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Summary 

Drosophila melanogaster is by far the best-understood model for “long germ” developing 
insects. The most remarkable feature of its development is the specification of all segments 
during the syncitial blastoderm stage by a mechanism that relies on free diffusion of 
maternally provided and zygotic transcription factors between the uncellularized nuclei of the 
early blastoderm. In contrast to this, most insects undergo a short germ development, where 
only few anterior segments are specified at this stage. Although the ontogeny of several 
insects from different orders has been analysed so far, it still remains unclear if the principles 
discovered in Drosophila also apply for the generation of the post-blastoderm derived 
segments of short germ insects, and how this system might have evolved. 
 
The functional analysis of the Tribolium castaneum hairy homolog by pRNAi provided in this 
thesis and the analysis of the knock down embryos by in situ hybridization using different 
molecular markers, strongly indicates that Tc’h functions as a pair-rule gene during the 
segmentation of blastoderm derived segments and suggests a conservation of this function 
between Tribolium and Drosophila. In contrast to this no such role could be observed for 
segments specified during the elongation process of the Tribolium germ-band. Interestingly, 
this function appears to be masked by an additional function of Tc’h in the further 
development of the embryonic head, which causes the loss of all segments anterior to the third 
thoracic segment and may indicate the presence of an anterior organizer which governs the 
proper maturation of this region during development.  
 
Analysis of the regulation of Tc’h, in comparison to its Drosophila homolog, shows that the 
regulatory cascade governing its expression differs substantially between these species. 
Whereas the Tribolium gap gene orthologs Tc’Kr and likely also Tc’hb do not seem to 
participate in the regulation of the Tribolium hairy pair-rule pattern in a similar way as in 
Drosophila, a strong regulatory influence of Tc’gt could be observed in these experiments, 
reminiscent of the situation in Drosophila. 
 
Analysis of the regulatory target gene Tc’ftz indicates that the regulatory interaction between 
these genes might be conserved, although the function of this interaction differs substantially 
between Drosophila and Tribolium. 
 
Despite the differences found in the regulation of the hairy gene in Tribolium and Drosophila, 
a trans-species experiment using a lacZ reporter construct under the control of a Tribolium 
hairy enhancer, specifically regulating the expression of three central stripes #3-#5 in 
Tribolium, does indeed show expression of the corresponding stripes in transgenic Drosophila 
lines. Furthermore, crosses of these lines with Drosophila gap and pair-rule gene mutants 
strongly suggest a participation of these genes in the regulation of the observed pattern. 
Intriguingly, complementary experiments performed in Tribolium, using similar constructs 
harbouring stripe specific elements for the stripes #3-#4 from Drosophila, also exhibit stripe 
like expression at comparable positions in the Tribolium germ-band. However, pRNAi 
experiments performed with the Tribolium gap genes Tc’hb and Tc’Kr suggest a different 
regulation for the generation of these stripes.  
 
The results obtained in this study reveal part of the regulation and function of the Tribolium 
castaneum hairy homolog and allow interesting speculations on the molecular events that may 
allow the transition from short- to long-germ development and the evolution of pair-rule 
patterning in higher insects. 
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1. Introduction 

 

1.1 Evolution and Development 

 
The history of life documented in the fossil record shows that the evolution of complex organisms such as 

animals and plants has involved marked changes in morphology, and the appearance of new features. However, 

evolutionary change occurs not by the direct transformation of adult ancestors into adult descendants, but rather 

when developmental processes produce the features of each generation in an evolving lineage. Therefore, 

evolution cannot be understood without understanding the evolution of development, and how the process of 

development itself biases or constrains evolution (Rudolf A. Raff, 2000). 

 

 

One of the most astonishing processes in nature is the development of a complex organism 

from a single, fertilized cell. In this respect it may seem even more astonishing that some of 

the genes, networks and processes governing development are broadly shared over large 

evolutionary distances and organisms which are superficially as different as flies and man. 

According to evolutionary theories, changes in evolution are caused by hereditable changes in 

development. This implies that evolutionary changes, and thus phenotypic changes, can be 

tracked down to the genotypic level by comparison of developmental processes between 

different species, thus enabling us to understand the molecular mechanisms that drive 

evolution to shape species. Moreover it permits to infer the course of evolution between 

lineages and taxa, allowing the reconstruction of the tree of life, since innovations are 

structures based on genetic changes in descendent lineages that were not present in ancestral 

ones. The comparison of phenotypes on the genotypic and molecular level also allows the 

limitations of just morphological comparison to be overcome. Convergent evolution or the 

discrimination between real innovations and parallelism are some of the problems, which can 

only be solved and understood on the genetic level. 

Ongoing development of new techniques to manipulate and analyse the processes governing 

ontogeny, as well as genome projects, allow insight into the genetic networks which direct the 

development of model organisms such as Drosophila melanogaster for insects or Danio rerio 

and Mus musculus for vertebrates. Inter specific comparison of the genetic basis of the 

regulation of these processes should therefore shed light on how evolution shapes the 

tremendous diversity of body plans using basically the same the molecular “tool box”. 
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1.2 Drosophila segmentation 

The systematic analysis of the embryonic development of Drosophila melanogaster (D.m.) 

provided the basis for the understanding of the molecular processes that govern 

embryogenesis of this model organism. The Drosophila segmentation gene hierarchy consists 

of a cascade of transcription factor interactions, which define the anterior-posterior axis of the 

Drosophila embryo. It acts upon an array of nuclei that divide within a common cytoplasm 

termed syncitial blastoderm. After fertilization, ten fast synchronous nuclear divisions take 

place at a frequency of 8-10 min. followed by four additional, slower divisions prior to 

cellularization (Zalokar and Erk, 1976; Foe and Alberts, 1983), leading to a monolayer of 

approximately 6000 nuclei at the periphery of the egg on which the complex segmental 

blueprint is overlaid. Maternally provided factors, products of the so called maternal 

coordinate genes, which are deposited in form of mRNA at the poles of the embryo, begin to 

regulate their zygotic downstream targets after the tenth division when interphases lengthen 

and thus allow transcription of zygotic genes. With the onset of cellularization, during the 

fourteenth division, mitotic synchrony is lost. Free diffusion of the maternal factors within the 

syncitial blastoderm leads to the formation of long-range gradients that provide the initial 

positional information integrated by the zygotic segmentation genes, thus allowing the 

specification of all future segments before cellularization is complete. As a result, a “fate 

map” of the complete larval body can be mapped onto the blastoderm, which is the key 

feature of the “long germ mode” of development (Sander 1976). 

 

 

1.2.1 Maternal coordinate genes 

The Drosophila segmentation cascade is one of the most comprehensively studied gene 

networks to date. The cascade follows a hierarchical principle (Ingham, 1988; Tautz, 1992; 

Klingler and Tautz, 1999) beginning with the diffusion of maternal factors (i.e. bicoid, caudal, 

hunchback, etc.) from the anterior and posterior poles of the embryo which in turn control the 

spatial expression of the next hierarchical level, the so called gap genes (e.g. hunchback, 

Krüppel, giant, etc.), in a concentration and combination dependant manner. One of the most 

important maternal coordinate genes in this respect is bicoid (bcd). bcd mRNA is localized in 

the anterior of the oocyte, but is not translated until fertilization after which it forms an 

anterior to posterior gradient (Driever and Nusslein-Volhard, 1988; St. Johnston et al., 1989). 

BCD is a homeodomain containing transcription factor, but can also bind to RNA and 

regulate translation (Dubnau and Struhl, 1996; Rivera-Pomar et al., 1996). One of its first 
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actions is to inhibit translation of the ubiquitously dispersed caudal (cad) transcripts, resulting 

in a complementary CAD gradient with lowest concentrations at the anterior pole of the 

embryo where BCD concentrations are highest (Macdonald and Struhl, 1986; Mlodzik and 

Gehring, 1987). Two other important gradients are formed by the gene products of maternal 

hunchback (mat-hb), a Cys2His2 class zink-finger transcription factor (Tautz et al., 1987), 

and nanos (nos) where NOS negatively regulates translation of the uniformly dispersed mat-

hb, but also bcd transcripts, in a posterior to anterior fashion (Wang and Lehmann, 1991; 

Payre, 1994; Dahanukar and Wharton, 1996). 

 

 

1.2.2 Gap genes 

The gap genes identified in Drosophila belong to the “class” of transcription factors that have 

been defined by their mutant phenotype, since disruption of this class of genes leads to gaps 

in the developing larvae which span several segments, extending anterior and posterior of 

their respective expression domain (Pankratz und Jäckle, 1993). Gap genes are expressed in 

overlapping domains along the anterior posterior axis of the embryo. They are amongst the 

earliest expressed zygotic genes and are thought to act via the formation of short range 

gradients to sub-divide the embryo into broad domains, encompassing the progenitors of 

several contiguous segments (Hülskamp und Tautz, 1991) and to regulate the expression of 

the next set of genes in the hierarchy, the pair-rule genes. The borders of their expression 

domains are further refined by interactions amongst each other (Kraut und Levine, 1991a; 

Kraut und Levine, 1991b; Rivera-Pomar und Jäckle, 1996). As mentioned above, they are 

regulated by maternal factors in a concentration and combination dependent manner and sub-

divide the embryo into anterior (head), central (thorax) and posterior (abdomen) regions. The 

concentration dependent activation of these genes has been well studied for the case of 

zygotic hb whose regulatory region contains several Bcd binding sites with different affinities, 

allowing transcriptional activation along the Bcd gradient in direct response to different 

protein concentrations (Driever and Nusslein-Volhard, 1989; Driever et al., 1989; Struhl et 

al., 1989). Another factor that determines where gap gene promoters can respond within the 

maternal gradients is how they interact with other transcription factors, since cooperative 

binding (Simpson-Brose et al., 1994) as well as cross-regulatory interactions among the gap 

genes have been shown to be involved in the refinement of their expression domains (Jäckle 

et al., 1986; Struhl et al., 1992). Well studied examples are the synergistic activation of hb by 

BCD and maternal HB (Simpson-Brose et al., 1994) as well as the mutual repression between 
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the posterior Kr and gt domains, which seems to be crucial for the proper refinement of their 

expression domains (Kraut and Levine, 1991b; Capovilla et al. 1992). Interestingly, it was 

found that some gap genes (e.g. hb) can serve both as repressor and activator depending on 

their concentration (Hülskamp et al., 1990; Struhl et al., 1992; Schulz and Tautz, 1994) an 

effect probably mediated by different binding sites and/or cofactors.  

 

 

1.2.3 Pair-rule genes 

The pair-rule genes form a diverse set of transcription factors, which further refine the broad 

domains, specified by the gap genes. They are the first genes to specify segmental regions, 

transforming the aperiodic pattern provided by the gap genes into a metameric pattern of 

double periodicity. Most pair-rule genes encode for transcription factors with predominantly 

repressive function, but also activators and factors, which can do both, are known. The 

majority of the pair-rule genes are initially expressed in broad gap gene like domains that 

refine into segmental stripes in every other segment during cellularization. In D.m. nine 

different pair-rule genes have been identified so far, including even-skipped (eve), runt (run), 

hairy (h) and odd-skipped (odd) which represent very different types of transcription factors. 

 

The pair-rule genes have been initially divided into two groups, the primary and the 

secondary ones, where primary ones regulate the latter, but not vice versa. Newer studies 

though, suggest a more complex relation (Gutjahr et al., 1993; Klingler and Gergen, 1993; Yu 

and Pick, 1995; Saulier-Le Drean et al., 1998). The activity of the pair-rule genes is crucial 

for the definition of pre-segmental units called para-segments which are of the same size and 

width as the resulting segments, but shifted anteriorly by approximately a quarter segment. In 

addition they specify the polarity within the segments by regulating the segment polarity 

genes, which are the last level in the hierarchy of the segmentation cascade. Other functions 

involve for example the regulation of the Hox genes, which are responsible for the 

specification of segment identities. 

 

The regulation of the pair-rule genes functions in a similar way as described for the gap 

genes. One of the best-characterized cases is the regulation of eve. Functional analysis, 

including expression analysis of reporter gene constructs harbouring mutated binding sites for 

certain factors and in vitro binding analysis, revealed that discrete stripe enhancer elements 

exist in the cis-regulatory region of at least some pair-rule genes. These enhancer elements are 
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comprised of clustered binding sites for suitable regulators of the segmentation cascade 

which, in concert, confine the expression of the respective stripes (Small et al., 1991, 1992; 

Simpson-Brose et al., 1994; Arnosti et al., 1996a). 

 

 

1.3 Tribolium segmentation  

In contrast to Drosophila, Tribolium exhibits a more ancestral type of embryogenesis, the so-

called “short germ mode” (Sander, 1976). Upon fertilization the nuclei divide synchronously 

under syncitial conditions and move to the periphery of the egg where additional 

asynchronous divisions take place and cellularization is believed to start. After the blastoderm 

stage most of the nuclei from the anterior dorsal site begin to move to the posterior ventral 

side of the egg to form the germ rudiment, whereas the few remaining nuclei dispersed along 

the anterior and dorsal region form the extra embryonic serosa. In contrast to Drosophila only 

the more anterior cephalic and the first thoracic segments are determined at this stage whereas 

the more posterior abdominal and likely the last thoracic segment are generated via a 

secondary growth process, where cells from a region in the most posterior part of the embryo, 

termed growth zone, are recruited to form segments in a sequential fashion under cellularized 

conditions by an yet unknown mechanism. The isolation and characterization of Drosophila 

segmentation gene orthologs spanning all hierarchical levels showed remarkable similarities 

in terms of expression and partially also function and regulation, but also fundamental 

differences (Schröder, 2003; Bucher et al., 2004; Cerny et al. 2005). To date several genes 

from maternal coordinate to segment polarity genes have been identified and their expression 

as well as function has been analysed in Tribolium, but their regulatory interactions remain to 

be solved. 

 

 

1.3.1 Tribolium maternal coordinate genes 

Early studies of the Tribolium segmentation mechanisms involved the identification of 

orthologs of the maternal coordinate genes cad and hb to address the question whether 

anterior gradients of maternally provided factors, like bcd in higher dipterans, can indeed 

fulfill a similar function in short germ developing insects. Astonishingly it was found that 

these orthologs do not only share similar expression patterns (Wolff et al., 1995), but are also 

regulated by maternal factors when transformed into Drosophila, suggesting a conservation of 

the anterior patterning system in Tribolium (Wolff et al., 1998). Despite this initial finding no 
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bcd homolog could be isolated from Tribolium castaneum. Recent analyses though suggest a 

possible role for otd and hb in fulfilling the task of anterior patterning in Tribolium (Schröder, 

2003). 

 

 

1.3.2 Tribolium gap genes 

As already described for Drosophila, gap gene products function as short-range gradients to 

sub-divide the embryo at the syncitial blastoderm stage into anterior, central and posterior 

regions, thus providing the positional information needed for the transition to the periodic 

pair-rule pattern, which in turn specifies all future segments at this stage, a prerequisite of 

long germ development. In contrast to this, the expression pattern of a Tribolium gt (Tc’gt) , 

for example, displays a similar expression pattern compared to its Drosophila ortholog, which 

is expressed in two primary domains, one in the head region and one in the trunk. While the 

anterior domain seems to be conserved between Tribolium and Drosophila in terms of 

position in the embryo, but also with respect to the expression domain of the Kr gene, which 

was found to negatively interact with both gt domains in D.m. (Capovilla et al., 1992; Kraut 

and Levine, 1991a), the posterior one is shifted anteriorly and arises within the Kr domain. 

Despite the similarities and differences in expression the most prominent distinction becomes 

evident in the phenotype, which, upon depletion of gt RNA by RNAi, displays segmentation 

defects which are not restricted to a limited domain as in Drosophila, but affect all thoracic 

and abdominal segments (Bucher et al., 2004). A similar and even more pronounced effect 

was described for the Kr ortholog of Tribolium (Tc’Kr) where pRNAi as well as an amorph 

mutant display segmentation defects, which are asymmetrically with respect to the Tc’Kr 

expression domain. Analysis of knock down embryos stained for the pair-rule gene Tribolium 

eve (Tc’eve) exhibit almost normal formation of the first five stripes, therefore suggesting no 

influence of Kr in defining specific stripe boundaries like in D.m., since most of these stripes 

form within or adjacent to the Kr domain. Beside the formation of these five stripes no further 

stripes or segments are formed due to breakdown of segmentation at this point (Cerny et al., 

2005). 

Despite the functional differences found between Tribolium and Drosophila in the use of 

these genes during the segmentation process, another role, namely the regulation of homeotic 

genes, appears to be conserved. The Tribolium gap gene orthologs analysed so far exhibit 

strong homeotic effects, a function which is also found for different gap genes in Drosophila 

(Harbecke and Janning 1989; Castelli-Gair 1998). 
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1.3.3 Tribolium pair-rule genes 

The identification of pair-rule gene orthologs in Tribolium, which are expressed in double 

segmental periodicity (Sommer and Tautz, 1993; Brown et al., 1994; Brown et al., 1997), and 

mutants displaying phenotypes reminiscent of Drosophila pair-rule mutants (Sulston and 

Anderson, 1996; Maderspacher et al., 1998) lead to the conclusion that the segmentation 

machinery of short and long germ development is conserved at the level of pair-rule genes. 

However, a recent analysis of the interactions of the Tribolium pair-rule genes eve, runt 

(Tc’run), h (Tc’h), odd (Tc’odd), paired (Tc’prd) and sloppy paired (Tc’slp) revealed a 

strikingly different mode of action compared to Drosophila (Choe et al., 2006). A circuit of 

three pair-rule orthologs, namely Tc’eve, Tc’run and Tc’odd, seem to regulate one another and 

their downstream targets Tc’prd and Tc’slp appear to define segments sequentially in double 

segment periodicity. Disruption of these genes by pRNAi produces truncated, almost 

asegmental phenotypes, while the latter display pair-rule phenotypes as known from 

Drosophila, where alternating segments are missing. Interestingly this mechanism seems to 

apply not only to the segments defined during the blastoderm stage, but also to the 

subsequently added posterior ones. In contrast to D.m. this main circuit is based on the pair-

rule genes eve and runt, but not h, which has been defined as “primary pair-rule gene” in D.m. 

as mentioned above. Instead, the D.m. secondary pair-rule gene ortholog odd seems to play a 

more important role during the segmentation of the Tribolium embryo. The exact mode of 

regulation of this gene circuit remains unknown and could be based on a repetitive circuit or 

clock like mechanism as well as a combination of both. 

