# A genetic screen for novel genes involved in tracheal development in *Drosophila melanogaster*

## Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Magdalena Baer

aus Poznan, Polen

Köln, Dezember 2006

Berichterstatter/in: Prof. Dr. Maria Leptin

**Prof. Dr. Siegfried Roth** 

Tag der mündlichen Prüfung: 15 Februar 2007

# Table of content

| 1. | Introduction                                          | 1  |  |
|----|-------------------------------------------------------|----|--|
|    | 1.1. Development of <i>Drosophila</i> tracheal system | 1  |  |
|    | 1.2. Architecture of tracheal branches                | 3  |  |
|    | 1.3. Morphogenesis of tracheal branches               | 5  |  |
|    | 1.3.1. Primary branches                               | 5  |  |
|    | 1.3.2. Secondary branches                             | 5  |  |
|    | 1.3.3. Fusion cell formation                          | 6  |  |
|    | 1.3.4. Terminal branching                             | 7  |  |
|    | 1.4. Control of tracheal tube size                    | 9  |  |
|    | 1.4.1. Genes involved in tube elongation control      | 9  |  |
|    | 1.4.2. Genes involved in tube diameter control        | 10 |  |
|    | 1.4.3. Model of tube size regulation                  | 10 |  |
|    | 1.5. Clonal analysis with MARCM system                | 11 |  |
|    | 1.6. The aim                                          | 13 |  |
| 2. | Material and Methods                                  | 14 |  |
|    | 2.1. Materials                                        |    |  |
|    | 2.1.1. Antibodies                                     | 13 |  |
|    | 2.1.2. Fly stocks                                     | 13 |  |
|    | 2.1.3. General reagents and equipment                 | 14 |  |
|    | 2.2. Methods                                          | 14 |  |
|    | 2.2.1. Mutagenesis and establishing of the stocks     | 14 |  |
|    | 2.2.2. MARCM analyses                                 | 15 |  |
|    | 2.2.3. Complementation test                           | 16 |  |
|    | 2.2.4. Embryonic analyses                             | 16 |  |
|    | 2.2.4.1 Embryo collection and fixation                | 16 |  |
|    | 2.2.4.2 Immunostaining                                | 16 |  |
|    | 2.2.5 Immunostaining of third instar larvae           | 17 |  |
|    | 2.2.6 Survival test                                   | 17 |  |
|    | 2.2.7 Mapping of chosen mutants                       | 18 |  |
|    | 2.2.7.1 SNP mapping                                   | 18 |  |
|    | 2.2.7.2 Deficiency mapping                            | 22 |  |
|    | 2.2.7.3 Sequencing of candidate genes                 | 22 |  |

| 3. | Results                                                | 6          |
|----|--------------------------------------------------------|------------|
|    | 3.1. MARCM screen                                      | 26         |
|    | 3.2. Phenotypic classes                                | 28         |
|    | 3.2.1. Group A – no clones                             | .8         |
|    | 3.2.2. Group B – low number of clonal cells            | .8         |
|    | 3.2.3. Group C – small clonal cells                    | 28         |
|    | 3.2.4. Group D – dorsal trunk defects                  | 0          |
|    | 3.2.5. Group E – terminal branching phenotypes         | 2          |
|    | 3.3. Complementation test                              | 8          |
|    | 3.3.1. Complementation test for 'no clones' class      | ;9         |
|    | 3.4. Analysis and mapping of selected candidate lines4 | -1         |
|    | 3.4.1. Group D1 – analysis and mapping4                | -1         |
|    | 3.4.1.1. Phenotype description and analysis            | -1         |
|    | 3.4.1.2. Analysis of embryonic phenotype4              | 4          |
|    | 3.4.1.3. Survival test4                                | -6         |
|    | 3.4.1.4. Mapping of complementation group D1           | -6         |
|    | 3.4.2. Group E2 – analysis and mapping4                | .9         |
|    | 3.4.2.1.Phenotype analysis                             | -9         |
|    | 3.4.2.2. Analysis of embryonic phenotype               | 3          |
|    | 3.4.2.3. Survival test                                 | 3          |
|    | 3.4.2.4. Mapping of group E2                           | 4          |
|    | 3.4.3. Group E3 – analysis and mapping                 | 5          |
|    | 3.4.3.1. Analysis of phenotype                         | 5          |
|    | 3.4.3.2. Survival test                                 | 7          |
|    | 3.4.3.3. Mapping of group E3                           | 7          |
| 4. | Discussion                                             | 1          |
|    | 4.1. MARCM screen                                      | <i>i</i> 1 |
|    | 4.2. Mutants phenotypes                                | 52         |
|    | 4.3. Phenotypes of selected candidate lines            | i5         |
| 5. | Conclusions                                            | 7          |
| 6. | Bibliography                                           | 8          |
| 7. | Appendix                                               | '3         |
| 8. | Abstract                                               | 57         |
| 9. | Zusammenfasung                                         | 8          |

#### 1. Introduction

Many organs of animals, including lung, kidney, blood vessels and most of glands in vertebrates, are built of branched tubular epithelial structures. They enable the transport of gases or liquids in the body. How they form and what controls branching events, direction of growth and tube size are questions that are pertinent to understanding branch morphogenesis. These questions are important not only for biology but also for medicine, because many diseases, such as polycystic kidney disease, are causing plumbing defects. The elucidation of molecular mechanisms of tube formation could lead to new ways of diagnosing and treating such diseases. However, dissection of these processes in mammalian system is rather difficult. Thus the Drosophila tracheal (respiratory) system with its structural simplicity and accessible genetics has become an excellent model in recent years for studying tubulogenesis.

#### 1.1 Development of Drosophila tracheal system

The Drosophila tracheal system is a network of single-layered epithelial tubes transporting oxygen and other gases throughout the body. It is comprised of approximately 1600 cells forming  $\sim 10,000$ interconnected tubes in the larval trachea (Ghabrial et al., 2003). They are covered by a luminal cuticular lining, which provides a barrier against dehydration and pathogens. The process of tubulogenesis is based on cell migration, cell shape changes and rearrangements and regulated growth of distinct subcellular domains. The Drosophila trachea arises from ten clusters of ectodermal cells on either side of the embryo, which results in bilateral symmetry and a repeated metameric structure of the network. After two cycles of cell division,  $\sim 80$  cells of each tracheal placode invaginates to form an elongated sac, from which six major buds grow in different directions, giving rise to the different primary branches. The major primary branch is the dorsal trunk (DT) -connecting all tracheal segments along the anterior-posterior axis. On the lateral side this role is played by the lateral trunk (LT). The transverse connective (TC) connects the DT and the LT in each segment. Among the remaining primary branches are the dorsal branches (DB) migrating dorsally, the visceral branches (VB) migrating internally and the ganglionic branches (GB) penetrating the central nervous system. The primary branches later produce secondary branches, with their lumen formed by a single cell. The terminal branches arise from the tips of the secondary branches during stage 16 of embryonic development and their formation last throughout the larval stages. During their development the terminal tracheal cells ramify into extensive arrays that cover and support large area of the target tissue (Manning and Krasnow, 1993). Fig.1.1 depicts the development of the embryonic trachea and the fully formed larval tracheal tree.



Figure 1.1 Schematic representation highlighting the development of the embryonic trachea (A) and the larval respiratory system (B). After placode invagination at stage 11, cells form elongated sacs from which six major buds grow out giving rise to primary branches (stage 12). One example of tracheal metamere at stage 12 is depicted in the upper right panel. The formation of the buds is followed by cell migration, branch fusions and extensive cell rearrangements which lead to formation of a network supplying all target tissues with oxygen by stage 17. During the larval life terminal branches undergo several ramifications generating variable and complex tracheoles. (Adapted from Hartenstein, 1993 (A) and Ghabrial et al., 2003 (B)).

Proper development of the trachea requires induction and maintenance of expression of the Fibroblast growth factor (FGF) receptor, Breathless (Btl) in each tracheal cell. The FGF pathway plays a major role in the branching process. It is first activated by the FGF-like molecule, Branchless (Bnl), secreted by groups of ectodermal cells surrounding the invaginated placode. Bnl acts as a chemoattractant for the nearest tracheal cells and guides cell migration thereby directing branch outgrowth (Sutherland et al., 1996). This signalling pathway is used in each step of branching, triggering the expression of different genes required for primary, secondary or terminal outgrowth. Although some such genes have been identified, it is still not entirely clear what happens in the cell after Btl activation. The genetic developmental program controlling primary and secondary branching involves other signalling pathways as well, like Epidermal growth factor (EGF), Decapentaplegic (Dpp), Wingless (Wg) etc, responsible for determination of cell fates and branch types. In contrast to stereotyped embryonic development of the trachea, formation of terminal branches in the larva is more flexible and depends more on the physiological needs of the surrounding tissues. (Ghabrial et al., 2003; Kerman et al., 2006; Uv et al., 2003).

#### 1.2 Architecture of tracheal branches

Different branches within each tracheal metamere have a fixed number of cells and a characteristic tube dimensions and structures. They are all made up of polarized epithelial cells, with the apical surface facing the lumen and the basal side facing the surrounding tissue. In late embryonic and larval stages, four distinct types of tubes can be found (Fig. 1.2 and 1.3).

Type-I tubes – DT, part of TC – are multicellular tubes with two to five wedge-shaped cells surrounding the central lumen and connected by intracellular junctions. Their diameter in the embryo ranges from 4 – 5  $\mu$ m. Type-II tubes are more narrow (1  $\mu$ m in diameter), formed by interconnected cells lying in a row. They are found in DB, VB, GB, LT and parts of TC. Their lumen is made up of a single, tube-shaped cell sealed by autocellular junctions. To maintain the chain-like assembly of cells, adjacent cells are connected by ring-shaped intercellular junctions. Type–III tubes (fusion anastomoses) interconnect tubes of type I and II (DT, LT and DB) in order to link up neighbouring metamers and form a continuous network. They consist of two single doughnut-shaped cells attached head to head through an intercellular junction. Each of the two cells derive from a different primary branch and they contact each other to mediate lumen fusion. This results in seamless tubes lacking intracellular junctions. The diameter of type-III tubes are formed by terminal cells. They are subcellular seamless capillaries making direct contact with target tissues

and mediating gas exchange. Their diameter is less than 0.5  $\mu$ m (Kerman et al., 2006; Uv et al., 2003).



Figure 1.2 Each metamere consists of different types of branches. The tracheal system in a stage 16 embryo, visualised by luminal marker (2A12) (A), and schematic representation of one metamere (B). In the late embryo and in larval stages, four different tube types can be distinguished. Adapted from (Uv et al., 2003).



Figure 1.3 Schematic cross sections of the lumen of different tube types. The cell body is marked in green and nuclei in red.

#### **1.3 Morphogenesis of tracheal branches**

The formation of elongated tracheal branches with different tube types from the sac-like structure of the invaginated placode requires cell rearrangements and cell shape changes. Since tracheal cells are part of a tightly sealed epithelium, the epithelial adherens junctions, responsible for cell-cell adhesion, also undergo extensive remodeling during formation of branches.

#### 1.3.1 Primary branching

The first branches to form are multicellular type-I tubes, consisting of several cells wrapped around the lumen and held together by intercellular adherens junctions (AJs) established at a subapical position between neighbouring cells. Their formation is based on invagination of the tracheal placode and further migration of cells, without dramatic changes in cell to cell contacts. Throughout tracheal development, only large tubes like DT or more dorsal parts of TC keep this character. Finer secondary branches which arise from primary branches during trachea morphogenesis undergo more drastic rearrangements.

#### 1.3.2 Secondary branching

Transition from type–I tubes to type II, accompanied by tube elongation, can be divided into distinct steps. They were revealed by in vivo analysis of AJ rearrangements during the formation of dorsal branches (Jazwinska et al., 2003; Ribeiro et al., 2004). In the first step referred to as 'pairing', cells are aligned in a pairwise fashion along the lumen, made up of two cells. Afterwards, cells start to intercalate, which requires extensive AJ remodelling. First, two neighbouring cells reach around the lumen, which leads to the formation of the first autocellular AJs as a cell touches its own membrane extension. Both cells reach around the lumen on opposite ends, proximal and distal, along the elongation axis. As the first autocellular contact is established, cells seem to 'zip up' by replacing intercellular AJs with autocellular ones. This step is referred to as 'zipping'. To ensure that cells stay in contact with their neighbours in a head to tail arrangement, the zipping process must be terminated. This results in the presence of small, ring-like intercellular AJs connecting neighbouring cells.

So far not much is known about the molecular events underlying transition from type I to type II tubes. It has been shown that zinc-finger transcription factor Spalt (Sal) is requird for the control of this process, by blocking intercalation (Ribeiro et al., 2004). *Sal* expression is spatially induced by

wingless signalling in dorsal trunk (Chihara and Hayashi, 2000; Llimargas, 2000) and repressed by dpp signalling in cells positioned dorsally and ventrally to the dorsal trunk (Chen et al., 1998). This expression pattern defines branches in which intercalation takes place. However, it is not clear how this happens, since no Sal target genes have been found so far. Little is known also about molecules involved in cell pairing, cells reaching around the lumen or in the zipping process. It is likely that regulation of cell adhesion is required for these steps. DE-cadherin regulation might be important for this process as it is involved in cell adhesion. DE-cadherin is a single-pass transmembrane protein. Its extracellular domain forms homophilic transdimers between adjacent cell membranes. The cytoplasmic domain interacts with p120 catenin,  $\beta$ -catenin and Hakai, an E3-ubiquitin ligase (Fujita et al., 2002).  $\beta$ -catenin binds to  $\alpha$ -catenin, which associates with actin filaments. The cell to cell contact based on the strong adhesivness of cadherin is caused probably by anchoring of cadherin-catenin complexes to the cytoskeleton and has to be modulated to allow cell rearrangements. It is possible that regulation takes place at different levels. It could be for example, control of E-cadherin turnover or recycling, modulation of interaction with the cytoskeleton, or regulation of adhesion through inside-out signalling (Neumann and Affolter, 2006). There are several possible candidates shown to be involved in the intercalation process: Src, shown to induce the dissociation of epithelial cells, Hakai, targeting E-cadherin for degradation (Fujita et al., 2002), Arf6, a GTPase mediating E-cadherin internalization (Paterson et al., 2003). There are a number of proteins that might play a role in regulation of the actin cytoskeleton - E-cadherin interaction. These are for example small GTPases like Rho, Rac and Cdc42 and the Ras family member Rap1. Also, components of AJs might be involved in regulation of cell intercalation (Neumann and Affolter, 2006). Some of the genes listed above have been already shown to cause tracheal defects, like Src (Takahashi et al., 2005) or the GTPase Rac1 (Chihara et al., 2003).

Two genes, piopio (pio) and dumpy (dp), have been shown to be required for the termination of cell intercalation, (Jazwinska et al., 2003). In their absence, all fine tubes are transformed into epithelial cysts, disconnected from the remaining multicellular tubes in the embryo. They both encode proteins containing zona pellucida (ZP) domain, they are produced by tracheal cells and secreted into the lumen. It has been proposed that Pio and Dp might form a luminal scaffold that prevents the complete zipping of the autocellular junctions and thus helping to preserve branch integrity.

#### 1.3.3 Fusion cell formation

As the tracheal system develops from 20 independent metameres, branch fusion is needed to form a continuous network. Thus, cells at the tips of the connecting branches undergo a complex process of

partner recognition and formation of an intracellular tube. Fusion type-III tubes are doughnutshaped and lack autocellular junctions (Samakovlis et al., 1996a). They are formed in a process know as anastomosis in which fusion cells recognize each other, make contact on their basal surface and subsequently generate the apical lumen that bridges the junction between them. The initial lumen is provided by the apical surface of the bordering cells of branches to be fused. It is pulled along or penetrates the fusion cell actively, forming finger-like extensions. The lumen growth inside the fusion cell occurs in a proximo-distal orientation, with an increased number of vesicles containing luminal material at the tip of the growing lumen. This observation made by Samakovlis et al. (1996a) indicates that the intracellular lumen forms by assembly and fusion of vesicles, using the 'finger' tips as nucleation points (Uv et al., 2003).

The first molecular step in a fusion event is the deposition of DE-cadherin at the site of contact on the basal surface of the cells (Tanaka-Matakatsu et al., 1996). This leads to accumulation of several cytoskeleton binding proteins, including  $\alpha$  – catenin,  $\beta$  – catenin, short stop, which encods a plakin that binds both F-actin and microtubules and Formin 3, a regulator of several actin-based processes (Tanaka-Matakatsu et al., 1996; Lee and Kolodziej, 2002; Tanaka et al., 2004). These proteins mediate the formation and maintenance of an actin bridge that spans both fusion cells from one initial lumen bud to the other. This bridge serves as a site of fusion of vesicles with luminal material. Subsequently DE-cadherin and associated proteins form a circle perpendicular to the presumptive lumen at the interface between the two fusion cells. After docking and fusion of vesicles lead to the formation of a continuous lumen, the adherens ring expands to the same diameter as the connected tubes and two fusion cells form bicellular anastomosis.

The number of cells undergoing the process of fusion is controled by Notch signalling as well as expression of fusion cells markers such as Escargot, Fusion-2 and Fusion-3. Determination of fusion cell fate is a result of spatial interplay of Dpp, FGF and Wg signalling (Ikeya and Hayashi, 1999; Steneberg et al., 1999).

#### 1.3.4 Terminal branching

The tip cells on the secondary branches that do not form fusion cells form terminal branches. The initially compact cells grow thin cytoplasmic extensions towards the bnl expressing target tissue. The extensions finally come into close contact with the plasma membrane of target cells in order to allow gas diffusion. Their outgrowth is accompanied by repeated events of cytoplasm extension and formation of the lumen within the cell which leads to the creation of a ramified network contacting almost every cell in target tissues (Guillemin et al., 1996).

7

As terminal cells start to sprout, they also change their shape by extending broad cytoplasmic processes away from the neighbouring stalk cell. The nuclei are initially moved along and initial branch lumen, possibly provided by neighbouring stalk cells, is acquired. During the further branches outgrowth the nucleus of the terminal cell remains stationary at the cell base. As branching proceeds, first long narrow cytoplasmic protrusions are formed which are later invaded by lumen. Similar to the lumen in fusion cells, it grows in a proximo-distal orientation, possibly by fusion of luminal vesicles (Guillemin et al., 1996). However, the mechanism leading to the formation of the lumen as a junction-less, intracellular, membrane-bound channel is poorly understood.

The first steps of terminal branch formation during late embryogenesis seem to be stereotyped to ensure air supply to all regions of the newly hatched larvae. Larval life however, is dominated by extensive body growth and enhanced oxygen needs, which requires a more flexible system. The terminal branches ramify several times during this period, generating variable and complex trees of tracheoles. However, branching variability does not mean disorganization. Spacing between branching points is regular and branches never cross each other. Sprouting is regulated by oxygen needs of the tissues. Low oxygen (hypoxia) induces terminal branching and high oxygen (hyperoxia) suppresses it via control of branchless expression (Jarecki et al., 1999). It is not fully understood how the Drosophila cells sense low oxygen and how this leads to induction of branchless expression. It has been proposed that the Drosophila homologue of mammalian hypoxia inducible factor (HIF), the transcription factor playing a major role in mammalian hypoxia response, may mediate sensing and response to oxygen levels. In corcondance with this notion branchless has been identified as one of its targets. The other candidate is nitric oxide (NO) signalling, since its perturbation during larval life affects terminal branching in a fashion similar to hypoxia or hyperoxia (Ghabrial et al. 2003). What happens in the terminal cells upon FGF signal activation by Bnl binding to the receptor Btl is also not fully understood, but some players have been identified. One of them is blistered (bs, named also pruned), the Drosophila homologue of mammalian serum response factor (SRF). It is selectively required for terminal branch growth, since in embryos missing DSRF, terminal cells undergo the initial sprouting but fail to develop an intracellular tube distal to the nucleus. It is a transcription factor whose activation in terminal cells by the FGF pathway induces expression of so far unknown target genes required for cytoplasmic outgrowth and terminal branch formation (Affolter et al., 1994; Guillemin et al., 1996). One other identified regulator of terminal outgrowth is sprouty (spry). It acts downstream of FGF signalling, but as a negative regulator, antagonising the pathway and limiting the number of cells producing terminal branches (Hacohen et al., 1998).

Extensive ramification of terminal branches during larval life requires not only proper outgrowth and lumen formation but also its maintenance and stability. A recent study (Levi et al., 2006) revealed that Drosophila Talin, a large cytoskeletal protein that links integrin cell-adhesion molecules to the cytoskeleton, is required for maintenance of the terminal branches. The integrintalin adhesion complex anchors mature terminal branches to their substrata and maintain luminal organization. If these complexes are absent, the lumen becomes disorganised and retracts from the branch which leads to the degeneration of lumenless branches.

#### 1.4 Control of tracheal tube size

During embryonic and larval development, tracheal tubes not only remodel their structure but also dramatically increase in size and diameter. At the end of larval life, tracheal tubes would have expanded up to 40 times their initial size. Extensive studies of the mechanical and molecular bases of this expansion and its control revealed several aspects of this process.

First insight into tube size changes came with the identification of eight mutations leading to abnormal tube elongation or irregular tube diameter (Beitel and Krasnow, 2000). This study showed that tube size is linked to branch identity and is not controlled by number, size or overall shape of the cells forming the tracheal tubes, but by coordinated regulation of apical surface. Further studies revealed that tube length and diameter are controlled independently. Thus products of genes playing a role in tube size control were divided into two categories: one involved in tube elongation control and second required for control of tube diameter.

#### 1.4.1 Genes involved in tube elongation control

This category consists of genes causing an increase in tube length when mutated. They mostly encode components of pleated septate junctions (SJs), revealing a new role for these cell to cell junctions. The SJs are membrane structures found basal to the adherens junctions in many epithelia. They are functional analogues of vertebrate tight junctions, since they form a diffusion barrier for water and solutes between epithelial cells.

Mutations in *megatrachea* and *sinous* lead to an increased tube size. They encode claudins (Behr et al., 2003; Wu and Beitel, 2004), four transmembranepass proteins whose homolougs form a paracellular barrier in vertabarte tight junctions. Also the *bulbous* (*lachsin*) phenotype is caused by a mutation in a cell adhesion molecule which localises to SJs (Llimargas et al., 2004). *Ecstatic*, which turned out to be a new allele of *nervana2* encodes the  $\beta$ -subunit of a Na<sup>+</sup>/K<sup>+</sup> ATPase , which

also localises to SJs. Also other components of SJs, like *coracle*, *neurexin*, gliotactin, and the  $\alpha$  – subunit of Na<sup>+</sup>/K<sup>+</sup> ATPase show similar defects in tracheal tube size when mutated (Paul et al., 2003). Additionally, this study revealed that the function of SJs in tube size control is separate from the regulation of paracellular diffusion. How the SJs control tube elongation is not clear. It was proposed that a group of SJ genes could regulate relative levels of apical membrane components such as Crumbs and thus affect luminal expansion (Wu and Beitel, 2004). The other model suggests that SJs could regulate the apical extracellular matrix indirectly. The identification and analysis of two luminal chitin-binding proteins Vermiform and Serpentine, which, when mutated leads to tube elongation phenotypes similar to those of mutations in SJs components (Luschnig et al., 2006; Wang et al., 2006) revealed that late modification of the luminal chitin matrix is specifically required for tube length control. Additionally it was shown that SJs are necessary for the proper localisation and apical secretion of Vermiform. These results suggest that the second model involving indirect control of tube size through modifications of apical luminal matrix is more likely.

#### 1.4.2 Genes involved in tube diameter control

The second category of tube size mutations consists of genes affecting tube diameter when mutated. They encode proteins involved in chitin biogenesis, secretion or maturation. The tracheal chitin is synthesized by Chitin synthase 1 (CS 1 - krotzkopf verkehrt) and deposited into the lumen where it assembles into a defined transient cable that expands in unison with lumen diameter growth (Tonning et al., 2005). Loss of this transient chitin matrix results in local tube dilation and constriction. Such phenotypes have been observed in *mummy/cystic* mutants, in which UDP-*N*-acetylglucosamine diphosphorylase required for chitin synthesis is mutated (Araujo et al., 2005; Devine et al., 2005). Also *knickkopf* (*gnarled*) and *retroactive*, which encode proteins involved in targeting and/or secretion of chitin or chitin synthesis enzymes are necessary for regular tube diameter expansion (Devine et al., 2005; Moussian et al., 2006).

#### 1.4.3 Model of tube size regulation

Recently, Wang et al. (2006) proposed the following model. During tube expansion, assembly and growth of the chitin matrix is required to coordinate uniform radial expansion of the tubes. Subsequent modifications in chitin fibril structure by secreted deacetylases (Vermiform and Serpentine), whose localisation depends on SJ function, instruct the epithelial cells to terminate the tube elongation. Thus dynamic structural changes of the luminal matrix may independently determine diameter growth and tube elongation.

#### 1.5 Phenotypic analysis of mutant clones using the MARCM system.

Investigation of tracheal development during embryogenesis has been mostly based on analyses of homozygous mutant embryos. Such an approach is not always possible for studying tracheal morphogenesis during larval life as mutations in many of the genes involved in this process are embryonic lethal. This could be overcome by generation of genetically mosaic organisms. Induction of mutant clones surrounded by wild type tissue is a very useful tool for analysing the consequences of gene loss of function during animal development. The commonly used FRT/FLP system (Theodosiou and Xu, 1998) allows the generation of mutant clonal cells. Usually, the mutant cells can be distinguished from their twin spot sister cells and wild type cells by the loss of marker gene expression. However, in many cases it is very useful to mark the mutant cells positively through expression of marker. Therefore the MARCM (Mosaic Analysis with a Repressible Cell Marker) system was established in flies (Lee and Luo, 1999). In this system, expression of a GAL4-UAS construct with a reporter gene is suppressed by the presence of the GAL4 repressor GAL80, which is placed on the FRT chromosome whose homolog is carrying a mutation to be analysed. When a FLP dependent mitotic recombination event occurs, the reporter gene is expressed only in clones homozygous for the mutation (fig. 1.4).



