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Abstract

This thesis presents and discusses several software projects related to the learning of math-
ematics in general and topological concepts in particular, collecting the results from several
publications in this field. It approaches mathematics education by construction of mathematical
learning environments, which can be used for the learning of mathematics, as well as by contribut-
ing insights gained during the development and use of these learning environments. It should be
noted that the presented software environments were not built for the use in schools or other
settings, but to provide proofs of concepts and to act as a basis for research into mathematics
and its education and communication.

The first developed and analyzed environment is Ariadne, a software for the interactive
visualization of dots, paths, and homotopies of paths. Ariadne is used as an example of
a “mathematical simulation”, capable of supporting argumentation in a way that may be
characterized as proving. The software was extended from two to three dimensions, making
possible the investigation of two-dimensional manifolds, such as the torus or the sphere, using
virtual reality.

Another extension, KnotPortal, enables the exploration of three-dimensional manifolds
represented as branched covers of knots, after an idea by Bill Thurston to portray these branched
covers of knots as knotted portals between worlds. This software was the motivation for and was
used in an investigation into embodied mathematics learning, as this virtual reality environment
challenges users to determine the structure of the covering by moving their body.

Also presented are some unpublished projects that were not completed during the doctorate.
This includes work on concept images in topology as well as software for various purposes. One
such software was intended for the construction of closed orientable surfaces, while another was
focused on the interactive visualization of the uniformization theorem.

The thesis concludes with a meta-discussion on the role of design in mathematics education
research. While design plays an important role in mathematics education, designing seems to not
to be recognized as research in itself, but only as part of theory building or, in most cases, an
empirical study. The presented argumentation challenges this view and points out the dangers
and obstacles involved.

3



Zusammenfassung

In dieser Dissertation werden mehrere Projekte vorgestellt und diskutiert, wobei sich die
Ergebnisse aus mehreren Veröffentlichungen aus diesem Gebiet zusammensetzen. Bei den Pro-
jekten handelt es sich um entwickelte Software, die sich auf das Erlernen von Mathematik im
Allgemeinen und von topologischen Konzepten im Besonderen bezieht. Diese Arbeit nähert sich
der Mathematikdidaktik zum einen durch die Konstruktion von mathematischen Lernumgebun-
gen, die für das Erlernen von Mathematik verwendet werden können, und zum anderen durch
das Einbringen von Erkenntnissen, die während der Entwicklung und Nutzung dieser Lernumge-
bungen gewonnen wurden. Es ist darauf hinzuweisen, dass die vorgestellten Lernumgebungen
nicht für den Einsatz in Schulen oder anderen Einrichtungen entwickelt wurden, sondern um als
„proofs of concepts“ zu dienen und eine Grundlage für die Erforschung der Mathematik sowie
ihrer Didaktik und Kommunikation zu bilden.

Die erste dieser Umgebungen ist Ariadne, eine Software für die interaktive Visualisierung von
Punkten, Wegen und Homotopien von Wegen. Ariadne wird als Beispiel für eine „mathematische
Simulation“ verwendet, die in der Lage ist Argumentationen in einer Weise zu unterstützen,
die man als beweisend bezeichnen kann. Die Software wurde von zwei auf drei Dimensionen
erweitert, wodurch die Untersuchung zweidimensionaler Mannigfaltigkeiten, wie beispielsweise
des Torus oder der Sphäre, mithilfe von Virtual Reality ermöglicht wird.

Eine zusätzliche Erweiterung, KnotPortal, ermöglicht die Untersuchung von dreidimensio-
nalen Mannigfaltigkeiten, die als verzweigte Überlagerungen von Knoten dargestellt werden. Die
Software entstand nach einer Idee von Bill Thurston, verzweigte Überlagerungen als verknotete
Portale zwischen Welten zu sehen. Diese Umgebung war die Motivation für eine Studie zum
„Embodied Learning“ in der Mathematik und wurde auch dort verwendet, da die Virtual Reality-
Umgebung von KnotPortal Nutzer dazu anregt, die Struktur der verzweigten Überlagerung
durch Bewegung des Körpers zu erkennen.

Außerdem werden einige unveröffentlichte Projekte vorgestellt, die während der Promotion
nicht abgeschlossen wurden. Dazu gehören Arbeiten zu Grundvorstellungen in der Topologie sowie
Software für verschiedene Zwecke. Eine solche Software war für die Konstruktion geschlossener
orientierbarer Oberflächen vorgesehen, während sich eine andere auf die interaktive Visualisierung
des Uniformisierungssatzes konzentrierte.

Abschließend enthält die Arbeit eine Meta-Diskussion über die Rolle von „Design“ in der
mathematikdidaktischen Forschung. Obwohl Design in der Mathematikdidaktik eine wichtige
Rolle spielt, scheint dieses nicht als Forschung an sich anerkannt zu sein, sondern nur als Teil
von Theoriebildung oder meistens von empirischen Studien. Die vorgelegte Argumentation stellt
diese Sichtweise in Frage und weist auf die damit verbundenen Gefahren und Hindernisse hin.
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1 Introduction
There’s a tiresome young man in Bay Shore.
When his fiancée cried, ‘I adore
The beautiful sea’,
He replied, ‘I agree,
It’s pretty, but what is it for?’

-Morris Bishop

Mathematics can be described as one long conversation stretching over millennia (Mazur, 2013), but
who can actually take part in it? Mathematical ideas are expressed mostly through concepts that are
compressed into formalized writing, resulting in a very efficient yet obscure way of communication.

But while it is efficient, and somewhat universal within mathematical subfields, the language
used by mathematicians also has its drawbacks. Firstly, it is hard to learn. Even people studying
mathematics need several years to understand the way mathematics is communicated through this
language containing a mixture of terms, symbols, and text.

Secondly, and more important, such a formalized language is just one way of representing
mathematics, and may not be equally well suited for every kind of idea. There are many ways of
representing knowledge, and no reason why one should always be preferred to the others. There are
also many categorization systems for such modes of understanding or representing, an overview is
given in Victor (2014). Examples are the Enactive-Iconic-Symbolic model of Bruner (1966) derived
from Piaget, or the more sophisticated Vygotskian Somatic-Mythic-Romantic-Philosophic-Ironic
model of Egan (1997). There is also a cognition theoretical angle to representation forms, which is
tackled by the theory of embodied cognition (Abrahamson & Bakker, 2016). Embodiment proposes
the repealing of the Cartesian dualism of mind and body as separate entities and views cognition as
a process that is shaped by our body and interactions with the outside world. This implies that
mathematics can be represented in an embodied way. Irrespective of the categorization system used,
the main point is that there is a large variety of ways to represent mathematics, besides the “usual”
way of symbols written on paper or blackboard.

This is well-known in mathematics, where some ideas are explained using pictures in different
roles. Sometimes, they are accompanying the text and the formulas (see the definition of a homotopy
in Fig. 1). In other cases, they are self-contained, such as “proofs without words” (Nelsen, 1993).
This is of course very much dependent of the subfield, the particular problem discussed, the author’s
style and preferences, and the intended audience of a certain piece of mathematics. Furthermore,
there exists a long standing distrust of images, to quote Littlewood (1953): “A heavy warning used
to be given that pictures are not rigorous; this has never had its bluff called and has permanently
frightened its victims into playing for safety.” There exist wrong pictures as well as wrong formulas;
the form neither safeguards against nor fosters errors suggested by an argument.

Figure 1: An image accompanying a formal definition (Hatcher, 2000).
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A typical example of a field with many visual representation aides is the field of topology, where
drawings often play a central role in communicating ideas, sometimes even going beyond the role of
an aide, being used as a stand-alone argument or definition as in Fig. 2, challenging the view of an
image being “not rigorous.”

Figure 2: The well-known visual proof that the higher homotopy groups are abelian, accompanied
by a text (Hatcher, 2000). This is an application of the so-called “little cubes operad.”

As can be well observed in the case of the definition of a homotopy in Fig. 1, there is a mismatch
between the definition, or better the concept, of a homotopy and the image representing it. There
is a parameter t in the definition, denoting a sort of time parameter, as the definition speaks of a
function “continuously deforming.” The image one is thus trying to evoke in the readers mind is a
moving one, which cannot be displayed on paper.

This is where technology comes into play. It gave us the tools to create animations, which in the
above case can capture the kind of movement the author intended, and may in this case be better
suited than a static image.

(a) (b) (c)

Figure 3: Screenshots from an animation of the Pythagorean theorem for pentagons (Phelps, n.d.).
The user can drag the slider, which moves the pieces on the screen. It is disputed if such an animated
“proof without words,” or “PWW 2.0” (Doyle et al., 2014), actually constitutes a proof; or even if
such pictures in general have the capacity to be a proof.

The shift induced by technology does, however, not stop here. Computers give us not only
the possibility to show moving images, but also to manipulate them. This is not an affordance
technology offers that we then implement for its own sake. It is a feature changing the dogma of
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information flow going from the author to the recipient via a medium. The recipient can become an
active user, manipulating the medium and in this way receiving answers to questions the author of
the medium may not have preconceived. The medium now functions as a canvas, where users can
realize their ideas, externalizing some of their thoughts. These projected thoughts are then subject
to the reflection of the users, but also reflection of others, making the medium one for communication.
Such mediums are thus not to be seen as extensions of pictures, which can now be animated, but as
extensions of blank paper and pencil, making them able to respond to input.

Figure 4: A simulation, in this case GeoGebra (Hohenwarter, 2006), to let the user construct and
explore a classical proof of the Pythagorean theorem. It is, of course, not at all obvious from the
image why this would be a proof; the user would have to use his or her knowledge on triangle
geometry to deduce the theorem.

We call this sort of environment a mathematical simulation. It is important to note that mathe-
matical simulations go beyond animations by the method with which the medium reacts to the input
of the user. If the reaction is made through a hard-coded, case-by-case decision making, “built-in”
system, then it is an animation; while a simulation is defined through “basic principle”-based reactions,
therefore not needing a case-by-case analysis (compare Richter-Gebert (2013)). A definition and
discussion on the relationship between these concepts as well as examples, can be found in Sec. 2.4
concerning the paper Mathematics in the Digital Age: The Case of Simulation-Based Proofs.

The nature of visual arguments also has the potential of making mathematics more accessible.
Numerous “proofs without words” bear witness to the fact that one does not need the elaborate
language of mathematical formalisms to see that an argument is true. There is no conceptual barrier
to learn “advanced” subjects in mathematics, such as topology, as a member of an audience less
acquainted to mathematical formalisms than the usual one. An accessible representation does in
itself not give motivation for a subject, which may, together with the limits of a visual versus a
formal-symbolic representation, lead to topology remaining a topic of study only for higher education,
it does open and widen the discussion of when or what to learn or to teach.

This line of thought, connecting the learning of mathematics with computer interactions, basically
follows the theories of Papert (1980). In his book Mindstorms, he describes a vision of what education
could look like using computers. His focus is on the usage of the computer as a programmable
tool. This has many implications, the most important being the externalization of ones thoughts by
having to write them down as a computer program. This program can be debugged, which then in
turns leads to the user learning this meta-way of thinking about his thoughts.
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This approach relies on language, but in another sense than in “natural” language or the “language”
of mathematical formalism. Papert’s LOGO environment is on a computer, where language can be
used not only as a carrier of information, but also as a tool to produce some output. Nevertheless,
language is not the only way we think. This is how the idea for Ariadne was born, a learning
environment where mathematics can be explored without language. In this case, mathematics is
being represented by topology and the example of paths and homotopies, a subject easy to visualize.
Users in Ariadne should be able to construct their own objects and manipulate them, resulting
in a kind of dialog with the software, leading to insights on this new concept. It should be noted
that topology does not only serve as the basis for the design of a learning environment, but learning
about topology is meaningful for its own sake.

Paperts goal, and also mine, is to provide an environment that focuses on learning and not teaching
of mathematics. However, I follow a different approach in the construction of the environment itself.
The LOGO language and the Turtle environment of Papert show an environment as a tool that
requires the learning of a language to express the users ideas. This automatically means a bottleneck
in the expression of thought, as one first has to formulate the idea as a computer program.

There is a common trade-off between power and ease of use in computer interfaces. This puts
programming languages at one end of the spectrum, and visualizations of mathematics on the other.
But this is not a law of nature, and there is no reason why something as powerful as a programming
language without its complexity shouldn’t exist.

What I tried to build is an environment presenting the concepts in a format closer to the mathe-
matics itself, by providing an opportunity to work with visual representations of the mathematical
objects instead of words describing them. This approach also has its drawbacks, as it is by far not
as powerful as a programming language, at least at this time.

Consequently, people using this environment do not learn about the symbols and words associated
with topology in a textbook. What they do learn is “the language of mathematics itself”; not the
formalism, but the “mathematical way of thinking.” In a natural language, words are assembled to
form sentences to encode meaning. In mathematics, and in this environment, objects are assembled
to structures.

A first step to realize this vision was to implement the software capable of the features described
above. The result is described in the first paper, Ariadne – A Digital Topology Environment,
published in The International Journal for Technology in Mathematics Education.

Figure 5: The Pochhammer contour, a non-nullhomotopic path with winding number zero around
both punctures, drawn in Ariadne.
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The paper gives an introduction into some topological concepts and their implementation, as
well as what educational principles are the foundation for the design choices made. In this process,
it classifies the software in a framework by Richter-Gebert (2013) for visualization software. It
also provides some details of the implementation, describing how users interact with Ariadne to
construct and investigate topological objects. The paper was written quite early in the course of my
dissertation and I was still unsure about the justifications I had to present to be able to pursue this
kind of research designing topological learning software. This manifests not only in the introduction,
where ties of topology to school use are discussed, but also towards the end of the paper, in a section
presenting “questions to ask students,” and in the outlook, which proposes work on concept images
and definitions to test the environment empirically.

Despite its publication in a mathematics education journal and the aforementioned attempts to
situate the environment in a school- or at least empirical child-oriented setting, the nature of this
work was often questioned, challenging its classification as research in general, and as research in
mathematics education in particular. This was expressed by categorizing it as “not research,” as it
does not involve empirical studies, or “not mathematics education” but rather mathematics, for a
perceived lack of relevance to school curricula. The strong ties of mathematics education research to
the school system made a software tool not intended for use seem futile.

Nevertheless, I continued to present my work at international conferences. As an example for
the use of Ariadne for a talk at CERME 11 in 2019 (see Sümmermann (2019c) or appendix A.2), I
chose to present a proof done in the software. This led to thoughts about the nature of proof in
mathematics education and research, and the possible impact on such mathematical simulations on
it. These thoughts were written in collaboration with Daniel Sommerhoff and Benjamin Rott as
Mathematics in the Digital Age: The Case of Simulation-Based Proofs.

Figure 6: A screenshot from (Sümmermann, 2019d), showing a video of a simulation-based proof of
the non-existence of a homotopy between two paths with different winding numbers.

The article first gives an overview on the role and, in particular, the controversies around the
concept of “proof.” The concept of a “mathematical simulation” is introduced and distinguished
from “mathematical animations,” referring to Richter-Gebert (2013) and Papert (1980). After
these clarifications of terms, the paper continues to systematically expose as to why so-called
simulation-based proofs may be seen as genuine proofs in the sense of proofs as a cluster concept
(see Weber (2014)). This is done by analyzing user interaction patterns with a simulation following
Vérillon (2000), followed by the categorization of extant proving environments and proof types in the
dimensions of interactivity and formality. Finally, it is shown that simulation-based proofs fulfill the
roles of a proof based on a framework of De Villiers (1990) consisting of the categories explanation,
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systematization, discovery, verification, and communication. These were extended by splitting up
verification into relative and absolute conviction following (Weber & Mejia Ramos, 2015), as well
as adding trust in the technology, level of detail, and limits of the representation to the relative
conviction category.

The paper concludes with an outlook on the impact of such considerations on mathematics,
especially mathematics education, as the combination of limited use of simulations at the moment,
together with relative ease of implementation of such tools compared to research-level mathematics,
promises to have the potential for considerable impact.

The conception of this paper happened over a longer period of time, during which the development
of Ariadne continued. An inherent shortcoming in Ariadne was apparent, as already noted in
the outlook of Ariadne – A Digital Topology Environment. The user interface of the software is a
touch-based screen, which gives two-dimensional controls. The fundamental group of a n-punctured
surface is quite uninteresting once one has figured it out, as it is just the free group on n generators.
All the more interesting examples are in three dimensions, so the next step was thus to implement
paths on two-dimensional surfaces embedded in three dimensions, such as a sphere or a torus. But
paths are difficult to draw on such surfaces using a two-dimensional screen.

Figure 7: The two generators of the fundamental group of the torus, as drawn in the three-dimensional
version of Ariadne.

There are two approaches to solve this problem, technologically or mathematically.

In the technological line of thought, the first approach consisted of letting users rotate the surface
to enable the construction of paths by pulling the dot. This does not work well, as users have to
fiddle around trying to coordinate movement of the dot and rotation of the surface. Another was
to put the user in first-person perspective in relation to the dot, controlling its movement on and
around the surface through keyboard controls. The path is then defined as the trace left by the
dot, similar to the case of touch controls. This was again not feasible, as it left the user without
orientation on his position or previous positions, making the purposeful construction of paths nearly
impossible.

I then turned to using virtual reality equipment, circumventing the problem of 2D controls versus
3D environment. This gave rise to Ariadne3D, described in Sec. 3.2 and presented at the Imaginary
conference in Montevideo, Uruguay, in late 2018.

The other approach was to solve the problem mathematically. Under the uniformization theorem,
every simply connected two-dimensional surface is equivalent to either the plane, the sphere, or
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the hyperbolic plane.1 Using this theorem and recycling the previous idea of a keyboard controlled
first-person dot, the idea was to design a software letting users control the movement of a ball on
the (hyperbolic) plane, whilst another ball draws a path on the corresponding surface.

(a) The euclidean plane, tiled by
squares as fundamental regions of
the torus. Note the small ball
on the embedded torus in the cor-
ner, which is a copy of the user-
controlled ball, mirroring its move-
ment.

(b) The euclidean plane, tiled by
squares as fundamental regions of
the Klein bottle. The torus is rep-
resentative for the Klein bottle.

(c) The plane with the {4, 6}-tiling
on the hyperbolic plane in the
Klein-Beltrami disc model. The
torus in the corner is representa-
tive for the surface of higher genus.

Figure 8: Some screenshots from the ball rolling around on different planes, from the prototype of
SurfaceWalker. Further explanations are in Sec. 3.4.

This project was, however, never finished, as it took a very geometrical flavor and was not in
line with (algebraic) topology set as an overall theme of the dissertation. The project is further
discussed in Sec. 3.4.

Instead, another project emerged. It occurred to me that if users would explore different surfaces
with paths, the motivation for doing so might be disturbed by a lack of understanding on what
these surfaces are, where they come from. But the construction of orientable surfaces is quite
straightforward by the theorem on the classification of closed surfaces; they are all sums of tori (or
the sphere). So it would be interesting to have a software letting the user construct his or her own
surfaces through cut-and-paste methods, by starting with a surface as simple as possible. Recalling
the animations bending a sheet of paper first in the form of a cylinder and then deforming2 it into a
torus, I tried to implement an interactive version of this. The user should be able to take the torus
and, through cutting and gluing along paths drawn on it, retrace the genesis of all closed orientable
surfaces (with boundary curves). Unfortunately, due to algorithmic and computational constraints
(see Sec. 3.3), only the latter step of cutting and gluing could be achieved; this was realized and
exhibited (see Fig. 9) at the workshop on “Illustrating Geometry and Topology” at the Institute for
Computational and Experimental Research in Mathematics in 2019 (see appendix A.3).

Following the generalization process of the main idea, from the exploration of two-dimensional
surfaces embedded in two-dimensional space in Ariadne, to two-dimensional surfaces embedded
in three-dimensional space in Ariadne3D, the “logical” next step was to model three-dimensional
“surfaces,” which can also be explored by paths.

Around the same time, I came upon a video by Bill Thurston introducing the idea of imagining
branched coverings of knots as knotted portals to other worlds (Thurston, 2012). The footage
of Thurston showing him actually stepping through such an imagined portal represented by a

1This is a very roughly stated, non-technical variant of the uniformization theorem. A more complete description
would be “every simply connected Riemann surface is conformally equivalent to either the hyperbolic plane, the
complex plane, or the Riemann sphere.”

2This is not bending anymore, following Gauss’ Theorema Egregium, there is no smooth embedding of the flat
torus in R3 due to the curvature of the torus. But one must mention the amazing images of a C1-embedding of a
torus in Borrelli, Jabrane, Lazarus, and Thibert (2012) at this point.

15



(a) A path is drawn on the torus. (b) The torus is cut along the path,
resulting in two pieces with bound-
ary curves.

(c) The smaller piece of the torus
is discarded.

(d) The torus is duplicated. (e) The tori are rotated, so that the
holes are facing each other.

(f) The tori are glued together along
their boundary curves.

Figure 9: The steps of the creation of a double torus, screenshots from Ariadne3D. More information
on this project is in Sec. 3.3.

wire coil in the form of a knot brought into my mind to use the virtual reality gear used in the
Ariadne3D-project to build a software where users can walk through this portal into other worlds.

In a mathematical way, this is a natural extension of Ariadne3D, as 3-manifolds can be
described as branched coverings of the 3-sphere with a knot as the branch set. The resulting product
is described in Sümmermann (2020b). The article gives a self-contained explanation of KnotPortal.

Figure 10: The four portals generated by the trefoil knot, a screenshot from KnotPortal. More
information on this project in Sec. 2.5.

This includes an introduction into the concept of branched coverings of knots, along with some
interesting examples, such as a map projection by Charles Peirce. A small recapitulation of the
history of branched coverings of knots gives motivation and completes the picture. An introduction
into the attempts to visualize branches of the covering as worlds, and knots as portals between
them as put forward by Thurston (2012), is also presented. This is followed by a description of the
software, with mathematical and technical details of the implementation. Examples of knots and
the structure of their branched coverings are given, as to flesh out the technical descriptions given
before, and to equip the reader with the necessary tools to add their own knots, if desired.
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While this article describes the project from a mathematical perspective, seeing Thurston’s joy
in moving around the room, stepping through the portal, reminded me of the theory of “embodied
cognition.” I was introduced to this theory in email correspondence with Liz de Freitas, whom I met
at the CERME11 poster session.

This connection between embodiment and movement through the knotted portals of Thurston
led to an investigation of embodied learning in KnotPortal, resulting in the article Embodied
Mathematics: Forming Concepts in Topology by Moving Through Virtual Reality, written in collab-
oration with Benjamin Rott.

The article links a theoretical investigation into the affordances of KnotPortal for embodied
learning of mathematics with a case study with two participants. The article presents several ways
in how embodied learning is made possible with the software. Firstly, by letting users explore a
mathematical world through footpaths, which align perfectly with the mathematical concept of paths.
Secondly, contrasting the usual representation of mathematical knots as knot diagrams drawn on
paper, the knot is now static and large, and is inspected by manipulating the position and rotation of
the observer and not of the knot. The case study then revealed another aspect, the use of “embodied
heuristics.” This is the case if users show a behavior where they perform certain actions to solve a
problem, not supported deductively but heuristically.

This sort of content-based analysis of an environment is contrasted with the use of general
frameworks for classifying research in embodied learning, giving no insights to the usefulness of a
specific environment. This is pointed out by the example of “immersion,” a quality sought out in
particular in virtual reality environments in the context of embodied learning, which in the case of
KnotPortal led to a loss of overview in the participants. This again stresses the importance of a
content-specific analysis and the dangers of trying to identify general “good practices” in the design
of such environments.

As with Ariadne, the KnotPortal project was criticized from mathematics education re-
searchers, again on the grounds of a lack in relevance for standard school systematized education
and more importantly a want for empirical studies being done using the software, proving some
capabilities of the software or using the software to demonstrate some theory on learners abilities.

As there was an ongoing discussion at the time in the journal “For the Learning of Mathematics”
initiated by an article by Mogens Niss discussing the dangers of mathematics education becoming
too narrow in focus and form, I wrote an article with Benjamin Rott furthering the discussion by
defending the role of design in mathematics education research. The article discusses the role and
standing of design in the research community, and in this way reflects on my personal experiences of
the last few years. As this is a discussion article, it will be presented in the discussion in Sec. 4.
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2 Research in publication

It should be noted that these versions were changed to comply with the formatting of this dissertation,
and may differ in form and content from the published or submitted versions. Major changes in
content are marked with a footnote.

2.1 Author contribution in publications

1. Ariadne – A Digital Topology Environment
In this publication, I was the only author.

2. Mathematics in the Digital Age: The Case of Simulation-Based Proofs
This article is a collaboration between Daniel Sommerhoff, Benjamin Rott and me. Daniel
Sommerhoff and Benjamin Rott contributed to the conception of many ideas of the article and
provided critical revisions of the article. I contributed the main ideas, wrote the article, and
am thus listed as first author.

3. Knotted Portals in Virtual Reality
In this publication, I was the only author.

4. Embodied Mathematics: Forming Concepts in Topology by Moving Through Virtual Reality
This article is a collaborated work by Benjamin Rott and me. Benjamin Rott contributed
through conception of many ideas of the article and provided critical revisions. I contributed
the main ideas, wrote the article, and am thus listed as first author.

5. On the Future of Design in Mathematics Education Research
This article is a collaborated work by Benjamin Rott and me. Benjamin Rott contributed
through conception of many ideas of the article and provided critical revisions. I contributed
the main ideas, wrote the article, and am thus listed as first author.

2.2 Code availability

All software code for the projects can be found publicly on GitHub, at github.com/mosuem. This
encompasses four repositories with a total of ca. 10.000 lines of written code. The ready-to-use builds
of the software projects themselves are available at imaginary.org/users/moritz-summermann.
Videos of the software are available on YouTube at https://www.youtube.com/channel/UCoUBUB
-3HbaZzzb1m6Pq0Rg.
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2.3 Ariadne – A Digital Topology Environment

Author: Moritz L. Sümmermann
Published in The International Journal for Technology in Mathematics Education as Sümmermann
(2019a).

