hydrodynamics even for small bending parameters. The stepwise

increase of the curvature at the transition can be clearly seen (see Figs. 3.14

and 3.15).

We emphasize that the data for sperm using high friction coefficients (γ > 20)

has to be interpreted with caution. For high friction coefficients, the sperm

experiences sufficient mechanical stress that may influence its beat pattern. At

γ = 100, the shape of the tail is not sinusoidal anymore; therefore this data is

not presented here.

The simulations support the hypothesis that a shape change of sperm, caused

by the drag of the head, causes the transition. Clearly, no hydrodynamic inter-

actions, beyond those responsible for propulsion, are necessary for the helical

movement.
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Figure 3.14: Curvature c of the helical trajectory as a function of bending

parameter b for sperm simulations without hydrodynamics with

γ⊥/γ‖ = 2, for various friction coefficients as indicated.
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Figure 3.15: Curvature c of the helical trajectory as a function of bending

parameter b for sperm simulations without hydrodynamics with

γ⊥/γ‖ = 1.33, for various friction coefficients as indicated.
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3.3 Confined Movement

3.2.3 Discussion

In bulk fluid, simulated sperm swim along helical trajectories. The helix param-

eters strongly depend on the asymmetry of the sperm. A change of the sperm

shape causes a transition in the parameters of the trajectory as a function of

the bending parameter. At the transition point the curvature, the director auto-

correlation function, and the helix radius display a sudden increase. This tran-

sition is sharper in simulations without hydrodynamic interactions and thermal

fluctuations. Figure 3.16 displays an overlay of snapshots from sperm simula-

Figure 3.16: Overlay of snapshots from sperm simulations without hydrodynam-

ics with bending parameters b = 6.51◦ (cyan tail) and b = 6.53◦

(blue tail), γ = 7,γ⊥/γ‖ = 1.33. Visualization using VMD [38].

tions without hydrodynamics for two different bending parameters to visualize

the transition. A slight increase from b = 6.51◦ to b = 6.53◦ leads to this drastic

change in shape. We assume that the viscous forces on the sperm, especially

the propulsive force of the tail and the drag of the head, cause internal stresses,

that eventually break a threshold to bent the sperm further. Once they start

to bent the sperm even further, the increased leverage leads to an even stronger

deformation.

3.3 Confined Movement

Most experimental studies of sperm are performed in confined geometries. In-

teresting phenomena like accumulation of sperm at surfaces or their circular

swimming at the surface are related to surface interactions. To study these phe-

nomena, we simulated sperm between two planar walls, separated by a distance

d = 50 a. The results of these simulations are presented in this section. We begin
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3 Sperm Results

with some general observations, then turn our attention to surface adhesion and

circular motion. Finally we discuss the increased velocity of sperm in thin films

as observed in immersed boundary simulations by Fauci and McDonald [20].

3.3.1 General Observations

We observe a strong surface adhesion for sperm in all parameter regimes. Figure

3.17 shows the average distance dh of the head from the wall, in units of the

head radius.
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Figure 3.17: Average scaled surface distance dh/rh of the head versus bending

parameter b.

For all bending parameters, the head is close to the surface. Besides one

simulation, the sperm never left a surface after it had been close to it for a

while. Therefore,

• hydrodynamic interactions are sufficient to capture the sperm at the sur-

face. Direct attractive interactions between sperm and wall are not neces-

sary for adhesion.

Furthermore, the trajectories illustrate that bent sperm move in oriented cir-

cles at the wall, always clockwise when ovserved from inside the fluid. Figure

3.18 shows a plot of the radius of these circles.

Figs. 3.17 and 3.18 give rise to two questions:

1. Why do sperm stay at the surface?
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Figure 3.18: The radius of the circles drawn at the wall as a function of bending

parameter. Solid lines are guides to the eye. The radius for the

sperm close to the transition point (b = 40◦ and 44◦) is determined

while the sperm is in a regular motion close to the wall. Irregular

motion (see Sec. 3.3.3 below) is ignored.

2. What is the origin of the strong dependence on the bending parameter?

We will address these questions in the following sections.

3.3.2 Surface Adhesion

Independent of the bending parameter, sperm stay at the surface. A histogram

of the director to wall angle αd (see Figs. 3.19 and 3.20) shows that sperm,

on average, point towards the surface. At small bending parameters, sperm are

rather flat moving across the surface, while with increasing bending parameter

its director angle towards the surface increases. Only the sperm with bending

parameter of b = 40◦ and 44◦, being between the two regimes, show irregular

paths and a broad peak in the director distribution.

The foreword thrust of the sperm has a component F⊥ perpendicular to the

wall. This component will keep sperm at the surface, provided it is pointing

towards the surface (see Fig. 3.21). But because the reaction force of the wall

acts on the head, we expect a torque, turning the sperm head away from the

surface. This torque must be compensated by an interaction between the wall

and the sperm tail, indicated by Ftail in Fig. 3.21.

Two interactions can be responsible for the necessary force on the tail:
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Figure 3.19: Probability distribution P of the director angle αd for sperm before

the transition point (b < 40◦), for various bending parameters, as

indicated.
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the transition point (b > 40◦), for various bending parameters, as

indicated.
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Fhead

Ftailthrust

Figure 3.21: Forces between wall and sperm. Visualization using VMD [38].

• Hydrodynamic interactions between the wall and tail.

• Steric interactions. When parts of the oscillating tail hit the wall, they are

repelled.

We simulated without hydrodynamics to distinguish between these effects.

Figure 3.21 shows a snapshot from simulations without hydrodynamic interac-

tions. The average distance from the wall for systems without hydrodynamics

can be rather large (see Fig. 3.22).
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Figure 3.22: Average of scaled surface distance dh/rh of the head versus bending

parameter b for sperm simulations without hydrodynamics with

γ⊥/γ‖ = 2, for various friction coefficients as indicated.

Obviously, the sperm can adhere to the surface without hydrodynamic inter-

actions, although less tightly. In particular, there were many instances where

the sperm regularly detached from the wall again.
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Considering the sperm conformation, we observe another important effect:

With hydrodynamic interactions, the non-bent sperm adheres with the beating

plane parallel to the surface. In Fig. 3.23 we show a snapshot of a simulation

with hydrodynamics. If the bending parameter vanishes, the beating plane is

parallel to the surface. Obviously in this case hydrodynamic interactions are

responsible for the adhesion.

tailF

headF

thrust

Figure 3.23: Simulation snapshot of a sperm with hydrodynamic interactions at

a wall, b = 0. Visualization using VMD [38].

Furthermore, we can estimate the importance of steric interactions in the hy-

drodynamic simulations by determining the distance between the tail monomers

and the wall. The distance between wall and monomer has to be smaller than

the Lennard-Jones repulsion cutoff length of 0.25 for steric interactions to play

a role. After wall adhesion, we detect only few instances where a monomer is

closer to the surface than the cutoff length. These instances were only found

in the regime of intermediate bending parameters near the transition where the

sperm behaves erratically (see Fig. 3.34 in Sec. 3.3.3). In both, the strongly

and weakly bent regimes, the sperm tail does not touch the wall.

We conclude that hydrodynamic interactions are responsible for the surface

adhesion by repelling the tail sufficiently far from the wall. This repulsion creates

a torque, turning the head, and thus the thrust, towards the wall.