Fig. 1.4 The MARCM system. In parental cells, expression of reporter gene is suppressed by the presence of the GAL4 repressor, GAL 80. The repressor gene is placed distal to the FRT-site on the homologous arm of the chromosome arm with mutation of interest. After FLP induced recombination the cells homozygous for the mutation loose the repressor gene and thus reporter gene can be expressed in these cells (Adapted from Lee and Luo, 1999)

The system has been wildly applied to investigate many cellular and developmental processes, including analysis of tracheal morphogenesis (Cabernard and Affolter, 2005; Ghabrial and Krasnow, 2006; Levi et al., 2006, A.Bilstein, PhD thesis).

#### 1.6 The aim

Several studies on tracheal development in recent years have given an insight into the complexity of the genetic control and cellular processes of tracheal morphogenesis. However there are still many open questions: what are the 'effectors' of signalling pathways controlling tubulogenesis, which molecules are involved in cell remodelling and how do they coordinate extensive cell shape changes and rearrangements. Also, not much is known about the molecular mechanisms responsible for the sprouting of cytoplasmic outgrowth and lumen formation in terminal branching. Since extensive cell remodelling, needed during terminal branching lasts up to larval stages it is important to be able to analyse these processes also at later stages of development. This is not always possible since many genes that might play a role in larval tracheal morphogenesis could be also required during embryogenesis. This disadvantage can be overcome by application of clonal analysis with the MARCM system. It has been successfully applied to analyse role of known genes in the later stages of trachea formation. Thus, it can be also used for identification of new genes involved in tracheal development, a different approach for a better understanding of this process.

The aim of this study was to perform a genetic mosaic screen of the second chromosome, for EMSinduced mutations affecting tracheal morphogenesis. The second chromosome was chosen, because the first and third were simultaneously screened by a different group. To identified new mutants affecting larval tracheal development we applied clonal analysis with the MARCM system and examined mutation effects in third instar larvae.

# 2. Material and Methods

## **2.1 Materials**

## 2.1.1 Antibodies

## Primary antibodies:

- mouse anti-m2A12 ; 1:20 (against unknown tracheal lumen protein , N. Patel);
- rabbit anti- $\beta$  Gal; 1:500 (Cappel);
- mouse anti-arm; 1:3000;
- rabbit anti-GFP; 1:500;

## Secondary antibodies:

- goat anti-mouse, biotin; 1:500
- goat anti-rabbit, biotin; 1:500
- goat anti-mouse, Alexa 568; 1:500
- goat anti-rabbit Alexa 488; 1:500

## 2.1.2 Fly stocks

Stocks listed in tab. 2.1 were used for experiments. TB170 line was used as a wild type control in MARCM analysis. For embryonic analysis w flies were used.

| Stock<br>number | Genotype                                                                 | Reference           |
|-----------------|--------------------------------------------------------------------------|---------------------|
| TB170           | $y^{d2}w^{1118}P{ey-FLP.N}2 P{GMR-lacZ.C(38.1)}TPN1;P{neoFRT}40A$        | Bloomington #5615   |
| TR114           | vay help 1 22: tub Galla FRT40A bt GALA UAS GEP                          | S.Luschnig (Krasnow |
| IDII4           | yw,iisi ipi.22,00-0000,i K140A,00-0AL4, 0A5-011                          | lab)                |
| TL521           | P{Hs-hid}sp/CyO <sup>8</sup> ftz lacZ                                    | R. Lehmann          |
| TB136           | w <sup>-</sup> ; If/CyO; btl-Gal4, UAS-βspectrin-PH domain-eGFP-2xHA     | A. Bilstein         |
| TMB013          | $y^{d2} w^{1118} P{ey-FLP.N} 2 P{GMR-lacZ.C(38.1)} TPN1; P{EP}EP511/CyO$ | Bloomington #6415   |
| TN044           | w <sup>1118</sup> ; ; P{UAS-myr-mRFP}2/TM6B, Tb <sup>1</sup>             | Bloomington #7119   |
| F-232           | w <sup>-</sup> ; If/CyO; MKRS/TM6B                                       | F. Sprenger         |
| TMB017          | w <sup>-</sup> ; conv <sup>[K6507]</sup> /CyO <sup>wgLacZ</sup>          | G.Beitel            |
| TMB018          | w <sup>-</sup> ; nrv2[23B]/ CyO <sup>wgLacZ</sup>                        | G. Beitel           |
| TMB19           | w <sup>*</sup> ; vari <sup>[K5953]</sup> /CyO                            | G. Beitel           |

Tabele 2.1 List of used fly stocks

## 2.1.3 General reagents and equipment

- general chemicals: Boehringer, Fluka, Gibco, Merck and Sigma
- plastic ware:, Eppendorf, Falcon, Greiner, Sarstedt
- microscopes: Leica Fluorescent-Stereomicroscope MZFLIII (Fluo-Combi)
   Flourescent Microscope Axioplan 2 imaging Zeiss
   Light Microsocpe Axioplan Zeiss
- cameras: AxioCam MRc5 Zeiss AxioCam HRm - Zeiss

## 2.2 Methods

## 2.2.1 Mutagenesis and establishing of the stocks

To establish 5000 lines carrying point mutations on the left arm of the second chromosome chemical mutagenesis was performed. To avoid difficulties of handling such a high numbers of lines at once, they were generated in batches of 1000 lines. In each round three hundreds 2–3 days old males from an isogenised stock, with FRT site on the left arm of the second chromosome  $(y^{d2}w^{1118}P\{ey-FLP.N\}2\ P\{GMR-lacZ.C(38.1)\}TPN1;P\{neoFRT\}40A)$ , were mutagenised with 30mM EMS (standard protocol, Grigliatti, 1998). EMS fed males were crossed with hs-Hid/CyO females (P{Hs-hid}sp/CyO<sup>8</sup>ftz lacZ) (mass cross). To select progeny with required genotype (FRT40A, mutation/CyO) larvae were heat-shocked on day 5 and 6 after egg lay for 2 hours at 38<sup>o</sup> C (to induce the hsHid transgene expression). Only larvae carrying the mutated FRT chromosome but lacking the one with hsHid transgene, survived this procedure. Next, 1000 males from the progeny were used to establish single lines by crossing them to hsHid/CyO females. Again selection for flies with correct genotype was performed by heat-shock treatment as described above (the crossing scheme is shown on fig.2.1).



Figure 2.1. Screen crossing scheme: The screen was performed in six batches. In each round 1000 lines were established and analysed in the way shown above.

#### 2.2.2 MARCM analysis

The male progeny from stocks established as depicted in fig.1 were crossed with females carrying all components of the MARCM system (yw,hsFlp1.22;tub-Gal80,FRT40A;btl-GAL4, UAS-GFP). A UAS-GFP construct was used as a reporter gene, driven by the trachea specific btl-GAL4. The eggs were collected for 4 hours at 25<sup>o</sup>C and heat-shocked for 30 min at 38<sup>o</sup> C to induce mitotic recombination. Live third instar larvae were observed under a fluorescent-stereomicroscope. For live observation larvae were first immobilised by adding water to the vials and after 1 hour placed on the microscopic slide with plastic grid preventing disturbance of larval structure by cover slip. 8 larvae were analysed per line. Each line showing a defect was retested on the next day with 16 larvae.

#### 2.2.3 Complementation test

In order to perform a complementation test, all the lines were checked for lethality. The homozygous lethal lines were identified by absence of non- CyO flies after 4 generations. Later, these lines were tested against each other within the phenotypic groups. Approximately 2 males and 4 females were taken for each cross. The crosses were kept at 25°C and progeny was scored for presence of non-CyO flies.

#### 2.2.4 Embryonic analysis

#### 2.2.4.1 Embryo collection and fixation

Embryos were collected on apple juice - agar plates for 16 h at  $25^{\circ}$ C. They were dechoronized by adding bleach (diluted 1:1 with tap water) to the plates for 1,5 min. After washing away the bleach embryos were put into freshly prepared fixation solution (4% formaldehyde, heptan 1:1) and placed on rotor wheel for 30 min at  $37^{\circ}$ C. Next, aqueous phase was removed and 1 vol. of 100% methanol was added. After vortexing for 1 min. fixative was removed and embryos were quickly washed several times with methanol and store at –  $20^{\circ}$ C.

#### 2.2.4.2 Immunostaning

Prior to staining procedure methanol was removed from the embryos and replaced by 1xPBST (1xPBS, 0.1% Tween 20). After several quick and three long (15 min) washing steps with PBST, embryos were incubated for 30 min at RT with blocking solution (1x PBST + 1% BSA). Next 300  $\mu$ l of diluted primary antibody was added ( x  $\mu$ l 1° antibody - accordingly to working dilution, 3  $\mu$ l of normal goat serum (NGS), filled up to 300  $\mu$ l with blocking solution) and embryos were incubated overnight at 4°C. Removing of primary antibody was followed by several quick and three 15 min long washes with 1xPBST. Afterwards embryos were incubated with corresponding secondary antibody, diluted in 300  $\mu$ l blocking solution with NGS, for 1-2 hours at RT. Depending on the secondary antibody labelling, the embryos were handle in following way:

#### Fluorescent labelled antibodies:

Antibody solution was removed and embryos were washed several times with PBST. Next, they were transferred into a drop of Vectashield mounting medium on the microscope slide. Afterwards, cover slip was placed on the top and sealed with nail polish.

## Biotin labelled antibodies:

After removing the antibody solution embryos were washed with PBST and incubated for 30 min with ABC-Mix (Vecta Stain) (solution A and B diluted 1:100 in PBST). Incubation was followed by washing step and embryos were transferred to 24-well plates, where after removing of PBST, DAB solution was added to develop the signal (DAB diluted 1:5 in PBST + 1  $\mu$ l of 0,3% H<sub>2</sub>O<sub>2</sub>). When staining achieved wished strength, reaction was stopped by removing DAB solution and washing with PBST. Next embryos were dehydrated by series of 10 min washing in increasing ethanol concentrations: 25%, 50%, 75%, 90%, 95% and 100%. The dehydrated embryos were transferred into 100% acetone and incubated for 10 min. Subsequently acetone was replaced with acetone: araldite solution (1:1) and embryos were transferred into the plastic pot filled partially with pure araldite. Embedded embryos were kept at -20°C. For microscopic observation single embryos were transferred form the pot onto microscopic slides.

#### 2.2.5 Immunostaining of third instar larvae.

L3 larvae were filleted open along the ventral midline, dissected in 1x PBS and fixed for 20 min in 4% paraformaldehyde in PBS at room temperature. After 2- 3 10 minutes long washes in 1xPBT (1x PBS + 0.3% TritonX) dissected larvae were incubated for 30 min. in blocking buffer (1xPBTB - 1x PBT with 1% BSA). Fixed larvae were incubated with primary antibody (diluted in 1xPBTB) overnight at 4°C. Prior to incubation with secondary antibody (1.5h, RT) samples were washed twice with 1xPBT. Washing step was repeated after removing secondary antibody and larvae were mounted in Vectashield mounting medium on the microscope slide.

## 2.2.6 Survival test

To evaluate lethality phase of the mutants embryos were collected on apple juice – agar plates for 2 -3 h at  $25^{\circ}$ C, and were counted after 3 hours. These plates were kept at  $25^{\circ}$ C and non-hatched embryos were counted after 24h and 48h. To determinate the developmental stage of these embryos they were covered with Voltalef 3S oil (which makes the chorion transparent).

#### 2.2.7 Mapping of chosen mutants

#### 2.2.7.1 SNP mapping

SNP mapping strategy, described by Berger et al.(2001) is based on sequence polymorphism between the strain used for mutagenesis (with FRT proximal insertion) and reference strain (with distal EP insertion –  $y^{d2}w^{1118}$  P{ey-FLP.N}2 P{GMR-lacZ.C(38.1)}TPN1; P{EP}EP511/CyO). The mapping strategy can be divided in two steps: obtaining of the set of FRT and EP recombinant chromosomes with different break points and mapping of the mutation to the genome region by molecular and phenotypic analysis of recombinants.



Figure 2.2 Scheme of establishing recombinants stocks. Green line represents FRT chromosome, red EP chromosome, black – balancer chromosome. Triangles represent FRT and EP insertion (green and red respectively). Asterisk – mutation.

# Establishing of recombinants stocks

Stocks of different recombinants between mutagenised FRT chromosome and reference line were established (fig. 2.2). To obtain these stocks, males from mutant line of interest were crossed to females from EP line. In next generation females carrying both mutated FRT and EP chromosomes were collected and crossed to males from original FRT line. From their progeny, males carrying recombinant chromosome were collected. The eye-colour mosaicism was used to identify recombinant chromosome with both EP and FRT insertion - due to presence of eyFLP transgene, such a chromosome results in mosaic eyes. In the next step single recombinant males were crossed to double balancer stock in order to establish stable stocks.

## Phenotypic analysis of recombinants

All recombinant stocks were analysed for presence or absence of mutant phenotype with MARCM system as described earlier.

# <u>Molecular analysis</u>

Genomic DNA was isolated for each recombinant stock according to the large scale DNA preparation protocol (FlySNP Website, http://flysnp.imp.ac.at). From each line, 1-2 males were placed in PCR tubes (0.2ml) and mashed for 5-10 seconds with the tip of a pipet containing 50  $\mu$ l of Squashing Buffer (10mM Tris-HCl pH8.2, 1mM EDTA, 25mM NaCl, 200 $\mu$ g/ml Proteinase K (stock 20mg/ml, Quiagen)). Then buffer was expelled from the tip and tubes were placed in 37<sup>o</sup>C for 30 minutes followed by proteinase K inactivation by incubation at 95<sup>o</sup>C for 5 min. In last step 50  $\mu$ l of H<sub>2</sub>O was added and DNA could be used for PCR reactions.

Randomly chosen DNAs were analysed in Restriction Fragment Length Polymorphism (RLFP) and PCR-product length polymorphism (PLP) assay for different SNP markers (FlySNP Website, http://flysnp.imp.ac.at). Used markers and attributed data are listed in tab.2.2

## RFLP assay

PCR mix:

| 2.5 µl  | 10x RedTaq Buffer without MgCl <sub>2</sub> (Sigma) |
|---------|-----------------------------------------------------|
| 2 µl    | 10mM dNTPs                                          |
| 1.5 µl  | MgCl <sub>2</sub> (25mM)                            |
| 13.5 µl | dH <sub>2</sub> O                                   |
| 0.5 µl  | RedTaq Polymerase (1u/ µl) (Sigma)                  |
| 1 µl    | primer L (10pmol/ μl)                               |

μl primer R (10pmol/μl)
 μl genomic DNA (from 1-2 flies)

PCR programm:

| 1. Denaturation | 5'       | 94 <sup>o</sup> C                                             |
|-----------------|----------|---------------------------------------------------------------|
| 2. Denaturation | 30"      | 94 <sup>o</sup> C                                             |
| 3. Annealing    | 30"      | 62 <sup>o</sup> C                                             |
| 4. Extension    | 2'       | $72^{\circ}C  (2 \rightarrow 4 \text{ x } 40 \text{ cycles})$ |
| 5. Extension    | 5'       | 72 <sup>o</sup> C                                             |
| 6.              | $\infty$ | 4 <sup>o</sup> C                                              |

5  $\mu$ l of PCR product was digested with the appropriate restriction enzyme in 20  $\mu$ l reaction and separated on 2.5% agarose gel.

# PLP assay

## PCR mix:

| 2.5 µl  | 10x RedTaq buffer without MgCl <sub>2</sub> (Sigma) |
|---------|-----------------------------------------------------|
| 2 µl    | 10mM dNTPs                                          |
| 3.5 µl  | MgCl <sub>2</sub> (25mM)                            |
| 14.5 µl | dH <sub>2</sub> O                                   |
| 0.5 µl  | RedTaq Polymerase (1u/ µl) (Sigma)                  |
| 1 µl    | primer L                                            |
| 1 µl    | primer R                                            |
| 1 µl    | genomic DNA (from 1-2 flies)                        |
|         |                                                     |

## PCR programm:

- 1.5' 94<sup>0</sup>C
- 2. 30" 94<sup>o</sup>C
- 3. 30" 60<sup>o</sup>C
- 4. 1'  $72^{\circ}C (2 \rightarrow 4 \times 40)$
- 5. 5' 72<sup>0</sup>C
- $6. \infty 4^{\circ}C$

 $8\text{-}10~\mu l$  of PCR product were loaded on 2.5% agarose gel.

| PLP<br>size Δ<br>(bp) | I                                | 20                        | i.                       | 19                                  | ,                                   | I                                    |                            |                               | ı                               |
|-----------------------|----------------------------------|---------------------------|--------------------------|-------------------------------------|-------------------------------------|--------------------------------------|----------------------------|-------------------------------|---------------------------------|
| Restriction<br>site   | PstI                             | ı                         | ClaI                     | 1                                   | Dral                                | BgIII                                | Sall                       | PstI                          | HpaI                            |
| Primer R              | CGAAAACTGTAAGACACGGACACG<br>GAAG | CACTGGGTTTCCCTGGTTTCTGTTT | TGCCGTTCTAATGCGTCTCGTCCT | GGATTAGTTTTAGACCAAAATTGG<br>GAGCAAC | GCTCGCCGAAAAATGTGAAAAAGC<br>TACAAAC | CCGGCGAGGCATCTGTTTTATGGA<br>GTG      | GTTCCACTCATTTCCGCTCCTCACA  | GCCACCAAATACAACCCACACACA<br>A | CGTCTGTGTGTTCGTTTGTGGTGTG<br>TT |
| Primer L              | TCCAAGGGCAGCGGGTTCAATAA          | CCCCTTGAAACTCCCTTCATTTT   | CAGCCCAGTCCGCCAAAGAAACT  | GCAAAACGAGTAATGGGCTGTAAGCA<br>A     | TCGCCGCTTGCGTTTAAAATCGAAAA<br>TAC   | ATATGCGCGAAACCAAAATAAGCGGA<br>CTGATA | CATCCAGCAAACACAAAACGAACCAC | GCCACCAAATACAACCCACACAAA      | TGGGCGCACTTGTCATCAGTTT          |
| Marker<br>type        | RFLP                             | PLP                       | RFLP                     | RFLP                                | RFLP                                | RFLP                                 | RFLP                       | RFLP                          | RFLP                            |
| Cyt.<br>region        | 21F3                             | 23F1                      | 25A2                     | 26A3                                | 27B1                                | 32A5                                 | 34D6                       | 36E2                          | 38A2                            |
| Marker                | 2L015                            | 2L030                     | 2L041                    | 2L057                               | 2L063                               | 2L095                                | 2L124                      | 2L167                         | 2L187                           |

Table 2.2 SNP markers used for molecular analysis. Primers sequence and restriction sites information from The FLYSNP Database (http://flysnp.imp.ac.at/snpdb.php).

Combined information from phenotypic and molecular analysis resulted in placement of the mutation between two markers. Having the region of app. 1-2 Mb determined, all recombinants were screened for informative crossing over event between these two markers. If possible additional marker placed in between was tested to narrow down the region of interests. Recombinants with informative crossing over events were analysed further for more markers in these region.

#### 2.2.7.2 Deficiency mapping

Deficiency mapping was based on lethality complementation between mutants and different sets of deficiencies. Deficiencies stocks are listed in Appendix (tab.A.1). For each cross 4 to 5 females from mutant stock were crossed to 2-3 males from deficiencies stocks. Crosses were kept at 27<sup>o</sup>C and progeny was screened for absence of non-CyO flies, meaning lack of complementation between crossed lines.

#### 2.2.7.3 Sequencing of candidate genes

#### DNA preparation from single embryo.

Embryos from original FRT line and respective mutant line were collected for 5 hours and fixed as described earlier. After fixation methanol was removed and embryos were washed 2x in PBST. Mutant embryos were additionally stained for presence of CyO ftz – lacZ chromosome. Single homozygous embryos were placed in PCR 0.2 ml tube and 10  $\mu$ l of homogenizing buffer (10mM Tris pH 8.3, 0.5% Tween20, 0.5% NP-40, 50  $\mu$ IM KCl) with 0.2  $\mu$ l Proteinase K (20mg/ml, Quiagen) were added. Tubes were first kept for 2 hours at -20<sup>o</sup>C and later for 30 min at 37<sup>o</sup>C and 3 min. at 95<sup>o</sup>C. After gentle mixing of the reaction 1  $\mu$ l was used for PCR.

#### Amplification of candidate genes

For each candidate gene primers were designed with primer3\_www.cgi v 0.2 program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi). From all genes only exons were amplified and size of the products varies from 400 – 700 bp. Oligos used for PCR are listed in Appendix (tab.A.2).

| PCR   | Mix   |
|-------|-------|
| I UIC | 11111 |

| 5 µl    | 5x buffer without MgCl <sub>2</sub> (Expanded High Fidelity <sup>PLUS</sup> PCR System, Roche) |
|---------|------------------------------------------------------------------------------------------------|
| 1 µl    | 10mM dNTPs                                                                                     |
| 1.5 µl  | 25mM MgCl <sub>2</sub>                                                                         |
| 0.3 µl  | High Fidelity Polymerase (Expanded High Fidelity <sup>PLUS</sup> PCR System, Roche)            |
| 1 µl    | primer 1                                                                                       |
| 1 µl    | primer 2                                                                                       |
| 1 µl    | DNA                                                                                            |
| 16.7 µl | dH <sub>2</sub> O                                                                              |
|         |                                                                                                |

# PCR program

| 1.5'     | 94 <sup>o</sup> C |                          |
|----------|-------------------|--------------------------|
| 2.30"    | 94 <sup>0</sup> C |                          |
| 3. 30"   | 54 <sup>o</sup> C |                          |
| 4. 1'30' | 72 <sup>o</sup> C | $2 \rightarrow 4 \ge 30$ |
| 5.5'     | 72 <sup>0</sup> C |                          |
| 6. ∞     | 4 <sup>o</sup> C  |                          |

5 µl of PCR product were separated on the 1.5% agarose gel to estimate amount of DNA.

# Purification and sequencing of PCR product

PCR products were purified from the solution with GFX PCR DNA gel and solution purification kit (Amersham Biosciences) and 1-  $6.5 \mu$ l was used for sequencing reaction (depending on DNA concentration). Each PCR product was sequenced in both directions with the same primers as used for amplification.

# Sequencing Mix

 2 μl
 Big Dye Terminator v.3.1 (Perlin Elmer)

 1 μl
 primer (10pmol)

 1-6.5 μl
 DNA

 6-0.5 μl
 dH<sub>2</sub>O

 10 μl

# Sequencing program

| 1.5'   | 96 <sup>0</sup> C |                                 |
|--------|-------------------|---------------------------------|
| 2.30"  | 96 <sup>0</sup> C |                                 |
| 3. 15" | 50 <sup>0</sup> C |                                 |
| 4.4'   | 60 <sup>0</sup> C | $2 \rightarrow 4.25 \mathrm{x}$ |
| 5. ∞   | 4 <sup>o</sup> C  |                                 |

The volume of sequencing reaction was made up to  $20 \ \mu$ l before the sequencing of amplified product, obtained sequences were analysed using Vector NTI software (Invitrogene).

## 3. Results

## 3.1 MARCM screen

To identify novel genes involved in tracheal morphogenesis we performed a genetic screen, based on EMS (Ethyl Methane Sulfonate) mutagenesis. We were interested in late events of tracheal formation thus to overcome potential early lethality caused by induced mutations, we applied as a screen tool the MARCM system allowing analysis of homozygous mutant clonal cells in heterozygous background.

Previous analysis of clonal cells in trachea of wild type third instar larvae and a pilot screen (see A. Bilstein, PhD thesis) led to determination of wild type features and to establishment of screening criteria. In larvae with wild type clonal cells, number of clonal cells varied from 30 to 80 per larva. They were distributed randomly in all types of branches. Usually the number of clonal cells was slightly higher in anterior part of the larva. The clonal cells on the dorsal trunk were large and hexagonal, except for fusion cells which had a ring-like shape. Cells on secondary branches were elongated and varying in size depending on position. The number and lengths of branches in clonal terminal cells were highly variable with higher branching rate in the anterior part of the animal. A properly formed lumen filled with gas can be found in all clonal cells. Additionally, due to *breathless* expression in the epidermis, a number of GFP positive epidermis cells could be observed. Also two GFP marked cells were often found in the heart.

