
Encoding, Storing and Searching of Analytical Properties 
and Assigned Metabolite Structures

I n a u g u r a l - D i s s e r t a t i o n 

zur

 Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 

vorgelegt von 

Tobias Helmus
aus Münster

Köln, 2007





Berichterstatter: PD Dr. C. Steinbeck
Prof. Dr. D. Schomburg 

Tag der mündlichen Prüfung: 11.06.2007





Abstract

Metabolites and other small organic molecules are of major importance in many different 
fields of natural sciences. They play crucial roles in metabolic networks, and knowledge 
about their properties and interactions helps to understand complex biological processes and 
whole biological  systems. Thus,  data describing small  organic molecules on a structural 
level is recorded in a multitude of biological and chemical laboratories on a daily basis. 
Consequently, a large amount of highly interconnected data already exists and continuously 
is produced. This leads to a strong need for software systems and data formats supporting 
the  scientists  in  exchanging,  processing,  storing  and  searching  molecular  data  under 
preservation of its semantics. 

The aim of this project was to develop tools, applications and algorithms to be used for the 
efficient  encoding,  collection,  normalisation  and  analysis  of  this  data.  These  should  be 
supportive  in  the  process  of  dereplication,  structure  elucidation,  analysis  of  molecular 
interactions and publication of the so gained knowledge. It frequently is impossible, or at 
least very difficult and time consuming, to determine the structure and functionality of an 
unknown compound directly. Therefore, this commonly is realised indirectly by describing 
a molecule via its  properties.  In a next step,  these properties can be used to predict  its 
structural and functional features. 

In this context, tools were developed, that allow the visualisation of structural and spectral 
data, the structured displaying and manipulation of extending meta data and properties as 
well as the import and export of a variety of spectroscopic and structural data formats. This 
functionality  was  extended  by  applications  enabling  the  assignment  of  structural  and 
spectroscopic features to each other and analysis methods. Additionally, a framework for 
the structured deposition and management of large amounts of molecular data in the file 
system  and  in  various  relational  database  systems  was  created.  To  ensure  the  lossless 
encoding of spectroscopic data under preservation of its semantics, an open, standardised 
and highly structured data specification was defined -  CMLSpect.  CMLSpect is extending 
the existing CML (Chemical Markup Language) vocabulary and therewith allows for easy 
handling of connected structural and spectroscopic information.

The set of applications and methods developed in the course of this project was integrated 
into the  Bioclipse platform for bio- and chemoinformatics, providing the user with a high 
quality interface and developers with an easy to extend plug-in architecture. 

I





Zusammenfassung

Informationen  über  Metabolite  und  andere  kleine  organische  Moleküle  sind  von 
entscheidender Bedeutung in vielen verschiedenen Bereichen der Naturwissenschaften. Sie 
spielen z.B. eine entscheidende Rolle in metabolischen Netzwerken und das Wissen über 
ihre Eigenschaften, hilft komplexe biologische Prozesse und komplette biologische Systeme 
zu verstehen. Da in biologischen und chemischen Laboren täglich Daten anfallen, welche 
diese  Moleküle  beschreiben,  existiert  eine  umfassende  Datengrundlage,  die  sich 
kontinuierlich  erweitert.  Um  Wissenschaftlern  die  Verarbeitung,  den  Austausch,  die 
Archivierung  und  die  Suche  innerhalb  dieser  Informationen  unter  Erhaltung  der 
semantischen  Zusammenhänge  zu  ermöglichen,  sind  komplexe  Softwaresysteme  und 
Datenformate nötig. 

Das Ziel dieses Projektes  bestand darin,  Anwendungen und Algorithmen zu entwickeln, 
welche für die effiziente Kodierung, Sammlung, Normalisierung und Analyse molekularer 
Daten genutzt werden können. Diese sollen Wissenschaftler bei der Strukturaufklärung, der 
Dereplikation,  der  Analyse  von  molekularen  Wechselwirkungen  und  bei  der 
Veröffentlichung des so gewonnenen Wissens unterstützen. Da die direkte Beschreibung 
der  Struktur  und der  Funktionsweise einer  unbekannten  Verbindung sehr  schwierig  und 
aufwändig  ist,  wird  dies  hauptsächlich  indirekt,  mit  Hilfe  beschreibender  Eigenschaften 
erreicht. Diese werden dann zur Vorhersage struktureller und funktioneller Charakteristika 
genutzt.

In  diesem  Zusammenhang  wurden  Programmmodule  entwickelt,  welche  sowohl  die 
Visualisierung  von  Struktur-  und  Spektroskopiedaten,  die  gegliederte  Darstellung  und 
Veränderung  von  Metadaten  und  Eigenschaften,  als  auch  den  Import  und  Export  von 
verschiedenen Datenformaten erlauben. Diese wurden durch Methoden erweitert, welche es 
ermöglichen,  die  gewonnenen  Informationen  weitergehend  zu  analysieren  und  Struktur- 
und  Spektroskopiedaten  einander  zuzuweisen.  Außerdem  wurde  ein  System  zur 
strukturierten  Archivierung  und  Verwaltung  großer  Mengen  molekularer  Daten  und 
spektroskopischer  Informationen,  unter  Beibehaltung der  semantischen Zusammenhänge, 
sowohl  im  Dateisystem,  als  auch  in  Datenbanken,  entwickelt.  Um  die  verlustfreie 
Speicherung zu gewährleisten, wurde ein offenes und standardisiertes Datenformat definiert 
(CMLSpect).  Dieses  erweitert  das  existierende  CML (Chemical Markup Language) 
Vokabular  und  erlaubt  damit  die  einfache  Handhabung  von  verknüpften  Struktur-  und 

III



Spektroskopiedaten. 

Die  entwickelten  Anwendungen  wurden  in  das  Bioclipse System  für  Bio-  und 
Chemoinformatik  eingebunden  und  bieten  dem  Nutzer  damit  eine  hochqualitative 
Benutzeroberfläche  und  dem  Entwickler  eine  leicht  zu  erweiternde  modulare 
Programmarchitektur.

IV



Abbreviations

ANDI Analytical Data Interchange
AnIML Analytical Information Markup Language
API Application Programming Interface

ASCII American Standard Code for Information 
Interchange

ASTM American Society for Testing and Materials
AWT Abstract Window Toolkit
BibTeXML BibTeX Markup Language
BioML Biopolymer Markup Language
BSML Bioinformatic Sequence Markup Language
CAS Chemical Abstract Service
CASE Computer Assisted Structure Elucidation
CDK Chemistry Development Kit
CI Chemical Ionisation
CML Chemical Markup Language
COSY Correlation Spectroscopy
DOM Document Object Model
DTD Document Type Definitions
EBI European Bioinformatics Institute
EI Electron Impact Ionisation
ELN Electronic Lab Notebook
EPL Eclipse Public License
ESI Electrospray Ionisation
FAB Fast Atom Bombardment
FAQ Frequently Asked Questions
GUI Graphical User Interface
HMBC Heteronuclear Multiple Bond Coherence
HQL Hibernate Query Language
HSQC Heteronuclear Single Quantum Coherence 
HSQL Hypersonic SQL Database
HTML Hypertext Markup Language
IDE Integrated Development Environment
InChI IUPAC International Chemical Identifier
IR Infrared
IUPAC International Union of Pure and Applied Chemistry
J2EE Java 2 Platform, Enterprise Edition 

JCAMP Joint Committee on Atomic and Molecular Physical 
Data

JDBC Java Database Connectivity
JFC Java Foundation Classes
LAN Local Area Network

V



LGPL GNU Lesser General Public License
LIMS Laboratory Information Management System
MALDI Matrix Assisted Laser Desorption Ionisation
MathML Mathematical Markup Language
MS Mass Spectrometry
NIST National Institute of Standard
NMR Nuclear Magnetic Resonance
NOESY Nuclear Overhauser Enhancement Spectroscopy
OLE Object Linking and Embedding
OS Operating System
OSGI Open Services Gateway Initiative
OSI Open Source Initiative
PCA Principal Component Analysis
PDB Protein Data Bank
PDBML Protein Data Bank Markup Language
PNG Portable Network Graphics
QSAR Quantitative Structure-Activity Relationship 
RCP Rich Client Platform
RDBMS Relational Database Management System
RDF Resource Description Framework

RSS Rich Site Summary, RDF Site Summary or Really 
Simple Syndication

SBML Systems Biology Markup Language
SGML Standard Generalized Markup Language
SMF Service Management Framework
SMILES Simplified Molecular Line Entry Specification
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
STMML Scientific-Technical-Medical Markup Language
SVG Scalable Vector Graphics
SWT Standard Widget Toolkit
TCOSY Total Correlation Spectroscopy
UI User Interface
URI Uniform Resource Identifier
UV Ultraviolet
VM Virtual Machine
W3C World Wide Web Consortium
WAN Wide Area Network
WSDL Web Service Description Language
XHTML Extensible HyperText Markup Language
XLink XML Linking Language
XML Extensible Markup Language
XPath XML Path Language

VI



XPointer XML Pointer
XQuery XML Query Language
XSD XML Schema Definition
XSL Extensible Stylesheet Language
XSL-FO XSL Formatting Objects

VII





Index of Tables

Table 1: Overview of the most important molecular elements contained in the CML core 
definition............................................................................................................................... 92
Table 2: The spectrum specific CML elements.................................................................... 99
Table 3: CML elements commonly occurring in CML encoded spectral data....................103

List of Figures

Data accumulation within the "omics" towards systems biology........................................... 1
Diagram visualising the concept of choke points.................................................................... 2
Diagram of a potential information flow in life sciences........................................................ 4
Schematic model of dereplication process and CASE............................................................ 9
Schematic Illustration of an EI-Mass Spectrometer.............................................................. 15
Schematic diagram of the planned information flow within system to develop................... 24
Schematic RCP diagram....................................................................................................... 29
Eclipse plug-in connection via extension points................................................................... 31
Relation of SWT, JFace and Eclipse Workbench................................................................. 35
The Bioclipse plug-ins.......................................................................................................... 40
The Bioclipse object model.................................................................................................. 42
Connection of the cheminformatics modules........................................................................ 47
The ChemTree view.............................................................................................................. 50
Screenshot of the 2D-Structure view displaying 3 structures in a tabular way..................... 51
Screenshot of the general properties view extended with CDK specific properties..............52
Wizards for the creation of new molecules........................................................................... 53
Illustration showing the embedded JChemPaint editor......................................................... 55
An exemplary extract of the JCAMP-DX meta data dictionary............................................58
Section of a JCAMP-DX encoded peak spectrum. .............................................................. 60
Screenshot of the two pages forming the "new Spectrum" wizard....................................... 62
The peak table view.............................................................................................................. 63
The continuous spectrum view visualising an IR spectrum of dodecyl-benzene.................. 64
The meta-data view............................................................................................................... 65
The peak spectrum view displaying a mass spectrum of pyrrolidine.................................... 65
Diagram showing the schema used for the generation of the meta data editor..................... 66
Screenshot of the dialog for adding meta data entries.......................................................... 67
The "new SpecMolResource" wizard................................................................................... 70
SpecMolResource and its child resources............................................................................. 70
Class diagram illustrating the resource dependencies of the SpecMolResource...................71

IX



The assignment editor........................................................................................................... 72
Concept of object-relational mapping................................................................................... 75
A high level schema of the Hibernate architecture............................................................... 76
Schema displaying how extension-points are used to realise db connection via Hibernate..78
Exemplary Hibernate mapping file....................................................................................... 79
E/R diagram of the chemoinfomatics tables......................................................................... 80
UML diagram of the DB related resources........................................................................... 81
Diagram showing the traditional publishing process............................................................ 84
Diagram of a improved publishing process.......................................................................... 84
The XML family................................................................................................................... 90
CML example section of arginine......................................................................................... 92
The CML components.......................................................................................................... 94
A typical analytical block as found in synthetic organic papers........................................... 98
Depiction showing parts of a NMRShiftDB exported CML file........................................ 100
Example spectra showing different peak shapes and coupling phenomena........................ 102
CMLSpect example encoding for a UV/Vis spectrum........................................................ 117
IR spectrum encoded in CMLSpect.................................................................................... 118
A CMLSpect encoded mass spectrum................................................................................ 119
Exemplary section of the Schematron file defining the NMRShiftDB convention. .......... 120
Exemplary sections of the JCAMP-DX mapping file......................................................... 121

X



Table of Contents

1 Introduction.......................................................................................................................... 1
1.1 Systems Biology and Metabolomics............................................................................ 6
1.2 Computer Assisted Structure Elucidation.................................................................... 9
1.3 Spectroscopy and Spectroscopic Data Formats.......................................................... 12

1.3.1 Spectroscopic Data Formats............................................................................... 17
1.4 Open Data, Open Source, Open Standard.................................................................. 19

1.4.1 Open Source....................................................................................................... 19
1.4.2 Open Standard & Open Data.............................................................................. 20

1.5 Client-Server-Architecture......................................................................................... 21
1.5.1 Thin Clients........................................................................................................ 21
1.5.2 Rich Clients........................................................................................................ 22

2 Aim of the Project.............................................................................................................. 23
3 Eclipse & Eclipse Rich Client Platform............................................................................. 27

3.1 Rich Client Platform.................................................................................................. 28
3.1.1 Component Model.............................................................................................. 30
3.1.2 Workspaces & Resources................................................................................... 32
3.1.3 Workbench & UI Toolkits.................................................................................. 33

3.1.3.1 The Standard Widget Toolkit – SWT......................................................... 33
3.1.3.2 JFace........................................................................................................... 34
3.1.3.3 Workbench................................................................................................. 35
3.1.3.4 Perspectives................................................................................................ 36
3.1.3.5 Editors & Views......................................................................................... 36
3.1.3.6 Wizards...................................................................................................... 37

3.1.4 Platform Integration........................................................................................... 37
3.1.5 Help System....................................................................................................... 38
3.1.6 Eclipse Summary............................................................................................... 38

4 The Bioclipse Framework.................................................................................................. 39
5 Software and Methods Developed..................................................................................... 47

5.1 Structure Handling..................................................................................................... 49
5.1.1 The CDK Plug-in............................................................................................... 49
5.1.2 Embedding JChemPaint..................................................................................... 54

5.2 Spectrum Handling.................................................................................................... 57
5.2.1 The CML Plug-in............................................................................................... 57
5.2.2 The JCAMP-DX Format.................................................................................... 59
5.2.3 General Spectrum Support................................................................................. 61

5.3 Assignment of Spectral and Structural Data.............................................................. 69
5.4 Database Connection.................................................................................................. 73

XI



5.4.1 Database Systems & Object-Relational Mapping.............................................. 74
5.4.1.1 Relational Databases.................................................................................. 74
5.4.1.2 Object-Relational Mapping........................................................................ 75

5.4.2 Implementation of Database Connections.......................................................... 77
6 Semantics and Dictionaries for Metabolomics Data Representation................................. 83

6.1 The Extensible Markup Language (XML)................................................................. 87
6.2 The Chemical Markup Language (CML)................................................................... 92
6.3 The CMLSpect Vocabulary for Spectral Data........................................................... 97

7 Conclusions & Outlook.................................................................................................... 105
8 References........................................................................................................................ 111
9 Appendix ......................................................................................................................... 117

XII



1 Introduction

1 Introduction

Systems  biology  aims  at  achieving  a  system  level  understanding  of  organisms  and 
biological  systems  by  integrating  the  data  and  information  emerging  from  modern 
molecular biology. It uses data generated in e.g. Genomics, Proteomics and Metabolomics, 
to draw a complete picture of a system by analysing the interactions of the components and 
the  resulting  dynamics  (see  Chapter  1.1 for  a  more  detailed  introduction  to  systems 
biology). 

These fields successively use the results of their predecessors to build new more complex 
perceptions with every step (shown in Figure 1). The identification of genomes enables the 
prediction of genes, leading to the possibility to predict their function. By integrating the 
function  of  a  number  of  genes,  it  is  possible  to  create  pathways  and  connect  them to 
metabolic networks. All this data is used in systems biology in an integrative way to model 
whole biological systems.

The most recent of the “omics” fields,  Metabolomics, focusses on the identification and 
quantification  of  an  organisms  metabolites,  enzymes  and  their  interactions.  With  this 
information  large  metabolic  networks  can  be  constructed,  enabling  the  identification  of 
metabolites and enzymes, which are crucial for the survival of an organism (see Chapter 1.1 

1

Figure 1: Diagram displaying the connection of the different “omics” fields and how the data generated 
by them is used by systems biology to understand complete organisms and systems.

gene 
prediction

prediction
of function

construction of 
metabolic networks

integration of available data
to model whole systems



1 Introduction

page 7ff for more information on Metabolomics). 

By abstracting these networks using graph theory, it is possible to determine parts of the 
network with special importance. Rahman et al.  showed, that based on graph theoretical 
calculation of shortest path and connectivity information of metabolites, it  is possible to 
identify  the  importance  of single  compounds.  A “load point”  in  this  model  describes  a 
highly connected hot spot in a metabolic network. “Choke points”, in contrast, are forming 
bottlenecks  within  the  network,  as  they  describe  enzymes,  that  uniquely  consume  or 
produce a certain metabolite [1] (see Figure 2). 

An  inactivation  of  a  “choke  point”  would  result  in  the  regarding  metabolite  not  being 
consumed or produced any more. This is of major interest in drug development, as these 
points present potential drug targets. Additionally, a “choke point” analysis could help to 
identify potential adverse effects of a drug candidate by performing similarity or interaction 
analyses of the determined choke points and the drug candidate under analysis.

As metabolites are small organic molecules and their interactions are based on chemical 
reactions,  chemical  information  is  needed  to  understand  the  single  steps  within  such  a 
network.  For that reason, small molecules and the knowledge about their structure, their 
properties and their interactions are of major importance for reproducing and understanding 
metabolic networks. 

This  importance  of  small  molecules  leads  to  an  increased  demand  for  experimental 

2

Figure 2: This depiction shows a section from a metabolic network represented 
as a graph. The nodes are representing the metabolites, whereas the edges stand 
for the enzymes and the reactions catalysed by them. The central grey coloured 
node (6) is a choke point as well as the adjacent edges. (Image taken from [1]).



1 Introduction

information describing chemical compounds on a structural level. As the type of data used 
in  this  context  (spectra,  reactions,  etc.)  is  generated  on  a  daily  basis  in  biological  and 
chemical laboratories all over the world, one would expect a very solid knowledge base to 
be available to the scientific community. However, there exist several hurdles avoiding that 
this data is being re-used. These hurdles can be divided into three distinct classes:

• Publications: Information in science was traditionally published in printed media. 
Even thought this process changed towards digital publication, the related data is in 
most cases not stored with or linked to the publication, the information is published 
without its semantic and ontological context and the information is very difficult to 
be searched and extracted. 

• Storage: A good deal of the data generated in the daily work of scientists is not 
stored in structured and communally agreed databases at all, or at least not freely 
accessible for machine processing.

• Encoding:  Another  major  issue within scientific  information management  is  the 
encoding of the available data. There are many different, very often proprietary data 
formats used for storing and exchanging data.  This leads to information loss on 
conversion and makes it very difficult to process the encoded data in an automated 
manner by computer software.

A potential information flow for analytical data in life sciences is shown in Figure 3. This 
data is typically processed with the help of machine vendor applications and therefore is 
normally digitally available, but most often not in a format allowing for easy interchange. 
There  is  a  strong  need  for  communally  agreed,  openly  specified  and  standardised  data 
formats,  enabling for  easy processing,  exchange  and extension of  the  data.  This  would 
enable the data to be published and stored in some pool of freely accessible repositories. 

These repositories do not need to be centralised and unified, but probably better form a pool 
of interconnected institutional and governmental storage systems. If data formats are agreed 
upon and scientific  information is  exchanged with its  semantics,  there  is  even software 
imaginable, that would help the scientist in validation and subsequent preparation of this 
data for the publication either in a scientific journal, a web page or anywhere else.

The current publication process of analytical data is erroneous, as the data itself normally is 
just partly published in form of analytical blocks within chemical publications (see Figure
42 for an example). To access this data by software systems, it is at the moment necessary 

3



1 Introduction

to  perform  chemical  archaeology  by  trying  to  recover  as  much  of  the  information  as 
possible. Therefore, an additional software layer for retrieving the relevant data is needed. 
This data might then form the basis for new experiments leading to new perceptions. 

4

Figure 3: Schematic diagram showing a potential information flow within life sciences. Data is processed 
and validated by software systems, the extracted information is prepared for publication, whereas the data 
is being encoded and stored in data repositories. The direct linkage of the deposited data to the published 
information enables for computer based extraction of requested information and data.

A
na

ly
tic

al
 P

oo
l

Repository Pool

R1
R2

R3

R4

R5

Software:
● processing
● validation
● encoding
● deposition

P
ublication

Software:
● reading
● extraction
● retrieval



1 Introduction

Many  of  the  tasks  performed  on  chemical  data  are  depending  on  large  sets  of  data. 
Databases are e.g. used to check if a molecule under examination is already known. If this is 
not the case retrieval of additional information about the molecule or similar ones can be 
helpful in elucidating its structure and learn about its properties. In biology there already 
exists a number of open and freely accessible databases (e.g. Protein Data Bank (PDB) [2], 
Kyoto Encyclopedia of Genes and Genomes (KEGG)  [3],  Universal Protein Resource 
(UniProt) [4]). In chemistry in contrast, even though it has a long history of compiling data 
and storing it in large collections of information, these are in most cases only accessible for 
paying customers. 

Nevertheless,  there  is  a  growing  number  of  approaches  towards  this  ideal  flow  of 
information, as there are more and more repositories being set up and many journals start to 
give authors the possibility to publish their scientific results in an open accessible manner. 
Furthermore, the first publishers start to enhance the traditional publication with data facts 
and semantics in machine processable formats [5].

Within this project, tools, algorithms, applications and data formats were developed, that 
support  scientists  in exchanging, processing, storing and searching molecular data under 
preservation of its semantics. 

The other sections within this chapter give an introductory overview on general concepts 
that  form  the  basis  for  this  work  and  identify  the  necessity  and  demand  this  work  is 
emerging from. The resulting overall  objectives  will  be  explained briefly  in  Chapter  2, 
followed  by  a  presentation  of  the  software  systems  used  as  a  basis  for  the  developed 
methods, algorithms and applications in Chapters 3 and 4. In Chapter 5 these applications, 
algorithms and methods and their underlying concepts, that were used and developed within 
this thesis, are described in detail. The last chapter is giving a condensed recapitulation of 
the results of this work and gives an outlook on future and ongoing projects.

5



1 Introduction

1.1 Systems Biology and Metabolomics

Modern systems biology aims at understanding physiology and disease from the level of 
molecular pathways,  regulatory networks, cells, tissues,  organs and ultimately the whole 
organism. More generally it is described as aiming at the system-level understanding of 
biological systems as a whole [6] [7].

This  is  achieved  by  the  accumulation,  integration  and  analysis  of  complex  data  from 
multiple  experimental  and  theoretical  sources  using  tools  developed  in  highly 
interdisciplinary  environments  [8].  These  environments  are  built  by  scientist  from very 
different  fields  of  natural  sciences  (e.g.  Molecular Biology,  Proteomics,  Genomics, 
Metabolomics,  Informatics,  Physics,  Mathematics,  Biochemistry and  Chemistry), bringing 
in their knowledge and methods. 

This challenging task was enabled by the strong progress in technical methodology and the 
large amount of new data associated with this. Important mile stones to be named here are 
the complete identification of the human genome [9] and the major improvements achieved 
in the field of high-throughput-methods.

In addition to the recently generated data, there is a large magnitude of relevant information 
“hidden”  in  printed  media  like  journal  articles  and  books.  To  make  this  information 
accessible, techniques for information extraction and data mining are used and enhanced 
[10]. Furthermore, the data has to be encoded in standardised, robust and long lasting data 
formats. To ensure as well the high quality as the easy availability of all this data to the 
scientists, it has to be shared in online databases and/or open data repositories [11]. 

Focussing  on the  whole  set  of  components  and  their  interactions  within  a  system is  in 
contrast to the “traditional” way of hypothesis driven science. There, it is common to break 
down a problem into smaller units, to examine these units separately and afterwards try to 
generalise  the  obtained  conclusions  by  recombining  them.  However,  this  procedure  is 
contrary to the general assembly of complex systems. 

A complex system is built by interacting parts, whose interactions lead to new properties 
and  functions.  This  formation  of  emergent  properties  causes  an  irreducibility  of  these 
systems, as they could never be monitored looking at their subunits alone. Complex systems 
are  simulated  on  a  hypothetical  level  by  using  modelling  techniques  from the  field  of 
computer sciences and mathematics. These models allow scientists to accomplish two very 
important tasks [10]:

6



1.1 Systems Biology and Metabolomics

• The prediction of a systems behaviour in reaction to any perturbation

• The redesign of a network to create new emergent system properties

For ensuring the lossless exchange of the so designed models and the related data,  new 
formats are being developed that unify their expression (e.g. the  Systems Biology Markup 
Language (SBML) [12]). 

Thus, the scope of systems biology is ranging from data generation and integration, over 
computer based simulation of networks and systems, to experimental techniques like  in-
vivo  modelling, by introducing perturbations into example organisms on different  levels 
(genetic or environmental) [13]. 

A very large portion of the data used in system biology is derived from experiments within 
the  so  called  “omics”  fields,  e.g.  Genomics,  Transcriptomics,  Proteomics and 
Metabolomics. The tools developed within this work are mostly to be used for data handling 
of  Metabolomics and other chemical data, but do not directly support data emerging from 
the other “omics” fields. Therefore, just  Metabolomics will be described in detail  in the 
following.

Metabolomics is the study of the whole metabolome of a biological system by identification 
and quantification of the contained metabolites and their relationships [14]. A metabolome 
is defined as being the “complement of metabolites of an organism” [15]. Metabolites are 
the intermediates and products of the metabolism, through which cells acquire energy and 
build cellular components. 

Metabolic reactions can be divided into two different types [7]: 

1. Catabolic  reactions: gain  of  energy  by  breaking  down  complex  compounds  to 
smaller units

2. Anabolic  reactions: consumption  of  energy  for  the  construction  of  complex 
compounds

Metabolite  examination is  very commonly used in analytical  biochemistry with a  broad 
variety  of  methods  applied  for  metabolite  identification.  The  currently  most  frequently 
utilised procedures are [14][15]:

• The combination of a separation step (commonly gas or liquid chromatography) 
with mass spectrometry

7



1 Introduction

• Analyses based on Nuclear Magnetic Resonance (NMR) spectroscopy

NMR spectroscopy has the advantage, that it is non destructive and therefore can better be 
used for the continuous measuring of metabolic profiles.

The analytical methods used to study the metabolome typically result in a large amount of 
high-dimensional data sets. For the interpretation of this data multivariate analysis methods 
like Principal Component Analysis (PCA), hierarchical clustering, evolutionary computing 
algorithms and other machine learning approaches are used [16]. 

One very common way of metabolite identification is the comparison of a pattern as unique 
as  possible,  describing  the  studied  substance,  with  an  existing  library  having  reference 
patterns  stored.  This  requires  the  existence  of  comprehensive  and  accessible  data 
repositories with data stored in a standardised format. The qualitatively and sometimes even 
quantitatively determined data resulting from these interpretation steps is then used to infer 
biochemical networks or pathways. Beside the concentration of the molecules, their rates of 
change are of special interest for the modelling of metabolic networks.

Beside the academic interest of drawing a complete map of the constituents of a cell and 
their interactions,  Metabolomics has an impact on a variety of applications, especially in 
medicine [16]. The investigation of the metabolome rises the probability of finding potential 
new drugs and/or new lead structures for drug development. By understanding metabolic 
pathways and networks the chance to intervene and to find ways to possibly increase or 
decrease the production rate of a certain metabolite grows. Metabolic profiles of a cell can 
be used for diagnosis of diseases, differentiation of healthy and diseased cells and can be 
used as quick tests for certain metabolic malfunctions [16][17].

Nobeli  and  Thornton  highlighted  in  this  context  the  importance  of  well  organised  and 
standardised public domain databases for the collection and retrieval of Metabolomics data 
and the development of open source software for data handling and data analysis especially 
in the field of chemoinformatics [16]. 

This is what the Bioclipse framework (see Chapter 4) is aimed at. It is providing supportive 
tools  and  applications  for  the  different  fields  of  systems biology.  The  applications  and 
methods  developed  in  this  work  are  aimed  at  supporting  scientists  in  the  collection, 
administration and analysis  of experimental  data.  The main focus is on data  derived by 
metabolomic research whereas modules developed by other scientists cover the fields of 
proteomics and genomics research.

8



1.2 Computer Assisted Structure Elucidation

1.2 Computer Assisted Structure Elucidation

As scientists in such diverse fields like  biochemistry,  biotechnology,  molecular biology, 
pharmacology  and  chemistry  are  constantly  synthesizing  new  compounds  or  have  the 
necessity  of  identifying newly discovered  substances,  the  characterisation  and structural 
elucidation of these compounds is of major importance. 

