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Abstract.— In this thesis, we analyze and explain various properties of stock

price changes.

The change of a stock price in a given time interval is composed of many price
changes resulting from single trades. Thus, the up and down movements of a
stock price can be seen as analogous to the classic diffusion of a particle: if the
particle moves due to random collisions with other particles, the displacement
after some time is determined by the sum of the displacements between the

collisions.

Under certain conditions, the values of such sums are Gaussian distributed. In
contrast, extreme price movements such as those of “Black Monday” in 1987,
when the S&P500 index fell by about 20% within one day, are so much larger
than ordinary price movements that they cannot be accounted for by a Gaussian
distribution. One could classify such events as “outliers” that reflect an abnormal
market behavior. However, our empirical analysis reveals self-similar features
in the time series of price changes, meaning that price changes exhibit similar
characteristics on many scales. In particular, a huge price change induces a
series of large price changes whose rate decreases over the following months. In
a similar way, some of these subsequent large price changes themselves induce
further series of intermediate price changes in the following days. Hence, the
mechanisms connected to huge price changes seem to be similar for smaller price
changes, raising the possibility that these same mechanisms might also underlie
ordinary price movements. This picture is supported by the widely accepted
finding that the tail of the distribution of stock returns, i.e. changes of the
logarithm of the stock price, follows a power law that describes intermediate

returns as well as extreme events.

Though extreme returns seem to be “ordinary” in the sense that they are con-
nected to the same mechanisms as smaller returns, it is still an open question
how returns can occur that are much larger than can be accounted for by a
Gaussian distribution. In fixed time intervals, where the large price movements
described above take place, the return is determined by two factors: the number
of trades in the respective interval and the magnitude of the returns due to single
trades (tick returns). In order to better distinguish between these two effects,
we focus on intervals with a fixed number of trades, rather than on intervals
defined by their actual length in units of time. Interestingly, also here we find
unusually large returns, resulting from the concurrence of two things: (i) in the
respective interval, the average tick return is large and (ii) most trades change
the price in the same direction. We show that a statistical model incorporat-

ing the average tick return and the direction of tick returns can reproduce the
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distribution of stock returns in the studied intervals.

While this analysis explains in detail how large stock returns are composed, we
examine in a further study why these strong returns occur. It is a reasonable
assumption that, besides the influence of news, prices change in response to
an imbalance between supply and demand. This imbalance can be quantified
by volume imbalance, defined as the difference between the volume (number
of shares) of buy and sell orders in a given time interval. On a given volume
imbalance, the stock price reacts with a price change that is determined by the
price impact function. We reconstruct this function in each time interval from
data containing information about all orders present in the market. Here, we
show that the time-varying slope of the price impact function is responsible for
very large returns. Though in each time interval the price moves due to the
volume imbalance, extremely large returns occur only when the price impact

function is steeper than average.

If prices change in response to trades, there seems to be a paradox: the signs
of orders, indicating whether it is a buy or a sell order, are long-term corre-
lated, whereas the returns resulting from the execution of these orders exhibit
only short-term correlations with a characteristic time of a few minutes. In
order to understand this paradox, we model trading strategies and show that
uncorrelated stock price changes appear naturally as soon as someone uses the

correlations in the orders to make profit.

After studying time correlations in the returns, we also investigate a tool that
can be used to analyze cross-correlations between finite time series. Since
their length is limited, even uncorrelated time series exhibit spurious cross-
correlations resulting from random co-movements that do not reflect the real
interactions. We show that a hypothesis test based on random matrix theory
can distinguish spurious correlations from real correlations, which we demon-

strate using numerical simulations.
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Zusammenfassung.— Diese Dissertation untersucht und erklért verschiedene

Eigenschaften von Aktienkursdnderungen.

Die Gesamtidnderung eines Aktienkurses in einer gewissen Zeit setzt sich aus vie-
len Preisdnderungen zusammen, die durch einzelne Transaktionen hervorgerufen
werden. Somit kénnen die Auf- und Abbewegungen eines Aktienkurses mit
der klassischen Diffusion eines Teilchens verglichen werden: Stofse mit anderen
Teilchen fiihren hier zu einer zufilligen Bewegung, wobei die nach einer gewissen
Zeit zuriickgelegte Strecke durch die Summe der Strecken zwischen den einzelnen

Stolsen bestimmt ist.

Unter bestimmten Voraussetzungen sind die Werte einer solchen Summe gauf-
verteilt. Im Gegensatz dazu stehen extreme Kursinderungen, die so viel grofier
sind als alltégliche Kursschwankungen, dass sie nicht von einer Gaufiverteilung
beschrieben werden kénnen. Man kénnte solche Beispiele wie den ,Schwarzen
Montag” im Jahr 1987, als der S&P500-Index innerhalb eines Tages um etwa
20% fiel, fiir Ausreifer halten, die ein unnatiirliches Verhalten des Marktes
widerspiegeln. In einer empirischen Analyse finden wir allerdings selbstdhn-
liche Merkmale in der Zeitreihe von Aktienkursinderungen, die also auf vie-
len Skalen &dhnliche Eigenschaften aufweist: Eine riesige Kursdnderung verur-
sacht eine Reihe weiterer groker Kursinderungen, deren Rate in den folgenden
Monaten langsam abfillt. Auf &hnliche Weise bewirken einige dieser nachfolgen-
den grofen Kursinderungen wiederum mittlere Kursinderungen, deren abfal-
lende Rate fiir einige Tage nachweisbar ist. Die Mechanismen in Verbindung mit
extremen Kursausschldgen scheinen also dhnlich denen von mittleren Schwan-
kungen zu sein, was vermuten lasst, dass sich auch alltdgliche Kursdnderungen
auf dhnliche Weise verhalten. In dieses Bild passt die bekannte, auf breite
Akzeptanz stokende Entdeckung, dass der Rand der Verteilung von Renditen,
d.h. Anderungen des logarithmierten Aktienkurses, wie ein Potenzgesetz abfillt,

welches mittlere Renditen genauso beschreibt wie Extremereignisse.

Obwohl also Extremereignisse ,normal” zu sein scheinen in dem Sinne, dass
sie mit den gleichen Mechanismen zusammenhédngen wie kleinere Kursbewe-
gungen, ist es noch immer eine ungeklarte Frage, wie Renditen entstehen, die
viel grofer als in einer Gaufverteilung sind. In festen Zeitintervallen, in de-
nen die oben beschriebenen Kursschwankungen stattfinden, hingt die Kursin-
derung von zwei Beitrdgen ab: von der Anzahl der Transaktionen im Zeitin-
tervall und von der Grofe der Kursénderungen infolge einzelner Transaktionen.
Um zwischen diesen Effekten besser trennen zu kénnen, untersuchen wir zuerst
Intervalle mit einer konstanten Anzahl von Transaktionen, im Gegensatz zu

einer festen Linge in der Zeit. Interessanterweise findet man hier noch immer
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ungewohnlich grofse Kursdnderungen, die aus dem gleichzeitigen Auftreten von
zwei Dingen resultieren: (i) in dem jeweiligen Intervall ist die mittlere Preisén-
derung durch eine einzelne Transaktion (die Tickpreisinderung) besonders grof,
und (ii) die meisten Transaktionen dndern den Preis in die gleiche Richtung. Die
Verteilung der Gesamtrenditen in den untersuchten Intervallen kann von einem
statistischen Modell reproduziert werden, das auf den Verteilungen der mittleren

Tickpreisdnderung und der Richtung der Tickpreisdnderungen basiert.

Wihrend diese Analyse im Detail beschreibt, wie sich groke Aktienkursén-
derungen zusammensetzen, arbeiten wir in einer weiteren Untersuchung heraus,
warum es zu diesen grofen Kursinderungen kommt. Eine mogliche Annahme
ist, dass Preise sich, neben dem Einfluss von Nachrichten, als Antwort auf ein
Ungleichgewicht in Angebot und Nachfrage &ndern. Dieses Ungleichgewicht
ldsst sich durch das Volumenungleichgewicht quantifizieren, welches die Dif-
ferenz zwischen dem Volumen (Anzahl von Aktien) an Kauf- und Verkaufauftré-
gen (Orders) in einem Zeitintervall beschreibt. Der Aktienkurs reagiert auf ein
gegebenes Ungleichgewicht durch eine Preisénderung, welche durch die Preis-
einwirkungsfunktion bestimmt ist. Wir rekonstruieren diese Funktion in je-
dem Zeitintervall aus Daten iiber alle im Markt vorhandenen Orders. Dabei
zeigen wir, dass die zeitlichen Anderungen der Preiseinwirkungsfunktion fiir das
Auftreten aukergewohnlich grofer Kursinderungen verantwortlich sind. Obwohl
zu jedem Zeitpunkt die Kursdnderung durch das Volumenungleichgewicht her-
vorgerufen wird, treten besonders grofse Kursinderungen nur dann auf, wenn

die Preiseinwirkungsfunktion iiberdurchschnittlich steil ist.

Wenn Aktienkurse sich als Antwort auf das Ausfilhren von Orders #ndern,
scheint ein Paradoxon zu entstehen: Orders, bzw. deren Vorzeichen, die angeben,
ob es sich um Kauf- oder Verkauf-Orders handelt, sind langreichweitig korreliert,
wohingegen die durch die Orders hervorgerufenen Kursinderungen lediglich
kurzreichweitige Korrelationen aufweisen. Um dieses Paradoxon zu 16sen, mod-
ellieren wir Handelsstrategien und zeigen, dass unkorrelierte Aktienkurséinderun-
gen aus korrelierten Orders auf natiirliche Weise entstehen, sobald jemand die

Korrelationen in den Orders zur Steigerung seines Gewinns verwendet.

Nach der Untersuchung zeitlicher Korrelationen von Kursdnderungen analysieren
wir auch Kreuzkorrelationen zwischen endlichen Zeitreihen. Auf Grund ihrer be-
grenzten Léange fiihren zuféllige Gleichbewegungen zwischen den Zeitreihen zu
kiinstlichen Korrelationen, die nicht die tatsdchlichen Wechselwirkungen wider-
spiegeln. Wir stellen einen auf Zufallsmatrixtheorie basierenden Test vor, der
zwischen echten und unechten Korrelationen in endlichen Zeitreihen unterschei-

den kann, was mit numerischen Simulationen demonstriert wird.
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1 Introduction

In recent years, the stock market has received a great deal of attention from the
general public. Since the “New Economy” boom in the late 1990s [1} 2, 13, 4],
the values of the world’s major stock market indices have become a common
feature on daily news shows, and many people pay close attention to the ups
and downs of the “Dow Jones”, “Nikkei”, or “DAX”.

The usual motivation for investing in the stock market is a desire to obtain
a return that is larger than the return yielded by a riskless investment such
as government bonds. However, this additional return can be gained only by
exposing one’s investment to the rigsk that is inherent in large fluctuations of the
stock price [5]. For example, market crashes such as those of October 1929 or
1987 show that stock prices can fall drastically within a matter of hours, which
might be dangerous not only for individual investors but even for the economy
as a whole [6, 7, 8, 9, 10, 11]. The mechanisms underlying such large price

changes are thus an important object of research.

Economists as well as physicists have studied stock price movements in the past,
revealing many properties of stock price changes [12, 13]. Of particular interest
for physicists was the discovery of power law tails in the distribution of stock
returns (i.e. changes of the logarithm of the price) |14} 15, 16, [17], that describe

also extreme price movements such as stock market crashes.

In physics, power laws appear when a system is close to a phase transition |18
19]. For example, when a magnet is cooled down so that its temperature ap-
proaches the critical (Curie) temperature, long-range correlations emerge so that
the magnetizations of a large number of subsystems are coupled. The resulting
collective behavior of the subsystems leads to large global fluctuations and a
strong response to an external influence such as a magnetic field. This response
is quantified by the susceptibility, which, together with other quantities, diverges
according to a power law when the temperature of the system approaches the
critical temperature. The existence of power laws in critical phenomena sug-
gests that there might also be such fundamental mechanisms in the stock market

causing the discovered power law distribution of returns.

In this thesis, we analyze large stock price changes, first from a descriptive
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point of view and then with a more explanatory approach using the concept of
response functions. Here, we study the price impact function [20, 21), 22), 23, 24,
25,126, 27, 28], 129, 30, 31], which quantifies how the price changes in response to
trades. In addition, we focus on correlations in the return time series of single

stocks and indices as well as correlations between returns of different stocks.

1.1 Properties of stock returns

In the following, we describe in more detail some of the manifold patterns that
have been found in stock price movements. These patterns pertain to the dis-

tribution of stock returns as well as time correlations in the return time series.

1.1.1 Distribution of stock returns

Returns on a “macroscopic” scale such as days are the sum of many returns
on smaller scales, i.e. minute returns or even returns due to single trades (tick
returns). When a variable is calculated by the summation of many random num-
bers, the central limit theorem states that this variable will be asymptotically
distributed like a Gaussian if the summands are independent and have a finite
variance. Hence, the Gaussian (or normal) distribution is a reasonable starting
point when studying such variables. Indeed, more than one hundred years ago
Bachelier [32] modeled price changes as independent, normally distributed ran-
dom numbers. Later, it was found that price changes are better described by a
log-normal distribution, which means that changes of the logarithm of the price,
i.e. returns, are normally distributed. The assumption of such a distribution led,

for example, to the famous Black-Scholes formula [33] for option pricing .

However, market crashes like the ones in 1929 or 1987 show that there are fluc-
tuations much larger than those found in a normal distribution. These extreme
price movements used to be called “outliers” since they did not agree with ex-
isting theory. This is in striking contrast to physics, where a theory must be
valid for all data points — an outlier (if it is not due to a measurement error)
that contradicts the theory is not to be discarded, but it is rather the reason
for attempts to create a better theory that can also explain this outlier. In-
deed, many studies show that the distribution of stock returns exhibits fat tails,
indicating that large returns are much more probable than in a Gaussian distri-
bution [14] 15] 16] 17, 34} 35, 36, 37, 38, 39, 40, 41]. In addition, the functional

!The Black-Scholes formula dating from 1973 has since been adapted to many “stylized facts”
of financial markets, including non-Gaussian returns. An overview of these more recent

advances in option pricing is given in [5].
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form of the distribution stays similar (stable) if the return is aggregated on very

different time scales from seconds to months.

These findings led to the idea that stock returns might have a Lévy stable
distribution [14] 37, 42| 43]. Such a distribution corresponds to the generaliza-
tion of the central limit theorem [44], which also applies to random processes
with infinite variance. In particular, if a random process has power law tails
P(x) ~ 2~ (@D with o < 2, summation of these (independent) random variables
leads to a distribution that converges to a Lévy-stable process characterized by
a. For a > 2, the variance exists and the limiting distribution is a Gaussian.
In a Lévy-stable process, which is also called “Lévy flight” or “stable Paretian”,
the tail of the distribution of the sum is determined by large events in the un-
derlying process, i.e. a large jump of the sum results from an extreme jump in

one of the summands.

In contrast to the idea of a Lévy-stable process, later empirical studies find
evidence that the distribution of stock returns has a finite variance and a tail
that follows a power law P(z) ~ z—(@+1)
distribution is not a stable Paretian |16, 17, 35, 36, 39, 45, 46, 47, 48| 149, 50]. In

addition, for very large time scales, the return distribution seems to approximate

with a ~ 3, suggesting that the

a Gaussian [39]. Though the tail of the return distribution is currently the object
of great interest [27, 51, 52, 53], there is still no general consensus about the

“true” mechanism behind large returns.

1.1.2 Stock return correlations

One condition of the aforementioned limit theorems is that the underlying sto-
chastic processes are independent. Indeed, it has been known for a long time
that returns have only weak linear correlations, which was later quantified as
an exponential decay with a characteristic time of around four minutes |65, 66].
In the light of these small correlations, assuming that returns are independent

seems to be a good first order approximation.

Though the return itself has only weak autocorrelations, it has been found that
returns are in fact not independent: absolute or squared returns, which in eco-
nomics are measures of volatility, exhibit long-term memory [15, 54} 55, 56, 57,
58, 59, 60, 61, 62 63 64, 65, 66, 67, 68, 69, [70]. Returns seem to remember
their past (absolute) value, resulting in time periods of high volatility and other
periods when the volatility is low. In economics, this phenomenon is called
“volatility clustering”. The long-term memory has been known qualitatively for
some time, as it was found that the autocorrelation function of absolute returns

[4

has a “slow” [57] or “very slow” [58] decay in time. More recently, attempts
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were made to quantify this slow decay. For example, Ding et al. [62] fit the
autocorrelation function of the absolute daily S&P500 index return with a com-
bination of an exponential function and a power law, while Dacorogna et al. [63]
find a power law exponent between 0.2 and 0.3 for absolute 20 minute returns
of different exchange rates. Liu et al. [65, [66] study the absolute one-minute
S&P500 index return in a 13-year period. Using detrended fluctuation analysis
and power spectrum analysis, the authors find that the autocorrelation function
can be described by two different power laws with a crossover time of about 1.5

days.

1.2 Cross-correlations and portfolio optimization

Understanding the distribution of price fluctuations and the correlations within
the return time series is only part of the picture. If one wants to estimate the
rigsk of an investment, it can be indeed important to know the return distribution
in order to prepare for a certain risk so that large price changes do not lead to
bankruptcy. However, when managing a portfolio of a variety of stocks, it is

possible to actually lower the overall risk of the portfolio.

To this end, it is important to correctly estimate and then minimize the corre-
lations between the stocks. For instance, if the portfolio consists exclusively of
stocks from the energy sector, a drop in the price of oil could lower the profits of
every company in the portfolio, resulting in a collective drop of their stock prices.
In contrast, if one also holds stocks from other sectors that are less influenced
by the price of oil, then the loss will be small in relation to the entire invested
capital. Hence, when correlations are minimized, so too is the likelihood that a
single market event will drastically decrease the value of the portfolio. In other
words, minimizing the correlations in a portfolio by diversifying (i.e. investing
in many different assets with small cross-correlations), substantially reduces the

risk for the invested capital.

A theoretical basis for diversification has been established by Markowitz in his
pioneering work on the calculation of efficient investments in the stock mar-
ket [71]. According to Markowitz, an investment is efficient if for a given return
the risk for the invested capital is minimal. Here, “risk” refers to the variance
of the portfolio, as opposed to the risk of an extreme price change as discussed
above. For efficient diversification and thus a minimal risk, one has to evaluate
the cross-correlations between the price changes of all stocks in the portfolio,
since these correlations determine the variance, and thus the rigk, of the portfolio

as a whole.
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In order to estimate the correlations within the portfolio, one can calculate
its correlation matrix from historical data, which contains the correlation co-
efficients between all the portfolio’s stocks. However, when estimating these
correlations, one has to deal with the “curse of dimensionality”: if one has only
short time series so that their length is comparable to the number of considered
stocks, the number of input parameters is of the same order as the number of
estimated correlation coefficients, resulting in large estimation errors. This leads
to a dilemma: on the one hand, one needs sufficiently long time series to have
enough data for a reliable calculation of the correlations. On the other hand,
correlations change over time so that one cannot extend the calculation over a
long period. For short time series, even totally uncorrelated returns lead to a
correlation matrix that deviates significantly from the unit matrix. Hence, due
to the limited length of the considered time series, random co-movements of the
stock prices lead to spurious correlations that do not reflect the real interactions.
Random matrix theory [72] can help distinguish these artificial correlations from
“real” correlations by comparing the empirically found correlations with corre-

lations of randomly generated time series of the same length.

1.3 Organization of the chapters

In the beginning of this thesis, we study large price fluctuations from macro-
scopic to more microscopic points of view in order to reveal information about

the underlying mechanisms.

In chapter 2, we analyze time periods after stock market crashes. Similar to
the Omori law for earthquakes, a shock (i.e. a large price change) is followed by
aftershocks, and the rate of aftershocks larger than a given threshold decreases
over time according to a power law with exponent one. Surprisingly, some of
these aftershocks themselves initiate a similar power law decay on a smaller
scale. This occurrence of crashes on all scales, where each crash is followed by

its own aftershocks, can be related to the memory in volatility.

This similarity between price changes on different scales suggests that they are
connected to the same mechanisms. Hence, the study of large price changes
might reveal information about the general mechanisms underlying the move-
ments of stock prices. In chapter [3, we examine the factors that lead to large
price changes in intervals with a fixed number of trades. By using such intervals
rather than fixed time intervals, we eliminate the direct influence of the trading
frequency, thereby isolating other factors for a more detailed study. We show

that large price movements can be modeled using the average tick return and
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the difference between the number of positive and negative tick returns in the

respective interval.

In chapter 4, we change the point of view. Instead of describing how large
returns are composed from the microscopic quantities, we focus on the question
why these large returns occur. To this end, we analyze response functions in
time intervals of five minutes. Here, we calculate the expected price impact
of an order, measuring how the price changes in reaction to a certain buy or
sell volume (i.e. the number of traded shares). Unlike in chapter [3, we study
not only the price change induced by a trade, but also take into account the
whole order book, including complete information about all orders present in
the market at a given time. We show that fluctuations of the price impact play

an important role in the occurrence of large price changes.