After inducing mutations with EMS in males we set up approximately 6000 single crosses and were able to establish 4779 stocks carrying mutated chromosomes. The loss of lines occurred at two steps of the procedure. 16% of single crosses did not give any progeny and 6% did not survive the heat-shock. We screened 4779 mutated lines analyzing the number, size, shape and distribution of clonal cells. Also the shape and formation of the lumen within clonal cells were taken into account. We observed the wild type phenotype in 4452 lines, whereas in 344 we detected defects in one or more of the analysed criteria. We classified the mutations into the five phenotypic groups as listed in table 3.1 and described in detail below. Five mutations showed phenotypes that did not fall into any of the proposed phenotypic classes. These were:

- 2L0419 mutant tracheal histoblasts were smaller; line was homozygous lethal
- 2L0445 abnormally shaped and too small clonal cells in the dorsal trunk and secondary branches (e.g. transverse connective); line was homozygous viable
- 2L1281, 2L1296 clonal cells absent in the epidermis; 2L1281 was homozygous lethal, 2L1296 viable;

• 2L3574 – clonal cells present only in the epidermis but not in the trachea; line was homozygous lethal.

|       |                                      |                   |       |                                            | N <sup>0</sup> of |
|-------|--------------------------------------|-------------------|-------|--------------------------------------------|-------------------|
| GROUP | JP PHENOTYPE                         | N <sup>O</sup> of | SUB-  | SUBGROUP                                   | LINES (in         |
|       |                                      | LINES             | GROUP | PHENOTYPE                                  | subgroup)         |
| A     | no clones - cell<br>lethal mutations | 163               | -     | -                                          | -                 |
| В     | low number of                        | 20                | 0     | low number                                 | 11                |
|       | clonal cells                         |                   | Ι     | extremely low number                       | 9                 |
| С     | small clonal cells                   | 47                | 0     | small clonal cells                         | 20                |
|       |                                      |                   | Ι     | extremely small clonal cells               | 7                 |
|       |                                      |                   | II    | low number and small                       | 20                |
|       |                                      |                   |       | clonal cells                               |                   |
| D     | dorsal trunk                         | 28                | 0     | not sub-classified                         | 6                 |
|       |                                      |                   | Ι     | DT bendings                                | 10                |
|       |                                      |                   | II    | clonal cells only in DT                    | 4                 |
|       |                                      |                   | III   | small clonal cells in DT                   | 5                 |
|       |                                      |                   | IV    | low n <sup>o</sup> / no clonal cells in DT | 3                 |
| E     | terminal branching                   | 81                | 0     | not sub-classified                         | 10                |
|       |                                      |                   | Ι     | TB crossing/fusion                         | 24                |
|       |                                      |                   | II    | less or no branches                        | 11                |
|       |                                      |                   | III   | problems with lumen                        | 19                |
|       |                                      |                   |       | formation                                  |                   |
|       |                                      |                   | IV    | expanded/elongated TB                      | 4                 |
|       |                                      |                   | V     | no/less clones in TB                       | 13                |

All mutant lines are listed in table A3 (Appendix).

Table 3.1. Classification of identified mutants. Additionally, 5 lines showed phenotypes that did fall into any of these groups (see above). (DT - dorsal trunk, TB - terminal branches)

## **3.2 Phenotypic classes**

The phenotypes observed in the mutants of the five phenotypic classes are described in detail in the following sections.

## <u>3.2.1 Group A – no clones</u>

The phenotype characteristic for this class was the absence of clonal cells. This was the largest group, consisting of 163 lines. The class was not analysed any further.

## 3.2.2 Group B - low number of clonal cells

The 20 lines classified into group B displayed a reduced number of clonal cells (fig. 3.1). We observed two phenotypic subgroups; one with number of clonal cells varying from 10 to 30 per larva (10 lines –subgroup B 0, low number) and one with less than 10 clonal cells per larva (10 lines - subgroup B I, extremely low number).



Figure 3.1. The phenotypes of group B – low number of clonal cells. Dorsal trunk of wt (A) and two mutant lines (B and C). Lines classified into this group were divided into two sub-groups: with clone number between 10 and 30 (B 0 - B) and below 10 (B I – C) Arrowheads indicate clones in transverse connectives.

## <u>3.2.3 Group C – small clonal cells</u>

Group C consists of 47 lines with clonal cells of reduced size (fig 3.2). Here we also distinguished more than one type of defect. In 7 lines the size reduction was very strong (subgroup C I, extremely

small clonal cells) and in 20 lines the small size of the clonal cells was combined with their low number (subgroup C II, low number and small clonal cells). In addition to reduced size clonal cells often had irregular shapes, especially in the dorsal trunk (fig. 3.2 C).



Figure 3.2. The phenotypes of group C – small clonal cells. Dorsal trunk with wt (A) and mutant (B-D) clonal cells (arrowheads). Lines representing three sub-groups are shown, B – small clonal cells (C 0), C – extremely small clonal cells (C I) and D – low number and small clonal cells (C II). Clonal cells in the mutant line in C did not show the hexagonal shape typical for wild type dorsal trunk cells.

# <u>3.2.4 Group D – dorsal trunk defects</u>

The 28 lines from group D showed defects in the dorsal trunk (DT). We classified them into five subgroups.

The first -D 0 - consists of 6 lines with defects not observed in any other subgroup.

- 2L0128 clonal cells in DT larger than wild type (fig 3.3 B)
- 2L0196 DT narrowed within clonal cell
- 2L0372 smaller lumen and irregular shape of clonal cells in DT
- 2L3090 rounded and smaller clonal cells in DT and secondary branches (fig 3.3 D)
- 2L3191 irregular lumen in DT at clonal position
- 2L4771 bendings in fusion cells of DT if clonal, no clonal cells in terminal branches and no clonal cells in other fusion cells



Figure 3.3 Phenotypes of group D 0. In line 2L0128 (B) clonal cells on dorsal trunk (DT) - arrowhead - are larger than in wt (A). Clonal cell in dorsal trunk and transverse connective (TC) of line 2L3090 (D, white arrow DT, red TC) are smaller and rounded up comparing to wt (C).

The second subgroup - (D I - dorsal trunk bending) consists of 10 lines. They exhibited bendings of the dorsal trunk at the position of clonal cell (fig.3.4) whereas other branches were unaffected.



Figure 3.4 Group D I – DT bendings – in the mutant (B) dorsal trunk bends at position of clonal cells (arrowheads) what is not observed in wild type (A)

In four lines belonging to subgroup D II clonal cells were present only in the dorsal trunk (data not shown).

The subgroup D III consisting of five lines had small clonal cells in the dorsal trunk (fig. 3.5). The defect in the size of clonal cell was restricted to the dorsal trunk. The clonal cells on other branches were like in wild type.



Figure. 3.5 Group D III – small clonal cells in DT. Clonal cells in DT (arrows) of mutant line (B) are reduce in size comparing to wt (A)

The last subgroup, D IV (low number/no clonal cells in the dorsal trunk; data not shown), was characterized by a low number or complete lack of clonal cells in the dorsal trunk and harboured three lines.

<u>3.2.5 Group E – terminal branching phenotypes</u>

The last class, consisting of 81 lines with terminal branching phenotypes, was divided into six subgroups.

The subgroup E 0 includes 10 lines with complex defects.

- abnormal formation of terminal branches (2L1668, 2L1923, 2L2806, 2L3047, 2L3193, 2L3393; fig. 3.6, B-D)
- larger diameter of terminal branches (2L2084, 2L2944, 2L3807; not shown)
- smaller diameter of terminal branches (2L4105, 2L4515; fig 3.6 E)
- abnormal ratio of clonal cells in terminal branches and other types of branches (2L4155, 2L3807; not shown)
- fewer branches in terminal cells (2L4155, 2L2944; fig 3.6 F)
- no lumen in terminal branches (2L4155; fig 3.6 F)

The subgroup E I (terminal branches crossing/fusion) is characterized by 'terminal branch crossing' (fig. 3.7). Two types of this defect can be distinguished: crossing of branches of single terminal cell and crossing of branches of two different cells. As shown in fig.3.7 A-B, in wild type the branches of neighbouring terminal cells, even if growing into the same region of tissue, never crossed the 'border' present between them and thus did not cross each other. In mutants such a restriction was not observed. Also the phenomenon of 'crossing' or fusion between branches of single terminal cell found in these mutants (fig. 3.7 C-F) did not occur in the wild type larvae. We identified 24 lines with such a phenotype.

The subgroup E II (less or no branches) consists of eleven lines exhibiting reduced or completely absent branching of terminal cells. The strength of this phenotype differs between the lines as depicted in fig 3.8. In some lines terminal cell formed a proper tree, but the cytoplasmic extensions were shorter (fig 3.8 B). In other branching did not occur at all (fig 3.8 C) or was strongly reduced (fig 3.8 D). Finally, in a few lines branching stopped after the first ramification (fig 3.8 E and F).

In four lines from subgroup E IV (expanded/elongated terminal branches) the opposite phenotype - excessive branching - was observed. Lines from this subgroup are shown in fig 3.9. In all lines, terminal cells were strongly ramified compared to wild type cells at similar positions (dorsal terminal cells).


Figure 3.6 Phenotypes of group E 0. A – wt terminal clonal cell – branches were growing in all direction and formed extended trees. Gas filled lumen could be visible (arrow). B-D – different examples of abnormal TB formation. E – diameter of the lumen was smaller than in wt (arrow). F – no gas filled lumen could be seen in terminal cell (arrow), very few branches could be found.



Figure 3.7 Phenotypes of group E I –'terminal branches crossing/fusion'. In wt (A) two neighbouring terminal cells populating the same region of target tissue do not cross each other and do not cross 'border' between their regions (dotted line). Also branches of individual cell do not cross each other or fuse. In mutant lines neighbouring cells cross 'the border' (dotted line in B) and branches of other cells (C, arrow). Also within single cell 'crossing' can be observed (arrow in D and F). Additionally in few lines (i.e. 2L2445) branches fuse (E, arrowhead)



Figure 3.8 Phenotypes of group E II – less or no branches. A - wt terminal cell. B-F - examples of mutant cells with different strength of phenotype. B – weak – tree is properly formed but branches are shorter; C – strong – branching almost completely abolished; D – branching strongly reduced; E-F – mild – branching stops after first ramification.



Fig. 3.9 Group E IV – expanded terminal branches. Dorsal branches of mutant lines (B-D) are more ramified than the wt(A)

The subgroup E III exhibited problems with lumen formation within the terminal branches. The strongest phenotype in this group was a complete abolition of lumen formation within the branch as depicted in fig. 3.10 G-H (6 lines). Also milder phenotypes with partially formed lumen were found (10 lines fig 3.10 C-D). In three cases we observed properly formed but mispositioned lumen. In the wild type, the lumen was placed centrally in the cell whereas in these lines it was on the side and in one case lumen seemed to 'turn back' within the cell (fig. 3.10 E-F). Most of the 19 lines showed reduced number and length of branches. Additionally two lines were lacking lumen in clonal cells in secondary branches.

The subgroup E V, the last class with terminal branching defects, consists of 13 lines in which no clones could be observed in terminal cells or their number was strongly reduced in comparison to the number of clones in other branches (data not shown).



Figure 3.10 Group E III – lumen formation problems. Right panel: – GFP; left panel: bright field images of the same cells. A- wild type terminal cell of dorsal branch. White arrow indicates presence of gas filled lumen, red arrowhead shows centrally placed lumen within the cell. In line 2L3340 (C-D) terminal cells do branch, but gas filled lumen is only partially formed (arrows). White arrowheads in E and F mark branch 'turning back' within the cell. The lumen of this cell is misplaced to the lateral side of the branch (red arrowhead). G and H: complete abolishment of lumen formation within clonal cell (arrow).

# **3.3** Complementation test

To evaluate if any of the observed phenotypes are caused by mutations in the same gene we performed complementation tests. Phenotypes of mutant lines can be observed only in clonal analysis which requires crossing in the MARCM system components. Thus it was impossible to complement the phenotypes of different lines. Hence we decided to complement mutant lines for lethality.

First we checked all the lines except the 'no clones' group if they were homozygous lethal or not. We found 78% of lines from groups B-E to be homozygous lethal. We tested these lines within each phenotypic group for absence of complementation. We did not cross lines from different groups, except for subgroup C II (low number and small clonal cells) and group B.

| Group | Group N° of lines |         | Lethality | N <sup>o</sup> of                 | Complementation | Group members        | N <sup>o</sup> of |
|-------|-------------------|---------|-----------|-----------------------------------|-----------------|----------------------|-------------------|
|       | In<br>total       | lethals | ~~ %o     | comple<br>mentati<br>on<br>groups | groups          |                      | single<br>hits    |
| А     | 163               | -       | -         | -                                 | -               | -                    | -                 |
| В     | 20                | 13      | 65        | 2                                 | B1              | 2L4332/2L4449        | 10                |
|       |                   |         |           |                                   | B/C1            | 2L3456(CII)/2L4332   |                   |
| С     | 47                | 41      | 87.2%     | 16                                | C1              | 2L2416/2L2648/2L3301 | 14                |
|       |                   |         |           |                                   | C2              | 2L3301/2L3918/2L3937 |                   |
|       |                   |         |           |                                   | C3              | 2L4081/2L1749/2L2953 |                   |
|       |                   |         |           |                                   | C4              | 2L4081/2L2816        |                   |
|       |                   |         |           |                                   | C5              | 2L2816/2L3547        |                   |
|       |                   |         |           |                                   | C6              | 2L3311/2L3500/2L3908 |                   |
|       |                   |         |           |                                   | C7              | 2L3908/2L3642        |                   |
|       |                   |         |           |                                   | C8              | 2L1663/2L3642/2L3390 |                   |
|       |                   |         |           |                                   | C9              | 2L1663/2L2572        |                   |
|       |                   |         |           |                                   | C10             | 2L1554/2L2572        |                   |
|       |                   |         |           |                                   | C11             | 2L1554/2L2269        |                   |
|       |                   |         |           |                                   | C12             | 2L2269/2L2526        |                   |
|       |                   |         |           |                                   | C13             | 2L3569/2L3948        |                   |
|       |                   |         |           |                                   | C14             | 2L1360/2L4774        |                   |
|       |                   |         |           |                                   | C15             | 2L0944/2L3651/2L4508 |                   |
|       |                   |         |           |                                   | C16             | 2L4508/2L3456        |                   |
| D     | 28                | 24      | 85.7      | 3                                 | D1              | 2L0439/2L1506/2L1687 | 10                |
|       |                   |         |           |                                   |                 | 2L2181/2L3179/       |                   |
|       |                   |         |           |                                   |                 | 2L3696/2L3910/2L4333 |                   |
|       |                   |         |           |                                   | D2              | 2L0028/2L1693/2L3707 | -                 |
|       |                   |         |           |                                   | D3              | 2L2676/2L2769/2L3090 | -                 |
| Е     | 81                | 58      | 71.6      | 3                                 | E1              | 2L1923/2L3244        | 52                |
|       |                   |         |           |                                   | E2              | 2L3637/2L4501        |                   |
|       |                   |         |           |                                   | E3              | 2L2218/2L3443        |                   |

Table 3.2: Results of complementation test.

In total we have identified 24 complementation groups (tab. 3.2):

Group B: 2 groups with 2 members each;

Group C: 16 groups: 6 with 3 members each and 10 with 2 members each;

Group D: 3 groups: 1 with 8 members and 2 with 3 members;

Group E: 3 groups with 2 members each;

The eight lines from group C belong to more than one complementation group. In case of one group from class D (D3) all three lines not complementing each other show different phenotypes.

# 3.3.1 Complementation test for 'no clones' class

When we analysed lines identified in the pilot screen for defects in the development of embryonic trachea (A. Bilstien, PhD thesis) we observed slightly convoluted dorsal trunks in line 2L0058, a member of the 'no clones' class (fig 3.11 C). This phenotype is characteristic for mutations in genes involved in control of tube size and diameter (reviewed in Wu and Beitel, 2004). There are three known genes on the left arm of the second chromosome showing such defects when mutated: *varicose* (*vari*), *convoluted* and *nrv2*, and there was a possibility that line 2L0058 carried a mutation in one of these genes. To test this we checked line 2L0058 for complementation of lethal alleles of these three genes and found it to complement all three. However, the observation that a line showing no clones in MARCM system exhibited convolution of dorsal trunk in the embryo indicated that other lines from the 'no clones' class might also have such a phenotype and be allelic to one of genes mentioned above. Thus we performed complementation tests between all 'no clones' lines and 2L0058, *vari* and *convoluted*. *Nrv2* has not been tested due to stock contamination. Two complementation groups were identified:

A1) 2L0058, 2L1963, 2L3002, 2L3794, 2L4745 and 2L3215;

A2) vari, 2L1623 and 2L3215;

Line 2L3215 did not complement members of either.

Lines from group A1, except for 2L0058, did not show any defect in embryonic trachea. Both lines from group A2 exhibit the *vari* phenotype (fig.3.11), although the phenotype in line 2L3215 seemed to be weaker.



Figure 3.11 Embryonic trachea in homozygous embryos (stage 15/16) visualised by luminal marker 2A12. A – wt embryo, B,D-E embryos from complementation group A2, C – embryo from line 2L0058. All mutant lines show dorsal trunk convolution phenotype. Anterior to the left, dorsal up.

## 3.4 Analysis and mapping of selected candidate lines.

After the preliminary description of mutant lines the next steps was the characterisation of observed phenotypes in detail and mapping of the mutation. However, handling all lines simultaneously was difficult. So I decided to concentrate on three groups of lines. Selection criteria were high number of alleles or interesting phenotype. The first criterion was fulfilled by complementation group D1. The eight lines from this group showed defects in the dorsal trunk. Additionally I found defects in lumen formation in terminal branching very interesting and thus analysed further two complementation groups found within this phenotypic class. These were E2 and E3, consisting of two lines each. Details of analysis and mapping on all three groups are presented in next sections.

## 3.4.1 Group D1-analysis and mapping.

The group D1 consists of eight lines from class D I – dorsal trunk bendings. They did not complement each other, showed the same phenotype and thus could be considered as allelic. These were: 2L0439, 2L1506, 2L1687, 2L2181, 2L3179, 2L3910, 2L3696 and 2L4333.

# 3.4.1.1 Phenotype description and analysis

As described in section 3.2.3, in these lines the dorsal trunk bended at the position of the clonal cell. The strength of the bending differed between the mutants (fig. 3.12). The weakest defect was observed in lines 2L3179 and 2L4333 (fig. 3.12 D and F) and the strongest in lines 2L1506 and 2L3696 (fig. 3.12 B and I). Additionally clonal cells in the dorsal trunk looked smaller than wild type clonal cells and their shape was irregular. The total numbers of clonal cells as well as the average amount of clonal cells in the dorsal trunk were not affected in mutant larvae (tab. 3.3).

The observed phenotype was not fully penetrant. The lowest number of clonal cells showing the defect (55.87%) was found in line 2L3696 and highest in line 2L4333 (80%; tab. 3.3). Interestingly line 2L3696 showed very strong bendings, whereas defect in line 2L4333 was weak. However such correlation could be only found for these two lines.

| Line   | Counted larvae | Counted clones | Average clone n <sup>o</sup> | Clones in DT |                | DT clones<br>with | % of clones showing |
|--------|----------------|----------------|------------------------------|--------------|----------------|-------------------|---------------------|
|        |                |                | per larvae                   | In           | average per    | phenotype         | defect              |
|        |                |                |                              | total        | larvae         |                   |                     |
| FRT40A | 15             | 455            | $30.3\pm8.8$                 | 191          | $12.7 \pm 5.5$ | 0                 | 0%                  |
| 2L0439 | 12             | 322            | $27.7\pm8.9$                 | 130          | $10.8 \pm 3.2$ | 86                | 68%                 |
| 2L1506 | 15             | 356            | $23.7\pm6.7$                 | 144          | $9.6 \pm 3.2$  | 103               | 72%                 |
| 2L1687 | 17             | 472            | $27.8\pm9.1$                 | 212          | $12.5\pm6.5$   | 149               | 71.82%              |
| 2L2181 | 15             | 469            | $31.3 \pm 8.7$               | 186          | $12.4 \pm 8.4$ | 125               | 72%                 |
| 2L3179 | 10             | 276            | $27.6\pm6.3$                 | 118          | $11.8 \pm 4.2$ | 94                | 78.88%              |
| 2L3696 | 10             | 274            | $27.4 \pm 10.9$              | 82           | $8.2 \pm 4.7$  | 44                | 55.87%              |
| 2L3910 | 19             | 542            | $28.5\pm10.4$                | 198          | $10.4 \pm 5.1$ | 146               | 72%                 |
| 2L4333 | 14             | 480            | $34.3\pm10.1$                | 195          | $11.1 \pm 3.7$ | 155               | 80%                 |

Tabel 3.3 Numbers of clonal cells in the alleles from group D1 and phenotypic penetrance.



Figure 3.12. Group D1. In all 8 lines (B-I) DT bends at clonal cell position (white arrowheads), what is not observed in wt clonal cells (A). The strength of the bending varies between the mutant lines. Lines 2L3179 (D) and 2L4333 (F) exhibit weakest defect (red arrowheads) whereas lines 2L1506 (B) and 2L3696 (I) strongest (green arrowheads).

In order to analyse clonal cells and the surrounding cells in more detail staining for armadillo (arm), *Drosophila*  $\beta$ -catenin, was performed. Arm is a component of adherens junctions which localises apically in the cells and is involved in cell adhesion (Lecuit, 2005). Thus it is a useful marker for both apical membranes and junctions. If cell to cell contact of mutant clonal cell should be affected due to defects in adherens junction/cell adhesion, one could expect changes in arm localisation. Also any changes in cell shape or size should be revealed by arm staining. In the mutant clonal cells no difference in arm localisation was observed (fig. 3.13), but labelling of cell membranes confirmed a reduction in the size of clonal cells as well as their abnormal shape. As depicted in fig 3.13 D-I, clonal cell were much smaller than neighbouring cells and they lost hexagonal shape typical for cells in dorsal trunk.

![](_page_46_Figure_2.jpeg)

Figure 3.13 Armadillo staining in the DT of larvae with wt (A-C) and mutant (D-I) clones. In wt clonal cells no difference between clonal (white arrowheads) and neighbouring cells could be observed. In the mutant, clonal cells were smaller than neighbouring wild type cells (yellow arrowheads) and irregular in shape.

### 3.4.1.2 Analysis of embryonic phenotype

For most of the genes known to be involved in tracheal development embryonic phenotypes have been described. So it was interesting to analyse if the alleles from group D1 showed any defect in the development of embryonic trachea when homozygous. That being the case, comparison of observed phenotype with defects in mutants of known genes could help in identification of the gene responsible for clonal phenotype.

The embryonic tracheal development was examined in all eight alleles. To distinguish mutant homozygous embryos from heterozygous or CyO homozygotes, CyO chromosome with ftz-LacZ insertion was used. This insertion leads to expression of  $\beta$ -Galactosidase in the pattern of *fushi tarazu* in the embryos carrying CyO chromosome. By anti- $\beta$ -Gal staining mutant homozygous embryos could be thus identified. Staining for luminal marker 2A12 revealed that all but one line showed wild type tracheae. In line 2L0439 breaks in the dorsal trunk were observed. As can be seen in fig. 3.14, lumen in the dorsal trunk stayed discontinuous throughout development. In few embryos a milder phenotype showing just narrowed lumen was also found (fig.3.14 F).

Next tracheal cells of mutant embryos were marked with UAS- $\beta$  spectrin-GFP expressed under control of btl-GAL4 driver in order to verify if absence of 2A12 staining was due to break of the trunk or lack of the lumen. If observed breaks were caused by absence of the lumen,  $\alpha$ -GFP antibody staining should showed the intact dorsal trunk and breaks in the  $\alpha$ -2A12 staining. If gaps were due to breaks of the dorsal trunk then they should been also obvious by GFP staining. The double staining for GFP and 2A12 revealed that the second scenario is more likely because gaps in luminal staining were accompanied by strong reduction of diameter of surrounding tracheal cells (fig 3.15). The presence of defects in the embryonic tracheae in only one line suggests it is caused by additional mutation on second chromosome in line 2L0439 and the phenotype is not related to defect observed in clonal analysis in larvae.

![](_page_48_Figure_1.jpeg)

Figure 3.14 Embryonic trachea marked by luminal (2A12) staining of wt (A, C, E) and 2L0439 homozygous embryos (B, D, F). In mutant embryos lumen in DT is discontinuous both in early (st. 14, B) and later (st 16, D) stages (black arrowheads). In some embryos, although no breaks were found, diameter of the lumen was strongly reduced (F red arrowheads, insert show magnification of region marked by rectangle). Lateral view, anterior to the left, dorsal up.

![](_page_48_Figure_3.jpeg)

Figure 3.15 Wt and 2L0439 embryos with GFP labelled tracheal cells (A,C) stained for luminal marker 2A12 (B,D). In mutant embryos break in 2A12 staining (insert in D, arrowhead) is accompanied by reduction in diameter of DT (insert in C, arrowhead). Lateral view, anterior to the left, dorsal up.

#### 3.4.1.3 Survival test

The next question to ask was at what stage the analysed mutations cause lethality. Hence a survival test was performed. First, lethality stage of CyO/CyO animals had to be determined. It is known that original CyO balancer leads to larval lethality if homozygous. However chromosome used to balance the mutations has additionally ftz-LacZ insertion and it was not clear if animals heterozygous for this balancer hatch. Thus embryos from FRT40A/ CyO<sub>ftz LacZ</sub> flies were analysed for survival and consider later as a wild type reference. Embryos were collected and left to develop. After 24 and 48 hours non-hatched embryos were counted. 25% of reference embryos did not hatch, which suggests that CyO<sub>ftz LacZ</sub> chromosome is embryonic lethal if homozygous.

After establishing the controls, embryos from each mutant line were tested as described above. If mutations in lines of interest were embryonic lethal 50% of embryos would be expected to hatch. It was the case only for lines 2L0439 and 2L3179 (tab. 3.4). In two lines, 2L2181 and 2L3910, around 40% of embryos did not hatch. The last four lines 2L1506, 2L1687, 2L3696 and 2L4333 seemed not to be embryonic lethal. In all lines a delay in development could be observed (compare number of non-hatched embryos after 24 and 48h in tab. 3.4).

| Line n <sup>o</sup> | Counted | Non-      | Non-      | Expected n <sup>o</sup> of | % of non- |
|---------------------|---------|-----------|-----------|----------------------------|-----------|
|                     | embryos | hatched   | hatched   | CyO/CyO or                 | hatched   |
|                     |         | embryos   | embryos   | mutation/mutation          | embryos   |
|                     |         | after 24h | after 48h | embryos (25%)              |           |
| FRT40A/CyO          | 187     | 54        | 46        | 47                         | 25%       |
| 2L0439              | 173     | 91        | 85        | 43                         | 49%       |
| 2L1506              | 158     | 64        | 47        | 39                         | 30%       |
| 2L1687              | 154     | 60        | 39        | 38                         | 25%       |
| 2L2181              | 132     | 82        | 57        | 33                         | 43%       |
| 2L3179              | 167     | 93        | 90        | 42                         | 54%       |
| 2L3696              | 172     | 74        | 55        | 43                         | 32%       |
| 2L3910              | 104     | 68        | 42        | 26                         | 40%       |
| 2L4333              | 141     | 44        | 20        | 35                         | 14%       |

Table 3.4 Survival test summary.