Modern experimental techniques are generating data on a much higher rate, than it can be 
interpreted even by experts. Therefore, methods were and still are developed, that make use 
of computers within the process of structure determination. 

In this context, chemoinformatics has long been developing tools for the Computer Assisted  
Structure  Elucidation (CASE)  of  these  unknown compounds.  At  the  moment  this  field 
experiences a renaissance due to increased computer power, decreased memory prices and 
the decreased execution time of wet-lab experiments [18][19]. 

9

Figure 4: Schematic model of a dereplication process with attached Computer 
Assisted Structure Elucidation (CASE) steps.

experimentally 
generated
Spectra

Spectrum 
DB

check if existing

knowledge
&

rules

Set of candidate
 Structures

apply

experimentally 
generated Spectra 

of unknown 
compound

compound 
already known !

not found

fo
un

d

de
riv

e



1 Introduction

CASE systems  are  typically  knowledge  and  rule  based  systems,  which  derive  structure 
information  from  spectroscopic  data  and  use  structure  generators  to  build  all  possible 
isomers in agreement with the spectroscopic data (see Figure 4). Finally, these isomers will 
be verified by e.g. a comparison of predicted spectra with the original experimental data. 
The better the coverage with spectroscopic data, the fewer solution structures are suggested 
by these systems. 

There  exist  mainly  two  different  approaches  to  solve  the  structure  generation  process: 
deterministic  and  stochastic  procedures.  The  deterministic  methods  try  to  generate  all 
feasible  structures,  that  match  the  input  data.  In  contrast,  the  stochastic  methods  use 
algorithms  and  so  called  machine  learning  methods,  that  stochastically  optimise  the 
molecular  structure  towards  agreement  with  given  structural  properties.  Deterministic 
procedures are very often improved by the simulation of experts decisions and therefore are 
normally based on large knowledge bases. Furthermore, there exist hybrid approaches that 
combine these two procedures.

In order to derive rules or train machine learning methods, CASE systems often work on top 
of large databases of spectral data associated with structural features and physico-chemical 
properties  of  the  molecule  [20][21].  These  databases  are  e.g.  used  for  performing  sub-
spectrum and  sub-structure  searches  to  find  good starting  structures  for  the  elucidation 
process.  On  the  next  level  of  this  process,  known  correlations  between  spectra  and 
structures are used to predict structural and/or spectral properties of compounds, that are not 
part of the database [22]. The last step in this process is the generation of fitting structures 
and the ranking of the so gained datasets [23][24][20].

Especially the different types of  Nuclear Magnetic Resonance (NMR) spectroscopy (e.g. 
13C-NMR and the two dimensional techniques) are used for describing the properties of a 
structure in this context, but information from mass spectrometry and infrared spectroscopy 
is used as well.

There  exist  different  software  systems,  that  focus  on  sub-sets  of  these  experimentally 
generated data, but there is an evolution visible towards methods combining all information 
available for a target [25].

Another very important step in the process of structure determination is the prediction of 
different spectra for probable target structures and the comparison of this artificial data with 
the existing experimental data [26] [27]. This is also used for the quality assurance of data 
to be included into existing spectroscopic database systems. By comparing the predicted 

10



1.2 Computer Assisted Structure Elucidation

and the measured spectrum it  is possible to mark patterns as possibly erroneous if they 
diverge to much. 

To avoid unnecessary timely and exhaustive ab initio structure elucidation, a pre- screening 
called  dereplication  is  performed  to  exclude  the  possibility,  that  the  compound  under 
examination is  already known (see  Figure  39).  This  can  be accomplished by executing 
spectral similarity searches on in-house or public structure-spectrum databases. Only if this 
search is unsuccessful, it is reasonable to reach for one of the more sophisticated ab initio 
tools for computer assisted structure elucidation [21].

11



1 Introduction

1.3 Spectroscopy and Spectroscopic Data Formats

Methods summarised under the term “spectroscopy” are of major importance in applied 
chemistry,  molecular  biology,  metabolic  research  and  especially  within  the  process  of 
Computer Assisted Structure Elucidation (CASE).

Spectroscopy  is  a  group  of  experimental  procedures  used  to  analyse  the  absorption  or 
emission of energy of a studied substance in form of photons or electromagnetic waves. The 
energy difference of two quantum-mechanical states thereby is equivalent to the energy of a 
photon or respectively the frequency of an electromagnetic wave. This relationship is shown 
in the fundamental equation of spectroscopy:

E=h⋅v

E=the energy difference
h=the Planck constant
v=the frequency

 (1)

The usual  representation of spectroscopic data  is  the spectrum, a graphical  display of a 
dimension proportional to the energy against the intensity.

As  the  difference  in  energy  is  dependent  on  the  chemical  composition  of  a  substance, 
respectively the structure of a molecule, spectroscopic measurements are used by scientists 
to reveal information about quality and/or quantity of a certain assay.

Generally, the field of spectroscopy can be divided into three main types regarding their 
measuring process:

• Absorption  Spectroscopy: the  amount  of  light  of  a  particular  wavelength  is 
measured,  that  is  absorbed  by  a  sample.  (e.g.  IR Spectroscopy,  UV/VIS 
Spectroscopy)

• Emission  Spectroscopy: the  photon  emission  of  a  sample  is  measured.  (e.g. 
Fluorescence Spectroscopy) 

• Scattering Spectroscopy: measurement of the amount of light being scattered by a 
substance at certain wavelengths. (e.g. Raman Spectroscopy)

Chemistry uses spectroscopic methods to create fingerprints of molecules and to understand 
the  chemical  structure  of  a  molecule  and  its  properties.  As  some  of  the  methods  are 

12



1.3 Spectroscopy and Spectroscopic Data Formats

realisable  in  an automatic  and semi-automatic  way,  they can be used in  so  called high 
throughput assays as well. 

The most commonly used methods in this context are infrared (IR) and Nuclear Magnetic  
Resonance (NMR) spectroscopy and will be explained in the following in more detail.

As the name already reveals,  infrared spectroscopy uses light in the infrared part of the 
electromagnetic spectrum.  The part with greatest interest for organic chemistry is the one 
between 4000 – 500 cm-1.

Molecules are no static constructs, but their atoms are constantly oscillating around average 
positions.  This  vibration  leads  to  continuous  changes  in  bond  length  and  angles.  If  a 
molecule is exposed to infrared radiation, energy gets absorbed and the vibrational state of 
certain  bonds  changes.  There  are  three  types  of  molecular  vibration,  that  lead  to  the 
different types of motion within a molecule:

• Stretching = change in the bond length

• Bending = change in the bond angle

• Torsion = for four atoms bonded together in a straight chain, the torsional angle is 
the angle between the plane formed by the first three atoms and the plane formed by 
the last three atoms.

The first two are of relevance for IR spectroscopy. Each of these two has several variations. 
Both can show symmetrical movements, meaning that two atoms show the same directed 
movement, or asymmetric, if the atoms move antipodal. Additionally, the bending can lead 
to a movement within or outside the plane of that molecule.

Thus, different substructures of a molecule can be determined by their characteristic pattern 
of  changes  in  absorbed  energy  in  dependency  to  certain  frequencies.  Therefore,  IR 
spectroscopy is in chemistry often used for the identification of functional groups. As the 
whole procedure depends on molecular asymmetry it just works with asymmetric molecules 
or symmetric molecules showing asymmetric stretching or bending transitions [28].

In  contrast, Nuclear Magnetic Resonance (NMR)  spectroscopy  is  based  on  the  spin  of 
atomic nuclei and the interaction of these nuclei with their surrounding. Namely it is about 
the interaction of nuclei with each other, with magnetic fields, with the electron sheath of 
the atom and the electrons of the whole molecule.

By the information received from stimulating these nuclei with radio-frequency radiation it 

13



1 Introduction

is  possible  to  very  accurately  determine  where  certain  atoms  (primarily  carbons  and 
hydrogen's) are located within the molecule [28].

One dimensional NMR spectroscopy is used routinely by chemists for the determination of 
chemical structures (often in union with  IR spectroscopy and mass spectrometry), for the 
detection of ingredients of a sample and for the examination of the interaction of molecules. 

There  exist  several  types  of  two  dimensional  NMR techniques  as  well.  These  include 
Correlation Spectroscopy (COSY),  Total Correlation Spectroscopy (TOCSY),  Nuclear 
Overhauser Enhancement Spectroscopy (NOESY),  Heteronuclear Single Quantum 
Coherence experiments (HSQC) and Heteronuclear Multiple Bond Coherence experiments 
(HMBC). 2D-NMR allows to visualise the couplings between different nuclei. This includes 
indirect spin-spin-couplings (via bonds) as well as direct spin-spin-couplings through space.

These techniques reveal more information about the studied molecule than one-dimensional 
experiments,  as they provide information about the nature of the carbon backbone  [28]. 
They are especially valuable to study molecules, that are of too complex structure to be 
easily and unambiguously determined with standard procedures.

Another  technique,  that  is  quite  often  being  correlated  with  spectroscopy,  is  mass 
spectrometry. As the name already implies, this actually is no spectroscopic method, but 
used for similar analytical purposes.

In mass spectrometry organic or inorganic samples are first ionised, then separated by the 
mass to charge ratio of the created ions. Finally, they are registered by mass and abundance 
qualitatively and quantitatively.  Samples  can be ionised by different  types of ionisation 
methods. The following list shows the most widely used methods:

• Electron Impact Ionisation (EI): By collision with electrons energy is transferred to 
the molecule. This leads to the creation of primary positively charged ions. 

Me- M +.2 e -  (2)

Occasionally, a two times positive charged molecular ion is resulting as well. These 
ions are quite unstable and therefore very often break down into smaller fragments. 
This fragmentation process is substance specific and reproducible.

• Chemical Ionisation (CI): An introduced gas is been ionised by EI. The generated 
ions react with the substance to be analysed and ionise it. The fragmentation rate is 

14



1.3 Spectroscopy and Spectroscopic Data Formats

smaller than with EI.

• Fast Atom Bombardment (FAB): The analyte is bombarded with a particle beam of 
usually an inert gas like argon or xenon.

• Electrospray  Ionisation  (ESI):  Chemical  solutions  of  the  analyte  are  atomised, 
ionised and the droplets then dried, so that just the ions of the analyte remain. This 
method is especially well suited for bigger molecules like e.g. proteins.

• Matrix Assisted Laser Desorption Ionisation (MALDI): For this method, the analyte 
is been fixated to a matrix and then co-crystallised. By bombardment of this crystal 
with a laser, particles are detached and ionised. This method is as well very suitable 
for the ionisation of larger molecules and often used for the ionisation of polymers 
and biopolymers.

A typical mass spectrometer consists of three different parts: an ion source, a mass analyser 
and a detector system. These components will be explained in further detail in the following 
using  an  EI-Magnetic  Sector  Spectrometer  as  example.  Figure  5 shows  a  schematic 
depiction of such a system.

15

Figure 5: Schematic illustration of an EI-Mass Spectrometer. (image taken from Wikipedia - 
http://en.wikipedia.org/wiki/Image:Mass_spectrom.gif)



1 Introduction

The  analyte  is  introduced  into  the  system,  ionized  by  collision  with  electrons  and 
accelerated into the mass analyser component of the device. The velocity of the ions is 
defined by:

v= 2⋅z⋅U
m

m=ionic mass
z=ionic charge
v=velocity of the ions
U=acceleration voltage

 (3)

Within the mass analyser the actual separation of the ionised fragments by their mass to 
charge ratio takes place. The ions go through a bent electric field and are deflected from 
their normal way of flight by this. The deflection radius is defined as follows:

r m=
m⋅v
z⋅B

B=magnetising force

 (4)

By combining the two equations we get the fundamental mass spectroscopic equation: 

m
z
=

rm
2⋅B2

2⋅U
 (5)

Just if the ions are deflected on the right trajectory, they reach to the final component of the 
spectrometer, the detector. If not, they end upon the walls of the field block. In this system 
different masses can be separated and detected by varying the field strength of the magnetic 
field applied within the analyser part. 

In comparison to the spectroscopic methods explained before, in Mass Spectrometry (MS) 
the mass to charge ratio instead of the energy is plotted against the intensity to create the 
final spectrum. There exist a series of different processes to perform the separation of the 
ions in the analyser part as well as different types of detecting components. Additionally, in 
modern  devices  there  is  very  often  an  amplification  step  included  for  enhancing  the 
resolution of the system before the detection .

16



1.3 Spectroscopy and Spectroscopic Data Formats

In chemistry mass spectrometry is used for the identification of unknown structures, the 
definition of the molecular formula of an analyte,  the quantification of a substance in a 
sample and for the determination of other physical,  chemical  or biological  properties of 
compounds.

For very complex samples it is helpful to add a prior separation process before introducing 
them into the mass spectrometer. Therefore, MS is very often combined with gas- or liquid-
chromatographic  methods  where  the  different  ingredients  of  a  mixture  of  probes  are 
separated. These are very commonly used methods in protein and metabolite determination.

In all the mentioned spectroscopic and spectrometric procedures the use of automatic or 
semi-automatic methods for the data interpretation and data analysis is of growing 
importance, as they enhance quality and velocity of these steps [28].

1.3.1 Spectroscopic Data Formats

One  of  the  basic  requirements  for  a  computer  based  analysis  and/or  interpretation  of 
collected spectral information is its availability in a standardised machine readable format. 
Given this,  informatics  methods can be used for  storing data  in a  structured manner  in 
databases and to perform fast searches for substances and/or spectra against these databases. 
Additionally, they can be used for combing data gained by different methods or received 
from different databases to automatically or semi-automatically elucidate the structure of an 
unknown compound or to just validate a discovered substance.

There exist a variety of proprietary data formats used mostly by instrument vendors for the 
storage of spectral data measured with their systems. These formats cannot, or just in a 
limited way, be used for the exchange and long term archival of spectroscopic data. The 
reasons for this are difficulties in combining data from different systems, accessing the data 
with other software than the one it was recorded with and ensuring the readability of the 
data for the future. Therefore, there exist a number of open and standardised data formats, 
that try to overcome these problems. The following listing gives an overview on the data 
formats of most impact on the field of spectroscopy:

• JCAMP-DX: an  open-source  standardised  file  format  for  spectroscopic  data 
developed  and  maintained  by  the  International  Union  of  Pure  and  Applied  
Chemistry (IUPAC). (see Chapter 5.2.2)

17



1 Introduction

• The Analytical  Information Markup Language  (AnIML): AnIML is  a  web-aware 
mechanism  for  the  instrument-to-instrument,  application-to-application  and 
instrument-to-application data exchange being developed by the  ASTM (American 
Society for Testing and Materials) subcommittee E13.15. It is partly based on the 
SpectroML Language (NIST – National Institute of Standard) and the Generalized 
Markup Language (Thermo Electron). Additionally, it makes heavy use from older 
exchange formats like JCAMP-DX and ANDI. AnIML is using a layered approach to 
encode any type of analytical data [29].

• The  Analytical  Data  Interchange  (ANDI)  format: ANDI is  a  standardised  data 
interchange format mainly for mass spectrometry and chromatography developed 
by the Analytical Instrumentation Association. It tries to maintain the GLP (Good 
Laboratory  Practice)  and  GMP (Good Medicinal  Practice)  integrity  of  the  data 
[30].

• Galactic SPC: The file format used by all  Galactic respectively  Thermo Galactic 
products as exchange and storage format. Beginning with its invention this format 
was published in Galactic's documentation and via other public domain sources, a 
rare practice of OEM suppliers of instrument software. The format was designed to 
meet the needs of a user who wants to view, process and print the data outside the 
instrument vendor's software, but is not that well suited for data archival [31].

Another open, highly structured and machine processable data format was developed within 
this thesis in cooperation with the group of Dr. Murray Rust from the Unilever Centre for 
Molecular Informatics, Cambridge, UK. This is extending the Chemical Markup Language 
(see  Chapter  6.2)  by  a  vocabulary  for  spectral  information  named  CMLSpect and  is 
described in detail in Chapter 6.3.

18



1.4 Open Data, Open Source, Open Standard

1.4 Open Data, Open Source, Open Standard

As all software produced, all data generated and the formats defined within this thesis are 
made available in an open manner. The idea of open source, open data and open standard 
will shortly be explained in the following sections. 

1.4.1 Open Source

Regarding the  Open Source Initiative (OSI) open source software has to fulfil at least the 
following rules [32]:

• Its source code is either included, or is freely available

• The software can freely be copied, redistributed and used

• It can arbitrarily be modified

• The license has to be redistributed with the software and/or any derived software

The  OSI is  maintaining  a  list  of  licenses  approved  to  fulfil  this  definition  at 
http://opensource.org/licenses/. 

Historically, in the beginning of software development all software was open. At that time 
software was normally distributed directly with the hardware and freely exchanged in user 
forums.  In  the  1980s  the  commercialisation  of  software  started  and  the  first  open 
source/free software movements  were born.  In 1985 the  Free Software Foundation was 
founded by  Richard  Stallmann supporting the  free  software  movement.  1998 the  Open 
Source  Movement was  floated  establishing  the  Open  Source  Initiative and  giving  the 
already explained definition of open source software. 

Eric S.  Raymond, one of the co-founders of the  OSI,  summarised his view on software 
development and the advantages of open source software in an essay titled “The Cathedral 
and the Bazaar” first presented in 1997. This essay makes the case, that “given enough 
eyeballs, all bugs are shallow" –  if the program sources are available for public testing, 
bugs will be discovered early [33].

In  this  essay  Raymond  opposes  two  software  development  models  to  each  other.  The 
“Cathedral” model, which is the typical model of proprietary software development, but of 
some  open  source  projects  as  well,  and  the  “Bazaar”  like  model  adopted  by  e.g.  the 

19



1 Introduction

probably most known open source example -  Linux. In this illustration the “Cathedral” is 
synonymous  with  the  centralisation,  slow  release  tempo,  and  vertical  management  of 
traditional software development, whereas “Bazaar” stands for code being developed in a 
collaborative approach, with many releases and a democratic management based on free 
accessibility of program and sources.

The ideas behind open source are very similar to the fundamentals of science.  Both are 
based  on  producing,  sharing,  validating  and,  with  the  help  of  this  process,  improving 
information. This is manifested in the ongoing open access discussion leading to more and 
more  freely  accessible  scientific  publications  and  data  [34].  Since  scientific  software  is 
nothing else than a product resulting from scientific work, this discussion is inflicting the 
development of scientific software as well. 

More  and  more  scientific  software  projects  evolve,  that  are  based  on  open  source 
development cycles. There were non-profit organisations, like the Blue Obelisk Movement 
[35] and  the  OpenScience Project [36],  founded  to  support  the  development  of  freely 
available  scientific  software and to optimize interoperability between different  scientific 
open source projects. 

1.4.2 Open Standard & Open Data

To ensure long term access to data, two different requirements have to be fulfilled. First of 
all the accessibility of the data must be ensured. Much data at the moment, especially in 
chemical  science, is stored in proprietary data repositories of commercial enterprises.  In 
contrast to this, the term open data describes data, that is and will be, freely accessible for 
anyone.  With the  growing acceptance  of  open access  more  and more  organisations  are 
starting to set up their own data repositories, many of which store data in a way compliant 
to the open data ideas. This ensures the long term access to the data files themselves. 

To furthermore make sure, that the information stored within these data files is assured as 
well,  the data should be stored using openly standardised formats.  An open format is a 
technical specification for digital encoding of specific data, usually maintained by a non-
profit organisation, that is free of legal restriction on its usage. An example of an open 
format based data specification is the Chemical Markup Language (see Chapter 6.2).

20



1.5 Client-Server-Architecture

1.5 Client-Server-Architecture

The  client-server  architecture  is  a  basic  concept  of  cooperative  information  processing 
where tasks are shared between programs on connected computers. The servers in such a 
system are  offering some type of  service,  whereas  the clients  request  these  services  on 
demand.  The communication between servers  and clients  is  normally transaction based, 
which means, that a client generates transactions (a sequence of logically connected actions) 
to be passed to the server for processing. Client and server might be connected within an 
application, via a local area network (LAN) or via a wide area network (WAN). It is not 
necessarily the case, that the computing power of the serving computer is exceeding that of 
the client; any combination of computing sources is imaginable and implementable. The 
main idea of the Client-Server-Architecture is the optimal use of the existing resources of 
all  included  systems.  There  are  at  the  moment  two  major  types  of  Client-Server-
Architectures in use – Thin Clients and Rich Clients [37].

1.5.1 Thin Clients

A Thin Client is an application, that receives as much information from a connected server 
as possible, whereas the client is just responsible for the presentation of this data. In most 
cases the client as well handles the interaction with the user via any type of interface for 
creating  the  respective  transactions  to  be  submitted  to  the  serving  system.  The  server 
provides  all  the  logic  and  computing  power  needed  for  processing  the  data  and  the 
generation of results. Thin Clients are widely used for browser based data handling, as the 
server  can be  written and  compiled  in  any programming language,  e.g.  a  Java internet 
server using J2EE (Java 2 Platform, Enterprise Edition). The data transfer in these systems 
is realized via an existing intra- or the internet using HTML (Hypertext Markup Language) 
pages. A locally installed web browser is used for the presentation of the information and 
the interaction of users with the dialogue- and input elements. The advantages of a  Thin 
Client architecture are:

• Easy to implement user interfaces

• The client side is normally completely platform independent

• The user can access information with the help of his/her favourite web browser → 
less training expenses 

21



1 Introduction

• easy or no installation on client side necessary

However, because  HTML pages are static and there are just a limited number of dialogue 
elements  available,  it  is  difficult  to  produce  high  quality  user  friendly  Thin Client 
applications. Therefore, often a lot of other techniques than HTML are embedded into the 
web pages as well. This leads to a lot of new advantages and drawbacks, but most often 
causes a platform dependency and less simple interfaces, which additionally are new to the 
user as well. Another disadvantage is, that without network connection the whole system is 
not capable to work at all, because of lack of server accessibility. Last but not least, the 
bandwidth of the network connection limits the data transfer between client and server, and 
as the client is heavily depending on data being provided by the server, this can, especially 
for computationally demanding tasks, form a bottle neck in an application.

1.5.2 Rich Clients

The Rich Client is a variation of the Fat Client, that in turn is the complete opposite of a 
Thin Client. The data processing is solely done within the client application, including the 
algorithmic logic as well as the  Graphical User Interface (GUI). The  Rich Client can be 
seen as a derivative of the Fat Client providing “richer” user experience and solutions by 
being lighter weight and based on a component model. Mostly it is a framework, which is 
extendable via modules or plug-ins. Another major difference to the classical Fat Client is 
that  it  is  easier  distributable  and  update-/upgradeable.  The  Rich  Client is  normally 
characterised by a local data handling, synchronisation of local data with a remote server, 
rich supply with GUI elements and seamless integration into the working environment. So a 
Rich Client provides what you expect of a “normal” desktop application extended with a 
connection to one or multiple servers. The Rich Client technology represents a combination 
of  the  strengths  of  Fat  Client and  Thin  Client technology:  rich  user  experience,  high 
scalability, platform independence and fairly easy deploy and update. One example of a 
“state of the art” Rich Client framework is the Eclipse Rich Client Platform.

22



2 Aim of the Project

2 Aim of the Project

There are large amounts of highly interconnected data generated in systems biology and 
Metabolomics laboratories every day. Access to this data is very valuable if not necessary in 
the further process of data generation and evaluation. This and the other facts mentioned in 
the last chapter lead to a strong need for freely available software systems, that support 
scientists in:

• Encoding  the  data  in  specified,  highly  structured  and  communally  agreed  data 
formats

• Processing data in preparation for publication under conservation of semantics

• Searching  for  distinct  facts  in  the  multiplicity  of  available  and  upcoming  data 
sources

• The  exchange  of  data  between  colleagues  and  the  storage  of  the  data  in  freely 
accessible data repositories

This project is aimed at the implementation of tools, algorithms and applications helping 
scientists  in  exactly  these  processes  as  well  as  the  definition  of  necessary  encoding 
standards for the data. The applications are intended to be used by experimental scientists 
for  efficient  collection,  normalisation  and  analysis  of  data  recorded  in  biological  and 
chemical laboratories with the aim of being helpful, e.g. within the process of dereplication 
and structure elucidation. 

Because  most  ab  initio structure  elucidation  methods  are  based  on  the  combination  of 
spectroscopic with structural data, the tools to be developed are related to the manipulation 
of this data. The methods will enable the user to visualize, manipulate and analyse structural 
and spectral  data and assign structural,  chemical,  physical,  biological  and other relevant 
information to the spectral  data. Furthermore, the management of large amounts of data 
either within the file system, an integrated database management system or remote storage 
systems accessed via web-services is to be implemented.

A schematic depiction of the information flow planned to form the basis of the project is 
shown in Figure 6. The underlying idea is to combine structural information with analytical 
and other relevant data, normalise this data to a open, standardised and machine processable 
format (in this particular case the  Chemical Markup Language) and provide an effective 
storage system to persist and re-access the data.

23



2 Aim of the Project

The decision to integrate the results of this work into the Bioclipse framework for bio- and 
chemoinformatics is based on the following facts (see Chapter  4 for more information on 
Bioclipse):

• Bioclipse is  released  under  an  open  source  license  compatible  to  the  existing 
licenses of our other projects.

• A mature and well designed code basis in the Eclipse project (see Chapter 3)

• An easy to adopt extension scheme

• The modular architecture of Bioclipse allows to extend the application without the 
need to apply major changes to the core of Bioclipse or Eclipse.

• Bioclipse is written in Java and therefore an easy integration of the already existing 
code is warranted.

All this leads to the anticipation of a broad acceptance on user as well as on developer side.

24

Figure 6: Schematic diagram of the planned information flow within the tools and applications to be 
developed in the course of this project.

Relevant biological, 
physico-chemical and
other reference data

NMR MS IR

Molecular information storage system

Enhanced data

Structural information

Normalisation to open format (CML – 
Chemical Markup Language)



2 Aim of the Project

The outcome of this projects endeavours will be released under the terms of open source 
licences  for  different  reasons.  Beside  the  opinion  that  research  funded  by  public 
organisations  should  be  available  to  the  public  for  free,  the  advantages  of  developing 
software as open source especially in an scientific environment should be mentioned. In my 
opinion this is one of the most productive ways of creating high quality software especially 
in an academic surrounding, as open source generally emphasizes quality and simplicity. 
This improves the project's chances to last for a longer period, even if they are not further 
maintained by their primary inventors.

25





3 Eclipse & Eclipse Rich Client Platform

3 Eclipse & Eclipse Rich Client Platform

Eclipse is an open source, independent platform managed by the Eclipse Foundation. It is 
described as “... A kind of universal tool platform — an open extensible IDE for anything 
and nothing in particular” [38]. 

Up to version 2.1 Eclipse was used as an Integrated Development Environment (IDE) only. 
Even  for  these  early  versions,  the  possibility  to  function  as  a  basis  for  rich-client-
applications  as  well,  was  considered.  However,  due  to  the  fact  that  many  Eclipse 
components were very strongly interwoven with the  Eclipse Workspace and other  Eclipse 
core components, this was impossible to realise at that point of time.

With the release of version 3.0 these problems were solved by a complete reorganisation of 
the platform resulting in an independent Eclipse core which forms the basis for any Eclipse 
based Rich Client Platform (RCP) application. The Eclipse IDE is in nowadays just another, 
but  specific  rich  client  application,  build  by the  Eclipse  RCP core  extended by several 
different plug-ins [39] (see Figure 7). 

Since version 3.1 the  Eclipse core is formed by a  OSGi Server, whereas the plug-ins are 
OSGi bundles. The Open Service Gateway Initiative (OSGi) is a worldwide consortium of 
technology innovators, that advances a proven and mature process to assure interoperability 
of applications and services based on its component integration platform. 

The OSGi specifications define an in-virtual-machine Service Oriented Architecture (SOA) 
for networked systems. An  OSGi Service Platform provides a standardized,  component-
oriented  computing  environment  for  cooperating  networked  services.  This  architecture 
significantly  reduces  the  overall  complexity  of  building,  maintaining  and  deploying 
applications. 

OSGi conform services can be executed on  OSGi compliant  servers  like the  IBM SMF 
(Service Management Framework) Server and Suns Microsystems' Java Embedded Server. 
Java applications are deployed to such a server as so called  Bundles.  One of the major 
advantages of using the OSGi Service Platform is that it provides functions to change the 
composition of the whole application dynamically at runtime [40][41]. 

27



3 Eclipse & Eclipse Rich Client Platform

3.1 Rich Client Platform

Most of the built-in functionality of the  Eclipse platform is very generic. Therefore, it is 
necessary to extend the platform with additional tools, so that it can handle new content 
types, use existing content types in a different way and focus the generic functionality on 
specific requirements

The  Eclipse platform provides developers with an elegant plug-in architecture,  a native-
looking user interface, and an easy-to-use help system. By utilizing a common framework 
for developing client-side applications, developers can focus their energies on addressing 
the specific requirements of their application instead of wasting time reinventing a set of 
core components. 