The article presents Ariadne, a software for interaction with objects such as dots, paths, and
homotopies of paths, in this way enabling learning of basic concepts of topology. Besides a description
of the software, the article presents the rationale of the design, as well as a set of questions suitable
to assess learning of students using Ariadne.
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Ariadne – A Digital Topology Learning Environment

Moritz L. Sümmermann

Abstract

Ariadne is a touch-based program for the learning of homotopies of paths, without the use
of formalism, by building mental models. Using Ariadne, the user can construct points, paths
by dragging points and homotopies by dragging paths as well as compute winding numbers of
paths, all on a variety of surfaces, through touch gestures. Ariadne provides surfaces in two
and three dimensions and an optional number of punctures.
This environment enables the user to tackle questions regarding the equivalence of points by
paths or paths by homotopies, because it allows only mathematically valid operations, i.e., paths
and homotopies cannot pass through punctures on the surface.
Ariadne is designed to let students of all ages and prior states of knowledge approach problems
ranging from the construction of a path connecting points to the classification of all paths up
to homotopy on a punctured plane, effectively calculating the fundamental group of a sphere.

1 Introduction

People encounter topological ideas and principles every day. For example, the shape of a child’s
blanket can change through deformations, but it still remains the same blanket; it is “invariant”
under these deformations. A doughnut illustrates another example of topological ideas in everyday
life; for a doughnut to be a doughnut, it has to have a hole in the middle, and neither the size of
the hole nor the size of the doughnut are relevant. These elementary mathematical thoughts are
specified in topology.
Topology is a field of mathematics concerned with the study of spaces with a structure allowing

Figure 1: Dots, paths and obstacles on the plane in Ariadne

continuous maps. Two such spaces are regarded as equal if there exists a continuous map with
a continuous inverse between them. These so-called homeomorphisms can be thought of as con-
tinuous stretching and bending of the space. Some deformations, such as the deformation of a
line to a point, do not correspond to homeomorphisms, which makes the visualization difficult. A
more general concept is then obtained by allowing all kinds of continuous deformations, which is
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formalized by so-called homotopies. This idea is of great importance in mathematics, which has
not found its way into the modern school curriculum. The omission is not unfounded, as a rigorous
formal introduction to topology is quite demanding and uses a great deal of set theory. Historically,
homotopies arose from questions of complex analysis (Eynde, 1992), but this approach is also out
of reach for students. There were some attempts to introduce topology in the classroom during the
“New Math” era, a movement which ultimately failed in its entirety for various reasons, leading to
topology being dropped from the curriculum.
What can, however, be taught and learned is the idea behind the definition of homotopies and its
application to simple examples. This has been achieved for isotopies, a special case of homotopies,
by teaching isotopies of knots using ropes (Strohecker, 1996). There are also some digital ap-
proaches to knot theory (Shimizu, 2012; Scharein, 1998; Culler, Dunfield, Goerner, & Weeks, n.d.).
When dealing with the more general concept of homotopies, malleable but elastic objects with
the ability of self-intersection would be needed. As no real-world object with all these properties
exists (cf. (Sugarman, 2014)), this is an opportunity to use computers to simulate such malleable
objects. Ariadne is a learning environment designed to this purpose of letting the user construct
and deform such objects by touch gestures.
The generality of topological concepts necessitates a reduction to representative special cases. In
Ariadne, the only spaces being considered are the plane C, the two-sphere S2, the two-torus
T2 = S1 × S1, and punctured versions thereof. The only objects constructed are points, homo-
topies of points, i.e. paths, and homotopies of paths. This application of homotopies to points
encapsulates the concept of connectivity, “one of the most important properties of topological
spaces” (Encyclopedia of Mathematics, 2018). The examination of homotopies of paths, i.e. homo-
topies of homotopies of points, is a generalization of connectivity to a higher dimension. Although
paths are quite elementary functions, they are certainly rich enough to provide insights and intu-
ition for the general notion of homotopies.
Finally, it is valuable in itself to give students the possibility to explore a topic of modern math-
ematics and the important place of topology in it, as demonstrated for example by the Poincaré
Conjecture (Mackenzie, 2006).

2 Availability of Ariadne

Ariadne is available for download at the website of the Imaginary group imaginary.org (https://
imaginary.org/program/ariadne-drawing-topology) for Windows and Android operating sys-
tems, together with installation manuals. The Android version is also available at the Google Play
Store.

3 Mathematical Background

This section can only give a brief overview; for a detailed account we refer the reader to standard
textbooks on algebraic topology, for example (Bredon, 1993; Hatcher, 2000). For the following def-
initions, the reader is assumed to be familiar with the notions of topological spaces and continuity.

Plane By plane we denote the space C, which is topologically isomorphic to R2. It is also
isomorphic to the bounded plane (−1, 1)2.

Puncture To puncture a space means to remove a point from the space. An example is the
punctured plane C \ {0}.

Path A path is a continuous map from the closed interval [0, 1] to a topological space X. The
choice of the interval as domain is justified by arguments on connectivity using category the-
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ory (Wofsey, 2016; Leinster, 2012, 2010). A path is called constant if its image is a point. Given a
path γ, its inverse is defined by

∀t ∈ [0, 1] : γ−1(t) := γ(1− t)

, the path traveling along γ in reverse.

Homotopy Given two topological spaces X and Y and continuous functions f, g : X → Y , a
homotopy from f to g is a continuous map H : X × [0, 1]→ Y such that

H(x, 0) = f(x) (1)

H(x, 1) = g(x) (2)

. If such a map exists, f and g are said to be homotopic and we write f ⇒H g. If f and g are paths,
we will always assume that the homotopy is based, i.e. H(1, t) = f(1) = g(1) for all t ∈ [0, 1].
Examples of homotopies are

1. X = •, Y = C
If X is just a single point, then f and g are maps picking a point from C. As • × [0, 1] is
naturally isomorphic to [0, 1], a homotopy from f to g is a map H : [0, 1] → C, which is the
definition of a path from f(•) ∈ C to g(•) ∈ C.

2. X = S1 := {x ∈ C | |x| = 1}, Y = C
This describes the homotopy of closed paths, paths for which the start- and endpoint are the
same. The choice of X = S1 instead of the interval is justified by the fact that if f is a closed
path, i.e. f(0) = f(1), the universal property of the quotient space gives a restriction f from
[0, 1] /0 ∼ 1 = S1 to C.

3. X = S1 := {x ∈ C | |x| = 1}, f : X → • ∈ Y
If f is a constant path, i.e. a path staying at the point •, and g homotopic to f , then g is
called null-homotopic. Note that the constant path is also closed.

Figure 2: Homotopies in Ariadne

Winding Number Let γ : [0, 1] → C be a path. Define the winding number around a point
p ∈ C not in the image of γ by first writing the path in polar coordinates as t 7→ p + r(t)eiθ(t) for
some functions r and θ. Define the function Wγ,p(t) by

Wγ,p(t) =
θ(t)− θ(0)

2π
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. Then the winding number of γ around p is given by Wγ,p(1), as Wγ,p(t) measures the normalized
change in angle at time t of the path with respect to the point p.
The winding number can be shown to depend only on the homotopy class of a path.

Fundamental Group Given a topological space X and a point x0 ∈ X, define

π1(X,x0) = {γ : S1 → X | γ(1) = x0} /∼

where
γ0 ∼ γ1 : ⇐⇒ ∃H : γ0 ⇒H γ1

. This set of closed paths from the base point x0 up to homotopy comes with a group structure
through concatenation of paths, with identity element the constant path at x0 and the inverse γ−1

of a path γ given through the reversed path γ−1(t) = γ(1− t).

4 Design and Educational Concepts

Based on the artefact-centric activity theory (Ladel & Kortenkamp, 2013), Ariadne is seen as
an artifact through which the subject, i.e. the user of the program, can internalize mathematics
internalized in turn by the program.
To ease the internalization of the object properties through the artifact, the program interface is
kept simple. This means not using any avatars or other decorations which are sometimes used in
learning environment design to allow easier access to the artifact by children, as in this case the
easier access would come at the expense of more difficulty in internalization of the mathematics.
By externalizing a mathematical object, there is an error introduced, i.e. some design choices do
not represent mathematical properties. As the intention is to teach mathematics and not specifics
of the program used (Richter-Gebert, 2013), a goal of the design process is to minimize this error.
Examples of such artificialities include points being round and having an area, or lines having a
width. Unfortunately, these cannot be avoided by any known means. Some dynamic geometry
programs such as GeoGebra (Hohenwarter et al., 2013) indicate the infinite thinness of a line or a
point by depicting these as being scale-independent, but Ariadne does not support a zoom feature,
as this is a fundamentally geometrical idea.
Emphasis is put on making every internalized property of the objects externalizable to the subject,
i.e. the user should not have to remember previous steps of manipulation to understand the math-
ematical properties of an object. An example of this is the enabling of the subject to cycle through
the drawing order of the drawn paths to ensure that no path can obstruct the view of another,
which unfortunately cannot solve the problem of a path obstructing parts of itself.

Although Ariadne gives the possibility to answer questions by manual construction, its pur-
pose is the building of mental images in the subject to develop a shift from constructions on the
screen to mental constructions. This follows the thoughts of (Swoboda & Vighi, 2016) on dynamic
geometry software: “The emphasis here is set not so much on observing objects in motion nor on
the final results of manipulation, but on the ability to predict the result of the transformation”.
Also, memorization is not a feasible strategy in this environment, as the objects constructed are
always different geometrically.

The concept of a homotopy formalizes the idea of continuity as in continuous transformation.
By using paths and homotopies of paths, continuity is understood in respect to time and motion.
A path not being allowed to traverse walls for the same reason as a homotopy is not allowed to let
paths traverse punctures of the plane, giving the sense of a coherent environment with only fluent
movement. The lack of coordinate systems and function expressions contrasts this approach to the
usual notion of continuity developed by investigating functions (Hanke & Schäfer, 2017).
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An interesting aspect arising from the study of homotopies in the special case of the punctured
plane is the isomorphism π1(C \ {0}, 1) ∼= Z, which can enable the subject to understand the inte-
gers as paths with different winding numbers and addition as concatenation of paths. This is an
alternative representation of the integers, in contrast with the usual one using the expansion to the
left of the number ray. The orientation of a path is a basic notion for the sign of an integer.
An implication is that a number can, so to speak, be constructed as a continuous object. A major
downside is however that one cannot identify at a glance the winding number of a path1, unlike
the cardinality of a set in the usual representation as a cardinal number.

Richter-Gebert identifies several “areas of tension” in the design of visualization software (Richter-
Gebert, 2013), using which Ariadne can be classified. Some of these are

1. “Simulation vs. animation”
Ariadne was programmed using basic principles, meaning that a result of an interaction
with Ariadne is the consequence of these rules and not predefined by the programmer. It is
thus a simulation and not an animation.

2. “Demonstration vs. self-study” and “Experiment vs. user guidance”
The program can be used as a demonstration as well as for self study, as it features tools for
the automated correctness checking of a construction by the correct approach. However, not
all questions can be posed in such a constrained fashion, so a certain level of user guidance is
always recommended.

3. “Freedom vs. restriction”
To allow a piecewise digestion of the mathematical content presented with Ariadne, several
“levels” are implemented, each enabling different features. In the simplest level, only points
can be set, in the next, only paths between points etc. There are however no additional limits
such as a maximal number of points constructible.

4. “Click vs. touch”
Here Ariadne is obviously on the “touch” side. A great advantage of mouse over touch is the
accuracy, which is not crucial in the construction of objects, so there is no reason to use the
mouse in this project. Also, using a touch interface supports the impression of the physical
manipulation of objects and gives a bridge between iconic and haptic representation forms.
The use of multi-touch gives a wider range of possible commands by letting the user specify
multiple objects simultaneously (Kortenkamp & Dohrmann, 2010).

5 Implementation

Ariadne was programmed using C] and Unity3D, a game engine with widespread use for mobile
game applications.
The program contains two modes, one for constructions in two- and one for three dimensions. In
both cases, the subject is first presented with an empty gray canvas. In the two-dimensional version,
the canvas is a bounded plane. For the three-dimensional mode, the subject has the choice between
a 2-sphere and a 2-torus. He can then construct different objects through touch interaction on the
surface of the canvas. By a touch on the screen, a point is created at the corresponding location
on the canvas. By dragging a point with a touch gesture, a new point is created which follows the
movement of the subjects finger. This new point leaves a trace behind, which represents a path (see
Fig. 1). If the dragging stops at the location of another point, the two points are connected by this
path. If, on the other hand, the dragging stops at a location with no point, the path vanishes. This
feature supports deliberate construction of paths as objects with a start and an end, and prevents

1Incidentally, this is the mechanism behind the “Fast and Loose” con.
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thoughtless dragging of points over the screen as well as emphasizing that paths connect points.
The construction of homotopies follows the same pattern, only in one dimension higher. By drag-
ging a path with a touch gesture, a new path is created which follows the movement of the subjects
finger. It does not leave a “trail” behind, as this trail would be a surface, which cannot give much
information on the homotopy. For this reason, and after some preliminary tests, this feature was
not implemented.
To make the underlying spaces more interesting, the subject (or the instructor) can construct “ob-
stacles”, corresponding to punctures in the topological sense. These obstacles are variable in size,
which does not make a difference topologically but cognitively. The use of punctures makes more
interesting examples possible, as a puncture leads to the possibility of non null-homotopic paths.
In the two-dimensional version, it is also possible to construct “walls” to create several connected
components of the plane, enabling the investigation of π0.

In the case of the surface being a punctured plane, Ariadne has a feature to visualize the wind-
ing number Wγ,p. A touch on the associated button, followed by a touch on a path γ and finally
a touch on the obstacle corresponding to the puncture p for which the winding number should be
computed. The program thus follows the “Action-Object” approach (Kortenkamp & Dohrmann,
2010) by first specifying the action, and then the object on which the action should be performed.
The winding number is then visualized by displaying a ray from p to γ( t

10), where the parameter
t indicates the time in seconds after pressing the button. This means that the endpoint of the ray
follows the path for a total duration of 10 s, while leaving the starting point fixed at p. It leaves
behind a trace along an arithmetic spiral. After t seconds, the number of revolutions is Wγ,p(t/10).
For a closed path, this number is always an integer. The direction of rotation gives the sign of the
winding number.

There are two built-in functions for the verification of results. One is a button which, given two
paths to be tested on homotopicness, lets a line slide down the two paths simultaneously, stretching
out if elongated. If the two paths are too far away from each other, the line is elongated too far
and snaps. This can show if a homotopy between the two paths has been found.
The other feature is activated by touching a button and then a path. This path is gradually
tightened until it is taut, which results in the path vanishing iff it is null-homotopic.

Figure 3: The Pochhammer Contour, a not null-homotopic path with winding number zero around
both obstacles visualized in Ariadne.
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6 Questions to ask students

When using Ariadne, two different goals can be distinguished. One is to explain the definitions
and concepts involved. The other is then to verify the understanding reached by the subject by
letting them solve problems.
The problems posed have to be chosen carefully as to reflect the understanding of the mathematical
objects by the subject. The identification of the concept definitions that have to be present in the
user to reach an understanding of the definitions is subject of separate and ongoing studies. In the
following, some exemplary problems are presented, classified by the type of objects involved.
The language of these questions, in particular the specific terminology used, will be modified so as
to be adequate for the target audience. When working with children, the replacement of words like
“null-homotopic” with self-chosen terms may be advisable.

6.1 Dots

This is the simplest type of question: Where can a dot be placed? As the answer is “Anywhere
but on obstacles”, this problem can be solved quite easily and without gaining much mathematical
insight. Also, to dwell longer on this topic would encourage the subject to find other properties of
points, which would most likely be characteristics of the program, and not actual features relating
to the mathematical object of a point.

6.2 Paths

Questions about Paths concern the existence and construction of paths connecting points. Examples
are “Can these two points be connected?” or “Where could a dot be placed which is cannot be
connected to this other dot?”. In the second example, even if the question is about the positioning
of a dot, this is still a question about paths as the existence of a path is the underlying problem.
Mathematically, these questions ask about connected components of the surface. This implies that
non-trivial problems can only be posed if the surface is not path-connected, which in turn can be
achieved by placing obstacles subdividing the plane.

6.3 Homotopies

In this category, questions encompass a wide range, but center on the relationship between paths.
The uniqueness of paths is now well-defined, as homotopies establish the notion of difference of
paths. Examples of questions are

1. “Are these paths homotopic?”

2. “Can an obstacle be placed such this path is not null-homotopic?”

3. “Are there two different paths connecting these points?” Where “different” is to be under-
stood in the sense of “not homotopic”.

4. “How many different paths can be drawn on this surface from this point to itself?”

6.4 Winding Number

As the Winding Number is a number assigned to a path, questions in this category involve this
number and some constructed paths. Examples are

1. “What is the winding number of this path? Of its inverse?”

2. “Why is the winding number of a closed path an integer?”
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3. “Do all homotopic paths have the same winding number?”

4. “Are all paths with the same winding number homotopic?”

Question 1 addresses both the readability of the externalization of the winding number as an
arithmetic spiral in Ariadne, as well as the fact that the winding number comes with a sign.
Questions 3 and 4 both contribute to the classification of paths through the winding number.

Figure 4: A path on the torus visualized in Ariadne.

7 Outlook

Ariadne has to undergo further rigorous testing to ensure the usefulness as a learning environment.
For this, the problems posed to the subjects have to be constructed methodically, which relies on
ongoing research on concept definitions and images in topology.
Also, the use of advanced reality could be integrated to ease the use of the three-dimensional
mode. A virtual reality/mixed reality mode could further enhance the scope of Ariadne by
improving interaction capabilities with the surfaces, for example enabling the subject to construct
an arbitrary orientable surface by adding handles to a sphere. At the moment, such features could
not be implemented as the two-dimensional interface of a tablet poses difficulties even for drawing
paths on a surface in three-dimensional space such as a torus.
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lehrveranstaltungen. In C. Ableitinger, J. Kramer, & S. Prediger (Eds.), (pp. 169–186).
Heidelberg: Springer-Verlag. doi: 10.1007/978-3-658-01360-8 10

Scharein, R. G. (1998). Interactive Topological Drawing (Unpublished doctoral dissertation).
Department of Computer Science, The University of British Columbia.

Shimizu, A. (2012). A game based on knot theory. Asia Pacific Mathematics Newsletter , 2 , 22–23.
Strohecker, C. (1996). Design of an Environment for Learning about Topology and Learning about

Learning. In Proceedings of the Second International Conference on the Learning Sciences.
Sugarman, C. (2014). Using Topology to Explore Mathematics Education Reform (Unpublished

master’s thesis). Harvey Mudd College.
Swoboda, E., & Vighi, P. (2016). Early geometrical thinking in the environment of patterns, mosaics

and isometries. In Early geometrical thinking in the environment of patterns, mosaics and
isometries (pp. 1–50). Cham: Springer International Publishing. doi: 10.1007/978-3-319
-44272-3 1

Wofsey, E. (2016). Can path connectedness be defined without using the unit interval? Math-
ematics Stack Exchange. Retrieved from https://math.stackexchange.com/q/1824082

(URL:https://math.stackexchange.com/q/1824082 (version: 13.04.2017))

29



2.4 Mathematics in the Digital Age: The Case of Simulation-Based Proofs
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In this paper, we advocate for a different view on the usage of a class of mathematics environments
called “mathematical simulations” in the context of proving. While traditionally, these environments
were restrained to activities such as exploration and conjecturing, we assert that they may be used
to actually construct proofs. This claim is strengthened through the presentation of examples and a
line of argumentation based on a framework for proof functions.
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Mathematics in the Digital Age:

The Case of Simulation-Based Proofs

Moritz L. Sümmermann, Daniel Sommerhoff, Benjamin Rott

Abstract

Digital transformation has made possible the implementation of environments in which math-
ematics can be experienced in interplay with the computer. Examples are dynamic geometry
environments or interactive computational environments, for example GeoGebra or Jupyter
Notebook, respectively.

We argue that a new possibility to construct and experience proofs arises alongside this
development, as it enables the construction of environments capable of not only showing pre-
defined animations, but actually allowing user interaction with mathematical objects and in
this way supporting the construction of proofs. We precisely define such environments and call
them “mathematical simulations.” Following a theoretical dissection of possible user interac-
tion with these mathematical simulations, we categorize them in relation to other environments
supporting the construction of mathematical proofs along the dimensions of “interactivity” and
“formality.” Furthermore, we give an analysis of the functions of proofs that can be satisfied by
simulation-based proofs. Finally, we provide examples of simulation-based proofs in Ariadne,
a mathematical simulation for topology.

The results of the analysis show that simulation-based proofs can in theory yield most
functions of traditional symbolic proofs, showing promise for the consideration of simulation-
based proofs as an alternative form of proof, as well as their use in this regard in education as
well as in research. While a theoretical analysis can provide arguments for the functions of proof,
their actual use and, in particular, their acceptance is of course subject to the sociomathematical
norms of the respective communities and will be decided in the future.

1 Introduction

Proofs can come in many forms, ranging from a system of logical deductions done in a formalistic
symbolic way, as in the Principia Mathematica (Whitehead & Russell, 1910), over plain text argu-
mentations supplemented by formulas, which are the standard form in many research papers and
textbooks, to so-called “Proofs Without Words” given by an image only (Nelsen, 1993).

Computers have added to this variety by giving rise to computable proofs, i.e. proofs that can
be checked by a computer (Voevodsky, 2015), or even proofs executed by a program such as the
much debated (Tymoczko, 1979) proof of the Four-Color Theorem (Appel & Haken, 1977), too
long to ever be completely reviewed by a human.

The rise of computers and with it digital transformation of all aspects of human activities has
also made environments possible, that enable to do mathematics in an interactive way. These
environments can come in different representation modes, as some are more formal-symbolic in
nature, such as Mathematica or Jupyter Notebook, while others have rather informal visual
representations, such as GeoGebra for geometry or Ariadne for topology1. In the same way
as programming stimulated computational thinking (Papert, 1980), we claim that mathematical
simulations nurture mathematical thinking; the focus in both cases lies on human thought and
development and not on technology.

1Ariadne is available for download at https://imaginary.org/program/ariadne-drawing-topology
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Undoubtedly, these programs allow for mathematical activities such as exploration or checking
special cases of conjectures (Borwein & Devlin, 2008). These “experimental mathematics” (Bor-
wein, 2011) activities can be regarded as being equally important as “rigorous proving” in math-
ematics (Jaffe & Quinn, 1993). However, we argue from a theoretical perspective that they can
also provide new means to formulate proofs, that is mathematical arguments fulfilling the roles of
proofs pointed out, for example, by De Villiers (1990) (see Sec. 2.1).

Research on the impact of these new technologies on the concept of proof, which plays a central
role in mathematics, is not very developed, despite their well-known impact on the understanding of
mathematics in general (Hoyles & Lagrange, 2010). Research is focusing more on the role technology
plays in establishing conviction of a fact, which may be even counterproductive in justifying the
necessity of proof (Bolite Frant & Rabello de Castro, 2000; Christou, Mousoulides, Pittalis, &
Pitta-Pantazi, 2004; Hoyles & Noss, 2003; Marrades & Gutiérrez, 2000), and efforts to remediate
this (Hadas, Hershkowitz, & Schwarz, 2000; Jones, 2000), see Sinclair and Robutti (2013) for an
overview. This focus on technology establishing conviction is related to the use of many of these
technologies primarily in educational contexts. In curricula, proofs are well-established almost only
in geometry (Hanna & de Bruyn, 1999; Stylianides, 2007), where students do proofs by geometric
constructions in the spirit of Euclid (Mogetta, Olivero, & Jones, 1999). Some go as far as to say that
the central reason for the existence of geometry in the curriculum is for serving as a paradigm for
deductive proof (Hanna, 1998). Overall, research investigating possible evolutions of the concept of
proof, such as GeoGebra, when digital tools are used is not well developed and focuses on their
use for such constructions in Euclidean geometry (Marrades & Gutiérrez, 2000).

Moreover, the effect of using digital geometry environments in educational contexts is contro-
versial (Hanna, 1998), as “proofs” in such environments are often seen as providing evidence for
the truth of a statement by making available a large, by continuity seemingly infinite, number of
examples (Hanna, 1998), without actually being a real proof (Nam, 2012). An example would be
dragging the corners of a triangle while keeping track of the sum of the internal angles, which can
convince a student of the fact that their sum is always 180° without giving any sort of explanation
of this fact and its relation to the parallel axiom, and without allowing to be certain that no case
exists in which the sum is different. The scope of such software is thus often seen as limited to
exploration (Christou et al., 2004) and conjecturing based on this exploration (Mogetta et al., 1999;
Venema, 2013).

This deeply rooted view on such technology as being there for exploration and conjecturing, and
on proofs as being formal in their representation, led to attempts on doing proofs by integrating
such technology and formal proofs in digital environments. This manifests in, for example, the
implementation of proof assistants in dynamic geometry environments (Albano, Dello Iacono, &
Mariotti, 2019; Hanna, Reid, & de Villiers, 2019; Kovács, 2015; Miyazaki, Fujita, Jones, & Iwanaga,
2017; Nam, 2012).

We argue that these limitations and separation in informal/exploration – formal/proving is
mostly due to the nature of geometrical constructions and the role of Dynamic Geometry En-
vironment (DGE) software in proof and technology related activities. To emphasize that these
limitations are not inherent to digital environments in general, but to the practice of use of those
from geometry, we present several proofs2 done in a different type of software, a Dynamic Topology
Environment called Ariadne (Sümmermann, 2019a). In Ariadne, the user cannot only explore
basic concepts of topology including points, paths, and homotopies of paths, but can also formulate
proofs of non-existence using invariants such as the winding number of a path. Examples of such
proofs are given in Appendix A. They highlight the features of simulation-based proofs in such
a digital environment, which are not limited to exploration, experiments, and constructions, but
can satisfy the same functions as traditional proofs. In our argumentation, Ariadne serves as an

2Examples can be found on Youtube (Sümmermann, 2019b, 2019c, 2019d)
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example; it can be exchanged for any simulation with similar characteristics.

