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Abstract

Scientific machine learning, an area of research where techniques from machine
learning and scientific computing are combined, has become of increasing impor-
tance and receives growing attention. Here, our focus is on a very specific area
within scientific machine learning given by the combination of domain decomposi-
tion methods with machine learning techniques. The aim of the present work is to
make an attempt of providing a review of existing and also new approaches within
this field as well as to present some known results in a unified framework; no claim of
completeness is made. As a concrete example of machine learning enhanced domain
decomposition methods, an approach is presented which uses neural networks to
reduce the computational effort in adaptive domain decomposition methods while
retaining their robustness. More precisely, deep neural networks are used to pre-
dict the geometric location of constraints which are needed to define a robust coarse
space. Additionally, two recently published deep domain decomposition approaches
are presented in a unified framework. Both approaches use physics-constrained neu-
ral networks to replace the discretization and solution of the subdomain problems
of a given decomposition of the computational domain. Finally, a brief overview
is given of several further approaches which combine machine learning with ideas
from domain decomposition methods to either increase the performance of already
existing algorithms or to create completely new methods.
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1 INTRODUCTION

Scientific machine learning (SciML) is a new, rapidly developing field of research within the field of artificial intelligence in
which techniques of scientific computing and machine learning are combined and further developed [2]. One major aspect in
SciML is the integration of domain knowledge into ML algorithms to obtain more accurate algorithms with a better inter-
pretability. Here, the term domain knowledge contains, e.g., physical laws or physical principles, expert knowledge, results of
computational simulations, or certain constraints. For example, including the residual of a differential equation representing
certain physical principles into the loss of a neural network can be used to discretize and solve the differential equation.



2 Alexander Heinlein ET AL

Another important aspect of SciML is enhancing numerical algorithms withML techniques. The machine learning techniques
often replace parts of the method where the domain knowledge is not sufficient to, e.g., choose appropriate parameters or models.
In general, this results in hybrid methods, which can be faster and more robust solvers or new model order reduction models.
In the present article, as an example of SciML, we provide a brief overview of the combination of machine learning and

domain decomposition methods (DDMs). DDMs are highly scalable and robust iterative solution methods for discretized non-
linear or linear partial differential equations (PDEs). The excellent scalability results from a divide and conquer principle, based
on the decomposition of the computational domain into overlapping or nonoverlapping subdomains and thus on the spatial
decomposition of the PDE into smaller subproblems. These subproblems can be processed independently and in parallel. Syn-
chronization and communication is first necessary on the interface of neighboring subdomains - or small overlapping regions
of it - in order to obtain the correct solution at convergence and, second, during the solution of a global coarse problem. The
coarse problem guarantees robustness if defined appropriately. Successful domain decomposition methods are, amongst oth-
ers, overlapping Schwarz methods [12, 13] or nonoverlapping FETI-DP (Finite Element Tearing and Interconnecting - Dual
Primal) [19, 18, 48, 49] and BDDC (Balancing Domain Decomposition by Constraints) [10, 11, 50, 57] methods.
In general, one can divide the approaches combining ML and DDMs into three classes: The first one consists of approaches

where ML techniques are used within a classical DDM in order to improve the convergence properties or the computational
efficiency. In the second class, deep neural networks (DNN) are used as discretization methods and solvers for differential
equations replacing classical approaches based on finite elements or finite differences. In combination with DDMs these DNN-
based methods are used as subdomain solvers. In the third class, which will not be further described in the present review article,
ideas from the area of domain decomposition methods are used to improve ML algorithms, amongst others, the parallelization
properties and convergence speed of the training procedure of a neural network. Here, we can further distinguish the distribution
of data sets and features. Among these are the overlapping areas of distributed and parallel learning [76, 66, 67, 5, 79] as well
as collaborative and federated learning [35, 71, 52]. We will not describe these here and refer to the given references and the
references therein. Let us remark that these classes are not disjoint and some approaches can be assigned to more than one. Here,
we will clearly focus on the first two classes and provide a detailed description of two very specific and very different approaches
in section 2 and section 3, respectively.
A very specific combination of ML and adaptive DDMs was presented in [30], where we have used neural networks to

predict the location of important coarse space constraints in adaptive FETI-DP; see section 2. This can be used to reduce the
computational effort in the setup phase of adaptive FETI-DP methods. In the present article, we will also expand this approach
to the completely different class of overlapping adaptive Schwarz methods for the first time.
Physics-constrained neural networks, amongst others, PINNs [53] and Deep Ritz methods [51], have been used to replace the

discretization and solution of the subdomain problems in a classical Schwarz DDM. The main idea of both PINNs and Deep
Ritz is to integrate a priori knowledge in form of physical laws or domain expertise into a deep learning model; see, e.g, [68, 16]
for more details. In particular, PINNs can be applied to solve forward as well as inverse problems and are completely mesh-free
since the optimization of their respective loss function is based on the evaluation of selected collocation points. Thus, PINNs
and Deep Ritz are an excellent example for the combination of ML techniques and domain knowledge. Hence the deep domain
decomposition approaches introduced in [53, 51] are again excellent examples for the combination of SciML and DDMs. We
will present the DeepDDM method [53] and the similar D3M method [51] within a unified framework in section 3.
Finally, in section 4, we give a brief overview of several further approaches combining ML with DDMs and describe the

main ideas of [56, 15, 74, 36, 60, 78, 38, 8] in a few sentences each.

2 MACHINE LEARNING IN ADAPTIVE DOMAIN DECOMPOSITION

In [31, 30, 27] we proposed an approach to reduce the computational cost in the setup of adaptive FETI-DP solvers using deep
neural networks (DNNs) - without deteriorating the robustness and convergence behavior of adaptive FETI-DP. This ML-FETI-
DP (Machine Learning-Finite Element Tearing and Interconnecting-Dual Primal) method is thus a hybrid method combining
machine learning and domain decomposition methods (DDMs).
In general, adaptive DDMs are designed for challenging problems with bad parameters, e.g., for composites in solid and

structural mechanics, where the performance of standard preconditioners will depend strongly on the contrast of the coefficient
function. In contrast, the condition number bound of adaptive DDmethods is independent of the coefficient function. To achieve
this desirable property, the coarse problem or second level of the DDM has to be enhanced with specific and problem dependent
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Model Problem Algorithm cond it evp
standard - >300 0 cheap setup / bad convergence

Microsection adaptive 15.86 36 112 expensive setup / fast convergence
Problem ML 15.86 36 44 reasonable setup / fast convergence

TABLE 1 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular domain decompositions. We show the
condition number (cond), the number of CG iterations (it), and the number of solved eigenvalue problems (evp).

FIGURE 1 Regular domain decomposition of a steel microsection corresponding to results from table 1. Left: In standard
FETI-DP no eigenvalue problems have to be solved on the edges (low setup cost), but the method does not converge in 300
iterations; see table 1.Middle: In adaptive FETI-DP eigenvalue problems are solved for each edge (high setup cost) to obtain
a robust algorithm; see table 1. The eigenvalue problems corresponding to edges marked in green have been necessary for
robustness, the ones corresponding to yellow edges (65% of the edges) have been solved for nothing. Right: In ML-FETI-DP
most of the unnecessary edges have been sorted out a priori, i.e., before solving the eigenvalue problems. Only for the marked
edges eigenvalue problems have been solved (lower setup cost) and all necessary edges have been caught (robust algorithm).

constraints which altogether build the adaptive coarse space. The adaptive coarse space is always computed automatically, which
is typically done by solving many local eigenvalue problems on smaller parts of the interface between the subdomains - often
faces or edges. In the description in this section, we restrict ourselves to two-dimensional problems and all eigenvalue problems
which are considered are associated with edges. A drawback of adaptive DDMs is the substantial computational cost which is
involved in the setup and solution of all these local eigenvalue problems. Both is part of the setup of the adaptive DDM and this
cost is difficult to amortize, especially in parallel computations, and currently makes adaptive DD most suitable for problems
where standard methods fail to converge at all. In table 1 we present an illustrating example where the standard FETI-DPmethod
fails to converge within 300 iterations. The adaptive method converges fast and has a small condition number. To achieve this
fast convergence, 112 eigenvalue problems have to be solved, each one associated with an edge and its two adjacent subdomains.
We will provide details on the specific adaptive coarse space and the associated eigenvalue problem later on.
Obviously, there is a big potential to save computational cost and to make adaptive DDmethods more competitive by omitting

eigenvalue problems on certain edges which are unnecessary since they do not add any important constraint to the coarse
problem. Indeed, for many practical and realistic model problems, only a small number of adaptive constraints are necessary at
all to retain a robust algorithm. In particular, this means that a large number of the eigenvalue problems can actually be omitted.
For our specific example from table 1, actually only 39 of the 112 eigenvalue problems result in any adaptive constraints and
thus approximately 65% of the eigenvalue problems are solved for nothing in adaptive FETI-DP; see also fig. 1 (middle) where
all unnecessary edges are marked in yellow.
However, in general it is difficult to predict for which edges the eigenvalue problem is necessary or not before actually solving

it. The approach proposed in [31, 30, 27] is to train a neural network to make this decision automatically and in advance, i.e.,
in a preprocessing phase before even solving the local eigenvalue problems. For our specific example we can omit most of the
unnecessary edges a priori and still preserve the robustness of adaptive FETI-DP; see table 1 and fig. 1 (right), where all edges
for which an eigenvalue problem was solved are marked in green (necessary) and yellow (unnecessary). These results exactly
show the desired property: a lower setup cost to make adaptive DD competitive while preserving its robustness and low condition
number. In the remainder of this chapter we will describe the methodology used to reach both objectives in detail.
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Let us remark that the basic procedure is the same for all adaptive domain decomposition methods which rely on the solu-
tion of localized eigenvalue problems on edges or, in three dimensions, on edges and faces. Hence, we describe the approach
independently of the specific domain decomposition method and show numerical results for two very different examples, i.e.,
adaptive FETI-DP and adaptive GDSW. Let us remark that we combine an overlapping adaptive DDM with our machine learn-
ing approach for the first time in this article and thus also show the generality of our approach. We will first describe the machine
learning approach to classify all local eigenvalue problems or all edges, respectively, as necessary or not for the robustness of
the algorithm. Afterwards we will describe the two specific adaptive DD approaches we consider here.
Let us finally emphasize a further important property of all our hybrid machine learning based adaptive DD approaches: The

validation if the DNN worked appropriately is pretty simple by checking the condition number and convergence behavior. There
is no uncertainty involved and also the quality of the solution of the discretized PDE is thus not depending on the quality of the
DNN. This is different to many machine learning approaches and a big advantage of the ML-DD approach.