The minimal set of plug-ins needed to build a rich client application is collectively known 
as Eclipse Rich Client Platform (RCP) [42]. The RCP is built upon the generic workbench 
including the Standard Widget Toolkit (SWT – see also Chapter 3.1.3.1), the JFace (see also 
Chapter  3.1.3.2) user-interface  widgets  and  the  OSGi runtime  environment.  These 
components  provide  developers  a  platform-independent  API (Application  Programming 
Interface),  that  is  tightly  integrated  with  the  operating  system's  native  windowing 
environment.  In  addition,  it  overcomes  many  of  the  implementation  trade-off's  that 
developers face when using the Java Abstract Window Toolkit (AWT) or Java Foundation 
Classes (JFC) [43]. 

The RCP is characterized by good interoperability with other technologies, being scalable 
from  desktop  computers  to  embedded  devices,  having  a  wide  cross  platform  support 
including Windows, Linux and Mac OS and providing a high quality end user experience.

28



3.1 Rich Client Platform

The dependencies of the components forming the core of the Rich Client Platform and their 
connection to some optional components, which are very often used for building RCP based 
applications is displayed in Figure 7. The core itself is formed by the following elements:

• Standard Widget Toolkit (SWT): Provides developers a platform-independent API that 
is tightly integrated with the operating system’s native windowing environment.

• JFace Toolkit: Platform-independent user interface API that extends and interoperates 
with SWT, includes a variety of components and utility classes.

• Eclipse/OSGi  Runtime:  Provides  the  foundation  for  plug-ins,  extension  points  and 
extensions.

• Generic  Workbench: Multi-window  environment  for  managing  views,  editors, 
perspectives, actions, wizards, preference pages, etc.

The  Eclipse Platform supports  a  variety  of  tools  for  application  development,  is  not 
restricting the set of tool providers in any way and is supporting tools for the manipulation 
of arbitrary content types [44]. 

Regarding  [44] “the  Eclipse Platform's principal  role  is  to  provide  tool  providers  with 
mechanisms to  use,  and  rules  to  follow, that  lead  to  seamlessly-integrated  tools.  These 
mechanisms  are  exposed  via  well-defined  API interfaces,  classes,  and  methods.  The 

29

Figure 7: Schematic diagram of the components forming the Eclipse IDE as an example 
for any Rich Client Platform application. The grey parts are these components forming 
the core RCP.

Runtime (OSGi)

SWT

JFace

UI (Generic Workbench)

Resources

Help Update Text IDE



3 Eclipse & Eclipse Rich Client Platform

platform also provides useful building blocks and frameworks that facilitate developing new 
tools.”

3.1.1 Component Model

A software component is defined as a software entity providing a well defined function that 
can interact with other components via standardised interfaces to form a running program. 
Components  are  encapsulations  of  functionality  and/or  information  that  compose  an 
independent unit of deployment and versioning [45].

Eclipse is based on the  OSGi component framework,  and therewith is implementing the 
defined component model as well. Indeed, the  Eclipse Platform is composed by a server 
part (the  OSGi Server) extended by a variable number of different  OSGi Bundles, called 
plug-ins in the Eclipse environment. This component model is completely dynamic, so that 
any plug-in can be remotely installed, started, stopped, updated and uninstalled. A plug-in is 
the smallest and most essential unit within any Eclipse RCP application. 

The interaction of the subunits in Eclipse is realised via extension points and extensions. An 
extension point is a mechanism whereby a new plug-in adds functionality to an existing 
plug-in or accesses the functionality of an existing plug-in using a defined extension. 

Accordingly, every plug-in to plug-in interaction is defined by a pair of extension point (on 
the side of the plug-in being extended) and extension (on the side of the extending plug-in). 
The plug-in providing the extension point does not know anything about the extension. This 
leads  to  a  strong  encapsulation  of  functionality,  which  is  of  major  help  especially  for 
implementing complex applications. A dynamic extension of objects in a plug-in is possible 
via adaptable interfaces  [44]. A schematic depiction clarifying the plug-in interaction via 
extension points and extensions is shown in Figure 8.

30



3.1 Rich Client Platform

On starting a  RCP application the  Eclipse Platform Runtime discovers which plug-ins are 
available and creates the plug-in registry - a listing of all registered plug-ins. This plug-in 
registry is a tree structure keyed by the plug-in identifier. 

Although  the  platform  registers  all  plug-ins,  they  are  not  loaded  until  first  usage,  a 
mechanism called lazy loading. This prevents the program from storing all plug-in related 
information in memory during runtime,  which is  especially  useful for  RCP applications 

consisting of many plug-ins. 

At start up, only the initially required subset of plug-ins will be loaded. This reduces the 
amount  of  time  and  memory  required  for  starting  the  application.  One  of  the  major 
advantages of the extension point concept is, that not even for collecting information from a 
plug-in via a declared extension point it is necessary to activate/load the whole plug-in [46]. 

Each plug-in in a RCP program declares its dependencies to other plug-ins and controls the 
visibility  of  its  classes  and  libraries.  The  quality  of  the  user  experience  depends 
significantly on how well  the single tools integrate  with the platform and how well  the 
various tools interact. 

31

Figure 8: General schema showing the extension point - extension concept. 
The Eclipse Rich Client Platform can be extended by additional plug-ins via 
the provided extension points. Any plug-in itself can define new extension-
points as well, that can themselves then be extended by other plug-ins.

RCP - Platform
Extension Point

Extension

Plug-in

Plug-in



3 Eclipse & Eclipse Rich Client Platform

Under  normal  circumstances  a  plug-in  just  has  access  to  its  internal  classes  and  those 
imported from dependent plug-ins. Nevertheless, sometimes circular dependencies or other 
dependency  problems  avoid  the  direct  accessibility  of  plug-ins.  In  this  case  the  buddy 
concept,  an  extension  to  the  general  Eclipse class  loading  policy,  can  be  used.  By 
registering a component as a buddy to another one, it exposes itself to it and so enables the 
access to needed classes without explicitly importing them.

Beside  the  already  mentioned  lazy  loading  of  components,  the  composition  of  RCP 
applications as a collection of separate plug-ins, which communicate to each other via the 
extension  point  mechanism,  has  several  advantages.  By  enabling  the  individual 
upgradability of separate plug-ins, the amount of time and resources needed for updating 
the software is being decreased. By forming small units of functionality it is easy to reuse 
these in multiple contexts. Distributed development by a large developer community is a lot 
easier to organise,  if every developer is  responsible for a certain subset  of components. 
Finally, the partitioning leads to a better overall design of the software project. 

The distributable RCP application itself is created by assembling the various components to 
a coherent whole. This is realised via the product configuration, where, beside defining the 
plug-ins this  product  depends on, also the branding information (splash screen,  window 
icons, about image and text, etc.) is provided [44].

3.1.2 Workspaces & Resources

The  central  place  in  Eclipse,  where  user  data  is  managed  is  called  workspace.  This 
workspace  consists  of  one  or  multiple  top-level  projects  that  map  to  a  user-specified 
directory somewhere in the local file system. A project is a container for any number of 
folders and files. All objects within a workspace are called resources. The resources plug-in 
provides  APIs for  creating,  navigating  and  manipulating  these  resources  within  a 
workspace. 

Via the project's nature mechanism it is possible for a tool or plug-in to tag a project as a 
special project type, implying that the resources within this project are of a certain nature. 
For  example,  the  Java nature  marks  a  project  containing  the  source  code  for  a  Java 
program. Plug-ins have the possibility to define new project natures and provide the code 
for the project configuration. 

The workspace minimises the chance to accidentally loose information by keeping track of 

32



3.1 Rich Client Platform

manipulations  on  resources  within  a  low-level  workspace  history.  Management  of  this 
history can be controlled by the user via preference settings. 

There  is  also  a  marker  mechanism implemented,  that  gives  the  possibility  to  supply  a 
resource  with  annotations  in  form  of  meta  data  (e.g.  to-do  items,  bookmarks,  fix-me 
markings, etc.). Again this mechanism can be used and extended by extending plug-ins for 
storing individually defined types of markers. 

Finally, there is a resource listener model implemented for keeping track of changes on 
workspace resources and for the distribution of this information to the different plug-ins 
registered to the application. Handling of the changes is done by storing a tree of resource 
deltas, mapping the entire process of resource creations, deletions and changes [44][47].

3.1.3 Workbench & UI Toolkits

The workbench is the top-level extensible  User Interface (UI) element within  Eclipse. It 
glues all UI components together and seamlessly integrates all tools by providing a common 
paradigm for the creation, management and navigation of workspace resources. Its  API is 
built from two different toolkits:

• The Standard Widget Toolkit - SWT

• The JFace toolkit

3.1.3.1 The Standard Widget Toolkit – SWT

“SWT is  an open source  widget  toolkit  for  Java designed to  provide  efficient,  portable 
access to the user-interface facilities of the operating systems on which it is implemented” 
[48]. It is used throughout the whole Eclipse framework for the graphical interaction with 
the user. Wherever this is possible, it uses the operating systems' native widgets and just if 
not SWT provides a suitable emulation of that widget. 

By using this approach, it stands somehow between the two approaches taken by the two 
widget toolkits distributed with Sun Microsystems Java Platform: AWT (Abstract Window 
Toolkit) and  Swing.  AWT just wraps  Java code around native objects to create the  GUI 
elements. To overcome AWTs shortcomings Sun introduced the Swing library. 

33



3 Eclipse & Eclipse Rich Client Platform

Swing is  completely  Java based  and  emulates  GUI widgets  by  calling  low  level  OS 
(Operating System) routines to draw the GUI elements. It provides a lot more sophisticated 
elements than  AWT and is entirely platform independent. By using the included look and 
feel  mechanism  Swing applications  can  look  exactly  the  same  even  when  running  on 
different operation systems. 

In contrast to this,  SWT applications look and respond like native applications, and have 
tight  integration  with  operating  system  features  like  the  clipboard  and  drag-and-drop. 
Nevertheless, due to the use of native objects, which cannot be tracked by the  Java VM 
(Java Virtual Machine), these objects cannot be freed by the automatic garbage collection 
of the virtual machine, but have to be disposed manually by the programmer. 

Additionally,  because it  wraps around platform specific  libraries,  SWT is  not  absolutely 
platform independent, but has to be adapted to any newly supported  OS. Anyway, for all 
major systems (e.g.,  MS Windows,  Mac OS,  Linux,  FreeBSD,  and some more) there are 
separate  SWT libraries available, so that distributing applications built on SWT should not 
become a problem. 

One other drawback of  SWT is, that there is no simple way of converting existing  Swing 
based software to SWT. For handling this, a bridging mechanism has been implemented into 
SWT,  that  makes it  possible to embed native  Swing components into a  SWT based  GUI 
[42][44][49]. 

3.1.3.2 JFace

JFace is a User Interface (UI) toolkit, that is built on top of the raw widget system of the 
Standard Widget Toolkit – SWT without hiding it. It has several classes for many common 
UI programming tasks, strongly simplifying the overall user interface implementation. 

SWT is  in  contrast  to  Swing not  providing  a  controller-model-view object  model  in  its 
controls and actions. This is done by  JFace by providing so called viewers, model based 
adapters  for  certain  SWT widgets  like,  e.g.  lists,  trees  and tables.  Configuration  of  this 
viewers is done via a content provider and a label provider. The label provider is delivering 
the specific label and icon for an element within the widget, whereas the content provider 
holds the correct mapping of input to the corresponding content. 

Additionally  to  viewers,  the  JFace framework provides  components  for image and font 

34



3.1 Rich Client Platform

registries, dialogs and wizards, actions and toolbar contributions and progress reporting for 
long  running  operations.  The  action  mechanism  gives  the  possibility  to  define  actions 
independent from their exact location in the user interface. Each action holds its own  UI 
properties, like the label, the icon, its tool tip, etc., and stands for a command that can be 
called via a menu item, toolbar item or button. Wizards and dialogs provide an easy way to 
compose a framework for complex interactions with the user. 

All this gives developers the possibility to concentrate on the implementation of specific 
functionality, rather than on handling and arranging the underlying widgets [42][44].

3.1.3.3 Workbench

The term  workbench in  Eclipse is  used synonymously with the  Eclipse Platform UI.  It 
provides the structure in which tools interact with the user within the Rich Client Platform. 
The workbench is built using both SWT and JFace and hence its API is depending on SWT 
and to a lesser extend on JFace as well. 

The overall purpose of the workbench is to achieve seamless tool integration and controlled 
openness by providing a common paradigm for the creation, management, and navigation 
of workspace resources.  This is realised by the definition of extension points within the 
workbench, that are extended by the tools to be plugged into the UI. The presentation and 
coordination of the user interface is then controlled by the workbench.

To  the  user,  the  workbench appears  as  a  collection  of  buttons,  menus,  views,  editors, 
dialogs and wizards. It is possible to define pre-set arrangements of these GUI elements in 
so called perspectives.

35

Figure 9: Relationship and interconnection of SWT, JFace 
and Workbench.



3 Eclipse & Eclipse Rich Client Platform

3.1.3.4 Perspectives

Each perspective provides a set of functionality aimed at accomplishing a specific task or 
working with specific types of resources. A perspective controls the initial view visibility, 
component layout, and action visibility in menus and toolbars. 

Perspectives provide the possibility to rapidly switch from one working environment, for 
e.g. doing  Java programming, to another, e.g. for the manipulation of  XML files without 
having to separately open and arrange the windows needed. Nevertheless, the user has the 
possibility to customize any predefined perspective by just rearranging and/or resizing the 
defined components or by opening/adding new components to the actual GUI by using the 
related menus. The appearance of a the workbench is stored between working sessions, so 
that user introduced changes are not lost on closing the RCP application.

Most perspectives in a workbench are composed by one editor and one or multiple views. 
The Eclipse Platform comes with several standard perspectives for different purposes – e.g. 
online help, general resource navigation and team support tasks. Additional perspectives 
can be provided by enhancing plug-ins.

3.1.3.5 Editors & Views

Editors allow opening, editing and saving of an object the user is working on within the 
workspace. Every editor has its own load-save-close life cycle. 

Activated editors can contribute actions to menus and toolbars.  Contributions of editors, 
which are  currently  inactive,  are  “greyed out”  and  not  selectable  until  the  editor  is  re-
activated. Different types of editors can be assigned to different types of resources or files. 

If a resource, that has one or more editors assigned, is selected and opened a predefined 
preferred internal editor is used to display the resource's content. If no registered editors are 
found  for  the  resource  the  workbench checks  with  the  underlying  operating  system to 
determine, if it has any editors registered for the particular file type and tries to use that one 
to open the file. 

It is possible to stack editors by using a MultiPageEditor, which is a collection of tabbed 
editors working on the same object.

Views support editors and provide alternative presentations as well as ways to navigate the 

36



3.1 Rich Client Platform

information  in  the  workbench.  Views may provide  their  own menus  and  toolbars.  The 
underlying actions should just affect the items within the view itself. The life cycle of views 
is a lot simpler than that of editors. Modifications, made within a certain view, are normally 
directly saved and reflected to other UI components (views/editors) working on this object. 
A view can occur separately or stacked with other views in tabbed form. Every view can be 
opened and closed separately, as well as it can be dragged and dropped to any other position 
within the workbench.

3.1.3.6 Wizards

Wizards are GUI elements, that guide users step by step through a set of operations by using 
a series of graphical dialogs. 

There exist two different ways of integrating new wizards into the Eclipse system, either by 
using  predefined  extension  points  or  by  creating  and  launching  the  wizard  on  a 
programming level. If a plug-in uses an existing extension point for the creation of a wizard, 
the  regarding  actions  to  launch  it  are  automatically  generated  and  integrated  by  the 
workbench.  The  plug-in  provider  just  needs  to  bring  in  the  code  for  the  wizard  itself. 
Alternatively, the wizard can be started by an action, that has to be supplied by the plug-in 
developer as well. 

The JFace classes used to build any type of wizard already form the general framework of 
the wizard itself. The developer just has to provide additional GUI elements and text, has to 
implement the sequence of tasks to be performed and has to ensure the final action to be 
executed past collecting all needed information.

3.1.4 Platform Integration

Any tools written in Java using SWT can be integrated seamlessly into the platform. If using 
Swing a quite high level of integration can be achieved by using the included “Swing to 
SWT bridge”. However, even external tools can be launched from inside Eclipse. Although 
these must open in separate windows and can just access data with help of the underlying 
file system. This leads to a very tight integration into the system – especially on UI level. 
Depending on the operating system, Eclipse even supports embedding OLE (Object Linking 
and Embedding) documents and bridging to ActiveX elements. 

37



3 Eclipse & Eclipse Rich Client Platform

3.1.5 Help System

By using the Eclipse Platform help mechanism any plug-in can contribute documentation to 
the  application's  global  help  pages.  Therefore,  the  raw  content  of  the  help  system  is 
provided in form of HTML pages, whereas the structure of the pages has to be defined via 
XML files.  This  separation  facilitates  the  integration  of  already  existing  HTML-
documentation into the application. 

The  Eclipse Help System itself  visualises  these  documentation  pages  by  using  the 
structuring  XML files. It gives the user the possibility to browse, bookmark and print the 
documentation. Additionally, there is a full text search function letting the user search for 
phrases  or  keywords  and  a  context-sensitive  help,  for  finding  information  describing  a 
particular function.

The interaction with the help system can occur in two ways, via an embedded help view, or 
by using a separate help window. Both are providing the same information, just in different 
ways.

3.1.6 Eclipse Summary

The  Eclipse Rich Client platform is a very powerful  framework for building rich client 
applications. It ensures good integration with the host environment, by providing a native 
look & feel,  a  sophisticated  window management  and  being  highly  customisable  using 
editors, views and wizards.

Because  it  is  based  on  an  OSGi-compliant  component  model,  the  system  allows  for 
dynamic component discovery and loading, as well as easy updating and extension. The 
simple to implement and extend help system reduces the time needed for potential users to 
be trained. All this reduces the time, costs and skill needed by developers to implement user 
friendly, rich applications. 

38



4 The Bioclipse Framework

4 The Bioclipse Framework

The  Bioclipse project is aimed at creating a  Java based, open source, visual platform for 
chemo- and bioinformatics based on the Eclipse RCP (Rich Client Platform – see Chapter 
3). It is built on a plug-in architecture inheriting basic functionality and visual interfaces, 
like the help system, software updates, preferences, cross-platform deployment etc., from 
the Eclipse RCP system. 

Bioclipse itself  (respectively  the  plug-ins  composing  it)  is  providing  functionality  for 
chemo-  and  bioinformatics  and  extension  points,  that  can  easily  be  used  for  further 
extending the platform by additional plug-ins providing additional functionality [50]. 

Bioclipse inherits the platform-independence from the  Java programming language.  Java 
realises  this,  by being run in  a  virtual  machine,  which is  freely  available  for  all  major 
operating systems (Windows, Unix, Linux, Mac OS). Because of this, it is not necessary to 
compile a Java application in dependence of the executing Operating System (OS).

This  advantage  is  shortened  a  bit,  as  the  graphical  layer  of  Eclipse is  bound  to  the 
underlying OS more tightly, than this is the case in other Java programs, not using the SWT 
(Standard Widget Toolkit) graphical toolkit for building the user interface. RCP applications 
have to be exported for the operating system they are expected to run on, but this still has no 
influence on the rest of the development process.

The real integration of several mature life science frameworks and components into a single 
framework,  providing  an  intuitive  user  interface  and  a  rich  set  of  diverse  functionality 
makes  the  Bioclipse framework  the  most  advanced  and  user  friendly  open-source 
workbench for chemo- and bioinformatics [50].

The project is mainly developed as a collaboration between the  Dept. of Pharmaceutical  
Biosciences,  Uppsala  University,  Sweden,  and  the  Research  Group  for  Molecular  
Informatics at the  Cologne University Bioinformatics Center (CUBIC),  Germany.  Beside 
these, there are further developers not belonging to one of these organisations contributing 
to the project as well. At the moment of writing there are 12 registered developers, of which 
4-6 are contributing to the system on a daily basis. 

Bioclipse is released under the Eclipse Public License (EPL), an open-source (see Chapter 
1.4.1)  software  license,  that  is  putting no constraints  on the  choice  of  back-end and/or 
license for creating plug-ins extending the system. Therewith, it is totally open for both, 

39



4 The Bioclipse Framework

open source plug-ins as well as commercial ones.

The Eclipse framework is used for constructing this universal tool platform specific for the 
fields  of  chemistry,  biology,  biotechnology,  genomics,  proteomics  and  pharmacology, 
altogether denoted as life sciences, by providing a wide variety of tools, algorithms and 
applications. All this functionality is distributed to a number of different plug-ins, making it 
possible for the user to select just the subset meeting the personal demands of functionality 
(see Figure 10). 

To facilitate the usage and logical combination of the provided UI elements, three different 
perspectives were pre-defined. A perspective in an Eclipse RCP application is a collection 

40

Figure 10: Diagram visualising the plug-ins forming the Bioclipse framework and their dependencies.

CDK 
Plugin

CML 
Plugin

JChemPaint
 Plugin

Spectrum
 Plugin

CMLRSS
 Plugin

Jmol
 Plugin

BioJava
 Plugin

Webservices
 Plugin

Eclipse RCP

Logging

Bioclipse Core

DB Connection

SpecMol
 Plugin



4 The Bioclipse Framework

of UI elements, which are grouped on a screen page and are all adding functionality to one 
topic (for further information on Eclipse perspectives see Chapter 3.1.3.4). 

The following list shows the actually included plug-ins and gives a short description of their 
functionality:

• CDK-plug-in: Chemoinformatics back-end (see Chapter 5.1.1)

• CML-plug-in: Reading and writing Chemical Markup Language (CML – see Chapter 
5.2.1)

• Jmol plug-in: 3D-visualisation of molecules and proteins

• JChemPaint plug-in: 2D-molecular editor (see Chapter 5.1.2)

• SpecMol  plug-in:  Functionality  to  handle,  create  and  display  so  called  SpecMol 
resources – CML based resources containing one molecule and one or multiple spectra 
related to this molecule (see Chapter 5.3)

• NMRShiftDB plug-in: Connects Bioclipse to the NMRShiftDB database

• Webservices plug-in: A framework to add web service functionality to Bioclipse

• Database & DBResourceWrapper plug-ins: Providing functionality to connect to SQL 
based database systems (see Chapter 5.4).

• Spectrum plug-in: Visualisation of spectral data (see Chapter 5.2.3)

• CMLRSS plug-in: RSS-viewer for retrieving chemical data in CML using RSS feeds

• BioJava plug-in: Analysis of sequences (DNA/RNA/protein) in various formats

• Logging plug-in: Logging capabilities using log4J

As already mentioned, Bioclipse can be prepared to fulfil different tasks by combining the 
plug-ins  in  different  ways,  so  that  sub-packages,  e.g.  for  molecular  chemistry  are 
compilable  and  distributable.  In  the  future,  a  web  based  service  for  checking  out  and 
updating of the individual plug-ins separately based on the  Eclipse update mechanism is 
planned.

The  Bioclipse core  package  provides  some  core  functionality,  that  is  needed  for  any 
Bioclipse based application. This plug-in is contributing the most general features to the 
framework. The core object model is defined here, with the BioResource implementing an 
interface called IBioResource as base object. 

41



4 The Bioclipse Framework

The  object  model  is  completely  decoupled  from  the  persistence  implementation.  This 
allows plug-in providers to extend the BioResource extension point for adding new resource 
types to the workbench without the need to care about the persistence of the new object (see 
Figure 11). 

The central component in the platform is the BioResource Navigator, a tree-like view (see 
3.1.3.5 for  more  information  on  Eclipse views)  representing  the  BioResource hierarchy 
similar to the way the user is used to handle files and folders. It provides an extension point 
(see Chapter 3.1.1), that enables other plug-ins to contribute actions to the context menu of 
the resource tree, comes with wizards (see Chapter  3.1.3.6) for the creation of new basic 
resources (e.g. text based resources) and implementations for basic UI features like drag & 
drop and copy & paste. 

Furthermore, two general editors (see  3.1.3.5 for further information on  Eclipse editors), 
one for handling text files and another with extra functionality for handling  XML context 

42

Figure 11: This class diagram shows the core object model of the Bioclipse platform and how additional 
objects integrate into this (image taken from [50]).



4 The Bioclipse Framework

(e.g. syntax highlighting and code completion), are provided. Additionally, global actions 
like undo/redo and cut/paste, a view for displaying general properties of selected objects, a 
job  scheduler  for  running  timely  exhaustive  tasks  in  the  background  and  a  console 
displaying text messages to the user are added to the system. 

Moreover, Bioclipse contains a searchable help system and an integrated preference system 
configuring and customising the workbench, both extendable via the respective extension 
points.

The  bioinformatics  functionality  of  Bioclipse is  aggregated  in  the  Bioinformatics 
perspective. This perspective is build by a collection of different views, editors and menus 
for loading, parsing, visualising, editing, converting and saving various formats of sequence 
and protein data. 

For handling sequences the BioJava [51] library, an open-source framework for processing 
biological data, is used. This includes objects for manipulating biological sequences, file 
parsers, biological databases, and data analysis routines. With the help of a special view it is 
possible to display sequences together with assigned SwissProt features. 

The 3D molecule viewer Jmol [52] is used for visualisation of macromolecules. The variant 
of  this  viewer embedded into  Bioclipse is  used for  displaying 3D molecules  within the 
chemoinformatics environment as well.

The web service plug-in of  Bioclipse provides  an exemplary general  integration of web 
services into the framework. A web service is defined as a software system designed to 
support  interoperable  machine-to-machine  interaction  over  a  network.  Web  services  as 
defined by the W3C (World Wide Web Consortium) use SOAP (the  Simple Object Access  
Protocol) for sending around request whereas their interfaces are described by the  Web 
Service Description Language (WSDL). 

As in other areas it is becoming more and more popular to use web services in the field of 
natural  sciences  for  providing  access  to  data  repositories  or  server  based  algorithmic 
calculations  [53][54]. The plug-in itself adds functionality to the system, that allows new 
web services to be accessed from within the system easily. As a reference, an integration of 
the  WSBDbfetch web  service  [55] of  the  European  Bioinformatics  Institute (EBI)  was 
implemented.  This  service  allows  to  query  several  databases  from  different  fields  of 
biology. 

The user interface is designed in form of a wizard guiding the user through the process of 

43



4 The Bioclipse Framework

query  creation  and  database  selection.  In  a  last  step,  the  retrieved  data  is  stored  as  a 
BioResources in a virtual folder (= temporary folder, whose content will be lost on closing 
the application) within the navigator view. These resources can then be accessed, opened 
and manipulated like any other resource in the system. 

Another  mechanism  to  transport  chemically  enriched  information  via  the  internet  is 
CMLRSS [56]. CMLRSS is the chemically-aware extension of the RSS protocol. Depending 
on the version one is referring to,  RSS stands for  Rich Site Summary (RSS 0.9x)  [57][58], 
RDF Site Summary (RSS 1.0)  [59] or  Really Simple Syndication (RSS 2.0) [60]. Anyway, 
RSS is  a  platform independent  XML-based  (see  Chapter  6.1)  format  developed  for  the 
interchange of news or other web based content. Information in RSS is delivered in an XML 
file called “RSS feed” or “RSS stream”. 

By extending “normal” feeds of version 1.0 or 2.0 with  CML (see Chapter  6.2) encoded 
chemical information, it is possible to easily distribute chemical molecules and related meta 
data together with RSS encoded news or information. The CMLRSS plug-in adds tools for 
handling CML enriched news and blog-feeds to the Bioclipse framework. From these feeds 
the  chemical  information  is  automatically  extracted  and  converted  into  the  respective 
BioResources and stored in a virtual folder. Therewith, the content is integrated like any 
other  resource,  making  it  possible  to  display  and  manipulate  the  information  by  using 
Bioclipse editors and views. The resources can be made persistent by just copying them 
from their temporary folder to any other location within the workspace. All this creates an 
easy access to chemical information published by using RSS feeds.

The NMRShiftDB plug-in enables Bioclipse to connect to the NMRShiftDB database system 
[61][62].  NMRShiftDB is an open (open source and open data) web database for organic 
structures  and  their  NMR (Nuclear  Magnetic  Resonance)  spectra  (see  Chapter  1.3 for 
further information  NMR spectra). At the moment of writing, the plug-in offers the user 
three different functionalities:

1. Submission of datasets  to the  NMRShiftDB database.  Therefore,  it  is  possible to 
enhance existing SpecMol resources with literature references using the BibTeXML 
format (a XML language for managing bibliographies) and to submit the data using 
a wizard.

2. Prediction of  NMR spectra for existing molecules by using the  NMRShiftDB web 
service for spectrum prediction based on the database content.

44



4 The Bioclipse Framework

3. Automatic assignment of peaks to shifts via a NMRShiftDB prediction.

As most  methods and applications  developed within this  work were  integrated into the 
Bioclipse framework, these parts of the application will be explained in detail in Chapter 5.

45





5 Software and Methods Developed

5 Software and Methods Developed

Within this work a variety of different software modules and methods were created and 
many of them integrated into the Bioclipse framework. They all focus on the management, 
visualisation and manipulation of chemical data and therewith form the chemoinformatics 
backbone of that platform.