Chapter 5/ seeks to explain why returns are basically uncorrelated. This lack of
correlations is surprising because prices change as a result of order execution,
and order signs, indicating buy or sell orders, are strongly (long-term) corre-
lated [31) [73]. In this chapter, we analyze two different trading strategies and
show that uncorrelated stock returns emerge from correlated orders when the

order correlations are used to increase the profit of the trader.

In chapter 6, we study a method of testing whether an empirical correlation ma-
trix contains significant correlations as opposed to spurious correlations caused
by the limited length of empirical time series. The test compares properties
of the empirically found correlation matrix with average properties of random
matrices. We analyze this test by the use of Monte Carlo simulations and show
that its properties for finite samples can be improved by adjustments obtained

from the numerical simulations.

Appendix Al gives detailed information about the data sets studied and the

programming methods used for this work.



2 Crashes and subcrashes — Omori

law on all scales

In this and the following two chapters, we will try to understand the mechanisms
underlying stock price movements by studying large price changes from different
points of view. While in chapter 3 and 4| we will analyze large price changes on
relatively short scales of single trades or five minute intervals, in this chapter we
focus on market crashes and their effects on the price movements in the months

after the crash.

Such time periods after major stock market crashes were relatively recently
studied by Lillo and Mantegna [74] who find that here the stock market behaves
similar to earthquakes: the rate of volatilities (i.e. absolute returns) larger than
a given threshold ¢ decreases like a power law with an exponent close to one,
analogous to the classic Omori law describing the aftershocks following a large
earthquake [75].

In this chapter, we show that the Omori law holds not only after significant
market crashes, but also after “intermediate shocks”. Moreover, we find self-
similar features in the volatility. Specifically, within the aftercrash period (called
“Omori process” as it is characterized by the Omori law) there are smaller shocks
that themselves behave like the Omori law on smaller scales. We call these
shocks subcrashes, which can be considered as “new crashes on a smaller scale”,
followed by their own aftershocks [76].

Our results suggest that Omori processes might be present on all scales and
therefore constitute an important part of the mechanism underlying price fluc-
tuations. Having this in mind, we study the relation between Omori processes
and the long-term memory in volatility. Here, we do not only analyze the
volatility itself, but focus on volatility return intervals, the time between two
consecutive events with volatilities larger than a given threshold. Recent stud-
ies |77, 78, [79, 80] show that this analysis can reveal more information about
the temporal structure of the volatility time series. They find that, similar to
the volatility, return intervals display memory and volatility clustering, and also

scaling properties for different thresholds, which seem to be universal for differ-
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ent time scales and markets |77, 78, 79, 80]. This behavior is similar to what is
found in earthquakes [81] and climate [82, 83]. Due to the scaling properties, it
is possible to analyze the statistics of return intervals for different thresholds by
studying only the behavior of small fluctuations occurring very frequently, which
have good statistics. The results can then be applied to the more interesting

but rare extreme events.

Our analysis shows that the memory in volatility return intervals after large
market crashes is indeed related to the Omori law. Specifically, if we perform
appropriate detrending, the return intervals show significantly less memory, but
some memory still exists, independent of the large market crash. We also show
that at least part of this “remaining memory” can be described by the self-similar
subcrashes: if we remove also Omori processes due to subcrashes, the memory
is further reduced. We also analyze the memory in the volatility time series and
show that removing the influence of the major crash and some of its subcrashes
reduces the memory in the data set. However, some memory still remains so
that these crashes cannot account for the entire memory, raising the possibility
that the “remaining memory” is due to other subcrashes whose influence was

not removed.

This chapter is organized as follows. Section 2.1/ presents information about
the analyzed data. In section 2.2 we show and discuss the mechanism based
on Omori processes on different scales. In section 2.3 we study the memory in
return intervals induced by large and intermediate shocks. In section 2.4 we
analyze the influence of crashes on the volatility memory, and section 2.5 gives

a summary of the results.

2.1 Description of data sets

In order to capture a variety of market crashes, we analyze three different data
sets. More specific information about the studied data sets is given in appen-
dix Al

e (i) We study the one minute return time series of the S&P500 index from
1984 to 1989. Here, we analyze the aftercrash period in the 15,000 trading
minutes (approximately two months) after “Black Monday”, 19 October
1987, as well as after a smaller crash on 11 September 1986. We also
analyze the time after several other smaller market crashes within the

entire data set.

e (ii) The second data set consists of the TAQ data base of the year 1997
which is provided by the NYSE and contains all trades and quotes for
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all stocks traded at NYSE, NASDAQ, and AMEX. We choose the 100
most frequently traded stocks and calculate an index by a summation
of the normalized prices of each stock. From this index, we calculate a
one minute return time series for our analysis, which we analyze in the

approximately two months after the crash on 27 October 1997.

e (iii) As an example of a crash that is clearly due to an external event, we
also study the one minute return series of General Electric (GE) stock in
the three months after 11 September 2001.

For all three data sets, we calculate the volatility as the absolute value of the
one minute return

Gar =InS(t+ At) — In S(t) (2.1)

with At = 1min, normalized by the standard deviation
oc = G — (G2 (2.2)

of the entire period. Hence, in this chapter the volatility and also the threshold
q, as well as many quantities in the following chapters, are measured in units of

the standard deviation og.

2.2 Omori law on different scales

Lillo and Mantegna |74| showed that the Omori law |75 for earthquakes also
holds after crashes of large magnitude in financial markets, so that the rate n(t)

of events with volatility larger than a given threshold ¢ decays as a power law
n(t) =kt~ | (2.3)

where {2 is around one for large ¢ and k is a parameter characterizing the
amplitude of the rate n(t). For estimating the parameter k and the exponent

Q, we use the cumulative number N (t) of events larger than ¢, given by

N(t) = /0 tn(t’)dt’—kl_lﬂtlﬁ . (2.4)

We study the Omori law on different time scales. Figure 2.1 shows the cumula-
tive rate N (t) above (a) ¢ = 3 and (b,c) ¢ = 4 compared to the volatility in time
periods following three significant market crashes in (a) 1986, (b) 1987, and (c)
1997. The volatility is smoothed by a moving average over 60 minutes in order
to remove insignificant fluctuations. The large shock in the beginning of the
time interval is followed by aftershocks, which induces an Omori-like behavior

of N(t) (Omori process), shown by the dashed lines representing a power law
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Figure 2.1: Comparison between volatility and the cumulative rate N(t) of

volatilities (absolute one minute returns) larger than a threshold ¢. The plots

show the 15,000 minutes (approximately two months) after the market crashes
on (a) 11 September 1986, with ¢ = 3, (b) 19 October 1987, with ¢ = 4, and

(c) 27 October 27 1997, with ¢ = 4.

The volatility is displayed as a moving

average over 60 minutes in order to suppress insignificant fluctuations. The

insets show the self-similarity of the data set, meaning that while the big

crash in the beginning induces a behavior following the Omori law, some of

the aftershocks induce again a similar behavior on a smaller scale.
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fit. However, as seen in the insets of Fig. 2.1 many of these aftershocks seem
to behave like “real” crashes with their own aftershocks (subcrashes), but on a
smaller scale (shown by vertical lines). The insets show that a closer look into
many of these subcrashes reveals a similar pattern as the Omori law on large
scales. The exponent €2 is often smaller after smaller crashes, which is consis-
tent with the finding that the power law decay of the volatility after smaller
shocks has a smaller exponent than after large crashes [84]. Below we explore
the possibility that the self-similarity of the volatility (where the Omori law is

present on different scales) is directly related to the memory.

2.3 Return interval memory after crashes and

subcrashes

In order to explore the memory effects of the Omori law, we first analyze time
periods after very large market crashes. Specifically, we study the memory
in the volatility return intervals, which form a sequence of time intervals 7(t)
between two consecutive events with volatilities larger than a given threshold ¢
[77, 78], 79, 80]. We next show that the influence of the Omori law on 7(¢) can
be estimated by comparing the original 7(¢) with a detrended time series 7(t)
which is independent of the market crash. We fit the cumulative rate N(¢) in
the period after a market crash with a power law according to Eq. (2.4), thus
obtaining the parameter k and the exponent €2 for the rate n(t) [74]. Using n(t),

we can detrend the return interval time series 7(t) by rescaling by n(t) [85]
7(t) =71(t)n(t) . (2.5)

The rational for this detrending is the following: immediately after the crash
we have a large rate n(t) of high volatilities so that the return intervals 7(t) are
very short. Later, the rate of high volatilities becomes small while the return
intervals get large. According to Eq. (2.5), high (low) rates and small (large)
return intervals cancel each other so that 7(t) is detrended and thus independent
of the existence of the crash, since the trend caused by the crash is no longer

present.

The relation between the Omori law and the short-term memory in the return
interval time series can be studied by analyzing the conditional expectation value
(1(t)|70) of the return interval series 7(¢) conditioned on the previous return
interval 7y |77, [78], for both the original return intervals 7(¢) and the detrended
time series 7(t). In Fig. 2.2 (left column), (7(¢)|79) is plotted against 79. Both

quantities are normalized by the average return interval (7), for return intervals
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Figure 2.2: Memory in volatility return intervals for different thresholds before
(left column) and after (right column) detrending the time series according to
Eq. (2.5). The analysis is shown for (a) the S&P500 index in the two months
after the crash on 19 October 1987 and (b) an index calculated from the 100
most frequently traded stocks from the TAQ data base after the crash of 27
October 1997. Removing the Omori law reduces the memory in the data sets,

but some memory still exists.

after the crashes in (a) October 1987 and (b) October 1997. The deviations
from a horizontal line at (7(¢)|79) = 1 for all thresholds show memory: large
(small) values of 79 are more likely to be followed by large (small) values of 7(¢).
The slopes of the curves for the detrended time series 7 are significantly less
steep (right column), indicating that detrending the Omori law from the time
series significantly reduces the memory, but some of the memory still remains,
which might be due to the Omori process still present on smaller scales (see
Fig. 2.1)).

In addition to the effect of the major crash, we can also analyze the influence of
Omori processes after subcrashes on smaller scales. To this end, we further
detrend the time series by removing some subcrashes and test whether the

memory is further reduced. After identifying the subcrashes !, we detrend the

1To properly identify subcrashes that can be removed from the records, we filter the time
series with an appropriate criteria for each data set. For the S&P500 index time series,
including the crashes from 1986 and 1987, we define a subcrash as an event where the
60 minute moving average of the one minute volatility exceeds one standard deviation
(corresponding to a much larger one minute volatility burst). We also require at least
500 minutes to the next subcrash (events within 100 minutes are considered as the same
subcrash). For the data from 1997, we analyze the ten minute moving average, and a
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Figure 2.3: Memory in volatility return intervals for threshold ¢ = 3 for (a)
the S&P500 index in the two months after the crash on 19 October 1987
and (b) for an index calculated from the 100 most frequently traded stocks
from the TAQ data base after the crash of 27 October 1997. The conditional
expectation value (7|70) / (7) conditioned on the previous return interval 7y is
smaller than one if 79 is below the median while (7|m) / (1) > 1 if 79 is above
the median, indicating the memory in the records (circles). The effect weakens
upon detrending the time series by removing the influence of the major crash

(squares) and even further when removing some subcrashes (diamonds).

return intervals 7(t) by removing the Omori process due to the major crash as
well as the Omori processes induced by the subcrashes. To this end, we estimate
the parameters k and €2 in Eq. (2.3) for the rate n(t) after the major crash as
well as for the rate ng(¢) in the 1000 minutes following each subcrash (or the
time to the next subcrash, if smaller). Note that ns(t) is calculated from the
detrended return intervals 7(¢). Then, the double detrended return interval time

series is given by

ns(t)7(t) in time following a subcrash
(t) = { (2.6)

7(t) otherwise.

In order to improve the statistics for testing the effect of removing also sub-

crashes on the memory, we plot in Fig. 2.3/ the conditional expectation value

subcrash has to exceed 2.5 standard deviations. The other parameters are the same as for
the S&P500 data.
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Figure 2.4: Probability P(t|7p) that after a return interval 7y the next volatil-
ity larger than a threshold ¢ = 4 (¢ = 3 in (d)) occurs within time ¢. Here,
To belongs to either the 25% smallest values (7, circles) or the 25% largest
values (75, squares) of 7. The memory in the original time series (filled sym-
bols) is reduced after removing the influence of the major crash by detrending
according to Eq. (2.5) (open symbols), but some of the memory still remains.
The results are shown for (a) the S&P500 index after a crash on 11 September
1986, (b) the S&P500 index after the crash on 19 October 1987, (c¢) an index
created from the 100 most frequently traded stocks from the TAQ database
after the crash on 27 October 1997 and (d) GE stock after 11 September 2001.

(T|70) / (T) for only two 7y intervals: 7y below and 7y above the median of 7.
We see in Fig. 2.3 that when 79 is below the median, (7|r) /(7) < 1, while
(t|m0) /(1) > 1 for 79 above the median. This indicates the memory in the
records, and also shows that the memory in the original records (circles) weak-
ens upon detrending the time series by removing the influence of the major
crash (squares) and further weakens when also some subcrashes are removed
(diamonds). Hence, not only a large market crash but also smaller subcrashes

contribute to the memory in return intervals.

To further investigate the effect of removing the memory induced by aftershocks,
we analyze the probability P(t) that after an event larger than a certain volatility
g the next volatility larger than g appears within a time ¢ |79, 81),83]. In order to
study the memory, we plot the conditional probability P(t|7) for different values
of the preceding return interval 79. Figure 2.4 shows P(t|r9) for ¢ = 2 under

the condition that the preceding return interval 7 belongs to the smallest 25%



Return interval memory after crashes and subcrashes

15

T T T T T T T T
015
01
0.05
0
-0.05

-0.1
0.15

-

FTTTTTTTrTT
N L Y

IIIA ‘.I

—— original data
— — major crash removed
- also subcrashes removed

0.1

0.05

autocorreation of return intervals

7
N
S A Y N

(d) 1997, g= 2

_O 05 I 1 I 1 I 1 I 1 I 1 I I 1 I 1
0 20 40 60 80 100 20 40 60 80 100

time lag [return interval s

Figure 2.5: Autocorrelation function of the return interval time series for
threshold (a,c) ¢ = 1 and (b,d) ¢ = 2. The first row (a,b) shows results
from the S&P500 index in the three months after the market crash on Octo-
ber 19, 1987, while the second row (c,d) results from an index created from the
100 most frequently traded stocks from the TAQ database after the crash on
27 October 1997. The Omori law due to the market crash (original data, solid
lines) induces correlations leading to an offset in the autocorrelation function
which is removed in the detrended 7 (dashed lines), but the data still shows
some long-term correlations even after removing the influence of the Omori
law. However, after further detrending with respect to some subcrashes (dot-
ted line), the autocorrelation is further reduced. All lines are smoothed by a

moving average over ten return intervals.

of the return intervals or that the preceding return interval TS_ belongs to the
largest 25%. The memory in the time series leads to a splitting of the curves
because after larger return intervals (squares) the time to the next volatility
above ¢ is usually large, while it is short after small return intervals (circles).
After removing the influence of the major crash by detrending, the curves get

closer, indicating a reduced memory, but also here some memory still remains.
To test the long-term memory effects of the Omori process on the volatility
return intervals we study their autocorrelation function. For two different time
series x(t) and y(t), the correlation function quantifies the correlations at a time
lag A as

clat), (1), ) = FOUEH D) @) ) 27

0z0y

where o, and o, denote the standard deviations of z(t) and y(t). If the time
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Figure 2.6: Cumulative rate N(t) of events larger than a threshold ¢ averaged
over the 1000 minutes after 22 shocks between 11o¢ and 160¢ in the S&P500
one minute time series of the years 1984 to 1989. The data for each shock
is normalized by N(1000) in order to make different shocks comparable irre-
spective of the current trading activity. The cumulative rate can be well fitted
by a power law according to Eq. (2.4). The exponent grows from € = 0.05 to
Q=045 forq=1...6.

series z(t) and y(t) are identical, one obtains the autocorrelation function

(a(y(t +A) (1)’

2
Ox

c(z(t),A) = (2.8)

Figure (2.5 shows the autocorrelation function of return intervals after the market
craghes in 1987 and 1997 for two different thresholds ¢ = 1 and ¢ = 2. For both
thresholds, we see that there exists a significant correlation even between return
intervals 100 steps apart, which corresponds to approximately 2—5 days in 1987
(0.5—2 days in 1997) since the average return intervals are (7(¢ = 1)) = 6.33min
and (7(¢ = 2)) = 17.4min in 1987 and (7(¢ = 1)) = 2.47min and (7(¢ = 2)) =
7.66min in 1997. If we now remove the effect of the Omori process due to the
market crash by detrending according to Eq. (2.5), the memory in the detrended
sequence T is reduced significantly, as we see in the dashed curves of Fig.[2.5 The
dotted lines show that removing also the influence of some subcrashes according

to Eq. (2.6) further reduces the memory.

So far, we showed indications that within the time period after a big crash
there might exist smaller crashes that behave in a similar way. The question
arises whether such subcrashes are only typical after a big crash or whether
they appear in all time periods independent of the existence of a big crash. To
test this, we study 22 crashes of sizes between 11 and 16 standard deviations
in the S&P500 time series from 1984 to 1989. These crashes are considerably

smaller than the huge crashes of more than 30 standard deviations in a one
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minute interval studied above. We analyze the cumulative rate N(t) in the
1000 trading minutes following these smaller crashes. In order to make different
crashes comparable irrespective of the current trading activity, we normalize
the cumulative rate N(t) by N(1000). Figure 2.6/ shows this normalized rate
N (t)/N(1000) averaged over all aftershock periods ?. For different thresholds g,
N(t)/N(1000) can be fit with a power law, Eq. (2.4). The exponent 2 increases
with the threshold, but is generally smaller than the exponents found after very
large shocks. Our results for the rate decay are analogous to volatility studies
[84, 86] where the exponent characterizing the volatility decay depends on the
magnitude of the shock [84]. These results indicate that relatively small crashes

have similar Omori processes which may lead to memory effects.

2.4 Memory in Volatility after crashes and subcrashes

In the previous sections, we showed that the memory in return intervals de-
creases when we remove effects due to Omori processes. Since the studied return
intervals 7(t) are derived from the volatility time series v(t), it would be inter-
esting to test whether the memory in v(t) is also affected by Omori processes.
Thus, we next analyze the memory in the volatility time series directly. It is

known that a market crash induces a power law decay of the approximate form
’l)pL(t) = Uot_ﬁ (29)

with an exponent 3 ~ 0.2 — 0.3 |74, 84]. In order to study the memory induced

by this decay, we compare the original time series v(t) to a detrended one

o(t) = v(t)

VPL (t)

(2.10)

so that 9(t) does not depend on the market crash.

We use second order detrended fluctuation analysis (DFA2) |87, 188, 89] to study
the long-term memory in the volatility [15, 54, 55, 56l 58, 57, 59} 60, 61, 62,
63, 64, 65, 166, 67, 68, 69, 70]. In DFA2, the deviations F'(s) (root mean square

fluctuations) from a second degree polynomial fit of the profile

y(t) => ot (2.11)

as a function of different scales s (time windows) reveal information about the

memory. If F(s) ~ s* the autocorrelation exponent « of the time series is

2The average only includes crashes where the volatility exceeds the threshold ¢ at least five
times during the studied time period of 1000 minutes. For e.g. ¢ = 6, there are 11 crashes
that satisfy this criteria.
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Figure 2.7: Root mean square fluctuation F'(s) obtained by the second order
DFA method (DFA2) for the volatility in the 15,000 minutes following market
crashes in (a) the S&P500 index on 11 September 1986 and (b) on 19 October
1987, as well as (c) the market crash on 27 October 1997 for an index created
from TAQ-data for 100 stocks. F(s) is divided by s° to clarify the deviation
from uncorrelated data. Compared to the original volatility v(t) (circles), the
memory is reduced in the detrended records o(t) (squares), and even further

after also detrending some subcrashes in o(t) (diamonds).
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related to the exponent a by @« = 1 — /2. For a > 0.5, the time series is
long-range correlated, it is anti-correlated for o < 0.5, and a = 0.5 indicates no
long-range correlations. Figure 2.7 shows log(F(s)/s%?) plotted against log s for
15,000 trading minutes after three different market crashes of 1986, 1987, and
1997. With no long-term correlations, the function would be constant, while a
positive slope indicates long-term correlations. For all crashes, the original time
series (circles) shows an increased slope on large time scales. After detrending
according to Eq. (2.10) and replacing v(t') by () in Eq. (2.11), the curve
(squares) gets less steep, indicating a reduction of the memory (the curves are

shifted so that they start at the same point).