### 3.4.1.4 Mapping of complementation group D1

The eight lines showing the same phenotype and not complementing each others lethality suggests that mutation causing the phenotype is also the cause for lethality. Thus mapping of lethality should lead to identification of the gene responsible for the phenotype. Therefore the lethality based deficiency mapping was chosen to map the observed phenotype. Two members of the group were crossed to set of deficiencies covering left arm of the second chromosome (stocks listed in

Appendix, table A.1 B - Bloomington Dfs kit). The progeny from these crosses was checked for lethality complementation. Both analysed lines did not complement deficiency Df(2L)spd[j2] which deletes fragment of the chromosome corresponding to region 27C1-2; 28A. To confirm this result, remaining members of the D1 group were crossed to this deficiency, and none complemented. By using smaller deficiencies, partially overlapping with Df(2L)spd[j2], depicted in fig 3.16, the region of the mutation was narrowed down to two intervals of 57kb (A) and 141kb (B). Eighteen genes are predicted in these regions. They are listed together with predicted function in table 3.5.

| Cutologic band Z7F1 Z7F2 Z7F1 Z7F2 Z7F1 Z7F2 Z7F3 Z7F4 Z8H3'   5/27/2 2781 27/2 2781 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 27/2 |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Df(2L)spd[j2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ] |
| Df(2L)Exel7072                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Df(2L)BSC7                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Df(2L)Dwee1-W05                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Df(2L)Exel7029                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Df(2L)Exel8019                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Df(2L)Exel6017                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Df(2L)Exel7031                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |

Figure 3.16 Deficiency fine mapping for members of DT bendings complementation group. Solid lines represent undeleted fragments, dashed lines – unclear regions, deleted fragments are shown as blank. Green indicates complementation, red – non-complementation. Horizontal blue dashed lines mark regions A and B uncovered by tested deficiency to which mutation maps. In genomic region representation (FlyBase-http://flybase.bio.indiana.edu) cytologic regions and genes (in blue) are depicted.

| Region | Gene       | Function                                                              |
|--------|------------|-----------------------------------------------------------------------|
| А      | CG10805    | unknown                                                               |
| А      | CG10806    | sodium-hydrogen antiporter, regulation of pH                          |
| A      | neuroligin | Receptor binding protein, involved in development of ectoderm and     |
|        |            | nervous system                                                        |
| А      | CG13773    | DNA-directed RNA polymerase activity, involved in transcription       |
| А      | CG10354    | 5'-3' exoribonuclease activity, DNA meatbolism                        |
| В      | CG31908    | unknown                                                               |
| В      | CG3476     | carnitine transporter activity, lipid metaboslim                      |
| В      | Rab30      | GTPase activity, endocytosis/exocytosis/intracellular transport/small |
|        |            | GTPases mediated signal transduction                                  |
| В      | CG11266    | spliceosome complex                                                   |
| В      | milton     | kinesin-associated mitochondrial adaptor, axon transport of           |
|        |            | mitochondrion                                                         |
| В      | CG31630    | unknown                                                               |
| В      | Mnn1       | GTPase activity, JNK cascade                                          |
| В      | CG31907    | Calponin – like actin binding protein, localised to microtubule       |
|        |            | cytoskeleton                                                          |
| В      | CG13779    | peptidase activity, proteosome complex                                |
| В      | CG8902     | GTPase activity, immune response                                      |
| В      | CG11289    | ATPase activity/glucuronosyltransferase activity, defence             |
|        |            | response/polysaccharide metabolism                                    |
| В      | Pvf2       | PDGF and VEGF related factor 2, hemocyte migration, proliferation     |
| В      | Pvf3       | PDGF and VEGF related factor 3, hemocyte migration                    |

Tabel 3.5 Genes in the region to which mutation in D1 group maps. All information about function is adapted from FlyBase (http://flybase.bio.indiana.edu).

# 3.4.2 Group E2 - analysis and mapping

Group E2 was chosen for further analysis due to interesting phenotype – defects in lumen formation in terminal branches (class E III). It consists of two lines 2L3637 and 2L4501 which show similar phenotype and do not complement each other.

# 3.4.2.1 Phenotype analysis

As mentioned before, in wild type terminal cells the lumen can be visualised by bright filed microscopy since it is filled with gas. In most clonal terminal cells in these lines no gas filled lumen could be observed (fig 3.17). There were also few cells with single branches partially filled with gas (data not shown) but no terminal branches completely filled with gas could be seen (tab. 3.6) Additionally gas filling or lumen formation defects were found in clonal cells on secondary branches in which the lumen is made by single cell. As depicted in fig 3.18, there were gaps in gas filling within clonal cells. They spread across whole lengths of the cell (fig. 3.18 D-F) or just part of it (G-H) and the phenotype was not fully penetrant (tab. 3.7). Clonal cells in DT or transverse connectives were like wild type.

| Line   | Counted larvae | Counted clones | Average clone<br>n° per larvae | Clon<br>In total | Av. Per<br>larvae | TB with phenotype | % of clones<br>showing defect |
|--------|----------------|----------------|--------------------------------|------------------|-------------------|-------------------|-------------------------------|
| FRT40A | 16             | 493            | 30.8 ±11.9                     | 82               | 4 ±3.1            | 0                 | 0%                            |
| 2L3637 | 26             | 628            | $24.2\pm10.7$                  | 86               | $3.4 \pm 1.6$     | 86                | 100%                          |
| 2L4501 | 24             | 638            | $26.6 \pm 9.7$                 | 68               | $2.8 \pm 1.7$     | 67                | 99%                           |

Table 3.6 Penetrance of phenotype in terminal branches.

| Line   | Counted<br>larvae | Counted clones | Average clone<br>n° per larvae | Clones in secondary<br>branches |                   | Clones in secondary           | % of clones showing defect |
|--------|-------------------|----------------|--------------------------------|---------------------------------|-------------------|-------------------------------|----------------------------|
|        |                   |                |                                | In total                        | Av. per<br>larvae | branches<br>with<br>phenotype |                            |
| FRT40A | 16                | 493            | $30.8 \pm 11.9$                | 82                              | 5.1 ±4.8          | 0                             | 0%                         |
| 2L3637 | 26                | 628            | $24.2\pm10.7$                  | 103                             | $4 \pm 2.5$       | 69                            | 74%                        |
| 2L4501 | 24                | 638            | $26.6\pm9.7$                   | 77                              | $3.2\pm2.1$       | 56                            | 70%                        |

Table 3.7 Pentrance of secondary branch phenotype.

![](_page_53_Figure_1.jpeg)

Figure 3.17 Lumen of terminal branches in lines 2L3637 and 2L4501 is not filled with gas. In wt (A, B), lumen of TB can be visualised in bright filed because of gas filling (blue arrow). In both mutant lines no gas filled lumen could be observed. Left panel: GFP channel, right panel: bright field image of the same terminal cells.

To study whether gaps in clonal cells were due to absence of lumen or lack of gas filling, I decided to analyse the membranes of clonal cells. If the lumen was formed in these cells outer basal and inner apical membranes should be detectable. If clonal cells failed to form the lumen only outer basal membrane would be present. In order to test this, chromosome with membrane targeted RFP (UAS-myrRFP) was crossed into the mutant so that clones would be marked with cytoplasmic GFP and membrane localised RFP. If the lumen in clonal cell was formed but not filled with gas no difference in RFP localisation between wild type and mutant clones should be found. If gaps were caused by the absence of the lumen such a difference should be observed. As depicted in fig 3.19, localisation of myr-RFP differed in wild type and mutant clonal cells on secondary branches at the positions where no gas filled lumen was visible in bright field view. In gaps in both mutant lines the

GFP and RFP signals were even whereas in parts of clonal cells with lumen as well as wild type clones, the signal was absent in the lumen. In few cases the lumen was detectable by absence of GFP and RFP signal, but no gas filling could be observed (fig 3.19 I-L and 3.20 I-L). Also in terminal branches the absence of lumen was confirmed (fig 3.20).

![](_page_54_Figure_2.jpeg)

Figure 3.18 Clonal cells in secondary branches of wild type (A-C) and mutant lines (D-I). Lumen in mutant clonal cells is absent or unfilled with gas (red arrowheads)

![](_page_55_Figure_1.jpeg)

Figure 3.19 Clonal cells on secondary branches in wt (A-D) and mutant (E-L), marked with cytoplasmic GFP and myrRFP. In wt and part of the mutant cell in which lumen is still present, signal is absent in middle of the cell (white arrowheads), whereas in parts missing the gas filled lumen no gaps in signal could be observed (white arrows). Yellow arrowheads indicate part of the cell in which GFP and RFP signal is absent in the middle of the cell, although no gas filled lumen could be seen in bright field.

![](_page_56_Figure_1.jpeg)

Figure 3.20 Clonal cells in terminal branches in wt (A-D) and mutant (E-L), marked with cytoplasmic GFP and myrRFP. In wt and in part of the mutant cell in which lumen is still present, signal is absent in middle of the cell (white arrows), whereas in parts missing the gas filled lumen no gaps in signal could be observed (red arrows). Yellow arrowheads indicate part of the cell in which GFP and RFP signal is absent in the middle of the cell, although no gas filled lumen could be seen in bright field.

### 3.4.2.2 Analysis of embryonic phenotype

The fact that gaps in lumen in clonal cells on secondary branches were not always spanning the entire cell length suggested that mutant cells are able to form the lumen. In order to confirm, that in mutant lines formation of a lumen made by a single cell is possible, homozygous embryos from both lines were stained for the luminal marker - 2A12. The absence of staining in dorsal branches or lateral trunk would suggest that formation of the lumen by single cells is impaired. No such defects were found (fig 3.21), thus the lumen in the embryonic trachea is formed normally.

![](_page_57_Figure_3.jpeg)

Figure 3.21 Embryonic tracheae stained with luminal marker 2A12 in wild type (A, B) and 2L4501 homozygous embryos (C, D). No defects in lumen formation were found. Embryos stage 15/16 A, C lateral view, anterior to the left dorsal up; B, D dorsal view, anterior to the left.

### 3.4.2.3 Survival test

To determine at what stage mutations induced lethality, survival test was performed. Embryos from both lines were collected and left to develop. Non-hatched embryos were counted after 24 and 48 hours. As mentioned in section 3.4.1.3, CyO<sub>ftz-LacZ</sub> homozygous animals die as embryo. Table 3.8 shows that 34.1% of 2L3637 and 54.6% of 2L4501 embryos did not hatch. It indicates that mutation in line 2L4501 is embryonic lethal whereas line 2L3637 is semi-lethal and some embryos develop to the larval stages.

| Line       | Counted<br>embryos | Non-<br>hatched<br>embryos | Non-<br>hatched<br>embryos | Expected n° of<br>CyO/CyO or<br>mutation/mutation | % of non-<br>hatched<br>embryos |
|------------|--------------------|----------------------------|----------------------------|---------------------------------------------------|---------------------------------|
|            |                    | after 24h                  | after 48h                  | embryos (25%)                                     |                                 |
| FRT40A/CyO | 187                | 54                         | 46                         | 46-47                                             | 24.6%                           |
| 2L3637     | 454                | 169                        | 155                        | 113                                               | 34.1%                           |
| 2L4501     | 237                | 130                        | 120                        | 59                                                | 54.6%                           |

Table 3.8 Survival test for lines 2L3637 and 2L4501, FRT40A/CyO flies were used as a reference to determine the number of homozygous CyO embryos that do not hatch.

## 3.4.2.4 Mapping of group E2

Although this group consists only of two lines, mapping approach based on complementation of lethality by set of deficiencies was chosen. The observed phenotypes of both lines are very likely to be lethal. Additionally probability that two different genes are mutated in both lines is rather low. Thus mapping of lethality should lead to identification of the gene responsible for observed phenotypes.

Both lines were crossed to set of deficiencies covering left arm of second chromosome. These deficiencies, established by Exelixis Inc., have moleculary mapped break-point what makes them more accurate for mapping (stocks listed in Appendix table A.1 C Exelixis Df Kit). The progeny from the crosses were screened for lethality complementation. Both lines complemented lethality of all deficiencies, which indicates that mutation causing the phenotype is in the gene uncovered by this set.

### 3.4.3 Group E3 - analysis and mapping

Group E3 was chosen for further analysis also due to interesting phenotype and because it consists of two lines, 2L2218 and 2L3443 non-complementing the lethality. They were classified to subgroup E III and show defects with lumen formation.

### 3.4.3.1 Analysis of the phenotype

In both lines the lumen in terminal branches was partially or completely absent. Additionally, in line 2L2218 number of clonal cells was strongly reduced and very few larvae with clonal cells could be found. Due to difficulties in obtaining larvae with clones in the line 2L2218 as well as sickness of this stock, most of the analysis were performed only with line 2L3443.

As depicted in fig 3.22, the strength of the phenotype differed between the larvae and also between the branches in one animal. In some terminal cells part of the cellular extension still had a gas filled lumen (fig. 3.22, C,D) whereas in others the lumen was present only in the non-ramified part of the cell close to a neighbouring secondary cell (E,F) and finally in some it was completely absent in terminal cells (G,H). Independent of the presence or absence of lumen in these cells the number of branches was reduced in all. However only ~ 50% of terminal cells in line 2L3443 showed the phenotype (tab. 3.9). The penetrance of the phenotype in line 2L2218 could not be evaluated due to low number of analysed larvae.

| Line   | Counted | Counted | Average clone  | Clor     | nes in TB         | TB with   | % of clones    |
|--------|---------|---------|----------------|----------|-------------------|-----------|----------------|
|        | larvae  | clones  | n° per larvae  | In total | Av. per<br>larvae | phenotype | showing defect |
|        |         |         |                |          |                   |           |                |
| TB170  | 16      | 435     | $27.2 \pm 10$  | 67       | $4.2 \pm 2.7$     | 0         | 0%             |
| 2L3443 | 34      | 615     | $18.5 \pm 7.7$ | 124      | $3.9 \pm 1.8$     | 63        | 51%            |
| 2L2218 | 2       | 8       | $4\pm0$        | 5        | $2.5 \pm 0.7$     | 5         | 100%           |

Table 3.9 Penetrance of the phenotype in E3 complementation group. The low number of analysed larvae in line 2L2218 was caused by difficulties in obtaining larvae with clones (only two out of 191 analysed larvae had clonal cells).

Also the development of embryonic trachea in line 2L3443 was analysed, but no defects were found (data not shown).

![](_page_60_Figure_1.jpeg)

Figure 3.22 Clonal terminal cells in wt (A, B) and mutant (C-H). In wt all branches of terminal cell have gas filled lumen (white arrow) In mutant cell, the lumen is present in part of the branches (white arrow in C and D) or stops within the branch (red arrowheads in C -F) or is completely absent (green arrows in G, H). Right panel shows bright field image of cells from left panel.

### 3.4.3.2 Survival test

In order to find out at what stage mutation in line 2L3443 is causing lethality, survival test was performed as described for other two groups. 33.3% of the embryos from line 2L3443 did not hatch which suggests that the mutation is embryonic semi-lethal. The development of all mutant embryos was slowed down as 50% of embryos were still in embryo case after 24 hours, whereas after 48 hours only 33.3% remained unhatched. For line 2L2218 it was not possible to collect enough embryos to perform the test.

| Line       | Counted<br>embryos | Non-hatched<br>embryos after<br>24h | Non-hatched<br>embryos<br>after 48h | Expected n° of<br>CyO/CyO or<br>mutation/mutation<br>embryos (25%) | % of non-<br>hatched<br>embryos |
|------------|--------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------------------|---------------------------------|
| FRT40A/CyO | 187                | 54                                  | 46                                  | 46-47                                                              | 24.6%                           |
| 2L3443     | 186                | 94                                  | 62                                  | 46-47                                                              | 33.3%                           |
| 2L2218     | -                  | -                                   | _                                   | -                                                                  | -                               |

Table 3.10 Survival test for line 2L3443. FRT40A/CyO flies were used as a control, to estimate embryonic lethality caused by CyO chromosome. For line 2L2218 test was not performed.

## 3.4.3.3 Mapping of group E3

Although group E3 consists of two allelic lines only line 2L3443 could be used for mapping, due to the sickness of line 2L2218. I decided to map the phenotype not the lethality. The strategy using Single Nucleotide Polymorphism (SNP) makers (Berger, 2001) was chosen as a suitable tool. This method is based on sequence polymorphism between the strain used for mutagenesis and reference strain. It required generation of set of recombinants between mutant line and reference line spanning the whole chromosome arm. The recombinants were then analysed for presence of mutant phenotype and their chromosomes break points were mapped by molecular means. The combined results lead to mapping of the phenotype to the specific genomic region (see Material and Methods, section 2.2.7.1).

69 recombinants between reference line (EP 511) and mutant line were generated and 52 of them were established as stable stocks. It is important to mention that all recombinant chromosomes had the distal tip from EP line and proximal part from 2L3443 line. Next, DNA was isolated from all recombinant lines. DNAs from 12 randomly chosen lines (line 5, 6, 12, 18, 24, 29, 30, 39, 45, 56, 63 and 65) were tested by PLP and RFLP for 8 SNP markers distributed along the chromosome arm. Results are depicted in fig. 3.23 A. Simultaneously all recombinant lines were analysed for

presence of the mutant phenotype by MARCM analysis. Comparison of results from the molecular and phenotypic analysis led to placement of the mutation between markers 2L041 and 2L063. Next DNAs from all the recombinant lines were genotyped for these two markers as well as one localized between them (2L057). The obtained results (fig. 3.23 B) were than combined with information from phenotypic analysis and the mutation was mapped to the region of 850 kb between markers 2L057 and 2L063 corresponding to the region 26A3-27B1 on the cytogenetic map. Several deficiencies covering the region (listed in Appendix tab. A.1 A) were crossed to both mutant lines and analysed for lethality complementation. As shown in fig 3.24, mutant lines did not complement Df(2L)BSC7 and Df(2L)BSC6 which narrowed down the region to 160kb (26D10 - 26F3).

![](_page_62_Figure_2.jpeg)

Figure 3.23 Summarised results of SNP mapping of mutation in line 2L3443. A –left column represents presence (green) or absence (red) of mutant phenotype of 12 randomly chosen recombinant lines, listed next to it; right column shows genotyping results for 8 PLP and RFLP markers (numbers above) in these recombinant lines, red indicates EP allele and green FRT; white – unclear results; phenotype maps to region between marker 2L041 and 2L063; B – left column - summarised phenotypic data of all recombinants; right column represents corresponding genotyping results for markers 2L041, 2L057 and 2L063; colour code as in A; phenotype maps between markers 2L057 and 2L063.

There are 21 genes predicted in this region. They are listed in tab 3.11. Homozygous lethal mutants were available only for two of them, namely *eyes absent* and *cup*. For the remaining genes I decided

to sequence their coding region and search for sequence alteration in comparison to wild type allele of the respective gene on the FRT40A chromosome.

![](_page_63_Figure_2.jpeg)

Figure 3.24 Fine deficiency mapping of mutation in line 2L3443. Horizontal lines represent chromosomes in deficiencies: - solid lines - non-deleted fragments of chromosome, dotted lines - unclear regions and blank - deleted parts. Green indicates complementation, red non-complementation. Vertical blue dotted lines mark region to which mutation was mapped. Markers 2L057 and 2L063 are indicated in red in graphic representation of genomic region (FlyBase; http://flybase.bio.indiana.edu). Genes are marked in blue.

Primers were designed to amplify exons of the genes. After amplification PCR fragments were sequenced and compared with corresponding sequences obtained from original FRT40A stock. Additionally sequences were compared with genomic sequence of the genes obtained from 'A Database of *Drosophila* Genes and Genomes' (FlyBase; http://flybase.bio.indiana.edu). So far the following genes have been analysed: Osm-6, CG9596, CG11043, CG13766, CG11320, CG34009, CG11053 and CG31633. No mutations were found in the sequences analysed so far.

| Gene              | Function                                                       |
|-------------------|----------------------------------------------------------------|
| CG31637           | carbohydrate metabolism                                        |
| eyes absent (eya) | eye development (Bolwig's organ morphogenesis)                 |
| Osm-6             | microtubule based movement                                     |
| CG11015           | mitochondrial electron transport, cytochrome c to oxygen       |
| CG9596            | protein biosynthesis and metabolism                            |
| CG11043           | mitochondrial electron transport, cytochrome c to oxygen       |
| Ent2              | nucleobase, nucleoside, nucleotide and nucleic acid meatbolism |
| CG13766           | unknown                                                        |
| CG11319           | cell surface receptor linked signal transduction               |
| CG11050           | unknown                                                        |
| CG11320           | cell adhesion, signal transduction                             |
| CG34009           | unknown                                                        |
| CG11053           | peptidyl - proline hydroxylation to 4-hydroxy L - proline      |
| Oatp26F           | organic anion transport                                        |
| CG31635           | cell proliferation                                             |
| CG11098           | unknown                                                        |
| CG31633           | unknown                                                        |
| CG31636           | coenzyme meatbolism                                            |
| CG11070           | defence response, ubiquitin ligase complex                     |
| CG13771           | lipid metabolism                                               |
| cup               | chromosome organisation and biogenesis, involved in oogenesis  |

Table 3.11 Predicted genes in region to which mutation in 2L3443 line was mapped. Function information from FlyBase (http://flybase.bio.indiana.edu).

#### 4. Discussion

The development of the Drosophila tracheal system has been extensively studied in the last decade as it is a perfect model to analyse tubulogenesis. Several screens performed in the past (Samakovlis et al., 1996; Beitel and Krasnow, 2000; Cela and Llimargas, 2006; Hemphala et al., 2003), application of advanced imaging techniques (Ribeiro et al., 2002; Jazwinska et al., 2003; Ribeiro et al., 2004) and detailed analysis of known components of different signalling pathways gave an insight into the genetic control and cellular processes involved in trachea morphogenesis. However, many open questions remain: what are the downstream effectors of signalling cascades, which molecules are involved in cell remodelling and how do they orchestrate extensive cell shape changes and rearrangements. Since most of the studies concentrated on tracheal development in the embryo, not much is known about later stages, especially the molecular bases of terminal branching events during larval life. However, the analysis of tracheal development in the larva is hampered by a possible earlier requirement of the genes during embryogenesis. Thus, the genetic dissection of larval tracheal development requires different approaches, i.e. clonal analysis with MARCM system. This system allows to study the function of known genes but it can also be adopted to identify involvement of new genes in tracheal formation. The results obtain from the genetic screen presented here show that the MARCM system is a useful tool to identify novel genes involved in tracheal development.

#### 4.1 The MARCM screen

The screen was designed to identify genes on the second chromosome affecting tracheal development. We chose the second chromosome because the first and the third chromosomes were screened by a similar approach in the group of M. Krasnow (personal communication). In total, we screened 4779 mutagenised lines and 344 of them did not fulfill wild type criteria (7.2% of analysed lines). Defects observed in 230 lines do not seem to be trachea specific (4.8% of analysed lines) whereas in the remaining 114 they do (2.4%). Among the lines with trachea specific phenotypes, a large number (81) show terminal branching defects which proves that the chosen approach is suitable for revealing late involvement in the trachea morphogenesis.

In 78% of lines, the mutations led to homozygous lethality. The lethality could be due to the mutation causing the clonal phenotype but it cannot be excluded that the lethality is caused by additional mutation or mutations on the second chromosome. Complementation tests based on lethality led to identification of 26 complementation groups, indicating that some genes were hit

more than once. Of these, one complementation group consists of eight members, another of six, eight of three and 16 of two. Most of the complementation groups consist of lines showing non-tracheal specific defects (20). There are two within the the dorsal trunk class and three in the terminal branching group. Additionally, nine lines failed to complement members of more than one group. In the case of one group, all the members showed different tracheal phenotypes. These results indicate that some of the mutagenised lines carry more than one mutation and that the lethality is not necessarily associated with the tracheal defect.

#### 4.2 The mutant phenotypes

The phenotypes observed in the 344 mutant lines were divided into five classes: A - no clones, B - low number of clonal cells, C – small clonal cells, D - dorsal trunk phenotypes and E – terminal branching phenotypes, and are discussed below.

In the class A, no clonal cells were found. The absence of clonal cells could result either from cell lethal mutations or defects in the FRT site. Mutations leading to cell lethality are most likely found in house keeping genes and thus not affecting tracheal development specifically. However, the discovery of two new alleles of *varicose* (involved in tracheal tube size control; Beitel and Krasnow, 2000) within this group indicates that some of the 'no clones' lines might have mutations affecting tracheal development.

The lines from group B (low number of clonal cells) and C (small clonal cells) are also likely to carry mutations in genes not specifically required for tracheal morphogenesis. They could affect survival of the cells (group B) or the regulation of cell growth (group C).

The remaining 144 lines belonging to group D (dorsal trunk defects) and E (terminal branching defects) show trachea specific phenotypes.

The phenotypes observed in group D were: dorsal trunk bendings (fig. 3.12), presence of clonal cells only in dorsal trunk, reduced size of clonal cells in dorsal trunk (fig. 3.5) and absence or decreased number of clonal cells in dorsal trunk. The presence or absence of clonal cells in specific branches might be caused by mutations in genes involved in the establishment of cell fate or branch identity. Three signalling pathways have been implicated to play a role in these processes: the Decapentaplegic (Dpp), EGF and Wingless (Wg) pathways. Dpp signalling is required for dorsoventral cell migration (Llimargas and Casanova, 1997; Vincent et al., 1997) whereas EGF and Wg signalling pathways are involved in determination of dorsal trunk identity (Wappner et al.,

1997; Chihara and Hayashi, 2000; Llimargas, 2000; Llimargas and Lawrence, 2001). In embryos mutant for the Dpp receptor *thickveins* (tkv) and two Dpp dependent transcription factors *knirps* (*kni*) and *knirps like* (expressed normally in a subset of cells forming the dorsal branches and the lateral trunk) cell migration into dorsal branches, lateral trunk and ganglionic branches is abolished (Vincent et al., 1997; Chen et al., 1998). Thus the presence of clonal cells only in the dorsal trunk could result from their disability to migrate dorso-ventraly in response to Dpp signalling. So far only tkv is known to be located on the left arm of the second chromosome and being part of the Dpp signalling pathway. Thus complementation analysis will be required to assay for possible new alleles of tkv. However a more interesting scenario would be the identification of so far unknown gene acting downstream of Dpp. The presence of such genes have been implicated by the fact, that expression of *kni* in the trachea cannot rescue the tkv tracheal defects (Zelzer and Shilo, 2000).