2.1 General Domain Decomposition and Model Problems
Let us briefly introduce our model problems and some basic DD notations. As a first model problem, we consider a stationary
diffusion problem in its variational form with different diffusion coefficient functions � ∶ Ω → ℝ. Here, Ω ⊂ ℝ2 denotes the
computational domain. Then, the model problem writes: Find u ∈ H1

0 (Ω) such that

∫
Ω

�∇u ⋅ ∇vdx = ∫
Ω

f vdx ∀v ∈ H1
0 (Ω). (1)

As a second model problem, we consider a linear elasticity problem. The problem of linear elasticity consists in finding the
displacement u ∈ H1

0(Ω) ∶= (H
1
0 (Ω))

2, such that

∫
Ω

G "(u) ∶ "(v) dx + ∫
Ω

G� divu divv dx = ⟨F, v⟩, (2)

for all v ∈ H1
0(Ω), given material functions G ∶ Ω→ ℝ and � ∶ Ω→ ℝ, and the right-hand side

⟨F, v⟩ = ∫
Ω

fT v dx + ∫
)ΩN

gT v d�.

In general, we assume that discretizing a given linear partial differential equation on the computational domain Ω with finite
elements results in the linear system of equations

Kgug = fg . (3)

We also assume to have a decomposition of Ω into N ∈ ℕ nonoverlapping subdomains Ωi, i = 1, ..., N , which fulfills Ω =
⋃N
i=1Ωi; see also fig. 2. Each of the subdomains is the union of finite elements such that we have matching finite element nodes

on the interface Γ ∶=
(

⋃N
i=1 )Ωi

)

⧵ )Ω. For the adaptive GDSW overlapping domain decomposition method, we additionally
introduce overlapping subdomains Ω′i, i = 1, ..., N . Overlapping subdomains with an overlap � = kℎ can be obtained from
Ωi, i = 1, ..., N by recursively adding k layers of finite elements to the subdomains; see also section 2.4 and fig. 2 (left) for
details. As already mentioned, in all adaptive DD approaches considered here, for each edge, a single eigenvalue problem has to
be solved. In general, all coarse spaces considered here are based on constraints associated with vertices and edges. We denote
by Eij the edge shared by two nonoverlapping subdomains Ωi and Ωj ; see also fig. 2 (right).

2.2 Machine Learning Approach
The decision whether for a specific edge Eij the solution of the respective eigenvalue problem is necessary clearly is a classifi-
cation problem, independent of whether adaptive FETI-DP or adaptive GDSW is considered. In particular, the decision is solely
based on local information, i.e., on the coefficient distribution within the two subdomains adjacent to the edgeEij . Of course, the
training data for various DDMs has to be different, i.e., the same coefficient distribution might be labeled differently, depending
on the specific DDM and thus separately trained networks are necessary. Nevertheless, the underlying classification problem
and the basic principles are the same for all considered DDMs. To this end, we first describe the basic classification procedure
before providing a brief description of adaptive FETI-DP and adaptive GDSW. In contrast to [31, 30, 27], our description is thus
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FIGURE 2 Decomposition of the domainΩ ⊂ ℝ2 into nine nonoverlapping subdomainsΩi, i = 1, ..., 9. Left: The overlapping
domain decomposition is obtained by extending the nonoverlapping subdomains by several layers of elements of total width �.
The overlapping subdomain Ω′5 is marked in red. Right: The interface Γ is marked in red, the vertices in green, and the edges in
blue. All coarse spaces considered in this article are based on vertices and edges and all local eigenvalue problems are associated
with specific edges and the two neighboring subdomains.

independent of the chosen adaptive DD approach. As already mentioned, we use dense feedforward neural networks or, more
precisely, multilayer perceptrons; see, e.g., [24, Chapt. 4], [61, pp. 104–119], and [77, Sec. 5.1.4], to approximate a solution
for the classification of edges. A deep neural network can be represented as a directed graph; see also fig. 5. The neural net-
work is assumed to be organized in layers, i.e., the set of nodes  can be represented as the union of nonempty, disjoint subsets
i ⊂  , i = 0,… , N + 1. These sets are defined such that for each edge e ∈  there exists an i ∈ {0,… , N} with e being an
edge between a node in i and one in i+1; see [69, Chapt. 20.1]. The nodes in a neural network are called neurons and, in dense
feedforward neural networks, each neuron (in a chosen layer) is influenced by all neurons from the previous layer. In particular,
the relation between two consecutive layers is the conjunction of a linear mapping and a nonlinear activation function. Among
the many different choices for the activation function �, we choose the Rectified Linear Unit (ReLU) [34, 62, 23] given by

�(x) = max {0, x} .

As input data for the neural network, we use samples, i.e., point-wise evaluations of the coefficient function or the material
distribution within the two subdomains adjacent to an edge Eij ; see fig. 6. As output data for the neural network, we save the
classification whether the corresponding eigenvalue problem is necessary for a robust algorithm (class 1) or not (class 0); see
also fig. 6. Let us remark that we also suggested a classification with three different classes in [31, 30, 27] for adaptive FETI-
DP. In that case, class 1 is again split into eigenvalue problems resulting in exactly a single constraint (class 1a) and eigenvalue
problems resulting in more than one constraint (class 1b). This can be useful if, e.g., an appropriate approximation for the first
adaptive constraint is known which can be computed at a low cost. In [31, 30, 27] we always use a frugal constraint [29] instead
of solving an eigenvalue problem for each edge from class 1a. This further reduces the setup cost due to a higher percentage
of eigenvalue problems saved compared with the fully adaptive approach. For simplicity, we will not discuss the three-class
classification approach in the present review article in detail. As we can also observe from fig. 6, the described classification
problem is, in principle, an image recognition problem. However, whereas in image classification the resolution of an image
needs to be the same for all image samples, we use an approach that is independent of the finite element distribution. This is
achieved by computing a sampling grid which is especially independent of the resolution of the underlying finite element grid.
For all the sampling points in the computed sampling grid, we evaluate the cofficient function and use these evaluations as input
data for the neural network. The only assumption that we make is that the sampling grid is fine enough to resolve all geometric
details of the coefficient function within each subdomain. Let us remark that, for rectangular subdomains, the sampling grid can
be chosen such that it completely covers both subdomains adjacent to an edge. For irregular decompositions obtained by, e.g.,
METIS, small areas might not be covered by the sampling grid, but typically these areas are further away from the edge. This
usually does not affect the performance of the algorithm. It also motivates the use of smaller sampling grids on areas solely
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FIGURE 3 Nine different types of coefficient functions used for training and validation of the neural network. The inclusions,
channels, boxes, and combs with high coefficient are displaced, modified in sized, and mirrored with respect to the edge in order
to generate the complete training data set. Taken from [30, Fig.7 ].

FIGURE 4 Examples of three different randomly distributed coefficient functions obtained by using the same randomly gener-
ated coefficient for a horizontal (left) or vertical (middle) stripe of a maximum length of four finite element pixels, as well as
by pairwise superimposing (right). Taken from [27, Fig. 3].

around the edge to save computational cost; see also [31]. Let us note that for the classification of an edge Eij we solely use
coefficient values within the neighboring subdomains Ωi and Ωj .

Training data
To arrange a representative training data set consisting of a number of different coefficient distributions on two neighboring
subdomains, two different strategies have been tested so far. First, in [30], we have used a set of carefully designed training data,
i.e., specific coefficient distributions. Later on, in [27] and [31], we also denote this set by smart data in contrast to training data
sets obtained by a randomized approach. For the smart data, the basic coefficient distributions shown in fig. 3 are used as a basis
to create the full set of training data for the numerical experiments in [30]. Therefor, all of these 9 coefficient distributions are
mirrored, rotated, and shifted within a subdomain. Second, in [27], we have used randomized coefficient distributions which in
principle can be designed without any a priori knowledge. Nevertheless, some structure has to be enforced to obtain satisfactory
results. For the first part of this random data training set, we randomly generate the coefficient for each pixel, consisting of
two triangular finite elements, independently and only control the ratio of high and low coefficient values. Here, we use 30%,
20%, 10%, and 5% of high coefficient values. For the second part, we also control the distribution of the coefficients to a certain
degree by randomly generating either horizontal or vertical stripes of a maximum length of four or eight pixels, respectively;
see Figure 4. Additionally, we generate new coefficient distibutions by superimposing pairs of horizontal and vertical coefficient
distributions.

Sampling on slabs
We now describe how we reduce the number of sampling points used as input data for the neural network. In [30], the computed
sampling grid covers both neighboring subdomains of an edge entirely - at least in case of a regular domain decomposition. Let
us remark that in case of irregular domain decompositions, our sampling strategy might miss small areas further away from the
edge; see, e.g., [30, Fig. 4]. However, this does not affect the performance of our algorithm. Although the preparation of the
training data as well as the training of the neural network can be performed in an offline-phase, we try to generate the training
data as efficient and fast as possible. For all sampling points, we need to determine the corresponding finite element as well as
to evaluate the coefficient function for the respective finite element. Therefore, there is clearly potential to save resources and
compute time in the training as well as in the evaluation phase by reducing the number of sampling points used as input data
for the neural network. In general, the coefficient variations close to the edge are the most relevant, i.e., the most critical for the
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FIGURE 5 Structure of a feedforward neural network withN hidden layers and K neurons per layer. Taken from [30, Fig. 1]
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FIGURE 6 Sampling of the coefficient function; white color corresponds to a low coefficient and red color to a high coefficient.
In this representation, the samples are used as input data for a neural network with two hidden layers. Only sampling points from
slabs around the edge are chosen. Taken from [31, Fig. 1]

condition number bound of FETI-DP. Therefore, to reduce the total number of sampling points in the sampling grid, reducing
the density of the grid points with increasing distance to the edge is a natural approach. More drastically, one could exclusively
consider sampling points in a neighborhood of the edge, i.e., on slabs next to the edge. We consider the latter approach here; see
also Fig. 6 for an illustration of the sampling points inside slabs.

2.3 Adaptive FETI-DP
The description of standard as well as adaptive FETI-DP is essentially taken from [30]. For more details on standard FETI-DP
see, e.g., [75, 48, 45] and for a detailed description of adaptive FETI-DP see [58, 43, 42].