 

 

1.4 The hairy gene 

The pair-rule gene hairy encodes a transcription factor of the basic helix-loop-helix (bHLH) 

family (Sasai et al., 1992). The bHLH domain mediates both dimerization as well as sequence 

specific DNA binding. In addition, an orange domain further specifies its dimerization 

capacities. Another conserved feature between h orthologes is the WRPW motif at the C-

terminus of the protein, which is needed for the interaction with its main co-repressor groucho 

(GRO) (Paroush et al., 1994; Fisher et al., 1996; Jimenez et al., 1997).  

In Drosophila, hairy (h) is expressed in broad domains along the a-p axis of the embryo 

during blastoderm stage, which refine into a small anterior cap and seven stripes of double 

segmental periodicity during cellularization. Its function and regulation as well as its own 

regulatory capacity have been well studied. Amorphic mutations of Dm`h result in the 
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deletion of the posterior part of every odd-numbered segment in the resulting larvae, thus 

reflecting a classical pair-rule phenotype (Jurgens et al., 1984) and analysis of transgenic 

embryos ectopically expressing h outside its natural boundaries suggests that segmental 

defects may be caused by the resulting misexpression of fushi-tarazu (ftz) and other pair-rule 

genes (Ish-Horowicz and Pinchin, 1987). Besides its function in embryonic development it 

has also been reported to be involved in processes during larval and adult development where 

it participates , for example, in the formation of sensilla (Blair et al., 1992) and microchaete 

(Ingham et al., 1985, Renaud and Simpson, 2002). 

During segmentation h was found to negatively regulate the spatial expression of the pair-rule 

genes runt (Klingler and Gergen, 1993), ftz (Carroll et al., 1988; Rushlow et al., 1989; Tsai 

and Gergen, 1995 and paired (prd) (Baumgartner and Noll, 1990; Gutjahr et al., 1993), hence 

it was classified as primary pair-rule gene. 

The regulation of hairy during the segmentation of the Drosophila embryo has been 

systematically studied. Similar to the already described regulation of the pair-rule gene eve, 

stripe specific enhancer elements have been identified in the regulatory region of the hairy 

gene which respond to different concentration and combinations of maternal coordinate-, gap- 

and pair-rule gene products, resulting in the metameric seven stripe pattern (Pankratz et al., 

1990; Howard and Struhl, 1990). A well-characterized example for this type of regulation is 

the activation of the h stripe 6 element by CAD and KNI (Hader et al., 1998) and its 

repression by KR, HB and TLL (Pankratz et al., 1990; Riddihough und Ish-Horowicz, 1991; 

Langeland et al., 1994), which, in concert, define the expression boundaries of this stripe. 

Another example is the establishment of h stripe 5, which is defined by negative regulation 

through Kr and gt, although other factors are expected to be involved, too (Langeland et al., 

1994). 

hairy orthologs are also common in vertebrates where they are involved in the generation of 

the so called somites, the vertebrate analogs to the segmental units of insects, although 

segmentation does not proceed in the ectoderm like in insects, but the mesoderm. Analysis of 

this process revealed a fundamentally different regulatory mode for the generation of somites. 

Reflecting segmentation in a cellular environment, the process is based on cell signalling 

factors of the Notch/Delta and other signalling pathways, which regulate oscillating waves of 

expression of several genes, including some of the vertebrate hairy orthologs, the her genes, 

in the so called pre-somitic mesoderm (psm) (reviewed in Rida et al., 2004; Giudicelli and 

Lewis, 2004). Despite their role in segmentation, genes of this class participate in a multitude 



                                                                                                                                   Introduction 

 15

of other developmental processes during the development of the vertebrate embryo, for 

example neurogenesis (Gratton et al., 2003; Ninkovic et al., 2005). 

Intriguingly, a hairy ortholog is also expressed in a segmental fashion during segmentation in 

the spider Cupiennius salei. Moreover, functional analysis of the Notch/Delta pathway by 

RNAi shows strong disruption of segment formation and the pattern of the spider hairy 

homolog, an effect highly reminiscent of the situation found in vertebrates (Stollewerk et al., 

2003).  

 

 

1.5 Aims of this project 

All arthropod embryos pass through a segmented intermediate developmental stage that at the 

morphological level seems to be remarkably conserved. Therefore this phase was termed the 

‘phylotypic stage’ (Sander, 1976). However, the developmental events before and after this 

stage are much less conserved. 

The ontogeny of Drosophila melanogaster is by far the best-understood model for “long 

germ” developing insects. The most remarkable feature of its development is the specification 

of all segments during the syncitial blastoderm stage by a mechanism that relies on free 

diffusion of maternally provided and zygotic transcription factors between the uncellularized 

nuclei of the early blastoderm. In contrast to this, most insects undergo a short germ 

development, where only few anterior segments are specified at this stage. Although the 

ontogeny of several insects from different orders has been analysed so far, it still remains 

unclear if the principle of morphogenetic gradients, as discovered in Drosophila, also applies 

for the generation of the post-blastoderm derived segments of short germ insects and how this 

system might have evolved. One of the most promising model organisms to tackle this 

question is, undoubtedly, Tribolium castaneum. Beside its well-described ontogeny it offers a 

variety of genetic tools like RNAi, transformation systems, cDNA-, genomic-libraries and an 

almost complete genome sequence to analyse and compare the process of segmentation and 

the underlying regulator interactions on a molecular level. Another prerequisite for this 

approach is its more basal type of development, which is found in many insect orders of both 

holo- and hemimetabolous insects.  

 

The regulation of pair-rule patterning is of particular importance for the understanding of the 

evolutionary changes in the regulatory cascade leading to the phylotypic stage in short and 

long germ developing insects, since these would most likely be reflected at this level. In this 
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thesis I analyse the function of the Tribolium pair-rule gene ortholog Tc’h using a pRNAi 

approach to knockdown gene function and compare the phenotype as well as the regulatory 

interactions discovered, to its Drosophila ortholog. Furthermore I analyse the regulatory 

conservation of these genes in trans-species experiments using reporter gene constructs in 

both species, in order to infer the degree of evolutionary conservation and divergence in 

function and regulation between these species. Based on the results obtained in this study I 

hypothesize possible evolutionary scenarios that can lead to the evolution of long germ 

development, but also to the high diversity of intermediate developmental modes observed in 

different insect orders. 
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2. Materials and methods 

 

2.1 General methods and techniques 

General methods, procedures and recipes are based on standard protocols (Sambrooks et al., 

1989) if not indicated otherwise. 

 

2.2 Beetle handling and stock keeping 

Beetle stocks were essentially kept as described by Berghammer, 1999a and information on 

development, biology and life cycle of Tribolium and was taken from Sokoloff (Sokoloff, 

1974). All experiments were performed using the wild type strain “San Bernadino”, provided 

by Dick Beeman, Kansas State University, if not indicated otherwise. Flour was kept at 65°C 

over night to prevent parasitic infections. 

 

2.3 Embryo collection and fixation 

Eggs were collected from 0-48h at 30°C to gather all developmental stages before dorsal 

closure. The embryos were rinsed with tapwater, mildly dechorionated for 1.5min. in 50% 

bleach and rinsed with tapwater afterwards to remove residual bleach. Fixation was performed 

in scintillation vials containing 3ml PEMS (0,1 M Pipes, 2mM MgSO4, 1mM EDTA, pH 

6,9), 6ml heptane and 4% formaldehyd on a shaking platform for 25min.. The water phase 

was then substituted for 8ml methanol and the vial vigorously shaken for 30sec., resulting in 

devitellinization of the embryos by methanol shock. Undevitellinized embryos were 

mechanically devitellinized by squeezing them through a syringe using a 19G needle. 

Embryos were kept at –20°C in methanol for subsequent analysis. 

 

2.4 Parental RNAi 

Parental RNAi experiments were performed according to Bucher et al. (2002) with slight 

modifications. Approximatly 200 female pupae were fixed to microscope slides using double 

sided tape (Scotch 665). Pupae were taken of the slides after injection and transferred to 

“culture vials” containing full grain flour in order to facilitate eclosion. The first eggs were 

collected approx. 5 days after injection and incubated at 33°C for 4 days to allow full 

development in order to assess the amount and strength of phenocopies.  Eggs were collected 

every 48h and fixed for subsequent analysis by in situ hybridization. Once a week a 24h 

collection was allowed to fully develop and cuticle preparations were performed in Hoyer´s 
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medium according to standard procedures (Berghammer et al. 1999a) in order to monitor the 

phenotype/phenocopies over time. Double stranded RNA was synthesized from PCR 

templates using the T7 MEGAscript RNAi Kit (Ambion) without additional annealing steps 

and injected at a concentration of 2µg/µl in H2O with 10% Phenol red. The injection solution 

was thoroughly centrifuged at 13.000g before injection to pellet any particles and reduce 

clogging of the needle. 

 

 

2.5 Histology:  

 
2.5.1 in situ hybridization 

Whole mount in situ hybridizations were performed according to standard protocols (Tautz 

and Pfeifle, 1989; Klingler and Gergen, 1993) with slight modifications. For double stainings 

anti sense probes were generated labled with digoxigenin and fluorescein respectively using 

Roche chemicals and detected with appropriate antibodies from Roche. For double stainings 

with two alkaline phosphatase substrates (NBT/BCIP; INT/BCIP) detection was performed 

subsequently. In this case a heat inactivation step of 20 min. at 65°C was introduced after the 

first staining to inactivate the first antibody.  To enhance sensitivity of alkaline phosphatase 

stainings polyvinyl alcohol was added to the staining solution at a final concentration of 5%. 

In cases of combined chromogenic and fluorescent stainings the alkaline phosphatase staining 

was performed first as described above to reduce artefacts. Fluorescent stainings were 

performed subsequently using the Alexa488 Tyramide Signal Amplification Kit from 

Molecular probes according to the manual provided by the manufacturer.  

 

2.5.2 Immunological staining 

Immunological staining was performed as described by MacDonald and Struhl (MacDonald 

and Struhl, 1986) with slight modifications. For the analysis of LacZ protein distribution in 

the transgenic lines, an additional signal amplification step, using a secondary biotinylated 

antibody and the Vectastatin ABC HRP KIT (Vector Labs), was introduced to the protocol. 

For apoptosis detection in the hairy pRNAi embryos using the anti cleaved caspase3 (Cell 

Signalling) amplifications steps were omitted and staining was performed using a secondary 

alkaline phosphatase coupled antibody. 
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2.5.3 plcZSV40- Tc´h-NcoINcoI1.5 

The vector plcZSV40- Tc´h-NcoINcoI1.5 is a modified pEGFP vector (Clontech) and was 

used to build up the inserts of the transformation vectors. It contains a 1.5kb 5´ fragment from 

the Tribolium castaneum hairy gene, starting from the ATG, which was fused to a LacZ 

coding region and a SV40 terminator (see also Eckert et al. 2004). Regulatory elements were 

cloned upstream of the Tribolium hairy promotor using suitable restriction enzymes. 

 

pLacZ-SV40-h-T.c. NN1.5
9266 bp

AmpR

LacZSV40

T.c. h 1.5kb

SV40

PstI (2996)

Spe I (2929)

AscI (2894)

AscI (9027)

 
 

2.5.4 plcZSV40- Tc´h-NcoINcoI1.5 Dm3-4 

A fragment of approximately 1kb containing the regulatory element of Drosophila 

melanogaster hairy stripe 3-4 was amplified via PCR using Roche High fidelity Taq 

polymerase to minimize amplification errors and cloned between the unique PstI/SpeI sites of 

plcZSV40- Tc´h-NcoINcoI1.5. 

Primers used for PCR:  Dm-h-3-4fwd: tactagtaggcctgtccttgagccactg  

Dm-h-3-4rev: gtcctgcagcgtagccctcattatcacttc 

pLacZ-SV40-h-NN1,5-Dm3+4
10243 bp

AmpR

D.m. h 3-4

LacZSV40

T.c. h 1,5kb

SV40

PstI (3973)

Spe I (2929)

AscI (2894)

AscI (10004)
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2.5.5 plcZSV40- Tc´h-NcoINcoI1.5 Dm5 

A fragment of approximately 400bp containing the regulatory element of Drosophila 

melanogaster hairy stripe 5 was amplified via PCR (see above) and cloned between the 

unique SpeI/PstI sites of plcZSV40- Tc´h-NcoINcoI1.5. 

Primers used for PCR: Dm-h-5fwd: atactagttaatcggccgaaagaggagag 

Dm-h-5 rev:  tactgcaggatcggggaatcgggaaaga 

 

pLacZ-SV40-h-NN1,4-Dm5
9607 bp

AmpR

D.m. h 5
LacZSV40

T.c. h 1.5kb

SV40

PstI (3337)

Spe I (2929)

AscI (2894)

AscI (9368)

 

 

2.5.6 Transformation vectors 

Reporter gene constructs were built based on the vector pB3xP3-EGFPafm (Berghammer et 

al., 1999b; Horn and Wimmer, 2000). Inserts containing the reporter gene LacZ as well as 

5`regulatory elements were inserted as a cassette behind the GFP coding region into the 

unique AscI restriction site. 

 

2.5.7 Genetic transformation of Drosophila 

Transgenic flies were essentially generated as described by Rubin and Spradling (Rubin and 

Spradling, 1982). yw-fly eggs were collected on apple juice agar plates for 30m. at 25°C, 

mildly dechorionated in 50% bleach for 30sec. and rinsed with tap water for 2 min..  The 

embryos were lined up on microscope slides with double sided tape (Scotch 665) with the 

posterior pole towards the edge of the slide and covered with Halo Carbon oil. The injection 

solution (10% phenol red, 500ng/µl respective piggyBac-vector and 300ng/µl helper plasmid 

pBachsp in H2O) was applied into the posterior pole of the pre-blastodermal embryos using 

standard a microscope and an Eppendorf FemtoJet injection device set to manual in order to 

optimise the injection volume. The injection procedure was performed at 18°C whenever 



                                                                                                                    Materials & Methods 

 21

possible to keep the developmental rate low. The injected embryos were kept in a closed 

plastic box with moist paper towels to prevent desiccation. Hatched larvae were collected for 

2 days, reared to adulthood and backcrossed to yw-flies. The progeny of those flies were 

screened for GFP expression in the eyes. 

 

2.5.8 Genetic transformation of Tribolium 

Eggs from the eye mutant strain Tribolium castaneum Pearl were collected for 1h at 30°C and 

further incubated for 1h at 25°C to increase survival rate. The still pre-blastodermal eggs were 

rinsed with tap water and fixed to microscopic slides with the posterior pole towards the edge 

of the slide using a flour/water mixture. Injections, using the same solution as for the 

generation of transgenic flies, were performed at 25°C in the same fashion. Injected eggs were 

kept in a closed container with wet paper towels at 30°C for 2 days after which the lid was 

removed to allow desiccation.  Hatched larvae were collected 3-4 days post injection and 

reared on full grain flour to pupal stage. Pupae were then sexed and backcrossed with Pearl 

beetles of the respective sex. Progeny of those beetles were screened for GFP fluorescence in 

the eyes to identify transgenic animals. 

 

2.5.9 Crosses of transgenic and mutant lines 

To test the effect of gap and pair-rule genes on the expression of the Tc’h constructs we 

crossed mutant lines with the transgenic lines T2M2 and T2M3 (generated by Ernst Wimmer) 

respectively, depending on the chromosomal localization of the mutant gene. In order to 

generate the respective lines, virgin females displaying the appropriate balancer phenotype 

were selected and mated with transgenic males of a suitable reporter line. Except for the 

crosses performed with the Dm’gt and Dm’run mutant lines, which could be analysed without 

subsequent crosses due to the localization of the mutation on the first chromosome, we 

selected virgin females and males of these crosses who lacked the balancer phenotype of both 

the transgenic and mutant line and crossed them with each other. The resulting progeny was 

thus expected to contain 25% homozygous mutants according to the experimental design. 
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Mutant strains used: 

 

Hunchback: 

BL-1755 hb12 st1 e1/TM3, Sb1  

 

Giant: 

BL-1529      y[1] sc[1] gt[X11]/FM6  

 

Knirps: 

BL-3332      kni[9] pum[13]/TM3, Ser[1] 

 

Even-skipped: 

BL-299      b[1] pr[1] eve[3]/CyO  

 

Runt: 

BL-4496      y[1] w[1] f[1] run[3]/FM7a/Dp(1;Y)y[+]mal[102] 

 

Krüppel: 

Kr2/SM1 kind donation from Michael Hoch, University of Bonn 
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 Cf-h

 Dm-h

 Pc-h

 Tc-h

 At-h

 Cs-h

 Dm-dpn

 Tc-h3

 Mm-hes1

 Mm-HES-6

 Tc-h1

 Tc-h2

 Tc-h4

 Dr-h3

 Dr-h5

 Mm-hes7

 Dr-h7

 Mm-hes2

 Dr-h4

 Dr-h2

 Dr-h

 Mm-hes5

58

100

23

84

12

51

4

9

49

60

62

64

31

51

73

40

26

25

26

0.1

3. Results 
 

3.1 Phylogenetic analysis of hairy 

The Tribolium hairy ortholog isolated by Sommer and Tautz (Sommer and Tautz, 1993) 

shows high similarity to its Drosophila orthologs in terms of amino acid sequence and 

expression pattern. To test whether it is truly the closest ortholog of the Drosophila hairy 

gene and to analyse if duplications took place in the lineage towards Tribolium, as it is known 

from vertebrates (Umbhauer et al., 2001; Gajewski and Voolstra, 2002), the recently available 

genome sequence was used to screen the Tribolium genome for hairy like genes, using the 

complete Drosophila hairy amino acid sequence. A total of four additional sequences with 

modest to high similarity have been revealed in this screen. Phylogenetic comparison of these 

sequences with orthologs known from arthropods and vertebrates confirms that the hairy gene 

identified first, indeed shares the highest similarity to other hairy orthologs isolated from 

insects and other arthropods. None of the other hairy like genes found during the screen 

showed expression during early segmentation except for Tc-h-3, which could be classified as 

a Drosophila deadpan ortholog. 