The absence of clonal cells in the dorsal trunk (class D IV) could be due to interferance in the EGF or Wg signalling cascades, since in the embryos in which these pathways are inactivated, the dorsal trunk does not form and may be transformed into an other branch identities. (Wappner et al., 1997; Chihara and Hayashi, 2000; Llimargas, 2000; Llimargas and Lawrence, 2001). Two genes were identified to play a crucial role in establishment of dorsal trunk: *spalt*, required for identity determination and *ribbon*, involved in anterior-posterior cell migration. *Spalt* is a target gene of EGF signalling (Kuhnlein and Schuh, 1996) while *ribbon* acts downstream of Wg and FGF pathways (Bradley and Andrew, 2001). As *spalt* is located on the left arm of the second chromosome, it is a possible candidate gene of class D IV phenotype. However, the phenotype could also be derived from mutations in unknown genes downstream of *spalt*, affecting tracheal cell fate and branch identity.

The two other dorsal trunk phenotypes found in the screen, dorsal trunk bending and reduced size of clonal cells in the dorsal trunk, might be caused by mutations affecting cell - cell contacts. The dorsal trunk is the only branch with a multicellular lumen and with cell contacts based exclusively on intercellular junctions. Thus, it is possible that a defect restricted to this type of tube might result from a disturbance of cells interactions. However, on the bases of current knowledge it is difficult to suggest any mechanism or molecule that could lead to a reduction in the size of clonal cells only in the dorsal trunk.

The dorsal trunk bendings phenotype was found in 10 lines, out of which eight are allelic to each other. This complementation group (D1) was studied in more details (section 3.4.1). The clonal cells within the dorsal trunk, causing the bend, are smaller than neighbouring wild type cells and misshapen. However, reduction in size and shape change cannot wholly explain the observed phenotype, since small clonal cells in the dorsal trunk found in other mutant lines do not cause any

bending. Also, cell adhesion defects are unlikely to be responsible for the phenotype since no difference could be observed in the distribution of the adherens junction component,  $\beta$ -catenin (arm) between mutant clonal cells and their neighbours. However, in order to exclude an involvement if cell-to-cell junctions, other junctional markers should be analysed as well. Thus, the phenotype requires further investigation which together with the mapping and identification of the affected gene may give us an insight into the mechanism causing the bendings.

The terminal branching defects characteristic for group E are of most interest to us. Within this class five distinct phenotypic subgroups could be identified: terminal branches crossing or fusing (fig. 3.7) decreased and expanded branching of terminal cells (figs 3.8 and 3.9), absence or reduced number of clonal cells in terminal branches and problems with lumen formation (fig. 3.10).

Extensive cytoplasmic outgrowth and ramification of terminal cells are controlled by FGF signalling, dependent on the physiological needs of the target tissues (Jarecki et al., 1999). Although the branching pattern of terminal cells is variable, it is not unorganised. Ramification points are regularly spaced and terminal branches do not cross or fuse (Ghabrial et al., 2003). In the screen we found 24 mutant lines in which branch crossing or fusion occurred in clonal cells. 60% of them (14 lines) are homozygous lethal but only one complementation group (with two lines) was found. This would suggest that there are mutations in 13 independent genes causing homozygous lethality and terminal cell phenotype which is rather unlikely. Thus, we expect that at least some of the lines have additional lethal mutations on the chromosome and the terminal branches defect does not lead to lethality as such.

Not much is known about the mechanism which prevents neighbouring cells to cross or fuse their terminal branches. The *bnl* expression being restricted to a small target area and this gradient is enough to attract a migrating terminal cell but it is unlikely to regulate the spatial spreading of the cytoplasmic extensions on its own. Thus, there must be other cues involved in that process. The first evidence of such an involvment came from the study of Kato et al. (2004) which revealed a role for Hedgehog (Hh) and Dpp signalling in the restriction of the epidermal spreading area of the dorsal terminal branches. Hh functions as a permissive signal to allow migration of terminal cell extensions laterally and along the anterior-posterior axis while Dpp prevents dorsal migration. However, the effectors are unknown and it is unclear whether the signalling acts directly on the cell cytoskeleton or is mediated by a nuclear transduction of the signal. It is also possible that other factors and tissues are involved in spatial restriction of dorsal branches in the embryo (Franch-Marro and Casanova, 2000) and thus might be involved also in migration of terminal branches. This

is another aspect requiring further investigation. Thus some candidate mutations from the screen may turn out to affect genes expressed in signal receiving terminal cell, responding to the restrictive cue.

The next interesting phenotypes observed within class E are reduced or expanded branching of terminal cells. One speculation on the class of genes mutated in these lines is the signalling response to oxygen needs. Under high oxygen conditions, terminal branches had fewer ramifications whereas at low oxygen concentrations branching was more extensive (Jarecki et al., 1999). It is not fully understood how the *Drosophila* cells sense hypoxia and how it leads to induction of *bnl* expression which in turn regulates branch outgrowth. Thus a more detailed analyses and mapping of the identified mutants might uncover additional genes involved in hypoxia sensing and its cellular response.

### 4.2.1 The phenotypes of candidate lines selected for further investigation.

From the 114 lines, three complementation groups were considered most promising and chosen for further analysis and mapping. The selection criteria were based on interesting phenotype and larger number of alleles (in complementation group). The first criterion was fulfilled by two complementation groups (E2 and E3) showing defects in lumen formation in terminal branches and consist of two lines each. The second criterion was fulfilled by group D1 which consists of eight lines with dorsal trunk bendings at clonal cells position (discussed earlier).

The lumen of terminal cells is a channel formed within the cytoplasm of a single cell. How it is formed and maintained is poorly understood. Similar structures are found also in other organisms, for eg: the finest capillaries of the vertebrate vascular system. *In vitro* studies of angiogenesis showed that cytoplasmic vesicles providing apical membrane are essential for lumen formation (Folkman and Haudenschild, 1980; Davis and Camarillo, 1996). *In vivo* analyses of vascular lumen formation in zebrafish together with results from earlier *in vitro* studies led to a model in which the formation and intracellular fusion of endothelial vacuoles drives vascular lumen formation (Kamei et al., 2006). It is likely that this is a common mechanism for tube formation during development and could be applied also during formation of lumen in terminal cells of *Drosophila*.

In the two lines from group E3 (2L3443 and 2L2218), lumen formation is completely or partially abolished (section 3.4.3.1). The phenotype indicates that the formation of cytoplasmic vesicles is impaired rather than their fusion, although how it is, remains unclear. The mutation was mapped to a region of ~160kb in the 26D10-26F3 interval on the cytogenetic map. There are 21 predicted

genes in this region. None of them had a previous involvement in tracheal development. In the case of five predicted genes, no functional information is available. To map the mutation I decided to sequence these genes and compare the mutant sequence with its wild type allele. So far eight of the genes including four with unknown function were analysed but no mutation was found.

The lines from group E2 (2L3637 and 2L4501) show also no lumen formation in the terminal branches. Additionally, clonal cells on secondary branches lack the typical gas filling (section 3.4.2.1). This indicates that the mutation is not only affecting the formation or maintenance of the subcellular lumen but also the one formed by single cell, wrapped around the lumen. The fact that in some clonal cells parts of the lumen were still present (visualised by the absence of cytoplasmic marker signal in luminal space; fig.3.19) but gas filling was missing, together with the observed phenotype may result not from lumen formation but lumen maintenance defect. One possible explanation of the phenotype and its occurance only in terminal cells and secondary branches could be, that secretion of cuticular lining of the branches is affected which may lead to lumen collapse. However, this hypothesis requires further investigation. If it were true, our mutants would indicate that the proper chitin metabolism and cuticle formation might not only be involved in the control of lumen size in the embryonic tracheal system (Araujo et al., 2005; Devine et al., 2005; Tonning et al., 2005; Moussian et al., 2006; Luschnig et al., 2006; Wang et al., 2006) but also in later stages of development.

## **5.** Conclusions

The aim of this study was to perform a genetic mosaic screen in order to reveal new molecules involved in tracheal development. The identification of 114 lines showing trachea specific defects indicate that the chosen approach was a suitable tool for studying tubulogenesis. Although so far none of the mutations have beed mapped to individual genes, and no mechanism explaining the different phenotypes could be proposed, the screen provides a collection of mutants, whose detailed analyses will help our understanding of such processes like lumen formation in terminal cells, their branching control, lumen formation and stabilisation in secondary branches or cell behaviour in multicellular tubes.
## 5. Biblioghraphy

Affolter, M., Montagne, J., Walldorf, U., Groppe, J., Kloter, U., LaRosa, M. and Gehring, W. J. (1994). The Drosophila SRF homolog is expressed in a subset of tracheal cells and maps within a genomic region required for tracheal development. *Development* **120**, 743-53.

**Araujo, S. J., Aslam, H., Tear, G. and Casanova, J.** (2005). mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development--analysis of its role in Drosophila tracheal morphogenesis. *Dev Biol* **288**, 179-93.

**Behr, M., Riedel, D. and Schuh, R.** (2003). The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. *Dev Cell* **5**, 611-20.

**Beitel, G. J. and Krasnow, M. A.** (2000). Genetic control of epithelial tube size in the Drosophila tracheal system. *Development* **127**, 3271-82.

Berger, J., Suzuki, T., Senti, K. A., Stubbs, J., Schaffner, G. and Dickson, B. J. (2001). Genetic mapping with SNP markers in Drosophila. *Nat Genet* **29**, 475-81.

**Bilstein, A.** (2005). Untersuchungen zu neuen molekularen Signalwegen in der Tracheen - entwicklung von *Drosophila melanogaster*. PhD thesis.

**Bradley, P. L. and Andrew, D. J.** (2001). ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster. *Development* **128**, 3001-15.

Cabernard, C. and Affolter, M. (2005). Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila. *Dev Cell* 9, 831-42.

Cela, C. and Llimargas, M. (2006). Egfr is essential for maintaining epithelial integrity during tracheal remodelling in Drosophila. *Development* **133**, 3115-25.

Chen, C. K., Kuhnlein, R. P., Eulenberg, K. G., Vincent, S., Affolter, M. and Schuh, R. (1998). The transcription factors KNIRPS and KNIRPS RELATED control cell migration and branch morphogenesis during Drosophila tracheal development. *Development* **125**, 4959-68.

Chihara, T. and Hayashi, S. (2000). Control of tracheal tubulogenesis by Wingless signaling. *Development* 127, 4433-42.

Chihara, T., Kato, K., Taniguchi, M., Ng, J. and Hayashi, S. (2003). Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. *Development* **130**, 1419-28.

**Davis, G. E. and Camarillo, C. W.** (1996). An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. *Exp Cell Res* **224**, 39-51.

Devine, W. P., Lubarsky, B., Shaw, K., Luschnig, S., Messina, L. and Krasnow, M. A. (2005). Requirement for chitin biosynthesis in epithelial tube morphogenesis. *Proc Natl Acad Sci U S A* **102**, 17014-9.

Folkman, J. and Haudenschild, C. (1980). Angiogenesis in vitro. Nature 288, 551-6.

Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H. E., Behrens, J., Sommer, T. and Birchmeier, W. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. *Nat Cell Biol* **4**, 222-31.

Ghabrial, A., Luschnig, S., Metzstein, M. M. and Krasnow, M. A. (2003). Branching morphogenesis of the Drosophila tracheal system. *Annu Rev Cell Dev Biol* **19**, 623-47.

Ghabrial, A. S. and Krasnow, M. A. (2006). Social interactions among epithelial cells during tracheal branching morphogenesis. *Nature* **441**, 746-9.

**Grigliatti, T.** (1998). Mutagenesis. In *Drosophila A Practical Approach*, (ed. R. DB), pp. 58-60. Oxford: Oxford University Press.

Guillemin, K., Groppe, J., Ducker, K., Treisman, R., Hafen, E., Affolter, M. and Krasnow, M. A. (1996). The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. *Development* **122**, 1353-62.

Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. and Krasnow, M. A. (1998). sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. *Cell* **92**, 253-63.

Hartenstein, V. (1993). Atlas of Drosophila development. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Hemphala, J., Uv, A., Cantera, R., Bray, S. and Samakovlis, C. (2003). Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signalling. *Development* 130, 249-58.

**Ikeya, T. and Hayashi, S.** (1999). Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. *Development* **126**, 4455-63.

Jarecki, J., Johnson, E. and Krasnow, M. A. (1999). Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. *Cell* **99**, 211-20.

Jazwinska, A., Ribeiro, C. and Affolter, M. (2003). Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. *Nat Cell Biol* **5**, 895-901.

Kamei, M., Saunders, W. B., Bayless, K. J., Dye, L., Davis, G. E. and Weinstein, B. M. (2006). Endothelial tubes assemble from intracellular vacuoles in vivo. *Nature* **442**, 453-6. Kato, K., Chihara, T. and Hayashi, S. (2004). Hedgehog and Decapentaplegic instruct polarized growth of cell extensions in the Drosophila trachea. *Development* **131**, 5253-61.

Kerman, B. E., Cheshire, A. M. and Andrew, D. J. (2006). From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis. *Differentiation* **74**, 326-48.

Kuhnlein, R. P. and Schuh, R. (1996). Dual function of the region-specific homeotic gene spalt during Drosophila tracheal system development. *Development* **122**, 2215-23.

Lecuit, T. (2005). Cell adhesion: sorting out cell mixing with echinoid? Curr Biol 15, R505-7.

Lee, S. and Kolodziej, P. A. (2002). The plakin Short Stop and the RhoA GTPase are required for E-cadherin-dependent apical surface remodeling during tracheal tube fusion. *Development* **129**, 1509-20.

Lee, T. and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. *Neuron* 22, 451-61.

Levi, B. P., Ghabrial, A. S. and Krasnow, M. A. (2006). Drosophila talin and integrin genes are required for maintenance of tracheal terminal branches and luminal organization. *Development* **133**, 2383-93.

Llimargas, M. and Casanova, J. (1997). ventral veinless, a POU domain transcription factor, regulates different transduction pathways required for tracheal branching in Drosophila. *Development* **124**, 3273-81.

Llimargas, M. (2000). Wingless and its signalling pathway have common and separable functions during tracheal development. *Development* **127**, 4407-17.

Llimargas, M. and Lawrence, P. A. (2001). Seven Wnt homologues in Drosophila: a case study of the developing tracheae. *Proc Natl Acad Sci U S A* **98**, 14487-92.

Llimargas, M., Strigini, M., Katidou, M., Karagogeos, D. and Casanova, J. (2004). Lachesin is a component of a septate junction-based mechanism that controls tube size and epithelial integrity in the Drosophila tracheal system. *Development* **131**, 181-90.

Luschnig, S., Batz, T., Armbruster, K. and Krasnow, M. A. (2006). serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. *Curr Biol* **16**, 186-94.

Manning, G. and Krasnow, MA. (1993). Development of the *Drosophila* tracheal system. In *The development of Drosophila melanogaster*, (ed. M. A. A. Bate), pp. 609-686: Cold Spring Harbor Laboratory Press.

Moussian, B., Tang, E., Tonning, A., Helms, S., Schwarz, H., Nusslein-Volhard, C. and Uv, A. E. (2006). Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle

differentiation through their specific requirement for chitin filament organization. *Development* **133**, 163-71.

**Neumann, M. and Affolter, M.** (2006). Remodelling epithelial tubes through cell rearrangements: from cells to molecules. *EMBO Rep* **7**, 36-40.

Paterson, A. D., Parton, R. G., Ferguson, C., Stow, J. L. and Yap, A. S. (2003). Characterization of E-cadherin endocytosis in isolated MCF-7 and chinese hamster ovary cells: the initial fate of unbound E-cadherin. *J Biol Chem* **278**, 21050-7.

**Paul, S. M., Ternet, M., Salvaterra, P. M. and Beitel, G. J.** (2003). The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. *Development* **130**, 4963-74.

**Ribeiro, C., Ebner, A. and Affolter, M.** (2002). In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. *Dev Cell* **2**, 677-83.

Ribeiro, C., Neumann, M. and Affolter, M. (2004). Genetic control of cell intercalation during tracheal morphogenesis in Drosophila. *Curr Biol* 14, 2197-207.

Samakovlis, C., Manning, G., Steneberg, P., Hacohen, N., Cantera, R. and Krasnow, M. A. (1996a). Genetic control of epithelial tube fusion during Drosophila tracheal development. *Development* **122**, 3531-6.

Samakovlis, C., Hacohen, N., Manning, G., Sutherland, D. C., Guillemin, K. and Krasnow, M. A. (1996b). Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. *Development* **122**, 1395-407.

Steneberg, P., Hemphala, J. and Samakovlis, C. (1999). Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. *Mech Dev* 87, 153-63.

Sutherland, D., Samakovlis, C. and Krasnow, M. A. (1996). branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. *Cell* 87, 1091-101.

Takahashi, M., Takahashi, F., Ui-Tei, K., Kojima, T. and Saigo, K. (2005). Requirements of genetic interactions between Src42A, armadillo and shotgun, a gene encoding E-cadherin, for normal development in Drosophila. *Development* **132**, 2547-59.

Tanaka, H., Takasu, E., Aigaki, T., Kato, K., Hayashi, S. and Nose, A. (2004). Formin3 is required for assembly of the F-actin structure that mediates tracheal fusion in Drosophila. *Dev Biol* 274, 413-25.

Tanaka-Matakatsu, M., Uemura, T., Oda, H., Takeichi, M. and Hayashi, S. (1996). Cadherinmediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. *Development* **122**, 3697-705. **Theodosiou, N. A. and Xu, T.** (1998). Use of FLP/FRT system to study Drosophila development. *Methods* **14**, 355-65.

Tonning, A., Hemphala, J., Tang, E., Nannmark, U., Samakovlis, C. and Uv, A. (2005). A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. *Dev Cell* **9**, 423-30.

Uv, A., Cantera, R. and Samakovlis, C. (2003). Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. *Trends Cell Biol* **13**, 301-9.

Vincent, S., Ruberte, E., Grieder, N. C., Chen, C. K., Haerry, T., Schuh, R. and Affolter, M. (1997). DPP controls tracheal cell migration along the dorsoventral body axis of the Drosophila embryo. *Development* **124**, 2741-50.

Wang, S., Jayaram, S. A., Hemphala, J., Senti, K. A., Tsarouhas, V., Jin, H. and Samakovlis, C. (2006). Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. *Curr Biol* **16**, 180-5.

**Wappner, P., Gabay, L. and Shilo, B. Z.** (1997). Interactions between the EGF receptor and DPP pathways establish distinct cell fates in the tracheal placodes. *Development* **124**, 4707-16.

**Wu, V. M. and Beitel, G. J.** (2004). A junctional problem of apical proportions: epithelial tubesize control by septate junctions in the Drosophila tracheal system. *Curr Opin Cell Biol* **16**, 493-9.

Zelzer, E. and Shilo, B. Z. (2000). Cell fate choices in Drosophila tracheal morphogenesis. *Bioessays* 22, 219-26.

# 7. Appendix

# Table A.1 Deficiencies stocks used for mapping

| A) Deficiencies used for fine mapping |                                                                                          |                      |                      |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------|----------------------|----------------------|--|--|
| Df symbol                             | Genotype                                                                                 | Cytology             | References           |  |  |
| Df(2L)ED292                           | w <sup>1118</sup> ; Df(2L)ED292, P{3'.RS5+3.3'}ED292/SM6a                                | 25F5;26B2            | Bloomington #9182    |  |  |
| Df(2L)Exel7024                        | w1118;Df(2L)Exel7024,P+PBac{XP5.RB3}Exel7024/CyO                                         | 26A1;26A8            | Exelixis, Inc./      |  |  |
|                                       |                                                                                          |                      | Bloomington #7799    |  |  |
| Df(2L)ED347                           | w <sup>1118</sup> ; Df(2L)ED347, P{3'.RS5+3.3'}ED347/SM6a                                | 25F5;26B5            | Bloomington #9272    |  |  |
| Df(2L)ED354                           | w <sup>1118</sup> ; Df(2L)ED354, P{3'.RS5+3.3'}ED354/SM6a                                | 26B1;26B5            | Bloomington #9187    |  |  |
| Df(2L)ED385                           | w <sup>1118</sup> ; Df(2L)ED385, P{3'.RS5+3.3'}ED385/SM6a                                | 26B1;26D7            | Bloomington #9341    |  |  |
| Df(2L)BSC6                            | $Df(2L)BSC6$ , $dp^{ov1} cn^1/SM6a$                                                      | 26D3-E1;<br>26E4-7   | Bloomington #6338    |  |  |
| Df(2L)Evel7027                        | $w^{1118}$ • Df(2L)Evel7027 P+PBac (XP5 RB3)Evel7027/CvO                                 | 26F5·27B1            | Evelivis Inc /       |  |  |
| DI(2L)LXCI/027                        | w , DI(2E)Exc1/027,1 +1 Dac (M 5.KD5) Exc1/027/CyO                                       | 201 5,27 D1          | Bloomington #7801    |  |  |
| Df(2L)BSC7                            | $w^{1118}$ · Df(2L)BSC7/CvO                                                              | 26D10-E1             | Bloomington #6374    |  |  |
| D1(2L)D5C7                            | w , bi(21)bbenege                                                                        | 27C1                 | Dioonnington #0571   |  |  |
| Df(2L)ED6569                          | w <sup>1118</sup> : Df(2L)ED6569, P{3' RS5+3 3'}ED6569/SM6a                              | 27A1·27C4            | Bloomington #8940    |  |  |
| $Df(2L)Liprin-\alpha^{R60}$           | $w^*$ Df(2L)Liprin- $\alpha^{R60}$ , Liprin- $\alpha^{R60}$ /CvO, P{ActGFP}JMR1          | 27A1:27A1            | Bloomington #8561    |  |  |
| B) Bloomington De                     | ficiency kit for 2L                                                                      |                      | Dieenington # ee er  |  |  |
| Df(2L)not DME                         | Df(21) not DME/SM60                                                                      | 21 4 1. 21 D7        | Dloomington #2629    |  |  |
| DI(2L)net-PWIF                        | DI(2L)IIet-PMF/SIM0a                                                                     | 21A1, 21D/-<br>8     | Bioomington #3038    |  |  |
| Df(2L)BSC16                           | Df(2L)BSC16, net <sup>1</sup> cn <sup>1</sup> /SM6a                                      | 21C3-4;              | Bloomington #6608    |  |  |
|                                       |                                                                                          | 21C6-8               | U                    |  |  |
| Df(2L)ast2                            | Df(2L)ast2/SM1                                                                           | 21D1-2;              | Bloomington #3084    |  |  |
|                                       |                                                                                          | 22B2-3               | 0                    |  |  |
| Df(2L)BSC37                           | Df(2L)BSC37/CyO                                                                          | 22D2-3;              | Bloomington #7144    |  |  |
|                                       |                                                                                          | 22F1-2               | U                    |  |  |
| Df(2L)JS17                            | $Df(2L)JS17, dpp^{d-ho}/CyO, P\{en1\}wg^{en11}$                                          | 23C1-2;              | Bloomington #1567    |  |  |
|                                       |                                                                                          | 23E1-2               | U                    |  |  |
| Df(2L)BSC28                           | $Df(2L)BSC28/SM6a$ , $bw^{k1}$                                                           | 23C5-D1;             | Bloomington #6875    |  |  |
|                                       |                                                                                          | 23E2                 | U                    |  |  |
| Df(2L)BSC31                           | Df(2L)BSC31, net <sup>1</sup> cn <sup>1</sup> /CyO, b <sup>81f2</sup> rk <sup>81f2</sup> | 23E5; 23F4-          | Bloomington #6965    |  |  |
|                                       |                                                                                          | 5                    | Ũ                    |  |  |
| Df(2L)drm-P2                          | $y^1 w^*$ ; Df(2L)drm-P2, P{lacW}Pdsw^{k10101}/SM6b                                      | 23F3-4;              | Bloomington #6507    |  |  |
|                                       |                                                                                          | 24A1-2               | C                    |  |  |
| Df(2L)ed1                             | Df(2L)ed1/CyO; P{ftz/lacC}1                                                              | 24A2;24D4            | Bloomington #5330    |  |  |
| Df(2L)ED250                           | w <sup>1118</sup> ; Df(2L)ED250, P{3'.RS5+3.3'}ED250/SM6a                                | 24F4;25A7            | Bloomington #9270    |  |  |
| Df(2L)BSC110                          | w <sup>1118</sup> ; Df(2L)BSC110, P+PBac {XP5.RB3}BSC110/CyO                             | 25C1;25C3            | Bloomington #8835    |  |  |
| Df(2L)BSC109                          | w <sup>1118</sup> ; Df(2L)BSC109, P+PBac{XP5.RB3}BSC109/CyO                              | 25C4;25C8            | Bloomington #8674    |  |  |
| Df(2L)Exel6011                        | w <sup>1118</sup> ; Df(2L)Exel6011, P{XP-U}Exel6011/CyO                                  | 25C8;25D5            | Exelixis, Inc./      |  |  |
|                                       |                                                                                          |                      | Bloomington #7497    |  |  |
| Df(2L)cl-h3                           | Df(2L)cl-h3/SM6b                                                                         | 25D2-4;              | Bloomington #781     |  |  |
|                                       |                                                                                          | 26B2-5               |                      |  |  |
| Df(2L)BSC5                            | $Df(2L)BSC5, w^{+mC}/SM6a$                                                               | 26B1-2;              | Bloomington #6299    |  |  |
|                                       |                                                                                          | 26D1-2               |                      |  |  |
| Df(2L)BSC6                            | Df(2L)BSC6, dp <sup>ov1</sup> cn <sup>1</sup> /SM6a                                      | 26D3-E1;             | Bloomington #6338    |  |  |
|                                       | - 1110                                                                                   | 26F4-7               |                      |  |  |
| Df(2L)BSC7                            | $w^{1118}$ ; Df(2L)BSC7/CyO                                                              | 26D10-E1;            | Bloomington #6374    |  |  |
| :2                                    | * :2                                                                                     | 27C1                 |                      |  |  |
| $Df(2L)spd^{12}$                      | $w^*$ ; Df(2L)spd <sup>12</sup> , wg <sup>spa-j2</sup> /CyO, P{ftz/lacB}E3               | 27C1-2; 28A          | Bloomington #2414    |  |  |
|                                       |                                                                                          |                      |                      |  |  |
| Df(2L)Dwee1-                          | Df(2L)Dwee1-W05/CyO; P{ftz/lacC}1                                                        | 27C2-3;              | Bloomington #5420    |  |  |
| W05                                   |                                                                                          | 27C4-5               |                      |  |  |
| Df(2L)Trf-C6R31                       | $y' w^{0/025}$ ; Df(2L)Trf-C6R31/CyO                                                     | 28DE                 | Bloomington #140     |  |  |
| Df(2L)TE29Aa-11                       | $ln(1)w[m4h],y'; Df(2L)TE29Aa-11, dp^{*}/CyO$                                            | 28E4-7;              | Bloomington #179     |  |  |
| Df(2L)BSC111                          | $W^{1118}$ Df(2L) PSC111 D+DPac (VD5 WH5) PSC111/C+O                                     | 27D2-CI<br>28E5-20D1 | Bloomington #0076    |  |  |
|                                       | w , $DI(2L)DSCITT, T + TDac(AF3, W D) DSCITT/CyO$                                        | 201 3,29D1           | BIOOHIIIIgtoli #0000 |  |  |