As described before, there are also subcrashes which may induce their own power
law decay on a smaller scale — not only in the rate, but also in the volatility. In
order to analyze the memory due to these subcrashes, we further detrend the
time series and test whether the memory is reduced even further. To this end,
we fit the detrended volatility 0(¢) in the 1000 minutes following each subcrash
(or the time to the next subcrash, if shorter) with a power law 0py, according
to Eq. (2.9). Then, we further detrend ©(¢) in these regions using Eq. (2.10)
for ©(t) instead of v(t). The DFA2 curve for the double detrended time series
o(t) = ©/0py, is also shown in Fig. 2.7. The decrease in the slope shows that
the memory is further reduced after removing the influence of the subcrashes.
However, we clearly see that removing the trends induced by a market crash as
well as subcrashes only slightly reduces the memory in the volatility on quite

small scales (s < 60min).

The effect of removing subcrashes on the long-term correlations of volatility
is seen better in Fig. 2.8. Here, we compare the autocorrelation functions of
the detrended volatility #(¢) and the double detrended volatility o(t) after also
removing subcrashes. It is seen that generally the autocorrelation of 1:)(t) is
smaller than of 9(¢), which indicates that the Omori processes after subcrashes
also contain some memory. Our results are in agreement with the findings of
Borland and Bouchaud [90], who recently presented a multi-timescale model

that can account for both volatility clustering and Omori type laws.
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Figure 2.8: Autocorrelation function of the volatility time series after detrend-
ing. Compared to the volatility time series after only detrending the major
crash (circles), detrending subcrashes (squares) further reduces the autocor-
relations. The results are shown for (a) the S&P500 index after a crash on 11
September 1986, (b) the S&P500 index after the crash on 19 October 1987,
(c) an index created from the 100 most frequently traded stocks from the TAQ
database after the crash on 27 October 1997. The autocorrelation function
of the original volatility time series is not shown because it is not meaningful

as it is dominated by the influence of the market crash.
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2.5 Summary

We find that Omori processes after market crashes exist not only on very large
scales, but a similar behavior is also induced by less significant shocks. Moreover,
we find that such Omori processes on different scales can occur within the same
time period. This leads to self-similar features of the volatility time series,
meaning that some of the aftershocks of a large crash can be considered as

subcrashes that themselves initiate Omori processes on a smaller scale.

This result suggests a mechanism that might be present on all scales, not only
after large market crashes. Indeed, we find that a significant amount of memory
is induced by this self-similarity with crashes and subcrashes, which suggests
that a large part of the memory in volatility might be due to Omori processes

on different scales.
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3 Analysis of aggregated tick returns

In the previous chapter, we studied Omori processes after huge market crashes,
affecting the volatility over several months. We found that these crashes have an
equivalent on smaller scales, suggesting that there might be a generic mechanism
that can be related to the memory in volatility. In the present chapter, we want
to focus on a much smaller scale and study not the time after large price changes,

but try to understand the mechanism that leads to such large returns.

In the introduction of this thesis, we already described the practical as well as
theoretical relevance of the fat tailed distribution of stock price changes. In
practice, using the correct distribution can help find more accurate models and
can lead to a better risk estimation when the probability for extreme events is
known [12, 5]. From a theoretical point of view, the power law distribution is
reminiscent of critical phenomena and universality, suggesting that there might
be a universal mechanism leading to this distribution. Finding this mechanism
could lead to a better understanding of financial markets and reveal important

constraints for modeling financial time series.

In this chapter, we focus on the analysis of tick returns, i.e. returns due to a
single trade. Farmer et ol. find that the distribution of tick returns is similar to
the distribution of returns aggregated on longer time scales, exhibiting power
law tails P(z) ~ z~(@+1) with the same tail exponent [52]. Although the expo-
nent is outside the Lévy regime 0 < a < 2, the authors argue that similar to a
Lévy flight, both distributions are caused by the same microscopic mechanism,
so that large aggregate returns are due to single exceptionally large tick returns.
Plerou et al. describe the price movements as a diffusion process with a fluctu-
ating diffusion constant and relate the distribution of aggregate returns to the

distribution of the variance of the tick returns [91].

We investigate the transition from tick returns to returns aggregated in intervals
with a larger number of trades. It is well documented (e.g., in [92, 93]) that the
number of trades in a time interval is an important determinant of the aggregate
return. However, the trading frequency alone cannot account for the observed
fat tailed distribution of aggregate returns |91}, 94]. Thus, we remove the direct

influence of the trading frequency by analyzing intervals with a constant number



Model

23

of trades so that effects due to other quantities like the absolute tick return are

more clearly visible.

Similar to the work of Plerou et al. [91], this study examines price movements
as a diffusion process [95]. Our results for intervals with a constant number of
trades confirm some of their findings for time intervals, specifically the result
that the mean square of the tick return (here the mean absolute tick return) is
an important determinant for large aggregate returns. However, our study goes
considerably beyond this work. While Plerou et al. compare the exponents of
the distributions and conclude that the power law tails of the aggregate return
are due to the distribution of the variance of the tick returns, we actually study
the intervals with the largest aggregate returns and check which quantities lead
to these specific events. In this way, we can directly study the influence of each
quantity on the aggregate return. Using this information, we also present a

statistical model illustrating the mechanism leading to large price fluctuations.

Moreover, we find that the tick return size (absolute tick return) can well char-
acterize an interval of many trades because it is long-term correlated in tick
time (compare [62} 63, (65, 66, (67, 68, 96, 97, 98, 99]). According to the central
limit theorem, independent tick returns would in aggregation lead to Gaussian-
distributed returns, but due to the correlations, the fluctuations of the mean
tick return size lead to the non-Gaussian behavior of the aggregate return. In
this picture, large aggregate returns do not occur because of a few very large tick
returns, but rather when the average tick return is large, so that even Gaussian
fluctuations in the direction of the trades can lead to aggregate returns larger

than in a Gaussian distribution.

The remainder of this chapter is organized as follows. Section 3.1/ shows our
model for the price diffusion process, in section 3.2l we describe the data set
used for this study, section 3.3 shows the influence of the tick return size on
the aggregate return while section 3.4/ focuses on the influence of differences
in the direction of tick returns (number difference). Section 3.5 compares the
number difference and the flow of market orders and in section 3.6/ we present a
statistical model which approximates the distribution of aggregate returns. We

conclude with a discussion of our results in section [3.7.

3.1 Model

We study intervals with a fixed number of N = 100 trades. If the price of a

stock before the ith trade is s;, we define the return due to a single trade, the
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tick return, as
0g; = In(si+1) — In(s;) . (3.1)

The interval I; contains all N trades with index ¢ between jN and (j+1)N, so

the aggregate return G is given by the sum over all dg; with iel;:

i€l

We want to discuss two special cases in order to analyze the mechanism leading
to large aggregate returns G;. In the first case, G is dominated by one (or a

few) extremely large dg; ™, so that

Gj=0gp™ + > bgim~ogne® . (3.3)

0 0
iel; izio

max

Thus, G becomes large if dg;)'** is exceptionally large.

In the second case, we assume that there is no extremely large tick return
dominating the aggregate return, so that we focus on the average size Ag; of

the non-zero tick returns, which is defined by

1
Agj = — > 1ol - (3.4)
J 09;#0,iel;

Here, n; is the number of dg; # 0 in the interval I;. Neglecting asymmetries
in the dg;, we can replace all dg; # 0 by sgn(dg;)Ag; and approximate the
aggregate return by

Gj ~ Agj Z sgn(égi) = AngNj 5 (35)
0g;#0,iel;

where AN; = 26%7&0,1‘51]- sgn(dg;) is the number difference. Similarly, G; can

be described as a diffusion process with
(G3) ~ D;N (3.6)

where the diffusion constant D; = %Ag? varies due to the varying step width

Ag; and the number n; of nonzero tick returns.

In the approximation given by Eq. (3.5), we can study the influence of the
mean size of the tick returns as well as asymmetries in their direction. A large
aggregate return can occur if the price moves more often in one direction than
in the other. Thus, with large temporary correlations between the signs, even
small tick returns could compose a large Gj. On the other hand, if Ag; is larger,

even a small asymmetry in the signs can lead to a large return.
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The two approximations given in Egs. (3.3) and (3.5) are analyzed in sections /3.3
and [3.4] of this chapter, but in section 3.6 we also consider the error term ne-
glected in Eq. (3.5). An exact formulation is written
I At -

(Ag;” — Ag;) (3.7)

%

2n

G, = Ag;AN; +

where Ag;-r and Agj_ are the average tick returns in the positive and negative
directions while nj and n; are the numbers of non-negative tick returns in the

positive and negative directions.

3.2 Data analysis

We analyzed the order book data of the year 2002 from Island ECN for the
ten most frequently traded stocks [100]. Since the Island ECN is a secondary
market where only part of the whole stock volume is traded, we also studied
the index fund QQQ which was mainly traded via Island until September 2002.
Since our results for the ten stocks and QQQ are similar, we find no evidence
that secondary market characteristics of Island affect our analysis negatively.

More detailed information about the studied data set is given in appendix |Al

In an electronic market place like Island, people can place limit orders to buy
or to sell at a given or better price (limit price), which is specified in the order.
These orders are stored in the order book, and they are only executed when the
actual stock price reaches the limit price. A trade is initiated by a market order
indicating that someone wants to buy or sell immediately at the best available
price. Such a market order executes the limit orders offering the best prices

until the number of shares specified in the market order is traded.

Our data set contains information about every limit order so that we are able to
reproduce the market situation at each instant of time. We combine those limit
order executions with identical time stamps as they reflect the same market
order. Therefore, we can analyze the impact of each single market order on
the price. In this analysis, the price s; is defined as the midquote price s; =

%(sfid + S?Sk), which is the mean of the quotes, i.e. the best available buy limit

bid

i

price sP4 (bid price) and sell limit price s2°¢ (ask price). We study intervals
with a fixed number of N = 100 market orders and have approximately 100,000
intervals in our data set for ten stocks. Thus, on average a 100 trade interval
corresponds to about ten minutes, but the trading frequency fluctuates strongly

so that 100 trades can correspond to time intervals with very different lengths.

We determine the midquote price s; just before the execution of the ith market

order. Since most trades change the price just by the size of the gap between
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Figure 3.1: Five largest price changes (a) (Sggmz+ and (b) dg7"**" due to a single
trade with (a) the same and (b) the opposite sign as the aggregate return in
that 100 tick interval, plotted against the rank of the corresponding aggregate
return |G}/ for the combined data of ten Nasdaq stocks in 2002 (smoothed by

g;era:BJr

averaging over 100 intervals). For large |G|, the size of the 0 increases

by a factor of two while the increase in the dg;"** is slightly smaller. The sum

over all five 5gjr-'1ax+ reaches more than three standard deviations for intervals
with extremely large |G|, but the fluctuations in the opposite direction are

almost equally large.

the best and second best limit prices [52], the tick return dg; corresponds to
the gap size. We note that the price can (and often does) change between two
consecutive market orders due to placement or cancelation of limit orders so
that dg; does not provide a direct estimate of the gap size. We normalize the
tick returns dg; by the standard deviation of the aggregate return G; for each

stock individually so that we can combine the results for different stocks.
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Figure 3.2: Density plot of the 100-trade return |G;| of ten Nasdaq stocks
against the average return of a single trade Ag; for each interval. The Points
are coded from light gray to black indicating the number of events from 1

to more than 500. A linear regression has only a small correlation coefficient
R? =0.07.

3.3 Influence of the size of tick returns

First, we investigate the question whether large tick returns caused by large
gaps in the order book can be responsible for large aggregate returns. To this
end, we start with the approximation shown in Eq. (3.3) where a few extremely
large tick returns (corresponding to some very large gaps in the order book) lead

to a very large aggregate return G;. In order to test this hypothesis, we analyze

mazr-+
gJ

the five largest tick returns g’ with the same sign as the aggregate return

G; (i.e. the five largest positive dg; if G > 0 and the five largest negative dg;
for Gj < 0) in each time interval. To this end, we sort the intervals by |G| and

plot the 5g§”a$+ against the rank of the interval according to its return |Gj|.

Figure 3.1(a) shows the values of these (59§”ax+ in intervals with small G; ~ 0

on the left while the values for large returns exceeding five standard deviations

can be found on the right. Since there are large fluctuations in the data, we

smoothed the curves by averaging over 100 intervals. The 59;-”“””r

factor of two between small and very large returns |G;|. When aggregated, these

grow by a

five largest 5g§'wm+

half of the largest aggregate returns.

can reach about three standard deviations, which is almost

maxr—

In Fig. B.1(b), we plot the five largest tick returns 5gj with the opposite
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Figure 3.3: Black curve: average tick return Ag; of ten Nasdaq stocks plot-
ted against the rank of the corresponding aggregate return |G|, smoothed
by averaging over 100 intervals. Going from the smallest returns |G| ~ 0
to returns larger than five standard deviations, the mean tick return Ag; in-
creases by a factor of two. Light gray curve: after shuffling the tick returns for
each stock, the same curve is only slightly increased for the largest aggregate
returns, the effect is much smaller than for the original data. Blue curve (or
dark gray): the simulation according to the statistical model discussed in sec-
tion 3.6/ shows a similar behavior as the empirical data, but in the simulation
Agj is a little larger than the empirical one except for the largest |G| where

the simulated Ag; is slightly smaller than the empirical mean tick return.

direction as the aggregate return against their rank. The dg;***~ behave simi-

larly to the 5g;"ax+, though the increase for large aggregate returns is slightly
weaker. However, even for the largest aggregate returns the difference between
the (5g}"‘"”r and 5g;7“”_ is rather small, so that in addition to the large tick
returns in the direction of the aggregate return there are also large tick returns

with the opposite sign, reducing the aggregate return.

Our findings suggest that in the data set studied single exceptionally large tick
returns might not be the generic mechanism leading to large aggregate returns.
This result seems to contradict the experience that there often are price “jumps”
due to new public information, e.g. earnings announcements or monetary policy
announcements. However, these jumps usually appear together with a largely
increased trading activity (volume), so that there are many trades occurring
within a short time. Hence, a 100-tick interval could correspond to a rather

short time period, so that its aggregate return might look like a price “jump”
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Figure 3.4: Autocorrelation function of the absolute value of the tick return
|0g;| averaged over the data of ten Nasdaq stocks in 2002. The function shows

a power law decay in tick time proportional to Ai~%16 for large Ai.

in real time but actually consists of many not too large tick returns, which is
visible in tick time. This interesting subject could be investigated in a further

analysis.

In the following, we want to focus not on the extreme tick returns, but on
the influence of their mean value. More precisely, we analyze Eq. (3.5) and
the mean tick return Ag; of all non-zero |0g;| in the interval I; as defined in
Eq. (3.4). A density plot of |G| against Ag; is shown in Fig. 3.2, It seems
that extremely large returns G; correspond to larger average tick returns Ag;,
but the broad distribution suggests that the explanatory power of Ag; alone
for the aggregate return G is small, which is confirmed by the low correlation

coefficient R% = 0.07 of a linear regression.

In order to clarify the relation between the extreme values of |G;| and Agj,
we sort the intervals by |G| and plot Ag; against the rank of the interval
according to its return |G;|. In Fig. 3.3 (black curve), we see that large returns
|G| coincide with larger tick returns as Ag; changes by a factor of two from
very low aggregate returns to large returns of several standard deviations. In
comparison with the largest tick returns 5g§”a’”+ shown in Fig. 3.1, the change
of a factor of two is similar, but the mean Ag; is two to four times smaller than

the largest tick returns.

This finding can be explained by the presence of autocorrelations in the time
series of dg;, which can be illustrated when we shuffle the data for each stock

by exchanging each tick return with another tick return randomly chosen from
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Figure 3.5: Density plot of the aggregate return |G| against the difference
An; between the number of tick returns with the same and with the opposite
direction as the aggregate return, for ten Nasdaq stocks. The points are coded
from light gray to black indicating the number of events from 1 to more than

600. A linear regression has a large correlation coefficient R? = 0.32.

the entire time series. The light gray curve in Fig. 3.3/ shows that for shuffled
data Ag; increases only marginally for large aggregate returns, suggesting that
autocorrelations of the tick returns have a strong influence on the mean tick
return size Ag;. Indeed, we find that the absolute values [6g;| of the tick return
are long-range correlated in tick time with a correlation function decaying like
Ai=016 for large time lags Ai = |iy — 4|, as shown in Fig. 3.4. If these correla-
tions are destroyed by shuffling, in each interval of 100 trades only a few large
tick returns remain so that the average over these 100 tick returns approximates

the global mean of all tick returns in the data set.

In contrast, in the empirical, unshuffled data correlations lead to intervals where
many tick returns are large, so that the average tick return size is also large.
The average tick return size Ag; can well characterize the interval only because
these autocorrelations exist. It turns out that the increase of Ag; by a factor
of two is the main effect where the original empirical data deviate significantly
from shuffled data. Hence, we suggest that fluctuations of the tick return size

are responsible for the non-Gaussian fluctuations of the aggregate return.
Using Eq. (3.5), we can estimate whether the change by a factor of two of the
average tick return alone is enough to explain large aggregate returns G; of more

than five standard deviations. To this end, we focus on the intervals with the
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Figure 3.6: Black curve: the sign-adapted number difference An; is plotted
against the rank according to the aggregate return |G;| for ten Nasdaq stocks,
smoothed by averaging over 100 intervals. An; grows from zero to 18. The
relation between An; and the rank seems to be linear except for the largest
15% of the aggregate returns. A simulation [blue curve (or dark gray)| using
a normal distribution for AN; leads to nearly the same dependance on the
rank. For shuffled data (light gray curve), the curve is slightly flatter, but the

difference is not large.

50 largest aggregate returns ranging from approximately four to almost eight
standard deviations. Here, we find that Ag; fluctuates between 0.14 and 0.35.
Assuming uncorrelated returns, AN; should be of the order VN =~ 10 if each
trade would lead to a price change, but normal fluctuations could well lead to
ANj twice as large as VN, so that large tick returns together with fluctuations
in the number difference could explain the large aggregate returns we find in

our data set.

Thus, we find that in intervals with 100 trades large |G| do not mainly depend
on single extremely large tick returns. It rather turns out that correlations
between the tick returns lead to large average tick returns Ag; in an interval,
and the fluctuations of Ag; can account for the non-Gaussian distribution of

the aggregate returns.
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3.4 Number difference

The diffusion process of aggregate returns is not only influenced by the step
width (i.e. the tick return size), but also by the direction of the steps. Therefore,
we now analyze the influence of the number difference AN; in Eq. (3.5). In order
to treat positive and negative aggregate returns in the same analysis, it is useful

to replace AN; by the sign-adapted number difference
ATL]‘ = sgn(Gj)ANj . (38)

A positive value of An; indicates that the price tends to move in one specific
direction leading to an aggregate return with the same sign. An; can be negative
if there are a few large tick returns determining the direction of the aggregate
return, but also many small tick returns with the opposite direction which do
not affect the aggregate return very much. Figure 3.5 shows a density plot of
the aggregate return |G| against the sign-adapted number difference An;. A
linear regression yields an R? of 0.32, a large correlation coefficient confirming
the visual impression that An; and |G;| are strongly connected. We can also
see that An; is mostly positive for large returns G, so that each large price

change is accompanied by a certain sign-adapted number difference An;.

We now plot, in Fig. 3.6, An; against the rank according to |G;|. We find that
except for the largest (approximately 15%) of the aggregate returns, An; grows
linearly with the rank while in Fig. 3.3/ Ag; remained almost constant in that
region. For the largest ranks, An increases more rapidly, so that all in all the
smoothed curve (averaged over 100 intervals) grows from zero to 18 between very
small and extremely large aggregate returns. Thus, in intervals with very large
returns there are approximately 18 trades pushing the price in one direction
(assuming that all other trades cancel each other), so that even with rather
small tick returns this can lead to large returns in aggregation. Focusing on the
50 largest Gj, we find that An; ranges from 4 to 41, most of them clearly above
the expected standard deviation of 10 when assuming uncorrelated returns and
nj = N.

Thus, the fluctuations of An; around the mean value are crucial for getting
large aggregate returns. The number difference seems to be the main mechanism
affecting the aggregate return since it changes much more drastically than the
tick return size when the aggregate return increases. On the other hand, when
we compare the results to the analysis with shuffled data (light gray curve in
Fig. 3.6), it turns out that this effect is very similar to what happens with
random price changes. Hence, the basic movement of the aggregate return

seems to depend mostly on the number difference, but the non-Gaussian large
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Figure 3.7: Comparison between sign-adapted number difference An; and mar-
ket order difference Angn for ten Nasdaq stocks. The Points are coded from
light gray to black indicating the number of events from 1 to more than 200.
The correlation coefficient of a linear regression yields R? = 0.29, thus there
is a strong connection between the two quantities. On the other hand, the
events scatter widely so that small An are often linked with large AnJ" and

vice versa.

aggregate price changes only occur if the tick returns are large.