 

Figure 1 phylogenetic comparison of Tribolium hairy sequences 

Neighbor-joining distance tree using full aa sequences from different hairy  

Orthologs from metazoan species, except Dm-dpn, which is a Drosophila  

deadpan homolog.. Sequences were analyzed using MEGA 3 and 1000  

replicates were used for bootstrap analysis. Species names are as  

follows. Cf-h (Coboldia fuscipes hairy), Dm-h (Drosophila 
melanogaster hairy), Pc-h (Platypeza consobrina hairy),  

Tc-h (Tribolium castaneum hairy), At-h (Achaearanea 
tepidariorum hairy), Cs-h (Cupiennius salei hairy), 

Dm-dpn (Drosophila melanogaster deadpan), 

Mm-hes1 (Mus musculus hes1), Mm-HES6  

(Mus musculus hes6), Dr-h3 (Danio rerio her3),  

Dr-h5 (Danio rerio her5),Mm-hes7 (Mus musculus  

hes7), Dr-h7 (Danio rerio her7), Mm-hes2  

(Mus musculus hes2), Dr-h4 (Danio rerio her4),  

Dr-h2 (Danio rerio her2),Dr-h (Danio rerio her1), 
Mm-hes5 (Mus musculus hes5). Accsesion numbers  

provided in supplemental material Figure 1 
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3.2 Expression of Tribolium hairy 

Expression of Tc´h starts in a broad, circumferential stripe of expression positioned in the 

center of the early blastoderm (Figure 2A). In contrast to the direct appearance of the first 

stripe in the center of the blastoderm, expression of the second stripe starts as a posterior cap 

which slowly condenses at the anterior border and narrows down to become stripe #2, while 

expression retracts from the posterior pole at the same time. Simultaneously, the first stripe 

narrows down to about a third of its initial width. The third stripe forms shortly before the 

onset of posterior pit formation in a similar way as the second, starting as a cap in the 

posterior, but in contrast to the second stripe a condensation of the stripe at the anterior border 

of this cap cannot be observed. Instead, the stripe seems to form during the invagination of the 

posterior pole, i.e. the formation of the posterior pit and the beginning of germband 

elongation (not shown). At this stage expression can be detected in cells lining the posterior 

pit, but not in the center of the invagination. As soon as the germband rudiment is formed, 

expression of Tc´h is also detectable along the ventral midline and is maintained there 

throughout the whole segmentation process. The last five stripes also form sequentially, in a 

fashion comparable to the establishment of Tc´h stripe #2. In figure 2 (F-L) the formation of 

the stripes #3-#5 is depicted in more detail. The germband in figure 2 (F) shows the 

expression of stripe #1-#3, note that expression is not detected at the most posterior end of the 

embryo. In the following embryo the posterior border of stripe #3 is completely refined while 

expression in the growth zone covers the entire posterior part of the embryo. The following 

three pictures illustrate the formation of stripe #4 in more detail. In figure 2 (H-J) one can see 

how the expression retracts in the most posterior part of the growth zone while it condenses at 

the anterior border at the same time, thus forming stripe #4. Although expression at the 

posterior border seems to be highly dynamic the anterior border is always clearly refined. In 

figure 2 (K) the cycle starts all over, leading to the formation of stripe #5. The remaining 

three stripes are formed in an identical fashion. Shortly after the formation of the stripes in the 

growth zone, they split into segmental expression patterns, which persist for some time. 

Besides the expression of Tc’h in the double and later in the segmental fashion it is also 

expressed along the ventral midline throughout the segmentation process (Figure 2 F-P). 

During germband elongation Tc’h starts to be expressed in the developing nervous system in a 

dot like fashion in the lateral region of the embryo, headlobes and later in the growing 

appendages (Figure 2 M-R). 
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Figure 2  
Expression of Tc’h in wild type. Blastoderm satges are aligned with the anterior to the left and the ventral side 
up, except for (B) which shows a ventral view. Germband stages are aligned with anterior to the left and 
numbers indicate the respective stripes. 
(A-D) Expression during blastoderm stage. Expression of Tc´h starts in a broad, circumferential stripe of 
expression positioned in the centre of the early blastoderm (A). (B) Expression of the second stripe starts as a 
posterior cap which slowly condenses at the anterior border and narrows down to become stripe #2 while 
expression retracts from the posterior pole at the same time (C-D). In (E) gastrulation begins and all three 
blastodermal stripes are expressed. (F-L) Shows the formation of the stripes #3-#5 in detail. The germband in (F) 
shows the expression of stripe #1-#3, note that expression is not detected at the most posterior end of the 
embryo. In (G) the posterior border of stripe #3 is completely refined while expression in the growth zone covers 
the entire posterior part of the embryo. In (H-J) expression retracts in the most posterior part of the growth zone 
while condensing at the anterior border at the same time, forming stripe #4. Note that the expression at the 
posterior border seems to be highly dynamic while the anterior border is always clearly refined. In (K) the cycle 
starts all over leading to the formation of stripe #5. (L) The remaining three stripes are formed in an identical 
fashion. (M-R) In older stages expression is detectable in the presumptive nervous system in form of spots in the 
lateral regions of the embryo and in the headlobes. 
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3.3 Tc’h is not expressed in a wave 

The way the stripes and in particular the posterior ones are formed, raises the question by 

which mechanism the observed retraction of expression in the posterior part of the growth 

zone could be achieved. One of the possibilities to achieve such a pattern would be a cell 

signalling pathway as it is known from vertebrate segmentation, where stripes are generated 

by an oscillatory mechanism based on cell signalling pathways, which regulate the cyclic 

expression of target genes that moves over the unsegmented region in form of an expression 

wave. Intuitively such a mechanism must imply fast degradation of specific transcripts in 

order to form stripes like seen in zebrafish (Gajewski et al., 2003; Dill and Amacher, 2005). 

Another possibility to achieve such a dynamic pattern would be a mechanism based on cell 

movement where cells expressing hairy move towards the anterior leaving cells with no or 

low expression behind.  

Based on the assumption that an expression wave, as it is known from vertebrate 

segmentation, should lead to signals in all cells which expressed the gene at some time point 

if no specific transcript degradation is included, as is seen in comparable experiments in the 

zebrafish embryo (Gajewski et al., 2003), I used a Tribolium line carrying the reporter gene 

construct with the regulatory region necessary for the expression of all eight Tc´h stripes 

fused to the marker gene LacZ without endogenous UTRs (Eckert et al., 2004) as a marker. 

Comparison of the expression of the construct, on both mRNA and protein level, with the 

endogenous expression pattern should allow to visualize a mechanism based on an expression 

wave due to the higher stability of the reporter gene transcript and protein. In case of an 

expression wave, a fusion of the stripes emanating from the growth zone is expected, caused 

by the remaining signal of the construct in the cells, which later reside in the interstripe 

region. In contrast to this, other mechanisms like cell movement should yield the same pattern 

as obtained in the staining of the endogenous transcripts. Comparison of the in situ staining 

for Tc´h and lacZ indeed show a higher stability of the reporter gene transcript. In figure 3 (L) 

the Tc´h stripe #2 is not detected anymore and stripe #3 is significantly weaker, in contrast to 

this both stripes are still well detectable in the lacZ staining (Figure 3 B and G). The 

immunological staining of LacZ protein resembles the picture obtained on mRNA level 

Although both, the reporter gene transcripts and the resulting protein, seem to be more stable 

than the endogenous Tc`h transcripts, no fusion of stripes could be detected as expected in the 

case of an expression wave. Instead the stripes, including the last formed one, appear well 

separated and refined on both mRNA and protein level (Figure 3 B-E and F-J), i.e. cells that 

lack staining have at no time expressed the reporter gene. The possibility of a higher turn over 
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rate of both mRNA and protein during segmentation seems highly unlikely since modified 

constructs using only different 5’ sequences and no changes with respect to the reporter gene 

and UTR’s do indeed show expression in the inter stripe region (see figure 18 ).  

 

 

 

Figure 3 
(A-E) Expression pattern of the Tc’h-lacZ reporter gene construct KN8.8 (Eckert et al., 2004). The construct 
drives the expression of eight stripes, faithfully mimicking the wild-type expression pattern. (F-J) shows an 
antibody staining for LacZ in the respective reporter line. Note, both the lacZ in situ (A-E) as well as the 
antibody staining (F-J) show formation of precise stripes (black arrows) with no staining in the inter stripe region 
(white arrows), i.e. no fusions are detected as expected in the case of an expression wave. (K-O) Wild-type Tc’h 
staining in comparable stages. Comparison of the expression in stripe #2 and #3 in (B, G and L) shows higher 
stability of the lacZ transcripts and protein compared to the endogenous hairy transcripts. 
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3.4 Functional analysis of the gene Tc’hairy by pRNAi 

The classical pair-rule phenotype known from Drosophila, as previously described, is defined 

by a complete loss or defect of alternating segments, thus reflecting the double segmental 

expression pattern of this group of genes. In order to analyse if the expression pattern of Tc´h 

is correlated with a similar function I performed knock down experiments via parental RNAi 

(Bucher et al., 2002) and analysed the phenotype of the resulting larvae. Injection of dsRNA, 

as high as 2 µg/µl, yielded the strongest phenotype on cuticle level. Cuticles of the progeny of 

such treated females exhibit segmentation defects in the anterior part of the larval body, 

ranging from loss of the mandibular and labial segments in weak up to deletion of all 

segments anterior to the third thoracic segment (Figure 4) in the strongest phenotype. 

Intermediate phenotypes display strong defects in gnathal segments including either complete 

or partial loss of gnathal appendages like labrum, mandible, maxilla and labium. Furthermore, 

left right asymmetry of this phenotype was observed frequently, where appendages were lost, 

malformed or strongly reduced on one side of the respective segment, but not the other 

without any side preference. Thus the phenotype observed in Tc´h knockdowns differs 

substantially from the phenotype observed in Drosophila hairy mutants. 

 

Analysis of the phenotypes obtained by injection of lower and higher dsRNA concentrations 

did correlate well with the phenotype and no qualitative differences could be observed apart 

of a decrease or increase of stronger phenotypes and total amount of phenocopies. 
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Figure 4 
(A) wild-type cuticle for comparison, lateral view. (B-E) Phenotypic series of cuticles obtained in the Tc’h 
pRNAi experiment, lateral view. In (B) the distance between the antennae and the maxillae is strongly reduced, 
suggesting that the mandibular segment is missing (see also magnification in I). (C-E) show successively 
stronger phenotypes were the entire head region is missing (C) and thoracic segments are affected (D-E). (F-G) 
show magnifications of the head region in wild-type (F) and intermediate Tc’h phenotypes (G) in a ventral view. 
In (G) no mandibular structures are visible and the labium is strongly reduced (white arrow). (H-K) 
Magnifications of the head region of a wild-type (H) and three Tc’h pRNAi cuticles (I-K) in a lateral view. (I) 
shows a magnification of the same phenotype as seen in (B), note the distance between the antennae and the 
maxilla which lay directly adjacent in contrast to the wild-type situation (H). In (J) the labrum and the mandibles 
are absent whereas in (K) the labrum is present, but an antennae is formed only on one side, the maxillas are both 
present. Frequencies of phenotypes obtained with 2 µg/µl Tc’h dsRNA (B) 45%; (I-K) 29%; (C) 7%; (D) 3%; 
(E) 2%; 16% wild-type, n=114. 
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3.5 Does Tc’hairy function as anterior organizer? 

Due to the observed deletion of all cephalic and the first two thoracic segments in the 

strongest phenotype, I asked if Tc’h acts as a main organizer of anterior segment formation 

during the development of the Tribolium embryo. Furthermore the high number of larvae 

displaying specific deletion of the mandibular and labial segments, which correspond to the 

first and second hairy stripe, suggest a possible pair-rule function of hairy for blastoderm 

derived segments. To analyse these possibilities in more detail, the expression of the segment 

polarity gene gooseberry (gsb), which is expressed in the posterior region of the already 

determined segments, was examined in the respective embryos by in situ hybridisation 

(Figure 5). In weaker phenotypes the expression pattern of Tc’gsb shows significant changes 

in expression for the stripes corresponding to the mandibular and labial segments, which are 

either reduced, malformed or absent (Figure 5 F and G). In stronger phenotypes also the 

maxillary stripe is affected, but the effects on this stripe can only be observed at later stages 

i.e. after the establishment of the segment, suggesting a secondary loss of expression during 

germband elongation. Intriguingly in some cases expression of Tc’gsb can be detected in 

these segments although no respective appendage is formed (Figure 5 M). Compared to the 

wild type, embryos showing stronger defects display retarded head development (Figure 5 I 

and J), which leads to a very narrow connection of the head and trunk region with ongoing 

development (Figure 5M). Additionally, a deep groove can be detected along the ventral 

midline (Figure 6 I), where Tc’h is expressed in wild type embryos.  

The loss of already initiated expression in these segments indicates that Tc’h may be crucial 

for the maintenance of Tc’gsb expression in the segments where it is not expressed. The 

observed retardation of development could thus be a consequence of a general “maintenance” 

function of Tc’h or a function in the establishment of a so far unknown organizer in this 

region. In no case did we detect a complete loss of all anterior segments before the end of 

segmentation, suggesting that the phenotype observed on cuticle level is caused in a 

secondary, post segmentation process. It is interesting to note that Tc’delta, one of the 

members of the Notch signalling pathway, is also strongly expressed in form of a stripe in the 

mandibular segment (Figure 7) and a regulatory connection of this pathway and hairy 

orthologues is found in a multitude of species and processes, including oogenesis (reviewed in 

Roth, 2001); neurogenesis and the segmentation of the vertebrate and spider embryo as 

mentioned before (Fisher and Caudy, 1998; Davis and Turner, 2001; Stollenwerk et al., 

2003).  
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Figure 5 
(A-E) Tc’gsb expression in wild-type. Tc’gsb is expressed in the posterior part of the specified segments and 
serves as segmental marker. The positions of the mandibular and labial segments are marked with white arrows 
in (A ) and (B). (F-J) Expression of Tc’gsb in embryos depleted for Tc’h by pRNAi. The embryos depicted in (F 
and G) show disruption of Tc’gsb expression in the mandibular and labial segments (white arrows, compare to A 
and B). In older stages the stripe corresponding to the maxillary segment is also affected (H-J), suggesting a 
secondary loss of this stripe since a loss of this stripe at early stages was never observed. Furthermore, head 
development appears to be significantly retarded (compare I-J with D and E). (K-N) Blow up of the head region 
in (K) wild-type and (L-N) Tc’h pRNAi. In (L) the stripe in the mandibular segment is not detected whereas the 
stripes corresponding to the maxillary and labial segments are only formed on one side of the embryo. The 
embryo shown in (M) shows the formation of all gnathal Tc’gsb stripes, but no mandibular structures are 
detected whereas the maxilla and the labium are formed normally. (N) The embryo shows no stripe 
corresponding to the mandibular segment, but maxilla and labium are formed as in wild-type. Segment identities 
abbreviated as follows: (md), mandible; (mx), maxilla; (lb), labium; (T1-T3), thoracic segments. 
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3.6 Depletion of Tc’h leads to induction of apoptosis in anterior segments 

The fact that no complete loss of cephalic segments could be observed before germband 

retraction, indicated an additional function for Tc’h during development. I therefore 

performed a staining for apoptosis in order to determine if segments and or gnathal structures 

are lost in a secondary process. Staining with an antibody directed against the activated form 

of caspase3 (see Materials and Methods for details), which allows the detection of apoptosis 

induction at early stages, shows indeed initiation of apoptosis in cells of the respective region 

(Figure 6 F-G). Interestingly no apoptosis was detected along the ventral midline, although 

this is clearly seen in wild type embryos (Figure 6 C and D). Instead, the ventral midline 

appears deeper as if cells were missing (Figure 6 I), suggesting a role for Tc’h in the 

specification of these cells. A comparable function is not known for Drosophila hairy, but 

interestingly a role for the specification of vertebrate midline structures, derived from the 

Spemann-Mangold organizer and its respective counterpart the dorsal shield, was found for 

different hairy orthologs in the zebrafish Danio rerio as well as the frog Xenopus laevis 

(Latimer et al., 2005; Murato et al., 2006) where the corresponding hairy orthologs function 

as mediators of the Notch signalling  

Furthermore this pathway is also linked with the cell cycle via a hairy ortholog and can lead 

to apoptosis induction if components are altered (Sieger et al., 2003; Zweidler-McKay et al., 

2005; Murata et al., 2005; Georgia et al., 2006; Fan et al., 2006). We therefore analysed the 

function of Tc’delta by parental as well as embryonic RNAi.  
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Figure 6 
Antibody staining against cleaved caspase3, indicating induction of apoptosis, in wild-type (A and B, E and H) 
and in Tc’h pRNAi (C and D, F, G and I). In wild-type embryos apoptosis is only detected in a few cells in 
young stages (A). In older stages apoptotic cells are found in the headlobes, the ventral midline and a few 
dispersed cells (B). Tc’h depleted embryos in contrast show patches of strong staining in the gnathal region as 
well the first thoracic segment (C-D, F-G). Furthermore, strong disruption of the segments fusing the headlobes 
to the trunk region is seen, probably causing the detachment of all anterior segments during further development 
(F-G, black arrows). Note that no stained cells are detected along the ventral midline. Comparison of the 
morphology of the head region between the knockdown and the wild-type embryos show significant retardation 
of head development in the Tc’h knockdown (compare E and F). (H and I) Magnifications of the posterior 
segments of the embryos depicted in (B and D). The midline appears wider and deeper in Tc’h knockdown 
embryos (black arrow) and large cells are found lining the border to the lateral regions of the embryo (white 
arrow, compare H and I). Segment identities abbreviated as follows: mandible, (md); maxilla. (mx); labium, (lb); 
T1-T3, thoracic segments. 
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3.7 Functional analysis of Tc’delta 

Injection of female pupae with double stranded Tc’delta RNA resulted in sterility and only 

few eggs were laid starting two weeks post injection, indicating a possible conservation of the 

role of this pathway during oogenesis (reviewd in Roth, 2001). Embryos injected with 

Tc’delta dsRNA indeed display severe defects in anterior segments, but the number of 

embryos developing a cuticle was very low in these experiments, suggesting high lethality for 

Tc’delta depletion. The few embryos that developed a cuticle displayed strong defects in the 

head region, where gnathal appendages were malformed or completely absent (Figure 7). In 

some cases appendages were only affected on one side of the respective segment, reminiscent 

of the phenotype observed in the Tc’h knockdowns.  

 

In contrast to the pRNAi experiments with Tc’h, no specific loss of only the mandibular and 

labial segment was observed and comparison of the position of the antennae and the maxillas 

suggest that the mandibular segment is still present, even if the mandibles themselves are 

missing (compare figure 4 I and 7 O), suggesting no involvement of Tc’delta in the 

segmentation process of anterior segments. This is further supported by the fact that at least in 

some cases mandibular structures could also be observed in strong phenotypes. 

Coincident with the function of this pathway during leg growth in Drosophila (Rauskolb and 

Irvine, 1999), defects in the growth of the larval leg can also be observed in Tc’delta 

knockdowns, i.e. the legs are shorter compared to the wild type, although the corresponding 

segments themselves appear to be formed correctly.  