As  structures  are  the  main  data  type  scientists  come  into  contact  with  on  working  in 
chemistry and related fields, these components are all adding functionality, that describes 
chemical structures more or less directly. 

Figure  12 displays  the  connections  and  dependencies  of  most  of  the  different  software 
modules, that were developed for the Bioclipse framework within this thesis. 

47

Figure 12: This diagram shows the connections and dependencies of 
the different chemoinformatics plug-ins of the Bioclipse platform. 
The green marked plug-ins are more focussed on structural 
information directly, whereas the yellow ones are used for spectrum 
handling. The SpecMol plug-in combines these two fields.

Bioclipse

CML CDK

Spectrum

SpecMol

JChemPaint



5 Software and Methods Developed

Additionally to the shown components, the necessary framework was built to add a flexible 
interface  to  different  Relational Database Management Systems (RDBMS) using object-
relational mapping. The developed components can be divided by their function into four 
distinct categories, that are explained in detail in the following sections. This partitioning 
does not mean, that they should be seen as separate applications but represents just a logical 
ordering of the created components. Additionally to this, a data format for encoding spectral 
information  in  a  highly  structured  and  semantically  rich  way  extending  the  Chemical 
Markup Language was developed in cooperation with another work group. This vocabulary 
and the necessary background are described in Chapter 6.

48



5.1 Structure Handling

5.1 Structure Handling

The elements described here are primarily focussing on handling structural  information. 
They provide functionality for displaying and editing 2D structural data, are responsible for 
the correct interconversion of various molecular data formats and integrate components for 
the visualisation of 3D structures.

5.1.1 The CDK Plug-in

This component integrates the Chemistry Development Kit library, a freely available open-
source  library  for  structural  chemo-,  bioinformatics,  computational  chemistry,  and 
chemometrics, into the Bioclipse framework [63]. As the CDK library files are included into 
the  generated  binary  code,  any other  plug-in  within  the  platform can easily  access  any 
method, algorithm or class from the package. 

The  CDK itself  provides  methods  for  many  common  tasks  in  molecular  informatics, 
including 2D and 3D rendering of chemical structures, I/O routines for different chemical 
files  formats,  SMILES  (Simplified Molecular Line Entry Specification) parsing  and 
generation, QSAR (Quantitative Structure-Activity Relationship) descriptor calculation, atom 
typing, ring searches, isomorphism checking and structure diagram generation. 

Many of the other chemoinformatics modules within  Bioclipse are to a greater or lesser 
extent using the CDK library, as the CDK data model for chemical structures is used for the 
whole platform as internal data structure for the representation of any kind of molecules. 

Any objects to be accessed within Bioclipse/Eclipse are handled as so called resources (see 
Chapter 3.1.2). The resource for handling structural data within the system is defined in this 
plug-in - the  CDKResource.  A CDKResource is extending the  BioResource base class by 
providing methods for parsing molecular data into  CDKMolecule objects.  If a file to be 
opened contains a collection of molecules, the  CDKResource separates them and creates 
sub-CDKResources for any of them. The sub-resources are shown within the BioResource 
Navigator as children of the originally activated resource and can be opened separately by 
double click. If such a sub-resource is changed and saved, the changes are reflected to the 
parent molecular file and saved there. 

Additionally to the methods for parsing molecular data, the CDKResource contains several 
methods  to  access  computable  properties  of  the  molecule  like  its  molecular  mass,  its 

49



5 Software and Methods Developed

molecular formula and the  SMILES string describing this molecule. These properties are 
displayed for parsed CDKResources within an additional information block in the properties 
view described in further detail later in this section.

As the parsing of molecular structure files is based on the CDK I/O functionality, Bioclipse 
is capable to import and export the 
same  molecular  formats  as  the 
CDK itself.  These  currently 
include  XYZ,  MDL molfile,  PDB 
and CML.

Beside  the  allocation  of  library 
files,  the  plug-in  contributes 
several  graphical  components  to 
the  Bioclipse system as well.  The 
ChemTree view  is  adding  a  tree 
like  structural  view  on  the 
composition  of  the  actually 
selected  molecules  object  tree. 
Figure  13 shows  a  screenshot  of 
the ChemTree displaying the object tree for ethane. This tree gives users and developers a 
good visualisation of the in memory object representing the actually handled structure file. 
Additionally, any selection done in this view is reflected to other views used to visualise 
this structure. So, if the user selects e.g. an atom in this tree, the same atom is highlighted in 
a possibly open JChemPaint Editor and/or an open 2D Structure View (both explained in 
detail later in this chapter). 

The  2D-Structure View,  as it can be seen in  Figure 14, displays 2D depictions of one or 
multiple structures (a comparative visualisation for three different molecules is shown). If 
multiple  structures  are  selected  to  be  shown,  they are  arranged in  a  table  like  manner, 
facilitating the  comparability  of  the  shown structures.  To allow the display  of  multiple 
selected molecules in this view an action was added to the CDKResources' context menu. 
On execution of this action the parsing status of every selected file is been checked and if 
any of these files are not already parsed this is done. The multi displaying itself works by 
simply selecting multiple  parsed resources,  as  the  2D-Structure View is  listening to  the 
global selection events and extracts the single molecules from these.

50

Figure 13: Screenshot of the ChemTree view showing 
ethane.



5.1 Structure Handling

On a technical  level the displaying of the molecules is realised via the  CDKs rendering 
facilities for creating a Swing based graphics object of the molecules. In a next step, these 
graphics objects are embedded into a standard  SWT Composite using the  Swing to  SWT 
bridging mechanism. 

A  Composite in  Eclipse  is the  basic  graphical  building  block  for  designing  GUIs.  For 
embedding Swing components a special variant of this component is instantiated using the 
attribute SWT.EMBEDDED. This allows the creation of an  AWT Frame as child of the 
Composite which can then be filled with any AWT/Swing graphical component.

51

Figure 14: Screenshot of the 2D-Structure view displaying multiple 
molecules in a table like manner (4-morpholinepropanamine, 4,7-diamino-2-
phenyl-6-pteridinecarboxamide and 1-chloro-2-ethyl-hexane). 



5 Software and Methods Developed

As already mentioned, this plug-in extends the Properties View provided by Bioclipse with 
an additional block of molecule related information. The general part of this view displays 
information about the selected resource in general,  like its format,  its name, the type of 
resource it is recognised as, and the size of the object (see  Figure 15-1). To retrieve this 
information the resource does not need to be parsed. In contrast to this, the advanced CDK 
properties do need a parsed resource. Just then it is possible to determine information like 
the  atom and bond count,  the  chemical  formula  of  the  molecule,  its  masses  (mass  and 
natural mass) and the SMILES string for the molecule (see Figure 15-2). 

Beside  these  graphical  elements,  directly  contributing  to  the  Bioclipse workbench,  two 
wizards  for  the  creation  of  new  molecular  files  are  defined.  Furthermore,  a  “Save 

52

Figure 15: Screenshot of the Bioclipse properties view displaying the extended properties for a 
CDKResource additionally to the general ones. Within the section marked with 1, some general 
information about the selected resource is shown. This is extended by advanced facts of the 
chemical structure for parsed data (section 2).

1

2



5.1 Structure Handling

As..”-dialog to be used with molecular editors is provided, and some more actions are added 
to the context menu available for CDKResources. 

The first wizard (Figure 16-1) creates a new empty file in the selected file format at the 
defined position within the file system, whereas the second one (Figure 16-2) builds a new 
molecule from a SMILES input string and writes this data in the selected format to the file 
system.

The dialog for saving an existing file in another format looks similar  to the wizard for 
creating  new  molecules,  just  that  the  actual  file  name  is  already  inserted,  but  can  be 
changed. By selecting one of the offered file formats the encoding is defined. The list of 
possible file formats is automatically generated by using a CDK mechanism that determines 
the data formats supported by the current structural data.

As  the  CDK provides  algorithms  for  the  calculation  of  2D  coordinates  as  well  as  3D 
coordinates, there are two actions integrated into the context menu for CDK resources that 

53

Figure 16: Depiction showing screenshots of the two wizards included in the CDK plug-in. Picture 1 
shows the wizard for new molecule creation, whereas picture 2 shows the wizard for creating a new 
molecule using a SMILES string.



5 Software and Methods Developed

allow  for  using  these  algorithms  to  extend  the  existing  structural  data  with  2D/3D 
coordinates.

5.1.2 Embedding JChemPaint

For enabling Bioclipse to display and manipulate 2D structures the JChemPaint molecular 
editor of the  CDK project is used.  JChemPaint is open-source, freely available under the 
LGPL license  (GNU Lesser General Public License),  completely  written  in  Java and 
developed by an international team of open-source developers [64]. 

As this editor is designed using Suns' Swing API, the drawing components, all menu entries, 
the toolbar entries and the action handling had to be adapted and integrated into the  SWT 
based design of  Bioclipse. This is realised by using the already described  Swing to  SWT 
bridging mechanism and by wrapping around the existing listener  model  of the context 
menu. This ensures smooth and problem-free access to the context menu, which is  Swing 
based as well. 

JChemPaint is  the  main  editor  for  chemical  structures  within  Bioclipse and  used  for 
visualisation of all CDKResources containing 2D structures. The editor itself inherits all the 
features  the  standalone  editor  provides.  These  were  extended  for  the  application  to 
seamlessly integrate into the overall framework. Therewith it provides the user with all the 
functionality  expected  by a modern 2D editor  for  molecular  structures  (e.g.  drawing of 
bonds and atoms, selection of ring templates, import/export from/to various file formats, 
flipping and rotating of selected parts of a molecule, stereo descriptors, and import/export of 
SMILES).

The editor itself is designed as an  Eclipse MultiPageEditor showing the underlying data 
model in two different ways (see Figure 17). The first is the graphical representation of the 
structure as a graph using  JChemPaint, whereas the second representation is showing the 
source of the respective file in the regarding text editor. These two editors are in sync to 
each other at any time, so that changes in one are immediately reflected to the second one.

54



5.1 Structure Handling

The set of actions provided by  JChemPaint is created by using  Java properties files. In 
these properties files, the tree-like structure of the actions is defined as well as into which 
global menu they belong, which actions are part of the context menu and which are thought 
to show up in the toolbar. Additionally, these files define, how the needed resources, like 
icons and the action classes to be executed, are accessed. The menu and the toolbar are 
generally editor-dependent in Eclipse and therewith just show up if the regarding editor is 
open and selected. If the editor is just not focussed at the moment the regarding menus and 
toolbar entries are greyed out and not selectable (see Figure 17 upper part for a screenshot 
of the JChemPaint related toolbar).

In contrast to the global menu entries and the actions contributing to the toolbar, the context 
menu is not converted to a  SWT menu, but shows up as a  Swing based interface. This is 

55

Figure 17: Screenshot of the embedded JChemPaint editor showing the 2D structural representation of 
polycarpol. Additionally the Swing based context menu of the editor is shown. The two tabs at the bottom 
let the user switch between a text based editor showing the original file content and the JChemPaint 
editor activated in this screenshot. Above the editor itself the toolbar defined by this editor can be seen.



5 Software and Methods Developed

necessary, because the underlying panel to which the structure is drawn is a Swing panel as 
well  and  the  drawing of  SWT based  menus  on top  of  an  embedded  Swing panel  were 
discovered not to work properly. 

All dialogs provided with the JChemPaint editor, e.g. for adjusting properties, enter settings 
for  model  validation  and  direct  insertion  of  SMILES strings  were  ported  to  use  SWT 
graphics objects.

The integration of these actions into the system was realised by adapting the base class for 
all JChemPaint actions to extend a JFace action instead of a Swing based action. In addition 
to this, it was necessary to adapt the name of the executed method in every action to fit the 
JFace naming schema. 

Beside these changes, the embedded JChemPaint component was adapted to the undo/redo 
mechanism of the Eclipse/Bioclipse framework so that undoable actions are pushed onto the 
Bioclipse undo/redo  stack.  This  was  realised  by  preserving  as  much  of  the  original 
undo/redo structure of the standalone JChemPaint application, which was implemented in 
the course of this thesis as well.

Additionally, the editor was adapted to the global copy, cut and paste functionality, so that 
it is possible to select a (sub-)structure in an open editor, cut or copy it. Theoretically, it 
should  be  possible  to  paste  this  structure  to  any  other  editor  that  is  registered  to  the 
clipboard handling facilities within Bioclipse. At the moment, this is just implemented for 
unproblematic exchange between two open instances of the JChemPaint editor, but will be 
implemented at  least  for text based editors,  too. This will  be realised by converting the 
structural information to InChI (IUPAC International Chemical Identifier) or SMILES and 
add this at the selected position into the text file.

With this design, it was possible to inherit the general rendering and controlling logic used 
for the creation of graphical representations of molecular structures from the  JChemPaint 
project.  As a result  of  this  it  will  be easy to  adapt  the  embedded component  to  future 
changes in the  JChemPaint project and the adapted  JChemPaint smoothly integrates into 
the  Bioclipse framework and its resource model.  It  is easy to create molecules in many 
different formats, display and modify existing structural data and integrate large structural 
data sets into the framework.

56



5.2 Spectrum Handling

5.2 Spectrum Handling

The modules described here are focussing on the visualisation, manipulation and encoding 
of  spectral  information and are used for integrating this  functionality  into the  Bioclipse 
framework.  Furthermore,  they contain the logic for reading and writing spectral  data to 
different file formats and provide access to the meta data often associated to spectra. By 
their nature, these components are, together with the ones formerly described for structural 
data, the basis for further elements allowing for the association of these two types of data to 
each other.

5.2.1 The CML Plug-in

This module provides access to the jumbo  CML library, an open-source  Java library for 
handling and representing  CML Documents and/or  CML data structures.  CML (Chemical 
Markup Language) is a XML (eXtensible Markup Language) implementation for chemical 
data/information  (also  see  Chapter  6).  CML is  thought  to  be  an  extensible  basis  for 
chemically aware markup languages and is structured in a modular way by some core and 
some extended components. CML does share all the general XML features and advantages, 
like  being  data  centric  and  not  presentation  centric,  being  simultaneously  human-  and 
machine readable, being platform independent and showing the ability to represent most 
general data structures [65].

Bioclipse uses the Java implementation of CML for the internal representation of spectrum 
data and for  the import  and export  of structures  and spectra  to  and from the  CML file 
format. 

This component adds a generic resource wrapping around CML files to the framework. This 
resource is extending the BioResource base class with methods for parsing CML files. It is 
actually just used for multi-object files, containing more than one parseable CML object. In 
this case the CML resource takes care of the extraction of the single objects and creates sub-
children for every of these, which can then be selected as any other resource by double-
click.  If the  CML resource contains just  one spectrum or molecule,  the handling of the 
content  is  done  by  the  regarding  resources  for  these  data  types.  This  is  realized  by  a 
resource hierarchy, so that any CML resource is first tried to be parsed as a spectrum, then 
as a molecule, and finally as a generic CML resource.

57



5 Software and Methods Developed

Additionally, there is a draft implementation of a CML validation, that checks a given CML 
file against the  CML schema and a variety of dictionaries and outputs any detected errors 
and warnings to the  Bioclipse console. The first step, checking the document for validity 
and well-formedness (see Chapter 6.1 for an explanation of validity and well-formedness of 
XML documents), is done by using the  CMLBuilder to create a new  CML document. By 
doing this the CML DOM automatically verifies the well-formedness as well as the validity 
of the document. In a second step, the whole document is checked for correct dictionary 
referencing and valid meta data and units names. 

Past validation a dialog is shown stating the result of the procedure and asking the user if 
the  file  should be opened in  the regarding editor.  Additionally,  possible  error messages 

58

Figure 18: Depiction showing the first part of the JCAMP-DX meta data dictionary describing meta data 
types for CML encoded spectral data.

<dictionary namespace="http://www.xml-cml.org/dict/jcampDXDict"
  dictionaryPrefix="jcamp-dx" title="JCAMP-DX dictionary"
  xmlns="http://www.xml-cml.org/schema"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.xml-cml.org/schema       
  ../../schema24/schema.xsd">
  <annotation>
    <appinfo>
      <html:p xmlns:html="http://www.w3.org/1999/xhtml">
        JCAMP-DX identifiers do not match with XML identifiers; the
        folowing transformation rules apply when mapping JCAMP-DX
        identifiers onto identifiers in this dictionary:
        <html:ol>
          <html:li>Any space is removed</html:li>
          <html:li>
            A '.' character as first characted is replaced by the 

string
            "dot"
          </html:li>
        </html:ol>
      </html:p>
    </appinfo>
  </annotation>
  <entry id="DATATYPE" term="DATA TYPE">
    <definition>The data type of the spectrum</definition>
    <description>
      Can hold the following values: RAMAN SPECTRUM. INFRARED PEAK
      TABLE, INFRARED INTERFEROGRAM, INFRARED TRANSFORMED SPECTRUM, 

NMR FID; NMR SPECTRUM; NMR PEAK TABLE; NMR PEAK ASSIGNMENTS, 
MASS SPECTRUM; CONTINUOUS MASS SPECTRUM

    </description>
  </entry>
  <entry id="XUNITS" term="XUNITS">



5.2 Spectrum Handling

generated within the validation process are printed to the  Bioclipse console.  These error 
messages very often give a good starting point for correcting an erroneous  CML file. For 
further  versions of the application an automatic  highlighting for  incorrect  segments  and 
automatic correction proposals are planned to be included.

The  set  of  dictionaries  can  be  found  in  the  “dict10”  directory  within  the  project.  All 
dictionary  files  in  the  subdirectories  “simple”  and  “units”  are  used  for  validation.  An 
exemplary extract from the JCAMP-DX dictionary is shown in Figure 18.

This dictionary was as well developed during this project and serves as a mapping basis for 
the correct conversion of JCAMP-DX encoded spectral data to CML encoded data. Via this 
dictionary,  it  is  possible  to  mark  spectral  meta  data  within  a  CML file  as  JCAMP-DX 
compliant or originating. This allows for lossless conversion from one format to the other 
and back again. In addition, this dictionary is used as information source for the meta data 
editor, that is part of the spectrum handling module being described in Chapter 5.2.3.

5.2.2 The JCAMP-DX Format

As already mentioned,  there is  at  the  moment one other  spectral  data  format  supported 
beside CMLSpect (see Chapter 6.3) – the JCAMP-DX format.

The JCAMP-DX file format is a standardised, portable data format for spectroscopic data, 
that was originally defined by the Joint Committee on Atomic and Molecular Physical Data 
(JCAMP) with the scope to “generate, collect, evaluate, edit, and approve the publication 
and encourage the distribution of atomic and molecular physical data in suitable form to 
serve as references for pure compounds and mixtures” (personal communication from Bob 
McDonald). The  JCAMP (the organisation) was founded as a task force at the  Pittsburgh 
Conference (Pittcon) in 1983. Its objective was to design a standardised file format for the 
exchange of infrared (IR) spectra, that should be independent of the used spectrometer and 
vendor specific software. Beside this, the development was aimed at creating a format that 
enables long-term archival of spectroscopic data, even past the expected lifetime of current 
hard- and software [66]. 

In 1995 the responsibility for the JCAMP-DX scientific standards was moved to the IUPAC 
(International Union of Pure and Applied Chemistry). Beside  IR the  JCAMP-DX format 
today  supports  the  storage  of  UV/Vis (Ultraviolet-visible),  NMR (Nuclear Magnetic 
Resonance) and MS (Mass Spectroscopy) spectra as well [67] [68] (for further information 

59



5 Software and Methods Developed

on spectroscopy see Chapter 1.3).

As all spectral data is stored as labelled fields of variable length using  ASCII  (American 
Standard Code for Information Interchange) characters, it is human readable and can be 
edited and annotated using standard text editors (see Figure 19 for an example of a JCAMP-
DX encoded spectrum). The format itself shows many advantages compared to proprietary 
vendor formats. It is open-source (see Chapter 1.4.1) and using standard terms, enabling the 
free  exchange  of  data  from  any  instrument  as  well  as  simulated  data.  There  is  non-
proprietary software available for file conversion from/to other spectroscopic data formats, 
for internet transmission and for the visualisation of JCAMP-DX encoded data. 

As the JCAMP-DX format is historically grown, there are some drawbacks introduced due 
to timely evolution and generalisation of the original IR focussed definition. For this reason, 
the definition of the specification became complicated and incomplete. 

Because of the wide range of data (instrument data, peak table data, chemical structures, ...) 
integrated  successively  into  the  format,  software  developers  ran  into  the  problem  of 
correctly interpreting the usage of tags for writing out their data [69]. 

Additionally,  many vendors of commercial  spectroscopic software extended the existing 
specification by their proprietary fields, leading to a lack of proper documentation of the so 

60

Figure 19: This depiction displays a section of a JCAMP-DX encoded mass 
spectrum. The file was downloaded from the NIST Chemistry WebBook and 
encodes the peak mass spectrum of 2-methyl-pentanal.

##TITLE=Pentanal, 2-methyl-
##JCAMP-DX=4.24
##DATA TYPE=MASS SPECTRUM
##ORIGIN=NIST Mass Spectrometry Data Center, 1990.
##OWNER=NIST Mass Spectrometry Data Center
Collection (C) 2002 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
##CAS REGISTRY NO=123-15-9
##$EPA MASS SPEC NO=113087
##MOLFORM=C6H12O
##MW=100
##$NIST SOURCE=MSDC
##.IONIZATION ENERGY=70
##XUNITS=M/Z
##YUNITS=RELATIVE ABUNDANCE
##XFACTOR=1
##YFACTOR=1
##FIRSTX=14
##LASTX=100
##FIRSTY=19
##MAXX=100
##MINX=14
##MAXY=999
##MINY=4
##NPOINTS=25
##PEAK TABLE=(XY..XY)
14,19 15,30 26,44 27,328 28,95



5.2 Spectrum Handling

used labels.  This  resulted in a possible  incompatibility of  JCAMP-DX files exported by 
different machines. 

A way to avoid these problems would have been to add applications and routines for proper 
testing of files stating to be JCAMP-DX compliant, so that every provider would have had 
the chance to directly test his/her implementation. 

Nevertheless,  essentially  all  current  software  for  handling  spectroscopic  data  provides 
routines for import and export of JCAMP-DX files and it is the most widely used exchange 
format for spectroscopic data at the moment.

5.2.3 General Spectrum Support

As already stated in Chapter  1.3, the analysis of spectroscopic data can provide scientists 
with various information about the studied molecules. As one of the major focusses of the 
Bioclipse platform is  the  support  for handling molecular  data  in  diverse  manifestations, 
supporting spectral data is necessary. Therefore, the here described methods and algorithms 
were  developed  and  integrated  into  the  application.  They  provide  functionality  for  the 
integration of spectral data types into the system, provide visual interfaces for this type of 
data, and provide tools for the manipulation of spectral information. 

For the internal  representation of spectral  data the  SpectrumResource was defined. This 
resource extends the BioResource base class with methods for reading and writing spectral 
data from/to the supported data file formats. At the moment two different data formats are 
supported:  the  JCAMP-DX format  (see  Chapter  5.2.2)  and  the  CMLSpect format  (see 
Chapter 6.3), which is an extension of the CML format for spectral data and was elaborated 
within this project as well. The  Java implementation of the latter is used as internal data 
representation for handling and passing around spectral information. For parsing JCAMP-
DX files the JCAMP-DX Java library, the reference implementation of the IUPAC JCAMP-
DX spectroscopy  data  standard  [66][67][68],  is  used.  This  library  was  originally 
implemented by Creon Lab Control, but the accountability was taken over by our research 
group in the course of this project. 

These libraries are augmented by routines for the interconversion between the two formats, 
so that a JCAMP-DX encoded spectrum can be converted into the CMLSpect representation 
past loading. All spectrum dependent graphical and non-graphical components are using the 
Java DOM of CMLSpect. 

61



5 Software and Methods Developed

To enable the creation of new  SpectrumResources a wizard was added to the  Bioclipse 
resource creation context by using the respective extension point. A depiction of the two 
pages forming this wizard is shown in Figure 20. 

Part 1 shows the first page used to locate the place within the currently selected resource 
tree, where the new resource should be created, to select the spectrum format and to define 
the name of the resource. The second page allows the user to select the spectrum type and 
define none or multiple peak signals by entering their x- and y-values (part 2). By finishing 
the  wizard,  the  data  is  written  in  the  selected  format  to  the  defined  file  at  the  chosen 
position.

For making the source of spectral files available to the user, the text editors provided by the 
Bioclipse core are used. Even though JCAMP-DX data is converted to the CMLSpect format 
for internal  handling,  the  user  interface shows the original  JCAMP-DX source in a  text 

62

Figure 20: Screenshot showing the two pages forming the wizard used for the creation 
of new spectra. Page 1 is used to determine the location and format for the new 
resource, whereas page 2 lets the user define spectrum type and peaks.

1

2



5.2 Spectrum Handling

editor, whereas CMLSpect encoded spectra are shown in the XML editor.

Beside  this,  several  views for  different  representations  of  the  information  contained  in 
spectral files were implemented and a perspective was defined, that is per default used for 
the  presentation  of  SpectrumResources.  A  perspective is  a  pre-defined  arrangement  of 
views and editors (for further information on perspectives see  3.1.3.4). In  Bioclipse there 
exist perspectives for handling different types of resources. The regarding perspective is 
generally provided by the plug-in defining the resource it is bound to. As these perspectives 
are just proposals how a good arrangement of GUI elements might look like, they can easily 
be overridden by user settings. For anyway giving the user the possibility to recover the pre-
defined perspectives, an action was added to the “Windows” menu of  Bioclipse,  which 
resets any perspective, whose components were newly arranged, to its original setting. 

As  users  might  want  to  have  the  correct 
perspective directly  loaded  on  opening  a 
certain type of resource,  a general  preference 
model was implemented in the course of this 
work supporting this.  Therefore,  a base class 
handling  the  integration  of  the  preference 
pages into the general  preferences dialog and 
providing the graphical backbone was added to 
the Bioclipse core. This class is been extended 
by  implementations  for  every  perspective 
added to the system. By this preference pages, 
it is possible for the user to define if a certain 
resource  should  any  time  be  represented  by 
using  the  regarding  perspective,  if  the  user 
should be asked on every occurrence to switch 
to the regarding perspective, or if the graphical 
layout of components should stay unchanged, 
regardless the type of resource being opened. 

There are three different  views provided, that 
visualise the actual spectrum information. The 
peak table  view (see Figure 21) shows the peaks of a spectrum in a structured table. This 
table has two columns for displaying the x-and the y-values and additional columns that can 
be used for displaying further peak-centric information. The whole set of information can 

63

Figure 21: Screenshot of the peak table view of 
Bioclipse. Visible is a part of the peaks of 
pyrrolidine, ordered by the mass-to-charge ratio 
of the peaks.



5 Software and Methods Developed

be ordered by any of the columns by just clicking on the columns header.

Additionally, the view displays the type of the spectrum in a drop down box in the lower 
right corner. This value, as well as the peak values themselves, is editable. For changing the 
spectrum type the user just has to select another type from the pre-filled drop-down menu. 
The peak values can be edited by clicking into the regarding table cell and changing its 
value. Furthermore, it is possible to add a new row by using the “Add” button and any 
selected row can be deleted by using the “Delete” button. All these changes are directly 
reflected to the underlying  SpectrumResource and can be saved to the file using the save 
functionality of the associated editor. 

The probably most common way to represent spectra is by using charts. Two different chart 
views were implemented for visualising peak spectra as well as continuous spectra - even at 
the same time, if both data is available. These chart views are using a Java charting engine 
called  JFreeChart [70].  JFreeChart is  a  completely  Java  based chart  library  allowing 
developers to display professional quality charts in their applications. As it is released under 
a compatible free license (LGPL)  [29], its use does not add any restrictions to the overall 
Bioclipse license.  Figure  22 shows  a  screenshot  displaying  a  continuous  spectrum  (IR 
spectrum of dodecyl-benzene) whereas Figure 23 shows a screenshot of the peak spectrum 
view visualising the MS spectrum of pyrrolidine.

The JFreeChart based spectrum charts support export to PNG (Portable Network Graphics) 
format, a print dialog, a step less zoom of both axes, anti aliasing, and a properties dialog 
for accessing different chart settings (e.g. change colouring scheme, set fonts, drawing of 
subsidiary lines). 

64

Figure 22: Screenshot of the continuous spectrum view showing an IR spectrum of dodecyl-benzene.



5.2 Spectrum Handling

Furthermore,  for  peak spectra  it  is 
possible  to  set  a  threshold  that 
defines  which  peaks  have  their  x-
value printed in numeric form onto 
the  chart.  For  continuous  spectra 
there exist an extra menu within the 
view,  where  a  peak  picking 
algorithm  can  be  started.  This 
algorithm  works  by  using  a 
gaussian  filter  to  remove  possible 
noise  and  a  first  and  second 
derivative  based  method  for  the 
picking  of  the  actual  peaks.  The 
integrated action is an adaptation of 
an algorithm published in a former 
release  of  the  Jumbo CML DOM 
[71].