3.5 Market order signs and direction of tick returns

It is known that the signs of market orders are strongly correlated |31}, 73] which
means that there is a large probability that a buy market order will be followed
by another buy market order. Thus, it is probable that large number differences
in the direction of tick returns are caused by large numbers of equally signed
market orders. In order to analyze the relation between the number difference

and the market order flow, we define the difference An}" between the number

nmt
J

opposite direction n

of market orders with the same direction as G; and the market orders with
m—,
J

Anj' = n}"Jr -nj . (3.9)

In Fig. 3.7 we plot the sign-adapted number difference An; against the market
order difference An'. We find a strong correlation between An; and An}";

a linear regression yields a correlation coefficient R? of 0.29. However, there
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are also large fluctuations suggesting that the number difference is also due to
order book dynamics, namely limit order placement and cancelation as well
as asymmetries in the order book. A model for price formation due to these

quantities was recently proposed by Mike and Farmer [101].

3.6 Distribution of aggregate returns and a statistical

model

In the first part of this chapter, we analyzed the mechanism leading to large
aggregate returns and showed that the varying step width Ag; accounts for
the non-Gaussian behavior of the diffusion process of price movements. Now
we want to use our results in a statistical model and reproduce the cumulative

distribution function of the absolute value of the aggregate return |G}

The model given by Eq. (3.5) belongs to the well-known class of stochastic
volatility models (see e.g. [12]) consisting of a noise term multiplied by a time-
dependent volatility giving the magnitude of the fluctuations. In the present
chapter, the model is based on a microscopic description of the price process,
so that we can fit the microscopic quantities determining the aggregate return
in order to estimate the parameters of the model. In this approach the model is
parameter free in the sense that there are no parameters fitting the aggregate
returns directly, though we fit the distributions of its determinants like the step
width Ag; and the number difference AN;. We also discuss corrections to the

model by including the tick return asymmetries according to Eq. (3.7).

We first analyze the distributions of Ag; and AN;. Figure 3.8(a) shows the
cumulative distribution of Ag; in a log-linear plot. The approximately straight
line suggests that the tail follows an exponential distribution which can be well
fitted with P(z > Agj) = e~ @ %0)/A7 where Ag ~ 0.12 is the average of all
Ag; and the parameters are a = 3.6 and o = 0.094. In the region of the
smallest values of Ag; < g, the limited tick sizes of the different stocks lead to
a plateau. In section 3.4/ we already found evidence that AN; behaves similarly
to uncorrelated data since in Fig. 3.6/ the shuffled data shows almost the same
dependence on the rank of the corresponding |G;|. Figure 3.8(b) shows that
indeed AN; can be well described by a Gaussian noise with mean 0.24 and
standard deviation 9.0.

In order to analyze the accuracy of the approximation given in Eq. (3.5), we
simulate two independent time series according to the fitted functions for Ag;
and AN; and build the aggregate return G; as the product of Ag; and ANj.

In Figure 3.9/ we can compare the empirically found cumulative distribution
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Figure 3.8: Estimation of the parameters for the simulation (results shown as
dotted lines) from empirical data for ten Nasdaq stocks. (a) The tail of the
cumulative distribution of Ag; (line) can be well fitted with P(z > Ag;) =
e~ z=20)/A7 where Ag ~ 0.12 is the average of all Ag; and the parameters
are a = 3.6 and z9 = 0.094. For Ag; < z¢ the limited tick size leads to
a plateau. (b) The probability distribution of AN; (line) follows in good
approximation a normal distribution with mean 0.24 and standard deviation
9.0. (c) As a rough approximation, the average of the cumulative distribution
of the positive (line) and negative (dashed line) values of Agj — Ag; are
parameterized proportional to two exponential functions e ~91.22/29 for \Ag;-“—
Ag;| = 0.1, with a1 = 8.0 and ap = 4.8 (dash-dotted line). The simulation
(dotted line) uses the adapted a; = 9.0 and az = 2.0 in order to compensate

the change in the distribution after taking into account <Ag;7 — Agj_>A AN
9;AN;
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Figure 3.9: Cumulative distribution of the empirical aggregate return (circles)
obtained from ten Nasdaq stocks in comparison with different simulations.
(i) The simulation according to Eq. (3.5) (triangles) leads to a reasonable ap-
proximation of the empirical data, but it overestimates the probability of large
returns. (ii) The distribution becomes a little broader if we add the tick re-
turn asymmetry Ag;-r — Agj_ according to Eq. (3.7) and simulate independent
quantities (diamonds). (iii) The simulation (squares) matches the empiri-
cal data very well if we incorporate correlations by generating Agj+ - Ag;

according to the conditional expectation value <Agj — Agj_>A AN
95 AN;

of aggregate returns |G;| (circles) to the results of this simulation (triangles).
The simulation of Eq. (3.5) leads to a reasonable agreement with the actual
aggregate return, but it overestimates the probability of large aggregate returns.
We note that the parameters of the simulation are completely determined by
the empirically found distributions of Ag; and ANj;, so that in this sense the
simulation of |G| has no free parameters.

In the following, we want to address the remaining deviations of the simulation
from the empirical data. Eq. (3.7) gives an exact formula for GG; and provides

a good parametrization for the error term which reads

+7
G- Ag AN, = 29 A gt Ag 1
J gj iT T, ( 9; gj) (3.10)

J

We find that the term annj_ /n; has no systematic influence on the aggregate
return since it shows almost no dependence on the rank according to the ag-

gregate return. In the following, we thus approximate it by its average value
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<2njn;/n]> = 28.7, so that the error term is determined by the asymmetries

Agf — Ayg; in the mean tick return size.

The cumulative distribution of Agj—Ag; is shown in Fig.3.8(c). The main part
of the distribution could be well fitted by an exponential function, but in the tail
the distribution becomes broader. Thus, we add the term with Ag;-r —Agj_ to our
simulation by creating a third independent time series according to the empirical
distribution of Ag;r — Ag; . Figure 3.9/ (diamonds) shows that this leads to an
even broader distribution of the aggregate return. Since the difference to the
distribution according to Eq. (3.5) is small, the tick return asymmetry seems to

have only a small influence on the aggregate return.

A more accurate agreement with the empirical data can be obtained by taking
into account correlations between the quantities involved in the process. The
correlation coefficients between them are shown in the following table where the

correlations between the absolute values are shown in brackets:

AN Agj+ — Ag; Ag;AN;
Ag; -0.02 (-0.07) | -0.01 (0.37) | -0.01 (0.34)
AN; 1 -0.35 (0.01) | 0.95 (0.87)
AgjAN; | 0.95 (0.87) | -0.41 (0.02) 1

Ag; and |ANj| show slightly negative correlations which might suggest that
people act more cautiously when large tick returns indicate a low liquidity.
In these times, traders try not to place too many consecutive orders with the
same sign because they know that it could lead to a large price change and
increased trading costs. Furthermore, the strong anti-correlations between AN
and Ag;-r —Ag; also indicate cautious traders: If there are large asymmetries, so
that e.g. the positive tick returns are much larger than the negative ones, people
tend to use the higher liquidity in negative direction so that in these times they
sell more often than they buy. For an analysis of the relation between liquidity
imbalance and market efficiency, see e.g. [102]. The large correlations between
Ag; and |Ag;-r —Agﬂ show that we can expect large variations of the tick return
in the positive and negative directions when the tick return is in general large.
We now want to incorporate correlations in our simulation. The strongest non-
trivial correlations appear between Ag;AN; and Ag;»r — Ag; including also
some of the correlations between Ag;-r — Agj_ and Ag; as well as AN;. How-

ever, it turns out that the conditional expectation value <Agj+ — Ag;>A AN
9;AN;
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Figure 3.10: Conditional expectation value <Agj+ —Ag;>A plotted
95 AN;
against Ag;AN; (circles), obtained from the data of ten Nasdaq stocks. A
fit leads to <AgJ»r = Ag»_> ~ —0.0057 - sgn(Ag; AN;) - (Ag;AN;)59
! 7/ Ag;AN;

(dashed line). The tick return asymmetry Ag;-r — Ag; is strongly correlated
with the mean tick return size Ag; and strongly anti-correlated with the
number difference AN;. Using the conditional expectation value in the sim-
ulation incorporates these correlations which allows the reproduction of the

distribution of aggregate returns.

is nonlinear, as seen in Fig. [3.10 (circles) where it is plotted against Ag;AN;.
The function can be well fitted by —sgn(z)a|z|® with o = 0.0057 and 3 = 1.59
(dashed line).

In order to incorporate this conditional expectation value into the simulation,

we first create three independent time series for Agj, AN;, and Ag;f — Agj_.

Then, for each j we add the conditional expectation value <Ag;r — Agj_>A AN
g5 AN;

to Ag;-r — Ag;, according to the value of Ag;AN; for that j. This method leads
to a different distribution for Ag;-r — Agj_ than the initial one, so that we can
not anymore generate Ag;f —Agj_ from the unconditional empirical distribution.
As a rough approximation, we parameterize this distribution by two exponential
functions e~%.2%/A9 for Agj+ — Ag; < 0.1. Then, we adapt the factors in the
exponent in such a way that the resulting unconditional distribution fits the
empirical one (a fit to the empirical distribution yields a; = 8.0 and az = 4.8, for
the simulation we use the adapted a; = 9.0 and a2 = 2.0, compare Fig. 3.8(c)).
The resulting distribution of G; does not depend very much on the exact values

of ay,2.
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The effect of the correlations represented by the conditional expectation value
<Agj — Agj_> is very large and leads to a cumulative distribution of
AgjAN;
|G| (squares in Fig. 3.9) very similar to the empirical one (circles). It is
worth noting that now the largest events are not anymore necessarily the ones
with the largest values of Ag;AN;. Due to the anti-correlations expressed in
<Agj — Agj_> , very large values of Ag;AN; can lead to relatively large
AgjAN;

values of Agf — Agj_ of the opposite sign reducing the aggregate return.

In addition to the distribution of the aggregate return, the simulation also agrees
with other properties of the empirical data we found earlier in this chapter. In
Fig. 3.3/ and 3.6/ we also plotted the data from the simulation against the rank
according to the aggregate return |G;|. For AN; the simulation matches the
empirical data very well, while in Figure 3.3/ we see that the simulated Ag; shows
the same dependence on the rank as the empirical data, but it is generally a little
larger than the real one except for the largest aggregate returns, which might
be due to the cutoff around 0.094 we used in the simulation of the distribution
of Ag;. We also find that the role of Ag;-r —Ag; in determining large aggregate
returns is a little overestimated by our simulation, but the simulation covers the
main features of the empirical data although we neglected many of the subtle

relations between the different quantities.

3.7 Discussion and Conclusion

Our findings presented in this chapter can be divided into two parts: First, we
showed that the movement of stock prices in intervals with a constant number
of trades can be understood as a diffusion process with a varying step width,
similar to the findings of Plerou et al. for time intervals [91]. While Plerou et
al. use the shape of the distribution of mean squared tick returns to explain
the distribution of aggregate returns, we render this picture more precisely by
specifically studying the intervals with the largest aggregate returns. By ana-
lyzing how each aggregate return is actually composed, we find that Gaussian
fluctuations of the number difference determine the basic price movement, but
the non-Gaussian large price changes occur only if a large number difference
coincides with a large mean tick return size. Though the mean tick return size
is not exclusively responsible for the occurrence of large returns, we confirm the
result of [91] that the non-Gaussian shape of the mean tick return size is an im-
portant determinant of non-Gaussian aggregate returns. We also find that the
large influence of the tick return size is caused by its autocorrelations assuring

that in a 100 tick interval one can find many large tick returns so that the mean
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value of the tick return can be large.

In the second part of this chapter, we found that the distribution of aggregate
returns can be reasonably approximated by simulating the microscopic quanti-
ties mean tick return size and number difference according to their empirically
found distributions. A more accurate agreement can be obtained by taking
into account asymmetries in the tick return size in the positive and negative

directions as well as correlations between the different quantities.

In summary, we found evidence that price fluctuations in intervals with a con-
stant number of trades can be described by a diffusion process with a varying
step width. The long-term autocorrelations in the tick return size make sure
that periods, where the price change due to a trade is large, last long enough to
cause large aggregate returns in intervals with many trades. Our results suggest
that the power law distribution of aggregate returns might not be universal but
rather depends on a more complicated mechanism which is a combination of
the dynamics of the trading frequency, the dynamics of the step width and the

Gaussian process of the step direction.
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4 Price impact, liquidity, and large

stock price changes

In the previous chapter, we performed a statistical analysis of the tick return
time series, leading to a better understanding of the mechanisms behind large
aggregate returns. We studied the fluctuations of the mean tick return size
and the number difference in order to model the fluctuations of the aggregate
return. In this way, we described how large price changes emerge from an
interplay between these quantities together with asymmetries between positive

and negative tick returns in the respective time interval.

When studying financial data sets, people often focus on the description of
fluctuations, for instance when describing the stock return distribution |14, 15,
16, 17, 135 36, 37, 38, 39, 40, 41]. In the present chapter, we use a different
approach to further analyze the occurrence of large stock price changes. Instead
of a descriptive study, we investigate the reasons that lead to large returns.
Hence, we do not ask how large returns are composed, but why these large

returns occur.

Besides the influence of news, a reasonable assumption is that price movements
are caused by an imbalance between supply and demand: if there are more
people who want to buy than to sell, prices will move up. This phenomenon
can be quantified by the price impact function |20, 21), 22), 23] 24, 25, 26, 27,
28, 129, 130, 31], which describes the price change as a conditional expectation
value of volume imbalance, i.e. the difference between the volume of buy and
sell market orders in a given time interval. Hence, it quantifies the price impact

as it happened on average in response to a certain volume imbalance.

The price impact function is a response function, which in physics describes the
response of a system to an external influence. For instance, the susceptibility
quantifies how the magnetization changes in response to a magnetic field. If the
system is cooled down and its temperature approaches the Curie temperature,
the correlation length becomes very large so that the magnetizations of many
subsystems are coupled. The resulting collective behavior of the subsystems

lead to large global fluctuations as well as a strong response to an external
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influence. Hence, resulting from the divergent correlation length, the suscep-
tibility diverges, which for both quantities can be described by a power law.
Hence, from physics one knows a mechanism that generates power laws and
large fluctuations, so the study of response functions is a promising approach

for the explanation of large price changes.

Indeed, the theory of Gabaix et al. [27] uses the price impact function to find
a quantitative explanation for large price fluctuations. After approximating
the price impact function with a time-independent square root function, these
authors conclude that the power law distribution of returns with exponent three
derives from the cumulative distribution of the order flow (i.e. the volume traded
in a given time interval), which can be described by a power law with exponent
1.5 [106]. In this model, a large order flow leads to large volume imbalances

that cause large price changes via the price impact function.

The model has been criticized by Farmer et al. [53], who questioned the square
root fit of the price impact function, as this function varies for different assets
and the test method used by Gabaix et al. to estimate the fitting might not be
appropriate in the presence of correlations. There is also a discussion about the
nature of price impact |31, 73] 102], asking whether it is fixed and temporary |31]
or variable and permanent [73, 102]. This question becomes important if one
tries to explain how uncorrelated returns can emerge from long range correlated
orders [31, [73] [102], which will be discussed in the next chapter. If the order
imbalance would permanently change the price via a fixed price impact function,
the return would inherit the order correlations and would be long-term corre-
lated as well. Bouchaud et al. [31] argue that a fixed price impact function can
be reconciled with uncorrelated returns if the price impact is only temporary,
so that the price change due to an order vanishes some time after due to market
mechanisms. In contrast, the authors of [73) 102] show that a permanent price
impact does not contradict uncorrelated returns if the price impact is variable

and changes over time.

Here, we want to study price impact in detail to understand the mechanism
leading to large price fluctuations [103} 104]. To this end, we use the same data
as in chapter 3, containing all orders from the Island ECN order book in the
year 2002 for the ten most frequently traded Nasdaq stocks [100]. In contrast
to the previous chapter, we do not focus on the tick return time series obtained
from this data, but use the additional information about the trade volume and

complete information about all orders present in the market.

The remainder of this chapter is organized as follows. Section 4.1/ studies the

average price impact function calculated from market orders, which in section 4.2
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Figure 4.1: The price impact function Iparket(Q) describes returns between
the beginning and end of five minute intervals in response to the volume
imbalance in the same time interval. It is a monotonously increasing and
concave function of the signed market order volume. A logarithmic plot (inset)

shows that the function can be fitted by a power law. Adapted from [30].

is compared to different definitions of a virtual price impact function calculated
from limit orders in the order book. In section 4.3, we use the average price
impact function to show that a large volume imbalance alone cannot explain
the occurrence of very large price changes. This explanation is provided in
Section [4.4] where a time-varying price impact function is defined. We conclude

with a discussion of the results in section [4.5.

4.1 Price impact of market orders

In order to describe how on average the price reacts to a traded volume, one
defines the price impact function of market orders as the conditional expectation

value

Imarket(Q) = <GAt(t)>Q . (41)

It describes the average relation between the return Gag(t) = InS(t + At) —
In S(t) in a given interval of At = bmin and the volume imbalance @ in the
same time interval 1. In contrast to the previous chapter, we now analyze
time intervals of At = 5min length. Though the analysis of intervals with a

constant number of trades has the great advantage that one has not to deal with

'We do not include market orders executing “hidden” limit orders in the definition of Q(t)
as we want to compare our results with the order book that only contains “visible” orders.
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the trading frequency so that the influence of other quantities is more clearly
visible, it is also reasonable to study real time intervals since they agree with
our “natural” experience. After all, people think and act in real time instead of
ticks.

The volume imbalance @ in a time interval is the sum of all signed market order
volumes executed between ¢t and ¢ + At. For the order book data, the sign of an
order is stored in the data set indicating whether it is a buy or sell order. We
also want to study the TAQ data base for the 44 most frequently traded Nas-
daq stocks, which does not contain information about the direction of a trade.
However, the sign of a transaction can be determined by the Lee and Ready
algorithm [105], which compares the transaction price to the midquote price
Sm(t) = %(Sbid(t) + Sask(t)). The sign is positive for buy orders (transaction
price larger than midquote price) and negative for sell orders (transaction price
smaller than midquote price). With the order book data, we tested the accu-
racy of the Lee and Ready algorithm by first computing the results using the
algorithm and then performing the same analysis with respect to the buy and
sell information contained in the order book data base. On the level of single
events, the transaction directions from the Lee and Ready algorithm deviate
from the exact ones, but upon averaging both methods yield a nearly identical

price impact function.

For the analysis of TAQ data, we choose S(t) as the price at which the last
transaction before time ¢ took place. For the analysis of order book data, S(t)
is chosen as the midquote price Sy(t) as we want to make comparisons to

hypothetical price impacts calculated from the order book.

Similar to the previous chapters, returns G are normalized by their standard
deviation og which is well defined because the cumulative distribution function
of returns follows a power law with exponent larger than two. Since trading
volume is described by a cumulative distribution with power law exponent (y =
1.5 [106], its standard deviation is not well defined. Hence, the volume imbalance

@ is normalized by its first centered moment og = (|Q — (Q)]).

The functional form of Iyarket (@) for the Island order book data is shown in
Fig.4.1. In order to get good statistics especially for large volume imbalances,
we aggregate Eq. (4.1) over all ten stocks in our data set. The shape of the
price impact function is in general agreement with the results [22, 23, 24] 26],
we find that Iaket(Q) is a concave function of volume imbalance [20], which
can be well fitted by a power law G = 0.48 Q*"S.

Earlier studies show that the power law exponent characterizing the price impact

function depends on the time horizon as well as on the market studied. Plerou et
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al. |23] find that the exponent generally tends to increase for an increasing time
horizon. On very small scales, i.e. on a tick by tick basis, the exponent is very
small [26] or the price impact function can be characterized by a logarithm [28§].
On an intermediate scale, the exponent was found to be 0.5 for 15 minute
intervals [23, 27]. This value of 0.5 is also predicted by Zhang [107] using a

simple market maker model.

Analyzing the TAQ data base for the year 1997 instead of the years 1994 and
1995 as in [23, 27| and for time intervals of five minutes as compared to the
fifteen minute intervals in 23, 27|, we find an exponent 0.58 for transaction
price changes and 0.75 for midquote price changes. For the Island ECN data,
the exponent is 0.76 for midquote returns and 0.73 for transaction returns, both
calculated on a time scale of five minutes. The larger exponent for midquote
prices compared to the exponent for transaction prices seems to contradict the
intuition that the price impact for transaction prices should be larger than the
one for midquote prices. However, most volume imbalances in a five minute in-
terval are smaller than (Q = 1, and on a logarithmic scale these values constitute
a large part of the bins used for a fitting, so that values of Q < 1 contribute
significantly to a logarithmic fit. For Q < 1, one has |Q|* > |Q|? for o < 3, and
the price impact for transaction prices is indeed stronger than the price impact

for midquote prices, in agreement with the intuition.