Our first findings in this theoretical study are the necessary conditions that the broader class
of environments and tools representing mathematics have to fulfill, in order to possibly allow
the construction of proofs in such environments. These conditions define the new concept of a
mathematical simulation and with it the term simulation(-based) proofs. An emphasis must be
put on the word necessary in the previous formulation, as there are examples of mathematical
simulations such as Matlab or Maple, in which proofs that go beyond calculations are harder to
achieve due to the focus on numerical manipulations.

Following an analysis of this kind of simulation proofs, we present a classification of proofs
along the lines of interactivity and formality, showing the place of simulation-based proof in the
context of more traditional or alternative forms of proof. We also present an analysis of different
functions of simulation proofs, following and extending the framework created for proofs in general
by De Villiers (1990). This leads to the conclusion that simulation proofs are of particular interest
in mathematics education, with some caveats.

Going beyond the familiar debate of the non-surveyability of computer-generated proofs (Ty-
moczko, 1979) such as the proofs of the Four-Color Theorem and the Kepler conjecture, we in-
troduce technological reasons as a category of acceptance criteria for proofs in the context of
simulations.

1.1 Article organization

Roughly speaking, we will give definitions, examples, and intricacies of the use of simulation-based
proofs. Then follows a classification, first external (in relation to other types of proof) and then
internal (highlighting functions of proof).

More precisely, in Sec. 2, we will start by explaining more closely what we mean when talking
about proofs. We then define the notion of a mathematical simulation, in particular distinguishing
simulations from animations and microworlds. This is followed by a general analysis of the user
interaction process with a simulation. As errors occurring in the interaction process are vital in
establishing trust in the simulation, we give a categorization and examples of different types of
error that may arise in the process.

This is followed by Sec. 3, in which various forms of proof and proving environments are classified
along the dimensions of interactivity and formality. This aids in understanding the place of simu-
lation proofs and mathematical simulations in relation to other forms of proof and mathematical
environments.

Subsequently, Sec. 4 employs De Villiers’ 1990 framework to discuss the functions of simulation
proofs. In particular, this also encompasses new categories regarding the conviction of the proof
recipient particular to simulation proofs.

Finally, Sec. 5 contains conclusions and implications for mathematics education, and mathe-
matics research, followed by some descriptions of simulation proofs in appendix A.

2 The proof process in a simulation

2.1 The status of proof in mathematics and mathematics education

While proofs are at the center of mathematics, their nature is highly contested and comprises a
wide range of different objects. The spectrum of proofs begins with “formal proofs” in a math-
ematical logic theory sense, as chains of formalized deductions, which can at least in theory be
checked by a computer. As Krabbe (2008) states, these “are a logician’s gadget,” and do not exist
in practice (Aberdein, 2008). The view that formal proofs are practically non-existent is challenged
by new generations of formal proof theories and resulting computational advances, leading to for-
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malized proofs as feasible tools for mathematicians work (Voevodsky, 2015), but it is still certainly
true for “most” mathematicians and almost all of mathematics in educational contexts.

The next “step” are formal proofs in the sense of axiomatic, symbolic mathematics. Such proofs
contain elements of an argumentation and are the type of proof that is most commonly employed in
mathematics contexts. That mathematical proofs can be argumentations (Aberdein, 2008), i.e. let
room for debate, is again a controversial notion and rejected by some (Johnson, 2012), as it conflicts
with the view of proofs providing absolute conviction of truth beyond doubt (Krabbe, 2008).

Proofs in educational settings, such as schools or undergraduate courses, are then again differ-
ent, as they adhere to forms of reasoning and are communicated with forms of expression “that
are valid and known to, or within the conceptual reach of, the classroom community” (Stylianides,
2007). This can include other forms than the stricter representation in communications of the
mathematical community.

What we propose, for the purpose of this article, is more of an implicit definition of proof, giving
a list of attributes defining a proof in the sense of Lakoff (1987) and Weber (2014): By showing
that simulation-based proofs can fulfill the roles and functions of proofs as specified by De Villiers
(1990), they may be regarded as such. In this way, we adopt a view of proofs as a cluster concept
in the sense of Weber (2014).

It should to be noted that when we argue that “simulation-based argumentations” can be
regarded as proofs, it is not our intent to somehow bypass the sociomathematical norms (in the
sense of Yackel and Cobb (1996)), and certainly not to set them; we cannot define externally what
constitutes a proof, this has to be done by the mathematics community and time.

2.2 Mathematical simulations

Generally, a simulation can be defined as any attempt to mimic a real or imaginary environment
or system (Rieber, 1996). Based on this, we define a mathematical simulation (MS) to be a simula-
tion mimicking mathematics by following the mechanisms of action immanent to the mathematics
being simulated, creating the representation as a consequence of general underlying rules (see
Richter-Gebert, 2013). A mathematical simulation comes equipped with a certain representation
of the mathematical content, in general defined by the person who built the simulation, and the
capability to allow user interaction with this representation, be it through manipulation of ob-
jects, images, symbols, or other such modes of representation (see Sec. 3.1) yet to be conceived.
We will call proofs based on a simulation either simulation-based proofs or simply simulation proofs.

Simulations are fundamentally different from animations, even if it may not be easy to dis-
tinguish them from another as a user. An animation is defined to be a software following a pre-
determined stimulus response mechanism (Richter-Gebert, 2013). While animations are defined by
what is being presented, simulations are defined by how the presentation is made.

An example borrowed from physics may help to clarify the differences between animations and
simulations. Two tablet apps are given, both allow the movement of a ball on the screen via
dragging. If let go, the ball will fall to the ground, bouncing a few times. Behind the visual
representation, this could be realized by either implementing the mechanisms of action of the ball,
such as gravity and the spring force calculated from the kinetic energy. This would be a (physics)
simulation. Another possibility would be to simply let the ball go down pixel by pixel until its
coordinates reach a certain value, which then triggers a predefined movement along some curve,
giving the “illusion” of the ball bouncing; this is an animation. Although they may not look
different, at least at first sight, the simulation may allow the exploration of physical phenomena
even beyond the intent of the programmer, while the animation does not. In the scenario of the
bouncing ball, this may mean the deformation of the ball on impact, which may not have been
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intended by the programmer of the simulation but may nevertheless be observed, while it is only
visible in the animation if the programmer has explicitly thought of it.

A mathematical example may be a software generating graphs of quadratic functions, in the
case of a simulation really plotting the function, in the case of an animation presenting a predefined
image from a collection of graphs best fitting the entered parameters. As the number of different
graphs on a screen with a finite resolution is finite, the difference between the two cases would be
virtually impossible to identify for a user.3

These examples showcase the predefined nature of animations, which certainly makes the con-
struction of an animation easier than that of a simulation and may also have some advantages. By
their very definition, they are, however, useless for the exploration or representation of mathematics
beyond the build-in set of cases.

A term closely related to the one of a mathematical simulation is “microworld,” a concept
introduced by Papert (1980) describing a subset of reality or a constructed reality whose structure
matches that of a given cognitive mechanism so as to provide an environment where the latter
can operate effectively (Papert, 1980, p. 204), allowing learning. Hoyles, Noss, and Noss (1996)
also stress the importance of interactivity for microworlds, stating “Software which fails to provide
the learner with a means of expressing mathematical ideas also fails to open any window on the
processes of mathematical learning. A student working with even the very best simulation, is
intent on grasping what the simulation is demonstrating rather than attempting to articulate the
relationships involved.” (Hoyles et al., 1996, p. 54) [emphasis added].

Simulations can, however, be distinguished from these microworlds through design choices made
in the design of the latter as to fit the environment to the learners’ cognitive state (Rieber, 1996).
The aims of a microworld go beyond those of a simulation as it not only represents a mathematical
object faithfully, but also specifically strives to enable learning, making microworlds a subclass of
simulations. In a microworld, the objects can be manipulated by the user “with the purpose of
inducing or discovering their properties and the functioning of the system as a whole” (Edwards,
1995, p. 144).

Mathematical simulations can serve as a framework for formulating proofs, as in addition to the
capability of representing mathematics in a certain way, which can also be said for Proofs Without
Words or even writing on a blank sheet of paper, the user can interact with the simulation in a
meaningful way. The interaction is meaningful, as conjectures and arguments can be made in re-
sponse to the behavior of the simulation, because the simulation reacts according to mathematical
laws. Furthermore, this central feature of simulations makes it possible to not only replicate known
results, but also to discover new results as the grounding in underlying mathematical rules allows
the user to go beyond the simulation designer’s imagination and intentions.

The simulation used to demonstrate some examples of simulation-based proofs in this paper is
Ariadne4, a dynamic topology environment developed by Sümmermann (2019a). In Ariadne,
the user can explore different mathematical spaces including points, paths, and homotopies of paths
using touch gestures, constructing points by a touch, paths by dragging points, and homotopies
by dragging paths. Mathematically speaking, the “dragging” feature of many DGEs represents a
homotopy, so this exploration of spaces via homotopies goes to the core of this “most central tool
of DGEs” (Sinclair & Robutti, 2013).

3Note that although most examples of animations or simulations that come to mind are visualizations, they do
not have to be; any representation mode is possible.

4Although Ariadne can also be seen as a microworld in the sense outlined above, we use it in its capability as a
mathematical simulation.
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2.3 The interaction process with a mathematical simulation

When arguing and possibly even proving based on a mathematical simulation, trust of the user in
the simulation is crucial, for example, trust in the physics engine in the bouncing-ball simulation
mentioned above. Errors in the interaction with a mathematical simulation could undermine the
trust of the user. To determine the kind of errors that can arise in the interaction, we must analyze
the interaction process with such a simulation. This analysis is itself independent of the purpose
of the interaction, be it exploration or argumentation. The interaction process follows the same
principles as the interaction with the software. It can be described using a Subject-Object-Artefact
triangle, derived from situated instrumented activity (Vérillon, 2000); our model is specialized for
the case of user interaction with mathematical simulations.

In an interaction process with a simulation, the users are in a cycle of adjusting their knowledge
of mathematics to the observation of the simulation’s behavior, leading to the formulation of new
actions to be taken, resulting in new output of the simulation, which is again observed by the users.
Each step of the proof involving an interaction with the software leads to such an adjustment. The
general nature of the relationship between the user, the software, and the underlying mathematics
can be described using the triangle in Fig. 1.

During the interaction process, the relations in the triangle are traversed by repeating several
steps:

1. The users decide their next action as a consequence of their knowledge of mathematics
(influenced by mathematics), taking form of an input to the mathematical simulation.

2. The simulation internally computes a new representation as an output, influenced by the
mathematics implemented in it.

3. The users interpret the new representation and adjusts their expectations on the simula-
tion’s behavior and possibly also their knowledge of mathematics.

4. With new expectations in mind, based on the representation of the simulation, the users
decide their next action leading to a new input for the simulation.

Subject:
Knowledge of the users

Object:
Mathematics

Artefact:
Representation by the software

Computation

Adjustment

In
pu

tO
ut

pu
t

Influence

Infl
uence

Figure 1: An interaction process with the mathematical simulation
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2.4 Errors in the interaction process with the MS

For a productive use of mathematical simulations, the process described in Sec. 2.3 must function
properly. Different types of errors can disrupt this process, which are characterized in this section.
We distinguish two categories: errors by the user and errors by the software. An error by the
user means an incorrect interpretation of the representation of mathematics of the mathematical
simulation, and an error by the simulation an incorrect representation of mathematics by the
mathematical simulation.

It is, of course, impossible to determine what, in general, an incorrect representation of math-
ematics is. But the representation of mathematics in a mathematical simulation constitutes an
agreement between user and software to the “language” used to carry information. So even if a
representation generated by a simulation – like any representation – cannot be false by itself, it
can be judged by its adherence to the representation mode agreed upon and thus implicit to the
simulation. In the following, the words “correct” or “error” will be used in this sense. In the
triangle from Fig. 1, this error would be situated in “Representation by the software”.

Nevertheless, a mathematical error originating from interaction with the software can only be
made by the user if the simulation’s dissenting representation leads to false assumptions about
the represented mathematics. Notably, this implies that the error was observed by the user; if an
error of the mathematical simulation has no consequences on the representation given as output
or is overlooked, then it cannot have implications on the expectations and on the mathematical
knowledge of the user.

In addition, the user cannot only hold correct or incorrect assumptions on mathematics, but
also make errors in the interpretation of the simulation’s representation. The chance of misinter-
pretation may increase if the representation mode is not defined explicitly. In Fig. 1, this would
correspond to errors in the arrows between artefact and subject.

This leads to the distinction shown in Tab. 1. The user can correctly or incorrectly interpret
the representation by the mathematical simulation. In the same way, the mathematical simulation
can render the representation agreed upon correctly or incorrectly. Even if all possible interactions
may be situated in this grid, not all errors can be identified in this way; the user can also draw the
right or wrong conclusions, corresponding to errors in the subject corner in Fig. 1, or the software
can go beyond its representation capabilities.

Table 1: The different types of errors along two dimensions, accounting for representation-related
errors.

hhhhhhhhhhhhhhhhhhhhhUser interpretation

MS representation
Correct Incorrect

Correct Case (a) Case (b)

Incorrect Case (c) Case (d)

To illustrate the types of errors given in Tab. 1 with examples, suppose a fictional software
was given. These simple examples do not represent proving situations, but suffice to showcase the
different possible errors of user and software on the mathematical content.

The software is a function plotter, which can represent a given polynomial function by drawing
it in a coordinate system. It does so by randomly sampling points and connecting them by linear
splines. It leaves a gap where the function is not defined. For all presented functions, the user
wants to investigate singularities of the function using the software, disregarding the fact that a
thoughtful user might not trust the software (compare Sec. 4.3.1), or double-check the result by
other means. The error types in Fig. 2 can then be described as follows.
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(a) The representation is correctly understood by the users. They see the singularity pointed out
by the software.

(b) The users have the correct assumptions about the representation used, but the software
depicts an incorrect representation. It might be that the software did not include 1 in the
approximation of the curve, and thus did not observe the singularity. The users “correctly”
assume that the function does not have a singularity.

(c) The users have incorrect assumptions about the representation used, but the software has no
fault in the display. The user does not understand that the circled point is a singularity, even
if removable, and believes the function to be free of singularities.

(d) The users have incorrect assumptions about mathematics and the simulation has a fault in
the display. The software displays a continuous line along the jump discontinuity, which is not
the agreed representation for this type of singularity (correct representation in Fig. 2a). The
users think such an abrupt and non-differentiable change of slope is a sign of a discontinuity,
and interpret the function to have singularities at the points (0.99, 1) and (1.01, 1.5).

f : R \ {1} → R, f(x) =

{
x2 x < 1

x2 + 0.5 else

x
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(a) User interpretation correct, MS representa-
tion correct.
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(b) User interpretation correct, MS
representation incorrect.
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(c) User interpretation incorrect,
MS representation correct.

f : R \ {1} → R, f(x) =

{
x2 x < 1

x2 + 0.5 else
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(d) User interpretation incorrect, MS represen-
tation incorrect.

Figure 2: The error types, as seen in a software for function plotting, according to Tab. 1.
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3 Dimensions of proofs

Mathematical proofs can be classified along several dimensions, for example along the dimension
of formality (Lakatos, 1978). Besides this dimension, we concentrate on “interactivity” as a second
dimension, to account for the focus on more dynamic proof forms, which are the focus of this article.
The classification helps to distinguish the various currently existing environments for basing proofs
upon, and to subsequently point out the place simulation-based proofs take in relation to these
other forms of proof. We will also discuss the concept of “transferability” of proofs, which certainly
plays an important role in this context. All these dimensions are not necessarily orthogonal, but
represent a way of distinguishing some proofs or mathematical environments.

3.1 Formality

Formality describes the adherence to standardized mathematical notation in the representation
of mathematics, which is distinct from “formal,” meaning written in a formalized language with
formalized derivation rules (Krabbe, 2008). Here, formal means adhering to a strict, structured
symbolic representation.

Proofs, as all mathematical content, can be distinguished with regard to their representation.
Different systems have been proposed to categorize representation modes, for example enactive,
iconic, and symbolic by Bruner (1966), or somatic, mythic, romantic, philosophical, and ironical
by Egan (1997).

We use the much coarser distinction into formal–informal, as this suffices to classify existing
environments allowing proofs for the purposes of this article.

3.2 Interactivity

Interactivity is defined by the dictionary Merriam-Webster as “mutually or reciprocally active.”
That means, not only has the medium to be active, such as in a video, but the user’s actions have
consequences on the activity of the medium.

Proofs can present themselves at different levels of interactivity. One end of the spectrum
are static proofs. These can range, in different levels of structuredness, from Proofs Without
Words (Nelsen, 1993), over “traditional” formal proofs, such as proofs in textbooks, to proofs that
can be checked by a computer, the “platonic ideal” (Lamport, 2012).

More interactive proofs are given by videos or even animations, which may even be altered by
tools such as sliders. These give the users some kind of control over the way the proof is presented
to them, but does not constitute a simulation proof in the sense described in Sec. 2.2.

At the other end of the spectrum are fully interactive proofs in mathematical simulations, such
as the ones presented in Ariadne. These are proofs in which the user has total control to alter
the proof, albeit limited by the allowances of the simulation used.

3.3 Overview on representation modes of proofs

Several different types of environments in which proofs can be shown or done, such as digital
environments or simply textbooks, are depicted in Fig. 3. The aim of this overview is to give a sense
of the place mathematical simulations and with them simulation-based proofs take in comparison
to other forms of proof-supporting environments. We will now give some more information about
the objects referenced in the figure.

The standard type of proof is a text with symbols, sometimes accompanied by images for
clarification or illustration purposes, such as in a standard textbook. Standard non-interactive
proofs can, however, range from informal to formal. A very informal category are Proofs Without
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Words, where the image itself is the proof, only sometimes accompanied by text or symbols for
clarification. Their status as to being a proof or representing an idea of a proof is not clear5.

A relatively new type of argumentations are so-called “Proofs Without Words 2.0” (Doyle, Kut-
ler, Miller, & Schueller, 2014), which are animated versions of Proofs Without Words, sometimes
giving the user some control over the animation. This places them at the same level of formality as
traditional Proofs Without Words, but more interactive, together with digital textbooks incorpo-
rating them such as Mathigon Legner (n.d.). Further up in the figure are environments that allow
the user to manipulate the objects more freely and to come up with own proofs, such as DGEs
or Ariadne. These programs are mostly informal in their representation, which is, however, no
requirement for a mathematical simulation.

Figure 3: Some proofs and environments for doing proofs sorted along the dimensions interactivity
and formality, ranging from static to interactive and formal to informal, respectively. For examples
of mechanical proofs, see Richard et al. (2019).

On the more formal side of mode of representation are software such as Surface Evolver (Brakke,
1992) or Jupyter Notebook (Kluyver et al., 2016). Surface Evolver is a program to do oper-
ations, such as the simulation of geometric flows, on surfaces, working with a text-based interface.
Jupyter Notebook is a web-based interactive computational environment, making it possible
to mix text with programming language outputs of, for example, Python, making “seamless the
communication between human and machine” (Barba, 2015).

An environment, which is both highly interactive and formal, is also possible, for example in
the form of proof assistants such as Isabelle (Paulson, n.d.) or Lurch (Carter & Monks, 2013),
or even general mathematical text editors, possibly giving another mode of distinction, which is,
however, not the focus of this paper.

3.4 Transferability

While the idea behind a proof is in theory independent of its representation, it is nevertheless hard
to do comparisons between proofs in different representation modes (Giaquinto, 2020). It is even
hard to compare proofs in the same representation: given two proofs of the same theorem, there is

5In his famous collections of Proofs Without Words (Nelsen, 1993, 2000, 2015), Roger Nelsen writes in the intro-
duction to Volume I: “Of course, ‘proofs without words’ are not really proofs”, while the introduction to Volume II,
quite ironically, contains: “Of course, some argue that ‘proofs without words’ are not really proofs” concluding with
a quote from Brown (1999) ending with: “In short, pictures can prove theorems”.
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no formal notion of which proof is “simpler” (Cain, 2019) (also compare Inglis and Aberdein’s (2014)
discussion on the meaning of “simple” in mathematics). Also, not every proof can be represented
in all modes of representation with the same ease, as many Proofs Without Words demonstrate;
many would be challenging to formalize, and probably even lose their elegance.

There are, however, cases where the representation of a proof can be changed without changing
the proof’s idea. We describe the degree to which this is possible and the amount of “mental work”
necessary to do so by transferability. This concept is certainly related to the concept of cogni-
tive unity (Boero, Garuti, Lemut, & Mariotti, 1996; Pedemonte, 2007), but does not consider the
transition from a person’s argumentation to a formal proof, but the comparison of the products of
proving processes in general. It stands out of question that, based on this vague definition, trans-
ferability cannot easily be quantified. It is nevertheless an important concept for understanding the
role of proofs in different modes of representation. The dimension of transferability is relevant in
mathematics as well as mathematics education, as the current de facto representation of choice for
proofs is formal-symbolic and all other representation modes are measured as for their alignment
to this representation (Brunner & Reusser, 2019).

4 Functions of simulation proofs

We follow De Villiers’ (1990) extension of a categorization by Bell (1976) to analyze the functions
of simulation proofs. De Villiers highlights the functions of explanation, systematization, discovery,
verification, and communication. We split up the function of verification in relative and absolute
conviction, to emphasize the difference between believing the statement to have a high probability
to be true, which is relative conviction, and believing the statement to be surely true, which is
absolute conviction (Weber & Mejia Ramos, 2015).

We identify several criteria particular to simulation-based proofs that influence the relative
conviction function: trust in the technology, level of detail, and limits of the representation. These
criteria add to the established ones for proofs in general as well as perhaps also to the criteria
surrounding computer-based proofs.

4.1 Explanation

Explaining why a result holds is one of the main motivations for a formal proof and goes beyond the
relative conviction that it holds. That relative conviction can be achieved by, for example, a lack of
counterexamples after some searching, is also one of the criticisms of the use of dynamic geometry
in educational settings; by being able to provide a large, seemingly infinite, number of examples,
students are so convinced of the result they should prove that they no longer feel the need to prove
it (Bolite Frant & Rabello de Castro, 2000). In the framework of Harel (2013), the students draw
certainty from an “inductive proof scheme” instead of the educationally desired “transformational
proof scheme”.

On the other hand, numerous Proofs Without Words give examples of visual arguments ex-
plaining why a result holds. This shows that the capacity of a proof for explanation does not
necessarily depend on the representation. “Proofs Without Words 2.0” denote animated versions
of such proofs (Doyle et al., 2014), which can certainly be seen as being something between static
visual proofs and simulation-based proofs, and retain the explanatory capacity of Proofs Without
Words while being more interactive.

A mathematical simulation goes even further, giving the user more freedom to explore the
phenomenon being reviewed and thus more opportunities to find an explanation. There are many
examples of explanations using dynamic geometry software, which show that the problem addressed
by the criticism above should be directed more to the overemphasis of the relative conviction aspect
of proofs in education (Hanna, 1998), which leads to the question of “why” being overshadowed
and thus neglected by students.
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4.2 Relative conviction

While the notion of “relative conviction” was only put forward in (Weber & Mejia Ramos, 2015),
the connection between exploration of mathematical situations using technology and conviction
through quasi-empirical testing of the truth of a result is a well-explored concept (see the examples
and references in the introduction). It is the main reason for the use of simulations such as
Mathematica to check statements by computation in research, and the employment of dynamic
geometry software in education. In a such a setting, verification is often, especially in lower grades,
understood as quasi-empirical verification providing relative conviction (Hanna, 1998), as opposed
to a deductive proof, which would provide absolute conviction. We believe that simulation proofs
can go beyond this kind of relative conviction and also provide absolute conviction by being more
than just a collection of examples, however compelling, but providing insights and explanations as
to why a result holds.

4.3 Absolute conviction

This aspect not only denotes the absolute conviction of the truth of the result, but also the convic-
tion of the validity of the proof (which certainly implies the former). As there is no consensus on a
definition of a proof, there are no generally accepted criteria for its validity (Hanna & Jahnke, 1996).
Proofs have evolved through history and range over a wide variety of type, and while there are some
techniques of proof accepted by most, such as mathematical induction or reductio ad absurdum,
there is no one proof type that fulfills all needs and demands of every mathematician (McAllister,
2005). Thus, the question of the validity of a proof is a deeply subjective one, influenced by the ever-
changing norms of the mathematical community (Sommerhoff & Ufer, 2019). This sort of change
of norms is not unique to mathematics; quantum theory offering no visualizations led to some
physicists not accepting it, until overwhelming evidence forced physicists to reshape their criteria
for theory acceptance, abandoning the need for visual representations of phenomena (McAllister,
2005).

However, different criteria can be identified that may influence this absolute conviction to a
varying extent. We propose that these be grouped into the following categories:

1. Mathematical-logical reasons, the personal understanding of the theorem, and an a priori
judgment of its validity; the logical consistency of the proof.

2. Socio-cultural reasons, such as the trust in the author or in the mathematical community
that examines the proof.

3. Technological reasons.

The first two categories contain established criteria for proof acceptance (Hilbert, 1931; Sommerhoff
& Ufer, 2019; Yackel & Cobb, 1996) and are not the focus of this paper.

The third category of technological reasons is of particular importance for proofs in the context
of computers, including mathematical simulations. Several criteria of this category can be identified.

4.3.1 Criterium 1: Trust in the technology

If a proof involves the work of a computer, then trust in the computer may be a factor in accepting
the proof. This is a multi-faceted aspect, which encompasses several subcategories.

It can mean the trust in the operations done by a computer, such as in computer-assisted
proofs. This can further be elaborated, as, for example, the original Appel-Haken proof of the
Four-Color Theorem not only needed the trust in the operations executed, but also in the validity
of the computer program generating the proof itself. This was eliminated only decades later with
a formal proof in Coq (The Coq Development Team, 2019), reducing the trust to the Coq system
and the computer operations (Gonthier, 2008).

42



The main problem with computer-based proofs, such as computer-assisted proofs, is often their
length, which makes them non-surveyable, that is inaccessible for verification to the mathematical
community (Tymoczko, 1979). But even if a proof seems surveyable, its acceptance by the recipient
can still need trust in the technology, as the following example demonstrates.