| Df(2L)ED611           | w <sup>1118</sup> ; Df(2L)ED611, P{3'.RS5+3.3'}ED611/SM6a                     | 29B4;29C3            | Bloomington #9298    |
|-----------------------|-------------------------------------------------------------------------------|----------------------|----------------------|
| Df(2L)N22-14          | Df(2L)N22-14/CyO                                                              | 29C1-2;              | Bloomington #2892    |
|                       |                                                                               | 30C8-9               |                      |
| Df(2L)BSC17           | Df(2L)BSC17/SM6a                                                              | 30C3-5; 30F1         | Bloomington #6478    |
| Df(2L)BSC50           | Df(2L)BSC50/SM6a                                                              | 30F4-5;              | Bloomington #8469    |
|                       | *                                                                             | 31B1-4               |                      |
| Df(2L)J2              | y; Df(2L)J2/SM1                                                               | 31B;32A              | Bloomington #3366    |
| Df(2L)BSC36           | $Df(2L)BSC36/SM6a, bw^{K1}$                                                   | 32D1; 32D4-          | Bloomington #7143    |
|                       |                                                                               | El                   | 71                   |
| Df(2L)FCK-20          | $Df(2L)FCK-20$ , $dp^{ovr}$ bw <sup>1</sup> /CyO, P{sevRas1.V12}FK1           | 32D1; 32F1-          | Bloomington #5869    |
| D (AL) D 1            |                                                                               | 3                    | D1                   |
| Df(2L)PrI             | Df(2L)Prl, Prl <sup>*</sup> nub <sup>**/</sup> CyO                            | 32F1-3;              | Bloomington #30/9    |
| DOOLDOCOO             | Drai Dragona ka 1 ki                                                          | 33F1-2               | D1                   |
| Df(2L)BSC30           | $Df(2L)BSC30/SM6a, bw^{a}$                                                    | 34A3; 34B/-          | Bloomington #6999    |
| D(OL)TE25DC 24        | DGAL TE25DC 24 bland at lead and //C-O                                        | 9<br>25D4 G          | D1                   |
| DI(2L)TE35BC-24       | DI(2L)1E35BC-24, b pr pk cn sp /CyO                                           | 35B4-6;              | Bloomington #3588    |
| D(01) = 10            |                                                                               | 35F1-/               | D1                   |
| DI(2L)r10             | DI(2L)II0, cn/CyO                                                             | 35DI; 36A6-          | Bloomington #1491    |
| Df()) an at           | Df(21) as at $255 m (4 - 225 chif64/(2 - 2) m 506)$                           | /<br>25E 26A         | Dlaguein stan #2592  |
| DI(2L)cact-           | DI(2L)caci-2551v04, caci /CyO, Iy                                             | 26D                  | Bioomington #2385    |
| 2331004               | $Df(21)TW(127 \text{ or }^{1} \text{ bus}^{1}/\text{Cr}(0, Dr(2;2))M(2)m^{+}$ | 30D                  | Diagnington #420     |
| DI(2L)IWI37           | $DI(2L)I \le 157$ , cn b /CyO, $Dp(2,2)M(2)m$                                 | 30C2-4;              | Bloomington #420     |
| $Df(2I) = v_0 16040$  | 1118, Df(21) Excl(0.40, D(XD, 11) Excl(0.40/CyO)                              | 3/D9-C1<br>40A5:40D2 | Evolivia Inc. /      |
| DI(2L)EXCIOU49        | w , $DI(2L)EXCIOU49$ , $F{XF-0}EXCIOU49/CyO$                                  | 40A3,40D3            | Bloomington #7531    |
| Df(2L)C'              | $Df(2I)C'/C_{VO}$                                                             |                      | Bloomington #4959    |
| C) Evolivic Deficien  | ov Kit for 21                                                                 |                      | Dioonnington #4959   |
| C) Exclisis Deficient |                                                                               |                      |                      |
| Df(2L)Exel6001        | w <sup>1118</sup> ; Df(2L)Exel6001, P{XP-U}Exel6001/CyO                       | 21B1;21B1            | Exelixis,Inc./       |
|                       | 1110                                                                          |                      | Bloomington #7488    |
| Df(2L)Exel7002        | w <sup>111</sup> ; Df(2L)Exel7002, P+PBac{XP5.RB3}Exel7002/CyO                | 21B4;21B7            | Exelixis,Inc./       |
|                       | 1118 - 2/22 - 10000                                                           |                      | Bloomington #7772    |
| Df(2L)Exel8003        | w <sup>1110</sup> ; Df(2L)Exel8003, P+PBac{XP5.RB3}Exel8003/CyO               | 21D1;21D2            | Exelixis,Inc./       |
| D ((01)) E 1(000      |                                                                               | A1DA A1DA            | Bloomington #///4    |
| Df(2L)Exel6002        | $W^{\text{res}}$ ; Df(2L)Exel6002, P{XP-U}Exel6002/CyO                        | 21D2;21D3            | Exelixis, Inc./      |
| D (OL) E 17005        | 1118 D((21) E 17005 D; DD (VD5 WH5) E 17005/0 0                               | 2102 2104            | Bloomington #/489    |
| Df(2L)Exel/005        | w <sup>111</sup> ;DI(2L)Exel/005, P+PBac{XP5.WH5}Exel/005/CyO                 | 21D2;21D4            | Exelixis, Inc./      |
| D(2I) = 1(002)        | 1118, $Df(2I)$ Evol(002, $D(YD, II)$ Evol(002/CvO                             | 21D2-21E2            | Bloomington $\#///5$ |
| DI(2L)Exelou03        | $W$ , DI(2L)Exelouos, P{XP-0}Exelouos/CyO                                     | 21D3;21E3            | Exelixis, Inc./      |
| $Df(2I) = v_0 16004$  | $u^{1118}$ , $Df(2I) = u^{16004} D(XD II) = u^{16004} Cu^{100}$               | 21E2-21E2            | Evolution Inc.       |
| DI(2L)EXelo004        | $W$ , DI(2L)Exelou04, P{XP-0}Exelou04/CyO                                     | 21E3,21F2            | Bloomington #7401    |
| $Df(2L)E_{vel}7006$   | $w^{1118}$ : Df(21) Exel7006 D+DBac (XD5 WH5) Exel7006/CyO                    | 2152.2154            | Evelivic Inc /       |
| DI(2L)EXCI/000        | $W$ , $DI(2L)EXCI/000, 1 + 1 Bac {XI 3. WII3}EXCI/000/CyO$                    | 2112,2114            | Bloomington #7776    |
| Df(2I)Evel6005        | $w^{1118}$ Df(2L)Evel6005 P(XP_LI)Evel6005/CvO                                | 2243-22B1            | Evelivis Inc /       |
| DI(2L)LACIO003        | w , DI(2E)Excloses, I (XI-0) Excloses/CyO                                     | 2283,2201            | Bloomington #7492    |
| Df(2L)Exel7007        | $w^{1118}$ Df(2L)Exel7007 P+PBac {XP5 RB3}Exel7007/CvO                        | 22B1.22B5            | Exelivis Inc /       |
| DI(2E)EXCITOUT        |                                                                               | 2201,2203            | Bloomington #7778    |
| Df(2L)Exel8005        | w <sup>1118</sup> Df(2L)Exel8005 P+PBac{XP5 WH5}Exel8005/CvO                  | 22B2·22B8            | Exelixis Inc /       |
| ()                    | , (), ( , , ), _ ,                                                            | ,                    | Bloomington #7779    |
| Df(2L)Exel6006        | w <sup>1118</sup> : Df(2L)Exel6006, P{XP-U}Exel6006/CvO                       | 22B5:22D1            | Exelixis.Inc./       |
| ( )                   | , , , , , , , , , , , , , , , , , , ,                                         | - ,                  | Bloomington #8000    |
| Df(2L)Exel7008        | w <sup>1118</sup> ; Df(2L)Exel7008, P+PBac{XP5.RB3}Exel7008/CvO               | 22B8;22D1            | Exelixis,Inc./       |
|                       |                                                                               | ,                    | Bloomington #7780    |
| Df(2L)Exel6007        | w <sup>1118</sup> ; Df(2L)Exel6007, P{XP-U}Exel6007/CyO                       | 22D1;22E1            | Exelixis,Inc./       |
| · · ·                 |                                                                               | ŕ                    | Bloomington #7493    |
| Df(2L)Exel7010        | w <sup>1118</sup> ; Df(2L)Exel7010, P+PBac {XP5.WH5}Exel7010/CyO              | 22D4;22E1            | Exelixis,Inc./       |
|                       |                                                                               |                      | Bloomington #7782    |
| Df(2L)Exel7011        | w <sup>1118</sup> ; Df(2L)Exel7011, P+PBac {XP5.WH5}Exel7011/CyO              | 22E1;22F3            | Exelixis,Inc./       |
|                       |                                                                               |                      | Bloomington #7783    |
| Df(2L)Exel6008        | w <sup>1118</sup> ; Df(2L)Exel6008, P{XP-U}Exel6008/CyO                       | 22F3;23A3            | Exelixis,Inc./       |
|                       |                                                                               |                      | Bloomington #7494    |

| Df(2L)Exel6277           | w <sup>1118</sup> ; Df(2L)Exel6277, P{XP-U}Exel6277/CyO              | 23A2;23B1       | Exelixis,Inc./                        |
|--------------------------|----------------------------------------------------------------------|-----------------|---------------------------------------|
|                          | 1110                                                                 |                 | Bloomington #7744                     |
| Df(2L)Exel7014           | w <sup>1118</sup> ; Df(2L)Exel7014, P+PBac{XP5.RB3}Exel7014/CyO      | 23C4;23D1       | Exelixis,Inc./                        |
| Df(21)Exel7015           | $w^{1118}$ : Df(21) Exel7015 D+DB22 (VD5 WH5) Exel7015/CvO           | 22D1-22E2       | Bloomington #//84                     |
| DI(2L)EXCI7015           | $W = , DI(2L)EXCI/015, 1 + 1 Dac {XI 5. WII5} EXCI/015/CyO$          | 2501,2505       | Bloomington #7785                     |
| Df(2L)Exel8008           | w <sup>1118</sup> ; Df(2L)Exel8008, P+PBac{XP5.RB3}Exel8008/CyO      | 23E3;23E5       | Exelixis,Inc./                        |
|                          |                                                                      |                 | Bloomington #7786                     |
| Df(2L)Exel7016           | w <sup>1118</sup> ; Df(2L)Exel7016, P+PBac{XP5.WH5}Exel7016/CyO      | 23F3;23F3       | Exelixis,Inc./                        |
| Df(2I) = 17019           | w <sup>1118</sup> : Df(21) Evol7019, D+ DDoo (VD5 W/U5) Evol7019/C+O | 24 4 1 - 24 C 2 | Bloomington #7/87                     |
| DI(2L)EXCI/018           | w , $DI(2L)Exel/018$ , $P+PBac{XP3.wH3}Exel/018/CyO$                 | 24A1,24C2       | Bloomington #7789                     |
| Df(2L)Exel6009           | w <sup>1118</sup> ; Df(2L)Exel6009, P{XP-U}Exel6009/CyO              | 24C3;24C8       | Exelixis,Inc./                        |
|                          |                                                                      |                 | Bloomington #7495                     |
| Df(2L)Exel8010           | w <sup>1118</sup> ; Df(2L)Exel8010, P+PBac{XP5.RB3}Exel8010/CyO      | 24C8;24D4       | Exelixis,Inc./                        |
| D(21) = 1(010)           | 1118, $D(21)$ Evol(010, $D(YD, U)$ Evol(010/CvO                      | 25 A C-25 D 1   | Bloomington #7790                     |
| DI(2L)EXCIOUIO           | w , $DI(2L)Exelouto, P{XP-0}Exelouto/CyO$                            | 23A0,23D1       | Bloomington #7496                     |
| Df(2L)Exel9062           | w <sup>1118</sup> ; Df(2L)Exel9062, P+PBac{XP5.RB3}Exel9062/CyO      | 25B1;25B1       | Exelixis,Inc./                        |
|                          |                                                                      | ,               | Bloomington #7792                     |
| Df(2L)Exel8012           | w <sup>1118</sup> ; Df(2L)Exel8012, P+PBac {XP5.RB3}Exel8012/ CyO    | 25B1;25B5       | Exelixis,Inc./                        |
| D(21) = 17021            | 1118 D(21) E = 17021 D D = (VD5 DD2) E = 17021 ( C - C               | 2502-2500       | Bloomington #7793                     |
| DI(2L)Exel/021           | w , $DI(2L)ExeI/021$ , P+PBac{AP5.KB5}ExeI/021/CyO                   | 2585;2589       | Bloomington #7795                     |
| Df(2L)Exel8013           | w <sup>1118</sup> ; Df(2L)Exel8013, P+PBac{XP5.RB3}Exel8013/CvO      | 25B8;25B10      | Exelixis,Inc./                        |
|                          |                                                                      | ,               | Bloomington #7796                     |
| Df(2L)Exel7022           | w <sup>1118</sup> ; Df(2L)Exel7022, P+PBac{XP5.WH5}Exel7022/CyO      | 25B10;25C3      | Exelixis,Inc./                        |
| D(21) = 1(011)           | 1118 D(21) = 1(011) D(32) = 1(011) C C                               | 25 CP-25 D5     | Bloomington #7794                     |
| DI(2L)EXelo011           | w $\mathcal{D}I(2L)Exeloutt, P{XP-U}Exeloutt/CyO$                    | 2508;2505       | Exelixis, Inc./<br>Bloomington #7/197 |
| Df(2L)Exel6012           | w <sup>1118</sup> : Df(2L)Exel6012, P{XP-U}Exel6012/CvO              | 25D5:25E6       | Exelixis.Inc./                        |
|                          |                                                                      | ,               | Bloomington #7498                     |
| Df(2L)Exel7023           | w <sup>1118</sup> ; Df(2L)Exel7023, P+PBac {XP5.WH5}Exel7023/ CyO    | 25E5;25F1       | Exelixis,Inc./                        |
| D(21) = 1(25)            |                                                                      | 2556.2552       | Bloomington #7797                     |
| DI(2L)Exelo256           | w , $DI(2L)Exelo250$ , $P{XP-U}Exelo250/CyU$                         | 25E0;25F2       | Bloomington #7724                     |
| Df(2L)Exel8016           | w <sup>1118</sup> ; Df(2L)Exel8016, P+PBac{XP5.WH5}Exel8016/ CyO     | 25E6;25F2       | Exelixis,Inc./                        |
|                          |                                                                      | ,               | Bloomington #7798                     |
| Df(2L)Exel6013           | w <sup>1118</sup> ; Df(2L)Exel6013, P{XP-U}Exel6013/ CyO             | 25F2;25F4       | Exelixis,Inc./                        |
| D(21) = 16014            | 1118, $D$ (21) Excl(014, $D$ (VD, 11) Excl(014/Cr(0))                | 2555-2642       | Bloomington #7499                     |
| DI(2L)EXelo014           | w , $DI(2L)Excloul4$ , $P\{XP=0\}Excloul4/CyO$                       | 23F3,20A3       | Bloomington #7500                     |
| Df(2L)Exel7024           | w <sup>1118</sup> ; Df(2L)Exel7024, P+PBac{XP5.RB3}Exel7024/CyO      | 26A1;26A8       | Exelixis,Inc./                        |
|                          |                                                                      | - ,             | Bloomington #7799                     |
| Df(2L)Exel6015           | w <sup>1118</sup> ; Df(2L)Exel6015, P{XP-U}Exel6015/ CyO             | 26B9;26C1       | Exelixis,Inc./                        |
| $Df(2I) = r_0 I(0) I(0)$ | w <sup>1118</sup> ·Df(21)Evol(016_D(VD_11)Evol(016/CvO               | 26C1-26D1       | Bloomington #7501                     |
| DI(2L)EXCIOUTO           | w ,DI(2L)Exelouto, $P{AP-U}Exelouto/CyU$                             | 2001,2001       | Bloomington #7502                     |
| Df(2L)Exel9038           | w <sup>1118</sup> ; Df(2L)Exel9038, P{XP-U}Exel9038/CyO              | 26C2;26C3       | Exelixis,Inc./                        |
|                          |                                                                      | ,               | Bloomington #7800                     |
| Df(2L)Exel7027           | w <sup>1118</sup> ; Df(2L)Exel7027, P+PBac{XP5.RB3}Exel7027/CyO      | 26F5;27B1       | Exelixis,Inc./                        |
| $Df(2I) = x_0   7020$    |                                                                      | 2704:2704       | Bloomington #7801                     |
| DI(2L)EXCI/029           | w <sup>110</sup> ;Df(2L)Exel/029,P+PBac{XP5.WH5}Exel/029/CyO         | 2/C4,2/D4       | Bloomington #7802                     |
| Df(2L)Exel8019           | w <sup>1118</sup> ; Df(2L)Exel8019, P+PBac{XP5.WH5}Exel8019 /CyO     | 27E2;27E4       | Exelixis,Inc./                        |
|                          |                                                                      | ,               | Bloomington #7803                     |
| Df(2L)Exel6017           | w <sup>1118</sup> ; Df(2L)Exel6017, P{XP-U}Exel6017/CyO              | 27E4;27F5       | Exelixis,Inc./                        |
| $Df(2I) = v_0 17021$     | W <sup>1118</sup> , Df(21) Eval7021 D+DDaa (VD5 W/U5) Eval7021 /C-O  | 27E2.20 A 1     | Bloomington #7503                     |
| DI(21)EXC1/051           | w , D1(2L)EλCI/051, ΓΤΓΒάυ {ΛΓ5.WΠ5}EXCI/051/CyO                     | 2715,20A1       | Bloomington #7804                     |
| Df(2L)Exel6018           | w <sup>1118</sup> ; Df(2L)Exel6018, P{XP-U}Exel6018 /CyO             | 28B1;28C1       | Exelixis,Inc./                        |
|                          |                                                                      |                 | Bloomington #7504                     |

| Df(2L)Exel9031          | w <sup>1118</sup> ; Df(2L)Exel9031, PBac{RB3.WH3}Exel9031 /CyO                                  | 28B4;28C1    | Exelixis,Inc./                       |
|-------------------------|-------------------------------------------------------------------------------------------------|--------------|--------------------------------------|
|                         | 1118                                                                                            |              | Bloomington #7805                    |
| Df(2L)Exel7034          | w <sup>1110</sup> ; Df(2L)Exel7034, P+PBac{XP5.RB3}Exel7034/CyO                                 | 28E1;28F1    | Exelixis,Inc./                       |
| Df(21)E-19021           | w <sup>1118</sup> , Df(21) Evel9021, D   DDee (VD5, WILE) Evel9021/CvC                          | 2001-2001    | Bloomington #/80/                    |
| DI(2L)Exe18021          | w $\mathcal{D}_{\mathcal{L}}$ DI(2L)Exel8021, P+PBac{XP5.wH5}Exel8021/CyO                       | 29C1;29D1    | Exelixis, Inc./<br>Plaamington #7808 |
| Df(21)Exel7038          | $w^{1118}$ , Df(21) Exel7038, D+DBac (XD5 DB3) Exel7038/CyO                                     | 2004-2004    | Bloomington #/808                    |
| DI(2L)EXCI/038          | w , $DI(2L)EXEI/038$ , $\Gamma+\Gamma Dac{AF3.KD3}EXEI/038/CyO$                                 | 2904,2904    | Bloomington #7800                    |
| Df(2I)Exel7030          | $W^{1118}$ , Df(21) Evel7030, P+PRac (YP5, WH5) Evel7030/CvO                                    | 20D5-20F1    | Exelivis Inc /                       |
| DI(2L)LXCI/05/          | w , DI(2E)Exci7039, 1 +1 Dac(XI 5. WII3)Exci7039/CyO                                            | 2)05,2)11    | Bloomington #7810                    |
| Df(2L)Exel7040          | w <sup>1118</sup> . Df(2L)Exel7040_P+PBac{XP5_WH5}Exel7040/CvO                                  | 29F1·29F6    | Exelixis Inc /                       |
| 21(22)21101/010         | , 21( <u>2</u> )2, 0.0, 1 12 (                                                                  |              | Bloomington #7811                    |
| Df(2L)Exel6021          | w <sup>1118</sup> : Df(2L)Exel6021, P{XP-U}Exel6021/CvO                                         | 29F7:29B1    | Exelixis.Inc./                       |
| ( )                     |                                                                                                 | ,            | Bloomington #7505                    |
| Df(2L)Exel8022          | w <sup>1118</sup> ; Df(2L)Exel8022, P+PBac{XP5.RB3}Exel8022/CyO                                 | 30B3;30B5    | Exelixis,Inc./                       |
|                         | · · · · · · ·                                                                                   |              | Bloomington #7813                    |
| Df(2L)Exel9064          | w <sup>1118</sup> ; Df(2L)Exel9064, PBac {RBr}Exel9064/CyO                                      | 30B4;30B5    | Exelixis,Inc./                       |
|                         |                                                                                                 |              | Bloomington #7814                    |
| Df(2L)Exel6022          | w <sup>1118</sup> ; Df(2L)Exel6022, P{XP-U}Exel6022/CyO                                         | 30B5;30B11   | Exelixis,Inc./                       |
|                         | 1110                                                                                            |              | Bloomington #7506                    |
| Df(2L)Exel7042          | w <sup>1118</sup> ; Df(2L)Exel7042, P+PBac{XP5.WH5}Exel7042/CyO                                 | 30B10;30C1   | Exelixis,Inc./                       |
|                         | 1119                                                                                            |              | Bloomington #7812                    |
| Df(2L)Exel9040          | w <sup>111</sup> ; Df(2L)Exel9040, P+PBac{XP5.WH5}Exel9040/CyO                                  | 30C1;30C1    | Exelixis,Inc./                       |
| DOLLE 16024             |                                                                                                 | 2001 2000    | Bloomington #7815                    |
| Df(2L)Exel6024          | $w^{(10)}$ ; Df(2L)Exel6024, P{XP-U}Exel6024/CyO                                                | 30C1;30C9    | Exelixis, Inc./                      |
| D(21) = 1(025)          | 1118 D(21) E 1(025 D(VD 1)) E 1(025/C-0                                                         | 2000-2001    | Bloomington #/50/                    |
| DI(2L)Exelou25          | $W^{-1}$ , DI(2L)EXel6025, P{XP-U}EXel6025/CyO                                                  | 30C9;30E1    | Exelixis, Inc./                      |
| $Df(2I) = r_0 170/12$   | $1118$ , $Df(21) = x_0 17042$ , $D + DP_{00}(XD5, PD2) = x_0 17042/CyO$                         | 20D1-20E1    | Evolivia Inc./                       |
| DI(2L)EXCI/045          | w , $DI(2L)EXCI/045$ , 1 +1 $Dac{XI 5.KD5}EXCI/045/CyO$                                         | 50D1,5011    | Bloomington #7816                    |
| Df(2L)Exel8024          | $w^{1118}$ . Df(21) Exel8024                                                                    | 31A2·31B1    | Exelixis Inc /                       |
| D1(21)12X010024         | $P+PBac{XP5 WH5}Exel8024/CvO?$                                                                  | 51712,51101  | Bloomington #7817                    |
| Df(2L)Exel9032          | $w^{1118}$ . Df(2L)Exel9032. PBac {RB5 WH5} Exel9032/CvO                                        | 31A3·31B1    | Exelixis Inc /                       |
| 51(22)2                 | , 21( <u>2</u> )2, 00 <b>2</b> , 12 (1220, 12)2, 050 <b>2</b> , 050                             | 01110,0121   | Bloomington #7818                    |
| Df(2L)Exel7046          | w <sup>1118</sup> ; Df(2L)Exel7046, P+PBac{XP5.WH5}Exel7046/CvO                                 | 31C3;31D9    | Exelixis.Inc./                       |
|                         |                                                                                                 | ,            | Bloomington #7819                    |
| Df(2L)Exel7048          | w <sup>1118</sup> ; Df(2L)Exel7048, P+PBac{XP5.RB3}Exel7048/CyO                                 | 31E3;31F5    | Exelixis,Inc./                       |
|                         | · · · · · · · · · · ·                                                                           |              | Bloomington #7999                    |
| Df(2L)Exel8026          | w <sup>1118</sup> ; Df(2L)Exel8026, P+PBac{XP5.RB3}Exel8026/CyO                                 | 31F5;32B1    | Exelixis,Inc./                       |
|                         |                                                                                                 |              | Bloomington #7820                    |
| Df(2L)Exel7049          | w <sup>1118</sup> ; Df(2L)Exel7049, P+PBac{XP5.RB3}Exel7049/CyO                                 | 32B1;32C1    | Exelixis,Inc./                       |
|                         | 1110                                                                                            |              | Bloomington #7821                    |
| Df(2L)Exel6027          | w <sup>1118</sup> ; Df(2L)Exel6027, P{XP-U}Exel6027/CyO                                         | 32D1;32D5    | Exelixis,Inc./                       |
|                         |                                                                                                 |              | Bloomington #7510                    |
| Df(2L)Exel6028          | $w^{rrrs}$ ; Df(2L)Exel6028, P{XP-U}Exel6028/CyO                                                | 32D5;32E4    | Exelixis, Inc./                      |
| D(21) = 1(020)          | 1118, D(21) Evel(020, D(VD, 11) Evel(020/Cr)                                                    | 2004-2000    | Bloomington #/511                    |
| DI(2L)Exelou29          | $W = \frac{1}{2} DI(2L) EXCIDENCE (29, P{XP-U}) EXCIDENCE (29/CyO)$                             | 32E4;32F2    | Exelixis, Inc./                      |
| $Df(2I) = v_0 I f(020)$ | 1118 Df(21) Excl(020 D(XD II) Excl(020/CyO                                                      | 22 1 2.22 D2 | Evolivia Inc./                       |
| DI(2L)EXCloud           | $W$ , DI(2L)Excloud, $F{XF-0}Excloud/CyO$                                                       | 55A2,55D5    | Bloomington #7513                    |
| Df(2L)Exel6031          | $w^{1118}$ Df(2L)Exel6031 P{XP-L}Exel6031/CvO                                                   | 33B3·33C2    | Exelixis Inc /                       |
| DI(2L)EXCloud I         | w , D1(21)Excloss1,1 (XI 0)Excloss1/Cy0                                                         | 5565,5562    | Bloomington #7514                    |
| Df(2L)Exel6032          | w <sup>1118</sup> . Df(2L)Exel6032. P{XP-U}Exel6032/CvO                                         | 33C2·33D4    | Exelixis Inc /                       |
| DI(2E)Encloss2          | , <u>bi(21)</u><br><u>biolog</u> , <u>i</u> ( <u>iii</u> <u>c)</u><br><u>biolog</u> , <u>c)</u> | 5502,550     | Bloomington #7515                    |
| Df(2L)Exel6033          | w <sup>1118</sup> : Df(2L)Exel6033, P{XP-U}Exel6033/CvO                                         | 33E4:33F2    | Exelixis.Inc./                       |
| ( )                     | , ( , , , (                                                                                     | - ,          | Bloomington #7516                    |
| Df(2L)Exel6034          | w <sup>1118</sup> ; Df(2L)Exel6034, P{XP-U}Exel6034/CyO                                         | 33F2;34A1    | Exelixis, Inc./                      |
|                         |                                                                                                 |              | Bloomington #7517                    |
| Df(2L)Exel 8028         | w <sup>1118</sup> ; Df(2L)Exel 8028, P+PBac {XP5.WH5} Exel8028/CyO                              | 34A1;34A2    | Exelixis,Inc./                       |
|                         |                                                                                                 |              | Bloomington #7822                    |
| Df(2L)Exel7055          | w <sup>1118</sup> ; Df(2L)Exel7055, P+PBac{XP5.WH5}Exel7055/CyO                                 | 34A2;34A7    | Exelixis,Inc./                       |
|                         |                                                                                                 |              | Bloomington #7823                    |