Beside  this  data,  that  directly 
defines the spectrum itself, there are 
often various additional information 
about  the  measured  substance,  the 
experimental  conditions,  used 
substances, etc., recorded and stored 

65

Figure 24: Screenshot of the meta data view displaying 
the meta data of a JCAMP-DX encoded mass spectrum 
of 4-ethyl-phenol derived from NIST.

Figure 23: Screenshot of the peak spectrum view displaying the mass spectrum of pyrrolidine.



5 Software and Methods Developed

as well.  This data is referred to as meta data. Meta data does not just help in spectrum 
analysis and interpretation, but enables scientists to recapitulate the experiment itself and 
therewith allows for the comparison of results.

To support this, several graphical components were implemented, that allow displaying and 
manipulation of existing spectrum related meta information. To display the meta data of a 
parsed  spectrum to  the  user,  the  Metadata View  (see  Figure  24) is  integrated  into  the 
spectrum perspective. Within this view all meta information for the selected spectrum is 
visualised in a structured way using a SWT TableTree component. This is a combination of 
table and tree structure allowing for the arrangement of entries to groups, that show up as 
collapsible table elements. Generally, the items are assigned to three different groups (meta 
data list, substance list and condition list), related to the structure of meta data within the 
CMLSpect definition (see Chapter 6.3). 

Via the regarding action from the views' toolbar, the meta data editor can be opened. This 

66

Figure 25: Diagram illustrating the connection between the meta data editor, the meta data mapping files 
and available dictionary files. Every mapping file defines the categories and entries displayed, whereas an 
available dictionary is used to generate the tooltips.

Bioclipse 
meta-data

mapping file

JCAMP-DX 
meta-data

mapping file

JCAMP-DX 
dictionary



5.2 Spectrum Handling

editor is  a  MultiPageEditor  using mapping files and available dictionaries to enable the 
manipulation of meta data entries. The mapping files define the possible entries, whereas 
connected dictionaries are used for generating descriptions for the respective entries (see 
Figure 25 and Chapter 9 page 121). 

Every page within the editor itself is designed as a structured form by using the  Eclipse 
Forms API. The  Forms API extends  SWT by exposing a set of custom widgets and other 
supporting classes,  that  allow for the  creation  of polished,  'web-like'  UIs.  The editor  is 
structured using the same scheme, which is used within the Metadata View.

The dependency of the data visible within the meta data editor from the defining mapping 
and dictionary files is shown in  Figure 25. For every existing mapping file, there is one 
page within the MultiPageEditor set up, with all entries defined in the related mapping file. 
Existing values within the spectrum are read out and pre-set  in the editor  fields.  If  the 
mapping file is directing to an available dictionary, this dictionary file is used to generate 
tool tips for the displayed entries.

67

Figure 26: Illustration showing the dialog used for adding new meta data entries to an existing mapping 
file (section 1) and the resulting entry within that file (section 2). 

<section name="metadataList" label="Metadata List">
  <entry id="testEntry" label="example Entry">
    <valueList>
      <value>test1</value>
      <value>test2</value>
      <value>test3</value>
      </valueList>
  </entry>
</section>

1

2



5 Software and Methods Developed

In order to enable users to add new meta data entries to an existing mapping file, there is a 
dialog available, that can be started via an action, added to the global toolbar by the meta 
data editor. Figure 26-1 shows a screenshot of this dialog, whereas Figure 26-2 displays the 
entry  created  past  adding  it  to  an  existing  mapping  file.  If  multiple  pre-set  values  are 
defined for the entry, these will be shown in the editor as selectable items within a drop-
down box.

For creating a new mapping file instead of adding the meta data entry to an existing one, the 
item “Add new Category”  in  the  dialog  should  be  selected.  This  opens  another  dialog 
asking the user to enter a name for that  file, a label for the meta data category and an 
identifier.  Based  on  these  entries,  a  new mapping  file  is  created  and  saved  within  the 
regarding directory of the plug-in containing the newly defined meta data entry. 

This all makes it easy for users to define their own meta data sets to be added for example 
to  their  in  house  generated  spectral  data,  ensuring  uniformity  of  the  associated  meta 
information.  Finally,  this  way of handling meta data allows to visualise  and manipulate 
even datasets containing a large number of associated meta data in a concise manner.

68



5.3 Assignment of Spectral and Structural Data

5.3 Assignment of Spectral and Structural Data

In  the  structure  elucidation  process,  very  often  multiple  spectra  are  measured  for  one 
component. These are used for the extraction of structural features and the generation of a 
candidate structure based on this information. A very common process within this, is the 
assignment  of  peaks  or  signals  from the  different  spectra  to  structural  elements  of  the 
candidate. 

The  applications  described  up to  now do not  separately  support  this.  Therefore,  a  new 
component was developed, that integrates implemented functionality and extends it with 
additional features for the assignment of peaks to substructure elements and vice versa. In 
addition, it adds a resource to the system, that is capable of encoding this information in a 
proper way. 

For this reason, the  SpecMolResource was implemented. It is based on  CML and uses a 
CML container  for holding one  CML molecule  and none to multiple  CML spectra.  The 
assignment between the different elements is encoded by using the CML referencing system 
(see Chapter  6.2).  To easily recognise the special  type of these  CML files, the new file 
suffix “.smr” was introduced. This allows to identify the new resource type even without 
having it parsed. Nevertheless, the content of these files is CML and the CML parser is used 
to read the data.  The binding to the new suffix has the additional  advantage,  that  these 
resources can directly be opened in the regarding editor.

The wizard pages that are used to create new assignment resources are displayed in Figure
27. First a name for the resource has to be entered and the storage location for the “.smr” 
file has to be selected from the current resource tree (see  Figure 27-1). In a next step an 
existing molecular file in any supported format (see Chapter  5.1.1) can be selected, or an 
empty molecule can be created and added to the file (see  Figure 27-2). In any case, this 
molecule can later be edited using the embedded  JChemPaint editor. The data is parsed 
from the selected file and converted to CML, before it is added to the new resource. In the 
last  step,  shown  in  Figure  27-3,  the  user  can  add  spectra  from  the  current  working 
environment to the resource. Like for molecules, if a non-CML encoded file is selected, the 
content is parsed and converted to CML. Finally, past finishing the wizard, the new file is 
created, the data written to it and the resource opened in the assignment editor to let the user 
perform the actual assignments.

69



5 Software and Methods Developed

Because the  SpecMolResource is at the moment working with a decoupled child resource 
schema,  there  are  two  additional  resources  defined.  One  for  contained  spectra,  that  is 
extending a SpectrumResource (see Chapter 5.2.3) and another for the molecule, extending 
a CDKResource (see Chapter 5.1.1). On parsing a “.smr” file, the included spectra and the 
molecule are extracted and the regarding child resources are created (see Figure 28).

Both  these  child  resources 
override  the  “save”  methods  of 
the  classes  they  are  extending. 
Therefore,  on  saving  the  child, 
the applied changes are reflected 
to the parent  SpecMolResouce and its  “save” method is executed resulting in the whole 
object with all changes being written to the file (see Figure 29). 

70

Figure 27: This illustration shows the three pages (1 to 3 reflecting their order of 
occurence) forming the “new SpecMolResource” wizard. This resources are used 
for the assignment of structural features and spectral peaks/signals.

Figure 28: Screenshot of a section of the resource navigator 
displaying an assignment resource and its child resources, 
which are generated and added on parsing. 



5.3 Assignment of Spectral and Structural Data

For the assignment process itself and to display already generated assigned resources, an 
assignment  editor  was  implemented  (see  Figure  30).  This  editor  integrates  three 
components already used separately in other plug-ins, the JChemPaint editor, the peak table 
view and the peak chart view, but in a more integrated manner. In a second tab, the CML 
source is available in a read-only mode using the XML editor. 

On loading a SpecMolResource the different elements are filled with the regarding content. 
From the multiple spectra, eventually contained in the resource, just one is displayed at a 
time. In order to change this selection to another spectrum, the regarding spectrum child has 
just to be activated by a single click within the resource tree. A double click in contrast, 
opens the child resource in the correlated editor allowing its manipulation.

On assignment, the editor assigns atoms/bonds to peaks within the CML file, by using CML 
references, without doing any interpretation. 

71

Figure 29: Class diagram illustrating the dependencies of the resources in the assignment plug-
in. The SpecMolResource extends the BioResource base class. A SpecMolResource can contain 
1-n spectra and 0-1 molecules, that are parsed into the regarding child resources. These in turn 
are extending SpectrumResource and CDKResource. As illustrated, the parsing is done by these 
resources and on saving, the child resources reflect their changes to the SpecMolResource 
parent and the parents save method is executed.



5 Software and Methods Developed

The editor has two different modes, 
that can be changed by pressing the 
“Switch Assignment  on/off”  button 
added  to  the  global  toolbar.  If  the 
assignment mode is off, the selected 
spectrum,  the  structure  and  the 
assignments  are  shown.  In contrast 
to the peak table displayed in Figure
21, the one in this editor shows one 
more  column.  In  this  column  the 
atom numbers  of  the atoms,  which 
are assigned to the correlated peak, 
are displayed.  If  peaks  in the peak 
table or the peak view are selected, 
they are highlighted in the other one 
as  well.  Additionally,  the  assigned 
structural  elements  are  highlighted. 
The same holds for selecting parts of 
the  2D  structure  –  the  assigned 
peaks  are  highlighted  in  the  other 
two  components  as  well.  This  is 
realised via a listener model which 
passes around selection events between the different components.

To perform an assignment, the editor has to be switched to the assignment mode. Then it is 
possible to select one or multiple peaks in the peak table or the peak chart and likewise do a 
selection of atoms (and) bonds from the structure. By pressing the “Do Assignment” button 
from the global toolbar the current assignment is stored. After all assignments are done the 
data can be persisted by just returning to display mode, reviewing the changes, and saving 
them to the underlying file.

In order to allow for the extension of existing SpecMolResources with additional spectra a 
regarding action was added to the context menu of this resource type within the resource 
navigator. This was realised by using the corresponding extension point of Eclipse.

72

Figure 30: Screenshot of the assignment editor showing an 
assignment exported from NMRShiftDB. This example shows 
the substance maaranolide G and a corresponding 1H-NMR 
spectrum. A subset of the assigned peaks and hydrogen 
atoms is selected and highlighted in all sub-elements of the 
editor.



5.4 Database Connection

5.4 Database Connection

The collective of applications, methods and algorithms described so far allow Bioclipse to 
persist data in a variety of different file formats within the file system. Additionally, it is 
possible to connect from within  Bioclipse via web services to certain online data bases, 
which provide an interface for the supported web service standards. 

However, a general persistence of data elements to a local or remote database system is a 
common and very often enquired feature  of  modern  software  projects.  Persistence  to  a 
database system enables for faster searching in large data sets and generally increases the 
data access speed, by using the indexing methods integrated into these systems. Beside this, 
the management of large file system based data collections needs more maintenance and 
strategic  planning  by the  users  themselves,  whereas  by using  a database  system this  is 
mostly pre-defined by the developers. Furthermore, due to the accessibility of data stored 
within the file system by any program, the danger of data loss is relatively high. In contrast 
to this, databases are often included into a centralised backup strategy and are most often 
just  accessible  via  the connecting software  itself,  which makes it  easier  to  control  user 
actions.

As Bioclipse is a framework with a very broad range of applications, the implementation of 
the  database  connection  should  support  this  generality  as  well.  The  resource  scheme 
implemented  in  Bioclipse is  based on persisted resources,  that  define the  connection to 
either the file or a in memory string and the actual  resource objects,  which contain the 
parsed (meaning the interpreted) object of the persisted resource. 

Including a connection to a database system would mean to translate the data object to a 
new persistence object to be stored in that database system. As there are many different 
database systems used for storing data with relevance for Bioclipse and to keep the platform 
as flexible as possible we decided not to focus on one single RDBMS (Relational Database 
Management  System), but  to  introduce a  flexible  interface  enabling the  connection to  a 
variety of different database systems.

Modern  software  projects  normally  are  built  on two very different  ideas  for  the  object 
representation  inside  applications  and  their  persistence  in  databases.  While  software  in 
nowadays is mostly implemented using a object oriented programming language, the data 
storage  is  done  using  a  relational  scheme.  The  difficulties  encountered  by  transferring 
information from one to the other is known as the object-relational impedance mismatch.

73



5 Software and Methods Developed

To bypass these problems, but still remaining flexible regarding the choice of the database 
management system to use, the mapping of data to the database is realised by using the 
Hibernate object-relational  mapping  tool.  Hibernate releases  developers  of  most  of  the 
mapping difficulties,  by introducing a general  mapping scheme based on  XML mapping 
files. Additionally,  Hibernate supports the persistence of data to many different relational 
database management systems (e.g. MySQL, Oracle, PostgreSQL, HSQL) without the need 
to change the mapping or the  Java code on changing from one system to the other. To 
connect  to  a  certain  RDBMS and  persist  data  to  it,  Hibernate just  needs  access  to  the 
regarding  database  driver,  some  connection  information  and  a  XML-based  mapping 
definition. 

Within the next sections, the general concepts of relational database systems and object-
relational  mapping will  be explained,  followed by a detailed description of the way the 
database connection was realised for the Bioclipse framework.

5.4.1 Database Systems & Object-Relational Mapping

In today's software development projects normally two very different techniques are used. 
On the programming level, the object oriented approach is favoured by using languages like 
Java, C# or C++. For data management and data persistence however, Relational Database 
Management  Systems  (RDBMS) are  the  technique of  choice.  The set  of  conceptual  and 
technical difficulties encountered on trying to translate these two schemas to each other is 
known as the object-relational impedance mismatch.

5.4.1.1 Relational Databases

In relational databases, data is stored in a series of dependent tables. Every row in these 
tables is representing one data entry, has a fixed data type and is identified by a unique 
primary key. This primary key might  be generated by just  one or by a combination of 
multiple columns. The data types usable within a database are defined by the RDBMS and 
cannot be altered. The connection of the relational data to each other over multiple tables is 
realised via so called foreign keys. These are keys used in one table as primary key and in 
an other table are entered, additionally to the primary key, to define a relationship between 
these two entries [72]. 

74



5.4 Database Connection

The primary interface  to a  RDBMS is  realised via the query language  SQL (Structured 
Query  Language), which  is  a  generalised  language  to  formulate  database queries 
implemented  by  all  major  RDBMS.  This  language  enables  the  user  to  do  nearly  all 
manipulation necessary by using a small set of commands (create, alter, drop, insert, update, 
delete and select) [73].

Most Relational Database Management Systems are built to be used by multiple users at the 
same time. This makes it necessary to ensure, that the system is returning meaningful and 
correct information to any of these users. This is done by using transactions. A transaction 
in this context can be seen as a container for one or multiple database operations, that do 
fulfil the ACID (Atomicity, Consistency, Isolation, Duration) constraints [73]:

• Atomicity: either all tasks of a transaction are performed or none of them

• Consistency: at  any  point  the  database  has  to  be  consistent  related  to  a  set  of 
integrity constraints defined by the RDBMS 

• Isolation: operations performed by different users are isolated from each other

• Durability: once the success of a transaction has been reported the transaction will 
persist regardless of e.g. a system failure

5.4.1.2 Object-Relational Mapping

The general idea in object relational (O/R) mapping is to introduce an additional layer, that 
is  used for translation and transformation between the two concepts.  This can either  be 
realised by individual implementations for the current application or by using one of the 
existing O/R mapping frameworks. These frameworks try to release the developer as much 
as possible from the mapping process itself and ensure, that the state of an object together 
with all its attributes is translated to the rows of an relational database table and vice versa 
[73]. A general scheme of this approach is shown in Figure 31.

75

Figure 31: General concept of object-relational mapping.

Persistent 
Objects

O/R 
Mapper

Relational
Database



5 Software and Methods Developed

All this is necessary, because  RDBMSs store data only, while programming objects have 
identity, state and behaviour in addition to the data. However, even just storing the data can 
be a major issue, as there often is no direct mapping between the data types of the used 
programming language and those of the RDBMSs. Furthermore, there is nothing similar to 
object inheritance and polymorphism in current RDBMS and software objects are traversed 
using direct references whereas database tables are connected via foreign and primary keys 
[74].

The easiest and straight forward way of mapping objects into a relational database is to 
perform a one-to-one mapping of the persistent class to a relational table. In this case a 
column in this table represents one attribute of the class and each class instance is stored in 
a new row. This schema is in practice sometimes loosened for performance improvement.

The probably most widely used O/R mapping system for Java is Hibernate - an open-source 
(see  Chapter  1.4.1)  licensed  (LGPL) 
application  that  stands  out  for  its 
productive efficiency and flexibility, so 
that it is applicable to nearly all types of 
projects  [73].  Hibernate is described as 
“a  powerful,  ultra-high  performance 
object/relational  persistence  and  query 
service  for  Java.  It  lets  you  develop 
persistent  objects  following  common 
Java idiom  -  including  association, 
inheritance, polymorphism, composition 
and  the  Java collections  framework” 
[75]. 

Furthermore,  it  comes with a powerful 
query  language  (HQL =  Hibernate 
Query Language) that is expressed in a 
SQL-like  syntax  and  includes  full 
support  for  polymorphic  queries. 
However,  native  SQL queries  are 
completely supported as well.

The general architecture of  Hibernate and its connection to both, the application and the 

76

Figure 32: A high level schema of the Hibernate 
architecture. The diagram shows how the objects of an 
application are persisted by hibernate to any supported 
database using mapping and configuration data. (image 
taken from the Hibernate documentation)



5.4 Database Connection

database is shown in Figure 32.

Hibernate uses  XML-based (see Chapter  6.1) configuration files to connect the relational 
database  to  so  called  JavaBeans.  JavaBeans are  Java classes,  that  show  a  standard 
constructor,  are  serialisable  and  have  public  get  and  set  methods.  For  every  class,  that 
should be persisted within the database one of these XML-based mapping files must exist, 
describing how this object should be mapped to the database. In these files it is for example 
defined, which attribute connects to which column and which connections to other tables 
exist [76].

Additionally, there is one Hibernate configuration file, that holds all information needed to 
realise the actual connection to the selected RDBMS, like e.g. which JDBC (Java Database 
Connectivity - an industry standard for database-independent connectivity between the Java 
programming language and a wide range of databases) driver to use, which RDBMS type is 
used and other connection relevant information (user name, password, etc.) [76][73]. 

The usage of Hibernate as persistence framework leads to better readable and normally a lot 
shorter code, improved development time and it makes the application independent of the 
utilised RDBMS [73]. The sole disadvantage is the slightly worse performance, though there 
are a lot of ways explained on the  Hibernate web page and in different online forums to 
improve this as well [75].

5.4.2 Implementation of Database Connections

The  integration  of  the  possibility  to  connect  Bioclipse to  database  systems  without 
introducing new dependencies was realised by using the Eclipse buddy concept for making 
the application aware of the database driver. Additionally, three new extension points (see 
3.1.1 for further information on extension points and extensions) were defined to pass the 
configuration information and the mapping data to the central database plug-in. A schematic 
depiction of this can be found in Figure 33. 

This depiction as well clarifies the plug-in schema used for maximal independence of the 
components from each other. For every resource one database-wrapper module was created 
as well as for every RDBMS to be available. All relevant information is centrally collected 
within a central database component.

The  buddy  concept  extends  the  normal  class  loading  policy  of  Eclipse.  Under  normal 

77



5 Software and Methods Developed

circumstances,  a  plug-in just  has access to its  internal  classes  and those imported from 
dependent plug-ins. However, sometimes it is just not possible to introduce the necessary 
dependencies. This is what the buddy class loading is used for. By registering a component 
as a buddy to another one, it exposes itself to it and so enables the access to needed classes 
even though they are not specifically imported. In Bioclipse this mechanism is used to make 
the central  database plug-in aware of the actual  RDBMS (currently implemented for the 
Hypersonic SQL Database) classes. 

For  transferring  the  information  needed  to  connect  to  the  database  system,  the  new 
“HibernateConfiguration” extension point is used. It is, as all newly introduced extension 
points, defined within the central database component and used to transfer information like 
the  JDBC driver  class,  the  SQL dialect  class,  the  used  sub-protocol,  a  name  used  for 
representing this database system within the resource navigator and a cache provider to 
hibernate. Except for the name, all this data is needed by Hibernate to establish the basic 
database connection. The other two extension points are directly related to the resources to 

78

Figure 33: Simplified schema displaying the connection of database systems to Bioclipse and the 
registration of wrapper classes for the different resources via extension points provided by the 
central database plug-in.

Bioclipse-Hibernate 
object/relational 

persistence
Extension Point

Extension

hibernate configuration register m
apping

register classes

Spectrum Resource

DB Resource Wrapper

Molecule Resource

Assignment Resource

Relational
Database

Management 
System

HSQL-DB



5.4 Database Connection

be persisted in the database. One is used to pass the location of the XML based mapping file, 
defining which resource variables are to be persisted in which manner, whereas via the last 
extension point the database module is informed which database enabled resource should be 
used for a given BioResource to persist it within the database.

A Hibernate mapping file, defining how assignment resources used to represent a molecule, 
multiple spectra and their assignments should be persisted into relational databases is shown 
in Figure 34. First of all, a table with the identifier “SPECMOL” is defined for the resource 
itself. Next, the primary key of this table is set by defining an identifier and map it to the 
column “SPECMOL_ID” in that table. Hibernate requires fields, that should be persisted, to 
follow the JavaBeans syntax (see Chapter 5.4.1.2). As the resource mapped here, contains 
references to other persistable objects, the next lines define how these should be transferred 
to the database. For the single molecule allowed within an assignment resource a mapping 
to a many-to-one relationship in relational databases is defined. The regarding molecule will 
be saved in the “MOLECULES” table, whereas the identifier is stored as a foreign key 
together  with  the  assignment  resource.  The  connection  of  spectra  to  their  hosting 
assignment resource is representing a many-to-many relationship.  Hibernate maps this by 
introducing an intermediate table that contains, beside the id of the assignment object, the id 
under which the spectrum is stored within the “SPECTRA” table - both as foreign keys.

Beside this, there are two more string fields stored in the assignment table - the name of the 

79

Figure 34: A Hibernate mapping file defining how an assignment resource is to be persisted into a 
relational database.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
        "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
        "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
    <class name="net.bioclipse.model.PersistedDBSpecMolResource" table="SPECMOL">
        <id name="Id" column="SPECMOL_ID" type ="long">
            <generator class="native"/>
        </id>
        <many-to-one name="Molecule" column="MOLECULE_ID" 

class="net.bioclipse.model.PersistedDBCDKResource" cascade="save-update,persist"/>
        <bag name="spectrumChildList" table="SPECTRUM_CHILDREN" cascade="save-update,persist">
            <key column="SPECMOL_ID" />
            <many-to-many column="SPECTRUM_ID" 

class="net.bioclipse.model.PersistedDBSpectrumResource"/>
        </bag>
        <property name="name" type="string" column="NAME"/>
        <property name="Extension" type="string" column="EXTENSION"/>
    </class>
</hibernate-mapping>



5 Software and Methods Developed

object  and the extension for this  type of resource.  The latter is  needed in  Bioclipse for 
correct recognition and handling of the resource within the system. Because the assignment 
resource is actually formed by data provided by these two resources, the object itself is not 
stored  in  the  database,  but  reassembled  on  parsing  by  the  sub  elements.  An  entity-
relationship  diagram  of  the  resulting  database  schema  for  this  resource  and  the  other 
chemoinformatics resources is show in Figure 35. 

It was necessary to introduce new resources wrapping around both the  BioResources and 
the persistence  objects,  because  beside  the string representation of the persisted objects 
content, additional calculable properties should be persistable to the database. First, these 
properties  are  not  defined  in  the  existing  BioResources and  second,  there  exists  no 
connection from the persisted resource to the  BioResource,  which however is needed to 
pass this additional information from the database via the persisted database resource to the 
BioResource  implementation. To enable  Bioclipse for this, the resource schema shown in 
Figure 36 was implemented. Therefore, an interface IDBResource was created as well as a 
PersistedDBResource implementing it.

80

Figure 35: Entity-relationship diagram of the database tables created by 
Hibernate for mapping the three chemoinformatics resources to relational 
databases.



5.4 Database Connection

The PersistedDBResource is extended by one class per resource, that should be persisted, 
and  is  actually  providing  the  methods  for  saving,  loading  and  deleting  the  object. 
Additionally, it holds all the general fields to be persisted, like the id of the resource, its 
name and its extension. The object itself is stored as a string representing the data content in 
the regarding file format, so that the resource can be parsed in the same way like its non-
database persisted representative. The  PersistedDBResource extending classes are adding 

81

Figure 36: UML class diagram showing the relationships of the newly introduced resources to each 
other. This enhancement of the existing resource schema was necessary to support the storage of 
calculable properties to the database together with the resources' object.



5 Software and Methods Developed

the fields to the resource, that should be persisted additionally to the object. As an example, 
fingerprints for spectra and molecules were added as such fields, but many other variables 
can be imagined. These values are calculated on first import into the database and then 
stored together with the object. This enables the system to perform fast searches using just 
these variables without the need to retrieve the whole resource and parse it.

Within the Bioclipse application, persisted resources are responsible for the actual reading 
and  writing  of  the  underlying  data  to  and  from  its  source.  Therefore,  additional 
IBioResource implementations where added to the system for every object to be persisted 
within a relational database as well. Consequently, these resources care about parsing and 
interpretation of the saved objects and provide methods for the calculation of the enhancing 
variables. 

The HSQLDB (Hypersonic SQL Database), a lightweight 100% Java SQL database engine 
distributed under an open source license (see Chapter 1.4.1), was used as an example for the 
integration of database systems. HSQLDB can easily be used as embedded database engine 
in two ways, in memory only or disk based. In the same manner any other system supported 
by  Hibernate could be integrated as well.  Any supported database system, connected to 
Bioclipse via the regarding extension point, is visible to the user as a new virtual folder 
within the resource navigator bearing the name provided via the regarding extension. 

For adding new datasets to one of the connected databases, a wizard was created. The action 
to start this wizard can be accessed in two ways, either via the context menu of the database 
folder or via an entry within the database menu. The wizard allows for the selection of the 
database the data should be persisted into and the selection of one or multiple resources 
from the actual resource tree. By finishing the wizard, the selected resources file content is 
read,  the  regarding  PersistedDBResources created,  the  data  object  copied,  the  related 
BioResources created, all data to be persisted calculated and the whole object saved to the 
relational database.

Additionally,  actions  for  retrieving  all  three  implemented  resource  types  separately  are 
included. On running one of theses actions, all regarding resources are fetched from the 
database,  the  regarding  BioResources created  and  added  as  children  to  the  regarding 
database folder. These resources can then be used in the same manner as any other resource 
in  Bioclipse. To clear the database folder from formerly retrieved datasets, another action 
was added to the folders context menu.

82



6 Semantics and Dictionaries for Metabolomics Data Representation

6 Semantics and Dictionaries for Metabolomics 
Data Representation

In  biosciences  in  general  and  in  Metabolomics and systems biology in  particular,  large 
amounts of detailed chemical information is required and published. The data obtained by 
Metabolomics research  is  to  a  major  percentage  describing  small  and  medium  sized 
molecules. Therefore, methodology from chemistry can and should be adapted to describe 
and share this data without information loss, respectively procedures already standardised 
within the life sciences have to be adopted by the chemical community. For example, the 
requirement  to  deposit  certain  experimental  data  in  open  access  repositories  before 
publication is very common in life sciences. In contrast, chemistry has a history of closed 
data collections maintained and brought to the market by chemical enterprises. These data 
collections are often even just gained by exhaustive mining of primary literature, so that 
scientists pay later on for accessing the data they and their collogues already published.

Additionally, a major part of chemical data resulting from publicly funded research is never 
published  [77] and  therewith  lost  for  the  community,  as  publication  in  peer  reviewed 
journals  is  still  the  predominant  way  of  communicating  information  in  scientific 
communities. In this context, the internet is of growing importance, as it evolved into one of 
the most important sources of information in general  and in sciences in particular.  This 
development was realised by the publishers too, so that nearly all scientific papers can be 
obtained  in  an  electronic  form  at  least  additionally  to  the  classic  printouts,  if  not 
exclusively. 

As most of these electronic media are at the moment nothing more than digital replicas of 
their paper-based counterparts, the advantages provided by existing web technologies are 
normally not exploited. This happens, although a big surplus value could be added to the 
data entities by e.g. linking them to each other and unambiguously defining them using 
controlled vocabularies, thesauri, dictionaries and ontologies. This would allow for mapping 
the semantic relationships between data entities and for the preservation of these within the 
publication process. A dictionary in this context is defined as a unique definition of terms, 
whereas a thesaurus is used for defining relations between these terms, and an ontology 
structures these relationships in a hierarchical manner.