 

Although the embryos examined in this experiments exhibit posterior segmentation defects, 

analysis of germbands depleted for Tc’Su(H) and stained for the segmental marker Tc’gsb 

suggest that the patterning process itself still seems to be functioning in these knockdowns 

(Aranda and Souza, unpublished). Even though a direct connection between the phenotypes 

observed in the experiment with Tc’h and Tc’delta can not be proven by these experiments, a 

regulatory connection appears possible, given that both Tc’h and Tc’delta are strongly 

expressed in the mandibular segment and that hairy orthologues are the main mediators of the 

Notch signalling pathway in a multitude of processes in both vertebrates and invertebrates 

(reviewed in Davis and Turner, 2001). Thus the secondary function of Tc’h evident in these 

experiments might be caused via the Notch/Delta pathway during post segmentation 

processes. 
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Figure 7 
Expression of Tc’delta at different developmental stages (A-I). Tc’delta is first detected in a ventral stripe along 
the A-P axis of the blastoderm (A, lateral view; B, ventral view). In young germbands expression is detected in 
the mandibular segment in form of a stripe which persists until the end of segmentation (C-H). During growth of 
the germband Tc’delta is transiently expressed in form of a stripe along the A-P axis of the germband (E) and 
later in the developing nervous system (G-I). Embryonic injection of Tc’delta dsRNA at a concentration of 2 
µg/µl leads to strong disruption of the gnathal region and to loss of abdominal segments (J-L). The cuticle 
depicted in (J) shows six abdominal segments and no terminal structures are visible, whereas in (K) only two to 
three abdominal segments are formed. (L) Shows a cuticle obtained from a pRNAi experiment. The larvae 
depicted shows similar defects in abdominal segments as in (K) and (L), whereas the formation of the gnathal 
structures appears less affected. (M-O) Show magnifications of the head region. In (M) all gnathal appendages 
are affected being either malformed or partially missing. In (N) the gnathal appendages are equally affected and 
the labium appears to be missing completely. The magnification of the cuticle from the pRNAi experiment (O) 
shows a less dramatic effect in the head region and the distance between the antennae and the maxilla appears to 
be normal compared to the results obtained in the pRNAi experiments with Tc’h (compare O and figure 4H). 
Note that all cuticles display internalized structures (white arrows). Of 78 embryos recovered 38% showed 
similar defects. The remaining 62% did not develop cuticles, in contrast to 72% developing a cuticle in the 
control experiment with GFP dsRNA. Segment identities abbreviated as follows: labrum, (lbr); antennae, (ant); 
mandible, (md); maxilla. (mx); labium, (lb). 



Results........................................................................................................................................... 

 36

3.8 Regulation of Tc`h by segmentation genes 

In Drosophila, segmentation genes of different hierarchical levels, including the gap genes 

Kr, gt and hb as well as the pair-rule genes eve and run, regulate the expression of h during 

segmentation. To analyse whether Tc`h has a similar position in the regulatory network i.e. 

whether it is also regulated by orthologs of these genes in Tribolium, I performed pRNAi 

experiments with different Tribolium gap and pair-rule gene orthologs and examined the 

expression pattern of Tc´h in the respective knockdown embryos. 

 

Regulation by Tc’gt 

Tc`gt is expressed at different stages during segmentation, starting with putative maternal 

transcripts that are homogenously distributed throughout the syncitial blastoderm. With 

ongoing development expression retracts from both poles and intensifies in a circumferential 

stripe positioned in the later maxillary segment, comparable to the anterior domain in 

Drosophila, while expression in the remaining domain decreases. At the posterior pit stage a 

new domain arises in the posterior that later splits into two segmental stripes during germband 

elongation, corresponding to the third thoracic and second abdominal segment respectively 

(Bucher et al., 2004), thus residing exactly between the Tc´h stripes #3-#4 and #4-#5, 

respectively.  

 

In embryos of females injected with gt dsRNA, two stripes of expression appear at the 

position of the first and the third Tc´h stripe during blastoderm stage exactly as in wild type, 

while no expression at the position of the second stripe, which lies directly adjacent to the 

anterior Tc’gt stripe in the maxillary segment (Bucher et al., 2004), can be detected (Figure 8 

A). Although the anterior border of Tc’h stripe #3 seems well refined during the posterior pit 

stage and in young germbands, it becomes fuzzy and extends anteriorly during subsequent 

germband growth, suggesting a possible role for the anterior Tc’gt domain in the 

determination of the anterior border of this stripe. In addition, the third stripe does not bud 

off, but instead expression covers approximately 60% of the posterior region of the embryo 

(Figure 8 B-C). In weaker phenotypes this domain shows signs of splitting into stripes, but 

expression never ceases in the expected inter stripe regions, suggesting a fusion of the 

presumptive Tc’h stripes #3-#5 (Figure 8 C), which in turn speaks for a repressive function of 

Tc’gt on Tc’h either directly or indirectly. Interestingly Dm’gt was shown to repress Dm’h 

stripe #5 in the posterior region of the Drosophila embryo (Langeland et al., 1994). Although 

the observed changes in expression do not fit the same region of the embryo due to the 
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anteriorly shifted expression of the posterior Tc’gt domain compared to its expression in D.m. 

(Bucher et al., 2004), the observed derepression of Tc’h in Tc’gt knockdowns is highly 

reminiscent of the situation in Drosophila. Expression in the anterior part of this large domain 

decreases during further development, leaving a posterior cap of expression in the growth 

zone, which persists until the end or breakdown of segmentation (Figure 8 D-E). Formation of 

additional stripes was never observed, but the secondary expression in the presumptive 

nervous system at later stages appears unperturbed (Figure 8 F-G). It should be noted that the 

dynamic Tc’h expression observed in the growth zone of wild type embryos couldn’t be 

detected in this remaining posterior cap, suggesting a breakdown of the pattern forming 

mechanism in the growth zone. 

 

Regulation by Tc’Kr 

The function of Tc’Kr was recently analysed in detail by Cerny et al. (Cerny et al., 2005): 

Expression of Tc’Kr starts in the late blastoderm in form of a posterior cap with its anterior 

border residing between the labial and first thoracic segment. During growth of the germ 

rudiment expression retracts from the growth zone forming the posterior boundary of a 

domain that spans the three thoracic segments thus encompassing Tc’h stripe #3. 

In Tc’Kr knockouts, the formation of the first five Tc’h stripes seems unperturbed although 

the fourth stripe does initially not bud of properly from the growth zone and refines somewhat 

later (Figure 8 J). No additional stripes are formed, but expression persists in the anterior part 

of the growth zone while the most posterior region stays free of expression. Furthermore, no 

secondary expression in the presumptive nervous system is detectable (Figure 8 M). Analysis 

in the Tc’Kr mutant jaws confirmed the results obtained in the pRNAi experiment (Alex 

Cerny, personal communication). It is interesting to note that the Tc’eve and Tc’run pattern in 

such knockdowns also shows normal formation of the first three stripes while the fourth is 

initially formed normally, but the segmental stripes after the split appear irregular. The fifth 

stripe is formed, but fails to split at all (Cerny et al., 2005; Souza and Aranda, unpublished), a 

finding that further speaks against a direct involvement of Tc’Kr in pair-rule gene regulation 

since both these stripes lie outside the Tc’Kr domain and are therefore likely caused by a 

secondary process leading to the breakdown of segmentation.  

Interestingly, it could be shown that expression of Tc’gt is altered in Tc’Kr pRNAi as well as 

in the mutant line “jaws” in a way that the posterior expression in A2 is missing whereas 

ectopic expression of Tc’gt is detectable in T1 (Cerny et al., 2005). In case of a strict 

repressive function of Tc’gt on Tc’h expression, one would inevitably expect that the Tc’h 
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stripes #4-#5 are fused due to the lack of Tc’gt in the second abdominal segment. Instead we 

only see retardation in the formation of this stripe suggesting the involvement of additional 

factors in the refinement of this stripe. Although the central Tc’Kr domain encompasses Tc’h 

stripe #3 and is directly adjacent to Tc’h #2 in the anterior and Tc’h #4 in the posterior, no 

obvious effects can be detected during the formation of these stripes. This observation differs 

substantially from the effects of Kr mutations in Drosophila where the h stripes #2-#6 are 

strongly affected (Pankratz et al., 1990), including the stripes that are located within the 

primary Tc’Kr expression domain. 

 

Regulation by Tc’hb 

Tc’hb is provided maternally and distributed homogenously in the early blastoderm before it 

clears from the posterior pole and splits into an anterior cap, which coincides with the serosa, 

and a posterior domain that retracts posteriorly to form a broad band. This splits further into 

two stripes in the center of the embryo, the posterior of which coincides with Tc’h stripe #2, 

reminiscent of the situation in Drosophila. Apart from a secondary expression in faint 

segmental stripes, a posterior expression arises adjacent to the Tc’h stripe #6 and remains 

there until the end of segmentation, thus coinciding with Tc’h #7-#8. 

In Tc’hb knockouts the first Tc’h stripe forms normally while the second seems broader than 

in wild type and does not split properly (Figure 8 O). The third stripe, which starts to be 

expressed as a posterior cap that refines to a stripe during germband growth, does not bud off. 

Instead expression in the growth zone is expanded towards anterior, forming a large posterior 

domain. In some cases a stripe is formed at the anterior border of this domain, but splitting is 

incomplete; i.e. the stripes appear to be fused (Figure 8 P). During further growth of the 

germband, expression fades in the anterior region of this domain while it remains in the 

growth zone until the breakdown of segmentation (Figure 8 R-U). The presumptive 

neurogenic expression seen in wild type embryos cannot be detected. Intriguingly, analysis of 

the gap gene interactions in Tribolium revealed that both the posterior domains of Tc’gt and 

the initial central domain of Tc’Kr are not present in Tc’hb knockouts (Souza and Aranda, 

unpublished). The observed fusion of Tc’h stripe #3-#5 could thus be a consequence of the 

missing Tc’gt expression since the effects observed in Tc’gt knockdowns at this stage are very 

similar. In Drosophila hb mutants the anterior h stripes are affected in a way that the first 

stripe appears significantly broader; whereas Dm’h stripe #2, which coincides with the second 

Dm’hb stripe, is missing (Figure 12 E). It should be noted that the effects of the gap genes on 

each other caused by their regulatory interactions and thus the resulting positional map in 
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such mutants or knockdowns differ substantially between Tribolium and Drosophila. It is 

therefore difficult to infer whether the effects observed are a direct consequence of depleted 

Tc’hb transcripts or indirectly mediated by other factors; for example like Tc’gt; since not all 

interactions are known in Tribolium and cannot be simply inferred from the Drosophila 

model. 

 

Regulation by pair-rule genes 

In contrast to Drosophila eve and run mutants, depletion of either Tc’eve or Tc’run transcripts 

by pRNAi produce truncated, almost asegmental embryos instead of the expected pair-rule 

phenotype. On cuticle level only few anterior segments and terminal structures are formed in 

these embryos (Choe et al., 2006). 

 

Regulation by Tc’eve 

In Tc’eve knockdowns Tc’h is first expressed in a broad posterior cap that covers 

approximately 70% of the early blastoderm, thus exhibiting an expansion towards both 

anterior and posterior compared to the initial circumferential stripe observed in wild type 

embryos. In some cases, which likely represent weaker phenotypes, establishment of an initial 

stripe at the anterior border of this domain can be observed, but the stripe appears broader and 

weakly refined apart from its anteriorly shifted position. Expression of Tc’h does not cease 

during the formation of the germ rudiment; resulting in strong expression of Tc’h in the entire 

embryo posterior to the head lobes (Figure 9 B), thus suggesting a general repressive function 

of Tc’eve on Tc’h. The fact that Tc’eve and Tc’h expression partially coincide (Brown et al., 

1997) though implies the involvement of additional factors for this function. Due to the 

asegmental phenotype, which becomes evident at the level of the segment polarity gene Tc’en 

as it is only detectable in the antennal segment in these knockdowns i.e. no gnathal nor trunk 

Tc’en stripes are formed (Choe et al., 2006), no markers, neither molecular nor 

morphological, can be used to determine the exact position of the of the Tc’h domains. In 

contrast to this, the segment polarity gene Tc’gsb, which we found to be expressed earlier 

than Tc’en, shows additional expression in the intercalary segment as well as a broad central 

domain that follows the subsequent growth the embryo, thus again reflecting the asegmental 

phenotype of this region (Figure 20 A-F, supplemental material). In older stages a clearing of 

staining is observed in the central region of the germband, which starts as a broad domain that 

later exhibits a thin stripe of expression in its center (Figure 9 D). Intriguingly a posterior 

Tc’gt domain arises at a similar position at this stage in Tc’eve knockdowns, starting as a 
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broad central domain, which later splits into two stripes (Figure 20 A-C, supplemental 

material), highly reminiscent of the establishment of the posterior Tc’gt domains in wild type 

embryos. This observation further hints at a possible negative regulation of Tc’h by Tc’gt, 

although the exact position of these domains would have to be determined by double in situ. 

In addition it shows that the regulation of Tc’gt is indeed independent of the pair-rule cascade, 

as proposed by Choe et al., even though the embryos appear almost completely asegmental, a 

finding that was also observed for the gap gene orthologs Tc’Kr and Tc’hb and Tc’kni (Choe 

et al., 2006, Souza and Aranda, unpublished). In late stages the anterior expression fades 

while the posterior domain becomes restricted to the posterior most region and eventually 

forms a stripe. At about the same time, expression arises in the lateral regions of the 

germband, probably correlated with the presumptive neurogenic expression observed in in 

wild type embryos. 

 

Regulation by Tc’run 

In Tc’run knockdowns the first Tc’h stripe is shifted anteriorly and appears wider than in wild 

type. Moreover the entire region posterior to this stripe exhibits low levels of expression 

(Figure 9 F). The formation of a second blastoderm stripe cannot be observed. In contrast to 

the pattern observed in Tc’eve knockdowns, stripes are still formed during further 

development, although they appear wider and unrefined at the beginning and narrow down 

somewhat later during the elongation process. This effect may be caused by the 

morphological phenotype of the embryos, which exhibit a condensed, bottle like morphology. 

In older stages expression is also detected in the lateral regions of the embryo as in Tc’eve 

knockdowns.  

 

This result leads to the conclusions that the regulatory interaction between Tc’run and Tc’h 

during the segmentation of blastoderm derived segments differs from the interaction during 

the segmentation of the subsequently added segments during germband elongation, despite 

the finding of Choe and colleagues (Choe et al., 2006) that the pair-rule circuit is responsible 

for the patterning process in both phases of development. 

 



                                                                                                                                           Results 

 41

Figure 8 
Tc’h expression in Tc’gt (A-G), Tc’Kr (H-N) and Tc’hb (O-U) pRNAi.  
 
In Tc’gt knockdowns the formation of the first and third Tc’h stripe is not affected while the second stripe fails to 
form at blastoderm stage and is also absent in the germband (A-B). Although expression of Tc’h stripe #3 
appears normal at blastoderm stage, the stripe never resolves during further growth and its anterior border 
appears fuzzy and poorly refined. Therefore a broad domain is formed, which shows a weak stripe of lower 
expression (C, white arrow), suggesting a possible fusion of the third and the fourth stripe, since Tc’gt is 
expressed in the segment in between. Similarly the fourth stripe also doesn’t split properly (D, white arrow) and 
expression becomes restricted to the growth zone shortly after (E-G). Additional stripes are not formed and 
segmentation breaks down shortly after. 
 
Depletion of Tc’Kr does not affect the formation of the first three Tc’h stripes (H-I). However, the fourth stripe 
does not split properly and refines somewhat later compared to the wild-type (J, white arrow). Thereafter a fifth 
stripe is formed before segmentation breaks down (L-N). 
 
In Tc’hb pRNAi embryos the first Tc’h stripe is formed like in wild-type, while the posterior border of the 
second stripe is weakly defined (O-Q). The third Tc’h stripe never splits from the growth zone and a broad 
domain is formed in the posterior half of the germband which displays a faint stripe of weaker expression (Q, 
white arrow), suggesting a fusion of the third and fourth stripe. Expression in the anterior part of this broad 
domain ceases with ongoing development and expression is restricted to the growth zone until the breakdown of 
segmentation (R-U). 



Results........................................................................................................................................... 

 42

 

Figure 9 
Expression of Tc’h in Tc’eve (A-E) and Tc’run (F-J) pRNAi. In Tc’eve pRNAi embryos Tc’h is severly affected. 
At blastoderm stage Tc’h is expressed in a broad domain covering approximately 70% of the blastoderm (A). 
Expression of Tc’h does not cease during the formation of the germband resulting in strong expression in the 
entire embryo posterior to the headlobes (B-C). During further growth expression ceases in the anterior part of 
the germband and a stripe of expression appears in the headlobes and in the posterior, which seems to move 
posteriorly during further growth (D-E, black arrows). Furthermore, two cleared regions are detected in the 
center of these germbands (D, white arrows). In Tc’run pRNAi embryos Tc’h expression is similarly affected at 
the blastoderm stage in that the first stripe is anteriorly shifted and poorly resolved. The posterior part of the 
blastoderm shows low levels of expression (F). During further growth of the germband several stripes split from 
the expanded growth zone, suggesting that the basic patterning mechanism regulating Tc’h expression is still 
functioning. 
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3.9 Conserved regulation of target genes 

Drosophila hairy has been classified as primary pair-rule gene due to its regulation of 

secondary pair-rule genes like Dm’prd and Dm’ftz. To analyse if this regulation is conserved 

in Tribolium, the expression pattern of the pair-rule genes paired (prd) and fushi tarazu (ftz) 

were examined in Tc`h knockdown embryos generated by pRNAi.  

 

The secondary pair-rule gene ftz plays an essential role during the segmentation of the 

Drosophila embryo and is negatively regulated by h (Ish-Horowicz and Pinchin, 1987), 

probably directly (Dearolf et al., 1990). Although Tc’ftz is also expressed in a double 

segmental pattern, previous analyses have yielded no evidence for an involvement of this 

gene in the segmentation process of the Tribolium embryo (Stuart et al., 1991). Since we 

found that Tc’h is not required in segmentation of posterior segments either, we asked if the 

regulatory interaction of h on ftz known from Drosophila is evolutionarily conserved. 

Therefore, we analysed the expression pattern of Tc’ftz in embryos depleted for Tc’h at 

different stages of development.  

 

Regulation of Tc’ftz 

Tc’ftz is expressed in a double segmental pattern which starts in the late blastoderm as a stripe 

in the presumptive maxillary segment, thus only after the expression of the first two or three 

Tc’h stripes and in a pattern complementary to Tc’h. Thereafter seven additional stripes 

appear sequentially de novo near the tip of the expanding germband, which initially appear 

wider than a para-segment before they refine (Figure 10 A-E).  