| Df(2L)Exel7059        | w <sup>1118</sup> ; Df(2L)Exel7059, P+PBac{XP5.RB3}Exel7059/CyO                                                                                          | 34D3;34E1     | Exelixis,Inc./                       |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|
| $Df(2L)E_{res}1(0)25$ | 1118, D£(21) Exc1(025, D(XD,L1) Exc1(025/C+C                                                                                                             | 25 4 2.25 D 2 | Bloomington #7826                    |
| DI(2L)Exelo055        | w ; $DI(2L)Exelouss$ , $P{XP-U}Exelouss/CyU$                                                                                                             | 55A5,55B2     | Bloomington #7518                    |
| Df(2L)Exel6036        | w <sup>1118</sup> ; Df(2L)Exel6036, P{XP-U}Exel6036/CyO                                                                                                  | 35B1;35B2     | Exelixis,Inc./                       |
| . ,                   | 1110                                                                                                                                                     |               | Bloomington #7519                    |
| Df(2L)Exel8033        | w <sup>1118</sup> ; Df(2L)Exel8033, P+PBac{XP5.WH5}Exel8033/CyO                                                                                          | 35B1;35B8     | Exelixis,Inc./                       |
| Df(21)Evel8034        | $w^{1118}$ : Df(2L)Exel8034 P+PBac/XP5 WH5}Exel8034/CvO                                                                                                  | 3505-35D2     | Bloomington #/828                    |
| D1(2L)LX010054        | w , D1(2D)Exelous+, 1+1 Dae (X1 5. W115) Exelous+, CyO                                                                                                   | 5565,5502     | Bloomington #7830                    |
| Df(2L)Exel7063        | w <sup>1118</sup> ; Df(2L)Exel7063, P+PBac{XP5.RB3}Exel7063/CyO                                                                                          | 35D2;35D4     | Exelixis,Inc./                       |
| D ((1) E 1(020        |                                                                                                                                                          | 250(2552      | Bloomington #7831                    |
| Df(2L)Exel6038        | $W^{100}$ ; DI(2L)Exel6038, P{XP-U}Exel6038/CyO                                                                                                          | 35D6;35E2     | Exelixis,Inc./<br>Bloomington #7521  |
| Df(2L)Exel7066        | w <sup>1118</sup> ; Df(2L)Exel7066, P+PBac{XP5.WH5}Exel7066/CyO                                                                                          | 36A1;36A12    | Exelixis,Inc./                       |
| ( )                   |                                                                                                                                                          | ,             | Bloomington #7833                    |
| Df(2L)Exel6039        | w <sup>1118</sup> ; Df(2L)Exel6039, P{XP-U}Exel6039/CyO                                                                                                  | 36A10;36B3    | Exelixis,Inc./                       |
| Df(2L)Exel7067        | $w^{1118}$ Df(2L)Exel7067 P+PBac(XP5 PB3)Exel7067/CyO                                                                                                    | 36A12.36B2    | Bloomington #7522                    |
| DI(2L)LXCI/007        | w , DI(2E)Exer/007, 1 +1 Dac (XI 5.KD5) Exer/007/CyO                                                                                                     | 50A12,50B2    | Bloomington #7834                    |
| Df(2L)Exel8036        | w <sup>1118</sup> ; Df(2L)Exel8036, P+PBac{XP5.RB3}Exel8036/CyO                                                                                          | 36B1;36C9     | Exelixis,Inc./                       |
|                       |                                                                                                                                                          |               | Bloomington #7835                    |
| Df(2L)Exel7068        | w <sup>1113</sup> ; Df(2L)Exel7068, P+PBac{XP5.RB3}Exel7068/CyO                                                                                          | 36C7;36C10    | Exelixis, Inc./<br>Pleomington #7828 |
| Df(2L)Exel9044        | w <sup>1118</sup> : Df(2L)Exel9044, PBac{WHr}Exel9044/CvO                                                                                                | 36C10:36C1    | Exelixis.Inc./                       |
| 21(-2)2               | , <u>21(</u> <u>2</u> ) <u>2</u> , <del>2</del> | 1             | Bloomington #7836                    |
| Df(2L)Exel7069        | w <sup>1118</sup> ; Df(2L)Exel7069, P+PBac{XP5.RB3}Exel7069/CyO                                                                                          | 36C10;36D1    | Exelixis,Inc./                       |
| $Df(2L)E_{rel}[7070]$ | $w^{1118}$ , Df(21) Evol 70.70, D   DDoo (VD5 W115) Evol 70.70/CvO                                                                                       | 26D2-26E1     | Bloomington #7837                    |
| DI(2L)EXCI/0/0        | w , $DI(2L)EXeI/0/0$ , $P+PBac{XP3.wH3}EXeI/0/0/CyO$                                                                                                     | 50D2,50E1     | Bloomington #7839                    |
| Df(2L)Exel8038        | w <sup>1118</sup> ; Df(2L)Exel8038, P+PBac{XP5.RB3}Exel8038/CyO                                                                                          | 36D3;36E3     | Exelixis,Inc./                       |
|                       | 1110                                                                                                                                                     |               | Bloomington #7840                    |
| Df(2L)Exel9033        | w <sup>1118</sup> ; Df(2L)Exel9033, PBac{WHr}Exel9033                                                                                                    | 36F2;36F2     | Exelixis,Inc./<br>Bloomington #7841  |
| Df(2L)Exel6041        | w <sup>1118</sup> : Df(2L)Exel6041, P{XP-U}Exel6041/CvO                                                                                                  | 36F5:37A2     | Exelixis.Inc./                       |
| ( )                   |                                                                                                                                                          |               | Bloomington #7523                    |
| Df(2L)Exel7071        | w <sup>1118</sup> ; Df(2L)Exel7071, P+PBac{XP5.RB3}Exel7071/CyO                                                                                          | 37A1;37A4     | Exelixis,Inc./                       |
| $Df(2L)E_{xe}[7072]$  | $w^{1118}$ , Df(21) Exel7072 D+DBac (VD5 WH5) Exel7072/CyO                                                                                               | 27A2.27B6     | Bloomington #7843                    |
| DI(2L)EXCI/0/2        | w , DI(2L)Exer/072, 1 +1 Bac {XI 5. W115}Exer/072/CyO                                                                                                    | 57A2,57D0     | Bloomington #7844                    |
| Df(2L)Exel7073        | w <sup>1118</sup> ; Df(2L)Exel7073, P+PBac{XP5.WH5}Exel7073/CyO                                                                                          | 37B1;37B9     | Exelixis,Inc./                       |
|                       |                                                                                                                                                          |               | Bloomington #7845                    |
| Df(2L)Exel8039        | w <sup>110</sup> ; Df(2L)Exel8039, P+PBac{XP5.WH5}Exel8039/CyO                                                                                           | 37B8;37B11    | Exelixis,Inc./<br>Bloomington #7846  |
| Df(2L)Exel6042        | w <sup>1118</sup> : Df(2L)Exel6042, P{XP-U}Exel6042/CvO                                                                                                  | 37B8:37C5     | Exelixis.Inc./                       |
| ( )                   |                                                                                                                                                          |               | Bloomington #7524                    |
| Df(2L)Exel8040        | w <sup>1118</sup> ; Df(2L)Exel8040, P+PBac{XP5.WH5}Exel8040/CyO                                                                                          | 37C1;37C5     | Exelixis,Inc./                       |
| Df(2L)Exel60/12       | $w^{1118}$ : Df(2L)Exel6043 D(XDL1)Exel6043/CyO                                                                                                          | 3705-3707     | Bloomington #7847                    |
| DI(2L)EXC10045        | w , DI(2L)Exclou45, I {AI -0} Exclou45/CyO                                                                                                               | 57C5,57D7     | Bloomington #7525                    |
| Df(2L)Exel7075        | w <sup>1118</sup> ; Df(2L)Exel7075, P+PBac{XP5.RB3}Exel7075/CyO                                                                                          | 37D2;37E1     | Exelixis,Inc./                       |
|                       |                                                                                                                                                          |               | Bloomington #7848                    |
| Df(2L)Exel 8041       | w <sup>110</sup> ; Df(2L)Exel 8041, P+PBac{XP5.RB3}Exel8041/CyO                                                                                          | 37D7;37F2     | Exelixis, Inc./<br>Pleamington #7840 |
| Df(2L)Exel9043        | w <sup>1118</sup> : Df(2L)Exel9043, P+PBac{XP5,RB3}Exel9043/CvO                                                                                          | 37E1:37E1     | Exelixis.Inc./                       |
| ( )                   | ·····                                                                                                                                                    |               | Bloomington #7913                    |
| Df(2L)Exel6044        | w <sup>1118</sup> ; Df(2L)Exel6044, P{XP-U}Exel6044/CyO                                                                                                  | 37F2;38A4     | Exelixis,Inc./                       |
| Df(2L)Exel6045        | w <sup>1118</sup> : Df(21) Evel6045 P(XP,11) Evel6045/CvO                                                                                                | 3844.3817     | Bloomington #7526                    |
|                       | , DI(21)1200013,1 (MI-0)1200013/CyO                                                                                                                      | JULT, JULT /  | Bloomington #7527                    |
| Df(2L)Exel7077        | w <sup>1118</sup> ; Df(2L)Exel7077, P+PBac{XP5.RB3}Exel7077/CyO                                                                                          | 38A7;38B2     | Exelixis,Inc./                       |
|                       |                                                                                                                                                          |               | Bloomington #7850                    |

| Df(2L)Exel6046 | w <sup>1118</sup> ; Df(2L)Exel6046, P{XP-U}Exel6046/CyO          | 38C2;38C7 | Exelixis,Inc./<br>Bloomington #7528 |
|----------------|------------------------------------------------------------------|-----------|-------------------------------------|
| Df(2L)Exel7078 | w <sup>1118</sup> ; Df(2L)Exel7078, P+PBac {XP5.WH5}Exel7078/CyO | 38C7;38D4 | Exelixis,Inc./<br>Bloomington #7851 |
| Df(2L)Exel7079 | w <sup>1118</sup> ; Df(2L)Exel7079, P+PBac {XP5.WH5}Exel7079/CyO | 38E6;38F3 | Exelixis,Inc./<br>Bloomington #7852 |
| Df(2L)Exel7080 | w <sup>1118</sup> ; Df(2L)Exel7080, P+PBac {XP5.RB3}Exel7080/CyO | 38F3;39A2 | Exelixis,Inc./<br>Bloomington #7853 |
| Df(2L)Exel6047 | w <sup>1118</sup> ; Df(2L)Exel6047, P{XP-U}Exel6047/CyO          | 39A2;39B4 | Exelixis,Inc./<br>Bloomington #7529 |
| Df(2L)Exel6048 | w <sup>1118</sup> ; Df(2L)Exel6048, P{XP-U}Exel6048/CyO          | 39B4;39D1 | Exelixis,Inc./<br>Bloomington #7530 |
| Df(2L)Exel7081 | w <sup>1118</sup> ; Df(2L)Exel7081, P+PBac {XP5.WH5}Exel7081/CyO | 39D1;39E6 | Exelixis,Inc./<br>Bloomington #7855 |
| Df(2L)Exel6049 | w <sup>1118</sup> ; Df(2L)Exel6049, P{XP-U}Exel6049/CyO          | 39E7;40D3 | Exelixis,Inc./<br>Bloomington #7531 |

Table A.2 Oligos used for sequencing of candidate genes.

| Gene    | Oligo     | Sequence               |
|---------|-----------|------------------------|
| CG13766 | CG13766F1 | GAGGCGTAAACCATTCCAAA   |
|         | CG13766R1 | GGAGGGAAGCAAGCGTCTA    |
|         | CG13766F2 | GGCCACTTCCACATCCACTA   |
|         | CG13766R2 | TTTGGAACGTGCACAAAAAG   |
|         | CG13766F3 | TACGCAGTTGGTGACAGCTC   |
|         | CG13766R3 | GCTACCTGGTCCCACTGTTT   |
| CG31633 | CG31633F1 | GCGGTGAATGATATCCAAGAA  |
|         | CG31633R1 | CGAACGAAGCCTTTGAAAAT   |
|         | CG31633F2 | CCAATTCAATACATTCGTCAGG |
|         | CG31633R2 | TGGAAGCATAAGGGGTCAAG   |
|         | CG31633F3 | CAAGAGCGGAAAGCAATAGG   |
|         | CG31633R3 | TTGATCTACTTGGGCGATGA   |
|         | CG31633F4 | AGCACAGCTGAAGGTCCAGT   |
|         | CG31633R4 | GGAACCCAACTGTGGAATGT   |
| CG11320 | CG11320F1 | GAAGTTTGATGCGAGTGCTG   |
|         | CG11320R1 | GTCAGGATGTGGTTCGTTCC   |
|         | CG11320F2 | CAGTATCGGAGTCGCTTCCT   |
|         | CG11320R2 | ATGTTTGGCGTCTGAGTTCC   |
| CG11043 | CG11043F1 | CAGCCGAGGAAAATTGCTTA   |
|         | CG11043R1 | CTTGGCCAGCAGCATTTC     |
|         | CG11043F2 | GCGTCCCATATCCACAACTC   |
| ~~~     | CG11043R2 | CTACCAGATCCTGCCCAATC   |
| CG11053 | CG11053F1 | AAGAGGCCCTAATGGGAATG   |
|         | CG11053R1 | CCCAGAATCATCTCCTCTCG   |
|         | CG11053F2 | AGTTTCCACCAGGACCTCAA   |
|         | CG11053R2 | TCGATCACCTTCCTCAGTCA   |
|         | CG11053F3 | CTGACTGAGGAAGGTGATCG   |
|         | CG11053R3 | GGCTCATCATAAGCTGGCTA   |
| osm6    | osm6F1    | TTTGAATTCGAGTCGCCAAC   |
|         | osm6R1    | GAGCGACAACAAGCACTTCA   |
|         | osm6F2    | GTCCTTAAGCAGGCGGTTG    |

|         | osm6R2     | GAGCCGGAGTTCAATACCAA    |
|---------|------------|-------------------------|
|         | osm6F3     | CACATGGACTCGCAAACAAC    |
|         | osm6R3     | GCATGAAAAATGTCAAGCAAGC  |
| CG34009 | CG34009F1  | TTGAACAGCGGGGATAGTTATGT |
|         | CG34009R1a | AATTTAGGCGTTTGCTGGAA    |
|         | CG34009F2  | GGCGAAAGGAATCACAATCA    |
|         | CG34009R2  | GAAAATGTGCGCCGAATAAA    |
|         | CG34009F3  | GCGGGTTACAAAAGTTCAGC    |
|         | CG34009R3  | ATTGCACAGCACCGTCTTTC    |
|         | CG34009F4  | GCGGAGAATAAAGGCCAACT    |
|         | CG34009R4  | AGGCCAGAATGAAGAAACGA    |
|         | CG34009F5  | GTTTTCGCAGCAGAATGTTG    |
|         | CG34009R5  | CCCTTGAAATTGAGAAAACG    |
|         | CG34009F6  | TGTCCAATCCCCTAAATTCC    |
|         | CG34009R6  | TCGAGCTCTTTTCGTTTTGG    |
| CG11015 | CG11015F1  | AAGTTCGGTTGATTGTTGCAC   |
|         | CG11015R1  | GTGGGTCCAAATCTGATGCT    |
|         | CG11015F2  | GACACCACAGTGCGGAGTTA    |
|         | CG11015R2  | GTTTAAACGCGGTGTGTAGC    |
|         | CG11015F3  | GATTAGCTACACACCGCGTTT   |
|         | CG11015R3  | CCCACTTTGAGTGAGTTGAATC  |
| CG11050 | CG11050F1  | CAGATCAAGTGCTTTCAATTCG  |
|         | CG11050R1  | CCGAACTTCGCTTGACTAGAG   |
|         | CG11050F2  | GGAGCCACAAAGACACTGGT    |
|         | CG11050R2  | AAATCAAAACACGCAGGACA    |
|         | CG11050F3  | GCATTGCACTTTGTTAGAACG   |
|         | CG11050R3  | GGACATCCCTCTGCTCGTAG    |
|         | CG11050F4  | TACGAGCATGGACAGACTGC    |
|         | CG11050R4  | AGAATTCGATCCGCAACTTT    |
|         | CG11050F5  | CCTACCTCGACACGCTCATAG   |
|         | CG11050R5  | CCAACCGCTTTGGATAATGT    |
| CG9596  | CG9596F1   | AGTGCGGCCACTACTTCATC    |
|         | CG9596R1   | GGAACAACCTGAGGCGATAG    |
|         | CG9596F2   | GGAGGTCCCTTTGCTCCTAT    |
|         | CG9596R2   |                         |
|         | CG9596F3   | CTTGGCGGTAGAAGATGTCC    |
|         | CG9596R3   | TCACATGCAACAGGTGACTAGA  |

Table A.3 List of lines identified in the screen

| Line   | Class | Lethal | Phenotype                                           |
|--------|-------|--------|-----------------------------------------------------|
| 2L0036 | А     | yes    | no clones                                           |
| 2L0044 | А     | yes    | no clones                                           |
| 2L0058 | А     | yes    | no clones, convoluted DT in homozygous embroys      |
| 2L0067 | А     | yes    | no clones, no negative clones in wing imaginal disc |
| 2L0218 | А     | yes    | no clones                                           |
| 2L0243 | А     | yes    | no clones                                           |

| 21.0358 | А | ves | no clones no clones in wing imaginal disc. mutated FRT site |
|---------|---|-----|-------------------------------------------------------------|
| 2L0364  | A | ves | no clones                                                   |
| 21.0437 | A | ves | no clones                                                   |
| 2L0446  | A | ves | no clones                                                   |
| 21.455  | A | ves | no clones                                                   |
| 2L0476  | A | ves | no clones                                                   |
| 21.0483 | A | ves | no clones                                                   |
| 2L0567  | A | ves | no clones                                                   |
| 21.0695 | A | ves | no clones                                                   |
| 2L0702  | A | ves | no clones                                                   |
| 2L0719  | A | ves | no clones                                                   |
| 2L0728  | A | ves | no clones                                                   |
| 2L0882  | A | ves | no clones                                                   |
| 2L1066  | A | ves | no clones                                                   |
| 2L1083  | A | ves | no clones                                                   |
| 2L1145  | A | ves | no clones                                                   |
| 2L1159  | A | ves | no clones                                                   |
| 2L1219  | A | ves | no clones                                                   |
| 2L1290  | A | ves | no clones                                                   |
| 2L1313  | A | ves | no clones                                                   |
| 2L1498  | A | ves | no clones                                                   |
| 2L1573  | A | ves | no clones                                                   |
| 2L1623  | A | ves | no clones, does not complement varicose                     |
| 2L1625  | A | ves | no clones                                                   |
| 2L1673  | A | ves | no clones                                                   |
| 2L1681  | A | ves | no clones                                                   |
| 2L1688  | A | ves | no clones                                                   |
| 2L1713  | А | ves | no clones                                                   |
| 2L1810  | А | ves | no clones                                                   |
| 2L1846  | А | ves | no clones                                                   |
| 2L1916  | А | ves | no clones                                                   |
| 2L1930  | А | ves | no clones                                                   |
| 2L1936  | А | ves | no clones                                                   |
| 2L1961  | А | yes | no clones                                                   |
| 2L1979  | А | yes | no clones                                                   |
| 2L1990  | А | yes | no clones                                                   |
| 2L2001  | А | yes | no clones                                                   |
| 2L2020  | А | yes | no clones                                                   |
| 2L2069  | А | yes | no clones                                                   |
| 2L2071  | А | yes | no clones                                                   |
| 2L2077  | А | yes | no clones                                                   |
| 2L2081  | А | yes | no clones                                                   |
| 2L2087  | А | yes | no clones                                                   |
| 2L2115  | А | yes | no clones                                                   |
| 2L2236  | А | yes | no clones                                                   |
| 2L2238  | А | yes | no clones                                                   |
| 2L2246  | А | yes | no clones                                                   |
| 2L2268  | А | yes | no clones                                                   |
| 2L2279  | А | yes | no clones                                                   |
| 2L2283  | А | yes | no clones                                                   |
| 2L2299  | А | yes | no clones                                                   |

| 2L2314  | А | yes | no clones                               |
|---------|---|-----|-----------------------------------------|
| 2L2338  | А | yes | no clones                               |
| 2L2402  | А | yes | no clones                               |
| 2L2438  | А | yes | no clones                               |
| 2L2448  | А | yes | no clones                               |
| 2L2450  | А | yes | no clones                               |
| 2L2460  | А | yes | no clones                               |
| 2L2491  | А | yes | no clones                               |
| 2L2502  | А | yes | no clones                               |
| 2L2508  | А | yes | no clones                               |
| 2L2525  | А | yes | no clones                               |
| 2L2556  | А | yes | no clones                               |
| 2L2608  | А | yes | no clones                               |
| 2L2613  | А | yes | no clones                               |
| 2L2624  | А | yes | no clones                               |
| 2L2626  | А | yes | no clones                               |
| 2L2640  | А | yes | no clones                               |
| 2L2714  | А | yes | no clones                               |
| 2L2739  | А | yes | no clones                               |
| 2L2765  | А | yes | no clones                               |
| 2L2787  | А | yes | no clones                               |
| 2L2850  | А | yes | no clones                               |
| 2L2855  | А | yes | no clones                               |
| 2L2964  | А | yes | no clones                               |
| 2L2979  | А | yes | no clones                               |
| 2L3002  | А | yes | no clones                               |
| 2L3025  | А | yes | no clones                               |
| 2L3025  | А | yes | no clones                               |
| 2L3039  | А | yes | no clones                               |
| 2L3065  | A | yes | no clones                               |
| 2L3104  | A | yes | no clones                               |
| 2L3114  | A | yes | no clones                               |
| 2L3147  | A | yes | no clones                               |
| 2L3185  | A | yes | no clones                               |
| 2L3196  | A | yes | no clones                               |
| 2L3198  | A | yes | no clones                               |
| 2L3201  | A | yes | no clones                               |
| 2L3209  | A | yes | no clones                               |
| 2L3214  | A | yes | no clones                               |
| 2L3215  | A | yes | no clones, does not complement varicose |
| 2L3221  | A | yes | no clones                               |
| 2L3233  | A | yes | no clones                               |
| 2L3247  | A | yes | no clones                               |
| 2L3253  | A | yes | no clones                               |
| 2L3254  | A | yes | no clones                               |
| 2L3259  | A | yes | no clones                               |
| 2L32361 | A | yes | no ciones                               |
| 2L3266  | A | yes | no ciones                               |
| 2L3314  | A | yes | no ciones                               |
| 2L3319  | A | yes | no ciones                               |
| 2L3342  | А | yes | no clones                               |