If users drag a triangle in a DGE, the users most probably have the expectation that only the
position of the triangle should change, not its area or other intrinsic features. Each time they
perform the dragging operation, they can perform a visual inspection and check if the triangle
has changed, strengthening their trust that dragging is a faithful representation of this translation
they have in mind. They could further strengthen this trust by looking at the source code of the
application, if accessible.

In some points, the users will check against their expectations and mathematical knowledge
if the simulation is indeed one, that is if the mathematics are accurately represented. At other
times, they will trust the software to be honest with them, and will adjust their expectations and
mathematical knowledge according to their interpretation of the visualization given by the software.

4.3.2 Criterium 2: Level of detail

In a traditional paper-and-pencil proof, every argument can be broken down further, until the steps
performed are small enough to be understood by the recipient or the axioms are reached. This
strengthens the trust of the users in a proof, as they have the certainty that they could, in theory,
probe every part of it.

In a digital environment, such as a mathematical simulation, the detail of a proof is limited
by the resources the software provides. In addition to the interference of the trust, and with it,
the conviction of the users in the proof, this massively inhibits the users in their own creativity, as
they, opposed to the software designer, are not able to construct their own objects independently
of the software’s functionality, a limitation that can hopefully be overcome by future simulations.

A prime example is the “winding number tool” in Ariadne, which provides a way of computing
the winding number of a path around a point. By doing this in a certain way, it not only inhibits
the users to think of their own way to compute the winding number of a path, but also which
invariant of a path to choose in the first place. Therefore, proving in such an environment is always
only proving given these constraints.

4.3.3 Criterium 3: Limits of the representation

Every representation mode has its limits, which are independent of the technology used. This is
a problem in some types of proof such as visual Proofs Without Words that can hamper proof
acceptance (Bardelle, 2010). This factor is magnified in dynamic proofs in digital environments,
as the representations of mathematical objects here are not directly generated by the prover, i.e.
the mathematician. They are thus even more susceptible to error, as the possibility of a simulation
going beyond the capabilities of its representation always exists (compare Sec. 2.4). The users know
this, which can impede their relative conviction.

Instances of these limits are found readily, for example given a mathematical simulation plotting
a function with a removable singularity such as f : R\{2} → R, x 7→ x2. A programmer would have
had to think of a way to highlight this singularity, for example by drawing a small circle at (2, 4),
as no resolution would be sufficiently fine to show its existence. In such a way, the programmer
must have thought about the representation of every possible function that might be plotted by
the software.

The more general and powerful the simulation, the more cases have to be covered in beforehand.
In the light of the research-level proving process, one is certainly in the realm of new mathematical
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objects and connections between them, which makes it all but impossible to construct the environ-
ment to account for all possible cases. Herein lies the special challenge for the designers of such
mathematical simulations, but also for the user interacting with the software, who has to take this
type of limitation into account.

4.4 Systematization

Systematization describes the organization of several results into a (deductive) system. This was
certainly made easier with the standardized formal Bourbaki-style notation ubiquitous in mathe-
matics today, allowing the description of results from different fields in the same language.

For a specialized piece of software such as a simulation designed to simulate a certain part of
mathematics, the systematization of results from different fields is certainly hard to achieve. If the
simulation uses visualization as its mode of representation, this may add to this problem, as at least
today, generality and power of a simulation stand opposed to its intuitiveness and informality. This
means that a visual simulation often tries to incorporate an informal and intuitive interface, which
then limits its generality. Hopefully, future simulations will be able to overcome this limitation.

One could say that systematization is thus a weak point of a mathematical simulation.
Local systematization on the other hand is, however, very much possible; the organization

of several definitions, lemmas, and theorems in one (sub-)field being more homogeneous in their
representation. An example is a function plotter, which can very well classify different functions
such as polynomials using their coefficients, or Ariadne systematizing paths on the plane by their
homotopy classes, showing the relation between theorems on these objects.

4.5 Discovery

Discovery of new results is certainly not limited to proofs, but is an aspect relevant to proofs. The
historical example of sphere eversions illustrates a discovery process in mathematics.

The eversion of the sphere is a regular homotopy turning S2 in R3 inside out. Constructions
of such eversions were contrived by, for example, Shapiro (Levy & Thurston, 1995), Morin (turned
into a video by Max (Max, 1977)), and Thurston (featured in a movie (Levy, Maxwell, & Munzner,
1994)6).

Visualization in itself can bring new ideas into mathematical research (Bartzos et al., 2018).
Now imagine a software had been available to these mathematicians, making possible the deforma-
tion of manifolds shown in the videos by directly controlling their manipulation. It is quite possible
that the construction of such an eversion would have been more accessible. This is even more plausi-
ble as the discovery of the later eversions correlates with the expanded use of visualization software.

In education, one of the main uses of dynamic geometry software is to facilitate the forming of
conjectures in students by analyzing specific mathematical settings given by the teacher (Mogetta
et al., 1999). This is certainly a part of the discovery aspect of proofs; by investigating arguments
for the validity of statements, new statements are conjectured. Furthermore, there is no reason to
believe this feature is only of use in education, given a software capable of representing objects of
interest to research-level mathematicians, it would certainly be used to discover new results.

4.6 Communication

It is a central function of a proof to communicate mathematical ideas. In a simulation, this function
encompasses both the communication with the mathematical community and the communication
with the software itself. In both situations, the software provides a medium to express thought,
which is strongly dependent of the representation form of the proof.

6There is even a more interactive animation available at http://profs.etsmtl.ca/mmcguffin/eversion/
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The most used form to communicate proofs is by large a static and formal representation.
To quote Mazur (2014) “As with almost all advances, something was lost,” talking about losing
“the public” (i.e. non-mathematicians) by this “code, unintelligible for the uninitiated.” However,
Victor (2014) argues that even more was lost: The use of formal notation restricts many human
capabilities, forcing humans to use only a part of their cognitive abilities as they are confined to
sitting in front of a small screen or piece of paper, manipulating it indirectly with a pen or a mouse
creating static objects.

Simulation-based proofs may give the possibility to externalize thoughts in a way closer to the
way we think. Touch- or gesture-based interfaces can express argumentation in a more embodied
fashion, reacting dynamically to human input (Abrahamson & Bakker, 2016). While this may also
be seen as an economical argument by allowing “more” work to be done, the idea is to achieve
more humane means of communication.

Software proofs also allow, using the internet, a collaborative form of proving, by being able
to manipulate objects simultaneously (Borba et al., 2017). While this has been a standard way
of working in mathematics for a long time, this collaboration can be now made independent of
physical restraints.

A mode of representation often chosen by simulations is a visual one, which has several influ-
encing factors. Visualizations have a long history in mathematics, and in the acceptance of theories
in general, having been seen a prerequisite or at least necessary component of a “proof” (von Fritz,
1955).7 Also, visual representation modes of mathematics may be “closer” to the way we think,
as mathematical thinking more often deals with images than with formulas, at least in some ar-
eas of mathematics (Hadamard, 1954). Hopefully, future simulations can unite the advantages
of visual embodied communication with the power, precision and universality of formal-symbolic
representation modes.

5 Conclusion

This article points out the role mathematical simulations can play in the context of proving. As this
connection is not yet well explored and as proving is a core activity in mathematics, this has far-
reaching implications for mathematics educational practice and research, as well as for mathematics
research itself.

These implications require, in a way, that the presented simulation-based proofs can indeed be
regarded as proofs. This issue can surely not be resolved in this general formulation, but will depend
on the same criteria other proofs need to fulfill as well, such as their exact form and implementation,
and the context of their use.

5.1 Implications for mathematics education practice and research

The development of new technologies and the programming of new software is changing the educa-
tional landscape. Decades ago, calculators replaced slide rules and logarithm tables in classrooms.
Years ago, DGE and CAS have revolutionized teaching. Their impact on proof has been to give a
preliminary exploratory and quasi-empirical step to increase relative conviction regarding a conjec-
ture, without influencing the actual proof, the content and form of which has not changed. Now,
with more mathematical simulations such as Ariadne appearing, the form of the actual proof is
challenged. This makes it all the more important to do research in this area.

7See Giaquinto (2020), citing Gauss: “anybody who is acquainted with the essence of geometry knows that [the
logical principles of identity and contradiction] are able to accomplish nothing by themselves, and that they put forth
sterile blossoms unless the fertile living intuition of the object itself prevails everywhere.”
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As simulation-based proofs can fulfill all functions of proof, and can do so without the at
times inhibiting factor of formulaic representation, they are of particular interest for educators in
undergraduate courses. Here, the restrictions of creativity through design choices of the software
(compare Sec. 4.3.2) can even be thought of as a feature, as such restriction can constitute an aid
in doing proofs by narrowing the number of choices available. Note that it is not the purpose of
simulation-based proofs, nor is it the question addressed in this paper, if simulation-based proofs
are to be considered as “real” proofs, in the sense of being a perfect substitute for traditional
symbolic proofs. Furthermore, such a discussion cannot be settled by theoretical debate, as the
status of proofs depend on the norms of the community (compare Sec. 2.1). Such proofs can rather
be a gateway into proving, giving an alternative access to proofs in a non-formal highly interactive
setting. They may guide learners on their transition from mental argumentations in the sense of
Mamona-Downs and Downs (2010) to formal proofs by giving them an appropriate environment to
project their thoughts upon, maybe with the guiding rails of the affordances of the environment.

Figure 4: A GeoGebra-Applet letting the user explore the uniform continuity of some func-
tions Dikovic (2017).

Examples may be the introduction of the concept of continuity through a suitable mathematical
simulation software, for example giving a visual representation of the ε-δ definition of continuity,
maybe along the lines of Fig. 4. This software might then be used to prove the continuity, or non-
continuity of some functions. However, as described in Sec. 2.2 and Sec. 4.5, the software must be
powerful enough to allow real discovery by being more than just an animation, but a mathematical
simulation.

There may be an obstruction to the implementation of simulation-based proofs in educational
settings; the absence, at times, of transferability or “parallelism” (Miller, 2012) to formal representa-
tion also implies a deficiency of connectivity with further study or even other fields of mathematics.
In an educational setting, visual proofs or arguments are mostly made to support a formal proof,
which currently is the gold standard in mathematics, and aid in its understanding. A visual proof
thus has to be transferable into a formal proof to a certain degree, which may not always be possible
(compare Sec. 3.4). It is however possible, with future development in mathematics visualization,
that this can be made more balanced, or even reversed; a proof will first be provided visually, and
translated into formal proof as an addition, for example for automated verification purposes.

Following the distinction into “learning to argue” and “arguing to learn” (Baker, Andriessen, &
Schwarz, 2019), simulation-based proofs may not only be used to learn mathematics by proving in
a mathematical simulation, but also for inciting a discussion with students on the nature of proof.
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The debate on whether, or to which extent, the arguments made in a simulation constitute a proof,
or how visual arguments relate to proofs in general in the sense of the above discussion, can be
used to foster understanding on the concept of proofs.

The consideration of simulation proofs also has implications for mathematics education research.
Approaching the subject from the students point of view, researchers investigating ways of teaching
proofs or the learning of proofs may consider the use of simulations for either purpose. The
implications of their use might then be assessed for their influence on the beliefs on the nature
of proof. From the technological side, researchers working on the assessment or development of
learning software might be driven to consider existing software for use in learning and teaching
of proofs. For educational designers, requisites for the design of such environments must also be
established.

5.2 Implications for mathematics research

Visual proofs are playing an ever larger role in research (Bartzos et al., 2018). As the possibilities
of representing mathematics in computer environments as well as the possibilities to interact with
computer-generated content continue to expand, this progress will surely sustain. We believe that
simulation-based proofs may be a bridge between traditional proofs and experimental mathematics,
combining the deductiveness of the former and the explorational capacities of the latter.

As this is highly dependent on available software, which is arguably harder to develop for
research-level mathematics than for undergraduate or school mathematics in general, the long-
term developments in this area are hard to predict.

5.3 Outlook

While simulation-based proofs can already fulfill all functions of proofs, we are still at the beginning
of the digital age, so many more changes are to be expected. Further advances both in technology
as well as representations will hopefully lead to simulations vastly more powerful while still being
intuitive to use, realizing many of the features outlined in this article. This will undoubtedly
lead to a shift in the use of technology away from purely exploratory capacities to other areas of
mathematics practice. Research is and will be needed to understand which areas, such as proofs
or problem posing and solving, these are, and how they are affected.

As remarked in Sec. 4.3, proof is not a static concept, but shaped by the community. It would
be interesting to examine the opinions of research mathematicians as well as educators on the status
of simulation proofs as acceptable proofs, in mathematics as a scientific discipline and as an item
in the curriculum, and maybe identify further factors influencing their opinion.
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A Examples of proofs in Ariadne

Theorem A.1. Given the plane with one puncture R2 \ {0}, there exists a path γ with Wγ(0) = 1.

Proof. See Sümmermann (2019b):
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Table 2: The proof of Theorem A.1

Step of proof In Ariadne

1
Designate a point. Touch the canvas

2
Construct a path. γ Drag the point around somehow, such that

it does not stay in one quadrant relative to
the puncture, and then back to itself.

3
Compute the winding number of γ. Click on winding number, then on γ, then

on the puncture.

Theorem A.2. Given the plane with one puncture R2 \ {0}, the path γ with Wγ(0) = 1 is not
null-homotopic.

This is a theorem asking for a proof of non-existence, as it postulates there cannot exist a
homotopy between the path with winding number 1 and the constant path.

Proof. See Sümmermann (2019c):

Table 3: The proof of Theorem A.2

Step of proof In Ariadne

1
Construct a path δ. Drag the point around somehow, such that

it stays in one quadrant relative to the punc-
ture, and then back to itself.

2
Compute the winding number of δ. Click on winding number, then on δ, then

on the puncture.

3
Compute the winding number of homotopic
paths constructed by dragging δ.

Drag δ around and compute the winding
number of the dragged path. If necessary,
do this first for small dragging steps, and
then for larger ones; see that larger drags
are “made up” of smaller ones.

4
Conclude that the winding number is invari-
ant under homotopy.

By understanding the construction of the
winding number, and seeing how the drag-
ging of paths influences this computation.

5
Show that δ is null-homotopic. Drag the path to the puncture.

6
Construct another path γ around the punc-
ture.

Drag the point around the obstacle.

7
Compute the winding number of γ. Click on winding number, then on γ, then

on the puncture.

8
As the two winding numbers differ, conclude
that γ is not homotopic to δ.

By invariance of the winding number under
homotopy.

9
Conclude that γ is not null-homotopic. As a null-homotopic path has winding num-

ber zero.

The arguably most tricky step is Step 3, where the user has to convince herself/himself of the
invariance of the winding number under homotopies. This seems to be a situation as described in
Hanna (1998), but is decidedly different.
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Hanna describes a student who convinces himself of the truth of a theorem, that the perpen-
dicular bisectors of a triangle intersect at a point, by dragging the corners of the triangle, thereby
deforming it, while the bisectors always intersect (technically speaking a homotopy (Lehrer &
Chazan, 2012)). Here, Hanna argues that the student does not learn why this theorem holds.

We argue that the student has no chance to see why the theorem holds as the construction of
the perpendicular bisectors does not give the same insight as their defining property : that all points
on the bisector have equal distance to the endpoints of the bisected line segment.

In Ariadne, the winding number Wγ(p) of a path γ around a point p is not given as the result
of a calculation invisible to the user, but as the result of a construction following the definition.
So, when users drag a path and recompute its winding number, they can see how the dragging of
the path changed the computation of the winding number. This enables the generalization to the
fact that the winding number is null-homotopic. This is an example of a use of a mathematical
simulation in contrast to the construction above, as the users gain insight into the mechanism of
action behind the winding number, and thus understanding and not just conviction.

Theorem A.3. Given the plane with one puncture R2 \ {0}. If γ is the path with Wγ(0) = 1, then
Wγn(0) = n for all n ≥ 1.

Proof. See Sümmermann (2019d):

Table 4: The proof of Theorem A.3

Step of proof In Ariadne

1
Designate a point. Touch the canvas

2
Construct a path with winding number 1,
possible by Theorem A.1. γ

As detailed in the proof for Theorem A.1.

3
Redraw the same path to obtain a new path
δ.

Drag the starting point of γ along γ.

4
Concatenate the two paths, obtaining a new
path ε.

First touch γ, then δ, touching both simul-
taneously.

5
Compute the winding number of ε. If nec-
essary, repeat from Step 3, concatenating a
new path to ε.

Click on winding number, then on ε, then
on the puncture.

6
Conclude that concatenating γ with a path
increases its winding number by one.

Observe the construction of the winding
number.

This proof relies on the user seeing how the winding number is computed. As the winding
number is computed iteratively by analyzing how the path changes locally, the concatenation of
paths results in the addition of winding numbers. This naturally and inductively generalizes to any
number of paths n.
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Sümmermann, M. L. (2019d, October 28). The winding number is additive. https://youtu.be/

8rZD733bx8w.
Sommerhoff, D., & Ufer, S. (2019, March). Acceptance criteria for validating mathematical proofs

used by school students, university students, and mathematicians in the context of teaching.
ZDM . doi: 10.1007/s11858-019-01039-7

Stylianides, A. J. (2007). Proof and Proving in School Mathematics. Journal for Research in
Mathematics Education, 38 (3), 289–321.

The Coq Development Team. (2019). The Coq Proof Assistant, version 8.9.0. doi: 10.5281/
zenodo.2554024

Tymoczko, T. (1979, February). The four-color problem and its philosophical significance. The
Journal of Philosophy , 76 (2), 57. doi: 10.2307/2025976

Venema, G. (2013). Exploring Advanced Euclidean Geometry with GeoGebra. Mathematical Asso-
ciation of America.

Vérillon, P. (2000). Revisiting Piaget and Vygotsky: In Search of a Learning Model for Technology
Education. Journal of Technology Studies, 26 (1), 3–10.

Victor, B. (2014). Humane Representation of Thought: A Trail Map for the 21st Century. In
Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology
(pp. 699–699). New York, NY, USA: ACM. doi: 10.1145/2642918.2642920

Voevodsky, V. (2015). An experimental library of formalized mathematics based on the uni-
valent foundations. Math. Structures Comput. Sci., 25 (5), 1278–1294. doi: 10.1017/
S0960129514000577

von Fritz, K. (1955). Die APXAI in der griechischen Mathematik. Archiv für Begriffsgeschichte,
1 , 13–103.

Weber, K. (2014). Proof as a Cluster Concept. In T. Fukawa-Connelly, G. Karokak, K. Keene, &
M. Zandieh (Eds.), Proceedings of the 17th Annual Conference on Research in Undergraduate
Mathematics Education.

Weber, K., & Mejia Ramos, J. (2015). On relative and absolute conviction in mathematics. For
the Learning of Mathematics, 35 , 15–21.

Whitehead, A. N., & Russell, B. (1910). Principia Mathematica (Vol. 1). Cambridge University
Press.

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in math-
ematics. Journal for Research in Mathematics Education, 458–477.

53



2.5 Knotted Portals in Virtual Reality

Author: Moritz L. Sümmermann
Accepted for publication in The Mathematical Intelligencer on September 26, 2020. Prepublished on
the arXiv January 9, 2020, last revised April 20, 2020 (Sümmermann, 2020b).

This paper presents KnotPortal, a software for the visualization of branched coverings of
knots in virtual reality. The article not only describes the inner workings of the software, but also
provides a short introduction into the mathematical theory of branched coverings and offers a rich
collection of examples of branched coverings.

54



Knotted Portals in Virtual Reality

Moritz L. Sümmermann

Abstract

KnotPortal is a software for the visualization of branched covers of knots based on an
idea by Bill Thurston (Thurston, 2012). It imagines knots made of a magical material which
“rips the universe apart”, leading to the creation of portals to other worlds. This makes possible
the visualization of three-manifolds constructed through gluing of different sheets along the knot
as a branching curve. To recreate the experience of “stepping through the knot” described by
Thurston, our implementation allows users to explore these knotted portals in virtual reality
using a head-mounted device with room-tracking. Users not in possession of such a device can
alternatively use the software on a normal computer screen and with keyboard controls.

This article gives a short introduction into branched coverings and the history of branched
covers of knots as well as the mathematical background to the ideas described by Thurston and
used in the software. It also provides examples of branched coverings and the associated deck
transformation groups, which are required as input for KnotPortal.

KnotPortal can be used to enable students to learn about knots, gluing, (branched) covers,
or just to have a fun looking at portals and knots. It is open-source and available for free download
at the website of the imaginary foundation at https://imaginary.org/program/knotportal.

1 Introduction

In a video titled “Knots to Narnia” (Thurston, 2012), Bill Thurston presents an approach to
“visualize” the cyclic branched cover of a knot by interpreting the knot as a portal to other
universes.1 He demonstrates this using a wire to create different life-sized knotted portals. The wire
is “magical” and, when its ends are joined, creates a “rip in the fabric of the universe,” creating
a portal from our world to a parallel world called “Narnia” in reminiscence of the novels by C.S.
Lewis. The only rule governing the portal is that by circling around the boundary curve twice, one
returns to the original world one started in. He then proceeds to explain the phenomena arising in
the context of such portals by walking through this wire portal (see Fig. 1).

1The video was recorded by Tony Phillips as he asked topologists to do “demos” with knots. To his knowledge,
Thurston was the first to illustrate this phenomenon of a branched world in this way.
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Figure 1: Thurston stepping through a portal
generated by the unknot from Earth to Narnia.

Figure 2: The author stepping through a portal
given by the unknot. Screenshot from https://

youtu.be/Pgmfsl1e vA

This notion of a portal being generated by a ring-shaped object is a quite common theme in
movies and videogames, and is mathematically quite simple. Thurston then proceeds to ask a
question: What if the wire generating the portal was to be knotted? This leads to different regions
in the knot, generating multiple portals. But how many different portals would be generated, and
in how many worlds would they lead?

Figure 3: A twisted unknot in
KnotPortal, showing two por-
tals into a different world, as
seen from the first (ice) world.

Figure 4: The same twisted un-
knot, now seen from the second
(forest) world.

Figure 5: A sideways view of the
twisted unknot, revealing why
“both” portals must lead into the
same world; there is in fact only
one portal.

The object being studied is a cyclic branched cover of order 2. This means that a knot defines
a gluing of several sheets of R3, by regarding it as a branching curve. Each world is cut along
surfaces generated by the knot in a way specified in Sec. 5, and then glued together according to
permutations subject to certain rules. This is analogous to the two-dimensional case, where one
has branching points and cut lines in the construction of, for example, the complex logarithm (see
Fig. 6).2

2This is also an explanation for the common cartoon trope “behind a stick”, where a character vanishes by running
around a tree. It is also what a “portal” in two-dimensional “Flatland” would look like.
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Figure 6: Creating a branched cover of the complex plane by first cutting from the branch point to
infinity, and then gluing together copies of the cut surface along the cutting line.

This representation of branched covers of knots is fascinating, and for the unknot, it is easy
enough to imagine.3 If, however, the branching curve is knotted, it requires quite a lot of imagination
to be able to picture these portals, even for simple cases. This gave the motivation to implement
this vision as a computer program, to further recreate Thurston’s experience of being able to step
through portals as a virtual reality software, giving users the possibility to not only see these portals
but actually be able to walk through them as Thurston did.

In this paper, we describe the implementation of this software and a description of the mathe-
matics involved in the construction of the portals as well as the group structures given by them.

2 How to read this article

Sec. 3 gives details of previous work in recreating Thurston’s idea. Sec. 4 contains a short introduction
into branched coverings with some interesting examples. In Sec. 5, the software KnotPortal is
described in detail. Finally, Sec. 6 provides examples of branched coverings and the corresponding
deck transformation groups.

Readers only interested in the mathematical background of branched coverings of knots need
only read Sec. 4 and maybe 6 for some examples. For understanding the project, all sections should
be read in order, jumping to the examples in Sec. 6 on occasion. This last section is of particular
interest to those wanting to add their own knots to KnotPortal, as it gives an algorithm for doing
so.

Regardless the motivation, the reader is strongly advised to try out the software, or at least
watch videos of its use, at https://imaginary.org/program/knotportal.

3 Project history

Previous projects also concerned with the modeling of branched covers of knots include the software
“Polycut” by Ken Brakke (Brakke, n.d.). This software was designed “for visualizing multiple
universes connected by a certain kind of wormhole,” with the purpose of illustrating “the author’s
contention that soap films are best viewed as minimal cuts in covering spaces.” In the software,

3Although it is not completely trivial: If you step through the portal defined by the unknot, and turn around,
what do you see?
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the user can view different knots and links and some of their branched covers as differently colored
regions, as well as soap films, which are the minimal surfaces separating the sheets.

We wanted to achieve something different, as our goal was to give a real “world” instead of just
colors, as well as to realize a virtual reality experience.

There was an attempt to achieve this by porting Ken Brakke’s code to CAVE virtual reality
technology by George Francis, Alison Ortony, Elizabeth Denne, Stuart Levy and John Sullivan
during the illiMath2001 research program, however, this attempt remained unfruitful: “Though a
complete solution to this visualization problem still eludes us, extensive geometrical documentation
and evaluation of extant software was undertaken this summer and presented as a PME talk at
MathFest, Madison, WI.”, as reported at http://new.math.uiuc.edu/oldnew/im2001/.

In this project, we achieved our goal through a new software called KnotPortal, by using
the combination of a game engine and a head-mounted virtual reality device capable of room-scale
tracking (see Fig. 2). In our software, the user can move around in a fully immersive experience
featuring different real worlds. It is adaptable as new knots can easily be added, and a non-VR
version for use with a normal desktop computer can be used if a VR-headset is not available.

4 Mathematics background

4.1 Branched coverings

While this section gives a short overview on branched coverings, interested readers in this topic
might want to consult a more comprehensive resource. Most standard textbooks on algebraic
topology will do.

. . .

. . .

Figure 7: The real line R coiled over the sphere S1. Every neighborhood of a point on the sphere
has countably infinite many copies above it

.