The concave shape of the function is very surprising: This type of price impact
would theoretically be an incentive to make large trades as they would be less
costly than many small ones. In contrast, a convex price impact would encourage
a trader to brake up a large trade into several smaller ones, which is what

actually happens.

4.2 Order book and virtual price impact

The above definition of the price impact function for market orders could be
called an ez-post definition, since it calculates the price impact from information
about how the price actually changed in the past. Next, we want to use order
book information to find an ex-ante definition, allowing to forecast the expected
price change from a virtual price impact function [30]. These results might help

understand the counterintuitive convex shape of Ijarket(Q)-

To make the order book information amenable to a statistical analysis, we cal-
culate at the beginning of each time interval and for each stock k the current
order book as a density function p{ﬁook(%, t). Due to the complexity of this cal-

culation, we use a discrete coordinate ; to obtain the order book from the data
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structure by sorting orders with respect to their limit prices and aggregating the
number of shares on a lattice with spacing A~. For each price Slimit, at which

a limit order is placed, the coordinate y; is defined as

{ [(In(Stimit) — In(Spia))/Av] Ay limit buy order
Vi =

4.2
[(In(Stimit) — In(Sask))/Ay] Ay limit sell order (4.2)

Here, the function [z] denotes the smallest integer larger than x. We define
the density function such that pf_, (iAvy,t)A~ is the total volume in the price
interval [(¢ —1)A~,iAv] in the order book, where 7 is an integer. In our analysis,
we chose Ay = 0.3 og as a compromise between computational speed and

accuracy. We note that throughout the chapter v is measured in units of og.

Next, we want to compare the actual price impact Inaket(Q) to a virtual
price impact function calculated from the average order book p,o0k) (vi) =
(pF o (virt)), where (...) denotes an average over both time ¢ and different stocks
k. The average order book is characterized by a flat maximum at ; = 1 and a

slow decay for large ;. Its overall shape agrees with the results of [108, 109, 110].

In order to obtain a price impact function from the average order book, we
calculate the market depth for a given return and invert this relation. Market
depth is a liquidity measure that denotes the order flow innovation needed to
change the price a given amount. We imagine a trader who wants to buy a
volume @) of stocks and has only offers from the order book available. Beginning
at the ask price, she executes as many limit orders as necessary to match her
market order, and changes the ask price by an amount G. Traded volume (or
market depth) Q ook (G) and return G are related by

Q(book)(G) = Z P(book) (%)A'V : (4'3)

7 <G
By inverting Eq. (4.3), we define the virtual price impact I(,00k) (@) with respect
to the average order book. Here, we assume that the bid-ask spread remains
constant and that the midquote price changes by the same amount as the ask
price. According to the above definition, the virtual price impact [0k (Q)
describes the price change due to a single market order of arbitrary size. Now,
we want to compare the virtual price impact with Iyaket(Q@), calculated as a
function of the volume imbalance Q(t) aggregated over a five minute interval.
Predicting a return due to a time aggregated volume imbalance by using the
virtual price impact function is an approximation that is only justified if (i) the
order book is symmetric with respect to its buy and sell side and if (ii) the
influence of its nonlinearities on the final result is small. The assumption of a
buy-sell symmetry of the order book is justified for the average price impact,

and Fig. 4.2 shows that the nonlinearity of the virtual price impact is weak.
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Figure 4.2: The average virtual price impact function (Iheek)(Q) (full squares)
is steeper than the typical virtual price impact (Ipook)median (OPen squares)
calculated by taking the median instead of the average. The virtual price im-
pact Iinook) (@) calculated from the average order book (full circles) is weaker
than the other two. Adapted from [30].

We find that the virtual price impact Iiq0k) (Q) is four times stronger than the
price impact of actual market orders (see Fig. 4.1 and Fig. 4.2, as well as [30]),
a volume imbalance of 50¢ causes a virtual price change of 8o but only an
actual price change of 20¢. In addition, [0k (@) is a convex function that can

be fitted by a power law I(100k) (@) = 1.22 Q'19. and not a concave function as
Imarket (Q)

When we calculate the average order book in order to get the average virtual
price impact by inversion, we do not get the “true” average virtual price impact.
Instead, one should calculate the virtual price impact for each time interval and
for each stock separately and average over these functions afterwards. To this

end, we define a time resolved and per stock depth

Qoook(Got, k) = D Phook (i ) Ay - (4.9)
7 <G
By inverting this relation at each instant of time and for each stock, we obtain
the virtual price impact Ipook(Q@,t, k). We find that this function fluctuates
strongly in time and that its average over time and different stocks (Ipook)(Q)
is dominated by rare events with low liquidity when only few orders are stored
in the order book.

These strong fluctuations of Ipeex(Q,t, k) make the calculation of (Ipoek)(Q)

somewhat subtle. In time intervals with very low liquidity, the domain of
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Ivook (@, t, k) does not even extend up to 0.50¢ since the amount of limit orders
stored in the order book is too small. In this case, the return caused by an
order with signed volume @ > 0.50¢ would be undefined and the average over
all time intervals would be undefined as well. In order to expand the domain
of (Inook) (@) to at least 3.50¢, we extrapolate the depth linearly by connecting
the last defined data point (with largest @ and G) with the origin. Since this
procedure is necessary only for few time intervals, our extrapolation method
does not disturb the final result. We checked this by using different methods,
e.g. by continuing the depth function by a horizontal line instead of a linear
extrapolation. The influence of the choice of a specific extrapolation method
is clearly visible only for large volumes ) > 4og. The average of (Ipook)(Q)
is calculated on an equidistant grid on the Q-axis, the values of the individual

functions Ipeex (@, t, K) at these grid points are calculated by interpolation.

In doing so, one obtains (Ipook)(Q) as a convex function of signed either buy
or sell order volume which is much steeper than the average price impact, see
Fig. 4.2. To reduce the influence of low liquidity periods on the virtual price
impact, we have calculated a typical price impact (Ihook)median(®) by replacing
the average over time and different stocks by the median. For large trading
volumes, (Ihook)median(@) is considerably smaller than (Ipoox)(Q), see Fig. [4.2l

(Ibook ) median (@) is also a convex function of signed volume and quite similar to
I(book) (Q) :

All three virtual price impact functions studied here show a convex shape, in
contrast to the concave shape of Iyaket(Q). Hence, these virtual price impact
functions correspond with reality in the sense that they encourage traders to
place many small orders instead of a few large ones to reduce the costs due
to the price impact, which is what actually happens. However, these functions
describe a price impact that is much larger than the price impact Inarket(Q)
actually measured on average in five minute intervals. If one wants to find an
explanation for the difference between Ijarket(Q) and the virtual price impact
functions, one should use /(,00k) (@) as a starting point for the analysis, due to
the influence of discretionary trading: with discretionary trading, large orders
are placed only when there is enough liquidity present in the order book to
match these orders. This behavior is best represented by the flattest curve
Iibook) (Q), while (Ihook)(Q) is dominated by few periods of low liquidity, where
one expects little trading activity. The typical price impact (Ihook)median(@) 18
less influenced by discretionary trading than (Iheex)(Q), but it is still steeper
than /00k) (Q). Based on my diploma thesis, the empirical study [30] presented

an explanation for the shape of the actual price impact function Iparket(Q).
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Figure 4.3: (a) Average price impact function for the 44 most frequently traded
NASDAQ stocks in the year 1997 with standard deviation of the mean. Price
changes larger than five standard deviations cluster in the region of small
volume imbalance, all of them are clearly outside the error bars. (b) Same
as (a) but for 2002 data from the Island ECN order book for the ten most
frequently traded stocks.
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Here, we find that one needs to take into account the additional limit order flow
arriving in a five minute interval as well as a feedback mechanism: large price
changes lead to an increased flow of limit orders that reduce the virtual price
impact. These anticorrelations between returns and limit orders are part of the

study in the next chapter.

4.3 Price impact and large price changes

After studying the time-independent price impact function in the first part of
this chapter, we ask whether extremely large price changes can be described by
@Inharket (Q). To this end, we filter the time series for time intervals with returns
|G| > 50¢. A detailed description of this procedure including the filtering of

data errors is given in appendix |Al

The events with price changes larger than five standard deviations are shown in
Fig. 4.3] together with the price impact function Iarket (@). We find 1198 such
events for the TAQ data base and 210 for the Island ECN data. For some of these
events the sign of () and G do not agree. We believe that this disagreement is
(i) caused by the inaccuracy of the Lee and Ready algorithm, as such situations
are less frequent for the order book data, and (ii) due to the analysis of intervals
with a fixed length rather than the analysis of individual transactions. From the
shape of the price impact function, one would expect these events to appear at
very large volume imbalance Q). However, Fig. 4.3/ shows that these events have
a broad distribution centered at intermediate values of @), well outside the error
bars of Inarket (@), which is significantly below G = 50G. One could argue that
this result is not very surprising as the price impact function is an average so
that large events scatter naturally around this average. Nevertheless, the result
shows that (i) large returns occur at quite small volume imbalances and (ii) that
the average price impact function cannot be used for a satisfactory prediction
of the price change (especially large ones) from the volume imbalance, as it was

proposed by Gabaix et al. [27].

We conclude that a large volume imbalance alone cannot be responsible for the
occurrence of large price changes. An obvious reason for the inaccuracy of the
forecast given by the average price impact is that the market does not behave
like the average all the time. We already discussed in the first part of the chapter
that it is difficult to calculate an average virtual price impact function since the
price impact Eq. (4.4) fluctuates strongly over time. This suggests that the
price impact might be stronger than average in times when large price changes

occur, corresponding to a low liquidity. In the following, we will analyze the
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liquidity in these time intervals with large returns and show that this is indeed

the correct explanation.

Various transactional properties of markets can be described by the concept of
liquidity [111]. Resiliency is the speed at which prices recover from a random
uninformative shock. While the market depth that we already mentioned above
denotes the order flow innovation needed to change the price a given amount,
the tightness is the cost for a round trip, i.e. buying and selling a given amount

of shares within a short time period.

Kyle [111] examines the liquidity characteristics of a speculative market within
a dynamic model of insider trading and sequential auctions, finding that here
both market depth and volatility are constant in time. Glosten [112]| derives
the equilibrium price schedule in an open limit order book and shows that the
limit order book can well compete with other methods of exchanging securi-
ties. Madhavan et al. [113] study intraday patterns in volatility, bid-ask spreads
and transaction costs empirically. Using a linear parametrization for the price
impact of individual trades, they find that decreasing reliance on the signal
content of order flow results in a sharp drop of price impact after the first half
trading hour, while there is a slight increase at the end of the day. Chordia et
al. [114] discover a weekly seasonality of liquidity and trading activity. These
quantities also change depending on market trends or recent market volatility,
or prior to major macroeconomic announcements. In an analysis of the limit
order book of the Stockholm Stock Exchange [115], Sandas shows that the price
impact calculated from the order book is significantly larger than what is ex-
pected from a regression model. As a possible explanation he suggests that price
impact changes with time-varying market conditions. Similarly, a difference be-
tween hypothetical and actual price impact |[116] is considered as evidence for
discretionary trading, i.e. large trades are more likely to be executed in time
periods with sufficient liquidity. Recently, Beltran et al. [117] studied the rela-
tion between volatility and liquidity for the Euronext trading platform. Using a
two-state Markov switching process, they find that the liquidity is significantly
higher in the high-volatility state, but their analysis based on a VAR model is

not conclusive in whether volatility seriously impacts liquidity.
In order to have a theoretical framework in which we can discuss the mechanism
underlying large stock price changes, we set up a price equation

S =Sic14+ ¢+ NQi +uy . (4.5)

in the spirit of [118]. Here, the index 7 labels successive transactions at times
t;, S; is the transaction price, ¢; the transitory spread component, A; the slope

of the virtual price impact at time ¢;, and u; is a white noise which describes
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the fact that prices change not only due to trading but also due to the arrival
of new public information. As we will mostly be concerned with the analysis of
midquote price changes, we let ¢; = 0 in the following. For the price change in
an interval with a fixed length At one finds [119]

SE+A) =St = D> AQu+ > uw, (4.6)

€[t i+ AL €[t b+ A
In this framework, the order book density is approximated as constant so that
the depth defined in Eq. (4.4) would be Quook(G,t, k) = G/A;. Here, the price
impact of an order volume @y, according to Egs. (4.5)), (4.6) is permanent but
variable due to the t-dependence of A;. Hence, this framework agrees with the
view of [73, 102] when one tries to reconcile uncorrelated returns and correlated

order flow.

In the light of Eqs. (4.5), (4.6) there are three possible causes for large price
changes: (i) large order flows @, (ii) large price impacts (small liquidities)
At;, and (iii) public information wu,. In this context, it can be confusing to
precisely distinguish between volume imbalance and order flow, since @, can
represent single orders, only buy or sell volume or the volume imbalance. For
the sake of simplicity and readability, we use the expression “order flow” where

its sometimes multiple meaning is clear from the context.

We saw that large order flow alone cannot explain large price changes, so that

in the following we want to analyze the influence of a time-varying liquidity.

4.4 Time varying price impact

The time varying liquidity becomes manifest in the strong fluctuations of ppook (Q).
When we want to use these fluctuations to explain large price changes, we have
to take into account that here the assumptions of (i) a symmetric order book
and (ii) negligible nonlinearities are generally not satisfied, in contrast to the
analysis of the average price impact function. For this reason, we will consider
either the buy or the sell volume Qin a given five minute interval, depending
on the direction of the return in the respective interval. In this way, Q is equal
to the volume of buy market orders if Ga; > 0 in that five minute interval.
For Gar < 0 on the other hand, Q is equal to the volume of sell market orders
and has a negative sign. We have recalculated Iparket as a function of Q by
averaging with respect to either the sell or the buy volume. This new fmarket is

quite similar to the original one.

We try to find a quantitative explanation of extreme price changes by taking

into account not only order flow but also market liquidity as described by market
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Figure 4.4: Ratio of actual price change to predicted price change plotted
against the inverse market depth for large five minute returns contained in
the 2002 Island data. A linear regression (line) yields a correlation coefficient
R? =0.14.

T/T

Figure 4.5: Ratio of actual price change to predicted price change plotted
against the inverse market tightness for large five minute returns contained in
the 2002 Island data. A linear regression (line) yields a correlation coefficient
R? = 0.11.
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depth and market tightness in the beginning of a given time interval. The depth
D is the size of a market order required to change the price by a given amount
50c and is obtained from Eq. (4.4). The tightness T is the cost of a round
trip (buying and selling a volume of 209 within a short period of time). To
determine the tightness for a given time interval, we calculated the virtual price

impact Ipook(Q) by inverting the relation Eq. 4.4! and define the tightness as

1
" 1 Tbook (200)| + [Thook (—200)]

T (4.7)
In the framework of the model Eq. (4.5)), the order book density is approximated
as constant and the tightness would be just T' = 1/(4og\;).

We compare the ratio of the actual price change Ga¢(t) and the predicted price

change

Gpred (t) = ~market(@(t)) (48)

to the inverse liquidity as described by the inverse depth and the inverse tight-
ness. Using the average depth D and the average tightness T calculated from the
average order book, we normalize both liquidity measures depth and tightness.
Since the statistics is insufficient for ]Q\ > 180¢, we computed fmarket(()(t)) up
to |C~2\ = 180¢ to calculate Gpreq. For this reason, we had to discard eleven
events with |Q\ > 180¢ from this analysis. In addition, for eight events the
tightness T' could not be computed because the order book did not contain
enough limit orders to trade a volume of 20g. These events are excluded in
the analysis of the inverse tightness as liquidity measure. For reasons of consis-
tency, we also removed two events with D/D > 30 in Figure 4.4, A scatter plot
for events with |Ga¢| > 5o¢ is shown in Figs. 4.4 and 4.5l In contrast to the
expectation that small liquidity can explain the ratio of actual and predicted
price change, there is only a moderate correlation between returns and liquidity
for both depth and tightness. This visual impression is confirmed by correlation
coefficients R? = 0.14 and R? = 0.11 for depth and tightness, respectively.

In the light of these results, the explanatory power of liquidity for large aggregate
returns seems to be weak. However, the problem is that it is not sufficient to
take into account only the order book density ppook(7i,t) at one instant of
time when one studies the price impact of order flow in a whole time interval.
Earlier in this chapter we showed that the virtual price impact of a given order
volume is roughly four times stronger than the actual one and pointed out
that this difference is due to the additional orders placed in reaction to a price
change [30]. Hence, one has to include dynamical effects, i.e. changes in the
order book within the time interval, to correctly calculate the price impact and

understand the occurrence of large price changes.
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Figure 4.6: Price change as a function of buy or sell volume for ten of the

largest price changes in the Island ECN data.

When we calculate the density of limit orders arriving in a given time interval,
we want to do it in such a way that it is compatible with the density ppook (i, t)
recorded in the beginning of the time interval. However, during five minutes bid
and ask price can change significantly, so that an order placed close to the bid
price at the end of the time interval can be far away from the bid price recorded
in the beginning. In order to deal with this problem, we fix a reference frame by
the bid and ask price in the beginning of the interval, so that arriving limit orders
are not counted according to the current bid and ask price, but to this reference
frame. Sell limit orders arriving at a price lower than the reference ask price are
counted as if they were arriving at this ask price, vice versa for buy limit orders.
Similar to the density ppook(7i,t) of limit order volume at a depth ~; recorded in
the beginning of the time interval [t, ¢+ At|, we define another density function
Priow (7i, t, At) describing the density of limit order volume placed at a depth ~;

minus the limit order volume removed during this time interval with
prow (i) = (QRF () — QXF(m)) - (4.9)

In Eq. (4.9), Q3d4(v;) is the volume of limit orders added to the book at a
depth v;, and QX}“(;) is the volume of orders canceled from the book. Thus,
Priow (Vi, t) Ay is the net limit order volume arriving in the time interval [, ¢+ At]
and in the price interval [(i — 1)A~,iAv]. The total density of limit orders

available for transactions is then given by

P(Vi, t) = Pbook(Vir t) + paow(Vi, t, At) . (4.10)



56

Price impact, liquidity, and large stock price changes

Volume Q

Figure 4.7: Price change as a function of buy or sell volume averaged over
all time intervals with returns larger than 50 (connected black circles). The
price change averaged over all transactions (connected gray circles) is much

smaller than that for the extreme events.
The density p(v;, t) is related to the order flow Q as

QG) =) plwi,)Ay . (4.11)

7 <G

By inverting this relation we calculate a price impact function Ioctyal(Q). The
sell order side of this function for ten events with price changes larger than
50¢g is shown in Figure 4.6. In Figure 4.7, the average over all such events is
compared to the average price impact function fmarket(Q). Figure 4.7 shows
that the slope of Iactual(Q) is much larger than the slope of fmarket(Q). As a
consequence, in these time intervals with large price changes there are less limit
orders available than on average. Hence, we suggest to use the slope of the

actual price impact function as a measure of market liquidity.

The price impact functions displayed in Figure 4.6/ look quite linear, and the
average of the I,ctyar for all large events (see Figure 4.7) is approximately linear
as well 2. Accordingly, we expect that the actual strength of the price impact
can be well described by a linear fit to the actual price impact functions. Hence,
for each time interval with |Ga¢| > 5o, we define a susceptibility x(¢) by a

We tested ]acmal(Q) for each time interval with price change larger than 50¢ for nonlin-
earities. As a simple descriptive method we fitted these curves with power laws. The
exponents we found vary between 0.15 and 2.35 with a mean of 1.32 and they scatter with
a standard deviation of 0.41. On the other hand, a power law fit to the average of Ilactual
for all such events yields an exponent of 1.03, which is approximately linear.
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Figure 4.8: Ratio of actual price change to predicted price change plotted
against the slope of the actual price impact function normalized by the slope
of the average price impact function. The data points cluster in the vicinity
of a linear fit with an R? = 0.79.

linear fit through the origin to the actual price impact function Ictual(Q) up to a
return G = 5og or G = —50¢, depending on the sign of Ga;. The susceptibility
X(t) can formally be identified with A;, though in the simple model Eq. (4.5)
the order book density is approximated as constant and dynamical effects are
not included. Liquidity is measured by the inverse ﬁ In this way, a large

slope of the price impact function corresponds to a low liquidity.