Rocket-Model

In order to understand these results better, we introduce a simplified model

in which the sperm is described as a self-propelling rod. In the rocket-model
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3.3 Confined Movement

(see Sec. 2.3) the sperm is a rod, propelling itself forward by pushing the fluid

around it backwards. We simulate these rods with and without hydrodynamics.

Because in the short simulation times accessible with hydrodynamics the results

did not differ significantly from those without hydrodynamics, we only present

the results for simulations without hydrodynamic interactions. Fig. 3.24 shows

the z component of the rods center of mass for a short time section for a typical

run. Clearly the rod is more often close to the wall than in the center of the
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Figure 3.24: z component of the center of mass of a hydro rocket with Ft = 5.

Rod length is 10a and the walls are at z = 0a and z = 50a.

fluid film, but it does not stay at the wall almost all the time like the sperm in

both previous models. To quantify the surface localisation we define the surface

excess,

s =

∫ ∞

0

[
P (z) − P (∞)

]
dz (3.5)

where P (z) is the probability density to find the rod at a distance z from the

surface and P (∞) is the bulk probability density. Examples of P (z) are given in

Figure 3.25. P (∞) is measured in the simulations by averaging the probability

density in the range z > 10.

P (∞) =
1

d/2 − 10

∫ d/2

10

P (z)dz (3.6)

Thus s = 0 is a homogeneous distribution, while s = 1 is a delta distribution at

the wall.

In Fig. 3.26 we plot the surface excess for different parameters. As expected

the unpropelled rods Ft = 0 show negative surface excess due to depletion

73



3 Sperm Results

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  5  10  15  20  25

P
(z

)

z

Ft=0
Ft=10

Figure 3.25: Probability density P (z) function of the hydrorocket beeing at dif-

ferent distances z from the surface for unpropelled rods (red) and

a hydrorocket model with Ft = 10. Rod length L is 10a and the

walls are at z = 0a and z = 50a.

interaction. The errors for the unpropelled rods are rather large due to its

slow movement. The propelled rods show a strong surface excess of about 40%,

decreasing for very small rodlengths (L < 10 a) towards 0. There is a small

maximum, depending on the propulsive force.
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Figure 3.26: Surface excess s as a function of scaled rod length L/a, for differ-

ent Forces per monomer bond as indicated. Wall distance is 50 a.

Errorbars are results of two independend runs.

These simulations fit perfectly with our repulsion-adhesion hypothesis. In the

rocket model, the tail is not repelled by the wall (besides the Lennard-Jones

repulsion acting on all monomers). Without steric repulsion, only the reaction
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3.3 Confined Movement

force onto the tip of the rod creates a torque, but this time turning the rocket

away from the surface. Therefore it leaves the wall after a while.

As a final check of our adhesion theory we have modified the rocket model,

by adding a repulsive, constant force at the end of the rod. In the vicinity

of the wall (d < 5a) the three monomers at the end of the rod experience a

repulsive force of magnitude fw. By varying fw we see a transition towards

surface adhesion. Fig. 3.27 shows the reciprocal normalized average time at the

wall (τw(0)/τw(fw)) versus the repulsive force fw.
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Figure 3.27: Reciprocal normalized average time at the wall (τw(0)/τw(fw)) ver-

sus the repulsive force fw. Lr = 10, d = 50.

Discussion

By studying sperm motility, we have identified an adhesion mechanism that can

be generalized to self-propelled particles. The mechanism of adhesion requires:

• unidirectional self propulsion, i.e. the propulsion must point in the direc-

tion of the particle orientation.

• Tail repulsion, i.e. the back end of the particle has to be repelled from the

wall with a stronger force and a longer range than the front end.

The mechanism of adhesion can be described in the following way: the thrust
~Ft has a component ~F⊥ towards the wall (see Fig. 3.28). While ~F⊥ keeps

the particle at the surface, the reaction force ~Fr of the wall creates a torque
~Tr, turning the sperm’s head away from the surface. Eventually this torque is

compensated by the torque ~Tw created by the repulsion ~Fw of the tail. Now,
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Figure 3.28: Scetch of forces responsible for adhesion, see text.

the system is in a stable state, where small fluctuations are quickly undone.

If, for example, a fluctuation turns the head further away from the surface,

this reduces ~F⊥ which in turn reduces ~Fr and ~Tr. Therefore, ~Tw is now larger

than ~Tr, turning the head back to its dynamic-equilibrium position. Only if

the fluctuations are large enough to get the sperm cell out of reach of the wall

repulsion, the sperm can detach. For this to happen, both the range and the

magnitude of the repulsion are important, because they define the time within

which the sperm is driven back to its dynamic-equilibrium position.

For sperm, the propulsion is caused by the beat of the flagellum, which at the

same time repels the tail from the wall, causing adhesion. We have shown that

this adhesion is stable even under strong thermal fluctuations. No other surface

interaction or aplanar beat pattern is necessary to explain this effect!

Sperm can adhere even without hydrodynamic interactions, as long as propul-

sion is possible through asymmetric friction. Tail repulsion is then achieved by

steric interactions. However, this adhesion is not as strong as with hydrodynamic

interactions.

Another example of this adhesion mechanism was found for self-propelled rods

with a constant tail repulsion. Here even the transition between adhesion and

no adhesion as a function of the repulsive force can be observed.

This adhesion mechanism is rather universal and could also explain the ad-

hesion of bacteria at solid walls. Other explanations like interactions between

rotating helices and solid boundaries [55] are limited to rather specific systems.

3.3.3 Regimes of Motion

As outlined at the beginning of this chapter, two regimes of motion can be

identified for sperm swimming close to a wall - the strongly and weakly bent
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3.3 Confined Movement

regime. In the strongly bent regime, the head is less than 0.2 head diameters

away from the wall (see Fig. 3.17). In the weakly bent regime, the head is

much farther away. This difference can is reflected in many other features of the

trajectory as well.

The radius of the circular trajectory at the wall becomes much larger for

weakly bent than for strongly sperm (see Fig. 3.18). This is the opposite of

what we have observed for the helix radius of the freely moving sperm. Strongly

bent sperm follow trajectories with small circles with a diameter of about half

a sperm length. On the other hand, weakly bent sperm draw circles almost

an order of magnitude larger than those with large bending parameter. The

radius decreases with increasing bending parameter, but at the transition point

a radius is difficult to define, because sperm move erratically, as shown at the

end of this section.
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Figure 3.29: Rotation frequency Ωr vs. bending parameter. Only moderately

bent sperm rotate at the wall. Weakly bent sperm do not rotate,

strongly bent ones can not rotate at the wall.

In a plot of the sperm’s rotation frequency Ωr at the wall (see Fig. 3.29),

the difference between regimes becomes quite clear. Strongly bent sperm (bend-

ing parameter b ≥ 45◦) do not rotate at the wall. Their beating plane stays

perpendicular to the surface for a long time.

These features can be analyzed further by a histogram of the wall-angle dis-

tribution p(αw) defined in Sec. 3.1. For strongly bent sperm, we observe a large

peak at αw ≈ 260◦ in the wall angle distribution function (see Fig. 3.30) which

corresponds to the beating plane being perpendicular to the surface. At this
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Figure 3.30: Probability distribution P of the wall angle αw for strongly bent

sperm, for various bending parameters as indicated.

point the head is touching the surface, blocking further turns. In a snapshot of

the simulation, we observe how the beating plane is perpendicular to the surface,

and how the head touches the wall (see Fig. 3.31).