A covering map is a map p from a “covering space” E to a “base space” X, such that for any
x ∈ X, the pre-image p−1(Ux) of any neighborhood Ux of x is a disjoint union of open sets Ũi∈I ,
with Ũi homeomorphic to Ux for every i ∈ I. The cardinality of the index set I is also called the
degree of the cover. In words, this means that every part of the base space has copies of itself
“above” it. Besides the trivial covering of the disjoint union of copies of a space covering the space
itself, the classical example is the “exponential spiral”. It is defined by the covering map p : R→ S1
from the covering space R to the base space S1, p(t) = exp2πit, see Fig. 7.
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Figure 8: From left to right, the construction of a double cover of the sphere by the torus, by
cutting up a sphere and gluing it to a copy of itself. Marked in black are the four branching points.
(Screenshot from TinkerCAD)

If the assumption of every point being covered as described above is relaxed to most points,
one obtains branched covering maps. To be precise, a map p is a branched covering map if it is a
covering map for all points but those in a nowhere dense set S ⊆ B, the set of branch points. Here,
a classical example is the complex logarithm used as a countably infinite cover of the complex plane,
giving rise to the “logarithmic spiral” in Fig. 6.

Another example is depicted in Fig. 8 and describes the construction of a branched double cover
of the sphere by a torus with four branching points. A sphere is cut twice, which is homeomorphic
to an open cylinder or a half-torus. Two half-tori are glued together to yield a torus, so that every
point on the sphere except the points on the cuts has a corresponding point on each half-torus.

A second somewhat more complex example of a branched cover of the sphere by a torus with
four branching points is given by the Peirce quincuncial projection (see Fig. 9, or consult Baez
(2006) for a complete explanation). In this case the two disjoint arcs that we cut along in the
previous example are chosen to cross each other. This can be visualized by projecting the sphere to
an octahedron, and then unfolding the octahedron by cutting all edges adjacent to a vertex on the
square equator. The flattened version gives a square with the south pole at all corners (See Fig. 9a).
This square can tile the plane by point reflection on the midpoint of the sides, as shown in Fig. 9b.
This then defines a branched double covering of the sphere by the torus, depicted in Fig. 9d, with
covering space the torus and base space the sphere.

Every point on the globe is present on the torus twice, except for the branch points, which are
only present once. Going around one of the branching points in the covering space also means going
around the point on the globe twice. This is not apparent on the map, as Peirce placed the branch
points in oceans, making them less visible.

Branched covers of the sphere, such as the ones presented in these examples, are ubiquitous, as
made precise by the Riemann existence theorem: every Riemann surface is the branched cover of
the sphere Harbater (2015).
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(a) The map projection into a square. The
red lines indicate the edges of the octahe-
dron, which is obtained by folding the trian-
gles at the corners backwards. Image from
Strebe (2012).

(b) Tiling of the plane by the maps, which
are marked in red.

(c) The yellow fundamental region of the
torus from Fig. 9b, with identical corners
and identical opposing sides. The four
branch points are now at the corner, the
center, and the two midpoints of the sides.

(d) The fundamental region wrapped on
a torus. The red lines both connect the
Antarcticas. Image generated with Persis-
tence of Vision Raytracer Pty. Ltd. (n.d.).

Figure 9: Different views of the Pierce quincuncial map projection.

4.2 History of the relationship between knots and branched coverings

Knots are everywhere in our world, and applications of knot theory range from understanding
why headphones get tangled spontaneously (Raymer & Smith, 2007) to phenomena in quantum
physics (Planat, Aschheim, Amaral, & Irwin, 2018). Although knots are found throughout human
history, such as the famous Gordian Knot, their modern mathematical study first began in the 18th

century by Vandermonde (Vandermonde, 1771) and rised together with topology (Przytycki, 2007).
The first applications of known mathematical methods to knots came with Poincar̈ı¿½’s Analysis
Situs (Poincaré, 1895). Heegaard used topological methods to compute the 2-fold branch cover
of the trefoil knot (Heegaard, 1898), but did not use the result to discriminate the trefoil from
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the unknot, as this now central problem of knot theory was not of interest to him and was only
proved by Tietze in 1908 using the fundamental group (Stillwell, 1980, p. 226). He used the cover
to construct “Riemann spaces,” analog to the construction of Riemann surfaces in one dimension
higher (Stillwell, 2012).

Alexander then proved in Alexander (1920) that “Every closed orientable triangulable n-manifold
M is a branched covering of the n-dimensional sphere”, an extension of branched coverings of spheres
of the Riemann existence theorem. The theory was even further developed when Hilden, Lozano,
and Montesinos (1983) provided a universal knot, a knot such that every 3-manifold is a branched
cover of the sphere with the knot as a branching set.4

The knot itself came into the center of attention when Wirtinger extended Heegaard’s results
and, together with his student Tietze, used the construction to compute a presentation of the
fundamental group of the knot complement for every knot (Epple, 1999). The knot group is thus a
result of considerations of branched coverings of knots.

5 Software

The software was created with Unity3D (Unity Technologies, 2017), the virtual reality gear is
HP Mixed Reality5. Scripts are in C# or, for the shaders, in DirectX 9-style HLSL. The deck
transformation groups determining the gluing of the worlds as quotients of the respective knot
group, as well as the associated multiplication tables were computed with the help of GAP (GAP,
2019).

5.1 Input

As input, the software is given a knot through some parametrization, as well as a group multiplication
table which can be generated with GAP. Examples for knot parametrizations together with group
multiplication tables are given in Sec. 6. The software further needs a map defining which “cone
segment” (see below) gets assigned to which group element, the generator-to-cone map.

5.2 The setting up of the cut surface

At the start of the program, the following steps are carried out.

1. Build all needed worlds

2. Set up a camera in each world, moving and rotating as the player camera moves and rotates.

3. Let each camera render to a full-screen sized texture, and assign the textures to the post-
processing shader.

4For a more complete history, consult Artal, Costa, and Izquierdo (2017).
5This is not to be confused with augmented reality; Mixed Reality is just the brand name Microsoft has given its

virtual reality technology.
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Figure 10: The Heegaard (Heegaard, 1898)/Reidemeister (Reidemeister, 1932) cone construction
for the trefoil knot. The cone has three self-intersecting lines, resulting in three cone segments (as
depicted in Stillwell (1980)).

Then, in the first world, we apply the cone construction from Heegaard (1898) to the knot, see
Fig. 10. The goal is to provide a cut surface for the gluing of the worlds. This is analogous to the
cut line given in the construction of the domain of the complex logarithm in Fig. 6. In our case, we
cut from the branch curve to a point at “infinity” (in the implementation a point sufficiently far
away) so that the knot is in general position from its point of view. This defines a cone or cylinder6

and glue together the different worlds along the cutting surface.

1. The knot is placed in the world as a tubular mesh around a Catmull-Rom non self intersecting
closed spline, given the control points from the discretized parametrization.

2. A point p is chosen, from which a normal knot projection is obtained.

3. A cone is built from this point by building a mesh formed by the triangles obtained through
filling all line segments from p to every start and end of the line segments of the knot. This
results in a sort of cone, possibly self-intersecting.

4. The cone is cut along the intersections, leading to a number of mesh pieces. These are
duplicated and the duplicated has its normals flipped to give a backside.

5. Each “cone segment” is assigned a generator of the group according to the provided generator-
to-cone map. Its backside gets assigned the inverse of the generator.

Now, in each frame, if the knot is visible, perform the following steps on the CPU:

1. Transform the knot’s anchor points from world space into screen space.

2. Using the line segments, divide the screen space into polygonal regions by an algorithm of de
Berg, Cheong, van Kreveld, and Overmars (2008).

3. Find a central point in each region using a C# port of the “polylabel” algorithm from
https://github.com/mapbox/polylabel to find the pole of inaccessibility of the region.

4. Raycast each point from the camera, multiplying the current world generator with every
generator from a cone segment encountered along the way. In this way, build a map assigning
a generator to each polygonal screen region.

6also called Reidemeister’s cylinder (Epple, 1999)
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Figure 11: Portals through the unknot, the twisted unknot, and the trefoil knot

Then run the following steps in the post-processing shader:

1. For each pixel, perform an optimized7 point-in-polygon test.

2. Assign the pixel the pixel from the camera texture of the world corresponding to the polygon’s
generator.

5.3 Player teleportation

In each frame, perform a raycast from the players old position to his new one. Multiply the current
world generator with every cone segment’s generator encountered by the raycast, giving the new
world. Teleport the player to the point in the same place, but the new world.

This implies that in contrast to expectation, teleportation occurs much later (or earlier, depending
on the direction of approach to the knot) as one might think. It does not happen as one “passes
through the portal,” but as one passes through the cut surfaces, i.e. the cone segments, which are
the “real” portal.

5.4 World design

The software comes with a two different sets of worlds, simple and real ones. The simple worlds are
featureless colored places to enable low-end hardware to run the program, and for a more minimalist
experience.

The other kind are the real worlds (such as in Fig. 2), which give the more rich experience.
They were designed with several goals in mind. Firstly, they should be interesting enough to give
the user a real motivation to step through the portal and look into other worlds. Secondly, they
should not be too interesting, as to keep the focus of the experience on the knot and the portals,
and not the world. The worlds are also color-coded, to enable the user to speak about “the white
world” or “the blue world,” which is also helpful in keeping the worlds apart, as well as easing the
transition between simple and real worlds. The color codes where taken mainly from naturally
occurring colors, with the addition of some colors not present on this planet but possible on other
ones (Kiang et al., 2007).

6 Example cases

These cases all describe branched covers of order 2, i.e. the knot as the branching curve has order 2.
So a path going around a knot segment twice is back in the same world (sheet) it started in.

In general, the construction of the deck transformation groups is well-known. Given a (based)
cyclic branched covering p : (E, e0) → (X,x0) the deck transformation groups can be computed
through the Wirtinger presentation together with the fundamental theorem of covering spaces.

The Wirtinger presentation gives the generators of the knot group as loops around the knot
strands, together with relations between them for every crossing of the strands.

7Optimized by first checking if the pixel lies in a bounding box around the polygon, or in a circle of small enough
radius around the pole of inaccessibility of the region.
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The fundamental theorem then states that the deck transformation group is isomorphic to

π1(X,x0)/p?(π1(E, e0)) (1)

. Given a presentation
〈g1, . . . , gn | R1, . . . , Rm〉 (2)

of the knot group, as the covering is cyclic, we have

p?(π1(E, e0)) ∼= 〈gk11 , . . . , gknn | R1, . . . , Rm〉 (3)

for some coefficients k1, . . . , kn. As we restrict ourselves to branched covers of order 2, the coefficients
are all 2.

6.1 Unknot

Figure 12: The unknot under the z-projection

For the unknot K, the knot group is π1(S3 \K) which is π1(S1 ×D2) ∼= Z with presentation 〈a〉.
Taking the quotient of this group and the subgroup 〈a2〉, which is the induced by the fundamental
group of the covering space, as the simple generating loop has to go around the unknot twice before
returning to the basepoint. This results in the presentation

〈
a | a2

〉
. This is thus a two-fold covering

with deck transformation group Z2, or equivalently the (Coxeter) group A1.
The unknot is represented in the software through the parametric equations




0.8 sin t
1.5 cos t

0




, generates |A1| = 2 worlds, and has 1 portal. The group multiplication matrix of A1 is

(
e a
a e

)
.

As the cone associated to this knot has no self-intersections, the generator-to-cone map is trivial,
assigning every cone segment the group element a.

6.2 Twisted Unknot

Figure 13: The twisted unknot under the z-projection
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This case is of course the same as the unknot from a knot theoretical standpoint.

As for the implementation, the knot is given by




2 sin(t+ 1)
3 sin(t+ 1) cos(t+ 1)

sin t




, but as there are two portals leading to the same world, the generator-to-cone map assigns a to
both cone segments.

6.3 Trefoil knot

Figure 14: The trefoil knot under the z-projection

For the trefoil knot K, the knot group is
〈
a, b | a3 = b2

〉
as the trefoil knot is the (2, 3) torus

knot (Stillwell, 1980). Alternatively, it can be given by 〈x, y | xyx = yxy〉 (Rolfsen, 2003, p. 61). By
using xyx = yxy ∼= xyxxyx = xyxyxy ∼= yxyxyx = (xy)3 ∼= yxxyxx = (xy)3 ∼= (yxx)2 = (xy)3 we
can see the isomorphism between the two presentations. Adding the relations x2 and y2, we obtain
the presentation

〈
a, b | (xy)3, x2, y2

〉
. This is the dihedral group of the triangle, and a Coxeter

group with Coxeter matrix

(
1 3
3 1

)
. The group order 6 implies the construction of 6 worlds from

this knot. In general, the r-fold branched covering of the torus knots of type (p, q) is a Brieskorn
manifold M(p, q, r), the intersection of the 5-sphere S5 in C3 with the equation given through
zp1 + zq2 + zr3 = 1 (Planat et al., 2018).

In KnotPortal, the trefoil knot is represented through the parametric equations




sin t+ 2 ∗ sin 2t
cos t− 2 ∗ cos 2t
− sin 3t




. The group multiplication matrix of D3 is




e a b c d f
a e d f b c
b f e d c a
c d f e a b
d c a b f e
f b c e a d




. The generator-to-cone map assigns the elements a, b, and c to the three cone segments, respectively.

The relationship between the group and the portals of the trefoil knot is detailed in Fig. 15
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Figure 15: The relationship between the elements of the symmetry group of the triangle D3 and
the portals generated by the trefoil knot, after the drawing in Thurston (2012). The outer portals
correspond to reflections, the inner portal to a rotation.

6.4 Figure eight knot

Figure 16: The figure eight knot under the z-projection

The presentation of the figure eight knot is
〈
x, y | x−1yxy−1 = yx−1yx

〉
(Rolfsen, 2003, p. 58).

Again adding the relations x2 and y2, one obtains
〈
x, y | (xy)5, x2, y2

〉
, which is again a Coxeter

group, namely H2, which is of order 10. This knot thus generates 10 worlds.

In the software, it is represented through




(2 + cos 2t) cos 3t
(2 + cos 2t) sin 3t

sin 4t
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The group multiplication table is




a b c d e f g h i j
b a d c f e h g j i
c j e b g d i f a h
d i f a h c j e b g
e h g j i b a d c f
f g h i j a b c d e
g f i h a j c b e d
h e j g b i d a f c
i d a f c h e j g b
j c b e d g f i h a




6.5 Solomon’s Seal knot

This is the (5, 2)-torus knot. Its parametric equation is thus given by Von Seggern (2016):




(3 + cos 5t) cos 2t
(3 + cos 5t) sin 2t

sin 5t




and the presentation of its group is
〈
x, y | xyxyxy−1x−1y−1x−1y−1

〉
(Livingston, 1993). After

adding the relations for the generators, the order two covering group of this knot is thus the same
as for the Figure eight knot.

6.6 Hopf Link

Figure 17: The Hopf link under the z-projection

Each of the branching curves gives a generator, and the two commute, so the deck transformation

group is
〈
a, b | a2, b2, (ab)2

〉
. This group is a Coxeter group with matrix

(
1 2
2 1

)
, which is Z2

2, or

equivalently, A2
1. This results in 4 worlds and 3 portals.8
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2.6 Embodied Mathematics: Forming Concepts in Topology by Moving Through
Virtual Reality

Authors: Moritz L. Sümmermann, Benjamin Rott
In review, submitted to a journal on October 13, 2020.

This article exhibits opportunities of embodied learning enabled through KnotPortal, by
giving a theoretical analysis coupled to a case study. As a secondary objective, this article aims to
provide a template for such a study into embodied learning in mathematics, going beyond general
educational frameworks.
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Forming Concepts through Embodied Mathematics in Virtual

Reality. A Digital Environment Analysis and Case Study

Moritz L. Sümmermann, Benjamin Rott

October 14, 2020

Abstract

KnotPortal is a virtual-reality-based software for experiencing embodied mathematics
based on an idea by mathematician and Fields medalist Bill Thurston. In the software, the user
can travel between worlds using knotted portals, describing the mathematical idea of branched
covers in three dimensions. This article presents a description of the software along with a case
study with a mathematician and a student, delineating how users interact with this special
topic in mathematics in such a highly immersive environment using full-body locomotion. By
analyzing the role of embodied cognition in elucidating the presented structures, we demonstrate
that the study of embodiment in a mathematics learning environment must be specific to the
mathematical content and its representation. These claims are backed by examples of the
relationship between the users’ actions and the mathematical interpretation. We further discuss
possible detrimental effects of immersion, leading to a loss of overview, and thus hindering the
learning process; it seems that distance from a problem may help solving it.

1 Introduction

Children are not taught to read or write music at all – they sing, listen, and move their
bodies to the sound of music. [. . . ] So why are children still taught mathematics as a
paper and pencil exercise [. . . ]? For most of us, mathematics, like music, needs to be
expressed in physical actions and human interactions before its symbols can evoke the
silent patterns of mathematical ideas [. . . ].

Skemp (1971/2012)

Mathematics is often seen as being the product of an abstract mind. But the era of this Cartesian
duality, the mind being disconnected from the body, is over, as provocatively stated by Macedonia
(2019). Instead, learning is now often considered in a more holistic way, with embodied learning
receiving considerable attention. This theory focuses on the relationship between the learner’s
actions and cognition and is gaining traction in the educational sciences, including mathematics
education (Kosmas, Ioannou, & Zaphiris, 2018). In education, the main ideas of embodiment are
not new and known at least since Piaget placed bodily movement at the center of his theory of
cognitive development, a theory which, however, propagated the pursuit of “abstract” thinking and
saw action-based cognition only as a stepping stone for the former (Ionescu & Vasc, 2014; Marshall,
2016).

This poses a challenge to us educational researchers and especially educational designers to
develop environments supporting embodied learning of mathematics (Abrahamson & Bakker, 2016),
especially for use outside of traditional classroom settings (Albirini, 2007). The development is
being facilitated by technological advancements, widening the range of options to provide such
environments (Georgiou & Ioannou, 2019; Lindgren & Johnson-Glenberg, 2013; Tran, Smith, &
Buschkuehl, 2017). This starts with touch screen devices, enabling the interaction of the user with
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gestures, and goes to fully immersive virtual reality environments, where users can use the full range
of their bodily movements to interact with the content (Johnson-Glenberg, Birchfield, Tolentino, &
Koziupa, 2014; Lindgren & Johnson-Glenberg, 2013; Malinverni, Pares, Malinverni, & Pares, 2014;
Price, Yiannoutsou, & Vezzoli, 2020).

Of course, not all movement, even if situated in a mathematics-rich environment, results in
embodied learning. The special challenge is not to construct environments where movement is
possible or even encouraged, but where it makes sense in a content-related way (compare Lindgren
and Johnson-Glenberg (2013)).

In this paper, we present a learning environment which presents an opportunity for embodied
learning of mathematical concepts. We argue why this environment is capable of providing embodied
learning by analyzing the way the user can interact with the presented mathematics using paths as
well as the new perspectives on knots given by the software. We complement the theoretical analysis
by presenting a case study of user interaction with the environment, giving proof of “embodied
heuristics” playing a role in exploration in this environment.

The digital environment is KnotPortal1, a virtual reality software where users can experience
a special discipline of mathematics in an embodied fashion as an example of a learning environment
as described above. It consists of a virtual reality headset which fully immerses users in a world
centering on knotted portals, letting them explore this concept from the mathematical topic of “knot
theory” using movement of head and body. Knot theory is well suited for investigating embodied
learning (compare McCallum (2019)), as most users do not have previous knowledge of the subject
from their school education, but it its fundamentals are easy enough to be grasped in a short time.
Many operations in knot theory also have a “bodily” component given the physical nature of the
objects of study (Freitas & McCarthy, 2014).

The aim of this article is to provide a substantial example of the use of technology to enable
embodied learning in mathematics, as to contribute to research not lacking in theories but in actual
implementations. This environment is then also to function as a counterweight to those which do not
provide deep-rooted content-related affordances for embodied learning, such as projects which use
virtual or augmented reality without need, simply duplicating reality (Lindgren & Johnson-Glenberg,
2013). The offered case study presents a prototypical investigation into a mathematical learning
environment designed for embodied learning.

2 Theory

2.1 Theory of Embodiment

Embodiment is a relatively new school of thinking in cognitive sciences and especially mathematics
education (Gerofsky, 2015), but drawing on a long history of debate on the subject of the relation
between mind and body (Johnson-Glenberg, 2014). It provides a contrast to the Descartian
dichotomy of body and mind by rejecting this division and replacing it with a more holistic view:
“Physical movement [. . . ] is not the executive arm of an abstracted intelligence. Rather, moving is
situated in dynamical cognition” (Abrahamson & Bakker, 2016). The theory of embodied cognition
postulates that bodily actions are not the consequence of mental processes, but that this is in fact
reversed, as “mental concepts” are shaped by our actions and experiences (Johnson-Glenberg et
al., 2014). This can demonstrate itself in metaphors, such as the temperature “warm” indicating
emotional proximity, which is shaped by our experience of warmth of human bodies (Lakoff &
Johnson, 2008), or the “grasping” of a concept. Another example would be studies showing brain
activity in regions associated to the physical actions when having participants listening to words

1Available at https://imaginary.org/program/knotportal

72



such as “lick,” “pick,” or “kick” (Hauk, Johnsrude, & Pulvermüller, 2004), indicating the embodied
nature of the understanding of these words.

Mathematics learning also offers many examples of such influence of actions on “mental concepts.”
Some research is specific to the mathematical content, such as the importance of fingers in count-
ing (Fischer & Brugger, 2011; Soylu, Lester, & Newman, 2018). More general research shows that
some actions such as gestures play a central role in doing and understanding all mathematics (Alibali
& Nathan, 2012; Goldin-Meadow, Kim, & Singer, 1999).

There exist several theories proposing a taxonomy to classify research or projects in embodiment.
Examples are the framework of Johnson-Glenberg et al. (2014), stating the dimensions of amount
of motoric engagement, gestural congruency, and perception of immersion. The amount of motoric
engagement simply describes how much users use their body while engaging in the task, ranging
from seated activities where only the finger or the hand of the user moves, to activities promoting
full-body locomotion. Gestural congruency describes “how well-mapped the evoked gesture is to the
content to be learned” (Johnson-Glenberg, 2014, p. 282). There is no reason this category cannot be
extended to account for non-gesture movements, so we will talk about congruency instead, referring
to how well-mapped bodily movement in general is to content. Lastly, perception of immersion is
concerned with how well the user is immersed in the environment providing embodied learning, and
is specific to technology. It ranges from small screens to virtual or mixed reality environments.

Another taxonomy is proposed by Skulmowski and Rey (2018) along the dimensions of bodily
engagement and task integration, where the former roughly corresponds to amount of motoric
engagement and the latter, task integration, describes describes “whether bodily activities are related
to a learning task in a meaningful way or not,” which is to be seen as distinct to congruency.
Skulmowski and Rey (2018) define task integration to be more general, as it does not distinguish at
the level of concrete examples but more of study design.

Regardless of the details of the taxonomy, high relatedness of task to activity and high body
engagement have been associated with more positive learning outcomes and are thus to be seen
favorably (Brooks & Goldin-Meadow, 2015; Goldin-Meadow et al., 1999; Johnson-Glenberg et al.,
2014; Lindgren, Tscholl, Wang, & Johnson, 2016; Malinverni et al., 2014; Ruiter, Loyens, & Paas,
2015).

2.2 Description of the software KnotPortal

The notion of having portals to other worlds is not new, and a common theme in movies and
computer games. A portal is defined by its boundary, which is a ring-shaped curve in space. We
will call this the “boundary curve.”

In a video titled “Knots to Narnia,” the mathematician and Fields medalist Bill Thurston gives
an example of such a portal (Thurston, 2012) (see Fig. 1). This portal is subject to a rule: passing
“through the portal,” i.e. going around the curve defined by a knot, changes the world, but by
circling around the boundary curve twice, one returns to the original world one started in. He then
raises a question: What happens if this curve is not a simple loop, but is knotted?

In this way, a knot gives rise to different “universes” or “worlds,” being created through the
“rip in the fabric of the universe” defined by the knot as a boundary curve of the portal(s). He
exemplifies this construction by discussing the portal structure of the trefoil knot (for diagrams of
this knot, see Fig. 4 or 9).
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Figure 1: Thurston stepping through a portal
generated by the “unknot” (see Fig. 3) from
Earth to Narnia. Screenshot from a video avail-
able at https://youtu.be/IKSrBt2kFD4.

Figure 2: The first author stepping through a
portal given by the “unknot”. He goes from the
“mountain world” into the “water world”, also
distinguishable by the green cone color. The red
arc is a section of the knot.3

Mathematically speaking, Thurston is talking about phenomena from knot theory, a subfield of
topology. Topology in general is the study of spaces without measuring, so objects are seen as the
same if they can be deformed into one another. Knot theory is the part of topology concerned with
knots and links, as in the sort of objects arising when one or more pieces of rope are entangled (see
Fig. 3, 4, 5, and 6 for some examples). The only “special” thing about mathematical knots, compared
to seaman’s knots or shoelaces, is that the ends of a knot may not be loose, but are connected.
Otherwise, all knots could be unknotted easily by pulling the rope through the entanglement, and
thus would all be the same.

Figure 3: A diagram
of the unknot, the sim-
plest “knot”, without
any crossings.

Figure 4: A dia-
gram of the trefoil
knot, the simplest
non-trivial knot, with
3 crossings.

Figure 5: A diagram
of a knot with 8 cross-
ings.

Figure 6: A diagram
of a knot with 9 cross-
ings.

Thurston talks about cyclic “branched covers” of knots of order 2. This means that by going
around a strand of the knot, he goes into another world, but if he goes around the same strand twice
(as the order is 2), he returns to the original world, see Fig. 7, 8 and 9. This can also be thought of
as a staircase, or as the spiral ramp in a car park, but going up the spiral ramp two stories would
return to the original floor. Some paths are of course more interesting than others, going back and

3Screenshot from a video available at https://www.youtube.com/watch?v=Pgmfsl1e vA
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forth through a portal does not change the world, as it corresponds to going a staircase up and
then down again. The order of the cover can be chosen to be any natural number; a cyclic covering
of order four would return to the original world after four trips around the strand. “Cyclic” means
that no shuffling of the worlds is permitted; going around a strand starting in World 1, for a cover
of order n the ordering is always World 1 → World 2 → . . .→ World n → World 1 → . . . .