The real proceeding within these improvements would lie in the possibility to browse, find 
and utilize the so published data not just by humans, but by automatic routines as well. This 

83



6 Semantics and Dictionaries for Metabolomics Data Representation

vision of a knowledge management framework for navigation and discovery of distributed 
resources on the web was described by Tim Berners-Lee and James Handler in [78] as the 
“Semantic Web”. The Semantic Web Activity of the W3 Consortium is therefore developing 
new technologies facilitating the creation of machine-readable content [79].

The schematic diagrams of two different publication processes are shown in Figure 37 and 
Figure  38.  Whereas  in  Figure  37 the traditional  way is  shown with its  massive loss  of 
information and semantics,  Figure 38 visualises a possible alternative, which is supported 
by the tools and formats developed and defined within this thesis. 

Because chemical data traditionally is validated by associated information about properties 
and analysis, every publication of a new compound is accompanied by measurements of 
these for justification. This leads to a very broad information base “available” mostly as 
printed  text  extended  by  graphical  depictions  also  forming  the  major  feedstock  of  the 

84

Figure 37: Schematic depiction displaying the actual publishing process.

Author/ 
Manuscript

Word Processor 
embedded Graphics

Publishing 
Agency

ReaderPDF

Figure 38: Enhanced publishing process pointing out the preservation of semantics together with 
the deposition of associated data in public repositories.

Author/ 
Manuscript

XML, CML
SVG

Publishing 
Agency

ReaderXHTML

Public
Repository

linkage

retrie
val

depostiton

deposition



6 Semantics and Dictionaries for Metabolomics Data Representation

pharmaceutical  industry for  the development  of new drugs.  So,  the enhancement  of the 
publication process with semantics would not just lead to better quality and efficiency in 
academic research, but would improve the drug development process sustainably as well. 
An important prerequisite for enabling publication of data under preservation of semantics 
is the deposition of this data in freely accessible data repositories. These are probably best 
maintained by public  institutions,  as  especially  the public funding agencies would have 
interest in the data produced with their help, being available for future research. The so 
deposited data would then on the one hand have to be interlinked and on the other hand be 
connected to the primary publication, so that it would be possible to access all relevant data 
starting from any of the deposition points. 

There  are  first  approaches  from  publishers  into  this  direction.  The  Royal Society of 
Chemistry for example, recently announced an initiative of enhancing their journal papers 
so that  the data published can be read, indexed and intelligently searched by machines. 
Additionally,  they are going to directly include information on molecular structures and 
scientific concepts into the publication or link them to available electronic databases [5]. 

Another  major  advantage  for  publishers  and  authors  in  publishing  data  in  an  agreed 
machine processable format, is the augmentation of publication quality. An automatic data 
validation by regarding software would lead to a simplification of the quality assurance 
process  on  both  sides  –  publishers  and  authors.  Additionally,  open  scientific  software 
helping in authoring this type of publications is already being developed and will further 
evolve.  Indeed,  the  publication in compliance with the constraints  needed to realise  the 
“Semantic Web” does not mean real extra work for neither side, it is just about accepting 
the new work flows. In addition to the necessity of designing the concepts underlying this 
new  publishing  process,  the  implementation  of  high  quality  free  software  products  is 
needed. These would reduce time and money to be invested by the involved parties. 

Necessary  prerequisites  for  the  realisation  of  this  vision  are  the  formalisation  of  data-
representations  in  machine-readable  and  processable  formats  and  vocabularies. 
Furthermore,  supportive software systems that  process these information without  human 
intervention have to be developed. Agreement on certain open standards to define these 
formats and vocabularies enables the success of this approach by giving the community the 
possibility to develop applications and other technologies on top of them. The  eXtensible 
Markup Language (XML), as a highly structured data format, that is made for being both, 
human  and  machine  understandable,  lends  itself  to  form  the  basis  for  many  of  these 
emerging technologies. 

85



6 Semantics and Dictionaries for Metabolomics Data Representation

In the next chapters this and the Chemical Markup Language (CML), a XML vocabulary for 
molecular data, will be introduced and a special vocabulary for spectral data and related 
dictionaries for the definition of spectral  meta data developed within this  thesis  will  be 
presented and explained in detail.

86



6.1 The Extensible Markup Language (XML)

6.1 The Extensible Markup Language (XML)

XML is a simple, general-purpose text format derived from SGML (Standard Generalized 
Markup Language -  ISO 8879) for modelling data in a tree-like structure. Because every 
XML document has to conform to a set of standardised rules defined and maintained by the 
W3C (World Wide Web Consortium),  XML encoded documents are platform independent 
and highly portable [80]. 

It was created by the World Wide Web Consortium to overcome the limitations of HTML, 
the  Hypertext Markup Language.  Like  HTML,  XML is  based  on  SGML  (Standard 
Generalized Markup Language). Although SGML has been used in the publishing industry 
for decades, its perceived complexity intimidated many people from other areas from using 
it. 

In contrast to HTML, that has a strong focus on the presentation of the data, XML focusses 
on the  content,  its  structure  and its  semantics.  Therefore,  it  is  possible  to  have several 
different ways of presenting the same XML enclosed textual information by using different 
so called transformations for generating the presentational layer.

In the beginning,  XML was designed to be a web-aware container for data managed by 
legacy systems, but it has evolved until today to a more general way to model components 
of information systems [81]. In fact, it is a meta-language for describing markup languages, 
as the set of elements and attributes to be used and the structural relationship between them 
are not fixed, but are to be defined by the user [82].

The format is flexible enough to be used for domains, as diverse as web sites, electronic 
data  exchange,  vector  graphics,  mathematical  equations,  object  serialisation,  remote 
procedure calls, voice mail systems, scientific information and many more. This is realised 
by the definition of a set of human-readable tags used to markup the data and therewith 
identifying structures within the document [82]. 

The W3C specification just defines some general rules, like elements must have a starting 
and ending tag and each attribute must have a single value. The actual definition of the 
elements and attributes is up to the user/developer.

XML has a lot of advantages in comparison to other data formats, it is:

• Simultaneously human and machine-readable

• It is to some extend self documenting

87



6 Semantics and Dictionaries for Metabolomics Data Representation

• It is platform independent

• It is based on international standards

• By its hierarchical structure most data structures can be represented

Therewith,  XML can be  used to  encode  data  to  be  used by very different  applications 
without the need to communicate a complex set of rules on how to parse this data into 
meaningful information. 

XML documents following all the notational and structural rules for  XML are called well-
formed. Programs processing  XML should check any document for well-formedness and 
reject input that does not follow the defined rules. So being well-formed is equivalent to a 
document being parseable or not.

An element within a XML document is defined as the content being surrounded by a start 
and a end tag plus the tags themselves.  Every element might contain several  attributes, 
which are providing additional information for the regarding element. Attributes start with 
an identifying string followed by an equals sign and the assigned value in quotations.

The structure of the elements within a XML document and their attributes may be defined 
by one  or  multiple  Document  Type  Definitions (DTD).  A  DTD contains  a  set  of  rules 
controlling how the elements are ordered, nested and combined. DTD's are not fixed to one 
XML document, but can be reused for other documents as well. By using the same DTD for 
a series of documents,  applications are given the possibility to interpret  the information 
from the DTD, analyse the XML document, and to validate its data before presenting it to 
the user or performing any processing steps. Other techniques for controlling/defining the 
structure of XML documents are XML Schema, XML Namespaces. 

XML Schema is the successor of DTD and first of all differs from DTD by being completely 
XML based. Additionally,  XML Schema extends the old  DTD based system as well with 
respect  to  the  content  as  with  respect  to  structural  features.  This  is  realised  by  the 
specification  of  new  data  types  and  new  elements  together  with  their  attributes.  Any 
concrete  implementation  of  a  XML Schema is  called  a  XSD (XML Schema Definition) 
[83][84][85].

By  using  XML Namespaces the  uniqueness  of  elements  and  attributes  can  be  assured. 
Elements and attributes defined in more than one vocabulary can be used within one XML 
document.  If  each  of  these  vocabularies  gets  another  namespace  assigned,  ambiguity 
between identical entries can be resolved. 

88



6.1 The Extensible Markup Language (XML)

A namespace in a XML instance is a declared pointing of an eventually existing prefix to a 
URI (Uniform Resource Identifier). This URI is not treated as a web address, but as a simple 
string by the XML parser. A XML namespace does not require that its vocabulary is defined, 
though it is fairly common practice to place either a  DTD or a  XML Schema defining the 
precise data structure at the location of the namespace's URI [86].

With the help of the XML Linking Language (XLink) it is possible to interconnect XML data 
elements, even from within different XML documents, to each other. In contrast to the hyper 
links used in  HTML,  XLink is not unidirectional, but allows for bi- and multi directional 
references [87]. 

The  XML Pointer (XPointer)  technology  extends  XLink to  support  addressing  into  the 
internal  structures  of  XML documents.  XPointer builds  upon  the  XML Path Language 
(XPath)  to  reference  to  elements,  selections,  character  strings  and  other  parts  of  XML 
documents, without the need to have a jump point (e.g. ID attribute) defined at that position 
[88].

XPath was mainly developed for directly addressing parts of XML documents. In support of 
this primary purpose, it also provides basic facilities for manipulation of strings, numbers 
and booleans. It is the result of an effort to provide a common syntax and semantics for 
functionality shared between XSL Transformations and XPointer [89].

The Extensible Stylesheet Language (XSL) is in fact two different languages used to format 
and transform XML data. The two components of XSL are 

• XSL-FO (XSL Formatting Objects): used for formatting XML data

• XSLT (XSL Transformation): used for the transformation of one  XML dialect into 
another format

These  two components  are  often combined  together  with  the  already mentioned  XPath 
technology. The sub-languages can be used together as XSL or independently [90]. XSLT is 
for  example  used  for  the  transformation  of  XML based  datasets  to  an  HTML based 
presentation, giving the possibility to combine the storage of data in a semantically rich 
format and the appealing and universal presentation via HTML browsers.

89



6 Semantics and Dictionaries for Metabolomics Data Representation

The large amount of information being stored, exchanged and presented using XML itself, 
or  XML compliant dialects, led to the need to intelligently query these data sources. The 
capabilities of  XPath turned out to be to restricted for fulfilling this, so the  XML Query  
Language (XQuery) was implemented, using  XPath and  XML Schema for the data model 
and its function library, to meet this requirements. It is a query language designed to query 
large collections of XML data by using a SQL similar syntax extended by a set of features 
known from modern programming languages [91]. 

In the natural sciences, and especially in chemo- and bioinformatics, exchanging, storing 
and analysing large amounts  of  data  is  of major  importance.  This  is  why the  scientific 
community very early realised the benefits it could obtain from using/adopting XML. This 
led to the development of a huge variety of different XML vocabularies for many different 
scientific fields [92]. Some examples are:

90

Figure 39: Diagram showing the connection of XML to other relevant vocabularies and applications.

XQuery

XSLT

Transf
ormation

Q
ue

ry

XML Schema

DTD

Namspaces

B
ui

ld
in

g 
B

lo
ck

s
A

pp
lic

at
io

ns

XHTML
CML

MathML

SBML

XML
Formating XSL

SVG

RDF

S
cience

M
ultim

edia

S
em

antic W
eb

XSL-FO

OWL
Validation

Com
bination



6.1 The Extensible Markup Language (XML)

• BSML  (Bioinformatic  Sequence  Markup  Language): encodes  biological 
sequence  information  and  includes  graphical  representations  of  biologically 
meaningful  objects  such  as  sequences,  genes,  electrophoresis  gels,  and  multiple 
alignments [93].

• BioML (Biopolymer Markup Language): designed to be used for the annotation 
of  biopolymer  sequence  information.  BioML allows  the  full  specification  of  all 
experimental  information  known  about  molecular  entities  composed  of 
biopolymers, for example, proteins and genes [94].

• SBML  (Systems  Biology  Markup Language): a  computer-readable  format  for 
representing  models  of  biochemical  reaction  networks.  SBML is  applicable  to 
metabolic networks, cell-signalling pathways, regulatory networks, and many others 
[95][12].

• PDBML (Protein Data Bank Markup Language): the representation of archival 
macromolecular structure data in XML [96].

• AnIML  (Analytical  Information  Markup  Language): the  XML standard  for 
analytical chemistry data [97].

• CML (Chemical Markup Language): a flexible text format designed to facilitate 
the  interchange  and  deposition  of  chemical  information  (see  Chapter  6.2) 
[65][71][98].

Additionally most of the major biological and chemical database systems are providing an 
XML output of their data [99].

Recapitulating, the major advantages of using XML in sciences are the capability of storing 
data in a semantically  rich manner,  the  extendibility  of any  XML based format without 
loosing the information already encoded using that format, the possibility to parse any XML 
compliant file using standard XML parsers, the better searchability and the easy exchange of 
XML based data [100].

91



6 Semantics and Dictionaries for Metabolomics Data Representation

6.2 The Chemical Markup Language (CML)

The Chemical Markup Language is the result of the collaborative approach to tackle some 
of  the  problems  existing  within  the  scientific  community  regarding  the  exchange  of 
chemical information via the internet and other networks. It was developed to hold chemical 
entities (molecules, crystallographic data, reactions and further chemical concepts) using an 
XML vocabulary  and  for  the  first  time  offers  a  universal,  platform  and  application 
independent format for storing and exchanging chemical information [65]. 

CML deliberately does not cover all chemistry but concentrates on "molecules" and data 
describing molecules or their properties. 

An overview of the most important molecular elements of CMLCore is displayed in Table 1 
(extracted from the CML FAQs [101]). The modularized structure of CML2 is described in 
more detail later in this chapter (see page 94).

92

Table 1: Overview of the most important molecular elements contained in the 
CML core definition.

element short description

<angle>
<atom> represents an atom in a molecule
<bond> element represents a bond in a molecule

<crystal> element represents a unit cell
<electron> element represents a electron

<feature>

<formula>

<molecule>

element represents a valence angle and may be used to construct a molecule from 
internal coordinates or z-matrix

element represents a feature in a biomolecule. It is mainly to support sequence and 
structure files and will probably be mainly textual
element represents the atom count in a molecule. It can be hierarchical (i.e. a 
formula can contain sub-formulas recursively)
represents a "molecule" as a group of atoms and bonds. It can be hierarchical (i.e. a 
molecule can contain sub-molecules recursively)

Figure 40: Image displaying a section of a CML document encoding the amino acid arginine.

<?xml version="1.0" encoding="UTF-8" ?>
<molecule convention="MDLMol" id="arginine" title="ARGININE"
  xmlns="http://www.xml-cml.org/schema">
  <atomArray>
    <atom id="a1" elementType="C" hydrogenCount="0" x2="0.7386" y2="0.1493" />
    <atom id="a2" elementType="C" hydrogenCount="0" x2="-0.3772" y2="-0.6129" />
    ...
  </atomArray>
  <bondArray>
    <bond atomRefs2="a1 a2" order="1" />
    ...
  </bondArray>
</molecule>



6.2 The Chemical Markup Language (CML)

The example in  Figure 40 shows a  CML document representing the amino acid arginine. 
The molecule is containing an array of atoms, formed by multiple atom elements and an 
array of bonds, formed by multiple bond elements, that link via the atomRefs attribute to the 
regarding atoms. With this attribute a listing of atom ids is stored as strings. This way of 
using references is the standard procedure of linking entities within CML to each other.

CML was one of the first specialist markup languages and therefore is both mature and well 
established in the chemistry community.

Because CML is, as any XML compliant language, a plain text file format and because it is 
capable  of  holding  extremely  complex  information  structures,  the  chemical  markup 
language is especially well suited to be used for long term archival of chemical data. Even if 
the  regarding  XMLSchema or  DTD is  not  available  (any  more),  based  on  the  intuitive 
labelling of the elements it will still be possible to extract most of the information from the 
documents. 

Furthermore, it is thought to be of major help within the process of publishing scientific 
data, by giving the submitting person the possibility to directly associate the data sources 
underlining their conclusions to the textual representation within the same document. 

Because the authors can provide all the important information in one go, and the publisher 
just converts the relevant information to e.g. tables, graphics and diagrams this would as 
well shorten and improve the publishing process strongly. Thereby, the eventuality, that the 
(at the moment not even always attached) supplementary material will later not be available 
any more with the publication itself  would be eliminated.  This would give anybody the 
chance to better understand and/or recapitulate the published facts.

Especially for data published on the Internet, in open data repositories, but as well for the 
journal based publishing process and in house databases, a confirmation of the validity of 
the  data  is  of  major  importance.  For  this  purpose  G.  Gkoutos  et  al.  [102] described  a 
mechanism for the certification of chemical  data and meta data using digital  signatures, 
based on the established X.509 certification technology  [103]. This includes not only the 
certification of data by persons or organisations, but highlights as well how a document or a 
part of a document could be signed by an application. So, e.g. a  CML encoded molecule 
generated  by  a  molecular  calculation  application  could  be  signed  by  this  program 
automatically.

CML is a project still under development with its functionality being extended whenever the 

93



6 Semantics and Dictionaries for Metabolomics Data Representation

need for new concepts comes up. By being based on a flexible framework and trying to 
reuse existing concepts and protocols defined by the W3C wherever possible, the project is 
well prepared for ongoing evolution.

The Chemical Markup Language in version 2 is designed in a modular  way, by a core 
component, providing the general framework for encoding molecular data and some further 
components  extending  this  framework  to  support  advanced  concepts  like  reactions  and 
properties. Additionally, it is possible to seamlessly integrate information encoded in any 

94

Figure 41: Diagram showing the CML components and some further XML languages, that 
integrate well with CML. The CML components are defined as follows: CMLCore – molecular 
and related information, CMLReact – chemical reactions, CMLSpect – spectral information 
(see 3.2.1), CMLComp – computational chemistry, CMLRSS – an XML based RSS carrier for 
chemical data and CMLQuery – general query language for chemistry. MathML is the 
Mathematical Markup Language, for describing mathematics, SVG stands for Scalable Vector 
Graphics, a standard for describing 2D vector graphics and STMML (Scientific-Technical-
Medical Markup Language) is a markup language for scientific, technical and medical 
publishing (image adapted from [Murray-Rust2003]).

CMLCore

CMLReact

CMLSpect

CMLRss

CMLComp

MathML

SVG

XHTML

CMLQuery

ot
he

r m
ar

ku
p

 im
pl

em
en

ta
tio

ns
ex

te
nd

ed
 c

he
m

ic
al

fu
nc

tio
na

lit
y



6.2 The Chemical Markup Language (CML)

other XML dialect by ensuring the uniqueness of element names via namespacing. 

In  Figure  41 the  different  components  forming  CML and  their  relationship  to  some 
extending markup languages is shown. 

The  following  list  gives  a  short  overview  on  the  different  components  and  a  short 
description of them [98]:

• CMLCore: used to encode molecular information and related meta data

• CMLReact: for representation of chemical reactions [104]

• CMLSpect: holds spectral information and related meta data (see Chapter 6.3)

• CMLRSS: an XML-based RSS carrier for chemical data [56]

• CMLComp: for encoding computational experiments

• CMLQuery: adds query functionality to CML 

All  non-chemical  concepts,  like for numeric data,  data structures (arrays and  matrices), 
scientific units, etc., are contained in additional markup dialect - the  Scientific,  Technical 
and  Medical Markup Language (STMML)  [105][106].  Since  version  2  CML is  using 
XMLSchema instead of a DTD for entity definition. This allows CML to validate both the 
structure of documents containing CML components and the data types of these components 
by using generic processing tools.

CML is specified more formally by a  Document Object Model (CMLDOM) that contains 
interfaces and methods constructed using a collection of Java classes. The CMLDOM API 
(API = Application Programming Interface) is to be used by software developers/providers 
for  the  programmatic  creation,  manipulation  and  export/import  of  chemical  information 
using  the  Chemical  Markup  Language [107][71].  This  Java implementation  of  the 
CMLDOM is based on XOM, a new open-source, tree-based API for processing XML, that 
aims at correctness, simplicity and performance [108].

The  Chemical  Markup Language has  already been  used  in  the  chemical  community  to 
manage very diverse chemical documents and information including:

• Spectra

• Organic molecules

• Different types of publishing

95



6 Semantics and Dictionaries for Metabolomics Data Representation

• Inorganic crystallography

• Regulatory processes

• In databases

• Macromolecular sequences and structures

Therewith, CML is perfectly fitted to handle chemical information under preservation of its 
semantics.

96



6.3 The CMLSpect Vocabulary for Spectral Data

6.3 The CMLSpect Vocabulary for Spectral Data

The CMLSpect definition was developed during this thesis in collaboration with the group 
of Dr. Murray Rust from the Unilever Centre for Molecular Informatics, Cambridge, UK. 
CMLSpect is an enhancement of the formerly described  Chemical Markup Language for 
encoding spectroscopic data (see Chapter 1.3). 

CMLSpect was designed to meet several  aims. First  of all,  it  is  used to encode general 
spectral data. Beside this, it is capable of storing annotations for this primary data, like e.g. 
peak shapes,  the  coupling of  multiple  peaks  in  a  NMR spectrum and other  information 
important  for,  or  resulting from spectrum interpretation.  Additionally,  it  is  able  to  hold 
associated meta data, like information about the experiment itself, the molecule measured 
and the machine used for  the measurement.  Furthermore,  the  possibility to  interconnect 
spectral data elements with molecular CML data elements is implemented. 

Therewith, CMLSpect is able to hold spectral data recorded in the laboratory as well as data 
resulting  from  simulations.  As  spectroscopic  methods  are  broadly  applied  and  it  is 
effectively mandatory to report their results with the publication of novel compounds, there 
exist a large amount of this data hidden in printed publications. Together with the other 
CML dialects  CMLSpect allows to encode the information contained in analytical blocks 
(see  Figure  42 for  an  example)  found  in  these  publications.  The  extraction  of  this 
information using text mining approaches would give access to the chemical data published 
in the last 50 years to be used e.g. for structure dereplication and elucidation. However, this 
is  a  very  demanding  and  difficult  task,  as  the  format  of  these  analytical  blocks  is  not 
uniformly defined, which leads to a big variety of slightly different appearances, sometimes 
even within the same journal.

Nevertheless, there are tools being developed to enable this “chemical archaeology”. One 
example is a tool called  OSCAR (Open Source Chemistry Analysis Routines)  [109] [110], 
which was integrated into the Bioclipse framework in cooperation with the author. OSCAR 
is  performing  an  automatic  regular  expression  based  semantic  annotation  of  chemical 
publications.  It  extracts  structures,  and  spectra,  displays  InChIs (IUPAC International 
Chemical Identifier) and SMILEs, detects chemical names and creates structures from them, 
if  they are  IUPAC compliant,  from publications.  Therein,  it  reaches  an average  rate  of 
correctness  of ~ 50%. The  Bioclipse integrated variant  is  capable of the same, just  that 
additionally, the identified chemical entities are parsed into the regarding resources and are 

97



6 Semantics and Dictionaries for Metabolomics Data Representation

placed into the central navigator, whereas all other detected categories can be displayed as a 
document with marked up regions. Nevertheless, for the future it is probable, and supported 
by our developments, that published data will be stored under preservation of the semantics 
in some type of repository (either institutional or centralised) with linkage to the regarding 
publications and  vice versa.  This will allow for easy retrieval of the analytical data even 
without human intervention.

Because of the overall facilitation,  CMLSpect and CML in general mean to the publishing 
process  and  the  availability  of  semantically  meaningful  chemical  data,  we expect  most 
vendors  of  spectrometers  to  adapt  to  these  standards.  This  will  presumably  lead  to 
algorithms  to  convert  most  vendor  formats  to  CML in  the  near  future.  These  will  be 
available either as separate software libraries or better by providing  CML exports of the 
measured data  directly.  I  do not see a  possibility  to  implement  conversion tools  for  all 
vendor formats on our side, as they are mostly closed source and it would mean to much 
investment  of time and money to  refactor  these data encodings.  As most spectrometers 
already provide exports to the JCAMP-DX format, and our methods are capable to convert 
this to CML, there already exists a possibility to import spectrometer generated data into the 
systems developed within this thesis.

98

Figure 42: Depiction displaying a typical analytical block from a paper published in a journal of 
synthetic organic chemistry with information about various analytical experiments. Data for a 
column chromatography, 1H-NMR, 13C-NMR, IR and EI-MS experiments is shown. (from 
Molecules 2007, 12, 49-59: Microwave Assisted Synthesis of Substituted 
Hexahydropyrrolo[3,2-c]quinolines).



6.3 The CMLSpect Vocabulary for Spectral Data

At  the  moment  of  writing,  CMLSpect is  capable  of  capturing  the  three  most  common 
occurrences of spectra:

• Continuous spectra  y= f x   (6)

• Discrete or peak spectra x1, y1 xn , yn  (7)

• 2-dimensional spectra  z= f  x , y (8)

By addressing all spectral  data as representations of these types of functions the design 
ensures  the  flexibility  needed  to  handle  data  from  most  if  not  all  currently  available 
spectroscopic methods and hopefully is prepared for upcoming new technologies. Anyway, 
if necessary it is without any difficulty possible to extend the actual  CMLSpect schema to 
meet  future  demands.  Additionally,  as  spectroscopists  and  chemists  use  many different 
ontologies,  that  sometimes  are  just  irreconcilable,  CMLSpect does  not  define  a  fixed 
vocabulary for adding annotations, but provides the framework for precisely defining them.

For  CMLSpect, there were some specific  elements been defined,  which again are to  be 
combined  with  the  existing  CML elements.  Table  2 gives  a  short  overview  on  these 
elements and their semantics. An example for a CML encoded spectrum is given in Figure
43 (see  Chapter  9 for  further  examples).  This  example  shows  parts  of  a  NMRShiftDB 
exported  CML file  containing  a  1H-NMR spectrum  and  a  molecule.  Additional  CML 
examples clarifying the usage and meaning of the described elements are shown in Chapter 
9.

<spectrum> is the top level element for spectral data. Within this element all other elements 
describing the spectrum directly are contained, whereas indirect descriptions can be added 

99

Table 2: The spectrum specific CML elements.

element short description
spectrum List specific container for holding <spectrum> elements

spectrum

container for holding <peak> elements
peak a container for the real peak values

holds the actual x-value for this peak
holds the actual y-value for this peak
element containing details & annotations about the peak
top level container for continuous spectral data
element holding the x-values in an <array> or a <matrix>
element holding the y-values in an <array> or a <matrix>
enfolds several peaks having a chemical relationship

the root element for every contained spectrum identified by an “id” 
attribute. Its type can be set using the “type” attribute.

peakList

xValue
yValue

peakStructure
spectrumData

xaxis
yaxis

peakGroup



6 Semantics and Dictionaries for Metabolomics Data Representation

by  using  the  CML referencing  methodology  (see  Chapter  6.2 for  more  information  on 
referencing).  If  more  than  one  spectrum  or  multiple  snippets  of  spectra  have  to  be 
represented, a <spectrumList> containing multiple <spectrum> entries is to be used. 

A <spectrum> has two important attributes - id and type. The id should hold an unique 
identifier for this spectrum, whereas type defines the type of the spectrum and can currently 
be set to  NMR,  massSpectrum,  UV/VIS and  infrared. Dependent on the occurrence of the 
spectrum (if it  is  continuous or discrete)  the <spectrum> contains <spectrumData> or a 

100

Figure 43: Parts of a NMRShiftDB exported CML file containing a 1H-NMR peak spectrum spectrum and 
a molecule. The usage of the most important spectrum relevant elements and their attributes is 
demonstrated (additional more complete example files can be found in Chapter 9). 

<cml xmlns="http://www.xml-cml.org/schema"
  xmlns:siUnits="http://www.xml-cml.org/units/siUnits"
  xmlns:units="http://www.xml-cml.org/units/units"
  xmlns:nmr="http://www.nmrshiftdb.org/dict"
  xmlns:cml="http://www.xml-cml.org/dict/cml"
  xmlns:subst="http://www.xml-cml.org/dict/subst"
  ...>
  <molecule title="1H-Indol-3-yl-beta-D-ribohexo-3-ulopyranoside"
    id="nmrshiftdb10026026">
    <atomArray>
      <atom id="a1" elementType="C" x2="4.231" y2="1.1423" 
            formalCharge="0" hydrogenCount="0" />
      <atom id="a2" elementType="C" x2="4.231" y2="1.9673" 
            formalCharge="0" hydrogenCount="0" />
      <atom id="a3" elementType="C" x2="3.5167" y2="2.3797" 
            formalCharge="0" hydrogenCount="0" />
      ...
    </atomArray>
    <bondArray>
      <bond id="b1" atomRefs2="a1 a2" order="D" />
      <bond id="b2" atomRefs2="a2 a3" order="S" />
      <bond id="b3" atomRefs2="a3 a4" order="D" />
      ...
    </bondArray>
  </molecule>
  <spectrum id="nmrshiftdb10074894" moleculeRef="nmrshiftdb10026026" type="NMR">
    <conditionList xmlns="http://www.xml-cml.org/schema">
      <scalar dataType="xsd:string" dictRef="cml:field" 
              units="siUnits:hertz">500</scalar>
      <scalar dataType="xsd:string" dictRef="cml:temp"  
              units="siUnits:k">Unreported</scalar>
    </conditionList>
    <substanceList>
      <substance role="subst:solvent" title="DMSO-d6" />
    </substanceList>
    <metadataList xmlns="http://www.xml-cml.org/schema">
      <metadata name="nmr:assignmentMethod" content="1D shift positions,HMBC,HMQC"/>
      <metadata name="nmr:OBSERVENUCLEUS" content="1H" />
    </metadataList>
    <peakList xmlns="http://www.xml-cml.org/schema">
      <peak xValue="3.369999885559082" xUnits="units:ppm" peakShape="sharp" id="p0" 
            atomRefs="a25">
        <peakStructure type="coupling" peakMultiplicity="nmr:ddd" atomRefs="a22" 
                       units="unit:hertz" value="10.3" />
        <peakStructure type="coupling" peakMultiplicity="nmr:ddd" atomRefs="a32" 
                       units="unit:hertz" value="1.8" />
      </peak>
      ...
    </peakList>
  </spectrum>
</cml>



6.3 The CMLSpect Vocabulary for Spectral Data

<peakList>. If both forms of information are available a <spectrum> might contain both of 
them as well.  There could multiple <peakList>s be defined within one spectrum. These 
could e.g.  encode for the results of different  peak picking methods applied to the same 
continuous data. This shows once more the already mentioned attempt to hold the definition 
of the vocabulary as flexible as possible. 