Weakly bent sperm (b < 45◦) roll while at the surface (see Fig. 3.29). With

increasing bending parameter, the sperm rotates faster until at approximately

b = 20◦ it reaches a maximum. After this point, the head starts to get stuck at

the surface for short periods of time, thus slowing down the rotation.

Again these features are also reflected in the wall-angle distribution function

p(αd). Straight, or only slightly, bent sperm align with the beating plane parallel

to the surface. In the wall-angle distribution function p(αw), we observe peaks

at 0 and 180 degrees (see Fig. 3.32 ).

Figure 3.31: Strongly bent sperm (bending parameter 60◦) at a surface. The

head touches the wall blocking further rotations. The beating plane

is perpendicular to the surface. Visualization using VMD [38].
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Figure 3.32: Probability distribution P of the wall angle αw for slightly bent

sperm, for various bending parameters as indicated.
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Figure 3.33: Probability distributions P of the wall angle αw for moderately bent

sperm, for various bending parameters as indicated.

For moderately bent sperm (20◦ ≤ b ≤ 40◦), Fig. 3.33 shows a broad distri-

bution. Peaks at αd = 0◦ and αd = 180◦ are still visible, but now there is also

a peak at αd = 260◦, which indicates that the head gets stuck for a short time,

when it touches the surface.

Close to the transition point (b ≈ 45◦), the sperm behaves irregular. The

trajectory is not a regular circle, but occasionally has abrupt turns (see Fig.

3.34). Furthermore, it is of interest that only in this intermediate bending

parameter regime (in the simulation with b = 30◦) we observed that a sperm,

being at one wall for a while, detached and moved to the opposite wall.
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Figure 3.34: x and y component of the trajectory of the sperm with bending

parameter b = 40◦.

Discussion

The oriented circular motion is caused by the chirality of the sperm. This

is illustrated for the strongly bent sperm. Figure 3.35 shows a strongly bent

sperm (bending parameter 60◦) at the surface. The sperm “wants” to swim on

a helical trajectory, but because the head hits the surface it cannot rotate. A

torque on the sperm is generated by the appropriate reaction force, bringing the

sperm onto a circular trajectory.

Figure 3.35: Strongly bent sperm (bending parameter 60◦) at surface. The head

touches the wall and thus causes a bending moment on the sperm.

Visualization using VMD [38].

In the weakly bent case, we observe that even at the surface the sperm rotates

around itself. But still the head hits the wall periodically. In other words, the

head touches the surface for a short time, exerts a little torque to bring the

sperm onto a circular trajectory, but then slips through and goes straight for
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3.3 Confined Movement

another short bit. Thus we get a significantly larger radius of curvature.

At the transition point, the head can get stuck for long times until thermal

fluctuations cause it to slip through once, creating this “erratic” behavior.

3.3.4 Velocity in Thin Films

We simulate sperm with a bending parameter b = 0 in thin films. The separation

d of the to infinite planes is varied 5 < d < 50, and the swimming velocities are

compared with the theoretical expression provided in Ref. [20],

v(d) =
1

c1d + c2

. (3.7)

As expected and explained in Ref. [20], this equation performs poorly for large

wall separations d, because it results in v = 0 for infinite wall separation. Adding

another fitting parameter c3 to Eq.(3.7) works, not surprisingly, due the many

fitting parameters.

Figure 4.21 displays a plot of the sperm swimming velocity as a function of

channel width d and a fit to the latter expression. A clear peak is visible for a

wall separation of 7 a, about 10% larger than free swimming velocity.
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Figure 3.36: Swimming velocity v in a thin film of width d. In green we depicted

the swimming velocity for a free sperm. The blue line is a fit of

v(d) = 1
c1d+c2

+ c3 to the data in the range 8 ≤ d ≤ 50

Fig. 4.21 clearly shows the limits of the analytical expression for channel

widths smaller than the beating amplitude. These channel widths are of course
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not accessible in two-dimensional simulations where the beating plane is perpen-

dicular to the surface. Three important differences between the theory and our

simulations explain why the theory does not work so well. Besides our simula-

tions being three-dimensional, our sperm swim with the beating plane parallel

to the surface. Furthermore, the sperm swim, even at large wall separations,

close to one wall, thus the swimming velocity is still enhanced compared to the

free case, but not influenced by the wall separation anymore. However, it is

interesting to note that the sperm swim faster in a thin film than in a free fluid.
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4 Cilia Results

In this chapter, the simulation results for cilia arrays are presented. The main

objective is to understand the formation of the metachronal wave, its parameters

like the wavelength λ, and the effect of the metachronal wave on fluid transport

and efficiency. We first introduce a way to quantify the metachronal wave and

continue with simulation results for the influence of different input parameters

on the wave characteristics. Finally, we turn our attention towards transport

and efficiency, and how these are influenced by metachronal coordination.

Figure 4.1: Simulation snapshot (40 × 40 cilia, h = 0.02). Visualization using

VMD [38].

4.1 How to Characterize Metachronal Waves

The metachronal wave can be seen nicely in simulation snapshots (see Fig. 4.1),

but these waves look different in different systems, even within the same sim-

ulation at different times. Sometimes it is difficult to see whether metachronal

coordination is present. In movies of most simulations, we see how the wave
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4 Cilia Results

develops in time. After the system has been started with all cilia in the same

phase, regions of uncorrelated movement quickly grow, until, after some time,

a metachronal wave appears. Quantification of the metachronal wave and its

effects is the purpose of this section.

To characterize a metachronal wave, we need a scalar quantity for the phase

of the beat. For this purpose we define the beat status

B = cos(Θ)∆x + sin(Θ)∆y (4.1)

where ∆x = x(tip)−x(base) ∆y = y(tip)−y(base) are the relative displacements

of the tip of the cilium to its base. The direction of the effective stroke (see Fig.

4.2) is given by Θ. B is the displacement of the tip in the direction of the

effective stroke. The oscillations of the cilia can nicely be seen in the beat status

Θ
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B = cos(Θ)∆x + sin(Θ)∆y

Figure 4.2: Definition of the beat status B

(see Fig. 4.3). In movies of the beat-status field, the metachronal wave can be

seen as well as in simulation snapshots.

The beat status is a scalar field, and allows a detailed analysis via correlation

functions or Fourier transforms. The full correlation function Gc in x, y and t

has proven to be very effective. It is defined by

Gc(∆x, ∆y, ∆t) =
〈

B∗(x, y, t) · B∗(x + ∆x, y + ∆y, t + ∆t)
〉

/σ2 (4.2)

where B∗ = B− < B >, σ2 =< B2 > − < B >2 is the variance of B and the

average runs over all cilia and 300 simulation snapshots, each 100 h apart. x

and y indicate which cilium (counted in integer numbers) in x or y direction,

accordingly ∆x, ∆y denote a displacement in the corresponding coordinate.
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Figure 4.3: Beat status B of one cilium in the reference system as a function of

time t

How could this correlation function look like? First of all, if the cilia are

coupled to a metachronal wave, it should be proportional to a cosine-like function

Gc(∆~r, ∆t) ∝ cos(~k · ∆~r − ω∆t). (4.3)

where we restrict the angular frequency ω to be positive, so the metachronal

wave runs in the direction of the wave vector ~k.