Figure 7: This path goes
around a strand of the
knot once, thus leading
into another world.

Figure 8: If the order of
the cover is two, this path
returns to the same world
it started in.

Figure 9: Given a cover of the trefoil
knot of order two, the left path would
return to the starting world, while the
right path would lead into a new world.

He examines these covers using the “deck transformation group,” which means nothing else than
examining where different paths lead, and which paths are actually the same, i.e. if one can be
deformed into the other. It is a very common method in mathematics, and especially in topology, to
understand a space by looking at paths in it. For more information on the mathematical background
of these spaces, consult Sümmermann (2020).

KnotPortal is an adaptation of this idea to a software. It combines the visuals of the different
worlds with an immersion through virtual reality. This enables users to explore this mathematical
concept by moving around and through the knotted portals into different worlds (see Fig. 2).

2.3 Embodiment in KnotPortal

While the placement of KnotPortal as presenting high body engagement, high task relatedness,
and full immersion in the aforementioned categories might be seen as evidence to the ability of
this software to be “better” for learning in some sense, such a quantitative statement should not
be taken as the main message of this article. What we focus on is the ability of embodied actions
to elucidate mathematical concepts and contribute to learners construction of meaning (Alibali &
Nathan, 2012; Marshall, 2016).

This follows Papert’s (1980) definition of embodiment. As he states in the foreword to his
seminal book Mindstorms, as a child, much of his mathematical knowledge was was composed from
gears: “I became adept at turning wheels in my head and at making chains of cause and effect.
[. . . ] I saw multiplication tables as gears, and my first brush with equations in two variables (e.g.,
3x + 4y = 10) immediately evoked the differential. By the time I had made a mental gear model of
the relation between x and y, figuring how many teeth each gear needed, the equation had become
a comfortable friend.”4 Having this in mind, we can formulate a rationale for the research presented
here:

4Note also the emotional relation, which Papert himself considers vital to have a productive relationship with an
environment.
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Our goal is to provide an environment which gives learners an object-to-think-with5

which gives rise to embodied concepts via actions carried out in it.

There are several aspects of KnotPortal relating to an embodied building of concepts.

Embodied cognition explains the use of expressions in language, as described in Sec. 2.1. This
also holds for mathematics, where some definitions have non-technical meanings. A prominent
example is the notion of a “path.” Being able to move in this world, while remembering previous
positions, gives humans the concept of a path. Obstacles such as trees give humans a choice, to pass
left or right of the obstacle. This gives the notion of different paths, with “different” not in a metric
meaning of distance between them, but in the topological sense of homotopicness.

In this project, we use this embodied provenance of paths and homotopies by letting users explore
the given structure through their own footpaths. This results in full congruency (Johnson-Glenberg
et al., 2014; Segal, 2011) between the embodied action and the concept, as paths in the embodied
sense of the world here coincide completely with the mathematical notion of paths. Furthermore,
paths are mathematically the tool of choice to study the branched covers mentioned in Sec. 2.2, as
the structure to be revealed is the deck transformation group. This is the group of permutations
of the fiber of the base point, which is just to say that one looks at the effect of going all possible
paths through the knot.

Users can explore the concept of branched worlds by starting from a point in the real world
room they are in, going around the room, and then returning back to their starting point. In the
virtual world, this can also correspond to a closed loop if the path does not go through the knot.
If it does, this leads to them not returning to the point they started at, but at another point in
another world, existing parallel to ours.

Another aspect is the movement of the body and head, enabling the user to see the knot and
the portals through it from different sides and perspectives. The usual viewpoint is that of a small
knot which is manipulated and turned around by the user (Atiyah, Dijkgraaf, & Hitchin, 2010;
Hotz, 2008; Strohecker, 1996), leaving the user in a static position with a top-down view of the knot.
This image is probably heavily influenced by the usual representation of knot diagrams as drawn on
paper as in Figs. 3 to 6, which is the usual way knots are represented. In KnotPortal, the user
can “go around the knot,” changing not the position of the knot but moving himself, which offers a
new perspective on knots. Thurston (1994) himself noted: “An interesting phenomenon in spatial
thinking is that scale makes a big difference. We can think about little objects in our hands, or
we can think of bigger human-sized structures that we scan, or we can think of spatial structures
that encompass us and that we move around in. We tend to think more effectively with spatial
imagery on a larger scale: it’s as if our brains take larger things more seriously and can devote more
resources to them.” The presentation of a larger knot to the user may thus have consequences on
the learning about it.

3 Methods

To gain insights on the use of KnotPortal and its effects on grounding concepts in action, we
performed a case study with two subjects. This type of study permits us to probe into the effects of
embodiment experienced in KnotPortal in an open and explorative way. This study consists of
an analysis of the participants usage of the software in a virtual reality setting and their responses
to questions asked during their examination of the structures underlying the portals. The questions
were asked by the first author in a unstructured interview, in order to maximize adaptability to
the subjects. The usage was recorded on a video camera with audio and simultaneously by screen

5In this case probably about knot theory and topology in general. But who knows? Gears would not have been
associated with the kind of mathematics Papert uses them for.
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capture. The analysis was then performed following Hartley (2004).

The first participant will be denoted by “N”. He is an undergraduate university student visiting a
seminar on topology, with no prior knowledge of neither knot theory in general nor this software and
its aims in particular. The second participant will be named “E”. He is a researcher in differential
and geometric topology, but with little experience in knot theory. He was aware of the goal of the
software, and stated to have watched Thurston’s video several times a few days before the interview,
until he had understood the structures explained there.

These participants were chosen for several reasons. Firstly, they needed to have a mathematical
education on a level high enough to be able to grasp the concepts involved such as groups. The
second was to expose people of different mathematical skill levels to the software, so a novice and
an expert were chosen. Both participants had never tried virtual reality headsets before, so prior to
the interview, they walked around in the Windows virtual reality home screen to get accustomed to
this new and unusual experience.

The duration of the usage was 49 minutes for N and 42 minutes for E. In this time, both
participants were presented several scenarios or “levels” in ascending order of complexity, as judged
by the first author. The next level was presented to them when they claimed to have understood
the shown structure, with the option to revisit previous levels if asked for by the participant.

For each level, there are two design options available, a realistic world and a color-coded simple
world. The latter is to reduce the load on the computer. The participants were shown the realistic
worlds until the computer could not handle the necessary computing power, which is when the level
was switched to the color-coded world. The levels presented to the participants were:

Unknot of order two This is the universe generated by the unknot, a simple non-knotted circle,
gluing together two worlds in a cyclic fashion. Here, going around the knot is the same as going
back through the knot, as there are only two worlds.

Figure 10: A front view
of an unknot, defining
a portal into a second
(water) world.

Figure 11: The same
view from the second
world, showing a por-
tal back into the first
world.

Unknot of order three Similar to the first case, but with a variation of the rule stated above.
These are three worlds glued together cyclically along the portal defined by the unknot, so one has
to go through and around the knot three times to return to the starting point.
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Figure 12: A front view
of an unknot, defining
a portal into a second
(desert) world.

Figure 13: The same
view from the second
world, showing a portal
into the third (water)
world.

Figure 14: The same
view from the third
world, showing a por-
tal back into the first
world.

Twisted unknot of order two Mathematically equivalent to the first case, as the unknot is
just twisted to give the appearance of a different knot, but could still be deformed to be the unknot
again. This is, however, not directly apparent and must be discovered.

Figure 15: A front view
of an a twisted unknot,
defining a portal into a
second (forest) world.

Figure 16: The same
view from the second
world, showing a por-
tal back into the first
world.

Figure 17: The same
twisted unknot from
Fig. 15 from a different
viewpoint.

Figure 18: The same
twisted unknot from
Fig. 15 from yet an-
other viewpoint.

Trefoil of order two Certainly the most challenging of the presented cases. This is the most
simple non-trivial knot, but it still generates 6 worlds glued together along the 4 portals defined by
the knot (see Fig. 19 to 24). It is still of order two, i.e. any path going around a segment of the
knot twice returns to its starting point.
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Figure 19: View into
4 other worlds through
the portals generated
by the trefoil.

Figure 20: The front
view of the knot af-
ter passing through the
upper left portal in
Fig. 19.

Figure 21: The front
view of the knot af-
ter passing through
the bottom portal in
Fig. 19.

Figure 22: The front
view of the knot af-
ter passing through the
upper right portal in
Fig. 19.

Figure 23: The front
view of the knot af-
ter passing through the
center portal in Fig. 19.

Figure 24: The front
view of the knot in the
sixth (hill) world, not
visible in Fig. 19.

Figure 25: A sideways
view of the knot in
Fig. 19.

Figure 26: The view
of the back side of
the knot in Fig. 19.
Note the center portal
leading into a different
world.

4 Results and discussion

We present three observed interactions in the software environment, particular to the embodied
nature of the environment, which could be identified in the analysis of the use cases. The presented
effects concentrate on the embodiment aspect of the software use; many of the behaviors and
statements that could be observed in the case studies could be interesting from a mathematics
education standpoint, such as shown misconceptions on different mathematical concepts and their
implications, which are beyond the scope of this article.

4.1 Understanding through paths

As predicted, both participants took full advantage of the possibility of exploration through movement
in virtual reality, trying out different paths to understand the structure of the knotted portals.
These paths were mostly closed paths, meaning the users started at some real-world point, went
around the room, and returned to their starting point, while observing the world changes effected
by that path in virtual reality. An example is a scenario from E in the world(s) of the trefoil knot
depicted in Fig. 27 as a schematic top view, with his taken path broken up into two paths for a
better overview. Starting at a point pR in the real world and the corresponding point pY in the
yellow world, he traveled along a path (the left path in the figure) through the middle portal into
the purple world, turned around, and went to the right portal into the white world, returning to pR,
but now at the corresponding point pW in the white world. This is a closed path in the real world,
but not closed in the portal world, as he has not yet returned to pY . He then continued (along the
right path in the figure) by walking again through the middle portal into the pink world, before
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returning back to the yellow world and the point pR corresponding to pY again, now closing the
virtual path as well.

Figure 27: An exemplary path in the trefoil knot-level of E from a top view. He first traveled along
the left path, then along the right. The circle represents the starting point, either pR, pW , or pY
depending on the world the participant is currently in.

These paths also shaped the language used; when talking about world changes during the session,
the participants both used language along the lines of “you go around this loop. . . ” or “if you
look from the other side.” It must be said, however, that other language patterns would have been
surprising, given the lack of previous knowledge on knot theory of both participants.

4.2 Patterns of movement

An unexpected behavior was revealed in the analysis of the usage cases. In the process of under-
standing the structures presented by the software, the participants used embodied problem-solving
strategies. After passing to the next level, both participants used the movements which had helped
them understand a feature of the previous level in trying to understand the current one.

We illustrate this with an excerpt from the use case scenario of participant E. In the level
“Unknot of order three,” he successfully understood the structure of the relationship between the
worlds by passing through the portal in a circular motion (see Fig. 7). After subsequently being
confronted with the new level “Twisted unknot of order two,” he immediately tried to reuse this
movement pattern. But in contrast to the setting before, the portal is no longer a circle, where
it is clear what “passing through” means, leading to the failure of this pattern. This puzzles him,
leading him to rethink on what his aims were in the first place.

The movement was re-initiated without closer inspection of the setting, which could have lead to
the conclusion that this movement is no longer viable. Bodily movement is thus used as a heuristic
strategy in the same way as in non-embodied problem solving, which identifies patterns of movement
as an embodied version of the “patterns of reasoning” described in Pólya (1957/2004).

4.3 Loss of overview through immersion

Immersion describes how much the user is “in the virtual world” and perceives it as real, and is
typical of virtual reality (Price et al., 2020; Winkler, Roethke, Siegfried, & Benlian, 2020). It is
composed of three features: lack of awareness of time, loss of awareness of the real world, and
involvement and a sense of being in the task environment (Jennett et al., 2008). Immersion is
generally seen as a desirable trait of learning software (Dede, Salzman, & Loftin, 1996; Gutiérrez et
al., 2007; Huang, Rauch, & Liaw, 2010; Johnson-Glenberg et al., 2014; Winkler et al., 2020).

The experience given through KnotPortal was certainly immersive, as both users could be
observed weaving their head around virtual obstacles, or instances of E raising his feet as if he were
really stepping through a portal, forgetting that only the movement of the head is tracked.
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But, as the case study reveals, immersion has not only the potential to give the user greater
access to a phenomenon, but also to hinder understanding by losing the ability to “step back” from
the problem at hand. On a sheet of paper, a user can tackle a problem by aligning several copies of
a scene next to each other. The lack of distance to the problem in a virtual reality environment as
provided by KnotPortal makes it difficult to gain overview even of one scene, not to mention
several scenes in parallel, which is simply impossible. The users literally “lose themselves in VR,”
as well put in the title of Winkler et al. (2020); but in this context this is a disadvantageous and
not desirable effect. This was demonstrated in the behavior of E as well as N. While trying to
understand the structure of the worlds, both showed indications of loss of overview, forgetting which
worlds they had been to, and how they had gone there. The paths involved were quite complex, as
seen in Fig. 27 and could not be easily remembered.

On the other hand, this immersive experience enabled the insight into the lack of understanding in
the first place. The user is forced to implement actions through whole-body movement, experiencing
all the effects happening “along the way.” An example is an excerpt of E. At the beginning, E
is sure of his understanding of the structure, given his pre-usage knowledge. Even the mistakes
in identifying the structure of earlier scenarios, which were subsequently resolved, did not shake
this confidence. But in the last scenario with the unknot, he tries a strategy which worked before,
returning to the starting world by going in a sort of “circular” path. Contrary to his expectations,
this does not work, leading him into a new world. His reaction, “Ah! That’s funny. . . ” marks the
onset on him rethinking the structure he had before, leading to him switching to other strategies
and trying to understand the problem from a new perspective. This leads to a complete overload:
“That’s amazing how overwhelmed I am.”, standing in stark contrast to his initial assessment of
having understood the problem completely.

Same as with the “patterns of movement” from the previous section, this effect went contrary to
the expected ease in understanding through the software.

5 Conclusion

As the theoretical and case analysis demonstrates, “abstract” mathematics can be made accessible
in an embodied way with software such as KnotPortal. By letting users explore mathematical
structures using movement of their body, resulting in different effects being observable, namely
understanding of the structure through movement in paths, use of “embodied heuristics” such
as patterns of movement, and loss of overview through immersion. The latter two effects have
implications for the research of embodiment in all educational settings and the design of educational
environments, both of which must take them into account. This can mean the interpretation of
certain behaviors as embodied heuristics, or the explicit design of an environment making use of
this type of problem-solving behavior.

Detecting and pinpointing the nature of this embodied learning is done by a content-specific
analysis of the software and the users’ interactions. This can serve as a blueprint for further studies
of embodied learning, be it in mathematics education or other fields. This study also revealed that
an embodied representation of knowledge can have detrimental effects, which once again shows that
also in embodied design, “there is no such thing as a free lunch.”

6 Outlook

Gestures did not play a role in this study. The participants did, however, show gestures in real life
of different natures during the use of the software. Implementing hands or hand-held controllers in
VR would increase the ability of users to use gestures, for example to point out objects or symbolize
paths.

To overcome some problems with orientation (situations such as “where did I come from again?”),
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a so-called “trail renderer” could be implemented, showing the path the user has taken through the
world(s).

Methodically, the study could be expanded, including participants with even more (or less)
knowledge in the topic. Pre- and post-interviews would further the understanding of the impact on
language and gestures participants use to knot theory, be it recounting their experiences in this
environment or when talking about knot theory or covering spaces in general.

Another highly interesting path to be explored is multi-user support (Dillenbourg, Järvelä, &
Fischer, 2009; Malinverni et al., 2014). Seeing the actions of other users, how they disappear into
and reappear from other worlds, enabling a sophisticated hide and seek. This is an ambitious
project, and a first step could be the implementation of non-player characters. The NPC and the
other player characters could be implemented as birds flying between the worlds, extending the
Flock VR experience of Lobser, Perlin, Fang, and Romero (2017).

The diversity of effects at play in the design and use of such embodied learning environments
calls for more study on the subject, especially in providing paradigmatic examples showcasing
different affordances and different goals.
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2.7 On the Future of Design in Mathematics Education Research

Authors: Moritz L. Sümmermann, Benjamin Rott
In print, to appear in For the Learning of Mathematics, 40(3), 2020.

The message of this article/opinion piece is simple: design is important for mathematics education
research and practice, but is not considered to be research in itself; this should change. We advocate
for taking this view by giving arguments on what can be gained by choosing to accept design as
research.
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On the Future of Design in Mathematics Education Research

Moritz L. Sümmermann, Benjamin Rott

Mathematics education research is still a relatively young field, with a variety of different research
topics, objectives and methods. As Mogens Niss critically discussed in FLM issue 40(1) publications
of empirical, theory-guided research are playing an ever-larger role, which does not reflect the true
diversity of the field. He asserts that theoretical research is accepted into publication only to the
extent it refers to and is corroborated by empirical studies.

We want to further Niss’ discussion, focusing on an issue mentioned in his essay: the role of the
design of objects of study in mathematics education research. Our case is that the design of such
objects is not considered to be research [1]. We consider ‘design’ to encompass a wide variety of
different activities and associated products. The products of design can be a mathematics textbook,
a questionnaire for an empirical study, a collection of problems, a model of a learner trajectory
through a certain topic, a software for mathematics learning, or even simply a picture visualizing a
certain aspect of mathematics. As Bakker (2019) puts it, Niss talks about how form is valued more
than content; we join Niss in claiming that there is much content being disregarded.

Design and science

The relationship between design and science has been a lasting debate, as is the debate if design
constitutes a science (Cross, 2001; Galle & Kroes, 2014). The main arguments are that while science
describes or explains, design, such as engineering, constructs: “the natural sciences are concerned
with how things are. [. . . ] Design, on the other hand, is concerned with how things ought to
be” (Simon, 1996 [1969], p. 5). Another argument is on the fundamentally different object of study:
the natural vs. the artificial. While this has been theoretically debated, in reality design has been
a part of many sciences, and this ‘scientific design’ is “not a controversial concept, but merely a
reflection of the reality of modern design practice”(Cross, 2001, p. 52).

Let us consider physics, for instance. There, artifacts are needed, for example complex measuring
instruments for use in large-scale experiments, such as detectors for use in particle colliders. This
requires the design of such instruments, which is accepted as research without ‘scientific’ experiments
being done, nor reflection on the design choices being carried out. Nobel prizes have even been
given for the design of a construction, as in the case of the scanning tunnel microscope (Binnig,
Rohrer, Gerber, & Weibel, 1982)[2].

This is an example of the incorporation of elements of an artificial designing science, in the sense
of engineering as a science, in this otherwise empirical natural science. Interestingly enough, even
though the design was considered research, the invention of the scanning tunnel microscope was
neglected by the physics community until valuable insights were gained by its use (Mody, 2004).

The state of design in mathematics education research

Returning to mathematics education, we also construct objects to enhance our understanding
of learning. In addition, mathematics education is not a natural science, so the phenomena we
investigate do not, in most cases, arise naturally and without our intervention; design in the
educational sciences is ‘doubly artificial’ (compare Cole and Packer (2016)) through artificial design
of artificial settings. In most research models, some sort of artifact is placed at the center of the
study, with research questions addressing the interaction of learners with it, either to understand
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the learning of mathematics, or to allow this learning in the first place. This artifact can be as
simple as a problem, which learners will solve, or as complex as a curriculum implemented over
years.

An example of such an artifact are dynamic geometry softwares. They have had an enormous im-
pact on the mathematics teaching and the mathematics education research, engendering conferences
and journals. Reports of research using dynamic geometry software have appeared in practically all
high ranking journals in mathematics education. But would a presentation of the software itself,
not framed by any empirical study or educational theory building, have found a way into one of
these journals [3]?

This is the way that such artifacts are presented, as by-products of a theoretical or, more
probably, an empirical study. Oftentimes, the artifact is constructed with the sole purpose of serving
as a mediating object in the study, to exhibit some properties with which the learner will interact
in a certain manner. The object may play a pivotal role; it is still presented only as a tool bringing
insights on the learner, not having a purpose in itself. Even if the purpose of the study is the
comparison of two or more such artifacts, the design of the artifacts themselves seems to play a
subordinate role. An example could be the PISA studies (OECD, 2003), for which tasks were
created that enable researchers to differentiate competency levels of students. This could have been
a publication on its own. Instead, the tasks were constructed solely to serve the purpose of the
study to measure student performance.

The prevalence of theory, methods and empiricism in such studies is not a problem per se, as
their goal is to further understanding on the learning of mathematics by investigating learners, not
the design of some object.

Approaches incorporating design in mathematics education research

There is an approach to mathematics education research which has, at first glance, design at its
core. In the early 1990s, researchers argued for a refocusing of research, identifying the central role
of design in mathematics education, portraying it as a ‘design science’ (Collins, 1992; Wittmann,
1995). This has then found its way into mathematics research through the ‘design(-based) research’
approach (van den Akker, Bannan, Kelly, Nieveen, & Plomp, 2013). This method consists of many
design cycles, where an artifact and a theory are refined by empirical analysis. While the design
research process includes the development of the artifact, the main purpose of this process is however
not a refined designed object, but a theory, and the application of theory to practice (Gravemeijer
& Cobb, 2013). Researchers engaging in this type of research aim to further the application of their
improved theory, it being field-tested in many cycles. This is a valuable aim, but again it does not
focus on developing an artifact, but, as in the example of PISA, only to the extent that theory
building requires it.

There is another variant of design-based research, named ‘research-based design’, in which the
design of the object seems to be the main objective. But design in the sense of research-based
design means a design to solve an empirical problem with its validation and optimization in several
cycles, not design stemming from the perspective of mathematics education itself (Plomp, 2013).
Even this type of design-based research sets the focus on and requires a cycle of empirical validation
of an initial design. Returning to the example of the scanning tunnel microscope: Following the line
of thought of research-based design, one would have started with the design of an earlier type of
microscope such as an electron microscope. Then, to address a problem encountered in practice,
in this case a resolution too low to picture single atoms, empirical refinement would be carried
out. Would this process somehow end up with the scanning tunnel microscope? That is highly
doubtful. The design of such a complex artifact requires mental leaps to be made and problems to
be addressed which are not answered or even raised by empirical testing cycles. The ideas for its
design were not gained through iterative improvement of an existing design, but by implementing a
fundamentally new concept, using ideas derived from other fields of physics. Of course, every object
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is refined and empirical evidence can help in this process, but regarding its nascence, not every
complex object is the result of a gradually improving design of a simple starting construction.

There is a strand of mathematics education focusing on design, named ‘educational design’
as opposed to ‘educational research’. The community is small in comparison with ‘educational
research’, but nevertheless they are organized in a society, the International Society for Design and
Development in Education, and publish an online journal, the Educational Designer. It is devoted to
the research into the design process of educational tools, with the hope of identifying best practices
and in this way helping researchers to improve the design process, as well as “increasing the impact
of professional design on educational practice” [4]. In Cross’ (2001) characterization of design and
science, this would correspond to the ‘science of design’.

Allowing researchers to demonstrate their design process and in this way further the ‘theory
of design’ will certainly help improving the design of future educational tools, and is a unique
and important undertaking. But even here, the design, as in the construction of an artifact itself
or ‘scientific design’ (Cross, 2001), is not considered to be research and cannot be published in
mathematics education journals.

In any case, summing up the discussion of design-based research, research-based design, and
educational design, despite the recognition of its central role in mathematics education research,
the design of objects for the learning of mathematics has not been recognized as research in itself.
Designers can only publish their designed object by attaching it to an empirical study, embedding it
in a design-based research process or by reflecting and documenting the design process.

As the obligatory exception to the rule, some designs and constructions can be published in
practitioner journals; these are however not considered to be reporting on mathematics education
research. These journals are intended for teachers and provide ideas which relate to classroom
practice, bridging the gap between research and school.

‘Stoffdidaktik’

There is of course a school of research devoted to the analysis and construction of certain objects,
called in German Stoffdidaktik, or subject-matter didactics (H. N. Jahnke, Hefendehl-Hebeker, &
Leuders, 2019). Its focus, however, is on purely mathematical analysis and construction. The design
of a syllabus based on content analysis for teaching differentiation would be a prime example. If the
design of a series of questions and tasks on a certain topic would be considered research in this sense
could be debated. Finally, the design of an app engaging students in activities around fractions
would certainly not fall into this category.

Subject-matter didactics, the dominant type of research in the early 20th century, faced much
criticism for not including empirical evidence. Curricula were designed at the drawing board,
without considering how students actually reacted to them in this process. This led to the inclusion
of empirical studies in subject-matter didactics, to the point where Schubring (2015) states, “In
contrast to the traditional subject-matter didactics free of empiricism, nowadays an empirical
component should be self-evident in every teaching proposal” (p. 36). This quote also showcases
the shift of German-speaking didactics from content analysis to teaching proposals and their
evaluation; traditional subject-matter didactics has faded from the journal-published research
landscape (T. Jahnke, 2010). There is still research being carried out in subject-matter didactics,
but its decline certainly falls into the category of “conceptually or theoretically oriented reflective
research without an empirical component” which Niss (2019, p. 6) identifies as the kind of research
suffering the most from the trend to empiricism in modern mathematics education.

In the case of empirical studies of the kind Niss describes, the view of the object as a tool limits
the amount of work put into it. By its very nature, this kind of ‘small-scale research’ also produces
small, strictly bounded objects; every step beyond these bounds would not only mean unnecessary
work, but also a blurring of the exactly defined research parameters. Again, the PISA studies are a
prototypical example. While this may be useful to showcase behavior or performance of learners, it
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is the opposite of a rich learning environment. It is designed to understand and sometimes measure
learning, but not to promote it or to extend our understanding of it.

The role of technology

Technological advances amplify this problem by expanding the field of learning software design. In
the past, mathematics was learned only in classrooms with textbooks, a context within the reach of
mathematics education research. Nowadays, there are thousands of mathematics learning apps and
programs on the market, which are used at home more than in the controlled and supervised school
environment. They stem from companies, with only a small percentage having any relationship with
mathematics education research. The ‘edtech’ market is growing, resulting in disrupting technology
such as apps that can solve textbook equations instantly, and also investments in education by some
of the world’s largest companies, seeking to shape education through their own policies.