2.3.1 Standard FETI-DP
Let us first describe the standard FETI-DP domain decomposition method and introduce some relevant notation. We denote
by W (i) the local finite element space associated with Ωi. The finite element nodes on the interface are either vertex nodes,
belonging to the boundary of more than two subdomains, or edge nodes, belonging to the boundary of exactly two subdomains.
All finite element nodes inside a subdomain Ωi are denoted as interior nodes.
For each subdomainΩi, we subassemble the corresponding finite element stiffness matrixK (i). We partition the finite element

variables u(i) ∈ W (i) into interior variables u(i)I , and on the interface into dual variables u(i)Δ and primal variables u(i)Π . In the
present article, we always choose the primal variables as those belonging to vertices. Hence, the dual variables always belong
to edges. Note that other choices are possible. For each local stiffness matrix K (i), ordering the interior variables first, followed
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by the dual and primal variables, yields

K (i) =
⎡

⎢

⎢

⎣

K (i)
II K

(i)T
ΔI K (i)T

ΠI
K (i)
ΔI K (i)

ΔΔ K (i)T
ΠΔ

K (i)
ΠI K (i)

ΠΔ K (i)
ΠΠ

⎤

⎥

⎥

⎦

, u(i) =
⎡

⎢

⎢

⎣

u(i)I
u(i)Δ
u(i)Π

⎤

⎥

⎥

⎦

, and f (i) =
⎡

⎢

⎢

⎣

f (i)I
f (i)Δ
f (i)Π

⎤

⎥

⎥

⎦

.

It is often also convenient to introduce the union of interior and dual degrees of freedom as an extra set of degrees of free-
dom denoted by the index B. This leads to a more compact notation and we can define the following matrices and vectors

K (i)
BB =

[

K (i)
II K

(i)T
ΔI

K (i)
ΔI K (i)

ΔΔ

]

, K (i)
ΠB =

[

K (i)
ΠI K

(i)
ΠΔ

]

, and f (i)B =
[

f (i)TI f (i)TΔ

]T
. Next, we introduce the block diagonal matrices

KBB = diag
N
i=1K

(i)
BB , KII = diag

N
i=1K

(i)
II , KΔΔ = diag

N
i=1K

(i)
ΔΔ, and KΠΠ = diag

N
i=1K

(i)
ΠΠ. Analogously, we obtain the block vector

uB = [u
(1)T
B ,… , u(N)TB ]T and the block right-hand side fB =

[

f (1)TB ,… , f (N)TB

]T
.

To enforce continuity in the primal variables in each iteration of the FETI-DP algorithm, we assemble in those primal
variables; this introduces a global coupling in a small number of degrees of freedom. To describe this assembly process, we
introduce assembly operators R(i)TΠ consisting only of zeros and ones. This yields the matrices K̃ΠΠ =

∑N
i=1R

(i)T
Π K (i)

ΠΠR
(i)
Π ,

K̃ΠB =
[

R(1)TΠ K (1)
ΠB ,… , R(N)TΠ K (N)

ΠB

]

, and the right-hand side f̃ =
[

f TB ,
(

∑N
i=1R

(i)T
Π f (i)Π

)T
]T

. Since no assembly is carried out
in the dual degrees of freedom, we need a continuity condition on this part of the interface. Hence, we introduce a jump matrix
BB = [B(1)B …B(N)B ] with B(i)B having zero entries for the interior degrees of freedom and entries out of {−1, 1} for the dual
degrees of freedom. The entries for the dual degrees of freedom are chosen such that BBuB = 0 if uB is continuous across the
interface. This continuity condition is enforced by Lagrange multipliers �. Then, we consider

⎛

⎜

⎜

⎝

KBB K̃T
ΠB BTB

K̃ΠB K̃ΠΠ O
BB O O

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

uB
ũΠ
�

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

fB
f̃Π
0

⎞

⎟

⎟

⎠

. (4)

Solving eq. (4) and assembling uB then gives the solution of eq. (3). To solve eq. (4) the variables uB and ũΠ are eliminated,
resulting in a linear system for the Lagrange multipliers �. This is carried out in two steps, first eliminating uB , then ũΠ. The local
elimination of uB yields the following Schur complement for the primal variables S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1

BBK̃
T
ΠB . The FETI-DP

system is then defined as
F� = d, (5)

with

F = BBK−1
BBB

T
B + BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B

and d = BBK−1
BBfB + BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠ

(( N
∑

i=1
R(i)TΠ f (i)Π

)

− K̃ΠBK−1
BBfB

)

.

To define the FETI-DP algorithm, we also need a preconditioner for the FETI-DP system matrix F . In the present work, we use
the Dirichlet preconditioner given by

M−1
D = BB,D

[

0 IΔ
]T (KΔΔ −KΔIK−1

IIK
T
ΔI
) [

0 IΔ
]

BTB,D = BDS̃B
T
D.

Here, IΔ is the identity matrix on the dual degrees of freedom. The matrices BB,D and BD are scaled variants of BB and B,
respectively, e.g., using a �-scaling [44], where the matrix B is defined as B = [BB , 0Π]. Finally, eq. (5) is solved iteratively
using a preconditioned conjugate gradient or GMRES (generalized minumal residual) approach together with the mentioned
preconditioner.

2.3.2 Condition number bound for standard FETI-DP
For scalar elliptic as well as various other model problems, e.g., linear elasticity problems, the polylogarithmic condition number
bound

�(M−1
D F ) ≤ C

(

1 + log
(H
ℎ

))2
(6)

holds under certain assumptions; see, e.g., [47, 49, 48]. In eq. (6), H∕ℎ is the maximum of Hi∕ℎi, i = 1,… , N , where Hi is
the diameter of Ωi, ℎi the maximum finite element diameter in Ωi, and thusH∕ℎ is a measure for the number of finite elements
per subdomain and also for the number of unknowns in each subdomain. The constant C is independent ofHi and ℎi. Different
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coefficient functions � in two and three dimensions can be sucsessfully treated by appropriate coarse spaces and scalings in
the preconditioner M−1

D . For further details, see, e.g., [75]. For our model problem, using only primal vertex constraints and
�-scaling, the constant C is independent of �, e.g., if � is constant on the complete domain, if � is constant on subdomains but
discontinuous across the interface, or if inclusions of higher coefficients are completely enclosed in single subdomains without
touching the interface.
However, as already mentioned, for arbitrary and complex coefficient distributions, as, e.g., shown in fig. 3, eq. (6) does not

hold anymore. In recent years, adaptive coarse spaces have been developed to overcome this limitation [7, 41, 40, 39, 64, 63, 4,
9, 58, 59, 43, 42, 37, 20, 21, 17, 14, 72, 73, 25, 26, 22] and we will especially consider two of them in the following sections.

2.3.3 Adaptive constraints
In the following, we give a very brief description of the algorithm introduced in [58] for the convenience of the reader. First,
we introduce the relevant notation and the eigenvalue problem on an edge. Second, in section 2.3.4, we give an estimate of
the condition number for two-dimensional problems where all the vertex variables are primal in the initial coarse space. Let
us remark that the adaptive constraints additionally enhance the original set of primal constraints described above. There are
several possibilities in the literature to implement such additional constraints, but this is not in the focus of this review article.
As already mentioned, for each edge Eij , a single eigenvalue problem has to be solved. We first restrict the jump matrix B to

this edge. Let BEij =
(

B(i)Eij , B
(j)
Eij

)

be the submatrix of
(

B(i), B(j)
)

with the rows that consist of exactly one 1 and one −1 and

are zero otherwise. Let BD,Eij =
(

B(i)D,Eij , B
(j)
D,Eij

)

be obtained by taking the same rows of
(

B(i)D , B
(j)
D

)

. Let Sij =
(

S (i)

S (j)

)

,

where S (i) and S (j) are the Schur complements of K (i) and K (j), respectively, with respect to the interface variables. We further
define the operator PDij

= BTD,EijBEij .

Then, we solve the local generalized eigenvalue problem: find wij ∈
(

ker Sij
)⟂

⟨PDij
vij , SijPDij

wij⟩ = �ij⟨vij , Sijwij⟩ ∀vij ∈
(

ker Sij
)⟂ . (7)

For an explicit expression of the positive definite right hand side operator on the subspace
(

ker Sij
)⟂, two orthogonal projections

are used; see, e.g., [43]. We assume that R eigenvectors wr
ij , r = 1, ..., R, belong to eigenvalues which are larger than a given

tolerance TOL. Then, we enhance the FETI-DP coarse space with the adaptive constraints BDij
SijPDij

wr
ij , r = 1, ..., R, using

the balancing preconditioner described in [46, 33].

2.3.4 Condition number bound of adaptive FETI-DP
Computing adaptive constraints as presented in section 2.3.3 and enhancing the FETI-DP coarse space with these constraints
using a balancing preconditionerM−1

BP , we obtain the condition number bound

�(M−1
BPF ) ≤ N2

ETOL,

which was first proved in [43, Theorem 5.1]. Here, NE is the maximum number of edges of a subdomain and the condition
number bound is thus completely independent of the coefficient function.

2.4 Adaptive GDSW
In this section, we will briefly introduce the standard GDSW (Generalized Dryja–Smith–Widlund) preconditioner as well as the
AGDSW (adaptive GDSW) preconditioner. The presentation follows the original work introducing the AGDSW coarse space
for overlapping Schwarz methods [26]. As for the adaptive FETI-DP method and in contrast to [26], we will only consider the
two-dimensional case here.