In Figure 4.8 the ratio of Gpreq and Ga; is plotted against the susceptibility
x/X for all events with |Gas| > 5og. The susceptibility x is normalized by
X, the slope of a linear fit to the average price impact function Iarket up to
|Gat| = bog. We removed one event with extremely small liquidity (x/Xx > 60)
to make this analysis consistent with the analysis of tightness and depth. The
data points in Figure 4.8 cluster in the vicinity of a linear fit with an R? = 0.79.
In comparison with the two liquidity measures studied above, this result is a
considerable improvement. We believe that this improvement is due to the fact
that the susceptibility x takes into account the order book dynamics, which is
important for describing liquidity. From this analysis, we conclude that liquidity
defined as the time dependent slope of the price impact function has a large

explanatory power for the occurrence of extreme price changes.
As additional evidence for the idea that the return in a given time interval is
caused by a combination of the order flow and the time varying liquidity, we

discuss returns as a function of both order flow Q in the direction of the price
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Figure 4.9: Expected return <GAt(t)>Q,Xc/XG as a function of order flow Q and
liquidity X /xqG. For every combination of @ and X /x¢ we plotted (i) the
average return if there is more than one matching time interval, (ii) the return
if there is only one event or (iii) nothing if the combination never occurred.
The magnitude of the return is coded from bright gray for small returns to

black for the largest ones.

change and the susceptibility x/X. Above, the susceptibility x was defined by a
linear fit to the actual price impact function Iactual(()) up to a return |G| = bog.
Now, we want to study also returns smaller than Ga; < 5og where the order
book density at a depth v; > Ga; does not affect the price dynamics. This
effect would weaken the explanatory power of x for these time intervals thus we
define a new susceptibility x¢ by a linear fit through the origin to the actual
price impact function Iactual(Q) up to the actual return Ga;. In time intervals
with |Ga¢| < log, the linear fit extends up to og sgn(Ga¢) in order to include

enough data points for a reliable fit.

Figurel4.9 displays the average return plotted as a function of both market order
flow and liquidity measured by Xo/x¢. The magnitude of returns is coded in
a gray scale from bright gray for small returns to black for the largest ones.
One observes quite sharp borders between regimes of different expected returns
demonstrating again that for a given order flow the magnitude of the return
depends on liquidity. In addition, one sees that even very large volumes can
lead to small returns, while large returns occur only if the liquidity is below

average.
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4.5 Discussion

We showed that fluctuations of the liquidity have a large influence on stock
price changes, as large returns occur mostly in time periods with low liquidity.
Together with the order flow, liquidity provides for a quantitative explanation of
large price changes. However, so far we discussed only part of the terms in the
standard pricing model Egs. (4.5),(4.6). The white noise term u; describes the
influence of new public information, e.g. earnings announcements or monetary
policy announcements, accounting for 35% to 46% of the volatility of transaction
price movements, according to [113]. The experience is that such news can lead
to price “jumps”, and thus can influence also large stock price changes. However,
although we did not include public information in our analysis explicitly, one
can argue that the order book description contains this information. News
announcements lead to reactions of the market participants, possibly prompting
them to place or cancel orders. If there is good news, for instance, people would
cancel their sell limit orders and place additional buy orders. In our liquidity
measure 1/x(t), this would lead to a reduction of the liquidity, so that also in
this case a large price change would correspond to a low liquidity. In this sense,
our liquidity measure describes the combined influence of order book depth,

resiliency, and public information.

In the previous chapter, we showed that in intervals with large aggregate returns
the average tick return size is significantly larger than average. This can be
seen as another manifestation of low liquidity: though liquidity measures like
the market depth or the inverse slope of the actual price impact function involve
the number of shares, it has been shown [52] that the traded volume usually
matches the volume available at the bid or ask price. Thus, the return due to a
single trade corresponds to the gap between the best price and the second best
price [52], which in turn corresponds to the slope of the price impact function.
In this sense, the average tick return size can be seen as an (inverse) liquidity
measure, so that our results suggest that the diffusion process of stock returns

depends largely on fluctuations in the liquidity.
We have argued that large stock price changes can be explained by periods of

low liquidity. However, so far we did not discuss the possibility of an inverse
causality, leading from large return to low liquidity. A recent study [120] of the
market crash in October 1997 showed that the spread increased significantly on
October 28th, the day after the market drop on October 27th. Hence, this study
suggests that large returns can cause a low liquidity. We cannot exclude the
possibility that the periods of low liquidity detected in our analysis are caused

by large returns in previous time intervals, but our analysis shows that in the



60

Price impact, liquidity, and large stock price changes

intervals with the large price change the liquidity is low, causing an intermediate

volume to create a large return.

In summary, we studied the mechanisms leading to large price fluctuations and
showed that they cannot be related to only one single effect. A large trading
volume changes the price, which can be quantified in the average price impact
function. This effect might be analogous to the number imbalance studied in the
previous chapter, which there accounted for the basic price movements. We find
little evidence that this effect alone can be responsible for extreme price changes,
which can only be explained by a combination of relatively large trading volume
and low liquidity. The liquidity can be measured as the dynamically changing
slope of the actual price impact function, but can be also related to the average

tick return size from the previous chapter.
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uncorrelated stock returns

So far, we have analyzed extreme price changes in order to examine the under-
lying mechanisms. In the previous chapter, we saw that dynamic properties of
the order book can be used to find an appropriate liquidity measure as well as to
understand the difference between the actual price impact of market orders and
the virtual price impact calculated from the limit order book [30]. While the
average order book and thus the virtual price impact discussed in the previous
chapter can be described by “zero intelligence models” [110, 121], in which orders
are placed randomly, the order book dynamics might in fact be related to “in-
telligent” behavior of market participants. In the present chapter, we study this
intelligent behavior in terms of trading strategies to explain further empirical

findings about stock returns.

The behavior of traders directly determines the movement of stock prices via
the trading process, where the buy and sell orders of many traders are matched
against each other. Recent studies [31, 73] show that order signs, indicating buy
or sell orders, are long-range correlated, so that for example a buy order leads
to a prediction of many subsequent buy orders. From these results one would
expect that through trading the correlations in the order signs would lead to
similar long-range correlations in the returns, but surprisingly the returns are
uncorrelated and thus not predictable. From a theoretical point of view, one
can argue that this indicates market efficiency [122], stating that the market
adjusts automatically so that easy opportunities for making profit (“arbitrage”)
are absent. However, this does not explain how the correlations disappear during

the trading process.

In the previous chapter, we pointed out that a fixed price impact as it would
be given by the average price impact function could not explain uncorrelated
returns if the price impact would be permanent: if each market order changes
the price permanently, the market order correlations lead to returns that are
long-term correlated as well. Our finding of a strongly fluctuating price impact
function presented above is compatible with the idea of a price impact that

might be permanent, but not fixed.
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Similarly, Lillo and Farmer [73] argue that the market compensates the correla-
tions in the order flow by adjusting its properties such as liquidity. The authors
show empirically that the probability of a market order to change the price de-
creases for larger predictability of the orders. In times of large predictability,
market orders are smaller than average or the volume at bid or ask price is

higher, lowering the probability of a price change.

Bouchaud et al. [31] present a different approach that explains uncorrelated
returns with a fixed price impact, in contrast to the variable price impact used
in the work of Lillo and Farmer. However, the price impact of Bouchaud et
al. is only temporary, meaning that the price change caused by a market order
vanishes after some time due to mechanisms of the market. The model is related
to a trading strategy: liquidity providers give trading possibilities to both buyers
and sellers. If the stock price stays constant, they can make profit by buying at
the best bid and selling at the lowest ask price, profiting from the spread (i.e. the
difference between these two). In order to keep prices constant, these liquidity
providers try to mean revert the price. This mean reverting is supported by the
empirically found anticorrelations between market orders and limit orders [30],
so that limit orders are placed in response to market orders and thus compensate
their price impact.

Based on statistical properties found empirically, Mike and Farmer [101] propose
a model whereby different order types are represented by long-range correlated
processes, which are then combined with a model for order cancelation due to
asymmetries in supply and demand. In this model, returns exhibit no long-range
correlations, though they do persist longer than in reality, as the autocorrelation

function exhibits values of the order of 1% for about 50 time steps.

In this chapter, we model two different trading strategies and analyze their profit
in the light of correlated orders. While in the model of Bouchaud et ol. liquidity
traders are afraid of price changes and try to act against the correlated order
signs, we study a mechanism where traders use these correlations to increase
their profit. Under the simplification of exponentially decaying correlations in
the order signs, we show that correlations between returns vanish due to the
studied trading strategy, and in addition, we qualitatively reproduce the cross-
correlations between returns and both market orders and limit orders, which
were presented in a previous work [30] and accounted for the connection between
the actual price impact function of market orders and the virtual price impact

calculated from the order book.

This chapter is organized as follows: in section [5.1, we describe the model we

study, section 5.2 analyzes the trading strategy of a liquidity provider while in
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section 5.3/ we study a “front runner” strategy. Section 5.4/ gives a summary and

discussion of the results.

5.1 Description of the model

In order to keep our model as simple as possible, we simulate only one trader.
This trader is acting in an environment with two basic properties summarizing
the actions of all other traders: first, there is a flow of market orders m(¢) which
is due to a stochastic process and independent of the price movement or the
behavior of the trader. Second, there is a ’background liquidity’, meaning that
independent of the simulated trader there is always a certain amount of limit
orders in the market, so that any market order m can be executed with a price
impact Am proportional to the volume |m| of the market order. The simulated

trader can place market orders as well as limit orders.

If the trader in this model would not do anything, each market order would
directly influence the price, so that the price S(¢) at time step ¢ would change
according to

St+1)=S(t)+ Im(t) . (5.1)

In this way, the time series of returns would be basically the same as the time se-
ries of market orders, so that it would also inherit the market order correlations,
in striking contrast to reality. Hence, we suggest that the loss of correlations in
stock price changes is due to the behavior of traders following certain strategies

in order to optimize their profit.

The autocorrelation function of empirical market orders ¢(memp(t), Memp(t), 7)
(compare Eq. (2.8)) follows a power-law with an exponent smaller than one |31,
73]. This leads to the problem that the correlation function is not integrable, so
that the number of predicted subsequent market orders is infinite. However, we
can estimate the integral over the autocorrelation function of market orders for
certain time intervals. Figure /5.1l shows this integral for data of Cisco (CSCO),
a typical stock from the Island ECN in the year 2002. Here, a power law fit
with 11587170 yields 8 = 0.26 and 6§ = 0.73. Measuring the time in such
a way that each time step corresponds to a new market order, we find that
(excluding the value 1 for time lag 0) this integral is around 4 after 250 time
steps (corresponding to about 20 minutes), around 5.9 after 750 steps (= one
hour), and around 9.4 after 4875 steps (= one trading day). Though this integral
keeps growing infinitely for larger time windows, in this study we focus on a
short time horizon and approximate the empirical market order time series by

an AR(1) process with exponentially decaying correlations. In this model, a
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Figure 5.1: Cumulative correlations of market orders at a time lag 7 (solid
line). A power law fit with ﬁﬁTFa yields 8 = 0.26 and 0 = 0.73.

market order m at time ¢ is given by
m(t) = om(t—1) +e(t) =) _oelt—j) . (5.2)
j=0

Thus, a market order consists of an unpredictable part with the normally distrib-
uted random number (¢) with zero mean and variance one, and a predictable
part om(t — 1) depending on the last order m(t —1) and the parameter g, which
determines the strength of the correlation. For o = 0.8, the overall prediction
of market orders in a time interval of 20 minutes (corresponding to about 250
market orders) is the same as in the empirical data, whereas o = 0.9 would cor-
respond to the correlations of one trading day. This simplification gives us the
opportunity to study the market in a very simple model in order to understand

the influence of order strategies on the market.

The relevant parameters for this model are: (i) the spread s and the coefficient A
for the price impact, which together determine the scale on which the price and
the trader’s capital change. (ii) The inventory limit Iy defines the maximum
number of shares hold by the trader, which can be positive as well as negative
(meaning that the trader can sell borrowed shares hoping to buy them back later
at a lower price). (iii) The correlation coefficient ¢ determines the correlations

in the market orders.
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5.2 Liquidity provider strategy

The first strategy we want to analyze is mentioned by Bouchaud et al. [31]
supporting their explanation for the absence of correlations in stock returns. In
this strategy, a trader places both buy and sell limit orders. Due to the spread,
the trader makes profit at each round-trip when she buys shares at the bid price
and sells them at the higher ask price. However, this strategy guarantees save
profit only if the price stays constant. For instance, if the price rises after the
trader sold some shares at the ask price, she cannot buy them back at the old
bid price, but has to buy them at the new raised bid price. This price may be
higher than the price the trader got for selling the stocks, so changing prices can
cause losses for the trader who follows this strategy. Bouchaud et al. argue that
for this reason such a trader would try to prevent the price from moving far from
an estimated ’fair’ price by placing limit orders that compensate the impact of
market orders. In the following, we want to analyze the profit of this strategy

under the assumption of uncorrelated as well as correlated market orders.

In the framework of our model, this strategy can be implemented as follows: in
each time step t, there is a new market order m(t). Instead of letting the trader
place or cancel limit orders, we only give her the two choices either to match
the market order (meaning that she placed some limit orders before) or to do
nothing (meaning that she canceled all her limit orders before). If she matches
the order, the price stays constant but her inventory changes. Otherwise, the

market order changes the price according to Eq. (5.1).

If the trader would have an unlimited inventory, she could match all incoming
market orders. When buying shares at the bid price and selling them in the
next step at the higher ask price, she gains half the spread s for each traded
share. Hence, if she has enough time to wait for her inventory to neutralize,

after N time steps she gains

N
b} (Iml) s (5.3)

with this strategy.

On the other hand, if we want to calculate the profit after a given number of
time steps IV, we assume that the trader has to close her positions at step IV
by placing market orders, leading to costs depending on the number of shares
she is holding in her inventory. This is reasonable because many traders have a
certain time horizon, so that e.g. day-traders close their positions at the end of a
day avoiding bad surprises happening overnight. Assuming uncorrelated market
orders, the number of shares in her inventory would grow with the number of
time steps N like (|m|) v/N.
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If we assume that the trader’s market order m¢, (e.g. a sell order) executes
several limit orders at different price levels until the entire order is fulfilled, the

total cost C' for the traded shares is given by
1
C' = mSsen = mur (S + i(sgn(mtr)s + Amyy)) (5.4)

The sign of the total cost depends on the sign of the order my, of the trader, so
that negative costs indicate that the trader is selling shares and getting money,
while she is buying with positive costs. Considering a round trip where the
trader first buys a certain amount of shares at the bid price and then sells
them again using market orders, we can calculate the loss resulting from this
action. Before, she bought the shares using limit orders at the price Sy, =
S+ %sgn(mtr)s, so now she realizes a loss L of
Ao

L = m(Ssel — Shuy) = 5 (5.5)

The Loss L is always positive, irrespective of the sign of my,.

Given the win the liquidity provider makes when buying and selling stocks at
the bid and ask price and the loss when closing her positions, her expected profit

after N time steps is given by
N A
(prup) = 5 (Iml)s = S(I%) . (5.6)

Uncorrelated market orders

We can estimate for which parameters the strategy can be expected to be prof-
itable, assuming uncorrelated Gaussian distributed market orders m(t) with
(m) =0, (m?), and thus (|m|) = \/g After N time steps the square of the in-
ventory I%(t) has the expectation value (I*(N)) = N, so that selling or buying
these shares at time step NV reduces the profit by AN/2 according to Eq. (5.5).
Thus, the total profit of the liquidity provider after NV time steps is

ri) = 5 (s = %) = 5 <\/§ - A) S R

Hence, this strategy leads to profit if 0.8s 2 A so that the spread is of the order
of the price impact. A similar argument was given by Wyart et al. [123] who
in addition showed empirically that spread and price impact are usually of the
same order. The difference to their model is that here we describe a model for
“all” liquidity providers, represented by the one trader we simulate, while Wyart

et al. model only a small fraction of the liquidity providers in the market. They
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take into account the price impact due to the action of other traders and its
temporal structure, whereas our model includes the price impact when a large

position is closed.

Short-term correlated market orders

The liquidity provider’s profit changes drastically if there are correlations present
in m(t). For instance, if m(t) follows an AR(1) process Eq. (5.2) with (m?) =

ﬁ and (|m|) = ,/ﬁ, the profit Eq. (5.6) changes due to the change in
{fml]) and (I?). Here, (I?) is given by

N 2 N
(13 = (Zm(i)) = > (m@)m(j)
=1
N
= N(m®) +2> (N —i){m(t)m(t — 1))
i=1

N
= N(m®) +2(m*) Y (N = i)e(m(t), m(t), 1) (5.8)

i=1

where c(m(t),m(t),i) = ¢’ is the correlation function for the AR(1) process.
Thus, if N > 1 we have for the inventory

(1% = N(m?) <1+21fg>

_ 1 (1te) _ 1
B N1—02<1—Q>_N(1—9)2 ' (59)

Hence, the profit for the liquidity provider strategy with the exponentially de-

caying correlations of the AR(1) process is given by

N A
riE) = Smbs - S
N 2 A 1
= —38 ————

2 \r(1-¢*) 2 (1-0)?

N 2 1
- 5 <S e )\(1 — 9)2> . (5.10)

Figure 5.2 illustrates the dependence of the profit on the parameters of the

model. The profit is displayed as the profit per normalized market order, calcu-
lated by dividing the profit by N (|m/|). Each line shows this profit as a function
of the market order correlation coefficient ¢ for different choices of the spread

s, while A = 0.1 for all curves. Figure 5.2(a) displays the average profit after
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Figure 5.2: Profit per normalized market order in the liquidity provider strat-
egy for different spreads. The price impact coefficient is hold constant at
A = 0.1. (a) From 100 simulations with N = 100,000 time steps each, the
average profit at the end is divided by N (|m/|) in order to obtain the profit per
normalized market order. Figure (b) shows the normalized profit per market
order obtained from the analytical result Eq. (5.10). The deviations of the
simulations from the analytical result are due to strong fluctuations of the

inventory after NV time steps.
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100 simulations with N = 100, 000, whereas in Fig. [5.2(b) the analytical result
Eq. (5.10) divided by N (|m|) is shown. The displayed deviations of the simula-
tions from the analytical result are due to strong fluctuations of the inventory

after NV time steps.
The figure shows that the liquidity provider strategy works well for weak cor-

related market orders, but with increasing correlations the increasing inventory
leads to losses, even for large spreads when the correlations are strong. From

the analytical result Eq. (5.10), one can expect a positive profit if

s 1 (1 + o)
YT\ (5.11)

For correlations with o = 0.8 (corresponding to the empirical correlations within
20 minutes), the strategy is profitable if the spread s is about 19 times the price
impact A. With these strong correlations, this strategy can only be profitable for
extremely large spreads. Though it is reasonable that with correlated market
orders the spread is increased in order to compensate the risk of large price
movements, this value is very high so that the strategy as it is presented here

would usually not lead to profit without adaptions of the model.

Long-term correlated market orders

If we consider power law correlations instead of the exponentially decaying corre-

lations of an AR(1) process, the liquidity provider’s profit for large N becomes

even smaller. For power law correlated m(t) with (m(t)?) = 1, (m(t)) = 0,
1

and correlation function c¢(m(t), m(t),7) = a0 the expected inventory I =

Zi]\il m(i) after N time steps is

N
(I7) = N+2) (N —i)(m(t),m(t),q)
=1

1
(1+74)9

N
= N+2) (N-i)
=1

X
=
_l_
)
— ]
2
&
=
|

— N+(9_2)(9_1)((N+1)9+2N(N+1)9+

+N2(N+1)7% 2179 4 219 nvg — 22—91\/) . (5.12)
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For N > 1 and 0 < 1, we collect all terms with N¢ for ¢ > 0 and replace N + 1
by N, so that

2
5 10 | A2—0 | ol-Opnr _ 020
(I7) =~ N+(0_2)(0_1><2N + N + 279N — 2 N)
_ 2 (e 20t 1-0
= N+ G501 (N + 2272 — )N +2N (5.13)

For normally distributed market orders with (|m(t)|) = \/g , the win due to

the spread grows with N like %s\/g, i.e. with a power of one. In contrast, the
highest power of NV in the expected inventory is 2 —6 > 1 since § < 1 (0 ~ 0.73
in Fig. 5.1). Hence, this strategy can lead to profit only for very short time

horizons or very large spread § > 1.

Cross-correlations

In the model described above, the liquidity provider matches every market order
so that the price will not move at all. However, in reality a trader has to deal with
certain limitations Iy of the inventory. So, if the inventory is full (meaning
that the absolute difference between the number of bought and sold shares is
larger than Ip,ax), she cannot match any more incoming market orders. In this
case, she has to let the orders move the price while she has to wait for orders
with the opposite direction in order to close her positions. Hence, the trader
matches only very few market orders (if Iax << VN ) and waits for the right
orders in the rest of the time. Thus, together with the inventory, the risk is

limited by Imax, but also the possible profit.