The development of artifacts, especially larger projects, is happening in the education industry
and through independent developers outside of academic education research, leaving mathematics
education in the passive role of an observer (see Abrahamson (2015)). To manage a large project in
mathematics education would mean to have to divide the projects into several parts, such as artifact
design, theory, and empirical validation. The latter two roles count as mathematics education
research, but design in itself does not, and thus is done by researchers as a side-line. This is a
limiting factor in the project size and scope, restricting research to projects in which the design
part is small enough to be handled by researchers not using their full resources for it. Technology
influences this trend by enhancing our ability to collect and generate data as well as providing a
larger variety of comprehensive learning environments. This leads to the number of large projects
growing, aggravating the need for designers, which need their place in the mathematics education
community.

Furthermore, dismissing the constructions would also mean the inability to construct such
artifacts, and with it not having knowledge on their functioning. It would not only make mathematics
education research passive, but blind, forced to treat artifacts as black boxes, only capable of
measuring outcomes. It cannot be in the interests of the research community to exclude design
knowledge from mathematics education.

Examples and future directions

An example of research, which should be considered as such in mathematics education, is a well-
thought out curriculum proposal together with the motivation and reasons why the author might
consider it especially well suited for implementation. Another kind could be a set of interesting
problems, which are capable of enlightening aspects of a certain theory, for example able to provoke
moments of intuitive reasoning.

The foundation of these examples is a collection of mathematics, which has undergone didactical
exposition of some kind. Given this vital role of mathematics exposition, this line of research
in the tradition of German subject-matter didactics should certainly find its place in modern
mathematics education. T. Jahnke (2010) already pointed out this “gradual disappearance of the
subject” (p. 22) from mathematics education research, relying on publication records of the Journal
für Mathematik-Didaktik [5]. While this kind of research is strictly speaking not design, the two
are strongly tied, and it represents another aspect of not well-represented mathematics education
research.

Of course, not every design constitutes research. As Niss (2019) puts it,

as most important designs and constructions are required to have certain properties
and meet certain specifications before the resulting constructions are installed, design
disciplines are scientific only to the extent they can provide well-founded evidence and
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reasons to believe that their designs possess certain such properties to a satisfactory
degree. (p. 10)

In the case of physics, the test which a construction has to pass is subject to engineering and physical
standards, requiring for example a detector to achieve a certain fidelity with regard to measurements.
In mathematics education, such criteria would have to be established in a dialectic process. A
starting point could be given through the criteria for intervention in design-based research given in
Plomp (2013): relevance, consistency, practicality, and effectiveness. As an example, consistency
might describe the degree to which a learning software demonstrates its fidelity to mathematics,
by explaining the mathematics behind the software and its representation for the user, together
with the manipulation choices of the user on this software. Another criterion could be practicality,
i.e. if the design has a potential use in mathematics education, justified by a comprehensible
argumentation. These criteria do have to be applied carefully, as not to confine designs into strict
boundaries, thereby restricting creativity and innovation.

Our aim is not to diminish and not even to criticize the ways researchers work or do design,
but quite the opposite. We believe that mathematics education research encompasses a variety
of different approaches that all make valuable contributions, and that designing artifacts for
mathematics education is part of these valuable approaches.

Mathematics education as a scientific discipline has over the time acquired autonomy from
mathematics, as its importance was acknowledged as being too great to be just research being done
as side projects of mathematicians such as Pólya, Hadamard, or Klein [6]. Given the importance of
design in mathematics education research, it is reasonable to give it space in the communication
channels of our community. Designs also play a crucial role in the link of mathematics education
research and practice, a link which would be strengthened by legitimizing design as research.

In the same way that physicists chose to consider the construction of experimental tools to be a
part of physics and not to outsource it into engineering, to accept design as research in mathematics
education is a choice that the field can make. This would not change the nature of research in
mathematics education in any way. It represents a division of labor in the current type of research.
There is no need for every researcher to do every part of a research project; some researchers may
design an artifact, others collect data using it [7], and again others build theories explaining observed
phenomena. The acceptance of this would be a choice that can benefit both sides, designers and
empirical researchers, and avoid the pitfalls portrayed by Niss of research which lacks clarity and
purpose. This would of course require journals and conferences to accept contributions presenting
artifacts of interest to mathematics education, following certain standards.

With this in mind, it is pleasing to hear the editor-in-chief of one of the most influential journals
in mathematics education emphasizes the importance of “non-empirical articles with important
messages” (Bakker, 2019, p. 44). This message cannot only be a theoretical perspective on a topic
as asked for by Niss, but also the presentation of a certain way of seeing, doing or interacting with
mathematics through a well-thought-out design.

Notes

[1] This is disregarding some exceptions that prove this rule. See, for example Hewitt (2016) or Jankvist and Niss
(2015).
[2] The Nobel prize was in fact “for their design of the scanning tunneling microscope”; see https://www.nobelprize

.org/prizes/physics/1986/binnig/facts/

[3] Again, there are rare exceptions (e.g., ZDM issue 43(3)), but their rarity supports our point.
[4] From the inaugural editorial in Educational Designer, by Burkhardt, McKenney & Pead; see https://www

.educationaldesigner.org/ed/volume1/issue1/article0/

[5] Publishing design in mathematics seems to follow a similar decline, noting the publication of Papert’s LOGO and
the Labordes’ Cabri-Géomètre in the sixties and eighties together with the absence of similar, more recent publications.
[6] Of course, mathematics education has its roots not only in mathematics but also in other fields such as psychology,

sociology, and in the profession of mathematics teaching which should not be forgotten.
[7] There even exist journals for publishing data, such as ‘Scientific Data’, https://www.nature.com/sdata/.
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2.8 Conference and non-peer reviewed contributions

1. “Touchbasierte Lernumgebung für Homotopien”
Talk at the “3. Gemeinsame Jahrestagung der Deutschen Mathematiker-Vereinigung und der
Gesellschaft für Didaktik der Mathematik” in 2018 as well as the associated non-peer reviewed
publication in the conference proceedings (Sümmermann, 2018), see appendix A.1.

2. “Drawing Topology”
Talk and exhibition of Ariadne as touch and virtual reality versions at the “Imaginary
Conference on Open and Collaborative Communication of Mathematical Research” in 2018.

3. “Drawing topology using Ariadne”
Talk and poster presentation at the “Eleventh Congress of the European Society for Research
in Mathematics Education” in 2019, as well as the associated peer reviewed publication in the
conference proceedings (Sümmermann, 2019c), see appendix A.2.

4. “Drawing Topology”
Poster presentation at the “53. Jahrestagung der Gesellschaft für Didaktik der Mathematik”
in 2019, as well as the non-peer reviewed publication of the poster in the conference proceed-
ings (Sümmermann, 2019b).

5. “Exploring Topology by Touch and in Virtual Reality”
Poster presentation at the workshop “Illustrating Geometry and Topology” in 2019, see
appendix A.3.

6. Contribution to Illustrating Mathematics
This is a short two-page presentation on the project about knotted portals in virtual reality,
published in the book Illustrating Mathematics (Davis, 2020). This is a book named after
the semester program at The Institute for Computational and Experimental Research in
Mathematics, collecting work done by researchers attending the program, see appendix A.5.

7. “Entwicklung von mathematischen Lernumgebungen als mathematikdidaktische Forschung”
Talk at the mini-symposium “MS 9: Digitalisierung und mathematisches Lernen und Lehren in
den Sekundarstufe” in the “54. Jahrestagung der Gesellschaft für Didaktik der Mathematik” in
2020 as well as the associated peer reviewed publication in the conference proceedings (Süm-
mermann, 2020a), see appendix A.6.
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3 Further unpublished research

3.1 Concept images in topology

This was a research project intended as a follow-up to the first article on Ariadne. Its aim was to
elucidate the concept images (also “basic notions” or, in German, “Grundvorstellungen”) involved in
topology, especially in the topic surrounding homotopies and paths. This was meant to pave the
way for an empirical study on the “effectiveness” of Ariadne in enabling students to learn about
these concepts. Concept images would provide a way of measuring or capturing understanding of
concepts depicted in the software.

While it is indeed interesting to analyze the different metaphors involved in the expression of
thoughts on notions such as paths, this project was nevertheless abandoned. In researching the
use of such concept images, in many instances they seemed to be used in a normative rather than
descriptive fashion. This raises the question of the motives involved in such a use, which are informed
by a certain view on the role of mathematics education. This view states that in “traditional”
mathematics lessons (in Germany), conceptual understanding is neglected in favor of procedures
and rote learning Vohns (2005). There is thus a need to build “Grundvorstellungen” in the students,
which enable such conceptual understanding. This then raises the issue of procuring such concept
images capturing understanding, which is done by a mixture of empirical methods and subject
analysis.

So far, I do not object to such research. The problem lies in the view, not uncommon in
mathematics education, on the application of these concept images. The following quote from Malle
(2004) captures this view quite accurately (translation by the author): “Concept images are a central
topic of mathematical didactics today. For more than 10 years, the Institute of Mathematics at the
University of Vienna has been conducting a research program dealing with concept images. Lists of
concept images have been compiled for all subject areas of school mathematics and control tasks
have been developed with which the existence of these basic ideas can be checked. Empirical studies
with more than 2.500 students were carried out to find out to what extent these concept images
are present in our current students. The results can be summarized in two words: a catastrophe!
Concept images are largely absent or insufficiently present.”3

This quote summarizes the problematic view of concept images as a complete set of notions both
necessary and sufficient for understanding. It rejects the possibility of some images being irrelevant
for some students, and more importantly, condemns deviation from these prescribed images that are
then used as the definition of understanding.

The termination of this project on concept images was thus morally induced, to not support this
kind of standardization of thinking. This decision then also entailed the discarding of the empirical
study originally based on concept images.

Nevertheless, I present an excerpt from the notes of this work are below, where I collected some
basic notions associated with the terms of “path” and “winding number.” I also collected some
definitions that might be associated with basic notions in the sense of Thurston (1994), who gives a
list of definitions of the derivative: “This is a list of different ways of thinking about or conceiving
of the derivative, rather than a list of different logical definitions. Unless great efforts are made to

3In the original: “Grundvorstellungen bilden heute ein zentrales Thema der Mathematikdidaktik. Am Institut
für Mathematik der Universität Wien wird seit über 10 Jahren ein Forschungsprogramm durchgeführt, das sich mit
Grundvorstellungen beschäftigt. Es wurden Listen von Grundvorstellungen zu allen Stoffgebieten der Schulmathematik
erstellt und Kontrollaufgaben entwickelt, mit denen man das Vorhandensein dieser Grundvorstellungen überprüfen
kann. In empirischen Untersuchungen an über 2500 Schülern wurde eruiert, inwiefern diese Grundvorstellungen bei
unseren derzeitigen Schülerinnen und Schülern vorhanden sind. Die Ergebnisse können in zwei Worten zusammengefasst
werden: eine Katastrophe! Grundvorstellungen sind weitgehend nicht oder nicht ausreichend vorhanden.”
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maintain the tone and flavor of the original human insights, the differences start to evaporate as
soon.”

1.2 Path

Definition 1. A path γ is a continuous function γ : [0, 1]→ Y .

Basic notions:

• Function: Each point of the interval is mapped to a point in the space

• Continuous or even differentiable: If we wiggle a point, its image wiggles accordingly

• Time parameter: γ(t) is the point after t time units have passed. This is connected to the
notion of directedness of a path, as time has a natural orientation.

• Locus of a movement in the space: Each point in the image of γ represents the position of
the point at a certain time

Basic experiences or properties: paths

• connect points: this may cause problems with closed paths

• have endpoints: paths are images of closed intervals, and as such have a definite beginning
and end

• can self-intersect: paths are not necessarily injective/embeddings

• have an orientation: the interval has a canonical orientation

• cannot traverse obstacles: paths are continuous

• can be subdivided/connected/paths with appropriate start- and endpoints can be concate-
nated – there is a map I → I ∨ I

• are homotopies

Paths as branches of a tree in stochastics in school.

[. . . ]

1.6 Winding Number

The winding number is at the intersection of topology and geometry. In being a function, a
winding number brings all functional basic notions. Same for being a number. There are several
definitions, all related to different basic notions:

γ : [0, 1]→ R2 \ {p = (a, b)}
t 7→ γ(t)
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Covering Space

Definition 2.
γ̃(1)− γ̃(0)

2π
(1)

for a path γ lifted to R.

Angle of Endpoints

Definition 3.
θ(1)− θ(0)

2π
(2)

for a path γ given as γ(t) = p+ r(t)eiθ(t).

Alexander Numbering

Definition 4. Let a “well-behaved” curve γ on the plane be given, which does not retrace
itself. This curve then divides the plane into regions, one of which is unbounded. The
winding number of a point on the plane is then determined as follows. The winding numbers
of γ around any two points in the same region are equal; the winding number around any
point in the unbounded region is zero; and winding numbers around points in adjacent regions
differ by 1, with the larger winding number appearing on the left side of the curve (Chang &
Erickson, 2015).

Index

Definition 5.
1

2πi

∫ 1

0

γ′(t)
γ(t)− pdt (3)

with R2 ∼= C.

3.2 Ariadne3D

As mentioned in the outlook section of the paper on Ariadne (see (Sümmermann, 2019a) in Sec. 2.3),
a next step in its development was the integration of virtual reality gear, making the environment
immersive and aiding in the establishment of intuitive controls for drawing paths on two-dimensional
surfaces in 3D, such as a sphere or a torus (see Fig. 11).

This turned out to be a helpful extension, as was indicated during a mathematics exhibition
during the IC18 conference with Uruguayan mathematics undergraduates unfamiliar with topology.
They used the software to draw all kinds of paths on the torus, quickly turning to drawing “the
most interesting” ones, namely the meridian, the equator, and combinations of them, yielding curves
twisting around the torus.

3.3 Constructing manifolds in 3D

Orientable closed surfaces are classified as being topologically equivalent to the sphere with handles
attached, or equivalently to the sphere or the sum of tori. Given the ability to draw paths on a
sphere or a torus from Ariadne3D, this project added a cutting and gluing as well as a duplication
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Figure 11: A torus with a path drawn on it.

functionality to the software. The long-range goal of the project was to let the user freely construct
surfaces, starting with the most simple ones. This could mean starting with a flat sheet, gluing
opposite edges, thus first making a cylinder and then a torus.

An intermediate target was the construction of orientable surfaces starting from a torus. As an
example, a user can draw a loop on a torus and cut out along the path, resulting in a separation of
the torus in a disc and a punctured torus. The punctured torus can be duplicated and turned, so
that the two holes are facing each other. The two tori are then glued along the boundary curves
defined by the drawn paths, resulting in the construction of a double torus. Screenshots of this
process can be seen in Fig. 9 in the introduction.

In this way, the objects have a genesis and are not presented to the user without any motivation,
which was the approach carried out in the Ariadne3D project.

To cut the surface along a path, a mesh-cutting algorithm needed to be implemented. It was
based on a so-called snapping-and-refinement method (Wu, Westermann, & Dick, 2015) described
in the following. The surface is given as a mesh of triangles, and the path as a sequence of line
segments. Every triangle intersected by a line segment is then cut between the two intersection
points, and the resulting pieces are then triangulated. If the start or endpoint of a line segment are
close to the vertex of a triangle, it is snapped to its position, to avoid numerical problems with small
triangles. The gluing of two surfaces along their boundary curves is completed by gluing the ends of
a cylinder to the two curves.

A problem arising in the construction of such objects is their appearance. Following the classical
joke on topology on the homeomorphism between a doughnut and a coffee cup, a user might not be
able to visualize why the object she or he built is the same as some “standard” one. The surfaces
resulting from the processes described above do not immediately give nice-looking results, but it
might also be an illuminating experience to see a transformation into a “nice” shape.

To this end, a project to implement a feature for the transformation of topological surfaces into
“standard” shapes was started. This involves a continuous deformation into some desired state and
is also called “surface fairing.” This process can be realized by minimizing some energy through the
implementation of a discretized volume-preserving energy flow, such as curvature flow, Ricci flow, or
Willmore flow (Bobenko & Schröder, 2005). Several algorithms implementing different flows were
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tested, such as a simple Laplacian smoothing (Botsch et al., 2007), mean curvature flow (Desbrun,
Meyer, Schröder, & Barr, 1999), and Gaussian curvature flow (Zhao & Xu, 2006).

The results were adequate for small deformations such as gluing of a cylinder to a boundary
curve as in Fig. 9f, but not for the envisioned ultimate goal of deforming whole objects into pleasing
shapes. While Willmore flow was the most promising candidate for this, as per Sullivan (2012) and
conversations with Keenan Crane, there exists no implementation efficient enough to allow real-time
deformation. This put a stop to this project, shifting the focus to create an implementation of
KnotPortal.

3.4 Surface Walker

This project was started to let users draw paths on surfaces, while materializing the relationship
between surfaces and their universal covering surface and the associated fundamental polygon. It
features a keyboard-controlled ball that the user can roll around on a plane. The plane is tesselated
by polygons, which each represent a fundamental polygon of a surface. The user-controlled ball is
replicated on each fundamental polygon, giving the illusion of many mirror images of the ball being
moved around simultaneously. The surface and the plane are connected via a map, translating the
movement of the ball on the plane to the movement of a dot on the surface.

Figure 12: A screenshot of a ball rolling on the plane tessellated by the flat torus, closeup of Fig. 8a.
Notice the orientation of the “Hello World” on the pillar, as well as the parallel movement of the
“other” balls.

Several features where added to aid the users understanding of this construction. As an example,
the plane has some objects with a non-symmetrical marking placed on it, so the user has some
orientation to her/his position and orientation on the plane. Another feature is the ability of the
user to press the space bar to fire a projectile from her/his ball. As the other balls are duplicates
of the user-controlled one, all balls fire projectiles. This leads to interesting phenomena, such as
the inability to dodge the projectile while trying to hit the “others,” reinforcing the notion of the
covering map involved.
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Figure 13: A screenshot of a ball rolling on the plane tessellated by the flat Klein bottle, closeup of
Fig. 8b. Notice the inverted “Hello World” on the pillar, as well as the parallel movement of the
balls in one direction, and the counter-directional movement of the balls in the other.

The torus (Fig. 12) and Klein bottle (Fig. 13) examples were quite easy to implement. For higher-
genus surfaces, things can get quite complicated. There are two main issues in the implementation of
a software with the aforementioned capabilities. Firstly, one needs a “parametrization” of the surface,
i.e. a nice, maybe even conformal map between the surface X and its corresponding fundamental
polygon PX . Such maps would have to be constructed and discretized for every possible genus.
Then, the plane has to be tesselated with PX , in most cases resulting in a hyperbolic geometry.
This tessalation may lead to a word problem, as already “occupied” parts on the plane need not be
covered twice. While the word problem was solved by Dehn in 1922 (see (Dehn, 1987)), an algorithm
respecting or circumventing this word problem must be carefully chosen.

The deviation of the topic from topology to geometry, together with the prospect of this amount
of work necessary, led to the abandonment of this project.

3.5 Dirichlet Diagrams

Figure 14: A screenshot from the software generating Dirichlet diagrams (see https://youtu.be/
1CEDMdXEQGk). Note the curvature of the region boundaries, depending on the time gap between
activation of the spreading from the points.
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This was inspired by work of my research group colleague Anne Möller on a problem-based
exploratory learning approach in the context of perpendicular bisectors. A starting point is the
so-called well-problem, where the student is asked to aid a sheep herder in finding the areas with the
shortest distance to certain marked wells on a map. This generates a Voronoi diagram, with the
boundaries of the regions given through the perpendicular bisectors of the wells.

Another representation of Voronoi diagrams is given by dropping paint onto predefined points,
letting it spread radially until it meets already painted areas. This raises an interesting question:
What if some paint drops are placed earlier than others? The result are so-called (additively)
weighted Voronoi diagrams, also called Dirichlet diagrams. The edges of the regions in this diagram
are then not given by perpendicular bisectors anymore, but by hyperbolic arc segments (see Fig. 14).

To make this phenomenon accessible, I wrote a software visualizing Dirichlet diagrams. Users
can set points and start (or stop) the radial spread of paint from a point by a click or touch, or
start (or stop) all points at once. The former gives hyperbolic edges, the latter the “usual” Voronoi
diagrams. The software is available at the Imaginary website, see Sec. 2.2.
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4 Discussion
Programs work, even if they don’t run.
Visualizations work, even when they aren’t seen.

-Stephenson (2019)

The aim of this thesis was to explore the potential of technology to make mathematics more accessible.
The examples and their analyses from a small range of mathematical topics provided in the published
and unpublished work give a glimpse into the large space of possibilities for mathematics to be made
interactive in a visual representation. In this way, the presented work complements attempts from
other parts of mathematics as well as other modes of representation.

The most work in this particular direction has arguably been done in classical geometry, where
visual manipulatives have a long history. Examples are of course dynamic geometry systems such as
Cabri géomètre, Geometers Sketchpad or the more recent Cinderella (CindyJS) and GeoGebra. One
could even go so far as to give geometry a special place in this regard, as visual manipulatives (used
to) be the defining objects and the axiomatic foundation for mathematics being carried out. This
has since been replaced by a Hilbert-style abstract axiomatic, defining objects implicitly through
relations given in axioms. This sort of development has ostensibly led to the abandonment of visual
manipulatives in favor of formal-symbolic representations.

As many examples show, this trend of mathematics is becoming more formal and abstract is an
illusion more than anything else; mathematicians in every field use visual representations and their
manipulation to devise definitions, proofs, methods, and in all other mathematical work.

Modern technology undoubtedly gives an advantage in this realm of visualization, providing new
ways of depicting and changing representations, be it through more powerful graphics engines or
hardware devices such as virtual or augmented reality. It has also the capability to make possible
the visualization of things which before were confined to the mind, giving users the ability to express
their ideas through the software. This line of thought follows the view of technology for mathematics
from Papert (1980). He talks about giving users objects-to-think-with, constructing microworlds able
to incorporate some mathematical principles in a way that is accessible to the user. The work in
this thesis was done in this spirit.

Ariadne represents such a microworld. In the environment, users can freely explore the
relationships between dots and paths given different constraints through obstacles. By exploring,
conjecturing and reasoning, concepts for the meaning of these terms can be formed, giving the visual
representation of the environment as a complement to formal representations, not substituting for
them.

As delineated in the paper in Sec. 2.4 on Mathematics in the Digital Age: The Case of Simulation-
Based Proofs, Ariadne also provides an opportunity for research into the role of technology in
proofs in mathematics education. The combination of the topic of topology and the affordance of
a tool visually computing an invariant, making possible argumentations that feel like real proofs,
inspire a new viewpoint on the role technology can play in teaching and doing proofs, not only in
the classroom. This article starts the discussion on functions of technology beyond exploration,
conjecturing and the gathering of pseudo-empirical evidence, which is seen as their main use in
education as well as in research.

Another insight of relevance to current mathematics education research was the use of embodied
cognition by users of KnotPortal, described in the article in Sec. 2.6 Embodied Mathematics:
Forming Concepts in Topology by Moving Through Virtual Reality. The article provides a template
for analyzing embodied cognition in mathematical learning environments through content-related
analysis of the environment and the user interactions. By investigating KnotPortal in this way,
several interesting instances of embodied cognition were found, such as “embodied paths” or “patterns
of movement” as embodied heuristics, furthering the discussion on embodied learning in mathematics.
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While this thesis is concerned with mathematics education, and not computer science, the
issue of “bugs” or non-functioning software in general must nevertheless be addressed, given the
relative amount and importance of software presented here. Fig. 15 allows a glance into the many
malfunctions that can be found in the different software; some are due to unimplemented features
or algorithms, other represent errors in their implementation, even if the algorithm is technically
correct.4

(a) An error in the division of the
screen into segments leads to the
wrong worlds being displayed.

(b) The normal vector of the path’s
mesh is not normal to the surface,
i.e. the path is twisted, making it
partly invisible to the user.

(c) Several bugs can be seen here:
the tesselation ends, the piece of
the plane where the ball is located
is tesselated twice, the lighter grey
shines flickers through, and the im-
age in the corner should not be a
genus one surface.

Figure 15: Some different examples of bugs in the software presented in this thesis.

Such bugs are inevitable in all software which is complex enough, and become more frequent
and are harder to detect the more freedom the user has in the use of the software. Ariadne as
a mathematical simulation, but also KnotPortal, were both designed to give users a maximal
amount of freedom of use, which aggravates the problem. Bugs in a mathematical software are
not only annoying, but may actually impede their use by destroying the trust in the technology, as
pointed out in Sec. 2.4 on Mathematics in the Digital Age: The Case of Simulation-Based Proofs.
On the other hand, a bug may also present an opportunity, as it may present a safeguard against
the user trusting a software to the point of not retracing the arguments brought forward anymore.

The overall reaction to the work presented in this thesis often followed the words of the tiresome
young man in Bishop’s poem at the start of this thesis: “It’s pretty, but what is it for?” These
impressions, together with an impression in mind of how mathematics education research might look
like, led to the article On the Future of Design in Mathematics Education Research.

In the paper, we argue that there are many kinds of design, and most researchers in mathematics
education practice one kind of design or another, as designed objects are often at the center of
studies in mathematics education as an “artificial” field of study. Examples are of a mathematical
or mathematics educational nature, such as sets of interesting problems or specific questionnaires,
respectively.

Disregarding their central role in mathematics education research, design is, however, not accepted
as research in itself, but only in conjunction with an empirical study or theory building. This has
not always been the case, but is a trend, which is indicated by the demise of German traditional
“Stoffdidaktik” and the simultaneous rise of design-based research in mathematics education.

The article concludes with the open question of criteria for regarding design as research, which is
left open as to not presumptuously and externally impose criteria on a branch of research before it
is even established.