A <spectrumData> element holds a <xaxis> and a <yaxis>. Inside these, either <array> or 
<matrix> are used to store the actual values, depending on the dimensionality of the data. 
Both are representations of primitive data types and cannot contain any complex objects, 
but hold the actual data elements separated by a delimiter. This delimiter is per default a 
“white space”, if any other delimiter should be used, it has to be defined via the delimiter 
attribute.  If  for  an <array> a starting point,  an endpoint  and a size  are defined via  the 
regarding attributes,  the array itself will be generated implicitly.  Together with <scalar> 
these two elements are the primary methods for communicating scientific data not having 
special elements within CML. To add semantics to these elements references to dictionaries 
are used via the dictRef attribute (see Chapter 5.2.1 and Figure 19 for further information on 
dictionaries). This approach can and should be used to extend other existing CML elements 
as well. Another important attribute of this primitive elements is the dataType, which helps 
software  to  decide  how to  process  the  contained  data  by  defining  the  data  type  to  be 
expected.

In contrast to this a <peakList> is formed by multiple <peaks> . The actual numeric values 
are  assigned  to  those  <peak>s  by  the  attributes  xValue  and  yValue.  Other  important 
attributes of the <peak> element are atomRefs, bondRefs and moleculeRefs, via these an 
assignment of peaks to structural features is possible. A <peakGroup> is used to combine 
several <peak>s showing a chemical relationship, the formerly described attributes can be 
used in this context as well. 

To annotate a spectrum it most often is reduced to its peaks and other subsidiary features 
(e.g. the peaks shape, or its size). So in  CMLSpect a peak is just defined as a region of a 
spectrum identified by the author which he/she wants to comment on. In many cases peaks 
are a (lossy) way of communicating a spectrum in form of its peak fingerprint. This was a 
very common way to represent spectral data in times where computer memory was still 
heavily limited. In nowadays it can still be used as additional information beside the full 
spectral data set for performing fast searches and comparisons. However, as it can be very 
useful to mark and annotate regions of a spectrum,  CMLSpect provides some additional 
elements and attributes for this. 

101



6 Semantics and Dictionaries for Metabolomics Data Representation

Thus, a peak can have an attribute peakMultiplicity, which for example can define a triplet 
in  a  NMR spectrum  (see  Figure  44 lower  spectrum).  The  element  <peakStructure>  is 
thought to give details about the peak like e.g. NMR couplings. Therefore, its attribute type 
has to be set  to  “coupling”,  the attribute  atomRefs  defines the atom to which the peak 
couples and with the help of the attributes value and units the coupling constant would be 
stored. By the attribute peakShape of <peak> the form of a peak can be defined, e.g. as 
being “sharp” or showing a “shoulder” (see Figure 44 upper spectrum).

Other  CML elements occurring commonly within sections describing spectral information 
are shown and shortly described in Table 3.

These  elements  are  mostly  containers  for  additional  information  on  the  experiment. 
Conditions of the experiment are to be stored in <parameterList> and <conditionList>. With 
the  two  being  usable  quite  arbitrary,  just  that  the  first  one  has  <parameter>  children, 
whereas the latter might hold any CML elements that make sense. We think, that chemical 
conditions of experiments like pH, temperature and concentration are better stored within 
<conditionList>  while  <parameterList>  is  better  used  for  storing  e.g.  machine  settings. 

102

Figure 44: Two sample spectra visualising the meanings of peakStructure and peakShape. The 
upper one is a IR spectrum of 1-butanol-3-methyl-acetate showing two different peak shapes, a 
sharp peak and a shoulder. The second one is a 1H NMR spectrum of ethanol showing two 
different couplings, for the methyl triplet and the methylene quartet.



6.3 The CMLSpect Vocabulary for Spectral Data

However, as already stated, these are just proposals and not obligatory rules. 

<substance> refers to a physical material. If contained in a <spectrum> it is the material that 
was or is  studied.  If  there are mixtures  of substances a  <substanceList> with regarding 
<substance> children should be used. Another important and probably very intensively used 
element group within CML spectra is the <metadataList> and its <metadata> children. We 
defined  <metadata>  in  comparison  to  <parameter>  and  <condition>  as  something  the 
library/web community care about, while the latter is probably more used by processing 
software. In  Bioclipse we use <metadata> e.g. for user defined fields to be added to the 
spectrum and to include all that data existing in many  JCAMP-DX encoded spectra, that 
does not fit into any of the other container elements (see also Chapter 5.2.3, Figure 20,  and 
Chapter  5.2.2).  Beside  these  elements,  it  is  certainly  possible  and  very  often  useful  to 
include other  CML elements into spectral  sections. So it makes sense to add connection 
tables describing molecules or add CMLReact encoded reaction sections for describing e.g. 
fragmentation processes as they occur in mass spectrometry.

There  exists  no  general  agreement  on  the  definition  and  interpretation  of  a  spectrum. 
However, software implemented for parsing spectral data does need to rely on the existence 
or  absence of  certain  information.  As there  is  no general  XML mechanism available  to 
address this problem, a new approach was defined using Schematron, XSLT and XPath. No 
general CMLSpect processor can support the huge diversity of constraints and conversions 
needed for spectral data, especially as many of these may not even be communally agreed. 
To solve this, the concept of conventions was introduced and two examples being set up for 
NMRShiftDB (an open access online database for  NMR spectra) and  JSpecView (an open 

103

Table 3: CML elements commonly occurring in CML encoded spectral  
data.

element short description
container for parameters

parameter
container for chemical conditions
container for meta data
element holding relevant meta data

sample container without controlled semantics, for free use by authors

scalar

container substances

substance

parameterList
element holding parameters, like e.g. machine settings

conditionList
metadataList

metadata

primitive element for e.g. physical quantities, provided with 
semantics by using dictionary references

substanceList
primitive element for e.g. physical quantities, provided with 
semantics by using dictionary references



6 Semantics and Dictionaries for Metabolomics Data Representation

access spectrum visualisation application). Both these conventions are defined as informal 
and human readable documents, and as computer readable Schematron files to be used for 
automatic validation. Within these files rules, like e.g. if the spectrum is continuous and 1 
dimensional, the number of x- and y-values must identical, are defined (see Chapter 9, page 
120 for an example).

To  add  semantic  relationships  to  CMLSpect and  to  uniquely  define  certain  entries  the 
already  mentioned  dictionaries  are  used.  These  dictionaries  are  thought  to  develop 
separately of the schema and are be build by a large number of entries defining the available 
terms for a certain community.  As an example a  JCAMP-DX dictionary was developed 
during this thesis (see Figure 18). This dictionary provides an exhaustive listing of defined 
JCAMP-DX identifiers and can be used to mark entries within a CMLSpect file as JCAMP-
DX originating  and/or  compliant.  Beside  this,  CML comes  with  a  variety  of  different 
dictionaries  delivering  collections  of  term  definitions  for  a  broad  range  of  chemically 
relevant  terms.  Although  the  support  of  conventions  and  dictionaries  already  allows  to 
structure the data and add meaning to the single entries, we hope that there will an ontology 
be developed by the chemoinformatics community to ensure the unique definition not just 
of the used terms, but of the hierarchical dependencies between them as well.

104



7 Conclusions & Outlook

7 Conclusions & Outlook

Small organic molecules are of major importance in many different  fields of chemistry, 
biology and biochemistry.  They play crucial  roles in metabolic  networks,  are needed in 
material  sciences  and  are  produced  and  consumed  on  a  daily  basis  in  chemical  and 
biological  laboratories.  In  addition,  the  knowledge  about  their  interaction  helps  us  to 
understand biological systems and organisms. 

In the course of this project algorithms and applications, supporting scientists in their daily 
work on small organic molecules, were developed. A focus was put on storage, analysis, 
searching, exchange and encoding of molecular data under preservation of its semantics. 
Most often a compound cannot be described directly by e.g. determining its 3D coordinates 
and performing all  the necessary experiments to assure its functionality.  Therefore,  it  is 
common  to  describe  a  molecule  by  its  properties  and  try  to  back  reference  to  its 
functionality and structure by comparison with a set of known compounds. A big fraction of 
data,  which  is  recorded  in  this  context,  is  resulting  from  spectroscopic  experiments. 
Consequently,  the  tools  developed  concentrate  on  handling  structural  and  spectroscopic 
information.  Fundamental  functionality,  like  structure  and  spectrum  visualisation  and 
manipulation, editing of meta data and properties, import and export to a variety of spectral 
and  structural  data  formats  and the  creation  of  new spectral  and  structural  objects  was 
implemented (see Chapters 5.1 and 5.2). This forms the basis for the development of more 
advanced and abstract functionality based on the provided data structures, algorithms and 
overall framework. 

Some examples  of  tools  extending this  elementary functionality,  like  the  assignment  of 
structural and spectral features to each other and some analysis methods, were implemented 
within this thesis as well (see Chapter  5.3). Others are still under development or in the 
planning phase. The implementation of the assignment module in its current version allows 
the  client  based  processing  of  NMR data  for  integration  into  the  online  NMR database 
NMRShiftDB.  Beside  this  another  module  was implemented,  enabling the integration of 
BibTeX based bibliographic data into the data set. 

The general spectrum support is currently being enhanced by two ongoing projects. The 
first  is  integrating  an  application  for  the  prediction  of  mass  spectra  by  simulating  the 
ionisation and the fragmentation process occurring on measuring mass spectra. The method 
is  using  a machine  learning approach  combined with  fragmentation  rules  to  realise  the 

105



7 Conclusions & Outlook

prediction. Miguel Rojas, who developed this application, is at the moment integrating it 
into the overall framework to control the process and visualise the results from within the 
Graphical User Interface. Therefore, an additional object for handling reactions in general 
was added to the system, and therewith available for other modules as well. 

Another  project  is  integrating  the  SENECA program  package  for  Computer  Assisted 
Structure Elucidation (CASE) of organic molecules into the framework [25]. SENECA uses 
spectroscopic data, mainly from 1D and 2D NMR experiments, to stochastically generate all 
structures meeting extracted restrictions. This process is guided to a global  optimum by 
using a simulated annealing algorithm. The program package is at the moment adapted and 
integrated  into  the  framework.  Both  applications  are  using  the  elementary functionality 
developed within the course of this project to parse spectral data, represent it within the 
system and to visualise their results.

Additionally,  it  is planned to extend the analysis  functionality of the spectrum handling 
module. In this context, methods to perform and visualise peak integration, a mathematical 
method allowing to directly compare the size (in form of area under the curve) of different 
peaks will be added. This allows e.g. in 1D NMR spectroscopy to understand, how many of 
the observed nuclei give rise to this peak, as the size of it is proportional to this number. 

A further reasonable extension of the analysis package would be a peak annotation tool kit. 
This tool kit would allow for the graphical annotation of a spectrum by marking regions as 
being of special interest and would give a user the possibility to have his/her conclusions 
written  to  the  underlying  object  together  with  this  marker.  This  would  allow  e.g.  for 
labelling peaks within a NMR spectrum, that are resulting from the spin-spin coupling (also 
called j-coupling or scalar coupling) between NMR active nuclei. This phenomenon arises 
from  the  interaction  of  different  spin  states,  and  results  in  a  splitting  of  signals  into 
recognisable  patterns.  The  storage  of  this  annotation  is  completely  supported  by  the 
CMLSpect format used for spectrum handling.

Beside  this,  the  support  of  data  resulting  from  the  combination  of  chromatographic 
experiments and mass spectrometry would be very valuable, as this procedure is intensely 
used in  Metabolomics and systems biology for the identification of unknown substances. 
This would, beside the implementation of an adequate resource schema, need an adaptation 
of the current spectrum visualisation to allow for the selection of single signals within a 
chromatogram, which should trigger the regarding mass spectrum to be opened as well.

The developed tools allow for the structured deposition and management of large amounts 

106



7 Conclusions & Outlook

of molecular  data  within the  file  system as well  as  in  associated  databases.  The actual 
connection of different  SQL based  Relational Database Management Systems  (RDBMS) 
was realized by using the Hibernate object-relational mapping system. A complex schema 
was  implemented  to  realise  the  database  integration  without  loosing  the  component 
independence of the system. Together these two factors allow for flexible use of a variety of 
database systems within the Bioclipse application and liberate plug-in developers from the 
burden  of  solving  the  object-relational  mismatch.  Persistence  of  molecules,  spectra  and 
combined objects (enhanced with assignments and annotations) into the  Hypersonic SQL 
Database was implemented and example queries were added to the system (see Chapter 
5.4).

The implemented framework for connecting existing modules to all major RDBMS's in use 
provides the basis for integrating advanced database functionality. It is planned to develop a 
system to retrieve data from connected databases by using wizards for allowing the user to 
construct database queries from a set of predefined terms. This could be imagined to be 
realised in the same way, as it is solved for most online databases. These systems give users 
the  possibility  to  select  from  an  ordered  display  of  all  single  terms  stored  within  the 
database and let them combine these by using general logical operations supported by the 
databases. An additional possibility would be to pre-compile actions for complex queries, 
that are expected to be frequently used and add them to the general action framework.

Beside this, the existing integration of web services for accessing remote data repositories 
should be extended and improved. At the moment, there are modules under development, 
that allow for accessing NMRShiftDB via webservices for submitting data sets, performing a 
NMR spectrum prediction for available structures and realising an automatic assignment of 
structural  data  to  NMR spectral  data.  These  modules  will  be  expanded  to  allow  for 
structured searching for as well molecules as spectra within the database. It is planned to 
release a compiled collection of modules forming a NMRShiftDB client, as an alternative to 
the web front end to be used for submission and review of local data.

Additionally,  there  already  exists  a  component  providing  access  to  a  variety  of  online 
databases hosted by the EBI (see Chapter 4). At the moment, it is just possible to retrieve 
data by its identifier. This is planned to be improved in a way allowing for the integration of 
these remote databases to the general search framework drafted some sentences ago. Apart 
from this, an access to further databases, like  PubChem,  Zinc and  PDB is planned to be 
integrated  into  the  framework.  These  could  then  e.g.  be  used  for  performing similarity 
searches or for the retrieval of additional information for an object under analysis.

107



7 Conclusions & Outlook

There is a growing need to store data in communally agreed data formats. Many important 
information  about  molecules  on  a  structural  level  are  measured  by  using  spectroscopic 
methods. As there was no open, standardised and structured data format available allowing 
for  lossless  storage  of  this  type  of  data  under  preservation  of  semantics,  the  available 
Chemical Markup Language (CML) was expanded by the definition of a vocabulary for 
spectral  data  -  CMLSpect.  The  design  of  this  format  enables  for  encoding  primary 
spectroscopic data as well as processed spectra in form of peak lists.  Additionally,  it  is 
possible to add various meta information, about the compound measured, the experiment 
itself, the apparatus used and other general meta data, to the spectral data. Furthermore, it 
provides places were annotations can be added to data elements without defining a stringent 
vocabulary  for  doing  this.  This  is  necessary,  as  spectroscopists  and chemists  use many 
different  ontologies,  which  may  be  fundamentally  irreconcilable.  To  ensure  unique 
definition of the used terms a set of dictionaries is provided with  CML  and their use is 
enabled  and  propagated  within  the  definition.  Beside  the  existing  CML dictionaries  an 
additional one was developed, that allows to mark data within a CMLSpect file as JCAMP-
DX compliant  or originating and unambiguously defines its  meaning.  Together with the 
general possibility to combine different  CML elements, and the provided functionality to 
assign elements to each other  by references,  a format was developed, which allows the 
flexible encoding of most spectral data in use (see Chapter 6).

Most of the functionality developed was integrated into the Bioclipse framework for chemo- 
and bioinformatics. This framework is a  Rich Client implementation based on the Eclipse 
Rich Client Platform and  therefore  inherits  the  advantages  of  this  system.  Thus,  the 
functionality is presented to the user embedded into a high performance, high quality and 
easy to use  Graphical User Interface. On a programmatic level the application structure 
based on an overall plug-in architecture allows for easy expandability by ensuring high data 
consistency. 

The  Bioclipse application in its current status is already integrating much of the software 
needed within the information work flow in life sciences presented in Figure 39 and Figure
38. A complete package of applications integrated into the framework supporting all steps, 
from the initial data generation up to the publication of results, is easily imaginable. Several 
of the currently developed components will be of major help within this context. These just 
have to be extended by e.g. an easy to use CML editor providing an appealing interface for 
creating  CML encoded data files. This probably should look more like a word processor 
than like a typical  XML editor. If this editor would provide functionality expected from a 

108



7 Conclusions & Outlook

general word processor as well, it would be possible to use the framework to create XML 
based documents suited for the publication process. 

Another, probably a lot easier to implement, option would be to integrate an existing word 
processor or office suite into the system. The OpenOffice project would be the appropriate 
choice, as it is released under  LGPL and  provides a  Java interface. By connecting office 
based documents with molecular information, both stored within the system, it would be 
possible to generate semantically rich documents that could be used for publishing.

A further option would be to extend the system in such a way, that it could be used as a 
Electronic Lab Notebook (ELN). This would need the development of modules allowing for 
the structured documentation of experiments and procedures in laboratories. By adding a 
user management and modules for the definition of standard operation procedures even a 
whole Laboratory Information Management System (LIMS) would be conceivable.

There  is  no  other  freely  available  software  system known to  the  author,  that  provides 
comparable functionality in such an integrated way as the described application. In both 
bioinformatics  and  chemoinformatics  there  exist  several  open  source  projects,  which 
provide functionality for special sub fields (e.g. OpenBabel [111],  KNIME [112], Taverna 
[113],  TOUCAN [114]).  Some  others  are  integrating  more  diverse  functionality  (e.g. 
BioJava [115],  BioPython [116])  or  provide loosely coupled frameworks  for  integrating 
existing  software  modules  (e.g.  EMBOSS [117],  ISYS [118]).  But  none  of  these  is 
integrating bio- and chemoinformatics functionality into one workbench with a high quality, 
intuitive user interface and a powerful plug-in architecture for easy expandability.

There are some commercial packages on the market, which provide an exhaustive set of 
functionality  embedded into  a  highly integrated framework (e.g.  Discovery Studio from 
Accelrys, Moe from the Chemical Computing Group and the program packages provided by 
ACDLabs), but these are not based on open standards, are not open source and normally are 
quite expensive to purchase. So they do neither allow for easy exchange of generated or 
analysed data nor for simple extension of the framework by additional modules. Therein 
lies one of the major advantages of the components developed within this project, they are 
freely available and they can, from their very first implementation on, be scrutinised by 
interested parties.  Additionally,  because of the well  defined extension mechanisms,  it  is 
facile to integrate new functionality via new modules into the overall system as well as to 
compile new module subsets meeting the actual demands. The usage of open, standardised 
and  structured  data  formats facilitates  the  exchange  of  utilised  or  generated  data  under 

109



7 Conclusions & Outlook

preservation of semantics.

Although the Bioclipse framework is a relatively young project, it was awarded third price 
and the audience award at the  JAX Innovation Award 2006, which is “intended to honour 
and recognise the most remarkable and outstanding contributions in the world of Java and 
Eclipse” [119].

110



8 References

8 References

1. Rahman, S. A. & Schomburg, D.: Observing local and global properties of metabolic 
pathways: 'load points' and 'choke points' in the metabolic networks. Bioinformatics 
2006, 22:1767-1774.

2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., et al.: The Protein 
Data Bank. Nucleic Acids Research 2000, 28:235-242.

3. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., et al.: From 
genomics to chemical genomics: new developments in KEGG.. Nucleic Acids 
Research 2006, 34:D354-357.

4. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., et al.: The 
Universal Protein Resource (UniProt).. Nucleic Acids Research 2005, 33:D154-D159.

5. RSC Publishing Pioneers Next Generation Of Enriched Articles 
[http://www.rsc.org/Publishing/Journals/News/launch.asp]. accessed February 2007.

6. Butcher, E. C. & Berg, Ellen L. & Kunkel, E.J.: Systems biology in drug discovery. 
nature biotechnology 2004, 22:1253-1259.

7. Klipp, E., Herwig, R., Kowald, A., Wierling, C. & Lehrach, H.: Systems Biology in 
Practice. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; 2005.

8. Kitano, H.: Systems Biology: a brief overview. Science 2002, 295:1662-1664.
9. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C. et al.: Initial 

sequencing and analysis of the human genome. Nature 2001, 409:860-921.
10.Aderem, A: Systems Biology: its practice and challenges. Cell 2005, 121:511-513.
11.Kitano, H.: Computational systems biology. Nature 2002, 420:206-210.
12.Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, et al.: The systems biology 

markup language (SBML): a medium for representation and exchange of 
biochemical network models. Bioinformatics 2003, 19:524--531.

13.Ideker, T., Galitski, T. and Hood L.: A New Approach To Decoding Life: Systems 
Biology. Annual Review of Genomics and Human Genetics 2001, 2:343-372.

14.Fiehn, O.: Metabolomics-the link between genotypes and phenotypes. Plant  
Molecular Biology 2002, 48:155-171.

15.Mendes, P.: Emerging bioinformatics for the metabolome. Briefings in  
Bioinformatics 2002, 3:134-145.

16.Nobeli, I. & Thornton, J.M.: A bioinformatician's view of the metabolome. BioEssays 
2006, 28:534-545.

17.Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K. et al.: Rapid and 
noninvasive diagnosis of the presence and severity of coronary heart disease using 
1H-NMR-based metabonomics. Nature Medicine 2002, 8:1439-1444.

18.Steinbeck, C.: The automation of natural product structure elucidation. Current  
Opinion in Drug Discovery & Development 2001, 4:338-342.

19.Steinbeck, C.: Computer-Assisted Structure Elucidation. Handbook on 
Chemoinformatics. Wiley-VCH Weinheim; 2003.

111



8 References

20.Munk, M.: Computer-Based Structure Determination: Then and Now. Journal of  
Chemical Informatics and Computer Sciences 1998, 38:997-1009.

21.Steinbeck, C.: Recent developments in automated structure elucidation of natural 
products. Natural Product Reports 2004, 21:512-518.

22.Neudert, R. & Penk, M.: Enhanced Structure Elucidation. Journal of Chemical  
Informatics and Computer Sciences 1996, 36:244-248.

23.Grey, N.: Computer Assisted Structure Elucidation. John Wiley & Sons; 1986.
24.Funatsu, K., Miyabayashi, N. & Sasaki, S.I.J.: Further Development of Structure 

Generation in the Automated Structure Elucidation System CHEMICS. Journal of  
Chemical Informatics and Computer Sciences 1988, 22:18-28.

25.Steinbeck C: SENECA: A platform-independent, distributed, and parallel system 
for computer-assisted structure elucidation in organic chemistry. Journal of  
Chemical Informatics and Computer Sciences 2001, 41:1500-1507.

26.Gasteiger, J., Hanebeck, W. & Schulz, K.P.: Prediction of Mass Spectra from 
Structural Information. Journal of Chemical Informatics and Computer Sciences 1992, 
32:264-271.

27.Affolter, C. & Clerc, J.T.: Prediction of Infrared Spectra from Chemical Structures 
of Organic Compounds using Neural Networks. Chemometrics and Intelligent  
Laboratory Systems 1993, 21:151-157.

28.Hesse, M., Meier, H. & Zeeh, B.: Spektroskopische Methoden in der organischen 
Chemie. Thieme, Stuttgart; 2005.

29.GNU Lesser General Public License [http://www.gnu.org/licenses/lgpl.html]. accessed 
January 2007.

30.The Analytical Data Interchange Standard Webpage [http://andi.sourceforge.net/]. 
accessed February 2007.

31.Thermo Galactic Spc File Format Webpage 
[http://www.thermo.com/com/cda/resources/resources_detail/1,,112125,00.html]. 
accessed February 2007.

32.The Open Source Initiative [http://opensource.org/]. accessed January 2007.
33.Raymond, E.: The Cathedral & the Bazaar. O'Reilly Media; 2001.
34.The Budapest Open Access Initiative [http://www.soros.org/openaccess/]. accessed 

January 2007.
35.Guha, R., Howard, M.T., Hutchison, G.R., Murray-Rust, P., Rzepa, H., et al.: The Blue 

Obelisks Interoperability in Chemical Informatics. Journal of Chemical Information 
and Modelling 2006, 46:991-998.

36.The OpenSciene Project [http://www.openscience.org/]. accessed January 2007.
37.Schussel, G.: Client/Server: Past, Present and Future. 

[http://www.dciexpo.com/geos/dbsejava.htm ]. accessed January 2007.
38.The Eclipse Webpage [http://www.eclipse.org]. accessed December 2006.
39.Daum, B.: Rich-Client-Entwicklung mit Eclipse 3.1. dpunkt.verlag; 2005.
40.Klinkert, T. & Bertschler, M.: Die Eclipse Rich-Client-Platform (RCP). 

[http://www.saboracaferestaurant.com/mb/document.pdf ]. 2006.

112



8 References

41.Open Service Gateway Initiative [http://www.osgi.org]. accessed December 2006.
42.The Eclipse Wiki [http://wiki.eclipse.org/index.php/]. accessed December 2006.
43.Gunther, J.: Introduction to Eclipse’s Rich Client Platforms. JavaOne Conference; 

2005.
44.des Rivieres, J. & Beaton, W.: Eclipse platform technical overview. 

[http://www.eclipse.org/articles/Whitepaper-Platform-3.1/ ]. accessed December 2006.
45.Szyperski, C.: Component software: beyond object-oriented programming. Addison-

Wesley Professional, Boston; 2002.
46.Arthorne, J. & Laffra, C.: Official Eclipse 3.0 FAQs. Addison Wesley Professional; 

2004.
47.The Eclipse 3.2 Help System [http://help.eclipse.org/help31]. accessed December 2006.
48.The SWT Webpage [http://www.eclipse.org/swt/]. accessed December 2006.
49.Marinilli, M.: Swing and SWT: a tale of two Java GUI libraries. 

[http://www.developer.com/ ]. accessed December 2006.
50.Spjuth, O., Helmus, T., Willighagen, E.L., Kuhn, S., Eklund, M., et al.: Bioclipse: An 

open source workbench for chemo- and bioinformatics. BMC Bioinformatics 2007, 
8:59.

51.The BioJava Webpage [http://biojava.org]. accessed January 2007.
52.The Jmol Webpage [www.jmol.org]. accessed January 2007.
53.Neerincx, P. B. & Leunissen, J. A.: Evolution of web services in bioinformatics. 

Briefings in Bioinformatics 2005, 6:178-188.
54.Curcin, V., Ghanem, M. & Guo, Y.: Web services in the life sciences. Drug Discovery  

Today 2005, 10:865-871.
55.Pillai, S., Silventoinen, V., Kallio, K., Senger, M., Sobhany, S. et al.: SOAP-based 

services provided by the european bioinformatics institute. Nucleic Acids Research 
2005, 33:w25-w28.

56.Murray-Rust, P., Rzepa, H., Williamson, MJ & Willighagen, E.L.: Chemical markup, 
XML, and the World Wide Web. 5. Applications of chemical metadata in RSS 
aggregators. Journal of Chemical Informatics and Computer Sciences 2004, 44:462-
469.

57.Rich Site Summary (RSS 0.91) Definition. [http://backend.userland.com/rss091]. 
accessed January 2007.

58.Rich Site Summary (RSS 0.92) Definition. [http://backend.userland.com/rss092]. 
accessed January 2007.

59.The Rdf Site Summary (RSS 1.0) Definition. [http://web.resource.org/rss/1.0/spec]. 
accessed January 2007.

60.Really Simple Syndication (RSS 2.0) Definition. [http://www.rssboard.org/rss-
specification]. accessed January 2007.

61.Steinbeck, C. & Kuhn, S.: NMRShiftDB -- compound identification and structure 
elucidation support through a free community-built web database. Phytochemistry 
2004, 65:2711-2717.