Because the wave is not perfect, having thermal fluctuations and defects like

dislocations, it should decay with distance according to

Gc( ~∆x, ∆t) ∝ exp(−
√

~∆xX ~∆x), (4.4)

which is the two dimensional equivalent to exp(−r/ξ) with elliptical symmetry,

with a symmetric matrix X. The decay lengths ξ1/2 along the eigenvectors êλ1/2

are related to the eigenvalues λ1/2 of X by ξ1/2 = (λ1/2)
− 1

2 . The eigenvectors

êλ1/2
represent the direction of weakest (subscript 1) and strongest (subscript 2)

correlation, respectively.

It is not clear that the correlation has to have a finite correlation range. In

principle long range and quasi long range correlations are also possible. As a

first approximation we introduce a addititve constant c1 that limmits the decay

of the correlation function.

Gc( ~∆x, ∆t) ∝ (1 − c1) exp(−
√

~∆xX ~∆x) + c1 (4.5)

From the simulations presented, it is not possible to distinguish wether a finite

c1 stemms from (quasi) long range correlations or finite size effects. Often we
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observe the metachronal wave developing from a small domain, growing with

time eventually over the system size. Thus, a large value of c1 indicates that

finite-size effects are important (see Sec. 4.13). In the simulation results pre-

sented here, c1 is typically of the order of 0.1, but may vary between 0 and

0.5.

Of course the correlation function will also decay with time, thus:

Gc( ~∆x, ∆t) ∝ exp(−∆t/τ) (4.6)

Separate measurements of the decay time τ (see Sec. 4.4) show that τ is of the

order of a few thousand
√

ma2/kbT . Due to the computational effort we deter-

mine the full correlation function Gc( ~∆x, ∆t) only up to ∆t = 400
√

ma2/kbT .

Hence we neglect the factor exp(−∆t/τ) in this short time analysis.

Combining Eq.(4.3) and Eq.(4.4) we get

Gc( ~∆x, ∆t) = cos(~k · ~∆x − ω · ∆t)
[

(1 − c1) exp(−
√

~∆xX ~∆x) + c1

]

(4.7)

After some equilibration time, Eq.(4.7) describes correlations very well, leading

to χ2 less then 1, where

χ2 =
<
[

Gc(∆~r, ∆t) − X(∆~r, ∆t)
]2

>

σ2(X)
(4.8)

is the χ2-errorfunction, X the simulation result for Gc. A typical picture of a

cut through the correlation function can be seen in Fig. 4.4. The quality of

the fit can be seen better along just one axis (see Fig. 4.5), the agreement is

excellent.

The good quality of the fit of Eq. (4.7) allows now a detailed characterization

of the metachronal wave. This analyzing scheme is also well suited for experi-

mental data provided a scalar quantity for the beat phase can be obtained. The

fit leads to accurate, well defined measures. Other measures can be derived from

these parameters. For example, Ref. [22] uses basically

sup
0≤∆t≤τb

(

Gc( ~∆x, ∆t)
)

(4.9)

(where τb is the period of the ciliary beat). Together with the information which

∆t belongs to the supremum, ~k and other parameters can be computed. But

because not all information of the measurements are used, larger errors can be

expected.
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4.2 Extraction of Metachronal Wave Effects

In the reference system (see Sec. 2.4.2), and thus in most simulations, an array

of 20× 20 cilia is simulated. This number of cilia is sufficient for a metachronal

wave to develop.

To study the effect of metachronal coordination it is useful to have a closely

related system, in which the development of metachronal coordination is pro-

hibited. We call these cilia systems synchronous beating. For this purpose, we

simulate a single cilium with periodic boundary conditions, which represents a

unit cell of an infinite system where all cilia beat synchronously, while all other

input parameters are identical.

4.3 Beat Period

The beat of the cilium is slowed down by the drag of the fluid. Because we

drive the cilia by internal forces we expect the beat period τb to depend linearly

on the viscosity η. This linearity on the viscosity is reproduced in simulations

(see Fig. 4.6). Because the cilium also has to overcome internal friction and has

a predefined recovery stroke speed (see Sec. 2.4.1) we find a finite period τb if

extrapolated to η = 0.

The internal friction can be understood in the following way. With vanishing

viscosity, energy put into the system by changing the bond length dissipates

into vibrational modes of the monomers. This energy dissipation, along with

the decay of the vibrational modes due to the thermostat, cause an internal

friction of the axoneme structure.

While beating synchronously the fluid moves with the beat of the cilium,

slowing it down less than the cilia in metachronal coordination. The latter feel

the opposing flow of neighboring cilia. This is also seen in simulations (see

Fig. 4.6), including the fact that this effect should disappear as the viscosity

approaches zero.

The distance dc between cilia has a different effect on synchronously beating

cilia than on cilia in metachronal coordination. The larger the system, the more

fluid has to be moved by each cilium, slowing down synchronously beating cilia.

On the other hand, a cilium in metachronal coordination feels the opposing flow

of its neighbors less the larger the distance, thus beating faster. Therefore the

period decreases slightly with increasing distance (see Fig. 4.7) for metachronal
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Figure 4.6: Mean beat period τb of the cilia as a function of viscosity η with linear

fit (solid lines) for systems of 10 × 10 cilia and syncronous systems.

All other parameters are according to the reference system. Error

bars indicate the standard deviation of the distribution of periods

for a single cilium. The standard error of mean is too small to be

visible.

coordinated cilia, while it decreases for synchronously beating cilia. Also both

approach the same value with larger distance, in agreement with above argu-

ment.

For synchronous beating cilia the period is not effected by the effective stroke

direction. However, the period is found to be essentially independent of the

effective stroke direction for cilia in metachronal coordination (see Fig. 4.8). We

expect that the orientation of the cilia beat with respect to the lattice influences

the metachronal wave and thus the period.

Furthermore, we notice that the standard deviation of the period is by far

smaller for synchronous beating cilia then for cilia arrays (see Fig. 4.6, Fig. 4.7

and Fig. 4.8). The reason for this is that the synchronously beating cilia can sta-

bilize their own beat, while the fluctuating metachronal wave may significantly

influence the beat pattern.
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Figure 4.7: Period τb versus cilia spacing dc. All other parameters are according

to the reference system. The data point indicated by the blue symbol

is obtained for a synchronous system with dc = 30. Error bars as in

Fig. 4.6.
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4.4 Auto-Correlation Function

The correlation function should decay as a function of time,

Gc( ~∆x, ∆t) ∝ exp(−∆t/τ). (4.10)

We focus here on this time decay the auto-correlation function

GA(∆t) = Gc(~0, ∆t) (4.11)

because its timescale τ is too large for a fit together with the space dependence.

We fit simulation data to

GA(∆t) = cos(ω∆t) exp(−∆t/τ) (4.12)

via the angular beat frequency ω and the decay time τ .

For most simulations a fit of the auto-correlation function to Eq. (4.12) via

τ and ω works very well. As an example, the auto-correlation function of the

reference system is shown in Fig. 4.9. The result for τ is typically on the order

of a few 1000
√

ma2/kbT . We could not find a systematic dependence of the

decay time τ on the parameters used.
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Figure 4.9: Auto-Correlation function GA(∆t) = cos(ω∆t) exp(−∆t/τ) of the

reference system. Fit with τ = 2708, ω = 0.035. The right figure

shows the short-time behavior in more detail.