4This brings to mind Donald Knuth’s famous quote “Beware of bugs in the above code; I have only proved it
correct, not tried it” to end “Notes on the van Emde Boas construction of priority deques: An instructive use of
recursion (1977).”
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While the article on the role of design is most certainly heavily influenced by negative personal
experiences, it must be said that there are many wonderful design projects with amazing researchers
behind them “at the edges” of mathematics education, one must only look at the work by the
Imaginary group.

Ariadne, KnotPortal and the other projects presented in this thesis are not mentioned as an
example of design-as-research in the paper, but I certainly consider them as such, and the paper was
written with them in the back of my mind. If one compares the presented software projects with the
suggestions of criteria given near the end of the article, at least the criteria of “consistency” and
“practicality” must be regarded as met by Ariadne and KnotPortal, given the already presented
uses and their design rationales. Whether the other software, especially the more bug-ridden ones,
are design, is certainly more controversial. In my opinion, this nevertheless holds true, in the spirit
of the quote by Stephenson (2019) above; the construction and the reflection on obstacles that would
have to be cleared, as well as the process of imagining such a visualization, all help in learning about
mathematics and mathematics education. So why shouldn’t their design be research?
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5 Summary and outlook

Mathematicians usually have fewer and poorer figures in their papers
and books than in their heads.

-Thurston (1994)

This thesis contains some examples of visualizations in topology, together with analyses of interactions
with them, as well as a meta-comment on their role in mathematics education research.

The analyses are mainly to be seen as a probing into the nature of such visualizations and
examples for studies that could be conducted. Much more could be discussed in their context, in
particular concerning their use in practice. An example could be the role of the winding number
tool in Ariadne, as it provides an opportunity for introduction of users to negative numbers. While
users might, at first, consider the winding number to be simply a natural number, users then learn
that concatenation of paths leads to addition of winding numbers. The users may then consider
the example of a path γ with winding number 1 around a point p, and the concatenations γ ? γ
and γ ? γ−1, with winding numbers 2 and 0, respectively. This forces the distinction into a sort of
handedness of paths around a point; as γ and γ−1 seemed to both have winding number 1. This
finally concludes with the establishment of the concepts of left-handed and right-handed winding
numbers, corresponding to positive and negative integers.

Another interesting subject could be the examination of the learning of concepts using the
software. An example could be group theory. With Ariadne, this could mean discussing the
concepts of commutativity with the example of the fundamental group of the twice punctured plane
versus the fundamental group of the torus. With KnotPortal, one could investigate the role of
generators and relations in the presentation of a group, as this seemed to be an issue in the interviews
conducted for Embodied Mathematics: Forming Concepts in Topology by Moving Through Virtual
Reality. Another investigation could be into the learning of continuity, as discussed in Ariadne – A
Digital Topology Environment, in terms of time and motion, using paths.

The software may also be used in learning situations, such as with children in schools or in
university-level courses on topology, and assessed as to whether their use is beneficial to the students’
understanding.

The software projects themselves could be extended in many ways. This includes first and
foremost bug-fixing and other quality assurance measures, as the projects were merely built as
prototypes to show a proof of concept. On the other hand, the software being prototypes also means
that many features with regard to content could be introduced.

In Ariadne, a feature could be added showing the genesis of punctures. In the current version,
holes are generated in the level builder in a similar way as dots, by a touch of the screen at the
desired location. This does not show the fundamental difference of a puncture to a defined point.5

This could be alleviated by changing this construction method to the cutting out of a drawn path,
which would correspond more closely to the notion of a “hole” in the surface. Furthermore, the
algebra tool, which is included in Ariadne in a very rudimentary version, could be extended to ease
the transfer from a visual to a formal-symbolic representation of paths and homotopies. There are
also smaller changes, which might be worth considering, such as the speed of the moving dot on a
concatenated path. At the moment, the result of a concatenation is only up to reparametrization, i.e.
the speed is uniform over the length.6 The usual definition of concatenation defines the concatenated
path of two paths γ1 and γ2 as being the path γ1 on the first half of the interval, and γ2 on the
second half. This would imply a different speed on the different parts of the concatenated path, if
their lengths differ.

5Interestingly, these are the same words in German: Punktierung, i.e. puncturing, can mean a puncture in a
topological setting, or a defined point in a geometrical one.

6Compare the notions of associahedra and the associahedron operad, e.g. (Stasheff, 1963).
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The three-dimensional version of Ariadne could be extended to accommodate non-orientable
surfaces; it would certainly be fun to draw paths on a Klein bottle.

For KnotPortal, there are also many possible ways the software could be further developed.
A smaller change would be the ability of users to leave a trace behind, easing orientation by showing
the traveled path. The most exciting addition would, however, be the incorporation of a multiplayer
environment. Allowing users to interact with each other, watching other users disappear and reappear
through the different portals and worlds would possibly greatly influence understanding. From
a technological standpoint, the software could benefit from the integration of “infinite walking”
technologies such as presented in Sun et al. (2018), which allows movement without restraint from
the room size.

The embodiment aspect would greatly benefit from the implementation of finger- or hand-tracking,
which could be analyzed using the large body of research on gestures in mathematics.

While this thesis is mathematically only concerned with topology, other areas of mathematics,
besides the obvious choice of elementary geometry with its rich array of dynamic geometry software,
offer an at least as large potential for simulations. Examples could be graph theory, analysis or
probability theory, but also algebra or number theory. For all of these fields, great animations exist
already and it would be great to see a shift from animations to simulations.

I certainly hope that the discussion started with the article on On the Future of Design in
Mathematics Education Research will be continued, for example through further debate on criteria
for regarding designs as research, and will lead to the acceptance of more articles on design in
mathematics education journals. Papert stated 40 years ago: “[i]n current professional definitions
physicists think about how to do physics, educators think about how to teach it. There is no
recognized place for people whose research is really physics, but physics oriented in directions that
will be educationally meaningful” (Papert, 1980, p. 188); maybe this debate will even help create job
positions for these people, with design for mathematics education as their focus.

The feeling I have after writing this thesis is that the presented articles and projects only scratch
the surface of the addressed issues and topics. Embodiment and proofs are only two aspects of the
multi-faceted nature of visualization software, and the software examples themselves are far from
showing the full potential of technology in mathematics learning and visualization.

I also believe that this potential is not to be fulfilled by improvements in technology, but
by improvements in the use of technology, as indicated by the actuality of the propositions put
forward in Papert’s Mindstorms. His book focuses on researching the way that technology changes
(mathematics) education, not on the effects of a specific product or technology; it talks about general
issues but in terms of examples, as “[y]ou can’t think seriously about thinking without thinking
about thinking about something.” (Papert, 1980, p. 10). This is what I tried to achieve in this thesis:
present general thoughts on mathematics education based on concrete mathematical examples.

It is certainly my hope that this thesis as an example as well as the initiation of the discussion
through On the Future of Design in Mathematics Education Research will help in advancing the
goal of showing the intertwined relationship of mathematics and mathematics education, and the
dependence of mathematics education on good design of mathematical content. In this way, instead
of drifting apart, as is observable at least in parts, mathematics education and its related disciplines
such as mathematics and mathematics communication may be brought together.
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A Conference contributions

A.1 Touchbasierte Lernumgebung für Homotopien

Talk at the “3. Gemeinsame Jahrestagung der Deutschen Mathematiker-Vereinigung und der
Gesellschaft für Didaktik der Mathematik” in 2018 as well as the associated non-peer reviewed
publication in the conference proceedings (Sümmermann, 2018).
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Touchbasierte Lernumgebung für Homotopien

Moritz L. Sümmermann

In diesem Beitrag stelle ich kurz und informell eine Lernumgebung namens Ariadne in Form
eines Tablet-PC-Programms vor. Es ist schwierig, solch ein dynamisches Programm in dieses
statische Format zu fassen, der geneigte Leser ist daher eingeladen sich die Videos über Ariadne auf
meiner Homepage anzuschauen oder es auf einem Gerät mit Touchfunktion selber auszuprobieren
(www.mathedidaktik.unikoeln.de/11924.html).

Die Forschungsfrage meiner Dissertation lautet, ob man mit dieser Lernumgebung in der Lage ist,
das Konzept von Homotopien zu verstehen. Meine Zielgruppe ist die Primarstufe, um ein möglichst
unvoreingenommenen Blick auf Mathematik zu ermöglichen.

Zunächst ist im Programm nur ein graues Feld mit schwarzen Bereichen zu sehen. Durch
Berührung des Bildschirms kann man nun Punkte auf dem Feld setzen, aber nicht auf den schwarzen
Bereichen. Die schwarzen Bereiche spielen mathematisch die Rolle von

”
Aussparungen“ bzw.

”
Hin-

dernisse“ der Ebene. Durch ziehen der Punkte mit dem Finger entstehen Wege zwischen Punkten,
wobei auch diese nicht die Hindernisse queren können. Dabei haben durch Wege verbundene Punkte
dieselbe Farbe, um diese Beziehung der Verbundenheit zu verdeutlichen.

Screenshot 1: Punkte, Wege und Hindernisse

Zwei aneinander anknüpfbare Wege, das heißt bei denen der Endpunkt des einen Weges Start-
punkt des anderen ist, können durch gleichzeitige Berührung von je einem Finger verbunden werden.
Nun gibt es auch

”
Wege zwischen Wegen“, sogenannte Homotopien. Diese werden durch das Ziehen

eines Weges mit einem Finger realisiert. Sobald man einen Weg vollständig auf einen anderen Weg
gezogen habe, bekommen auch diese Wege dieselbe Farbe. Diese Wege heißen

”
homotop“ zueinander.

Auch hier stellen die schwarzen Bausteine wieder Hindernisse dar. Ein Sonderfall stellt hier das
Ziehen eines Weges mit dem gleichen Start- und Endpunkt auf ebendiesen dar, solch einen Weg
nennt man

”
nullhomotop“.
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Screenshot 2: Eine Homotopie zwischen zwei Wegen

Eine weitere Funktion von Ariadne ist die Anzeige der sog.
”
Windungszahl“ eines Weges um

ein Hindernis. Nicht dargestellt, aber ebenfalls im Programm implementiert, sind dreidimensionale
Objekte wie der Torus oder die Sphäre, auf denen wie auf dem Feld in den Screenshots Punkte
gesetzt und Wege gezogen werden können.

Diese Lernumgebung beruht auf Mathematik aus dem Teilgebiet der algebraischen Topologie.
Für Informationen über diese verweise ich auf Lehrbücher wie Hatcher (2000) oder Bredon (1993).
Nur mithilfe dieser einfachen Funktionen können sowohl einfache als auch sehr komplexe Aufgaben
aufgeworfen und bearbeitet werden. Das Vokabular gilt es natürlich dem Entwicklungsstand des
Kindes anzupassen, möglicherweise auch von ihm selber wählen zu lassen. Verschiedene Fragen, in
verschiedener Schwierigkeit, sind beispielsweise:

1. Welche Punkte kann man verbinden?

2. Wie viele verschiedene Farben der Punkte gibt es minimal in diesem Bild?

3. Kann man diesen Weg zu diesem anderen umformen?

4. Sind diese Wege nullhomotop? Sind sie zueinander homotop? Was ist ihre Windungszahl?

5. Wie viele verschiedene, das heißt nicht homotope, Wege gibt es hier?

6. Kann man Hindernisse setzen, so dass dieser Weg nicht nullhomotop ist?

7. Kann man einen Weg mit Windungszahl 3 malen?

8. Wie viele verschiedene Wege gibt es hier?

9. . . .

Dies sind alles genuine mathematische Fragen aus der algebraischen Topologie. Manche dieser Fragen
sind auch für Grundschulkinder schnell zu beantworten, andere brauchen viel Arbeit in Form von
Beispielen und Gegenbeispielen. Dabei kann auch die zugrundeliegende mathematische Struktur
genutzt werden. Beispielsweise gibt es einen Weg von Punkt A zu Punkt C, falls es einen Weg von
A nach B und von B nach C gibt. Dem ist so, da

”
homotop zu“ eine Äquivalenzrelation ist. Dies

kann genutzt werden, ohne den Begriff der Äquivalenzrelation explizit einzuführen, und somit das
Denken in mathematischen Strukturen fördern.

Das Thema Homotopien und Wege bietet sich für Computerumgebungen an, da es keine
physikalischen Materialien mit den gewünschten Eigenschaften eines Weges gibt. Ein solches Material
müsste beliebig verformbar und dehnbar sein. Kandidaten wie Lehm (Nobel Committee for Physics,
2016) oder Gummibänder (Szpiro, 2008) erfüllen dies zwar teilweise, haben aber natürliche Grenzen.
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Mithilfe des Computers können diese Grenzen zulasten der dann fehlenden Haptik überwunden
werden.

Ein weiteres durch Ariadne angesprochenes Thema ist das Machen von Mathematik im
Gegensatz zum Wissen darüber (Papert, 1972). Das bedeutet in diesem Fall die Konstruktion von
Objekten durch den Benutzer, um Fragen aufzuwerfen oder zu beantworten. Aufgestellte Hypothesen
über diese Objekte können durch Ausprobieren bestätigt oder widerlegt werden, ohne eine externe
Autorität, wie beispielsweise einen Lehrer, zurate ziehen zu müssen.

Screenshot 3: Der
”
Pochhammer-Weg“, ein nicht nullhomotoper Weg mit Windungszahl 0 um beide

Hindernisse (Siehe, z.B., Wang und Guo (1989, S. 105)

Nicht zuletzt ist es ein interessanter Aspekt, ein zentrales Thema der modernen Mathematik
elementar vermitteln zu können.

Die Lernumgebung wurde bisher nur mit Erwachsenen Nicht-Mathematikern getestet, der nächste
Schritt ist die Analyse vermöge qualitativer Untersuchungen mit Grundschulkindern.
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A.2 Drawing topology using Ariadne

Conference proceedings of the “Eleventh Congress of the European Society for Research in Mathemat-
ics Education”, as well as the poster presented there and at the “53. Jahrestagung der Gesellschaft
für Didaktik der Mathematik”. It should be noted that as in the poster in Sec. A.4, a tablet-PC was
attached to the middle of the screen. The tablet-PC showed a pre-recorded video of the software.
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Drawing topology using Ariadne

Moritz L. Sümmermann

Research overview

The focus of this work is to build a learning environment, making it possible to learn about paths
and homotopies without the use of formalism. Here, learning environment means a microworld given
through a software in the sense of Papert (1987). To help achieve this goal I have developed Ariadne,
a software tool for the visualization of and interaction with paths. These paths can be constructed
on a wide variety of surfaces, from the plane to manifolds of arbitrary genus, and punctured versions
thereof. A more detailed account of Ariadne‘s capabilities is given in Sümmermann (2019).

Screenshot 1: The Pochhammer Contour, a non-nullhomotopic green path starting and ending at
the magenta dot with winding number zero around both black punctures, constructed in Ariadne.

Topology in general is not present in the school curriculum, which limits the extent of research
in the field of topology education. It is, however, a very important part of modern mathematics, so
there have been some attempts to visualize topology, either without (Strohecker, 1996; Sugarman,
2014) or with software (Culler, Dunfield, Goerner, & Weeks, n.d.; Scharein, 1998). There has been
no attempt to implement interactive continuous deformations as represented by homotopies, which
is the focus of Ariadne. It also follows a different approach didactically, as its purpose is not only
to visualize concepts already known to the user, but to teach the user these concepts by letting him
interact with the visualization. The theoretical framework behind the design of Ariadne is based
on the design principles of Devlin (2013) and the Artefact Centric Activity Theory from Ladel
and Kortenkamp (2013). Ariadne is split into a two- and a three-dimensional mode. Both are
usable on any touchscreen device, such as tablet-PCs or smartphones. In 2D, the user can construct
points, paths and homotopies of paths on the plane with an arbitrary number of punctures, as well
as compute the winding number around these punctures. This allows the user to tackle questions
on the existence and equivalence of paths, and thus the treatment of the fundamental group. The
same can be done for closed orientable surfaces of genus g in three-dimensional mode.

For the 3D-mode, a mixed reality environment is implemented. This mode facilitates the
interaction with two-dimensional surfaces in three-dimensional space, such as the sphere or the
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torus, and thus alleviates handling issues inherent to the two-dimensional touchscreen. The three-
dimensional mode also allows the construction of paths on the universal cover of the chosen surface,
which is for most surfaces the hyperbolic plane. Ariadne is being evaluated through individual
interviews with students from all age groups, in which they are being posed questions to assess
their understanding of the used concepts. Further research directions are a didactical analysis of
the topological notions involved in Ariadne to ensure that the answer quality is representative for
the understanding of the content, planned to be implemented as a qualitative empirical study with
mathematicians. The questions can then be refined based on this analysis. Another direction of
research is the development of course material for Ariadne for the use in schools and universities.

Poster contents

The poster contains a short summary of the mathematical objects involved using some formulas
and pictures, so it is clear what mathematics are conveyed with Ariadne. This is by no means
exhaustive, but intends to sensitize the audience to the subtleties of the concepts involved. In the
center of the poster is a tablet-PC, which the conference participants can use to test Ariadne for
themselves. Another part of the poster is a list of sample questions which can be answered with the
help of Ariadne, as a demonstration of Ariadne’s capabilities. The last part is a short overview on
the technicalities of the program for those interested in the mechanisms of action behind Ariadne.
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Drawing Topology

Ariadne

Motivation

Mathematics

Sample questions

Try it

Virtual reality

Implementation

Universität zu Köln

University of Cologne

Moritz L. Sümmermann
moritz.suemmermann@uni-koeln.de

+49 1577 6490488

There is no real-world material able to emulate 
homotopies

Ariadne makes it possible to learn about topology 
without formalism

Which points can be connected by paths?

Are these paths homotopic?

How many different paths can be drawn on a surface 
from a point to itself?

Are all paths with the same winding number 
homotopic?

Manipulation of paths and surfaces 
using Windows Mixed Reality controllers
Overcomes the limitations of a 2D 
interface

Why is the winding number of a closed path an 
integer?

Fundamental group

Homotopies from a path    to a path  

Topology is an important field in modern mathematics

Topology and in particular homotopies are inherently 
visual, but are taught with formulas

Realization of all orientable surfaces with 
boundary curves and arbitrary genus

Cutting and gluing along paths

Winding number of a path

Programmed in C# using Unity3D

Multitouch and virtual reality roomscale 
interface

Built-in computation of homotopy 
classes in 2D

Experience self-made surfaces with the 
sense of place

Download from Google Play or from imaginary.org



A.3 Exploring Topology by Touch and in Virtual Reality

Poster presented at the workshop “Illustrating Geometry and Topology” at the Institute for Compu-
tational and Experimental Research in Mathematics in 2019.
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Figure 2: The 
model for the 
trefoil knot, 
exhibiting the cone 
sections. 

Figure 4: The group structure for the trefoil 
knot and its correspondence to the 
symmetry group of a triangle.
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Figure 6: Construction of a double torus from a single torus in three steps. First, a dot and a closed path are drawn on the torus. Then the torus is cut along the 
path, duplicated and rotated. In the last step, the tori are glued together along the boundary curves.

Figure 5: The Pochhammer contour, a non null-homotopic path 
with winding number zero around both punctures.

Figure 4: Winding number of a path is being computed as a spiral 
indicating the number of revolutions around a point

Figure 3: The trefoil knot with 4 portals.

Figure 1: The unknot as a portal between 
two worlds.

Knotted portals Ariadne
Drawing homotopies by touch

Creating surfaces in virtual reality

This is the realization of an idea by Bill Thurston ("Knots to Narnia"), to 
think of cyclic branched coverings of knots (of order two) as knotted 
portals to other worlds.

This software is an extension of Ariadne to 3D. The user can draw paths 
on surfaces such as a sphere or a torus and drag the paths to construct 
homotopies between paths.
 
In addition manifolds can be moved around and rotated. The simple 
closed paths drawn by the user can be cut, resulting in a manifold with 
boundary. These boundary curves can be filled with a cone (a cap), or 
surfaces can be glued together along their boundaries.
This enables the construction of all orientable closed surfaces, as any 
surface can also be duplicated, resulting in the workflow from Fig. 6.

These surfaces can then again be explored using paths and homotopies 
of paths.

This software enables the user to do basic topology 
on the (punctured) plane. He can create dots by 
touch, paths by dragging dots and homotopies by 
dragging paths. Paths can be cut out to define 
punctures, which leads to the distinction of 
homotopy classes of paths via the winding tool 
feature (Fig. 4), giving the ability to make first 
contact with the concept of invariants.

Moritz L. Sümmermann
University of Cologne

moritz.suemmermann@uni-koeln.de

These software projects are part 
of my PhD thesis in 

mathematics education. 

The software is made with Unity3D and C#. The worlds 
are glued together along cone sections (Fig. 2) 
obtained by tracing the knot from a point. To correctly 
compute the world transitions, the user has to specify 
the group multiplication table for the knot.

The realization allows the exploration 
of these portals in virtual reality, 
making it possible to explore the 
group structure (Fig. 4) by moving 
around and in between these worlds 
in virtual reality.

This makes it possible to learn some basic 
concepts from topology without having to use 
formulas, ranging from the number of connected 
components to the fundamental group, as paths 
can be concatenated to give the group structure.
The software is designed to be used by children, or 
students in topology courses.



A.4 Verknotete Portale

This is not a conference contribution, but is nevertheless listed as it is both informative and visually
appealing. This poster was presented at the poster session of the summer festival of the Department
of Didactics of Mathematics and Natural Sciences in 2019. It should be noted that as in the poster
for CERME in Sec. A.2, a tablet-PC was attached to the middle of the screen. The tablet-PC
showed a pre-recorded video of the software.
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Verknotete Portale

Moritz L. Sümmermann
moritz.suemmermann@uni-koeln.de

+49 1577 6490488

AG Benjamin Rott

Institut für Mathematikdidaktik

Überlagerungen

Microworlds

Umsetzung

Embodiment &
         Virtual RealityStellen Sie sich einen Draht aus einem 

magischen Material vor. Wenn Sie die beiden 
Enden des Drahts verbinden, öffnet sich ein 

Portal in eine andere Welt. Aber was geschieht, 
wenn man erst einen Knoten in den Draht 
macht und danach erst die Enden 
verbindet? Wie viele Portale öffnen sich, 
und in wie viele Welten? Diese Fragen 
behandelt man mathematisch unter 
der Überlagerungstheorie, in 
diesem Fall entlang dem Draht 

verzweigte Überlagerungen.

Was können Studenten 
über diese Theorie 

mithilfe der 
Software 

erlernen?

Embodiment bezeichnet die Theorie, dass 
Kognition mehr als nur das Gehirn umfasst, 

sondern mittels unserers Körpers und
unserer Umgebung geschieht. 

Virtual Reality unterstützt diese 
verkörperte Art der Wahrnehmung, 

indem es den Nutzer vollständig in 
eine andere Welt versetzt, in der er 

die Mathematik mit seinem 
Körper erkunden kann.

Wie setzen Studenten 
ihren Körper in einer 
VR-Umgebung zur 
Wahrnehmung 
ein?  

Eine Microworld nach Seymour Papert ist eine 
konstruierte Realität, die so strukturiert ist, dass ein 
Lernender bestimmte mächtige Ideen erkunden oder 
intellektuelle Fähigkeiten ausüben kann. Der Stoff 
muss hinreichend eingegrenzt sein, um eine 
konstruktive Erforschung zu ermöglichen, aber 

hinreichend ergiebig, um bedeutende 
Entdeckungen machen zu können.

Entspricht die Software den 
Anforderungen an Microworlds?



A.5 Contribution to Illustrating Mathematics

This is a short two-page presentation on the project about knotted portals in virtual reality, published
in the book Illustrating Mathematics (Davis, 2020). This is a book named after the semester program
at The Institute for Computational and Experimental Research in Mathematics, collecting work
done by researchers attending the program.
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In his video “Knots to Narnia,” William Thurston uses large wire knots
to demonstrate his concept of knots as portals, where he actually steps
through the knot to move back and forth between, in his conception,
Earth and Narnia (see previous page). Virtual reality gives us the abil-
ity to bring to life this experience of actually stepping into other worlds
and seeing, not just imagining, what it looks like on the other side.
These pictures show the six-fold branched covering of order two of the
trefoil knot, generating the dihedral group of the triangle. The three
outer loops of the knot correspond to reflections, and the inner region to
the rotation by 120° of the triangle.
To create this virtual reality experience, I had to learn a lot about cyclic
branched covers of knots, as I had to construct them in the software
implementation. This led me to discover a construction from Poul Hee-
gaard’s dissertation from 1898, which could be implemented to simu-
late these portals in virtual reality. It consists of gluing a cone to the
knot, which serves as the branch cut, along which the different worlds
are glued together.
At first, I thought about implementing portals as surfaces somehow
spanned by the knot. The most obvious choice was to try out Seifert
surfaces, which turned out to be a dead end. The next attempt was
to not construct the branched covering, but only simulate it through
the knot projection on the screen. This approach used a variant of Rei-
demeister moves to keep track of the worlds the regions lead to, but it
turned out to be quite complicated and unstable at the crossings. Luck-
ily, I then found the reference to Heegaard’s construction in John Still-
well’s “Classical Topology and Combinatorial Group Theory” mentioned
above, and I was able to implement the virtual reality world.

It was a challenge to reduce the computational load of the software,

which has to compute which world to show for each pixel of both

screens in the head-mounted display. This could be achieved by using

shaders to offload much of the calculations on the graphics processing

unit, thanks to some tips from Roice Nelson at the “Illustrating Topol-

ogy and Geometry” workshop. The main computational load is now the

rendering of the worlds. They could have been just color-coded, but I

wanted to create worlds which are interesting enough to look at, but not

so interesting as to take away the focus from the knot itself.

Software download and information:
https: // imaginary. org/ program/ knotportal

Thurston’s original video, “Knots to Narnia”:

https: // www. youtube. com/ watch? v= IKSrBt2kFD4
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A.6 Entwicklung von mathematischen Lernumgebungen als mathematikdidak-
tische Forschung

Peer reviewed publication in the conference proceedings of the “54. Jahrestagung der Gesellschaft
für Didaktik der Mathematik” (Sümmermann, 2020a).
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B Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne
die Benutzung anderer als der angegebenen Hilfsmittel und Literatur angefertigt habe. Alle Stellen,
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