In Tc’h pRNAi embryos, the anterior border of the first Tc’ftz stripe is clearly defined while 

the following seven stripes are initially formed, but appear to fuse with ongoing development, 

although expression in the presumptive interstripe region is slightly weaker. However, this 

effect could be caused by an incomplete depletion of Tc’h transcripts. Interestingly, the 

anterior expression does not vanish with subsequent elongation as seen for the stripes in wild 

type embryos, but instead appears stronger and persists until the end of segmentation (Figure 

10 I-J). This result suggests a conservation of the regulatory interaction between hairy and ftz 

as found in Drosophila. 

 

 



Results........................................................................................................................................... 

 44

Regulation of Tc’prd 

Like Tc’ftz, Tc’prd it is expressed in a pattern complementary to Tc’h. However, Tc’prd does 

act as a pair-rule gene during Tribolium segmentation (Choe et al., 2006). In wild type Tc’prd 

is first detected in a circumferential stripe corresponding to the maxillary segment at early 

blastoderm stage (Figure 11 A-B), which is followed by a second stripe, corresponding to the 

first thoracic segment, before the formation of the germ rudiment. The following stripes 

appear de novo in a similar fashion to the Tc’ftz stripes i.e. the most posterior tip of the 

elongating germband is free of expression and the stripes appear at a certain distance from the 

growth zone. Thus it contrasts the dynamic stripe formation observed for the pair-rule genes 

Tc’eve, Tc’run or Tc’h. Like Tc’ftz, the Tc’prd stripes seem broader and thus only poorly 

separated. Shortly after their appearance the stripes split resulting in a segmental expression 

pattern. At later stages Tc’prd is expressed in the mandibles as well as in two spots in the 

maxillae (Figure 11 M). 

 

Regulation of Tc’prd 

In Tc’h knockdown embryos the first Tc’prd stripe is initially formed like in wild type, while 

the second stripe appears directly adjacent to the first, suggesting a loss of the labial segment 

at the blastoderm stage (Figure 11 G-H). Furthermore the stripes do not split into the 

segmental pattern as seen in the wild type (Figure 11 I), instead a weak spotty pattern is 

observed in the region (Figure 11 C and I). The remaining stripes form virtually normally 

with respect to the wild type expression. In early germbands a premature loss of the first 

stripe can be detected in part of the embryos (Figure 11 J), comparable to the loss of Tc’gsb 

expression in this segment. At later stages no mandibular or labial appendages are seen in 

some of the embryos and the expression in the maxillae is reduced to one spot instead of the 

two seen in wild type embryos. Thus the results indicate a specific loss of the mandibular and 

labial segment, which fits with the observations made at the cuticle level. The missing spot in 

the maxilla may be a result of the secondary function of Tc’h. Thus, in contrast to the role of h 

in Drosophila, the results obtained in this experiment suggest no direct involvement of Tc’h 

in the regulation of Tc’prd and instead suggest the specific deletion of the labial segment. 
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Figure 10 
Wild-type expression of Tc’ftz (A-E) and in Tc’h pRNAi (F-J). Tc’ftz is expressed in a pair-rule like fashion 
complementary to Tc’h. Expression is detected in the maxillary segment of young germbands (A). Thereafter 
seven additional stripes appear sequentially, de novo near the tip of the expanding germband (B-E). In later 
stages a second expression appears in the developing nervous system (E). In Tc’h knockouts the anterior border 
of the first stripe seems unaffected (D) while the remaining stripes are formed, but appear to fuse with ongoing 
development (G-J). Interestingly expression in the anterior region does not cease, as seen for the wild-type 
expression. Instead the expression persists throughout the segmentation process.  
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Fi 

Figure 11 
Expression of Tc’prd in wild-type (A-F) and Tc’h pRNAi embryos (G-L). Expression of Tc’prd starts as a 
circumferential stripe in the blastoderm in the maxillary segment, which is followed by a second sripe of 
expression in the segment corresponding to T1 before the formation of the germ rudiment (A-B). The following 
stripes appear de novo at the anterior border of the growth zone (C-F). Shortly after the appearance of the stripes 
they split into a segmental expression pattern. At the end of segmentation Tc’prd is strongly expressed in the 
mandible and the maxilla (M). In Tc’h knockdown embryos the first Tc’prd stripe appears normally in the 
blastoderm (G), whereas the second stripe is formed directly adjacent to the first (H), suggesting a loss of the 
intermediate labial segment. During further development these stripes do not split as seen in wild-type instead, a 
weak, spotty pattern is detected in the region of the presumptive labial segment (compare I and B, white arrow). 
In some cases a loss of expression in the maxillary segment is observed during further germband growth (J, 
black arrow). The remaining stripes appear unaffected (K-L). (M-N) show magnifications of the head region in 
wild-type (M) and Tc’h depleted embryo (N). Expression in the mandible is not detected and no mandibular nor 
labial structures were formed (compare N and M). 
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3.10 Expression of Tc’h constructs in Drosophila 

To test whether the Tribolium regulatory regions identified in a previous study (Eckert et al., 

2004) are also functional in Drosophila, I have used genetically transformed Drosophila lines 

carrying identical Tc’h constructs (transgenic lines provided by Ernst Wimmer). The 3.1 kb 

construct BN3.1, which includes the regulatory elements for the expression of three central 

Tc’h stripes corresponding to the stripes #3/#5 in Tribolium (Eckert et al., 2004), is expressed 

in a broad anterior domain encompassing about 70% of the early blastoderm, which 

subsequently refines to a broad anterior and central domain. Thereafter, an additional domain 

arises in the posterior part in some, but not all embryos, and the central domain eventually 

resolves into three distinct stripes (Figure 12 G-L). Double staining with the endogenous h 

gene shows that these stripes are slightly out of phase but overlap partially with the 

endogenous stripes #3-#5 (Figure 13B). The anterior and posterior domains, however, do not 

resolve into stripes. While the anterior domain is not located in the region of stripes #1 or #2, 

the posterior domain posterior of the endogenous stripe #7 (Figure 13 A-D). The origin and 

significance of these domains can currently not be assessed, but expression of a domain 

reminiscent of the anterior domain driven by this construct seems to be associated with the 

first 1.5 kb upstream of the reporter gene start codon consistent with other constructs 

containing this region. In addition, a larger construct, which includes the regulatory elements 

for all eight Tc’h stripes (Eckert et al., 2004), yields the same pattern as the two shorter 

constructs (Eckert, 2004). The fact that the stripes are not expressed at exactly the same 

position as the endogenous stripes is not surprising, since this is even observed for reporter 

gene constructs harbouring endogenous Drosophila enhancer elements (Pankratz, et al., 1990) 

and may be partially associated with the lack of endogenous UTR regions in these constructs 

and a resulting retardation in transcript degradation. 
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Figure 12 
Expression of Dm’h (A-F) and BN3.1 (G-L) in wild-type embryos. Expression of Dm’h starts as a broad stripe in 
the center of the blastoderm, which is flanked by domains of weaker expression (A). With ongoing development 
further stripes appear anteriorly and posteriorly of this central domain and a cap of expression is detected in the 
anterior most region of the blastoderm (B-C). The broad domains start to split into the double segmental pattern 
and expression intensifies (D-E). Finally the seven stripe pattern is fully resolved (F). 
 
Expression of the Tc’h construct BN3.1 in the transgenic line T2M3 starts as a large anterior domain 
encompassing approximately 80% of the blastoderm (G). During further development, expression intensifies in 
the central and anterior region, thus forming an anterior cap and a broad central domain (H-I). In some, but not 
all embryos, an additional posterior domain appears (I-K). Around the end of the cellularization process the 
central domain splits into three distinct stripes at the position of the endogenous stripes #3-#5(K). Embryos of 
the stage depicted in (L) have been chosen for the single staining analysis in the mutant experiment, since they 
present a distinct pattern but are still young enough to exclude major influences of pair-rule genes. The lines ca 
and cp mark the distances measured for the statistical analysis. 
The numbers indicate the endogenous and reporter driven stripes, respectively.  
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3.11 Tc’h is regulated by gap genes in Drosophila 

We used the genetically transformed Drosophila lines carrying the BN3.1 construct to analyse 

the regulation of the reporter gene by different Drosophila gap- and pair-rule genes. Therefore 

two different transgenic lines were crossed into Drosophila mutants of hunchback, Krüppel, 

knirps, giant, even-skipped and runt respectively and the resulting embryos were stained both 

for endogenous hairy expression by fluorescence in situ hybridisation, as well as for lacZ 

RNA expression by chromogenic in situ hybridisation. Due to the highly dynamic expression 

of Dm’h during the early blastoderm stage, I first performed a single staining analysis to 

determine all possible wild type patterns in order to prevent an analysis of false positive 

mutants. An overview of the different patterns observed is provided in figure 12 (A-H) for 

comparison. Apart from the double staining analysis I performed single staining of the 

reporter gene expression in the different mutants and compared the position of the domain 

boundaries at earlier stages with the wild type expression. The data sets obtained in this 

experiment were analysed for significant changes compared to the wild type pattern using the 

non-parametric Mann-WhitneyU test and Bonferroni corrected. 

 

The regulation by Dm’hb 

In hunchback mutants the second h stripe is missing in Drosophila while the stripes #3 and #4 

are fused, resulting in a broad domain. The central stripes driven by the Tc´h construct also 

form a broad domain, which shows a stripe of weaker expression, thus separating it weakly 

into a posterior and anterior part, the latter likely formed by fusion of the first two stripes 

(Figure 13 E-G). The statistical analysis of single staining places the anterior border of this 

central domain at a position around 60% egg length in wild type, whereas it resides at about 

64% e.l. in hunchback mutants, thus being slightly, but significantly extended towards the 

anterior. The posterior margin of this domain resides directly adjacent to the endogenous h 

stripe #6 on the dorsal side while it is some cells apart on the ventral site and exhibits a slight 

posterior expansion (Figure 17 D and L). Interestingly, a similar effect of Tc`hb on the 

endogenous Tribolium stripes can be seen, but it is difficult to assess if the fused stripes 

observed in the pRNAi experiment are really the expected stripes #3 and #4 and if this effect 

is indeed caused by Tc`hb directly as mentioned above. A similar indirect effect as cause for 

the observation appears unlikely due to the different effects of hb on gt expression in these 

species. 
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Figure 13 
Double staining of Dm’h expression (in green) and BN3.1 (blue and red, respectively) in wild-type (A-D) and a 
Dm’hb mutant (E-H) embryo. Embryos are positioned with anterior to the left and the dorsal side up. (A) shows 
the seven Dm’h stripes in a wild-type embryo. In (B and D) expression of the BN3.1 construct in the same 
embryo as (A) stained with NBT/BCIP in (B) and artificially colored in red in (D). (C) The overlay of (A) and 
(E) shows that the three stripes driven by the BN3.1 reporter gene construct overlap with the endogenous stripes 
#3-#5. The stripes appear wider though and are slightly shifted anterior by about 2-3 cells. The anterior domain 
covers the first Dm’h stripe and seems to coincide at the posterior border. (E-H) shows a Dm’hb mutant embryo. 
Expression of Dm’h is severly affected in that stripe #2 is missing whereas stripes #3-#4 appear fused. The 
remaining stripes are slightly wider than in wild-type (compare A and F). In (F and H) expression of the BN3.1 
construct in the same embryo as (E) stained with NBT/BCIP in (F) and artificially colored in red in (G). 
Expression of the BN3.1 construct is expressed in a broad central domain, suggesting a fusion of the three stripes 
driven by the construct in wild-type embryos (F and H). The broad domain is directly adjacent to the 
presumptive Dm’h stripe #6, while the anterior domain appears unaffected (G). The numbers indicate the 
endogenous Dm’h stripes. 



Results........................................................................................................................................... 

 52

The regulation by Dm’kni 

In Dm’kni mutant embryos, the endogenous h stripes #4-7 are fused and form a broad domain 

in the posterior region of the embryo. Tc´h stripe #3 appears unaffected in this mutant while 

stripes #4-#5 do not resolve, but form a broad domain that extends towards the posterior by 

approximately 7% e.l. compared to the expression in wild type at this stage (Figure 14 A-D). 

The posterior border of this domain overlaps with the posterior Dm’h domain formed by the 

fused endogenous stripes #4-#7. Analysis of the regulatory region of Tc`h revealed several 

clusters of putative Dm’kni binding sites and band shift experiments performed in 

collaboration with Paolo Struffi confirmed that Dm’kni is indeed able to bind fragments of 

approximatly 200bp containing a minimum of three putative binding sites in vitro (Paolo 

Struffi, personal communication), but the regions tested in the binding experiments lay further 

upstream than the 3.1kb used in this construct. No predicted clusters of Dm’kni binding sites 

are found within the construct used in the transgenic experiment. 

 

The regulation by Dm’Kr 

In Dm’Kr mutants all central h stripes are affected, resulting in two broad domains in the 

central region of the embryo, which are flanked by a single stripe on each side. Expression of 

the Tc´h stripes in these mutants shows a similar effect, since the central domain never 

resolves into stripes (Figure 14 E-H). In addition the domain appears narrower than in wild 

type. Single staining analysis places the posterior boundary of this domain at around 40% e.l. 

compared to the observed 34% in wild type, but the statistical analysis shows no significance 

for this effect. A possible reason for the non-significance of the observed retraction of the 

central domain in the statistical analysis lies in the presence of wild type embryos in this 

experiment. Based on the crosses performed between the transgenic and mutant lines only 

25% of the embryos analysed are homozygous mutants, whereas the remaining 75% of the 

embryos are heterozygous and homozygous wild type. For this reason, the non-parametric 

Mann-WhitneyU test was chosen, which by itself is a highly conservative test. With respect to 

the h expression in these mutants the domain covers the posterior region of the fused domain 

formed by the endogenous stripes #2-#4, extending posteriorly by approximately 3 cells and 

could thus resemble part of this domain. According to Langeland et al., Dm’Kr is essential for 

the establishment of the anterior borders of the Dm’h stripes #5 and #6, since expression of 

reporter gene constructs harbouring minimal enhancer elements for these stripes show 

anterior expansion of these stripes in Dm’Kr mutants (Langeland et al., 1994). In contrast, 

Tc’h expression appears to be posteriorly restricted in these mutants. A possible explanation 
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for the different effect observed for Kr on the endogenous and the reporter gene expression 

driven by the Tc`h construct may lie in the gap gene interactions. In previous analyses it was 

shown that mutation of Kr in Drosophila leads to an expansion of the posterior gt domain 

towards the anterior (Kraut and Levine, 1991; Capovilla and Eldon, 1992). Hence the 

anteriorly expanding Dm’gt domain in these mutants could cause the observed effects on the 

reporter gene expression, which is further supported by the finding that Tc’gt is also involved 

in the regulation of these stripes in Tribolium. These results also contrast with the results from 

Tribolium in which no comparable effect of Tc`Kr was detected on the presumptive Tc’h 

stripes #3-#5. 

 

The regulation by Dm’gt 

Dm’gt is reported to repress the posterior h stripes in Drosophila, where it refines the borders 

of the endogenous stripe #5, resulting in a fusion of the endogenous stripes #5-#7 (Figure 15 

A-E) in the respective mutant. Similarly, the Tc`h pattern exhibits an additional stripe in the 

posterior that appears to be slightly separated from the first three stripes. Intriguingly the 

stripe appears in the region where Dm’gt is expressed in wild type embryos at this time, again 

suggesting a possible repressive function of Dm’gt on the Tc`h construct, as seen for the wild 

type h expression. Compared to the effect of Tc`gt on Tc`h it is interesting to note that 

knockdown of Tc`gt transcripts also leads to a broad domain reminiscent of a fusion of the 

presumptive stripes #3-#5 (see section 3.6) in Tribolium. The anteriorly shifted position of 

this resulting domain, with respect to Drosophila reflects the different positions of the 

posterior Dm’gt domains in these species. In Tribolium the posterior Tc’gt domains reside 

between the third, fourth and fifth Tc`h stripe respectively whereas the broad posterior Dm’gt 

domain covers the region of the Dm’h stripes #6 and #7, which corresponds to a shift of five 

segments (Bucher et al., 2004). 
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Figure 14 
Double staining of Dm’h expression (in green) and BN3.1 (blue and red, respectively) in a Dm’kni mutant (A-D) 
and a Dm’Kr mutant (E-H) embryo. Embryos are positioned with anterior to the left and the dorsal side up.The 
endogenous Dm’h stripes #4-#7 are fused in Dm’kni mutant embryos while the anterior three stripes are broader 
than in wild-type (A). In (B and D) expression of the BN3.1 construct in the same embryo as (A) stained with 
NBT/BCIP in (B) and artificially colored in red in (D). The central domain driven by the BN3.1 at younger 
stages does not fully resolve into three stripes as seen in wild-type (B and D). Whereas Tc’h stripe appears 
unaffected and partially coincides with the endogenous stripe #3 (C) the Tc’h stripe #4-#5 form a broad domain, 
which extends posteriorly compared to the expression in wild-type embryos and overlaps with the broad 
posterior domain of the fused Dm’h stripes #4-#7.  
In the Dm’Kr mutant embryo all central Dm’h stripes are affected, forming two broad domains in the central 
region of the blastoderm (E). In (F and H) expression of the BN3.1 construct in the same embryo as (E) stained 
with NBT/BCIP in (F) and artificially colored in red in (G). The BN3.1 construct is expressed in a central 
domain that appears to be narrower compared to the expression in the wild type (F and H) and fails to resolve 
into stripes. The anterior border of this domain coincides with the anterior border of the fused endogenous stripes 
#2-#4. 
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F

Figure 15  
Double staining of Dm’h expression (in green) and BN3.1 (blue and red, respectively) in a Dm’gt mutant (A-D) 
and a Dm’run mutant (E-H) embryo. Embryos are positioned with anterior to the left and the dorsal side up. 
Mutation of Dm’gt affects the posterior Dm’h stripes #5-#7 resulting in a broad fused domain on the posterior 
region of the blastoderm (A), whereas the Dm’h stripes #1-#4 are almost unaffected. In (B and D) expression of 
the BN3.1 construct in the same embryo as (A) stained with NBT/BCIP in (B) and artificially colored in red in 
(D). Expression of the three central stripes driven by the BN3.1 construct is not affected in that the stripes are 
formed and overlap with the endogenous Dm’h stripes #3-#5. However, an additional stripe of expression 
appears in the posterior region (B and D, white arrow) which resides within the broad domain formed by the 
endogenous Dm’h stripes #5-#7 (C). Note that Dm’gt is expressed in this region in wild-type embryos.  
All Dm’h stripes are affected in Dm’run mutant embryos, as they fail to resolve properly (E). In (F and H) 
expression of the BN3.1 construct in the same embryo as (E) stained with NBT/BCIP in (F) and artificially 
colored in red (G). Expression of the BN3.1 construct is less affected in that the stripes are still formed, but 
appear fuzzy and poorly resolved. In some cases faint expression, reminiscent of additional stripes is seen (F and 
H). Interestingly, the stripes driven by the construct still seem to overlap with the endogenous Dm’h stripes (G). 
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The regulation by Dm’run 

All Drosophila stripes are affected in runt mutant embryos, as they fail to resolve properly. 