However, the picture is not as simple for all systems. Some systems show addi-

tional oscillations on long timescales. The system with a cilia spacing of 3 a (see

Fig. 4.10) shows further oscillations with a period of roughly 2500
√

ma2/kbT .

This could be explained by two oscillations contributing to the correlation func-

tion, similar to the beat heard when the sound waves of two tuning forks with
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Figure 4.10: Auto-Correlation function GA(∆t) for cilia spacing dc = 3 a.

slightly different frequency overlap. Additional oscillation frequencies found in

the Fourier transform of the beat status of a single cilium (see Fig. 4.11) are a

good indication for this hypothesis.
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Figure 4.11: Fourier transform of the beat status of a single cilium from the

simulations with cilia spacing dc = 3a.

The synchronous cilia systems show almost no decay of the auto-correlation

function within the simulation time. If a decay time τ could be identified,

it is larger than 5000
√

ma2/kbT . It seems that due to the periodic boundary

conditions the single cilium stabilizes its own beat. This fits with the observation

of Sec. 4.3 that the variance of the beat period in these systems is very small.
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4.5 Wavelength

The wavelength varies between λ = 10 a and λ = 40 a. No systematic depen-

dence of the wavelength on the input parameters could be found (see Fig. 4.12),

although the wavelength seems to increase with cilia spacing for dc > 6a.
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Figure 4.12: Scaled wavelength λ/a as a function of cilia spacing dc (left) and

effective stroke direction Θ (right).

The wavelength is probably strongly effected by finite-size effects. The wave

has to be commensurate with the cilia grid. In other words, the wave vector
~k is restricted to the reciprocal lattice. If the systems “optimal” ~k-vector is

between two reciprocal lattice points, it chooses one of them randomly, but a

small change in one parameter can suddenly favor a wave with a different ~k-

vector. We also observe changes in the metachronal wave over time, in this

case the ~k-vector jumps from one reciprocal lattice point to another due to

fluctuations. For example in the simulation with a cilia spacing of dc = 3 the

wavelength stabilizes for over 10 000
√

ma2/kbT on λ = 27.0(3) a, then abruptly

changes to λ = 20.0(2) a for the rest of the simulation time (20 000
√

ma2/kbT ).

4.6 Orientation of the Metachronal Wave

In our simulations the metachronal wave travels never exactly in the effective

stroke direction (see Fig. 4.13). We expect the direction of the metachronal wave

to be especially sensitive to finite-size effects (see Sec. 4.13 or Sec. 4.5), because

the ~k-vector has to be on the reciprocal lattice of the cilia lattice. Nevertheless

we find that in most simulations the wave travels 10◦ to 50◦ to the right of

the effective stroke direction. This means that the wave is somewhere between

symplectic and laeoplectic metachronism.
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Figure 4.13: Traveling direction of the metachronal wave relative to the effective

stroke direction. Data show estimates from time-dependent plots

of the direction of the ~k-vector. Errorbars are hard to estimate, but

in the order of 20◦. For dc = 3 a two points are provided because

we see two rather stable waves at different simulation times.

A special case is the metachronal wave of the system with Θ = 0. It is

also oriented about 35◦ degrees clockwise from the effective stroke direction, but

travels in the opposite direction. In other words 215◦ clockwise from the effective

stroke direction.

4.7 Correlation Anisotropy

In experiments an anisotropy in the degree of correlation was found. For the

experimental measurements in Ref. [22] the correlation function of reflected light

intensity was measured in the effective stroke direction and perpendicular to it.

Intermediate angles were not studied, but a clear anisotropy could be found. In

these experiments correlations are larger in the direction of the effective stroke

than perpendicular to it.

In our simulations, the anisotropy can bee seen in the exponential term

(exp(−
√

~∆xX ~∆x)) of the correlation function. In Fig. 4.14 this can be seen for

the reference system. Obviously the correlation function is larger in the effective

stroke direction. Due to the explicit fit, a more quantitative assertion can be
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made.
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Figure 4.14: Spatial decay of the correlation function (exp(−
√

~∆xX ~∆x)) for the

reference system. The effective stroke is from the bottom right to

the top left.

As mentioned in Sec. 4.1 diagonalization of X yields the different decay lengths

and their directions. Figure 4.15 shows the main correlation direction (direction

of the eigenvector with the largest decay length) as a function of the effective

stroke direction. As in the experiments of Ref. [22] the main correlation direction

is roughly in the effective stroke direction. However, we do see a systematic

deviations, caused by lattice effects.

4.8 Correlation Lengths

The correlation lengths ξ1,2 generally increase in time in our simulations (see

Fig. 4.16). This means that throughout the simulation time we did not reach a

stationary state in this parameter. The larger correlation length ξ2 eventually

always increases above system size, which means that a stationary state in the

correlation lengths will be dominated by finite-size effects. This leaves a detailed

analysis of correlation lengths to simulations of larger systems. No general time

dependence of this increase could be identified, because the curve often fluctuates

a lot (see Fig. 4.16).
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4.9 Transport

We have explained in Sec 4.3 that the beat period should scale with the solvent

viscosity η, because we impose forces on the cilium rather than a cilium shape

and beat amplitude. The same argument as in Sec 4.3 leads to an inverse

proportionality of the average fluid velocity with the viscosity. In other words

|v| =
cv

η
(4.13)

where |v| is the absolute value of the average fluid velocity and cv some propor-

tionality factor. This relation is also found in simulation results for both, cilia

with and without metachronal coordination (see Fig. 4.17).

More importantly, metachronal coordination roughly doubles the average fluid

velocity (see Fig. 4.18). Because synchronously beating cilia beat faster (see Sec

4.3), they might be expected to also pump the fluid faster. This is not the case.

This is a very important result, for it shows that due to the metachronal wave,

cilia can move fluid faster. In the remainder of this chapter we will see that this

velocity gain prevails for many different parameter sets, ranging up to 3.2.
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Figure 4.17: Average fluid velocity as function of viscosity η. Solid lines are fits

to Eq. (4.13) with cv = 0.28 (red) and cv = 0.12 (blue). Systems

are reference systems with 10 × 10 cilia, or synchronously beating

cilia, as indicated.

By changing the effective stroke direction the average velocity is only changed

slightly, almost not at all for the synchronous cilia (see Fig. 4.19).
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4.9 Transport

If each cilium has a certain pumping power, the average velocity increases

with cilia density, until eventually the fluid moves at the maximum speed of this

pump. In this simple picture we would expect a linear increase of the average

velocity with cilia density, or

|v| ∝ 1

d2
c

. (4.14)

until it saturates at a certain cilia spacing. This dependency could not be found,

but a fit to

|v| =
c1

(dc)c2
(4.15)

leads to c2 = 1.4 for 20 × 20 cilia, and c2 = 0.6 for synchronously beating cilia

(see Fig. 4.21).
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Figure 4.20: Average fluid velocity as function of cilia spacing dc for refer-

ence systems (red) and corresponding synchronously beating cilia

(green). Solid lines are fits to Eq. (4.15) (only to the data of dc ≥ 5

for 20 × 20 cilia).