62.Steinbeck, C., Krause, S., Kuhn, S.: NMRShiftDB - constructing a free chemical 

113



8 References

information system with open-source components. Journal of Chemical Informatics  
and Computer Sciences 2003, 43:1733-1739.

63.Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O. & Luttmann, E. et al.: The Chemistry 
Development Kit (CDK): an open-source Java library for Chemo- and 
Bioinformatics. Journal of Chemical Informatics and Computer Sciences 2003, 43:493-
500.

64.Krause, S., Willighagen, E. & Steinbeck, C.: JChemPaint - Using the Collaborative 
Forces of the Internet to Develop a Free Editor for 2D Chemical Structures. 
Molecules 2000, 5:93-98.

65.Murray-Rust, P. & Rzepa, H.S.: Chemical Markup, XML, and the Worldwide Web. 
1.Basic Principles. Journal of Chemical Informatics and Computer Sciences 1999, 
39:928-942.

66.McDonald, R.S. & Wilks, P.A. Jr.: JCAMP-DX: A Standard Form for Exchange of 
Infrared Spectra in Computer Readable Form. Applied Spectroscopy 1988, 42:151-
162.

67.Lampen, P., Hillig, H., Davies, A.N. & Linscheid, M.: JCAMP-DX for Mass 
Spectrometry. Applied Spectroscopy 1994, 48:1545-1552.

68.Lampen, P., Lambert, J., Lancashire, R.J., McDonald, R.S., McIntyre, P.S., et al.: An 
Extension to the JCAMP-DX Standard File Format, JCAMP-DX V.5.01. Pure and 
Applied Chemistry 1999, 71:1549-1556.

69.Duckworth, J.: An XML-Based File Format for Archival Storage of Analytical 
Instrument Data. [http://www.gaml.org/Documentation/XML Analytical Archive 
Format ]. 2001.

70.The JFreeChart Library [http://www.jfree.org/jfreechart/]. accessed January 2007.
71.Murray-Rust, P. & Rzepa, H.S.: Chemical markup, XML and the World-Wide Web. 

2. Information objects and the CMLDOM. Journal of Chemical Informatics and 
Computer Sciences 2001, 41:1113-1123.

72.Kemper, A. & Eickler, A.: Datenbanksysteme. Eine Einführung. Oldenbourg Verlag; 
2006.

73.Beeger, R.F., Haase, A., Roock, S. & Sanitz, S.: Hibernate. Persistenz in Java-
Systemen mit Hibernate 3. dpunkt.verlag; 2006.

74.Fussell, M.: Foundations of Object-Relational Mapping. 
[http://www.chimu.com/publications/objectRelational/ ]. accessed January 2007.

75.The Hibernate Webpage [ww.hibernate.org]. accessed January 2007.
76.Elliot, J.: Hibernate: A Developer’s Notebook. O’Reilly Verlag; 2004.
77.Murray-Rust, P., Mitchell, J.B. & Rzepa, H.S.: Communication and re-use of chemical 

information in bioscience. BMC Bioinformatics 2005, 6:1-15.
78.Berners-Lee, T. and Hendler, J.: Publishing on the semantic web. Nature 2001, 

410:1023-1024.
79.The Semantic Web Activity [http://www.w3.org/2001/sw/]. accessed February 2007.
80.W3Consortium: The Extensible Markup Language (xml). 

[http://www.w3.org/XML/ ]. accessed January 2007.

114



8 References

81.Chaudhri, A.B., Rashid, A. & Zicari R.: XML Data Management: Native XML and 
XML-Enabled Database Systems. Addison Wesley Professional; 2003.

82.Harold, E.R. & Means, W.S.: XML in a Nutshell, 3rd Edition. O'Reilly; 2004.
83.Fallside, D.C. & Walmsley, P.: XML schema part 0: primer second edition. 

[http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/ ]. accessed January 2007.
84.Thompson, H.S., Beech, D., Mendelsohn, N., Maloney M.: XML schema part 1: 

structures second edition. [http://www.w3.org/TR/2004/REC-xmlschema-1-
20041028/ ]. accessed January 2007.

85.Biron, P.V. and Malhotra, A.: XML schema part 2: datatypes second edition. 
[http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ ]. accessed January 2007.

86.Bray, T., Hollander, D., Layman, A. and Tobin, R.: Namespaces in XML 1.0. 
[http://www.w3.org/TR/REC-xml-names/ ]. accessed January 2007.

87.DeRose, S., Maler, E. and Orchard, D.: XML Linking Language (XLink) Version 1.0. 
[http://www.w3.org/TR/xlink/ ]. accessed January 2007.

88.DeRose, S., Maler, E. and Interwoven, R.D. Jr.: XML Pointer Language (XPointer) 
Version 1.0. [http://www.w3.org/TR/WD-xptr ]. accessed January 2007.

89.Clark, J. & DeRose, S.: XML Path Language (XPath) Version 1.0. 
[http://www.w3.org/TR/xpath ]. accessed January 2007.

90.The Extensible Style Sheet Language Family [ http://www.w3.org/Style/XSL/ ]. 
accessed January 2007.

91.Boag, S., Chamberlin, S., Fernández, M.F., Florescu, D., Robie, J., et al.: XQuery 1.0: 
An XML Query Language. [http://www.w3.org/TR/xquery/ ]. accessed January 2007.

92.Barillot, E. & Achard, F.: XML: a lingua franca for science?. Trends in Biotechnology 
2000, 18:331-333.

93.Bioinformatic Sequence Markup Language [http://www.bsml.org/]. accessed 
February 2007.

94.Fenyo, D.: The Biopolymer Markup Language. Bioinformatics 1999, 15:339-340.
95.Finney, A. & Hucka, M.: Systems Biology Markup Language: level 2 and beyond. 

Biochemical Society transactions 2003, 31:1472-1473.
96.The PDBML Resources Webpage [http://pdbml.rcsb.org/]. accessed January 2007.
97.The Analytical Markup Language Webpage [http://animl.sourceforge.net/]. accessed 

January 2007.
98.Murray-Rust, P. & Rzepa, H.S.: Chemical markup, XML, and the World Wide Web. 

4. CML schema. Journal of Chemical Informatics and Computer Sciences 2003, 
43:757-772.

99.Achard, F., Vaysseix, G. & Barillot, E.: XML, bioinformatics and data integration. 
Bioinformatics 2001, 17:115-125.

100.Cerami, E.: XML for bioinformatics. Springer, Berlin; 2005.
101.The CML FAQ [http://cml.sourceforge.net/historical/faq.html]. accessed January 

2007.
102.Gkoutos, G. V., Murray-Rust, P. & Rzepa, H S & Wright, M: Chemical markup, 

XML and the World-Wide Web. 3. Toward a signed semantic chemical web of 

115



8 References

trust. Journal of Chemical Informatics and Computer Sciences 2001, 41:1124-1130.
103.Bartel, M., Boyer, J., Fox, B., LaMacchia, B. & Simon, E.: XML-Signature Syntax 

and Processing. [http://www.w3.org/TR/xmldsig-core/ ]. accessed January 2007.
104.Holliday, G. L., Murray-Rust, P. & Rzepa, H.S.: Chemical markup, XML, and the 

world wide web. 6. CMLReact, an XML vocabulary for chemical reactions. Journal  
of Chemical Informatics and Computer Sciences 2006, 46:145-157.

105.Murray-Rust, P. & Rzepa, H.S.: STMML. A Markup Language for Scientific, 
Technical and Medical Publishing. 2002, 1:1-65.

106.Murray-Rust, P. & Rzepa, H.S.: Scientific publications in XML - towards a global 
knowledge base. 2002, 1:84-98.

107.V Gkoutos, G., Murray-Rust P. Rzepa H.S. Viravaidyaa C. & Wright, M.: The 
Application of XML Languages for Integrating Molecular Resources. Internet  
Journal of Chemistry 2001, article 13:1-15.

108.The XML Object Model (XOM) Webpage [http://www.xom.nu/]. accessed January 
2007.

109.Adams, S.E., Goodman, J.M., Kidd, R.J. McNaught, A.D., Murray-Rust, P. , et al.: 
Experimental data checker: better information for organic chemists. Organic & 
Biomolecular Chemistry 2004, 2:3067-3070.

110.Townsend, J.A., Adams, S.E., Waudby, C.A., de Souza, V.K., Goodmann, J.M. et al.: 
Chemical documents: machine undertsanding and automated information 
extraction. Organic & Biomolecular Chemistry 2004, 2:3294-3300.

111.OpenBabel [http://en.wikipedia.org/wiki/OpenBabel]. accessed March 2007.
112.KNIME [http://www.knime.org/]. accessed March 2007.
113.Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., et al.: Taverna: a tool for the 

composition and enactment of bioinformatics workflows. Bioinformatics 2004, 
20:3045-3054.

114.Aerts, S., Van Loo, P., Thijs, G., Mayer, H., de Martin, R., et al.: TOUCAN 2: the all-
inclusive open source workbench for regulatory sequence analysis. Nucleic Acids  
Res 2005, 33:W393-6.

115.BioJava [http://biojava.org/]. accessed March 2007.
116.BioPython [http://biopython.org/]. accessed March 2007.
117.Rice, P., Longden, I. & Bleasby, A.: EMBOSS: the European Molecular Biology 

Open Software Suite. Trends Genet 2000, 16:276-277.
118.Siepel, A., Farmer, A., Tolopko, A., Zhuang, M., Mendes, P., et al.: ISYS: a 

decentralized, component-based approach to the integration of heterogeneous 
bioinformatics resources. Bioinformatics 2001, 17:83-94.

119.The JAX Innovation Award 2006 [http://jax-award.de/jax_award06/index_en.php ]. 
accessed March 2007.

116



9 Appendix 

9 Appendix 

 CML Examples

117

Figure 45: CMLSpect encoded UV/Vis spectrum exported from JSpecView as defined in the convention as 
well. The data blocks showing the x and y data points were shortened and do just show the first and the 
last two entries. It contains meta data, parameter data and a sample beside the continuous spectrum itself, 
defined within the <spectrumData> block. Furthermore, several dictionaries are used to unambiguously 
define most of the utilised terms. Via the <sample> element the measured sample is described by its 
formula and a CAS registry number.

<cml xmlns="http://www.xml-cml.org/schema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:siUnits="http://www.xml-cml.org/units/siUnits"
  xmlns:units="http://www.xml-cml.org/units/units"
  xmlns:jspecview="http://jspecview.sf.net/convention.html"
  xmlns:cmlDict="http://www.xml-cml.org/dict/cmlDict"
  xmlns:cml="http://www.xml-cml.org/dict/cml"
  xmlns:dc="http://purl.org/dc/elements/1.1/"
  xmlns:jcamp="http://www.xml-cml.org/dict/jcampDict"
  xsi:schemaLocation="http://www.xml-cml.org/dict/jcampDict                     
  dict/jcampDict.xml http://www.xml-cml.org/schema schema.xsd http://www.xml-         
  cml.org/dict/cml dict/cmlDict.xml http://www.xml-cml.org/dict/cmlDict               
  dict/simpleCmlDict.xml http://www.xml-cml.org/units/units dict/unitsDict.xml        
  http://www.xml-cml.org/units/siUnits dict/siUnitsDict.xml">
  <spectrum id="UV_VIS" title="Holmium Oxide Wavelength Standard"
    convention="JSpecView" type="UV/VIS">
    <metadataList>
      <metadata name="jcamp:origin" content="Lambda 900" />
      <metadata name="jcamp:owner" content="NIST-Gaithersburg" />
    </metadataList>
    <parameterList>
      <parameter dictRef="jcamp:SpectrometerDataSystem"
        title="SpectrometerDataSystem" value="LAMBDA" />
      <parameter dictRef="jcamp:resolution" title="resolution">
        <scalar units="units:nm">2.0 NM</scalar>
      </parameter>
    </parameterList>
    <sample>
      <molecule>
        <formula inline="Ho2O3" />
        <name convention="cml:casregno">12055-62-8</name>
      </molecule>
    </sample>
    <spectrumData>
      <xaxis>
        <array units="units:nm" start="200.0" end="700.0" size="501"
          dataType="xsd:double">
          200 201

    ...
    699 700

        </array>
      </xaxis>
      <yaxis multiplierToData="1.000">
        <array units="cml:absorbance" size="501"
          dataType="xsd:double">
          0.46341657 0.44507496

    ...
    0.02941928 0.0297209

        </array>
      </yaxis>
    </spectrumData>
  </spectrum>
</cml>



9 Appendix 

 

118

Figure 46: From JSpecView exported IR spectrum. Via the <sample> entry the measured sample is 
described by its formula and a CAS registry number. The spectrum contains as well continuous data (for 
displaying purposes shortened) as extracted peaks. Three of its peaks are grouped by using the 
<peakGroup> element implying, that these peaks have a chemical relationship. Additionally, all peaks 
are further described by using the peakShape attribute. Again, many of the used terms defined using 
dictionary references.

<spectrum id="but2" title="2-Butanol" convention="JSpecView"
  type="infrared" state="gas" xmlns="http://www.xml-cml.org/schema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:siUnits="http://www.xml-cml.org/units/siUnits"
  xmlns:units="http://www.xml-cml.org/units/units"
  xmlns:jspecview="http://jspecview.sf.net/convention.html"
  xmlns:cmlDict="http://www.xml-cml.org/dict/cmlDict"
  xmlns:cml="http://www.xml-cml.org/dict/cml"
  xmlns:dc="http://purl.org/dc/elements/1.1/"
  xsi:schemaLocation="http://www.xml-cml.org/units/siUnits dict/siUnitsDict.xml      
  http://www.xml-cml.org/units/units dict/unitsDict.xml http://www.xml-              
  cml.org/dict/cmlDict dict/simpleCmlDict.xml http://www.xml-cml.org/dict/cml        
  dict/cmlDict.xml http://www.xml-cml.org/schema schema.xsd">
  <metadataList>
    <metadata name="dc:origin"
      content="Sadtler Research Labs Under US-EPA Contract" />
    <metadata name="dc:owner" content="NIST Standard Reference Data Program" />
    <metadata name="dc:identifier" content="No.424 (EPA Vapor Library" />
    <metadata name="dc:source"content="I am guessing this means vapor phase" />
  </metadataList>
  <sample>
    <molecule>
      <formula concise="C 4 H 10 O 1" />
      <name convention="cml:casregno">78-92-2</name>
    </molecule>
  </sample>
  <conditionList>
    <scalar dictRef="units:bar">1.2345</scalar>
    <scalar dictRef="cmlDict:press" units="siUnits:pascal">12345</scalar>
  </conditionList>
  <spectrumData>
    <xaxis>
      <array units="units:cm-1" size="224" dataType="xsd:double">
        450 454 

...
1338 1342

      </array>
    </xaxis>
    <yaxis multiplierToData="0.000109021">
      <array units="cml:absorbance" size="224" dataType="xsd:double">
        331 179

...
0 0

      </array>
    </yaxis>
  </spectrumData>
  <peakList>
    <peakGroup id="pg1" xMax="3040" xMin="2800">
      <peak id="ch1" title="CH-stretch-1" peakMultiplicity="singlet"
        peakShape="sharp" xUnits="units:cm-1" xValue="2974"
        yUnits="cml:absorbance" yValue="1.0921" />
      <peak id="ch2" title="CH-stretch-2" peakShape="shoulder"
        xUnits="units:cm-1" xValue="2938" yUnits="cml:absorbance"
        yValue="0.653" />
      <peak id="ch3" title="CH-stretch-3" xUnits="units:cm-1"
        xValue="2890" yUnits="cmlp:absorbance" yValue="0.470" />
    </peakGroup>
    <peak id="oh1" title="CH-stretch???" peakShape="broad"
      xUnits="units:cm-1" xValue="3657" yUnits="cml:absorbance"
      yValue="0.1092" />
  </peakList>
</spectrum>



9 Appendix 

119

Figure 47: CMLSpect example for a mass spectrum. This spectrum is just holding peak information. The 
original spectrum contains 92 peaks, of which just 4 are shown here for demonstration. Again, the sample 
is described by its formula and a CAS registry number and the used terms are further defined via 
dictionary references.

<cml xmlns="http://www.xml-cml.org/schema"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:siUnits="http://www.xml-cml.org/units/siUnits"
  xmlns:units="http://www.xml-cml.org/units/units"
  xmlns:jspecview="http://jspecview.sf.net/convention.html"
  xmlns:jcamp="http://www.jcamp.org/dict"
  xmlns:cml="http://www.xml-cml.org/dict/cmlDict"
  xmlns:dc="http://purl.org/dc/elements/1.1/"
  xsi:schemaLocation="http://www.xml-cml.org/dict/cmlDict dict/simpleCmlDict.xml      
  http://www.xml-cml.org/dict/jcampDict dict/jcampDict.xml http://www.xml-            
  cml.org/units/units dict/unitsDict.xml http://www.xml-cml.org/schema schema.xsd">
  <spectrum id="MS_4-vinylben" title="4-vinylbenzyl chloride"
    convention="JSpecView" type="massSpectrum">
    <metadataList>
      <metadata name="dc:origin"
        content="PSLC - Univ of Wisconsin-Stevens Point" />
      <metadata name="dc:owner" content="Robert Badger" />
    </metadataList>
    <parameterList>
      <parameter dictRef="jcamp:SpectrometerDataSystem"
        title="SpectrometerDataSystem" value="unknown" />
    </parameterList>
    <sample>
      <molecule>
        <formula inline="C9H9Cl" />
        <name convention="cml:casregno">1592-20-7</name>
      </molecule>
    </sample>
    <peakList>
      <peak id="a1" xUnits="units:moverz" xValue="26.05"
        yUnits="cml:relabundance" yValue="0.86">
      </peak>
      <peak id="a2" xUnits="units:moverz" xValue="27.05"
        yUnits="cml:relabundance" yValue="2.34">
      </peak>

...
      <peak id="a90" xUnits="units:moverz" xValue="155"
        yUnits="cml:relabundance" yValue="2.89">
      </peak>
      <peak id="a91" xUnits="units:moverz" xValue="156"
        yUnits="cml:relabundance" yValue="0.23">
      </peak>
    </peakList>
  </spectrum>
</cml>



9 Appendix 

 NMRShiftDB Convention Schema

120

Figure 48: Sample section of the NMRShiftDB convention file. By this schematron schema certain rules 
are defined for CML files to be NMRShiftDB conform. It is e.g. defined, that the file is only allowed to 
carry one molecule, that has to be formed by an atomArray and a bondArray.

<schema xml:lang="en" version="0.2"
  xmlns="http://purl.oclc.org/dsdl/schematron">
  <!-- Copyright (c) 2006 Stefan Kuhn, Egon Willighagen -->
  <!-- Version 0.2 is the specification distributed along with the CMLSpec article.-->
  <title>CML Convention for NMRShiftDB.org</title>
  <ns prefix='cml' uri='http://www.xml-cml.org/schema'/>
  <pattern name="Convention specification"> 
    <rule id="conv1" context="/*"> 
      <assert test="@convention and @convention='nmrshiftdb-convention'">The root 

element must specify @convention="nmrshiftdb-convention".</assert>
    </rule>
  </pattern>
  <!-- hierarchy of elements -->
  <pattern name="Element Hierarchy">
    <rule id="hier1" context="/*"> 
      <assert test="name()='cml' or name()='molecule' or name()='spectrum'">The root 

is not <cml>, <molecule> or <spectrum>.</assert>
    </rule>
    <rule id="hier2" context="cml:cml">
      <assert test="count(cml:molecule) < 2">Only one <molecule> element may be 

present.</assert>
    </rule>
    <rule context="cml:molecule"> 
      <assert id="hier3" test="cml:atomArray">The <molecule> element must contain a 

<atomArray> element.</assert>
      <assert id="hier4" test="cml:bondArray">The <molecule> element must contain a 

<bondArray> element.</assert>
    </rule>
    <rule context="cml:spectrum"> 
      <assert id="hier5" test="cml:conditionList">The <spectrum> element must contain 

a <conditionList> element.</assert>
      <assert id="hier6" test="cml:metadataList">The <spectrum> element must contain a 

<metadataList> element.</assert>
      <assert id="hier7" test="cml:substanceList">The <spectrum> element must contain 

a <substanceList> element.</assert>
      <assert id="hier8" test="cml:peakList">The <spectrum> element must contain a 

<peakList> element.</assert>
    </rule>
  </pattern>
  <!-- element attributes -->
  <pattern name="Required attributes">
    <rule id="attr1" context="cml:atom">
      <assert test="@id">The <atom> element must have an @id attribute.</assert>
    </rule>
    <rule context="cml:spectrum">
      <assert id="attr2" test="@moleculeRef">The <spectrum> element must have an 

@moleculeRef attribute.</assert>
      <assert id="attr3" test="@type">The <spectrum> element must have an @type 

attribute.</assert>
    </rule>
    <rule context="cml:peak">
      <assert id="attr4" test="@xValue">For each <peak> the @xValue must be 

given.</assert>
      <assert id="attr5" test="@xUnits">For each <peak> the @xUnits must be 

given.</assert>
      <report id="attr6" test="@yValue and not(@yUnits)">If @yValue is given for a <

peak>, then @yUnits must be given too.</report>
      <assert id="attr7" test="@atomRefs">For each <peak> the @atomRefs must be 

given.</assert>
    </rule>
  </pattern>
...
</schema>



9 Appendix 

 Metadata Mapping File Example

121

Figure 49: Depiction showing sections of the JCAMP-DX meta data mapping file used to build the 
meta data editor. At the moment there are three different sections defined (meta data, conditions and 
substances). Every section holds a listing of entries with an id and a label. Within every entry one to 
multiple pre set values can be included. These are in the editor shown as a drop down box giving the 
user the possibility to select one value. Via the dictLocation attribute a dictionary is bound to this 
mapping file, and its entries being used to generate tooltips for the meta data entries. 

<?xml version="1.0" encoding="UTF-8"?>
<dictionaryMapping prefix="jcampdx"
  xmlns:jcampdx="http://www.xml-cml.org/dict/jcampDXDict"label="JCAMP-DX Metadata  
  Entries" id="JCAMP-DX" dictLocation="/dict10/simple/">
  <section name="conditionList" label="Condition List">
    <entry id="TEMPERATURE" allowedForSpecTypes=""
      label="Temperature ">
    </entry>
    <entry id="dotIONIZATIONMODE" allowedForSpectrumTypes="MS"
      label="Ionization Mode ">
    </entry>
    ...
  </section>
  </section>
  <section name="substanceList" label="Substance List">
    <entry id="dotSOLVENTNAME" allowedForSpecTypes="NMR,MS,IR"
      label="Solvent Name ">
      <valueList>
        <value>H2O</value>
        <value>PyridineD5</value>
        <value>Benzene</value>
        <value>THF</value>
      </valueList>
    </entry>
    ...
  </section>
  <section name="metadataList" label="Metadata List">
    <entry id="XUNITS" allowedForSpectrumTypes="NMR,MS,IR"
      label="XUnits ">
      <valueList>
        <value>M/Z</value>
        <value>ppm</value>
        <value>nm</value>
        <value>HZ</value>
        <value>SECONDS</value>
      </valueList>
    </entry>
  </section>
</dictionaryMapping>





Danksagung

Ich danke:

allen,  die  an dem Gelingen dieser  Arbeit  direkt  und indirekt  beteiligt  waren,  besonders 
denen, die hier nicht explizit aufgeführt sind. 

PD Dr.  C.  Steinbeck  für  die  Aufnahme  in  seine  Arbeitsgruppe,  die  Bereitstellung  des 
Themas und die ständige Bereitschaft zur Diskussion.

Prof. Dr. D. Schomburg und allen Mitglieder der Research Group for Molecular Informatics 
und des Cologne University Bioinformatics Center für die gute Zusammenarbeit und die 
angenehme Arbeitsatmosphäre.

Stefan  Kuhn  und  Philipp  Heuser  für  die  gute  Zusammenarbeit  und  die  inspirierenden 
Diskussionen.

abschließend allen Korrekturlesern für ihre Mühe.





Erklärung 

Ich versichere,  dass  ich die  von mir vorgelegte  Dissertation selbständig  angefertigt,  die 
benutzten  Quellen  und  Hilfsmittel  vollständig  angegeben  und  die  Stellen  der  Arbeit  − 
einschließlich Tabellen, Karten und Abbildungen −, die anderen Werken im Wortlaut oder 
dem Sinn nach entnommen sind,  in  jedem Einzelfall  als  Entlehnung kenntlich  gemacht 
habe;  dass diese Dissertation noch keiner anderen Fakultät  oder Universität  zur Prüfung 
vorgelegen hat;  dass  sie  − abgesehen von unten angegebenen Teilpublikationen − noch 
nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss 
des  Promotionsverfahrens  nicht  vornehmen  werde.  Die  Bestimmungen  der 
Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von PD Dr. 
Christoph Steinbeck betreut worden. 

Tobias Helmus

Teilpublikationen: 

Kuhn,  S.,  Helmus,  T.,  Lancashire,  R.,  Murray-Rust,  P.,  Rzepa,  H.,  Steinbeck,  C., 
Willighagen, E.: Chemical Markup, XML, and the World Wide Web. 7. CMLSpect, an 
XML  vocabulary  for  spectral  data.  Journal  of  Chemical  Information  and  Modeling, 
Submitted.

Spjuth, O., Helmus, T., Willighagen, E.L., Kuhn, S., Eklund, M., Wagener, J., Murray-Rust, 
P., Steinbeck, C. & Wikberg, J.ES.: Bioclipse: an open source workbench for chemo- 
and bioinformatics. BMC Bioinformatics 2007, 8:59.

Köln, den 05.07.2007





Lebenslauf

Zur Person

Dipl. Biologe
Tobias Helmus
geboren am 26.05.1974 in Münster
Staatsangehörigkeit: deutsch

Zorndorfstraße 10
50737 Köln
Email: thelmus@web.de

Ausbildung

05.2004-06.2007 Wissenschaftlicher Mitarbeiter / Promotion zum Thema 
„Encoding, Storing and Searching of Analytical Properties and 
Assigned Metabolite Structures“ in der Research Group for 
Molecular Informatics, Cologne University Bioinformatics 
Center (CUBIC), Universität zu Köln

04.2003-04.2004 Aufbaustudium Bioinformatik am Cologne University 
Bioinformatics Center (CUBIC) – finanziert durch ein 
Stipendium des BMBF

02.2001-07.2002 Diplomarbeit mit dem Thema: „Interaktion verschiedener Cr-
Spezies mit Immunzellen des Karpfens (Cyprinus Carpio) unter 
unterschiedlichen Kulturbedingungen“ im Fachgebiet 
Fischkrankheiten, Zentrum für Infektionsmedizin der 
Tierärztlichen Hochschule Hannover

09.1998-08.1999 Studium der marinen und terrestrischen tropischen Biologie an 
der Universidad Nacional, Costa Rica, als DAAD-Stipendiat 
im Rahmen eines IAS-Programms

10.1995-12.2002 Studium der Diplom-Biologie an der Universität Hannover
1987-1994 St.Ursula-Schule (Gymnasium)

30171 Hannover 

Köln, den 05.07.2007






	1 Introduction
	1.1 Systems Biology and Metabolomics
	1.2 Computer Assisted Structure Elucidation
	1.3 Spectroscopy and Spectroscopic Data Formats
	1.3.1 Spectroscopic Data Formats

	1.4 Open Data, Open Source, Open Standard
	1.4.1 Open Source
	1.4.2 Open Standard & Open Data

	1.5 Client-Server-Architecture
	1.5.1 Thin Clients
	1.5.2 Rich Clients


	2 Aim of the Project
	3 Eclipse & Eclipse Rich Client Platform
	3.1 Rich Client Platform
	3.1.1 Component Model
	3.1.2 Workspaces & Resources
	3.1.3 Workbench & UI Toolkits
	3.1.3.1 The Standard Widget Toolkit – SWT
	3.1.3.2 JFace
	3.1.3.3 Workbench
	3.1.3.4 Perspectives
	3.1.3.5 Editors & Views
	3.1.3.6 Wizards

	3.1.4 Platform Integration
	3.1.5 Help System
	3.1.6 Eclipse Summary


	4 The Bioclipse Framework
	5 Software and Methods Developed
	5.1 Structure Handling
	5.1.1 The CDK Plug-in
	5.1.2 Embedding JChemPaint

	5.2 Spectrum Handling
	5.2.1 The CML Plug-in
	5.2.2 The JCAMP-DX Format
	5.2.3 General Spectrum Support

	5.3 Assignment of Spectral and Structural Data
	5.4 Database Connection
	5.4.1 Database Systems & Object-Relational Mapping
	5.4.1.1 Relational Databases
	5.4.1.2 Object-Relational Mapping

	5.4.2 Implementation of Database Connections


	6 Semantics and Dictionaries for Metabolomics Data Representation
	6.1 The Extensible Markup Language (XML)
	6.2 The Chemical Markup Language (CML)
	6.3 The CMLSpect Vocabulary for Spectral Data

	7 Conclusions & Outlook
	8 References
	9 Appendix 
	CML Examples
	NMRShiftDB Convention Schema
	Metadata Mapping File Example