2.4.1 The GDSW preconditioner
The GDSW preconditioner [12, 13] is a two-level additive overlapping Schwarz preconditioner with exact solvers. Therefore, we
consider the overlapping subdomainsΩ′i, i = 1,… , N , as introduced in section 2.1. We define asRi ∶ V ℎ(Ω)→ Vi ∶= V ℎ(Ω′i),
i = 1, ..., N , the restriction to the local finite element space Vi on the overlapping subdomain Ω′i; R

T
i is the corresponding
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Eij Ωij (�Eij ) zEij Ωij (�Eij )

FIGURE 7 Graphical representation of the extension operators used in the eigenvalue problem eq. (10) for an edge function
�Eij (blue). Left: Energy-minimizing extensions with Neumann boundary conditions on )Ωij (green). Right: Extension-by-zero
on Ωij (red).

prolongation to V ℎ(Ω). Then, the GDSW preconditioner can be written in the form

M−1
GDSW = ΦK

−1
0 Φ

T +
N
∑

i=1
RTi K

−1
i Ri, (8)

with local matrices Ki = RiKRTi , for i = 1, ..., N , and the coarse matrix K0 = ΦTKΦ representing the second level or coarse
problem of the method. Here, the columns ofΦ are coefficient vectors corresponding to the coarse basis functions and the main
ingredients of the GDSW preconditioner. Let us remark that M−1

GDSW defines a preconditioner for the original system defined
in eq. (3) and thus eq. (3) can be solved iteratively with a preconditioned conjugate gradient or GMRES method usingM−1

GDSW
as a preconditioner. This is different to FETI-DP, where the original system from eq. (3) is first reformulated to eq. (5) before a
preconditioner and the iterative solution comes into play.
To define the coarse basis Φ, we consider a partition of the interface Γ of the nonoverlapping domain decomposition into

vertices  and edges  . Then, the discrete characteristic functions of the vertices and edges form a partition of unity on Γ. Now,
let the columns of the matrix ΦΓ be the coefficient vectors corresponding to the characteristic functions corresponding to all
vertices and edges. Then, the matrix ΦΓ has only entries 0 and 1.
Next, we extend the interface values ΦΓ into the interior of the subdomains using discrete harmonic extensions; we denote

the discrete harmonic extension of an interface function �Γ asΓ Ω(�Γ). In matrix form, the discrete harmonic extension of ΦΓ
can be computed as

Φ =
[

ΦI
ΦΓ

]

=
[

−K−1
IIKIΓΦΓ
ΦΓ

]

.

As in the FETI-DP method, the matrix KII = diagNi=1(K
(i)
II ) is block diagonal and contains only the local matrices K (i)

II from the
nonoverlapping subdomains. Therefore, the factorization of KII can be computed block-by-block and in parallel.

2.4.2 Condition number bound for the GDSW preconditioner
The condition number estimate for the GDSW preconditioner

�
(

M−1
GDSWK

)

≤ C
(

1 + H
�

)(

1 + log
(H
ℎ

))2
,

cf. [12, 13], holds also for the general case of Ω decomposed into John domains (in two dimensions), and thus, in particular,
for unstructured domain decompositions. For arbitrary coefficient distributions, the constant C depends on the contrast of the
coefficient function. As a remedy, we will employ the eigenmodes of local generalized eigenvalue problems to compute an
adaptive coarse space that is robust and independent of the coefficient function. As in adaptive FETI-DP, each eigenvalue
problems is associated with a single edge and both neighboring subdomains.

2.4.3 Adaptive GDSW coarse basis functions
In order to extend the GDSW preconditioner to be robust for arbitrary coefficient distributions, we construct edge basis functions
based on local generalized eigenvalue problems. In particular, the coarse basis functions are constructed as discrete harmonic
extensions of the corresponding edge eigenmodes.
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Let Eij be an edge and the Ωij be the union of its adjacent subdomains Ωi and Ωj . Additionally, we define the following
extension-by-zero operator from Eij to Ωij :

zEij Ωij ∶
◦
V ℎ(Eij)→ V ℎ

0

(

Ωij
)

, v → zEij Ωij (v) ∶=
{

v at all interior nodes of Eij ,
0 at all other nodes in Ωij ;

see fig. 7 (right) for a graphical representation. Here,

V ℎ
0

(

Ωij
)

∶=
{

v|Ωij ∶ v ∈ V
ℎ(Ω), v = 0 in Ω ⧵Ωij

}

,

and ◦
V ℎ(Eij) ∶= {v|Eij⧵)Eij ∶ v ∈ V

ℎ(Ω)} is defined via the interior nodes of Eij . ByEij Ωij , we denote the discrete harmonic
extension w.r.t. aΩ(⋅, ⋅) from Eij to Ωij . Specifically, let V ℎ

0,Eij
(Ωl) ∶= {w|Ωl ∶ w ∈ V ℎ(Ω), w = 0 on Eij}. Then, for �Eij ∈

◦
V ℎ(Eij), the extension vEij ∶= Eij Ωij (�Eij ) is given by the solution of

aΩl (vEij , v) = 0 ∀v ∈ V ℎ
0,Eij

(Ωl), l = i, j,

vEij = �Eij on Eij .
(9)

Here, we only prescribe values on Eij , whereas the whole boundary of )Ωij is considered as Neumann boundary in eq. (9);
cf. fig. 7 (left). In order to compute these extensions with Neumann boundary conditions, we need the local Neumann matrices
K (i).
Using the two extension operators zEij Ωij andEij Ωij fromEij toΩij , we solve the following generalized eigenvalue problem

on each edge Eij : find �∗,Eij ∈ V
ℎ
0 (Eij) ∶=

{

v|Eij ∶ v ∈ V
ℎ(Ω), v = 0 on )Eij

}

such that

aΩij (Eij Ωij (�∗,Eij ),Eij Ωij (�)) = �∗,EijaΩij (zEij ΩEij
(�∗,Eij ), zEij ΩEij

(�)) ∀� ∈ V ℎ
0

(

Eij
)

. (10)

Let the eigenvalues be sorted in non-descending order, i.e., �1,Eij ≤ �2,Eij ≤ ... ≤ �m,Eij , and the eigenmodes
accordingly, where m = dim

(

V ℎ
0

(

Eij
))

. Furthermore, let the eigenmodes �∗,Eij be normalized in the sense that
aΩij (zEij ΩEij

(�k,Eij ), zEij ΩEij
(�j,Eij )) = �kj , where �kj is the Kronecker delta symbol.

To construct the AGDSW coarse space, we select all eigenmodes �∗,Eij with eigenvalues below a certain threshold, i.e., �∗,e ≤
tol . Then, the eigenmodes are first extended by zero to the whole interface Γ and then to the interior using energy-minimizing
extensions:

v∗,Eij ∶= Γ Ω
(

zEij Γ(�∗,Eij )
)

(11)
We obtain the AGDSW coarse space

V tol
AGDSW ∶=

⨁

v∈
span

{

�v
}

⊕

(

⨁

e∈
span

{

vk,e ∶ �k,e ≤ tol
}

)

,

where the �v are the coarse basis functions corresponding to vertices in the classical GDSW coarse space. Note that the left
hand side of the eigenvalue problem (10) is singular, and its kernel contains the constant function on the edge. Thus, the classical
GDSW coarse space is always contained in the adaptive GDSW coarse space.
We note that the computation of the adaptive GDSW coarse space, based on local eigenvalue problems associated with edges,

is similar to the adaptive FETI-DP approach. This is sufficient to apply the same machine learning strategy to predict the location
of AGDSWcoarse basis functions, despite strong differences in the specific formulation of the eigenvalue problem. Nevertheless,
there is one important difference when applying the machine learning approach: As already mentioned, in AGDSW, the first
coarse basis function is always necessary, but it can be computed without actually solving the eigenvalue problem. Hence, an
eigenvalue problem will only be marked as necessary in our machine learning based AGDSW if more than one coarse basis
function corresponds to an eigenvalue lower than the chosen tolerance. This is different to ML-FETI-DP.

2.4.4 Condition number bound for AGDSW
The condition number of the AGDSW two-level Schwarz operator in two dimensions is bounded by

�
(

M−1
AGDSWK

)

≤ C

(

1 +
68N2

E

tol

)

(

N̂c + 1
)

The constant N̂c is an upper bound for the number of overlapping subdomains each point x ∈ Ω can belong to. All constants
are independent ofH , ℎ, and the contrast of the coefficient function; cf. [26].
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Alg. � cond it evp fp fn acc
standard - - >300 0 - - -
adaptive - 11.0 ( 15.9) 34.6 (38) 112.0 (112) - - -

ML 0.5 8.6e4 (9.7e4) 39.5 (52) 45.0 ( 57) 1.6 ( 2) 1.9 (3) 0.97 (0.96)
0.45 11.0 ( 15.9) 34.6 (38) 46.9 ( 59) 4.4 ( 6) 0 (0) 0.96 (0.94)

TABLE 2 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular domain decompositions for
the two-class model, for 10 different subsections of the microsection in Figure 10 (right) for a stationary diffusion problem,
with TOL = 100. We show the ML threshold (�), the condition number (cond), the number of CG iterations (it), the number of
solved eigenvalue problems (evp), the number of false positives (fp), the number of false negatives (fn), and the accuracy in the
classification (acc). We define the accuracy (acc) as the number of true positives and true negatives divided by the total number
of edges. We show the average values as well as the maximum values (in brackets). Taken from [30, Table 4].

2.5 Numerical Results for FETI-DP
In order to be competitive, the ML-FETI-DP algorithm, i.e., the combination of adaptive FETI-DP and ML as described above,
has to have two important properties or, in other words, there are two main objectives in the design of the ML-FETI-DP and
the underlying DNN. First, ML-FETI-DP has to be robust and has to have a similar condition number as adaptive FETI-DP.
Second, a lower setup cost than for the fully adaptive approach is desirable, i.e., a large part of the local eigenvalue problems has
to be omitted. Unfortunately, both objectives are sometimes contradictory and a good trade-off has to be found in the design of
the classification network which is used within ML-FETI-DP. As already mentioned, a cheap setup can be reached by a strong
reduction in the number of eigenvalue problems but also by reducing the number of sampling points in the sampling grid.
In contrast, to obtain a small condition number and a robust algorithm, it is essential that the deep neural network delivers

no false negative edges, i.e., does not falsely classify edges to class 0. To set up the neural network properly and to obtain
satisfactory results, many technical details have to be considered. Before we discuss all those details of different training data
sets and the reduction of sampling points, we will first concentrate on a single parameter which illustrates the balancing act
between robustness and efficiency of the method. The simplest adjustment of the DNN is the ML threshold � for the decision
boundary between critical edges (class 1) and uncritical edges (class 0), which can be varied between zero and one. Choosing
a high value for � implies that we set a high priority on a low setup cost since edges are more likely classified as uncritical. In
that case, the risk of having false negative edges is very high. In contrast, choosing a small � implies that we set a high priority
on a robust ML-FETI-DP algorithm and solve some unnecessary eigenvalue problems in the setup phase - one for each false
positive edge. We usually prefer the latter choice. Choosing an appropriate ML threshold, the ML-FETI-DP algorithm can be
as robust as adaptive FETI-DP with a reduced setup cost; see table 2 for a first comparison with standard FETI-DP and adaptive
FETI-DP. Here, � = 0.45 proved to be a good choice while choosing a threshold of � = 0.5 deteriorates the robustness by adding
false negative edges; see fig. 8. We further provide the Receiver Operating Characteristic (ROC) curve and a precision-recall
plot for the optimized neural network model in fig. 9. Here, the threshold � is varied between zero and one and the considered
thresholds � ∈ {0.45, 0.5} are indicated as circles.
In the remainder of this section we will discuss all the technical details which underlie the excellent performance of ML-

FETI-DP shown in table 2 and table 1. First, we show comparison results for the ML-FETI-DP algorithm using different sets of
training data, as described in section 2.2, for both stationary diffusion and linear elasticity problems. Second, we summarize the
obtained numerical results when reducing the sampling effort, i.e., computing a reduced number of sampling points for input
data of the neural network. As realistic test problems for our algorithm, we use 10 different and randomly chosen subsections
of the microsection of a dual-phase steel in fig. 10 (right); see also fig. 10 (left) and fig. 1 for examples of a specific subsection
used as the coefficient distribution in our computations. Let us note that these specific coefficient distributions are explicitly
not included in the training and validation data. Additionally, we provide the resulting accuracy values and percentages of false
negative and false positive edges for the different training and validation data sets to prove that all trained neural networks
provide a reliable model. All computations in this section have been performed using the machine learning implementations in
TensorFlow [1] and Scikit-learn [65] as well as our Matlab implementation of the adaptive FETI-DP method.