Interestingly the fluid velocity increase with cilia density is much stronger for

metachronal beating cilia than for synchronous beating, such that the velocities

are almost identical at a cilia spacing dc = 10a.

The reason for the average velocity being faster for metachronal coordinated

cilia is clearly an effect correlations. A possible explanation for the transport
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Figure 4.22: Schematic drawing of metachronal beating. Flow from the effective

stroke (ESD) is depicted with a red arrwo. The flow generated by

the recovery stroke is illustrated by a blue arrow. See Text.
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enhancement of metachrony is the following. In Fig. 4.23 a schematic two di-

mensional drawing of metachronal coordinated cilia is given. The flow generated

by the cilia in the recovery stroke has to go upwards from the wall. During the

effective stroke (ESD) the cilia feel this opposing flow of the neighboring cilia.

Although this implies that they move slower, they work at full force against the

flow, thus having a large effect on the fluid body

The flow generated by cilia in the effective stroke, also goes upwards away

from the wall. This means though that during the recovery stroke the cilia feel

a lot less the opposing flow of the neighboring cilia in the power stroke, because

the recovery stroke is closer to the wall.

On the other hand, cilia in beating synchronously move, as shown above, a

large part of the fluid body with them. Thus a cilium in the effective stroke feels

a flow in the effective stroke direction. Although this results in faster movement,

it also means it cannot exert the full force onto the fluid. Like a cyclist cycling in

too low a gear, peddling is easy and fast, but velocity is small. This explanation

is in good agreement with the observed higher beat frequency of the synchronous

beating cilia.

4.10 Orientation of Transport

The transport direction is close to, but not exactly in the effective stroke direc-

tion. A little deviation was expected, because the recovery stroke is tilted to one

direction, but the degree of deviation and its dependence on cilia spacing is sur-

prising. Especially for the synchronously beating cilia, the transport direction

can deviate strongly from the effective stroke direction.

A linear fit (see Fig. 4.23) shows that the metachronal correlated cilia propel

on average the fluid 1◦ to the right of the effective stroke direction, whereas

synchronously beating cilia propel the fluid on average 11◦ to the left of the

effective stroke direction.

In Fig. 4.24 we plot the velocity direction for different cilia spacings. Espe-

cially for closely packed cilia the deviation from the effective stoke direction is

large. When the cilia are further apart, the velocity direction almost coincides

with the effective stroke direction. This indicates that the deviation is a collec-

tive phenomenon, and not only due to the out-of-plane motion of the recovery

stroke. Still the effective stroke direction clearly dominates the average velocity

direction.
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Figure 4.23: Velocity direction as a function of effective stroke direction Θ. Oth-

erwise reference system. Lines are linear fits.
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Figure 4.24: Velocity direction as a function of cilia spacing, the green line at

45◦ is the effective stroke direction.
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4.11 Energy and Efficiency

In computer simulations the energy input is directly accessible. We calculate

the energy input by adding up the energies we put into the system by chang-

ing the lengths of the springs. Also the energy output can be determined by

recording the energy subtracted from the system during application of the ther-

mostat. Both these energies agree well within the numerical uncertainty of the

simulation.

The energy consumption per cilium per beat is relatively constant under

changes of the effective stroke direction and cilia spacing (see Fig. 4.25), averages

for different systems all being between 15 000kBT/beat and 15 200kBT/beat.

Whis might seem large at frist, but is actually surprisingly close to and be-

low estimates of energy expenditure of the order of 20 000kBT/beat [82] or

200 000kBT/beat [31].
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Figure 4.25: Energy consumption per cilium per beat as a function of effective

stroke direction Θ and cilia spacing dc for reference like systems

(20 × 20 and synchronous beating cilia as indicated. Lines are

averages.

The increased load on the cilium at higher viscosity increases also the average

energy consumption per cilium per beat roughly linearly (see Fig. 4.26). The

finite value for η → 0 arises, as in Sec. 4.3, from internal friction.

The dimensionless efficiency defined in Eq. 2.40 by ǫ = 12ηv̄2V
Pd2 is mainly

effected by the cilia spacing (see Fig. 4.28) and has a small maximum at a cilia
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Figure 4.26: Energy consumption per cilium per beat as a function of viscosity

η. Line is a linear fit.

spacing of 4a or 5a for metachronally coordinated cilia.

In systems of synchronous beating cilia the fluid swashes back and forth with

the cilia beat. This is illustrated in Fig. 4.27, together with the velocity of

the reference system relaxing into metachronal coordination. We see how in the

reference system the cilia are started synchronously, moving the fluid with high

speed in the effective stroke direction. Quickly the system falls into metachronal

coordination, and the fluid flows with constant velocity in one direction. On the

other hand the synchronous beating cilia constantly move the fluid back and

forth at rather high velocities, causing higher shear, and thus more energy dis-

sipation. The efficiency of synchronous beating cilia increases with cilia spacing

because the larger fluid body reduces this swashing effect.

The viscosity does not affect the efficiency much up to rather high viscosi-

ties, where it decreases. Also the effective stroke direction does not affect the

efficiency very much.

We have seen that the cilia in metachronal coordination are much more ef-

fective than the synchronous beating cilia. This gain in efficiency is seen best

in a plot of the ratio of both efficiencies (see Fig. 4.29). As expected the ra-

tio tends to one as the cilia spacing increases, while a maximum at dc = 3 of

ǫ(metachronal)/ǫ(synchron)=4 is found.
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Figure 4.27: Average velocity in the effective stroke direction v for the refer-

ence system (red) and the corresponding systems with synchronous

beating (green).
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Figure 4.29: ǫ(metachronal)/ǫ(synchron) as a function of cilia spacing dc.
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4.12 Planar Beating

The theoretical work of Jülicher and Vilfan [91] suggests that aplanar beating

cilia are more likely to show metachronal coordination than those with a planar

beat. Thus we focused our research on aplanar beating cilia (with aapl = 0.05).

However, it turns out that planar beating cilia aapl = 0 also show metachronal

coordination. The main differences between planar and aplanar beating cilia are

shown in this section. Planar beating cilia where only studied with cilia spacings

dc = 5.
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Figure 4.30: Velocity direction as a function of effective stroke direction Θ for

cilia with aplanarity parameter aapl = 0 (planar beat).

For planar beating cilia, the average velocity direction coincides with the effec-

tive stroke direction, both for synchronous beating cilia or cilia in metachronal

coordination (see Fig. 4.30). Aplanar beating cilia showed significant deviation

in the velocity direction, especially for synchronous beating cilia.

The average fluid velocity for planar beating cilia is slightly higher than for

aplanar beating, while the energy consumption per beat is lower. Thus the

efficiency of planar beating cilia is roughly 50% higher than for aplanar beating.

4.13 Finite-Size Effects

The cilia are arranged on a lattice, thus the metachronal wave is confined to a

limited range of ~k vectors. Typically we simulate arrays of 20 × 20 cilia. Some
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larger systems where simulated estimate these effects. Pictures become more

clear, but a qualitative change could not be observed in most quantities. Mainly

we expect the ~k vector and the decay lengths of the metachronal wave to be

influenced by the system size. As an example we provide a comparison of data

obtained from the reference system, and a corresponding system with 30 × 30

and cilia 60 × 60 cilia.
20 × 20 cilia 30 × 30 cilia 60 × 60 cilia

wavelength λ/a 21(5) 22(2) 22.5

beat period τb/
√

ma2/kbT 181 181 181

fluid velocity |v|/
√

m/kbT 0.0159 0.0167 0.0166

efficiency ǫ 0.65 × 10−3 0.73 × 10−3 0.71 × 10−3
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Figure 4.31: Correlation lengths ξ2 as a function of time for various system sizes,

as indicated. The black line marks the size of the 20×20 cilia system

in box lengths a.