| 2L3357           | А | yes | no clones |  |
|------------------|---|-----|-----------|--|
| 2L3413           | А | yes | no clones |  |
| 2L3450           | А | yes | no clones |  |
| 2L3452           | Α | yes | no clones |  |
| 2L3453           | А | yes | no clones |  |
| 2L3511           | Α | yes | no clones |  |
| 2L3527           | Α | yes | no clones |  |
| 2L3524           | А | yes | no clones |  |
| 2L3551           | А | yes | no clones |  |
| 2L3606           | А | yes | no clones |  |
| 2L3614           | А | yes | no clones |  |
| 2L3619           | А | yes | no clones |  |
| 2L3643           | А | yes | no clones |  |
| 2L3671           | А | yes | no clones |  |
| 2L3687           | А | yes | no clones |  |
| 2L3698           | А | yes | no clones |  |
| 2L3730           | А | yes | no clones |  |
| 2L3768           | А | yes | no clones |  |
| 2L3792           | Α | yes | no clones |  |
| 2L3794           | А | yes | no clones |  |
| 2L3814           | А | yes | no clones |  |
| 2L3838           | А | yes | no clones |  |
| 2L3854           | Α | yes | no clones |  |
| 2L3894           | А | yes | no clones |  |
| 2L3905           | Α | yes | no clones |  |
| 2L3907           | А | yes | no clones |  |
| 2L3920           | A | yes | no clones |  |
| 2L3944           | А | yes | no clones |  |
| 2L3949           | A | yes | no clones |  |
| 2L3988           | A | yes | no clones |  |
| 2L3997           | A | yes | no clones |  |
| 2L4048           | A | yes | no clones |  |
| 2L4064           | A | yes | no clones |  |
| 2L4103           | A | yes | no clones |  |
| 2L4108           | A | yes | no clones |  |
| 2L4178           | A | yes | no clones |  |
| 2L4211           | A | yes | no clones |  |
| 2L4222           | A | yes | no clones |  |
| 2L4223           | A | yes | no clones |  |
| 2L4229           | A | yes | no clones |  |
| 2L4252           | A | yes | no clones |  |
| 2L4257           | A | yes | no clones |  |
| 2L4267           | A | yes | no clones |  |
| 2L4304           | A | yes | no clones |  |
| 2L4306           | A | yes | no clones |  |
| 2L4315           | A | yes | no clones |  |
| 2L4337           | A | yes | no clones |  |
| 2L4366           | A | yes | no clones |  |
| 2L4411<br>2L4450 | A | yes | no clones |  |
| 2L4450           | A | yes | no clones |  |
| 2L4481           | А | yes | no clones |  |

| 2L4578             | А  | yes       | no clones                                                      |
|--------------------|----|-----------|----------------------------------------------------------------|
| 2L4713             | А  | yes       | no clones                                                      |
| 2L4741             | А  | yes       | no clones                                                      |
| 2L4745             | А  | yes       | no clones                                                      |
| 2L0141             | В  | no        | low number of clones, no positive clones in wing imaginal disc |
| 2L0224             | В  | yes       | low number of clones, wt clones in wing imaginal disc          |
| 2L0557             | В  | ves       | low number of clonal cells                                     |
| 2L0611             | В  | ves       | low number of clones                                           |
| 2L0872             | В  | no        | low number of clonal cells                                     |
| 2L0948             | B  | ves       | low number of clonal cells                                     |
| 2L0951             | В  | no        | low number of clonal cells, especially in DT                   |
| 2L4739             | B  | ves       | low number of clonal cells                                     |
| 2L2629             | В  | ves       | low number of clonal cells                                     |
| 21.4152            | B  | no        | low number of clonal cells                                     |
| 2L1160             | BI | no        | extremly low number of clonal cells                            |
| 2L1261             | BI | ves       | very low number of clones                                      |
| 2L1901             | BI | ves       | very low number of clones                                      |
| 21.2058            | BI | ves       | very low number of clonal cells                                |
| 2L2622             | BI | no        | very low number of clonal cells                                |
| 21.3089            | BI | no        | low number of clonal cells                                     |
| 21.3390            | BI | ves       | extremly low number of clonal cells                            |
| 21.4332            | BI | ves       | no clones/very few clonal cells                                |
| 21 4405            | BI | ves       | no clones/very few clonal cells                                |
| 2L4409             | BI | ves       | very low numebr of clonal cells                                |
| 21 1300            | C  | Ves       | small clonal cells                                             |
| 2L1377<br>2L1832   | C  | ves       | small clones                                                   |
| 2L1052<br>2L1913   | C  | Ves       | small clonal cells                                             |
| 2L1)13<br>2L2101   | C  | Ves       | small clonal cells                                             |
| 21 2269            | C  | Ves       | small clonal cells                                             |
| 212207             | C  | no        | small clonal cells                                             |
| 2L2202<br>2L2553   | C  | Nes       | small clonal cells                                             |
| 2L2555             | C  | Ves       | small clonal cells                                             |
| 2L2372<br>2L2816   | C  | Ves       | small clonal cells                                             |
| 21.2076            | C  | Ves       | small clonal cells                                             |
| 2L2770             | C  | Ves       | small clonal cells                                             |
| 2L3273             | C  | Ves       | small clonal cells                                             |
| 2L3430<br>2L3547   | C  | Ves       | small clonal cells                                             |
| 213560             | C  | Ves       | small clonal cells                                             |
| 2L3507             | C  | Ves       | small clonal cells                                             |
| 2L3011<br>2L3651   | C  | Ves       | small clonal cells                                             |
| 21.30/8            | C  | yes       | small clonal cells                                             |
| 2L3748             | C  | Ves       | small clonal cells                                             |
| 2L4034             | C  | Ves       | small clonal cells                                             |
| 21.0044            | C  | yes       | small clonal cells                                             |
| 2L0744<br>2L1714   | CI | ycs<br>no | very small clonal cells                                        |
| 2L1714<br>2L1740   |    | NAS       | very small clonal cells                                        |
| 2L1749<br>2L2416   |    | yes       | very small clonal cells                                        |
| 2L2+10<br>2I 2871  |    | yes       | very small clonal cells                                        |
| 212071             |    | Ves       | extremly small clonal cells                                    |
| 2L3737<br>2L 4067  |    | Ves       | very small clonal cells                                        |
| 2L-1007<br>2I 1554 | CI | Ves       | extremly small clonal cells                                    |
| 2L1JJ+             |    | yus       | ora only small clonal cons                                     |

| 21.0689          | CII        | ?          | low number of clones, small clonal cells                               |
|------------------|------------|------------|------------------------------------------------------------------------|
| 2L0009           |            | Ves        | low number of clonal cells small                                       |
| 2L1500           |            | Ves        | very small clonal cells, low number                                    |
| 2L1005           |            | yes<br>vos | small clonal colls, low number                                         |
| 2L1803           |            | yes        | small clonal cells, low number                                         |
| 2L2073           |            | no         | small clonal cells, low number                                         |
| 2L2526           |            | yes        | very small clonal cells, low number                                    |
| 2L2648           |            | yes        | very small clonal cells, low number                                    |
| 2L2953           | CII        | yes        | small clonal cells, low number                                         |
| 2L3278           | СП         | yes        | low number, small clonal cells                                         |
| 2L3293           | C II       | no         | extremly small clonal cells                                            |
| 2L3301           | CII        | yes        | extremly small clonal cells, low number                                |
| 2L3311           | C II       | yes        | extremly small clonal cells, low number                                |
| 2L3456           | C II       | yes        | very low number, small clonal cells                                    |
| 2L3500           | C II       | yes        | small clonal cells, low number                                         |
| 2L3642           | C II       | yes        | extremly small clonal cells, low number                                |
| 2L3908           | C II       | yes        | small clonal cells, very low number                                    |
| 2L3940           | C II       | yes        | very small clonal cells, low number                                    |
| 2L4081           | C II       | yes        | very small clonal cells, low number                                    |
| 2L4508           | CII        | ves        | very small clonal cells, low number                                    |
| 2L4509           | CII        | no         | very small clonal cells, low number                                    |
| 2L0128           | D          | 10         | cells in DT larger than in wt                                          |
| 2L0196           | D          | no         | DT narrowed within clonal cells (not fully penetrant)                  |
| 21.0372          | D          | no         | smaller lumen and irregular shape of clonal cells in DT                |
| 21 3090          | D          | Vec        | rounded up clonal cells in DT and secondary branches                   |
| 2L3070           | D          | yes        | irregular luman in DT at alonal position                               |
| 2L3191           | D          | yes        | handings of fusion calls in DT, no clonal calls in TP and other fusion |
| 2L4771           | D          | yes        | cells                                                                  |
| 2L1506           | DI         | ves        | small clonal cells DT bendings                                         |
| 2L1687           | DI         | ves        | bendings of DT at clonal position smaller clonal cells                 |
| 2L1007           | DI         | ves        | DT hendings                                                            |
| 2L2101<br>2L3179 |            | ves        | slight DT bendings                                                     |
| 2L317)<br>2L3606 |            | Ves        | DT bendings                                                            |
| 2L3090           |            | yes        | DT bendings                                                            |
| 2L3910           |            | yes        | alight DT han dings, yang law nymber of slongl calls in TD             |
| 2L4021           |            | yes        | Slight DT bendings, very low number of cional cells in TB              |
| 2L4333           |            | yes        | D1 bendings, 1B shorter branches                                       |
| 2L0439           |            | yes        | bendings of D1 at clonal position                                      |
| 2L2676           | D I/E<br>V | yes        | almost no TB, TB with reduced number of branches, slight DT bendings   |
| 2L3146           | D II       | yes        | small clonal cells, almost only in DT, low number                      |
| 2L3680           | D II       | no         | low number of clonal cells, only in DT                                 |
| 2L3707           | DII        | yes        | low number of clonal cells, only in DT                                 |
| 2L3038           | D II       | yes        | small clonal cells, only in DT                                         |
| 21.0028          | DIII       |            | small clones in DT, low number of clones, no positive clones in wing   |
| 2L0028           | DIII       | yes        | imaginal disc                                                          |
| 2L1693           | D III      | yes        | small clonal cells in DT, low number                                   |
| 2L3418           | D III      | yes        | small clonal cells in DT                                               |
| 2L3477           | D III      | yes        | small clones in DT, reduced number of clonal cells in TB               |
| 2L3585           | D III      | yes        | small clonal cells in DT                                               |
| 2L2769           | D IV       | yes        | low number of clonal cells in DT                                       |
| 2L2875           | D IV       | yes        | no clonal cells in DT                                                  |
| 2L3602           | D IV       | yes        | no clonal cells in DT                                                  |

| 21 1668                    | F          | VAC | abnormally formed TB                                                                                          |
|----------------------------|------------|-----|---------------------------------------------------------------------------------------------------------------|
| 2L1008<br>2L1023           | E          | Ves | wrong formation of TB                                                                                         |
| 2L1723                     | E          | Ves | thicker lumen in dorsla branches, additional branching points                                                 |
| 2L2004                     | Г<br>Г     | yes | unterpiced TP branching                                                                                       |
| 2L2800                     | E          | no  | untypical TB branching                                                                                        |
| 2L2944<br>2L2102           | E<br>E     | no  | abnormally formed TD                                                                                          |
| 2L3193                     | E          | 110 | abnormally formed TD                                                                                          |
| 2L3393                     | E          | yes | abnormal ratio of along a calls in TD and other types of hear above                                           |
| 2L3807                     | E          | yes | abnormal ratio of cional cens in TB and other types of branches                                               |
| 2L4105                     | E          | yes | smaller diameter of TB                                                                                        |
| 2L4515                     |            | yes | Smaller diameter of TB                                                                                        |
| 2L0525                     |            | yes |                                                                                                               |
| 2L1030                     | EI         | yes | intra/inter fusion and branch crossing in TB                                                                  |
| 2L1210                     | EI         | no  | TB cross/rusion, low number of TB                                                                             |
| 2L1472                     | EI         | no  | I B crossing, spacing problem in lateral branches                                                             |
| 2L1629                     | EI         | no  | expanded IB, crossed, maybe more branches                                                                     |
| 2L1816                     | EI         | yes | 1B crossing                                                                                                   |
| 2L2365                     | EI         | yes | TB crossing                                                                                                   |
| 2L2408                     | EI         | yes | TB crossing                                                                                                   |
| 2L2442                     | EI         | no  | TB crossing/fusion                                                                                            |
| 2L2445                     | ΕI         | no  | TB crossing/fusion                                                                                            |
| 2L2646                     | ΕI         | yes | TB crossing                                                                                                   |
| 2L2993                     | ΕI         | yes | TB crossing                                                                                                   |
| 2L3063                     | ΕI         | yes | TB crossing/fusion                                                                                            |
| 2L3075                     | ΕI         | yes | TB crossing                                                                                                   |
| 2L3200                     | ΕI         | no  | TB crossing, irregular branching                                                                              |
| 2L3244                     | ΕI         | yes | TB intra - crossing                                                                                           |
| 2L3294                     | ΕI         | yes | TB crossing                                                                                                   |
| 2L3300                     | ΕI         | no  | TB crossing, maybe expanded                                                                                   |
| 2L3316                     | ΕI         | no  | TB crossing, weak, enlarged cell body                                                                         |
| 2L3327                     | ΕI         | yes | TB crossing/fusion                                                                                            |
| 2L3469                     | ΕI         | yes | TB crossing                                                                                                   |
| 2L4753                     | ΕI         | no  | TB crossing/fusion                                                                                            |
| 2L1878                     | ΕI         | no  | TB crossing                                                                                                   |
| 2L2022                     | ΕI         | no  | TB crossing                                                                                                   |
| 2L0253                     | ΕII        | yes | low number of clones, no typical terminal outgrowth, smaller cells, only negative clones in wing imaginal dic |
| 2L2129                     | ΕII        | yes | less or no branches in TB                                                                                     |
| 2L3120                     | ΕII        | yes | reduced branching in TB                                                                                       |
| 2L3333                     | ΕII        | yes | low number of clones, TB reduced number of branches                                                           |
| 2L3458                     | ΕII        | no  | reduced number of branches in TB                                                                              |
| 2L3935                     | ΕII        | ves | reduced number of branches in TB                                                                              |
| 2L4099                     | ΕII        | yes | reduced number of branches in TB                                                                              |
| <b>A A A A A A A A A A</b> | <b>F W</b> | 5   | very small clonal cells, lumen formation problems in TB, fewer                                                |
| 2L4409                     | ΕΠ         | no  | branches, fewer TB                                                                                            |
| 2L4485                     | ΕII        | ves | small clonal cells, TB formed irregulary, reduced number of branches                                          |
| AT 15/5                    | <b>F W</b> | 5   | extremly small clonal cells, reduced number of TB, reduced number of                                          |
| 2L4567                     | ЕП         | yes | branches                                                                                                      |
| 2L4613                     | EII        | yes | reduced number of branches, small clonal cells and low number                                                 |
| 2L0876                     | ΕШ         | no  | partila formation of lumen in TB, not fully penetrant                                                         |
| 2L2218                     | E III      | yes | no lumen in TB, almos no branches, very low number of clonal cells                                            |
| 2L2741                     | E III      | yes | lumen formation problem in TB, TB fusion/cross                                                                |

| 2L3152 | E III | yes | almost no clonal cells in TB, if they are no lumen                                 |
|--------|-------|-----|------------------------------------------------------------------------------------|
| 2L3260 | E III | yes | no lumen in TB, low number of clonal cells in TB                                   |
| 2L3340 | E III | yes | lumen formation problem in TB,                                                     |
| 2L3443 | E III | yes | low number of clonal cells, lumen formation problem in TB                          |
| 2L3463 | E III | yes | lumen in TB placed on the side, sometimes two lumen in part of branches            |
| 2L3637 | E III | yes | lumen formation problem                                                            |
| 2L3664 | E III | yes | reduced number of branches in TB, small clones, lumen formation problem            |
| 2L3686 | E III | yes | misplaced lumne in TB                                                              |
| 2L3789 | E III | yes | sligth TB lumen formation problem - lumne stops at fine branches                   |
| 2L3881 | E III | yes | thicker TB without lumen                                                           |
| 2L4010 | E III | yes | lumen in TB stops at beginning if the branch                                       |
| 2L4117 | E III | yes | no lumen in TB                                                                     |
| 2L4158 | E III | yes | lumen formation problem in TB, change in diameter in transverse connective         |
| 2L4501 | E III | ves | lumen formation problem in TB and secondary branches                               |
| 2L4658 | E III | no  | no lumen in TB                                                                     |
| 2L4765 | E III | yes | very small clonal cells, lumen formation problem in TB, abnormal branching pattern |
| 2L1475 | EIV   | yes | elongated TB                                                                       |
| 2L2853 | ΕIV   | yes | expanded TB longer branches                                                        |
| 2L3522 | EIV   | yes | expanded TB                                                                        |
| 2L4098 | ΕIV   | no  | more branches in TB                                                                |
| 2L0507 | ΕV    | no  | small clonal cells, few in TB                                                      |
| 2L0508 | ΕV    | no  | small clonal cells, few in TB                                                      |
| 2L0957 | ΕV    | no  | no clonal cells in TB                                                              |
| 2L1514 | ΕV    | ves | very low number, clonal cells very small, no in TB                                 |
| 2L1691 | ΕV    | ves | very low number of clones, no in TB                                                |
| 2L1806 | ΕV    | ves | very low number of clones no in TB                                                 |
| 2L3369 | ΕV    | ves | reduced number of TB                                                               |
| 2L3874 | ΕV    | ves | no clonal cells in TBs                                                             |
| 2L4127 | ΕV    | ves | low number of clonal cells, no clonal cells in TB, small                           |
| 2L4324 | ΕV    | ves | no clonal cells in TB                                                              |
| 2L4506 | ΕV    | ves | low number of clonal cells, no clonal cells in TB                                  |
| 2L4700 | ΕV    | no  | no/fewer clonal cells in TB                                                        |
| 2L4737 | ΕV    | ves | almost no clonal cells in TB                                                       |
| 2L0419 |       | ves | tracheal histoblasts are smaller if consisting of clonal cells                     |
| 2L0445 |       | no  | wrongly shaped and too small clonal cells at DT and secondary branches             |
| 2L1281 |       | yes | no clones in epidermal cells, tracheal clones wt                                   |
| 2L1296 |       | no  | no clonal cells in epidermis                                                       |
| 2L3574 |       | yes | clonal cells only in epidermis                                                     |
|        |       | ~   | × ±                                                                                |

#### Abstract

Many animal organs are built of ramified tubular epithelial structures. How they form and what controls branching events, direction of growth and tube size are important questions for understanding branch morphogenesis. The *Drosophila* tracheal (respiratory) system is an excellent model to investigate this process. Extensive studies on tracheal development in the last years resulted in revealing mechanisms involved in tube formation. However there are still many open questions, especially concerning late events of tracheal morphogenesis, such as branching of terminal cells during the larval life. Thus we performed a genetic mosaic screen to identified new genes involved in tracheal development. As a screening tool the MARCM system was applied and mutant lines were examined in third instar larvae.

Out of 4779 analysed lines 344 showed phenotypes different from the wild type. These lines were classified into five general phenotypic classes: A - no mutant clones, B - low number of mutant clonal cells, C – small mutant clonal cells, D - dorsal trunk defects, E – terminal branching defects. Three phenotypic groups were characterised in more detail – one from class D, showing dorsal trunk bendings and consisting of eight alleles (D1), and two from class E, showing defects in formation of lumen in terminal cells (E2 and E3), both consist of two alleles. The phenotypes in groups D1 and E3 were mapped to the genomic region of ~190kb and ~160kb respectively.

Although none of the mutations have been mapped to individual genes and no mechanisms explaining different phenotypes could be proposed, the screen provided collection of mutants, whose analysis will help in better understanding of cellular processes of tracheal development.

#### 9. Zusammenfassung

Viele tierische Organe sind aus Netzwerken verzweigter epithelialer Röhren (Tubuli) aufgebaut. Wie diese entstehen und welcher Kontrolle die Bildung von Verzweigungen, deren gerichtetes Wachstum sowie die Größe der entstehenden Röhren unterliegen, sind wichtige Fragen zum Verständnis der Morphogenese dieser Strukturen. Das Atmungssystem (Tracheensystem) von *Drosophila* bietet ein gutes Modellsystem, um diese Prozesse zu untersuchen. Umfangreiche Studien zur Entwicklung des Tracheensystems in den letzten Jahren haben viel zu unserem Verständnis der Mechanismen, die der Tubusformation zugrunde liegen, beigetragen. Allerdings sind noch immer viele Fragen offen, insbesondere bezüglich der späteren Prozesse der Tracheenentwicklung, wie zum Beispiel die Verzweigung der terminalen Zellen während des Larvenstadiums. Wir führten einen genetischen Mosaik-Screen durch, um neue Gene zu identifizieren, die an der Tracheenentwicklung beteiligt sind. Das MARCM System wurde für den Screen verwendet; die mutanten Linien im dritten Larvenstadium untersucht.

344 von insgesamt 4779 untersuchten Linien zeigten Phänotypen, die sich vom Wildtyp unterschieden. Diese Linien wurden in 5 generelle phänotypische Klassen unterteilt: A – keine mutanten Klone, B – geringe Anzahl mutanter klonaler Zellen, C – mutante klonale Zellen mit kleiner Zellgröße, D – Defekte im Dorsalstamm (dorsal trunk), E – Defekte in der Verzweigung der terminalen Zellen. Drei phänotypische Gruppen wurden detaillierter analysiert - eine der Klasse D, die Krümmungen des Dorsalstamms aufwies und aus 8 Allelen bestand (D1), sowie zwei der Klasse E, die Defekte in der Lumenbildung in den terminalen Zellen aufwiesen (E2 und E3), beide mit jeweils zwei Allelen. Die Phänotypen der Gruppen D1 und E3 wurden der genomischen Region von ~190 kb resp. ~160 kb zugeordnet.

Obwohl keine der Mutationen individuellen Genen zugewiesen werden konnte und keine Modelle aufgestellt werden konnten, um die unterschiedlichen Phänotypen zu erklären, stellt der Screen dennoch eine Sammlung von Mutanten zur Verfügung, deren Analyse dazu beitragen wird, die der Tracheenentwicklung zugrunde liegenden zellulären Prozesse besser zu verstehen.

89

### Acknowledgments

First I would like to thank my supervisor Prof. Dr Maria Leptin in whose lab this work was carried out, for giving me an opportunity to work on very interesting project, for her support and stimulating discussions.

The screen was done together with the former PhD student Andreas Bilstein to whom I am grateful for very nice cooperation and good working atmosphere. Also many thanks to other members of the 'screen team', Pablo Radermacher and Kerstin van Mark, for great help with fly work. I would also like to acknowledge Juliane Hancke, for her assistance by molecular biology. Kevin Johnson I would like to thank for comments on this manuscript, discussions and advises during the work. For help with the manuscript I would also like to thank Jayan Nair, Sam Mathew and Martina Rembold. To all current and former members of Leptin, Klein and Sprenger group, many thanks for discussions, support and pleasant working atmosphere.

I would also like to acknowledge the International Graduate School in Genetics and Functional Genomics for financial support and help by administrative formalities.

I would also like to give special thanks to my aunt Wanda Baer-Dubowska, who long time back showed me how fascinating doing science is and supported me by many means all along the way. Finally, my family and friends I would like to thank for mental support and being there for me.

### Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Maria Leptin betreut worden.

Keine Teilpublikationen

Köln, Dezember 2006

Magdalena Baer

# <u>Lebenslauf</u>

| Name:                | Magdalena Baer                                                                                                                                                                                                                                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geburtsdatum:        | 13/06/1978                                                                                                                                                                                                                                                                                                |
| Geburtsort:          | Poznan, Polen                                                                                                                                                                                                                                                                                             |
| Staatsangehörigkeit: | Polnisch                                                                                                                                                                                                                                                                                                  |
| 1985 - 1990          | Henryk Wieniawski Musik-Grundschule, Poznan                                                                                                                                                                                                                                                               |
| 1990 - 1993          | Tadeusz Szeligowski Musik-Grundschule, Poznan                                                                                                                                                                                                                                                             |
| 1993 - 1997          | X. Gymnasium Poznan                                                                                                                                                                                                                                                                                       |
| 1997 - 2002          | August Cieszkowski Universität für Agrarwissenschaften von<br>Poznan, Agrarwissenschaftliche Fakultät, Bereich der<br>Biotechnologie<br>Masterarbeit: Chromosomal localisation of microsatellite loci in<br>genomes of the Chinese raccoon dog and the arctic fox.<br>Betreuer - Prof. Dr Marek Switonski |
| 2001                 | Socrates/Erasmus-Programm (5 Monate) in der Fakultät für<br>Agrarwissenschaften und angewandten Biowissenschaften an<br>der Universität von Ghent, (Rijksuniversiteit Gent) in Ghent,<br>Belgien                                                                                                          |
| 2003 - 2006          | Doktorarbeit bei Prof. Dr Maria Leptin am<br>Institut für Genetik<br>Universität zu Köln<br>Title: A genetic screen for novel genes involved in tracheal<br>development in <i>Drosophila melanogaster</i>                                                                                                 |

Köln

Dezember 2006

Unterschrift