Different Training Datasets
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FIGURE 8 Comparative results for ML-FETI-DP for different ML thresholds � for a regular domain decomposition into 8 × 8
subdomains and a stationary diffusion problem. Edgeswhich are classified correctly to class 0 or 1 are notmarked or, respectively,
marked in green. False positive edges are marked in yellow and false negative edges are marked in red. Left: Larger � = 0.5
results in lower setup cost but less robustness. Right: Lower � = 0.45 results in higher setup cost but also higher robustness
(preferable). See also condition number and savings in eigenvalue problems in comparison to adaptive FETI-DP in the white
boxes. Taken from [30, Fig. 11].

FIGURE 9 ROC curve and precision-recall plot for the optimal model obtained by a grid search for the FETI-DP method.
We define precision as true positives divided by (true positives+false positives), and recall as true positives divided by (true
positives+false negatives). The thresholds used in section 2.5 are indicated as circles. Taken from [30, Fig. 8].

We now summarize the numerical results from [30] and [27], where the performance of the proposed machine learning based
adaptive FETI-DP algorithm was tested for different choices of training and validation data sets to train our neural network. As
described in detail in [27], we use a set of 4,500 smart data configurations (denoted by ’S’) and sets of 4,500 and 9,000 random
data configurations (denoted by ’R1’ and ’R2’, respectively) each individually as well as a combination of 4,500 smart and 4,500
random data configurations, which will be denoted by ’SR’. Let us note that we did not observe a significant improvement for
a larger number of 18,000 random data configurations.
As already mentioned, we deliberatly investigated the performance of the trained DNNs for the different training data sets for

different coefficient distributions, which were explicitly not included in the training data. In particular, we applied the respective
trained networks to 10 different randomly chosen subsections of a microsection as shown in Figure 10 (right). In all presented
computations, we consider �1 = 1e6 in the black part of the microsection and �2 = 1 elsewhere in case of a stationary diffusion
problem and E1 = 1e6, E2 = 1, and a constant � = 0.3 in case of a linear elasticity problem, respectively. For the discretization
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FIGURE 10 Left: Subsection of a microsection of a dual-phase steel obtained from the image on the right. We consider � = 1e6
in the black part and � = 1 elsewhere. Right: Complete microsection of a dual-phase steel. Right image: Courtesy of Jörg
Schröder, University of Duisburg-Essen, Germany, orginating from a cooperation with ThyssenKruppSteel. Taken from [27,
Fig. 4].

of this model problem we use a regular decomposition of the domain Ω into 64 square subdomains and a subdomain size of
H∕ℎ = 64. For the selection of the adaptive coarse constraints we use a tolerance of TOL = 100. For the test data, i.e., the
mircosection subsections, we will only compute the local eigenvalue problems on edges which are classified as critical (class 1)
by the neural network. On all uncritical edges (class 0), we do not enforce any constraints. For the respective ML classification,
we use a ML threshold � of 0.5 and 0.45 for the classification for the decision boundary between critical and uncritical edges.
Let us note that a lower threshold � decreases the false negative rate of the predictions and thus increases the robustness of our
algorithm; cf. also the explanations on the balancing act of our algorithm at the beginning of this section. For the 10mircosections
and the stationary diffusion problem (see table 3) all four different training data sets result in a robust algorithm when using an
ML threshold � = 0.45. For all these approaches, we obtain no false negative edges, which are critical for the convergence of the
algorithm. However, the use of 4,500 and 9,000 random data (see R1 and R2) results in a higher number of false positive edges
compared to the sole use of 4,500 smart data, resulting in a larger number of computed eigenvalue problems. For linear elasticity
and the 10 microsections, see table 4, the results are fairly comparable. Again, the use of the smart data training set provides
the best trade-off between robustness and computation cost since we obtain no false negative edges and only 4.8 false positive
edges on average. Additionally, also using 9,000 random data (R2) as well as the combined training data set (SR) provides no
false negative edges when choosing the ML threshold � = 0.45. However, for both cases we have a slightly increased number of
false positive edges compared to S which results in a slightly higher computational effort. On the other hand, the advantage of
the randomized training data lies in the random generation of the coefficient distributions which is possible without any specific
problem-related knowledge. Let us also remark that setting up a smart data set in three dimensions is very complicated and we
thus prefer a randomly generated set in this case. Given the relatively low share of additional false positive edges compared to the
number of saved eigenvalue problems, we can conclude that we can achieve comparable results using the randomized training
data when generating a sufficient amount of coefficient configurations.

Reducing the Computational Effort
In addition to the performance of different training data sets, we have also investigated the effect of using a reduced number of
sampling points as input data for the neural network by sampling in slabs of different width; see also fig. 6. Since the smart data
as well as an increased number of randomized training data showed comparable results in the previous experiments, we solely
have used the smart data for this investigation. Moreover, we focus on the ML threshold � = 0.45 which led to the most robust
results for the full sampling approach.
We show comparison results for the original approach with full sampling as introduced in [30] and for further, different

sampling approaches on slabs. In particular, for subdomains of widthH , we consider the cases of sampling in one half and one
quarter, i.e., H∕2 and H∕4, as well as the extreme case when sampling only inside minimal slabs of the width of one finite
element, i.e., ℎ. As already mentioned, our machine learning problem is, in principle, an image recognition task. Thus, the latter
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Alg. T-Data � cond it evp fp fn acc
standard - - - >300 0 - - -
adaptive - - 11.0 ( 15.9) 34.6 (38) 112.0 (112) - - -

ML S 0.5 8.6e4 (9.7e4) 39.5 (52) 45.0 ( 57) 1.6 ( 2) 1.9 (3) 0.97 (0.96)
S 0.45 11.0 ( 15.9) 34.6 (38) 46.9 ( 59) 4.4 ( 6) 0 (0) 0.96 (0.94)

R1 0.5 1.3e5 (1.6e5) 49.8 (52) 43.2 ( 44) 7.4 ( 8) 3.8 (4) 0.88 (0.87)
R1 0.45 11.0 ( 15.9) 34.6 (38) 53.8 ( 58) 14.6 (16) 0 (0) 0.86 (0.84)
R2 0.5 1.5e5 (1.6e5) 50.2 (51) 40.4 ( 41) 5.6 ( 6) 3.4 (4) 0.91 (0.89)
R2 0.45 11.0 ( 15.9) 34.6 (38) 50.4 ( 52) 11.2 (12) 0 (0) 0.90 (0.87)
SR 0.5 9.6e4 (9.8e4) 45.8 (48) 38.2 ( 39) 1.8 ( 2) 1.6 (2) 0.96 (0.95)
SR 0.45 11.0 ( 15.9) 34.6 (38) 43.4 ( 44) 4.8 ( 5) 0 (0) 0.96 (0.94)

TABLE 3 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for regular domain decompositions for
the two-class model, for 10 different subsections of the microsection in Figure 10 (right) for a stationary diffusion problem,
with TOL = 100. Here, training data is denoted as T-Data. See table 2 for the column labeling. Taken from [27, Table 2].

Alg. T-Data � cond it evp fp fn acc
standard - - - >300 0 - - -
adaptive - - 79.1 ( 92.8) 87.4 (91) 112.0 (112) - - -

ML S 0.5 9.3e4 (1.3e5) 92.2 (95) 44.0 ( 56) 2.2 ( 3) 2.4 (3) 0.96 (0.95)
S 0.45 79.1 ( 92.8) 87.4 (91) 48.2 ( 61) 4.8 ( 7) 0 (0) 0.95 (0.93)

R1 0.5 1.4e5 (1.6e5) 96.6 (98) 47.2 ( 48) 7.6 ( 8) 4.0 (5) 0.90 (0.88)
R1 0.45 1.7e3 (2.1e4) 90.4 (91) 53.6 ( 57) 13.4 (16) 0.8 (1) 0.87 (0.86)
R2 0.5 1.1e5 (1.3e5) 96.2 (97) 46.8 ( 48) 7.0 ( 8) 3.6 (5) 0.91 (0.89)
R2 0.45 79.1 ( 92.8) 87.4 (91) 52.8 ( 57) 11.6 (12) 0 (0) 0.90 (0.87)
SR 0.5 9.7e4 (9.9e4) 94.8 (97) 45.8 ( 47) 5.8 ( 6) 3.0 (4) 0.92 (0.93)
SR 0.45 79.1 ( 92.8) 87.4 (91) 50.6 ( 61) 8.8 (10) 0 (0) 0.92 (0.90)

TABLE 4 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a regular domain decomposition into
8 × 8 subdomains with H∕ℎ = 64, linear elasticity, the two-class model, and 10 different subsections of the mircosection in
Fig. 10 (right), with TOL = 100. We denote by ’S’ the training set of 4,500 smart data, by ’R1’ and ’R2’ a set of 4,500 and
9,000 random data, respectively, and by ’SR’ the combination of 4,500 smart and 4,500 random data. See table 2 for the column
labeling. Taken from [31, Table 1].