The effect of runt on the Tc`h stripes is slightly weaker though, since they are still formed but 

remain fuzzy and poorly resolved. It is interesting to note that a similar effect is also seen in 

Tc`run knockdowns on the expression of Tc’h, as shown above, in that stripes are still formed, 

but do not resolve properly. As expected, a significant shift of the boundaries of the central 

domain with respect to the expression in wild type background at earlier stages could not be 

observed, thus arguing against an earlier function of Dm’run on the reporter gene expression 

(Figure 15 E-H) and excluding an influence of Dm’run on the observed effects in the gap 

gene mutant experiments.  

 

The regulation by Dm’eve 

The opposite effect is seen for Dm’eve where most of the endogenous h stripes are only 

weakly affected while the Tc`h stripes fail to resolve. In some cases a split of the central 

domain into two stripes positioned at the anterior and posterior margins of the central domain 

can be observed, but the stripes appear poorly resolved. The anterior stripe is shifted 

anteriorly with respect to the endogenous stripe #3 while the posterior one lies anteriorly 

adjacent to the endogenous stripe #5 (Figure 16 A-D). In Tc`eve knockdowns Tc`h is 

expressed in almost the entire germband with only a small anterior and central region 

exhibiting no expression, an effect comparable to the unresolved stripes observed in this 

experiment. 

 

Gap and pair-rule genes genes regulate the Tc’h construct 

One of the biggest difficulties for the precise determination of the factors which cause the 

observed effects is the cross regulatory interaction between gap and pair-rule genes. As 

already mentioned before, the cross regulatory interactions between the gap and the pair-rule 

genes lead to shifts of the expression domains of several factors, if components of the network 

are altered. Some of these interactions and the resulting effects on factors of the Drosophila 

segmentation cascade, such as the mutual inhibition of the Dm’Kr and Dm’gt domains, have 

been well characterized and are likely to contribute to the observed changes in reporter gene 

expression. Other interactions characterized so far include the observation of lower levels of 

Dm’gt in its posterior domain in Dm’kni mutants (Kraut and Levine, 1991), which may 

contribute to the posterior expansion of the central domain detected in Dm’kni mutants. 

However, the results obtained in these experiments show that the regulation of the expression 
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driven by the Tc’h reporter gene construct depends on the input of the gap and primary pair-

rule genes, although the exact mode of interaction is evidently not identical. The finding that 

gap gene mutations already affect the pattern at an early stage, as seen in the statistical 

analysis, makes it unlikely that cell-cell signalling is involved in the generation of the patterns 

detected. Thus the interactions between the Drosophila gap genes and the Tribolium 

enhancers within the construct are likely to be direct. 
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Figure 16 
Double staining of Dm’h expression (in green) and BN3.1 (blue and red, respectively) in a Dm’eve mutant 
embryo (A-D). Embryos are positioned with anterior to the left and the dorsal side up. In Dm’eve mutant 
embryos Dm’h expression is only weakly affected besides the missing stripe #2 (A), whereas the expression of 
the BN3.1 construct fails to resolve into stripes (B and D), instead they form a broad domain in the center of the 
blastoderm which exhibits stronger staining at the anterior and posterior margins. The posterior border of this 
domain coincides with the endogenous Dm’h sripe #5. In (B and D) expression of the BN3.1 construct in the 
same embryo as (A) stained with NBT/BCIP in (B) and artificially colored in red in (D).  

Figure 17 
Distribution of the values measured for the margins of the central expression domain in the BN3.1 transgenic 
lines in wild-type and mutant background. (A and F) shows the distribution of the values obtained for the 
anterior border of the central domain (ca, see figure 12 L) in the transgenic lines T2M3 and T2M1 which were 
used for the crosses with Dm’gt, Dm’kni, Dm’hb, Dm’run (crossed with T2M3) and Dm’Kr, Dm’eve (crossed 
with T2M1) mutant lines. Note, the values display normal distribution. The datasets were Bonferroni corrected 
for the subsequent statistical analysis. The values obtained for the mutant lines were compared to the wild-type 
data sets using the non parametric Mann-WhitneyU Test. Frequency is depicted on the y-axis and the distance 
measured in percentage with respect to egg length on the x-axis. Comparison of the transgenic lines in wild-
type background: Comparison of the values obtained for the two transgenic lines showed comparably weak, but 
significant changes (ca, W=2854, p-value = 0.0001934; cp, W=1377, p-value = 0.001247 n=56). Note that the 
embryos measured were composed of 25% mutants, 25% wild-type and 50% heterozygous. Changes in the 
position of the anterior border (ca:) Distribution of the values obtained for the position of the anterior border 
discovered significant anterior expansion of the central domain for the mutants Dm’gt (W=1002.5, p-value = 
2.883e-11, n=74 in B), Dm’hb (W=288, p-value < 2.2e-16, n=63 in D) and Dm’Kr (W=256, p-value = 1.889e-
11, n=45 in G). No significant changes in expression were found for the crosses with Dm’kni, Dm’run and 
Dm’eve mutant lines. Changes in the position of the anterior border (ca): (I-P) shows the same as (A-H), but 
for the posterior margins of the central domain (cp, see also figure 12 L). The distribution of values obtained for 
the transgenic lines are depicted in (I) and (N). Significant changes were found for the position of the posterior 
boundary of the central domain for the mutants Dm’gt (W=4635.5, p-value = 3.397e-13, n=74 in J), Dm’kni 
(W=3541, p-value < 2.2e-16, n=51 in K) and Dm’hb (W=4319, p-value < 2.2e-16, n=63 in L), which showed a 
posterior expansion. Notes: No influence has been found for the pair-rule genes Dm’eve and Dm’run as expected 
for the early stage analyzed in this experiment. Furthermore, no significant changes have been found for the 
position of the posterior domain in Dm’Kr mutants although the double staining clearly shows a retraction of this 
border towards anterior (see figure 14 B). This may be caused by the presence of wild-type embryos in the cross 
and weaker heterozygous effects, which are likely to contribute to the changes observed in other mutant lines. 
Note the bimodal distribution for Dm’gt (J), which is caused by the additional stripe in the posterior region (see 
also figure 15 B, white arrow). 
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T2M3-ca gt-ca kni-ca hb-ca 

run-ca T2M1-ca Kr-ca eve-ca 
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T2M3-cp gt-cp kni-cp hb-cp 

run-cp T2M1-cp Kr-cp eve-cp 
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3.12 Expression of Drosophila constructs in Tribolium 

The result that at least some of the enhancers driving expression of individual pair-rule stripes 

in Tribolium show sings of conservation between and Tribolium and Drosophila lead us to 

analyse if this conservation is also evident in the complementary experiment. We therefore 

transformed Tribolium using a reporter gene construct harbouring the previously identified 

elements driving expression of Drosophila h stripes #3-#4 and #5 respectively (Hartmann et 

al., 1994; Langeland et al., 1994). To test whether these constructs are indeed functional, we 

first transformed Drosophila and analysed the expression pattern in several lines generated. 

Expression of Dm3-4 and Dm5 in Drosophila 

In figure 18 (A-C) embryos carrying the Dm3-4 constructs indeed show expression of two 

central stripes although the stripes resolve somewhat later compared to the wild type, an 

effect possibly caused by the lack of the endogenous UTRs, which may result in retarded 

transcript degradation. The same effect is seen in figure 18 (D-F) for the lines carrying the 

Dm5 construct, which is expressed in a broad stripe in the posterior region of the embryo that 

refines only after cellularization is completed at the presumptive position of the endogenous h 

stripe #5. 

 

Dm3-4 is expressed in Tribolium 

Expression of the Dm3-4 constructs starts in the antennal segment at early germband stage 

and as a faint ‘salt and pepper’ staining in the head lobes (Figure 19 A-G). In addition, a 

domain of stronger expression arises in the posterior region of the embryo with its anterior 

border lying around the first thoracic segment, although patches of expression are also 

detected in the labial and maxillary segment. During germband elongation, expression starts 

to fade at the anterior limits of the posterior domain, which still extends posteriorly and 

covers the growth zone. Intriguingly, two stripes of stronger expression can be detected in this 

domain, the first of which corresponds to the segment T2 where the endogenous Tc’h stripe 

#3 is expressed. The position of the posterior stripe is difficult to assess, since expression 

fades quickly and becomes restricted to the growth zone at the time of the appearance of the 

Tc’gsb stripe corresponding to the segment A2, in which Tc’h stripe 4 is actually expressed. 

Taking into account that these stripe-like regions are slightly broader than a wild type Tc’h 

stripe, it is possible that the posterior stripe of expression covers the region of the second 

abdominal segment and thus Tc’h stripe #4. 
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Dm5 is expressed in Tribolium 

Analysis of different Tribolium lines, carrying the Dm5 construct, showed only a faint 

expression of in the growth zone around the time point of the establishment of the Tc’gsb 

stripe corresponding to the segment T3, which fades away shortly after its appearance (Figure 

19 H-L). However, the time point of appearance of this domain in the posterior correlates well 

with the onset of expression in the growth zone during the establishment of the endogenous 

stripe #5. Due to the lack of proper expression domains we excluded these lines from the 

following pRNAi experiments. 

 

 
Figure 18 
Expression of the DM3-4 (A-C) and Dm5 (D-F) constructs in Drosophila melanogaster. Embryos are positioned 
with anterior to the left and the dorsal side up. 

Expression of the Dm3-4 construct, which harbours the regulatory element for the expression of the endogenous 
Dm’h stripes #3 and #4, starts in an anterior cap and a broad domain in the center of the blastoderm (A) that 
splits into two stripes residing at the presumptive position of the endogenous Dm’h stripes #3 and #4 during 
further development (B-C).  

The Dm5 construct is also expressed in an anterior cap and a broad posterior domain is seen (D) which refines to 
a stripe at the presumptive position of the Dm’ stripe #5 during further development (E-F).  

Note that the anterior domain is also detected for the BN3.1 construct in the previous experiment. 
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3.13 Regulation of Drosophila constructs in Tribolium 

To test whether gap genes regulate the observed expression in the Tc-Dm3-4 lines, I 

performed pRNAi experiments with Tc’Kr and Tc’hb with one of the lines, which showed a 

typical pattern.  

 

Regulation by Tc’hb 

Expression of the Dm3-4 construct in Tc’hb knockdowns appears essentially normal in early 

germbands. With ongoing development the central domain retracts to the segment 

corresponding to T1 earlier than in wild-type and fails to display the stripes of stronger 

expression seen in the wild type transgenic lines (Figure 19 M-S), reminiscent of the fusion of 

the endogenous Tc’h stripes #3-#4 in these knockdowns. It should be noted that a similar 

effect of Dm’hb mutation on the expression of the Tc’h construct can be seen in Drosophila in 

that the stripes do not resolve (described above), which also implies similarities with the Tc’h 

expression. However, this is not necessarily a sign of homology because the effect observed 

in this experiment could also be caused by the fusion of the segments T2 and T3 as well as A2 

and A3 in these knockdowns as mentioned above. Furthermore, it is difficult to assess the 

exact margins of the central domain at a given developmental time point, due to the different 

morphology of the pRNAi embryos, which also display a slightly retarded development.  

 

Regulation by Tc’Kr 

Tc’Kr knockdown embryos display expression of the construct in the entire anterior region 

with darker staining in the antennal segment and the posterior domain, starting at the position 

of the presumptive maxillary segment, which then retracts to the labial segment somewhat 

later. In contrast to the expression in wild type embryos, the expression within the labial 

segment does not cease and the entire central domain, now ranging from the labial up to the 

presumptive third thoracic segment, resolves into four stripes. This effect is in stark contrast 

to the results obtained in the Dm’Kr mutant experiments, where the central stripes driven by 

the Tc’h construct as well as the endogenous Dm’h stripes #2-#4 are actually fused and with 

the effects observed on the endogenous stripes in Tribolium, which are not affected by Kr 

RNAi. The finding that Tc’Kr depletion does not affect the formation of the endogenous Tc’h 

stripes must not imply that it doesn’t affect expression of the Dm3-4 construct, since Kr 

evidently regulates these stripes in Drosophila. 
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The effects observed in these experiments are less pronounced compared to the effects 

observed for the Tc’h construct in Drosophila mutants and do actually not show signs a of a 

conservation of regulation of the central stripes. The similarities observed with respect to the 

expression pattern in both species appear therefore even more enigmatic since the regulation 

must be apparently different. However, the fact that the construct drives the expression at the 

right time and in the right region of the embryo, despite the differences in regulation may hint 

to further regulatory inputs for the generation of the pattern observed in both species. 
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Figure 19 
Expression of the Dm3-4-lacZ (A-G) and Dm5-lacZ (H-L) construct in Tribolium wild-type embryos and 
expression of Dm’3-4 in Tc’hb (M-S) and Tc’Kr pRNAi (T-Z) embryos. Embryos stained for lacZ (blue/black) 
and Tc’gsb (red). The numbers indicate the presumptive position of the endogenous Tc’h stripes. 
 
Expression of the Dm3-4 construct in wild-type embryos (A-G) 
Expression of the construct is detected at early germband stage in a ‘salt and pepper’ pattern in the headlobes, 
with stronger staining in the antennal segment, and as broad domain in the region posterior to the first thoracic 
segment (A), with patches of expression in the maxillary and labial segments. Expression retracts to the first 
thoracic segment with ongoing development (B-C) although faint expression is still detected in the labial 
segment. Intruigingly, two stripes of stronger expression appear in this domain, the first of which resides in the 
segment T2 where Tc’h stripe #3 is expressed in the wild-type (D white arrows). At later stages expression is 
restricted to the growth zone (E-G). 
 
Expression of the Dm 5 construct in wild-type embryos (H-L) 
The construct Dm5 is only expressed transiently during the time point of the establishment of the Tc’gsb stripe 
corresponding to the third thoracic segment (J, black arrow) 
 
Expression of the Dm3-4 construct in Tc’hb pRNAi embryos (M-S) 
Expression of the Dm3-4 construct in Tc’hb depleted embryos starts essentially normal (M-N). However, with 
ongoing development expression of the broad domain retracts rapidly to the segment T2 (O-P), although faint 
expression is also detected in the segment T1 in a few embryos (Q). In contrast to the expression in wild-type 
embryos the domain does not show signs of stripe like expression (compare D and Q). Expression in the growth 
zone persists until the breakdown of segmentation (R-S). Note that four Tc’gsb stripes are formed before the first 
segmental fusion (black arrow). 
 
Expression of the Dm3-4 construct in Tc’Kr pRNAi embryos (T-Z) 
In Tc’Kr depleted embryos early expression of the Dm3-4 construct seems unaffected in the anterior region (T). 
With ongoing development expression in the central domain resolves transiently into four stripes (U), the first of 
which resides in the labial segment (white arrow, black arrows mark the presumptive position of the endogenous 
Tc’h stripe #2 and #3 in U and #3, #4 in V). Expression is restricted to the growth zone until the breakdown of 
segmentation (W-Z). 
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4. Discussion 

 

4.1 Tc`hairy appears to function like a pair-rule gene at blastoderm stage 

Dm’h is classified as pair-rule gene based on its amorphic mutant phenotype in which the 

posterior borders of every second segment are lost. The phenotype of Tc’h observed in these 

experiments differs substantially from the findings in Drosophila. Tc’h only affects 

segmentation in more anterior, namely blastoderm specified segments in a possibly pair-rule 

like fashion. This effect appears to be masked by a secondary function that leads to induction 

of apoptosis and to the loss of the anterior segments in strong phenotypes. It is therefore 

difficult to asses whether the observed phenotype is truly due to a failure of establishment of 

the mandibular and labial segment, which seem to be the most susceptible ones to Tc’h 

transcript depletion, or if Tc’h has only a maintenance function as some of the germbands do 

exhibit expression in the respective segments without inducing growth of gnathal appendages 

(Figure 5 M) although this effect could also result from incomplete depletion of Tc’h 

transcripts. Nevertheless the observed phenotype could be caused by a developmental arrest 

of the anterior segments. However, several independent lines of evidence do suggest a pair-

rule function of Tc’h at blastoderm stage. First, the most prominent phenotype in the pRNAi 

experiment displays the specific loss of the mandibular and labial segment and staining of 

pRNAi embryos with the segmental marker Tc’gsb shows specific loss of the stripes 

corresponding to the mandibular and labial segments at an earlier stage and at higher 

frequencies, which is in agreement with the cuticular phenotypes scored in this experiment. 

Moreover, the first and second Tc’prd stripe lie directly adjacent to each other, further 

indicating a real loss of the labial segment, which becomes evident at later stages. And finally 

we find a specific loss of Tc’h stripe #2 and the corresponding segment in Tc’gt knockdowns. 

According to Bucher et al., analysis of Tc’gt pRNAi embryos using the segmental marker 

Tc’en show normal formation of the three Tc’en stripes corresponding to the gnathal segments 

mandible, maxilla and labium, followed by a disturbance of the formation of the stripe in T1, 

which was interpreted as fusion of the segments T1 and T2 (Bucher et al., 2004). However, 

expression of Tc’gt in the posterior region of the embryo is detected in the segments 

corresponding to T3 and A2. Thus the effects, manifested in the observed fusion of the 

corresponding Tc’en stripes, lay one segment anterior to the Tc’gt domain in T3. As 

mentioned before, knockdown of Tc’hb leads to a loss of both posterior Tc’gt domains, but 

not the anterior one. Analysis with the segmental marker Tc’gsb displays normal formation of 
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four segmental stripes prior to the first detectable segmental fusion (compare figure 20 G-I 

and J-L, supplemental material), thus exhibiting one additional segment. It should be noted 

that these segmental fusions observed in Tc’gt knockdowns are both also seen in Tc’hb 

knockdowns, but are shifted posteriorly by one segment. It seems therefore safe to conclude 

that the segmental fusions observed in Tc’gt knockdowns are actually comprised of the 

segments T2 and T3, which would be intuitively expected. The missing labial segment would 

thus cause the positional shift of these fusions as observed in the comparison with the Tc’hb 

knockdowns. Another implication of this finding is that the missing anterior Tc’gt domain 

likely causes the loss of Tc’h stripe #2, although other factors could contribute. A possible 

involvement of the Notch signaling pathway as cause for the specific deletion of these 

segments appears highly unlikely, since Tc’delta is only expressed in the mandibular segment 

after the segment has formed, whereas the lack of the Tc’gsb stripe as well as the fusion of the 

first and second Tc’prd stripe in Tc’h knockdowns is already evident at blastoderm stage. 