In most parameters no significant difference could be found. An indication

that finite size effects are important is the larger correlation length ξ2 (see Fig.

4.31). It seems that the correlation length is in the order of 50 a. However,

the system with 20 × 20 cilia is only 100 a wide, which is in the order of 2ξ2

(the width of the correlation function is 2ξ2). This leads to a point at which

correlations “feel” the finite system size and jump to large values. The larger

systems show a similar value for ξ2, but the 60 × 60 cilia system has a lateral

system size of 300 a, significantly larger than the correlation length. Simulations

have yet to show if ξ2 reaches a steady state, but the preliminary results look
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promising. The high computational effort of large systems (the data shown for

the system of 60 × 60 cilia required 5 000 CPU-hours) has so far prohibited a

systematic study of many large systems.

Of course large systems do not affect the fact that the wave vector ~k has to

be commensurate with the cilia grid, so lattice effects are still expected in large

systems.

4.14 Discussion

The results of our simulations allow the following main conclusions. First of

all, we found metachronal coordination of cilia, solely through hydrodynamic

interactions. This coordination is strong enough to couple large arrays of cilia,

even in the presence of strong thermal fluctuations.

Secondly, our simulations showed that the average transport velocity is high-

est for cilia in metachronal coordination, up to a factor 3.2 higher than for

synchronously beating cilia. The higher average velocity is what is most im-

portant for the cell. Typically the efficiency is (although also higher for the

cilia in metachronal coordination) not so crucial because the cell uses only a

small fraction of its available energy for propulsion [71]. Intuitively it is not

obvious why metachronal coordinated cilia should create a higher fluid velocity,

especially because the synchronously beating cilia beat faster, but a reasonable

explanation is provided in which the decrease in beat frequency actually follows.

We demonstrated that the pumping velocity and the gain through metachronal

coordination grow with cilia density. We conclude that the enhancement of the

average velocity essentially depends on the hydrodynamic interactions between

the cilia.

Furthermore, our simulations revealed that the efficiency of cilia pumping is

increased up to an order of magnitude through metachronal coordination. The

cause of this efficiency increase was identified as the swashing of the fluid if the

cilia beat synchronously. This swashing leads to higher velocity gradients, and

thous to more energy dissipation through the fluid viscosity.
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We have constructed a minimalistic model axoneme that is used to study the

behaviour of sperm and cilia by computer simulations. The axoneme is modeled

as a semi-flexible polymer, where an active bending force can be imposed. Beat

patterns are implemented to mimic the biological systems.

Hydrodynamic interactions are taken into account for by a powerful, particle-

based, mesoscopic simulation technique called multi-particle collision dynamics.

This method is very well suited to investigate hydrodynamics in systems with

embedded mesoscopic objects in complex flow geometries. We successfully apply

multi-particle collision dynamics to active biological systems for the first time.

We have demonstrated that this sperm model captures important features of

sperm motion. In particular, we have unveiled how hydrodynamic interactions

lead to an adhesion of sperm cells to a wall, and are able to explain this effective

attraction by a combination of thrust and hydrodynamic repulsion of the tail

from the wall. Furthermore, we find that the chirality of the sperm is the cause

of the oriented circular motion at interfaces. Tuning this chirality, we find two

regimes of motion. In the strongly bent regime, the sperm swims very close to

the wall in tight circles, with a diameter smaller than the sperm length. The

beating plane remains perpendicular to the wall. In the weakly bent regime,

the sperm rotates around its longitudinal axis and follows large circles, up to an

order of magnitude larger than in the strongly bent regime. Even though the

sperm rotates around its longitudinal axis, the beating plane is most of the time

parallel to the wall. The circular motion is caused by the head of the sperm

touching the surface, creating a torque on the sperm. When the bending is

strong enough, the head gets stuck at the wall, stopping further rotations. A

transition is also observed for freely swimming sperm. In this case the strongly

bent sperm swim in pronounced helices, whereas in the weakly bent regime the

sperm swim almost in a straight line. We explain the transition between these

two regimes of motion by a dynamic shape change of the sperm model.

In the cilia simulations, we present for the first time a two-dimensional array of
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autonomously beating cilia, solely coupled by hydrodynamic interactions, that

develop a metachronal wave. Many different wave and transport parameters are

studied. Most importantly it is found that the transport velocity increases up

to a factor 3.2 through metachronal coordination compared to synchronously

beating cilia. A consistent explanation for the increased transport velocity is

found in the interactions of neighboring cilia. In metachronal coordination the

cilium can exert its full force onto the fluid, while in synchronous beating it

moves mostly with the local fluid. Both, the transport velocity and the gain

through metachronal coordination, are larger the closer the cilia are packed. As

the transport velocity grows, and the energy consumption per time decreases

through metachronal coordination, we also show that the efficiency increases

up to an order of magnitude by metachronal coordination. The high power

consumption of the synchronously beating cilia arises due to back and forth

swashing of the fluid during the beat. This leads to higher energy dissipation

compared to the relatively steady flow generated by metachronally beating cilia.

Furthermore we characterize transport and wave properties as a function of the

viscosity, effective stroke direction and cilia spacing. For example, we show

that the main correlation direction roughly coincides with the effective stroke

direction, that the beat frequency decreases through metachronal coordination

while the energy consumption per beat is basically independent of cilia spacing,

effective stroke direction and metachronal coordination.

So far our model sperm uses a sinosoidal bending wave as its beat pattern.

Although this resembles the observed beat shape in experiments, it suppresses

any feedback of the hydrodynamics on the beat pattern. In the future we intend

to implement a more realistic axoneme model as presented in the literature [36].

Chemotaxis of sperm is an important question in current biology. Detailed

data is available today how the sperm trajectory changes in chemotaxis [85], due

to a gradient of a chemical attractant. But how a sperm performes the neccesary

tight turns and straight paths has yet to be investigated in detail. By tunig the

bending parameter, our model sperm is able to change direction in response to

external stimuli. We will elaborate on the connection between chemical signal,

sperm shape change and the resulting movement.

The system sizes studied so far in simulations are too small to capture the

decay of the correlations between the cilia. We want to examine larger systems

in the future and identify correlation lengths and their dependency on viscosity,

cilia arrangement and beat parameters.
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Finally, it was suggested that the aplanarity of the ciliary beat strongly influ-

ences the metachronal wave pattern [1]. Within the present model, different beat

patterns can be implemented. We want to study their effect on the metachronal

wave and transport.
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7 Appendix

7.1 Parallelization

Due to the large systems required a large computational power is necessary,

this is achieved by parallelization. The code is parallelized using OpenMP, a

shared memory Application Program Interface (API) for C++ (and others).

Compared to MPI, OpenMP is less powerful but more easy to implement. Its

most important feature is the automatic loop parallelization. Its main drawback

is its restriction to shared memory parallelization, thus limiting the number of

processors to be used.