sampling approaches correspond to the idea of using only a fraction of pixels of the original image as input data for the neural
network. We have focused on linear elasticity problems for the remainder of this paragraph.
As we can observe from table 5, using again the mircosection problem in fig. 10 (left) as a test problem, both sampling in

slabs of widthH∕2 andH∕4 results in a robust algorithm in terms of the condition number and the iteration count when using
the ML threshold � = 0.45. For both approaches, we obtain no false negative edges which are critical for the convergence of the
algorithm. However, using fewer sampling points results in a higher absolute number of false positives edges and therefore in a
larger number of computed eigenvalue problemswith a higher computational effort.When applying the extreme case of sampling
only in slabs of width ℎ, we do not obtain a robust algorithm for the mircosection problem since the convergence behavior clearly
deteriorates. Hence, it is questionable if the latter sampling approach does provide a reasonable machine learning model. The
weak performance of the latter sampling approach can also be observed for the training data; see the following discussion on
the training and validation data. With respect to our model problems we can summarize that reducing the size of the sampling
grid in order to reduce the effort in the training and evaluation of the neural network still leads to a robust algorithm. However,
we can also observe that the slab width for the sampling cannot be chosen too small and a sufficient number of finite elements
close to the edge have to be covered by the sampling.
Finally, we present results for the whole set of training data using cross-validation and a fixed ratio of 20% as validation data

to test the generalization properties of our neural networks. Please note that due to different heterogeneity of the various training
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Model Problem Algorithm � cond it evp fp fn acc
standard - - >300 0 - - -

Microsection adaptive - 84.72 89 112 - - -
Problem ML, full sampling 0.5 9.46e4 91 41 2 2 0.96

ML, full sampling 0.45 84.72 89 46 5 0 0.95
ML, sampling inH∕2 0.45 84.72 89 47 6 0 0.95
ML, sampling inH∕4 0.45 85.31 90 48 7 0 0.94

ML, sampling in ℎ 0.45 10.9e5 137 50 19 10 0.74

TABLE 5 Comparison of standard FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a regular domain decomposition into
8×8 subdomains withH∕ℎ = 64, linear elasticity, the two-class model, and the microsection subsection in Fig. 10 (left), with
TOL = 100. See table 2 for the column labeling. Taken from [31, Table 3].

data, the accuracies in table 6 are not directly comparable with each other. However, the results in table 6 serve as a sanity check
to prove that the specific trained model is able to generate appropriate predictions. Let us further note that we always have to
generate a separate training data set for stationary diffusion and linear elasticity problems, respectively, since the number of
necessary adaptive constraints can differ for the two aformentioned model problems. However, since the performance for the
different sets of training data are comparable for both types of model problems, we exclusively show the results for the training
data for linear elasticity problems in table 6. As we can observe from the results in table 6 training the neural network with the set
of smart data as well as with a combination of the smart and randomized coefficient distributions leads to the highest accuracy
values, i.e., the highest numbers of true positive and true negative edges in relation to the total number of edges. However,
also training the neural network with solely the randomly generated coefficient functions leads to an appropriate model while
we can observe the tendency that a higher number of training data is needed to obtain comparable accuracy values. Moreover,
when using the smart training data, both sampling with a width ofH∕2 andH∕4 leads to accuracy values in the classification
that are only slightly lower than for the full sampling approach. In particular, we obtain slightly increased false positive values,
corresponding to an increased computational effort in terms of the solution of eigenvalue problems. For the extreme case of
sampling only in slabs of minimal width ℎ, thus, using the minimal possible width in terms of finite elements, the accuracy value
drops from 88.4% to 71.7% for the two-class model for the threshold � = 0.45. Thus, also for the training data, it is questionable
whether this extreme case does still provide a reliable machine learning model. This is also supported by the weak performance
of the respective trained neural network for the test problem in form of the microsection; see also table 5.

2.6 Numerical Results for GDSW
In this section, for the first time, wewill apply ourmachine learning framework to an overlapping adaptive domain decomposition
method, the adaptive GDSW method; see also section 2.4. The adaptive GDSW algorithm is also based on the solution of
localized eigenvalue problems on edges in 2D and on faces and edges in 3D. Thus, we can extend ourmachine learning techniques
to the classification of critical edges for the GDSW coarse space. In particular, the presented results have not yet been published
in previous works and are an extension of the already existing publications [30, 27, 31] for the FETI-DP algorithm. Since the
classification of critical edges can be different for adaptive GDSW than for adaptive FETI-DP, we have generated a separate
training data set for the GDSW approach. As for FETI-DP, we generated 4 500 randomized coefficient distributions using the
techniques described in fig. 4 to build the training and validation data set. We denote this training data set by R1’. For each pair
of neighboring subdomains sharing an edge we solved the respective eigenvalue problem and saved the classification whether
at least one adaptive constraint is necessary for the respective edge or not for the robustness of the algorithm. In particular, we
used the overlap � = 1 and the tolerance tol = 0.01 for the generation of the training data. Let us briefly comment on the
classification of edges for the GDSW approach. As already mentioned in section 2.4.3, in AGDSW, the first coarse basis function
is always necessary for robustness. It corresponds to the constant function on the edge and can thus be computed without actually
solving the eigenvalue problem. Therefore, for ML-AGDSW all critical edges where more than the single constant constraint is
necessary are classified as class 1. Let us note that this is different to class 1 for ML-FETI-DP.
To prove that the described machine learning framework can successfully be applied to other domain decomposition

approaches than the FETI-DP method, we show comparison results for standard GDSW, using exclusively one constant con-
straint per edge, the adaptive GDSW, and our new ML-AGDSW algorithm. Since these are the first results obtained for GDSW,
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two-class three-class
training configuration � fp fn acc � fp fn acc

S, full sampling 0.45 8.9% 2.7% 88.4% 0.4 5.2% 2.0% 92.8%
0.5 5.5% 5.6% 88.9% 0.5 3.3% 3.3% 93.4%

S, sampling inH∕2 0.45 8.0% 2.6% 89.4% 0.4 9.6% 4.3% 86.1%
0.5 5.9% 4.0% 90.1% 0.5 7.4% 5.0% 87.6%

S, sampling inH∕4 0.45 8.2% 2.7% 89.1% 0.4 10.4% 3.9% 85.7%
0.5 5.7% 4.5% 89.8% 0.5 8.1% 4.8% 87.1%

S, sampling in ℎ 0.45 20.8% 7.5% 71.7% 0.4 22.4% 9.2% 68.4%
0.5 15.4% 12.9% 72.3% 0.5 15.0% 15.3% 69.7%

S, full sampling 0.45 8.9% 2.7% 88.4% 0.4 5.2% 2.0% 92.8%
0.5 5.5% 5.6% 88.9% 0.5 3.3% 3.3% 93.4%

R1, full sampling 0.45 12.9% 6.4% 80.7% 0.4 10.7% 8.0% 81.3%
0.5 8.6% 9.1% 82.3% 0.5 8.9% 9.3% 81.8%

R2, full sampling 0.45 9.9% 5.5% 84.6% 0.4 9.8% 4.8% 85.4%
0.5 7.0% 7.2% 85.8% 0.5 7.2% 6.4% 86.4%

SR, full sampling 0.45 8.7% 3.1% 88.2% 0.4 6.7% 2.9% 90.4%
0.5 5.3% 5.4% 89.3% 0.5 4.5% 4.4% 91.1%

TABLE 6 Results on the complete training data set for FETI-DP and linear elasticity; the numbers are averages over all training
configurations. See table 2 for the column labeling.

here, we focus on stationary diffusion problems and regular domain decompositions. As a test problem for our ML-AGDSW
method we use again subsetions of the mircosection problem in fig. 10. However, we explicitly use different decompositions of
the domain Ω, i.e., different discretizations as for the FETI-DP method in section 2.5. For all presented computations we set
� = 1e6 in the black parts of the mircosections and � = 1 elsewhere.
As a first test problem, we use a decomposition of the microsection in fig. 10 (left) into 4 × 4 subdomains and 6 272 finite

elements per subdomain. The obtained results for the different GDSW coarse spaces are presented in table 7. As we can observe
from table 7, using the standard GDSW coarse space clearly fails to provide a robust algorithm since 297 iterations are needed
until convergence and the condition number bounds has the magnitude of the coefficient contrast. Thus, using exclusively con-
stant constraints for each edge is not sufficient for this model problem and additional coarse constraints are necessary. Using
our ML-AGDSW approach and the ML threshold � = 0.45 we are able to achieve nearly the same performance as the adaptive
GDSW. Even though we obtain a single false negative edge the respective condition number estimate is clearly independent of
the coefficient contrast and the iteration number is sufficient. As a second test problem we use a domain decomposition with
8×8 subdomains and again 6 272 finite elements per subdomain for the mircosection problem in fig. 10 (left); see table 8. Here,
using the ML threshold � = 0.45 we obtain no false negative edges and 4 false positive edges. As a result we observe almost the
same convergence properties and condition number estimate as for the adaptive GDSW while we only have to solve 27 instead
of 112 eigenvalue problems on edges. Let us note that we have used the same ML thresholds � ∈ {0.45, 0.5} for the decision
boundary between the two classes of edges as for the ML-FETI-DP approach. Since the presented results are the first obtained
results for the ML-AGDSW approach, we have not yet fully optimized the decision threshold � for the ML-AGDSW approach.
This will be done in future research on the ML-AGDSW method. Finally, we provide the results, i.e., the accuracy values and
the percentages of false positive and false negative edges for the training and validation data in table 9. These results serve as a
sanity check that our trained neural network provides a reliable model. Let us remark that we have slightly modified the network
architecture compared to the networks used for ML-FETI-DP to achieve comparable results on the training and validation data.

2.7 Ongoing and Future Research
The techniques described above can also be adapted such that they can be applied in three dimensions; see [28]. In [28] we
describe the central difficulties and the necessary extensions and show numerical results for ML-FETI-DP in three dimensions.
Let us briefly describe the main differences from the two-dimensional case. First, the essential eigenvalue problems are no longer
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Model Problem Algorithm � cond it evp fp fn acc
standard GDSW - 1.61e6 297 0 - - -

Microsection adaptive GDSW - 182.89 84 24 - - -
Problem ML-AGDSW 0.5 5.47e4 91 14 2 2 0.96

ML-AGDSW 0.45 201.42 86 16 3 1 0.83

TABLE 7 Comparison of standard GDSW, adaptive GDSW, and ML-AGDSW for a regular domain decompositionwith 4×4
subdomains andH∕ℎ = 56 for the two-class model, with tol = 0.01. See table 2 for the column labeling.