Furthermore, the specific loss of the labial or both the mandibular and labial segments was 

never observed in Tc’delta knockouts. The fact that the loss of the labial segment does not 

lead to a complete loss of the anterior segments, as seen in Tc`h knockdowns, allows the 

assumption that this effect is indeed associated with the expression in the mandibular segment 

where Tc’h appears to be coexpressed with Tc’delta. This is further supported by the 

unusually strong expression of Tc’h in this segment, which in addition persists for a longer 

time than in any other Tc’h stripe. 

 

Besides the main effect on segment formation and maintanance, knockdown embryos display 

a deep groove at the position of the ventral midline where Tc’h is expressed, a feature not 

observed with Drosophila hairy. The lack of apoptosis induction in this region, as seen in the 

wild type is likely caused by a lack of the respective cells in this region since the midline 

appears deeper than in wild type. Interestingly hairy “orthologs” are known to play a crucial 

role during the formation of midline structures in vertebrate development, where they 

participate in cell fate decisions during the establishment of these structures by the so called 

Spemann-Mangold organizer and its respective counterpart, the dorsal shield (Latimer et al., 

2005; Murato et al., 2006). However, this coincidence may not be a true homology, since 

members of the hairy family have been independently recruited to several processes of cell 

fate decisions (Latimer et al., 2005, Winkler et al., 2003), but may indicate the presence of a 

so far undetected organizer in this region. Another indication for the possible presence of an 

anterior developmental “organizer” in this species comes from the secondary function 
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observed for Tc’h during development. The developmental arrest and the later loss of anterior 

segments due to apoptosis induction, which is likely related to the possible interaction 

between Tc’h and Tc’delta, may hint to the presence of such an organizer given the early 

stages at which these effects become evident. The fact that no comparable effect is known 

from Drosophila development might be correlated with the highly specialized head 

development in this species. 

 

 

4.2 The evolutionary conservation of regulation  

The regulation of the secondary pair-rule gene Dm’ftz and others has been suggested to be a 

main cause of the segmental defects observed in Dm’h mutants (Ish-Horowicz and Pinchin, 

1987) implying a more indirect function of Dm’h in segmentation. The results obtained in 

these experiments show that this regulatory interaction is evolutionary conserved between 

Tribolium and Drosophila, although the function is not. One implication of this finding is that 

Tc’ftz has been recruited to the process of segment formation in the line leading towards 

Drosophila and that this regulatory interaction might have been already present in the 

common ancestor. The regulation of ftz by hairy could thus have facilitated the evolutionary 

recruitment of this gene into the segmentation cascade of Drosophila due to its resulting pair-

rule like expression. The fact that ftz is expressed in a A-P modulated pattern similar to its 

Hox complex neighbors in primitive mites, millipedes and onychophorans (Telford, 2000), 

but not crustaceans (Mouchel-Vielh, 2002, Janßen and Damen; 2006) may indicate that the 

expression and regulatory interaction observed in Tribolium evolved the insect clade, which is 

in line with the finding that the ftz homolog of the primitive insect Thermobia is expressed in 

a segmental pattern (Hughes et al., 2004), and thus facilitated the recruitment of ftz to the 

segmentation process in the line towards Drosophila . However, segmental expression of ftz 

homologs is also found in more basal arthropods like the centipede Lithobius (Hughes and 

Kaufman, 2002b) and a segmental expression pattern appears during the growth of the 

millipede Glomeris marginata embryo (Janssen and Damen, 2006). An explanation for the 

variation found in the expression pattern of ftz within and between different arthropod clades, 

based on the given interpretation, may be that a functional interaction between ftz and h is 

evolutionary conserved and facilitated the evolution of the segmental ftz expression several 

times independently. Functional analysis of this interaction in other insect species would help 

to pinpoint the evolutionary branching point at which this interaction was established and 

recruited to the segmentation process.  
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An obvious reason for the recruitment of additional factors to the process of segmentation 

could be the need of a denser positional map for the segmentation of the entire embryo at the 

syncitial blastoderm stage vs. the segmentation in a progressive fashion like seen in Tribolium 

and most other insect species. Such an additional recruitment of factors to the segmentation 

process in the line towards Drosophila seems not to be restricted to these two factors, since 

other Tribolium pair-rule orthologs have been shown not to function as such during 

segmentation (Choe et al., 2006). However, not all factors involved in the segmentation 

process of Tribolium and likely also Drosophila, are known. In a recent publication we 

presented a novel gap gene termed Tc’mlpt (millespattes), which is involved in the 

segmentation process of the Tribolium embryo (Savard et al., 2006) and which is also present 

in Drosophila. Yet its function during the segmentation of the Drosophila embryo, if it has 

any, has still to be proven. 

 

 

4.3 The regulation of Tc’hairy 

The regulation of Dm’h strongly reflects the derived mode of segmentation in a syncitial 

environment. The presence of stripe specific cis-regulatory elements that drive the expression 

of single stripes can be seen as a hallmark, and maybe even a prerequisite of long germ 

development and is found for several Drosophila pair-rule genes (e.g. eve, prd, run). The 

finding in our previous analysis that such enhancers do also exist in the short germ developing 

beetle Tribolium (Eckert et al., 2004) is a strong indication for at least a partial conservation 

of the pattern forming mechanism, and inevitably raises the question whether the underlying 

genetic networks regulating the homologous expression of the so called pair-rule pattern are 

also conserved between these species, despite the striking differences in the mode of segment 

formation. Comparison of the effects of gap gene mutations in Drosophila vs. knockdown by 

pRNAi in Tribolium show striking differences in the way they affect hairy expression in these 

species, but also similarities. Whereas, the Kr mutation has a strong influence on the 

formation of the h pattern in Drosophila, no comparable changes in expression could be 

found for the expression of the Tc’h stripes formed before the breakdown of segmentation in 

Tc’Kr knockdowns. Furthermore, a similar effect of Tc’Kr was also seen for the expression of 

the pair-rule genes eve and runt (Cerny et al., 2005, Souza Aranda, unpublished) suggesting 

no major involvement of Tc’Kr in the establishment of the pair-rule pattern. It is difficult 

though to assess the true identity of the stripes formed, since segmentation breaks down 

prematurely, but analysis of the phenotype using different markers currently argues against a 
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loss of intermediate segments and instead suggests a deletion of segments posterior to the 

Tc’Kr domain, thus defining Tc’Kr as non-canonical gap gene (Cerny et al., 2005). 

Interestingly Kr homologs were also studied in the more basal species Gryllus bimaculatus 

and Oncopletus fasciatus, were they have been found to act as canonical gap genes and in the 

case of Gryllus even to affect the pair-rule pattern of eve (Mito et al., 2006). It is therefore 

difficult to assess whether the function of Kr in the segmentation is ancestral or if this factor 

has been recruited to this process several times independently. 

A similar situation is seen for Tc’hb, although the effects on all stripes posterior to the second 

Tc’h stripe are evidently strong. The early breakdown of segmentation after the third thoracic 

segment in these embryos does not allow analysis of the influence on Tc’h expression in the 

posterior regions.  

 

The effect of Tc’gt depletion shows the highest similarity with respect to effects observed in 

the corresponding Drosophila mutant. The lack of Tc’h stripe #2 at blastoderm stage 

resembles a classical phenotype of gap gene mutation although this effect differs from the 

observations in Drosophila were stripe #2 is not affected by the gt mutation. The latter fusion 

of the presumptive stripes #3-#5 though are highly reminiscent as there are also fusions of the 

presumptive Tc’h stripes #3-#5 in Tc’gt knockdowns, despite the different position of the 

posterior Tc’gt domains. In both Drosophila and Tribolium, gt seems to have a repressive 

function on hairy, although the mode of action in Tribolium, being either direct or indirect via 

the failure in the establishment of these segments, can currently not be assessed. Furthermore 

the effects are seen both in blastoderm-derived segments (stripe #2) as well as in post-

blastodermal stripes (stripes #3-#5), thus Tc’gt affects stripes that are specified during and 

after the syncitial stage in contrast to Dm’gt. A possible implication of this result is that even 

though the mode of segment formation has undergone dramatic changes on the morphological 

level during the evolution of long germ development, the changes on the genetic level with 

respect to the regulation of pattern formation may have been less dramatic such that the “read 

out” is still similar. Therefore the regulatory position of Tc’gt in the process of segmentation 

in regulating the expression of Tc’h at both the blastoderm and post-blastodermal stages could 

be interpreted as an “intermediate state” in the transition from short to long germband 

development in which a gap gene regulates the expression of the blastodermal stripes in a 

similar fashion as known from Drosophila and in the same time serves as a “landmark” 

during the generation of post-blastodermal stripes. The patterning function during the 

generation of these post-blastodermal stripes implies the presence of a regulatory element, 
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which responds to the signal provided by the gap gene. With ongoing evolution this 

regulatory element and thus the secondary function of this gap gene as a “landmark” could 

evolve to a stripe specific enhancer and allow the gap gene to pattern these segments in a 

syncitial environment. 

 

Taken together the results obtained in this study indicate that, with respect to the regulation in 

Tribolium, the gap genes gained regulatory influence on the expression of hairy in the line 

towards Drosophila compared to Tribolium. The recent study on pair-rule gene regulation in 

Tribolium show that a variety of the pair-rule genes of Drosophila like ftz, tna, odd and paired 

do not acts as pair-rule genes during Tribolium development (Choe et al., 2006). Based on the 

main differences in the mode of development it is conceivable that more factors were needed 

to provide a sufficiently dense and precise positional map to pattern the entire embryo in a 

syncitial environment as mentioned above. The recruitment of factors and mechanisms to 

developmental processes based on their expression pattern has already been suggested before, 

and examples for convergent recruitment of pathways and mechanisms to such processes have 

been found in other model organisms (Harrison et al., 2005). This assumption is further 

nourished by the finding that several factors of different hierarchical levels, based on the 

knowledge of Drosophila development, seem to be interchangeable per se during the 

evolution of the regulatory network gouverning insect segmentation. In Oncopeltus fasciatus 

for example, the pair-rule gene eve does not act as a pair-rule gene during segmentation, but 

inherits a function in regulating the expression of the gap genes Kr and hb besides an 

“unusual” segmental expression (Liu and Kaufman, 2005), whereas analysis of the expression 

of these genes in Tc’eve knockdowns does not show any influence on the appearance of the 

respective gap gene domains in Tribolium (Choe et al., 2006, Souza and Aranda, 

unpublished). Thus the pair-rule gene eve inherits different developmental functions in 

different insect lineages. A similar diversity in function is seen for the gap gene Kr, which 

acts as canonical gap gene in species like Gryllus, Oncopeltus and Drosophila (Mito et al., 

2006; Liu and Kaufman, 2004), but not Tribolium (Cerny et al., 2005), as mentioned before. 

One of the most clear examples for the de novo recruitment of factors to specific 

developmental processes is the anterior maternal coordinate gene bcd. It is assumed that bcd 

is a divergent duplication of the Hox3 gene zerknüllt  (Stauber et al., 1999; Stauber et al., 

2002) and became the main anterior “organizer” in higher dipteran (Cyclorrhapha) 

development, thus switching its role from specifying non embryonic tissue to being a main 

regulator of segmentation. 
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4.4 Evolutionary Conservation of Regulation 

Despite the different mode of segment formation, which occurs in a progressive fashion from 

a growth zone in Tribolium compared to the blastodermal patterning observed in Drosophila 

we find strong indications for at least partial conservation of the underlying regulatory 

network. Both in Drosophila and Tribolium the BN3.1 construct is expressed in a three-stripe 

pattern in the center of the embryo covering stripes #3-#5, thus in a homologous region. 

Furthermore this expression seems to be regulated by the same genes, although it is still 

unclear how the gap genes, which work in a syncitial environment, can act under cellularized 

conditions in the Tribolium embryo. Therefore it remains to be shown if these gap genes 

interact directly with the hairy enhancers in Tribolium or a if still unknown cell signaling 

pathway is required to mediate their function. The fact that the expression of the Tribolium 

constructs occurs at the same stage as the endogenous hairy expression, which is evidently 

regulated by these genes, makes it unlikely that another tier of regulation is involved in 

transmitting the gap gene signal. Additionally, no cell signaling pathways are known to act so 

early during Drosophila development.  

The evolutionary conservation of the enhancers driving the expression of the central stripes is 

further supported by the expression of the Dm3-4 construct in Tribolium. Although its 

regulation by Tribolium gap genes could not be fully elucidated, the mere fact that it is 

expressed in the right region and that it resolves into two stripes coinciding with the 

endogenous stripe #3 and likely also stripe #4 is a separate line of evidence for a conservation 

of the underlying regulatory network involved in the observed expression.  

Analysis of the region driving the observed expression indeed contains predicted binding sites 

for at least some of the factors tested in these experiments. Although prediction of binding 

sites does not imply their functionality, we could show for Dm’kni that binding to these sites 

in vitro is indeed possible. The experiments performed by Paolo Struffi on selected sequences 

prooved that Dm’kni is indeed able to bind predicted binding sites in the Tc’h regulatory 

region in vitro, but the regions tested lie further upstream than the ones used in this construct 

(Paolo Struffi, personal communication), indicating hat the posterior expansion of the central 

domain driven by the Tribolium construct may indeed be indirect. Furthermore the Tc’kni 

ortholog identified so far does not seem to be involved in segmentation at all (Alex Cerny, 

personal communication). 

 

One astonishing aspect of these results is that we find partial conservation of regulation for 

the central stripes #3-#5. Comparison of the mode of development obviously shows the 
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highest similarity for the formation of anterior segments, which are generated in a syncitial 

environment in both species, whereas at least stripe #4-#5 are generated in a cellular context 

in Tribolium vs. syncitial conditions in Drosophila. However, the exact mode of regulation of 

the central stripes #3-#5 is not fully understood in Drosophila (Hartmann et al., 1994; 

Langeland et al., 1994). The positioning of stripes #3-#4 in particular does not only depend on 

the input by gap genes, but also requires cross regulation through the pair-rule gene runt 

(Hartmann et al., 1994), whereas the Tc’h stripes seem to depend on Tc’gt for proper 

expression. Therefore additional studies on these stripe enhancers will be required to clarify if 

and to which extend cell-cell signaling is involved in their regulation.  

The fact that we do not find a completely identical regulation of these patterns, despite the 

high similarities in the trans-species experiments in the Drosophila mutant experiments, hints 

to a conservation of the phenotypic character despite a diverged regulation and implies that 

major regulatory changes can occur without changing the phenotypic character.  

Despite the conservation found in the expression of the central stripes we do not find 

conservation of the stripes #1 and #2 elements as expected from the similarities of the 

embryonic enviroment in which these stripes are generated. However, this finding correlates 

well with an evolutionary innovation in the line towards Drosophila, namely the appearance 

of bcd as provider for anterior positional information. Evolutionary, bcd inherited this 

function during the evolution of the higher dipterans (Cyclorrhapha) (Stauber et al., 2002) 

and hence also the regulation of the anterior stripes #1 and #2 (Riddihough and Ish-Horowicz, 

1991). It remains to be analyzed if this evolutionary change is also evident in the regulation of 

these stripes in Tribolium, i.e. if Tc’otd, which is believed to fulfill a similar function in 

concert with hb in Tribolium (Schröder, 2003) and in the wasp Nasonia (Lynch et al., 2006), 

also acts in the regulation of Tc’h stripe #1 and #2 since the binding sites of BCD and OTD 

are highly similar (Lynch and Desplan, 2003). Similar to the evolutionary changes of the 

anterior patterning system we find strong divergence of the terminal patterning system 

between these species. Besides the involvement of Dm’bcd in the regulation of Dm’h stripe 

#7 (La Rosee et al., 1997) the expression of posterior acting gap genes differ substantially. 

Tc’gt for example is expressed in more anterior segments compared to its Drosophila 

orthologue and Tc’tll is not expressed at all during the formation of the posterior segments 

(Schröder et al., 2000). 

 

Interestingly analysis of enhancer elements between Drosophila species show indeed that 

major changes in the composition and organization, including gain and loss as well as 
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changes in spacing, of transcription factor binding sites within these elements can occur in 

relatively short evolutionary timescales without changing the overall output, thus implying an 

evolutionary constraint on the phenotypic character rather than the underlying regulation 

(Ludwig et al., 2000; Ludwig et al., 2005). As a consequence enhancer elements have a high 

architectural flexibility allowing the loss or appearance and even rearrangements of 

transcription factor binding sites, which is compensated by evolutionary changes in other 

parts of these elements, e.g. the evolution of new binding sites. It is therefore conceivable that 

within even larger evolutionary time scales binding sites for new factors, previously not 

involved in the regulation of a given gene, may evolve and take over its regulation. 

Comparison of such an evolved regulation between distantly related species might thus show 

no obvious regulatory conservation despite a maintained evolutionary continuum, and would 

serve as explanation for the flexibility in the usage of factors like Kr or eve and other factors 

in developmental processes observed in the functional comparison of related insect species, as 

seen in Anopheles, where homologous pair-rule stripes are regulated by different 

combinations of gap repressors (Goltsev et al., 2004). 

 

 

4.5 General conclusions 

The results obtained in this study indicate a possible evolutionary intermediate state of Tc’h in 

the evolution of long germ development compared to Drosophila. Whereas Dm’h is involved 

in the segmentation of the entire Drosophila embryo we only find conservation of this 

function during the blastoderm stage of Tribolium. Most interestingly this functional 

conservation seems not to be correlated with the regulatory conservation observed in the 

trans-species experiments, as we do not find conservation of the regulation of the stripes 

generated during blastoderm stage, but for stripes generated in the subsequent segmentation 

process likely for the reasons mentioned above. Furthermore, we find conservation in the 

regulation of the target gene ftz, which is not directly involved in the segmentation of the 

Tribolium embryo, but it is in Drosphila. Based on theses results one might formulate a 

possible evolutionary scenario in which the function of hairy in segmenting blastoderm-

derived segments was expanded in the line towards Drosophila to pattern the entire embryo. 