MPCD is very well suited for a shared memory parallelization because many

steps in the algorithm can be calculated independently on different processors if

the system state is available for reading for all processors.

In general a good OpenMP code can run both on a parallel and a serial

machine. Parallelization is achieved by distributing different iterations of a loop

on different processors, while the system state is stored in shared memory. Here

an example:

#pragma omp parallel for

for (i=0..1000){

do_something(i)

}

If the program reaches this point it will fork of in different threads, each doing

do_something(i) for different i. Of course this can only work if do_something(i)

is independent of do_something(j). Otherwise, for example, so called race con-

ditions can happen. The result of the simulation depends on which processor

“wins the race” to first do do_something(i). An example:

#pragma omp parallel for

for (i=1..1000){
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n[i]=n[i-1]+1;

}

Obviously here the do_something(i) is not independent of the other steps.

If n[0]=0, n[i] should be i. But most likely one processor or the other will

compute some n[i] before n[i-1] is computed. Thus starting at zero again. In

the end n[i] could have the entries

0 1 2 3 4 5 0 1 2 3 ...

or similar.

A more subtle mistake is shown in the next example which computes
∑100

i=1 i:

#pragma omp parallel for

for (i=1..100){

a=a+i;

}

Because the sum is commutative, the result does not depend on the order of

execution. However it can happen that one processor writes to variable a while

another is trying the same. This also causes run-dependent results.

Luckily most of the steps in MPCD are independent. The main, non indepen-

dent step is connected to calculating the average box velocity, where a similar

problem to the last example exists. OpenMP provides so called locks, to lock

a variable while writing to it, thus circumventing the problem. In principal all

of these problems can be solved, but always at the cost of so called “parallel

overhead” i.e. extra commands not needed for serial computation.

The molecular dynamics part of the code is more difficult to parallelize effi-

ciently for two reasons:

First there are fewer particles, and therefore each processors gets smaller

chunks of work, before it has to wait for the other processors to finish.

Second the force calculation is by definition strongly depending on other par-

ticles. Therefore dependencies grow.

The speedup S of a parallel program can be determined by dividing the time

the job takes on one processor t(1) by the time x processors need t(x)

S(x) =
t(1)

t(x)
(7.1)
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in a first approximation the run time consists of a serial (s) and a parallel (p)

time. Only the latter decreases with the number of processors. Thus

t(x) = s +
p

x
(7.2)

which leads to

S(x) =
s + p

s + p/x
=

1

1 − f + f/x
< x (7.3)

where f is the parallel fraction of the code. This is known as Amdahls Law. With

it the “quality of parallelization” can be measured by the parallel fraction f . For

our code f depends on the system. Larger systems perform better because the

chunks going to each processor are larger. Also the sperm simulations perform

better than the cilia, because the ratio MPCD particles/monomers is larger.

Generally f ranges from 95% to 99% in our simulations. As an example a

speedup plot for cilia is given in figure 7.1. These data come from the simulation

times of systems equivalent to the reference system ( only with different effective

stroke directions). The fit of Amdahls Law leads to a parallel fraction of 98%. As

mentioned before the speedup strongly depends on the system. Larger systems

and sperm perform better, smaller systems worse.
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Figure 7.1: parallel performance of the reference system of cilia
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Kurzzusammenfassung

Spermien schwimmen durch Flüssigkeiten mithilfe einer aktiven schlangen-

förmigen Bewegung ihres Schwanzes, dem Flagellum. Experimentell hat sich her-

ausgestellt, dass sich Spermien stets an Oberflächen ansammeln. An der Ober-

fläche schwimmen sie dann in einer kreisförmiger Bewegung, deren Ausrichtung

von der Spezies abhängt.

Zilien sind haarähnliche Zellfortsätze, die mit einer peitschenförmigen Bewe-

gung Flüssigkeit, oder die Zelle, bewegen. Zilien finden sich in den verschieden-

sten Organismen. Zum Beispiel benutzt das Pantoffeltierchen Zilien zur Fortbe-

wegung, während in der menschlichen Lunge Zilien Schleim und Fremdkörper

heraus transportieren. Das spannendste Phänomen, welches man bei Zilien be-

obachten kann, ist wohl die “Metachronal Wave”. Wenn viele Zilien gemeinsam

schlagen, bildet sich spontan ein Wellenmuster aus, ganz ähnlich dem eines Wei-

zenfeldes im Wind. Zilien und Flagellen haben eine gemeinsame Struktur, das

Axonem.

Wir simulieren ein Modellaxonem aus drei semiflexiblen Polymerstäben die

zu einer kranähnlichen Struktur zusammengefasst sind. Mithilfe einer meso-

skopischen Simulationsmethode, genannt Multi-Particle Collision Dynamics

(MPCD), werden hydrodynamische Wechselwirkungen berücksichtigt. Im Zu-

ge dieser Arbeit wird MPCD zum ersten Mal erfolgreich auf aktive biologische

Systeme angewandt.

In Simulationen von Spermien wird die Axonemstruktur chiral um einen Kopf

ergänzt. Es zeigt sich, dass die Schwimmtrajektorie des Spermiums stark vom

Grad der Chiralität abhängt. In freier Flüssigkeit finden wir einen dynamischen

Übergang der Trajektorie zwischen einer ausgeprägten Helix und einer fast ge-

radlinigen Bewegung. In der Nähe einer Wand können wir sowohl die Adhäsion

an der Grenzfläche, als auch die orientierte kreisförmige Bewegung reproduzie-

ren. Die Ursache für die Adhäsion an der Wand findet sich interessanterweise

in der Abstoßung des Flagellums von der Wand. Kreisförmige Bewegung und

Richtung werden hingegen von der Chiralität des Spermiums bestimmt.

Zur Untersuchung der Ziliendynamik wird ein Gitter von typischerweise 20

mal 20 Zilien betrachtet, in dem Axonemstrukturen senkrecht auf einer Wand

verankert werden. Das Schlagmuster der Zilien wird der biologischen Situati-

on nachempfunden. Dabei ist entscheidend, dass das Schlagmuster duch äußere



Einflüsse modifiziert werden kann, so dass die Entstehung einer Metachronal

Wave durch Synchronisation verschiedener Zilien ermöglicht wird. Zum ersten

Mal sind wir in der Lage, die Metachronal Wave auf einer ausgedehnten Fläche

unabhängig schlagender Zilien in Simulationen zu beobachten. Es zeigt sich, dass

die Metachronal Wave gravierende Auswirkungen auf Transportgeschwindigkeit

und Effizienz hat. Die durchschnittliche Geschwindigkeit der Flüssigkeit steigt

durch die Metachronal Wave um bis zu einem Faktor 3.2 im Vergleich zu einem

gleichartigen, synchron schlagenden System. Da gleichzeitig die Leistungsauf-

nahme sinkt, steigt zudem die Effizienz um bis zu einer Größenordnung. Weiter-

hin charakterisieren wir Transport und Welleneigenschaften als Funktionen der

Schlagrichtung, dem Zilienabstand und der Viskosität der Flüssigkeit. Wir sind

überzeugt, dass sowohl die Effizienz als auch im besonderen die Transportge-

schwindigkeit entscheidend sind für die Fitness der Zelle. Die Metachronal wave

ist daher von großer funktionaler Bedeutung für Zellen mit Zilien.
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