Although this is a parsimonious model, our simulations can lead to qualitative
results which can be compared to empirical data if we include inventory limita-
tions so that the price can move during the simulation. At this point, we want
to recall some results from my diploma thesis, which were published in [30]. Fig-
ure 5.3 displays the cross-correlations between returns and the flow of (a) market
orders and (b) limit orders, obtained as an average of ten Nasdaq stocks from
the year 2002. The vanishing correlations for market order and limit order flow
preceding returns for more than 50 seconds indicate market efficiency, meaning
here that returns cannot be predicted over extended periods of time. For other
time lacks, market orders (a) exhibit positive correlations with returns that are
strongest when the time intervals for returns and order flow overlap (shaded
region). In the non-overlapping region, the correlations decay slowly, which is

probably due to the strong autocorrelations of market orders [20} 29, [73].

Surprisingly, the correlation function for limit orders with returns, shown in
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Figure 5.3: Correlation functions between return and signed order flow (buy
minus sell orders), obtained as an average from order book data of ten Nasdaq
stock from the year 2002. (a) Market orders and returns show strong positive
equal time correlations (shaded region) decaying slowly to zero. (b) Limit or-
ders preceding returns have weak positive correlations with them, while equal

time correlations (shaded region) are strongly negative. Adapted from [30)].

Fig. 5.3(b), exhibits strong equal time anticorrelations. These anticorrelations
can be interpreted as an indication that rising prices cause an increased number
of sell limit orders whereas falling prices induce additional buy limit orders. In
this way, price changes seem to be counteracted by an orchestrated flow of limit

orders.

The results for the cross-correlations obtained from the simulation of the liquid-
ity provider strategy are in striking contrast to these empirical results. Figurel5.4
shows the cross-correlations between returns and market orders (circles) as well
as limit orders (squares), and in addition the autocorrelations of returns (dia-

monds), for parameters s = 0.1, A\ = 0.1, Ijnax = 30. The smaller the inventory
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Figure 5.4: Correlations obtained from the simulation of the liquidity provider
strategy with parameters s = 0.1, A = 0.1, o = 0.8 and Inax = 30. Market
orders and returns are highly correlated (circles), and the market order corre-
lations show up in the returns (diamonds) almost unchanged, so that returns
are still strongly predictable, in contrast to the empirical results shown in
Fig. 5.3. The anticorrelations between returns and limit orders (squares) are
somewhat artificial, because the limit order placement is calculated from the

market orders by inversion.

limit Inax, the more often the trader has to let the price move, so that with rel-
atively small Ijnax the market order correlations show up in the returns almost
unchanged. Hence, returns are still highly predictable, in contrast to reality.
The anticorrelations between returns and limit orders are somewhat artificial,
because the limit order placement is calculated from the market orders directly
(the simulation assumes that there was a limit order placed before so that the

market order can be matched).

In summary, the liquidity provider strategy leads to profit due to the spread,
but the price impact when closing the positions can lead to losses. Especially
with large correlations in the market orders the inventory can grow so large that
severe losses are very likely with this strategy. A better strategy should involve
a mechanism to limit the inventory without destroying the possibility of making
profit. However, the liquidity provider strategy as it is presented here does not

seem to explain the correlations and cross-correlations found empirically.



Front runner strategy

73

5.3 Front runner strategy

Instead of considering the correlations in market orders as a potential danger,
the second strategy presented here uses these correlations for the prediction of
future orders in order to optimize the profit. This idea is based on the basic
strategy called ’front running’ [124]: a front runner knows for some reason that
someone wants to place a large market order, say a buy market order. Then, she
himself buys this number of shares before the foreseen market order is placed.
Due to the market order of the front runner, the price changes to a higher level
according to Eq. (5.1). Now, she places sell limit orders at the increased price
and waits for the expected buy market order. If this order is actually placed,

the front runner can sell the just bought shares at a higher price.

In our model, the front runner uses the correlations between the market orders to
predict future market orders. These correlations can be explained qualitatively
by order splitting |73]: people split large orders into several smaller pieces and
place them consecutively over a larger time period in order to affect the price
not too much. Thus, the front runner can step between these split orders and

perform her strategy.

According to Eq. (5.2) with (e(t 4+ 1)) = 0, the market order mpreq(t + 1) pre-

dicted for the next time step is
Mpred (t + 1) = om(t) (5.14)

which leads to the overall expected future order flow

pred Zmpred t+] ZQ] 5 - (515)

Jj=1

If the trader follows her front runner strategy, each incoming market order
m(t) = om(t —1)+e(t) is split into two parts: the predicted part om(t —1) due
to the previous order is matched against limit orders placed by the trader in the
previous time step and thus does not change the price, so that her inventory I(t)
is reduced to I(t) — (m(t) — e(¢)). On the other hand, the innovation part due
to the random number () leads to a new prediction of the future market order
flow, and the trader adjusts her inventory by immediately buying (or selling)
some shares in order to hold exactly the predicted market orders. Thus, the

difference between the new inventory I(¢t+ 1) and the inventory I(t) before the
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arrival of the current market order is

AIt)y=1(t+1)—I(t)= &(t) Z A (m(t) —e(t)) . (5.16)
qul—’ executed via

new prediction ..
limit orders

In order to adapt her inventory, the front runner places market orders

o
mpr(t) =e(t) Y o . (5.17)
j=1
At the same time, the trader also adapts her limit orders to match the predicted
market orders for the next time step according to Eq. (5.14).

The price changes due to the innovation and the market orders of the trader:

1

S(t+1) = () = Ale(t) +min) = Ay

et) . (5.18)

Contrary to the liquidity provider strategy of the previous section, the spread
constitutes a cost for the front runner instead of an opportunity. In order to
adapt her portfolio to the predicted order flow, she constantly has to buy and
sell shares using market orders. This leads to losses analogous to Eq. (5.3),

depending on the average market order (|mpgr|) she has to place.

Profit estimation

The front runner’s profit can be approximated by dividing the process into two
parts: The win the front runner would make if everything would match her
prediction, and the loss due to the spread when trading mpgr in order to adapt

to the innovation.

The win and loss are given by the difference between the buy and the sell price

for all traded shares. As an example, we consider a positive (buy) innovation
_ £(t)e

g(t) > 0. The front runner buys the prediction Viyy = 7= at price Spyy =

S(t) + 5+ %al(f)gg, causing a price impact of AS = )\%. If we neglect future

innovations, the front runner can sell her shares Vien = Viuy at Ssen = Sbuy—i—%,

leading to a win

AS e(t A 2
WFR = Sgell Vsell — Sbuyvbuy = 7 1(_>f) = 5 <1£Q> 5(75)2 . (5-19)

Since (£2(t)) = 1, the expected win after N time steps is

(wrw) = N3 (1_%)2 . (5.20)
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Figure 5.5: Profit per normalized market order in the front runner strategy for
different spreads. The price impact coefficient is hold constant at A = 0.1. (a)
From 100 simulations with N = 100,000 time steps each, the average profit
at the end is divided by N (|m|) in order to obtain the profit per normal-
ized market order. Figure (b) shows the normalized profit per market order

obtained from the analytical result Eq. (5.22).
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On the other hand, the front runner has to face losses due to the spread when
changing her strategy because of new innovations. In the worst case, she buys
Vouy = % shares that she has to sell in the next time step because the inno-
vation (¢t + 1) has a different sign. So, every two time steps she buys and sells

Vbuy loosing sVi,,y. Hence, the expected loss after N time steps is given by

(lrg) = NZl_QQ\/Z (5.21)

which leads to the expected profit

(prrr) = (wrr) — (lrr) = ];71—99 ()\1_99 -5 i) . (5.22)

Figure 5.5/ illustrates the dependence of the front runner’s profit on the parame-
ters of the model, analogous to Fig. 5.2l Since the trader only acts on forecasts,
she does not trade at all if the correlations (resp. g) are zero, which always
leads to no profit. However, when p is increased, the front runner starts to take
action in the market: the larger the correlations, the more she trades. Now,
the front runner looses money due to the spread, but she also wins money from
the correlated market orders. For small correlations, this usually leads to losses,
but for o = 0.8 ( corresponding to the empirical correlation in a time horizon of
20 minutes) only very large spreads (eight times the price impact) prevent this

strategy from being successful.

The agreement between the simulation results in Fig. 5.5(a) and the analytical
result Eq. (5.22) shown in Fig. 5.5 is quite good. However, one sees deviations
especially for large values of s, indicating that the approximation Eq. (5.22)

overestimates the negative influence of the spread.

Cross-correlations

The front runner strategy agrees much better with empirical data than the
strategy of a liquidity provider. Figure 5.6/ shows that because of the action of
the front runner following her strategy, the correlations between market orders
do not show up in the returns (diamonds). This is not surprising because only
the unpredictable part of the market order leads to a price change. For empirical
data, the return shows a small anticorrelation in very short times, which is
known as the ’bid-ask-bounce’. This phenomenon is not featured by our model.
However, the empirically found cross-correlations [30] between the return and
the market orders as well as the limit orders, which are shown in Fig. 5.3, can

be reproduced qualitatively in our model. Figure 5.6 also shows that returns
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Figure 5.6: Correlations obtained from simulation of the front runner strategy
with parameters s = 0.1, A = 0.1, and ¢ = 0.8. Due to the action of the
front runner, the correlations in the return (diamonds) disappear. There are
no correlations between returns and market orders (circles) or limit orders
(squares) for negative time lags, so that returns cannot be predicted from the

order flow.

are not correlated with preceding market (circles) and limit orders (squares), so
that a prediction of returns due to the order flow is not possible, in agreement

with reality.

After the price change, there are positive correlations between returns and mar-
ket orders, but we also see anticorrelations between the return and following
limit orders. This phenomenon was described in [30] as a feedback mechanism
reducing the price impact of an order. A possible explanation for this feedback
mechanism is that traders hide their large orders because they do not want to
provide liquidity to other traders. If the price changes due to a market order,
the hidden orders are placed in the order book in expectation of many consecu-
tive market orders. In this way, these market orders do not have a price impact

anymore.
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5.4 Discussion

We analyzed two different trading strategies that have a very different relation
to correlations of market orders. The liquidity provider strategy works against
these correlations, leading to losses due to the huge inventory after a certain
number of time steps. Possibly, the model proposed here misses features of the
market that are important for limiting the inventory. Figure [5.3 showed that
a price change has a huge impact on the order flow, which has been shown to
account for the quite flat shape of the price impact function of market orders [30)].
Thus, rising prices should lead to reactions of the market participants that limit
the price change due to an order. Hence, the model could be expanded in such
a way that deviations from a reference price (e.g. given by a running average
of past prices) lead to an increased flow of market orders that mean revert the
price. However, this is not included in the model since we wanted to show that
the front runner strategy can qualitatively generate the empirical correlations,
which would be meaningless if we put these correlations in the model from the
beginning.

The analysis in this chapter showed that by using the correlations in a successful
strategy, their influence on returns is destroyed, which then exhibit the empiri-
cally observed lack of correlations. Though the presented front runner strategy
is somewhat artificial, it illustrates how market efficiency can take place, so that

arbitrage opportunities disappear as soon as someone takes advantage of them.
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empirical correlation matrices

So far, we have analyzed the autocorrelations in the return time series and
studied the mechanisms underlying large stock returns. In this chapter, we
do not focus on the risk inherent in single large price movements, but rather
concentrate on the risk associated with the statistical uncertainty of the return
of a portfolio [5]. This uncertainty is measured by the volatility, which is here

defined as the variance of the portfolio.

Markowitz investigated the selection of an efficient portfolio that has minimal
risk for a given expected return [71]. Such a portfolio can be obtained by
appropriate diversification, meaning that one invests in a large number of stocks
with weak cross-correlations. In this way, the loss of some of the stocks can be
compensated by the gains of others. In order to be efficient, such diversification
has to lead to a minimal variance and thus a minimal risk of the portfolio. Since
the variance of the portfolio is determined by the cross-correlations between the
return time series of all involved stock, one has to evaluate these correlations in

order to calculate the risk.

The estimation of cross-correlations between a large number of time series can
be very difficult due to the “curse of dimensionality”: If the number of time series
is of the same order as their length, a calculation of the correlation coefficients
results in large errors, since in this case the number of calculated values is
comparable to the number of data points available for their calculation. On
the other hand, cross-correlations change over time so that one may have to
study rather short time series. If one simulates a random market of N totally
uncorrelated time series with a length 7'~ N, the resulting correlation matrix
will deviate significantly from the unit matrix. In the same way, the cross-
correlations calculated from empirical time series contain spurious correlations

that can make a precise risk estimation difficult.

In physics, correlations can be related to the interactions of particles. If a
physical system is too complex so that the interactions cannot be estimated

precisely, one uses random matrices to obtain information about the properties



80

Test for statistical significance of empirical correlation matrices

of the system [72]. For instance, the excitation spectra of nuclei on low-energy
levels can be explained by considering a model of independent particles with an
average potential [126] [127]. For intermediate energies, the interactions between
the nucleons cannot anymore be described correctly with an average potential,
and it is impossible to explain the individual states [72]. Therefore, instead
of trying to describe the individual states, one focuses on estimating average
properties of the system by using a statistical theory where the Hamiltonian is
described by a random matrix. Random matrix theory has also been successfully
applied to economics to study correlations between financial time series [128,
129].

In this chapter, we want to use random matrices for studying correlation ma-
trices of finite time series. We analyze a hypothesis test [125] that can distin-
guish spurious correlations from real correlations. Specifically, it tests whether
the matrix contains statistically significant correlations or whether it is equiv-
alent to the unit matrix. For covariance matrices, such tests were formulated
by [130}, 131] and later generalized to the degenerate case N > T', where the

matrix dimension exceeds the time series length [132].

This chapter is organized as follows. In section 6.1 we define the test statistics
and calculate its T-limiting distribution. The properties of the test for finite

samples are analyzed in section 6.2, and a summary is given in section [6.3.

6.1 Definition of the test

We consider N time series X;(t) of length 7', which are normally distributed
with population mean p; and population correlation matrix C. For each time
series X;(t), we define a new normalized time series x;(¢) with zero mean as
Xi(t) — X;
nify = 2 =i (6.1)
S

where X; and s? = = S (Xi(t) — X;)? are the mean and the variance of
the sample X;(¢). Due to the normalization, the population covariance matrix

of the {z;} is given by C as well.

We denote the sample correlation matrix of the time series x;(t) by
Cij = =Y _mi(t)a;(t) . (6.2)

The correlation matrix C of the sample will generally be different from the

true correlation matrix C if the considered time series have a finite length. The
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question we want to answer in this chapter is whether it is possible to distinguish
between spurious and real correlations if one only knows the sample correlation
matrix, e.g. from an empirical data set. In particular, we want to test if a given
sample correlation matrix is compatible with the null hypothesis of uncorrelated

time series, i.e. a population correlation matrix C equivalent to the unit matrix.

A statistical test usually decides whether or not a given hypothesis is to be
rejected, which then means that the hypothesis is false with a given probability.
In our case, where we are looking for correlations in the time series, the null
hypothesis corresponds to the absence of correlations. If now the test rejects
this hypothesis, this can indicate that the alternative is true, i.e. that there are
correlations. However, it is possible that both the hypothesis and the alternative
are rejected, so that a rejection of the hypothesis does not necessarily mean that

the alternative is true.

A test is characterized by size and power, which quantify how often the test
correctly decides to reject or not reject the hypothesis. The size is the probability
for rejecting the null hypothesis when it is true. Hence, if the size is zero, the
test result is always correct if there are no real correlations in the data. A
larger size indicates less accurate test results, so that sometimes the test rejects
the null hypothesis although there are indeed no correlations. However, the
size alone is insufficient for characterizing a test, since a test with arbitrary
size could be easily created by simply rejecting every hypothesis with a given
probability. Hence, the size is meaningful only in conjunction with the power,
which characterizes the test in the presence of correlations: the power is the
probability of rejecting the null hypothesis if there are correlations. Here, large

values indicate that the test has a good capability of detecting correlations.

6.1.1 Test statistics

For the present test, we analyze the test statistics

R = %tr [CQ} 1, (6.3)

allowing to distinguish true correlations from spurious correlations that result

from a finite time series length.

The test is based on the knowledge about the expected distribution of R for
many random matrices with a given N and T'. Then, one can test if the value
of R obtained from an empirical sample matrix agrees with the distribution. In
order to get the binary result whether or not the hypothesis has to be rejected,

one defines a significance level corresponding to a critical value Ry of the test
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statistics. The empirical R can be compared to Rerit, so that the hypothesis is
rejected if R > Rerit-

If one wants to show analytically that the test statistics exhibits the desired
properties, one first has to show that R is (N, T)—consistent, i.e. that the power
of the test to separate the null hypothesis from the alternative converges to one
as N and T go to infinity together. Specifically, one has to prove that the ex-
pectation value of the test statistics under the joint limit T'— oo, N — oo, and
T/N = @ uniquely allows to decide whether the population correlation matrix
differs from the unit matrix. Next, one calculates the T-limiting distribution
and shows that its (N, T') asymptotics is indeed the true (N, T') asymptotics of
R.

For a similar test for covariance matrices, this procedure was successfully per-
formed by Ledoit and Wolf [132]. For correlations matrices, the normalization
Eq. (6.1) of the time series z;(t) leads to additional problems. Specifically, while
the time series X;(t) are independent with (X;(¢1)X;(t2)) = 0 for ¢; # to, the

normalization creates correlations in the x;(¢). One has

(zi(ty)zi(t2)) = |

(Xi(t) — X)) (Xi(to )—;f')> (6.4)

T1Zk1( () Y
=

1
X;(t1)X;(t
e )zzqzlxi<p>xi<q>< (i)

T T
1 1
)+ X Y + 7y D X,(m)Xi(m)))
= m,n=1
Since the sums run over all ¢ = 1...T, there are products of X;(¢)X;(t) for the
same time ¢, which lead to a finite contribution to the expectation value. One

gets
(it1)zi(t2)) = —% : (6.5)

6.1.2 T-limiting distribution

In this thesis, we will focus on the numerical properties of the test and not prove
its consistency, which is done in [133]. However, in order to make the test useful
for empirical studies, we first have to find the T—limiting distribution. For this
calculation, we can neglect the correlations Eq. (6.5) between the z;(t) since
they vanish in the limit of large T'. Hence, we focus on uncorrelated x;(t) with
(xi(t1)xi(t2)) ~ 0 for t; # t2 in order to derive a solution for the T-limiting
distribution under the assumption that the true correlation matrix C' is the

identity.



Definition of the test

83

—e 1/T

. 4 =—a 1/(T-1)
e - — 1(T-2)| A
o5}
L E
o] ]
=] ]
7] )
3 "
E %

1 1 1 1 I 1

10 100
T

Figure 6.1: Comparison of different factors a(N,T) = =12 (corresponding

to 8 = 0in Eq. (6.12)), m = 0,...,7 and N = 16 for the T-limiting dis-
tribution of the test statistics R. The mean square difference between the

probability density function of % and X?\/( N-1)/2 decreases for increasing 7.

The best fit (i.e. smallest error) for small 7" is obtained with o = N—1)- Lhe
curves are shown for 10,000 simulations.
We introduce the random variables 7;;(t) by decomposing
1 1
—_ in<t)l‘j<t) = Cij +—="ni - (6.6)
T-14 VT

The newly defined random variables n;; have expectation value zero and variance

1 for i £ i
Var(n)? = o7 (67)
0 fori =
With these variables, we can rewrite
1 1< 1< 1
—Tr[C? = — M2 o ——1;)? _
& TH(C NZ & NMZI(C + ) (6.8)
N
1 1 1
= = > (Ch+ —=Cijmij + =15y) (6.9)
Nz VT T
_ )2
= l+ 57 > i) (6.10)

1<j
The second term in Eq. (6.10) is the sum of N(N — 1)/2 squares of standard
normal distributed variables and hence follows a X?\/( N-1) /Qfdistribution. We
conclude that the T-limiting distribution of the test statistics R is given by

D 2
R = TN X?V(Nfl)/Q : (6.11)
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Figure 6.2: Comparison of different factors a(N,T) = %% for the T—

limiting distribution of the test statistics R. The figure shows the mean square
difference (MSE) between the probability density function of % and X?\/( N—1)/2
depending on T. Shown are the eight curves with the lowest average error
(MSE(PR, Py2,T)) for T'=max(1,m,n),...,100 . The best fit (i.e. smallest
error) for small 7" is again obtained with a = N(Y%fl)‘ The curves are shown

for 10,000 simulations with N = 16.

6.2 Test properties for finite samples

The test proposed above is supposed to distinguish spurious correlations from
real correlations in empirical time series. Such a test is of particular interest if
the data sets are small so that one can only analyze short time series, since here
the effect of spurious correlations is large. Therefore, it is important to analyze
the properties of the test for finite samples, which we will do in the following

using numerical simulations.