Such a functional expansion may also be reflected in the partially conserved regulation and 

even more in the conserved phenotypic character observed in the trans-species experiment, 

since expression at the right place and time is a prerequisite to inherit a function in a given 

process. One of the reasons for such an expansion could be the need of additional factors to 
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provide a sufficiently dense map for the segmentation of the entire embryo at blastoderm 

stage as seen in Drosophila. Functional analyses of several Tribolium pair-rule orthologs 

show no involvement in the segmentation, even if they are expressed in a pair-rule like 

fashion like Tc’ftz. Thus the function and evolutionary conservation found for Tc’h could be 

interpreted as an “intermediate state” in the recruitment of such a factor to the segmentation 

process in the evolution of long germ development. Given the evolutionary distance of more 

than 260 myr, one might speculate that the observed conservations evident in the expression 

patterns in the trans-species experiments were already present in the common ancestor of 

Tribolium and Drosophila, although their regulation is evidently not conserved in all aspects. 

The expression in a pair-rule like fashion thus might have facilitated the recruitment of h and 

factors like ftz into the segmentation process of the entire embryo in the line towards 

Drosophila and maybe also other long germ developing insects. However, there is no direct 

evidence for a selective force driving such a transition in Tribolium castaneum, but 

nebertheless it could still reflect some of the mechanisms which allow and facilitate such a 

transition. 

 

Interestingly, the computational simulation of the evolution of expression patterns performed 

by Ciudad-Salazar and colleagues makes several intriguing predictions for the evolution of 

pattern forming networks and the evolutionary transition from short to long germ 

development, although the complexity of such a simulation does not reflect the intricacy 

found in the networks governing pattern formation in insect embryos (Ciudad-Salazar et al., 

2001a; Ciudad-Salazar et al, 2001b). One of the predictions of this model is the need of more 

factors for a hierarchical system to generate a pattern with more than four stripes compared to 

a so called “emergent” system in which a self organizing system generates a periodic pattern, 

as known from vertebrate segmentation. Analysis of the segmentation cascade in Tribolium 

currently suggests the initiation and regulation of pair-rule gene expression by a circuit 

comprised of three pair-rule genes, namely Tc’eve, Tc’run and Tc’odd, which are connected 

in a regulatory circuit building the “core” mechanism of the pair-rule patterning system, in 

contrast to the regulation by gap genes as found in Drosophila (Pankratz and Jackle, 1990). 

Moreover the authors conclude that a smaller number of factors may comprise the core pair-

rule mechanism compared to the hierarchical system known from Drosophila, although it is 

likely that not all factors involved in the segmentation process of Tribolium have been found. 

Furthermore, the sequential function of this circuit provides evidence for the presence of a 

regulation by some kind of periodic mechanism (Choe et al., 2006). Such a circuit appears 
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apparently more closely related to an ‘emergent’ system as seen in vertebrates, and raises the 

question how such a system can evolve to the hierarchical segmentation cascade found in 

Drosophila. Intriguingly, the computational simulation presented by Salazar-Ciudad et al., 

shows the tendency for a replacement of emergent systems with hierarchical ones during 

further evolution. Moreover they find that intermediate systems are generated, which are by 

themselves adaptive, a finding that also serves as explanation for the fact that different germ 

types are distributed throughout the insect orders and that germ types do not sort into 

individual monophyletic groups (Patel et al., 1994). Furthermore the authors found that many 

of the evolved networks exhibiting temporally oscillatory patterns can produce stripe patterns 

when they are allowed to function in a syncitium. 

A main conclusion from the interpretation of the results mentioned above would be that 

segmentation is ancestrally driven by an emergent system comparable to the vertebrate 

segmentation clock or the pair-rule circuit found in Tribolium, and that the ‘state’ present in 

Tribolium may represent such an adaptive intermediate system in which the gap genes started 

to take over the regulatory network governing pair-rule gene expression, and that long germ 

development evolved several times independently. With respect to the underlying mechanism 

generating these stripes it might also explain the presence of stripe specific enhancer elements 

in a system not based on morphogenetic gradients as previously explained for the case of 

Tc’gt (see 4.3). 

Although Tc’h seems not to participate in the core mechanism regulating the pair-rule pattern 

in Tribolium presented by Choe and colleagues (Choe et al. 2006), it could still serve as 

model for how a gene can get under the control of gap genes in an emergent system and be 

integrated into a hierarchical system. Furthermore it is evident that gap genes do participate in 

the segmentation process of Tribolium as we see fusion of stripes in Tc’gt knockdowns for 

several pair-rule genes including Tc’eve and Tc’run, and the breakdown of the pair-rule 

circuit, evident in the premature termination of segmentation as observed in the respective 

knockdowns. Nevertheless it cannot be excluded that the pair-rule function of Tc’h in 

patterning post-blastodermal segments was lost in the line towards Tribolium.  

As mentioned earlier, homologs of the vertebrate segmentation clock, such as the Notch-Delta 

cell signaling system are indeed required for the proper segmentation of the spider Cupiennius 

salei (Stollenwerk et al., 2003), and members of this cell-cell signaling system may be 

involved in the segmentation of the cockroach Periplaneta americana (Juan Pablo Couso, 

personal comunication). However, functional analysis of members of this signalling pathway, 
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like Tc’delta and Tc’Su(H), did not provide convincing evidence for an involvement in the 

segmentation process of the Tribolium embryo. 

 

Intriguingly, we found that the polycistronic transcript coding for the novel gap gene Tc’mlpt 

(Savard et al., 2006) mentioned above, likely encodes for four small peptides, the last of 

which contains a stretch of four arginine residues. Since arginine-rich peptides have also been 

found in investigations of cell-penetrating peptides (Melikov and Chernomordik, 2005), the 

involvement of morphogenetic gradients in the regulation of the segmentation process in the 

cellularized enviroment of the nascent germband can currently not be excluded. However, 

further analyses are needed to elucidate the function of these peptides on the molecular level. 

 

Analysis of the molecular mechanism of segmentation in other insects, and in particular long 

germ developing beetles like Callosobruchus maculates, but also more basal hemimetabolous 

insects, may shed light onto the mechanism regulating the segmentation process in these 

species and allow to test the hypothesis presented in this study and finally help to understand 

the basic mechanisms that allow evolution to shape this tremendous diversity of body plans 

using the same molecular ‘tool box’. 
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Supplemental Material 

 

 

Figure 20 
Expression of Tc’gt (blue) and Tc’gsb (red) in Tc’eve knockdown embryos (A-H); expression of Tc’run (blue) 
and Tc’gsb in Tc’gt knockdowns (G-I); expression of Tc’gt (blue) and Tc’gsb (red) in Tc’hb knockdowns (J-L). 
Numbers indicate the Tc’gsb stripes starting from the mandibular segment. 

 

(A-F) Tc’gt is expressed in Tc’eve knockdown embryos in a similar fashion as in wild type. At early stage Tc’gt 
is expressed in an anterior domain and a posterior cap (A and B), which later splits into two stripes of expression 
similar as in wild type (C, black arrows). In contrast to this, Tc’gsb is not segmentally expressed as in wild type 
but shows expression in a broad domain around the center of the germband, which appears to move along the 
embryo during the elongation process. 

 

(G-I) Tc’gsb expression in Tc’gt knockdown embryos shows the expression of three stripes posterior to the 
intercalary segment before the first segmental fusion is detected. 

 

(J-L) Tc’gsb (red) and Tc’gt (blue) in Tc’hb knockdowns. Note that no posterior Tc’gt expression can be 
detected in the segments T3 and A2, instead segmental fusions are seen at these positions (black arrows). In 
contrast to the result obtained in Tc’gt knockdowns, four virtually normal Tc’gsb stripes are formed before the 
first segmental fusion (compare to G-I) 
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Figure 1 detailed sequence information 

Abbreviation Species name Gene name Accsession number 

At-h 

Achaearanea 

tepidariorum hairy BAD01491 

Cf-h Coboldia fuscipes hairy gbAAT92565 

Cs-h Cupiennius salei hairy embCAB89491 

Dm-dpn Drosophila melanogaster deadpan Q26263 

Dm-h Drosophila melanogaster hairy gbCAA34018 

Dr-h Danio rerio her1 gbAAU10470 

Dr-h2 Danio rerio her2 NM_131090 

Dr-h3 Danio rerio her3 NM_131080 

Dr-h4 Danio rerio her4 NM_131090 

Dr-h5 Danio rerio her5 NP_571152 

Dr-h7 Danio rerio her7 AAG24398 

Mm-hes1 Mus musculus hes1 NP_032261 

Mm-hes2 Mus musculus hes2 NP_032262 

Mm-hes5 Mus musculus hes5 spP70120 

Mm-HES6 Mus musculus hes6 Q9JHE6 

Mm-hes7 Mus musculus hes7 NP_149030 

Pc-h Platypeza consobrina hairy1 gbAAT92575 

Tc-h Tribolium castaneum hairy AJ457831 

Tc-h1 Tribolium castaneum hairy1 see below 

Tc-h2 Tribolium castaneum hairy2 see below 

Tc-h3 Tribolium castaneum hairy3 see below 

Tc-h4 Tribolium castaneum hair4 see below 
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Sequence Tc-h1: 

atgcactcgatcctcgctaccgcacgcgccacccccccgtcactgccaccgccgcctggcagctcgcactcgcccactcgtcggctc

gtgctgcagcagttcgcctcgtcctctcgccggcatcgccgccgatgcgcctctagtatgaccgccaagagcaagcgagcctccgag

ccacgccgcgccaacaagcccctcatggagaagcgccgtcgggctcgcatcaaccagagcctggccgccctcaagaccctcatcct

cgactcggccaaggccgacaacaccaagcactccaagctggagaaggccgacatcctggagctcaccgtgcgccacttccagcgg

caccgcagtctggacatcaagggagtgcaccagtacaaggccggctacgcggactgcgtgcgcgaggtgcagcgctacctggaca

cgccggacgcccagacgatgaccgtcgtcgacgctggcgtgcgccagcggctgctccggcacctggacaactgcgtcgccgaggt

ggacgtggacgtgcgaaacgcgggcttgccgccccccgaggagcggctccagcccccggactcgacgctcgaagaagtcaacaa

taaccagaaccggagcgaggagccgaaggaggatacgacagcgaagaattttgttctgttacttcccgagcattatctccagttggcca

acgctctgggggtgaatttgaggcacagtgagggtggagccgattccggggcctcctcgggggagagtagcgatagttcgaaacagt

caagtggggaaaaaccgctcgattttagcaaaagtaacgacaattgtgatatgtggaggccgtgg 

 

Sequence Tc-h2: 

atgggtgtcaggctagcggagcaaaggacgggagatcgtcgtcgtccatccacgcacccaatgctttccgtcgaagagccccagcc

gatctcccggacctaccagtaccggaaggtgatgaagccgatgttggagcgcaaacggcgcgcccgcatcaaccgctgcctcgacg

agctgaaggagctgatggtgacggcgctccagagcgagggcgagaacgtgtccaagctggagaaggccgatattttggagctgaca

gtgcgccacctccacaagctgcgccgccagcagcgcctctcggcgaaccccgtcgtggacgccgaccgcttccgcgccggctaca

cccactgcgccaacgaggtgtcccggtgcctggcctccatcccccacgtggacgtgcagctgggcaccaagctcatgacgcacctg

gggcaccgcctcaacgagatggacaaggtggcgccgctcgtcatccaagtggcgtacacgcccccgggctcgcccgccccaactg

tctactccatgcctctgacgccggcctcctcccaggcgccgtcgcccaaccagcccatggactgctccaccgctggccttctcaaagtc

gcccacaagaccgacgatgtgtggaggccgtgg 

 

Sequence Tc-h3: 

atgcccataagtgaagacgagtacgagattcgaccttcccaagaatcagtcacaatgtcgaaagccgaactacgaaaagtatgtccttt

gatttatcaaaatataataatttcaacacacattttccagacgcacaaacccataatggagaagcgcagaagagccagaattaaccactg

tttgaacgaaatcaaaacccttatcttggaagcaatgaacaaagacgtaatccccactcctcgaaattatcaaactttctgactttaatttttat

agccggcaagacactcaaaacttgaaaaagccgatatcttggaaatggccgtgaaacacctccaaaacgtccaacgccaacaactag

ccgttgcaatggcatccgacccttccgttttacgaaaattcaagtcaggtttcaacgaatgtgccaacgaaatcgaccgtttcgtctcaca

atccgaagttgacgacggcctcaaagaccggatgcgatcccacttgcaaaaatgcatcaacgggatcgaccatgttgcccatttcaact

tccccaactttccaaatttaccgttcacttcaacttcaaacgtaccttcttcaagtatcggtgaccaaaacaataacgcaagagtgcaaata

ccacaaagcatccaattgataccaagccgacttccaagcggggaaatcgccttgcttttacccaactcgagtaacttaccatttttgcaac

aaagagaacgaccaagtgctttcgtaactgtgataccgtcatcttcatcaacttcggtaagtcctccggcaagccccaaggggttccgtc

cagtgcaaccaacaacctaccacgaacaaccccaagtgccccaagtgtcttccacttcgattcctccagcaatggaagtcaaaagtatg

aaattcccgattcatcaacgcattatcagtccgaaaaaaacgatagagcctttgtgtattataacaaatcagtcggagcgcttcaaacagg
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cgcaaactcgcgaagatggcgccgattttgaggagaatcgcactcaaggagtgaagagaaaatatgccgaaatgactcaaggtttgct

cactgtggccgaatatccggctactaaaataattaaaacggaatcagcgacgagtacgacagaggccacagcgtccacttctcggga

gtcgaatcctccaggggatgggaacagtgatatgtggaggccgtgg 

 

Sequence Tc-h4: 

atggcgccgaccccgtatatggatgaaccgattagccgcacctatcagtatcgcaaagtgatgaaaccgatgctggaacgcaaacgc

cgcgcgcgcattaaccgctgcctggatgaactgaaagaactgatggtgaccgcgctgcagagcgaaggcgaaaacgtgagcaaact

ggaaaaagcggatattctggaactgaccgtgcgccatctgcatggcctgaaacgccagcatcagctggtgattccgccggaaggctat

gcggatcgctttcgcgcgggctttacccagtgcgcgcaggaagtgagccagtttctgaccaccccgaccgaaaccgtggatgcggtg

gcgggccgcaaactgctgcagcatctgggcgcgtgcgtgcgccagctggaatgcgcgcaggtgtataccccgccggcgagcccgc

aggtgaaagcgagcatgtggcgcccgtgg 
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Zusammenfassung 

Drosophila melanogaster ist der bestuntersuchte Modellorganismus der Langkeim- Insekten. 
Eines der außergewöhnlichsten Merkmale seiner Entwicklung ist die Spezifikation aller 
Segmente während des syncitialen Blastodermstadiums mithilfe eines Mechanismus, der auf 
freie Diffusion von maternalen und zygotischen Transkriptionsfaktoren zwischen den 
unzellularisierten Zellkernen des jungen Blastoderms basiert. Obwohl die Entwicklung 
verschiedener Insekten aus verschiedenen Ordnungen bereits untersucht wurde, ist es immer 
noch unklar, ob die Mechanismen, die man in Drosophila entdeckt hat, auch auf die 
Entwicklung der nichtsyncitial angelegten Segmente von Kurzkeim- Insekten zutreffen und 
wie dieses System evolutiv entstand.  
Die funktionelle Analyse des Tribolium castaneum hairy Homologs mithilfe der parentalen 
RNAi und die Analyse verschiedener molekularer Marker mittels in situ Hybridisierung in 
knockdown Embryos weisen darauf hin, dass die Segmentierungsfunktion von Tc’h als 
Paarregel-Gen während des Blastodermstadiums konserviert ist, wohingegen keine solche 
Funktionen für die Segmentierung während des weiteren Wachstums des Tribolium- 
Keimstreifens beobachtet werden konnte. Interessanterweise scheint diese Paar-Regel 
Funktion jedoch durch die Beteiligung von Tc’h an einem anderen Entwicklungsschritt, 
nämlich der Entwicklung des embryonalen Kopfes, überlagert zu werden, welche in 
knockdown Embyonen zum Verlust der anterioren Segmente bis zum 3. thorakalen Segment 
führt. Dies weist auf die mögliche Präsenz eines anterioren Organisers hin, der für die weitere 
Entwicklung dieser Region notwendig ist. 
Analysen der Regulation von Tc’h zeigen im Vergleich zu seinem Drosophila Homolog, dass 
sich die regulatorische Kaskade, durch die sie beide gesteuert werden, erheblich 
unterscheidet. Während die Tribolium gap- Gen orthologe Tc’kr und möglicherweise auch 
Tc’hb nicht an der Regulation des Tribolium hairy Paarregelmusters beteiligt zu sein 
scheinen, wie sie es in Drophila tun, konnte ein starker regulatorischer Einfluss von Tc’gt in 
diesen Experimenten beobachtet werden, was Ähnlichkeiten zu Drosophila aufweist. 
Analysen des regulierten Zielgens Tc’ftz weisen darauf hin, dass die regulatorische Interaktion 
zwischen diesen Genen konserviert sein könnte, obwohl die Nutzung dieser Interaktion bei 
Drosophila und Tribolium unterschiedlich ist. 
Trotz der Unterschiede, die für die Regulation des hairy Gens zwischen Drosophila und 
Tribolium entdeckt wurden, zeigen Experimente mit transgenen Fliegen, die ein lacZ 
Reportergen- Konstrukt tragen, welches unter der Kontrolle eines Tribolium Enhancers steht, 
der die Expression der Steifen 3 bis 5 reguliert, tatsächlich die Expression von 3 Streifen an 
ähnlicher Position. Des weiteren zeigen Kreuzungen dieser transgenen Linien mit Drosophila 
gap- und Paarregelgen- Mutanten eine Beteiligung dieser Gene an der Regulation der 
beobachteten Muster. Interessanterweise zeigen Experimente mit ähnlichen Konstrukten, die 
die Streifen- spezifischen Elemente für die Streifen #3-#4 aus Drosophila enthalten, eine 
Streifen- ähnliche Expression an vergleichbarer Position im Tribolium Keimstreifen. Jedoch 
lassen pRNAi- Experimente mit den Tribolium gap- Genen Tc’kr und Tc’hb vermuten, dass 
die Regulation dieser Streifen unterschiedlich ist. 
 
Die Ergebnisse dieser Studie enthüllen einen Teil der Funktion und Regulation des Tribolium 
castaneum hairy Homologs und erlauben einige interessante Spekulationen über die 
molekularen Ereignisse, die eine Transition von der Kurz- zur Langkeim- Entwicklung und 
der Evolution der Paarregelmuster in höheren Insekten ermöglicht haben könnten. 
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