Model Problem Algorithm � cond it evp fp fn acc
standard GDSW - 3.66e6 500 0 - - -

Microsection adaptive GDSW - 162.60 95 112 - - -
Problem ML-AGDSW 0.5 9.64e4 98 25 2 2 0.95

ML-AGDSW 0.45 163.21 95 27 4 0 0.95

TABLE 8 Comparison of standard GDSW, adaptive GDSW, and ML-AGDSW for a regular domain decompositionwith 8×8
subdomains andH∕ℎ = 56 for the two-class model, with tol = 0.01. See table 2 for the column labeling.

training configuration threshold fp fn acc

R1’, full sampling 0.45 11.3% 3.3% 85.4%
0.5 6.7% 7.1% 86.2%

TABLE 9 Results on the complete training data set for the GDSW method and stationary diffusion; the numbers are averages
over all training configurations. See table 2 for the column labeling.

related to edges, but to faces between two neighboring subdomains. Second, we only considered randomly generated training
data, since generating a smart, i.e., manually selected set of coefficient distributions containing all the necessary phenomena,
is a complicated task in three dimensions. Third, building an appropriate grid of sampling points with a consistent ordering of
the sampling points is more difficult in three dimensions when considering irregular domain decompositions obtained by, e.g.,
the graph partitioning software METIS. To obtain such an ordering, we first project each face onto a two-dimensional plane,
optimize the triangulation of the projection, define a consistently ordered sampling grid on the optimized projection, and finally
project this sampling grid back to three dimensions. Using these modifications, the ML-FETI-DP approach can successfully be
used in three dimensions as well; see [28] for details.
In addition to the three-dimensional ML-FETI-DP approach, there are various possibilities for future research considering

the combination of ML and adaptive DDMs. First, it is our goal to include ML-FETI-DP and ML-AGDSW into our parallel
software packages based on PETSc and, respectively, Trilinos. This is important to prove that both approaches can actually save
computation time compared to the adaptive methods in a parallel computation. Second, a three-dimensional version of ML-
AGDSW is planned [32]. Third, we plan to investigate the opportunity to predict the adaptive coarse constraints or coarse basis
functions directly using a machine learning approach, i.e., a method without the need for solving any eigenvalue problems in
the online stage.

3 PHYSICS-INFORMED DEEP NEURAL NETWORKS IN DOMAIN DECOMPOSITION
METHODS

A completely different approach to combine ML with DDMs was suggested in [53] and [51]. In [53], Li, Xiang, and Xu replaced
the subdomain solvers of a classical Schwarz domain decomposition approach by physics-informed neural networks (PINNs).
Here, PINNs replace the discretization of the local subdomain problems and the training of PINNs replaces the solution process.
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The resulting new deep-learning-based DDmethod is named DeepDDM and applied to two-dimensional elliptic partial differen-
tial equations (PDEs) as a proof of concept. In [51] Li, Tang, Wu, and Liao presented a very similar approach. Here, the authors
use the Deep Ritz method [16] to replace the subdomain solvers of a classical overlapping Schwarz approach. This means that,
in contrast to [53], the trained neural networks (NNs) are based on the variational formulation of the underlying partial differ-
ential equations. In particular, the loss functions used in the optimization process are different from the ones in [53] and the
approach corresponds to a discretization of the variational formulation of the PDEs. The corresponding variational deep learn-
ing approach is named D3M. In this review article, we will first briefly introduce the concept of PINNs as well as the Deep Ritz
method and then the use of physics-constrained neural networks as subdomain solvers in DDMs as suggested in [53] and [51].

3.1 Physics-informed neural networks (PINNs)
The basic idea of PINNs is to integrate domain specific knowledge into neural networks by enhancing the loss function with the
residual error of a certain differential equation; see, e.g., [68]. Hence, the objective is to obtain solutions which do not only fit
some given training data but also satisfy a given ordinary or partial differential equation in a least square sense. We will briefly
explain the concept considering a boundary value problem of the general form

(u) = f in Ω
(u) = g on )Ω

(12)

on the domain Ω ⊂ ℝd , d = 2, 3, where  is a linear, second-order, elliptic differential operator and  represents the boundary
conditions. We now define a PINN which actually solves eq. (12). Hence, we aim for a feedforward neural network (⋅,W , b)
satisfying eq. (12) in a least square sense with weights W and biases b. The input data of the neural network are collocation
points located inside the domain Ω as well as on the boundary )Ω. To obtain a neural network  solving the boundary value
problem eq. (12), the loss function has to be enhanced by a point-wise error of the residual of the PDE. Thus, the loss function
is defined as

(W , b) ∶=Ω(W , b) +)Ω(W , b)

Ω(W , b) ∶= 1
Nf

Nf
∑

i=1
|( (xif ,W , b)) − f (xif )|

2

)Ω(W , b) ∶= 1
Ng

Ng
∑

i=1
|( (xig ,W , b)) − g(xig)|

2,

(13)

with collocation points xif , i = 1, ..., Nf , located in the domain Ω and collocation points xig , i = 1, ..., Ng , located on the
boundary )Ω. Note that the derivatives of the neural network occurring in the operators and are evaluated using the backward
propagation algorithm and automatic differentiation [3]. Now, as usual, the training of the neural network consists of solving
the optimization problem

{W ∗, b∗} ∶= arg min
{W ,b}

(W , b) (14)

using a stochastic gradient approach based on mini-batches built from all collocation points. We note that the loss term
Ω(W , b) enforces the PINN to satisfy the condition(u) = f in a least square sense, while)Ω(W , b) enforces the boundary
condition.

3.2 The Deep Ritz method
The central idea of the Deep Ritz method [16] is to apply deep neural networks for solving PDEs in variational form. In particu-
lar, the Deep Ritz method is based on the Ritz approach to formulate the PDE (eq. (12)) as an equivalent minimization problem
(Dirichlet’s principle) which is then discretized and solved by a deep neural network in combination with a numerical integra-
tion method. Let us additionally assume that eq. (12) is self-adjoint, then solving the PDE is equivalent to the solution of the
minimization problem

min
u

(u) s.t. (u) = g on )Ω (15)
with

(u) = ∫
Ω

(1
2
|∇u(x)|2 − f (x)u(x)

)

dx. (16)

Technically speaking, equivalence of the solutions of course requires the variational solution to satisfy a certain regularity. Here,
the function u is also referred to as a trial function. The basic idea of the Deep Ritz method is now to approximate the trial
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function u by a deep neural network and to use a numerical quadrature rule to approximate the minimizing functional (u). We
denote by ̃ (⋅,W , b) the neural network-based approximation of the trial function u and introduce the function

ℎ(x,W , b) ∶= 1
2
|∇x̃ (x,W , b)|2 − f (x)̃ (x,W , b).

Thus, we obtain the approximation of the functional (u) in eq. (16) as

̃Ω(W , b) ∶= ∫
Ω

ℎ(x,W , b)dx. (17)

Combining these definitions with eq. (15) yields the following minimization problem

min
W ,b

̃Ω(W , b), s.t. (̃ (⋅,W , b)) = g on )Ω.

For the Deep Ritz method, the integral in ̃Ω(W , b) is now approximated by numerical integration; thus, each integration point
inΩ principally becomes a collocation point; see also section 3.1. Here, we will denote the integration points also as collocation
points. Whenmimimizing ̃Ω(W , b)with a stochastic gradient approach, at each step of the iteration, the authors of [16] choose
a mini-batch of collocation points to discretize the integral in eq. (17) and use the same quadrature weights at all collocation
points; see also [16, Sect.2.2]. For the additional approximation of the boundary condition(̃ (⋅,W , b)) = g on )Ω, the authors
in [16] and [51] introduce a penalty term, which is based on the Langrangian formula. This results in a second loss term

̃)Ω(W , b) ∶= q ∫
)Ω

|(̃ (x,W , b)) − g(x)|2dx, (18)

where the penalty parameter q is a Lagrange multiplier. As for the loss component ̃Ω(W , b), the integral in the boundary loss
̃)Ω(W , b) is approximated by a finite sum over a number of collocation points, i.e., using numerical quadrature with equal
weights for each integration point. Analogously to section 3.1, we define the collocation points x̃if , i = 1, ..., Ñf , located in the
domain Ω and the collocation points x̃ig , i = 1, ..., Ñg , located on the boundary )Ω. This finally yields the discrete loss function
for the Deep Ritz method

̃(W , b) ∶= ̃Ω(W , b) + ̃)Ω(W , b) with

̃Ω(W , b) = 1
Ñf

Ñf
∑

i=1
ℎ(x̃if ,W , b)

̃)Ω(W , b) = q 1
Ñg

Ñg
∑

i=1
|(̃ (x̃ig ,W , b)) − g(x̃ig)|

2.

(19)

Again, as in section 3.1, the derivatives of the neural network occuring in eq. (19) are evaluated using the backward propagation
algorithm and automatic differentiation [3].

3.3 Deep Domain Decomposition Methods – Using PINNs and Deep Ritz as subdomain solvers
Having defined a solver for the boundary value problem in eq. (12) by training the neural network  with certain collocation
points and the loss function given in eq. (13) or eq. (19), respectively, it can also be used to solve the subdomain problems in
DDMs. This approach has been applied to a parallel overlapping Schwarz method using PINNs [53] and the Deep Ritz method
[51]. Both resulting algorithms are denoted as Deep Domain Decomposition method and abbreviated as DeepDDM in [53] and
D3M in [51]. To better distinguish them, we will make use of the acronyms DeepDDM and D3M in the following. Although
a neural network  in this subsection can be either defined using PINNs or the Deep Ritz method, to avoid a proliferation of
notation, we do not distinguish here between them in the notation.
In any DDM, information has to be exchanged between the subdomains in order to obtain a global solution. As an example,

the condition BBuB = 0 in eq. (4) has to be enforced in FETI-DP and in each iteration the jump over the interface between the
subdomains has to be evaluated. In the DeepDDM [53] as well as the D3M approach [51], which are both based on an a parallel
overlapping Schwarz fixed point iteration, the exchange of information is enforced via additional boundary conditions, which
change in each fixed-point iteration until convergence; see [54] or [75] for the parallel overlapping Schwarz method. This simply
gives a third loss term with additional collocation points. For a formal description of the algorithm, we divide the computational
domain Ω into N overlapping subdomains Ωs, s = 1, ..., N . Then, we solve the following problems on each subdomain in
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parallel:
(us) = f in Ωs
(us) = g on )Ωs ⧵ Γ
(us) = (ur) on Γs.