6.2.1 Finite size properties of T—limiting distribution

The T-limiting distribution is only exact for large T, so it is not clear whether

the prefactor % in Eq. (6.11) is a good approximation for small and inter-

mediate T" where corrections of the order % can be important. By simulating

10,000 random matrices in order to obtain good statistics for R, we compare
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0.05— —

75 100 125 150 175

Figure 6.3: . A comparison of the PDF of RN (T —1) for different 7' with the
PDF of X?\/( N—_1)/2" The approximation is reasonable already for very small
T = 4 and becomes very good for larger T'. The curves are shown for 10,000

simulations with N = 16 and smoothed by a moving average.

the prefactor % to other factors a of the form
_ (T—n)p 2

To this end, we calculate the probability density functions (PDF) of % for
different o and compare them with X?\/( N—1)/2° The mean square error MSE
between the PDF Pr of % and the PDF P2 of X?V(Nfl)/2 is given by

MSE(Pr, Py2) = ((Pr(y) — P2(y))?) (6.13)

where y runs from 0 to 10N (N — 1) in steps of 0.1. Since here many values are
almost zero in both distributions, the MSE gets generally quite small. However,
we only want to compare the distributions for different o so that only their
relative MSEs are important. In Fig. 6.1/ we show the results depending on T’
for a(N,T) = 712 (corresponding to 3 = 0 in Eq. (6.12)), m = 0,...,7
and N = 16. Although for large T all shown distributions converge to the x?-
distribution, there are significant differences for small T'. The curve with m =1
is clearly the best one, while m = 0 and m > 2 lead to larger deviations. This
indicates that a corrected prefactor ﬁ could lead to better test results for
finite T'. For very small T, where the T-limiting distribution should not be very

2
T-DN

larger than for large T', but the error becomes smaller very fast.

accurate, even for the best prefactor the MSE is indeed one magnitude
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T
4 8 16 32 64 128 256

4 1001 003 0.04 0.05 005 0.06 0.05
8§ 10.02 003 0.04 0.05 0.05 0.056 0.05
16 | 0.02 0.03 0.04 0.04 0.05 0.05 0.05
N 32 ]0.02 003 0.04 005 005 005 0.05
64 | 0.02 0.03 0.04 0.05 0.05 0.05 0.05
128 | 0.02 0.04 0.04 0.05 0.05 0.05 0.05
256 | 0.02 0.03 0.04 0.04 0.04 0.05 0.05

Table 6.1: Size of the test R from simulation of 10,000 Monte Carlo simulations
for each pair (N, T). The null hypothesis is rejected when the test statistics
exceeds the cutoff Ryt obtained from the chi squared approximation with
a= ﬁ For T' > 32, the actual size agrees well with the nominal size for
all values of N.

We did not find any other combination of m,n,3 = 0,...,7 that leads to a
better agreement between the simulated distribution of R and the distribution
of ax?V(N_l)/Q. Since we cannot plot all curves for all combinations of m,n, 3,
we show in Fig. 6.2/ only the eight best fitting curves, meaning that for these
curves the average error (MSE(Pgr, Py2,T)) for T = maxz(1,m,n),...,100 is
minimal. Also in this figure, the factor a = ﬁ clearly shows the best

results, especially for small T'.

Though there might be other pefactors of a different form fitting the real distri-
bution of R better, we conclude that the prefactor a = ﬁ leads to a good
fit of that distribution. In the following, we will use this corrected prefactor

instead of the one obtained above for the T-limiting distribution.

In order to illustrate the finite sample properties of the test statistics with
the corrected a = ﬁ, we compare the PDF of %RN(T —1) for N = 16
and different T with the PDF of X%V(N—l)/? The PDFs are shown in Fig. 6.3|
where the curves are smoothed by a moving average. The approximation looks
reasonable already for very small T' = 4, becoming very good for larger T'. For

T = 100 (not shown here), the agreement is almost perfect.
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T
4 8 16 32 64 128 256

4 1002 0.08 020 044 077 098 1.00

§ 1004 017 043 079 098 1.00 1.00

16 | 0.09 0.35 074 097 1.00 1.00 1.00

N 32 |018 057 092 1.00 1.00 100 1.00
64 | 033 077 099 100 1.00 1.00 1.00

128 | 0.48 090 1.00 1.00 1.00 1.00 1.00

256 | 0.63 0.96 1.00 1.00 1.00 1.00 1.00

Table 6.2: Power of the test from simulation of 10,000 correlated matrices.
The data is generated from a factor model with one factor, thus g;(t) =
0.5 f(t) +€;(t) for each time series. The null hypothesis is rejected when the
test statistics exceeds the 95 % cutoff point obtained from the chi squared
distribution with o = ﬁ (approximated by a Gaussian for N < 64 with

an error of ~ 0.1 percent).

6.2.2 Size and power of the test

In order to analyze the finite sample properties of the test statistics R with the

adapted distribution ax?\,( N-1)/2 given by

2

2
(T_l)NXN(N—l)/Q ) (6.14)

we study size and power, the standard measures characterizing a statistical test.
First, we study the test size, i.e. the probability for rejecting the null hypothesis
when it is true. We simulate N i.i.d. and normally distributed time series X; of
length T'. For each simulation run, we compute the sample correlation matrix
C and calculate the test statistics R from Eq. (6.3). The critical value Reyit is
obtained from the upper 5% quantile of the T-limiting distribution, so that 5%
of the R would be rejected even with no correlations in the data and with a
perfect agreement of this distribution and the real distribution of R. This value
of 5% is called nominal size, because the size should approximate this value for

T if the test works correctly.

Table 6.1] shows the results of 10,000 simulations for both N and T from the
set {4,8,16,32,64,128,256}. For each (N,T), we compare the test statistics R
with a critical value Rt that is calculated for this (N, T') from the T-limiting
distribution. For T' > 32, the test works very well and the actual size agrees well

with the nominal size, independent of N. For T' < 16, the actual size is smaller
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Figure 6.4: Power of the test with a = ﬁ for different correlation
strengths. The values are obtained from 10,000 simulations of time series
according to Eq. (6.15) with 7 varying from 0.05 to 0.5. The results are
displayed for N =T = 32.

than the nominal size, i.e. Rt is too large so that the test rejects more than
5% of the simulations. This suggests that for small 7' the test is too restrictive,

which might also influence the power of the test to detect correlations.

In order to analyze the power of the test, we turn to simulate correlated time
series so that the null hypothesis should be rejected. We start with a one factor

model, where each time series XZ-1 is generated by
X} () =7 x f(t) +ei(t) (6.15)

with e = 1,..., N, t = 1,...,T, and v = 0.5. While the normally distributed
random numbers ¢;(t) are generated for each time series, the also normally
distributed random numbers f(¢) are the same for every time series in one
time step. Thus, with this choice of v = 0.5 the simulation generates strong
correlations. We apply the test to the correlation matrices of 10,000 simulations
for different combinations of N and 7' (Table[6.2). In contrast to the size, which
mostly depends on 7', the power increases with both increasing 1" and N since
the eigenvalue due to the common factor is larger if there are more time series
with this factor.

The power of the test to detect correlations depends largely on the strength
of the correlations in the considered time series. By adjusting the prefactor ~
of the common factor in Eq. (6.15), one can generate correlations of different
strengths. The dependence of the power from these correlations is displayed in
Fig. 6.4/ for N = T = 32. One finds that the power is very good for v 2 0.4,
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4 8 16 32 64 128 256

4 1003 012 045 0.89 1.00 1.00 1.00

§ 1003 013 044 092 1.00 1.00 1.00

16 | 0.04 0.14 045 094 1.00 1.00 1.00

N 32 004 014 046 095 1.00 1.00 1.00
64 | 0.06 015 046 095 1.00 1.00 1.00

128 | 0.04 0.15 0.47 095 1.00 1.00 1.00

256 | 0.05 0.15 047 095 1.00 1.00 1.00

Table 6.3: Power of the test from simulation of 10,000 correlated matrices.
The data is generated such that half of the eigenvalues of the correlation
matrix are equal to 0.5 and the other half equal to 1.5. The null hypothesis is
rejected when the test statistics exceeds the 95 % cutoff point obtained from
the chi squared distribution with @ = ﬁ (approximated by a Gaussian

for N < 64 with an error of ~ 0.1 percent).

but vanishes if the correlations are too small. Larger values of N and T allow

the detection of smaller correlations.

In a further analysis using different correlations, the time series are generated
such that half of the eigenvalues of the correlation matrix are 0.5 and the others

are 1.5. The time series are pairwise given by

X5t = e2i-a1(t) (6.16)
X5 (H) = V3Xoio1(t) +e2(t) (6.17)

where ¢ = 1,...N/2. This definition generates rather small correlations, which
are difficult to detect for the test. Hence, the power of the test for small T is
quite weak, which is displayed in table 6.3. Reasonable power is only obtained
for T > 16, but the test works perfectly if T" is large enough (7' > 32). The
influence of N on the power is only weak, larger N only lead to a slight increase

of the power.

In Fig. 6.3 we saw that for very small T" there are significant deviations between
the distribution of R and the x?-distribution Eq. (6.14). This suggests that
the cut-off point Ryt derived from the T-limiting distribution might also not
be appropriate for small 7'. This is also indicated by the results displayed in
tablel6.1, showing that for 7' < 32 the cutoff point obtained from the T-limiting

distribution is too large since too few simulations are rejected. Thus, an adapted
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4 8 16 32 64 128 256

4 1010 0.20 050 090 1.00 1.00 1.00

8§ 1009 019 048 093 1.00 1.00 1.00

16 | 0.09 0.18 048 094 1.00 1.00 1.00

N 32 ]0.09 018 0.50 095 1.00 1.00 1.00
64 | 0.09 018 0.50 095 1.00 1.00 1.00

128 1 0.09 0.19 0.48 096 1.00 1.00 1.00

256 | 0.09 0.18 0.50 0.96 1.00 1.00 1.00

Table 6.4: Power of the test with from simulation of 10,000 correlated matri-
ces. the data is generated such that the correlation matrix has half of the
eigenvalues equal to 0.5 and the other half equal to 1.5. The null hypothesis
is rejected when the test statistics exceeds the 95 % cutoff point, which is
here not obtained from the chi squared distribution Eq. (6.14) but is adapted
so that always 5% of the simulations of uncorrelated time series are rejected,

even for small 7.

cutoff point would be smaller and the test would reject the null hypothesis for
more simulations, possibly resulting in a better power for correlated time series.
In order to improve the power for small values of T', we adjust the cutoff point
Rt so that the size is 0.05 also for small T, i.e. that 5% of the simulations of

uncorrelated time series are rejected.

The results with adapted Rt can be seen in table [6.4. Though one finds a
slight improvement of the power, the corrections are quite small. The effect
is strongest for T' = 4, where the power increases from values around 0.04 to
values around 0.09, but the power of the test remains weak. For larger T,
the improvement becomes quite small. This is not surprising because also the
correction of Rt is small for these T, since the distribution of R is close to the
distribution Eq. (6.14) for large T', as shown in Fig. [6.3l

6.3 Summary

We developed and studied numerically a hypothesis test that is able to dis-
tinguish between spurious and real correlations. We calculated the T-limiting
distribution analytically and used Monte Carlo simulations to adapt its pref-

actor in order to obtain a better agreement with the data for small 7. This
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prefactor leads to a significantly better agreement with the real distribution of
the test statistics for small samples. Using the corrected prefactor, the studied
significance test generally leads to very good results for numerous (large N)
as well as long samples (large T'). However, if the sample length is very short
(T < 32), the power and the size of the test decrease. One reason might be that
the obtained value of « is still not the best choice for small samples. Possibly,
the corrections due to the correlations of order % that we neglected in the limit
of large T" might be important at small 7. However, even if we use the simu-
lated distribution of the test statistics R to adapt Rt so that the actual size
matches the nominal size, the power for small 7" remains weak. Nevertheless,
even with these limitations for very short time series the test could be a useful

tool to analyze financial as well as physical time series.

In summary, this thesis studied various phenomena of stock returns. First, we
found self-similar features in the time periods following large and intermediate
crashes, and this self-similarity could be related to memory in the volatility.
Then, we studied the mechanisms leading to large returns. We found that
large returns are not due to one single effect, but rather depend on several
quantities: In intervals with a fixed number of trades, the concurrence of a
large number difference and a large mean tick return size leads to non-Gaussian
returns. By analyzing the price impact function in time intervals, we showed
that its time-varying slope can be a measure for liquidity, which together with
the volume imbalance can explain large returns. In this picture, large price
changes occur because in the respective time interval the liquidity is low, so

that an intermediate volume can cause a very large return.

The notion that traded volume moves the price seemed to be paradoxical: the
signs of orders are strongly correlated, but uncorrelated returns appear when
these orders are executed. We showed that this lack of correlations in the returns
can be explained by a trading strategy that uses the order sign correlations for
an increased profit. Finally, we turned from the analysis of time correlations to
studying cross-correlations between different time series. We presented a test
that can distinguish spurious correlations from real correlations in the correla-
tion matrix of finite samples. In a further study, this test could be applied to

empirical correlation matrices in order to estimate their real correlations.
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methods

In this appendix, we want to give an overview and more detailed information
about the data sets studied in this thesis. We also want to explain the filtering
methods used to remove recording errors and their influence on the results.
Moreover, we describe the programming methods and how these programs can

be used for future research.

A.1 Data sets and filtering

For this thesis, we studied four different financial data sets:

e (i) the one minute return time series of the S&P500 index from 1984 to
1989,

e (ii) the TAQ data base of the year 1997 for the 100 most frequently traded

stocks,

e (iii) the one minute return series of General Electric (GE) stock from the
TAQ data base of 2001, and

e (iv) complete order book information from the Island ECN for the ten

most frequently traded stocks in 2002.

In the following, we will give detailed information about the data sets.

(i) The S&P500 index is composed of 500 stocks of mostly US-American com-
panies that are traded at major US stock exchanges. Along with the Dow Jones
Industrial Average and the Nasdaq Composite Index it is one of the most impor-
tant indices in the US. The data set studied provides the index value in every
minute of a trading day, so that a time series of one minute returns can be
created. In the last hour of the trading day, the data set sometimes contains no
records, so that these parts were excluded from the analysis (instead of filling
them with zero returns). All in all, the whole data set contains about 500,000

data points for the time period 1984 to 1989.
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(ii) The Trades And Quotes (TAQ) data base is provided by the New York Stock
Exchange (NYSE) and contains data for all stocks traded at NYSE, Nasdaq,
and American Stock Exchange (AMEX). In our data set for the year 1997, for
each month the data set consists of two files: the first file contains all trades,
i.e. the transaction price, the number of shares (volume) traded, and the time
when the trade took place. The other file gives information about the quotes,
which includes the bid and ask price, the volume present at bid and ask price,
and a time stamp for the quote. Using the time stamps of the recorded trades
and quotes, one can match all trades with the respective quotes which are chosen
as the last quote before the trade happened. The quotes are used to calculate
the midquote price but also for the Lee and Ready algorithm [105] that labels
trades as buyer or seller initiated, depending on whether the transaction price

is larger or smaller than the midquote price.

Unfortunately, this data set exhibits some recording errors: First, there are
obvious misrecordings due to typos, so that sometimes the price jumps from 10
to 100 and immediately back to 10. On other occasions, in one trade the price
changes by for example 20%, stays at this level for a few trades and jumps back
exactly to the old price. When these events happen, the quotes do not change at
all, which indicates that these jumps are artificial and do not reflect the natural

behavior of price changes.

In order to remove these errors from the data set, we used the algorithm of
Chordia et al. |[114], which discards all trades for which the difference between
trade price and midquote price is larger than four times the spread. After
applying the filter algorithm, we checked visually the return and trading volume
time series surrounding the largest price changes and found no evidence for

remaining recording errors.

The filter algorithm is quite restrictive and removes about one percent of all
transactions. This has a significant effect on the cumulative distribution function
P(G > z) of returns. We already pointed out that it is a common assumption
that the tail of the return distribution follows a power law with P(G > x) ~ 7%,
where « is around three. Here, we do not want to contribute to the discussion
whether a power law is the best description of the return distribution, and which
exponent is the correct one. However, one can use a power law fit to describe
the changes caused by the filtering. For the raw data without any filtering, we
find o = 2.1, after applying the filter we find @ = 3.9 by fitting a straight line

in a double logarithmic plot.

We note that the applied filtering algorithm removes not only the obviously

erratic events described above, but also strong oscillations of several standard
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deviations that are probably due to the combination of different ECNs: a large
price change might not be reported by all ECNs at the same time. If the price
changes on the leading ECN, there might still be limit orders at smaller ECNs
providing opportunities to trade at the old price. Arbitrage traders exploit these
remaining orders, so that some time after the “true” price change, there are still
records of trades occurring at the old price. Though these oscillations are not
due to recording errors, they are an artifact of the trading system and thus

rightly removed by the filtering method.

(iii) The TAQ data for 2001 appears to have less recording errors than the data
from 1997, so that we only needed to discard the first and last 15 minutes of
a trading day to get rid of unusual (i.e. artificial) price fluctuations. Since we
did not use this data set for studying single extreme price fluctuations, possible
recording errors still contained in the data set have no negative influence on the

results.

(iv) The entire market information of the Island ECN is stored in text files.
We processed the 60GB of raw data in order to extract the data for the ten
most frequently traded stocks [L00] in one file for each stock and trading day.
In these files, each line represents a message of one of the four major types: add
limit order, cancel limit order, execute limit order, or trade message. The first
three types allow a complete reconstruction of the order book at every instant of
time, whereas “trade message” announces the execution of hidden orders which

are not visible in the order book.

Each message contains all necessary information: The ticker symbol of the re-
spective stock, the time past midnight in milliseconds, the number of shares,
the limit price, an indicator whether it is a buy or sell order, and a unique order
reference number. We use this number as a key to store and identify each order
in our data structure and perform (partial) executions and cancelations until
an order is completely executed or canceled. Since all open orders are purged
from the book every evening, we can process the data day by day starting with
an empty book each morning. The order book data contains only data about
limit orders, but the placement of market orders is displayed indirectly by the
execution of one or several limit orders. Limit order executions with the same
time stamp are probably due to the same market order, which we take into

account when studying tick returns.

For each stock, the database for the entire year contains about one to four
million messages. We exclude "hidden" limit orders from our analysis because
our data base contains no information about their placement. We have checked

that on the level of the average price impact function Iyaket(Q) in Eq. (4.1)
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our results do not change if we include hidden limit orders, since the additional

order volume is accounted for by the change in the normalization oq.

This data set is from an electronic market place, where all orders are given and
thus recorded via computers, so that we find no evidence for recording errors.
We checked this visually by looking at the largest price changes, but also by
consistency tests, e.g. verifying that the bid price is always lower than the ask

price.

A.2 Programming methods

Except for the Monte Carlo simulations presented in chapter 6, which were
performed using Octave, most programs for this thesis have been written in
Perl. A Perl program is (usually) not compiled but uses an interpreter, and it is
much slower than e.g. a C++ program (about a factor of two to ten, depending
on the task). However, for most purposes in this thesis the programs run less
than one hour, mostly only a few seconds, so that the speed of the program does
not play a major role. An exception are the simulations of the trading strategies
in chapter 5, which are very time consuming because of the complicated trading

process simulated.

Usually much more time consuming than the actual execution of the program
is the programming part, where Perl is a very useful language. On the one
hand, it provides helpful tools for manipulating strings, so that processing the
various data files is rather simple. On the other hand, it has easily accessible
and adaptable data structures, that allow a fast storing and manipulating of
the data. For instance, in the Island order book data, each order has an order
reference number that can be used as a unique key to identify the order in a hash
table, together with its data such as the limit price or the amount of shares.
Though such data structures can also be created in other languages like C++,
Perl provides them with a minimal amount of code. In this way, programs can

be written quite fast and can be quickly adapted to a new analysis.

For the documentation of the programs, we used POD (Plain Old Documenta-
tion). This documentation is included in the program files and can be extracted
to various formats like HTML, PDF, or a Unix man page using commands such
as pod2html or pod2pdf. In this way, the documentation can be maintained in
conjunction with the program. We developed a program that runs recursively
through the file system of this thesis and automatically creates an HTML doc-
umentation of all program files and self-written modules that can be displayed

in a browser.
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The file system for this thesis is organized in four main folders:

e data — In this folder, all the data sets are stored in one subfolder for each

time period studied.

e scripts — Here one finds all the programs. For each chapter of this thesis,
the programs are stored in a single subfolder. Many functions that are
used in more than one program are collected in modules that are stored
in a subfolder named Modules. There is also a subfolder for tools that
are used in more than one chapter, e.g. the ones for processing the data
files in order to create the return time series from the raw data. In this

subfolder, one also finds the program for creating the documentation.

e results — Results from calculations are saved in this folder, again with
one subfolder for each chapter. Also the data for plots is saved here in
subfolders called data.

e plots — Here, we save the plots that are created by the programs using
gnuplot. For each postscript file, there is also a text file that contains
the commands for gnuplot to create the plot. However, many plots are

created with xmgrace using the data stored in the result path.
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