(20)

Here, we have the additional boundary condition  on Γs ∶= )Ω⧵)Ωs, and the solution ur on the neighboring subdomains.
Defining N separate physics-constrained NNs s, s = 1, ..., N , each one solving a single subdomain problem as in eq. (20),
means first restricting the loss terms defined in eq. (13) and eq. (19) to the respective subdomain Ωs, which is straightforward,
and second adding an interface-related term. The latter one is related to the interface transmission condition and simply writes

Γs(W , b) ∶= 1
NΓs

NΓs
∑

i=1
|(s(xiΓs ,W , b)) −(r(xiΓs ,W , b))|2.

Here, xiΓs , i = 1, ..., NΓs , are the chosen collocation points on the local interface Γs, Ωr is the corresponding neighboring
subdomain, i.e., the respective collocation point xiΓs is located on )Ωs∩)Ωr, andr is the NN trained to solve the local problem
on subdomain Ωr. Based on a parallel overlapping Schwarz method, Li, Xiang, and Xu defined the PINN-based DeepDDM
algorithm in [53, Algorithm 2], which we condense to a brief pseudo code comprising the basic ideas; see algorithm 1. Let us
note that algorithm 1 can also be seen as a generic description of the D3M method [51]. The corresponding training procedure
is very similar to the approach presented in [53] except that the local neural networks in [51] are trained via the variational
principle. Bothmethods are based on a divide and conquer principle in the sense that separate NNs are trained for each subdomain
and only information on the overlap of the subdomains is communicated in each iteration. In particular, the training of the
physics-constrained NNs per subdomain can be done completely in parallel. For all details and especially the necessary stopping
criterion, we refer to [53, Algorithm 2] as well as [51, Algorithm 1 and 2].

Algorithm 1Brief sketch of theDeepDDMandD3Malgorithms; see [53, Algorithm 2] and[51, Algorithm 1 and 2], respectively,
for details.

Init: Weights and biases for all local PINNs (one for each subdomain) and interface solutions uΓs , s = 1, ..., N for all
collocation points on the local interface

Loop until convergence of the DD method

Train all local PINNss, s = 1, ..., N , for all subdomains (parallelizable)

Communicate the Dirichlet data (s), s = 1, ..., N , between neighboring subdomains

Update uΓs , s = 1, ..., N , using (r) obtained from the neighboring subdomains

End Loop

Let us finally summarize some important findings and remarks on the training of the introduced physics-constrained NNs.
First, when using a stochastic gradient descent method and dividing the total set of collocation points into mini-batches, it
is important for the performance that all boundary and interface collocation points or at least a sufficient share of them are
redundantly part of each mini-batch. Only the interior collocation points can be divided in mini-batches as usual in the training
of DNNs. This is based on the observation that for solving a general PDE, the boundary information is quite essential. For a
further analysis of the respective numbers of collocations points, we refer to [53, 51]. Second, both DeepDDM and D3M inherit
the parallelization capacities from the underlaying DDM since the physics-constrained NNs local to the subdomains can be
trained in parallel. The only synchronization point is the exchange of information on the overlap.

4 FURTHERWORK ON COMBINING MACHINE LEARNING AND DOMAIN
DECOMPOSITION METHODS

To provide a broader overview, we collect and briefly describe some more approaches combining the idea of domain decompo-
sition and machine learning. We divide the approaches in three different classes. In general, many methods combining domain
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decomposition ideas and machine learning are based on neural networks with loss functions enhanced by the physical laws that
govern the data, as modeled by PDEs. Similar to the two approaches which we described in detail in section 3 the loss function
which is minimized in the training of physics-constrained NNs can be based on the strong or the variational form of the under-
lying PDEs. Therefore, we sub-divide the approaches based on NNs used for the discretization with respect to the constructed
type of loss function. As a third class we consider related work which is based on different machine learning techniques other
than physics-informed or theory-guided neural networks. Let us note that we do not claim nor attempt to provide an exhaustive
list of all related work combining domain decomposition ideas and machine learning since this is beyond the scope of this paper.
Instead, we aim to present a number of different related approaches to provide a broad overview of the ongoing work within this
field of research.

Machine learning based discretization of the strong form of the PDEs
In [15] the authors introduce the concept of distributed PINNs (DPINNs) for the efficient solution of partial differential equations.
In contrast to standard PINNs, DPINNs benefit from an improved distribution of the data and can provide more accurate solu-
tions with the same or less effort. The approach is motivated by the finite volume method and thus the authors decompose the
computational domain into nonoverlapping cells, which can also be interpreted as the subdomains in a DDM. Then, for each cell
a separate, local PINN with a loss function based on collocation points from the interior of the cell is installed; see section 3.1
for a description of PINNs. Additionally, again motivated by the flux conditions of the finite volume method, a loss term for the
interface conditions is introduced which is associated with collocation points located on the boundary of the cells. Finally, the
DPINN approach is based on training all local PINNs together by minimizing the sum of all local losses plus the interface loss.
In difference to the approaches described in section 3, some interface information has to be communicated in each step of the
optimization approach used in the training of the network.
In [74] the authors interpret PINNs (see section 3.1) as neural solvers in the sense that trained PINNs predict time-dependent

solutions of a system of PDEs at any point in space and time. The authors especially focus on the reduction of computational
effort within the training process of PINNs and propose to learn a domain decomposition which steers the number of neurons
per layer within a PINN. The main idea is to incorporate conditional computing into the PINNs framework in order to learn
an arbitrary decomposition of the computational domain, i.e., the neural network, which is adaptively tuned during the training
process. Here, conditional computing denotes an approach that activates only certain neurons or units of a neural network
depending on the network input ; see [6, 70] for more details. Based on this concept the authors introduce GatedPINNs which
rely on a number of experts which decompose the neural network and are each modelled by a simple MLP; see [74, Sect. 3.2]
for further details. The authors show comparative results for the GatedPINN and standard PINN approach and are able to reduce
the training time significantly.
In [60] the authors present a different type of decomposition of PINNs used for the solution of time-dependent systems of

PDEs in a given spatio-temporal domain. Here, themain idea is to split a long-time computational domain intomany independent
temporal slices and train a separate PINN for each obtained time interval. The obtained NN is denoted by parareal physics-
informed neural network (PPINN) as it is inspired by the original parareal algorithm [55]. When implementing PPINNs, two
different propagators have to be employed: a serial CG solver representing the coarse correction of the solution and a number
of fine PINNs for the different time intervals. In each iteration, all fine PINNs can be trained completely in parallel and only
after the fine solutions at all time-dependent collocation points have been obtained, the discrepancy between the coarse and fine
solution can be computed. Then, the serial CG PINN is run on the coarse grid, i.e., on the boundary between the different time
intervals, to update the solution at all collocation points between two neighboring subdomains.
A domain decomposition-based approach for the discretization of arterial trees using PINNs was proposed in [38]. In order

to predict arterial blood pressure from non-invasive 4D flow MRI, the authors decompose the arterial tree into artery segments,
which can be regarded as the subdomains of a nonoverlapping domain decomposition, and which are connected at the bifur-
cations of the tree. Each artery segment is modeled by a one-dimensional fluid-structure interaction system of PDEs, which is
then discretized by a PINN. Now, all these PINNs discretizing the whole arterial tree are trained monolithically by minimizing
a single loss function. In order to ensure conservation of momentum and mass of the global solution, corresponding residual
terms coupling the local PINNs at the interfaces are added to the loss function.

Machine learning based discretization of the variational formulation of the PDEs
In [36], the authors introduce ℎp-variational physics-informed neural networks (ℎp-VPINNs) which are based on the variational
formulation of the residuals of the considered PDEs, similar to the variational NN used in [51]. In particular, they use piecewise
polynomial test functions within the variational formulation. This corresponds to a domain decomposition of the underlying
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neural network since each test function vj is always a polynomial of a chosen order over the subdomain j and zero otherwise. Let
us note that with respect to the implementation of this approach, the authors employ a single DNN to approximate the solution
over the whole computational domain despite virtually decomposing the domain into several subdomains. Different numerical
examples of function approximation for continuous and discontinuous functions as well as for solving the Poisson equation are
presented.
In [78] the authors develop theory-guided neural networks (TgNN) which are also based on the weak, i.e., variational formu-

lation of a given system of PDEs (TgNN-wf). The idea of TgNN-wf is to integrate the weak formulation of the PDE in the loss
function as well as data constraints and initial or boundary conditions; see also section 3.2. In contrast to the use of automatic
differentiation when integrating the strong form of the PDE into the loss function (see also section 3.1), the authors transfer
high-order derivatives in the PDE to the test functions by performing integration-by-parts. This has the potential to increase the
accuracy of the network predictions since the test functions are usually relatively simple analytical functions such as polynomials
of a given order. In particular, similar to [36], the authors use locally defined test functions to perform a domain decompo-
sition of the computational domain to accelerate the training process. As a further novelty the authors formulate the original
loss minimization problem into a Lagrangian duality problem in order to optimize the weights of the different components of
the loss function within the training process. The authors provide comparative results for the strong form TgNN and TgNN-wf
for an unsteady-state 2D single-phase flow problem and a 1D two-phase flow problem in terms of accuracy, training time and
robustness with respect to noise in the training data.

Other approaches
An early work on the combination of DD andmachine learning is presented in [56] and has many similarities with the approaches
described in section 3. The authors combine different types of radial basis function networks (RBFNs) with the philosophy
of domain decomposition to approximate nonlinear functions or to solve Poisson’s equation on a rectangular domain. Each
nonoverlapping subdomain is discretized by a shallow RBFN and then an algorithm similar to algorithm 1 is suggested. In
each iteration of the proposed algorithm all local subproblems are solved using the RBFNs and then the interface condition is
estimated and updated using boundary integral equations. Hence, the method distinguishes from the approaches in section 3 by
the choice of the local networks, the nonoverlapping domain decomposition, and the treatment of the interface conditions.
Finally, in [8], a method is suggested to optimize the width of the overlap in Schwarz methods using a machine learning

approach. The authors consider two-dimensional diffusion problems with jumps in the coefficient function. The input for the
learning approach consists of certain features collected for each subdomain individually - together with its neighbors. The
features are, e.g., the maximal or minimal coefficient within certain sets of rows and columns of degrees of freedom in the
surrounding of the boundary of the overlapping subdomain. Hence, for the training set, several coefficient distributions are
combined with domain decompositions choosing different overlaps. For all these combinations the features are collected and as
an output for the machine learning based regression the number of floating point operations is chosen which is needed by the
Schwarz method to converge. In the online stage of the method suggested in [8], all features are extracted for different overlaps
and thus different domain decompositions of the same problem. Then, evaluating the regression model, the number of expected
floating point operations necessary until solution can be minimized.
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